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Zusammenfassung

Die Hauptresultate dieser Arbeit tragen zur extremalen und algebraischen Kombi-
natorik bei. Im Kontext der extremalen Kombinatorik ist eines der beriihmtesten
Ergebnisse das Erdés-Ko-Rado (EKR) Theorem, das die Frage beantwortet, wie grof3
eine Familie von sich paarweise schneidenden Mengen sein kann. Seitdem Erdds,
Ko und Rado ihr Ergebnis in den 1960er Jahren verdffentlicht haben, wurden EKR-
Probleme untersucht, die sich aus vielen verschiedenen Objekten und Definitionen
von schneidend ergeben. In dieser Arbeit untersuchen wir EKR-Probleme in der
endlichen allgemeinen linearen Gruppe GL(n, ¢), welche aus allen invertierbaren n x n
Matrizen mit Eintragen im endlichen Kérper F, besteht. Wir liefern obere Schranken
fiir die Grofle verschiedener sich schneidender Mengen in GL(n,q) und geben eine
Charakterisierung der sich schneidenden Mengen maximaler Grofe.

Im Kontext der algebraischen Kombinatorik beschéftigen wir uns mit transitiven
Teilmengen einer Permutationsgruppe, welche den Begriff der transitiven Untergruppe
verallgemeinern. Wir liefern strukturelle Ergebnisse iiber Teilmengen von GL(n,q),
die transitiv auf fahnenartigen Strukturen wirken. Mithilfe der Theorie der Assozi-
ationsschemata zeigen wir, dass diese transitiven Mengen Delsarte T-Designs im
Assoziationsschema von GL(n, q) sind. Dies verallgemeinert ein gruppentheoretisches
Resultat von Perin iiber Untergruppen von GL(n,q), die transitiv auf Unterrdumen
iber endlichen Korpern wirken.

Unser Ansatz sich schneidende und transitive Mengen zu untersuchen, verwendet
die Theorie der Assoziationsschemata und die Darstellungstheorie von GL(n, q).

Viele der erzielten Ergebnisse konnen als g-Analoga der fiir die symmetrische

Gruppe bekannten Resultate interpretiert werden.
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Abstract

The main results of this thesis contribute to extremal and algebraic combinatorics. In
the context of extremal combinatorics, one of the most famous results is the Erdds-Ko-
Rado (EKR) theorem, which answers the question of how large a family of pairwise
intersecting sets can be. Ever since Erdés, Ko, and Rado published their result in the
1960s, EKR problems arising from many different objects and notions of intersection
have been investigated. In this thesis, we study EKR problems in the finite general
linear group GL(n, q), the group consisting of all invertible n x n matrices with entries
in the finite field with ¢ elements. We provide upper bounds for the size of different
intersecting sets in GL(n,q) and give a characterisation of the intersecting sets of
maximal size.

In the context of algebraic combinatorics, we deal with transitive subsets of a
permutation group, which generalise the notion of a transitive subgroup. We provide
structural results on subsets of GL(n,q) acting transitively on flag-like structures.
Using the theory of association schemes, we show that these transitive sets are Delsarte
T-designs in the association scheme of GL(n,q). This generalises a group-theoretical
result of Perin on subgroups of GL(n, ¢) acting transitively on subspaces over finite
fields.

Our approach for studying both intersecting and transitive sets of GL(n,q) uses
the theory of association schemes and the representation theory of GL(n, q).

Many of the results obtained can be interpreted as g-analogs of those known for

the symmetric group.
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Introduction

T

Mojstrovka, 2366m

This thesis sits at the intersection of the mathematical disciplines of extremal
combinatorics, algebraic combinatorics, and representation theory. The main original
contributions of this thesis can be divided into contributions in extremal combinatorics
on the one hand, and on algebraic combinatorics on the other. The first is given by
Erdés-Ko-Rado (EKR) results in the finite general linear group GL(n,¢) and provides
g-analogs of previous results on the symmetric group. The latter provides combinatorial
interpretations of certain Delstarte T-designs in the association scheme of GL(n, q)
as transitive sets on flag-like structures. The main tools for these results come from

representation theory.

Extremal combinatorics

Ezxtremal combinatorics addresses questions about the largest or smallest possible size
of a collection of objects with given properties. Within this framework, the so-called
intersection problems are of particular significance. In what follows, we call a subset of
{1,2,...,n} of size k a k-set of {1,2,...,n}. The classical intersection problem deals

with the following question.

How large can a family of k-sets of {1,2,...,n} be such that every two (#)

members of this family have non-empty intersection?

Families with the property given in (%) are called intersecting. Figure 1 illustrates
two intersecting families for n = 4 and k = 2. The collections of k-sets containing a
fixed element of {1,2,...,n} give the canonical examples of such intersecting families.
When such examples satisfy the further condition that no two sets intersect other than

at the fixed element, the families are known as sunflowers.



INTRODUCTION

Figure 1: Examples of intersecting families of maximal size.

If n < 2k every family of k-sets of {1,2,...,n} is intersecting, so it is necessary to
assume n > 2k to avoid triviality. In the non-trivial case, the answer to (%) was given

by Erdés, Ko, and Rado [EKR61] and states that the size of such a family is at most

-1
(o1

Although this result was published only in 1961, it had already been proved more

), and, for n > 2k, equality holds if and only if the family is a canonical example.

13

than 20 years earlier by Erdds, Ko, and Rado. However, according to Erdds, “at
that time there was relatively less interest in combinatorics” [Erd87]. Nowadays,
combinatorics is recognised as one of the pillars of communication and network theory,
showing just how much this perception has changed.

In general, whenever a set of objects and a notion of intersection among these

objects is given, an intersection problem can be formulated as follows.

Problem 1. Find an upper bound on the number of pairwise intersecting objects.

In fact we are not only interested in finding upper bounds but also in the structure

of the extremal cases, which motivates the following problem.

Problem 2. Characterise the intersecting families of maximal size.

In honour of the authors of [EKR61], these two problems are also known as EKR
problems or EKR-type problems, and the corresponding results as EKR results.

For example, a different notion of intersection in the classical case of sets is the
t-intersection. Specifically, two k-sets of {1,2,...,n} are t-intersecting if their inter-
section has size at least . With this notion of intersection, the canonical examples are
the families of k-sets containing a fixed t-set of {1,2,...,n}. For n sufficiently large
compared to t, Erdés, Ko, and Rado also solved this EKR-type problem in [EKR61].
They showed that the size of a t-intersecting family of k-sets of {1,2,...,n} is at most

(Z:D and, in the case of equality, the family is a canonical example.

The classical EKR problem has a straightforward formulation, its solution is the

expected one, and the extremal cases are given by the canonical examples. This



usually happens for EKR problems in general, so that we could say that the slogan of
EKR-type problems is that for n large enough, “the expected answer is the right one,
and, usually, the ‘only one’ ”.

Despite the simplicity of the formulation and the “obviousness” of the answer,
EKR results have had a significant impact in extremal combinatorics.

EKR problems arising from many different objects and notions of intersection have
been investigated, with objects such as subspaces or flags, see [GM16] for a survey. In
this thesis, we are interested in EKR problems on more structured objects, namely
groups. In this context Ellis, Friedgut, and Pilpel [EFP11] proved a remarkable EKR~
type result for the symmetric group Sy, building on important earlier work [DF77],
[CKO03], [LM04], [GM09]. Here the notion of intersection considered is the following:
two permutations w,o € S, are t-intersecting if they permute ¢ distinct elements in
the same way. The canonical examples are cosets of the stabilisers of ¢-tuples of ¢
distinct elements of {1,2,...,n}. It was shown in [EFP11] that for each fixed ¢ and
all sufficiently large n, the size of a t-intersecting set in S, is at most (n — t)! and, in

case of equality, the set is a canonical example, which solves the Problems 1 and 2.

Instead of a pointwise notion of intersection, one can consider a setwise notion of
intersection in the symmetric group. Two permutations w, o € S,, are t-set-intersecting
if there exits a t-set S of {1,2,...,n} such that w(S) = ¢(S). In this case, the canonical
examples are given by cosets of the stabilisers of t-sets of {1,2,...,n}. Ellis [Ell12]
proved that for each fixed ¢ and all sufficiently large n, the size of a t-set-intersecting
set in S, is at most t!(n — t)! and, in case of equality, the set is a canonical example,

which solves the Problems 1 and 2.

In this thesis we study g-analogs of these EKR~type problems for the symmetric
group. More precisely, we investigate the finite general linear group GL(n, q), consisting
of all invertible n x n matrices with entries in the finite field IF,, and consider different

notions of intersection, see Chapter 5.

The notions of intersection in GL(n,q) that we consider are t-intersection and
t-space-intersection. Two elements of GL(n,q) are t-intersecting if they coincide as
maps on ¢ linearly independent vectors of Fy. Here the canonical ezamples are cosets
of the stabilisers of {-tuples of linearly independent vectors of Fy.

Two elements of GL(n,q) are t-space-intersecting if they coincide as maps on a
t-dimensional subspace of [y. With this notion of intersection, the canonical examples
are cosets of the stabilisers of {-dimensional subspaces of Fy.

It is well known, see [AA14] or [AM15] for example, that the size of a 1-intersecting

set in GL(n, ¢q) is bounded by the size of a canonical example. Moreover, in [MR23],

3
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it was proved that if Y is a 1-intersecting set of maximal size in GL(2, ¢), then the
characteristic vector of Y is spanned by the characteristic vectors of cosets of stabilisers
of nonzero vectors.

Meagher and Spiga [MS11] proved that the size of a 1-space-intersecting set is

bounded by the size of a stabiliser of a 1-dimensional subspace of Fy.

Original contributions of this thesis - Part 1

For each of the notions of intersection in GL(n,q) that we consider (t-intersection
and t-space-intersection), we solve the corresponding EKR problems for all positive
integers t and all n sufficiently large compared to ¢, providing g-analogs of the results
mentioned for the symmetric group. This solves Problem 1, partially solves Problem
2, and greatly improves the previously known results from [MR23], dealing only with
the case t =1 and n = 2, respectively.

In the case of t-intersecting and ¢-space-intersecting, we prove the following two

theorems in Chapter 5.

Theorem 1. Let Y C GL(n,q) be t-intersecting. If n is sufficiently large compared
to t, then the size of Y is at most the size of the canonical example and, in case of
equality, the characteristic vector of Y is spanned by the characteristic vectors of cosets

of stabilisers of t-tuples of linearly independent vectors of Fy.

Theorem 2. Let Y C GL(n,q) be t-space-intersecting. If n is sufficiently large
compared to t, then the size of Y is at most the size of the canonical example and, in
case of equality, the characteristic vector of Y is spanned by the characteristic vectors

of cosets of stabilisers of t-dimensional subspaces of Fy.

The results from Theorems 1 and 2 on the different notions of intersection in

GL(n, q) were published in

[ES23] A. Ernst, K.-U. Schmidt, Intersection theorems for finite general linear
groups, Math. Proc. Cambridge Philos. Soc., 175 2023, no. 1, 129-160.

Both authors of the paper Intersection theorems for finite general linear groups
are first authors with equal rights and equally contributed to the development of the
research questions.

It is worth mentioning that, after a first version of this paper was made publicly
available (arXiv, May 2022), Ellis, Kindler, and Lifshitz [EKL23] (arXiv, August 2022)
independently proved a result in the context of forbidden intersection problems that

is more general than our result stated in Theorem 1. Moreover, they also solved

4



the characterisation issue of Problem 2 for t-intersecting sets. Their methods are
completely different from ours, and in particular they do not use the representation
theory of GL(n,q).

In the case of t-space-intersecting sets in GL(n,q) only the partial solution of
Problem 2 from Theorem 2 is known. The complete characterisation problem was
only solved for t = 1 (see [MS11], [MS14], and [Spil9]) but it remains open for all ¢ > 2.

Moreover, we obtain results for cross-intersecting subsets in GL(n, q). A pair of
subsets (Y, Z) of GL(n, q) is t-cross-intersecting and t-space-cross-intersecting if all
pairs in Y x Z are t-intersecting and t-space-intersecting, respectively. The correspond-

ing upper bounds on |Y||Z] are contained in Chapter 5 and also published in [ES23].

Our methods to prove these EKR-type results heavily rely on the representation
theory of GL(n, q) and on association schemes arising from GL(n, ¢), which belong to

the field of algebraic combinatorics.

Algebraic Combinatorics

In the words of Bannai and Ito [BI84], the “very fundamental, perhaps the most
important, [theory| in algebraic combinatorics” is the theory of association schemes.

The theory of association schemes is much richer than finite group theory, which is
why it is often referred to as “a group theory without groups” (see [BI84], for example).
An association scheme consists of a finite set X together with relations on X x X that
satisfy certain regularity and symmetry properties.

In his monumental PhD thesis [Del73], Delsarte demonstrated the profound sig-
nificance of association schemes by using them to provide a unifying framework for
error-correcting codes and combinatorial designs, which he generalised to so-called
D-cliques and T'-designs.

While classical combinatorial t-designs are defined as collections of sets with
structural properties to ensure regularities in their intersection behaviour, T-designs,
which include classical combinatorial t-designs as a special case, are defined purely
algebraically. The definition of a T-design is given in the context of an association
scheme. Here, for any given subset Y of the association scheme, it is defined an
associated dual distribution, which is a tuple obtained from the characteristic vector of
Y after some algebraic manipulations involving the matrix algebra associated with
the association scheme. Now Y forms a T-design if its dual distribution has zeroes in
certain entries specified by 7. More context and precise definitions are provided in
Chapter 2.
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Despite their algebraic definition, it turns out that certain T-designs often have
nice combinatorial interpretations, as shown in [Del73] and [Sta86], for example. In
the words of Delsarte [Del73] this “motivates [...] the ‘conjecture’ being that T-designs

will often have interesting properties”. This leads to the following problem.

Problem 3. Find a combinatorial interpretation for a T-design in a given association

scheme.

Moreover, one can often interpret T-designs as approximations of the underlying

set, see [Sta86]. It is therefore interesting to study the following problem.

Problem 4. Prove the existence and give constructions of small Delsarte T-designs

in association schemes.

In this thesis, several contributions to algebraic combinatorics emerge from the
study of T-designs in the association scheme of the finite general linear group GL(n, q).
Specifically, we provide a combinatorial characterisation of Delsarte T-designs in
GL(n, q) and show the existence of small such designs, to mention only some of our

results in this context.

These findings on T-designs in GL(n,q) complement existing work in the field,
such as the classical characterisation of T-designs in the association scheme of the
symmetric group by Martin and Sagan [MS06], where certain T-designs are described
as sets (not necessarily subgroups) acting transitively on set partitions.

In [MSO06], the authors generalise the concept of a transitive group action to subsets
as follows. Let G be a group acting transitively on a finite set 2. A subset Y of G is
transitive on {2 if the number of elements in Y that map one element of €2 to another
is the same for any two elements in €.

In the context of the symmetric group Sy, for an integer partition o = (01,09, ...)
of n, Q consists of o-partitions, which are ordered partitions of {1,2,...,n} into subsets
of size 01,09, .. ..

Martin and Sagan [MS06] show that a subset of the symmetric group is transitive
on o-partitions if and only if it is a T-design (where T consists of all partitions of n
that are different from (n) and that dominate o). A detailed exposition of these results
is provided in Section 3.4. The characterisation of Martin and Sagan in the classical
setting of the symmetric group does not only solve Problem 3 in the association scheme
of the symmetric group, but also characterises algebraically the very combinatorial
object of a transitive set. It is thanks to this characterisation that they generalise
the famous Livingstone-Wagner theorem [LW65] on t-homogeneous subgroups of the

symmetric group to subsets and o-partitions.

6



Moreover, they give a construction and show the existence of small such designs,
solving Problem 4 for the association scheme of the symmetric group.

In this thesis we study g-analog problems, replacing the symmetric group with the
finite general linear group GL(n, ¢). In the g-analog setting we take € to be the set of
flag-like structures, which can be seen as g-analogs of o-partitions. More precisely, for
an integer partition o of n, a o-flag is a sequence of subspaces (V1,V2,...) of Fy such
that {0} =V < V3 <V, < ... satisfying dim(V;/V;—1) = o; for each ¢ > 1. In analogy
with the classical case, we prove that certain Delsarte T-designs are also transitive

sets, in this case, on flags.

Original contributions of this thesis - Part 2

The contribution of this thesis to algebraic combinatorics and group theory include
structural characterisations and existence results of arbitrarily small transitive sets and
T-designs in GL(n, q), respectively. One of the characterisation results for T-designs

in GL(n, q) that we obtain is the following, see also Section 6.2.

Theorem 3. For an integer partition o of n, a subset of GL(n,q) is transitive on

o-flags if and only if it is a T-design.

Our characterisation solves Problem 3 in the association scheme of GL(n, ¢q) and
not only provides a combinatorial interpretation for Delsarte T-designs in this scheme
but also gives a structural algebraic characterisation of transitive subsets of GL(n, q).
In particular, using the latter characterisation, we generalise a theorem of Perin [Per72]
on subgroups of GL(n,q) acting transitively on ¢-dimensional subspaces to subsets
and flags.

Our main results solve Problem 3 more generally: we consider subsets of GL(n, q)
that are transitive on generalisations of ¢-dimensional subspaces and of bases of
t-dimensional subspaces of Fy, see Section 6.2.

Furthermore, in Section 6.5, we give a recursive construction and show the existence
of small such T-designs, solving Problem 4 in the association scheme arising from
GL(n,q). This is interesting because we are able to show that also in this g-analog

setting, such designs somehow approximate GL(n, q).

Finally, as a byproduct of the aforementioned results, we obtain results on codes
in GL(n, q) associated with the rank distance. The rank distance d, between two
matrices z,y € GL(n, q) is the rank of their difference, namely d,(z,y) = rk(z —y). A
code in GL(n, ¢) with minimum (rank) distance d is a subset Y of GL(n, ¢) such that
the minimum of the distances of two distinct elements of Y is d. As a byproduct of

Theorem 6.4.4, we provide a sharp upper bound on the size of such a code and also

7
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give a construction, see Corollary 6.6.6 and Proposition 6.6.9. It is worth noticing
that our bound is strictly lower than the Singleton bound for general rank-metric
codes. Moreover, the bound provides a perfect g-analog of the well known bound for
permutation codes [BCD79].

Our contributions to algebraic combinatorics are contained in Chapter 6 and were

published in

[ES24] A. Ernst, K.-U. Schmidt, Transitivity in finite general linear groups, Math.
Z., 307 2024, no. 3.

Both authors of the paper Transitivity in finite general linear groups are first
authors with equal rights and equally contributed to the development of the research

questions.

Outline of the thesis

The thesis is organised as follows. The first part consists of the Chapters 1 and 2. In
Chapter 1 we summarise without proofs the representation theory of finite groups and
the connection to the ring of symmetric functions, where we especially focus on the
symmetric group. Then, in Chapter 2 we provide the background on the theory of
association schemes required to understand the results and proofs presented later on.

The second part, Chapter 3, deals with the association scheme arising from the
symmetric group. It gives an overview of known Erdds-Ko-Rado results, permutation
codes, and transitive sets of permutations.

In the third part, including Chapters 4, 5, and 6, we study the g-analog problems
of Chapter 3. More precisely, Chapter 4 provides necessary background such as
representation theory and association schemes of the finite general linear group. In
Chapter 5 our main results on EKR theorems in the finite general linear group are
stated and proven. Moreover, we provide a collection of conjectures and open problems
of interest for future research. Finally, in Chapter 6, we look more closely at different
Delsarte T-designs in the association scheme arising from GL(n, q), give combinatorial
interpretations, show (non-)existence results, and establish connections with orthogonal

polynomials. We close this chapter with a collection of some related open problems.



1 Representation Theory

Carrantuohill, 1039m

In this chapter we briefly summarise without proofs the fundamental concepts of
the representation theory of finite groups and give an overview of the properties that
we need. Unless stated otherwise, the following definitions and statements are taken
from [Sag01, Chapter 1]. We refer the reader to [Sag01] and [BI84] for more details.

In the first section we provide an overview of all necessary objects from represen-
tation theory for this thesis. In Section 1.2 we put the focus on the representation
theory of the symmetric group and characterise its irreducible characters. Finally, in
Section 1.3, we connect the irreducible characters of the symmetric group to the ring

of symmetric functions.

1.1 Definitions and basic properties

From now on, let G be a finite group, and let V and W be nonzero finite dimensional
vector spaces over the complex numbers C. By GL(V') we denote the complex general
linear group of the vector space V and by GL(n,C) the general linear group of C”,
that is the group of all invertible n x n matrices over C. Moreover, the symmetric
group on n symbols is denoted by S,.

We recall that a group G with identity element e acts on a set X if gh.x = g.(h.x)
and e.x = x holds for all x € X and all group elements g,h € G. In this thesis,

conjugation is one of the most important group actions.

Example 1.1.1. The group G acts by conjugation on itself, that means g.h = ghg™!

for all group elements g, h € G. Every orbit of this action is called a conjugacy class

9



1 REPRESENTATION THEORY

of G. We call two elements g and h of G conjugate if they are contained in the same

conjugacy class.

For determining the conjugacy classes of the symmetric group 5, we recall the
cycle type of a permutation 7w of S,: every permutation 7 can be uniquely written
as a product of disjoint cycles m = o109 - - - 01, where the cycles o; are arranged in
nonincreasing order regarding to their cycle length. Then the cycle type of 7 is a
tuple given by the lengths of the cycles o;, namely (|o1], |02, ..., |ok|). The conjugacy

classes of the symmetric group are characterised in the following way.

Example 1.1.2 ([DF91, Prop. 4.11]). Two permutations are conjugate if and only
if they have the same cycle type.

In the following we denote by CX the inner product space of all complex-valued
functions defined on a finite set X, namely CX = {f|f: X — C}. The addition and

scalar multiplication are given by

(f +9)(x) = f(z) +g(x), (cf)(x)=c- [f(x)

and the inner product by

1 -
(f.9) = X y;{ fW)g(y)

for all f,g € CX, z € X, and ¢ € C, where g(y) is the complex conjugate of g(y).
We note that we can interpret CX as the vector space consisting of all formal sums

> sex CzT, Where ¢, € C.
Definition 1.1.3. A representation v of a group G is a group homomorphism
U: G — GL(V).

The degree deg(V) of the representation ¥ is the dimension of the underlying vector
space V', namely deg(¥) = dimg(V).

Example 1.1.4. The trivial representation of a group G sends every g € G to the

(1 x 1)-matrix (1) and is a representation of degree one.

Example 1.1.5. Let G be a finite group acting on the finite set X. Then =: G —
GL(CX), given by

for all ¢ € G and = € X, is a representation of G that is called the permutation
representation on X and it holds that deg(Z) = | X|. In the case X = G and G acts
on itself via g.h = gh, the arising permutation representation is called the left reqular

representation.

10



1.1 DEFINITIONS AND BASIC PROPERTIES

Definition 1.1.6. Two representations ¥: G — GL(V) and ¥': G — GL(W) are
equivalent if there exists a vector space isomorphism T': V' — W satisfying ¥/(g) =
TV (g)T~* for all g € G. In that case we write ¥ ~ U’

The definition of equivalent representations allows us to interpret representations
in a different way. For this, we consider a representation ¥: G — GL(V) of G that
has degree n. For a fixed basis B = {b1,bs,...,b,} of V we define by T: V — C",
v=>3",cbi+ (c1,c,...,c,)T a vector space isomorphism. This yields a so-called
matriz representation W': G — GL(n,C) which is given by ¥'(g) = TW¥(g)T~! and
is thus equivalent to W. Consequently, we can think of ¥ and ¥’ to be the same
representations.

Sometimes it can be useful to describe representations in terms of modules.

Definition 1.1.7. The space V is a G-module, if there exists a group action of G on
Vv
GxV =V, (g,v)— g

satisfying g.(v + cw) = g.v + ¢(g.w) for all g € G, v,w € V and all scalars ¢ € C.

We will see that representations of a finite group are uniquely determined by their

characters.

Definition 1.1.8. Let ¥: G — GL(V) be a representation of a group G. Then the
character v of W is given by

: G —C, P(g)=Tr(¥(g)).

We note that the degree of a representation ¥ equals the evaluation of the corresponding
character v at the identity element e of G, that is deg(¥) = ¢ (e).

Example 1.1.9. The trivial character 1¢ of a finite group G, which corresponds to
the trivial representation from Example 1.1.4, sends every element of G to 1, that is
lg(g) =1for all g € G.

Example 1.1.10. We consider any degree one representation ¥: G — C. Then the
character ¢ of U satisfies 1(gh) = ¥(g)¥(h). These types of characters are called

linear characters of G.

Example 1.1.11. Let = be the permutation representation of G on the finite set X
from Example 1.1.5. Then the character £ of = is called the permutation character of

G on the set X and is given by

§:G—C, g =#{lyeX:gy=y}

11



1 REPRESENTATION THEORY

The permutation character plays a crucial role in this thesis. We study certain
permutation characters of the finite general linear group in Section 4.3.

Since the trace is invariant under conjugation, characters have the following

property.

Lemma 1.1.12. Let ¢ be a character corresponding to a representation of a finite
group G. Then, for all g,h € G we have

W(g) = v(h~'gh).

This Lemma implies that characters are constant on the conjugacy classes of
the underlying group. Consequently we can write ¢(C) instead of ¥ (g), where C is
the conjugacy class containing g € G. Characters are an example of so-called class

functions.

Definition 1.1.13. A function f € CG is a class function if f is constant on the

conjugacy classes of GG, more precisely if, for all g, h € G, the function f satisfies
f(g) = f(h"gh).

In fact, the set of class functions is a vector space, and we will see that the
irreducible characters form an orthonormal basis of this space.
The following result gives the characterisation of equivalent representations in

terms of their characters.

Theorem 1.1.14. Two representations ®: G — GL(V) and ¥: G — GL(W) with

characters ¢ and v, respectively, are equivalent if and only if ¢ = 1.

A well known task in representation theory is to decompose a given representation
or character into so called irreducible constituents. The definition of irreducibility

requires some preliminary preparation.

Definition 1.1.15. Let ®: G — GL(V) be a representation of G. A subspace U C V
is a G-invariant subspace of V' if, for all g € G, it holds that ®(g)(U) C U.

We note that for a given representation ®: G — GL(V) the trivial subspaces {0}

and V are G-invariant.

Definition 1.1.16. The (external) direct sum ® @& ¥ of two representations ® and ¥
of G on V and W, respectively, is defined by

PeV: G GLVaW), (2a¥)(g)(v,w)=(2(g)(v), ¥(g)(w))
for all g € G and all (v,w) e Vo W.

12



1.1 DEFINITIONS AND BASIC PROPERTIES

Lemma 1.1.17. Let ® and ¥ be representations of G with characters ¢ and 1,
respectively. Then the character of ® & ¥ is ¢ + 1.

Lemma 1.1.18. Let ®: G — GL(V) be a representation and let U < V be a G-
invariant subspace of V.. Then the restriction ®|y: G — GL(U) given by

(@lor)(g)(u) = 2(g)(u) € U,
forall g € G and u € U, is a representation of G.

Lemma 1.1.19. Let ®: G — GL(V) be a representation and let V = Uy & Ua, where
Ui and Uz are G-invariant subspaces of V. Then the representations ® and ®|y, & ®|y,

are equivalent.

From Lemma 1.1.19 it follows that if the vector space corresponding to a given
representation has two G-invariant subspaces, then the representation consists of the
sum of at least two subrepresentations. This observation motivates the following

definition of irreducibility.

Definition 1.1.20. A nonzero representation ®: G — GL(V) is drreducible if V
does not contain any nontrivial G-invariant subspace. The character of an irreducible
representation is called an irreducible character. A representation is completely reducible

if it is a direct sum of irreducible representations.

Example 1.1.21. The trivial representation and more general every representation

of degree 1 is irreducible because the only complex subspaces of C are {0} and C.

Lemma 1.1.22. Let ¢ be a representation of G.
(i) If ® is equivalent to an irreducible representation, then ® is irreducible as well.

(ii) If ® is equivalent to a completely reducible representation, then ® is completely

reducible as well.

Theorem 1.1.23 (Maschke). Every representation of a finite group is completely

reductble.

Definition 1.1.24. The character table of G is a table whose rows are indexed by
the irreducible characters, whose columns are indexed by the conjugacy classes of G,
and whose entry corresponding to the character xy and the conjugacy class C' is the

evaluation x(C).

For example, the character table of the symmetric group Sj3 is given in Table 1.1.

13



1 REPRESENTATION THEORY

Table 1.1: The character table of S3.

1 Gy Cey O

x® 1 1 1
XD |2 0o -1
XU |1 -1 1

In Section 1.2 we explain why not only the conjugacy classes but also the irreducible

characters in Table 1.1 are indexed by partitions.

Definition 1.1.25. Let (-,-) be an inner product on the vector space V. A rep-
resentation ®: G — GL(V) is unitary if, for all ¢ € G and all v,w € V it holds
that

(@(9)(v), ®(9)(w)) = (v, w),

In other words, ® is a unitary representation, if ®(g) is unitary with respect to (-, -)
for all g € G.

Lemma 1.1.26. FEvery representation of a finite group is equivalent to a unitary

representation.

Theorem 1.1.27 (Schur’s Lemma). Let ®: G — GL(V) and ¥: G — GL(W) be
representations of G and let T: V. — W be a homomorphism satisfying T®(g) = V(g)T
for all g € G. Then T is invertible or T = 0. Moreover, if ® = U, then T is a multiple
of the identity.

Henceforth, we write m® = ®@...® ® for the direct sum of the representation ® of
G taken m times. Due to Maschke’s Theorem 1.1.23 and the fact that G only has finitely
many inequivalent irreducible representations, which will be part of Lemma 1.1.31, ®

is equivalent to a sum of irreducible representations
O ~m® Emed® @ ... o m,d", (1.1)

where !, ®2 ... ®" are the inequivalent irreducible representations of G, and m; = 0

means that the representation ® does not occur in the decomposition.

Definition 1.1.28. The nonnegative integer m; in the decomposition (1.1) of ® is

called multiplicity of ®. If m; > 0, then ®° is an irreducible constituent of ®.

In the following we determine the multiplicities in the decomposition of a given

representation and character, respectively.
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1.1 DEFINITIONS AND BASIC PROPERTIES

Since the characters of a finite group G are elements of the space CG, we recall
from the beginning of this section that the inner product of two characters ¢ and ¢ of

G is given by .
(o, 0) = @l > w(g)v(g).

geG

In fact, the irreducible characters of a group are orthonormal with respect to this inner

product.

Lemma 1.1.29 (First orthogonality relations). Let ¢ and i be two irreducible

characters of G. Then we have

L foro=1,

0 otherwise.

(g, ) =

Theorem 1.1.30. The irreducible characters of a finite group form an orthonormal

basis of the space of class functions.

Lemma 1.1.31. The number of inequivalent irreducible representations of a finite
group G equals the number of conjugacy classes of G. In particular, this number is
finite.

Theorem 1.1.32. Let ® be a representation of G, with corresponding character
@. Assume that ® is equivalent to mi®!  me®? @ ... & m,P", where the m; are
nonnegative and ®', ®2 ... ®" denote the inequivalent irreducible representations of

G with characters ', 2, ..., 0", respectively. Then we have
(i) o =3imip',
(i) m; = (p,¢’).

From Theorem 1.1.32 we find that the decomposition of a representation of G into
irreducible constituents is unique up to equivalence. Moreover, the representation is
determined up to equivalence by its character.

