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Zusammenfassung

Die Hauptresultate dieser Arbeit tragen zur extremalen und algebraischen Kombi-
natorik bei. Im Kontext der extremalen Kombinatorik ist eines der berühmtesten
Ergebnisse das Erdős-Ko-Rado (EKR) Theorem, das die Frage beantwortet, wie groß
eine Familie von sich paarweise schneidenden Mengen sein kann. Seitdem Erdős,
Ko und Rado ihr Ergebnis in den 1960er Jahren veröffentlicht haben, wurden EKR-
Probleme untersucht, die sich aus vielen verschiedenen Objekten und Definitionen
von schneidend ergeben. In dieser Arbeit untersuchen wir EKR-Probleme in der
endlichen allgemeinen linearen Gruppe GL(n, q), welche aus allen invertierbaren n× n

Matrizen mit Einträgen im endlichen Körper Fq besteht. Wir liefern obere Schranken
für die Größe verschiedener sich schneidender Mengen in GL(n, q) und geben eine
Charakterisierung der sich schneidenden Mengen maximaler Größe.

Im Kontext der algebraischen Kombinatorik beschäftigen wir uns mit transitiven
Teilmengen einer Permutationsgruppe, welche den Begriff der transitiven Untergruppe
verallgemeinern. Wir liefern strukturelle Ergebnisse über Teilmengen von GL(n, q),
die transitiv auf fahnenartigen Strukturen wirken. Mithilfe der Theorie der Assozi-
ationsschemata zeigen wir, dass diese transitiven Mengen Delsarte T -Designs im
Assoziationsschema von GL(n, q) sind. Dies verallgemeinert ein gruppentheoretisches
Resultat von Perin über Untergruppen von GL(n, q), die transitiv auf Unterräumen
über endlichen Körpern wirken.

Unser Ansatz sich schneidende und transitive Mengen zu untersuchen, verwendet
die Theorie der Assoziationsschemata und die Darstellungstheorie von GL(n, q).

Viele der erzielten Ergebnisse können als q-Analoga der für die symmetrische
Gruppe bekannten Resultate interpretiert werden.
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Abstract

The main results of this thesis contribute to extremal and algebraic combinatorics. In
the context of extremal combinatorics, one of the most famous results is the Erdős-Ko-
Rado (EKR) theorem, which answers the question of how large a family of pairwise
intersecting sets can be. Ever since Erdős, Ko, and Rado published their result in the
1960s, EKR problems arising from many different objects and notions of intersection
have been investigated. In this thesis, we study EKR problems in the finite general
linear group GL(n, q), the group consisting of all invertible n× n matrices with entries
in the finite field with q elements. We provide upper bounds for the size of different
intersecting sets in GL(n, q) and give a characterisation of the intersecting sets of
maximal size.

In the context of algebraic combinatorics, we deal with transitive subsets of a
permutation group, which generalise the notion of a transitive subgroup. We provide
structural results on subsets of GL(n, q) acting transitively on flag-like structures.
Using the theory of association schemes, we show that these transitive sets are Delsarte
T -designs in the association scheme of GL(n, q). This generalises a group-theoretical
result of Perin on subgroups of GL(n, q) acting transitively on subspaces over finite
fields.

Our approach for studying both intersecting and transitive sets of GL(n, q) uses
the theory of association schemes and the representation theory of GL(n, q).

Many of the results obtained can be interpreted as q-analogs of those known for
the symmetric group.
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Introduction

Mojstrovka, 2366m

This thesis sits at the intersection of the mathematical disciplines of extremal
combinatorics, algebraic combinatorics, and representation theory. The main original
contributions of this thesis can be divided into contributions in extremal combinatorics
on the one hand, and on algebraic combinatorics on the other. The first is given by
Erdős-Ko-Rado (EKR) results in the finite general linear group GL(n, q) and provides
q-analogs of previous results on the symmetric group. The latter provides combinatorial
interpretations of certain Delstarte T -designs in the association scheme of GL(n, q)
as transitive sets on flag-like structures. The main tools for these results come from
representation theory.

Extremal combinatorics
Extremal combinatorics addresses questions about the largest or smallest possible size
of a collection of objects with given properties. Within this framework, the so-called
intersection problems are of particular significance. In what follows, we call a subset of
{1, 2, . . . , n} of size k a k-set of {1, 2, . . . , n}. The classical intersection problem deals
with the following question.

How large can a family of k-sets of {1, 2, . . . , n} be such that every two
members of this family have non-empty intersection?

(❀)

Families with the property given in (❀) are called intersecting. Figure 1 illustrates
two intersecting families for n = 4 and k = 2. The collections of k-sets containing a
fixed element of {1, 2, . . . , n} give the canonical examples of such intersecting families.
When such examples satisfy the further condition that no two sets intersect other than
at the fixed element, the families are known as sunflowers.
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Introduction

Figure 1: Examples of intersecting families of maximal size.

If n < 2k every family of k-sets of {1, 2, . . . , n} is intersecting, so it is necessary to
assume n ≥ 2k to avoid triviality. In the non-trivial case, the answer to (❀) was given
by Erdős, Ko, and Rado [EKR61] and states that the size of such a family is at most(n−1

k−1
)
, and, for n > 2k, equality holds if and only if the family is a canonical example.

Although this result was published only in 1961, it had already been proved more
than 20 years earlier by Erdős, Ko, and Rado. However, according to Erdős, “at
that time there was relatively less interest in combinatorics” [Erd87]. Nowadays,
combinatorics is recognised as one of the pillars of communication and network theory,
showing just how much this perception has changed.

In general, whenever a set of objects and a notion of intersection among these
objects is given, an intersection problem can be formulated as follows.

Problem 1. Find an upper bound on the number of pairwise intersecting objects.

In fact we are not only interested in finding upper bounds but also in the structure
of the extremal cases, which motivates the following problem.

Problem 2. Characterise the intersecting families of maximal size.

In honour of the authors of [EKR61], these two problems are also known as EKR
problems or EKR-type problems, and the corresponding results as EKR results.

For example, a different notion of intersection in the classical case of sets is the
t-intersection. Specifically, two k-sets of {1, 2, . . . , n} are t-intersecting if their inter-
section has size at least t. With this notion of intersection, the canonical examples are
the families of k-sets containing a fixed t-set of {1, 2, . . . , n}. For n sufficiently large
compared to t, Erdős, Ko, and Rado also solved this EKR-type problem in [EKR61].
They showed that the size of a t-intersecting family of k-sets of {1, 2, . . . , n} is at most(n−t

k−t

)
and, in the case of equality, the family is a canonical example.

The classical EKR problem has a straightforward formulation, its solution is the
expected one, and the extremal cases are given by the canonical examples. This
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usually happens for EKR problems in general, so that we could say that the slogan of
EKR-type problems is that for n large enough, “the expected answer is the right one,
and, usually, the ‘only one’ ”.

Despite the simplicity of the formulation and the “obviousness” of the answer,
EKR results have had a significant impact in extremal combinatorics.

EKR problems arising from many different objects and notions of intersection have
been investigated, with objects such as subspaces or flags, see [GM16] for a survey. In
this thesis, we are interested in EKR problems on more structured objects, namely
groups. In this context Ellis, Friedgut, and Pilpel [EFP11] proved a remarkable EKR-
type result for the symmetric group Sn, building on important earlier work [DF77],
[CK03], [LM04], [GM09]. Here the notion of intersection considered is the following:
two permutations π, σ ∈ Sn are t-intersecting if they permute t distinct elements in
the same way. The canonical examples are cosets of the stabilisers of t-tuples of t
distinct elements of {1, 2, . . . , n}. It was shown in [EFP11] that for each fixed t and
all sufficiently large n, the size of a t-intersecting set in Sn is at most (n− t)! and, in
case of equality, the set is a canonical example, which solves the Problems 1 and 2.

Instead of a pointwise notion of intersection, one can consider a setwise notion of
intersection in the symmetric group. Two permutations π, σ ∈ Sn are t-set-intersecting
if there exits a t-set S of {1, 2, . . . , n} such that π(S) = σ(S). In this case, the canonical
examples are given by cosets of the stabilisers of t-sets of {1, 2, . . . , n}. Ellis [Ell12]
proved that for each fixed t and all sufficiently large n, the size of a t-set-intersecting
set in Sn is at most t!(n− t)! and, in case of equality, the set is a canonical example,
which solves the Problems 1 and 2.

In this thesis we study q-analogs of these EKR-type problems for the symmetric
group. More precisely, we investigate the finite general linear group GL(n, q), consisting
of all invertible n× n matrices with entries in the finite field Fq, and consider different
notions of intersection, see Chapter 5.

The notions of intersection in GL(n, q) that we consider are t-intersection and
t-space-intersection. Two elements of GL(n, q) are t-intersecting if they coincide as
maps on t linearly independent vectors of Fn

q . Here the canonical examples are cosets
of the stabilisers of t-tuples of linearly independent vectors of Fn

q .
Two elements of GL(n, q) are t-space-intersecting if they coincide as maps on a

t-dimensional subspace of Fn
q . With this notion of intersection, the canonical examples

are cosets of the stabilisers of t-dimensional subspaces of Fn
q .

It is well known, see [AA14] or [AM15] for example, that the size of a 1-intersecting
set in GL(n, q) is bounded by the size of a canonical example. Moreover, in [MR23],
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Introduction

it was proved that if Y is a 1-intersecting set of maximal size in GL(2, q), then the
characteristic vector of Y is spanned by the characteristic vectors of cosets of stabilisers
of nonzero vectors.

Meagher and Spiga [MS11] proved that the size of a 1-space-intersecting set is
bounded by the size of a stabiliser of a 1-dimensional subspace of Fn

q .

Original contributions of this thesis - Part 1
For each of the notions of intersection in GL(n, q) that we consider (t-intersection
and t-space-intersection), we solve the corresponding EKR problems for all positive
integers t and all n sufficiently large compared to t, providing q-analogs of the results
mentioned for the symmetric group. This solves Problem 1, partially solves Problem
2, and greatly improves the previously known results from [MR23], dealing only with
the case t = 1 and n = 2, respectively.

In the case of t-intersecting and t-space-intersecting, we prove the following two
theorems in Chapter 5.

Theorem 1. Let Y ⊆ GL(n, q) be t-intersecting. If n is sufficiently large compared
to t, then the size of Y is at most the size of the canonical example and, in case of
equality, the characteristic vector of Y is spanned by the characteristic vectors of cosets
of stabilisers of t-tuples of linearly independent vectors of Fn

q .

Theorem 2. Let Y ⊆ GL(n, q) be t-space-intersecting. If n is sufficiently large
compared to t, then the size of Y is at most the size of the canonical example and, in
case of equality, the characteristic vector of Y is spanned by the characteristic vectors
of cosets of stabilisers of t-dimensional subspaces of Fn

q .

The results from Theorems 1 and 2 on the different notions of intersection in
GL(n, q) were published in

[ES23] A. Ernst, K.-U. Schmidt, Intersection theorems for finite general linear
groups, Math. Proc. Cambridge Philos. Soc., 175 2023, no. 1, 129–160.

Both authors of the paper Intersection theorems for finite general linear groups
are first authors with equal rights and equally contributed to the development of the
research questions.

It is worth mentioning that, after a first version of this paper was made publicly
available (arXiv, May 2022), Ellis, Kindler, and Lifshitz [EKL23] (arXiv, August 2022)
independently proved a result in the context of forbidden intersection problems that
is more general than our result stated in Theorem 1. Moreover, they also solved
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the characterisation issue of Problem 2 for t-intersecting sets. Their methods are
completely different from ours, and in particular they do not use the representation
theory of GL(n, q).

In the case of t-space-intersecting sets in GL(n, q) only the partial solution of
Problem 2 from Theorem 2 is known. The complete characterisation problem was
only solved for t = 1 (see [MS11], [MS14], and [Spi19]) but it remains open for all t ≥ 2.

Moreover, we obtain results for cross-intersecting subsets in GL(n, q). A pair of
subsets (Y, Z) of GL(n, q) is t-cross-intersecting and t-space-cross-intersecting if all
pairs in Y ×Z are t-intersecting and t-space-intersecting, respectively. The correspond-
ing upper bounds on |Y ||Z| are contained in Chapter 5 and also published in [ES23].

Our methods to prove these EKR-type results heavily rely on the representation
theory of GL(n, q) and on association schemes arising from GL(n, q), which belong to
the field of algebraic combinatorics.

Algebraic Combinatorics
In the words of Bannai and Ito [BI84], the “very fundamental, perhaps the most
important, [theory] in algebraic combinatorics” is the theory of association schemes.

The theory of association schemes is much richer than finite group theory, which is
why it is often referred to as “a group theory without groups” (see [BI84], for example).
An association scheme consists of a finite set X together with relations on X ×X that
satisfy certain regularity and symmetry properties.

In his monumental PhD thesis [Del73], Delsarte demonstrated the profound sig-
nificance of association schemes by using them to provide a unifying framework for
error-correcting codes and combinatorial designs, which he generalised to so-called
D-cliques and T -designs.

While classical combinatorial t-designs are defined as collections of sets with
structural properties to ensure regularities in their intersection behaviour, T -designs,
which include classical combinatorial t-designs as a special case, are defined purely
algebraically. The definition of a T -design is given in the context of an association
scheme. Here, for any given subset Y of the association scheme, it is defined an
associated dual distribution, which is a tuple obtained from the characteristic vector of
Y after some algebraic manipulations involving the matrix algebra associated with
the association scheme. Now Y forms a T -design if its dual distribution has zeroes in
certain entries specified by T . More context and precise definitions are provided in
Chapter 2.
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Despite their algebraic definition, it turns out that certain T -designs often have
nice combinatorial interpretations, as shown in [Del73] and [Sta86], for example. In
the words of Delsarte [Del73] this “motivates [...] the ‘conjecture’ being that T -designs
will often have interesting properties”. This leads to the following problem.

Problem 3. Find a combinatorial interpretation for a T -design in a given association
scheme.

Moreover, one can often interpret T -designs as approximations of the underlying
set, see [Sta86]. It is therefore interesting to study the following problem.

Problem 4. Prove the existence and give constructions of small Delsarte T -designs
in association schemes.

In this thesis, several contributions to algebraic combinatorics emerge from the
study of T -designs in the association scheme of the finite general linear group GL(n, q).
Specifically, we provide a combinatorial characterisation of Delsarte T -designs in
GL(n, q) and show the existence of small such designs, to mention only some of our
results in this context.

These findings on T -designs in GL(n, q) complement existing work in the field,
such as the classical characterisation of T -designs in the association scheme of the
symmetric group by Martin and Sagan [MS06], where certain T -designs are described
as sets (not necessarily subgroups) acting transitively on set partitions.

In [MS06], the authors generalise the concept of a transitive group action to subsets
as follows. Let G be a group acting transitively on a finite set Ω. A subset Y of G is
transitive on Ω if the number of elements in Y that map one element of Ω to another
is the same for any two elements in Ω.

In the context of the symmetric group Sn, for an integer partition σ = (σ1, σ2, . . .)
of n, Ω consists of σ-partitions, which are ordered partitions of {1, 2, . . . , n} into subsets
of size σ1, σ2, . . ..

Martin and Sagan [MS06] show that a subset of the symmetric group is transitive
on σ-partitions if and only if it is a T -design (where T consists of all partitions of n
that are different from (n) and that dominate σ). A detailed exposition of these results
is provided in Section 3.4. The characterisation of Martin and Sagan in the classical
setting of the symmetric group does not only solve Problem 3 in the association scheme
of the symmetric group, but also characterises algebraically the very combinatorial
object of a transitive set. It is thanks to this characterisation that they generalise
the famous Livingstone-Wagner theorem [LW65] on t-homogeneous subgroups of the
symmetric group to subsets and σ-partitions.

6



Moreover, they give a construction and show the existence of small such designs,
solving Problem 4 for the association scheme of the symmetric group.

In this thesis we study q-analog problems, replacing the symmetric group with the
finite general linear group GL(n, q). In the q-analog setting we take Ω to be the set of
flag-like structures, which can be seen as q-analogs of σ-partitions. More precisely, for
an integer partition σ of n, a σ-flag is a sequence of subspaces (V1, V2, . . .) of Fn

q such
that {0} = V0 ≤ V1 ≤ V2 ≤ . . . satisfying dim(Vi/Vi−1) = σi for each i ≥ 1. In analogy
with the classical case, we prove that certain Delsarte T -designs are also transitive
sets, in this case, on flags.

Original contributions of this thesis - Part 2
The contribution of this thesis to algebraic combinatorics and group theory include
structural characterisations and existence results of arbitrarily small transitive sets and
T -designs in GL(n, q), respectively. One of the characterisation results for T -designs
in GL(n, q) that we obtain is the following, see also Section 6.2.

Theorem 3. For an integer partition σ of n, a subset of GL(n, q) is transitive on
σ-flags if and only if it is a T -design.

Our characterisation solves Problem 3 in the association scheme of GL(n, q) and
not only provides a combinatorial interpretation for Delsarte T -designs in this scheme
but also gives a structural algebraic characterisation of transitive subsets of GL(n, q).
In particular, using the latter characterisation, we generalise a theorem of Perin [Per72]
on subgroups of GL(n, q) acting transitively on t-dimensional subspaces to subsets
and flags.

Our main results solve Problem 3 more generally: we consider subsets of GL(n, q)
that are transitive on generalisations of t-dimensional subspaces and of bases of
t-dimensional subspaces of Fn

q , see Section 6.2.
Furthermore, in Section 6.5, we give a recursive construction and show the existence

of small such T -designs, solving Problem 4 in the association scheme arising from
GL(n, q). This is interesting because we are able to show that also in this q-analog
setting, such designs somehow approximate GL(n, q).

Finally, as a byproduct of the aforementioned results, we obtain results on codes
in GL(n, q) associated with the rank distance. The rank distance dr between two
matrices x, y ∈ GL(n, q) is the rank of their difference, namely dr(x, y) = rk(x− y). A
code in GL(n, q) with minimum (rank) distance d is a subset Y of GL(n, q) such that
the minimum of the distances of two distinct elements of Y is d. As a byproduct of
Theorem 6.4.4, we provide a sharp upper bound on the size of such a code and also
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give a construction, see Corollary 6.6.6 and Proposition 6.6.9. It is worth noticing
that our bound is strictly lower than the Singleton bound for general rank-metric
codes. Moreover, the bound provides a perfect q-analog of the well known bound for
permutation codes [BCD79].

Our contributions to algebraic combinatorics are contained in Chapter 6 and were
published in

[ES24] A. Ernst, K.-U. Schmidt, Transitivity in finite general linear groups, Math.
Z., 307 2024, no. 3.

Both authors of the paper Transitivity in finite general linear groups are first
authors with equal rights and equally contributed to the development of the research
questions.

Outline of the thesis
The thesis is organised as follows. The first part consists of the Chapters 1 and 2. In
Chapter 1 we summarise without proofs the representation theory of finite groups and
the connection to the ring of symmetric functions, where we especially focus on the
symmetric group. Then, in Chapter 2 we provide the background on the theory of
association schemes required to understand the results and proofs presented later on.

The second part, Chapter 3, deals with the association scheme arising from the
symmetric group. It gives an overview of known Erdős-Ko-Rado results, permutation
codes, and transitive sets of permutations.

In the third part, including Chapters 4, 5, and 6, we study the q-analog problems
of Chapter 3. More precisely, Chapter 4 provides necessary background such as
representation theory and association schemes of the finite general linear group. In
Chapter 5 our main results on EKR theorems in the finite general linear group are
stated and proven. Moreover, we provide a collection of conjectures and open problems
of interest for future research. Finally, in Chapter 6, we look more closely at different
Delsarte T -designs in the association scheme arising from GL(n, q), give combinatorial
interpretations, show (non-)existence results, and establish connections with orthogonal
polynomials. We close this chapter with a collection of some related open problems.

8



1 Representation Theory

Carrantuohill, 1039m

In this chapter we briefly summarise without proofs the fundamental concepts of
the representation theory of finite groups and give an overview of the properties that
we need. Unless stated otherwise, the following definitions and statements are taken
from [Sag01, Chapter 1]. We refer the reader to [Sag01] and [BI84] for more details.

In the first section we provide an overview of all necessary objects from represen-
tation theory for this thesis. In Section 1.2 we put the focus on the representation
theory of the symmetric group and characterise its irreducible characters. Finally, in
Section 1.3, we connect the irreducible characters of the symmetric group to the ring
of symmetric functions.

1.1 Definitions and basic properties
From now on, let G be a finite group, and let V and W be nonzero finite dimensional
vector spaces over the complex numbers C. By GL(V ) we denote the complex general
linear group of the vector space V and by GL(n,C) the general linear group of Cn,
that is the group of all invertible n × n matrices over C. Moreover, the symmetric
group on n symbols is denoted by Sn.

We recall that a group G with identity element e acts on a set X if gh.x = g.(h.x)
and e.x = x holds for all x ∈ X and all group elements g, h ∈ G. In this thesis,
conjugation is one of the most important group actions.

Example 1.1.1. The group G acts by conjugation on itself, that means g.h = ghg−1

for all group elements g, h ∈ G. Every orbit of this action is called a conjugacy class

9



1 Representation Theory

of G. We call two elements g and h of G conjugate if they are contained in the same
conjugacy class.

For determining the conjugacy classes of the symmetric group Sn we recall the
cycle type of a permutation π of Sn: every permutation π can be uniquely written
as a product of disjoint cycles π = σ1σ2 · · ·σk, where the cycles σi are arranged in
nonincreasing order regarding to their cycle length. Then the cycle type of π is a
tuple given by the lengths of the cycles σi, namely (|σ1|, |σ2|, . . . , |σk|). The conjugacy
classes of the symmetric group are characterised in the following way.

Example 1.1.2 ([DF91, Prop. 4.11]). Two permutations are conjugate if and only
if they have the same cycle type.

In the following we denote by CX the inner product space of all complex-valued
functions defined on a finite set X, namely CX = {f |f : X → C}. The addition and
scalar multiplication are given by

(f + g)(x) = f(x) + g(x), (cf)(x) = c · f(x)

and the inner product by
⟨f, g⟩ = 1

|X|
∑
y∈X

f(y)g(y)

for all f, g ∈ CX, x ∈ X, and c ∈ C, where g(y) is the complex conjugate of g(y).
We note that we can interpret CX as the vector space consisting of all formal sums∑

x∈X cxx, where cx ∈ C.

Definition 1.1.3. A representation ψ of a group G is a group homomorphism

Ψ: G → GL(V ).

The degree deg(Ψ) of the representation Ψ is the dimension of the underlying vector
space V , namely deg(Ψ) = dimC(V ).

Example 1.1.4. The trivial representation of a group G sends every g ∈ G to the
(1 × 1)-matrix (1) and is a representation of degree one.

Example 1.1.5. Let G be a finite group acting on the finite set X. Then Ξ: G →
GL(CX), given by

Ξ(g)(f(x)) = f(g−1.x).

for all g ∈ G and x ∈ X, is a representation of G that is called the permutation
representation on X and it holds that deg(Ξ) = |X|. In the case X = G and G acts
on itself via g.h = gh, the arising permutation representation is called the left regular
representation.

10
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Definition 1.1.6. Two representations Ψ: G → GL(V ) and Ψ′ : G → GL(W ) are
equivalent if there exists a vector space isomorphism T : V → W satisfying Ψ′(g) =
TΨ(g)T−1 for all g ∈ G. In that case we write Ψ ∼ Ψ′.

The definition of equivalent representations allows us to interpret representations
in a different way. For this, we consider a representation Ψ: G → GL(V ) of G that
has degree n. For a fixed basis B = {b1, b2, . . . , bn} of V we define by T : V → Cn,
v =

∑n
i=1 cibi 7→ (c1, c2, . . . , cn)T a vector space isomorphism. This yields a so-called

matrix representation Ψ′ : G → GL(n,C) which is given by Ψ′(g) = TΨ(g)T−1 and
is thus equivalent to Ψ. Consequently, we can think of Ψ and Ψ′ to be the same
representations.

Sometimes it can be useful to describe representations in terms of modules.

Definition 1.1.7. The space V is a G-module, if there exists a group action of G on
V

G× V → V, (g, v) 7→ g.v

satisfying g.(v + cw) = g.v + c(g.w) for all g ∈ G, v, w ∈ V and all scalars c ∈ C.

We will see that representations of a finite group are uniquely determined by their
characters.

Definition 1.1.8. Let Ψ: G → GL(V ) be a representation of a group G. Then the
character ψ of Ψ is given by

ψ : G → C, ψ(g) = Tr(Ψ(g)).

We note that the degree of a representation Ψ equals the evaluation of the corresponding
character ψ at the identity element e of G, that is deg(Ψ) = ψ(e).

Example 1.1.9. The trivial character 1G of a finite group G, which corresponds to
the trivial representation from Example 1.1.4, sends every element of G to 1, that is
1G(g) = 1 for all g ∈ G.

Example 1.1.10. We consider any degree one representation Ψ: G → C. Then the
character ψ of Ψ satisfies ψ(gh) = ψ(g)ψ(h). These types of characters are called
linear characters of G.

Example 1.1.11. Let Ξ be the permutation representation of G on the finite set X
from Example 1.1.5. Then the character ξ of Ξ is called the permutation character of
G on the set X and is given by

ξ : G → C, ξ(g) = #{y ∈ X : g.y = y}.

11



1 Representation Theory

The permutation character plays a crucial role in this thesis. We study certain
permutation characters of the finite general linear group in Section 4.3.

Since the trace is invariant under conjugation, characters have the following
property.

Lemma 1.1.12. Let ψ be a character corresponding to a representation of a finite
group G. Then, for all g, h ∈ G we have

ψ(g) = ψ(h−1gh).

This Lemma implies that characters are constant on the conjugacy classes of
the underlying group. Consequently we can write ψ(C) instead of ψ(g), where C is
the conjugacy class containing g ∈ G. Characters are an example of so-called class
functions.

Definition 1.1.13. A function f ∈ CG is a class function if f is constant on the
conjugacy classes of G, more precisely if, for all g, h ∈ G, the function f satisfies

f(g) = f(h−1gh).

In fact, the set of class functions is a vector space, and we will see that the
irreducible characters form an orthonormal basis of this space.

The following result gives the characterisation of equivalent representations in
terms of their characters.

Theorem 1.1.14. Two representations Φ: G → GL(V ) and Ψ: G → GL(W ) with
characters φ and ψ, respectively, are equivalent if and only if φ = ψ.

A well known task in representation theory is to decompose a given representation
or character into so called irreducible constituents. The definition of irreducibility
requires some preliminary preparation.

Definition 1.1.15. Let Φ: G → GL(V ) be a representation of G. A subspace U ⊆ V

is a G-invariant subspace of V if, for all g ∈ G, it holds that Φ(g)(U) ⊆ U .

We note that for a given representation Φ: G → GL(V ) the trivial subspaces {0}
and V are G-invariant.

Definition 1.1.16. The (external) direct sum Φ ⊕ Ψ of two representations Φ and Ψ
of G on V and W , respectively, is defined by

Φ ⊕ Ψ: G → GL(V ⊕W ), (Φ ⊕ Ψ)(g)(v, w) = (Φ(g)(v),Ψ(g)(w))

for all g ∈ G and all (v, w) ∈ V ⊕W .

12
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Lemma 1.1.17. Let Φ and Ψ be representations of G with characters φ and ψ,
respectively. Then the character of Φ ⊕ Ψ is φ+ ψ.

Lemma 1.1.18. Let Φ: G → GL(V ) be a representation and let U ≤ V be a G-
invariant subspace of V . Then the restriction Φ|U : G 7→ GL(U) given by

(Φ|U )(g)(u) = Φ(g)(u) ∈ U,

for all g ∈ G and u ∈ U , is a representation of G.

Lemma 1.1.19. Let Φ: G → GL(V ) be a representation and let V = U1 ⊕ U2, where
U1 and U2 are G-invariant subspaces of V . Then the representations Φ and Φ|U1 ⊕Φ|U2

are equivalent.

From Lemma 1.1.19 it follows that if the vector space corresponding to a given
representation has two G-invariant subspaces, then the representation consists of the
sum of at least two subrepresentations. This observation motivates the following
definition of irreducibility.

Definition 1.1.20. A nonzero representation Φ: G → GL(V ) is irreducible if V
does not contain any nontrivial G-invariant subspace. The character of an irreducible
representation is called an irreducible character. A representation is completely reducible
if it is a direct sum of irreducible representations.

Example 1.1.21. The trivial representation and more general every representation
of degree 1 is irreducible because the only complex subspaces of C are {0} and C.

Lemma 1.1.22. Let Φ be a representation of G.

(i) If Φ is equivalent to an irreducible representation, then Φ is irreducible as well.

(ii) If Φ is equivalent to a completely reducible representation, then Φ is completely
reducible as well.

Theorem 1.1.23 (Maschke). Every representation of a finite group is completely
reducible.

Definition 1.1.24. The character table of G is a table whose rows are indexed by
the irreducible characters, whose columns are indexed by the conjugacy classes of G,
and whose entry corresponding to the character χ and the conjugacy class C is the
evaluation χ(C).

For example, the character table of the symmetric group S3 is given in Table 1.1.

13
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Table 1.1: The character table of S3.

C(13) C(2,1) C(3)

χ(3) 1 1 1
χ(2,1) 2 0 −1
χ(1,1,1) 1 −1 1

In Section 1.2 we explain why not only the conjugacy classes but also the irreducible
characters in Table 1.1 are indexed by partitions.

Definition 1.1.25. Let ⟨·, ·⟩ be an inner product on the vector space V . A rep-
resentation Φ: G → GL(V ) is unitary if, for all g ∈ G and all v, w ∈ V it holds
that

⟨Φ(g)(v),Φ(g)(w)⟩ = ⟨v, w⟩,

In other words, Φ is a unitary representation, if Φ(g) is unitary with respect to ⟨·, ·⟩
for all g ∈ G.

Lemma 1.1.26. Every representation of a finite group is equivalent to a unitary
representation.

Theorem 1.1.27 (Schur’s Lemma). Let Φ: G → GL(V ) and Ψ: G → GL(W ) be
representations of G and let T : V → W be a homomorphism satisfying TΦ(g) = Ψ(g)T
for all g ∈ G. Then T is invertible or T = 0. Moreover, if Φ = Ψ, then T is a multiple
of the identity.

Henceforth, we write mΦ = Φ⊕ . . .⊕Φ for the direct sum of the representation Φ of
G taken m times. Due to Maschke’s Theorem 1.1.23 and the fact that G only has finitely
many inequivalent irreducible representations, which will be part of Lemma 1.1.31, Φ
is equivalent to a sum of irreducible representations

Φ ∼ m1Φ1 ⊕m2Φ2 ⊕ . . .⊕mnΦn, (1.1)

where Φ1,Φ2, . . . ,Φn are the inequivalent irreducible representations of G, and mi = 0
means that the representation Φi does not occur in the decomposition.

Definition 1.1.28. The nonnegative integer mi in the decomposition (1.1) of Φ is
called multiplicity of Φ. If mi > 0, then Φi is an irreducible constituent of Φ.

In the following we determine the multiplicities in the decomposition of a given
representation and character, respectively.
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Since the characters of a finite group G are elements of the space CG, we recall
from the beginning of this section that the inner product of two characters φ and ψ of
G is given by

⟨φ,ψ⟩ = 1
|G|

∑
g∈G

φ(g)ψ(g).

In fact, the irreducible characters of a group are orthonormal with respect to this inner
product.

Lemma 1.1.29 (First orthogonality relations). Let φ and ψ be two irreducible
characters of G. Then we have

⟨φ,ψ⟩ =

1 for φ = ψ,

0 otherwise.

Theorem 1.1.30. The irreducible characters of a finite group form an orthonormal
basis of the space of class functions.

Lemma 1.1.31. The number of inequivalent irreducible representations of a finite
group G equals the number of conjugacy classes of G. In particular, this number is
finite.

Theorem 1.1.32. Let Φ be a representation of G, with corresponding character
φ. Assume that Φ is equivalent to m1Φ1 ⊕ m2Φ2 ⊕ . . . ⊕ mnΦn, where the mi are
nonnegative and Φ1,Φ2, . . . ,Φn denote the inequivalent irreducible representations of
G with characters φ1, φ2, . . . , φn, respectively. Then we have

(i) φ =
∑

imiφ
i,

(ii) mi = ⟨φ,φi⟩.

From Theorem 1.1.32 we find that the decomposition of a representation of G into
irreducible constituents is unique up to equivalence. Moreover, the representation is
determined up to equivalence by its character.

Additionally, Theorem 1.1.32 together with the first orthogonality relations from
Lemma 1.1.29 imply a characterisation of irreducible representations in terms of their
characters.

Corollary 1.1.33. A representation of a finite group is irreducible if and only if its
character φ satisfies

⟨φ,φ⟩ = 1.
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1 Representation Theory

Lemma 1.1.18 implies that we can sometimes restrict a given representation
Ψ: G → GL(V ) to a subspace U ≤ V and obtain again a representation. It is also
possible to restrict a given representation of G to a subgroup of G. Since, in this thesis,
we almost exclusively work with restricted characters instead of representations, we
state the following definitions and properties in terms of characters.

Definition 1.1.34. The restricted character ResG
H(φ) of a given character φ of G to

a subgroup H ≤ G, is defined as

ResG
H(φ) : H → C, h 7→ φ(h).

Lemma 1.1.35. If φ is a character of G, then the restriction ResG
H(φ) to a subgroup

H of G is a character of H.

It is worth mentioning that the concept of irreducibility is not preserved when
restricting a character to a subgroup.

We can also do the opposite and induce a character from a subgroup of G to G
itself in order to obtain a character of G.

Definition 1.1.36. Let φ be a character of a subgroup H of G. Then the induced
character IndG

H(φ) is given by

IndG
H(φ)(g) = 1

|H|
∑

x∈G :
x−1gx∈H

φ(x−1gx).

Lemma 1.1.37. Let φ be a character of H ≤ G. Then the induced character IndG
H(φ)

is a character of G.

Like for a restricted character, the concept of irreducibility is not preserved when
inducing a character.

Theorem 1.1.38 (Frobenius reciprocity). Let H be a subgroup of G and let φ
and ψ be characters of H and G, respectively. Then we have

⟨IndG
H(φ), ψ⟩G = ⟨φ,ResG

H(ψ)⟩H ,

where ⟨·, ·⟩G and ⟨·, ·⟩H are the usual inner products on CG and CH, respectively.

The Frobenius reciprocity can be useful to decompose a character.

Example 1.1.39. Let E = {e} be the trivial subgroup of G and 1E the trivial
character of E. Using the Frobenius reciprocity and Theorem 1.1.32 we can determine
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1.2 Symmetric groups

the multiplicities of an irreducible character φ of G in the decomposition of the induced
character IndG

E(1E), namely

⟨IndG
E(1E), φ⟩G = ⟨1E ,ResG

E(φ)⟩E = φ(e).

Consequently, the decomposition of IndG
E(1E) is given by

IndG
E(1E) =

∑
φ

φ(e)φ,

where the sum is taken over all irreducible characters of G.

1.2 Symmetric groups
In this section we give an overview of the representation theory of the symmetric
group. We determine the irreducible characters, the Specht characters, and discuss the
decomposition of a certain permutation character of the symmetric group. For more
details on the representation theory of the symmetric group we refer to [Sag01].

An (integer) partition of a positive integer n is a sequence λ = (λ1, λ2, . . .) of
nonnegative integers that sum up to n and that satisfy λ1 ≥ λ2 ≥ . . .. The λi are
called parts of the partition λ. If λ is a partition of n we write λ ⊢ n. The size of a
partition λ = (λ1, λ2, . . .) is |λ| = λ1 + λ2 + · · · and its length ℓ(λ) is the largest index
i such that λi > 0. Instead of writing (λ1, λ2, . . .), we often use (λ1, λ2, . . . , λℓ(λ)).
We can illustrate an integer partition λ = (λ1, λ2, . . . , λk) with a Ferrers diagram,
which is an array of |λ| boxes with left-justified rows and top-justified columns such
that row i contains exactly λi boxes.
For example the Ferrers diagram of the partition (4, 2, 1) is

For each partition λ there exists the conjugate partition λ′ whose parts are the number
of boxes in the columns of λ. For example the conjugate of the partition (4, 2, 1) is
the partition (3, 2, 1, 1)

The dominance order is a partial order on the set of partitions. Let λ = (λ1, λ2, . . .)
and µ = (µ1, µ2, . . .) be two partitions of an integer n. Then we say that λ dominates
µ and write λ ⊵ µ if

k∑
i=1

λi ≥
k∑

i=1
µi for each k ≥ 1. (1.2)
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For example (4, 2) dominates (4, 1, 1) but neither (3, 3) dominates (4, 1, 1) nor does
(4, 1, 1) dominate (3, 3). Figure 1.1 illustrates the dominance order in terms of Ferrers
diagrams.

Figure 1.1: The dominance order for the partitions of 6.

For a partition λ, we obtain a λ-tableau by filling the boxes of the Ferrers diagram of
λ with the integers 1, 2, . . . , |λ|, each integer appearing exactly once. For example

1 4 6 2
7 3
5

is a (4, 2, 1)-tableau.
A λ-tabloid is an ordered partition of the set {1, 2, . . . , n} into subsets of cardi-

nality λ1, λ2, . . .. We note that the number of different (λ1, λ2, . . . , λk)-tabloids is
n!/(λ1!λ2! · · ·λk!). Moreover, the symmetric group acts naturally on the set of λ-
tabloids.

