
Distributed Algorithms for Modern
Communication Networks

A PhD Thesis

In partial fulfillment
of the requirements for
the academic degree

Doctor rerum naturalium (Dr. rer. nat.)

submitted to the

Faculty of Computer Science, Electrical Engineering andMathematics
- Department of Computer Science -

Paderborn University

by

Thorsten Götte

Reviewers: Prof. Dr. Christian Scheideler
Prof. Dr. Sevag Gharibian

Abstract
This thesis considers algorithmic solutions to problems that arise in the theoretical study of modern communication networks, such as
the Internet. The thesis is divided into two main parts. In the first part of this thesis, we show how to construct an overlay network of
degreeO(logn) and diameterO(logn) inO(logn) time starting from an arbitrary weakly connected graph. We assume a synchronous
communication network in which nodes can send messages to nodes they know the identifier of, and new connections can be established
by sending node identifiers. If the initial network’s graph is weakly connected and has constant degree, then our algorithm constructs
the desired topology with each node sending and receiving onlyO(logn)messages in each round in timeO(logn), w.h.p. Since the
problem cannot be solved faster than by using pointer jumping forO(logn) rounds (which would even require each node to commu-
nicateΩ(n) bits), our algorithm is asymptotically optimal. Additionally, we show how our algorithm can be used to efficiently solve
graph problems in the novel HYBRIDmodel. Motivated by the idea that nodes possess two different modes of communication, we as-
sume that communication of the initial edges is unrestricted, whereas only polylogarithmically many messages can be sent over edges
that have been established throughout an algorithm’s execution. For an (undirected) graphGwith arbitrary degree, we show how to
compute connected components and a spanning forest inO(logn) time, w.h.p. Furthermore, we show how to compute anMIS in time
O(log∆+ log logn), w.h.p., where∆ is the initial degree ofG.
In the second part of the thesis, we consider the problems of computing compact routing tables and low-diameter decompositions for
a (weighted) graphG := (V,E, ℓ) that can be separated through k shortest paths. This class of graphs includes planar graphs, graphs
of bounded treewidth, and graphs that exclude a fixed minorKr . We present algorithms in the CONGEST and the novel HYBRID
communication model that are competitive in all relevant parameters:

• For a given parameter ϵ > 0, we compute a routing scheme with stretch 1 + ϵ. Our scheme computes labels of size Õ(kϵ−2)

and is computed in Õ(kϵ−3) time in the HYBRIDmodel and Õ(kϵ−3 · HD) time in CONGEST. Here, HD denotes the
network’s hop diameter.

• Given a parameterD > 0, our low-diameter decomposition algorithm divides the graph into connected subgraphs of strong
diameterD. An edge e ∈ E of length ℓe has endpoints in different subgraphs with probabilityO(ℓe·log(k logn)/D). The
decomposition can be computed in Õ(k) time in the HYBRIDmodel and Õ(kHD) time in CONGEST.

Broadly speaking, we present distributed and parallel implementations of sequential divide-and-conquer algorithms where we replace
exact shortest paths with approximate shortest paths. In contrast to exact paths, these can be efficiently computed in the distributed and
parallel setting. Further, and perhaps more importantly, we show that instead of explicitly computing vertex-separators to enable efficient
parallelization of these algorithms, it suffices to sample a few random paths of bounded length and the nodes close to them. Finally, we
present a SetCover algorithm in the Beeping model. Our algorithm runs inO(k3) time and has an expected approximation ratio of
O(∆3/k log2 ∆). The value k ∈ [3, log∆] is a parameter that lets us trade runtime for approximation ratio similar to the celebrated
algorithm by Kuhn andWattenhofer [PODC ’03]. This algorithm can then be extended to effieciently solve the DominatingSet-
problem in a graph’sD-neigborhood in a distributed fashion.

iv

Zusammenfassung
In dieser Arbeit betrachten wir algorithmische Lösungen für fundamentale Probleme in modernen Kommunikationsnetzen. Im ersten
Teil dieser Arbeit zeigen wir, wie man ein Overlay-Netzwerk mit Grades und DurchmesserO(logn) inO(logn)Runden ausgehend
von einem beliebigen, schwach verbundenen Graphen konstruiert. Wir gehen von einem synchronen Kommunikationsnetz aus, in dem
Knoten Nachrichten an alle Knoten senden können, deren Adresse sie kennen, und neue Verbindungen durch das Versenden dieser
Adressen hergestellt werden können. Wenn der Ausgangsgraph des Netzwerks schwach zusammenhängend ist und einen konstanten
Grad hat, dann konstruiert unser Algorithmus die gewünschte Topologie mit hoher Wahrscheinlichkeit inO(logn)Runden, wobei in
jeder Runde nurO(logn)Nachrichten sendet und empfängt. Da das Problem nicht schneller gelöst werden kann als durch sogenanntes
Pointer Doubling fürO(logn)Runden (was sogar erfordern würde, dass jeder KnotenΩ(n) Bits kommuniziert), ist unser Algorithmus
asymptotisch optimal. Außerdem zeigen wir, wie unser Algorithmus zur effizienten Lösung von Graphenproblemen imHYBRIDmodel
verwendet werden kann. Motiviert durch die Idee, dass Knoten zwei verschiedene Arten der Kommunikation besitzen, nehmen wir
an, dass die Kommunikation der Kanten unbeschränkt ist, während nur polylogarithmisch viele Nachrichten über Kanten gesendet
werden können, die während der Ausführung eines Algorithmus etabliert wurden. Für einen (ungerichteten) GraphenGmit beliebigem
Grad zeigen wir, wie man zusammenhängende Komponenten und einen Spannwald mit hoher Wahrscheinlichkeit inO(logn) Zeit
berechnen kann. Außerdem zeigen wir, wie man einMIS mit hoher Wahrscheinlichkeit inO(log∆ + log logn), berechnet, wobei∆
der Grad vonG ist.
Im zweiten Teil der Arbeit betrachten wir das Problem der Berechnung von kompakten Routing-Tabellen und Dekompositionen mit
geringemDurchmesser für einen (gewichteten) GraphenG := (V,E, ℓ), der durch k kürzeste Wege separiert werden kann. Zu dieser
Klasse von Graphen gehören planare Graphen, Graphen mit beschränkter Treewidth und Graphen, die einen festenMinorKr auss-
chließen. Wir präsentieren Algorithmen im CONGEST- und im neuartigen HYBRID-Kommunikationsmodell, die in allen relevanten
Parametern konkurrenzfähig sind:

• Für einen gegebenen Parameter ϵ > 0 berechnen wir ein Routing-Schema mit Stretch 1 + ϵ. Unser Schema berechnet Label der
Größe Õ(kϵ−2) und wird in Õ(kϵ−3) Zeit imHYBRID-Modell, und Õ(kϵ−3 · HD) Zeit in CONGEST. Dabei bezeichnet
HD den Hopdurchmesser des Graphen.

• Für einem ParameterD > 0 unterteilt unser Algorithmus zur Dekomposition den Graphen in zusammenhängende Sub-
graphen mit starkemDurchmesserD. Eine Kante e ∈ E der Länge ℓe hat ihre Endpunkte in zwei verschieden Subgraphen mit
der WahrscheinlichkeitO(ℓe·log(k logn)/D). Die Dekomposition kann in Õ(k) Zeit imHYBRID-Modell und Õ(kHD) Zeit
in CONGEST berechnet werden.

Wir stellen verteilte und parallele Implementierungen von sequenziellen Divide-and-Conquer-Algorithmen vor, bei denen wir exakte
kürzeste Pfade durch approximative kürzeste Pfade ersetzen. Im Gegensatz zu exakten Pfaden können diese in der verteilten und par-
allelen Umgebung effizient berechnet werden. Außerdem, zeigen wir, dass es ausreicht, anstelle der expliziten Berechnung von Vertex-
Separatoren, einige zufällige Pfade begrenzter Länge zu wählen und die Separatoren um diese herum zu konstruieren. Schließlich stellen
wir einen SetCover-Algorithmus für das Beeping-Modell vor. Unser Algorithmus läuft inO(k3) Zeit und hat eine erwartete Ap-
proximationsgüte vonO(∆3/k log2 ∆). Der Wert k ∈ [3, log∆] ist ein Parameter, mit dem wir Laufzeit gegen Approximationsgüte
eintauschen können, ähnlich wie bei dem Algorithmus von Kuhn undWattenhofer [PODC ’03]. Dieser Algorithmus kann erweitert
werden, um das DominatingSet-Problem in derD-Nachbarschaft eines Graphen mittles eines verteiltes Algorithmus effizient zu
lösen.

v

Für Oma Röse undOma Tilla.

vi

Acknowledgments

Es ist vielen großartigenMenschen zu verdanken, dass es diese Dissertation gibt. Zu allererst möchte ich
Christian Scheideler danken. Du hattest stets großes Vertrauen in meine Arbeit und ein offenes Ohr für Fra-
gen. Vielen Dank, dass Du mir die diese Promotion ermöglicht hast. Weiterhin möchte allen aktuellen und
ehemaligenMitgliedern der Fachgruppe danken: Robert, Thim, Kristian, Alexander, Michael, Christina,
Ardalan, Daniel, Andreas, Julian, David, Jinfeng, Jelly, Jonas, Jan-Luca und Andre sowie natürlich auch
Mafi, Uli, Tici, Marion, Petra, Rainer und Ulf. In der Gruppe war stets eine tolle Atmosphäre, sowohl bei
der Zusammarbeit in der Lehre als auch im personlichenMiteinander. Ich werde immer mit Freude auf
die Zeit mit Euch zurückblicken. Insbesondere möchte ich Alexander, der meine Masterarbeit betreut und
mich zur Promotion motiviert hat, sowie und meinen Bürokollegen Kristian und Jinfeng für die vielen tollen
Gespräche über Gott und die Welt danken (感谢你们所做的一切). Außerdemmöchte ich hervorheben,
dass ich ohne unsere Sekretärin Marion vermutlich an meiner eigenen Desorganisation gescheitert wäre. Als
nächstes möchte ich allen meinen Koautoren Vipin, Kristian, Michael, Christina, Julian, Henning, Seth,
John, Vijeth und Jinfeng für die tolle und anregende Zusammenarbeit danken. Die Paper, welche die Grund-
lage dieser Arbeit bilden, gäbe es ohne Euch nicht. Thank you for everything! Zuletzt möchte ich meinen
Freunden, Geschwistern und allen voran meinen Eltern danken. Ohne euer Vertrauen und eure Unterstützung
hätte ich das nicht geschafft.

Thorsten Götte

vii

Contents

1 Introduction 11
1.1 Contributions & Structure of this Thesis . 12

1.1.1 Part I: Fast Construction of Overlays and its Applications 12
1.1.2 Part II: Distributed Algorithms for Graph Problems 14

1.2 Preliminaries &Notations . 17
1.2.1 Basic Terms from Graph Theory . 17
1.2.2 Restricted Graph Classes . 19
1.2.3 Basic Terms from Complexity Theory . 22
1.2.4 Basic Terms from Probability Theory . 23

1.3 Model(s) . 24
1.3.1 The CONGEST and LOCALmodel . 24
1.3.2 The NCC0 and P2P-CONGESTmodel . 25
1.3.3 The HYBRIDmodel . 26

1.4 List of Own Publications . 27

I Fast Overlay Construction and its Applications 29

2 Time-Optimal Construction Of Overlays 35
2.1 The Overlay Construction Algorithm . 36
2.2 Mathematical Preliminaries for Theorem 1 . 41

2.2.1 RandomWalks on Regular Graphs . 41
2.2.2 A Cut-Based Union Bound . 50

2.3 Analysis of CreateExpander . 52
2.3.1 Bounding the Communication Complexity . 52
2.3.2 Bounding the Conductance ofGi . 54
2.3.3 Ensuring That EachGi is Benign . 58
2.3.4 Finalizing the Proof . 61

3 Fast Computation of Connected Components 63
3.1 AlgorithmDescription . 65

1

3.2 Analysis . 67

4 Fast Construction of Spanning Forests 75
4.1 AlgorithmDescription . 75
4.2 Analysis . 77

5 AnO(log∆+ log logn)-Time Algorithm forMIS 79
5.1 Preliminaries . 80

5.1.1 The Shattering Technique of Ghaffari . 81
5.1.2 The Algorithm of Metevier et al. 81

5.2 AlgorithmDescription . 82
5.3 Analysis . 84

6 Conclusion to Part I 85
6.1 RelatedWork . 85
6.2 Applications & Implications . 86
6.3 Open Questions & Possible Future Work . 87

II Distributed Graph Algorithms for Distance Based Problems 91

7 Preliminaries for Part II 101
7.1 A Divide-And-Conquer Theorem for Distributed Algorithms 102

7.1.1 TheMinor Aggregation Framework . 103
7.1.2 Approximate Set-Source Shortest Paths in CONGEST and HYBRID 106
7.1.3 A Divide-And-Conquer Theorem for Restricted Graphs 110

7.2 The Tree Operations of Ghaffari and Zuzic . 113

8 Weak Separators Via Approximate Distances 115
8.1 WhyWeak Separators? . 116
8.2 AlgorithmDescription . 117
8.3 Analysis . 119

8.3.1 Proof of Lemma 8.2 . 123
8.3.2 Proof of Lemma 8.1 . 129

9 Fast Construction of Separators for Planar Graphs 137
9.1 Planar Graphs: Embeddings, Faces, and Augmentations 139
9.2 Fast Separators in CONGEST . 140

9.2.1 A Small Toolkit for Planar Graphs in CONGEST 142
9.2.2 Subroutine 1: Finding and Communicating in Biconnected Components 144
9.2.3 Subroutine 2: Making Planar Graphs Biconnected 146
9.2.4 Subroutine 3: Computing (Weighted) Path Separators 154

2

9.2.5 Analysis of ComputePathSep . 156
9.2.6 Main AlgorithmDescription & Analysis (Proof of Lemma 9.1) 160

9.3 Fast Separators in the PRAM and the HYBRIDModel . 163

10 Strong Low-Diameter Decompositions Via Approximate Distances 165
10.1 Structure of this Chapter . 169
10.2 Pseudo-Padded Decompositions Using Approximate Shortest Paths 169

10.2.1 AlgorithmDescription . 171
10.2.2 Analysis . 172

10.3 Low-Diameter Clusterings from Pseudo-Padded Decompositions 185
10.3.1 AlgorithmDescription . 187
10.3.2 Analysis . 188

10.4 Low-Diameter Decompositions for General Graphs . 193
10.5 Low-Diameter Decompositions for k-path Separable Graphs 196

10.5.1 The Backbone Clustering Phase (Proof of Lemma 10.15) 200
10.5.2 The Refinement Phase (Proof of Lemma 10.16) 212

10.6 RelatedWork . 217
10.6.1 The Different Types of Decompositions . 217
10.6.2 Decompositions in Sequential Models . 219
10.6.3 Decompositions in CONGEST . 220

10.7 Conclusion & Future Work . 222

11 Distributed Construction of Compact Routing Schemes 227
11.1 Structure of this Chapter . 231
11.2 Efficient Computation of Compact Routing Schemes Using Tree Covers 232

11.2.1 An Exact Routing Scheme for Trees . 234
11.2.2 From (Routing on) Trees to (Routing on) Graphs 235
11.2.3 Proof of Lemma 11.1 . 237

11.3 Tree Covers Using Pseudo-Padded Decompositions . 240
11.4 Tree Covers UsingWeak Separators . 241

11.4.1 Constructing Additive Tree Covers . 245
11.4.2 Proof of Lemma 11.8 . 246
11.4.3 From Additive Tree Covers To Hierarchical Tree Covers 251

11.5 RelatedWork . 252
11.5.1 Compact Routing Schemes in the Sequential Model 252
11.5.2 Compact Routing Schemes in the CONGESTModel 253
11.5.3 Compact Routing Schemes in the HYBRIDModel 253

11.6 Conclusion & Future Work . 255

12 Approximating Simple Covering Problems Via Beeping Algorithms 259

3

12.1 The BeepingModel . 262
12.2 An Efficient SetCover-Algorithm for the Beeping-Model 263

12.2.1 AlgorithmDescription . 264
12.2.2 Analysis (Proof of Theorem 14) . 266
12.2.3 Proof of Lemma 12.3 . 270
12.2.4 Proof of Lemma 12.4 . 278

12.3 RelatedWork . 282
12.4 Conclusion & Future Work . 282

13 Conclusion to Part II 285

References 287

4

5

6

List of Figures

2.1 Pseudocode for the CreateExpander algorithm that turns any initial overlay into an expander. 39

8.1 We choose a two-dimensional mesh for illustration. While the operations in Figures (b) and (c)
are straightforward to prove, the core of our analysis we will be the claim we make in Figure (d). 122

8.2 An illustration of the boundary B(Z(D′)). The inner circle denotes the core setZ(D′) and the
outer circle denotes the ballBG(i−1)(Z(D′),D′). S(D′) is the critical separator, consisting of
several shortest paths. The red parts of S(D′)make up the boundary B(Z(D′)). It suffices to
remove the boundary s.t. a constant fraction of nodes have a distance greater thanD′ from the
core set. 125

8.3 An example for the chunksC(ϵ)(P) of distance ϵ of a path P := v1, . . . , v8. The solid lines
denote edges between two nodes of the same chunk, the dashed lines denote edges between chunks.135

9.1 A planar graphG and corresponding face graphF(G). Note thatG is not biconnected. Node
D is cut-node that has two of its virtual nodes in the same face as two of its (virtual) nodes have
the same color. 143

9.2 Pseudocode for the MakeBiconnected algorithm of Li and Parter [LP19] that turns any pla-
nar graph into a biconnected planar graph by adding additional (virtual) edges to each node. . 148

9.3 Pseudocode for the ComputePathSep algorithm of Ghaffari and Parter [GP17] that computes
a path separator for biconnected induced subgraph Ci given a spanning tree Ti. 157

9.4 The dual graph of a planar graphG. Each green node F1, F2, F3, F4 represents a face. The dot-
ted lines are edges between faces. Any algorithm on the face graph can simulated inGwith con-
stant factor blowup. 163

11.1 A visualization of the main ideas of our construction of the tree cover. Note that in a traditional
path separator, the node uwould lie directly on the separator path, which saves an addive ϵsD. 250

12.1 Pseudocode for BeepAndSleep algorithm for creating a SetCover. The pseudocode depicts
the code for the elements (right) and the code for the sets (left). Sets and elements are synchro-
nized. Whenever the sets beep, the elements listen, and vice versa. 265

7

8

List of Tables

6.1 An overview of the related work. Note that∆ denotes the initial graph’s degree. Communica-
tion refers to the number of messages of sizeO(logn) per node and round. 86

10.1 An overview of the related work on decomposition schemes for various graph families in the se-
quential model and LDD’s for various graph families in the CONGESTmodel. 222

11.1 An overview of the related work in CONGEST for general graphs, planar graphs, and graphs of
bounded treewidth. 254

11.2 An overview of the related work in the HYBRIDmodel. All of the routing schemes assume that
the nodes are able to perform a handshake with the target, i.e., exchange one control message of
sizeO(logn) before routing the actual message. This is a natural assumption in the HYBRID
model and leads to smaller routing labels if compared to the schemes in Table 11.1. 255

9

10

Jetzt mal Butter bei die Fische.
(Let’s butter them fishes.)

Northern German Saying

1
Introduction

In this thesis, we will consider a variety of algorithmic problems that arise in the context of what we call
modern communication networks. Making such a general statement, of course, raises several questions:
What precisely is a modern communication network? And, perhaps more importantly, why should we

care? Let us begin this quest by trying to characterize communication networks in general. From the hardware
perspective, a communication network is an interconnected network of electronic devices where each device is
physically connected to at least one other device, e.g., by a cable or awireless connection. Being connected to the
network enables the sending of electronic messages to other connected devices. In amodern network, possible
devices range from classical web servers and personal computers to mobile handheld devices, sensor nodes that
monitor their environment, and even everyday household appliances like televisions and fridges. Given this
area’s ongoing rapid technical advancement, this enumeration is far from exhaustive. Due to their widespread
availability, communication networks become ubiquitous in nearly anyone’s professional and private life. In
fact, there is a non-trivial probability that you, the reader, have obtained this thesis using a communication
network, namely the Internet. The Internet is undoubtedly the largest communication network on the planet
and, therefore, a prime example of a modern network. That being said, reducing the Internet’s capabilities to
just point-to-point communication seems overly simplifying. Numerous examples of more advanced applica-
tions built upon the Internet’s communication capabilities are easily available. Social media platforms allow
individuals to connect with friends and family, while online forums foster discussions and collaborations on di-
verse topics. File sharing services permit us to find and exchange large data items between internet users easily.
E-commerce enables people to buy and sell goods and services online easily. Online banking or Cryptocurren-

11

cies facilitate secure financial transactions between (possibly anonymous) parties. As with devices, this list of
possible applications is far from complete.

However, a communication network is not only defined by its hardware. To put it bluntly, we cannot hope
to obtain an efficient networkbymerely linkingup somedevices. Thephysical network connections only ensure
that in principle any device connected can communicate with any other device. In addition to these physical
aspects, a suite of protocols and algorithms is required to ensure that any device can efficiently communicate.
To illustrate this, consider road traffic as an analogy and think of these physical connections as roads and cars as
messages. Physical connections only ensure a series of roads to a destination exists. But this fact alone does not
guarantee one reaches it safely and timely. There is a variety of additional mechanisms in place to ensure this.
Laws and traffic rules govern the right of way and ensure safety. Maintenance crews remove obstructions like
fallen trees. Traffic controllers monitor the congestion and bottlenecks and declare detours around damaged
roads. Without such checks and balances, there is a high chance of getting stuck (at a dead end) or, even worse,
having an accident (with a deadly end). In the context of the Internet, the equivalents of these tasks are fulfilled
by distributed algorithms and protocols. Currently, there are around 500 different protocols and technical
standards that ensure the Internet’s basic functionalities. As networks only continue to growing bigger in both
size and socio-economic importance, there is an ever increasing need for efficient an scalable algorithms. With
this thesis, we hope to make a humble contribution towards this.

1.1 Contributions & Structure of this Thesis

Having introduced the general setting, the obvious question is what we’re doing in this thesis. Or, to put it
differently, what challenges do modern communication networks face? The contributions of this thesis are
divided into two parts. Before we take a deep dive into the details of this thesis’ contributions in their respective
parts, let us introduce the challenges and our solutions on a high level. In the following, we will informally state
the main takeaways and discuss their implications. We will make a formal statement of precise contributions
later after we have established the concrete models and problem definitions. Here, we are interested in a high-
level classification and consciously omit some details for an easier presentation and understanding.

After that, in the remainder of the introduction, we establish some preliminaries. In Section 1.2, we es-
tablish the theoretical background that is needed for this thesis. This includes some basic notions from graph
theory, topology, complexity and probability theory. After that, we present all models that we are going to use
in this thesis in Section 1.3. This includes the classical CONGEST model of distributed computing as well
as more recent models that better resemble the capabilities of modern communication networks. Finally, in
Section 1.4, we present a list of publications the author of this thesis was involved in.

1.1.1 Part I: Fast Construction of Overlays and its Applications

Many modern distributed systems (especially those that operate via the Internet) are not concerned with the
physical infrastructure of the underlying network. Instead, these large-scale distributed systems form logical
networks that are often referred to as overlay networks, peer-to-peer networks, or simply overlay. Note that every
device connected to the Internet is assigned to a unique IP address. In an overlay, two devices are considered

12

as connected if they know each other’s IP addresses. The underlying network ensures that a message for a given
address will eventually reach the corresponding device. Both the sender and the receiver remain completely
unaware of the message’s actual path in the underlying network.

There are many practical benefits of this approach. First, it simplifies the design of algorithms and proto-
cols, as the designers don’t need to consider the minutiae of the underlying network. Furthermore, since the
protocols are agnostic of their underlying infrastructure, the overlay network can be extended to devices that
use different physical carriers. Thus, while the physical network(s) interconnecting the network members are
highly heterogeneous, the overlay appears homogeneous. This tremendously simplifies the designof distributed
applications. Furthermore, as all connections in an overlay are purely virtual, they are not static but can be cre-
ated at will. One simply needs to know its address to connect to another network member. This allows the
construction of overlay topologies tailored to the specific application.

Overlay networks surged in popularity in the early 2000s as the Internet becamemorewidely available to the
public. In practice, they were mainly used to (often illegally) share large files like movies or music between end
users through platforms likeNapster[Wik24d] orKaZaa [Wik24b]. In more recent years, they have been used
as the basis for cryptocurrencies like Bitcoin [Nak08] and Ethereum [But14]. Also, the microblogging service
Mastodon[Wik24c], an alternative to the (as of the time of this writing)most popular serviceX, has a decentral-
ized architecture that uses an overlay network. A common denominator in all these real-world applications is
their openness. All these platforms want to make it easy for new users to join and allow them to exchange files,
money, and opinions free of any restrictions. Thus, everyone and theirmother can join these networks provided
they have Internet access. As ever so often, this noble design philosophy comes with several downsides. First
off, it raises several legal and ethical questions. Napster and KaZaa were shut down due to massive Copyright
infringements, cryptocurrencies are often used to finance illicit activities, andMastodon is unable to efficiently
moderate right-wing propaganda. However, deciding whether or not these matters are necessary evils is clearly
beyond the scope of this thesis. We are interested in the technical implications of a lack of admission control on
the construction and maintenance of overlays. Allowing everyone to join the network unconditionally causes a
lot of fluctuation in the network membership, so-called churn. New devices may join the network, while older
devices may leave or fail. In fact, studies on popular peer-to-peer networks have shown [SR06] that about 50%
of the devices leave the network within an hour but are replaced by roughly the same number of new devices.
This emphasizes how volatile these networks can be.

Further, as all devices are exposed by their IP addresses, they can be subject to DDoS attacks: An attacker
could flood a critical device with requests until it shuts down. In addition to all this, attacks or malfunctions
in the physical infrastructure make certain devices unreachable. To summarize, a plethora of factors outside
of the network’s control can cause it to be in an arbitrary state. In order to retain its functionality, it must be
able to recover from these states on its own. By recover, we mean that the network returns to a well-connected
overlay. Thus, distributed algorithms that can construct a desired overlay from any arbitrary initial overlay
are desperately needed. These algorithms can be executed after transient failures or large-scale attacks or simply
permanently run in the background tomaintain the overlay. Therefore, we ask ourselves the followingquestion:

13

Challenge 1: Construction of Overlay Networks

How can we efficiently construct a well-connected overlay network starting from an arbitrary (con-
nected) configuration?

A naive algorithmwould let each device continuously introduce all its known devices to one another. Sup-
posewehavennetworkdevices, and eachdevice stores the IP address of, say,∆other devices. Thenaive solution
sends each known address to the other∆− 1 devices. Afterward, each device knows∆(∆− 1) addresses, and
the process is repeated. It is easy to see that all addresses are known to all devices afterO(logn) iterations. This
is optimal with respect to time. However, this approach requires each device to sendO(n)messages eventually.
This is too much if we consider devices with limited networking capabilities. As the first main contribution of
this thesis, we show that perhaps one of the simplest algorithms imaginable is surprisingly worst-case optimal.
Instead of exhaustively sending all known addresses to all known devices, we take a more cautious approach.
On a high level, we send each known address to one device that we pick independently and uniformly at ran-
dom. Thereby, the addresses perform a random walk in the overlay network. This ensures that each device
always sends and receives onlyO(∆) addresses on expectation, and eventually, all the addresses will distributed
uniformly at random. However, these walks would take a long time to reach a uniform distribution in an arbi-
trary, badly connected overlay. To mitigate this, each device periodically connects to d of its known addresses,
creating a new (slightly better connected) overlay. AfterO(logn) repetitions, the emerging overlay is extremely
well-connected despite each device only knowing∆ other devices.

Given this intuitive description of the algorithm, we summarize the main takeaway from the first part of
this thesis as follows:

Takeaway 1

We can construct overlay networks fast and efficiently through simple random walks!

Of course, we omitted some details in the description of the algorithm. The algorithms’ exact descriptions
and their analysis can be found in Part I. Therein, we also present solutions to simple algorithmic problems
that can be efficiently solved with our overlay construction algorithm as a subroutine. These problems include
the fast construction of spanning forests and (in the author’s opinion rather surprisingly) also an improved al-
gorithm for the well-known Maximal Independent Problem. These applications emphasize that the power of
non-local communication compared to traditional models of communication where nodes can only commu-
nicate with their immediate neighbors. We explore this further in the second part of the thesis.

1.1.2 Part II: Distributed Algorithms for Graph Problems

For all their benefits, the overlays mentioned above are built under one critical assumption: the underlying
network provides reliable and efficient point-to-point messaging. That means, given some abstract address of
another member in the network, one can send a message that reaches this member. As stated before, such effi-
cient communication betweenmultiple parties is an (if not themost) integral functionality of a communication

14

network. It is ensured by so-called routing schemes, distributed algorithms that control the forwarding of pack-
ets from one device to another. Given a packet with sender s and a receiver t, a routing scheme chooses the path
that the packet takes from s to t.

There is a plethora of measures for the quality of routing paths. The most prominent ones either limit
the number of routing paths that contain a given node, i.e., they limit the so-called congestion, or the length
of the routing paths compared to the graph’s shortest path metric. In this thesis, we are only interested in the
latter. With access to the network’s complete topology, the problem of finding the shortest path between all
its members is well-understood. If all connections are known, there are polynomial time algorithms for this
problem, e.g., the famous algorithm of Floyd and Warshall [Flo62] that computes the shortest paths between
all pairs of nodes in a graph (APSP). This would immediately give us the best possible routing path from each
device to each other device. However, these exact paths do not (necessarily) result in an efficient routing scheme.
If each device learns all distances to all other devices in the network, it needs to store routing information for
n paths, which may require the device to store O(n) bits. This is not feasible for large networks as n grows
too big. The crux of most routing schemes is to limit the information each device has stored. To this end, we
consider so-called low-stretch routing paths. These paths may be longer than that than the exact shortest path
by a predefined factor called stretch. This gives us some slack in the computation as we are not required to find
the exact shortest paths but only good enough paths that can be computed faster and require the nodes to store
less routing information. Often, such routing schemes are called compact routing schemes.

But where and how are these routing schemes computed? A simple strawman solution would be to elect
a single device, let’s call it the controller, that gathers all information on the network’s topology and then lo-
cally computes the optimal routing paths. Then, it sends the necessary routing information back to the devices.
While using a central controller might be a worthwhile solution for small networks in practice, this approach
does not scalewell to larger networks. In a large network, node crashes, edge failures, and benign changes such as
new members joining and old members leaving are virtually unavoidable. Therefore, the routing scheme must
be recomputed frequently to adapt to the changing network. Consequently, the controller must always have
complete, up-to-date knowledge of the network. Such a design would be impractical for many reasons. First,
continuously monitoring the network and feeding the state to the controller requires a lot of processing power
andbandwidth from the controller. This does not scale for large networks like the Internet, as the number of de-
vices and connections is too large. Furthermore, such a controllerwould be a single point of failure. Thatmeans
it cannot execute the algorithm and compute new paths if it crashes under the load, becomes corrupted due to
an attack, or is otherwise malfunctioning. For these reasons, it is desirable to have a completely decentralized
approach to computing the routing paths. At least as a fallback mechanism if the controller is unavailable for a
certain time frame. This means no single controller should compute the paths but a collaborative mechanism,
i.e., a distributed algorithm involving all the members.

This leads us to the following challenge that we are going to address in the second part of the thesis:

Challenge 2: Construction Of Routing Schemes

How can we efficiently construct a low-stretch routing scheme in a distributed manner?

15

In [EN18b], Elkin and Neimann essentially settled the problem for general network topologies, i.e., with-
out restricting how the devices may be interconnected. They present a routing scheme with stretchO(k) that
requires each device to storeO(n

1
k polylogn) bits of routing information that can be efficiently computed in

a distributed manner. However, if one designs an algorithm for any topology, that algorithm has to consider
pathologicworst-case topologies. There are network topologieswhere a routing schemewith stretchk necessar-
ily requires each device to storeΩ(n 1

k)bits of routing information. Thismakes Elkin andNeimann’s algorithm
essentially optimal (barring sublinear factors). Crucially, this does not mean that for every network, a routing
scheme with stretch k necessarily requires each device to store Ω(n 1

k) bits of routing information. It simply
means that there exist pathologic network topologies where this amount of memory is needed.

In practice, most network topologies are restricted to resemble particular graph classes that exclude the
worst-case topologies. For example, many network backbone structures resemble trees or series-parallel graphs.
Large-scale networks can often be represented by planar graphs where edges never cross. For these restricted
topologies, there aremore sophisticated algorithms that computebetter routing schemeswith a stretchof (1+ϵ)

where each device only needs to store O(ϵ−1 polylogn) bits [Tho04, AG06]. However, these algorithms are
difficult to translate into a distributed setting as, in many cases, they require complex global calculations that
require superlinear time. Again, these calculations require that large parts of the topology are known to single
nodes.

Our new approach to overcome this is to avoid these complex calculations altogether. We show that inmany
practical graph classes, one can circumvent this and compute routing schemes with almost the same qualities
in a fully distributed way. Essentially, we reduce the computation of a routing scheme with stretch (1 + ϵ) to
O(ϵ−2 · logn) applications of an (1 + ϵ) approximate shortest path algorithm. On a high level, our idea is to
sequentially sampleO(ϵ−2 · logn) (1 + ϵ) approximate shortest paths and then compute routing paths based
on the random paths. Note that the number of shortest computations depends on ϵ−2, i.e., the quality of the
routing paths. The closer we get to the shortest paths, i.e., the smaller the stretch is, the more computations we
need. Further, the hidden constants in theO(·)-notation depend on the properties of the input graph. Thus,
we show that computing low-stretch routing paths is not significantly harder than computing an approximate
SSSP.

Moreover, our techniques for constructing low-stretch routing schemes can be extended to other distance-
based problems. Notably, they can also be used to compute so-called low-diameter decompositions of the input
graphs. Here, we divide the graph into connected subgraphs of bounded diameter. Crucially, in a good decom-
position, there are very few edges between these subgraphs. This is a helpful building block of numerous dis-
tributed divide-and-conquer algorithms. Further, we present an algorithm to approximate simple optimization
problems in which the solution depends on devices at a given distance. With the help of our newly developed
techniques, we are able develop clustering algorithms that almost match the best known sequential algorithms.
The main takeaway from the second part of this thesis is:

16

Takeaway 2

(Approximate) SSSP suffices to build low-stretch routing schemes, low-diameter decompositions, and
generalized dominating sets for various (practical) network topologies!

As a result, all of our algorithms have essentially the same runtime as approximate shortest-path algorithms.
These algorithms are well-understood. In particular, in a recent breakthrough, Rozhon r⃝1 al. present an
approximate shortest path algorithm that is time-optimal in all relevant models of distributed computation
[RGH+22]. This implies that our algorithms are also time-optimal (within polylogarithmic factors). In Part II
of this thesis, weprovide the exact formal definitions of all these problems. Further, we introduce some technical
results, namely, the efficient construction of so-called (weak) separators using only approximate shortest paths.
Given an efficient algorithm for computing (weak) separators, we present algorithms for routing schemes, de-
compositions, covering problems, and their analysis.

1.2 Preliminaries & Notations

Before we start with the main part of the thesis, we present some useful notations and important concepts that
we will need to describe our problems, algorithms, and analysis more precisely. First, we will review some basic
concepts from graph theory as natural way to model a communication network is with a graph G = (V,E)

where the nodes V denote the devices in the edgesE ⊆ V 2 denote connections. Further, all of our algorithms
will make heavy use of randomization. Therefore, we will introduce some basic probability theory, especially
tail estimates, that we will use throughout this thesis. Note that we only cover the basic notions required to
understand our algorithms and their analysis. For a better reading flow, we will introducemore specific bounds
and concepts relevant to only one particular lemma on-demand when we require them. Last, we refer to the
standard textbooks for a broader and more detailed introduction. In particular, for graph theory, we refer to
textbooks of Diestel [Die10] or Mohar [MT01]. For an introduction to probability theory, we recommend
the excellent book by Mitzenmacher and Upfal [MU05] and for a wonderful overview on tail estimates, the
habilitation by Scheideler [Sch00].

That being said, this section is subdivided into the following four subsections: In Section 1.2.1, we in-
troduce important notions from graph theory and our most important notations. Then, in Section 1.2.2, we
introduce several restricted graph classes that can be used to faithfullymodelmodern networks and also have fa-
vorable algorithmic properties. Section 1.2.3 introduces theO(·)- and Õ(·)-notation thatwill help us to express
the complexity of our algorithms. Finally, Section 1.2.4 gives a primer on probability theory.

1.2.1 Basic Terms fromGraph Theory

We begin with some general terms that will be used throughout this thesis. We denoteG = (V,E) as a graph
with n := |V | nodes andm := |E| edges. Gmay be directed in which case we denote an edge from v to w
as (v, w). Otherwise, ifG is undirected, we write {v, w}. Sometimes, we will also consider bidirected graphs.
These are directed graphs, but for every edge (v, w) ∈ E, the reverse edge (w, v) is also inE. IfG is directed,

1The order of authors was randomized. The authors requested that this symbol is used to indicate this.

17

a node’s outdegree denotes the number of outgoing edges. Analogously, its indegree denotes the number of
incoming edges. IfG is undirected, then the in- and outdegree are equal. A node’s degree is the sum of its in-
and outdegree. If the graph is undirected or bidirected, we use deg(v) for the degree of node v. A graph’s degree
is the maximum degree of any node, which we denote by∆. We say that a graph is weakly connected if there is
a (not necessarily directed) path between all pairs of nodes. Sometimes, we will also consider weighted graphs
that we denote asG = (V,E, ℓ)where ℓ : E → R is a function that assigns a real weight to each edge. For our
algorithms,wewill typically assume that theweights arenon-negative andboundbync for someconstant c > 1.
The former is a simplifying assumption that prevents the graphs fromhaving cycles of negativeweight. Many of
the problems we consider are not well-defined in graphs with such cycles. The latter is a common assumption
in the domain of distributed algorithms as we must be able to decode the distances in a finite number of bits to
send them to other nodes.

In this thesis, we will often need to argue about the distance between two nodes or between sets of nodes.
In particular, we must distinguish between theweighted and the hop distance. We will use dist(v, w) for the hop
distance. For a node pair v, w ∈ V , this is the number of nodes in the shortest path between v and w in the
unweighted version ofG. As we will see, this is exactly the number of steps a message sent from nodes v takes to
reach nodew in the CONGEST or LOCALmodel (cf. Section 1.3.1). This notion of distance will be of great
importance in the first part of the thesis. Further, we denote the (weighted) distance between a node v ∈ V

and a set S ⊂ V as d(v, S). This distance is defined as the (weighted) length of the shortest path between v

and the node w ∈ S closest to v. In a weighted graph, it is the minimal sum of weights. If we consider the
distance w.r.t. to a subgraphH ⊂ G, we write dH(·, ·). Further for a subset S ⊆ V , a subgraphH ⊆ G, and
a distance δ, we defineBH(S, δ) = {v ∈ V | dH(v, S) ≤ δ} to be the so-called ball that contains all nodes
in distance (at most) δ to any node inG. Again, forH = G, we omit the subscript. These notions will be of
great importance in the second part of the thesis.

A graph’s diameter is the length of the longest shortest path inG. Based on our two notions of distance, we
also distinguish between two types of diameter. First, there is the hop diameter HD that denotes the diameter
of the unweighted version ofG. On the other hand, the weighthed diameterD of the graph denotes the length
of the weighted longest shortest path. Note that this path could contain significantly less or more than HD
nodes. While HD is purely determined by the graph’s topology,D highly depends on the edge weights. If we
only consider unweighted graphs, we may use hop diameter and weighted diameter interchangeably as, in this
case, they are the same.

In addition to these notions of diameter, we also needmeasures for the connectivity of a graph. For a subset
S ⊆ V , we denote S := V \ S. We define the cut c(S, S) as the set of all edges (v, w) ∈ V with v ∈ S and
w ∈ S. We define the number edges that cross a cut c(S, S) asOS := |c(S, S)|. Our analysis in the first part
of this thesis will heavily rely on the conductance of the communication graph. The conductance of setS ⊂ V

is the ratio of its outgoing edges and all its edges. The conductanceΦ of a graphG is the minimal conductance
of every subset that contains less than n/2 nodes. Formally, the conductance is defined as follows:

18

Definition 1.1 (Conductance). LetG := (V,E) be a connected∆-regular graph and S ⊂ V with |S| ≤ |V |
2

be any subset ofG with at most half its nodes. Then, the conductanceΦ(S) ∈ (0, 1) of S is

Φ(S) :=
|{(v, w) ∈ E | v ∈ S,w ̸∈ S}|

∆|S|
=

OS

∆|S|
. (1.1)

The conductanceΦ(G) ofG is

Φδ(G) := min
S⊂V,|S|≤ |V |

2

Φ(S). (1.2)

We further need the notion of small-set conductance, which is a natural generalization of conductance. In-
stead of denoting theminimum conductance of all sets smaller thann/2, small-set conductance only considers
sets of size δ|V |

2 for any δ ∈ (0, 1]. Analogous to the conductance, it is defined as follows:

Definition 1.2 (Small-Set Conductance). LetG := (V,E) be a connected∆-regular graph and S ⊂ V with
|S| ≤ δ|V |

2 be any subset ofG. The small-set conductanceΦδ ofG is

Φδ(G) := min
S⊂V,|S|≤ δ|V |

2

Φ(S). (1.3)

If it is unclear from context to which graph we are referring, we writeΦG(S) andΦδ,G(S) respectively.
Finally, wewill, on several occasions, need tomeasure a graph’s sparsity. For this, we use the graph’s so-called

arboricity. The arboricity of an undirected graph is theminimumnumber of forests into which its edges can be
partitioned. Clearly, a tree, the sparsest possible connected graph, has arboricity 1. Further, it is easy to verify
that a clique, the densest possible connected graph, has an arboricity of n. In general, the arboricity can take
any value between the average and the maximum degree.

1.2.2 Restricted Graph Classes

For the second part of the thesis, we require some knowledge of graph topology and certain restricted graph
classes. These graph classes exclude pathological worst-case graphs for which all distributed algorithms must
have a high runtime or cannot compute a good solution. Still, they are versatile enough to model many real-
world networks. In the following, we give a short overview that is sufficient to verify ourmain claims. For more
details on graph theory and restricted graphs classes, we refer to textbooks such as [Die10] or [MT01].

GraphsofBoundedTreewidth Webegin our short tourwith graphs of bounded treewidth. Informally
speaking, the treewidth quantifies how far a given graph is from being a tree. The smallest treewidth is 1; the
graphs with treewidth 1 are precisely the trees and the forests. For a formal definition, we require the concept
of tree decompositions, which are defined as follows:

Definition 1.3 (Tree Decomposition). A tree decomposition of a graph G = (V,E) is a tree T with nodes
X1, . . . , Xn, withXi ⊂ V such that the following three properties hold:

1. The union of all setsXi equals V .

19

2. IfXi andXj both contain v, then all nodesXk in the (unique) path betweenXi andXj in T contain v as
well.

3. For every edge (v, w) ∈ E in the graph, there is a subsetXi that contains both v andw.

Thewidth of a tree decomposition ismaxXi∈T |Xi|−1. The treewidth τ(G) of a graphG is theminimum
width among all possible tree decompositions ofG.

PlanarGraphs &Graphs of Bounded EulerGenus Moving on to the next class, a planar graphG =

(V,E) is a graph that can be drawn into the Euclidean plane R2 without two edges crossing. By drawing, we
mean that nodes are mapped to points and edges to curves/lines between these points. A drawing of a planar
graph is called a geometric planar embedding. More generally, if the graph can be drawn on a surface with genus
g, i.e., a surface with g holes2, we say the graph has Euler-genus g. Note that the Euclidean plane has a genus of
0, so planar graphs have an Euler-genus 0.

Graphs Excluding a FixedMinor Finally, wemove to graphs that exclude a fixedminor. An undirected
graphH is called aminor of the graphG ifH can be obtained fromG by (repeatedly) using any of the following
operations: Deleting edges, deleting nodes, and contracting edges. While the former two are self-explanatory,
the latter is more subtle. If we contract an edge {v, w}, we merge its two endpoints into a new supernode that
is adjacent to all neighbors of v andw. Interestingly, many graph classes can be characterized by their forbidden
minors. A graph class G has a forbidden minor F if, for everyG ∈ G, it holds that F is not a minor ofG. In
other words, obtaining F fromG is impossible by deleting edges, deleting nodes, and contracting edges.

Trees are an easy example of such a graph class. By definition, a tree does not contain a cycle, and the three
permitted operations cannot create a cycle as they only remove edges. Therefore, nominor of a tree can contain
a cycle and, thus, is still a tree. The smallest graph that contains a cycle isK3, the clique of 3 nodes. Following
our argument, no tree can containK3 as minor. On the other hand, any graphG that is not a treemust contain
K3: Since G is not a tree, it must have a cycle C = (v1, v2, v3, . . . , vl, v1). We delete all nodes not on this
cycle and iteratively contract all edges between v3 and vl. Thus, we end up withK3. Of course, the theory of
graph minors offers more than this pet example. Famously, Wagner’s theorem states that a graph is planar if
and only if its minors include neither theK5 nor the complete bipartite graphK3,3 [Wag37]. Note that these
graph classes have received significant attention in the context of distributed algorithms (cf. [GH16a, GH16b,
GH21, GP17, IKNS22]). Not only do they contain graph topologies that frequently appear in practice, but
they also have favorable properties for distributed algorithms, as they exclude pathologic worst-case topologies.

Universally k-path Separable Graphs Finally, we introduce universally k-path separable graphs, a
helpful graph class with many relevant graph classes and useful properties for our algorithms. In contrast to
the previously mentioned graph classes, this class is relatively new. It was introduced by Abraham and Gavoille
in 2006 [AG06]. As the name suggests, we require the notion of separators to define these graphs. For a given

2The exact definition of a hole in the context of topology is beyond the scope of the thesis and also necessary to understand our algo-
rithmic contributions. We refer to [MT01] or various online resources for more details

20

graphG = (V,E), a separator S is a subgraph ofG such that in the induced subgraphG \ S that results from
removing S fromG, every connected component only contains a constant fraction ofG’s nodes.

In many applications, one is interested in finding small separators that consist of as few nodes as possible.
For example, it is long known that any planar graph contains a separator that consists of at mostO(

√
n) nodes

[LT80]. The result can be generalized to the larger class ofKr-free graphs [KL24]. However, for the problems
of clustering and routing that we will consider in Part II, one is not interested in such small separators in the
classical sense. Instead, wewant to consider separators that consist of a few short(est) paths. Thismeans that the
separators could perhaps contain a linear fraction of the nodes, but all these nodes lie on short paths. As wewill
see, the structural properties of the separators have several useful properties for the problems we are tackling.
More precisely, we will consider the so-called k-path separable graphs that Abraham andGavoille introduced in
[AG06]. Roughly speaking, a weighted graphG = (V,E, ℓ) is k-path separable if the recursive removal of k
shortest paths results in connected components containing a constant fraction of the nodes. Moreover, a graph
G = (V,E) is universally k-path separable if it is k-path separable for every weight function ℓ. Note that this
makes universal k-path separability a topological property rather than a property that depends on the weight
function. Abraham and Gavoille formalized this generic class of path separators as follows:

Definition 1.4 (Universally k-path Separable Graphs [AG06, DG10]). Aweighted graphG := (V,E, ℓ)with
n vertices is k-path separable, if there exists a subset of vertices S, called a k-path separator, such that:

1. S := P0 ∪ P1 ∪ P2 ∪ . . . , where eachPi := {Pi1 , Pi2 , . . .} is a set of shortest paths inG\
⋃

j<i Pj .
2. The total number of paths in S is at most k, i.e.,

∑
Pi∈S |Pi| ≤ k.

3. Each connected component inG \ S contains at most n
2 nodes.

4. EitherG \ S is empty or k-path separable.
IfG isk-path separable for anyweight function ℓ, we callG universallyk-path separable. Wewill sometimes abuse
notation and use Pij ∈ S when we refer to some path Pij ∈ Pi andPi ∈ S.

Given their definition, a natural question is which graph classes are k-path separable. Clearly, all graphs
that have separators that consist of at most η vertices are trivially universally η-path separable. This follows
because every node can be seen as the shortest path to itself in any subgraph it is contained in. Notably, graphs
of bounded tree-width τ have separators that consist of τ nodes [RS86] and are therefore universally τ -path
separable as under any cost function on the edges, nodes are shortest paths to themselves. It holds:

Lemma 1.1 (Theorem 1 in [DG10]). A graph of treewidth τ is universally τ -path separable.

Further, due to Thorup, it is known that planar graphs are universally 3-path separable [Tho04]. It holds:

Lemma 1.2 (Lemma 2.3 in [Tho04]). A planar graph is universally 3-path separable.

The proof in [Tho04] is based on the so-called fundamental-cycle method, which in every spanning tree
finds two tree paths whose removal disconnects the graph into smaller connected components. Similarly, ifG
has anEuler-genus g, i.e., it can be embedded into a surfacewith genus g the following holds: There exists a cycle
A comprised of two shortest paths emanating at a common root, such thatG\A has Euler-genus at most g−1.
This has been claimed in [AGG+19a] based on a proof presented in [MT01]. Thus, by iteratively removing
these cycles, we eventually end up in a graph of genus 0, i.e., a planar graph that is 3-separable Thus, it holds:

21

Lemma 1.3 (Corollary of Lemma 21 in [AGG+19a]). A graph of Euler-genus g is universallyO(g)-path sepa-
rable.

Finally, Abraham andGavoille showed that every graphG := (V,E, ℓ) that does not include a fixed clique
minorKr is universally k-path separable where k := f(r) depends only on r and not the size ofG [AG06]. It
holds:

Lemma 1.4 (Theorem 1 in [AG06]). If G does not contain Kr as a minor, then G is universally f(r)-path
separable. Here, f(r) is a function that only depends on r and not on n

We note that f(r), albeit being a constant, is extremely large. Its concrete value is based on the Structure
Theorem of Seymour and Robinson [RS03]. Their analysis is quite involved and stretches over a vast series of
papers and articles that lead to their result in [RS03]. Moreover, due to its complexity, it is hard even to find an
asymptotic characterization of that number. In [LSZ20], it is described as a ”tower of powers of 2 of height at
most 5, with r1000 on top”. We emphasize that this number very likely is too high for practical applications.
Nevertheless, it offers us theoretical insights.

Summing up, k-path separable graphs are a superclass of a large set of restricted graph classes. Thus, if we
develop an algorithm for universally k-path separable graphs whose runtime and output depend on k, we also
obtain novel results for planar graphs, graphs of bounded treewidth, and, most importantly, Kr-free graphs.
However, the dependence kmight not be optimal for a specific class.

1.2.3 Basic Terms fromComplexity Theory

For the most part, we express the complexity of our algorithms in the well-known O(·)-notation. However,
especially in the second part of this thesis, we will make heavy use of the Õ(·)-notation. Similar to the O(·)-
notation that suppresses constant factors, the Õ(·)-notation suppresses polylogarithmic factor. To be precise,
in theO(·)-notation, it holds:

f(n) ∈ O(g(n))⇔ ∃n0 > 0 : ∃c > 0 : ∀n ≥ n0 : f(n) ≤ c · g(n)

f(n) ∈ Ω(g(n))⇔ ∃n0 > 0 : ∃c > 0 : ∀n ≥ n0 : f(n) ≥ c · g(n)

f(n) ∈ Θ(g(n))⇔ (f(n) ∈ O(g(n))) ∧ (f(n) ∈ Ω(g(n)))

Whereas in the Õ(·)-notation, it holds:

f(n) ∈ Õ(g(n))⇔ ∃n0 > 0 : ∃c > 0 : ∀n ≥ n0 : f(n) ≤ logc n · g(n)

f(n) ∈ Ω̃(g(n))⇔ ∃n0 > 0 : ∃c > 0 : ∀n ≥ n0 : f(n) ≥ g(n)/ logc n

f(n) ∈ Θ̃(g(n))⇔ (f(n) ∈ Õ(g(n))) ∧ (f(n) ∈ Ω̃(g(n)))

This notation is helpful when the g(n) is (asymptotically) much larger than logc n for any constant c > 0.
For example when g(n) ∈ Ω(

√
n). Further, many complex graph algorithms have runtime that depends on

some property P of the input graph. However, they often rely on using other algorithms in a black-box, and

22

therefore, polylogarithmic factors quickly stack up and become increasingly hard to trace. Thus, it has become
more or less standard to use the Õ(·)-notation, which emphasizes the superlogarithmic factors of runtime,
i.e., to write Õ(P) instead ofO(P · logc n) as it emphasizes the dependency on P , which is more interesting
from a theoretical standpoint. We will also follow this established convention. Of course, we acknowledge that
the hidden polylogarithmic factors make a significant difference in practice. Much more so than the hidden
constants in theO(·)-notation. However, we emphasize again that our goals are theoretical in nature.

1.2.4 Basic Terms from Probability Theory

Finally, this section establishes well-known bounds and tail estimates from probability theory that will be used
in all our results. First and foremost, we note that almost all of our algorithms are randomized. Therefore, they
have a small probability of failure, .e.g., through taking a longer time, sending more messages, or producing a
false solution altogether. This raises the obvious question of what we consider a small or, conversely, a high
probability. To this end, recall that our algorithms are executed on a network with n nodes. We use the de-facto
standard measure for randomized algorithms and say that an event holds with high probability if it holds with
probability at least 1− 1/nc for some c ≥ 1. In other words, the probability of failure is polynomially small in
n. That means the larger the networks get, the less likely it is to fail. Therefore, the success probability scales
with the size of the network. The concrete value of c is a so-called tunable constant. Typically, it depends on the
algorithm’s message complexity and/or runtime, such that a larger message or time complexity can be traded
with a higher probability of success. In all of our algorithms, this relationship is exponential, so the constant
c can be hidden in the O(·)-Notation for a succinct notation. For example, if we write something like ”the
algorithm requiresO(T) time steps, w.h.p.”, wemean that ”there is a constant c ≥ 1 such that algorithm requires
O(c · T) time steps with probability 1− 1/nc.”

Having introduced this central concept, let’s continue with some useful tail estimates that we will use
throughout this thesis. The first bound is Markov’s inequality, which estimates the probability of a random
variable reaching a certain value based on its expectation. It holds:

Lemma 1.5 (Markov’s Inequality). LetX be a non-negative random variable and a > 0, then it holds:

Pr[X ≥ a] ≤ E [X]

a
(1.4)

While this inequality applies to various variables, it is not very precise. For more precise bounds, we heavily
use the well-knownChernoff bound, another standard tool for analyzing distributed algorithms. In particular,
we will use the following version:

Lemma 1.6 (ChernoffBound). LetX =
∑n

i=1 Xi for independent distributed randomvariablesXi ∈ {0, 1}
and E(X) ≤ µH and δ ≥ 1.

Pr[X > (1 + δ)µH] ≤ e−
(

δµH
3

)
, (1.5)

23

Similarly, for E(X) ≥ µL and 0 ≤ δ ≤ 1 we have

Pr[X < (1− δ)µL] ≤ e−
(

δ2µL
2

)
(1.6)

Further, we use the union bound that helps us to bound the probability for many correlated events as long
as all these events have a very small probability of happening. It holds:

Lemma 1.7 (Union Bound). Let B := B1, . . . , Bm be a set ofm (possibly dependent) events. Then, the proba-
bility any of the events in B happens can be bounded as follows:

Pr

[
m⋃
i=1

Bi

]
≤

m∑
i=1

Pr[Bi] (1.7)

This bound is tremendously helpful when dealing with a polynomial number of bad events, say nc many,
that do not happen with high probability, say 1− nc′ for some tunable constant c′. If we choose this constant
c′ big enough, the union bound trivially implies that the probability of any bad event happening is n−c′′ for
a constant c′′ := c′ − c. Thus, if we can show that a specific event holds for a single node w.h.p., the union
bound implies that it holds for all nodes w.h.p. Due to this fact, we will often implicitly apply the union bound
when we consider a polynomial number of events.

1.3 Model(s)

This work presents and rigorously analyzes algorithms formodern communications networks like the Internet.
Therefore, it is of utmost importance to choose a suitable computational model that represents the properties
of such a network. This, of course, begs the question of precisely what these properties are. As we have es-
tablished in the introduction, there are many aspects to communication networks depending on the use case.
Let’s consider an algorithm that computes routes in the static backbone network to find the best paths between
data centers with dedicated physical connections to each other. This setup vastly differs from an algorithm in a
peer-to-peer network executed by possibly volatile end-user devices. Therefore, a catch’em-them-allmodel that
combines all layers of the network is not the right choice. In this section, wewill give an overviewof the different
models used in this thesis that are tailored to our specific problem setups.

1.3.1 The CONGEST and LOCALmodel

In the classical CONGEST and LOCAL model[Pel00], we consider a static graph G = (V,E) that consists
of n nodes andm edges. Both these models aim to faithfully represent classical cable networks that, for exam-
ple, form the Internet’s backbone. Each node represents a stationary device like a server or data center. Each
edge represents a physical (cable) connection between two stationary devices. In both models, each node has
a unique identifier. We assume these identifiers consist ofO(logn) bits, i.e., they are picked from some inter-
val [1, . . . , nc] for some c ∈ Θ(1). Time proceeds in synchronous rounds. In each round, nodes receive all
messages sent in the previous round; they perform a finite computation based on their internal states and the
messages they have received so far; Finally, they send distinct messages to their neighbors in G. Thus, a node

24

of degree deg(v) receives up to deg(v) distinct messages in the next time step. The only (yet very important)
difference between CONGEST and LOCAL lies in the size of these messages. In LOCAL, the size of the mes-
sages is unbounded. This allows for the design of algorithms in which all nodes continuously relay all messages
they have received thus far to their neighbors. That means, in ℓ rounds of communication, a node may learn
the complete state of its ℓ-neighborhood. Therefore, LOCAL is a great model to prove lower bounds as it can
answer the question of what information is theoretically available to a node after ℓ rounds. However, this also
means that each node can learn the whole of topology ofG and all nodes’ inputs withHD rounds. This implies
that every problem in LOCAL can be solved in at most HD time by first aggregating the topology and then let-
ting each node solve the problem locally. For large networks like the Internet, this approach does not scale as it
leads to large messages containingO(m logn) bits, i.e., the complete topology. In CONGEST, a node v ∈ V

may send a distinct message of size O(logn) to each neighbor in G3. Thus, a message may contain a node’s
identifier and a few more bits of information.

1.3.2 The NCC0 and P2P-CONGEST model

Next, we present models for overlay networks. Recall that overlays are virtual networks built on top of other
networks, the so-called underlay. The underlay allows for point-point communication between two devices
based on identifiers. In particular, if the identifier of a device is known, the underlay allows anyone to send a
message to this device. This abstracts away the specifics and minutiae of the underlying network and reduces it
to a pure communication interface. The internet is classical for this type of network. Given the IP address of a
device, any device connected to the internet can (in principle4) send a message to it.

Whilemany theoretical works consider algorithms for overlay networks, to the best of our knowledge, there
is no unified model with the same widespread adoption as CONGEST or LOCAL on classical distributed
computing. However, nearly all models share some common concepts. Representative of these models, in this
work, we use the so-calledNCC0 model [ACC+20], which is a variant of the generalNode-Capacitated Clique
(NCC)model for overlay networks [AGG+19b], and the P2P-CONGESTmodel [GPRT20]. We have a fixed
node set V with n nodes in both models. Each node u ∈ V has a unique identifier id(u), which is a bit string
of lengthO(logn). Further, time proceeds in synchronous rounds. We represent the network as a directed graph
G = (V,E), where there is a directed edge (u, v) ∈ E if u knows id(v), i.e., it holds:

E := {(u, v) | u knows id(v)}

Initially, all nodes are connected in a weakly connected graphG0. If u knows id(v) in round i, then it can send
a message to v that will be received at the beginning of round i + 1. New connections can be established by
sending node identifiers: if u sends id(w) to v, then v can establish an edge (v, w). We restrict the size of a
message toO(logn) bits, which allows a message to carry a constant number of identifiers.

Again, the crux of the different models is the number of messages each node can send in each round. As
each node represents a simple device connected to the Internet, we cannot expect to be able to send a massive

3Some works relax this to Õ(1) bits, which is still a far cry fromO(m logn).
4Of course, in practice, one needs to account for NATs and Firewalls, but we do not consider this due to the theoretical nature of this

work.

25

amount of data in a single step. Thus, we need to limit the total number of messages each node can send and
receive in each round to obtain a faithful model.

In the NCC0 model, if a node receives more thanO(logn)messages, an arbitrary subset of these messages
is dropped. Our algorithms will not exploit this and ensure thatO(logn)messages are received. The bound of
O(logn) is arguably a natural choice, preventing algorithms from being needlessly complicated while ensuring
scalability. In the P2P-CONGEST model, each node v ∈ V can send O(deg(v) logn) messages where d(v)
is its degree in the initial overlayG0. For high degrees, this, to a certain extent, juxtaposes the idea that a node
has limited sending capabilities. However, from a theoretical point of view, this allows us to more easily design
algorithms that work on any initial topology without considering the initial degrees and finding workarounds
for high degree nodes. This makes it easier to explain the core idea behind some algorithms. Further, note that
for some problems, a nodemust send or receive a message to or from all its neighbors inG0. If the initial graph
has a constant degree, both models are equivalent.

1.3.3 TheHYBRIDmodel

Finally, we note that there are modern networks that may not strictly fall into either of the categories sketched
above. Consider, for example, so-called wireless sensor networks. These are networks of minimalistic devices,
so-called sensor nodes, equipped with sensors that monitor their environment. The sensors record conditions
such as temperature, sound, or pressure. Further, each device can communicate with nearby devices via wireless
communication. This allows them to aggregate the recorded data and perform various other tasks to maintain
the network without central control. This network could be modeled as a graph G := (V,E), where each
node v ∈ V represents a device and each edge {v, w} ∈ E signals that the two endpoints are in each other’s
communication range. We can then use CONGEST or LOCAL to model the communication in this graph.
However, given the ubiquitous availability of an internet connection through 5G and satellite uplinks, a net-
working device may have access to the internet via a separate antenna. Therefore, they can also send messages
to other devices using the internet. Given that some IP addresses of other devices are known, this type of com-
munication can be represented through the NCC0 model. Thus, the communication in these networks can
be modeled as a mix of the previously mentioned models. The list of distributed systems that leverage multiple
communication modes does not end here. For instance, hybrid data center networks employ both high-speed
optical orwireless circuit switching technologies and traditional electronic packet switches to improve through-
put [FPR+10, HKP+11]. Organizations can also use dynamic multipoint VPNs or so-called hybridWANs to
supplement their internal network with connections via the Internet [TBKC18].