Additionally, Theorem 1.1.32 together with the first orthogonality relations from
Lemma 1.1.29 imply a characterisation of irreducible representations in terms of their

characters.

Corollary 1.1.33. A representation of a finite group is irreducible if and only if its

character ¢ satisfies

<807 90> =1
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1 REPRESENTATION THEORY

Lemma 1.1.18 implies that we can sometimes restrict a given representation
U: G — GL(V) to a subspace U < V and obtain again a representation. It is also
possible to restrict a given representation of G to a subgroup of G. Since, in this thesis,
we almost exclusively work with restricted characters instead of representations, we

state the following definitions and properties in terms of characters.

Definition 1.1.34. The restricted character Res$ () of a given character ¢ of G to
a subgroup H < G, is defined as

Res$(p): H—C, h— o(h).

Lemma 1.1.35. If ¢ is a character of G, then the restriction Res%(go) to a subgroup
H of G is a character of H.

It is worth mentioning that the concept of irreducibility is not preserved when
restricting a character to a subgroup.
We can also do the opposite and induce a character from a subgroup of G to G

itself in order to obtain a character of G.

Definition 1.1.36. Let ¢ be a character of a subgroup H of G. Then the induced
character Ind% (p) is given by

WG O)0) = o Y el o).

‘ ‘ z€G:
z lgreH

Lemma 1.1.37. Let ¢ be a character of H < G. Then the induced character Ind% ()

is a character of G.

Like for a restricted character, the concept of irreducibility is not preserved when

inducing a character.

Theorem 1.1.38 (Frobenius reciprocity). Let H be a subgroup of G and let ¢
and 1 be characters of H and G, respectively. Then we have

(Ind% (), ¥)e = (@, Res (¥)) a1,

where (-,-)a and (-,-)g are the usual inner products on CG and CH, respectively.

The Frobenius reciprocity can be useful to decompose a character.

Example 1.1.39. Let E = {e} be the trivial subgroup of G and 1g the trivial

character of F. Using the Frobenius reciprocity and Theorem 1.1.32 we can determine
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1.2 SYMMETRIC GROUPS

the multiplicities of an irreducible character ¢ of G in the decomposition of the induced

character Ind%(1z), namely

(Ind§(1p), p)¢ = (s, ResE(0)) 5 = p(e).

Consequently, the decomposition of Ind%(1g) is given by
Ind%(15) = w(e)e,
©

where the sum is taken over all irreducible characters of G.

1.2 Symmetric groups

In this section we give an overview of the representation theory of the symmetric
group. We determine the irreducible characters, the Specht characters, and discuss the
decomposition of a certain permutation character of the symmetric group. For more
details on the representation theory of the symmetric group we refer to [Sag01].

An (integer) partition of a positive integer n is a sequence X = (A1, Ag,...) of
nonnegative integers that sum up to n and that satisfy A\; > A9 > .... The \; are
called parts of the partition A\. If X is a partition of n we write A - n. The size of a
partition A = (A1, Ag,...) is [A| = A1 + A2 + - -+ and its length £()) is the largest index
i such that \; > 0. Instead of writing (A1, Ag,...), we often use (A1, Az, ..., Agn))-
We can illustrate an integer partition A\ = (A1, \a, ..., Ax) with a Ferrers diagram,
which is an array of |A| boxes with left-justified rows and top-justified columns such
that row ¢ contains exactly \; boxes.

For example the Ferrers diagram of the partition (4,2,1) is

For each partition \ there exists the conjugate partition \' whose parts are the number
of boxes in the columns of A. For example the conjugate of the partition (4,2,1) is
the partition (3,2,1,1)

The dominance order is a partial order on the set of partitions. Let A = (A1, Ag,...)
and g = (p1, p2, .. .) be two partitions of an integer n. Then we say that A\ dominates

w and write A > p if

k k
Z)‘i > Z“i for each k > 1. (1.2)
i=1 i=1

17



1 REPRESENTATION THEORY

For example (4,2) dominates (4,1,1) but neither (3,3) dominates (4,1, 1) nor does
(4,1,1) dominate (3,3). Figure 1.1 illustrates the dominance order in terms of Ferrers

diagrams.

P

vV

v

(e e

/A_
D
|
LT

<, <7 =

Figure 1.1: The dominance order for the partitions of 6.

For a partition A, we obtain a A-tableau by filling the boxes of the Ferrers diagram of

A with the integers 1,2,...,|\|, each integer appearing exactly once. For example
14]6]2]
713
5

is a (4,2, 1)-tableau.

A X-tabloid is an ordered partition of the set {1,2,...,n} into subsets of cardi-
nality A1, Ag,.... We note that the number of different (A1, A, ..., A\;)-tabloids is
n!/(A!A2!- -+ Ag!). Moreover, the symmetric group acts naturally on the set of A-
tabloids.

We use the permutation character of the symmetric group on tabloids to obtain
all the irreducible characters of this group. Recall, from Example 1.1.11, that the
evaluation of the permutation character &* of S, on u-tabloids at = € 5, is

&H(m) = #{u-tabloids fixed by 7}.

Remark 1.2.1. Let H be the stabiliser of a py-tabloid T and 1y the trivial character

of H. Then, for a permutation 7, we have the following

1
Indsr (1g)(n) = ] > (o '7o)
o€Sy:
o lrocH
1 -1
= @#{O’ €Sp:o mo(T)=T}
1

= ﬁ#{J € Sy mo(T) =o(T)}.

18
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We fix permutations 71,7, ..., 7 of S, such that S,, = U;7; H, where U denotes the

disjoint union. Then we get

Indsy (1) (7)) = #{i € {1,2,...,0}: 7r;(T) = 75(T)}
= #{u-tabloids fixed by 7}
= {H(m).

Consequently, the permutation character &* is equal to the induced character
Sh,
Ind7; (15).

Definition 1.2.2. Let A and p be partitions. A generalised tableau of shape A and
content u is an array obtained by filling the boxes of a Ferrers diagram with positive

integers 4, such that ¢ occurs exactly u; times.

For example

23|

2
4

1
is a generalised tableau of shape (3,2,1) and content (2,2,1,1).

Definition 1.2.3. A semistandard tableau is a generalised tableau whose rows are

weakly and whose columns are strictly increasing.

For example

2

1
213
4

is a semistandard (3,2,1) tableau with content (2,2,1,1).

Definition 1.2.4. The Kostka number K, is the number of semistandard A-tableaux

with content p.
Theorem 1.2.5 ([Macl5]). The Kostka numbers K, satisfy
K»\zlandKM#O:)\Eu (13)

Table 1.2 provides some values of the Kostka numbers.

In the following we introduce the irreducible characters of the symmetric group in
an indirect way, which later allows us to emphasise some analogies with the irreducible

characters of the finite general linear group. It is well known (see [Sag01, Chapter 2],
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1 REPRESENTATION THEORY

Table 1.2: The Kostka numbers K, for A and u being partitions of 3.

13) (2,1 (1,1,1)
3 |1 1 1
2,1) |0 1 2
(LL,) [0 0 1

for example) that using the permutation characters on tabloids, we get all irreducible
characters of the symmetric group by a recursive construction.
The first permutation character £™ of S, is irreducible because it is the trivial

character. We name it x(™. The next irreducible character arises from ¢(~1:1)

, since
& (n=11) can be decomposed into irreducible characters containing copies of X(”) and a
single copy of the new irreducible character x("~11). We can continue that way and
obtain all irreducible characters of S,,. More precisely, we define the characters x*
recursively in the following way
X ==Y Ko,
A

where the K, are the Kostka numbers.

Furthermore, it is well known (see [Sag01, Chapter 2] for example), that for every
partition X of n, these characters x*, called Specht characters, are irreducible characters
of the symmetric group S,,. Moreover, all irreducible characters of S,, are given by x*
with A\ being a partition of n.

The parametrisation of the irreducible characters of the symmetric group we use is
standard and consistent with the literature.

Moreover, the decomposition of the permutation character &* is as follows.

Theorem 1.2.6 (Young’s rule). Let v be a partition of n and let " be the permu-
tation character of S, on u-tabloids. The decomposition of * into irreducibles x* is
given by

¢ =" Ky,

AB
where the K, denote the Kostka numbers.

Remark 1.2.7. We note that our approach of introducing the irreducible characters
of the symmetric group does not explain why they are irreducible and it does make
Young’s rule look like an obvious consequence. We point out that, in fact, proving

the irreducibility and Young’s rule is a highly non-trivial task.

Using the character table of S3 from Table 1.1 and the Kostka numbers from
Table 1.2 we get the following illustration of Young’s rule in terms of a matrix

multiplication.
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111 1 00 1
01 31=1110 -1 0 2
0 0 6 1 21 1 -1 1

From Young’s rule together with the use of linear algebra it follows that we can

express the irreducible characters in terms of the permutation characters on tabloids.

Theorem 1.2.8. Let x* be the irreducible character of Sy, corresponding to the parti-

tion X. There are integers H, satisfying
X)\ = ZHM)\&U" (14)
o
where £ is the permutation character of S, on p-tabloids, and
HAA:1andH#)\7é0:>/L|Z)\. (15)

We note that from (1.4) together with the definition of the permutation character

&H it follows that the irreducible characters of the symmetric group are real-valued.

1.3 The ring of symmetric functions

In this section we give an overview of the connections between representations of the
symmetric group and the ring of symmetric functions. In fact there exists a bijection
between symmetric functions and class functions of symmetric groups. We follow
[Sag01, Chapter 4] and, unless stated otherwise, all results stated in this section can be
found there. We also refer to [Mac15, I] for a more algebraic background on symmetric

functions.

Definition 1.3.1. Let x1, 22, ... be infinitely many variables and let A = (A1, Aa, ..., Ap)
be a partition. Then the monomial symmetric function m) corresponding to A is given
by

_ A1, A2 Ag
mx = Z:Bh Lig = Tyy s
where the sum is taken over all distinct monomials having exponents A1, A, ..., Ay.
For example,
m(s,1) = x:facg + xlxg + a::fxg + xlxg + l’%l‘g + xgxg +....
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We define the complex vector space A" as the span of all monomial symmetric

functions of degree n, more precisely
A" = (my: A n)c. (1.6)

In fact the monomial symmetric functions my, where A is a partition of n, are

linearly independent.

Proposition 1.3.2. The set of monomial symmetric functions {my: A\ n} forms a
basis of A™. Consequently the dimension of A" is equal to the number of partitions of

n.

Definition 1.3.3. The ring of symmetric functions A is

A=A (1.7)
n>0
Since the decomposition in (1.7) is direct, A is a graded ring.
There is an action of the symmetric group on the functions in A, namely, for f € A

and T € Sy,

Wf(x1>x2>$3> .- ) = f('xw(l)awvr(Q)?xﬂ(S)a . ')7 (18)

where we set 7(i) =i for all ¢ > n.

Since the monomial symmetric functions are invariant under the action (1.8), it is
justified to call them symmetric.

Besides the monomial symmetric functions there are other functions which are

invariant under the action (1.8).

Definition 1.3.4. The nth power sum symmetric function py, is given by pn, = m(,).
And for a partition A = (A, Aa, ..., A\¢) the power sum symmetric function py corre-

sponding to A is px = px,Px, - P,

Theorem 1.3.5. The set of power sum symmetric functions {px: A = n} forms a
basis of A™.

In addition to the monomial symmetric functions and the power sum symmetric
functions, other bases for A™ are provided by the elementary symmetric functions, the
complete homogeneous symmetric functions, and the Schur functions. The latter are
important in this thesis. For more background on all the other mentioned symmetric
functions we refer to [Sag01, Section 4.4 or [Macl5, Ch. 1.2].

In order to define the Schur functions we use a combinatorial approach. To do so,

we need the notion of a composition, that is much like a partition.
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Definition 1.3.6. A composition of a nonnegative integer n is a sequence p =
(t1, 2, . ..) of nonnegative integers that sum up to n. The length ¢(u) of a com-

position is defined as it is for partitions, and we often write (u1, 2, ..., tiy(y)) instead

of (,ul,,ug, .. )

For example (2,4,1) is a composition of 7 but not a partition. For a composition

1, the definition of a semistandard A-tableau with content p is as expected.
Definition 1.3.7. For a composition p = (p1, pi2, - . -, j¢), the corresponding mono-
mial weight z* is defined by

B M1 K2 .
h =axyan .ot

Let T be a semistandard A-tableau with content . Then we define a monomial 27,

representing the weight of T' by

zl =zt
For example, if T is equal to
4
9
34
then 7 = 23z323.

Definition 1.3.8. The Schur function s) associated with the partition A is defined

by
S\ = Z JZT,
T
where the sum is taken over all semistandard A-tableaux 7.

Even though we defined the Kostka numbers K, only for partitions (see Defini-
tion 1.2.4), the definition can be generalised for arbitrary compositions p. For more
details we refer to [Sag01l]. Then, for any partition A of n, we have the following
identity

S\ = Z Kzt
I

where the sum is taken over all compositions p of n. From this it follows that the

Schur functions are indeed symmetric functions.

Using Equation (1.3), we can write the Schur functions in terms of the monomial

symmetric functions.

Lemma 1.3.9. It holds that
5\ = Z Ky,my,

n<X

where the sum is taken over all partitions p being dominated by .
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From that and K,y = 1, we get the following.

Theorem 1.3.10. The set {sy: A n} of Schur functions forms a basis of A™.

Moreover, from Lemma 1.3.9, it follows that the transition matrix of the change
of basis from the Schur functions to the monomial symmetric functions is given by
the Kostka numbers. Two other interesting transition matrices are coming from the
change of basis from the power sum symmetric functions to the monomial symmetric

functions, and from the Schur functions to the power sum symmetric functions.

Theorem 1.3.11. Let &\ be the permutation character of S, on p-tabloids evaluated

on the conjugacy class corresponding to A. Then

bx = Z ggm,u

u>X

Consequently, the transition matrix of power sum symmetric functions and mono-

mial symmetric functions arises from the permutation character on tabloids.

Theorem 1.3.12. Let Xf) be the irreducible character of S, associated with the parti-

tion A and evaluated on the conjugacy class C,, corresponding to . Then

1 A
S\ = E Z |C/J‘X,up/1"
Cpbn

Consequently, the scaled character table of the symmetric group gives the transition

matrix of Schur functions and power sum symmetric functions.

In the following we focus more on the connection between Schur functions and
irreducible characters of the symmetric group. In fact there exists a bijection between
A"™ and the space of class functions of the symmetric group S,.

We define an inner product on A™ by

<S)\7 Su) = 5)\,&

and sesquilinear extension, which is sufficient since the Schur functions form a basis of

A"

Definition 1.3.13. Let R™ denote the space of class functions of S,,. The character-
istic map ch™ is defined by

ch™: R" — A", ch™(x?) = sy,

where y* and sy are the irreducible characters of S,, and the Schur functions, respec-

tively.
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We emphasise that it is sufficient to define the map ch™ in terms of the irreducible

characters x* since they form a basis of R™.

Lemma 1.3.14. The characteristic map ch™ is an isometry between R™ and A™.

Now, for R = @,, R" and A = @,, A", Theorem 1.3.15 shows that ch = @,, ch" is
an isomorphism of algebras. The tensor product ® of two class functions ¢ and v of

S, and S, respectively, is a class function of S, x Sy, and is by definition

@Y Sy x Sy = C, (¢®¢)(7T70):¢(77)'¢(0)'

The generalisation of an induced class function is defined in exactly the same way as
an induced character (see Definition 1.1.36). We define a product on class functions ¢

and ¢ of S, and S, respectively, in the following way

Sn m
¢ © Y =Indg" s (¢ @1). (1.9)
Theorem 1.3.15. The map ch: R — A is an isomorphism of algebras.

With the help of the characteristic map ch we can decompose products of irreducible

characters. For this we need the notion of a skew-tableau.

Definition 1.3.16. Let n and m be nonnegative integers and let A and p be partitions
of m and n + m, respectively. The partition A is contained in p and we write X\ C p if
the Ferrers diagram of X is contained in the Ferrers diagram of u, more precisely if
Ai < p; for all 4. This partial order is called containment. For partitions A C u, the

skew diagram p/\ is the set difference of p and A and contains exactly n cells.

For example, for A = (2,1) and p = (4,3,2), we have A C p and the skew diagram
/A looks as follows

We note that C is a partial order on the set of all partitions.

The definitions of a skew tableau and a semistandard skew-tableau are as expected.

Definition 1.3.17. Let T be a skew tableau of shape p/A. The word w(T') derived
from T is a sequence obtained by reading the symbols in 7" from right to left in
successive rows, starting with the top row. The word w(T) = iyia...ips in the symbols
1,2,...m is a lattice permutation if for any 1 < r < M and any positive integer
1 < /¢ < m —1, the number of occurrences of £’s in 4142 .. .14, is at least as large as the

number of occurrences of (¢ + 1)’s.
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1 REPRESENTATION THEORY

As an example, the word associated with the following skew tableau

1

213

is 112132 and is a lattice permutation.

Theorem 1.3.18 (Littlewood-Richardson Rule). Let x* and x” be irreducible
characters of S, and Sy, respectively. Then the product x* ® x* decomposes into

irreducible constituents as follows
X Ox =Xt
o

where the Littlewood-Richardson coefficient cf\‘y s the number of semistandard skew-
tableauz T of shape p/ X and content v such that the word w(T) is a lattice permutation.
Since the Littlewood-Richardson coefficients are nonnegative integers, the product

) © x¥ is indeed a character of Spm-

We note that ¢§ = 0 unless || = [A| + |v| and A, v C p.
In the case of v = (m) the irreducible character x” is just the trivial character of

Sy, and the Littlewood-Richardson rule reduces to the so-called Pieri’s rule.

Corollary 1.3.19 (Pieri’s rule). Let x* and ™) be irreducible characters of S,
and Sy, respectively. Then x» ® x™ decomposes into irreducible constituents as

follows
“w

where p runs through all partitions whose Ferrers diagram is obtained from A\ by adding

m bozes, no two of which are in the same column.
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2 Association schemes

/\Jv”“/\\

Dinara, 1831m

In this chapter we introduce and collect some notions about association schemes.

The theory of association schemes, in the words of Bannai and Ito [BI84], “is very
fundamental, perhaps the most important, in algebraic combinatorics”. Association
schemes provide a unified and underlying framework for studying coding and design
theory. One of the highlights of the theory is its versatility in applying a wide range
of algebraic tools, such as eigenvalue techniques and representation theory, as well
as graph theory and linear programming. For this reason, association schemes are
themselves a powerful tool to solve (extremal) combinatorial problems.

It is indeed often possible to interpret combinatorial objects as subsets within
certain association schemes, which then allows to utilise algebraic or linear programming
methods to uncover new characterisations and properties of these combinatorial objects.

First introduced in the 1930s in the context of statistics, association schemes were
formally recognised as an independent research subject through the work of Bose and
Shimamoto in [BS52] in the 1950s. However, it was not until the 1970s that Delsarte
demonstrated the theory’s profound significance. In his monumental thesis [Del73],
Delsarte used association schemes to unify the study of combinatorial designs and
error-correcting codes, revealing them as two facets in the same broader theoretical
framework. This establishes association schemes as an object of fundamental impor-

tance in both studies!.

We provide a brief introduction to the theory of association schemes in Section 2.1,
including definitions, examples and some basic properties. In Section 2.2 we characterise
subsets of association schemes in terms of their inner and dual distributions leading

to so-called D-cliques and T'-designs. In Sections 2.3 and 2.4 we collect methods for

!The impact is also visible in the fact that Delsarte’s thesis has been cited over 2000 times according
to Google Scholar as of 2024
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2 ASSOCIATION SCHEMES

studying the sizes of D-cliques in association schemes. This includes a graph-theoretical
approach involving the Hoffman bound and its weighted version, as well as the linear
programming method introduced by Delsarte. Moreover, we use these methods to

analyse special D-cliques associated with intersecting families of sets.

2.1 Definitions, examples, and properties

In this section we introduce association schemes and summarise some of their properties,
with a particular focus on the conjugacy class scheme. For more details and for proofs
we refer to [Del73], [BI84], and [GM16].

From now on, unless stated otherwise, let X be a finite set with at least two

elements.

Definition 2.1.1. An association scheme with n classes is a pair (X, {Ro, R1,..., R, }),

where Ry, Ry, ..., R, are non-empty relations on X x X with the following properties.
(A1) The relations Ry, Ry, ..., R, partition X x X and Ry = {(z,z): x € X}.
(A2) For all i, we have Rl € {Ro, R1,..., R}, where R = {(y,2): (z,y) € R;}.

(A3) For every x,y € X with (z,y) € Ry, the number of z € X such that (x,z2) € R;

and (z,y) € R; is a constant only depending on ¢, j, k, more precisely
#{z € X: (z,2) € R; and (z,y) € R;} :pfj
for all 4, 5, k.
(A4) For all i, j, k, we have pfj = pé“z

The constants pfj are called intersection numbers. If we have RiT = R; for all 7, then
the association scheme is symmetric. For an x € R;, we define the valency v; of the

relation R; by
vi=#{y € X: (z,y) € R;}.

We note that the valencies v; are well-defined because, for a pair (i, j) such that

R = R;, we have
#{ye X: (z,y) € Ri} = #{y € X: (x,9) € Ry, (y,z) € R;} =},

so that v; = p%.

Before focusing on properties of association schemes, we give some examples.
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Example 2.1.2 (Johnson scheme). Let k and n be nonnegative integers satisfying
n > 2k, and let X be the set of all subsets of [n] = {1,2,...,n} having k elements.
Hence we have |X| = (}). Let R; be given by

Ri={(z,y) e X x X: |zNy|=k—1i}.

Then (X,{Ro, Ri,...,Ri}) defines a symmetric association scheme with %k classes.
This association scheme is called the Johnson scheme and is denoted by J(k,n). From

a counting argument it follows that the valencies v; are given by

()07 60

We can extend the concept of classical combinatorics of sets to combinatorics of
vector spaces over the finite field F,. It is well known that the first can be seen as the
limiting case ¢ — 1 of the latter, where sets are replaced by vector spaces over F, and
cardinality is replaced by dimension. The combinatorics of vector spaces over F, is
typically referred to as g-analogs of the classical cases.

The g-analog of the usual binomial coefficient is the g-binomial coefficient mq and

is the number of k-dimensional subspaces of Fy, namely

=11 . 2.1)
k (
k q =0 q 7
In terms of the ¢-factorial of a nonnegative integer m given by
¢ —1
[m]q! = [m]glm —1]q--- [1]q  with [(]; = g—1’ (2:2)

it holds that

[n] _ [n]q!
K, [k]gln — K] !

Example 2.1.3 (¢g-Johnson scheme). Let & and n be nonnegative integers with
n > 2k. Let X be the set of all k-dimensional subspaces of Fy and let

Ri={(z,y) € X x X: dim(zNy) =k —i}.

Then (X,{Ry, R1,...,Ri}) is a symmetric association scheme with k classes, which is

called the g-Johnson scheme or Grassmann scheme and it is denoted by J,(k,n). The

’i2 k n_k'
V; =g i ; .
q q

Another class of association schemes arises from finite groups, namely the conjugacy

valencies v; are given by

class schemes, which plays a crucial role in this thesis.
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2 ASSOCIATION SCHEMES

Example 2.1.4 (Conjugacy class scheme). Let G be a finite group and let all its
conjugacy classes be Cy = {e},C1,...,C,. We define the relations by

Ri={(9,h) € G xG: g 'h e Cy}.

Then (G,{Ro,R1,...,R,}) is an association scheme with n classes that is called
conjugacy class scheme arising from the finite group G. For the valencies v;, we have
V; = |Cl|

The two groups, which are of great importance in this thesis, are the symmetric
group and its g-analog the finite general linear group. In the Chapters 3, 5, and 6
we interpret certain combinatorial objects (transitive and intersecting sets) of the
symmetric group and of the finite general linear group as subsets of the corresponding
conjugacy class schemes arising from these groups. This allows us to describe further
(algebraic) properties of these objects. Due to the fact that we are working almost
exclusively with the conjugacy class scheme, we will repeatedly refer to properties of
this association scheme in the remainder of this chapter.

Even though there exist groups for which the corresponding conjugacy class scheme
is symmetric, like the symmetric group, whose conjugacy classes are closed under
inversion, the conjugacy class scheme is not necessarily symmetric. In certain finite
general linear groups, for example, not all the conjugacy classes are closed under
inversion and thus the associated conjugacy class scheme is not symmetric. The fact
that the conjugacy class scheme arising from the finite general linear groups are not
necessarily symmetric plays a crucial role in the thesis. However, given an association
scheme, it is possible to construct a symmetric one arising from it, as we will see in
Lemma 2.1.21.

Remark 2.1.5. There is a strong connection between association schemes and graph
theory. We can view an association scheme (X, {Ryp, R1,...,R,}) as a union of (not
necessarily undirected) graphs I'; = (X, R;), whose vertices are given by X and whose
edges are given by the relations R;. If the association scheme is symmetric, then the

graphs I'; are reqular graphs for each 1.

Figure 2.1: The Johnson scheme J(2,4).
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2.1 DEFINITIONS, EXAMPLES, AND PROPERTIES

Example 2.1.6 (Johnson scheme). Figure 2.1 shows the graph corresponding to
the Johnson scheme J(2,4). The dotted lines correspond to the relation Rs, the

nondotted ones to the relation R;, and we omitted to draw the relation Ry.

Given an association scheme, we can bring matrices into play. To do this, we first
introduce some notation.

Given a field K and two finite sets X and Y, we write K(X,Y") for the set of all
| X| x |Y| matrices whose entries are in K and whose rows and columns are indexed by
X and Y, respectively. For a matrix A € K(X,Y), the entry corresponding to x € X
and y € Y is denoted by A(z,y). If Y = |1], then we write K(X) instead of K(X,Y)
for the set of all column vectors indexed by X and having entries in K. For the z-entry
of a € K(X), where z € X, we write a(z).

For a relation R on X x X, the adjacency matriz A € R(X, X) of R is given by

1 for (x,y) € R,
Az, y) =
0 otherwise.

Using adjacency matrices we can give the following equivalent definition of an

association scheme.

Definition 2.1.7. Let Rg, R4, ..., R, be non-empty relations on X x X with corre-
sponding adjacency matrices Ao, A1, ..., A,. Then (X, {Ro, R1,...,R,}) is an associ-

ation scheme if the following properties hold.

(A1) We have >°1' y A; = J and Ag = I, where J, I € C(X, X) denote the all-ones and

the identity matrix, respectively.
(A2’) For all 4, we have A} € {Ag, A1, ..., A}
(A3’) For all 4, j, there exist integers pfj such that 4;4; = > pfjAk.
(A4’) For all 4,7, k, we have pfj = pé‘z

Remark 2.1.8. The adjacency matrices of an association scheme have exactly v;

ones in each row and each column, where v; denotes the valency.

Example 2.1.9 (Conjugacy class scheme). Given the conjugacy class scheme aris-
ing from a finite group G with conjugacy classes Cy = {e}, C1,. .., Cy, the correspond-
ing adjacency matrices A; € C(G,G) are given by

1 for g~'h € C;,
0 otherwise.
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2 ASSOCIATION SCHEMES

In the following, we often denote the set of relations { Ry, R1, ..., R,} of an asso-
ciation scheme by R. Let (X, R) be an association scheme with n classes and corre-
sponding adjacency matrices Ag, Ay,..., A,. Then the vector space (Ao, A1,...,Ap)c
is a matrix algebra because of (A3’) and together with (A4’) it follows that this
algebra is commutative. Moreover, from (A1l’) it follows that this vector space is

(n + 1)-dimensional. This brings us to the following definition.

Definition 2.1.10. For an association scheme (X, R) whose adjacency matrices are
Ap, Ay, ..., Ay, the commutative (n+ 1)-dimensional matrix algebra (Ag, A1, ..., Ap)c
is called the Bose-Mesner algebra of (X, R).

From property (A2') together with the fact that all entries of the adjacency matrix
A; are 0 or 1 it also follows that the A;’s and thus all elements of the Bose-Mesner
algebra are normal. Using linear algebra, it follows that the Bose-Mesner algebra
is simultaneously unitary diagonalisable. Thus it is possible to construct a second
basis of the Bose-Mesner algebra that consists only of pairwise orthogonal idempotent

matrices.

Theorem 2.1.11. The Bose-Mesner algebra of an association scheme (X, R) with n
classes has a unique basis of pairwise orthogonal idempotent matrices Ey, E1,. .., Ey

that are Hermitian and satisfy

n
1

ZEk:I and 7J€{EOaE17"'7ETL}7

k=0 |X’

where I and J are the identity and the all-ones matriz, respectively.

From now on, we will assume that Ey = ‘71|J . Since the matrices E}, of the second

basis of the Bose-Mesner algebra are idempotent, it follows that they are positive

semi-definite.

Definition 2.1.12. The multiplicities mj, of an association scheme are the ranks of
the matrices Ej from Theorem 2.1.11, that is my = rk(E}).

The beauty of the conjugacy class scheme lies in its ability to involve representation

theory.

Example 2.1.13. The pairwise orthogonal idempotent matrices Fj corresponding

to the conjugacy class scheme arising from the finite group G are indexed by the

irreducible characters %, x',...,x™ of G and are given by
X" (e) k
Ex(g,h) = WX (g~'h), (2.3)
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2.1 DEFINITIONS, EXAMPLES, AND PROPERTIES

where e denotes the identity element of G. Thus, the multiplicities my are

k e
geG

There are certain connections between the two bases of an association scheme,

which we collect in the following remark.

Remark 2.1.14. The two bases of the Bose-Mesner algebra of an association scheme
(X,{Ro, R1,...,R,}) are dual in a certain way, which is illustrated in Table 2.1.
There, o denotes the Hadamard product, that is the component-wise multiplication of

two matrices and J;; denotes the Kronecker-delta.

Table 2.1: Summary of properties of the bases matrices A; and Ej, of the Bose-Mesner
algebra corresponding to the association scheme (X, {Ro, R1,...,R.}).

Ag=1 FEy = ﬁj
Z Ai=J Z E,=1
=0 k=0

Ai ¢} Aj = 51]14@

entries are 0 or 1

EyEy = 0By,

eigenvalues are 0 or 1

From Theorem 2.1.11, we have that > }_, Ex = I and that the Ej are pairwise

orthogonal. Consequently, we get the following.

Lemma 2.1.15. The matrices Ey of an association scheme (X,{Ro,R1,...,Rn})
satisfy that

CX = @ colsp(E%),
k=0

where colsp(Ey) denotes the column span of Ey over the complex numbers.

There exist unique complex numbers P;(k) and Q (i) such that

4= Y RO, (24)
k=0
1 & )

We will see at a later stage in this thesis that the change of basis is of great importance in
the theory of association schemes. The numbers P;(k) and Q (i) are called eigenvalues
and dual eigenvalues of the corresponding association scheme, respectively. Using the

properties of the two bases, we obtain the following values of the (dual) eigenvalues.
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2 ASSOCIATION SCHEMES

Lemma 2.1.16. Let (X,{Ro, Ri,...,Rn}) be an association scheme having valencies
v; and multiplicities my. Then the the eigenvalues P;(k) and dual eigenvalues Qp (1)

of the scheme have the following values for every i, k:
(i) Po(k) =1,
(i) Qo(i) =1,
(iii) P;(0) = v,
(iv) Qr(0) = my.
Moreover, using the equations (2.4) and (2.5) we can deduce the following identities.

