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Abstract

In the first part, for p ∈ [1,∞], we define a smooth manifold structure on the set
ACLp([a, b], N) of absolutely continuous functions γ : [a, b] → N with Lp-derivatives for
all real numbers a < b and each smooth manifold N modeled on a sequentially complete
locally convex topological vector space, such that N admits a local addition. Smoothness
of natural mappings between spaces of absolutely continuous functions is discussed, like
superposition operators ACLp([a, b], N1) → ACLp([a, b], N2), η 7→ f ◦ η, for a smooth
map f : N1 → N2. For 1 ≤ p < ∞ and r ∈ N we show that the right half-Lie groups
Diff r

K(Rn) and Diff r(M) are Lp-semiregular. Here K is a compact subset of Rn and M
is a compact smooth manifold. An Lp-semiregular half-Lie group G admits an evolution
map Evol : Lp([0, 1], TeG) → ACLp([0, 1], G), where e is the neutral element of G. For
the preceding examples, the evolution map Evol is continuous.
In the second part, for a compact manifold with corners M and a finite dimen-

sional smooth manifold without boundary N which admits a local addition, we define
a smooth manifold structure on a certain set F(M,N) of continuous mappings when-
ever function spaces F(U,R) on open subsets U ⊆ [0,∞)n are given, subject to simple
axioms. The construction and properties of spaces of sections and smoothness of nat-
ural mappings between the spaces F(M,N) are discussed, like superposition operators
F(M,f) : F(M,N1) → F(M,N2), η 7→ f ◦ η for smooth maps f : N1 → N2.



Zusammenfassung

Im ersten Teil definieren wir für p ∈ [1,∞] eine glatte Mannigfaltigkeitsstruktur auf der
Menge ACLp([a, b], N) der absolut stetigen Funktionen γ : [a, b] → N mit Lp-Ableitungen
für alle reellen Zahlen a < b und jede glatte Mannigfaltigkeit N , die auf einem folgen-
vollständigen, lokal konvexen topologischen Vektorraum modelliert ist und eine lokale
Addition zulässt. Die Glattheit natürlicher Abbildungen zwischen Räumen absolut
stetiger Funktionen wird untersucht, wie etwa Superpositionsoperatoren
ACLp([a, b], N1) → ACLp([a, b], N2), η 7→ f ◦ η, für eine glatte Abbildung f : N1 → N2.
Für 1 ≤ p < ∞ und r ∈ N zeigen wir, dass die rechten Halb-Liegruppen Diff r

K(Rn) und
Diff r(M) Lp-semiregulär sind. Hierbei ist K eine kompakte Teilmenge von Rn und M
eine kompakte glatte Mannigfaltigkeit. Eine Lp-semireguläre rechte Halb-Liegruppe G
besitzt eine Evolutionsabbildung Evol : Lp([0, 1], TeG) → ACLp([0, 1], G), wobei e das
Neutralelement von G ist. Für die zuvor genannten Beispiele ist die Evolutionsabbildung
Evol stetig.

Im zweiten Teil definieren wir für eine kompakte Mannigfaltigkeit mit Ecken M und
eine endlichdimensionale glatte Mannigfaltigkeit ohne Rand N , die eine lokale Addition
zulässt, eine glatte Mannigfaltigkeitsstruktur auf gewissen Mengen stetiger Abbildun-
gen F(M,N), sofern Funktionenräume F(U,R) auf offenen Teilmengen U ⊆ [0,∞)n

gegeben sind und einfache Axiome erfüllt werden. Die Konstruktion und Eigenschaften
von Räumen von Schnitten sowie die Glattheit natürlicher Abbildungen zwischen den
Räumen F(M,N) werden diskutiert, wie etwa Superpositionsoperatoren
F(M,f) : F(M,N1) → F(M,N2), η 7→ f ◦ η für glatte Abbildungen f : N1 → N2.
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1 Introduction

Manifolds of mappings play an important role in various branches of global analysis,
infinite-dimensional geometry and Lie theory. For a compact smooth manifold M , a
finite-dimensional manifold N and a non-negative integer r, a smooth manifold structure
on the set Cr(M,N) of Cr-functions ϕ : M → N was first obtained by Eells (see [9] and
the references therein). Later, manifold structures were also obtained on C∞(M,N), and
for infinite-dimensional manifolds N as long as they admit a local addition, a concept
recalled in Definition 1.0.1 (see [30, 25] and the references therein, also [3]).

Manifolds of absolutely continuous functions with values in an infinite-
dimensional manifold and regularity properties of half-Lie groups

For a Hilbert manifold M , a smooth manifold structure on the set ACL2([0, 1], N) of
absolutely continuous paths with L2-derivatives in local charts was used by Flaschel and
Klingenberg to study closed geodesics in Riemannian manifolds (see [11] and [24], cf.
also [41]). For Banach manifolds N admitting a smooth local addition and p ∈ [1,∞], a
smooth manifold structure on ACLp([0, 1], N) may also be obtained using a method of
Krikorian [26] which is similar to Palais’ use of Banach section functors [38]. A Lie group
structure (and hence a smooth manifold structure) on ACLp([0, 1], G) was obtained in
[35] for each Lie group G modeled on a sequentially complete locally convex space (as
in [32]), generalizing the case of Fréchet–Lie groups treated in [15].

We construct manifolds of absolutely continuous functions in higher generality. To for-
mulate the main result, let us fix notation.

Definition 1.0.1 Let N be a smooth manifold modeled on real a locally convex space,
with tangent bundle TN and its bundle projection πTN : TN → N . A local addition
on N is a map

Σ: Ω → N,

defined on an open set Ω ⊆ TN which contains the zero-vector 0p ∈ TpN for each p ∈ N ,
such that Σ(0p) = p for all p ∈ N and

θ : Ω → N ×N, v 7→ (πTN (v),Σ(v))

has open image and is a C∞-diffeomorphism onto its image Ω′.

Throughout the following, a < b are real numbers and p ∈ [1,∞]. For a definition of abso-
lutely continuous functions with values in a sequentially complete locally convex space E
or a smooth manifold N defined thereon, the reader is referred to Definitions 2.1.12 and
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2.1.23, respectively (see also [35]). For η ∈ ACLp([a, b], N), the pointwise operations
make

ΓAC(η) := {τ ∈ ACLp([a, b], TN) : πTN ◦ τ = η}

a vector space; we endow it with a natural topology making it a locally convex topological
vector space (cf. Definition 2.2.1). We shall see that

Vη : := {τ ∈ ΓAC(η) : τ([a, b]) ⊆ Ω}

is an open 0-neighborhood in ΓAC(η). Setting

Uη := {γ ∈ ACLp([a, b], N) : (η(t), γ(t)) ∈ Ω′ for all t ∈ [a, b]},

the map
Ψη : Vθ → Uθ, τ 7→ Σ ◦ τ

is a bijection (see Remark 2.3.3). We show (see Theorem 2.3.5):

Theorem 1.0.2 For each smooth manifold N modeled on a sequentially complete locally
convex space and p ∈ [1,∞], the set ACLp([a, b], N) of all ACLp-maps γ : [a, b] → N
admits a smooth manifold structure such that for each local addition Σ: Ω → N , the
sets Uη are open in ACLp([a, b], N) for all η ∈ ACLp([a, b], N) and Ψη : Vη → Uη is a
C∞-diffeomorphism.

Using the smooth manifold structures just described, we find:

Theorem 1.0.3 Let f : N1 → N2 be a smooth map between smooth manifolds N1 and
N2 modeled on sequentially complete locally convex spaces such that N1 and N2 admit
a local addition and p ∈ [1,∞]. We then have f ◦ γ ∈ ACLp([a, b], N2) for all γ ∈
ACLp([a, b], N1); the map

ACLp([a, b], f) : ACLp([a, b], N1) → ACLp([a, b], N2), γ 7→ f ◦ γ

is smooth.

More generally, ACLp([a, b], f) is Cr for r ∈ N ∪ {0,∞} whenever f is Cr+2 (see Propo-
sition 2.3.8).

If, in the situation of Definition 1.0.1, N is a K-analytic manifold modeled on a locally
convex topological K-vector space over K ∈ {R,C} and θ : Ω → Ω′ is a diffeomor-
phism of K-analytic manifolds, then Σ is called a K-analytic local addition. In this case,
ACLp([a, b], N) can be given a K-analytic manifold structure modeled on the locally
convex topological K-vector spaces Γη with properties as in Theorem 1.0.2, replacing
C∞-diffeomorphisms with diffeomorphisms of K-analytic manifolds there (see Corollary
2.3.6). If Nj is a K-analytic manifold modeled on a sequentially complete locally convex
topological K-vector space such that Nj admits a K-analytic local addition for j ∈ {1, 2},
then the map ACLp([a, b], f) described in Theorem 1.0.3 is K-analytic for all p ∈ [1,∞]
(see Corollary 2.3.9).

Manifolds of absolutely continuous paths occur in the regularity theory of infinite-
dimensional Lie groups. Consider a Lie group G modeled on a sequentially complete
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locally convex space, with tangent space g := TeG at the neutral element e ∈ G. For
g ∈ G, let ρg : G→ G, x 7→ xg be the right multiplication with g. Then

TG×G→ TG, (v, g) 7→ Tρg(v) =: v.g

is a smooth map and a right action of G on TG. The following concept strengthens
“regularity” in the sense of Milnor [32].

Definition 1.0.4 Following [35] (cf. also [15]), G is called Lp-semiregular if, for each
γ ∈ Lp([0, 1], g), the initial value problem

η̇(t) = γ(t).η(t), t ∈ [0, 1] (1.0.1)

η(0) = e (1.0.2)

has an ACLp-solution η : [0, 1] → G. Then η is necessarily unique; we call η the evo-
lution of γ and write Evol([γ]) := η. If G is Lp-semiregular and Evol : Lp([0, 1], g) →
ACLp([0, 1], G) is smooth, then G is called Lp-regular.

Remark 1.0.5 If G is modeled on a Fréchet space, (1.0.1) is required to hold for almost
all t ∈ [0, 1] with respect to Lebesgue measure. In the general case, η is required to
be a Carathéodory solution to (1.0.1), i.e., it solves the corresponding integral equation
piecewise in local charts. We mention that a Lie group G is Lp-regular if and only if G
is Lp-semiregular and Evol is smooth as map

Lp([0, 1], g) → C([0, 1], G)

(see [35]). The latter holds whenever Evol : Lp([0, 1], g) → C([0, 1], G) is continuous at 0
(see [16, Theorem E]).

Now consider a half-Lie group G modeled on a sequentially complete locally convex
space E. Thus G is a group, endowed with a smooth manifold structure modeled on E
which makes G a topological group and turns the right translation ρg : G → G into a
smooth mapping for each g ∈ G (cf. [6, 29]). Let us use notation as in the case of Lie
groups.

Definition 1.0.6 We say that a half-Lie group G is Lp-semiregular if the differential
equation

ẏ(t) = γ(t).y(t), t ∈ [0, 1] (1.0.3)

satisfies local uniqueness of Carathéodory solutions for each γ ∈ Lp([0, 1], g) (in the sense
of [19]) and the initial value problem (1.0.1) has a Carathéodory solution Evol(γ) :=
η : [0, 1] → G.

The Lie group Diff(M) of C∞-diffeomorphisms of a compact smooth manifold M with-
out boundary is known to be L1-regular, and also the Lie group DiffK(Rn) of all C∞-
diffeomorphisms ϕ : Rn → Rn such that ϕ(x) = x for all x ∈ Rn \K, for each compact
subset K ⊆ Rn (see [15]). For each positive integer r, the following analogues are
obtained (see Theorems 2.6.5 and 2.5.3):
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Theorem 1.0.7 Let 1 ≤ p <∞. For each compact smooth manifold M without bound-
ary and r ∈ N, the half-Lie group G := Diffr(M) of all Cr-diffeomorphisms ϕ : M →M
is Lp-semiregular. Moreover, its evolution map

Evol : Lp([0, 1], g) → ACLp([0, 1], G)

is continuous.

Here g is the Banach space of Cr-vector fields on M .

Theorem 1.0.8 Let 1 ≤ p < ∞ and r ∈ N. For each positive integer n and compact
subset K of Rn, the half-Lie group G := DiffrK(Rn) of all Cr-diffeomorphisms ϕ : Rn →
Rn with ϕ|Rn\K = idRn\K is Lp-semiregular. Moreover, its evolution map

Evol : Lp([0, 1], g) → ACLp([0, 1], G)

is continuous.
If we replace Lp with L∞

rc (see Definition 2.1.5) the preceding theorem remains valid.

Here g is the Banach space of all Cr-vector fields on Rn which vanish outside K.

For an Lp-semiregular half-Lie group G admitting a local addition with 1 ≤ p < ∞,
the smooth manifold structure on ACLp([0, 1], G) provided by Theorem 1.0.2 makes it
possible to discuss continuity properties and differentiability properties of the evolution
map as a mapping

Evol : Lp([0, 1], g) → ACLp([0, 1], G).

So far, we have one positive result in this regard:

Theorem 1.0.9 Let G be a right half-Lie group modeled in a sequentially complete
locally convex space space E which admits a local addition and 1 ≤ p < ∞. Let G be
Lp-semiregular with continuous evolution map

EvolC : Lp([0, 1], TeG),→ C([0, 1], G), γ 7→ EvolC(γ).

If the restriction of the right action

τ : TeG×G→ TG, (v, g) 7→ v.g

is continuous, then the evolution map

Evol : Lp([0, 1], TeG),→ ACLp([0, 1], G), γ 7→ Evol(γ)

is continuous. If G is a right half-Lie group modeled on an integral complete locally
convex space E, then if we replace Lp with L∞

rc the result remains valid.

So far, C0-regularity has been investigated for the half-Lie group Diffr(M) in a suitable
sense (see the sketch in [31]). Independently, related questions of regularity have been
considered by Pierron and Trouvé (see [39]).
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Manifolds of mappings associated with real-valued functions spaces

In the second part, we describe a general construction principle for manifold structures
on sets of mappings between manifolds when real-valued functions spaces are given,
satisfying suitable axioms. The modeling spaces for these manifold structures, which
coincide with spaces of sections, are studied at the beginning. Then we study the con-
struction and properties of natural mappings between these manifolds of mappings.
For fixed m,n ∈ N, we consider an m-dimensional compact smooth manifold with cor-
ners M and let N be an n-dimensional smooth manifold without boundary. Following
the notation of the work Helge Glöckner and Luis Tárrega [22], we consider a basis of
the topology U of the set [0,∞)m satisfying suitable properties (see Definition 3.1.1).
Suppose that for each open set U ∈ U , an integral complete locally convex space F(U,R)
of bounded, continuous real-valued functions is given. Then for each finite-dimensional
real vector space E, a set of maps F(U,E) can be defined in a natural way. If certain ax-
ioms are satisfied (see Definition 3.1.5), we say that the family (F(U,E))U∈U is suitable
for global analysis. Varying the case where M is a smooth manifold without boundary
(see [22]), one can define a locally convex space F(M,E). Moreover, we can also define
a set F(M,N) of N -valued F-functions on the manifold with corners M .

For each function γ : M → N in F(M,N), we define the real vector space of sections
with the pointwise operations

ΓF (γ) := {σ ∈ F(M,TN) : πTN ◦ σ = γ}

and we endow it with a natural topology making it an integral complete locally convex
topological vector space. We define the set

Vγ := {σ ∈ ΓF (γ) : σ(M) ⊆ Ω},

which is open in ΓF (γ). Setting

Uγ := {ξ ∈ ΓF (γ) : (γ, ξ)(M) ⊆ Ω′},

the map
Ψγ := F(M,Σ) : Vγ → Uγ , σ 7→ Σ ◦ σ

is a bijection. We show (see Theorem 3.3.3):

Theorem 1.0.10 Let U be a good collection of open subsets of [0,∞)m. If (F(U,R))U∈U
is a family of locally convex spaces suitable for global analysis, then for eachm-dimensional
compact manifold M with corners and smooth manifold N without boundary which ad-
mits a local addition, the set F(M,N) admits a smooth manifold structure such that the
sets Uγ are open in F(M,N) for all γ ∈ F(M,N) and for each local addition, the map
Ψγ : Vγ → Uγ is a C∞-diffeomorphism.

We show that the point evaluation map εp : F(M,N) → N is smooth for each p ∈ M
(see Proposition 3.3.12). For each v ∈ TF(M,N) we define the function

ΘN (v) :M → TN, ΘN (v)(p) := Tεp(v).

Then with respect to the tangent bundle of F(M,N) we have:
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Proposition 1.0.11 Let M be an m-dimensional compact smooth manifold with cor-
ners, N be an n-dimensional smooth manifold which admits a local addition and πTN :
TN → N its tangent bundle. Then the map

F(M,πTN ) : F(M,TN) → F(M,N), τ 7→ πTN ◦ τ

is a smooth vector bundle with fiber ΓF (γ) over γ ∈ F(M,N). Moreover, the map

ΘN : TF(M,N) → F(M,TN), v 7→ ΘN (v)

is an isomorphism of vector bundles.

Using the smooth manifold structures just described, we find:

Proposition 1.0.12 Let M be an m-dimensional compact smooth manifold with cor-
ners, N1 and N2 be n-dimensional smooth manifolds which admit local additions (Ω1,Σ1)
and (Ω2,Σ2) respectively. If f : N1 → N2 is a smooth map, then the map

F(M,f) : F(M,N1) → F(M,N2), γ 7→ f ◦ γ,

is smooth.

And its tangent map can be characterized in the following way:

Proposition 1.0.13 Let M be an m-dimensional compact smooth manifold with cor-
ners, N1 and N2 be finite-dimensional smooth manifolds which admit a local addition.
If f : N1 → N2 is a smooth map, then the tangent map of

F(M,f) : F(M,N1) → F(M,N2), γ 7→ f ◦ γ

is given by
TF(M,f) = Θ−1

N2
◦ F(M,Tf) ◦ΘN1 .
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2 Manifolds of absolutely continuous
functions with values in an
infinite-dimensional manifold and
regularity properties of half-Lie groups

2.1 Preliminaries

Definition 2.1.1 Let E and F be real locally convex spaces, U ⊆ E be open and
f : U → F be a map. We say that f is C0 if it is continuous. We say that f is C1 if f
is continuous, the directional derivative

df(x, y) := (Dyf)(x) := lim
t→0

1

t
(f(x+ ty)− f(x))

(with t ̸= 0) exists in F for all (x, y) ∈ U × E, and df : U × E → F is continuous.
Recursively, for k ∈ N we say that f is Ck if f is C1 and df : U × E → F is Ck−1. We
say that f is C∞ (or smooth) if f is Ck for each k ∈ N.
Definition 2.1.2 Let E1, E2 and F be real locally convex spaces, U ⊆ E1 and V ⊆ E2

be open subsets, r, s ∈ N ∪ {0,∞} and f : U × V → F be a map. If the iterated
directional derivatives

d(i,j)f((x, a), y1, ..., yi, b1, ..., bj) := (D(y1,0)...D(yi,0)D(0,b1)...D(0,bj)f)(x, a)

exist for all i, j ∈ N ∪ {0} such that i ≤ r and j ≤ s, and all y1, ..., yi ∈ E1 and
b1, ..., bj ∈ E2, and, we assume that the mappings

d(i,j)f : U × V × Ei1 × Ej2 → F

are continuous, then f is called a Cr,s-map.

Definition 2.1.3 LetX be a locally compact topological space, endowed with a measure
µ : B(X) → [0,∞] on its σ-algebra of Borel sets and let Y be a topological space. A
function γ : X → Y is called Lusin µ-measurable (or µ-measurable) if for each compact
subset K ⊆ X, there exists a sequence (Kn)n∈N of compact subsets Kn ⊆ K such that
each restriction γ|Kn is continuous and µ (K\ ∪n∈N Kn) = 0.

For details of the construction of Lebesgue spaces, we refer the reader to see [35].

Definition 2.1.4 Let E be a locally convex space, a < b be real numbers, 1 ≤ p < ∞
and λ : B([a, b]) → [0,∞) be the restriction of the Lebesgue-Borel measure on R. We
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define the set Lp([a, b], E) as the set of all Lusin λ-measurable functions γ : [a, b] → E
such that for each continuous seminorm q on E we have

q ◦ γ ∈ Lp([a, b],R).

And we endow it with the locally convex topology defined by the family of seminorms

∥·∥Lp,q: Lp([a, b], E) → [0,∞[, ∥γ∥Lp,q:= ∥q ◦ γ∥Lp .

Let γ ∼ η if and only if γ(t) = η(t) for almost all t ∈ [a, b] and write [γ] for the equivalence
class of γ. We define the Hausdorff locally convex space

Lp([a, b], E) := Lp([a, b], E)/[0]

with seminorms

∥·∥Lp,q: L
p([a, b], E) → [0,∞[, ∥[γ]∥Lp,q:= ∥γ∥Lp,q.

Definition 2.1.5 Let E be a locally convex space, a < b be real numbers and λ :
B([a, b]) → [0,∞) be the restriction of the Lebesgue measure on R. We define the set
L∞([a, b], E) of all Lusin λ-measurable, essentially bounded functions γ : [a, b] → E. For
each continuous seminorm q : E → Rn we define the seminorm

∥γ∥L∞,q:= ess sup
t∈[a,b]

q ◦ γ(t).

We endow L∞([a, b], E) with the Hausdorff locally convex topology given by these semi-
norms.
Let γ ∼ η if and only if γ = η a.e. We define the Hausdorff locally convex space

L∞([a, b], E) := L∞([a, b], E)/[0]

with seminorms

∥·∥L∞,q: L
∞([a, b], E) → [0,∞[, ∥[γ]∥L∞,q:= ∥γ∥L∞,q.

We define the vector space L∞
rc([a, b], E) of all Borel measurable functions γ : [a, b] →

E such that the image Im(γ) has compact and metrizable closure, endowed with the
topology induced by L∞([a, b], E). Thus

L∞
rc([a, b], E) := L∞

rc([a, b], E)/[0]

is a Hausdorff locally convex space.

Remark 2.1.6 Let E be a Frechet space and p ∈ [0, 1]. If LpB([0, 1], E) denotes the
Lebesgue space constructed with the set of Borel measurable functions (see [15]), then
LpB([0, 1], E) coincides with Lp([0, 1], E) ([35, Proposition 2.10]).
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Remark 2.1.7 Let 1 ≤ q ≤ p <∞, then

L∞([a, b], E) ⊆ Lp([a, b], E) ⊆ Lq([a, b], E) ⊆ L1([a, b], E)

as a consequence of Hölder’s inequality.

Definition 2.1.8 Let E be a locally convex space and γ : [a, b] → E be such that α◦γ ∈
L1([a, b],R) for each α ∈ E′. An element z ∈ E is called the weak integral of γ if

α(z) =

∫ b

a
(α ◦ γ)(s)ds,

for each ∀α ∈ E′. Then z is called the weak integral of γ from a to b, and we write
z =:

∫ b
a γ(s)ds.

Definition 2.1.9 Let E be a locally convex space. We say that a sequence (xn)n ⊂ E
is a Cauchy sequence if for each ε > 0 and each continuous seminorm q of E, there exists
an integer Nε,q ∈ N, such that for all m,n ≥ Nε,q we have

q(xm − xn) < ε.

We say that E is sequentially complete if every Cauchy sequence converge in E.

The following lemma [35, Proposition 2.26] allows us to define absolute continuous func-
tions with vector values.

Lemma 2.1.10 If E is sequentially complete locally convex space, then for each γ ∈
L1([a, b], E), the weak integral

∫ b
a γ(s)ds exists and the map

η : [a, b] → E, η(t) =

∫ t

a
γ(s)ds

is continuous.

A related important result of weak integrals is the Mean Value Theorem (see e.g. [14]).

Theorem 2.1.11 Let E and F be locally convex spaces, U ⊆ E be an open subset, f :
U → F a C1-map and x, y ∈ U such that the line segment {tx+(1− t)y ∈ E : t ∈ [0, 1]}
is contained in U . Then

f(y)− f(x) =

∫ 1

0
df(x+ t(y − x), y − x)dt.

Definition 2.1.12 Let E be a sequentially complete locally convex space and p ∈ [1,∞].
For t0 ∈ [a, b], we say that a function η : [a, b] → E is Lp-absolutely continuous (or just
absolutely continuous if there is no confusion) if there exists a [γ] ∈ Lp([a, b], E) such
that

η(t) = η(t0) +

∫ t

t0

γ(s)ds, t ∈ [a, b]. (2.1.1)

We denote the space of all Lp-absolutely continuous functions by ACLp([a, b], E). Let
t0 ∈ [a, b] be fixed, since η′ := [γ] is necessarily unique (see [34, Lemma 2.28]), the map

Φ : ACLp([a, b], E) → E × Lp([a, b], E), η 7→ (η(t0), η
′) (2.1.2)
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is an isomorphism of vector spaces. We endow ACLp([a, b], E) with the Hausdorff locally
convex vector topology which makes Φ an isomorphism of topological vector space (see
[34, Definition 3.1]).

The following result will allow us to study differentiability of functions with values in
ACLp([a, b], E).

Lemma 2.1.13 Let E be a sequentially complete locally convex space and p ∈ [1,∞].
Then the map

Ψ : ACLp([a, b], E) → C([a, b], E)× Lp([a, b], E), η 7→ (η, η′) (2.1.3)

is a linear topological embedding with closed image.

Proof. We let I : E × Lp([a, b], E) → C([a, b], E) be the continuous map given by

I((x, [γ])(t) := x+

∫ t

a
γ(s)ds, t ∈ [a, b]

for each x ∈ E and [γ] ∈ Lp([a, b], E). Let Φ : ACLp([a, b], E) → E × Lp([a, b], E), with
t0 := a, be the isomorphism of topological vector spaces as above. We consider the map

Θ : E × Lp([a, b], E) → C([a, b], E)× Lp([a, b], E), (x, [γ]) 7→
(
I(x, [γ]), [γ]

)
which is continuous.
Moreover, since the evaluation map εa : C([a, b], E) → E, η 7→ η(a) is continuous, the

map
(
Θ|Im(Θ)

)−1
= (εa, idLp) is also continuous. Hence Ψ is a topological embedding.

Let (ηα, η
′
α)α be a net in Im(Θ) that converges to (η, [γ]) ∈ C([a, b], E)×Lp([a, b], E). By

continuity of εa, the net (ηα(a))α converges to η(a) ∈ E, and by continuity of Θ, the net
(Θ(ηα(a), η

′
α))α converges to (I(η(a), [γ]), [γ]) ∈ Im(Θ). Since the net (Θ(ηα(a), η

′
α))α

also converges to (η, [γ]), we have

I(η(a), [γ]) = η.

Therefore η′ = [γ] and (η, [γ]) ∈ Im(Θ).

Remark 2.1.14 Let p ∈ [1,∞]. Since the inclusion map ACLp([a, b], E) → C([a, b], E)
is continuous [35, Lemma 3.2], the topology on ACLp([a, b], E) is independent of the
choice of t0 and finer than the compact-open topology. Hence the sets

ACLp([a, b], V ) := {η ∈ ACLp([a, b], E) : η([a, b]) ⊆ V }

are open on ACLp([a, b], E), for each open subset V ⊆ E.

For maps between absolute continuous function spaces, we have the following results
(see [35]).
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Lemma 2.1.15 Let E be a sequentially complete locally convex space and p ∈ [1,∞].
For c, d ∈ R with c < d we define a map g : [c, d] → [a, b] via

g(t) = a+
t− c

d− c
(b− a), t ∈ [c, d].

Then η ◦ g ∈ ACLp([c, d], E) for each η ∈ ACLp([a, b], E) and the map

ACLp(g,E) : ACLp([a, b], E) → ACLp([c, d], E), η 7→ η ◦ g

is continuous linear.

Lemma 2.1.16 Let E and F be sequentially complete locally convex spaces, p ∈ [1,∞],
V ⊆ E be open subset and f : V → F be a C1-map. Then f ◦ η ∈ ACLp([a, b], F ) for
each η ∈ ACLp([a, b], V ).

Lemma 2.1.17 Let E and F be sequentially complete locally convex spaces, p ∈ [1,∞]
and k ∈ N∪ {0,∞}. Let V ⊆ E be open subset and f : V → F be a Ck+2-map, then the
map

f∗ := ACLp([a, b], f) : ACLp([a, b], V ) → ACLp([a, b], F ), η 7→ f ◦ η

is Ck. Moreover, we have
d(f∗)(η, η1) = df ◦ (η, η1)

for all (η, η1) ∈ ACLp([a, b], V )×ACLp([a, b], E).

Remark 2.1.18 For sequentially complete locally convex spaces E and F we have

ACLp([a, b], E × F ) ∼= ACLp([a, b], E)×ACLp([a, b], F ).