The HYBRID model was introduced in [AHK+20a] as a means to study such distributed systems that
leverage multiple communication modes of different characteristics. In particular, the HYBRID model con-
siders networks with so-called local and a global modes. In the local communication mode, nodes have a large
bandwidth. However, communication is restricted to edges of a (static) graphG. Further, they possess a global
communicationmode where, in principle, any two nodes may communicate. Still, very little such communica-
tion can take place per unit of time. More precisely, the local communication mode is modeled as a connected
graph, in which each node is initially aware of its neighbors and is allowed to send a message of size λ bits to
each neighbor in each round. In the global communication mode, each round, each node may send or receive

26

γ bits to/from every other node. An arbitrary subset of messages is dropped if any restrictions are violated in a
given round. Again, our algorithms will never exploit this and ensure that no messages are dropped.

In this thesis, we consider a weak form of the HYBRIDmodel. In the first part where we want to optimize
runtimes down to logarithmic factor, we set λ ∈ O(logn) and γ ∈ O(log3 n). In the second part where the
logarithmic factors in the runtime are less important, we set λ ∈ O(logn) and γ ∈ O(log2 n), which corre-
sponds to the combination of the classic distributed models CONGEST as local mode, and NCC0 presented
as global mode. The latter is the typical setup for the global mode that is used inmost works on the topic. Note
that some previous papers that consider hybrid models use λ =∞, i.e., the LOCALmodel as local mode.

1.4 List of Own Publications

1. Thorsten Götte, Christian Scheideler, and Alexander Setzer. On underlay-aware self-stabilizing overlay
networks. InTaisuke Izumi andPetrKuznetsov, editors, Stabilization, Safety, and Security ofDistributed
Systems - 20th International Symposium, SSS 2018, Tokyo, Japan, November 4-7, 2018, Proceedings, vol-
ume 11201 of Lecture Notes in Computer Science, pages 50–64. Springer, 2018

2. ThorstenGötte, VipinRavindranVijayalakshmi, andChristian Scheideler. Always be two steps ahead of
your enemy. In 2019 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2019,
Rio de Janeiro, Brazil, May 20-24, 2019, pages 1073–1082. IEEE, 2019

3. ThorstenGötte, KristianHinnenthal, andChristian Scheideler. Faster construction of overlay networks.
In Keren Censor-Hillel and Michele Flammini, editors, Structural Information and Communication
Complexity - 26th International Colloquium, SIROCCO 2019, L’Aquila, Italy, July 1-4, 2019, Proceed-
ings, volume 11639 of Lecture Notes in Computer Science, pages 262–276. Springer, 2019

4. Michael Feldmann, Thorsten Götte, and Christian Scheideler. A loosely self-stabilizing protocol for
randomized congestion control with logarithmic memory. In Mohsen Ghaffari, Mikhail Nesterenko,
Sébastien Tixeuil, Sara Tucci, and Yukiko Yamauchi, editors, Stabilization, Safety, and Security of Dis-
tributed Systems - 21st International Symposium, SSS 2019, Pisa, Italy, October 22-25, 2019, Proceedings,
volume 11914 of Lecture Notes in Computer Science, pages 149–164. Springer, 2019

5. Thorsten Götte, KristianHinnenthal, Christian Scheideler, and JulianWerthmann. Time-optimal con-
struction of overlay networks. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors,
PODC ’21: ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, July 26-30,
2021, pages 457–468. ACM, 2021

6. Thorsten Götte, Christina Kolb, Christian Scheideler, and JulianWerthmann. Beep-and-sleep:Message
and energy efficient set cover. In LeszekGasieniec, Ralf Klasing, andTomaszRadzik, editors,Algorithms
for Sensor Systems - 17th International Symposium on Algorithms and Experiments for Wireless Sensor
Networks, ALGOSENSORS 2021, Lisbon, Portugal, September 9-10, 2021, Proceedings, volume 12961
of Lecture Notes in Computer Science, pages 94–110. Springer, 2021

27

7. Thorsten Götte and Christian Scheideler. Brief announcement: The (limited) power of multiple iden-
tities: Asynchronous byzantine reliable broadcast with improved resilience through collusion. In Kunal
Agrawal and I-Ting Angelina Lee, editors, SPAA ’22: 34th ACM Symposium on Parallelism in Algo-
rithms and Architectures, Philadelphia, PA, USA, July 11 - 14, 2022, pages 99–101. ACM, 2022

8. Thorsten Götte, KristianHinnenthal, Christian Scheideler, and JulianWerthmann. Time-optimal con-
struction of overlay networks. Distributed Comput., 36(3):313–347, 2023 (Special Issue of PODC’21)

9. Thorsten Götte, Christina Kolb, Christian Scheideler, and JulianWerthmann. Beep-and-sleep:Message
and energy efficient set cover. Theor. Comput. Sci., 950:113756, 2023 (Special Issue of ALGOSEN-
SORS’21)

10. JinfengDou, ThorstenGötte,HenningHillebrandt, Christian Scheideler, and JulianWerthmann. Brief
announcement: Distributed construction of near-optimal compact routing schemes for planar graphs.
In Rotem Oshman, Alexandre Nolin, Magnús M. Halldórsson, and Alkida Balliu, editors, Proceedings
of the 2023 ACM Symposium on Principles of Distributed Computing, PODC 2023, Orlando, FL, USA,
June 19-23, 2023, pages 67–70. ACM, 2023

11. Jinfeng Dou, Thorsten Götte, HenningHillebrandt, Christian Scheideler, and JulianWerthmann. Dis-
tributed and parallel low-diameter decompositions for arbitrary and restricted graphs. In Raghu Meka,
editor, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025), New York City, NY,
USA, January 7–10, 2025, Leibniz International Proceedings in Informatics (LIPIcs), page (to appear),
Dagstuhl, Germany, 2025. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik

28

Part I

Fast Overlay Construction and its
Applications

29

30

2 Time-Optimal Construction Of Overlays 35

2.1 The Overlay Construction Algorithm . 36

2.2 Mathematical Preliminaries for Theorem 1 . 41

2.2.1 RandomWalks on Regular Graphs . 41

2.2.2 A Cut-Based Union Bound . 50

2.3 Analysis of CreateExpander . 52

2.3.1 Bounding the Communication Complexity . 52

2.3.2 Bounding the Conductance ofGi . 54

2.3.3 Ensuring That EachGi is Benign . 58

2.3.4 Finalizing the Proof . 61

3 Fast Computation of Connected Components 63

3.1 AlgorithmDescription . 65

3.2 Analysis . 67

4 Fast Construction of Spanning Forests 75

4.1 AlgorithmDescription . 75

4.2 Analysis . 77

5 AnO(log∆+ log logn)-Time Algorithm forMIS 79

5.1 Preliminaries . 80

5.1.1 The Shattering Technique of Ghaffari . 81

5.1.2 The Algorithm of Metevier et al. 81

5.2 AlgorithmDescription . 82

5.3 Analysis . 84

6 Conclusion to Part I 85

6.1 RelatedWork . 85

6.2 Applications & Implications . 86

6.3 Open Questions & Possible Future Work . 87

32

Overview of Part I

In this part of the thesis, we consider algorithms for overlay networks in the NCC0, P2P-CONGEST, and
HYBRID models. The main result presented in this part is an algorithm for the fast construction of overlays
from any initial configuration. This algorithm was previously published in the following conference article:

ThorstenGötte, KristianHinnenthal, Christian Scheideler, and JulianWerthmann. Time-optimal con-
struction of overlay networks. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors,
PODC ’21: ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, July 26-30,
2021, pages 457–468. ACM, 2021

Furthermore, we present several application of this algorithmwhich use the algorithm to solve a variety of other
problems. Most of the additional results were part of the corresponding journal publication of the conference
paper, namely

ThorstenGötte, KristianHinnenthal, Christian Scheideler, and JulianWerthmann. Time-optimal con-
struction of overlay networks. Distributed Comput., 36(3):313–347, 2023

The remainder of this part is structured as follows. This introductory chapter gives an overview and a dis-
cussion of all results that we present in this part. Themain result is the construction of an overlay of logarithmic
degree and diameter in O(logn) time. The corresponding algorithm is presented in Chapter 2. For an easier
presentation, the algorithm is stated in the P2P-CONGESTmodel where a node’s communication capabilities
scale with its initial degree. In Chapter 3 we extend to algorithm to the HYBRIDmodel where the communi-
cation is more limited. We then present three applications in the HYBRID model: For an (undirected) graph
G with arbitrary degree, we show how to compute connected components (cf. Chapter 3), a spanning forest
(cf. Chapter 4), and a maximal independent set (cf. Chapter 5). For each result, we present a short summary
of the main algorithmic ideas and themain challenges of the analysis. We conclude the part by presenting some
related work and open issues in Chapter 6.

Note that the journal article [GHSW23] contained a fourth additional result on identifying biconnected
components. However, JulianWerthmann conceived andwrote the algorithm in its entirety as part of a seminar
(supervised by Kristian Hinnenthal). Therefore, it is not part of this thesis. As for the other results, the author
was involved in designing the algorithms, conceiving the analysis, and writing the journal article that is the basis
for this chapter.

33

34

It is either easy or impossible.

Salvador Dali

2
Time-Optimal Construction Of Overlays

Our first contribution is constructing an overlay network of diameterO(logn) inO(logn) rounds in the P2P-
CONGESTmodel starting froman arbitrary initial state. If the initial overlay’s degree is constant, the algorithm
also works in the NCC0 model. We present a generalization to the HYBRIDmodel in the next chapter. Note
thatO(logn) rounds is the worst-case lower bound for the problem: If the nodes initially form a line, it takes
O(logn) rounds to reduce the diameter toO(logn), even if every node could introduce all of its neighbors to
each other in each round. To see this, consider the two endpoints of the line. Initially, their distance is n and in
every step it reduces by at most a constant factor, even if the nodes had umlimited communication capacities.

The concrete topology we are constructing is a so-called well-formed tree, which is a rooted tree of degree
O(logn) and diameterO(logn) that contains all nodes ofG. We chose this structure because anywell-behaved
overlay of logarithmic degree and diameter (e.g., butterfly networks, path graphs, sorted rings, trees, regular
expanders, De Bruijn graphs, etc.) can be constructed inO(logn) rounds, w.h.p., starting from a well-formed
tree. We present an algorithm that constructs such a tree in O(logn) time, w.h.p., in the P2P-CONGEST
model. In addition to their initial neighborhood,weonly assume that all nodes knowanapproximationof logn,
i.e., a very loose polynomial upper bound on n, the number of nodes. This is a mild assumption. Alternatively,
the algorithm can be started with geometrically increasing guesses for logn.

Before the publication of this result, the best known algorithm tookO(log3/2 n) time, w.h.p. [GHS19b].
However, to the best of our knowledge, there was noO(logn)-time algorithm that can construct a well-defined
overlay with logarithmic communication for any topology. Our result finally closed the gap and presented the
first algorithm that achieves these bounds, w.h.p. It does so by using a radically different approach, arguably
simpler than existing solutions. All of the previous algorithms (i.e., [AAC+05, AW07, GHSS17, GHS19b,

35

GPRT20]) essentially employ the same high-level approach to alternatingly group and merge so-called supern-
odes (i.e., sets of nodes that act in coordination) until only a single supernode remains. However, these su-
pernodes need to be consolidated after being grouped with adjacent supernodes to distinguish internal from
external edges. This consolidation step makes it difficult to improve the runtime further using this approach.
Thus, instead of arranging the nodes into supernodes (and paying a price of complexity and runtime for their
maintenance), we establish randomconnections between thenodes byperforming short constant length random
walks. Each node starts a small number of short random walks, connects itself with the respective endpoints,
and drops all other connections. Then, it repeats the procedure on the newly obtained graph.

The approach is based on classical overlay maintenance algorithms for unstructured networks such as, for
example, [LS03] or [GMS04] as well as practical libraries for overlays like JXTA [OG02] where the connection
are established via random walks. Note that our analysis significantly differs from [LS03] and [GMS04] as
we do not assume that nodes arrive one after the other. Instead, we assume an arbitrary initial graph with
possibly small conductance. Using novel techniques by Kwok and Lau [KL14] combined with elementary
probabilistic arguments, we show that short randomwalks incrementally reduce the conductance of the graph.
Once the conductance is constant, the graph’s diameter must be O(logn). Note that such a graph can easily
be transformed intomany other overlay networks, such as a sorted ring, e.g., by performing a BFS and applying
the algorithm of Aspnes andWu [AW07] to the BFS tree or by using the techniques by Gmyr et al. [GHSS17]
Altogether, we show the following theorem:

Theorem 1. Time-Optimal Construction of Overlays (P2P-CONGEST)

Let G = (V,E) be a weakly connected directed graph and suppose each node knows values
L,Λ ∈ Θ(logn). Then, there is a randomized algorithm in the P2P-CONGESTmodel that constructs
a well-formed tree inO(L) rounds, w.h.p. Each node sends at mostO(deg(v)Λ)messages per round,
w.h.p.

Note that we could use techniques from [GHSS17] or [AW07] to further refine our constructions and to
reduce the degree of the well-formed tree toO(1). However, since the main focus of our algorithm is the novel
idea of using random walks, we omit further details here and refer the reader to [GHSS17] and [AW07]. The
remainder of this chapter the structured as follows. In Section 2.1, we describe our main algorithm. In Section
2.2we establish somebasic combinatorial lemmas thatwill be central to our analyis, whichwepresent in Section
2.3.

2.1 The Overlay Construction Algorithm

In this section, we present our algorithm to construct a well-formed tree inO(logn) time, w.h.p., and give the
proof to establish the correctness of Theorem 1. To the best of our knowledge, our approach is different from
all previous algorithms for our problem [AS03, AW07, GHSS17, GHS19b] in that it does not use any form of
clustering to contract large portions of the graph into supernodes. On a high level, our algorithm progresses
through O(logn) iterations, where the next graph is obtained by establishing random edges on the current

36

graph. More precisely, each node of a graph simply starts a few random walks of constant length and connects
itself with the respective endpoints. The next graph only contains the newly established edges. We will show
that after O(logn) iterations of this simple procedure, we reach a graph with diameter O(logn). One can
easily verify that this strategy does not trivially work on any graph, as the graph’s degree distributions and other
properties significantly impact the distribution of random walks. However, as it turns out, we only need to
ensure that the initial graph has some nice properties to obtain well-behaved random walks. More precisely,
throughout our algorithm, we maintain that the graph is benign, which we define as follows.

Definition 2.1 (Benign Graphs). Let G := (V,E) be a simple undirected graph and Λ ∈ Ω(logn) and
∆ ≥ 64Λ be two values (with big enough constants hidden by the Ω-Notation). Then, we call G benign if and
only if it has the following three properties:

1. (G is∆-regular) Every node v ∈ V has exactly∆ in- and outgoing edges (which may be self-loops).

2. (G is lazy) Every node v ∈ V has at least 1/2∆ self-loops.

3. (G has a Λ-sized minimum cut) Every cut c(S, S) with S ⊂ V has at leastΛ edges.

The properties of benign graphs are carefully chosen to be as weak as possible while still ensuring the correct
execution of our algorithm. A degree of∆ ∈ Ω(logn) is necessary to keep the graph connected. If we only had
a constant degree, a standard result from randomgraphs implies that, w.h.p., therewouldbenodes disconnected
from the graph when sampling new neighbors. If the graphs were not lazy, many theorems from the analysis
of Markov chains would not hold as the graph could be bipartite, which would greatly complicate the analysis.
This assumption only slows down randomwalks by a factor of 2. Lastly, theΛ-sized cut ensures that the graph
becomes more densely connected in each iteration, w.h.p. In fact, with constant-sized cuts, we cannot easily
ensure this property when using random walks of constant length.

We will now describe the algorithm in more detail. Recall that throughout this section, we will assume the
P2P-CONGEST model. Further, we assume that the initial graph G has maximum degree ∆G and is con-
nected. Given these preconditions, the algorithm has four input parameters ℓ,∆,Λ, andL known to all nodes.
Recall thatL ∈ Θ(logn) is an upper bound on logn and determines the runtime. The value ℓ ∈ Ω(1) denotes
the length of the random walks,∆ ∈ O(logn) is the desired degree, and Λ ∈ O(logn) denotes the (approxi-
mate) size of the minimum cut. All of these parameters are tunable and the hidden constants need to be chosen
big enough for the algorithm to succeed, w.h.p. In particular, the value of Λ will determine the success proba-
bility. We discuss this in more detail in the analysis. Finally, we emphasize that∆G is the degree of the initial
graphG and∆ ∈ O(logn) is the degree of the graph created by the algorithm.

Our algorithm consists of three stages. In the first stage, we ensure that the initial graph is benign by adding
additional edges to each node. In the second stage, which is the main part of the algorithm, we continuously
increase the graph’s conductance to randomwalkswhile assuring that it stays benign. Finally, in the last stage, we
exploit the graph’s logarithmic diameter to construct a well-formed tree inO(logn) time. This phase primarily
uses techniques from [AS03, AW07, GHSS17, GHS19b]. We now describe each phase in more detail.

(Step 1) Initialization: Before the first iteration, we need to prepare the initial communication graph to
comply with parameters∆ and Λ, i.e., we must turn it into a benign graph. W.l.o.g., we can assume thatG is

37

a simple bidirected graph. Otherwise, all of its multi-edges can be merged into a single edge, and all directed
edges (v, w) ∈ E can be bi-directed by sending v’s identifier to w. Next, we deal with the graph’s regularity.
Arguably, the easiest way to turn a graph of maximum degree∆G into regular graph is adding∆G − deg(v)

self-loops to each node v ∈ V , so all nodes have the same degree. However, this is not possible, as in our
model, each node can only send and receiveO(deg(v) logn)messages per round, which might be lower than
∆G. Thus, we need another approach. Instead, we use the concept of virtual nodes V ′, which are simulated
by the nodes of graphG. A virtual node v′ ∈ V ′ is simulated by v ∈ V and has its own virtual identifier of
size O(logn). This virtual identifier consists of the original node’s identifier combined with a locally unique
identifier. For the simulation, any message intended for v′ will first be sent to v (using v’s identifier) and then
locally passed to v′. Given this concept, we show that the node in graph G := (V,E) can simulate a graph
G′ := (V ′, E′) with |V ′| = 2|E| that only consists of virtual nodes and edges between them. We construct
V ′ through the following process:

1. First, For each edge {v, w} ∈ E both v andw create and simulate virtual nodes v′ andw′ and add them
to V ′.

2. Second, v and w connect the virtual nodes v′ and w′ via an edge {v′, w′} by exchanging the respective
identifiers. This ensures that for each edges (v, w) ∈ E, there is an edge (v′, w′) ∈ E′.

3. Finally, all virtual nodes of a real node v are connected in a cycle. For this, v first sorts its virtual nodes
in an arbitrary order v′1, . . . , v′deg(v). Then, it adds bidirected edges between v1 and vdeg(v) and every
consecutive pair of nodes in the order.

The resulting graphG′ is connected and each node v′ ∈ V ′ has at most 3 edges. To be precise, it has exactly
one edge to another virtual node w′ ∈ V ′ simulated by v ̸= w ∈ V and at most two connections to the
predecessor and successor in the cycle of virtual nodes simulated by v. Further, each original node simulates
exactly deg(v) virtual nodes, so as long as each virtual node receives at most O(logn) messages (which is the
case in our algorithm), this is possible in our model. Later, we will show how to revert the simulation and
obtain a well-formed tree for the original node set V .

Given that the graph is regular, we need to increase its degree and minimal cut. Since the input graph has
a maximum degree of 3, this is quite simple as we can assume 6Λ ≤ ∆ by choosing∆ big enough. Given this
assumption, the graph can be turned benign in 2 steps:

1. First, all edges are copied Λ times to obtain the desired minimum cut. After this step, each node has at
leastΛ edges to other nodes and at leastΛ edges cross each cut.

2. Then, each node adds self-loops until its degree is∆ and each node has ∆
2 self-loops. As we chose 6Λ ≤

∆, this is always possible.

Thus, the resulting graph is benign. Further, note that the resulting graph is a multi-graph whileG is a simple
graph.

38

(Step 2) Construction of a LowDiameter Overlay: Let nowG0 = (V ′, E0) be the resulting be-
nign graph. The algorithm proceeds in iterations 1, . . . , L. In each iteration, a new communication graph
Gi = (V ′, Ei) is created through sampling ∆

8 new neighbors via random walks of length ℓ. Each node
v ∈ V ′ creates ∆

8 messages containing its own identifier, which we call tokens. Each token is randomly for-
warded for ℓ rounds in Gi. More precisely, each node that receives a token picks one of its incident edges in
Gi uniformly at random and sends the token to the corresponding node.1 This happens independently for
each token. If v receives less than 3

8∆ tokens after ℓ steps, it sends its identifier back to all the tokens’ origins
to create a bidirected edge. Otherwise, it picks 3

8∆ tokens at random (without replacement)2. Since the ori-
gin’s identifier is stored in the token, both cases can be handled in one communication round. Finally, each
node adds self-loops until its degree is ∆ again. The whole procedure is given in Figure 2.1 as the method
CreateExpander(G0, ℓ,∆,Λ, L). The subroutineMakeBenign(G0, ℓ,∆,Λ) add edges and self-loops to
make the graph comply with Definition 2.1 (i.e., it implements the first stage). Our main observation is that

CreateExpander(G0, ℓ,∆,Λ, L):
Each node v ∈ V ′ executes:

1. E0 ←−MakeBenign(G0, ℓ,∆,Λ)

2. For i = 0, . . . , L:

(a) Create ∆/8 tokens that contain v’s identifier and store them in T0.
(b) For j = 1, . . . , ℓ:

Independently send each token from Tj−1 along a random incident edge in Gi =
(V ′, Ei).
Store all received tokens in the buffer Tj .

(c) Pick (up to) 3∆/8 tokensw1, . . . , w∆′ from Tℓ without replacement.
(d) Create edgesEi+1 := {{v, w1}, . . . , {v, w∆′}} by sending v’s identifier to eachwj .
(e) Add self-loops {v, v} toEi+1 until |Ei+1| = ∆.

Figure 2.1: Pseudocode for the CreateExpander algorithm that turns any initial overlay into an expander.

afterL = O(logn) iterations, the resulting graphGL has constant conductance, w.h.p., which implies that its
diameter is O(logn). Furthermore, the degree ofGL is O(∆) by construction. Finally, if we add any virtual
nodes in the first stage, we can now merge them back into a single node (with all connections of all its virtual
nodes). For this, we simply transform each edge (v′, w′) ∈ EL between two virtual nodes v′, w′ to an edge
(v, w) between two original nodes v, w ∈ V . This produces a graph with the same degree distribution asG
and can only decrease the diameter further. In particular, the degree of node v ∈ V in the resulting graph is
O(degG(v) ·∆)which is withinO(degG(v) · logn) as∆ ∈ O(logn). Following this argument, the resulting
graph has degreeO(∆G · logn). We denote this graph asG′

L.
1Wewill show that each node only sends and receives at mostO(∆) tokens in each round, w.h.p.
2Wewill see, however, that this case does not occur w.h.p.

39

(Step 3) Finalization: To obtain a well-formed tree TG, we perform a BFS onG′
L starting from the node

with the lowest identifier. Since a node cannot locally check whether it has the lowest identifier, implementing
this step is slightly more complex. The algorithm proceeds for L ∈ O(logn) rounds. In the first round, every
node creates a token message that contains its identifier. Then, it sends the token to all its neighbors. For all
remaining rounds1, . . . , L, every node that receives one ormore tokens only forwards the tokenwith the lowest
identifier to all its neighbors and drops all others. Since the graph’s diameter is O(logn), all nodes must have
received the lowest identifier at least once after theseL ∈ O(logn) rounds. Finally, each node vmarks the edge
(v, w) overwhich it first received the tokenwith the lowest identifier. Ties can be broken arbitrarily. If the node
itself has the smallest identifier, it does notmark any edge. Allmarked edges then constitute a treeT with degree
O(∆G · logn) and diameterO(logn). Note that this process requiresO(degG(v) · logn)messages per node
and round, as each node sends at most one token to all its neighbors per round. To transform this tree T into a
well-formed tree, we perform themerging step of the algorithm of [GHSS17, Theorem 2]. This deterministic
subroutine transforms any tree into a well-formed tree of degreeO(logn) inO(logn) rounds.

Tomake this thesis self-contained, we sketch the approach of [GHSS17, Theorem 2] in the remainder: The
algorithm first transforms T into a constant-degree child-sibling tree [AW07], in which each node arranges its
children as a path and only keeps an edge to one of them. For each inner nodew ∈ V letw1, . . . , wdegG′

L
(w)−1

denote its children in T sorted by increasing identifier. Now w only keeps the child with the lowest identifier
and delegates the others as follows: Eachwi ∈ N(w)with i > 1 changes its parent to be its predecessorwi−1

on the path and stores its successorwi+1 as a sibling (if it exists). In the resulting tree, each node stores at most
three identifiers: a parent and possibly a sibling and a child. Since we can interpret the sibling of a node as a
second child, we obtain a binary tree. This transformation takesO(1) rounds and requiresO(degG(v) · logn)
communication as each node v needs to send two identifiers to its children.

Note that the tree’s diameter has now been increased by a factor of O(∆G · logn). Based on this binary
tree, we construct a ring of virtual nodes using the so-called Euler tour technique (see, e.g., [TV85, GHSS17,
FHS20]). Consider the depth-first traversal of the tree that visits the children of each node in order of increasing
identifier. A node occurs at most three times in this traversal. Let each node act as a distinct virtual node for
each such occurrence and let k ≤ 3n be the number of virtual nodes. More specifically, every node v executes
the following steps:

1. v creates virtual nodes v0, . . . , vdeg(v)−1 where vi has the virtual identifier id(vi) := v ◦ i. Intuitively,
the node v0 corresponds to the traversal visiting v from its parent. Analogously, each vi is the visit from
childwi.

2. v sends the identifier of v0 and vdeg(v)−1 to its parent. Note that v0 and vdeg(w)−1 may be the same
virtual node if v has no children.

3. Let w0
i and w

deg(w)−1
i be the identifier received from wi, i.e., the ith child of v. Then v sets w0

i as the
successor of vi−1 andwdeg(w)−1

i as the predecessor of vi. In other words, vi−1 and vi are connected to
the first and last virtual node ofwi.

4. Finally, each virtual node introduces itself to its predecessor and successor.

40

Therefore, the nodes can connect their virtual nodes into a ring in O(1) rounds by sending at most two mes-
sages per edge in each round. Next, we use the Pointer jumping technique (see, e.g., [TV85, GHSS17, FHS20])
to quickly add chords (i.e., shortcut edges) to the ring. To be precise, the virtual nodes execute the following
protocol forL ∈ O(logn) rounds:

1. Let l0 and r0 be the predecessor and successor of v in the ring. In the first round of pointer jumping, v
sends l0 to r0 and vice versa.

2. In round t > 0, each node receives an identifier lt−1 and rt−1 sent in the previous round. It sets lt to
the identifier received from lt−1 and rt to the identifier received from rt−1. Finally, it sends lt to rt and
vice versa.

A simple induction reveals that the distance between these neighbors (w.r.t the ring) doubles from round to
round (until the distance exceeds the number of virtual nodes k). Based on this observation, it is not hard
to show that after the L rounds, the graph’s diameter has reduced to O(logn) while the degree has grown to
O(logn). A final BFS from the node of the lowest identifier then yields our desiredwell-formed treeTG, which
concludes the algorithm.

With further techniques that exploit the structure of the chords, the degree can be reduced to 6. For details,
we refer to [GHSS17, Theorem 2]. Another possibility to achieve a constant degree is the algorithm by Aspnes
and Wu [AW07]. This algorithm requires a graph of outdegree 1—which simply is a by-product of the BFS
— and requiresO(W + logn) time, w.h.p. The termW denotes the length of the node identifiers, which is
also O(logn) in our case. Although the algorithm is simple, elegant, and has the desired runtime, we do not
use it as a black box as it would lead to problems with some applications. We need to create a well-formed tree
for subgraphs with n′ < n nodes for some of the applications and require that the runtime is logarithmic in
n′ and not n. Without additional analysis, the algorithm by Aspnes and Wu would still take O(logn) time,
w.h.p., whereas the approach sketched above always finishes inO(logn′) time.

2.2 Mathematical Preliminaries for Theorem 1

In this section, we establish some mathematical preliminaries that we require for the analysis of our algorithm.
First, we present some results on random walks on regular graphs. Second, we present a variant of the union
bound that helps us when considering a superpolynomial number of events.

2.2.1 RandomWalks on Regular Graphs

In this section, we observe the behavior of (short) random walks on regular graphs and establish useful defini-
tions and results. Starting with themost basic definition, a randomwalk on a graphG := (V,E) is a stochastic
process (vi)i∈N that starts at some node v0 ∈ V and in each step moves to some neighbor of the current node.
If G is∆-regular, the probability of moving from v to its neighbor w is e(v,w)/∆. Here, e(u,w) denotes the
number of edges betweenu andw asG is amultigraph. We say that a∆-regular graphG (and the corresponding
walk on its nodes) is lazy if each node has at least ∆

2 self-loops (and therefore a randomwalk stays at its current
node with probability at least 1/2 in each step). Further, we defineGℓ := (V,Eℓ) to be the ℓ-walk graph ofG,

41

i.e.,Gℓ is themultigraphwhere each edge (v, w) ∈ Eℓ corresponds to an ℓ-stepwalk inG. Note that awalk can
visit the same edge more than once, soGℓ must be a multigraph. For v, w ∈ V letXℓ

v(w,G) be the indicator
for the event that an ℓ-step random walk in G which started in v ends in w. Analogously, letX1

v (w,G
ℓ) be

the indicator that a 1-step randomwalk inGℓ which started in v ends inw. If we consider a fixed node v that is
clear from the context, we may drop the subscript and writeX1(w,Gℓ) instead. Further, let Pℓ(v, w) be the
exact number of walks of length ℓ between v andw inG. Note that it holds P1(v, w) = e(v, w). Given these
definitions, the probability to move from v tow inGℓ is given by the following lemma:

Lemma 2.1. LetG be a∆-regular graph andGℓ its ℓ-walk graph for some ℓ > 1 , then it holds:

Pr
[
X1(w,Gℓ)

]
= Pr

[
Xℓ(w,G)

]
=

Pℓ(v, w)

∆ℓ
(2.1)

Proof. The statement can be proved via an induction over ℓ, the length of the walk. For the base case, we need
to show that 1-step random walk in G is equivalent to picking an outgoing edge in G1 := G uniformly at
random. This follows trivially from the definition of a randomwalk. Now suppose that performing an (ℓ−1)-
step randomwalk inG is equivalent to performing a 1-step walk inGℓ−1. Consider a nodew ∈ V and letNw

denote its neighbors inG andwitself. By the law of total probability, it holds:

Pr
[
Xℓ(w,G) = 1

]
:=

∑
u∈Nw

Pr
[
Xℓ−1(u,G) = 1

]
· Pr
[
Xℓ(w,G) = 1 | Xℓ−1(u,G) = 1

]
(2.2)

Using the induction hypothesiswewe can substitute Pr
[
Xℓ−1(u,G) = 1

]
, the probability of a ℓ− 1-step walk

inG, for Pr
[
X1(u,Gℓ−1) = 1

]
, the probability of single step inGℓ−1, and get:

Pr
[
Xℓ(w,G) = 1

]
:=

∑
u∈Nw

Pr
[
Xℓ−1(u,G) = 1

]
· Pr
[
Xℓ(w,G) = 1 | Xℓ−1(u,G) = 1

]
(2.3)

=
∑

u∈Nw

Pℓ−1(v, u)

∆ℓ−1
· Pr
[
Xℓ(w,G) = 1 | Xℓ−1(u,G) = 1

]
(2.4)

Recall thatG is a multigraph, and there can be more than one edge between each u andw and e(u,w) denote
the number of edges between u and w for every u ∈ Nw . Since we defined that w ∈ Nw , the value e(w,w)
countsw’s self-loops. SinceG is∆-regular, the probability that a randomwalk at node umoves tow is exactly
e(u,w)

∆ . Back in the formula, we get:

Pr
[
Xℓ(w,G) = 1

]
=
∑

u∈Nw

Pℓ−1(v, u)

∆ℓ−1
· Pr
[
Xℓ(w,G) = 1 | Xℓ−1(u,G) = 1

]
(2.5)

=
∑

u∈Nw

Pℓ−1(v, u)

∆ℓ−1

e(u,w)

∆
=

1

∆ℓ

∑
u∈Nw

Pℓ−1(v, u) · e(u,w) (2.6)

42

Finally, note that
∑

u∈Nw
Pℓ−1(v, u) · e(u,w) counts all paths of length exactly ℓ from v to w in G. This

followsbecause eachpathP := (e1, . . . , eℓ) fromu tow canbedecomposed into apathP ′ := (e1, . . . , eℓ−1)

of length ℓ− 1 to some neighbor ofw (orw itself) and the final edge (or self-loop) eℓ. Thus, it follows that:

Pr
[
Xℓ(w,G) = 1

]
=

1

∆ℓ

∑
u∈Nw

Pℓ−1(v, u) · e(u,w) =
Pℓ(v, w)

∆ℓ
= Pr

[
X1(w,Gℓ) = 1

]
(2.7)

This was to be shown.

In other words, the multigraphGℓ is∆ℓ-regular and has edge (v, w) for every walk of length ℓ between v
andw.

We further need twowell-known facts about the conductance. First, we see that we can relate theminimum
conductance of a∆-regular graph to its minimum cut. It holds:

Lemma 2.2 (MinimumConductance). LetG := (V,E) be any∆-regular connected graph withminimum cut
Λ ≥ 1. Then for all δ ∈ (0, 1] it holds:

Φδ(G) ≥ 2Λ

∆δn
. (2.8)

Proof. Consider the set S with |S| ≤ δn
2 that minimizes Φ(S′) among all sets |S′| ≤ δ

2n. Then, it holds by
the definitionΦδ(G), S andΛ that:

Φδ(G) := min
S′⊂V,|S′|≤ δ|V |

2

Φ(S′) := Φ(S) :=
OS

∆|S|
(2.9)

≥ 2OS

∆δn
▷As |S| ≤ δ

2
n (2.10)

≥ 2Λ

∆δn
▷As |OS | ≥ Λ (2.11)

Second, we show that a constant conductance implies a logarithmic diameter if the graph is regular. It holds:

Lemma 2.3 (High Conductance implies Low Diameter). LetG := (V,E) be any lazy bi-directed∆-regular
graph with conductanceΦ, then the diameter ofG is at mostO(Φ−2 logn).

Proof. We will prove this lemma by analyzing the distribution of random walks on G. Let v, w ∈ V be two
nodes ofG and let ℓ > 0 be an integer. We denote pℓ(v, w) ∈ [0, 1] as the probability that an ℓ-step random
walk that starts in v, ends in w. Note that pℓ(v, w) > 0 implies that there must exist path of length ℓ from v

tow. Following this argument, if it holds pℓ(v, w) > 0 for all pairs v, w ∈ V , then the graph’s diameter must
be smaller or equal to ℓ. Thus, in the following, we will show that for ℓ ∈ Ω(Φ−2

G logn)we have pℓ(v, w) > 0

for all pairs of nodes. First, we note that a sharp upper bound on the probabilities also implies a lower bound.

43

Claim 1. Let v ∈ V be a node with pℓ(v, w) ≤ 1
n + 1

n2 for allw ∈ V . Then, it holds

pℓ(v, w) ≥ 1

n2
(2.12)

Proof. As each random walk must end some nodew ∈ V , we have:∑
w∈V

pℓ(v, w) = 1 (2.13)

Together with our upper bound of 1
n + 1

n2 , we can now derive the following lower bound

pℓ(v, w) = 1−
∑

u∈V \{w}

pℓ(v, u) ≥ 1−
∑

u∈V \{w}

(
1

n
+

1

n2

)
(2.14)

= 1−
(
n− 1

n
+

n− 1

n2

)
= 1−

(
1− 1

n
+

1

n
− 1

n2

)
=

1

n2
(2.15)

Thus, a low enough maximal probability implies a positive lower bound. Our next goal is to find such a
precise upper bound. We will use well-known concepts from the analysis of Markov chains to do this. We
define π := (πv)v∈V as the stationary distribution of a random walk onG. For any∆-regular graph, it holds:

πv :=
dv
|E|

=
∆

∆n
=

1

n
(2.16)

For a connected, bidirected, non-bipartite graph, the distribution of possible endpoints of a randomwalk con-
verges towards its stationary distribution. For a fixed ℓ, we define the relative pointwise distance as:

ρG(ℓ) := max
v,w∈V

{
pℓ(v, w)− πw

πw

}
(2.17)

This definition describes how far the distribution is from the stationary distribution after ℓ steps. Given this
definition, it is easy to see that the following claim holds:

Claim 2. Suppose that ρG(ℓ) < 1
n , then it holds for all v, w ∈ V that

pℓ(v, w) ≤ 1

n
+

1

n2
(2.18)

Proof. For contradiction, assume that the statement is false. Then, there is a pair v′, w′ ∈ V with

pℓ(v′, w′) =
1

n
+

c

n2
(2.19)

44

for some c > 1. Further, it must hold that

ρG(ℓ) := max
v,w∈V

{
pℓ(v, w)− πw

πw

}
≥ pℓ(v′, w′)− πv,w

πv,w
(2.20)

=
pℓ(v′, w′)− 1

n
1
n

=
1
n + c

n2 − 1
n

1
n

=
c

n
>

1

n
> ρG(ℓ). (2.21)

This is the desired contradiction.

Thus, we will determine an upper bound for ρG(ℓ) in the remainder. In an influential article, Jerrum
and Sinclair proved that relative pointwise distance after ℓ steps is closely tied to the graph’s conductance. In
particular, they showed that:

Lemma 2.4 (Theorem 3.4 in [SJ89], simplified). Let G be lazy, regular, and connected. Further, let π be its
stationary distribution of a random walk. Then for any node v ∈ V , the relative pointwise distance satisfies

ρG(ℓ) ≤

(
1− Φ2

G

2

)ℓ
π∗ (2.22)

With π∗ := maxv∈V {πv}

In the original lemma, the underlyingMarkov chainmust be ergodic, i.e., every state is reachable from every
other state, and time-reversible, i.e., it holds pℓ(v, w) = pℓ(w, v). The first property is implied by the fact that
the graph is connected, so every node is reachable. The latter follows from the facts that the graph is bi-directed
and regular, so it holds p1(v, w) = e(v,w)

∆ = e(w,v)
∆ = p1(w, v). Further, note that for our graph, we have

π∗ := 1
n . Plugging this and ℓ := 4Φ−2 logn in the formula, we get:

ρG(ℓ) ≤

(
1− Φ2

G

2

)ℓ
πv

= n

(
1− Φ2

G

2

)ℓ

= n

(
1− Φ2

G

2

)4Φ−2
G logn

(2.23)

≤ ne−2 logn ≤ 1

n
. (2.24)

Here, Inequality (2.24) follows from the well-known fact that (1− 1/x)x ≤ 1/e for any x > 1.5, which clearly
holds as Φ2

G < 1. Thus, following Claims 1 and 2, all probabilities are strictly positive after ℓ steps of the
random walk and the diameter must be smaller ℓ.

For our analysis, it will be crucial to observe the (small-set) conductance ofGℓ for a constant ℓ. However,
the standard Cheeger inequality (see, e.g., [Sin12] for an overview) that is most commonly used to bound a
graph’s conductance with the help of the graph’s eigenvalues does not help us in deriving a meaningful lower
bound for ΦGℓ . In particular, it only states that ΦGℓ = Θ(ℓΦ2

G). Thus, it only provides a useful bound if
ℓ = Ω(Φ−1

G), which is too big for our purposes, as Ω(Φ−1
G) is only constant if ΦG is constant. More recent

Cheeger inequalities shown in [LGT14] relate the conductance of smaller subsets to higher eigenvalues of the
randomwalkmatrix. At first glance, this seems helpful, as one could use these to show that at least the small sets

45

start to bemore densely connected and then, inductively, continue the argument. Still, evenwith this approach,
constant length walks are out of the question as these new Cheeger inequalities introduce an additional tight
O(logn) factor in the approximation for these small sets. Thus, the random walks would need to be of length
Ω(logn), which is still too much to achieve our bounds. Instead, we use the following result by Kwok and
Lau [KL14], which states that ΦGℓ improves even for constant values of ℓ. Given this bound, we can show
that benign graphs increase their (expected) conductance from iteration to iteration. In the following, we prove
Lemma 2.5 by outlining the proofs of Theorem 1 and 3 in [KL14]. It holds that:

Lemma 2.5 (Conductance ofGℓ, Based on Theorem 1 and 3 in [KL14]). LetG = (V,E) be any connected
∆-regular lazy graph with conductance ΦG and letGℓ be its ℓ-walk graph. For a set S ⊂ G define ΦGℓ(S) as
the conductance of S inGℓ. Then, it holds:

ΦGℓ(S) ≥ min
{
1

2
,
1

40

√
ℓΦ(G)

}
(2.25)

Further, if |S| ≤ δn for any δ ∈ (0, 1
2], we have

ΦGℓ(S) ≥ min
{
1

4
,
1

40

√
ℓΦ2δ(G)

}
(2.26)

Proof. Before we go into the details, we need another batch of definitions from the study of randomwalks and
Markov chains. LetG := (V,E) be a∆-regular, lazy graph and letAG ∈ Rn×n the stochastic random walk
matrix ofG. Each entryAG(v, w) in thematrix has the value e(v,w)

∆ wheree(v, w)denotes thenumberof edges
between v andw (or self-loops if v = w). LikewiseAℓ

G is the random walk matrix ofGℓ where each entry has
value Pℓ(v,w)

∆ℓ . Note that both AG and Aℓ
G are doubly-stochastic, meaning that their rows and columns sum

up to 1. For these types of weighted matrices, Kwok and Lau define the expansion φ(S) of a subset S ⊂ V as
follows:

φ(S) =
1

|S|
∑

v∈S,w∈S

AG(v, w) (2.27)

For regular graphs (and only those), this value is equal to the conductance ΦG(S) of S, which we observed
before. The following elementary calculation can verify this claim:

φ(S) =
1

|S|
∑

v∈S,w∈S

AG(v, w) =
1

|S|
∑

v∈S,w∈S

e(v, w)

∆
(2.28)

=

∑
v∈S,w∈S e(v, w)

∆|S|
=: ΦG(S) (2.29)

Therefore, the claim that Kwok and Lau make for the expansion also holds for the conductance of regular
graphs3. The proof in [KL14] is based on the functionC(ℓ)(|S|) introduced by Lovász and Simonovits[LS90].

3Indeed, they explicitly mention that for non-regular graph one could define a escape probability for which their claims would hold and
which could be used instead of the conductance in our proofs. Nevertheless, since we only observe regular graphs, we use the notion of
conductance to avoid introducing more concepts.

46

Consider a set S ⊂ V , then Lovasz and Simonovits define the following curve that bounds the distribution of
random walk probabilities for the nodes of S.

C(ℓ)(|S|) = max
δ0+···+δn=x,0≤δi≤1

n∑
i=1

δi(A
ℓpS)i (2.30)

Here, the vector pS is the so-called characteristic vector of S with pi = 1
|S| for each vi ∈ S and 0 otherwise.

Further, the term (Aℓp)i denotes the ith value of the vectorAℓpS . Lovász and Simonovits used this curve to
analyze the mixing time of Markov chains. Kwok and Lau now noticed that it also holds that:

Lemma 2.6 (Lemma 6 in [KL14]). It holds:

ΦGℓ(S) ≥ 1− C(ℓ)(|S|) (2.31)

Based on this observation, they deduce that a bound for 1 − C(ℓ)(S) doubles as a bound for ΦGℓ . In
particular, they can show the following bounds forC(ℓ)(|S|):

Lemma 2.7 (Lemma 7 in [KL14]). It holds

C(ℓ)(|S|) ≤ 1− 1

20

(
1− (1− ΦG)

√
ℓ
)

(2.32)

We refer the interested reader to Lemma 7 of [KL14] for the full proof with all necessary details. For the
next step, we need the following well-known inequality:

Lemma 2.8. For any t > 1 and z ≤ 1
2 , it holds:

(1− z)t ≤ 1− 1

2
zt (2.33)

Now assume thatG does not already have a constant conductance ofΦ(G) = 1
2 . Plugging this assumption

and the two insights by Kwok and Lau together, we get

ΦGℓ(S) ≥ 1− C(ℓ)(|S|) ▷By Lemma 2.6 (2.34)

≥ 1

20

(
1− (1− ΦG)

√
ℓ
)

▷By Lemma 2.7 (2.35)

≥ 1

20

(
1− (1− 1

2

√
ℓΦG)

)
=

√
ℓ

40
ΦG (2.36)

The last inequality follows from the fact that
√
ℓΦG is atmost 1

2 . The second part of the theorem can be derived
similarly. Again, we observe an auxiliary lemma by Kwok and Lau and see:

Lemma 2.9 (Lemma 10 in [KL14]). Let S be set of size at most δn with δ ∈ [0, 1
4). Then, it holds:

C(ℓ)(|S|) ≤ 1− 1

20

(
1− (1− 2Φ2δ(G))

√
ℓ
)

(2.37)

47

Proof. Analogously to the previous case, we get forΦ2δ(G) ≤ 1
4 that

ΦGℓ(S) ≥ 1− C(ℓ)(|S|) ▷By Lemma 2.6 (2.38)

≥ 1

20

(
1− (1− 2Φ2δ(G))

√
ℓ
)

▷By Lemma 2.9 (2.39)

≥ 1

20
(1− (1− 2Φ2δ(G))) (2.40)

=

√
ℓ

20
Φ2δ(G) ≤

√
ℓ

40
Φ2δ(G) (2.41)

In the last inequality, we used Lemma 2.8 with z = 2Φ2δ(G).

Finally, these two lower bounds are too loose for graphs (and subsets) that already have good conductance.
Instead we require that ΦGℓ(S) is at least as big as ΦG(S). Note that this is not necessarily the case for all
graphs. Instead, we must use the fact that our graphs are lazy. We show this in the following lemma:

Lemma 2.10. LetG := (V,E) be any connected∆-regular lazy graph with conductance ΦG and letGℓ be its
ℓ-walk graph. For a set S ⊂ G defineΦGℓ(S) the conductance of S inGℓ. Then, it holds:

ΦGℓ(S) ≥ ΦG(S) (2.42)

Proof. Our technical argument is based on the following recursive relation between C(ℓ+1) and C(ℓ), which
was (in part) already shown in [LS90]:

Lemma 2.11 (Lemma 1.4 in [LS90]). It holds

C(ℓ+1)(|S|) ≤1

2

(
C(ℓ)(|S|+ 2ΦG

ˆ|S|) + C(ℓ)(|S| − 2ΦG
ˆ|S|)
)

(2.43)

Here, we use the abbreviation ˆ|S| := max{|S|, n − |S|}. The remainder of the proof is based on two
claims. First, we claim thatC(ℓ)(|S|) is monotonically increasing in ℓ.

Claim 3. It holdsC(ℓ)(|S|) ≤ C(ℓ−1)(|S|)

Proof. This fact was already remarked in [LS90] based on an alternative formulation. However, given thatC(ℓ)

is concave, it holds that for all values γ, β ≥ 0with γ ≤ β that

C(ℓ)(S + βŜ) + C(ℓ)(|S| − βŜ) ≤ C(ℓ)(S + γ ˆ|S|) + C(ℓ)(|S| − γ ˆ|S|) (2.44)

And thus, together with Lemma 2.11, we get:

C(ℓ)(|S|) ≤ 1

2

(
C(ℓ−1)(|S|+ 2ΦG|Ŝ|) + C(ℓ−1)(|S| − 2ΦG|Ŝ|)

)
(2.45)

≤ 1

2

(
C(ℓ−1)(|S|+ 0 · |Ŝ|) + C(ℓ−1)(|S| − 0 · |Ŝ|)

)
(2.46)

= C(ℓ−1)(|S|) (2.47)

48

Here, we chose β = 2ΦG and γ = 0 and applied Equation 2.44. This proves the first claim.

Second, we claim thatC(1))(|S|) is equal to 1− ΦG(S) as long as the graph we observe is lazy.

Claim 4. It holdsC(1)(|S|) = 1− ΦG(S)

Proof. For this claim (which was not explicitly shown in [KL14], but implied in [LS90]) we observe

C(1)(S) = max
δ0+···+δn=x,0≤δi≤1

n∑
i=1

δi(AGpS)i (2.48)

and find the assignment of the δ’s that maximizes the sum. Lovasz and Simonovits already remarked that it is
maximized by setting δi = 1 for all vi ∈ S. However, we prove it here since there is no explicit lemma or proof
to point to in [LS90]. First, we show that all entries (AGpS)i for nodes vi ∈ S are least 1

2|S| and all entries
(AGpS)i′ for nodes vi′ ̸∈ S are at most 1

2|S| . We begin with the nodes in S. Given thatG is∆-regular and
lazy, we have for all vi ∈ S that

(AGpS)i =

n∑
j=1

AG(vi, vj)pSj (2.49)

≥ AG(vi, vi)pSi (2.50)

≥ 1

2|S|
. (2.51)

Here, pSi =
1
|S| follows because vi ∈ S per definition. The inequalityAG(vi, vi) ≥ 1

2 follows from the fact
thatA is lazy and each node has a self-loop with probability 1

2 . As a result, the entry (AGpS)i for vi ∈ S has
at least a value of 1

2|S| , even if it has no neighbors in S. On the other hand, we have for all nodes vi′ ̸∈ S that

(AGpS)i′ =

n∑
j=1

AG(vj , vi′)pj (2.52)

=
∑
vj∈S

AG(vi′ , vj)
1

|S|
(2.53)

This follows from excluding all entries pj with vj ̸∈ S. Note that for these values, it holds pj = 0. Further,
SinceA is∆-regular and lazy, each node vi′ ̸∈ S has at most ∆

2 edges to nodes in S.

(AGpS)i′ =
∑
vj∈S

AG(vi, vj)
1

|S|
(2.54)

≤ ∆

2

1

∆

1

|S|
=

1

2|S|
(2.55)

Thus, the corresponding value (AGpS)i of any vi ∈ S is at least as big as value (AGpS)i′ of vi′ ̸∈ S. By a
simple greedy argument, we now see that

∑n
i=1 δi(A

ℓpS)i is maximized by picking δi = 1 for all nodes in S:
To illustrate this, suppose that there is a choice of the δ’s such that

∑n
i=1 δi(AGps)i is maximized and it holds

49

δi < 1 for some vi ∈ S. Since no δ can be bigger than 1 and the
∑n

i=1 δi = |S| there must be a vi′ ̸∈ S

with δi′ > 0. Since (AGpS)i ≥ (AGpS)i′ decreasing δi′ and increasing δi does not decrease the sum. Thus,
choosing δi = 1 for all vi ∈ S must maximize the term

∑n
i=1 δi(AGps)i. This yields:

n∑
i=1

δi(AGpS)i =
∑
vi∈S

∑
vj∈S

AG(vi, vj)
1

|S|
=

1

|S|
∑
vi∈S

e(vi, vj)

∆
(2.56)

=
∆|S| −OS

∆|S|
= 1− OS

∆|S|
= 1− ΦG(S) (2.57)

Here, the valueOS denotes the edges leavingS. Given that the graph is∆-regular, the term∆|S|−OS counts
all edges in S. This was to be shown.

If we combine our two claims, the lemma follows.

Thus,ΦGℓ(S) is at least as big asΦG(S). Together with the previous lemmas, this proves Lemma 2.5.

2.2.2 A Cut-Based Union Bound

In this section,wepresent a variant of the unionbound that is necessary for our analysis. Consider a series of bad
events that do not occur w.h.p., i.e., with probability for these events is smaller than 1/nc for some c > 1. If the
number of events in question is superpolynomial, i.e., bigger thannc for any constant c, the union bound alone
is not enough to show that these events do not happenw.h.p. In this chapter, we need tomake some statements
about events that correlate to all possible subsets of nodes of a random graph. Since there are exponentially
many of these subsets, we need to apply the union bound more carefully. We show the following technical
lemma:

Lemma 2.12 (Cut-based Union Bound). LetG := (V,E) be a (multi-)graph with n nodes andm edges and
let B := {BS | S ⊆ V ∧ |S| ≤ n/2} a set of bad events. Suppose that the following three properties hold:

1. G has at mostm ∈ O(nc1) edges for some constant c1 > 1.

2. For each BS it holds Pr[BS] ≤ e−c2OS for some constant c2 > 0.

3. The minimum cut ofG is at leastΛ := 4 c1
c2
c3 logn edges for some tunable constant c3 > 1.

Then, the probability any of the events in B happens can be bounded by:

Pr

[⋃
S⊂V

BS

]
≤ n−c3 (2.58)

In other words, w.h.p. no event from B occurs.

Proof. The core of this lemma is a celebrated result of Karger [Kar00] that bounds the number of cuts (and
therefore the number of subsets S ⊂ V with |S| ≤ n/2 as one side of each cut must have fewer than n/2

nodes) with at most αΛ outgoing edges byO(n2α). More precisely, it holds:

50

Lemma 2.13. Theorem 3.3 in [Kar00], simplified LetG be an undirected, unweighted (multi-)graph and let
Λ > 1 be the size of a minimum cut inG. For an even parameter α ≥ 1, the number of cuts with at most αΛ
edges is bounded by n2α.

Thus, if the probability of a bad event for a set S exponentially depends onOS (and not some constant c),
a careful application of the union bound will give us the desired result. The idea behind the proof is to divide
all subsets into groups based on the number of their outgoing edges. Then, we use Karger’s Theorem to bound
the number of sets in a group and use the union bound for each group individually.

More precisely, let Pow(V) denote all possible subsets of V . Then, we define Sα ∈ Pow(V) to be the set
of all sets that have a cut of size c ∈ [αΛ, 2αΛ). Using this definition, we can show that the following holds by
using the union bound and regrouping the sum:

Pr[B] ≤
∑
S⊂V

Pr[BS] ≤
m
Λ∑

α=1

∑
S∈Sα

Pr[BS | S ∈ Sα] (2.59)

Note that the upper limit m
Λ of the outermost sum is derived from the fact that at mostm edges may cross any

cut in the graph. Further note that that for each α > 1 it holds that Sα ⊂ {S ⊂ V | OS ≤ 2αΛ} by
definition and therefore |Sα| ≤ |{S ⊂ V | OS ≤ 2αΛ}|Nowwe can apply Theorem 2.13 and see that

Pr[B] ≤
m
Λ∑

α=1

∑
S⊂V,OS≤2αΛ

Pr[BS | S ∈ Sα] (2.60)

≤
m
Λ∑

α=1

n2·(2α) max
S⊂V,OS≤2αΛ

Pr[BS | S ∈ Sα] (2.61)

≤
m
Λ∑

α=1

n2·(2α) max
S⊂V,OS≤2αΛ

Pr[BS | OS ≥ αΛ] (2.62)

≤
m
Λ∑

α=1

n2·(2α)e−c2Λα (2.63)

Here, inequality (2.61) followed fromTheorem2.13, everything else from the definition ofSα andBS . Finally,
our specific choice ofΛ ≥ 4 c1

c2
c3 logn comes into play. Plugging it into the exponent of our bound, we get:

Pr[B] ≤
m
Λ∑

α=1

n2·(2α)n−4c1·c3α ≤
m
Λ∑

α=1

n−c1c3 ≤ m

Λ
n−c1c3 (2.64)

To complete the proof, we need to bound m
Λ . Per definition, it holds thatm ≤ nc1 . Back in the formula, we

get

Pr[B] ≤ m

Λ
n−c1c3 ≤ nc1

Λ
n−c1c3 ≤ 1

Λ
nc3 < n−c3 (2.65)

This proves the lemma.

51

2.3 Analysis of CreateExpander

The main challenge of our analysis is to show that after L ∈ O(logn) iterations, the final graph GL has a
diameter of O(logn). To show this, we will conduct an induction over the graphs G1, . . . , GL. Our main
insight is that— given the communication graph is benign—we can use short randomwalks of constant length
to iteratively increase the graph’s conductance until we reach a graph of low diameter. In the following, we will
abuse notation and refer to the virtual nodesV ′ used in this stage of the algorithm asV . We show the following:

Lemma 2.14. LetG0 := (V,E0) a benign (multi-)graph withn nodes andO(n3) edges. LetL := 3 logn and
Λ := 6400λ logn for some tunable λ > 1. Then, it holds:

Pr
[
Φ(GL) ≥

1

32

]
≥
(
1− n−λ

)
(2.66)

Intuitively, this makes sense as the conductance is a graph property that measures how well-connected a
graph is, and — since the random walks monotonically converge to the uniform distribution — the newly
sampled edges can only increase the graph’s connectivity. Our formal proof is structured into four steps: First,
in Section 2.3.1, we show thatw.h.p. each node receives and sends atmostO(∆)messages in each round. Thus,
no messages are dropped during the algorithm’s execution. With this technicality out of the way, we show in
Section 2.3.2 that the conductance ofGi+1 increases by a factor ofΩ(

√
ℓ)w.h.p. ifGi is benign. Furthermore,

in Section 2.3.3 we show that eachGi+1 is benign ifGi is benign, w.h.p. Finally, we use the union bound to tie
these facts together and prove Theorem 1 in Section 2.3.4.

2.3.1 Bounding the Communication Complexity

Beforewe go into the proof’smore intricate details, let us first prove that allmessages are successfully sent during
the algorithm’s execution. Remember that we assume the (virtual) nodes have a communication capacity of
O(logn). Thus, a node can only send and receiveO(logn)messages as excess messages are dropped arbitrarily.
To prove that no message is dropped, we must show that no node receives more than O(logn) random walk
tokens in a single step. However, this is a well-known fact about the distribution of random walks:

Lemma 2.15 (Also shown in [DGS16, CHFSV19, SMPU13]). Consider a ∆-regular graph Gi = (V,E)

where each node starts ∆
8 independent random walk tokens. For a node v ∈ V and an integer t, let Xt

v be
the random variable that denotes the number of tokens at node v in step t of the random walk. Then, it holds
Pr
[
Xt

v ≥ 3∆
8

]
≤ e−

∆
12 .

The lemma follows from the fact that each node receives ∆
8 tokens in expectation, given that all neighbors

received ∆
8 tokens in the previous round. For each node v ∈ V letXt

v be the number of token it has in step t.
Assume that it holdsE [Xt

v] =
∆
8 for all v ∈ V . In the first step, for t = 0, this holds by assumption. AsGi is

regular, each nodew ∈ N(v) ∪ {v} sendsXt
w ·

e(v,w)
∆ tokens to v on expectation where e(v, w) counts the

52

number of edges between v and w. This follows from Lemma 2.1 for ℓ = 1. As each node has∆ incoming
edges the expected number of tokens is received by v is:

E
[
Xt+1

v

]
=

∑
w∈N(v)∪{v}

E
[
Xt

w

]
· e(w, v)

∆
=

∑
w∈N(v)∪{v}

∆

8
· e(w, v)

∆
(2.67)

=
∑

w∈N(v)∪{v}

e(w, v)

8
=

1

8
·

∑
w∈N(v)∪{v}

e(w, v) =
∆

8
. (2.68)

Since all nodes again start with ∆
8 tokens on expectation in step t + 1, the lemma follows inductively. This

proves that for all t and v, it holds:

E
[
Xt

v

]
=

∆

8
. (2.69)

For the tail estimate, recall that all walks/tokens are independent. In other words, for each t and each v, the
variable Xt

v is the sum of binary independent random variables. Thus, a simple application of the Chernoff
bound with δ = 2 (cf. Lemma 1.6) yields the result as

Pr
[
Xt

v ≥
3∆

8

]
= Pr

[
Xt

v ≥ (1 + 2)
∆

8

]
= Pr

[
Xt

v ≥ (1 + 2)E
[
Xt

v

]]
≤ e−

2
3

∆
8 = e−

∆
12 (2.70)

Note that this Lemma also directly implies that, w.h.p., all random walks create an edge as every possible end-
point receives less than 3∆

8 token and therefore replies to all of them. For our concrete value of∆ it holds:

Lemma 2.16. Let∆ ≥ Λ := 6400λ logn for some tunable parameter λ > 1. Then, for any round t it holds
with probability at least 1− n−8λ that every node holds fewer than 3

8∆ tokens.

Proof. This follows directly from Lemma 2.15. DenoteXt
v the number of tokens that node v ∈ V receives

after t steps. Consider the event that node v receives more than 3
8∆ tokens. Recall that the probability for this

event is

Pr
[
Xt

v ≥
3

8
∆

]
≤ e−

∆
12 ▷By Lemma 2.15 (2.71)

Now we use that∆ is at least as big asΛ := 6400λ logn. Plugging this into the formula yields:

Pr
[
Xt

v ≥
3

8
∆

]
≤ e−

∆
12 ≤ e−9λ logn = n−9λ (2.72)

Finally, let B the event that any node receives more than 3
8∆ tokens. By the union bound, we see

Pr[B] = Pr

[⋃
v∈V

X(v, ℓ) ≥ 3

8
∆

]
≤
∑
v∈V

Pr
[
X(v, ℓ) ≥ 3

8
∆

]
▷Union bound (2.73)

≤
∑
v∈V

n−9λ ≤ n−8λ ▷By Equation (2.72) (2.74)

53

Therefore, all nodes receive less than 3∆
8 tokens each round and the algorithm stays within the congestion

bounds of our model with probability 1−n−8λ. Since all iterations take ℓ ·L ∈ O(logn) rounds in total, the
union bound implies that no node receives too many messages in any round, w.h.p.

