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Zusammenfassung

Elektromechanische Relais sind integraler Bestandteil von diversen Anwendungen: von
Haushaltsgeräten über Kraftfahrzeuge bis zu komplexen industriellen Anlagen. Dies ist
auf ihre Vorteile, wie einem geringen Kontaktwiderstand, der galvanischen Trennung und
niedrigen Kosten zurückzuführen. Ein wesentlicher Nachteil ist der Verschleiß von Relais.
Deshalb werden im Kontext dieser Arbeit drei Themengebiete zur Instandhaltung von
elektromechanischen Relais betrachtet:

• Im Kontext von „Predictive Maintenance“ (dt. Prädiktive Instandhaltung) (PdM)
soll der Zustand von Relais geschätzt werden, damit diese vor einen drohenden
Ausfall gewechselt werden können. Der Stand der Technik kann nicht auf Relais
übertragen werden, weil dieser größtenteils aus Forschungsvorhaben hervorgeht, die
sich mit monoton degradierenden Bauteilen beschäftigten. Im Gegensatz dazu ist
die Degradierung von Relais deutlich komplexer. Deshalb wird im Rahmen dieser
Arbeit das Verfahren „Maintenance-Algorithm for Unlabeled Data“ (dt. Instand-
haltungsalgorithmus für ungelabelte Daten) (MAUD) vorgestellt, mit dem mittels
Pseudo-Labeling ein drohender Ausfall identifiziert werden kann. Im Vergleich zum
Stand der Technik erreicht MAUD eine 61 % höhere Betriebsdauer bei gleichzeitiger
Reduktion der Ausfälle 70 %. Aufgrund des Praxisbezugs wird darüber hinaus die
Implementierung von MAUD auf einem Mikrocontroller untersucht.

• Die Lebensdauer von Relais kann durch Reduktion des Prellens verlängert werden.
Dafür ist eine Manipulation des Steuersignals notwendig, die durch zwei Parameter
definiert wird. Die Herausforderung besteht darin, beide Parameter während des
Betriebs zu optimieren. Der in dieser Arbeit vorgestellte „Bouncing-Optimization-
Algorithm“ (dt. Prelloptimierungsalgorithmus) (BOA) nutzt hierzu eine Variante
der Partikelschwarmoptimierung. Im Rahmen der Evaluierung wird gezeigt, dass
BOA das Prellen um 79 % beim Einschalten (59 % beim Ausschalten) erreicht.

• Ein Ausfall kann oft durch erneutes Schalten korrigiert werden und Degradierung
kann reversibel sein. Bei dem Verfahren „Contact Self-healing via Abrasion“ (dt.
Kontaktselbstheilung via Abrasion) (CSA) werden diese Aspekte automatisiert
ausgenutzt, um die Folgen eines Ausfalls zu minimieren. Das Potential von CSA wird
durch Untersuchungen aufgezeigt, so konnten bspw. 75 % Testrelais geheilt werden.

Somit wird dem Verschleiß von Relais auf drei Weisen begegnet: Mit MAUD wird das
Auftreten von Ausfällen reduziert. Falls es trotzdem zu einem Ausfall kommt, können die
Folgen durch CSA minimiert werden. Schlussendlich ermöglicht BOA die Verlängerung
der Lebenssdauer.
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Abstract

Electromechanical relays are an integral part of various applications: from household
appliances to motor vehicles and complex industrial systems. This is due to their advantages,
such as low contact resistance, galvanic isolation and low cost. A major disadvantage is
the wear of relays. Therefore, in the context of this work, three areas of maintenance of
electromechanical relays are considered:

• In the context of „Predictive Maintenance“ (dt. Prädiktive Instandhaltung) (PdM),
the status of relays should be estimated so that they can be replaced before an
imminent failure. The state of the art cannot be applied to relays because it is largely
derived from research projects dealing with monotonically degrading components.
In contrast, the degradation of relays is much more complex. For this reason, the
„Maintenance-Algorithm for Unlabeled Data“ (dt. Instandhaltungsalgorithmus für
ungelabelte Daten) (MAUD) is presented in this thesis, with which an impending
failure can be identified by means of Pseudo-Labeling. Compared to the state of the
art, MAUD achieves a 61 % higher operating time with a simultaneous reduction in
failures of 70 %. Due to the practical relevance, the implementation of MAUD on a
microcontroller is also investigated.

• The lifetime of relays can be extended by reducing the bounce. This requires mani-
pulation of the control signal, which is defined by two parameters. The challenge
is to optimize both parameters during operation. The „Bouncing-Optimization-
Algorithm“ (dt. Prelloptimierungsalgorithmus) (BOA) presented in this thesis uses
a variant of particle swarm optimization for this purpose. As part of the evaluation,
it is shown that BOA achieves a bounce of 79 % when switching on (59 % when
switching off).

• A failure can often be corrected by switching again and degradation can be reversible.
In the „Contact Self-healing via Abrasion“ (dt. Kontaktselbstheilung via Abrasion)
(CSA) process, these aspects are automatically exploited to minimize the consequen-
ces of a failure. The potential of CSA is demonstrated by studies, for example 75 %
test relays could be healed.

Relay wear is thus countered in three ways: The occurrence of failures is reduced with
MAUD. If a failure does occur, the consequences can be minimized by CSA. Finally, BOA
enables the lifetime to be extended.
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1 Einleitung

Das elektromechanische Relais ist eines der ältesten Bauteile der Elektrotechnik. Schon
bei der Etablierung von Telegrafensystemen vor über 200 Jahren hatten Relais eine
Schlüsselfunktion, weil mit ihnen erstmalig eine Verstärkung von elektrischen Signalen
möglich war. Im Laufe der letzten Jahrhunderte wurde eine Vielzahl von Relaistypen
entwickelt.

Abb. 1.1: Ein elektromechanisches Relais ohne Gehäuse

Der Aufbau eines elektromechanischen Relais ist exemplarisch in Abb. 1.1 gezeigt. Die
Konstruktion ist beim Großteil der Relais ähnlich: Eine elektrische Spule wird dazu
verwendet, einen Anker anzuziehen. Dessen Bewegung wird auf einen Kontakt übertragen,
sodass auf der Kontaktseite ein Stromkreis geschlossen wird. Durch Anpassungen an der
Kontaktgeometrie und am Kontaktmaterial können Relais in einem Leistungsspektrum
von wenigen Milliwatt bis zu mehreren hundert Kilowatt eingesetzt werden. Des Weiteren
können Relais sich je nach Anwendung durch die Kontakte unterscheiden. Klassisch ist
ein Kontaktpaar, es bestehen jedoch auch Formen, bei denen mehrere Kontaktpaare zur
Verwendung kommen. Damit können bspw. mehrere Lastkreise mit einem Steuersignal
geschaltet oder der Schaltzustand überwacht werden. Weiterhin bestehen Unterschiede
darin, wie viele Schaltzustände stabil, d.h. ohne Erregung, gehalten werden können.

Die vielen Bauformen von Relais lassen erahnen, wie groß deren Anwendungsspektrum
ist. Historisch war die Nutzung von Relais für Telegrafensysteme und Logikschaltungen in

1



Einleitung

Computern bedeutend. Dabei wurden elektromechanische Relais jedoch von Halbleiterrelais
ersetzt, was auf deren bedeutend geringeren Schaltzeiten zurückzuführen ist. Weiterhin
weisen Halbleiterrelais längere Lebensdauern auf, können geräuschlos betrieben werden, die
Kontakte prellen nicht und es besteht eine geringere Gefahr für Funkenbildung. Angesichts
dieser Vorteile wird die Bedeutung von elektromechanischen Relais oftmals unterschätzt.
Halbleiterrelais haben gegenüber elektromechanischen Relais jedoch auch Nachteile: So
sind in der Applikation weitere Komponenten (bspw. Dioden) notwendig. Zudem sind
Halbleiterrelais in der Regel teuer als elektromechanische Relais. Weiterhin ist der geringere
Durchgangswiderstand von elektromechanischen Relais vorteilhaft. Genauso wie deren
galvanische Trennung von Steuer- und Lastkreis und vom Lastkreis (wenn die Kontakte
geöffnet sind). Diese Trennung besitzen Halbleiterrelais nicht, sodass im ausgeschalteten
Zustand fast immer einen Leckstrom fließt. Schlussendlich gibt es für beide Relaisarten
vorteilhafte Anwendungsfelder, weshalb elektromechanische Relais auch in Zukunft eine
wichtige Rolle als elektrisches Bauteil spielen.

1.1 Herausforderungen bei der Nutzung
Mit der Nutzung von elektromechanischen Relais gehen einige Herausforderungen einher.
Die Kontakte sind verschleißbehaftet, wodurch die Funktionstüchtigkeit eines Relais
beschränkt werden kann. Es ist möglich, dass die Kontakte ihre Leitfähigkeit verlieren oder
sich nicht mehr öffnen lassen. Weiterhin kann der Durchgangswiderstand steigen und somit
weniger Spannung an der Last abfällt als geplant. Da Relais Bauteile in Systemen sind,
beeinträchtigt der Verschleiß auch den ordnungsgemäßen Betrieb des jeweiligen Systems.
Wodurch wiederrum Kosten, Sicherheitsrisiken und Stillstands Zeiten entstehen. Deshalb
ist die Instandhaltung von Relais unabdingbar.

Im Rahmen dieser Arbeit werden Beiträge zu drei Herausforderungen geleistet, die im
Folgenden näher erörtert werden:

1. Die Lebensdauer eines Relais ist nicht bekannt.

Die Lebensdauer von Relais ist von diversen Phänomenen abhängig, die nicht zwangs-
läufig auftreten müssen, sich aber auch überlagern können und in ihrer Wirkung
grundsätzlich von Betriebsbedingungen abhängig sind. Bspw. kann Material von
einem zum anderen Kontakt migrieren, wodurch sich eine Pille ausbildet, die zum Ver-
schweißen der Kontakte führen kann. Ein weiteres Beispiel stellen induktive Lasten
dar, bei denen durch das Trennen der Kontakte ein Lichtbogen hervorgerufen wird.
Durch diesen wird Kontaktmaterial verbrannt und die Kontakte verkleinert. Viele wei-
tere Effekte sind zu beobachten und werden in Abschn. 2.2 genauer erläutert. Für die
Instandhaltung von Relais ergibt sich durch diese Phänomene eine Herausforderung:
Auch bei identischen Betriebsbedingungen haben Relais individuelle Lebensdauern,
die sich um mehrere zehntausend Schaltzyklen unterscheiden. Deshalb bedarf es
einer prädiktiven Instandhaltung, mit der drohende Ausfälle proaktiv unterbunden
werden können. Weiterhin beinhaltet diese Instandhaltungsform das Potenzial, die
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Einleitung

Betriebskosten von Anlagen zu senken, indem Wartungen bedarfsgerecht und damit
seltener durchgeführt werden als bei einer intervallbasierten Instandhaltung. Auch
der Aspekt der Nachhaltigkeit bzw. des effizienten Einsatzes von Ressourcen wird
damit adressiert.

2. Durch die Reduktion des Prellens kann die Lebensdauer verlängert werden.

Bedingt durch die Konstruktion schlagen die Kontakte beim Schließen mehrfach
aufeinander – dieses Phänomen wird auch als Prellen bezeichnet. Das Problem
hierbei liegt vorwiegend darin, dass die Degradierung der Relais beschleunigt wird.
Weiterhin verursacht das Prellen eine Geräuschentwicklung und stört die Übertragung
von Signalen. Durch die Reduktion des Prellens kann die Lebensdauer von Relais
verlängert werden. Dies hat einen positiven Einfluss auf die Betriebskosten und
steigert die Effizienz der Ressourcennutzung.

3. Die Degradierung kann reversibel sein.

Eine Fehlfunktion von einem Relais muss nicht endgültig sein – der Großteil der
fehlerhaften Schaltvorgänge kann durch eine Wiederholung des Schaltvorgangs
korrigiert werden. Dies kann bspw. auf ein Verhaken der Kontakte zurückgeführt
werden: Die Kontaktoberfläche raut sich durch den Betrieb so stark auf, dass diese
aneinanderhaften können. In der Praxis etablierte sich deshalb, bei einem Ausfall auf
das Relais zu klopfen, damit sich die Kontakte lösen. Durch derartige Phänomene
wird die Fehlersuche erschwert und viel Zeit des Instandhaltungspersonals gebunden.
Ein Verfahren, das dieses „Relais-Klopfen“ automatisiert, kann die Instandhaltung
von Relais erheblich vereinfachen.

1.2 Lösungsansätze
Zentrales Ziel dieser Arbeit ist es, einen Beitrag zur Lösung der zuvor genannten Her-
ausforderungen zu leisten. Dabei stehen digitale Strategien im Fokus, die sich durch
Softwareanpassungen auf verschiedene Relaistypen übertragen lassen. Darin unterscheidet
sich die Arbeit vom Großteil der bisherigen Forschungsvorhaben zur Optimierung von
Relais, welche den Fokus auf Hardwareanpassungen legen. Die Lösungsansätze dieser
Arbeit sind komplementär zu Hardwareoptimierungen anzuwenden.

In Abb. 1.2 sind links der Stand der Technik und drei sich daraus ergebende Heraus-
forderungen bei der Instandhaltung dargestellt. Rechts sind die Beiträge dieser Arbeit
visualisiert:

• Die Lebensdauer von Relais ist nicht bekannt.

Die Lebensdauer von Relais ist begrenzt, weshalb ein Relaiswechsel notwendig ist. In
der Praxis empfehlen Hersteller ein Wartungsintervall, nachdem die Relais gewechselt
werden sollen. Dieses Intervall wird anhand einiger Proberelais bestimmt. In Bezug
auf die zuvor genannte Herausforderung wird deutlich, dass diese Strategie nicht
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Abb. 1.2: Drei Herausforderungen bei der Instandhaltung von Relais nach dem Stand
der Technik und in dieser Arbeit vorgestellte Beiträge zur Lösung

Erfolg versprechend ist: Die individuelle Degradierung wird nicht berücksichtigt.
Deshalb wird im Rahmen dieser Arbeit das Verfahren „Maintenance-Algorithm for
Unlabeled Data“ (dt. Instandhaltungsalgorithmus für ungelabelte Daten) (MAUD)
vorgestellt, mit dem es möglich ist, während der Betriebsdauer einen Ausfallindikator
der individuellen Relais zu geben. Derartige Lösungen bestehen bereits – sowohl
in der Form von Schwellwerten, die auf Messgrößen angewandt werden, als auch
durch künstliche neuronale Netze. Der Stand der Technik hierzu ist in Abschn. 3.1
herausgearbeitet. Die im Kontext dieser Arbeit vorgestellte Lösung grenzt sich
hinsichtlich mehrerer Aspekte davon ab: Zunächst ist der verwendete Datensatz
deutlich umfangreicher als die bestehenden, wodurch ein realistischer Praxisbezug
angenommen werden kann. Ferner wird ein semi-überwachter Lernansatz verfolgt,
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wodurch ein Ausfallindikator geschätzt werden kann. Weiterhin wird die Inferenz
von ANN auf einem Mikrocontroller untersucht.

• Durch die Reduktion des Prellens kann die Lebensdauer verlängert werden.

Mit Hilfe einer kurzen Manipulation der Versorgungsspannung kann das Prellen von
Relais reduziert werden. Im Rahmen dieser Arbeit wird das Verfahren „Bouncing-
Optimization-Algorithm“ (dt. Prelloptimierungsalgorithmus) (BOA) vorgestellt, das
sowohl in Hinblick auf die Reduzierung als auch auf die Zuverlässigkeit den Stand
der Technik übertrifft.

• Die Degradierung kann reversibel sein.

Um einen fehlerhaften Schaltvorgang zu korrigieren, genügt es häufig, diesen zu
wiederholen. Diese Maßnahme wurde bereits in ähnlicher Form von diversen Un-
ternehmen patentiert und findet in verschiedenen Produkten Anwendung. In dieser
Arbeit wird das neuartige Verfahren „Contact Self-healing via Abrasion“ (dt. Kon-
taktselbstheilung via Abrasion) (CSA) beschrieben, bei dem die Spule so angeregt
wird, dass die Kontakte aneinander reiben und gleichzeitig leitfähig bleiben. So
werden zum einen Ausfälle korrigiert und zum anderen Relais „geheilt“.

Die Lösungen zeigen, dass weiteres Potenzial bei der Instandhaltung bzw. Nutzung von
Relais besteht. Die einzelnen Lösungen werden in den separaten Kapiteln 3, 4 und 5
vorgestellt. Zuvor wird in Kap. 2 kurz auf die Grundlagen von elektromechanischen Relais
eingegangen. Abgeschlossen wird diese Arbeit vom Fazit in Kap. 6.
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2 Elektromechanische Relais

Zentrales Untersuchungsobjekt dieser Arbeit sind elektromechanische Relais. Deshalb
wird im folgenden Kapitel zunächst auf deren konstruktiven Aufbau, die Funktionsweise
und daraus resultierenden Messgrößen eingegangen. Darauf aufbauend werden allgemeine
Kenntnisse zur Degradierung dieser Bauteile erörtert.

2.1 Konstruktiver Aufbau von Relais

Elektromechanische Relais ermöglichen das Öffnen bzw. Schließen eines elektrischen Last-
kreises mit Hilfe eines elektrischen Steuerkreises. Dementsprechend ergeben sich viele
verschiedene Anwendungsmöglichkeiten für elektromechanische Relais, für die eine Vielzahl
von Relaistypen notwendig ist. Im Kontext dieser Arbeit werden grundlegende Erkenntnis-
se gesammelt, weshalb die Untersuchungen auf einen Relaistyp beschränkt sind. Dabei
handelt es sich um einen monostabilen Relaistyp mit drei Kontakten, der in der Auto-
matisierungsindustrie weitverbreitet ist und zum Schalten von Aktoren wie Leuchten,
Ventilatoren oder Ventilen verwendet wird. Im Rahmen dieser Arbeit werden die Relais
von zwei Herstellern verwendet, die im Weiteren als Hersteller A und B anonymisiert
angegeben werden. Die technischen Spezifikationen sind in Tab. 2.1 aufgeführt:

Tab. 2.1: Technische Spezifikationen des Relaistyps nach Hersteller

Hersteller A Hersteller B

Abmaße (Breite x Höhe x Tiefe) 28 mm x 15 mm x 5 mm
Kontaktmaterial AgSnO2
Magnetsystem monostabil
Spulennennspannung 24 V
Spulenwiderstand 3388 Ω (± 10 %) 3390 Ω (± 10 %)
Kontaktnennspannung 24 V
Kontaktnennstrom (max.) 6 A
Minimale mechanische Schaltvorgänge 5 · 106 10 · 106
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Das Magnetsystem von Relais kann sich dahin gehend unterscheiden, dass ein oder
mehrere Schaltzustände ohne anliegende Steuerspannung stabil sind. Bei dem monostabilen
Magnetsystem der untersuchten Relais ist nur ein Zustand stabil.

Die Angaben beider Hersteller unterscheiden sich lediglich bei den minimalen mechanischen
Schaltvorgängen signifikant. Diese geben jedoch an, wie groß die Lebensdauer der Relais
ohne angeschlossenen Lastkreis mindestens ist. Im Kontext dieser Arbeit wird der Lastkreis
angeschlossen, wodurch verschiedene Degradierungsphänomene an den Kontakten auftreten
und die Lebensdauer der Relais verkürzen. Die Funktionsweise wird im Folgenden nach
Gurevich beschrieben [1].

Gehäuse

Grundkörper

Magnetischer Kreis

Leiter

Kontaktpille

Betätigungsarm

Anschlüsse
Steuerkreis

Anschlüsse
Lastkreis

NC

COM

NO

Anker Spule Kontakte

Abb. 2.1: Aufbau eines elektromechanischen Relais

Dazu wird Abb. 2.1 herangezogen, in der der Aufbau eines Relais unter Vernachlässigung
konstruktiver Details dargestellt ist. Die Komponenten der Relais sind am Grundkörper
befestigt und durch ein Gehäuse aus glasfaserverstärktem Kunststoff geschützt, das wie-
derum mit dem Grundkörper vergossen ist. Die Komponenten können in Steuer- und
Lastkreisseite unterteilt werden:

Eine Spule mit einem Metallkern und Anker bilden die Steuerkreisseite. Der Anker wird
durch eine Feder in Position gehalten, sodass ein Luftspalt zwischen Anker und Metall-
kern besteht. Durch Beaufschlagung der Spule mit Spannung entsteht ein magnetisches
Feld, wodurch wiederum der Luftspalt geschlossen wird. Dabei bewegt der Anker den
Betätigungsarm, sodass die Bewegung auf die Kontakte übertragen wird. Die Lastkreis-
seite besteht bei den untersuchten Relais aus drei Kontakten: „Common Contact“ (dt.
gemeinsamer Kontakt) (COM), „Normally Opened Contact“ (dt. normalerweise geöffneter
Kontakt) (NO) und „Normally Closed Contact“ (dt. normalerweise geschlossener Kontakt)
(NC).

Entsprechend dem Aufbau ergeben sich mehrere Phasen während eines Schaltvorgangs,
die in Abb. 2.2 für einen Einschaltvorgang dargestellt sind. Bei einem Ausschaltvorgang
werden die Phasen in umgekehrter Reihenfolge durchlaufen. Zunächst sind die Kontakte
NC und COM verbunden (vgl. Abb. 2.2a). Durch die Ankerbewegung werden diese getrennt
und COM ist kurzzeitig ohne Kontakt. In Abb. 2.2b ist zu erkennen, dass COM und NO
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(a) Ausgeschaltet (b) Übergang (c) Eingeschaltet

Abb. 2.2: Darstellung der verschiedenen Phasen eines Schaltvorgangs

bereits kontaktiert sind, der Anker jedoch nicht den Spulenkern berührt. In Abb. 2.2c ist
letzteres schließlich der Fall. Dadurch werden die Kontakte aufeinandergepresst, wobei
die Leiter als Federelemente fungieren. Dieser Vorgang zwischen Abb. 2.2b und 2.2c wird
als „Überhub“ bezeichnet und ist notwendig, damit zum einen der Kontaktwiderstand
geringgehalten wird und zum anderen das Ausschalten durch die Federspannung unter-
stützt wird. Weiterhin ist es möglich, die Bewegungstrajektorien der Kontaktpillen so zu
gestalten, dass die Kontakte beim Schalten aneinander reiben und auf diesem Weg bspw.
Verunreinigungen lösen.
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Abb. 2.3: Messkurven beim Einschalten
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Nachfolgend wird beschrieben, wie sich der Spulenstrom und die Kontaktspannung beim
Ein- und Ausschalten des Relais verhalten. In Abb. 2.3 sind beide Messgrößen für einen
Einschaltvorgang dargestellt. Zum Zeitpunkt t = 0 ms wird die Versorgungsspannung
der Spule von 0 V auf einen konstanten Wert (hier 24 V) sprunghaft erhöht, wodurch ein
Stromfluss durch die Spule bedingt wird. Dieser folgt aufgrund der – zunächst konstanten
– Induktivität L der Spule bis etwa 3 ms der Beziehung:

u(t) = L
di(t)
dt

(2.1)

Danach ist eine Abnahme des Stroms zu beobachten. Der Grund hierfür liegt in der
Ankerbewegung, mit der eine Änderung der Induktivität einhergeht. Dadurch wird L eine
Funktion des Stroms und der Zeit L = L (t, I) und die Lösung von 2.1 verkompliziert:

u(t) = di(t)L(t, I)
dt

(2.2)

Durch die Ankerbewegung verändern sich sowohl örtlich als auch zeitlich die Magnetfelder
und es kommt zu einer zusätzlichen Induktionsspannung und somit einem Stromfluss in der
Spule, der der Ursache entgegenwirkt und den Gesamtstrom durch die Spule abfallen lässt.
Bei etwa 4,5 ms ist ein lokales Minimum des Stroms zu erkennen. Der Anker schlägt hier
auf den Spulenkern auf, wodurch die Bewegung und die zusätzliche Induktionsspannung
enden. Daher ist anschließend wieder ein Anstieg des Spulenstroms gemäß Gl. 2.1 mit einer
konstanten, aber größeren Induktivität zu beobachten, was bei gleicher Spannung einem
langsameren Stromanstieg entspricht. Bei etwa 5 ms ist eine leichte „Delle“ zu erkennen,
welche wiederum auf das Prellen und der damit einhergehenden Bewegung (Lösen und
Aufschlagen) des Ankers zurückzuführen ist.

Für die Kontaktspannung zwischen den Kontakten COM und NO sind zwei Spannungslevel
zu beobachten: 24 V entspricht der Versorgungsspannung und liegt an, wenn die Kontakte
voneinander getrennt sind. Bei verbundenen Kontakten fällt die Spannung auf ca. 1 V ab.
Aufgrund der Messschaltung kann eine Spannung von 0 V nicht erreicht werden (Details
in Abs. 3.3.1). Beim Einschalten springt die Kontaktspannung kurz nach 4 ms auf etwa
1 V, die Kontakte berühren sich erstmalig. Darauffolgend sind jedoch mehrfache Sprünge
zwischen beiden Levels zu sehen. Der Grund hierfür ist die kinetische Energie der Kontakte,
durch die elastische Stöße zwischen den Kontakten hervorgerufen werden. Dieses Phänomen
wird auch als Prellen bezeichnet. Kurz nach 5 ms sind keine Spannungssprünge mehr zu
beobachten, das Prellen ist beendet und die Kontakte sind geschlossen.

Die Messgrößen während eines Ausschaltvorgangs sind in Abb. 2.4 dargestellt. Der Schalt-
vorgang startet bei 0 ms mit Abschalten der Spulenspannung, weshalb der Strom direkt
abfällt. Durch die Selbstinduktion ist – wie beim Einschalten – keine sprunghafte Änderung
zu beobachten. Zwischen ca. 7 und 11 ms ist zu erkennen, dass der Strom kurzfristig wieder
ansteigt. Dies ist auf die Ankerbewegung zurückzuführen, durch die die Induktionsspannung
und somit der Strom wie oben begründet kurzzeitig ansteigen. Währenddessen werden die
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Abb. 2.4: Messkurven beim Ausschalten

Kontakte getrennt, was am sprunghaften Anstieg der Kontaktspannung zu erkennen ist.
Die Verzögerung zwischen dem Start der Ankerbewegung und dem Trennen ist auf den
Überhub zurückzuführen.

Für ein weitergehendes Verständnis der Funktionsweise von Relais müssen u.a. die mecha-
nischen, elektrischen und magnetischen Zusammenhänge der einzelnen Relaiskomponenten
betrachtet werden. Eine derartige Modellierung stellen Ramirez-Laboreo et al. in [2] vor.
Mit dieser ist eine Simulation von Spulenstrom und Kontaktspannung möglich.

2.2 Degradierung von Relais

Grundsätzlich sind die Ausfälle von Relais in zwei Fehlerarten zu unterscheiden:

• Einschaltfehler: Beim Einschalten werden die Kontakte nicht erfolgreich geschlossen.

• Ausschaltfehler: Beim Ausschalten werden die Kontakte nicht erfolgreich getrennt.

Die möglichen Ursachen für die Fehler sind divers. In [3] werden Phänomene aufgeführt,
die an den Kontakten auftreten und deren Eigenschaften verändern können. So ist es
möglich, dass sich an den Oberflächen der Kontakte Staub und Partikel aus der Atmosphäre
ablagern; sich O2-Molekülschichten, Polymerschichten, Korrosionsschichtenten oder durch
die Zersetzung von Silikonen SiO2-Schichten ausbilden; durch die hohen Temperaturen eines
Lichtbogens Kohlenstoffbeläge entstehen und durch Tangentialbewegungen die Oberfläche
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der Kontakte abgeschliffen wird. Diese Phänomene können die Leitfähigkeit der Kontakte
maßgeblich beeinflussen.

Die Ursachen hängen jedoch auch vom Relaistypen ab, weshalb an dieser Stelle exemplarisch
einige häufige Phänomene vorgestellt werden. Von Kirschbaum et al. werden vier Gründe
für die Degradierung aufgeführt [4], wobei die meisten zuvor genannten Gründe dem
dritten Punkt „Kontaktverunreinigung“ zuzuordnen sind.

1. Erosion

Durch einen elektrischen Lichtbogen wird eine Erwärmung des Kontaktmaterials
bis zu dessen Siedepunkt hervorgerufen. Dadurch wird eine Materialmigration von
einem Kontakt auf den anderen ermöglicht und gleichzeitig entstehen Krater und
Spitzen auf der Kontaktoberfläche. Die Auswirkungen von Lichtbögen hängen u.a.
von der Dauer und der Energie des Lichtbogens, der Induktivität des Stromkreises,
dem Kontaktmaterial, der Schaltgeschwindigkeit der Kontakte, der Sauberkeit der
Kontaktoberfläche und den Kontaktabmessungen ab. Insgesamt führt die Erosion
der Kontakte zu einer Verschlechterung der Kontaktoberfläche. Weiterhin wird
die Kontaktkraft aufgrund des Materialverlusts verringert, wodurch Kontakte eher
verschweißen können.

Der Lichtbogen ist in zwei Phasen zu unterscheiden: Zunächst fließt ein Strom
durch verdampfte und anschließend ionisierte Metallatome. Dort kann eine Materi-
almigration von der Anode zur Kathode beobachtet werden. Gleichzeitig führt der
Elektronenbeschuss an der Anode zu einer Zersetzung des Anodenmaterials. Danach
nimmt die Dichte des Metalldampfes ab und der Strom fließt über ionisierte Atome
aus der Umgebungsluft. Diese prallen auf die Kathode auf und erodieren Materi-
al. An der Anode kann beobachtet werden, dass sich die erodierten metallischen
Atome aus der Kathode anhäufen. Im Allgemeinen ist in Gleichstromkreisen eine
Kathodenverstärkung zu beobachten, da die Dauer des Lichtbogens mit Ionen aus
der Umgebungsluft kurz im Vergleich zur Dauer mit metallischen Ionen ist. Durch
höhere Öffnungsgeschwindigkeiten können Lichtbogendauer und Lichtbogenerosion
verringert werden. Gleichzeitig kann dadurch jedoch auch mehr Prellen bei der Kon-
taktherstellung herbeigeführt werden. Dies wiederum begünstigt Kontaktschweißen
und Erosionseffekte, weil Lichtbögen während des Prellens auftreten.

2. Kontaktverschweißen

Durch Erwärmung kann eine – lokal begrenzte – Schmelze des Kontaktmaterials
hervorgerufen werden und damit eine Schweißung der Kontakte. Diese ist kritisch,
wenn die Kontakte sich nicht mehr trennen können. Kontaktprellen und / oder
Vorzündlichtbögen begünstigen Verschweißen.

3. Kontaktverunreinigung

Zusätzlich können sich isolierende oder halbleitende Schichten auf den Kontaktflächen
ablagern, z. B. durch Ausgasen von Kunststoffdichtungen oder Isolationsmaterialien,
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Materialabrieb und Verunreinigungen aus der Umgebungsluft. Dadurch kann Strom-
fluss nur an den Stellen stattfinden, wo die Schichten während der Kontaktierung
entweder elektronisch oder mechanisch zerstört werden. Allerdings können halb-
leitende Schichten auch zu einer Erhöhung der effektiven Kontaktfläche beitragen.
Das Ausmaß der Schichtbildung hängt von der Lagerungsdauer, den Umgebungs-
bedingungen, Betriebskonditionen und Veränderungen der Kontaktflächen durch
elektrische Lichtbögen ab.

4. Reibung

Die Kontaktflächen sind anfällig für Reibung, welche zum Verschleiß der Kontakte
beiträgt. Grund können externe Vibrationen oder unterschiedliche Wärmeausdeh-
nungsraten der Kontaktmaterialien sein.

Die Komplexität der Mechanismen, die zum Versagen führen, ist hoch, sodass die
Versagensursachen nicht immer nachvollziehbar sind. Zum Beispiel können verschweißte
Kontakte durch Erschütterungen, die beim Wechseln und Öffnen des Relais zwangsläufig
auftreten, getrennt werden.
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3 Prädiktive Instandhaltung

Relais werden als Bauteil in diversen Systemen eingesetzt, wodurch sich eine Marktgröße von
über US$ 6 Mrd. im Jahr 2019 ergibt [5]. Durch „Predictive Maintenance“ (dt. Prädiktive
Instandhaltung) (PdM) der Relais können mehrerer Aspekte verbessert werden:

• Die Verfügbarkeit der Systeme wird durch bedarfsgerechte Instandhaltung gesteigert.
Weiterhin werden ungeplante Stillstände infolge von Ausfällen unterbunden.

• Durch Steigerung der Betriebsdauer wird der Ressourcenverbrauch reduziert.

• Die individuelle Analyse von Relais ermöglicht eine Planung der Instandhaltung. So
können die Aufwände für die Instandhaltung reduziert werden.

• Die Reduktion von Ausfällen führt zu einer Steigerung der Sicherheit, da diese eine
potenzielle Gefahrenquelle für Menschen, Umwelt und Systeme sind.

Folglich ist PdM eine Schlüsseltechnologie, um ökonomische und ökologische Ziele gleichzei-
tig zu erreichen. Für die Realisierung von PdM für Relais sind mehrere Forschungsbereiche
zu berücksichtigen:

1. Datensatz

Die Grundlage für PdM ist eine Analyse der Degradierung von Relais, die im
Rahmen dieser Arbeit vollautomatisch durchgeführt wird. Deshalb wird ein Datensatz
benötigt, der Messgrößen über die Betriebsdauer von Relais enthält, mit denen
Rückschlüsse auf die Degradierung gezogen werden können. Ein derartiger Datensatz
ist bisher nicht öffentlich verfügbar.

Allgemein sind Datensätze für PdM schwer zu generieren, da Komponentenhersteller
oft keine Handhabung ihrer Produkte beim Endkunden haben und Systemhersteller
nicht den Aufwand betreiben, eigene Algorithmen für ihre eingesetzten Komponenten
zu entwickeln. Gleichzeitig verfügen Forschungseinrichtungen in der Regel nicht über
größere Systeme, die im Hinblick auf PdM untersucht werden könnten, sodass nur
eine begrenzte Anzahl von Datensätzen für die Entwicklung von Algorithmen zur
Verfügung steht.
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Deshalb wird im Kontext dieser Arbeit ein vollautomatischer Versuchsaufbau und ein
Relais-Datensatz für PdM vorgestellt. Letzterer hebt sich hinsichtlich des Umfangs
und der Komplexität der Degradierung deutlich vom Stand der Technik ab.

2. Maschinelles Lernverfahren

Die Datensätze werden mit maschinellen Lernverfahren analysiert, für die die Ba-
sistechnologien bereits entwickelt wurden. Eine Vielzahl von Veröffentlichungen
beinhaltet Lösungen für die PdM von diversen Komponenten. Der Transfer die-
ser auf Relais ist jedoch nicht möglich. Deshalb wird in dieser Arbeit ein neuer
semi-überwachter Ansatz für PdM bei Relais vorgestellt.

3. Applikation auf eingebetteten Systemen

Bei den untersuchten Relais handelt es sich um preiswerte Bauteile, weshalb es nicht
möglich ist, zur Analyse der Daten eine kostenintensive Steuerung zu verwenden.
Stattdessen müssen die maschinellen Lernverfahren auf günstigen Mikrocontrollern
ausgeführt werden. In diesem Forschungsbereich sind bereits Verfahren bekannt, mit
denen maschinelle Lernverfahren bezüglich ihrer Effizienz gesteigert werden können
– die Auswirkungen dieser Verfahren auf die Performanz bei PdM von Relais sind
jedoch nicht bekannt und werden in dieser Arbeit ergründet.

Das nachfolgende Kapitel ist wie folgt aufgebaut: Zunächst werden die Forschungsstände
bezüglich der Datensätze, PdM, dem semi-überwachten Lernen sowie Verfahren zur Effizi-
enzsteigerung dargelegt. Darauf aufbauend werden relevante Grundkenntnisse geschildert.
Schließlich werden der entwickelte Versuchsaufbau und der generierte Datensatz vorgestellt.
Mit diesem wird im Weiteren ein Forschungsdesiderat aufgezeigt, für das nachfolgend
ein neuartiger Ansatz zur PdM präsentiert und evaluiert wird. Abgeschlossen wird dieses
Kapitel mit Untersuchungen zum Einfluss von Verfahren zur Effizienzsteigerung auf die
Performanz. Schlussendlich werden die Ergebnisse in einem Fazit zusammengefasst und
kritisch beleuchtet.

3.1 Forschungsstand

Die nachfolgenden Untersuchungen umfassen ein breites Spektrum an Forschungsthemen,
weshalb die Darstellung des Forschungsstandes im Nachfolgenden in vier Teile untergliedert
ist. Zuerst werden die veröffentlichten Datensätze für PdM betrachtet. Darauf aufbauend
werden in Abs. 3.1.2 die bereits entwickelten Verfahren PdM erläutert. Der Fokus liegt
auf maschinellen Lernverfahren, wobei dediziert auf Relais eingegangen wird. Als drit-
tes Themengebiet wird das semi-überwachte Lernen vorgestellt, welches die Grundlage
für das Verfahren MAUD bildet. Schlussendlich wird als Viertes die Applikation von
ANN auf Mikrocontrollern betrachtet. Abschließend werden die Forschungsstände zu den
Themengebieten prägnant zusammengefasst.
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3.1.1 Datensätze zur prädiktiven Instandhaltung
Der Kern dieses Kapitels stellt die Modellierung der Degradierung von Relais mittels
maschineller Lernverfahren dar. Die Grundlage für ein derartiges Vorgehen ist ein Datensatz,
mit dem die maschinellen Lernverfahren trainiert werden. Für die Einordnung dieser
Arbeit in den Forschungsstand ist eine Betrachtung der bereits veröffentlichten Datensätze
unumgänglich. Eine große Herausforderung hierbei ist, dass es kein zentrales Portal
gibt, in dem alle Datensätze einheitlich und standardisiert dokumentiert veröffentlicht
werden. Deswegen wird im Folgenden zunächst eine umfangreiche Recherche vorgestellt,
die bereits in [6] veröffentlicht wurde. Die Datensätze werden dabei nach drei Datentypen
unterschieden:

• Synthetische Daten

Diese Datensätze wurden mit Hilfe von Simulationssoftware erstellt, mit der die
Degradierung von realen Systemen modelliert wird. Dieser Ansatz ist besonders
kostengünstig, da keine Ausrüstung für die Degradierung von Komponenten benötigt
wird. Die Herausforderung besteht darin, ein Modell zu erstellen, das die Realität
so genau widerspiegelt, dass es für die Simulation der Degradierung eines Bauteils
verwendet werden kann.

• Reale Daten

Diese Daten stammen von realen Systemen, weshalb hier ein starker Praxisbezug
besteht. Allerdings sind diese Datensätze selten, da die Betreiber selten bereit sind,
die Daten zur Verfügung zu stellen – sofern ein System mit der notwendigen Daten-
erfassung ausgestattet ist. Hinzu kommt ein weiterer Nachteil: Die Anlagen werden
gewartet, weshalb einige Komponenten nicht bis zu ihrer maximalen Betriebssdauer
betrieben werden und die Daten nicht immer vollständig sind.

• Prüfstanddaten

Die Daten können auch mit Hilfe von Prüfständen erhoben werden, mit denen die
Komponenten bis zum Ende ihrer Lebensdauer betrieben werden. Aus diesem Weg
können sowohl realistische als auch vollständige Datensätze erfasst werden. Eine
Herausforderung ist jedoch die Diversifikation der Betriebsbedingungen, um eine
reale Anwendung abzubilden.

3.1.1.1 Übersicht

In Tab. 3.1 sind die recherchierten Datensätze aufgeführt. Einige veröffentlichte Datensätze
wurden aufgrund unzureichender Dokumentation. Neben der Referenz und einer kurzen
Beschreibung werden zu jedem Datensatz drei weitere Angaben gemacht: Der Datentyp
(DT) bezieht sich auf die zuvor beschriebenen Datentypen; die Einheiten (E) auf die Anzahl
der Komponenten / Systeme, von denen die Daten erfasst wurden; die Datenpunkte (DP)
auf die gesamte Anzahl an Zeitpunkten, zu denen die Messgrößen erfasst wurden. Die
Tabelle ist in der eigenen Veröffentlichung [6] enthalten.
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Tab. 3.1: Datensatzübersicht [6]
Ref. Beschreibung DT E DP

[7] Kugellager wurden auf einer Welle installiert und mit einer konstanten Drehzahl und Radi-
allast betrieben. Während des Betriebs wurden regelmäßig Schwingungssignale bei 20 kHz
aufgezeichnet.

P 12 7,588

[8] Es wurden Versuche auf einer Fräsmaschine unter 16 verschiedenen Betriebsbedingungen
wie Geschwindigkeiten, Vorschübe und Schnitttiefen durchgeführt. Unter jeder Bedingung
wurden mehrere Durchläufe aufgezeichnet. Zu den Messgrößen gehören akustische Daten,
Vibrationsdaten und Motorströme. Ferner wurde regelmäßig der Verschleiß gemessen.

P 16 167

[9] Li-Ionen-Batterien wurden bei verschiedenen Temperaturen und Betriebsprofilen ge- und
entladen. Gemessen wurden Ströme, Spannungen und Temperaturen. Ferner wurde die
Impedanz regelmäßig bestimmt.

P 34 7.565

[10] Die Degradation von Turbofan-Triebwerken wurde unter verschiedenen Kombinationen von
Betriebsbedingungen und Fehlerzuständen simuliert. Es wurden drei Betriebs- und 21 Sensor-
messungen aufgezeichnet.

S 1.852 340.994

[11] Es wurden Run-to-Failure-Experimente mit Leistungs-MOSFETs unter thermischer Überlas-
tung durchgeführt. Temperaturen, Spannungen und Betriebsdaten wurden aufgezeichnet.

P 42 1.861.959

[12] Es wurden Run-to-Failure-Versuche an Kugellagern unter mechanischer Überlast durchgeführt.
Temperaturen und Schwingungen wurden aufgezeichnet.

P 17 27.907

[13] Es wurden Run-to-Failure-Experimente an CFK-Platten unter Zugermüdung durchgeführt.
Die Signale von piezoelektrischen Sensoren und Dehnungsmessstreifen wurden als Daten
erfasst. Ebenso wurden in regelmäßigen Abständen Röntgenaufnahmen gemacht, um die
innere Schädigung zu charakterisieren.

P 12 1.495

[14] Die Batterien wurden mit zufällig erzeugten Stromprofilen zykliert. Temperatur, Strom und
Spannung wurden aufgezeichnet.

P 28 1.117.894

[15] Es wurden Daten eines kleinen unbemannten Luftfahrzeugs gesammelt, um die verbleibende
Flugzeit vorherzusagen. Zu diesem Zweck wurden Motordrehzahl, Stromstärke, Spannung,
Temperatur und Steuerbefehle des Flugzeugs und Temperatur, Spannung und Stromstärke
der Batterie erfasst.

R 53 26.526.679

[16] Es wurden Daten aus simulierten Experimenten mit Satellitenbatterien gesammelt. Strom,
Spannung und Temperatur der Batterien wurden aufgezeichnet.

S 2 1.640

[17] Drei Sätze von 8 Elektrolytkondensatoren wurden kontinuierlich mit einer Frequenz von
100 MHz geladen und entladen. Jeder Satz wurde auf 10, 12 bzw. 14 V aufgeladen. Die Ströme
und Spannungen wurden gemessen und in regelmäßigen Abständen wurden Impedanzmessun-
gen durchgeführt.

P 24 1.842.432

[18] Es wurden Drücke, Durchflussmengen, Stromverbrauch, Vibrationen, Wirkungsgrad und
Temperaturen eines hydraulischen Prüfstandes erfasst. Das System führte konstante Lastzyklen
durch, wobei die Bedingungen für Kühler, Ventil, Pumpe und Speicher variierten.

P 1 2.205

[19] Getriebe wurden unter Belastungen von 0 bis 90 % und zwei Szenarien (heile und gebrochener
Zahn) simuliert. Als Messgrößen wurden Schwingungssignale erzeugt.

S 20 2.021.000

[20] Es wurde ein komplettes Produktionssystem aus mehreren Modulen betrachtet: Materialver-
sorgung, Lagerung, Dosierung, Abfüllung und Produktion. Mehr als 100 Messgrößen wurden
während des Betriebs aufgezeichnet.

P 1 11.900

[21] Ein Aufzug wurde mit IoT-Sensoren ausgestattet, um PdM für Aufzugstüren zu ermöglichen.
So wurden unter anderem Feuchtigkeit, Vibration und Umdrehungen erfasst.

R 1 112.000

[22] Von 20 Verpackungsmaschinen, die in verschiedenen Werken auf der ganzen Welt im Einsatz
sind, wurden keine Sensordaten, aber 154 verschiedene Alarmcodes aufgezeichnet.

R 20 59.000

[23] Die Degradation einer Maschine mit fünf Ausfallmodi wurde simuliert. Temperaturen, Dreh-
zahlen, Drehmomente und Verschleiß wurden als Betriebsdaten generiert.

S 10.000 10.000

[24] Der Datensatz umfasst Run-to-Failure-Versuche für eine kleine Flotte von Flugzeugtriebwerken
unter realistischen Flugbedingungen. Die Modellierung der Schadensausbreitung baut auf der
Strategie von [10] auf.

S 9 6.500.000

[25] Es wurde ein Fehlersimulationsmodell eines Dieselmotors entwickelt, um die Variation der
Druckkurven in den Zylindern und das Drehschwingungsverhalten der Kurbelwelle zu analy-
sieren. Die Motoren wurden mit einer konstanten Drehzahl betrieben, wobei insgesamt 3.500
verschiedene Fehlerszenarien unter vier Betriebsbedingungen betrachtet wurden.

S 1 3500

[26] Die Abnutzung von Filtern wurde mit einem automatischen Testaufbau untersucht. Es wurden
zwei Staubarten verwendet und die Staubzufuhr wurde variiert. Als Messgrößen wurden die
Durchflussmenge und die Druckdifferenzen aufgezeichnet.

P 100 78.800

[27] Eine rotierende Maschine wurde entwickelt, um Schwingungssignale unter sieben verschiedenen
Betriebsbedingungen zu erfassen.

P 1 2.162

DT – Datentyp (P – Prüfstand; S – Synthetisch; R – Real) E – Einheiten DP – Datenpunkte
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Insgesamt sind 26 Datensätze aufgeführt, die innerhalb von 15 Jahren veröffentlicht
wurden. Es ist auffällig, dass die Anzahl der Datenpunkte stark variiert. Dies ist mit
den unterschiedlichen Messaufbauten und Komponenten und den damit einhergehenden
Messgrößen zu begründen. Hier wird deutlich, dass die Entwicklung von allgemeinen
Verfahren für PdM durch die hohe Individualität der Datensätze erschwert wird. Dies wird
untermauert durch die großen Differenzen in Bezug auf die Einheiten: Zwischen einer bis
10.000 Einheiten sind die Datensätze einzuordnen. Ein weiteres Differenzierungsmerkmal
stellt der Datentyp dar, der einen erheblichen Einfluss auf die Generalisierbarkeit der
Verfahren hat. Die synthetischen Datensätze können bspw. nur bedingt für die Entwicklung
von realen PdM-Algorithmen verwendet werden, da diese durch das Simulationsmodell
begrenzt sind. Dieses Problem stellt sich bei den realen Datensätzen nicht; allerdings haben
diese jeweils weniger als 55 Einheiten, wodurch die Generalisierungsfähigkeit der Verfahren
nicht umfangreich geprüft werden kann. Gleiches gilt für die Prüfstanddatensätze: Lediglich
[26] sticht mit einer Anzahl von 100 Einheiten heraus, wobei hier die Datenmenge und damit
die Komplexität begrenzt zu sein scheint. Ein Vergleich ist aufgrund der Heterogenität
der betrachteten Komponenten und Systeme jedoch schwer. Deshalb wird an dieser Stelle
lediglich exemplarisch auf Datensätze eingegangen:

• Turbofan Engine Degradation Simulation Data Set[10]:

Dieser Datensatz enthält simulierte Degradierungsdaten von Mantelstromtriebwerken
und ist – gemessen an der Anzahl der Downloads und Veröffentlichungen – einer
der meistgenutzten Datensätze. Die Beliebtheit ist u.a. auf das Simulationsmodell
zurückzuführen, bei dem verschiedene Degradierungstypen und Einsatzbedingungen
abgebildet worden sind. Dadurch eignet sich der Datensatz für die Applikation von
maschinellen Lernverfahren. Für Verfahren, die im industriellen Kontext angewendet
werden sollen, eignet sich dieser Datensatz jedoch nur bedingt, da er simuliert ist und
die Daten stets monotone Trends aufweisen. Zudem werden zu den Datenpunkten
nur Merkmale angegeben, Untersuchungen zur Verwendung von Messreihen sind
daher nicht möglich.