Definition 2.1.19 Let E and F be complex topological vector spaces, where is F is
locally convex, U ⊆ E be an open subset and f : U → F be a mapping. We say that f is
complex analytic if it is continuous and, for each x ∈ U , there exists a 0-neighbouhood
V ⊆ E such that x+V ⊆ U and certain continuous homogeneous polynomials βn : E →
F of degree n, such that f admits the expansion: f(x+ y) =

∑∞
n=0 βn(y), for all y ∈ V .

For our context, we present an application of [4, Proposition 7.7] to our particular case.

Lemma 2.1.20 Let E and F be complex locally convex spaces, and f : U → F be a
mapping defined on an open subset of E. Then f is complex analytic if and only if f is
smooth and the mapping df(x, ·) : E → F is complex linear for each x ∈ U .

Definition 2.1.21 Let E and F be real locally convex spaces, U ⊆ E be an open subset
and f : U → F be a map. We say that f is real analytic if it extends to an analytic map
f : V → FC on some open neighborhood V of U in EC, where EC and FC denotes the
complexification of E and F , respectively.

Lemma 2.1.22 Let E and F be sequentially complete locally convex spaces over K ∈
{R,C}, p ∈ [1,∞], V ⊆ E be an open set and f : V → F be a K-analytic map. Then
the map

f∗ := ACLp([a, b], f) : ACLp([a, b], V ) → ACLp([a, b], F ), η 7→ f ◦ η

is K-analytic.
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Proof. First we consider the case K = C. By Lemma 2.1.17 the map f∗ is smooth and
d(f∗) is complex linear in the second variable, hence by Lemma 2.1.20 the map f∗ is
complex analytic.
If K = R, then by definition the map f has a complex analytic extension f̃ , hence (f̃)∗
is the complex analytic extension of f∗, whence f∗ is real analytic.

Definition 2.1.23 Let N be a smooth manifold modeled with on a sequentially com-
plete locally convex space E and p ∈ [1,∞]. We say that a function η : [a, b] → N
is Lp-absolutely continuous if it is continuous and there exists a partition {t0, ..., tn} of
[a, b] such that for each j ∈ {1, ..., n}, there exists a chart φj : Uj → Vj that verifies

i) η([tj−1, tj ]) ⊆ Uj .

ii) φj ◦ η|[tj−1,tj ] ∈ ACLp([tj−1, tj ], E).

In this case, we say that these charts verify the definition of Lp-absolute continuity for
η. If there is no confusion, we simple call η absolutely continuous.

For the case of absolutely continuous functions with values in a manifold, the following
facts are available (see [35]).

Lemma 2.1.24 Let N be a smooth manifold modeled on a sequentially complete locally
convex space E and p ∈ [1,∞]. If η ∈ ACLp([a, b], N), then

φ ◦ η|[α,β] ∈ ACLp([α, β], E),

for each chart φ : U → V of N and each subinterval [α, β] ⊆ [a, b] such that η([α, β]) ⊆ U .

Lemma 2.1.25 Let M and N be smooth manifolds modeled on sequentially complete
locally convex spaces and p ∈ [1,∞]. If f : M → N is a C1-map, then f ◦ η ∈
ACLp([a, b], N) for each η ∈ ACLp([a, b],M).

2.2 The space of absolutely continuous sections

Definition 2.2.1 Let N be a smooth manifold modeled on a sequentially complete
locally convex space E, πTN : TN → N its tangent bundle and p ∈ [1,∞]. For η ∈
ACLp([a, b], N) we define the set

ΓAC(η) := {σ ∈ ACLp([a, b], TN) : πTN ◦ σ = η} (2.2.1)

and we endow it with the pointwise operations, making it a vector space.
Consider a partition Pn = {t0, ..., tn} of [a, b] and charts {(φi, Ui) : i ∈ {1, ..., n}} of N
that verify the definition of absolute continuity for η. Since η([ti−1, ti]) ⊆ Ui, we have

σ([ti−1, ti]) ⊆ TUi, for all σ ∈ ΓAC(η)

for each i ∈ {1, ..., n}. We endow ΓAC(η) with the Hausdorff locally convex vector
topology which is the initial topology with respect to the linear mappings

hi : ΓAC(η) → ACLp([ti−1, ti], E), σ 7→ hi(σ) = dφi ◦ σ|[ti−1,ti] (2.2.2)

with i ∈ {1, ..., n}.
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Proposition 2.2.2 Let N be a smooth manifold modeled on a sequentially complete
locally convex space E, p ∈ [1,∞] and η ∈ ACLp([a, b], N). Let P = {t0, ..., tn} be a
partition of [a, b] and {(φi, Ui) : i ∈ {1, ..., n}} be charts of N that verify the definition
of absolute continuity for η, then the map

Φη,P : ΓAC(η) →
n∏
i=1

ACLp([ti−1, ti], E), σ 7→
(
dφi ◦ σ|[ti−1,ti]

)n
i=1

(2.2.3)

is a linear topological embedding with closed image given by the set of all elements (τi)
n
i=1

such that

τi(ti) = dφi ◦ (Tφi+1)
−1
(
φi+1 ◦ η(ti), τi+1(ti)

)
, for all i ∈ {1, ..., n− 1}.

Proof. The linear map Φη,P is continuous by the previous definition and it is injective.
Let i ∈ {1, ..., n}. If Wi = φi+1(Ui ∩ Ui+1), then the map

gi :Wi × E → E, (x, y) 7→ dφi ◦ (Tφi+1)
−1(x, y),

is continuous and linear in the second component. This enables us to define the closed
vector subspace K given by the elements

(τi)
n
i=1 ∈

n∏
i=1

ACLp([ti−1, ti], E)

which verify

τi(ti) = dφi ◦ (Tφi+1)
−1
(
φi+1 ◦ η(ti), τi+1(ti)

)
, for all i ∈ {1, ..., n− 1}

We will show that the image of Φη,P , denoted by Im(Φη,P ), coincides with the closed
subspace K. Indeed, the space Im(Φη,P ) is contained in K by definition of Φη,P . Let us
consider now τ = (τi)

n
i=1 ∈ K. We define the maps

σi : [ti−1, ti] → TN, s 7→ (Tφi)
−1
(
φi ◦ η(s), τi(s)

)
and

στ : [a, b] → TN, t 7→ σi(t), for t ∈ [ti−1, ti].

By the Glueing Lemma, the map στ is continuous. Moreover, by Lemma 2.1.25 each
function σi is absolutely continuous, hence σ it is too. Since πTN ◦ στ = η we have that
στ ∈ ΓAC(η) and Φη,P (στ ) = (τi)

n
i=1, and Im(Φη,P ) = K.

It remains to show that the inverse map

Φ−1
η,P : Im(Φη,P ) → ΓAC(η), (τi)

n
i=1 7→ στ

is continuous. If hi are the functions that define the topology (Definition 2.2.1), then
for each i ∈ {1, ..., n} we have hi ◦ Φ−1

η,P = qi, where qi is the continuous linear map

qi :

n∏
j=1

ACLp([tj−1, tj ], E) → ACLp([ti−1, ti], E), (ηj)
n
j=1 7→ ηi.

Hence Φ−1
η,P is continuous.
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Remark 2.2.3 From now we consider the map Φη,P as the homeomorphism

Φη,P : ΓAC(η) → Im(Φη,P ).

Corollary 2.2.4 Let N be a smooth manifold modeled on a E Banach space (resp.
Frechet space), p ∈ [1,∞] and η ∈ ACLp([a, b], N). Then the vector space ΓAC(η) is a
Banach space (resp. Frechet space).

Proof. This follows from the fact that each vector space ACLp([ti−1, i], E) is a Banach
space (resp. Frechet space)

Proposition 2.2.5 LetM and N be smooth manifolds modeled on sequentially complete
locally convex spaces, k ∈ N∪{0,∞}, p ∈ [1,∞] and η ∈ ACLp([a, b],M). If f :M → N
is a Ck+3-map, then Tf ◦ σ ∈ ΓAC(f ◦ η) for each σ ∈ ΓAC(η). Moreover, the map

f̃ : ΓAC(η) → ΓAC(f ◦ η), σ 7→ Tf ◦ σ

is continuous linear.

Proof. Let EM and EN be the modeling spaces of M and N respectively. By Lemma
2.1.16 we have f ◦η ∈ ACLp([a, b], N) and Tf ◦σ ∈ ACLp([a, b], TN) for each σ ∈ ΓAC(η).
Since Tη(t)f (σ(t)) ∈ Tf◦η(t)N for each t ∈ [a, b], we have

πTN ◦ (Tf ◦ σ) = f ◦ η.

Thus f̃(σ) ∈ ΓAC(f ◦ η) for each σ ∈ ΓAC(η). The linearity of f̃ is trivial.
Without loss of generality, we can choose a partition P = {t0, ..., tn} of [a, b] such that
there exist families of charts {(φi, Ui) : i ∈ {1, ..., n}} and {(ϕi, Vi) : i ∈ {1, .., n}} that
verify the definition of absolute continuity for η and f ◦ η respectively, such that

f(Ui) ⊆ Vi, for each i ∈ {1, ..., n}.

For σ ∈ ΓAC(η) and for each i ∈ {1, ..., n} we denote ηi = η|[ti−1,ti] and σi = σ|[ti−1,ti].
We define the maps

Fi : ACLp([ti−1, ti], EM ) → ACLp([ti−1, ti], EN ), τ 7→
(
dϕi ◦ Tf ◦ Tφ−1

i

)
◦ (φi ◦ ηi, τ)

and

F :
n∏
i=1

ACLp([ti−1, ti], EM ) →
n∏
i=1

ACLp([ti−1, ti], EN ), (τi)
n
i=1 7→ (Fi(τi))

n
i=1

which are continuous by Lemma 2.1.17. We will show that

F (Im (Φη,P )) ⊆ Im (Φf◦η,P ) .
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Let i ∈ {1, .., n− 1}. If

τi : = Fi(dφi ◦ σi)
= (dϕi ◦ Tf ◦ dφ−1

i )(φi ◦ ηi, dφi ◦ σi)
= dϕi ◦ Tf ◦ σi

then

dϕi ◦ (Tϕi+1)
−1
(
ϕi+1 ◦ (f ◦ η)(ti), τi+1(ti)

)
= dϕi ◦ (Tϕi+1)

−1
(
ϕi+1 ◦ (f ◦ η)(ti), dϕi+1 ◦ Tf ◦ σi+1(ti)

)
= dϕi ◦ Tf ◦ σi+1(ti)

= dϕi ◦ Tf ◦ σi(ti)
= τi(ti)

Hence F ◦ Φη,P (σ) ∈ Im(Φf◦η,P ) and in consequence

f̃ = Φ−1
f◦η,P ◦ F ◦ Φη,P .

Thus f̃ is continuous.

Remark 2.2.6 The topology of ΓAC(η) does not depend on the partition or charts
chosen. Indeed, since the identity map idM : M → M is smooth, by the previous
proposition the map

ĩdM : ΓAC(η) → ΓAC(idM ◦ η), σ 7→ T idM ◦ σ

is smooth regardless of the partition or charts chosen. Moreover, this map coincides with
the identity map idΓ : ΓAC(η) → ΓAC(η), σ 7→ σ.

Remark 2.2.7 For η ∈ C([a, b], N) we endow the vector space

ΓC(η) = {σ ∈ C([a, b], TN) : πTN ◦ σ = γ}

with the compact-open topology. Since each inclusion

ACLp([ti−1, ti], E) → C([ti−1, ti], E)

is continuous [35, Lemma 3.2], the inclusion map JΓ : ΓAC(γ) → ΓC(γ) is also continuous.
This implies that set

V := {σ ∈ ΓAC(η) : σ([a, b]) ⊆ V }

is open in ΓAC(η) for each open subset V ⊆ TN .

Proposition 2.2.8 Let N1 and N2 be smooth manifolds modeled on sequentially com-
plete locally convex spaces, p ∈ [1,∞] and pri : N1 × N2 → Ni be the i-projection for
i ∈ {1, 2}. If η1 ∈ ACLp([a, b], N1) and η2 ∈ ACLp([a, b], N2), then the map

P : ΓAC(η1, η2) → ΓAC(η1)× ΓAC(η1), σ 7→ (T pr1, T pr2)(σ)

is a linear homeomorphism.
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Proof. By Proposition 2.2.5 the map P is continuous and clearly linear. Let P =
{t0, ..., tn} be a partition of [a, b]; let {(ϕ1,i, U1,i) : i ∈ {1, . . . , n}} and {(ϕ2,i, U2,i) : i ∈
{1, . . . , n}} be families of charts of N1 and N2, respectively, that verify the definition
of absolute continuity for η1 and η2, respectively. Then η := (η1, η2) : [a, b] → N1 × N2

is Lp-absolutely continuous and it is clear that the charts {(ϕ1,i × ϕ2,i, U1,i × U2,i) : i ∈
{1, . . . , n}} satisfy the condition of absolute continuity for η. For j ∈ {1, 2}, consider
the linear topological embedding

Φηj ,P : Γηj →
n∏
i=1

ACLp([ti−1, ti], Ej), τ 7→ (dϕj,i ◦ τ |[ti−1,ti])
n
i=1

where Ej is the modeling space of Nj . Also

Φη,P : Γη →
n∏
i=1

ACLp([ti−1, ti], E1 × E2), τ 7→ ((dϕ1,i × dϕ2,i) ◦ τ |[ti−1,ti])
n
i=1

is a linear topological embedding; here T(x1,x2)(N1×N2) is identified with Tx1N1×Tx2N2.
For i ∈ {1, . . . , n}, let

αi : ACLp([ti−1, ti], E1)×ACLp([ti−1, ti], E2) → ACLp([ti−1, ti], E1 × E2)

be the map taking a pair (f1, f2) of functions to the function t 7→ (f1(t), f2(t)); we know
that αi is an isomorphism of topological vector spaces. Then also

α :

(
n∏
i=1

ACLp([ti−1, ti], E1)

)
×

(
n∏
i=1

ACLp([ti−1, ti], E2)

)
→

n∏
i=1

ACLp([ti−1, ti], E1×E2),

((fi)
n
i=1, (gi)

n
i=1) 7→ (α(fi, gi))

n
i=1

is an isomorphism of topological vector spaces. If (fi)
n
i=1 is in the image of Φη1,P and

(gi)
n
i=1 is in the image of Φη2,P , then α((fi)

n
i=1, (gi)

n
i=1) is in the image of Φη,P , as the

compatibility at the endpoints can be checked by considering the components in E1 and
E2. We can therefore define a function

Θ := Φ−1
η,P ◦ α ◦ (Φη1,P × Φη2,P ) : Γη1 × Γη2 → Γη,

which is continuous and linear. We readily check that P(Θ(σ, τ)) = (σ, τ) for all σ ∈ Γη1
and τ ∈ Γη2 . Hence P is surjective and thus bijective, with P−1 = Θ a continuous
map.

Proposition 2.2.9 Let N be a smooth manifold modeled on a sequentially complete lo-
cally convex space E, p ∈ [1,∞] and η ∈ ACLp([a, b], N). For a partition P = {t0, ..., tn}
of [a, b], the map

ρ : ΓAC(η) →
n∏
i=1

ΓAC
(
η|[ti−1,ti]

)
, σ 7→ (σ|[ti−1,ti])

n
i=1

is a linear topological embedding with closed image.
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Proof. Let j ∈ {1, ..., n}, If Pj = {tj−1, tj}, since ηj := η|[tj−1,tj ] ∈ ACLp([tj−1, tj ], N),
we have

ρ =

(
n∏
i=1

Φ−1
ηi,Pi

)
◦ Φη,P .

The image is given by the closed subspace

Im(ρ) =

{
(τi)

n
i=1 ∈

n∏
i=1

ΓAC(η|[ti−1,ti]) : τi(ti) = τi+1(ti) for all i ∈ {1, ..., n− 1}

}
.

Thus (ρ|Im(ρ))−1 : Im(ρ) 7→ ΓAC(η) is well defined and

(
ρ|Im(ρ)

)−1
= Φ−1

η,P ◦

(
n∏
i=1

Φηi,Pi

)
.

Proposition 2.2.10 Let N be a smooth manifold modeled on a sequentially complete
locally convex space E and p ∈ [1,∞]. If g : [c, d] → [a, b] is the map as in Lemma
2.1.15, then η ◦ g ∈ ACLp([c, d], N) for each η ∈ ACLp([a, b], N). Moreover, if η ∈
ACLp([a, b], N), then the map

Lg : ΓAC(η) → ΓAC(η ◦ g), σ 7→ σ ◦ g

is continuous linear.

Proof. Let η ∈ ACLp([a, b], N). We will show first that η ◦ g ∈ ACLp([c, d], N). Let
P = {t0, ..., tn} be a partition of [a, b] and {(φi, Ui) : i ∈ {1, ..., n}} charts of N that verify
the definition of absolute continuity for η. Since g is a strictly increasing function, we
can define a partition Q = {s1, ..., sn} of [c, d] such that g(si) = ti, for each i ∈ {1, ..., n}.
Moreover, given that

φi ◦ (η ◦ g) |[si−1,si] =
(
φi ◦ η|[ti−1,ti]

)
◦ g|[si−1,si]

we have η ◦ g ∈ ACLp([a, b], E) by Lemma 2.1.15. Analogously, we have that σ ◦ g ∈
ACLp([a, b], TN) for each σ ∈ ΓAC(η) and

πTN ◦ (σ ◦ g) = η ◦ g.

Hence Lg(σ) ∈ ΓAC(η ◦ g). To see the continuity of Lg, for each i ∈ {1, ..., n} we define
the maps

Gi : ACLp([ti+1, ti], E) → ACLp([si+1, si], E), τ 7→ τ ◦ g|[si+1,si]

which are continuous by Lemma 2.1.15. Considering the topological embeddings Φη,P
and Φη◦g,Q (as in Proposition 2.2.2) with the same family of charts, if (τi)

n
i=1 ∈ Im(Φη,P )
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we have

τi ◦ g(si) = τi(ti)

= dφi ◦ (Tφi+1)
−1
(
φi+1 ◦ η(ti), τi+1(ti)

)
= dφi ◦ (Tφi+1)

−1
(
φi+1 ◦ η ◦ g(si), τi+1 ◦ g(si)

)
for each i ∈ {1, ..., n− 1}. If G = (G1 × ...×Gn), then (G ◦ Φη,P ) (σ) ∈ Im(Φη◦g,Q) and

Lg = Φ−1
η◦g,Q ◦G ◦ Φη,Q.

Hence Lg is continuous and clearly linear.

Proposition 2.2.11 Let N be a smooth manifold modeled on sequentially complete
locally convex space E, p ∈ [1,∞] and η ∈ ACLp([a, b], N). Then the evaluation map

ϵ : ΓAC(η)× [a, b] → TN, (σ, t) 7→ σ(t)

is continuous, and linear in the first argument. Moreover, for each t ∈ [a, b], the point
evaluation map

ϵt : ΓAC(η) → TN, σ 7→ σ(t)

is smooth.

Proof. The evaluation map

ϵ̃ : ΓC(η)× [a, b] → TN, (σ, t) 7→ σ(t)

is continuous and the evaluation map ϵ̃t : ΓC(η) → TN , σ 7→ σ(t) is smooth for each
t ∈ [a, b] (see [3]). Then ϵ = ϵ̃ ◦ (JΓ × IdR) and ϵt = ϵ̃t ◦ JΓ, where JΓ : ΓAC(η) → ΓC(η)
is the inclusion map, which is continuous linear by Remark 2.2.7.

2.3 Manifolds of absolutely continuous functions

Definition 2.3.1 Let N be a smooth manifold and πTN : TN → N its tangent bundle.
A local addition is a smooth map Σ : Ω → N defined on a open neightborhood Ω ⊆ TN
of the zero-section 0N := {0p ∈ TpN : p ∈ N} such that

a) Σ(0p) = p for all p ∈ N .

b) The image Ω′ :=
(
πTN ,Σ

)
(Ω) is open in N ×N and the map

θN : Ω → Ω′, v 7→
(
πTN (v),Σ(v)

)
(2.3.1)

is a C∞-diffeomorphism.
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Moreover, if T0p(Σ|TpN ) = idTpN for all p ∈ N , we say that the local addition Σ is
normalized. We denote the local addition as the pair (Ω,Σ).
If θN : Ω → Ω′ is a diffeomorphism of K-analytic manifolds, we call Σ : Ω → N a K-
analytic local addition.

Remark 2.3.2 If a smooth manifold N admits a local addition, then also its tangent
manifold TN admits a local addition [3, Lemma A.11]. Moreover, each manifold which
admits a local addition also admits a normalized local addition [3, Lemma A.14]. From
now we will assume that each local addition is normalized.

Remark 2.3.3 Let N be a smooth manifold modeled on a sequentially complete locally
convex space E, p ∈ [1,∞] and η ∈ ACLp([a, b], N). We define the sets

Vη := {σ ∈ ΓAC(η) : σ([a, b]) ⊆ Ω}. (2.3.2)

which is open in ΓAC(η) by Remark 2.2.7 and

Uη := {γ ∈ ACLp([a, b], N) : (η, γ)([a, b]) ⊆ Ω′}. (2.3.3)

Lemma 2.1.25 enable us to define the map

Ψη := ACLp([a, b],Σ) : Vη → Uη, σ 7→ Σ ◦ σ. (2.3.4)

with inverse given by
Ψ−1
η : Uη → Vη, γ 7→ θ−1

N ◦ (η, γ). (2.3.5)

The following lemma is just an application of [4, Lemma 10.1] to our particular case.

Lemma 2.3.4 Let E and F sequentially complete locally convex spaces, U ⊆ E open
and f : U → F a map. If F0 ⊆ F is a closed vector subspace and f(U) ⊆ F0, then
f : U → F is smooth if and only if f |F0 : U → F0 is smooth.

Theorem 2.3.5 For each smooth manifold N modeled on a sequentially complete locally
convex space E which admits a local addition and p ∈ [1,∞], the set ACLp([a, b], N)
admits a smooth manifold structure such that the sets Uη are open in ACLp([a, b], N) for
all η ∈ ACLp([a, b], N) and Ψη : Vη → Uη is a C∞-diffeomorphism.

Proof. We endow ACLp([a, b], N) with the final topology with respect to the family of
maps Ψη : Vη → Uη, for each η ∈ ACLp([a, b], N). If we define the maps ΨC

η : VCη → UCη
on the space of continuous functions C([a, b], N) for each η ∈ C([a, b], N) as in Remark
2.3.3, with Vη ⊆ ΓC(η), then the final topology on C([a, b], N) coincides with its compact
open topology. Hence the inclusion map

J : ACLp([a, b], N) → C([a, b], N), γ 7→ γ

is continuous. Moreover, for each η ∈ ACLp([a, b], N) the set

UCη := {γ ∈ C([a, b], N) : (η, γ)([a, b]) ⊆ Ω′}

is open in C([a, b], N), whence

Uη = UCη ∩ACLp([a, b], N)
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is open in ACLp([a, b], N).
The goal is to make the family {(Uη,Ψ−1

η ) : η ∈ ACLp([a, b], N)} an atlas forACLp([a, b], N)
for a smooth manifold structure on ACLp([a, b], N). We need to show that the charts
are compatible, i.e., the smoothness of the map

Λξ,η := Ψ−1
ξ ◦Ψη : Ψ

−1
η (Uη ∩ Uξ) ⊆ ΓAC(η) → ΓAC(ξ), σ 7→ θ−1

N ◦ (ξ,Σ ◦ σ) (2.3.6)

for each η, ξ ∈ ACLp([a, b], N) such that the open set

Ψ−1
η (Uη ∩ Uξ) =

(
ΨC
η

)−1
(UCη ∩ UCξ ) ∩ ΓAC(η)

is not empty.
Let R = {t0, ..., tn} be a partition of [a, b], let {(Uφi , φi) : i ∈ {1, ...n}} and {(Uϕi , ϕi) :
i ∈ {1, ...n}} be charts that verify the definition of absolute continuity for η and ξ,
respectively. Denoting σi := σ|[ti−1,ti] for each σ ∈ ACLp([a, b], TN). We will study the
smoothness of the composition

Φξ,R ◦ Λξ,η|[ti−1,ti] : Ψ
−1
η (Uη ∩ Uξ) → Im(Φξ,R) ⊂

n∏
i=1

ACLp([ti−1, ti], E)

σ 7→
(
dϕi ◦ Λξ,η|[ti−1,ti](σi)

)n
i=1

that by Lemma 2.3.4, is equivalent to the smoothness of Λξ,η. For each i ∈ {1, ..., n}, we
denote ηi := η|[ti−1,ti] and ξi := ξ|[ti−1,ti] and we have

dϕ̃i ◦ Λξ,η|[ti−1,ti](σi) = dϕi ◦ θ−1
N ◦ (ξi,Σ ◦ σi)

= dϕi ◦ θ−1
N ◦ (ϕ−1

i (ϕi ◦ ξi) ,Σ ◦ Tφ−1
i ◦ Tφi ◦ σi)

= dϕi ◦ θ−1
N ◦ (ϕ−1

i (ϕi ◦ ξi) ,Σ ◦ Tφ−1
i (φi ◦ ηi, dφi ◦ σi)).

Because all of the functions involved are continuous and have an open domain, also the
composition

Hi(x, y, z) := dϕi ◦ θ−1
N ◦ (ϕ−1

i (x) ,Σ ◦ Tφ−1
i (y, z)) (2.3.7)

has an open domain Oi :. Hence the map Hi : Oi → E is smooth. By Lemma 2.1.17,
the map

ACLp([ti−1, ti], Hi) : ACLp([ti−1, ti],Oi) → ACLp([ti−1, ti], E) α 7→ Hi ◦ α

is smooth. Doing the identification of products of ACLp spaces (Remark 2.1.18), if we
fix the functions ϕi ◦ ξi and φi ◦ ηi, we have the continuous affine-linear map

ACLp([ti−1, ti], E) → ACLp([ti−1, ti], E × E × E), τ 7→ (ϕi ◦ ξi, φi ◦ ηi, τ).

We write Wi for the preimage of ACLp([ti−1, ti],Oi) under this map. Then the map

Θi :Wi → ACLp([ti−1, ti], E), τ 7→ Hi ◦ (ϕi ◦ ξ, φi ◦ η, dφi ◦ τ)
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is also smooth. Since the maps hi : ΓAC(η) → ACLp([ti−1, ti], E), σ 7→ dϕi ◦ σi are
continuous by definition of the topology, rewriting we have

Φξ,R ◦ Λξ,η(σ) = (Θi ◦ hi(σ))ni=1

for each σ ∈ Ψ−1
η (Uη ∩ Uξ), hence Λξ,η is smooth.

Proceding in the same way, using the fact that compositions of K-analytic maps are K-
analytic and using the analytic version of Lemma 2.3.4 (see [14]), we obtain the analogous
case.

Corollary 2.3.6 For each K-analytic manifold N modeled on a sequentially complete
locally convex space E which admits a K-analytic local addition and p ∈ [1,∞], the
set ACLp([a, b], N) admits a K-analytic manifold structure such that the sets Uη are
open in ACLp([a, b], N) for all η ∈ ACLp([a, b], N) and Ψη : Vη → Uη is a K-analytic
diffeomorphism.

Proposition 2.3.7 Let N be a smooth manifold modeled on a sequentially complete
locally convex space which admits a local addition and 1 ≤ q ≤ p ≤ ∞. Then

ACL∞([a, b], N) ⊆ ACLp([a, b], N) ⊆ ACLq([a, b], N) ⊆ ACL1([a, b], N)

with smooth inclusion maps.

Proof. Let η ∈ ACLp([a, b], N). Let {t0, ..., tn} be a partition of [a, b] and {(φi, Ui) : i ∈
{1, ..., n}} be charts of N that verify the definition of absolute continuity for η.
By [35, Remark 3.2], we know that each inclusion mapACLp([ti−1, ti], E) → ACLq([ti−1, ti], E)
is continuous linear, hence ACLp([a, b], N) ⊆ ACLq([a, b], N). By Proposition 2.2.2, the
inclusion is smooth since each map

n∏
i=1

ACLp([ti−1, ti], E) →
n∏
i=1

ACLq([ti−1, ti], E), (ηi)
n
i=1 7→ (ηi)

n
i=1.

is continuous linear.

Proposition 2.3.8 LetM and N be smooth manifolds modeled on sequentially complete
locally convex spaces which admits a local addition, p ∈ [1,∞] and k ∈ N ∪ {0,∞}. If
f :M → N is a Ck+2-map, then the map

ACLp([a, b], f) : ACLp([a, b],M) → ACLp([a, b], N), η 7→ f ◦ η

is Ck.