Lemma 2.1.17. Let P;(k) and Qi (i) denote the eigenvalues and dual eigenvalues,
respectively, of the association scheme (X,{Rp, R1,...,Ry}) having valencies v; and

multiplicities my. Then we have
(i) 1x7 ko Pi(k)Qk(5) = b,
(i) 17 im0 Q@) Pi(l) = dua,
(iii) myP;(k) = viQx(0),
where ;; denotes the Kronecker-delta.

Furthermore, we have the following estimates on the absolute value of the (dual)

eigenvalues.

Lemma 2.1.18. Let P;(k) and Qx(i) denote the eigenvalues and dual eigenvalues,
respectively, of the association scheme (X,{Ro, R1,...,Ry}) having valencies v; and

multiplicities my. Then, for all i,k, we have

[Pi(k)] < v and  |Qr(i)] < my.

Calling the numbers P;(k) and Qg (7) eigenvalues and dual eigenvalues, respectively,

is justified because, for all 7, k, we have

A;Ey = P(k)E, (2.6)

1 .
Ajo By = —Qr(i) A, (2.7)
RY
where o denotes again the Hadamard product. We emphasise that from (2.6) we find
that the columns of the pairwise orthogonal idempotent matrices E} are the common

eigenvectors of the adjacency matrices A;.
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2.2 SUBSETS OF ASSOCIATION SCHEMES

We note that for a symmetric association scheme the adjacency matrices are
symmetric and thus their eigenvalues P;(k) and, due to Lemma 2.1.17, also the
dual eigenvalues Qg (i) are real-valued. In general these numbers are not necessarily

real-valued.

Example 2.1.19. The eigenvalues P;(j) of the Johnson scheme J(k,n) from Exam-
ple 2.1.2 are given by

. k rivifrY[(n—2r\(n—1r—7j
ORIV (| Gl | g |

Example 2.1.20. We focus again on the conjugacy class scheme of the finite group G
whose conjugacy classes and irreducible characters are Cy, C1, . .., Cy and X%, X', ..., X",
respectively. Then the eigenvalues of this scheme are

|Cil &
xXF(e) ™

Pi(k) =
and the dual eigenvalues are
Qr(d) = X" (e)xF,

where Xf denotes the irreducible character x* evaluated on the conjugacy class C;.

Together with (2.4) and (2.5), respectively, we have

=~ |Ci| —
A; = E XFEx, (2.8)
= X" (e)
k n
X" (e) k
E. = FA;. 2.
2 Il ;ZOXz (2.9)

Sometimes, it is mandatory to have a symmetric association scheme. Given a
non-symmetric association scheme, there is a method to construct a symmetric one

from it.

Lemma 2.1.21 (Symmetrisation). Let (X,{Ro, R1,...,R,}) be an association
scheme and define
R={R;UR;':ic{0,1,...,n}}.

Then the pair (X,R) is a symmetric association scheme. In this case we call (X, R)

the symmetrisation or the symmetric closure of (X, {Ro, R1,...,Rn}).

2.2 Subsets of association schemes

One of the reasons why association schemes are such a powerful tool is because it is of-

ten possible to embed interesting combinatorial objects as subsets in certain association
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schemes and to characterise them in terms of their inner or dual distribution. Del-

sarte named these subsets cliques and designs and introduced them in his thesis [Del73].

In the following we write [n] for the set {1,2,...,n} and we call a subset of
size k of [n] a k-subset or k-set for short. Moreover, if not stated otherwise, let

(X,{Ro, Ry, ..., R,}) be an association scheme with adjacency matrices Ay, Ay, ..., 4,.

Definition 2.2.1. For a subset Y of X, the inner distribution of Y is the tuple

(ag,aq,...,a,) given by
|(Y X Y) ﬂR@"

v (2.10)

a; =

Since Ry is the set of diagonal elements, we have ag = 1. We note that the numbers a;

are nonnegative.

Figure 2.2: A subset of the Johnson scheme J(2,4) consisting of four 2-subsets.

Example 2.2.2 (Johnson scheme J(2,4)). The inner distribution (ag, a1, az) of

the given subset in Figure 2.2 satisfies
a0:1, CL1:5/2, a2:1/2.

Let 1y € C(X) denote the characteristic vector of a subset Y of X, that is

1 forzx ey,
]1y<1’) =
0 otherwise.

Since we can describe an association scheme in terms of its adjacency matrices A;, we
find that the definition (2.10) of the inner distribution of a subset Y of X is equivalent
to the following
Lo
a; = — 1y A;ly. 2.11
7 |Y| Yy Ly ( )
Certain subsets of an association scheme, known as cliques, are defined in terms of

their inner distribution and are of particular interest.

Definition 2.2.3. Let D be a subset of [n]. A subset Y of X with inner distribution
(ag,ai,...,an) is called a D-clique if a; = 0 for all i € [n] \ D.
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In other words, if Y is a D-clique, then the set D U {0} contains all permitted relations
that occur among the elements of Y. We are interested in finding upper bounds on
the size of D-cliques. One tool to do so is the linear programming method by Delsarte,

which we discuss in Section 2.4.

Example 2.2.4. Let (X,{Ro, R1,...,R,}) be the Johnson scheme J(k,n) from Ex-
ample 2.1.2 and take D = {1,2,...,k — 1}. Then a D-clique of X consists only of
k-subsets z,y of [n] such that z Ny # @.

The D-cliques from Example 2.2.4 are called intersecting sets or Erdds-Ko-Rado
sets and will play a crucial role in this thesis. We will give more details on these
intersecting sets in Section 2.3.2 and will later on discuss intersecting sets in other
association schemes, namely in the conjugacy class schemes arising from the symmetric

group and the finite general linear group in Section 3.2 and Chapter 5, respectively.

The dual of a D-clique in an association scheme is a T'-design. In order to introduce
a T'-design, we first need the dual object of the inner distribution, which is the dual

distribution.

Definition 2.2.5. The dual distribution of a subset Y of X is a tuple (bo, b1,...,by)
given by

n
bk = Z Qk(i)ai, (2.12)
i=0
where the Q(i) are the dual eigenvalues of the association scheme.

From (2.11) and (2.5) it follows that the definition (2.12) is equivalent to

1X] 7

b =
|

1LE 1y, (2.13)

where the matrices Fj form the pairwise orthogonal idempotent basis from Theo-
rem 2.1.11 of the underlying association scheme.

Since Ey = ‘71|J it follows that by = |Y|. Moreover, since the E} are positive
semi-definite (see Theorem 2.1.11), it follows from (2.13) that the entries of the dual
distribution are real and nonnegative.

Table 2.2 gives an overview of the properties of the inner and dual distribution,

respectively.

Example 2.2.6. Let x, x!,..., X" be all irreducible characters of the finite group
G and let Y be a subset of G. Then, due to Example 2.1.20, the dual distribution
(bo,b1,...,b,) of Y is given by

ZX (97"h).

g,heY
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Table 2.2: Properties of the inner and dual distribution of a subset Y of X.

inner distribution (a;) dual distribution (by)
X
a; = ﬁ]l;Al]ly bk = M]l;Ek]lY
n n .
= £ Pon b= 55 Qulie
k=0 =0
a; >0 by >0
ag =1 bo = |Y|
n n
S oa; =Y > by = |X]
i=0 k=0

Since all entries of the dual distribution are nonnegative, we are particularly
interested in the extremal case, namely when some entries are equal to zero. This

motivates the definition of a T'-design.

Definition 2.2.7. Let T be a subset of [n]. A subset Y of X with dual distribution
(bo, b1, -..,bn) is a Delsarte T-design (or T-design for short), if b, = 0 for all k € T.

Remark 2.2.8. Since the matrices E}, of the association scheme (X, {Ro, R1, ..., Ry})
are pairwise orthogonal we conclude that a subset Y of X is a T-design if and only
if the characteristic vector 1y of Y is orthogonal to the column space of Ej, for all
kel.

Ever since Delsarte introduced T-designs in his thesis [Del73], they have been of
interest in algebraic combinatorics. We emphasise that the definition of a T-design is
algebraic and without any clear combinatorial interpretation. However, it turns out that
T-designs in association schemes often have nice combinatorial interpretations, which
motivated Delsarte to “the ‘conjecture’ being that T-designs will often have interesting
properties” [Del73|. This conjecture was proved for several classical association schemes,
see for example [Del76] or [Sta86]. In Section 3.4 and in Chapter 6 we show that this
conjecture is also true for the conjugacy class scheme arising from the symmetric group
and from the finite general linear group, respectively.

It is well known that for many association schemes Delsarte T-designs approximate
in some sense the underlying set, see for example [Sta86]. Consequently, we are

interested in the existence of small T-designs.

For example, in the Johnson scheme certain T-designs are classical combinatorial

t-(n,k,\) designs.
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Definition 2.2.9. For positive integers n > k and t € [k], we consider the set .S of all
k-subsets of [n]. An element of S is called a block. A subset Y of S is a combinatorial

t-(n, k,\) design if every t-subset of [n] is contained in exactly A blocks of Y.

Figure 2.3: Fano plane

Example 2.2.10. The Fano plane, illustrated in Figure 2.3, is a 2-(7,3,1) design.
The set X consists of all 3-subsets of [7]. The blocks of the Fano plane are given by

the seven lines, where the inner circle also indicates a line.

The existence of combinatorial ¢-(n, k, A) designs for given ¢ and n sufficiently large
was proven by Teirlinck [Tei87].
Delsarte proved [Del73] that the notions of {1,2,...,t}-designs and combinatorial

t-(n, k, \) designs coincide in the Johnson scheme.

Theorem 2.2.11. Let (X,{Ro,R1,...,Ry}) be the Johnson scheme J(k,n) from
Ezxample 2.1.2. Additionally, let t be an integer with 1 <t < k, and let Y be a subset
of X. ThenY is a T-design with T = {1,2,...,t} if and only if Y is a t-(n,k,\)
design with \ = \Y\(l:)/(?)

From this theorem it follows that the Fano plane is a {1,2}-design in the Johnson
scheme J(3,7).
To obtain a g-analog of a combinatorial ¢-(n, k, \) design we replace again sets by

subspaces and obtain a subspace design.

Definition 2.2.12. For positive integers n > k and ¢ € [k], let X be the set of all
k-dimensional subspaces of Fy. An element of X is called a block. A subset Y of X

is a t-(n, k, \)q subspace design if every t-dimensional subspace of [y is contained in
exactly A blocks of Y.

We have the following combinatorial interpretation for a {1,2,...,¢}-design in the

g-Johnson scheme, see for example [Del76] or [Sta86].

Theorem 2.2.13. Let (X,{Ro, R1,...,R;}) be the g-Johnson scheme Jy(k,n) from
FEzample 2.1.3. Moreover, let t be an integer with 1 <t < k and let Y be a subset
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of X. Then'Y is a T-design with T = {1,2,...,t} if and only if Y is a t-(n,k,\),
. , k

subspace design with A = |Y| [t}q/mq.

In Section 3.4 and in Chapter 6 it turns out that certain T-designs in the conjugacy

class scheme arising from the symmetric group and from the finite general linear group,

respectively, are so-called transitive sets in the corresponding group.

2.3 Hoffman bounds

In this thesis, we are interested in intersecting sets, not only in the classical case from
Example 2.2.4, but also within symmetric and finite general linear groups. Since these
sets arise as special D-cliques, our focus is on finding upper bounds for their sizes. One
approach to obtain these bounds involves exploiting the connection between association
schemes and graphs, as observed in Remark 2.1.5, and utilising graph theory tools

such as the classical Hoffman bound that will be introduced in this section.

Definition 2.3.1. An (undirected) graph I' = (X, E') consists of a finite set of vertices
X and a set of edges E, where the latter is a subset of X x X satisfying (z,z) ¢ F for
all z € X, and (z,y) € E if and only if (y,x) € E. The degree of a vertex = € X is
the number of y € X such that (z,y) € E. A graph is d-regular if all vertices have
degree d.

The adjacency matriz A € R(X, X) of a graph I' = (X, F) is given by

A(z,y) =
0 otherwise.

{1 if (z,y) € E,

Since the adjacency matrix A € R(X, X) of an undirected graph is symmetric it has
an orthonormal system of | X| eigenvectors that form a basis of R(X). Moreover, all
eigenvalues of A are real and we refer to them as the eigenvalues of the corresponding
graph. We note that, if the graph is d-regular, then d is an eigenvalue with the all-ones
vector as a corresponding eigenvector. A subset Y of X is called independent if for all

x,y €'Y there is no edge between x and y in T', that means (z,y) ¢ E for all z,y € Y.

2.3.1 The classical Hoffman bound

The Hoffman bound [Hae2l], also known as ratio bound, gives an upper bound on
the size of an independent set of a regular graph in terms of its minimal eigenvalue.

Moreover, it gives a partial characterisation of the extremal case.
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Theorem 2.3.2. (Hoffman bound) Let I' = (X, E) be a d-regular graph with eigenval-
ues Ao, A1, - - ., A¢ and corresponding eigenvectors vg, v1, . . ., Vg, where vy is the all-ones
vector. If Y C X is an independent set in I", then

’Y’ < |>‘min|

X1~ d+ [Amin|”

where Apin = ming.o A\g. In case of equality we have
1y € <{U0} U {Uk: A = Amin})-

In the next subsection we apply the Hoffman bound to prove an upper bound on
the size of intersecting families of sets from Example 2.2.4. A corresponding theorem

on subsets Y, Z of a graph having no edges in between is as follows.

Theorem 2.3.3. Let I' = (X, E) be a d-regular graph with eigenvalues Ao, A1, ..., A
and corresponding eigenvectors vy, v1,...,vp, where vy is the all-ones vector. If Y and

Z are subsets of X such that there are no edges between Y and Z in I, then

YTIZ]
[ X1 X] ~ d+ Amax

where Amax = Maxy2o [Ak|. In case of equality we have

1y,15 € <{’U0} U {’Uk: ‘)\k| = Amax}>-

2.3.2 Application: classical Erdés-Ko-Rado theorems

One of the most famous questions in extremal set theory is the following.

How large can a family of k-sets of {1,2,...,n} be such that every two

(Qul)

members of this family have non-empty intersection?

Figure 2.4 illustrates two families with the property given in (Qul) for n = 4 and
k=2.
The question (Qul) was first answered by Erdés, Ko, and Rado in [EKR61] in

1961. They also characterised the extremal case for n sufficiently large compared to k.

Theorem 2.3.4 (Erdés-Ko-Rado). For all fized k and n > 2k, the size of a family
of k-sets of [n] such that every two members of this family have non-empty intersection
n—1

is at most (,_1). Moreover, for n > 2k, equality holds if and only if there is one

element of [n] that is contained in all members of the family.
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Figure 2.4: Examples of intersecting families of 2-sets of maximal size.

The original proof of the Erd6s-Ko-Rado theorem is working with so-called shiftings,
which are operations on set systems. However, we can use association schemes in order
to get an elegant proof that uses algebraic combinatorics (c.f. [GM16]) and applies
the Hoffman bound from Theorem 2.3.2. To do so, recall from Example 2.2.4 that,
taking the Johnson scheme J(k,n), an intersecting family of k-sets is a D-clique in
J(k,n), where D = {1,2,...,k—1}.

Example 2.3.5. Let (X, {Rop, R1, ..., Rx}) be the Johnson scheme from Example 2.1.2.
Let T be the graph with vertex set X and two edges = and y are adjacent if and only
if [t Ny| = 0. Then T has () vertices and is regular of degree (";k) Moreover, any
intersecting set Y of X is an independent set in this graph because, for all elements x
and y of an intersecting set, it holds that |z Ny| > 1. We obtain the eigenvalues of
this graph by applying Example 2.1.19 for ¢ = k, namely

fn—k—j
—1)/ .
ey
Consequently the smallest eigenvalue of I is
(n— k—1
k-1 )

Applying the Hoffman bound from Theorem 2.3.2 gives an upper bound on the size of

an independent set in I' and thus on the size of any intersecting subset Y of X, namely

vi=(}) (ngkﬁ"ﬁﬁm ()

Since the 1960’s, questions of the flavour of (Qul) have been investigated for many

different objects and notions of intersection with objects such as subspaces or flags,

see [GM16] for a survey.
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Another notion of intersection, known as cross-intersection, arises from set systems.
Two families Y and Z of k-subsets of [n] are cross-intersecting if, for all y € Y and
z € Z, the intersection of y and z is nonempty. Kleitmann [Kle68] gave an upper
bound on the size of cross-intersecting sets, which was later improved by Pyber [Pyb86]
and then by Matsumoto and Tokushige [MT89).

Theorem 2.3.6. Let n > 2k and let Y and Z be cross-intersecting families of k-sets

of [n]. Then we have
n—1
< .
iz < (k_ 1)

Moreover, for n > 2k, equality holds if and only if Y = Z and there exists one element

of [n] that is contained in all members of Y.

The proof of the upper bound works similarly as the proof of the upper bound in

Example 2.3.5. Using the same graph I" whose second largest eigenvalue in absolute

("

and applying Theorem 2.3.3 gives the upper bound.

value is

Another notion of intersection arises as a strengthened version from the classical

notion of intersection and is called t-intersection.

Definition 2.3.7. Two k-sets x,y of [n] are t-intersecting if |x Ny| > ¢. A family of

k-sets Y of [n] is t-intersecting if all pairs in Y x Y are t-intersecting.

The corresponding question to (Qul) for ¢t-intersecting families then is the following.

How large can a family of k-sets of {1,2,...,n} be such that every two

(Qu2)

members of this family are ¢-intersecting?
The answer to this question (Qu2) was first given in [EKR61] for n sufficiently large
compared to t and k. The authors also characterise the extremal case.

Theorem 2.3.8. Lett < k. Forn sufficiently large compared to t and k, the size of a
t-intersecting family of k-sets of [n] is bounded by (Z:f) and, in case of equality, there

exist t distinct elements of [n] being contained in each member of the family.

In fact, Frankl [Fra78] and later Wilson [Wil84] obtained exact bounds on the value
of n for which Theorem 2.3.8 holds. More precisely, Frankl proved that the theorem is
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valid for all n > (t + 1)(k —t + 1) when ¢ > 15, and Wilson subsequently extended
this result to all £.
There also exists a strengthened version of Theorem 2.3.6, that deals with t-cross-

intersecting sets.

Definition 2.3.9. Two families Y and Z of k-subsets of [n] are t-cross-intersecting,

if all pairs in Y x Z are t-intersecting.

An upper bound for |Y||Z] is, for example, given in [Tok10] and an improved
version in [FLST14].

Theorem 2.3.10 ([FLST14]). Let n > k > t > 14 be nonnegative integers with
n> (t+ 1)k and let Y and Z be t-cross-intersecting families of k-sets of [n]. Then we

have
n—t
Y||Z| <
Jvi !_<k_t>,

and, in case of equality, Y = Z and there exist t elements of [n] that are contained in

all members of Y.

In order to give an algebraic proof of the upper bound in Theorem 2.3.8, we apply

a weighted version of the Hoffman bound in the next section.

2.3.3 The weighted version of the Hoffman bound

The following weighted version of the Hoffman bound generalises Theorems 2.3.2 and
2.3.3, and was stated and proven by Ellis, Friedgut, and Pilpel in [EFP11].

Theorem 2.3.11 (Weighted version of the Hoffman bound). Let I' = (X, E)
be a graph on n vertices. Suppose that I'g,I'1,..., Iy are reqular spanning subgraphs of
I, all having {vo,v1,...,vn—1} as an orthonormal system of eigenvectors with vy being

the all-ones vector. Let P;(k) be the eigenvalue of vy in I';. Let wo,wr,...,w, € R
and write P(k) = >y w; P;(k).

(i) If Y C X is an independent set in T, then

m< |Pmin|
[ XT ™ P(0) + | Prain|

where Py = mingq P(k). In case of equality we have
1y € <{Uo} U {Uk: P(k‘) = Pmin}>~
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(ii) If Y, Z C X are such that there are no edges between Y and Z in T, then

VI Po
[ XTIX] ™ P(0) + Prnax’
where Ppax = maxyzo |P(k)|. In case of equality we have

1y,15 € <{U0} U {Uk: ’P(k)‘ = Pmax}>'

This theorem plays a crucial role in the proofs of Ellis, Friedgut, and Pilpel [EFP11]
on the size and characterisation of t-intersecting and t-cross-intersecting sets of the
symmetric group. We summarise these results in Section 3.2. Moreover, the proofs of
our main results in Chapter 5 also heavily rely on this weighted version of the Hoffman
bound.

2.3.4 Application: t-intersecting families of sets

In the following we apply the weighted version of the Hoffman bound to give an
algebraic proof of the upper bound on the size of t-intersecting families of sets as
stated in Theorem 2.3.8. For this, we make heavy use of association schemes.

To do so, let Ag, A1, ..., Ax denote the adjacency matrices of the Johnson scheme
J(k,n). Let t < k. For every i with k—t+1 < i <k, let I'; be the graph corresponding
to the adjacency matrix A;. Then each graph T is (’:) (”;k)—regular. Moreover, a
t-intersecting family of sets is an independent set in every graph I';. Let I' be the

graph given by the adjacency matrix

We apply Theorem 2.3.11 to the graph I'" and the regular spanning subgraphs T;.
Recall from (2.6) that every vector in the column space of E; is an eigenvector of
A; with eigenvalue P;(j). We wish to construct some weight w € R? such that the

minimum value over all j of
> wiPi(j) (2.14)

equals

n=— (2.15)

(0)/Gop) =1
and such that w is normalised in the sense that (2.14) equals 1 if j = 0. This guarantees
that Theorem 2.3.11 gives the upper bound on the size of a t-intersecting family of
sets from Theorem 2.3.8.

In the construction of the weight w we make use of a t-Steiner system.
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Remark 2.3.12. A t¢-Steiner system is a combinatorial ¢-(n, k, 1) design. It was
proved by Keevash [Keel4] (see also [GKLO23]) that ¢-Steiner systems exist for all
t < k and all sufficiently large n provided some natural divisibility conditions are
satisfied.

Let Z be a t-Steiner system. According to the definition of a combinatorial ¢-
(n, k, 1) design, each t-set of [n] is contained in exactly one member of Z, which implies
that |x Ny| <t —1 for all distinct x,y € Z. Consequently, the inner distribution
(ag,a1,...,ar) of Z satisfies

a;=0 foralll <i<k-—t. (2.16)

Due to Theorem 2.2.11, Z is a {1,2,...,t}-design of size (Z)/(Z:z) in the Johnson
scheme J(k,n). Thus the dual distribution (bg, b1, ...,bx) of Y satisfies

bj=0 foralll<j<t. (2.17)

With the help of a t-Steiner system and the theory of association schemes we are
in a position to construct some w € R such that the minimum value of (2.14) equals
n from (2.15).

Lemma 2.3.13. Letn,k andt be positive integers such thatt < k < n/2 and such that
a t-Steiner system Z of size (Z)/(Z:i) exists. Let (ag,a1,...,ax) and (bo,by,...,bx)
be the inner and dual distribution of Z, respectively, and let v; = (l:) (”;k) for all
i€{0,1,...,k}. Then, for

a;
W, = —————,
" (2] - 1)
we have
3 =1 forj=0
Yo wiP()){=n for1<j<t
i=k—t+1

>n  otherwise,

where 1 is given by (2.15).

ProoF: Using the identity P;(j) = -~Q;(i) from Lemma 2.1.17 we have

m;

k

k
> wiPz-(j)Z% > wiviQ(i).

i=k—t+1 J i=k—t+1

For j =0, from (2.12), and (2.16) we obtain

1 & 1
— > wiviQo(i) = ———(bo — 1) = 1.

i=k—t+1 2] =1
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Since, according to (2.17), we have

k

ZQj(i)ai =0 foralll <j<t,
i=0

it follows with (2.16) that

k

> Qi())a; = —Q;(0)ag = —m; forall1<j<t.
i=k—t+1

Consequently, for all j satisfying 1 < j < t, it follows that

Loy ww@=— ot S wom =t

— wiv;Q;(1) = — a;Q;(i) = — =.

mj i=k—t+1 s (‘Z‘ o 1) m; i=k—t+1 e ‘Z‘ -1

For j > t, by using (2.16) once again, we obtain
k k
1 1 1
LY @) = — Y aQyi) = — (b~ 1)
g i;+1 Y m;(|1Z] = 1) H;;Ll o m;(|Z] - 1)
1 1

Z - > = > 1,
m;(|Z]-=1) = |Z] -1
where we have used that b; > 0 for all j, and m; = () —(;")) > 1forall j < k <n/2.
O
Now, we have all the necessary ingredients to provide an algebraic proof of the

upper bound on the size of a t-intersecting family of sets in Example 2.3.14 and to

follow the strategy outlined at the beginning of this section.

Example 2.3.14. Let J(k,n) be the Johnson scheme with the adjacency matrices
Ag, A1, ..., Ar and pairwise orthogonal idempotent matrices Eg, F1,...,E. As ex-
plained at the beginning of this section, we apply the weighted version of the Hoffman
bound, Theorem 2.3.11, to the graph I with adjacency matrix

and the (’:) / (";k)—regular spanning subgraphs I'; given by the adjacency matrices A;
for every ¢ with k —t+1 < ¢ < k. Now, each t-intersecting family of k-sets of [n] is an
independent set in this graph I'. Let P;(j) be the eigenvalue of A; corresponding to

E; and let w € R be given as in Lemma 2.3.13. Then Lemma 2.3.13 implies that
k
min w; Pi(j) = .
70 ki
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Applying Theorem 2.3.11 gives the upper bound from Theorem 2.3.8 on the size of a

t-intersecting family of k-sets of [n] if n is sufficiently large compared to ¢t and k.

This application of the weighted version of the Hoffman bound also gives a par-
tial characterisation of the extremal cases. Namely, the characteristic vector of a
t-intersecting family of sets of maximal size is spanned by the eigenvectors, given by
the columns of E; with 0 < j <t¢. However, more work has to be done to obtain the

characterisation of the extremal case from Theorem 2.3.8.

2.4 Linear Programming

One of the reasons why association schemes are such a powerful tool is because, using
the fact that the dual distribution is a linear transformation of the inner distribution
of a subset, see (2.12), we are in a position to use linear programming to derive upper
or lower bounds on the size of subsets of an association scheme. This idea goes back
to Delsarte [Del73]. First, we present some preliminaries from linear programming

before placing it in the context of association schemes.

2.4.1 A brief overview of linear programming

In what follows, we give a brief summary of some basic concepts of linear programming
that we need in the remainder of this thesis. For more background and details, see for

example [Van20].

Definition 2.4.1. Let M € R™™ b € R"™ and ¢ € R™. Then the primal linear
program (LP) for this data is given by

max clx
TER™
subject to  x; > 0 for all 4, (LP)
Max > —b.

The mapping R™ — R,z + ¢’z is called the objective function of the linear program
(LP). If a vector z € R™ satisfies the constraints in (LP), then x is a feasible
solution. The linear program (LP) is bounded if ¢’z is bounded for all feasible
solutions. Otherwise (LP) is unbounded. If the linear program (LP) is bounded, then
a feasible solution * of (LP) that satisfies ¢z < ¢’z* for all feasible solutions z, is

called optimal solution.
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For every primal linear program there exists a so-called dual program.

Definition 2.4.2. Let M, b, and ¢ be as given in (LP). Then the dual linear program
(DLP) corresponding to (LP) is given by

: T
b
s v
subject to y; > 0 for all 4, (DLP)

yT'M < —cT.

The definitions of an objective function, a feasible solution, boundedness, and an

optimal solution are analogous to the ones for the primal linear program (LP).

Remark 2.4.3. Comparing variables and inequalities in the primal and correspond-

ing dual linear program gives the following.

# variables of (LP) = 4 inequalities of (DLP)
# inequalities of (LP) = # variables of (DLP)

In fact there is a stronger connection between the primal and dual linear program.

Theorem 2.4.4 (Weak duality). Let © and y be feasible solutions of (LP) and
(DLP), respectively. Then we have

'z < yTo.

This implies especially that every feasible solution of the dual linear program (DLP)
gives an upper on the objective function of the primal linear program’s (LP) optimal

solution.

2.4.2 Application: cliques in association schemes
In this section we apply linear programming in the context of association schemes to

obtain upper bounds on the size of cliques. This idea goes back to Delsarte [Del73].

Let (X,{Ro, R1,...,R,}) be a symmetric association scheme, D C [n], and let

Y be a D-clique of X with inner distribution (ag, a1, ..., a,) and dual distribution
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(bo, b1, ...,by). Then it holds that (see Section 2.2)

n

> ai=[Y|

i=0
apg =1
a; >0 forallie{0,1,...,n}
a; =0 forallie[n]\D

by >0 forall ke {0,1,...,n}

This motivates the following linear program for D-cliques.
Let Qk(i) and my be the dual eigenvalues and multiplicities, respectively, of the
association scheme (X, {Ry, R1,...,R,}). The primal linear program for cliques is

given by

max E T;

wi€R e DUt0}
subject to xzg=1
x; >0 for all i € D, (2.18)
Z Qr(i)x; > —my, for all k € {1,2,...,n},
€D
Applying results from linear programming we obtain the following,.

Theorem 2.4.5 ([Del73]). Let (X,{Ro,R1,...,Rn}) be a symmetric association
scheme with dual eigenvalues Qi (i). Let D be a subset of [n]. Then the linear program
(2.18) has at least one feasible solution and is bounded. Let LP(D) be the maximum
value of its objective function. If Y C X s a D-clique, then its inner distribution

(ag,ai,...,ay) is a feasible solution of this linear program and
Y| < LP(D). (2.19)

We call the bound (2.19) linear programming bound for cliques.

We note that, for the linear program (2.18), the dual eigenvalues have to be
real-valued. That is why we assumed the association scheme to be symmetric. In
the remainder of this thesis we almost exclusively work with the conjugacy class
scheme of the finite general linear group, whose (dual) eigenvalues are not neces-
sarily real-valued. For the conjugacy class scheme, we can modify the constraints

of the linear program, so that we are still able to apply the linear programming method.
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Let (G,{Ro,Ri1,...,Ry}) be the conjugacy class scheme arising from the finite
group G having dual eigenvalues Q(7) and multiplicities my. For D C [n], the linear

program for D-cliques in G is given by

subject to xg =1,
x; > 0foralli e D, (2.20)
xz; =0 for i € [n]\ D,
Z Re(Qg(i))z; > —my,  and Z Im(Qk(7))x; =0 for all k € {1,2,...,n},
i€D €D
where the last constraint is due to the fact that all entries of the dual distribution of
a subset of GG are real and nonnegative, see Section 2.2. Moreover, using o = 1 and
Qo(i) = 1, we note that the last constraint of (2.20) is equivalent to
> Qu(i)z; €Rsg  forall k€ {0,1,...,n}. (2.21)
1€ DU{0}

Then the corresponding result to Theorem 2.4.5 in the non-symmetric case is as

follows.

Theorem 2.4.6. Let (G,{Ry, R1,...,Rn}) be the conjugacy class scheme arising
from the finite group G with dual eigenvalues Qi (i). Let D be a subset of [n]. Then
the linear program (2.20) has at least one feasible solution and is bounded. Let LP(D)
be the maximum of its objective function. If Y C G is a D-clique, then its inner

distribution (ag,a,...,a,) s a feasible solution to this linear program and
Y| < LP(D). (2.22)
Also in this case, we call the bound (2.22) linear programming bound for cliques.