We use the permutation character of the symmetric group on tabloids to obtain
all the irreducible characters of this group. Recall, from Example 1.1.11, that the
evaluation of the permutation character ξµ of Sn on µ-tabloids at π ∈ Sn is

ξµ(π) = #{µ-tabloids fixed by π}.

Remark 1.2.1. Let H be the stabiliser of a µ-tabloid T and 1H the trivial character
of H. Then, for a permutation π, we have the following

IndSn
H (1H)(π) = 1

|H|
∑

σ∈Sn :
σ−1πσ∈H

1H(σ−1πσ)

= 1
|H|

#{σ ∈ Sn : σ−1πσ(T ) = T}

= 1
|H|

#{σ ∈ Sn : πσ(T ) = σ(T )}.

18



1.2 Symmetric groups

We fix permutations τ1, τ2, . . . , τℓ of Sn such that Sn = ∪̇iτiH, where ∪̇ denotes the
disjoint union. Then we get

IndSn
H (1H)(π) = #{i ∈ {1, 2, . . . , ℓ} : πτi(T ) = τi(T )}

= #{µ-tabloids fixed by π}

= ξµ(π).

Consequently, the permutation character ξµ is equal to the induced character
IndSn

H (1H).

Definition 1.2.2. Let λ and µ be partitions. A generalised tableau of shape λ and
content µ is an array obtained by filling the boxes of a Ferrers diagram with positive
integers i, such that i occurs exactly µi times.

For example
1 2 3
2 1
4

is a generalised tableau of shape (3, 2, 1) and content (2, 2, 1, 1).

Definition 1.2.3. A semistandard tableau is a generalised tableau whose rows are
weakly and whose columns are strictly increasing.

For example
1 1 2
2 3
4

is a semistandard (3, 2, 1) tableau with content (2, 2, 1, 1).

Definition 1.2.4. The Kostka number Kλµ is the number of semistandard λ-tableaux
with content µ.

Theorem 1.2.5 ([Mac15]). The Kostka numbers Kλµ satisfy

Kλλ = 1 and Kλµ ̸= 0 ⇒ λ ⊵ µ (1.3)

Table 1.2 provides some values of the Kostka numbers.

In the following we introduce the irreducible characters of the symmetric group in
an indirect way, which later allows us to emphasise some analogies with the irreducible
characters of the finite general linear group. It is well known (see [Sag01, Chapter 2],
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Table 1.2: The Kostka numbers Kλµ for λ and µ being partitions of 3.

(3) (2, 1) (1, 1, 1)

(3) 1 1 1
(2, 1) 0 1 2

(1, 1, 1) 0 0 1

for example) that using the permutation characters on tabloids, we get all irreducible
characters of the symmetric group by a recursive construction.

The first permutation character ξ(n) of Sn is irreducible because it is the trivial
character. We name it χ(n). The next irreducible character arises from ξ(n−1,1), since
ξ(n−1,1) can be decomposed into irreducible characters containing copies of χ(n) and a
single copy of the new irreducible character χ(n−1,1). We can continue that way and
obtain all irreducible characters of Sn. More precisely, we define the characters χλ

recursively in the following way

χµ = ξµ −
∑
λ▷µ

Kλµχ
λ,

where the Kλµ are the Kostka numbers.
Furthermore, it is well known (see [Sag01, Chapter 2] for example), that for every

partition λ of n, these characters χλ, called Specht characters, are irreducible characters
of the symmetric group Sn. Moreover, all irreducible characters of Sn are given by χλ

with λ being a partition of n.
The parametrisation of the irreducible characters of the symmetric group we use is

standard and consistent with the literature.
Moreover, the decomposition of the permutation character ξµ is as follows.

Theorem 1.2.6 (Young’s rule). Let µ be a partition of n and let ξµ be the permu-
tation character of Sn on µ-tabloids. The decomposition of ξµ into irreducibles χλ is
given by

ξµ =
∑
λ⊵µ

Kλµχ
λ,

where the Kλµ denote the Kostka numbers.

Remark 1.2.7. We note that our approach of introducing the irreducible characters
of the symmetric group does not explain why they are irreducible and it does make
Young’s rule look like an obvious consequence. We point out that, in fact, proving
the irreducibility and Young’s rule is a highly non-trivial task.

Using the character table of S3 from Table 1.1 and the Kostka numbers from
Table 1.2 we get the following illustration of Young’s rule in terms of a matrix
multiplication.
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1.3 The ring of symmetric functions


1 1 1
0 1 3
0 0 6

 =


1 0 0
1 1 0
1 2 1




1 1 1
−1 0 2
1 −1 1



From Young’s rule together with the use of linear algebra it follows that we can
express the irreducible characters in terms of the permutation characters on tabloids.

Theorem 1.2.8. Let χλ be the irreducible character of Sn corresponding to the parti-
tion λ. There are integers Hµλ satisfying

χλ =
∑

µ

Hµλξ
µ, (1.4)

where ξµ is the permutation character of Sn on µ-tabloids, and

Hλλ = 1 and Hµλ ̸= 0 ⇒ µ ⊵ λ. (1.5)

We note that from (1.4) together with the definition of the permutation character
ξµ, it follows that the irreducible characters of the symmetric group are real-valued.

1.3 The ring of symmetric functions
In this section we give an overview of the connections between representations of the
symmetric group and the ring of symmetric functions. In fact there exists a bijection
between symmetric functions and class functions of symmetric groups. We follow
[Sag01, Chapter 4] and, unless stated otherwise, all results stated in this section can be
found there. We also refer to [Mac15, I] for a more algebraic background on symmetric
functions.

Definition 1.3.1. Let x1, x2, . . . be infinitely many variables and let λ = (λ1, λ2, . . . , λℓ)
be a partition. Then the monomial symmetric function mλ corresponding to λ is given
by

mλ =
∑

xλ1
i1
xλ2

i2
· · ·xλℓ

iℓ
,

where the sum is taken over all distinct monomials having exponents λ1, λ2, . . . , λℓ.

For example,

m(3,1) = x3
1x2 + x1x

3
2 + x3

1x3 + x1x
3
3 + x3

2x3 + x2x
3
3 + . . . .
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We define the complex vector space Λn as the span of all monomial symmetric
functions of degree n, more precisely

Λn = ⟨mλ : λ ⊢ n⟩C. (1.6)

In fact the monomial symmetric functions mλ, where λ is a partition of n, are
linearly independent.

Proposition 1.3.2. The set of monomial symmetric functions {mλ : λ ⊢ n} forms a
basis of Λn. Consequently the dimension of Λn is equal to the number of partitions of
n.

Definition 1.3.3. The ring of symmetric functions Λ is

Λ =
⊕
n≥0

Λn. (1.7)

Since the decomposition in (1.7) is direct, Λ is a graded ring.
There is an action of the symmetric group on the functions in Λ, namely, for f ∈ Λ

and π ∈ Sn,

πf(x1, x2, x3, . . .) = f(xπ(1), xπ(2), xπ(3), . . .), (1.8)

where we set π(i) = i for all i > n.
Since the monomial symmetric functions are invariant under the action (1.8), it is

justified to call them symmetric.
Besides the monomial symmetric functions there are other functions which are

invariant under the action (1.8).

Definition 1.3.4. The nth power sum symmetric function pn is given by pn = m(n).
And for a partition λ = (λ1, λ2, . . . , λℓ) the power sum symmetric function pλ corre-
sponding to λ is pλ = pλ1pλ2 · · · pλℓ

.

Theorem 1.3.5. The set of power sum symmetric functions {pλ : λ ⊢ n} forms a
basis of Λn.

In addition to the monomial symmetric functions and the power sum symmetric
functions, other bases for Λn are provided by the elementary symmetric functions, the
complete homogeneous symmetric functions, and the Schur functions. The latter are
important in this thesis. For more background on all the other mentioned symmetric
functions we refer to [Sag01, Section 4.4] or [Mac15, Ch. I.2].

In order to define the Schur functions we use a combinatorial approach. To do so,
we need the notion of a composition, that is much like a partition.
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Definition 1.3.6. A composition of a nonnegative integer n is a sequence µ =
(µ1, µ2, . . .) of nonnegative integers that sum up to n. The length ℓ(µ) of a com-
position is defined as it is for partitions, and we often write (µ1, µ2, . . . , µℓ(µ)) instead
of (µ1, µ2, . . .).

For example (2, 4, 1) is a composition of 7 but not a partition. For a composition
µ, the definition of a semistandard λ-tableau with content µ is as expected.

Definition 1.3.7. For a composition µ = (µ1, µ2, . . . , µℓ), the corresponding mono-
mial weight xµ is defined by

xµ = xµ1
1 xµ2

2 . . . xµℓ
ℓ .

Let T be a semistandard λ-tableau with content µ. Then we define a monomial xT ,
representing the weight of T by

xT = xµ.

For example, if T is equal to
1 1 4
3 4

,

then xT = x2
1x3x

2
4.

Definition 1.3.8. The Schur function sλ associated with the partition λ is defined
by

sλ =
∑
T

xT ,

where the sum is taken over all semistandard λ-tableaux T .

Even though we defined the Kostka numbers Kλµ only for partitions (see Defini-
tion 1.2.4), the definition can be generalised for arbitrary compositions µ. For more
details we refer to [Sag01]. Then, for any partition λ of n, we have the following
identity

sλ =
∑

µ

Kλµx
µ,

where the sum is taken over all compositions µ of n. From this it follows that the
Schur functions are indeed symmetric functions.

Using Equation (1.3), we can write the Schur functions in terms of the monomial
symmetric functions.

Lemma 1.3.9. It holds that
sλ =

∑
µ⊴λ

Kλµmµ,

where the sum is taken over all partitions µ being dominated by λ.
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1 Representation Theory

From that and Kλλ = 1, we get the following.

Theorem 1.3.10. The set {sλ : λ ⊢ n} of Schur functions forms a basis of Λn.

Moreover, from Lemma 1.3.9, it follows that the transition matrix of the change
of basis from the Schur functions to the monomial symmetric functions is given by
the Kostka numbers. Two other interesting transition matrices are coming from the
change of basis from the power sum symmetric functions to the monomial symmetric
functions, and from the Schur functions to the power sum symmetric functions.

Theorem 1.3.11. Let ξµ
λ be the permutation character of Sn on µ-tabloids evaluated

on the conjugacy class corresponding to λ. Then

pλ =
∑
µ⊵λ

ξµ
λmµ.

Consequently, the transition matrix of power sum symmetric functions and mono-
mial symmetric functions arises from the permutation character on tabloids.

Theorem 1.3.12. Let χλ
µ be the irreducible character of Sn associated with the parti-

tion λ and evaluated on the conjugacy class Cµ corresponding to µ. Then

sλ = 1
n!
∑
µ⊢n

|Cµ|χλ
µpµ.

Consequently, the scaled character table of the symmetric group gives the transition
matrix of Schur functions and power sum symmetric functions.

In the following we focus more on the connection between Schur functions and
irreducible characters of the symmetric group. In fact there exists a bijection between
Λn and the space of class functions of the symmetric group Sn.

We define an inner product on Λn by

⟨sλ, sµ⟩ = δλµ

and sesquilinear extension, which is sufficient since the Schur functions form a basis of
Λn.

Definition 1.3.13. Let Rn denote the space of class functions of Sn. The character-
istic map chn is defined by

chn : Rn → Λn, chn(χλ) = sλ,

where χλ and sλ are the irreducible characters of Sn and the Schur functions, respec-
tively.

24



1.3 The ring of symmetric functions

We emphasise that it is sufficient to define the map chn in terms of the irreducible
characters χλ since they form a basis of Rn.

Lemma 1.3.14. The characteristic map chn is an isometry between Rn and Λn.

Now, for R =
⊕

nR
n and Λ =

⊕
n Λn, Theorem 1.3.15 shows that ch =

⊕
n chn is

an isomorphism of algebras. The tensor product ⊗ of two class functions ϕ and ψ of
Sn and Sm, respectively, is a class function of Sn × Sm and is by definition

ϕ⊗ ψ : Sn × Sm 7→ C, (ϕ⊗ ψ)(π, σ) = ϕ(π) · ψ(σ).

The generalisation of an induced class function is defined in exactly the same way as
an induced character (see Definition 1.1.36). We define a product on class functions ϕ
and ψ of Sn and Sm, respectively, in the following way

ϕ⊙ ψ = IndSn+m

Sn×Sm
(ϕ⊗ ψ). (1.9)

Theorem 1.3.15. The map ch : R → Λ is an isomorphism of algebras.

With the help of the characteristic map ch we can decompose products of irreducible
characters. For this we need the notion of a skew-tableau.

Definition 1.3.16. Let n and m be nonnegative integers and let λ and µ be partitions
of m and n+m, respectively. The partition λ is contained in µ and we write λ ⊆ µ if
the Ferrers diagram of λ is contained in the Ferrers diagram of µ, more precisely if
λi ≤ µi for all i. This partial order is called containment. For partitions λ ⊆ µ, the
skew diagram µ/λ is the set difference of µ and λ and contains exactly n cells.

For example, for λ = (2, 1) and µ = (4, 3, 2), we have λ ⊆ µ and the skew diagram
µ/λ looks as follows

.

We note that ⊆ is a partial order on the set of all partitions.
The definitions of a skew tableau and a semistandard skew-tableau are as expected.

Definition 1.3.17. Let T be a skew tableau of shape µ/λ. The word w(T ) derived
from T is a sequence obtained by reading the symbols in T from right to left in
successive rows, starting with the top row. The word w(T ) = i1i2 . . . iM in the symbols
1, 2, . . .m is a lattice permutation if for any 1 ≤ r ≤ M and any positive integer
1 ≤ ℓ ≤ m− 1, the number of occurrences of ℓ’s in i1i2 . . . ir is at least as large as the
number of occurrences of (ℓ+ 1)’s.
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1 Representation Theory

As an example, the word associated with the following skew tableau

1 1
1 2

2 3

is 112132 and is a lattice permutation.

Theorem 1.3.18 (Littlewood-Richardson Rule). Let χλ and χν be irreducible
characters of Sn and Sm, respectively. Then the product χλ ⊙ χν decomposes into
irreducible constituents as follows

χλ ⊙ χν =
∑

µ

cµ
λνχ

µ,

where the Littlewood-Richardson coefficient cµ
λν is the number of semistandard skew-

tableaux T of shape µ/λ and content ν such that the word w(T ) is a lattice permutation.
Since the Littlewood-Richardson coefficients are nonnegative integers, the product
χλ ⊙ χν is indeed a character of Sn+m.

We note that cµ
λν = 0 unless |µ| = |λ| + |ν| and λ, ν ⊆ µ.

In the case of ν = (m) the irreducible character χν is just the trivial character of
Sm and the Littlewood-Richardson rule reduces to the so-called Pieri’s rule.

Corollary 1.3.19 (Pieri’s rule). Let χλ and χ(m) be irreducible characters of Sn

and Sm, respectively. Then χλ ⊙ χ(m) decomposes into irreducible constituents as
follows

χλ ⊙ χ(m) =
∑

µ

χµ

where µ runs through all partitions whose Ferrers diagram is obtained from λ by adding
m boxes, no two of which are in the same column.
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Dinara, 1831m

In this chapter we introduce and collect some notions about association schemes.
The theory of association schemes, in the words of Bannai and Ito [BI84], “is very

fundamental, perhaps the most important, in algebraic combinatorics”. Association
schemes provide a unified and underlying framework for studying coding and design
theory. One of the highlights of the theory is its versatility in applying a wide range
of algebraic tools, such as eigenvalue techniques and representation theory, as well
as graph theory and linear programming. For this reason, association schemes are
themselves a powerful tool to solve (extremal) combinatorial problems.

It is indeed often possible to interpret combinatorial objects as subsets within
certain association schemes, which then allows to utilise algebraic or linear programming
methods to uncover new characterisations and properties of these combinatorial objects.

First introduced in the 1930s in the context of statistics, association schemes were
formally recognised as an independent research subject through the work of Bose and
Shimamoto in [BS52] in the 1950s. However, it was not until the 1970s that Delsarte
demonstrated the theory’s profound significance. In his monumental thesis [Del73],
Delsarte used association schemes to unify the study of combinatorial designs and
error-correcting codes, revealing them as two facets in the same broader theoretical
framework. This establishes association schemes as an object of fundamental impor-
tance in both studies1.

We provide a brief introduction to the theory of association schemes in Section 2.1,
including definitions, examples and some basic properties. In Section 2.2 we characterise
subsets of association schemes in terms of their inner and dual distributions leading
to so-called D-cliques and T -designs. In Sections 2.3 and 2.4 we collect methods for

1The impact is also visible in the fact that Delsarte’s thesis has been cited over 2000 times according
to Google Scholar as of 2024
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studying the sizes of D-cliques in association schemes. This includes a graph-theoretical
approach involving the Hoffman bound and its weighted version, as well as the linear
programming method introduced by Delsarte. Moreover, we use these methods to
analyse special D-cliques associated with intersecting families of sets.

2.1 Definitions, examples, and properties
In this section we introduce association schemes and summarise some of their properties,
with a particular focus on the conjugacy class scheme. For more details and for proofs
we refer to [Del73], [BI84], and [GM16].

From now on, unless stated otherwise, let X be a finite set with at least two
elements.

Definition 2.1.1. An association scheme with n classes is a pair (X, {R0, R1, . . . , Rn}),
where R0, R1, . . . , Rn are non-empty relations on X ×X with the following properties.

(A1) The relations R0, R1, . . . , Rn partition X ×X and R0 = {(x, x) : x ∈ X}.

(A2) For all i, we have RT
i ∈ {R0, R1, . . . , Rn}, where RT

i = {(y, x) : (x, y) ∈ Ri}.

(A3) For every x, y ∈ X with (x, y) ∈ Rk, the number of z ∈ X such that (x, z) ∈ Ri

and (z, y) ∈ Rj is a constant only depending on i, j, k, more precisely

#{z ∈ X : (x, z) ∈ Ri and (z, y) ∈ Rj} = pk
ij

for all i, j, k.

(A4) For all i, j, k, we have pk
ij = pk

ji.

The constants pk
ij are called intersection numbers. If we have RT

i = Ri for all i, then
the association scheme is symmetric. For an x ∈ Ri, we define the valency vi of the
relation Ri by

vi = #{y ∈ X : (x, y) ∈ Ri}.

We note that the valencies vi are well-defined because, for a pair (i, j) such that
RT

i = Rj , we have

#{y ∈ X : (x, y) ∈ Ri} = #{y ∈ X : (x, y) ∈ Ri, (y, x) ∈ Rj} = p0
ij ,

so that vi = p0
ij .

Before focusing on properties of association schemes, we give some examples.
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Example 2.1.2 (Johnson scheme). Let k and n be nonnegative integers satisfying
n ≥ 2k, and let X be the set of all subsets of [n] = {1, 2, . . . , n} having k elements.
Hence we have |X| =

(n
k

)
. Let Ri be given by

Ri = {(x, y) ∈ X ×X : |x ∩ y| = k − i}.

Then (X, {R0, R1, . . . , Rk}) defines a symmetric association scheme with k classes.
This association scheme is called the Johnson scheme and is denoted by J(k, n). From
a counting argument it follows that the valencies vi are given by

vi =
(

k

k − i

)(
n− k

i

)
=
(
k

i

)(
n− k

i

)
.

We can extend the concept of classical combinatorics of sets to combinatorics of
vector spaces over the finite field Fq. It is well known that the first can be seen as the
limiting case q → 1 of the latter, where sets are replaced by vector spaces over Fq and
cardinality is replaced by dimension. The combinatorics of vector spaces over Fq is
typically referred to as q-analogs of the classical cases.

The q-analog of the usual binomial coefficient is the q-binomial coefficient
[n
k

]
q

and
is the number of k-dimensional subspaces of Fn

q , namely[
n

k

]
q

=
k−1∏
i=0

qn − qi

qk − qi
. (2.1)

In terms of the q-factorial of a nonnegative integer m given by

[m]q! = [m]q[m− 1]q · · · [1]q with [ℓ]q = qℓ − 1
q − 1 , (2.2)

it holds that [
n

k

]
q

= [n]q!
[k]q![n− k]q! .

Example 2.1.3 (q-Johnson scheme). Let k and n be nonnegative integers with
n ≥ 2k. Let X be the set of all k-dimensional subspaces of Fn

q and let

Ri = {(x, y) ∈ X ×X : dim(x ∩ y) = k − i}.

Then (X, {R0, R1, . . . , Rk}) is a symmetric association scheme with k classes, which is
called the q-Johnson scheme or Grassmann scheme and it is denoted by Jq(k, n). The
valencies vi are given by

vi = qi2
[
k

i

]
q

[
n− k

i

]
q

.

Another class of association schemes arises from finite groups, namely the conjugacy
class schemes, which plays a crucial role in this thesis.
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2 Association schemes

Example 2.1.4 (Conjugacy class scheme). Let G be a finite group and let all its
conjugacy classes be C0 = {e}, C1, . . . , Cn. We define the relations by

Ri = {(g, h) ∈ G×G : g−1h ∈ Ci}.

Then (G, {R0, R1, . . . , Rn}) is an association scheme with n classes that is called
conjugacy class scheme arising from the finite group G. For the valencies vi, we have
vi = |Ci|.

The two groups, which are of great importance in this thesis, are the symmetric
group and its q-analog the finite general linear group. In the Chapters 3, 5, and 6
we interpret certain combinatorial objects (transitive and intersecting sets) of the
symmetric group and of the finite general linear group as subsets of the corresponding
conjugacy class schemes arising from these groups. This allows us to describe further
(algebraic) properties of these objects. Due to the fact that we are working almost
exclusively with the conjugacy class scheme, we will repeatedly refer to properties of
this association scheme in the remainder of this chapter.

Even though there exist groups for which the corresponding conjugacy class scheme
is symmetric, like the symmetric group, whose conjugacy classes are closed under
inversion, the conjugacy class scheme is not necessarily symmetric. In certain finite
general linear groups, for example, not all the conjugacy classes are closed under
inversion and thus the associated conjugacy class scheme is not symmetric. The fact
that the conjugacy class scheme arising from the finite general linear groups are not
necessarily symmetric plays a crucial role in the thesis. However, given an association
scheme, it is possible to construct a symmetric one arising from it, as we will see in
Lemma 2.1.21.

Remark 2.1.5. There is a strong connection between association schemes and graph
theory. We can view an association scheme (X, {R0, R1, . . . , Rn}) as a union of (not
necessarily undirected) graphs Γi = (X,Ri), whose vertices are given by X and whose
edges are given by the relations Ri. If the association scheme is symmetric, then the
graphs Γi are regular graphs for each i.

Figure 2.1: The Johnson scheme J(2, 4).
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2.1 Definitions, examples, and properties

Example 2.1.6 (Johnson scheme). Figure 2.1 shows the graph corresponding to
the Johnson scheme J(2, 4). The dotted lines correspond to the relation R2, the
nondotted ones to the relation R1, and we omitted to draw the relation R0.

Given an association scheme, we can bring matrices into play. To do this, we first
introduce some notation.

Given a field K and two finite sets X and Y , we write K(X,Y ) for the set of all
|X| × |Y | matrices whose entries are in K and whose rows and columns are indexed by
X and Y , respectively. For a matrix A ∈ K(X,Y ), the entry corresponding to x ∈ X

and y ∈ Y is denoted by A(x, y). If Y = |1|, then we write K(X) instead of K(X,Y )
for the set of all column vectors indexed by X and having entries in K. For the x-entry
of a ∈ K(X), where x ∈ X, we write a(x).

For a relation R on X ×X, the adjacency matrix A ∈ R(X,X) of R is given by

A(x, y) =

1 for (x, y) ∈ R,

0 otherwise.

Using adjacency matrices we can give the following equivalent definition of an
association scheme.

Definition 2.1.7. Let R0, R1, . . . , Rn be non-empty relations on X ×X with corre-
sponding adjacency matrices A0, A1, . . . , An. Then (X, {R0, R1, . . . , Rn}) is an associ-
ation scheme if the following properties hold.

(A1’) We have
∑n

i=0Ai = J and A0 = I, where J, I ∈ C(X,X) denote the all-ones and
the identity matrix, respectively.

(A2’) For all i, we have AT
i ∈ {A0, A1, . . . , An}.

(A3’) For all i, j, there exist integers pk
ij such that AiAj =

∑n
k=0 p

k
ijAk.

(A4’) For all i, j, k, we have pk
ij = pk

ji.

Remark 2.1.8. The adjacency matrices of an association scheme have exactly vi

ones in each row and each column, where vi denotes the valency.

Example 2.1.9 (Conjugacy class scheme). Given the conjugacy class scheme aris-
ing from a finite group G with conjugacy classes C0 = {e}, C1, . . . , Cn, the correspond-
ing adjacency matrices Ai ∈ C(G,G) are given by

Ai(g, h) =

1 for g−1h ∈ Ci,

0 otherwise.
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In the following, we often denote the set of relations {R0, R1, . . . , Rn} of an asso-
ciation scheme by R. Let (X,R) be an association scheme with n classes and corre-
sponding adjacency matrices A0, A1, . . . , An. Then the vector space ⟨A0, A1, . . . , An⟩C
is a matrix algebra because of (A3′) and together with (A4′) it follows that this
algebra is commutative. Moreover, from (A1′) it follows that this vector space is
(n+ 1)-dimensional. This brings us to the following definition.

Definition 2.1.10. For an association scheme (X,R) whose adjacency matrices are
A0, A1, . . . , An, the commutative (n+1)-dimensional matrix algebra ⟨A0, A1, . . . , An⟩C
is called the Bose-Mesner algebra of (X,R).

From property (A2′) together with the fact that all entries of the adjacency matrix
Ai are 0 or 1 it also follows that the Ai’s and thus all elements of the Bose-Mesner
algebra are normal. Using linear algebra, it follows that the Bose-Mesner algebra
is simultaneously unitary diagonalisable. Thus it is possible to construct a second
basis of the Bose-Mesner algebra that consists only of pairwise orthogonal idempotent
matrices.

Theorem 2.1.11. The Bose-Mesner algebra of an association scheme (X,R) with n
classes has a unique basis of pairwise orthogonal idempotent matrices E0, E1, . . . , En

that are Hermitian and satisfy

n∑
k=0

Ek = I and 1
|X|

J ∈ {E0, E1, . . . , En},

where I and J are the identity and the all-ones matrix, respectively.

From now on, we will assume that E0 = 1
|X|J . Since the matrices Ek of the second

basis of the Bose-Mesner algebra are idempotent, it follows that they are positive
semi-definite.

Definition 2.1.12. The multiplicities mk of an association scheme are the ranks of
the matrices Ek from Theorem 2.1.11, that is mk = rk(Ek).

The beauty of the conjugacy class scheme lies in its ability to involve representation
theory.

Example 2.1.13. The pairwise orthogonal idempotent matrices Ek corresponding
to the conjugacy class scheme arising from the finite group G are indexed by the
irreducible characters χ0, χ1, . . . , χn of G and are given by

Ek(g, h) = χk(e)
|G|

χk(g−1h), (2.3)
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where e denotes the identity element of G. Thus, the multiplicities mk are

mk = rk(Ek) = χk(e)
|G|

∑
g∈G

χk(g−1g) = χk(e)2.

There are certain connections between the two bases of an association scheme,
which we collect in the following remark.

Remark 2.1.14. The two bases of the Bose-Mesner algebra of an association scheme
(X, {R0, R1, . . . , Rn}) are dual in a certain way, which is illustrated in Table 2.1.
There, ◦ denotes the Hadamard product, that is the component-wise multiplication of
two matrices and δij denotes the Kronecker-delta.

Table 2.1: Summary of properties of the bases matrices Ai and Ek of the Bose-Mesner
algebra corresponding to the association scheme (X, {R0, R1, . . . , Rn}).

Ai Ek

A0 = I E0 = 1
|X|J

n∑
i=0

Ai = J
n∑

k=0
Ek = I

Ai ◦Aj = δijAi EkEℓ = δkℓEk

entries are 0 or 1 eigenvalues are 0 or 1

From Theorem 2.1.11, we have that
∑n

k=0Ek = I and that the Ek are pairwise
orthogonal. Consequently, we get the following.

Lemma 2.1.15. The matrices Ek of an association scheme (X, {R0, R1, . . . , Rn})
satisfy that

CX =
n⊕

k=0
colsp(Ek),

where colsp(Ek) denotes the column span of Ek over the complex numbers.

There exist unique complex numbers Pi(k) and Qk(i) such that

Ai =
n∑

k=0
Pi(k)Ek, (2.4)

Ek = 1
|X|

n∑
i=0

Qk(i)Ai. (2.5)

We will see at a later stage in this thesis that the change of basis is of great importance in
the theory of association schemes. The numbers Pi(k) and Qk(i) are called eigenvalues
and dual eigenvalues of the corresponding association scheme, respectively. Using the
properties of the two bases, we obtain the following values of the (dual) eigenvalues.
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Lemma 2.1.16. Let (X, {R0, R1, . . . , Rn}) be an association scheme having valencies
vi and multiplicities mk. Then the the eigenvalues Pi(k) and dual eigenvalues Qk(i)
of the scheme have the following values for every i, k:

(i) P0(k) = 1,

(ii) Q0(i) = 1,

(iii) Pi(0) = vi,

(iv) Qk(0) = mk.

Moreover, using the equations (2.4) and (2.5) we can deduce the following identities.

Lemma 2.1.17. Let Pi(k) and Qk(i) denote the eigenvalues and dual eigenvalues,
respectively, of the association scheme (X, {R0, R1, . . . , Rn}) having valencies vi and
multiplicities mk. Then we have

(i) 1
|X|
∑n

k=0 Pi(k)Qk(j) = δij,

(ii) 1
|X|
∑n

i=0Qk(i)Pi(l) = δkl,

(iii) mkPi(k) = viQk(i),

where δij denotes the Kronecker-delta.

Furthermore, we have the following estimates on the absolute value of the (dual)
eigenvalues.

Lemma 2.1.18. Let Pi(k) and Qk(i) denote the eigenvalues and dual eigenvalues,
respectively, of the association scheme (X, {R0, R1, . . . , Rn}) having valencies vi and
multiplicities mk. Then, for all i, k, we have

|Pi(k)| ≤ vi and |Qk(i)| ≤ mk.

Calling the numbers Pi(k) and Qk(i) eigenvalues and dual eigenvalues, respectively,
is justified because, for all i, k, we have

AiEk = Pi(k)Ek, (2.6)

Ai ◦ Ek = 1
|X|

Qk(i)Ai, (2.7)

where ◦ denotes again the Hadamard product. We emphasise that from (2.6) we find
that the columns of the pairwise orthogonal idempotent matrices Ek are the common
eigenvectors of the adjacency matrices Ai.

34



2.2 Subsets of association schemes

We note that for a symmetric association scheme the adjacency matrices are
symmetric and thus their eigenvalues Pi(k) and, due to Lemma 2.1.17, also the
dual eigenvalues Qk(i) are real-valued. In general these numbers are not necessarily
real-valued.

Example 2.1.19. The eigenvalues Pi(j) of the Johnson scheme J(k, n) from Exam-
ple 2.1.2 are given by

Pi(j) =
k∑

r=i

(−1)r−i+j

(
r

i

)(
n− 2r
k − r

)(
n− r − j

r − j

)
.

Example 2.1.20. We focus again on the conjugacy class scheme of the finite group G
whose conjugacy classes and irreducible characters are C0, C1, . . . , Cn and χ0, χ1, . . . , χn,
respectively. Then the eigenvalues of this scheme are

Pi(k) = |Ci|
χk(e)χ

k
i ,

and the dual eigenvalues are
Qk(i) = χk(e)χk

i ,

where χk
i denotes the irreducible character χk evaluated on the conjugacy class Ci.

Together with (2.4) and (2.5), respectively, we have

Ai =
n∑

k=0

|Ci|
χk(e)χ

k
iEk, (2.8)

Ek = χk(e)
|G|

n∑
i=0

χk
iAi. (2.9)

Sometimes, it is mandatory to have a symmetric association scheme. Given a
non-symmetric association scheme, there is a method to construct a symmetric one
from it.

Lemma 2.1.21 (Symmetrisation). Let (X, {R0, R1, . . . , Rn}) be an association
scheme and define

R = {Ri ∪R−1
i : i ∈ {0, 1, . . . , n}}.

Then the pair (X,R) is a symmetric association scheme. In this case we call (X,R)
the symmetrisation or the symmetric closure of (X, {R0, R1, . . . , Rn}).

2.2 Subsets of association schemes
One of the reasons why association schemes are such a powerful tool is because it is of-
ten possible to embed interesting combinatorial objects as subsets in certain association
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schemes and to characterise them in terms of their inner or dual distribution. Del-
sarte named these subsets cliques and designs and introduced them in his thesis [Del73].

In the following we write [n] for the set {1, 2, . . . , n} and we call a subset of
size k of [n] a k-subset or k-set for short. Moreover, if not stated otherwise, let
(X, {R0, R1, . . . , Rn}) be an association scheme with adjacency matrices A0, A1, . . . , An.

Definition 2.2.1. For a subset Y of X, the inner distribution of Y is the tuple
(a0, a1, . . . , an) given by

ai = |(Y × Y ) ∩Ri|
|Y |

. (2.10)

Since R0 is the set of diagonal elements, we have a0 = 1. We note that the numbers ai

are nonnegative.

Figure 2.2: A subset of the Johnson scheme J(2, 4) consisting of four 2-subsets.

Example 2.2.2 (Johnson scheme J(2, 4)). The inner distribution (a0, a1, a2) of
the given subset in Figure 2.2 satisfies

a0 = 1, a1 = 5/2, a2 = 1/2.

Let 1Y ∈ C(X) denote the characteristic vector of a subset Y of X, that is

1Y (x) =

1 for x ∈ Y,

0 otherwise.

Since we can describe an association scheme in terms of its adjacency matrices Ai, we
find that the definition (2.10) of the inner distribution of a subset Y of X is equivalent
to the following

ai = 1
|Y |

1T
Y Ai1Y . (2.11)

Certain subsets of an association scheme, known as cliques, are defined in terms of
their inner distribution and are of particular interest.

Definition 2.2.3. Let D be a subset of [n]. A subset Y of X with inner distribution
(a0, a1, . . . , an) is called a D-clique if ai = 0 for all i ∈ [n] \D.
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2.2 Subsets of association schemes

In other words, if Y is a D-clique, then the set D ∪ {0} contains all permitted relations
that occur among the elements of Y . We are interested in finding upper bounds on
the size of D-cliques. One tool to do so is the linear programming method by Delsarte,
which we discuss in Section 2.4.

Example 2.2.4. Let (X, {R0, R1, . . . , Rn}) be the Johnson scheme J(k, n) from Ex-
ample 2.1.2 and take D = {1, 2, . . . , k − 1}. Then a D-clique of X consists only of
k-subsets x, y of [n] such that x ∩ y ̸= ∅.

The D-cliques from Example 2.2.4 are called intersecting sets or Erdős-Ko-Rado
sets and will play a crucial role in this thesis. We will give more details on these
intersecting sets in Section 2.3.2 and will later on discuss intersecting sets in other
association schemes, namely in the conjugacy class schemes arising from the symmetric
group and the finite general linear group in Section 3.2 and Chapter 5, respectively.

The dual of a D-clique in an association scheme is a T -design. In order to introduce
a T -design, we first need the dual object of the inner distribution, which is the dual
distribution.

Definition 2.2.5. The dual distribution of a subset Y of X is a tuple (b0, b1, . . . , bn)
given by

bk =
n∑

i=0
Qk(i)ai, (2.12)

where the Qk(i) are the dual eigenvalues of the association scheme.

From (2.11) and (2.5) it follows that the definition (2.12) is equivalent to

bk = |X|
|Y |

1T
Y Ek1Y , (2.13)

where the matrices Ek form the pairwise orthogonal idempotent basis from Theo-
rem 2.1.11 of the underlying association scheme.

Since E0 = 1
|X|J it follows that b0 = |Y |. Moreover, since the Ek are positive

semi-definite (see Theorem 2.1.11), it follows from (2.13) that the entries of the dual
distribution are real and nonnegative.

Table 2.2 gives an overview of the properties of the inner and dual distribution,
respectively.

Example 2.2.6. Let χ0, χ1, . . . , χn be all irreducible characters of the finite group
G and let Y be a subset of G. Then, due to Example 2.1.20, the dual distribution
(b0, b1, . . . , bn) of Y is given by

bk = χk(e)
|Y |

∑
g,h∈Y

χk(g−1h).
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Table 2.2: Properties of the inner and dual distribution of a subset Y of X.

inner distribution (ai) dual distribution (bk)

ai = 1
|Y |1

T
Y Ai1Y bk = |X|

|Y |1
T
Y Ek1Y

ai = 1
|X|

n∑
k=0

Pi(k)bk
bk =

n∑
i=0

Qk(i)ai

ai ≥ 0 bk ≥ 0

a0 = 1 b0 = |Y |
n∑

i=0
ai = |Y |

n∑
k=0

bk = |X|

Since all entries of the dual distribution are nonnegative, we are particularly
interested in the extremal case, namely when some entries are equal to zero. This
motivates the definition of a T -design.