Proof. Let EM and EN be the modeleding space ofM andN , respectively. Let (ΩM ,ΣM )
and (ΩN ,ΣN ) be local additions on M and N respectively. The map makes sense by
Lemma 2.1.25. Let η ∈ ACLp([a, b],M), (Uη,Ψ−1

η ) and (Uf◦η,Ψ−1
f◦η) be charts around

η ∈ ACLp([a, b],M) and f ◦ η ∈ ACLp([a, b], N), respectively. We see that the set

Ψ−1
η

(
Uη ∩ACLp([a, b], f)−1(Uf◦η)

)
= ΓAC(η) ∩

(
ΨC
η

)−1 (UCη ∩ACLp([a, b], f)−1(UCf◦η)
)
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is open in ΓAC(η). If θN = (πTN ,ΣN ), then we define

F (σ) := Ψ−1
f◦η ◦ACLp([a, b], f) ◦Ψη(σ) = θ−1

N ◦
(
(f ◦ η), (f ◦ ΣM ) ◦ σ

)
for all σ ∈ Ψ−1

η

(
Uη ∩ACLp([a, b], f)−1(Uf◦η)

)
.

Proceeding as the proof of Theorem 2.3.5, choosing the corresponding partition P =
{t0, ..., tn} of [a, b] and the families of charts {(Uφi , φi) : i ∈ {1, ..., n}} and {(Uϕi , ϕi) :
i ∈ {1, ..., n}} that verify the definition of absolute continuity for η and f ◦η respectively,
we denote σi = σ|[ti−1,ti]. We will study the continuity of the map

Φf◦η ◦ F : Ψ−1
η

(
Uη ∩ACLp([a, b], f)−1(Uf◦η)

)
→ Im(Φf◦η), σ 7→ (dϕi ◦ F (σi))ni=1

where Φf◦η is the topological embedding as in Proposition 2.2.2. For each i ∈ {1, ..., n}
and σ ∈ Ψ−1

η

(
Uη ∩ACLp([a, b], f)−1(Uf◦η)

)
we have

dϕi ◦ F (σ)|[ti−1,ti] = dϕi ◦ θ−1
N ◦

(
f ◦ η, f ◦ ΣM ◦ σi

)
= dϕi ◦ θ−1

N ◦
(
ϕ−1
i ◦ ϕi ◦ f ◦ η, f ◦ ΣM ◦ Tφ−1

i (φi ◦ η, dφi ◦ σi)
)
.

Because all of the functions involved are continuous and have an open domain, also the
composition

Hi(x, y, z) := dϕi ◦ θ−1
N ◦

(
ϕ−1
i (x), f ◦ ΣM ◦ Tφ−1

i (y, z)
)

(2.3.8)

has an open domain Oi in EN × EM × EM . Hence the map Hi : Oi → EN is smooth.
Fixing the absolutely continuous functions ϕi◦f ◦η and φi◦η, we consider the continuous
affine-linear map

ACLp([ti−1, i], EM ) → ACLp([ti−1, i], EN × EM × EM ), τ 7→ (ϕi ◦ f ◦ η, φi ◦ η, τ)

and we write Wi for the preimage of ACLp([a, b],Oi) under this map. Then the map

Θi :Wi → ACLp([ti−1, ti], EN ) τ 7→ Hi ◦ (ϕi ◦ f ◦ η, φi ◦ η, τ)

is Ck. Since the maps hi : ΓAC(η) → ACLp([ti−1, ti], EM ), σ 7→ dφi ◦ σi are continuous
linear by definition, rewriting we have

Φf◦η ◦ F (σ) = (Θi ◦ hi(σ))ni=1

for each σ ∈ Ψ−1
η (Uη ∩ Uξ), hence the map ACLp([a, b], f) is Ck.

Proceeding in the same way we have the analogous case.

Corollary 2.3.9 Let f : M → N be a K-analytic map between K-analytic manifolds
modeled on sequentially complete locally convex spaces which admit K-analytic local ad-
ditions and p ∈ [1,∞]. Then the map

ACLp([a, b], f) : ACLp([a, b],M) → ACLp([a, b], N), η 7→ f ◦ η

is K-analytic.
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Remark 2.3.10 The manifold structures for ACLp([a, b], N) given by different local
additions coincide. Indeed, since the identity map idN : N → N is smooth regardless of
the chosen local addition, the map

AC([a, b], idM ) : ACLp([a, b], N) → ACLp([a, b], N), η → idN ◦ η

is, again, smooth regardless of the chosen local addition in each space.

Remark 2.3.11 The inclusion map J : ACLp([a, b], N) → C([a, b], N) is smooth.

Indeed, let (Uη,Ψ−1
η ) and (UCη ,

(
ΨC
η

)−1
) be charts around η ∈ ACLp([a, b], N) and

η ∈ C([a, b], N) respectively, then

Ψ−1
η ◦ J ◦ΨC

η (σ) : Ψ
−1
η

(
Uη ∩ J−1(UCη )

)
⊆ ΓAC(η) → ΓC(η)

is a restriction of the inclusion map ΓAC(η) → ΓC(η).
Moreover, if U ⊆ N be a open subset, then the manifold structure induced byACLp([a, b], N)
on the open subset

ACLp([a, b], U) := {η ∈ ACLp([a, b], N) : η([a, b]) ⊆ U}.

coincides with the manifold structure on ACLp([a, b], U).

Proposition 2.3.12 Let N1 and N2 be smooth manifolds with local addition modeled
on a sequentially complete locally convex spaces which admit a local addition, p ∈ [1,∞]
and let pri : N1 ×N2 → Ni be the i-th projection for i ∈ {1, 2}. Then the map

P : ACLp([a, b], N1 ×N2) → ACLp([a, b], N1)×ACLp([a, b], N2), η 7→ (pr1,pr2) ◦ η

is a diffeomorphism.

Proof. By the previous remark, if (Ω1,Σ1) and (Ω1,Σ1) are the local addition on N1 and
N2 respectively, then we can assume that the local addition on N1 ×N2 is

Σ := Σ1 × Σ2 : Ω1 × Ω2 → N1 ×N2

where Ω1 × Ω2 ⊆ TN1 × TN2
∼= T (N1 ×N2). The map P is smooth as consequence of

the smoothness of the maps

ACLp([a, b],pri) : ACLp([a, b], N1 ×N2) → ACLp([a, b], Ni),

for each i ∈ {1, 2}.
Let (Uη1 × Uη2 ,Ψ−1

η1 × Ψ−1
η2 ) and (Uη,Ψ−1

η ) be charts in (η1, η2) ∈ ACLp([a, b], N1) ×
ACLp([a, b], N2) and P−1(η1, η2) = η ∈ ACLp([a, b], N1 × N2) respectively. Since the
map

Q : ΓAC(η) → ΓAC(η1)× ΓAC(η2), τ 7→ (q1, q2) ◦ τ
is an isomorphism of topological vector spaces, where q1 and q2 are the corresponding
projection of the space, we have

Ψ−1
η ◦ P−1 ◦ (Ψη1 ×Ψη2)(σ1, σ2) = (πN1×N2 ,Σ)

−1 ◦
(
η,P−1 ◦ (Σ1 × Σ2)(σ1, σ2)

)
= (πN1×N2 ,Σ)

−1 ◦
(
η,Σ ◦ Q−1(σ1, σ2)

)
= Q−1(σ1, σ2)

for all (σ1, σ2) ∈ (Ψ−1
η1 ×Ψ−1

η2 ) (Uη1 × Uη2 ∩ P(Uη)). Hence P−1 is smooth.
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Proposition 2.3.13 Let N be a smooth manifold modeled on a sequentially complete
locally convex space E which admits a local addition and p ∈ [1,∞]. For a partition
P = {t0, ..., tn} of [a, b] the map

T : ACLp([a, b], N) →
n∏
i=1

ACLp([ti−1, ti], N), η 7→
(
η|[ti−1,ti]

)n
i=1

is smooth and a smooth diffeomorphism onto a submanifold of
n∏
i=1

ACLp([ti−1, ti], N).

Proof. It is clear that the map T is well defined and injective. Let Im(T ) be the image
of the map T . Then

Im(T ) = {(γi)ni=1 ∈
n∏
i=1

ACLp([ti−1, ti], N) : γi(ti) = γi+1(ti) for all i ∈ {1, ..., n− 1}}.

Let γ := (γi)
n
i=1 ∈

∏n
i=1ACLp([ti−1, ti], N). For each i ∈ {1, ..., n} let Ψ−1

γi : Ui → Vi be
charts around γi. Then the map

Ψ−1
γ :=

n∏
i=1

Ψ−1
γi :

n∏
i=1

Ui →
n∏
i=1

Vi

is a chart around γ. Let η ∈ ACLp([a, b], N) and η̃ = T (η), then Ψ−1
η̃ ◦ T ◦ Ψη is just

restriction of the product of the restrictions of the smooth maps

ΓAC(η) →
n∏
i=1

ΓAC(ηi), σ 7→
(
σ|[ti−1,ti]

)n
i=1

thus T is a smooth. Now we will show that the image Im(T ) is a submanifold. Let
γ = (γi)

n
i=1 ∈ Im(T ) with charts as before, then for each i ∈ {1, ..., n − 1} and ξ =

(ξi)
n
j=1 ∈ Im(T ) ∩

∏n
j=1 Uj we have

Ψ−1
γi (ξi)(ti) = θ−1

N ◦ (γi, ξi)(ti)
= θ−1

N ◦ (γi(ti), ξi(ti))
= θ−1

N ◦ (γi+1(ti), ξi+1(ti))

= Ψ−1
γi+1

(ξi+1)(ti).

This implies that if K denotes the vector space

K := {(σi)ni=1 ∈
n∏
i=1

ΓAC(γi) : σi(ti) = σi+1(ti) for all i ∈ {1, ..., n− 1}}.

Then Ψ−1
γ |Uγ∩Im(T ) : Im(Ψ) ∩

∏n
i=1 Ui → K ∩

∏n
i=1 Vi is a chart of Im(T ), making

Im(T ) a smooth submanifold and the map T̃ : ACLp([a, b], N) → Im(T ), η 7→ T (η) a
diffeomorphism.
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Remark 2.3.14 Let N be a K-analytic manifold modeled on a sequentially complete
locally convex space which admits a K-analytic local addition and p ∈ [1,∞]. Since
every continuous linear operator is analytic, the isomorphism

ΓAC(η) → K, σ 7→
(
σ|[ti−1,ti]

)n
i=1

is K-analytic, which implies that T in Proposition 2.3.13 is a K-analytic diffeomorphism
onto the submanifold Im(T ).

Proposition 2.3.15 Let N be a smooth manifold modeled on a sequentially complete
locally convex space E which admits a local addition, p ∈ [1,∞] and η ∈ ACLp([a, b], N).
If g : [c, d] → [a, b] is a map as in Lemma 2.1.15, then the map

ACLp(g,N) : ACLp([a, b], N) → ACLp([c, d], N), η 7→ η ◦ g

is smooth.

Proof. By Proposition 2.2.10 we know that the map is well defined. Let (Uη,Ψ−1
η ) and

(Uη◦g,Ψ−1
η◦g) be charts around η ∈ ACLp([a, b], N) and η◦g ∈ ACLp([c, d], N) respectively,

then we have

Ψ−1
η◦g ◦ACLp(g,M) ◦Ψη(σ) = θ−1

N ◦ (η ◦ g,Σ ◦ (σ ◦ g))

for all σ ∈ Ψ−1
η

(
Uη ∩ACLp(g,N)−1(Uη◦g)

)
. This set coincides with

Ψ−1
η

(
Uη ∩ C(g,N)−1(UCη◦g)

)
which is open given by the continuity of the map C(g,N). Let α = η ◦ g : [c, d] → N
and τ = σ ◦ g : [c, d] → TN . Then both are absolutely continuous, with πTN ◦ τ = α,
now τ ∈ ΓAC(α) and

Ψ−1
η◦g ◦ACLp(g,M) ◦Ψη(σ) = θ−1

N ◦ (α,Σ ◦ τ)
= Ψ−1

α ◦Ψα(τ)

= τ

= σ ◦ g.

Hence, Ψ−1
η◦g ◦ACLp(g,M) ◦Ψη is a restriction of the map

ΓAC(η) → ΓAC(η ◦ g), σ 7→ σ ◦ g

which is continuous linear by Proposition 2.2.10.

Proposition 2.3.16 Let M , N and L be smooth manifolds modeled on sequentially
complete locally convex spaces which admit a local addition and p ∈ [1,∞]. If f : L×M →
N is a Ck+2-map and γ ∈ ACLp([a, b], L) is fixed, then

f∗ : ACLp([a, b],M) → ACLp([a, b], N), η 7→ f ◦ (γ, η)

is a Ck-map.
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Proof. Define the smooth map

Cγ : ACLp([a, b], N) → ACLp([a, b], L)×ACLp([a, b], N), η 7→ (γ, η)

Identifying ACLp([a, b], L)×ACLp([a, b], N) with ACLp([a, b], L×N), we have

f∗ = ACLp([a, b], f) ◦ Cγ .

Hence f∗ is Ck.

Proposition 2.3.17 Let N be a smooth manifold modeled on a sequentially complete
locally convex space E which admits a local addition, p ∈ [1,∞] and t ∈ [a, b]. Then the
evaluation map

ε : ACLp([a, b], N)× [a, b] → N, (η, t) 7→ η(t)

is continuous and the point evaluation map

εt : ACLp([a, b], N) → N, η 7→ η(t)

is smooth.

Proof. The evaluation map

εc : C([a, b], N)× [a, b] → N, (η, t) 7→ η(t)

is continuous and the point evaluation (εc)t : C([a, b], N) → N , η 7→ η(t) is smooth
for each t ∈ [a, b] (see [1]). Since the inclusion map J : ACLp([a, b], N) → C([a, b], N)
is smooth, the assumptions follow from the observation that ε = εc ◦ (J × Id[a,b]) and
εt = (εc)t ◦ J for each t ∈ [a, b].

Proposition 2.3.18 Let M , N and L smooth manifolds modeled on a sequentially
complete locally convex space such that L admits a local addition and p ∈ [1,∞]. If
f : L×M → N is a C2-map and γ ∈ ACLp([a, b], L) is fixed, then the map

F : [a, b]×M → N, (t, p) 7→ f(γ(t), p)

is continuous.

Proof. It follows from the fact that F = f ◦ (γ × idM ).

Proposition 2.3.19 Let N be a smooth manifold modeled on a sequentially complete
locally convex space E which admits a local addition and p ∈ [1,∞]. For each q ∈ N the
function ζq : [a, b] → N , t 7→ q is absolutely continuous and the map

ζ : N → ACLp([a, b], N), q 7→ ζq

is smooth and a topological embedding.
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Proof. Consider the local addition Σ : Ω → N and θN : Ω → Ω′ as in Definition 2.3.1.
Let (U,φ) be a chart around q ∈ N such that {q}×U ⊆ Ω′ and (Uζq ,Ψ−1

ζq
) be a chart in

ζq ∈ ACLp([a, b], N).
If x ∈ φ

(
U ∩ ζ−1(Uζq)

)
, then for each t ∈ [a, b] we have

Ψ−1
ζq

◦ ζ ◦ φ−1(x)(t) = θ−1
N

(
ζq(t), ζφ−1(x)(t)

)
= θ−1

N

(
q, φ−1(x)

)
= θ−1

N ◦ (q, φ−1 ◦ ζ̃x(t))

where ζ̃x : [a, b] → E, t 7→ x is the constant function. Since the map

ζ̃ : E → ACLp([a, b], E), x 7→ ζ̃x

is a continuous linear, setting the smooth map

h : φ(U) → TN, z → θ−1
N ◦ (q, φ−1(z))

we have

Ψ−1
ζp

◦ ζ ◦ φ−1 = ACLp([a, b], h) ◦ ζ̃|ϕ(U).

Hence ζ is smooth. Moreover, if t ∈ [a, b], then εt ◦ ζ = idN : N → N .

Remark 2.3.20 LetN be a smooth manifold modeled on a sequentially complete locally
convex space E which admits a local addition, p ∈ [1,∞] and let TACLp([a, b], N) be the
tangent bundle of ACLp([a, b], N). Since the point evaluation map εt : ACLp([a, b], N) →
N is smooth for each t ∈ [a, b], we have

Tεt : TACLp([a, b], N) → TN.

For each v ∈ TACLp([a, b], N) we define the function

ΘN (v) : [a, b] → TN, ΘN (v)(t) = Tεt(v).

Proposition 2.3.21 Let N be a smooth manifold modeled on a sequentially complete
locally convex space E which admits local addition, p ∈ [1,∞] and η ∈ ACLp([a, b], N).
Then ΘN (v) ∈ ΓAC(η) for each v ∈ TηACLp([a, b], N) and the map

Θη : TηACLp([a, b], N) → ΓAC(η), v 7→ Θη(v) := ΘN |TηACLp ([a,b],N)(v)

is an isomorphism of topological vector spaces.

Proof. Let Σ : Ω → N be a normalized local addition of N . Since ΓAC(η) is a vector
space, we identify its tangent bundle with ΓAC(η) × ΓAC(η). Let Ψη : Vη → Uη be a
chart around η such that Ψη(0) = η, then

TΨη : TVη ≃ Vη × ΓAC(η) → TACLp([a, b], N)
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is a diffeomorphism onto its image. Moreover,

TΨη : {0} × ΓAC(η) → TηACLp([a, b], N)

is an isomorphism of topological vector spaces. We will show that

Θη ◦ TΨη(0, σ) = σ

for each σ ∈ ΓAC(η). Which is equivalent to show that

Tεt ◦ TΨη(0, σ) = σ(t) for all t ∈ [a, b].

Working with the geometric point of view of tangent vectors, we see that (0, σ) is equiv-
alent to the curve [s 7→ sσ]. Hence, for each t ∈ [a, b] we have

Tεt ◦ TΨη(0, σ) = Tεt ◦ TΨη([s 7→ sσ])

= Tεt([s 7→ Ψη(sσ)])

= Tεt([s 7→ Σ(sσ)])

= [s 7→ Σ|Tη(t)N (sσ(t))]
= T0Σ|Tη(t)N ([s 7→ sσ(t)]).

Since Σ is normalized we have T0Σ|Tη(t)N = idTη(t)N and

Tεt ◦ TΨη(0, σ) = σ(t).

In consequence, for each σ ∈ ΓAC(η), there exists a v ∈ TηACLp([a, b], N) with v =
TΨη(0, σ) such that

Θη(v) = σ.

Moreover, the function

Θη(v) : [a, b] → TN, t 7→ ΘN (v)(t) = σ(t) ∈ Tη(t)N

is absolutely continuous with πTN ◦Θη(v) = η, making the map Θη an isomorphism of
topological vector spaces.

Remark 2.3.22 LetN be a smooth manifold modeled on a sequentially complete locally
convex space E which admits local addition and p ∈ [1,∞]. Since TN admits local
addition and the vector bundle πTN : TN → N is smooth, the map

AC([a, b], πTN ) : ACLp([a, b], TN) → ACLp([a, b], N), τ 7→ πTN ◦ τ

is smooth. Moreover, if η ∈ ACLp([a, b], N), then

AC([a, b], πTN )
−1({η}) = ΓAC(η).

The following result follows the same steps as for the case of Cℓ-maps (with ℓ ≥ 0) from
a compact manifold (possibly with rough boundary) to a smooth manifold which admits
local addition [3, Theorem A.12].
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Proposition 2.3.23 Let N be a smooth manifold modeled on a sequentially complete
locally convex space E which admits a local addition, p ∈ [1,∞] and πTN : TN → N its
tangent bundle. Then the map

AC([a, b], πTN ) : ACLp([a, b], TN) → ACLp([a, b], N), τ 7→ πTN ◦ τ

is a smooth vector bundle with fiber ΓAC(η) over η ∈ ACLp([a, b], N). Moreover, the map

ΘN : TACLp([a, b], N) → ACLp([a, b], TN), v 7→ ΘN (v)

is an isomorphism of vector bundles.

Proposition 2.3.24 Let M and N be a smooth manifolds modeled on sequentially com-
plete locally convex spaces which admits a local addition and p ∈ [1,∞]. If f : M → N
is a C3-map, then the tangent map of

ACLp([a, b], f) : ACLp([a, b],M) → ACLp([a, b], N), η 7→ f ◦ η

is given by

TACLp([a, b], f) = Θ−1
N ◦ACLp([a, b], T f) ◦ΘM .

Proof. By Proposition 2.3.8, since f is C3 we know that ACLp([a, b], f) is C1, thus
TACLp([a, b], f) exists. Let consider the local addition ΣM : ΩM → M and η ∈
ACLp([a, b],M).
If Ψη : Vη → Uη is a chart around η such that Ψη(0) = η. We consider the isomorphism
of vector space

TΨη : {0} × ΓAC(η) → TηACLp([a, b],M).

For t ∈ [a, b] we denote the point evaluation in M and N as εMt and εNt respectively,
then for each σ ∈ ΓAC(η) we have

TεNt ◦ TACLp([a, b], f) ◦ TΨη(0, σ) = TεNt ◦ TACLp([a, b], f) ◦ TΨη([s 7→ sσ])

= TεNt ◦ TACLp([a, b], f)([s 7→ ΣM (sσ)])

= TεNt ([s 7→ f ◦ ΣM (sσ)])

= [s 7→ εt (f ◦ ΣM (sσ))]

= [s 7→ f ◦ ΣM (sσ(t))]

= Tf ◦ T0ΣM |Tη(t)M ([sσ(t)])

= Tf([s 7→ sσ(t)])

= ACLp([a, b], T f)(σ(t))

= ACLp([a, b], T f) ◦ TεMt ◦ TΨη(0, σ).

Hence

ΘN ◦ TACLp([a, b], f) = ACLp([a, b], Tf) ◦ΘM .
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Example 2.3.25 Let p ∈ [1,∞]. If G is a Lie group modeled in a sequentially locally
convex space E, then we already know that the space ACLp([a, b], G) is a Lie group with
Lie algebra given by ACLp([a, b], TeG) (see [15, 35]). We will give an alternative proof
of this.
Let e ∈ G be the neutral element, let Lg : G → G, h 7→ gh be the left translation by
g ∈ G and the action

G× TG→ TG, (g, vh) 7→ g.vh := TLg(vh) ∈ TghG.

If φ : U ⊆ G→ V ⊆ TeG is a chart in e such that φ(e) = 0, then the set

Ωφ :=
⋃
g∈G

g.V ⊆ TG

and the map

Σφ : Ωφ → G, v 7→ πTG(v)
(
φ−1(πTG(v)

−1.v)
)

defines a local addition for G (see e.g. [25]); hence ACLp([a, b], G) is a smooth manifold
with charts constructed with (Ωφ,Σφ).
Let µG : G × G → G and λG : G → G be the multiplication map and inversion maps
on G respectively, we define the multiplication map µAC and the inversion map λAC on
ACLp([a, b], G) as

µAC := ACLp([a, b], µG) : ACLp([a, b], G)×ACLp([a, b], G) → ACLp([a, b], G)

and

λAC := ACLp([a, b], λG) : ACLp([a, b], G) → ACLp([a, b], G)

that by Lemma 2.1.17 and Proposition 2.3.8 are smooth.
We observe that for the neutral element ζe : [a, b] → G, t 7→ e of ACLp([a, b], G) we have

ΓAC(ζe) = ACLp([a, b], TeG).

If Ψ−1
ζe

: Uζe → Vζe is a chart in ζe ∈ ACLp([a, b], G), then we have Uζe = AC([a, b], U)
and Vζe = AC([a, b], V ). Moreover, we see that

Ψζe ◦ACLp([a, b], φ)(η) = Σφ ◦ (φ ◦ η)
= πTG(φ ◦ η)

(
φ−1(πTG(φ ◦ η)−1.φ ◦ η)

)
= eφ−1(e.φ ◦ η)
= η.

This enables us to say that for the neutral element ζe ∈ ACLp([a, b], G) the chart is given
by

ACLp([a, b], φ) : ACLp([a, b], U) → AC([a, b], V ), η 7→ φ ◦ η.
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2.4 Semiregularity of right half-Lie groups.

Definition 2.4.1 A group G, endowed with a smooth manifold structure modeled on
a locally convex space, is called a right half-Lie group if it is a topological group and if
for all g ∈ G, the right translations ρg : G→ G, x 7→ xg are smooth.

Remark 2.4.2 Let G be a right half-Lie group modeled on a sequentially complete
locally convex space. We define the right action

TG×G→ TG, (v, g) 7→ v.g := Tρg(v) (2.4.1)

and consider its restriction

TeG×G→ TG, (v, g) 7→ v.g := Tρg(v). (2.4.2)

Unlike on Lie groups, on half-Lie groups the latter action may not be smooth. Hence
we can not construct a local addition using a convenient chart around the identity (as
in Example 2.3.25).

The following proposition is direct application of Proposition 2.3.8.

Proposition 2.4.3 Let G be a right half-Lie group modeled on a sequentially complete
locally convex space which admits local addition and p ∈ [1,∞]. For η ∈ ACLp([a, b], G)
and g ∈ G we define the function

η.g(t) := η(t)g, for all t ∈ [a, b].

Then η.g ∈ ACLp([a, b], G) for each g ∈ G and the map

ACLp([a, b], ρg) : ACLp([a, b], G) → ACLp([a, b], G), η 7→ η.g

is smooth.

Remark 2.4.4 The smoothness of the map

R : ACLp([a, b], G)×G→ ACLp([a, b], G), (η, g) 7→ η.g

would imply the smoothness of the multiplication map on G. In fact, since the point
evaluation map εa : ACLp([a, b], G) → G, η 7→ η(a) and the map ζ : G→ ACLp([a, b], G),
g 7→ [t 7→ g], are smooth, the multiplication map on G would be smooth as it coincides
with the composition

εa ◦ R ◦ (ζ, idG) : G×G→ G, (h, g) 7→ hg.

Definition 2.4.5 Let G be a right half-Lie group modeled on a sequentially complete
locally convex space E which admits local addition, p ∈ [1,∞] and η ∈ ACLp([a, b], N).
Let P = {t0, .., tn} be a partition of [a, b] and {(φi, Ui) : i ∈ {1, ..., n}} charts of G such
that verify the definition of absolute continuity for η. For each i ∈ {1, ..., n} we denote

ηi := φi ◦ η[ti−1,ti] ∈ ACLp([ti−1, ti], E).
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Then η′i ∈ Lp([ti−1, ti], E). Let η′i = [γi] with γi ∈ Lp([ti−1, ti], E). We define γ : [a, b] →
TG via

γ(t) := T (φi)
−1(ηi(t), γi(t)), if t ∈ [ti−1, ti[ with i ∈ {1, ..., n},

and γ(b) = T (φn)
−1(ηn(b), γn(b)). Then γ is measurable (see [15]) and we define

η̇ := [γ].

Definition 2.4.6 Let G be a right half-Lie group modeled in a sequentially complete
locally convex space and p ∈ [1,∞]. We say that G is Lp-semiregular if for each [γ] ∈
Lp([0, 1], TeG), there exists an ACLp-Carathéodory solution ηγ ∈ ACLp([0, 1], G) of the
equation

ẏ(t) = γ(t).y(t), t ∈ [0, 1] (2.4.3)

y(0) = e (2.4.4)

such that the differential equation satisfies local uniqueness of Carathéodory solutions
in the sense of [19]. In this case, we define the evolution map

Evol : Lp([0, 1], TeG) → ACLp([a, b], G), [γ] 7→ Evol(γ) := ηγ . (2.4.5)

Additionally, if G admits a local addition, we say that G is Lp-regular if G is Lp-
semiregular and if the evolution map is smooth. The definition for the case of L∞

rc -
semiregularity and L∞

rc -regularity is analogous.

Definition 2.4.7 Let G be a right half-Lie group modeled on a sequentially complete
locally convex space and p ∈ [1,∞]. We say that G is locally Lp-semiregular if there
is exists an open 0-neighborhood B of Lp([0, 1], TeG) such that for each [γ] ∈ B there
exists a ACLp-Carathéodory solution ηγ ∈ ACLp([0, 1], G) of the equation

ẏ(t) = γ(t).y(t), t ∈ [0, 1]

y(0) = e

and the latter differential equation satisfies local uniqueness of solutions.

For our purpose, we will use the subdivision property [35, Lemma 2.17].

Lemma 2.4.8 Let E be a locally convex space, p ∈ [1,∞] and [γ] ∈ Lp([0, 1], E). For
each n ∈ N and k ∈ {0, 1, ..., n− 1} we define

γn,k : [0, 1] → E, γn,k(t) :=
1

n
γ

(
k + t

n

)
.

Then [γn,k] ∈ Lp([0, 1], E). Moreover, for each [γ] ∈ Lp([0, 1], E) and continuous semi-
norm q on Lp([0, 1], E), we have

sup
k∈{0,...,n−1}

q(γn,k) → 0, as n→ ∞.
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Lemma 2.4.9 Let G be a right half-Lie group modeled on a sequentially complete locally
convex space which admits local addition and p ∈ [1,∞]. Then G is locally Lp-semiregular
if and only if G is Lp-semiregular.