PRrROOF: A feasible solution for the linear program is given by zg = 1 and x; = 0 for
all ¢ € D, where we use that the multiplicities my are nonnegative integers. To prove
that the program is bounded, let us assume that (z;);c pufoy is a feasible solution.
Then, since Py(k) = 1, and by using Lemma 2.1.17 we have, for i € D U {0},

n

dwi—Pi(k) Y Qr(i)z

k=0 jeDuU{0}

jeDU{0} k=0 jeDuU{0} k=0

= |G|(vi — ). (2.23)
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Taking the real parts on both sides of (2.23) and making use of (2.21), it follows that

n

> (vi —Re(Pi(k))) Y. Qu(j)zj =|G|(vi —z;) forallie DU{0}. (2.24)
k=0 jeDU{0}
Since, according to Lemma 2.1.18, |P;(k)| < wv; for all i,k, we especially have
Re(P;(k)) <w; for all i € DU{0} and all k € {0,1,...,n}. Together with (2.21) we
can deduce from (2.24) that

0 <|G|(v; —x;) forallie DU{0}

and thus
x; <wv; forallie DU{0},

which implies that the linear program is bounded.
Now, let Y be a D-clique in G with inner distribution (ag, a1, ..., a,). Then we
have ag = 1, a; > 0 for all i, a; = 0 for all i € [n] \ D, and since the dual distribution

of Y is real-valued and nonnegative, we also have
Z Qk(z)az S Rzo.
1€ DU{0}

Consequently, the inner distribution of a D-clique gives a feasible solution for the

linear program, which proves the second statement. O

A nice application of the linear programming method is the so-called Clique-
Coclique bound [Del73, Thm. 3.9] whose proof makes use of the dual linear program.
The dual linear program corresponding to (2.20) is given by the following

n
min Yo+ Y ypmu

YoER, —
yhy?y3eRn k=1

subject to  yo =1,

Y, yi, i > 0 for all k € [n], (2.25)

Sy Re(@u(0) + 3 5 Im(@e(i))— 3 s Tm(Qu(i)) < —1 for all i € D,
k=1 k=1

k=1

Theorem 2.4.7 (Clique-coclique bound). Let (X, {Ry, Ri,...,R,}) be an associ-
ation scheme and, for D C [n], let Y C X be a D-clique and Z C X an ([n]\ D)-clique.

Then we have
Y[ [Z] < |X].

The proof for the clique-coclique bound in the case of symmetric association

schemes can be found in [Del73]. The general case follows by using the same arguments
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like in [Del73]. For the sake of completeness, we provide the proof for not necessarily

symmetric association schemes.

ProoFr: Let (ag,a1,...,a,) and (cg,c1,...,c,) be the inner distributions of the D-
clique Y and the ([n] \ D)-clique Z, respectively. Then we define (z,z1,...,2n)
by

ZQk c; forall ke {0,1,...,n},

e \Z\

where Qk(7) and my, denote the dual eigenvalues and the multiplicities of the associa-
tion scheme, respectively. Since 37, ¢;Qx(j) is the dual distribution of Z, it turns out
that z > 0 for all k € {0,1,...,n}. Moreover, since Qo(j) = 1 and mg = 1, we have
that zp = 1. Additionally, by taking Lemma 2.1.17 into account, for i € {0,1,...,n},

we obtain

Z z Re(Qr (1) Z 2 Im(Qp(7) Z 2, Q1)

k=0 k=0
1 n n 1 _
= > ¢ Y —Qu(1)Qr())
1215257 =
n n 1
7 Z Z ; k)Qk(5)
_1X]1
K ch v
X[ 1
(2
Since Z is a ([n] \ D)-clique, it follows that
szRe Qr (1) szlka i))=0 forallie D
k=0 k=0
or equivalently
szRe Q1 () szlm Qr(i)) =—1 forallie D.
— k=1
Consequently, taking yo = 20, y* = y> = (22, 23,...,2,)7, and y?> = 0 € R" gives a

feasible solution for the dual linear program (2.25).
We have that (a;);cpuqoy is a feasible solution for the primal linear program (2.20).
The weak duality theorem, Theorem 2.4.4, together with (2.26) for ¢ = 0 imply that

n n
X
Y= > ai<wyo+> ypimr=vo+ Y 2Qr(0) = ‘|Z||’
i€ DU{0} k=1 k=1
which completes the proof. O
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To give an example, we apply the clique-coclique bound to give another proof of

the upper bound for ¢-intersecting families of k-sets of [n] from Theorem 2.3.8.

Example 2.4.8. Let n, k and t be positive integers such that ¢ < k < n/2 and such
that a t-Steiner system Z of size (})/ (Z:i) exists. Let Y be a t-intersecting set. Then
Y is a D-clique with D = {i: 1 < i < k — ¢t} in the Johnson scheme J(k,n). From
Remark 2.3.12 it follows that Z is a ([k] \ D)-clique. Applying the clique-coclique

bound from Theorem 2.4.7, gives

it < (3)

And thus the upper bound from Theorem 2.3.8 on the size of Y.
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3 Subsets of the symmetric
group

/_/\

Mount Kosciusko, 2228m

In this chapter we survey results on combinatorial subsets of the symmetric group,
specifically intersecting sets, codes and transitive sets. These sets arise as cliques and
designs, respectively, in the conjugacy class scheme of the symmetric group.

This chapter is structured in four main sections. Initially, we summarise essential
properties of the conjugacy class scheme arising from the symmetric group. Subse-
quently, our focus shifts to the Erdds-Ko-Rado theorems for permutations, which study
intersecting sets of permutations. We then examine the converse scenarios, specifically
permutation codes, which represent the “counterparts” to intersecting sets. The final
section provides an algebraic characterisation of transitive sets of permutations.

In Chapters 5 and 6, containing the original parts of this thesis, we discuss ¢g-analogs

of the combinatorial objects introduced in this chapter.

3.1 The association scheme of the symmetric

group

In this section we collect some properties of the conjugacy class scheme arising from the
symmetric group by using its representation theory. See Section 1.2 for the necessary

background on the representation theory of the symmetric group.

Since the cycle type of any permutation in the symmetric group S,, corresponds
uniquely to one partition of n (see Example 1.1.2), there exists a one-to-one correspon-
dence between the conjugacy classes of S, and the partitions of n. Consequently, we

can index the conjugacy classes of Sy, and thus also the adjacency matrices of the
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3 SUBSETS OF THE SYMMETRIC GROUP

conjugacy class scheme arising from the symmetric group, with the partitions of n (see
Example 2.1.9).

From Section 1.2 we find that also the irreducible characters of the symmetric
group S, are indexed by partitions of n. Henceforth, if not stated otherwise, we denote
by x* the irreducible character of S,, corresponding to the partition A of n. Moreover,
we recall that the trivial character of S,, is indexed by the partition (n).

Example 2.1.13 implies that the pairwise orthogonal matrices Ey € C(Sy, S,) of
the Bose-Mesner algebra arising from S, are given by

Ae
Ey\(m, 1) = Xn(!)X)‘(ﬂ'lT).

Since both the conjugacy classes and the irreducible characters of the symmetric
group S, are indexed by partitions A and p of n, we write P,(A\) and Qx(xu) for the
eigenvalues and dual eigenvalues. Consequently, from Example 2.1.20, it follows that
the eigenvalues and dual eigenvalues of the conjugacy class scheme arising from the
symmetric group S, are given by

Pu(\) = )lc( |) X aln) =x e, (3.1)

where A and p are partitions of n and where we have used the fact that the irreducible
characters of the symmetric group are real-valued.
Due to (3.1), and since the trivial character and the trivial conjugacy class of S,

are indexed by (n) and (1™), respectively, Lemma 2.1.16 specialises as follows.

Corollary 3.1.1. For all partitions X and p of n, the eigenvalues P,(\) and the dual
eigenvalues Qx(p) of the conjugacy class scheme arising from the symmetric group Sy,

have the following values:
(i) Pany(A) =1,

(7i) Qey(p) =

(iit) Pu((n)) = [Cpl,

(iv) QxA((17)) = x*(e)*.

The dual distribution (b)), of a subset Y of S,, is indexed by the partitions of n
and, from Example 2.2.6, we find that

ZX?TT

|Y| T, TEY

Since the trivial character of S,, corresponds to the partition (n), we obtain

o)
X (&
by = Y( ) S a1y =

| | T, TEY

Y= Y.
Y]

Consequently, b, plays the role of by in Section 2.2.
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3.2 ErRDOS-K0O-RADO THEOREMS

Figure 3.1: An intersecting subset of S5 consisting of four permutations. The second
to fifth rows each provide a permutation of the five colours in the first. Taking any
two of these permutations there exists at least one colour on which they are equal.

3.2 Erdds-Ko-Rado theorems

In Section 2.3.2 we studied intersecting families of k-sets. Erdods, Ko, and Rado
answered the question of how large such a family can be and also characterised
the extremal case, see Theorem 2.3.4. Since the 1960s, many similar problems for
different objects and different notions of intersection have been studied, see [GM16],
for example. In this section we focus first on one such problem, arising in the context
of the symmetric group. We collect, on the one hand, upper bounds on the sizes of

these sets, and on the other hand, characterisations of the extremal cases.

Definition 3.2.1. Two permutations 7,0 € S, are intersecting if there exists an
integer i € [n] such that o(i) = w(i). A subset Y of the symmetric group S, is

intersecting if all pairs in Y X Y are intersecting.

Equivalently, a subset Y C .5, is intersecting if for every two permutations 7,0 € Y
the product 7~ !o has at least one fixed point in [n]. Translating this into the
language of association schemes, an intersecting set of permutations is a D-clique in
the conjugacy class scheme arising from the symmetric group on n elements, where
D = {(p1, p2,...) Fn: 3 with p; = 1}.

Figure 3.1 illustrates one example of an intersecting set of permutations.

As in the classical case, we are interested in finding an upper bound on the size
of intersecting sets of permutations. Deza and Frankl [DF77] were first to prove this

upper bound.

Theorem 3.2.2 ([DF77]). LetY be an intersecting subset of Sy, then |Y| < (n—1)L.

By now, many different proofs of this result exist in the literature. For example, we

can apply the clique-coclique bound from Theorem 2.4.7, or the Hoffman bound from
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3 SUBSETS OF THE SYMMETRIC GROUP

Theorem 2.3.2, to a Cayley graph generated by the set of fixed-point-free permutations.
For more details on this see [GM16, Chapter 14], for example.

The characterisation of the extremal case was conjectured by Deza and Frankl
in 1977 [DF77] and proved nearly 30 years later by Cameron and Ku [CK03], and
independently by Larose and Malventuo [LMO04].

Theorem 3.2.3 ([CKO03], [LMO04]). If an intersecting set in Sy, meets the bound in

Theorem 3.2.2, then it is a coset of the stabiliser of a point in [n].

An algebraic approach to the proof of this result is the classical Hoffman bound.
For more details we refer to [GM16]. Similar to the classical case in Section 2.3.2, we
can ask for a strengthened version of this result, which is in terms of t-intersecting

permutations.

Definition 3.2.4. Let t be a positive integer. Two permutations w,o0 € S, are t-
intersecting if there exist ¢ distinct elements iy, 49, ..., in [n] such that w(iy) = o(i¢)
for all £ € {1,2,...,t}. A subset Y of the symmetric group S, is t-intersecting if all

pairs in Y X Y are t-intersecting.

Figure 3.2: A 2-intersecting set of S5 consisting of four permutations. The second to
fifth rows each provide a permutation of the five colours of the first. For any two of
these permutations there exist at least two colours on which they are equal.

In other words, a subset Y of the symmetric group S,, is ¢-intersecting if, for
all permutations 7,0 in Y, the product 7=1o has at least ¢ fixed points in [n]. We
note that similarly to the l-intersecting case, we can interpret a t-intersecting set of
permutations as a clique in the conjugacy class scheme arising from the symmetric
group. Figure 3.2 illustrates an example of a 2-intersecting set of Ss.

Every coset of the stabiliser of ¢ distinct elements of [n] is a t-intersecting set of

the symmetric group of size (n — t)!. These cosets play a crucial role.

Theorem 3.2.5 ([EFP11]). For t fized and n sufficiently large compared to t, a

t-intersecting set Y in Sy, has size at most (n — t)!.
We note that the bound in Theorem 3.2.5 is sharp.
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3.2 ErRDOS-K0O-RADO THEOREMS

However, it is not possible to prove Theorem 3.2.5 using the classical Hoffman
bound for the Cayley graph generated by all permutations having less than ¢ fixed
points (see [EFP11]). Instead Ellis, Friedgut, and Pilpel [EFP11] apply the weighted
version of the Hoffman bound from Theorem 2.3.11. In [EFP11], the regular spanning
subgraphs from Theorem 2.3.11 are given by the adjacency matrices corresponding
to certain conjugacy classes which do not fix ¢ distinct elements of [n]. Then, the
eigenvalues of these subgraphs are given by Py(u) from (3.1). Since the adjacency
matrices of the conjugacy class scheme all have common eigenspaces, the eigenvalues of
a weighted sum of these are weighted sums of the Py(u). Manipulating the weights in
the desired way and applying the weighted version of the Hoffman bound then gives the
upper bound on the size of t-intersecting sets from Theorem 3.2.5. However, showing
the existence of the desired weights is not trivial and involves a lot of representation
theory. For example, one difficulty is given by the fact that the irreducible characters
Y and XX of S, are equal in absolute value.

Ellis, Friedgut and Pilpel also obtain a partial characterisation result by using the

decomposition of the permutation character on tabloids.

Theorem 3.2.6 ([EFP11]). Let Y be a t-intersecting set in Sy, whose size meets the
bound in Theorem 3.2.5. If n is sufficiently large compared to t, then the characteristic
vector of Y is spanned by the characteristic vectors of cosets of stabilisers of t distinct

elements of [n].

The main tasks in applying the weighted version of the Hoffman bound are choosing
the right adjacency matrices, finding appropriate weights and controlling the smallest
eigenvalue of the weighted linear combination. In Chapter 5, in a g-analog setting, we
apply the weighted version of the Hoffman bound for t-intersecting sets in the finite

general linear group and we use a similar strategy there.

The full characterisation of the extremal case of t-intersecting sets of permutations

is as follows.

Theorem 3.2.7 ([EFP11]). Let Y be a t-intersecting set in Sy, whose size meets the
bound in Theorem 3.2.5. If n is sufficiently large compared to t, then Y is a coset of

the stabiliser of t distinct elements of [n].

This full characterisation result follows from the following stability result proved
by Ellis.

Theorem 3.2.8 ([Ell11]). Let Y be a t-intersecting set in S,. For n sufficiently
large compared to t, it holds that if Y is not contained in a coset of the stabiliser of t
distinct elements of [n], then |Y| < (1 -14 0(1)) (n—1t).
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In 2024, Keller, Lifshitz, Minzer, and Sheinfeld [KLMS24] obtained a linear bound
on the size of n compared to ¢ for the validity of the Theorems 3.2.5 and 3.2.7.

Theorem 3.2.9 ([KLMS24]). There exists a constant ¢ such that for all n > ct,
Theorems 3.2.5 and 3.2.7 hold.

As in the classical case, also t-cross-intersecting subsets of the symmetric group

have been studied.

Definition 3.2.10. Two subsets Y and Z of S, are t-cross-intersecting if every pair

in Y X Z is t-intersecting.

The result for ¢t-cross intersecting sets of permutations is as follows.

Theorem 3.2.11 ([EFP11]). Let t be a positive integer and let Y and Z be t-cross-
intersecting subsets of the symmetric group Sy,. If n is sufficiently large compared to t,
then |Y|-1Z| < ((n —t)")2, and equality holds if and only if Y = Z and Y is a coset of
the stabiliser of t distinct points of [n].

The bound on t-cross-intersecting sets comes as a byproduct from the proof of
Theorem 3.2.5.

A more general notion of t-intersection is the ¢-set-intersection of permutations.

Definition 3.2.12. Two permutations 7,0 € S5, are t-set-intersecting if there exists a
t-subset I of [n] such that o(I) = 7w(I). A subset Y of S, is t-set-intersecting if every

pair in Y x Y is t-set-intersecting.

Again every coset of the stabiliser of a t-set of [n] is t-set-intersecting and, for n
sufficiently large compared to ¢, it turns out that these are the only t-set-intersecting

sets of maximal size.

Theorem 3.2.13 ([Ell12]). Fort fixred and n sufficiently large compared to t, a t-
set-intersecting set Y in S, has size at most t!(n —t)! and, in case of equality, Y is a
coset of the stabiliser of a t-set of [n].

In order to prove the result on t-set-intersecting sets in [Ell12], Ellis applied the

weighted version of the Hoffman bound from Theorem 2.3.11.

In Chapter 5 we study g-analog settings, namely t-intersecting, t-cross-intersecting,

t-space-intersecting, and t-space-cross-intersecting sets in the finite general linear

group.
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3.3 Permutation codes

In the previous section we studied t-intersecting sets of permutations. More precisely
we studied subsets Y C S,, having the property that 7—'o has at least ¢ fixed points
for every m,0 € Y. In this section we study the “counterpart”, namely subsets ¥ C S,

such that 7~!'o has at most ¢ fixed points.

Definition 3.3.1. For a positive integer d, a subset Y of the symmetric group S, is

a d-code if for all 7,0 € Y the permutation 7~ !¢ has at most n — d fixed points.

These codes are also known as permutation codes.

Remark 3.3.2. It is common to define a d-code of permutations in terms of the

Hamming distance dg, which is given by
d(m,0) = #{i € [n]: (i) # o (i)},

where 7,0 € S,,. Then a subset Y C S, is a d-code if dgy(m,0) > d for all m,0 € Y.

The following upper bound on the size of a d-code in S,, was obtained by [BCD79].
We also refer to [Tar99] for a proof involving linear programming and the representation
theory of S,,.

Theorem 3.3.3. Let Y C S, be a d-code, then |Y| <n(n—1)---d.

3.4 Transitive sets

In this section we study transitive sets (not groups) of permutations. It turns out that
they are certain T-designs in the conjugacy class scheme arising from the symmetric
group.

Before giving the definition of a transitive subset, we recall the special case of a
t-homogeneous subgroup of permutations. A subgroup of the symmetric group S, is
t-homogeneous if it acts transitively on the t-subsets of [n]. Livingstone and Wagner

proved the following famous result on ¢t-homogeneous subgroups.

Theorem 3.4.1 ([LW65]). If a subgroup G of S,, is t-homogeneous for some t satis-
fying 1 <t < % then G is also (t — 1)-homogeneous.

Martin and Sagan [MS06] generalised this theorem in two ways. They replaced
subgroups of S,, by subsets and replaced t-subsets of [n] by tabloids of [n], which are

basically set partitions of [n].
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Definition 3.4.2. For a partition o of n, a subset Y of S, is transitive on the set of
o-tabloids if there is a constant r such that the following holds: for all o-tabloids S, T,
there are exactly r elements m € Y such that 7(S) =T

Figure 3.3 illustrates an example of a subset of S5 that is transitive on (4, 1)-tabloids.

Figure 3.3: A subset of S5 that is transitive on (4, 1)-tabloids. The second to fifth
rows each provide a permutation of the five colours of the first. For any two colours
there is exactly one permutation that maps the one colour to the other.

We note that if Y is a subgroup of S, then the notion of a transitive subset and
that of a transitive subgroup coincide.
We are able to determine the constant r in the definition of a subset Y of permu-

tations being transitive on o-tabloids by double counting the set
A={(r,0) €Y xS,: n(T)=0(T)},

where T is a o-tabloid and o = (01, 09, ...,0%) is a partition of n. On the one hand,
we have |[A| = |Y]o1!---og! and, on the other hand, it is |A| = |Sy| - r, from which we
conclude that - |
_otlog!- oyt
r= T‘Y‘ (3.2)
One of the main results in [MS06] is the following.

Theorem 3.4.3 ([MSO06]). Let o be a partition of n. A subset Y of the symmetric
group Sy, is transitive on o-tabloids if and only if the dual distribution (by)x of Y
satisfies

by=0 foralloc <A<(n).

On the one hand, this theorem gives a combinatorial interpretation for T-designs,
where T'= {\: 0 < A<(n)}, in the conjugacy class scheme arising from the symmetric
group. On the other hand, it provides an algebraic notion for the combinatorial object
of a transitive set of permutations.

As a consequence Martin and Sagan obtained the following result.

Corollary 3.4.4 ([MSO06]). Let Y be a subset of S,, that is transitive on o-tabloids.

Then G is also transitive on T-tabloids for all T satisfying T > o.
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From this result the Livingstone-Wagner Theorem 3.4.1 follows as a corollary
by noticing that a t-homogeneous subgroup is a subgroup acting transitively on
(n — t,t)-tabloids and taking o = (n —t,t) and 7 = (n —t + 1,t — 1).

In [MSO06], the proofs of the Theorems 3.4.3 and 3.4.4 make use of the conjugacy
class scheme arising from the symmetric group. Thus these proofs heavily use the
representation theory of the symmetric group and especially the decomposition of the

permutation character on o-tabloids.

Considering (3.2), we note that a subset Y of the symmetric group S,, is transitive
on o-tabloids if and only if the following equation holds
1 1
N 1 = —
7] 25 T T s

TeY

Z Ly(s)=7 for all o-tabloids S,T.
TESK
As a consequence we can understand transitive subsets of permutations as subsets
that locally approximate the symmetric group. Thus, we are interested in determining
whether small subsets of this type exist.

The existence of small transitive subsets of the symmetric group is another main

result in [MS06]. Its proof is based on a recursive construction.

Lemma 3.4.5 ([MSO06]). Taking a combinatorial t-(n,k,\) design, a subset of Sk
that is transitive on (k — t,1)-tabloids, and a subset of S,_j that is transitive on

(n — k — t,1%)-tabloids implies the existence of a subset of S, that is transitive on
(n — t,1%)-tabloids.

Together with the existence result of Teirlinck [Tei87], which gives the existence of
combinatorial ¢-(n, k, \) designs for given ¢ and n sufficiently large, Martin and Sagan
obtained the following asymptotic existence result of arbitrary small transitive subsets

with regard to the size of the symmetric group.

Theorem 3.4.6 ([MSO06]). Let o9 > 03 > ... > o) be a nonincreasing sequence of
positive integers and let € > 0. Then for all sufficiently large o1 > o9 there exists a
subset Y of the symmetric group Sy, where n = o1 + 09 + ..., 40y, that is transitive

on (01,02, ..,0k)-tabloids satisfying |Y|/n! < e.

In Chapter 6 we study g-analog problems and replace the symmetric group .S, by
the finite general linear group GL(n, q).
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From now on we focus on g-analog settings of those we collected for the symmetric
group in Chapter 3. Consequently, we work with the finite general linear group
GL(n,F;). In the following we write GL(n,q) instead of GL(n,F;). The purpose
of this chapter is to collect all the properties needed for understanding the main
results in this thesis. First, we recall already known results, including conjugacy
classes and irreducible characters of GL(n,q) in Sections 4.1 and 4.2, respectively.
Then, in Section 4.3, we give new results and decompose certain permutation and

permutation-like characters of GL(n, ¢) into their irreducible constituents.

4.1 Conjugacy classes

In this section we study the indexing of the conjugacy classes of the finite general
linear group. Moreover, we find appropriate representatives for each conjugacy class.
For this, we follow [Macl5, Ch. IV.2].

Let Par be the set of integer partitions, where we denote the unique partition of 0
by @. Moreover, we write ® for the set of all monic irreducible polynomials in Fq[X]
that are distinct from X.

For every matrix g € GL(n,q) we can define a multiplication of the polynomial

ring [ X] on the finite dimensional vector space Fy by
FQ[X] XFZL%FZG (f(X),U) Hf(g)l)

This makes F; an ;[ X]-module that we denote by V. We observe that two matrices

g and h in GL(n, q) are conjugate if and only if the corresponding F,[X]-modules Vj,
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and V), are isomorphic. Thus we can write V. instead of Vj, where c is the conjugacy
class of g in GL(n, q).

We note that V. is a finitely generated module over the principal ideal domain
F,[X]. Hence, the structure theorem for finitely generated modules over a principal
ideal domain (see [DF91, Ch. 12, Thm. 6], for example), gives that V, is isomorphic
to a sum of cyclic modules. More precisely, there exists a unique partition valued

function A\.: & — Par such that

Ve = @ DFy[X]/(f2) (4.1)

fedi>1

as [Fy[X]-modules. Comparing dimensions on both sides gives

n = dimg, Vo = 3 dimg, (F,[X]/(f2))

fedi>1

=D > deg(f)A(f)i

fedi>1

= 3 deg(HA)]

fed

Moreover, for a given partition valued function A: & — Par, there exists a unique
conjugacy class ¢ of GL(n, g) such that A = A, if and only if 3 cq deg(f)|A(f)| = n.
In the following we omit the index and write A instead of ). if it is clear from

context, which conjugacy class we consider.

Definition 4.1.1. The size of A: ® — Par is [|Al| = 3 deg(f)|A(f)[|. And we put
A= {2 e d: 2] = n}.

Using the isomorphism (4.1) we can determine a representative, the so-called
Jordan canonical form, for each conjugacy class of GL(n,q):

We recall that the companion matriz of a polynomial f € ® with f = X% +
faar X 4+ X+ fo s
_ .
1 —h
C(f) = 1 —fa | e T4,

1 —fa-1]
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(where blanks are filled with zeros). For f € ® of degree d and a positive integer k, we

write

C(f.k) = € Frdxhd,

C(f)]
and for f € ® and p € Par, we define C(f, 1) to be the block diagonal matrix of order

|| - deg(f) with blocks C(f, 1), C(f, u2), - ... Finally, with every u € A, we associate
the block diagonal matrix R, of order n whose blocks are C(f, uu(f)), where f ranges
through the support of p. Then every element g of GL(n, ¢) is conjugate to exactly one
matrix R, for p € Ay, which is called the Jordan canonical form of g. We denote by
Cy the co;jugacy class containing R,,. We note that Cx_y,,(1») is the conjugacy class

containing the identity. In the following, we denote the identity matrix of GL(n, ¢) by 1.
An explicit expression for the size of a conjugacy class of GL(n, q) was first obtained
by Stanley [Stal2].

Theorem 4.1.2 ([Stal2]). For each g: & — Par with ||c|| = n we have

|GL(n.q)| ()| mie(1)

o ST I II g1 — g 1),

fed i=1 j=1

where |f| = deg(f), mi(0) = #{j > 1: 0; = i}, and s;(0) = 23:1 oj for every

partition o.

Example 4.1.3. We consider the finite general linear group GL(3,2). The irreducible
polynomials in Fo[X] \ {X} of degree less than or equal to 3 are

fi=X—
fo=X?+X+1,
fs=X>+X?+1,
fa=X3+ X +1.
There are 6 partition valued functions whose size is equal to 3, namely
fimr (LLL), fi=(2,1) fir(3)
famr (1), f3= (1)
A fr= (1), fore (D).
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Table 4.1 gives an overview of the 6 conjugacy classes of GL(3,2). In Section 4.2 we

also provide the conjugacy classes of GL(4, 2).

Table 4.1: The conjugacy classes of GL(3,2).

Indexing Representative Size
1 0 0]

fi—(1,1,1) 01 1
0 0 1]
1 1 0]

fi—(2,1) 010 21
0 0 1
(1 1 0]

fi—(3) 011 42
0 0 1]
[0 0 1

fza— (1) 100 24
011

N (0 0 1]

fz— (1) 101 24
0 1 0
[0 1 0]

A 110 56
0 0 1]

4.2 Representation theory

The representation theory of the finite general linear group GL(n, ¢) plays a crucial
role in this thesis. In the Chapters 5 and 6, containing the original results, we study
subsets of the finite general linear group that we embed in the association scheme
arising from this group. Recall from Chapter 2 that we can express the eigenvalues and
dual eigenvalues of the conjugacy class scheme arising from any finite group in terms
of its irreducible characters. To gain better insights into this, we recall the necessary
background on the representation theory of the finite general linear group in this
section. Since we almost exclusively work with characters instead of representations or
modules, we present the following definitions and properties only in terms of characters.
For more background, we refer the reader to [Macl5, Chapter IV] and [Jam86].

The complete set of (complex) irreducible characters has been obtained by Green
[Greb55]. The complex irreducible representations were obtained by Gelfand [Gel70] and
the irreducible representations over fields of nondefining characteristic were obtained
by James [Jam86|. Our approach to obtain the irreducible characters of the finite

general linear group follows [Jam86] and is similar to the method we used to obtain the
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irreducible characters of the symmetric group in Section 1.2. More precisely, similarly
to the symmetric group, we construct characters &/=# of GL(n, q) such that the first
one ¢~ ig irreducible, the second one can be written as copies of the first &/~
plus a single copy of the new irreducible character, and so on. However, in contrast
to the symmetric group, the constructed characters are not necessarily permutation
characters, and we cannot obtain all irreducible characters of GL(n, q) this way.

The construction of the characters of GL(n,q) which gives us all irreducible
characters, relies heavily on parabolic induction, which is the induction of characters
from parabolic subgroups to GL(n, q).

We recall from Definition 1.3.6 that a composition of the positive integer n is a

sequence of nonnegative integers that sum up to n.

Definition 4.2.1. Let A = (A1, A2, ..., \x) be a composition of n. The parabolic
subgroup Py of GL(n, q) is the subgroup of GL(n, q) consisting of block upper-triangular

matrices with block sizes A1, Ao, ..., Ag, namely
A % - %
Ay - %
P\, = ) | A e GL()\i,q) . (4.2)
Ay,

Let A = (A1, A2, ..., Ax) be a composition of n and let m;: Py — GL()\;, ¢) be the
projection of the i-th block of the diagonal, so that

Ay ok o x
Ay oo %

T . . '—)Az (43)
Ay

We note that, for class functions ¢; of GL();, q), the product
[1(#: 0 mi)

is a class function of the parabolic subgroup Pj.

Definition 4.2.2. Let A = (A1, \2,..., A\;) be a composition of n and let ¢; be class
functions of GL()\;,q) for all 1 < i < k. We define the parabolic induction as the
product ¢1 ® o ® - -+ ® ¢, which is the induction of the class function Hle(gb,- o ;)
from Py to GL(n,q), that is

k k
Ooi= Indgf("’q) <H(¢i o 77@')) ; (4.4)
i=1

=1

where 7; denotes again the projection given in (4.3).
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In the following we summarise James’ construction [Jam86] of the irreducible
characters of GL(n,¢). Unlike in [Jam86], we do not use the terms of modules, since
we will almost exclusively work with characters in this thesis.

Similar to the conjugacy classes, the irreducible characters of the finite general
linear group GL(n,q) are indexed by the partition-valued functions A,. We write x2
for the irreducible character associated with A € A,,. Moreover, we write /7 for
x2 if A is only supported on f € ® with A(f) = A. The characters xy/~* are called

primary irreducible characters of GL(n, q).

In this section, if not stated otherwise, let f € ® be an irreducible polynomial in
Fq[X]\ {X} of degree d and let k be a positive integer. There are five steps to obtain
all irreducible characters of GL(n, q):

(I): In order to construct the primary irreducible characters James starts with the
cuspidal characters x/~) of GL(d, ¢). In [Jam86, p. 241 and Thm. 3.6] these
characters are denoted by 15 and the corresponding module by Mp(s,(1)). The
cuspidal characters are irreducible and zero on all conjugacy classes except on
those corresponding to the partition valued functions which are only supported
on one polynomial. The existence of these cuspidal characters was proved by
Green [Gre55]. The degree of the cuspidal character /() is given by [Jam86,
p. 242]

X7D(1) = (g—1)(¢* = 1)+ (¢* ! - 1).

