Manifold of mappings and regularity
properties of half-Lie groups

Vom Institut fur Mathematik
der Universitat Paderborn angenommene
Dissertation zur Erlangung
des Grades eines Doktors der Naturwissenschaften
(Dr. rer. nat.)

von
Matthieu Pinaud

Betreuer: Prof. Dr. Helge Glockner

Marz 2025



Remark: This thesis contains material published before in the author’s preprint
37]



Acknowledgements

I would like to cordially thank my supervisor Prof. Dr. Helge Glockner, for welcoming
me and guiding me during my studies. And to Ms. Birgit Duddeck, who helped me
throughout my stay in Germany.

To my parents, Patricia Montre and Christian Pinaud, to whom I dedicate this work.
This work was financially supported by ANID and DAAD (DAAD/BecasChile 2020).



In memory of Dr. Hernédn Henriquez



Abstract

In the first part, for p € [1,00], we define a smooth manifold structure on the set
ACrr([a,b], N) of absolutely continuous functions v: [a,b] — N with LP-derivatives for
all real numbers a < b and each smooth manifold N modeled on a sequentially complete
locally convex topological vector space, such that N admits a local addition. Smoothness
of natural mappings between spaces of absolutely continuous functions is discussed, like
superposition operators ACr»([a,b], N1) — ACr»([a,b], N2), n — f omn, for a smooth
map f: N; = No. For 1 < p < oo and r € N we show that the right half-Lie groups
Diff ;- (R™) and Diff "(M) are LP-semiregular. Here K is a compact subset of R” and M
is a compact smooth manifold. An LP-semiregular half-Lie group G admits an evolution
map Evol : LP([0,1],T.G) — AC1»(]0,1],G), where e is the neutral element of G. For
the preceding examples, the evolution map Evol is continuous.

In the second part, for a compact manifold with corners M and a finite dimen-
sional smooth manifold without boundary N which admits a local addition, we define
a smooth manifold structure on a certain set F(M,N) of continuous mappings when-
ever function spaces F(U,R) on open subsets U C [0,00)™ are given, subject to simple
axioms. The construction and properties of spaces of sections and smoothness of nat-
ural mappings between the spaces F (M, N) are discussed, like superposition operators
F(M, f): F(M,N1) = F(M, Ns), n+ fon for smooth maps f: Ny — Na.



Zusammenfassung

Im ersten Teil definieren wir fiir p € [1, 00| eine glatte Mannigfaltigkeitsstruktur auf der
Menge ACr»([a,b], N) der absolut stetigen Funktionen v: [a,b] — N mit LP-Ableitungen
fiir alle reellen Zahlen a < b und jede glatte Mannigfaltigkeit N, die auf einem folgen-
vollstandigen, lokal konvexen topologischen Vektorraum modelliert ist und eine lokale
Addition zuldsst. Die Glattheit natiirlicher Abbildungen zwischen Raumen absolut
stetiger Funktionen wird untersucht, wie etwa Superpositionsoperatoren

ACrr(la,b], N1) = ACrr([a,b], N2), n — fomn, fur eine glatte Abbildung f: Ny — No.
Fiir 1 <p < oo und r € N zeigen wir, dass die rechten Halb-Liegruppen Diffzz(R™) und
Diff "(M) LP-semireguldr sind. Hierbei ist K eine kompakte Teilmenge von R™ und M
eine kompakte glatte Mannigfaltigkeit. Eine LP-semiregulare rechte Halb-Liegruppe G
besitzt eine Evolutionsabbildung Evol : LP([0,1],7.G) — ACr»([0,1],G), wobei e das
Neutralelement von G ist. Fiir die zuvor genannten Beispiele ist die Evolutionsabbildung
Evol stetig.

Im zweiten Teil definieren wir flir eine kompakte Mannigfaltigkeit mit Ecken M und
eine endlichdimensionale glatte Mannigfaltigkeit ohne Rand N, die eine lokale Addition
zulésst, eine glatte Mannigfaltigkeitsstruktur auf gewissen Mengen stetiger Abbildun-
gen F(M,N), sofern Funktionenrdume F(U,R) auf offenen Teilmengen U C [0, 00)"
gegeben sind und einfache Axiome erfiillt werden. Die Konstruktion und Eigenschaften
von Raumen von Schnitten sowie die Glattheit natiirlicher Abbildungen zwischen den
Réumen F (M, N) werden diskutiert, wie etwa Superpositionsoperatoren
F(M, f): F(M,Ny) — F(M,N3), n+— fon fur glatte Abbildungen f : N — No.
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1 Introduction

Manifolds of mappings play an important role in various branches of global analysis,
infinite-dimensional geometry and Lie theory. For a compact smooth manifold M, a
finite-dimensional manifold N and a non-negative integer r, a smooth manifold structure
on the set C" (M, N) of C"-functions ¢: M — N was first obtained by Eells (see [9] and
the references therein). Later, manifold structures were also obtained on C*°(M, N), and
for infinite-dimensional manifolds N as long as they admit a local addition, a concept
recalled in Definition 1.0.1 (see [30, 25] and the references therein, also [3]).

Manifolds of absolutely continuous functions with values in an infinite-
dimensional manifold and regularity properties of half-Lie groups

For a Hilbert manifold M, a smooth manifold structure on the set ACy2([0, 1], N) of
absolutely continuous paths with L?-derivatives in local charts was used by Flaschel and
Klingenberg to study closed geodesics in Riemannian manifolds (see [11] and [24], cf.
also [41]). For Banach manifolds N admitting a smooth local addition and p € [1, ], a
smooth manifold structure on AC7»([0,1], N) may also be obtained using a method of
Krikorian [26] which is similar to Palais’ use of Banach section functors [38]. A Lie group
structure (and hence a smooth manifold structure) on AC7»([0,1],G) was obtained in
[35] for each Lie group G modeled on a sequentially complete locally convex space (as
in [32]), generalizing the case of Fréchet-Lie groups treated in [15].

We construct manifolds of absolutely continuous functions in higher generality. To for-
mulate the main result, let us fix notation.

Definition 1.0.1 Let N be a smooth manifold modeled on real a locally convex space,
with tangent bundle TN and its bundle projection npy: TN — N. A local addition
on N is a map

>:Q — N,

defined on an open set 2 C T'N which contains the zero-vector 0, € T, N for each p € NN,
such that ¥(0,) = p for all p € N and

0: Q2 — NxN, v (mpn(v),3(v))

has open image and is a C'°°-diffeomorphism onto its image €)'

Throughout the following, a < b are real numbers and p € [1, co]. For a definition of abso-
lutely continuous functions with values in a sequentially complete locally convex space
or a smooth manifold NV defined thereon, the reader is referred to Definitions 2.1.12 and



2.1.23, respectively (see also [35]). For n € ACr»([a,b], N), the pointwise operations
make
Tac(n) = {7 € AC1»([a,b], TN): mpN o T =1}

a vector space; we endow it with a natural topology making it a locally convex topological
vector space (cf. Definition 2.2.1). We shall see that

Vy: ={7 €Tac(n): 7([a,b]) C Q}
is an open 0-neighborhood in I"4¢(n). Setting
U, = {y € ACr»([a,b],N): (n(t),~(t)) € ' for all ¢ € [a,b]},

the map
Uy Vg — Uy, TrHrXoT

is a bijection (see Remark 2.3.3). We show (see Theorem 2.3.5):

Theorem 1.0.2 For each smooth manifold N modeled on a sequentially complete locally
convex space and p € [1,00], the set ACr»([a,b],N) of all ACrr-maps v: [a,b] — N
admits a smooth manifold structure such that for each local addition ¥: Q) — N, the
sets Uy are open in ACr»([a,b], N) for all n € ACr»([a,b],N) and ¥y,: V, — U, is a
C>®-diffeomorphism.

Using the smooth manifold structures just described, we find:

Theorem 1.0.3 Let f: N7 — Na be a smooth map between smooth manifolds N1 and
Ny modeled on sequentially complete locally convex spaces such that N1 and No admit
a local addition and p € [1,00]. We then have f o~ € ACr»([a,b],N2) for all v €
ACr»([a,b], N1); the map

ACLp([a,b],f): ACLp([CL, b],Nl) — AC’Lp([a, b],NQ), Y = f oy

18 smooth.

More generally, ACy»([a,b], f) is C" for r € NU {0, 00} whenever f is C"*2 (see Propo-
sition 2.3.8).

If, in the situation of Definition 1.0.1, N is a K-analytic manifold modeled on a locally
convex topological K-vector space over K € {R,C} and 6: Q — Q' is a diffeomor-
phism of K-analytic manifolds, then X is called a K-analytic local addition. In this case,
ACrr([a,b], N) can be given a K-analytic manifold structure modeled on the locally
convex topological K-vector spaces I';, with properties as in Theorem 1.0.2, replacing
C*°-diffeomorphisms with diffeomorphisms of K-analytic manifolds there (see Corollary
2.3.6). If N; is a K-analytic manifold modeled on a sequentially complete locally convex
topological K-vector space such that N; admits a K-analytic local addition for j € {1, 2},
then the map ACr»([a,b], f) described in Theorem 1.0.3 is K-analytic for all p € [1, 00]
(see Corollary 2.3.9).

Manifolds of absolutely continuous paths occur in the regularity theory of infinite-
dimensional Lie groups. Consider a Lie group G modeled on a sequentially complete



locally convex space, with tangent space g := T.G at the neutral element e € G. For
g€ G, let pg: G— G, x+— xg be the right multiplication with g. Then

TG xG—=TG, (v,9)— Tpye(v)=:v.g

is a smooth map and a right action of G on T'G. The following concept strengthens
“regularity” in the sense of Milnor [32].

Definition 1.0.4 Following [35] (cf. also [15]), G is called LP-semiregular if, for each
~v € LP([0,1],g), the initial value problem

has an ACp-solution n: [0,1] — G. Then 7 is necessarily unique; we call n the evo-
lution of v and write Evol([y]) := n. If G is LP-semiregular and Evol: LP([0,1],g) —
AC1»([0,1],G) is smooth, then G is called LP-regular.

Remark 1.0.5 If G is modeled on a Fréchet space, (1.0.1) is required to hold for almost
all t € [0,1] with respect to Lebesgue measure. In the general case, n is required to
be a Carathéodory solution to (1.0.1), i.e., it solves the corresponding integral equation
piecewise in local charts. We mention that a Lie group G is LP-regular if and only if G
is LP-semiregular and Evol is smooth as map

LP([0,1],9) = C([0,1], G)

(see [35]). The latter holds whenever Evol: LP([0,1],g) — C([0, 1], G) is continuous at 0
(see [16, Theorem EJ).

Now consider a half-Lie group G modeled on a sequentially complete locally convex
space E. Thus G is a group, endowed with a smooth manifold structure modeled on F
which makes G' a topological group and turns the right translation p,: G — G into a
smooth mapping for each g € G (cf. [6, 29]). Let us use notation as in the case of Lie
groups.

Definition 1.0.6 We say that a half-Lie group G is LP-semiregular if the differential
equation

y(t) =~(t).y(t), telo,1] (1.0.3)

satisfies local uniqueness of Carathéodory solutions for each v € £P([0, 1], g) (in the sense
of [19]) and the initial value problem (1.0.1) has a Carathéodory solution Evol(y) :=
n:[0,1] — G.

The Lie group Diff(M) of C*°-diffeomorphisms of a compact smooth manifold M with-
out boundary is known to be L!-regular, and also the Lie group Diffx (R"™) of all C°°-
diffeomorphisms ¢: R™ — R"™ such that ¢(z) = x for all z € R™ \ K, for each compact
subset K C R™ (see [15]). For each positive integer r, the following analogues are
obtained (see Theorems 2.6.5 and 2.5.3):



Theorem 1.0.7 Let 1 < p < oo. For each compact smooth manifold M without bound-
ary and r € N, the half-Lie group G := Dift" (M) of all C"-diffeomorphisms ¢: M — M
1s LP-semireqular. Moreover, its evolution map

Evol: LP(]0,1],9) — ACr»([0,1],G)

18 continuous.
Here g is the Banach space of C"-vector fields on M.

Theorem 1.0.8 Let 1 < p < oo and r € N. For each positive integer n and compact
subset K of R™, the half-Lie group G := Dift(R™) of all C"-diffeomorphisms ¢: R™ —
R™ with qb\Rn\K = idgn\ g is LP-semiregular. Moreover, its evolution map

Evol: LP([0,1],9) — AC»([0,1],G)

18 continuous.
If we replace LP with L (see Definition 2.1.5) the preceding theorem remains valid.

Here g is the Banach space of all C"-vector fields on R™ which vanish outside K.
For an LP-semiregular half-Lie group G admitting a local addition with 1 < p < oo,
the smooth manifold structure on AC»([0,1],G) provided by Theorem 1.0.2 makes it
possible to discuss continuity properties and differentiability properties of the evolution
map as a mapping

Evol: LP([0,1],g9) — ACLs([0,1], G).
So far, we have one positive result in this regard:

Theorem 1.0.9 Let G be a right half-Lie group modeled in a sequentially complete
locally convex space space E which admits a local addition and 1 < p < oo. Let G be
LP-semiregular with continuous evolution map

Evole : LP([0,1],T.G), — C([0,1],G), ~ — Evolc(y).
If the restriction of the right action
7:T.GxG—=TG, (v,9)— v.g
s continuous, then the evolution map
Evol : LP([0,1],T.G),— ACL»(]0,1],G), ~+— Evol(y)

1s continuous. If G is a right half-Lie group modeled on an integral complete locally
convez space E, then if we replace LP with LS the result remains valid.

So far, C%-regularity has been investigated for the half-Lie group Diff" (M) in a suitable
sense (see the sketch in [31]). Independently, related questions of regularity have been
considered by Pierron and Trouvé (see [39]).



Manifolds of mappings associated with real-valued functions spaces

In the second part, we describe a general construction principle for manifold structures
on sets of mappings between manifolds when real-valued functions spaces are given,
satisfying suitable axioms. The modeling spaces for these manifold structures, which
coincide with spaces of sections, are studied at the beginning. Then we study the con-
struction and properties of natural mappings between these manifolds of mappings.
For fixed m,n € N, we consider an m-dimensional compact smooth manifold with cor-
ners M and let N be an n-dimensional smooth manifold without boundary. Following
the notation of the work Helge Glockner and Luis Tarrega [22], we consider a basis of
the topology U of the set [0,00)™ satisfying suitable properties (see Definition 3.1.1).
Suppose that for each open set U € U, an integral complete locally convex space F (U, R)
of bounded, continuous real-valued functions is given. Then for each finite-dimensional
real vector space E, a set of maps F (U, E) can be defined in a natural way. If certain ax-
ioms are satisfied (see Definition 3.1.5), we say that the family (F(U, E))yey is suitable
for global analysis. Varying the case where M is a smooth manifold without boundary
(see [22]), one can define a locally convex space F (M, E). Moreover, we can also define
a set F(M,N) of N-valued F-functions on the manifold with corners M.

For each function v : M — N in F(M, N), we define the real vector space of sections
with the pointwise operations

I'r(y) :={oc e F(M,TN):nrnoo =~}
and we endow it with a natural topology making it an integral complete locally convex
topological vector space. We define the set
Vy:={ocel'r(y):0(M)C Q},
which is open in I'z(7). Setting

Uy ={E€TF(y): (1,6 (M) C O},

the map

U, :=F(M,%X):Vy—>U,, oc—Xoo
is a bijection. We show (see Theorem 3.3.3):
Theorem 1.0.10 Let U be a good collection of open subsets of [0,00)™. If (F(U,R))veu
18 a family of locally convex spaces suitable for global analysis, then for each m-dimensional
compact manifold M with corners and smooth manifold N without boundary which ad-
mits a local addition, the set F (M, N) admits a smooth manifold structure such that the
sets Uy are open in F(M,N) for all v € F(M,N) and for each local addition, the map
V. V) — U, is a C-diffeomorphism.
We show that the point evaluation map e, : (M, N) — N is smooth for each p € M
(see Proposition 3.3.12). For each v € TF (M, N) we define the function

On(v): M — TN, Opn(v)(p):=Tep(v).
Then with respect to the tangent bundle of F(M, N) we have:



Proposition 1.0.11 Let M be an m-dimensional compact smooth manifold with cor-
ners, N be an n-dimensional smooth manifold which admits a local addition and mpy :
TN — N its tangent bundle. Then the map

F(M,mry) : F(M,TN) — F(M,N), T+~ mrNoT
is a smooth vector bundle with fiber I z(vy) over v € F(M,N). Moreover, the map
Oy : TF(M,N) — F(M,TN), v+ Oxn(v)

18 an tsomorphism of vector bundles.
Using the smooth manifold structures just described, we find:

Proposition 1.0.12 Let M be an m-dimensional compact smooth manifold with cor-
ners, N1 and Na be n-dimensional smooth manifolds which admit local additions (1, %1)
and (Q9, Xo) respectively. If f: Ny — Na is a smooth map, then the map

f(M7f)F(M7N1)_>F(M7N2)7 7’_>fof)/7

18 smooth.
And its tangent map can be characterized in the following way:

Proposition 1.0.13 Let M be an m-dimensional compact smooth manifold with cor-
ners, N1 and Ny be finite-dimensional smooth manifolds which admit a local addition.
If f . N1 — Ny is a smooth map, then the tangent map of

F(M, f): F(M,Ny) — F(M,N3), ~w~ fory

s given by

TF(M, f) =0y o F(M,Tf)oOn,.



2 Manifolds of absolutely continuous
functions with values in an
infinite-dimensional manifold and
regularity properties of half-Lie groups

2.1 Preliminaries

Definition 2.1.1 Let E and F be real locally convex spaces, U C E be open and
f:U — F be a map. We say that f is CY if it is continuous. We say that f is C1 if f
is continuous, the directional derivative

4 (2,9) = (Dyf)(w) = lim - (o + ty) — (x)

(with ¢ # 0) exists in F for all (z,y) € U x E, and df : U x E — F is continuous.
Recursively, for k € N we say that fis C* if fis Cl and df : U x E — F is C*~1. We
say that f is C™ (or smooth) if f is C* for each k € N.

Definition 2.1.2 Let E7, E5 and F' be real locally convex spaces, U C Fy and V C E»
be open subsets, r,s € NU {0,00} and f : U x V — F be a map. If the iterated
directional derivatives

d(i’j)f((l', a,), Y1y ooy Yis bl, vy b]) = (D(y1,0)"'D(yi,O)D(O,bﬂ"'D(U,bj)f)(x7 a)

exist for all 7,7 € N U {0} such that i < r and j < s, and all y;,...,y; € E; and
b1,...,b; € Eo, and, we assume that the mappings

A f UXV xE} xE} - F

are continuous, then f is called a C™*-map.

Definition 2.1.3 Let X be a locally compact topological space, endowed with a measure
w: B(X) — [0,00] on its o-algebra of Borel sets and let Y be a topological space. A
function v : X — Y is called Lusin py-measurable (or p-measurable) if for each compact
subset K C X, there exists a sequence (K, )nen of compact subsets K, C K such that
each restriction 7|k, is continuous and p (K\ Upen K,) = 0.

For details of the construction of Lebesgue spaces, we refer the reader to see [35].

Definition 2.1.4 Let E be a locally convex space, a < b be real numbers, 1 < p < c©
and A : B([a,b]) — [0,00) be the restriction of the Lebesgue-Borel measure on R. We



define the set LP([a,b], E) as the set of all Lusin A-measurable functions v : [a,b] = E
such that for each continuous seminorm ¢ on E we have

qovy € LP([a, 0], R).
And we endow it with the locally convex topology defined by the family of seminorms
-l ze g £7([a, 0], E) = [0,00[,  [[¥llcr.g:= llg o vllce-

Let v ~ n if and only if v(¢) = n(t) for almost all ¢ € [a, b] and write [y] for the equivalence
class of v. We define the Hausdorff locally convex space

L¥([a,b], E) := LP([a, b], E)/[0]
with seminorms

[-llzr g2 LP([a,b], E) = [0,00[,  [I[V]llzrg:= 7]l q-

Definition 2.1.5 Let E be a locally convex space, a < b be real numbers and A :
B([a,b]) — [0,00) be the restriction of the Lebesgue measure on R. We define the set
L>([a, b], E) of all Lusin A-measurable, essentially bounded functions + : [a,b] — E. For
each continuous seminorm ¢ : £ — R"™ we define the seminorm

V[l 2o q:= esssup g o (t).
te[a,b]

We endow £ ([a, b], E') with the Hausdorff locally convex topology given by these semi-
norms.
Let v ~ n if and only if v = n a.e. We define the Hausdorff locally convex space

L>([a, 0], E) := L*([a, b], E)/[0]
with seminorms
[l zoe g0 L>([a, 0], E) = [0,00[,  [[V]l[z.q:= [[Vll£o~ q-

We define the vector space £52([a,b], E) of all Borel measurable functions v : [a,b] —
E such that the image Im(v) has compact and metrizable closure, endowed with the
topology induced by £>([a,b], E). Thus

Lye(la, b, B) := L7 ([a, 0], E)/[0]

is a Hausdorff locally convex space.

Remark 2.1.6 Let E be a Frechet space and p € [0,1]. If L%([0,1], E) denotes the
Lebesgue space constructed with the set of Borel measurable functions (see [15]), then
Li%([0,1], E) coincides with LP([0, 1], E') ([35, Proposition 2.10]).



Remark 2.1.7 Let 1 < ¢ < p < oo, then
£((a,b], B) C £7([a, b}, E) C £9([a,8], E) C £1([a, b], E)

as a consequence of Holder’s inequality.

Definition 2.1.8 Let E be a locally convex space and v : [a,b] — E be such that aoy €
L([a,b],R) for each o € E'. An element z € E is called the weak integral of ~y if

b
a(z) = / (o 07)(5)ds,

for each Vo € E’. Then z is called the weak integral of « from a to b, and we write
z = fab’y(s)ds.

Definition 2.1.9 Let E be a locally convex space. We say that a sequence (z,), C E
is a Cauchy sequence if for each € > 0 and each continuous seminorm ¢ of F/, there exists
an integer N, € N, such that for all m,n > N, we have

q(zm —xn) < e.

We say that E is sequentially complete if every Cauchy sequence converge in F.

The following lemma [35, Proposition 2.26] allows us to define absolute continuous func-
tions with vector values.

Lemma 2.1.10 If E is sequentially complete locally convex space, then for each v €
L([a,b], E), the weak integral fabv(s)ds exists and the map

n:la,b] = E, n(t)= / v(s)ds

18 continuous.
A related important result of weak integrals is the Mean Value Theorem (see e.g. [14]).

Theorem 2.1.11 Let E and F' be locally convex spaces, U C E be an open subset, f :
U— F aCl-map and x,y € U such that the line segment {tx+ (1 —t)y € E:t € [0,1]}
is contained in U. Then

1
fly) — f(=) —/0 df (x + t(y — x),y — z)dt.

Definition 2.1.12 Let E be a sequentially complete locally convex space and p € [1, 00].
For tg € [a,b], we say that a function 7 : [a,b] — E is LP-absolutely continuous (or just
absolutely continuous if there is no confusion) if there exists a [y] € LP([a,b], E) such
that

t
nt) =nt0) + [ A(s)ds, ¢ fad], (211)

to
We denote the space of all LP-absolutely continuous functions by ACr»([a,b], E). Let
to € [a,b] be fixed, since 1’ := [y] is necessarily unique (see [34, Lemma 2.28]), the map
®: ACr»([a,b], E) = E x LP([a,b], E), 1+ (n(te),n) (2.1.2)



is an isomorphism of vector spaces. We endow AC»([a, ], F') with the Hausdorff locally
convex vector topology which makes ® an isomorphism of topological vector space (see
[34, Definition 3.1]).