• Capacitor Electrical Stress Data Set[17]:

Der Datensatz wurde mit einem Prüfstand aufgezeichnet und enthält zu jedem
Datenpunkt Messreihen. Dadurch könnten neue Verfahren entwickelt werden –
hier ist der Umfang des Datensatzes jedoch limitierend. Es wurden insgesamt 24
Kondensatoren getestet, weshalb die Generalisierungsfähigkeit von Verfahren lediglich
mit einer begrenzten Stichprobe getestet werden kann.

• COMFAULDA[27]:

Bei COMFAULDA wurde der Datensatz mit nur einem Prüfstand / System aufge-
zeichnet. Ziel war es, die Fehlerarten im Datensatz zu diversifizieren. Dazu wurden
verschiedene Fehler und Betriebsbedingungen herbeigeführt. Somit bietet dieser
Datensatz hinsichtlich der Fehlerarten ein neues Komplexitätslevel. Da jedoch nur
ein Prüfstand genutzt wurde, sind Aussagen über die Generalisierungsfähigkeit von
Verfahren nicht möglich.
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Zusammenfassend ist bezüglich der Komplexität festzuhalten, dass ein Entwicklungspoten-
zial hinsichtlich des Umfangs der aufgezeichneten Messgrößen (Messreihen statt Merkmale)
und der Fehlerbilder auszumachen ist. Einzelne Datensätze adressieren diese Aspekte;
jedoch besteht weiterhin Bedarf an komplexeren Datensätzen.

3.1.1.2 Visualisierung
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Abb. 3.1: Visualisierung der verfügbaren Datensätze in Bezug auf die Anzahl der Einheiten
und Datenpunkte pro Einheit [6]

Unter der Annahme, dass die Messwerte Rückschlüsse auf den Zustand der Bauteile
zulassen, sind zwei Faktoren für die Konzeption, Entwicklung und Bewertung von PdM-
Algorithmen wichtig:

1. Die Anzahl der untersuchten Einheiten: Je mehr Einheiten zum Testen des Al-
gorithmus verwendet werden, desto besser kann dessen Funktionalität überprüft
werden.
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2. Die durchschnittlich verfügbaren Datenpunkte pro Einheit: Eine genaue Beurteilung
des Zustands ist nur bei ausreichend hoher Anzahl von Datenpunkten möglich.
Verändert sich etwa die Kontaktfläche eines Relais innerhalb von wenigen 100
Schaltzyklen, müssen die Betreiber frühzeitig Rückschlüsse darauf ziehen können.

Angesichts dessen wurden die Datensätze hinsichtlich dieser beiden Faktoren in Abb. 3.1
dargestellt. Die Achsen sind logarithmisch skaliert und die einzelnen Datensätze mit der
jeweiligen Referenz markiert. Weiterhin wurde der im Rahmen dieser Arbeit generierte
Datensatz „Phoenix Contact Relay-Dataset“ (PCR) eingefügt [28]. Es ist deutlich zu
erkennen, dass dieser heraussticht: Lediglich [10] und [23] enthalten mehr Einheiten und
[24] und [15] mehr Datenpunkte pro Einheit. Daraus ergibt sich ein Desiderat in Bezug
auf die verfügbaren Datensätze. Abgesehen von PCR umfasst kein Datensatz sowohl eine
große Menge an Einheiten als auch viele Datenpunkte pro Einheit.

3.1.2 Verfahren zur prädiktiven Instandhaltung
Der Forschungsstand zu PdM wird in zwei Teile untergliedert. Zunächst wird generell auf
PdM mittels maschineller Lernverfahren eingegangen. Im Anschluss werden Verfahren zur
Instandhaltung von Relais vorgestellt.

3.1.2.1 Prädiktive Instandhaltung mittels maschineller Lernverfahren

Durch PdM kann sowohl ein ökonomischer als auch ein ökologischer Nutzen gestiftet
werden. Diese Vorteile führten zu einer hohen Anzahl an Forschungsvorhaben zu dieser
Thematik, die insbesondere durch Unternehmen angetrieben werden. Ein Überblick über
den Forschungsstand wird über die Vorstellung mehrerer Übersichtsarbeiten gegeben.
Anschließend wird im Speziellen auf zwei Methodiken eingegangen, die häufig in ähnlicher
Weise genutzt und im Kontext dieser Arbeit auf Relais übertragen werden sollen.

Übersicht

Lei et al. präsentieren in [29] eine vier Schritte umfassende Systematisierung der unter-
schiedlichen Vorgehensweisen aus über 270 wissenschaftlichen Arbeiten:

1. Datenakquise

Der erste Schritt ist die Datenakquise. Dafür können verschiedene Sensoren verwen-
det werden, bspw. Beschleunigungssensoren, akustische Sensoren, Thermosensoren
und Stromsensoren. Mit diesen müssen Messwerte über die gesamte Betriebsdauer
aufgezeichnet werden.

2. Erfassen von Zustandsindikatoren

Darauf folgt im zweiten Schritt die Extraktion von Merkmalen aus den jeweiligen
Messdaten. Ein Beispiel hierfür sind physikalische Merkmale, wie die maximale
Spannung einer Zeitreihe.
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3. Definition von Degradierungsstufen

Maschinen degradieren nicht immer linear. Deshalb wird die Betriebsdauer im
dritten Schritt in verschiedene Degradierungsstufen unterteilt. Dadurch ist es z.B.
möglich, eine Lebensphase mit geringen Änderungen in den Merkmalen als eine
eigene Degradierungsstufe zu definieren.

4. Schätzung der „Remaining useful lifetime“ (dt. nutzbare Restlebensdauer) (RUL)

Schlussendlich wird im vierten Schritt die RUL geschätzt. Dies kann durch verschie-
dene Verfahren erfolgen, die Lei et al. in vier Kategorien unterschieden:

(a) Statistische Modellierungen

Im Rahmen einer statistischen Modellierung wird die Wahrscheinlichkeitsver-
teilung eines Ausfalls über die Betriebsdauer des Bauteils bestimmt. Dazu sind
empirische Daten notwendig. Die Mehrheit der von Lei et al. betrachteten
Arbeiten sind dieser Kategorie zuzuordnen.

(b) Physikalische Modellierungen

Durch eine physikalische Modellierung können Rückschlüsse auf die Degra-
dierung und damit auf die RUL eines Bauteils gezogen werden. Dazu ist ein
detailliertes Verständnis der Degradierungsmechanismen Voraussetzung, damit
eine ebenso detailliertere Modellierung erfolgen kann. Als Beispiel ist die Paris-
Erdogan-Gleichung aufzuführen, mit der das Wachstum von Rissen beschrieben
wird [30].

(c) Maschinelle Lernverfahren

Durch maschinelle Lernverfahren ist es möglich, komplexe, nicht lineare Zusam-
menhänge abzubilden. Deshalb eignen sich diese Verfahren, um eine Assoziation
zwischen den extrahierten Merkmalen und der RUL der Bauteile zu bilden.
Der Vorteil gegenüber der physikalischen Modellierung liegt darin, dass kein
detailliertes Verständnis des Bauteils Voraussetzung ist. Stattdessen basiert
die Modellierung auf dem Training der maschinellen Lernverfahren mit den
Messdaten.

(d) Hybride

Weiterhin ergibt sich die Möglichkeit, Verfahren der bereits genannten Kate-
gorien zu kombinieren, wodurch ein Hybrid entsteht. So können die jeweiligen
Vorteile genutzt werden. Die Fusionsstrategien dafür sind unterschiedlich.

In [31] werden durch Ran et al. drei Instandhaltungsstrategien voneinander unterschieden:
Bei der reaktiven Instandhaltung werden die Komponenten bis zu ihrem Ausfall betrieben,
erst danach findet eine Instandhaltung statt. Diese Strategie ist dann empfehlenswert,
wenn die Kosten der Instandhaltung die Kosten durch einen Fehler deutlich übersteigen.
Eine weitere Strategie ist die präventive Instandhaltung. Hier sind die Kosten für einen
Fehler so hoch, dass die Instandhaltung in regelmäßigen Intervallen durchgeführt wird,
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sodass das Auftreten von Fehlern reduziert wird. Eine typische Umsetzung dieser Instand-
haltungsstrategien ist die statistische Modellierung nach Lei et al. Abschließend wird als
dritte Strategie PdM aufgeführt. Diese ist empfehlenswert, wenn die Kosten für Fehler und
eine Instandhaltung ähnlich sind. Durch individuelle Bewertung der Komponenten werden
Rückschlüsse auf deren Zustand gezogen. Auf diesem Weg wird eine Instandhaltung kurz
vor dem Fehler ermöglicht. Diese Strategie wird auch konditionsbasierte Instandhaltung
genannt.

An dieser Stelle tritt eine erste Unstimmigkeit in mehreren Arbeiten auf, die den For-
schungsstand zu PdM zusammenfassen: In [32] werden PdM und die konditionsbasierte
Instandhaltung klar voneinander getrennt, wobei letztere als Erweiterung von PdM mit
automatischer Auslösung der Instandhaltung definiert wird. Cinar et al. unterscheiden
ebenfalls zwischen der prädiktiven und konditionsbasierten Instandhaltung [33]. Hier
wird mit der konditionsbasierten Instandhaltung jedoch eine konstante Überwachung der
Komponenten bezeichnet, auf die PdM durch Prädikationen aufbaut. Bei der Betrachtung
weiterer Arbeiten werden die Unstimmigkeiten in der Begriffsdefinition zunehmend größer,
was auf die aktuell hohe Beliebtheit des Forschungsthemas PdM zurückzuführen ist.

Ran et al. schlagen eine Taxonomie zur Einordnung der Forschungsarbeiten zum Thema
PdM vor [31]. Auf oberster Ebene wird zunächst zwischen der Systemarchitektur, dem
Zweck und Ansätzen unterschieden. Letztere sind im Kontext dieser Arbeit relevant,
weshalb nicht weiter auf die Systemarchitektur und den Zweck eingegangen wird. Die
Ansätze werden in drei Kategorien unterteilt:

• Basierend auf Wissen

Bei diesen Ansätzen werden Expertenwissen und deduktive Schlussfolgerungen
genutzt, um eine Fehlerdiagnose bzw. -prognose zu realisieren. Dementsprechend
ist ein tiefgehendes und umfassendes Wissen notwendig, was für die komplexen
Phänomene, die in realen Anwendungen auftreten können, nicht immer erfüllt
werden kann. Im Kontext dieser Arbeit soll dieses Wissen durch ein maschinelles
Lernverfahren modelliert werden. Daher sind wissensbasierte Ansätze nicht relevant.

• Basierend auf traditionellen maschinellen Lernverfahren

Ziel dieser Ansätze ist es, Wissen über eine Komponente durch ein maschinelles
Lernverfahren zu erlernen. Die traditionellen Lernverfahren umfassen ANN, Support
Vektor Maschinen, Entscheidungsbäume und die Nächste-Nachbarn-Klassifikation.
Eine typische Anwendung ist die Schätzung der RUL.

• Basierend auf komplexen ANN

Durch komplexe „Artificial neural network“ (dt. künstliches neuronales Netz) (ANN)
kann Wissen selbstständig erlernt werden. Ein „Autoencoder“ (AE) kann bspw. ge-
nutzt werden, um eine Encodierung und Decodierung von Eingangsdaten zu erlernen
(siehe Abs. 3.2.4). Damit können die Daten in eine latente Darstellung transformiert
werden. Im Kontext von PdM kann ein Autoencoder zu zwei Zwecken verwendet
werden: Zum einen kann der Rekonstruktionsfehler genutzt werden, um Anomalien zu
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erkennen. Zum anderen kann durch die latente Darstellung die Merkmalsextraktion
ersetzt werden, sodass Regressions- und Klassifikationsaufgaben erledigt werden
können. Mit „Convolutional neural network“ (dt. faltendes neuronales Netz) (CNN)
(vgl. Abs. 3.2.3.2) sind ähnliche vollautomatische Merkmalsextraktionen möglich.
Weiterhin können „Recurrent neural network“ (dt. rekurrentes neuronales Netz)
(RNN) genutzt werden. Diese zeichnen sich dadurch aus, dass eine Art Gedächtnis
implementiert wurde. Für eine Schätzung kann dementsprechend die Historie einbe-
zogen werden. Durch „Generative adversarial networks“ (dt. erzeugende gegnerische
Netzwerke) (GAN) können synthetische Daten erzeugt werden, indem zwei ANN
gegeneinander trainiert werden. Das eine ANN muss möglichst realitätsnahe syntheti-
sche Daten generieren und das andere muss diese von realen Daten unterscheiden. So
ist es möglich, Datensätze auszubalancieren. Weiterhin eignen sie sich, um Anomalien
zu erkennen. Daneben präsentieren Ran et al. Ansätze, bei denen Transferlernen
genutzt wird, um das Wissen von einem auf ein anderes System zu übertragen.
Schlussendlich werden Verfahren aufgeführt, bei denen „Deep Reinforcement Lear-
ning“ genutzt wird. D.h. ein System wird von einem neuronalen Netz beobachtet
und gesteuert. Damit kann das Management der Instandhaltung automatisiert bzw.
optimiert werden.

Serradilla et al. gehen in [34] weiter auf die Ansätze ein, die auf komplexen ANN basieren.
Dabei werden diese in ein mehrschrittiges Modell eingeordnet. Im ersten Schritt werden
Anomalien in Zeitreihen erkannt. Dazu empfehlen sich – in Abhängigkeit zu den verfügbaren
Labeln – unterschiedliche Verfahren. Wenn die Daten gelabelt sind, dann kann eine
Klassifikation durchgeführt werden. Wenn nur „heile“ Daten gelabelt sind, dann kann bspw.
der Rekonstruktionsfehler eines Autoencoders zur Erkennung von „nicht heilen“ Daten
genutzt werden. Sind die Daten nicht oder nur teilweise als „heile“ gelabelt, dann können
ebenfalls Autoencoder genutzt werden. Ebenso empfehlen Serradilla et al. auch Cluster-
Algorithmen, RNN zur Regression und generative Verfahren wie GAN. Im zweiten Schritt
findet eine Diagnose statt, in der der Grund für den Fehler bestimmt wird. Dazu können
– sofern sie vorliegen – direkt die Klassifikationsergebnisse aus der Anomalie Erkennung
genutzt werden. Häufig ist die Art der Anomalie jedoch nicht bekannt, weshalb über
Vergleiche Gruppen von Anomalien gebildet werden können, die dann einen Fehlergrund
darstellen. Im dritten Schritt wird eine Prognose durchgeführt. Diese besteht typischerweise
aus der Schätzung der RUL. Final werden im vierten Schritt Handlungen ausgeführt, durch
die eine Minderung der Fehlerauswirkungen erzielt wird. Dieser Schritt entspricht dem
von Ran et al. beschriebenen Verfahren „Deep Reinforcement Learning“.

Die zuvor aufgezeigten Übersichtsarbeiten verdeutlichen, dass im Kontext von PdM aktu-
ell mit einer so hohen Geschwindigkeit Fortschritte erzielt und neue Subthemengebiete
erschlossen werden, dass der Stand der Forschung nur als Momentaufnahme festzuhalten
ist. Im Rahmen dieser Arbeit werden deshalb exemplarische Arbeiten zu zwei übergeord-
neten Anwendungsbereichen von maschinellen Lernverfahren im Kontext der prädiktiven
Instandhaltung aufgeführt: Zum einen die Schätzung der Restlebensdauer, auf die in allen
Übersichtsarbeiten eingegangen wurde. Zum anderen die Erkennung von Anomalien, die
aufgrund neuer unüberwachter Lernverfahren aktuell beliebt ist.
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Nutzbare Restlebensdauer

Die Schätzung der „Remaining useful lifetime“ (dt. nutzbare Restlebensdauer) (RUL)
ist ein zentraler Inhalt von diversen Arbeiten zum Thema Prädiktive Instandhaltung.
Dies ist u.a. auf den Datensatz „Turbofan Engine Degradation Simulation Data Set“ [10]
zurückzuführen, welcher von der NASA im Rahmen der ersten Konferenz für Prognostik
und Verschleißmanagement veröffentlicht wurde. Teil der Konferenz war die PHM08-
Challenge, bei der die Teilnehmer mit beliebigen Verfahren die RUL von Triebwerken
schätzen sollten.

In [35] wird ein Lösungsansatz für die PHM08-Challenge vorgestellt, bei dem die Aus-
fallphysik ohne Annahmen oder technisches / physikalisches Fachwissen modelliert wird.
Dazu wird eine Regression durchgeführt, für die zunächst ein „Multilayer Perceptron“ (dt.
mehrschichtiges Perzeptron) (MLP) verwendet wird. Dabei werden für das Training die
Messdaten der Betriebszyklen als Eingangs- und die RUL als Ausgangsdaten verwendet.
Da zu Beginn der Betriebsdauer nur geringe Änderungen in den Daten auszumachen sind,
wird die RUL auf maximal 130 begrenzt.

(a) Ohne RUL-Begrenzung (b) Mit RUL-Begrenzung

Abb. 3.2: RUL-Schätzungen mittels MLP [35]

In Abb. 3.2 ist die Verbesserung durch die Begrenzung der RUL zu erkennen: Links wurde
ohne und rechts mit Begrenzung trainiert. Die Prädiktionen sind rot und die Zielgrößen blau
dargestellt. Die Abweichung mit Begrenzung ist – besonders zu Beginn der Betriebsdauer –
geringer. In beiden Fällen ist jedoch eine starke Volatilität der Schätzungen zu beobachten.
Dies ist auf die verrauschten Sensordaten zurückzuführen. Um dieses Problem zu beheben,
wird das MLP durch ein RNN ersetzt. Diese Art von ANN hat eine Gedächtnisfunktion und
kann die Historie der Eingangsdaten für eine Prädiktion berücksichtigen. Auf diesem Weg
ist es möglich, das Rauschen zu unterdrücken. Eine weitere Verbesserung der Prädiktionen
wird durch den Einsatz eines Ensembles von RNN erzielt. D.h. mehrere RNN werden
trainiert und von deren Prädiktionen wird der Mittelwert als endgültige Prädiktion
genutzt.

In Abb. 3.3 wird ersichtlich, dass die Volatilität der RUL-Schätzungen durch den Einsatz
eines RNN-Ensembles reduziert wird. In der Grafik sind dieselben Eingangsdaten wie in
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Abb. 3.3: RUL-Schätzung eines RNN [35]

Abb. 3.2 verwendet worden. Mit diesem Verfahren erregte Heimes viel Aufmerksamkeit,
da es ihm gelang, die RUL mit einem ANN zu schätzen und den zweiten Platz in der
Herausforderung zu belegen. Die Veröffentlichung stammt aus dem Jahr 2008. Seitdem
wurden viele neue Verfahren zur Schätzung der RUL präsentiert, die Grundgedanken sind
jedoch ähnlich.

Kim und Sohn präsentierten einen CNN-basierten „Multi-Target-Learning“-Ansatz, bei
der die Regression der RUL gleichzeitig mit einer Klassifizierung des Gesundheitszustandes
erlernt wird [36]. Die Gesundheitszustände wurden vor dem Training manuell definiert.
Durch das gleichzeitige Lernen von zwei Zielgrößen sollen deren Interdependenzen genutzt
werden, um allgemeine Merkmale in dem gemeinsamen Netzwerk zu extrahieren und somit
die Performanz zu verbessern. Im Vergleich zu anderen Verfahren konnte eine hervorragende
Leistung erzielt werden – bei gleichzeitig verringerter Rechenkomplexität im Vergleich zu
RNN-basierten Ansätzen.

Song et al. schlagen in [37] ein Ensemble-Framework vor, das sowohl CNN als auch RNN
kombiniert, um die RUL unter Berücksichtigung mehrerer Zeitfenster genau vorherzusagen.
Dazu werden in der Trainingsphase mehrere Basismodelle mit unterschiedlich großen
Zeitfenstern trainiert, um verschiedene zeitliche Abhängigkeiten zwischen Merkmalen
zu erfassen. Dadurch wird der Trainingsfehler gegenüber herkömmlichen Ansätzen mit
statischen Zeitfenstergrößen reduziert. In der Testphase werden die Basismodelle ent-
sprechend der Länge der Laufzeit angewendet und die Ergebnisse mit einer gewichteten
Durchschnittsmethode zusammengefasst. Ein ähnliches Verfahren stellen Zhang et al. in
[38] vor: Sie nutzen ebenfalls eine Kombination aus CNN und RNN, um die RUL von
Lithium-Ionen-Batterien zu schätzen.

Die Verwendung von maschinellen Lernverfahren zur Schätzung der RUL ist für diverse
Datensätze bereits etabliert. Ein weiterer häufig verwendeter Datensatz ist der FEMTO-
Lagerdatensatz [12], der aus 17 Run-to-Failure-Daten von Kugellagern besteht. Für diesen
Datensatz wurden verschiedene Ansätze entwickelt, in [39] und [40] werden Support Vektor
Maschinen zur Schätzung der RUL verwendet, in [41] wird die RUL durch ein ANN prädi-
ziert. Grundsätzlich ähneln sich die Vorgehensweisen und unterscheiden sich zumeist nur in
Details der Topologie, der verwendeten ANN oder zusätzlichen Datenverarbeitungsschritten.
Besonders letzteres ist wesentlich abhängig vom verwendeten Datensatz.
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Anomalie Erkennung

Die RUL muss für das Training bekannt sein, was wiederum Lebensdauertests voraussetzt.
In realen Anwendungen stellt dies eine Herausforderung dar, denn nicht jedes System
kann bis zum Ausfall betrieben werden. Zudem ergeben sich in komplexeren Systemen
eine Vielzahl von möglichen Ausfallmodi. Deshalb wurden Verfahren entwickelt, mit denen
Anomalien in den Betriebsdaten eines Systems erkannt werden können. Im Fokus aktueller
Arbeiten stehen oft Autoencoder, mit denen bedeutende Fortschritte bei der Erkennung
von Anomalien erzielt wurden.

Ein Beispiel für eine erfolgreiche Anwendung eines Autoencoders ist in [42] beschrieben.
Dort wurde ein Autoencoder nur mit korrekten Arbeitsmaschinendaten von Produkti-
onspressen trainiert. So ist eine Überwachung der Produktionspresse möglich und Ma-
schinenausfälle können vermieden werden. Dabei übertrifft der Autoencoder statistische
halb-überwachte Anomalie-Erkennungsmodelle sowie traditionelle maschinelle Lernmodel-
le. Zudem wurde für Diagnosezwecke der Encoder-Teil des Autoencoders verwendet, um
einen Merkmalsvektor zu erzeugen, durch den – unter Verwendung weiterer Verfahren –
eine Isolierung von verschiedenen Fehlertypen möglich war. Überdies wurde ein visuelles
Diagnosewerkzeug entwickelt, das anomale Signale hervorhebt, damit Fachleute bei der
Anwendung ihres Fachwissens unterstützt werden können.

Alternativ kann ein ANN zur Erkennung von Anomalien verwendet werden, indem die
Abweichung von Prädikationen und Messwerten betrachtet werden. Analog zu Autoen-
codern werden Anomalien mit einem Schwellwert, der sich auf die Abweichung bezieht,
erkannt. Beispiele hierfür sind das in [43] von De Benedetti et al. genutzte ANN, mit dem
Anomalien von Photovoltaik-Anlagen erkannt werden oder das in [44] verwendete ANN
zur Identifizierung von Anomalien hinsichtlich des Energieverbrauchs von Drucklufterzeu-
gungssystemen.

3.1.2.2 Instandhaltung von elektromechanischen Relais

Zum Stand der Forschung / Technik bezüglich der Instandhaltung von elektromechanischen
Relais wird zunächst erörtert, wie die Instandhaltung von Relais aktuell in der Industrie
geplant wird. Dazu wird auf eine statistische Modellierung eingegangen, mit der die Kunden
die Wartungsintervalle der Relais anpassen können. Darauf aufbauend wird eine Lösung
zur Instandhaltung von Relais vorgestellt, die zur Patentierung angemeldet wurde. Im
Weiteren wird auf Publikationen eingegangen, bei denen die Applikation von ANN im
Kontext von PdM vorgestellt wird. Schlussendlich werden die Ergebnisse meiner nicht
veröffentlichten Masterarbeit [45] erläutert, die in Kooperation mit Phoenix Contact erstellt
wurde und an diese Arbeit anknüpft.

Doch zuvor wird kurz auf das Projekt „Digitaler Zwilling“ von Phoenix Contact und
CADFEM eingegangen, da es bei der Recherche nach Instandhaltung für Relais unum-
gänglich ist. Das Projekt ist als physikalische Modellierung nach Lei et al einzuordnen:
Während des Betriebs werden Messdaten eines Relais dazu verwendet, einen virtuellen
Klon des Relais zu simulieren. Beim Klon handelt es sich um ein transientes Modell, das in
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drei Submodelle unterteilt ist. Mit einem Modell werden die mechanischen Komponenten,
wie Anker und Feder des Relais, simuliert, mit einem der Magnetkreis und die Stromquelle
und mit einem der Lichtbogen. So können aus den Messdaten Zustandsgrößen, wie die
Lichtbogenenergie, bestimmt werden. Mit Analyseprogrammen (die nicht weiter erläutert
wurden) kann schlussendlich die RUL geschätzt werden [46]. Aus dem Projekt geht keine
detaillierte Veröffentlichung hervor, weshalb es im Rahmen dieser Arbeit nicht weiter
beachtet wird.

Statistische Modellierung

Bei einer statistischen Modellierung wird eine Ausfallverteilungsfunktion bestimmt, die
die Ausfallwahrscheinlichkeit über die Betriebsdauer von Bauteilen angibt. Im Kontext
von Relais könnte mit einer solchen Funktion bspw. die Ausfallwahrscheinlichkeit bei einer
Betriebsdauer von 50.000 Schaltzyklen angegeben werden.

Grundlegend für die Modellierung ist die Wahl der Wahrscheinlichkeitsverteilung. Bei
elektromechanischen Bauteilen wird häufig die Weibull-Verteilungsfunktion verwendet [47].
Diese ist wie folgt definiert [48]:

F (x) = 1 − e−(θx)k mit x, θ, k ∈ R x ≥ 0, k > 0, θ > 0. (3.1)

Die Funktion kann durch zwei Parameter an das jeweilige Bauteil angepasst werden: k ist
der Formparameter und θ der Skalenparameter. Für die Anpassung sind Informationen
zur Verteilung der Lebensdauern notwendig. Die Weibull-Verteilung wird im Kontext
von Relais genutzt, um die Ausfallverteilungsfunktion zu schätzen. Mit dieser wiederum
wird der B10-Wert bestimmt, welcher die Betriebsdauer angibt, zu der 10 % der Relais
wahrscheinlich ausgefallen sind. Anwender können so die Wartungsintervalle planen.

Patente

In [49] und [50] werden Systeme beschrieben, mit denen der Verschleiß von elektrischen
Schalteinheiten diagnostiziert werden kann. Die beschriebene Methodik ist als Ähnlich-
keitsvergleich einzuordnen. Als Messgröße wird die Spulenspannung genutzt, da diese sich
über die Betriebsdauer verändert.

Aus den Zeitreihen der Spulenspannung beim Ausschalten des Relais werden Merkmale
extrahiert, die in Abb. 3.4 markiert sind. Die Systeme beruhen auf mehreren Vergleichen,
zum einen werden die Merkmale mit Referenzwerten verglichen und zum anderen die Mess-
reihen mit Referenzmessreihen miteinander. Die Referenzwerte werden vor Inbetriebnahme
des Systems zu zwei Verschleißzuständen (neu und verschlissen) aufgezeichnet. Die Werte
für neu werden für jedes Relais individuell bestimmt: Wenn im neuwertigen Zustand die
Messreihe stabil ist, d.h. keine Änderung über mehrere Schaltzustände auszumachen ist,
dann wird diese abgespeichert. So wird sichergestellt, dass kein Ausreißer als Referenz
gewählt wird. Die Referenzwerte für den Zustand verschlissen können nicht individuell
erfasst werden, deshalb werden Daten von bereits degradierten Relais herangezogen. Von
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Abb. 3.4: Spannungsverlauf der Steuerseite beim Öffnen des Kontakts [49]

diesen werden ebenfalls Merkmale extrahiert, wobei die Verläufe über die Betriebsdauer
durch Polynome ersten Grades approximiert werden. Weiterhin wird eine für den Zustand
verschlissen repräsentative Messkurve gespeichert.

Über Vergleiche zu den Referenzwerten wird im Betrieb der Verschleiß der Relais klas-
sifiziert, sodass u.a. neue, gebrauchte und verschlissene Relais unterschieden werden
können.

Maschinelle Lernverfahren

Die Anwendung von maschinellen Lernverfahren zur prädiktiven Instandhaltung von
Relais wurde bereits mehrfach untersucht. Nachfolgend werden die Arbeiten chronologisch
aufgeführt:

Phoenix Contact unterstützt seit 2018 Forschungsvorhaben zur Alterungsanalyse von
elektromechanischen Relais mit maschinellen Lernverfahren. Im Rahmen einer Studien-
arbeit wurden Kontaktspannung und Spulenstrom von 17 Relais bis zu deren Ausfall
aufgezeichnet [51]. Diese Daten werden genutzt, um ein CNN für eine Klassifikation zu
trainieren. Dafür werden die Daten in zehn Klassen (die jeweils ein zehn Prozent großes
Restlebensdauerintervall umfassen) unterteilt. Mit dieser Methodik kann gezeigt werden,
dass eine Unterscheidung der Degradierungsstufen mittels maschinellen Lernverfahren
möglich ist.

Daran anschließend habe ich meine nicht veröffentlichte Masterarbeit verfasst [45]. Dafür
wurde der Testaufbau grundlegend neu entwickelt, sodass ein wesentlich größerer Daten-
satz von mehr als 100 Relais für die Untersuchungen verwendet werden konnte. Dabei
wurde zunächst die Erkenntnis gesammelt, dass Relais nicht nur monotone Trends in
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den Daten aufweisen, sondern auch spontan ausfallen können. Weiterhin wurden folgende
Forschungsfragen beantwortet:

• Ist der Verschleiß von Relais anhand der Ströme und Spannungen in Steuer- und
Lastkreis erkennbar?

Im Rahmen dieser Untersuchung wurde geprüft, ob eine Prädiktion der RUL grund-
sätzlich möglich ist. Die Resultate zeigen, dass zwischen neuen und verschlissenen
Relais mit Hilfe der Ströme und Spannungen durch diverse maschinelle Lernverfahren
mit mehr als 90 % Genauigkeit unterschieden werden kann. Somit ist der Verschleiß
von Relais durch die Messgrößen erkennbar.

• Welche Eigenschaften muss der Datensatz erfüllen?

Zunächst wurde untersucht, welche Messgrößen notwendig sind. Dazu wurden ver-
schiedene maschinelle Lernverfahren mit unterschiedlichen Kombinationen von Mess-
größen und extrahierten Merkmalen evaluiert. Mit ANN können sowohl Messreihen
als auch Merkmale als Eingangsdaten genutzt werden. Wichtig sind die Informatio-
nen aus Spulenstrom und Kontaktspannung beim Ein- und Ausschaltvorgang. Im
Weiteren wurde beobachtet, dass es nicht notwendig ist jeden Schaltvorgang eines
Relais für das Training zu nutzen.

Abschließend wurde die originale Abtastrate von 200 kHz reduziert, um zu untersu-
chen, welche Abtastrate notwendig ist. Dafür wurden maschinelle Lernverfahren mit
Daten in verschiedenen Abtastraten trainiert. Als Ergebnis ist festzuhalten, dass
ab 12,5 kHz keine relevante Performanz Verbesserung erreicht wurde. Durch eine
qualitative Analyse der Messgrößen konnte diese Erkenntnis verifiziert werden.

• Welche maschinellen Lernverfahren eignen sich zur Alterungsanalyse?

Alle Lernverfahren eignen sich, um die RUL der Relais mit eindeutigen Trends
zu schätzen. Durch Glättung der Schätzungen können die Varianz und damit der
mittlere quadrierte Fehler signifikant reduziert werden, sodass auch simple Verfahren
wie lineare Modelle eine akkurate RUL-Schätzung ermöglichen. Für Relais, die
spontan ausfallen, sind lediglich Trends in den Schätzungen auszumachen. Diese
sind jedoch mit einem massiven Fehler behaftet, sodass die Instandhaltung auf Basis
dieser Schätzungen nicht durchgeführt werden kann.

Insgesamt kann mit den Ergebnissen meiner Masterarbeit das Potenzial von maschinellen
Lernverfahren im Kontext der Instandhaltung von Relais aufgezeigt werden. Die Varianz
der Lebensdauern in Kombination mit den ungenügend geschätzten RUL einiger Relais
sind jedoch Anlass, das Forschungsthema im Rahmen dieser Arbeit weitergehend zu
untersuchen.

Eine Arbeitsgruppe hat zu dem Thema bereits drei Veröffentlichungen publiziert. In der
ersten Veröffentlichung [52] wurden sechs Relais mit unterschiedlichen Lastspannungen
betrieben, um die Degradierung zu untersuchen. Als Ergebnis wird – analog zu dieser
Arbeit (vgl. Abschn. 2.2) – zwischen zwei Fehlermodi unterschieden:
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• „stuck opened“: Die Kontakte des Relais schließen nicht.

• „stuck closed“: Die Kontakte des Relais öffnen nicht.

Weiterhin werden die Mechanismen erörtert, die zu den Fehlermodi führen. Zudem wird in
der Arbeit ein Ausblick gegeben, dass Modelle zur Abbildung der Fehlermodi entwickelt
werden müssen, um PdM realisieren zu können. Dabei betonen die Autoren die Notwendig-
keit eines simplen Verfahrens, damit sowohl eine lokale als auch eine dezentrale Schätzung
durchgeführt werden kann.

Die Ergebnisse bezüglich der Fehlermodi decken sich mit denen aus dieser Arbeit. Auch dem
vorgeschlagenen Vorgehen bezüglich PdM wird grundsätzlich gefolgt. Die Veröffentlichung
[52] bestätigt somit unabhängig die Erkenntnisse, die zur Degradierung im Rahmen dieser
Arbeit gesammelt wurden.

In [53] wird das Verfahren „Electromagnetic Relay Useful Actuation“ (EMRUA) für die
PdM von Relais unter Verwendung von maschinellen Lernverfahren vorgestellt. Inhaltlich
ist diese Veröffentlichung ähnlich zu [4], in der ausführlicher auf mehrere Aspekte zu
dem Verfahren EMRUA eingegangen wird. Zunächst werden die Fehlermodi und deren
Mechanismen ausführlich erläutert, wobei ein zu hoher Kontaktwiderstand als vierter
Fehlermodi hinzugefügt wurde. Darauf aufbauend wird das Verfahren EMRUA vorgestellt,
mit dem die RUL von Relais geschätzt werden kann.

Das Vorgehen bei EMRUA ist klassisch für maschinelles Lernen. Zunächst werden in Schritt
(I) Messreihen aufgezeichnet. Diese Messreihen werden in Schritt (II) genutzt, um Merkmale
zu extrahieren. Dabei wird in zeitbasierte und statistische Merkmale unterschieden, letztere
sind z.B. Varianz, Minimum und Maximum. Die Merkmale werden auf ein [0, 1] Intervall
skaliert – ein typisches Vorgehen, um das Training von ANN zu verbessern. Im Schritt (III)
wird eine Auswahl von Sequenzen durchgeführt. Diese ist notwendig für das verwendete
ANN, bei dem es sich um ein „Temporal Convolutional Network“ handelt, welches für
eine Schätzung die Historie der Merkmale berücksichtigen kann. Die Historie wird durch
die ausgewählten Sequenzen angegeben. Dabei werden bei EMRUA drei verschiedene
Indizierungen genutzt:

• „Growing-Sequence“: Die genutzte Sequenz wächst mit der Betriebsdauer an, muss
aus technischen Gründen jedoch auf eine maximale Länge begrenzt werden.

• „Linear“: Die genutzte Sequenz hat eine konstante Länge; die Indizes über die
Betriebsdauer sind äquidistant verteilt.

• „Exponentiell“: Die genutzte Sequenz hat eine konstante Länge; die Indizes über die
Betriebsdauer sind so verteilt, dass der Abstand exponentiell abnimmt.

Im Schritt (IV) werden die Sequenzen genutzt, um das ANN zu trainieren und die RUL zu
schätzen. In diesem Fall wird die RUL als „Remaining useful actuations“ bezeichnet, wobei
es sich trotzdem um eine lineare Modellierung handelt, mit der die absolute Anzahl der
verbleibenden Schaltzyklen eines Relais angegeben wird. Für die Schätzung wird zusätzlich
ein Konfidenzintervall angegeben.
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Abb. 3.5: Übersichtsgrafik der einzelnen Teilkomponenten von EMRUA[4]

Mit EMRUA gelang es, für einen Fehlermodi die RUL präzise zu schätzen und somit das
Potenzial für PdM von Relais herauszuarbeiten. Die Ergebnisse sind teilweise deckungs-
gleich mit denen meiner Masterarbeit: In beiden Arbeiten konnte mittels extrahierten
Merkmalen aus den Messreihen und einem ANN, das die Historie für eine Prädiktion
berücksichtigen kann, nachgewiesen werden, dass eine präzise Schätzung der RUL für
Relais mit eindeutigen Trends möglich ist. Die Arbeiten unterscheiden sich jedoch hinsicht-
lich der Anzahl der getesteten Relais. Bei [4] umfasst der Datensatz 16 Relais, in meiner
Masterarbeit sind es 100. Weiterhin wurden die Relais im Rahmen meiner Masterarbeit
mit verschiedenen Lasten gealtert, dabei ergaben sich – wie auch in [52] erwähnt – zwei
Fehlermodi. In [4] wird nur einer der beiden Fehlermodi berücksichtigt; praktisch treten
jedoch beide auf, weshalb EMRUA nur für einen Teil der Relais anwendbar ist. Für den
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anderen Teil der Relais ergibt sich ein Problem mit der zugrundeliegenden Annahme einer
linearen Degradierung, darauf wird in Abschn. 3.5 detailliert eingegangen.

3.1.3 Semi-überwachtes Lernen
Semi-überwachtes Lernen stellt einen Teilbereich des maschinellen Lernens dar, bei dem
mit Daten trainiert wird, die sowohl gelabelt als auch ungelabelt sind. Damit können
Datensätze verwendet werden, bei denen nicht alle Label bekannt sind. In Bezug auf
die Analyse der Degradierung von Relais ist dieser Ansatz von besonderem Interesse, da
hier mit vielen Millionen Schaltzyklen trainiert werden muss und deren Label unbekannt
sind.

Van Egelen et al. erarbeiteten 2019 eine Taxonomie zur semi-überwachten Klassifizierung
[54]. Auf oberster Ebene wird zwischen induktiven und transduktiven Methoden unterschie-
den, wobei transduktive lediglich auf den Trainingsdatensatz beschränkt sind, weshalb diese
im Weiteren nicht betrachtet werden. Die induktiven Methoden werden in unüberwachte
Vorverarbeitung, intrinsisch semi-überwacht und „Wrapper-Methoden“ unterschieden. Die
unüberwachte Vorverarbeitung zielt darauf ab, Merkmale zu extrahieren, die Daten zu
clustern oder initiale Parameter für die maschinellen Lernverfahren zu bestimmen, somit
fällt bspw. die zuvor beschriebene Anomalie Erkennung in diese Definition. Intrinsisch semi-
überwachte Methoden binden die ungelabelten Daten in die Kostenfunktion oder das Opti-
mierungsprozedere der maschinellen Lernverfahren mit ein. Die „Wrapper-Methoden“ sind
ein simpler Ansatz, um überwachte maschinelle Lernverfahren zu ertüchtigen, auch un-
gelabelte Daten zu verwenden. Dabei werden zwei Schritte iterativ durchlaufen: Der
Trainingsschritt, bei dem überwachte maschinelle Lernverfahren mit gelabelten Daten trai-
niert werden. Und dem Pseudo-Labelschritt, bei dem die trainierten Lernverfahren genutzt
werden, um ungelabelte Daten zu labeln. Diese neuen Label werden auch Pseudo-Label
genannt. Danach folgt wieder ein Trainingsschritt mit den Labeln und Pseudo-Labeln; das
Prozedere wird bis zu einem Abbruchkriterium fortgesetzt. Vorteilhaft bei dieser Methodik
ist, dass praktisch alle überwachten maschinellen Lernverfahren genutzt werden können.
Die Lernverfahren müssen jedoch in jeder Iteration vollständig neu trainiert werden –
außer das Lernverfahren ist in der Lage, inkrementell trainiert zu werden.

Eine umfassende Übersicht und Taxonomie über „Wrapper-Methoden“ wurde von
Triguero et al. veröffentlicht [55]. Diese vierstufige Hierarchie wird im Folgenden genutzt,
um das für diese Arbeit relevante Forschungsgebiet weiter einzugrenzen:

1. Einfach- vs. Mehrfachansichten:

Diese Unterscheidung betrifft die Dimensionen der Eingabemerkmale. Bei einer
Einfachansicht werden stets alle verfügbaren Merkmale verwendet. Bei Mehrfachan-
sichten hingegen werden Subdatensätze mit niedrigerer Dimension aus dem originalen
Datensatz generiert. Voraussetzung dafür ist, dass die Merkmale redundant und
bedingt unabhängig sind. Auf diesem Weg kann der Generalisierungsfehler durch
Verwendung mehrerer maschineller Lernverfahren reduziert werden. Im Kontext die-

33



Prädiktive Instandhaltung

ser Arbeit ist jedoch nicht sicherzustellen, dass bedingt unabhängige Subdatensätze
erzeugt werden können, weshalb eine Einfachansicht genutzt wird.

2. Einfach- vs. Mehrfachlernen:

Beim Einfachlernen werden ausschließlich maschinelle Lernverfahren eines Typs, z.B.
ANN, eingesetzt. Mehrfachlernen hingegen verwendet unterschiedliche Lernverfahren,
wodurch die Performanz verbessert werden soll. Im Rahmen dieser Arbeit sollen
die Verfahren auf einem Mikrocontroller umgesetzt werden, weshalb Speicher- und
Rechenkapazität stark limitiert sind. Angesichts dessen wird Einfachlernen verfolgt.

3. Einfach- vs. Mehrfachklassifizierer:

Diese Differenzierung zielt auf die Anzahl der verwendeten Lernverfahren ab: Bei
Einfachklassifizierern wird nur eins genutzt; bei Mehrfachklassifizierern hingegen meh-
rere, durch die die Performanz gesteigert werden soll. Analog zum Einfachlernen wird
aufgrund der angestrebten Mikrocontrollerimplementierung ein Einfachklassifizierer
genutzt.

4. Hinzufügungsmechanismus:

Hierbei werden drei Mechanismen abgegrenzt, mit denen ungelabelte Daten zum
Trainingsdatensatz hinzugefügt werden: Erstens können die Daten inkrementell
hinzugefügt werden, wenn diese definierte Kriterien erfüllen. Zweitens können die
Daten stapelweise hinzugefügt werden. Dabei wird ein ganzes Set von Daten erst
dann hinzugefügt, wenn alle definierte Kriterien erfüllen. Beide zuvor genannten Me-
chanismen haben einen Nachteil: Falsch hinzugefügte Daten werden nicht korrigiert.
Deshalb ergibt sich ein dritter Ansatz, bei dem eine Änderung von hinzugefügten
Daten möglich ist. Dies kann auf verschiedene Weisen umgesetzt werden. Wang et al.
vergleichen die klassifizierten Daten anhand der Merkmale, sodass ein Beschneiden
der Daten, die nicht innerhalb einer Nachbarschaft liegen, umgesetzt werden kann
[56]. In [57] wird ein ähnliches Vorgehen zum Eliminieren von Ausreißern beschrieben.
Im Kontext dieser Arbeit wird ein Verfahren entsprechend dem dritten Mechanismus
angestrebt, damit Korrekturen stattfinden können.

Die Einordnung nach der Taxonomie nach [55] lässt Freiräume bei der konkreten Ausge-
staltung des Verfahrens. Darunter fällt die Auswahl der Pseudo-Label für das Training.
Typisch ist eine Auswahl auf der Grundlage der Vorhersage Konfidenz, welche ihrerseits
durch geeignete Methoden abgeschätzt werden, muss und somit einen erheblichen Einfluss
auf die Leistung des Algorithmus hat. Es empfiehlt sich, die Rangfolge der Vorhersage
Konfidenz der Pseudo-Label für die tatsächliche Konfidenzeinstufung zu berücksichtigen.
Daneben ist die Wiederverwendung bzw. Änderung der Pseudo-Label frei zu wählen.
Da die in den früheren Trainingsphasen vorhergesagten Pseudo-Label im Allgemeinen
weniger zuverlässig sind, wird die Gewichtung der Pseudo-Label im Laufe der Zeit erhöht.
Schlussendlich muss das Training beendet werden, wozu ein Abbruchkriterium notwendig
ist. Leistner et al. schlagen in [58] den „Out-of-bag-error“ vor, der anhand einer Stichprobe
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von Daten bestimmt wird, die nicht im Trainingsdatensatz enthalten sind. Verschlechtert
sich der „Out-of-bag-error“ wird das Training abgebrochen.

Die erste erfolgreiche Anwendung von „Wrapper-Methoden“ ist der von Yarowsky vorgestell-
te Ansatz zur Disambiguierung des Wortsinns in Textdokumenten, bei der die Bedeutung
von Wörtern auf der Grundlage ihres Kontexts vorhergesagt wird [59]. Darauf aufbauend
wurden viele weitere Verfahren vorgeschlagen, die den „Wrapper-Methoden“ zuzuordnen
sind. So stellt Lee in [60] ein Verfahren vor, mit dem die Pseudo-Label auf Basis der höchs-
ten Wahrscheinlichkeit gewählt werden. Trotz dieses rudimentären Vorgehens konnten
konventionelle semi-überwachte Verfahren hinsichtlich der Performanz auf dem MNIST
Datensatz geschlagen werden. Azaro et al. präsentieren in [61] ein ähnliches Verfahren, bei
dem die Pseudo-Label zusammen mit den normalen Label für das Training genutzt werden,
wobei stets darauf geachtet wird, dass ein Minimum an normalen Labeln in den Mini-
Batches enthalten ist. Damit wurde an vier Datensätzen gezeigt, dass der aktuelle Stand
der Technik im Bereich des semi-überwachten Lernens übertroffen werden kann.

3.1.4 Verfahren zur Effizienzsteigerung von ANN
Mit künstlichen neuronalen Netzen konnten in den vergangenen Jahren wesentliche Er-
folge in der Mustererkennung erzielt werden, sodass viele moderne intelligente Systeme
auf diesem Lernverfahren aufbauen. Im Zuge der massenhaften Anwendung derartiger
Verfahren wird deren Ressourcenverbrauch besonders relevant. Im Kontext dieser Arbeit
soll die Inferenz auf einem Mikrocontroller stattfinden, weshalb sehr wenig Rechenleistung
und Speicher zur Verfügung stehen. Diese Problematik ergibt sich für eine Vielzahl von
Anwendungen. Daher ist die Optimierung von ANN hinsichtlich der Effizienz ein eigenes
Forschungsthema geworden. Cheng et al. veröffentlichten in [62] eine umfassende Recherche
zu möglichen Verfahren zur Steigerung der Effizienz. Dabei muss zunächst unterschieden
werden, in welchem Kontext die Effizient gesteigert werden soll: Einige Arbeiten konzen-
trieren sich auf Modellkomprimierung, andere auf die Beschleunigung oder die Senkung des
Stromverbrauchs. Eine herausragende Rolle spielen dabei CNN, da diese sich besonders gut
für die Bild- und Audioverarbeitung eignen und deshalb im Fokus vieler Arbeiten stehen.
Nachfolgend werden sechs verschiedene Arten von Verfahren zur Effizienzsteigerung nach
[62] vorgestellt, um einen Einstieg in dieses vielseitige Forschungsthema zu geben.