II): Using the cuspidal characters of GL(d James constructs characters &/ =(1F) of
(I1) g P . q
GL(dk, q) by parabolic induction, namely

ng(ﬂc) _ Xf.—>(1) o Xft—>(l) O...0 Xf'—)(l)

Y

where x/~() is a cuspidal character of GL(d, ) and there are exactly k copies
of x/~() on the right hand side. In [Jam86, Def. 4.2], the module corresponding
to £/~0%) is denoted by Mp(s, (1%)).

(III): For a partition u of k, James defines the characters £&/7# of GL(dk, q) based on
ff'_*(lk). He defines a map F, on the set of characters of GL(dk, q) such that
F#(ffH(lk)) = ¢f71 In fact, the notion is consistent because F(lk)(ng(lk)) =
ff'_*(lk). James denotes the modules associated with &/~* by Mp(s, ), see
[Jam86, Sec. 6]. Writing y = (1, 2, - - ., fux ), the characters £/7# satisfy [JamS86,
(6.2)

k
ghom = @é‘f’_)(lli)‘ (4.5)

i=1
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(IV):

(V):

It holds that the characters £/~(*) are irreducible in GL(dk, ¢) ([Jam86, Lemma
6.3]).

Moreover, in some way, the character £/# plays the same role as the permutation
character of the symmetric group on p-tabloids. Similarly as in Section 1.2,
we obtain the primary irreducible characters of the finite general linear group
from the characters &/, Since, for every positive integer k, the character
¢/=(®) is irreducible in GL(dk,q) we name this character x/~*). Then the

k=11) into irreducible characters consists of copies of

decomposition of &/
') and a single copy of the new irreducible character xf~*=11 We define
the primary characters x/~#* of GL(dk,q) by
Xf'—w — ngu _ ZK/\HXJ”'—»\’
A

where the K, denote the Kostka numbers from Definition 1.2.4. The characters
x/7# are irreducible characters of GL(dk, q), where p is a partition of k, and it
holds [Jam86, (7.19)]

¢ =3 " K™ (4.6)

ABp

Consequently, comparing this with Theorem 1.2.6, we observe that the char-
acter &/ is similar to the permutation character of the symmetric group on
p-tabloids.

Using this approach, we find all primary irreducible characters of the finite
general linear group. We obtain the remaining irreducible ones by gluing the
primary ones together, namely for every A € A,, the character y2 given by
- @ w2 (4.7)
fed
is an irreducible character of GL(n,q). Moreover, these are all irreducible

characters of the finite general linear group GL(n, q) [Jam86, p.2671].

We note that we are using the indexing of [Jam86] for the irreducible characters of

GL(n,q). In contrast in [Mac15] for example, A is replaced by the conjugate \'.

Example 4.2.3. The character table of GL(3,2) is given in Table 4.2. In Section 4.2
we also provide the character table of GL(4,2).

In the following, we focus on some identities in the spirit of (4.6). From (4.6) and

by using linear algebra, it follows that there exist integers H,, satisfying

XA =3H el (4.8)
“w
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and
HleandHu)\;éOﬁuE/\ (49)

(see[Maclb, 1.6, Ex.4], for example).

Table 4.2: The character table of GL(3,2) (see [Gor22|, for example), where we use
the notation from Example 4.1.3. In this table A = (7 + (2 + (7, where (7 = exp(27i/7)
is a 7-th root of unity and A denotes the complex conjugate of A.

S
Yy e S
Ne A 7 TN
X”f N x> X %
i (3) 1 1 1 1 1 1
fim(2,1) 6 2 0 -1 -1 0
fie (1,1,1) 8 0 0 1 1 ~1
f3— (1) 3 -1 1 A A 0
fz e (1) 3 ~1 1 A A 0
A 7 -1 -1 0 0 1
Now, for p € Ay, we define the characters
¢t = el e, (4.10)

fed

In what follows we decompose ¢ into irreducible characters x2. In order to do so,

we introduce the shape of a partition valued function.

Definition 4.2.4. The shape of A € A, is the mapping s: ® — Z given by s(f) =
IA(f)| for each f € ®. If two partition valued functions A, u € A, have the same shape,

we write A ~ p.

We note that ~ is an equivalence relation on A,,.

For example A\, o € A given by AM(X —1) = (4,1) and g(X — 1) = (3,1,1) have

the same shape.

Definition 4.2.5. For A\, € A, with A ~ p, we define
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Then, from (4.6) and (4.8), it follows that

E= Z Kyx*  for each p € A, (4.11)
Avp
X2 = Z Hy\é%  for each A € Ay, (4.12)
oA

Similarly as for the symmetric group (see [Sag01l, Thm. 3.10.1], for example), we
can calculate the degree of an irreducible character of the finite general linear group
by using the hook lengths. In the following, we will often write | f| to denote the degree
of fe d.

Lemma 4.2.6 ([Gre55, Thm. 14]). We have

1
xA(1)

n
: 1 hi (A

o0 =Tl gt T @800 g
=1 fed (1,9)EAS)

where for each partition X = (A1, Aa,...),

b(A) =D (i— 1)\

i>1

and h; j(A) is the hook length of A at (i,7), namely
hijAN) =N+ X, —i—j+1

and the corresponding product over (i,7) is over all boxes of the Ferrers diagram

of A(f)-

The only characters of the finite general linear group that we need explicitly are
the primary irreducible characters x/~(" where f € ® is a polynomial of degree
one. For this, let @ be a generator of the multiplicative group F; of Fy, let w =
exp(2myv/—1/(q — 1)) be a complex root of unity, and let 6 be the linear character of
[ given by

0:F, = C, 0(")=uw" (4.14)

X —al—(

Note that, for all ¢, the characters x ") have degree one. Moreover, they are

given in terms of the linear character 6.
Lemma 4.2.7 ([Gre55]). For all g € GL(n,q), we have

XX (g) = 6(det(9)").

X—1—(

In particular x n) s the trivial character.
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Similarly as for the symmetric group, also in the case of the finite general linear
group we find an isomorphism between irreducible characters and symmetric functions
A, from Section 1.3.

Lemma 4.2.8 ([Mac15]). For every polynomial f € ®, the algebra generated by
{x/7*: X € Par} with multiplication ® is isomorphic to the algebra of symmetric

functions A, with x'7* being send to the Schur function sy.

From this Lemma it follows that we are in a position to decompose the product
/7 @ x7 into its irreducible constituents. We state the Littlewood-Richardson
rule in terms of irreducible characters of the finite general linear group, like we did in

Theorem 1.3.18 for the irreducible characters of the symmetric group.

Lemma 4.2.9. For all f € ® and for every two irreducible characters x/~* and

™" of GL(n, q) and GL(m, q), respectively, the product decomposes as follows

Xf>—>>\ ® Xf»—w _ Z Cf\LVXfH“a
pePar

where ¢k are the Littlewood-Richardson coefficients from Theorem 1.3.18.

Recall that we have ¢, = 0 unless |p| = [A| + || and A, v C p.

Moreover, from Pieri’s rule we obtain the following.

Lemma 4.2.10. Let x="=% and xX =" pe irreducible characters of GL(|x|, q)

and GL(m, q) respectively. Then the decomposition of the product is given by

XX—oc’»—m o XX—oﬂ»—>(m) _ Z XX—oc’l—))\’
A

where A runs through all partitions whose Young diagram is obtained from that of k by

adding m bozes, no two of which in the same column.

In what follows, we obtain a decomposition of the product of any two irreducible
characters of the finite general linear group and not only of primary ones. By A¢
we denote the set of all mappings A: ® — Par of finite support (with @& being the
zero element in Par). We define for A, u,v € A°, the following generalisation of the

Littlewood-Richardson coefficients

B w(f)
PV § S 6
fed
We note that ci/ = 0 unless ||| = ||Al| + ||z]| and A,z € p, where A C p means

A(f) € u(f) for all f € ®. With this notion we get the following as a consequence of
Lemma 4.2.9.
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Lemma 4.2.11. For all \,v € A we have

5
XrOxXE =) et
pEA

Remark 4.2.12. Let A\, € A€ such that A(f) C p(f) for all f € ®. Then there
exists v € A such that ci > 0.

Lemma 4.2.13. For each f € ® and each partition pu = (u1, 2, .. .), we have

Ox=0) = 3 Ky,

i>1 A

where X ranges over the partitions of |u|, and where the Ky, denote the Kostka numbers.

Example: The character table of GL(4,2)

In this section we provide representatives of the conjugacy classes and the character
table of GL(4,2). The irreducible polynomials in Fo[X] \ {X} of degree less than or

equal to 4 are
fi=X-1
fo=X?+X+1
f3=X>+ X241
fa=X3+X+1
fi=X*+X+1
fi=X'+Xx%+1
f=X*+X*+ X2+ X +1.
There are 14 partition valued functions whose size is equal to 4, namely

fl’_>(14)7 fl’_>(27171) fl’_>(272)7 fl'_>(371)7 fl’_>(4)a
farr (1%), far (2),
fie ), fie (D), fae (1)

and

2 or = or =
Al(f):{mf f=h Am:{@)ff i
(1) for f=fo (1) for f = fo
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A3(1?):{<1> for £ = fi Mf):{u) forf = fy
(1) for f=fs (1) for f=fs

Table 4.3 gives an overview of the 14 conjugacy classes of GL(4, 2).

Table 4.3: The conjugacy classes of GL(4,2).

Indexing Representative Size

Indexing Representative Size 0 0 0 1
1000 famr (1) R 1344
4 0100
fre (1) 0010 1 0 0 1 0
0001 ] ]
:1100: 0001
7 1000
IR U DI O 105 fomr (1) 010 0 1344
0 0 0 1] 0 0 1 1]
[1 1 0 0] 0 o0 0 17
0100 2 1001
fi (2.2) 0011 210 o (1) POO 134
0 0 0 1f 0 0 1 1]
[1 1 0 0] o o ol
fie (3,1) 0110 1260 0100
L 00 10 Ay 0001 1120
00 0 1] R
1 1 0 0] 1o o
0110
= (4 2520
e R Ay 0100 3360
0001 000 1
y . 00 1 1
0100 A ]
2 1100 (1 0 0 O]
f2 = (1) 00 0 1 112 Lo0
00 1 1 A3 01 0 1 2280
[0 1 1 0] 0 0 1 0]
1101 - _
f2rr (2) 00 01 1680 1000
0011
- : Ay 010 0 2280
0 0 1 1]

A possibility to compute character tables of finite general linear groups is provided
by the computer algebra system GAP [GAP24]. However, rather than indexing the
characters in the same way as we do, GAP stores them in ascending order of degree. If
the characters are not uniquely defined by their degree, some additional computations
have to be done to determine which character it is in our indexing. To do so, one can
use [Gor22], which employs Green’s approach to the representation theory of GL(n, q).
Using this method, we computed the character table of GL(4,2), which is shown in
Table 4.4.
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Table 4.4: The character table of GL(4,2). In this table A = —( — §2 — (% — (8, where ¢ = exp(%) is a 15-th root of unity and
B =& +& +¢5 where € = exp(@) is a 7-th root of unity. By A and B we denote the complex conjugate of A and B, respectively.

O

Ve v A Ve . ; » > » »
K \Qj N N X K XY > > >

f1 e (4) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
fim(3,1) 14 6 2 2 0 -1 -1 -1 -1 —1 2 0 0 0
fim(2,2) 20 4 4 0 0 5 1 0 0 0 -1 1 —1 -1
fie(2,1,1) 56 8 0 0 0 —4 0 1 1 1 -1 -1 0 0
fi (1% 64 0 0 0 0 4 0 -1 -1 —1 -2 0 1 1
fa (12 28 —4 4 0 0 1 1 1 1 -2 1 -1 0 0
fa = (2) 7 -1 3 -1 1 4 0 -1 -1 2 1 -1 0 0
fa— (1) 21 -3 1 1 ~1 -3 1 A A 1 0 0 0 0
fim (1) 21 -3 1 -1 -3 1 A A 1 0 0 0 0
fa (1) 21 -3 1 ~1 6 -2 1 1 1 0 0 0 0
A 70 -2 2 -2 0 -5 -1 0 0 0 1 1 0 0
Ao 35 3 -5 -1 -1 5 1 0 0 0 2 0 0 0
A3 45 -3 -3 1 1 0 0 0 0 0 0 0 B B
A 45 -3 -3 1 1 0 0 0 0 0 0 0 B B

¢V
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4.3 Permutation characters

This section serves as a collection of certain permutation, or permutation-like char-
acters of the finite general linear group and their decompositions into irreducible
constituents. These results were published in [ES23] and [ES24], respectively. The
proofs of the main results in the Chapters 5 and 6 heavily rely on these characters

and their decompositions.

In the following x2 denotes the irreducible character of GL(||A||, ¢) corresponding
to A € A°. Recall from Section 4.2 that £/7#, where f € ® and u being a partition, is

§X—1H(”—tvt) is the permutation

the character defined by James. First, we explain that
character of GL(n, q) on the set of ¢-dimensional subspaces of Fy (where GL(n, q) acts

naturally on this set). From (4.5) we find

é-X—lH(n—t,t) — £X—1>—>(n—t) ® é—X—ll—)(t)'

Let 71 and w2 be the projections onto the diagonal blocks of order ¢ and (n — t),
respectively, as given in (4.3). Since EX~1(=t) and ¢X~1) are the trivial characters
lan(n—t,q) of GL(n —t,q) and lgr,q) of GL(t,q), respectively, for g € GL(n,q), we

obtain

X1 (nt)( 1

9) = 1Prin—n| ) Lav(tg) (M1 (271 92)) - oL (n—t.q) (M1 (2~ g2))
(t,n—t) 2z€GL(n,q)
w_lgffep(t,n—t)

1 -1
= P | Z lp,, (™ gz)
(tn—t) 2€GL(n,q)
$_1g$€P(t7n_t)

GL(n,
= Il’ldp(t( q)(lP(t,nft))(g)v

m—t)

(n=t) is the permu-

The same arguments as those in Remark 1.2.1 imply that £¢X—17
tation character of GL(n, q) on the set of ¢-dimensional subspaces of Fy. Thus, from

(4.6), we obtain the following decomposition of this permutation character.

Lemma 4.3.1. Let t < n/2. Then the permutation character & of GL(n,q) on the

t-dimensional subspaces of Fy decomposes as follows
¢

€= Z XX—l»—)(n—s,s).

s=0

Now we consider a permutation-like character ¢ (t0) of GL(n, q), which is related to

the permutation character on ¢-tuples of linearly independent vectors of Fy.
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For t < n, let Hy,; < GL(n,q) be the stabiliser of a fixed t-tuple of linearly
independent elements of Fy. We define ¢ (t4) to be the character obtained by inducing
the linear character

Hn,t — C
_ (4.15)
g — 6(det(g)")
where 0 is the linear character of F, that was defined in (4.14). Then ¢ (t0) is the
permutation character of GL(n, ¢) on the set of t-tuples of linearly independent elements
of Iy (where the action of GL(n, ¢) on the set of these t-tuples is the one induced by
the natural action on the components). These characters are related to each other in

the following way.
Lemma 4.3.2. For each g € GL(n,q) we have
¢ (g) = 8(det(9))¢"V (g)-

PROOF: Since similar matrices have the same determinant, we find from the definition

of an induced character, for g € GL(n, q), that
1

C(t,i)(g) _ ’H Z H(det(ng_l)i)
™t 2eGL(n.q)
xg{l‘_leHn,t
1 )
S 3 eens)
™t 2eGL(n.q)
rgr  €H, 1
= 0(det(g)")¢0 (g). -

The following decomposition of (%) into irreducible characters of GL(n, q) plays a

crucial role to obtain the main results in Chapter 5.

Lemma 4.3.3. We have
C(t,i) — Z mi,gXév

A€A,

where m; x # 0 if and only if A(X — al); >n—t.

Proor: We may choose H,,; to be

H,;= {ll *] 1g € GL(n—t,q)},
g

so that H, is a subgroup of the parabolic subgroup P; ,_; given in (4.2). Let m;
and 7y be the projections onto the diagonal blocks of order ¢ and n — t, respectively,

as given in (4.3). Using Lemma 4.2.7, the character (4.15) can be written as

(Lom)(x ¥~ o my), (4.16)
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where 1 is the trivial character of the trivial subgroup of GL(¢, ¢). From Example 1.1.39
we have that 1 induces on GL(t, q) to the character

D XE()xE

KEAt

Since Py p—s)/Hnt = GL(Z, q), it follows that (4.16) induces on P, to the char-

acter

3 ED)(E o m) (x0T o 7y).
KEAL

Hence, by transitivity of induction, we have

C(t,i) — Z Y1) (xE® XX—aiH(n—t))_
KEA:

From Lemma 4.2.10 we find that

X—al—k ® X—al—(n—t) _ Z XX—ai»—»\
- )

A

X X

where A runs through all partitions whose Young diagram is obtained from that of s
by adding n — ¢ boxes, no two of which in the same column. Then, the statement of

the lemma follows by using (4.7). O

The last character that we study in this section is the permutation character of
GL(n, q) on so-called a-flags.

For ¢ # 2, let X,, ; be set of all pairs (p,Z), where p is a composition of n and 7 is
a subset of {1,2,...,¢(p)}, namely

Yng={(p,I): pis a composition of n, Z C {1,2,...,4(p)}}, (4.17)
and, if ¢ = 2, we insist that p; > 1 for each i ¢ 7

Definition 4.3.4. For a composition p of n, a p-flag is a tuple of subspaces (V1, Va, ..., Vy()))
of Fy such that

{0} =Vo<Vi<...<Vy, =Fy
and dim(V;/Vi_1) = p; for each i € {1,2,...,4(p)}.
Definition 4.3.5. Let a = (p,Z) be an element of ¥, , with Z = {iy,i2,...,1}.
We define a signed a-flag, or a-flag for short, to be a pair (F,B), where F =

(Vi,Va, ..., Vi) is a p-flag and B = (B1, Ba, ..., By) is a tuple of ordered bases
of %1/‘/;'1717 WQ/V;:Qfla ey V;:k/wkfl with ‘/0 - {O}
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A ((t,n —t),)-flag, for example, is essentially a t-dimensional subspace of Iy .

And a ((t,n—1), {1})-flag is essentially a ¢-tuple of linearly independent elements of Fy .

In order to give the decomposition of the permutation character of GL(n,q) on
the set of a-flags with a € ¥, ;, where the action of GL(n, q) on the set of a-flags is
the one induced by the natural action on the components, we need to introduce some

more notions.

Definition 4.3.6. For each (p,7) € X, ; we associate a pair of partitions (o, 7), called
the type of (p,Z), where o is the partition whose parts are those p; with i € Z and 7 is
the partition whose parts are those p; with ¢ ¢ Z.

For example ((25123),{2,3,5}) has type ((531), (22)).

Definition 4.3.7. We define the type of A € A, to be a pair of partitions (x, A), where
A =A(X —1) and « has |A(f)| parts of size |f| as f ranges through ® \ {X — 1}. The
type of A € A,, is denoted by type(}A).

For example, for ¢ = 3, the type of A € Ay given by
X131, X+1=(33) X?+1=(2), X +X+1(21)

equals ((2°19), (31)).

Note that, if (x,A) is the type of A € A, then |k| 4+ |A\| = n. And note that the
unique irreducible character x2 of GL(n,q) with type(A) = (@, (n)) is the trivial
character of GL(n, q).

In order to define a partial order on the pairs of partitions, recall from (1.2) the
dominance order < on partitions. There we defined the dominance order only for
partitions of the same size. However, this definition can naturally be extended to the
set of all partitions Par.

Another partial order on Par is given by the refinement. A partition u = (u1,. .., ux)
refines a partition A if |u| < || and the parts of A can be partitioned to produce the
parts of (u1, ..., pe, IA=I#). For example (3,2,1) refines (7,4, 2,2).

A partial order on the pairs of partitions is given by the following.

Definition 4.3.8. Let (v, 1) and (k, A) be pairs of partitions. We write (v, 1) < (k, A)
if k refines v and p < X. And we write (v, ) < (k,A) if (v, ) =< (K, A) and (v, u) #
(K, A).

The decomposition of the permutation character £ of GL(n,q) on a-flags with

a € Xy is as follows.
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Lemma 4.3.9. Let o € X, 4, let £ be the permutation character of GL(n,q) on the
set of a-flags, and let

E= > man®

AEAR
be the decomposition of £ into irreducible characters. Then we have

my#0 & type(a) = type(A).

Proor: For a € ¥, , we write a = (p,Z), where p = (p1, p2,...,pr). We define a
subgroup H of the parabolic subgroup P, and thus of GL(n, q) by

Al * *
Ay oo %

H = . . :AiEGL(pi,q),Ai: piifiEI. s
Ay,

where I,,, denotes the (p; X p;)-identity matrix. Then H is the stabiliser of an a-flag.
Using similar arguments like in Remark 1.2.1 we have that the induced character of

1x to GL(n, q) is the permutation character of GL(n, q) on the set of a-flags
GL(n,
¢ =ndS" ™) (1),

Now we first induce 1y to the parabolic subgroup P,. For 1 <1 <k, let m;: P, —
GL(pi, q) denote the projections given in Section 4.2. Hence

where 1; is the trivial character on the trivial subgroup of GL,, 4 for : € Z and 1;
is the trivial character of GL(p;,q) for i € J, where J is the complement of Z in
{1,2,...,k}. We have

1€L

as a direct product. From Example 1.1.39 it follows that, for each i € Z, we have

Il’ldg}(pi’q)(li): Z YE(1)y&,

KEAp,
where F; denotes the trivial subgroup of GL(p;, q). Hence we obtain
Indif (1) = | [[(om) | [T 3 x2W)0Eom) | -
€T €L KEA,,;
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By the transitivity of induction, £ is obtained by inducing IndZ”(l 1) to GL(n,q).
To determine the irreducible constituents of &, it is now enough to determine the

irreducible constituents of the induced characters

PrLOP2 OO Py (4.18)

where ¢; is an irreducible character of GL(p;, q) for i € Z and ¢; is the trivial character
of GL(p;,q) for i € J. Since the product of characters is commutative, we may now
assume without loss of generality that Z = {1,2...,r}, where r = |Z|. We put

o= 1(p1,p2,---,pr) and 7 = (Pr41, Pr42,-- -, pk) (so that (o,7) is the type of (p,Z)).

Now consider the parabolic subgroup P = P, We have

,--~7Pr,|7|'

P[P, = GL(|7|,q)/ Py
and hence by Lemma 4.2.13 the character (4.18) induces on P to

Y KX 01 0¢0 0 dy.

vDT
To determine the irreducible constituents of &, it is now enough to determine the

irreducible constituents of the induced characters

PO PO ® P, (4.19)

where ¢¢ is the irreducible character of GL(|7|,q) corresponding to X — 1 — v,
where v is a partition with v > 7, and ¢; is an irreducible character of GL(p;, q) for
1< <r.

To prove the forward direction of the lemma, assume that 2 is a constituent of some
induced character of the form (4.19). Let (x, A) be the type of A and let (k™) A®)) be
the type of the element of A, indexing ¢;. Then Lemma 4.2.11 implies that the parts
of K are exactly the parts of k), k() ... k(") Since ¢; is a character of GL(p;, q),
we find that x(®) refines (p;) and hence k refines 0. By assumption there is some
partition v with |v| = |7| such that v > 7, which by Lemma 4.2.11 satisfies v C A,
where C denotes the containment order from Definition 1.3.16. Hence we have A\ > 7,
which proves the forward direction of the lemma.

To prove the reverse direction, let A € A, be such that its type (k,\) satisfies
(0,7) < (k,A). Then k is a refinement of o and 7 9 \. It is readily verified that
there exists a partition v with [v| = || such that v > 7 and v C A. Let Ay € Aj;| be
given by X — 1 — v. Since & is a refinement of o, there is a chain of partition-valued
functions

MCEAMC...CA =2

with the property || A;|| — [|A;_1]| = pi for alli € {1,2...,7}. By Remark 4.2.12, we

can choose 9; € A,, such that

c%i s, > 0foreachie {1,2...,r}.

A1
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Now we take ¢g = x20 and ¢; = x% for each i € {1,2...,7}. Then

PoOP1 OO Py,

has x2i as an irreducible constituent for each i € {1,2,...,7}. Hence x2 is an
irreducible constituent of g ® ¢1 © --- © ¢, which completes the proof. O

4.4 Association schemes

In this section we recall the most important objects of the conjugacy class scheme
arising from the finite general linear group by taking into account the results on the
conjugacy classes and representation theory from the Sections 4.1 and 4.2. Moreover,

we study the symmetrisation of the conjugacy class scheme arising from GL(n, q).

4.4.1 The conjugacy class scheme of the finite general

linear group

Since the conjugacy classes of GL(n,q) are indexed by partition-valued functions
K € Ay, the adjacency matrices A, € C(GL(n,q), GL(n,q)) from Example 2.1.9 are

indexed by A,, as well and are given by

Au@%y):

0 otherwise.

{1 for 71y € Cu,

Since the irreducible characters x2 of GL(n, ¢) are also indexed by A,,, the matrices
Ey € C(GL(n,q),GL(n,q)) from Example 2.1.13, are indexed by A,, and are given by

A
Exl.1) = g e ) (4.20)

Especially, Ex_1..(n) plays the role of Ey in Example 2.1.13 because the trivial
character of GL(n,q) is indexed by X — 1 — (n). From Lemma 2.1.15 we have the

following decomposition

C(GL(n,q)) = @ colsp(E}y).

A€,

Moreover, due to Example 2.2.6, the dual distribution (by)yea, of a subset Y C
GL(n, q) is given by

x2(1)
|

v 2 2E), (421)

z,yeY

by =
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We recall, that the entries of the dual distribution are real and nonnegative. Moreover,
we note that, since X — 1 — (n) corresponds to the trivial character of GL(n,q), it
follows that

X— 1»—>(n

x W)
bx —15(n) = Z XM (7 ly) =
z,yeY

Y=Yl
[Y]

Thus, bx_1(n) plays the role of by from Section 2.2.

4.4.2 The symmetrisation of the conjugacy class scheme

of the finite general linear group

Since the conjugacy class scheme arising from the finite general linear group GL(n, q)
is not necessarily symmetric, in this section, we focus on the symmetrisation of this
scheme.

In what follows, we describe the inverse set C’g_1 ={g7!: g € C,} of the conjugacy
class C, of GL(n,q). To do so, we recall that for a given polynomial f € ®, its
rectprocal polynomial f* € ® is the monic polynomial whose roots in the algebraic
closure of F, are exactly the inverses of the roots of f. This brings us to the following

definition.

Definition 4.4.1. Let A\ € A,,. Then we define A\* to be the partition valued function
in A, given by A*(f) = A(f*) for all f € ®.

Lemma 4.4.2. For g, € A, we have
(i) Cov = C5t,
(it) x> =%,

(iti) Xz = Xo--

PRrROOF: Property (i) follows from linear algebra, (ii) is essentially [Jam86, (7.32)],
and (i) together with (ii) imply (iii). O

We define a subset €2,, of A,, to be a set that contains A € A, if A = \* and that
contains exactly one of A or \* otherwise for all A € A,,. Then, for ¢ € Q,, we define
Dy = Cy; UCy+. Note that D, is exactly the union of C, and C !, which follows from
Lemma 4.4.2. From Lemma 2.1.21 together with Example 2.1.74 we can deduce that
(GL(n,q),{Ry: o € Q,}) with R, = {(g9,h): g~'h € D,} is the symmetric closure of

the conjugacy class scheme arising from the finite general linear group GL(n,q). The

85
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adjacency matrices B, of this symmetric association scheme are given by

A, for o = o*
B, =¢ —
Ay; + Ay« otherwise,

where the A, are the adjacency matrices of the conjugacy class scheme arising from
GL(n, q). For this symmetric association scheme, we can express the eigenvalues again
in terms of (not necessarily irreducible) characters of GL(n,q). To do so, we define
the character 12 for each A € Q,, by

A for A = \*
A {X raTa (4.22)

Y2+ x2"  otherwise.

Then 92 is constant on D, for all A\, o € €2, which follows from Lemma 4.4.2. For
A, 0 € Q, this justifies to write

@Z% = 1p2(g) for an arbitrary element g € D,. (4.23)

We note that the characters ¥2 are real-valued for all A € Q,,. Now, for A € Q,, we

write

F

o for A = \*
. (4.24)

E) + Ey~ otherwise,

where the F) are the pairwise orthogonal idempotent matrices of the conjugacy class
scheme arising from GL(n,q). We note that all entries of F) are real-valued. By V)
we denote the column span of F)\ over the reals. And for g, A € Q,,, we write

| Dy |

P\ o) = wé(l)wé (4.25)

The real-valued numbers P(), o) are in fact the eigenvalues of the symmetric
closure of the conjugacy class scheme arising from GL(n,q), which is shown in the

following lemma.

Lemma 4.4.3. We have an orthogonal direct sum decomposition of R(GL(n,q)) in

terms of Vi, namely

R(GL(n,q)) = €5 Va.
AEQn

Moreover, for all o, € Qy,, the elements in V) are precisely the eigenvectors of B,

with corresponding eigenvalue P(\, o).
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PRrOOF: The matrices F) € R(GL(n, q), GL(n, q)) are pairwise orthogonal and idem-
potent because the E) are. Consequently, the V) are orthogonal and the rank of Fy
is equal to the trace of F). The latter together with (2.9) imply that

(1) for A = "
(1)2 4+ x2"(1)®  otherwise.

w@h%
X

[>

Hence we have
dim | @ Va| = > dimVa= ) tk(Fy) = > x*(1)* = |GL(n,q)l,
AEQ, AEQ, AEQ, AEA,

where the last equation is a well known fact from representation theory of finite
groups (see [Sag01, Prop. 1.10.1], for example). This proves the first statement. Using
Lemma 4.4.2 together with the identity (2.8) it is readily verified that

BEZ Z P(A7Q)FA
AEQ,

for all o € ©,,. Since the F) are pairwise orthogonal we obtain the second statement.[]
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5 Erdos-Ko-Rado theorems for

finite general linear groups

Zugspitze, 2962m

In this chapter we study g-analogous problems of those in Section 3.2 for the sym-
metric groups. Here, we replace the symmetric group S,, by the finite general linear
group GL(n, q). We study pointwise, spacewise t-intersecting, and t-cross-intersecting
sets in GL(n, q). More precisely, we establish upper bounds on their sizes and partially

characterise the extremal cases.

The chapter is organised as follows. In Section 5.1 we introduce the different
notions of intersection, namely t-intersection, t-cross-intersection, t-space-intersection,
and t-space-cross-intersection in finite general linear groups. Moreover, we collect
already known results and state our main theorems. In Section 5.2 we prepare some
key steps for the proofs of the main results. The Sections 5.3 and 5.4 contain the main
arguments of our proofs of the pointwise intersection theorems, Theorems 5.1.4 and
5.1.6, and of the spacewise (cross-)intersection theorems, Theorems 5.1.9 and 5.1.11.
In Section 5.5 we collect some open problems and conjectures arising from the study

of pointwise intersecting and spacewise intersecting sets in finite general linear groups.

The results presented in this chapter were published in [ES23].
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5.1 Introduction and main results

In the remainder of this chapter, we fix a prime power q. Henceforth, for a positive

integer ¢, a t-space of Fy is a t-dimensional subspace of [y .