Proof. Let G be locally Lp-semiregular. Then there exists an 0-neighborhood B of
Lp([0, 1], TeG) such that Evol(β) ∈ ACLp([a, b], G) exists for each [β] ∈ B. Without loss
of generality we assume that

B = {[β] ∈ Lp([0, 1], TeG) : ∥[β]∥Lp,q< 1}

for some continuous seminorm q on Lp([0, 1], TeG).
Let [γ] ∈ Lp([0, 1], TeG). By Lemma 2.4.8, we find n ∈ N such that

[γn,k] ∈ B, for all k ∈ {0, 1, ..., n− 1}.

Since each map

αk : L
p([0, 1], TeG) → Lp([0, 1], TeG), [τ ] 7→ [τn,k]

is continuous linear, there is exists an open γ-neighborhood Wγ such that

αk(Wγ) ⊆ B, for all k ∈ {0, 1, ..., n− 1}.

For [β] ∈ Wγ and j ∈ {0, ..., n− 1} we write ηj = Evol(βn,j) and we define the function
ηβ : [0, 1] → G via

ηβ(t) := η0(nt), if t ∈ [0, 1/n]

and

ηβ(t) := ηk(nt− k).
(
ηk−1(1)....η0(1)

)
, if t ∈ [k/n, (k + 1)/n] with k ∈ {1, .., n− 1}.

Then the function ηβ is continuous and by Proposition 2.4.3 we have

ηβ|[k/n,(k+1)/n] ∈ ACLp ([k/n, (k + 1)/n], G) .

Thus ηβ ∈ ACLp([a, b], G). If t ∈ [0, 1n ] we have ηβ(0) = e and

η̇β(t) = η̇0(nt)

= nβn,0(nt).η0(nt)

= n
1

n
β

(
0 + nt

n

)
.η0(nt)

= β(t).ηβ(t).

For k ∈ {1, .., n− 1} we have

ηβ

(
k

n

)
= ηk

(
n
k

n
− k

)
.
(
ηk−1(1)....η0(1)

)
= ηk−1(1)....η0(1)
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and for t ∈ [ kn ,
k+1
n ]

η̇β(t) = nβn,k(nt− k)
(
ηk−1(1)....η0(1)

)
.ηk(nt− k)

= β(t).ηk(nt− k)
(
ηk−1(1)....η0(1)

)
= β(t).ηβ(t).

Thus ηβ = Evol(β) and in particular, ηγ = Evol(γ). Hence G is Lp-semiregular.
The reciprocal is trivial.

Definition 2.4.10 Let G be a right half-Lie group modeled on a sequentially complete
locally convex space which admits local addition and p ∈ [1,∞]. We say that G is locally
Lp-regular if G is Lp-semiregular and there is exists a 0-neighborhood B of Lp([0, 1], TeG)
such that its restricted evolution map Evol |B is smooth.

The following lemma is just an application of [34, Proposition 4.11] to our case.

Lemma 2.4.11 Let G be a right half-Lie group modeled in a sequentially complete locally
convex space which admit a local addition and p ∈ [1,∞]. We consider the evolution map
with continuous values

EvolC : Lp([0, 1], TeG) → C([0, 1], G), [γ] 7→ EvolC(γ) := ηγ .

Then, EvolC is continuous if and only if there exists a 0-neighborhood B of Lp([0, 1], TeG)
such that the restricted evolution map EvolC |B is continuous.

Proof. Since G is a topological group, the map

C([0, 1], G)× C([0, 1], G) → C([0, 1], G), (η, ξ) 7→ η.(ξ(1))

is continuous. Following Lemma 2.4.9, if [γ] ∈ Lp([0, 1], TeG), for each [β] ∈ Wγ , we
have that the construction EvolC(β) implies that (EvolC) |Wγ is just the product of
composition of continuous maps.

Lemma 2.4.12 Let E1, E2 and F be locally convex spaces, 1 ≤ p < ∞ and U ⊆ E2 an
open subset. If r ∈ N ∪ {0,∞} and f : E1 × U → F is a Cr-map such that for each
y ∈ U the map f(·, y) : E1 → F is linear, then the map

f̃ : Lp([0, 1], E1)× C([0, 1], U) → Lp([0, 1], F ), ([γ], η) 7→ f ◦ ([γ], η)

is Cr.

Proof. Let (γ0, η0) ∈ Lp([0, 1], E1) × C([0, 1], U) and ε > 0. Let β : F → [0,∞) be a
continuous semi norm and K := η0([0, 1]) ⊆ U . Since f is continuous and linear in
the first argument, for y ∈ K there exists a y-neighborhood Vy ⊆ U and a continuous
seminorm κy : E1 → [0,∞) such that

f
(
B
κy
1 (0)× Vy

)
⊆ Bβ

1 (0).
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By compactness of K, there exists a finite numbers of y1, ..., yn ∈ K such that

K ⊆ V := ∪ni=1Vyi .

We define the continuous seminorm κ : E1 → [0,∞) by κ := κy1 + ...+ κyn and we have

β
(
f(x, b)

)
≤ κ(x), for all x ∈ E1, b ∈ V

and C([0, 1], V ) is open in C([0, 1], U). We estimate

∥f̃(γ0, η0)∥Lp,β :=

(∫ 1

0
β
(
f̃ ◦ (γ0(t), η0(t))

)
dt

) 1
p

≤
(∫ 1

0
κ(γ0(t))dt

) 1
p

≤ ∥γ0∥Lp,κ.

Hence f̃(γ0, η0) ∈ Lp([0, 1], F ). Since the space C([0, 1], E1) is dense in Lp([0, 1], E1),
there exists a γc ∈ C([0, 1], E1) such that

∥γc − γ0∥Lp,p≤ 2ε/5.

Additionally, since the maps

C([0, 1], U) → C([0, 1], F ), η 7→ f ◦ (γc, η)

and the inclusion map C([0, 1], F ) → Lp([0, 1], F ) are continuous, we have that

C([0, 1], V ) → Lp([0, 1], F ), η 7→ f ◦ (γc, η)

is continuous. Hence there exists an open neighborhood W of η0 ∈ C([0, 1], V ) such that

∥f̃(γc, η)− f̃(γc, η0)∥Lp,β≤ 2ε/5, for all η ∈W.

With this, for each η ∈W and γ ∈ Lp([0, 1], E1) with ∥γ − γ0∥Lp,κ≤ 2ε/5 we estimate

∥f̃(γ, η)− f̃(γ0, η0)∥Lp,β ≤ ∥f̃(γ − γc, η)∥Lp,β+∥f̃(γc, η)− f̃(γ0, η0)∥Lp,β

≤ ∥f̃(γ − γc, η)∥Lp,β+∥f̃(γc, η)− f̃(γc, η0)∥Lp,β+∥f̃(γc − γ0, η0)∥Lp,β

≤ ∥γ − γc∥Lp,κ+∥f̃(γc, η)− f̃(γc, η0)∥Lp,β+∥γc − γ0∥Lp,κ.

Since ∥γc − γ0∥Lp,κ≤ 2ε/10 and ∥γ − γ0∥Lp,κ≤ 2ε/5 we have

∥γ − γc∥Lp,κ≤ 2ε/5

and

∥f̃(γ, η)− f̃(γ0, η0)∥Lp,β≤ 2ε/5 + 2ε/5 + 2ε/10 = ε
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Thus f̃ is continuous. By linearity in the first variable the function f has a continuous
differential d1f̃ : Lp([0, 1], E1) × Lp([0, 1], E1) × C([0, 1], E2) → Lp([0, 1], F ) in the first
variable. Let consider the map f as a C1-map. If x ∈ E1, y, y1 ∈ E2 and t ∈ R×, then
we have

1

t
(f(x, y + ty1)− f(x, y)) =

∫ 1

0
d2f(x, y + tsy1, y1)ds

whenever y + [0, 1]ty1 ⊆ U . Given that the map d2f : E1 × U × E2 → F is continuous,
identifying C([0, 1], E1 × E2) with C([0, 1], E1)× C([0, 1], E2), we have that the map

d̃2f : Lp([0, 1], E1)×C([0, 1], U)×C([0, 1], E2) → Lp([0, 1], F ), (γ, η, η1) 7→ d2f(γ, η, η1)

is continuous. For t ∈ [0, 1] we denote

gt : C([0, 1], F ) → F, γ 7→ γ(t).

Since the family of maps {gt : t ∈ [0, 1]} separate points on C([0, 1], F ), we have that
the equality

1

t
(f ◦ (γc, η + tη1)− f ◦ (γc, η)) =

∫ 1

0
d2f(γc, η + tsη1, η1)ds

is valid for each γc ∈ C([0, 1], E1), η ∈ C([0, 1], U), η1 ∈ C([0, 1], E2) and t ∈ R× such
that

η + [0, 1]tη1 ∈ C([0, 1], U).

By density of C([0, 1], E1) on L
p([0, 1], E1) and continuity of f̃ , for γ ∈ Lp([0, 1], E) the

equation verifies

1

t

(
f̃(γ, η + tη1)− f̃(γ, η)

)
=

∫ 1

0
d̃2f(γ, η + tsη1, η1)ds.

Let γ, η and η0 be fixed, then the map (t, s) 7→ d̃2f(γ, η+tsη1, η1) is continuous, including
in t = 0. Then, taken the limit t→ 0 in the equality we obtain

d2f̃(γ, η, η1) = d̃2f(γ, η, η1).

Hence the continuity of d̃2f implies that the map f̃ is C1. Proceeding by induction, if f
is a Ck-map, since f̃ is linear in the first variable we have

df̃(γ, η, γ1, η1) = d1f̃(γ, γ1, η) + d2f̃(γ, η, η1)

= f̃(γ1, η) + d̃2f(γ, η, η1).

By the induction hypothesis f̃ and d2f are Cr−1, hence d̃2f is Cr−1 with d̃2f = d2f̃ ,
thus f̃ is Cr.

For the case L∞
rc we recall [15, Proposition 2.3].
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Lemma 2.4.13 Let E1, E2 and F be integral complete locally convex spaces and U ⊆ E2

an open subset. If r ∈ N ∪ {0,∞} and f : E1 × U → F is a Cr-map such that for each
y ∈ U the map f(·, y) : E1 → F is linear, then the map

f̃ : L∞
rc([0, 1], E1)× C([0, 1], U) → L∞

rc([0, 1], F ), ([γ], η) 7→ f ◦ ([γ], η)

is Cr.

Theorem 2.4.14 Let G be a right half-Lie group modeled in a sequentially complete
locally convex space space E which admits a local addition and 1 ≤ p < ∞. Let G be
Lp-semiregular with continuous evolution map

EvolC : Lp([0, 1], TeG),→ C([0, 1], G) γ 7→ EvolC(γ).

If the restriction of the right action

τ : TeG×G→ TG, (v, g) 7→ v.g

is continuous, then the evolution map

Evol : Lp([0, 1], TeG),→ ACLp([0, 1], G), γ 7→ Evol(γ)

is continuous. If G is a right half-Lie group modeled in an integral complete locally
convex space E, then if we replace Lp with L∞

rc the result remains valid.

Proof. Let [γ] ∈ Lp([0, 1], TeG). Let P[γ] be a open neighborhood of EvolC(γ) in
C([0, 1], G), then there exists a partition P = {t0, ..., tn} of [0, 1] and a family of charts
φi : Ui → Vi such that

P[γ] =
n⋂
i=1

{η ∈ C([ti−1, ti], Ui) : η([ti−1, ti]) ⊆ Ui}.

Let Q[γ] = Evol−1
C (P[γ]), then Q[γ] is an open neighborhood of [γ] in Lp([0, 1], TeG). We

will show that the map

Evol |Q[γ]
: Q[γ] → P[γ] ∩ACLp([0, 1], G), γ 7→ Evol(γ)

is continuous. The map

Φ1 : Q[γ] →
n∏
i=1

Lp([ti−1, ti], TeG), [β] 7→
(
[β|[ti−1,ti]]

)n
i=1

is a topological embedding. For each i ∈ {1, ..., n} we have

EvolC(β|[ti−1,ti]) = EvolC(β)|[ti−1,ti], for all [β] ∈ Q[γ]

and each map C([ti−1, ti], Ui) → C([ti−1, ti], Vi), η 7→ φi ◦ η is a homeomorphism. This
allow us to define the continuous map

Φ2 : Q[γ] →
n∏
i=1

C([ti−1, ti], Vi), [β] 7→
(
φi ◦ EvolC(β)|[ti−1,ti]

)n
i=1

.
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We consider the map

fi : TeG× Vi → E, (v, x) 7→ dφi ◦ τ(v, φ−1
i (x)).

Then each fi is continuous and for each x ∈ Vi the function

fi(·, x) : TeG→ E, v 7→ fi(v, x)

is linear. Hence by Lemma 2.4.12 the map

f̃i : L
p([ti−1, ti], TeG)× C([ti−1, ti], Vi) → Lp([ti−1, ti], E), ([β], η) 7→ fi ◦ ([β], η)

is continuous. We denote

F :
n∏
i=1

Lp([ti−1, ti], TeG)×C([ti−1, ti], Vi) →
n∏
i=1

Lp([ti−1, ti], E), ([βi], ηi)
n
i=1 7→ (fi ◦ ([βi], ηi))ni=1 .

Then F is continuous, where for each i ∈ {1, ..., n} we have

fi ◦ ([βi], ηi) = dφi ◦ τ([βi], φ−1
i ◦ ηi).

This allow us to define the continuous map

Φ3 : Q[γ] →
n∏
i=1

Lp([ti−1, ti], E)× C([ti−1, ti], Vi),

β 7→
(
fi ◦

([
β|[ti−1,ti]

]
, φi ◦ EvolC(β)|[ti−1,ti]

)
, φi ◦ EvolC(β)|[ti−1,ti]

)n
i=1

where for each i ∈ {1, ..., n} we have

fi ◦
([
β|[ti−1,ti]

]
, φi ◦ EvolC |[ti−1,ti]

)
= dφi ◦ τ

([
β|[ti−1,ti]

]
, φ−1

i ◦ φi ◦ EvolC(β)|[ti−1,ti]

)
= dφi ◦ τ

([
β|[ti−1,ti]

]
,EvolC(β)|[ti−1,ti]

)
= dφi ◦

(
EvolC(β)|[ti−1,ti]

)′
=
(
φi ◦ EvolC(β)|[ti−1,ti]

)′
.

Hence

Φ3([β]) =
( (
φi ◦ EvolC(β)|[ti−1,ti]

)′
, φi ◦ EvolC(β)|[ti−1,ti]

)n
i=1
, for all [β] ∈ Q[γ].

We set the topological embedding (see Lemma 2.1.13)

Ψi : ACLp([ti−1, ti], Vi) → Lp([ti−1, ti], Vi)× C([ti−1, ti], Vi), α 7→ (α′, α)

and

Ψ :
n∏
i=1

ACLp([ti−1, ti], Vi) →
n∏
i=1

Lp([ti−1, ti], TeG)×C([ti−1, ti], Vi), (αi)
n
i=1 7→ (α′

i, αi)
n
i=1.
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Thus Im(Φ3) ⊆ Im(Ψ). For each i ∈ {1, ..., n} we note that(
Ψi|Im(Ψi)

)−1 (
(φi ◦ EvolC(β)|[ti−1,ti])

′, φi ◦ EvolC(β)|[ti−1,ti]

)
= φi ◦ Evol(β)|[ti−1,ti]

for all [β] ∈ Q[γ]. We set the continuous map

Φ4 :=
(
Ψ|Im(Ψ)

)−1
◦Φ3 : Q[γ] →

n∏
i=1

ACLp([ti−1, ti], Vi), [β] 7→
(
φi ◦ Evol(β)|[ti−1,ti]

)n
i=1

.

Let denote the homeomorphism onto its image (see Proposition 2.2.9)

Φ5 : ACLp([0, 1], G) →
n∏
i=1

ACLp([ti−1, ti], G), η 7→ (η|[ti−1,ti])
n
i=1.

and the homeomorphism

Φ6 :
n∏
i=1

ACLp([ti−1, ti], Vi) →
n∏
i=1

ACLp([ti−1, ti], Ui), τi 7→ (φ−1
i ◦ τi)ni=1.

We see that

Φ6 ◦ Φ4 : Q[γ] →
n∏
i=1

ACLp([ti−1, ti], Ui), [β] 7→
(
Evol(β)|[ti−1,ti]

)n
i=1

.

Since each function Evol(β) is continuous, we have that (Φ6◦Φ4)
(
Q[γ]

)
⊆ Im(Φ5), hence

Evol |Q[γ]
=
(
Φ5|Im(Φ5)

)−1
◦ Φ6 ◦ Φ4.

Thus the evolution map Evol is continuous.
For the case L∞

rc , by Lemma 2.4.13, the proof is analogous since the map

f̃i : L
∞
rc([ti−1, ti], TeG)× C([ti−1, ti], Vi) → L∞

rc([ti−1, ti], E), ([β], η) 7→ fi ◦ ([β], η)

is continous for each i ∈ {1, ..., n}.

2.5 Semiregularity of Diff r
K(Rn)

Let n,m, r ∈ N. We consider the Fréchet space C(Rn,Rm) of continuous functions
ϕ : Rn → Rm, whose topology is generated by the famility of seminorms

∥·∥L: C(Rn,Rm) → [0,∞), ϕ 7→ sup
x∈L

|ϕ(x)|

for each non empty compact subset L ⊂ Rn. Let Cr(Rn,Rm) be the Fréchet space of all
Cr-maps ϕ : Rn → Rn, whose topology is the compact-open Cr-topology, i.e., the initial
topology with respect to the maps

Cr(Rn,Rm) → C(Rn,Rm), ϕ 7→ ∂αϕ

∂xα
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for α ∈ Nn0 with |α|≤ r. Let K ⊆ Rn be a non empty compact subset, we define the
Banach space of Cr-maps supported in K as

CrK(Rn,Rm) := {ϕ ∈ Cr(Rn,Rm) : ϕ|Rn\K = 0} (2.5.1)

endowed with the induced topology.
We denote derivative map

D : CrK(Rn,Rn) → Cr−1
K (Rn,Rn×n), f 7→ Df := f ′ (2.5.2)

where f ′(x) is the Jacobian matrix of f .

Definition 2.5.1 Let Diffr(Rn) be the set of Cr-diffeomorphisms ϕ : Rn → Rn. The
set Diffr(Rn) is a group under the composition and we define the subgroup Diff r

K(Rn) of
Cr-diffeomorphisms which are supported in a compact set K ⊂ Rn as

DiffrK(Rn) := {ϕ ∈ Diffr(Rn) : ϕ− idRn ∈ CrK(Rn,Rn)}. (2.5.3)

Let VK := {ϕ − idRn ∈ CrK(Rn,Rn) : ϕ ∈ DiffrK(Rn)}, then VK is open in CrK(Rn,Rn)
and the map

Φ : Diff r
K(Rn) → VK , ϕ 7→ ϕ− idRn (2.5.4)

is a global chart for Diff r
K(Rn), turning it into a right half-Lie group modeled on the

Banach space CrK(Rn,Rn) (See [17, Proposition 14.6]). On the set VK we define a group
multiplication by

ϕ ∗ ψ := Φ
(
Φ−1(ϕ) ◦ Φ−1(ψ)

)
= ψ + ϕ ◦ (idRn + ψ), for each ϕ, ψ ∈ VK

with the constant function 0 as neutral element.

Remark 2.5.2 We will study the L1-semiregularity of VK instead of Diff r
K(Rn). Since

VK is an open set of a locally convex space, we have

TVK = VK × CrK(Rn,Rn).

For ψ ∈ VK fixed, we have the right translation

ρψ : VK → VK , ϕ 7→ ψ + ϕ ◦ (idRn + ψ)

and its derivative

dρψ : VK × CrK(Rn,Rn) → CrK(Rn,Rn), (ϕ, φ) 7→ φ ◦ (idRn + ψ).

Identifying T0VK with {0} × CrK(Rn,Rn), the restricted right action is given by

({0} × CrK(Rn,Rn))× VK → TVK , ((0, φ), ψ) 7→ dρψ(0, φ) = φ ◦ (idRn + ψ) (2.5.5)

Hence the right action is continuous (see e.g. [16]).
If (ϕ, φ) ∈ VK × CrK(Rn,Rn), we have

(ϕ, φ).ψ := Tρψ(ϕ, φ) = (ϕ ∗ ψ,φ ◦ (idRn + ψ)).
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If (0, γ) ∈ L1([0, 1], T0VK), we want to find a function η ∈ ACLp([0, 1],VK) such that
η′ = γ.η, i.e.

(η(t), η′(t)) =
(
η(t), γ(t) ◦ (idRn + η(t))

)
, for almost all t ∈ [0, 1].

In other words, for γ ∈ L1([0, 1], CrK(Rn,Rn)), we need a function η ∈ ACLp([0, 1],VK)
such that η(0) = 0 and

η(t) =

∫ t

0
γ(s) ◦ (idRn + η(s))ds, for all t ∈ [0, 1].

Setting ζ = idRn + η(s), this is equivalent to

ζ(t) = idRn +

∫ t

0
γ(s) ◦ ζ(s)ds, for all t ∈ [0, 1].

Let εx : CrK(Rn,Rn) → Rn be the point evaluation map for x ∈ Rn, then each εx
is continuous linear and the family of maps (εx)x∈Rn separate points on CrK(Rn,Rn),
hence the equation holds if and only if the functions ζx := εx ◦ ζ ∈ ACL1([0, 1],Rn)
satisfy

ζx(t) = x+

∫ t

0
γ(s) ◦ ζx(s)ds, for all t ∈ [0, 1].

Theorem 2.5.3 Let 1 ≤ p < ∞. If r ∈ N, then the right half-Lie group Diff r
K(Rn) is

Lp-semiregular. Moreover, the evolution map

Evol : Lp([0, 1], TeDiff r
K(Rn)) → ACLp([0, 1],Diff r

K(Rn)), γ 7→ ηγ .

is continuous.

Proof. Following the discussion in Remark 2.5.2, we will show that VK is locally Lp-
semiregular.
We define the continuous seminorm

α : CrK(Rn,Rn) → [0,∞), α(f) := ∥f∥L∞,∥·∥op= sup
x∈Rn

∥Df(x)∥op.

For 0 < L < 1, we denote the open ball centered in 0 ∈ Lp([0, 1], CrK(Rn,Rn)) by

BL :=

{
[γ] ∈ Lp([0, 1], CrK(Rn,Rn)) : ∥γ∥Lp,α:=

(∫ 1

0
(α ◦ γ)p(t)dt

)1/p

< L

}
.

For x ∈ Rn, we define the smooth map

c : Rn → C([0, 1],Rn), x 7→ [t 7→ x].

Let J : L1([0, 1],Rn) → C([0, 1],Rn) be the continuous linear operator

J([ξ])(t) :=

∫ t

0
ξ(s)ds, for all t ∈ [0, 1].
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Since the evaluation map ε : CrK(Rn,Rn) × Rn → Rn is C∞,r in the sense of [1] and
hence Cr. By Lemma 2.4.12 the map

Φn : Lp([0, 1], CrK(Rn,Rn))× C([0, 1],Rn) → Lp([0, 1],Rn), Φn([γ], ζ) := ε ◦ ([γ], ζ)

is well defined and is Cr. We define the operator T : BL × Rn × C([0, 1],Rn) →
C([0, 1],Rn) via

T ([γ], x, ζ)(t) := cx(t) + J(Φn([γ], ζ))(t)

= x+

∫ t

0
γ(s) (ζ(s)) ds

for t ∈ [0, 1]. Then T is C∞,∞,r in the sense of [2].
Let [γ] ∈ BL and x ∈ Rn be fixed, for ζ1, ζ2 ∈ C([0, 1],Rn), by the Mean Value Theorem
we have

γ(t) ◦ ζ2(t)− γ(t) ◦ ζ1(t) =
∫ 1

0

(
Dγ(t)

)
(ζ1(t) + s(ζ2(t)− ζ1(t))).(ζ2(t)− ζ1(t))ds.

Thus

∥T ([γ], x, ζ2)− T ([γ], x, ζ1)∥∞ = sup
t∈[0,1]

∥∥∥∥∫ t

0
(γ(s) ◦ ζ2(s)− γ(s) ◦ ζ1(s))ds

∥∥∥∥
∞

≤ sup
t∈[0,1]

∫ 1

0

∥∥∥(Dγ(t))(ζ1(t) + s(ζ2(t)− ζ1(t))).(ζ2(t)− ζ1(t))
∥∥∥
∞
ds

≤ sup
t∈[0,1]

∫ 1

0
∥Dγ(t)∥L∞,∥·∥op∥ζ2 − ζ1∥∞dt

= sup
t∈[0,1]

∫ 1

0
α(γ(t))dt∥ζ2 − ζ1∥∞

≤ ∥γ∥L1,α∥ζ2 − ζ1∥∞
≤ ∥γ∥Lp,α∥ζ2 − ζ1∥∞
≤ L∥ζ2 − ζ1∥∞.

Hence T ([γ], x, ·) is a Cr-map and an L-contraction. By Banach’s Fixed Point Theorem,
there exists ζ[γ],x ∈ C([0, 1],Rn) such that

T ([γ], x, ζ[γ],x) = ζ[γ],x.

By [15, Lemma 6.2] the map

F1 : BL × Rn → C([0, 1],Rn), ([γ], x) 7→ ζ[γ],x

is Cr. By the exponential laws, we have:

a) F2 : (BL × Rn)× [0, 1] → Rn, ([γ], x, t) 7→ ζ[γ],x(t) is C
r,0.
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b) F3 : BL × [0, 1] → Cr(Rn,Rn), ([γ], t) 7→ ζ[γ],·(t) is C
r,0.

c) F4 : BL → C([0, 1], Cr(Rn,Rn)), [γ] 7→ ζ[γ] is continuous.

Let x ∈ Rn \K and ζ[γ,x be the fixed point of

ζ[γ],x(t) = x+

∫ t

0
γ(s)

(
ζ[γ],x

)
(s)ds.

Since γ(t)(x) = 0 for each t ∈ [0, 1], the constant map cx is also a fixed point and by
uniqueness of solutions we have ζ[γ],x = cx. Let I : [0, 1] → Cr(Rn,Rn), t 7→ idRn the
constant map mapping to the identity map. We define

S : BL → C([0, 1], Cr(Rn,Rn)), [γ] 7→ F4([γ])− I.

Then for each t ∈ [0, 1] we have S([γ])(t) ∈ CrK(Rn,Rn). Moreover, since S is continuous
and VK is open, there is exists an 0-neighborhood B ⊆ BL such that S(B) ⊆ VK . Hence,
we can consider the map S as the continuous map

S̃ : B → C([0, 1],VK), [γ] 7→ F4([γ])− I,

where, by the discussion in Remark 2.5.2, if [γ] ∈ B we have that η := S̃([γ]) is solution
of

η(t) =

∫ t

0
γ(s) ◦ (idRn + η(s))ds, for all t ∈ [0, 1].

Hence Evol(γ) = η. In consequence, VK is locally Lp-semiregular and thus, by Lemma
2.4.9, the half-Lie group Diff r

K(Rn) is Lp-semiregular.
Moreover, the evolution map restricted to the 0-neighborhood B is given by

Evol |B : B ⊆ Lp([0, 1], CrK(Rn,Rn)) → ACLp([0, 1],VK), γ 7→ S̃(γ).

Since S̃ is continuous, by Lemma 2.4.11 the evolution map with continuous values EvolC
is continuous. Moreover, since the restricted right action of Diff r

K(Rn) is continuous, by
Theorem 2.4.14, the evolution map

Evol : Lp([0, 1], CrK(Rn,Rn)) → ACLp([0, 1],VK), γ 7→ Evol(γ)

is continuous.

Proceeding exactly as the case Lp, for the case L∞
rc we have the same result.