Definition 2.2.7. Let T be a subset of [n]. A subset Y of X with dual distribution
(b0, b1, . . . , bn) is a Delsarte T -design (or T -design for short), if bk = 0 for all k ∈ T .

Remark 2.2.8. Since the matrices Ek of the association scheme (X, {R0, R1, . . . , Rn})
are pairwise orthogonal we conclude that a subset Y of X is a T -design if and only
if the characteristic vector 1Y of Y is orthogonal to the column space of Ek for all
k ∈ T .

Ever since Delsarte introduced T -designs in his thesis [Del73], they have been of
interest in algebraic combinatorics. We emphasise that the definition of a T -design is
algebraic and without any clear combinatorial interpretation. However, it turns out that
T -designs in association schemes often have nice combinatorial interpretations, which
motivated Delsarte to “the ‘conjecture’ being that T -designs will often have interesting
properties” [Del73]. This conjecture was proved for several classical association schemes,
see for example [Del76] or [Sta86]. In Section 3.4 and in Chapter 6 we show that this
conjecture is also true for the conjugacy class scheme arising from the symmetric group
and from the finite general linear group, respectively.

It is well known that for many association schemes Delsarte T -designs approximate
in some sense the underlying set, see for example [Sta86]. Consequently, we are
interested in the existence of small T -designs.

For example, in the Johnson scheme certain T -designs are classical combinatorial
t-(n, k, λ) designs.
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2.2 Subsets of association schemes

Definition 2.2.9. For positive integers n ≥ k and t ∈ [k], we consider the set S of all
k-subsets of [n]. An element of S is called a block. A subset Y of S is a combinatorial
t-(n, k, λ) design if every t-subset of [n] is contained in exactly λ blocks of Y .

Figure 2.3: Fano plane

Example 2.2.10. The Fano plane, illustrated in Figure 2.3, is a 2-(7, 3, 1) design.
The set X consists of all 3-subsets of [7]. The blocks of the Fano plane are given by
the seven lines, where the inner circle also indicates a line.

The existence of combinatorial t-(n, k, λ) designs for given t and n sufficiently large
was proven by Teirlinck [Tei87].

Delsarte proved [Del73] that the notions of {1, 2, . . . , t}-designs and combinatorial
t-(n, k, λ) designs coincide in the Johnson scheme.

Theorem 2.2.11. Let (X, {R0, R1, . . . , Rk}) be the Johnson scheme J(k, n) from
Example 2.1.2. Additionally, let t be an integer with 1 ≤ t ≤ k, and let Y be a subset
of X. Then Y is a T -design with T = {1, 2, . . . , t} if and only if Y is a t-(n, k, λ)
design with λ = |Y |

(k
t

)
/
(n

t

)
.

From this theorem it follows that the Fano plane is a {1, 2}-design in the Johnson
scheme J(3, 7).

To obtain a q-analog of a combinatorial t-(n, k, λ) design we replace again sets by
subspaces and obtain a subspace design.

Definition 2.2.12. For positive integers n ≥ k and t ∈ [k], let X be the set of all
k-dimensional subspaces of Fn

q . An element of X is called a block. A subset Y of X
is a t-(n, k, λ)q subspace design if every t-dimensional subspace of Fn

q is contained in
exactly λ blocks of Y .

We have the following combinatorial interpretation for a {1, 2, . . . , t}-design in the
q-Johnson scheme, see for example [Del76] or [Sta86].

Theorem 2.2.13. Let (X, {R0, R1, . . . , Rk}) be the q-Johnson scheme Jq(k, n) from
Example 2.1.3. Moreover, let t be an integer with 1 ≤ t ≤ k and let Y be a subset
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of X. Then Y is a T -design with T = {1, 2, . . . , t} if and only if Y is a t-(n, k, λ)q

subspace design with λ = |Y |
[k

t

]
q
/
[n

t

]
q
.

In Section 3.4 and in Chapter 6 it turns out that certain T -designs in the conjugacy
class scheme arising from the symmetric group and from the finite general linear group,
respectively, are so-called transitive sets in the corresponding group.

2.3 Hoffman bounds
In this thesis, we are interested in intersecting sets, not only in the classical case from
Example 2.2.4, but also within symmetric and finite general linear groups. Since these
sets arise as special D-cliques, our focus is on finding upper bounds for their sizes. One
approach to obtain these bounds involves exploiting the connection between association
schemes and graphs, as observed in Remark 2.1.5, and utilising graph theory tools
such as the classical Hoffman bound that will be introduced in this section.

Definition 2.3.1. An (undirected) graph Γ = (X,E) consists of a finite set of vertices
X and a set of edges E, where the latter is a subset of X ×X satisfying (x, x) /∈ E for
all x ∈ X, and (x, y) ∈ E if and only if (y, x) ∈ E. The degree of a vertex x ∈ X is
the number of y ∈ X such that (x, y) ∈ E. A graph is d-regular if all vertices have
degree d.

The adjacency matrix A ∈ R(X,X) of a graph Γ = (X,E) is given by

A(x, y) =

1 if (x, y) ∈ E,

0 otherwise.

Since the adjacency matrix A ∈ R(X,X) of an undirected graph is symmetric it has
an orthonormal system of |X| eigenvectors that form a basis of R(X). Moreover, all
eigenvalues of A are real and we refer to them as the eigenvalues of the corresponding
graph. We note that, if the graph is d-regular, then d is an eigenvalue with the all-ones
vector as a corresponding eigenvector. A subset Y of X is called independent if for all
x, y ∈ Y there is no edge between x and y in Γ, that means (x, y) /∈ E for all x, y ∈ Y .

2.3.1 The classical Hoffman bound
The Hoffman bound [Hae21], also known as ratio bound, gives an upper bound on
the size of an independent set of a regular graph in terms of its minimal eigenvalue.
Moreover, it gives a partial characterisation of the extremal case.
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Theorem 2.3.2. (Hoffman bound) Let Γ = (X,E) be a d-regular graph with eigenval-
ues λ0, λ1, . . . , λℓ and corresponding eigenvectors v0, v1, . . . , vℓ, where v0 is the all-ones
vector. If Y ⊆ X is an independent set in Γ, then

|Y |
|X|

≤ |λmin|
d+ |λmin|

,

where λmin = mink ̸=0 λk. In case of equality we have

1Y ∈ ⟨{v0} ∪ {vk : λk = λmin}⟩.

In the next subsection we apply the Hoffman bound to prove an upper bound on
the size of intersecting families of sets from Example 2.2.4. A corresponding theorem
on subsets Y, Z of a graph having no edges in between is as follows.

Theorem 2.3.3. Let Γ = (X,E) be a d-regular graph with eigenvalues λ0, λ1, . . . , λℓ

and corresponding eigenvectors v0, v1, . . . , vℓ, where v0 is the all-ones vector. If Y and
Z are subsets of X such that there are no edges between Y and Z in Γ, then√

|Y |
|X|

|Z|
|X|

≤ λmax
d+ λmax

,

where λmax = maxk ̸=0 |λk|. In case of equality we have

1Y ,1Z ∈ ⟨{v0} ∪ {vk : |λk| = λmax}⟩.

2.3.2 Application: classical Erdős-Ko-Rado theorems
One of the most famous questions in extremal set theory is the following.

How large can a family of k-sets of {1, 2, . . . , n} be such that every two
members of this family have non-empty intersection?

(Qu1)

Figure 2.4 illustrates two families with the property given in (Qu1) for n = 4 and
k = 2.

The question (Qu1) was first answered by Erdős, Ko, and Rado in [EKR61] in
1961. They also characterised the extremal case for n sufficiently large compared to k.

Theorem 2.3.4 (Erdős-Ko-Rado). For all fixed k and n ≥ 2k, the size of a family
of k-sets of [n] such that every two members of this family have non-empty intersection
is at most

(n−1
k−1
)
. Moreover, for n > 2k, equality holds if and only if there is one

element of [n] that is contained in all members of the family.
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Figure 2.4: Examples of intersecting families of 2-sets of maximal size.

The original proof of the Erdős-Ko-Rado theorem is working with so-called shiftings,
which are operations on set systems. However, we can use association schemes in order
to get an elegant proof that uses algebraic combinatorics (c.f. [GM16]) and applies
the Hoffman bound from Theorem 2.3.2. To do so, recall from Example 2.2.4 that,
taking the Johnson scheme J(k, n), an intersecting family of k-sets is a D-clique in
J(k, n), where D = {1, 2, . . . , k − 1}.

Example 2.3.5. Let (X, {R0, R1, . . . , Rk}) be the Johnson scheme from Example 2.1.2.
Let Γ be the graph with vertex set X and two edges x and y are adjacent if and only
if |x ∩ y| = 0. Then Γ has

(n
k

)
vertices and is regular of degree

(n−k
k

)
. Moreover, any

intersecting set Y of X is an independent set in this graph because, for all elements x
and y of an intersecting set, it holds that |x ∩ y| ≥ 1. We obtain the eigenvalues of
this graph by applying Example 2.1.19 for i = k, namely

(−1)j

(
n− k − j

k − j

)
.

Consequently the smallest eigenvalue of Γ is

−
(
n− k − 1
k − 1

)
.

Applying the Hoffman bound from Theorem 2.3.2 gives an upper bound on the size of
an independent set in Γ and thus on the size of any intersecting subset Y of X, namely

|Y | ≤
(
n

k

) (n−k−1
k−1

)(n−k
k

)
+
(n−k−1

k−1
) =

(
n− 1
k − 1

)
.

Since the 1960’s, questions of the flavour of (Qu1) have been investigated for many
different objects and notions of intersection with objects such as subspaces or flags,
see [GM16] for a survey.
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Another notion of intersection, known as cross-intersection, arises from set systems.
Two families Y and Z of k-subsets of [n] are cross-intersecting if, for all y ∈ Y and
z ∈ Z, the intersection of y and z is nonempty. Kleitmann [Kle68] gave an upper
bound on the size of cross-intersecting sets, which was later improved by Pyber [Pyb86]
and then by Matsumoto and Tokushige [MT89].

Theorem 2.3.6. Let n ≥ 2k and let Y and Z be cross-intersecting families of k-sets
of [n]. Then we have √

|Y ||Z| ≤
(
n− 1
k − 1

)
.

Moreover, for n > 2k, equality holds if and only if Y = Z and there exists one element
of [n] that is contained in all members of Y .

The proof of the upper bound works similarly as the proof of the upper bound in
Example 2.3.5. Using the same graph Γ whose second largest eigenvalue in absolute
value is (

n− k − 1
k − 1

)
and applying Theorem 2.3.3 gives the upper bound.

Another notion of intersection arises as a strengthened version from the classical
notion of intersection and is called t-intersection.

Definition 2.3.7. Two k-sets x, y of [n] are t-intersecting if |x ∩ y| ≥ t. A family of
k-sets Y of [n] is t-intersecting if all pairs in Y × Y are t-intersecting.

The corresponding question to (Qu1) for t-intersecting families then is the following.

How large can a family of k-sets of {1, 2, . . . , n} be such that every two
members of this family are t-intersecting?

(Qu2)

The answer to this question (Qu2) was first given in [EKR61] for n sufficiently large
compared to t and k. The authors also characterise the extremal case.

Theorem 2.3.8. Let t ≤ k. For n sufficiently large compared to t and k, the size of a
t-intersecting family of k-sets of [n] is bounded by

(n−t
k−t

)
and, in case of equality, there

exist t distinct elements of [n] being contained in each member of the family.

In fact, Frankl [Fra78] and later Wilson [Wil84] obtained exact bounds on the value
of n for which Theorem 2.3.8 holds. More precisely, Frankl proved that the theorem is
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valid for all n ≥ (t + 1)(k − t + 1) when t ≥ 15, and Wilson subsequently extended
this result to all t.

There also exists a strengthened version of Theorem 2.3.6, that deals with t-cross-
intersecting sets.

Definition 2.3.9. Two families Y and Z of k-subsets of [n] are t-cross-intersecting,
if all pairs in Y × Z are t-intersecting.

An upper bound for |Y ||Z| is, for example, given in [Tok10] and an improved
version in [FLST14].

Theorem 2.3.10 ([FLST14]). Let n > k ≥ t ≥ 14 be nonnegative integers with
n ≥ (t+ 1)k and let Y and Z be t-cross-intersecting families of k-sets of [n]. Then we
have √

|Y ||Z| ≤
(
n− t

k − t

)
,

and, in case of equality, Y = Z and there exist t elements of [n] that are contained in
all members of Y .

In order to give an algebraic proof of the upper bound in Theorem 2.3.8, we apply
a weighted version of the Hoffman bound in the next section.

2.3.3 The weighted version of the Hoffman bound
The following weighted version of the Hoffman bound generalises Theorems 2.3.2 and
2.3.3, and was stated and proven by Ellis, Friedgut, and Pilpel in [EFP11].

Theorem 2.3.11 (Weighted version of the Hoffman bound). Let Γ = (X,E)
be a graph on n vertices. Suppose that Γ0,Γ1, . . . ,Γr are regular spanning subgraphs of
Γ, all having {v0, v1, . . . , vn−1} as an orthonormal system of eigenvectors with v0 being
the all-ones vector. Let Pi(k) be the eigenvalue of vk in Γi. Let w0, w1, . . . , wr ∈ R
and write P (k) =

∑r
i=0wiPi(k).

(i) If Y ⊆ X is an independent set in Γ, then

|Y |
|X|

≤ |Pmin|
P (0) + |Pmin|

,

where Pmin = mink ̸=0 P (k). In case of equality we have

1Y ∈ ⟨{v0} ∪ {vk : P (k) = Pmin}⟩.
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(ii) If Y, Z ⊆ X are such that there are no edges between Y and Z in Γ, then√
|Y |
|X|

|Z|
|X|

≤ Pmax
P (0) + Pmax

,

where Pmax = maxk ̸=0 |P (k)|. In case of equality we have

1Y ,1Z ∈ ⟨{v0} ∪ {vk : |P (k)| = Pmax}⟩.

This theorem plays a crucial role in the proofs of Ellis, Friedgut, and Pilpel [EFP11]
on the size and characterisation of t-intersecting and t-cross-intersecting sets of the
symmetric group. We summarise these results in Section 3.2. Moreover, the proofs of
our main results in Chapter 5 also heavily rely on this weighted version of the Hoffman
bound.

2.3.4 Application: t-intersecting families of sets
In the following we apply the weighted version of the Hoffman bound to give an
algebraic proof of the upper bound on the size of t-intersecting families of sets as
stated in Theorem 2.3.8. For this, we make heavy use of association schemes.

To do so, let A0, A1, . . . , Ak denote the adjacency matrices of the Johnson scheme
J(k, n). Let t ≤ k. For every i with k−t+1 ≤ i ≤ k, let Γi be the graph corresponding
to the adjacency matrix Ai. Then each graph Γi is

(k
i

)(n−k
i

)
-regular. Moreover, a

t-intersecting family of sets is an independent set in every graph Γi. Let Γ be the
graph given by the adjacency matrix

k∑
i=k−t+1

Ai.

We apply Theorem 2.3.11 to the graph Γ and the regular spanning subgraphs Γi.
Recall from (2.6) that every vector in the column space of Ej is an eigenvector of

Ai with eigenvalue Pi(j). We wish to construct some weight w ∈ Rt such that the
minimum value over all j of

k∑
i=k−t+1

wiPi(j) (2.14)

equals
η = − 1(n

k

)
/
(n−t

k−t

)
− 1

(2.15)

and such that w is normalised in the sense that (2.14) equals 1 if j = 0. This guarantees
that Theorem 2.3.11 gives the upper bound on the size of a t-intersecting family of
sets from Theorem 2.3.8.

In the construction of the weight w we make use of a t-Steiner system.
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Remark 2.3.12. A t-Steiner system is a combinatorial t-(n, k, 1) design. It was
proved by Keevash [Kee14] (see also [GKLO23]) that t-Steiner systems exist for all
t ≤ k and all sufficiently large n provided some natural divisibility conditions are
satisfied.

Let Z be a t-Steiner system. According to the definition of a combinatorial t-
(n, k, 1) design, each t-set of [n] is contained in exactly one member of Z, which implies
that |x ∩ y| ≤ t − 1 for all distinct x, y ∈ Z. Consequently, the inner distribution
(a0, a1, . . . , ak) of Z satisfies

ai = 0 for all 1 ≤ i ≤ k − t. (2.16)

Due to Theorem 2.2.11, Z is a {1, 2, . . . , t}-design of size
(n

k

)
/
(n−t

k−t

)
in the Johnson

scheme J(k, n). Thus the dual distribution (b0, b1, . . . , bk) of Y satisfies

bj = 0 for all 1 ≤ j ≤ t. (2.17)

With the help of a t-Steiner system and the theory of association schemes we are
in a position to construct some w ∈ Rt such that the minimum value of (2.14) equals
η from (2.15).

Lemma 2.3.13. Let n, k and t be positive integers such that t ≤ k ≤ n/2 and such that
a t-Steiner system Z of size

(n
k

)
/
(n−t

k−t

)
exists. Let (a0, a1, . . . , ak) and (b0, b1, . . . , bk)

be the inner and dual distribution of Z, respectively, and let vi =
(k

i

)(n−k
i

)
for all

i ∈ {0, 1, . . . , k}. Then, for
wi = ai

vi(|Z| − 1) ,

we have

k∑
i=k−t+1

wiPi(j)


= 1 for j = 0

= η for 1 ≤ j ≤ t

> η otherwise,

where η is given by (2.15).

Proof: Using the identity Pi(j) = vi
mj
Qj(i) from Lemma 2.1.17 we have

k∑
i=k−t+1

wiPi(j) = 1
mj

k∑
i=k−t+1

wiviQj(i).

For j = 0, from (2.12), and (2.16) we obtain

1
m0

k∑
i=k−t+1

wiviQ0(i) = 1
|Z| − 1(b0 − 1) = 1.
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Since, according to (2.17), we have

k∑
i=0

Qj(i)ai = 0 for all 1 ≤ j ≤ t,

it follows with (2.16) that

k∑
i=k−t+1

Qj(i)ai = −Qj(0)a0 = −mj for all 1 ≤ j ≤ t.

Consequently, for all j satisfying 1 ≤ j ≤ t, it follows that

1
mj

k∑
i=k−t+1

wiviQj(i) = 1
(|Z| − 1)

1
mj

k∑
i=k−t+1

aiQj(i) = − 1
|Z| − 1 = η.

For j > t, by using (2.16) once again, we obtain

1
mj

k∑
i=k−t+1

wiviQj(i) = 1
mj(|Z| − 1)

k∑
i=k−t+1

aiQj(i) = 1
mj(|Z| − 1)(bj − 1)

≥ − 1
mj(|Z| − 1) > − 1

|Z| − 1 > η,

where we have used that bj ≥ 0 for all j, and mj =
(n

j

)
−
( n

j−1
)
> 1 for all j ≤ k ≤ n/2.

□

Now, we have all the necessary ingredients to provide an algebraic proof of the
upper bound on the size of a t-intersecting family of sets in Example 2.3.14 and to
follow the strategy outlined at the beginning of this section.

Example 2.3.14. Let J(k, n) be the Johnson scheme with the adjacency matrices
A0, A1, . . . , Ak and pairwise orthogonal idempotent matrices E0, E1, . . . , Ek. As ex-
plained at the beginning of this section, we apply the weighted version of the Hoffman
bound, Theorem 2.3.11, to the graph Γ with adjacency matrix

k∑
i=k−t+1

Ai

and the
(k

i

)
/
(n−k

i

)
-regular spanning subgraphs Γi given by the adjacency matrices Ai

for every i with k− t+ 1 ≤ i ≤ k. Now, each t-intersecting family of k-sets of [n] is an
independent set in this graph Γ. Let Pi(j) be the eigenvalue of Ai corresponding to
Ej and let w ∈ Rt+1 be given as in Lemma 2.3.13. Then Lemma 2.3.13 implies that

min
j ̸=0

k∑
i=k−t+1

wiPi(j) = η.

47



2 Association schemes

Applying Theorem 2.3.11 gives the upper bound from Theorem 2.3.8 on the size of a
t-intersecting family of k-sets of [n] if n is sufficiently large compared to t and k.

This application of the weighted version of the Hoffman bound also gives a par-
tial characterisation of the extremal cases. Namely, the characteristic vector of a
t-intersecting family of sets of maximal size is spanned by the eigenvectors, given by
the columns of Ej with 0 ≤ j ≤ t. However, more work has to be done to obtain the
characterisation of the extremal case from Theorem 2.3.8.

2.4 Linear Programming
One of the reasons why association schemes are such a powerful tool is because, using
the fact that the dual distribution is a linear transformation of the inner distribution
of a subset, see (2.12), we are in a position to use linear programming to derive upper
or lower bounds on the size of subsets of an association scheme. This idea goes back
to Delsarte [Del73]. First, we present some preliminaries from linear programming
before placing it in the context of association schemes.

2.4.1 A brief overview of linear programming
In what follows, we give a brief summary of some basic concepts of linear programming
that we need in the remainder of this thesis. For more background and details, see for
example [Van20].

Definition 2.4.1. Let M ∈ Rn×m, b ∈ Rn and c ∈ Rm. Then the primal linear
program (LP) for this data is given by

max
x∈Rm

cTx

subject to xi ≥ 0 for all i, (LP)

Mx ≥ −b.

The mapping Rm → R, x 7→ cTx is called the objective function of the linear program
(LP). If a vector x ∈ Rm satisfies the constraints in (LP), then x is a feasible
solution. The linear program (LP) is bounded if cTx is bounded for all feasible
solutions. Otherwise (LP) is unbounded. If the linear program (LP) is bounded, then
a feasible solution x∗ of (LP) that satisfies cTx ≤ cTx∗ for all feasible solutions x, is
called optimal solution.
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For every primal linear program there exists a so-called dual program.

Definition 2.4.2. Let M , b, and c be as given in (LP). Then the dual linear program
(DLP) corresponding to (LP) is given by

min
y∈Rn

yT b

subject to yi ≥ 0 for all i, (DLP)

yTM ≤ −cT .

The definitions of an objective function, a feasible solution, boundedness, and an
optimal solution are analogous to the ones for the primal linear program (LP).

Remark 2.4.3. Comparing variables and inequalities in the primal and correspond-
ing dual linear program gives the following.

# variables of (LP) = # inequalities of (DLP)
# inequalities of (LP) = # variables of (DLP)

In fact there is a stronger connection between the primal and dual linear program.

Theorem 2.4.4 (Weak duality). Let x and y be feasible solutions of (LP) and
(DLP), respectively. Then we have

cTx ≤ yT b.

This implies especially that every feasible solution of the dual linear program (DLP)
gives an upper on the objective function of the primal linear program’s (LP) optimal
solution.

2.4.2 Application: cliques in association schemes

In this section we apply linear programming in the context of association schemes to
obtain upper bounds on the size of cliques. This idea goes back to Delsarte [Del73].

Let (X, {R0, R1, . . . , Rn}) be a symmetric association scheme, D ⊆ [n], and let
Y be a D-clique of X with inner distribution (a0, a1, . . . , an) and dual distribution
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(b0, b1, . . . , bn). Then it holds that (see Section 2.2)

n∑
i=0

ai = |Y |

a0 = 1

ai ≥ 0 for all i ∈ {0, 1, . . . , n}

ai = 0 for all i ∈ [n] \D

bk ≥ 0 for all k ∈ {0, 1, . . . , n}

This motivates the following linear program for D-cliques.
Let Qk(i) and mk be the dual eigenvalues and multiplicities, respectively, of the

association scheme (X, {R0, R1, . . . , Rn}). The primal linear program for cliques is
given by

max
xi∈R

∑
i∈D∪{0}

xi

subject to x0 = 1

xi ≥ 0 for all i ∈ D, (2.18)∑
i∈D

Qk(i)xi ≥ −mk for all k ∈ {1, 2, . . . , n},

Applying results from linear programming we obtain the following.

Theorem 2.4.5 ([Del73]). Let (X, {R0, R1, . . . , Rn}) be a symmetric association
scheme with dual eigenvalues Qk(i). Let D be a subset of [n]. Then the linear program
(2.18) has at least one feasible solution and is bounded. Let LP (D) be the maximum
value of its objective function. If Y ⊆ X is a D-clique, then its inner distribution
(a0, a1, . . . , an) is a feasible solution of this linear program and

|Y | ≤ LP (D). (2.19)

We call the bound (2.19) linear programming bound for cliques.
We note that, for the linear program (2.18), the dual eigenvalues have to be

real-valued. That is why we assumed the association scheme to be symmetric. In
the remainder of this thesis we almost exclusively work with the conjugacy class
scheme of the finite general linear group, whose (dual) eigenvalues are not neces-
sarily real-valued. For the conjugacy class scheme, we can modify the constraints
of the linear program, so that we are still able to apply the linear programming method.
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Let (G, {R0, R1, . . . , Rn}) be the conjugacy class scheme arising from the finite
group G having dual eigenvalues Qk(i) and multiplicities mk. For D ⊆ [n], the linear
program for D-cliques in G is given by

max
xi∈R

∑
i∈D∪{0}

xi

subject to x0 = 1,

xi ≥ 0 for all i ∈ D, (2.20)

xi = 0 for i ∈ [n] \D,∑
i∈D

Re(Qk(i))xi ≥ −mk and
∑
i∈D

Im(Qk(i))xi = 0 for all k ∈ {1, 2, . . . , n},

where the last constraint is due to the fact that all entries of the dual distribution of
a subset of G are real and nonnegative, see Section 2.2. Moreover, using x0 = 1 and
Q0(i) = 1, we note that the last constraint of (2.20) is equivalent to∑

i∈D∪{0}
Qk(i)xi ∈ R≥0 for all k ∈ {0, 1, . . . , n}. (2.21)

Then the corresponding result to Theorem 2.4.5 in the non-symmetric case is as
follows.

Theorem 2.4.6. Let (G, {R0, R1, . . . , Rn}) be the conjugacy class scheme arising
from the finite group G with dual eigenvalues Qk(i). Let D be a subset of [n]. Then
the linear program (2.20) has at least one feasible solution and is bounded. Let LP (D)
be the maximum of its objective function. If Y ⊆ G is a D-clique, then its inner
distribution (a0, a1, . . . , an) is a feasible solution to this linear program and

|Y | ≤ LP (D). (2.22)

Also in this case, we call the bound (2.22) linear programming bound for cliques.

Proof: A feasible solution for the linear program is given by x0 = 1 and xi = 0 for
all i ∈ D, where we use that the multiplicities mk are nonnegative integers. To prove
that the program is bounded, let us assume that (xi)i∈D∪{0} is a feasible solution.
Then, since P0(k) = 1, and by using Lemma 2.1.17 we have, for i ∈ D ∪ {0},

n∑
k=0

(vi − Pi(k))
∑

j∈D∪{0}
Qk(j)xj

= vi

∑
j∈D∪{0}

xj

n∑
k=0

P0(k)Qk(j) −
∑

j∈D∪{0}
xj

n∑
k=0

Pi(k)Qk(j)

= |G|(vi − xi). (2.23)
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Taking the real parts on both sides of (2.23) and making use of (2.21), it follows that
n∑

k=0
(vi − Re(Pi(k)))

∑
j∈D∪{0}

Qk(j)xj = |G|(vi − xi) for all i ∈ D ∪ {0}. (2.24)

Since, according to Lemma 2.1.18, |Pi(k)| ≤ vi for all i, k, we especially have
Re(Pi(k)) ≤ vi for all i ∈ D ∪ {0} and all k ∈ {0, 1, . . . , n}. Together with (2.21) we
can deduce from (2.24) that

0 ≤ |G|(vi − xi) for all i ∈ D ∪ {0}

and thus
xi ≤ vi for all i ∈ D ∪ {0},

which implies that the linear program is bounded.
Now, let Y be a D-clique in G with inner distribution (a0, a1, . . . , an). Then we

have a0 = 1, ai ≥ 0 for all i, ai = 0 for all i ∈ [n] \D, and since the dual distribution
of Y is real-valued and nonnegative, we also have∑

i∈D∪{0}
Qk(i)ai ∈ R≥0.

Consequently, the inner distribution of a D-clique gives a feasible solution for the
linear program, which proves the second statement. □

A nice application of the linear programming method is the so-called Clique-
Coclique bound [Del73, Thm. 3.9] whose proof makes use of the dual linear program.
The dual linear program corresponding to (2.20) is given by the following

min
y0∈R,

y1,y2,y3∈Rn

y0 +
n∑

k=1
y1

kmk

subject to y0 = 1,

y1
k, y

2
k, y

3
k ≥ 0 for all k ∈ [n], (2.25)

n∑
k=1

y1
k Re(Qk(i)) +

n∑
k=1

y2
k Im(Qk(i))−

n∑
k=1

y3
k Im(Qk(i)) ≤ −1 for all i ∈ D,

Theorem 2.4.7 (Clique-coclique bound). Let (X, {R0, R1, . . . , Rn}) be an associ-
ation scheme and, for D ⊂ [n], let Y ⊆ X be a D-clique and Z ⊆ X an ([n]\D)-clique.
Then we have

|Y | · |Z| ≤ |X|.

The proof for the clique-coclique bound in the case of symmetric association
schemes can be found in [Del73]. The general case follows by using the same arguments
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like in [Del73]. For the sake of completeness, we provide the proof for not necessarily
symmetric association schemes.

Proof: Let (a0, a1, . . . , an) and (c0, c1, . . . , cn) be the inner distributions of the D-
clique Y and the ([n] \ D)-clique Z, respectively. Then we define (z0, z1, . . . , zn)
by

zk = 1
|Z|

1
mk

n∑
j=0

Qk(j)cj for all k ∈ {0, 1, . . . , n},

where Qk(j) and mk denote the dual eigenvalues and the multiplicities of the associa-
tion scheme, respectively. Since

∑
j cjQk(j) is the dual distribution of Z, it turns out

that zk ≥ 0 for all k ∈ {0, 1, . . . , n}. Moreover, since Q0(j) = 1 and m0 = 1, we have
that z0 = 1. Additionally, by taking Lemma 2.1.17 into account, for i ∈ {0, 1, . . . , n},
we obtain

n∑
k=0

zk Re(Qk(i)) −
n∑

k=0
zk Im(Qk(i)) =

n∑
k=0

zkQk(i)

= 1
|Z|

n∑
j=0

cj

n∑
k=0

1
mk

Qk(i)Qk(j)

= 1
|Z|

n∑
j=0

cj

n∑
k=0

1
vi
Pi(k)Qk(j)

= |X|
|Z|

1
vi

n∑
j=0

cjδij

= |X|
|Z|

1
vi
ci. (2.26)

Since Z is a ([n] \D)-clique, it follows that
n∑

k=0
zk Re(Qk(i)) −

n∑
k=0

zk Im(Qk(i)) = 0 for all i ∈ D

or equivalently
n∑

k=1
zk Re(Qk(i)) −

n∑
k=1

zk Im(Qk(i)) = −1 for all i ∈ D.

Consequently, taking y0 = z0, y1 = y3 = (z2, z3, . . . , zn)T , and y2 = 0 ∈ Rn gives a
feasible solution for the dual linear program (2.25).

We have that (ai)i∈D∪{0} is a feasible solution for the primal linear program (2.20).
The weak duality theorem, Theorem 2.4.4, together with (2.26) for i = 0 imply that

|Y | =
∑

i∈D∪{0}
ai ≤ y0 +

n∑
k=1

y1
kmk = y0 +

n∑
k=1

zkQk(0) = |X|
|Z|

,

which completes the proof. □
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To give an example, we apply the clique-coclique bound to give another proof of
the upper bound for t-intersecting families of k-sets of [n] from Theorem 2.3.8.

Example 2.4.8. Let n, k and t be positive integers such that t ≤ k ≤ n/2 and such
that a t-Steiner system Z of size

(n
k

)
/
(n−t

k−t

)
exists. Let Y be a t-intersecting set. Then

Y is a D-clique with D = {i : 1 ≤ i ≤ k − t} in the Johnson scheme J(k, n). From
Remark 2.3.12 it follows that Z is a ([k] \ D)-clique. Applying the clique-coclique
bound from Theorem 2.4.7, gives

|Y |
(n

k

)(n−t
k−t

) ≤
(
n

k

)
.

And thus the upper bound from Theorem 2.3.8 on the size of Y .
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3 Subsets of the symmetric
group

Mount Kosciusko, 2228m

In this chapter we survey results on combinatorial subsets of the symmetric group,
specifically intersecting sets, codes and transitive sets. These sets arise as cliques and
designs, respectively, in the conjugacy class scheme of the symmetric group.

This chapter is structured in four main sections. Initially, we summarise essential
properties of the conjugacy class scheme arising from the symmetric group. Subse-
quently, our focus shifts to the Erdős-Ko-Rado theorems for permutations, which study
intersecting sets of permutations. We then examine the converse scenarios, specifically
permutation codes, which represent the “counterparts” to intersecting sets. The final
section provides an algebraic characterisation of transitive sets of permutations.

In Chapters 5 and 6, containing the original parts of this thesis, we discuss q-analogs
of the combinatorial objects introduced in this chapter.

3.1 The association scheme of the symmetric
group

In this section we collect some properties of the conjugacy class scheme arising from the
symmetric group by using its representation theory. See Section 1.2 for the necessary
background on the representation theory of the symmetric group.

Since the cycle type of any permutation in the symmetric group Sn corresponds
uniquely to one partition of n (see Example 1.1.2), there exists a one-to-one correspon-
dence between the conjugacy classes of Sn and the partitions of n. Consequently, we
can index the conjugacy classes of Sn, and thus also the adjacency matrices of the
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3 Subsets of the symmetric group

conjugacy class scheme arising from the symmetric group, with the partitions of n (see
Example 2.1.9).

From Section 1.2 we find that also the irreducible characters of the symmetric
group Sn are indexed by partitions of n. Henceforth, if not stated otherwise, we denote
by χλ the irreducible character of Sn corresponding to the partition λ of n. Moreover,
we recall that the trivial character of Sn is indexed by the partition (n).

Example 2.1.13 implies that the pairwise orthogonal matrices Eλ ∈ C(Sn, Sn) of
the Bose-Mesner algebra arising from Sn are given by

Eλ(π, τ) = χλ(e)
n! χλ(π−1τ).

Since both the conjugacy classes and the irreducible characters of the symmetric
group Sn are indexed by partitions λ and µ of n, we write Pµ(λ) and Qλ(µ) for the
eigenvalues and dual eigenvalues. Consequently, from Example 2.1.20, it follows that
the eigenvalues and dual eigenvalues of the conjugacy class scheme arising from the
symmetric group Sn are given by

Pµ(λ) = |Cµ|
χλ(e)χ

λ
µ, Qλ(µ) = χλ(e)χλ

µ, (3.1)

where λ and µ are partitions of n and where we have used the fact that the irreducible
characters of the symmetric group are real-valued.

Due to (3.1), and since the trivial character and the trivial conjugacy class of Sn

are indexed by (n) and (1n), respectively, Lemma 2.1.16 specialises as follows.

Corollary 3.1.1. For all partitions λ and µ of n, the eigenvalues Pµ(λ) and the dual
eigenvalues Qλ(µ) of the conjugacy class scheme arising from the symmetric group Sn

have the following values:
(i) P(1n)(λ) = 1,

(ii) Q(n)(µ) = 1,

(iii) Pµ((n)) = |Cµ|,

(iv) Qλ((1n)) = χλ(e)2.

The dual distribution (bλ)λ⊢n of a subset Y of Sn is indexed by the partitions of n
and, from Example 2.2.6, we find that

bλ = χλ(e)
|Y |

∑
π,τ∈Y

χλ(π−1τ).

Since the trivial character of Sn corresponds to the partition (n), we obtain

b(n) = χ(n)(e)
|Y |

∑
π,τ∈Y

χ(n)(π−1τ) = 1
|Y |

|Y |2 = |Y |.

Consequently, b(n) plays the role of b0 in Section 2.2.

56



3.2 Erdős-Ko-Rado theorems

Figure 3.1: An intersecting subset of S5 consisting of four permutations. The second
to fifth rows each provide a permutation of the five colours in the first. Taking any
two of these permutations there exists at least one colour on which they are equal.

3.2 Erdős-Ko-Rado theorems
In Section 2.3.2 we studied intersecting families of k-sets. Erdős, Ko, and Rado
answered the question of how large such a family can be and also characterised
the extremal case, see Theorem 2.3.4. Since the 1960s, many similar problems for
different objects and different notions of intersection have been studied, see [GM16],
for example. In this section we focus first on one such problem, arising in the context
of the symmetric group. We collect, on the one hand, upper bounds on the sizes of
these sets, and on the other hand, characterisations of the extremal cases.

Definition 3.2.1. Two permutations π, σ ∈ Sn are intersecting if there exists an
integer i ∈ [n] such that σ(i) = π(i). A subset Y of the symmetric group Sn is
intersecting if all pairs in Y × Y are intersecting.

Equivalently, a subset Y ⊆ Sn is intersecting if for every two permutations π, σ ∈ Y

the product π−1σ has at least one fixed point in [n]. Translating this into the
language of association schemes, an intersecting set of permutations is a D-clique in
the conjugacy class scheme arising from the symmetric group on n elements, where
D = {(µ1, µ2, . . .) ⊢ n : ∃i with µi = 1}.

Figure 3.1 illustrates one example of an intersecting set of permutations.