1. Beschneiden

Für Beschneidungs-Methoden wird eine zentrale Annahme getroffen: Viele Parameter
in ANN sind unwichtig und müssen deshalb nicht berücksichtigt werden. Deshalb
wurden bereits 1989 Beschneidungs-Methoden vorgeschlagen, um diese Parameter
zu entfernen [63]. Auf diesem Weg wird die Effizienz hinsichtlich zweier Aspekte
gesteigert: Zum einen benötigen weniger Parameter weniger Speicher; zum anderen
wird auch die Anzahl der Berechnungen und damit die notwendige Rechenleistung
reduziert. Cheng et al. unterscheiden vier Beschneidungs-Methoden: Erstens entfernen
feinkörnige Methoden Parameter in einer unstrukturierten Art und Weise. Die
Bedeutung der Parameter kann bspw. über die zweite Ableitung der Kostenfunktion
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bewertet werden [64]. Dabei kann es zu Performanz Verlusten kommen, wenn wichtige
Parameter versehentlich entfernt werden. Um dieses Problem zu lösen, schlagen
Guo et al. ein Verfahren aus zwei Operationen vor [65]: Beschneiden und Spleißen.
Mit dem Beschneiden werden die unwichtigen Parameter entfernt, während durch das
Spleißen die falsch beschnittenen Verbindungen wiederhergestellt werden. Zweitens
kann auf Vektor- oder Kernellevel beschnitten werden, d.h., die Kernel eines CNN
werden verkleinert. Drittens ist eine einheitliche Beschneidung der Filter einer Schicht
möglich, wie Lebedev und Lempitsky es in [66] vorschlagen. Viertens können direkt
ganze Filter entfernt werden. Vorteilhaft bei diesem Vorgehen ist, dass die Eingänge
der nachfolgenden Schicht so ebenfalls reduziert werden. Somit ist dieser Ansatz
besonders effizient. Ein Beispiel ist das ThiNet von Luo et al. [67], bei dem der
Rekonstruktionsfehler der Merkmalskarte der nächsten Schicht genutzt wird, um die
Filterbescheidung in der aktuellen Schicht zu steuern.

2. Niederrangige Approximation

Bei einer niederrangigen Approximation wird eine effizientere Berechnung erzielt,
indem Faltungs-Kernel durch einen niederrangigen approximativen Kernel ersetzt
werden.

3. Quantisierung von Netzwerken

Die Quantisierung wird bereits in vielen anderen Anwendungen zur Beschleunigung
bzw. Kompression angewandt und kann auch auf ANN übertragen werden. Zen-
trale Idee ist die Reduzierung der verwendeten Bits für eine Zahl, so kann sowohl
Speicherbedarf als auch Rechenleistung eingespart werden. Generell wird zwischen
zwei Hauptgruppen unterschieden. Erstens die Skalar- und Vektorquantisierung, bei
der die Originaldaten durch ein Codebuch und einen Satz von Quantisierungscodes
dargestellt werden. Ein Vorteil ist die Möglichkeit einer verlustfreien Codierungsme-
thode (z.B. Huffman-Codierung). Auf diesem Weg wird eine hohe Kompressionsrate
erreicht. Zweitens die Festkomma-Quantisierung, die wiederum in zwei Hauptkatego-
rien unterschieden werden kann: Bei der Gewichtsquantisierung werden die Gewichte
des ANN quantisiert und bei der Aktivierungsquantisierung die Aktivierungsfunktion.
Die Gewichtsquantisierung ist ein ausgereiftes Thema, das bereits 1993 von Holi und
Hwang im Rahmen einer theoretischen Analyse untersucht wurde [68]. Dabei konnten
sie zeigen, dass eine 8- oder 16-Bit-Quantisierung für das Training kleiner ANN
geeignet ist. In [69] wurde gezeigt, dass 16-Bit Festkommazahlen für das Training
eines CNN auf dem MNIST Datensatz ausreichen. Wenn zur Gewichtsquantisierung
zusätzlich eine Aktivierungsquantisierung umgesetzt wird, dann ist es möglich, das
ANN nur durch die Berechnung von Festkommaoperationen auszuführen. Dies ist
in Bezug auf diese Arbeit von besonderem Interesse, da so auch Mikroprozessoren
verwendet werden können, die über keine Gleitkommaeinheit verfügen und daher
besonders preisgünstig sind.
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4. Lehrer-Schüler-ANN

Beim Lehrer-Schüler-ANN wird ein Schüler-ANN mit Hilfe eines Lehrer-ANN trai-
niert, wobei das Schüler-ANN effizienter ist als das Lehrer-ANN. Die unwichtigen
Parameter sollen hier also entfernt werden, indem das Wissen eines komplexeren
ANN auf ein simpleres ANN übertragen wird.

5. Kompakter Netzentwurf

Eine ähnliche Strategie wird durch den kompakten ANN-Entwurf verfolgt. Wobei
hier kein Wissen transferiert wird. Stattdessen wird direkt eine effiziente Netzwerk-
architektur genutzt.

6. Hardware-Beschleuniger

Weiterhin ist es möglich, die Effizienz durch Anpassung an die Hardware zu steigern.
Die meisten Algorithmen basieren auf Plattformen mit GPUs und CPUs. Aufgrund
der zunehmenden Anwendung von maschinellen Lernverfahren auf Endgeräten mit
Mikrocontrollern wird in Zukunft die Inferenz auf eingebetteten Systemen eine größere
Rolle spielen. Zu diesem Zweck werden in diversen Arbeiten Hardwarebeschleuniger
vorgestellt. Dabei ergibt sich ein komplexes, umfangreiches Themengebiet, das jedoch
außerhalb des Fokus dieser Arbeit liegt.

Für eine praktische Realisierung von PdM von Relais ist die Inferenz auf einem Mikrocon-
troller notwendig und damit auch eine Effizienzsteigerung der verwendeten ANN. Deshalb
werden von den sechs verschiedenen Verfahren lediglich das Beschneiden und die Quan-
tisierung in Bezug auf die Einflüsse auf die Performanz untersucht. Die niederrangige
Approximation wird nicht betrachtet, weil diese speziell für CNN geeignet ist und diese
in dieser Arbeit nur als Referenz genutzt werden. Die verwendete Topologie im Kontext
dieser Arbeit ist bereits simpel, sodass vom Lehrer-Schüler-ANN und kompakten Netz-
entwurf kein Gebraucht gemacht wird. Schlussendlich werden Hardware-Beschleuniger
indirekt durch Software genutzt – auf eine differenziertere Untersuchung wird jedoch aus
forschungsökonomischen Gründen verzichtet.

Abschließend werden exemplarisch Arbeiten angeführt, bei denen durch Beschneiden und
/ oder Quantisierung eine erhebliche Effizienzsteigerung eines ANN erzielt werden konnte.
Dabei sticht – in Bezug auf die Zitierungen – vorrangig die Arbeit von Han et al. hervor
[70]. Sie kombinierten Beschneidung und Quantisierung mit der Huffman Codierung und
reduzierten so bekannte ANN – wie das AlexNet oder VGG-16 – bezüglich des Speicher-
bedarfs um Faktoren von 35 bis 49. Damit geht eine drei- bis vierfache Steigerung der
Beschleunigung und drei- bis siebenfache Steigerung der Energieeffizienz einher. Gleichzei-
tig hat das Verfahren keinen negativen Einfluss auf die Performanz. Die Arbeit von Han
et al. zeigt auf, wie groß der Nutzen von Verfahren zur Steigerung der Effizienz sein kann.
Mit einem konzeptionell ähnlichen Verfahren konnten in [71] vergleichbare Ergebnisse
erzielt werden. Stock et al. reduzierten mit einer Vektor-Quantisierung den Speicherbedarf
des ResNet50 um den Faktor 20 bei gleichzeitig geringen Performanz Verlusten [72].
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3.1.5 Zusammenfassung
Der Forschungsstand für die Erschließung des Forschungsdesiderats PdM im Kontext von
elektromechanischen Relais erstreckt sich auf vier Themengebiete:

• Essenziell für eine datengetriebene Modellierung der Degradierung ist der Datensatz.
Es wurden bereits viele Datensätze veröffentlicht, die zu diesem Zweck verwendet
werden können. Dabei lassen sich drei Typen ausmachen:

1. Synthetische Daten, die z.B. durch Simulationen generiert wurden.

2. Prüfstanddaten, die die Degradierung realer Bauteile unter Prüfstandbedingun-
gen enthalten.

3. Reale Daten, die in realen Applikationen aufgezeichnet wurden.

Alle Typen bringen Vor- und Nachteile mit sich: Synthetische Daten sind relativ
günstig zu generieren, jedoch in ihrer Komplexität auf das verwendete Modell zur
Erzeugung begrenzt. Prüfstanddaten sind – je nach Alterungsbeschleunigung – sehr
zeit- und kostenaufwendig, dafür kommen Sie der Realität jedoch sehr nah. Bei realen
Daten können die betrachteten Komponenten nicht immer bis zu einem Ausfall geal-
tert werden, weshalb diese Datensätze verzerrt sind. Zusätzlich hegen Unternehmen
oftmals Bedenken bezüglich der Vertraulichkeit der Daten. Zusammenfassend ist in
Hinblick auf die publizierten Datensätze eine Forschungslücke auszumachen: Es gibt
noch keinen Datensatz, der eine große Anzahl von Einheiten umfasst, die bis zum
Ausfall degradiert wurden und unterschiedlichste Ausfallmechanismen aufweisen.

• Die entwickelten Verfahren für eine Instandhaltung – basierend auf maschinellen
Lernverfahren – sind vielfältig. Der Fokus der Forschung lag hier zunächst auf der
Schätzung der Restlebensdauer. Dafür wurden von einfachen linearen Modellen bis
zu komplexen Kombinationen von CNN und RNN diverse Verfahren vorgestellt.
Ein grundsätzliches Problem ist jedoch die Annahme einer monotonen Alterung,
die z.B. bei den in dieser Arbeit untersuchten Relais nicht immer zu beobachten
ist. Eine mögliche Lösung stellen Verfahren zur Erkennung von Anomalien dar.
Auch hierzu wurden bereits viele Arbeiten veröffentlicht, bei denen Lernverfahren
trainiert wurden, um den korrekten Arbeitszustand von Maschinen zu lernen und
dementsprechend schlecht bei anomalen Zuständen zu schätzen. Diese Ansätze bieten
den Vorteil, dass die Komponenten nicht bis zum Ausfall gealtert sein müssen und
diverse Ausfallarten bemerkt werden können. In Bezug auf Relais ergeben sich jedoch
Schwierigkeiten, wie in Abschn. 3.5 erörtert wird.

• Ein vielversprechender Ansatz zur Lösung der oben genannten Verfahren ist das
semi-überwachte Pseudo-Labeling. In anderen Kontexten wird es bereits erfolgreich
angewandt, um Datensätze vollautomatisch zu labeln. Dabei handelt es sich nicht
um eine eigene Art von maschinellen Lernverfahren, sondern viel mehr um eine
„Wrapper-Methode“. Maschinelle Lernverfahren werden genutzt, um iterativ die
Daten zu labeln, d.h., zu Beginn müssen bereits einige Label bekannt sein, auf deren
Basis der restliche Datensatz zugeordnet wird.
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• Schlussendlich ist das Ziel dieser Arbeit die Entwicklung eines Verfahrens, das in
Produkten verwendet werden kann. Die Kosten für die Applikation sind deshalb
ein entscheidender Faktor. Daher wird betrachtet, inwiefern eine Umsetzung des
Algorithmus auf Mikrocontrollern möglich ist. Zur Steigerung der Effizienz von
ANN bestehen viele Ansätze: Durch Beschneidung können unwichtige Knoten und
Gewichte im Netz eingespart und somit Speicherplatz und Rechenschritte reduziert
werden. Zudem kann durch Quantisierung ebenfalls Rechenleistung und Speicherplatz
gespart werden.

3.2 Grundlagen
Im Folgenden werden zunächst Grundlagen zum Thema „Artificial neural network“ (dt.
künstliches neuronales Netz) (ANN) beschrieben und anschließend um weitergehende
Techniken ergänzt, die im Kontext dieser Arbeit relevant sind. Abgeschlossen wird dieses
Kapitel mit Verfahren, zur Effizienzsteigerung der Inferenz von ANN.

3.2.1 Begrifflichkeiten und allgemeines Vorgehen
Zunächst sind einige Begrifflichkeiten voneinander abzugrenzen. Dazu wird Kap. 2 aus
dem Buch „An introduction to Machine Learning“ herangezogen [73]:

• Überwachte Lernverfahren

Bei überwachten Lernverfahren sind sowohl Ein- als auch Ausgangsdaten bekannt,
sodass die Lernverfahren beim Training einen Zusammenhang erlernen müssen. Dazu
wird die Abweichung zwischen vorgegebenen und geschätzten Ausgangsdaten genutzt,
wobei – je nach Daten – unterschiedliche Kostenfunktionen genutzt werden können.

• Unüberwachte Lernverfahren

Unüberwachte Lernverfahren werden genutzt, um unbekannte Muster in Daten zu
identifizieren, dementsprechend sind die Ausgangsdaten hier nicht bekannt. Eine
häufige Anwendung von unüberwachten Lernverfahren ist das Clustering, bei dem
Lernverfahren, wie z.B. K-means, genutzt werden, um Gruppen in Datensätzen zu
bilden.

• Semi-überwachte Lernverfahren

Eine Mischung zwischen un- und überwachten Lernverfahren stellen semi-überwachte
Lernverfahren dar. Ein Beispiel ist Pseudo-Labeling, bei dem nur ein Teil der
Ausgangsdaten bekannt ist. Der Rest wird iterativ durch das Lernverfahren gelabelt
und anschließend für das Training genutzt.

• Bestärkendes Lernen

Beim bestärkenden Lernen soll ein Agent lernen, in einer Umgebung zu handeln. Hier
steht dem Lernverfahren eine Beschreibung der Umwelt als Eingang zur Verfügung
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und die Ausgaben sind Handlungen. Beim Training wird das Verfahren durch
Belohnung bestärkt, sodass es lernt, in Abhängigkeit zur Umwelt die Belohnung
durch die Handlungen zu maximieren.

Im Kontext dieser Arbeit werden semi-überwachte und überwachte Lernverfahren ge-
nutzt.

X maschinelles
Lernverfahren

ŷ

Abb. 3.6: Zusammenhang von Eingangsdaten X, maschinellen Lernverfahren und ge-
schätzten Ausgangsdaten ŷ

In Abb. 3.6 ist der allgemeine Zusammenhang von den Eingangsdaten X, dem maschinellen
Lernverfahren und geschätzten Ausgangsdaten ŷ bei überwachtem Lernen dargestellt.
Ziel des maschinellen Lernerfahrens ist es, mit den erfassten, Eingangsdaten X die Aus-
gangsdaten y zu schätzen. Somit wird eine Black-Box-Modellierung durchgeführt, d.h.
die Assoziationsbildung zwischen Ein- und Ausgängen findet ausschließlich auf Basis der
Daten statt – ohne Einbringen von Expertenwissen. Das Vorgehen für kontinuierliche und
diskrete Ausgangsdaten unterscheidet sich durch die Kostenfunktionen, mit denen jeweils
die Fehler von ŷ quantifiziert werden. Kontinuierliche Größen werden allgemein als Re-
gressionsaufgabe bezeichnet und können bspw. mit der mittleren quadrierten Abweichung
(engl.: Mean Squared Error, MSE) bewertet werden:

MSE(y, ŷ) = 1
n

n∑
i=1

(yi − ŷi)2 . (3.2)

Bei binären Größen liegt eine Klassifikationsaufgabe vor, die bspw. mit der binären
Kreuzentropie (engl.: binary cross entropy, BCE) quantifiziert werden kann:

BCE(y, ŷ) = − 1
n

n∑
i=1

yilog(ŷi) + (1 − yi)log(1 − ŷi). (3.3)

Bevor die maschinellen Lernverfahren trainiert werden können, empfiehlt es sich, den
Datensatz in drei Subdatensätze zu unterteilen:

1. Trainingsdatensatz, der für das Anpassen der trainierbaren Parameter der maschi-
nellen Lernverfahren genutzt wird.

2. Validierungsdatensatz, der während des Trainings regelmäßig evaluiert und nicht zur
Anpassung der trainierbaren Parameter verwendet wird.

3. Testdatensatz, der zur Evaluierung der Performanz gebraucht wird.

In Abb. 3.7 sind beispielhafte Verläufe der Fehler auf Trainings- und Validierungsset über
mehrere Epochen skizziert. Beim Trainieren ergibt sich ein Problem: Zunächst ist das
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Abb. 3.7: Beispielhafter Verlauf des Fehlers auf Trainings- und Validierungsset

ANN unterangepasst, d.h. die Prädiktionen sind stark fehlerbehaftet. Dies wird gelöst,
indem das ANN so angepasst wird, dass der Fehler geringer wird. Doch dies führt zu einer
Überanpassung: In diesem Fall sinkt der Fehler für das Trainingsset zwar weiterhin, aber
die Generalisierungsfähigkeit nimmt ab. Dies lässt sich am Validierungsset beobachten,
hier steigt der Fehler mit zunehmender Epochenzahl wieder an. Deshalb werden für
das Training zwei Datensätze benötigt: Der Trainingsdatensatz, auf dessen Basis die
Parameter der Lernverfahren angepasst werden, und der Validierungsdatensatz, mit dem
das Training abgebrochen wird. Dieser Abbruch wird auch „Early Stopping“ genannt. Um
die Performanz zu beurteilen, wird der Testdatensatz verwendet.

Das Training eines ANN kann durch eine Standardisierung beschleunigt werden. Im Rahmen
dieser Arbeit werden die einzelnen Merkmale nach folgender Gleichung standardisiert:

Xstd. = X − µ

σ
, (3.4)

dabei ist µ der Mittelwert und σ die Standardabweichung. Die standardisierten Merkmale
Xstd. weisen somit eine Varianz von eins und einen Mittelwert von null auf.

3.2.2 Künstliche neuronale Netze
Mit „Artificial neural network“ (dt. künstliches neuronales Netz) (ANN) können nicht
lineare Zusammenhänge modelliert werden. Die Grundlagen hierzu werden im Folgenden
auf Basis des Kapitels „Neuronale Netze“ von Ertel (2016) [74] erläutert.

Ein ANN ist in seiner Funktionsweise den biologischen Neuronen nachempfunden. Der
Aufbau eines „Multilayer Perceptron“ (dt. mehrschichtiges Perzeptron) (MLP) ist in
Abb. 3.8 dargestellt. In dieses Netz wird ein Eingabevektor x ∈ Rm der Länge m ∈ N
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Abb. 3.8: Neuronales Netz mit zwei Schichten

eingespeist und eine Ausgabe y ∈ Rn der Länge n ∈ R erzeugt. Ein- und Ausgang sind
dabei über Neuronen miteinander verbunden. Diese sind in Schichten angeordnet, wobei
alle Schichten zwischen der Ein- und Ausgangsschicht als verborgene Schichten bezeichnet
werden. Es bestehen verschiedene Möglichkeiten, die Neuronen miteinander zu verbinden:
Bei einem MLP sind die Schichten typischerweise vollvermascht, d.h. alle Neuronen
aus einer Schicht sind mit allen Neuronen aus der nachfolgenden Schicht verbunden.
Diese Verbindungen werden durch Skalare definiert, dieses wird im Folgenden Gewicht
genannt.

Die Ausgabe oj ∈ R eines Neurons j kann wie folgt berechnet werden:

oj = f

(
m∑

i=0
Wi,jxi + β

)
= f (netj) . (3.5)

Dazu werden die Gewichte W ∈ Rr,s zwischen den r ∈ N Neuronen aus der vorherigen und
s ∈ N Neuronen aus der Schicht von j multipliziert. Weiterhin hat jedes Neuron einen Bias
β ∈ R, der addiert wird. Als Aktivierungsfunktion f(·) können verschiedene Funktionen
gewählt werden. In Abb. 3.8 ist die „Rectified Linear Unit“ (dt. Gleichrichterfunktion)
(ReLU) beispielhaft bei zwei Neuronen dargestellt. Die ReLU ist wie folgt definiert:

f(x) = max (0, x) . (3.6)
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Alternativ ist die „Sigmoid“-Funktion für die Neuronen der Ausgangsschicht empfehlens-
wert, wenn eine Klassifikation durchgeführt wird:

f(x) = 1
1 + e−x . (3.7)

Initial werden die Gewichte oft zufällig gewählt. Deshalb muss ein ANN trainiert werden,
um seine jeweilige Aufgabe mit ausreichender Präzision zu erfüllen. Beim Training werden
die lernbaren Parameter des ANN verändert. Beim Beispiel des MLP sind dies die Gewichte
und Bias der einzelnen Neuronen. Zu diesem Zweck wird eine Lernregel benötigt. Zum
Verständnis des Trainings wird die Delta-Lernregel vorgestellt, bei der die Änderung der
Gewichte wie folgt definiert ist:

4Wi,j = ηoi(yj − oj). (3.8)

Die Abweichung der Ausgabe oj gegenüber der Zielgröße yj wird mit der Ausgabe oi multi-
pliziert, wobei das Neuron j sich in der nachfolgenden Schicht von i befindet. Weiterhin wird
die Lernrate η ∈ R genutzt, um das Ausmaß der Änderungen zu begrenzen. Die Änderung
wird zu den alten Gewichten addiert, sodass neue Gewichte definiert werden:

Wneu
i,j = Walt

i,j + 4Wi,j. (3.9)

Die Delta-Lernregel ist lediglich für ANN mit nur einer Schicht geeignet. Für mehrschichtige
ANN wird der dreischrittige Backpropagation-Algorithmus genutzt:

1. Forward Pass:

Der Forward Pass ist eine normale Inferenz des ANN, d.h. es werden Eingangsdaten
eingegeben, Schicht für Schicht die Ausgaben berechnet, bis schließlich die Ausgaben
des ANN feststehen.

2. Berechnung des Fehlers:

Daraufhin wird der Fehler bestimmt, also die Ausgaben oj mit den wahren Werten
yj verglichen.

3. Backward Pass:

Auf Basis des Fehlers werden die Gewichte angepasst. Dabei werden die Schich-
ten des Netzes in umgekehrter Reihenfolge durchlaufen. Begonnen wird mit der
Ausgangsschicht. Die Gewichte werden wie folgt aktualisiert:

4wi,j = −ηoiδj, (3.10)

43



Prädiktive Instandhaltung

wobei δj auf dem Gradienten der Aktivierungsfunktion f basiert:

δj = f ′(netj) ·


∑t

k=0 δkwj,k falls j verborgen,

oj − yj sonst.
(3.11)

Die Anzahl der Neuronen in der nachfolgenden Schicht wird durch t ∈ N bestimmt.

Im Kontext dieser Arbeit werden die Gewichte für mehrere Eingaben gleichzeitig angepasst.
Dazu wird der Trainingsdatensatz in gleich große „Stapel“ (engl.: Batch) unterteilt. Beim
Training nach dem Backpropagation-Algorithmus werden dann die Fehler der einzelnen
Batches aufsummiert. Wenn alle Trainingsdaten verarbeitet wurden, dann ist eine Epoche
abgeschlossen.

Für die Nutzung von ANN wird im Kontext dieser Arbeit die Bibliothek Keras genutzt
[75], die auf das Framework Tensorflow aufbaut [76]. Eine Schicht von Neuronen wird hier
als Dense-Schicht bezeichnet.

3.2.3 Spezielle Neuronen-Arten
Neben den zuvor beschriebenen normalen Neuronen wurden spezielle Neuronen bzw.
Schichten entwickelt, durch die die Performanz von ANN signifikant gesteigert werden
kann. Die im Kontext dieser Arbeit genutzten speziellen Neuronen / Schichten werden im
Folgenden erörtert.

3.2.3.1 Dropout Schicht

Für die Performanz von ANN ist er förderlich, wenn Regularisierungstechniken angewandt
werden. Im Rahmen dieser Arbeit wird dazu eine sogenannte Dropout-Schicht verwendet.
Diese Technik wurde 2012 von Hinton et al. vorgestellt[77]. Durch eine Dropout-Schicht
werden während des Trainings zufällig die Ausgaben einzelner Neuronen unterbunden.
Dadurch wird verhindert, dass beim Training starke Abhängigkeiten unter Neuronen
gebildet werden. Die Dropout-Schicht ist lediglich beim Training aktiv, während der
Inferenz werden keine Ausgaben unterbunden.

3.2.3.2 Faltende Schicht

Ein „Convolutional neural network“ (dt. faltendes neuronales Netz) (CNN) ist besonders
gut geeignet, um Eingangsdaten zu verarbeiten, die einen lokalen Zusammenhang aufweisen:
im eindimensionalen sind dies bspw. Zeitreihen, im zweidimensionalen bspw. monochrome
Bilder, im dreidimensionalen bspw. Farbbilder oder 3D-Darstellungen.
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Diese Architektur wird auf Basis des Kap. 9 aus [78] wiedergegeben und unterscheidet sich
grundsätzlich in drei Hinsichten vom MLP:

• Ein- oder mehrdimensionale Anordnung der Neuronen

• Teilen von Gewichten

• Lokale Konnektivität

Dadurch lassen sich lokale Muster in den Daten erkennen.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

k1 k2 k3

∑

f ()

k1 k2 k3

∑

f ()

s1 s2 s3 s4 s5 s6 s7 s8

y1 y2 y3 y4

Eingangsdaten x

Kernel k

Summation

Aktivierungsfunktion

Merkmalskarte s

Bündelung

Ausgangsdaten y

Abb. 3.9: Faltende Schicht aus Faltung, Aktivierungsfunktion und Bündelung

In Abb. 3.9 ist der Aufbau einer faltenden Schicht dargestellt. Die Eingangsdaten x,
die Summation und die Aktivierung sind bereits vom klassischen Neuron bekannt. Bei
einer faltenden Schicht sind die Neuronen jedoch nicht direkt miteinander verbunden,
stattdessen wird eine Faltung der Eingangsdaten mit einem oder mehreren Kernel k ∈ Rm

der Breite m ∈ N durchgeführt. Die Dimension eines Kernels richtet sich dabei nach
den Eingangsdaten, im Beispiel sind eindimensionale Daten dargestellt. Das Ergebnis
dieser Faltung wird oftmals als Merkmalskarte bezeichnet, formell ergibt sich folgende
Berechnungsvorschrift:
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sn = f

(∑
m

xn−mkm

)
, (3.12)

wobei n das jeweilige Merkmal aus s darstellt. Bei einer diskreten Faltung ergibt sich
an den Rändern des Eingangs x ein Problem, wenn s dieselbe Größe aufweisen soll wie
x. Dadurch, dass die Breite des Kernels fix ist, müssen an den Rändern von x Werte
angehängt werden. Dieser Vorgang wird auch als „Polsterung “(engl.: Padding) bezeichnet.
Dabei entwickelten sich verschiedene Vorgehen zur Auswahl der Werte. Häufig werden
Nullen oder der Randwert verwendet. Weiterhin ist es möglich die Werte von x am Rand
zu spiegeln. Wenn s kleiner sein kann wie x, dann kann die Faltung auch auf den validen
Bereich beschränkt werden, sodass s um m−1 schrumpft, wie in Abb. 3.9 visualisiert.

Die Faltung muss nicht zwangsläufig mit einem Schritt (engl.: Stride) von eins durchgeführt
werden, d.h. dass der Kernel immer nur um einen Eingang verschoben wird. In einigen
Veröffentlichungen (z.B. ResNet [79]) konnte gezeigt werden, dass ein größerer Stride
sinnvoll ist. In Abb. 3.9 ist ein Stride von eins dargestellt, bei einem Stride von bspw. zwei
würden die Werte s2, s4, s6, s8 nicht berechnet werden. Durch einen größeren Stride lässt
sich Rechenaufwand einsparen und s verkleinern.

Dazu kann jedoch auch eine „Bündelung“ (engl.: Pooling) verwendet werden, wie in Abb. 3.9
dargestellt. Die Größe der Ausgangsdaten y wird verringert, indem mehrere Merkmale
von s zusammengefasst werden. Das Max- und das Average Pooling sind die häufigsten
Pooling Varianten: Beim Max Pooling wird nur das maximale Merkmal und beim Average
Pooling der Mittelwert der Merkmale weitergegeben.

3.2.4 Autoencoder und Variational Autoencoder
Die nachfolgend beschriebenen Netze haben einen speziellen Aufbau aus Encoder und
Decoder und sind zur Reduktion der Dimension der Eingangsdaten geeignet. Zunächst
wird auf den „Autoencoder“ (AE) eingegangen, wobei die in Kap.14 von Goodfellow et al.
gegebene Beschreibung grundlegend ist [78].

Der Aufbau eines AE ist in Abb. 3.10 dargestellt. Er besteht aus einem Eingang x ∈ Rm,
mehreren faltenden Schichten e, mehreren transponierten faltenden Schichten d und einem
Ausgang x̂ ∈ Rm. Wobei die Schnittstelle zwischen der letzten e und ersten d auch als
Codierung c ∈ Rn bezeichnet wird. Ein- und Ausgang haben dieselbe Dimension m ∈ N, die
stets größer ist als die Dimension n ∈ N von c. Bei einem AE sind Ein- und Ausgangsdaten
identisch, sodass die e-Schichten als Encoder fungieren, mit dem Merkmale extrahiert
werden. Aus diesen wiederum wird der ursprüngliche Eingang rekonstruiert, daher bilden
die d-Schichten einen Decoder. Für den Decoder werden transponierte, faltende Schichten
verwendet. Eine detaillierte Beschreibung hierzu ist [80] zu entnehmen.

Ein AE kann trainiert werden wie ein klassisches ANN, dazu wird der Fehler LAE wie folgt
berechnet:
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x e1 e2 c d1 d2 x̂

Encoder Decoder

Abb. 3.10: Aufbau eines Autoencoders mit Encoder und Decoder aus jeweils zwei Schichten

LAE(Φ, Σ) = d (x, DΣ (EΦ (x))) , (3.13)

dabei sind E und D die Funktionen des Encoders und Decoders, die von deren trainierbaren
Parametern Φ und Σ abhängig sind. Durch d wird eine Metrik definiert, mit der die
Abweichung zwischen Ein- und Ausgangsdaten quantifiziert wird.

Der Aufbau eines „Variational Autoencoder“ (VAE) ist in Abb. 3.11 dargestellt. Kingma
und Welling stellten einen VAE erstmals in [81] vor. Die Beschreibung in diesem Abschnitt
richtet sich nach dieser Arbeit. Auch bei einem VAE werden die Eingänge durch einen
Encoder hinsichtlich ihrer Dimension reduziert und anschließend wieder mit einem Decoder
rekonstruiert. Jedoch unterscheidet sich die Schnittstelle zwischen Encoder und Decoder
signifikant. Bei einem VAE werden die Eingänge durch den Encoder verborgenen Parame-
tern zugeordnet, denen eine Normalverteilung unterliegt. Die Ausgänge des Encoders sind
somit als Mittelwert µ ∈ Rn und Varianz σ ∈ Rn zu interpretieren. Zwischen Encoder
und Decoder findet eine Reparametrierung statt, für die eine Zufallsvariable ε ∈ Rn

benötigt wird. Mit folgender Formel lässt sich z als Stichprobe einer Normalverteilung
berechnen:

z = µ + σ � ε (3.14)
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x e1 e2

µ

ε

σ

z d1 d2 x̂

Encoder Decoder

Abb. 3.11: Aufbau eines Variational Autoencoders mit Encoder und Decoder aus jeweils
zwei Schichten

Aus z wird durch den Decoder wieder der Eingang rekonstruiert. Für das Training des
VAE ergeben sich nun zwei Fehler: einmal der Rekonstruktionsfehler wie beim AE und ein
Fehlermaß für die Unterschiedlichkeit der Wahrscheinlichkeitsverteilungen des Encoders
qΦ(z|x) und des Decoders pΣ(z|x). Dazu empfiehlt sich die Nutzung der Kullback Leibler
Divergenz DKL, die für zwei Normalverteilungen wie folgt definiert ist:

DKL (p || q) = logσ1

σ0
+ σ2

0 + (µ0 − µ1)2

2σ2
1

− 1
2 (3.15)

wobei bei der Reparametrierung festgelegt wird, dass qΦ(z|x) eine Normalverteilung mit
N (0, 1) ist. Die Parametrierung ist notwendig, um beim Training die Berechnung des
Gradienten zu ermöglichen, deshalb wird ε als externer Vektor zur Berechnung von z
genutzt, wodurch diese Berechnung deterministisch wird.

Der Fehler für das Training eines VAE ist die Summe aus der Kullback Leibler Divergenz
und der Abweichung zwischen Ein- und Ausgangsdaten, wobei letztere analog zum AE
definiert wird:

LVAE(Φ, Σ) = DKL (p || q) + d (x, DΣ (EΦ (x))) , (3.16)
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Sowohl AE als auch VAE finden Anwendung in der Anomalie Erkennung und der Dimensi-
onsreduktion. Für letztere wird nach dem Training nur der Encoder des jeweiligen Modells
genutzt, sodass die Eingangsdaten hinsichtlich ihrer Dimension komprimiert werden können.
Auf Basis dieser kann dann bspw. eine Klassifikation oder Regression realisiert werden. Bei
einer Anomalie Erkennung wird bei AE und VAE der Fehler betrachtet. Ein außergewöhn-
lich hoher Fehler weist dabei darauf hin, dass die Daten im Trainingsdatensatz zumindest
unterrepräsentiert sind und damit als Anomalie gelten [82]. Durch die Regularisierung des
latenten Raums beim VAE ist dessen Decoder geeignet, um ihn als Generator für neue
Daten zu nutzen.

3.2.5 Methoden zur Effizienzsteigerung von ANN
Das Verfahren zu PdM soll auf einem günstigen Mikrocontroller ausführbar sein. Dem-
zufolge ist eine Optimierung des ANN für limitierte Hardware erstrebenswert. Die dazu
verwendeten Verfahren werden im Folgenden erläutert. Vorab wird jedoch beschrieben, wie
die Effizienz von ANN gemessen werden kann. Im Kontext dieser Arbeit sind hauptsächlich
die benötigte Inferenzzeit und der Speicherplatzbedarf von Interesse. Für letzteren ergeben
sich zwei Kennzahlen:

• Systemspeicher für die Instruktionen (ROM)

• Arbeitsspeicher zur Inferenz (RAM)

Die Inferenzzeit lässt sich mit folgender Formel abschätzen:

tinf = MACC α

fCPU
, (3.17)

Die „Multiply and Accumulate Complexity“ (dt. Komplexität der Multiplikationen und
Akkumulationen) (MACC) gibt an, wie viele Additionen und Multiplikationen für die
Berechnung notwendig sind. α ist ein Mikrocontroller-spezifischer Parameter, der definiert,
wie viele Takte pro MACC benötigt werden und fCPU ist die Taktfrequenz der CPU. Für
den im Rahmen dieser Arbeit verwendete Cortex M-7 gilt α = 6 und fCPU = 216 MHz.

3.2.5.1 Verwendete Softwaretools

Die Verfahren zur Effizienzsteigerung werden im Kontext dieser Arbeit mit verschiedenen
Softwarewerkzeuge evaluiert:

• Das Unternehmen Google stellt mit „TensorFlow Lite“ ein Open Source Framework
bereit, welches darauf ausgerichtet ist, maschinelles Lernen auf Systemen mit geringen
Hardwarekapazitäten zu ermöglichen. Dazu zählen bspw. Smartphones, eingebettete
Linux Systeme und Mikrocontroller. Zur Effizienzsteigerung werden drei Verfahren
bereitgestellt: Quantisierung, Beschneidung und Parameter teilen [83].

• STMicroelectronics bietet das Softwarewerkzeug „X-CUBE-AI“ an. Der Quellcode
ist nicht öffentlich zugänglich und lässt sich nur für STMicroelectronic Produkte
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verwenden. Mit X-CUBE-AI können u.a. ANN in C-Code zu konvertiert und auf
bestimmten Mikrocontrollern ausgeführt werden. Dabei gibt es die Möglichkeit,
die ANN durch das Teilen von Parametern hinsichtlich ihres Speicherbedarfs zu
optimieren[84].

Die beiden Softwarewerkzeuge wurden ausgewählt, da erfolgreiche Applikationen bereits in
mehreren Veröffentlichungen dokumentiert sind. Fouad Sakr et al. haben X-CUBE-AI als
Teil eines Frameworks genutzt, mit dem maschinelle Lernverfahren mit Mikrocontrollern
ausgeführt werden können. Im Rahmen der Evaluation des Frameworks auf sechs Daten-
sätzen haben sie u.a. gezeigt, dass die Effizienzsteigerungen keinen signifikanten Einfluss
auf die Performanz der ANN haben [85].

Die Nutzung von TensorFlow Lite wird in [86] beschrieben: Ein CNN wird genutzt, um
Müll zu klassifizieren und schlussendlich automatisch zu sortieren. Die Inferenz findet dabei
auf einem System mit beschränkten Hardwareressourcen statt, das in einer Mülltonne
verbaut ist. Durch die Quantisierung des CNN mittels TensorFlow Lite ist eine Reduktion
der Inferenzzeit erzielt worden. Des Weiteren wird in [87] eine Studie vorgestellt, die den
Einfluss der Quantisierung von ANN mit unterschiedlich vielen Neuronen auf deren MACC
betrachtet. Der MACC kann um den Faktor vier verringert werden.

3.2.5.2 Quantisierung

Für die Quantisierung wird TensorFlow Lite genutzt, die drei Varianten der Quantisierung
nach Abschluss des Trainings bietet [88]:

• Dynamische Bereichsquantisierung

Um die Inferenzzeit zu reduzieren, werden bei der dynamischen Bereichsquantisie-
rung die Gewichte des ANN von 32 Bit Gleitkommazahlen in den Wertebereich von
8 Bit Ganzzahlen konvertiert. Zusätzlich werden die Aktivierungsfunktionen mit
Ganzzahlen berechnet, wobei der Wertebereich der Funktionen dynamisch berück-
sichtigt wird. Durch die Optimierungen kann der Speicherbedarf eines ANN um das
Vierfache verkleinert und eine zwei- bis dreimal schnellere Inferenz erreicht werden.

• Vollständige Integer-Quantisierung

Die vollständige Integer-Quantisierung ermöglicht die Ausführung auf CPUs, die keine
Gleitkommaeinheit besitzen. Hierbei werden alle Parameter des ANN in Ganzzahlen
konvertiert:

xuint8 =
⌊

x

γ

⌋
+ εuint8, (3.18)

wobei γ und εuint8 zu optimierende Parameter sind. Durch Betrachtung eines reprä-
sentativen Datensatzes kann der Wertebereich der Variablen abgeschätzt werden,
sodass die Parameter γ und εuint8 für eine Umrechnung gemäß Gl. 3.18 bestimmt
werden können. Eine vollständige Integer-Quantisierung ermöglicht die Reduzierung
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des Speicherbedarfs eines ANN um den Faktor vier und ermöglicht eine mindestens
dreimal schnellere Inferenz.

• Float16 Quantisierung

Einige Systeme, wie z.B. GPUs, unterstützen die direkte Nutzung von 16 Bit
Gleitkommazahlen für Berechnungen. Bei diesen Systemen kann der Speicherbedarf
durch eine Float16-Quantisierung halbiert werden, indem die Inferenz des ANN mit
16 statt 32 Bit Gleitkommazahlen durchgeführt wird.

Sowohl die dynamische Bereichsquantisierung als auch die Float16 Quantisierung sind vor-
wiegend für GPUs interessant, da diese nativ mit Float16 Daten arbeiten können, wodurch
ein Geschwindigkeitsgewinn und erzielt werden kann bei gleichzeitiger Reduzierung des
Speicherbedarfs. Für Mikrocontrollern ist hingegen eine vollständige Integer-Quantisierung
bedeutsamer, da mehr Speicher und eine Gleitkommaeinheit gespart werden können.

3.2.5.3 Parameter teilen

Das Teilen von Parametern ist eine weitere Methode der Modelloptimierung. Dafür werden
Parameter eines bereits trainierten ANNs geclustert und anschließend durch die Cluster
Zentren ersetzt.

x1 x2 x3 x4

z1 z2

(a) Ohne geteilte Parameter

x1 x2 x3 x4

z1 z2

(b) Mit geteilten Parametern

Abb. 3.12: Visualisierung von geteilten Parametern

Dies ist in Abb. 3.12 visualisiert: Ohne geteilte Parameter sind alle Parameter des ANN
unterschiedlich (was durch die Farbgebung dargestellt wird). Durch das Clustering können
mehrere Parameter zu einem zusammengefasst werden, wie in Abb. 3.12b durch identische
Farben verdeutlicht. Aus diesem Weg kann der Speicherplatzbedarf reduziert werden. Für
dieses Verfahren wird die X-CUBE-AI genutzt, die bei der Stärke der Komprimierung zwei
Stufen (4 und 8) unterstützt [84]. Der Quellcode der Software ist nicht frei zugänglich und
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die Dokumentation ist nur rudimentär, deshalb kann das Verfahren und die Stufen nicht
detailliert beschrieben werden.

3.3 Versuchsaufbau
Im nachfolgenden Abschnitt wird der Versuchsaufbau erörtert, mit dem die Degradierung
von elektromechanischen Relais aufgezeichnet wurde [6]. Dabei wird zunächst die Hard-
und dann die Software beschrieben und schließlich die verwendeten Lasten.

3.3.1 Hardware
Kernstück des Testturms ist eine speziell für diese Anwendung entworfene Leiterplatte,
mit der die Relais geschaltet und die Messgrößen erfasst werden. Zur Aufzeichnung und
Steuerung wird die Messkarte USB-7845 vom Unternehmen National Instruments genutzt.
Die Relais können nach Herstellerangaben mit einer maximalen Schaltfrequenz von 0,1 Hz
betrieben werden. Deshalb wird eine Last zur Alterung von fünf Relais genutzt, die
sequenziell geschaltet werden. Im Betrieb wird zwischen 1 s im eingeschalteten und 9 s
im ausgeschalteten Zustand gewechselt. Auf einer Leiterplatte sind zwei mal fünf Relais
aufgebracht. Ein Testsystem umfasst zwei Leiterplatten, sodass mit drei Systemen 60
Relais gleichzeitig degradiert werden können. Die Hardware für eine Last wird nachfolgend
anhand zweier Schaltkreise (Steuer- und Lastseite des Relais) erörtert.

24 V

umain

LRL1

uRL1

LRL2

uRL2

LRL3

uRL3

LRL4

uRL4

LRL5

uRL5

10Ω

icoil

Abb. 3.13: Schaltung Steuerseite [6]
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In Abb. 3.13 ist die Hardware der Steuerseite der Relais dargestellt. Diese sind deshalb nur
als Induktivitäten LRL dargestellt. Zum Schalten werden Optokoppler verwendet, wobei
jedes Relais unabhängig mit dem jeweiligen Steuersignal uRL geschaltet werden kann. Die
Zenerdiode in Reihe zur Freilaufdiode sorgt für eine Begrenzung der Spannung, sodass die
anderen Komponenten vor induzierten Spannungen geschützt werden. Der Strom icoil wird
differenziell mit einem 10 Ω-Shunt gemessen.
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Abb. 3.14: Schaltung Lastseite [6]

In Abb. 3.14 ist die Schaltung für die Lastseite aufgezeichnet. Oben links sind zwei
Anschlüsse für die Last zu sehen, woran beliebige Lasten angeschlossen werden können.
Darunter ist ein Spannungsteiler mit einer Suppressordiode zu erkennen, durch den die
Spannung über die Relaiskontakte uct gemessen wird. Dieser Schaltungsteil ist wegen
der Messkarte unumgänglich und führt dazu, dass – je nach Last – ein geringer Strom
an den Relaiskontakten vorbeifließt. In der Mitte ist eine Anordnung von insgesamt 10
Relaiskontakten zu sehen. Für jedes geprüfte Relais RLX ist ein weiteres Relais RLXH
vorgesehen, mit dem eine sichere Abschaltung des Strompfades im Fehlerfall gewährleistet
werden kann. Rechts ist ein 0,1 Ω-Shunt dargestellt, mit dem der Strom ict über die
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Kontakte gemessen wird. Auch auf der Lastseite werden die Messgrößen differenziell
erfasst.

Temperatur-
messeinrichtung

Notaus-
vorrichtung

Entworfene 
Platinen mit Relais

Hilfsrelais

Relais

Abb. 3.15: Bild eines Testsystems mit zwei Leiterplatten [89]
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Abb. 3.16: Komponenten und Zusammenhänge eines Testsystems
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In Abb. 3.15 sind die zuvor beschriebenen Schaltungen auf zwei Leiterplatten insgesamt
viermal implementiert. Daneben sind weitere Komponenten zu erkennen, die in Abb. 3.16
in ein Blockschaltbild überführt wurden.

Die Messplatine ist das Herzstück der Testsysteme: Sie beherbergt die zu degradierenden
Relais. Die Lasten sind direkt an die Messplatine angeschlossen. Zur Energieversorgung
werden DC Industrienetzteilen von Phoenix Contact genutzt, die durch einen Notaus
trennbar sind. Diese wurden gezielt ausgewählt, da sie den realen Applikationsbedingun-
gen von Relais eher entsprechen als Labornetzteile mit einer hochpräzisen Strom- und
Spannungssteuerung. Für jede Last wird ein separates Netzteil verwendet. Über mehrere
Thermoelemente wird die Temperatur der Leiterplatte bzw. Relais stetig überwacht, damit
die Notfallabschaltung ausgelöst werden kann. Das gesamte Testsystem wird über die
National Instruments Messkarte gesteuert und die Messgrößen werden damit aufgezeichnet.
Die Steuerbefehle, Datenaufbereitung und Speicherung werden von einer eigens zu diesem
Zweck programmierten Messsoftware realisiert, die im Weiteren beschrieben wird.

3.3.2 Messsoftware
Für die Testsysteme ist eine maßgeschneiderte Software notwendig, mit der die Tests konfi-
guriert, ausgeführt und überwacht werden können. Diese wurde in der Programmiersprache
Python geschrieben und auf einem herkömmlichen Personal Computer ausgeführt. Über
eine USB-Verbindung werden die Steuerbefehle an die National Instruments Messkarte
übermittelt und die Messreihen aufgenommen. Die unverarbeiteten Messreihen und deren
Abweichung von den in Kap. 2 beschriebenen werden nachfolgend beschrieben.
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Abb. 3.17: Unverarbeitete Messreihen eines Einschaltvorgangs mit einer Abtastrate von
200 kHz

In Abb. 3.17 sind die beiden Messgrößen icoil und uct für einen beispielhaften Einschaltvor-
gang visualisiert. Die Abweichung des Spulenstroms wurde grau hinterlegt: Zwischen 0
und 1 ms ist ein erhöhter Kurzschlussstrom zu erkennen, der auf parasitäre Kapazitäten in
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der Schaltung zurückzuführen ist. Für die Alterung des Relais ist diese Abweichung nicht
relevant.
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Abb. 3.18: Unverarbeitete Messreihen eines Ausschaltvorgangs mit einer Abtastrate von
200 kHz

Die Messkurven für das Ausschalten des Relais sind in Abb. 3.18 dargestellt. Bei der
Kontaktspannung ist ab etwa 7,5 ms ein sprunghafter Anstieg von uct auf über 24 V zu
erkennen. Zusätzlich unterliegt der gemessenen Spannung ein starkes Rauschen. Beide
Auffälligkeiten sind auf die geschaltete DC13-Last-Last zurückzuführen. Durch deren
induktiven Charakter wird beim Öffnen des Stromkreises ein Lichtbogen zwischen den
Kontakten hervorgerufen.