The following result will allow us to study differentiability of functions with values in
ACrr([a,b], E).

Lemma 2.1.13 Let E be a sequentially complete locally convex space and p € [1,00].
Then the map

U : ACs([a,b], E) — C(la,b], E) x LP([a,b],E), n— (n,7) (2.1.3)
18 a linear topological embedding with closed image.

Proof. We let I : E x LP(]a,b], E) — C([a,b], E) be the continuous map given by

(@ b)®) =o+ [ 2()ds. telad

for each € E and [vy] € LP([a,b], E). Let ® : ACr»([a,b], E) — E x LP(]a,b], E), with
to := a, be the isomorphism of topological vector spaces as above. We consider the map

©: B x L¥([a,b], E) = C([a,b], E) x LP([a,], E), (2, [y]) = (I(=.[7]), 7))

which is continuous.

Moreover, since the evaluation map &, : C([a,b],E) — E, n — n(a) is continuous, the
map (@]Im(e))_l = (&q,1dzp) is also continuous. Hence V¥ is a topological embedding.
Let (Na, 1L, )a be a net in Im(0©) that converges to (1, [y]) € C([a,b], E) x LP([a, b], E). By
continuity of €, the net (n4(a))s converges to n(a) € E, and by continuity of O, the net

(©(na(a),ms))q converges to (I(n(a), 7)), [7]) € Im(O). Since the net (O(na(a),n5))q
also converges to (1, [7]), we have

I(n(a), [v]) = n.

Therefore ' = [7] and (n, [y]) € Im(O). O

Remark 2.1.14 Let p € [1,00]. Since the inclusion map ACr»([a,b], E) — C(]a,b], E)
is continuous [35, Lemma 3.2], the topology on ACrs([a,b], E) is independent of the
choice of ¢y and finer than the compact-open topology. Hence the sets

ACrr(la,b], V) :={ne€ ACrr([a,b], E) : n([a,b]) CV}

are open on ACr»([a,b], E), for each open subset V C E.

For maps between absolute continuous function spaces, we have the following results
(see [35]).
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Lemma 2.1.15 Let E be a sequentially complete locally convex space and p € [1,00].
For ¢,d € R with ¢ < d we define a map g : [c,d] — |a,b] via

t—c
d—c
Thennog € ACrr([c,d], E) for each n € ACr»([a,b], E) and the map

gty =a+

(b—a), te]ed].

ACr»(g, F) : ACpe([a,b), E) — ACs([c,d],E), n+>nog

18 continuous linear.

Lemma 2.1.16 Let E and F be sequentially complete locally convex spaces, p € [1, 0],
V C E be open subset and f:V — F be a C'-map. Then fon € ACrs([a,b],F) for
each n € ACr»([a,b], V).
Lemma 2.1.17 Let E and F be sequentially complete locally convez spaces, p € [1,00]
and k € NU{0,00}. Let V C E be open subset and f : V — F be a C**2-map, then the
map

fe i = AC1p([a,b], f) : ACLr([a,b],V) = ACL»([a,b], F), n+ fon

is C*. Moreover, we have
d(f*)(na 771) = df © (7]3771)
for all (n,m) € ACrr([a,b],V) x ACL»([a,b], E).

Remark 2.1.18 For sequentially complete locally convex spaces £ and F' we have
ACrr(la,b], E x F) = ACr»([a,b], E) X ACL»([a,b], F).

Definition 2.1.19 Let F and F be complex topological vector spaces, where is F' is
locally convex, U C E be an open subset and f : U — F be a mapping. We say that f is
complex analytic if it is continuous and, for each x € U, there exists a 0-neighbouhood
V C E such that £+ V C U and certain continuous homogeneous polynomials 3, : £ —
F of degree n, such that f admits the expansion: f(z+y) =3 " Bn(y), forally e V.

For our context, we present an application of [4, Proposition 7.7] to our particular case.

Lemma 2.1.20 Let E and F be complex locally convex spaces, and f : U — F be a
mapping defined on an open subset of . Then f is complex analytic if and only if f is
smooth and the mapping df (z,-) : E — F is complex linear for each x € U.

Definition 2.1.21 Let E and F be real locally convex spaces, U C E be an open subset
and f: U — F be a map. We say that f is real analytic if it extends to an analytic map
f 'V — Fg on some open neighborhood V of U in E¢, where Ec and F¢ denotes the
complexification of E and F', respectively.

Lemma 2.1.22 Let E and F be sequentially complete locally convex spaces over K &
{R,C}, pe[l,0], V C E be an open set and f : V — F be a K-analytic map. Then
the map

fs = ACrr([a,b], f) : ACLr([a,b],V) = ACLr([a,b], F), n— fon

1s K-analytic.
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Proof. First we consider the case K = C. By Lemma 2.1.17 the map f, is smooth and
d(f.) is complex linear in the second variable, hence by Lemma 2.1.20 the map f, is
complex analytic.

If K = R, then by definition the map f has a complex analytic extension f, hence ( f )«
is the complex analytic extension of f,, whence f, is real analytic. O

Definition 2.1.23 Let N be a smooth manifold modeled with on a sequentially com-
plete locally convex space E and p € [1,00]. We say that a function 1 : [a,b] — N
is LP-absolutely continuous if it is continuous and there exists a partition {to, ..., t,} of
[a,b] such that for each j € {1,...,n}, there exists a chart p; : U; — V; that verifies

i) n(ltj-1, 1) € Uj.
ii) pj o n‘[tj,htj] S ACLp([tj_l,tj], E)

In this case, we say that these charts verify the definition of LP-absolute continuity for
n. If there is no confusion, we simple call 1 absolutely continuous.

For the case of absolutely continuous functions with values in a manifold, the following
facts are available (see [35]).

Lemma 2.1.24 Let N be a smooth manifold modeled on a sequentially complete locally
convex space E and p € [1,00]. If n € ACLr([a,b], N), then

po 77|[o¢,,3] € ACLP([av /8}7 E)v
for each chart o : U — V of N and each subinterval [c, 8] C [a, b] such that n([e, f]) C U.

Lemma 2.1.25 Let M and N be smooth manifolds modeled on sequentially complete
locally convex spaces and p € [1,00]. If f : M — N is a Cl-map, then fon €
ACrr([a,b], N) for each n € AC»([a,b], M).

2.2 The space of absolutely continuous sections

Definition 2.2.1 Let N be a smooth manifold modeled on a sequentially complete
locally convex space E, npy : TN — N its tangent bundle and p € [1,00]. For n €
ACrr([a,b], N) we define the set

Tac(n) :={o € ACL»([a,b],TN) : mry 00 = n} (2.2.1)

and we endow it with the pointwise operations, making it a vector space.
Consider a partition P, = {tg, ...,tn} of [a,b] and charts {(¢;,U;) : i € {1,...,n}} of N
that verify the definition of absolute continuity for 7. Since 7([ti—1,t;]) C U;, we have

o([ti—1,t:i]) CTU;, forall o € T'ac(n)

for each i € {1,...,n}. We endow I'yc(n) with the Hausdorff locally convex vector
topology which is the initial topology with respect to the linear mappings

hl' : FAc(’I’]) — ACLP([tifl,ti], E), g = hl(O') = d(pz o U|[ti—1ati] (222)
with i € {1,...,n}.
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Proposition 2.2.2 Let N be a smooth manifold modeled on a sequentially complete
locally convex space E, p € [1,00] and n € ACr»([a,b],N). Let P = {to,...,t,} be a
partition of [a,b] and {(¢;,U;) : i € {1,...,n}} be charts of N that verify the definition
of absolute continuity for n, then the map

(I)n’p : FAC(U) — HACLp([tifl,ti], E), o (d(pl o U|[ti—1ati])?:1 (2.2.3)
=1

is a linear topological embedding with closed image given by the set of all elements (1;)}" 4
such that

Tz(tz) = ngZ e} (TQDH_l)_l <§0i+1 [¢] n(ti>77_i+1(ti)>a fO?" all © < {1, ey — 1}

Proof. The linear map ®,, p is continuous by the previous definition and it is injective.
Let i € {1,...,n}. If W; = ©;11(U; N Uit+1), then the map

gi:Wix E= E, (z,y) = dg; o (Tir1) " (z,y),

is continuous and linear in the second component. This enables us to define the closed
vector subspace K given by the elements

(r)izr € [[ACL ([tioa, ti), E)
i=1

which verify

Tz(tz) = ngl e} (T‘Pi—&-l)_l (907:-1—1 (¢] n(ti),Ti_A,_l(ti)), fOI’ all ¢ € {1, ey — 1}

We will show that the image of ®, p, denoted by Im(®, p), coincides with the closed
subspace K. Indeed, the space Im(®,, p) is contained in K by definition of ®, p. Let us
consider now 7 = (73)1_; € K. We define the maps

ot ltioa,ti] = TN, s (Tp) ™ (i on(s), 7i(s))

and
or [a,b] — TN, t— O’Z'(t), for t € [ti—hti}-

By the Glueing Lemma, the map o, is continuous. Moreover, by Lemma 2.1.25 each
function o; is absolutely continuous, hence ¢ it is too. Since 7wy o 0 = 1 we have that
or €T'ac(n) and @, p(or) = (13)7,, and Im(P, p) = K.

It remains to show that the inverse map

O Im(P, p) = Tac(n), (1)iey = or

is continuous. If h; are the functions that define the topology (Definition 2.2.1), then
for each i € {1,...,n} we have h; o @;}3 = q;, where ¢; is the continuous linear map

q; - HACLP([tj—I,tj]aE) — ACLP([ti—lyti]vE)7 (nj)?zl = 1.
7=1

Hence @;}3 is continuous. O
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Remark 2.2.3 From now we consider the map ®, p as the homeomorphism
@, p:Tac(n) — Im(®, p).

Corollary 2.2.4 Let N be a smooth manifold modeled on a E Banach space (resp.
Frechet space), p € [1,00] and n € ACr»([a,b], N). Then the vector space I s4c:(n) is a
Banach space (resp. Frechet space).

Proof. This follows from the fact that each vector space ACr»([ti—1,7], F) is a Banach
space (resp. Frechet space) O

Proposition 2.2.5 Let M and N be smooth manifolds modeled on sequentially complete
locally convex spaces, k € NU{0,00}, p € [1,00] and n € ACr»([a,b],M). If f: M — N
is a C*3-map, then Tf oo € Tac(f on) for each o € T zc(n). Moreover, the map

f:Tac(n) = Tac(fon), o=Tfoo

is continuous linear.

Proof. Let Ejr and En be the modeling spaces of M and N respectively. By Lemma
2.1.16 we have fon € ACrr([a,b], N) and T foo € ACrr([a,b],TN) for each o € T 4¢(n).
Since Ty f (0(t)) € Tyope) N for each t € [a, b], we have

rrx o (Tfoo) = for.

Thus f(o) € Tac(f on) for each o € T'ac(n). The linearity of f is trivial.

Without loss of generality, we can choose a partition P = {tq, ...,t,} of [a,b] such that
there exist families of charts {(y;,U;) : @ € {1,...,n}} and {(¢;, Vi) : i € {1,..,n}} that
verify the definition of absolute continuity for n and f o7 respectively, such that

f(U;) CV;, foreachie{l,..,n}.

For o € T'4¢(n) and for each i € {1,...,n} we denote n; = |y, , ) and o; = ol
We define the maps

i1t

F;: ACro([ti—1,ti], Exr) — ACLo([tiz1, ti), EN), T+ (dd)l onngOi_l) o (p; oMy, T)

and

F:J[ACL([tiv, i), Est) = [[ ACw ([tia, i), En), (7)iey = (Fi(ma)iy
i=1 =1

which are continuous by Lemma 2.1.17. We will show that

F (Im (®,,p)) € Im (® 40, p) -
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Let i e {1,..,n—1}. If

T + — Fl(dgaz O O'i)

= (d¢p o Tf o dip; ") (ipi 0 i, dip; © ;)
=dg;oTfoa;

then

depi o (Tiy1) ™" (¢i+1 o(fomn)(t), Ti+1(ti)) = dg; o (Thiy1)”" (¢i+1 o(fon)(ti),dpit10oTfo Uz‘+1(tz))

= dp; o T'f o 0y41(t;)
=dp; o T f oo;(t;)

Hence F o ®, p(0) € Im(® o, p) and in consequence

J?: (I)J:olmp oFod,p.

Thus f is continuous. O

Remark 2.2.6 The topology of I'4c(n) does not depend on the partition or charts
chosen. Indeed, since the identity map idy; : M — M is smooth, by the previous
proposition the map

i/(—i;//[ : FAc(’I?) — FAc(idM O’I]), o — TidM o0

is smooth regardless of the partition or charts chosen. Moreover, this map coincides with
the identity map idr : Tac(n) = Tac(n), o — o.

Remark 2.2.7 For n € C([a,b], N) we endow the vector space
To(n) ={o € C([a,b],TN) : mpy o0 =~}
with the compact-open topology. Since each inclusion
ACro([ti—1,ti], E) = C([ti—1,t], E)

is continuous [35, Lemma 3.2], the inclusion map Jr : T'4c(7) — T'e(7) is also continuous.
This implies that set

Vi={o€Tlacn):o(ab]) SV}
is open in I"4¢(n) for each open subset V' C T'N.

Proposition 2.2.8 Let N1 and Ny be smooth manifolds modeled on sequentially com-
plete locally convex spaces, p € [1,00] and pr; : N x Ny — N; be the i-projection for
ie{1,2}. If ; € ACre([a,b], N1) and na € ACLr([a,b], N2), then the map

P:Tac(m,n2) = Lac(m) x Tac(m), o (Tpry, Tpry)(o)

s a linear homeomorphism.
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Proof. By Proposition 2.2.5 the map P is continuous and clearly linear. Let P =
{to,...,tn} be a partition of [a,b]; let {(¢1:,U14): ¢ € {1,...,n}} and {(¢24,U2;): 7 €
{1,...,n}} be families of charts of N; and N, respectively, that verify the definition
of absolute continuity for 7, and 72, respectively. Then n := (n1,72): [a,b] — Ni X N
is LP-absolutely continuous and it is clear that the charts {(¢1,; X ¢24,U1; x Ua;): i €
{1,...,n}} satisfy the condition of absolute continuity for n. For j € {1,2}, consider
the linear topological embedding

@y p: Iy — HACLP([tiflati]»Ej)a T = (ddji o T,y 1)) iet

i=1

where Ej; is the modeling space of N;. Also

q)mp: FTI — HACLP([ti—lyti]yEl X Eg), T ((d¢1ﬂ' X d(f)g,i) o T‘[ti717ti]>?:1
i=1

is a linear topological embedding; here T(,, ,,)(IN1 x N2) is identified with Ty, N1 x Ty, Na.
For i € {1,...,n}, let
(67N ACLp([tifl, ti], El) X ACLP([tl',l, ti], E2) — ACLP([tifl, ti], E1 X EQ)

be the map taking a pair (f1, f2) of functions to the function ¢ — (f1(t), f2(t)); we know
that «o; is an isomorphism of topological vector spaces. Then also

n n n
. (H ACLp([ti_l, ti], El)) X (H ACLP([ti_]_7 ti], EQ)) — H ACLp([ti_l, ti], El XEQ),

i=1 i=1 i=1

((fi)iz1, (gi)iza) = (alfi 9i))iea

is an isomorphism of topological vector spaces. If (f;)i“; is in the image of ®,, p and
(gi)i—, is in the image of ®,, p, then a((fi)i—;, (gi)~,) is in the image of ®, p, as the
compatibility at the endpoints can be checked by considering the components in £ and
FE5. We can therefore define a function

©:=, Loao (R px Py p): Dy x Ty, = Ty,

which is continuous and linear. We readily check that P(©(c, 7)) = (o, 7) for all 0 € T,
and 7 € I'y,. Hence P is surjective and thus bijective, with P~! = © a continuous
map. ]

Proposition 2.2.9 Let N be a smooth manifold modeled on a sequentially complete lo-
cally convex space E, p € [1,00] andn € ACr»([a,b], N). For a partition P = {to,...,tn}
of |a,b], the map

p:Tac(n) — HTAC (i1 1) s 0= (Ol )i
i=1

s a linear topological embedding with closed image.
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PT‘OOf. Let 5 € {1,...,n}, If Pj = {tj_l,tj}, since nj = n‘[tj,l,tj] S ACLp([tj_l,tj],N),

we have
n
P= (H q)m}Pi) o Py, p-

i=1

The image is given by the closed subspace

=1

Im(p) = {(%’)?1 € HFAC(WHti_I,ti}) t7i(ti) = Tiv1(t) for all i € {1,...,n — 1}} :

Thus (p[™®)=1: Im(p) — Cac(n) is well defined and

<p|Im(P)>71 = (IJ;’}D o (ﬁ (I)m,Pi> .
i=1

O

Proposition 2.2.10 Let N be a smooth manifold modeled on a sequentially complete
locally convexr space E and p € [1,00]. If g : [c,d] — [a,b] is the map as in Lemma
2.1.15, then no g € ACrr([c,d],N) for each n € ACp»([a,b],N). Moreover, if n €
ACrr([a,b],N), then the map

Ly:Tyc(n) = Tac(noyg), o—oog
18 continuous linear.

Proof. Let n € ACrr([a,b], N). We will show first that no g € ACr»([c,d],N). Let
P = {to, ..., tn} be a partition of [a, b] and {(y;,U;) : i € {1,...,n}} charts of N that verify
the definition of absolute continuity for n. Since g is a strictly increasing function, we
can define a partition Q = {si, ..., s, } of [¢,d] such that g(s;) = ¢;, for each i € {1,...,n}.
Moreover, given that

@i © (77 © g) |[81‘_1,Si] = (SO’L © "7|[ti_1,ti}) © g|[8i_17si]

we have nog € ACr»([a,b], E) by Lemma 2.1.15. Analogously, we have that 0 o g €
ACr»([a,b], TN) for each o € T'4¢(n) and

mrno(dog)=mnog.

Hence Ly(o) € T'ac(n o g). To see the continuity of Ly, for each i € {1,...,n} we define
the maps

G;: ACpp([tis1,t:], E) = ACre([8i41, si], E), T+ TOg|[5i+178i}

which are continuous by Lemma 2.1.15. Considering the topological embeddings ®, p
and @4 ¢ (as in Proposition 2.2.2) with the same family of charts, if (7;)j~; € Im(®,, p)
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we have
7 0 g(s;) = Ti(ts)
= dp; o (Ti1) ™! (%‘H on(t;), Ti+1(tz’))
= dpi o (Tpis1) ™! (90i+1 010 g(si), Ti+1 0 9(&'))
for each i € {1,...,n —1}. If G = (G| x ... x Gy,), then (G o @, p) (o) € Im(Py04,0) and
Ly=®, o0Go®,q.

Hence L, is continuous and clearly linear. O

Proposition 2.2.11 Let N be a smooth manifold modeled on sequentially complete
locally convex space E, p € [1,00] and n € ACr»([a,b], N). Then the evaluation map

€:Tac(n) x[a,b] = TN, (o,t)— o(t)

is continuous, and linear in the first argument. Moreover, for each t € [a,b], the point
evaluation map
€ :Lac(n) = TN, o—o(t)

s smooth.
Proof. The evaluation map

€:Te(n) x[a,b] = TN, (o,t)— o(t)
is continuous and the evaluation map & : I'c(n) — TN, o +— o(t) is smooth for each
t € [a,b] (see [3]). Then ¢ = €o (Jr x Idg) and ¢ = & o Jr, where Jr : T'ac(n) — T'c(n)
is the inclusion map, which is continuous linear by Remark 2.2.7. O

2.3 Manifolds of absolutely continuous functions

Definition 2.3.1 Let N be a smooth manifold and 7wy : TN — N its tangent bundle.
A local addition is a smooth map X : Q — N defined on a open neightborhood 2 C T'N
of the zero-section Oy := {0, € T,N : p € N} such that

a) X(0,) =pforallpe N.
b) The image ' := (mrn, %) () is open in N x N and the map
On:Q—Q, v (rrn(v),S(v)) (2.3.1)

is a C'*°-diffeomorphism.
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Moreover, if Ty, (3|7,n) = idr,y for all p € N, we say that the local addition ¥ is
normalized. We denote the local addition as the pair (2, ).

If Oy : Q — Q' is a diffeomorphism of K-analytic manifolds, we call ¥ :Q — N a K-
analytic local addition.

Remark 2.3.2 If a smooth manifold N admits a local addition, then also its tangent
manifold TN admits a local addition [3, Lemma A.11]. Moreover, each manifold which
admits a local addition also admits a normalized local addition [3, Lemma A.14]. From
now we will assume that each local addition is normalized.

Remark 2.3.3 Let N be a smooth manifold modeled on a sequentially complete locally
convex space E, p € [1,00] and n € ACr»([a,b], N). We define the sets

Vy={o €T ac(n):o(a,b]) C Q}. (2.3.2)
which is open in I'4¢ () by Remark 2.2.7 and
Uy = {1 € ACL ([0, b], N) : (n,7) (0, B]) € . (233)
Lemma 2.1.25 enable us to define the map
U, = ACe([a, b, %) : V) = Uy, o~ Xoo. (2.3.4)

with inverse given by
\I’;l Uy = Vy, v 05 0 (0,7). (2.3.5)
The following lemma is just an application of [4, Lemma 10.1] to our particular case.

Lemma 2.3.4 Let E and F sequentially complete locally convex spaces, U C E open
and f : U — F a map. If Fy C F is a closed vector subspace and f(U) C Fy, then
f:U = F is smooth if and only if f|F° : U — Fy is smooth.

Theorem 2.3.5 For each smooth manifold N modeled on a sequentially complete locally
convez space E which admits a local addition and p € [1,00], the set ACL»([a,b], N)
admits a smooth manifold structure such that the sets Uy, are open in ACr»([a,b], N) for
alln € ACr»([a,b], N) and ¥, : V,, = U, is a C*-diffeomorphism.

Proof. We endow ACrr([a,b], N) with the final topology with respect to the family of
maps U, : V, — U,, for each n € ACp»([a,b], N). If we define the maps \IJ,]C: Vnc — L{nc
on the space of continuous functions C([a, b], N) for each n € C([a,b], N) as in Remark
2.3.3, with V,, C I'c(n), then the final topology on C([a, b], N') coincides with its compact
open topology. Hence the inclusion map

J: ACprr([a,b], N) = C([a,b], N), ~v~
is continuous. Moreover, for each n € ACr»([a,b], N) the set
Uy = {v € C((a,b],N) : (n,7)([a,b]) € '}
is open in C([a, b], N), whence
Uy =US N ACLs([a,b],N)
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is open in ACr»([a, b], N).

The goal is to make the family {(Uy, ¥,!) : n € ACL»([a,b], N)} an atlas for ACL»([a, b], N)
for a smooth manifold structure on ACp,([a,b], N). We need to show that the charts
are compatible, i.e., the smoothness of the map

Mgy =W o Wy s U Uy NUe) CTac(n) = Tac(§), o0y o(§,Xo0) (2.3.6)
for each n,& € ACLr([a,b], N) such that the open set
_ -1
U Uy NUe) = (9) T US nUE) NT ac(n)

is not empty.

Let R = {to,...,tn} be a partition of [a,b], let {(U,,, i) : i € {1,..n}} and {(Uy,, ¢:) :
i € {1,..n}} be charts that verify the definition of absolute continuity for n and &,
respectively. Denoting o; := o|j,_, 4,) for each o € ACL»([a,b], TN). We will study the
smoothness of the composition

q)ij o A57n|[ti—1,ti] : \1’7;1(1/{,7 N Ug) — Im((I)gyR) C H ACLp([ti_h ti], E)
=1

o= (d¢z °© A&y"?’[ti—lvti] (Ui))izl

that by Lemma 2.3.4, is equivalent to the smoothness of A¢,. For each i € {1,...,n}, we
denote 7; := n|[,_, +,) and &; := 5][,51,717,51,} and we have

ddi o A ylit, 1 (0i) = dpi 0 05" 0 (&, 0 03)
=d¢; o 9;[1 o (qﬁ;l (pio&), X0 Tgo;l oTyp;o0;)
= do; 0 O3t o (¢7 ' (95 0 &), T 0 Tp7t (i 0133, dipi © 7).