2.3.2 Bounding the Conductance ofGi

In this section, we show that the graph’s conductance is increasing by a factorΩ(
√
ℓ) fromGi toGi+1 w.h.p.

ifGi is benign. More formally, we show the following:

Lemma 2.17. Let λ > 0 be a parameter and let Gi and Gi+1 be the graphs created in iteration i and i + 1,
respectively. Finally, assume that Gi is benign with a minimum cut of at least Λ ≥ 6400λ logn and degree
∆ > 64Λ. Then, it holds with probability at least 1− n−7λ that

ΦGi+1
≥ min

{
1

32
,

1

640

√
ℓΦGi

}
(2.75)

In particular, for any ℓ ≥ (2 · 640)2, it holds

ΦGi+1
≥ min

{
1

32
, 2 · ΦGi

}
(2.76)

Our first observation is the fact that random walks of length ℓ are distributed according to 1-step walks in
Gℓ

i . In particular, if we consider a subset S ⊂ V and pick a node v ∈ S uniformly at random, then ΦGℓ
i
(S)

denotes the probability that a random walk started at v ends outside of the subset after ℓ steps.

Lemma 2.18. LetG be a∆-regular graph and S ⊂ V be a any subset of nodes with |S| ≤ n
2 and suppose each

node in S starts ∆
8 random walks. Let YS count the ℓ-step random walks that start at some node in v ∈ S and

end at some nodew ∈ V \ S. Then, it holds:

E [YS] :=
∆|S|
8

ΦGℓ
i
(S)

Proof. First, we observe that we can express YS as the sum of binary random variables for each walk. For each
vi ∈ S let Y 1

i , . . . , Y
d
i be indicator variables that denote if a token started by vi ended in S := V \ S after ℓ

steps. Given this definition, we see that

YS :=

|S|∑
i=1

∆
8∑

j=1

Y j
i . (2.77)

Recall that an ℓ-step random walk inGi corresponds to a 1-step random walk inGℓ
i . This means that for each

of its ∆
8 tokens node vj picks one of its outgoing edges inGℓ

i uniformly at random and sends the token along

54

this edge (which corresponds to an ℓ-step walk). For ease of notation, let Oℓ
j be the number of edges of node

vj ∈ S inGℓ
i where the other endpoint is not in S, i.e.,

Oℓ
j :=

∑
w∈S

Pℓ(vj , w) (2.78)

Now consider the kth random walk started at vj and observe Y k
j . Note that it holds:

E[Y j
k (t)] =

∑
w∈S

Pr
[
X1

vj (w,G
ℓ)
]
· E[Y j

k (t) | X
1
vj (w,G

ℓ)] (2.79)

=
∑
w∈S

Pr
[
X1

vj (w,G
ℓ)
]
=
∑
w∈S

Pℓ(vj , w)

∆ℓ
(2.80)

=
Oℓ

j

∆ℓ
(2.81)

Here, equation (2.80) follows from Lemma 2.1. LetOℓ
S be the number of all outgoing edges from the whole

set S inGℓ
i . It holds thatOℓ

S :=
∑

vj∈S Oℓ
j . Recall that the definition ofΦGℓ

i
is the ratio of edges leading out

of S and all edges with at least one endpoint in S. Given that Gℓ
i is a∆ℓ-regular graph, a simple calculation

yields:

E [YS] = E

 |S|∑
j=1

∆
8∑

k=1

Y k
j

 =

|S|∑
j=1

∆
8∑

k=1

E
[
Y k
j

]
(2.82)

=
∆

8

∑|S|
i=1 O

ℓ
i

∆ℓ
=

∆

8

Oℓ
S

∆ℓ
▷By Eq. (2.81) (2.83)

=
∆|S|
8

Oℓ
S

|S|∆ℓ
=

∆|S|
8

ΦGℓ
i
(S) (2.84)

In the last line , we used thatΦGℓ
i
(S) :=

Oℓ
S

|S|∆ℓ per definition asOℓ
S counts the edges with an endpoint outside

of S and |S|∆ℓ counts the total number edges with an endpoint in S asGℓ
i is a∆ℓ-regular graph. This proves

the lemma.

Therefore, a lower bound onΦGℓ
i
gives us a lower bound on the expected number of tokens that leave any

set S. Thus, as long asGi is regular and lazy, we have a suitable lower bound forΦGℓ
i
with Lemma 2.5. In fact,

given that the random walks are independent, we can even show the following:

Lemma 2.19. Let S ⊂ V be set of nodes withOS outgoing edges, then it holds:

Pr
[
YS ≤

∆|S|
16

ΦGℓ
i
(S)

]
≤ e−

OS
64 (2.85)

55

Proof. This follows from the Chernoff bound and the fact that the random walks are independent. Recall
that for each set S, the number of outgoing edges YS :=

∑s
i=1

∑∆/8
k=1 Y

k
i inGi+1 is determined by a series

independent binary variables. Thus, by the Chernoff bound, it holds that

Pr[Y ≤ (1− δ)E[Y]] ≤ e−
δ2

2 E[Y]. (2.86)

By choosing δ = 1/2, we get

Pr
[
Y ≤ 1

2
E [YS]

]
≤ e−

E[YS]
8 . (2.87)

Therefore, it remains to show that our claim thatE[Y] ≥ OS

8 holds, and we are done. By Lemma 2.18 we have
for all set withOS outgoing edges that

E[YS] ≥
∆|S|
8

ΦGℓ
i
(S) ▷By Lemma 2.18 (2.88)

≥ ∆|S|
8

ΦGi
(S) ▷By Lemma 2.10 (2.89)

≥ ∆|S|
8

OS

∆|S|
≥ OS

8
▷AsΦ(S) := OS

∆|S|
(2.90)

This proves the lemma.

Recall that we need to show that every subset S ⊂ V with |S| ≤ n/2 has a conductance ofO(
√
ℓΦGi

) in
Gi+1 in order to prove thatΦGi+1

= Ω(
√
ℓΦGi

). In the following, wewant to prove that for every setS, there
are at leastΘ(

√
ℓΦGi

) tokens that start at some node v ∈ S and end at some nodew ∈ S after ℓ steps w.h.p.
These tokens are counted by the random variable YS , which we analyzed above. In particular, given that a set
S has OS outgoing edges, the value of YS is concentrated around its expectation with probability e−Ω(OS).
Thus, we can apply Lemma 2.12 and show that— for a big enoughΛ—all sets have many tokens that escape.

Lemma2.20. DefineM(S, ℓ) := min
{

∆|S|
32 , ∆|S|

640

√
ℓΦGi

}
. LetGi be abenign graphwithΛ ≥ 6400λ logn.

Then, it holds

Pr[∀S ⊂ V : YS ≥M(S, ℓ)] ≥1− n−8λ. (2.91)

Proof. For a set S ⊂ V we define BS to be the event that S has bad conductance, i.e., it holds that YS — the
number of tokens that leaveS—is smaller thanM(S, ℓ). We letB1 =

⋃
S⊂V BS be the event that there exists

a setS with bad conductance, i.e., there is anyBS that is true. By Lemma 2.19, we know that the probability of
BS exponentially depends onOS . Thus, wewant to use Lemma2.12 to that noBS occursw.h.p. Therefore, we
must show that the three conditions mentioned in the lemma are fulfilled. The first and third property follow
directly from the definition of benign graphs, as the graph is polynomial in size and has a logarithmicminimum
cut with a tunable constant. For the concrete constants, it holds:

1. G has at mostm ∈ O(nc1) edges for some constant c1 > 1: Recall that we limited ourselves to simple
initial graphs withO(n2) edges and copied each edgeO(Λ) times. SinceΛ ∈ o(n), we have strictly less
than n3 edges. Thus, we have c1 := 3.

56

2. For each BS it holds Pr[BS] ≤ e−c2OS for some constant c2 > 0: By Lemma 2.19 a bad event BS
for a set S ⊆ V happens with probability at most e−

OS
64 . Thus, we have c2 := 1

64 .

3. Theminimum cut ofG is at leastΛ := 4 c1
c2
c3 logn edges for some tunable variable c3 > 1: SinceGi

is benign, it holds Λ ≥ 6400λ logn > (4 · 3 · 64) 8λ logn for a constant λ. Thus, we have c3 := 8λ.
Note thatλ is tunable as it can be chosen as high aswewant by constructing a sufficiently largeminimum
cut inG0 by creating copies of each initial edge.

Given that all three conditions are fulfilled with constants c1 = 3,c2 = 1
64 , and c3 = 8λ, Lemma 2.12 implies

that it holds:

Pr

 ⋃
S⊆V

BS

 ≤ n−c3 := n−8λ (2.92)

This was to be shown.

With this insight, we can now formally prove Lemma 2.17:

Proof of Lemma 2.17. First, we note that if no set S ⊂ V with |S| ≤ n/2 has less thanM(S, ℓ) tokens that
end outside ofS and all tokens are used to create an edge, then the resulting conductance ofGi+1 must also be
at leastM(S, ℓ) and the lemma follows. This can easily be verified by observing the algorithm: We note that
by construction, the degree can never be higher than∆. Recall that every node creates its edges forGi+1 based
on the tokens it received. If any node receives fewer than∆ tokens, it creates self-loops to reach a degree of∆.
Excess edges are dropped arbitrarily to ensure a degree of at most∆. Thus, each set S maintains∆|S| edges in
total, as each node will always have∆ edges regardless of how many tokens it receives. Further, we letO(i+1)

S

be the number of edges that leave S inGi+1. Two sets of edges determine the value ofO(i+1)
S :

1. The edges that are created by nodes outside S. These are based on tokens they received from nodes in S.
We denote these edges by ỸS .

2. The edges that are created by nodes in S. These are based on tokens they received from nodes outside.
We do not make any statements about these edges and ignore them for the remainder of the proof.

For easier notation, let B1 be the event that each set S ⊂ V hasM(S, ℓ) tokens that end outside of the set.
Moreover, letB1 be the event that this is not the case. Further, letB2 be the event that all these tokens are used
to create an edge. Again, let B2 denote the complementary event. Note that the eventB2 directly implies that
ỸS = YS . Given these facts and definitions, we can use Lemma 2.18 from above and see that the eventsB1 and

57

B2 imply that the conductance of each set is bigger or equal toM(S, ℓ). If they both occur simultaneously, it
holds for each set S ⊂ V :

B1 ∩ B2 ⇒

{
YS ≥ min

{
∆|S|
32

,
∆|S|

√
ℓΦGi

640

}}
∩ {ỸS = YS} (2.93)

⇒

{
ỸS ≥ min

{
∆|S|
32

,
∆|S|

√
ℓΦGi

640

}}
(2.94)

⇒

{
O

(i+1)
S ≥ min

{
∆|S|
32

,
∆|S|

√
ℓΦGi

640

}}
(2.95)

⇒

{
O

(i+1)
S

∆|S|
≥ min

{
1

32
,

√
ℓΦGi

640

}}
(2.96)

⇒

{
ΦGi+1

(S) ≥ min

{
1

32
,

√
ℓΦGi

640

}}
(2.97)

Since this implication holds for all sets S ⊂ V , we get:

B1 ∩ B2 ⇒

{
ΦGi+1

≥ min

{
1

32
,

√
ℓΦGi

640

}}
(2.98)

Therefore, it holds that

Pr

[
ΦGi+1

≥
√
ℓΦGi

640

]
≥ Pr

[
B1 ∩ B2

]
▷By Equations (2.98) (2.99)

≥ 1− (Pr[B1] + Pr[B2]) ▷Union bound (2.100)

≥ 1−
(
n−8λ + n−8λ

)
▷By Lemmas 2.20 and 2.16 (2.101)

≥ 1− n−7λ (2.102)

This proves the lemma.

2.3.3 Ensuring That EachGi is Benign

Since all the arguments from before only hold if Gi is benign, we must make sure that each graph in G :=

G1, . . . , GL is indeed benign. As before, we prove this step by step and show thatGi+1 is benign given that
Gi is benign.

Lemma 2.21. LetGi andGi+1 be the graphs created in iteration i and i+ 1, respectively, and assume thatGi

is benign. Then with probability at least 1− n−8λ the graphGi+1 is also benign

Proof. Wewill show that eachGi+1 is a∆-regular, lazy graphwith aΛ-sized cut. Note that the last property also
ensures thatGi+1 is connected. The first property follows directly from observing the algorithm: Recall that
every node creates its edges forGi+1 based on the tokens it received. If any node receives fewer than∆ tokens,

58

it creates self-loops to reach a degree of∆. Excess edges are dropped arbitrarily to ensure a degree of at most∆.
By a similar argument, we can easily see thatGi+1 lazy. For this, recall that a node connects to endpoints of all
its ∆

8 tokens and additionally to the origins of all (but at most 3∆
8) tokens it received. Thus, in the worst case,

it creates at most ∆
8 + 3∆

8 = ∆
2 edges. Therefore, it creates at least ∆

2 — and therefore enough — self-loops.
The third property — theΛ-sized minimum cut — is perhaps the most difficult to show. However, at a closer
look, the proof is almost identical to the proof of Lemma 2.17. In particular, we show that all cuts that are close
to the minimum cut will (in expectation and w.h.p.) increase in size in each iteration and never fall below Λ.
The idea behind the proof uses the fact that [KL14] (and therefore Lemma 2.5) gives us a stronger bound on
the expected growth of the subset than just the conductance. This observation is enough to show that all sets
that have close to Λ outgoing connections will slightly increase the number of outgoing connections for a big
enough ℓ. In particular, it holds:

Lemma 2.22. Suppose that ℓ ≥ (2 · 640)2. Then, for any set S ⊆ V with |S| ≤ n
2 andOS outgoing edges, it

holds:

Pr[YS ≤ Λ] ≤ e−
OS
64 (2.103)

Proof. By Lemma 2.19 we have that:

Pr
[
Y ≤ 1

2

(
∆|S|
8

ΦGℓ
i
(S)

)]
≤ e

OS
64 . (2.104)

Thus, it remains to show that for all sets S ⊆ V , it holds:

∆|S|
8

ΦGℓ
i
(S) ≤ 2Λ (2.105)

Consider a set of size |S| := δsn. For this set, it holds:

E[YS] =
∆|S|
8

ΦGℓ
i
(S) ≥ ∆|S|

8
Φδ(G

ℓ
i) (2.106)

This follows becauseΦδs(G
ℓ
i) ≤ ΦGℓ

i
(S) per definition. Due to Lemma 2.5, we know that we can bound this

as follows:

Case 1: δs ≥ 1
4 It holds:

ΦGℓ,δs ≥ min
{
1

2
,
1

40

√
ℓΦ(G)

}
▷By Lemma 2.5 (2.107)

≥ min
{
1

2
,
1

40

√
ℓ
2Λ

∆n

}
▷By Lemma 2.2 (2.108)

≥ min
{
1

2
,
1

40

√
ℓ

Λ

2∆|S|

}
▷As |S| ≥ n/4 (2.109)

59

Case 2: δs ≤ 1
4 It holds:

ΦGℓ,2δs ≥ min
{
1

4
,
1

40

√
ℓΦ2δs

}
▷By Lemma 2.5 (2.110)

≥ min
{
1

4
,
1

40

√
ℓ

2Λ

∆2δsn

}
▷By Lemma 2.2 (2.111)

≥ min
{
1

4
,
1

40

√
ℓ

Λ

∆|S|

}
▷As |S| := δsn (2.112)

The factor of 2 that appears in the denominator in the second line results from a subtle detail in Lemma
2.5. Since we observe a set of size δsn, we must consider Φ2δs . Since we always consider sets of size at
most n

4 , this is always well-defined.

Putting these bounds back into the formula gives us (for a set of any size):

E[YS] ≥
∆|S|
8

min
{
1

4
,
1

40

√
ℓ

Λ

2∆|S|

}
(2.113)

Now, choosing ℓ > (2 · 640)2 yields:

E[YS] ≥
∆|S|
8

min
{
1

4
,
1

40

√
(2 · 640)2 Λ

2∆|S|

}
(2.114)

≥ ∆|S|
8

min
{
1

4
,
1

16

Λ

∆|S|

}
(2.115)

We need to again distinguish between two cases:

Case 1 : 1
4 ≤

1
16

Λ
∆|S| In this case, we have:

E[YS] ≥
∆|S|
8

1

4
≥ ∆|S|

32
≥ 64Λ

32
= 2Λ (2.116)

Here, we used that∆ ≥ 64Λ asGi is benign.

Case 2 : 1
4 > 1

16
Λ

∆|S| In this case, we have:

E[YS] ≥
∆|S|
8

16Λ

∆|S|
= 2Λ (2.117)

This proves that E[YS] ≤ 2Λ and therefore the lemma.

We can round up the proof with the same trick as before. Again, wemust show that every cut has a value of
atΛ and use Karger’s bound together with Lemma 2.22 to show that no cut has a worse value, w.h.p.

Lemma 2.23. LetGi be a benign graph withΛ ≥ 6400λ logn. Then, it holds

Pr[∀S ⊂ V : YS ≥ Λ}] ≥ 1− n−8λ. (2.118)

60

Proof. The proof is completely analogous to the proof of Lemma 2.20 down to the constants. For each set S
with |S| ≤ n/2, we observe the eventBS thatYS is smaller thanΛ. Just as in Lemma 2.20, the graphGi has at
mostn3 edges, the eventBS has probability at most e−

OS
64 , and theminimum cut is of size 6400λ logn. Thus,

Lemma 2.12 yields this lemma.

Finally, recall that each token creates an edge with probability 1 − n−8λ by Lemma 2.19 and at least Λ
tokens leave each set with prob. 1 − n−8λ by Lemma 2.23. By the union bound, both these events hold with
prob. at least 1 − n−7λ. This implies that each cut in Gi+1 has at least size Λ w.h.p. and therefore proves
Lemma 2.21

2.3.4 Finalizing the Proof

To round up the analysis, we only need to prove Lemma 2.14 and show that afterO(logn) iterations, the graph
has constant conductance. Based on our insights, we can conclude that if∆, ℓ, and Λ are big enough andGi

is benign, thenGi+1 is benign and has at least twice its conductance w.h.p. (if it was not already constant). To
be precise, assume thatGi is benign and let ℓ := (2 · 640)2 and Λ ≥ 6400λ logn. Then, it holds that with
probability 1− n−7λ that

1. Gi+1 has conductance at least 2ΦGi
(ifΦwas not already constant) by Lemma 2.17, and

2. Gi+1 is benign by Lemma 2.21.

For an easier notion, letZi+1 be a random variable that takes the value ofGi+1’s conductance ifGi+1 benign
and 0 otherwise. For any value φ > (0, 1

32), it holds that:

Pr[Zi+1 ≥ φ] ≥ Pr
[
Zi ≥

φ

2

]
Pr
[
Zi+1 ≥ φ | Zi ≥

φ

2

]
(2.119)

≥ Pr
[
Zi ≥

φ

2

] (
1− (2n−7λ)

)
(2.120)

Here, the first inequality follows from the law of total expectation and the last follows from Lemmas 2.17 and
2.21 as well as the union bound. Given that after every iteration the graph’s conductance increases by a factor
of 2w.h.p, Inequality (2.120) implies the following:

Pr
[
Zi+1 ≥

2i+1

2L32

]
≥ Pr

[
Zi ≥

2i

2L32

] (
1− (2n−7λ)

)
(2.121)

If we inductively apply this argumentL times, we get:

Pr
[
ZL ≥

1

32

]
≥ Pr

[
ZL−1 ≥

1

64

] (
1− (2n−7λ)

)
≥ . . . ≥ Pr

[
Z0 ≥

1

2L32

] (
1− (2n−7λ)

)L
(2.122)

61

By choosingL := 3 logn, we obtain:

Pr
[
ZL ≥

1

32

]
≥ Pr

[
Z0 ≥

1

32n3

] (
1− n−6λ

)
(2.123)

Since the minimal conductance of any benign graph isO(n−3) by Lemma 2.2, it follows:

Pr
[
ZL ≥

1

32

]
≥
(
1− n−6λ

)
(2.124)

Therefore, the graph, w.h.p., has a constant conductance afterO(logn) iterations. This takesO(logn) rounds,
since each iteration lasts only ℓ ∈ O(1) rounds. Finally, a constant conductance implies a logarithmic diameter
by Lemma 2.3. This concludes the analysis.

62

3
Fast Computation of Connected Components

This section shows how our algorithm can be extended to find connected components in an arbitrary
graphG. In particular, for each connected component C ofG, we want to establish a well-formed
tree of overlay edges that contains all nodes of C . If the graph is connected, i.e., there is exactly one

component with n nodes, this theorem simply translates Theorem 1 to the HYBRID model. The main result
of this section is the following theorem:

Theorem 2. Time-Optimal Construction of Overlays (HYBRID)

LetG = (V,E) be a bidirected graphwithn nodes and suppose that the largest connected component
contains n′ nodes. Then, there is a randomized algorithm in the HYBRID model that constructs a
well-formed tree of each connected component inO(logn′) rounds, w.h.p.

Each node sends at most γ ∈ O(log3 n) bits per round in global mode, w.h.p., and λ ∈ O(logn) bits
along each edge in the local mode.

Note that the main difficulty preventing us from applying Theorem 1 directly on each component when
we use the HYBRIDmodel is that the initial graph’s degree is unbounded. Note that in the HYBRIDmodel,
a node v ∈ V can no longer createO(deg(v) logn) overlay edges, which was possible in the P2P-CONGEST
model. Thus, high degree nodes cannot simply simulate the algorithm from before. Therefore, the main con-
tribution of this section is a preprocessing algorithm that transforms any connected subgraph ofG into a graph
of bounded degree O(logn). Then, we execute the algorithm of Theorem 1 to create a well-formed tree for
each component. By Theorem 1, this takes O(logn′) time, w.h.p., for parameters L ∈ O(logn′). Further,

63

because the degree isO(logn), each node has to sendO(Λ logn)messages of sizeO(logn) forΛ ∈ O(logn).
Thus, the global capacity required by each node isO(log3 n) as claimed. Therefore, we only need to prove the
following lemma.

Lemma 3.1. LetG = (V,E) be a bidirected graph where each connected component contains at most n′ nodes.
There exists a randomized algorithm that transformsG into a bidirected graphH := (V,EH) that has degree
O(logn) and in which two nodes lie in the same component if and only if they lie in the same component in G.
The algorithm takesO(logn′) rounds w.h.p., in the CONGESTmodel.

The algorithm will be executed in parallel on all connected components of the graphG. In the remainder,
we will w.l.o.g. focus on a single connected componentC and its implied subgraphGC := (VC , EC). In par-
ticular, we present an algorithm that creates a bounded degree graphH(GC)for the nodes ofGC , so our main
algorithm can transform it into a well-formed tree inO(logn′) time. Since there is no communication between
components and we run the algorithm independently for each component, focusing on a single component is
enough to prove the lemma.

The algorithm’s main idea is to first eliminatemost edges by constructing a sparse spanner. Note that well-
known spanner constructions take O(logn) time, so a more careful analysis is required to show that we can
construct such a graph inO(logn′) time, i.e., logarithmic in the size of the biggest connected component. In
particular, we transform the graph into a sparse spanner1 using the efficient spanner construction of Miller et
al. [MPVX15a], later refined by Elkin and Neiman [EN18a]. In their algorithm, each node v ∈ V draws an
exponential random variable δu and broadcasts it to all nodes in the graph 2. Let u∗

v be the node that maximizes
δu∗

v
− dist(u∗

v, v) where dist(u∗
v, v) is the hop distance between u∗

v and v. Then, v joins the cluster of u∗
v

by storing its identifier and adding the first edge over which it received the broadcast from u∗
v to the spanner.

Finally, the nodes share their clusters’ identifiers with their neighbors and add edges between clusters to obtain
a connected graph. It is known that the resulting subgraph of G has very few edges as each node has only a
few neighbors in different clusters. As we will see, this property implies that we will have relatively few nodes
of high degree, and all these nodes have many neighbors of low degree. This follows from the fundamental
properties of the exponential distribution. We show that if the size of each connected component in graph
G is bounded by n′, it suffices to observe variables δv that are conditioned on being smaller than 4 logn′, i.e.,
truncated exponential random variables. With this small change, we speed up the algorithm toO(logn′)while
still producing a sparse subgraph with fewer edges.

Then, in a second step, we let all remaining nodes of high degree delegate their edges to nodes of lower
degree. This roughly means that each node introduces its neighbor to each other in a way that preserves the
connectivity but massively reduces its own degree (if it is higher than ω(logn)) while only slightly increasing
the neighbors’ degrees. If every node of a high degree has sufficientlymany neighbors of a low degree, the overall
degree becomes small enough for our algorithm to handle.

The remainder of this chapter is structured as follows. In Section 3.1 we describe our algorithm and in
Section 3.2 we prove Lemma 3.1, which along with Theorem 1 implies Theorem 2.

1We remark that — although we use the term spanner — we are not interested in the approximation of shortest paths but only in the
sparsification of the initial graph.

2We describe the concrete implementation of this broadcast in Chapter 3 and assume for an easier explanation that it is possible for the
moment.

64

3.1 AlgorithmDescription

In the following, we present the two steps of our preprocessing algorithm, the spanner construction and the
delegation of edges in detail.

(Step 1) Createa Sparse SpannerS(GC): In the first step, wewill construct a spannerS(GC) :=

(VC , S(EC)) of GC to reduce the number of edges to O(n logn) and its arboricity to O(logn). In
particular, we note that S(GC) is a subgraph ofG, so every edge in S(GC) is a local edge in our hybrid
model. Wewill adapt spanner construction algorithms based on exponential start time clustering [Xu17].

Conceptually, our algorithm can be subdivided into two phases. First, we construct clusters of nodes.
Each cluster is a subset of nodes that is internally connected via a spanning tree. Then, in the second phase,
we add additional edges to connect the clusters. We begin with the description of clustering phase where
each node joins some cluster. By joining a cluster, we mean that a node v ∈ V either declares itself the
head of a cluster or picks a neighbor p(w) ∈ Nv , such that the edge (v, p(w)) is the next edge of a path
to the head of the cluster. In the latter case, we will refer to p(w) as the predecessor of v. The clusters are
constructed as follows.

1. In the beginning, each node v independently draws a random value rv from the exponential dis-
tribution with parameter β = 1/2. Values larger than 4 logn′ are redrawn until rv ≤ 4 logn′, i.e.,
we draw exponentially distributed variables conditioned on being smaller than 4 logn′.

2. If a node v did not receive anymessage until round 4 logn′−⌈rv⌉, it creates themessage (rv, v, 0)
that contains its random value rv , its identifier, and a hop counter. Finally, node v delivers this
message to itself together with all other messages received in this round.

3. Once a node v receives one or more messages of the form (ru, u, xu)with u ∈ V , it joins a cluster.
Let u∗ be node that maximizes the term ru∗ − xu∗ among all received values. Then, v joins the
cluster of u∗. If u∗ = v, it declares itself the cluster head. Otherwise, v joins u∗’s cluster. For
this, it stores the identifier of u∗ and the identifier of the neighbor p(v) from which it received the
message (ru∗ , u∗, xu∗). In other words, we declare node p(v) to be its predecessor. If v received the
message simultaneously frommore than one neighbor, it picks the one with the smallest identifier
as its predecessor. In the end, v sends (ru∗ , u∗, xu∗ + 1), i.e., the same message with an increased
hop counter, to all its neighbors.

After each node joins a cluster, all nodes add the edge to their predecessor to the spanner (if they have
one). By adding an edge to w to the spanner, we mean that a node v locally marks w as a neighbor in the
spanner and sends a message tow, sow also locally marks v as a neighbor in the spanner. Thus, the edges
are always bi-directed and we only add edges that are present in the initial graph GC . The latter is very
important for our construction, as we will require local communication on these edges later on.

However, the subgraph implied by the edges added during this phase is not necessarily connected.
These edges only connect a node with its predecessor in its cluster. As we will see, these edges imply a

65

spanning tree rooted in the node’s respective cluster head, but there are no paths to nodes in other clusters.
Thus, in the second part, we add edges between the clusters to the spanner to ensure it is connected. To
simplify notation, we refer to all clusters that contain at least one neighbor of a node as its neighboring
clusters. We create the edges between clusters in the following way. First, all nodes send the identifier
of their cluster head to all their neighbors to inform them about their neighboring clusters. This way,
each node can determine all its neighboring clusters and which of its neighbors are in which neighboring
clusters. Second, all nodes add an edge to exactly one node of each neighboring cluster. To be precise,
suppose that v ∈ V is in the cluster of some node u∗

v ∈ V and a neighbor w ∈ Nv is in the cluster
of some node u∗

v ̸= u∗
w ∈ V . Then, after receiving the identifier u∗

w from w, node v adds an edge w
to the spanner. If more than one neighbor is in this cluster, node v again picks the neighbor with the
smallest identifier and only adds the edge to this neighbor to the spanner. As a result, it is also possible
that that w perhaps adds another edge to another member of v’s cluster. However, the number of edges
each individual node adds is bounded by the number of their neighboring clusters. This concludes the
construction of the spanner and the first phase of our preprocessing algorithm.

(Step 2) Transform S(GC) into a bounded degree graphH(GC): Now, we will construct
a bounded degree graphH(GC) from S(GC). Note thatH(GC)— in contrast to S(GC)— is not a
subgraph of GC and contains additional edges. Although S(GC) has few edges in total, there can still
be high-degree nodes. Our goal is for high-degree nodes to redirect their edges to other nodes to balance
the degrees. This technique is conceptually similar to constructing a child-sibling tree as in [AW07] and
[GHSS17].

1. In the first step, we add an orientation to the edges similar to the Nash-Williams Forest Decompo-
sition, which is often utilized in algorithms for sparse graphs [AGG+19b, BE10]. This procedure
adds an orientation to each edge {v, w} such that it is either oriented towards v or w. We will
slightly abuse notation and refer to all edges oriented towards a node v ∈ V as its incoming edge
and all others as outgoing edges. Note that we will still require bidirectional communication be-
tween v andw.

It is well known that any graph of arboricity a has an orientation where each node has at most
O(a) outgoing edges [AGG+19b, BE10]. However, instead of directly bounding our spanner’s
arboricity and using standard techniques to create the orientation, we take a slightly different path.
Given the clustering from the previous step, a sufficiently good orientation can be constructed in
a single round. Every node v ∈ V declares all edges it added during spanner construction as out-
going edges. Recall that this includes the edge to the predecessor and an edge to one node of each
neighboring cluster. The nodes inform their neighbors about the orientation by sending amessage
containing their identifier.

2. Next, we delegate all incoming edges away and create line-like connections between all incoming
nodes. For the construction, consider a nodev ∈ V and letw1, . . . , wk be all nodeswith (wi, v) ∈

66

S(EC), i.e, the incoming edges of v. W.l.o.g., assume that w1, . . . , wk are ordered by increasing
identifier. Then, for each i > 1, v sends the identifier ofwi towi−1 and vice versa.

One can easily verify that each node has at most one incoming edge left (i.e., the edge from w1 to v) and
received at most two edges for each outgoing edge (i.e., the edges towi−1 andwi−1).

3.2 Analysis

In this section, we will prove Lemma 3.1. Together with the algorithm from Theorem 1, this implies Theorem
2. In order to prove Lemma 3.1, we need show that it holds:

Lemma 3.2. The algorithm in the first step creates a connected subgraph S(GC) of GC in O(logn′) rounds
where each node has at mostO(logn) neighboring clusters w.h.p.

Equipped with this lemma, we can prove Lemma 3.1 in a straightforward way. Note that each node has
at most O(logn) neighboring clusters, w.h.p., by Lemma 3.2. Therefore, it has at most O(logn) outgoing
edges after computing the orientation in the second step. Thus, the resulting graph H(GC) has a degree of
O(logn) as claimed. This follows because, in the construction of the child-sibling tree, a node gains two edges,
to its predecessor and to its successor, per outgoing edge and loses all but one incoming connection. Further,
this part of the algorithm only requiresO(1) rounds of communication between neighboring nodes. Together
with theO(logn′) rounds from the first step, this proves the theorem.

In the remainder of this section, we will prove Lemma 3.2. We begin with the runtime. It is fairly straight-
forward to see that both step takes O(logn′) communication rounds. For the clustering phase, note that a
node v ∈ V joins a cluster at the latest in round 4 logn′ − ⌈rv⌉ when it creates its own message. Thus, after
4 logn′ + 1 steps, all nodes joined a cluster due to our choice of the rv ’s. Therefore, the runtime of the first
phase is only O(logn′). In the second phase, all nodes only exchange two messages with their neighbors in
S(GC), so its runtime is O(1). Since all nodes know the same estimate of O(logn′), the phases can be syn-
chronized via round counters. Thus, it remains to show that the subgraph created by our procedure is indeed
connected and there are few edges between the clusters.

In the following, we will show that the resulting graph S(GC) is connected, and each node has at most
O(logn) neighboring clusters, w.h.p. For the most part, our proof will follow the ideas of Miller et al.’s span-
ner construction [MPVX15a]. However, we will use some of the insights by Elkin and Neiman [EN18a] and
technical details fromHaeupler and Li [HL18], who present a similar algorithm explicitly tailored to theCON-
GEST model. Note that Haupler and Li use the geometric distribution, but this does not make too much of
a difference. The key difference — besides the use of the exponential distribution — between our algorithm
and the construction by Haeupler and Li is that we broadcast the values for onlyO(logn′) and notO(logn)
rounds, and redraw rv ’s that are larger thanO(logn′). Therefore, our algorithm creates slightly different span-
ners but allows us to reuse some analytical results from Elkin and Neiman. Finally, we want to remark that
Elkin and Neiman only described the algorithm differently without the concept of clusters. However, the end
result is basically the same as we will see in our analysis.

67

First, we show that the connectivity follows directly from our construction of the clusters. We begin with
the connections within a cluster. Intuitively, the path along the predecessors leads to the head of the cluster.
For completeness, we formally show the following claim:

Claim 5. Suppose that v ∈ V joined the cluster of u∗ ∈ V , then there is a bi-directed path from v to u∗ in
S(GC).

Proof. Recall that a node w ∈ V joins u∗’s cluster by receiving a message of the form (ru∗ , u∗, xu∗). Here,
xu∗ is the hop counter that is increased each time the message is forwarded. For each node w ∈ V that is in
u∗’s cluster, we can therefore define xw

u∗ ≥ 0 as the value of the hop counter when it joins the cluster3.
Equippedwith this definition, we can nowprove the lemma via an induction over all possible values ofxv

u∗ .
For the start of the induction, suppose that xv

u∗ = 0. Note that xv
u∗ = 0 can only hold if v = u∗. Recall that

the message (ru∗ , u∗, xu∗) that lets nodes join the cluster originates at u∗ with a hop counter of 0. The hop
counter is increased every round, so u∗ is the only node that can ever receive (ru∗ , u∗, 0). Thus, for xv

u∗ = 0,
it must hold v = u∗ and there is a trivial path contained in the spanner as a node has a path to itself.

Now we get to the induction step. Assume that xv
u∗ = i and for all nodesw ∈ V with xw

u∗ = i− 1 there
is a path to u∗ in the spanner. We claim that one of these nodes must be v’s predecessor p(v). First, we observe
that node p(v) must be part of u∗’s cluster as each node only forwards the message of the cluster it joined.
Therefore, the value xp(v)

u∗ is well-defined. According to the algorithm, p(v) joins the cluster when it receives
(ru∗ , u∗, x

p(v)
u∗) and then fowards (ru∗ , u∗, x

p(v)
u∗ + 1) to v. Upon receiving this message, v joins the cluster.

This implies that for v and its predecessor p(v), it holds xv
u∗ = x

p(v)
u∗ + 1. Therefore, we have xp(v)

u∗ = i − 1

as we assumed xv
u∗ = i. Finally, v adds a bi-directed edge to p(v) and p(v) has a bi-directed path to u∗ per

induction hypothesis, so the lemma follows.

Note that this lemma directly implies that the spanner is connected. Consider an edge (v, w) ∈ EC . If
both nodes are in the same cluster of some nodeu∗, the lemma certifies that for both nodes, there is a bi-directed
path to u∗ connecting them. Otherwise, there are two possibilities if the nodes are in different clusters. Either
v directly adds the edge (v, w) to the spanner, or it adds another edge (v, w′) where w′ ∈ Nv is in the same
cluster asw. In the latter case, there must be a path fromw tow′ by the same argument as before, as they are in
the same cluster. Thus, for each edge (v, w) ∈ E, there is a path that connects v andw in S(GC).

Next, we consider the number of neighboring clusters, which is a bit more involved. Before we go into the
details of the analysis, we first introduce some helpful definitions. First, recall that we denote the distance, i.e.,
the number of hops on the shortest path between two nodes v andw inGC , as dist(v, w). As we only consider
unweighted graphs, all distances are integer and we have dist(v, v) := 0 and dist(v, w) ≥ 1 for any w ̸= v.
Further, for all nodes u ∈ V , we define the value

mu(v) := ru − dist(u, v). (3.1)

3Later on, we will see that it actually holds xw
u∗ = dist(u∗, w), but this is immaterial for this proof.

68

Wedenotem(v) to themaximumamong these values andu∗
v ∈ V as the node that drew the respective variable.

In other words, it holds:

m(v) := mu∗
v
(v) := max{mu(v) | u ∈ V } (3.2)

These values will be integral to our analysis as we will see u∗
v is indeed the node that takes v into its cluster.

Equipped with these definitions, we show the following.

Lemma 3.3. Fix a node v ∈ V and let u∗
v be the node that maximizes m(v). Then, v receives the message

(u∗
v, ru∗

v
, dist(v, u∗

v)) in round
(
4 logn′ − ⌈ru∗

v
⌉
)
+ dist(v, u∗

v) and joins the cluster of u∗.

Proof. For this proof, we will drop the subscript from u∗
v and simply write u∗ if clear from the context. Note

that (4 logn′ − ⌈ru∗⌉)+dist(v, u∗) is the earliest round inwhich themessage can possibly be received by node
v as the message is started in round (4 logn′ − ⌈ru∗⌉) and takes (at least) dist(v, u∗) steps to reach v. First, we
show that v cannot receive another message in an earlier round.

Claim 6. v will not receive any message before round (4 logn′ − ⌈ru∗⌉) + dist(v, u∗).

Proof. Webegin the proof by noting thatu∗minimizes (4 logn′ − ru)+dist(v, u) among all nodes ofV . This
can be shown through an elementary calculation. We start with:

(4 logn′ − ru∗) + dist(v, u∗) < (4 logn′ − ru) + dist(v, u) (3.3)

To simplify the term, we subtract 4 logn′. Then, we get:

− ru∗ + dist(v, u∗) < −ru + dist(v, u) (3.4)

⇔ru∗ − dist(v, u∗) > ru − dist(v, u) (3.5)

⇔mu∗(v) > mu(v) (3.6)

LetU ⊂ V be the set of nodes whose messages reach v first (note that several such messages may be received in
the same round from different neighbors of v). Denote the round in which v first receives something as t. For
all nodes u ∈ U , it holds:

t = (4 logn′ − ⌈ru⌉) + dist(v, u) (3.7)

We argue thatu∗ must be contained inU . For contradiction, suppose that the value would be received in a later
round, i.e., it holds:

t+ 1 ≤ (4 logn′ − ⌈ru∗⌉) + dist(v, u∗) (3.8)

≤ (4 logn′ − ru∗) + dist(v, u∗). (3.9)

69

Now, note that for all values u ∈ U , it holds that ⌈ru⌉ − ru < 1. Therefore, we have:

(4 logn′ − ru) + dist(v, u) = (4 logn′ − ⌈ru⌉+ ⌈ru⌉ − ru) + dist(v, u) (3.10)

= (4 logn′ − ⌈ru⌉) + dist(v, u) + (⌈ru⌉ − ru) (3.11)

< (4 logn′ − ⌈ru⌉) + dist(v, u) + 1 (3.12)

= t+ 1 (3.13)

By combining these two observations, we see that u∗ would not be the node with minimal value as any node in
U has a smaller one. This is a contradiction as we defined u∗ to be minimal.

We will see that our lemma holds if all nodes on a shortest path from u∗ join the cluster of u∗ and forward
the message. In particular, we claim the following

Claim 7. Let l := dist(u∗, v) and let P = (w0 := u∗, . . . , wl := v) be any shortest path from u∗ to v. For
0 ≤ i ≤ l, it holds thatwi joins the cluster of u∗ in round (4 logn′ − ⌈ru∗⌉) + i.

Proof. For contradiction, assume that wi ∈ P is the first node that does not join the cluster. As all nodes
w0, . . . , wi−1 until this point joined the cluster ofu∗, it holds thatwi−1musthave sent themessage (ru∗, u∗, i)

in round (4 logn′ − ⌈ru∗⌉)+ (i−1). Therefore,wi must have joined another cluster in or before this round.
Aswi cannot have received a message in an earlier round due to Claim 6,wi must decide for another cluster in
round (4 logn′ − ⌈ru∗⌉) + i. More specifically, there is a vertex z ∈ V , such thatwi receives (rz, z, xz) and
it holds:

rz − xz > ru∗ − xu∗ (3.14)

= ru∗ − i (3.15)

= ru∗ − dist(u∗, wi) (3.16)

As xz increases on every hop from z towi, it is lower bounded by dist(z, w). This implies that:

rz − dist(z, wi) > ru∗ − dist(u∗, wi) (3.17)

However, this has implications for the valuemz(v). Using our observations, we see that it holds:

mz(v) := rz − dist(z, v) (3.18)

≥ rz − dist(z, wi) + dist(wi, v) (3.19)

> ru∗ − dist(u∗, wi) + dist(wi, v) (3.20)

= ru∗ − dist(u∗, v) (3.21)

= mu∗(v) := m(v) (3.22)

70

Here, inequality (3.18) follows from the triangle inequality, inequality (3.20) follows from inequality (3.17),
and equality (3.21) holds because wi is on the shortest path from u∗ to v. This is a contradiction as m(v)

must be bigger or equal tomz(v) per definition. Therefore, u∗ must the node which minimizes (ru∗ − xu∗)

among all values received bywi. Thus,wi would not have joined another cluster andmust have forwarded u∗’s
message.

Finally, as v := wl and l := dist(u∗, v), the lemma follows.

Next, we observe neighboring clusters of a node v and show that they are bounded by O(logn) w.h.p.
Suppose that v ∈ V has a neighborw ∈ V that joined another cluster. Then, theremust a nodeu∗

v ̸= u∗
w ∈ V

thatmaximizes ru∗
w
−dist(u∗

w, w). Since v andw are neighbors, the value ru∗
w
cannot bemuch bigger than ru∗

v

because otherwise, the corresponding message would reach vmuch earlier and it would join a different cluster.
Following this intuition, we show that the following holds:

Lemma 3.4. . Let v, w ∈ V be two neighboring nodes in different clusters. Then it holdsm(v) ≤ m(w) + 1

Proof. Note that it holds

dist(u∗
v, w) ≤ dist(u∗

v, v) + 1 (3.23)

due to the triangle inequality and the fact that v andw are neighbors. This implies that:

m(w) > mu∗
v
(w) := ru∗

v
− dist(u∗

z, w) (3.24)

Using inequality (3.23), we see that:

m(w) ≥ ru∗
v
− (dist(u∗

v, v) + 1) (3.25)

≥ mu∗
v
(v)− 1 (3.26)

:= m(v)− 1 (3.27)

This proves the statement.

Therefore, the number of neighboring clusters of any node v ∈ V is upper bounded by the number of
valuesmu′ := ru−dist(u, v)which are close tom(v). Elkin andNeimann analyzed this random value for the
case that the random variables are drawn according to the exponential distribution without truncation. Note
that their lemma is itself based on an observation byMiller et al.[MPVX15a]. They show the following:

Lemma 3.5 (Lemma 1 in [EN18a]). Let d1 ≤ . . . ≤ dm be arbitrary values and let δ1, . . . , δm be independent
random variables sampled from the exponential distribution with parameter β. Define the random variables
M = maxi{δi − di} and I = {i : δi − di ≥M − 1}. Then for any 1 ≤ t ≤ m,

P[|I| ≥ t] = (1− e−β)t−1 .

71

Although we draw the variables differently, their bound will be a very good approximation for our algo-
rithm. Now we can show the following lemma:

Lemma 3.6. Every node has at mostO(logn) neighboring clusters, w.h.p.

Proof. For a node v ∈ V letXv denote the number of its neighboring clusters. It holds:

Xv ≤ |{u ∈ V | ru − dist(v, u) ∈ [m(v)− 1,m(v)]}| (3.28)

Further, let δ1, . . . , δn′ be a series of independent, exponentially distributed random variables with parameter
β. Define m̂(v) = maxu∈V {δi − dist(u,w)} and consider the variable

X̂v = |{u ∈ V | δu − dist(v, u) ∈ [m̂(v)− 1, m̂(v)]}|. (3.29)

Note that X̂v can be analyzed using Lemma 3.5 by choosing the shortest path distances to v as the di’s and
m̂(v) asM . Finally, letZ be the event that all variables δ1, . . . , δm are smaller than 4 logn′. Then, it holds:

P[Xv ≥ c logn] = P[X̂v ≥ c logn | Z] (3.30)

Given these definitions, we want to show that there are constants c, c′ > 0, such that it holds:

P[X̂v ≥ c logn | Z] ≤ 1

nc′
(3.31)

By the law of total probability, it holds:

Pr
[
X̂v ≥ c logn

]
= Pr[Z] · P[X̂v ≥ c logn | Z] + Pr[¬Z] · P[X̂v ≥ c logn | ¬Z] (3.32)

≥ Pr[Z] · P[X̂v ≥ c logn | Z] (3.33)

Therefore, by solving for P[X̂v ≥ c logn | Z], we get:

P[X̂v ≥ c logn | Z] ≤
Pr
[
X̂v ≥ c logn

]
Pr[Z]

(3.34)

Note that the term in the nominator removed the condition that the variables are smaller than 4 logn′. Thus,
it can be bounded with Lemma 3.5. By choosing β = 1/2 and t = c1 logn with c1 := e−

1
2 · c2 + 1, we see

that:

P[X̂v ≥ c1 logn] = (1− e−
1
2)c1 logn−1 (3.35)

= (1− e−
1
2)

(
e−

1
2 ·c2+1

)
logn−1 (3.36)

≤ e−c2 logn = n−c2 . (3.37)

72

The last inequality followed from the fact that (1− 1/x)x ≤ e−1 for any x > 0. On the other hand, we have
the following:

Pr[Z] := Pr

 n′⋂
i=1

δi ≤ 4 logn′

 = 1− Pr

 n′⋃
i=1

δi > 4 logn′

 (3.38)

≥ 1−
n′∑
i=1

Pr[δi > 4 logn′] (3.39)

The last inequality follows from the union bound. Finally, we use that each δi is exponentially distributed with
parameter β = 1/2. It holds:

Pr[Z] ≥ 1−
n′∑
i=1

e−
1
2 4 logn′ ▷Def. of δi. (3.40)

≥ 1− n′

n′2 ≥
1

2
▷As n′ ≥ 2 (3.41)

Note that we can assume n′ ≥ 2 as a component with one node has no edges. Plugging our two insights
together, we get the following:

P[X̂v ≥ c logn | Z] ≤
Pr
[
X̂v ≥ c logn

]
Pr[Z]

≤ n−c2

1/2
= 2n−c2 (3.42)

Thus, by a union bound, every node has atmost c1 logn neighboring clusters with probability at least 1−n−c3

with c3 = c2 − 2. This proves the Equation (3.31) for c1 ≥ c3 · e−
1
2 + 3 and therefore the lemma.

This proves Lemma 3.1 and therefore Theorem 2!

73

74

4
Fast Construction of Spanning Forests

In this section, we will show how the algorithm of Theorem 2 can be used to construct a spanning forest
of the (undirected version of the) initial graph G. Given a graph G = (V,E), a spanning tree S =

(V,ES) with ET ⊂ E is a subgraph of G with n − 1 edges that connects all its nodes. If a graph is
not connected, the collection of spanning trees of all its connected components is called a spanning forest. For
simplicity, we assume that the input graph is connected; our algorithm can easily be extended to also compute
spanning forests of unconnected graphs by running it in each connected component. In particular, we show
the following theorem:

Theorem 3. Spanning Tree in HYBRID

LetG = (V,E) be aweakly connected directed graph. There is a randomized algorithm that constructs
a spanning tree of (the undirected version of)G inO(logn) rounds, w.h.p., in the HYBRIDmodel.

Each node sends at most γ ∈ O(log3 n) bits per round in global mode, w.h.p., and λ ∈ O(logn) bits
along each edge in the local mode.

We describe the algorithm behind this theorem in Section 4.1, and in Section 4.2, we prove Theorem 3.

4.1 AlgorithmDescription

In this section, we describe the algorithm behind Theorem 3. The description of the algorithm requires some
familiarity with the algorithms from Theorems 1 and 2. We refer the reader to Chapters 2 and 3 for the details

75

(and advise to read them first). Having this disclaimer out of the way, we note that the algorithm of Theorem 2
constructs a graphGL that results from L ∈ O(logn) iterations of CreateExpander of the graphG0 that
resulted from Lemma 3.1. This graph has diameter O(logn) and degree O(log2 n), w.h.p. We will use this
graph as the starting point for our construction, not the final well-formed tree (i.e., we skip the last step where
we reduce the degree).

Given the graphGL createdbyCreateExapander,we construct a spanning treeSL ofGL byperforming
a BFS from the node with the lowest identifier and then compute an ordering on SL. Our idea is to iteratively
replace all the edges of SL by edges ofGL−1, replace these edges by edges ofGL−2, and so on until we reach a
graph that contains only edges ofG0. More precisely, our algorithm executes the following steps.

(Step 1) Create a LocallyCheckableOrdering: Let v0 be the nodewith the lowest identifier.
We first perform a BFS inGL from v0 and create a BFS-treeSL. This is our initial spanning tree. Next, we
assign a label l(v) to each node v ∈ V . Each node v ∈ V \ {v0} stores the round in which the broadcast
reached it, i.e., its distance to v0, as its label. Note that there can be nodes with equal labels. However, it
holds that the root v0 is the only node with label lv0 = 0, all nodes have a parent with a lower label (as the
broadcast reached them in the previous round).

(Step 2) Recursively Replace Edges: Next, we want to replace all edges of SL with edges ofG0

in a recursive fashion. Suppose we are in the ith step of the recursion, i.e., we want to constructSL−(i+1)

from SL−i. Let the edge (v, w) ∈ SL−i be the result of a random walk (v, v1, . . . , vℓ−1, w) in our
CreateExpander algorithm. We assume for the moment that v knows all nodes of the walk and can
communicate with them. Then, we perform the following steps:

1. v sends the label (l(v) ◦ j) to each vj on the walk. Here, ◦ denotes the concatenation operator for
two bit strings.

2. vj then picks theminimum of all its received labels as its new label and informs all its neighbors in
GL−(i+1) about it.

3. The root v0 sets its label to l(v0) = l(v0) ◦ 0 (which therefore remains the unique minimal label).
Finally, each node except the root picks an edge (v, w′)with l(w′) ≤ l(v) and adds it to SL−(i+1).

(Step 3) Replace Spanning Tree Edges: Recall that an edge {u,w} inS0 may not exist inG, i.e.,
if it resulted from a redirection of an edge {u, v} in G0 in the algorithm of Chapter 3, where u and w

were incoming nodes of v. So S0 may not be a spanning tree ofG. Now, as before, we can simply model
each edge {u,w} that does not exist inG as the result of the walk that crossed {u, v} and then {v, w} in
G. This is not a random walk, but that is immaterial. Node u computes the new labels exactly as before
and sends them to v andw. Given the labels, we can construct the tree as before.

76

4.2 Analysis

In this section, we will show that our algorithm creates a spanning tree ofGwith the time and communication
bounds from Theorem 3. We begin with the algorithm’s correctness and show that it does indeed construct a
spanning tree ofG. Recall that the algorithm creates the spanning trees based on a labeling that updates every
recursion. In the following, if a node v ∈ V has edge {v, w} ∈ E to some node w with l(w) < l(v), we
call this a critical edge. Note that our algorithm creates the spanning trees SL, SL−1, . . . by letting each node
except v0 pick a critical edge. Our goal is to exploit the following simple fact:

Lemma 4.1 (Ordering implies Spanning Tree). LetG := (V,E) be an undirected graph and l(v0), . . . , l(vn)
be an ordered labeling of the nodes. Further, letES be a set of edges. Suppose it holds that

1. There is exactly one node v′ with l(v′) < l(v) for all v ∈ V \ {v′}, and

2. all other nodes v ∈ V \ {v′} have a critical edge.

Then, if each v ∈ V \ {v′} adds a critical edge toES , the resulting graph (V,ES) is a spanning tree ofG.

Proof. Since each node (except v′) adds at most one edge, the resulting graph can have at most n− 1 edges and
is either a tree or a forest. Therefore, it remains to show that it is connected and, therefore, a tree. However, this
follows because each nodemust have a path to v′. Otherwise, there either would be a node v with l(v) > l(v′)

that did not add an edge, or there are two nodes with minimal labels. Both options contradict one of the two
conditions; thus, our claim follows.

We will show that our algorithmmaintains a labeling with the required properties. In other words, in each
step of the recursion, each node maintains a label l(v) such that each node v with l(v) ̸= l(v0) has at least one
critical edge and there is a unique node v0 with minimal label. Since all nodes initially use their hop distance
to the BFS root v0 as their label, this condition is trivially fulfilled for SL. So, we only need to prove that our
update rule maintains it. To this, we prove:

Lemma 4.2. Suppose that SL−i is spanning tree ofGL−i, then SL−(i+1) is spanning tree ofGL−(i+1).

Proof. Since there is clearly only one rootwith a uniqueminimal label by construction, wemust only show that
all other nodes have a critical edge. In particular, if some v ∈ V is not the root, there must be a neighbor in
GL−(i+1) with a smaller label. Let now l′v := l(x) ◦ j the minimal label that was assigned to v, i.e., v is the jth

node on some walk (x := v1, . . . , vj = v, . . . , vℓ := y) from x to y inGL−(i+1). Consider the following
two cases:

• If x = v for some walk (x, . . . , y), then v assigned a label to itself, so the prefix of the new label is its old
label l(v). However, since v ̸= v0, it must have a parent p(v) in SL−i. Therefore, it must have received
a label l′p(v) with prefix l(p(v)) from p(v). Since (v, p(v)) was a critical edge by construction, it holds
l(p(v)) < l(v), i.e., the label l′(p(v)) sent by p(v) is strictly smaller than l′(v). Thus, if v = x for some
walk, v did not pick the minimum label, which is a contradiction.

77

• Otherwise, if x ̸= v, there must be well-defined predecessor vj−1 in the walk that is a neighbor of v in
GL−(i+1). This predecessor can only get a label smaller or equal to l(x)◦j−1which therefore is smaller
than v’s new label l′(v).

Thus, each v ∈ V has a neighbor that has a critical edge or is the root (which has the unique minimal label).
By Lemma 4.1, we can construct SL−(i+1) in one step by picking a critical edge.

Thus, the algorithm creates a spanning tree forG as desired. This proves the algorithm’s correctness. There-
fore, to prove Theorem 3, it only remains to argue that the algorithm has the claimed runtime and communi-
cation bounds. We do so in the following lemma.

Lemma 4.3. The algorithm can be implemented inO(logn) local communication andO(log3 n) global com-
munication, w.h.p.

Proof. As mentioned, our algorithm requires that the two endpoints of every edge e need to know the nodes
that the corresponding walk traversed (i.e., the nodes thatmake up e) while sending no more than O(log2 n)
messages of sizeO(logn) in global mode andO(1)messages per edge in the local mode.

To implement this behaviour, we slightly adapt CreateExpander. As a first change, we add the identifier
of each traversed node to each token. Further, when creating an edge, all of these identifiers are sent back to the
node that started the token ,i.e., we sample the whole walk instead of just the endpoint.

Note that as the token traverses ℓ ∈ O(1) nodes, the size of each token stays (asymptotically) the same.
Thus, the endpoints of each edge e ofSL−i can inform the endpoints of all edges ofGL−(i+1) that make up e.
Recall that a node needs to send atmost ℓ labels for each edge, resulting in atmostO(ℓ log2 n) labels. However,
the labels now not only contain the node’s identifier but also the additional information we add in each step.
To be precise, the size of a label grows by an additive log ℓ ∈ O(1) bits for each recursion as we always add a
constant number between 0 and ℓ to an existing label. So, afterL ∈ O(logn) recursions, the label size is still

O(logn) + L · log ℓ = O(logn). (4.1)

Thus, each message message contains ℓ ∈ O(1) labels of size O(logn) bits. Therefore, a global capacity of
O(log2 n)messages (or equivantlyO(log3 n) bits) still suffices.

In the last step, we use the local mode to assign the labels. Here, each node v can be part ofO(d(v))walks
of length three. These walks only contain neighbors of the node in the original graph G. Since we can now
use the local CONGEST edges, a node v can send and receive a new label to and from all its neighbors in one
round. Thus, this step can the implemented withO(1)messages orO(logn) bits of local communication per
edge.

Finally, since each recursion step takes 2 rounds of exchanging messages and labels, we finish after L ∈
O(logn) rounds.

Together, these lemmas prove Theorem 3!

78

5
AnO(log∆+ log logn)-Time Algorithm for MIS

In this section, we present a Maximal Independent Set (MIS) algorithm in the HYBRIDmodel with poly-
logarithmic local and global communication complexity. To the best of our knowledge, this is the first
and only such algorithm in the HYBRID model with these restrictions. The MIS problem is defined as

follows:

Definition 5.1 (Maximal Independent Set (MIS)). LetG := (V,E) be an undirected graph, then S ⊆ V is
anMIS if and only if it fulfills the two following properties:

1. No two nodes in S are adjacent in the initial graphG.

2. Every node v ∈ V \ S has a neighbor in S.

Due to its simplicity, MIS is often regarded as a benchmark problem for (new) models of computation.
It essentially clarifies how fast one can break the symmetry in a graph. That being said, we first take a look
at existing bounds for the problem. By a result of Kuhn et al.[KMW04], there are graphs of degree ∆ in
which computing the MIS takes Ω

(
log∆

log log∆

)
rounds, even in the LOCAL model. This was later improved

toΩ(min{∆,
log logn

log log logn} by Balliu et al. [BBH
+21]. In terms of upper bounds, there has been a lot of progress

in recent years [GGR21, RG20, GG23, GG24] The current upper bound in LOCAL model is of approxi-
mately O(log∆ + log5/3 logn · logc logn) [GG24]. In models in which the communication is not lim-
ited to the neighbors of a node (which roughly corresponds to our notion of global communication), the run-
time is often exponentially better. For example, both in the CONGESTED CLIQUE and the MPC model
[GGJ20, BBD+19, GGK+18, BFU19] one can achieve runtimes ofO(log logn) or evenO(log log∆) which

79

beat these lower bounds. However, these models allow for communication primitives beyond our model’s ca-
pabilities. In the CONGESTED CLIQUE, a node can send a message of size O(logn) to every node in the
graph, and in the MPC model, each node can receive O(nδ) bits where δ < 1 is a constant. Thus, these ex-
treme improvements are still out of reach. Instead, with limited global communication, we can offer a slight
improvement. More precisely, we prove the following theorem:

Theorem 4.MIS in HYBRID

LetG = (V,E) be a graph of degree∆. There is a randomized algorithm in the HYBRIDmodel that
computes an MIS ofG in O(log∆ + log logn) rounds, w.h.p. The algorithm requires local capacity
O(logn) and global capacityO(log3 n), w.h.p.

Therefore, we only show a marginal improvement compared to state-of-the-are for the LOCAL model.
Nevertheless, we can learn something from this. It emphasizes that even a small amount of non-local commu-
nication is as strong as unbounded local communication. Further, the algorithm is (arguably) simpler than the
state-of-the-art techniques for LOCAL.

Our algorithm combines the so-called shattering technique [BEPS16, Gha16] originally developed for the
CONGEST model with our overlay construction algorithm. As the name suggests, the shattering technique
shatters the graph into small components ofO(∆ logn) undecided nodes inO(log∆) time, w.h.p. Recall that

log(∆ logn) = log∆+ log logn.

We then compute a well-formed tree of depthO(log∆+ log logn) in all these small components. This takes
O(log∆ + log logn) rounds, w.h.p., using the algorithm of Theorem 2. Note that here it is important that
the runtime is the logarithmic in the size of the largest component and not n. In each component, we can
now independently computeMIS solutions usingO(logn) parallel executions of theCONGEST algorithmby
Metivier et al. [MRNZ09]. Aswewill see, at least one of these executionsmust finish afterO(log∆+log logn)
rounds, w.h.p, so the nodes only need to agree on a solution for one of the finished executions. The problem is
that the nodes cannot locally check which executions have finished. Here, the well-formed tree comes into play.
We can use it to gather the information of which executions have finished in a single node and then to broadcast
information to all nodes in the component inO(log∆+ log logn) time. This leads to anO(log∆+ log logn)
time algorithm, where∆ is the initial graph’s degree.

This chapter is structured as follows: In Section 5.1 we introduce the results by Ghaffari and Metevier et al.,
which build the basis for the algorithm behind . Given these preliminaries, we present said algorithm in Section
5.2 and analyse it in Section 5.3.

5.1 Preliminaries

Before we discuss our algorithm in detail, we briefly recap two techniques/algorithms used in MIS algorithms.
First, we introduce the so-called shattering technique and then the bit-optimal CONGEST algorithm byMete-
vier et al. Both will be important building blocks in our construction.

80

5.1.1 The Shattering Technique of Ghaffari

Many state-of-the-art MIS algorithms employ the so-called shattering technique [BEPS16, Gha16], which con-
ceptually works in two stages1: First, there is the so-called shattering stage, where the problem is solved for
most nodes using a local strategy. As a result of this stage, each node knows — with probability 1 − o(1/∆)

— whether it is in the MIS itself or has a neighbor in the MIS and, therefore, cannot be in the MIS. We say
that these nodes have decided as the state of these nodes will not change for the remainder of the algorithm.
Likewise, we refer to all other nodes as undecided nodes. In the second stage, we solve the problem for all re-
maining undecided nodes. These undecided nodes only need to communicate with their undecided neighbors
as all other nodes know whether they are in the MIS or not. Note that the probability of 1 − o(1/∆) implies
that each undecided node has less than one undecided neighbor in expectation. By a Galton-Watson-like argu-
ment, the graphG is, therefore, shattered into small isolated subgraphsG1, . . . , Gk of undecided nodes after
the first stage. Two undecided nodes are part of the same subgraphGi if there is a path of undecided nodes be-
tween them. In the second stage, theMIS is solved on these subgraphs where we can exploit that the subgraphs
G1, . . . , Gk are far smaller thanG.

The first phase can be implemented in (nearly) optimal O(log∆) time due to a brilliant result by Ghaf-
fari[Gha16, Gha19]. It holds:

Lemma 5.1 (Based on Lemmas 4.2 in [Gha16] and 2.1 in [Gha19]). Let c be a large enough constant and
G := (V,E) be a simple undirected graph. There is a distributedMIS algorithmA with following properties:

1. Let B be the set of nodes remaining undecided after O(c log∆) rounds of A. Then, with probability at
least 1 − n−c, all connected components of G[B], the subgraph of G induced by nodes in B, have each at
mostO(∆4 log∆(n)) nodes.