Die Messgrößen werden durch die National Instruments Messkarte mit einer Abtastrate
von 200 kHz aufgezeichnet. Da für jeden Schaltzyklus vier Messreihen erfasst und die Relais
mehrere Zehntausend bis Millionen Schaltzyklen betrieben werden, fallen enorme Daten-
mengen im Bereich von vielen Terabyte an. Für das Training maschineller Lernverfahren
und die Publikation der Daten empfiehlt es sich, die Datenmenge zu reduzieren. Deshalb
wird eine Abwärtstastung der Signale auf 10 kHz vorgenommen. Für höhere Frequenzen
konnte im Rahmen von Voruntersuchungen keine signifikante Verbesserung der Performanz
von maschinellen Lernverfahren beobachtet werden.

Zur Abwärtstastung sind zwei Komponenten erforderlich: ein Filter und ein Dezimator.
Der Filter wird zur Bandbegrenzung benötigt, um alle Frequenzanteile über 10 kHz aus
dem Signal zu filtern und somit Aliasing-Effekte zu unterbinden. Nach der Anwendung
eines Filters kann der Dezimator genutzt werden, da mit diesem Abtastwerte aus dem
Signal verworfen werden, sodass die Abtastrate sinkt.

Beim verwendeten Filter handelt es sich um ein digitales Bessel-Filter. Konkret wurde ein
Tiefpassfilter der Ordnung vier mit einer Filter-Grenzfrequenz von 10 kHz entworfen. Der
Frequenzgang, Phasengang und die Gruppenlaufzeit als Charakteristika des Filter sind in
Abb. 3.19 visualisiert.
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Abb. 3.19: Frequenzgang, Phasengang und Gruppenlaufzeit des verwendeten Filter

Das Ergebnis der Abwärtstastung ist in Abb. 3.20 anhand eines beispielhaften Schaltzy-
klus dargestellt. Der Spulenstrom und die Kontaktspannung werden für das Ein- und
Ausschalten sowohl unbearbeitet mit 200 kHz Abtastrate als auch gefiltert und dezimiert
mit 10 kHz Abtastrate gezeigt.

Beim Spulenstrom ist kein Unterschied zwischen beiden Frequenzen auszumachen, weshalb
davon auszugehen ist, dass durch die Abwärtstastung keine Informationen in den Signalver-
läufen verloren gegangen sind. Dahingegen sind Unterschiede für beide Abtastraten bei der
Kontaktspannung auszumachen. Diese sind auf hochfrequente Signalanteile oberhalb der
Filter-Grenzfrequenz von 10 kHz zurückzuführen, die dementsprechend durch das Filter
unterdrückt werden. Von einem Informationsverlust ist dennoch nicht auszugehen, da
durch das Signal beim Einschalten der Start- und Endzeitpunkt des Prellens weiterhin
ausgemacht werden können, genauso wie das Öffnen der Kontakte beim Ausschalten. Das
hochfrequente Rauschen des Lichtbogens ist nach der Anwendung des Filter deutlich
gedämpft.

Abschließend wird auf die Zählweise bei den Defekten eingegangen. Diese ist vollautomatisch
in der Software integriert. Als Defekt wird ein Schaltvorgang gewertet, wenn dieser nicht zu
einer Änderung der Spannung an den Kontakten (24 V zu 0 V oder umgekehrt) führt. Zu
Beginn des nachfolgenden Schaltvorgangs wird die Spannung mit dem jeweiligen Soll-Wert
verglichen. Ein einzelner fehlerhafter Schaltvorgang führt jedoch nicht zwangsläufig zum
Totalausfall eines Relais. Mit einem Produkt, das die Messgrößen für PdM erfassen kann,
könnte deshalb ein einzelner Defekt erkannt und behoben werden. Deswegen werden im
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Abb. 3.20: Beispielhafte Messgrößen mit 200 kHz und 10 kHz Abtastrate

Rahmen dieser Arbeit die Relais so lange betrieben, bis zwei defekte Schaltvorgänge direkt
hintereinander auftreten.

3.3.3 Lasten

Tab. 3.2: Genutzte Lasten [6]

Name Schaltkreis Definition Bauteilwerte
DC13: 1 A R + L 24 Ω; 1.72 mH
DC13: 1.25 A R + L 19 Ω; 1.72 mH
DC13: 1.7 A R + L 14 Ω; 1.72 mH
R: 4 A R 6 Ω
R: 6 A R 4 Ω

Die Relais werden zum Schalten von 24 V Gleichspannung genutzt, wobei die in Tab. 3.2
aufgeführten Lasten verwendet werden. Kapazitive Lasten sind für die Degradierung
auszuschließen, da der verwendete Relaistyp hierfür nicht zum Schalten von hohen Ein-
schaltströme geeignet ist. Daher werden Widerstände und Spulen als Lasten verwendet,
um sowohl ohmsche als auch induktive Eigenschaften abzudecken. Die Spulen sind eine
sogenannte DC13-Last, die in der Norm IEC 121A/427/CD als Lastverwendungskategorie
[90] spezifiziert ist. Diese induktive Last verursacht beim Öffnen der Kontakte die Bildung
eines Lichtbogens zwischen den Kontakten, der bei jedem Schaltvorgang etwas Material
von den Kontakten abbrennt. Der Laststrom hat einen signifikanten Einfluss auf die
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Brenndauer des Lichtbogens, weshalb eine Diversifikation der Lastströme von 1,7, 1,25
und 1 A durch die Reihenschaltung von Widerständen zur DC13-Last vorgenommen wird.
Weiterhin wurden ohmsche Lasten mit Lastströmen von 4 und 6 A verwendet, um die
Maximalangabe der Relaishersteller abzubilden. Somit repräsentieren die verwendeten
Lasten die praktischen Anwendungsbereiche der Relais.

3.4 Datensatz

Im Folgenden wird der Phoenix Contact Relay (PCR)-Datensatz vorgestellt [28], der
mit dem Messaufbau aus Abschn. 3.3 generiert wurde. Er ist den bisher veröffentlichten
Datensätzen in mehrfacher Hinsicht überlegen: Die Ausfallarten sind vielfältiger als die
bisher bekannten, die Relais wurden unter verschiedenen Lasten und Herstellern getestet,
sodass der Datensatz für reale Anwendungen repräsentativ ist; er enthält Daten von
546 Relais und mehr als 106 Millionen Schaltzyklen. Die Schaltfrequenz der Relais lag
bei etwa 0,1 Hz (geringfügige negative Abweichungen aufgrund des nicht echtzeitfähigen
Betriebssystems möglich), wobei das Relais 1 s ein- und 9 s ausgeschaltet wurde. Der
Datensatz besteht aus 10 kHz Zeitreihen und ist damit ideal für die Entwicklung und den
Test komplexer ML-Algorithmen.

In diesem Abschnitt wird zunächst auf die Degradierung von drei exemplarischen Relais
eingegangen und danach werden Statistiken zum Datensatz vorgestellt. Anschließend
werden 12 Merkmale präsentiert, die aus den Zeitreihen extrahiert wurden. Abgeschlossen
wird das Kapitel mit der Aufteilung des Datensatzes und Informationen zum Format der
publizierten Daten.

3.4.1 Degradierung von Relais
Im Folgenden werden die aufgezeichneten Daten beispielhaft dargestellt; es handelt sich um
exemplarische Muster, die mehrfach in ähnlicher Weise beobachtet werden können. Teilweise
sind die Ergebnisse bereits in [6] veröffentlicht. Die Grafiken sind gleich aufgebaut: Sie
bestehen aus in vier Teilgrafiken, bei denen auf der Abszisse die Schaltzyklen aufgetragen
sind. Jedes Relais wird über seine gesamte Betriebsdauer dargestellt. Auf der Ordinate ist
die Zeit während des jeweiligen Schaltvorgangs angegeben, die beiden Plots auf der linken
Seite zeigen die Messgrößen beim Einschalten und die Plots auf der rechten Seite beim
Ausschalten. Die Messwerte sind farblich codiert, wobei die unterschiedliche Codierung
rechts vom Diagramm dargestellt ist.

In Abb. 3.21 ist ein Relais dargestellt, das während der Betriebsdauer keine signifikanten
Änderungen in icoil; on aufweist. Lediglich eine kurze Störung ist bei ca. 25.000 Schaltzyklen
zu verorten. Beim uct; on hingegen ist nach etwa 450.000 Schaltzyklen zu erkennen, dass der
Kontakt immer später geschlossen wird und sich ein Muster abzeichnet. Diese Beobachtung
ist auf das Prellen des Relais zurückzuführen, das mit zunehmender Betriebsdauer größer
wird. Beim Ausschalten ist bei beiden Messgrößen ein deutlicher Trend zu erkennen. Das
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Abb. 3.21: Beispielhafte Visualisierung des kontinuierlich degradierten Relais 294

lokale Maximum des Spulenstroms beim Ausschalten tritt immer später auf, das Gleiche
gilt für den Zeitpunkt des Öffnens der Kontakte.

Physikalisch lassen sich die Beobachtungen mit reduzierten Kontaktfederkräften begründen,
was mit dem Abbrand der Kontakte zusammenhängt. Dieses Relais ist ein Beispiel für
ein kontinuierlich gealtertes Relais, bei dem die Daten deutliche Trends aufweisen, wie sie
auch in anderen Datensätzen wie [10] oder [12] zu sehen sind.

0

5

10

15Ze
it 

/ m
s

icoil; on icoil; off

0 10 20 30 40 50 60
Schaltzyklus / 1000

0

5

10

15Ze
it 

/ m
s

uct; on

0 10 20 30 40 50 60
Schaltzyklus / 1000

uct; off

4

6

8

i co
il /

 m
A

0

10

20

u c
t /

 V

0

1

2

3

i co
il /

 m
A

0

10

20

u c
t /

 V

Abb. 3.22: Beispielhafte Visualisierung der spontanen Verschlechterung des Relais 84 [6]

Die Veränderungen des in Abb. 3.22 gezeigten Relais weichen von denen aus Abb. 3.21
ab; außerdem ist die Lebensdauer deutlich geringer. Beim icoil; on ist gegen Ende der
Betriebsdauer kein klarer Ankeraufschlag mehr zu erkennen, sondern eine gedämpfte
Oszillation. Im selben Zeitraum ist bei uct; on zu sehen, dass das Relais etwas schneller
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schaltet. Beim Ausschalten ergibt sich für icoil; off und uct; off ein ähnliches Bild: Bis zur
Mitte der Betriebsdauer bleiben sie nahezu unverändert, bis das lokale Maximum – also
die Ankerrückbewegung – immer früher auftritt, ebenso wie die Trennung der Kontakte.
Am Ende der Betriebsdauer konvergieren diese Zeitpunkte.

Die beschriebenen Trends lassen sich physikalisch mit einer Materialwanderung an den
Kontakten erklären. Es bildet sich eine kleine Ausbuchtung an den Kontaktflächen, die
den Abstand zwischen den Kontakten verringert und so dafür sorgt, dass z.B. der Anker
nicht mehr anschlagen kann und eine Schwingung zu beobachten ist. Daraus resultiert ein
früheres Öffnen der Kontakte.
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Abb. 3.23: Beispielhafte Visualisierung des Relais 299, bei dem reversible Veränderungen
aufgetreten sind

In Abb. 3.23 ist ein Relais abgebildet, bei dem keine Änderungen in icoil; on über die
Betriebsdauer zu erkennen sind und bei uct; on ist eine Zunahme des Prellens zu beobachten.
Beim Ausschalten weisen icoil; off und uct; off jedoch deutliche Veränderungen auf, wobei kein
monotoner Trend zu erkennen ist. Vielmehr sind es reversible Veränderungen: So ist bei
etwa 40.000 Schaltzyklen in beiden Messgrößen kurzzeitig ein späteres Lösen des Ankers und
der Kontakte zu beobachten. Einige tausend Schaltzyklen später gleichen die Messgrößen
jedoch wieder den Anfangswerten und verändern sich für einige Zehntausend Schaltzyklen
kaum. Daher ist davon auszugehen, dass die Kontakte um den Schaltzyklus 40.000 in
irgendeiner Form beeinträchtigt waren, im Betrieb jedoch wieder geheilt wurden. Bei einer
höheren Betriebsdauer von > 110.000 Zyklen lösen sich Anker und Kontakte abermals
deutlich später. Auch hier kann tendenziell eine Selbstheilung bzw. Normalisierung der
Messgrößen im weiteren Verlauf beobachtet werden. Das Relais fällt aber schließlich aus,
weil die Kontakte nicht öffnen und auch nach dem Ausschalten noch Strom führen. Es
handelt sich um ein typisches Beispiel für ein Relais mit einem spontanen Ausfall, da dieser
nur kurzfristig angekündigt wird.
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3.4.2 Statistik
Im Folgenden wird die Diversifikation des generierten Datensatzes betrachtet.

A B
0

50

100

R
el

ai
s

DC13
1A

A B

DC13
1.25A

A B

DC13
1.7A

A B

R
4A

A B

R
6A

Abb. 3.24: Anzahl der degradierten Relais nach Hersteller und Last [6]

In Abb. 3.24 werden die Relais nach Herstellern und geschalteter Last unterschieden.
Die Lasten DC13 1 und 1,7 A und R 6 A sind die häufigsten Lasten und haben einen
großen Stichprobenumfang von jeweils mehr als 100 Relais bzw. mindestens 50 Relais pro
Hersteller. Mit den Lasten DC13 1,25 A und R 4 A wurden jeweils weniger als 50 Relais
gealtert, da bei der praktischen Anwendung nicht von einer Gleichverteilung der Relais
auf die Lasten ausgegangen werden kann.

Die zwei Hersteller sind mit den Buchstaben A und B anonymisiert worden; insgesamt
wurden etwa gleich viele Relais von beiden degradiert. Lediglich bei der Betrachtung
einzelner Lasten sind Unterschiede auszumachen.

In Abb. 3.25 sind insgesamt 10 Histogramme dargestellt, aufgeteilt nach den fünf Lasten in
den Spalten und den beiden Herstellern in den Zeilen. In der Legende ist die absolute An-
zahl der einzelnen Relais angegeben, die Histogramme zeigen jedoch die relative Häufigkeit.
Ferner wurde in jeder Grafik unterschieden, ob der Ausfall beim Einschalten (On) oder
beim Ausschalten (Off) des Relais auftrat. Ein Defekt beim Einschalten bedeutet, dass
ein Relais keinen Strom führt. Bei DC13-Lasten ist dies meist auf den Kontaktabbrand
zurückzuführen, durch den die Kontaktpillen in ihrer Größe so verringert werden, dass
sie nicht kontaktieren. Tritt ein Defekt hingegen beim Ausschalten auf, dann führt ein
Relais Strom, obwohl es dies nicht mehr sollte. Die Gründe hierfür sind vielfältig, u.a. sind
Folgende anzuführen: Kontaktpillen können durch Erwärmung verschweißen; raue Kon-
taktoberflächen können ein Verhaken der Kontakte bedingen oder durch Elektromigration
wird Material an den Kontakten aufgebracht, das die Trennstrecke im geöffneten Zustand
überbrückt.

Grundsätzlich lässt sich feststellen, dass die Relais der beiden Hersteller unterschiedliche
Lebenserwartungen haben, was auf Konstruktionsdetails zurückzuführen ist. Es gilt jedoch
bei beiden Lastarten und Herstellern: Mit zunehmendem Strom wird die Lebensdauer
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Abb. 3.25: Histogramme der Lebensdauern der Relais unterschieden nach Art des Defekts,
Hersteller und Last [6]
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verkürzt. Dies ist damit zu begründen, dass ein höherer Strom zu größeren thermischen
Belastungen und längeren Lichtbogenbrenndauern führt, welche wiederum die Alterung
beschleunigen.

Die DC13-Lasten ergeben je nach Laststrom und Hersteller unterschiedliche Verteilungen:
Die Relais von Hersteller A fallen häufiger beim Einschalten aus. Das zeigt, dass in diesem
Fall der Kontaktabbrand durch den Lichtbogen treibender Faktor für den Ausfall des
Relais ist. Im Vergleich dazu fallen die Relais von Hersteller B deutlich häufiger beim
Ausschalten aus und zeigen eine geringere durchschnittliche Lebensdauer gegenüber denen
von A. Ein möglicher Grund liegt in der Konstruktion: Die Kontakte von Hersteller A
weisen im ausgeschalteten Zustand einen größeren Abstand auf.

Bei ohmschen Lasten ist kein Unterschied in Bezug auf die Art des Defekts zwischen den
Herstellern auszumachen: Die Ausfälle treten fast ausschließlich beim Ausschalten auf,
trotzdem weist Hersteller A auch hier eine längere Lebensdauer auf. Im Vergleich zur
DC13-Last haben die Relais mit ohmscher Last trotz höherem Laststrom eine größere
Lebensdauer, was auf den fehlenden Lichtbogen zurückzuführen ist.

Zusammenfassend kann mit der Statistik gezeigt werden, dass die Relais in Abhängigkeit
von Last und Hersteller mit unterschiedlichen Lebensdauern und aus unterschiedlichen
Gründen ausfallen.

3.4.3 Extrahierte Merkmale
Im Rahmen der Degradierung der Relais wurden zu über 100 Millionen Schaltzyklen
insgesamt vier Zeitreihen mit jeweils 200 Messwerten erfasst. Aufgrund dieser Datenmenge
wird in diesem Abschnitt erklärt, welche Merkmale aus den Zeitreihen extrahiert werden,
damit weniger Daten pro Schaltvorgang anfallen. Als Merkmal wird im Kontext dieser
Arbeit ein charakteristischer Zeitpunkt oder Messwert bezeichnet, der mit Hilfe eines
Algorithmus zuverlässig aus den verschiedenen Schaltzyklen extrahiert werden kann. Ein
Beispiel hierfür ist der Zeitpunkt, zudem der Anker auf den Spulenkern aufschlägt.

Die Merkmale sind in Abb. 3.26 markiert, nummeriert und kurz beschrieben. Daneben
ist zusätzlich der Mittelwert von icoil hervorgehoben. Dieser ist von Bedeutung, da er u.a.
von der Versorgungsspannung und der Spulentemperatur abhängt. Schwankungen dieser
beiden Einflussgrößen können korrigiert werden, indem die Werte der Stromkennlinien
durch den Mittelwert dividiert werden.

Für uct werden lediglich Zeitpunkte als Merkmale extrahiert. Dies ist mit der angestrebten
Produktumsetzung zu begründen, weshalb die Beschränkungen der in [91] beschriebenen
Schaltung zur Überwachung der Kontaktseite berücksichtigt werden. Mit dieser können
lediglich die Zustände der Kontakte unterschieden und keine Spannungen gemessen werden.
Für icoil werden sowohl die Zeitpunkte als auch die Messwerte als Merkmale extrahiert,
deshalb sind in Abb. 3.26 die Markierungen bei icoil mit jeweils zwei Zahlen versehen.
Dabei bezeichnet die geringere Zahl das Merkmal des Zeitpunktes und die größere Zahl
den Messwert.
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Abb. 3.26: Extrahierte Merkmale, markiert und nummeriert auf exemplarischen Messrei-
hen [6]

Die Auswahl der Merkmale wird nachfolgend kurz erörtert:

• 1; 2: Lokales Maximum Das lokale Maximum im Spulenstrom steht in Relation
zum Start der Ankerbewegung und kann somit u.a. Rückschlüsse auf den gesamten
magnetischen Kreis ermöglichen, wie z.B. die Ruhelage des Ankers.

• 3; 4: Ende Ankerbewegung Das Ende der Ankerbewegung ist als ein lokales Mini-
mum zu erkennen. Bei Verschmutzungen oder Ablagerungen zwischen Anker und
Spulenkern oder zwischen den Kontaktpaaren würde die Trajektorie des Ankers und
damit der Spulenstromverlauf verändert.

• 5: Start Kontaktierung Der Start der Kontaktierung wird als letzter Zeitpunkt erfasst,
zudem noch kein Kontakt besteht. Damit werden Rückschlüsse auf Veränderungen
des Kontaktabstandes ermöglicht.

• 6: Ende Prellen Mit diesem Merkmal wird die Dauer des Prellens bestimmt. Aufgrund
dessen entspricht die Zeitangabe hier der zeitlichen Differenz zum Merkmal 5. Ein
hohes Prellen ist ein Zeichen von Verschleiß.
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• 7; 8: Start der Ankerbewegung Dieses Merkmal gibt Informationen zum Lösen des
Ankers von der Spule und lässt damit Rückschlüsse auf die mechanische Spannung
der Kontakte zu.

• 9; 10: Maximale Induktion Die maximale Induktion ist abhängig von der Ankerbe-
wegung und wird deshalb betrachtet.

• 11: Letztes Mal Kontakt Der Zeitpunkt, zu dem sich die Kontakte beim Ausschalten
lösen, steht ähnlich wie die Merkmale 7 und 8 in Zusammenhang mit der mechanischen
Kontaktspannung.

• 12: Erstes Mal kein Kontakt Dieses Merkmal gibt wieder, wie lange es dauert, bis
die Kontaktspannung erstmalig erneut auf über 24 V steigt. Die gemessene Zeit ist
hier die zeitliche Differenz zu Merkmal 11.

Sowohl die erfolgreiche Extraktion der Merkmale als auch deren Aussagekraft wird im
Folgenden visualisiert. Dazu wurden die Merkmale extrahiert und über die jeweilige Be-
triebsdauer aufgetragen. Die Rohdaten der Relais wurden bereits in Abs. 3.4.1 präsentiert.
Zu Vergleichszwecken wird in den nachfolgenden Abbildungen stets die relative Betriebs-
dauer in Prozent – bezogen auf das jeweilige Relais – angegeben. Die Werte der Merkmale
sind Z-Standardisiert, wobei Standardabweichung und Mittelwert sich auf die drei Relais
beziehen und die Werte damit vergleichbar bleiben.
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Abb. 3.27: Extrahierte Merkmale Nr. 5, 6, 11, 12 aus uct beim Ein- und Ausschalten

66



Prädiktive Instandhaltung

In Abb. 3.27 sind die Merkmale der Kontaktspannungen dargestellt. Bei Betrachtung der
Verläufe wird ersichtlich, dass die in den Zeitreihen erkennbaren Veränderungen durch die
Merkmale widergespiegelt werden: Bei Relais 84 war in Abb. 3.22 eine Abnahme der Zeit
zum ersten Kontakt zu beobachten, wie in Merkmal 5 ebenfalls zu erkennen ist. Gleichzeitig
fand der Zeitpunkt, zu dem sich die Kontakte trennen, ab etwa der Hälfe der Betriebsdauer
immer früher statt – dies spiegelt sich in Merkmal 11 wider. Durch Merkmal 12 wird
zum Ende der Betriebsdauer eine Verlängerung der Zeit bis zum Trennen der Kontakte
angezeigt. Das Relais 294 weist in Abb. 3.21 monotone Trends auf, da die Zeitpunkte vom
ersten Kontakt beim Einschalten und letzten Kontakt beim Ausschalten immer später
stattfinden – dies ist hier auch bei den Merkmalen 5 und 11 zu erkennen. Weiterhin wird
die Zunahme der Prelldauer durch Merkmal 6 ersichtlich. Bei Relais 299 waren in Abb. 3.23
keine monotonen Trends zu beobachten. Es gibt lediglich zwei Phasen, zu denen das Relais
vom initialen Betrieb abweicht. Dies ist in Merkmal 11 zu beobachten.
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Abb. 3.28: Extrahierte Merkmale Nr. 1, 2, 3, 4 aus icoil; on

In Abb. 3.28 sind die Merkmale, die aus icoil; on extrahiert wurden, dargestellt. Bei Merkmal
1 sind mehrere Level zu erkennen, zwischen denen keine Werte auftreten. Dies ist auf die
Diskretisierung zurückzuführen, die die Genauigkeit bei der Bestimmung des Zeitpunktes
begrenzt. Analog zu den vorangegangenen Merkmalen werden auch hier die Beobachtungen
aus den Verläufen der Zeitreihen in den Merkmalen widergespiegelt: Bei Relais 84 ist der
Anker ab etwa der Hälfte der Betriebsdauer nicht mehr normal aufgeschlagen, was in den
Merkmalen 3 und 4 ebenfalls zu beobachten ist. Der Zeitpunkt findet immer früher statt
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und der Wert steigt an. Dies ist auch bei der kurzzeitigen Störung von Relais 294 zu sehen.
Ansonsten sind keine auffälligen Änderungen der Merkmale bei den drei dargestellten
Relais zu sehen.
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Abb. 3.29: Extrahierte Merkmale Nr. 7, 8, 9, 10 aus icoil; off

Abb. 3.29 beinhaltet die Merkmale, die aus icoil; off extrahiert wurden. Die Beobachtungen
aus den vorherigen Abbildungen wiederholen sich an dieser Stelle: Relais 84 weist ab etwa
der Hälfte der Betriebsdauer ein auffälliges Verhalten auf, das in den Merkmalen 7 bis 10
ebenfalls ersichtlich ist. Für Relais 294 sind monotone Trends zu erkennen, wie auch in
Abb. 3.21. Relais 299 weist in Abb. 3.23 zwei Phasen auf, in denen es stark vom initialen
Betrieb abgewichen ist. Die erste Phase endete jedoch wieder im normalen Betriebszustand,
sodass hier von einem reversiblen Phänomen ausgegangen werden kann. Beide Phasen mit
auffälligen Verhalten sind in den Merkmalen enthalten.

3.4.4 Publizierter Datensatz
Die Daten werden im HDF5-Format veröffentlicht, wobei jede Datei die Daten eines Relais
enthält und nach diesem benannt ist. Das Format zeichnet sich durch eine gute Kompri-
mierung und die Möglichkeit aus, nur Teile der Daten in den Arbeitsspeicher zu laden.
Die Dateien setzen sich aus Attributen und Gruppen zusammen. Die Attributnamen und
Kurzbeschreibungen sind in Tab. 3.3 angegeben. Aus Gründen der Geheimhaltung wurden
die Herstellernamen anonymisiert. Die Namen der Gruppen, ihre jeweilige Dimensionalität
und eine kurze Beschreibung sind in Tab. 3.4 zu finden.
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Tab. 3.3: Datei-Attribute [6]
Name Beschreibung
Laststrom Verwendeter Strom für die Degradierung in A
Lasttyp Verwendeter Lasttyp für die Degradierung
Hersteller Anonymisierte Herstellerinformation
Set Zuweisung Empfohlene Zuweisung zum Trainings-,

Validierungs- oder Testset

Damit sich anknüpfende wissenschaftliche Arbeiten auf das gleiche Testset beziehen können,
wird eine mögliche Aufteilung des Datensatzes vorgeben. Im Kontext dieser Arbeit wird der
Datensatz in drei Subdatensätze aufgeteilt: einer für das Training, einer für die Validierung
während des Trainings und einer für das Testen der Generalisierungsfähigkeit.

Tab. 3.4: Datei-Gruppen [6]
Name Beschreibung Dimensionen
I_coil_on Matrix mit 10 kHz Zeitreihendaten von icoil; on

bei jedem Zyklus für 20 ms nach dem Einschalten
1: Schaltzyklus
2: Zeit

I_coil_off Matrix mit 10 kHz Zeitreihendaten von icoil; off
bei jedem Zyklus für 20 ms nach dem Einschalten

1: Schaltzyklus
2: Zeit

U_ctct_on Matrix mit 10 kHz Zeitreihendaten von uct; on bei
jedem Zyklus für 20 ms nach dem Einschalten

1: Schaltzyklus
2: Zeit

U_ctct_off Matrix mit 10 kHz Zeitreihendaten von uct; off bei
jedem Zyklus für 20 ms nach dem Einschalten

1: Schaltzyklus
2: Zeit

Dabei sollen die Daten homogen auf die Subdatensätze aufgeteilt werden, da ansonsten
die Generalisierungsfähigkeit der maschinellen Lernverfahren nicht geprüft werden kann.
Die Aufteilung basiert auf den Metadaten der Relais, speziell den Herstellern und den
geschalteten Lasten. In Tab. 3.5 sind die jeweiligen Anzahlen der Relais nach Hersteller-
und Lastkombination für die drei Subdatensätze angegeben. 50 % der Relais sind dem
Trainingsset zugeordnet und jeweils 25 % den anderen Sets. Diese Aufteilung ist im Kontext
der Datenwissenschaften untypisch, wurde jedoch so gewählt, damit mehr Relais im Testset
sind und somit zuverlässigere Aussagen über die Performanz der maschinellen Lernverfahren
getroffen werden können.
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Tab. 3.5: Aufteilung des Datensatzes [89]
Hersteller & Last Training Validierung Test
A - DC13 93 49 49
B - DC13 87 46 46
A - R 38 20 21
B - R 48 24 25
Insgesamt 266 139 141

3.5 Forschungsbedarf
Auf Basis des aufgezeichneten Datensatzes wird in diesem Abschnitt gezeigt, dass der
Stand der Technik nicht zur Instandhaltung von elektromechanischen Relais geeignet ist.
Dazu wird auf drei Gattungen eingegangen: die statistische Modellierung, die Schätzung
der Restlebensdauer und Verfahren zur Identifizierung von Anomalien. Diesen werden
konkrete Verfahren als Beispiel zugeordnet, anhand derer die Probleme der jeweiligen
Obergattung beleuchtet werden. Abschließend wird aufgezeigt, dass ein hohes Potenzial
für PdM von Relais besteht. Diese Erkenntnisse sind in kürzerer Fassung bereits in [6]
und [89] publiziert.

3.5.1 Statistische Modellierung
Die genutzten Verfahren bei einer statistischen Modellierung sind abhängig vom Bauteil.
Für elektromechanische Relais etablierte sich der B10 Wert [92]. Eine individuelle Be-
trachtung der Relais findet nicht statt, da der Wert auf alle gleichermaßen angewandt
wird.

In der Praxis ergeben sich hier schon die ersten Herausforderungen, denn die Degra-
dierung und damit der B10 Wert sind maßgeblich abhängig von Parametern wie Last,
Hersteller und Temperatur. Das bedeutet, dass diese Parameter bekannt sein müssen
und der Hersteller Erfahrungswerte dazu vorhalten muss. Dies stellt für beide Seiten
eine hohe Komplexität dar: Die Charakterisierung von Lasten inkludiert oftmals nicht
deren Impedanz. Gleichzeitig ist es für einen Hersteller fast unmöglich, Erfahrungswerte
für alle möglichen Kombinationen der Parameter zu sammeln. Hierfür müssten mehrere
tausend Relais degradiert werden, was viele Jahre dauern kann. Weiterhin gibt es neben
den bekannten Parametern zusätzliche Einflüsse, die sporadisch auftreten können und die
Lebensdauer der Relais beeinflussen.

Aber selbst wenn bspw. für Hersteller und Last umfangreiche Lebensdauertests zur Verfü-
gung stehen, liegt in der statistischen Modellierung ein weiteres Problem. In Abb. 3.30
sind die Häufigkeitsverteilungen der Lebensdauern von Relais für zwei Hersteller und
zwei Lasttypen dargestellt. Es ist wichtig zu beachten, dass die Abszisse logarithmisch
skaliert ist. Zur Bestimmung des B10 Wertes müssen aus den Häufigkeitsverteilungen
Wahrscheinlichkeitsdichtefunktionen geschätzt werden. Bei Betrachtung der Form der
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Abb. 3.30: Häufigkeitsverteilung der Relaisdefekte, unterschieden nach Hersteller und
Last [89]

Häufigkeitsverteilungen wird ein Problem deutlich: Die Verteilungen sind äußerst komplex,
was eine zuverlässige Schätzung erschwert.

Auch wenn dies gelingen würde, läge die Differenz zwischen kürzester und längster Le-
bensdauer der Relais bei allen Kombinationen über 900.000 Schaltzyklen. Deshalb würde
auch mit einem perfekten B10 Wert einen Großteil der Lebensdauer der Relais, die vor
ihrem Ausfall gewechselt werden, nicht genutzt werden. Deshalb erscheint eine statistische
Modellierung für elektromechanische Relais nicht sinnvoll.

3.5.2 Überwachte Lernverfahren
In diesen Abschnitt wird erklärt, wie überwachte Lernverfahren zur Instandhaltung von
Bauteilen genutzt werden können und wieso dies für Relais nicht anwendbar ist. In
Abs. 3.1.2 wurden bereits einige Verfahren, die diesem Vorgehen entsprechen. Besonders
hervorzuheben ist bspw. die Schätzung der „Remaining useful lifetime“ (dt. nutzbare
Restlebensdauer) (RUL) von Triebwerken, Kugellagern und Bohrern. Zu diesen Bauteilen
und öffentlichen Datensätzen wurden bereits zahlreiche Veröffentlichungen gemacht, die
das hohe Potenzial von maschinellen Lernverfahren aufzeigen. Deshalb wurde durch das
Unternehmen Phoenix Contact Forschung zur Übertragung dieser Verfahren auf elektro-
mechanische Relais durchgeführt. Die Ergebnisse sind u.a. in meiner nicht-veröffentlichten
Masterarbeit [45] dokumentiert und werden deshalb nachfolgend erörtert.

Zunächst wird auf die genutzte Definition der RUL eingegangen. Die Degradierung der
Relais ist wesentlich abhängig von der Anzahl der Schaltvorgänge, weshalb diese bereits
beim B10 Wert als Maßeinheit für die Lebens- bzw. Betriebsdauer genutzt und im Kontext
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dieser Arbeit übernommen wird. Da die Daten alle Schaltzyklen bis zum Ausfall von allen
Relais enthalten, können zu jedem Schaltzyklus die verbleibenden Schaltzyklen bis zum
Ausfall angegeben werden. Eine derartige absolute Angabe birgt jedoch ein Problem: Den
Daten ist zu entnehmen, dass u.a. der Laststrom einen großen Einfluss auf die Lebensdauer
hat. Je mehr Strom fließt, desto schneller degradiert das Relais. Die Nutzung von einer
absoluten Restlebensdauer würde eine Zuordnung von unterschiedlichen Relaiszuständen
zu einem Zielwert implizieren: Wenn die Lebensdauer von Relais A 250.000 Schaltzyklen
und von Relais B 50.000 beträgt und beide Relais aufgrund von Materialabbrand ausfallen,
dann würde Relais A bei einer Restlebensdauer von 40.000 Schaltzyklen deutlich stärkere
Verschleißerscheinungen aufweisen als Relais B. Deshalb wird eine relative Restlebensdauer
RUL(m) für den Schaltvorgang m wie folgt definiert:

RUL(m) = 1 − m

mmax
, (3.19)

wobei mmax die Lebensdauer des Relais ist. Auf diesem Weg wird der Verschleiß von den
Relais A und B vergleichbar: Eine RUL von 50 % entspricht bei A 125.000 und bei B
25.000 Schaltzyklen.

Eine relative Angabe ist nicht direkt nutzbar, 20 % RUL kann – je nach Relais – für eine
beliebige Restlebensdauer stehen. Deswegen muss die geschätzte ˆRUL(m) zur geschätzten
Lebensdauer m̂max umgerechnet werden. Durch Umformen von Gl. 3.19 ergibt sich:

m̂max = m

1 − ˆRUL(m)
, (3.20)

für diese Berechnung muss der Schaltzyklus m bekannt sein. Mit Gl. 3.20 sind die geschätz-
ten restlichen Schaltzyklen m̂rest für ein Relais wie folgt zu berechnen:

m̂rest = m̂max − m = m

1 − ˆRUL(m)
− m. (3.21)

Im Rahmen meiner Masterarbeit wurden verschiedenste maschinelle Lernverfahren hin-
sichtlich ihrer Eignung für die Prädiktion der RUL untersucht. Dies wurde im Kontext
dieser Dissertation fortgesetzt und vertieft. Dabei konnte ein Problem jedoch nicht gelöst
werden: Die Schätzung der RUL ist für einige Relais so ungenau, dass die Modellbildung
durch die maschinellen Lernverfahren nicht als erfolgreich betrachtet werden kann. Dieses
Problem trat unabhängig von den maschinellen Lernverfahren auf. Simple lineare Modelle
scheiterten genauso wie komplexe rekurrente neuronale Netze.

Daher wird das Problem anhand der Prädikationen zu den in Abs. 3.4.1 vorgestellten
Relais verdeutlicht. Dazu wurde ein ANN mit der Topologie aus Tab. 3.6 mit den in
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Abs. 3.4.3 präsentierten Merkmalen als Eingangsdaten und der relativen RUL als Zielgröße
trainiert. Für das Training wurde der Adam Optimierer mit einer Lernrate von 0.001
gewählt, um den „Mean Squared Error“ (dt. Mittlerer quadrierter Fehler) (MSE) zu
minimieren [93]. Durch eine Gewichtung der Trainingsdaten wurde sichergestellt, dass die
Relais gleichbedeutend sind. Ein Schaltzyklus von einem Relais mit hoher Lebensdauer
ist dementsprechend geringer gewichtet als der eines Relais mit niedriger Lebensdauer.
Zusätzlich wurde das Training unterbrochen, als die Performanz auf dem Trainingsset
besser und auf dem Validierungsset schlechter wurde.

Tab. 3.6: ANN-Topologie
Schicht Typ Informationen
1 Dense Neuronen: 50, Aktivierungsfunktion: ReLU
2 Dropout Dropout-Rate: 0.1
3 Dense Neuronen: 50, Aktivierungsfunktion: ReLU
4 Dropout Dropout-Rate: 0.1
5 Dense Neuronen: 1, Aktivierungsfunktion: ReLU
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Abb. 3.31: Beispielhafte RUL-Prädiktionen von drei Relais mit einem ANN

In Abb. 3.31 sind die Prädikationen des ANN für drei Relais aus dem Testset visualisiert.
Diese sind nicht repräsentativ für die Performanz auf dem gesamten Testset, lassen jedoch
methodische Probleme aufzeigen.

Relais 294 weist monotone Trends in den Messdaten auf (vgl. Abb.3.21). Dies spiegelt sich
in den Prädikationen wider: Über die gesamte Betriebsdauer sind nur geringe Abweichungen
zwischen der geschätzten und wahren RUL auszumachen. Die geschätzte RUL wäre geeignet
gewesen, um einen rechtzeitigen Hinweis für eine Instandhaltung zu geben. Zu Beginn
der Betriebsdauer (RUL 90 %) sind erhebliche Abweichungen zu erkennen. Dies ist zum
einen mit dem sichtbaren anormalen Verhalten in Abb. 3.21 zu begründen. Zum anderen
treten bei vielen Relais Abweichungen in der Form auf, dass die RUL nie auf 100 %
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geschätzt wird. Es ist davon auszugehen, dass die Relais initial nicht alle die gleiche
Lebenserwartung haben. Ein wichtiger Faktor dafür ist z.B. der Überhub, der aufgrund
von Fertigungsabweichungen nicht bei allen Relais gleich ist.

Für Relais 84 ergeben sich andere Herausforderungen: Die geschätzte RUL liegt über die
gesamte Betriebsdauer zwischen 80 und 20 %. Die erste Lebenshälfte ist keine Abnahme der
geschätzten RUL zu erkennen, ab der zweiten Lebenshälfte ist eine Abnahme zu beobachten.
Dieses Verhalten kann durch Betrachtung von Abb. 3.22 nachvollzogen werden: Hier ist
auszumachen, dass nur in der zweiten Lebenshälfte Veränderungen in den Messgrößen von
Relais 84 aufgetreten sind. Das Abweichen von der vorgegeben linearen RUL, ist somit
nachvollziehbar. Dadurch scheint die Annahme, dass die RUL durch eine lineare Funktion
approximiert werden kann, nicht anwendbar zu sein.

Dies wird noch deutlicher bei Relais 299, bei dem in Abb. 3.23 reversible Veränderungen
auszumachen sind. Die Prädiktionen des ANN weichen stark von der wahren RUL ab.
Generell ist zu erkennen, dass mit zunehmender Betriebsdauer die geschätzte RUL abnimmt.
Eine Ausnahme bildet das Intervall von 90 bis 70 % der wahren RUL, hier steigt die
geschätzte RUL sogar an. Die angestrebte Modellierung der RUL wurde somit nicht
erreicht. Neben dem Nichterfüllen der Linearität wird hier eine andere implizite Annahme
bei der RUL verletzt: Die Daten lassen sich – insbesondere in den Bereichen mit reversiblen
Veränderungen – nicht mit einer monotonen RUL vereinen.

Zusammenfassend ist festzuhalten, dass die lineare, monotone RUL nicht auf Relais ange-
wandt werden kann. In diversen Tests mit unterschiedlichsten Techniken des maschinellen
Lernens gelang kein erfolgreiches Lernen einer solchen RUL. Begründet werden kann
dies mit den Veränderungen in den Daten, die oftmals nicht linear und / oder monoton
sind. Gleichzeitig kann durch die Untersuchung gezeigt werden, dass durch das ANN
Rückschlüsse auf den Zustand des Relais gezogen werden können, da grundsätzlich eine
niedrigere RUL mit höherer Betriebsdauer geschätzt wird.

3.5.3 Unüberwachte Lernverfahren
Unüberwachte Lernverfahren bringen einen entscheidenden Vorteil mit sich: Es ist keine
Modellierung der Zielgröße notwendig.

Es bestehen diverse Verfahren, mit denen unüberwacht prädiktive Instandhaltung realisiert
werden kann, wie bereits im Forschungsstand (Abs. 3.1.2) erörtert wurde. Doch auch dieser
Ansatz ist auf Relais nicht übertragbar. Um dies zu erklären, wird im Folgenden ein
„Variational Autoencoder“ (VAE) exemplarisch genutzt. Mit diesem wird unüberwacht eine
latente Darstellung der Eingangsdaten erlernt, auf deren Basis wiederrum eine Rekonstruk-
tion der Eingangsdaten stattfindet. Über Rekonstruktionsfehlers werden schlussendlich
anormale Schaltzyklen ausgemacht.

Eine detaillierte Beschreibung ist Abs. 3.2.2 zu entnehmen. Die Topologie des Netzes
ist in Tab. 3.7 aufgeführt, sowohl die Conv1D als auch die Conv1DTranspose Schichten
wurden mit einer LekyReLU Aktivierungsfunktion versehen. Für das Training wurde der
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Tab. 3.7: VAE Topologie
Schicht Typ Informationen
1 Conv1D Filter: 1, Strides: 1
2 Conv1D Filter: 32, Strides: 2
3 Conv1D Filter: 32, Strides: 1
4 Conv1D Filter: 16, Strides: 2
5 Conv1D Filter: 2, Strides: 2
7 Dense Neuronen: 100
8 Lambda Stichprobenverfahren
9 Dense Neuronen; 50
11 Conv1DTranspose Filter: 64, Strides: 2
12 Conv1DTranspose Filter: 64, Strides: 2
13 Conv1DTranspose Filter: 64, Strides: 1
14 Conv1DTranspose Filter: 16, Strides: 2
15 Conv1DTranspose Filter: 8, Strides: 1
16 Conv1DTranspose Filter: 4, Strides: 1
17 Conv1DTranspose Filter: 4, Strides: 1

Adam Optimierer genutzt [93] und als Ein- bzw. Ausgangsdaten die vier aufgezeichneten
Zeitreihen, also viermal 200 Werte pro Schaltzyklus. Die Daten wurden für das Training
in das Intervall [0,1] skaliert, dazu wurden 0 mA bzw. 0 V als Minimalwert und 8 mA bzw.
30 V als Maximalwert verwendet. Deshalb ist das Fehlermaß (der MSE) dimensionslos.
Insgesamt wurde der VAE 75 Epochen trainiert.
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10 3

10 2

M
SE
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Abb. 3.32: Fehler für das Trainings- und Validierungsset über die Trainingsepochen
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In Abb. 3.32 sind die Fehler des Trainings- und Validierungssets über die Lernepochen
aufgetragen. Da der Fehler für beide Sets gleichermaßen mit zunehmender Epoche abnimmt,
ist das Training des VAE erfolgreich.
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Abb. 3.33: Vergleich der originalen und vom VAE rekonstruierten Zeitreihen
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Abb. 3.34: MSE der rekonstruierten Zeitreihen von verschiedenen Relais [6]

In Abb. 3.33 sind exemplarische originale und rekonstruierte Messreihen gegenübergestellt.
Die Zeitpunkte von Ankeraufschlag, Ankerrückbewegung und den Kontaktierungsände-
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rungen sind präzise rekonstruiert worden. In den Zeitreihen sind nur teilweise geringe
Abweichungen auszumachen. Somit war das Training des VAE erfolgreich.

Die Rekonstruktionsfehler wurden als MSE berechnet und sind in Abb. 3.34 exemplarisch
für einige Relais aus dem Testset dargestellt. Die Schaltzyklen der Relais wurden nach
ihrer Reihenfolge mit Punkten dargestellt. Die einzelnen Relais sind durch die Farbwechsel
voneinander zu unterscheiden. Um einen VAE für PdM zu nutzen, müsste an dieser Stelle
ein Fehlerschwellwert festgelegt werden, mit dem die Anomalien bestimmt werden können.
Bei einigen Relais ist ersichtlich, dass der MSE zu Ende der Betriebsdauer stark ansteigt.
Bei einigen Relais ist dieser jedoch auch zu Beginn der Betriebsdauer hoch. Es ist nicht
möglich, eine Grenze festzulegen, zu der bei vielen Relais vor einem Ausfall gewarnt und die
gleichzeitig nicht von Beginn der Betriebsdauer an bei den Relais überschritten wird.

In Abb. 3.35 wird das Problem der Schwellwertbestimmung anhand von Box-Polts für die
Relais visualisiert. Die Whisker geben dabei jeweils die minimal, bzw. maximalen MSE
des Relais an. Die Box umfasst das 25 bis 75 % Intervall und als oranger Strich ist der
Median dargestellt. Aus der Grafik geht hervor, dass der MSE mehr von den Relais als von
deren Degradierungszustand abhängt. Für die Wahl eines Schwellwerts ist es notwendig,
dass die 25 bis 75 % Intervalle ähnlich sind, damit eine klare Trennung von normalen und
anomalen Schaltzyklen durchgeführt werden kann.

Das Scheitern des Verfahrens auf Basis eines VAE kann auf zwei Arten und Weisen
begründet werden: Zum einen müssten vor dem Ausfall eines Relais anomale Schaltzyklen
auftreten, die einen hohen Rekonstruktionsfehler begründen. Aus Abb. 3.21 geht jedoch
hervor, dass Relais kontinuierlich degradieren können, weshalb ein Defekt sich nicht durch
ein anomales Verhalten ankündigt. Bei den Relais aus den Abbildungen 3.22 und 3.23
sind sprunghafte, reversible Veränderungen zu beobachten. Daher sind diese im Datensatz
nicht unterrepräsentiert und der VAE erreicht einen geringen MSE bei der Rekonstruktion.
Zum anderen führen Fertigungsabweichungen dazu, dass die Formen der Messreihen für
jedes Relais individuell sind. Einen Großteil lernt der VAE nachzubilden; der MSE ist
entsprechend gering. Aber einzelne Relais können aufgrund ihrer individuellen Form über
ihre ganze Betriebsdauer nicht so präzise durch den VAE verarbeitet werden, weshalb
der MSE höher ist. Durch die Nutzung des VAE lassen sich in diesem Fall somit andere
Rückschlüsse ziehen: Nicht die Degradierung wird durch den MSE angezeigt, sondern ein
generell anormales Relais.