As in the classical case, we are interested in finding an upper bound on the size
of intersecting sets of permutations. Deza and Frankl [DF77] were first to prove this
upper bound.

Theorem 3.2.2 ([DF77]). Let Y be an intersecting subset of Sn, then |Y | ≤ (n−1)!.

By now, many different proofs of this result exist in the literature. For example, we
can apply the clique-coclique bound from Theorem 2.4.7, or the Hoffman bound from
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Theorem 2.3.2, to a Cayley graph generated by the set of fixed-point-free permutations.
For more details on this see [GM16, Chapter 14], for example.

The characterisation of the extremal case was conjectured by Deza and Frankl
in 1977 [DF77] and proved nearly 30 years later by Cameron and Ku [CK03], and
independently by Larose and Malventuo [LM04].

Theorem 3.2.3 ([CK03], [LM04]). If an intersecting set in Sn meets the bound in
Theorem 3.2.2, then it is a coset of the stabiliser of a point in [n].

An algebraic approach to the proof of this result is the classical Hoffman bound.
For more details we refer to [GM16]. Similar to the classical case in Section 2.3.2, we
can ask for a strengthened version of this result, which is in terms of t-intersecting
permutations.

Definition 3.2.4. Let t be a positive integer. Two permutations π, σ ∈ Sn are t-
intersecting if there exist t distinct elements i1, i2, . . . , it in [n] such that π(iℓ) = σ(iℓ)
for all ℓ ∈ {1, 2, . . . , t}. A subset Y of the symmetric group Sn is t-intersecting if all
pairs in Y × Y are t-intersecting.

Figure 3.2: A 2-intersecting set of S5 consisting of four permutations. The second to
fifth rows each provide a permutation of the five colours of the first. For any two of
these permutations there exist at least two colours on which they are equal.

In other words, a subset Y of the symmetric group Sn is t-intersecting if, for
all permutations π, σ in Y , the product π−1σ has at least t fixed points in [n]. We
note that similarly to the 1-intersecting case, we can interpret a t-intersecting set of
permutations as a clique in the conjugacy class scheme arising from the symmetric
group. Figure 3.2 illustrates an example of a 2-intersecting set of S5.

Every coset of the stabiliser of t distinct elements of [n] is a t-intersecting set of
the symmetric group of size (n− t)!. These cosets play a crucial role.

Theorem 3.2.5 ([EFP11]). For t fixed and n sufficiently large compared to t, a
t-intersecting set Y in Sn has size at most (n− t)!.

We note that the bound in Theorem 3.2.5 is sharp.
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However, it is not possible to prove Theorem 3.2.5 using the classical Hoffman
bound for the Cayley graph generated by all permutations having less than t fixed
points (see [EFP11]). Instead Ellis, Friedgut, and Pilpel [EFP11] apply the weighted
version of the Hoffman bound from Theorem 2.3.11. In [EFP11], the regular spanning
subgraphs from Theorem 2.3.11 are given by the adjacency matrices corresponding
to certain conjugacy classes which do not fix t distinct elements of [n]. Then, the
eigenvalues of these subgraphs are given by Pλ(µ) from (3.1). Since the adjacency
matrices of the conjugacy class scheme all have common eigenspaces, the eigenvalues of
a weighted sum of these are weighted sums of the Pλ(µ). Manipulating the weights in
the desired way and applying the weighted version of the Hoffman bound then gives the
upper bound on the size of t-intersecting sets from Theorem 3.2.5. However, showing
the existence of the desired weights is not trivial and involves a lot of representation
theory. For example, one difficulty is given by the fact that the irreducible characters
χλ and χλ′ of Sn are equal in absolute value.

Ellis, Friedgut and Pilpel also obtain a partial characterisation result by using the
decomposition of the permutation character on tabloids.

Theorem 3.2.6 ([EFP11]). Let Y be a t-intersecting set in Sn whose size meets the
bound in Theorem 3.2.5. If n is sufficiently large compared to t, then the characteristic
vector of Y is spanned by the characteristic vectors of cosets of stabilisers of t distinct
elements of [n].

The main tasks in applying the weighted version of the Hoffman bound are choosing
the right adjacency matrices, finding appropriate weights and controlling the smallest
eigenvalue of the weighted linear combination. In Chapter 5, in a q-analog setting, we
apply the weighted version of the Hoffman bound for t-intersecting sets in the finite
general linear group and we use a similar strategy there.

The full characterisation of the extremal case of t-intersecting sets of permutations
is as follows.

Theorem 3.2.7 ([EFP11]). Let Y be a t-intersecting set in Sn whose size meets the
bound in Theorem 3.2.5. If n is sufficiently large compared to t, then Y is a coset of
the stabiliser of t distinct elements of [n].

This full characterisation result follows from the following stability result proved
by Ellis.

Theorem 3.2.8 ([Ell11]). Let Y be a t-intersecting set in Sn. For n sufficiently
large compared to t, it holds that if Y is not contained in a coset of the stabiliser of t
distinct elements of [n], then |Y | ≤

(
1 − 1

e + o(1)
)

(n− t)!.
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In 2024, Keller, Lifshitz, Minzer, and Sheinfeld [KLMS24] obtained a linear bound
on the size of n compared to t for the validity of the Theorems 3.2.5 and 3.2.7.

Theorem 3.2.9 ([KLMS24]). There exists a constant c such that for all n ≥ ct,
Theorems 3.2.5 and 3.2.7 hold.

As in the classical case, also t-cross-intersecting subsets of the symmetric group
have been studied.

Definition 3.2.10. Two subsets Y and Z of Sn are t-cross-intersecting if every pair
in Y × Z is t-intersecting.

The result for t-cross intersecting sets of permutations is as follows.

Theorem 3.2.11 ([EFP11]). Let t be a positive integer and let Y and Z be t-cross-
intersecting subsets of the symmetric group Sn. If n is sufficiently large compared to t,
then |Y | · |Z| ≤ ((n− t)!)2, and equality holds if and only if Y = Z and Y is a coset of
the stabiliser of t distinct points of [n].

The bound on t-cross-intersecting sets comes as a byproduct from the proof of
Theorem 3.2.5.

A more general notion of t-intersection is the t-set-intersection of permutations.

Definition 3.2.12. Two permutations π, σ ∈ Sn are t-set-intersecting if there exists a
t-subset I of [n] such that σ(I) = π(I). A subset Y of Sn is t-set-intersecting if every
pair in Y × Y is t-set-intersecting.

Again every coset of the stabiliser of a t-set of [n] is t-set-intersecting and, for n
sufficiently large compared to t, it turns out that these are the only t-set-intersecting
sets of maximal size.

Theorem 3.2.13 ([Ell12]). For t fixed and n sufficiently large compared to t, a t-
set-intersecting set Y in Sn has size at most t!(n− t)! and, in case of equality, Y is a
coset of the stabiliser of a t-set of [n].

In order to prove the result on t-set-intersecting sets in [Ell12], Ellis applied the
weighted version of the Hoffman bound from Theorem 2.3.11.

In Chapter 5 we study q-analog settings, namely t-intersecting, t-cross-intersecting,
t-space-intersecting, and t-space-cross-intersecting sets in the finite general linear
group.

60



3.3 Permutation codes

3.3 Permutation codes
In the previous section we studied t-intersecting sets of permutations. More precisely
we studied subsets Y ⊆ Sn having the property that π−1σ has at least t fixed points
for every π, σ ∈ Y . In this section we study the “counterpart”, namely subsets Y ⊆ Sn

such that π−1σ has at most t fixed points.

Definition 3.3.1. For a positive integer d, a subset Y of the symmetric group Sn is
a d-code if for all π, σ ∈ Y the permutation π−1σ has at most n− d fixed points.

These codes are also known as permutation codes.

Remark 3.3.2. It is common to define a d-code of permutations in terms of the
Hamming distance dH , which is given by

dH(π, σ) = #{i ∈ [n] : π(i) ̸= σ(i)},

where π, σ ∈ Sn. Then a subset Y ⊆ Sn is a d-code if dH(π, σ) ≥ d for all π, σ ∈ Y .

The following upper bound on the size of a d-code in Sn was obtained by [BCD79].
We also refer to [Tar99] for a proof involving linear programming and the representation
theory of Sn.

Theorem 3.3.3. Let Y ⊆ Sn be a d-code, then |Y | ≤ n(n− 1) · · · d.

3.4 Transitive sets
In this section we study transitive sets (not groups) of permutations. It turns out that
they are certain T -designs in the conjugacy class scheme arising from the symmetric
group.

Before giving the definition of a transitive subset, we recall the special case of a
t-homogeneous subgroup of permutations. A subgroup of the symmetric group Sn is
t-homogeneous if it acts transitively on the t-subsets of [n]. Livingstone and Wagner
proved the following famous result on t-homogeneous subgroups.

Theorem 3.4.1 ([LW65]). If a subgroup G of Sn is t-homogeneous for some t satis-
fying 1 ≤ t ≤ n

2 then G is also (t− 1)-homogeneous.

Martin and Sagan [MS06] generalised this theorem in two ways. They replaced
subgroups of Sn by subsets and replaced t-subsets of [n] by tabloids of [n], which are
basically set partitions of [n].
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Definition 3.4.2. For a partition σ of n, a subset Y of Sn is transitive on the set of
σ-tabloids if there is a constant r such that the following holds: for all σ-tabloids S, T ,
there are exactly r elements π ∈ Y such that π(S) = T .

Figure 3.3 illustrates an example of a subset of S5 that is transitive on (4, 1)-tabloids.

Figure 3.3: A subset of S5 that is transitive on (4, 1)-tabloids. The second to fifth
rows each provide a permutation of the five colours of the first. For any two colours
there is exactly one permutation that maps the one colour to the other.

We note that if Y is a subgroup of Sn, then the notion of a transitive subset and
that of a transitive subgroup coincide.

We are able to determine the constant r in the definition of a subset Y of permu-
tations being transitive on σ-tabloids by double counting the set

A = {(π, σ) ∈ Y × Sn : π(T ) = σ(T )},

where T is a σ-tabloid and σ = (σ1, σ2, . . . , σk) is a partition of n. On the one hand,
we have |A| = |Y |σ1! · · ·σk! and, on the other hand, it is |A| = |Sn| · r, from which we
conclude that

r = σ1!σ2! · · ·σk!
n! |Y |. (3.2)

One of the main results in [MS06] is the following.

Theorem 3.4.3 ([MS06]). Let σ be a partition of n. A subset Y of the symmetric
group Sn is transitive on σ-tabloids if and only if the dual distribution (bλ)λ of Y
satisfies

bλ = 0 for all σ ⊴ λ ◁ (n).

On the one hand, this theorem gives a combinatorial interpretation for T -designs,
where T = {λ : σ ⊴ λ ◁ (n)}, in the conjugacy class scheme arising from the symmetric
group. On the other hand, it provides an algebraic notion for the combinatorial object
of a transitive set of permutations.

As a consequence Martin and Sagan obtained the following result.

Corollary 3.4.4 ([MS06]). Let Y be a subset of Sn that is transitive on σ-tabloids.
Then G is also transitive on τ -tabloids for all τ satisfying τ ⊵ σ.
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3.4 Transitive sets

From this result the Livingstone-Wagner Theorem 3.4.1 follows as a corollary
by noticing that a t-homogeneous subgroup is a subgroup acting transitively on
(n− t, t)-tabloids and taking σ = (n− t, t) and τ = (n− t+ 1, t− 1).

In [MS06], the proofs of the Theorems 3.4.3 and 3.4.4 make use of the conjugacy
class scheme arising from the symmetric group. Thus these proofs heavily use the
representation theory of the symmetric group and especially the decomposition of the
permutation character on σ-tabloids.

Considering (3.2), we note that a subset Y of the symmetric group Sn is transitive
on σ-tabloids if and only if the following equation holds

1
|Y |

∑
π∈Y

1π(S)=T = 1
|Sn|

∑
π∈Sn

1π(S)=T for all σ-tabloids S, T.

As a consequence we can understand transitive subsets of permutations as subsets
that locally approximate the symmetric group. Thus, we are interested in determining
whether small subsets of this type exist.

The existence of small transitive subsets of the symmetric group is another main
result in [MS06]. Its proof is based on a recursive construction.

Lemma 3.4.5 ([MS06]). Taking a combinatorial t-(n, k, λ) design, a subset of Sk

that is transitive on (k − t, 1t)-tabloids, and a subset of Sn−k that is transitive on
(n − k − t, 1t)-tabloids implies the existence of a subset of Sn that is transitive on
(n− t, 1t)-tabloids.

Together with the existence result of Teirlinck [Tei87], which gives the existence of
combinatorial t-(n, k, λ) designs for given t and n sufficiently large, Martin and Sagan
obtained the following asymptotic existence result of arbitrary small transitive subsets
with regard to the size of the symmetric group.

Theorem 3.4.6 ([MS06]). Let σ2 ≥ σ3 ≥ . . . ≥ σk be a nonincreasing sequence of
positive integers and let ε > 0. Then for all sufficiently large σ1 ≥ σ2 there exists a
subset Y of the symmetric group Sn, where n = σ1 + σ2 + . . . ,+σk, that is transitive
on (σ1, σ2, . . . , σk)-tabloids satisfying |Y |/n! < ε.

In Chapter 6 we study q-analog problems and replace the symmetric group Sn by
the finite general linear group GL(n, q).
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Triglav, 2864m

From now on we focus on q-analog settings of those we collected for the symmetric
group in Chapter 3. Consequently, we work with the finite general linear group
GL(n,Fq). In the following we write GL(n, q) instead of GL(n,Fq). The purpose
of this chapter is to collect all the properties needed for understanding the main
results in this thesis. First, we recall already known results, including conjugacy
classes and irreducible characters of GL(n, q) in Sections 4.1 and 4.2, respectively.
Then, in Section 4.3, we give new results and decompose certain permutation and
permutation-like characters of GL(n, q) into their irreducible constituents.

4.1 Conjugacy classes
In this section we study the indexing of the conjugacy classes of the finite general
linear group. Moreover, we find appropriate representatives for each conjugacy class.
For this, we follow [Mac15, Ch. IV.2].

Let Par be the set of integer partitions, where we denote the unique partition of 0
by ∅. Moreover, we write Φ for the set of all monic irreducible polynomials in Fq[X]
that are distinct from X.

For every matrix g ∈ GL(n, q) we can define a multiplication of the polynomial
ring Fq[X] on the finite dimensional vector space Fn

q by

Fq[X] × Fn
q → Fn

q , (f(X), v) 7→ f(g)v.

This makes Fn
q an Fq[X]-module that we denote by Vg. We observe that two matrices

g and h in GL(n, q) are conjugate if and only if the corresponding Fq[X]-modules Vg
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4 Finite general linear groups

and Vh are isomorphic. Thus we can write Vc instead of Vg, where c is the conjugacy
class of g in GL(n, q).

We note that Vc is a finitely generated module over the principal ideal domain
Fq[X]. Hence, the structure theorem for finitely generated modules over a principal
ideal domain (see [DF91, Ch. 12, Thm. 6], for example), gives that Vc is isomorphic
to a sum of cyclic modules. More precisely, there exists a unique partition valued
function λc : Φ → Par such that

Vc
∼=
⊕
f∈Φ

⊕
i≥1

Fq[X]/(fλc(f)i) (4.1)

as Fq[X]-modules. Comparing dimensions on both sides gives

n = dimFq Vc =
∑
f∈Φ

∑
i≥1

dimFq (Fq[X]/(fλc(f)i))

=
∑
f∈Φ

∑
i≥1

deg(f)λc(f)i

=
∑
f∈Φ

deg(f)|λc(f)|.

Moreover, for a given partition valued function λ : Φ → Par, there exists a unique
conjugacy class c of GL(n, q) such that λ = λc if and only if

∑
f∈Φ deg(f)|λ(f)| = n.

In the following we omit the index and write λ instead of λc if it is clear from
context, which conjugacy class we consider.

Definition 4.1.1. The size of λ : Φ → Par is ∥λ∥ =
∑

f∈Φ deg(f)|λ(f)|. And we put
Λn = {λ ∈ Φ: ∥λ∥ = n}.

Using the isomorphism (4.1) we can determine a representative, the so-called
Jordan canonical form, for each conjugacy class of GL(n, q):

We recall that the companion matrix of a polynomial f ∈ Φ with f = Xd +
fd−1X

d−1 + · · · + f1X + f0 is

C(f) =



−f0

1 −f1

1 −f2
. . .

...

1 −fd−1


∈ Fd×d

q .
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(where blanks are filled with zeros). For f ∈ Φ of degree d and a positive integer k, we
write

C(f, k) =



C(f) I

C(f) I

. . .
. . .

. . . I

C(f)


∈ Fkd×kd

q ,

and for f ∈ Φ and µ ∈ Par, we define C(f, µ) to be the block diagonal matrix of order
|µ| · deg(f) with blocks C(f, µ1), C(f, µ2), . . . . Finally, with every µ ∈ Λn we associate
the block diagonal matrix Rµ of order n whose blocks are C(f, µ(f)), where f ranges
through the support of µ. Then every element g of GL(n, q) is conjugate to exactly one
matrix Rµ for µ ∈ Λn, which is called the Jordan canonical form of g. We denote by
Cµ the conjugacy class containing Rµ. We note that CX−17→(1n) is the conjugacy class
containing the identity. In the following, we denote the identity matrix of GL(n, q) by 1.

An explicit expression for the size of a conjugacy class of GL(n, q) was first obtained
by Stanley [Sta12].

Theorem 4.1.2 ([Sta12]). For each σ : Φ → Par with ∥σ∥ = n we have

| GL(n, q)|
|Cσ|

=
∏
f∈Φ

|σ(f)|∏
i=1

mi(σ(f))∏
j=1

q|f | si(σ(f)′)(1 − q−|f |j),

where |f | = deg(f), mi(σ) = #{j ≥ 1: σj = i}, and si(σ) =
∑i

j=1 σj for every
partition σ.

Example 4.1.3. We consider the finite general linear group GL(3, 2). The irreducible
polynomials in F2[X] \ {X} of degree less than or equal to 3 are

f1 = X − 1,

f2 = X2 +X + 1,

f3 = X3 +X2 + 1,

f̃3 = X3 +X + 1.

There are 6 partition valued functions whose size is equal to 3, namely

f1 7→ (1, 1, 1), f1 7→ (2, 1) f1 7→ (3)

f3 7→ (1), f̃3 7→ (1)

λ : f1 7→ (1), f2 7→ (1).
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4 Finite general linear groups

Table 4.1 gives an overview of the 6 conjugacy classes of GL(3, 2). In Section 4.2 we
also provide the conjugacy classes of GL(4, 2).

Table 4.1: The conjugacy classes of GL(3, 2).

Indexing Representative Size

f1 7→ (1, 1, 1)
1 0 0

0 1 0
0 0 1

 1

f1 7→ (2, 1)
1 1 0

0 1 0
0 0 1

 21

f1 7→ (3)
1 1 0

0 1 1
0 0 1

 42

f3 7→ (1)
0 0 1

1 0 0
0 1 1

 24

f̃3 7→ (1)
0 0 1

1 0 1
0 1 0

 24

λ

0 1 0
1 1 0
0 0 1

 56

4.2 Representation theory
The representation theory of the finite general linear group GL(n, q) plays a crucial
role in this thesis. In the Chapters 5 and 6, containing the original results, we study
subsets of the finite general linear group that we embed in the association scheme
arising from this group. Recall from Chapter 2 that we can express the eigenvalues and
dual eigenvalues of the conjugacy class scheme arising from any finite group in terms
of its irreducible characters. To gain better insights into this, we recall the necessary
background on the representation theory of the finite general linear group in this
section. Since we almost exclusively work with characters instead of representations or
modules, we present the following definitions and properties only in terms of characters.
For more background, we refer the reader to [Mac15, Chapter IV] and [Jam86].

The complete set of (complex) irreducible characters has been obtained by Green
[Gre55]. The complex irreducible representations were obtained by Gelfand [Gel70] and
the irreducible representations over fields of nondefining characteristic were obtained
by James [Jam86]. Our approach to obtain the irreducible characters of the finite
general linear group follows [Jam86] and is similar to the method we used to obtain the
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4.2 Representation theory

irreducible characters of the symmetric group in Section 1.2. More precisely, similarly
to the symmetric group, we construct characters ξf 7→µ of GL(n, q) such that the first
one ξf 7→(n) is irreducible, the second one can be written as copies of the first ξf 7→(n)

plus a single copy of the new irreducible character, and so on. However, in contrast
to the symmetric group, the constructed characters are not necessarily permutation
characters, and we cannot obtain all irreducible characters of GL(n, q) this way.

The construction of the characters of GL(n, q) which gives us all irreducible
characters, relies heavily on parabolic induction, which is the induction of characters
from parabolic subgroups to GL(n, q).

We recall from Definition 1.3.6 that a composition of the positive integer n is a
sequence of nonnegative integers that sum up to n.

Definition 4.2.1. Let λ = (λ1, λ2, . . . , λk) be a composition of n. The parabolic
subgroup Pλ of GL(n, q) is the subgroup of GL(n, q) consisting of block upper-triangular
matrices with block sizes λ1, λ2, . . . , λk, namely

Pλ =




A1 ∗ · · · ∗

A2 · · · ∗
. . .

...

Ak

 : Ai ∈ GL(λi, q)


. (4.2)

Let λ = (λ1, λ2, . . . , λk) be a composition of n and let πi : Pλ → GL(λi, q) be the
projection of the i-th block of the diagonal, so that

πi :


A1 ∗ · · · ∗

A2 · · · ∗
. . .

...

Ak

 7→ Ai. (4.3)

We note that, for class functions ϕi of GL(λi, q), the product∏
i

(ϕi ◦ πi)

is a class function of the parabolic subgroup Pλ.

Definition 4.2.2. Let λ = (λ1, λ2, . . . , λk) be a composition of n and let ϕi be class
functions of GL(λi, q) for all 1 ≤ i ≤ k. We define the parabolic induction as the
product ϕ1 ⊙ ϕ2 ⊙ · · · ⊙ ϕk, which is the induction of the class function

∏k
i=1(ϕi ◦ πi)

from Pλ to GL(n, q), that is
k⊙

i=1
ϕi = IndGL(n,q)

Pλ

(
k∏

i=1
(ϕi ◦ πi)

)
, (4.4)

where πi denotes again the projection given in (4.3).
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4 Finite general linear groups

In the following we summarise James’ construction [Jam86] of the irreducible
characters of GL(n, q). Unlike in [Jam86], we do not use the terms of modules, since
we will almost exclusively work with characters in this thesis.

Similar to the conjugacy classes, the irreducible characters of the finite general
linear group GL(n, q) are indexed by the partition-valued functions Λn. We write χλ

for the irreducible character associated with λ ∈ Λn. Moreover, we write χf 7→λ for
χλ if λ is only supported on f ∈ Φ with λ(f) = λ. The characters χf 7→λ are called
primary irreducible characters of GL(n, q).

In this section, if not stated otherwise, let f ∈ Φ be an irreducible polynomial in
Fq[X] \ {X} of degree d and let k be a positive integer. There are five steps to obtain
all irreducible characters of GL(n, q):

(I): In order to construct the primary irreducible characters James starts with the
cuspidal characters χf 7→(1) of GL(d, q). In [Jam86, p. 241 and Thm. 3.6] these
characters are denoted by ψs and the corresponding module by MF (s, (1)). The
cuspidal characters are irreducible and zero on all conjugacy classes except on
those corresponding to the partition valued functions which are only supported
on one polynomial. The existence of these cuspidal characters was proved by
Green [Gre55]. The degree of the cuspidal character χf 7→(1) is given by [Jam86,
p. 242]

χf 7→(1)(1) = (q − 1)(q2 − 1) · · · (qd−1 − 1).

(II): Using the cuspidal characters of GL(d, q) James constructs characters ξf 7→(1k) of
GL(dk, q) by parabolic induction, namely

ξf 7→(1k) = χf 7→(1) ⊙ χf 7→(1) ⊙ . . .⊙ χf 7→(1),

where χf 7→(1) is a cuspidal character of GL(d, q) and there are exactly k copies
of χf 7→(1) on the right hand side. In [Jam86, Def. 4.2], the module corresponding
to ξf 7→(1k) is denoted by MF (s, (1k)).

(III): For a partition µ of k, James defines the characters ξf 7→µ of GL(dk, q) based on
ξf 7→(1k). He defines a map Fµ on the set of characters of GL(dk, q) such that
Fµ(ξf 7→(1k)) = ξf 7→µ. In fact, the notion is consistent because F(1k)(ξf 7→(1k)) =
ξf 7→(1k). James denotes the modules associated with ξf 7→µ by MF (s, µ), see
[Jam86, Sec. 6]. Writing µ = (µ1, µ2, . . . , µk), the characters ξf 7→µ satisfy [Jam86,
(6.2)]

ξf 7→µ =
k⊙

i=1
ξf 7→(µi). (4.5)
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It holds that the characters ξf 7→(k) are irreducible in GL(dk, q) ([Jam86, Lemma
6.3]).

(IV): Moreover, in some way, the character ξf 7→µ plays the same role as the permutation
character of the symmetric group on µ-tabloids. Similarly as in Section 1.2,
we obtain the primary irreducible characters of the finite general linear group
from the characters ξf 7→µ. Since, for every positive integer k, the character
ξf 7→(k) is irreducible in GL(dk, q) we name this character χf 7→(k). Then the
decomposition of ξf 7→(k−1,1) into irreducible characters consists of copies of
χf 7→(k) and a single copy of the new irreducible character χf 7→(k−1,1). We define
the primary characters χf 7→µ of GL(dk, q) by

χf 7→µ = ξf 7→µ −
∑
λ▷µ

Kλµχ
f 7→λ,

where the Kλµ denote the Kostka numbers from Definition 1.2.4. The characters
χf 7→µ are irreducible characters of GL(dk, q), where µ is a partition of k, and it
holds [Jam86, (7.19)]

ξf 7→µ =
∑
λ⊵µ

Kλµχ
f 7→λ. (4.6)

Consequently, comparing this with Theorem 1.2.6, we observe that the char-
acter ξf 7→µ is similar to the permutation character of the symmetric group on
µ-tabloids.

(V): Using this approach, we find all primary irreducible characters of the finite
general linear group. We obtain the remaining irreducible ones by gluing the
primary ones together, namely for every λ ∈ Λn the character χλ given by

χλ =
⊙
f∈Φ

χf 7→λ(f) (4.7)

is an irreducible character of GL(n, q). Moreover, these are all irreducible
characters of the finite general linear group GL(n, q) [Jam86, p.267f].

We note that we are using the indexing of [Jam86] for the irreducible characters of
GL(n, q). In contrast in [Mac15] for example, λ is replaced by the conjugate λ′.

Example 4.2.3. The character table of GL(3, 2) is given in Table 4.2. In Section 4.2
we also provide the character table of GL(4, 2).

In the following, we focus on some identities in the spirit of (4.6). From (4.6) and
by using linear algebra, it follows that there exist integers Hµλ satisfying

χf 7→λ =
∑

µ

Hµλξ
f 7→µ (4.8)
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and
Hλλ = 1 and Hµλ ̸= 0 ⇒ µ ⊵ λ (4.9)

(see[Mac15, I.6, Ex.4], for example).

Table 4.2: The character table of GL(3, 2) (see [Gor22], for example), where we use
the notation from Example 4.1.3. In this table A = ζ7 + ζ2

7 + ζ4
7 , where ζ7 = exp(2πi/7)

is a 7-th root of unity and A denotes the complex conjugate of A.

f 1
7→

(1,
1, 1

)

f 1
7→

(2,
1)

f 1
7→

(3)

f 3
7→

(1)

f̃ 3
7→

(1)
λ

f1 7→ (3) 1 1 1 1 1 1
f1 7→ (2, 1) 6 2 0 −1 −1 0
f1 7→ (1, 1, 1) 8 0 0 1 1 −1

f3 7→ (1) 3 −1 1 A A 0
f̃3 7→ (1) 3 −1 1 A A 0

λ 7 −1 −1 0 0 1

Now, for µ ∈ Λn, we define the characters

ξµ =
⊙
f∈Φ

ξf 7→µ(f). (4.10)

In what follows we decompose ξµ into irreducible characters χλ. In order to do so,
we introduce the shape of a partition valued function.

Definition 4.2.4. The shape of λ ∈ Λn is the mapping s : Φ → Z given by s(f) =
|λ(f)| for each f ∈ Φ. If two partition valued functions λ, µ ∈ Λn have the same shape,
we write λ ∼ µ.

We note that ∼ is an equivalence relation on Λn.

For example λ, σ ∈ Λ5 given by λ(X − 1) = (4, 1) and σ(X − 1) = (3, 1, 1) have
the same shape.

Definition 4.2.5. For λ, µ ∈ Λn with λ ∼ µ, we define

Kλµ =
∏
f∈Φ

Kλ(f)µ(f),

Hµλ =
∏
f∈Φ

Hµ(f)λ(f).
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Then, from (4.6) and (4.8), it follows that

ξµ =
∑
λ∼µ

Kλµχ
λ for each µ ∈ Λn, (4.11)

χλ =
∑
µ∼λ

Hµλξ
µ for each λ ∈ Λn. (4.12)

Similarly as for the symmetric group (see [Sag01, Thm. 3.10.1], for example), we
can calculate the degree of an irreducible character of the finite general linear group
by using the hook lengths. In the following, we will often write |f | to denote the degree
of f ∈ Φ.

Lemma 4.2.6 ([Gre55, Thm. 14]). We have

1
χλ(1)

n∏
i=1

(qi − 1) =
∏
f∈Φ

1
q|f |b(λ(f))

∏
(i,j)∈λ(f)

(q|f |hi,j(λ(f)) − 1), (4.13)

where for each partition λ = (λ1, λ2, . . .),

b(λ) =
∑
i≥1

(i− 1)λi

and hi,j(λ) is the hook length of λ at (i, j), namely

hi,j(λ) = λi + λ′
j − i− j + 1

and the corresponding product over (i, j) is over all boxes of the Ferrers diagram
of λ(f).

The only characters of the finite general linear group that we need explicitly are
the primary irreducible characters χf 7→(n), where f ∈ Φ is a polynomial of degree
one. For this, let α be a generator of the multiplicative group F∗

q of Fq, let ω =
exp(2π

√
−1/(q − 1)) be a complex root of unity, and let θ be the linear character of

F∗
q given by

θ : F∗
q → C, θ(αi) = ωi. (4.14)

Note that, for all i, the characters χX−αi 7→(n) have degree one. Moreover, they are
given in terms of the linear character θ.

Lemma 4.2.7 ([Gre55]). For all g ∈ GL(n, q), we have

χX−αi 7→(n)(g) = θ(det(g)i).

In particular χX−17→(n) is the trivial character.
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Similarly as for the symmetric group, also in the case of the finite general linear
group we find an isomorphism between irreducible characters and symmetric functions
Λ, from Section 1.3.

Lemma 4.2.8 ([Mac15]). For every polynomial f ∈ Φ, the algebra generated by
{χf 7→λ : λ ∈ Par} with multiplication ⊙ is isomorphic to the algebra of symmetric
functions Λ, with χf 7→λ being send to the Schur function sλ.

From this Lemma it follows that we are in a position to decompose the product
χf 7→λ ⊙ χf 7→ν into its irreducible constituents. We state the Littlewood-Richardson
rule in terms of irreducible characters of the finite general linear group, like we did in
Theorem 1.3.18 for the irreducible characters of the symmetric group.

Lemma 4.2.9. For all f ∈ Φ and for every two irreducible characters χf 7→λ and
χf 7→ν of GL(n, q) and GL(m, q), respectively, the product decomposes as follows

χf 7→λ ⊙ χf 7→ν =
∑

µ∈Par
cµ

λνχ
f 7→µ,

where cµ
λν are the Littlewood-Richardson coefficients from Theorem 1.3.18.

Recall that we have cµ
λν = 0 unless |µ| = |λ| + |ν| and λ, ν ⊆ µ.

Moreover, from Pieri’s rule we obtain the following.

Lemma 4.2.10. Let χX−αi 7→κ and χX−αi 7→(m) be irreducible characters of GL(|κ|, q)
and GL(m, q) respectively. Then the decomposition of the product is given by

χX−αi 7→κ ⊙ χX−αi 7→(m) =
∑

λ

χX−αi 7→λ,

where λ runs through all partitions whose Young diagram is obtained from that of κ by
adding m boxes, no two of which in the same column.

In what follows, we obtain a decomposition of the product of any two irreducible
characters of the finite general linear group and not only of primary ones. By Λc

we denote the set of all mappings λ : Φ 7→ Par of finite support (with ∅ being the
zero element in Par). We define for λ, µ, ν ∈ Λc, the following generalisation of the
Littlewood-Richardson coefficients

c
µ

λν =
∏
f∈Φ

c
µ(f)
λ(f)ν(f).

We note that cµ

λν = 0 unless ∥µ∥ = ∥λ∥ + ∥ν∥ and λ, ν ⊆ µ, where λ ⊆ µ means
λ(f) ⊆ µ(f) for all f ∈ Φ. With this notion we get the following as a consequence of
Lemma 4.2.9.
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Lemma 4.2.11. For all λ, ν ∈ Λc we have

χλ ⊙ χν =
∑
µ∈Λ

c
µ

λνχ
µ.

Remark 4.2.12. Let λ, µ ∈ Λc such that λ(f) ⊆ µ(f) for all f ∈ Φ. Then there
exists ν ∈ Λ such that cµ

λν > 0.

Lemma 4.2.13. For each f ∈ Φ and each partition µ = (µ1, µ2, . . .), we have⊙
i≥1

χf 7→(µi) =
∑
λ⊵µ

Kλµχ
f 7→λ,

where λ ranges over the partitions of |µ|, and where the Kλµ denote the Kostka numbers.

Example: The character table of GL(4, 2)
In this section we provide representatives of the conjugacy classes and the character
table of GL(4, 2). The irreducible polynomials in F2[X] \ {X} of degree less than or
equal to 4 are

f1 = X − 1

f2 = X2 +X + 1

f3 = X3 +X2 + 1

f̃3 = X3 +X + 1

f4 = X4 +X + 1

f̃4 = X4 +X3 + 1

f̂4 = X4 +X3 +X2 +X + 1.

There are 14 partition valued functions whose size is equal to 4, namely

f1 7→ (14), f1 7→ (2, 1, 1) f1 7→ (2, 2), f1 7→ (3, 1), f1 7→ (4),

f2 7→ (12), f2 7→ (2),

f4 7→ (1), f̃4 7→ (1), f̂4 7→ (1)

and

λ1(f) =

(12) for f = f1

(1) for f = f2
λ2(f) =

(2) for f = f1

(1) for f = f2
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4 Finite general linear groups

λ3(f) =

(1) for f = f1

(1) for f = f̃3
λ4(f) =

(1) forf = f1

(1) for f = f3

Table 4.3 gives an overview of the 14 conjugacy classes of GL(4, 2).

Table 4.3: The conjugacy classes of GL(4, 2).

Indexing Representative Size

f1 7→ (14)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 1

f1 7→ (2, 1, 1)


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 105

f1 7→ (2, 2)


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 210

f1 7→ (3, 1)


1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 1260

f1 7→ (4)


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 2520

f2 7→ (12)


0 1 0 0
1 1 0 0
0 0 0 1
0 0 1 1

 112

f2 7→ (2)


0 1 1 0
1 1 0 1
0 0 0 1
0 0 1 1

 1680

Indexing Representative Size

f4 7→ (1)


0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

 1344

f̃4 7→ (1)


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 1

 1344

f̂4 7→ (1)


0 0 0 1
1 0 0 1
0 1 0 1
0 0 1 1

 1344

λ1


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 1

 1120

λ2


1 1 0 0
0 1 0 0
0 0 0 1
0 0 1 1

 3360

λ3


1 0 0 0
0 0 0 1
0 1 0 1
0 0 1 0

 2280

λ4


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 1

 2280

A possibility to compute character tables of finite general linear groups is provided
by the computer algebra system GAP [GAP24]. However, rather than indexing the
characters in the same way as we do, GAP stores them in ascending order of degree. If
the characters are not uniquely defined by their degree, some additional computations
have to be done to determine which character it is in our indexing. To do so, one can
use [Gor22], which employs Green’s approach to the representation theory of GL(n, q).
Using this method, we computed the character table of GL(4, 2), which is shown in
Table 4.4.
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Table 4.4: The character table of GL(4, 2). In this table A = −ζ − ζ2 − ζ4 − ζ8, where ζ = exp(2πi
15 ) is a 15-th root of unity and

B = ξ3 + ξ5 + ξ6, where ξ = exp(2πi
7 ) is a 7-th root of unity. By Ā and B̄ we denote the complex conjugate of A and B, respectively.

f 1
7→

(1
4 )

f 1
7→

(2,
12 )

f 1
7→

(2
2 )

f 1
7→

(3,
1)

f 1
7→

(4)
f 2

7→
(1

2 )
f 2

7→
(2)

f 4
7→

(1)
˜f 4

7→
(1)

ˆf 4
7→

(1)

λ 1 λ 2 λ 3 λ 4

f1 7→ (4) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
f1 7→ (3, 1) 14 6 2 2 0 −1 −1 −1 −1 −1 2 0 0 0
f1 7→ (2, 2) 20 4 4 0 0 5 1 0 0 0 −1 1 −1 −1
f1 7→ (2, 1, 1) 56 8 0 0 0 −4 0 1 1 1 −1 −1 0 0
f1 7→ (14) 64 0 0 0 0 4 0 −1 −1 −1 −2 0 1 1

f2 7→ (12) 28 −4 4 0 0 1 1 1 1 −2 1 −1 0 0
f2 7→ (2) 7 −1 3 −1 1 4 0 −1 −1 2 1 −1 0 0

f4 7→ (1) 21 −3 1 1 −1 −3 1 A Ā 1 0 0 0 0
f̃4 7→ (1) 21 −3 1 1 −1 −3 1 Ā A 1 0 0 0 0
f̂4 7→ (1) 21 −3 1 1 −1 6 −2 1 1 1 0 0 0 0

λ1 70 −2 2 −2 0 −5 −1 0 0 0 1 1 0 0
λ2 35 3 −5 −1 −1 5 1 0 0 0 2 0 0 0
λ3 45 −3 −3 1 1 0 0 0 0 0 0 0 B B̄

λ4 45 −3 −3 1 1 0 0 0 0 0 0 0 B̄ B
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4 Finite general linear groups

4.3 Permutation characters
This section serves as a collection of certain permutation, or permutation-like char-
acters of the finite general linear group and their decompositions into irreducible
constituents. These results were published in [ES23] and [ES24], respectively. The
proofs of the main results in the Chapters 5 and 6 heavily rely on these characters
and their decompositions.