Proposition 2.5.4 If r ∈ N, then the right half-Lie group Diff r
K(Rn) is L∞

rc -semiregular.
Moreover, the evolution map

Evol : L∞
rc([0, 1], TeDiff r

K(Rn)) → ACL∞
rc
([0, 1],Diff r

K(Rn)), γ 7→ ηγ

is continuous.
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Proof. For 0 < L < 1, we define the open ball centered in 0 ∈ L∞
rc([0, 1], C

r
K(Rn,Rn))

via

BL := {[γ] ∈ L∞
rc([0, 1], C

r
K(Rn,Rn)) : ∥γ∥L∞

rc ,α:= ess sup
t∈[0,1]

α(γ(t)) < L}

Following the same notation as Proposition 1.0.7, since the evaluation map ε is Cr,∞,
by Lemma 2.4.13 the map

Φn : L∞
rc([0, 1], C

r
K(Rn,Rn))× C([0, 1],Rn) → L∞

rc([0, 1],Rn), Φn([γ], ζ) := ε ◦ ([γ, ζ])

is Cr. Hence the operator T : BL × Rn × C([0, 1],Rn) → C([0, 1],Rn) given by

T ([γ], x, ζ)(t) := x+

∫ t

0
γ(s) (ζ(s)) ds, for t ∈ [0, 1].

is a C∞,∞,r-map. Let [γ] ∈ L∞
rc([0, 1], C

r
K(Rn,Rn)) and x ∈ Rn be fixed, for ζ1, ζ2 ∈

C([0, 1],Rn), by the Mean Value Theorem we have

γ(t) ◦ ζ2(t)− γ(t) ◦ ζ1(t) =
∫ 1

0

(
Dγ(t)

)
(ζ1(t) + s(ζ2(t)− ζ1(t))).(ζ2(t)− ζ1(t))ds

and

∥Φn([γ], ζ2)(t)− Φn([γ], ζ1)(t)∥∞ = ∥γ(t) ◦ ζ2(t)− γ(t) ◦ ζ1(t)∥∞

≤
∫ 1

0
∥
(
Dγ(t)

)
(ζ1(t) + s(ζ2(t)− ζ1(t))).(ζ2(t)− ζ1(t))∥∞ds

≤ ∥Dγ(t)∥L∞,∥·∥op∥ζ2 − ζ1∥L∞,∥·∥∞

= α(γ(t))∥ζ2 − ζ1∥L∞,∥·∥∞ .

Hence

∥Φn([γ], ζ2)− Φn([γ], ζ1)∥L∞
rc ,∞≤ ∥γ∥L∞

rc ,α∥ζ2 − ζ1∥L∞,∥·∥∞ .

Thus T ([γ], x, ·) is a Cr-map and a L-contraction. With this, following the same steps
as Proposition 1.0.7 we can show that Diff r

K(Rn) is L∞
rc -semiregular and there exists a

0-neighborhood B in L∞
rc([0, 1], TeDiff r

K(Rn)) such that the restricted map evolution map

EvolC |B : B → ACL∞
rc
([0, 1],Diff r

K(Rn)), [γ] 7→ EvolC(γ)

is continuous. By Lemma 2.4.11 the evolution map with continuous values EvolC is
continuous. Moreover, since the restricted right action of Diff r

K(Rn) is continuous, by
Theorem 2.4.14, the evolution map

Evol : L∞
rc([0, 1], C

r
K(Rn,Rn)) → ACL∞

rc
([0, 1],VK), γ 7→ Evol(γ)

is continuous.
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2.6 Lp-Semiregularity of Diff r(M)

Let r ∈ N. Let M be a compact smooth manifold without boundary, g be a smooth
Riemannian metric onM and exp : D ⊆ TM →M be the Riemannian exponential map,
with expp := exp |TpM for each p ∈ M . Let πTM : TM → M be the bundle projection
and W ⊆ D be an open neighborhood of the zero-section such that the map

(πTM , exp) : W ⊆ TM →M ×M, v 7→ (πTM (v), exp(v))

is a diffeomorphism into its image. In particular, if Wp := W ∩ TpM , the map

expp |Wp : Wp ⊆ TpM → expp (Wp) ⊆M

is a C∞-diffeomorphism for each p ∈M .
Let Diff r(M) be the set of all Cr-diffeomorphism ϕ : M → M . For each ϕ ∈ Diff r(M)
we define the Banach space of Cr-sections

ΓCr(ϕ) := {X ∈ Cr(M,TM) : πTM ◦X = ϕ}

and the open 0-neighborhood

Vϕ := {X ∈ ΓCr(ϕ) : X(M) ⊆ W}.

If

Uϕ := {exp ◦X ∈ Diff r(M) : X ∈ Vϕ}

then the map

Ψϕ : Uϕ → Vϕ, Ψ(ϕ)(p) :=
(
expp |Wp

)−1
(ϕ(p))

define a chart for Diff r(M) on ϕ, with inverse given by

Ψ−1
ϕ : Vϕ → Uϕ, X 7→ exp ◦X,

turning Diff r(M) into a Banach manifold. Moreover, under the composition the mani-
fold Diff r(M) becomes a right half-Lie group (see e.g. [17]). We see that for the neutral
element e = idM , the tangent space TeDiff r(M) coincide with space of Cr-vector fields
X :M → TM , denoted by X r(M).
The restricted right action

X r(M)×Diff r
K(Rn) → TDiff r

K(Rn), (X,ϕ) 7→ X.ϕ = X ◦ ϕ (2.6.1)

is continuous (see e.g. [16]).
Let [γ] ∈ Lp([0, 1],X r(M)), we will study the equation

η̇(t) = γ(t).η(t), t ∈ [0, 1] (2.6.2)

η(0) = idM . (2.6.3)
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Definition 2.6.1 Let (E, ∥·∥E) be a normed space and U ⊆ E be a subset. We say
that a function f : [a, b] × U → E satisfies an L1-Lipschitz condition if there exists a
measurable function g ∈ L1([a, b],R) such that

Lip(f(t, ·)) ≤ g(t), t ∈ [a, b],

where Lip(f(t, ·)) ∈ [0,∞] denote the infimum of all Lipschitz constants for f(t, ·) : U →
E.

Definition 2.6.2 Let M be a C1-manifold modeled on a normed space E, J ⊆ R be a
non-degenerate interval and f : J ×M → TM be a function with f(t, p) ∈ TpM for all
(t, p) ∈ J×M . We say that f satisfies a local L1-Lipschitz condition if for all t0 ∈ J and
P ∈ M , there exists a chart κ : Uκ → Vκ of M on p and a relatively open subinterval
[a, b] ⊆ J which is a neighborhood of t0 in J such that the map

fκ : [a, b]× Vκ → E, (t, x) 7→ dκ
(
f(t, κ−1(y))

)
satisfies an L1-Lipschitz condition.

Remark 2.6.3 Let (E, ∥·∥) be a normed space and f : [a, b] ×M → TM be a map
with f(t, q) ∈ TqM for all (t, q) ∈ [a, b] ×M , which satisfies a local L1-condition. If
τ, η : [a, b] →M are two ACL1-Carathéodory solutions to

y′ = f(t, y)

satisfying τ(t0) = η(t0) for some t0 ∈ [a, b], then τ = η [15, Proposition 10.5]. If the
initial value problem

y′(t) = f(t, y(t)), t ∈ [a, b]

y(0) = q

has a (necessarily unique) solution γq : [a, b] → M for each q ∈ M , then we say that f
admits a global flow for initial time t0 and write

F ft,a(q) := γq(t),

for all t ∈ [a, b] and q ∈M .

The following result can be found in the appendix of [15] for the context of ACL1-
functions with values in the Lie group of C∞-diffeomorphism with compact support
Diff∞

c (M). However, this result is also valid in our context.

Theorem 2.6.4 Let 1 ≤ p <∞ and [γ] ∈ Lp([0, 1],X r(M)), then map

γ : [0, 1]×M → TM, γ(t, q) := γ(t)(q)

satisfies a local L1-Lipschitz condition. Let η ∈ ACLp([0, 1],Diff r(M)) with η(0) = idM .
Then η = Evol([γ]) if and only if f admits global flow F for initial time t0 = 0 and

η(t)(p) = F γt,0(q),

for all t ∈ [0, 1] and q ∈M .

46



The following result follows the same steps as the proof of the L1-regularity of Diff∞
c (M)

proved in [15, Section 11]. We recommend to the reader to read the reference to see
some steps in detail.

Theorem 2.6.5 Let M be a compact smooth manifold and 1 ≤ p < ∞. If r ∈ N, then
the right half-Lie group Diff r(M) is Lp-semiregular. Moreover, the evolution map

Evol : Lp([0, 1], TeDiff r(M)) → ACLp([0, 1],Diff r(M)), [γ] 7→ η[γ]

is continuous.

Proof. For ϕ ∈ Diff r(M), we can choose a finite locally finite cover (Ui)
n
i=1 of M by

relatively compact, open subsets sets and charts κi : Ui → B5(0) ⊆ Rn such that the
family of open sets κ−1

i (B1(0)) coverM and Ui ⊆ ϕ−1(Uψi
) for some chart ψi : Uψi

→ Vψi

of M (see e.g. [27]). For X ∈ ΓCr(ϕ) we write

Xi := dψi ◦X ◦ κ−1
i : B5(0) → Rm.

Then, for each ℓ ∈ [1, 5] the map

ρℓ : ΓCr(ϕ) →
n∏
i=1

Cr(Bℓ(0),Rm), X 7→ ρℓ(X) := (Xi|Bℓ(0))
n
i=1

is a linear topological embedding with closed image (see [3]).
Let ϕ = idM , then ΓCr(idM ) = X r(M). Doing the corresponding identifications of
product spaces, we have the linear topological embeddings with closed image

R5 := Lp([0, 1], ρ5) : L
p([0, 1],X r(M)) →

n∏
i=1

Lp([0, 1], Cr(B5(0),Rm)), γ 7→ ρ5 ◦ γ

and

R1 := C([0, 1], ρ1) : C([0, 1],X r(M)) →
n∏
i=1

C([0, 1], Cr(B1(0),Rm)), γ 7→ ρ1 ◦ γ.

Before we study the equation for [γ] ∈ Lp([0, 1],X r(M)), the topological embedding R1

allows us to study it first for

[γ] ∈ Lp([0, 1], Cr(B5(0),Rm)).

We consider the continuous seminorm q : Cr(B5(0),Rm) → [0,∞) given by

q(ϕ) := sup
x∈B4(0)

(
∥ϕ′(x)∥op+∥ϕ(x)∥∞

)
, for all ϕ ∈ Cr(B5(0),Rn).

For 0 < L < 1 we set the open ball

BL := {γ ∈ Lp([0, 1], Cr(B5(0),Rm)) : ∥γ∥Lp,q< L}.
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Just like the case for Diff r
K(Rn), we need an ACLp-Carathéodory solution ζ : [0, 1] →

B4(0) that verifies the integral equation

ζ ′(s) = x+

∫ t

0
γ(s) (ζ(s)) ds, t ∈ [0, 1],

for [γ] ∈ BL and x ∈ B3(0).
We define the operator T : BL ×B3(0)× C([0, 1], B4(0)) → C([0, 1], B4(0)) by

T ([γ], x, ζ)(t) := x+

∫ t

0
γ(s) (ζ(s)) ds, t ∈ [0, 1].

By Lemma 2.4.12, the map T is C∞,∞,r and for each [γ] ∈ BL and x ∈ B3(0) we have

Lip(Ψ([γ], x, ·)) ≤ L.

Thus, by Banach’s Fixed Point Theorem, for each ([γ], x) ∈ BL × B3(0) the map
Ψ([γ], x, ·) has a unique fixed point ζ[γ],x ∈ C([0, 1], B4(0)) and

F : BL ×B3(0) → C([0, 1], B4(0)), ([γ], x) 7→ ζ[γ],x

is Cr (see [15, Lemma 6.2]). By the exponential law, we have

a) F2 : (BL ×B3(0))× [0, 1] → B4(0), ([γ], t, x) 7→ ζ[γ],x(t) is C
r,0.

b) F3 : BL × [0, 1] → Cr(B3(0), B4(0)), ([γ], t) 7→ ζ[γ](t) is C
r,0.

c) F4 : BL → C([0, 1], Cr(B3(0), B4(0))), [γ] 7→ ζ[γ] is continuous.

Let ρ2 : C
r(B3(0), B4(0)) → Cr(B2(0), B4(0)), φ 7→ φ|B2(0), we denote

H := C([0, 1], ρ2) ◦ F4 : BL → C([0, 1], Cr(B2(0), B4(0)), [γ] 7→ ρ2 ◦ ζ[γ].

Then H is continuous. We will show that H has absolutely continuous values.
Let consider the open set

⌊B2(0), B4(0)⌋r := {φ ∈ Cr(B3(0),Rm) : φ(B2(0)) ⊆ B4(0)}.

Then the map

S : Cr(B5(0),Rn)× ⌊B2(0), B4(0)⌋r → Cr(B2(0),Rm), (ψ,φ) 7→ ψ ◦ φ

is continuous. Moreover, since S is linear in the first variable, by Lemma 2.4.12, the
map

S̃ : Lp([0, 1], Cr(B5(0),Rn))× C([0, 1], ⌊B2(0), B4(0)⌋r) → Lp([0, 1], Cr(B2(0),Rm))
(α, β) 7→ S ◦ (α, β)
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is continuous. Hence, for [γ] ∈ BL we have

S ◦ (γ,H([γ])) = γ (H(γ)) = γ.H([γ]) ∈ Lp([0, 1], Cr(B2(0),Rm)).

This allow us to define the Lp-absolutely continuous function τ : [0, 1] → Cr(B2(0),Rm)
given by

τ(t) = idB2(0) +

∫ t

0
γ(s) (H([γ])(s)) ds, for each t ∈ [0, 1].

If we consider the point evaluation map εx : Cr(B2(0),Rm) → Rm, φ 7→ φ(x), then for
each x ∈ B2(0) we have

εx (τ(t)) = εx (H([γ])(t)) , for all t ∈ [0, 1].

Since the family of maps (εx)x∈B2(0) separate points in Cr(B2(0),Rm), we have τ =
H([γ]).
Hence H[γ] is absolutely continuous and we can consider the map

HAC : BL → ACLp([0, 1], Cr(B2(0), B4(0)), [γ] 7→ H([γ])

which is the evolution map for Cr(B2(0), B4(0)).
Now we will see the case for Lp([0, 1],X r(M)). We define the 0-neighborhood of Lp([0, 1],X r(M))

BL := R−1
5

(
n∏
i=1

BL

)
= {[γ] ∈ Lp([0, 1],X r(M)) : (∀i ∈ {1, ..., n}) [γi] ∈ BL}

which is open by continuity of R5.
Let [γ] ∈ BL, with [γi] ∈ BL for each i ∈ {1, ..., n}. If m ∈ M , there is a chart
κj : Uj → B5(0) such that m ∈ κ−1

j (B3(0)) for some j ∈ {1, ..., n}. Let ζ[γ],κj(m) ∈
ACLP ([0, 1], Cr(B2(0), B4(0)) be the solution of the integral equation

ζ[γ],κj(m)(t) = κj(m) +

∫ t

0
γj(s)

(
ζ[γ],κj(m)(s)

)
ds, t ∈ [0, 1].

Then ζ[γ],κj(m) is a ACLp-Carathéodory solution to

x′(t) = γj(t) (x(t)) , t ∈ [0, 1]

x(0) = κj(m).

Hence the function

η[γ],m : [0, 1] →M, η[γ],m(t) := κ−1
j ◦ ζ[γ],κj(m)(t)

is a ACLp-Carathéodory solution of the equation

y′(t) = γ(t) (y(t)) , t ∈ [0, 1]

y(0) = m.
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Since γ̃ satisfies a local L1-Lipschitz condition, by Remark 2.6.3 the solution of this
equation is unique and η[γ],m is well defined. Moreover, γ̃ admits a global flow for initial
time t0 = 0, given by

F γt,0(m) = η[γ],m(t)

for all t ∈ [0, 1], m ∈M .
Following point 11.16 of [15], for each i ∈ {1, ..., n} we can construct an exponential map

expi : Di ⊆ TB5(0) → B5(0)

such that
κ−1
i ◦ expi = exp ◦ Tκ−1

i |Di .

There is an open set Oi ⊆ Di containing B4(0) × {0} such that (pr1, expi)(Qi) is open
in B5(0)×B5(0) and the map

ψi := (pr1, expi)|Oi : Oi ⊆ TB5(0) → ψi(Oi) ⊆ B5(0)×B4(0)

is a C∞-diffeomorphism onto its image. Assuming that

Tκ−1
i (Oi) ⊆ W,

since
{(x, x) : x ∈ B5(0)} ⊆ (pr1, expi)(Oi),

there exists si ∈]0, 1] such that⋃
x∈B4(0)

{x} ×Bsi(x) ⊆ (pr1, expi)(Oi)

is a smooth diffeomorphism and there exists an si ∈]0, 1[, such that ψ−1
i restrict to a

smooth diffeomorphism of the form

(IdB4(0), θi) :
⋃

x∈B4(0)

{x} ×Bsi(x) ⊆ B5(0)×B5(0) → ψ−1
i

 ⋃
x∈B4(0)

{x} ×Bsi(x)

 ⊆ Oi

with open image in Oi. For each x ∈ B4(0) we define the set

Oi,x := {y ∈ Rm : (x, y) ∈ Oi}.

Hence, we have
θi(x, ·) =

(
exp(x, ·)|Oi,x

)−1 |Bsi (0)
.

The set
Zi,x :=

{
φ ∈ Cr(B2(0),Rn) : (∀x ∈ B1(0)) φ(x) ∈ Bsi(x)

}
is open in Cr(B2(0),Rm) and the map

(θi)∗ : Zi,x ⊆ Cr(B2(0),Rm) → Cr(B1(0),Rm), φ 7→ (θi)∗(φ) := θi ◦ (idB1(0), φ)
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is smooth since θ is smooth [17, Proposition 4.23].
Let Ψ : U → V be a chart on idM ∈ Diffr(M), then since ρ1 is a topological embedding
we can assume that

V := ρ−1
1

(
n∏
i=1

Vi

)
for suitable open 0-neighborhoods Vi ⊆ Cr(B1(0),Rm).
Since (θi)∗(idB2(0)) = 0, by continuity of (θi)∗ there exists open idB2(0)-neighborhoods
Yi ⊆ Zi,x such that

(θi)∗(Yi) ⊆ Vi.

Since H(0)(t) = idB2(0) for all t ∈ [0, 1], by continuity of H there exists open 0-
neighborhoods Pi ⊆ BL such that

H(Pi) ⊆ C([0, 1],Yi)

If

P := R−1
5

(
n∏
i=1

Pi

)
then P is an open 0-neighborhood in Lp([0, 1],X r(M)) with P ⊆ BL.
This allow us to do the composition

(θi)∗ ◦H : BL ⊆ Lp([0, 1], Cr(B5(0),Rm) → C([0, 1], Cr(B1(0),Rm)

Following the same steps of point 1.18 and 1.19 of [15], we have that for each [γ] ∈ P,
there exists an unique θ[γ] ∈ C([0, 1],X r(M)) such that

R1(θ[γ]) =
(
(θi)∗(H([γi]))

)n
i=1
.

Then ρ1
(
θ[γ](t)

)
∈
∏n
i=1 Vi, whence θ[γ](t) ∈ V. In consequence

Ψ−1(θ[γ](t)) = exp ◦θ[γ](t) ∈ Diff r(M), for all t ∈ [0, 1].

Let m ∈M with x := κi(m), then we have

exp ◦θ[γ](t)(m) =
(
κ−1
i ◦ expi ◦Tκi

)
◦ θ[γ](t)(κ−1

i (x))

= κ−1
i ◦ expi ◦(θi)∗(H([γi]))(t)(x)

= κ−1
i ◦ expi ◦ (expi |Wi)

−1 ◦H([γi])(t)(x)

= κ−1
i ◦H([γi])(t)(x)

= κ−1
i ◦ ζ[γi],x(t)

= F γ̃t,0(m).

Hence, we define
η[γ] := exp ◦θ[γ] : [0, 1] → Diff r(M).
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We will show that η[γ] is absolutely continuous. Since the exponential map exp is smooth,
we need to show that θ[γ] is absolutely continuous, but this is equivalent to show that

[0, 1] →
n∏
i=1

Cr(B1(0),Rm), t 7→ ρ1 ◦ θ[γ](t).

But this map coincides with the map

[0, 1] →
n∏
i=1

Cr(B1(0),Rm), t 7→ ((θi)∗ (H([γi])))
n
i=1 (t)

which is absolutely continuous. Since (θi)∗ is smooth andH([γi]) ∈ ACLp([0, 1], Cr(B2(0), B4(0))),
by Lemma 2.1.17, the composition and hence the product are absolutely continuous.
Then we have that

θ[γ] ∈ ACLp([0, 1],X r(M))

whence
η[γ] ∈ ACLp([0, 1],Diff r(M)).

In consequence, by Lemma 2.4.9 and Remark 2.6.3, the right half-Lie group Diff r(M)
is Lp-semiregular. Since the map

BL →
n∏
i=1

C([0, 1], Cr(B1(0),Rn)), [γi] 7→ ((θi)∗ (H([γi])))
n
i=1

is continuous, the restricted evolution map with continuous values is given by

EvolC |P : P → ACLp([0, 1],Diff r(M)), [γ] 7→ η[γ] = exp ◦θ[γ].

Hence, by Lemma 2.4.11 the evolution map EvolC is continuous and since the restricted
right action of Diff r(M) is continuous, by Theorem 2.4.14, the evolution map

Evol : Lp([0, 1],X r(M)) → ACLp([0, 1],Diff r(M)), [γ] 7→ Evol(γ)

is continuous.

Now we will focus in the Lp-semiregularity of the case Diffr(M) with M a compact
smooth manifold with boundary.

Definition 2.6.6 Let M and N be smooth manifolds with boundaries and suppose
f : ∂M → ∂N is a diffeomorphism, We define adjunction spaceM∪fN as the set formed
identifying each p ∈ ∂M with f(p) ∈ ∂N .

We recall [28, Theorem 9.29].

Theorem 2.6.7 LetM and N be a smooth manifolds with boundaries and f : ∂M → ∂N
be a diffeomorphism. Then the adjunction spaceM∪fN is a topological manifold without
boundary which has a smooth manifold structure such that there are regular domains
M ′, N ′ ⊆M ∪f N diffeomorphic to M and N , respectively, such that M ′∪N ′ =M ∪f N
andM ′ ∩N ′ = ∂M ′ = ∂N ′. Moreover, M and N are both compact if and only ifM∪fN
is compact.
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Definition 2.6.8 Let M be a smooth manifold with boundary. If M ′ denotes a copy
of M , we define the double of M as the smooth manifold without boundary

DM =M ⊔id∂ M
′ (2.6.4)

where id∂ : ∂M → ∂M ′ is the identity map.
For p ∈ M , we denote by (p, 0) and (p, 1) the corresponding element in M and M ′,
respectively, and if p ∈ ∂M , then (p, 0) ∼ (p, 1). By Theorem 2.6.7, the map

ρ :M → DM, p 7→ [(p, 0)]

is an embedding onto a regular domain of DM which we identify with M .

Definition 2.6.9 Let r ∈ N∪{0,∞} and M be a smooth manifold with boundary. We
define the vector space of Cr-stratified vector field on M as

X r
str(M) := {X ∈ X r(M) : X(∂M) ⊆ T∂M}.

We recall [18, Colorally 1.8].

Proposition 2.6.10 For each k ∈ N ∪ {0,∞}, n ∈ N, m ∈ {0, ..., d} and locally convex
space F , the restriction map

E : Ck(Rd, F ) → Ck([0,∞)m × Rd−m, F )

has a continuous linear right inverse. Moreover, the restriction map

Ck(Rd, F ) → Ck([0, 1]d, F )

has continuous linear right inverse.

Remark 2.6.11 Let r ∈ N ∪ {0,∞}, m ∈ N and M be an m-dimensional compact
smooth manifold with boundary. By compactness of M , we find charts φi : Ui → Vi of
M around points pi ∈ ∂M such that (Ui)

k
i=1 is a finite open cover of ∂M which extends

to charts φ̃i : Ũi → Ṽi around pi. For X ∈ X r
str(M), we write

Yi := dφi ◦X ◦ φ−1
i : Vi ⊆ [0,∞)× Rm−1 → Rm.

Without loss of generality, we assume that Vi = [0,∞) × Rm−1 and we consider the
extension Ỹi : Rm → Rm of Yi given by Proposition 2.6.10. We define

X̃i := T φ̃i
−1 ◦ Ỹi ◦ φ̃i : Ũi → TŨi.

Then X̃i ∈ X r(Ũi) and the map

Φ1 : X r
str(M) →

k∏
i=1

X r(Ũi), X 7→ (X̃i)
k
i=1

is continuous linear. Let us consider Ũk+1 :=M◦, Ũk+2 := (M ′)◦ and the open cover of
DM

A := {Ũ1, ..., Ũk, Ũk+1, Ũk+2}.
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Then there exists a partition of the unity subordinate toA, denoted by {h1, ..., hk, hk+1, hk+2},
such that supp(hi) ⊆ Ũi for each i ∈ {1, ..., k, k + 1, k + 2}.
Denoting the space of all Ck-vector fields of Ũi with support on supp(hi) as X r

i (Ũi), we
see that the map

X r(Ũi) → X r
i (Ũi), Y 7→ hiY

is continuous linear.
Moreover, if Z ∈ X r

i (Ũi), we can obtain an extension Ei(Z) ∈ X r(DM) of Z by extending
it by 0, and a continuous linear map

Ei : X r
i (Ũi) → X r(DM), Z 7→ Ei(Z).

For X ∈ X r
str(M), we write X̃k+1 := X|M◦ . This enables us to define the extension map

α : X r
str(M) → X r(DM), X 7→ α(X) :=

k+1∑
i=1

Ei(hiX̃i)

which is continuous linear.

Remark 2.6.12 LetM be a compact smooth manifiold with boundary and r ∈ N∪{∞}.
By [21, Proposition 1.3], the set Diffr(M) is a embedded submanifold of Cr(M,DM).
This allows us to consider the inclusion map restricted onto its image

J : Diffr(M) → J(Diffr(M)) ⊂ Cr(M,DM), ϕ 7→ ϕ (2.6.5)

then J is a diffeomorphism. Since for each g ∈ Cr(M,M) fixed, the right translation
map

ρCr(g) : Cr(M,DM) → Cr(M,DM), ϕ 7→ ϕ ◦ g

is smooth. For each g ∈ Diffr(M) fixed, the right translation map

ρ(g) : Diffr(M) → Diffr(M), ϕ 7→ ϕ ◦ g

can be written as
ρ(g) = J−1 ◦ ρCr(J(g)) ◦ J.

Hence Diffr(M) is a right half-Lie group.

Theorem 2.6.13 Let M be a compact smooth manifold with boundary, r ∈ N ∪ {∞}
and 1 ≤ p < ∞. Then the right half-Lie group Diff r(M) is Lp-semiregular and the
evolution map with continuous values

EvolC : Lp([0, 1], TeDiffr(M)) → C([0, 1],Diffr(M)), [γ] 7→ EvolC(γ)

is continuous.

Proof. Let consider the map α : X r
str(M) → X r(DM) as Remark 2.6.11, we define the

map

α̃ := Lp([0, 1], α) : Lp([0, 1],X r
str(M)) → Lp([0, 1],X r(DM)), [γ] 7→ [α ◦ γ];
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which is linear and continuous. Since DM is a compact smooth manifold without bound-
ary, the right half-Lie group Diffr(DM) is Lp-semiregular with continuous evolution map
denoted by

EvolDM : Lp([0, 1],X r(DM)) → ACLp([0, 1],Diffr(DM)), [γ] 7→ EvolDM (γ).

Let [γ] ∈ Lp([0, 1],X r
str(M)), we define the absolutely continuous function ξγ : [0, 1] → Diffr(DM)

by ξγ := EvolDM (α̃([γ])). Then ξγ is the solution of the equation

ξ̇γ(t) = α̃([γ])(t).ξγ(t), t ∈ [0, 1]

ξγ(0) = e.

For [γ] close to 0, the proof of Theorem 2.6.5 shows that, for each p ∈ M , the function
xp : [0, 1] → DM , given by xp(t) := ξγ(t)(p) is a solution of the equation

ẋp(t) = α̃([γ])(t) ◦ xp(t), t ∈ [0, 1]

xp(0) = p,

and this ODE satisfies local uniqueness of Caratheodory solutions. Looking at the
compact manifold ∂M without boundary and the vector fields γ(t)|∂M ∈ X r(∂M) we
likewise get a solution yp : [0, 1] → ∂M for each p ∈ ∂M , for the differential equation

ẏp(t) = α̃([γ])(t) ◦ yp(t), t ∈ [0, 1]

yp(0) = p.

Then yp also solves the initial value problem for xp, whence xp = yp by local unique-
ness. In consequence xp([0, 1]) ⊆ ∂M . This implies that for each t ∈ [0, 1] fixed, we
have ξγ(t)(M) ⊆ M , ξγ(t)(M

′) ⊆ M ′ and ξγ(t)(∂M) ⊆ ∂M . Therefore, we obtain
ξγ(t)|M ∈ Diffr(M).
Consider the smooth embedding ι : Diffr(DM) → Cr(DM,DM), ϕ 7→ ϕ. Then the map

ι̃ := ACLp([0, 1], ι) : ACLp([0, 1],Diffr(DM)) → ACLp([0, 1], Cr(DM,DM)), η 7→ ι ◦ η

is smooth. Let ρ : M → DM be the inclusion map, which is smooth and a diffeomor-
phism onto its image, then the maps

ρ∗ := Cr(ρ,DM) : Cr(DM,DM) → Cr(M,DM), ϕ 7→ ϕ ◦ ρ = ϕ|M

and

ρ̃ : ACLp([0, 1], Cr(DM,DM)) → ACLp([0, 1], Cr(M,DM)), η 7→ ρ∗ ◦ η

are smooth.
Consider the restricted inclusion map J as in equation (2.6.5), by Lemma 2.1.25, we
define the map

j̃ : ACLp([0, 1], J(Diffr(M))) → ACLp([0, 1],Diffr(M)), η 7→ J−1 ◦ η.
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The fact that ξγ(t)|M ∈ Diffr(M) for each t ∈ [0, 1], enables us to define the function

ζγ : [0, 1] → Cr(M,DM), ζγ(t) := (j̃ ◦ ρ̃ ◦ ι̃)(ξγ)(t)

which is in ACLp([0, 1],Diffr(M)). Moreover, by definition of α, we have

α̃([γ])(t) ◦ ζγ(t) = γ(t) ◦ ζγ(t).