Damit scheint es sinnvoll zu sein, einen VAE beim Hersteller zu nutzen, um eine Quali-
tätskontrolle der Relais durchzuführen. Rückschlüsse auf den Degradierungszustand der
Relais können – wie in diesem Abschnitt gezeigt – jedoch nicht gezogen werden.
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Abb. 3.35: Box-Plot Diagramme der MSE von einzelnen Relais

3.5.4 Aufzeigen des Potenzials für Prädiktive Instandhaltung

In den vorangegangenen Abschnitten wurde gezeigt, warum überwachte und unüberwachte
maschinelle Lernverfahren nicht erfolgreich für die prädiktive Instandhaltung angewendet
werden können. Trotzdem scheint ein gewisses Potenzial zu bestehen, das nachfolgend
aufgezeigt wird. Dazu wird eine Untersuchung meiner Masterarbeit [45] wiederholt, bei der
eine Unterscheidung von zwei Degradierungszuständen der Relais mit den vorliegenden
Daten und maschinellen Lernverfahren durchgeführt wird.
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Dafür werden von jedem Relais des Datensatzes die in Abs. 3.4.3 beschriebenen Merkmale
von den ersten 720 Schaltzyklen als „unauffällige“ Beispiele und die letzten 360 Schalt-
zyklen als „auffällige“ Beispiele gewählt. Auf diesem Weg wird sichergestellt, dass sich
die Merkmale zwischen beiden Degradierungszuständen deutlich unterscheiden. Für die
Klassifizierung wird ein ANN gemäß der in Tab. 3.6 beschriebenen Topologie genutzt. Das
Training wird mit vorzeitigem Abbruch und dem Adam Optimierer durchgeführt [93],
wobei der Datensatz gemäß der Vorgabe aus Abs. 3.4.4 aufgeteilt wird. Als Fehlermaß wird
die binäre Kreuzentropie genutzt. Die Performanz wird am relativen Anteil der korrekt
klassifizierten Schaltvorgänge an den gesamten Schaltvorgängen gemessen und liegt für den
Testdatensatz bei 96,07 %. Daraus folgt, dass eine Unterscheidung der Degradierungsstufen
durch ein ANN möglich ist.

Demzufolge ist ein semi-überwachtes Training, speziell Pseudo-Labeling, passend für die
prädiktive Instandhaltung von Relais, bei denen Millionen Schaltzyklen unmarkiert sind.
Eine vergleichbare Anwendung wird bereits in [94] beschrieben, wo eine Fehlerdiagnose
von Windkraftanlagengetrieben präsentiert wird. Auch hier besteht das Problem, dass es
schwierig ist, markierte Daten zu erhalten, die für maschinelles Lernen notwendig sind.
Als Lösung des Problems wird über eine semi-überwachte Lernmethode vorgeschlagen.
Zunächst werden dabei ANN mit den begrenzten markierten Daten trainiert. Danach
werden auf Basis von deren Prädiktionen weitere Daten markiert. Schließlich wird der
erweiterte markierte Datensatz verwendet, um die Merkmalsextraktion und das ANN zu
optimieren bzw. zu trainieren. Die Experimente – sowohl auf dem Prüfstand als auch bei der
Fehlerdiagnose von Windturbinengetrieben – zeigten, dass effektiver ist als vergleichbare
Methoden.

3.5.5 Forschungsdesiderat

In den vorangegangenen Abschnitten wurde zunächst erläutert, dass statistische Verfahren
ungeeignet sind, um die Instandhaltung eines Relais zu planen, da es sowohl bei den
notwendigen Datenmengen als auch bei der Modellierung Probleme gibt. Weiterhin wurde
gezeigt, dass der Stand der Technik im Kontext von PdM nicht auf Relais angewandt
werden kann. Überwachte Lernverfahren benötigen eine Zielgröße, die im Kontext der
nicht linearen und nicht monotonen Degradierung individuell für jedes Relais definiert
werden müsste. Durch unüberwachte Verfahren kann dieses Problem umgangen werden,
doch hier ergibt sich ein neues: Die zentrale Annahme, dass Anomalien im Datensatz
unterrepräsentiert sind, ist bei Relais nicht erfüllt.

Schlussendlich wurde jedoch gezeigt, dass die Daten eine Unterscheidung von „unauffälli-
ge“ und „auffällige“ Schaltzyklen durch ein ANN erfolgreich erlernt werden kann. Deshalb
wird im nachfolgenden Abschnitt ein neuer semi-überwachter Ansatz vorgestellt.
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3.6 Semi-überwachtes Lernverfahren für PdM
Im Folgenden wird ein neues Verfahren vorgestellt, mit dem ein Indikator für einen
Ausfall gegeben werden kann. Dabei wird ein semi-überwachter Lernansatz genutzt, mit
dem auffällige Schaltspiele von Relais markiert werden und so ein rechtzeitiger Service
ermöglicht wird. Die Funktionsweise des Algorithmus wird sowohl qualitativ für die Daten
einzelner Relais als auch quantitativ demonstriert. In der Veröffentlichung [89] ist das
Verfahren bereits beschrieben und evaluiert. Weiterhin sind zu dieser Thematik zwei
Patente angemeldet [95] und [96].

3.6.1 Instandhaltungsalgorithmus für ungelabelte Daten
Mit dem Verfahren „Maintenance-Algorithm for Unlabeled Data“ (dt. Instandhaltungs-
algorithmus für ungelabelte Daten) (MAUD) kann ein Indikator für einen Ausfall eines
Relais gegeben werden. Damit ist es möglich, einen drohenden Ausfall zu verhindern.
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Abb. 3.36: Überblick über die Datenverarbeitungspipeline [89]

MAUD setzt sich aus insgesamt fünf Teilen zusammen, die in Abb. 3.36 in Verhältnis
zueinander gesetzt werden. Die Aufteilung rührt daher, dass Hersteller und Last einen
Einfluss auf die Degradierung haben und deswegen getrennt voneinander betrachtet
werden. Dafür ergibt sich die Notwendigkeit, eine Initialisierungsphase einzuführen, in der
Hersteller und Last klassifiziert werden. Die Initialisierungsphase umfasst die ersten zwei
Betriebsstunden (720 Zyklen) eines jeden Relais. In dieser Phase wird angenommen, dass
kein Relais ausfällt. Danach kann MAUD genutzt werden, um den Zustand des jeweiligen
Relais zu schätzen.

Der erste Teil „Relais“ umfasst die Datenakquisition und wurde damit in Abschn. 3.3
bereits ausführlich beschrieben, genauso wie die Extraktion der Merkmale (Schritt 2)
in Abschn. 3.4.3. Die übrigen drei Teile werden nachfolgend erörtert. Zunächst wird
beschrieben, wie die Unterscheidung von Hersteller und Last realisiert wird. Darauf wird
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die Aufbereitung der Merkmale erklärt und schlussendlich, wie das ANN trainiert und zur
Prädiktion genutzt wird.

3.6.1.1 Initialisierung

Da Hersteller und Last unabhängig voneinander sind, werden beide ebenfalls eigenständig
geschätzt.
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Abb. 3.37: Vergleich von Messreihen von zwei unterschiedlichen Herstellern [89][96]

Die Relais werden nach Herstellern unterschieden. In Abb. 3.37 sind die Messreihen für
zwei neue Relais von beiden Herstellern dargestellt. Bei icoil sind Unterschiede beim Ein-
und Ausschalten zwischen beiden Herstellern zu sehen. Diese sind auf die Geometrie
des Magnetkreises und die Induktivität der Spule zurückzuführen. Auch die Federkräfte
der Kontakte wirken sich auf die Bewegung des Ankers aus. Beim Einschalten zeigt uct,
dass das Relais von Hersteller B stärker prellt – eine Beobachtung, die für die Mehrzahl
der Relais zutrifft. Beim Ausschalten ist in uct zu erkennen, dass sich die Kontakte zu
unterschiedlichen Zeitpunkten trennen.

Durch diese Unterschiede in den Messreihen scheint eine Differenzierung der Hersteller
möglich zu sein. Deswegen werden die in Abs. 3.4.3 beschriebenen Merkmale verwendet,
um ein ANN zu trainieren, das diese Klassifizierungsaufgabe übernimmt.

Beim Test verschiedener Topologien zeigte sich, dass selbst ein einfaches Netz mit einer
versteckten Schicht aus 25 Neuronen und einer ReLU-Aktivierungsfunktion und einem
Neuron als Ausgang mit Sigmoid-Aktivierungsfunktion eine Genauigkeit von 99,99 % im
Trainingsdatensatz und 99,90 % im Validierungsdatensatz erreicht. Die Initialisierungsphase
von MAUD dauert 720 Schaltzyklen, weshalb über diese eine Mehrheitsabstimmung
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durchgeführt werden kann. Dies ermöglicht ein zu 100 % korrektes Klassifizieren der Relais
im Testdatensatz zu dem richtigen Hersteller.

Die Unterscheidung verschiedener Relais-Hersteller unter Zuhilfenahme von maschinellen
Lernverfahren ist in [96] als Patent angemeldet. Bei einer Produktumsetzung könnten dieses
Verfahren auch genutzt werden, um Relais von unbekannten Herstellern zu erkennen und
MAUD zu deaktivieren. Schließlich ist deren Degradierung nicht untersucht worden.
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Abb. 3.38: Kontaktspannung beim Ausschalten für unterschiedliche Lasten [89]

Da je nach geschalteter Last unterschiedliche physikalische Phänomene auftreten, sind
unterschiedliche Arten und Weisen der Degradierung zu erwarten. Daher werden die Relais
nach Last differenziert. Dazu wird uct beim Ausschalten verwendet: Bei den induktiven
DC13-Lasten treten Lichtbögen auf, die sich durch Rauschen in der Kontaktspannung
bemerkbar machen. Dies ist in Abb. 3.38 zu sehen. Für die Klassifikation der Lasten genügt
es, die Standardabweichung der Spannung die ersten 5 ms direkt nach dem Trennen der
Kontakte zu betrachten: Für die DC13-Last beträgt diese 3,25 V und für die resistive Last
0,03 V. Auf diesem Weg werden beide Lastarten voneinander unterschieden.

Im Rahmen einer Produktumsetzung kämen zwar viele weitere Lastarten in betracht, die
Unterscheidung zwischen induktiven und nicht induktiven Lasten wäre jedoch weiterhin
möglich.

3.6.1.2 Merkmalsaugmentation

Die in Abs. 3.4.3 extrahierten n Merkmale werden im Folgenden mit v ∈ Rn für einen
Schaltzyklus eines Relais bezeichnet. Auf dieser Grundlage findet eine Erweiterung des
Datensatzes statt. Die extrahierten Merkmale beziehen sich nur auf einen Schaltvorgang –
die Veränderungen zwischen den Schaltvorgängen oder zum initialen Zustand des Relais
gehen nicht daraus hervor.

Daher wird beim Augmentieren die Historie der Merkmale V ∈ Rn·lr von jedem Relais
r ∈ N einbezogen – wobei lr ∈ N die Anzahl der Schaltzyklen ist und cr ∈ N. ein
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bestimmter Zyklus ist. Jedes Merkmal erhält in drei modifizierten Varianten Einzug in
den Trainingsdatensatz, sodass dieser hinsichtlich der Dimensionalität verdreifacht wird.
Folgende Modifikationen werden vorgenommen:

1. Gleitender Durchschnitt: 1
k

∑c
i=c−k Vi

Um Ausreißer und Rauschen in den Merkmalen zu unterdrücken, wird ein gleitender
Mittelwert mit einer Fensterbreite von k ∈ N bestimmt.

2. Maß für die Größe der Veränderung: 1
m

∑c
i=c−m |∇Vi|

Der Gradient eines Merkmals ist ein wichtiger Hinweis für dessen Änderung. Über
die Berücksichtigung des mittleren Gradienten (gemittelt über m ∈ N Zyklen) wird
dem ANN diese Information über die jüngste Historie des Merkmals gegeben.

3. Abweichung vom Ausgangszustand: v − 1
s

∑s
i=0 Vi.

Die initialen Zustände der Relais weichen u.a. aufgrund von Fertigungsabweichungen
voneinander ab. Somit ist es nicht möglich, die Werte der Merkmale eindeutig
einem Alter zuzuordnen. Deshalb wird die Veränderung eines jeden Relais zu diesem
individuellen initialen Zustand im Datensatz aufgenommen. Diese wird über die
ersten s ∈ N Zyklen gemittelt und von den Merkmalen abgezogen.

Für das Training wird mit den Merkmalen abschließend eine Z-Normalisierung durchgeführt.
Der Mittelwert und die Standardabweichung werden dabei über den gesamten Trainingssatz
berechnet.

3.6.1.3 Prädiktion

Topologie des verwendeten ANN

Nachdem Hersteller und Last geschätzt und die Merkmale augmentiert wurden, kommt
es im fünften Schritt zur Prädiktion. Dabei wird – je nach Hersteller und Last – ein
eigenes ANN genutzt, da die Degradierung stark von diesen Faktoren abhängt und eine
Steigerung der Performanz durch das Verwenden unterschiedlicher ANN erzielt werden
kann. In Hinblick auf Topologie und Training sind die ANN identisch.

Im Rahmen dieser Arbeit wird das einfachste mögliche ANN verwendet, d.h. einfache Neuro-
nen mit ReLU-Aktivierungsfunktion. Der Vorteil dieses Ansatzes besteht darin, dass ein sol-
ches ANN bei der Inferenz auf Mikrocontrollern nur geringe Hardware-Anforderungen hat.
Die ANN-Topologie wird in Tab. 3.8 angegeben und wurde mit Hilfe einer Hyperparameter-
Optimierung bestimmt. Dazu wurden die Anzahl der Neuronen pro Schicht, die Anzahl der
Schichten, die Aktivierungsfunktion und die Dropout-Rate mit einer Zufallssuche variiert
und die Kombination mit der besten Performanz gewählt:

Training

Ziel ist es, eine binäre Klassifizierung der Schaltzyklen durchzuführen, mit der die Identifi-
zierung von Anzeichen eines Ausfalls ermöglicht werden soll. Eine manuelle Zuordnung
des Label für Anzeichen eines Ausfalls ist jedoch nicht möglich, da der Datensatz mit
über 100 Millionen Schaltzyklen zu umfangreich ist. Daher wird ein semi-überwachter
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Tab. 3.8: ANN-Topologie [89]
Schicht Typ Informationen
1 Dense Neuronen: 50, Aktivierungsfunktion: ReLU
2 Dense Neuronen: 50, Aktivierungsfunktion: ReLU
3 Dense Neuronen: 50, Aktivierungsfunktion: ReLU
4 Dropout Dropout-Rate: 0.25
5 Dense Neuronen: 1, Aktivierungsfunktion: Sigmoid

Lernansatz verfolgt, bei dem ein Teil der Label vom ANN selbst vergeben werden. Speziell
wird ein Pseudo-Labeling angewandt – das Prozedere hierfür ist schematisch in Abb. 3.39
dargestellt.

Pseudo 
Labeling

Training

X y

Inferenz

X ŷ

Abb. 3.39: Trainingsprozedur [89]

Bei der in Abb. 3.39 dargestellten Trainingsprozedur handelt es sich um einen iterativen
Prozess, dem eine Initialisierung vorgelagert ist. Für diese werden zwei Annahmen getroffen:
Einerseits wird davon ausgegangen, dass die letzten Zyklen auffällig sind und daher als
solche gekennzeichnet werden können. Dazu wird λ ∈ N in die Gleichungen 3.22 und 3.24
eingeführt. Andererseits wird angenommen, dass die meisten Zyklen in der ersten Hälfte
der Betriebsdauer des Relais unauffällig sind. Dies wird durch σ berücksichtigt. Für das
erste Training werden die Label y für den Schaltzyklus cr dementsprechend folgendermaßen
vorgegeben:

ycr =


0 (unauffällig) wenn cr < σ

1 (auffällig) wenn cr > lr − λ

nicht genutzt sonst
, (3.22)

wobei Lr für die Lebensdauer des Relais r und cr für den jeweiligen Zyklus steht. Mit
diesen Labeln wird ein erstes ANN mit der in Tab. 3.8 aufgeführten Topologie trainiert.
Um die Überrepräsentation eines Label im Datensatz zu vermeiden, werden für beide
Label die gleiche Anzahl an Beispielen zufällig aus dem Datensatz gezogen. Als Optimierer
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wird der Adam Optimizer genutzt [93]. Zusätzlich wird das Training vorzeitig abgebrochen,
um eine Überanpassung zu vermeiden. Der Fehler beim Training wird über die binäre
Kreuzentropie berechnet:

Hp(q) = − 1
N

N∑
i=1

yi · log(p(yi)) + (1 − yi) · log(1 − p(yi)). (3.23)

Auf diese Art und Weise wird in der Initialisierung ein ANN erzeugt, mit dem beim Pseudo-
Labeling neue Label für den Trainings- und Validierungsdatensatz geschätzt werden. Diese
basieren auf den Prädikationen ŷcr :

ycr =


0 wenn cr < ε or ŷcr < α

1 wenn ŷcr > 1 − α und cr > σ

1 wenn cr > lr − λ

nicht genutzt sonst

, (3.24)

wobei die Annahmen von der Initialisierung teilweise weiterhin gelten. D.h. die ersten
ε ∈ N Zyklen werden als unauffällig und die letzten λ Zyklen als auffällig gekennzeichnet.
Von der Annahme, dass die ersten 50 % der Schaltzyklen unauffällig sind, wird abgewichen,
da z.B. bei Relais 294 zu beobachten ist, dass auch schon in dieser Betriebsdauer auffällige
Schaltzyklen auftreten können. Alle anderen Schaltzyklen werden auf der Basis von ŷ(cr)
gelabelt. Durch diese Kennzeichnung ist es z.B. möglich, die auffälligen Zyklen in Abb. 3.43
bei 40.000 entsprechend zu kennzeichnen und gleichzeitig zuzulassen, dass anschließend
wieder eine unauffällige Phase durchlaufen wird.

Mit dem Schwellwert α ∈]0, 0.5[ wird bestimmt, welche Schaltzyklen mit Pseudo-Labeln
versehen werden. Die Einschränkung, dass nur cr > σ als auffällig gekennzeichnet werden
können, ist der Tatsache geschuldet, dass sonst viele Zyklen in einer frühen Lebensphase
ebenfalls als auffällig gekennzeichnet würden und somit wenig Lebensdauer eines Relais
genutzt würde. Gleichzeitig werden auf diese Weise Zyklen, die zunächst fälschlicherweise
als unauffällig gekennzeichnet wurden, aus dem Datensatz entfernt, sodass beide Kenn-
zeichnungen besser unterschieden werden können. Eine grafenbasierte Korrektur der Label,
wie in [56] und [57] vorgeschlagen, konnte im Kontext dieser Arbeit nicht umgesetzt werden,
da mit den Daten keine Abgrenzung von Nachbarschaften erzielt werden konnte.

Nach dem Pseudo-Labeling beginnt eine neue Iteration der Trainingsprozedur (vgl.
Abb. 3.39). Dabei wird ein neues ANN trainiert, d.h. die gelernten Parameter auf der
vorherigen Iteration werden nicht genutzt. Dieses Vorgehen ist notwendig, da das ANN
andernfalls anfällig ist für eine Überanpassung.

3.6.2 Evaluation
Im Folgenden werden die Ergebnisse von MAUD sowohl in qualitativer als auch in quan-
titativer Hinsicht diskutiert. Für die Evaluation wurden die in Tab. 3.9 aufgeführten

85



Prädiktive Instandhaltung

Parameterwerte genutzt. Dabei ist zu betonen, dass 360 Zyklen einer Stunde Betrieb
entsprechen, wo die Wahl dieses Wertes herrührt.

Tab. 3.9: Genutzte Parameterwerte [89]
Parameter Beschreibung Wert
n Anzahl der Merkmale 12
k Fensterlänge für den gleitenden Mittelwert 120
m Fensterlänge für den durchschnittlichen Gradienten 120
s Zeitraum für die Initialisierung 720
λ Angenommene auffällige Zyklen 360
ε Angenommene unauffällige Zyklen 720
σ Angenommene normale Operationsphase lr/2
α Schwellwert für Pseudo-Label 0.05
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Abb. 3.40: Historie der Nutzung, Ausfälle und geänderten Label über die Iterationen [89]
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Abb. 3.40 zeigt die Ergebnisse des ANN auf dem Validierungsset über die ersten 50
Iterationen von MAUD. Die Relais sind nach Hersteller und Last aufgeteilt. Am Ende
jeder Trainingsphase werden drei Größen aufgezeichnet: „Label geändert“ quantifiziert
den Prozentsatz der Schaltzyklen, die durch die Vorhersagen des neu trainierten ANN
für die nächste Iteration geändert wurden. Die„Nutzung“ gibt den durchschnittlichen
Prozentsatz der genutzten Lebensdauer an, wobei angenommen wird, dass ein Relais
gewechselt wird, wenn es als auffällig eingestuft wird. Um realen Bedingungen Rechnung zu
tragen, wurde festgelegt, dass ein Relais mindestens 1 h (360 Zyklen) vor dem Ausfall als
auffällig gekennzeichnet werden muss. Andernfalls wird ein Relais als „Ausfall“ gewertet,
die ebenfalls relativ in Abb. 3.40 angegeben werden. Um Ausreißer zu unterdrücken, wurden
die ANN-Prädiktionen mit einem gleitenden Durchschnitt mit einer Fensterbreite von 120
geglättet.

Bei Hersteller A ist zu erkennen, dass nach fünf Iterationen die drei aufgezeichneten Größen
konvergieren. Die geringfügigen Änderungen in den weiteren Iterationen können mit dem
Training des ANN begründet werden, bei dem z.B. das Ausbalancieren der Trainingsdaten
zufallsbestimmt ist. Durch MAUD wird eine stabile Unterscheidung von auffälligen und
unauffälligen Zyklen erlernt, bei der etwa 50 % der nutzbaren Schaltzyklen genutzt werden
und weniger als 5 % der Relais ausfallen.

Für Hersteller B ist ebenfalls eine Konvergenz der Größen zu erkennen; allerdings benötigt
diese mehr Iterationen. Da prozentual mehr Label zwischen den Iterationen geändert
werden, scheint MAUD bei diesem Hersteller nicht so stabil zu sein. Dies wird durch die
niedrigere Nutzung von 30 bis 40 % und die höheren Ausfallraten unterstützt. Zudem ist
für die Last R eine hohe Streuung der Ausfälle zu beobachten. Dieses Verhalten lässt sich
auf zweierlei Weisen begründen: Zum einen haben die Relais des Herstellers A bei DC13-
Lasten fast die doppelte Lebensdauer und bei R-Lasten fast die vierfache Lebensdauer.
Die Datenmenge ist demnach größer, was sich positiv auf das Training auswirken kann.
Gleichzeitig zeugen diese größeren Lebensdauern von einer höheren Produktqualität. Zum
anderen zeigen die Histogramme in Abb. 3.25, dass sich die Relais von Hersteller A als
vorhersehbarer erweisen (geringere Streuung im Histogramm).

Nach 50 Iterationen von MAUD stehen für jede Hersteller- und Last-Kombination jeweils
50 trainierte ANN zur Verfügung, deren Performanz auf dem Validierungsset bekannt ist.
Für die Prädiktion des Testsets wird jeweils das ANN gewählt, das auf dem Validierungsset
bei geringster Ausfallrate die höchste Nutzung ermöglicht – dabei sind die Ausfälle
vorrangig.

3.6.2.1 Individuelle Ergebnisse

Im Folgenden werden die Vorhersagen in Kombination mit den Daten visualisiert. Zu
diesem Zweck wurden zwei Relais ausgewählt, an denen die Funktionsweise von MAUD
gezeigt werden kann. Es handelt sich dabei um die zuvor in Abs. 3.4.1 diskutierten Relais
84, 294 und 299. Die Farbintensität in den Grafiken steht in Relation zu den Messreihen,
damit ein Zusammenhang zwischen Prädiktion und Daten hergestellt werden kann. Die
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Farben geben in den Grafiken die Prädiktionen des ANN an, wobei mit rot ein auffälliger
Schaltzyklus angezeigt wird.
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Abb. 3.41: Visualisierung der Prädiktionen für das Relais 294 [89]

Im Falle des kontinuierlich gealterten Relais in Abb. 3.41 ist zu erkennen, dass es am
Ende seiner Betriebsdauer als auffällig gekennzeichnet wird. Für den Bereich zwischen
400.000 und 450.000 Zyklen sind sowohl auffällige als auch unauffällige Zyklen gelabelt.
Dieses Verhalten ist zu erwarten, da die Degradierung kontinuierlich ist und deshalb
eine Übergangsphase zwischen unauffällig und auffällig besteht. Direkt zu Beginn der
Betriebsdauer, d.h. vor 50.000 Zyklen, wird das Relais erstmalig als auffällig markiert. Eine
genauere Betrachtung der Daten zeigt starke Veränderungen der Messgrößen in diesem
Bereich, sodass die Vergabe des Labels nachvollziehbar ist. Das Relais fiel jedoch nicht aus.
Dieses Verhalten ist häufig zu beobachten. Die Relais haben auffällige Zyklen, aber nur
ein Bruchteil fällt tatsächlich aus. Zurückzuführen ist dies auf reversible Veränderungen:
Ablagerungen können den Ausfall eines Relais bedingen oder sich lösen.

In Abb. 3.42 ist ein Relais abgebildet, bei dem ab etwa der Hälfte der Betriebsdauer
Veränderungen auftreten, die bis zum Ausfall des Relais immer stärker werden. Dies wird
durch die Label widergespiegelt: Die zunächst leichten Veränderungen sind unauffällig,
mit steigender Veränderung werden Zyklen auch als auffällig gekennzeichnet, bis zu den
letzten 15.000 Schaltzyklen, die alle auffällig sind.
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Abb. 3.42: Visualisierung der Prädiktionen für das Relais 84

Das Relais in Abb. 3.43 weist bei 40.000 Zyklen reversible Veränderungen in den Messgrö-
ßen auf. An diesem Beispiel kann verdeutlicht werden, dass ein Pseudo-Labeling notwendig
ist: Die Degradierung eines derartigen Relais kann nicht über eine monotone Funktion
approximiert werden. Vielmehr müssen die Zielwerte für die Schaltzyklen unter Berück-
sichtigung der jeweiligen Messwerte zugeordnet werden. Das Pseudo-Labeling von MAUD
ermöglicht dies, sodass bei 40.000 Schaltzyklen das Relais als auffällig markiert wird.
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Abb. 3.43: Visualisierung der Prädikationen für das Relais 299
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Zusammenfassend wurde für alle Relais aus dieser qualitativen Stichprobe eine nach-
vollziehbare Klassifizierung der Schaltzyklen erlernt. Das semi-überwachte Training mit
MAUD ist deshalb erfolgreich. Die Beurteilung der Performanz des Verfahrens stellt jedoch
eine Herausforderung dar, weil keine Grundwahrheitswerte bekannt sind. Deshalb werden
im Kontext dieser Arbeit die Interessen der/die Anwender:innen zur Beurteilung der Per-
formanz herangezogen, diese wiederum erstrecken sich über zwei Dimensionen: Zum einen
sollen möglichst viele Ausfälle verhindert werden, zum anderen soll die Lebensdauer der
Relais möglichst ausgenutzt werden. Die Präferenzen hinsichtlich beider Dimensionen sind
individuell. Dabei muss ein Kompromiss gebildet werden: Weniger Ausfälle erfordern ein
vorsichtigeres, früheres Tauschen der Relais, was gleichzeitig zu einer geringeren Nutzung
der Lebensdauer führt.

3.6.2.2 Vergleich zum Stand der Technik

Im vorangegangenen Abschnitt wurde anhand von zwei Beispielen qualitativ nachgewiesen,
dass die Modellierung erfolgreich war und die Relais vor dem Ausfall gewartet werden
können. Im Folgenden wird ein Vergleich mit dem Stand der Technik, dem B10 Wert und
MAUD vorgenommen. Dazu werden Ausnutzung der Schaltzyklen und Ausfälle für den
Validierungs- und Testsatz mit den Ergebnissen des B10-Wertes verglichen. Der B10 Wert
wurde auf Basis des Trainingssets berechnet. Eine Aufschlüsselung nach Hersteller und
Belastung wurde nicht vorgenommen, da diese Informationen in der Praxis derzeit nicht
verfügbar sind. Außerdem ändern sich die Werte bei deren Berücksichtigung nur minimal,
da Frühausfälle unter allen Betriebsbedingungen auftreten.

Tab. 3.10: Ergebnisse [89]
Methode Nutzung (%) Ausfälle (%) Ausfälle (absolut)
Validation
MAUD (A - R) 53.81 5.26 1
MAUD (B - R) 35.43 0.00 0
MAUD (A - DC13) 54.46 0.00 0
MAUD (B - DC13) 37.19 0.00 0
MAUD (kombiniert) 45.31 0.72 1

Test
MAUD (A - R) 51.34 0.00 0
MAUD (B - R) 33.04 0.00 0
MAUD (A - DC13) 56.88 6.52 3
MAUD (B - DC13) 37.02 2.22 1
MAUD (kombiniert) 45.15 2.80 4

B10 28.08 9.22 13
MAUD vs. B10 +17.07 -6.42 -9
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Die Nutzung der Lebensdauer der Relais ist in allen Fällen weit entfernt von 100 %. Dies
ist mit den reversiblen Veränderungen, wie sie bspw. in Abb. 3.43 zu beobachten sind,
zu begründen. Die Relais durchlaufen während ihrer Betriebsdauer Phasen, zu denen ein
Ausfall möglich ist. Um die Anzahl der Ausfälle gering zu halten, muss bei ersten Anzeichen
für einen Ausfall eine Instandhaltung durchgeführt werden. Dies wirkt sich negativ auf die
Nutzung aus.

Beim Vergleich von Validierungs- und Testset sind bei allen Hersteller- und Last-
kombinationen nur wenige Prozent Abweichung bei der Auslastung zu erkennen. Dies
deutet darauf hin, dass MAUD eine zuverlässige Klassifikation erlernt hat. Im Testset
treten insgesamt drei Ausfälle mehr auf. Diese Relais sind mit Lebensdauern von 5.000 bis
18.000 Zyklen extreme Frühausfälle, die in den Daten unterrepräsentiert sind.

Der Vergleich mit dem B10-Wert ist eindeutig: Durch MAUD kann die Auslastung um
17,07 Prozentpunkte erhöht und die Ausfälle um 6,42 Prozentpunkte reduziert werden. Das
Ziel, eine Methode zu entwickeln, mit der Relais sicherer gewartet und gleichzeitig besser
ausgelastet werden können, wurde schließlich voll erreicht.

3.7 Inferenz auf dem Mikrocontroller
Abgeschlossen werden die Untersuchungen dieses Kapitels mit einer Betrachtung einer
möglichen Applikation eines ANN mit Hardware, die auch im Kontext eines Produktes
eingesetzt werden könnte. Dabei ist die Interferenz von ANNs auf Mikrocontrollern als
kritischer Pfad in der Produktentwicklung auszumachen und wird deshalb nachfolgend
untersucht. Die Ergebnisse wurden bereits im Rahmen einer Bachelorarbeit veröffentlicht,
deren Betreuung im Kontext dieses Promotionsvorhabens stattfand [97].

3.7.1 Versuchsbeschreibung
Zur Betrachtung der Applikation von ANN auf Mikrocontrollern werden drei Komponenten
benötigt:

1. ANN-Modelle: Die ANN sind notwendig, um diese zu komprimieren und deren
Performanz zu prüfen.

2. Software: Software wird benötigt, um eine Kompression der ANN durchzuführen.

3. Hardware: Zur Ausführung auf einem Mikrocontroller ist diese notwendig.

Die Komponenten werden in den folgenden Abschnitten detailliert erörtert.

3.7.1.1 ANN-Modelle

Diese Untersuchung verfolgt das Ziel, allgemein Informationen zu sammeln, welche Topo-
logien bzw. Komplexität auf einem Mikrocontroller ausgeführt werden kann und welche
Einflüsse die Kompressionsverfahren auf die Performanz haben. Deshalb werden Modelle

91



Prädiktive Instandhaltung

unterschiedlicher Komplexität gewählt, deren Performanz anhand einer Metrik eindeutig
beurteilt werden kann. Dadurch fällt das eigene vorgestellte Verfahren MAUD aus dieser
Untersuchung, da dies anhand von zwei Dimensionen zu beurteilen ist: der Nutzungsdauer
und den unerkannten Ausfällen. Die selbst ernannten Label können nicht herangezogen
werden, da keine Grundwahrheit bekannt ist.

Deshalb wird für diesen Versuch nur ein Teildatensatz des gesamten Datensatzes genutzt.
Dabei wird nach der Art der Degradierung ausgewählt: Relais, die kontinuierliche Ver-
änderungen in Form eines Abbrands des Kontaktmaterials zeigen, werden ausgewählt.
Insgesamt umfasst dieser Datensatz 253 Relais, von denen jeweils 40 dem Validierungs-
und Testset zugeteilt wurden. Aufgrund der ausgewählten Relais ist eine Schätzung der
relativen Restlebensdauer möglich, wie in Abs. 3.5 bereits erörtert. Als Maß der Performanz
wird der MSE herangezogen.

Es werden zwei ANN genutzt: ein simples „Multilayer Perceptron“ (dt. mehrschichtiges
Perzeptron) (MLP) und der Encoder eines „Autoencoder“ (AE) in Kombination mit
einem MLP. Auf diese Weise werden Erkenntnisse zu unterschiedlichen Komplexitätsstufen
gesammelt und zwei konkurrierende Verfahren zur Merkmalsextraktion gegenübergestellt:
klassisch durch manuelle Algorithmen und unüberwacht durch den AE.

Tab. 3.11: Topologie der Kombination aus Encoder mit MLP
Schicht Typ Neuronen / Filter
1 Conv1D 16
2 MaxPooling1D -
3 Conv1D 8
4 MaxPooling1D -
5 Conv1D 8
6 MaxPooling1D -
7 Conv1D 8
8 MaxPooling1D -
9 Conv1D 8
10 MaxPooling1D -
11 Conv1D 4
12 MaxPooling1D -
13 Flatten -
14 Dense 128
15 Dropout -
16 Dense 32
17 Dropout -
18 Dense 8
19 Dense 1

Die Topologie der Kombination aus Encoder eines AE und MLP ist in Tab. 3.11 aufgeführt,
alle Conv1D und Dense Layer wurden mit einer ReLU Aktivierungsfunktion ausgestattet.
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Das MaxPooling1D hat eine Fensterbreite von zwei, und die einzelnen Kanäle wurden
separat trainiert. Im Rahmen von Versuchen hat sich diese Separierung als vorteilhaft
erwiesen – ein Grund hierfür könnte die zeitliche Unabhängigkeit der Messgrößen beim
Ein- und Ausschalten sein. Das Modell setzt sich aus dem Encoder des AE und einem
normalen MLP zur Regression zusammen. Durch diese Nutzung eines Autoencoders
wird das unüberwachte Extrahieren von Merkmalen ermöglicht, die durch das MLP zur
Regression der Restlebensdauer genutzt werden. Das Training untergliedert sich daher in
zwei Stufen: Zunächst wird der AE trainiert, der eine nieder-dimensionale Repräsentation
der Eingangswerte erlernt (vgl. Abs. 3.2.2). Nach dem Abschluss des Trainings werden
Encoder und Decoder voneinander getrennt und die trainierbaren Parameter eingefroren.
Dadurch kann im zweiten Schritt ein MLP an den Encoder angehängt werden, mit dem
die Restlebensdauer geschätzt wird. Die Prädikationen des AE werden über ein Fenster
gemittelt, um eine Vergleichbarkeit der beiden Modelle zu erreichen. Dies ist notwendig,
da die Merkmale ebenfalls geglättet wurden.

Tab. 3.12: Topologie des MLP
Schicht Typ Neuronen Informationen
1 Dense 16
2 Dense 32 Aktivierungsfunktion: ReLU
3 Dropout 32 Rate: 10 %
4 Dense 1 Aktivierungsfunktion: ReLU

Das MLP hat eine simple Topologie, die in Tab. 3.13 angegeben wird. Es wird mit den
in Abs. 3.4.3 erörterten Merkmalen trainiert. Bei allen Modellen werden die gleichen Ein-
stellungen verwendet: Über das Validierungsset wird der Trainingsfortschritt fortwährend
überwacht und bei Verschlechterung abgebrochen. Als Metrik dient der MSE.

3.7.1.2 Komprimierung

Zur Komprimierung wird auf Softwarelösungen von zwei Herstellern zurückgegriffen:

• STM32Cube.AI

STM32Cube.AI ist eine Bibliothek für das Ausführen von ANN auf STM32 Mikro-
controllern und in die Entwicklungsumgebung von STM integriert. Die Bibliothek
unterstützt die Konvertierung von ANN im ONNX-Format in C-Code, wobei dieser
für den ausgewählten Mikrocontroller optimiert wird. Zusätzlich wird eine Laufzeit-
umgebung für den C-Code generiert, sodass ANN mit wenig Aufwand auf einem
Mikrocontroller ausgeführt werden können. Ein Nachteil dabei ist, dass nicht alle
Funktionen von ANN-Frameworks wie TensorFlow unterstützt werden. Neben der
Generierung des C-Codes wird ein Komplexitätsbericht erstellt, der den Speicher-
bedarf (ROM und RAM) sowie ein Maß für die Komplexität des Modells (MACC)
umfasst.
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Als Komprimierungsmethoden bietet die Bibliothek eine Variante aus Pruning
und Rechenoptimierung an, die vom Hersteller nicht genau beschrieben wird. Das
Verfahren kann über den Kompressionsfaktor beeinflusst werden, wobei zwei Werte
auswählbar sind: vierfache und achtfache Kompression.

• TensorFlow Lite

TensorFlow Lite ist eine spezielle Version von TensorFlow, die speziell auf die Appli-
kation von ANN auf Mikrocontrollern ausgerichtet ist. Daher sind Optimierungen
und Komprimierungen für neuronale Netze inkludiert. Mit der TFLite-Bibliothek
wird im Rahmen dieser Arbeit eine Ganzzahl-Quantisierung der ANN und Daten
durchgeführt. Durch TensorFlow Lite wird ein quantisiertes ANN erstellt und die
Parameter zur Umrechnung der Daten bereitgestellt. Die Generierung von C-Code
ist mit dieser Bibliothek ebenfalls möglich.

Mit diesen Softwarelösungen ergeben sich drei verschiedene C-Codevarianten, die im
Weiteren mit folgenden Indizes abgekürzt werden:

1. C: C-Code ohne Komprimierung.

2. C4: C-Code mit vierfacher Komprimierung (STM32Cube.AI).

3. C8: C-Code mit achtfacher Komprimierung (STM32Cube.AI).

4. CQ: C-Code mit Ganzzahl Quantisierung (TensorFlow Lite).

3.7.1.3 Hardware

Zur Inferenz müssen die generierten C-Codes auf einem Mikrocontroller ausgeführt und die
Daten müssen zwischen Computer und Mikrocontroller kommuniziert werden. Aufgrund
des umfangreichen Softwareangebots von STM32 wird dazu ein STM32-Mikrocontroller
genutzt. Diese Produktfamilie basiert auf der 32-Bit Arm Cortex M Prozessorreihe und
umfasst ein breites Spektrum an Controllern, das diverse Anwendungsfelder bedient [98].
Im Kontext dieser Arbeit wird der hochperformante STM32F767ZI genutzt, der mit einer
ARM Cortex M7 32-Bit RISC CPU, einer Gleitkommaeinheit, 2 MB ROM und 512 kB
RAM-Speicher ausgestattet ist. Der maximale Takt liegt bei 216 MHz [99].

Das Generieren des C-Codes und die Einbindung in die Firmware des Controllers wird
über die STM32Cube.AI Bibliothek umgesetzt. Zusätzlich wurde zur Kommunikation
eine UART Schnittstelle hinzugefügt, um die Daten zum Controller und die Prädiktionen
zurückzuschicken. Auf dem Computer kann so die Performanz des jeweiligen ANN anhand
des MSE gemessen werden. Dazu wird für jedes ANN der gesamte Trainingsdatensatz
ausgewertet.

3.7.2 Evaluierung
Durch die Evaluation sollen zwei Aspekte geprüft werden: Zum einen der Einfluss der
Mikrocontroller Inferenz auf die Performanz und den Speicherbedarf der ANN und zum
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anderen die Ausführungskomplexität bzw. -dauer. Beide Aspekte werden nachfolgend in
separaten Abschnitten getestet. Vorab muss jedoch betont werden, dass das MLP eine
geringfügig bessere Performanz aufweist als der AE. Diese Erkenntnis gilt bereits für die
unkomprimierten Modelle und stellt auch den Grund dar, dass beim Verfahren MAUD
Merkmale genutzt wurden. Begründet werden kann dies mit dem Expertenwissen, das in
die Augmentation der Merkmale eingeflossen ist.

3.7.2.1 Einfluss der Mikrocontroller Inferenz

Der Einfluss der Mikrocontroller Inferenz auf die Performanz wird für beide ANN unab-
hängig betrachtet. Zunächst wird das MLP herangezogen. Insgesamt sind in Tab. 3.13
fünf verschiedene Versionen angegeben und die entsprechenden MSE, ROM und RAM
Werte.

Tab. 3.13: Performanz und Speicherbedarf von verschiedenen Versionen des MLP
Modell MSE ROM / B RAM / B
MLP 0,0105 - -
MLPC 0,0105 3.400 260

MLPC4 0,0105 2.888 260
MLPC8 0,0270 836 260

MLPCQ 0,0112 996 65

Das ursprüngliche MLP wird mit einem Computer trainiert und ausgeführt. Deshalb ent-
fallen hier die Angaben von ROM und RAM; der MSE dient als Referenzwert. Beim MLPC
Modell sind hinsichtlich des MSE bis zur vierten Nachkommastelle keine Unterschiede
auszumachen. Da durch die Komprimierung die Anzahl der Gewichte reduziert wird und
diese im ROM gespeichert werden, benötigen die Modelle MLPC4 und MLPC8 weniger
ROM. Dabei ist der MSE des MLPC4 identisch mit dem des originalen MLP – durch die
Komprimierung kann der ROM-Bedarf ohne Performanz Verringerung um 15 % reduziert
werden. Das MLPC8 führt zu einer 75 % Reduktion des ROM-Speicherbedarfs gegenüber
dem MLPC. Dabei wird der MSE jedoch signifikant verschlechtert. Schlussendlich sind
die Ergebnisse des MLPCQ aufgeführt: Der Speicherbedarf wird um etwa 71 % verringert
und der RAM-Bedarf sogar um 75 %. Dies ist darauf zurückzuführen, dass die 8-Bit-
Ganzzahlen, mit denen bei diesem Modell gerechnet wird, ein Viertel des Speichers von
32-Bit-Gleitkommazahlen belegen. Der MSE nimmt durch die Quantisierung nur minimal
zu.

Für das MLP lässt sich damit Folgendes festhalten: Durch eine vierfache Komprimierung
kann ROM-Speicherplatz eingespart werden, ohne Performanz Verluste hinnehmen zu
müssen. Mit der Quantisierung kann der ROM- und RAM-Speicherbedarf um einen
erheblichen Anteil reduziert werden. Dies geht allerdings mit geringen Performanz Verlusten
einher.
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Tab. 3.14: Performanz und Speicherbedarf von verschiedenen Versionen des AE
Modell MSE ROM / kB RAM / kB
AE 0,0165 - -
AEC 0,0165 40,04 17,00

AEC4 0,0165 20,58 17,00
AEC8 0,0260 14,24 17,00

AECQ 0,0166 10,82 5,44

Bei Betrachtung der absoluten Werte des AE in Tab. 3.14 wird die höhere Komplexität
deutlich. Der Speicherbedarf liegt bei mehr als dem Zehnfachen des MLP. Die Evaluation
der AE-Modelle lässt die gleichen Rückschlüsse zu:

• Der AE kann erfolgreich in C-Code überführt werden.

• Durch die vierfache Kompression wird ROM-Speicherplatz eingespart, ohne negativen
Einfluss auf den MSE.

• Bei der achtfachen Kompression wird gegenüber der vierfachen auf Kosten des MSE
mehr ROM eingespart.

• Die Quantisierung führt zu einer geringfügigen Verschlechterung des MSE, aber
gleichzeitig auch zu erheblichen ROM- und RAM-Einsparungen.

Zusammenfassend ist für die Kompressionsmethoden bei beiden ANN festzuhalten, dass
durch die vierfache Kompression kein nachweislicher MSE-Verlust bei deutlicher ROM
Speicherplatz Reduzierung erreicht wird. Durch die Quantisierung steigert sich der MSE
leicht; der Speicherbedarf an RAM und ROM kann jedoch stärker reduziert werden. Die
achtfache Komprimierung führt zu einer wesentlichen Verschlechterung des MSE, weshalb
dieses nicht empfehlenswert ist.

3.7.2.2 Ausführungskomplexität

Zur Ausführungskomplexität wird untersucht, wie viel Rechenzeit für eine Inferenz benötigt
wird. Dazu werden zwei Kennzahlen herangezogen. Der MACC-Wert gibt an, wie viele
Rechenoperationen notwendig sind und ist daher unabhängig vom ausführenden System.
Für die Anwendung ist jedoch relevant, wie lange die Inferenz dauert. Deshalb wird diese
auf Basis des MACC berechnet.

In Tab. 3.15 werden die Kennzahlen angegeben. Die Inferenzdauern von MLPC4 und MLPCQ
sind mit 0,025 ms nicht zu unterscheiden und sind in Vergleich zu einem Schaltzyklus,
der mindestens das Tausendfache an Zeit beansprucht, zu vernachlässigen. Aufgrund der
höheren Komplexität weisen die Modelle AEC4 und AECQ höhere Dauern von 4.723 ms
bzw. 4.509 ms auf. Diese Werte liegen ebenfalls unter der Schaltzeit von Relais und sind
deshalb für die Anwendung geeignet.
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Tab. 3.15: Vergleich von MACC und Inferenzdauer der besten Versionen
Modell MACC Inferenzdauer / ms
MLPC4 882 0,025
MLPCQ 883 0,025

AEC4 170.018 4,723
AECQ 162.315 4,509

Beim Vergleich der MACC ist beim MLP kein signifikanter Unterschied auszumachen.
Die Recheneinsparungen durch die Komprimierung entsprechen in etwa der der Quanti-
sierung. Beim AE hingegen konnte durch die Quantisierung ein geringerer MACC erzielt
werden.

In Bezug auf die Ausführungskomplexität kann durch diese Untersuchung festgestellt
werden, dass mit einer Quantisierung sowohl MACC als auch Speicherbedarf signifikant
reduziert werden können. Dabei wird der MSE nur geringfügig verschlechtert. Daher
ist die Quantisierung der ANN der Komprimierung vorzuziehen. Weiterhin bringt die
Quantisierung einen vorteilhaften Aspekt: Durch die Verwendung von Ganzzahlen ist keine
Gleitkommaeinheit im Mikrocontroller notwendig, wodurch ANN sogar auf den günstigen
Mikrocontrollern ausführbar werden.

3.8 Fazit
Abschließend werden die in diesem Kapitel erarbeiteten Ergebnisse zusammengefasst.
Dabei werden drei Forschungsthemen unterschieden:

3.8.1 Datensatz
Das erste Forschungsthema ist die Datenbasis, also der verwendete Versuchsaufbau und der
damit generierte Datensatz. Hier wurde eine Übersicht über die öffentlich verfügbaren Da-
tensätze im Kontext von PdM erstellt. Daran konnte gezeigt werden, dass eine Forschungs-
bzw. Datensatzlücke hinsichtlich des Umfangs, des Datentyps und der Komplexität der
Ausfälle besteht. Daher wurde im Kontext dieser Arbeit ein vollautomatischer Testaufbau
entwickelt, mit dem hunderte Relais über Jahre unter realistischen, wechselnden Umge-
bungsparametern degradiert wurden. Auf diese Weise ist ein neuer Datensatz entstanden,
der in Hinblick auf den Umfang und die Komplexität der Degradierung hervorsticht. Der
Datensatz stellt eine wichtige Grundlage für weitere Forschungsaktivitäten dar, weshalb er
veröffentlicht [28] und ausführlich beschrieben [6] wurde. Verbesserungspotential besteht
hinsichtlich der Variation von Umgebungsbedingungen: In praktischen Anwendungen ist
mit Temperaturschwankungen zu rechnen, die nicht abgebildet wurden. Weiterhin ist
ein größeres Spektrum an Lasten in der Praxis zu erwarten. Für zukünftige Datensätze
empfehlen sich Kooperationen mit Unternehmen, im Rahmen derer die Datenerfassung in
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Produkte integriert wird. So kann der engen Verzahnung von Wissenschaft und Anwendung
bei PdM begegnet werden.