In the following χλ denotes the irreducible character of GL(∥λ∥, q) corresponding
to λ ∈ Λc. Recall from Section 4.2 that ξf 7→µ, where f ∈ Φ and µ being a partition, is
the character defined by James. First, we explain that ξX−1 7→(n−t,t) is the permutation
character of GL(n, q) on the set of t-dimensional subspaces of Fn

q (where GL(n, q) acts
naturally on this set). From (4.5) we find

ξX−17→(n−t,t) = ξX−17→(n−t) ⊙ ξX−17→(t).

Let π1 and π2 be the projections onto the diagonal blocks of order t and (n− t),
respectively, as given in (4.3). Since ξX−17→(n−t) and ξX−17→(t) are the trivial characters
1GL(n−t,q) of GL(n − t, q) and 1GL(t,q) of GL(t, q), respectively, for g ∈ GL(n, q), we
obtain

ξX−17→(n−t,t)(g) = 1
|P(t,n−t)|

∑
x∈GL(n,q)

x−1gx∈P(t,n−t)

1GL(t,q)(π1(x−1gx)) · 1GL(n−t,q)(π1(x−1gx))

= 1
|P(t,n−t)|

∑
x∈GL(n,q)

x−1gx∈P(t,n−t)

1P(t,n−t)(x
−1gx)

= IndGL(n,q)
P(t,n−t)

(1P(t,n−t))(g),

The same arguments as those in Remark 1.2.1 imply that ξX−1 7→(n−t,t) is the permu-
tation character of GL(n, q) on the set of t-dimensional subspaces of Fn

q . Thus, from
(4.6), we obtain the following decomposition of this permutation character.

Lemma 4.3.1. Let t ≤ n/2. Then the permutation character ξ of GL(n, q) on the
t-dimensional subspaces of Fn

q decomposes as follows

ξ =
t∑

s=0
χX−17→(n−s,s).

Now we consider a permutation-like character ζ(t,i) of GL(n, q), which is related to
the permutation character on t-tuples of linearly independent vectors of Fn

q .
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For t ≤ n, let Hn,t ≤ GL(n, q) be the stabiliser of a fixed t-tuple of linearly
independent elements of Fn

q . We define ζ(t,i) to be the character obtained by inducing
the linear character

Hn,t → C

g 7→ θ(det(g)i)
(4.15)

where θ is the linear character of F∗
q that was defined in (4.14). Then ζ(t,0) is the

permutation character of GL(n, q) on the set of t-tuples of linearly independent elements
of Fn

q (where the action of GL(n, q) on the set of these t-tuples is the one induced by
the natural action on the components). These characters are related to each other in
the following way.

Lemma 4.3.2. For each g ∈ GL(n, q) we have

ζ(t,i)(g) = θ(det(g)i)ζ(t,0)(g).

Proof: Since similar matrices have the same determinant, we find from the definition
of an induced character, for g ∈ GL(n, q), that

ζ(t,i)(g) = 1
|Hn,t|

∑
x∈GL(n,q)

xgx−1∈Hn,t

θ(det(xgx−1)i)

= 1
|Hn,t|

∑
x∈GL(n,q)

xgx−1∈Hn,t

θ(det(g)i)

= θ(det(g)i)ζ(t,0)(g). □

The following decomposition of ζ(t,i) into irreducible characters of GL(n, q) plays a
crucial role to obtain the main results in Chapter 5.

Lemma 4.3.3. We have
ζ(t,i) =

∑
λ∈Λn

mi,λχ
λ,

where mi,λ ̸= 0 if and only if λ(X − αi)1 ≥ n− t.

Proof: We may choose Hn,t to be

Hn,t =
{[
I ∗

g

]
: g ∈ GL(n− t, q)

}
,

so that Hn,t is a subgroup of the parabolic subgroup P(t,n−t) given in (4.2). Let π1

and π2 be the projections onto the diagonal blocks of order t and n− t, respectively,
as given in (4.3). Using Lemma 4.2.7, the character (4.15) can be written as

(1 ◦ π1)(χX−αi) 7→(n−t) ◦ π2), (4.16)
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4 Finite general linear groups

where 1 is the trivial character of the trivial subgroup of GL(t, q). From Example 1.1.39
we have that 1 induces on GL(t, q) to the character

∑
κ∈Λt

χκ(1)χκ.

Since P(t,n−t)/Hn,t
∼= GL(t, q), it follows that (4.16) induces on P(t,n−t) to the char-

acter ∑
κ∈Λt

χκ(1)(χκ ◦ π1)(χX−αi 7→(n−t) ◦ π2).

Hence, by transitivity of induction, we have

ζ(t,i) =
∑

κ∈Λt

χκ(1)(χκ ⊙ χX−αi 7→(n−t)).

From Lemma 4.2.10 we find that

χX−αi 7→κ ⊙ χX−αi 7→(n−t) =
∑

λ

χX−αi 7→λ,

where λ runs through all partitions whose Young diagram is obtained from that of κ
by adding n− t boxes, no two of which in the same column. Then, the statement of
the lemma follows by using (4.7). □

The last character that we study in this section is the permutation character of
GL(n, q) on so-called α-flags.

For q ̸= 2, let Σn,q be set of all pairs (ρ, I), where ρ is a composition of n and I is
a subset of {1, 2, . . . , ℓ(ρ)}, namely

Σn,q = {(ρ, I) : ρ is a composition of n, I ⊆ {1, 2, . . . , ℓ(ρ)}}, (4.17)

and, if q = 2, we insist that ρi > 1 for each i /∈ I

Definition 4.3.4. For a composition ρ of n, a ρ-flag is a tuple of subspaces (V1, V2, . . . , Vℓ(ρ)))
of Fn

q such that
{0} = V0 ≤ V1 ≤ . . . ≤ Vℓ(ρ) = Fn

q

and dim(Vi/Vi−1) = ρi for each i ∈ {1, 2, . . . , ℓ(ρ)}.

Definition 4.3.5. Let α = (ρ, I) be an element of Σn,q with I = {i1, i2, . . . , ik}.
We define a signed α-flag, or α-flag for short, to be a pair (F,B), where F =
(V1, V2, . . . , Vℓ(ρ)) is a ρ-flag and B = (B1, B2, . . . , Bk) is a tuple of ordered bases
of Vi1/Vi1−1, Vi2/Vi2−1, . . . , Vik

/Vik−1 with V0 = {0}.
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4.3 Permutation characters

A ((t, n − t),∅)-flag, for example, is essentially a t-dimensional subspace of Fn
q .

And a ((t, n−t), {1})-flag is essentially a t-tuple of linearly independent elements of Fn
q .

In order to give the decomposition of the permutation character of GL(n, q) on
the set of α-flags with α ∈ Σn,t, where the action of GL(n, q) on the set of α-flags is
the one induced by the natural action on the components, we need to introduce some
more notions.

Definition 4.3.6. For each (ρ, I) ∈ Σn,q we associate a pair of partitions (σ, τ), called
the type of (ρ, I), where σ is the partition whose parts are those ρi with i ∈ I and τ is
the partition whose parts are those ρi with i /∈ I.

For example ((25123), {2, 3, 5}) has type ((531), (22)).

Definition 4.3.7. We define the type of λ ∈ Λn to be a pair of partitions (κ, λ), where
λ = λ(X − 1) and κ has |λ(f)| parts of size |f | as f ranges through Φ \ {X − 1}. The
type of λ ∈ Λn is denoted by type(λ).

For example, for q = 3, the type of λ ∈ Λ20 given by

X − 1 7→ (31), X + 1 7→ (33) X2 + 1 7→ (2), X2 +X + 1 7→ (21)

equals ((2516), (31)).
Note that, if (κ, λ) is the type of λ ∈ Λ, then |κ| + |λ| = n. And note that the

unique irreducible character χλ of GL(n, q) with type(λ) = (∅, (n)) is the trivial
character of GL(n, q).

In order to define a partial order on the pairs of partitions, recall from (1.2) the
dominance order ⊴ on partitions. There we defined the dominance order only for
partitions of the same size. However, this definition can naturally be extended to the
set of all partitions Par.

Another partial order on Par is given by the refinement. A partition µ = (µ1, . . . , µk)
refines a partition λ if |µ| ≤ |λ| and the parts of λ can be partitioned to produce the
parts of (µ1, . . . , µk, 1|λ|−|µ|). For example (3, 2, 1) refines (7, 4, 2, 2).

A partial order on the pairs of partitions is given by the following.

Definition 4.3.8. Let (ν, µ) and (κ, λ) be pairs of partitions. We write (ν, µ) ⪯ (κ, λ)
if κ refines ν and µ ⊴ λ. And we write (ν, µ) ≺ (κ, λ) if (ν, µ) ⪯ (κ, λ) and (ν, µ) ̸=
(κ, λ).

The decomposition of the permutation character ξ of GL(n, q) on α-flags with
α ∈ Σn,t is as follows.
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4 Finite general linear groups

Lemma 4.3.9. Let α ∈ Σn,q, let ξ be the permutation character of GL(n, q) on the
set of α-flags, and let

ξ =
∑

λ∈Λn

mλχ
λ

be the decomposition of ξ into irreducible characters. Then we have

mλ ̸= 0 ⇔ type(α) ⪯ type(λ).

Proof: For α ∈ Σn,q we write α = (ρ, I), where ρ = (ρ1, ρ2, . . . , ρk). We define a
subgroup H of the parabolic subgroup Pρ and thus of GL(n, q) by

H =




A1 ∗ · · · ∗

A2 · · · ∗
. . .

...

Ak

 : Ai ∈ GL(ρi, q), Ai = Iρi if i ∈ I.


,

where Iρi denotes the (ρi × ρi)-identity matrix. Then H is the stabiliser of an α-flag.
Using similar arguments like in Remark 1.2.1 we have that the induced character of
1H to GL(n, q) is the permutation character of GL(n, q) on the set of α-flags

ξ = IndGL(n,q)
H (1H).

Now we first induce 1H to the parabolic subgroup Pρ. For 1 ≤ i ≤ k, let πi : Pρ →
GL(ρi, q) denote the projections given in Section 4.2. Hence

1H =
k∏

i=1
(1i ◦ πi),

where 1i is the trivial character on the trivial subgroup of GL(ρi,q) for i ∈ I and 1i

is the trivial character of GL(ρi, q) for i ∈ J , where J is the complement of I in
{1, 2, . . . , k}. We have

Pρ/H ∼=
∏
i∈I

GL(ρi, q),

as a direct product. From Example 1.1.39 it follows that, for each i ∈ I, we have

IndGL(ρi,q)
Ei

(1i) =
∑

κ∈Λρi

χκ(1)χκ,

where Ei denotes the trivial subgroup of GL(ρi, q). Hence we obtain

IndPρ

H (1H) =

∏
i∈J

(1i ◦ πi)

∏
i∈I

∑
κ∈Λρi

χκ(1)(χκ ◦ πi)

 .
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By the transitivity of induction, ξ is obtained by inducing IndPρ

H (1H) to GL(n, q).
To determine the irreducible constituents of ξ, it is now enough to determine the
irreducible constituents of the induced characters

ϕ1 ⊙ ϕ2 ⊙ · · · ⊙ ϕk (4.18)

where ϕi is an irreducible character of GL(ρi, q) for i ∈ I and ϕi is the trivial character
of GL(ρi, q) for i ∈ J . Since the product of characters is commutative, we may now
assume without loss of generality that I = {1, 2 . . . , r}, where r = |I|. We put
σ = (ρ1, ρ2, . . . , ρr) and τ = (ρr+1, ρr+2, . . . , ρk) (so that (σ, τ) is the type of (ρ, I)).
Now consider the parabolic subgroup P = Pρ1,...,ρr,|τ |. We have

P/Pρ
∼= GL(|τ |, q)/Pτ

and hence by Lemma 4.2.13 the character (4.18) induces on P to∑
ν⊵τ

Kντχ
X−17→ν ⊙ ϕ1 ⊙ ϕ2 ⊙ · · · ⊙ ϕr.

To determine the irreducible constituents of ξ, it is now enough to determine the
irreducible constituents of the induced characters

ϕ0 ⊙ ϕ1 ⊙ · · · ⊙ ϕr, (4.19)

where ϕ0 is the irreducible character of GL(|τ |, q) corresponding to X − 1 7→ ν,
where ν is a partition with ν ⊵ τ , and ϕi is an irreducible character of GL(ρi, q) for
1 ≤ i ≤ r.
To prove the forward direction of the lemma, assume that χλ is a constituent of some
induced character of the form (4.19). Let (κ, λ) be the type of λ and let (κ(i), λ(i)) be
the type of the element of Λρi indexing ϕi. Then Lemma 4.2.11 implies that the parts
of κ are exactly the parts of κ(1), κ(2), . . . , κ(r). Since ϕi is a character of GL(ρi, q),
we find that κ(i) refines (ρi) and hence κ refines σ. By assumption there is some
partition ν with |ν| = |τ | such that ν ⊵ τ , which by Lemma 4.2.11 satisfies ν ⊆ λ,
where ⊆ denotes the containment order from Definition 1.3.16. Hence we have λ ⊵ τ ,
which proves the forward direction of the lemma.
To prove the reverse direction, let λ ∈ Λn be such that its type (κ, λ) satisfies
(σ, τ) ⪯ (κ, λ). Then κ is a refinement of σ and τ ⊴ λ. It is readily verified that
there exists a partition ν with |ν| = |τ | such that ν ⊵ τ and ν ⊆ λ. Let λ0 ∈ Λ|τ | be
given by X − 1 7→ ν. Since κ is a refinement of σ, there is a chain of partition-valued
functions

λ0 ⊆ λ1 ⊆ . . . ⊆ λr = λ

with the property ∥λi∥ − ∥λi−1∥ = ρi for all i ∈ {1, 2 . . . , r}. By Remark 4.2.12, we
can choose δi ∈ Λρi such that

c
λi
λi−1,δi

> 0 for each i ∈ {1, 2 . . . , r}.
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Now we take ϕ0 = χλ0 and ϕi = χδi for each i ∈ {1, 2 . . . , r}. Then

ϕ0 ⊙ ϕ1 ⊙ · · · ⊙ ϕr,

has χλi as an irreducible constituent for each i ∈ {1, 2, . . . , r}. Hence χλ is an
irreducible constituent of ϕ0 ⊙ ϕ1 ⊙ · · · ⊙ ϕr, which completes the proof. □

4.4 Association schemes
In this section we recall the most important objects of the conjugacy class scheme
arising from the finite general linear group by taking into account the results on the
conjugacy classes and representation theory from the Sections 4.1 and 4.2. Moreover,
we study the symmetrisation of the conjugacy class scheme arising from GL(n, q).

4.4.1 The conjugacy class scheme of the finite general
linear group

Since the conjugacy classes of GL(n, q) are indexed by partition-valued functions
µ ∈ Λn, the adjacency matrices Aµ ∈ C(GL(n, q),GL(n, q)) from Example 2.1.9 are
indexed by Λn as well and are given by

Aµ(x, y) =

1 for x−1y ∈ Cµ,

0 otherwise.

Since the irreducible characters χλ of GL(n, q) are also indexed by Λn, the matrices
Eλ ∈ C(GL(n, q),GL(n, q)) from Example 2.1.13, are indexed by Λn and are given by

Eλ(x, y) = χλ(1)
| GL(n, q)|χ

λ(x−1y). (4.20)

Especially, EX−17→(n) plays the role of E0 in Example 2.1.13 because the trivial
character of GL(n, q) is indexed by X − 1 7→ (n). From Lemma 2.1.15 we have the
following decomposition

C(GL(n, q)) =
⊕

λ∈Λn

colsp(Eλ).

Moreover, due to Example 2.2.6, the dual distribution (bλ)λ∈Λn of a subset Y ⊆
GL(n, q) is given by

bλ = χλ(1)
|Y |

∑
x,y∈Y

χλ(x−1y). (4.21)
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We recall, that the entries of the dual distribution are real and nonnegative. Moreover,
we note that, since X − 1 7→ (n) corresponds to the trivial character of GL(n, q), it
follows that

bX−1 7→(n) = χX−17→(n)(1)
|Y |

∑
x,y∈Y

χX−17→(n)(x−1y) = 1
|Y |

|Y |2 = |Y |.

Thus, bX−17→(n) plays the role of b0 from Section 2.2.

4.4.2 The symmetrisation of the conjugacy class scheme
of the finite general linear group

Since the conjugacy class scheme arising from the finite general linear group GL(n, q)
is not necessarily symmetric, in this section, we focus on the symmetrisation of this
scheme.

In what follows, we describe the inverse set C−1
σ = {g−1 : g ∈ Cσ} of the conjugacy

class Cσ of GL(n, q). To do so, we recall that for a given polynomial f ∈ Φ, its
reciprocal polynomial f∗ ∈ Φ is the monic polynomial whose roots in the algebraic
closure of Fq are exactly the inverses of the roots of f . This brings us to the following
definition.

Definition 4.4.1. Let λ ∈ Λn. Then we define λ∗ to be the partition valued function
in Λn given by λ∗(f) = λ(f∗) for all f ∈ Φ.

Lemma 4.4.2. For σ, λ ∈ Λn we have

(i) Cσ∗ = C−1
σ ,

(ii) χλ∗ = χλ,

(iii) χ
λ∗
σ = χ

λ
σ∗.

Proof: Property (i) follows from linear algebra, (ii) is essentially [Jam86, (7.32)],
and (i) together with (ii) imply (iii). □

We define a subset Ωn of Λn to be a set that contains λ ∈ Λn if λ = λ∗ and that
contains exactly one of λ or λ∗ otherwise for all λ ∈ Λn. Then, for σ ∈ Ωn we define
Dσ = Cσ ∪Cσ∗ . Note that Dσ is exactly the union of Cσ and C−1

σ , which follows from
Lemma 4.4.2. From Lemma 2.1.21 together with Example 2.1.4 we can deduce that
(GL(n, q), {Rσ : σ ∈ Ωn}) with Rσ = {(g, h) : g−1h ∈ Dσ} is the symmetric closure of
the conjugacy class scheme arising from the finite general linear group GL(n, q). The
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adjacency matrices Bσ of this symmetric association scheme are given by

Bσ =

Aσ for σ = σ∗

Aσ +Aσ∗ otherwise,

where the Aσ are the adjacency matrices of the conjugacy class scheme arising from
GL(n, q). For this symmetric association scheme, we can express the eigenvalues again
in terms of (not necessarily irreducible) characters of GL(n, q). To do so, we define
the character ψλ for each λ ∈ Ωn by

ψλ =

χ
λ for λ = λ∗

χλ + χλ∗ otherwise.
(4.22)

Then ψλ is constant on Dσ for all λ, σ ∈ Ωn, which follows from Lemma 4.4.2. For
λ, σ ∈ Ωn this justifies to write

ψλ
σ = ψλ(g) for an arbitrary element g ∈ Dσ. (4.23)

We note that the characters ψλ are real-valued for all λ ∈ Ωn. Now, for λ ∈ Ωn we
write

Fλ =

Eλ for λ = λ∗

Eλ + Eλ∗ otherwise,
(4.24)

where the Eλ are the pairwise orthogonal idempotent matrices of the conjugacy class
scheme arising from GL(n, q). We note that all entries of Fλ are real-valued. By Vλ

we denote the column span of Fλ over the reals. And for σ, λ ∈ Ωn, we write

P (λ, σ) =
|Dσ|
ψλ(1)ψ

λ
σ . (4.25)

The real-valued numbers P (λ, σ) are in fact the eigenvalues of the symmetric
closure of the conjugacy class scheme arising from GL(n, q), which is shown in the
following lemma.

Lemma 4.4.3. We have an orthogonal direct sum decomposition of R(GL(n, q)) in
terms of Vλ, namely

R(GL(n, q)) =
⊕

λ∈Ωn

Vλ.

Moreover, for all σ, λ ∈ Ωn, the elements in Vλ are precisely the eigenvectors of Bσ

with corresponding eigenvalue P (λ, σ).
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Proof: The matrices Fλ ∈ R(GL(n, q),GL(n, q)) are pairwise orthogonal and idem-
potent because the Eλ are. Consequently, the Vλ are orthogonal and the rank of Fλ

is equal to the trace of Fλ. The latter together with (2.9) imply that

rk(Fλ) =

χ
λ(1)2 for λ = λ∗

χλ(1)2 + χλ∗(1)2 otherwise.

Hence we have

dim

⊕
λ∈Ωn

Vλ

 =
∑

λ∈Ωn

dimVλ =
∑

λ∈Ωn

rk(Fλ) =
∑

λ∈Λn

χλ(1)2 = | GL(n, q)|,

where the last equation is a well known fact from representation theory of finite
groups (see [Sag01, Prop. 1.10.1], for example). This proves the first statement. Using
Lemma 4.4.2 together with the identity (2.8) it is readily verified that

Bσ =
∑

λ∈Ωn

P (λ, σ)Fλ

for all σ ∈ Ωn. Since the Fλ are pairwise orthogonal we obtain the second statement.□
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5 Erdős-Ko-Rado theorems for
finite general linear groups

Zugspitze, 2962m

In this chapter we study q-analogous problems of those in Section 3.2 for the sym-
metric groups. Here, we replace the symmetric group Sn by the finite general linear
group GL(n, q). We study pointwise, spacewise t-intersecting, and t-cross-intersecting
sets in GL(n, q). More precisely, we establish upper bounds on their sizes and partially
characterise the extremal cases.

The chapter is organised as follows. In Section 5.1 we introduce the different
notions of intersection, namely t-intersection, t-cross-intersection, t-space-intersection,
and t-space-cross-intersection in finite general linear groups. Moreover, we collect
already known results and state our main theorems. In Section 5.2 we prepare some
key steps for the proofs of the main results. The Sections 5.3 and 5.4 contain the main
arguments of our proofs of the pointwise intersection theorems, Theorems 5.1.4 and
5.1.6, and of the spacewise (cross-)intersection theorems, Theorems 5.1.9 and 5.1.11.
In Section 5.5 we collect some open problems and conjectures arising from the study
of pointwise intersecting and spacewise intersecting sets in finite general linear groups.

The results presented in this chapter were published in [ES23].
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5.1 Introduction and main results
In the remainder of this chapter, we fix a prime power q. Henceforth, for a positive
integer t, a t-space of Fn

q is a t-dimensional subspace of Fn
q .

Pointwise intersecting sets
Definition 5.1.1. Two elements x, y ∈ GL(n, q) are t-intersecting if there exist t
linearly independent vectors v1, v2, . . . , vt in Fn

q such that xvi = yvi for all i. A subset
Y of GL(n, q) is t-intersecting if all pairs in Y × Y are t-intersecting.

Equivalently, a subset Y of GL(n, q) is t-intersecting if rk(x− y) ≤ n− t holds for
all x, y ∈ Y . The canonical examples for t-intersecting sets in GL(n, q) are given by
so-called t-cosets.

Example 5.1.2. A coset of the stabiliser of a t-tuple of linearly independent vectors
of Fn

q is given by
{x ∈ GL(n, q) : xvi = wi},

for some t-tuples (v1, v2, . . . , vt) and (w1, w2, . . . , wt) of linearly independent vectors
in Fn

q . We call such a set t-coset. Every t-coset is t-intersecting and its size is given by

n−1∏
i=t

(qn − qi). (5.1)

Given a t-intersecting set, we can construct another one.

Example 5.1.3. Let Y ⊆ GL(n, q) be t-intersecting and let Y T = {yT : y ∈ Y } be
the set of all transposed matrices of Y . Then Y T is t-intersecting as well because, for
all xT , yT ∈ Y T , we have

rk(xT − yT ) = rk(x− y) ≤ n− t.

From Example 5.1.3 it follows that the t-cosets are not the only t-intersecting sets of
the size given in (5.1). As before, we are interested in finding an upper bound on the
size of a t-intersecting set in GL(n, q) and in a characterisation of the extremal case.

It is well known (see [AA14] or [AM15], for example) that the size of a 1-intersecting
set in GL(n, q) is bounded by

∏n−1
i=1 (qn − qi). This follows from the existence of a

Singer cycle in GL(n, q) and a simple application of the clique-coclique bound from
Theorem 2.4.7.

Additionally Meagher and Razafimahatratra [MR23] proved that the characteristic
vector of a 1-intersecting set of size q2 − q in GL(2, q) is spanned by the characteristic
vectors of 1-cosets. We obtain a result for all t and n such that n is sufficiently large
compared to t.
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Theorem 5.1.4 (Pointwise t-intersection). Let t be a positive integer and let Y
be a t-intersecting set in GL(n, q). If n is sufficiently large compared to t, then

|Y | ≤
n−1∏
i=t

(qn − qi)

and, in case of equality, the characteristic vector of Y is spanned by the characteristic
vectors of t-cosets.

After a first version of our paper [ES23] containing Theorem 5.1.4 was publicly
available (arXiv, May 2022) Ellis, Kindler, and Lifshitz [EKL23] (arXiv, August 2022)
independently proved a slightly more general result than Theorem 5.1.4. However their
methods are completely different, in particular they make no use of the representation
theory of GL(n, q), which is one of the main tools in our approach.

Moreover, we obtain a result for t-cross-intersecting sets.

Definition 5.1.5. Two subsets Y and Z of GL(n, q) are t-cross-intersecting if all
pairs in Y × Z are t-intersecting.

Theorem 5.1.6 (Pointwise t-cross-intersection). Let t be a positive integer and
let Y and Z be t-cross-intersecting sets in GL(n, q). If n is sufficiently large compared
to t, then √

|Y | · |Z| ≤
n−1∏
i=t

(qn − qi)

and, in case of equality, the characteristic vectors of Y and Z are spanned by the
characteristic vectors of t-cosets.

The Theorems 5.1.4 and 5.1.6 can be seen as q-analogs of the corresponding results
for the symmetric group [EFP11] from Section 3.2.

Spacewise intersecting sets
We can also q-analogise the setwise intersection result from Theorem 3.2.13.

Definition 5.1.7. Two elements x, y ∈ GL(n, q) are t-space-intersecting if there exists
a t-space U of Fn

q such that xU = yU . A subset Y of GL(n, q) is t-space-intersecting
if all pairs in Y × Y are t-space intersecting.

It is natural to state the definition of a t-space-intersecting set in terms of the
projective general linear group PGL(n, q). For consistency, in this thesis, we write the
results in terms of the general linear group. However the results of GL(n, q) and of
PGL(n, q) can be easily translated into each other.

The canonical examples of t-space-intersecting sets are given by cosets of stabilisers
of t-spaces.
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Example 5.1.8. Every coset of the stabiliser of a t-space of Fn
q is t-space-intersecting

and its size is given by [
t−1∏
i=0

(qt − qi)
] [

n−1∏
i=t

(qn − qi)
]
. (5.2)

The set of all transposed matrices of a t-space-intersecting set is t-space-intersecting
as well. Moreover we note that the set of all transposed matrices of the stabiliser of
a t-space is the stabiliser of an (n− t)-space and gives another example of a t-space-
intersecting set of the size given in (5.2).

It was shown in [MS11] that the size of a 1-space-intersecting set in GL(n, q) is
at most the product given in (5.2) for t = 1, which follows again from the existence
of a Singer cyclic subgroup and the application of the clique-coclique bound from
Theorem 2.4.7. We obtain a result for arbitrary t and all sufficiently large n.

Theorem 5.1.9 (Spacewise t-intersection). Let t be a positive integer and let Y
be a t-space-intersecting set in GL(n, q). If n is sufficiently large compared to t, then

|Y | ≤
[

t−1∏
i=0

(qt − qi)
] [

n−1∏
i=t

(qn − qi)
]

and, in case of equality, the characteristic vector of Y is spanned by the characteristic
vectors of cosets of stabilisers of t-spaces of Fn

q .

Again, we obtain a corresponding result on cross-intersecting subsets of GL(n, q).

Definition 5.1.10. Two subsets Y and Z of GL(n, q) are t-space-cross-intersecting if
every pair in Y × Z is t-space-intersecting.

Theorem 5.1.11 (Spacewise t-cross-intersection). Let t be a positive integer and
let Y and Z be t-space-cross-intersecting sets in GL(n, q). If n is sufficiently large
compared to t, then √

|Y | · |Z| ≤
[

t−1∏
i=0

(qt − qi)
] [

n−1∏
i=t

(qn − qi)
]

and, in case of equality, the characteristic vectors of Y and Z are spanned by the
characteristic vectors of cosets of stabilisers of t-spaces of Fn

q .

5.2 Preparations for the proofs of the point-
wise and spacewise intersection theorems

In this section we provide some of the key ingredients for the proofs of our main results
in Section 5.1. First, we explain the proof strategy. Then we study properties of a
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matrix arising from the character table of GL(n, q). The last part of this section then
deals with rather technical estimates on certain conjugacy class sizes and character
degrees.

5.2.1 Proof strategy
In order to explain the strategy of the proof of our main theorems on t-intersecting
sets, we first recall the weighted version of the Hoffman bound from Theorem 2.3.11.

Theorem. Let Γ = (X,E) be a graph on n vertices. Suppose that Γ0,Γ1, . . . ,Γr are
regular spanning subgraphs of Γ, all having {v0, v1, . . . , vn−1} as an orthonormal system
of eigenvectors with v0 being the all-ones vector. Let Pi(k) be the eigenvalue of vk in
Γi. Let w0, w1, . . . , wr ∈ R and write P (k) =

∑r
i=0wiPi(k).

(i) If Y ⊆ X is an independent set in Γ, then

|Y |
|X|

≤ |Pmin|
P (0) + |Pmin|

,

where Pmin = mink ̸=0 P (k). In case of equality we have

1Y ∈ ⟨{v0} ∪ {vk : P (k) = Pmin}⟩.

(ii) If Y, Z ⊆ X are such that there are no edges between Y and Z in Γ, then√
|Y |
|X|

|Z|
|X|

≤ Pmax
P (0) + Pmax

,

where Pmax = maxk ̸=0 |P (k)|. In case of equality we have

1Y ,1Z ∈ ⟨{v0} ∪ {vk : |P (k)| = Pmax}⟩.

In what follows we explain how we apply the weighted version of the Hoffman
bound to prove the pointwise intersection theorems from Theorems 5.1.4 and 5.1.6.
The strategy for the spacewise intersecting cases, Theorems 5.1.9 and 5.1.11, is similar.
In the remainder of this chapter we will use the notations from Section 4.4.2.

Definition 5.2.1. An element x ∈ GL(n, q) is called a t-derangement if there is no
t-tuple of linearly independent elements of Fn

q that is fixed by x.

Equivalently x ∈ GL(n, q) is a t-derangement if rk(x − I) > n − t. Recall from
Section 4.4.2 that Dσ is the union of the conjugacy classes Cσ and C−1

σ . We make the
following observation.

Observation 5.2.2. Either all elements of Dσ are t-derangements or none of them.
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We apply Theorem 2.3.11 to a graph that we construct from the symmetrisation
of the conjugacy class scheme of the finite general linear group GL(n, q). For the
construction of the graph, we wish to establish a set of partition valued functions
Σ ⊆ Ωn such that Dσ consists of t-derangements for all σ ∈ Σ. This ensures that
a t-intersecting set is an independent set in the graph Γ given by the adjacency
matrix

∑
σ∈Σ

Bσ. Then we apply the weighted version of the Hoffman bound from

Theorem 2.3.11, to the graph Γ and the |Dσ|-regular spanning subgraphs Γσ having
adjacency matrix Bσ for σ ∈ Σ. Recall from Section 2.1 that R(Σ) denotes the
set of column vectors indexed by Σ and having entries in R. We wish to construct
some weight w ∈ R(Σ) such that both the minimum value and the negative of the
second-largest absolute value over all λ ∈ Ωn of∑

σ∈Σ
ω(σ)P (λ, σ) (5.3)

equals

η = − 1
(qn − 1)(qn − q) · · · (qn − qt−1) − 1 (5.4)

and such that w is normalised in the sense that (5.3) equals 1 if λ ∈ Ωn is given by
X − 1 7→ (n). This will ensure that Theorem 2.3.11 will give the bounds of Theorems
5.1.4 and 5.1.6.

5.2.2 A special invertible matrix
In the following we focus on identifying the relevant conjugacy classes of GL(n, q)
whose elements are t-derangements and do not fix a t-space, respectively.

Definition 5.2.3. An element of GL(n, q) is regular elliptic if its characteristic poly-
nomial is irreducible over Fq.

Lemma 5.2.4 ([LRS14]). Each regular elliptic element of GL(n, q) fixes no proper
nontrivial subspace of Fn

q .

This Lemma implies that the regular elliptic elements in GL(n, q) play the role of
an n-cycle in the symmetric group Sn.

We note that, for each polynomial f ∈ Φ of degree d, its companion matrix
Cf satisfies det(Cf ) = (−1)df(0). Moreover it is well known [HM92] that given an
element a ∈ F∗

q there exists an irreducible polynomial f ∈ Fq[X] of degree d such that
f(0) = a. Consequently we can always find a polynomial in Φ with prescribed degree
and prescribed nonzero determinant of its companion matrix. Moreover, we note
that, for every f ∈ Φ, we have f(0)f∗(0) = 1, where f∗ is the reciprocal polynomial
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associated with f from Section 4.4.2, and thus we have det(Cf ) det(Cf∗) = 1, where
again Cf and Cf∗ are the companion matrices of f and f∗, respectively.

From now on let α be a fixed generator of F∗
q . For all integers ℓ, j with 0 ≤ ℓ < n

and 0 ≤ j ≤ q − 2, we fix an irreducible polynomial hℓ,j ∈ Φ of degree n− ℓ such that
its companion matrix has determinant αj and such that h∗

ℓ,j = hℓ,−j . We define

Σℓ,j = {σ ∈ Λn : σ(hℓ,j) = (1)}

and

Σℓ =
q−2⋃
j=0

Σℓ,j and Σ≤t =
t⋃

ℓ=0
Σℓ.

We note that for each σ ∈ Σ≤t−1, the conjugacy class Cσ consists only of elements that
do not fix a t-space of Fn

q . Moreover, for each σ ∈ Σt except those q − 1 exceptions
σ ∈ Σt satisfying σ(X − 1) = (1t), the conjugacy class Cσ consists of elements that do
not fix a t-space pointwise. Recall from Section 1.2 that the i-th part of a partition λ

is denoted by λi. For integers k ≤ n we now define

Πk,i = {λ ∈ Λn : λ(X − αi)1 = n− k},

and

Πk =
q−2⋃
i=0

Πk,i and Π≤t =
t⋃

k=0
Πk.

We note that, for k < n/2, we have |Πk,i| = |Σk,i| and |Ωn ∩ Πk,i| = |Ωn ∩ Σk,i| for all i.
We define the matrix Q ∈ R(Ωn,Ωn) by

Q(λ, σ) = ψλ
σ for each λ, σ ∈ Ωn,

where ψλ is the character of GL(n, q) that was defined in (4.22). Let Qt denote the
restriction of Q to R(Ωn ∩ Π≤t,Ωn ∩ Σ≤t). Then Qt is a square matrix as well. A key
step in our proof is the following.

Proposition 5.2.5. For n > 2t, the matrix Qt has full rank and is independent of n.

In the remainder of this section we prove this proposition. In order to do so, we
define the matrix R ∈ C(Λn,Λn) by

R(λ, σ) = χλ
σ for each λ, σ ∈ Λn,

where χλ
σ denotes the irreducible character of GL(n, q) corresponding to λ evaluated

on the conjugacy class Cσ. Let Rt denote the restriction of R to C(Π≤t,Σ≤t). We
prove a counterpart of Proposition 5.2.5 for the matrix Rt.
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Proposition 5.2.6. For n > 2t, the matrix Rt has full rank and is independent of n.

Note that Proposition 5.2.5 follows from Proposition 5.2.6, since Qt is obtained
from Rt by applying elementary row operations, then deleting some rows, and then
deleting duplicate columns.