Because all of the functions involved are continuous and have an open domain, also the
composition

Hi(w,y,2) i= dgi o 05" o (¢; ' (2), 5 0 T (y, 2)) (2.3.7)

has an open domain O; :. Hence the map H; : O; — E is smooth. By Lemma 2.1.17,
the map

ACLp([ti_l,ti], Hz) : ACLp([ti_l,ti], Oz) — ACLp([ti_l,tZ’], E) o Hz' o

is smooth. Doing the identification of products of ACL» spaces (Remark 2.1.18), if we
fix the functions ¢; o &; and ; o n;, we have the continuous affine-linear map

ACLo([tim1,ti], E) = ACLs([ti1,t:], EX E X E), T+ (¢i0&ispi0ni, 7).
We write W; for the preimage of ACL»([ti—1,ti], O;) under this map. Then the map

©;: Wiy = ACpo([ti—1,ti], E), T Hjo(gp;0& @;jon,dp;oT)
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is also smooth. Since the maps h; : Tac(n) — ACre([ti—1,ti], E),0 — d¢; o o; are
continuous by definition of the topology, rewriting we have

Ce.r 0 Aey(o) = (Bio0hi(0))i,
for each o € W, (Uy, NU), hence A¢, is smooth. O

Proceding in the same way, using the fact that compositions of K-analytic maps are K-
analytic and using the analytic version of Lemma 2.3.4 (see [14]), we obtain the analogous
case.

Corollary 2.3.6 For each K-analytic manifold N modeled on a sequentially complete
locally convex space E which admits a K-analytic local addition and p € [1,00], the
set ACrr([a,b], N) admits a K-analytic manifold structure such that the sets U, are
open in ACp»([a,b],N) for all n € ACr»([a,b], N) and ¥,: V, — Uy is a K-analytic
diffeomorphism.

Proposition 2.3.7 Let N be a smooth manifold modeled on a sequentially complete
locally convex space which admits a local addition and 1 < g < p < oco. Then

ACLe([a,b], N) C AC»([a,b], N) € ACLq([a,b], N) C AC:(]a,b],N)
with smooth inclusion maps.

Proof. Let n € ACr»([a,b],N). Let {to,...,t,} be a partition of [a,b] and {(p;,U;) : i €
{1,...,n}} be charts of N that verify the definition of absolute continuity for 7.

By [35, Remark 3.2], we know that each inclusion map ACr» ([ti—1,ti], E) — ACLa([ti—1,t], E)
is continuous linear, hence ACr»([a,b], N) C ACLq([a,b], N). By Proposition 2.2.2, the
inclusion is smooth since each map

H ACLP([tifla ti]’ E) — H AOLq([tiflv ti]v E)v (771')?:1 = (771')?:1-
i=1 i=1
is continuous linear. O

Proposition 2.3.8 Let M and N be smooth manifolds modeled on sequentially complete
locally convex spaces which admits a local addition, p € [1,00] and k € NU{0,00}. If
f:M — N is a C*2-map, then the map

ACrr(la,b], f) : ACre(la,b], M) — ACr»([a,b],N), n+ fon
is C*k.

Proof. Let Ej; and Ey be the modeleding space of M and N, respectively. Let (Qar, Xas)
and (Qn,2n) be local additions on M and N respectively. The map makes sense by

Lemma 2.1.25. Let n € ACr»([a,b], M), (Uy,, ;') and (Z/lfon,\I/JIjn) be charts around

n € ACrr([a,b], M) and fon € ACr»([a,b], N), respectively. We see that the set

W Uy 1 ACL ([a,8], )™ Upe)) = Tac(n) 0 (¥5) ™ US N ACL (0, b], )7 UE,,))
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is open in I'4¢(n). If Oy = (mrN, Xn), then we define
F(0) =7k 0 ACL([a,b], f) 0 Wy(o) = 05 o (fom), (f o Tar) 0 )

for all o € U, (Uy N ACLs ([a,b], £) ™ Uson))-

Proceeding as the proof of Theorem 2.3.5, choosing the corresponding partition P =
{to,....,tn} of [a,b] and the families of charts {(U,,, i) : i € {1,...,n}} and {(Uy,, ¢i) :
i € {1,...,n}} that verify the definition of absolute continuity for n and fon respectively,
we denote o; = J|[ti717ti]. We will study the continuity of the map

Dpop o F U Uy N ACLr ([a,b], f) ™ Uson)) = Im(PRfop), o+ (doy 0 F(03))i,

where ® ., is the topological embedding as in Proposition 2.2.2. For each i € {1,...,n}
and o € U1 (U, N ACLr([a,b], f) " (Ufop)) we have

A6 0 F(0)lj, 19 = ddi 003" o (fon, fo o)
—dgi 003t o (67" 0 i fon, fo T 0T (pion,dpio) ).

Because all of the functions involved are continuous and have an open domain, also the
composition

Hi(z,y,2) = dg; 0 O3 (d);l(x), foSuoTe \(y, z)) (2.3.8)

has an open domain O; in Exy X Ejpy X Eps. Hence the map H; : O; — Epn is smooth.
Fixing the absolutely continuous functions ¢;o fon and ¢; o7, we consider the continuous
affine-linear map

ACrr([ti-1,i], Enmr) = ACLe([ti=1,i], En X Ep X En), 70> (¢io fon,pion,T)
and we write W; for the preimage of ACr»([a,b], ;) under this map. Then the map
©;: Wi = ACLr([ti—1, ti], EN) T Hio(¢io fon,pion,T)

is C*. Since the maps h; : Tac(n) — ACL»([ti—1,ti], Err), 0 + dp; o 0; are continuous
linear by definition, rewriting we have

® oy 0 F(0) = (85 0 ()L,
for each o € W, 1 (Uy NU), hence the map ACL»([a,b], f) is ck. O

Proceeding in the same way we have the analogous case.

Corollary 2.3.9 Let f: M — N be a K-analytic map between K-analytic manifolds
modeled on sequentially complete locally convexr spaces which admit K-analytic local ad-
ditions and p € [1,00]. Then the map

ACrr(la,b], f) : ACLr(la,b], M) — ACrr([a,b],N), mn+ fon

1s K-analytic.
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Remark 2.3.10 The manifold structures for ACr»([a,b], N) given by different local
additions coincide. Indeed, since the identity map idy : N — N is smooth regardless of
the chosen local addition, the map

AC([CL, b]a ldM) : ACLP([G) b]v N) - ACLP([av b]a N)’ n— 1dN on
is, again, smooth regardless of the chosen local addition in each space.
Remark 2.3.11 The inclusion map J : ACps»([a,b],N) — C([a,b], N) is smooth.
Indeed, let (U, \11771) and (L{nc, (\I’,(f)*l) be charts around n € ACL»([a,b], N) and
n € C([a,b], N) respectively, then
Ut o Jo Wl (o) : Ut (Uy N T HUS)) S Tac(n) = Te(n)

is a restriction of the inclusion map I'4c(n) — T'a(n).
Moreover, if U C N be a open subset, then the manifold structure induced by ACr»([a, b, N)
on the open subset

ACrr(la,b],U) :={n € ACr»([a,b],N) : n([a,b]) CU}.
coincides with the manifold structure on ACr»([a,b],U).
Proposition 2.3.12 Let N1 and No be smooth manifolds with local addition modeled
on a sequentially complete locally convex spaces which admit a local addition, p € [1, 0]
and let pr; : Ny X No — N be the i-th projection for i € {1,2}. Then the map

P ACLP([a>b]7N1 X NQ) - ACLP([a>b]7N1) X ACLP([aab]vNQ)a n— (prlapr2) °n

is a diffeomorphism.

Proof. By the previous remark, if (21, 31) and (€3, ;) are the local addition on N; and
Ny respectively, then we can assume that the local addition on N; x Ny is

21221X22291XQQ—>N1XN2
where Q1 x Q9 C TNy x TNy = T (N7 X N3). The map P is smooth as consequence of
the smoothness of the maps
ACLP([G, b], pri) : ACLP([CL, b], N1 X NQ) — ACLP([CL, b], Nl),

for each i € {1, 2}.
Let (Uy, X Uy, ¥, x W 1) and (Uy,, ¥,') be charts in (n1,72) € ACLs([a,b], N1) X
ACr»([a,b], No) and P~Y(n1,m) = n € ACr»([a,b], N1 x N3) respectively. Since the
map
Q:Tac(n) = Tac(m) xTac(ne), 7= (d,d2)o0T
is an isomorphism of topological vector spaces, where q; and gy are the corresponding
projection of the space, we have
Ut o P o (Wyy X W) (01,00) = (Tvyxvs» B) Lo (1, P70 (81 % B2) (01, 02))
= (7TN1 X Nz s Z)_l © (”77 Yo Q_l(alv 02))
= Q o1,09)

for all (o1,09) € (\117;11 X \IJ;;) Uy, x Upn, N P(Uy)). Hence P~ is smooth. O
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Proposition 2.3.13 Let N be a smooth manifold modeled on a sequentially complete
locally convex space E which admits a local addition and p € [1,00]. For a partition
P ={to,....tn} of [a,b] the map

T ACLp([CL b —>HACLP i— lat]7N)7 77'_> (n|[ti—17ti})?:1
=1

n

s smooth and a smooth diffeomorphism onto a submanifold ofHACLp([ti,l, ti], N).
i=1

Proof. Tt is clear that the map T is well defined and injective. Let Im(7T) be the image
of the map T'. Then

Im(T) = {(7:)j=1 € [[ACLr ([ti1, ti], N) : 7i(ts) = yisa(ts) for all i € {1, ....n — 1}}.
=1

Let v := (vi)ly € [[7 ACre([ti—1,t:], N). For each i € {1,...,n} let ‘lf;il :U; — V; be
charts around ~;. Then the map

n n n
= H\I/;Zl : HU,’ — HVi
=1 =1 =1

is a chart around . Let n € ACr»([a,b], N) and 7 = T'(n), then \117;1 oT oW, is just
restriction of the product of the restrictions of the smooth maps

Lac(n) — HFAC’ () o= (olitr) iy
i=1

thus T is a smooth. Now we will show that the image Im(7") is a submanifold. Let
v = ()i, € Im(T) with charts as before, then for each ¢ € {1,...,n — 1} and { =
(&)= € Im(T) N []}_, U; we have

&) () = 05" o (70, i) (t)
= 05" o (vi(t:), &(t))
(

This implies that if K denotes the vector space

K :={(0)} 1eHrAC vi) : 03(ti) = 041 (t;) for all i € {1,...,n — 1} }.
i=1

Then Wy Ammery = Im(®) N [T, U — I{ NI,V is a chart of Im(7), making
Im(7T) a smooth submanifold and the map 7' : ACr»([a,b], N) — Im(T), n — T(n) a
diffeomorphism. O
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Remark 2.3.14 Let N be a K-analytic manifold modeled on a sequentially complete
locally convex space which admits a K-analytic local addition and p € [1,00]. Since
every continuous linear operator is analytic, the isomorphism

Lac(n) = K, o~ (U|[tz‘71,ti])?:1

is K-analytic, which implies that T in Proposition 2.3.13 is a K-analytic diffeomorphism
onto the submanifold Im(7T").

Proposition 2.3.15 Let N be a smooth manifold modeled on a sequentially complete
locally convex space E which admits a local addition, p € [1,00] and n € ACr»([a,b], N).
If g : [c,d] — [a,b] is a map as in Lemma 2.1.15, then the map

ACrr(g,N) : ACrr([a,b], N) = ACr»([c,d],N), n—mnog
18 smooth.

Proof. By Proposition 2.2.10 we know that the map is well defined. Let (U, v 1) and

(Unog, ¥,0,) be charts around n € ACL»([a,b], N) and nog € AC»([c,d], N) respectively,

then we have

W00 ACLy (g, M) 0 Wy(0) =05 o (nog,So(oog))

for all o € \I’;l (U NV ACLr (g, N) " (Upog)). This set coincides with

v, (U N Clg, N)THUS,))

which is open given by the continuity of the map C(g,N). Let « = nog: [c,d] - N
and 7 = 0 og: [¢c,d] = TN. Then both are absolutely continuous, with 7y o7 = «,
now 7 € I'yo(a) and

\1177019 0 ACLw(g, M) 0 ¥, () = 05 o (, T 0 7)
=W, o W,(r)
=7

=o0og.
Hence, \I/;(}g 0 ACr»(g, M) o W, is a restriction of the map

TCac(n) > Tac(nog), ocrroog
which is continuous linear by Proposition 2.2.10. O

Proposition 2.3.16 Let M, N and L be smooth manifolds modeled on sequentially
complete locally conver spaces which admit a local addition and p € [1,00]. If f : LXM —
N is a C**2-map and v € ACp»([a,b], L) is fived, then

f*:ACLP([a’b]vM)ﬁACLp([avb]vN)’ U'—>f0(%7l)

is a C*-map.
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Proof. Define the smooth map
Cy : ACrp([a,b], N) = ACr»([a,b], L) x ACr»([a,b], N), n+ (v,n)
Identifying ACLr([a,b], L) x ACr»([a,b], N) with ACL»([a,b],L x N), we have
f. = ACp([a.b], f) o G
Hence f, is C*. O

Proposition 2.3.17 Let N be a smooth manifold modeled on a sequentially complete
locally convex space E which admits a local addition, p € [1,00]| and t € [a,b]. Then the
evaluation map

e: ACrr(la,b], N) x [a,b] = N, (n,t) — n(t)

18 continuous and the point evaluation map
e ACrp([a,b], N) = N, n—n(t)
s smooth.
Proof. The evaluation map
gc: C([a,b],N) x [a,b] = N, (n,t) — n(t)

is continuous and the point evaluation (e.); : C([a,b], N) — N, n — n(t) is smooth
for each ¢t € [a,b] (see [1]). Since the inclusion map J : ACr»([a,b], N) — C([a,b], N)
is smooth, the assumptions follow from the observation that € = e o (J x Idj,y) and
et = (ec)r o J for each t € [a, b]. O

Proposition 2.3.18 Let M, N and L smooth manifolds modeled on a sequentially
complete locally convex space such that L admits a local addition and p € [1,00]. If
f:LxM — N isaC?map and v € ACr»([a,b], L) is fived, then the map

Fifa,b]x M = N, (t,p)+— f((t).p)
18 continuous.
Proof. Tt follows from the fact that F' = f o (v x idyy). O

Proposition 2.3.19 Let N be a smooth manifold modeled on a sequentially complete
locally convex space E which admits a local addition and p € [1,00]. For each ¢ € N the
function (; : [a,b] = N, t — q is absolutely continuous and the map

¢:N — ACrr([a,b],N), q— ¢

18 smooth and a topological embedding.
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Proof. Consider the local addition ¥ : Q — N and 0y : Q@ — Q' as in Definition 2.3.1.
Let (U, p) be a chart around ¢ € N such that {g} x U C Q" and (U, \Ilazl) be a chart in

(g € ACr([a, b], N).
If 2 € o(UN¢(U,)), then for each t € [a,b] we have

VoloCop ™ (2)(t) = O (Go(t), Comi () (D)
=05 (0.9 (z))
=05 o (g, 0 u(t))

where (, : [a,b] — E, t — x is the constant function. Since the map
(:E— ACwr([a,b], E), z
is a continuous linear, setting the smooth map
h:pU)—TN, z— 9;[1 o(q, 0 1(2))

we have

\Ilc_pl olopt= ACrr(la, b, h) o §‘¢(U)'
Hence ( is smooth. Moreover, if t € [a, b], then ¢, 0 =idy : N — N. O

Remark 2.3.20 Let N be a smooth manifold modeled on a sequentially complete locally
convex space F which admits a local addition, p € [1, c0] and let TACr»([a, b], N) be the
tangent bundle of AC»([a,b], N). Since the point evaluation map &y : ACr»([a,b], N) —
N is smooth for each t € [a, b], we have

Té:‘t : TACLP([(I, b],N) — TN.
For each v € TACr»([a,b], N) we define the function
On(v):[a,b] = TN, Opn(v)(t) =Te(v).

Proposition 2.3.21 Let N be a smooth manifold modeled on a sequentially complete
locally convex space E which admits local addition, p € [1,00] and n € ACL»([a,b], N).
Then ©On(v) € Tac(n) for each v € T,ACL»([a,b], N) and the map

@77 : TUACLP([aa b]7 N) - FAC’(”)? v = @»,7(1]) = @N‘TWAC'Lp([a,bLN) (1})
18 an isomorphism of topological vector spaces.

Proof. Let ¥ : Q© — N be a normalized local addition of N. Since I'4c(n) is a vector
space, we identify its tangent bundle with I'4c(n) x Tac(n). Let ¥, : V, — U, be a
chart around 7 such that ¥, (0) =7, then

TV, : TV, =V, x T'ac(n) = TACL»([a,b],N)
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is a diffeomorphism onto its image. Moreover,
T, : {0} x Tac(n) = T,ACrr([a,b],N)
is an isomorphism of topological vector spaces. We will show that
©,0T¥,(0,0) =0
for each o € T 4¢(n). Which is equivalent to show that
TeroTV,(0,0) =0o(t) foralltela,b].

Working with the geometric point of view of tangent vectors, we see that (0, ) is equiv-
alent to the curve [s — so]. Hence, for each t € [a, b] we have

Te oTV,(0,0) =Ter o TV, ([s — so])
=Te([s = Vy(s0)])
= Tei([s — X(s0)])
= [s = X1,y N(s0(t))]
= ToX|r,, n([s = so(t)]).

Since ¥ is normalized we have TOE|Tn(t) N = idTn( o N and
Te,oTV,(0,0) =o(t).

In consequence, for each o € T'yc(n), there exists a v € T, ACs([a,b], N) with v =
TW¥,(0,0) such that
O,(v) =o.

Moreover, the function
Oy(v) : [a,b] = TN, t— On(v)(t) =0o(t) € Ty N

is absolutely continuous with 77y o ©,(v) = 1, making the map ©,, an isomorphism of
topological vector spaces. ]

Remark 2.3.22 Let N be a smooth manifold modeled on a sequentially complete locally
convex space E which admits local addition and p € [1,00]. Since TN admits local
addition and the vector bundle mry : T'N — N is smooth, the map

AC(la,b], mrN) : ACLr(Ja,b],TN) — ACrr(la,b], N), T+ mrnyoT
is smooth. Moreover, if n € ACr»([a,b], N), then
AC([a, b], 7rn) " ({n}) = Tac(n).

The following result follows the same steps as for the case of C-maps (with ¢ > 0) from
a compact manifold (possibly with rough boundary) to a smooth manifold which admits
local addition [3, Theorem A.12].
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Proposition 2.3.23 Let N be a smooth manifold modeled on a sequentially complete
locally convex space E which admits a local addition, p € [1,00] and mpy : TN — N its
tangent bundle. Then the map

AC([a,b], mrN) : ACLr([a,b],TN) — ACLr(|a,b], N), T+ mrnyoT
is a smooth vector bundle with fiber I ac(n) over n € ACL»(la,b], N). Moreover, the map
@N:TACLp([a,b],N)—>ACLp([a,b},TN), 1)'—)@1\[(’0)

18 an isomorphism of vector bundles.

Proposition 2.3.24 Let M and N be a smooth manifolds modeled on sequentially com-
plete locally convex spaces which admits a local addition and p € [1,00|. If f: M — N
is a C3-map, then the tangent map of

ACrr(la,bl, f) : ACrr([a,b], M) — ACrr([a,b],N), n+ fon

s given by

TACLy([a,b], f) = OF 0 ACL»([a,b], Tf) 0 Opr.

Proof. By Proposition 2.3.8, since f is C® we know that ACp»([a,b], f) is C!, thus
TACLr([a,b], f) exists. Let consider the local addition ¥y, : Qu — M and n €
ACLP([G,, b],M)

If ¥, : V,) = Uy, is a chart around 7 such that ¥, (0) = 7. We consider the isomorphism

of vector space
TV, : {0} x Tac(n) — TnACLp([a, bl, M).

For t € [a,b] we denote the point evaluation in M and N as ¢ and &)Y respectively,
then for each o € T'4¢(n) we have

Te o TACLs([a,b], f) o T, (0,0) = Tely o TACLs([a,b], f) o TW,([s + s0])
=TeN o TACLr([a,b], f)([s — B (s0)])
=TeN([s = foXp(so)])
=[s— e (foXpy(so))]
= [s+— foXp(so(t))]
=Tf oToXumlr,, m([s0(t)])
=Tf([s = so(t)])
= ACLr([a,b], Tf)(o(t))
= ACLs([a,b], Tf) o TeM o TT, (0, 0).

Hence
On o TACr([a,b], f) = ACLr([a,b], Tf) 0 Opy.
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Example 2.3.25 Let p € [1,00]. If G is a Lie group modeled in a sequentially locally
convex space E, then we already know that the space ACr»([a,b],G) is a Lie group with
Lie algebra given by ACr»([a,b],T.G) (see [15, 35]). We will give an alternative proof
of this.

Let e € G be the neutral element, let L, : G — G, h — gh be the left translation by
g € G and the action

GxTG—=TG, (g,vp)— gy :=TLy(vy) € TypG.
If o:UCG—V CT.G is a chart in e such that ¢(e) = 0, then the set

Qp:=|Jgvere
geG

and the map
Yo :Q, =G, v mrg(v) ((p*l(ng(v)*l.v))

defines a local addition for G (see e.g. [25]); hence ACL»([a,b], G) is a smooth manifold
with charts constructed with (£2,,3,).
Let po : G x G = G and A\g : G — G be the multiplication map and inversion maps

on G respectively, we define the multiplication map pac and the inversion map A4¢ on
ACrr([a,b],G) as

mac = ACLp([a,b],ug) : ACLp([a,b],G) X AC’Lp([a, b],G) — ACLp([CL, b],G)

and
Aac = ACLp([a, b],Ag) : ACLP([CL, b],G) — ACLP([G, b],G)

that by Lemma 2.1.17 and Proposition 2.3.8 are smooth.
We observe that for the neutral element (. : [a,b] — G, t — e of AC»([a,b],G) we have

PAC(C@) = ACLP([G’? b]? TeG)‘

If \Ilgel :Ue, = V¢, is a chart in (¢ € ACr»([a,b],G), then we have U, = AC([a,b],U)
and V¢, = AC([a,b],V). Moreover, we see that

V¢, 0 ACL([a, b], ) (1) = Xy 0 (90 1)
=nra(pon) (¢~ (mralpon ™ pon)
=ep !(epon)
This enables us to say that for the neutral element (. € AC»([a,b], G) the chart is given
by
ACLP([OH b]7 30) : ACLP([(I’ b]7 U) — AC([CL, b]> V)a n—pon.
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2.4 Semiregularity of right half-Lie groups.

Definition 2.4.1 A group G, endowed with a smooth manifold structure modeled on
a locally convex space, is called a right half-Lie group if it is a topological group and if
for all g € G, the right translations p, : G — G,z — xg are smooth.

Remark 2.4.2 Let G be a right half-Lie group modeled on a sequentially complete
locally convex space. We define the right action

TG xG—=TG, (v,9)—v.g:=Tpg(v) (2.4.1)
and consider its restriction
T.GxG—=TG, (v,g9)—v.9:=Tpg(v). (2.4.2)

Unlike on Lie groups, on half-Lie groups the latter action may not be smooth. Hence
we can not construct a local addition using a convenient chart around the identity (as
in Example 2.3.25).