2. Each message contains only 1 bit.

Given this result, the crux of many modern MIS algorithms lies in their implementation of the second
phase. In the LOCAL and CONGEST model, we can use deterministic algorithms to obtain sublogarithmic
runtimes. Note that we need to be very careful when we execute randomized algorithms in this phase if the
probability of failure only depends on the number of nodes. Since the number of nodes n′ in each component
is much smaller than n, a bound of 1 − o(n′−c) does not imply that the algorithm succeeds w.h.p. In models
with massive global communication, all remaining nodes and edges of a component can be gathered at a single
node using the global communication and then solved locally. This, of course, requires this node to receive a
huge amount of messages in a single round. Because of this high message load, this approach cannot be used
directly in our model.

5.1.2 The Algorithm ofMetevier et al.

Next, we considerMIS algorithms in theCONGESTmodel. Here, theMIS problem can be solved inO(logn)
time— in expectation and w.h.p. — due to a celebrated algorithm by Luby [Lub86] and Alon et al. [ABI86].

1Note that the faster algorithms are more intricate and use more preprocessing stages to reduce degrees, but still rely on this scheme in
the end.

81

The idea behind the algorithms is quite simple: Each node picks a random rank in [0, 1], which is sent to all
neighbors. Then, all local minima join the MIS and inform their neighbors about it. All remaining nodes, i.e.,
nodes that did not join the set and had no neighbor that joined the set, repeat this process until every node has
decided. Later, Métivier et al.[MRNZ09] provided a simpler analysis and showed that sending a single bit per
round and edge is sufficient. For our algorithm, we take a closer look at the fact that Métivier et al.’s algorithm
has an expected runtime ofO(logn). In particular, it holds that in every round, in expectation, half of all edges
disappear due tonodes deciding (see [MRNZ09]or the appendix of [Gha16] for a comprehensive proof). Thus,
if we execute it on a subgraph with n′2 edges, it finishes after O(logn′) rounds in expectation. That means,
by Markov’s inequality, with at least constant probability, the algorithm only takesO(logn′) rounds. In fact,
Métivier et al. even prove the following more precise statement:

Lemma 5.2 (Theorem 3 in [MRNZ09]). There is a randomized distributed algorithm for arbitrary simple
graphsG := (V,E) with n nodes in the CONGESTmodel that:

1. finishes inO(logn) time with probability 1− o(n−1), and

2. each message contains only 1 bit.

The lemma implies a success probability of 1− 1/n′ if we run the algorithm on a graph of n′ nodes. There-
fore, if we execute itO(logn) times independently in parallel, there must be at least one execution that finishes
withinO(logn′) rounds, w.h.p.

5.2 AlgorithmDescription

Nowwegoback to the shattering technique and consider theundecidednodes after the shattering stage. Instead
of reporting all edges to an observer that solves the problem locally for each subgraph of undecided nodes, we
executeMetevier et al.’s algorithmO(logn) times in parallel and report which executions finished. Once there
is one execution in which all nodes are finished, we signal the nodes to stop via broadcast and let them agree on
the outcome of one execution. To do so efficiently, we execute the algorithm of Theorem 2 on each component
of undecided nodes. Note that this requires far fewer messages per node than aggregating all edges at a node
and still achieves a sublogarithmic runtime.

More precisely, our algorithm to solve the MIS problem operates in the following three steps of length
O(log∆+ log logn) each. To synchronize these steps, we need to assume that, in addition to an approximation
of log logn, the nodes also know an approximation of log∆.

(Step 1) Shatter the Graph into Small Components: First, we run Ghaffari’s shattering al-
gorithm from [Gha16] forO(log∆) rounds. After executing it, the graph is shattered into isolated, unde-
cided componentsG1, . . . , Gk. Obviously, the nodes can use the local edges to determine which neigh-
bors are in the same component. The remainder of our algorithmwill run on each of theseGi’s in parallel.

82

(Step 2) Construct an Overlay for each Component: Next, we establish a well-formed tree
Si on eachGi using the algorithm of Theorem 2. We denote the resulting trees as S1, . . . , Sk.

(Step 3) ExecuteMétivier et al.’s Algorithm in Parallel: Using thewell-formed tree from
theprevious step,we can (deterministically) compute aggregate functions on eachGi. Given this powerful
tool, we construct anMIS for eachGi as follows:

1. On eachGi, we run the MIS algorithm of Métivier et al. independently c1 logn times in parallel
for τc2 := c2 (log∆+ log logn) rounds. Here, c1 and c2 are some tunable constants, but c2 is
chosen such that τc2 is bigger than the diameter ofSi. ByTheorem 2, such aminimal c2 can always
be found. Since each execution needs messages of size 1, all messages sent by all executions can be
sent in one round of the CONGEST model. More precisely, in each round r ∈ [0, τc2], a node
simply sends the random bit stringMr(w) :=

(
mr

1(w), . . . ,m
r
c1 logn(w)

)
of length c1 logn to

its neighborw. Here, the valuemr
j(w) ∈ {0, 1} is the 1-bit message that is sent by execution j to

w in round r.

2. After τc2 rounds, each node checks in which executions it has decided, i.e., itself or one of its neigh-
bors joined the MIS. It creates the bit string F (0)

v := (f1, . . . , fc1 logn), where fj = 1 if and
only if the node v has decided in execution j and fj = 0 otherwise. Again, since there are at most
O(logn) executions, the information onwhich executions have finished canbe fitted intoO(logn)
bits and therefore be sent as a single message.

3. We then use Si to aggregate all executions where all nodes have decided. To be precise, we need to
compute the logical AND of allFv for all v ∈ Gi. Recall that this operation returns 1 if all its inputs
are1 and0 otherwise. The algorithm to do this is trivial: For τc2 rounds, each node sends its current
value of Fv to all its neighbors and computes the logical AND of all values it received (including its
own). More precisely, in round r > 0 the current value F (r)

v is computed as follows:

F (r)
v :=

⊗
w∈NSi

(v)∪{v}

F (r−1)
w (5.1)

Here, the set NSi
(v) contains all of v’s neighbors in Si and ⊗ denotes the logical AND. One can

easily verify that for a big enough c2, all nodes know all finished execution after τc2 rounds. Note
that the bits of a finished execution will never be flipped to 0 as all of them are 1. Therefore, we
must show that all bits of all non-finished executions are 0, i.e., the value fj for an execution j will
be set to 0 in every node if there is at least one node, say v, that did not decide. A simple induction
yields that after r rounds, each node in the distance r to v sets its fi-value to 0. Since the diameter
of Si is smaller than τc2 , all nodes know if at least one node in a given execution did not decide.

4. Finally, the nodes adopt the result of an execution that has finished (if there is one). If several exe-
cutions are finished, the execution with the smallest index is chosen.

83

5.3 Analysis

In this section, we prove Theorem 4. The runtime andmessage complexity of the first two steps follow directly
from Lemmas 5.1 and Theorem 2.

Lemma 5.3. The first two phases finish after O(log∆ + log logn) time, w.h.p. and require O(logn) local
communication and O(log2 n) global communication. Further, all resulting trees S1, . . . , Sk have diameter
O(log∆+ log logn), w.h.p.

Proof. First, recall that we execute the shattering algorithm forO(log∆) rounds. Note this algorithm can be
implementedO(log∆) rounds theCONGESTmodel as it only sends 1-bitmessages to each node’s neighbors.
Thus, the first step requiresO(log∆) andO(1) bits of local communication per edge. After theseO(log∆)

rounds, by Lemma 5.1, the graph is shattered into componentsG1, . . . , Gk of size at mostO(∆4 · log∆ n)),
w.h.p. Then, we construct a well-formed tree for eachGi by using the algorithm from Theorem 2. Since each
component has sizeO(∆4 · log∆ n), the construction takesO(log(∆4 · log∆ n)) = O(log∆+ log logn) time,
w.h.p. Following the theorem, the localmessage complexity isO(logn), and the global complexity isO(log3 n).
Finally, due to the size of eachGi, the resulting trees also have a height of onlyO(log∆+ log logn) as claimed.
Altogether, this proves the lemma.

Given the diameter of these trees, we can (deterministically) compute aggregate functions on each Gi in
O(log∆+ log logn) time. To prove Theorem 4, we therefore need to show that in all components, there is at
least one execution that finishes inO (log∆+ log logn) time, w.h.p. More precisely, we show:

Lemma 5.4. In each component, there is at least one execution of Métivier et al.’s algorithm that finishes after
τc2 := c2 (log∆+ log logn) time, w.h.p.

Proof. For a given component Gi and execution j, let Xj ∈ {0, 1} be the random variable that all nodes
have decided after τc2 rounds. Note that each undecided component must have at least 2 nodes: Seeking con-
tradiction, let there be a component consisting of a single node v. If all of v’s neighbors have decided and
no neighbor joined the MIS, then v can join the MIS. Otherwise, if there is one neighbor in the MIS, then
v has decided per definition as it cannot join the MIS. Combining this fact with Lemma 5.2, we have that
Pr[Xi = 0] ≤ 1

|Vi| ≤
1
2 . Since all executions are independent, the probability that none of the c1 logn execu-

tions finishes after τc2 rounds is:

Pr

c1 logn⋂
j=1

Xj = 0

 =

c1 logn∏
j=1

Pr[Xj = 0] ≤
(
1

2

)c1 logn

= e−
c1 logn
log 2 ≤ n−c′1 (5.2)

Now recall that there are at most n undecided components. Therefore — by the union bound — all compo-
nents have at least one finished execution.

Thus, all nodes have decided at the end of Step 3, w.h.p. Note that aggregating the index of the finished
execution can be done inO(log∆+ log logn) time in each Si. This proves Theorem 4

84

6
Conclusion to Part I

In this part of the thesis, we answered the following longstanding open question: Can an overlay network
of polylogarithmic degree be transformed into a graph of diameterO(logn) in timeO(logn) with polylog-
arithmic communication? Additionaly, we derrived result for basic connectivity and symmetry-breaking

problems.

6.1 RelatedWork

Let us first take a look at the history of fast overlay construction. To the best of our knowledge, the first overlay
construction algorithm with polylogarithmic time and communication complexity that can handle (almost)
arbitrary initial states has been proposed by Angluin et al. [AAC+05]. The authors assume a weakly connected
graph of initial degree d. If in each round, each node can send and receive at most dmessages, and new edges
can be established by sending node identifiers, their algorithm transforms the graph into a binary search tree
of depthO(logn) inO(d + log2 n) time, w.h.p. A low-depth tree can easily be transformed into many other
topologies, and fundamental problems such as sorting or routing can be easily solved from such a structure.

This idea has sparked a line of research investigating how quickly such overlays can be constructed. Table
6.1 provides an overview of the works that can be compared with our result. For example, [AW07] gives an
O(logn) time algorithm for initial graphs with outdegree 1. If the initial degree is d and nodes can send and
receiveO(d logn)messages, there is a deterministicO(log2 n) time algorithm [GHSS17].

85

Result Runtime Init. Topology Communication Comment

[AAC+05] O(∆ + log2 n)w.h.p Any O(logn) First Result
[AW07] O(logn)w.h.p Outdegree 1 O(logn) Opt. for Topology
[JRS+14] O(log2 n)w.h.p Any O(n) Self-stabilizing
[GHSS17] O(log2 n) Any O(∆ logn) Deterministic
[GHS19b] O(log3/2 n)w.h.p Any O(∆ logn) Previous Best
[GPRT20] O(log2 n)w.h.p Any O(∆ logn) Churn-resistant
[ACC+20] O(logn) Line Graph O(logn) Opt. for Topology

Theorem 1 O(logn)w.h.p Any O(∆ logn) Chapter 2
Theorem 2 O(logn)w.h.p Any O(∆ + log2 n) Chapter 3

Table 6.1: An overview of the related work. Note that∆ denotes the initial graph’s degree. Communication refers to the number of messages of size
O(logn) per node and round.

The research on overlay construction is not limited to these examples. Since practical overlay networks are
often characterized by dynamic changes coming from churn or adversarial behavior, many papers aim to reach
andmaintain a valid topology of the network in the presence of faults. These works can be roughly categorized
into two areas. On the one hand, there are so-called self-stabilizing overlay networks, which try to detect invalid
configurations locally and recover the system into a stable state (see, e.g., [FSS20] for a comprehensive survey).
However, since most of these solutions focus on a very general context (such as asynchronous message passing
and arbitrary corrupted memory), only a few algorithms provably achieve polylogarithmic runtimes [JRS+14,
BGP13], and most have no bounds on the communication complexity. On the other hand, there are overlay
construction algorithms that use only polylogarithmic communication per node and proceed in synchronous
rounds. Gilbert et al.[GPRT20] combine the fast overlay construction with adversarial churn. They present
a construction algorithm that tolerates adversarial churn as long as the network remains connected, and there
eventually is a period of lengthΩ(logn2)where no churn happens. The exact length of this period depends on
the goal topology. Further, there is a paper byAugustine et al. [ACC+20] that considers Õ(d)-time1 algorithms
for so-called graph realization problems. They aim to construct graphs of any given degree distributions as fast
as possible. They assume, however, that the network starts as a line, whichmakes the construction of the graphs
considered in this work considerably more straightforward.

6.2 Applications & Implications

Our results directly come with various applications and implications for several distributed computation prob-
lems. Wepoint out the following immediate implications that simply follow from the fact that any initial overlay
topology can be turned into a well-formed overlay inO(logn) time.

Monitoring in Overlays The paper [GHSS17] by Gmyr et al. presents so-called monitoring problems
where the goal is toobserve theproperties of the input graph. Everymonitoringproblempresented in [GHSS17]
can now be solved in O(logn) time, w.h.p., instead of O(log2 n) deterministically. These problems include
monitoring the graph’s node and edge count, its bipartiteness, and the approximate (and even exact) weight of
anMST.

1Õ(·) hides polylogarithmic factors

86

Bootstrapping Churn-resistant Overlays There is a variety of algorithms maintaining an overlay
topology under randomized or adversarial errors. These works focus on quickly reconfiguring the network
to distribute the load evenly (under churn) or to reach an unpredictable topology (in the presence of an adver-
sary) [DGS16,AS18,APR+15,GVS19b]. A commonassumption is that the overlay starts in somewell-defined
initial state and the algorithm is grantedO(logn) rounds of bootstrapping. These rounds have no churn, so the
maintenance protocol can be prepare itself. With our algorithm, the former assumption can be dropped as the
O(logn) rounds of bootstrapping suffice to build a suitable overlay from any initial configuration.

Executing NCC Algorithms in the NCC0 For most algorithms presented for the NCC (and hybrid
networks that model the global network by the NCC) [AGG+19b, AHK+20b, FHS20], the rather strong
assumption that all node identifiers are known may be dropped. Instead, suppose the initial knowledge graph
has degree O(logn). In that case, we can construct a butterfly network in O(logn) time, which suffices for
most primitives to work (note that all presented algorithms have a runtime ofΩ(logn) anyway).

Advanced Connectivity Problems Our algorithm for spanning forests can be used to further prob-
lems related to connectivity. In [GHSW23], they are used in an algorithm that checks whether a graph is bi-
connected in time O(logn). Further, in Schweichart’s thesis [Sch23b], they are utilized in an algorithm that
checks whether a graph is (approximately) k-connected inO(log3 n) time.

6.3 Open Questions & Possible FutureWork

We conclude this chapter with possible directions for future work and open problems. Note that any idea
sketched in the remainder should not be understood as propositions or even conjectures but rather as educated
guesses on which directions could be worthwhile.

Improving theCommunicationComplexity First, we note while our solution is asymptotically time-
optimal, our communication bounds may likely be improved. If the initial degree is d, then our nodes need
to be able to communicate Θ(d logn) many messages. However, as is implicitly proposed in [AAC+05], an
algorithmmight only require a communication capacity ofΘ(d). Eradicating the additional logn factor from
our algorithm seems to be non-trivial and poses an interesting goal. Note that our approach crucially requires
each node to maintainΘ(logn) connections to maintain the overlay’s connectivity as we essentially construct
a random graph in each iteration. It is well-known that even if all edges are picked uniformly at random, one
requires O(logn) per node to obtain a connected graph, w.h.p. Thus, a time- and communication optimal
algorithmmust resort to different techniques. We note that itmay be possible to adapt the PRAMalgorithmof
Halperin andZwick [HZ01] to ourmodel, whichusesO(n+m)processors to construct a spanning tree in time
O(logn). Similar to [AAC+05, AW07, GHSS17, GHS19b], the idea of the algorithm is to merge supernodes
repeatedly. Tomerge a sufficiently large set of supernodes at once, the authors observe that it suffices to perform
O(logn) random walks of length ℓ to discover ℓ1/3 many supernodes, w.h.p. If each supernode of size Ω(ℓ),
this can be done in O(log ℓ) depth. As in the PRAM model, it is possible to perform such random walks in

87

timeO(log ℓ) in overlay networks [DGS16, AS18] under certain conditions. However, this adaption is highly
non-trivial and the resulting algorithm will be significantly more complex than our solution.

Archieving Instance Optimal Runtime Recall that our algorithm is optimal if the initial topology
is a line consisting of n nodes. However, it is unclear whether it is optimal beyond this worst-case scenario.
Notably, Liu et al. [LTZ20] recently proposed an O(logHD + log logm/n n) time algorithm for computing
connected components in the PRAMmodel. Here, HD is the components’ hop diameter. Only for a line, HD
happens to be equal to the number of nodes, but generally, it can be much smaller. As this algorithm outputs
a spanning tree if the graph has one connected component. Recall that a spanning suffices to construct a well-
formed tree through the algorithm of Aspnes and Wu [AW07]. Assadi et al.[ASW19] achieve a comparable
result in the MPCmodel (that usesO(nδ) communication per node) with a runtime logarithmic in the input
graph’s spectral expansion. Thus, if these algorithms could be transferred to the HYBRID model, they could
(possibly) imply faster overlay constructions. Note that, however, theMPCmodel and the PRAMare arguably
more powerful than the overlay network model since nodes can reach any other node (or, in the case of the
PRAM, processors can contact arbitrary memory cells), which rules out a naive simulation that would have
Ω(logn) overhead if we aim for a runtime ofO(logn). Also, if the degree is unbounded (our assumption for
the HYBRID model), simulating PRAM algorithms, which typically have work Θ̃(m), becomes completely
infeasible.

Constructing Overlays under Churn Another possibly interesting application of our algorithm is
the construction of robust overlay networks under churn, i.e., nodes joining a leaving the network during the
construction. One promising approach is ensuring that our algorithm maintains a sufficiently high vertex ex-
pansion throughout every iteration (instead of conductance). That means each subset of nodes must not only
have many edges that lead out of the subset but also must be connected to many different nodes to handle a
big fraction of nodes leaving. Thus, we must additionally analyze the number of randomwalk tokens emitting
from a given subset that end at the same node. This can likely be done using more advanced spectral and/or
combinatorial methods. To illustrate this claim, assume every ℓ rounds a, say, logarithmic fraction of the nodes
fail and thereby drop all tokens they received. This, of course, is a very basic churn model, but it is sufficient to
convey our point as other churnmodels are usually stronger and we would face a similar problem. If each node
fails independently with probability p := 1

∆ , one can easily verify that the expected number of outgoing edges
in each phase is only decreased byO(1). Thus, in expectation, the algorithm continues to increase the graph’s
conductance by a constant factor each phase. However, this result does not trivially hold with high probability
anymore as the individual walks that create the connections do not fail independently of one another. In the
extreme case, i.e., if all walks of a single end at the same failing node, the corresponding node does not create a
single edge. To mitigate this, we need the know the number of random walks (of a single node or set) that end
at distinct nodes. If a constant fraction of walks end at different nodes, then a constant number of the tokens is
dropped independently. This is enough for theChernoff bound to kick in, as we could now show that constant
fractions of tokens survive w.h.p. (that means a constant fraction of the independent tokens). However, many
details need to be worked out and clarified.

88

PropertyTesting Our algorithmhas the interesting property that it’s runtime is closely tied to the graph’s
conductance, which makes it much faster on graphs that already have a good conductance. Given this insight,
our algorithm can likely be used as a basis for conductance testing theHYBRIDmodel. In conductance testing,
for given parameters Φ and ϵ, the goal is to accept that have conductance Φ and reject graphs that are at least
ϵ-far from having conductance O(Φ2+o(1) logn). Here, the term ϵ-far means that an ϵ-fraction of all edges
must be changed to obtain a graph of the desired conductance. In this particular scenario, it suffices to find a
subset of sizeΘ(ϵn)withbad conductance, i.e.,O(Φ2+o(1) logn), to reject the graph. There are twoalgorithms
[FV18]or [ŁMOS20] that consider this problem indistributedmodels. For these algorithms, either the runtime
or the global communication are in Θ̃(Φ). Our algorithm — most likely — can reduce this because we can
reduce the conductance in a preprocessing step. Following our analysis, any graph of conductance Θ(Φ) can
be transformed into a constant conductance graph in O

(
log(Φ)
log(ℓ)

)
rounds. On the other hand, if we apply

our algorithm on a graph with a set with conductanceO(Φ2+o(1) logn), we observe that in every round, the
conductance can only increase by a factor of O(ℓ) as on expectation, O(1) random walks enter or leave the
subset in expectation via each edge. Thus, after O(

log(Φ)
log(ℓ)) rounds, if we choose ℓ carefully enough, the set

likely still has a somewhat bad conductance. Then, one can apply the algorithm of [FV18] or [ŁMOS20] with
reduced complexity on the graph created by our algorithm. However, the exact bounds for Φ, and ϵ rely on a
very careful choice of ℓ, we defer this application to future work. As before, many details need to be worked out
and clarified to obtain a feasible solution.

Minimum Spanning Trees While our algorithm can be used to quickly compute spanning trees, we do
not know whether our techniques can also help find minimum spanning trees. There does not seem to be any
reason to believe that computing an MST is inherently harder; In fact, it is easily possible with earlier overlay
construction algorithms [AGG+19c], but requiresO(log3 n logW) time whereW is the largest weight. That
algorithm follows the approach of merging supernodes, so we cannot trivially plug in our algorithms to speed
up certain parts. Schweichhart’s thesis [Sch23b] has proven that if themaximumweightW is atmostO(logn),
our spanning tree can indeed be adapted to construct MSTs faster than [AGG+19c]. However, this bound on
W is a severe limitation. It seems that in order to be genuinely faster than [AGG+19c] for all values ofW , we
would need additional or possibly different techniques altogether. While MST algorithms for more powerful
models such as the congested clique or theMPCmodel [Now19, JN18, GP16] hardly seem applicable, it might
beworthwhile to investigatewhether PRAMalgorithmsprovide useful techniques for overlay networks [PR02,
CHL01].

89

90

Part II

Distributed Graph Algorithms for
Distance Based Problems

91

92

7 Preliminaries for Part II 101

7.1 A Divide-And-Conquer Theorem for Distributed Algorithms 102

7.1.1 TheMinor Aggregation Framework . 103

7.1.2 Approximate Set-Source Shortest Paths in CONGEST and HYBRID 106

7.1.3 A Divide-And-Conquer Theorem for Restricted Graphs 110

7.2 The Tree Operations of Ghaffari and Zuzic . 113

8 Weak Separators Via Approximate Distances 115

8.1 WhyWeak Separators? . 116

8.2 AlgorithmDescription . 117

8.3 Analysis . 119

8.3.1 Proof of Lemma 8.2 . 123

8.3.2 Proof of Lemma 8.1 . 129

9 Fast Construction of Separators for Planar Graphs 137

9.1 Planar Graphs: Embeddings, Faces, and Augmentations 139

9.2 Fast Separators in CONGEST . 140

9.2.1 A Small Toolkit for Planar Graphs in CONGEST 142

9.2.2 Subroutine 1: Finding and Communicating in Biconnected Components 144

9.2.3 Subroutine 2: Making Planar Graphs Biconnected 146

9.2.4 Subroutine 3: Computing (Weighted) Path Separators 154

9.2.5 Analysis of ComputePathSep . 156

9.2.6 Main AlgorithmDescription & Analysis (Proof of Lemma 9.1) 160

9.3 Fast Separators in the PRAM and the HYBRIDModel . 163

10 Strong Low-Diameter Decompositions Via Approximate Distances 165

10.1 Structure of this Chapter . 169

10.2 Pseudo-Padded Decompositions Using Approximate Shortest Paths 169

10.2.1 AlgorithmDescription . 171

10.2.2 Analysis . 172

10.3 Low-Diameter Clusterings from Pseudo-Padded Decompositions 185

10.3.1 AlgorithmDescription . 187

10.3.2 Analysis . 188

10.4 Low-Diameter Decompositions for General Graphs . 193

10.5 Low-Diameter Decompositions for k-path Separable Graphs 196

10.5.1 The Backbone Clustering Phase (Proof of Lemma 10.15) 200

10.5.2 The Refinement Phase (Proof of Lemma 10.16) 212

10.6 RelatedWork . 217

10.6.1 The Different Types of Decompositions . 217

10.6.2 Decompositions in Sequential Models . 219

10.6.3 Decompositions in CONGEST . 220

10.7 Conclusion & Future Work . 222

11 Distributed Construction of Compact Routing Schemes 227

11.1 Structure of this Chapter . 231

11.2 Efficient Computation of Compact Routing Schemes Using Tree Covers 232

11.2.1 An Exact Routing Scheme for Trees . 234

11.2.2 From (Routing on) Trees to (Routing on) Graphs 235

11.2.3 Proof of Lemma 11.1 . 237

11.3 Tree Covers Using Pseudo-Padded Decompositions . 240

11.4 Tree Covers UsingWeak Separators . 241

11.4.1 Constructing Additive Tree Covers . 245

11.4.2 Proof of Lemma 11.8 . 246

11.4.3 From Additive Tree Covers To Hierarchical Tree Covers 251

11.5 RelatedWork . 252

11.5.1 Compact Routing Schemes in the Sequential Model 252

11.5.2 Compact Routing Schemes in the CONGESTModel 253

11.5.3 Compact Routing Schemes in the HYBRIDModel 253

11.6 Conclusion & Future Work . 255

12 Approximating Simple Covering Problems Via Beeping Algorithms 259

12.1 The BeepingModel . 262

12.2 An Efficient SetCover-Algorithm for the Beeping-Model 263

12.2.1 AlgorithmDescription . 264

94

12.2.2 Analysis (Proof of Theorem 14) . 266

12.2.3 Proof of Lemma 12.3 . 270

12.2.4 Proof of Lemma 12.4 . 278

12.3 RelatedWork . 282

12.4 Conclusion & Future Work . 282

13 Conclusion to Part II 285

References 287

95

96

Overview of Part II

In this part of the thesis, we consider distributed algorithms for various graph problems in the CONGEST
and HYBRID model. To precise, we consider the following three fundamental problems. We present
an algorithm that computes a so-called compact routing scheme forG. These routing scheme allow each

node route amessage to every other node via a path that is not significantly longer than the shortest pathbetween
these two nodes. Further, we present an algorithm for constructing so-called low-diameter decompositions.
These are subgraphs of bounded diameter, such that only very few edges have endpoints in different subgraphs.
These decomposition are important building blocks in the design of (distributed) divide-and-conquer algo-
rithms. Finally, we present a algorithms for a variant of the dominating set problem where for each node we to
mark one node in some distanceD and wish to mark as few nodes as necessary. Again, due to its generality, this
algorithm can be used as a building block to other (distributed) optimization problems. We remark that our
algorithms work for arbitrary graphs but exhibit much better properties when executed on a restricted graph
class.

The results presented here are based on (but significantly extend on) the following publications. First, we
presented the basic construction of routing schemes for planar graphs in CONGEST and theHYBRIDmodel
the following publication:

JinfengDou,ThorstenGötte,HenningHillebrandt,Christian Scheideler, and JulianWerthmann. Brief
announcement: Distributed construction of near-optimal compact routing schemes for planar graphs.
In Rotem Oshman, Alexandre Nolin, Magnús M. Halldórsson, and Alkida Balliu, editors, Proceedings
of the 2023 ACM Symposium on Principles of Distributed Computing, PODC 2023, Orlando, FL, USA,
June 19-23, 2023, pages 67–70. ACM, 2023

This result mostly combined and generalized known results on planar graphs in the CONGEST andHYBRID
model. In the follow-up work, we considered the problem of creating low-diameter decompositions for the
larger class of universally k-path separable graphs. It was published in the following paper:

97

JinfengDou, ThorstenGötte,HenningHillebrandt, Christian Scheideler, and JulianWerthmann. Dis-
tributed and parallel low-diameter decompositions for arbitrary and restricted graphs. In RaghuMeka,
editor, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025), New York City, NY,
USA, January 7–10, 2025, Leibniz International Proceedings in Informatics (LIPIcs), page (to appear),
Dagstuhl, Germany, 2025. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik

However, the ideas developed for this paper also lead to an improveddistributed constructionof routing schemes
for universally k-path separable and even general graphs. For the latter, the improvement only holds for theHY-
BRIDmodel. The respective algorithms have not been published before but are basically corollaries of themain
results of the two previuously mentioned publications. Finally, the last publication that builds the basis of this
part of this part is:

ThorstenGötte,ChristinaKolb,Christian Scheideler, and JulianWerthmann. Beep-and-sleep:Message
and energy efficient set cover. Theor. Comput. Sci., 950:113756, 2023

The article presents an algorrithm for the Set Cover problem in the so-called BEEPINGmodel. This algorithm
builds the foundation for our last result. Note that this is the journal version of the following conference paper

ThorstenGötte,ChristinaKolb,Christian Scheideler, and JulianWerthmann. Beep-and-sleep:Message
and energy efficient set cover. InLeszekGasieniec,RalfKlasing, andTomaszRadzik, editors,Algorithms
for Sensor Systems - 17th International Symposium on Algorithms and Experiments for Wireless Sensor
Networks, ALGOSENSORS 2021, Lisbon, Portugal, September 9-10, 2021, Proceedings, volume 12961
of Lecture Notes in Computer Science, pages 94–110. Springer, 2021

The journal version includes all proofs thatwere omitted in the conference version and corrects the lower bound
presented in the conference version.

The remainder of this part is structured as follows. Webeginwith somepreliminaries inChapter 7, inwhich
we introduce some auxiliary results. First, we introduce a metamodel, making it easier to describe algorithms
that efficiently run in both the CONGEST and the HYBRIDmodel without describing each algorithm twice.
Further, we present some simple helper algorithms that we will use as a black box throughout this part. Next,
we introduce algorithms for the construction of so-called separators that can be efficiently implemented in both
CONGEST and HYBRID. Separators are subgraphs that, if removed, decompose the graph into connected
components containing amost a constant fraction of the nodes. These separators will be an important building
block for our subsequent algorithms. In Chapter 8, we present an algorithm that produces a weaker form of
a separator. This separator only ensures that upon its removal, all nodes can reach few nodes in some distance
D. As we will see, this is good enough for our application and much easier to compute in distributed setting.
In Chapter 9 we present algorithms to construct a proper path separator in planar graphs. In contrast to the
previous algorithm, this algorithm computes a proper separator that possibly has further applications.

98

After these technical chapters introduce general techniques and building blocks, we continuewith the three
main algorithms. Chapter 10 is dedicated to constructing a low-diameter decomposition for both general and
restricted graphs in CONGEST andHYBRID.We show that several sequential clustering algorithms from the
literature can (in aweaker form) also be efficiently implemented inCONGEST andHYBRID.Combinedwith
our two separator constructions, this leads to almost optimal algorithms for many graph classes. Chapter 11
presents routing schemes for general and restricted graphs. These schemes also use both the separator construc-
tion fromChapters 8 and 9 and the clustering algorithms fromChapter 10. Finally, in Chapter 12, we consider
a somewhat orthogonal problem of computing a simple covering. Note that these three problems are relatively
disjoint. Therefore, all three chapters have self-contained sections on related work and their own conclusions,
including open questions and possible directions for future work. Finally, in Chapter 13

We remark that the papers [DGH+23] and [DGH+25] that focus on routing schemes and decompositions
also presentedwork-efficient algorithms for the PRAM.These results are omitted in this thesis to keep the focus
solely on distributed models, i.e., on CONGEST andHYBRID. However, all of our results can also be used to
derive PRAM algorithms with near-linaer work and polylogarithmic depth. Finally, there are two important
notes regarding the journal article [GKSW23] co-authored with Christina Kolb, Christian Scheideler, and Ju-
lianWerthmann: Note that this thesis does not contain all algorithms presented in [GKSW23]. The remaining
results can be found in the thesis of Christina Kolb [Kol22]. The thesis also contains a summary of the results
we present in Chapter 12 as they form the necessary preliminaries for the results presented in [Kol22]. This
summary also includes the proofs, which leads to some textual overlap. However, we emphasize that these pas-
sages are only used as preliminaries in [Kol22]. Finally, we remark that the author was involved in designing the
algorithms, conceiving the analysis, and writing all papers that are the basis for this chapter.

99

100

7
Preliminaries for Part II

In this part of the thesis, we consider algorithms for graph problems in the distributed setting, namely the
CONGESTand theHYBRIDmodel. Beforewe get into the details of our algorithms, we use this chapter
to present some useful techniques and preliminaries. In particular, we discuss the fundamental impact

of a graph’s topology on the solution quality and complexity of a distributed algorithm. As such, this chapter
mainly presents, aggregates, and unifies known results of graph theory and distributed graph algorithms.

We begin our little tour by reminding ourselves why the graph’s topology plays a crucial role in our algo-
rithms and why we do not simply present algorithms that work perfectly well on all topologies. As we have
already argued in the introduction, the solution to a graph-based problem depends on the properties of the
input graph. For example, many problems that are NP-hard and even hard to approximate in general graphs
might be trivial (or at least significantly easier) to solve in trees, planar graphs, graphs of bounded treewidth,
etc. See, for example, the survey by Bodleander for an excellent overview on algorithms for graphs of bounded
treewidth [Bod93]. When we consider graph-based problems in distributed models like CONGEST and HY-
BRIDwhere the communication graph is equal to (or at least part of) the input graph, another very important
factor comes into play: Some problems cannot be solved fast on certain graphs as there exist pathologic com-
munication graphs in which the necessary information to solve a problem cannot be aggregated fast enough.
However, other graph classes with favorable topological properties allow specific problems to be solved much
more efficiently. To name an extreme example, in a complete graph, many problems can be solved in a sublog-
arithmic or even constant number of rounds as all nodes directly communicate with one another.

In this chapter, we present useful preliminaries for the algorithms presented in this part of the thesis. First,
we present a generic framework that allows us to express complex distributed algorithms through a series of sim-

101

pler operations, namely aggregations and shortest-path computations. This framework uses known techniques
for graph-based distributed problems, namely the so-called minor aggregation framework [GH16b, HWZ21,
GZ22a, GH21] and algorithms for (1 + ϵ)-approximate shortest paths[REGH22]. For both these operations,
near-optimal distributed algorithms are known. In particular, the algorithms are especially fast in restricted
graphs. We present the framework and the corresponding algorithms in Section 7.1. Then, in Section 7.2,
we present a very helpful lemma by Ghaffari and Zuzic that conveniently enables the design of algorithms on
subforests of a given graph.

7.1 A Divide-And-Conquer Theorem for Distributed Algorithms

Divide-and-conquer is a well-known paradigm in algorithm design where the problem is recursively divided
into smaller subproblems that are easier to handle. In this section, we present a meta-model for distributed
divide-and-conquer algorithms in the HYBRID and CONGEST model that will simplify the description of
the forthcoming algorithms. Rather than exploiting these models’ intricacies in bespoke algorithms, we reduce
our algorithms to Õ(1) applications of a (1+ϵ)-approximate shortest path algorithmwith ϵ ∈ O (1/log2 n) and
some simple aggregations on subsets of the input graph. To be precise, our algorithms are based on approximate
set-source shortest paths (SetSSP) and so-called minor aggregations. In the remainder of this section, we will
clarify what exactly these operations do and how efficiently they can be implemented in the CONGEST and
the HYBRIDmodel.

Following the divide-and-conquer approach, our algorithms will divide the input graph G = (V,E,w)

into disjoint connected subgraphs C1, . . . , CN and solve certain tasks on these subgraphs. While this can be
done without repercussions on the runtime in the sequential model, one needs to be careful in distributed
models, where an algorithm’s runtime is often intertwined with the input graph’s topology. To illustrate this,
consider the broadcast problem where one node wishes to send a message to all other nodes. Clearly, thus
requires at leastHD rounds inCONGEST.When there is one node that broadcasts amessage to all other nodes
inG, it can be implemented by a trivial algorithm: In each round, each node that knows themessage forwards it
all its neighbors. AfterHDrounds, eachnodemust know themessage; thus, the algorithm is optimal. However,
this does not trivially imply that a broadcast in a collection of subgraphs C1, . . . , CN can also be implemented in
HD rounds in all subgraphs in parallel. Suppose one node in each subgraphwants to send a singlemessage to all
nodes in that subgraph. In this setup, the simple algorithm from above fails. The subgraphs might have a hop-
diameter greater than HD, so we cannot confine the algorithm to operate only in their respective subgraphs.
Rather, the algorithmmust also use nodes and edges from outside the subgraph to achieve a good runtime. But
we need to be careful. We cannot let all nodes and edges help with all the broadcast algorithms, as this would
create too much congestion. For tasks more complex than broadcast, this becomes even more dire.

For these reasons, we will consider algorithms that consist only of operations that can be efficiently im-
plemented in subgraphs in both CONGEST and HYBRID. In a brilliant series of works [HWZ21, GZ22a,
GH21], it was shown that for certain algorithmic tasks, it is indeed possible to solve them in all subgraphs in
parallel in Õ(HD +

√
n) time in the CONGEST model; in some graphs even in Õ(HD). In particular, one

can compute simple aggregation functions like sum,maximum, or average in the connected subgraphs. That
means, each node in the connected subgraph has an input value and all nodes in the subgraph need the learn the

102

result of an aggregation on all these values, i.e., their sum, their maximum, or their average. In HYBRID, the
situation is similar. Here, we can use the global communication capabilities to implement simple aggregation
in each component C1, . . . , CN in O(logn) time, w.h.p. We will refer to these operations as minor aggrega-
tions. However, these aggregations alone are not quite enough for our algorithms. Further, we will also need to
compute the approximate shortest paths in each connected subgraph. To be precise, each connected subgraph
Ci has its own source value si, and each node in the subgraph learns its distance to si within the subgraph,
i.e., only using edges within the subgraph. Here, we can use the state-of-the-art approximate SSSP algorithm
from [RGH+22] that computes an approximate shortest path tree rooted in an arbitrary set of nodes. As we
will see, it can be implemented in Õ(ϵ−2(HD +

√
n)) time and in some graphs even in Õ(ϵ−2 · HD) time

in CONGEST and Õ(ϵ−2) time in HYBRID, w.h.p. This algorithm can trivially be extended to run in sub-
graphs C1, . . . , CN by giving all edges between subgraphs infinite weight. Thus, just like the aggregations, we
can efficiently compute approximate shortest paths in all subgraphs in parallel.

Morally, we will show the following over the course of this section: Let G := (V,E,w) be a (weighted)
graph. Further, let A be an algorithm that can be broken down into τs (1 + ϵ)-approximate shortest com-
putations with ϵ < 1 and τm aggregations. We will show that on Kr-free graphs, if we have τ = τs + τm

steps and compute (1+ ϵ)-approximate shortest paths with ϵ ∈ Ω(1/log2 n), the overall runtime is Õ(τHD) in
CONGEST and Õ(τ) in HYBRID, w.h.p. For general graphs, slightly different bounds apply.

Note that this is a simplified version, as the precise technical theorem has somemore nuances. In particular, we
will clarify the exact definition of aggregations and approximate shortest path throughout this section. Further,
we want to emphasize that virtually all the results in this section have been shown in previous works, and we
refer to these works for the formal proofs. We merely compile and and combine their results here. This section
is structured as follows:

• In Section 7.1.1, we present theMinor Aggregation model, a meta-model that gained a lot of popularity
in the study of graph algorithms inCONGEST, but can also be used for efficient algorithm inHYBRID.
In this model, complex algorithms are broken down into aggregations on connected subgraphs. These
aggregations can then be solved in essentially optimal time in each input graph in CONGEST and in
logarithmic time in HYBRID.

• In Section 7.1.2, we gather the state-of-the-art algorithm for (1 + ϵ)-approximate shortest paths and
discuss its time complexity in various setups.

• In Section 7.1.3, we combine all of our insights into a technical theorem that enables us to conveniently
bound the runtime of any divide-and-conquer algorithm that only uses aggregations and shortest path
computations in both CONGEST and HYBRID.

7.1.1 TheMinor Aggregation Framework

The Minor Aggregation model (MinAgg) is a novel meta-model that allows easy description algorithms to be
efficiently implemented in theCONGEST, the PRAM,or even theHYBRIDmodel. Althoughour algorithms
do not exploit this model’s full power, we will give a short overview for the sake of completeness. For a more

103

detailed insight into themodel and its strengths and caveats, we refer to an excellent series of papers investigating
this model in greater depth [HWZ21, GZ22a, GH21].

We begin with a brief history of this very recent model before we proceed with its formal definition to
better understand the modelling descisions. Interestingly, the MinAgg model was not originally conceived as
a meta-model. Rather, it was used as a convenient way for creating so-called universally optimal CONGEST
algorithms. To understand the notion of universally optimality, we take a short detour and need to dig a bit
deeper into the properties and caveats of the CONGEST model. First, we make ourselves clear that it is a
fundamental property (one might call it a curse) of the CONGESTmodel that the communication graph and
the problem graph share the same topology. In other words, the graphG := (V,E,w) is not just an input for
some algorithmicproblem, say, computing shortest paths, but alsodictateswhichnodesmay communicatewith
one another. Thus, the optimal time in which a problem can be solved depends (arguably) much stronger on
G‘s topology than, say, in the PRAM or the HYBRID model, where nodes can communicate independently
of the topology. This may lead to some ambiguity when we talk about lower bounds for the runtime of an
algorithm. In particular, one has to consider lower bound in runtime in CONGEST with a grain of salt as
many of them are simply stated as worst-case bounds. In other words, they state that there is a certain graphG
on which a problem can only be solved inΩ(T) time. For example, it is well known that the weighted shortest
path problem takes at least HD time on any graph G. However, there are pathological graphs where it takes
Ω(
√
n) time, although they have small diameters. Thus, both HD and Ω(

√
n) may justifiably regarded as

lower bounds for the problem.
Whendesigning a distributed algorithm,we obviouslywant the runtime to be optimal for the specific graph

(or at least the graph family) onwhichwe execute it. This brings us to the aforementioned concept ofuniversally
optimality. A recent line of works that involved the input of many authors took a closer look at this issue and
introduced the notion of universal optimality. The goal was to design algorithms that are not optimized for
the worst-case topology but indeed always run time-optimal in their respective communication graph. Their
starting point was a paper that dealt with finding the MST of a planar graph in Õ(HD) time[GH16a]. This
problem was known to require Õ(HD +

√
n) time in general graphs due to the aforementioned pathological

graphs. Oneof thepaper’smainnew insightswas the fact that in aplanar graphG, one can solve simpleproblems
like computing the minimum or the sum of all values stored by the nodes of (disjoint) connected subgraphs of
G in Õ(HD) time for all these subgraphs in parallel. Notably, the bound holds even if the diameter of these
connected subgraphs is much larger than Õ(HD) itself, which makes it highly non-trivial in CONGEST. In
other graphs, this is not generally possible and, in fact, can take up to Õ(HD +

√
n) time. Soon, however,

it was discovered that not only planar graphs but many other graph classes allow us to solve this problem in
time Õ(HD). To formalize this, they introduced the shortcut qualityQ(G) of a graphG as the parameter that
captures how complex it is to solve a problem on a specific graphG.

With this background, we will now formally introduce MinAgg framework. Consider a network G =

(V,E) and a (possibly adversarial) partition of vertices into disjoint subsets V1, V2, . . . , VN ⊂ V , each of
which induces a connected subgraphG[Vi]. We will call these subsets parts. Further, let each node v ∈ V have
private inputxv of length Õ(1), i.e., a value that can be sent along an edge in Õ(1) rounds. Finally, we are given
an aggregation function

⊗
likeSUM, MIN, AVG, Anaggregate function

⊗
maps amultisetS = (x1, ..., xN)

104

of input values to some value
⊗

(S). For some functions
⊗

itmight be hard to compute
⊗

(S) in a distributed
fashion because not all values of S are available at once. Thus, the function must be computed incrementally.
Further, the in- and outputs of a functionmay be too big to be sent a single (or even polylogarithmically many)
messages. This is clearly the case forMAX,MIN, and AVG as the result are simply numbers that can be encoded
in O(logn) bits (given that the inputs were logarithmic). However, there are also aggregate functions where
this is not the case. For example, a function that gathers all node identifiers in the system is certainly an aggre-
gation function. But the result of this function can only be encoded inΩ(n) bits. Thus, we may only consider
functions where both in- and output are of polylogarithmic size. We shall call these admissible functions.

Definition 7.1 (Admissible Aggregation Function). An aggregate function
⊗

is called admissible if its input
and all its intermediary outputs are of polylogarithmic size.

Having these technicalities out of the way, the goal is to simultaneously compute an admissible aggregation
function

⊗
v∈Vi

xv for each part. Later on, the model was refined to the following definition, we use in this
work:

Definition 7.2 (DistributedMinor-AggregationModel, from [GZ22a]). We are given a connected undirected
graphG = (V,E). Both nodes and edges are individual computational units (i.e., have their own processor and
privatememory). Communication occurs in synchronous rounds. Initially, nodes only know their unique Õ(1)-bit
ID and edges know the IDs of their endpoints. Each round consists of the following three steps (in that order).

• Contraction step. Each edge e chooses a value ce = {⊥,⊤}. This defines a new minor network G′ =

(V ′, E′) constructed asG′ = G/{e : ce = ⊤}, i.e., by contracting all edges with ce = ⊤ and removing
all self-loops. Vertices V ′ of G′ are called supernodes, and we identify supernodes with the subset of nodes
from V it consists of, i.e., if s ∈ V ′ then s ⊆ V .

• Consensus step. Each node v ∈ V chooses a Õ(1)-bit value xv . For each supernode s ∈ V ′, we define
ys :=

⊕
v∈s xv , where

⊕
is any pre-defined admissible aggregation operator. All nodes v ∈ s learn ys.

• Aggregation step. Each edge e ∈ E′, connecting supernodes a ∈ V ′ and b ∈ V ′, learns ya and yb and
chooses two Õ(1)-bit values ze,a, ze,b (i.e., one value for each endpoint). For each supernode s ∈ V ′, we
define an aggregate of its incident edges inE′, namely

⊗
e∈incidentEdges(s) ze,s where

⊗
is some pre-defined

admissible aggregation operator. All nodes v ∈ s learn the aggregate value. To be precise, they learn the
same aggregate value, a non-trivial assertion if there are many valid aggregates.

Note that the first steps resemble the part-wise aggregation problem we sketched above. This extended
definition also defines a way to exchange messages between parts through the aggregation step. Amazingly,
many complex CONGEST algorithms can be broken down into part-wise aggregations. Instead of devising a
long and complex algorithm, they heavily use part-wise aggregation as a black box. In each step, the algorithm
either executes a normalCONGEST round or solves a part-wise aggregation problem. Thus, the runtime only
depends on the number of part-wise aggregations and the time it takes to solve each of them. Now theparameter
Q(G) comes into play as it is exactly the time that is needed solve the part-wise aggregation problem inGwhen
using the CONGESTmodel. Most importantly for this work, the part-wise aggregation problem can be solved
quickly in planar graphs in CONGEST as for these graphs, it holdsQ(G) ∈ Õ(HD). It is important to note

105

that while HDmay be large in certain graphs, i.e., up to n on a line graph, it is the best bound we can hope for.
Furthemore, part-wise aggregation can be solved extremely fast in Õ(1) in depth the PRAMmodel and in Õ(1)

in time the HYBRIDmodel. Thus, the model does not only provide with means to develop fast algorithms in
CONGEST but also in the PRAM and the HYBRIDmodel. More precisely, it holds:

Lemma 7.1 (Implementation of theMinAggmodel in CONGEST andHYBRID). LetA be a τ -roundMinAgg

algorithm on a graphG as defined in Def. 7.2. Then, it holds:

• A can be implemented in Õ(τ · Q(G)) time, w.h.p., in the CONGEST model where Q(G) is shortcut
quality.

We have Q(G) ∈ Õ(HD +
√
n) always, but if G does not contain Kr as a minor, it holds Q(G) ∈

Õ(r ·HD).

• A canbe implemented in Õ(τ) time, w.h.p., in theHYBRIDmodelwithλ ∈ O(logn)andγ ∈ O(log2(n)).

Proof. TheCONGEST parts were proven in [HWZ21] (for general graphs) and [GH21] (forKr-free graphs).
For the detailed proof, we refer to these papers. For the HYBRIDmodel, we execute our algorithm from The-
orem 2 on each supernode to build a well-formed tree. In a well-formed tree, all steps can be implemented in
O(logn) time as it has a diamter of O(logn). In order to bring the global complexity from O(log3 n) to the
desired O(log2 n), we need to slightly modify the algorithm. Recall that each node needs to send O(log2 n)
messages of sizeO(logn) in each step. Instead of sending all these messages at once, each node locally creates
O(logn) batches ofO(logn)messages. In each round, a node sends one batch of messages. A straightforward
generalization of Lemmas 2.15 and 2.16 imply that each node only receives O(logn) messages, w.h.p. Thus,
after O(logn) round, all batches are sent. Therefore, one round of the original protocol can be simulated in
O(logn) rounds. Thus, after O(log2 n) rounds, we have a well-formed tree of depth O(logn) for each su-
pernode, w.h.p. Alternatively, we could also use the algorithm of [GHSS17] or [GHS19b] to obtain similar
runtimes. Given a well-formed tree that spans the supernode, we can compute

⊕
in each supernode using this

tree. Thus, we can implement the consensus step in time Õ(1). For the aggregation step, each node v ∈ V in
supernode s ∈ V ′ first computes z(v,w),s for each neighborw ∈ V in a different supernode. For this, it can use
its local CONGEST edges asw is a neighbor inG, and the values that need to be exchanged are small. Then, it
locally computes zv =

⊗
w:w ̸∈s z(v,w),s. Finally, we use well-formed tree again to compute

⊗
v∈s zv in time

Õ(1).

7.1.2 Approximate Set-Source Shortest Paths in CONGEST andHYBRID

This section considers the computation of approximate shortest paths in CONGEST and HYBRID. In a dis-
tributed system, computing the shortest path means that each node learns its distance to the source and its
predecessor on its path to the source, i.e., it marks one of its neighbors as a parent in an SSSP tree. Repeatedly
following these parent pointers leads to the source. More precisely, we will analyze the complexity to either
perform approximate SSSP from a virtual node that is not part of the input graph or from a subset of nodes in-
stead of a single source and in disjoint subgraphs in parallel. As it turns out, most approximate SSSP algorithms
support this variation without a (significant) loss in approximation ratio or runtime. We formalize the class of
SetSSP algorithms we are interested in as follows:

106

Definition 7.3 (Approximate SetSSP with Virtual Nodes). Let G := (V,E) be a weighted graph and let
G′ := (V ′, E′, w) with V ′ := V ∪ {s1, s2, . . .} be the graph that results from adding Õ(1) virtual nodes to
G. Each virtual node can have an edge of polynomially bounded weight to every virtual and non-virtual node in
G′. Finally, let S ⊂ V ′ be an arbitrary subset of virtual and non-virtual nodes. Then, an algorithm that solves
(1 + ϵ)-approximate set-source shortest path with virtual nodes computes the following:

• Each node v ∈ V ′ \ S learns a predecessor pv ∈ N(v) on a path of length at most (1 + ϵ)d(v, S) to some
node in S andmarks the edge {v, pv}. Together, all the marked edges imply an approximate shortest path
tree T 1 rooted in set S.

• Each node v ∈ V ′ learns its distance dT (v, S) ≤ (1 + ϵ)d(v, S) to S in tree T , i.e., its exact distance to
S in T and its (1 + ϵ)-approximate distance to S inG′.

Note that this extension is trivial for all SSSP algorithms in the PRAM as we can just add the additional
node to the input graph and handle it like any other node. However, it does not come that easy for CONGEST
or the HYBRID model. In particular, this holds because we do not restrict the degree of the virtual nodes,
which may be adjacent to all nodes inG. Thus, an algorithm could, in principle, require a supernode to send
and receive distinctmessages to and from all other nodes inG. A naive simulation would takeO(n ·HD) time,
which is clearly way beyond our runtime goals. Luckily for us, the very recent breakthrough result of Rozhon
r⃝ al. [RGH+22] supports virtual nodes and can be quickly implemented in CONGEST model as it heavily
relies on minor aggregations. Further, it has several very beneficial properties that allow it to be also quickly
implemented in HYBRID. It holds:

Lemma 7.2 ((1 + ϵ)-Approximate SetSSP, see [RGH+22]). LetGP := (V,E,w) be a weighted graph with
hop-diameter HD and let ϵ > 0 be a parameter. Let S ⊂ V be a set of sources. Then, there is an algorithmAϵ

that constructs a (1 + ϵ)-SetSSP forest for S.

• In CONGEST,Aϵ inO(ϵ−2 ·HD) time, w.h.p.

If graphG excludes a fixed minorKr ,Aϵ can be executed in Õ
(
ϵ−2 · k ·HD

)
time, w.h.p.

• In the PRAMmodel with Õ(m) processors,Aϵ can be executed with Õ
(
ϵ−2 ·m

)
work and Õ (1) depth.

This immediately gives us a bound for the CONGEST model. In the remainder of this section, we will
therefore show that in the HYBRID model, we can perform approximate SetSSP in polylogarithmic time.
More precisely, we show how to simulate the algorithm of Rozhon r⃝ al. and leverage its useful properties,
such as choosing an arbitrary subset or a virtual node as a source. The exact time bounds for the simulation
depend on the parameters of the HYBRID model and the properties of the input graph. The lemmas in this
section aremostly a compilation of simulation results by other researchers and folklore, nevertheless we include
(sketches of) their respective proofs for the sake of completeness.

We begin with (arguably) the most important result for our work. For any graph of low arboricity, which
includes trees, planar graphs, and more generally all graphs that exclude a fixed minor, we can show the follow-
ing:

1Technically, for a set S with |S| ≥ 2, the algorithm produces a forest with the individual tree rooted in the nodes S. However, we
slightly abuse notation and refer to it as a forest.

107

Lemma 7.3. For any graphG := (V,E,w) of bounded arboricity αG ∈ Õ(1), an (1 + ϵ)-approximation of
SetSSP can be computed in Õ(ϵ−2) time in the HYBRID model with local of communication of λ ∈ O(logn)
and logarithmic global communication γ ∈ O(log2 n), w.h.p.

If the input graphhas low arboricity, then theHYBRIDmodel is essentially as powerful as the PRAM.Feld-
mann,Hinnenthal, and Scheideler already noted this in their research on shortest path algorithms for restricted
graph classes [FHS20]. For the sake of completeness, we will present their simulation result in its entrity. In
the PRAMmodel, we assume computations are executed on a machine with p processors. The processes work
over a set of sharedmemory cellsM . The input graphG is stored in these cells. In a single step of computation,
they can read and write from each cell in an atomic operation. If more than one processor writes in a cell, an
arbitrary processor succeeds, i.e., we consider a CRCW PRAM. The work of a PRAM algorithm is the total
number of primitive read or write operations that the processors perform. Further, the depth is the length of
the longest series of operations that have to be performed sequentially. Given these defintions, we can show the
following:

Lemma 7.4 (Simulating PRAM in HYBRID). Let G be a graph with arboricity a and let A be a PRAM
algorithm that solves a graph problem onG usingN processors with depth T . Then,A can be simulated in time
O(a/(logn) + T · (N/n + logn)) in the HYBRID model with local communication of λ ∈ O(logn) and
logarithmic global communication γ ∈ O(log2 n), w.h.p.

Proof (Verbatim from [FHS20]). Since in a PRAM the processes work over a set of sharedmemory cellsM , we
first need tomap all of these cells uniformly onto the nodes. The total number of memory cells |M | is arbitrary
but polynomial and each memory cell is identified by a unique address x and is mapped to a node h(x), where
h : M → V is a pseudo-random hash function. For this, we need shared randomness. It suffices to have
Θ(logn)-independence, for which onlyΘ(log2 n) bits suffice. Broadcasting theseΘ(log2 n) bits to all nodes
takes timeO(logn).

To deliver x to h(x), the nodes compute an O(a)-orientation in time O(logn) [AGG+19b]. Note that
each edge in G can be represented by a constant amount of memory cells. When the edge {v, w} that corre-
sponds to v’smemory cell with addressx is directed towards v, v fills in the part of the input that corresponds to
{v, w} by sending messages to all nodes that hold the corresponding memory cells (of which there can only be
constantlymany). Since each node has to send atmostO(a)messages, it can send themout in timeO(a/ logn)
by sending them in batches of size ⌈logn⌉.

We are now able to describe the simulation ofA: Let k = n⌈logn⌉. Each step ofA is divided into ⌈N/k⌉
sub-steps, where in sub-step t the processors (t − 1)k + 1, (t − 1)k + 2, . . . ,min{N, tk} are active. Each
node simulatesO(logn) processors. Specifically, node i simulates the processors (t−1)k+(i−1)⌈logn⌉+1

to min{N, (t − 1)k + i⌈logn⌉}. When a processor attempts to access memory cell x in some sub-step, the
node that simulates it sends a message to the node h(x), which returns the requested data in the next round.
Since each node simulatesO(logn) processors, each node only sendsO(logn) requests in each sub-step. Also,
in each sub-step at most n⌈logn⌉ requests to distinct memory cells are sent in total as at most n⌈logn⌉ are
active in each sub-step. These requests are stored at positions chosen uniformly and independently at random,
so each node only has to respond toO(logn) requests, w.h.p.

108

In a CRCW PRAM algorithm, it may happen that the same cell is read or written by multiple processors.
Thus, the processors cannot send requests directly, but need toparticipate in aggregations towards the respective
memory cells using techniques from [AGG+19b]. In the case of a write, the aggregation determines which
value is actually written; in the case of a read, the aggregation is used to construct a multicast tree which is used
to inform all nodes that are interested in the particular memory cell about its value. Since there can be only
O(n logn)members of aggregation/multicast groups, and by the argument above each node only participates
and is the target ofO(logn) aggregations (at most one for each processor it simulates), performing a sub-step
takes time O(logn), w.h.p., by [AGG+19b]. Thus, each step can be performed in time O(N/n + logn),
w.h.p. (note that the additional logn-overhead stems from the fact in caseN > n, one single node still needs
timeO(logn) to simulate a sub-step).

This immediately implies the following.

Corollary 7.1. For any graph G := (V,E,w) that excludes a fixed minorKr , an (1 + ϵ)-approximation of
SetSSP can be computed in Õ(ϵ−2) time in the HYBRID model with local of communication of λ ∈ O(logn)
and logarithmic global communication γ ∈ O(log2 n), w.h.p.

Proof. It suffices to show thatKr-free graphs have arboricityO(r). This follows from two facts. First, Nash-
Williams proved that anyGwhere every subgraphhas an average degree ofαhas an arboricity ofO(α) [NW64].
Second, it is known that eachKr-free graphwithn nodes has atmostO(r ·n) edges [AKS23]. As any subgraph
ofKr-free graph isKr-free graph itself, it follows that every subgraph of n′ ≤ n nodes has at mostO(r · n′)

edges and, therefore, an average degree ofO(r). Together with the first fact, anyKr-free graph has an arboricity
ofO(r) as claimed

Next, we shift our attention to general graphs. If we consider general graphs of arbitrary arboricity, the
runtime bound is slightly weaker as we either require massively more local communication. For unlimited local
communication, Schneider [Sch23a] showed that it holds:

Lemma 7.5. For any graphG := (V,E,w), a (1 + ϵ)-approximation of SetSSP can be computed in Õ(ϵ−2)

time in the HYBRIDmodel with unlimited local communication.

Schneider proves that by using LOCAL model as a basis for the local communication, one can solve ap-
proximate SetSSP as fast as in the PRAM for any graphG. He also uses the algorithm of Rozhon r⃝ al. and
demonstrates how it can be efficiently simulated in the HYBRID model. The proof requires taking a closer
look at the specific operations of the algorithm. In particular, Schneider [Sch23a] shows that most operations,
namely all aggregations on minors, can be simulated inO(logn) time using the global communication mode
of the HYBRIDmodel and using the PRAM simulation of Lemma 7.4. However, the algorithm also requires
computing a so-called Eulerian orientation of (a subgraph of)G. Here, all edges need to be assigned an orienta-
tion, s.t., they form an Euler tour of the graph that visits all nodes. On a general graph, this can not trivially be
done via global communication as dense subgraphs of high arboricity could exist. To overcome this, Schneider
[Sch23a] presents a LOCAL algorithm that locally sparsifies the graphs. For details on this algorithm, which
relies on low-diameter decompositions, we refer the interested reader to [Sch23a]. Notably, the algorithm re-
quires each node to (potentially) learn itsO(log(n))-neighborhood and can therefore be executed inO(logn)

109

times in the LOCALmodel. After executing this algorithm, each node has at mostO(logn) undirected edges,
which can then be oriented by another PRAM simulation using the global communication. All in all, Schnei-
der [Sch23a] shows that all steps in the approximate SetSSP algorithm of Rozhon r⃝ al can be simulated in
Õ(1) time, which implies the lemma.

Combining all of our HYBRID results gives us the following lemma:

Lemma 7.6 ((1+ϵ)-Approximate SetSSP inHYBRID). LetG := (V,E,w) be aweighted graphand let ϵ > 0

be a parameter. Let S ⊂ V be a set of sources. Then, there is an algorithmAϵ that constructs a (1 + ϵ)-SetSSP
forest for S in the HYBRIDmodel.

• On any graph G, Aϵ in O(ϵ−2 · HD) time, w.h.p, with local of communication of λ ∈ O(n) and loga-
rithmic global communication γ ∈ O(log2 n), w.h.p.

• If graphG has arborticity α,Aϵ can be executed in Õ
(
ϵ−2 · α

)
time, w.h.p, with local of communication

of λ ∈ O(logn) and logarithmic global communication γ ∈ O(log2 n), w.h.p.