Hence ζγ verifies the equation

ζ̇γ(t) = γ(t).ζγ(t), t ∈ [0, 1]

ζγ(0) = e.

Therefore Diffr(M) is Lp-semiregular and the evolution map is given by

Evol : Lp([0, 1],X r
str(M)) → ACLp([0, 1],Diffr(M)), [γ] 7→

(
j̃ ◦ ρ̃ ◦ ι̃ ◦EvolDM ◦α̃

)
([γ]).

We consider the inclusion map

ω : ACLp([0, 1], Cr(M,DM)) → C([0, 1], Cr(M,DM)), η 7→ η

which is smooth, and we define the smooth map

ρ̃C : ACLp([0, 1], Cr(DM,DM)) → C([0, 1], Cr(M,DM)), η 7→ ω(ρ∗ ◦ η).

We write

j̃C : C([0, 1], J(Diffr(M))) → C([0, 1],Diffr(M)), η → J−1 ◦ η

then j̃C is continuous. Therefore, the evolution map with continuous values EvolC is
given by

EvolC : Lp([0, 1],X r
str(M)) → C([0, 1],Diffr(M)), [γ] 7→

(
j̃C ◦ ρ̃C ◦ ι̃ ◦EvolDM ◦α̃

)
([γ])

and is continuous since is composition of continuous maps.
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3 Manifolds of mappings associated with
real-valued functions spaces

3.1 Preliminaries

Definition 3.1.1 Let m ∈ N fixed, a set U of open subsets of product set [0,∞)m will
be called a good collection of open subsets if the following condition are satisfied:

a) U is a basis for the topology of [0,∞)m.

b) If U ∈ U and K ⊆ U is a compact non-empty subset, then there exists V ∈ U with
compact closure V in [0,∞)m such that K ⊆ V and V ⊆ U .

c) If U ⊆ [0,∞)m is an open set and W ∈ U is a relatively compact subset of U , then
there exists V ∈ U such that V is a relatively compact subset of U and W ⊆ V .

d) If ϕ : U → V is a C∞-diffeomorphism between open subsets U and V of [0,∞)m

and W ∈ U is a relatively compact subset of U , then ϕ(W ) ∈ U .

Remark 3.1.2 If we consider U = {U ∩ [0,∞)m : U is open in Rm} then U defines
a good collection of open subsets. This is also true for the case of open and bounded
subsets of Rm.
Let U be a open subset of [0,∞)m, we write BC(U,R) for the vector space of all bounded
continuous functions f : U → R endowed with the supremum norm ∥·∥∞.

Definition 3.1.3 Let M be a paracompact Hausdorff topological space. A chart ϕ :
U → V is a homeomorphism from an open subset U ⊆ M onto an open subset V ⊆
[0,∞)m. We say that two charts ϕ1 : U1 → V1 and ϕ2 : U2 → V2 are compatibles if
ϕ1(U1) ∩ ϕ2(U2) = ∅ or the transition map ϕ2 ◦ ϕ−1

1 : ϕ1 (U1 ∩ U2) → ϕ2 (U1 ∩ U2) is
smooth.
We say thatM is an m-dimensional smooth manifold with corners ifM is equipped with
a maximal family of charts {ϕi : Ui → Vi}i∈I such that each pair of chart, are compatible
and M = ∪i∈IUi.
We say that N is a smooth manifold if it is a smooth manifold without boundary.

For our context, one important property of smooth manifolds with corners is the exis-
tence of cut-off functions.

Lemma 3.1.4 Let M be a m-dimensional smooth manifold with corners, K be a closed
subset of M and U be a open subset of M containing K. Then there exists a smooth
function ξ :M → [0, 1] such that ξ|K = 1 and supp(ξ) ⊆ U .
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Definition 3.1.5 Let U be a good collection of open subsets of [0,∞)m. For U ∈ U ,
the vector subspace F(U,R) of BC(U,R) will denote a integral complete locally convex
space such that the inclusion map F(U,R) → BC(U,R) is continuous.
Let {b1, ..., bn} be a basis for a finite dimensional real vector space E, we define the space

F(U,E) :=
n∑
i=1

F(U,R)bi

and we endow it with the the locally convex topology making the map

F(U,R)n → F(U,E), (f1, ..., fn) 7→
n∑
i=1

fibi (3.1.1)

an isomorphism of topological vector spaces.
We say that (F(U,R))U∈U is a family of locally convex spaces suitable for global analysis
if the following axioms are satisfied for all finite-dimensional real vector spaces E and
F :

(PF) Pushforward Axiom For all U, V ∈ U such that V is relatively compact in U
and each smooth map f : U × E → F , we have f∗(γ) := f ◦ (idV , γ|V ) ∈ F(V, F )
for all γ ∈ F(U,E) and the map

f∗ : F(U,E) → F (V, F ), γ 7→ f ◦ (idV , γ|V )

is continuous.

(PB) Pullback Axiom : Let U be an open subset of [0,∞)m and V,W ∈ U such thatW
has compact closure contained in U . Let Θ : U → V be a smooth diffeomorphism.
Then γ ◦Θ|W ∈ F(W,E) for all γ ∈ F(V,E) and

F(Θ|W , E) : F(V,E) → F(W,E), γ 7→ γ ◦Θ|W

is continuous.

(GL) Globalization Axiom : If U, V ∈ U with V ⊆ U and γ ∈ F(V,E) has compact
support, then the map γ̃ : U → E defined by

γ̃(x) =

{
γ(x), x ∈ V

0, x ∈ U \ supp(γ)

is in F(U,E) and for each compact subset K of V the map

eEU,V,K : FK(V,E) → F(U,E), γ 7→ γ̃

is continuous, where FK(V,E) := {γ ∈ F(V,E) : supp(γ) ⊆ K} is endowed with
the topology induced by F(V,E).
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(MU) Multiplication Axiom : If U ∈ U and h ∈ C∞
c (U,R), then hγ ∈ F(U,E) for all

γ ∈ F(U,E) and the map

mE
h : F(U,E) → F(U,E), γ 7→ hγ

is continuous.

Remark 3.1.6 Since the map in (3.1.1) is an isomorphism of topological vector spaces,
the Axioms (PB), (GL) and (MU) hold in general whenever they hold for E = R.
Likewise, Axiom (PF) holds in general whenever it holds for F = R.
Following [22, Remark 3.5], if U is a good collection of open subsets of [0,∞)m and
(F(U,R))U∈U is a family of locally convex space suitable for global analysis, then we
have the following results.

Lemma 3.1.7 Let U ⊆ [0,∞)∞ be an open subset and V,W ∈ U such that W has
compact closure contained in U and Θ : U → V be a smooth diffeomorphism. If F(V,R)
and F(W,R) are Fréchet spaces such that γ ◦Θ|W ∈ F(W,R) for all γ ∈ F(V,R), then
the map

F(Θ|W ,R) : F(V,R) → F(W,R), γ 7→ γ ◦Θ|W
is continuous.

Proof. Let γ ∈ BC(V,R) and p : R → R be a continuous seminorm, then

∥γ ◦Θ|W ∥∞,p:= sup
x∈W

p(γ ◦Θ|W (x)) ≤ sup
z∈V

p(γ(z)).

Therefore γ ◦Θ|W ∈ BC(W,R). We define the continuous linear operator

T : BC(Θ|W ,R) : BC(V,R) → BC(W,R), γ 7→ γ ◦Θ|W

with ∥T∥op≤ 1. Hence, its graph graph(T ) is closed in BC(V,R)×BC(W,R). Since the
inclusion map J : F(U,R) → BC(U,R) is continuous, we have

graph(F(Θ|W ,R)) = (J × J)−1(graph(T )).

Then F(Θ|W ,R) is continuous by the Closed Graph Theorem.

Lemma 3.1.8 If U ∈ U , h ∈ C∞
c (U,R) and F(U,R) is a Fréchet space such that

hγ ∈ F(U,R) for all γ ∈ F(U,R), then the map

mh : F(U,R) → F(U,R), γ 7→ hγ

is continuous.

Proof. As in the previous lemma, mh is continuous since the operator

Mh : BC(U,R) → BC(U,R), γ 7→ hγ

is continuous linear, the graph of mh is closed and therefore, mh is continuous.
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Lemma 3.1.9 Let U, V ∈ U with V ⊆ U and K be a compact subset of V . Assume
that, for each γ ∈ F(V,R) with support in K, the map γ̃ : U → R defined by

γ̃(x) =

{
γ(x), x ∈ V

0, x ∈ U \ supp(γ)

is in F(U,R). If, moreover, if FK(V,R) is a Fréchet space then the map

eU,V,K : FK(V,R) → F(U,R), γ 7→ γ̃

is continuous

Proof. Likewise to the previous lemmas, ifBCK(V,R) := {γ ∈ BC(V,R) : supp(γ) ⊆ K}
then the map

BC(V,R) → BCK(U,R), γ 7→ γ̃

which extends functions by 0 is a linear isometry.

Remark 3.1.10 Since a manifold with corners admits cut-off functions, we can extend
the basic consequence of these axioms for the case Rm (see [22, Section 4]) to our context
with corners. Moreover, the proofs are exactly the same. However, the statement of
Lemma 3.1.12 is new and we provide a full proof.

Lemma 3.1.11 Let E and F be finite-dimensional real vector spaces and U,W ∈ U
such that W is relatively compact in U . If Φ : E → F is a smooth map, then Φ ◦ γ|W ∈
F(W,F ) holds for each γ ∈ F(U,E) and the map

F(U,E) → F(W,F ), γ 7→ Φ ◦ γ|W

is continuous. In particular, if E = F and Φ = IdE, then the restriction map

F(U,E) → F(W,E), γ 7→ γ|W

is continuous.

Lemma 3.1.12 Let E and F be finite-dimensional real vector spaces and U,W ∈ U
such that W is relatively compact in U . If V is an open subset of E and

f : V → F

is a smooth map, then the map

F(U/W, f) : {γ ∈ F(U,E) : γ(W ) ⊂ V } → F(W,F ), γ 7→ f ◦ γ|W

is smooth.

Proof. Given γ0 in the domain D of F(U/W, f), we have that γ0(W ) is a compact subset
of V . There exists a smooth function χ : V → R with compact support K ⊆ V such
that χ(y) = 1 for all y in an open subset Y ⊆ V with γ0(W ) ⊆ Y . Then

g : E → F, g(y) :=

{
χ(y)f(y) if y ∈ V ;

0 if y ∈ E \K
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is a smooth function. Since f |Y = g|Y , we have that

f ◦ γ|W = g ◦ γ|W

for all γ ∈ D such that γ(W ) ⊆ Y , which is an open neighborhood of γ0 in D. To
see smoothness of F(U/W, f) on some open neighborhood of γ0 (which suffices for the
proof), we may therefore replace f with g and assume henceforth that V = E, whence
D is all of F(U,E). It suffices to show that F(U/W, f) is Ck for each k ∈ N0, and we
show this by induction. For the case k = 0, see Lemma 3.1.11. Let k ∈ N0 now and
assume that, for all E, F , U , W and f : V → F as in the lemma, with V = E, the map
F(U/W, f) is Ck. We claim that, for all γ, η ∈ F(U,E), the directional derivative

dF(U/W, f)(γ, η)

exists and equals F(U/W, df)(γ, η), if we identify the locally convex spaces F(U,E) ×
F(U,E) and F(U,E × E); thus

dF(U/W, f)(γ, η) = F(U/W, df)(γ, η). (3.1.2)

If this is true, then

dF(U/W, f) = F(U/W, df)

is Ck by induction and thus continuous, showing that F(U/W, f) is C1. Moreover, since
F(U/W, f) is C1 and dF(U/W, f) = F(U/W, df) is Ck, the map F(U/W, f) is Ck+1,
which completes the inductive proof. It only remains to prove the claim. To this end,
let γ, η ∈ F(U,E). Since F(U/W, df) is continuous by the case k = 0, the map

h : [0, 1]× [0, 1] → F(W,F ), (t, s) 7→ df ◦ (γ + stη, η)|W = F(U/W, df)(γ + stη, η)

is continuous. As F(W,F ) is assumed integral complete, for each t ∈ [0, 1] the continuous
path h(t, ·) : [0, 1] → F(W,F ) has a weak integral

I(t) :=

∫ 1

0
df ◦ (γ + stη, η)|W ds

in F(W,F ). The function I : [0, 1] → F(W,F ) is continuous by the theorem on parameter-
dependent integrals. For 0 ̸= t ∈ [0, 1], we consider the difference quotient

∆(t) =
F(U/W, f)(γ + tη)−F(U/W, f)(γ)

t
=
f ◦ (γ + tη)|W + f ◦ γ|W

t
.

Then

∆(t) = I(t). (3.1.3)

In fact, for each x ∈W the point evaluation

εx : F(W,F ) → F, θ 7→ θ(x)
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is a continuous linear map. It therefore commutes with the weak integral and we obtain

I(t)(x) = εx(I(t)) =

∫ 1

0
εx(df ◦ (γ + stη, η)|W ) ds

=

∫ 1

0
df(γ(x) + stη(x), η(x)) ds =

f(γ(x) + tη(x))− f(γ(x))

t

= ∆(t)(x),

applying the mean value theorem to the smooth function f . Thus (3.1.3) holds. Ex-
ploiting the continuity of I, letting t→ 0 we obtain

lim
t→0

∆(t) = lim
t→0

I(t) = I(0) =

∫ 1

0
df ◦ (γ, η)|W ds = df ◦ (γ, η)|W ,

establishing (3.1.2).

Definition 3.1.13 Let U be a open subset of [0,∞)m and E be a finite-dimensional
real vector space. We let Floc(U,E) be the set of all function γ : U → E such that for
each V ∈ U which is relatively compact in U we have γ|V ∈ F(V,E).
We see that each γ ∈ Floc(U,E) is continuous and by the previous lemma F(U,E) ⊆
Floc(U,E). We endow Floc(U,E) with the initial topology with respect to the family of
restriction maps

Floc(U,E) → F(V,E), γ 7→ γ|V
where V ∈ U which is relatively compact in U . This topology makes Floc(U,E) a
Hausdorff locally convex space.

Lemma 3.1.14 Let E be a finite-dimensional vector space. If U and V are open subsets
of [0,∞)m such that V ⊆ U , then γ|V ∈ Floc(V,E) for each γ ∈ Floc(U,E) and the
restriction map

Floc(U,E) → Floc(V,E), γ 7→ γ|V
is linear and continuous.

Lemma 3.1.15 Let E and F be finite-dimensional real vector spaces and U ⊆ [0,∞)m

be open. If Φ : E → F is a smooth map, then Φ ◦ γ ∈ Floc(U,F ) holds for each
γ ∈ Floc(U,E) and the map

Floc(U,E) → Floc(U,F ), γ 7→ Φ ◦ γ

is continuous. Moreover, if Q is an open subset of E and Ψ : Q → F is a smooth map,
then Ψ ◦ γ ∈ Floc(U,F ) holds for each γ ∈ Floc(U,E) such that γ(U) ⊆ Q.

Lemma 3.1.16 Let E be a finite-dimensional vector space, U and V be open subsets of
[0,∞)m and Θ : U → V be a smooth diffeomorphism. Then γ ◦Θ ∈ Floc(U,E) for each
γ ∈ Floc(V,E) and the map

F(U,E) → F(V,E), γ 7→ γ ◦Θ

is continuous.
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Lemma 3.1.17 Let E be a finite-dimensional vector space, U1, ..., Un be open subsets of
[0,∞)m and γj ∈ Floc(Uj , E) for j ∈ {1, ..., n} such that

γj |Ui∩Uj = γi|Ui∩Uj , for all i, j ∈ {1, ..., n}.

If V ∈ U is relatively compact in U1 ∪ ... ∪ Un, then γ̃ ∈ F(V,E) holds for the map
γ̃ : V → E defined piecewise via γ̃(x) = γj(x) for x ∈ V ∩ Uj.
Moreover, if E is the vector subspace of

∏n
j=1Floc(Uj , E) given by the n-tuples (γ1, ..., γn)

such that γj |Ui∩Uj = γi|Ui∩Uj , for all i, j ∈ {1, ..., n}, endowed with the subspace topology,
then the gluing map

glue : E → F(V,E), (γ1, ..., γn) 7→ γ̃

is continuous linear.

Definition 3.1.18 Let M be an m-dimensional compact smooth manifold with corners
and N an n dimensional smooth manifold. Let F(M,N) be the set of all functions
γ : M → N such that for each p ∈ M , exist charts ϕM : UM → VM of M with
VM ∈ U and ϕN : UN → VN a chart of N , such that p ∈ UM , γ(UM ) ⊆ UN and
ϕN ◦ γ ◦ ϕ−1

M ∈ F(VM ,Rn).
Remark 3.1.19 For a compact smooth manifold without boundary M , the properties
of maps between F-spaces are studied in Section 5 of [22]. These properties can be
extended to the case with corners. We recall the more important results relevant for our
context.

Lemma 3.1.20 Let M be an m-dimensional compact smooth manifold with corners,
N be a n-dimensional smooth manifold and γ : M → N be a continuous map. Then
γ ∈ F(M,N) if and only if ϕN ◦ γ ◦ ϕ−1

M ∈ Floc(VM ,Rn) for all charts ϕM : UM → VM
and ϕN : UN → VN of M and N , respectively, such that γ(UM ) ⊆ UN .

Lemma 3.1.21 Let Φ : N1 → N2 be a smooth map between finite-dimensional smooth
manifolds, and M be a compact smooth manifold. Then Φ ◦ η ∈ F(M,N2) for each
η ∈ F(M,N1).

Remark 3.1.22 Let M be an n-dimensional compact smooth manifold with corners
and E be a finite-dimensional vector space. We give F(M,E) the initial topology with
respect to the maps

F(M,E) → F(Vϕ, E), γ 7→ γ ◦ ϕ−1

for ϕ : Uϕ → Vϕ in the maximal C∞ atlas of M .

Lemma 3.1.23 Let M be a compact smooth manifold with corners and E be a finite-
dimensional vector space. For i ∈ {1, ..., k}, let ϕi : Ui → Vi be charts of M , Wi ∈ U be
a relatively compact subset of Vi with M = ∪ki=1φ

−1
i (Wi). Then the linear map

Θ : F(M,E) →
k∏
i=1

F(Wi, E), γ 7→
(
γ ◦ ϕ−1

i |Wi

)k
i=1

is a topological embedding with closed image.
The image Im(Θ) is the set S of all (γi)

k
i=1 ∈

∏k
i=1F(Wi, E) such that γi ◦ ϕi(p) =

γj ◦ ϕj(p) for all i, j ∈ {1, ..., k} and p ∈ ϕ−1
i (Wi) ∩ ϕ−1

i (Wj).

63



Lemma 3.1.24 Let M be an m-dimensional compact manifold with corners. If E1 and
E2 are finite-dimensional vector spaces, we consider the projections prj : E1×E2 → Ej,
(x1, x2) 7→ xj for j ∈ {1, 2}. Then

(F(M, pr1),F(M, pr2)) : F(M,E1 × E2) → F(M,E1)×F(M,E2), γ 7→ (pr1, pr2) ◦ γ

is an isomorphism of topological vector spaces.

Lemma 3.1.25 If M is an m-dimensional compact smooth manifold with corners, E
and F are finite-dimensional K-vector spaces for K ∈ {R,C}, U is an open subset of E
and g : U → F is K-analytic, the also the map

F(M, g) : F(M,U) → F(M,F ), γ 7→ g ◦ γ

is K-analytic.

3.2 Space of F-sections

Let m,n ∈ N. We assume that U is a good collection of open subsets of [0,∞)m and
(F(U,R))U∈U is a family of locally convex spaces suitable for global analysis.
Let M be an m-dimensional compact smooth manifold with corners and N be an n-
dimensional smooth manifold. For γ ∈ F(M,N) we define the set

ΓF (γ) := {σ ∈ F(M,TN) : πTN ◦ σ = γ}

and we endow it with the pointwise operations, making it a vector space. We make
ΓF (γ) a Hausdorff locally convex space, using the initial topology with respect to the
family of maps

hφ,ϕ : ΓF (γ) → F(Vφ,Rn), σ 7→ dϕ ◦ σ ◦ φ−1|W

where φ : Uφ → Vφ is a chart in the maximal C∞-atlas of M , with W ∈ U relatively
compact in Vφ and there exists a chart ϕ : Uϕ → Vϕ of N with γ(Uφ) ⊆ Uϕ. These maps
make sense because γ(Uφ) ⊆ Uϕ implies σ(Uφ) ⊆ TUϕ for each σ ∈ ΓF (η).

Proposition 3.2.1 Let M be an m-dimensional compact smooth manifold with corners,
N be an n-dimensional smooth manifold and γ ∈ F(M,N). For i ∈ {1, ..., k}, let
φi : Ui → Vi be charts of M such that there exists Wi ∈ U relatively compact in Vi with
M = ∪ki=1φ

−1
i (Wi) and there exists a chart ϕi : Uϕi → Vϕi such that γ (Ui) ⊆ Uϕi. Then

the map

Φγ : ΓF (γ) →
k∏
i=1

F(Wi,Rn), σ 7→
(
dϕi ◦ σ ◦ φ−1

i |Wi

)k
i=1

is a linear topological embedding with closed image given by the vector subspace of ele-
ments (τi)

n
i=1 such that

τi ◦ φi(p) = dϕi ◦ (Tϕj)−1
(
ϕj ◦ γ(p), τj ◦ φj(p)

)
for all i, j ∈ {1, ..., k} and p ∈ φ−1

i (Wi) ∩ φ−1
j (Wj).
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Proof. The map Φγ is continuous by definition of the topology on ΓF (γ). We denote by
S the vector space of elements (τi)

n
i=1 such that

τi ◦ φi(p) = dϕi ◦ (Tϕj)−1
(
ϕj ◦ γ(p), τj ◦ φj(p)

)
for all i, j ∈ {1, .., k} and p ∈ φ−1

i (Wi) ∩ φ−1
j (Wj).

Clearly Im(Φγ) ⊆ S. Let (τi)
k
i=1 ∈ S, identifying the tangent bundle TV with V × Rn

for any open subset V ⊆ Rn, we define the function σ :M → TN by

σ(p) = Tϕ−1
i (ϕi ◦ γ(p), τi ◦ φi(p)) , if p ∈ φ−1

i (Wi) with i ∈ {1, ..., k}.

We will show that the function σ is well defined. Let p ∈ φ−1
i (Wi) ∩ φ−1

j (Wj), then

Tϕ−1
i (ϕi ◦ γ(p), τi ◦ φi(p)) = Tϕ−1

j ◦ Tϕj ◦ Tϕ−1
i (ϕi ◦ γ(p), τi ◦ φi(p))

= Tϕ−1
j (ϕj ◦ γ(p), τj ◦ φj(p))

Hence σ make sense. Moreover, we see that πTN ◦ σ = γ.
For φi|φ−1

i (Wi)
: φ−1

i (Wi) →Wi and Tϕi : TUϕi → Vϕi × Rn we have

Tϕi ◦ σ ◦ φi|φ−1
i (Wi)

= Tϕi ◦
(
Tϕ−1

i (ϕi ◦ γ, τi ◦ φi)
)
◦ φi|φ−1

i (Wi)

=
(
ϕi ◦ γ ◦ φi|φ−1

i (Wi)
, τi

)
.

Since Wi ∈ U we have ϕi ◦ γ ◦ φi|φ−1
i (Wi)

∈ F(Wi, Vϕi) and

Tϕi ◦ σ ◦ φi|φ−1
i (Wi)

∈ F(Wi, Vϕi)×F(Wi,Rn) ∼= F(Wi, Vϕi × Rn).

Thus σ ∈ ΓF (γ). Evaluating we have

Φγ(σ) =
(
dϕi ◦ σ ◦ φ−1

i |Wi

)k
i=1

=
(
dϕi ◦ Tϕ−1

i (ϕi ◦ γ, τi ◦ φi) ◦ φ−1
i |Wi

)k
i=1

=
(
dϕi ◦ Tϕ−1

i

(
ϕi ◦ γ ◦ φ−1

i |Wi , τi ◦ φi ◦ φ
−1
i |Wi

))k
i=1

=
(
dϕi

(
γ ◦ φ−1

i |Wi , dϕ
−1
i ◦ τi

))k
i=1

= (τi)
k
i=1

Hence S ⊆ Im(Φγ). The inverse of Φγ is given by Φ−1
γ : Im(Φγ) → ΓF (γ) where

Φ−1
γ

(
(τi)

k
i=1

)
(p) = Tϕ−1

i (ϕi ◦ γ(p), τi ◦ φi(p)) , for p ∈ φ−1
i (Wi).

Consider the arbitrary chart α : Uα → Vα of M with Wα ∈ U relatively compact in Vα
and the chart β : Uβ → Vβ of N such that α(Uα) ⊆ Uβ. We will show that

hα,β ◦ Φ−1
γ : Im(Φγ) → F(W,Rn), τ = (τi)

k
i=1 7→ dβ ◦ στ ◦ α−1|W
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is continuous. Since M = ∪ki=1φ
−1
i (Wi), we define the open set

Qj := α
(
Uα ∩ φ−1

j (Wj)
)
.

Without loss of generality, we assume that there exists r ∈ {1, .., k} such that Qj ̸= ∅
for each j ∈ {1, ..., r} and Qj = ∅ for each j ∈ {r + 1, .., k}.
Then, for τ ∈ Im(Φγ) and j ∈ {1, ..., r} we have

dβ ◦ στ ◦ α−1|Qj = dβ ◦ Tϕ−1
j (ϕj ◦ γ, τj ◦ φj) ◦ α−1|Qj

= F(Wj , dβ ◦ Tϕ−1
j ) ◦

(
ϕi ◦ γ ◦ α−1|Qi ,F(φj ◦ α−1|Qj ,R

n) ◦ τj
)
.

Hence dβ ◦ στ ◦ α−1|Qj ∈ Floc(Qi,Rn). This enables us to define the continuous map

Λ : Im(Φγ) →
r∏
i=1

Floc(Qi,Rn). τ 7→
(
dβ ◦ στ ◦ α−1|Vi

)r
i=1

where the image set Im(Λ) coincides with the subspace{
(β1, ..., βr) ∈

r∏
i=1

Floc(Qi,Rn) : (∀i, j ∈ {1, ..., r})βi|Qi∩Qj = βj |Qi∩Qj

}
.

For (β1, ..., βr) ∈
∏r
i=1Floc(Qi,Rn), we denote the gluing function

β(x) := βj(x), if x ∈ Qi.

For each W ∈ U relatively compact in Q1 ∪ ... ∪ Qr we have β|W ∈ F(W,Rn) and the
map

glueW : Im(Λ) → F(W,Rn), (β1, ..., βr) 7→ β|W
is continuous [22, Lemma 4.1]. Therefore hφ,ϕ ◦ Φ−1

γ is continuous since

hφ,ϕ ◦ Φ−1
γ = glueW ◦ Λ.

Hence Φ−1
γ is continuous.

Remark 3.2.2 From now we consider the map Φγ,P as the homeomorphism

Φγ : ΓF (γ) → Im(Φγ).

Corollary 3.2.3 Let γ ∈ F(M,N). For i ∈ {1, ..., k}, let φi : Ui → Vi be charts of M
such that there exists Wi ∈ U relatively compact in Vi with M = ∪ki=1φ

−1
i (Wi) and there

exists a chart ϕi : Uϕi → Vϕi such that γ (Ui) ⊆ Uϕi. Then the space ΓF (γ) is integral
complete. Moreover:

a) If F(Wi,Rn) is a Banach space for all i ∈ {1, .., k}, then ΓF (γ) i a Banach space
with norm ∥·∥Γ given by

∥σ∥Γ:=
k∑
i=1

∥
(
dϕi ◦ σ ◦ φ−1

i |Wi

)
∥F(Wi,Rn), ∀σ ∈ ΓF (γ).
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b) If F(Wi,Rn) is a Hilbert space for all i ∈ {1, .., k}, then ΓF (γ) is a Hilbert space
with inner product ⟨·, ·⟩Γ given by

⟨σ, τ⟩Γ :=
k∑
i=1

〈(
dϕi ◦ σ ◦ φ−1

i |Wi

)
,
(
dϕi ◦ τ ◦ φ−1

i |Wi

)〉
F(Wi,Rn)

, ∀σ, τ ∈ ΓF (γ).