3.8.2 Maschinelles Lernverfahren
Im Kontext dieser Arbeit wurde zunächst gezeigt, dass die klassischen beiden Ansätze auf
den Datensatz nicht erfolgreich angewandt werden können. Dies liegt vorwiegend an den
komplexen Degradierungsprozessen: Eine monotone Approximation der Restlebensdauer
ist nur für einen begrenzten Kreis von Relais möglich. Ein Großteil der Relais weist jedoch
spontane Ausfälle oder reversible Änderungen auf, weshalb eine monotone Approximation
nicht geeignet ist. Anomalien können nicht unterschieden werden, da die Relais oftmals
viele Hundert Schaltvorgänge anormales Verhalten aufweisen, bis diese schließlich ausfal-
len. Die Anomalien sind daher im Datensatz repräsentiert. Ein weiterer Grund ist das
unterschiedliche Verhalten der Relais, das u.a. auf Fertigungsabweichungen zurückzuführen
ist. Angesichts dessen werden teilweise die gesamten Lebensdaten von Relais als Anomalie
bezeichnet. Die Erkenntnisse bezüglich der Unzulänglichkeiten beider klassischer Ansätze
wurden ebenfalls in [6] und [89] publiziert.

Daher wurde eine neuer Ausfallindikator eingeführt, mit dem ein bevorstehender Ausfall
angezeigt wird. Es handelt sich um eine binäre Klassifikation, bei der ein ANN semi-
überwacht trainiert wird. D.h. zu Beginn werden nur wenig Label als bekannt angenommen
und durch einen iterativen Pseudo-Labeling Prozess wird der gesamte Datensatz sukzessiv
in das Training einbezogen. Auf diesem Weg lernt das ANN auffällige und unauffällige
Schaltzyklen zu unterscheiden. Die Funktionalität des Verfahrens konnte qualitativ im
Rahmen einer Evaluation gezeigt werden. Überdies konnte quantitativ nachgewiesen
werden, dass es dem derzeitigen Stand der Technik überlegen ist: Die Auslastung kann
um 17 Prozentpunkte verbessert und unentdeckte Ausfälle um 6 Prozentpunkte reduziert
werden.

Die Ergebnisse zeigen, dass die Anwendung des Verfahrens auf andere Komponenten
vielversprechend ist. In weiteren Untersuchungen könnte das Verfahren in zwei Aspekten
erweitert werden: Statt der binären Klassifikation könnten mehrere Klassen dynamisch
im Pseudo-Labeling Prozess vergeben werden, sodass mehr Zustände der Relais erfasst
werden können. Statt einer Klassifikation könnte eine Regression durchgeführt werden,
wobei die Approximation der Restlebensdauer iterativ korrigiert wird – wie beim Pseudo-
Labeling.

Das Verfahren MAUD ist bereits im Rahmen der Publikation [89] veröffentlicht, zudem
wurden zwei Patente [96] und [95] angemeldet.

3.8.3 Applikation auf eingebetteten Systemen
Es existieren bereits viele Verfahren zur Effizienzsteigerung von ANN, von denen zwei im
Kontext dieser Arbeit evaluiert wurden: die Quantisierung und das Parameterteilen bzw.
die Kompression. Dazu wurden zwei unterschiedlich komplexe Topologien verwendet: ein
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simples MLP und ein Encoder in Kombination mit einem MLP. Beide Topologien wurden
in wenigen Millisekunden auf einem Mikrocontroller ausgeführt. In Bezug auf die genutzten
Verfahren zur Effizienzsteigerung lässt sich Folgendes festhalten: Die Quantisierung ist
der beste Kompromiss zwischen Performanz und dem benötigten Speicherplatzbedarf.
Weiterhin ermöglicht die vollständige Integer-Quantisierung die Nutzung von Mikrocon-
trollern ohne Gleitkommaeinheit. In weiterführenden Forschungsvorhaben sollte geprüft
werden, inwiefern Methoden zur Effizienzsteigerung kombiniert werden können: Es ist
bspw. denkbar, das Parameterteilen mit der Quantisierung zu kombinieren und ggf. um
eine Beschneidung zu erweitern. Auf diesem Weg könnte der Speicherplatzbedarf und die
MACC weiter reduziert werden.
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4 Reduzieren des Prellens

Im nachfolgenden Kapitel wird eine Softwarelösung zur Reduzierung des Prellens vorge-
stellt, die ebenfalls in [100] veröffentlicht ist. Zunächst wird auf die Motivation für dieses
Vorhaben eingegangen: Das Prellen ist ein unerwünschtes Phänomen, das bei fast allen
Schaltvorgängen von Relais zu beobachten ist. Es lässt sich auf den mechanischen Aufbau
der Relais zurückführen: Um die Konduktivität der Kontakte sicherzustellen, müssen
diese stets mit einer Kraft aufeinander gedrückt werden. Dies hat zur Folge, dass ein
elastischer Stoß zwischen den Kontaktpaaren entsteht. Problematisch hierbei ist, dass die
Degradierung beschleunigt wird. Dies wurde beispielsweise in [101] nachgewiesen.

Des Weiteren sprechen folgende Gründe dafür, Anstrengungen zu unternehmen, die das
Prellen reduzieren:

• Geräuschentwicklung: Mit dem Prellen werden Geräusche hervorgerufen, deren
Unterbindung z.B. in Haushaltsgeräten einen Vorteil darstellt.

• Signalübertragung: Wenn über die Schaltstrecke Signale übertragen werden, dann
können diese durch das schnelle und unberechenbare Öffnen und Schließen der
Kontakte beim Prellen gestört werden. Zu dieser Problematik ergibt sich eine ganz
eigene Forschungs- bzw. Entwicklungsdisziplin: das Entprellen. Eine grundlegende
Einführung kann [102] entnommen werden. Durch ein Reduzieren des Prellens können
auch in dieser Hinsicht Verbesserungen erzielt werden.

• Schaltvorgangsdauer: Schlussendlich wird ein Schaltvorgang durch das Prellen ver-
längert. Solange die Konduktivität eines Kontaktpaares nicht konstant ist, ist der
Schaltvorgang nicht abgeschlossen. In vielen Anwendungen sind kürzere Schaltdau-
ern vorteilhaft, wenn bspw. beim Schalten von Wechselstrom im Spannungs- oder
Stromnullpunk geschaltet werden soll, dann muss der Schaltvorgang möglichst kurz
und präzise sein.

Das folgende Kapitel ist dabei wie folgt untergliedert: Zunächst werden Grundlagen erörtert.
Daraufhin wird aus dem Stand der Forschung die Motivation für die Entwicklung eines
neuen Lösungsansatzes abgeleitet. Anschließend wird der neue Lösungsansatz beschrieben
und eine Evaluation der Performanz durchgeführt. Schlussendlich wird ein Fazit zu den
Untersuchungen zur Reduzierung des Prellens gezogen.
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4.1 Grundlagen
Die Grundlagen sind in zwei Teilaspekte untergliedert, zum einen in den Stand der
Forschung und Technik und zum anderen in eine Einführung in die „Particle-Swarm-
Optimization“ (dt. Partikel Schwarm Optimierung) (PSO).

4.1.1 Stand der Forschung und Technik
Seit mehr als 50 Jahren werden Studien zur Verringerung des Prellens durchgeführt, um
die Zuverlässigkeit und Lebensdauer von Relais zu erhöhen [103]. Vieles davon beschränkt
sich auf die mechanische Optimierung der Relaiskonstruktion [104]. Es wurden bereits viele
Simulationsmodelle für Relais entwickelt. In [105] wird bspw. sogar das Prellen mit simuliert.
Es wurden aber auch einige Forschungsprojekte durchgeführt, die darauf abzielen, das
Steuersignal der Relaisspule zu optimieren. In diesem Zusammenhang haben Davies et al.
eine Methode zur Reduzierung des Kontaktprellens durch Steuerung des Flusses im Anker
der Spule [106] entwickelt. Moraes und Perin [107] stellten eine mit einem Mikrocontroller
ausführbare Lösung für eine Stromregelung und Schließerkennung vor, die das Prellen um
etwa 30 % reduzieren kann. Das Verfahren basiert auf der Abschätzung der Verschiebung
des Ankers bzw. Kerns. Dieses Prinzip wurde im Zuge weiterer Arbeiten erweitert. In [108],
[109] und [110] wurde etwa eine Echtzeitschätzung der Verschiebung verwendet, um den
Anker im geschlossenen Regelkreis zu steuern. Dies geht mit einer Reduzierung des Prellens
einher. Die auf Verschiebungsschätzungen basierenden Ansätze werden jedoch in dieser
Arbeit nicht weiter betrachtet, da sie auf vereinfachten Modellen des magnetischen Relais
beruhen. Diese führen zu geringer Genauigkeit, Abhängigkeit von Körperparametern und
unzureichender Universalität, wie Tang et al. bereits festgestellt haben [111]. Daher wurde
einen Wegsensor und ein künstliches neuronales Netz genutzt um die Wegschätzung zu
verbessern. Durch den erforderlichen, kostspieligen Sensor unterscheidet sich dieser Ansatz
grundlegend von dem in dieser Arbeit vorgestellten.

Eine alternative Methode ohne zusätzliche Sensorhardware wird in [112] beschrieben.
Dort wird eine zweistufige Steuerung verwendet, um ein Versorgungsspannungssignal zu
erzeugen, das durch zwei Variablen definiert ist: Zum Zeitpunkt t wird die Spannung für
eine bestimmte Dauer d auf den entgegengesetzten Wert umgeschaltet und dann wieder
auf den ursprünglichen Wert. Die beiden Variablen t und d werden mit „Run-to-Run-
Algorithm“ (R2R) optimiert. Die Auswertung zeigt, dass eine Reduzierung der Prellzeit um
79 % möglich ist. Im Rahmen dieser Arbeit wird die Grundidee des R2R [112] verbessert
und mit einem besseren Optimierungsalgorithmus umgesetzt. Dies geschieht, weil nach
der Neuimplementierung des R2R einige Hindernisse in seinem Betrieb aufgetreten sind:
Relais zeigen eine starke Varianz im Prellen bei einzelnen Schaltereignissen, sodass die
Optimierungen mehrfach wiederholt werden müssen, um eine verlässliche Aussage über
ihren Einfluss auf das Prellverhalten zu treffen, was in R2R nicht berücksichtigt wurde.
Außerdem ist es nicht in der Lage, mehrere lokale Maxima gleichzeitig zu untersuchen.
Eine weitere Einschränkung ist die Freiheit der Suchrichtung, die durch die gewählte Maske
begrenzt ist. Um diese Einschränkungen zu überwinden, wurden Verbesserungen des R2R
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vorgestellt und in [113] verifiziert. Für die beste Variante mit Bayes’scher Optimierung ist
jedoch Wissen über das Problem erforderlich, was die Anpassung erschwert. Außerdem
ist diese Methode rechenintensiv, sodass sie nicht zum Vergleich herangezogen wird,
da Adaptivität und eine Mikrocontroller-Implementierung zwingend erforderlich sind.
Weiterhin wird in [113] eine Variante mit Nelder-Mead-Verfahren vorgestellt. Diese ist
ebenso wie die klassische R2R einer Mustersuche zuzuordnen und wurde nur für Ventile
implementiert, weshalb im Rahmen dieser Arbeit die klassische R2R als Referenz gewählt
wurde.

Der entwickelte „Bouncing-Optimization-Algorithm“ (dt. Prelloptimierungsalgorithmus)
(BOA) hat die Fähigkeit, mit Hindernissen umzugehen, da er eine Variante der PSO [114]
verwendet. PSO bewährte sich in zahlreichen Arbeiten. In [115] wird ein umfangreicher
Literaturüberblick über Anwendungen von PSO vorgestellt, die von der Elektrotechnik
(wie dem Maximum-Power-Point-Tracking in Photovoltaikanlagen), über die Elektronik
(wie dem Filterdesign) und den Maschinenbau (wie dem Fräsen), hin zur Informationsver-
arbeitung (wie dem Datenclustern) reichen. Einfachheit, Effektivität und Robustheit sind
die herausragenden Eigenschaften einer PSO und machen diese zu einer guten Basis für
BOA. Außerdem kann BOA aufgrund des geringen Rechenaufwands auf kostengünstiger
eingebetteter Hardware implementiert werden.

4.1.2 Partikel Schwarm Optimierung
Bei einer PSO handelt es sich um ein Verfahren, mit dem das Verhalten eines natürlichen
Algorithmus nachgebildet wird, um ein Optimierungsproblem zu lösen. Es ist den evolu-
tionären Algorithmen und damit künstlicher Intelligenz zuzuordnen. Erstmals wurde ein
derartiges Verfahren von Eberhard und Kennedy vorgestellt [114] und seitdem erfolgreich
auf diverse Anwendungsfelder übertragen [115]. Für die Anwendung einer PSO sind keine
Annahmen bezüglich des Problems notwendig, was im Kontext dieser Arbeit notwendig
ist. Zusätzlich kann ein großer Raum an möglichen Lösungen untersucht werden. Nachfol-
gend wird die grundlegende Funktionsweise einer PSO beschrieben und darauf aufbauend
werden zwei Spezialfälle erörtert, die im Rahmen dieser Arbeit kombiniert werden. Zur
Visualisierung der Funktionsweise wird dabei beispielhaft die Beale Funktion optimiert
[116]:

f(x, y) = (1, 5 − x + xy)2 +
(
2, 25 − x + xy2

)2
+
(
2, 625 − x + xy3

)2
, (4.1)

welche eine vielfach genutzte Benchmark-Funktion ist, die mehrere lokale Minima aufweist,
ähnlich wie das Optimierungsproblem im Kontext dieser Arbeit.

4.1.2.1 Allgemein

Die folgende Beschreibung einer PSO basiert auf der Veröffentlichung [114]. Die grundle-
gende Idee einer PSO spiegelt sich schon im Namen wider: Ein Schwarm von Partikeln
Ψ ∈ Rn wird verwendet, um nach einer Lösung für ein Optimierungsproblem zu suchen.
Dabei steht n ∈ N für die Dimension des Lösungsraumes. Die Suchstrategie hierbei ist in
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zwei Schritte zu untergliedern: Jeder Partikel definiert eine mögliche Lösung des Problems,
deren Performanz im ersten Schritt ermittelt wird. Mit Hilfe dieser kann daraufhin im
zweiten Schritt ein Update der Partikel durchgeführt werden, d.h. die Lösungsdefinition
eines jeden Partikels wird verändert. Deshalb muss an dieser Stelle wieder mit Schritt eins
begonnen werden; gesucht wird letztlich iterativ.

Das Update der Partikel ist der wesentliche Kern, indem sich die unterschiedlichen PSO
unterscheiden. Ursprünglich wurde vorgesehen, dass die Partikel sich mit einer Geschwin-
digkeit v ∈ Rn im Suchraum bewegen und die Partikel gemäß dieser ihre Position im
Suchraum ändern. Die Performanz wird in diesen Prozess einbezogen, indem auch v in
jeder Iteration aktualisiert wird. Folgende Formel ist dafür vorgesehen:

vnew = τ1 v + τ2 λ1 (g−Ψ) + τ3 λ2 (p−Ψ) , (4.2)

wobei τ1, τ2, τ3 ∈ R gewählte Konstanten sind und λ1, λ2 ∈ R Zufallszahlen, die für
jedes Update neu gewählt werden. Die Änderungen der Geschwindigkeit kann in drei Teile
untergliedert werden: Durch die Bewegungsträgheit τ1 v können kleine lokale Anstiege
überwunden werden. Mit dem sozialen Anteil τ2 λ1 (g) wird die Entfernung zur besten
bekannten globalen Position g ∈ Rn berücksichtigt und eine Geschwindigkeit in diese
Richtung hinzugefügt. Der kognitive Anteil τ3 λ2 (p−Ψ) bezieht sich auf die Abweichung
zur besten Position des Partikels p ∈ Rn und ergänzt eine Geschwindigkeit in dessen
Richtung. Mit v kann ein Partikel wie folgt aktualisiert werden:

Ψnew = Ψ + v. (4.3)

Die Funktionsweise einer PSO ist in Abb. 4.1 dargestellt. Zu Demonstrationszwecken wurde
der Maximalwert der Beale Funktion bestimmt. Gemäß dieser sind die Diagramme farblich
hinterlegt. Der Wert der Funktion wird in logarithmischer Skalierung nebenbei angegeben.
Auf der Abszisse ist x und auf der Ordinate y angegeben. Es wurden 50 Partikel über 5
Iterationen optimiert. Für eine bessere Übersichtlichkeit wurde die Bewegung von nur einem
Partikel eingezeichnet. Diese ist entsprechend der drei Anteile des Geschwindigkeitsupdates
farblich untergliedert. Die Partikelpositionen sind als Punkte dargestellt und nach der
Iteration beschriftet.

In der Abb. 4.1 ist zu erkennen, dass im ersten Iterationsschritt die Bewegung fast aus-
schließlich auf den sozialen Anteil zurückzuführen ist. Durch die Initialisierung ist die
zufällige Bewegungsträgheit gering und der kognitive Anteil gleich null. Bei der zweiten
Iteration haben sowohl Bewegungsträgheit als auch der soziale Anteil Einfluss auf die
Bewegung. Der kognitive Anteil ist abermals gleich null, da im zweiten Schritt die erste
Position des Partikels die beste ist. Bei der dritten Iteration sind alle drei Anteile zu
beobachten, wobei ein erheblicher Anteil der Bewegungsträgheit von dem kognitiven Anteil
überlagert wird. Dies ist darauf zurückzuführen, dass die zweite Position einen höheren
Funktionswert hervorbringt, weshalb der kognitive Anteil hier der Bewegungsträgheit direkt
entgegenwirkt. Bei den weiteren Iterationsschritten ist zu erkennen, dass sich die Richtung
der sozialen Anteile ändert, was auf Updates des globalen Optimums hinweist.
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Abb. 4.1: Funktionsweise einer PSO anhand eines Partikels über 5 Iterationen

Die PSO kann mit einem Abbruchkriterium beendet werden – bspw., wenn der globale
Bestwert über mehrere Iterationen nicht mehr verbessert wird. Im Anwendungsfall dieser
Arbeit ist kein Abbruch möglich, da Relais über ihre Betriebsdauer oder mit Änderungen
der Umgebungsparameter ihre Eigenschaften ändern. Deshalb ist eine ständige Optimierung
erwünscht. Diese Anforderung ist im Kontext der klassischen PSO problematisch, da sich
der soziale und kognitive Anteil des Geschwindigkeitsupdates ausgleichen kann, sodass die
Partikel in einem lokalen Minimum feststecken. Weiterhin wird im folgenden Abschn. 4.4
gezeigt, dass dem Prellen ein erhebliches Rauschen unterliegt, was bei der Bestimmung
der Partikel individuellen und des globalen Bestwertes hinderlich ist. Zusätzlich erschwert
dies das Bilden einer geeigneten Bewegungsträgheit. Daher werden nachfolgend zwei
Weiterentwicklungen der PSO vorgestellt.

4.1.2.2 Bare-Bones-PSO

Nachfolgend wird die „Bare-Bones Particle-Swarm-Optimization“ (dt. rudimentäre Partikel
Schwarm Optimierung) (BPSO) von Kennedy vorgestellt [117]. Diese unterscheidet sich
von der PSO durch die Entfernung der Geschwindigkeit der Partikel:

Ψnew = Ψ + τ2 λ1 (g−Ψ) + τ3 λ2 (p−Ψ) . (4.4)

Mit Gl. 4.4 wird die Partikelposition ohne Bewegungsträgheit direkt aktualisiert. Am
restlichen Aufbau der klassischen PSO werden keine Änderungen vorgenommen. Kennedy
nahm Untersuchungen zur Performanz der BPSO gegenüber der PSO vor und kam zum
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Abb. 4.2: Funktionsweise einer BPSO anhand eines Partikels über 5 Iterationen

Schluss, dass das Entfernen der Bewegungsträgheit keine Nachteile in Bezug auf die
Performanz mit sich bringt.

In Abb. 4.2 sind analog zu Abb. 4.1 fünf Iterationsschritte eines von 50 Partikeln zu sehen,
wobei die Startpositionen identisch sind. Der wesentliche Teil der Bewegung beruht auf dem
sozialen Anteil. Der kognitive Anteil wirkt in den Iterationen drei bis fünf der Bewegung
entgegen, da bis zu diesem Schritt die beste Position des Partikels die zweite ist.

4.1.2.3 Evolutionäre PSO

Die „Evolutionary Particle-Swarm-Optimization“ (dt. evolutionäre Partikel Schwarm Op-
timierung) (EPSO) wurde von Miranda und Fonseca vorgestellt [118]. Vorteilhaft sind
die schnellere Konvergenz und das veränderte Erkundungsverhalten, wodurch das Fest-
stecken in lokalen Optima verhindert wird. Die Veränderung des Verfahrens liegt darin,
einzelne Partikel gelöscht werden und andere dafür mutieren. Dieses Verhalten ist auf den
„Survival of the Fittest“ Gedanken aus der Evolutionstheorie zurückzuführen. Auf diesem
Weg können Partikel, die in einem lokalen Optimum feststecken, eliminiert werden und
alle Partikel konvergieren gegen das globale Optimum. Dazu werden folgende Schritte
wiederkehrend durchgeführt:

1. Evaluation: Der Funktionswert der Positionen der Partikel wird bestimmt.

2. Auswahl: Die Partikel mit dem schlechtesten Funktionswert werden verworfen.
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3. Replikation: Entsprechend der Anzahl der zuvor gelöschten Partikel werden neue
Partikel durch Replikation von den behaltenden Partikeln geschaffen.

4. Mutation: Die Gewichte der Partikel wik werden zufällig verändert.

5. Reproduktion: Die Positionen der Partikel werden gemäß Gl. 4.5 aktualisiert.

Die Reproduktion eines Partikels Φ basiert aus Gl. 4.4, jedoch wurden die Zufallszah-
len λ1, λ2 aus dem Geschwindigkeitsupdate gestrichen, sodass sich folgende Gleichung
ergibt:

vnew = τ ∗1 v + τ ∗2 (g∗ −Ψ) + τ ∗3 (p−Ψ) , (4.5)
wobei die Konstanten τ ∗1 , τ ∗2 , τ ∗3 vor jeder Reproduktion im Schritt „Mutati-
on“ gemäß

τ ∗ = τ + µ1N (0, 1) (4.6)
aktualisiert werden. Dabei ist N (0, 1) eine Normalverteilung mit einer Varianz von eins
und einem Mittelwert von null und µ1, µ2 ∈ R Parameter, die konstant gewählt werden
können oder ebenfalls mutiert. Schlussendlich wird das globale Optimum während der
Mutation verrauscht:

g∗ = g + µ2N (0, 1) . (4.7)

Miranda und Fonseca konnten nachweisen, dass die EPSO im Vergleich zur PSO wesentlich
schneller zu einem geringeren Funktionswert konvergiert und zusätzlich leichter anzuwenden
ist aufgrund der reduzierten Parameteranzahl. Deshalb sind im Bereich der Optimierungs-
algorithmen mit Population evolutionäre Verfahren der Stand der Technik.

Die Funktionsweise von EPSO ist in Abb. 4.3 dargestellt. Der Aufbau der Grafik entspricht
denen aus den vorherigen zwei Abschnitten. Es sind fünf Iterationsschritte eines Partikels
visualisiert, die sich dahin gehend unterscheiden, dass sie nicht alle zusammenhängend
sind. Dafür ist der evolutionäre Mechanismus verantwortlich, durch den der Partikel in
den Iterationen zwei und drei durch Replikation eine neue Position bekommt.

4.1.3 Box-Muller-Transformation
Die Box-Muller Methode ist eine Transformation, mit der aus zwei unabhängigen Zufalls-
zahlen r, s ∈ R einer Gleichverteilung im Intervall [0, 1], zwei Zufallszahlen x, y ∈ R
berechnet werden können, die einer Standardnormalverteilung unterliegen [119]. Für jede
Zufallszahl ist dabei nur ein Berechnungsschritt notwendig:

x =
√
−2 ln (r) cos (2πs) , (4.8)

y =
√
−2 ln (r) sin (2πs) . (4.9)

Die beiden Formeln unterscheiden sich in der Trigonometrischen Funktion. In [119] wird
nachgewiesen, dass x, y standardnormalverteilt und (stochastisch) unabhängig sind. Die
Varianz σ2 liegt bei 1 und der Mittelwert µ bei 0.
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Abb. 4.3: Funktionsweise einer EPSO anhand eines Partikels über 5 Iterationen.

4.2 Messaufbau
Zur Durchführung der Untersuchungen wurde ein eigener Hardwareaufbau entwickelt.
Dieser umfasst einige Bauelemente und einen Mikrocontroller, sodass von der Messung der
physikalischen Größen über deren Verarbeitung bis hin zur Realisierung der Ansteuerung
alles in einem autarken System realisiert wird. Abgesehen von einer Energieversorgung
bestehen somit keine weiteren Abhängigkeiten. Dies ist für die Applikation im Produkt
von hoher Bedeutung, da zusätzliche Schnittstellen und externe Rechenkapazitäten sowohl
zu einer höheren Systemkomplexität als auch zu höheren Anschaffungskosten führen
würden.

In Abb.4.4 ist der verwendete Hardwareaufbau dargestellt. Entsprechend der Aufteilung des
Relais in Steuer- und Lastseite, lässt sich auch der Aufbau untergliedern. Die Steuerseite
besteht neben der Relaisspule aus zwei Transistoren, drei Widerständen und einer Freilauf-
diode. Letztere wird benötigt, um die Bauteile in der Schaltung vor der Selbstinduktion
der Relaisspule zu schützen. Beim Abschalten der Versorgungsspannung kann durch die
Freilaufdiode Strom fließen und hohe Spannungen durch Selbstinduktion können verhindert
werden. Die Widerstände werden zur Strombegrenzung für die Transistoren eingesetzt. Bei
den Transistoren handelt es sich um jeweils einen pnp und einen npn Transistor. An die
Basis des npn Transistors ist ein digitaler Ausgang des Mikrocontrollers ucntrl angeschlossen,
sodass die Versorgungsspannung der Spule mit den 0 bzw. 3.3 V des Controllers geschaltet
werden kann. Zur Visualisierung der Arbeitsweise des Algorithmus wurde zusätzlich der
Spulenstrom icoil erfasst, welcher im Algorithmus jedoch nicht einbezogen wird.
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Abb. 4.4: Steuer- und Lastkreis des genutzten Messaufbaus [100]

Auf der Lastseite des Relais sind zwei Widerstände an das Relais angeschlossen, die als
Spannungsteiler dienen. Die geschaltete Spannung beträgt 3,3 V, damit diese direkt mit
dem ADC des Mikrocontrollers erfasst werden kann. Die Schaltung ist so konzipiert,
dass das Kontaktüberwachungssignal uct drei Spannungslevel je nach Kontaktierung
annimmt:

• 0 V: Im ausgeschalteten Zustand leiten die Kontakte NC und COM und uct liegt
folglich bei 0 V.

• 1,65 V: Im eingeschalteten Zustand leiten die Kontakte COM und NO und durch
den Spannungsteiler liegt uct bei 1.65 V.

• 3,3 V: Zwischen dem ein- und ausgeschalteten Zustand ergibt sich ein Bereich, in
dem kein Kontaktpaar leitend ist. Folglich liegt uct bei 3,3 V.

Die vorgestellte Schaltung ist nicht für eine Anwendung in einem Produkt geeignet,
generiert jedoch ein vergleichbares Signal wie die in [91] beschriebene Schaltung. Mit der
im Patent dargelegten Sensierschaltung mit galvanischer Trennung mittels Übertragung
ist dies jedoch möglich.

In Abb. 4.5 ist die verwendete Hardware abgebildet. Zur Beschleunigung des Entwick-
lungsprozesses und der Evaluierung wurde die Schaltung insgesamt 16-mal auf einer
Platine aufgebaut. Die Bauteile sind auf der Rückseite der dargestellten Lochrasterplatine
aufgebracht. Als Mikrocontroller wurde ein NUCLEO F7 Evaluierungsboard von STM
genutzt.
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Abb. 4.5: Foto vom genutzten Hardwareaufbau, mit Mikrocontroller (links) und 16 Relais
(rechts)

4.2.1 Problemdefinition
Nachfolgend wird das zu optimierende Problem des Kontaktprellens formal definiert. Der
Schaltzustand wird durch die Versorgungsspannung bestimmt, deren Form verändert wird,
um die Prelldauer zu minimieren. Letztere kann durch Auswertung des Kontaktsignals
bestimmt werden, sodass das Problem in den Bereich der messungsbasierten Optimierung
fällt. In diesem Fall muss das Problem online für jeden Schaltvorgang gelöst werden und
kann als folgendes optimales Steuerungsproblem formuliert werden:

minimiere
ui(t)

B
(
xi (t)

)
vorbehalten ẋ(t) = F

(
xi (t) , ui (t) , ri(t)

)
,

xi(0) = x0,

T
(
xi (t)

)
≤ 0, ∀t > 0

gegeben B
(
xj (t)

)
, ∀j < i.

(4.10)

Wobei ui (t) der Steuerspannungsvektor ist, die Funktion B bestimmt die Prelldauer des
Schaltzyklus i, xi (t) ist der Zustandsvektor, ri(t) ist der Störungsvektor, die Funktion F
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beschreibt die Systemdynamik. x0 ist der Anfangszustand und die Funktion T definiert
die Endzustandsbeschränkungen.

4.3 Ableitung eines Optimierungsproblems
Anhand der Abb. 4.6 und 4.7 wird die Vorgehensweise bei der Prellreduzierung und das
damit einhergehende Optimierungsproblem veranschaulicht. Das Vorgehen ist von [112]
abgeleitet. Beide Abbildungen sind identisch aufgebaut und unterscheiden sich durch
den dargestellten Schaltvorgangstypen (Ein- oder Ausschalten). Sie bestehen aus zwei
Diagrammen, die übereinander angeordnet sind. Im oberen Diagramm ist ein normaler
Schaltvorgang abgebildet, im unteren ein optimierter. Es sind drei Messgrößen zu erkennen,
der Spulenstrom icoil, das Kontaktüberwachungssignal uct und die Versorgungsspannung
der Spule ucoil. Das Kontaktüberwachungssignal kann drei Werte annehmen, die den
Kontaktierungszustand widerspiegeln:

• 0,0: Die Relaiskontakte NC und COM sind kontaktiert.

• 0,5: Die Relaiskontakte COM und NO sind kontaktiert.

• 1,0: Die Relaiskontakte NC, COM und NO sind alle nicht kontaktiert (COM ist in
Bewegung).

Weitere Details zur verwendeten Hardware für diese Messungen sind in Abschn. 4.2 erläutert.
Beide Spannungen uct und ucoil wurden zur besseren Übersichtlichkeit so normalisiert,
dass ihre Werte im Intervall [0, 1] liegen.

Der Einschaltvorgang ist in Abb. 4.6 dargestellt, vor 0 ms sind alle Messgrößen gleich null.
Von diesem Zeitpunkt an wird jedoch die maximale Versorgungsspannung angelegt, sodass
in der Folge ucoil auf 1,0 springt und icoil beginnt bis etwa 3 ms anzusteigen. Von da an sinkt
der Strom leicht, da der Anker des Relais sich in Bewegung setzt und eine entgegengesetzte
Spannung induziert. Bei ca. 4 ms springt uct auf 1,0; die Kontakte lösen sich. Die Flugzeit
beträgt etwa 1 ms, sodass sich die Kontakte COM und NO bei 5 ms erstmals berühren,
folglich fällt uct auf 0,5 ab. Bis zur Zeitmarke 6 ms sind zwei Beobachtungen zu machen:
Bei icoil ist ein lokales Minimum auszumachen, das mit dem Aufschlag des Ankers auf
die Spule zu begründen ist. Der Anker erreicht die Spule erst nach dem Schließen der
Kontakte, um einen Überhub und damit eine Anpresskraft der Kontakte zu generieren.
Weiterhin springt uct häufig zwischen den Werten 0,5 und 1,0: In diesem Intervall ist das
Prellen der Kontakte zu erkennen. Im Diagramm sind die normale Einschaltzeit sein, normal
und die normale Prelldauer bein, normal mit Pfeilen markiert, um diese mit den optimierten
Werten zu vergleichen.

Beim optimierten Schaltvorgang wird ucoil kurzzeitig ausgeschaltet, sodass die Beschleuni-
gung des Ankers reduziert wird. Dazu wird eine Parametrisierung von ucoil vorgenommen:
Zum Zeitpunkt tein, der sich auf den Beginn des Schaltvorgangs bezieht, wird ucoil für
die Dauer dein abgeschaltet. Unterschiede zum normalen Schalten sind im Zeitintervall
zwischen 2 und 6 ms zu beobachten: Von 2 bis 3 ms ist uct abgeschaltet, weshalb icoil
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Abb. 4.6: Beispielhafter normaler und optimierter Einschaltvorgang eines Relais [100]

abfällt. Der Zeitpunkt, zu dem sich die Kontakte NC und COM lösen, findet 0,5 ms
später statt als beim normalen Schaltvorgang und die darauffolgende Flugphase ist etwas
länger. Die Prelldauer bein, optimiert ist im Vergleich zu bein, normal stark reduziert, sodass die
Einschaltzeit sein, optimiert der normalen sein, normal entspricht.

Zusammenfassend lässt sich festhalten, dass durch zwei Parameter ein Versorgungsspan-
nungssignal ucoil definiert werden kann, durch das die Ankerbewegung dahin gehend
manipuliert wird, dass das Prellen eine geringere Dauer aufweist.

Der normale Ausschaltvorgang ist im oberen Diagramm von Abb. 4.7 visualisiert. Vor 0 ms
ist das Relais eingeschaltet, d.h. icoil beträgt 7 mA, ucoil ist 1,0 und die Kontakte COM
und NO sind verbunden, weshalb uct gleich 0,5 ist. Ab 0 ms wird ucoil abgeschaltet und
icoil fällt ab. Am Kontaktstatus ändert sich zunächst nichts, da der Anker weiterhin an die
Spule herangezogen wird. Ab ca. 5 ms ist ein Anstieg von icoil zu sehen. Dies ist mit der
Bewegung des Ankers zu begründen, durch die eine Spannung in die Relaisspule induziert
wird, die wiederum einen erhöhten Stromfluss hervorruft. Kurz danach ändert sich uct
und der COM-Kontakt bewegt sich in Richtung Ruhelage. Die zeitliche Differenz zwischen
Anker- und Kontaktbewegung ist auf den Überhub zurückzuführen. Beim Ausschalten
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Abb. 4.7: Beispielhafter normaler und optimierter Ausschaltvorgang eines Relais [100]

beträgt die Flugzeit etwas mehr als 1 ms. Danach ist ebenfalls Prellen zu erkennen, das
mehr als 3 ms andauert.

Auch beim Ausschalten wird ucoil durch zwei Parameter so verändert, dass kurzzeitig eine
der Ankerbewegung entgegengerichtete Kraft generiert wird. Dazu wird ucoil zu einem
Zeitpunkt taus für die Dauer daus wieder eingeschaltet, sodass der Strom in der Spule
ansteigt. Dies ist im unteren Diagramm von Abb. 4.7 ab etwa 5 ms zu erkennen, wobei der
Zeitpunkt mit dem Start der Ankerbewegung im Normalfall korrespondiert. Letztere ist
durch diese Maßnahme deutlich verlangsamt, was daran zu erkennen ist, dass uct später auf
1,0 ansteigt und die Flugphase ebenfalls später in das Prellen übergeht. Auch letzteres ist in
Hinsicht auf die Dauer stark verändert: Von knapp 3 ms im Normalfall bleiben noch 1 ms im
optimierten Fall übrig. Schlussendlich kann die Prelldauer baus, optimiert gegenüber baus, normal
reduziert werden, bei gleichzeitiger Verkürzung der Schaltdauer saus, optimiert.

Die Unterschiede in Hinblick auf die Prelldauer und die Schaltzeiten sind auf die mechani-
schen Optimierungen der Hersteller der Relais zurückzuführen, welche den Schwerpunkt
in der Entwicklung auf das Einschalten legen. Das liegt daran, dass typischerweise die
Kontakte COM und NO vom Endanwender genutzt werden und NC meist ungenutzt bleibt
oder zu Überwachung des Schaltzustandes herangezogen wird.
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Weiterhin stellt sich die Frage nach anderen möglichen Formen der Manipulation der
Versorgungsspannung ucoil. Ramirez-Laboreo et al. stellten in ihrer Arbeit unter anderem
eine ähnliche Form vor, bei der zwei Invertierungen von ucoil durchgeführt werden [112].
Dies hat zur Folge, dass die Zahl der zu optimierenden Parameter auch verdoppelt
wird, wodurch das Optimierungsproblem komplexer wird. Gleichzeitig konnte jedoch
nicht gezeigt werden, dass durch diese komplexere Form eine stärkere Reduzierung des
Prellens erreicht werden kann. Das Signal ucoil könnte durch eine geeignete Schaltung und
Steuerung auf unergründlich viele Arten verändert werden. So ist es denkbar, das Signal
in Mikrosekunden große Intervalle zu unterteilen, für die alle einzelne Spannungswerte
definiert werden könnten. Selbst bei einer binären Spannungsversorgung (0 V oder 24 V)
ergeben sich so 2n Kombinationsmöglichkeiten, d.h. schon die Unterteilung in 16 Intervalle
würde 65.536 mögliche Signalformen ergeben. Dabei ist eine binäre Versorgung schon
eine Einschränkung; denkbar sind wesentlich mehr Spannungslevel. Die Anzahl der zu
optimierenden Parameter sollte jedoch möglichst gering sein, da die Optimierung erstens auf
einem eingebetteten System ausgeführt werden muss, zweitens das Optimierungsproblem
in der Komplexität mit der Anzahl der Parameter steigt und drittens die Betriebsdauer
von Relais begrenzt ist, bzw. sich deren Eigenschaften während des Betriebs ändern, sodass
nur ein begrenztes Budget an Evaluationen zur Verfügung steht. Deshalb wird im Rahmen
dieser Untersuchung eine Veränderung über die zwei zuvor erörterten Parameter t und d
vorgenommen.

4.4 Darstellung des Forschungsbedarfs
Eine physikalische Modellierung des Prellens ist nur annähernd möglich und bringt in
Bezug auf die Applikationshardware – einem Mikrocontroller – einen sehr hohen Re-
chenaufwand mit sich. Weiterhin wäre u.a. für die Massen der Relaiskomponenten eine
komplexe Messtechnik notwendig, was diesen Lösungsansatz gänzlich unökonomisch macht.
Zur Herleitung des Forschungsbedarfs werden im Folgenden zunächst zwei statistische
Auswertungen zum Prellen von Relais dargestellt.

In Abb. 4.8 ist die Häufigkeitsverteilung der Zeitspanne des Prellens im Ein- und Ausschal-
ten von zwei exemplarischen Relais unterschiedlicher Hersteller als Histogramm dargestellt.
Insgesamt sind die Daten aus 210 Schaltzyklen für jede Schalt- und Relaiskombination
dargestellt. Beim Vergleich des Prellens von Ein- und Ausschaltvorgängen sind signifikante
Unterschiede hinsichtlich der Dauer auszumachen. Während diese beim Einschalten stets
unterhalb von 1 ms liegt, sind beim Ausschalten Dauern von 2 bis 9 ms zu beobachten.
Die Standardabweichung beträgt 0,5 ms beim Ein- und 2,17 ms beim Ausschalten. Das
ist darauf zurückzuführen, dass die Hersteller die Relais auf das Einschalten optimiert
haben.

Der Vergleich der Häufigkeitsverteilungen beider Hersteller fällt gemischt aus. Im Aus-
schalten ähneln sich die Verteilungen: Hersteller B prellt im Mittel etwas weniger, aber
die Form ist vergleichbar. Beim Einschalten hingegen sind deutliche Unterschiede in der
Form auszumachen: Für Relais A treten geringe Prelldauern zwischen 0 und 0.04 ms mit
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Abb. 4.8: Histogramm vom Prellen zweier normal geschalteter Relais beim Ein- und
Ausschalten [100]

Abstand am häufigsten auf. Mit steigender Prelldauer sinkt die Häufigkeit stark, sodass die
maximale Prelldauer bei etwa 0.5 ms liegt. Bei Relais B hingegen ist das Prellen zwischen 0
und 1 ms verteilt, wobei es sich in mehreren Bereichen häuft. Zumindest beim Einschalten
sind somit herstellerspezifische Unterschiede auszumachen.

Die dargestellten Prelldauern in Abb. 4.8 verdeutlichen, dass das Prellen sowohl vom
Schaltvorgangstypen als auch vom Hersteller abhängig ist. Weiterhin weist es eine hohe
Standardabweichung auf. Diese Aspekte müssen bei der Entwicklung des Verfahrens
berücksichtigt werden.

Neben dem normalen Prellen ist eine Untersuchung der Prelldauer unter Änderung der Pa-
rameter t und d der optimierten Ansteuerung von Bedeutung. Eine detaillierte Ausführung
der Ansteuerung und der Parameter ist Abschn. 4.3 zu entnehmen. Die Untersuchungser-
gebnisse sind in Abb. 4.9 dargestellt. Für die beiden Relais aus Abb. 4.8 wurden diverse
Kombinationen zehnfach ausgeführt und der Mittelwert bestimmt. Auf diesem Weg sind
vier Heatmaps entstanden. Die Spalten sind den Relais zugeordnet und die Zeilen den
Schaltvorgangstypen. Die Heatmaps haben alle den gleichen Aufbau: Auf der Abszisse ist
die Dauer d und auf der Ordinate der Zeitpunkt t aufgetragen. Die Einfärbung der Pixel
gibt die relative Reduktion der Prelldauer gegenüber dem mittleren normalen Prellen des
jeweiligen Relais wieder. Dabei wird keine negative Reduktion dargestellt, sondern die
Werte bei 0 % abgeschnitten.

Aus den Diagrammen wird deutlich, dass das zu optimierende Problem nicht trivial ist. Es
bestehen mehrere lokale Optima, die über den gesamten Suchraum verteilt sind. Zudem
unterscheiden sich die Problemlandschaften je nach Relais und Schaltvorgang deutlich. Dies
stellt eine Herausforderung für einen geeigneten Algorithmus dar, weil diese Landschaften
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Abb. 4.9: Heatmap der Prellreduktion für unterschiedliche Kombinationen aus tein; aus
und dein; aus [100]

während der Optimierung nicht bekannt sind. Bei Relais A sind beim Einschalten nur
geringe Bereiche auszumachen, in denen das Prellen reduziert ist, da der Hersteller die
Relais dahin gehend hervorragend optimiert hat. Mit zunehmender Degradierung ist jedoch
davon auszugehen, dass sich die Eigenschaften des Relais ändern (s. Kap. 3.4.1), weshalb
das normale Prellen zunimmt und mit BOA eine stärkere relative Prellreduktion erreicht
werden kann.

4.5 Bouncing-Optimization-Algorithm (BOA)
Entsprechend der zuvor aufgezeigten Herausforderungen muss der „Bouncing-Optimization-
Algorithm“ (dt. Prelloptimierungsalgorithmus) (BOA) robust und simpel zu berechnen
sein. Für die grundlegende Auswahl des Optimierungsalgorithmus wird die Taxonomie
nach Stork et al. herangezogen [120]. Aus dieser ergibt sich nach der Bewertung von
vier Kategorien eine Empfehlung. Die Kategorien und Bewertungen werden nachfolgend
erörtert:

• Landschaftseigenschaften: Es stehen keine Informationen zur Auswirkung der Start-
zeit t und Dauer d Kombinationen auf das Prellen bereit.
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• Funktionseigenschaften: Aus Abschn. 4.4 geht hervor, dass zumindest mehrere lokale
Minima zu erwarten sind. Zusätzlich ist ein starkes Rauschen auszumachen.

• Verfügbares Evaluierungsbudget: Die Lebensdauer von Relais beträgt häufig mehrere
zehntausend Schaltzyklen, weshalb hunderte Evaluationen durchgeführt werden
können, bevor das Optimum gefunden wird.

• Berechnungs und Algorithmus Komplexität: Die Anwendung muss auf einem Mikro-
controller ausführbar sein. Daher ist die mögliche Komplexität begrenzt.

Gemäß der Taxonomie empfiehlt sich ein Verfahren aus der Klasse „Population“ für das
Optimierungsproblem. Deshalb wird im Folgenden BOA ausgehend von einer PSO hergelei-
tet. Diese wird nachfolgend auf eine Simulation des Prellens angewandt. Dabei handelt es
sich um aufgezeichnete Messwerte von 10 Relais, mit denen eine reale Ausführung der Kom-
binationen aus t und d (im Folgenden auch Partikel genannt) nachempfunden wird. D.h.
die zweidimensionale Optimierungsfunktion wurde in ein Raster mit der Schrittweite von
0,1 ms unterteilt, wobei das Prellen jedes Knotenpunktes 30-mal gemessen wurde, um das
Rauschen im Kontext der Simulation abzubilden. Dieses Vorgehen wurde gewählt, da zum
einen die Ergebnisse reproduzierbar sind und somit die Auswirkungen von Änderungen bei
der Entwicklung verifiziert werden können. Zum anderen können forschungsökonomische
Vorteile erschlossen werden, denn die notwendige Implementierung in der Programmier-
sprache C für den Hardwareaufbau und das Durchführen realer Schaltzyklen entfallen.
Aufgrund der Diskretisierung im Raster können im Kontext der Simulation nicht alle
möglichen t und d abgebildet werden. In der realen Anwendung ist deshalb eine stärkere
Reduzierung möglich.

In Abb. 4.10 ist die relative Prellreduzierung verschiedener Verfahren über 50 Iterationen
abgebildet. Bei den Verfahren handelt es sich um die beschriebene PSO, deren Varianten
BPSO und EPSO sowie den im Rahmen dieser Arbeit entwickelten BOA. Die angegebenen
Daten sind über zehn Relais mit jeweils 20 Wiederholungen gemittelt und es handelt
sich um den Einschaltvorgang der Relais. Für alle Verfahren wurde eine Population
von 48 Partikeln gewählt, damit die Ergebnisse vergleichbar sind. Zudem wurden die
Hyperparameter optimiert.

Die PSO und deren vereinfachte Variante BPSO führen zu nahezu identischen Ergebnis-
sen: Das Prellen wird um fast 30 % reduziert. Die Vermutung von Kennedy [117], dass
der Geschwindigkeitsterm nur ein historisches Überbleibsel ist und keinen funktionalen
Mehrwert bietet, lässt sich durch diese Untersuchung unterstützen. Deshalb wird auch
bei BOA kein Geschwindigkeitsterm verwendet. Bei der EPSO wurde dem Verfahren eine
evolutionäre Komponente hinzugefügt, die schlechten Partikel werden verworfen. Dies
führt zu einer stärkeren Prellreduzierung von etwa 45 %, da Partikel, die in lokalen Minima
verharren, auf diese Weise verworfen werden. Deswegen wird BOA auch eine evolutionäre
Komponente umfassen. Bei der Simulation wird durch BOA das Prellen um etwa 60 %
gesenkt, somit übertrifft die Performanz EPSO deutlich. Begründet werden kann dies mit
einer weiteren Technik, die nachfolgend erklärt wird.
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Abb. 4.10: Simulierte relative Prellreduktion von verschiedenen PSO Varianten
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Abb. 4.11: Blockdiagramm des entwickelten Algorithmus [100]

BOA ist in sechs Schritte untergliedert, die in Abb. 4.11 dargestellt sind. Die ersten beiden
Schritte sind blau eingefärbt, da diese Teil der Initialisierungsphase sind und deshalb nur
einmalig durchlaufen werden. Diese Phase ist notwendig, um den Referenzwert des Prellens
ohne Optimierung zu erfassen, den Suchraum einzugrenzen und die Partikel äquidistant
darin zu verteilen. Die übrigen vier Schritte folgen fortwährend aufeinander und es kommt
zu keinem Abbruch, um jederzeit eine Exploration zu ermöglichen, falls die Landschaft des
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Optimierungsproblems sich z.B. durch Verschleiß geändert hat. Eine detaillierte Erörterung
der Schritte findet nachfolgend statt:

I: Im ersten Schritt werden λ normale Schaltzyklen ausgeführt und ausgewertet. Dabei
ist zum einen das normale Prellen bnormal von Interesse, da es während der weiteren
Ausführung von BOA als Referenzwert benötigt wird. So kann sichergestellt werden, dass
der Algorithmus in keinen lokalen Minima feststecken kann, die mehr prellen als das
normale Schalten. Zum anderen werden der minimale und maximale Startzeitpunkt t
bestimmt: Das Minimum wird als der Zeitpunkt, zu dem die Kontakte sich das erste
Mal lösen, minus 3 ms berechnet. Dieser Wert geht zurück auf die Eigenschaften der
untersuchten Relais, denn vor diesem findet weder beim Ein- noch beim Ausschalten
eine Bewegung des Ankers statt (vgl. Abb. 4.6 und 4.7). Das Maximum entspricht dem
Zeitpunkt, zu dem der Schaltvorgang abgeschlossen ist. Das individuelle Eingrenzen des
Suchraums für jedes Relais ist für die erstmalige Generierung der Partikel notwendig und
verhindert ein Abdriften der Partikel während des Optimierungsprozesses.