• If graphG excludes a fixedminorKr ,Aϵ can be executed in Õ
(
ϵ−2 · r

)
time, w.h.p,with local of commu-

nication of λ ∈ O(logn) and logarithmic global communication γ ∈ O(log2 n), w.h.p.

7.1.3 A Divide-And-Conquer Theorem for Restricted Graphs

Finally, we can combine our findings andpresent ameta-model for distributed algorithms consisting of shortest-
path computations and aggregations. In particular, we obtain the following technical theorem:

110

Theorem 5. ADivide-And-Conquer Theorem for Distributed Algorithms

LetG := (V,E,w) be a (weighted) graph and letA be an algorithm that can be broken down into τ
synchronous steps. Each step t ∈ [0, τ] is of the following two types of operations:

1. A (1 + ϵ)-approximate SetSSP given in Def. 7.3 on a set of node-disjoint, connected subgraphs
Ct

1, . . . , C
t
Nt

withCt
i = (V t

i , E
t
i) from a set of sources St

1, . . . , S
t
Nt

with St
i ⊂ V t

i .

2. A round ofMinAgg given inDef. 7.2 on a set of node-disjoint, connected subgraphsCt
1, . . . , C

t
Nt

withCi = (Vi, Ei) as the supernodes described in the consensus step.

Note that the subgraphsCt
1, . . . , C

t
Nt

can be different in each step.

Suppose thatA can be broken down into τs steps of (1 + ϵ)-approximate SetSSP computations and
τm minor aggregations. Then, it holds:

• In CONGEST,A can be executed in Õ
(
(ϵ−2 · τs + τm) · (HD+

√
n)
)
time, w.h.p.

If graphG excludes a fixed minorKr ,A can be executed in Õ
(
(ϵ−2 · τs + τm) · r ·HD

)
time,

w.h.p.

• In the HYBRID model, A can be executed in Õ
(
(ϵ−2 · τs + τm)

)
time, w.h.p., with local of

communication of λ ∈ O(n) and logarithmic global communication γ ∈ O(log2 n), w.h.p.

If graph G excludes Kr as a minor, A can be executed in Õ
(
(ϵ−2 · τs + τm) · r

)
time,

w.h.p., with local of communication of λ ∈ O(logn) and logarithmic global communication
γ ∈ O(log2 n), w.h.p.

Proof. The theorem follows from a straightforward combination of Lemmas 7.1, 7.2, and 7.6. In the following,
we fix a single step t and the corresponding set of node-disjoint, connected subgraphsCt

1, . . . , C
t
Nt

. We omit t
in the sub- and superscript for an easier notation as it stays fixed. Further, define

EC := {{v, w} ∈ E | v ∈ Ci, w ∈ Cj , i ̸= j} (7.1)

to be the set of edges between nodes of different subgraphs.
First, suppose that in step t, we perform a round ofMinAgg onC1, . . . , CN as given in Def. 7.2. In other,

in the consensus step, we contract all edges in EC , so that C1, . . . , CN are the resulting supernodes/minors.
Following Lemma 7.1, a round of MinAgg can be performed in Õ(HD +

√
n) time, w.h.p., in general graphs

and Õ(r · HD) time, w.h.p. For HYBRID, we obtain a runtime of Õ(1). Thus, the total time complexity of
all τm aggregation steps, w.h.p., is Õ(τm ·HD) in CONGEST on any graph, Õ(τm · r ·HD) in CONGEST
on aKr-free graph, and Õ(τm) in the HYBRIDmodel.

Next, suppose that t is a shortest path step. Here, we need to do a bit more work. First, we aggregate the
length of the longest edge in the graph. This can be done with a single minor aggregation as given in Def.
7.2, where each node picks its longest incident edge as input, and we aggregate the maximum. We denote this
length as W . With knowledge of W , can effectively assign infinite weight to all edges between components.

111

More precisely, we choose a weight of 2WnwhereW is the highest weight in the graph. This yields the weight
function

w′(e) :=

2Wn if e ∈ EC

w(e) else.
(7.2)

We denote the resulting graph asG′ = (V,E,w′). Note that we only change the weights but not the graph’s
topology.

Finally, perform a SetSSP with ϵ < 1 on G from S1 ∪ . . . ∪ SN , i.e., the union of all source sets of all
components. In the resulting SetSSP tree T , each node v ∈ Ci will always be placed in the subtree of its
component’s source set Si. Since the paths to all sources of other components must contain an edge of length
2Wn, the leader of the v′s component must always be the closest if the path is at least 2- approximate.

Thus, each shortest path step consists of a minor aggregation whose runtime we already bounded and one
SetSSP computation on a connected graphG′ that has the same topology asG. For the CONGEST and the
HYBRIDmodel, the proclaimed bounds now follow directly from Lemmas 7.2 and 7.6.

This theorem states a divide-and-conquer algorithm that recursively divides input graphs into disjoint sub-
graphs (and is then applied to these subgraphs) can be efficiently implemented in CONGEST and HYBRID.
If the graph isKr-free graphs, the runtimes are very competitive in both models. We will heavily use this theo-
rem in the descriptions of the algorithms in this part. In particular, instead of giving exact pseudocodes for the
implementation in CONGEST and HYBRID, we will break the algorithms down to minor aggregation and
shortest path computations in each subgraph. Theorem5 then allows us to derive the runtime for the algorithm
in CONGEST and HYBRID.

Finally, we remark that, our class of algorithm also performs well on k-path separable graphs. For the proof, we
first consider useful properties of k-path separable graphs. The first important fact is that the class of universally
k-path separable graphs is closed under minor taking. That means it holds:

Lemma 7.7 (Theorem2 in [DG10]). LetG = (V,E,w) be universally k-path separable graph, then anyminor
H ofG is also universally k-path separable.

The proof can be found in [DG10] and exploits the fact that the graphs are separable for all weight func-
tions. Further, it was shown in [DG10] that a universally k-path separable graph does not containK4k+1, the
clique of 4k + 1 nodes, as a minor. The proof for this is straightforward. Clearly, K4k+1 is not universally
k-path separable. Suppose all edges have weight 1; then every edge is the shortest path between its endpoints.
After removing any set of k edges, the remaining 2k + 1 > (1/2) · (4k + 1) nodes are still connected as we
consider a clique. Therefore, there can be no separator consisting of only k shortest paths andK4k+1 is not
universally k-path separable. As the class of universal k-path separators is closed under minor taking, it cannot
containK4k+1. Thus, it holds:

Lemma 7.8 (Corollary of Theorem 2 and Proposition 1 in [DG10]). LetG = (V,E,w) be universally k-path
separable graph, then does not containK4k+1 as a minor.

112

This fact is important as this fact is strongly related to the runtime of our algorithms in CONGEST and
HYBRID due to Theorem 5. Because each universally k-path separable path excludesK4k+1 as a minor, The-
orem 7.1.3 immediately implies the following.

Lemma 7.9. LetG := (V,E,w) be a (weighted) universally k-path separable graph and let C1, . . . , CN be set
of disjoint subgraphs of G. Further, let A be an algorithm that is independently executed on each C1, . . . , CN .
Suppose that A can be broken down into τs steps of (1 + ϵ)-approximate SetSSP computations with ϵ < 1 as
defined inDefinition 7.3 and τm minor aggregations as defined inDefinition 7.2. Then,A can be executed on all
C1, . . . , CN in parallel in Õ

(
(ϵ−2 · τs + τm) · k ·HD

)
time in CONGEST and Õ

(
ϵ−2 · τs + τm

)
time in

HYBRIDwith local of communication of λ ∈ O(logn) and logarithmic global communication γ ∈ O(log2 n),
w.h.p.

7.2 The Tree Operations of Ghaffari and Zuzic

Throughout our algorithms, we will often need to work on a forest, i.e., sets of disjoint trees. We use the fol-
lowing lemma for recurring tasks on these trees:

Lemma 7.10 (Tree Operations, Based on [GZ22a]). Let F := (T1, . . . , Tm) be a subforest (each edge e knows
whether e ∈ E(F) or not) of a planar graph and suppose that each treeTi has a unique root ri ∈ V , i.e., each node
knows whether it is the root and which of its neighbors are parent or children, if any. Now consider the following
three computational tasks:

1. AncestorSum and SubtreeSum: Suppose each node v ∈ Ti has an Õ(1)-bit private input xv . Further,
let Anc(v) and Dec(v) be the ancestors and descendants of v w.r.t. to ri, including v itself. Each node
computesA(v) :=

⊗
w∈Anc(v) xw andD(v) :=

⊗
w∈Dec(v) xw .

2. Path Selection: Given a nodew ∈ Ti, each node v ∈ Ti learns whether it is on the unique path from ri to
w in Ti.

3. Depth First Search Labels: Each node v ∈ Ti computes its unique entry and exit label of a depth first
search started in ri.

All of these tasks can be implemented in one round of minor aggregation.

Proof. The proofs are straightforward.

1. Ancestor and Subtree Sum: This was directly shown in [GZ22a, Lemma 16].

2. Path Selection: We perform a single minor aggregation with xw = 1 and xv = 0 for v ∈ Ti\{w}
where we contract the unique path from w to ri performing no actions in the Consensus step. Every
node with value 1 then marks itself a part of the path.

3. Depth First Search Labels: We perform Ancestor sum and Subtree sum to count the number of nodes
on each node’s root path and subtree. Each node informs its parent about its subtree size. We order the
children by ascending subtree size, breaking ties arbitrarily. To obtain the labels of one of its child nodes,
a parent combines the length of its root path with the sizes of the subtrees traversed before that node.

113

114

8
Weak Separators Via Approximate Distances

This section considers the distributed computation of separators for restricted graphs, notably for the
general class of so-called k-path separable graphs. Recall that a separator S is a subgraph of G such
that in the induced subgraphG \ S that results from removing S fromG, every connected compo-

nent only contains a constant fraction ofG’s nodes. The contents of this chapter are lifted from the following
publication:

JinfengDou, ThorstenGötte,HenningHillebrandt, Christian Scheideler, and JulianWerthmann. Dis-
tributed and parallel low-diameter decompositions for arbitrary and restricted graphs. In RaghuMeka,
editor, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025), New York City, NY,
USA, January 7–10, 2025, Leibniz International Proceedings in Informatics (LIPIcs), page (to appear),
Dagstuhl, Germany, 2025. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik

Separators are a central tool in designing algorithms for restricted graph classes as they give rise to efficient
divide-and-conquer algorithms. The general idea is to compute a separator in each recursive step, remove it, and
then recurse on the emerging components. Our algorithms for computing clusterings and routing schemes are
no exception to this, as they will follow this generic pattern. Naturally, this scheme implies a recursion depth
of only O(logn). Thus, there is a great interest in the efficient distributed construction of separators as their
computing usually dominates the runtime of a single recursive step. As our main technical contribution, we
present the fast construction of a weaker form of separators, which we will callD-weak separators. AD-weak
separatorS′ only ensures that in the graphG\S, all nodes have atmost a constant fraction of nodes in distance

115

D. In particular, in contrast to a classical separator, the graph G \ S′ might still be connected. Formally, we
define them as follows:

Definition 8.1 (Weak κ-Path (D, ϵ)-Separator). Let G := (V,E,w) be a weighted graph, D > 1 be an
arbitrary distance parameter, and ϵ > 0 be an approximation parameter. Then, we call the set S(D, ϵ) :=

(P1, . . . ,Pκ) withPi := (Pi, Bi) a weak κ-path separator, if it holds:

1. Each Pi ∈ Pi is a (approximate) shortest path inG \
⋃i−1

j=1 Pj of length at most 4D.

2. EachBi ⊆ BG(Pi, ϵD) is a set of nodes surrounding path Pi.

3. For all v ∈ (V \
⋃κ

j=1 Pi) it holds |BG\S(v,D)| ≤ (7/8) · n.

Note that this definition is generic enough also to include vanilla k-path separators (where each setBi only
contains the path itself and no further nodes) and traditional vertex separators (where each path is a single
node). For general k-path separable graphs, we prove the following theorem:

Theorem 6.Weak Separators for k-Path Separable Graphs

Consider a weighted k-path separable graphG := (V,E,w) with weighted diameter smaller thanD.
For ϵ ≥ 0, there is an algorithm that constructs a weakO(ϵ−1 · k · logn)-path (D, ϵ)-separator, w.h.p.
The algorithm uses Õ(ϵ−1 ·k · logn)minor aggregations andO(ϵ−1 ·k · logn) 2-approximate SetSSP
computations, w.h.p.

Recall that k-separable graphs areK4k+1-free and therefore minor aggregations and SetSSP can be imple-
mented extremly efficiently in both CONGEST and the HYBRIDmodel. Thus, this theorem implies that the
separators can be computed in Õ(ϵ−3 ·k2 ·HD) time, w.h.p., in CONGEST. Further, in theHYBRIDmodel,
the separator can be computed in Õ(ϵ−2 · k) time, w.h.p. Assuming that k ∈ Õ(1) and ϵ−1 ∈ Õ(1), the
runtimes simplify to Õ(HD) and Õ(1) respectively. In all case, we assume that the HYBRID model has local
capacity of λ ∈ O(logn) and a global capacity ofO(log2 n). All these runtimes follow directly from Lemma
7.9.

The remainder of this section is structured as follows: First, we elaborate on why we compute weak separators
instead of proper separators. Then, in Section 8.2, we present the algorithm behind Theorem 6. Finally, in
Section 8.3, we prove the algorithm’s correctness and runtime. Themain ingredient of our proof is a structural
property of k-path separators that allows us to sample them efficiently.

8.1 WhyWeak Separators?

Having defined k-path separable graphs, which by definition contain a proper k-path separator, the obvious
question is why we settle for a weak separator instead. To this end, let us review prior results and identify pos-
sible difficulties. Starting with positive results, it is possible to construct path separators for planar graphs in a
distributed setting. In fact, the state-of-the-art algorithms for computing DFS trees in [GP17] or computing a

116

graph’s (weighted) diameter in [LP19] in planar graphs construct a path separator for planar graphs. The algo-
rithm present in these papers constructs a path separator in Õ(HD) time, w.h.p. In the next chapter, we show
how to extend this algorithm to be executed in a series of arbitrary connected subgraphs.

However, while the existence of an efficient algorithm for a planar graph gives hope, it turns out to be
very tough for other k-path separable graphs. The constructions in both [GP17] and [LP19] heavily exploit
the fact that a (planar) embedding of a (planar) graph can be computed in Õ(HD) time in CONGEST due
to Ghaffari and Haeupler in [GH16b]. Given a suitable embedding, the ideas could be generalized. Thus,
finding a suitable embedding could be a way to extend this algorithm to more general k-separable graphs. A
good candidate for such an embedding can be found in [AG06]. Abraham and Gavoille present an algorithm
that computes a f(r)-path separator for Kr-free graphs [AG06]. Their algorithm relies on a complex graph
embedding algorithm by Seymour and Robertson[RS86]. On a very high level, the embedding dividesG into
subgraphs that can almost be embedded on a surface similar to planar graph. By almost, we means that in each
subgraph, there is only small number of non-embeddable parts (with special properties) that need to be handled
separately. The concrete number of these parts depends only on r. Given such an embedding, Abraham and
Gavoille show that one can efficiently compute k-path separator.

Sadly, we have little hope that the algorithm that computes the embedding can be efficiently implemented
in a distributed (or even parallel) context. It already requires nO(r) time in the sequential setting. Moreover,
it requires sophisticated techniques that can not be trivially sped up by running them in parallel. Thus, it re-
mains elusive (to the author at least) how to implement this algorithm in any distributed or even parallel model.
Therefore, we settle for the weaker notion of separator simply because they easier to compute and suffice for
our purposes.

8.2 AlgorithmDescription

Having established why it is difficult to compute k-path separators, we can proceed to the initially promised
weak separators. More precisely, we present the algorithm behind Theorem 6. Namely, for a given k-path
separable graph G := (V,E,w), we give an algorithm constructs a weak O(ϵ−1 · k · logn)-path (D, ϵ)-
separator for parametersD and ϵ. Ourmain insight is that instead of computing an embedding in a distributed
and parallel setting, we show that we get very similar guarantees using a weaker separator that can be computed
without the embedding. Thus, we take a different approach to completely avoid the (potentially expensive)
computation of an embedding. We strongly remark that, in doing so, we sacrifice some of the separator’s useful
properties. However, in our applications, this only results in some additional polylogarithmic factors in the
runtime.

Surprisingly, the algorithm behind the Theorem can be stated in just a few sentences. The core idea is to itera-
tively sample approximate shortest paths and nodes close to these paths and remove them from the graph until
all remaining nodes have few nodes in distanceD, w. h.p. More precisely, we start with a graphG0 = G. The
algorithmproceeds inT ∈ O(ϵ−1 ·k · logn) steps where in step t, we consider graph (Vt, Et) := Gt ⊂ Gt−1.
A single step t works as follows: First, we pick a node v ∈ Vt uniformly at random. Then, we compute a 2-
approximate shortest path tree Tv from w. LetWv ⊂ Vt be set of all nodes in distance at most 4 · D to v in

117

Tv . We pick a node w ∈ Wv uniformly at random and consider the corresponding path Pt = (v, . . . , w).
Using Pt as a set-source, we compute a 2-approximate shortest path tree TPt

from Pt. Now denoteBPt
to be

the nodes in the distance at most ϵ · D to Pt in G (and not Gt). Finally, we remove Pt and BPt
from Gt to

obtainGt+1. Note that, due to the approximation guarantee, this removes all nodes in distance at least ϵ/2 · D
inG. Further, all steps can be computed using 2-approximate paths (and a few aggregations to pick the random
nodes) and completely devoid of complex embedding.

More formally, the algorithm consists of T ∈ O(ϵ−1 · k logn) sequential steps. In each step t ≤ T , we
construct a pathPt and ballKt ⊃ Pt around that path. Further, we defineGt := (Vt, Et, w) to be the graph
induced by all nodes that have not yet been added to any setB1, . . . , Bt. Finally, we fix the parameter ϵ′ := ϵ/2.
Given these definitions, a single step of the algorithm consists of the following five operations:

(Step 1) Choose a random node vt ∈ Vt−1: Pick a node v ∈ Vt−1 uniformly at random from all
active nodes.

(Step 2) Construct a 2-approximate SSSP tree Tvt for vt: Perform a 2-approximate SSSP
fromnode vt. Afterwards, all nodesw ∈ V knowa valuedTvt

(w, vt), which is its2-approximate distance
to vt in graphGt−1. It holds for allw ∈ Vt−1:

dGt−1
(vt, w) ≤ dTvt

(vt, w) ≤ 2dGt−1
(vt, w)

(Step 3) Choose a random path Pt: Given the distances computed in the previous step, each
node checks whether it is in the distance at most 4D to vt. In particular, we define the set

Nvt :=
{
w ∈ Vt−1 | dTvt

(vt, w) ≤ 4D
}

Sample one of these nodes uniformly at random.

(Step 4) Compute an Approximation of BG(Pt, ϵ · D): Compute a 2-approximate shortest
path tree for {Pt} in G. Thereby, we obtain a 2-approximate SSSP tree TPt and all nodes w ∈ Vt−1

know a value dTPt
(w,Pt), which is its 2-approximate distance to Pt in graphG. After that, every node

knows whether it is in the set

Kt :=
{
w ∈ Vt | dTPt

(w,Pt) ≤ 2ϵ′D
}

(Step 5) Remove Kt from Gt−1: All nodes use their previously computed distances to determine
whether they are inKt. If so, they remove themselves from the graph, settingGt := Gt−1 \Kt.

Note that the nodes Kt removed in step t will not be considered for picking the path to the next iteration.
However, they will be considered for computing the balls around the paths.

118

8.3 Analysis

In this section, we will analyze the sampling algorithm and prove Theorem 6. Clearly, for any choice of ϵ, the
algorithm produces sets (P1,K1), (P1,K1) . . . that fit the description of the sets P1,P2, . . . in Definition
8.1. By construction, all pathsP1, P2, . . . are of bounded length 4 ·D and eachKt contains all nodes bounded
in distance ϵ · D from each path Pt. The latter follows as we chose ϵ′ = ϵ/2, so each Kt is a strict subset of
BG(Pt, ϵ · D) and a superset ofBG(Pt, ϵ/2 · D). Therefore, to prove Theorem 6, it remains to show that for
T ∈ O(ϵ−1 · k · logn) removing the setsK1, . . . ,KT weakly separates the graph, i.e., for all nodes v ∈ VT , it
holds:

|BGT
(v,D)| ≤ (7/8) · n. (8.1)

Further, wemust show that the algorithm can be implemented in Õ(T)minor aggregations and 2-approximate
SetSSP computations.

As our main analytical tool, we consider the following potential function Φt for each intermediate graph Gt

that counts the number of nodes with more than (7/8) · n nodes in distance 2D. Formally, we have:

Φt :=
∣∣{v ∈ Vt

∣∣ |BGt
(v, 2D)| ≥ (7/8) · n

}∣∣
Further, for brevity, we write Φt(v) = 1 if and only if |BGt(v, 2D)| ≥ (7/8) · n and Φt(v) = 0, otherwise.
Note thatΦt :=

∑
v∈V Φt(v).

Wemake the following crucial observation about this potential: As soon as this potential drops below (7/8)·
n, we have more than (1/8) · n nodes with less than (7/8) · n nodes in distance 2D. This implies that no node
can have more than (7/8) · n nodes in distanceD. Suppose for contradiction that there is a node v ∈ Vt with
more than (7/8) · n nodes in distanceD. By the triangle inequality, all these nodes would be in distance 2D to
each other. Thus, the potential would be bigger than (7/8) ·n as there are more than (7/8) ·n nodes with more
than (7/8) ·n nodes in distanceD. This is a contradiction; therefore, the nodes sampled until this point are the
desired weak separator. Thus, we want to bound the number of steps until the potential drops. To be precise,
we prove the following lemma:

Lemma 8.1. LetGT be the graph after the T th step of our algorithm. Then, for T ∈ O
(
c · ϵ−1 · k

)
, it holds:

Pr[ΦT ≤ (7/8) · n] ≥ 1−O(e−c)

Thus, after T ∈ O(ϵ−1 · k · logn) iterations, it holdsΦT ≤ (7/8) · n. This implies for all v ∈ Vτc that:

BGT
(v,D) ≤ (7/8) · n (8.2)

Therefore, forT ∈ O(ϵ−1 ·k·logn), the algorithm successfully computes aweakO(ϵ−1 ·k·logn)-path (D, ϵ)-
separator, w.h.p. as desired. Before we proceed to the formal proof of the lemma, let’s clarify the intuition and
difficulties behind our analysis. For the sake of argument, assume that the k-path separator S = (P1,P2, . . .)

119

ofG only consists if shortest paths inG itself. On a high level, wewant to show that the setsK1, . . . ,KT either
quickly cover the graph’s k-path separator S = (P1,P2, . . .) or the potential drops by constant fraction. As
intuitively, many paths must cross the separator, we will likely pick such a path through random sampling.
Recall that we sample paths of length at most 4D with an area of at least ϵ/2D around them. Thus, we cover
a subpath of length ϵ/2D whenever we pick a path that intersects with the separator. Say that a path in the
separatorS is of (weighted) lengthD′. Then, we require at leastO(D

′
/ϵD) crossings to cover it. In a k-separable

graph G where all paths are shortest paths in the separator are shortest paths in G, we can bound the length
of each path by G’s diameter D. Thus, after sampling ϵ · k paths that crossed (a path in) the separator S,
we completely removed it from G. As any superset of a separator is obviously also a separator, we are done.
However, while initially it is likely to sample a path that crosses the separator, this probability steadily declines.
Surprisingly, a low probability of crossing the separator is good for our purposes. A low probability of crossing
the separator means that many nodes have no path (or very few) paths of length 2D to nodes reachable only via
the separator. As for each node, there are at least (1/2) · n nodes only reachable via the separator, this implies a
low overall potential. Combining these two facts implies that after samplingT ∈ (ϵ−1 ·k) paths, either ϵ−1 ·k
paths crossed S removing it from the graph, or the potential dropped as desired. In either case, we are done.
Figure 8.1 shows a visualization of our proof’s main ideas.

Sadly, we cannot directly apply this technique to allk-path separable graphs. Amajor factor that complicates
this is the fact that, in general, the paths in ak-path separator are divided into subsets (P1,P2, . . .). The paths in
Piwith i > 1 are only the shortest paths if the paths fromprevious subsets are removed. Thus, if the (weighted)
diameter ofG isD, this only gives us a bound for the paths inP1. This does not help us when considering the
lengths of the paths in the induced graph G \ P1. The diameter of G \ P1 and, therefore, the length of the
paths inP2 are unbounded. Now, recall that we do not need to cover the whole separator as it is sufficient that
each node only has a constant fraction of nodes in distance D. Our main trick is only considering a carefully
picked subset of the separator paths that intersect with paths until length O(D). This subset only consists of
paths of bounded length that separate not all, but still a large enough fraction of the nodes. Formally, we show
the following useful fact about k-path separators, namely

Lemma 8.2. LetG := (V,E,w) be a weighted k-path separable graph of n nodes with (weighted) diameterD.
Then, there exists a set B = {P1, . . . , Pκ} with κ ≤ k simple paths of length 32D such that for all v ∈ V , it
holdsBG\B(v, 4D) ≤ (3/4) · n.

In other words, a subset of bounded length paths intersects with a constant fraction of all paths our al-
gorithm can potentially sample. The proof requires copious use of the triangle inequality and the pigeonhole
principle and can be found in Section 8.3.1. In the following, we provide a simplified sketch that summarizes
the main ideas but omits technical details:

Proof Sketch. First, we show that there is a setB = {P1, . . . , Pκ}withκ ≤ k simple paths of length 32D such
that for a subsetZ with |Z| ≥ (3/4) · n, it holdsBG\B(v, 8D) ≤ (3/4) · n.

To this end, consider the graphs (G(0), G(1), . . .) withG(i) := G \
⋃

j≤i Pi, that result from removing
the separator paths. Let G(iD) be the first graph where all nodes have less than (3/4)n nodes in distance 8D.
This graph must exist by the pigeonhole principle as initially, all nodes have n nodes in the distance 8D, and

120

once the whole separator is removed, there can only be n/2. Then, there is at least one node z ∈ V with at least
(3/4)n nodes in distance 8D in all graphsG, . . . , G(iD−1). We denote these nodes asZ := BG(iD−1)(z, 8D).
Further, by the triangle inequality, all of these (3/4) ·n nodes are in the distance 16D to one another in all graphs
G, . . . , G(iD−1). This is clearly the case in G(iD−1), and because we only remove nodes and edges, they can
only be closer in earlier graphs. Next, consider a graphG(i) := G \

⋃
j≤i Pi with 1 ≤ i ≤ iD − 1 andPi+1,

the set of shortest paths inG(i) in the k-path separator. For each Pj ∈ Pi+1, observe the set

P ′
j :=

⋃
v∈Z

Pj ∩BG(i)(v, 8D)

Consider two nodes s, t ∈ P ′
j . By definition, there are nodes vs, vt ∈ Z with s ∈ BG(i)(vs, 8D) and

t ∈ BG(i)(vt, 8D). As vs, vt ∈ Z their distance inG(i) is at most 8D. Therefore, by the triangle inequality,
two nodes inP ′

j are at most in distance 32D. AsPj is a shortest path inGi, the shortest connected subpath P̃j

of Pj that contains P ′
j has at most length 16D.

Finally, let P̃i+1 := (P̃1, P̃2, . . .) for Pj ∈ Pi+1 be the set of all these subpaths for all Pj ∈ Pi+1. Then,
the unionB := {P̃1, . . . , P̃iD} of all these subpaths is the desired setB. It consists of atmost k paths of length
32D. Further, a simple induction reveals that |BG\B(v, 8D)| = |BG(iD)(v, 8D)| as B contains all nodes of
(P1, . . . ,PiD) that intersect with anyBG(i)(v, 8D). Recall that inG(iD) all nodes have less than (3/4)n nodes
in distance 8D. Thus, it holds |BG\B(v, 8D)| ≤ (3/4) · n.

Finally, consider any node v ∈ V . Now suppose for contradiction that v has more than (3/4) · n nodes
in distance 4D after removing B. Then, BG\B(v, 4D) contains at least one node of w ∈ Z . The triangle
inequality impliesBG\B(v, 4D) ⊆ BG\B(w, 8D. Thus, it holds |BG\B(w, 8D| ≥ |BG\B(v, 4D| > (3/4) ·
n. This is a contradiction as |BG\B(v, 4D| ≤ (3/4) ·n. Therefore, no node v ∈ V can havemore than (3/4) ·n
nodes in distance 4D after removing B.

Equipped with this lemma, we now consider the event that the algorithm samples a path Pt that crosses some
path of the set B, i.e., the path we sample contains (at least) one node from one of the k paths in B. In this
case, we remove a subpath of length ϵD from this path when we remove the set BPt around the Pt. This
follows because we determine the setBt with respect to the original graphG and notGt. Thus, after sampling
O(ϵ−1 · k) paths that cross B, we must have completely removed B fromG. If B is removed, each node has at
most (3/4) · n nodes in distanceD ≤ 2D per definition and we are done.

To prove our main theorem, we will bound the time until either the potential drops orO(ϵ−1 · k) paths cross
B. In the following, we sketch the general approach of the proof and convey its main idea. We refer to Section
8.3.2 for a complete proof that includes all technical details. Starting off, we denote the event that the path from
vt to wt crosses B as vt ⇝

B
wt. By definition of B, for each node, the set of nodes reachable via B is at least

size (1/4) · n. Thus, for all nodes v ∈ Vt with Φt(v) = 1, at least (1/4) · n − (1/8) · n ≥ (1/8) · n of these
nodesmust still be in distance 2D. All these nodesmight be chosen as the path’s endpointPt if we pick v as the
starting point as the 2-approximate distance is at most 4D. So, if we sample one of them, we crossB as all paths

121

(a)Marked in red is a separator path unknown to the algorithm.

v1 w1

(b) When sampling a random path of bounded length, the probability of
crossing the separator is constant.

v1 w1

(c) We remove nodes in distance ϵD around the path. This also removes
an ϵD‐fraction of the separator.

v1 w1

v2

w2

(d) If the residual graph is not well‐separated, the probability of crossing
(what remains of) the separator is still constant.

Figure 8.1: We choose a two‐dimensional mesh for illustration. While the operations in Figures (b) and (c) are straightforward to prove, the core of our
analysis we will be the claim we make in Figure (d).

of length at most 4D crossB. Thus, in a configuration with potentialΦt ≥ (7/8) · n, the probability sample a
path that crosses B is at least

Pr
[
vt ⇝

B
wt | Φt ≥ (7/8) · n

]
≥ Pr[Φt(vt) = 1 | Φt ≥ (7/8) · n] · Pr

[
vt ⇝

B
wt | Φt(vt) = 1

]
(8.3)

≥
(
1

n
· Φt

)
·
(
1

n
· (1/8) · n

)
≥
(
1

n
· 7n
8

)
·
(
1

n
· (1/8) · n

)
(8.4)

=
7

64
≥ 1

16
(8.5)

Thus, if the potential has not dropped after T steps, the expected number of crossings is (1/16) · T . Using
standard Chernoff-like tail estimates, we can show that for any T ∈ Ω(logn), this would imply that at least T

32

paths crossed B, w.h.p. Thus, within T ∈ O(ϵ−1 · k · c) steps, we either reached a step with low potential or
had sufficiently many crossings to remove B with probability 1−O(e−c). This proves Lemma 8.1.

Following Lemma 8.1, after T ∈ O(ϵ−1 · k · logn) iterations, the algorithm has found the desired separator,
w.h.p. It remains to prove the proclaimed runtime, i.e., that the algorithm uses Õ(ϵ−1 · k · logn) minor ag-
gregations andO(ϵ−1 · k · logn) 2-approximate SetSSP computations, w.h.p. To this end, we show that each
iteration of the algorithm can be implemented with Õ(1) minor aggregations and two approximate SetSSP
computations. Formally, we prove the following

Lemma 8.3 (Complexity). A single iteration of the algorithm can be implementedwith Õ(1)minor aggregations
and two 2-approximate SetSSP computations.

122

Proof. All five steps of the algorithmclearly contain either Õ(1)minor aggregations or a2-approximate SetSSP
computation. For the sake of completeness, we go through them one by one.

• Step 1 can be implemented by simply aggregating the maximum of a set of random values. We let each
node v ∈ Vt−1 draw a random number rv ∈ [1, nc] for a constant c > 2 uniformly and independently
at random. All nodes drawunique numbers for a large enough c, w.h.p. Given that there are no duplicate
numbers, we aggregate the maximum of all these numbers and pick the node with the highest number
as vt := argmaxv∈V rv .

• Step 2 is a 2-approximate shortest path computation from the previously sampled node vt. Note that we
sample at most one node per connected component.

• Step 3 consists of another maximum aggregation and Õ(1) aggregations to implement the descendant
aggregation fromLemma7.10. Moreprecisely, we can sample a randomnode fromwtNvt by letting each
nodew ∈ Nvt draw a random number uniformly and independently at random and then aggregate the
maximum. Let now Pt := (vt, . . . , wt) be the path from vt to wt in Tvt . All nodes on this path need
to learn that they are on this path. We use tree operations from Lemma 7.10 for this. Nodewt chooses 1
as its private input; all others choose 0. Now, each node computes the sum of all its descendants’ inputs.
Recall that by Lemma 7.10, all nodes can compute aggregate functions on all their descendants with
Õ(1) aggregations. This sum is 1 for all nodes on Pt and 0 for all others. Here, we exploited that vt is
the tree’s root (otherwise, it would not be true, and we would require a second aggregation).

• Step 4 is another 2-approximate SetSSP computation from setPt. Again, we sample at most one set per
connected component.

• Finally, Step 5 is a purely local operation. Thus, it requires neither aggregations nor SetSSP computa-
tions.

Therefore, a step of the algorithm can be executed within Õ(1) rounds of minor aggregation and exactly two
2-approximate SetSSP computations as claimed.

Together, these two results imply Theorem 6. For T ∈ O(ϵ−1 · k · logn), Lemma 8.1 implies that we
sample a separator, w.h.p., and Lemma 8.3 implies that the T can be implemented efficiently in HYBRID and
CONGEST.

8.3.1 Proof of Lemma 8.2

In this section, we prove Lemma 8.2. We show that for a weighted k-path separable graph G of diameter D
there exists a set of pathsB that intersects with a constant fraction of paths of length at most 2D. We begin our
proof with the following auxiliary lemma:

Lemma 8.4. LetG := (V,E,w) be a weighted k-path separable graph of n nodes with (weighted) diameterD.
Then, there exists a set Z ⊆ V with |Z| ≥ (3/4) · n and a set B = {P1, . . . , Pκ} of at most k simple path of
length 32D such that for all v ∈ Z , it holdsBG\B(v, 8D) ≤ (3/4) · n.

123

Proof. DefineD′ = 8D. To construct setZ , we will first establish some helpful properties of k-path separable
graphs. Our first important concept is the critical index of a k-path separator. We define the critical index iD′

to be the highest index, 1 ≤ iD′ ≤ k′, for which it holds:

∃v ∈ V : |B
G(iD′)(v,D′)| > (3/4) · n

and

̸ ∃v ∈ V : |B
G(iD′+1)(v,D′)| > (3/4) · n

One can easily verify that there is a well-defined iD′ for eachD′ ≥ D. Note thatD′ is greater than the graph’s
diameter and therefore:

∀v ∈ V : |BG(v,D′)| = n

Recall that by definition of k-path separators by Abraham andGavoille in [AG06], each connected component
inG \ S is of size at most n/2. Thus, any ball of any size around any node (that has not been removed as part
of the separator) can contain at most n/2 nodes once we removed S. Thus, if there were no critical index for a
distanceD′, it would hold:

∃v ∈ V : |BG\S(v,D′)| > (3/4) · n

This is a contradiction as all connected components in G \ S are of size at most n/2. From now on, we are
interested in these first iD′ (sets of) paths of the separator S, which we denote as

S ′ := (P1, . . . ,PiD′).

Note that it holds for all v ∈ V \ S ′:

BG\S′(v,D′) ≤ (3/4) · n

Thus, the set S ′ is a weak D′-separator. We will refer to it as the critical separator. Further, we call the last
unseparated subgraphG(iD′) the critical graph. Next, we introduce another central element of our proof, the
terminal node, which is a node that still has more than (3/4) · n nodes in the distanceD′ inG(iD′−1). As there
can bemore than one nodewith this property, we pick the nodewith the highest identifier. However, any other
method to break ties would alsowork. Formally, we say a node zD′ ∈ V is a terminal node if and only if it holds:

zD′ := argmax
z∈V

{z ∈ V | ∀j ≤ iD′ : |BG(j)(z,D′)| ≥ (3/4) · n}

124

Z(D′)

BG(i−1)(Z(D′),D′)

S(D′)

Figure 8.2: An illustration of the boundary B(Z(D′)). The inner circle denotes the core set Z(D′) and the outer circle denotes the ball
BG(i−1) (Z(D′),D′). S(D′) is the critical separator, consisting of several shortest paths. The red parts of S(D′) make up the boundary
B(Z(D′)). It suffices to remove the boundary s.t. a constant fraction of nodes have a distance greater thanD′ from the core set.

Given the concept of terminal nodes and critical indices, we can now define our setZ as

Z := B
G(iD′)(zD′ ,D′)

Clearly, Z contains at least (3/4) · n nodes by the definition of the terminal node. Thus, we already have the
correct size required by the lemma. Therefore, it remains to prove the existence of the set B. We define it as
the intersections of all balls BG(i)(z,D′) of all nodes z ∈ Z with all paths of S ′ from the respective graphs.
Formally, the boundary is defined as follows:

Definition 8.2 (Boundary). LetS(D′) := (P1, . . . ,PiD′)withPi := {Pi1 , Pi2 , . . .} be the critical separator
and letZ be the core set. Then, we define the boundary B := {P ′

1,P ′
2, . . .} as follows:

P ′
ij := Pij ∩BG(i−1)(Z,D′)

P ′
i := {P ′

i1 , P
′
i2 , . . .}

B := {P ′
1,P ′

2, . . .}

Figure 8.2 depicts the intuition behind this definition. Note that the boundary is a strict subset of a k-path
separator. Therefore, there can be at most k sets P ′

ij
, one for each path Pij in the separator. However, the sets

P ′
ij
themselves are not necessarily connected paths. They are merely subsets of paths that do not necessarily

consist of consecutive nodes of that path. We will show that for each P ′
ij
there is a path of length at most 4D′

that covers all its nodes. More formally, it holds:

125

Claim 8. Let G := (V,E,w) be a weighted k-path separable graph let B(Z(D′)) := {P ′
1,P ′

2, . . .} with
P ′
i = {P ′

i1
, P ′

i2
, . . .} be as defined in Definition 8.2. Then, for all P ′

ij
, there is a simple path P̃ij , s.t., it holds:

ℓ(P̃ij) ≤ 4D′

Proof. Let Pij be a path from the critical separator S . In the following, we denote v(1) as the first node
of Pij that intersects with BG(i−1)(Z,D′). Likewise, let v(ℓ′) be the last node of Pij that intersects with
BG(i−1)(Z,D′). Thus, all nodes of Pij that intersect with BG(i−1)(Z,D′) must lie on the subpath P̃ij :=

(v(1), . . . , v(ℓ′)). As it covers all nodes, it remains bound to its length. Recall that Pij is a shortest path in
G(i−1) and therefore, it holds that:

dPij
(v(1), v(ℓ′)) = dG(i−1)(v(1), v(ℓ′)).

For both v(1) and v(ℓ′) theremust be (not necessarily distinct) nodes v′, w′ ∈ Z where v(1) ∈ BG(i−1)(v′,D′)

and v(ℓ′) ∈ BG(i−1)(w′,D′). By definition, both v′ and w′ are in distance D′ to terminal node zD′ in the
critical graphG(iD′). Since we only remove nodes fromG, it holds:

BG(1)(zD′ ,D′) ⊇ BG(2)(zD′ ,D′) ⊇ . . . ⊇ B
G(iD′)(zD′ ,D′)

Thus, we can upper bound the distance between v′ andw′ inG(i−1) by their distance inG(iD′). By the triangle
inequality, it therefore holds for all v′, w′ ∈ Z(D′):

dG(i−1)(v′, w′) ≤ d
G

(iD′−1
)(v′, w′) ≤ d

G
(iD′−1

)(v′, zD′) + d
G(iD′−1)(zD′ , w′) ≤ 2D′

Thus, both v′ andw′ are in the distance at most 2D′ in graphG(i−1) wherePij is a shortest path. Combining
these facts with the triangle inequality gives us:

dG(i−1)(v(1), v(ℓ′)) ≤ dG(i−1)(v(1), v
′) + dG(i−1)(v′, w′) + dG(i−1)(w′, v(ℓ′))

≤ D′ + dG(i−1)(v′, w′) +D′

≤ 2D′ + 2D′ ≤ 4D′

Thus, the claim follows.

Next, we claim that this boundary must intersect with many paths of lengthD′ as removing the boundary
causes all nodes inZ to lose the connection to a constant fraction of nodes.

Claim 9. For all z ∈ Z \ B, it holdsBG\B(z,D′) ≤ (3/4) · n.

Proof. Recall that S ′ is weakD′-separator and therefore, it holds for all nodes v ∈ V \ S ′ by definition:

|BG\S′(v,D′)| ≤ (3/4) · n

126

The boundary definition contains all nodes of S ′ that intersects with a path of lengthD′ from any node inZ .
Therefore, for all nodes z ∈ Z , it holds:

|BG\S′(v,D′)| = |BG\B(v,D′)|

This can be asserted by a simple induction over the sets P ′
1, . . . ,P ′

iD′ and P1, . . . ,PiD′ that make up B and
S respectively. For easier notation, define:

Gi := G \
⋃
j<i

Pj

G′
i := G \

⋃
j<i

P ′
j

For the induction beginning, we suppose that no paths are removed. In this case, the statement holds trivially
asG′

1 = G1.
For the induction steps, we assume that for all z ∈ Z , it holds:

BGi
(z,D′) = BG′

i
(z,D′)

We now show that BGi+1
(z,D′) = BG′

i+1
(z,D′) for all z ∈ Z . As each P ′

ij
is a subset of Pij , it holds

that BGi+1
(v,D′) ⊆ BG′

i+1
(v,D′) as we can only reach more nodes from z we remove fewer nodes. For

contradiction, assume there is a node u ∈ BG′
i+1

(z,D′) that is not inBGi+1
(z,D′). As u ̸∈ BGi+1

(z,D′),
a node on every path from z to u of length at mostD′ is removed. In other words, every such path intersects
with some pathPij ∈ Pi. Let p be such an intersecting node. Clearly, p ∈ BGi

(z,D′) as p is closer to z thanu
because it is a predecessor of u on a path of lengthD′. Therefore, any such p also part ofP ′

ij
:= BG′

i
(z,D′)∩

Pij as, per the induction’s hypothesis, it holds BG′
i
(z,D′) = BGi

(z,D′). Thus, all possible nodes p are
removed fromG′

i and u cannot not reachable inG′
i+1 from z within radiusD′. This is a contradiction as we

assumed u ∈ BG′
i+1

(z,D′). Therefore, it holdsBGi+1(v,D′) ⊇ BG′
i+1

(v,D′) and together with our initial
observation thatBGi+1(v,D′) ⊆ BG′

i+1
(v,D′), we haveBGi+1(v,D′) = BG′

i+1
(v,D′) as claimed.

This concludes the proof of the claim as

BG\S′(z,D′) = BGiD′
(z,D′) = BG′

iD′
(z,D′) = BG\B(z,D′)

Thus, the setsZ and B fulfill the properties required by the lemma. AsD′ = 8D, B consists of (at most)
k paths of length 32D. Further, as for each z ∈ Z it holds

BG\B(z, 8D) = BG\S′(z, 8D) ≤ (3/4) · n.

Thus, the lemma follows.

Next, we require the following helpful observation that is true for any distance metric on graphs

127

Lemma8.5. LetG := (V,E,w) be aweighted graphand letD′ be somedistance parameter. Suppose there is a set
of nodesZ ⊆ V of size |Z| ≥ (1/c)·n for some c > 1, s.t., it holds for allv ∈ Z that |BG(v, 2D′)| ≤ (1−1/c)·n.
Then, for all nodes v ∈ V , it holds:

|BG(v,D′)| ≤ (1− 1/c) · n

Proof. The lemma clearly holds for all nodes in Z , so it suffices to analyze the remaining nodes. Assume for
contradiction that there is a nodew ∈ V \Z with |B(w,D′)| > (1− 1/c) ·n. Then,B(w,D′)must contain
at least one node v ∈ Z , which—by the very definition ofB(w,D′)—implies d(v, w) ≤ D′. By the triangle
inequality, it then holds for every other node u ∈ B(w,D′) that

d(v, u) ≤ d(v, w) + d(w, u) ≤ 2D′. (8.6)

Therefore, it followsB(w,D′) ⊆ B(v, 2D′) As we have a clear bound on the size ofB(v, 2D′), this implies
that:

(1− 1/c) · n < |B(w,D′)| ≤ |B(v, 2D′)| ≤ (1− 1/c) · n (8.7)

This is a contradiction.

Let setsZ ⊆ V and B := {P1, P2, . . .} be as defined in Lemma 8.4. Note that for all z ∈ Z , it holds:

BG\B(z, 8D) ≤ (3/4) · n (8.8)

Lemma 8.5 now implies that for all v ∈ V it holdsBG\B(v, 4D) ≤ (3/4) ·n. Therefore, for each node v ∈ V

there must be (1/4) · n nodesw ∈ V such that all paths of length at most 4D from v tow cross B.

128

8.3.2 Proof of Lemma 8.1

In this section, we prove Lemma 8.1 using Lemma 8.2 and some fairly standard tools from the analysis of po-
tential functions. Recall that we consider the following potential:

Φt :=
∣∣{v ∈ Vt

∣∣ |BGt(v, 2D)| ≥ (7/8) · n
}∣∣

Wewant to show that after T ∈ O(ϵ−1 · k · c) steps, the potential has dropped below (7/8) ·n. As soon as this
potential drops below (7/8) ·n, we havemore than (1/8) ·n nodes with less than (7/8) ·n nodes in distance 2D.
Therefore, by Lemma 8.5, each node has at most (1/8) · n nodes in distanceD as desired.

By Lemma 8.2, there exists a set B = {P1, . . . , Pκ} with κ ≤ k simple paths of length 32D such that for all
v ∈ V , it holdsBG\B(v, 4D) ≤ (3/4) · n. Thus, for each node v ∈ V there is set C(v) ⊆ B(v, 4D), s.t., all
path of length 4D from v to C(v) contain a node (of a path in) B. We denote these nodes as the cutoff nodes
of v. It holds C(v) := V \ BG\B(v, 4D). We want to show that — as long as the potential is high— there is
a good chance to sample a path between a node v and one of its cutoff nodes. To this end, note that every node
v ∈ V withΦt(v) = 1 that is considered in the potentialmust have (1/8) ·n cutoff nodes in distance 2D. This
follows from the definition of the potential: Recall that each node has (1/4) ·n cutoff nodes. Further, there are
atmost (1/8) ·n nodes in distance greater than 2D. Otherwise, it would holdΦt(v) = 0. Even if all these nodes
are cutoff nodes, there must still be (1/4) · n − (1/8) · n = (1/8) · n cutoff nodes in the distance at most 2D.
Further, As we compute 2-approximate shortest paths to all nodes, the approximate distance to these nodes is
at most 4 · D. Therefore, all cutoff nodes of v are the potential endpoints of the approximate shortest path we
sample. We may not choose the shortest path (of length less than 2D), but the length of the path we pick is at
most 4D and (by definition) crosses B.

Thus, as each node has n/8 cutoff nodes in distance 2D, there is chance of 1/8 to sample a cutoff node. This
means, as long asΦt ≥ p · n, the probability that we sample a path that crossesB is at least p/8. Intuitively, this
means that after carving T paths, either the potential has dropped, or there areΘ(T) paths that intersect with
B on expectation. Note that every time the latter happens, we remove a chunk of length (ϵ/2)D from some path
in B. However, this cannot happen often due to these paths’ bounded length of 32D; therefore, the potential
must drop quickly.

We now want to formalize this intuition. To this end, fix a path P := (v1, v2, . . .) in graphG and denote
Kt(P) as the number of sets fromK1, . . . ,Kt that intersect with P . Formally, it holds:

Kt(P) :=
∑
i≤t

1Ki∩P ̸=∅

Now define the number of clusters that intersect with B as

Kt :=
∑
Pi∈B

Kt(Pi)

More formally, it holds:

129

Lemma 8.6. After carving τ ≥ c · 768 setsK1, . . . ,Kτ , it holds:

Pr[{Φτ ≥ (7/8) · n} ∩ {Kτ ≤ τ/256}] ≤ e−c

Proof. First, we denote δKt := Kt − Kt−1 as the difference in the number of intersections from step t − 1

to step t. Note that this difference is always non-negative as the number of balls intersecting with the separator
can not decrease. Equipped with this definition, we want to count the number of rounds in which we either
increaseKt, orΦt falls below (7/8) · n. We refer to these rounds as good steps. Clearly, after at most ρτ goods
steps (with ρ ≤ 1) either ρτ balls intersect with the boundary, or it holdsΦt < (7/8) ·n. To bound the number
of good steps, we define the following indicator variable for good steps:

Yt := 1{Φt<(7/8)·n}∨{δKt≥1}

Further, let Yτ :=
∑τ

i=1 Yi the total number of good steps until some step τ > 0. Next, we will show that
the probability that a given step is good is constant regardless of the processes’ history. That is, regardless of
what happened in the first t − 1 steps, the probabalility that step t is good is at least 1/16. First, we note that
the probability of whether a step t is good is completely determined by graphGt−1. To this end, let Gt−1 be a
random variable that denotes the active subgraph in step t. LetGt−1 ⊂ G the graph at the beginning of step t
(which is created by all choicesmade by the algorithm in steps 1, . . . , t−1). Wewill nowbound the probability
that we sample a path that crosses B.

Claim 10. For all graphsGt ⊆ G, it holds:

Pr[Yt | Gt−1 = Gt] ≥
Φ(Gt)

8n
(8.9)

Proof. During this proof, we will write Pr[X | Gt] instead of Pr[X | Gt−1 = Gt] for brevity. Further, let
Pt := (vt, . . . , wt) be the path sampled in step t and let vt andwt be its respective start and endpoint. As the
algorithmonly removes nodes and edges, the pathPtmust also exist in the original graphG. Therefore, the path
must crossB if vt is a critical node andwt is one of its cutoff nodes. In the following fix a graph Gt−1 = Gt−1.
Recall that the cutoff nodes C(v) := V \ BG\B(v, 4D) are all nodes, s.t., all paths (of length at most 4 · D)
between v andw ∈ C(v) contain a node ofB. Hence, if we sample a cutoff node,Kt increases by one. Denote
this event as {vt ⇝

B
wt}. Further, denote the critical nodes conditioned onGt−1 as

C(Gt−1) =
{
v ∈ Vt

∣∣ |C(v) ∩BGt−1(v, 2D)| ≥ n/8
}

(8.10)

130

Note that C(Gt−1) is completely determined by Gt−1 and therefore is not a random variable. Given this
definition, note that it holds:

E [δKt ≥ 1 | Gt−1] = E
[
vt ⇝

B
wt | Gt−1

]
(8.11)

≥
∑
v∈V

1v∈C(Gt−1) · Pr[vt = v | Gt−1] · Pr[wt ∈ C(v) | vt = v ∩Gt−1] (8.12)

≥ 1

n
·
∑
v∈V

1v∈C(Gt−1) · Pr[wt ∈ C(v) | vt = v ∩Gt−1] (8.13)

Recall that by definition, each critical node has at least n/8 cutoff nodes in distance 2D. By the properties of
the approximate shortest path algorithm, the approximate distance to all these nodes is 4D and, thus, all these
nodes are considered in the sampling. Further, as we use approximate shortest paths that can only overestimate
the actual distance, we sample from a subset of all nodes in the distance 4D. Note that there can obviously be
at most n nodes in distance 4D. Therefore, the probability that one vt’s cutoff nodes are picked as the path’s
endpointwt is:

Pr[wt ∈ C(v) | vt = v ∩Gt−1] :=

∣∣C(v) ∩BGt−1
(v, 2D)

∣∣∣∣BGt−1
(v, 4D)

∣∣ ≥ n

8n
=

1

8
(8.14)

Putting this back in the previous formula, we get:

E
[
vt ⇝

B
wt | Gt−1

]
≥ 1

n
·
∑
v∈V

Pr[v ∈ Ct | Gt−1] · Pr[wt ∈ C(v) | vt = v] (8.15)

≥ 1

n
·
∑
v∈V

Pr[v ∈ Ct | Gt−1] ·
1

8
=
|C(Gt)|

8n
(8.16)

Finally, observe that for each node v ∈ V with |BGt−1
(v, 2D)| ≥ (7/8) · n, it also holds that |C(v) ∩

BGt−1
(v, 2D)| ≥ n/8. Thus, we haveΦ′

t−1 ≤ C(Gt−1). This proves the claim

Let now Ht−1 be an arbitrary set of events that happened in the first t − 1 steps of the algorithm. In
particular, all of these events may only affect the topology Gt in step t but not the actual choice of the path in
step t. Given this definition, we show the following:

Claim 11. E [Yt | Ht−1] ≥ 7/64

Proof. To simplify notation, defineΦ′
t−1 to be the potential at the beginning of step t givenHt−1, i.e., it holds:

{Φ′
t−1 = η} := {Φt−1 = x} ∩ Ht−1 (8.17)

131

Analogously, Φ′
t will be the number of critical nodes in step t conditioned onHt−1. Note that both Φ′

t and
Φ′

t−1 is random variable asHt−1 may not fully determinesGt−1 and thus the corresponding potential. By the
law of total expectation, it holds:

E [Yt | Ht−1] =Pr
[
Φ′

t−1 <
7n

8

]
· E
[
Yt | Φ′

t−1 <
7n

8

]
+ Pr

[
Φ′

t−1 ≥
7n

8

]
· E
[
Yt | Φ′

t−1 ≥
7n

8

]
(8.18)

Recall that the potential is monotonially decreasing. Thus, ofΦt−1 is smaller than (7/8) · n, thenΦt must also
be smaller than (7/8) · n. Therefore, we haveE

[
Yt | Φ′

t−1 < 7n
8

]
= 1. As Yt is a binary random variable that

can only take values 0 and 1, it furthermore holds:

E
[
Yt | Φ′

t−1 <
7n

8

]
= 1

≥ 1 · Pr
[
Yt = 1 | Φ′

t−1 ≥
7n

8

]
+ 0 · Pr

[
Yt = 0 | Φ′

t−1 ≥
7n

8

]
:= E

[
Yt | Φ′

t−1 ≥
7n

8

]
Therefore, it holds:

E [Yt | Gt−1] = Pr
[
Φ′

t−1 <
7n

8

]
· 1 + Pr

[
Φ′

t−1 ≥
7n

8

]
E
[
Yt | Φ′

t ≥
7n

8

]
(8.19)

≥ Pr
[
Φ′

t−1 <
7n

8

]
E
[
Yt | Φt ≥

7n

8

]
+ Pr

[
Φ′

t−1 ≥
7n

8

]
E
[
Yt | Φt ≥

7n

8

]
(8.20)

≥
(
Pr
[
Φ′

t−1 <
7n

8

]
+ Pr

[
Φ′

t−1 ≥
7n

8

])
· E
[
Yt | Φt ≥

7n

8

]
(8.21)

= E
[
Yt | Φ′

t−1 ≥
7n

8

]
≥ E

[
δKt ≥ 1 | Φ′

t−1 ≥
7n

8

]
(8.22)

Thus, to the claim, it suffices to consider the case whereΦ′
t−1 ≥ (7/8) ·n and to bound the probability that we

sample a path that crosses B.

132

For a fixed value η ∈ [0, n] of the potential, it holds by the law of total expectation:

E
[
δKt ≥ 1 | Φ′

t−1 = η
]
:=

∑
Gt⊆G

Φ(Gt)=η

Pr
[
Gt−1 | Φ′

t−1 = η
]
· E [δKt ≥ 1 | {Gt−1 = Gt−1} ∩ Ht−1]

(8.23)

:=
∑

Gt⊆G
Φ(Gt)=η

Pr
[
Gt−1 | Φ′

t−1 = η
]
· E [δKt ≥ 1 | {Gt−1 = Gt−1}] (8.24)

By Claim 10 : (8.25)

≥
∑

Gt⊆G
Φ(Gt)=η

Pr
[
Gt−1 | Φ′

t−1 = η
]
· η
64

(8.26)

=
η

8n
·
∑

Gt⊆G
Φ(Gt)=η

Pr
[
Gt−1 | Φ′

t−1 = η
]

(8.27)

=
η

8n
(8.28)

Here, the second equality follows from the fact thatHt−1 does not affect the choice that the algorithm makes
in step t. The last equality follows as

∑
Gt⊆G

Φ(Gt)=η

Pr
[
Gt−1 | Φ′

t−1 = η
]
= 1.

By applying the law of total expectations again, we obtain the following lower lower bound given that the
potential is greater than (7/8) · n:

E
[
δKt | Φ′

t−1 ≥
7n

8

]
≥

n∑
η=(7/8)·n

Pr
[
Φt−1 = η | Φ′

t−1 ≥
7n

8

]
· E
[
vt ⇝

B
wt | Φ′

t−1 = η
]

(8.29)

By Ineq. (8.28) : (8.30)

≥
n∑

η=(7/8)·n

Pr
[
Φt−1 = η | Φ′

t−1 ≥
7n

8

]
· η

8n
(8.31)

Using η ≥ 7n

8
: (8.32)

≥
n∑

η=(7/8)·n

Pr
[
Φt−1 = η | Φ′

t−1 ≥
7n

8

]
· 7n

8 · 8 · n
(8.33)

≥ 7

64
·

n∑
η=(7/8)·n

Pr
[
Φt−1 = η | Φ′

t−1 ≥
7n

8

]
(8.34)

=
7

64
(8.35)

133

The last inequality follows from the fact that
∑n

η=(7/8)·n Pr
[
Φt−1 = η | Φ′

t−1 ≥ 7n
8

]
= 1. Thus, by Inequal-

ity (8.22), it holds:

E [Yt | Gt−1] ≥ E
[
δKt ≥ 1 | Φ′

t−1 ≥
7n

8

]
≥ 1

64

This proves the claim.

Thus, we have a probability bound holds regardless of all events before step t. This tells us that no matter
what happens, there is always a constant probability for a good step. In particular, eventough the steps of the
algorithm are not independent as events in earlier steps affect the possibilities in later steps, we can still give a
good tail estimate. We need the following slightly generalized version of the Chernoff bound to finalize the
proof.

Lemma 8.7 (Generalized Chernoff Bound, cf. Theorem 3.52 in [Sch00]). Let X1, . . . , Xn ∈ {0, 1} be a
series of (not necessarily independent) binary random variables and defineX :=

∑n
i=1 Xi. Suppose, there is a

value ρ ∈ [0, 1], s.t., for all subsetsXi1 , . . . , Xij with 1 ≤ j ≤ n, it holds:

E

 ∏
k=i1,...,ij

Xk

 ≥ ρj .

Then, for any δ ≤ 1, it holds:

Pr[X < (1− δ)ρn] ≤ e−
δρn
3

Let now i1, . . . , ij be some subset of the τ steps that we make. Note that by the fact that all Yt are binary
random variables and the chain rule of conditional expectations, it holds:

E

 ij∏
k=i1

Yk

 := Pr

 ij⋂
k=i1

Yk = 1

 =

ij∏
k=i1

Pr

[
Yk = 1 |

k−1⋂
k′=i1

Yk′ = 1

]

=

ij∏
k=i1

E

[
Yk |

k−1⋂
k′=i1

Yk′ = 1

]
≥

ij∏
k=i1

7

64
=

(
1

16

)j

Here, we exploited that
{
∩k−1
k′=i1

Yk′ = 1
}
only depends on events prior to step k and used the bound of Claim

11. Thus, the conditions of Lemma 8.7 apply to Yτ by choosing ρ = 1/16. Therefore, it holds for all τ ≥ 1

and δ ≤ 1 that:

Pr[Yτ ≤ (1− δ)ρτ] ≤ e−
δρτ
3

134

v1 v2 v3 v4 v5 v6 v7 v8

≥ ϵD ≥ ϵD ≥ ϵD

C
(ϵ)
1 C

(ϵ)
2 C

(ϵ)
3 C

(ϵ)
4

Figure 8.3: An example for the chunksC(ϵ)(P) of distance ϵ of a path P := v1, . . . , v8 . The solid lines denote edges between two nodes of the
same chunk, the dashed lines denote edges between chunks.

For τ ≥ c · 768, we get the following bound:

Pr
[
Yτ ≤

τ

256

]
= Pr

[
Yτ ≤

(
1− 1

2

)
τ

16

]
= Pr

[
Yτ ≤

(
1− 1

2

)
ρτ

]
≤ e−

(1/2)ρτ
3 = e−

ρτ
6 = e−

τ
768 ≤ e−c

This proves the lemma.

This verifies that if we samplemany paths that crossB unless the potential drops down by a constant factor.
However, to prove the lemma, we need more than that. Further, we need an upper bound on the number of
intersections withB. With each crossing, we remove one node fromB, so a trivial upper bound inn. However,
to prove the lemma, we require a tighter bound. To this end, we show the following:

Lemma 8.8. Consider any path P of length 32D inG. Then for any t ≥ 0, it holdsKt(P) ≤ O(ϵ−1).

Proof. To this end, we introduce the notion of chunks. A chunk is a non-empty subpath of the path, s.t., the
distance between the first node of two consecutive chunks is at least ϵD. Formally, we can recursively define
them as follows.

Definition 8.3 (Chunk). Let P := (v1, . . . , vm) be a path in graphG and let ϵ > 0 be a distance parameter.
Then, the chunks C(ϵ)(P) :=

(
C

(ϵ)
1 , . . . , C

(ϵ)
m´

)
of path P are partition of P into connected subpaths. The

chunks are recursively defined as follows:

1. The first chunkC(ϵ)
1 begins with node v1.

2. The first node of chunkCi+1 is the first node in distance (greater than) ϵD to the first node of chunkCi.

3. A chunkCi contains all nodes between its first node and the first node ofCi+1. The last chunk contains its
first node until the end of the path.