Proposition 3.2.4 Let U be a good collection of open subsets of [0,∞)m and (F(U,R))U∈U
be a family of locally convex spaces suitable for global analysis. LetM be anm-dimensional
compact smooth manifold with corners, N1 and N2 be finite-dimensional smooth mani-
folds and γ ∈ F(M,N1). If f : N1 → N2 is a smooth function, then Tf ◦ σ ∈ ΓF (f ◦ γ)
for each σ ∈ ΓF (γ). Moreover, the map

f̃ : ΓF (γ) → ΓF (f ◦ γ), σ 7→ Tf ◦ σ

is continuous linear.

Proof. Since f and Tf are smooth, by Lemma 3.1.11 we have f ◦ γ ∈ F(M,N2) and

Tf ◦ σ ∈ F(M,TN2), for all σ ∈ ΓF (γ).

Since σ(t) ∈ Tγ(t)N1 for each t ∈ [a, b], we have Tγ(t)f ◦ σ(t) ∈ Tf◦γ(t)N2, thus

πTN2 ◦ (Tf ◦ σ) = f ◦ γ

and f̃ is well defined.
Let γ ∈ F(M,N1). For i ∈ {1, ..., k}, let φM,i : UM,i → VM,i be charts of M such
that there exists WM,i ∈ U relatively compact in VM,i with M = ∪ki=1φ

−1
M,i(WM,i) and

there exist chart ϕ1,i : Uϕ1,i → Vϕ1,i and ϕ2,i : Uϕ2,i → Vϕ2,i of N1 and N2 respectively,
such that γ (UM,i) ⊆ Uϕ1,i and f

(
Uϕ1,i

)
⊆ Uϕ2,i . We may assume that Vϕ1,i = Rn1 and

Vϕ2,i = Rn2 .
Let γi := ϕ1,i◦γ|WM,i

andW ′
M,i ∈ U be relatively compact in UM,i, containing the closure

of WM,i. For i ∈ {1, ..., k} we define the smooth map

fi := dϕ2,i ◦ Tf ◦ Tϕ−1
1,i : TVψ1,i

⊆ R2n1 → Rn2

and

G :

k∏
i=1

F(W ′
M,i,R2n1) →

k∏
i=1

F(WM,i,Rn2), (ξi)
k
i=1 7→

(
fi ◦ (γi, ξi|WM,i

)
)k
i=1

which is continuous by Lemma 3.1.11. We consider the linear topological embeddings

Φγ : ΓF (γ) →
k∏
i=1

F(WM,i,Rn1), σ 7→
(
dϕ1,i ◦ σ ◦ φ−1

M,i|WM,i

)k
i=1
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and

Φf◦γ : ΓF (f ◦ γ) →
k∏
i=1

F(WM,i,Rn2), τ 7→
(
dϕi,2 ◦ τ ◦ φ−1

M,i|WM,i

)k
i=1

.

Then
G(Im(Φγ)) ⊆ Im(Φf◦γ).

Indeed, consider σ ∈ ΓF (η). Then for each i ∈ {1, ..., k}

τi := fi(Tϕ1,i ◦ σ ◦ φ−1
M,i|WM,i

) = dϕ2,i ◦ Tf ◦ σ ◦ φ−1
M,i|WM,i

.

And for all i, j ∈ {1, .., k} and p ∈ φ−1
M,i(WM,i) ∩ φ−1

M,j(WM,j), we have

τi ◦ φM,i(p) = dϕ2,i ◦ Tf ◦ σ ◦ φ−1
M,i|WM,i

◦ φM,i(p)

= dϕ2,i ◦ Tf ◦ σ(p)

= dϕ2,i

(
f ◦ γ(p), df ◦ σ(p)

)
= dϕ2,i ◦ (Tϕ2,j)−1

(
ϕ2,j ◦ f ◦ γ(p), dϕ2,j ◦ df ◦ σ ◦ φ−1

M,j |WM,j
◦ φM,j(p)

)
= dϕ2,i ◦ (Tϕ2,j)−1

(
ϕ2,j ◦ f ◦ γ(p), τj ◦ φM,j(p)

)
Hence (

fi ◦
(
dϕ1,i ◦ σ ◦ φ−1

M,i|WM,i

))k
i=1

∈ Im(Φf◦γ).

In consequence
f̃ = Φ−1

f◦γ ◦G ◦ Φγ .

Thus f̃ is continuous and the linearity is clear.

Remark 3.2.5 The topology of ΓF (γ) does not depend on the chosen family of charts.
Indeed, since the identity map idN : N → N is smooth, by previous proposition the map

ĩdN : ΓF (γ) → ΓF (idN ◦ γ), σ 7→ T idM ◦ σ

is smooth regardless of chosen family of charts. Moreover, this map coincides with the
identity map idΓ : ΓF (γ) → ΓF (γ), σ 7→ σ.

Remark 3.2.6 Let γ ∈ BC(M,N), we define the space of continuous sections

ΓC(γ) = {σ ∈ BC(M,TN) : πTN ◦ σ = γ}

endowed with the compact-open topology. For each i ∈ {1, ..., k} the inclusion map

Ji : F(Wi,Rn) → BC(Wi,Rn), τi 7→ τi

is continuous, whence the inclusion map J : ΓF (γ) → ΓC(γ), σ 7→ σ is continuous.
This implies that the set

V = {σ ∈ ΓF (γ) : σ(M) ⊆ V }

is open in ΓF (γ) for each open set V ⊆ TN .
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Proposition 3.2.7 Let U be a good collection of open subsets of [0,∞)m and (F(U,R))U∈U
be a family of locally convex spaces suitable for global analysis. LetM be a m-dimensional
compact smooth manifold with corners, N1, N2 be finite-dimensional smooth manifolds
and πi : N1 × N2 → Ni be the i-projection for i ∈ {1, 2}. If γ1 ∈ F(M,N1) and
γ2 ∈ F(M,N2) then the map

P : ΓF (γ1 × γ2) → ΓF (γ1)× ΓF (γ1), σ 7→ (Tπ1, Tπ2)(σ)

is a linear homeomorphism.

Proof. Let f := (π1, π2), by Proposition 3.2.4 the map P is continuous and clearly linear.
For i ∈ {1, 2} we denote the i-projections by

pri : ΓF (γ1)× ΓF (γ2) → ΓF (γi), (σ1, σ2) 7→ σi.

Let us define the smooth map λ1 : N1 → N1 ×N2 such that

Tλ1 : TN1 → T (N1 ×N2), v 7→ (v, 0)

and analogously we define λ2 : N2 → N1 ×N2. Then we have

P−1 = F(M,Tλ1) ◦ pr1+F(M,Tλ2) ◦ pr2 .

Hence P−1 is continuous.

Proposition 3.2.8 Let U be a good collection of open subsets of [0,∞)m and (F(U,R))U∈U
be a family of locally convex spaces suitable for global analysis. Let M1 and M2 be com-
pact smooth manifolds with corners and N be a smooth manifold. If Θ : M1 → M2 is a
smooth diffeomorphism, then γ ◦Θ ∈ F(M1, N) for each γ ∈ F(M2, N). Moreover, the
map

LΘ : ΓF (γ) → ΓF (γ ◦Θ), σ 7→ σ ◦Θ

is linear and continuous.

Proof. Let γ ∈ F(M2, N). Let ϕ1 : U1 → V1 and ϕ2 : U2 → V2 charts of M1 and
M2 respectively such that Θ(U1) ⊆ U2. If ϕN : UN → VN is a chart of N such that
(γ ◦Θ)(U1) ⊆ UN then

ϕN ◦ (γ ◦Θ) ◦ ϕ−1
1 = ϕN ◦ γ ◦ ϕ−1

2 ◦ ϕ2 ◦Θ ◦ ϕ−1
1 .

Since ζ := ϕN ◦ γ ◦ ϕ−1
2 ∈ Floc(Vψ,Rn) and the map g := ϕ2 ◦ Θ ◦ ϕ−1

1 : Vφ → Vψ is a
smooth diffeomorphism, by Lemma 3.1.16 we have that ζ ◦ g ∈ Floc(Vφ,Rn). Thus

γ ◦Θ ∈ F(M1, N).

Analogously, we can show that σ ◦Θ ∈ ΓF (γ ◦Θ) for each σ ∈ ΓF (η).
By compactness of M1 and M2, for i ∈ {1, ..., k} we consider charts ϕ1,i : U1,i → V1,i of
M1 such that there exists W1,i ∈ U relatively compact in V1,i with M1 = ∪ki=1ϕ

−1
1,i (W1,i)
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and charts ϕ2,i : U2,i → V2,i of M2 such that there exists W2,i ∈ U relatively compact
in V2,i with M2 = ∪ki=1ϕ

−1
2,i (W2,i) such that there exists a chart ϕN,i : UN.i → VN,i of N

such that Θ(W1,i) ⊆W2,i and γ (U2,i) ⊆ UN,i. We define the topological embeddings

Φγ : ΓF (γ) →
k∏
i=1

F(W2,i,Rn), σ 7→
(
dϕN,i ◦ σ ◦ ϕ−1

2.i |W2,i

)k
i=1

and

Φγ◦Θ : ΓF (γ ◦Θ) →
k∏
i=1

F(W1,i,Rn), σ 7→
(
dϕN,i ◦ σ ◦Θ ◦ ϕ−1

1,i |W1,i

)k
i=1

Since the map

Θi := ϕ2.i ◦Θ ◦ ϕ−1
1,i |W1,i :W1,i → Θi(W2,i)

is a smooth diffeomorphism, the map

F(Θi,Rn) : Floc(Θi(W2,i),Rn) → Floc(W1,i,Rn), τ 7→ τ ◦Θi

and thus

Θ :

k∏
i=1

Floc(Θi(W2,i),Rn) →
k∏
i=1

Floc(W2,i,Rn), (τi)
n
i=1 7→ (τi ◦Θi)

k
i=1

are continuous. We will show that Θ(Im(Φγ)) ⊆ Im(Φγ◦Θ).
For each i, j ∈ {1, ..., k} and σ ∈ ΓF (η), if

τi := dϕN,i ◦ σ ◦ ϕ−1
2,i |W2,i ◦Θi

= dϕN,i ◦ σ ◦Θ ◦ ϕ−1
1,i |W1,i

then

τi ◦ ϕ1,i(p) = dϕN,i ◦ σ ◦Θ ◦ ϕ−1
1,i ◦ ϕ1,i(p)

= dϕN,i ◦ σ ◦Θ(p)

= dϕN,i ◦ (TϕN,j)−1
(
ϕN,j ◦ γ(p), dϕN,j ◦ σ ◦Θ(p)

)
= dϕN,i ◦ (TϕN,j)−1

(
ϕN,j ◦ γ(p), τj ◦ ϕ1,j(p)

)
Hence Θ(Im(Φγ)) ⊆ Im(Φγ◦Θ). In consequence, since

LΘ = Φ−1
γ◦Θ ◦ (F(Θi,Rn))ki=1 ◦ Φγ

the map LΘ is continuous.
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Proposition 3.2.9 Let U be a good collection of open subsets of [0,∞)m and (F(U,R))U∈U
be a family of locally convex spaces suitable for global analysis. Let M be a compact man-
ifold with corners and N be a smooth manifold. Then the evaluation map

ϵ : ΓF (γ)×M → TN, (σ, p) 7→ σ(p)

is continuous. Moreover, for each p ∈M the point evaluation map

ϵp : ΓF (γ) → TN, σ 7→ σ(p)

is smooth, and its co-restriction as a map to Tγ(p)N is linear.

Proof. Since the evaluation map

ϵ̃ : ΓC(γ)×M → TN, (σ, p) 7→ σ(p)

is continuous and the evaluation map ϵ̃p : ΓC(γ) → TN , σ 7→ σ(p) is smooth for each
p ∈ M (see [3]). Then ϵ = ϵ̃ ◦ (JΓ, IdR) and ϵp = ϵ̃p ◦ JΓ, where JΓ : ΓF (γ) → ΓC(γ) is
the inclusion map, which is smooth by Remark 3.2.6.

3.3 Manifolds of F-maps on compact manifolds

Remark 3.3.1 Let U be a good collection of open subsets of [0,∞)m and (F(U,R))U∈U
is a family of locally convex spaces suitable for global analysis. LetM be m-dimensional
compact manifold with corners and N be a smooth manifold which admits a local addi-
tion Σ : Ω → N . Let γ ∈ F(M,N). We define the set

Vγ := {σ ∈ ΓF (γ) : σ(M) ⊆ Ω}.

which is open in ΓF (γ) (see Remark 3.2.6) and

Uγ := {ξ ∈ ΓF (γ) : (γ, ξ)(M) ⊆ Ω′}.

Lemma 3.1.21 enables us to define the map

Ψγ := F(M,Σ) : Vγ → Uγ , σ 7→ Σ ◦ σ

with inverse given by

Ψ−1
γ : Uγ → Vγ , ξ 7→ θ−1

N ◦ (γ, ξ).

Moreover, since M is compact, we note that BC(M,N) = C(M,N).

The following lemma is just an application of [4, Lemma 10.1] to our particular case.

Lemma 3.3.2 Let E and F be finite-dimensional vector spaces, U ⊆ E open and f :
U → F a map. If F0 ⊆ F is a vector subspace and f(U) ⊆ F0, then f : U → F is
smooth if and only if f |F0 : U → F0 is smooth.
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Theorem 3.3.3 Let U be a good collection of open subsets of [0,∞)m and (F(U,R))U∈U
be a family of locally convex spaces suitable for global analysis, then for each compact
manifold M with corners and smooth manifold N without boundary which admits a local
addition, the set F(M,N) admits a smooth manifold structure such that the sets Uγ are
open in F(M,N) for all γ ∈ F(M,N) and Ψγ : Vγ → Uγ is a C∞-diffeomorphism.

Proof. We endow F(M,N) with the final topology with respect to the family Ψγ : Vγ →
Uγ for each γ ∈ F(M,N). If we define the maps ΨC

γ : VCγ → UCγ on the space of
continuous functions C(M,N) for each γ ∈ C(M,N) then the final topology on C(M,N)
coincides with its topology (the compact-open topology), whence the inclusion map

J : F(M,N) → C(M,N), γ 7→ γ

is continuous. Moreover, since

UCJ(γ) := {ξ ∈ C(M,N) : (J(γ), ξ)(M) ⊆ Ω′}

is open in C(M,N), the set
Uγ = UCγ ∩ F(M,N)

is open in F(M,N).
The goal is to make to the family {(Uγ ,Ψ−1

γ ) : γ ∈ F(M,N)} an atlas for the manifold
structure.
Let γ, ξ ∈ F(M,N), it remains to show that the charts are compatible, i.e. the smooth-
ness of the map

Λξ,γ := Ψ−1
ξ ◦Ψγ : Ψ−1

γ (Uγ ∩ Uξ) ⊆ ΓF (γ) → ΓF (ξ), σ 7→ θ−1
N ◦ (ξ,Σ ◦ σ). (3.3.1)

For i ∈ {1, ..., k}, let φi : UM,i → VM,i be charts of M and WM,i ∈ U such that WM,i

is relatively compact in Vi with M = ∪ki=1φ
−1
i (WM,i) and charts ϕγi : UγN,i → V γ

N,i and

ϕξi : U
ξ
N,i → V ξ

N,i of N such that γ (UM,i)) ⊆ UγN,i and ξ (UM,i) ⊆ U ξN,i.
We will study the smoothness of the composition

Φξ◦Λξ,γ : Ψ−1
γ (Uγ∩Uξ) → Im(Φξ) ⊆

k∏
i=1

F(WM,i,Rn), σ 7→
(
dϕξi ◦ Λξ,γ(σ) ◦ φ

−1
i |WM,i

)k
i=1

which is equivalent to the smoothness of Λξ,γ , where Φξ is the linear topological embed-

ding as in Proposition 3.2.1. By Definition 3.1.1 c), we find W ′
M in U such that W ′

M is
relatively compact in Vi and W

′
M,i contains the closure of WM,i.

For each i ∈ {1, ..., k} and σ ∈ Ψ−1
γ (Uγ ∩ Uξ) we have

dϕξi ◦
(
Ψ−1
ξ (Ψγ(σ))

)
◦ φ−1

i |W ′
M,i

= dϕξi ◦ θ
−1
N ◦

(
ξ ◦ φ−1

i |W ′
M,i
,Σ ◦ σ ◦ φ−1

i |W ′
M,i

)
.

Since σ
(
φ−1
i (W ′

M,i)
)
⊆ TUϕγi we can do

Σ ◦ σ ◦ φ−1
i |W ′

M,i
= Σ ◦ (Tϕγi )

−1 ◦ Tϕγi ◦ σ ◦ φ−1
i |W ′

M,i

= Σ ◦ (Tϕγi )
−1
(
ϕγi ◦ γ ◦ φ−1

i |W ′
M,i
, dϕγi ◦ σ ◦ φ−1

i |W ′
M,i

)
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and

ξ ◦ φ−1
i |W ′

M,i
=
(
ϕξi

)−1
◦
(
ϕξi ◦ ξ ◦ φ

−1
i |W ′

M,i

)
.

Because all of the functions involved are continuous and have an open domain, also the
composition

Hi(x, y, z) := dϕξi ◦ θ
−1
N ◦

((
ϕξi

)−1
(x) ,Σ ◦ (Tϕγi )

−1
(y, z)

)
, (3.3.2)

has an open domain Oi. Hence the map Hi : Oi → E is smooth.
By Lemma 3.1.12, the map

hi := F(W ′
M,i/WM,i, Hi)

is smooth. By the preceding

Φξ ◦ Λξ,γ = hi(ϕ
ξ
i ◦ ξ ◦ φ

−1
i |W ′

M,i
, ϕγi ◦ γ ◦ φ−1

i |W ′
M,i
, dϕγi ◦ σ ◦ φ−1

i |W ′
M,i

),

which is a smooth function of σ, using that the maps

ΓF (γ) → F(W ′
M,i,Rn), σ 7→ dϕγi ◦ σ ◦ φ−1

i |W ′
M,i

are continuous linear by definition of the topology of ΓF (γ). Therefore Ψ−1
ξ ◦ Ψγ is

smooth.

Proceding in the same way, using the fact that composition of K-analytic maps is K-
analytic and using the analytic version of Lemma 3.3.2 (see [14]), we can obtain the
analogous case.

Corollary 3.3.4 Let U be a good collection of open subsets of [0,∞)m and (F(U,R))U∈U
be a family of locally convex spaces suitable for global analysis. For each compact manifold
M with corners and K-analytic manifold N without boundary which admits a K-analytic
local addition, the set F(M,N) admits a K-analytic manifold structure such that the sets
Uγ are open in F(M,N) for all γ ∈ F(M,N) and Ψγ : Vγ → Uγ is a C∞-diffeomorphism.

Proposition 3.3.5 Let U be a good collection of open subsets of [0,∞)m and (F(U,R))U∈U
be a family of locally convex spaces suitable for global analysis. LetM be anm-dimensional
compact smooth manifold with corners, N1 and N2 be finite dimensional smooth manifold
which admits local addition. If f : N1 → N2 is a smooth map, then the map

F(M,f) : F(M,N1) → F(M,N2), γ 7→ f ◦ γ,

is smooth.

Proof. The map is well defined by Lemma 3.1.21. Let (Ω1,Σ1) and (Ω2,Σ2) be the local
addition for N1 and N2 respectively. We consider the charts (Uγ ,Ψ−1

γ ) and (Uf◦γ ,Ψ−1
f◦γ)

in γ ∈ F(M,N) and f ◦ γ ∈ F(M,N) respectively. We define

F (σ) := Ψ−1
f◦γ ◦ F(M,f) ◦Ψγ(σ) = (πTN ,Σ2)

−1 ◦
(
f ◦ γ, f ◦ Σ1 ◦ σ

)
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for all σ ∈ Ψ−1
γ

(
Uγ ∩ F(M,f)−1(Uf◦γ)

)
.

We will proceed as in the proof of the Theorem 3.3.3. For i ∈ {1, ..., k}, let φi :
UM,i → VM,i be charts of M , WM,i ∈ U such that WM,i is relatively compact in Vi
with M = ∪ki=1φ

−1
i (WM,i) and ϕ1,i : U1,i → V1,i and ϕ2,i : U2,i → V2,i charts of N1 and

N2 respectively such that γ (UM,i) ⊆ U1,i and (f ◦ γ)(UM,i) ⊆ U2,i. We will study the
smoothness of the composition

Φf◦ξ◦F : Ψ−1
ξ

(
Uγ ∩ F(M,f)−1(Uf◦γ)

)
→ Im(Φf◦ξ), σ 7→

(
dϕ2,i ◦ F (σ) ◦ φ−1

M,i|WM,i

)k
i=1

where Φf◦ξ is the linear topological embedding as in Proposition 3.2.1. Using Definition
3.1.1 c), we find sets W ′

M,i in U which are relatively compact in UM,i and contain WM,i.

For each i ∈ {1, ..., k} and σ ∈ Ψ−1
γ

(
Uγ ∩ F(M,f)−1(Uf◦γ)

)
we have

dϕ2,i ◦ F (σ) ◦ φ−1
M,i|W ′

M,i
= dϕ2,i ◦ (πTN ,Σ2)

−1 ◦
(
f ◦ γ, f ◦ Σ1 ◦ σ

)
◦ φ−1

M,i|W ′
M,i

= dϕ2,i ◦ (πTN ,Σ2)
−1 ◦

(
f ◦ γ ◦ φ−1

M,i|W ′
M,i
, f ◦ Σ1 ◦ σ ◦ φ−1

M,i|W ′
M,i

)
.

Since (f ◦ γ)(UM,i) ⊆ U2,i we have

f ◦ γ ◦ φ−1
M,i|W ′

M,i
= ϕ−1

2,i ◦
(
ϕ2,i ◦ f ◦ γ ◦ φ−1

M,i|W ′
M,i

)
.

And since γ
(
φ−1
M,i(VM,i)

)
⊆ U1,i we have σ

(
φ−1
M,i(WM,i)

)
⊆ TU1,i whence

f ◦ Σ1 ◦ σ ◦ φ−1
M,i|W ′

M,i
= f ◦ Σ1 ◦ Tϕ−1

1,i ◦ Tϕ1,i ◦ σ ◦ φ−1
M,i|W ′

M,i

= f ◦ Σ1 ◦ Tϕ−1
1,i

(
ϕ1,i ◦ γ ◦ φ−1

M,i|W ′
M,i
, dϕ1,i ◦ σ ◦ φ−1

M,i|W ′
M,i

)
.

Let
Hi(x, y, z) := dϕ2,i ◦ (πTN ,Σ2)

−1 ◦ (ϕ−1
2,i (x) , f ◦ Σ1 ◦ Tϕ−1

1,i (y, z)).

Then Hi is defined on an open subset of Rn2 × Rn1 × Rn1 and the Rn2-valued function
Hi so obtained is smooth (because it is a composition of smooth functions).
By Lemma 3.1.12, also the corresponding mappings

hi := F(W ′
M,i/WM,i, Hi)

between functions spaces are smooth. By the above, we have

(Φf◦ξ ◦ F )(σ)hi
(
ϕ2,i ◦ f ◦ γ ◦ φ−1

M,i|W ′
M,i
, ϕ1,i ◦ γ ◦ φ−1

M,i|W−1
M,i
, dϕ1,i ◦ σ ◦ φ−1

M,i|W−1
M,i

)
which is a smooth function of σ, using that

ΓF (γ) → F(WM,i,Rn), σ 7→ dϕ1,i ◦ σ ◦ φ−1
M,i|WM,i

is a continuous linear map by definition. Therefore F(M,f) is smooth.

74



Applying Lemma 3.1.25 we can obtain the analogous result.

Corollary 3.3.6 Let U be a good collection of open subsets of [0,∞)m and (F(U,R))U∈U
be a family of locally convex spaces suitable for global analysis. Let K ∈ {R,C}, M be
an m-dimensional compact smooth manifold with corners, N1 and N2 be n-dimensional
K-analytic manifolds with K-analytic local additions (Ω1,Σ1) and (Ω2,Σ2) respectively.
If f : N1 → N2 is a K-analytic map, then the map

F(M,f) : F(M,N1) → F(M,N2), γ 7→ f ◦ γ,

is K-analytic.

Remark 3.3.7 The manifold structures for F(M,N) given by different local additions
are coincide. Indeed, since the identity map idN : N → N is smooth, the map

F(M, idN ) : F(M,N) → F(M,N), γ → idM ◦ γ

is smooth regardless of the chosen local addition in each space.

Remark 3.3.8 The inclusion map J : F(M,N) → C([a, b], N) is smooth. Indeed,
let (Uγ ,Ψ−1

γ ) and (UCJ(γ),Ψ
−1
J(γ)) be charts in γ ∈ F(M,N) and J(γ) ∈ C([a, b], N)

respectively, then

Ψ−1
J(γ) ◦ J ◦Ψ−1

γ (σ) : Ψ−1
γ

(
Uγ ∩ J−1(Uj(γ))

)
⊆ ΓF (γ) → ΓC(γ)

is a restriction of the inclusion map ΓF (γ) → ΓC(γ).
Moreover, if U ⊆ N is an open subset, then the manifold structure induced by F(M,N)
on the open subset

F(M,U) := {γ ∈ F(M,N) : γ(M) ⊆ U}.

coincides with the manifold structure on F(M,U).

Proposition 3.3.9 Let U be a good collection of open subsets of [0,∞)m and (F(U,R))U∈U
be a family of locally convex spaces suitable for global analysis. LetM be a m-dimensional
compact smooth manifold with corners, N1 and N2 be smooth manifolds which admit lo-
cal additions, and let pri : N1×N2 → Ni be the i-th projection where i ∈ {1, 2}, then the
map

P : F(M,N1 ×N2) → F(M,N1)×F(M,N2), γ 7→ (pr1, pr2) ◦ γ

is a diffeomorphism.

Proof. If (Ω1,Σ1) and (Ω1,Σ1) are the local additions on N1 and N2 respectively, then
we can assume that the local addition on N1 ×N2 is

Σ := Σ1 × Σ2 : Ω1 × Ω2 → N1 ×N2

where Ω1 × Ω2 ⊆ TN1 × TN2
∼= T (N1 ×N2). The map P is smooth as consequence of

the smoothness of the maps

F(M,prj) : F(M,N1 ×N2) → F(M,Ni),
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for each i ∈ {1, 2} by the previous results.
Let (Uγ × Uγ ,Ψ−1

γ1 × Ψ−1
γ2 ) and (Uγ ,Ψ−1

γ ) be charts in (γ1, γ2) ∈ F(M,N1) × F(M,N2)
and P−1(γ1, γ2) = γ ∈ F(M,N1 ×N2) respectively. Since the map

Q : ΓF (γ) → ΓF (γ)× ΓF (γ2), τ 7→ (q1, q2) ◦ τ

where q1 and q2 are the corresponding projection of the space, is an diffeomorphism of
vector spaces (by Lemma 3.3 and Proposition 3.2.1), we have

Ψ−1
γ ◦ P−1 ◦ (Ψγ1 ×Ψγ2)(σ1, σ2) = (πN1×N2 ,Σ)

−1 ◦
(
γ,P−1 ◦ (Σ1 × Σ2)(σ1, σ2)

)
= (πN1×N2 ,Σ)

−1 ◦
(
γ,Σ ◦ Q−1(σ1, σ2)

)
= Q−1(σ1, σ2)

for all (σ1, σ2) ∈ (Ψ−1
γ1 ×Ψ−1

γ2 ) (Uγ1 × Uγ2 ∩ P(Uγ)). Hence P−1 is smooth.

Proposition 3.3.10 Let U be a good collection of open subsets of [0,∞)m and (F(U,R))U∈U
be a family of locally convex spaces suitable for global analysis. Let M1 and M2 be m-
dimensional compact smooth manifolds with corners and N be an n-dimensional smooth
manifold which admits a local addition. If Θ : M1 → M2 is a smooth diffeomorphism,
then the map

F(Θ, N) : F(M2, N) → F (M1, N), γ 7→ γ ◦Θ

is smooth.

Proof. By Proposition 3.2.8 we know that the map is well defined. Let (Uγ ,Ψ−1
γ ) and

(Uγ◦Θ,Ψ−1
γ◦Θ) be charts in γ ∈ F(M2, N) and γ ◦ Θ ∈ F(M1, N) respectively, then we

have

Ψ−1
γ◦Θ ◦ F(Θ, N) ◦Ψγ(σ) = θ−1

N ◦ (γ ◦Θ,Σ ◦ (σ ◦Θ))

for all σ ∈ Ψ−1
γ

(
Uγ ∩ F(Θ, N)−1(Uγ◦Θ)

)
.