The following proposition is direct application of Proposition 2.3.8.

Proposition 2.4.3 Let G be a right half-Lie group modeled on a sequentially complete
locally convex space which admits local addition and p € [1,00]. For n € ACr»([a,b], Q)
and g € G we define the function

n.g(t) :=n(t)g, for allt € la,b.
Then n.g € ACr»([a,b], G) for each g € G and the map
ACrr([a,b], pg) : ACLr([a,b],G) = ACLr([a,b],G), n+—n.g

is smooth.
Remark 2.4.4 The smoothness of the map

R : ACrr([a,b],G) x G — ACLe([a,b],G), (n,9) — 1.9

would imply the smoothness of the multiplication map on G. In fact, since the point
evaluation map e, : ACr»([a,b],G) — G, n+— n(a) and the map ¢ : G — ACr»([a,b],G),
g — [t — g], are smooth, the multiplication map on G would be smooth as it coincides
with the composition

eaoRo((,idg): Gx G — G, (h,g)w hg.

Definition 2.4.5 Let G be a right half-Lie group modeled on a sequentially complete
locally convex space E which admits local addition, p € [1,00] and n € AC»([a,b], N).
Let P = {to,..,tn} be a partition of [a,b] and {(p;,U;) : i € {1,...,n}} charts of G such
that verify the definition of absolute continuity for n. For each i € {1,...,n} we denote

7 1= p; O n[ti—hti] S ACLP([tifla tl]? E)
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Then n] € LP([ti—1,t;], E). Let 0} = [y] with ~; € LP([ti—1,t:], E). We define v : [a,b] —
TG via
~(t) == T(goi)il(m(t),%‘(t)), ift e [ti—hti[ with ¢ € {1, ...,n},

and v(b) = T(n) " (70(b), ¥ (b)). Then 7 is measurable (see [15]) and we define

1= [v].

Definition 2.4.6 Let G be a right half-Lie group modeled in a sequentially complete
locally convex space and p € [1,00]. We say that G is LP-semiregular if for each [y] €
LP([0,1],TcG), there exists an ACr»-Carathéodory solution 7, € ACL»([0,1],G) of the
equation

g(t) = ~y(t).y(t), telo,1] (2.4.3)
y(0) =e (2.4.4)

such that the differential equation satisfies local uniqueness of Carathéodory solutions
in the sense of [19]. In this case, we define the evolution map

Evol : LP([0,1],T.G) — ACrr(la,b],G), [v] — Evol(y) :=1n,. (2.4.5)

Additionally, if G admits a local addition, we say that G is LP-regular if G is LP-
semiregular and if the evolution map is smooth. The definition for the case of L2-
semiregularity and L;¢-regularity is analogous.

Definition 2.4.7 Let G be a right half-Lie group modeled on a sequentially complete
locally convex space and p € [1,00]. We say that G is locally LP-semiregular if there
is exists an open 0-neighborhood B of LP([0, 1], T7.G) such that for each [y] € B there
exists a AC»r-Carathéodory solution 1, € AC»([0, 1], G) of the equation

y(t) =~()y(t), t€]0,1]

and the latter differential equation satisfies local uniqueness of solutions.
For our purpose, we will use the subdivision property [35, Lemma 2.17].

Lemma 2.4.8 Let E be a locally convex space, p € [1,00] and [vy] € LP([0,1], E). For
eachn € N and k € {0,1,...,n — 1} we define

n

1 k+t
it 0,115 B s = 1o (2.

Then [y, € LP([0,1], E). Moreover, for each [y] € LP([0,1], E) and continuous semi-
norm q on LP(]0,1], E), we have

sup q¢(Ynk) = 0, asn — oo.
ke{0,...,n—1}
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Lemma 2.4.9 Let G be a right half-Lie group modeled on a sequentially complete locally
convex space which admits local addition and p € [1,00]. Then G is locally LP-semiregular
if and only if G is LP-semiregular.

Proof. Let G be locally LP-semiregular. Then there exists an 0-neighborhood B of
LP([0,1], TeG) such that Evol(8) € ACr»([a,b], G) exists for each [3] € B. Without loss
of generality we assume that

B ={[f] € L*([0,1], T.G) : [|I[B]l|zr.g< 1}

for some continuous seminorm ¢ on LP([0, 1], T.G).
Let [y] € L*([0,1],T.G). By Lemma 2.4.8, we find n € N such that

Ynx) € B, forall ke {0,1,..,n—1}.
Since each map
ayp : LP([0,1], TeG) — LP([0,1], Te.G), [1] = [Tk
is continuous linear, there is exists an open y-neighborhood W, such that
ap(W,) € B, forall ke {0,1,...,n—1}.

For [3] € W, and j € {0,...,n — 1} we write n; = Evol(5,,;) and we define the function
ng : [0,1] = G via
wa(t) == mo(nt), it € [0,1/n]

and
na(t) = mp(nt — k).(nk_l(l)....n0(1)>, it t € [k/n, (k+1)/n] with k € {1,..,n — 1}.
Then the function 7g is continuous and by Proposition 2.4.3 we have
08k /n,(kr1)/m) € ACLr ([k/n, (k +1)/n],G) .
Thus ng € ACr»([a,b],G). If t € [0, %] we have 73(0) = e and

15 (t) = 1io(nt)
= nfp,0(nt).no(nt)

1 <0 + nt) o)

:n—/@
n n

= B(t).ns(1).
For k € {1,..,n — 1} we have
8 <k> = N <nfL — k) ‘<77k—1(1)"~770(1)> = Nk—1(1)....n0(1)

n
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and for ¢ € [& k1]

tis(6) = Bt = k) (1 (L)oo (1) ) e (nt = )
= B(t).m(nt = k) (mi1 (L)oo (1) )
= B(t)-np(t).

Thus ng = Evol(8) and in particular, n, = Evol(y). Hence G is LP-semiregular.
The reciprocal is trivial. O

Definition 2.4.10 Let G be a right half-Lie group modeled on a sequentially complete
locally convex space which admits local addition and p € [1, 00]. We say that G is locally
LP-regular if G is LP-semiregular and there is exists a 0-neighborhood B of L?([0, 1], T.G)
such that its restricted evolution map Evol |p is smooth.

The following lemma is just an application of [34, Proposition 4.11] to our case.

Lemma 2.4.11 Let G be a right half-Lie group modeled in a sequentially complete locally
convez space which admit a local addition and p € [1,00]. We consider the evolution map
with continuous values

Evolc : LP([0,1], T.G) — C([0,1],G), [v] — Evola(y) = n,.

Then, Evole is continuous if and only if there exists a 0-neighborhood B of LP([0, 1], T.G)
such that the restricted evolution map Evole |p is continuous.

Proof. Since G is a topological group, the map
C([0,1],G) x €([0,1],G) = C([0,1], G),  (n,&) = n-(£(1))

is continuous. Following Lemma 2.4.9, if [y] € LP([0,1],T.G), for each [3] € W, we
have that the construction Evolg(f) implies that (Evolc)|w, is just the product of
composition of continuous maps. O

Lemma 2.4.12 Let Fy, Ey and F' be locally convez spaces, 1 < p < oo and U C FEy an
open subset. If r € NU{0,00} and f : Ey x U — F is a C"-map such that for each
y € U the map f(-,y): E1 — F is linear, then the map

fLP([0,1], Ev) x C(0,1],U) = LP([0, 1], F),  (y],m) = £ o (7], m)
is C.
Proof. Let (vo,m0) € LP(]0,1], E1) x C([0,1],U) and € > 0. Let 5 : F — [0,00) be a

continuous semi norm and K := ng([0,1]) € U. Since f is continuous and linear in
the first argument, for y € K there exists a y-neighborhood V,, C U and a continuous
seminorm r, : By — [0, 00) such that

£ (B(0) x V) € B (0).
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By compactness of K, there exists a finite numbers of yi, ..., y, € K such that
K CV :=UL,V,.
We define the continuous seminorm & : By — [0,00) by &k := Ky, + ... + Ky, and we have
B(f(z,b)) < k(z), forallzec Ey,beV

and C([0,1],V) is open in C([0,1],U). We estimate

i - :
IFn s = ([ B(Fo ule) m(e)))

([ m(w(t»dt)’l’

< [lollze x-

Hence f(y0,m0) € LP([0,1],F). Since the space C([0,1], Ey) is dense in LP([0,1], Ey),
there exists a . € C([0,1], Eq) such that

17e —vollLr p< 2¢/5.
Additionally, since the maps
C([0,1,U) = C([0,1], F),  n = fo(e,n)
and the inclusion map C([0, 1], F') — LP([0,1], F') are continuous, we have that
C([0,1], V) = LP([0,1], ), n = fo(ven)
is continuous. Hence there exists an open neighborhood W of n9 € C(]0, 1], V) such that

1f (Yesn) = f(vesm0) || Lo < 2¢/5,  for all p € W.

With this, for each n € W and v € LP([0, 1], E1) with ||y — Yo/ zr,x< 2¢/5 we estimate

1F(vsm) = fvosm0)llze.s < 1F (v = Yes Ml zo s+ F (ves 1) = F (0, m0) | 1o
<NfOy=vemMees+1f(vesn) — f(ves m0) e s+ f (Ve — Y0, m0) | 27 8
< v = vellze w1 f (ves ) = f(ves m0) | 2o g+ 117e — Yol e -

Since ||7e — Yollzex< 26/10 and ||y — Yol zr,x< 2¢/5 we have
17 = vell Lo < 2¢/5

and
£ (vsm) = f(yo,m0) || e s< 26/5 + 26/5 + 26 /10 = ¢
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Thus f is continuous. By linearity in the first variable the function f has a continuous
differential d, f : LP([0,1], E1) x LP([0,1], E1) x C([0,1], E3) — LP([0,1], F) in the first
variable. Let consider the map f as a C'-map. If z € Ey, y,y1 € Ey and t € R, then
we have

—_

1
F oy + ) = fo) = [ dof(a,y+ tspm)ds
0

whenever y + [0, 1]ty; C U. Given that the map dof : B3 X U x Ey — F is continuous,
identifying C([0, 1], F4 x E3) with C([0,1], E1) x C([0, 1], E2), we have that the map
dof + LP([0,1], 1) x C([0,1], U) x C([0,1], By) — LP(10,1], F), (v, m,m) ~ daf (v, n,m1)
is continuous. For ¢ € [0, 1] we denote

gt:C([O,l],F)*)F, 7*_)7(25)'

Since the family of maps {g; : t € [0,1]} separate points on C([0,1], F), we have that
the equality

| =

1
(fo(yesn+tm)—fo(vem) = /0 da f (e, + tsni, n1)ds

is valid for each v. € C([0,1], E1), n € C([0,1],U), m € C([0,1], E2) and ¢ € R* such
that

By density of C([0,1], E1) on L?([0,1], E;) and continuity of f, for 4 € L?([0, 1], E) the
equation verifies

~ ~ 1N
% (f(%n +tn) — f(%n)) = /O do f(y,m + tsny,mi)ds.

Let v, n and 19 be fixed, then the map (¢, s) — cfl;f('y, n-+tsni,n1) is continuous, including
in t = 0. Then, taken the limit ¢ — 0 in the equality we obtain

do f(y,mm) = dof (v, 1,m).

Hence the continuity of c/lg\f implies that the map fis C'. Proceeding by induction, if f
is a C*-map, since f is linear in the first variable we have

af(v,my1,m) = dif(v,71,m) + daf (v, m,m)
= f(v,m) + daf(y,m,m).

By the induction hypothesis f and dof are C"71, hence gl;f is O with c/lg\]/” = dof,
thus fis C". O

For the case L2S we recall [15, Proposition 2.3].
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Lemma 2.4.13 Let E1, E5 and F' be integral complete locally convex spaces and U C FEo
an open subset. If r € NU{0,00} and f: E1 x U — F is a C"-map such that for each
y € U the map f(-,y): E1 — F is linear, then the map

o L2([0,1], Br) x C([0,1],U) = L([0, 1), F), - ([,m) = f o (1], m)
is C".
Theorem 2.4.14 Let G be a right half-Lie group modeled in a sequentially complete

locally convex space space E which admits a local addition and 1 < p < co. Let G be
LP-semiregular with continuous evolution map

Evolc : LP([0,1],T.G),— C(]0,1],G) ~ — Evolec(7).
If the restriction of the right action
7:T.GxG—=TG, (v,9)— v.g
s continuous, then the evolution map
Evol : LP([0,1], T.G),— ACr»([0,1],G), ~+— Evol(7)

is continuous. If G is a right half-Lie group modeled in an integral complete locally
convez space E, then if we replace LP with LY the result remains valid.

Proof. Let [y] € LP([0,1],7cG). Let P, be a open neighborhood of Evolc(y) in
C([0,1],G), then there exists a partition P = {to,...,t,} of [0,1] and a family of charts
; : Uy — V; such that

Pryy = ﬂ{n € C([ti—1,t:], Us) = m([tiz1,ts]) € Ui}
i=1

Let Q) = Evolg! (Ppy)), then Q) is an open neighborhood of [y] in LP([0, 1], T.G). We
will show that the map

Evol ’Q[’Y] : Q[’Y] — 'P[,y] N ACLp([O, 1], G), Y = EVOI(’)/)

is continuous. The map

01 : Q= [[ 2P (i1, ti]. TeG), 18] ([Blis )iy

i=1

is a topological embedding. For each i € {1,...,n} we have

EVOIC(ﬁ’[ti,Ltd) = EVOIC(IBH[ti,l,ti]? fOI' aﬂ [/3} € Q[’y]
and each map C([ti—1,t;],U;) — C([ti—1,ti], Vi), n +— @; on is a homeomorphism. This
allow us to define the continuous map

n

<I)2 : QM — H C([ti—ly ti]a Vz)a [ﬁ] = (901' © EVOIC(/B)“Q—LU])?:l .
=1
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We consider the map
fi : T.GxV; = E, (v,3) dp;ot(v,p; " (2)).
Then each f; is continuous and for each = € V; the function
fi(hz) : T.G = E, v fi(v,x)
is linear. Hence by Lemma 2.4.12 the map

fi : Lp([ =1, ] T G) X C([ =1, ]7V2) - Lp([ti—lﬂtiLE)? ([/8]777) = fio ([6]777)

is continuous. We denote

n

F T[22t 1], TeG)x O ([ti-1, 1), Vi) = T L7 (i1 6], B, ([Bilsmi)iey = (fio (18] mi))ies -

i=1 i=1

Then F' is continuous, where for each i € {1,...,n} we have

fio ([Bil,mi) = dpi o T([Bi], ¥ 0772)

This allow us to define the continuous map

3: Qpy — HLP([tz'—hti],E) x C([ti-1,ti], Vi),
i=1

/8 — ( ([/3‘ ti—1,t; ]:| $Yi © EVOIC(/B)“Q,LQ]) , P5 O EVO]C(B)’[tifl,ti}>i:1
where for each i € {1,...,n} we have

© ([5’[151-,1,151-]] ,0i o Evolg \[ti,l,ti]) =dp;oT ([ﬁl[ti,l,t,-]] 7901'_1 °o®;o EVOIC(B)‘[ti,l,ti])
=dp;oT ([ﬁl[ti_l,t,-]] 7EVOIC(5)|[t,-_1,ti])
= dy; o (Evolc ()i, y.u)
= (i o Evole(8)li_y.)

Hence
P3([8]) = ((soz' o Evolo (8|, 1.4) » i © Evolc(ﬁ)l[ti,l,t,-]x:l, for all [8] € Qy
We set the topological embedding (see Lemma 2.1.13)
U, ACpo([ti—1,ti], Vi) — LP([ti—1,ti], Vi) x C([ti—1,ti], Vi), a— (d/,a)

and

n

v HACLP([ti_l,ti],Vi) — HLP([ i—1; ] T G)XC([ i—1, ]7Vi)a (O‘i)?:l — (a;’al)?—l'
=1 =1
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Thus Im(®3) C Im(¥). For each i € {1,...,n} we note that

-1
(wil™) ™ (o5 0 Bvole(B)l, 1) i © BYole(B) s,y ) = i © Bvol(B)lg,_ 0

for all [3] € Q[,). We set the continuous map

1 n n
Dy = <\I,’Im(‘1f)> ods: Q) — HACLP([ti,l,ti],Vi), 18] = (0i 0 Evol(B) [,y )y -
i=1
Let denote the homeomorphism onto its image (see Proposition 2.2.9)

(I)5 : ACLP([Oa 1]7 G) - HACLP([tifh tl]a G)7 n— (77|[ti_1,ti])?:1-
i=1

and the homeomorphism

O : [[ACL ([ti-1.ti, Vi) = [[ ACLo ([t 1], Us), 7 (0" o m)iy.
=1 =1

We see that

Pgo®y: Qpy — HACLP([ti—lvti]a Us), [B]+ (EVOI(B)‘[ti_l,ti])?zl .
i1

Since each function Evol(f) is continuous, we have that (®go®y) (QM) C Im(®s5), hence

-1

Thus the evolution map Evol is continuous.

For the case LSS, by Lemma 2.4.13, the proof is analogous since the map

fi L2 ([t 1], TeG) x C([tiz1, 1), Vi) = Ls([tie1, ti, E), - ([Bl,m) = fio (18],n)

is continous for each i € {1,...,n}. O

2.5 Semiregularity of Diff;(R")

Let n,m,r € N. We consider the Fréchet space C(R™,R™) of continuous functions
¢ : R™" — R™, whose topology is generated by the famility of seminorms
||HL C(Rn7Rm) - [O> OO): ¢ = sup|¢(a:)|
x€L
for each non empty compact subset L C R™. Let C"(R™,R™) be the Fréchet space of all
C"-maps ¢ : R® — R™, whose topology is the compact-open C"-topology, i.e., the initial
topology with respect to the maps
0%

C"(R™",R™) - C(R",R™), ¢»—>@
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for o € Nj with |a|< r. Let K C R™ be a non empty compact subset, we define the
Banach space of C"-maps supported in K as

Cr(R™,R™) = {$ € C"(R",R™) : ¢|pm x = 0} (2.5.1)

endowed with the induced topology.
We denote derivative map

D: Ch(R™,R"Y) = C5 L (R™, R™™), fs Df = f (2.5.2)

where f’(x) is the Jacobian matrix of f.

Definition 2.5.1 Let Diff"(R™) be the set of C"-diffeomorphisms ¢ : R” — R"™. The
set Diff"(R™) is a group under the composition and we define the subgroup Diff ;- (R™) of
C"-diffeomorphisms which are supported in a compact set K C R™ as

Diff; (R") := {¢ € Diff'(R") : ¢ — idgn € C'y(R",R")}. (2.5.3)

Let Vi = {¢ —idgn € C(R",R") : ¢ € Diffx(R")}, then Vg is open in C} (R"™,R")
and the map
@ DiffL(R") = Vi, ¢ ¢ — idpn (2.5.4)

is a global chart for Diff-(R™), turning it into a right half-Lie group modeled on the
Banach space C(R™,R™) (See [17, Proposition 14.6]). On the set Vi we define a group
multiplication by

px1p = (27 (¢) o d(¥)) =¥+ po (idrn +1), for each ¢, € Vi

with the constant function 0 as neutral element.

Remark 2.5.2 We will study the L!'-semiregularity of Vi instead of Diff;(R™). Since
Vi is an open set of a locally convex space, we have

TVk = Vg X Ci(R",R™).
For ¢ € Vi fixed, we have the right translation
py Vi = Vi, ¢ P+ ¢o (idrn + 1)
and its derivative
dpy : Vic x Cie(R™,R") > CR(R™,R"), () = 0 (idgn + ).
Identifying ToVk with {0} x C%(R™,R™), the restricted right action is given by
({0} x O (R™,R")) x Vg — TVk, ((0,¢),%) = dpy(0,¢) = @ o (idgn + 1)) (2.5.5)

Hence the right action is continuous (see e.g. [16]).
If (¢,¢) € Vi x C)(R™,R™), we have

(6, 0) % :=Tpy(p,p) = (¢ * Y, po (idrn + ).
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If (0,7) € £}([0,1],TyVk), we want to find a function n € AC»([0, 1], Vi) such that
n =v.m, ie.

(1(6),7'(®)) = (1(), (1) © (idsn + (1)), for almost all ¢ € [0,1].
In other words, for v € £1([0, 1], C%-(R™,R™)), we need a function € ACL»([0,1], Vi)
such that 7(0) = 0 and

n(t) = /0 v(s) o (idgn + n(s))ds, for all ¢t € [0, 1].

Setting ¢ = idgn + 7(s), this is equivalent to

¢(t) =idgn + /t’y(s) o ((s)ds, for all t € [0, 1].
0

Let €, : C(R",R") — R™ be the point evaluation map for x € R", then each ¢,
is continuous linear and the family of maps (¢;).crn separate points on CJ (R",R"),
hence the equation holds if and only if the functions (, := €, o ( € AC1([0,1],R"™)
satisfy

t
Gt = 2 +/0 () © Co(s)ds, for all ¢ € [0, 1].

Theorem 2.5.3 Let 1 < p < co. If r € N, then the right half-Lie group Diffz(R™) is
LP-semiregular. Moreover, the evolution map

Evol : LP([0, 1], Te Diff - (R™)) — ACL» ([0, 1], Diff & (R™)), ~— My
1S continuous.

Proof. Following the discussion in Remark 2.5.2; we will show that Vi is locally LP-
semiregular.
We define the continuous seminorm

a: Cg(R"R") = [0,00), a(f):=[[fllze,))0p= SeuﬂglllDf(ﬂf)llop-

For 0 < L < 1, we denote the open ball centered in 0 € LP([0,1], C% (R™,R™)) by

1 1/p
By = {m € 22([0.1), C® B : Irluni= ( [ (@ onp(esar) <L}~

For x € R", we define the smooth map
c:R" — C([0,1],R"), z~ [t x].

Let J : L'([0,1],R™) — C([0, 1], R™) be the continuous linear operator

J([E) () ::/0 &(s)ds, for all t € [0, 1].
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Since the evaluation map ¢ : C(R",R™) x R" — R" is C°*" in the sense of [1] and
hence C". By Lemma 2.4.12 the map

®,, - LP([0,1], C (R, R™)) > C([0, 1], R") — LP([0, 1], R™), @ ([7],¢) := g0 ([7],¢)

is well defined and is C". We define the operator 7' : Br x R"™ x C([0,1],R") —
C([0,1],R™) via

(I, 2, O)(#) 1= ea(t) + J(Bn(]7], ) (1)
—ot / () (¢(5)) ds

for t € [0,1]. Then T is C°>°>" in the sense of [2].
Let [y] € By and x € R" be fixed, for (1, (2 € C([0,1],R™), by the Mean Value Theorem
we have

100G =700 G0 = [ (D10) (@0 +5(@(b) = AN - aB)ds
Thus

1T([7], 2, ¢2) = T([V], 2, C1)lloo = sup
te€[0,1]

/0 (1(5) © Ca(8) — 7(s) 0 C1(s))ds

1
< swp [ |(Dv®) @0 + s(@lt) G - ) _ds
te(0,1] JO 00
1
< s DOl 0 — ol
1
= sup [ (i)t - Gl
te(0,1] JO
< ||'7||L1,a||c2 - Cl”oo

< Ve allCz = Gillos
< LHCQ - ClHoo

Hence T'([y],z,-) is a C"-map and an L-contraction. By Banach’s Fixed Point Theorem,
there exists ([, € C([0,1],R") such that

T(V], 2, {y2) = e
By [15, Lemma 6.2] the map
Fi: By xR" = C([0,1,R"), (7], ®) = (e
is C". By the exponential laws, we have:

a) Fy: (Bp xR") x [0,1] = R, ([7],2,t) = (py(t) is C™0.
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b) F3: Bp x [0,1] = C"(R™,R"™), ([7],t) = (py,.(t) is C™°.
c) Fy:Br — C([0,1], C"(R™,R™)),  [y] = (}y] is continuous.
Let z € R"\ K and (},, be the fixed point of

t

Cla(t) =2 +/0 V(8) (Cpy) (5)ds.