Further, note that every time a random path Pt crosses P , we remove all nodes in the chunk it crosses. In
particular, it does not matter if some nodes between two nodes of a chunk have already been removed as we
always consider the distance with regard toG. Thus, the number of chunks is an upper bound on the number
of clusters that intersect with the separator in anyweak ball carving process.

135

Clearly, a path P of length 32D consists of 128ϵ−1 chunks of length ϵ/4D. This can verified as follows:
Denote by C(P) the chunks of length ϵ/4D in P . For the sake of creating a contradiction, assume that there
are more than 128/ϵ chunks. Denote this number as

c := |C(P)|

The chunks C(P) can be ordered C(1), . . . , C(c) based on their position in path P , s.t., chunks with higher
order are closer to the endpoint of the path. We denote the first node of chunkC(i) that is part of the boundary
as v(i). Recall that the distance between the first nodes of two neighboring chunks is at least ϵ/4D. If the chunks
are not neighboring, the distance can only be greater. Thus, it holds:

dP (v(i), v(i+1)) ≥ ϵ/4D

Let now v be the last node in the first chunk C(1) and w := v(c) be the first node in the last chunk C(c) that
intersect with the boundary. By the definition of chunks, the distance between v andw on path Pij is at least:

dP (v, w) = dPij
(v, v(2)) +

c∑
i=2

dPij
(v(i), v(i+1)) ≥ dP (v, v(2)) +

c∑
i=2

ϵ/4D = dP (v, v(2)) + (c− 1)ϵ/4D

≥ dP (v, v(2)) + (128/ϵ + 1− 1) ϵD = dPi(v, v(2)) + 32D > 32D

This is a contradiction as P is of length 32D.

Finally, suppose for contradiction that afterO(ϵ−1 ·k · logn) iterations, the potential is still above (7/8) ·n.
Then,Kτ ∈ Ω(ϵ−1 · k · logn) paths must have crossedB, w.h.p. However, by Lemma 8.8,Kτ is bounded by
O(ϵ−1 ·k). A contradiction. Thus, afterO(ϵ−1 ·k · logn) iterations, the potential must be low, w.h.p., which
proves the lemma.

136

9
Fast Construction of Separators for Planar Graphs

In this chapter, we show how to efficiently construct a path separator in (subgraphs of) a planar graph in
CONGEST and the HYBRID model. In contrast to our previous weak separator construction, this is a
classical vertex separatorwhose removal leaves connected components of a constant fractionof theoriginal

size. This (potentially) gives it more applications than just clustering and routing andmay be seen as a tiny step
towards a general framework for distributed divide-and-conquer algorithm on planar graphs. The algorithms
of this chapter were first presented in the following publication:

JinfengDou,ThorstenGötte,HenningHillebrandt,Christian Scheideler, and JulianWerthmann. Brief
announcement: Distributed construction of near-optimal compact routing schemes for planar graphs.
In Rotem Oshman, Alexandre Nolin, Magnús M. Halldórsson, and Alkida Balliu, editors, Proceedings
of the 2023 ACM Symposium on Principles of Distributed Computing, PODC 2023, Orlando, FL, USA,
June 19-23, 2023, pages 67–70. ACM, 2023

Notably, for the construction of these separators, we will not (only) use the minor aggregation framework
presented in Section 7.1.1 and instead present bespoke algorithms for CONGEST and HYBRID that use ad-
ditional techniques. To be precise, our algorithm rely on the computation of so-called (planar) embeddings,
a tool that is simply not (yet) available for other graph classes in the distributed setting. However, as we see,
our algorithms can be easily incorporated into algorithms that are based onminor aggregations. This is because
we specifically design our algorithms to also compute separators for arbitrary connected subgraphs of a given
planar graphG. That being said, we show the following technical result in this chapter:

137

Theorem 7. Path Separators for Planar Graphs

Consider a weighted planar graph G := (V,E,w) and a collection of N node-disjoint subgraphs
C1, . . . , CN ⊂ G with Ci = (Vi, Ei). Then, there algorithm that constructs a 4-path separators
S1, . . . , SN of 4 (1 + ϵ) approximate shortest paths in all C1, . . . , CN . Each connected component
inCi \ Si consists of at most (3/4) · |Vi| nodes.

The algorithm can, w.h.p., be implemented in Õ(ϵ−2 ·HD) time in CONGEST and Õ(ϵ−2) time in
HYBRID.

In factwepresent twodifferent algorithms, one for eachmodel. For both theCONGESTand theHYBRID
algorithm,webase our separators on so-called cycle separators that canbe constructedwith respect to an arbitrary
spanning tree T ofG. These separators consist of a path in the tree T and an additional edge that connects the
endpoint of the path. Constructing these separators has been well researched in the sequential, CONGEST,
and PRAMmodel. For our construction, we exploit two useful facts about the algorithms that construct these
separators. First, suppose that the tree T is rooted in some node s ∈ V . Then, for any separator path in T

that goes from v to w, we can instead add the two paths from s to v and to w to the separator. This is cleary
a superset of the separator and therefore a separator itself. Therefore, we can use the following non-standard
definition of a cycle separator that will capture the structure of the separators we construct slightly better:

Definition 9.1 (Cycle Separator). LetG = (V,E) be a planar graph with n nodes, and let T = (V,ET) be
an arbitrary spanning tree ofG rooted in s ∈ V . Then, a so-called cycle separator S (with respect to T) consists of
two paths P1 = (s, . . . , v) and P2 = (s, . . . , w) in T and the edge {v, w} ∈ V 2 that may not be part ofG.
All connected components inG \ S have at most (3/4) · n nodes.

Second, the algorithms that compute the separator are oblivious of the used tree, i.e., theywork for arbitrary
spanning tree. Thus, for our purposes, we can use a (1 + ϵ)-approximate spanning tree rooted in some s ∈ V .
Any path in this tree is a (1 + ϵ)-approximate shortest path. Thus, using such a tree as a basis, we construct
a separator that consists of two (1 + ϵ)-approximate shortest path and an edge that may or may not be inG.
Since we can consider the two endpoints of an edge to be shortest path to themselves, we found a separator that
consists of four approximate shortest paths.

As our main technical lemma, we show that given a suitable pre-computed spanning tree, we can, in fact, com-
pute all separators in parallel. More precisely, we will show the following:

Lemma 9.1. LetG = (V,E,w) be a (weighted) undirected planar graph and let C1, . . . , CN be a set of disjoint
subgraphs ofG. Further, let T be a spanning tree such that its subforests T1, . . . , TN restricted to C1, . . . , CN are
spanning trees for C1, . . . , CN . In particular, each separator consists of two paths in Ti and the two endpoints of
an edge possibly not contained in Ci. Then, there is an algorithm that computes a cycle separator for each (Ci, Ti)

simultaneously in Õ(HD) time, w.h.p. in CONGEST and Õ(1) time in HYBRID.

Beforeweprove this lemma, let us first see how it impliesTheorem7. Note that the lemma is oblivious of the
tree T as long as it fulfills the stated property. Thus, wemay use an (1+ ϵ)-approximate SetSSP tree computed

138

by the algorithm of Rozhon r⃝ al. [RGH+22] with ϵ < 1. Such a tree can be computed in Õ(ϵ−2 ·HD) time
in all subgraphs simultaneously in CONGEST and Õ(ϵ−2) time in HYBRID. To do this, we assign infinite
weight to all edges between components. More precisely, we choose a weight of 2Wn whereW is the highest
weight in the graph. This weight can be determined by simply aggregating the maximum of all edge weights
in G. As G is planar, this can be done, w.h.p., in Õ(HD) time in CONGEST and Õ(1) time in HYBRID.
After that, we determine the nodes v1, . . . , vN of the lowest identifier in each component C1, . . . , CN . We
call these nodes leaders of their respective components. Again, this can be done with a simple aggregation in
each component. Recall that the subgraph is node-disjoint, and G is planar and thus this aggregation can be
performed in Õ(HD) time in CONGEST and in Õ(HD) time in HYBRID. Finally, perform a SetSSP from
all leaders using the algorithm of Rozhon r⃝ al. [RGH+22] with ϵ < 1. In the resulting SetSSP tree T , each
node v ∈ Ci will always be placed in the subtree of its component’s leader. Since the paths to all leaders of other
components must contain an edge of length 2Wn, the leader of the v′s component must always be the closest
if the path is at least 2-approximate. Thus, the subtrees T1, . . . , TN of the respective leaders are spanning trees
of their components C1, . . . , CN . Therefore, we can use these trees as input to Lemma 9.1 and obtain that
consists of 4 approximate shortest paths. By definition, the two paths in Ti are approximate shortest paths, and
the two endpoints of the edges are shortest paths to themselves. This proves Theorem 7.

In the remainder of this section, we, therefore, only prove Lemma 9.1. Before we start, we present some
useful facts on planar graphs in Section 9.1. We split the analysis of this lemma into two parts. First, in the hard
part, we show that the statement is true for CONGEST. This requires us to compile ideas from several papers.
The main idea is to use the technique from [GP17], which only works for biconnected graphs. The algorithm
was later generalized for 1-connected graphs while maintaining the Õ(HD) runtime by [LP19]. They achieve
this result by adding virtual edges to the input graph, making the augmented graph biconnected. The virtual
edges can be efficiently simulated in CONGEST; therefore, simulating the original algorithm for biconnected
graphs yields a separator for the original graph. We want to remark that Parter and Li are to be credited for
this approach, and we simply repeat their main arguments here. To be precise, wemerely highlight the inherent
properties of their construction that are important for us and fill in some crucial details they sketched in [LP19].
We present the construction in Section 9. In the second part, we present a work-efficient PRAMalgorithm that
can also be simulated in the HYBRID model. This algorithm finds the separator using an Euler tour, which
can be easily computed in the PRAMbut not so easily in CONGEST.We sketch the construction Section 9.3.
In contrast to the CONGEST algorithm, it can essentially be used as is.

9.1 Planar Graphs: Embeddings, Faces, and Augmentations

This section gives a primer on planar graphs and presents several useful properties. We focus on the aspects
important to our algorithms in the CONGEST model. In particular, we only provide a heavily simplified in-
troduction to this well-understood graph class. We refer to the well-known textbook by Distel [Die10] or the
draft by Klein andMozes [Kle24] for an in-depth discussion of planar graphs (and their applications).

We begin our short overview with the definition of a planar graph. In fact, there are several equivalent defi-
nitions of a planar graph. Perhaps most famously, a planar graphG = (V,E) can be drawn into the Euclidean

139

plane R2 without two edges crossing. By drawing, we mean that nodes are mapped to points and edges to
curves/lines between these points. A drawing of a planar graph is called a geometric planar embedding. An-
other way to express such an embedding is a local ordering of the edges. Each node v ∈ V learns a circular
ordering πv : Nv → [1, deg(v)] that assigns each of its neighbors a unique number between 1 and deg(v).
This is called a combinatorial planar embedding. W.l.o.g., we denote the neighbors of v as w1, . . . , wdeg(v)

where i := πv(wi), i.e., we implicitly assume that the neighbors are ordered according to πv and the subscript
is the position in the ordering. Intuitively, if the edges {v, w1}, . . . , {v, wdeg(v)} are drawn in this order, they
do not intersect with other edges. Edmonds has shown that combinatorial and geometric embeddings of planar
graphs are equivalent [Edm60]. The equivalence between geometric and combinatorial embeddings becomes
clearer when we consider the so-called faces of the graph. If a planar graph is drawn without crossing edges, it
naturally divides the plane into a set of regions enclosed by its edges. These regions are called faces. For exam-
ple, in a grid graph, each cell surrounded by four nodes is a face. Generally, a face is bounded by a closed walk
(v0, . . . , vℓ, v0) ⊆ V in G called the boundary of the face. By convention, the unbounded area outside the
whole graph is also a face. Given a combinatorial planar embedding (and not a drawing), we can find the walk
(v0, . . . , vℓ, v0) around a given face F by consistently following the next edge in the ordering. That means, if
we reach a node v via edge {wi, v}, we continue via {v, wi+1}. Note that we omit modulo computations for
readability. If a node has degree 1, a walk uses the same edge twice in a row, i.e., the walk enters and leaves via
the same edge. A proper embedding ensures that any walk that contains {v, wi+1} will eventually return to v
via {wi, v}. Not that the same node may be visited more than once in a single face walk (this will be important
later).

9.2 Fast Separators in CONGEST

In this section, we will prove (the CONGEST part of) Lemma 9.1 and explain how to construct separators on
many arbirtary node-disjoint subgraphs of a planar graph in parallel in the CONGEST model. To be precise,
we are given a collection of node-disjoint subgraphs C1, . . . , CN and compute separators that consist of at most
four (1 + ϵ)-approximate shortest paths in Õ(HD) time for all them.

Before we go into the details of our construction, let us first summarize the relevant previous approaches
to constructing separators in planar graphs in the CONGEST model and emphasize the main technical prob-
lems we need to solve: The problem of constructing path separators was (to the best of our knowledge) first
considered in [GP17] by Ghaffari and Parter. Their algorithm creates a separator for any collection of bicon-
nected disjoint subgraphs in Õ(HD) time in parallel. In our scenario, however, the subgraphs are not necessar-
ily biconnected. So, we cannot use this algorithm directly. A possible approach to extend [GP17] to arbitrary
connected subgraphs has already been described by Li and Parter in [LP19]. They compute a separator for a
non-biconnected planar graphG. To this end, they first execute an algorithm that adds additional virtual edges
to makeG biconnected in Õ(HD) time. The virtual edges are added so that any CONGEST algorithm on the
augmented graphG′ can be simulated by the original graphG with only a constant factor blowup in the run-
time. Then, they run the algorithm of [GP17] on the augmented graph. At first glance, this should also result in
an algorithm that constructs a separator for a collection of disjoint subgraphs in Õ(HD) time and, thus, prove
Theorem 7. However, there is a subtle yet important issue if we were to apply this approach to a collection of

140

disjoint subgraphs: Consider a collection of node-disjoint connected subgraphs C1, . . . , CN ofG. Suppose we
make the whole graph G biconnected by adding virtual edges (using the algorithm of [LP19]); there may be
virtual edges between nodes of two subgraphs Ci and Cj . These paths between components are required for
the biconnectivity. Thus, the extended biconnected subgraphs are not necessarily edge-disjoint anymore, and
the algorithm of [GP17] is not (trivially) applicable. If, instead, we apply the algorithm for biconnectivity on
each subgraph Ci in isolation, i.e., by ignoring the edges to other subgraphs, we cannot trivially guarantee that
the planarity of the overall graphG is preserved. The virtual edges we add in each subgraphmay cross the edges
between connected components. However, the algorithmof [GP17] requires planarity of the full graphG if we
want to use it in a black-box fashion. So, computing separator in connected node-disjoint subgraphs in Õ(HD)

time requires some extra work.

Li and Parter claimed that their algorithm can be refined to Õ(HD) by exploiting how the algorithm of
[GP17] actually works internally and not just using it as black-box. We will follow their sketch for the most
part, but we will need to make subtle technical adjustments along the way to make it work. Our main addition
to their sketch is adding virtual buffer nodes between components. In particular, we add two virtual nodes v′

and w′ on each edge {v, w} ∈ E where v ∈ Ci and w ̸∈ Ci, i.e., we replace the edge by a path (v, v′, w′, w).
We say that in the resulting graph G′, all components Ci, . . . , CN are well-separated as all their neighboring
nodes that are not assigned to any subset. We add the virtual node v′ to Ci and obtain a component C′i. Note
that these additions a) preserve the graph’s planarity, b) increase the hop diameter by a factor of only 3, and
c) ensure that C′1, . . . , C′N are node-disjoint. Further, any CONGEST algorithm for the augmented graphG′

can be simulated onG. We then augment each subgraph C′i by additional virtual edges to make it biconnected
using the algorithm of Li and Parter [LP19]. Although it might not be intuitively clear, as we will see in the
analysis, the addition of the virtual nodes ensures that the additional edges preserve the planarity of the
full graphG. This results in node-disjoint, biconnected components C′1, . . . , C′N . However, by adding virtual
nodes to the sets C1, . . . , CN , we can no longer use Ghaffari and Parter’s algorithm as a black box because we
have changed the input. Instead, we need to adapt the algorithm such that it ignores the additional nodes when
computing the separator. Tobe precise, we present an adapted version of the algorithm from [GP17] thatworks
for weighted nodes. Given this algorithm, we assign each virtual node a weight of 0 and all other nodes, i.e., the
real nodes, a weight of 1. Then, we compute a separator S ′′i , such that each connected component C′′i \ S ′′i
only has a constant fraction of the total weight. As all virtual nodes have weight 0, the separatorS ′′i can be used
as a separator for Ci as desired.

We structure the section into five subsections. First, in Section 9.2.1, we present useful tools for computations
on planar graphs in CONGEST. Then, we present three subroutines that our algorithm will use. In Section
9.2.2, we show how to identify biconnected components in a planar graph using the algorithm of Ghaffari and
Parter. This sectiononly summarizes their results and adds nonew insights, however, we require the algorithmic
tools and structural observations used in this algorithm. Then, in Section 9.2.3, we sketch how to turn a planar
graph into a biconnected planar graph using a technique by Parter and Li [LP19]. In particular, we show that
the algorithm is executed on a series of node-disjoint well-separated subgraph, we can compute biconnected
node-disjoint supersets of the subsets. As the last subroutine, in Section 9.2.4, we sketch how to construct a
separator for a node-weighted, biconnected planar graph by adapting the corresponding algorithm by Ghaffari

141

and Parter [GP17]. Finally, we put all these pieces together in Section 9.2.6 and present the algorithm behind
Lemma 9.1 along with the proof.

9.2.1 A Small Toolkit for Planar Graphs in CONGEST

We now present some useful distributed computing aspects of planar graphs. First, we note that a combinato-
rial embedding of a planar graph can be computed in Õ(HD) rounds in CONGEST using the algorithm of
Ghaffari and Haeupler [GH16a]. They show that it holds:

Lemma 9.2 (Main Result in [GH16a]). Let G := (V,E) be a planar graph. Then a combinatorial planar
embedding ofG can be computed in Õ(HD) rounds in CONGEST. That means each node v ∈ V learns a local
ordering πv of its neighbors.

Note that this embedding will allow us to detect the faces of the graphG in a distributed fashion.
For many algorithms, arguing about the graph’s faces will be easier than using its nodes and edges. There-

fore, we present the so-called face graphF(G) of a planar graphG, which was introduced in [GP17]. The face
graph is a virtual auxiliary graph that simplifies the presentation of our algorithms and proofs. Many parts of
the algorithm can bemuchmore easily described in the context of faces rather than vertices and edges. The face
graphF(G) := (VS ∪VF , EF ∪ES) of a planar graphG consists of virtual nodes and edges, s.t., each bound-
ary is represented by a disjoint set of virtual nodes. In particular, all nodes associated with a given face, form a
connected cycle in the face graph. Further, the cycles of two distinct faces are disjoint. To define the face graph,
we note that two consecutive neighborswi, wi+1 ∈ Nv belong to the face Fi. If v has only a single neighbor,
it is only part of one face. Node v creates a virtual node v(i) for each face Fi it is adjacent to. We call these the
face nodes. Altogether, all face nodes form the set VF . Face node v(i) is connected to the corresponding virtual
nodes ofwi andwi+1 that lie on the same face Fi. We call resulting (virtual) edgesEF the face edges. Finally,
v creates a virtual node vs that is adjacent to its virtual nodes v(1), . . . , v(deg(v)). We call vS the star node of v
and denote the set of star nodes as VS and the resulting edgesES the star edges. Summing up, face graphs are
defined as follows:

Definition 9.2 (Face Graph). For a planar (sub-)graph G the face graph FG := (VF ∪ VS , EF ∪ ES) is a
virtual graph defined in the following way:

1. For eachnodev ∈ V which is on the boundary of facesF1, . . . , Fdeg(v) there are face nodesv(1), . . . , vdeg(v) ∈
VF .

2. Each face node is connected to at most two face nodes of the same face, i.e, for each faceFi there is a connected
cycle of face nodes.

3. For each node v ∈ V there is exactly one star node vS ∈ VS that is connected to all face nodes of vi ∈ VF .

Next, we can turn to the useful computational properties of the face graph. Most importantly, any CON-
GEST algorithm on the face graphF(G) can be executed in (asymptotically) the same time as inG. The nec-
essary details to prove this claim were already laid out in [GP17], and we briefly summarize them here to be
self-contained. First, we see that we can easily simulate any algorithm for FG onG.

142

A B

C

D

E

(a) A planar graphG with 5 nodes and 3 faces (including the outer face)

A B

C

D

E

(b) The corresponding face graphF(G). Star nodes are yellow. Nodes of
the same face have the same color.

Figure 9.1: A planar graphG and corresponding face graph F(G). Note thatG is not biconnected. NodeD is cut‐node that has two of its virtual
nodes in the same face as two of its (virtual) nodes have the same color.

Lemma 9.3 (Shown in [GP17]). Given a planar embedding, any CONGEST algorithm that takes τ rounds on
the F(G) can be simulated onG in 2τ rounds. At all times, a real node v ∈ V knows the state of its associated
star and face nodes.

Proof. Given a planar embedding ofG, the face graphF(G) can be constructed withinO(1) rounds of com-
munication inCONGEST. Fix a node v ∈ V and letw1, . . . , wdeg(v) ∈ V be its neighbors in clockwise order.
For each face Fi whose boundary contains the edges {v, wi} and {v, wi+1}, v creates the face node v(i) with
identifier v ⊕ i. Then, it sends this identifier towi andwi+1. Likewise, v receives the identifierswi ⊕ jwi

and
wi+1 ⊕ jwi+1 fromwi andwi+1. Recall that each edge it part of two faces and we need to send two identifiers
along each edge. As both identifiers can be encoded in O(logn) bits, they can be sent within one round of
CONGEST.

After completing this preprocessing, the simulation is straightforward. All communication between star
nodes and virtual nodes hosted by the same real node can be simulated locally. Further, note that any two
neighboring face nodes are hosted by two adjacent real nodes. If a face node v(i) hosted by node v wants to
a send a message to virtual node w(j) hosted by real node, it uses the real edges {v, w}. Thus, we must show
that that not too many face node use the same real edge to send their messages. However, this follows directly
from the construction of the face graph. Consider an edge {v, wi}, then only the face nodes v(i−1) and v(i)

use {v, wi} to communicate with their virtual neighbors hosted by node wi. Thus, within two rounds of
CONGEST, the virtual node can send and receive the corresponding messages. This proves the lemma.

Second, the graph FG has shortcut quality Õ(HD). Together with the fact that an CONGEST algorithm
onF(G) can be simulated inG, it holds

Lemma 9.4 (Implied in [GP17]). Any τ -roundMinAgg algorithm on a subset of face graphsF(C1), . . . ,F(CN)

can be simulated in Õ(τ ·HD) time onG in CONGEST.

143

9.2.2 Subroutine 1: Finding and Communicating in Biconnected Components

In this section, we present a distributed algorithm that identifies the biconnected components in (subgraphs of
a) planar graph G. Moreover, we will show that we can efficiently perform aggregations in each biconnected
component in Õ(HD) time, w.h.p. Note that the latter is not trivially true despite the graph being planar,
as two biconnected components are only edge-disjoint and not node-disjoint. That means they might share a
commonnodenode between them. Recall that theminor aggregation framework is only definedwith respect to
node-disjoint subgraphs. Thus, we require additional arguments based on the topological properties of planar
graphs.

Beforewe get to themain technical lemmas, let us first introduce some notation. We consider a collection of
node-disjoint subgraphs C1, . . . , CN of a planar graphG with hop-diameter HD. The cut-nodes Ci ⊂ Vi are
nodes ofCiwhose removal increases the number of connected components inCi by at least one. In otherwords,
as Ci is connected, the removal of a cut-node u ∈ Ci disconnects Ci. Conversely, all other nodes v ∈ Vi \ Ci

must be part of at least one cycle in Ci. We call a subgraph Bij ⊂ Ci a biconnected component, or simply a
block, if and only if for any two nodes v, w ∈ Bij there are (at least) two node-disjoint paths between v andw
in Ci. We refer to the set of all blocks in Ci asBi. Note that a cut-node v ∈ Ci may be part of one or more
blocks, but each edge {v, w} is associated with exactly one block.

First, we want to compute the cut-nodes and blocks of a collection of node-disjoint subgraphs C1, . . . , CN of
a planar graphG in Õ(HD) time. In particular, each cut-node will learn that it is a cut-node and which of its
neighbors belong to the same biconnected component. All other nodes learn that they are not cut-nodes and
that therefore all their neighbors belong to the same biconnected component. We will show that it holds:

Lemma 9.5 (Identification Biconnected Components). LetG := (V,E) be planar graph and let C1, . . . , CN
be a collection of node-disjoint subgraphs ofG. Then, there is an algorithm that computes all cut-nodes and bicon-
nected components in all C1, . . . , CN in Õ(HD) rounds in CONGEST, w.h.p.

The problem of finding the cut-nodes in the whole graph G is well understood due to an algorithm by
Ghaffari and Parter [GP17]. Their algorithm identifies all biconnected components of a planar graphG in time
Õ(HD), w.h.p, and can be applied to subgraphs C1, . . . , CN . Ghaffari and Parter exploit a very interesting
relationship between the face graph and biconnectivity. In planar graphs, it holds:

Lemma 9.6 (Cut-nodes via Faces, Section C.1 in [GP17]). A node v ∈ V in a planar graphG = (V,E) is a
cut-node if and only if in its face graphF(G), two or more of its corresponding face nodes belong to the same face.

Proof. First, suppose no two face nodes of v belong to the same face. In this case, we must show that for any
two neighborswi, wj of v there is a path fromwi towj that does not contain v. Recall that the edges {v, wi}
and {v, wi+1} to two consecutive neighborswi andwi+1 in the embedding lie on the walk around a face Fi.
If no two face nodes lie on the same face, the walk around Fi starts via edge {v, wi} and returns via {v, wi+1}
without visting v again. Thus, there is a path fromwi towi+1 that does not contain v. By the same argument,
there is a path between wi+1 and wi+2 and so on. Via a simple induction, we conclude that there is a path
between any two neighborswi andwj that does not contain v. This proves the first part.

144

Now suppose there are two face nodes of v that belong to the same faceF . In this case, vmust be a cut-node
and the removal of v disconnects the graph. If two face nodes of v belong to the same face, this means that v
is visited (at least) twice the walk around the face. W.l.o.g. consider the walk (v, v1, . . . , vℓ, v, vℓ+1). In other
words, we start the start the walk at node v and vℓ+1 is the first node we visit after returning to v. Recall that
we can draw a faceF by starting at v and always draw the next edge in clockwise order. Thus, all edges of nodes
v1 to vℓ must be on the inside of face F . If there is path from any node v1 to vℓ that does contain v then there
is a path that goes from inside the face F outside of it without containing node on the boundary. Therefore,
it must cross the boundary which it cannot do since the graph is planar. Thus, node vℓ+1 is isolated from the
remaing nodes on the face, which makes v a cut-node as desired.

Figure 9.1 shows an example where the lemma can be verified visually: The central node has two of its
virtual nodes on the outer face. All other nodes have virtual nodes in distinct faces, these nodesmay be removed
without disconnecting the graph. Given this lemma, we can prove Lemma 9.5.

Proof of Lemma 9.5. First, we compute the face graph F(G) of G and then delete virtual nodes and edges
associated with edges between components. We obtain a face graphF(Ci) for each Ci. Note that all these face
graphs are still planar, but may have a diameter larger than 3 ·HD. By Lemma 9.6, each cut-node in Ci has two
virtual nodes in the same face in the corresponding face graph inF(Ci). To identify the faces, we elect a leader
in each face component. If two face nodes have the same leader, the corresponding star node can locally decide
if it is a cut-node. A leader can be elected in Õ(HD) time by the following subroutine:

1. Aggregate theminimal identifier on each face component simultaneously in Õ(HD) time. This is possi-
ble because the face components of eachF(Ci) are still node disjoint subgraphs ofF(G) (per definition
of the face graph), and any aggregation on node disjoint sets can be performed in time Õ(HD) as per
Lemma 9.4.

2. Each face node shares this identifier with its respective star node. This can be done locally, as the same
real node simulates all face nodes in question.

3. If a star node vS receives the same identifier from twoormore neighboring face nodes, the corresponding
node v ∈ V is a cut-node. This follows from Lemma 9.6.

Summing up, it holds that all cut-nodes can be simultaneously identified in Õ(HD) time. Next, consider the
blocks Bi. Each node knows which of its edges belong to the same block. For a cut-node, these are edges
between two edges of the same face (according to its local ordering); for all other nodes, it’s simply all their
edges. Thus, after Õ(HD) time, w.h.p., each node knowswhether it is a cut-node andwhich of its edges belong
to the same block. This proves Lemma 9.5.

Second,wewant to show thatwe can compute an aggregation function
⊕

for eachbiconnected component
in Õ(HD), w.h.p. That is, each node v ∈ Bij which is part of a biconnected component Bij chooses an
O(logn)-bit input value xv . Then, all nodes inBij learn the aggregate value

⊕
v∈Bij

xv . In particular, a cut-
node that (by definition) is in at least two biconnected components learns the aggregate value for all of them.
Formally, we want to show the following:

145

Lemma9.7 (Communication inBiconnectedComponents). LetG := (V,E)be planar graphandC1, . . . , CN
be a collection of node-disjoint subgraphs ofG. For each component Ci, letBi := {Bi1 , . . . , BiNi

} be the bicon-
nected components of Ci. Suppose, each node v ∈ Bij chooses a Õ(1)-bit valuexv . For each biconnected component
Bij , we define yij :=

⊕
v∈Bij

xv , where
⊕

is any pre-defined admissible aggregation operator. Then, there is

an algorithm that in all biconnected componentsBij , lets all nodes v ∈ Bij learn yij in Õ(HD) time, w.h.p.

Proof. For the proof, we consider the face graph F(G) of the full graph G and augment it to a planar graph
F ′(G). F ′(G) has the same diameter as F(G) and for all biconnected components in C1, . . . , CN there are
connected node-disjoint components of F ′(G). In particuluar, if a biconnected component contains a node
v ∈ V , the connected component inF ′(G) contains at least one virtual node simulated byG. Therefore, any
message received by this node will be received by v.

The augmentation works as follows: Let v ∈ V be a cut-node in its respective component Ci and let vs be
its star node and v(1), . . . , v(deg(v)) its virtual nodes inF(G). Since v ∈ V is a cut-node, there are virtual nodes
{v(i1), . . . v(ib)} such eachpair v(ij), v(ij+1) belongs to the same face ofCi. For any consecutive pair vij , vij+1

,
we connect the virtual nodes vij+1, . . . , vij+1−1 in-between by a virtual edge. Note that this includes virtual
that are part of the same biconnected component in Ci as well as some additional nodes not included inF(Ci).
For each biconnected componentBij there is a node-disjoint subset in the augmented graphF ′(G) as desired.

As newly connected nodes are consecutive in the embedding, the additional edges preserve the planarity.
Further, we only add virtual edges between virtual nodes that belong to the same node in G. Therefore, any
CONGEST algorithm on the augmented graph can be simulated without increasing the runtime. Finally, the
additional edges can only reduce the diameter. Thus, as F ′(G) is planar and has the same diameter as F(G),
we can perform a minor aggregation of each block in Õ(HD) time, w.h.p. Therefore, we can compute an
aggregation function

⊕
on each blockBij in Õ(HD) time, w.h.p. This proves Lemma 9.7.

9.2.3 Subroutine 2: Making Planar Graphs Biconnected

In this section, we show a technical auxiliary result that can turn connected subgraphs of a planar graph into
biconnected components. The algorithm works by adding additional virtual edges to each subgraph. These
edges ensure that the selected subgraphs become biconnected while the overall graph stays planar. Further, the
edges are added in such a way that they can be simulated in a CONGEST algorithmwithout slowing down the
execution too much.

The underlying algorithm was (for the most part) already presented in [LP19] by Li and Parter. They con-
sidered the problemofmaking a single planar subgraphG′ ⊂ Gbiconnected by adding virtual edges. However,
the algorithmdoes not (trivially) work on any collection of connected subgraphs because of the reasonswemen-
tioned in the introduction of this section: If we independently add virtual edges to each component, this may
violate the planarity of graphG. Therefore, wewill focus onwhat we callwell-separated subgraphs. We call a set
of node-disjoint subgraphs C1, . . . , CN well-separated if for two nodes v ∈ Ci andw ∈ Cj (with i ̸= j) there
are at least two nodes not associated with any subgraph between v andw. This can, for example, be achieved by
adding two virtual nodes on the edges between two subgraphs. To put it simply, between every two subgraphs
Ci and Cj , there are two buffer nodes not associated with any subgraph. This node will give us the necessary

146

freedom to add the virtual edges without violating planarity and keeping the components disjoint. For any
connected subgraph Ci := (Vi, Ei), we define

V ′
i := {v ∈ V | ∃w ∈ Vi : ∃{v, w} ∈ E}} (9.1)

The setV ′
i contains all nodes of Ci and all nodes adjacent to a node in Ci. As the subgraphs C1, . . . , CN are well-

separated, all setsV ′
1 , . . . , V

′
N are disjoint. Throughout this section, wewill consider the subgraphsC′1, . . . , C′N

where C′i = G[V ′
i] is the subgraph induced byV ′

i . Note that all these subgraphs are node-disjoint and Ci ⊂ C′i.
Given these definitions and preliminary thoughts, we will show the following lemma in the remainder of this
section:

Lemma 9.8 (Derived from [LP19]). LetG = (V,E) be a planar graph and let C1, . . . , CN be a set ofN node-
disjoint, well-separated subgraphs of G. Then, within Õ(HD) time in CONGEST, we can compute a graph Ĝ
such that

1. Ĝ is still planar and has diameter HD.

2. For each subgraph Ci, there is a biconnected subgraph Ĉi ⊃ Ci. The subgraphs Ĉ1, . . . , ĈN are edge-disjoint.

3. Any CONGEST algorithm on Ĝ that takes τ rounds can be simulated in Õ(τ) rounds onG.

Let us begin by presenting Li and Parters’ approach to making any planar graph biconnected. The high-
level idea of the construction is that each cut-node creates a cycle of virtual edges that connect its neighbors.
In other words, it creates a path between all its neighbors that does not contain itself. While this sounds easy,
one must ensure that the resulting graph is still planar. We further require the concept of a block-cut tree. A
block-cut tree T(G) := (BG ∪ CG, EBC) represents the biconnected components in a given (planar) graph
G = (V,E) . The tree has two types of nodes: cut nodes CG and block nodesBG. In particular, the blocks
are supernodes represented by connected edge-disjoint subgraphs. Note that a cut-node may appear in several
blocks. The edges of T(G) are defined as follows: Each cut-node has an edge to each block node that contains
it. It is easy to verify that this definition can only result in a tree.

Given the definition a block-cut tree, Li and Parters’ algorithm works as follows: We begin by computing the
block-cut tree of each component Ci and rooting it in a cut-node ri ∈ Ci. Through rooting the tree, each cut-
node (except the root) obtains a unique parent-block and a number of child-blocks. We connect the parent-
and child-blocks of each cut-node in two steps: First, every cut-node connects any two consecutive neighbors
in its child-blocks. This merges all its child-blocks into one. We refer to the virtual edges added in this step
as theAi-edges. Thus, after adding theAi-edges, each cut-node has at most one parent-block and at most one
child-block. Second, each cut-node connects its parent- and child-block by a virtual edge. To prevent the virtual
edges from crossing (and therefore violating the planarity), we employ two different rules: All cut-nodes v ∈ Ci

determine the number ℓ(v) of cut-nodes on their path to ri in the block-cut tree Ti. We call ℓ(v) the level of
v. All cut-nodes with even level connect two consecutive neighbors wi and wi+1 if and only if wi is in the
parent-block and wi+1 is in the child-block. Conversely, all cut-nodes with odd level connect two consecutive
neighborswi andwi+1 if and only ifwi is in the child-block andwi+1 is in the parent-block. In other words,

147

nodes on even levels connect parents to children in clockwise order, and nodes on odd levels connect them in
counterclockwise order. We refer to the virtual edges added in this step as the Bi-edges. Figure 9.2 presents a
detailed description of all steps.

MakeBiconnected(C′i):

(S1) Compute all cut-nodes Ci and blocksBi in C′i. Construct a block-cut tree Ti of C′i rooted in
cut-node ri ∈ Ci with highest identifier.

(S2) For each cut-node v ∈ Ci and blockBij ∈ Bi, compute the number ℓ(·) of cut-nodes on the
unique tree path to ri in Ti. We call ℓ(·) the level of a node. Set the level of each non-cut-node
u ∈ Bij and edge {u,w} ∈ Bij to ℓ(Bij).

(S3) Every cut-node v ∈ Ci in level ℓ(v) connects every two consecutive neighbors wi, wi+1 in the
clockwise ordering satisfying that

ℓ({v, wi}) = ℓ({v, wi+1}) = ℓ(v) + 1

by a virtual edge. That is, the cut-node v connects consecutive children in the block-cut tree. We
denote the set of (virtual) edges this process creates asAi.

(S4) Compute a planar embedding of CAi = (V ′
i , E

′
i ∪Ai). Set the level of each {wi, wi+1} added

by v ∈ Ci to ℓ(v) + 1.

(S5) For each cut-node v ∈ C′
i on an even level (where ℓ(v) mod 2 = 0), we add the following

(virtual) edge {wi, wi+1} between consecutive nodeswi andwi+1 if it holds:

ℓ({v, wi}) = ℓ(v) + 1 ∧ ℓ({v, wi+1}) = ℓ(v)

We denote the resulting set of edges as Beven
i . The cut-nodes v ∈ C′

i on odd (where
ℓ(v) mod 2 = 0) levels add a (virtual) edge {wi, wi+1} between consecutive nodes wi and
wi+1 if it holds:

ℓ({v, wi}) = ℓ(v) ∧ ℓ({v, wi+1}) = ℓ(v) + 1

We denote the resulting set of edges asBodd
i .

(S6) Return Ĉi := (V ′
i , E

′
i ∪Ai ∪Beven

i ∪Bodd
i)

Figure 9.2: Pseudocode for theMakeBiconnected algorithm of Li and Parter [LP19] that turns any planar graph into a biconnected planar graph by adding
additional (virtual) edges to each node.

To prove Lemma 9.8, we must show that each resulting component is biconnected, the overall graph re-
mains planar, and any CONGEST algorithm can be be simulated with constant multplicative overhead. Fur-
ther, wemust show that the algorithm that computes the additional edges can be implemented in Õ(HD) time.

First, we show that the algorithm lives up to its name and ensures that augmented components are bicon-
nected. This proof follows from the algorithm more or less straightforwardly. The algorithm creates a path of
virtual edges around each cut-node that connects all its neighbors. Thereby, it merges as biconnected compo-
nents into one. Formally, it holds:

148

Lemma 9.9 (Ĉi is biconnected). Let Ĉi = (V ′
i , Ei ∪ Ai ∪ Bi) be the subgraph that results from executing

MakeBiconnected(C′i). Then, Ĉi is biconnected.

Proof. For the proof, we consider a cut-node v ∈ Ci with neighbors w1, . . . , wdeg(v). We show that for any
two neighborswj andwj′ , there is a path Pwjwj′ connecting these two nodes that does not contain v. This is
sufficient to show biconnectivity. To see this, suppose we remove v from Ĉi. Then, any path that contains the
edges {wj , v} and {v, wj′} can be rerouted via Pwjwj′ and Ĉi \ {v} stays connected.

Now consider two neighborswj andwj′ . Note that we can assume thatwj andwj′ are in different blocks
(as otherwise there already would be a path between wj and wj′ and there is nothing to prove). Given this
conditioning, we prove the existence of the path Pwjwj′ in two batches. First, we show that there is a path
between any wj and wj′ in two different child-blocks of v. Recall that all neighbors in the parent-block are
consecutive in the embedding. W.l.o.g. assume that these are the first δ ≤ deg(v) nodes w1, . . . , wδ in the
ordering. Thus, all other nodes are on a lower level. Then, in step (S3) in Algorithm 9.2, we add the edges
{wδ+1, wδ+2}, . . . , {wdeg(v)−1, wdeg(v)}. Therefore, all neighbors in child-blocks are connected in CAi by a
path of the newly added edges. Second, we consider two nodes wj and wj′ in a child- and a parent-block.
As all nodes in child-blocks belong to the same block in CAi , it sufficient to show that (at least) one node in a
child-block is connected to (at least) one node in a parent-block. Such an edge is explicitly added in step (S5) in
Algorithm 9.2. Thus, for any two neighbors, there is a path of virtual edges, and Ĉi is biconnected.

We continue to show that two subgraphs Ĉi and Ĉj are edge-disjoint. For this proof, we exploit the fact that
the subgraphs C1, . . . , CN are well-separated. The buffer nodes cannot be cut nodes and therefore do not add
edges between compoents. It holds:

Lemma9.10. Let Ĉi = (V ′
i , Ei∪Ai∪Bi)be the subgraph that results fromexecutingMakeBiconnected(C′i).

Then, any two subgraphs Ĉi and Ĉj are edge-disjoint.

Proof. Recall that only cut-nodes add new edges between their neighbors to the graph. This holds for both the
A-edges and theB-edges. Therefore, the only a cut-node with respect to Ci that has a neighboring node in Cj
(or vice versa) can add an edge between components. For this proof, we focus on the nodes of C′i that may add
an edge. The other case is analogous. By construction, the only nodes that may have neighbors in a different
component are the buffer nodes we added to Ci obtain C′i. Thus, we must show that these buffer nodes cannot
be cut-nodes (with respect to C′i). As we added them to a connected subgraph Ci, for any of their neighbors in
Ci, there must be a path connecting them in Ci. Therefore, they cannot be cut-nodes as upon their removal,
there will always be a path connecting their neighbors. This proves the lemma.

We continue with a useful observation on augmenting planar graphs. In many cases, we can simplify algo-
rithms for planar graphs by adding virtual edges. However, in doing so, we must ensure that these edges do not
violate the planarity. In sequential algorithms, this can often be done by adding edges sequentially making sure
that each new edge does cross any of the previously added edge. This, of course, is infeasible in a distributed
algorithm. Here, we need to addmany edges at once in order to keep the running time low. However, if we add
edges concurrently, we need to be careful. To this end, we prove the following claim that identifies which edges

149

are safe to add concurrently. Note that this claimwas implicitly used but not proven in [LP19]. Thus, we close
the gap left in that paper by explicitly showing it. It holds:

Claim 12. Suppose a node v ∈ V creates an edge {wi, wi+1} between two neighboring nodes wi and wi+1 in
its embedding. LetWF = (x,wi, v, wi+1, y, . . .) be a face walk that contains edges {wi, v} and {v, wi+1}.
Then, the only edges that may intersect with {wi, wi+1} are {x, v} and {v, y}.

Proof. We prove the lemma as follows: Let E′ be a set of edges we want to (simultaneously) add to graph G.
For each edge {u,w} ∈ E′, there is a node v ∈ V such that u and w are consecutive in its embedding. Let
WF = (x, u, v, w, y, . . .) be a face walk that contains edges {u, v} and {v, w}. In other words, x precedes
v in u’s and v precedes y in w’s embedding. To prove the lemma, we will show that if E′ does not contain
{x, v} are {v, y}, all edges can be safely added without violating planarity. This then proves that all edges that
potentially can cross edgesE′.

Our proof works by induction: We fix an arbitrary order e1, e2, . . . of the edge inE′ and consider one edge
at a time. Our induction hypothesis is that the graphGi := (V,E ∪ {e1, . . . , ei}) is planar and for each edge
{uj , wj} ∈ E′ \ {e1, . . . , ei}, it holds that uj andwj are still consecutive in the embedding of some node vj .
The latter argument is important as it implies that all edges can be added in parallel.

Initially, before we add any edges, the hypothesis is trivially true. For the induction step, suppose vi adds an
edge ei := {ui, wi} between ui andwi. Now consider the face walk on a face Fi that contains edges {ui, vi}
and {vi, wi}

WFi
:= (vi, wi, yi, . . . , xi, ui, vi). (9.2)

Here, xi is the hop the walk takes before ui, and yi is the hop after wi. In the embedding of ui, we place the
new edge to wi between v and x. Analogously, in the embedding of wi, place the new edge to ui between yi

and vi.
First, let us argue why this preserves the planarity: Adding the edge creates the two new faces F ′

i and F ′′
i

with valid face walks: First, the small face F ′
i with nodes vi, ui, and wi on its boundary. The corresponding

walk is

WF ′
i
:= (vi, ui, wi, vi). (9.3)

Second, a (possibly larger) face F ′′
i that has all nodes of Fi except vi on it boundary. The corresponding walk

WF ′′
i
is almost equal toWFi except it skips vi and goes from ui towi directly, i.e., we have

WF ′′
i
:= (wi, yi, . . . , xi, ui) (9.4)

It remains to show that we prevent no future edges from being added by the same rule. Note that we only
change the embedding of ui andwi. In the following, we focus on ui, the other case is analogous. In ui’s case,
its neighbors xi and vi are no longer consecutive. However, if {xi, ui} ∈ E, ui will never add an edge {xi, vi}
by assumption. If edge {xi, ui}was added in earlier step, thenE′ does not contain any edge {xi, ui} asui only
adds edges that involve its initial neighbors.

150

This claim shows that the possible intersections are, in a sense, very local. In particular, the claim directly
implies that any two edges added by non-neighboring nodes will not intersect.

Next, we show that the additional edges do not affect the planarity of the overall graph. For this proof, we
again exploit that the initial components are well-separated. Therefore, all edges that can potentially be crossed
(even those outside of the component) are considered when deciding which edge to add. It holds:

Lemma 9.11 (Ĝ is planar). Let Ĝ = (V ′, E∪{A1, B1, . . . , AN , BN}) be the graph that results from executing
MakeBiconnected on all well-separated, node-disjoint components C′1, . . . , C′N . Then, Ĝ is planar.

Proof. The main difficulty in proving the lemma is that we add many edges in parallel, which might intersect
with one another. Recall that byClaim 12, only edges added by neighboring nodesmay intersect. Thus, for the
main part of this proof, we consider two neighboring nodes u ∈ V and v ∈ V with {u, v} ∈ E. W.l.o.g. both
u and v are cut nodes. We need to argue that the edges added by u and v do not intersect. Recall that the virtual
edges in C′i are added in two batches: Ai and Bi. We will consider them one after the other and begin with
theAi-edges. For the purpose of this proof, we give an edge in C′i an orientation. A cut-vertex v on level ℓ(v)
orients its incident edges {v, w} in level ℓ({v, w}) = ℓ(v) + 1 away from it. Recall that these are the edges
in a block that is only reachable from the root via v, i.e., they are in a child-block of v. An edge gets a unique
orientation as any other cut-nodew that could orient the edgemust be on level ℓ(v)+1. Note that some edges
will not be directed, namely edges between two non-cut-nodes but this does not affect the proof. Reviewing
the algorithm under consideration of this orientation, theAi-edges are added according to the following rule:
A cut-node v connects any two outgoing neighborswi andwi+1 via an edge {wi, wi+1}. ByClaim 12, the only
edges that potentially crosses {wi, wi+1} are either {x, v} and {v, y}where x and y are predecessor ofwi and
the successor ofwi+1 in a face walkWF respectively. Thus, it must either hold u = wi or u = wi+1 for one or
more faces. Assume w.l.o.g. that u = wi. The other case is analogous. Thus, if a node u adds an edge {x, v},
both x and vmust be in a child-block of u per definition. However, if v cannot be in a child block of u because
we assumed u is in child-block of v. Therefore, u will not add edge {x, v}. As the same argument holds for
every face, we conclude that theA-edges do not intersect.

Next, we consider theBi-edges. Again, assume that v adds an edge {wi, wi+1} between consecutive nodes
and let u = wi. Then, again only an edge {x, v} where x is the predecessor of u on some face walkWF may
violate planarity. Recall that xmust be the predecessor of v in u’s embedding. Here, we distinguish between
two cases based on the levels of u and v:

1. If ℓ(v) = ℓ(u), the edge {u, v}must be part of a block with a cut-node on level ℓ(v)− 1. Otherwise, if
the edge would be between two blocks, it would either close a cycle or wi+1 would be only reachable via
v from the root (or vice versa). In the latter case, ℓ(v) and ℓ(wi+1)must differ by one. Thus, the level of
{u, v}would be ℓ(u) (and not ℓ(u) + 1).

Now suppose that the level is even, the other case is analogous. In this case, vwould add an edge between
parent- and child-block in clockwise order, and w would add an edge between parent- and child-block
in counterclockwise order. As both nodes are on the same level, they must use the same ordering. We
distinguish between two subcases:

151

(a) If x is in child-block of u, the edge {x, v} would not be added because we would connect a child
to a parent in clockwise order. This is only done by nodes on odd levels.

(b) If x is a parent-block of u, then umust be the closest node to the root in the block that contains u
and v. However, in this case u and v cannot have the same level.

2. If ℓ(u) ̸= ℓ(v), itmust hold that difference of the levels is exactly1. Assumew.l.o.g that ℓ(u) = ℓ(v)−1,
i.e., u is be the closest node to the root in the block that contains u and v. Then, the edge {u, v} has level
ℓ(v), i.e., it is in the child-block of u and the parent-block of v. Now suppose that ℓ(u) is odd, which
means that ℓ(v) is even.

(a) If x is in child-block of u, the edge {x, v} would not be added because we would connect a node
from a child-block to another node from a child-block. This is against the rules.

(b) If x is in the parent-block of u, then u does not add the edge {x, v} because odd nodes do not
connect parent-block to child-blocks in clockwise order. Only if the x is also successor of v in the
embedding of u (which only happens if u’s degree is 2), the edgemay added. However, in this case,
the edge {x, v} is added on another face walkWF ′ . Recall that we assumed that v added the edge
{wi, wi+1} where u = wi. OnWF ′ , the edge {u,wi+1} is not added by v. Either wi+1 is not
part of that face, or if it is, it also appears in a different order. Thus, in either case, it would not be
added.

Thus, all in all, Ĝmust be planar.

We conclude the analysis by showing that any CONGEST algorithm can be simulated on Ĝ. This enables
us to execute our algorithms directly on Ĝ without needing to worry about how exactly the virtual edges are
added. It holds:

Lemma 9.12 (Ĝ can be simulated). Any τ -roundCONGEST algorithm on Ĝ can be simulated inO(τ) rounds
onG.

Proof. Let GA be the graph that results from adding the A-edges, and let Ĝ be the graph that results from
adding the B-edges to GA. We prove the lemma in two steps. First, we show that any τ -round CONGEST
algorithm onGA can be simulated in 2τ rounds onG. This follows from the fact that each edge {wi, wi+1}
inA corresponds to a pathwi − v − wi+1 for some cut-node v inG. All messages intended to be sent along
that edge fromwi towi+1 will be sent first to the responsible neighbor v and then to the target. However, we
must also ensure that not too many messages are sent along an edge. Recall that in CONGEST, we can only
sendO(logn) bits per edge. Therefore, if an edge {wi, v} is responsible for toomany virtual edges To this end,
note that each neighbor can only be responsible for two virtual edges; One edge for each face the edge {wi, v}
is part of. Two messages of size O(logn) still have size O(logn) if we combine them. Thus, we can simulate
both edges in two rounds.

For the second step, recall that theB-edges are added according to the same rule, namely that only consec-
utive neighbors are connected. Thus, by the same argument, each edge of GA is responsible for at most two
virtual edges. Thus, each τ -round algorithm on Ĝ can be implemented in 4τ rounds on GA. Note that this

152

doubles the message size again, but we are still withinO(logn) Thus, altogether, the simulation of a τ -round
algorithm takes 2 · 2 · τ = 4τ rounds.

This proves the lemma.

First, we show that the algorithm can be executed in Õ(HD) time, w.h.p. We exploit the fact that the
algorithm’s central computations, i.e., building a block-cut tree and assigning levels to the cut-nodes, can be
broken down into aggregation on biconnected components. We show:

Lemma 9.13. MakeBiconnected can be executed on all C′i, . . . , C′N in Õ(HD) time, w.h.p.

Proof. We prove the runtime for each step of the algorithm individually.

Step (S1) The cut-nodes and block nodes of all well-separated components can be determined in Õ(HD)

time, w.h.p, using the algorithm from Lemma 9.8.

Step (S2) If we know the cut-nodes and blocks, the computation of the block-cut tree in each component C′i
only consists of minor aggregations and works as follows:

1. First, we aggregate the identifiers of all cut-nodes to determine the cut-node ri ∈ Ci with the minimal
identifier in each C′i. This requires one aggregation.

2. Recall that that we have a spanning tree Ti of each C′i1. We root this tree in ri using the tree operations
of Lemma 7.10. To be precise, we need to compute the AncestorSum for v0 each node where each
cut-node inputs 1. This lets each node learn its hop distance to ri in Ti. The unique neighbor with
higher hop distance is a node’s parent with respect to ri.

3. Each cut-node v ∈ Ci (except the root) has a directed edge to some parent node pv . This edge must
belong so some block Bij ∈ Bi. Recall that even an edge between two cut-nodes belongs to a trivial
block. On each tree-edge e ∈ Ti that leads to a node in a blockBij′ ̸= Bij , we create a virtual node ve.
Further, we replace edge e = {v, w}with the path v − ve − w. Both new edges on this path are added
to the tree Ti, so Ti continues to be a spanning tree. The root creates the virtual nodes and edges for all
its incident edges. These virtual nodes and edges are only temporary and we remove them again, once we
are done computing the levels.

4. For each node v ∈ Vi, we then compute the number ℓ(v) of virtual nodes on its path to ri in T ′
i . We

use the resulting number ℓ(v) as the level of v. This can be done via the Tree Aggregation from Lemma
7.10 byGhaffari and Zuzic. To be precise, we need to compute the AncestorSum for each node where
each virtual node inputs 1 and all other nodes input 0.

Note that the addition of virtual nodes preserves the graph’s planarity, so each step can be executed in Õ(HD)

time, w.h.p. However, it remains to show that the value ℓ(v) we computed is in fact the correct level. For a
blockBij , let vij ∈ Ci be the cut-node that is closest to root ri (or is ri itself). In the following, refer to each

1If not, we could also compute one in Õ(HD) time, w.h.p.

153

edge that vij replaced by a virtual node and a path as marked. Note that vij is the only node that marks any
edge inBij as it is the only node with a parent outside ofBij or it is the unique root ri. Further, by definition,
the level of each cut-node inBij is ℓ(vij) + 1 A simple induction over the levels shows that the level is equal
to the number of marked edges to the root. For the induction beginning, consider all nodes that must assign
themsleves level ℓ(v) = 0. Clearly, the only node with level ℓ(v) = 0 is the root ri. This node trivially assigns
itself level 0 in the algorithm. As all its incident edges are marked, no other node can assign itself level 0. For
the induction step, assume that all nodes on some level l ≥ 0 assign themselves the correct level. Recall that
all cut-nodes in block a Bij except vij get the same level. So w.l.o.g. we consider a block Bij and assume vij
has the correct level ℓ(vij) = l. It remains to show that each node in Bij has exactly one marked edge on its
tree-path to vij . This can be easily shown via contradiction: Recall that each nodemust be connected to vij in
Ti. If there were nomarked edge, the path to vij would use an edge in the parent-block. This is a contraction as
the only path to the parent block is via vij . Further, any path that contains one marked edge must have already
reached vij , so there cannot be another. Thus, there must be exactly one edge as claimed. Therefore, all node
inBij assign themselves level ℓ(vij) + 1. This proves that our implementation computes the correct value in
Õ(HD) time, w.h.p.

Step (S3) Equippedwith the notion of levels, each node can locally check if it needs to add anAi-edge. Recall
that a cut-node v any adds an edge between two consecutive nodeswi, wi+1 , if ℓ({v, wi}) = ℓ({v, wi+1}) =
ℓ(v) + 1. As v knows its own level and the level of all it edges, it can determine all itsA-edges. Informing the
neighboringnodes about the virtual edge canobviouslybedone inone roundasbothwi andwi+1 areneighbors
of v.

Step (S4) LetGA be the graph that results from adding allA-edges. The embedding of each CAi can derrived
from GA’s embedding. Thus, we will show that GA has a planar embedding and that it can be computed in
Õ(HD) time. First, note thatGA it is a subgraphof Ĝ. ByLemma9.11, Ĝ is planar, and since planarity is closed
under minor-taking,GA is planar, too. Further, any τ -round CONGEST algorithm on Ĝ (and therefore also
GA) can be computed inO(τ) rounds. Therefore, the embedding ofGA can be computed in time Õ(HD) as
claimed.

Step (S5) Knowing the planar embedding ofGA and all levels from the previous step is sufficient to compute
the setB. Again, it is obvious that the neighboring nodes can be informed about the virtual edge in timeO(1).

Finally, Lemma 9.8 follows from Lemmas 9.9, 9.10, 9.11, 9.12, and 9.13. This concludes the analysis and
this section.

9.2.4 Subroutine 3: Computing (Weighted) Path Separators

In this section, we prove a helpful intermediary result that might be of independent interest (although it was
already remarked by Li and Parter in [LP19]). We consider Ghaffari and Parters’ algorithm from [GP17] that

154

constructs separators for biconnected components and show that it can be extended to node-weighted planar
graphs. More precisely, we prove the following:

Lemma 9.14. LetG = (V,E, ω) a node-weighted planar graph and let C1, . . . , CN be a set of node-disjoint,
biconnected subgraphs ofG. Denote the weight of each component as

wi =
∑
v∈Vi

ωv. (9.5)

Further, let T1, . . . , TN be series of spanning trees for C1, . . . , CN . Then, for any ϵ ∈ (0, 1/2), there is an algo-
rithm that computes a separator Si for each (Ci, Ti) such that each connected component in Ci \ Si has weight at
most

(1 + ϵ) · (2/3) · wi. (9.6)

In particular, each separator consists of two paths in Ti and the two endpoints of an edge possibly not contained in
Ci. All separators can be computed in Õ(ϵ−2 ·HD) time, w.h.p.

Ghaffari and Parter already proved the corresponding lemma for unweighted graphs, i.e., graphs where all
nodes have weightωv = 1. The algorithm can easily be extended to work with weighted nodes. For the sake of
completeness, we give a short overview of the required techniques. First, we note that the treeTi for component
Ci defines a dual-treeDi which has a dual node vF for every face F of Ci and an edge between two dual nodes
if and only if their corresponding faces share a common non-Ti-edge. Such a tree must always exist. In the
following, we refer to the nodes ofTi as dual-nodes and to the nodes ofCi simply as nodes. If we root the dual-
tree Di in an arbitrary dual-node vFi , this defines a subtree Di(vF) for each dual-node vF . We call the face
obtained by merging all faces in the subtree of vF its superface Si(F). Note that the superfaces we consider are
always defined with respect to the dual-treeDi which in turn is defined by spanning tree Ti. Further, denote
the set of nodes in each superface Si(F) as V [Si(F)]. For any dual node vF in dual-tree Di, we define the
weight of its superface (with respect to Ti) as:

wSi(F) =
∑

v∈V [Si(F)]

ωv

Consider an edge {vF , vF ′} in the dual-graph, then there must be an edge {v, w} shared by faces F and
F ′ that is not in Ti. Note that this is the only edge on the superface Si(F) of vF that is not part of Ti. Now
consider the tree path Pv from the root to v and the tree path Pw from the root tow. Every path from a node
within the superface to a node outside of the superfacemust cross this path. Thus, if we remove these two paths,
all nodes within the face are separated from the remaining nodes. If we can find a superface Si(F) of weight
wSi(F)[wi/(3(1 + ϵ)), 2(1 + ϵ)wi/3], we can compute our desired separator using the two unique tree paths
(and the additional non-tree edge) on its boundary.

Having defined all these concepts and intuitions, the algorithm works as follows: We assume that we have
precomputed some arbitrary spanning tree Ti and all nodes know an approximation parameter ϵ ∈ (0, 1/2).
First, we root the dual-tree Di in some arbitrary dual-node vF . Then, we compute the approximate weight

155

ŵSi(F) of each superface Si(F) with respect to Di. If there is a superface Si(F) with approximate weight
ŵSi(F) ∈ [ωi/(3(1 + ϵ)), 2(1 + ϵ)ωi/3], we choose the two Ti-paths that enclose the superface as separator.
Otherwise, there must be a dual-node vF∗ whose superface Si(F ∗) has a weight more than 2(1 + ϵ)wi/3 and
the superfaces of the children in Di have weight smaller than wi/(3(1 + ϵ)). In this case, we split the face
F ∗ in two faces F+ and F− by adding a virtual edge on the face walk of F ∗. Let w1, . . . , wδ be the nodes
on the face walk of F ∗. W.l.o.g. let {w1, wδ} be the edge that define the edge from vF∗ to its parent inDi.
Further, denotewF1

, . . . , wFδ
denote the children of vF∗ in clockwise order. Note that the edge towFj

inDi

is defined by edge {wj , wj+1} in Ci. Via binary search, we determine the child wFj∗ with
∑j∗

j=1 ŵS(Fj∗) ∈
[wi/(3(1+ϵ)), 2(1+ϵ)wi/3]. Then,we add a virtual edge that is not part ofGbetweenw1 andwj∗+1. This
splits faceF ∗ into facesF+ andF−, s.t., the corresponding dual-node vF− is the newparent ofwF1

, . . . , wFj∗

while the other subface vF+ is the parent of vF− and the remaining children. In particular, the superface
Si(F−) has a weight within [ωi/(3(1+ ϵ)), 2(1+ ϵ)ωi/3]. Now, we return the two Ti-paths that enclose the
corresponding superface of F− as the separator.

Formore details on the implementation, particularly the binary search to findwFj∗ in the last step, how the
face is split, and how exactly the tree-path is chosen, we refer the interested reader to [GP17]. For our extension
toweighted nodes, we consider all these steps correct and assume that they can be implemented in Õ(HD) time,
w.h.p. Figure 9.3 additionally summarizes the algorithm.

9.2.5 Analysis of ComputePathSep

We now begin with the analysis of the ComputePathSep. Note that our algorithm follows the algorithm of
Ghaffari and Parter essentially verbatim. The only difference is that we compute the weights of the superfaces
differently. We will slightly break our promise of being self-contained as we consider the following lemma to be
true without presenting explicit proof.