Pointwise intersecting sets

Definition 5.1.1. Two elements z,y € GL(n,q) are t-intersecting if there exist ¢
linearly independent vectors vy, vs,...,v; in IF;‘ such that zv; = yv; for all i. A subset

Y of GL(n, q) is t-intersecting if all pairs in Y x Y are t-intersecting.

Equivalently, a subset Y of GL(n, q) is t-intersecting if rk(z — y) < n — ¢ holds for
all z,y € Y. The canonical examples for t-intersecting sets in GL(n, ¢) are given by

so-called t-cosets.

Example 5.1.2. A coset of the stabiliser of a ¢-tuple of linearly independent vectors
of Fy is given by
{z € GL(n,q): zv; = w;},

for some t-tuples (vy,v,...,v;) and (wy,ws, ..., w;) of linearly independent vectors

in ;. We call such a set t-coset. Every ¢-coset is t-intersecting and its size is given by

n—1

1@ = (5.1)

i=t

Given a t-intersecting set, we can construct another one.

Example 5.1.3. Let Y C GL(n, q) be t-intersecting and let Y7 = {y7: y € Y} be
the set of all transposed matrices of Y. Then Y7 is t-intersecting as well because, for

all 27, yT € YT, we have
rk(z? —yT) =rk(z —y) <n —t.

From Example 5.1.3 it follows that the t-cosets are not the only t-intersecting sets of
the size given in (5.1). As before, we are interested in finding an upper bound on the
size of a t-intersecting set in GL(n, ¢) and in a characterisation of the extremal case.

It is well known (see [AA14] or [AM15], for example) that the size of a 1-intersecting
set in GL(n,q) is bounded by [T*='(¢" — ¢'). This follows from the existence of a
Singer cycle in GL(n, q) and a simple application of the clique-coclique bound from
Theorem 2.4.7.

Additionally Meagher and Razafimahatratra [MR23] proved that the characteristic
vector of a l-intersecting set of size ¢*> — ¢ in GL(2, ) is spanned by the characteristic
vectors of 1-cosets. We obtain a result for all ¢ and n such that n is sufficiently large

compared to t.
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Theorem 5.1.4 (Pointwise t-intersection). Let t be a positive integer and let Y

be a t-intersecting set in GL(n,q). If n is sufficiently large compared to t, then
n—1 ]
i< [ —d)
i=t

and, in case of equality, the characteristic vector of Y is spanned by the characteristic

vectors of t-cosets.

After a first version of our paper [ES23] containing Theorem 5.1.4 was publicly
available (arXiv, May 2022) Ellis, Kindler, and Lifshitz [EKL23] (arXiv, August 2022)
independently proved a slightly more general result than Theorem 5.1.4. However their
methods are completely different, in particular they make no use of the representation
theory of GL(n,q), which is one of the main tools in our approach.

Moreover, we obtain a result for t-cross-intersecting sets.

Definition 5.1.5. Two subsets Y and Z of GL(n,q) are t-cross-intersecting if all

pairs in Y x Z are t-intersecting.

Theorem 5.1.6 (Pointwise t-cross-intersection). Let t be a positive integer and

let Y and Z be t-cross-intersecting sets in GL(n,q). If n is sufficiently large compared

to t, then
n—1
VIYE-12 < T @ - )
i=t

and, in case of equality, the characteristic vectors of Y and Z are spanned by the

characteristic vectors of t-cosets.

The Theorems 5.1.4 and 5.1.6 can be seen as g-analogs of the corresponding results

for the symmetric group [EFP11] from Section 3.2.

Spacewise intersecting sets
We can also g-analogise the setwise intersection result from Theorem 3.2.13.

Definition 5.1.7. Two elements x,y € GL(n, q) are t-space-intersecting if there exists
a t-space U of F such that 2U = yU. A subset Y of GL(n, q) is t-space-intersecting

if all pairs in Y x Y are t-space intersecting.

It is natural to state the definition of a t-space-intersecting set in terms of the
projective general linear group PGL(n, ¢). For consistency, in this thesis, we write the
results in terms of the general linear group. However the results of GL(n,¢) and of
PGL(n, q) can be easily translated into each other.

The canonical ezamples of t-space-intersecting sets are given by cosets of stabilisers

of t-spaces.
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Example 5.1.8. Every coset of the stabiliser of a t-space of Fy is ¢-space-intersecting
and its size is given by
t—1 n—1
[H(qt - qi)] lH (q" - qi)] : (5.2)
i=0 i=t
The set of all transposed matrices of a t-space-intersecting set is t-space-intersecting
as well. Moreover we note that the set of all transposed matrices of the stabiliser of

a t-space is the stabiliser of an (n — t)-space and gives another example of a t-space-

intersecting set of the size given in (5.2).

It was shown in [MS11] that the size of a 1-space-intersecting set in GL(n, q) is
at most the product given in (5.2) for ¢ = 1, which follows again from the existence
of a Singer cyclic subgroup and the application of the clique-coclique bound from

Theorem 2.4.7. We obtain a result for arbitrary ¢ and all sufficiently large n.

Theorem 5.1.9 (Spacewise t-intersection). Let t be a positive integer and let Y

be a t-space-intersecting set in GL(n,q). If n is sufficiently large compared to t, then

t—1 n—1
[ - qi)] lH (¢" — qi)]

1=0 i=t

Y| <

and, in case of equality, the characteristic vector of Y is spanned by the characteristic

vectors of cosets of stabilisers of t-spaces of Fy.

Again, we obtain a corresponding result on cross-intersecting subsets of GL(n, q).

Definition 5.1.10. Two subsets Y and Z of GL(n, q) are t-space-cross-intersecting if

every pair in Y X Z is t-space-intersecting.

Theorem 5.1.11 (Spacewise t-cross-intersection). Lett be a positive integer and
let Y and Z be t-space-cross-intersecting sets in GL(n,q). If n is sufficiently large

compared to t, then

VIYI-12] <

and, in case of equality, the characteristic vectors of Y and Z are spanned by the

t—1 n—1
[ - qi)] lH (¢" — qi)}

1=0 i=t

characteristic vectors of cosets of stabilisers of t-spaces of Fy.

5.2 Preparations for the proofs of the point-
wise and spacewise intersection theorems

In this section we provide some of the key ingredients for the proofs of our main results

in Section 5.1. First, we explain the proof strategy. Then we study properties of a
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matrix arising from the character table of GL(n,q). The last part of this section then
deals with rather technical estimates on certain conjugacy class sizes and character

degrees.

9.2.1 Proof strategy

In order to explain the strategy of the proof of our main theorems on t-intersecting

sets, we first recall the weighted version of the Hoffman bound from Theorem 2.3.11.

Theorem. Let I' = (X, E) be a graph on n vertices. Suppose that T'g,T'1,..., I, are
regular spanning subgraphs of T', all having {vo,v1,...,vn—1} as an orthonormal system
of eigenvectors with vy being the all-ones vector. Let P;(k) be the eigenvalue of vy, in
Iy, Let wo,wi,...,w, € R and write P(k) =Y i_qw; P;(k).

(i) If Y C X is an independent set in I, then

m< |Pmin|
[ XT ™ P(0) + | Prain|

where Ppin = mingo P(k). In case of equality we have
1y € <{’U0} U {Uki P(k) = Prnin}>-

(it) If Y, Z C X are such that there are no edges between' Y and Z in T, then

Y1 14| Prnax

< Y Y
[XTIX] ™ P(0) + Prax

where Ppax = maxy.o |P(k)|. In case of equality we have
1y,15 € <{1}0} U {Uk: ’P(k)‘ = Pmax}>'

In what follows we explain how we apply the weighted version of the Hoffman
bound to prove the pointwise intersection theorems from Theorems 5.1.4 and 5.1.6.
The strategy for the spacewise intersecting cases, Theorems 5.1.9 and 5.1.11, is similar.

In the remainder of this chapter we will use the notations from Section 4.4.2.

Definition 5.2.1. An element x € GL(n, q) is called a t-derangement if there is no
t-tuple of linearly independent elements of Fy that is fixed by .

Equivalently x € GL(n,q) is a t-derangement if rk(z — I) > n — t. Recall from
Section 4.4.2 that D, is the union of the conjugacy classes C; and C’g_l. We make the

following observation.

Observation 5.2.2. Either all elements of D, are t-derangements or none of them.
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We apply Theorem 2.3.11 to a graph that we construct from the symmetrisation
of the conjugacy class scheme of the finite general linear group GL(n,q). For the
construction of the graph, we wish to establish a set of partition valued functions
> C Q, such that D, consists of t-derangements for all ¢ € 3. This ensures that
a t-intersecting set is an independent set in the graph I' given by the adjacency

matrix ), B;. Then we apply the weighted version of the Hoffman bound from
oey

Theorem 2.3.11, to the graph I' and the |D,|-regular spanning subgraphs I', having
adjacency matrix B, for ¢ € ¥. Recall from Section 2.1 that R(X) denotes the
set of column vectors indexed by ¥ and having entries in R. We wish to construct
some weight w € R(X) such that both the minimum value and the negative of the

second-largest absolute value over all A € Q,, of

> w(e)P(A,0) (5.3)

g€eY

equals

1
(=D —q)(¢"—¢" 11

and such that w is normalised in the sense that (5.3) equals 1 if A € €, is given by
X — 1+ (n). This will ensure that Theorem 2.3.11 will give the bounds of Theorems
5.1.4 and 5.1.6.

n=- (5.4)

9.2.2 A special invertible matrix

In the following we focus on identifying the relevant conjugacy classes of GL(n,q)

whose elements are t-derangements and do not fix a t-space, respectively.

Definition 5.2.3. An element of GL(n, q) is regular elliptic if its characteristic poly-

nomial is irreducible over [F,.

Lemma 5.2.4 ([LRS14]). Each regular elliptic element of GL(n,q) fizes no proper

nontrivial subspace of Fy.

This Lemma implies that the regular elliptic elements in GL(n, q) play the role of
an n-cycle in the symmetric group 5.

We note that, for each polynomial f € ® of degree d, its companion matrix
Cy satisfies det(Cy) = (—1)?f(0). Moreover it is well known [HM92] that given an
element a € F there exists an irreducible polynomial f € F, [X] of degree d such that
f(0) = a. Consequently we can always find a polynomial in ® with prescribed degree
and prescribed nonzero determinant of its companion matrix. Moreover, we note

that, for every f € ®, we have f(0)f*(0) = 1, where f* is the reciprocal polynomial
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associated with f from Section 4.4.2, and thus we have det(Cy) det(C+) = 1, where
again Cy and Cy« are the companion matrices of f and f*, respectively.

From now on let a be a fixed generator of . For all integers ¢, j with 0 < /¢ <n
and 0 < j < ¢ — 2, we fix an irreducible polynomial h,; € ® of degree n — £ such that

its companion matrix has determinant o/ and such that hy ;= he ;. We define

Yoj={a € An: alhey) = (1)}

and
q—2 t
Se=J%y; and o=
j=0 =0

We note that for each ¢ € ¥<;_1, the conjugacy class C, consists only of elements that
do not fix a t-space of Fy. Moreover, for each g € X except those ¢ — 1 exceptions
o € ¥ satisfying o(X — 1) = (1%), the conjugacy class C,, consists of elements that do
not fix a t-space pointwise. Recall from Section 1.2 that the i-th part of a partition A

is denoted by A;. For integers & < n we now define

Mpi = {A €A AMX — ')y =n—k},

and
q—2 t
O, = JIp; and g = J I
=0 k=0

We note that, for & < n/2, we have |II; ;| = | ;
We define the matrix @ € R(€,,,,) by

and |Q, NI ;| = |Q, N Xy ;| for all 4.

QN o) = LZJ% for each A\, o € Q,,

where 92 is the character of GL(n, q) that was defined in (4.22). Let Q; denote the
restriction of @ to R(Q, NIl<;, 2, NEX<;). Then @ is a square matrix as well. A key

step in our proof is the following.

Proposition 5.2.5. For n > 2t, the matriz Q¢ has full rank and is independent of n.

In the remainder of this section we prove this proposition. In order to do so, we
define the matrix R € C(A,, A,,) by

R(\ o) = X% for each \,0 € A,

where Xé denotes the irreducible character of GL(n, q) corresponding to A evaluated
on the conjugacy class Cy. Let R; denote the restriction of R to C(Il<;, X<¢). We

prove a counterpart of Proposition 5.2.5 for the matrix R;.
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Proposition 5.2.6. For n > 2t, the matrix Ry has full rank and is independent of n.

Note that Proposition 5.2.5 follows from Proposition 5.2.6, since (); is obtained
from R; by applying elementary row operations, then deleting some rows, and then
deleting duplicate columns.

To prove Proposition 5.2.6 we define a matrix S € C(A,, A,) by
S(p, o) = & for each W0 € Ay, (5.5)

where £ is the character of GL(n, q) introduced in Section 4.2. Let S; be the restriction
of S to C(Il<¢,X<¢). We define T' € C(A,, Ay,) to be given by

K/\;u for A ~ p,
T(p,A) =4 B
a {0 otherwise,

where ~ is the equivalence relation on A,, introduced in Definition 4.2.4, and the
numbers K),, are products of Kostka numbers introduced in Section 4.2. Let T} be
the restriction of T" to C(Il<¢, ¥<;). We first prove the following.

Lemma 5.2.7.
(i) We have S = TR and T has full rank.

(ii) For n > 2t, we have Sy = TyR; and T; has full rank and is independent of n.

PRrOOF: From (4.11) we have S = TR and the matrix T is block diagonal, where
the blocks are induced by the equivalence classes under ~. Each diagonal block
corresponds to one equivalence class. If s: & — 7Z is the shape of such an equivalence

class, then the corresponding block can be written as a Kronecker product, namely

® K66,

fed
where K (™) € C(Pary,, Pary,) is a Kostka matrix given by K (u,\) = K, with
the convention K(©) = (1) and Par,, is the set of partitions of m. It follows from
(1.3) that the Kostka matrices are invertible. Hence T is a block-diagonal matrix
whose blocks are Kronecker products of matrices of full rank and so T itself has full
rank. This proves (i).

From (1.3) we find that S; = TyR;. Note that T} is still block diagonal with

one diagonal block for each equivalence class of A, under ~ whose shape s: & — Z

satisfies s(X — o) > n — t for some i. The corresponding block can be written as

Re-a) g Q)  Kb—a), (5.6)
feR\{X-ai}
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where K((X=2") is the matrix K=" restricted to partitions A of s(X — o)

satisfying
= (n —t, 1s(X—ai)—(n—t))_

From (1.3) it follows that, after a suitable ordering of rows and columns, all matrices
occurring in the Kronecker product (5.6) are upper-triangular with ones on the
diagonal. Again T; is a block-diagonal matrix whose blocks are Kronecker products
of matrices of full rank and so T; itself has full rank.

From the proof of [EFP11, Thm.20] we know that K(X~2)) is independent of
n. Moreover, all other matrices occurring in the Kronecker product (5.6) are also

independent of n. Hence T; itself is also independent of n. This proves (ii). O

In the following, we show that also the matrix S; has full rank. Recall that, for
a composition A, P denotes the parabolic subgroup of GL(|\|, ¢) given in (4.2). We

start with the following lemma.

Lemma 5.2.8. Let m and n be positive integers satisfying m < n and let ¢ and ¥
be class functions of GL(m,q) and GL(n, q), respectively. Let m1: P, ny — GL(m, q)
and w31 Py ) — GL(n, q) be the natural projections onto the corresponding diagonal

blocks. Let g € Py, ) be such that ma(g) is reqular elliptic. Then we have

(@ ©¥)(9) = d(mi(9)) ¥(m2(g)).

PROOF: From the definition of parabolic induction from (4.4) we have

1

(@ O¥)(9) = Y omilzgzh))p(ma(zgz™")). (5.7)

z€GL(m+n,q),
zgr L EP( 0
Since ma(g) is regular elliptic and m < n, we find from Lemma 5.2.4 that g
stabilises a unique m-dimensional subspace U of IE‘Z‘*”. Hence the number of
r € GL(m + n,q) such that zgz~! € Pin,ny is the number of ordered bases
{ur,ug,y ..., U, wi, wa, ..., w,} of IE‘Z”*” such that {u1,us,...,uy} spans U. This

number equals [P, ,)|. Since zgx~! e P, for each z € P, ), we conclude that

{z € GL(m +n,q): zgz~' € Py} = Pann)-

Since m;(zgz~") is conjugate to mi(g) for each i € {1,2} and each x € Py, ), the

statement of the lemma follows from (5.7). O

We use Lemma 5.2.8 to prove the following result on the structure of the matrix .S.
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Lemma 5.2.9. Let k,{ be integers satisfying 0 < k,£ < 5 and let p € I} ; and
o€ Xy If k> {, then we have 55 = 0. For k </, let v be the partition obtained
Jrom p(X — o) by replacing the part n — k by £ — k and define v, € Ay by

U(f) = {1/ for f=X—a' and  7(f) = {@ for f=hy;

u(f)  otherwise. a(f) otherwise.

If k < ¢, then we have éﬁ = &Fw.

Proor: Let g € C5. We define k € Ay, by

K

(f) = {(“(X—ai)%/i(X—ai)g,...) forf:.X_ai
w(f) otherwise.

Then by (4.5) and (4.10) we have
gh = g @ gXmoimnTh), (5.8)

For ££(g) to be nonzero, g must be conjugate to an element of the parabolic subgroup
P(gn—r)- Each such element fixes a k-dimensional subspace of Fg. If k£ > ¢, then by
Lemma 5.2.4, g fixes no k-dimensional subspace of ' and hence ££(g) = 0.

Henceforth we assume that & < £. We shall frequently use /(M) = yJ—=(m)
which follows from (4.6) and (1.3). Since k < ¢ we have

L=¢Eg €X—aib—>(€—k)‘ (5.9)
Write

E= ] G,
BEAn—k B
plhe,j)=(1)

We claim that
fX_O‘i'_)("_k)(e) = (X' (lk) @ ¢X—a'o (=0 () for each e € E. (5.10)

Indeed, each e € F is conjugate to an element of Py_j,_¢ with blocks e; €
GL(¢ — k,q) and ey € GL(n — ¢, q) on the main diagonal, where es is regular elliptic.
Hence we find from Lemma 4.2.7 that, for each e € FE, the left hand side of (5.10)

equals

f(det(e)’) = A(det(e1)?) - H(det(e2)?)

_ gX—aﬁ—)(E—k) (61) . gX—aiH(n—k)(e2)

Y
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which by Lemma 5.2.8 equals the right hand side of (5.10). From (5.8) we have

1 _ o (n— _
P L Smlae e m(ega™),
m— z€GL(n,q)
:(:ga:fleP(k,n,k)

£E(g)

where m1: Py, -y — GL(k,q) and m2: Py ) — GL(n — k,q) are the natural
projections onto the diagonal blocks. Since k, ¢ < 5, Lemma 5.2.4 implies that each
ma(xgx~!) occurring in the summation is forced to lie inside E. Hence by subsequent
applications of (5.8), (5.10), and (5.9), we then find that

gl(g) = (€2 @ X R (g)
_ (55 ® ngai»—)(ka) o é-XfaiH(nff))(g)
= (Lo X)),

Without loss of generality, we may assume that g € P, and that the diagonal
blocks of g are g; and g2, where g; € C; and g2 is the companion matrix of hy ;.

Since go is regular elliptic, we may apply Lemma 5.2.8 once more to obtain

€4(g) = E%(g1)eX 0 (gy).

Since g1 € C;, we have £%(g1) = &, and since go is the companion matrix of hy j, we
find from Lemma 4.2.7 that

X0 (g) = 0(det(gn)') = w.
Hence we obtain ¢%(g) = ££w¥, as required. O
We can now prove the required property of the matrix S;.

Lemma 5.2.10. For n > 2t, the matrix S has full rank and is independent of n.

PROOF: To indicate dependence on n, write S for the matrix S given in (5.5) and
Sﬁ”) for the corresponding restricted matrix S;. Let n > 2¢. From Lemma 5.2.9 we
find that all entries in St(n) are independent of n, which proves the second statement
of the lemma.

To show that S§”) is invertible, we view St(n) as a block matrix, where the
blocks are indexed by IIj, and ¥, for k,¢ € {0,1,...,t}. Let By, be the block
corresponding to Il and ¥,. Lemma 5.2.9 implies that By, ¢ is zero for k > ¢ and,
for 0 < k </, the block B,y is the Kronecker product of S (k) and the Vandermonde
matrix (w*)o<i j<q—2. Since the character table of irreducible characters of every
finite group is invertible, Lemma 5.2.7 implies that S*) is invertible and so By is
invertible. Hence St(n)

Therefore St(n) itself is invertible. g

is block upper-triangular and all diagonal blocks are invertible.
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Finally, by combining Lemmas 5.2.7 and 5.2.10, we obtain a proof of Proposi-
tion 5.2.6.

5.2.3 Estimates on some conjugacy class sizes and char-

acter degrees

In this section, we provide bounds on the size of certain conjugacy classes and degrees
of certain irreducible characters of GL(n,q). These are used in the proofs of the
upcoming Lemmas 5.3.2 and 5.4.2, which play a crucial role in the proofs of our main

theorems.

Lemma 5.2.11. Let n and t be positive integers satisfying n > 2t and let 0 € Y<;.
Then we have

GL(n, @)l _ 45 »
—~ T =4q q.
|Cl

PRrROOF: From Theorem 4.1.2, with the same notation as in Theorem 4.1.2, we find
that

\GI’JC”‘Q <] H qlf\Sz(U(f) ymi(e(£) (5.11)

fed i=1

Since g € ¥<; and t < 3, there is exactly one polynomial h € ® of degree at least n—t
in the support of g. This polynomial must satisfy g(h) = (1) and the corresponding
factor in (5.11) is at most ¢". There are at most ¢ other polynomials in the support
of . Each such polynomial f has degree at most ¢ and satisfies |o(f)| < ¢ and hence
the corresponding factor in (5.11) has a crude upper bound of qt4. As there are at

most t such factors, the proof is completed. O

Lemma 5.2.12. Lett be a positive integer. Then there is a constant d; such that, for

all sufficiently large n and for all A € Ay \ Il<¢, we have
Xg(l) > 5tqn(t+1)'

PROOF: Let A € A, \ H<t From Proposition 5.2.13(ii), stated and proved at the end

of this section, with x = g» we find that

-1 4 1 - 1 L - T |
q . _

7: 1—— ) > 1—— > 4 20 > 4 20 = —,
g3 Hl< q@> —Hl< 21) ===l =

Using this estimation in the g-analog of the hook-length formula (4.13) gives

Ly NO-MQ)=n(nt) (5.12)
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where

=D I D (A,

fe®  (L5)eAlf)

= > IfIbQA(f)

fed
and b and h; ; are as defined in Lemma 4.2.6. Note that for each partition A, we have

Al

1
D higN) < k= S(Al+ D). (5.13)
(i,7)€EN k=1
First we assume that there exists a polynomial h € & such that || = 1 and
A(h)} > n —t. In this case we have
n—t n—t—1 1
M(A) > b(A(R)) > t—1DAh)E > k=_-(n—-t)(n—t—-1
(A) = b(A( ))_kz::l( JA(h)k = kzzjl 5 (= 1)( )

and from (5.13) together with [A(f)| # n for all f € ® and 3 scq [f[|A(f)] = n we
find that

Z!J‘HA (HI+1)

fE(IJ

TS

fed

IN

n(n+1)
—

Therefore (5.12) implies that

§4q %(n t)(n—t—1)

xA(1) ’
so that we have x2(1) > ¢"(**1 for all sufficiently large n by very crude estimates.
Hence we can assume that A(h)] <n —t— 1 and, since A ¢ <, that A(f);1 <
n—t—1 for all f € ® satisfying |f| = 1.
In what follows we distinguish between two cases. In the first case we assume
that [A(f)| <n—t—1forall f € ® satisfying |f| = 1. Let ¢ be the maximum of
IA(f)| over all f € ® with |f| =1, hence £ <n —t— 1. By (5.13) we have

Z [FIACHICACA] + 1)

fE<I>

5"‘ Z\f“/\

fed
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where the last equation holds since 3~ scq |f|[A(f)| = n. If £ < 3, then we have
IA(f)| < § for all f € @ and so

n2

n n n
NQ)< s+ 5> 1AM =—++5-
2 4 4 2
fed
From (5.12) and the trivial bound M()A) > 0, we find that

1 2
<4q T,
xA(1)

so that we have x2(1) > ¢"**D for all sufficiently large n, again by very crude
estimates. If £ > &, and g denoting the polynomial in ® satisfying |g| = 1 and
Ag)| = £, then, by (5.13)

N(Q)

IN

SO I+ X LM P)

fe® fed

%(n + 2+ O IFIAUD?)
fed
f#g

IN

= P ()

g%(n+(n—t—1)2+(t+1)2)

n2—|—n
= —n(t+ 1)+ (t+1)2

where we have used that z2 + (n — x)?

is increasing for z > 5. Hence in this case we
obtain y2(1) > %q”(t“)*(t*ly by (5.12) together with the trivial estimate M (\) > 0.

In the remaining case we assume that there exists h € ® such that |h| = 1 and
|A(h)] > n—t. Recall that we also assume that A(h); <n—t—1and A(h)] <n—t—1.
Since N(\) depends only on the hook lengths of A(f) for f € ®, we may replace A(h)
by its conjugate A(h)’. Assuming that n is sufficiently large, namely n > (t + 2)2, we
have A(h)1 > t+ 2 or A(h)] >t + 2 and we assume without loss of generality that
A(h)1 > t+2. Write A(h); = n—r, so that our assumptions imply t+1 <r <n—t—2.

Then, writing s = |A(h)|, there exist nonnegative integers c¢; satisfying

ihlj(g(h)) = Z_:(j—i—cj), where z_:cj =s—(n—r).
j=1 j=1 j=1
Hence ~
> i(A(h) = (n_;+ 1) +(s—n+r).
j=1
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Application of (5.13) with A = (A(h)2, A(h)s,...) gives

Z h”()\(h)) (s—n;—r—i—l)+<n—;+1>+(s_n+r)

(.3)EA(h)
2
3
:%—l—;—i—nz—sn—n—&—r(r—(2n—5—1))
5?2 3s

<—+—+n —sn—n+(t+1)((t+1) - (2n—s—1)),

since the term depending on r is maximised for r = ¢+1 over the interval [t+1,n—t—2].

This last expression equals

g—i-%S(S—Z(n—t—2))+n2—n+(t+1)((t+1)—(2n—1)).

The second summand is increasing for s > n—¢ and so is at most $n(n—2(n—t—2)).

Hence we obtain

n2

> hij(A(R) < +5

(4,.)€A(h)

—n(t4+ 1)+ (t+ 1)t +2).

N | »

Invoking (5.13) once more, we obtain

NQ) < > hi+ ZIfIIA (R)] +1).

(4,5)€A(R) fe<1>
f#h
We have
s
24y ARG = 5 X 1AM
fed fe<1>
f#h
and
2
1 t2
SR 5 [ S| <5
f€¢’ fe®
I#h f#h
Collecting all terms, we find that
n(n+1 2
N(QA) < (2)n(t+1)+(t+1)(t+2)+2.
From (5.12) we then obtain
1 <4qfn(t+1)+(t+1)(t+2)+%t2
XA(L)
which completes the proof. O

In the proof of Lemma 5.2.12 we used the following technical results.
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Proposition 5.2.13.

(i) Let s be an integer with n —t < s < n. Then, for n sufficiently large and all
re[t+1,n—t—2], we have

rr—C2n—-s—-1)<{t+1({(t+1)—2n—s—1)).

(it) For all x with 0 <z < %, we have

1—2>4"".

PROOF: Let g(r) = r(r — (2n—s—1)). We find that g is decreasing on (—oo, 22=2=1)
and increasing on (22-#=1 o00). And since 22=*=1 € [t +1,n — ¢ — 2] it is sufficient to
prove g(t + 1) > g(n — (t + 2)), which implies (i). From the identity g(2n —s —1r) =

g(r) —2n + s — 2r and the estimate g(n — (t +2)) < g(2n — s — (t + 2)) we find
g(t+1) —gln—(t+2)) 2 g(t+1) —g2n—s—(t+2))
=g(t+1)—(g(t+2) —2n+s—2(t+2)).
Calculating and using the assumption s < n gives that
gt+1)—gn—(t+2)) >2n >0,

which establishes (i). To prove (ii), let f be given by f(z) = 1—2z—4~*. Computing the
first derivative of f and using elementary calculus gives that f is only monotonically
increasing on (—oo, %]. Since f is continuous and f(0) = f(3) = 0, it follows
that f(z) > 0 for all 0 < z < 3, which implies (ii). O

5.3 Proofs of the pointwise intersection theo-

rems

In this section, we prove the pointwise intersection results from Theorem 5.1.4 and
Theorem 5.1.6 following the strategy described in Section 5.2.1.

In order to determine the appropriate weight w that appears in (5.3), recall the
definition of the eigenvalues P(), o) given in (4.25) and the definition of the prescribed

extremal eigenvalue 7 from (5.4). We obtain the following existence result.

Proposition 5.3.1. Let n and t be positive integers satisfying n > 2t. Then there
exists w € R(Q, NX<;) such that w(g) =0 for o(X — 1) = (1) and
1 forAeQ,Nn H070
Z w(g)P(A, o) =qn fore Q,NIoand 1 < k<t
geﬂnﬂESt

0 forAeQ,NIlg; and0<k<tandl<i<qg-—-2
(5.14)
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and

V¢
| Dy |

jw(g)| <

for all g € Q, N X< (5.15)

for some constant v; depending only on t.

PrOOF: From Proposition 5.2.5 we know that @; has full rank. In view of (4.25)
there exists a unique w € R(£2,, N X<;) satisfying (5.14).

We now show that w(a) = 0 for the [¢/2| + 1 elements o € Q,, N X<, satisfying
o(1) = (1*). Without loss of generality we may assume that €2, contains X — o’ and
hij for all 4,5 € {0,1,...,|q/2]}. Accordingly we define g; € ¥ ; by o;(1) = (1%) for
j=0,1,...,]q/2]. Recall the definition of the character ((**) from Section 4.3 and
write Cg ) for this character evaluated on the conjugacy class Cy. We evaluate the

sum

Si= Y w@)|Dg| (& + ) (5.16)

QEQnﬂESt

in two ways. Since (9 is the permutation character on the set of t-tuples of linearly
independent elements of Fy, we find by Lemma 4.3.2 that the summand in (5.16) is
nonzero only when the elements of C,, fix a ¢-tuple of linearly independent elements
of Fy, hence only when ¢ = g; for some j. By the definition of g;, each element

in ng has determinant o/. Hence by applying Lemma 4.3.2 twice we obtain
Cgi) — wing’O) — i g(;o)

and therefore

0 I.Q/2J 27T’L]
S; = 2§é07 ) z% w(g;)|Dg,| cos (q — 1). (5.17)
=
On the other hand, since ¢(t9) 4 ¢(t=9 ig a real-valued class function, we find from
Lemma 4.4.2 that it is a linear combination of ¢A for A € Q,. Hence by Lemma 4.3.3
there exist numbers n; y such that
R R VI

A€,
AMX—ab)1>n—t

and hence
Si = Yoo x>, w(e)|Dg v (5.18)
RS gEQNT <y

MX—a?)1>n—t

Since (5.14) holds, we conclude that S; = 0 for each i satisfying 1 < i < [g/2].