Since y(t)(z) = 0 for each t € [0, 1], the constant map ¢, is also a fixed point and by
uniqueness of solutions we have (), = ¢;. Let I : [0,1] — C"(R",R"), t > idgn the
constant map mapping to the identity map. We define

S+ Br = C([0,1], C"(R™, R™)),  [7] = Fu([y]) = L.

Then for each t € [0, 1] we have S([v])(t) € C%(R™,R™). Moreover, since S is continuous
and Vg is open, there is exists an 0-neighborhood B C By, such that S(B) C Vg . Hence,
we can consider the map S as the continuous map

S:B—C((0,1,Vk), M= F(h]) -1

where, by the discussion in Remark 2.5.2, if [y] € B we have that 1 := S([y]) is solution
of

t
n(t) = / v(s) o (idgn + n(s))ds, for all t € [0, 1].
0
Hence Evol(vy) = 7. In consequence, Vi is locally LP-semiregular and thus, by Lemma
2.4.9, the half-Lie group Diff ;- (R") is LP-semiregular.
Moreover, the evolution map restricted to the 0-neighborhood B is given by

Evol |B : B - Lp([ov 1])01}(0&”71&“)) — ACLT’([[)? 1]7VK)7 0 0ias S’(,y)

Since S is continuous, by Lemma 2.4.11 the evolution map with continuous values Evole
is continuous. Moreover, since the restricted right action of Diff ;- (R™) is continuous, by
Theorem 2.4.14, the evolution map

Evol : LP([0,1], C(R™,R"™)) — ACL»([0,1],VK), v+ Evol(y)
is continuous. O

Proceeding exactly as the case LP, for the case Ly, we have the same result.

Proposition 2.5.4 Ifr € N, then the right half-Lie group Diffy(R™) is L2 -semiregular.
Moreover, the evolution map

Evol : L ([0, 1], T. Diffg (R™)) — ACLe ([0, 1], Diffie(R™)), v~ 1y

18 continuous.
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Proof. For 0 < L < 1, we define the open ball centered in 0 € L22([0, 1], Cf (R™,R™))
via

Br, :={[7] € L%([0,1], C (R™,R™)) : [|7]| Log,a:= ess[gli}pa(v(t)) <L}
te|0,

Following the same notation as Proposition 1.0.7, since the evaluation map e is C"*°,
by Lemma 2.4.13 the map

® : L2 ([0, 1, O (R™, R™)) x C([0, 1], R") = L ([0, 1], R"),  @n([v],€) := e o ([, ¢])

is C". Hence the operator T": By, x R" x C([0,1],R"™) — C(]0,1],R"™) given by

T(], 2, 0)(t) == o +/0 () (C(s)) ds, for t € [0,1].

is a C°°"-map. Let [y] € L2([0,1],Ck(R",R™)) and = € R™ be fixed, for (1,(2 €
C([0,1],R™), by the Mean Value Theorem we have

1
100 Gl =70 0G0 = [ (DY0)(@(0) +5(E(t) = G0)-Glt) = Ge)ds
and

[9a(D1, )0 = Bl OOl = [9(8) 0 6) = 7(1) 0 G (D)
1
< [1(Pr0) (@0 + 5(@(®) = OG0 — v ds

< DY)l oo 1110p 1162 = Call 250100
= a(v(t)[I¢2 = Cill zoo - loc -

Hence
[@n([7]: C2) = Pn([V] C)llLog,00 < 1V 222 allC2 — Cill oo oo -

Thus T'([y],x,-) is a C"-map and a L-contraction. With this, following the same steps

as Proposition 1.0.7 we can show that Diff 7 (R"™) is L2o-semiregular and there exists a

0-neighborhood B in L22([0, 1], T.Diff ;- (R™)) such that the restricted map evolution map
Evolc | : B — ACLx=([0,1], Diff ¢ (R™)), [v] = Evolc(vy)

is continuous. By Lemma 2.4.11 the evolution map with continuous values Evolg is

continuous. Moreover, since the restricted right action of Diff ;- (R™) is continuous, by

Theorem 2.4.14, the evolution map

Evol : L3([0,1], Cje (R, R™)) = ACp([0,1], Vi), 7+ Evol(y)

is continuous. O
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2.6 L’-Semiregularity of Diff " (M)

Let r € N. Let M be a compact smooth manifold without boundary, g be a smooth
Riemannian metric on M and exp : D C T'M — M be the Riemannian exponential map,
with exp,, := exp |7, for each p € M. Let 7wy : TM — M be the bundle projection
and W C D be an open neighborhood of the zero-section such that the map

(mrar,exp) : W CTM — M x M, v~ (mra(v),exp(v))
is a diffeomorphism into its image. In particular, if W, := W NT,M, the map
exp, [w, : Wp € T,M — exp, W,) € M

is a C*°-diffeomorphism for each p € M.
Let Diff "(M) be the set of all C"-diffeomorphism ¢ : M — M. For each ¢ € Diff " (M)
we define the Banach space of C"-sections

Tor(¢) == {X € C"(M,TM) : 7 0 X = ¢}
and the open 0-neighborhood
Vs :={X € Lor(¢) : X(M) C W}

If
Uy = {expoX € Diff "(M) : X € Vy}
then the map
Uy Uy = Vo, U(O)P) = (expylw,) " (#(p)

define a chart for Diff (M) on ¢, with inverse given by
\Il(;l :Vy — Uy, X = expolX,

turning Diff "(M) into a Banach manifold. Moreover, under the composition the mani-
fold Diff "(M) becomes a right half-Lie group (see e.g. [17]). We see that for the neutral
element e = idys, the tangent space T, Diff "(M) coincide with space of C"-vector fields
X : M — TM, denoted by X" (M).

The restricted right action

X" (M) x DiffL(R") — TDiff5(R"), (X,¢)— X.6 = X 0 ¢ (2.6.1)

is continuous (see e.g. [16]).
Let [y] € LP([0,1], X"(M)), we will study the equation

n(t) =~(t).n(t), telo,1] (2.6.2)
n(0) = idp-
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Definition 2.6.1 Let (E,||-||g) be a normed space and U C E be a subset. We say
that a function f : [a,b] x U — E satisfies an L'-Lipschitz condition if there exists a
measurable function g € L'([a,b],R) such that

Lip(f(t,-)) < g(t), t€ [a,b],
where Lip(f(t,-)) € [0, 00| denote the infimum of all Lipschitz constants for f(¢,-): U —
E.

Definition 2.6.2 Let M be a C'-manifold modeled on a normed space E, J C R be a
non-degenerate interval and f : J x M — TM be a function with f(¢,p) € T,M for all
(t,p) € J x M. We say that f satisfies a local L'-Lipschitz condition if for all ¢y € J and
P € M, there exists a chart x : Uy — V,; of M on p and a relatively open subinterval
[a,b] C J which is a neighborhood of ¢y in J such that the map

frila, b x Vi = E,  (t,z) — dk (f(t,ffl(y)))

satisfies an L'-Lipschitz condition.

Remark 2.6.3 Let (E,||-||) be a normed space and f : [a,b] x M — TM be a map
with f(t,q) € T,M for all (t,q) € [a,b] x M, which satisfies a local L'-condition. If
7,1 [a,b] = M are two AC}:1-Carathéodory solutions to

y = f(t,y)

satisfying 7(tg) = n(to) for some ty € [a,b], then 7 = n [15, Proposition 10.5]. If the
initial value problem

y'(t) = f(t,y(t)), tela,b]
y(0) =¢

has a (necessarily unique) solution v, : [a,b] — M for each ¢ € M, then we say that f

admits a global flow for initial time ty and write
Fl,(q) = (0),

for all ¢t € [a,b] and ¢ € M.

The following result can be found in the appendix of [15] for the context of ACp:-
functions with values in the Lie group of C'*°-diffeomorphism with compact support
Diffe°(M). However, this result is also valid in our context.

Theorem 2.6.4 Let 1 < p < oo and [y] € LP([0,1], X"(M)), then map
7:[0,1] x M = TM, 7(tq):=~(t)(q)

satisfies a local L'-Lipschitz condition. Let n € AC1»([0,1], Diff"(M)) with n(0) = idy.
Then n = Evol([v]) if and only if f admits global flow F for initial time to = 0 and

n(t)(p) = Fo(9),

for allt € [0,1] and g € M.
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The following result follows the same steps as the proof of the L'-regularity of Diff>°(M)
proved in [15, Section 11]. We recommend to the reader to read the reference to see
some steps in detail.

Theorem 2.6.5 Let M be a compact smooth manifold and 1 < p < co. Ifr € N, then
the right half-Lie group Diff "(M) is LP-semiregular. Moreover, the evolution map

Evol : Lp([O, 1], TeDzﬁ”"(M)) — ACLp([O, 1], Diff"(M)), [*y] = 1y
18 continuous.

Proof. For ¢ € Diff "(M), we can choose a finite locally finite cover (U;)_; of M by
relatively compact, open subsets sets and charts x; : U; — Bs(0) € R™ such that the
family of open sets r; ' (B1(0)) cover M and U; C ¢~*(Uy,) for some chart v; : Uy, — Vi,
of M (see e.g. [27]). For X € I'cr(¢) we write

X;:=d;o X onw;': Bs(0) — R™.
Then, for each ¢ € [1,5] the map
pe:Tor(d) = [ C7(Be(0),R™), X = pu(X) = (Xil g,0)) s
=1

is a linear topological embedding with closed image (see [3]).
Let ¢ = idys, then T'er(idpys) = X7(M). Doing the corresponding identifications of
product spaces, we have the linear topological embeddings with closed image

Rs == L7(10,1], ps) : LP([0, 1), X" (M) — [ L7([0, 1), C"(B5(0),R™)), ~ = pso~y
=1

and

n

Ry :=C([0,1], p1) : C([0,1], X" (M)) — [[ € ([0, 1],C7(B1(0),R™)), ~+> pro.
i=1

Before we study the equation for [y] € LP([0, 1], X"(M)), the topological embedding Ry
allows us to study it first for

[’Y] S Lp([oa 1]7 CT(B5(0)¢Rm))
We consider the continuous seminorm ¢ : C"(B5(0),R"™) — [0, 00) given by

a(¢) == sup ([¢'(2)llop+l6(2)llo), for all ¢ € C"(B5(0),R").
x€B4(0)

For 0 < L < 1 we set the open ball

By = {y € L’([0,1],C"(B5(0),R™)) : |[7l|zr.g< L}-
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Just like the case for Diff;(R™), we need an ACpp-Carathéodory solution ¢ : [0,1] —
B4(0) that verifies the integral equation

C(s) =5+ /0 2(s) (C(s))ds, 1€ [0,1],

for [v] € By, and x € B3(0).
We define the operator T': By, x B3(0) x C([0, 1], B4(0)) — C([0, 1], B4(0)) by

t
T(hLe. ) =+ [ 90 C)ds, e .1
By Lemma 2.4.12, the map T is C°°" and for each [y] € B, and x € B3(0) we have

Lip(\IJ([’y], T, )) <L.

Thus, by Banach’s Fixed Point Theorem, for each ([v],z) € Br x Bs3(0) the map
U([y],,-) has a unique fixed point (), € C([0, 1], B4(0)) and

F: Br x B3(0) = C([0,1], B4(0)), ([v}:#) = (o)
is O (see [15, Lemma 6.2)). By the exponential law, we have
a) Fy: (Br x B3(0)) x [0,1] = B4(0), ([7],t,2) = (pppa(t) is CT°.
b) Fy: By, x [0,1] = C"(B5(0), B4(0)), ([7],t) = (py(t) is C°.
¢) Fi: By — C(10,1],C"(B3(0), Ba(0)), ] > Cyy is contimuous.
Let py : C"(Bs(0), Ba(0)) — C"(Ba(0), Ba(0)), ¢ — wl5,(0). we demote
H :=C([0,1], p2) o Fy : B, = C([0,1], C"(B2(0), B4(0)), [7] = p2 o (-

Then H is continuous. We will show that H has absolutely continuous values.
Let consider the open set

| B2(0), B4(0) ], := {p € C"(B3(0),R™) : ¢(B2(0)) € B4(0)}.

Then the map

S: C7(B5(0),R") x [ B2(0), B4(0) | — C"(B2(0),R™),  (¢,) = o

is continuous. Moreover, since S is linear in the first variable, by Lemma 2.4.12, the
map

§: L7([0,1], C7(B5(0), B")) x C([0,1], | B2(0), Ba(0)],) = LP([0, 1], C"(Ba(0), R™))
(a,8) = S o (a,B)
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is continuous. Hence, for [y] € By, we have

So (v, H(W) = (H()) =~-H([7]) € L7([0,1], C"(B2(0), R™)).

This allow us to define the LP-absolutely continuous function 7 : [0, 1] — C"(B2(0),R™)
given by

7(t) = idp,(0) + /0 v(s) (H([7])(s))ds, for each t € [0,1].

If we consider the point evaluation map e, : C"(B2(0),R™) — R™, ¢ — ¢(x), then for
each = € B(0) we have

ex (T(t) = e (H([y])(t)), foralltel0,1].

Since the family of maps (£:),ecp,(0) separate points in C"(B2(0),R™), we have 7 =
H([7])-

Hence H|[v] is absolutely continuous and we can consider the map
Hac : By = ACL: ([0, 1], C"(B2(0), B4(0)), 7] = H([])

which is the evolution map for CT(B ( ) B4(0)).
Now we will see the case for LP([0, 1], X" (M)). We define the 0-neighborhood of LP([0, 1], X" (M))

| e Lp ([0,1], X" (M)) : (Vi€ {1,...,n}) [vi] € Br}
which is open by continuity of Rs.
Let [y] € B, with [y] € Bp for each ¢ € {1,....,n}. If m € M, there is a chart

kj + Uj — Bs(0) such that m € nj_l(Bg(O)) for some j € {1,...n}. Let (pjx;m) €
ACr([0,1],C7(B2(0), B4(0)) be the solution of the integral equation

¢
C[’Y]ﬁj(m) (t) = nj(m) +/0 ")/j(S) (C[’y},/@(m)(*ﬂ) ds, te€ [0, 1].
Then () x;(m) 18 a ACLr-Carathéodory solution to

'(t) = v;(t) (z(), te€0,1]

Hence the function

n[’YLm : [07 1] — M? n[y},m(t) = K/;

is a ACp-Carathéodory solution of the equation
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Since 4 satisfies a local L!-Lipschitz condition, by Remark 2.6.3 the solution of this
equation is unique and 7,) ,, is well defined. Moreover, 5 admits a global flow for initial
time tg = 0, given by B

Ft’,yo(m) = n[v],m(t)
for all t € [0,1], m € M.
Following point 11.16 of [15], for each i € {1, ...,n} we can construct an exponential map

exp; : Di - TB5(0) — B5(0)

such that

—1 _ -1
k; ~ oexp; = expoTk; " |p,

i

There is an open set O; C D; containing By4(0) x {0} such that (pry,exp;)(Qi) is open
in B5(0) x B5(0) and the map

Yi := (pry,exp;)|o, : Oi € TB5(0) — ¥:(0;) € Bs(0) x Ba(0)
is a C'°°-diffeomorphism onto its image. Assuming that
Tr;H(0) CW,

since

{(37,33) HEAS B5(0)} - (prl,expi)((’)i),
there exists s; €]0, 1] such that

U {&} x By, () C (pry, exp;) (0:)

2€B4(0)

is a smooth diffeomorphism and there exists an s; €0, 1], such that ;" ! restrict to a
smooth diffeomorphism of the form

(Idp,0),0:) : | {2} x Be(x) € B5(0) x B5(0) = ;" | | {2} x By,(x)]| €O
x€B4(0) 2€B4(0)

with open image in O;. For each x € B4(0) we define the set
Oiz ={yeR™: (z,y) € O;}.

Hence, we have
0i(,") = (exp(x,)o,.) " |b.,0)
The set
Zia = {p € C"(Bo(0).R") : (v € Bi(0) () € By, (a) |

is open in C"(B3(0),R™) and the map

(0:)x : Ziw € C"(B2(0),R™) — C"(B1(0),R™), ¢ (0:)«(9) := 0 o (idp, (0), )
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is smooth since € is smooth [17, Proposition 4.23].
Let U :U — V be a chart on idy; € Diff" (M), then since p; is a topological embedding

we can assume that
n
Vi=p! (H vz)
i=1

for suitable open 0-neighborhoods V; C C"(B1(0),R™).
Since (6;)+(idp,(p)) = 0, by continuity of (6;). there exists open idp, )-neighborhoods
Vi C Z; » such that
(0:)« (Vi) C Vi
Since H(0)(t) = idp,) for all t € [0,1], by continuity of H there exists open 0-
neighborhoods P; C By, such that
H(P:) € C([0,1], %)

If i
P:=R;! (H 731»>
=1

then P is an open 0O-neighborhood in LP([0,1], X" (M)) with P C By.
This allow us to do the composition

(0;)« o H : B, C LP([0,1],C"(B5(0),R™) — C([0,1],C"(B1(0),R™)
Following the same steps of point 1.18 and 1.19 of [15], we have that for each [v] € P,
there exists an unique 0|,) € C([0, 1], X"(M)) such that
= (0. (H()))
Ru() = (00)-(H(D)
Then p1 (01,(t)) € [T, Vi, whence 0},(¢) € V. In consequence
“1(6),(t)) = expob,(t) € Diff "(M), for all t € [0,1].
Let m € M with = := k;(m), then we have

exp o (t)(m) = (k; ' o exp; oT'k;) 0 0} () (r; ' (x

= r; o exp; o(6;)« (H([]))(t) (x)

= ;"o exp; o (exp; [w,) ™ o H([n])(t)(x)
ki o H([yi))(t)(2)

= R0 (la(t)

= Ft:,/[)(m)'

)

Hence, we define
Ny = exp o, : [0,1] — Diff "(M).
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We will show that 7] is absolutely continuous. Since the exponential map exp is smooth,
we need to show that 6, is absolutely continuous, but this is equivalent to show that

0,1] = [T CT(B1(0),R™), t > p1 oy (b).

=1

But this map coincides with the map

0,1] = JTC7(B1(0),R™),  t = ((6:) (H ([n])i= (1)
=1

which is absolutely continuous. Since (6;), is smooth and H([y;]) € ACL» ([0, 1], C"(B2(0), B4(0))),
by Lemma 2.1.17, the composition and hence the product are absolutely continuous.
Then we have that
0[7] € ACLP([O, 1], XT(M))
whence
My € ACr»(]0,1], Diff "(M)).

In consequence, by Lemma 2.4.9 and Remark 2.6.3, the right half-Lie group Diff " (M)
is LP-semiregular. Since the map

Br — HC([O, 1],C"(B1(0),R™)),  [v] = ((0:)« (H([v])))i=s
i1

is continuous, the restricted evolution map with continuous values is given by

Evolg |p : P — ACL»([0,1], Diff "(M)),  [v] = n},) = exp o).

Hence, by Lemma 2.4.11 the evolution map Evol¢ is continuous and since the restricted
right action of Diff "(M) is continuous, by Theorem 2.4.14, the evolution map

Evol : LP([0,1], X"(M)) — AC»([0,1], Diff "(M)), [y] — Evol(y)
is continuous. O]

Now we will focus in the LP-semiregularity of the case Diff"(M) with M a compact
smooth manifold with boundary.

Definition 2.6.6 Let M and N be smooth manifolds with boundaries and suppose
f:OM — ON is a diffeomorphism, We define adjunction space M Uy N as the set formed
identifying each p € OM with f(p) € ON.

We recall [28, Theorem 9.29].

Theorem 2.6.7 Let M and N be a smooth manifolds with boundaries and f : OM — ON
be a diffeomorphism. Then the adjunction space MUy N is a topological manifold without
boundary which has a smooth manifold structure such that there are reqular domains
M',N' C MUy N diffeomorphic to M and N, respectively, such that M'UN" = M Uy N
and M' N N" = OM' = ON'. Moreover, M and N are both compact if and only if MUy N
18 compact.
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Definition 2.6.8 Let M be a smooth manifold with boundary. If M’ denotes a copy
of M, we define the double of M as the smooth manifold without boundary

DM = M Lig, M’ (2.6.4)

where idy : OM — OM’ is the identity map.
For p € M, we denote by (p,0) and (p,1) the corresponding element in M and M’,
respectively, and if p € 9M, then (p,0) ~ (p,1). By Theorem 2.6.7, the map

p: M — DM, p~[(p,0)]

is an embedding onto a regular domain of DM which we identify with M.

Definition 2.6.9 Let r € NU{0,00} and M be a smooth manifold with boundary. We
define the vector space of C"-stratified vector field on M as

X’!‘

str

We recall [18, Colorally 1.8].

Proposition 2.6.10 For each k € NU{0,00}, n € N, m € {0, ...,d} and locally convex
space F, the restriction map

(M) := {X € X"(M) : X(dM) C TOM}.

£ : C*RY, F) — C*([0,00)™ x R F)
has a continuous linear right inverse. Moreover, the restriction map
CHR?, F) — C*([0,1)%, F)

has continuous linear right inverse.

Remark 2.6.11 Let r € NU {0,00}, m € N and M be an m-dimensional compact
smooth manifold with boundary. By compactness of M, we find charts ¢; : U; — V; of
M around points p; € M such that (U;)%_, is a finite open cover of M which extends
to charts @; : U; — V; around p;. For X € X5, (M), we write

Y :=dpio X op;1:V; C[0,00) x R™™1 — R™.

Without loss of generality, we assume that V; = [0,00) x R™~! and we consider the
extension Y; : R™ — R™ of Y; given by Proposition 2.6.10. We define

)Z'i = T(ﬁi_l o }71 °0Q;: [71 — Tﬁi.

Then X; € X7(U;) and the map
k ~ ~
Oy XL (M) = [[X7(T), X (X)in
=1

is continuous linear. Let us consider Uyyy := M®, Uio := (M’)° and the open cover of
DM L N
A= {Uh ceey Uk‘7 Uk+17 Uk+2}-
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Then there exists a partition of the unity subordinate to .4, denoted by {h1, ..., hg, hx+1, Prro},
such that supp(h;) C U; for each i € {1, ..., kk+1,k+2}. N

Denoting the space of all C*-vector fields of U; with support on supp(h;) as xI(U;), we

see that the map

Xr(Uz) — X{(UZ‘), Y — hY

is continuous linear.

Moreover, if Z € X[ (U;), we can obtain an extension &(Z) € X" (DM) of Z by extending
it by 0, and a continuous linear map

& X (Ui)) - X" (DM), Zw— &(Z).
For X € X[, (M), we write Xj41 := X|as0. This enables us to define the extension map

k+1
a: X (M) = X"(DM), X o(X) =) &hX;)
=1

which is continuous linear.

Remark 2.6.12 Let M be a compact smooth manifiold with boundary and r € NU{cc}.
By [21, Proposition 1.3], the set Diff" (M) is a embedded submanifold of C" (M, DM).
This allows us to consider the inclusion map restricted onto its image

J : Diff (M) — J(Diff (M)) C C"(M,DM), ¢ ¢ (2.6.5)

then J is a diffeomorphism. Since for each g € C"(M, M) fixed, the right translation
map

pCT(g):CT(MaDM)_)CT(MvDM)? ¢'_>¢Og
is smooth. For each g € Diff" (M) fixed, the right translation map
plg) : DIff" (M) = Diff (M), 6+ 6o
can be written as
p(g) =T "o per(J(g)) o J.
Hence Diff" (M) is a right half-Lie group.
Theorem 2.6.13 Let M be a compact smooth manifold with boundary, r € N U {oo}

and 1 < p < co. Then the right half-Lie group Diff (M) is LP-semiregular and the
evolution map with continuous values

Evole : LP([0, 1], Te Diff (M) — C([0, 1], Diff (M)),  [v] — Evole(y)
18 continuous.