Lemma 9.15 (Proven in [GP17]). Suppose we have successfully identified a balanced or critical dual-node vF∗ .
Then, we can compute a separatorSi that consists of two tree-paths inTi and one edge {v, w} that is not necessarily
in Ci in Õ(HD) time, w.h.p. Each component in Ci \ Si is of size at most

(1 + ϵ) · (2/3) · wi. (9.7)

There is no direct lemma in [GP17] that makes this exact statement. However, it directly follows from
the analysis and can verified with arguments provided in Sections B.2 and B.3.2 in the full version of [GP17].
The core idea for a balanced supernode is simply picking the the two tree paths on it boundary. For a critical
supernode, one can find two nodes on the boundary, s.t. connecting them by an edge would create a balanced
superface. In either case, the required operations are a series of minor aggregations.

Given this observation, the only step we need to touch for our extension to weighted nodes is Step (S3), where
the algorithmdecideswhether there is a balancedor a critical dual-node. First, weneed to show that the concepts
of balanced and critical dual-node are well-definedwith respect to anyweight function. As it turns out, it is easy
to verify that there must always be a balanced or critical supernode for any weight function ω. We do so in the
following lemma:

156

ComputePathSep(C′i, Ti, ϵ):

(S1) Compute the dual-treeDi of Ci with respect to spanning tree Ti.

(S2) Root the dual-tree Di in an arbitrary face-node vFi . This defines a subtree Di(vF) rooted in
dual node vF .

(S3) For each vF , approximately compute the weight ŵF ∈ [(1 − ϵ)wF , (1 + ϵ)wF] of nodes in
Di(vF).

(S4) Determine, if there is a dual node vF∗ with weight

ŵF ∈ [wi/(3(1 + ϵ)), 2(1 + ϵ)wi/3]

If so, call it a balanced dual node. Otherwise, determine a dual node vF∗ whose superface has
at least weight 2(1 + ϵ)n/3 but the superfaces of the children of vF∗ have weight less than
n/(3(1 + ϵ)) each. We call this a critical supernode.

(S5) We distinguish between two cases:

(a) If there is a balanced supernode vF∗ , theTi-path on the boundary of the superfaceSi(F ∗)
is the separator.

(b) If there is a critical supernode vF∗ , add a virtual edge to create a face F− with
ŵF− ∈ ŵF ∈ [wi/(3(1 + ϵ)), 2(1 + ϵ)wi/3]. The Ti-path connecting the endpoints
of this virtual edge is the separator.

Figure 9.3: Pseudocode for the ComputePathSep algorithm of Ghaffari and Parter [GP17] that computes a path separator for biconnected induced
subgraph Ci given a spanning tree Ti .

Lemma 9.16. Let Di be the dual-tree for biconnected component Ci and a spanning tree Ti. For each weight
function ω on the nodes Vi, there is a (not necessarily unique) balanced or critical dual-node vF∗ inDi.

Proof. For the proof, we will refer to the weight of a dual-node’s superface with respect to Di simply as its
weight. As the algorithm computes a (1 ± ϵ)-approximation of the weight, it suffices to show that there is a
superface with either weightwF∗ ∈ [wi/3, 2wi/3] or its weight is larger than 2wi/3 and all its children weigh
less thanwi/3. Now consider the following algorithm: Start at the root of dual-treeDi andmove the childwith
the largest weight until you reach a dual-node vF∗ ∈ V [Di]where all children have weight less thanwi/3 and
return this dual-node. If two children have the sameweight, break ties arbitrarily but consistently. Note that the
algorithm always returns a node as, eventually, we reach a leaf dual-nodewhere the condition is trivially fulfilled
because it has no children. Thus, vF∗ is a well-defined dual-node. By construction, the vF∗ ’s weight must be
greater than ωi/3. Otherwise, we would not have moved to vF∗ from its parent. Further, all its children have
a weight less than wi/3. Otherwise, we would not have stopped to vF∗ and returned it. Therefore, vF∗ must
be critical or balanced. This proves the lemma.

157

Thus, it remains to approximately count the size of all superfaces. Recall that all nodes that are part of
face/dual node vF form a connected component in the face graphF(Ci). Further, two neighboring dual nodes
vF and vF ′ share an edge {v, w} ∈ Ei, and we can merge all neighboring faces without violating planarity by
adding extra edges in the face graph. Thus, we can perform one round of the minor aggregation model from
Theorem 7.1.1 in Õ(HD) time, w.h.p. In particular, we can perform the tree operations from Lemma 7.10
time, w.h.p. This allows us to compute an aggregate function on all faces of superface Si(F) in Õ(HD) time,
as the corresponding dual-nodes are descendants in the dual-treeDi. However, recall that each node v ∈ V is
part of up to deg(v) faces, so we must be careful not to overcount. To this end, Ghaffari and Parter present a
randomized sketching technique, which ensures that a node is (approximately) counted only once. For details
on this technique, we refer to [GP17]. We present a slightly different technique to compute theweights that can
be easier combinedwith our established techniques. In particular, we use the generic approximation result from
[MS06]. On a high level, it states that if we can aggregate the minimum of a set of exponentially distributed
random variables, we can efficiently approximate any sum of integers. More precisely, it holds:

Lemma 9.17 (Approximation through Aggregation, cf. [MS06]). Let W = {v1, . . . , v|W |} be a subset of
nodes where each node vi ∈ W has a positive weight ωi ∈ N. Define wW =

∑|W |
i=1 ωi as the sum of all

weights. For each vi ∈W , define r independent, identically distributed random variablesX1
i , . . . , X

r
i that are

exponentially distributed with parameter ωi. Formally, for all j ∈ [1, r], it holdsXj
i ∼ Exp(ωi). Consider the

value:

ŵ
(r)
W =

r∑r
j=1 X

j
W

s.t. Xj
W := min

{
Xj

1 , . . . , X
j
|W |

}
∀j ∈ [1, r]

Then, it holds for r ≥ 1 and ϵ ∈ (0, 1/2) that

Pr
[∣∣∣wW − ŵ

(r)
W

∣∣∣ ≥ 2ϵwW

]
≤ 2e−

ϵ2·r
3

To put it more simply, the lemma implies that r ∈ O(ϵ−2 logn) minor aggregations are sufficient to ap-
proximate the weight of any subset of nodes. Note that we can only aggregate an approximate minimum of the
exponential random variables’ outcomes. Since our minor aggregations are limited toO(logn) bits and the ex-
ponential distribution is continuous, wemust cut off the variables at a certain point and only send theO(logn)
most significant bits. However, the difference between the actual value and the value we send is within a mag-
nitude of o(n−c) for an arbitrary constant c. Thus, if we consider a large enough ϵ ∈ ω(n−c), this additional
imprecision does not affect the result meaningfully. Equipped with this insight, we can prove the following:

Lemma 9.18. LetD1, . . . , DN be a collection of dual-trees of node-disjoint components C1, . . . , CN of a node-
weighted planar graph G = (V,E, ω). Then for each superface S(F) in any of the trees, we can compute its
approximate weight ŵS(F) ∈ [(1− ϵ)ŵS(F), (1 + ϵ)ŵS(F)] in Õ(HD) time, w.h.p.

Proof. We want use Lemma 9.17 to compute the approximate values. To this end, the computation proceeds
in r ∈ O(ϵ−2 logn) iterations. For a component Ci, a single iteration j ∈ [0, r]works as follows:

158

(S1) First, each node v ∈ Vi with positive weight ωv draws an exponentially distributed random variableXj
v

with parameter ωv . We denote the realization of that random variable as xj
v , and we define x̂j

v to be the
value of xj

v truncated to the first c lognmost significant bits. It clearly holds:

|xj
v − x̂j

v| ≤
1

nc

(S2) Then, we construct the face graph F(Ci). Each node v ∈ Vi passes its value x̂j
v to all its (virtual) face

nodes inFi. Then, in each face F , we aggregate the minimal value of all x̂j
v that belong to that face. For

each face F let x̂j
F be the corresponding aggregated value.

(S3) Then, in each dual-tree Di, we compute SubsetSum where each dual-node vF chooses x̂j
F as input

value and we aggregate the minimum of inputs. Therefore, each vF learns the minimum of all x̂j
F ′ of all

faces F ′ ∈ Si(F) in its superface Si(F). We denote the resulting value as x̂j
Si(F).

After all r iterations are finished, eachdual-nodevF has learned r values x̂1
Si(F), . . . , x̂

r
Si(F). Using these values,

each dual-node vF computes the following value:

ŵSi(F) =
r∑r

j=1 x̂
r
Si(F)

Wewill show that ŵF is an (1±ϵ)-approximation of ŵF . As computation ŵF resembles the formula given
in Lemma 9.17, it suffices to show that for each j ∈ [0, r], it holds:

ŵj
Si(F) := min

{
x̂j
v | v ∈ V [Si(F)]

}
However, this follows directly from the computation given above. Note that by definition, it holds:

ŵj
Si(F) := min

{
x̂j
F ′ | F ′ ∈ Si(F)

}
Further, for each face F ′ ∈ Si(F) and each iteration j ∈ [0, r], it holds by construction:

x̂j
F ′ := min{x̂j

v | v ∈WF ′}

Thus, by combining these two facts, we get the desired result.
Given the correctness of the approximation, it remains to prove that we can implement this in Õ(ϵ−2 ·

HD) time, w.h.p. Each iteration consists of one minor aggregation in each face graphF(C⟩) and Õ(1)minor
aggregation in eachdual-treeDi. In Step (S2), weneed to aggregate theminmumof all nodes of the same faceF .
All faces are node-disjoint connected components inF(Ci), so this can be donewith a singleminor aggregation.
Therefore, it can done on all faces in Õ(ϵ−2 ·HD) time, w.h.p. In Step (S3), we only perform SubsetSum on
each treeD1, . . . , DN . SubsetSum requires Õ(1)minor aggregations and therefore can be done in Õ(HD)

time, w.h.p., on all trees. Given that there areO(ϵ−2 logn) iterations, all values can be determined in Õ(ϵ−2 ·
HD) time, w.h.p.

159

Given these approximate weights, any balanced dual-node can immediately identify itself. We then aggre-
gate the maximal identifier of all balanced dual-nodes in Ci and continue the algorithmwith the resulting dual-
node. Aggregating all the maximal identifiers in all components can be done Õ(HD) time, w.h.p.

Otherwise, if there is no balanced dual-node, we need to do a bit more work to find a critical supernode.
In the following, we denote all dual-nodes vF with wSi(F) ≤ wi/(3(1 + ϵ)) as light and all dual-nodes with
wSi(F) ≥ 2(1 + ϵ)wi/3] as heavy. Note that there cannot be dual-nodes in between these weight bounds as
theywould be balanced. We then let each dual-node aggregate the number of its light children. This canbe done
is Õ(HD) time, w.h.p. Any heavy dual-node vF where all its children are light, marks itself as a critical dual-
node. Again, we aggregate the maximal identifier if there is more than one. Thus, together with computation
of the weights, we can identify a balanced or critical dual-node in Õ(ϵ−2 · HD) time, w.h.p. Together with
Lemma 9.15, this implies Lemma 9.14 and concludes this section.

9.2.6 Main AlgorithmDescription & Analysis (Proof of Lemma 9.1)

In this section, we combine all subroutines from the previous three sections and finally present and analyze the
full algorithmbehind Lemma 9.1. Recall that this algorithmmust create path separators in arbitrary connected
node-disjoint subgraphs C1, . . . , CN of an arbitrary connected planar graph G. Following the sketch in the
beginning, the algorithm proceeds in four synchronized steps:

(Step 1) Creates Buffers between Components: Separate all components by adding (virtual)
nodes on their outgoing edges.

1. For each outgoing edge {v, w} ∈ E to a node w ̸∈ Ci, we add the virtual nodes wi ∈ V ′
i . Note

that the component Cj that containswmay also add a virtual node vj .

2. Replace the edge {v, w} by a path from v to w via the virtual nodes. In the resulting graph, all
components are well-separated.

3. Mark the edges between the real nodes and the virtual nodes to the respective spanning tree Ti,
thereby obtaining a tree T ′

i .
Denote the graph that results from adding the virtual nodes asG′. We will work onG′ instead ofG

for the rest of the algorithm.

(Step 2) Make Components Biconnected: ExecuteMakeBiconnected (cf. Figure 9.2) on all
components C1, . . . , CN . Denote the resulting biconnected components as C′1, . . . , C′N . Note that all
C′1, . . . , C′N are node-disjoint biconnected supersets of C1, . . . , CN .

Recall that MakeBiconnected adds virtual edges toG′ and denote the graph results from adding
these virtual edges asG′′. We will work onG′′ instead ofG′ for the rest of the algorithm.

160

(Step 3) Compute Separators: Assign each virtual node v ∈ V ′ \ V weight ωv = 0 and each real
nodes w ∈ V weight ωw = 1. Them, execute ComputePathSep (cf. Figure 9.3) on all components
C′1, . . . , C′N with their respective trees T ′

1, . . . , T
′
N and approximation parameter ϵ = 1/8. This produces

a collection of path separators S ′1, . . . ,S ′N for C′1, . . . , C′N .

(Step 4) Prune Virtual Nodes: If any separator S ′i for component C′i contains any virtual node
v ∈ V ′, remove it. Return the resulting separator Si := S ′i ∩ Vi as separators for Ci.

Analysis

The correctness and runtime of the resulting algorithm follow straightforwardly from the subroutines we have
proven in the preceding sections. For the sake of completeness, we quickly go through all four steps. The first
step trivially ensures that the components C1, . . . , CN are well-separated. Given a well-separated components,
MakeBiconnected returns biconnected supersets C′1, . . . , C′N as per Lemma 9.8. Thus, the sets C′1, . . . , C′N
(along with their spanning trees) are valid inputs for ComputePathSep. Note that, for our weight fuctionω,
the total weight of ωi of components C′i is equal to |Vi|, the number of nodes in Ci. For a parameter ϵ := 1/8,
the algorithm ComputePathSep(C′i, T ′

i , ϵ) creates separators such that the biggest connected component in
each C′i \ S ′i is of size at most

(1 + ϵ) · (2/3) · |Vi| ≤ (1 + 1/8) · (2/3) · |Vi| ≤ (12/24 + 2/24) · |Vi| ≤ (16/24) · |Vi| ≤ (3/4) · |Vi|. (9.8)

This follows from Lemma 9.14. Finally, we must argue that removing the potential virtual nodes from a sepa-
rator S ′i must turn it into a separator for Ci that consists of tree paths in Ti. Formally, we show that it holds:

Lemma 9.19. Let S ′i be a computed separator for C′′i and let Si be the separator that results from removing all
virtual nodes from S ′i . Then, Si is a separator for Ci and consists of two paths from Ti and an edge {v, w} that
may not be part ofG.

Proof. We prove the two statements separately. For the first statement, we need to show that each connected
component in Ci \ (S ′i ∩ V ′

i) has a weight of at most (1+ ϵ)2ωi/3. We prove this by gradually stripping away
the additional (virtual) nodes and edges we added in our auxiliary procedures. To this end, we consider the two
auxilliary graphs C′i and Ci defined as follows:

C′i = C′′i \ (S ′i ∪ V ′
i)

Ci = C
′
i \ (Ai ∪Bi)

In other words, C′i is the graph that results from removing the separator S ′i and all virtual nodes from V ′
i from

C′′i . Further,Ci is obtained fromC
′
i by removing the remaining virtual edges addedbyMakeBiconnected(Ci).

Note that Ci induced subgraph of all nodes v ∈ Vi in G that are not part of S ′i . Thus, it is equivalent to
Ci \ (S ′i ∩ V ′

i). Given this insight, recall that each connected component in C′′i \ (S ′i) a weight of at most
(1 + ϵ)2ωi/3 by Lemma 9.14. Thus, it suffices to show that the heaviest connected components of C′′i \ S ′i is

161

heavier than the heaviest component of Ci. To get from C′′i \ S ′i to Ci, we only remove more nodes and edges.
Thus, the resulting components can only be smaller and lighter. This is proves that Si = S ′i ∩ Vi is a separator
for Ci.

For the second property, we consider the spanning T ′
i obtained from Ti by adding the edges to the virtual

nodes. Recall that the separator S ′i only contains paths from T ′
i and a (possibly) non-existent edge between

the endpoints of these paths. We added the virtual edges after we have computed T ′
i . By this construction,

Si will not contain a tree path where two nodes are connected via (virtual) edge fromAi orBi. However, the
additional edgemight be between two virtual nodes using a virtual edge and the pathsmay contain one ormore
virtual nodes. First, consider the tree paths. By closely observing the construction, we see that the virtual nodes
must be leaves in the tree T ′

i . Now suppose that the separator contains a path P in Ti that contains a virtual
node v ∈ Vi. As v is a leaf, it must be the last node on the path. Thus, if we remove it, we obtain a proper
path in Ti that only consists of real nodes from Vi. Second, consider the additional edge {v, w}. If this edge is
between two real nodes v, w ∈ V , we can keep it as is. Otherwise, if either endpoint is virtual, we must find
another suitable edge. W.l.o.g. assume both v andw are virtual and let v′ andw′ the respective real nodes that
simulate them. If we contract both {v′, v} and {w′, w}, this creates an edge {v′, w′} (if it not existed already).
We can take that edge (which does not necessarily exist in Ci) instead. This proves the lemma.

Next, we will show that the algorithm can be efficiently implemented in Õ(HD) time, w.h.p. It holds:

Lemma 9.20. The algorithm can be implemented in Õ(HD) time, w.h.p.

Proof. As an auxiliary result, we first show that adding virtual nodes does not violate planarity and the hop
diameter of G′ is at most 3 · HD. To this end, note that we can place an arbitrary number of nodes on an
edge without violating the planarity of the resulting graph. It is easy to see that this maintains planarity when
considering a drawing ofG: If we draw the additional nodes on each line that represents an edge, we obtain a
drawing ofG′ where no lines cross. Thus,G′ is planar. Further, the hop diameter ofG′ is at most 3 · HD as
we add at most two virtual nodes on each edge.

Further, we can simulate τ -roundCONGEST algorithms onG′ in τ rounds onG. To do this, all real nodes
will simulate their adjacent virtual nodes. Consider an edge {v, w} between components and the virtual nodes
w′ and v′ added by v and w, respectively. Further, we add the virtual edges {v, w′}, {v′, w′}, and {v′, w}.
Each round of communication in graphG′ can be simulated as one round of communication onG. Each node
v that simulatesw′ simply sends the corresponding messages tow, which simulates v′. This only increases the
amount of messages sent from v tow by a constant factor.

With these preliminaries out of the way, we now prove the algorithm’s runtime step by step. In the first
step, all real nodes exchange the identifiers of their simulated virtual with their neighbors. This is required for
the simulation and takes one round. In the second step, we simulate MakeBiconnected on G′. Adding
virtual nodes causes all components C1, . . . , CN to be well-separated. Given that the graphG′ is planar and has
diameter 3 ·HD, the runtime of MakeBiconnected is Õ(HD), w.h.p. The resulting graphG′′ is still planar,
and we can simulate any CONGEST algorithm with constant overhead. All of this follows from Lemma 9.8.
Thus, by Lemma 9.14, we can execute ComputePathSep in Õ(HD) time, w.h.p., as well. Finally, removing
the virtual nodes is a local operation. This proves the lemma.

162

A B

C

D E

F1

F2

F3

F4

6

1 2

1

2

5

5

Figure 9.4: The dual graph of a planar graphG. Each green node F1, F2, F3, F4 represents a face. The dotted lines are edges between faces. Any
algorithm on the face graph can simulated inG with constant factor blowup.

Thus, by Lemma 9.20 our algorithm can be implemented in Õ(HD) time, w.h.p., and by Lemma 9.19 it
produces the desired separators for each subgraph. This concludes the analysis of Lemma 9.1 and this section.

9.3 Fast Separators in the PRAM and theHYBRIDModel

In this section, we will prove (the HYBRID part of) Lemma 9.1. Due to the additional communication capa-
bilities of the HYBRID model, this will be a much easier task than for CONGEST. For an easier explaination
of the main ideas, we will first consider the problem of computing a cycle separator for a planar graphG given a
spanning tree T in the PRAM. Then, we will argue how to translate the algorithm to the HYBRIDmodel and
how to execute it in node-disjoint subgraphs in parallel.

As our main tool, we employ the algorithm of Kao, Teng, and Toyama presented in [KTT93]. This algo-
rithm finds a separator in an undirected planar graph in depthO(logn) for the PRAMmodel. To be precise,
Kao, Teng, and Toyama show the following:

Lemma 9.21 (Implied byTheorem 3.1 in [KTT93]). LetG = (V,E) be a planar graphwithn nodes. Further,
let π be an embedding ofG and T be a spanning tree forG. Then, there is an algorithm that finds a path P in
T , such that each connected component inG \P has at most (2/3) ·n nodes. PathP can be computed inO(logn)
depth with andO(n) work on n

logn processors in the PRAM.

Note that the precise statement of the theorem in [KTT93] is different from that presented here. However,
our revised statement reflects more precisely what their algorithm is doing internally. Now, given a path P

163

with the properties mentioned above, it is easy to derive a cycle separator we require for Lemma 9.1. Supposing
that path P goes from nodes v to w, return the unique paths in T from s to v and w. This is the desired
cycle separator for G as it is a superset of P . We can compute a (combinatorial) planar embedding π of G in
PRAMusing the algorithm of [RR89]. This assigns a clockwise order to all edges inG. The algorithm requires
O(logn) depth and linear work. Putting these results together provides us with an algorithm that, given a tree
T , computes a cycle separator in logarithmic depth and linear work in the PRAM.

Next, we show how this algorithm can be brought to the HYBRIDmodel. As a planar graph has constant
arboricity (because it excludes K5 as a minor), simulating this PRAM algorithm by using the framework of
[FHS20] immediately yields a HYBRID algorithm with runtime O(log2 n) w.h.p. For details on the simula-
tion, see the proof of Lemma 7.4 inChapter 7. More precisely, we can simultaneously simulate the algorithm in
each connected component C1, . . . , CN and construct a separator for all them inO(log2 n) time, w.h.p. This
proves the HYBRID part of Theorem 7.

164

Harder, better, faster, stronger.

DaftPunk

10
Strong Low-Diameter Decompositions Via

Approximate Distances

In this chapter, we consider the efficient construction of so-called (probabilistic) low-diameter decomposi-
tions (LDD) for general and restricted graphs in theCONGEST and theHYBRIDmodel. All algorithms
and techniques that are presented in this chapter have been published in the following paper:

JinfengDou, ThorstenGötte,HenningHillebrandt, Christian Scheideler, and JulianWerthmann. Dis-
tributed and parallel low-diameter decompositions for arbitrary and restricted graphs. In RaghuMeka,
editor, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025), New York City, NY,
USA, January 7–10, 2025, Leibniz International Proceedings in Informatics (LIPIcs), page (to appear),
Dagstuhl, Germany, 2025. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik

An LDD of a (weighted) graph G := (V,E, ℓ) is a partition of G into disjoint subgraphs K(G) :=

K1, . . . ,KN with Ki := (Vi, Ei). We will refer to these subgraphs as clusters. In a partition, each node is
contained in exactly one of these clusters. An algorithm that constructs an LDD is parameterized with a value
D > 0, which gives an upper bound on the clusters’ diameter. We say that a clustering has strong diameterD
if eachKi has a diameter of at most D. That is, between two nodes inKi there is a path of length (at most)
D that only consists of nodes inKi. In contrast, an LDD with a weak diameter creates possibly disconnected
subgraphs with a diameter of D with respect to the original graphG. Here, for all nodes v, w ∈ Ki, there is
a path of length (at most) D from v to w that can use nodes outside of Ki. We measure the decomposition

165

quality by the number of edges that are cut between clusters. An edge {v, w} ∈ E is cut if its two endpoints v
andw are assigned to different clusters. Thus, a good clustering algorithm only ensures thatmost nodes are in
the same cluster as their neighbors. Without this constraint, a trivial algorithm could simply remove all edges
from the graph and return clusters containing one node each.

There are several ways to count the edges that are cut. In this thesis, we consider so-called probabilistic
decompositions. Here, the probability for an edge z = {v, w} to be cut between two clustersKi andKj with
i ̸= j that contain its respective endpoint depends on its length ℓz . This means that short edges are cut less
likely than long edges. We use the following formal definition of LDD’s in the remainder of this work:

Definition 10.1 (Probabilistic Low-diameterDecomposition (LDD)). LetG := (V,E, ℓ) be aweighted graph
andD > 0 be a distance parameter. Then, an algorithm computes a LDD with quality α ≥ 1 creates a series of
disjoint clustersK := K1,K2, . . . ,KN withKi := (Vi, Ei) where V1 ⊔ . . . ⊔ VN = V . Futher, it holds:

1. Strong Diameter: Each clusterKi ∈ K has a strong diameter of at mostD.

2. Low Edge-Cutting Probability: Each edge z := {v, w} ∈ E of length ℓz is cut between clusters with
probability (at most)O

(
ℓz·α
D
)
.

If we do not require each node to be in a cluster, we use the related notion of a Low-Diameter Cluster-
ing (LDC). In a LDC with quality (α, β) and strong diameter D we create a series of disjoint clusters K :=

K1,K2, . . . ,KN withKi := (Vi, Ei). Each clusterKi ∈ K has a strong diameter of at most D and each
edge z := {v, w} ∈ E of length ℓz is cut between clusters with probability (at most)O

(
ℓz·α
D
)
. Further, each

node is part of a cluster with probability at least β. As we will see, LDD’s and LDC’s are nearly equivalent as
we can build an LDD from an LDC by repeatedly applying it until all nodes are clustered.

Having defined them, we can discuss the natural question why we need LDD’s in the first place. Simply
put, LDD’s are part of an algorithmdesigner’s toolkit for developing efficient divide-and-conquer algorithms, as
they offer a genericway to decompose a given graph. As such, creating LDD’swith low edge-cutting probability
plays a significant role in numerous algorithmic applications. In the following, we present a comprehensive list
of applications (which we do not claim to be complete):
Tree Embeddings: For example, they can be used to embed graphs into trees, i.e., constructing so-called met-
ric tree embeddings (MTE) and low-stretch spanning trees (LSSP). In both, we map a given graph G :=

(V,E, ℓ) into a randomly sampled tree T = (V,ET , ℓT) in a way that preserves the path lengths of the origi-
nal graphG on expectation. In an LSSP, it must holdET ⊂ E, i.e., we compute a subtree ofG, while a MTE
can use virtual edges not present in the original graph. LSSPs and MTEs have proven to be a helpful design
paradigm for efficient algorithms as many computational problems are significantly easier to solve on trees than
on general graphs. For example, they have been used to construct distributed and parallel solvers for certain
important classes of LPs [BGK+11, ALH+23, dV23, GKK+18], which can then be used solve MaxFlow
and other complex problems. Nearly all constructions use LDD’s (or variants thereof) as subroutines; see
[ABN08, AN19, BEGL19, EEST08] for the construction of LSSPs and [Bar96, Bar98, Bar04, FRT04] for
MTEs.
Light Spanners: Another interesting avenue for LDD’s are so-called light spanners first introduced by Elkin,
Neimann, and Solomon in [ENS15]. Given aweighted graphG = (V,E, ℓ), a t-spanner is a subgraphH ⊂ G

166

that approximately preserves the distances between the nodes of the original graph by a factor t, i.e., for all pairs
of node v, w ∈ V , it holds dH(v, w) ≤ t ·dG(v, w). A spanner’s lightnessLH is the ratio between the weight
of all its edges and the MST of graphG, i.e., it holds:

LH =

∑
e∈H ℓe∑

e∈MST (G) ℓe

Thus, compared to the LSSPs and MTEs, light spanners have more freedom in choosing their edges as they
are not required to be trees. The lightness is (arguably) a natural quality measure for a spanner, especially for
distributed computing. Consider, for example, an efficient broadcast scheme in which a node wants to spread a
message to every other node inG. Further, suppose the edges’ length as the cost of using this edge to transmit a
message. If we send themessages along the edges of the light spannerH ofG, the total communication cost can
be boundby its lightness, and the stretch bounds the cost of the path between any twonodes. Despite this, there
are almost no distributed algorithms that t-spanners with an upper bound on the lightness with [EFN20] being
a notable exception of stretchO(k)with lightness Õ(n

1
k). The complicating factor in the distributed construc-

tion is that lightness is a global measure. Many previously known distributed spanner constructions like [BS07]
or [MPVX15a] are very local in their computations as they only consider each node’s t-neighborhood with
t ∈ O(logn). Therefore, the lightness of the resulting spanners is unbounded despite them having few edges.

LDD’s are connected to light spanners through an observation by Neiman and Filtser in [FN22]: They
show that with black-box access to an LDD algorithmwith qualityα, one can construct anO(α)-spanner with
lightness Õ(α) for any weighted graph that G = (V,E, ℓ). In addition to an algorithm that creates LDD’s
for geometrically increasing diameters, they only require so-called (α, β)-nets for which they already provided
a distributed implementation in [EFN20]. Thus, finding better distributed algorithms LDDs, especially for
restricted graphs, drectly improves the distributed construction of light spanners.
Compact Routing Schemes: Routing schemes are distributed algorithms that manage the forwarding of data
packets between network devices. Thus, developing efficient routing schemes is essential to enhance communi-
cation among multiple parties in distributed systems. It is known that LDD’s can be used to construct routing
schemes with routing paths that are not significantly longer than the shortest paths inG. In particular, an LDD
with strong diameter and qualityα directly enables us to construct a routing scheme where all paths only differ
by a factor of O(α) from the true shortest paths. We elaborate in this in Chapter 11, which is dedicated to
finding such routing schemes. There, we present two efficient construction of routing schemes with the help
of LDD’s.

Despite this vast number of applications for LDD’s onweighted graphs, research on LDD’s in a distributed
setting has mostly focused on the unweighted case, producing many efficient algorithms in this regime. In par-
ticular, the research focussed on so-called network decompositions that enable fast algorithms for local problems
likeMIS, Coloring, orMatching. In principle, these algorithms could be applied to weighted graphs. However,
their runtime depends on the weighted diameterD of the resulting clusters, which might be much larger than
the hop diameter (or evenn). We give amore detailed overviewof these algorithms in Section 10.6. Twonotable
exceptions explicitly consider weighted graphs and are closely related to our results: The work of Becker, Emek,

167

and Lenzen [BEL20] creates LDD’s of qualityO(logn)with weak diameter1 for general graphs. We note that
O(logn) is the best quality we can hope for in an LDD due to a result by Bartal[Bar96]. The algorithm re-
quires Õ(HD +

√
n) in the CONGEST model, which is optimal as each distributed LDD construction in a

weighted graph requiresΩ(HD+
√
n) time [GZ22b] as we can derive approximate shortest paths from it. Just

as our algorithm, [BEL20] consists of Õ(1) (1 + ϵ)-approximate SetSSP computations with ϵ ∈ O (1/log2 n).
Further, there is the work of Rozhon, Elkin, Grunau, r⃝Haeupler [REGH22], which makes two significant
improvements compared to [BEL20]. They present a decomposition with strong diameter (instead of weak),
and their construction is deterministic (instead of randomized). Conversely, they have a slightly worse quality
of only O(log3 n). Again, the algorithm consists of Õ(1) (1 + ϵ)-approximate SetSSP computations with
ϵ ∈ O (1/log2 n). For restricted graphs like planar, bounded treewidth, or minor-free graphs, we are unaware of
a distributed algorithm explicitly designed for weighted graphs.

In this chapter, we further deepen the understanding of LDD’s in weighted graphs by (in certain ways)
improving upon the algorithms for both general and restricted graphs. The following theorem summarizes the
main results of this chapter:

Theorem 8. A Clustering Theorem for Restricted Graphs

LetD > 0 be an arbitrary distance parameter andG := (V,E, ℓ) be a (possibly weighted) undirected
graph. Then, the following two statements hold:

• For arbitrary graph G, there is an algorithm that creates an LDD of G with strong diameter D
and qualityO(logn).

• If G is Õ(1)-path separable, then there is an algorithm that creates an LDD of G with strong
diameterD and qualityO(log logn).

The algorithms can be implemented in Õ(1) minor aggregations and Õ(1) (1 + ϵ)-approximate
SetSSP computations with ϵ ∈ O (1/log2 n).

By Lemma 7.9, this implies that the algorithm can, w.h.p., be implemented in Õ(HD+
√
n) time inCON-

GEST and Õ(1) time in HYBRID with local capacity of λ ∈ O(logn) and a global capacity of O(log2 n).
Before we go into the details of the promised algorithms, let us discuss the implications of this theorem. First,
we note that our algorithm is currently the best randomized LDD construction in CONGEST for general
weighted graphs. It has same runtime as [REGH22] and [BEL20], creates clusters of strong diameter, and has
(asymptotically) optimal quality of O(logn). Thus, compared to [REGH22], it is faster (but randomized),
and compared to [BEL20], it creates clusters of strong diameter. For k-path separable graphs, the situation is
more nuanced. Recall that each universally k-path separable graph excludesK4k+1 asminor, and thus, we need
to compare ourselves to algorithms forKr-free graphs. As mentioned above, there are distributed algorithms
[LMR21, CS22] for unweighted graphs that present LDD’s in restricted graphs with qualityO(r). While our

1Actually, [BEL20] proves a stronger property of the diameter. Although the diameter is weak, the number of nodes outside of a cluster
that are part of the shortest path between two nodes of a cluster is limited. For many applications, this is sufficient and just as good as a
strong diameter.

168

bound ofO(log logn) is exponentially better than that for general graphs, it is still far from these bounds as it
depends on n and not only on r. On the flip side, our algorithm has an (asymptotically) optimal runtime of
Õ(HD)where the hidden factors depend on r. The other distributed algorithms are tailored to small clusters,
as the runtime is polynomial in the cluster’s diameterD. Therefore, our algorithm is faster for large diameters
D, which arguably trades off its worse cutting probability.

10.1 Structure of this Chapter

The roadmap for this chapter is as follows. We begin with three technical sections that introduce some useful
tools and auxiliary algorithms that we will use throughout this chapter (and will also reuse in the next). In
particular, we show the following:

• In Section 10.2, we present a useful technical tool we call pseudo-padded decomposition. This novel-ish
type decomposition is based on (1+ϵ)-approximate shortest paths. On ahigh-level, the algorithmcreates
a decomposition of strong diameterD where each edge is cut with probabilityO

(
αℓz
D + αϵ

)
for some

parameterα (that depends on the graph). Thus, italmost resembles a low-diameter decomposition except
that short edges have a much higher probability of being cut due to the additiveO(ϵα). Nevertheless, it
is good enough for many applications and will form the basis for our more sophisticated decompositions.

• In Section 10.3, we combine our pseudo-padded decomposition with the techniques by Becker, Emek,
and Lenzen to obtain an LDC. Note that our algorithm works almost identically to theirs. First, we
create a pseudo-padded decomposition that cuts all long edges with the correct probability. Then, we
use their so-called blurry ball growing technique to refine the clusters so that the short edges are cut with
the correct probability. Our construction, however, exploits specific properties of our pseudo-padded
decomposition to ensure that the emerging clusters are connected andweobtain a clusteringwith a strong
diameter.

• In Section 10.3, we then show how to extend the LDC from Section 10.3 to an LDD. In doing so, we
present a general technique to turn LDC’s into LDD’s if the algorithm fulfills certain properties.

• In Section 10.5, we employ ourweak separator fromChapter to create a better LDD for k-path separable
graph. We employ a divide-and-conquer style algorithm thatworks in two phases. First, construct cluster
around these separators to obtain superclusters. Then, we refine the superclusters to a proper LDD.

• In Section 10.6, we present further and more detailed related work.

• Finally, in Section 10.7, we provide a conclusion and ideas for future work.

10.2 Pseudo-Padded Decompositions Using Approximate Shortest Paths

We begin with a crucial technical theorem that will build the foundation ofmost our results. A key component
in this construction is the use of truncated exponential variables. In particular, we will consider exponentially
distributed random variables truncated to the [0, 1]-interval. Loosely speaking, a variable is truncated by resam-
pling it until the outcome is in the desired interval. In the following, we will always talk about variables that

169

are truncated to [0, 1]-interval when we talk about truncated variables. The density function for a truncated
exponential distribution with parameter λ > 1 is defined as follows:

Definition 10.2 (Truncated Exponential Distribution). We say a random variable X is truncated exponen-
tially distributed with parameter λ if and only if its density function is:

f(x) :=
λ · e−xλ

1− e−λ
(10.1)

WewriteX ∼ Texp(λ). Further, ifX ∼ Texp(λ) and Y := D ·X , we write Y ∼ D · Texp(λ).

The truncated exponential distribution is a useful tool for decompositions that has been extensively used
in the past [AGG+19a, Fil19, MPX13]. Using a truncated exponential distribution and (1 + ϵ)-approximate
SetSSP computations, we prove a helpful auxiliary result, namely:

Theorem 9. Pseudo-Padded Decomposition for General Graphs

Let D > 0 be a distance parameter, ϵ be an error parameter, G := (V,E, ℓ) a (possibly weighted)
undirected graph, and X ⊆ V be a set of marked nodes. Suppose that for each node v ∈ V , the
following two properties hold:

• Covering Property: There is at least one x ∈ X with dG(v, x) ≤ D.

• Packing Property: There are at most τ centers x′ ∈ X with dG(v, x′) ≤ 6D.

Then, for ϵ ∈ o(1/log τ) there is an algorithm that computes a series of connected clusters K =

K1, . . . ,KN with strong diameter 4(1 + ϵ)D where for all nodes v ∈ V and all ϵ ≤ γ ≤ 1
32 , it

holds:

Pr[B(v, γD) ⊂ K(v)] ≥ e−Θ((γ+ϵ) log τ) −O(1/nc).

Here,K(v) denotes the cluster that contains v. The algorithm can be implemented with one (1 + ϵ)

approximate SetSSP computation and Õ(1)minor aggregations.

Technically, this algorithm is a generalization of the algorithm in [Fil19] that is based on exact shortest path
computations. This algorithm is itself derived from[MPVX15b]. Our algorithmreplaces all these exact compu-
tations through (1 + ϵ)-approximate calculations. The main analytical challenge is carrying the resulting error
ϵ through the analysis to obtain the bounds in the theorem. The same approach was already used by Becker,
Lenzen, and Emek [BEL20]. However, our is more fine-grained w.r.t. to the impact of the approximation
parameter ϵ.

Generally speaking, the algorithm creates a clustering that cuts each edge z ∈ E of length greater than
ℓz ≥ ϵDwith probabilityO

(
ℓz log τ

D

)
. However, the bounds for smaller edges aremuchworse; for these edges,

the error introduced by the approximate shortest path computations dominates the probabilities. Further, it
is important to note that we only get non-trivial bounds for a sufficiently small ϵ because it also appears as an
additive factor in the probability. In many cases, however, ϵ ∈ Θ

(
1

log2 n

)
will be sufficient. Nevertheless,

170

some applications require a very small ϵ. Recall that by Theorem 5 the algorithm can implemented in time
Õ(ϵ−2 ·HD) time in CONGEST and Õ(ϵ−2) time inHYBRID, w.h.p., so it is quite sensitive to the choice of
ϵ. For ϵ ∈ Θ

(
1

log2 n

)
, it disappears in the Õ(·)-notation, however, smaller ϵ significantly increases the runtime.

Despite all this, the theorem will turn out to be a tremendously useful building block.
Before we start with the detailed description and analysis, let’s first give the high-level idea behind the con-

struction. An intuitive way to think about the clustering process from [MPVX15b, Fil19] is as follows: Each
center x draws value δx ∼ D · Texp(2 + 2 log τ) wakes up at time D − δx. Then, it begins to broadcast its
identifier. The spread of all centers is done in the same unit tempo. A node v joins the cluster of the first iden-
tifier that reaches it, breaking ties consistently. If we hadO(D) time, we could indeed implement it exactly like
this. In fact, we literally do this in Chapter 3 when we compute a sparsifier of aG. However, this approach is
infeasible for a generalD ∈ Ω̃(1) in weighted graphs asD may be arbitrarily large. Instead, we will model this
intuition using a virtual super source s and shortest path computations. The source s has a weighted virtual
edge (s, x) to each center x ∈ X with weight wx := (D − δx). Any node joins the cluster of the last center
on its shortest path to s. With exact shortest paths, this construction preserves our intuition. Any node whose
shortest path to s contains center x as its last center on the path to swould have been reached by x’s broadcast
first.

The statement is not that simple with approximate distances as the approximation may introduce a detour,
so the center that minimizes (D − δx) + d(x, v) may not actually cluster a node v ∈ V . In other words,
two endpoints of a short edge (v, w)may end up in different clusters although the same center minimizes the
distance to both. The nodes will only be added to same cluster, if its center’s head start (which is determined
by the random distance to the source) is large enough to compensate for the detour. This depends on the ap-
proximation and not an the length of the edge we consider. Nevertheless, if the error ϵ is small enough, we get
similar clustering guarantees that are good enough for our purposes.

The remainder of this section is structured as follows: First, we will give a more formal description of the
algorithm in Section 10.2.1 and then, in Section 10.2.2, we will prove Theorem 9.

10.2.1 AlgorithmDescription

We now describe the algorithm promised by Theorem 9 inmore detail. Note that we will express the algorithm
in terms of approximate SetSSP computations and minor aggregations. With the help of Theorem 5, we will
later derive the runtimes for CONGEST andHYBRID. The algorithm works in the following 4 synchronized
steps:

(Step 1) Draw random distances: In the first step, for each center x ∈ X , we independently
draw a value δx ∈ [0,D] from the truncated exponential distribution with parameter 2 + 2 log(τ). We
assume that τ (or some upper bound thereof) is known to each node. Formally, we have

δx ∼ D · Texp(2 + 2 log τ)

171

We call δx the offset parameter of center x. Note that Texp(2 + 2 log τ) returns a continuous random
variable. So, we implicitly round the value to the next value that can be encoded in c logn bits for some
c ≥ 1 in order to send it around in a single message. Therefore, δx differs fromD · Texp(2 + 2 log τ) by
at most D/nc.

(Step 2) Add a (virtual) super-source s: In next step, we add a virtual node s toG and obtain
the graphGs := (V ∪ {s}, E ∪Es, ws). The source s has a weighted virtual edge {s, x} ∈ Es to each
center x ∈ X with weightwx := (D − δx). All other weights and edges remain unchanged.

(Step 3) Construct an approximate shortest-path tree Ts: Next, we perform an (1 + ϵ)-
approximate SSSP algorithm inGs from node s.

Recall that our ϵ > 0 is the desired error parameter for the pseudo-padded decomposition. Let T be
the (approximate) shortest-path tree computed by the SSSP algorithm, s.t., it holds:

dT (v, s) ≤ (1 + ϵ)dGs(v, s)

(Step 4) JoinClusterofClosestCenter: Finally, a vertexv joins the cluster of the centerx ∈ X ,
s.t.,

x := arg min
x′∈X
{D − δx′ + dT (x

′, v)}

It is easy to verify that this is the first center on the path from s to v. Thus, it only remains to inform
each node about their clusters identifier. This can be done via the AncestorSum primitive, which acts as
a broadcast if only the root has an input value. Using this primitive, each center x ∈ X broadcasts its
identifier and its distance to s to each node in its subtree T (x).

Finally, note that this construction ensures that for all pairs v, w ∈ Cx, there is a path inCx that connects
them.

10.2.2 Analysis

In this section, we will prove Theorem 9. To this end, we must show that the algorithm a) can be implemented
with one approximate set-source SetSSP computation, b) creates clusters of strong diameter (1 + ϵ)4D, and
c) fulfills the padding guarantee from Theorem 9. We begin by proving the proclaimed complexity, arguably
easiest to show. This can be derived directly from the description of the algorithm. The algorithm requires only
a single approximate shortest-path computation as Steps 1, 2, and 4 are purely local operations. Therefore, it
only remains to show the other two properties. We begin with the strong diameter and show that for all vertices
within a cluster, there is a path of length at most (1 + ϵ)4D within the cluster. Formally, we want to show:

172

Lemma 10.1 (Cluster Diameter). Every non-empty cluster Cx created by the algorithm has strong diameter at
most (1 + ϵ)4D, i.e., for two vertices v, w ∈ Cx, it holds:

dCx(v, w) ≤ 4(1 + ϵ)D

For the proof, we first recall how the clusters are built. Each vertex joins a clusterCx of some center x ∈ X
if and only if there is a path in the approximate shortest path tree Ts where x is the last hop before the root s.
Thus, each vertex has a path to x that is fully contained in the cluster. That means, for two vertices v, w ∈ Cx,
there is a path from v tow via x that is entirely contained in the cluster as all edges are undirected. This implies
that:

dCx
(v, w) ≤ 2 · max

u∈Cx

dTs
(u, x) (10.2)

Therefore, it remains to bound the maximal distance between a node and its cluster center. Here, we see that it
holds for all x ∈ X :

Claim 13. maxu∈Cx
dTs

(u, x) ≤ (1 + ϵ)2D

Proof. Consider node u ∈ V that maximizes the distance to x in Ts. As x is the penultimate node on the path
to s in Ts, the distance to x is upper bounded by the distance to s. It holds:

dTs
(s, u) := w(s, x) + dTs

(x, u) := (D − δx) + dTs
(x, u) ≥ dTs

(x, u) (10.3)

The inequality follows because δx ∈ [0,D] per construction and therefore (D− δx) is non-negative. Further,
by the covering property required inTheorem9, we know that there is at least one centerx′ ∈ X in the distance
at mostD to v. Note that the distance between x′ and s is also at mostD as δx′ ≥ 0 by definition. Thus, by
the triangle inequality, it holds:

dG(s, u) ≤ dG(s, x
′) + dG(x

′, u) := (D − δx′) + dG(x
′, u) ≤ D +D = 2D.

Combining these two observations with the approximation guarantee from the underlying SSSP gives us the
following upper bound on the distance to the cluster center:

dTs
(x, u) ≤ dTs

(s, u) ▷ By Ineq. (10.3)

≤ (1 + ϵ)dG(s, u) ▷ As dT (s, u) ≤ (1 + ϵ) · d(s, u)

≤ (1 + ϵ)2D ▷ By Ineq. (10.4)

This concludes the proof!

Together with Inequality (10.2), this claim directly implies Lemma 10.1 and our algorithm is guaranteed to
create clusters of strong diameter 4(1 + ϵ)D. We continue with the padding property promised by Theorem
9. To this end, we need to show that all nodes that are close to a given vertex v ∈ V are in the same cluster

173

with some non-trivial probability. In fact, we will show a slightly stronger statement that we will reuse in later
algorithms. We show:

Lemma10.2 (PaddingProperty). Considernodev ∈ V clustered by centerxv ∈ X andaparameter ϵ ≤ γ ≤ 1
8

. Further, let Pxv
= (v1, . . . , vℓ) be the exact shortest path from xv to v. Then, for each vi ∈ Pxv

, the ball
BG(vi, γD) is fully contained inCxv

with probability at least

Pr

 ⋃
vi∈Pxv

BG(vi, γD) ⊂ Cxv

 ≥ e−16(γ+5ϵ) log τ − 160 log τ
nc

First, for simpler notation, we introduce the term d(s, x, v), which is a shorthand for the distance between
v and s via the center x ∈ X in graphGs. It holds:

d(s, x, v) := (D − δx) + d(x, v).

Note that this definition is only based on the properties of the input graph G and the random distances D.
Further, we let Nv be the set of centers x ∈ X in the distance at most 6D to node v ∈ V . Note that these
include the centers which can potentially cluster v and for which there is a non-zero probability thatCx inter-
sects B(v, γD). In other words, these are all the centers of all clusters that (potentially) neighbor the cluster
that contains v. This can be verified by the following argument: Let vi ∈ Pxv

an node on the shortest path
from v to xv and let x ∈ X be a center that can potentially cluster a node w ∈ B(vi, γD). Any node vi on
the path is in distance at most (1+ ϵ)2D to v; any nodew ∈ B(vi, γD) is in distance at most (1/8) · D tow as
γ ≤ 1/8; and finally every center x that can coverw is in distance (1 + ϵ)2D to x. Summing all these distances
up and using that ϵ ≤ γ ≤ 1/8 gives us:

dG(v, x) ≤ dG(v, w) + dG(w, b) + dG(w, x)

≤ (1 + ϵ)2D + γD + (1 + ϵ)2D

As ϵ ≤ γ ≤ 1/8 :

≤ (1 + 1/8)2D + (1/8)D + (1 + 1/8)2D

≤ 6D

Recall that by the packing property in Theorem 9, we have |Nv| ≤ τ . We continue with the definition of the
central concept of our proof, the random shiftΥi for each center xi ∈ Nv . It is defined as follows:

Definition 10.3 (Random Shift). Let v ∈ V be a node and letNv := {x ∈ X | d(x, v) ≤ 6D}. For each
x ∈ Nv , define the random shiftΥ(x)

v as follows:

Υ(x)
v := (D − δx) + dG(x, v)− min

x′∈Nv\{x}
((D − δx′) + dG(x

′, v))

These values will help us to quantify how close a center is to node v ∈ V compared to the other centers.
From the definition ofΥ(x)

v , it follows that for all x′ ∈ X \ {x}, it holds:

174

Claim 14. For x′ ∈ Nv , it holds dG(v, x, s) ≤ dG(v, x
′, s) + Υ

(x)
v .

Proof. Using the definitions of dG(v, x, s) andΥ
(x)
v , we get:

dG(v, x, s) = (D − δx) + d(x, v)

= (D − δx′) + d(x′, v) + ((D − δx) + d(x, v)− ((D − δx′) + d(x′, v)))

≤ dG(v, x
′, s) +

(
(D − δx) + d(x, v)− min

x′′∈X\{x}
{(D − δx′′) + d(x′′, v)}

)
:= dG(v, x

′, s) + Υ(x)
v

This proves the claim.

We furthermore need the following lemma.

Lemma 10.3. Let v ∈ V be a node and let Px be the exact shortest path to center x ∈ X in G. Further, let
X ′ ⊆ X be the set of centers that can potentially cluster a node u ∈ P . Define the values Υ(x)

v and Υ
(x)
u as

follows:

Υ(x)
v := (D − δx) + dG(x, v)− min

x′∈X ′\{x}
((D − δ′) + dG(x

′, v)) (10.4)

Υ(x)
u := (D − δx) + dG(x, u)− min

x′∈X ′\{x}
((D − δ′) + dG(x

′, u)) (10.5)

Then, it holdsΥ(x)
u ≤ Υ

(x)
v .

Proof. First, for convenience, we define:

xu := argmin
x′∈X ′\{x}

((D − δ′) + dG(x
′, v)) . (10.6)

Next, we add (dG(u, v)− dG(u, v)) = 0 toΥ(x)
u and obtain:

Υ(x)
u = (D − δi) + dG(xi, u)− ((D − δu) + dG(xu, u))

= (D − δi) + dG(xi, u)− ((D − δu) + dG(xu, u)) + (dG(u, v)− dG(u, v))

= (D − δi) + dG(xi, u) + dG(u, v)− ((D − δu) + dG(xu, u) + dG(u, v))

Now, we use the fact that u is an ancestor of v in the exact shortest path P . By this fact, it holds:

dG(xi, v) = dG(xi, v) + dG(u, v) (10.7)

Otherwise, there would be a shorter path from v to x. Therefore,

Υ(x)
u =

(10.7)
(D − δi) + dG(xi, v)− ((D − δu) + dG(xu, u) + dG(u, v))

175

By the triangle inequality, we therefore obtain the following inequality:

dG(xu, u) + dG(u, v) ≥ dG(xu, v) (10.8)

Putting this insight back into the formula gives us:

Υ(x)
u ≤

(10.8)
(D − δi) + dG(xi, v)− ((D − δu) + dG(xu, v))

By definition, it holds:

((D − δu) + dG(xu, v)) ≥ min
x′∈X ′\{x}

((D − δu) + dG(x
′, v)) (10.9)

Thus, we have:

Υ(x)
u ≤

(10.9)
(D − δi) + dG(xi, v)− min

x′∈X ′\{x}
((D − δu) + dG(x

′, v)) = Υ(x)
v

This proves the lemma.

Note that, whenusing exact distances, the center thatminimizesΥ(x)
v will add v to its cluster. However, this

is not necessarily true when using approximate distances, as the approximation error can make another center
appear closer. Nevertheless, we can show that for a big enough difference Υ(x)

v , the center x clusters node v
and, more importantly, also clusters all nodes close to v. More precisely, it holds:

Lemma 10.4. Let x ∈ Nv be a center inX in the distance at most 6D to v. Further, letP := (v1, . . . , vℓ)with
v1 = x and vℓ = v be the exact shortest path from x to v inG.

Consider a node vi ∈ P and a node u ∈ B(vi, γD). Suppose it holds

Υ(x)
v < −(2γ + 10ϵ)D. (10.10)

Then this implies vi, u ∈ Cx. In particular, this means that for all vi ∈ P , it holds:

Pr[B(vi, γD) ⊂ Cx] ≥ Pr
[
Υ(x)

v ≤ −(2γ + 10ϵ) · D
]

Proof. Let xu be any center that can potentially cluster node u. By Claim 13, each vertex joins the cluster of
a center at a distance at most (1 + ϵ)2D. Therefore, the distances between v and vi and u and xu is at most
(1 + ϵ)2D. As u ∈ B(v, γD), by the triangle inequality, the distance between xu and v is at most

dG(v, xu) ≤ dG(v, vi) + dG(vi, u) + d(u, xu)

≤ (1 + ϵ)2D + γD + (1 + ϵ)2D

≤ (1 + ϵ)4D + γD ≤ 6D

Therefore, xu ∈ Nv .

176

Wewant to show that forΥ(x)
v ≤ −(2γ+10ϵ)D, center x is closer to u than xu evenwhen using approx-

imate distances. The idea behind the proof is, loosely speaking, that for a big enough value of Υ(x)
v the error

introduced by the approximate SSSP is canceled out in some sense. Suppose for contradiction that xu (and not
x) adds node u to its cluster, i.e., it holds u ∈ Cxu

. This only happens if and only if xu is the penultimate node
on the approximate shortest path to s. Or, equivalently, is the penultimate node on the exact path in the tree
Ts Formally, it holds:

dTs
(s, u) = d(s, xu) + dTs

(xu, u) ≥ d(s, xu) + dGs
(xu, u) = d(s, xu, u)

On the other hand, using approximation guarantee and the triangle inequality, we see that the following holds:

dTs(s, u) ≤ (1 + ϵ) · dGs(s, u)

≤ dGs
(s, x, u) + ϵ · dGs

(s, x, u)

≤ dGs
(s, x, vi) + dGs

(vi, u) + ϵ · dGs
(s, x, u)

By Claim 14, we furthermore get:

dTs(s, u) ≤
(
dGs(s, xu, vi) + Υ(x)

vi

)
+ dGs(u, vi) + ϵ · dGs(s, x, u)

≤
(
dGs(s, xu, u) + dGs(u, vi) + Υ(x)

vi

)
+ dGs(u, vi) + ϵ · dGs(s, x, u)

≤ dGs
(s, xu, u) + 2dGs

(u, vi) + ϵ · dGs
(s, x, u) + Υ(x)

vi

As vi lies on the exact shortest path from v to x, it holds by Lemma 10.3 thatΥ(x)
vi ≤ Υ

(x)
v and therefore:

dTs
(s, u) ≤ dGs

(s, xu, u) + 2dGs
(u, vi) + ϵ · dGs

(s, x, u) + Υ(x)
v

Now, we bound dGs
(s, x, u). To this end, recall that d(s, x) = D− δx ≤ D. Further, since x ∈ Nv , we have

d(x, vi) ≤ d(x, v) ≤ 6D. Finally, by definition, we have d(vi, u) = γD. Thus, combining all these facts, it
holds:

dGs
(s, x, u) := dGs

(s, x) + dGs
(x, u)

≤ dGs
(s, x) + dGs

(x, vi) + dGs
(vi, u)

≤ D + 6D + γD ≤ 8D

177

Now use our assumptions and see:

dTs(s, u) ≤ dGs(s, xu, u) + 2dGs(u, vi) + ϵ · dGs(s, x, u) + Υ(x)
v

As dGs
(s, x, u) ≤ 8D :

≤ dGs
(s, xu, u) + 2dGs

(u, v) + ϵ · 8D +Υ(x)
v

As dGs
(v, u) ≤ γD :

≤ dGs(s, xu, u) + 2γD + ϵ · 8D +Υ(x)
v

AsΥ(x)
v < −(2γ + 10ϵ)D :

≤ dGs
(s, xu, u) + 2γD + ϵ · 8D − 2γD − ϵ · 10D

< dGs
(s, xu, u)

Thus, it follows that:

dTs
(s, u) <

!
dGs

(s, xu, u) ≤ dTs
(s, u)

This is a contradiction. As this holds for any possible choice xu ∈ Nv , none of them add u to their cluster.
Therefore umust be part ofCx as claimed and the lemma follows.

This lemma tells us that — if the random shift δx is big enough — a center x ∈ Nv will cluster all nodes
that are close to its shortest path to v. Again, note that this statement is stronger thanwhatwe need for a pseudo-
padded decomposition, but we show it in this generality to reuse it later in the next section. In the remainder of
this section, we will prove that with non-trivial probability, there is a center xi ∈ Nv with a large enough shift.
Concretely, we show the following lemma:

Lemma 10.5 (Random Shift with Approximate Distances). Suppose that

γ ≤ 1/8

ϵ ≤ min
{

1

40
,

1

20 · (2 log τ + 2)

}
Then, it holds

Pr[∃xi ∈ Nv : Υi ≤ −(2γ + 10ϵ) · D] ≥ e−16(γ+ϵ) log τ − 160 log(τ)
nc

The full proof is presented below. It is based on the proof of Theorem 1 in [Fil19] that proves a simi-
lar statement but assumes exact shortest path computations. The main difficulty is quantifying the effect of
approximation parameter ϵ.

178

We conclude this section by proving Lemma 10.2 using Lemma 10.4 and Lemma 10.5. Note that, by
Lemma 10.4, it holds for all vj ∈ Pxv

that

Pr[B(vj , γD) ⊂ Cxv] ≥ Pr[∃xi ∈ Nv : Υi ≤ −(2γ + 10ϵ) · D]

Further, by Lemma 10.5, we have

Pr[∃xi ∈ Nv : Υi ≤ −(2γ + 10ϵ) · D] ≥ e−16(γ+5ϵ) log τ +
160 log τ

nc

This proves Lemma 10.2. Together with the initial observation that the algorithm can be implemented with a
single approximate shortest path computation on a set-source, this implies Theorem 9.

Proof of Lemma 10.5

In this section, we will prove Lemma 10.5 using techniques and arguments from [Fil19] where a similar state-
ment was shown for exact distance computations. In fact, we follow the analysis almost verbatim and only
adapt the arguments that do not generally hold for approximate distances. The main technical difficulties are
in the facts that a) we need to carry the approximation error ϵ through the calculations and b) that the triangle
inequality does not hold for approximate distances and, therefore, a node may not be added to the cluster of
the center on the exact shortest path to virtual source s.

Condition on the event that there are τ centers in Nv and let Nv = {x1, x2, . . . , xτ}. Until now, we
have always considered the rounded random variables δx1 , . . . , δxτ that can be encoded in c logn bits. These
are the variables that will be used by the approximate shortest path algorithm to compute the clusters. In this
section, we will work with actual continuous values, i.e., the actual values returned by sampling the truncated
distribution. For each center xi ∈ Nv , we defined the random shift as

Υ′
i := (D − δ′i · D) + dG(xi, v)− min

xj∈Nv\{xi}

(
(D − δ′j · D) + dG(xj , v)

)
As we round them up to be encodable in c logn bits for some c ≥ 1, it holds for all xi ∈ Nv that

δxi − δ′xi
· D ≤ 1

nc
(10.11)

(D − δ′i · D) + dG(xi, v)− (D − δi) + dG(xi, v) ≤
1

nc
(10.12)

|Υ′
i −Υi| ≤

1

nc
(10.13)

Thus, the error introduced by the rounding is negligible. Nevertheless, we need to carry it through.
Denote byFi the event that xi is the truly closest center to v. In other words, the valueΥ′

i is non-positive
and if there is another center with the same distance, it has a lower identifier, i.e., we have

Fi :=

{
xi = argmin

xi∈Nv

Υi ≤ 0

}
(10.14)

179

Note that the tie-breaker only comes into effect when there two centers x,xj withΥi = Υj = 0. With exact
distance computations, the minimal center will cluster v as it is on the shortest path to supersource s. This is
not necessarily true when using approximate distances and rounding. As we always round down, it holds:

Pr
[
Υ′

i < −
1

nc

]
≤ Pr[Fi] ≤ Pr

[
Υ′

i ≤
1

nc

]
(10.15)

Further, let ϵl = ϵ+ 1/nc and ϵu := 1/nc denote by Ci the event that

Ci := {Υ′
i ∈ (−2 · (γ + 5ϵl) · D, ϵu]} .

In other words, a center xi is the closest center but not by a lot. This is a bad event as it implies that the ball
B(v, γD)may not be added toCxi . Perhaps not even v is added. On the flip side, if none of these bad events
C1, . . . , Cτ happen, theremust be a center with a big enough shift. Recall that we want to show that:

Pr[∃xi ∈ Nv : (Υi ≤ −2 · (γ + 5ϵ) · D)] ≥ e−16(γ+5ϵ) log τ − 160 log τ
nc

It holds:

Pr[∀xi ∈ Nv : Υi ≥ −2 · (γ + 5ϵ) · D]

As allFi disjoint:

=

τ∑
i=1

Pr[Fi] · Pr[∀xi ∈ Nv : Υi ≥ −2 · (γ + 5ϵ) · D | Fi]

AsFi impliesΥi is minimal:

=

τ∑
i=1

Pr[Fi] · Pr[Υi ≥ −2 · (γ + 5ϵ) · D | Fi]

=

τ∑
i=1

Pr[Υi ≥ −2 · (γ + 5ϵ) · D ∩ Fi]

By Ineq. (10.14):

=

τ∑
i=1

Pr[Υi ≥ −2 · (γ + 5ϵ) · D ∩ {Υ′
i ≤ 1/nc}]

As |Υi −Υ′
i| ≤ 1/nc:

≤
τ∑

i=1

Pr
[
Υ′

i ∈
(
− 2 · (γ + 5ϵ+ 1/nc) · D, 1/nc

]]
≤

τ∑
i=1

Pr
[
Υ′

i ∈
(
− 2 · (γ + 5ϵl) · D, ϵu

]]
=

τ∑
i=1

Pr[Ci]

180

Using this insight, we note that the following equality holds:

Pr[∃xi ∈ Nv : Υi ≤ −2 · (γ + 5ϵ) · D] ≥ 1−
τ∑

i=1

Pr[Ci]. (10.16)

In the following, we will bound Pr[Ci] for a fixed xi and show the following.