To prove Proposition 5.2.6 we define a matrix S ∈ C(Λn,Λn) by

S(µ, σ) = ξ
µ
σ for each µ, σ ∈ Λn, (5.5)

where ξµ is the character of GL(n, q) introduced in Section 4.2. Let St be the restriction
of S to C(Π≤t,Σ≤t). We define T ∈ C(Λn,Λn) to be given by

T (µ, λ) =

Kλµ, for λ ∼ µ,

0 otherwise,

where ∼ is the equivalence relation on Λn introduced in Definition 4.2.4, and the
numbers Kλµ are products of Kostka numbers introduced in Section 4.2. Let Tt be
the restriction of T to C(Π≤t,Σ≤t). We first prove the following.

Lemma 5.2.7.

(i) We have S = TR and T has full rank.

(ii) For n > 2t, we have St = TtRt and Tt has full rank and is independent of n.

Proof: From (4.11) we have S = TR and the matrix T is block diagonal, where
the blocks are induced by the equivalence classes under ∼. Each diagonal block
corresponds to one equivalence class. If s : Φ → Z is the shape of such an equivalence
class, then the corresponding block can be written as a Kronecker product, namely⊗

f∈Φ
K(s(f)),

where K(m) ∈ C(Parm,Parm) is a Kostka matrix given by K(m)(µ, λ) = Kλµ with
the convention K(0) = (1) and Parm is the set of partitions of m. It follows from
(1.3) that the Kostka matrices are invertible. Hence T is a block-diagonal matrix
whose blocks are Kronecker products of matrices of full rank and so T itself has full
rank. This proves (i).

From (1.3) we find that St = TtRt. Note that Tt is still block diagonal with
one diagonal block for each equivalence class of Λn under ∼ whose shape s : Φ → Z
satisfies s(X − αi) ≥ n− t for some i. The corresponding block can be written as

K̃(s(X−αi)) ⊗
⊗

f∈Φ\{X−αi}
K(s(X−αi)), (5.6)
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where K̃(s(X−αi)) is the matrix K(s(X−αi)) restricted to partitions λ of s(X − αi)
satisfying

λ ⊵ (n− t, 1s(X−αi)−(n−t)).

From (1.3) it follows that, after a suitable ordering of rows and columns, all matrices
occurring in the Kronecker product (5.6) are upper-triangular with ones on the
diagonal. Again Tt is a block-diagonal matrix whose blocks are Kronecker products
of matrices of full rank and so Tt itself has full rank.

From the proof of [EFP11, Thm.20] we know that K̃(s(X−αi)) is independent of
n. Moreover, all other matrices occurring in the Kronecker product (5.6) are also
independent of n. Hence Tt itself is also independent of n. This proves (ii). □

In the following, we show that also the matrix St has full rank. Recall that, for
a composition λ, Pλ denotes the parabolic subgroup of GL(|λ|, q) given in (4.2). We
start with the following lemma.

Lemma 5.2.8. Let m and n be positive integers satisfying m < n and let ϕ and ψ

be class functions of GL(m, q) and GL(n, q), respectively. Let π1 : P(m,n) → GL(m, q)
and π2 : P(m,n) → GL(n, q) be the natural projections onto the corresponding diagonal
blocks. Let g ∈ P(m,n) be such that π2(g) is regular elliptic. Then we have

(ϕ⊙ ψ)(g) = ϕ(π1(g))ψ(π2(g)).

Proof: From the definition of parabolic induction from (4.4) we have

(ϕ⊙ ψ)(g) = 1
|P(m,n)|

∑
x∈GL(m+n,q),
xgx−1∈P(m,n)

ϕ(π1(xgx−1))ψ(π2(xgx−1)). (5.7)

Since π2(g) is regular elliptic and m < n, we find from Lemma 5.2.4 that g

stabilises a unique m-dimensional subspace U of Fm+n
q . Hence the number of

x ∈ GL(m + n, q) such that xgx−1 ∈ P(m,n) is the number of ordered bases
{u1, u2, . . . , um, w1, w2, . . . , wn} of Fm+n

q such that {u1, u2, . . . , um} spans U . This
number equals |P(m,n)|. Since xgx−1 ∈ P(m,n) for each x ∈ P(m,n), we conclude that

{x ∈ GL(m+ n, q) : xgx−1 ∈ P(m,n)} = P(m,n).

Since πi(xgx−1) is conjugate to πi(g) for each i ∈ {1, 2} and each x ∈ P(m,n), the
statement of the lemma follows from (5.7). □

We use Lemma 5.2.8 to prove the following result on the structure of the matrix S.
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Lemma 5.2.9. Let k, ℓ be integers satisfying 0 ≤ k, ℓ < n
2 and let µ ∈ Πk,i and

σ ∈ Σℓ,j. If k > ℓ, then we have ξµ
σ = 0. For k ≤ ℓ, let ν be the partition obtained

from µ(X − αi) by replacing the part n− k by ℓ− k and define ν, τ ∈ Λℓ by

ν(f) =

ν for f = X − αi

µ(f) otherwise.
and τ(f) =

∅ for f = hℓ,j

σ(f) otherwise.

If k ≤ ℓ, then we have ξµ
σ = ξ

ν
τωij.

Proof: Let g ∈ Cσ. We define κ ∈ Λk by

κ(f) =

(µ(X − αi)2, µ(X − αi)3, . . .) for f = X − αi

µ(f) otherwise.

Then by (4.5) and (4.10) we have

ξµ = ξκ ⊙ ξX−αi 7→(n−k). (5.8)

For ξµ(g) to be nonzero, g must be conjugate to an element of the parabolic subgroup
P(k,n−k). Each such element fixes a k-dimensional subspace of Fn

q . If k > ℓ, then by
Lemma 5.2.4, g fixes no k-dimensional subspace of Fn

q and hence ξµ(g) = 0.
Henceforth we assume that k ≤ ℓ. We shall frequently use ξf 7→(m) = χf 7→(m),

which follows from (4.6) and (1.3). Since k ≤ ℓ we have

ξν = ξκ ⊙ ξX−αi 7→(ℓ−k). (5.9)

Write

E =
⋃

ρ∈Λn−k

ρ(hℓ,j)=(1)

Cρ.

We claim that

ξX−αi 7→(n−k)(e) = (ξX−αi 7→(ℓ−k) ⊙ ξX−αi 7→(n−ℓ))(e) for each e ∈ E. (5.10)

Indeed, each e ∈ E is conjugate to an element of P(ℓ−k,n−ℓ) with blocks e1 ∈
GL(ℓ− k, q) and e2 ∈ GL(n− ℓ, q) on the main diagonal, where e2 is regular elliptic.
Hence we find from Lemma 4.2.7 that, for each e ∈ E, the left hand side of (5.10)
equals

θ(det(e)i) = θ(det(e1)i) · θ(det(e2)i)

= ξX−αi 7→(ℓ−k)(e1) · ξX−αi 7→(n−k)(e2),
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which by Lemma 5.2.8 equals the right hand side of (5.10). From (5.8) we have

ξµ(g) = 1
|P(k,n−k)|

∑
x∈GL(n,q)

xgx−1∈P(k,n−k)

ξκ(π1(xgx−1))ξX−αi 7→(n−k)(π2(xgx−1)),

where π1 : P(k,n−k) → GL(k, q) and π2 : P(k,n−k) → GL(n − k, q) are the natural
projections onto the diagonal blocks. Since k, ℓ < n

2 , Lemma 5.2.4 implies that each
π2(xgx−1) occurring in the summation is forced to lie inside E. Hence by subsequent
applications of (5.8), (5.10), and (5.9), we then find that

ξµ(g) = (ξκ ⊙ ξX−αi 7→(n−k))(g)

= (ξκ ⊙ ξX−αi 7→(ℓ−k) ⊙ ξX−αi 7→(n−ℓ))(g)

= (ξν ⊙ ξX−αi 7→(n−ℓ))(g).

Without loss of generality, we may assume that g ∈ P(ℓ,n−ℓ) and that the diagonal
blocks of g are g1 and g2, where g1 ∈ Cτ and g2 is the companion matrix of hℓ,j .
Since g2 is regular elliptic, we may apply Lemma 5.2.8 once more to obtain

ξµ(g) = ξν(g1)ξX−αi 7→(n−ℓ)(g2).

Since g1 ∈ Cτ , we have ξν(g1) = ξ
ν
τ , and since g2 is the companion matrix of hℓ,j , we

find from Lemma 4.2.7 that

ξX−αi 7→(n−ℓ)(g2) = θ(det(g2)i) = ωij .

Hence we obtain ξµ(g) = ξ
ν
τωij , as required. □

We can now prove the required property of the matrix St.

Lemma 5.2.10. For n > 2t, the matrix St has full rank and is independent of n.

Proof: To indicate dependence on n, write S(n) for the matrix S given in (5.5) and
S

(n)
t for the corresponding restricted matrix St. Let n > 2t. From Lemma 5.2.9 we

find that all entries in S(n)
t are independent of n, which proves the second statement

of the lemma.
To show that S(n)

t is invertible, we view S
(n)
t as a block matrix, where the

blocks are indexed by Πk and Σℓ for k, ℓ ∈ {0, 1, . . . , t}. Let Bk,ℓ be the block
corresponding to Πk and Σℓ. Lemma 5.2.9 implies that Bk,ℓ is zero for k > ℓ and,
for 0 ≤ k ≤ ℓ, the block Bk,k is the Kronecker product of S(k) and the Vandermonde
matrix (ωij)0≤i,j≤q−2. Since the character table of irreducible characters of every
finite group is invertible, Lemma 5.2.7 implies that S(k) is invertible and so Bk,k is
invertible. Hence S(n)

t is block upper-triangular and all diagonal blocks are invertible.
Therefore S(n)

t itself is invertible. □
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Finally, by combining Lemmas 5.2.7 and 5.2.10, we obtain a proof of Proposi-
tion 5.2.6.

5.2.3 Estimates on some conjugacy class sizes and char-
acter degrees

In this section, we provide bounds on the size of certain conjugacy classes and degrees
of certain irreducible characters of GL(n, q). These are used in the proofs of the
upcoming Lemmas 5.3.2 and 5.4.2, which play a crucial role in the proofs of our main
theorems.

Lemma 5.2.11. Let n and t be positive integers satisfying n > 2t and let σ ∈ Σ≤t.
Then we have

|GL(n, q)|
|Cσ|

≤ qt5
qn.

Proof: From Theorem 4.1.2, with the same notation as in Theorem 4.1.2, we find
that

|GL(n, q)|
|Cσ|

≤
∏
f∈Φ

|σ(f)|∏
i=1

q|f |si(σ(f)′)mi(σ(f)). (5.11)

Since σ ∈ Σ≤t and t < n
2 , there is exactly one polynomial h ∈ Φ of degree at least n−t

in the support of σ. This polynomial must satisfy σ(h) = (1) and the corresponding
factor in (5.11) is at most qn. There are at most t other polynomials in the support
of σ. Each such polynomial f has degree at most t and satisfies |σ(f)| ≤ t and hence
the corresponding factor in (5.11) has a crude upper bound of qt4 . As there are at
most t such factors, the proof is completed. □

Lemma 5.2.12. Let t be a positive integer. Then there is a constant δt such that, for
all sufficiently large n and for all λ ∈ Λn \ Π≤t, we have

χλ(1) ≥ δtq
n(t+1).

Proof: Let λ ∈ Λn \ Π≤t. From Proposition 5.2.13(ii), stated and proved at the end
of this section, with x = 1

2i , we find that

∏n
i=1(qi − 1)
q

1
2 n(n+1)

=
n∏

i=1

(
1 − 1

qi

)
≥

n∏
i=1

(
1 − 1

2i

)
≥

n∏
i=1

4− 1
2i ≥

∞∏
i=1

4− 1
2i = 1

4 .

Using this estimation in the q-analog of the hook-length formula (4.13) gives

1
χλ(1) ≤ 4qN(λ)−M(λ)− 1

2 n(n+1), (5.12)
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where

N(λ) =
∑
f∈Φ

|f |
∑

(i,j)∈λ(f)
hi,j(λ(f)),

M(λ) =
∑
f∈Φ

|f |b(λ(f))

and b and hi,j are as defined in Lemma 4.2.6. Note that for each partition λ, we have

∑
(i,j)∈λ

hi,j(λ) ≤
|λ|∑

k=1
k = 1

2 |λ|(|λ| + 1). (5.13)

First we assume that there exists a polynomial h ∈ Φ such that |h| = 1 and
λ(h)′

1 ≥ n− t. In this case we have

M(λ) ≥ b(λ(h)) ≥
n−t∑
k=1

(i− 1)λ(h)k ≥
n−t−1∑

k=1
k = 1

2(n− t)(n− t− 1)

and from (5.13) together with |λ(f)| ≠ n for all f ∈ Φ and
∑

f∈Φ |f ||λ(f)| = n we
find that

N(λ) ≤ 1
2
∑
f∈Φ

|f ||λ(f)|(|λ(f)| + 1)

≤ n+ 1
2

∑
f∈Φ

|f ||λ(f)|

= n(n+ 1)
2 .

Therefore (5.12) implies that

1
χλ(1) ≤ 4q− 1

2 (n−t)(n−t−1),

so that we have χλ(1) ≥ qn(t+1) for all sufficiently large n by very crude estimates.
Hence we can assume that λ(h)′

1 ≤ n − t − 1 and, since λ /∈ Π≤t, that λ(f)1 ≤
n− t− 1 for all f ∈ Φ satisfying |f | = 1.

In what follows we distinguish between two cases. In the first case we assume
that |λ(f)| ≤ n − t − 1 for all f ∈ Φ satisfying |f | = 1. Let ℓ be the maximum of
|λ(f)| over all f ∈ Φ with |f | = 1, hence ℓ ≤ n− t− 1. By (5.13) we have

N(λ) ≤ 1
2
∑
f∈Φ

|f ||λ(f)|(|λ(f)| + 1)

= n

2 + 1
2
∑
f∈Φ

|f ||λ(f)|2,
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where the last equation holds since
∑

f∈Φ |f ||λ(f)| = n. If ℓ ≤ n
2 , then we have

|λ(f)| ≤ n
2 for all f ∈ Φ and so

N(λ) ≤ n

2 + n

4
∑
f∈Φ

|f ||λ(f)| = n2

4 + n

2 .

From (5.12) and the trivial bound M(λ) ≥ 0, we find that

1
χλ(1) ≤ 4q− n2

4 ,

so that we have χλ(1) ≥ qn(t+1) for all sufficiently large n, again by very crude
estimates. If ℓ > n

2 , and g denoting the polynomial in Φ satisfying |g| = 1 and
|λ(g)| = ℓ, then, by (5.13)

N(λ) ≤ 1
2(
∑
f∈Φ

|f ||λ(f)| +
∑
f∈Φ

|f ||λ(f)|2)

≤ 1
2(n+ ℓ2 + (

∑
f∈Φ
f ̸=g

|f ||λ(f)|)2)

= 1
2(n+ ℓ2 + (n− ℓ)2)

≤ 1
2(n+ (n− t− 1)2 + (t+ 1)2)

= n2 + n

2 − n(t+ 1) + (t+ 1)2,

where we have used that x2 + (n− x)2 is increasing for x ≥ n
2 . Hence in this case we

obtain χλ(1) ≥ 1
4q

n(t+1)−(t+1)2 by (5.12) together with the trivial estimate M(λ) ≥ 0.
In the remaining case we assume that there exists h ∈ Φ such that |h| = 1 and

|λ(h)| ≥ n−t. Recall that we also assume that λ(h)1 ≤ n−t−1 and λ(h)′
1 ≤ n−t−1.

Since N(λ) depends only on the hook lengths of λ(f) for f ∈ Φ, we may replace λ(h)
by its conjugate λ(h)′. Assuming that n is sufficiently large, namely n ≥ (t+ 2)2, we
have λ(h)1 ≥ t+ 2 or λ(h)′

1 ≥ t+ 2 and we assume without loss of generality that
λ(h)1 ≥ t+2. Write λ(h)1 = n−r, so that our assumptions imply t+1 ≤ r ≤ n−t−2.
Then, writing s = |λ(h)|, there exist nonnegative integers cj satisfying

n−r∑
j=1

h1j(λ(h)) =
n−r∑
j=1

(j + cj), where
n−r∑
j=1

cj = s− (n− r).

Hence
n−r∑
j=1

h1j(λ(h)) =
(
n− r + 1

2

)
+ (s− n+ r).
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Application of (5.13) with λ = (λ(h)2, λ(h)3, . . .) gives

∑
(i,j)∈λ(h)

hi,j(λ(h)) ≤
(
s− n+ r + 1

2

)
+
(
n− r + 1

2

)
+ (s− n+ r)

= s2

2 + 3s
2 + n2 − sn− n+ r(r − (2n− s− 1))

≤ s2

2 + 3s
2 + n2 − sn− n+ (t+ 1)((t+ 1) − (2n− s− 1)),

since the term depending on r is maximised for r = t+1 over the interval [t+1, n−t−2].
This last expression equals

s

2 + 1
2s(s− 2(n− t− 2)) + n2 − n+ (t+ 1)((t+ 1) − (2n− 1)).

The second summand is increasing for s ≥ n− t and so is at most 1
2n(n−2(n− t−2)).

Hence we obtain

∑
(i,j)∈λ(h)

hi,j(λ(h)) ≤ s

2 + n2

2 − n(t+ 1) + (t+ 1)(t+ 2).

Invoking (5.13) once more, we obtain

N(λ) ≤
∑

(i,j)∈λ(h)
hij + 1

2
∑
f∈Φ
f ̸=h

|f ||λ(f)|(|λ(h)| + 1).

We have
s

2 + 1
2
∑
f∈Φ
f ̸=h

|f ||λ(f)| = 1
2
∑
f∈Φ

|f ||λ(f)| = n

2

and

1
2
∑
f∈Φ
f ̸=h

|f ||λ(f)|2 ≤ 1
2

∑
f∈Φ
f ̸=h

|f ||λ(f)|


2

≤ t2

2 .

Collecting all terms, we find that

N(λ) ≤ n(n+ 1)
2 − n(t+ 1) + (t+ 1)(t+ 2) + t2

2 .

From (5.12) we then obtain

1
χλ(1) ≤ 4q−n(t+1)+(t+1)(t+2)+ 1

2 t2
,

which completes the proof. □

In the proof of Lemma 5.2.12 we used the following technical results.
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Proposition 5.2.13.

(i) Let s be an integer with n − t ≤ s ≤ n. Then, for n sufficiently large and all
r ∈ [t+ 1, n− t− 2], we have

r(r − (2n− s− 1)) ≤ (t+ 1)((t+ 1) − (2n− s− 1)).

(ii) For all x with 0 ≤ x ≤ 1
2 , we have

1 − x ≥ 4−x.

Proof: Let g(r) = r(r− (2n− s− 1)). We find that g is decreasing on (−∞, 2n−s−1
2 )

and increasing on (2n−s−1
2 ,∞). And since 2n−s−1

2 ∈ [t+ 1, n− t− 2] it is sufficient to
prove g(t+ 1) ≥ g(n− (t+ 2)), which implies (i). From the identity g(2n− s− r) =
g(r) − 2n+ s− 2r and the estimate g(n− (t+ 2)) ≤ g(2n− s− (t+ 2)) we find

g(t+ 1) − g(n− (t+ 2)) ≥ g(t+ 1) − g(2n− s− (t+ 2))

= g(t+ 1) − (g(t+ 2) − 2n+ s− 2(t+ 2)).

Calculating and using the assumption s ≤ n gives that

g(t+ 1) − g(n− (t+ 2)) ≥ 2n > 0,

which establishes (i). To prove (ii), let f be given by f(x) = 1−x−4−x. Computing the
first derivative of f and using elementary calculus gives that f is only monotonically
increasing on

(
−∞, log(log(4))

log(4)

]
. Since f is continuous and f(0) = f(1

2) = 0, it follows
that f(x) ≥ 0 for all 0 ≤ x ≤ 1

2 , which implies (ii). □

5.3 Proofs of the pointwise intersection theo-
rems

In this section, we prove the pointwise intersection results from Theorem 5.1.4 and
Theorem 5.1.6 following the strategy described in Section 5.2.1.

In order to determine the appropriate weight w that appears in (5.3), recall the
definition of the eigenvalues P (λ, σ) given in (4.25) and the definition of the prescribed
extremal eigenvalue η from (5.4). We obtain the following existence result.

Proposition 5.3.1. Let n and t be positive integers satisfying n > 2t. Then there
exists ω ∈ R(Ωn ∩ Σ≤t) such that ω(σ) = 0 for σ(X − 1) = (1t) and

∑
σ∈Ωn∩Σ≤t

w(σ)P (λ, σ) =


1 for λ ∈ Ωn ∩ Π0,0

η for λ ∈ Ωn ∩ Πk,0 and 1 ≤ k ≤ t

0 for λ ∈ Ωn ∩ Πk,i and 0 ≤ k ≤ t and 1 ≤ i ≤ q − 2
(5.14)
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and

|w(σ)| ≤ γt

|Dσ|
for all σ ∈ Ωn ∩ Σ≤t (5.15)

for some constant γt depending only on t.

Proof: From Proposition 5.2.5 we know that Qt has full rank. In view of (4.25)
there exists a unique w ∈ R(Ωn ∩ Σ≤t) satisfying (5.14).

We now show that w(σ) = 0 for the ⌊q/2⌋ + 1 elements σ ∈ Ωn ∩ Σ≤t satisfying
σ(1) = (1t). Without loss of generality we may assume that Ωn contains X − αi and
ht,j for all i, j ∈ {0, 1, . . . , ⌊q/2⌋}. Accordingly we define σj ∈ Σt,j by σj(1) = (1t) for
j = 0, 1, . . . , ⌊q/2⌋. Recall the definition of the character ζ(t,i) from Section 4.3 and
write ζ(t,i)

σ for this character evaluated on the conjugacy class Cσ. We evaluate the
sum

Si =
∑

σ∈Ωn∩Σ≤t

w(σ)|Dσ| (ζ(t,i)
σ + ζ(t,−i)

σ ) (5.16)

in two ways. Since ζ(t,0) is the permutation character on the set of t-tuples of linearly
independent elements of Fn

q , we find by Lemma 4.3.2 that the summand in (5.16) is
nonzero only when the elements of Cσ fix a t-tuple of linearly independent elements
of Fn

q , hence only when σ = σj for some j. By the definition of σj , each element
in Cσj

has determinant αj . Hence by applying Lemma 4.3.2 twice we obtain

ζ(t,i)
σj

= ωijζ(t,0)
σj

= ωijζ(t,0)
σ0

and therefore

Si = 2ζ(t,0)
σ0

⌊q/2⌋∑
j=0

w(σj) |Dσj
| cos

( 2πij
q − 1

)
. (5.17)

On the other hand, since ζ(t,i) + ζ(t,−i) is a real-valued class function, we find from
Lemma 4.4.2 that it is a linear combination of ψλ for λ ∈ Ωn. Hence by Lemma 4.3.3
there exist numbers ni,λ such that

ζ(t,i)
σ + ζ(t,−i)

σ =
∑

λ∈Ωn

λ(X−αi)1≥n−t

ni,λ ψ
λ
σ

and hence

Si =
∑

λ∈Ωn

λ(X−αi)1≥n−t

ni,λ

∑
σ∈Ωn∩Σ≤t

w(σ)|Dσ|ψλ
σ . (5.18)

Since (5.14) holds, we conclude that Si = 0 for each i satisfying 1 ≤ i ≤ ⌊q/2⌋.
Since ζ(t,0) is a permutation character, it contains the trivial character with multiplicity
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1 (this can be seen by Frobenius reciprocity, for example). Hence we have n0,λ = 2
for λ ∈ Ωn satisfying λ(X − 1) = (n). We therefore find from (5.18) and (5.14) that

S0 = 2 + η
∑

λ∈Ωn

n−t≤λ(X−1)1<n

n0,λ ψ
λ(1) = 2 + 2η(ζ(t,0)(1) − 1).

Since ζ(t,0)(1) equals the number of t-tuples of linearly independent elements of Fn
q ,

we have

ζ(t,0)(1) = (qn − 1)(qn − q) · · · (qn − qt−1). (5.19)

Therefore S0 = 0 and so Si = 0 for each i satisfying 0 ≤ i ≤ ⌊q/2⌋. Since each element
of Cσ0

fixes a t-tuple of linearly independent elements of Fn
q , we have ζ(t,0)

σ0 ̸= 0.
Thus (5.17) implies

⌊q/2⌋∑
j=0

w(σj) |Dσj
| cos

( 2πij
q − 1

)
= 0 for each i satisfying 0 ≤ i ≤ ⌊q/2⌋

and, using that (ωij)0≤i,j<q−1 is a Vandermonde matrix, it follows that this in turn
implies that w(σj) = 0 for all j satisfying 0 ≤ j ≤ ⌊q/2⌋, as required.
Now, for each λ ∈ Ωn satisfying n− t ≤ λ(X − 1)1 < n, we find from Lemma 4.3.3
that

|η|ψλ(1) ≤ |η| (ζ(t,0)(1) − 1) = 1,

using (5.19). Since ψλ(1) = χλ(1) = 1 for λ ∈ Π0,0, we conclude from (5.14) that∣∣∣∣∣ ∑
σ∈Ωn∩Σ≤t

w(σ)|Dσ|ψλ
σ

∣∣∣∣∣ ≤ 1 for each λ ∈ Ωn ∩ Π≤t.

By Proposition 5.2.5 all entries of Qt (which are precisely the values of ψλ
σ occurring

in the sum) are independent of n and so are uniformly bounded by some value only
depending on t. The same also holds for the inverse of Qt, which establishes (5.15).□

In what follows we treat the remaining eigenvalues.

Lemma 5.3.2. Let n and t be positive integers with n > 2t and let w ∈ R(Ωn ∩ Σ≤t)
be such that

|w(σ)| ≤ γt

|Dσ|
for all σ ∈ Ωn ∩ Σ≤t

for some constant γt depending only on t. Then∣∣∣∣∣ ∑
σ∈Ωn∩Σ≤t

w(σ)P (λ, σ)
∣∣∣∣∣ < |η| for all λ ∈ Ωn \ Π≤t,

provided that n is sufficiently large compared to t.
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For the proof of Lemma 5.3.2, we recall from Section 1.1 that the inner product of
class functions χ and ψ of GL(n, q) is given by

⟨χ, ψ⟩ = 1
| GL(n, q)|

∑
g∈GL(n,q)

χ(g)ψ(g). (5.20)

Proof (of Lemma 5.3.2): By the definition (4.25) of P (λ, σ) and (4.23) we have

P (λ, σ) = | GL(n, q)|
ψλ(1) ⟨ψλ, 1Dσ ⟩. (5.21)

Since χλ is irreducible, we have ⟨ψλ, ψλ⟩ = 1 or 2 and therefore we obtain, by an
application of the Cauchy-Schwarz inequality,

|⟨ψλ, 1Dσ ⟩| ≤
√

2 ⟨1Dσ , 1Dσ ⟩ =
√

2|Dσ|
|GL(n, q)| .

From (5.21) and our hypothesis on w we then find that∣∣∣∣∣ ∑
σ∈Ωn∩Σ≤t

w(σ)P (λ, σ)
∣∣∣∣∣ ≤

∑
σ∈Ωn∩Σ≤t

|w(σ)| |P (λ, σ)|

≤
∑

σ∈Ωn∩Σ≤t

γt

|Dσ|
|GL(n, q)|
ψλ(1)

√
2|Dσ|

|GL(n, q)|

≤ γt |Σ≤t|
ψλ(1) max

σ∈Ωn∩Σ≤t

√
2|GL(n, q)|

|Dσ|

≤ γt |Σ≤t|
χλ(1) max

σ∈Σ≤t

√
2|GL(n, q)|

|Cσ|
.

Note that |Σ≤t| is independent of n. Using Lemmas 5.2.11 and 5.2.12 we find that
there is a constant γ′

t, depending only on t, such that∣∣∣∣∣ ∑
σ∈Ωn∩Σ≤t

w(σ)P (λ, σ)
∣∣∣∣∣ ≤ γ′

t

qn/2
1
qnt

for all λ ∈ Ωn \ Π≤t and all sufficiently large n. The right hand side is certainly
strictly smaller than 1/qnt for all sufficiently large n and the proof is completed by
noting that |η| > 1/qnt. □

Recall from Section 4.4.2 that Vλ is the column span of Fλ over the reals. We
define

Ut =
∑

λ∈Ωn

λ(X−1)1≥n−t

Vλ.

We note that, due to Lemma 4.4.3, this is in fact a direct sum. We obtain the
following.
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Theorem 5.3.3. Let t be a positive integer. Then, for all sufficiently large n, the
following holds.

(i) Every t-intersecting set Y in GL(n, q) satisfies

|Y | ≤
n−1∏
i=t

(qn − qi)

and, in case of equality, we have 1Y ∈ Ut.

(ii) Every pair of t-cross-intersecting sets Y, Z in GL(n, q) satisfies

√
|Y | · |Z| ≤

n−1∏
i=t

(qn − qi)

and, in case of equality, we have 1Y ,1Z ∈ Ut.

Proof: As explained at the beginning of Section 5.2.1, we apply Theorem 2.3.11 to
the graph with adjacency matrix ∑

σ∈Ωn∩Σ≤t

σ(X−1) ̸=(1t)

Bσ

and the |Dσ|-regular spanning subgraphs Γσ with adjacency matrix Bσ for those
σ ∈ Ωn ∩ Σ≤t satisfying σ(X − 1) ̸= (1t). Since none of the elements in Dσ for such
σ fix a t-space pointwise, every t-intersecting set in GL(n, q) is an independent set in
this graph. Recall from Lemma 4.4.3 that every element of Vλ is an eigenvector of Bσ

with eigenvalue P (λ, σ). Let w ∈ R(Ωn ∩Σ≤t) be the vector given by Proposition 5.3.1
and write

P (λ) =
∑

σ∈Ωn∩Σ≤t

σ(X−1) ̸=(1t)

w(σ)P (λ, σ).

Proposition 5.3.1 and Lemma 5.3.2 imply that, for all sufficiently large n, we have

P (λ) =

1 for λ(X − 1)1 = n

η for n− t ≤ λ(X − 1)1 < n

and |P (λ)| < |η| for λ(X − 1)1 < n− t. Hence, writing λ0 for X − 1 7→ (n), we have
P (λ0) = 1 and

η = min
λ ̸=λ0

P (λ) and |η| = max
λ ̸=λ0

|P (λ)|.

Then the required result follows from Theorem 2.3.11 and the decomposition of
R(GL(n, q)) given in Lemma 4.4.3. □
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Our proofs of Theorems 5.1.4 and 5.1.6 are completed by the following result.

Theorem 5.3.4. Ut is spanned by the characteristic vectors of t-cosets.

Proof: Let At be the set of t-tuples of linearly independent elements of Fn
q . Define

the incidence matrix Mt ∈ C(GL(n, q),At×At) of elements of GL(n, q) versus t-cosets
by

Mt(x, (u, v)) =

1 for xu = v

0 otherwise,

so that the columns of Mt are precisely the characteristic vectors of the t-cosets. Let
ζt = ζ(t,0) be the permutation character of GL(n, q) on the set of t-tuples of linearly
independent elements of Fn

q from Section 4.3. We define Ct ∈ C(GL(n, q),GL(n, q))
by

Ct(x, y) = ζt(x−1y).

Denoting by 1xu=v the indicator of the event that x ∈ GL(n, q) maps u to v, we have

(MtM
T
t )(x, y) =

∑
u,v

Mt(x, (u, v))Mt(y, (u, v))

=
∑
u,v

1xu=v1yu=v

=
∑

u

1xu=yu

=
∑

u

1x−1yu=u

= ζt(x−1y) = Ct(x, y).

Hence we have Ct = MtM
T
t and so the column span of Ct equals the column span of

Mt or equivalently the span of the characteristic vectors of the t-cosets.
From Lemma 4.3.3 we have

ζt =
∑

λ∈Λn

λ(X−1)1≥n−t

mλχ
λ

for some integers mλ satisfying mλ ̸= 0 for each λ occurring in the summation. Since
ζt is real-valued, we find from Lemma 4.4.2 that mλ∗ = mλ and therefore we have

ζt =
∑

λ∈Ωn

λ(X−1)1≥n−t

mλψ
λ. (5.22)
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Lemma 4.2.6 implies that χλ∗(1) = χλ(1). We therefore obtain from (4.24) and
Example 2.1.13 that

Fλ(x, y) = χλ(1)
|GL(n, q)|ψ

λ(x−1y)

and thus we find from (5.22) that

Ct = |GL(n, q)|
∑

λ∈Ωn

λ(X−1)1≥n−t

mλ

χλ(1)Fλ (5.23)

Hence the column span of Ct is contained in Ut. Conversely, let v be a column of
Fκ for some κ ∈ Ωn satisfying κ(X − 1)1 ≥ n− t. Since Fλ is idempotent, we have
Fλv = v for κ = λ and Lemma 4.4.3 implies Fλv = 0 for κ ̸= λ. Hence from (5.23),
we find that

Ctv = |GL(n, q)|
mκ

χκ(1)v,

and, since mκ ̸= 0, we conclude that v is in the column span of Ct. This completes
the proof. □

5.4 Proofs of the spacewise intersection theo-
rems

The proofs of the spacewise intersection and spacewise cross-intersection results from
Theorems 5.1.9 and 5.1.11, follow along similar lines as those in Section 5.3.

Recall from Section 4.3, that the character ξX−17→(n−t,t) is the permutation character
of GL(n, q) on the set of t-spaces of Fn

q . From Lemma 4.3.1 we obtain the decomposition
of this permutation character, namely

ξX−17→(n−t,t) =
t∑

s=0
χX−17→(n−s,s). (5.24)

Recall from (2.1) that the q-binomial coefficient
[n
k

]
q

gives the number of k-dimensional
subspaces of Fn

q . Then we have

ξX−17→(n−t,t)(1) =
[
n

t

]
q

, (5.25)

and so (5.24) implies that

χX−1 7→(n−s,s)(1) =
[
n

s

]
q

−
[

n

s− 1

]
q

. (5.26)
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Also note that ψX−17→λ = χX−17→λ for all partitions λ. Throughout this section, we
define

ε = − 1[n
t

]
q

− 1 ,

which will be our prescribed extremal eigenvalue.
We begin with the following counterpart of Proposition 5.3.1.

Proposition 5.4.1. Let n and t be positive integers satisfying n > 2t. Then there
exists w ∈ R(Ωn ∩ Σ≤t−1) such that

∑
σ∈Ωn∩Σ≤t−1

w(σ)P (λ, σ) =



1 for λ(X − 1) = (n)

ε for λ(X − 1) = (n− s, s) with 1 ≤ s ≤ t

0 for λ ∈ Ωn ∩ Π≤t−1, where

λ(X − 1) ̸= (n− s, s) with 0 ≤ s ≤ t− 1

(5.27)

and
|w(σ)| ≤ γt

|Dσ|
for all σ ∈ Ωn ∩ Σ≤t−1 (5.28)

for some constant γt depending only on t.

Proof: From Proposition 5.2.5 we know that Qt−1 has full rank. In view of (4.25)
there exists a unique w ∈ R(Ωn ∩ Σ≤t−1) satisfying (5.27) except for λ of the form
λ(X − 1) = (n− t, t).

Next, we show that (5.27) also holds when λ(X − 1) = (n− t, t). By Lemma 5.2.9
we have ξX−17→(n−t,t)

σ = 0 for each σ ∈ Σ≤t−1. Hence, by using (5.24), we have

0 =
∑

σ∈Ωn∩Σ≤t−1

w(σ)|Dσ|ξX−17→(n−t,t)
σ

=
t∑

s=0

∑
σ∈Ωn∩Σ≤t−1

w(σ)|Dσ|χX−1 7→(n−s,s)
σ . (5.29)

Since (5.27) holds with the only exception λ(X − 1) = (n− t, t), the inner sum equals
1 for s = 0 and εχX−17→(n−s,s)(1) for each s satisfying 1 ≤ s ≤ t− 1. Assuming that
this is true also for s = t and using (5.26), the right hand side of (5.29) is indeed

1 + ε
t∑

s=1

([
n

s

]
q

−
[

n

s− 1

]
q

)
= 1 + ε

([
n

t

]
q

− 1
)

= 0.

Hence (5.27) also holds when λ(X − 1) = (n− t, t).
It remains to prove (5.28). For each s satisfying 1 ≤ s ≤ t, we find from (5.27)

that
|ε|χX−17→(n−s,s)(1) ≤ |ε| (ξX−17→(n−t,t)(1) − 1) = 1,
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using (5.25). Since χX−17→(n)(1) = 1, we conclude from (5.27) that∣∣∣∣∣ ∑
σ∈Ωn∩Σ≤t−1

w(σ)|Dσ|ψλ
σ

∣∣∣∣∣ ≤ 1 for each λ ∈ Ωn ∩ Π≤t−1.

By Proposition 5.2.5 all entries of Qt−1 are independent of n and so are uniformly
bounded by some value only depending on t. The same also holds for the inverse of
Qt, which establishes (5.28). □

The bound (5.28) and Lemma 5.3.2 ensure that the right hand side of (5.27) is
small in modulus for each λ ∈ Ωn \ Πt. It therefore remains to deal with the case that
λ ∈ Ωn ∩ Πt except for λ ∈ Ωn given by λ(X − 1) = (n− t, t), which is the subject of
the following lemma.