Let α = γ ◦Θ :M1 → N and τ = σ ◦Θ :M2 → TN , then τ ∈ ΓF (α) and

Ψ−1
γ◦Θ ◦ F(Θ, N) ◦Ψγ(σ) = θ−1

N ◦ (α,Σ ◦ τ)
= Ψ−1

α ◦Ψα(τ)

= τ

= σ ◦Θ.

Hence, Ψ−1
γ◦Θ ◦ F(Θ, N) ◦Ψγ is a restriction of the map

LΘ : ΓF (γ) → ΓF (γ ◦Θ), σ → σ ◦Θ

which is linear and continuous by Proposition 3.2.8.

Proposition 3.3.11 Let U be a good collection of open subsets of [0,∞)m and (F(U,R))U∈U
be a family of locally convex spaces suitable for global analysis. LetM be anm-dimensional
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compact smooth manifold with corners. If N , L and K are smooth manifolds which ad-
mits local additions and f : L × K → N is a smooth map and γ ∈ F(M,L) is fixed,
then

f∗ : F(M,K) → F(M,N), ξ 7→ f ◦ (γ, ξ)

is a smooth map.

Proof. Define the smooth map

Cγ : F(M,K) → F(M,L)×F(M,K), ξ 7→ (γ, ξ).

Identifying F(M,L)×F(M,K) with F(M,L×K), we have

f∗ = F(M,f) ◦ Cγ .

Hence f∗ is smooth.

Proposition 3.3.12 Let U be a good collection of open subsets of [0,∞)m and (F(U,R))U∈U
be a family of locally convex spaces suitable for global analysis. LetM be anm-dimensional
compact smooth manifold with corners and N be a n-dimensional smooth manifold. Then
the evaluation map

ε : F(M,N)×M → N, (γ, p) 7→ γ(p)

is continuous. Moreover, for each p ∈M , the point evaluation map

εp : F(M,N) → N, γ 7→ γ(p)

is smooth.

Proof. The evaluation map

εc : C(M,N)×M → N, (γ, p) 7→ γ(p))

is C∞,0 with point evaluation (εc)p : C(M,N) → N , γ 7→ γ(p) smooth for each p ∈ M .
Since the inclusion map J : F(M,N) → C(M,N) is smooth, we have ε = εc ◦ (J, IdM )
and εp = (εc)p ◦ J for each p ∈M .

Proposition 3.3.13 Let U be a good collection of open subsets of [0,∞)m and (F(U,R))U∈U
be a family of locally convex spaces suitable for global analysis. LetM be a m-dimensional
compact smooth manifold with corners and N be a n-dimensional smooth manifold with
local addition. Then, for each q ∈ N , the function ζq : M → N , p 7→ q is in F(M,N)
and the map

ζ : N → F(M,N), q 7→ ζq

is a smooth topological embedding.

77



Proof. If W ∈ U is relatively compact and z ∈ Rn, consider the constant function

cz : W → Rn, x 7→ z.

Then cz ∈ F(W,Rn). In fact, Definition 3.1.1 c) provides V ∈ U such that W ⊆ V .
Then η : V → Rn, x 7→ 0 is in F(V,Rn). The map f : V × Rn → Rn, (x, y) 7→ z is
smooth, whence cz = f ◦ (idW , η|W ) ∈ F(W,Rn) by the pushforward axiom.
For each z ∈ N , the constant function

ζz : M → N, p 7→ z

is in F(M,N). In fact, if p ∈M , ϕM : UM → VM is chart forM around p and ϕN : UN →
VN a chart for N around ζz(p) = z, then Definition 3.1.1 c) provides a relatively compact
ϕM (p)-neighborhood W ⊆ VM such that W ∈ U . After replacing ϕM with its restriction
to a map ϕ−1

M (W ) → W , we may assume that VM ∈ U and VM is relatively compact.
Now ϕN ◦ ζz ◦ ϕ−1

M is the constant function W → Rn, x 7→ ϕN (z), which is in F(W,Rn)
as observed above. Thus ζz ∈ F(M,N).
In particular, for each y ∈ N , the constant function

Cz : M → TyN, v 7→ z

is an element of F(M,TyN), for each z ∈ TyN . Since TyN is a finite-dimensional vector
space, the linear map

C : TyN → F(M,TyN), z 7→ Cz (3.3.3)

is continuous.
Given y ∈ N , consider the constant function ζy : M → N , p 7→ y, we define the vector
space

ΓF (Cy) := {τ ∈ F(M,TN) : (∀p ∈M) τ(p) ∈ TCy(p)N = TyN}.
We show that

F(M,TyN) ⊆ ΓF (ζy)

with continuous linear inclusion map. The inclusion map ι : TyN → TN being smooth,
for each τ ∈ F(M,TyN) we get

τ = ι ◦ τ = F(M, ι)(τ) ∈ F(M,TN)

by Lemma 3.1.21. Moreover, F(M, ι) (and hence also its co-restriction j to ΓF (ζy)) is
continuous, by Proposition 3.3.5.
Let Σ: Ω → N be a local addition for N and notation as in Definition 2.3.1 and Remark
3.3.1. We have V ⊆ Ω for an open 0-neighborhood V ⊆ TyN . Then UN := Σ(V ) is an

open y-neighborhood in N and ψ := Σ|UN
V : V → UN is a C∞-diffeomorphism with

ψ−1(u) = θ−1
N (y, u)

for u ∈ UN . If α : TyN → Rn is an isomorphism of vector spaces, then VN := α(V )
is open in Rn and ϕN (u) := α(ψ−1(u)) defines a chart ϕN : UN → VN of N . For each
v ∈ VN , we have for each q ∈M

(ζy(q), ζϕ−1
N (v)(q)) = (y, ϕ−1

N (v)) = (y, ψ(α−1(v))) ∈ {y} × UN ⊆ Ω′

78



with
θ−1
N (y, ψ(α−1(v))) = ψ−1(ψ(α−1(v))) = α−1(v).

Thus ζϕ−1
N (v) ∈ Uζy and

Ψ−1
ζy

(ζϕ−1
N (v)) = θ−1

N ◦
(
ζy, ζϕ−1

N (v)

)
is the constant function Cα−1(v). Hence

Ψ−1
ζy

◦ ζ ◦ ϕ−1
N = j ◦ C ◦ α−1|VN ,

which is a smooth function. Thus ζ is smooth.
Fix p ∈ M . The point evaluation εp : F(M,N) → N , γ 7→ γ(p) is smooth and hence
continuous. Since εp ◦ ζ = idN , we deduce that (ζ|ζ(N))−1 = εp|ζ(N) is continuous. Thus
ζ is a homeomorphism onto its image.

Remark 3.3.14 Let U be a good collection of open subsets of [0,∞)m and (F(U,R))U∈U
be a family of locally convex spaces suitable for global analysis. Let M be an m-
dimensional compact smooth manifold with corners, N be an n-dimensional smooth
manifold which admits a local addition and let TF(M,N) be the tangent bundle of
F(M,N). Since the point evaluation map εp : F(M,N) → N is smooth for each p ∈M ,
we have

Tεp : TF(M,N) → TN.

For each v ∈ TF(M,N) we define the function

ΘN (v) :M → TN, ΘN (v)(p) = Tεp(v).

Proposition 3.3.15 Let U be a good collection of open subsets of [0,∞)m and (F(U,R))U∈U
be a family of locally convex spaces suitable for global analysis. LetM be anm-dimensional
compact smooth manifold with corners, N be an n-dimensional smooth manifold which
admits a local addition and γ ∈ F(M,N). Then ΘN (v) ∈ ΓF (γ) for each v ∈ TγF(M,N)
and the map

Θγ : TγF(M,N) → ΓF (γ), v 7→ Θγ(v) := ΘN |TγF(M,N)(v)

is an isomorphism of topological vector spaces.

Proof. Let Σ : Ω → N be a normalized local addition of N in sense of [3]. Since ΓF (γ)
is a vector space, we identify its tangent bundle with ΓF (γ)× ΓF (γ). Let Ψγ : Vγ → Uγ
be a chart around γ such that Ψγ(0) = γ, then

TΨγ : TVγ ≃ Vγ × ΓF (γ) → TF(M,N)

is a diffeomorphism onto its image. Moreover,

T0Ψγ : {0} × ΓF (γ) → TγF(M,N)
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is an isomorphism of topological vector spaces. We will show that

Θγ ◦ TΨγ(0, σ) = σ

for each σ ∈ ΓF (γ). Which is equivalent to show that

Tεp ◦ TΨγ(0, σ) = σ(p) for all p ∈M.

Working with the geometric point of view of tangent vectors, we see that (0, σ) is equiv-
alent to the curve [s 7→ sσ]. Hence, for each p ∈M we have

Tεp ◦ TΨγ(0, σ) = Tεp ◦ TΨγ([s 7→ sσ])

= Tεp([s 7→ Ψγ(sσ)])

= Tεp([s 7→ Σ(sσ)])

= [s 7→ Σ|Tγ(p)N (sσ(t))]
= T0Σ|Tγ(p)N ([s 7→ sσ(t)]).

Since Σ is normalized we have T0Σ|Tγ(p)N = idTγ(p)N and

Tεp ◦ TΨγ(0, σ) = σ(p).

In consequence, for each σ ∈ ΓF (γ), there exists a v ∈ TγF(M,N) with v = TΨγ(0, σ)
such that

Θγ(v) = σ.

Moreover, the function

Θγ(v) :M → TN, p 7→ ΘN (v)(p) = σ(p) ∈ Tγ(p)N

is in F(M,TN) with πTN ◦Θγ(v) = γ, making the map Θγ an isomorphism of topological
vector spaces.

Remark 3.3.16 Let U be a good collection of open subsets of [0,∞)m and (F(U,R))U∈U
be a family of locally convex spaces suitable for global analysis. Let M be an m-
dimensional compact smooth manifold with corners and N be an n-dimensional smooth
manifold which admits a local addition. Since TN admits local addition and the vector
bundle πTN : TN → N is smooth, the map

F(M,πTN ) : F(M,TN) → F(M,N), τ 7→ πTN ◦ τ

is smooth. Moreover, if γ ∈ F(M,N), then

F(M,πTN )
−1({γ}) = ΓF (γ).

The following result follows the same steps as for the case of Cℓ-maps (with ℓ ≥ 0) from
a compact manifold (possibly with rough boundary) to a smooth manifold which admits
local addition [3, Theorem A.12].
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Proposition 3.3.17 Let U be a good collection of open subsets of [0,∞)m and (F(U,R))U∈U
be a family of locally convex spaces suitable for global analysis. LetM be anm-dimensional
compact smooth manifold with corners, N be an n-dimensional smooth manifold which
admits a local addition and πTN : TN → N its tangent bundle. Then the map

F(M,πTN ) : F(M,TN) → F(M,N), τ 7→ πTN ◦ τ

is a smooth vector bundle with fiber ΓF (γ) over γ ∈ F(M,N). Moreover, the map

ΘN : TF(M,N) → F (M,TN), v 7→ ΘN (v)

is an isomorphism of vector bundles.

Proposition 3.3.18 Let U be a good collection of open subsets of [0,∞)m and (F(U,R))U∈U
be a family of locally convex spaces suitable for global analysis. LetM be a m-dimensional
compact smooth manifold with corners, N1 and N2 be a n-dimensional smooth manifold
which admits a local addition. If f : N1 → N2 is a smooth map, then the tangent map of

F(M,f) : F(M,N1) → F(M,N2), γ 7→ f ◦ γ

is given by

TF(M,f) = Θ−1
N2

◦ F(M,Tf) ◦ΘN1 .

Proof. Let Σ1 : Ω1 → N1 be a local addition on N1 and γ ∈ F(M,N1).
If Ψγ : Vγ → Uγ is a chart on γ such that Ψγ(0) = γ, we consider the isomorphism of
vector space

TΨγ : {0} × ΓF (γ) → TγF(M,N1).

For p ∈M we denote the point evaluation in εip : F(M,Ni) → Ni for i ∈ {1, 2}, then for
each σ ∈ ΓF (γ) we have

Tε2p ◦ TF(M,f) ◦ TΨγ(0, σ) = Tε2p ◦ TF(M,f) ◦ TΨγ([s 7→ sσ])

= Tε2p ◦ TF(M,f)([s 7→ Σ1 ◦ sσ])
= Tε2p([s 7→ f ◦ Σ1 ◦ sσ])
= [s 7→ ε2p (f ◦ Σ1 ◦ sσ)]
= [s 7→ f ◦ Σ1(sσ(p))]

= Tf ◦ T0Σ1|Tγ(p)N1([sσ(p)])

= Tf([s 7→ sσ(p)])

= F(M,Tf)(σ(p))

= F(M,Tf) ◦ Tε1p ◦ TΨγ(0, σ).

Hence

ΘN2 ◦ TF(M,f) = F(M,Tf) ◦ΘN1 .
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Example 3.3.19 Let U be a good collection of open subsets of [0,∞)m and (F(U,R))U∈U
be a family of locally convex spaces suitable for global analysis. Let M be an m-
dimensional compact smooth manifold with corners and G be an n-dimensional Lie
group, then we already know that the space F(M,G) is a Lie group (see [22]). We will
give an alternative proof of this.
Let e ∈ G be the neutral element, let Lg : G → G, h 7→ gh be the left translation by
g ∈ G and the action

G× TG→ TG, (g, vh) 7→ g.vh := TLg(vh) ∈ TghG.

If φ : U ⊆ G→ V ⊆ TeG is a chart in e such that φ(e) = 0, then the set

Ωφ :=
⋃
g∈G

g.V ⊆ TG

is open and the map

Σφ : Ωφ → G, v 7→ πTG(v)
(
φ−1(πTG(v)

−1.v)
)

defines a local addition for G, hence F(M,G) is a smooth manifold with charts con-
structed with (Ωφ,Σφ). Let µG : G × G → G and λG : G → G be the multiplication
map and inversion maps on G respectively, we define the multiplication map µAC and
the inversion map λAC on F(M,G) as

µF := F(M,µG) : F(M,G)×F(M,G) → F(M,G)

and
λF := F(M,λG) : F(M,G) → F(M,G)

that by Lemma 3.1.21 and Proposition 3.3.5 are smooth.
We observe that for the neutral element ζe :M → G, p 7→ e of F(M,G) we have

ΓF (ζe) = F(M,TeG).

If Ψ−1
ζe

: Uζe → Vζe is a chart around ζe ∈ F(M,G), then we have Uζe = F(M,U) and
Vζe = F(M,V ). Moreover, we see that

Ψζe ◦ F(M,φ)(γ) = Σφ ◦ (φ ◦ γ)
= πTG(φ ◦ γ)

(
φ−1(πTG(φ ◦ γ)−1.φ ◦ γ)

)
= eφ−1(e.φ ◦ γ)
= γ.

This enables us to say that for the neutral element ζe ∈ F(M,G) the chart is given by

F(M,φ) : F(M,U) → F(M,V ), γ 7→ φ ◦ γ.

Remark 3.3.20 Instead of using the set [0,∞)m, it is possible to generalize all results
to a good collection of open subsets U of a locally convex, closed subset of Rm, such as
half-spaces, all of Rm, or a disjoint union of countably many m-dimensional polytopes.
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3.4 Manifolds of λ-Hölder continuous functions

Let m,n ∈ N, 0 < λ ≤ 1 and U ⊂ Rm be an open and bounded subset. We say that a
function η : U → Rn is λ-Hölder continuous if there exists a positive constant C such
that

∥η(x)− η(y)∥≤ C∥x− y∥λ, ∀x, y ∈ U.

And for each λ-Hölder continuous function we define

∥η∥λ:= sup
x,y∈U
x ̸=y

{
∥η(x)− η(y)∥

∥x− y∥λ

}
.

Let Fλ(U,Rn) be the space of λ-Hölder continuous functions η : U → Rn. By bounded-
ness of the subset U , each function η ∈ Fλ(U,Rn) is bounded. This allows us to consider
the norm on Fλ(U,Rn)

∥η∥Fλ
:= ∥η∥∞+∥η∥λ.

Then (Fλ(U,Rn), ∥·∥Fλ
) is a Banach space (see e.g. [10]). In particular, if λ = 1 then

F1(U,R) denotes the space of Lipschitz continuous functions.
We will denote the inclusion map by J : Fλ(U,Rn) → BC(U,Rn), which is continuous.
Let U be the family of open and bounded subsets of Rm. For 0 < λ ≤ 1 fixed, we
consider the family of function spaces {Fλ(U,R)}U∈U . We will show that they define a
family of locally convex spaces suitable for global analysis.

Remark 3.4.1 Since each space Fλ(U,R) is a Banach space, the axiom (PB) is verified.
Indeed, let U be an open subset of Rm and V,W ∈ U such that W has compact closure
contained in U and Θ : U → V be a C∞-diffeomorphism. By relative compactness of
W , we can consider a finite open cover of convex subsets (Wi)

k
i=1 for W such that Θ|Wi

is Hölder continuous and η ◦Θ|Wi ∈ Fλ(Wi,R) for each i ∈ {1, ..., k} and η ∈ Fλ(V,R).
Therefore,the map Fλ(Θ|W ,R) makes sense, and by Lemma 3.1.7, the axiom (PB) is
verified.

Remark 3.4.2 The axiom (GL) is also verified. In fact, if U, V ∈ U with V ⊆ U and
η ∈ Fλ(V,R) has compact support. Let η̃ : U → R be the map defined by extending η
by 0, then ∥η̃∥λ= ∥η∥λ.
Therefore, the map eEU,V,K : FK(V,E) → F(U,E) makes sense, and by Lemma 3.1.8, the
axiom (GL) is verified.

Lemma 3.4.3 If h ∈ C∞
c (U,R), then hη ∈ Fλ(U,R) for each η ∈ Fλ(U,R).

Proof. Let η ∈ Fλ(U,R). Since the function h is smooth with compact support, is
λ-Hölder continuous and the product hη is in Fλ(U,R).

Remark 3.4.4 By Lemma 3.1.9 and Lemma 3.4.3, the axiom (MU) is verified.

Lemma 3.4.5 Let U, V ∈ U such that V ⊆ U . Then η|V ∈ Fλ(V,R) for each η ∈
Fλ(U,R) and the map

Fλ(U,R) → Fλ(V,R), η 7→ η|V
is continuous linear.
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Proof. This is direct consequence of the properties of the supremum.

Lemma 3.4.6 Let ℓ ∈ N and V ∈ U be relatively compact. If f : Rℓ → R is a smooth
map, then f ◦ η ∈ Fλ(V,R) for each η ∈ Fλ(V,Rℓ) and the map

f̃ : Fλ(V,Rℓ) → Fλ(V,R), η 7→ f ◦ η

is continuous.

Proof. Let ∆V denote the diagonal set of V × V . For each τ ∈ Fλ(V,R), we define the
function

hτ : (V × V ) \∆V → R, (x, y) 7→ hτ (x, y) :=
τ(x)− τ(y)

∥x− y∥λ
.

Then hτ ∈ BC((V × V ) \∆V ,R) with ∥hτ∥∞= ∥τ∥λ, hence the linear map

Fλ(V,R) → BC((V × V ) \∆V ,R), τ 7→ hτ

is continuous linear. Let us consider the map

H : Fλ(V,R) → BC((V × V ) \∆V ,R), τ 7→ hτ

then H is continuous. This enable us to define the linear map

Φ : Fλ(V,R) → BC(V,R)×BC((V × V ) \∆V ,R), τ 7→ (τ,H(τ))

which is a topological embedding with closed image. Therefore, if the map f̃ makes
sense, its continuity is equivalent to the continuity of

F : Fλ(V,Rℓ) → BC(V,R)×BC((V × V ) \∆V ,R), η 7→ (f ◦ η,H(f ◦ η)) .

First we will show that makes sense, i.e., F (η) ∈ BC(V,R)× BC((V × V ) \∆V ,R) for
each η ∈ Fλ(V,Rℓ). Since the inclusion map J : Fλ(V,Rℓ) → BC(V,Rℓ) and the map

BC(V,Rℓ) → BC(V,R), η 7→ f ◦ η

are continuous, the first component of F

F1 : Fλ(V,Rℓ) → BC(V,R), η 7→ f ◦ η

is continuous. Let us consider the second component of F

F2 : Fλ(V,Rℓ) → BC((V × V ) \∆V ,R), η 7→ H(f ◦ η).

Let η ∈ Fλ(V,Rℓ), then F2(η) is clearly continuous. We will show that F2(η) is bounded.
For (x, y) ∈ V × V \∆V we have

F2(η)(x, y) = H(f ◦ η)(x, y) = f(η(x))− f(η(y))

∥x− y∥λ
.
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Since V is relatively compact, the set η(V ) can be contained on an open ball BRη(0) for
a constant Rη > 0 large enough. By smoothness, the map f verifies

|f(u)− f(v)|≤ Lf,η∥u− v∥, u, v ∈ BRη(0),

for some constant Lf,η > 0. Therefore

∥F2(η)∥∞≤ Lf,η∥η∥λ.

Then F2(η) ∈ BC((V × V ) \ ∆V ,R). Now we will show that F2 is continuous in η ∈
Fλ(V,Rℓ). Let δ > 0 and γ ∈ Fλ(V,Rℓ) such that

∥η − γ∥Fλ
:= ∥η − γ∥∞+∥η − γ∥λ≤ δ.

Then for each z ∈ V we have
∥η(z)− γ(z)∥≤ δ,

which mean that γ(z) ∈ Bδ(η(z)). Therefore

γ(V ) ⊆
⋃
z∈V

Bδ(η(z)).

Let Rη > 0 the constant which verifies η(V ) ⊆ BRη(0), then Bδ(η(z)) ⊆ BRη+δ(0)
for each z ∈ V . In consequence, γ(V ) and η(V ) are contained in BRη+δ(0) and by
smoothness of f , there exists a constant Gf,η > 0 such that

|df(u1, v1)− df(u2, v2)|≤ Gf,η∥(u1, v1)− (u2, v2)∥= Gf,η(∥u1 − u2∥+∥v1 − v2∥),

for each (u1, v1), (u2, v2) ∈ BRη+δ(0)×BRη+δ(0). By the mean value theorem, we have

f(u1)− f(u2) =

∫ 1

0
df(u2 + t(u1 − u2), u1 − u2)dt, u1, u2 ∈ BRη+δ.

Hence, if ω := |F2(η)(x, y)− F2(γ)(x, y)| then

ω =

∣∣∣∣f(η(x))− f(η(y))

∥x− y∥λ
− f(γ(x))− f(γ(y))

∥x− y∥λ

∣∣∣∣
=

∣∣∣∣∫ 1

0

(
df

(
η(y) + t(η(x)− η(y)),

η(x)− η(y)

∥x− y∥λ

)
− df

(
γ(y) + t(γ(x)− γ(y)),

γ(x)− γ(y)

∥x− y∥λ

))
dt

∣∣∣∣
≤ Gf,η

∫ 1

0

∥∥∥∥(η(y) + t(η(x)− η(y)),
η(x)− η(y)

∥x− y∥λ

)
−
(
γ(y) + t(γ(x)− γ(y)),

γ(x)− γ(y)

∥x− y∥λ

)∥∥∥∥ dt
≤ Gf,η

(∫ 1

0
∥t(η(x)− γ(x)) + (1− t)(η(y)− γ(y))∥dt+

∥
(
η(x)− γ(x)

)
−
(
η(y)− γ(y)

)
∥

∥x− y∥λ

)
≤ Gf,η(∥η − γ∥∞+∥η − γ∥λ)
≤ Gf,ηδ.

If ε = Gf,ηδ, we have
∥F2(η)− F2(γ)∥∞≤ ε.

Therefore, the map F2 is continuous and in consequence, the map f̃ is continuous.
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Lemma 3.4.7 Let U, V ∈ U such that V is relatively compact in U . If f : U ×Rn → R
is a smooth function, then f∗(η) := f ◦ (id, η|V ) ∈ Fλ(V,R) for all η ∈ Fλ(U,Rn) and
the map

f∗ : Fλ(U,Rn) → Fλ(V,R), η 7→ f∗(η) = f ◦ (id, η|V )

is continuous.

Proof. First let assume that U = Rm. Let id : V → Rm be the identity map, then
id ∈ Fλ(V,Rm) and by Lemma 3.4.5, the map

Fλ(Rm,Rn) → Fλ(V,Rm × Rn), η 7→ (id, η|V )

is continuous. If ℓ = m+ n, by Lemma 3.4.6, the map

Fλ(V,Rm × Rn) → Fλ(V,R), β 7→ f ◦ β

is continuous. Therefore f∗ is just the composition of continuous mappings.
Let assume that U ̸= Rm. Let χ : Rm → R be a cut-off function for V supported in U
(see e.g. [28, Proposition 2.25]); we define

g : Rm × Rn → R, (x, y) 7→
{
χ(x)f(x, y), if x ∈ U
0, if x ∈ Rm \ supp(χ)

Then g is smooth and, as before, the map

g∗ : Fλ(Rm × Rn,Rn) → Fλ(V,R), η 7→ g∗(η) = g ◦ (id, η|V )

is continuous. Moreover, for each η ∈ Fλ(U,Rn) and x ∈ V we have

g∗(η)(x) = g ◦ (id, η|V )(x)
= g(x, η|V (x))
= χ(x)f(x, η|V (x))
= f(x, η|V (x))
= f∗(η)(x),

whence g∗ = f∗.

Remark 3.4.8 By Lemma 3.4.7, the axiom (PF) is verified.

Combining all these lemmas, we can conclude with the following Lemma.

Lemma 3.4.9 Let m ∈ N, U be the collection of open subsets of Rm and 0 < λ ≤ 1.
Then the family of Banach spaces {Fλ(U,R)}U∈U define a family of locally convex spaces
suitable for global analysis,

Definition 3.4.10 LetM andN be finite-dimensional smooth manifolds without bound-
ary and 0 < λ ≤ 1. We denote the set BC0,λ(M,N) of all functions γ : M → N such
that for each p ∈M , there exist the charts ϕM : UM → VM of M and ϕN : UN → VN of
N , such that p ∈ UM , γ(UM ) ⊆ UN and ϕN ◦ γ ◦ ϕ−1

M ∈ Fλ(VM ,Rn).
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By Lemma 3.4.9 we conclude.

Proposition 3.4.11 Let 0 < λ ≤ 1. For each compact manifold M without boundary
and smooth manifold N without boundary which admits local addition, the set BC0,λ(M,N)
admits a smooth manifold structure.

Remark 3.4.12 Let N1 and N2 be finite-dimensional smooth manifolds without bound-
ary which admit local additions. If f : N1 → N2 is a smooth map, then by Proposition
3.3.5, the map

BC0,λ(M,N1) → BC0,λ(M,N2), γ 7→ f ◦ γ

is smooth.

Proposition 3.4.13 Let M be a compact smooth manifold without boundary and N a
smooth manifold without boundary which admits a local addition. If 0 < β ≤ λ ≤ 1, then
γ ∈ BC0,β(M,N) for each γ ∈ BC0,λ(M,N). Moreover, the map

ι : BC0,λ(M,N) → BC0,β(M,N), γ 7→ γ

is smooth.

Proof. Let γ ∈ BC0,λ(M,N), then for each p ∈ M , there exists the charts ϕM : UM →
VM of M and ϕN : UN → VN of N , such that p ∈ UM , γ(UM ) ⊆ UN and ϕN ◦ γ ◦ ϕ−1

M ∈
Fλ(VM ,Rn). For each U ∈ U , it is known that for β ≤ λ the linear operator

IU : Fλ(U,Rn) → Fβ(U,Rn), τ 7→ τ

is continuous. In particular, we have

IVM (ϕN ◦ γ ◦ ϕ−1
M ) = ϕN ◦ γ ◦ ϕ−1

M ∈ Fβ(VM ,Rn).

Therefore γ ∈ BC0,β(M,N). Now, we consider the charts (Uγ ,Ψ−1
γ ) and (Uι(γ),Ψ−1

ι(γ)) in

γ ∈ BC0,λ(M,N) and ι(γ) ∈ BC0,β(M,N) respectively, then the map

Ψ−1
ι(γ) ◦ ι ◦Ψγ : Ψ−1

γ

(
Uγ ∩ ι−1(Uι(γ))

)
→ Ψι(γ)

(
Uγ ∩ ι−1(Uι(γ))

)
given by

Ψ−1
ι(γ) ◦ ι ◦Ψγ(σ) = (πTN ,ΣN )

−1 ◦
(
ι(γ), ι(ΣN ◦ σ)

)
is just a restriction of the map

ι̃ : ΓFλ
(η) → ΓFβ

(ι(η)), σ 7→ σ,

which is continuous by Proposition 3.2.1 and continuity of the maps {IU}U∈U .
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