Algorithm 1 BOA Initialisierung [100]
Require: tmin, tmax, dmin, dmax, n

1: Berechne die Schrittweite und Anzahl der Schritte
2: ω ← ceil

(√
((tmax − tmin) (dmax − dmin)) /n

)
3: nt ← floor ((tmax − tmin) /ω)
4: nd ← floor ((dmax − dmin) /ω)
5: Verteile die Partikel äquidistant
6: for i← 0 to nt nd do
7: Ψi, 0 ← tmin + ω floor (i/nt)
8: Ψi, 1 ← dmin + ω (i mod nd) + 0, 2 ms
9: end for

10: Wähle die übrigen Partikel zufällig
11: for i← nt nd to n do
12: Ψi, 0 ← random [tmin, tmax]
13: Ψi, 1 ← random [dmin, dmax]
14: end for

II: Der zweite Schritt umfasst die Generierung der ersten Partikel. Da a priori keine
Informationen über das Problem bekannt sind, werden diese äquidistant im Suchraum
verteilt. Das Vorgehen ist in Algorithmus 1 beschrieben: Der in Schritt I bestimmte minimale
(tmin) und maximale Startzeitpunkt (tmax), die festgelegte minimale (dmin) und maximale
Dauer (dmax) und die Anzahl der Partikel n werden für die Berechnungen benötigt. In
Zeile 2 wird die Schrittweite bestimmt, indem die durch die beiden Dimensionen t und d
aufgespannte Fläche durch die Partikel geteilt wird. Von dieser Fläche pro Partikel Wert
wird die Quadratwurzel gezogen, da durch die Zielsetzung einer äquidistanten Verteilung
die Proportion quadratisch sein muss. Das Aufrunden ist notwendig, um die Anzahl der
Partikel n nicht zu überschreiten. Die Anzahlen der Schritte pro Dimension nt und nd
werden in den Zeilen 3 und 4 durch Abrunden des Quotienten aus dem Intervall der
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jeweiligen Dimension und der Schrittweite gebildet. Durch die so ermittelten Werte können
in den Zeilen 6 bis 9 die Partikel gemäß der Schrittweite im Suchraum äquidistant verteilt
werden. Die 0,2 ms werden bei der Dauer addiert, da für diesen Wert von d ein normaler
Schaltvorgang durchgeführt wird. Da nicht immer alle Partikel in das Raster passen,
werden die übrigen in den Zeilen 11 bis 14 zufällig im Suchraum platziert.

III: Die Partikel, d.h. t und d Kombinationen werden im Schritt III ausgeführt. Zu jedem
Schaltzyklus wird die Dauer des Prellens b ausgewertet.

IV: Diese Prelldauer ist die Bezugsgrundlage für den vierten Schritt, im Rahmen dessen
der evolutionäre Teil des BOA umgesetzt wird. Nur die m % Partikel mit dem niedrigsten
Prelldauern werden behalten, alle anderen werden verworfen.

V: Auf Basis der behaltenen Partikel werden im fünften Schritt neue Partikel generiert. Die
Vorgehensweise wird in Algorithmus 2 detailliert erörtert: Dazu werden die Grenzen des
Suchraums tmin, tmax, dmin, dmax; das normale Prellen bnormal; die Anzahl der Nachbarn k;
die Prozentzahl der verworfenen Partikel m; die Zahl der Partikel n; die Partikel Ψ und das
zu den Partikeln zugeordnete Prellen b benötigt. In Zeile 2 wird eine Iteration gestartet, die
so viele Wiederholungen beinhaltet, dass für jeden der in Schritt IV verworfenen Partikel
ein neuer generiert wird. Zu diesem Zweck wird in Zeile 4 ein Partikel, der behalten
wurde, als Ursprung gewählt. Bis hierher ist das Prozedere zur Generierung analog zum
EPSO-Algorithmus. Doch bei BOA findet eine Reevaluation der bestehenden Partikel
statt, weshalb diese nicht mutiert werden. Dies ist aufgrund des Rauschens notwendig.
Weiterhin werden die neuen Partikel nicht auf Basis eines individuellen und globalen
Optimums modifiziert. Bei BOA wird, wie beim Clusteralgorithmus DBSCAN, die lokale
Dichte geschätzt und daraufhin die Aktualisierung der Partikel vorgenommen.

Die Kernidee ist dabei, dass in Regionen, in denen viele Partikel behalten wurden, scheinbar
ein Optimum vorliegt. Deshalb ist es wünschenswert, dass in diesem Bereich neue Partikel
mit einer hohen Dichte entstehen. Umgekehrt sind in Regionen mit wenig Partikeln geringe
Verbesserungen zu erwarten, weshalb die neuen Partikel eine geringe Dichte aufweisen
sollten. Zur Schätzung der Dichte wird in den Zeilen 6 bis 8 zunächst die euklidische
Distanz des Ursprungspartikels zu den übrigen Partikeln, die behalten wurden, berechnet.
Die Dichte wird in Zeile 10 über die mittlere euklidische Distanz zu den k nächsten
Nachbarn angenähert.

In den Zeilen 12 bis 17 werden dann schlussendlich die neuen Partikel generiert. Dabei
wird eine Normalverteilung mit dem Ursprungspartikel als Erwartungswert und der Dicht-
annäherung r als Varianz angestrebt. Zur Realisierung auf einem Mikrocontroller wird das
Box-Muller Verfahren genutzt. Mit diesem Verfahren ist eine Transformation von gleich
verteilten zu normal verteilten Zufallszahlen möglich. Das Prozedere ist in eine Schleife
eingebunden, durch die sichergestellt wird, dass die Suchraumgrenzen eingehalten werden.
Die Schleife ist dabei notwendig, um die Normalverteilung an den Grenzen des Suchraums
aufrechtzuerhalten. Ein Begrenzen der Werte würde die Wahrscheinlichkeit, einen Punkt
auf der Grenze zu treffen, deutlich erhöhen.
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Die letzten Zeilen 19 bis 22 beschreiben einen Mechanismus, der die Balance zwischen
Exploration und Ausnutzung anpassen kann. Grundsätzlich weist BOA in der ersten
Iteration ausschließlich Exploration vor, die durch den evolutionären Anteil und die
dichtebasierte Generation mit zunehmenden Iterationen immer stärker zurückgefahren
wird, sodass die Ausbeute gesteigert werden kann. Ein ausschließliches Ausbeuten, also
ein Stopp der Iterationen und ständiges Wiederholen des besten Partikels beim Einsatz
von Relais, ist nicht realisierbar, da deren Eigenschaften von den Umgebungseinflüssen
abhängig sind. Die Anpassung der Balance ist erforderlich, wenn sich Veränderungen
in der Optimierungsfunktion ergeben, die dazu führen, dass das normale Prellen bnormal
geringer ist als das durch BOA. Wenn dies der Fall ist, dann werden die Partikel zufällig
im Suchraum verteilt und nicht vom Ursprungspartikel mutiert, so wird die Exploration
intensiviert.

Algorithm 2 BOA Hauptoptimierungsschleife [100]
Require: tmin, tmax, dmin, dmax, bnormal, k, m, n, Ψ, b

1: Definiere neue (1−m) n Partikel
2: for i← m n to n do
3: Wähle einen behaltenden Partikel als Ursprung
4: j ← i mod (m n)
5: Berechne euklidische Distanzen e zu den Nachbarn
6: for l← 0 to m n if l 6= j do
7: el ←

√
(Ψl,0 −Ψj,0)2 + (Ψl,1 −Ψj,1)2

8: end for
9: Berechne mittlere Distanz zu den k nächsten Nachbarn

10: r ← mean (k lowest distances in e)
11: Wähle Ψi,0 und Ψi,1 unter Einhaltung der Limits
12: while Ψi,0 /∈ [tmin, tmax] and Ψi,1 /∈ [dmin, dmax] do
13: α← random [0, 2π[
14: µ← r

√
−2 ln(random [0, 1])

15: Ψi,0 ← Ψj,0 + µ cos α
16: Ψi,1 ← Ψj,1 + µ sin α
17: end while
18: Zufällig, wenn der Ursprung das Prellen nicht reduziert
19: if bj > bnormal then
20: Ψi,0 ← random [tmin, tmax]
21: Ψi,1 ← random [dmin, dmax]
22: end if
23: end for

VI: Der letzte Schritt vor der Wiederausführung des Schrittes III wird nur alle Ω
Iterationen ausgeführt. Technisch ist er identisch mit dem Schritt I: Der Referenzwert
bnormal und die Suchraumgrenzen tmin und tmax werden aktualisiert. Zu begründen ist
dieses Vorgehen mit der stetigen Änderung der Eigenschaften von Relais.
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Aus der Beschreibung vom BOA geht hervor, dass einige Variablen zur Ausführung benötigt
werden. Diese sind in Tab. 4.1 aufgeführt und in die Gruppen konfiguriert, gemessen und
optimiert unterteilt. Die konfigurierten Variablen wurden experimentell ermittelt. Die
untere Suchraumgrenze für die Dauer dmin beträgt 0 ms, da hier ein physikalisches Limit
liegt. Bei der Wahl der oberen Grenze wurde die Dynamik der Relaisspule einbezogen und
deshalb als Zeitkonstante der Relaisspule τ = LSpule/RSpule berechnet. Die gemessenen
Variablen werden während der Laufzeit bestimmt und können daher nicht im Voraus
definiert werden. Schließlich sind die optimierten Variablen die Partikel, die ebenfalls
online verändert werden.

Tab. 4.1: BOA Algorithmus Variablen [100]
Beschreibung Wert

Konfiguriert
nk Anzahl der Nachbarn 4
m Prozent der behaltenden Partikel 25 %
n Anzahl der optimierten Partikel 48
θ Referenz Reevaluierungsintervall 10
dmin; max Unteres; oberes Zeitdauerlimit 0; 1.5 ms
λ Anzahl der initialen Schaltzyklen 50

Gemessen
bnormal Prelldauer Referenz
b Prelldauer
tmin; max Unteres; oberes Startzeitlimit

Optimiert
Ψ Partikelschwarm

4.6 Evaluation
Im folgenden Abschnitt wird die Performanz von BOA evaluiert. Dabei wird zunächst
grundlegend die Funktionsweise von BOA präsentiert. Darauf aufbauend wird sowohl
ein qualitativer als auch ein quantitativer Vergleich mit dem Stand der Technik gezogen.
Dieser umfasst Analyse. Schlussendlich werden Untersuchungen hinsichtlich der Robustheit
gegenüber Umwelteinflüssen und zur Auswirkung auf die Schaltzeit vorgestellt.

4.6.1 Funktionsweise
Um die Funktionsweise von BOA unter Beweis zu stellen, werden die Partikel über mehrere
Iterationen dargestellt. In Abb. 4.12 sind drei aufeinanderfolgende Iterationen zu sehen,
wobei die obere Reihe zu den Einschaltvorgängen korrespondiert, die untere zu den
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Ausschaltvorgängen. Der Hintergrund ist entsprechend der relativen Prellreduzierung (vgl.
Abb. 4.9) in Graustufen visualisiert, was der Veranschaulichung dient, da die Informationen
BOA nicht zur Verfügung stehen. Bereiche, die zu einer Steigerung des Prellens führen,
werden mit einer Reduzierung von 0 %, d.h. weiß, angezeigt. Die Partikel für jede Iteration
sind in den Diagrammen einer Spalte eingezeichnet, sodass die Abbildung aus insgesamt
sechs Diagrammen besteht. Auf der Abszisse ist jeweils die Dauer dein; aus und auf der
Ordinate der Zeitpunkt tein; aus aufgetragen. Für jede Iteration sind alle Partikel in zwei
Farben dargestellt, grün für die besten 25 %, die behalten werden und rot für die verworfenen
Partikel. Zur Visualisierung befindet sich BOA somit immer im Schritt IV.
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Abb. 4.12: Exemplarische Darstellung der Partikel in den ersten drei Iterationen

In Iteration 0 von Abb. 4.12 ist zu erkennen, dass ein Großteil der Partikel im Raster
angeordnet ist. Die Verteilung ist äquidistant. Dabei ist zu beachten, dass die Achsen nicht
gleich skaliert sind. Der Startzeit Suchraum wurde beim Ausschalten groß gewählt, da
die Ankerbewegung von den individuellen Federkräften der Relais abhängt. Neben den
im Raster angeordneten Partikeln sind auch welche zu erkennen, deren Position zufällig
gewählt wurde, was in Schritt II beschrieben wurde und mit dem Raster zu begründen
ist, in dem nicht immer alle Partikel Platz finden können. In Bezug auf die Einfärbung
ist zu erkennen, dass die Partikel in Regionen mit hoher Prellreduktion häufig behalten
werden, wohingegen Partikel in Regionen mit niedriger Reduktion eher verworfen werden.
Abweichungen sind damit zu erklären, dass das Prellen ein hohes Rauschen aufweist,
weshalb das gemessene Prellen für die jeweiligen Partikel stark vom Erwartungswert
abweichen kann.

Die Generation von neuen Partikeln kann beim Vergleich von zwei Iterationen nachvollzogen
werden: Zwischen Iteration 0 und 1 beim Ausschalten ist bspw. zu erkennen, dass der
Abstand (die Dichte) von neuen Partikeln in den Regionen mit vielen Partikeln geringer
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ist. Schon nach zwei Updates der Partikel ist eine Konzentration in den Regionen mit
starker Prellreduktion zu sehen.
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Abb. 4.13: Exemplarische Darstellung der Partikel in der ersten, zehnten und zwanzigsten
Iteration [100]

Mit zunehmender Iterationszahl werden die Änderungen der Positionen der Partikel immer
kleiner. Angesichts dessen werden in Abb. 4.13 drei Iterationen gezeigt, zwischen denen
jeweils 10 Schritte liegen. Die Datengrundlage ist dabei identisch mit Abb. 4.13. Aus der
Grafik wird ersichtlich, dass durch BOA eine Aggregation der Partikel stattfindet, die dort
zu lokalisieren ist, wo die im Hintergrund dargestellte Prellreduktion maximal ist.

In den Abbildungen ist visualisiert, dass durch BOA zumindest ein lokales Optimum
gefunden wurde. Die Performanz wird nachfolgend im Vergleich zum Stand der Technik,
dem R2R-Algorithmus, erläutert.

4.6.2 Qualitativ
In der Abb. 4.14 wird das Prellen von zwei Relais mit unterschiedlichen Algorithmen
über die ersten 1000 Schaltzyklen abgebildet. Die angegebenen Werte wurden über eine
Fensterbreite von 50 Schaltzyklen gemittelt. Bei den Algorithmen handelt es sich zum
einen um den in [112] vorgestellten R2R und zum anderen um den im Kontext dieser
Arbeit vorgestellte BOA. Zu Vergleichszwecken sind Referenzwerte vom normalen Prellen
zum jeweiligen Relais und Schaltvorgang mit einer gestrichelten Linie angegeben. Da für
Relais A die Prelldauer im Einschalten schon im Normalfall bei etwa 0,1 ms liegt, sind
hier keine Verbesserungen zu erwarten.

Zunächst werden die Ergebnisse vom R2R betrachtet: Ähnlich wie im originalen Paper
konvergiert der Algorithmus zügig. Schon nach wenigen Schaltspielen liegt die Dauer
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Abb. 4.14: Verlauf des Prellens für zwei Relais im Ein- und Ausschalten unter Anwendung
von BOA [100]

des Prellens unterhalb des Referenzwertes (bzw. bei Relais A beim Einschalten in der
Nähe). Es ist eine starke Varianz in den Kurven zu erkennen. Der Algorithmus ist nicht in
der Lage, dauerhaft das Niveau zu halten. Das ist darauf zurückzuführen, dass der Typ
von Algorithmus, eine Mustersuche, nicht für das Optimierungsproblem geeignet ist. Das
Rauschen erschwert die Auswahl der Suchrichtung und Musterweite. Zusätzlich kann mit
einem derartigen Verfahren nur ein lokales Optimum untersucht werden. Aus der Abb. 4.9
geht hervor, dass die Beschaffenheit komplexer ist. Trotzdem kann das Prellen schnell
reduziert werden.

Die Ergebnisse durch BOA sind dem gegenüberzustellen. Auch hier kann erkannt werden,
dass in allen Fällen eine schnelle Konvergenz unterhalb des Referenzwertes einsetzt.
Verglichen mit dem R2R ist BOA etwas langsamer. Die etwa 400 Zyklen, die von BOA
zur Erkundung benötigt werden, sind zu vernachlässigen, da die Lebensdauer von Relais
typischerweise mindestens mehrere zehntausend Schaltzyklen beträgt. Beim Einschalten
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sind ganz am Anfang zunächst niedrige Prelldauern auszumachen, die daraufhin ansteigen.
Dies lässt sich mit der Rastersuche begründen: Die Partikel werden reihenweise evaluiert,
weshalb phasenweise schon hier eine hohe Prellreduktion erreicht werden kann. Bei Relais
A beim Einschalten bleibt das Prellen auf dem Niveau des Referenzwertes; in allen anderen
Fällen kann es stets um deutlich mehr als 50 % verringert werden. Dabei weisen die Werte
eine deutlich geringere Varianz auf als die vom R2R. Schlussendlich ist BOA stabiler als
der R2R und weist eine bessere Performanz auf.

4.6.3 Quantitativ
Unter den Relais eines Typen liegt eine hohe Ungleichheit hinsichtlich der Eigenschaften,
die das Prellen bestimmen, vor. Dies ist u.a. auf die Tatsache, dass ein Relaistyp oftmals von
mehreren Herstellern gefertigt wird und Fertigungsabweichungen im Produktionsprozess,
zurückzuführen. Deshalb ist es wichtig, auch eine quantitative Evaluation der Algorithmen
durchzuführen und zu prüfen, ob diese auch bei einer Vielzahl von Relais zur Reduzierung
des Prellens führen – ohne dass der Algorithmus an das individuelle Relais angepasst
wird.

In Abb. 4.15 ist das Prellen von 48 Relais über die ersten 1000 Schaltzyklen mit dem BOA
(linke Spalte) und R2R (rechte Spalte) abgebildet. Ein- und Ausschalten wurden in je einer
Reihe visualisiert, sodass insgesamt vier Grafiken die Ergebnisse darstellen. Gestrichelt
eingezeichnet ist das durchschnittliche Prellen, das mit normalem Schalten entsteht und als
Referenz dient. Daneben sind Mittelwert und Konfidenzintervall des jeweiligen Verfahrens
angegeben. Diese wurden über eine Fensterbreite von 50 Schaltzyklen von den 48 Relais
gemittelt. Insgesamt fließen folglich die Daten von 2400 Schaltzyklen in jeden Zyklus ein.
Dies ist für eine bessere Übersichtlichkeit notwendig. Präzisere Zahlen werden nachfolgend
in Tab. 4.2 genannt.

Durch den R2R kann im Einschalten eine Reduktion des Prellens um 55,00 % erreicht
werden und im Ausschalten eine von 18,84 %. Die Ergebnisse sind etwas geringer als in
der Veröffentlichung von Ramirez-Laboreo [112], was u.a. auf den Wechsel des Relaistyps
zurückzuführen ist, womit sich auch das grundsätzliche Optimierungspotenzial ändert.
Zudem wurde das Verfahren dort lediglich an einem Relais evaluiert. Im Kontext dieser
Untersuchungen ist die Probe größer, wodurch ein zuverlässigerer Erwartungswert gebildet
werden kann. Die zuvor in Abschn. 4.4 beobachtete Varianz der Prelldauern, spiegelt sich
bei dieser Analyse im Konfidenzintervall wider, welches im Vergleich zu BOA deutlich
größer ist. Dafür ist der R2R jedoch schneller in der Reduktion des Prellens, weshalb in
Abb. 4.15 zu Beginn keine Phase zu beobachten ist, in der das Prellen durch die Exploration
außerordentlich hoch ist.

Beim BOA-Algorithmus ist hingegen für beide Schaltvorgänge eine klare Abnahme des
Mittelwerts des Prellens zu beobachten. Dies ist mit der anfänglichen Rastersuche zu
begründen. Nach etwa 250 Schaltzyklen konvergiert das Prellen gegen ca. 0,23 ms im Ein-
und 2,13 ms im Ausschalten, was eine Verbesserung von 79,06 % (ein) bzw. 58,80 % (aus)
darstellt. Damit wurden die Werte vom R2R deutlich unterboten. Zusätzlich liegt das
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Abb. 4.15: Vergleich des Verlaufs des Prellens für 48 Relais im Ein- und Ausschalten
beim R2R und BOA Algorithmus [100]

Konfidenzintervall ab ca. dem 250. Schaltzyklus stets unterhalb des Referenzwertes. Die
Varianz des Prellens konnte mit BOA gesenkt werden.

Die Unterschiede bezüglich der Performanz der Methoden werden in Tab. 4.2 angegeben.
Ferner wird die Standardabweichung (STD) präsentiert, die ein wichtiges Maß für die
Reproduzierbarkeit des Prellens ist. Die Varianz des normalen Prellens kann durch die
Anwendung von BOA in beiden Schaltfällen fast halbiert werden. Der R2R hat dagegen
einen negativen Einfluss und steigert die Standardabweichung, was mit der hohen Varianz
zu begründen ist. Schlussendlich kann durch BOA das Zeitintervall, in dem das Prellen
auftritt, erfolgreich verringert werden.

Dies kann für weitere Forschungen von Relais in AC Anwendungen eine wichtige Erkenntnis
sein. Denn hier stellt das Prellen ein Hindernis dar, wenn es darum geht, ein Schalten
im Nullpunkt von Strom und / oder Spannung zu realisieren. Dies ist erwünscht, um die
Degradierung von Relais zu verlangsamen, indem u.a. Kurzschlussströme und Lichtbögen
verhindert bzw. minimiert werden sollen. Durch das Prellen kann kein genauer Zeitpunkt
ausgemacht werden, zu dem die Kontakte beginnen zu leiten. Vielmehr ist es ein Zeitinter-

127



Reduzieren des Prellens

Tab. 4.2: Quantitativer Vergleich von BOA und R2R [100]
Einschalten Ausschalten

Methode Mittelwert / ms STD / ms Mittelwert / ms STD /ms
Normal 1.089 0.500 5.163 2.170
R2R 0.490 0.639 4.190 2.433
BOA 0.228 0.297 2.127 1.396

vall, das durchsetzt ist von Ein- und Ausschaltvorgängen. Die Nullpunkte von Strom und
Spannung sind deshalb praktisch nicht zu treffen. Auf diese Problematik weisen Smugala
et al. in ihrer Arbeit [121] ebenfalls hin. Um die Konsequenzen zu verdeutlichen, wird
beispielhaft eine 230 V Wechselspannung mit 50 Hz und eine Prelldauer des Relais von
1 ms angenommen. Damit ergibt sich unter der Annahme, dass der Nullpunkt in der Mitte
des Prellintervalls liegt, eine maximale Spannung während des Prellens von ±14,44 V.
Wenn das Prellen erst im Nullpunkt beginnt, dann beträgt die Spannung sogar ±28,83 V.
Zum Vergleich: Mit einer Reduktion des Prellens durch BOA von 1 auf 0,25 ms ändern
sich diese Werte auf 3,61 bzw. 7,22 V. Deshalb könnten durch weitere Forschung neue
Potenziale hinsichtlich der Varianz des Schaltens erschlossen werden: Durch Einbezug der
Startzeiten ton; off und der Dauern don; off könnte die Schaltzeit präzise geschätzt werden,
was wiederum das Nullpunktschalten verbessert.

4.6.4 Robustheit
Mit Hilfe der Untersuchungen in diesem Abschnitt wird nachgewiesen, dass BOA robust ge-
genüber äußeren Umwelteinflüssen ist. Als letztere kommen bei der Anwendung von Relais
u.a. Temperatur, Degradierungszustand, Versorgungsspannung und ein plötzlicher Relais-
wechsel infrage. Der Wechsel wird betrachtet, da in der Applikation davon ausgegangen
werden kann, dass ein Relais getauscht wird, ohne BOA neu zu initialisieren.

Die Temperatur und die Versorgungsspannung wurden im Rahmen von Experimenten
während des Betriebs von BOA geändert. Dabei wurde beobachtet, dass bei Änderungen der
Temperatur die Parameter durch BOA nachgeführt werden können und somit weiterhin das
Prellen reduziert werden kann. Für eine Variation der Versorgungsspannung sind die Relais
ausgelegt. Deshalb ist der Einfluss so gering, dass die Konsequenzen zu vernachlässigen
sind. Um das Verhalten von BOA bei Änderungen der Umwelteinflüsse exemplarisch
darzustellen, wird im Nachfolgenden eine plötzliche Änderung des Optimierungsproblems
– also ein Wechsel des Relais – vorgestellt.

In Abb. 4.16 sind die Partikel über verschiedene Iterationen dargestellt, mit einer Heatmap
der Prellreduktion als Hintergrund. Diese unterscheidet sich in Farbgebung und Beschaf-
fenheit für die Iteration 20, da nach dieser der Wechsel des Relais vollzogen wurde. Bei
Iteration 20 hat BOA beim Ein- und Ausschalten ein lokales Optimum gefunden. Durch
den Wechsel ändert sich das Optimierungsproblem sprunghaft in Iteration 21. Für das
Einschalten ist zu erkennen, dass die Partikel nicht mehr in der Nähe eines Optimums
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Abb. 4.16: Exemplarische Visualisierung der Funktionsweise von BOA beim unangekün-
digten Tausch des Relais [100]

liegen. Durch BOA muss dementsprechend ein verstärktes Explorieren vorgenommen
werden. Beim Ausschalten liegen die Partikel hingegen in der Nähe eines Bereichs mit
starker Prellreduktion und führen weiterhin zu einer geringen Prellreduktion.

In Iteration 22 sind die Anpassungen der Partikel durch BOA deutlich zu erkennen. Beim
Einschalten wurden viele Partikel zufällig im Suchraum verteilt, da durch die vorherigen
Partikel keine Reduzierung des Prellens erzielt werden konnte (vgl. Schritt VI von BOA).
Für das Ausschalten ist lediglich ein leichter Drift der Partikel zu beobachten; sie rücken
näher an das Optimum heran. Zu begründen ist dies mit dem Entfernen der Partikel
mit schlechterer Performanz (vgl. Schritt IV). Diese sind weiter vom Optimum entfernt,
weshalb die neuen Partikel näher des Optimums generiert werden.

Darauf wird Iteration 31, also ein Sprung von neun Iterationen, dargestellt. Für das Ein- und
Ausschalten ist zu sehen, dass die Partikel wieder konzentriert auftreten. Zehn Iterationen
später sind diese Konzentrationen ebenfalls zu beobachten und BOA ist konvergiert. Dass
dies auch für die Prelldauer gilt, wird in der nächsten Abb. 4.17 herausgearbeitet.

In Abb. 4.17 ist das Prellen im Ein- und Ausschalten über 1000 Schaltzyklen aufgetra-
gen. Zur deutlicheren Visualisierung wurden die Werte über eine Fensterbreite von 50
Schaltzyklen geglättet. Als Referenz ist durch eine gestrichelte Gerade das Prellen der
Relais unter normalen Bedingungen, also ohne BOA, gegeben. Zum 1008ten Schaltzyklus
wird das Relais gewechselt. Die Daten korrespondieren zu Abb. 4.16, dementsprechend
ist die Farbwahl angepasst. Die zuvor beschriebenen und erklärten Beobachtungen zur
Bewegung der Partikel können mit diesen Graphen zusätzlich verifiziert werden: Beim
Einschalten wird durch den Relaiswechsel keine Verbesserung des Prellens erzielt, weshalb
zufällig exploriert wird. Für das Ausschalten wird trotz Wechsel eine Verbesserung erreicht.
Demzufolge überwiegt das ausbeutende Verhalten und die Partikel konvergieren langsam.
Diese Konvergenz ist für beide Schaltvorgänge etwa ab dem 1450 Schaltzyklus zu erkennen,
was der 31. Iteration in der vorherigen Abb. 4.16 entspricht. Entsprechend der Konvergenz
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Abb. 4.17: Verlauf des Prellens beim unangekündigten Tausch des Relais [100]

sind im Weiteren keine Verbesserungen mehr auszumachen, was sich im Stagnieren der
Positionen der Partikel widerspiegelt.

Im Kontext dieser Untersuchung konnte nachgewiesen werden, dass BOA robust gegenüber
Umwelteinflüssen ist und Exploration und Ausbeute vorteilhaft kombiniert wurden. Im
Falle von Optimierungsproblemen, bei denen BOA nicht konvergiert, könnte BOA im
fünften Schritt um ein Abbruchkriterium erweitert werden, sodass nach einer definierten
Exploration nur noch normal geschaltet wird.

4.6.5 Schaltzeit
Schlussendlich soll der Einfluss von BOA auf die Dauer der Ein- und Ausschaltvorgänge
untersucht werden. Die Schaltzeiten von Relais stellen in Systemen oftmals ein Problem dar:
Schon wenige Millisekunden Verzögerung können für die Realisierung einer Anwendung
ausschlaggebend sein. Beispielhaft vorgestellt werden kann dies an einem Förderband, bei
dem Objekte beim Durchlaufen einer Lichtschranke durch einen Aktor vom Förderband
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geschoben werden sollen. Wenn dieser Aktor mit einem Relais geschaltet wird, dann
kommt es auf geringe Reaktionszeiten an. Deswegen wurden bereits diverse Bestrebungen
unternommen, um die Schaltzeit zu reduzieren. In [122] zeigen Rana et al. beispielsweise,
dass die Schaltzeit durch Berücksichtigung der Schwingung des Ankers in Ruhelage reduziert
werden kann. Die Untersuchung beschränkt sich allerdings auf nanoelektromechanische
Relais.

Vorab ist eine Betrachtung der Schaltzeit notwendig, welche durch drei Faktoren bestimmt
wird: Der erste Faktor ist die Trägheit der Spule, denn der Strom benötigt Zeit, um
anzusteigen. Damit geht einher, dass auch die Kraft, die durch die Spule auf den Anker
ausgeübt wird, erst nach einer gewissen Zeit ausreicht, um den Anker zu bewegen. Sobald
der Anker in Bewegung ist, kommt die Trägheit der mechanischen Bauteile als zweiter
Faktor hinzu. Diese müssen zum Schließen der Kontakte einen gewissen Weg zurücklegen.
Schlussendlich ist der dritte Faktor durch das Prellen gegeben. Hier besteht zwar teilweise
schon Kontakt, aber eine zuverlässige Kontaktierung ist (noch) nicht gegeben. Im Kontext
dieser Arbeit ändern sich alle drei Faktoren durch die Invertierung der Versorgungsspannung
für ein kurzes Zeitintervall. Jedoch sind bei den ersten beiden Zuwächse in den Zeitdauern
zu erwarten, währenddessen eine Zeiteinsparung lediglich bei dem dritten Faktor erreicht
wird. Daher wird im Folgenden nachgewiesen, dass BOA keinen negativen Einfluss auf die
Schaltzeit hat.

In Abb. 4.18 sind die Ergebnisse bezüglich Ein- und Ausschaltdauern unter Verwendung
von BOA dargestellt. Insgesamt wurden 1000 Schaltzyklen mit 16 Relais durchgeführt
und ausgewertet, sodass der durchschnittliche Mittelwert und das durchschnittliche 90 %
Konfidenzintervall der Dauern angegeben werden. Diese Kenngrößen wurden mittels einer
Faltung mit einer Fensterbreite von 50 Schaltzyklen bestimmt. Als Referenz ist der durch-
schnittliche Mittelwert der normalen Schaltdauer in den Diagrammen angegeben.

Analog zu Abs. 4.6.2 und 4.6.3 ist für beide Schaltvorgänge zu beobachten, dass BOA etwa
400 Schaltzyklen bis zur Konvergenz benötigt. Mittelwert sowie Konfidenzintervall der
letzten 600 Schaltzyklen sind dementsprechend nahezu konstant. Beim Einschalten ist zu
erkennen, dass der Mittelwert durch BOA in keinem relevanten Umfang reduziert wird,
obwohl in den vorangegangenen Untersuchungen nachgewiesen werden konnte, dass das
Prellen deutlich abgenommen hat. Dies ist damit zu begründen, dass durch die modifizierte
Steuerspannung mehr Zeit für das Anziehen des Ankers benötigt wird. Da die Relais
durch die Hersteller dahin gehend optimiert wurden, dass sie beim Einschalten weniger
prellen als beim Ausschalten, ist das Zeitsparpotenzial hier nicht so groß, dass der gesamte
Schaltvorgang wesentlich beschleunigt werden kann. Beim Ausschalten ist das Potenzial
jedoch größer: Die Schaltdauer wird um etwa 2,5 ms reduziert, was der Prelldauerreduktion
um 3 ms abzüglich der Modifikation des Steuersignals entspricht. Hervorzuheben ist,
dass sogar das 90 % Konfidenzintervall unterhalb der normalen Schaltzeit liegt. Beim
Ausschalten kann durch BOA somit eine schnellere Schaltzeit erreicht werden.

Zusammenfassend lässt sich festhalten, dass durch BOA die Schaltzeit nicht verlängert
wird und beim Ausschalten sogar verkürzt werden kann. Dies ist als Erfolg zu werten, da
der Zweck von BOA eine Minimierung des Prellens ist, für die, gegenüber einem normalen
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Abb. 4.18: Mittlere Änderung der Schaltdauer beim Ein- und Ausschalten bei einer
Stichprobe von 16 Relais [100]

Schaltvorgang, zusätzliche Aktionen erforderlich sind. Im Rahmen weiterer Forschung
könnte BOA bei anderen Relaistypen eventuell sogar zur Schaltzeitverkürzung genutzt
werden.

4.7 Fazit

Im vorangegangenen Kapitel wurde der BOA beschrieben, mit dem durch Änderung
des Steuersignals das Prellen eines elektromechanischen Relais reduziert werden kann.
Diese Änderung wird über zwei Parameter definiert, die mit einer Variante einer Partikel-
schwarmoptimierung während des Betriebs des Relais angepasst werden. Die wesentlichen
gesammelten Erkenntnisse werden nachfolgend zusammengefasst:

• Statistische Analyse des Prellens von Relais

Es wurde festgestellt, dass ein erhebliches Rauschen dem Prellen unterliegt und
deshalb vielfaches Schalten zu konstanten Umgebungsbedingungen notwendig ist,
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um einen Erwartungswert zur Prelldauer zu bilden. Zudem wurden diverse Parame-
trierungen des modifizierten Steuersignals geprüft. Dadurch konnte gezeigt werden,
dass multiple lokale Optima bestehen.

• Bouncing Optimization Algorithm

Mit BOA wurde ein maßgeschneiderter Algorithmus vorgestellt. Dieser wurde aus der
klassischen Partikelschwarmoptimierung abgeleitet, wobei detailliert auf die einzelnen
Änderungen und deren Zweck eingegangen wurde. BOA konvergiert trotz Rauschen
und mehrerer Optima sicher und reduziert das Prellen. Dabei ist der Rechenaufwand
sehr gering, sodass BOA auf einem Mikrocontroller implementiert wurde.

• Nachweis der Funktionalität

Sowohl die Funktionsweise von BOA, als auch dessen Überlegenheit gegenüber dem
aktuellen Stand der Technik, wurde in mehreren Experimenten nachgewiesen. Bei
48 Relais kann das Prellen im Durchschnitt um 79 % beim Ein- und um 59 % beim
Ausschalten reduziert werden. Gegenüber Änderungen der Umgebungseinflüsse ist
BOA robust. Dies konnte durch spontanes Wechseln eines Relais gezeigt werden,
für das ohne Reset von BOA ein anderes Optimum gefunden wurde. Schlussendlich
konnte auch ein positiver Einfluss von BOA auf die Schaltzeit präsentiert werden.

• Vorstellung eines simplen Hardwareaufbaus

Die verwendete Hardware wurde detailliert beschrieben, wobei darauf geachtet wurde,
dass eine Realisierung im Produkt möglich ist. Diese Absicht wird unterstützt von
der Tatsache, dass die gesamte Evaluation mit diesem Aufbau durchgeführt wurde.
Deshalb ist BOA dem Stand der Technik nicht nur hinsichtlich der Performanz
überlegen, sondern geht den Schritt von Laborhardware zu Produkthardware.

Für weitergehende Forschung ist es empfehlenswert, die Ergebnisse auf andere Relaistypen
und / oder Schütze zu übertragen. Des Weiteren ist eine Anwendung auf andere elektrome-
chanische Aktoren, wie Ventile, vielversprechend. Zusätzlich sollten Lebensdauerversuche
zu den Effekten des reduzierten Prellens auf die Degradierung unternommen werden.
Hierbei liegt jedoch eine Schwierigkeit im notwendigen Zeitaufwand, der mit mindestens
mehreren Monaten veranschlagt werden muss.

Die Erkenntnisse zur Thematik Prellreduzierung sind in [100] publiziert. Darüber hinaus
wurde ein Patent [123] angemeldet.
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5 Abrasive Kontaktselbstheilung

Das letzte Kapitel dieser Arbeit baut auf Erkenntnissen aus den Dauertests auf: Dabei
zeigte sich, dass viele Relais ausfallen, weil sich z.B. durch Migration Materialanhäufungen
an den Kontaktoberflächen ausbilden. Weiterhin ist zu beobachten, dass zwischen dem
ersten und siebten1 fehlerhaften Schaltvorgang oftmals mehrere hundert Schaltzyklen
liegen. Dementsprechend ist die Wahrscheinlichkeit hoch, dass ein Relais durch erneutes
Schalten wieder kurzfristig nutzbar gemacht werden kann.

Im Folgenden wird das Verfahren „Contact Self-healing via Abrasion“ (dt. Kontaktselbst-
heilung via Abrasion) (CSA) vorgestellt, mit dem die Anlagenverfügbarkeit gesteigert
werden kann. Durch eine spezielle Ansteuerung der Relaisspule wird dabei eine Reibung
zwischen den Kontaktpaaren angeregt. Auf diesem Weg können bspw. Materialanhäufungen
oder isolierende Schichten abgerieben und verhakte oder verschweißte Kontakte gelöst
werden. So wird die Möglichkeit eröffnet, dass Relais nach einer ersten Fehlfunktion oder
einem erkannten auffälligen Zustand (vgl. MAUD) kurzfristig weiter betrieben werden,
um einen Ausfall der Anlage zu verhindern. Das Verfahren CSA ist als Patent angemeldet
[124].

Zunächst wird der Forschungsstand zu dieser Thematik dargelegt, anschließend wird das
Potenzial für die Selbstheilung durch eine Statistik aus den Dauertests aufgezeigt. Daraufhin
werden der verwendete Testaufbau und das Verfahren CSA beschrieben. Nachfolgend wird
CSA hinsichtlich drei Aspekten evaluiert: die Funktionalität, der Einfluss von veränderbaren
Parametern und die Auswirkungen auf die Kontaktoberfläche.

5.1 Forschungsstand
In den Patenten [125] und [126] wird ein System beschrieben, das einen fehlerhaften
Schaltzustand erkennt und durch erneutes Schalten versucht zu korrigieren. Diese Funktio-
nalität soll durch CSA ebenfalls abgebildet werden. In [127], [128], [129] und [130] werden
diese Verfahren dahin gehend verbessert, dass das Relais durch eine spezielle Ansteuerung
frei gerüttelt werden soll. Dazu wird eine Pulsweitenmodulation oder Wechselspannungs-

1Die Relais wurden im Kontext dieser Arbeit bis zum siebten fehlerhaften Schaltvorgang degradiert,
da sie bei dieser Anzahl nach allen Herstellern als ausgefallen gelten.
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signale genutzt. Auch diese Idee ist in CSA inkludiert. Bei CSA wird im Vergleich zu
den zuvor aufgeführten Verfahren jedoch eine deutlich höhere Erregerfrequenz genutzt,
weshalb die Kontakte nicht nur durchgerüttelt, sondern gezielt aneinander gerieben wer-
den. Somit sollen Kontakte nicht nur voneinander gelöst, sondern auch hinsichtlich ihrer
Oberflächenstruktur verbessert werden.

Die Kernidee des Ausnutzens von abrasivem Verschleiß ist im Kontext der Vergütung von
Oberflächen bekannt und findet seit Jahrzehnten Anwendung in Produktionsprozessen
[131]. Beim Gleitschleifen werden jedoch spezielle Schleif- und Polierkörper sowie Che-
mikalien eingesetzt, die bei einem Relais nicht zur Verfügung stehen. Yamaguchi und
Shinmura zeigen in [132], dass die Oberfläche einer Stahlplatte mit Eisenpartikeln geglättet
werden kann. Dazu rotierten sie eine Stahlplatte, wobei Eisenpartikel mit einem Magneten
an einer fixen Position gehalten wurden. Mit diesem Prozedere wurde Material an der
Oberfläche abgetragen. Der Bezug zu dieser Arbeit kann wie folgt hergestellt werden: Bei
den Kontakten handelt es sich ebenfalls um eine Metalllegierung. Die Eisenpartikel sind in
diesem Kontext die Verunreinigungen. Die für das Schleifen notwendige Kraft wird durch
Anker und Spule generiert.

5.2 Ausfallverhalten von Relais

Um den Nutzen und das Potenzial des Verfahrens zu beleuchten, wird zunächst betrachtet,
wie Relais sich beim Ausfall verhalten. Dazu werden Daten aus den Alterungsversuchen
herangezogen: Die Relais wurden bis zum siebten defekten Schaltvorgang gealtert. Deshalb
ist auszumachen, wie viele Schaltzyklen zwischen dem ersten und siebten Defekt liegen.
Bei dieser Analyse wird ein fehlerhafter Schaltzustand dementsprechend über ein erneutes
Schalten korrigiert, was durch das entwickelte Verfahren ebenfalls abgebildet wird.

In Abb. 5.1 ist der Anteil der Relais angegeben, die zwischen dem ersten und siebten
Defekt mindestens die entsprechende Anzahl an Schaltzyklen aufweisen. Die Abszisse ist
logarithmisch skaliert, da sich der Wertebereich von 7 bis etwa 1.000.000 Schaltzyklen
aufspreizt und somit eine bessere Visualisierung möglich ist. Aus der Grafik lassen sich
folgende Schlüsse ziehen:

• Etwas mehr als 80 % der Relais weisen 10 oder mehr Schaltzyklen zwischen dem
ersten und siebten Defekt auf: Daraus folgt, dass fast 20 % der Relais innerhalb
von 10 oder weniger Schaltzyklen ausfallen, wodurch kein kurzzeitiger Weiterbetrieb
mittels erneuten Ansteuern möglich ist.

• Bei ca. 65 % der Relais liegen die Defekte in einer Intervallbreite von mindestens 100
Schaltzyklen: Folglich liegt hier der Erwartungswert für eine erfolgreiche Korrektur
des Schaltzustandes durch ein erneutes Schalten bei mindestens 93 %.

• Bei 50 % der Relais liegen mindestens 1.000 Schaltzyklen zwischen den Defekten:
Der Erwartungswert erhöht sich bei diesen damit auf 99,3 %.
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Abb. 5.1: Anteil der Relais aufgetragen über der Anzahl der Schaltzyklen zwischen dem
ersten und siebten defekten Schaltvorgang

• Dieser Wert kann signifikant gesteigert werden, wenn die 40 % der Relais betrachtet
werden, bei denen die Differenz zwischen den Defekten am größten ist: Hier liegen
mindestens 10.000 Schaltzyklen zwischen dem ersten und siebten Defekt, sodass der
Erwartungswert für eine erfolgreiche Korrektur durch erneutes Schalten bei 99,93 %
liegt.

Da etwa 550 Relais für diese Analyse ausgewertet wurden, kann von einer signifikanten
Stichprobe ausgegangen und folgender Schluss gezogen werden: Ein erneutes Ansteuern
eines Relais im Fehlerfall kann bei einer Vielzahl der Relais zu einer Korrektur führen.
Auch wenn diese Korrektur nur kurzfristig ist, könnte mit CSA eine Steigerung der
Anlagenverfügbarkeit erreicht werden.

5.3 Messaufbau
Für die Umsetzung des Verfahrens stellen sich die gleichen Anforderungen an die Hardware
wie bei MAUD und BOA. Ausschließlich für die Evaluation wird zusätzliche Hardware
benötigt: ein Beschleunigungssensor zur Erfassung von Schwingungen bzw. des Reibens.
Der verwendete Aufbau für die Untersuchungen wird in Abb. 5.2 dargestellt. Von der
Darstellung weiterer peripherer Bauteile, bspw. zur Filterung der Signale, wurde zugunsten
der Übersichtlichkeit abgesehen.

Im Zentrum der Darstellung steht das Relais, um das die restliche Schaltung angeordnet
ist. Diese kann in drei Gruppen untergliedert werden:
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Abb. 5.2: Skizze des verwendeten Messaufbaus

• Relaisspule:
Die Relaisspule wird an das Massepotenzial (GND) angeschlossen und die Spulen-
spannung ucoil wird angelegt. Die Versorgungsspannung wird durch die Steuerung
bestimmt und kann 0 oder 24 V annehmen. Als Eingang für die Steuerung dient der
Spulenstrom icoil.

• Kontakte:
Der Zustand der Kontakte wird mit einer Schaltung analog zum Aufbau aus
Abschn. 4.2 überwacht. Auch hier ist eine alternative Umsetzung, die eine galvanische
Trennung aufweist, entsprechend dem Patent [91] möglich. Die beiden Widerstände
R1 werden identisch dimensioniert, sodass ein symmetrischer Spannungsteiler ent-
steht und das Kontaktsignal uct für jeden der drei Schaltzustände einen anderen
Wert annimmt. Das Signal ist wichtig, um einerseits einen defekten Schaltvorgang
zu erkennen und andererseits die Kontaktierung während der Anwendung von CSA
zu überwachen.

• Beschleunigungssensor:
Der Beschleunigungssensor dient lediglich der Evaluation und wird für eine Umset-
zung nicht benötigt. Er ist direkt an den NO-Kontakt des Relais angeklebt. Somit
lässt das Signal ug direkte Rückschlüsse auf die Erschütterungen / Bewegungen des
Kontaktpaares COM und NO zu. Als Sensor wurde ein ADXL335 von Analog Devices
genutzt, der über einen 0,25 mm starken Kupferlackdraht angebunden wurde. So
wird der mechanische Einfluss auf das System minimiert. Aufgrund der Beschaltung
liegt die Grenzfrequenz des Beschleunigungssignals bei 1.600 Hz.

Die Signale werden doppelt erfasst: Mit einem Cortex F4 Mikrocontroller von STM, auf
dem die Steuerung implementiert ist und mit einem Oszilloskop, das zur Visualisierung
der Signale genutzt wird. Die praktische Realisierung des Aufbaus ist Abb. 5.3 zu entneh-
men. Durch CSA werden starke Vibrationen hervorgerufen, weshalb der Kupferlackdraht
zusätzlich an einem Draht befestigt werden musste.

138



Abrasive Kontaktselbstheilung

3, 3 V

GND

ug

Abb. 5.3: Foto des verwendeten Messaufbaus

5.4 Contact Self-healing via Abrasion
Nachfolgend wird CSA anhand von Skizzen erklärt. Ziel ist es, zwischen den Kontakten
eines Relais eine Reibung hervorzurufen. Dies wird durch den Anker erreicht, der im
Bereich des Überhubs bewegt wird, sodass dessen Bewegung auf die Kontakte übertragen
wird und diese aneinander reiben. Dabei sind die Kontakte ständig leitfähig, weshalb das
Verfahren auch im Betrieb des Relais angewendet werden kann.