Lemma 5.4.2. Let w ∈ R(Ωn ∩ Σ≤t−1) be given in Proposition 5.4.1 (so that n > 2t).
Then, for all λ ∈ Ωn ∩ Πt with λ(X − 1) ̸= (n− t, t), we have∣∣∣∣ ∑

σ∈Ωn∩Σ≤t−1

w(σ)P (λ, σ)
∣∣∣∣ < |ε|,

provided that n is sufficiently large compared to t.

Proof: By slight abuse of notation, we view w as an element of R(GL(n, q)) by
setting w(x) = 0 if x ̸∈ Ωn ∩ Σ≤t−1 and w(x) = w(σ) if x ∈ Ωn ∩ Σ≤t−1 and x ∈ Dσ.
Recalling the inner product on class functions of GL(n, q) from (5.20), the statement
of the lemma is equivalent to

|GL(n, q)|
ψλ(1) |⟨w,ψλ⟩| < |ε| (5.30)

for all λ ∈ Ωn ∩ Πt with λ(X − 1) ̸= (n − t, t), provided that n is sufficiently large
compared to t.

We pick λ ∈ Ωn ∩ Πt such that λ(X − 1) ̸= (n− t, t). Then λ(X − αi)1 = n− t

for some i. First assume that |λ(X − 1)| ≠ n. Denoting by Re(x) the real part of a
complex number x, we find from Lemma 4.4.2 and (4.12) that

1
2 |⟨w,ψλ⟩| ≤ |Re(⟨w,χλ⟩)| =

∣∣∣∣ ∑
µ∼λ

Hµλ Re(⟨w, ξµ⟩)
∣∣∣∣.

Lemma 5.2.9 implies that ξµ
σ = 0 for each µ /∈ Π≤t−1 and each σ ∈ Σ≤t−1. For µ ∈ Λn,

we have

Re(⟨w, ξµ⟩) =
∑
κ∼µ

Kκµ Re(⟨w,χκ⟩).
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By (1.3), the summation can be taken over all κ such that κ(X − αi) ⊵ µ(X − αi).
Hence, if µ ∈ Π≤t−1, then κ ∈ Π≤t−1. By the assumed properties of w given
in Proposition 5.4.1, we have ⟨w,ψκ⟩ = 0 for each κ ∈ Ωn ∩ Π≤t−1 satisfying
|κ(X − 1)| ≠ n. Since |λ(X − 1)| ≠ n we conclude that ⟨w,ψλ⟩ = 0.

Now assume that |λ(X − 1)| = n and write λ(X − 1) = λ. From (4.8) and (4.9)
we have

⟨w,ψX−17→λ⟩ =
∑
µ⊵λ

µ1>n−t

Hµλ⟨w, ξX−17→µ⟩,

since by Lemma 5.2.9 in the case µ1 = n− t we have ξX−1 7→µ
σ = 0 for each σ ∈ Σ≤t−1.

From (4.6) and (1.3) we find that

⟨w,ψX−17→λ⟩ =
∑
µ⊵λ

µ1>n−t

Hµλ

∑
κ⊵µ

Kκµ ⟨w,ψX−17→κ⟩

= 1
|GL(n, q)|

∑
µ⊵λ

µ1>n−t

Hµλ +
∑
µ⊵λ

µ1>n−t

Hµλ

∑
(n)▷κ⊵µ

Kκµ ⟨w,ψX−17→κ⟩,

(5.31)

using that |GL(n, q)|⟨w,ψX−17→(n)⟩ = 1 by the assumed properties of w given in
Proposition 5.4.1 and K(n)µ = 1 for each partition µ of n. We first show that the first
sum is zero. We have∑

µ⊵λ
µ1>n−t

Hµλ =
∑
µ⊵λ

K(n)µHµλ −
∑
µ⊵λ

K(n−t,t)µHµλ, (5.32)

using that λ1 = n− t and that, for each partition µ of n, we have

K(n−t,t)µ =

1 for µ1 = n− t

0 for µ1 > n− t.

It holds that ∑
µ⊵λ

KκµHµλ = δκλ. (5.33)

Since λ is neither (n) nor (n− t, t), we conclude that (5.32) equals zero. Hence (5.31)
becomes

⟨w,ψX−17→λ⟩ =
∑
µ⊵λ

µ1>n−t

Hµλ

∑
(n)▷κ⊵µ

Kκµ ⟨w,ψX−17→κ⟩. (5.34)

By the assumed properties of w given in Proposition 5.4.1, the inner summand is
nonzero only when κ = (n− s, s) for some s satisfying 1 ≤ s ≤ t− 1. In particular,
for κ of this form, Proposition 5.4.1 and (5.26) give

|GL(n, q)| |⟨w,ψX−17→κ⟩| =

[n
s

]
q

−
[ n
s−1
]
q[n

t

]
q

− 1 ≤

[ n
t−1
]
q[n

t

]
q

= qt − 1
qn−t+1 − 1 ≤ q2t−1

qn
.
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By Lemma 5.2.7 the Kostka numbers Kκµ occurring in (5.34) are independent of n and
it follows from (5.33) that the numbers Hµλ occurring in (5.34) are also independent
of n. Moreover the number of summands in (5.34) is also independent of n. From
Lemma 5.2.12, we have ψX−17→λ(1) ≥ δt−1 q

nt for some constant δt−1 only depending
on t. Hence there is a constant ct, depending only on t, such that

|GL(n, q)|
ψX−17→λ(1) |⟨w,ψX−1 7→λ⟩| ≤ ct

qn(t+1) .

Since |ε| > 1/qnt, this shows that (5.30) holds provided that n is sufficiently large
compared to t. □

Recall from Section 4.4.2 that Vλ is the column span over the reals of Fλ. We
define

Wt =
∑

λ∈Ωn

λ(X−1)⊵(n−t,t)

Vλ.

We obtain the following.

Theorem 5.4.3. Let t be a positive integer. Then, for all sufficiently large n, the
following holds.

(i) Every t-space-intersecting set Y in GL(n, q) satisfies

|Y | ≤
[

t−1∏
i=0

(qt − qi)
][

n−1∏
i=t

(qn − qi)
]

and, in case of equality, we have 1Y ∈ Wt.

(ii) Every pair of t-space-cross-intersecting sets Y,Z in GL(n, q) satisfies

√
|Y | · |Z| ≤

[
t−1∏
i=0

(qt − qi)
][

n−1∏
i=t

(qn − qi)
]

and, in case of equality, we have 1Y ,1Z ∈ Wt.

Proof: We apply Theorem 2.3.11 to the graph with adjacency matrix∑
σ∈Ωn∩Σ≤t−1

Bσ

and the |Dσ|-regular spanning subgraphs with adjacency matrices Bσ for those
σ ∈ Ωn ∩ Σ≤t−1. Every t-space-intersecting set in GL(n, q) is an independent set in
this graph. Let w ∈ R(Ωn ∩ Σ≤t−1) be given by Proposition 5.4.1 and write

P (λ) =
∑

σ∈Ωn∩Σ≤t−1

w(σ)P (λ, σ).
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Proposition 5.4.1 and Lemmas 5.3.2 and 5.4.2 imply that, for all sufficiently large n,
we have

P (λ) =

1 for λ(X − 1) = (n)

ε for λ(X − 1) = (n− s, s) with 1 ≤ s ≤ t

and |P (λ)| < |ε| for λ(X − 1) ̸= (n− s, s) with some s satisfying 0 ≤ s ≤ t. Hence,
writing λ0 for X − 1 7→ (n), we have P (λ0) = 1 and

ε = min
λ̸=λ0

P (λ) and |ε| = max
λ ̸=λ0

|P (λ)|.

Then the required result follows from Theorem 2.3.11 and the decomposition of
R(GL(n, q)) given in Lemma 4.4.3. □

The proof of Theorems 5.1.9 and 5.1.11 is completed by the following result.

Theorem 5.4.4. Wt is spanned by the characteristic vectors of cosets of stabilisers
of t-spaces of Fn

q .

Proof: The proof is almost identical to that of Theorem 5.3.4 with At replaced by
the set of t-spaces of Fn

q and ζt replaced by the permutation character ξX−17→(n−t,t)

of GL(n, q) on the set of t-spaces of Fn
q and the decomposition of ζt replaced by the

decomposition of ξX−17→(n−t,t) given in (5.24). □

5.5 Open Problems
In Theorem 5.1.9 it is shown that the characteristic vector of a t-space-intersecting
set of maximal size is spanned by the characteristic vectors of cosets of stabilisers of
t-spaces. This only partially characterises the extremal case.

In [MS11] Meagher and Spiga conjectured that the only 1-space-intersecting sets
in GL(n, q) of maximal size are cosets of stabilisers of 1-spaces or cosets of stabilisers
of (n − 1)-spaces. In the same paper [MS11] they proved the conjecture for n = 2.
In [MS14] the same authors proved the conjecture for n = 3 and in [Spi19] it was
proven by Spiga for n ≥ 4. Thus, in [ES23], we made the following conjectures about
t-space-(cross-)intersecting sets.

Conjecture 5.5.1. Let t be a positive integer and let Y be a t-space-intersecting set
in GL(n, q) of maximal size, meaning that its size meets the bound in Theorem 5.1.9.
If n is sufficiently large compared to t, then Y is a coset of the stabiliser of a t-space
or a coset of the stabiliser of an (n− t)-space.
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Conjecture 5.5.2. Let t be a positive integer and let Y and Z be t-space-cross-
intersecting subsets of GL(n, q) of maximal size, meaning that their sizes meet the
bound in Theorem 5.1.11. If n is sufficiently large compared to t, then Y = Z and Y
is a coset of the stabiliser of a t-space or a coset of the stabiliser of an (n− t)-space.

Our approach to prove the Theorems 5.1.4, 5.1.6, 5.1.9, and 5.1.11, heavily relies
on estimating certain character values and sizes of the conjugacy classes of the finite
general linear group. Since our estimates are very rough, the question arises as to how
small n can be compared to t.

As pointed out in Section 3.2, for the symmetric group Keller, Lifshitz, Minzer, and
Sheinfeld [KLMS24] proved that there exists a constant c with the following property.
For all n > ct the results on t-intersecting sets of permutations in [EFP11] (see also
Section 3.2) hold. This motivates the following open problem for our q-analog setting.

Open Problem 5.5.3. Find sharp bounds on the sizes of n in the Theorems 5.1.4,
5.1.6, 5.1.9, and 5.1.11.
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6 Transitive subsets of finite
general linear groups

Monte Bianco, 4805m

This chapter involves the study of q-analog problems of the ones for the symmetric
group that we collected in Section 3.4. Here we replace the symmetric group Sn by
the finite general linear group GL(n, q). We study certain designs in the conjugacy
class scheme of GL(n, q) and prove that these designs are transitive sets in GL(n, q).

The results presented in this chapter were published in [ES24].

6.1 Introduction
Our starting point is the following q-analog of the Livingstone-Wagner theorem from
Theorem 3.4.1.

Theorem 6.1.1 ([Per72]). Let G ≤ GL(n, q) be a subgroup that is transitive on
t-dimensional subspaces of Fn

q for some integer t satisfying 1 ≤ t ≤ n/2. Then G is
also transitive on (t− 1)-dimensional subspaces of Fn

q .

We generalise this result in two ways. Instead of subgroups of GL(n, q) we study
subsets of GL(n, q) that act transitively. In general the notion of a transitive subset
is given as follows (see also Section 3.4 for the definition of a transitive subset of
permutations).

Definition 6.1.2. Let Ω be a set on which the group G acts. We say that a subset
Y of G is transitive on Ω if there is a constant r such that the following holds: for all
a, b ∈ Ω, there are exactly r elements g ∈ Y such that ga = b. If r = 1, then we call Y
sharply transitive on Ω.
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If Y is a subgroup of the group G, then this notion coincides with that of a
transitive group action.

Recall from Section 4.3 the Definitions (4.17) and 4.3.5 of the set Σn,q and of an
α-flag, with α ∈ Σn,q, respectively.

Our second generalisation of Theorem 6.1.1 replaces subspaces by α-flags, which
are generalisations of subspaces of Fn

q and bases of t-dimensional subspaces of Fn
q .

For a composition σ of n, recall from Definition 4.3.4 the notion of a σ-flag of Fn
q .

The following is an example of the results we obtain in this chapter.

Theorem 6.1.3. Let σ be a composition of n and let Y ⊆ GL(n, q) be transitive on
the set of σ-flags. Then Y is also transitive on the set of τ -flags for all compositions τ
satisfying τ̃ ⊵ σ̃, where σ̃ and τ̃ are the partitions obtained from σ and τ , respectively,
by rearranging the parts.

This theorem can be seen as a q-analog of Corollary 3.4.4. In fact we obtain a more
general result, namely a characterisation of subsets of GL(n, q) acting transitively on
the set of α-flags.

This chapter is organised as follows. In Section 6.2 we characterise subsets of
GL(n, q) acting transitively on the set of α-flags in terms of T -designs in the corre-
sponding association scheme. This gives us structural results for transitive subsets
of GL(n, q) leading to results like Theorem 6.1.3. In Section 6.3 we study transitive
subgroups of GL(n, q). In Section 6.4 we study the connection of transitive sets and
so-called (σ, τ)-cliques, where the latter turn out to be cliques in the corresponding
association scheme. This study allows us to establish non-existence results for sharply
transitive sets in GL(n, q) for certain cases. Then, in Section 6.5, for all fixed t, we
show the existence of small nontrivial subsets of GL(n, q) that are transitive on the
set of t-tuples of linearly independent vectors of Fn

q . This also shows the existence
of small nontrivial subsets of GL(n, q) that are transitive on α-flags. In Section 6.6
we discuss connections between transitive subsets and cliques in GL(n, q) on the one
hand and certain orthogonal polynomials, namely the Al-Salam-Carlitz polynomials,
on the other hand.

6.2 Designs in finite general linear groups
In this section, we characterise transitive sets in GL(n, q) in terms of Delsarte T -designs
in the conjugacy class scheme arising from GL(n, q).

First, we provide an example of subsets of GL(n, q) that are sharply transitive on
((1, n− 1), I)-flags for I = {1} and I = ∅, using a representation over a finite field.
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Remark 6.2.1. Although we have only introduced representations over the complex
numbers in Chapter 1, it is also possible to define representations over finite fields.
The definition is as expected from Definition 1.1.3. For an example of a representation
over Fq, we take the companion matrix C of an irreducible polynomial over Fq of
degree n. Then Fq[C] is a representation of Fqn over Fq.

Example 6.2.2. Let Fq[C] be given as in Remark 6.2.1. Then the multiplicative
group Fq[C]∗ of Fq[C] is sharply transitive on Fn

q \ {0}. Hence Fq[C]∗ is sharply
transitive on ((1, n− 1), {1})-flags. Of course Fq[C]∗ is a cyclic subgroup of GL(n, q),
known as the Singer cycle. Moreover, Fq[C]∗ contains a cyclic subgroup of order
(qn − 1)/(q − 1) that is sharply transitive on the one-dimensional subspaces of Fn

q .
Hence this subgroup is sharply transitive on ((1, n− 1),∅)-flags.

Recall from Definition 4.3.6 the type of an α ∈ Σn,q. The set of all possible types
of elements in Σn,q is denoted by Θn,q, namely

Θn,q = {type(α) : α ∈ Σn,q}.

Hence Θn,q contains all pairs of partitions (σ, τ) such that |σ| + |τ | = n and all parts
of τ are strictly larger than 1 for q = 2.

For a partition valued function λ ∈ Λn, recall the type of λ from Definition 4.3.7.
Moreover, we recall from Definition 4.3.8 that the partial order ⪯ is an order on
pairs of partitions, with reverse refinement in the first and dominance in the second
coordinate.

The following result gives a combinatorial interpretation of a Delsarte T -design in
the finite general linear group, or more precisely in the conjugacy class scheme arising
from the finite general linear group.

Theorem 6.2.3. Let Y be a subset of GL(n, q) with dual distribution (bλ) and let
α ∈ Σn,q. Then Y is transitive on the set of α-flags if and only if

bλ = 0 for all λ ∈ Λn satisfying type(α) ⪯ type(λ) ≺ (∅, (n)).

In other words, a subset of GL(n, q) is transitive on the set of α-flags if and only
if it is a T -design with T = {λ ∈ Λn : type(α) ⪯ type(λ) ≺ (∅, (n))}. Thus, from
Theorem 6.2.3 we obtain two characterisations. On the one hand we have an algebraic
characterisation for transitive sets, on the other hand a combinatorial interpretation
for the very algebraic object of a Delsarte T -design.

Before proving Theorem 6.2.3 we discuss some of its consequences. The first one is
that transitivity on α-flags only depends on the type of α.
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6 Transitive subsets of finite general linear groups

Corollary 6.2.4. Let α, β ∈ Σn,q be of the same type and let Y be a subset of GL(n, q).
Then Y is transitive on the set of α-flags if and only if Y is transitive on the set of
β-flags.

Corollary 6.2.4 motivates the following definition.

Definition 6.2.5. For (σ, τ) ∈ Θn,q, a subset Y of GL(n, q) is (σ, τ)-transitive if Y is
transitive on the set of α-flags for some α ∈ Σn,q of type (σ, τ).

We note that in Example 6.2.2 we have (σ, τ)-transitive sets for (σ, τ) equal to
((1), (n− 1)) and (∅, (n− 1, 1)). We may now restate Theorem 6.2.3 as follows.

Corollary 6.2.6. Let Y be a subset of GL(n, q) with dual distribution (bλ) and let
(σ, τ) ∈ Θn,q. Then Y is (σ, τ)-transitive if and only if

bλ = 0 for all λ ∈ Λn satisfying (σ, τ) ⪯ type(λ) ≺ (∅, (n)).

For every partition τ of n, a (∅, τ)-transitive set is just a subset of GL(n, q) that
is transitive on τ -flags. In this case, Corollary 6.2.6 specialises to the following perfect
q-analog of the corresponding result for the symmetric group from Theorem 3.4.3.

Corollary 6.2.7. Let Y be a subset of GL(n, q) with dual distribution (bλ) and let τ
be a partition of n. Then Y is (∅, τ)-transitive if and only if

bλ = 0 for all λ ∈ Λn satisfying τ ⊴ λ(X − 1) ◁ (n).

Another immediate consequence of Theorem 6.2.3 is the following.

Corollary 6.2.8. Let Y be a subset of GL(n, q) and suppose that Y is (σ, τ)-transitive
for some (σ, τ) ∈ Θn,q. Then Y is also (σ̂, τ̂)-transitive for all (σ̂, τ̂) ∈ Θn,q satisfying
(σ, τ) ⪯ (σ̂, τ̂).

From this corollary Theorem 6.1.3 arises as a special case.

In the remainder of this section we give the proof of Theorem 6.2.3. A key ingredi-
ent is the decomposition of the permutation character of GL(n, q) on the set of α-flags
from Lemma 4.3.9.

For α ∈ Σn,q, let Fα be the set of α-flags and define Mα ∈ C(GL(n, q),Fα × Fα)
to be the incidence matrix of elements of GL(n, q) versus left cosets of stabilisers of
α-flags by

Mα(g, (u, v)) =

1 for gu = v

0 otherwise.
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6.2 Designs in finite general linear groups

From now on, we use the notation from Section 4.4.1 for the conjugacy class scheme
of the finite general linear group GL(n, q). Recall from that section, for example, that
the pairwise orthogonal idempotent matrices of this scheme are denoted by Eλ.

For (σ, τ) ∈ Θn,q, we define

U(σ,τ) =
∑

λ∈Λn

(σ,τ)⪯type(λ)

colsp(Eλ), (6.1)

where colsp(Eλ) is the column space of the matrix Eλ. We note that the sum given in
(6.1) is, in fact, direct because the matrices Eλ of an association scheme are pairwise
orthogonal.

Corollary 6.2.9. The column space of Mα equals Utype(α).

The proof of this Corollary is almost identical to the proof of Theorem 5.3.4. But
since we are not working with the symmetrisation of the conjugacy class scheme arising
from GL(n, q), we give the proof here for the sake of completeness. However, it is less
detailed.

Proof: Let ξ be the permutation character of GL(n, q) on the set of α-flags and
define Cα ∈ (C(GL(n, q),C(GL(n, q)) by Cα(x, y) = ξ(x−1y). Then it follows that

MαM
T
α = Cα.

Hence the column space of Cα equals the column space of Mα. From Lemma 4.3.9
and (4.20) we obtain

Cα = | GL(n, q)|
∑

λ∈Λn

type(α)⪯type(λ)

mλ

χλ(1)Eλ. (6.2)

Hence the column space of Cα is contained in Utype(α). Conversely, let v be a column
of Eκ for some κ ∈ Λn satisfying type(κ) ⪰ type(α). Since the Eλ are pairwise
orthogonal and idempotent, from (6.2) we find that

Cαv = | GL(n, q)|
mκ

χκ(1)v,

and, since mκ ̸= 0, we conclude that v is in the column space of Cα, as required. □

Now, we are in a position to complete the proof of Theorem 6.2.3.

Proof (of Theorem 6.2.3): Note that Y is transitive on α-flags if and only if

1
|Y |

MT
α 1Y = 1

| GL(n, q)|M
T
α 1GL(n,q), (6.3)
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6 Transitive subsets of finite general linear groups

hence, if and only if
1Y − |Y |

| GL(n, q)|1GL(n,q)

is orthogonal to the column space of Mα. In view of the orthogonal decomposition of
this space given in Corollary 6.2.9 and the fact that VX−17→(n) is spanned by 1GL(n,q),
we conclude that Y is transitive on the set of α-flags if and only if 1Y is orthogonal
to Vλ for each λ ∈ Λn satisfying type(α) ⪯ type(λ) ≺ (∅, (n)). From Remark 2.2.8 it
follows that this is equivalent to the statement of the theorem. □

Remark 6.2.10. From (6.3) it follows that a subset Y of GL(n, q) is transitive on
α-flags if and only if

1
|Y |

∑
x∈Y

1xF =F ′ = 1
| GL(n, q)|

∑
x∈GL(n,q)

1xF =F ′

holds for all α-flags F and F ′ of Fn
q , where 1xF =F ′ is the indicator of the event that

x maps F to F ′. As a consequence, we can understand a subset of GL(n, q) that is
transitive on α-flags as a set that locally approximates GL(n, q).

6.3 Transitive subgroups
In this section we classify subgroups G of GL(n, q) that are (σ, τ)-transitive. These
results are essentially known. If G is ((1), (n−1))-transitive or (∅, (n−1, 1))-transitive
or ((12),∅) if q = 2, then G is transitive on 1-spaces of Fn

q . Such subgroups have been
classified by Hering [Her74], see also [GGP23, Table 3.1] for a nice summary. However,
as we always have examples of sharply (σ, τ)-transitive subgroups in these cases (see
Example 6.2.2), we shall henceforth assume that (σ, τ) is different from ((1), (n− 1))
and (∅, (n− 1, 1)) and also different from ((12),∅) if q = 2.

In what follows SL(n, q) denotes the finite special linear group consisting of all
n × n matrices with entries in the finite field Fq having determinant 1. Moreover,
by ΓL(n, q) we denote the finite general semilinear group which is consisting of all
invertible semilinear transformations Fn

q → Fn
q .

First we consider the case n ≥ 4. By Corollary 6.2.8, G is also (∅, (n − 2, 2))-
transitive, namely transitive on 2-spaces of Fn

q . Kantor [Kan73] proved that G is either
doubly transitive on 1-spaces of Fn

q or G ∼= ΓL(1, 25) as a subgroup of GL(5, 2), which
acts sharply transitive on 2-spaces of F5

2. Cameron and Kantor [CK79] proved that,
if G is doubly transitive on 1-spaces of Fn

q , then G either contains SL(n, q), in which
case G is ((n− 1), (1))-transitive, or G ∼= A7 as a subgroup of GL(4, 2). In fact it is
computationally readily verified that the latter example is sharply ((31),∅)-transitive.

Next we consider the case n = 3. Then by Corollary 6.2.8, G is also (∅, (13))-
transitive when q > 2 or ((13),∅)-transitive when q = 2. That is, G is transitive on
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6.4 Transitive sets and cliques

(13)-flags in F3
q , typically just called flags in the literature. Kantor [Kan87] proved that

G either contains SL(n, q) or G acts sharply transitive on flags in F3
q . Higman and

McLaughlin [HM61] showed that in the latter case the only possibility is G ∼= ΓL(1, 23)
as a subgroup of GL(3, 2).

Now we consider the case n = 2. Then only the case that G is ((12),∅)-transitive
and q > 2 is left. The number of ((12),∅)-flags is (q2 − 1)(q − 1) and the order of
G must be a multiple of this number. Since |GL(2, q)| = (q2 − 1)(q − 1)q, the index
of G in GL(2, q) must therefore be a divisor of q. Noting that G is transitive on the
1-spaces of F2

q , an inspection of [GGP23, Thm. 3.1] reveals that the only possible cases
are G ∼= ΓL(1, 32) inside GL(2, 3) or q is one of the numbers 5, 7, 9, 11, 19, 23, 29, 59
and a computer verification reveals that only GL(2, 3) and GL(2, 5) contain subgroups
G in question. In the former case we have G ∼= ΓL(1, 32) and in the latter case G is
unique up to conjugation. In both cases G is sharply ((12),∅)-transitive.

We summarise these results in the following theorem.

Theorem 6.3.1. Suppose that G is a (σ, τ)-transitive nontrivial proper subgroup of
GL(n, q) and (σ, τ) is different from ((1), (n− 1)) and (∅, (n− 1, 1)) and also different
from ((12),∅) if q = 2. Then one of the following holds:

(1) q > 2 and G ≥ SL(n, q) and G is ((n− 1), (1))-transitive.
(2) (n, q) = (2, 3) and G ∼= ΓL(1, 32) is sharply ((12),∅)-transitive.
(3) (n, q) = (2, 5) and G has order 96 and is sharply ((12),∅)-transitive.
(4) (n, q) = (3, 2) and G ∼= ΓL(1, 23) and G is sharply ((13),∅)-transitive.
(5) (n, q) = (4, 2) and G ∼= A7 is sharply ((3, 1),∅)-transitive.
(6) (n, q) = (5, 2) and G ∼= ΓL(1, 25) is sharply (∅, (3, 2))-transitive.

It should be noted that there exist groups acting transitively on flags in F3
8,

namely ΓL(1, 29) and a subgroup of index 7 [HM61]. These groups however are not
subgroups of GL(3, 8), but rather are subgroups of ΓL(3, 8).

6.4 Transitive sets and cliques
In this section we consider cliques in GL(n, q) and discuss their relationship to transi-
tivity in GL(n, q).

Definition 6.4.1. Let (σ, τ) ∈ Θn,q. A subset Y of GL(n, q) is a (σ, τ)-clique if, for
all distinct x, y ∈ Y , there is no α-flag with type(α) = (σ, τ) fixed by x−1y.

Definition 6.4.2. For µ ∈ Λ we define the conjugate µ′ ∈ Λ to be the mapping
µ′ : Φ → Par given by µ′(f) = µ(f)′.

Note that, if type(µ) = (ν, µ), then we have type(µ′) = (ν, µ′).
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6 Transitive subsets of finite general linear groups

Theorem 6.4.3. Let Y be a subset of GL(n, q) with inner distribution (aµ) and let
(σ, τ) ∈ Θn,q. Then Y is a (σ, τ)-clique if and only if

aµ = 0 for all µ ∈ Λn satisfying (τ, σ) ⪯ type(µ′) ≺ (∅, (n)).

Proof: We fix µ ∈ Λn and we note that, for α ∈ Σn,q, either all elements in Cµ fix
an α-flag or none of the elements in Cµ. We show that the elements in Cµ fix an
α-flag with type(α) = (σ, τ) if and only if (τ, σ) ⪯ (ν, µ), where (ν, µ) is the type of
µ′.

First we assume that (τ, σ) ⪯ (ν, µ), namely σ ⊴ µ and ν refines τ . Since
σ ⊴ µ, rearranging rows and columns of the Jordan canonical form of Cµ shows that
Cµ contains a block upper-triangular matrix whose diagonal blocks are Iσ1 , Iσ2 , . . .

followed by |µ| − |σ| blocks of order 1 followed by blocks of order ν1, ν2, . . . . Since ν
refines τ , this matrix fixes an α-flag with type(α) = (σ, τ).

Now let g ∈ Cµ be in Jordan canonical form and assume that g fixes an α-flag with
type(α) = (σ, τ). By [LRS14, Proposition 4.4] the companion matrix of an irreducible
polynomial in Fq[X] of degree d does not fix a proper subspace of Fd

q . Hence ν must
refine τ . Also note that g has µi Jordan blocks with eigenvalue 1 of order at least i
and each such Jordan block of order i fixes a β-flag with type(β) = ((1i),∅). Hence g
must have at least

σi −
i−1∑
j=1

(µj − σj)

Jordan blocks with eigenvalue 1 of order at least i. The latter statement is equivalent
to σ ⊴ µ. □

This theorem shows that a (σ, τ)-clique is a D-clique in the association scheme of
GL(n, q) with D = {µ ∈ Λn : type(µ′) ⪰̸ (τ, σ)}. Moreover, by comparing this with
Corollary 6.2.6 we note again that the concepts of a clique and a design are dual.

In the following we establish relationships between (σ, τ)-cliques and (σ, τ)-transitive
sets in GL(n, q).

Theorem 6.4.4. Let Y be a subset of GL(n, q), let (σ, τ) ∈ Θn,q, and let H be the
stabiliser of an α-flag with type(α) = (σ, τ).

(1) If Y is a (σ, τ)-clique, then |Y | ≤ |GL(n, q)|/|H| with equality if and only if Y is
(σ, τ)-transitive.

(2) If Y is (σ, τ)-transitive, then |Y | ≥ |GL(n, q)|/|H| with equality if and only if Y
is a (σ, τ)-clique.

In both cases, equality implies that Y is sharply (σ, τ)-transitive.
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6.4 Transitive sets and cliques

Proof: Since, for each (x, y) ∈ H × Y , there is a unique g ∈ GL(n, q) such that
gx = y, we have ∑

g∈GL(n,q)
|Y ∩ gH| = |Y | · |H|. (6.4)

The quotient of any two distinct elements in Y ∩ gH fixes an α-flag of type (σ, τ).
Hence, if Y is a (σ, τ)-clique, then each summand on the left hand side of (6.4)
is at most 1, which gives the bound in (1). If H is the stabiliser of the α-flag F ,
then gH contains precisely all elements of GL(n, q) mapping F to gF . Hence, if Y
is (σ, τ)-transitive, then each summand on the left hand side of (6.4) must be at
least 1, which gives the bound in (2). In both cases, equality occurs if and only if
|Y ∩ gH ′| = 1 for each g ∈ G and the stabiliser H ′ of each α-flag of type (σ, τ). By
the same reasoning as above, this establishes the characterisations of equality. □

Another way to approach Theorem 6.4.4 involves the clique-coclique bound from
Theorem 2.4.7 and a condition on designs and antidesigns [Roo82, Corollary 3.3] for
the conjugacy class scheme of GL(n, q). The latter was proved in [Roo82] only for the
case of symmetric association schemes, but it also holds in general.

Note that, if H is the stabiliser of an α-flag with type(α) = (σ, τ), then an
elementary counting argument gives

|GL(n, q)|
|H|

= [n]q!(∏
i≥1[σi]q!

)(∏
i≥1[τi]q!

) ∏
i≥1

σi−1∏
j=0

(qσi − qj),

where, for a nonnegative integer m, [m]q! denotes the q-factorial from (2.2).
In view of Theorems 6.4.3 and 6.4.4 the existence of sharply (σ, τ)-transitive subsets

of GL(n, q) can be ruled out by linear programming. From (2.20) in Section 2.4.2, it
follows that the linear-programming (LP) bound for (σ, τ)-cliques is the maximum of∑

µ∈Λn

aµ

subject to the constraints

aµ ≥ 0 for all µ ∈ Λn,

∑
µ∈Λn

Im(χλ
µ) aµ = 0 and

∑
µ∈Λn

Re(χλ
µ) aµ ≥ 0 for all λ ∈ Λn,

aµ = 0 for all µ ∈ Λn satisfying (τ, σ) ⪯ type(µ′) ≺ (∅, (n)).

We have determined the LP bound for (σ, τ)-cliques in GL(n, 2) for n ∈ {2, 3, 4, 5}.
The LP bound coincides with the bound of Theorem 6.4.4 (i) except for those pairs
(σ, τ) shown in Table 6.1. Consequently no sharply (σ, τ)-transitive subsets of GL(n, q)
can exist in these cases.
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6 Transitive subsets of finite general linear groups

Table 6.1: Bounds for cliques in GL(4, 2) and GL(5, 2).

(σ, τ) Bound of Thm. 6.4.4 LP bound
((212),∅) 630 420
((12), (2)) 105 84
((2), (2)) 210 168
((32),∅) 156 240 139 500
((312),∅) 78 120 53 010
((221),∅) 39 060 24 180
((213),∅) 19 530 11 718
((3), (2)) 26 040 19 530
((21), (2)) 6 510 3 550
((13), (2)) 3 255 2 604
((1), (22)) 1 085 805

6.5 Existence results
In this section we show that, for a partition σ, nonnegative integers τ2 ≥ τ3 ≥ · · · , and
sufficiently large n, there exist (σ, τ)-transitive sets in GL(n, q) that are arbitrarily
small compared to GL(n, q), where τ1 = n−|σ|−τ2−τ2−· · · . In view of Corollary 6.2.8,
it suffices to consider ((t), (n− t))-transitive sets in GL(n, q). For brevity, we shall call
such a set a t-design in GL(n, q). In Section 6.6 we study these objects in more detail.

We give a recursive construction of t-designs in GL(n, q) using {1, 2 . . . , t}-designs,
or t-designs for short, in the q-Johnson scheme Jq(n, k). Recall from Theorem 2.2.13
that a t-design in Jq(n, k) is a subset D of Jq(n, k) such that the number of elements
in D containing a given t-space of Fn

q is independent of the particular choice of this
t-space. Our construction can be understood as a q-analog of the construction given
in [MS06, Section 6] for the symmetric group Sn.

Let V = Fn
q and, for a k-space U of V , let GL(U) be the general linear group of U ,

which is of course isomorphic to GL(k, q). Fix a k-space U of V and an (n−k)-space W
of V such that

V = U ⊕W.

For our recursive construction, we need three ingredients: a t-design Y in GL(U), a
t-design Z in GL(W ), and a t-design D in Jq(n, k). For each B ∈ D, there are qk(n−k)

complementary spaces, namely (n − k)-spaces C with V = B ⊕ C. We denote the
collection of such spaces by CB. For each B ∈ D, we fix an isomorphism gB : U → B

and, for each B ∈ D and each C ∈ CB, we fix an isomorphism hB,C : W → C.
Note that, given a pair (B,C) with B ∈ D and C ∈ CB, then every pair of

isomorphisms (y, z), where y : B → B and z : C → C, can be uniquely extended to an
isomorphism on V by linearity. We denote this extension by (y, z). Hence, if v ∈ V ,
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then there are unique b ∈ B and c ∈ C with v = b+ c and we have

(y, z)(v) = y(b) + z(c).

The following lemma contains a recursive construction of t-designs in GL(n, q).

Lemma 6.5.1. Let Y be a t-design in GL(U), let Z be a t-design in GL(W ), and
let D be a t-design in Jq(n, k). Then the set

{(gB ◦ y, hB,C ◦ z) : y ∈ Y, z ∈ Z,B ∈ D,C ∈ CB} (6.5)

is a t-design in GL(V ).

Note that, taking Y = GL(U), Z = GL(W ), and D = Jq(n, k), the set constructed
in Lemma 6.5.1 equals GL(V ).

Example 6.5.2. By [BKL05] there exists a 2-design in J2(6, 3) of cardinality 279.
Taking Y and Z to be isomorphic to GL(3, 2) in Lemma 6.5.1, we obtain a 2-design in
GL(6, 2) of cardinality 1

5 |GL(6, 2)|.

To prove Lemma 6.5.1, we shall need the following well known result about designs
in Jq(n, k), in which

[n
k

]
q

is the q-binomial coefficient from (2.1).

Lemma 6.5.3 ([Suz90, Lemma 2.1], [KP15, Fact 1.5]). Let D be a t-design in
Jq(n, k) and let i, j be nonnegative integers satisfying i+ j ≤ t. Let I be an i-space of
V and let J be a j-space of V such that I ∩ J = {0}. Then the number

mi,j = |{B ∈ D : I ≤ B ∧B ∩ J = {0}}|

is independent of the particular choice of I and J and given by

mi,j = |D| qj(k−i)

[n−i−j
k−i

]
q

[k
t

]
q[n−t

k−t

]
q

[n
t

]
q

.

We are now ready to prove Lemma 6.5.1.

Proof (of Lemma 6.5.1): Choose t-tuples (v1, v2, . . . , vt) and (v′
1, v

′
2, . . . , v

′
t) of lin-

early independent vectors of V . Suppose that exactly i of the vectors v1, v2, . . . , vt

are in U . After reordering we can assume that these are v1, v2, . . . , vi. Then the
remaining j = t − i vectors vi+1, vi+2, . . . , vt are outside U , namely they belong to
complementary spaces of U .