Proof. Let consider the map « : X%, (M) — X" (DM) as Remark 2.6.11, we define the

str
map

a:= LP(]0,1],«) : LP(]0, 1], X7,

str

(M)) = LP([0, 1], X" (DM)),  [y] = [evonl;

o4



which is linear and continuous. Since DM is a compact smooth manifold without bound-
ary, the right half-Lie group Diff" (D M) is LP-semiregular with continuous evolution map
denoted by

Evolps : Lp([O, 1],XT(DM)) — ACLP([O, 1],DiHr(DM)), ['y] — EVO]DM(’)/).

Let [y] € LP([0,1], XJ,,.(M)), we define the absolutely continuous function &, : [0, 1] — Diff"(DM)
by &, := Evolpa(a([y])). Then &, is the solution of the equation

&) =a(h)1)&(1), telfo,1]
&(0) =e.

For [v] close to 0, the proof of Theorem 2.6.5 shows that, for each p € M, the function
zp 1 [0,1] = DM, given by z,(t) := &(t)(p) is a solution of the equation

Zp(t) = a([Y])(t) o xp(t), ¢€[0,1]
zp(0) = p,

and this ODE satisfies local uniqueness of Caratheodory solutions. Looking at the
compact manifold M without boundary and the vector fields v(t)|gns € X" (OM) we
likewise get a solution y, : [0,1] — OM for each p € M, for the differential equation

Yp(t) = a((Y))(t) o yp(t), t€[0,1]

yp(O)

Then y, also solves the initial value problem for z,, whence x, = y, by local unique-
ness. In consequence zp([0,1]) € dM. This implies that for each ¢ € [0,1] fixed, we
have & (t)(M) C M, &,(t)(M') € M’ and &,(t)(OM) C OM. Therefore, we obtain
& (t)| v € Diff"(M).

Consider the smooth embedding ¢ : Diff" (DM) — C" (DM, DM), ¢ — ¢. Then the map

o
p.

i = AC1»([0,1],0) : ACL»(]0,1], Diff (DM)) — AC1»([0,1],C" (DM, DM)), 1 1o

is smooth. Let p : M — DM be the inclusion map, which is smooth and a diffeomor-
phism onto its image, then the maps

§" i= C"(p, DM) : C"(DM, DM) — C"(M,DM), ¢+ 6o p = |
and
p:ACL»([0,1],C"(DM,DM)) — ACr»([0,1],C"(M,DM)), nw p“on

are smooth.
Consider the restricted inclusion map J as in equation (2.6.5), by Lemma 2.1.25, we
define the map

7+ AC1»([0,1], J(Diff" (M))) — AC»([0,1], Diff"(M)), n+— J ton.
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The fact that & (t)|a € Diff" (M) for each t € [0, 1], enables us to define the function
Gy :[0,1] = C"(M,DM),  (,(t) = (jo po0)(&)(1)
which is in AC7» ([0, 1], Diff" (M)). Moreover, by definition of «, we have
a([(Y)(t) 0 G (1) = (t) o G (#).

Hence ¢, verifies the equation

G (1)
G (0)

Therefore Diff" (M) is LP-semiregular and the evolution map is given by

v(t).¢4(t), te[0,1]

€.

Evol : LX([0, 1], X5, (M) = AC1 ([0, 1], Diff" (M), [7] = (j o 5o 7o Evolpar o ) (7).
We consider the inclusion map
w: AC»([0,1],C"(M,DM)) — C([0,1],C"(M,DM)), n~n
which is smooth, and we define the smooth map
po : ACLy([0,1],C7 (DM, DM)) — C([0,1],C7 (M, DM)), 1 — w(p*on).
We write
jo : C([0,1], J(Diff" (M))) — C([0,1], Diff" (M), n— J ton

then 30 is continuous. Therefore, the evolution map with continuous values Evolg is
given by

Evolc: : ([0, 1], X3, (M) = C((0,1), Diff (M), 1) = (Je o e 0 7o Evolpar 0a ) (1)

and is continuous since is composition of continuous maps. ]
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3 Manifolds of mappings associated with
real-valued functions spaces

3.1 Preliminaries

Definition 3.1.1 Let m € N fixed, a set U of open subsets of product set [0, c0)™ will
be called a good collection of open subsets if the following condition are satisfied:

a) U is a basis for the topology of [0, 00)™.

b) If U € Y and K C U is a compact non-empty subset, then there exists V' € U with
compact closure V in [0,00)™ such that K CV and V C U.

c) If U C[0,00)™ is an open set and W € U is a relatively compact subset of U, then
there exists V' € U such that V is a relatively compact subset of U and W C V.

d) If ¢ : U — V is a C*°-diffeomorphism between open subsets U and V of [0, 00)™
and W € U is a relatively compact subset of U, then ¢(W) € U.

Remark 3.1.2 If we consider U = {U N [0,00)™ : U is open in R™} then U defines
a good collection of open subsets. This is also true for the case of open and bounded
subsets of R™.

Let U be a open subset of [0, 00)™, we write BC'(U, R) for the vector space of all bounded
continuous functions f : U — R endowed with the supremum norm ||-|/c.

Definition 3.1.3 Let M be a paracompact Hausdorff topological space. A chart ¢ :
U — V is a homeomorphism from an open subset U C M onto an open subset V' C
[0,00)™. We say that two charts ¢; : Uy — Vi and ¢9 : Us — Vi, are compatibles if
¢1(Uy) N ¢2(Us) = 0 or the transition map ¢y o ¢1—1 o1 (U NUz) — o2 (U NU,) is
smooth.

We say that M is an m-dimensional smooth manifold with corners if M is equipped with
a maximal family of charts {¢; : U; — V;}icr such that each pair of chart, are compatible
and M = U;e;Us;.

We say that N is a smooth manifold if it is a smooth manifold without boundary.

For our context, one important property of smooth manifolds with corners is the exis-
tence of cut-off functions.

Lemma 3.1.4 Let M be a m-dimensional smooth manifold with corners, K be a closed
subset of M and U be a open subset of M containing K. Then there exists a smooth
function & : M — [0, 1] such that £|x = 1 and supp(§) C U.
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Definition 3.1.5 Let U be a good collection of open subsets of [0,00)™. For U € U,
the vector subspace F(U,R) of BC(U,R) will denote a integral complete locally convex
space such that the inclusion map F(U,R) — BC(U,R) is continuous.

Let {b1,...,b,} be a basis for a finite dimensional real vector space E, we define the space

F(U,E) = F(UR)D
i=1
and we endow it with the the locally convex topology making the map
FUR)® = F(U,E),  (fis fn) = Y fibi (3.1.1)
i=1

an isomorphism of topological vector spaces.

We say that (F(U,R));¢, is a family of locally convex spaces suitable for global analysis
if the following axioms are satisfied for all finite-dimensional real vector spaces F and
F

(PF) Pushforward Axiom For all U,V € U such that V is relatively compact in U
and each smooth map f: U x E — F, we have f.(v) := fo (idy,~v|v) € F(V, F)
for all v € F(U, F) and the map

f*F<U7E)_>F(VY7F)7 PVHfo(idVaﬂ)/‘V)
1S continuous.

(PB) Pullback Axiom : Let U be an open subset of [0,00)™ and V, W € U such that W
has compact closure contained in U. Let © : U — V be a smooth diffeomorphism.
Then v 0 Ol € F(W, E) for all v € F(V, E) and

FOlw, E): F(V,E) - F(W,E), v+ v00|w
1S continuous.

(GL) Globalization Axiom : If U,V € U with V C U and v € F(V, E) has compact
support, then the map 4 : U — E defined by

[ @), zeV
() { 0, x €U\ supp()

is in F(U, E) and for each compact subset K of V' the map
ety Fx(V.E) = F(U,E), v—7

is continuous, where Fx(V, E) := {y € F(V,E) : supp(vy) C K} is endowed with
the topology induced by F(V, E).
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(MU) Multiplication Axiom : If U € Y and h € C>°(U,R), then hy € F(U, E) for all
v € F(U, E) and the map

mf . F(UE) = F(U,E), ~+~ hy
1s continuous.

Remark 3.1.6 Since the map in (3.1.1) is an isomorphism of topological vector spaces,
the Axioms (PB), (GL) and (MU) hold in general whenever they hold for £ = R.
Likewise, Axiom (PF) holds in general whenever it holds for F' = R.

Following [22, Remark 3.5], if U is a good collection of open subsets of [0, 00)™ and
(F(U,R)) ey is a family of locally convex space suitable for global analysis, then we
have the following results.

Lemma 3.1.7 Let U C [0,00)> be an open subset and V,W € U such that W has
compact closure contained in U and © : U — V be a smooth diffeomorphism. If F(V,R)
and F(W,R) are Fréchet spaces such that v o Ol € F(W,R) for all v € F(V,R), then
the map

FOlw,R): F(V,R) - F(W,R), v+ yo0O|w

1S continuous.

Proof. Let v € BC(V,R) and p: R — R be a continuous seminorm, then

7 © ©lw [loo,p:= sup p(y o Olw(x)) < sup p(v(2)).
zeW zeV

Therefore v 0 O]y € BC(W,R). We define the continuous linear operator
T : BC(®|w,R): BCO(V,R) - BC(W,R), ~+ vyo0O|w

with || T||,p< 1. Hence, its graph graph(T’) is closed in BC(V,R) x BC(W,R). Since the
inclusion map J : F(U,R) — BC(U,R) is continuous, we have

graph(F(O]w,R)) = (J x J) ™} (graph(T)).
Then F(O|w,R) is continuous by the Closed Graph Theorem. O

Lemma 3.1.8 If U € U, h € C(U,R) and F(U,R) is a Fréchet space such that
hy € F(U,R) for all v € F(U,R), then the map

my : F(U,R) - F(UR), v+ hy
18 continuous.
Proof. As in the previous lemma, my, is continuous since the operator
My, : BC(U,R) — BC(U,R), ~ hy

is continuous linear, the graph of my, is closed and therefore, my is continuous. O
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Lemma 3.1.9 Let U,V € U with V C U and K be a compact subset of V. Assume
that, for each v € F(V,R) with support in K, the map 7 : U — R defined by

v =), zeV
o) = { 0, zeU\ supp(y)
is in F(U,R). If, moreover, if Fx(V,R) is a Fréchet space then the map

evvi  Fk(V,R) = F(UR), y—7%
18 continuous

Proof. Likewise to the previous lemmas, if BCk (V,R) := {y € BC(V,R) : supp(y) C K}
then the map

BC(V,R) —» BCg(U,R), ~—7*
which extends functions by 0 is a linear isometry. ]

Remark 3.1.10 Since a manifold with corners admits cut-off functions, we can extend
the basic consequence of these axioms for the case R™ (see [22, Section 4]) to our context
with corners. Moreover, the proofs are exactly the same. However, the statement of
Lemma 3.1.12 is new and we provide a full proof.

Lemma 3.1.11 Let E and F be finite-dimensional real vector spaces and UW € U

such that W is relatively compact in U. If ® : E — F is a smooth map, then ® ovy|y €
F (W, F) holds for each v € F(U, E) and the map

18 continuous. In particular, if E = F and ® = Idg, then the restriction map
18 continuous.
Lemma 3.1.12 Let E and F be finite-dimensional real vector spaces and UW € U
such that W is relatively compact in U. If V is an open subset of E and
fV-oF
s a smooth map, then the map

FU/W. f):{y e FU,E): y(W) CV} = F(W,F), v forlw

18 smooth.

Proof. Given 7 in the domain D of F(U/W, f), we have that vo(W) is a compact subset
of V. There exists a smooth function y: V — R with compact support K C V such

that x(y) =1 for all y in an open subset Y C V' with 79(W) C Y. Then

G E—F. gy ::{ x(y)of(y) i;JEGE\K
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is a smooth function. Since f|y = g|y, we have that

fovlw =govlw

for all v € D such that v(W) C Y, which is an open neighborhood of 7 in D. To
see smoothness of F(U/W, f) on some open neighborhood of 7y (which suffices for the
proof), we may therefore replace f with g and assume henceforth that V' = E, whence
D is all of F(U, E). Tt suffices to show that F(U/W, f) is C* for each k € Ny, and we
show this by induction. For the case £ = 0, see Lemma 3.1.11. Let k¥ € Ny now and
assume that, for all £, F, U, W and f: V — F as in the lemma, with V' = E, the map
F(U/W, f) is C*. We claim that, for all v,n € F(U, E), the directional derivative

dF(U/W, f)(v,n)

exists and equals F(U/W,df)(v,n), if we identify the locally convex spaces F(U, E) x
F(U,E) and F(U, E x E); thus

dF(U/W, f)(v,n) = F(U/W.df)(~v,n)- (3.1.2)
If this is true, then
dF(U/W, f) = F(U/W,df)

is C* by induction and thus continuous, showing that F(U/W, f) is C'. Moreover, since
F(U/W, f)is C* and dF(U/W, f) = F(U/W,df) is CF, the map F(U/W, f) is Ck*1,
which completes the inductive proof. It only remains to prove the claim. To this end,
let v,n € F(U, E). Since F(U/W,df) is continuous by the case k = 0, the map

h: [0, 1] X [07 1] _>]:(W7F>v (t73) '—>df°(’Y+st77ﬂ7)\W :F(U/Wdf)<7+3t77777)

is continuous. As F(W, F') is assumed integral complete, for each ¢ € [0, 1] the continuous
path h(t,-): [0,1] — F(W, F) has a weak integral

1
1) = /0 df o (v -+ stn,n)\w ds

in F(W, F). The function I: [0,1] — F(W, F') is continuous by the theorem on parameter-
dependent integrals. For 0 # t € [0, 1], we consider the difference quotient
_FU/W, )y +tn) = FU/W, f)(y) _ foly+tn)lw + forlw

Al = t N t

Then
A(t) = 1(¢). (3.1.3)

In fact, for each z € W the point evaluation

ep: FW,F)—= F, 6+~ 0(x)
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is a continuous linear map. It therefore commutes with the weak integral and we obtain

1
1(t)(x) = <m»5£QWowﬂmmmm5

! — T
[ 00001 st o s = L0000 = 0
t)(x

);

applying the mean value theorem to the smooth function f. Thus (3.1.3) holds. Ex-
ploiting the continuity of I, letting ¢ — 0 we obtain

E
A(

t—0 t—0

1
lim A(t) = lim I(t) = 1(0) = /O df o (v,n)lw ds = df o (v,n)|w,

establishing (3.1.2). O

Definition 3.1.13 Let U be a open subset of [0,00)" and E be a finite-dimensional
real vector space. We let Fi,c(U, E) be the set of all function v : U — E such that for
each V' € U which is relatively compact in U we have v|y € F(V, E).
We see that each v € Foc(U, F) is continuous and by the previous lemma F (U, E) C
Froc(U, E). We endow Fio.(U, E) with the initial topology with respect to the family of
restriction maps

Froc(U,E) = F(V,E), ~v—=vlv
where V' € U which is relatively compact in U. This topology makes Fi,.(U, E) a
Hausdorff locally convex space.

Lemma 3.1.14 Let E be a finite-dimensional vector space. If U and V are open subsets
of [0,00)™ such that V. C U, then v|y € Fioe(V, E) for each v € Fioe(U, E) and the
restriction map

~Floc([])-E) _>~Floc(v7E)7 VHV‘V
is linear and continuous.

Lemma 3.1.15 Let E and F' be finite-dimensional real vector spaces and U C [0, 00)™
be open. If ® : E — F is a smooth map, then ® oy € Fio(U, F) holds for each
v € Fioe(U, E) and the map

floc(U’E)%floc(U’F)a ’7'_)(1)07

1s continuous. Moreover, if Q) is an open subset of E and ¥ : Q — F is a smooth map,

then W o~y € Fioo(U, F) holds for each v € Fioe(U, E) such that v(U) C Q.

Lemma 3.1.16 Let E be a finite-dimensional vector space, U and V be open subsets of
[0,00)™ and © : U — V be a smooth diffeomorphism. Then vy o © € Fi,.(U, E) for each
v € Fioe(V, E) and the map

FU,E)— F(V,E), vr—~v00O

1S continuous.
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Lemma 3.1.17 Let E be a finite-dimensional vector space, Uy, ..., U, be open subsets of
[0,00)™ and v; € Fioc(Uj, E) for j € {1,...,n} such that

’Yj|UiI"IUj - fyi’UiﬂU]w fOT’ all 7’7.] € {17 7”}

If V e U is relatively compact in Uy U ... UU,, then ¥ € F(V,E) holds for the map
¥ :V — E defined piecewise via y(x) = vj(x) for x € VN Uj.
Moreover, if £ is the vector subspace of H?Zl Fioc(Uj, E) given by the n-tuples (71, ..., 7n)
such that v;lu,nu; = Yilvinu,, for alli, j € {1,...,n}, endowed with the subspace topology,
then the gluing map

glue : € = F(V,E), (7,0, m) — 7

is continuous linear.

Definition 3.1.18 Let M be an m-dimensional compact smooth manifold with corners
and N an n dimensional smooth manifold. Let F(M,N) be the set of all functions
v : M — N such that for each p € M, exist charts ¢pr : Uy — Vi of M with
Vi € U and ¢y : Uy — Vi a chart of N, such that p € Uy, v(Uy) € Uy and
¢n oy ¢y € F(Var,R™).

Remark 3.1.19 For a compact smooth manifold without boundary M, the properties
of maps between F-spaces are studied in Section 5 of [22]. These properties can be
extended to the case with corners. We recall the more important results relevant for our
context.

Lemma 3.1.20 Let M be an m-dimensional compact smooth manifold with corners,
N be a n-dimensional smooth manifold and v : M — N be a continuous map. Then
v € F(M,N) if and only if ¢n o~y o qﬁX/} € Froc(Var, R™) for all charts ¢ar = Uyr — Vg
and ¢n : Uy — VN of M and N, respectively, such that v(Upr) C Up.
Lemma 3.1.21 Let ® : Ny — Ns be a smooth map between finite-dimensional smooth
manifolds, and M be a compact smooth manifold. Then ® on € F(M,Ns) for each
ne J—“(M, Nl).
Remark 3.1.22 Let M be an n-dimensional compact smooth manifold with corners
and E be a finite-dimensional vector space. We give F(M, E) the initial topology with
respect to the maps

f(M’E)_)]:(V(va)a VHVOQS_I
for ¢ : Uy — V4 in the maximal C* atlas of M.
Lemma 3.1.23 Let M be a compact smooth manifold with corners and E be a finite-

dimensional vector space. Fori € {1,....,k}, let ¢; : U; — V; be charts of M, W; € U be
a relatively compact subset of Vi with M = UF 14,0;1(W¢). Then the linear map

k
O : F(M,E) = [[FWi,BE), v+ (voo; ' |w,)
=1

k
i=1

18 a topological embedding with closed image.

The image Im(©) is the set S of all (v;)k | € Hle F(W;, E) such that v; o ¢i(p) =
vj 0 ¢;(p) for alli,j € {1,....k} and p € ¢; 1 (W;) N g7 H(W;).
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Lemma 3.1.24 Let M be an m-dimensional compact manifold with corners. If By and
E5 are finite-dimensional vector spaces, we consider the projections pr;j : Ey X Ey — Ej,
(x1,x2) = for j € {1,2}. Then

(F(Mapr1)7F<M7pr2)):‘F(M7E1 X EQ) _>f<M7E1) XF(M7E2)7 Py'_> (prl,p’l"g)o’}/

is an isomorphism of topological vector spaces.

Lemma 3.1.25 If M is an m-dimensional compact smooth manifold with corners, E
and F' are finite-dimensional K-vector spaces for K € {R,C}, U is an open subset of E
and g : U — F is K-analytic, the also the map

F(M,g): FIM,U) = F(M,F), ~ywgoy

18 K-analytic.

3.2 Space of F-sections

Let m,n € N. We assume that U is a good collection of open subsets of [0,00)™ and
(F(U,R)) ey is a family of locally convex spaces suitable for global analysis.

Let M be an m-dimensional compact smooth manifold with corners and N be an n-
dimensional smooth manifold. For v € F(M, N) we define the set

Lr(y):={oc€ F(M,TN):mryoo =7}

and we endow it with the pointwise operations, making it a vector space. We make
I'z(vy) a Hausdorff locally convex space, using the initial topology with respect to the
family of maps

hcp,qﬁ : F]-'(’V) - f(v<p7Rn), oc—dpoo O(p_l‘w

where ¢ : U, — V, is a chart in the maximal C*°-atlas of M, with W € U relatively
compact in V,, and there exists a chart ¢ : Uy — Vy of N with y(U,) C Uy. These maps
make sense because v(U,) C Uy implies o(U,) C TU, for each o € T'z(n).

Proposition 3.2.1 Let M be an m-dimensional compact smooth manifold with corners,
N be an n-dimensional smooth manifold and v € F(M,N). Fori € {1,....k}, let
w; Uy — V; be charts of M such that there exists W; € U relatively compact in V; with
M = UF_ 071 (W) and there exists a chart ¢; : Ug, — Vg, such that v (U;) C Uy,. Then
the map

i k

Oy Tr(y) = [[FWLRY), o (dgioooy w,),,

i=1
18 a linear topological embedding with closed image given by the vector subspace of ele-
ments (7;)i_, such that

7i 0 pi(p) = dey o (Tgp;) " <¢j oy(p),Tj0 @j(p)>

for alli,j € {1,...k} and p € p; *(W;) N ¢;I(Wj).
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Proof. The map ® is continuous by definition of the topology on I'#(y). We denote by
S the vector space of elements (7;)7_; such that

7i 0 pi(p) = dpi o (T'p;) " <¢j o(p),Tjo wj(?))

for all 4,5 € {1,..,k} and p € ¢; 1 (W;) N (pj_l(Wj).
Clearly Im(®,) C S. Let (;)¥; € 9, identifying the tangent bundle TV with V x R
for any open subset V' C R™, we define the function o : M — T'N by

o(p) = T(]ﬁi_l (i ov(p), Tiowi(p)), ifpe cpi_l(Wi) with ¢ € {1, ..., k}.
We will show that the function o is well defined. Let p € ;' (W;) N cpj_l(Wj), then
T (¢i 07 (p),7i 0 @i(p)) = Th; " 0 Tpj 0 Ty (¢ 0 ¥(p), 7 0 0i(p))
=T¢;" (¢ 0v(p), 7j 0 9j(p))

Hence o make sense. Moreover, we see that 7y oo = 7.
For Spi’gofl(Wi) Lo H(Wi) — Wy and T'g; : TUy, — Vi, x R™ we have

Tp;o0o0 90¢|¢;1(Wi) =Te;o (To; ' (¢io,Tiops))o 90¢|@;1(Wi)

= <¢z oo ‘Pi‘<p;1(wi)77i) .