Führe
Schaltvorgang aus
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Analysiere 
Stromverlauf und 

bestimme tein

Ende

Führe Anregung 
aus

Start
Ja

JaNein

Nein

Abb. 5.4: Ablaufdiagramm für eine Implementierung von CSA

Das Flussdiagramm für eine mögliche Umsetzung ist in Abb. 5.4 dargestellt. Der Start
ist das Kommando für einen Schaltvorgang – ungeachtet, ob es sich um einen Ein- oder
Ausschaltvorgang handelt. Als Erstes ist der Schaltvorgang auszuführen, danach muss
geprüft werden, inwiefern dieser erfolgreich war. Wenn die Kontakte nach einem Einschalt-
vorgang nicht oder nach einem Ausschaltvorgang weiterhin kontaktiert sind, dann war der
Schaltvorgang nicht erfolgreich und die Anregung für die Reibung muss ausgeführt werden.
Eine Beschreibung, wie diese stattfindet, wird nachfolgend gegeben. Für das Verfahren sind
unterschiedliche Ausgestaltungen der Anregung denkbar – von einer einzelnen Anregung
hin bis zu mehreren Anregungen mit jeweils unterschiedlichen Spezifikationen. Nach der
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Anregung muss der Schaltvorgang wiederholt werden, um zu prüfen, ob das Relais „geheilt“
werden konnte. Wenn dies nicht der Fall ist, dann kann das Prozedere wiederholt werden.
Andernfalls kann der nächste Schritt im Diagramm erreicht werden: Hier wird geprüft, um
welche Art von Schaltvorgang es sich handelt. Dies ist notwendig, da der für die Anregung
notwendige Parameter tein durch die Analyse von Ausschaltvorgängen bestimmt werden
muss (vgl. Abb. 5.6). Nach der Analyse ist der Schaltvorgang abgeschlossen.
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Abb. 5.5: Messgrößen während eines normalen Abschaltvorgangs [124]

Für die Beschreibung der Funktionsweise der Anregung werden in Abb. 5.5 zunächst die
Messgrößen eines normalen Abschaltvorgangs skizziert. Kurz oberhalb der Abszisse sind
drei Zustände des Relais eingezeichnet und beschriftet:

• 0: Die Kontakte sind geschlossen und der Anker ist an die Spule herangezogen.

• 1: Der Überhub wird abgebaut, d.h. die Kontakte sind geschlossen, aber zwischen
Anker und Spule ist ein Luftspalt.

• 2: Die Kontakte und der Anker sind geöffnet.

Die Funktionsweise von CSA kann anhand von Abb. 5.6 erklärt werden: Zunächst wird
das Relais abgeschaltet und der Strom fällt ab – wie bei einem normalen Abschaltvorgang.
Nachdem der Anker sich vom Spulenkern löst – also Zustand 1 erreicht wird – wird die
Versorgungsspannung wieder eingeschaltet. Der Zeitpunkt dafür wird so gewählt, dass
Zustand 2 nicht erreicht wird. Stattdessen wird der Anker an die Spule herangezogen und
Zustand 0 wieder erreicht. Die Leitfähigkeit bleibt deshalb konstant bei 1. Schlussendlich
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Abb. 5.6: Messgrößen während des Reibens [124]

wird durch CSA eine Bewegung des Ankers ausgelöst, die sich auf die Kontakte überträgt,
wodurch wiederum eine Reibung der Kontaktoberflächen bedingt wird.

Für eine Implementierung von CSA sind lediglich zwei Zeitpunkte relevant: Erstens der
Zeitpunkt taus, zu dem die Versorgungsspannung ausgeschaltet und zweitens der Zeitpunkt
tein, zu dem diese wieder eingeschaltet wird. taus kann dabei willkürlich gewählt werden.
Die einzige Bedingung ist, dass das Relais eingeschaltet ist. Die Wahl von tein ist abhängig
vom Zeitpunkt, zu dem sich der Anker von der Spule löst. Letzterer kann durch die
Analyse von normalen Schaltvorgängen bestimmt werden, da er als ein lokales Minimum
im Spulenstrom auszumachen ist. Es ist jedoch nicht notwendig, diesen genau zu treffen.
Das Reiben kann auch ausgelöst werden, wenn tein um einen Offset verschoben wird.

5.5 Evaluation
Im Rahmen der Evaluation von CSA werden drei Fragestellungen untersucht:

1. Welche Beschleunigungen werden an den Kontakten hervorgerufen?

2. Welchen Einfluss hat die Wahl des Offsets auf die Beschleunigungen?

3. Welche Veränderungen sind an den Kontakten auszumachen?

Die Fragen werden nachfolgend in drei Abschnitten erörtert.
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5.5.1 Messgrößen bei Reiben

Im Kontext dieser Untersuchungen wird die Funktionalität von CSA nachgewiesen und
gemessen, welche Beschleunigungen an den Kontakten auftreten. Dazu wurde CSA ent-
sprechend der Beschreibung in Abschn. 5.4 mit einem Offset von null auf dem in Abb. 5.3
darstellten Messaufbau implementiert. In Abb. 5.7 sind jeweils drei Messgrößen für einen
Ein- und Ausschaltvorgang sowie Reiben dargestellt. Die Zeitreihen wurden dabei so
verschoben, dass der Ausschaltzeitpunkt vom Reiben und der Ausschaltvorgang überein-
stimmen; genauso wie der Einschaltzeitpunkt vom Reiben und dem Einschaltvorgang.
Es ist ein Zeitfenster von insgesamt 40 ms visualisiert, indem zwei Reibungsanregungen
vollständig zu sehen sind.

Beim Reiben liegt die Kontaktspannung uct konstant bei 1,65 V. Daraus folgt, dass die
Kontakte COM und NO stets geschlossen sind. Im Spulenstrom sind die Aufschläge
des Ankers als lokale Minima bei 12,5 und 27,5 ms zu erkennen; die Form entspricht
einer Mischung aus Ein- und Ausschaltvorgang: Bis 7,5 ms fällt der Spulenstrom wie
beim Ausschaltvorgang ab, danach ähnelt er bis zum Ankeraufschlag bei 12,5 ms einer
Superposition beider Schaltvorgänge. Nach dem Aufschlag entspricht der Strom dem
Einschaltvorgang, bis das Prozedere bei 18 ms abermals durchgeführt wird.

Die beobachtete Mischung beider Schaltvorgänge im Reiben ergibt sich auch bei Betrach-
tung der Beschleunigungen a. Das Einschalten ruft maximale Beschleunigungswerte von
fast 50 m/s2 hervor, die durch den Aufschlag des Ankers mit hoher Geschwindigkeit auf
den Spulenkern bedingt werden. Beim Einschalten ist der Zeitraum, in dem Beschleuni-
gungen zu erkennen sind, kürzer als beim Ausschalten. Weiterhin ist die Beschleunigung
stärker gedämpft. Dies ist darauf zurückzuführen, dass der Anker im eingeschalteten
Zustand an der Spule anliegt und im ausgeschalteten nur durch eine Feder in die Ru-
helage gebracht wird und keinen Anschlagspunkt hat, was mit einer Bewegungsfreiheit
einhergeht. Daraus folgt auch, dass geringere maximale Beschleunigungswerte von etwa
40 m/s2 beim Ausschalten hervorgerufen werden. Es ist davon auszugehen, dass auch bei
normalen Einschaltvorgängen ein Reiben der Kontakte ausgelöst wird. Dies ist zeitlich
jedoch begrenzt, weshalb keine signifikante Wirkung wie bei CSA hervorgerufen wird. Für
CSA ist eine Superposition der Beschleunigungsverläufe von Ein- und Ausschaltvorgang
für eine Anregung zu erkennen. Das ist zu erwarten, weil der Anker sich bei einer Anregung
von der Spule löst und dann wieder aufschlägt – was jeweils einem unvollständigen Aus-
bzw. Einschaltvorgang entspricht.

In Abb. 5.7 sind lediglich zwei Anregungen dargestellt, es ist jedoch möglich beliebig
viele Anregungen aufeinanderfolgen zu lassen. Dabei sollte aber beachtet werden, dass
sich die Eigenschaften eines Relais durch CSA ändern können. Bspw. kann sich der
Überhub durch Abreiben von Material verringern. Deshalb ist es empfehlenswert, die
Anzahl der Anregungen zu begrenzen und tein stetig anhand von Messreihen aus normalen
Schaltvorgängen zu aktualisieren.
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Abb. 5.7: Messgrößen beim Ein- und Ausschalten sowie Reiben
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5.5.2 Einfluss der Zeitverschiebung
Der Zeitpunkt tein ist von großer Bedeutung für die Reibungsanregung. Wenn die Ver-
sorgungsspannung früher wieder angelegt wird, dann wird auch der Anker früher an die
Spule herangezogen und vice versa. Deshalb wird der Einfluss einer Verschiebung von tein
zum Start der Ankerbewegung auf die maximale Beschleunigung untersucht. Dazu wird zu
tein ein Offset addiert, das im Intervall von -0,5 bis 0,5 ms liegt. Die Grenzen sind auf die
Physik des Relais zurückzuführen; geringere Werte verhindern ein Lösen des Ankers und
damit das Anregen einer Reibung. Bei höheren Werten lösen sich die Kontakte voneinander.
Für ein Offset von 0 ms entspricht tein dem Zeitpunkt zu dem beim Ausschalten ein lokales
Minimum ausgemacht werden kann.
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Abb. 5.8: Maximale Beschleunigung beim Reiben für verschiedene Offsets

In Abb. 5.8 ist die maximale Beschleunigung beim Reiben für unterschiedliche Einschaltzeit-
punkte angegeben, wobei die Schrittweite 0,1 ms beträgt. Mit einem Offset kleiner -0.3 ms
sind nur geringe Beschleunigungen kleiner 5 m/s2 zu beobachten. Im Bereich zwischen -0,3
und 0,0 ms steigt die gemessene maximale Beschleunigung beim Reiben auf ca. 40 m/s2 an.
Im weiteren Verlauf bis zum Offset von 0,5 ms ist nur noch eine geringfügige Steigerung
auszumachen. Begründet werden kann dies mit der Geometrie des Relais, die die maximale
Geschwindigkeit und damit den Impuls des Ankers limitiert.

Aus den Beobachtungen können drei Schlussfolgerungen gezogen werden:

• Zu geringe Offsets (hier <-0,3 ms) führen zu keiner signifikanten Reibung.

• Mit einem Offset zwischen -0,3 und 0,0 ms kann die Beschleunigung eingestellt
werden.
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• Positive Offsets führen zu keinen bedeutenden Zuwächsen hinsichtlich der Beschleu-
nigung, implizieren jedoch die Gefahr, dass sich die Kontakte voneinander lösen.

Abschließend ist zu empfehlen, ein Offset von 0 ms zu wählen, da für größere Offsets keine
signifikante Steigerung der Beschleunigung erreicht werden kann, das Risiko für ein Lösen
der Kontakte jedoch stark erhöht wird.

5.5.3 Einflüsse auf die Kontaktoberfläche
Im Weiteren wird der Einfluss von CSA auf die Kontaktoberfläche analysiert. Dazu wurde
der Messaufbau aus Abb. 5.3 leicht modifiziert, da in realen Applikationen von Relais
ein Laststrom zu erwarten ist, mit dem eine Erwärmung der Kontakt einhergehen kann.
Deshalb wurde der Spannungsteiler zur Generierung des Kontaktsignals uct durch eine
Last mit 6 Ω ersetzt. Mit dem Relais wird diese bei einer Spannung 24 V geschaltet, womit
sich ein maximaler Laststrom von 4 A ergibt.

CSA wurde für jedes Relais eine Minute angewendet, jedoch nicht permanent: CSA und der
normale eingeschaltete Zustand wechseln alle 0,5 s, um u.a. die thermische Belastung der
Kontakte zu reduzieren. Die Relais stammen aus den Lebensdaueruntersuchungen. Dabei
wurden nur Relais betrachtet, die durch ein Verschweißen bzw. Verhaken der Kontakte
ausgefallen sind. Durch den Betrieb bis zum Ende der Betriebsdauer (siebter defekter
Schaltvorgang) stellen diese Relais einen Extremfall dar. Bei einer früheren Anwendung von
CSA, bspw. bei ersten Anzeichen von Verschleiß oder beim ersten Defekt, sind geringere
Verschleißerscheinungen an den Kontakten zu erwarten, was eine Selbstheilung begünstigt.
Dennoch ist diese Untersuchung geeignet, um das Potenzial von CSA aufzuzeigen.

Insgesamt wurden 20 Relais untersucht, bei denen Fotos von den Kontakten vor und nach
der Anwendung von CSA gemacht wurde. Auf Basis dieser Fotos wurde die Auswirkung
von CSA auf das jeweilige Relais in eine von drei Kategorien eingeordnet:

1. Erfolgreiche Anwendung: Vor CSA sind Ablagerungen o.Ä. an den Kontakten sichtbar,
die nach CSA geringer bzw. nicht mehr vorhanden sind.

2. Keine Auswirkungen: Vor und nach CSA sind keine Unterschiede auszumachen.

3. Kritische Belastung: Durch CSA kam es zu einer thermischen Belastung, sodass z.B.
der Betätigungsarm geschmolzen ist.

Von den 20 Relais konnte CSA bei 15 erfolgreich angewendet werden, bei vier weiteren ist
keine Auswirkung zu erkennen und ein Relais zeigt eine kritische Belastung auf. Für eine
erste quantitative Untersuchung von CSA lässt sich somit eine positive Bilanz ziehen: In
allen Fällen konnte das Relais durch CSA länger betrieben werden und lediglich in einem
Fall sind Spuren einer thermischen Überlastung auszumachen, die den Betrieb jedoch nicht
beeinträchtigt haben.

Im Folgenden werden die Auswirkungen qualitativ untersucht. Dazu sind fünf Abbildungen
dargestellt, die – neben den Fotos der Kontakte – auch drei Messreihen vom Spulenstrom
beim Ausschalten zeigen. Die Messreihe ‚Initial‘ zeigt den Spulenstrom des neuwertigen
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Relais und ’vor CSA’ bzw. ’nach CSA’ den Spulenstrom entsprechend vor und nach der
Anwendung von CSA.
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Abb. 5.9: Auswirkungen von CSA auf das Relais 973

In Abb. 5.9(a) ist ein Relais dargestellt, bei dem sich eine Pille am COM-Kontakt gebildet
hat. Infolgedessen wird der Trennabstand zwischen den Kontakten COM und NO signifikant
verkürzt, was bei hohen Spannungen kritisch ist. Weiterhin zeigt sich im Spulenstrom
vor CSA, dass der Anker sich zu einem späteren Zeitpunkt von der Spule löst. Dies weist
darauf hin, dass sich auf der gegenüberliegenden Seite der Pille auf dem NO-Kontakt ein
Krater gebildet hat, in den die Pille beim Schließen verhakt und so der Überhub reduziert
wird. Andernfalls müsste durch die Pille ein stärkerer Überhub hervorgerufen werden, was
zu einem früheren Lösen des Ankers führen würde.

Durch die Anwendung von CSA konnte die Pille erfolgreich abgerieben werden und ist
in Abb. 5.9(b) nur noch in Form einer Ablagerung am NO-Kontakt zu erkennen. Bei
diesem Relais konnte erfolgreich eine abrasive Selbstheilung durchgeführt werden. Dies
spiegelt sich auch im Spulenstrom wider. Im Vergleich zum initialen Zustand startet die
Ankerbewegung nun etwas früher, was mit der Ablagerung zu begründen ist.
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Abb. 5.10: Auswirkungen von CSA auf das Relais 974
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Das Relais in Abb. 5.10(a) weist drei Materialanhäufungen am NO-Kontakt auf. Auch hier
scheint es gegenüberliegend zu einer Kraterbildung gekommen zu sein, da der Start der
Ankerbewegung im Spulenstrom vor CSA später als initial ist. Zudem steigt der Strom
nicht so stark an: Dies kann ein Hinweis auf eine langsamere Ankerbewegung sein, die mit
einem Verhaken der Kontaktpillen begründet werden kann. Nach CSA ist in Abb. 5.10(b)
zu erkennen, dass die Materialanhäufungen durch CSA reduziert werden konnten und sich
der Verlauf des Spulenstroms wieder dem initialen angenähert hat.
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Abb. 5.11: Auswirkungen von CSA auf das Relais 988

Auf den Kontakten in Abb. 5.11(a) ist ähnlich zu Abb. 5.9(a) eine Pille am COM-Kontakt zu
erkennen. In diesem Fall findet jedoch eine frühere Ankerbewegung statt (vgl. Abb. 5.11(c)).
Durch CSA wird die Pille kleiner gerieben, weshalb sich der Kontaktabstand vergrößert
und der Spulenstrom wieder dem initialen Verlauf ähnelt.
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Abb. 5.12: Auswirkungen von CSA auf das Relais 1003

Bei Abb. 5.12(a) ist auf beiden Kontakten eine Materialanhäufung zu erkennen. Diese
ist jedoch geringer als bei den vorherigen Beispielen. Dies resultiert in einer früheren
Ankerbewegung. Die Anwendung von CSA führt bei diesen Kontakten zu einer Oberfläche,
die zumindest in Hinblick auf die Optik (vgl. Abb. 5.12(b)) und auf die Messgrößen (vgl.
Abb. 5.12(c)), derer eines neuen Relais entspricht. Der minimal spätere Startpunkt der
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Ankerbewegung im Spulenstrom zeigt einen geringen Verbrauch von Kontaktmaterial an,
was in Anbetracht der Betriebsdauer zu erwarten ist.
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Abb. 5.13: Auswirkungen von CSA auf das Relais 1020

Bei Abb. 5.13(a) sind die Kontakte eines Relais dargestellt, das eine induktive Last geschal-
tet hat. Dies lässt sich am Ruß an den Oberflächen erkennen, der durch den Lichtbogen
entsteht. Hier bildete sich zwischen den Kontakten eine Brücke, sodass die Kontakte nicht
mehr getrennt werden können. Durch den Einsatz von CSA konnte die Materialbrücke
gelöst und das Relais wieder funktionstüchtig gemacht werden (vgl. Abb. 5.13(b)). Dies
wird durch den Spulenstrom nach CSA bestätigt, da die Ankerbewegung wieder später
stattfindet.

Zusammenfassend lässt sich festhalten, dass durch CSA unterschiedliche Verschleißzustände
von Relais korrigiert werden können; von leichten Ablagerungen (vgl. Abb. 5.12) über
deutlich erkennbare Pillen (vgl. Abb. 5.9) hin zu Materialbrücken zwischen den Kontakten
(vgl. Abb. 5.13). Zur Dauerhaftigkeit dieser Änderungen muss noch weitere Forschung
betrieben werden, aber schon jetzt ist auszumachen, dass durch CSA eine kurzfristige
Selbstheilung erreicht werden kann.

5.6 Fazit
In vorangegangenen Kapitel wurde das Verfahren CSA vorgestellt, mit dem ein Reiben
zwischen den Kontakten von Relais hervorgerufen werden kann. Das ist vorteilhaft, da so
zum einen fehlerhafte Schaltzustände korrigiert und zum anderen Verunreinigungen an
den Kontaktoberflächen reduziert werden können. CSA ist simpel: Das Verfahren kann im
eingeschalteten Zustand eines Relais genutzt werden, in dem die Versorgungsspannung
kurzfristig abgeschaltet wird, wodurch eine Bewegung des Ankers hervorgerufen wird.
Diese löst ein Reiben zwischen den Kontakten aus, ohne dass diese sich voneinander lösen.
Dadurch kann das Verfahren im Betrieb eines Relais verwendet werden. Vorteilhaft ist
dabei, dass durch CSA kein zusätzliches Sicherheitsrisiko entsteht wenn es nach einem
Ausfall genutzt wird – schließlich sind die Relais dann bereits fehlerhaft.
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Die grundsätzliche Funktionalität von CSA wurde im Rahmen der Evaluation nachgewiesen.
Des Weiteren wurde der Einfluss des Einschaltzeitpunktes auf die Intensität des Reibens
untersucht. Schlussendlich konnte gezeigt werden, dass Kontakte durch die Reibung
geheilt werden konnten, wodurch der Kern des Forschungsvorhabens erfüllt wurde. Zu den
Erkenntnissen wurde ein Patent angemeldet [124].

Als wissenschaftlicher Beitrag sind folgende Erkenntnisse zu betonen:

• Durch CSA kann ein Reiben der Kontakte hervorgerufen werden, ohne dass diese
getrennt werden.

• Das Reiben kann in seiner Intensität durch die Wahl des Einschaltzeitpunktes
eingestellt werden.

• Die Oberfläche von Kontakten kann durch Reiben von Ablagerungen befreit werden.

Die vorgestellten Ergebnisse sind ein erster Schritt zur Selbstheilung von Relaiskontakten.
Deshalb bleiben einige Fragestellungen offen, die im Rahmen weiterer Forschungsvorhaben
untersucht werden sollten:

• Welche physikalischen Phänomene, die bei CSA auftreten, haben welchen Einfluss
auf die Veränderung der Kontaktoberfläche?

• Kann durch die Kombination von PdM und CSA ein proaktives System entwickelt
werden, das durch gezieltes Einsetzen von abrasivem Verschleiß die Lebensdauer
eines Relais erhöht?

• Welche Beschränkungen müssen beim Reiben beachtet werden? Im Rahmen von
ersten Experimenten zeigte sich bspw., dass die thermische Belastung der Kontakte
beachtet werden muss. Bei zu großer Erwärmung können die Kontaktlegierungen
ihre Eigenschaften verändern.

• Ist es möglich, ein geheiltes Relais auch langfristig weiterzubetreiben?
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6 Fazit

Abschließend werden die Beiträge dieser Arbeit zusammengefasst und offene Fragestellun-
gen zu den Untersuchungsthemen aufgeworfen.

6.1 Beiträge der Arbeit
Der Fokus dieser Arbeit liegt auf der Entwicklung von Algorithmen zur Verbesserung
der Instandhaltung von elektromechanischen Relais mit künstlicher Intelligenz. Kern der
Forschung ist „Predictive Maintenance“ (dt. Prädiktive Instandhaltung) (PdM) – bei
deren Erarbeitung jedoch zwei weitere Themen aufgeworfen wurden: das Reduzieren
des Prellens und die Selbstheilung von Relais. Die wesentlichen Beiträge zu diesen drei
Forschungsfeldern werden nachfolgend erörtert.

6.1.1 Prädiktive Instandhaltung
PdM ist von besonderem Interesse, da Relais aufgrund diverser Phänomene ausfallen
können und deshalb auch bei gleichen Betriebsbedingungen unterschiedliche Lebensdauern
aufweisen. Für die Instandhaltung ergibt sich dadurch ein Problem: Nach dem aktuellen
Stand der Technik werden die Relais in einem Intervall ausgetauscht, das auf einem
statistischen Erwartungswert basiert. Folglich fallen viele Relais vor der Wartung aus und
führen u.a. zu Anlagenstillständen und Sicherheitsrisikos. Gleichzeitig wird bei vielen Relais
ein Teil der Lebensdauer nicht genutzt, was in Bezug auf die Nachhaltigkeit problematisch
ist.

Deshalb wurde in dieser Arbeit das Verfahren MAUD vorgestellt, mit dem während
des Betriebs eines Relais anhand von Messungen individuell ein Ausfall-Indikator abge-
schätzt werden kann. Dazu wurde ein umfangreicher Datensatz generiert und für das semi-
überwachte Training eines ANNs verwendet. Weiterhin wurde die Inferenz des ANN auf
einem Mikrocontroller erfolgreich geprüft. Folgende Erkenntnisse sind festzuhalten:

• Relais degradieren aufgrund verschiedener Phänomene, die komplementär auftreten
können. Viele bereits erforschte Bauelemente (wie Kugellager) weisen einen simpleren
Verschleiß auf, weshalb ein Vergleich von diesem mit Relais nur begrenzt möglich ist.
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Schlussendlich bietet der generierte und veröffentlichte Datensatz [28] die Möglichkeit,
Lösungen für dieses Forschungsdesiderat zu entwickeln und zu evaluieren.

• Entsprechend der zuvor erwähnten höheren Komplexität der Degradierung können
Verfahren nach dem Stand der Technik – wie die Schätzung der Restlebensdauer
oder eine Anomalieerkennung – nicht erfolgreich auf Relais übertragen werden.

• Mit einem semi-überwachten Training wird bei dem Verfahren MAUD ein ANN dazu
verwendet, Pseudo-Label für den Datensatz zu generieren, mit denen ein Indikator für
einen Ausfall geschätzt werden kann. Dazu werden die Schaltzyklen ausgehend von
initialen Labeln immer wieder iterativ für das Training eines ANN und anschließend
die Inferenz genutzt. Auf diesem Weg kann eine Unterscheidung zwischen auffälli-
gen und unauffälligen Schaltzyklen erlernt und schlussendlich ein Signal gegeben
werden. Die Überlegenheit von MAUD gegenüber dem Stand der Technik konnte
mit dem umfangreichen Datensatz nachgewiesen werden: Die Auslastung kann um
17 Prozentpunkte auf 45 % verbessert und unentdeckte Ausfälle um 6 Prozentpunkte
auf 3 % reduziert werden.

• Durch Optimierungen können sowohl die benötigte Rechenleistung als auch der
Speicherbedarf für die Inferenz eines ANN signifikant gesenkt werden. Dadurch ist
eine Implementierung von MAUD auf einem Mikrocontroller möglich, was für die
Produktisierung der Forschungsergebnisse von wesentlicher Bedeutung ist.

6.1.2 Reduzieren des Prellens
Die Kontakte von Relais prellen beim Schließen aufgrund der notwendigen Bewegung des
COM-Kontaktes und der Anpresskraft, die über eine Biegung der Kontakte erreicht wird.
Durch konstruktive Optimierungen wird das Prellen bereits durch die Hersteller reduziert
– ist jedoch im Besonderen bei degradierten Relais weiterhin zu beobachten. Das Prellen
ist unerwünscht, da es u.a. den Verschleiß steigert, Geräusche erzeugt, den Schaltvorgang
verlängert und geschaltete Signale stört.

Aus dem Stand der Technik geht hervor, dass das Prellen durch eine optimierte Steuerung
des Relais weiterhin reduziert werden kann. Dabei ergibt sich eine Herausforderung
bezüglich eines robusten Algorithmus, der stetig nach weiterem Optimierungspotential sucht
und gleichzeitig eine hohe Ausbeute in Form einer Prellreduzierung erreicht. Folglich wurde
im Kontext dieser Arbeit eine maßgeschneiderte Variante einer Partikelschwarmoptimierung
entwickelt und praktisch getestet. Aus diesen Untersuchungen ergeben sich folgende
Erkenntnisse:

• Die Dauer des Prellens variiert unter konstanten Umgebungsparametern, weshalb
zur Optimierung mehrfache Evaluationen notwendig sind. Zudem sind sowohl die
Prelldauer als auch der Einfluss der Steuerung für jedes Relais individuell, sodass
jedes Relais einzeln optimiert werden muss.

• Das entwickelte Verfahren BOA, das aus einer Kombination aus bare-bone und
evolutionären PSO unter Berücksichtigung der Partikeldichte besteht, ist geeignet,
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um das Prellen zuverlässig zu reduzieren. Dabei wird BOA gegenüber einer klassischen
PSO durch den bare-bone Ansatz in der Rechenkomplexität vereinfacht und durch
den evolutionären Teil und die Dichteschätzung robust gemacht gegenüber Rauschen.

• Im Rahmen der Evaluation konnte gezeigt werden, dass BOA dem Stand der Technik
mit einer Reduktion um 79 % beim Einschalten und um 59 % beim Ausschalten
überlegen ist.

• BOA wurde für einen Mikrocontroller entwickelt und evaluiert, sodass eine Realisie-
rung im Produkt möglich erscheint.

6.1.3 Abrasive Kontaktselbstheilung
Die Fehlfunktion eines Relais ist nicht immer endgültig. Oftmals reicht ein erneutes
Schalten aus, um die Funktionstüchtigkeit zumindest kurzfristig wiederherzustellen. In
der Anwendung ist dies von großer Bedeutung, da der Ausfall bzw. die Fehlfunktion einer
Anlage so unterbunden werden kann.

Im Kontext dieser Arbeit wurde ein neuartiges Verfahren entwickelt, das über das erneute
Schalten hinausgeht: Durch eine spezielle Ansteuerung wird eine Reibung zwischen den Kon-
taktpaaren hervorgerufen. So können Materialanhäufungen oder Verunreinigungen an den
Kontakten abgeschliffen werden. Folgende Erkenntnisse im Rahmen der Untersuchungen
zu dieser Thematik sind hervorzuheben:

• Das entwickelte Verfahren CSA nutzt den Überhub eines Relais aus, um Reibung
zwischen den Kontakten auszulösen. Dabei löst sich lediglich der Anker kurz vom
Spulenkern, sodass die Kontakte stets leitfähig bleiben.

• Die Intensität der Reibung kann durch einen Parameter von CSA beeinflusst werden.

• In ersten Versuchen mit degradierten Relais konnte gezeigt werden, dass Materialan-
häufungen abgebaut werden können.

• Die langfristige Wirkung von CSA wurde nicht erforscht, weshalb sich der praktische
Nutzen von CSA bisher nicht abschätzen lässt.

6.2 Offene Fragestellungen
Bei der Bearbeitung der Forschungsthemen ergeben sich weitere potenzielle Themen, die
im Folgenden aufgelistet werden. Dabei werden drei Forschungsfelder getrennt betrach-
tet.

6.2.1 Prädiktive Instandhaltung
Die vorgeschlagene Lösung MAUD zeigt das Potenzial für PdM im Kontext von Relais
auf. Retrospektiv ergeben sich jedoch folgende Fragestellungen, die ergründet werden
könnten:
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• Ein erheblicher Teil des Aufwands – besonders in zeitlicher Hinsicht – ist in die
Generierung des Datensatzes geflossen. Für zukünftige Forschungsvorhaben wäre ein
Verfahren wünschenswert, mit dem aus einem kleinen Datensatz ein großer erzeugt
werden kann. Eine mögliche Lösung könnten generative, künstliche neuronale Netze
sein. Der in dieser Arbeit vorgestellte Datensatz kann für derartige Forschungsvorha-
ben die Datengrundlage bilden, indem die Generalisierungsfähigkeit eines Verfahrens
zur Prädiktiven Instandhaltung, das jeweils auf dem originalen und synthetischen
Datensatz trainiert wurde, gegenübergestellt wird.

• Bei den untersuchten Relais handelt es sich um eine Bauform von vielen. Eine
Untersuchung zum Wissenstransfer von dieser Bauform zu anderen Bauformen
könnte zu einer Reduktion des Testaufwands führen.

• Für die Anwendung in einem Produkt ist ein weiterer Aspekt wesentlich: In der
Anwendung wird ein Relais oftmals eine begrenzte Variation der Betriebsbedingungen
(wie z.B. die Last) erfahren. Deshalb ist die Anpassung des neuronalen Netzes an
diese Bedingungen wünschenswert. Hierzu müssten Konzepte entwickelt werden, wie
das Training für eine derartige Überanpassung gestaltet werden kann.

• Der semi-überwachte Pseudo-Label Ansatz von MAUD könnte auf die Schätzung der
Restlebensdauer übertragen werden: Dabei würde die kontinuierliche Restlebensdau-
er auf Basis der Prädiktionen von maschinellen Lernverfahren korrigiert werden. Auf
diesem Weg ist es möglich, Anomalien, reversible Alterungsprozesse oder nicht mono-
tone Prozesse zu berücksichtigen und die Generalisierungsfähigkeit der maschinellen
Lernverfahren so zu verbessern. Eine Schwierigkeit hierbei stellt die Begrenzung der
Korrektur dar: Erste Untersuchungen im Kontext dieser Arbeit schlugen fehl, da die
Zielgröße so stark korrigiert wurde, dass die Prädiktionen entweder einer binären
Klassifikation glichen oder alle gegen einen Wert konvergierten.

6.2.2 Reduzieren des Prellens
Mit dem Verfahren BOA kann zuverlässig das Prellen reduziert werden. Eine praktische
Anwendung ist bereits jetzt möglich. Dennoch könnten folgende Untersuchungen zur
Etablierung eines derartigen Verfahrens in Produkten beitragen:

• Es bestehen lediglich Untersuchungen, die zeigen, dass Prellen die Lebensdauer
verkürzt. Für die Anwendung von BOA ist es jedoch interessant, zu quantifizieren,
wie weit die Lebensdauer von Relais verlängert wird. Eine Implementierung von
BOA in Dauertests wird bezüglich dieser Fragestellung Aufschluss geben.

• BOA ist unter der Voraussetzung konzipiert worden, dass die Kontaktseite des
Relais überwacht werden kann. Dies impliziert Kosten für eine Messeinrichtung.
Ein Verfahren, das ausschließlich auf dem Spulenstrom des Relais beruht, könnte
entscheidende Kostenvorteile mit sich bringen. Dazu müsste mit einem geeigneten
Verfahren z.B. die Position des Ankers aus dem Spulenstrom geschätzt werden – eine
für maschinelle Lernverfahren prädestinierte Aufgabe.
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• Eine weitere Möglichkeit zur Reduzierung der Kosten stellt die Anwendung einer
Steuerung ohne Optimierung dar. D.h., es würde im Rahmen von Untersuchungen
ein Steuersignal entwickelt, das in einem breiten Anwendungsspektrum zu einer
Reduktion des Prellens führt. Diese ist wahrscheinlich nicht auf dem Niveau von
BOA, aber auch eine geringere Reduktion kann einen positiven Einfluss auf die
Lebensdauer haben.

• Das Verfahren BOA ist für diverse elektromechanische Aktuatoren anwendbar: Vom
Schütz bis zum Ventil ergeben sich viele Applikationen, bei denen die Lebensdauer
durch eine optimierte Steuerung verlängert werden kann. Ein Beispiel ist das Ab-
schalten von Ventilen: Hier kann die Kavitation durch ein langsames Reduzieren des
Fluidstroms unterbunden werden.

6.2.3 Abrasive Kontaktselbstheilung

Das Verfahren CSA befindet sich in einem frühen Stadium: Es ist theoretisch beschrieben
und praktisch an ersten Relais getestet. Die auftretenden Phänomene und deren Langzeit-
folgen sind jedoch nicht bekannt. Daher ergeben sich folgende Fragestellungen:

• Welche Phänomene treten beim Reiben der Kontakte auf? Ist ausschließlich abrasiver
Verschleiß nachzuweisen? Oder sind auch thermische Effekte zu beobachten? Die
Ergebnisse dieser Untersuchung könnten die Grundlage für nachfolgende Forschungs-
vorhaben zur Optimierung von CSA bilden.

• Welche Beschränkungen sind beim CSA einzuhalten? Im Rahmen der Untersuchungen
dieser Arbeit konnte z.B. eine thermische Überlastung der Kontakte beobachtet
werden. Für eine praktische Anwendung ist dies zu verhindern.

• Welche langfristigen Folgen ergeben sich nach der Anwendung von CSA? Ist das
Verfahren nur geeignet, um die Relais kurzfristig wieder nutzbar zu machen, oder ist
auch ein langfristiger Betrieb von geheilten Relais möglich? Dauertests mit durch
CSA geheilten Relais können Aufschluss zu dieser Fragestellung bringen.

• Kann ein Verfahren wie MAUD mit CSA kombiniert werden, sodass Relais bereits
vor Auftreten einer Fehlfunktion geheilt werden? Eine erfolgreiche Kombination birgt
viel Potenzial: Die Lebensdauer von Relais könnte signifikant verlängert werden.

In einer Produktanwendung werden die drei Themen sich jedoch auch überschneiden, wes-
halb die Untersuchung der Wechselwirkungen interessant ist. So werden CSA und BOA die
Degradierung und damit die Datengrundlage von MAUD beeinflussen, gleichzeitig können
die Partikel von BOA als Eingangsgröße von MAUD genutzt werden. Die Indikation durch
MAUD hingegen kann als Auslöser für die Nutzung von CSA vor einem Ausfall genutzt
werden, sodass schon bei kleinen Änderungen proaktiv gehandelt werden kann.
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6.3 Ausblick
Mit den Verfahren MAUD, BOA und CSA wurden in dieser Arbeit drei Ansätze präsentiert,
mit denen in Zukunft die Instandhaltung von Relais verbessert werden kann. Vorteilhaft
ist hierbei, dass die Hardwareanforderungen gleich sind, sodass die Verfahren komplemen-
tär eingesetzt werden können. Deshalb wird zum Abschluss dieser Arbeit hypothetisch
betrachtet, welche Anforderungen für eine Produktumsetzung erfüllt werden müssen. Bei
dem Produkt würde es sich um ein Modul handeln, das auf einer Tragschiene montiert
werden kann. Das Relais könnte gewechselt werden, ohne das Modul zu demontieren und
Werkzeug zu verwenden. Die Verfahren würden als Teil der Firmware implementiert werden
und über eine Schnittstelle Informationen an eine Steuerung übermitteln, bzw. darüber
konfigurierbar sein. Zudem würde eine Signalleuchte verwendet, um direkt am Produkt
die wichtigsten Informationen zum Zustand anzeigen zu können.

A

1 2 3

4 5

6 7

8 9

Legende
1. Kommunikations-

schnittstelle
2. Signal-LED
3. Lastanschlüsse
4. Mikrocontroller
5. Sensierschaltung
6. Steuerschaltung
7. Strommessung
8. Spannungsversorgung
9. Relais

Neune Komponente
Bestehende Komponente

Analogsignal
Digitalsignal
3,3 V Versorgungsspannung
24 V Versorgungsspannung
Lastkreis

Abb. 6.1: Notwendige Komponenten für eine Umsetzung der in dieser Arbeit vorgestellten
Verfahren in einem Produkt

In Abb. 6.1 sind die notwendigen Teilkomponenten für eine Produktrealisierung der Ver-
fahren abstrahiert dargestellt. Die weiß gefärbten Komponenten sind in konventionellen
Relais-Sockeln bereits enthalten. Die grün eingefärbten Komponenten müssten für eine In-
tegration der Verfahren ergänzt werden. Die einzelnen Komponenten werden entsprechend
ihrer Beschriftung nachfolgend beschrieben:
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1. Kommunikationsschnittstelle

Die Kommunikationsschnittstelle wird für drei Aspekte zwingend benötigt. Erstens
müssen von einer überlagerten Steuerung die Befehle für das Ein- und Ausschalten des
Relais gegeben werden. Zweitens ist eine Möglichkeit zur Konfiguration des Moduls
erforderlich, damit bspw. eine Aktualisierung eines ANN für MAUD vorgenommen
werden kann. Drittens ist die Übermittlung der Ergebnisse von MAUD, d.h. der
Ausfall-Indikator, an eine überlagerte Steuerung wichtig.

Daneben wäre es vorteilhaft, wenn die Schnittstelle ausreichend Bandbreite zur
Verfügung stellen würde, um die Messdaten icoil und uct auf einem externen Spei-
chermedium zu sichern. Da die Messreihen für einen Schaltzyklus viermal 200 Byte
umfassen, wäre eine Übertragungsrate von 1 kB/s bereits ausreichend. Auf diesem
Weg würde bspw. die Möglichkeit eröffnet, dass reale Anlagendaten für das Training
verwendet und so die Performanz gesteigert werden könnte.

2. Signal-LED

Für die Anwendung ist es unumgänglich, den Betriebsstatus des Produktes direkt
durch eine LED anzuzeigen. Für die MAUD wird eine rote Signalleuchte benötigt,
mit der ein drohender Ausfall angezeigt werden kann. Das Verfahren CSA soll nur
im Fehlerfall oder bei Auffälligkeiten zum Einsatz kommen, dementsprechend könnte
dies mit einer gelben Signalleuchte angezeigt werden. Die Betriebsbereitschaft sollte
durch ein grünes Signal angezeigt werden. Bei den unterschiedlichen Signalleuchten
wäre es durch Blinken und konstantes Leuchten möglich, den Schaltzustand des
Relais darzustellen. Zusammenfassend könnte mit einer zweifarbigen LED (rot und
grün) die Signal-LED implementiert werden, mit der mittels additiver Farbmischung
gelbes Licht erzeugt werden kann.

3. Lastanschlüsse

Für den Anschluss von verschiedenen Lasten ist eine mechanische Vorrichtung erfor-
derlich. Je nach Anwender und Markt bestehen hier unterschiedliche Anforderungen,
denen Phoenix Contact mit einem modularen System begegnet, welches bei diesem
Produkt zur Verwendung käme.

4. Mikrocontroller

Bei den drei Verfahren MAUD, BOA und CSA handelt es sich um Algorithmen,
für deren Umsetzung es eines Prozessors und Peripheriefunktionen bedarf. Dem-
entsprechend wird ein Mikrocontroller benötigt. Dieser muss mindestens über vier
digitale Ausgänge verfügen: für die zweifarbige LED, die Sensierschaltung und die
Steuerschaltung. Zudem ist ein Analog-Digital-Wandler mit zwei Kanälen für icoil
und uct erforderlich. Schlussendlich sind – je nach Kommunikationsschnittstelle –
weitere Anforderungen zu erfüllen. Der Prozessor benötigt ausreichend RAM, ROM
und (Gleitkomma-) Rechenoperationen pro Sekunde, um die Algorithmen und im
Speziellen ANN auszuführen. In Bezug auf die Ergebnisse aus Abschn. 3.7 wäre eine
mögliche Wahl ein Cortex-M4 Mikrocontroller vom Unternehmen STMicroelectronics.
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5. Sensierschaltung

Die Information über den Kontaktierungszustand des Relais ist zwingend erforderlich.
Eine Messschaltung zu diesem Zweck muss diverse Anwendungsfelder von Relais
unterstützen, z.B. Gleichspannungs- und Wechselspannungslastkreise. Weiterhin
darf eine Messung auf der Lastseite keinen Einfluss auf den Lastkreis haben. Diese
Herausforderungen sind nicht trivial zu lösen. Deshalb wurde im Rahmen eines
anderen Forschungsvorhabens von Phoenix Contact eine Sensierschaltung entwickelt,
mit der der Zustand der Kontakte überwacht werden kann.

Bei der Sensierschaltung wird ein Oszillator angeregt, dessen Signal mittels eines
Leiterplattenübertrages auf die Lastseite übertragen wird. Dort ist die Impedanz
abhängig vom Schaltzustand des Relais, was sich auf die Frequenz des angeregten
Signals auswirkt. Somit kann auf den Schaltzustand der Kontakte zurückgeschlossen
werden. Eine detaillierte Beschreibung ist [91] zu entnehmen.

6. Steuerschaltung

Mit der Steuerschaltung wird der Ausgang des Mikrocontrollers auf das Spannungs-
level des Relais umgesetzt. Deshalb ist eine einfache Schaltung, wie in Abschn. 4.2
erörtert, ausreichend, um die Funktionalität zu gewährleisten.

7. Strommessung

Die Strommessung des Spulenstroms icoil findet auf der Steuerseite statt, weshalb
keine externen Limitierungen beachtet werden müssen.

8. Spannungsversorgung

Die unterschiedlichen Komponenten müssen mit Spannung versorgt werden. Des-
halb würde ein Produkt eine Bauteilgruppe benötigen, mit der unterschiedliche
Spannungen erzeugt werden können.

9. Relais

Schlussendlich wird ein Relais benötigt, das in einen Sockel gesteckt wird, damit
eine schnelle, werkzeuglose Wartung durchgeführt werden kann.

Die Aufzählung der notwendigen Komponenten, von denen der Großteil neu eingeführt
werden müsste und die im Vergleich zu den bestehenden Komponenten kostenintensiv
sind, macht deutlich, dass ein mögliches Produkt wesentlich höhere Produktionskosten
hervorrufen würde als ein konventioneller Relais-Sockel. Die Bewertung, ob der gesteigerte
Kundennutzen die Mehrkosten rechtfertigt, kann nur durch eine detaillierte Untersuchung
beantwortet werden, die u.a. Produktionskosten und Absatzprognosen beinhaltet, weshalb
sie nicht Gegenstand dieser Arbeit ist.

Für eine zukünftige Anwendung empfehlen sich daher hochpreisige Relais bzw. Produkte,
bei denen die notwendigen Komponenten bereits eingebracht sind. Weiterhin ist eine
schrittweise Umsetzung Erfolg versprechend, bei der zunächst BOA und CSA etabliert
werden. Für MAUD sind jedoch Kooperationen mit Anwendern erstrebenswert, da die
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Performanz und Konzepte wie maßgeschneiderte MAUD-Versionen erst mit realen Daten
abschließend evaluiert werden können.
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Abkürzungen

AE „Autoencoder“

ANN „Artificial neural network“ (dt. künstliches neuronales Netz)

BOA „Bouncing-Optimization-Algorithm“ (dt. Prelloptimierungsalgorithmus)

BPSO „Bare-Bones Particle-Swarm-Optimization“ (dt. rudimentäre Partikel Schwarm
Optimierung)

CNN „Convolutional neural network“ (dt. faltendes neuronales Netz)

COM „Common Contact“ (dt. gemeinsamer Kontakt)

CSA „Contact Self-healing via Abrasion“ (dt. Kontaktselbstheilung via
Abrasion)

EMRUA „Electromagnetic Relay Useful Actuation“

EPSO „Evolutionary Particle-Swarm-Optimization“ (dt. evolutionäre Partikel
Schwarm Optimierung)

GAN „Generative adversarial networks“ (dt. erzeugende gegnerische Netzwerke)

MACC „Multiply and Accumulate Complexity“ (dt. Komplexität der Multiplikationen
und Akkumulationen)

MAUD „Maintenance-Algorithm for Unlabeled Data“ (dt. Instandhaltungsalgorithmus
für ungelabelte Daten)

MLP „Multilayer Perceptron“ (dt. mehrschichtiges Perzeptron)

MSE „Mean Squared Error“ (dt. Mittlerer quadrierter Fehler)

NC „Normally Closed Contact“ (dt. normalerweise geschlossener Kontakt)

NO „Normally Opened Contact“ (dt. normalerweise geöffneter Kontakt)
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PCR „Phoenix Contact Relay-Dataset“

PdM „Predictive Maintenance“ (dt. Prädiktive Instandhaltung)

PSO „Particle-Swarm-Optimization“ (dt. Partikel Schwarm Optimierung)

R2R „Run-to-Run-Algorithm“

ReLU „Rectified Linear Unit“ (dt. Gleichrichterfunktion)

RNN „Recurrent neural network“ (dt. rekurrentes neuronales Netz)

RUL „Remaining useful lifetime“ (dt. nutzbare Restlebensdauer)

VAE „Variational Autoencoder“

Glossar
Abrasion Wenn harte Teilchen oder Profilspitzen bei Reibung in die Oberfläche eines Kör-

pers eindringen, dann führt dies zu einem Abtrag der Oberfläche. Dieses Phänomen
wird Abrasion genannt.

DC13-Last Die DC13-Last ist eine in der IEC 121A/427/CD beschriebene Standardlast
[90]. Sie wird u.a. für die Testung von elektromechanischen Relais genutzt.

Erregerfrequenz Als Erregerfrequenz wird die Frequenz bezeichnet, mit der eine erzwun-
gene Schwingung angeregt wird.

Prellen Beim Schalten von Relais können mehrere unelastische Stöße zwischen den
Kontaktpaaren hervorgerufen werden, welche auch als Prellen bezeichnet werden.

Pseudo-Label Bei Pseudo-Labeln handelt es sich um Label, die während eines semi-
überwachten Trainings mit einem maschinellen Lernverfahren definiert und im
Weiteren für das Training genutzt werden.

semi-überwacht Beim semi-überwachten Training von maschinellen Lernverfahren wer-
den sowohl markierte als auch unmarkierte Daten genutzt. Aus dieser Kombination
leitet sich die Bezeichnung ab.

Whisker Die Linien, die die Box bei einem Box-Plot Diagramm verlängern, werden als
Whisker bezeichnet.
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