The number of elements B ∈ D containing v′
1, v

′
2, . . . , v

′
i, but none of the vectors

v′
i+1, v

′
i+2, . . . , v

′
t, equals the constant mi,j given in Lemma 6.5.3 and, for each such B,

there are qk(n−k−j) complementary spaces C ∈ CB containing the remaining j vectors.
Fix a pair (C,B) with these properties. Write vℓ = uℓ +wℓ with uℓ ∈ U and wℓ ∈ W
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for all ℓ and note that our assumption implies that vℓ = uℓ for all ℓ ≤ i. There is a
constant ri such that there are exactly ri elements y ∈ Y taking vℓ to g−1

B (v′
ℓ) for

all ℓ ≤ i. For each such y ∈ Y , there is a constant sj such that there are exactly sj

elements z ∈ Z taking wℓ to

h−1
B,C(v′

ℓ − gB(y(uℓ)))

for all ℓ > i.
Hence the total number of automorphisms in (6.5) taking the tuple (v1, v2, . . . , vt)

to the tuple (v′
1, v

′
2, . . . , v

′
t) equals

mi,j ri sj q
k(n−k−j).

We have to show that this number is independent of i. Lemma 6.5.3 implies that

(qk − qi)mi,j = (qn − qk+j−1)mi+1,j−1

and it is readily verified that

ri = (qk − qi) ri+1

for i ≤ t− 1 and
sj = (qn−k − qj) sj+1

for j ≤ t− 1. By combining these identities we find that

mi+1,j−1 ri+1 sj−1 q
k(n−k−j+1) = mi,j ri sj q

k(n−k−j),

which completes the proof. □

The following existence result for t-designs in Jq(n, k) was obtained by Fazeli,
Lovett, and Vardy [FLV14], using the probabilistic approach of Kuperberg, Lovett,
and Peled [KLP17].

Lemma 6.5.4. If k > 12(t+ 1) and n ≥ ckt for some universal constant c, then there
exists a t-design in Jq(n, k) of cardinality at most q12(t+1)n.

We now use the recursive construction in Lemma 6.5.1 together with Lemma 6.5.4
to obtain the following existence result for t-designs in GL(n, q).

Theorem 6.5.5. Let t be a positive integer and let ϵ > 0. Then, for all sufficiently
large n, there exists a t-design Y in GL(n, q) satisfying |Y |/|GL(n, q)| < ϵ.

Proof: Fix k > 12(t+1). We apply Lemma 6.5.1 with Y = GL(U) and Z = GL(W ).
Then from Lemma 6.5.4 we obtain the existence of a t-design in GL(n, q) of cardinality
at most

N = |GL(k, q)| · |GL(n− k, q)| qk(n−k)q12(t+1)n,
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provided that n ≥ ckt for the constant c of Lemma 6.5.4. Note that we have

N

|GL(n, q)| = q12(t+1)n[n
k

]
q

<
q12(t+1)n

qk(n−k) .

Since k > 12(t+ 1), this number tends to zero as n tends to infinity. □

By combining Theorem 6.5.5 and Corollary 6.2.8 we obtain an existence result for
general (σ, τ)-transitive sets in GL(n, q).

Corollary 6.5.6. Let (σ, τ̃) ∈ Θt,q and let ϵ > 0. Then for all sufficiently large n,
there exists a (σ, τ)-transitive set Y in GL(n, q) satisfying |Y |/|GL(n, q)| < ϵ, where
τ = (n− |σ| − |τ̃ |, τ̃1, τ̃2, . . . ).

6.6 Designs, codes, and orthogonal polynomi-
als

So-called P - and Q-polynomial association schemes are closely related to orthogonal
polynomials in the sense that their eigenvalues and dual eigenvalues, respectively, arise
as evaluations of such polynomials (see [BI84] or [Del73], for example). The conjugacy
class association scheme of GL(n, q) does not have these properties. Nevertheless, there
is still a relationship to certain orthogonal polynomials, namely the Al-Salam-Carlitz
polynomials.

First, we recall and establish some basic properties of these polynomials and then
apply these results to subsets of GL(n, q).

6.6.1 Al-Salam-Carlitz polynomials

Definition 6.6.1. The Al-Salam-Carlitz polynomials are given by

U
(a)
k (x) =

k∑
j=0

(−1)k−jq(
k−j

2 )
[
k

j

]
q

j−1∏
i=0

(x− aqi).

They were introduced in [ASC65] and some properties can be found in [Chi78]
and [Kim97]. We are only interested in the case a = 1 and write Uk(x) for U (1)

k (x).
These polynomials satisfy the recurrence relation

Uk+1(x) = (x− 2qk)Uk(x) + qk−1(1 − qk)Uk−1(x) for k ≥ 0
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with the initial condition U−1(x) = 0 and U0(x) = 1. The first polynomials are

U1(x) = x− 2

U2(x) = x2 − 2(q + 1)x+ 3q + 1

U3(x) = x3 − 2(q2 + q + 1)x2 + (3q3 + 4q2 + 4q + 1)x− 2q(2q2 + q + 1).

An equivalent definition of the Al-Salam-Carlitz polynomials is

j∑
k=0

[
j

k

]
q

Uk(x) =
j−1∏
i=0

(x− qi) for j = 0, 1, . . . . (6.6)

This follows from the inversion formula
ℓ∑

k=j

(−1)k−jq(
k−j

2 )
[
k

j

]
q

[
ℓ

k

]
q

= δjℓ, (6.7)

which in turn can be obtained from the q-binomial theorem.
The Al-Salam-Carlitz polynomials are q-analogs of the Charlier polynomials and

are orthogonal with respect to a q-analog of a Poisson distribution, whose k-th moment
is

k∑
i=0

[
k

i

]
q

, (6.8)

the number of subspaces of a k-dimensional vector space over Fq. Let θ denote the
class function of GL(n, q) given by

θ(g) = qn−rk(g−I)

for each g ∈ GL(n, q), where I is the identity of GL(n, q). Let wi be the number of
elements g ∈ GL(n, q) satisfying θ(g) = qi. Explicit expressions for wi were obtained
by Rudvalis and Shinoda in an unpublished work [RS88] and by Fulman [Ful99], which
shows that

wi = |GL(n, q)|
|GL(i, q)|

n−i∑
k=0

(−1)kq(
k
2)

qki |GL(k, q)| . (6.9)

We shall later see that this expression also follows from our results (see Remark 6.6.8).
The class function θ defines a discrete random variable on GL(n, q) and it was

shown in [FS16] that its k-th moment equals (6.8), provided that k ≤ n. Hence the
Al-Salam-Carlitz polynomials also satisfy the orthogonality relation

n∑
i=0

wi Uk(qi)Uℓ(qi) = 0 for k ̸= ℓ and k + ℓ ≤ n. (6.10)

(It follows from Theorem 6.6.2 that, for k = ℓ and 2k ≤ n, the evaluation of the
left-hand side is |GL(k, q)| · |GL(n, q)|.)
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With every polynomial f(x) = fnx
n + · · · + f1x + f0 in R[x] we associate the

class function f(θ) = fnθ
n + · · · + f1θ + f0. This induces an algebra homomorphism

from R[x] to the set of class functions of GL(n, q). Let ζj = ζ(j,0) be the permutation
character on ordered j-tuples of linearly independent elements of Fn

q from Section 4.3.
So that ζ0 is the trivial character of GL(n, q). Note that

ζj =
j−1∏
i=0

(θ − qi).

Hence we have

Uk(θ) =
k∑

j=0
(−1)k−jq(

k−j
2 )
[
k

j

]
q

ζj for k = 0, 1, . . . , n (6.11)

and by (6.6)

ζj =
j∑

k=0

[
j

k

]
q

Uk(θ) for j = 0, 1, . . . , n. (6.12)

For 0 ≤ k ≤ n/2, we now decompose Uk(θ) into irreducible characters of GL(n, q).

Theorem 6.6.2. For 0 ≤ k ≤ n/2, the decomposition of Uk(θ) into irreducible
characters is

Uk(θ) =
∑

ν∈Λk

χν(1)χr(ν), (6.13)

where r(ν) is the element λ ∈ Λn that agrees with ν except on X − 1, where it is
λ(X − 1) = (n − k, ν(X − 1)1, ν(X − 1)2, . . . ), namely λ(X − 1) is obtained from
ν(X − 1) by inserting a row with n− k boxes in the Young diagram of ν(X − 1). In
particular Uk(θ) is a character.

Proof: Since U0(θ) is just the trivial character, (6.13) holds for k = 0. Let m be
an integer satisfying 1 ≤ m ≤ n/2 and suppose that (6.13) holds for all k satisfying
0 ≤ k ≤ m− 1. We show that (6.13) then also holds for k = m.

Recall from Section 1.1 that the inner product on class functions ϕ and ψ of
GL(n, q) is given by

⟨ϕ, ψ⟩ = 1
|GL(n, q)|

∑
g∈GL(n,q)

ϕ(g)ψ(g).

It follows from the orthogonality relation (6.10) that

⟨Uk(θ), Uℓ(θ)⟩ = 0 for 0 ≤ k < ℓ ≤ n/2.

From (6.12) we have ⟨ζm, Uk(θ)⟩ = ⟨Uk(θ), Uk(θ)⟩ for all k satisfying 1 ≤ k ≤ n/2.
Since Uk(θ) is a character for all k satisfying 0 ≤ k ≤ m − 1, we find from (6.12)
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that Um(θ) decomposes into those irreducible characters that occur in the decomposi-
tion of ζm, but not in the decomposition of U0(θ), U1(θ), . . . , Um−1(θ), hence not in
the decomposition of ζm−1.

As in the proof of Lemma 4.3.3 we have

ζm =
∑

ν∈Λm

χν(1) (χν ⊙ 1GL(n−m,q)),

where 1GL(n−m,q) is the trivial character of GL(n−m, q). Note that from Lemma 4.2.10
it follows that the Littlewood-Richardson coefficient cµ

ν,(n−m) is either 0 or 1 and it
equals 1 precisely when the Young diagram of µ is obtained from that of ν by adding
n − m cells no two of which are in the same column. Hence by Lemma 4.2.11 the
character χν ⊙1GL(n−m,q) decomposes into those irreducible characters χλ for which λ
agrees with ν except on X − 1 and λ(X − 1) is obtained from ν(X − 1) by adding
n−m boxes to the Young diagram of ν(X − 1) no two of which in the same column.
Hence the irreducible characters occurring in the decomposition of ζm but not in the
decomposition of ζm−1 are precisely χr(ν) with multiplicity χν(1), where ν ∈ Λm. □

By combining Theorem 6.6.2 and (6.12), we obtain the decomposition into irre-
ducible characters of ζj for 0 ≤ j ≤ n/2. This result strengthens Lemma 4.3.9 for
(σ, τ) = ((t), (n− t)) and t ≤ n/2.

Corollary 6.6.3. For 0 ≤ j ≤ n/2 the decomposition of ζj into irreducible characters
is

ζj =
j∑

k=0

[
j

k

]
q

∑
ν∈Λk

χν(1)χr(ν),

where r(ν) is as in Theorem 6.6.2.

6.6.2 Designs and codes
Henceforth we call a ((t), (n − t))-transitive subset of GL(n, q) a t-design. Thus a
t-design in GL(n, q) is transitive on the set of t-tuples of linearly independent elements
of Fn

q . We also call an ((n − d + 1), (d − 1))-clique a d-code. Hence, for all distinct
elements x, y of a d-code, there is no (n− d+ 1)-tuple of linearly independent elements
of Fn

q fixed by x−1y. This implies that rk(x− y) ≥ d for all distinct x, y in a d-code.
Theorems 6.2.3 and 6.4.3 specialise in these cases as follows.

Corollary 6.6.4. Let Y be a subset of GL(n, q) with inner distribution (aµ) and dual
distribution (bλ). Then Y is a t-design if and only if

bλ = 0 for each λ ∈ Λn satisfying n− t ≤ λ(X − 1)1 < n

and a d-code if and only if

aµ = 0 for each µ ∈ Λn satisfying n− d+ 1 ≤ µ(X − 1)′
1 < n.
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Note that the mapping (x, y) 7→ rk(x− y) is a metric on GL(n, q). Accordingly, for
a subset Y of GL(n, q), we define the distance distribution to be the tuple (Ai)0≤i≤n,
where

Ai = 1
|Y |

∣∣{(x, y) ∈ Y × Y : rk(x− y) = i}
∣∣

and the dual distance distribution to be the tuple (A′
k)0≤k≤n, where

A′
k =

n∑
i=0

Uk(qn−i)Ai.

Note that
A′

k = 1
|Y |

∑
x,y∈Y

Uk(qn−rk(x−y)). (6.14)

We now characterise t-designs in terms of zeros in its dual distance distribution.

Proposition 6.6.5. Let Y be a subset of GL(n, q) with dual distance distribution (A′
k)

and let t be an integer satisfying 1 ≤ t ≤ n. If Y is a t-design, then A′
k = 0 for all k

satisfying 1 ≤ k ≤ t. Moreover the converse also holds if t ≤ n/2. That is, if t ≤ n/2
and A′

k = 0 for all k satisfying 1 ≤ k ≤ t, then Y is a t-design.

Proof: First suppose that Y is a t-design. From (6.14) and (6.11) we have

A′
k = 1

|Y |

k∑
j=0

(−1)k−jq(
k−j

2 )
[
k

j

]
q

∑
x,y∈Y

ζj(x−1y). (6.15)

By Lemma 4.3.3, the permutation character ζj decomposes into those irreducible
characters χλ for which λ(X − 1)1 ≥ n − j. Moreover, since ζj is a permutation
character, it contains the trivial character with multiplicity 1. From Corollary 6.6.4
we then find that the inner sum in (6.15) equals |Y |2 for all j satisfying 0 ≤ j ≤ t.
Hence we have, for all k satisfying 0 ≤ k ≤ t,

A′
k = |Y |

k∑
j=0

(−1)k−jq(
k−j

2 )
[
k

j

]
q

= |Y | δk,0,

using (6.7) together with elementary manipulations.
Now, for each k satisfying 0 ≤ k ≤ n/2, we find from (6.14), Theorem 6.6.2,

and (4.21) that

A′
k = 1

|Y |
∑

ν∈Λk

χν(1)
∑

x,y∈Y

χr(ν)(x−1y)

=
∑

ν∈Λk

χν(1)
χr(ν)(1)

br(ν),

where r(ν) is as in Theorem 6.6.2. Suppose that t satisfies 1 ≤ t ≤ n/2 and that
A′

k = 0 for all k satisfying 1 ≤ k ≤ t. Since χν(1)/χr(ν)(1) is positive, we find that
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br(ν) = 0 for all ν ∈ Λk and hence bλ = 0 for all λ ∈ Λn satisfying n−t ≤ λ(X−1)1 < n.
Corollary 6.6.4 then implies that Y is a t-design. □

Theorem 6.4.4 specialises as follows.

Corollary 6.6.6. Let Y be a subset of GL(n, q) and let d and t be the largest integers
such that Y is a d-code and a t-design. Then

t−1∏
i=0

(qn − qi) ≤ |Y | ≤
n−d∏
i=0

(qn − qi).

Moreover, if equality holds in one of the bounds, then equality also holds in the other
and this case happens if and only if d = n− t+ 1.

The upper bound in Corollary 6.6.6 is a q-analog of a corresponding well known
bound n(n − 1) · · · d for permutation codes from Theorem 3.3.3. The bounds in
Corollary 6.6.6 can be achieved. Namely from Example 6.2.2 it follows that a Singer
cycle in GL(n, q) gives an n-code in GL(n, q) of size qn − 1 and from Section 6.3 we
have that A7 inside GL(4, 2) is a 2-code of size 2520.

It turns out that the distance distribution of a subset Y of GL(n, q) is uniquely
determined by its parameters, provided that Y is a t-design and a d-code, where
d ≥ n− t. The following result generalises (6.9).

Theorem 6.6.7. Suppose that Y is a t-design and an (n− t)-code in GL(n, q). Then
the distance distribution (Ai) of Y satisfies

An−i =
t∑

j=i

(−1)j−iq(
j−i

2 )
[
j

i

]
q

[
n

j

]
q

( |Y |∏j−1
k=0(qn − qk)

− 1
)

for each i ∈ {0, 1, . . . , n− 1}.

Proof: We have
A′

k =
n∑

i=0
Uk(qi)An−i.

Multiply both sides by
[j
k

]
q
, sum over k, and use (6.6) to find that

j∑
k=0

[
j

k

]
q

A′
k =

n∑
i=0

An−i

j−1∏
k=0

(qi − qk).

Since Y is an (n− t)-code, we have A1 = · · · = An−t−1 = 0 and, since Y is a t-design,
we find by Proposition 6.6.5 that A′

1 = · · · = A′
t = 0. Moreover we have A0 = 1 and

A′
0 = |Y | and therefore

|Y | −
j−1∏
k=0

(qn − qk) =
t∑

i=0
An−i

j−1∏
k=0

(qi − qk)
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for each j ∈ {1, 2, . . . , t}. The identity

j−1∏
k=0

(qi − qk) =
[
i

j

]
q

(qj − 1) · · · (qj − qj−1)

gives

t∑
i=0

An−i

[
i

j

]
q

= |Y | −
∏j−1

k=0(qn − qk)∏j−1
k=0(qj − qk)

=
[
n

j

]
q

( |Y |∏j−1
k=0(qn − qk)

− 1
)

for each j ∈ {1, 2, . . . , t}. Now the desired result follows from (6.7). □

Remark 6.6.8. Consider Y = GL(n, q) having inner distribution (Ai), so that
An−i = wi . Since Y is a 1-code and an n-design, Theorem 6.6.7 gives

An−i =
n−1∑
j=i

(−1)j−iq(
j−i

2 )
[
j

i

]
q

[
n

j

]
q

(
n−1∏
k=j

(qn − qk) − 1
)
.

Now a lengthy, but straightforward, calculation reveals that An−i = wi, given in (6.9).
Note that the proof of Theorem 6.6.7 uses only the (easy) forward direction of
Proposition 6.6.5 and not the decomposition in Theorem 6.6.2. Hence our proof of
Theorem 6.6.7 and therefore of (6.9) is self-contained.

Note that the upper bound in Corollary 6.6.6 is at most

qn(n−d+1).

We close this section by showing that there exist d-codes almost as large as this upper
bound. Our construction uses so-called linear maximum rank distance codes with
minimum distance d, which are Fq-subspaces Z of Fn×n

q of dimension n(n − d + 1),
such that rk(x− y) ≥ d for all distinct x, y ∈ Z. Such objects exist for all integers d
satisfying 1 ≤ d ≤ n [Del78, Theorem 6.3].

Proposition 6.6.9. For each d satisfying 1 ≤ d ≤ n, there exists a d-code in GL(n, q)
of size at least (

1 − 1
q − 1

)
qn(n−d+1).

For q = 2 there exists a d-code in GL(n, q) of size at least qn(n−d).

Proof: Consider a linear maximum rank distance code Z in Fn×n
q with minimum

distance d. We show that Z ∩ GL(n, q) has the required properties. It is well
known [Del78, Theorem 5.6] that the number of matrices in Z of rank i depends only
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on the parameters q, n, and d. In particular the number of invertible matrices in Z

equals

N =
n−d∑
j=0

(−1)jCj ,

where
Cj = q(

j
2)
[
n

j

]
q

(qn(n−d+1−j) − 1).

It follows that Cj/Cj+1 ≥ qj for each j ∈ {0, 1, . . . , n − d − 1} and therefore
C0, C1, . . . , Cn−d is nonincreasing. Hence we have

N ≥ C0 − C1 = (qn(n−d+1) − 1) − qn − 1
q − 1 (qn(n−d) − 1)

≥ q − 2
q − 1q

n(n−d+1) + qn(n−d) − 1
q − 1 ,

as required. □

6.7 Open Problem
In [KLP17], Kuperberg, Lovett, and Peled proved with the help of the probabilistic
method the existence of small orthogonal arrays, t-(v, k, λ) designs, and small t-wise
permutations, where the latter are subsets of the symmetric group that are transitive
on (n− t, 1t)-tabloids.

In [Ern20] the method of [KLP17] was used to obtain a stronger result on the
asymptotic existence of small transitive subsets of permutations, which also improves
the existence result from Theorem 3.4.6 for transitive sets in the symmetric group.

Theorem 6.7.1 ([Ern20]). Let σ2 ≥ σ3 ≥ . . . ≥ σk be a nonincreasing sequence of
positive integers and let δ, ε > 0. Then for all sufficiently large σ1 ≥ σ2 there exists a
subset Y of the symmetric group Sn, where n = σ1 + σ2 + . . . ,+σk, that is transitive
on (σ1, σ2, . . . , σk)-tabloids satisfying |Y |/

(
(Cn)C(σ2+...+σk)+δ

(σ2!···σk!)14

)
< ε for a constant C.

In Corollary 6.5.6 we obtain the existence of a (σ, τ)-transitive sets Y in the finite
general linear group GL(n, q) with |Y | growing more slowly than | GL(n, q)|. Knowing
the result for the symmetric group motivates the following open question for a q-analog
setting.

Open Problem. Is there a constant Cn < | GL(n, q)| such that there exists a
transitive set Y in GL(n, q) with |Y | growing more slowly than Cn ?

136



Index

A

adjacency matrix 31, 40
Al-Salam-Carlitz polynomials 129
association scheme 28, 31

dual eigenvalue 33
eigenvalue 33
intersection number 28
multiplicity 32
symmetric 28
symmetrisation 35
valency 28

B

Bose-Mesner algebra 32

C

character 11
induced 16
irreducible 13
linear 11
permutation 11
primary 70
restricted 16
trivial 11

characteristic map 24
characteristic vector 36
character table 13
class function 12
companion matrix 66

composition 23
conjugacy class 9
conjugacy class scheme 30
conjugate 10, 123
containment 25
content 19
cycle type 10

D

D-clique 36
d-code 61, 132
distance distribution 133
dominance order 17
dual distance distribution 133
dual distribution 37
dual linear program 49

F

Fano plane 39
feasible solution 48
Ferrers diagram 17
finite general semilinear group 122
finite special linear group 122
flag 80
α-flag 80

G

general linear group 9
graph 40

137



Index

degree 40
edge 40
regular 40
vertex 40

H

Hadamard product 33
hook length 73

I

inner distribution 36
intersecting 37, 57

cross-intersecting 43
t-cross-intersecting 44, 60, 91
t-intersecting 43, 58, 90
t-set-intersecting 60
t-space-cross-intersecting 92
t-space-intersecting 91

invariant 12
irreducible constituent 14

J

Johnson scheme 29
q-Johnson scheme 29
Jordan canonical form 67

K

Kostka number 19

L

lattice permutation 25
Littlewood-Richardson coefficient 26

M

module 11
multiplicity 14

O

objective function 48

P

parabolic induction 69
parabolic subgroup 69
partition 17

conjugate 17
length 17
part 17
size 17, 66

primal linear program 48
bounded 48
optimal solution 48
unbounded 48

Q

q-binomial coefficient 29
q-factorial 29

R

reciprocal polynomial 85
refinement 81
regular elliptic 94
representation 10

completely reducible 13
degree 10
direct sum 12
equivalent 11
irreducible 13
permutation 10
trivial 10
unitary 14

S

Schur function 23
shape 19, 72
(σ, τ)-clique 123
skew diagram 25

138



Index

skew tableau 25
symmetric function 21

monomial 21
power sum 22

T

tableau 18
generalised 19
semistandard 19

tabloid 18
t-coset 90
t-(n, k, λ) design 39

t-(n, k, λ)q subspace design 39
t-design 126
T -design 38
t-homogeneous 61
transitive 62, 117

(σ, τ)-transitive 120
t-space 90
t-Steiner system 46
type 81

W

word 25

139





Bibliography

[AA14] M. Ahanjideh and N. Ahanjideh, Erdős-Ko-Rado theorem in some linear
groups and some projective special linear group, Studia Sci. Math. Hungar.
51 (2014), no. 1, 83–91.

[AM15] B. Ahmadi and K. Meagher, The Erdős-Ko-Rado property for some per-
mutation groups, Australas. J. Combin. 61 (2015), 23–41.

[ASC65] W. A. Al-Salam and L. Carlitz, Some orthogonal q-polynomials, Math.
Nachr. 30 (1965), 47–61.

[BCD79] I. F. Blake, G. Cohen, and M. Deza, Coding with permutations, Inform.
Control 43 (1979), no. 1, 1–19.

[BI84] E. Bannai and T. Ito, Algebraic combinatorics. I: Association schemes,
The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984.

[BKL05] M. Braun, A. Kerber, and R. Laue, Systematic construction of q-analogs
of t-(v, k, λ) designs, Des. Codes Cryptrogr. 34 (2005), 55–70.

[BS52] R. C. Bose and T. Shimamoto, Classification and analysis of partially
balanced incomplete block designs with two associate classes, J. Amer.
Statist. Assoc. 47 (1952), 151–184.

[Chi78] T. S. Chihara, An introduction to orthogonal polynomials, Mathematics
and its Applications, Vol. 13, Gordon and Breach Science Publishers, New
York-London-Paris, 1978.

[CK79] P. J. Cameron and W. M. Kantor, 2-transitive and antiflag transitive
collineation groups of finite projective spaces, J. Algebra 60 (1979), no. 2,
384–422.

[CK03] P. J. Cameron and C. Y. Ku, Intersecting families of permutations, Euro-
pean J. Combin. 24 (2003), no. 7, 881–890.

141



Bibliography

[Del73] Ph. Delsarte, An algebraic approach to the association schemes of coding
theory, Philips Res. Rep. Suppl. 10 (1973).

[Del76] , Association schemes and t-designs in regular semilattices, J. Com-
binatorial Theory Ser. A 20 (1976), no. 2, 230–243.

[Del78] , Bilinear forms over a finite field, with applications to coding theory,
J. Combin. Theory Ser. A 25 (1978), no. 3, 226–241.

[DF77] M. Deza and P. Frankl, On the maximum number of permutations with
given maximal or minimal distance, J. Combinatorial Theory Ser. A 22
(1977), no. 3, 352–360.

[DF91] David S Dummit and Richard M Foote, Abstract algebra, Englewood Cliffs,
NJ [u.a.] : Prentice Hall, 1991.

[EFP11] D. Ellis, E. Friedgut, and H. Pilpel, Intersecting families of permutations,
J. Amer. Math. Soc. 24 (2011), no. 3, 649–682.

[EKL23] D. Ellis, G. Kindler, and N. Lifshitz, Forbidden intersection problems for
families of linear maps, Discrete Anal. (2023).

[EKR61] P. Erdős, C. Ko, and R. Rado, Intersection theorems for systems of finite
sets, Quart. J. Math. Oxford Ser. (2) 12 (1961), 313–320.

[Ell11] D. Ellis, Stability for t-intersecting families of permutations, J. Combin.
Theory Ser. A 118 (2011), no. 1, 208–227.

[Ell12] , Setwise intersecting families of permutations, J. Combin. Theory
Ser. A 119 (2012), no. 4, 825–849.

[Erd87] P. Erdős, My joint work with Richard Rado, Surveys in combinatorics
1987 (New Cross, 1987), London Math. Soc. Lecture Note Ser., vol. 123,
Cambridge Univ. Press, Cambridge, 1987, pp. 53–80.

[Ern20] A. Ernst, Designs in the symmetric group, Master’s thesis, 2020.

[ES23] A. Ernst and K.-U. Schmidt, Intersection theorems for finite general linear
groups, Math. Proc. Cambridge Philos. Soc. 175 (2023), no. 1, 129–160.

[ES24] , Transitivity in finite general linear groups, Math. Z. 307 (2024),
no. 3, Paper No. 45, 25.

[FLST14] P. Frankl, S. J. Lee, M. Siggers, and N. Tokushige, An Erdős-Ko-Rado
theorem for cross t-intersecting families, J. Combin. Theory Ser. A 128
(2014), 207–249.

142



Bibliography

[FLV14] A. Fazeli, S. Lovett, and A. Vardy, Nontrivial t-designs over finite fields
exist for all t, J. Combin. Theory Ser. A 127 (2014), 149–160.

[Fra78] P. Frankl, The Erdős-Ko-Rado theorem is true for n = ckt, Combinatorics
(Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, Colloq. Math.
Soc. János Bolyai, vol. 18, North-Holland, Amsterdam-New York, 1978,
pp. 365–375.

[FS16] J. Fulman and D. Stanton, On the distribution of the number of fixed vectors
for the finite classical groups, Ann. Comb. 20 (2016), no. 4, 755–773.

[Ful99] J. Fulman, A probabilistic approach toward conjugacy classes in the finite
general linear and unitary groups, J. Algebra 212 (1999), no. 2, 557–590.

[GAP24] The GAP Group, GAP – Groups, Algorithms, and Programming, Version
4.13.1, 2024.

[Gel70] S. I. Gelfand, Representations of the full linear group over a finite field,
Mat. Sb. (N.S.) 83 (125) (1970), 15–41.

[GGP23] M. Giudici, S. P. Glasby, and Ch. E. Praeger, Subgroups of classical groups
that are transitive on subspaces, J. Algebra 636 (2023), no. 1, 804–868.

[GKLO23] S. Glock, D. Kühn, A. Lo, and D. Osthus, The existence of designs via
iterative absorption: hypergraph F -designs for arbitrary F , Mem. Amer.
Math. Soc. 284 (2023), no. 1406, v+131.

[GM09] Ch. Godsil and K. Meagher, A new proof of the Erdős-Ko-Rado theorem
for intersecting families of permutations, European J. Combin. 30 (2009),
no. 2, 404–414.

[GM16] , Erdős-Ko-Rado theorems: Algebraic approaches, Cambridge Stud-
ies in Advanced Mathematics, vol. 149, Cambridge University Press, Cam-
bridge, 2016.

[Gor22] G. Gordon, Cycle type factorizations in GLnFq, Algebr. Comb. 5 (2022),
no. 6, 1427–1459.

[Gre55] J. A. Green, The characters of the finite general linear groups, Trans. Amer.
Math. Soc. 80 (1955), 402–447.

[Hae21] W. H. Haemers, Hoffman’s ratio bound, Linear Algebra Appl. 617 (2021),
215–219.

143



Bibliography

[Her74] Ch. Hering, Transitive linear groups and linear groups which contain irre-
ducible groups of prime order, Geometriae Dedicata 2 (1974), 425–460.

[HM61] D. G. Higman and J. E. McLaughlin, Geometric ABA-groups, Illinois J.
Math. 5 (1961), 382–397.

[HM92] T. Hansen and G. Mullen, Primitive polynomials over finite fields, Math.
Comp. 59 (1992), 639–643.

[Jam86] G. James, The irreducible representations of the finite general linear groups,
Proc. London Math. Soc. (3) 52 (1986), no. 2, 236–268.

[Kan73] W. M. Kantor, Line-transitive collineation groups of finite projective spaces,
Israel J. Math. 14 (1973), 229–235.

[Kan87] , Primitive permutation groups of odd degree, and an application to
finite projective planes, J. Algebra 106 (1987), no. 1, 15–45.

[Kee14] P. Keevash, The existence of designs, arXiv preprint arXiv:1401.3665
(2014).

[Kim97] D. Kim, On combinatorics of Al-Salam Carlitz polynomials, European J.
Combin. 18 (1997), no. 3, 295–302.

[Kle68] D. J. Kleitman, On a conjecture of Milner on k-graphs with non-disjoint
edges, J. Combinatorial Theory 5 (1968), 153–156.

[KLMS24] N. Keller, N. Lifshitz, D. Minzer, and O. Sheinfeld, On t-intersecting
families of permutations, Adv. Math. 445 (2024), Paper No. 109650, 28.

[KLP17] G. Kuperberg, S. Lovett, and R. Peled, Probabilistic existence of regular
combinatorial structures, Geom. Funct. Anal. 27 (2017), no. 4, 919–972.

[KP15] M. Kiermaier and M. O. Pavčević, Intersection numbers for subspace
designs, J. Combin. Des. 23 (2015), 463–480.

[LM04] B. Larose and C. Malvenuto, Stable sets of maximal size in Kneser-type
graphs, European J. Combin. 25 (2004), no. 5, 657–673.

[LRS14] J. B. Lewis, V. Reiner, and D. Stanton, Reflection factorizations of Singer
cycles, J. Algebraic Combin. 40 (2014), no. 3, 663–691.

[LW65] D. Livingstone and A. Wagner, Transitivity of finite permutation groups
on unordered sets, Math. Z. 90 (1965), 393–403.

144



Bibliography

[Mac15] I. G. Macdonald, Symmetric functions and Hall polynomials, second ed.,
Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford
University Press, New York, 2015.

[MR23] K. Meagher and A. S. Razafimahatratra, Some Erdős-Ko-Rado results for
linear and affine groups of degree two, Art Discrete Appl. Math. 6 (2023),
no. 1, Paper No. 1.05, 30.

[MS06] W. J. Martin and B. E. Sagan, A new notion of transitivity for groups and
sets of permutations, J. London Math. Soc. (2) 73 (2006), no. 1, 1–13.

[MS11] K. Meagher and P. Spiga, An Erdős-Ko-Rado theorem for the derangement
graph of PGL(2, q) acting on the projective line, J. Combin. Theory Ser. A
118 (2011), no. 2, 532–544.

[MS14] , An Erdős-Ko-Rado theorem for the derangement graph of PGL3(q)
acting on the projective plane, SIAM J. Discrete Math. 28 (2014), no. 2,
918–941.

[MT89] M. Matsumoto and N. Tokushige, The exact bound in the Erdős-Ko-Rado
theorem for cross-intersecting families, J. Combin. Theory Ser. A 52 (1989),
no. 1, 90–97.

[Per72] D. Perin, On collineation groups of finite projective spaces, Math. Z. 126
(1972), 135–142.

[Pyb86] L. Pyber, A new generalization of the Erdős-Ko-Rado theorem, J. Combin.
Theory Ser. A 43 (1986), no. 1, 85–90.

[Roo82] C. Roos, On antidesigns and designs in an association scheme, Delft Progr.
Rep. 7 (1982), no. 2, 98–109.

[RS88] A. Rudvalis and K. Shinoda, An enumeration in finite classical groups,
Tech. report, U-Mass Amherst, Department of Mathematics, 1988.

[Sag01] B. E. Sagan, The symmetric group, second ed., Graduate Texts in Mathe-
matics, vol. 203, Springer-Verlag, New York, 2001, Representations, combi-
natorial algorithms, and symmetric functions.

[Spi19] P. Spiga, The Erdős-Ko-Rado theorem for the derangement graph of the
projective general linear group acting on the projective space, J. Combin.
Theory Ser. A 166 (2019), 59–90.

[Sta86] D. Stanton, t-designs in classical association schemes, Graphs Combin. 2
(1986), no. 3, 283–286.

145



Bibliography

[Sta12] R. P. Stanley, Enumerative combinatorics. Volume 1, second ed., Cambridge
Studies in Advanced Mathematics, vol. 49, Cambridge University Press,
Cambridge, 2012.

[Suz90] H. Suzuki, On the inequalities of t-designs over a finite field, European J.
Combin. 11 (1990), 601–607.

[Tar99] H. Tarnanen, Upper bounds on permutation codes via linear programming,
European J. Combin. 20 (1999), no. 1, 101–114.

[Tei87] L. Teirlinck, Non-trivial t-designs without repeated blocks exist for all t,
Discrete Mathematics 65 (1987), no. 3, 301–311.

[Tok10] N. Tokushige, On cross t-intersecting families of sets, J. Combin. Theory
Ser. A 117 (2010), no. 8, 1167–1177.

[Van20] R.J. Vanderbei, Linear programming—foundations and extensions, fifth
ed., International Series in Operations Research & Management Science,
vol. 285, Springer, Cham, 2020.

[Wil84] R. M. Wilson, The exact bound in the Erdős-Ko-Rado theorem, Combina-
torica 4 (1984), no. 2-3, 247–257.

146


	Acknowledgements
	Zusammenfassung
	Abstract
	Introduction
	Representation Theory
	Definitions and basic properties
	Symmetric groups
	The ring of symmetric functions

	Association schemes
	Definitions, examples, and properties
	Subsets of association schemes
	Hoffman bounds
	The classical Hoffman bound
	Application: classical Erdős-Ko-Rado theorems
	The weighted version of the Hoffman bound
	Application: t-intersecting families of sets

	Linear Programming
	A brief overview of linear programming
	Application: cliques in association schemes


	Subsets of the symmetric group
	The association scheme of the symmetric group
	Erdős-Ko-Rado theorems
	Permutation codes
	Transitive sets

	Finite general linear groups
	Conjugacy classes
	Representation theory
	Permutation characters
	Association schemes
	The conjugacy class scheme of the finite general linear group
	The symmetrisation of the conjugacy class scheme of the finite general linear group


	Erdős-Ko-Rado theorems for finite general linear groups
	Introduction and main results
	Preparations for the proofs of the pointwise and spacewise intersection theorems
	Proof strategy
	A special invertible matrix
	Estimates on some conjugacy class sizes and character degrees

	Proofs of the pointwise intersection theorems
	Proofs of the spacewise intersection theorems
	Open Problems

	Transitive subsets of finite general linear groups
	Introduction
	Designs in finite general linear groups
	Transitive subgroups
	Transitive sets and cliques
	Existence results
	Designs, codes, and orthogonal polynomials
	Al-Salam-Carlitz polynomials
	Designs and codes

	Open Problem

	Index
	Bibliography