Since W; € U we have ¢; o~y o QOi‘(P‘—I(Wi) € F(W;, Vy,) and
Tio oo pil -1,y € F(Wi, Vo,) x F(Wi, RY) = F(Wi, Vg, x R").
Thus o € I'z(7). Evaluating we have
dg; o0 o ; 1’W1)Z L
_ k
d OT(b gblon?TioSDi)ogOi I‘Wi)z‘zl
_ _ k

d OT(b ((ﬁlof)/ogpi 1’Wi77—io§0io§0i1’Wi))i:1

d (fyogofrw,dqb °7i))i
= (r)L

Hence S C Im(®,). The inverse of ¢, is given by <I>;1 :Im(®,) = I'z(y) where

=
=
=
=

:‘

07! () () = T (91 07(p), 0 i(p)) s for p € 7 (W),

Consider the arbitrary chart o : U, — V,, of M with W, € U relatively compact in V,
and the chart 5 : Ug — Vg of N such that a(U,) C Ug. We will show that

ha o <I>;1 (Im(®,) — F(W,R™), 7= (r); —~dBoo,oa |y
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is continuous. Since M = Ulegoi_l(Wi), we define the open set

Qs i=a (Ua gy (W5))

Without loss of generality, we assume that there exists r € {1,..,k} such that Q; # 0
for each j € {1,...,7} and Q; = 0 for each j € {r+1,..,k}.
Then, for 7 € Im(®,) and j € {1,...,7} we have
dBooroallg, =dBoTe; ! (¢jov,m0p))0a g,
=F(Wj,dB o T¢;1) © (¢l °cyo 0471|Q2.,./_"((,0j °© O‘71|Qj7Rn) © Tj) :

Hence df o o, o ofl|Qj € Floc(Qi, R™). This enables us to define the continuous map

A:Im(®,) = [ Foc(@i,RY). 7 (dBooroa|y))_,
=1

where the image set Im(A) coincides with the subspace

{(/817 "'76’/‘) S HEOC(Q%Rn) : (VZ7] € {la ar})/@Z‘QlﬁQ7 = BJ|Q20Q7} .

i=1
For (B1,..., Br) € [1i—1 Floc(Qi, R™), we denote the gluing function
B(x) = pj(x), ifxe@;

For each W € U relatively compact in Q1 U ... U Q, we have S|y € F(W,R") and the
map

gluey : Im(A) — F(W,R"),  (B1, ..., Br) = Blw
is continuous [22, Lemma 4.1]. Therefore hy 4 0 ©3 1'is continuous since
hy.s 0 @;1 = gluey, o A.
Hence . 1'is continuous. O
Remark 3.2.2 From now we consider the map @, p as the homeomorphism
&, Tr(y) - Im(®,).

Corollary 3.2.3 Let v € F(M,N). Fori € {1,....k}, let p; : U; — V; be charts of M
such that there exists W; € U relatively compact in V; with M = Uk lcpi_l(Wi) and there

1=

exists a chart ¢; : Uy, — Vg, such that v (U;) C Uy,. Then the space I'z(v) is integral
complete. Moreover:

a) If F(W;,R™) is a Banach space for all i € {1,..,k}, then Tx(v) i a Banach space

with norm ||-||r given by

K
lolir=">_"ll(dpi o o o o; |w,) | 7w, mny, Vo € Tx(y).
=1
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b) If F(W;,R"™) is a Hilbert space for all i € {1,..,k}, then T'x(v) is a Hilbert space

with inner product (-,-)p given by

k

<J> T)F = Z <(d¢l SRR (70;1|W1) ) (d¢1 oTo SO?l|Wi)>f(W¢,R") ) \V/O',T € F]‘—(V)
i=1

Proposition 3.2.4 LetU be a good collection of open subsets of [0,00)™ and (F(U,R))yeu
be a family of locally convex spaces suitable for global analysis. Let M be an m-dimensional
compact smooth manifold with corners, N1 and Ny be finite-dimensional smooth mani-
folds and v € F(M,N1). If f: N1 — Ny is a smooth function, then Tf oo € T'z(f o)
for each o € T'g(). Moreover, the map

fiTr() = Tr(foy), o—Tfoo
is continuous linear.
Proof. Since f and T'f are smooth, by Lemma 3.1.11 we have f o~ € F(M, Ns) and
Tfooe F(M,TNy), foralloel'z(7).
Since o (t) € Ty ;) N1 for each t € [a, b], we have T f 0 0(t) € Tory () N2, thus
TN, © (Tf o) = fory

and fis well defined.

Let v € F(M,Ny). For i € {1,...,k}, let wpri : Unri — Vari be charts of M such
that there exists Wys,; € U relatively compact in Viy,; with M = UF_ o3 (W) and
there exist chart ¢1; : Up, , — Vi, and ¢a; : Up,, — Vi, of N1 and No Tespectively,
such that v (Uar;) C Uy, , and f (Uy,,) C Uy, ,. We may assume that Vi, , = R™ and
Vo = R™2.

Let v; := ¢1,,97|wy,, and Wy, € U be relatively compact in Uy, containing the closure
of Wir;. For i € {1,...,k} we define the smooth map

fii=ddaioTfoTey; : TVy,  CR™M™ — R™

and

k k
G [[FWh s B2 = [TFWara, R™), ()5 = (fio (i, &ilwar))

i=1 i=1
which is continuous by Lemma 3.1.11. We consider the linear topological embeddings

k
k
(I)'y : F]‘—(’Y) — HF(WMJ)RTH)? o — <d¢l,i 00 O QOJT;’AW]\/]J)
i=1

=1
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and
k

k
Ofoy : Tr(for) = [[FWasR™), 7 (ddhyz OTO@K},AWM,J. E
1=
=1

Then
G(Im(®,)) C Im(®;,).

Indeed, consider o € I'x(n). Then for each i € {1,...,k}
7i = fi(Téri0 00y lwy,) = déai o Tf 0000yl ilwy,-

And for all 4,j € {1,..,k} and p € cp]_\/[ll(WMz) N QD]T/}J(WMJ‘), we have

70 ori(p) = dgoi 0 Tf 0 0 003} lwas, © oari(p)

=dga;0Tfoo(p)
=dgpa, (f oy(p),df o U(?))
= ;0 (Tgn) ™ (6250 f 01(p), g o df 0 0 0 ok, 0 9rr(p) )
=dg; 0 (T )" (¢2,j o fox(p) o @M,j(@)

Hence

k
(fz o <d¢17i ©cogo SOJT/II,i‘WM,i))Z.Zl € Im(q)fo'y)'

In consequence _
fz@}ol,yoGoq)v.
Thus fis continuous and the linearity is clear. O

Remark 3.2.5 The topology of I' () does not depend on the chosen family of charts.
Indeed, since the identity map idy : N — N is smooth, by previous proposition the map

idy : Tr(y) = Tr(idyoy), o—Tidpyoo

is smooth regardless of chosen family of charts. Moreover, this map coincides with the
identity map idr : I'z(vy) = T'z(y), 0 — 0.

Remark 3.2.6 Let v € BC(M, N), we define the space of continuous sections
I'c(y) ={0c € BO(M,TN) :mryoo =~}
endowed with the compact-open topology. For each i € {1,...,k} the inclusion map
Ji: F(W;,R") - BC(W;,R"™), 71—

is continuous, whence the inclusion map J : T'z(y) = T'¢(7y), 0 — o is continuous.

This implies that the set
V={oels(y):c(M)CV}

is open in I'z(7) for each open set VC T'N .
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Proposition 3.2.7 LetU be a good collection of open subsets of [0,00)™ and (F(U,R))veu
be a family of locally convex spaces suitable for global analysis. Let M be a m-dimensional
compact smooth manifold with corners, N1, No be finite-dimensional smooth manifolds
and m; : N1 X No — N; be the i-projection for i € {1,2}. If 1 € F(M,Ny) and
v2 € F(M, N3) then the map

P P]:(’}q X ’YQ) — F]:(’yl) X F]:(’m), o (T7T1,T7T2)(O')
18 a linear homeomorphism.

Proof. Let f := (m,m2), by Proposition 3.2.4 the map P is continuous and clearly linear.
For ¢ € {1,2} we denote the i-projections by

pr; : Up(m) x Tr(y2) = Tr(vi),  (01,02) = oi
Let us define the smooth map A1 : Ny — N7 X Ny such that
TA : TNy — T(N1 X No), v+ (v,0)
and analogously we define Ay : No — N X Na. Then we have
P~ = F(M,TA) o pry +F (M, TAz) o pry.
Hence P! is continuous. O

Proposition 3.2.8 LetU be a good collection of open subsets of [0, 00)™ and (F(U,R))veu
be a family of locally convex spaces suitable for global analysis. Let M1 and My be com-
pact smooth manifolds with corners and N be a smooth manifold. If © : My — Ms is a
smooth diffeomorphism, then vo ® € F(My, N) for each v € F(Ma, N). Moreover, the
map

Lo :Tr(y) 2 Tr(y0®), o000

is linear and continuous.

Proof. Let v € F(Ma,N). Let ¢1 : Uy — Vi and ¢y : Uy — V, charts of M; and
My respectively such that ©(U;) C Us. If ¢ : Uy — Vy is a chart of N such that
(y0©)(Uy) C Uy then

pno(v0O)odi =dnoyogyoproOo0g .

Since ( := ¢y oo gb;l € Floc(Viy, R™) and the map g := ¢p 000 qi)fl Ve = Vyisa
smooth diffeomorphism, by Lemma 3.1.16 we have that ¢ o g € Fioc(V,,,R™). Thus

v00O € F(Mi,N).

Analogously, we can show that 0 0 © € I'z(v 0 ©) for each o € T'£(n).
By compactness of My and Ma, for i € {1,...,k} we consider charts ¢, : Ur; — Vi of
M, such that there exists Wi ; € U relatively compact in Vi ; with My = Ulegbi%(WLi)
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and charts ¢, : Us; — Va; of My such that there exists Wa; € U relatively compact
in Vo; with My = U§:1¢5}(Wg7i) such that there exists a chart ¢n; : Unv; = Vi of N
such that ©(Wy ;) € Wy ; and v (Uz;) C Un,;. We define the topological embeddings

k
" _ k
Oy :Tr(y) = [[FW2iRY), o (déniooodytlw,),
i=1
and
k k
n —1
Pyo0 : I'p(y00) — Hf(Wl,z‘7R ), o (dtﬁN,z‘ coo®ody; ‘Wl’i>i—1
i=1 =

Since the map
O;:=¢2,000 ¢1_7}|W1,i Wi — 0;(Way)

is a smooth diffeomorphism, the map
F(04,R") 1 Floe(©i(Wa),R") = Fioe(W1,i,R"), 7+ 7006
and thus
k
H loc WQZ Rn _> H-Floc WQ uR )7 (Ti)znzl = (Ti o @i)?::l
i=1 =1

are continuous. We will show that ©(Im(®,)) C Im(®ce).
For each i,j € {1,...,k} and 0 € T'x(n), if

—1
Ti == dN,; 000 dy;|w,, 0 O;

—1
= d¢N,i occoBo ¢17i ’W1,z'

then

70 ¢1i(p) = dpn,io 0O 0 ¢yl odii(p)
=d¢n; 00 00(p)

=don,io (Ton;) " <¢N,j o(p),dpnjooo @(p))
=don;o (Ton;) " <¢N,j ov(p), ;0 ¢1,j(]9)>

Hence ©(Im(®,)) C Im(®,00). In consequence, since
Lo = @;je o (F(O,R)F  oa,

the map Lg is continuous. ]
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Proposition 3.2.9 LetU be a good collection of open subsets of [0,00)™ and (F(U,R))veu
be a family of locally convex spaces suitable for global analysis. Let M be a compact man-
ifold with corners and N be a smooth manifold. Then the evaluation map

e:Tr(y) x M - TN, (o,p)+— o(p)

is continuous. Moreover, for each p € M the point evaluation map
ep:Tr(y) = TN, o~ o(p)

is smooth, and its co-restriction as a map to L, N is linear.
Proof. Since the evaluation map

é:Te(y) x M - TN, (o,p)— o(p)
is continuous and the evaluation map €, : I'c(y) = T'N, 0 — o(p) is smooth for each
p € M (see [3]). Then € = € o (Jp,Idr) and €, = €, o Jr, where Jr : I'z(vy) = I'c(y) is
the inclusion map, which is smooth by Remark 3.2.6. ]
3.3 Manifolds of F-maps on compact manifolds

Remark 3.3.1 Let U be a good collection of open subsets of [0, 00)™ and (F(U,R))veu
is a family of locally convex spaces suitable for global analysis. Let M be m-dimensional
compact manifold with corners and N be a smooth manifold which admits a local addi-
tion ¥ : Q@ — N. Let v € F(M,N). We define the set

Vyi={ocel'r(y):a(M)C Q}.
which is open in I'z(7) (see Remark 3.2.6) and

U, =€ € Tx() : (,€)(M) € ).
Lemma 3.1.21 enables us to define the map
U, :=FMZXE):V,=-U, oc—Xoo
with inverse given by
Uiy 5V, Em 0yt o (1,6).
Moreover, since M is compact, we note that BC'(M,N) = C(M, N).

The following lemma is just an application of [4, Lemma 10.1] to our particular case.

Lemma 3.3.2 Let E and F be finite-dimensional vector spaces, U C E open and f :
U — F amap. If Fy C F is a vector subspace and f(U) C Fy, then f : U — F is
smooth if and only if f|F0 : U — Fy is smooth.
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Theorem 3.3.3 LetU be a good collection of open subsets of [0, 00)™ and (F(U,R))veu
be a family of locally convex spaces suitable for global analysis, then for each compact
manifold M with corners and smooth manifold N without boundary which admits a local
addition, the set F(M,N) admits a smooth manifold structure such that the sets U, are
open in F(M,N) for all v € F(M,N) and ¥ : V., = U, is a C*-diffeomorphism.

Proof. We endow F (M, N) with the final topology with respect to the family ¥, : V, —
U, for each v € F(M,N). If we define the maps \Ifgz V$ — ngj on the space of
continuous functions C'(M, N) for each v € C(M, N) then the final topology on C'(M, N)
coincides with its topology (the compact-open topology), whence the inclusion map

J:F(M,N)—- C(M,N), vy~
is continuous. Moreover, since
Us,y ={£ € C(M,N) : (J(7),)(M) € '}
is open in C(M, N), the set
U, =US NF(M,N)
is open in F(M, N).
The goal is to make to the family {(U,, ¥ ') : v € F(M,N)} an atlas for the manifold
structure.

Let v, € F(M, N), it remains to show that the charts are compatible, i.e. the smooth-
ness of the map

Mgy =0 oW W Uy NU) CTF(Y) = TH(E), o0y 0(¢T00). (33.1)

For i € {1,....k}, let ; : Upsi — Var, be charts of M and Wyy; € U such that Wiy,
is relatively compact in V; with M = U¥_ ;1 (W) and charts ¢) : Uy, . — Vy, and
(bf : Ufw — Vf,i of N such that v (Un,;)) C Uy, and € (Unrs) C Uf\,i.

We will study the smoothness of the composition

k
Deole, : W (U Ue) — m(Pg) C [ FWara RY), 0 (df 0 Aey(0) 0 07wy, )
=1

k

=1

which is equivalent to the smoothness of A¢ ., where ®¢ is the linear topological embed-
ding as in Proposition 3.2.1. By Definition 3.1.1 ¢), we find W}, in U such that W is
relatively compact in V; and WJ/\/f,i contains the closure of Wjy ;.

For each i € {1,...,k} and o € ¥ (U, NUc) we have

e o (' (05(0))) 0 97wy, = dof 003 0 (€097 wy, o000 g, ) -
Since o <‘P;1(WJI\/M)) C TUyy we can do
2000902‘_1|W1’M~ =Yo (T(ﬁ)—l oT(IﬁZOUO%‘_HW’

M,i

—1 — -
=X o (Te]) <¢Z 0y 0¢; |y, dd] 000 y; 1‘wa¢>
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and .
oy, = () o (sfocowlny,,)-

Because all of the functions involved are continuous and have an open domain, also the
composition

Hi(z,y,2) = d¢f o 05 o ((¢§)_1 (z),S o (Te)) ™ (y, z)) , (3.3.2)

has an open domain O;. Hence the map H; : O; — E is smooth.
By Lemma 3.1.12, the map

h; == f(WMi/WMﬂ-, H;)
is smooth. By the preceding

e o Mgy = hi(d5 0 &0 0wy, 107 009wy, 48] 00 0 0wy,

M,i

);

¥

which is a smooth function of o, using that the maps

F]:(’Y) _>'F(W]/\/[,zaRn)7 U'_)d¢200'0g0i_1|w/

M,i

are continuous linear by definition of the topology of I'z(v). Therefore \Ilgl oW, is
smooth.

Proceding in the same way, using the fact that composition of K-analytic maps is K-
analytic and using the analytic version of Lemma 3.3.2 (see [14]), we can obtain the
analogous case.

Corollary 3.3.4 LetU be a good collection of open subsets of [0,00)™ and (F(U,R))veu
be a family of locally convex spaces suitable for global analysis. For each compact manifold
M with corners and K-analytic manifold N without boundary which admits a K-analytic
local addition, the set F (M, N) admits a K-analytic manifold structure such that the sets
U, are open in F(M,N) for ally € F(M,N) and ¥, : V., = U, is a C*-diffeomorphism.

Proposition 3.3.5 LetU be a good collection of open subsets of [0,00)™ and (F(U,R))veu
be a family of locally convex spaces suitable for global analysis. Let M be an m-dimensional
compact smooth manifold with corners, N1 and N be finite dimensional smooth manifold
which admits local addition. If f : N1 — Ng is a smooth map, then the map

F(M, f): F(M,N1) = F(M,Ns), v~ fon,
18 smooth.

Proof. The map is well defined by Lemma 3.1.21. Let (21, 31) and (£22, X2) be the local
addition for N1 and Nj respectively. We consider the charts (U, W51) and (Uyo-, \I';Olw)
iny e F(M,N) and fo~y € F(M,N) respectively. We define

F(o):= \I/JIOI,Y o F(M, f) oW, (0) = (17N, %2) L o (fo%f oY OO’)
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for all o € W (Uy N F(M, f)" Usor)).

We will proceed as in the proof of the Theorem 3.3.3. For i € {1,...k}, let ¢; :
Unm,i — Vari be charts of M, Wy; € U such that Wy ; is relatively compact in V;
with M = U?:1¢;1(WM,i) and le,i : Ul,i — Vl,i and ¢2,i : UQJ' — ‘/271‘ charts of Nl and
Ny respectively such that v (Up;) € Uy and (f o v)(Unm,i) C Usi. We will study the
smoothness of the composition

k

D ool : Wt Uy N F(M, f) " User)) = I(@peg), 0 (dbzi 0 F(0) 0t lwa, ),

where ® ¢ is the linear topological embedding as in Proposition 3.2.1. Using Definition
3.1.1 ¢), we find sets WJ’\“ in U which are relatively compact in Ujs; and contain Wy ;.

For each i € {1,...,k} and 0 € U7 (U, N F(M, f)~""(Uyor)) we have

dga,io F(o) o WM{JWM’Z. = dga ;o (mrn, ¥2) o (f oy, foXyo 0’) o @Xﬁi\wl/\“

-1 -1 -1
= dga; o (mrn,¥2)” o (f °oyopylwy,  foXiooo SDM,Z‘|W]L,,Z~>-

Since (f ov)(Un,i) € Us,; we have
fovoulwy,, =2 © <¢2,i ofonyo 901741,i|W34,¢) :
And since y (goA_JlZ(VMZ)) C Uy ; we have o (gpﬁl(WMZ)) C TU;,; whence

-1 ~1 -1
foX¥iooo @M,z’|WI’V“ =fo¥i0T¢ ;0T¢1 000 SOM,i|W]’\“

-1 -1 —1
=foXyo Tgbl,i (d)l’i °e QOM,Z"WJ,\LN d(;su oo SOM/L|W]/\41) )

Let
Hy(z,y,2) := dg;io (mrn, T2) "' o (65 (z), f o T10Té1 ] (y, 2)).

Then H; is defined on an open subset of R"2 x R™ x R™ and the R™2-valued function
H; so obtained is smooth (because it is a composition of smooth functions).
By Lemma 3.1.12, also the corresponding mappings

h; == ]—‘(WMZ-/WM,Z-, H;)
between functions spaces are smooth. By the above, we have
(fog 0 F')(0)h; <¢2,i oforvopnilwy, . driovo wﬁilwA}}, dgr,io0 0 ‘pﬁi‘wﬁi)
which is a smooth function of o, using that
]-_‘.7'—(7) — F(WM,i7Rn)7 g d¢l7i 00O 801741’7,|WM,Z

is a continuous linear map by definition. Therefore F(M, f) is smooth. O
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Applying Lemma 3.1.25 we can obtain the analogous result.

Corollary 3.3.6 LetU be a good collection of open subsets of [0,00)™ and (F(U,R))veu
be a family of locally convex spaces suitable for global analysis. Let K € {R,C}, M be
an m-dimensional compact smooth manifold with corners, N1 and N» be n-dimensional
K-analytic manifolds with K-analytic local additions (Q1,%1) and (g, 39) respectively.
If f : N1 — Ny is a K-analytic map, then the map

I<M7f)F(M7N1>_>‘F(M7N2)7 "yl—)fO"y,

18 K-analytic.
Remark 3.3.7 The manifold structures for (M, N) given by different local additions
are coincide. Indeed, since the identity map idy : N — N is smooth, the map

F(M,idy) : F(M,N) = F(M,N), ~—idyony

is smooth regardless of the chosen local addition in each space.

Remark 3.3.8 The inclusion map J : F(M,N) — C([a,b],N) is smooth. Indeed,
let (U, V') and (L{JC(W),\I/;(E)) be charts in v € F(M,N) and J(v) € C([a,b],N)
respectively, then

WLy od oWl (o) s Wt (Uy NI Uy(y))) S TF(y) = Tel(y)

is a restriction of the inclusion map I'z(y) — ().
Moreover, if U C N is an open subset, then the manifold structure induced by F (M, N)
on the open subset

F(M,U):={ye F(M,N):~v(M)CU}.

coincides with the manifold structure on F(M,U).

Proposition 3.3.9 LetU be a good collection of open subsets of [0,00)™ and (F(U,R))veu
be a family of locally convex spaces suitable for global analysis. Let M be a m-dimensional
compact smooth manifold with corners, N1 and Ny be smooth manifolds which admit lo-
cal additions, and let pr; : Ny X Ny — N; be the i-th projection where i € {1,2}, then the
map

P F(M,N1 x No) = F(M,Ny) x F(M,Na), v+ (pry,pry) oy

1s a diffeomorphism.

Proof. If (Q1,%1) and (€21, 3) are the local additions on N; and N respectively, then
we can assume that the local addition on N7 x No is

21221X22291XQQ—>N1XN2

where Q1 X Q9 C TNy x TNy = T (N7 x Na). The map P is smooth as consequence of
the smoothness of the maps

F(M,pr;) : F(M, Ny x Na) — F(M, N;),
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for each i € {1,2} by the previous results.
Let (Uy x Uy, W1 x W21 and (U, 1) be charts in (y1,72) € F(M, N1) x F(M, Na)
and P~1(y1,72) = v € F(M, N1 x N3) respectively. Since the map

Q:Tr(y) = Tr(y) xTx(y2), 7+ (q,d9)0T

where q; and gy are the corresponding projection of the space, is an diffeomorphism of
vector spaces (by Lemma 3.3 and Proposition 3.2.1), we have

\117_1 oP lo (W, X Uo,)(01,02) = (TN, x Nas E)_l o (7,73_1 o (X1 X 22)(01,02))

= (T"N1><N27 2)71 o ('77 Yo 971(01702))
= Q Y(01,02)

for all (o1,09) € (V! x W21 Uy, x Uy, NP(Uy)). Hence P~ is smooth. O

Proposition 3.3.10 LetU be a good collection of open subsets of [0,00)™ and (F(U,R))yeu
be a family of locally convex spaces suitable for global analysis. Let My and My be m-
dimensional compact smooth manifolds with corners and N be an n-dimensional smooth
manifold which admits a local addition. If © : My — Ms is a smooth diffeomorphism,
then the map

F(O,N): F(M3,N) - F(M;,N), v+ ~y00O

18 smooth.
Proof. By Proposition 3.2.8 we know that the map is well defined. Let (U, v 1y and
(UWO@,\I';Ol@) be charts in v € F(Ms, N) and 7o © € F(Mi,N) respectively, then we

have
Ul 0 F(O,N) 0 W, (0) = b3 0 (00,50 (0 00))

for all 0 € W1 (Uy N F(O, N) " (Unoo)).
Let o =700 :M; - Nand 7 =000 : My — TN, then 7 € I'r() and
‘I/;ol@ o F(O,N)o¥,(0) = 9](,1 o(a,X o)
=W, o W,(r)

=T
=000.
Hence, \11;01@ o F(O,N) oW, is a restriction of the map
Lo :Tr(y) 2 Tr(y0®), 0—000

which is linear and continuous by Proposition 3.2.8. 0

Proposition 3.3.11 LetU be a good collection of open subsets of [0,00)™ and (F(U,R))vey
be a family of locally convex spaces suitable for global analysis. Let M be an m-dimensional
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compact smooth manifold with corners. If N, L and K are smooth manifolds which ad-
mits local additions and f : L x K — N is a smooth map and v € F(M, L) is fized,
then

feo: F(M,K) = F(M,N), &~ fo(7,§)

s a smooth map.