Since (49 is a permutation character, it contains the trivial character with multiplicity
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1 (this can be seen by Frobenius reciprocity, for example). Hence we have ng y = 2
for A € Q,, satisfying A(X — 1) = (n). We therefore find from (5.18) and (5.14) that

So=2+n 3 noavt(1) =2+ (1) - 1),
AEQ,
n—t<A(X—-1)1<n
Since ¢(%0)(1) equals the number of ¢-tuples of linearly independent elements of Fys

we have

(1) = (¢" —1)(¢" —q) - (¢" — ¢" ). (5.19)

Therefore Sy = 0 and so S; = 0 for each ¢ satisfying 0 <14 < |g/2]. Since each element
of Cy, fixes a {-tuple of linearly independent elements of Fy, we have gg;o) # 0.
Thus (5.17) implies

la/2] i
Z w(z;) |Dg,| cos (q—l) =0 for each i satisfying 0 < i < |¢/2]
=0

and, using that (w" )o<i,j<q—1 is a Vandermonde matrix, it follows that this in turn
implies that w(g;) = 0 for all j satisfying 0 < j < |g/2], as required.

Now, for each )\ € Q,, satisfying n —t < A\(X — 1); < n, we find from Lemma 4.3.3
that

(1) < Inl (¢“O(1) - 1) =1,

using (5.19). Since ¥2(1) = x2(1) = 1 for A € Ily, we conclude from (5.14) that

Z w(o)|Dy| 2| <1 for each A € Q, NTI<;.
gEQnﬂESt n

By Proposition 5.2.5 all entries of @; (which are precisely the values of wé occurring
in the sum) are independent of n and so are uniformly bounded by some value only
depending on ¢t. The same also holds for the inverse of @y, which establishes (5.15).00

In what follows we treat the remaining eigenvalues.

Lemma 5.3.2. Let n and t be positive integers with n > 2t and let w € R(Qy, N X<y)
be such that

lw(a)] <

forall o € 2, N X<

for some constant v, depending only on t. Then

> wl@Po)| <l forall A e\,

QEQnﬂZSt

provided that n is sufficiently large compared to t.
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For the proof of Lemma 5.3.2, we recall from Section 1.1 that the inner product of
class functions y and ¢ of GL(n, q) is given by

1 .
<X,¢>:m Z x(9)¥(9). (5.20)

g€GL(n,q)

PrROOF (OF LEMMA 5.3.2): By the definition (4.25) of P()A, o) and (4.23) we have

GL(n,
PO = 980

Since x2 is irreducible, we have (¢2,42) = 1 or 2 and therefore we obtain, by an

(W2, 1p,). (5.21)

application of the Cauchy-Schwarz inequality,

2| Dg|

A
1p,) < +/2(1p,,1
/l/J Do‘ ‘ Do‘ Do' |Gan

From (5.21) and our hypothesis on w we then find that

Y. w(@)P(} o)

Qeﬂnﬁzgt

< Y w@lPOo)

QEQnﬁESt

3 v |GL(n,q)| | 2|Dy]
gEQNT ¢y | De| wi(l) |GL(n, )|

cwlPl o [2IGL(n,g)]
P2A(1) getnnie, | Dg|

Ve | <t 2|GL(n, q)|
< max (| ——————.
xA(1) eex |Cq|

Note that |X<¢| is independent of n. Using Lemmas 5.2.11 and 5.2.12 we find that

there is a constant +/, depending only on ¢, such that

Y. w(@PAo)| <

gEQnﬁESt

o1
n/2 qnt

for all A € ©, \ II<¢ and all sufficiently large n. The right hand side is certainly
strictly smaller than 1/¢™ for all sufficiently large n and the proof is completed by
noting that |n| > 1/¢™. O

Recall from Section 4.4.2 that V) is the column span of F) over the reals. We
define

U= > VW

AEQ,
AX=1)1>n—t

We note that, due to Lemma 4.4.3, this is in fact a direct sum. We obtain the

following.
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Theorem 5.3.3. Let t be a positive integer. Then, for all sufficiently large n, the
following holds.

(i) Every t-intersecting set Y in GL(n,q) satisfies
n—1 )
Vi< " ~q)
i=t

and, in case of equality, we have 1y € Uy.

(i) Every pair of t-cross-intersecting sets Y, Z in GL(n,q) satisfies

n—1
VIYT-12] < [[(qn —q')

and, in case of equality, we have 1y, 15 € Us.

PROOF: As explained at the beginning of Section 5.2.1, we apply Theorem 2.3.11 to

the graph with adjacency matrix

> B

QGanZSt

o(X-1)#(1%)
and the |D,|-regular spanning subgraphs I', with adjacency matrix B, for those
o € Q, N X< satisfying o(X — 1) # (1%). Since none of the elements in D, for such
o fix a t-space pointwise, every t-intersecting set in GL(n, ¢) is an independent set in
this graph. Recall from Lemma 4.4.3 that every element of V) is an eigenvector of B,
with eigenvalue P(), o). Let w € R(€Q,NYX<¢) be the vector given by Proposition 5.3.1

and write

P =Y w@Po)
QEQRQESt
o(X-1)#(1")

Proposition 5.3.1 and Lemma 5.3.2 imply that, for all sufficiently large n, we have

1 forA(X —1)1=n
n forn—t<ANX-—-1)1<n

and |P())| < |n| for A(X — 1)1 < n — t. Hence, writing )y for X — 1+ (n), we have
P()\y) =1 and

"= pin P(A) and || = grgélP(A)l-

Then the required result follows from Theorem 2.3.11 and the decomposition of
R(GL(n,q)) given in Lemma 4.4.3. O
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Our proofs of Theorems 5.1.4 and 5.1.6 are completed by the following result.
Theorem 5.3.4. U; is spanned by the characteristic vectors of t-cosets.

PrOOF: Let A; be the set of ¢-tuples of linearly independent elements of Fy. Define
the incidence matrix M; € C(GL(n, q), A; x A;) of elements of GL(n, q) versus t-cosets
by

1 forzu=w

0 otherwise,

M (z, (u,v)) = {

so that the columns of M; are precisely the characteristic vectors of the t-cosets. Let
¢t = ¢(9) be the permutation character of GL(n, q) on the set of t-tuples of linearly
independent elements of Fy from Section 4.3. We define C; € C(GL(n, q), GL(n, q))
by

Ci(z,y) = C"(z™1y).

Denoting by 1,,—, the indicator of the event that x € GL(n, ¢) maps u to v, we have

(MM ) (2, y) = UZ Mi(z, (u,v)) My (y, (u, v))
= Lou=olyu=s
= Z u=yu
= Z Loty

= ('(a7'y) = Cy(z,y).

Hence we have C; = M; M/ and so the column span of C; equals the column span of
M; or equivalently the span of the characteristic vectors of the t-cosets.

From Lemma 4.3.3 we have

¢t = > ma®

A€A,
A(X—1)1>n—t

for some integers my satisfying my # 0 for each A occurring in the summation. Since

¢t is real-valued, we find from Lemma 4.4.2 that m A+ = my and therefore we have

= > myt (5.22)
ey,
AX—=1)1>n—t
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Lemma 4.2.6 implies that 2 (1) = x2(1). We therefore obtain from (4.24) and
Example 2.1.13 that

N
Fy(z,y) = K}ﬁ%wﬂxly)

and thus we find from (5.22) that

my

Ci =|GL(n,q)| Y Y (5.23)

A€Q, X
AMX—=1)12n—t

Hence the column span of C} is contained in U;. Conversely, let v be a column of
F,; for some k € €, satisfying k(X —1); > n —t. Since F) is idempotent, we have
Fyv =v for k = X and Lemma 4.4.3 implies Fyv = 0 for k # A. Hence from (5.23),
we find that

Mg
Cyv = |GL(n, q)| —=w,

and, since m,, # 0, we conclude that v is in the column span of C;. This completes
the proof. O

5.4 Proofs of the spacewise intersection theo-

rems

The proofs of the spacewise intersection and spacewise cross-intersection results from
Theorems 5.1.9 and 5.1.11, follow along similar lines as those in Section 5.3.

Recall from Section 4.3, that the character £X 17 ("—tt) ig the permutation character
of GL(n, q) on the set of t-spaces of Fy. From Lemma 4.3.1 we obtain the decomposition

of this permutation character, namely

t
¢X—lmn—tt) _ Z y X1 (n=ss), (5.24)
s=0

Recall from (2.1) that the ¢-binomial coefficient [Z]q gives the number of k-dimensional

subspaces of Fy. Then we have

gX—lb—)(n—t,t)(l) _ lﬂ ’ (5.25)
q

and so (5.24) implies that

XX—lH(n—&s)(l): ln] _l n 1 . (5.26)
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Also note that X ~17* = y X=X for all partitions . Throughout this section, we
define

which will be our prescribed extremal eigenvalue.

We begin with the following counterpart of Proposition 5.3.1.

Proposition 5.4.1. Let n and t be positive integers satisfying n > 2t. Then there
exists w € R(Qy, N X<4—1) such that

1 forA(X —1)=(n)
Z w(@)P(M ) = e forA(X —1)=(n—s,s) with1 <s<t (5.27)

TEQNS<; 0 forAeQ,NIl<_1, where

AMX—-1)#(n—s,s) with0<s<t-—1

and
Yt
| Do

for some constant v depending only on t.

jw(g)] <

forallg e Q, NX<iy (5.28)

PROOF: From Proposition 5.2.5 we know that Q;—1 has full rank. In view of (4.25)
there exists a unique w € R(€Q,, N X<;_1) satisfying (5.27) except for A of the form
AMX —1)=(n—t1t).

Next, we show that (5.27) also holds when A\(X —1) = (n —¢,t). By Lemma 5.2.9

we have gé(—lH(n—t,t) =0 for each ¢ € ¥<;_;. Hence, by using (5.24), we have
0= 3 w(@)Dgey
geQnﬂESt_l
t
=Y > w@Dlxg T (5.29)

s=0 gEQnﬁEgt,l

Since (5.27) holds with the only exception A\(X — 1) = (n —t,t), the inner sum equals

for each s satisfying 1 < s <t — 1. Assuming that

1 for s = 0 and exX 12 (=s9)(1)

this is true also for s = ¢ and using (5.26), the right hand side of (5.29) is indeed
t
n n n
1 - = ~1)=0.
+52(H [8—1]) 1+€<t1 1) 0
q q q
Hence (5.27) also holds when A\(X — 1) = (n —t,t).

s=1
It remains to prove (5.28). For each s satisfying 1 < s < t, we find from (5.27)
that

el XTI (1) < e (X1 O(1) 1) = 1,
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using (5.25). Since X~ (1) = 1, we conclude from (5.27) that

> w(o)|Dg|v3]| <1 for each A € Qy N Ty
gEQnﬂESt,l
By Proposition 5.2.5 all entries of (J;_1 are independent of n and so are uniformly

bounded by some value only depending on ¢t. The same also holds for the inverse of
Q¢, which establishes (5.28). O

The bound (5.28) and Lemma 5.3.2 ensure that the right hand side of (5.27) is
small in modulus for each A € Q,, \ II;. It therefore remains to deal with the case that
A€ Q, NIl except for A € ,, given by A(X — 1) = (n —t,t), which is the subject of

the following lemma.

Lemma 5.4.2. Let w € R(Q, NX<t_1) be given in Proposition 5.4.1 (so that n > 2t).
Then, for all A € Q, N1 with A(X — 1) # (n — t,t), we have

S w(@)Po)| < e,

QGQnmESt—l

provided that n is sufficiently large compared to t.

PRrOOF: By slight abuse of notation, we view w as an element of R(GL(n,q)) by
setting w(z) =0if 2 € Q, NX<4—1 and w(z) = w(o) if x € O, N X<;—1 and z € D,.
Recalling the inner product on class functions of GL(n, ¢) from (5.20), the statement

of the lemma is equivalent to
[GL(n, g)|
A1)
for all A € Q, NII; with A(X — 1) # (n —t,t), provided that n is sufficiently large
compared to t.
We pick A € 2, NI such that A(X — 1) # (n —t,t). Then A(X —ai); =n —t
for some . First assume that |[A(X — 1)| # n. Denoting by Re(z) the real part of a

[(w, ¥ < el (5.30)

complex number z, we find from Lemma 4.4.2 and (4.12) that

1
51,4 < [Re({w, Y

= | > Hux Re((w,&4))|.

prA

Lemma 5.2.9 implies that 55 = 0 for each p ¢ II<;_1 and each ¢ € ¥<;_1. For p € A,

we have

Re((w,€4) = > Ky Re((w, x5)).

KoL
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By (1.3), the summation can be taken over all k such that £(X — af) > p(X — o).
Hence, if p € Il<;—1, then £ € Il<;—1. By the assumed properties of w given
in Proposition 5.4.1, we have (w,9%) = 0 for each Kk € Q, N Il<;_; satisfying
|K(X — 1)| # n. Since |[A(X — 1)| # n we conclude that (w,v2) = 0.

Now assume that [A(X —1)| = n and write A(X — 1) = A. From (4.8) and (4.9)

we have

< wX 1HA Z H,u)\ ’§X71»—>,u>?

n>A
pn1>n—t

since by Lemma 5.2.9 in the case p; = n —t we have §§*1H“ = 0 for each ¢ € Y<;_;.
From (4.6) and (1.3) we find that

< ¢X 1»—))\ Z i Z Kﬁu <w’1/}X—ll—m>

u>A KB
ni>n—t
X-1
]GLn Yo Huo+ D Hu Y Keu(w, g 717%),
q U A (n)>r>p
u1>n t n1>n—t

(5.31)

using that |GL(n, ¢)|(w,»X 1)) = 1 by the assumed properties of w given in
Proposition 5.4.1 and K, = 1 for each partition x of n. We first show that the first
sum is zero. We have

Z H/,L)\ = Z K(n Z Kn tt)p ,u)\a (532)

BEA pEA BEA
pni>n—t

using that A\; = n —t and that, for each partition u of n, we have

K 1 foruyy=n-—t
n—t,tu —
( s 0 for pu; >n—t.

It holds that
> KupHux = 6 (5.33)

>
Since A is neither (n) nor (n —t,t), we conclude that (5.32) equals zero. Hence (5.31)

becomes
< wX 1»—))\ Z Hp)\ Z Kliu ,¢X71F—>N>. (534)
p>A (n)>r>p
p1>n—t

By the assumed properties of w given in Proposition 5.4.1, the inner summand is
nonzero only when x = (n — s, s) for some s satisfying 1 < s < ¢ — 1. In particular,

for k of this form, Proposition 5.4.1 and (5.26) give

(3], — 2] "] t_1 2t—1
GL(n, w, XTIy = 2L ST o g __4 <4
|GL(n, q)] [{(w, ) [’Z]q—l = mq gt —1 = ¢n
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By Lemma 5.2.7 the Kostka numbers K, occurring in (5.34) are independent of n and
it follows from (5.33) that the numbers H,,\ occurring in (5.34) are also independent
of n. Moreover the number of summands in (5.34) is also independent of n. From
Lemma 5.2.12, we have ¢»X~17*(1) > §;_; ¢"* for some constant §;_; only depending

on t. Hence there is a constant ¢;, depending only on ¢, such that

|GL(n, q)| X102 Ct
wX 1=A(1) [{w, A< g+

Since |e| > 1/¢™, this shows that (5.30) holds provided that n is sufficiently large
compared to t. O

Recall from Section 4.4.2 that V) is the column span over the reals of F). We
define

W, = > W
AEQ,
MX—=1)>(n—t,t)

We obtain the following.

Theorem 5.4.3. Let t be a positive integer. Then, for all sufficiently large n, the
following holds.

(i) Every t-space-intersecting set Y in GL(n,q) satisfies

t—1 n—1
[1(" - qi)} [ [T - qi)]

=0 i=t

Y| <

and, in case of equality, we have 1y € W;.

(ii) Every pair of t-space-cross-intersecting sets Y, Z in GL(n,q) satisfies

t—1 n—1
VIYI-1Z < | T - qi)] [ [T - qi)]

i=0 i=t
and, in case of equality, we have 1y, 1, € W,.

Proor: We apply Theorem 2.3.11 to the graph with adjacency matrix

2. B

g€ NE<i1

and the |D,|-regular spanning subgraphs with adjacency matrices B, for those
o € Q,NY<i;1. Every t-space-intersecting set in GL(n, ¢) is an independent set in

this graph. Let w € R(Q, N ¥<;_1) be given by Proposition 5.4.1 and write

PQ)= Y  w@PQo9).

€Ny
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Proposition 5.4.1 and Lemmas 5.3.2 and 5.4.2 imply that, for all sufficiently large n,

we have

{1 for A\(X —1) = (n)
P()) =
e for A(X—1)=(n—s,s) with1 <s<t

and |P(A)| < |e] for A(X — 1) # (n — s,s) with some s satisfying 0 < s < ¢. Hence,
writing )\, for X — 1 — (n), we have P()y) = 1 and

e=min P(A) and |¢] = max|P(}))|
A#Xg AF#X

Then the required result follows from Theorem 2.3.11 and the decomposition of

R(GL(n,q)) given in Lemma 4.4.3. O

The proof of Theorems 5.1.9 and 5.1.11 is completed by the following result.

Theorem 5.4.4. W, is spanned by the characteristic vectors of cosets of stabilisers

of t-spaces of Fy.

PrOOF: The proof is almost identical to that of Theorem 5.3.4 with A; replaced by
the set of t-spaces of Fy and ¢t replaced by the permutation character &X—1—(n—t1)
of GL(n, q) on the set of t-spaces of [y and the decomposition of ¢! replaced by the

decomposition of £X~17(=41) given in (5.24). O

5.5 Open Problems

In Theorem 5.1.9 it is shown that the characteristic vector of a t-space-intersecting
set of maximal size is spanned by the characteristic vectors of cosets of stabilisers of
t-spaces. This only partially characterises the extremal case.

In [MS11] Meagher and Spiga conjectured that the only 1-space-intersecting sets
in GL(n, q) of maximal size are cosets of stabilisers of 1-spaces or cosets of stabilisers
of (n — 1)-spaces. In the same paper [MS11] they proved the conjecture for n = 2.
In [MS14] the same authors proved the conjecture for n = 3 and in [Spil9] it was
proven by Spiga for n > 4. Thus, in [ES23], we made the following conjectures about

t-space-(cross-)intersecting sets.

Conjecture 5.5.1. Let t be a positive integer and let Y be a t-space-intersecting set
in GL(n, q) of maximal size, meaning that its size meets the bound in Theorem 5.1.9.
If n is sufficiently large compared to t, then Y is a coset of the stabiliser of a t-space

or a coset of the stabiliser of an (n — ¢)-space.
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Conjecture 5.5.2. Let t be a positive integer and let Y and Z be t-space-cross-
intersecting subsets of GL(n, q) of maximal size, meaning that their sizes meet the
bound in Theorem 5.1.11. If n is sufficiently large compared to ¢, then Y = Z and Y

is a coset of the stabiliser of a t-space or a coset of the stabiliser of an (n — ¢)-space.

Our approach to prove the Theorems 5.1.4, 5.1.6, 5.1.9, and 5.1.11, heavily relies
on estimating certain character values and sizes of the conjugacy classes of the finite
general linear group. Since our estimates are very rough, the question arises as to how
small n can be compared to t.

As pointed out in Section 3.2, for the symmetric group Keller, Lifshitz, Minzer, and
Sheinfeld [KLMS24| proved that there exists a constant ¢ with the following property.
For all n > ct the results on t-intersecting sets of permutations in [EFP11] (see also

Section 3.2) hold. This motivates the following open problem for our g-analog setting.

Open Problem 5.5.3. Find sharp bounds on the sizes of n in the Theorems 5.1.4,
5.1.6, 5.1.9, and 5.1.11.
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6 Transitive subsets of finite

general linear groups

Monte Bianco, 4805m

This chapter involves the study of ¢g-analog problems of the ones for the symmetric
group that we collected in Section 3.4. Here we replace the symmetric group S,, by
the finite general linear group GL(n,q). We study certain designs in the conjugacy
class scheme of GL(n, ¢) and prove that these designs are transitive sets in GL(n, q).

The results presented in this chapter were published in [ES24].

0.1 Introduction

Our starting point is the following g-analog of the Livingstone-Wagner theorem from
Theorem 3.4.1.

Theorem 6.1.1 ([Per72]). Let G < GL(n,q) be a subgroup that is transitive on
t-dimensional subspaces of Fy for some integer t satisfying 1 <t <n/2. Then G is

also transitive on (t — 1)-dimensional subspaces of IFy.

We generalise this result in two ways. Instead of subgroups of GL(n, q) we study
subsets of GL(n, q) that act transitively. In general the notion of a transitive subset
is given as follows (see also Section 3.4 for the definition of a transitive subset of

permutations).

Definition 6.1.2. Let € be a set on which the group G acts. We say that a subset
Y of G is transitive on §2 if there is a constant r such that the following holds: for all
a,b € Q, there are exactly r elements g € Y such that ga = b. If r = 1, then we call Y’

sharply transitive on 2.
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6 TRANSITIVE SUBSETS OF FINITE GENERAL LINEAR GROUPS

If Y is a subgroup of the group G, then this notion coincides with that of a
transitive group action.

Recall from Section 4.3 the Definitions (4.17) and 4.3.5 of the set 3, ; and of an
a-flag, with a € ¥, 4, respectively.

Our second generalisation of Theorem 6.1.1 replaces subspaces by a-flags, which
are generalisations of subspaces of Fy and bases of ¢-dimensional subspaces of Fy.

For a composition ¢ of n, recall from Definition 4.3.4 the notion of a o-flag of Fy .

The following is an example of the results we obtain in this chapter.

Theorem 6.1.3. Let o be a composition of n and let Y C GL(n,q) be transitive on
the set of o-flags. Then'Y is also transitive on the set of T-flags for all compositions T
satisfying T &> &, where & and T are the partitions obtained from o and T, respectively,

by rearranging the parts.

This theorem can be seen as a g-analog of Corollary 3.4.4. In fact we obtain a more
general result, namely a characterisation of subsets of GL(n, q) acting transitively on
the set of a-flags.

This chapter is organised as follows. In Section 6.2 we characterise subsets of
GL(n, q) acting transitively on the set of a-flags in terms of T-designs in the corre-
sponding association scheme. This gives us structural results for transitive subsets
of GL(n, q) leading to results like Theorem 6.1.3. In Section 6.3 we study transitive
subgroups of GL(n, ¢). In Section 6.4 we study the connection of transitive sets and
so-called (o, 7)-cliques, where the latter turn out to be cliques in the corresponding
association scheme. This study allows us to establish non-existence results for sharply
transitive sets in GL(n, q) for certain cases. Then, in Section 6.5, for all fixed ¢, we
show the existence of small nontrivial subsets of GL(n, ¢) that are transitive on the
set of t-tuples of linearly independent vectors of Fy. This also shows the existence
of small nontrivial subsets of GL(n, ¢) that are transitive on a-flags. In Section 6.6
we discuss connections between transitive subsets and cliques in GL(n, ¢) on the one
hand and certain orthogonal polynomials, namely the Al-Salam-Carlitz polynomials,
on the other hand.

6.2 Designs in finite general linear groups

In this section, we characterise transitive sets in GL(n, ¢) in terms of Delsarte T-designs
in the conjugacy class scheme arising from GL(n, q).
First, we provide an example of subsets of GL(n, ¢) that are sharply transitive on

((1,n —1),7)-flags for Z = {1} and Z = &, using a representation over a finite field.
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Remark 6.2.1. Although we have only introduced representations over the complex
numbers in Chapter 1, it is also possible to define representations over finite fields.
The definition is as expected from Definition 1.1.3. For an example of a representation
over [, we take the companion matrix C of an irreducible polynomial over F, of

degree n. Then F,[C] is a representation of Fyn over F,,.

Example 6.2.2. Let F,[C] be given as in Remark 6.2.1. Then the multiplicative
group F,[C]* of Fy[C] is sharply transitive on Fy \ {0}. Hence F,[C]* is sharply
transitive on ((1,n — 1), {1})-flags. Of course F,[C]* is a cyclic subgroup of GL(n, ¢),
known as the Singer cycle. Moreover, F,[C]* contains a cyclic subgroup of order
(¢" —1)/(g — 1) that is sharply transitive on the one-dimensional subspaces of Fy.

Hence this subgroup is sharply transitive on ((1,n — 1), @)-flags.

Recall from Definition 4.3.6 the type of an o € ¥,, ;. The set of all possible types

of elements in ¥,, ; is denoted by ©,, 4, namely
Onq = {type(a): a € 3, 4}

Hence O, ; contains all pairs of partitions (o, 7) such that |o| 4+ |7| = n and all parts
of T are strictly larger than 1 for ¢ = 2.

For a partition valued function A € A, recall the type of A from Definition 4.3.7.
Moreover, we recall from Definition 4.3.8 that the partial order =< is an order on
pairs of partitions, with reverse refinement in the first and dominance in the second
coordinate.

The following result gives a combinatorial interpretation of a Delsarte T-design in
the finite general linear group, or more precisely in the conjugacy class scheme arising

from the finite general linear group.

Theorem 6.2.3. Let Y be a subset of GL(n,q) with dual distribution (by) and let

a € Xy 4. Then'Y is transitive on the set of a-flags if and only if
by=0 forall A € A, satisfying type(a) = type(A) < (&, (n)).

In other words, a subset of GL(n,q) is transitive on the set of a-flags if and only
if it is a T-design with 7" = {A € A,: type(a) < type(A) < (&,(n))}. Thus, from
Theorem 6.2.3 we obtain two characterisations. On the one hand we have an algebraic
characterisation for transitive sets, on the other hand a combinatorial interpretation
for the very algebraic object of a Delsarte T-design.

Before proving Theorem 6.2.3 we discuss some of its consequences. The first one is

that transitivity on a-flags only depends on the type of «.
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Corollary 6.2.4. Let o, f € ¥, 4 be of the same type and let Y be a subset of GL(n, q).

Then Y is transitive on the set of a-flags if and only if Y is transitive on the set of

B-flags.
Corollary 6.2.4 motivates the following definition.

Definition 6.2.5. For (0,7) € O,,4, a subset Y of GL(n, q) is (o, 7)-transitive if Y is

transitive on the set of a-flags for some o € ¥,, 4 of type (o, 7).

We note that in Example 6.2.2 we have (o, 7)-transitive sets for (o, 7) equal to
((1),(n—1)) and (&, (n — 1,1)). We may now restate Theorem 6.2.3 as follows.

Corollary 6.2.6. Let Y be a subset of GL(n,q) with dual distribution (by) and let
(0,7) € ©Onq. Then Y is (o, 7)-transitive if and only if

by=0 forall A € Ay, satisfying (o,7) = type(A) < (&, (n)).

For every partition 7 of n, a (&, 7)-transitive set is just a subset of GL(n, ¢) that
is transitive on 7-flags. In this case, Corollary 6.2.6 specialises to the following perfect

g-analog of the corresponding result for the symmetric group from Theorem 3.4.3.

Corollary 6.2.7. Let Y be a subset of GL(n,q) with dual distribution (by) and let T

be a partition of n. Then'Y is (&, 7)-transitive if and only if
by=0 forall A\ € A, satisfying T IANX —1) < (n).
Another immediate consequence of Theorem 6.2.3 is the following.

Corollary 6.2.8. Let Y be a subset of GL(n, q) and suppose that'Y is (o, T)-transitive
for some (0,7) € O, 4. Then'Y is also (6, 7)-transitive for all (6,7) € Oy, 4 satisfying
(o,7) 2 (6,7).

From this corollary Theorem 6.1.3 arises as a special case.

In the remainder of this section we give the proof of Theorem 6.2.3. A key ingredi-
ent is the decomposition of the permutation character of GL(n, q) on the set of a-flags

from Lemma 4.3.9.

For a € 3, 4, let F, be the set of a-flags and define M, € C(GL(n,q), Fa X Fao)
to be the incidence matrix of elements of GL(n, q) versus left cosets of stabilisers of
a-flags by
1 forgu=w

0 otherwise.

Ma(g, (u,v)) = {
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From now on, we use the notation from Section 4.4.1 for the conjugacy class scheme
of the finite general linear group GL(n, q). Recall from that section, for example, that
the pairwise orthogonal idempotent matrices of this scheme are denoted by F).

For (o,7) € Oy, 4, we define

U(O',T) = Z COlSp(EA), (6.1)
AEAR

(o,7)=type(})
where colsp(E)) is the column space of the matrix Ey. We note that the sum given in
(6.1) is, in fact, direct because the matrices E) of an association scheme are pairwise

orthogonal.

Corollary 6.2.9. The column space of My equals Ugype(a)-

The proof of this Corollary is almost identical to the proof of Theorem 5.3.4. But
since we are not working with the symmetrisation of the conjugacy class scheme arising
from GL(n, q), we give the proof here for the sake of completeness. However, it is less
detailed.

PROOF: Let £ be the permutation character of GL(n,q) on the set of a-flags and
define C,, € (C(GL(n,q), C(GL(n,q)) by Ca(x,y) = £(x~1y). Then it follows that

M ML = C,,.

Hence the column space of C, equals the column space of M,. From Lemma 4.3.9
and (4.20) we obtain

m)
Co = ‘ GL(n> Q)‘ Z TE)EA (62)
A€M x=
type(a)Ztype(})
Hence the column space of C, is contained in Uyype(a). Conversely, let v be a column
of E, for some k € A, satisfying type(k) > type(c). Since the E) are pairwise
orthogonal and idempotent, from (6.2) we find that

Mg
Cov =|GL(n, q)|—=w,

and, since m,, # 0, we conclude that v is in the column space of C,, as required. [

Now, we are in a position to complete the proof of Theorem 6.2.3.

PrOOF (OF THEOREM 6.2.3): Note that Y is transitive on a-flags if and only if

1
— M1y =

’Y’ Mg]lGL(n,q)a (63)

1
| GL(n, q)|
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hence, if and only if
(.
[GL(n, g "

is orthogonal to the column space of M. In view of the orthogonal decomposition of

1y

this space given in Corollary 6.2.9 and the fact that Vy_;,,(,) is spanned by Lgy,(n,q)
we conclude that Y is transitive on the set of a-flags if and only if 1y is orthogonal
to V) for each A € A,, satisfying type(a) < type(}A) < (&, (n)). From Remark 2.2.8 it

follows that this is equivalent to the statement of the theorem. O

Remark 6.2.10. From (6.3) it follows that a subset Y of GL(n, q) is transitive on
a-flags if and only if

ST cF=F = TA7 7] zF=F'

Yl = |GL(1, 9], ing)
holds for all a-flags F' and F” of Fy, where 1,p—p is the indicator of the event that
x maps F to F'. As a consequence, we can understand a subset of GL(n, ¢) that is

transitive on a-flags as a set that locally approximates GL(n, q).

6.3 Transitive subgroups

In this section we classify subgroups G of GL(n,q) that are (o, 7)-transitive. These
results are essentially known. If G is ((1), (n — 1))-transitive or (&, (n — 1, 1))-transitive
or ((1%),2) if ¢ = 2, then G is transitive on 1-spaces of F7. Such subgroups have been
classified by Hering [Her74], see also [GGP23, Table 3.1] for a nice summary. However,
as we always have examples of sharply (o, 7)-transitive subgroups in these cases (see
Example 6.2.2), we shall henceforth assume that (o, 7) is different from ((1), (n — 1))
and (@, (n —1,1)) and also different from ((12), @) if ¢ = 2.