Proof. Define the smooth map
Cy:F(M,K)— F(M,L)x F(M,K), &~ (7,§).
Identifying F(M, L) x F(M, K) with F(M,L x K), we have
fu = F(M, f)oC,.
Hence f, is smooth. O

Proposition 3.3.12 LetU be a good collection of open subsets of [0,00)™ and (F(U,R))vey
be a family of locally convex spaces suitable for global analysis. Let M be an m-dimensional
compact smooth manifold with corners and N be a n-dimensional smooth manifold. Then
the evaluation map

e: F(M,N)xM — N, (v,p)+~(p)
is continuous. Moreover, for each p € M, the point evaluation map
6p:f(M7N)_>N7 7’_>’Y(p)
18 smooth.

Proof. The evaluation map
ec: C(M,N)x M — N, (v,p) = (p))

is C°*0 with point evaluation (), : C(M,N) — N, v + 7(p) smooth for each p € M.
Since the inclusion map J : F(M,N) — C(M, N) is smooth, we have ¢ = . o (J,Idps)
and e, = (e.)p o J for each p € M. O

Proposition 3.3.13 LetU be a good collection of open subsets of [0,00)™ and (F(U,R))veu
be a family of locally convex spaces suitable for global analysis. Let M be a m-dimensional
compact smooth manifold with corners and N be a n-dimensional smooth manifold with
local addition. Then, for each ¢ € N, the function (; : M — N, p — q is in F(M,N)
and the map

(:N—=FM,N), qg—¢

18 a smooth topological embedding.
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Proof. If W € U is relatively compact and z € R™, consider the constant function
c,: W—=R" x2z

Then ¢, € F(W,R"). In fact, Definition 3.1.1 ¢) provides V € U such that W C V.
Then n: V. — R",  — 0 is in F(V,R™). The map f: V x R" — R", (z,y) > z is
smooth, whence ¢, = f o (idw,n|w) € F(W,R™) by the pushforward axiom.

For each z € N, the constant function

(:M— N, p—=z

isin F(M, N). In fact, if p € M, ¢pr: Upr — Viy is chart for M around p and ¢ : Uy —
Vi a chart for N around (,(p) = z, then Definition 3.1.1 ¢) provides a relatively compact
o nm (p)-neighborhood W C V) such that W € U. After replacing ¢ with its restriction
to a map gﬁg/ll (W) — W, we may assume that Vj; € U and V) is relatively compact.
Now ¢n o (, o gb]}‘,l is the constant function W — R™, x — ¢n(z), which is in F(W,R"™)
as observed above. Thus (, € F(M,N).

In particular, for each y € N, the constant function

C.:M —=T,N, v—z

is an element of F(M,T,N), for each z € T, N. Since TN is a finite-dimensional vector
space, the linear map

C:TyN - F(M,TyN), =z~ C, (3.3.3)
is continuous.
Given y € N, consider the constant function (,: M — N, p — y, we define the vector
space

Lr(Cy) :={r € F(M,TN): (Vpe M) 7(p) € Te,(nyN = TyN}.
We show that
F(M,T,N) € Tr(¢)

with continuous linear inclusion map. The inclusion map ¢: Ty N — T'N being smooth,
for each 7 € F(M,T,N) we get

r=1or=F(M,)(r) € F(M,TN)

by Lemma 3.1.21. Moreover, F(M,) (and hence also its co-restriction j to I'z((y)) is
continuous, by Proposition 3.3.5.

Let 3: Q2 — N be a local addition for N and notation as in Definition 2.3.1 and Remark
3.3.1. We have V C Q for an open 0-neighborhood V' C Ty N. Then Uy := X(V) is an

open y-neighborhood in N and ¢ := E|g” 1V — Uy is a C°°-diffeomorphism with
v (w) = 0y (y,w)

for w € Uy. If a: TyN — R" is an isomorphism of vector spaces, then Vi := a(V)
is open in R” and ¢n(u) := a(p~(u)) defines a chart ¢n: Uy — Vi of N. For each
v € Vn, we have for each g € M

(6@, Co=10) (@) = (1,05 () = (y,9(a™ () € {y} x Uy S &
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with
On' (g, (o (0)) =9~ (W@} (v) = o™ (v).
Thus ¢ 63t (v) € U, and

-1 —1
Ve, Coptw) =On © (Cy’ Co’ (v))
is the constant function Cy-1(,). Hence
VoloCogy! =joCoa |y,

which is a smooth function. Thus ¢ is smooth.

Fix p € M. The point evaluation €,: F(M,N) — N, v — 7(p) is smooth and hence
continuous. Since g, 0 ¢ = idy, we deduce that (¢|¢V))~1 = €pl¢(nvy is continuous. Thus
¢ is a homeomorphism onto its image. O

Remark 3.3.14 Let U be a good collection of open subsets of [0, 00)™ and (F (U, R))vey
be a family of locally convex spaces suitable for global analysis. Let M be an m-
dimensional compact smooth manifold with corners, N be an n-dimensional smooth
manifold which admits a local addition and let TF(M, N) be the tangent bundle of
F(M,N). Since the point evaluation map e, : F(M, N) — N is smooth for each p € M,
we have

Te, : TF(M,N) = TN.

For each v € TF(M, N) we define the function
On(v): M = TN, Opn(v)(p)=Tep(v).

Proposition 3.3.15 LetU be a good collection of open subsets of [0,00)™ and (F(U,R))vey
be a family of locally convex spaces suitable for global analysis. Let M be an m-dimensional
compact smooth manifold with corners, N be an n-dimensional smooth manifold which
admits a local addition andy € F(M,N). Then ©n(v) € I'z(v) for eachv € T,F(M,N)
and the map

@7 T,YJ:.(M,N) —>F]-'(’Y), U'-)@»y(’l)) = ®N’T7f(M,N)(U)
18 an tsomorphism of topological vector spaces.

Proof. Let ¥ : Q@ — N be a normalized local addition of N in sense of [3]. Since I'#(y)
is a vector space, we identify its tangent bundle with I'z(v) x I'z(v). Let ¥, : V, = U,
be a chart around v such that ¥, (0) = ~, then

TV, : TV, ~V, xz(y) = TF(M,N)
is a diffeomorphism onto its image. Moreover,

ToW, : {0} x T£(y) — T, F(M, N)
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is an isomorphism of topological vector spaces. We will show that
©,0T¥,(0,0) =0
for each o € I'z(y). Which is equivalent to show that
TepoTW¥,(0,0) =0(p) forallpe M.

Working with the geometric point of view of tangent vectors, we see that (0, 0) is equiv-
alent to the curve [s — so]. Hence, for each p € M we have
TepoTV,(0,0) =Tepo TV, ([s — so])
= Tep([s = ¥y (s0)])
= Tep([s — X(s0)])
= [s = X1, n(so(1))]

= TSI, w([s  s0(1)]).
Since Y is normalized we have TOE|TW,> N =idp, N and
TepoTW,(0,0) =o(p).

In consequence, for each o € I'z(7), there exists a v € T, F (M, N) with v = T'¥, (0, 0)
such that
O,(v) = 0.

Moreover, the function
Oy(v): M - TN, p— On(v)(p)=0(p) € TN

isin F(M,TN) with 7pn 0O, (v) = 7, making the map O, an isomorphism of topological
vector spaces. U

Remark 3.3.16 Let U be a good collection of open subsets of [0, 00)™ and (F (U, R))yey
be a family of locally convex spaces suitable for global analysis. Let M be an m-
dimensional compact smooth manifold with corners and N be an n-dimensional smooth
manifold which admits a local addition. Since T'N admits local addition and the vector
bundle mrn : TN — N is smooth, the map

F(M,WTN)i.F(M,TN)—).F(M,N), T TTNOT
is smooth. Moreover, if v € F(M, N), then
F(M,mrn) " ({7}) = T#().

The following result follows the same steps as for the case of C*-maps (with ¢ > 0) from
a compact manifold (possibly with rough boundary) to a smooth manifold which admits
local addition [3, Theorem A.12].

80



Proposition 3.3.17 LetU be a good collection of open subsets of [0,00)™ and (F(U,R))vey
be a family of locally convex spaces suitable for global analysis. Let M be an m-dimensional
compact smooth manifold with corners, N be an n-dimensional smooth manifold which
admits a local addition and wpy : TN — N its tangent bundle. Then the map

F(M,nrN) : F(M,TN) - F(M,N), T+ mpNyoT
is a smooth vector bundle with fiber T z(vy) over v € F(M,N). Moreover, the map
@N:T]:(M,N)—}F(M,TN), ’U0—>@N<’U)

18 an tsomorphism of vector bundles.

Proposition 3.3.18 LetU be a good collection of open subsets of [0,00)™ and (F(U,R))veu
be a family of locally convex spaces suitable for global analysis. Let M be a m-dimensional
compact smooth manifold with corners, N1 and No be a n-dimensional smooth manifold
which admits a local addition. If f : Ny — Na is a smooth map, then the tangent map of

F(M, f): F(M,Ny) = F(M,Ns3), ~+ fory

s given by

TF(M, f) =0y o F(M,Tf)oOn,.

Proof. Let X1 : Q1 — Nj be a local addition on Ny and v € F(M, Ny).
If ¥, :V, = U, is a chart on 7 such that ¥, (0) = v, we consider the isomorphism of

vector space
TV, : {0} x T'r(y) = T, F (M, Ny).

For p € M we denote the point evaluation in E;) : F(M, N;) — N; for i € {1,2}, then for
each o € I'z(y) we have

Te2 o TF(M, f) o TW,(0,0) = Te, o TF(M, f) o TU,([s — so])
= TEZQ, o TF(M, f)([s — X1 0 s0])
= TEIQ)([S — foX;o0s0))
=[s+ e (foXi0s0)]
= [s = foXi(so(p))]
=TfoToZ1|r,,, n ([so(p)])
=Tf([s = so(p)])
=F(M,Tf)(o(p))
=F(M,Tf)oTeyoT¥,(0,0).

Hence
®N2 OT'F(Maf) :-F(Man) O@Nl'
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Example 3.3.19 Let U be a good collection of open subsets of [0, 00)™ and (F (U, R)) ey
be a family of locally convex spaces suitable for global analysis. Let M be an m-
dimensional compact smooth manifold with corners and G be an n-dimensional Lie
group, then we already know that the space F(M, Q) is a Lie group (see [22]). We will
give an alternative proof of this.

Let e € G be the neutral element, let L, : G — G, h — gh be the left translation by
g € G and the action

GxTG —=TG, (g,vn)— gy :=TLy(vy) € TynG.
If p:UCG—V CT.G is a chart in e such that ¢(e) = 0, then the set
Q,:=|JgV TG
geG

is open and the map
Yo :Q, =G, v pg(v) ((p_l(’/TT(;(U)_l.U))

defines a local addition for G, hence F(M, Q) is a smooth manifold with charts con-
structed with (Q4,%,). Let ug : G x G — G and A\g : G — G be the multiplication
map and inversion maps on G respectively, we define the multiplication map pac and
the inversion map Agc on F(M,G) as

pr = F(M, pg) : F(M,G) x F(M,G) — F(M,G)

and
A i=F (M, g): FIM,G) - F(M,G)

that by Lemma 3.1.21 and Proposition 3.3.5 are smooth.
We observe that for the neutral element (. : M — G, p — e of F(M,G) we have

Lr(Ce) = F(M, T.G).

If \Ifgel :Ue, — V¢, is a chart around ¢, € F(M,G), then we have U, = F(M,U) and
Ve, = F(M,V). Moreover, we see that

Ve, o F(M,p)(7) = Ep0(po7)
=mr(p o) (¢ H(mra(p o) Lpon))
=ep(epo)
= .
This enables us to say that for the neutral element (. € F(M,G) the chart is given by
F(M,p): FIM,U) = F(M,V), ~vrpon.

Remark 3.3.20 Instead of using the set [0, 00)™, it is possible to generalize all results
to a good collection of open subsets U of a locally convex, closed subset of R, such as
half-spaces, all of R™, or a disjoint union of countably many m-dimensional polytopes.
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3.4 Manifolds of \-Holder continuous functions

Let myn € N, 0 < A <1 and U C R be an open and bounded subset. We say that a
function n : U — R™ is A-Holder continuous if there exists a positive constant C' such
that

In(z) = n@)||I< Cllz —y||*, Va,y € U.

And for each A-Holder continuous function we define

Inlla=sup {Hn()—n(y)ll}

syev L llz —yl?
T#Y
Let F)(U,R™) be the space of \-Hélder continuous functions n : U — R"™. By bounded-
ness of the subset U, each function n € F,(U,R"™) is bounded. This allows us to consider
the norm on F)(U,R")
01l 7= lInllootlInllx-

Then (F\(U,R™),||-||#,) is a Banach space (see e.g. [10]). In particular, if A = 1 then
F1(U,R) denotes the space of Lipschitz continuous functions.

We will denote the inclusion map by J : Fy(U,R") — BC(U,R"), which is continuous.
Let U be the family of open and bounded subsets of R™. For 0 < A < 1 fixed, we
consider the family of function spaces {Fx(U,R)};o,. We will show that they define a
family of locally convex spaces suitable for global analysis.

Remark 3.4.1 Since each space F)(U,R) is a Banach space, the axiom (PB) is verified.
Indeed, let U be an open subset of R™ and V, W € U such that W has compact closure
contained in U and © : U — V be a C*°-diffeomorphism. By relative compactness of
W, we can consider a finite open cover of convex subsets (W;)¥_, for W such that Oy,
is Holder continuous and 7 o ©|y, € F\(W;,R) for each i € {1,...,k} and n € F)\(V,R).
Therefore,the map F)(O|w,R) makes sense, and by Lemma 3.1.7, the axiom (PB) is
verified.

Remark 3.4.2 The axiom (GL) is also verified. In fact, if U,V € U with V C U and
n € Fa(V,R) has compact support. Let 77 : U — R be the map defined by extending n
by 0, then 71x= |17l
Therefore, the map e, ;- : Fx(V, E) — F(U, E) makes sense, and by Lemma 3.1.8, the
axiom (GL) is verified.

Lemma 3.4.3 If h € C°(U,R), then hn € Fx(U,R) for each n € Fx(U,R).

Proof. Let n € Fa(U,R). Since the function h is smooth with compact support, is
A-Holder continuous and the product hAn is in Fy (U, R). O

Remark 3.4.4 By Lemma 3.1.9 and Lemma 3.4.3, the axiom (MU) is verified.

Lemma 3.4.5 Let U,V € U such that V. C U. Then nly € Fa(V,R) for each n €
Fx(U,R) and the map
FA(U7R)_>fA(MR)7 7]’_>77|V

s continuous linear.
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Proof. This is direct consequence of the properties of the supremum. ]

Lemma 3.4.6 Let { € N and V € U be relatively compact. If f : R® = R is a smooth
map, then fon € F\(V,R) for each n € F\(V,R") and the map

FrRAWVRY) = FA(V,R), nw fon
18 continuous.

Proof. Let Ay denote the diagonal set of V' x V. For each 7 € F)\(V,R), we define the

function
7(x) — 7(y)

e —yl*
Then h, € BC((V x V) \ Ay, R) with [|h;| o= ||7||, hence the linear map

hr: (VXV)\AV%Rv (x,y)HhT(x,y) =

FA(V,R) - BC((V x V)\ Ay,R), 7+ h;
is continuous linear. Let us consider the map
H:F\(V,R) - BC((V xV)\ Ay,R), 7+ h;
then H is continuous. This enable us to define the linear map
o : F\(V,R) = BC(V,R) x BC((V xV)\ Ay,R), 7 (1,H(7))

which is a topological embedding with closed image. Therefore, if the map f makes
sense, its continuity is equivalent to the continuity of

F: F(V,R") = BC(V,R) x BC((V x V)\ Ay,R), 0 (fon H(fon)).

First we will show that makes sense, i.e., F(n) € BC(V,R) x BC((V x V) \ Ay,R) for
each n € Fy(V,RY). Since the inclusion map J : Fy(V,R?) = BC(V,R’) and the map

BC(V,R") - BC(V,R), n+ fon
are continuous, the first component of F'
Fi: FA(V,R") = BC(V,R), n fon
is continuous. Let us consider the second component of F'
Fy: Fa(V,RY — BC((V x V)\ Ay, R), n— H(fon).

Let € F\(V,R?), then Fy(n) is clearly continuous. We will show that F5(n) is bounded.
For (z,y) € V x V' \ Ay we have

fn(x)) = F(n(y))

Fy(n)(z,y) = H(f on)(z,y) = lz — gl
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Since V is relatively compact, the set (V) can be contained on an open ball Bg, (0) for
a constant R, > 0 large enough. By smoothness, the map f verifies

[f(u) = fF(0)I< Lyyllu =2ll,  u,v € Bg,(0),

for some constant Ly, > 0. Therefore

[E2() oo < Ligmlinllx-
Then Fy(n) € BC((V x V) \ Ay,R). Now we will show that Fy is continuous in 7 €
Fy(V,RY). Let § > 0 and v € F)(V,R?) such that

17 =AMF:= ln = AlleotlIn = Allx< 6.
Then for each z € V' we have
In(=) —A()I< 6

which mean that v(z) € Bs(n(z)). Therefore

v(V) € | Bs(n(2)).

zeV

Let R, > 0 the constant which verifies n(V) C Bg,(0), then Bs(n(z)) € Bgr,+s(0)
for each 2 € V. In consequence, 7(V) and n(V) are contained in Bg, ,s(0) and by
smoothness of f, there exists a constant G, > 0 such that

|df (u1,v1) — df (ug, v2)|< Gy ll(ur,v1) — (u2,v2)[|= Gyp(llur — ual|+|lvr — v2|),

for each (u1,v1), (u2,v2) € Br,+5(0) X Br,+s(0). By the mean value theorem, we have

1
flur) = fluz) = /0 df (us + t(ur — ua), w1 — uz)dt, wui,us € Br, 15.

Hence, if w := |Fa(n)(x,y) — Fa(v)(z,y)| then
" ‘f(n(w)) — ) _ fO() = F(v(y)

lz =yt lz =yl

= ‘/01 <df (n(y) + t(n(z) —n(y)), 77(@_’7(3/)) —df ('y(y) +t(y(z) — y(y)), W)_'V(y)>> dt‘

[l = ylI*

1
< Gfm /0

2 — ylI* 2z — ylI*

Iz =yl
<n(y) +t(n(x) —n(y)), M) - (’y(y) +t(y(z) — (), LB =W
I(n(z) = () = (n(y) —vW))ll

)]«

1
<Gy </0 [t(n(z) —y(x)) + (1 =) (n(y) —~(y))lldt + lz —y|*

<Gyl = vllootlln —~lIx)
< G b,

If e = G40, we have
1F2(n) — F2(7) | < &

Therefore, the map F5 is continuous and in consequence, the map f is continuous. [
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Lemma 3.4.7 Let U,V € U such that V is relatively compact in U. If f : U x R™ - R
is a smooth function, then f.(n) := fo (id,n|y) € FA(V,R) for all n € Fx\(U,R") and
the map

[ :"T_}\(Uan)_)"I}\(V;R)’ 77'—>f*(77)=f0(id77l|v)

1S continuous.

Proof. First let assume that U = R™. Let id : V — R™ be the identity map, then
id € F\(V,R™) and by Lemma 3.4.5, the map

EX(R™,R") = FX(V,R™ xR"), 0~ (id,n|v)
is continuous. If £ = m + n, by Lemma 3.4.6, the map
E\(V,R™ xR") = F\(V,R), B+ fop

is continuous. Therefore f, is just the composition of continuous mappings.
Let assume that U # R™. Let x : R™ — R be a cut-off function for V supported in U
(see e.g. [28, Proposition 2.25]); we define

R™ « R7 x(@)f(z,y), ifxelU
g:R" xR" - R, (x,y)H{O, if z € R™ \ supp(x)

Then g is smooth and, as before, the map
gs : FAR™ x R",R") = FA(V,R), 0 gu(n) =g o (id,nlv)
is continuous. Moreover, for each n € F)\(U,R") and = € V' we have

g«(n)(x) = g o (id, n|v)(x)
= g(z,nlv(2))
= x(z)f(z,nlv(z))
= f(z,nlv(z))
= fs 77)(95),

whence g, = fs. O

Remark 3.4.8 By Lemma 3.4.7, the axiom (PF) is verified.

Combining all these lemmas, we can conclude with the following Lemma.

Lemma 3.4.9 Let m € N, U be the collection of open subsets of R™ and 0 < A < 1.
Then the family of Banach spaces {F\(U,R)}vey define a family of locally convex spaces
suitable for global analysis,

Definition 3.4.10 Let M and N be finite-dimensional smooth manifolds without bound-
ary and 0 < A < 1. We denote the set BC®*(M, N) of all functions v : M — N such
that for each p € M, there exist the charts ¢pr : Upy — Viy of M and ¢y : Uy — Vv of
N, such that p € Uy, v(Upy) € Uy and ¢y 0oy o gbﬁ € Fa(Var,R™).
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By Lemma 3.4.9 we conclude.

Proposition 3.4.11 Let 0 < A < 1. For each compact manifold M without boundary
and smooth manifold N without boundary which admits local addition, the set BC*(M, N)
admits a smooth manifold structure.

Remark 3.4.12 Let N; and Ny be finite-dimensional smooth manifolds without bound-
ary which admit local additions. If f : Ny — N is a smooth map, then by Proposition
3.3.5, the map

BC%A(M, Ny) — BC* (M, Ns), v+ fory

is smooth.

Proposition 3.4.13 Let M be a compact smooth manifold without boundary and N a
smooth manifold without boundary which admits a local addition. If0 < 8 < A < 1, then
v € BCYP(M, N) for each v € BCO M, N). Moreover, the map

v : BCONM,N) = BC*P(M,N), ~w—~
18 smooth.

Proof. Let v € BCY*(M, N), then for each p € M, there exists the charts ¢ps : Upy —
Vi of M and ¢y : Uy — Viy of N, such that p € Ups, ¥(Un) C Un and ¢y 0 yo ¢yf €
Fx(Var,R™). For each U € U, it is known that for 5 < X the linear operator

IU :‘F)\(U,Rn) —).Fﬁ(U,Rn), T T
is continuous. In particular, we have
Iy (pn oy ody) = ¢noyody € Fs(Var, RY).

Therefore v € BC%#(M, N). Now, we consider the charts (U, ) and (U
v € BCONM, N) and «(y) € BC%P(M, N) respectively, then the map

0 ¥i)

Vol owo W W Uy N Uy)) = Yoy Uy N Uug))

given by
Wl 010 W,(0) = (mrn, Sn) o (400), (S 0 0))

is just a restriction of the map

i:Tr () = Tr(e(n), oo,

which is continuous by Proposition 3.2.1 and continuity of the maps {Iy }yey- O
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