In what follows SL(n,q) denotes the finite special linear group consisting of all
n x n matrices with entries in the finite field F, having determinant 1. Moreover,
by I'L(n,q) we denote the finite general semilinear group which is consisting of all
invertible semilinear transformations Fy — Fp.

First we consider the case n > 4. By Corollary 6.2.8, G is also (&, (n — 2,2))-
transitive, namely transitive on 2-spaces of Fy. Kantor [Kan73] proved that G is either
doubly transitive on 1-spaces of Fy or G = T'L(1, 2°) as a subgroup of GL(5,2), which
acts sharply transitive on 2-spaces of F3. Cameron and Kantor [CK79] proved that,
if G is doubly transitive on 1-spaces of Fy, then G either contains SL(n,q), in which
case G is ((n — 1), (1))-transitive, or G = A7 as a subgroup of GL(4,2). In fact it is
computationally readily verified that the latter example is sharply ((31), @)-transitive.

Next we consider the case n = 3. Then by Corollary 6.2.8, G is also (3, (1%))-

transitive when ¢ > 2 or ((1®), @)-transitive when ¢ = 2. That is, G is transitive on
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(13)-flags in Fg, typically just called flags in the literature. Kantor [Kan87] proved that
G either contains SL(n,q) or G acts sharply transitive on flags in F2. Higman and
McLaughlin [HM61] showed that in the latter case the only possibility is G = T'L(1,2%)
as a subgroup of GL(3,2).

Now we consider the case n = 2. Then only the case that G is ((1%), @)-transitive
and g > 2 is left. The number of ((12), @)-flags is (¢> — 1)(¢ — 1) and the order of
G must be a multiple of this number. Since |GL(2,q)| = (¢*> — 1)(¢ — 1)g, the index
of G in GL(2, q) must therefore be a divisor of q. Noting that G is transitive on the
1-spaces of Fg, an inspection of [GGP23, Thm. 3.1] reveals that the only possible cases
are G = I'L(1, 3%) inside GL(2,3) or ¢ is one of the numbers 5,7,9,11,19, 23,29, 59
and a computer verification reveals that only GL(2,3) and GL(2,5) contain subgroups
G in question. In the former case we have G = I'L(1,3?) and in the latter case G is
unique up to conjugation. In both cases G is sharply ((12), @)-transitive.

We summarise these results in the following theorem.

Theorem 6.3.1. Suppose that G is a (o, T)-transitive nontrivial proper subgroup of
GL(n,q) and (o, 1) is different from ((1), (n —1)) and (&, (n—1,1)) and also different
from ((12),2) if ¢ = 2. Then one of the following holds:
(1) ¢ >2 and G > SL(n,q) and G is ((n — 1), (1))-transitive.
(2) (n,q) = (2,3) and G = TL(1,3?) is sharply ((12), @)-transitive.
(3)
(4)
(5)
(6)

It should be noted that there exist groups acting transitively on flags in F3,

and G has order 96 and is sharply ((1%), @)-transitive.

i

3)
q) = (2,5)
)= (3,2) and G = TL(1,23) and G is sharply ((13), @)-transitive.
)=(42)
)=(5,2)

n,q
n,q 4,2) and G = Az is sharply ((3,1), &)-transitive.
n,q 5,2) and G = TL(1,2°) is sharply (2, (3,2))-transitive.

Y

(n,
(
(
(

namely T'L(1,2°) and a subgroup of index 7 [HM61]. These groups however are not
subgroups of GL(3,8), but rather are subgroups of I'L(3, 8).

6.4 Transitive sets and cliques

In this section we consider cliques in GL(n, ¢) and discuss their relationship to transi-
tivity in GL(n, q).

Definition 6.4.1. Let (o,7) € ©, 4. A subset Y of GL(n,q) is a (o, 7)-clique if, for
all distinct x,y € Y, there is no a-flag with type(a) = (o, 7) fixed by =~ 1y.

Definition 6.4.2. For y € A we define the conjugate ' € A to be the mapping
p': & — Par given by p/(f) = u(f)".

Note that, if type(u) = (v, 1), then we have type(p') = (v, 1').

123
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Theorem 6.4.3. Let Y be a subset of GL(n,q) with inner distribution (a,) and let

(0,7) € Ongq. Then'Y is a (o, 7)-clique if and only if

a, =0 for all p € A, satisfying (7,0) = type(p') < (2, (n)).

Proor: We fix u € A, and we note that, for a € ¥,, 4, either all elements in C), fix
an a-flag or none of the elements in C,,. We show that the elements in C), fix an
a-flag with type(a) = (o, 7) if and only}f (1,0) = (v, ), where (v, ) is theicype of
.

First we assume that (7,0) =< (v,u), namely 0 < p and v refines 7. Since
o < pu, rearranging rows and columns of the Jordan canonical form of C, shows that
C’ﬁ contains a block upper-triangular matrix whose diagonal blocks are Iy, 1oy, ...
followed by || — |o| blocks of order 1 followed by blocks of order vy, vy, . ... Since v
refines 7, this matrix fixes an a-flag with type(a) = (o, 7).

Now let g € C), be in Jordan canonical form and assume that g fixes an a-flag with
type(a) = (o, 7). Ey [LRS14, Proposition 4.4] the companion matrix of an irreducible
polynomial in Fq[X] of degree d does not fix a proper subspace of F g. Hence v must
refine 7. Also note that g has p; Jordan blocks with eigenvalue 1 of order at least 4
and each such Jordan block of order i fixes a 3-flag with type(3) = ((1*), @). Hence g

must have at least -
i

oi — Y (1 — o)

j=1
Jordan blocks with eigenvalue 1 of order at least ¢. The latter statement is equivalent
to o < p. O

This theorem shows that a (o, 7)-clique is a D-clique in the association scheme of
GL(n, q) with D = {u € A, type(y') % (,0)}. Moreover, by comparing this with

Corollary 6.2.6 we note again that the concepts of a clique and a design are dual.
In the following we establish relationships between (o, 7)-cliques and (o, 7)-transitive
sets in GL(n, q).

Theorem 6.4.4. Let Y be a subset of GL(n,q), let (o0,7) € O 4, and let H be the
stabiliser of an a-flag with type(a) = (o, 7).

(1) If Y is a (o, 7)-clique, then |Y| < |GL(n,q)|/|H| with equality if and only if Y is

(o, T)-transitive.

(2) If Y is (o, 7)-transitive, then |Y| > |GL(n, q)|/|H| with equality if and only if Y

is a (o, T)-clique.
In both cases, equality implies that Y is sharply (o, T)-transitive.
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PRrROOF: Since, for each (z,y) € H x Y, there is a unique g € GL(n,q) such that
gxr =y, we have

S Y ngH| = Y] |H]. (6.4)

g€GL(n,q)

The quotient of any two distinct elements in Y N gH fixes an a-flag of type (o, 7).
Hence, if Y is a (o, 7)-clique, then each summand on the left hand side of (6.4)
is at most 1, which gives the bound in (1). If H is the stabiliser of the a-flag F,
then gH contains precisely all elements of GL(n,q) mapping F to gF. Hence, if Y
is (o, 7)-transitive, then each summand on the left hand side of (6.4) must be at
least 1, which gives the bound in (2). In both cases, equality occurs if and only if
Y NgH'| =1 for each g € G and the stabiliser H' of each a-flag of type (o, 7). By

the same reasoning as above, this establishes the characterisations of equality. [

Another way to approach Theorem 6.4.4 involves the clique-coclique bound from
Theorem 2.4.7 and a condition on designs and antidesigns [Roo82, Corollary 3.3| for
the conjugacy class scheme of GL(n, ¢). The latter was proved in [Roo82] only for the

case of symmetric association schemes, but it also holds in general.

Note that, if H is the stabiliser of an a-flag with type(a) = (o, 7), then an

elementary counting argument gives

|GL(n,Q)| . [n]q| oi—1 o
|H | B (Hizl[ai]q!)(nizﬂﬁ]q!) 1>1_[1 ]1_[0((] q’),

where, for a nonnegative integer m, [m|,! denotes the g-factorial from (2.2).

In view of Theorems 6.4.3 and 6.4.4 the existence of sharply (o, 7)-transitive subsets
of GL(n, q) can be ruled out by linear programming. From (2.20) in Section 2.4.2 it
follows that the linear-programming (LP) bound for (o, 7)-cliques is the maximum of

>
PEAR

subject to the constraints
ay >0 for all € Ay,
Z Im(x%) a, =0 and Z Re(x%) a, >0 forall A € Ay,
pHEA, - LEA, -
ay =0 forall u € Ay satistying (7,0) =< type(y') < (2, (n)).

We have determined the LP bound for (o, 7)-cliques in GL(n,2) for n € {2,3,4,5}.
The LP bound coincides with the bound of Theorem 6.4.4 (i) except for those pairs
(0, 7) shown in Table 6.1. Consequently no sharply (o, 7)-transitive subsets of GL(n, q)

can exist in these cases.
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Table 6.1: Bounds for cliques in GL(4,2) and GL(5, 2).

0,7) | Bound of Thm. 6.4.4 | LP bound

1%),9) 630 420
((12),(2)) 105 84
((2),(2)) 210 168
((32),2) 156 240 139500
((312),2) 78120 53010
((221), @) 39 060 24180
((213),2) 19530 11718
((3),(2)) 26 040 19530
((21),(2)) 6510 3550
((1%),(2)) 3255 2604
((1),(22)) 1085 805

0.5 Existence results

In this section we show that, for a partition o, nonnegative integers 7 > 73 > ---, and
sufficiently large n, there exist (o, 7)-transitive sets in GL(n,q) that are arbitrarily
small compared to GL(n, ¢), where 71 = n—|o|—7m2—72—---. In view of Corollary 6.2.8,
it suffices to consider ((¢), (n — t))-transitive sets in GL(n, g). For brevity, we shall call
such a set a t-design in GL(n, q). In Section 6.6 we study these objects in more detail.

We give a recursive construction of ¢-designs in GL(n, q) using {1,2...,t}-designs,
or t-designs for short, in the g-Johnson scheme Jy(n, k). Recall from Theorem 2.2.13
that a t-design in J,(n, k) is a subset D of J,(n, k) such that the number of elements
in D containing a given t-space of [y is independent of the particular choice of this
t-space. Our construction can be understood as a g-analog of the construction given
in [MS06, Section 6] for the symmetric group S,.

Let V' =Ty and, for a k-space U of V, let GL(U) be the general linear group of U,
which is of course isomorphic to GL(k, q). Fix a k-space U of V' and an (n—k)-space W
of V such that

V=UacW.

For our recursive construction, we need three ingredients: a t-design Y in GL(U), a
t-design Z in GL(W), and a t-design D in J,(n, k). For each B € D, there are ¢*("~*)
complementary spaces, namely (n — k)-spaces C' with V = B @ C. We denote the
collection of such spaces by Cp. For each B € D, we fix an isomorphism gg : U — B
and, for each B € D and each C € Cp, we fix an isomorphism hpc: W — C.

Note that, given a pair (B,C) with B € D and C € Cp, then every pair of
isomorphisms (y, z), where y: B — B and z: C' — C, can be uniquely extended to an
isomorphism on V' by linearity. We denote this extension by (y, z). Hence, if v € V|
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then there are unique b € B and ¢ € C' with v = b+ ¢ and we have

(y,2)(v) = y(b) + 2(c).
The following lemma contains a recursive construction of ¢-designs in GL(n, q).

Lemma 6.5.1. Let Y be a t-design in GL(U), let Z be a t-design in GL(W), and
let D be a t-design in Jy(n, k). Then the set

{(¢9poy,hpcoz):yeY,ze Z,Be D,C € Cg} (6.5)
is a t-design in GL(V).

Note that, taking Y = GL(U), Z = GL(W), and D = J,(n, k), the set constructed
in Lemma 6.5.1 equals GL(V).

Example 6.5.2. By [BKLO05] there exists a 2-design in J5(6,3) of cardinality 279.
Taking Y and Z to be isomorphic to GL(3,2) in Lemma 6.5.1, we obtain a 2-design in
GL(6,2) of cardinality $|GL(6,2)|.

To prove Lemma 6.5.1, we shall need the following well known result about designs

in Jy(n, k), in which [Z]q is the g-binomial coefficient from (2.1).

Lemma 6.5.3 ([Suz90, Lemma 2.1], [KP15, Fact 1.5]). Let D be a t-design in
Jq(n, k) and let i,j be nonnegative integers satisfying i + j < t. Let I be an i-space of
V and let J be a j-space of V' such that I NJ = {0}. Then the number

mZJ:HBEDISB/\BﬂJ:{O}H

is independent of the particular choice of I and J and given by

s, [,

mi; = D] /)
f . 1,

We are now ready to prove Lemma 6.5.1.

PROOF (OF LEMMA 6.5.1): Choose t-tuples (v1,va, ..., v:) and (v],v5,...,v;) of lin-
early independent vectors of V. Suppose that exactly ¢ of the vectors vi,va,...,vs
are in U. After reordering we can assume that these are vy,vs,...,v;. Then the
remaining j =t — ¢ vectors v;4+1,viy2,..., v are outside U, namely they belong to
complementary spaces of U.

The number of elements B € D containing v}, v5, ..., v}, but none of the vectors
Vi1, Vito,- -, 4, equals the constant m; j given in Lemma 6.5.3 and, for each such B,

there are ¢*("~%~7) complementary spaces C' € Cg containing the remaining j vectors.

Fix a pair (C, B) with these properties. Write vy = uy + wy with uy € U and wy € W
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for all £ and note that our assumption implies that v, = uy for all £ < 4. There is a
constant r; such that there are exactly r; elements y € Y taking vy to ggl(vz) for
all £ <i. For each such y € Y, there is a constant s; such that there are exactly s;

elements z € Z taking wy to

hg'e(vp — gB(y(ue)))

for all ¢ > 4.
Hence the total number of automorphisms in (6.5) taking the tuple (vi,va,...,v:)
to the tuple (v],v5,...,v}) equals
My 5 Ti S5 qk(n—k—j)‘

We have to show that this number is independent of i. Lemma 6.5.3 implies that

n k+j—1)

(qk - qi) mi; = (q —q mi41,5—1

and it is readily verified that
Ty = (qk - qi) Ti+1
fort<t—1and
si= (""" —¢)sjn
for j <t — 1. By combining these identities we find that

k(n—k—j+1) _ k(n—k—j
Mi+1,j—-1Ti4+1 8j-14¢ (n—h=3+D) = Mi,jTiS;4 (. j)v

which completes the proof. U

The following existence result for ¢-designs in Jy(n, k) was obtained by Fazeli,
Lovett, and Vardy [FLV14], using the probabilistic approach of Kuperberg, Lovett,
and Peled [KLP17].

Lemma 6.5.4. Ifk > 12(t+1) and n > ckt for some universal constant c, then there

exists a t-design in Jy(n, k) of cardinality at most ¢*2(t+1n,

We now use the recursive construction in Lemma 6.5.1 together with Lemma 6.5.4

to obtain the following existence result for ¢t-designs in GL(n, q).

Theorem 6.5.5. Let t be a positive integer and let € > 0. Then, for all sufficiently
large n, there exists a t-design Y in GL(n,q) satisfying |Y|/|GL(n,q)| < €.

PrOOF: Fix k > 12(t+1). We apply Lemma 6.5.1 with Y = GL(U) and Z = GL(W).
Then from Lemma 6.5.4 we obtain the existence of a t-design in GL(n, ¢) of cardinality
at most

N = |GL(k,q)| - |GL(n — k, q)| g"("F g"2( 0,
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provided that n > ckt for the constant ¢ of Lemma 6.5.4. Note that we have

N q12(t+1)n q12(t+l)n
GL - < kR
CLmnal [, «
Since k > 12(¢ + 1), this number tends to zero as n tends to infinity. O

By combining Theorem 6.5.5 and Corollary 6.2.8 we obtain an existence result for

general (o, 7)-transitive sets in GL(n, q).

Corollary 6.5.6. Let (0,7) € ©4 and let € > 0. Then for all sufficiently large n,
there exists a (o, T)-transitive set Y in GL(n,q) satisfying |Y|/|GL(n,q)| < €, where

T=(n—|o|—|7|,71,T2,...).

6.6 Designs, codes, and orthogonal polynomi-

als

So-called P- and @-polynomial association schemes are closely related to orthogonal
polynomials in the sense that their eigenvalues and dual eigenvalues, respectively, arise
as evaluations of such polynomials (see [BI84] or [Del73], for example). The conjugacy
class association scheme of GL(n, ¢) does not have these properties. Nevertheless, there
is still a relationship to certain orthogonal polynomials, namely the Al-Salam-Carlitz
polynomials.

First, we recall and establish some basic properties of these polynomials and then

apply these results to subsets of GL(n, q).

6.6.1 Al-Salam-Carlitz polynomials
Definition 6.6.1. The Al-Salam-Carlitz polynomials are given by
@1 — S 159005 [F] i e
U©w) = Y (1) quH TG — aq).

j=0 q =0

They were introduced in [ASC65] and some properties can be found in [Chi78§]
and [Kim97]. We are only interested in the case a = 1 and write Ug(x) for U,gl)(:z:).

These polynomials satisfy the recurrence relation

Upr(z) = (z — 2¢")Up(z) + ¢" 11 = ¢")Up_1(z)  for k>0
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with the initial condition U_;(z) = 0 and Up(z) = 1. The first polynomials are
Ui(z) =2 —2
Us(x) = 2% — 2(¢+ 1)z + 3¢+ 1
Us(z) = 2® = 2(¢° + ¢+ 1)a” + (3¢° + 4¢°> + 4g + D)z — 2¢(2¢* + ¢ + 1).

An equivalent definition of the Al-Salam-Carlitz polynomials is

J . j—1
> lﬂ Up(z) = [[(x —¢") forj=0,1,.... (6.6)

k=0 =0

This follows from the inversion formula

l
C k=i k| |4
Z(—l)k—Jq(kQJ) [ ] [k] =0y, (6.7)
k=j AP

which in turn can be obtained from the g-binomial theorem.

The Al-Salam-Carlitz polynomials are g-analogs of the Charlier polynomials and
are orthogonal with respect to a g-analog of a Poisson distribution, whose k-th moment
is B}

k
> H , (6.8)
=0 q
the number of subspaces of a k-dimensional vector space over F,. Let 6 denote the

class function of GL(n,q) given by
0lg) = "D

for each g € GL(n, q), where I is the identity of GL(n,q). Let w; be the number of
elements g € GL(n, q) satisfying 0(g) = ¢’. Explicit expressions for w; were obtained
by Rudvalis and Shinoda in an unpublished work [RS88] and by Fulman [Ful99], which
shows that

ky(3)

& !GL( yq)|

w; = |Gan]Z

6.9
2 (6.9)

We shall later see that this expression also follows from our results (see Remark 6.6.8).
The class function 6 defines a discrete random variable on GL(n,¢) and it was
shown in [FS16] that its k-th moment equals (6.8), provided that & < n. Hence the

Al-Salam-Carlitz polynomials also satisfy the orthogonality relation
> wiUp(¢")Ue(q") =0  for k# Cand k+( <n. (6.10)

(It follows from Theorem 6.6.2 that, for k¥ = ¢ and 2k < n, the evaluation of the
left-hand side is |GL(k, q)| - |GL(n, ¢)|.)
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With every polynomial f(z) = fpoz" + -+ + fiz + fo in R[z] we associate the
class function f(0) = f,0™ + --- + f16 + fo. This induces an algebra homomorphism
from R[z] to the set of class functions of GL(n, q). Let ¢ = (%% be the permutation
character on ordered j-tuples of linearly independent elements of Fy from Section 4.3.
So that (¥ is the trivial character of GL(n, q). Note that

j—1

¢ =T1[0-4).
=0
Hence we have
k )
U(0) = 3 (~1)k (") m ¢ fork=0,1,...,n (6.11)
=0 Jq
and by (6.6)
ior.
d=% H Up(0) forj=0,1,...,n. (6.12)
k=0 k q

For 0 < k < n/2, we now decompose U (6) into irreducible characters of GL(n, q).

Theorem 6.6.2. For 0 < k < n/2, the decomposition of Uy(0) into irreducible

characters is

Uk(0) = > x*(1)x"W, (6.13)
veEAy

where r(v) is the element A\ € A, that agrees with v except on X — 1, where it is
AMX —1) = (n—kuv(X —1)1,v(X —1)a,...), namely A(X — 1) is obtained from
v(X — 1) by inserting a row with n — k bozes in the Young diagram of v(X —1). In

particular Uy (0) is a character.

PRrROOF: Since Up(#) is just the trivial character, (6.13) holds for k = 0. Let m be
an integer satisfying 1 < m < n/2 and suppose that (6.13) holds for all k satisfying
0 <k <m—1. We show that (6.13) then also holds for k = m.

Recall from Section 1.1 that the inner product on class functions ¢ and 1) of

GL(n, q) is given by

1

(¢, ) = m QEGEL%WJ) ?(9)1(g)-

It follows from the orthogonality relation (6.10) that
(Up(0),Up(0)) =0 for 0 <k <tl<n/2.

From (6.12) we have ("™, Ux(0)) = (Ur(0),Ur(0)) for all k satisfying 1 < k < n/2.
Since U () is a character for all k satisfying 0 < k < m — 1, we find from (6.12)
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that Up,(0) decomposes into those irreducible characters that occur in the decomposi-
tion of ", but not in the decomposition of Uy(#), Ui (0),...,Un—1(0), hence not in
the decomposition of ("1,
As in the proof of Lemma 4.3.3 we have
"= X1 (O lann-mia):
VEAm
where 1G1,(n—m,q) 18 the trivial character of GL(n—m, q). Note that from Lemma 4.2.10
it follows that the Littlewood-Richardson coefficient cff 7

equals 1 precisely when the Young diagram of u is obtained from that of v by adding

(n—m) is either 0 or 1 and it
n — m cells no two of which are in the same column. Hence by Lemma 4.2.11 the
character x*© 1qr(n—m,q) decomposes into those irreducible characters x2 for which A
agrees with v except on X — 1 and A(X — 1) is obtained from v(X — 1) by adding
n — m boxes to the Young diagram of v(X — 1) no two of which in the same column.
Hence the irreducible characters occurring in the decomposition of (" but not in the

decomposition of ("™ ! are precisely "% with multiplicity X%(1), where v € A,,. O

By combining Theorem 6.6.2 and (6.12), we obtain the decomposition into irre-
ducible characters of Cj for 0 < j7 < n/2. This result strengthens Lemma 4.3.9 for
(o,7) =((t),(n—1)) and t < n/2.

Corollary 6.6.3. For 0 < j < n/2 the decomposition of (/ into irreducible characters
18

ir.
=3 m > X,

k=0 q vEAL

where r(v) is as in Theorem 6.6.2.

6.6.2 Designs and codes

Henceforth we call a ((¢), (n — t))-transitive subset of GL(n,q) a t-design. Thus a
t-design in GL(n, q) is transitive on the set of ¢-tuples of linearly independent elements
of Fy. We also call an ((n —d + 1), (d — 1))-clique a d-code. Hence, for all distinct
elements x,y of a d-code, there is no (n —d+ 1)-tuple of linearly independent elements
of Fy! fixed by 2~ 'y. This implies that rk(z — y) > d for all distinct z,y in a d-code.

Theorems 6.2.3 and 6.4.3 specialise in these cases as follows.

Corollary 6.6.4. LetY be a subset of GL(n,q) with inner distribution (a,) and dual
distribution (by). Then 'Y is a t-design if and only if

by=0 for each A € Ay, satisfyingn —t < ANX —1)1 <n
and a d-code if and only if

ay =0 for each p € A, satisfyingn —d+1 < p(X — 1)} < n.
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Note that the mapping (x,y) — rk(z — y) is a metric on GL(n, q). Accordingly, for
a subset Y of GL(n, ¢), we define the distance distribution to be the tuple (A;)o<i<n,
where
A= ’Y1’|{(x,y) €Y XY :rk(z —y) = i}

and the dual distance distribution to be the tuple (A} )o<k<n, where

=0
Note that )
Al = v ST Up(gn ), (6.14)
z,yeYy

We now characterise t-designs in terms of zeros in its dual distance distribution.

Proposition 6.6.5. LetY be a subset of GL(n,q) with dual distance distribution (Aj)
and let t be an integer satisfying 1 <t < n. IfY is a t-design, then A} =0 for all k
satisfying 1 < k < t. Moreover the converse also holds if t < n/2. That is, if t <n/2
and A), =0 for all k satisfying 1 < k <t, then'Y is a t-design.

PRrOOF: First suppose that Y is a ¢t-design. From (6.14) and (6.11) we have

k
1 C k=i | k )
Ay = o DI S ). (6.15)
Y15 M qayey

By Lemma 4.3.3, the permutation character ¢/ decomposes into those irreducible
characters x2 for which A(X — 1); > n — j. Moreover, since ¢/ is a permutation
character, it contains the trivial character with multiplicity 1. From Corollary 6.6.4
we then find that the inner sum in (6.15) equals |Y|? for all j satisfying 0 < j < t.
Hence we have, for all k satisfying 0 < k <t,

k
i =y [k
= VY (—1)k ) [ ] = Y| 80,
=0 P

using (6.7) together with elementary manipulations.
Now, for each k satisfying 0 < k£ < n/2, we find from (6.14), Theorem 6.6.2,
and (4.21) that

Al = }1,, ) Y @ty

ZEAk .’I?,yEY
=y X,
veENE XT(Z)(l) -

where r(v) is as in Theorem 6.6.2. Suppose that ¢ satisfies 1 < ¢ < n/2 and that
Al =0 for all k satisfying 1 < k < t. Since x%(1)/x"¥)(1) is positive, we find that
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brv) = 0 forall v € Ay and hence by = 0 for all A € A, satisfying n—t < AMX—=1); <n.
Corollary 6.6.4 then implies that Y is a t-design. (]

Theorem 6.4.4 specialises as follows.

Corollary 6.6.6. Let Y be a subset of GL(n,q) and let d and t be the largest integers
such that'Y is a d-code and a t-design. Then

t—1 ) n—d )
[T =)< <[ —d)
i=0 =0

Moreover, if equality holds in one of the bounds, then equality also holds in the other
and this case happens if and only if d=n—t+ 1.

The upper bound in Corollary 6.6.6 is a g-analog of a corresponding well known
bound n(n — 1)---d for permutation codes from Theorem 3.3.3. The bounds in
Corollary 6.6.6 can be achieved. Namely from Example 6.2.2 it follows that a Singer
cycle in GL(n, q) gives an n-code in GL(n, q) of size ¢" — 1 and from Section 6.3 we
have that A7 inside GL(4,2) is a 2-code of size 2520.

It turns out that the distance distribution of a subset Y of GL(n, ¢) is uniquely
determined by its parameters, provided that Y is a ¢-design and a d-code, where

d > n —t. The following result generalises (6.9).

Theorem 6.6.7. Suppose that'Y is a t-design and an (n — t)-code in GL(n,q). Then
the distance distribution (A;) of Y satisfies

t o=y |7 n Y
e )

Jj=i

for each i € {0,1,...,n—1}.

PRrRoOOF: We have

Multiply both sides by [i]q, sum over k, and use (6.6) to find that

R

k=0
Since Y is an (n — t)-code, we have A} = --- = A,,_4+—1 = 0 and, since Y is a t-design,
we find by Proposition 6.6.5 that A} = --- = A} = 0. Moreover we have Ay =1 and

Af = Y| and therefore

j—1 Jj—1
|Y|_H q" _q ZAn ’LH q _qk)
k=0 k=0
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for each j € {1,2,...,t}. The identity

j—1 .
[ -d") = H (@ =1 (=

k=0 J
gives
iAn—i H _ ] —Hj;é‘(q” —d")
i=0 1], [T—o(¢ — 4¥)
n Y]
| J=1/ n kY 1
for each j € {1,2,...,t}. Now the desired result follows from (6.7). O

Remark 6.6.8. Consider Y = GL(n,q) having inner distribution (A4;), so that

A,_; =w; . Since Y is a 1-code and an n-design, Theorem 6.6.7 gives

n—1 . n—1

B i (= 7] n i

Anmi = 1Pl )H H (H.(q" - 1)'
Jj=i q q \k=j

Now a lengthy, but straightforward, calculation reveals that A,_; = w;, given in (6.9).

Note that the proof of Theorem 6.6.7 uses only the (easy) forward direction of

Proposition 6.6.5 and not the decomposition in Theorem 6.6.2. Hence our proof of
Theorem 6.6.7 and therefore of (6.9) is self-contained.

Note that the upper bound in Corollary 6.6.6 is at most

qN(n—dH).
We close this section by showing that there exist d-codes almost as large as this upper
bound. Our construction uses so-called linear mazimum rank distance codes with
minimum distance d, which are F,-subspaces Z of ]F;‘X" of dimension n(n —d + 1),
such that rk(z — y) > d for all distinct z,y € Z. Such objects exist for all integers d
satisfying 1 < d < n [Del78, Theorem 6.3].

Proposition 6.6.9. For each d satisfying 1 < d < n, there exists a d-code in GL(n, q)

1
I n(n—d-i—l).
( q- 1> I
(n—d)

For q = 2 there exists a d-code in GL(n,q) of size at least ¢" .

of size at least

ProoF: Consider a linear maximum rank distance code Z in IFZX" with minimum
distance d. We show that Z N GL(n,q) has the required properties. It is well
known [Del78, Theorem 5.6] that the number of matrices in Z of rank ¢ depends only
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on the parameters g, n, and d. In particular the number of invertible matrices in Z

equals
n—d
N = Z(_l)]C]7
j=0
where

ARRL n(n— -7
Cj = q(2) []‘| (q (n—d+1-j) _ 1)
q

It follows that C;j/Cji1 > ¢ for each j € {0,1,...,n —d — 1} and therefore

Cy,C4,...,Ch_q is nonincreasing. Hence we have

n_q
N > CO . Cl _ (qn(nfdJrl) _ 1) i q (qn(nfd) o 1)

q—2
qg—1

qn(nfd) -1

n(n—d+1) +
qg—1

Y

q

as required. O

6.7 Open Problem

In [KLP17], Kuperberg, Lovett, and Peled proved with the help of the probabilistic
method the existence of small orthogonal arrays, t-(v, k, \) designs, and small ¢t-wise
permutations, where the latter are subsets of the symmetric group that are transitive
on (n — t, 1*)-tabloids.

In [Ern20] the method of [KLP17] was used to obtain a stronger result on the
asymptotic existence of small transitive subsets of permutations, which also improves

the existence result from Theorem 3.4.6 for transitive sets in the symmetric group.

Theorem 6.7.1 ([Ern20]). Let 09 > 03 > ... > o} be a nonincreasing sequence of
positive integers and let §,& > 0. Then for all sufficiently large o1 > o9 there exists a
subset Y of the symmetric group Sy, where n = o1 + 02 + ..., 40k, that is transitive

C(og+...40p)+d
on (o1,09,...,0k)-tabloids satisfying |Y|/ <(an > ;f - > < ¢ for a constant C.

oa!-op!

In Corollary 6.5.6 we obtain the existence of a (o, 7)-transitive sets Y in the finite
general linear group GL(n, ¢) with |Y| growing more slowly than | GL(n, ¢)|. Knowing
the result for the symmetric group motivates the following open question for a g-analog

setting.

Open Problem. Is there a constant C,, < |GL(n,q)| such that there exists a
transitive set Y in GL(n, ¢) with |Y| growing more slowly than C,, ?
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