Lemma 10.6. Let λ := 2 log τ + 2. Then, for all i ≤ τ , it holds:

Pr[Ci] ≤
(
1− e−2(γ+5ϵl+ϵu)·λ

)
· e2λϵu ·

(
Pr[Fi] +

1

eλ − 1

)
Proof. For easier notation, we drop the index and denote x = xi to simplify notation and analogously fix C :=
Ci,F := Fi, and δ′ := δ′xi

. Consider a subset of τ centersX ′ := {x1, . . . , xτ} and letZ := {δ1, . . . , δτ}
be a realization of their random shifts. Further, we define the value

ρZ :=
1

D
·
(
dG(x, v) +max

j<τ

{
δ′xj
· D − dG(xj , v)

})
Further, defineΥ′

Z = D · ρZ − D · δ′ as the difference between x and the closest center. Note thatΥ′
Z is a

random variable that only depends on the shift δ (as everything else is fixed by conditioning on Z). To prove
the Lemma, we will use that the following holds for any value α ≥ 0:

Pr[Υ′
Z ≤ −αD] = Pr[D(ρZ − δ′) ≤ −αD] = Pr[δ′ ≥ ρZ + α]

We will now use the law of total probability to prove the lemma. Denote by f the density function of the
distribution over all possible values of δ′. By the law of total probability, it holds:

Pr[C | Z] :=
∫ 1

y=0

Pr[CZ | δ = y]f(y)dy

≤
∫ min{1,ρ+2(γ+5ϵl)}

y=ρ−ϵu

Pr[CZ | δ = y]f(y)dy

≤
∫ min{1,ρ+2(γ+5ϵl)}

y=ρ−ϵu

f(y)dy

=

∫ min{1,ρ+2(γ+5ϵl)}

ρ−ϵu

λ · e−λy

1− e−λ
dy

We can simplify this statement using some fundamental calculations and the definition of the truncated expo-
nential function. It holds:

181

Claim 15. Consider a random variable δ′ ∼ Texp(λ) drawn from a truncated exponential distribution with
parameter λ > 0. For values ρ, γ′, ϵ′ > 0, it holds:

∫ min{1,ρ+γ′}

ρ−ϵ′

λ · e−λy

1− e−λ
dy ≤

(
1− e−λ(γ′+ϵ′)

)
· e2ϵ

′λ ·
(
Pr[δ ≥ ρ+ ϵ′] +

1

eλ − 1

)
Proof. The proof follows directly from the definition of δ. First, we note that it holds that

Pr[δ > ρ+ ϵ′] =

∫ 1

ρ+ϵ′

λ · e−λy

1− e−λ
dy =

e−(ρ+γ′)·λ − e−λ

1− e−λ
. (10.17)

On the other hand, it holds:

Pr[ρ− ϵ′ ≤ δ ≤ ρ+ γ′] =

∫ min{1,ρ+γ′}

ρ−ϵ′

λ · e−λy

1− e−λ
dy

≤ e−(ρ−ϵ′)·λ − e−(ρ+γ′)·λ

1− e−λ

=
e−(ρ−ϵ′)·λ − e−(ρ−ϵ′+ϵ′+γ′)·λ

1− e−λ

=
e−(ρ−ϵ′)·λ − e−(ρ−ϵ′)·λ−(ϵ′+γ′)·λ

1− e−λ

=
(
1− e−(γ′+ϵ′)·λ

)
· e

−(ρ−ϵ′)·λ

1− e−λ

=
(
1− e−(γ′+ϵ′)·λ

)
· e

−(ρ+ϵ′−2ϵ′)·λ

1− e−λ

=
(
1− e−(γ′+ϵ′)·λ

)
· e2ϵ

′λ · e
−(ρ+ϵ′)·λ

1− e−λ

=
(
1− e−(γ′+ϵ′)·λ

)
· e2ϵ

′λ · e
−(ρ+ϵ′)·λ − e−λ + e−λ

1− e−λ

=
(
1− e−(γ′+ϵ′)·λ

)
· e2ϵ

′λ ·

(
e−(ρ+ϵ′)·λ − e−λ

1− e−λ
+

e−λ

1− e−λ

)

=
(
1− e−(γ′+ϵ′)·λ

)
· e2ϵ

′λ ·
(
Pr[δ > ρ+ ϵ′] +

eλe−λ

eλ(1− e−λ)

)
=
(
1− e−(γ′+ϵ′)·λ

)
· e2ϵ

′λ ·
(
Pr[δ > ρ+ ϵ′] +

1

eλ − 1

)
Thus, the claim follows.

Now, we set γ′ = 2γ + 10ϵl and ϵ′ = ϵu in our formula. We get:

Pr[C | Z] ≤
(
1− e−2λ(γ+5ϵl+ϵu)

)
· e2λϵu ·

(
Pr[δ ≥ ρ+ ϵu] +

1

eλ − 1

)
(10.18)

182

To conclude the proof, denote by f the density function of the distribution over all possible values of Z .
Using the law of total probability, we can bound the probability for event C as follows:

Pr[C] =
∫
Z
Pr[C | Z] · f(Z) dZ (10.19)

≤
∫
Z

(
1− e−2λ(γ+5ϵl+ϵu)

)
· e2λϵu ·

(
Pr[δ ≥ ρ+ ϵu] +

1

eλ − 1

)
· f(Z) dZ (10.20)

≤
(
1− e−2λ(γ+5ϵl+ϵu)

)
· e2λϵu ·

∫
Z

(
Pr[δ ≥ ρ+ ϵu] +

1

eλ − 1

)
· f(Z) dZ (10.21)

≤
(
1− e−2(γ+5ϵ+ϵu)λ

)
· e2ϵuλ ·

∫
Z

(
Pr[F | Z] + 1

eλ − 1

)
· f(Z) dZ (10.22)

=
(
1− e−2(γ+5ϵ+ϵu)λ

)
· e2ϵuλ ·

(
Pr[F] + 1

eλ − 1

)
(10.23)

This proves the lemma.

Using this lemma, we see that it holds:

|Nv|∑
i=1

Pr[Ci] ≤
(
1− e−2(γ+5ϵl+ϵu)λ

)
· e2ϵuλ ·

|Nv|∑
i=1

(
Pr[Fi] +

1

eλ − 1

)
≤
(
1− e−2(γ+5ϵl+ϵu)λ

)
· e2ϵuλ ·

(
1 +

τ

eλ − 1

)
As
∑

Pr[Fi] = 1

We can finalize the proof by carefully considering the possible values of γ, ϵl and ϵu. As ϵu = 1/nc with c > 1

and λ = 2 log τ + 2 ≤ 2 logn+ 2, we can assume 2ϵuλ < 1/40λ ≤ 1.79 for a large enough n. This allows us
to apply the well-known inequality ex ≤ 1 + x+ x2 for x ≤ 1.79 and get

e2ϵuλ ≤ 1 + 2ϵλ+ (2ϵλ)2 ≤ 1 + 4ϵλ (10.24)

Further, we picked γ ≤ 1/8 and ϵ ≤ 1/40 small enough such that γ + 5ϵl + ϵu ≤ 1/4. Given that observation,
we see that it holds:

e−2(γ+5ϵl+ϵu)λ =
e−2(γ+5ϵl+ϵu)λ

(
eλ − 1

)
eλ − 1

≥ e−2(γ+5ϵl+ϵu)λ · eλ−1

eλ − 1

≥ e−2(1/4)λ · eλ−1

eλ − 1
≥ e

λ
2 −1

eλ − 1

Here, we used the fact that ex−1 ≤ ex − 1 for x > 2, which can be easily verified. By our choice of λ :=

2 log(τ) + 2, it furthermore holds:

e−2(γ+5ϵl+ϵu)λ ≥ e
λ
2 −1

eλ − 1
≥ e

2 log(τ)+2
2 −1

eλ − 1
=

elog τ

eλ − 1
≥ τ

eλ − 1
(10.25)

183

Therefore, we can simplify our formula as follows:

|Nv|∑
i=1

Pr[Ci] ≤
(
1− e−2(γ+5ϵl+ϵu)λ

)
· e2ϵuλ ·

(
1 +

τ

eλ − 1

)
By Ineq. (10.24) :

≤ (1 + 4λϵu) ·
(
1− e−2(γ+5ϵl+ϵu)λ

)(
1 +

τ

eλ − 1

)
By Ineq.(10.25) :

≤ (1 + 4λϵu) ·
(
1− e−2(γ+5ϵl+ϵu)λ

)(
1 + e−2(γ+5ϵl+ϵu)·λ

)
As (1 + x)(1− x) = 12 − x2 :

= (1 + 4λϵu)
(
1− e−4(γ+5ϵl+ϵu)·λ

)
≤ 1− e−4(γ+5ϵl+ϵu)·λ + 4λϵu

≤ 1− e−4(γ+5ϵ+5ϵu+ϵu)·λ + 4λϵu

= 1− e−4(γ+5ϵ)·λ · e−24ϵu·λ + 4λϵu

As e−x ≤ 1− x/2:

≤ 1− e−4(γ+5ϵ)·λ · (1− 12ϵu · λ) + 4λϵu

≤ 1− e−4(γ+5ϵ)·λ + 12ϵu · λ+ 4λϵu

≤ 1− e−4(γ+5ϵ)·λ + 16ϵu · λ

Putting this bound on
∑|Nv|

i=1 Pr[Ci] back in our initial inequality gives us the following final approximation of
our desired probability:

Pr[∃xi ∈ Nv : Υi ≤ −(2γ + 10ϵ) · D] ≥ 1−
τ∑

i=1

Pr[Ci]

≥ 1−
(
1− e−4(γ+5ϵ)·λ + 16λϵ

)
= e−4(γ+5ϵ)·λ + 16λϵu

Recalling that λ = 2 log τ + 2 ≤ 4 log τ :

≥ e−4(γ+5ϵ)·(4 log τ) − 16(4 log τ)ϵu

≥ e−16(γ+5ϵ)·(log τ) − 64ϵu log τ

= e−16(γ+5ϵ)·(log τ) − 64 log τ
nc

This proves Lemma 10.5.

184

10.3 Low-Diameter Clusterings from Pseudo-Padded Decompositions

In this section, we present an algorithm that creates an LDC of strong diameterD where each edge is cut with
a probability proportional to its length. To achieve this, we will generalize an algorithm by Becker, Emek, and
Lenzen [BEL20] that creates such a decomposition for general graphs. Our main result is a generic algorithm
that creates an LDC with strong diameter D of quality (O(log τ), 1/2) if the number of nodes that can be
centers of clusters has been sufficiently sparsed out, such that each node can only be in one of τ clusters. We
show that it holds:

Theorem 10. AGeneric Clustering Theorem

LetD > 0be a distance parameter,G := (V,E, ℓ) a (possiblyweighted) undirected graph, andX ⊆ V

be a set of marked nodes. Suppose that for each node v ∈ V , the following two properties hold:

• Covering Property: There is at least one x ∈ X with d(v, x) ≤ D.

• Packing Property: There are at most τ centers x′ ∈ X with d(v, x′) ≤ 6D.

Then, there is an algorithm that creates an LDC of strong diameter 8D with quality (O (log τ/D) , 1/2).

The algorithm can be implemented with Õ(1) minor aggregations and Õ(1) (1 + ϵ)-approximate
SetSSP computations where ϵ ∈ O (1/log2 n).

The algorithm is based on two main techniques: First, it makes use of the so-called blurry ball growing
(BBG) technique. This is perhaps the key technical result thatBecker, Emek, andLenzen introduced in [BEL20].
It provides us with the following guarantees:

Lemma 10.7 (Blurry Ball Growing (BBG), cf. [BEL20, REGH22]). Given a subset S ⊆ V and an arbitrary
parameter ρ > 0, an algorithm for BBG outputs a superset S′ ⊇ S with the following properties

1. An edge {v, w} ∈ E of length ℓ(v,w) is cut with probability

Pr[v ∈ S′, w ̸∈ S′] ≤ O

(
ℓ(v,w)

ρ

)
.

2. For each node v ∈ S′, it holds d(v, S) ≤ ρ
1−α ≤ 2ρ where α ∈ O (log logn/logn).

BBG can be implemented using Õ(1) (1 + ϵ) approximate SetSSP computations with ϵ ∈ O
(
(log logn/logn)2

)
.

This technique allows us to create clusters with a lowprobability of cutting an edgewhile only having access
to approximate shortest paths. Note that in [REGH22] the dependency on ϵwas improved toO (1/logn). The
paper also presents a deterministic version of blurry ball growing. However, we will only use the probabilistic
version introduced above. Second, the algorithm uses the following technical fact about the pseudo-padded
decompositions computed by Theorem 9.

185

Lemma10.2 (PaddingProperty). Considernodev ∈ V clustered by centerxv ∈ X andaparameter ϵ ≤ γ ≤ 1
8

. Further, let Pxv
= (v1, . . . , vℓ) be the exact shortest path from xv to v. Then, for each vi ∈ Pxv

, the ball
BG(vi, γD) is fully contained inCxv

with probability at least

Pr

 ⋃
vi∈Pxv

BG(vi, γD) ⊂ Cxv

 ≥ e−16(γ+5ϵ) log τ − 160 log τ
nc

This lemma states that if a single node v ∈ V is padded, all nodes on the shortest path to its cluster center are
likely padded as well. While this initially sounds very technical, it roughly translates to the following: Consider
a clustering K = K1, . . . ,KN . Then for a suitably chosen γ′ ∈ Θ(log τ), in each cluster Ki = (Vi, Ei)

there is a constant fraction of nodes V ′
i ⊆ V in the distance γ′D to their closest node in a neighboring cluster

Kj ̸= Ki and for any two v, w ∈ V ′
i there is a path of length 4D (via the cluster center) that only consists of

nodes in V ′
i .

Given these two preliminaries, we now give an overview of the algorithm that creates an LDC. For brevity,
we omit the exact values of certain parameters. The algorithm first computes a pseudo-padded decomposition
K = K1, . . . ,KN of strong diameter D using the algorithm of Theorem 9. We choose the set X as the set
of cluster centers. Within each cluster Ki, we then determine an inner cluster K ′

i ⊆ Ki of strong diameter
3D where each node v ∈ V ′

i has distance ρ′ ∈ O(D
log τ) to the closest node in different cluster Kj ̸= Ki.

These inner clusters can be determined via two (approximate) SetSSP computations: First, all nodes calculate
the 2-approximate distance to the closest node in a different cluster. We call all nodes where this 2-approximate
distance exceeds 2ρ′ active nodes. Then, the active nodes compute if they have a path of length at most 3D
to their cluster center using only active nodes. If so, they add themselves to the inner clusterK ′

i . Their exact
distance to the next cluster is at least ρ′ as the paths are 2-approximate. Further, for any two nodes v, w ∈ K ′

i

there is a path of length 6D via the cluster center. Thus, this procedure always results in an inner clusterK ′
i

with the desired properties. We can prove that the inner clusters are large using Lemma 10.2. For a constant
fraction of the nodes v ∈ V the following holds: Node v ∈ Ki and all nodes on the path to its cluster center
are distance at least 2ρ′ to the closest node in a different cluster. Therefore, with a probability of at least 1/2,
node v and all nodes on the path to the cluster center will be active. As the cluster center is distance 2D, they
all will be added to the inner cluster. Thus, these inner clusters will contain half of all nodes in expectation.

Then, the inner clusters are refined using blurry ball growing (BBG) to obtain the correct probability of
cutting an edge.

We choose the parameter for the BBG to be ρ ∈ O(D/logn). In particular, choose 2ρ < ρ′. As the distance
to the next cluster is ρ′ and BBG only adds nodes in distance 2ρ < ρ′, for each inner clusterK ′

i , this produces
a well-defined super-set S(K ′

i). We pick these supersets as our low-diamter clustering. The choice of ρ implies
that edges are cut with correct probability ofO(ρ · ℓ) = O(

ℓ·log τ
D)while their diameter is at most 6D = 4ρ ≤

8D. Theorem 10 follows as half of all nodes are in an inner cluster.
We describe the algorithm in more detail in Section 10.3.1. There, we will provide the exact choice of pa-

rameters we use to find the inner clusters and to execute the BBG. In Section 10.3.2, we analyze the algorithm
and prove Theorem 10.

186

10.3.1 AlgorithmDescription

We now present the algorithm behind Theorem 10 in more detail. As input, we are given a weighted graph
G = (V,E, ℓ) with polynomially bounded weights, a diameter bound D, and the centers X ⊆ V . On a
high level, the algorithm consists of four stages: In the first stage, we compute an initial decomposition by the
algorithm from Theorem 9. We want to use the blurry ball growing from Lemma 10.7 on these clusters to get
the desired cut probabilities. However, we cannot directly use thems as input sets because the resulting balls
would overlap. Instead, we have to ensure somehow that the input sets are separated from each other. To this
end, we shrink the clusters to avoid overlaps. This works in two steps: First, by identifying all nodes in sufficient
distance to other clusters, and then shrinking the clusters in a specificway (whichdiffers for the two the diameter
guarantees). Finally, we get the desired decomposition by using a blurry ball growing on each shrunk cluster.
As a parameter for the blurry ball growing, we choose

ρ := (1− α) ·
(

D
cblur log(τ)

)
(10.26)

Here, α ∈ O (log logn/logn) is the value from Lemma 10.7 and cblur is a (large) constant that will be determined
in the analysis. Further, we fix

ϵ :=
1

1024 · log τ
(10.27)

as the parameter for approximate SetSSP computations. In more detail, the four stages are as follows:

(Step 1) Compute a Pseudo-PaddedDecomposition: First, we create a pseudo-padded decom-
position using the algorithm from Theorem 9.

(Step 2) Compute (Approximate) Distance to Boundary: Each node computes the approxi-
mate distance to the closest node in a different cluster. This works in two substeps

• (Substep 2a) Identify Nodes on Boundary: All the nodes of a cluster that are on the boundary of
that cluster, i.e., nodes that are adjacent to another cluster, compute their (approximate) distance
to the neighboring cluster. A node can determine whether it is on the boundary by checking its
neighbors. Let v ∈ V be a node on the boundary and letN ′

v be a subset of its neighbors, s.t., each
w ∈ N ′

v is a neighbor in a different cluster. Then, node v computes:

ω(v) = min
w∈N ′

v

d(v, w) (10.28)

• (Substep 2b) Compute (Approximate) Distance to Boundary: Finally, we create another virtual
source s′ and all nodes v on the boundary create an edge of lengthω(v). Then perform an (1+ ϵ)-
approximate shortest path from s′ and let each node compute dT (s′, v).

187

(Step 3) IdentifyWell-SeparatedNodes: We identify connected sets of nodeswith large distance
to all other connected sets. This works in two substeps:

• (Substep 3a) Find Nodes With Sufficient Distance to Boundary: Each nodes examines the dis-
tance dT (s′, v) computed in the previous step. Suppose it holds

dT (s
′, v) ≥

(
ρ

1− α
+ ϵD

)
we mark v as active and set

Va :=

{
v ∈ V | dT (v, s′) ≥

(
ρ

1− α
+ ϵD

)}

• (Substep 3b) Find Connected Set of Active Nodes: LetG[Va] be the graph induced by the active
nodes. A node can locally decide which edges are part of this graph by checking which neighbors
are active. Let Xa = X ∩ Va be the set of active centers. Perform (1 + ϵ)-approximate SetSSP
from Xa in G[Va]. Let Ta be the resulting approximate SSSP tree. Then, if and only if an active
node has a path of length 3D to its cluster center in Ta, it remains active. We denote the remaining
active nodes as V ′

a .

(Step 4) Execute Blurry Ball Growing: We execute a blurry ball growing on the active set V ′
a

with parameter ρ = (1− α) ·
(

D
cblur log(τ)

)
. As per Lemma 10.7, we obtain a superset S(V ′

a) of V ′
a .

(Step 5) Create a Spanning Tree: We perform one last approximate set-source SSSP from all cen-
ters x ∈ X ∩ V ′

a . Each node v ∈ V ′
a adds itself to the cluster of the closest center. We add all these the

refined clusters to our decomposition.

Note that the algorithm of Becker, Emek, and Lenzen only differs in Substep (3b), which is simply absent
in their algorithm. Instead they perform BBG on the active nodes computed in in Substep (3a). However, this
is exactly the additional step which ensures that the resulting clusters are connected and therefore have a strong
diameter.

10.3.2 Analysis

We now prove Theorem 10. The proof is divided into three parts. First, prove that the cluster’s diameter is
bounded by 8D in Lemma 10.8. After that, we analyze the cutting probabilities in Lemma 10.9 and show that
each edge is cut with probability atmostO

(
αℓ
D
)
. Finally, we show the algorithm’s complexity in Lemma 10.12.

Together, Lemmas 10.8, 10.9, and 10.12 prove Theorem 10.

Cluster Diameter: To start off the analysis, we show that the algorithm creates a clustering of diameter
8D. This follows more of less directly from the construction.

188

Lemma 10.8 (Diameter Guarantee). Each cluster created in the last step has strong diameter at most 8D.

First, we note the diameter guarantee follows if the blurry ball growing process never adds two nodes from
different clusters to the same ball. To prove this, let Ai be the connected set of active nodes in the cluster of
xi. Note that we enforce that all active nodes have a path of length 3D to a center that is completely contained
in the cluster. Thus, the claim already follows for the nodes inAi. Further, recall that for all nodes w that are
added to the cluster through the blurry ball growing, it holds:

d(w,Ai) = d(w, V ′
a) ≤

ρ

1− α
=

(1− α) ·
(

D
cblur log(τ)

)
1− α

=

(
D

cblur log(τ)

)
≤ D (10.29)

Now consider v, w ∈ V to be two nodes added to clusterKi of center xi ∈ X . Then, it holds:

dKi(v, w) ≤ dG(v,Ai) + max
v′,w′∈Ai

dG(v, V
′
a) + dG(v,Ai) (10.30)

≤ D + dG(v
′, xi) + dG(w

′, xi) +D (10.31)

≤ 2(3D +D) = 8D. (10.32)

Thus, to prove the diameter guarantee, we must argue why we can safely execute blurry balls growing from the
active nodes without adding active nodes of a different cluster.

Claim 16. For each active node v ∈ Va, all nodes in distance ρ
1−α are part of the same cluster.

Proof. For contradiction, assume there is node u ∈ V distance smaller than ρ
1−α to v that is in a different

cluster. In particular, let u be the closest such node. Clearly, if we prove a contradiction for u, it holds for all
other nodes, too.

We begin with the following observation: As there can be no other node in a different cluster on the exact
shortest path from u to v inG (as this node would closer to v than u), there must be boundary node w ∈ V ,
s.t., the following two conditions hold:

1. w is on the path from u to v. Therefore, it holds d(u, v) = d(u,w) + d(w, v).

2. w adds a virtual edge of length ω(w) ≤ d(u,w) to the virtual source s.

Together, these two facts imply:

dGs(s, v) ≤ dG(u, v) (10.33)

Here,Gs is the graph we obtain by adding the (virtual) supernode toG. Therefore, it holds:

ρ

1− α
> dG(u, v) ▷ Per Assumption

≥ dGs
(s, v) ▷ By Ineq. (10.33)

189

Now recall that v is an active node. Otherwise, it would not be part of the set that is blurred. Thus, it holds

dT (s, v) ≥
ρ

1− α
+ ϵD (10.34)

by the definition of active nodes. Therefore, it holds

dGs(s, v) ≥
dT (s, v)

1 + ϵ
▷ As dT (s, v) ≤ (1 + ϵ)dGs(s, v)

≥

(
ρ

1−α + ϵD
)

1 + ϵ
▷ As v is active

≥
(1 + ϵ) ρ

1−α

1 + ϵ
▷ As

ρ

1− α
≤ D

≥ ρ

1− α

This is a contradiction as this implies:

ρ

1− α
> dGs

(s, v) ≥ ρ

1− α

So, node u cannot exist, which proves the lemma.

Therefore, it is safe to execute the ball growing on a subset of active nodes without risking overlapping with
other clusters. Thus, all balls must have a diameter of 8D

Edge-Cutting Probability Next, we consider the probability of cutting edges. Altogther, we want to
show that the following holds:

Lemma 10.9. An edge of length ℓ is cut with probability at mostO
(

ℓ·log τ
D

)
.

Recall that the only operation that cuts edges is the BBG procedure, and so at first glance, Lemma 10.7
should immediately yield the result. However, this only holds true for a single iteration. The main difficulty of
this proof is that the algorithm runsmultiple iterations until all nodes are clustered, and therefore, the BBG has
many chances to cut a given edge. To handle this, we will exploit that each edge is cut or added to a cluster after
at most 2 iterations on expectation.

More precisely, the proof is structured as follows: First, we consider only a single iteration and show that
each edge is cut with probability at mostO

(
ℓ·log τ
D

)
. Further, we show that a node is added to a cluster with

constant probability, and so all its edgesmust be gone afterO(logn) iterations, w.h.p. Then, we can use a (more
or less) standard argument from the study of LDD’s. It roughly goes as follows: Any clustering algorithmA
that cuts edges between cluster with some probability α and places a constant fraction of nodes into clusters,
can be turned into an LDD with qualityO(a). The idea is simple and straightforward. Recursively apply the
algorithm until all nodes are clustered. For the sake of completeness, we prove this general statement and use it
finish our analysis.

We begin with the cutting probability of a single iteration. Here, it holds:

190

Lemma 10.10. In a fixed iteration, an edge of length ℓ is cut with probability at mostO
(

ℓ·log τ
D

)
.

Proof. Note that the blurry ball growing is the only operation that removes edges. Following Lemma 10.7, the
probability that an edge is cut by this process is ℓ ·ρ. By our choice of ρ, the short edges are cut with probability

ℓ

ρ
= ℓ ·

(
D

cblur log τ
(1− α)

)−1

:= ℓ ·
(

D
cblur log τ

(
1−O

(
log logn
logn

)))−1

≤ ℓ ·
(

D
cblur log τ

(
1− 1

2

))−1

≤ ℓ ·
(

D
2cblur log τ

)−1

∈ O

(
ℓ · log τ
D

)
This proves the desired bound on the probability.

ClusteringProbability Further,we lowerboundhowmanynodes are actually added to a cluster. Here,
the analysis differs fromBecker, Lenzen, and Emek andwe use our tighter probability bounds on the behaviour
of the Pseudo-Padded Decomposition. Whereas they show that an individual node is active with constant
probability in Substep (3a), we show that this also implies that (with constant probability) all nodes on the path
its cluster center are active as well. For this, we use a technical observation from the analysis of Theorem 9. We
show that the following holds:

Lemma 10.11 (Clustering Probability). In a fixed iteration, each node v ∈ V is clustered with probability at
least β ≥ 1/2.

Proof. Recall that each active node in the set V ′
a is added to a cluster no matter what. To this end, we will

analyse how many nodes are active. For the analysis, define γ = (1
cblur log τ + ϵ). Further, let xv now be the

center clusters v in the pseudo-padded decomposition. Note that a node v ∈ V is definitely active if the ball
B(v, γD) is fully contained in the same cluster as v. In this case, the boundary is in distance at least γD. Recall
our approximate shortest path algorithm only overestimates and therefore v passes the check and is added toVa.

This alone is not sufficient to be also added to V ′
a . Wemust additionally show that a path of length at most

3D
(1+ϵ) to xv also remains active. To this end, let Pxv

= (v1, . . . , vℓ) be the exact shortest path from xv to v
inG. We will show that with constant probability, all nodes on this path (including xv) are active. Note that
this path is at most of length (1 + ϵ)2D as per 13 from the analysis in the previous section. This implies that
there is path of active nodes of length (1 + ϵ)2D. For small enough ϵ, it holds (1 + ϵ)2D ≤ 3D

(1+ϵ) . Thus, our
approximate shortest path algorithm must find a path of length at most (1 + ϵ) 3D

(1+ϵ) ≤ 3D in the induced
active graphG[Va]. Therefore, v will remain active, is added to V ′

a , and therefore will be in a cluster.
Now, recall the analysis of Theorem 9. There, we proved that:

Lemma10.2 (PaddingProperty). Considernodev ∈ V clustered by centerxv ∈ X andaparameter ϵ ≤ γ ≤ 1
8

. Further, let Pxv = (v1, . . . , vℓ) be the exact shortest path from xv to v. Then, for each vi ∈ Pxv , the ball
BG(vi, γD) is fully contained inCxv

with probability at least

Pr

 ⋃
vi∈Pxv

BG(vi, γD) ⊂ Cxv

 ≥ e−16(γ+5ϵ) log τ − 160 log τ
nc

191

This allows us to prove the lemma. Recall cblur ≥ 128 andwe execute a pseudo padded decompositionwith
padding parameter λ = 2 log τ + 2, diameter parameterD, and ϵ ≤ 1

1024 log τ . Let γ = (1
cblur log τ + ϵ). Note

that γ ≤ 1
8 for a our choice of 1/cblur ≤ 1

128 and ϵ ≤ 1
1024 log τ . Finally, define:

Fv :=
⋃

w∈Pxv

{BG (w, γD) ⊂ Cxv}

Then, by Lemma 10.2, it holds:

Pr[Fv] ≥ e

(
−16·log τ ·

(
1

c′blur log τ
+6ϵ

))
− 160log τ

nc

Using that ex ≥ 1 + x :

≥ 1− 16 · log τ ·
(

1

c′blur log τ
+ 6ϵ

)
− 160log τ

nc

Using that 1/nc ≤ ϵ :

= 1− 16 log τ
cblur log τ

− 256 · ϵlog τ

= 1− 16

cblur
− 256 · ϵlog τ

Using that cblur ≥ 128 = 4 · 16 :

≥ 1− 1

4
− 256 · ϵlog τ

Using that ϵ ≤ 1/1024 log τ = 1/4·256·log τ :

≥ 1− 1

4
− 1

4
=

1

2

Therefore, with constant probability, a node is active all nodes on the shortest path to its cluster center are also
active. This means, there is a path of length 3D to the cluster center that only consists of active nodes. Thus
v ∈ V ′

a with probability at least 1/2 as needed.

Complexity Finally, we consider the algorithm’s runtime. The follows directly from the algorithm descrip-
tion as it only uses minor aggregations and approximate shortest-path computations.

Lemma 10.12 (Complexity). The algorithm can be implementedwith Õ(1) approximate SetSSP computations
and minor aggregations, w.h.p.

Proof. As there can be at mots O(logn) iterations, w.h.p, we focus on a single iteration. Each iteration be-
gins with one execution of the pseudo-padded decomposition; this requires only SetSSP computations with
approximation parameterO(1/logn). This follows directly from Theorem 9.

Next, we require one aggregation to let the boundary nodes compute the distances to nodes in neighboring
clusters. To be precise, each node v ∈ V is its own minor. We perform no aggregation within the minor and
jumpdirectly to the last stepwhereweperforma aggregationon the edges. Inotherwords,we skip the consensus
step and directly proceed to the aggragation step. For each incident edge {v, w} ∈ E, node v ∈ V chooses

192

the input (xv, ℓ(v,w)). Here, xv ∈ X is the (identifier of the) center that clustered v. Then, we aggregate the
minimum of all values with xw ̸= xv (by considering inputs containing xv as∞). Thus, each node learns
the distance closest adjacent node in a different cluster with one minor aggregation. To conclude the second
step, we perform one approximate SSSP on graph Gs′ that contains one virtual node s′. The approximation
parameter is ϵ ∈ O(1/logn).

In the third step, we need another local aggregation to determine which nodes are active. Similar to the step
before, each node performs an aggregation on all its edges. Then, we perform an approximate SSSPon the graph
induced by the active nodes. The approximation parameter is again ϵ ∈ O(1/logn) Finally, we perform one
execution of the blurry ball growing, which only uses Õ(1) approximate SetSSP computations with parameter
α ∈ O(log logn/logn) as per Lemma 10.7. A final SSSP to determine the connected components conludes the
step. Thus, each step only performs Õ(1) approximate SetSSP computations or aggregations. In all cases, the
approximation factor is withinΩ(1/log2). Altogether, this proves the runtime bounds from Theorem 10.

10.4 Low-Diameter Decompositions for General Graphs

In this section, we want to prove the first statement from Theorem 8. More precisely, we want to show that
we can create an LDD with quality O(logn) for any graph within Õ(1) minor aggregations and (1 + ϵ)-
approximate SetSSP’s. We show that:

Theorem 11. A Clustering Theorem for General Graphs

LetD > 0 be an arbitrary distance parameter andG := (V,E, ℓ) be a (possibly weighted) undirected
graph. Then, there is an algorithm that creates an LDD of G with strong diameter D and quality
O(logn).

Note that, at first glance, the theorem follows almost directly from the Theorem. To see it, chooseX = V

and apply the theorem to a graphG. By choosingD′ = 8D, we obtain a clustering with diameterD′ if each
node has one node in distance D′/8 and at most τ nodes in distance D′. Clearly, for every possible choice of
parameterD′, eachnodehas at least onemarkednode indistanceD′/8, namely itself. Further, for every possible
choice of parameterD′, each node has at most nmarked node in distanceD because there are only n nodes in
total. Thus, by choosing all nodes as centers, we obtain a clustering with quality O(logn) and a diameter we
can choose freely.

While the diameter and edge-cutting probability of the resulting clustering are (asymptotically) correct, we
can only guarantee that at least half of the nodes are clustered on expectation. To put it simply, we do not have
a partition as required. However, we can reapply our algorithm to the graph implied by unclustered nodes.
This clusters half of the remaining nodes on expectation. It is easy to see that, if we continue this forO(logn)
iterations, we obtain the desired partition, w.h.p. Further, this will not significantly affect the edge-cutting
probability, as each edge that is not cut will be added to a cluster with constant probability. Therefore, there
cannot be too many iterations where the edge can actually be cut. Thus, applying the algorithm until all nodes

193

are clustered intuitively produces the required LDDof qualityO(logn). We formalize and prove this intuition
in the following lemma. Not that we state it in a more general fashion to reuse later

Lemma 10.13. LetG = (V,E, ℓ) be aweighted graph. LetA be an algorithm that for each subgraph ofG′ ⊆ G

can create clustersK1, . . . ,KN where each edge is cut between clusters with probability atmostα, and each node is
added to a cluster with probability at least β. Then, recursively applyingA toG until all its nodes are in a cluster
creates an LDD of qualityO(αβ−2).

The procedure requiresO(β−1 logn) applications ofA, w.h.p.

Proof. LetG0 := G and defineGi := (Vi, Ei) with i ≥ 1 the remaining graph after we apply the algorithm
A onGi−1. On expectation, in each application ofA, a β-fraction of the nodes is added to some cluster. This
follows from the definition of β and the linearity of expectation: For each node v ∈ V , letXi

v be the binary
random variable that v gets clustered in the ith application of the algorithm, i.e., whether v will be inGi+1 or
not. It holds Pr[Xi | v ∈ Vi] ≥ β by definition. By the linearity of expectation, it therefore holds:

E [|Vi+1|] =
∑
v∈V

Pr[v ∈ Vi] (1− Pr[Xi | v ∈ Vi])

≤ (1− β)
∑
v∈V

Pr[v ∈ Vi]

= (1− β) · E [|Vi|]

Thus, a simple induction reveals that after t applications, it holds:

E [|Vt|] ≤ E [|Vt|] · (1− β)t = n · (1− β)t

After t = (c+ 1) · β · logn recursive steps, the expected number of nodes is less than

E [|Vt|] ≤ n · (1− β)t

= n · (1− β)(c+1)·β·logn

≤ n · e−(c+1) logn = n−c

Here, we used that (1− 1
x)

x ≈ 1
e . Therefore, using Markov’s inequality, we have

Pr[|Vt| ≥ 1] = Pr
[
|Vt| ≥ n−c · nc

]
≤ Pr[|Vt| ≥ nc · E [|Vt|]]

≤ 1/nc

Thus, there are no nodes left, w.h.p, proves the runtime ofO(β−1 logn) application ofA.

194

Next, we consider the cutting probability. Fix an edge z ∈ E and denote by Cutz the event that this edge is
cut in any of theO(β−1 logn) iterations. We need to show that

Pr[Cutz] ≤ O

(
α · ℓz
β2 · D

)
.

Recall that being cut means that one endpoint of z is added to a cluster, but the other is added to a different
cluster (or not at all). In the following, we say that an edge gets decided if either endpoint is added to some
cluster. If this happens, the other endpoint is added to the same cluster or not. In the former case, the edge is
saved as it cannot be cut in any future iteration. In the latter case, the edge is irreversibly cut. For a fixed edge
e ∈ E, let Yi be the event that the edge is decided in recursive step i. Recall that either endpoint of an edge
z ∈ Ei that is still fully contained in the graph is clusteredwith probability at leastβ. Thus, the probability that
any of the two endpoints is added to some cluster is also at least β. Therefore, the probability that no endpoint
is added to a cluster in the first i− 1 iterations is at most:

Pr[Yi] ≤ (1− β)i−1 (10.35)

Conditioned on the event Yi, the edge can only be cut in the ith iteration. In particular, the probability of a cut
is 0 in the first i − 1 iterations, as the event Yi implies that both endpoints survive these iterations. Further, it
cannot be cut later as it will not exist in subsequent graphs. Seeking formalization of these two observations, let
now Cutiz be the indicator that z is cut in the ith iteration. Then, the probability that an edge is cut under the
condition that one endpoint is added to a cluster inGi is:

Pr[Cut | Yi] = Pr[Cut | {z ∈ Ei} ∧ {z ̸∈ Ei+1}]

= lim
T→∞

T∑
i=1

Pr
[
Cutiz | {z ∈ Ei} ∧ {z ̸∈ Ei+1}

]
= Pr

[
Cutiz | {z ∈ Ei} ∧ {z ̸∈ Ei+1}

]
Recall that, in a fixed iteration, the edge z is cut with probability at most O

(
ℓz·α
D
)
. However, we need to

condition this probability on the fact that the edge gets decided in the ith iteration. Using the law of total
probability, we see:

Pr
[
Cutiz | z ∈ Ei

]
=Pr[{z ̸∈ Ei+1 | z ∈ Ei] · Pr

[
Cutiz | {z ∈ Ei} ∧ {z ̸∈ Ei+1}

]
+ Pr[{z ∈ Ei+1 | z ∈ Ei] · Pr

[
Cutiz | {z ∈ Ei} ∧ {z ∈ Ei+1}

]
=Pr[{z ̸∈ Ei+1 | z ∈ Ei] · Pr

[
Cutiz | {z ∈ Ei} ∧ {z ̸∈ Ei+1}

]
Therefore, we conclude:

Pr[Cut | Yi] ≤
Pr
[
Cutiz | z ∈ Ei

]
Pr[z ̸∈ Ei+1 | z ∈ Ei]

≤ O

(
α · ℓz
β · D

)
(10.36)

195

Plugging together our two bounds, the law of total probability now gives us:

Pr[Cut] ≤ lim
T→∞

T∑
i=1

Pr[Yi] · Pr[Cut | Yi] ▷Law of Total Prob.

≤ lim
T→∞

T∑
i=1

Pr[Yi] ·O
(
α · ℓz
β · D

)
▷By Ineq. (10.36)

≤ O

(
α · ℓz
β · D

)
· lim
T→∞

T∑
i=1

Pr[Yi]

≤ O

(
α · ℓz
β · D

)
· lim
T→∞

T∑
i=1

(1− β)i ▷By Ineq. (10.35)

≤ O

(
α · ℓz
β · D

)
· 1
β
≤ O

(
α · ℓz
β2 · D

)

In the last line, we used that for each xwith |x−1|
|x| ≤ 1, it holds:

lim
T→∞

T∑
i=1

(1− 1/x)i−1 = lim
T→∞

T∑
i=0

(1− 1/x)i = x

This is clearly the case for 1/x := β ≤ 1. Thus, the proclaimed cutting probability of O
(

α·ℓz
β2·D

)
follows,

which concludes the proof.

The algorithm can be implemented in Õ(1) minor aggregations and Õ(1) (1 + ϵ)-approximate SetSSP
computations with ϵ ∈ O (1/log2 n).

10.5 Low-Diameter Decompositions for k-path Separable Graphs

In this section, we want to prove the second statement from Theorem 8. More precisely, we want to show that
we can create an LDDwith qualityO(log logn) for any Õ(1)-path separable graph within Õ(1)minor aggre-
gations and (1 + ϵ)-approximate SetSSP’s. To achieve this, we present an efficient distributed algorithm that
creates an for k-path separable graphs with qualityO(log k+ log logn). Thus, it has a logarithmic dependence
on k and logn. The main technical result of this section is the following proposition that (one the first glance)
is slightly weaker than what we want. We show that:

Lemma 10.14 (A Clustering Theorem for Restricted Graphs). LetD > 0 be an arbitrary distance parameter
andG := (V,E, ℓ) be a (possibly weighted) Õ(1)-path separable graph. Then, there is an algorithm that creates
a series of disjoint clustersK := K1,K2, . . . ,KN withKi := (Vi, Ei). Futher, it holds:

1. Strong Diameter: Each clusterKi ∈ K has a strong diameter of at mostD.

2. Low Edge-Cutting Probability: Each edge z := {v, w} ∈ E of length ℓe is cut between clusters with
probability (at most)O

(
ℓz·(log k+log logn)

D

)
.

196

3. High Clustering Probability: Each node v ∈ V is added to some clusterKi ∈ K with probability at
least 1/2.

The algorithm can be implemented in Õ(k) minor aggregations and Õ(k) (1 + ϵ)-approximate SetSSP com-
putations with ϵ ∈ O (1/log2 n).

Following this proposition, we can create a clustering where not all nodes are part of a cluster. In other
words, we do not create a partition of the input graph G but leave some nodes unclustered. However, the
diameter and edge-cutting probability are (asymptotically) correct, andwe can guarantee that at least half of the
nodes are clustered on expectation. Although this is not quite what we want, the proposition is sufficient to
prove Theorem 8 for Õ(1)-separable graphs.

For k ∈ Õ(1) one application of the algorithm creates a clustering with strong diameter D and cutting
probabilityO

(
ℓz·(log logn)

D

)
.

Recall that universally k-path separable graphs are closed under minor-taking. Therefore, the graphG \ K
is also k-path separable, andwe can apply the algorithm toG\Kwith the same guarantees to cluster at least half
of the remaining nodes. By Lemma 10.13, afterO(logn) recursive applications, all nodes are clustered, and we
obtain an LDDwith qualityO(log logn) as required. For k ∈ Õ(1) one iteration of the algorithm can, w.h.p.,
be implemented in Õ(1)minor aggregations and Õ(1) (1 + ϵ)-approximate SetSSP computations with ϵ ∈
O (1/log2 n). Thus,O(logn) recursive applications are within the required time complexity of Theorem 8.

Suppose we want to construct an LDD K = K1, . . . ,KN with strong diameterD for some graphG =

(V,E). From a high-level perspective, the algorithm’s execution proceeds in two distinct phases: the backbone
phase and the refinement phase. In the first phase, we create a special partitionK[B] := K(B1), . . . ,K(BN)

of G. Each node v ∈ K(Bi) is in distance at most DBC < D to some subset Bi ⊂ Ki that consist of
Õ(k) (possibly disjoint) paths of bounded length ofO

(
D log2

)
. These paths may not necessarily be shortest

paths in G or even K(Bi), only their length is bounded. We call these subsets B1, . . . ,BN the backbones of
the clusters. In contrast to an LDD, the clusters do not have simple nodes v ∈ V as centers. As a result, the
diameter of the resulting clusters might be much larger than D. Moreover, a single cluster might not even be
connected. The partition K[B] can be constructed by a recursive divide-and-conquer algorithm executed in
parallel on all connected components ofG. The algorithm works as follows: LetGt ⊂ G be the graph at the
beginning of the tth recursive step where initiallyG0 = G. At the beginning of each recursive step, we create
an LDDC1, . . . , CN ′ of diameter (D′ ∈ O(D log2 n) ofGt. We use the algorithm from Theorem 9 for this.
All edges between two clustersCi andCj will not be considered in the following iterations. Then, in eachCi,
we compute a weak Õ(k)-path (D′, ϵ)-separator S⟩. Recall that we defined this separator to be the union of
Õ(k) paths of length 2 · D′ and some nodes in distance ϵD′ to these paths. The Õ(k) paths in Si will be the
backbone of a cluster. To add further nodes to the cluster, we first add all nodes at a random distance to Si
and then apply the blurry ball growing procedure from Lemma 10.7. This results in a clusterK(Bi) ⊆ Ci for
each subgraph Ci. We describe the exact choice of parameters for these procedures in the detailed description
of the analysis. Finally, we add all subgraphs from all clusters to our clustering K[B] and remove them from
the graph. We repeat this process with the remaing graph Gt+1 until all subgraphs are empty. As we remove
a D′-separator in each step and create clusters of diameter D′, the size of the largest connected components

197

shrinks by a constant factor in each recursion. Thus, we require O(logn) iterations overall. As we will see in
the analysis, the parameters to the subroutines can be chosen such that an edge is cut with probability at most
O(

log k logn·ℓz
DBC

) and each node v ∈ K(Bi) is in the distanceDBC to a backbone Bi.
In the second phase, we turn the resulting clustering into a LDDwith connected clusters of strong diameter

D. We do so by computing an LDD Ki = Ki1 , . . . ,KiN of strong diameter D in each cluster K(Bi). To
constructKi, we again use the generic LDD construction algorithm fromTheorem 10.3. We use a small subset
of the nodes from each backbone Bi as possible cluster centers and exploit that only a few centers can cluster
a given node. The algorithm works as follows: On each path P ∈ Bi, mark a subset of nodes in the distance
DBC to each other and use them as potential cluster centers. As we limit the number of paths in Bi to Õ(k)

and the length of each path to O(D log2 n), the number of centers is limited to Õ(k). Further, each node
v ∈ Ki has at least one center in distance 2DBC by consruction. We then use these marked nodes as centers
Xi to the algorithm of Theorem 9. This creates the desired LDDKi with strong diameter 16DBC of quality
O(log k + log logn) in each cluster. The union of all LDD’sK1, . . . ,KN is the desired LDD. By the union
bound, an edge is cut with probability O(

ℓ·log k logn
D) in either of the two phases, which proves the algorithm

when choosingDBC = D/16.

Our algorithm is inspired by the works of Abraham, Gavoille, Gupta, Neiman, and Talwar [AGG+14,
AGG+19a] and the subsequent improvement of their algorithm Filtser[Fil19]. Surprisingly, we do not require
any fundamental changes to obtain an efficient distributed algorithm. Both algorithms essentially follow the
same two-phase structure sketched above. They first constructed a partition around paths that are sampled
in a certain way, and then they refined each partition individually. For reference, Abraham, Gavoille, Gupta,
Neiman, and Talwar dubbed these subsets around which the partitions are constructed skeletons while Filtser
used the term r-core. However, their key properties are (almost) the same. We use the different term backbones
becausewe construct them slightly differently. Our contributionwhen comparing our algorithm to [AGG+14,
AGG+19a, Fil19] is that we show a) that the exact shortest path can be replaced by approximate paths and the
blurry ball growing procedure from Lemma 10.7 and, therefore, can be implemented efficiently and b) that we
can use weak separators to parallelize the algorithm and archive a logarithmic recursion depth efficiently.

Now, we want to move from this high-level idea to the actual algorithm. First, we define the clustering
constructed in the first phase as follows:

Definition 10.4 (Backbone Clustering). Let D > 0 be a distance parameter andG := (V,E, ℓ) a (possibly
weighted) graph. Then, a (α, β, κ)-backbone clustering is a series of disjoint subgraphsK(B1), . . . ,K(BN)with
K(Bi) = (Vi, Ei) where V1 ⊔ . . . ⊔ VN = V . Further, the following three conditions hold:

1. Strong Pseudo-Diameter: Each node v ∈ K(Bi) is in distance at mostD to Bi.

2. Low Edge-Cutting Probability: An edge of length ℓ is cut between clusters with probabilityO
(
ℓ·α
D
)
.

3. Backbone Property: Each backbone Bi consists of at mostO(κ) paths of lengthO(βD).

Following this definition, in the backbone phase, we create an (α, β, κ)-backbone clustering with α ∈
O(log (k logn)), β ∈ O(log2), κ ∈ O(k log2 n) and pseudo-diameter DBC ∈ O(D) for G. The core

198

idea is to recursively create weak O(k logn)-path (D log2 n,O(1
log2 n

)-separators and use BBG to carve clus-
ters around the separators. To ensure short paths and a low recursion depth, we apply the generic LDD with
parameterO(D log2 n) after carving each cluster.

We formalize this in the following lemma:

Lemma 10.15 (Backbone Clustering). Let D > 0 be a distance parameter and G := (V,E, ℓ) a (possibly
weighted) k-path separable graph. Then, there is an algorithm that creates an (α, β, κ)-backbone clustering with
α ∈ O(log (k logn)), β ∈ O(log2), κ ∈ O(k log2 n) and pseudo-diameterD forG.

The algorithm can be implemented with Õ(1)minor aggregations and (1 + ϵ)-approximate SetSSP com-
putations where ϵ ∈ O (1/log2 n).

That means we partition graphG into subgraphsK1, . . . ,KN such that eachKi contains a backbone Bi
of O(logn) paths with length at most O(D logn). Further, each node v ∈ Ki is in the distance O(D) to at
least one of the paths inBi. Finally, each edge is cutwith probabilityO(

ℓ·log logn
D). Thus, the resulting clustering

has the correct cutting probability for the edges, but the diameter might be too high. This follows because we
cannot argue that two nodes that are in distance O(D) to some set Bi are in distance at most O(2D) to one
another.

In the second phase, we must, therefore, reduce the clusters’ diameters. To this end, we exploit the specific
structure of the backbone clusters to derive clusters of strong diameterD; More precisely, for the second phase,
we show a generic lemma that allows us to turn any backbone clustering into an LDD. To be precise, it holds:

Lemma10.16. Supposewehave analgorithmA that creates a (α, β, κ)-backbone clusteringwith pseudo-diameter
DBC of aweighted graphG. Then, there is analgorithmthat creates a series of disjoint clustersK := K1, . . . ,KN

withKi := (Vi, Ei). Futher, it holds:

1. Strong Diameter: Each clusterKi ∈ K has a strong diameter of at most 16 · DBC .

2. Low Edge-Cutting Probability: Each edge z := {v, w} ∈ E of length ℓe is cut between clusters with
probability (at most)O

(
ℓz·(α+logκβ)

D

)
.

3. High Clustering Probability: Each node v ∈ V is added to some clusterKi ∈ K with probability at
least 1/2.

If each path in the backbone is an exact shortest path in its cluster, the length of the paths does affect the quality
and the cutting probability improves toO

(
ℓz·(α+logκβ)

D

)
.

The algorithm requires one application ofA, Õ(κ)minor aggregations, and ˜O(1) approximate SetSSP com-
putations with ϵ ∈ O(1/log2 n).

In our algorithm, we use the algoriithm promised by this lemma in the following way: We construct a
backbone clustering that consists ofO(k log2 n)paths of lengthO(D log2) and eachnode is in distance (4/100)·
D to these paths. With Lemma 10.16 from the previous section, this backbone clustering can be turned into
an LDD. The diameter of the resulting clusters is 12 · (4/100) · D ≤ D. Note that for our clustering, it
holds α ∈ O(log(k logn)) and κβ ∈ O(k log4). Therefore, the LDD created by Lemma 10.16 has quality

199

O(log(k logn)). As both the algorithms from Lemma 10.16 and Lemma 10.15 rely on Õ(1) aggregation and
SetSSP computations, the theorem follows.

Following the algorithm’s two-phase structure, we divide the remainder of this section into two parts, fo-
cusing on the backbone and the refinement phase. The main challenge is finding an appropriate clustering
algorithm for the first phase, as its carefully chosen properties more or less directly imply the correctness of the
second. We will first describe and analyze the algorithm behind Lemma 10.15 in Subsection 10.5.1. Then, we
describe the refinement in Section 10.5.2 and prove Lemma 10.16.

10.5.1 The Backbone Clustering Phase (Proof of Lemma 10.15)

In this section, we prove the following technical lemma which that that can can efficiently constuct backbone
clusters using approximate shortest paths and minor aggregations.

Lemma 10.15 (Backbone Clustering). Let D > 0 be a distance parameter and G := (V,E, ℓ) a (possibly
weighted) k-path separable graph. Then, there is an algorithm that creates an (α, β, κ)-backbone clustering with
α ∈ O(log (k logn)), β ∈ O(log2), κ ∈ O(k log2 n) and pseudo-diameterD forG.

The algorithm can be implemented with Õ(1)minor aggregations and (1 + ϵ)-approximate SetSSP com-
putations where ϵ ∈ O (1/log2 n).

The algorithm behind this lemma is a divide-and-conquer algorithm executed in parallel on all connected
components ofG. For the divide step, we use the LDDpromised byTheorem10 to create disjoint subgraphs of
diameterD′ ∈ O(D log2 n). The conquer step works in five synchronized phases that compute and remove a
weak (D′, ϵ)-separator fromeachof these subgraphs. Further, we create a backbone cluster fromeach separator.
This works in two steps, by first adding all nodes at a randomdistance and then applying the blurry ball growing
procedure fromLemma10.7. We repeat this process until all subgraphs are empty. Aswe remove aD′-separator
in each step and create clusters of diameterD′, this requiresO(logn) iterations.

After this intuition, we move to the detailed description of the algorithm. For this, we define some useful
notations/constants, namely

D′ = 100 · D · log2 n

ϵ =
1

10000 log2 n

DBC =
D
4

ρblur :=
D

cblur · log logn
≤ D

8

Here, cblur > 8 is a large constant that will be determined in the analysis. In the following, we will consider a
single recursive step t ∈ [1, O(logn)] of the algorithm. We will slightly abuse notation and denote the set of
all nodes that have already been added to some cluster asKt Further, we call a node v ∈ V \ Kt, which is not
yet part of a cluster, an uncharted node. A single recursive conquer step works on the graphGt = G \ Kt of
uncharted nodes works as follows:

200

(Step 1) Create Partitions: Let C1, . . . , CN be the connected components ofGt. Compute an
LDD with diameterD′ in each subgraphCi using the algorithm from Theorem 10. The resulting parti-
tions are connected subgraphs P1, . . . , PN ′ with diameterD′.

(Step 2)CreateWeakSeparators inAllPartitions: In eachpartitionPi, we compute aweak
(D′, ϵ)-separator Si using the algorithm from Theorem 6. As the distance parameter for the separator,
we chooseD′, and for the approximation parameter, we pick ϵ.

(Step 3) Create Random Ball Around Separator: We carve a ball with random diameter
O(Xi · DBC) whereXi ∼ Texp(4 · log logn). To this end, we perform a (1 + ϵ)-approximate SetSSP
for Si. Thereby, we obtain an a (1 + ϵ)-approximate SetSSP tree Ti and all nodesw ∈ Pi know a value
dTi(w, Si), which is its (1 + ϵ)-approximate distance to Si in Pi. After that, we mark every node in the
set:

KTexp(Si) := {w ∈ Pi | dTi(w, Si) ≤ (1 + ϵ) ·Xi · DBC}

(Step 4) Blur the Ball: Finally, we apply the BBGprocedure of Lemma 10.7 to the ballKTexp(Si) in
each partition. As the distance parameter for this procedure, we choose ρblur. Thus, for each setKTexp(Si)

we obtain the superset Kblur(Si) := blur (KTexp(Si), ρblur). Here, blur(S, ρ) is an application of BBG
from Lemma of 10.7 to a set S with parameter ρ.

(Step 5) Prepare Next Recursion: We choose eachKi = Kblur(Si) as a backbone cluster and
addKi toK. Each node inKi marks itself as inactive and removes itself from future iterations. All edges
between active nodes and nodes inKi are marked as cut.

We will now present the proof of Lemma 10.15. Recall that in this phase we want to efficintly construct
an
(
O(log (k logn)), O(log2), O(k log2 n)

)
-backbone clustering with pseudo-diameterDBC = (4/100) · D

for G. The proof is divided into four parts. We begin by showing that the algorithm produces a clustering
that fulfills all conditions of a backbone clustering, namley the backbone property (Lemma 10.17), the pseudo-
diameter (Lemma 10.18), and the cutting probability (Lemma 10.19). Finally, we prove the time complexity in
Lemma 10.24. Thus, altogther Lemma 10.24 and Lemmas 10.17, 10.18, and 10.19 imply Lemma 10.15.

Backbone Property First, we note that, indeed, each cluster has a backbone that consists of a few short
paths. However, it follows directly from the construction. For the sake of completeness, we note that it holds:

Lemma 10.17 (Backbone Property). Each cluster contains a backbone Bi consists of at mostO(k log3 n) paths
of lengthO(D log2 n), w.h.p.

This follows directly from the guarantees of our weak separator. Note that the LDD between each step
ensures that each subgraph has a diameter D′. Recall that by Theorem, we can construct a weak O(ϵ−1 · k ·

201

logn)-path (D, ϵ)-separator, for a weighted k-path separable graph G := (V,E, ℓ) with weighted diameter
smaller than D′. For ϵ ∈ Θ(1/log2 n), this separator has O(k log3 n) paths of length O(D log2 n), w.h.p. We
choose these paths as the backbone, which proves the lemma.

Pseudo Diameter Second, we observe the diameter of each cluster, i.e., the distance of each node to the
closest backbone isD. It holds:

Lemma 10.18 (Pseudo-Diameter). Each node v ∈ K(Bi) is in distance at mostD to Bi.

Proof. For the second statement, consider theO(k log3 n) paths in the separator and denote this set asBi. Each
node in separator Si is in the distance at most ϵD′ to one of these paths. This follows from the definition of a
weak (D′, ϵ)-separator. Our choice of ϵ andD′ yields:

ϵD′ ≤ 100D log2 n
10000 · log2 n

=
D
100
≤ D

4
= DBC (10.37)

Further, each node inKTexp(Si) is in the distance at most (1 + ϵ) ·Xt · DBC ≤ 2DBC as to Si. This follows
becauseXt ∈ [0, 1] and ϵ ≤ 1. Finally, each node v ∈ Kblur(Si) is in the distance at mostDBC toKTexp(Si)

by our choice of ρ and guarantees of Lemma 10.7. Following Lemma 10.7, the process adds nodes in distance
ρ

1−α where α ∈ O(log logn/logn). For a large enough n and cblur ≥ 4, we have

ρ

1− α
≤ D

cblur · log logn(1−O(log logn/logn))
≤ D

4
= DBC (10.38)

Summing up, let Bi the set of paths in Si, then it holds:

d(u,Bi) ≤ d(u,KTexp(Si)) + max
v∈KTexp(Si)

d(v,Bi)

≤ d(v,KTexp(Si)) + max
v∈KTexp(Si)

d(v, Si) + max
w∈Si

d(w,Bi)

≤ DBC + 2DBC +DBC

=
4D
4

= D

Therefore, the total distance from a node inKblur(Si) to a path in Si is at mostD.

Cut Probability Next, we show the cut probability, which perhaps has the most challenging proof of this
chapter. We prove that the following holds:

Lemma 10.19. An edge z ∈ E is cut with probability at mostO
(
αℓz
D
)
.

For each edge z ∈ E, two operations can cut an edge in each iteration. The decomposition fromTheorem
10 and the ballKblur(Si), which is created through blurry ball growing. The other possibility is that z is cut by
Kblur(Si). Again, there are atmostO(logn) setsSi whose ballKblur(Si) can potentially cut it. By our choice of
ρ, the probability for the ball cut to z isO (ℓz log logn/D). Therefore, we cannot simply use the union bound to

202

sum up the probabilities over all iterations. However, we can exploit that Si must be close, i.e., within distance
O(ρ), to either endpoint of z if Kblur(Si) can possibly cut it. In such a case, both endpoints z are already
addedKTexp(Si) with constant probability, i.e., they are safe before the blur procedure is even executed. This
follows from the properties of the truncated exponential distribution. Thus, on expectation, there will only be
a constant number of tries before z is either cut or safe. This is sufficient for our probability bound.

Having established the rough idea, let usnowprove the lemma indetail. Wedefine the so-called (λ, cblur, cldd)-
bounded Blurry Ball Carving Processes that resembles our algorithm:

Definition 10.5 ((λ, cblur, cldd)-bounded Blurry Ball Carving Process). LetG := (V,E,w) a weighted graph
and letDBC be a distance parameter. Then, a (λ, cblur, cldd)-bounded blurry ball carving process with parameters
λ ≥ 1 and cblur, cldd ≥ 0 creates a series of subgraphs G := G0, G1, . . ., vertex sets A1, A2, . . ., and clusters
K1,K2, . . ., s.t., it holds:

1. Kt ⊇ At is a superset of the ballBGt−1
(At, Xt · DBC) withXt ∼ Texp(λ), i.e., it holds:

Kt ⊇ BGt−1(At, Xt · DBC) (Property 1.a)

Further, it holds that:

Kt ⊆ BGt−1

(
At,

(
Xt +

1

2 · cblur · λ

)
· DBC

)
(Property 1.b)

For all edges (v, w) := z ∈ Et of length ℓ, it holds:

Pr[v ∈ Kt, w ̸∈ Kt] ∈ O

(
cblur · λ · ℓ
DBC

)
(Property 1.c)

2. Gt ⊆ Gt−1 \ Kt is a (random) decomposition ofGt−1 \ Kt that only removes edges. Further, for each
step t there is value α(Gt−1) that depends only onGt−1 and t, s.t., it holds:

Pr[e ̸∈ E(Gt) | e ∈ E(Gt−1 \Kt)] ≤ α(Gt−1) ·
ℓe
DBC

(Property 2.a)

Finally, letΩt be the set of all sequences of graphs that can be created by the process until step t, then

max
T<n

max
G1,...,GT∈ΩT

T∑
t=1

α(Gt) ≤ cldd · λ (Property 2.b)

If we chooseKt based on the (approximate) distances inG and not inGt−1 we call it aweak ball carving process.
Note that the setAt ⊆ Vt−1 can be freely chosen from the unclustered nodes.

Lemma 10.20. The algorithm from Section 10.5.1 is a (λ, cblur, cldd)-bounded blurry ball carving process with
λ = 4 log logn, cblur = 250, and cldd ∈ O(1).

Proof. We prove that it fulfills all 5 properties. The sets A1, A2, . . . are the separators that we sample in each
recursive step.

203

• Property 1.a: This property is fulfilled becauseKTexp adds all nodes in approximate distanceXi · D
100 .

Let w a node in distance at mostXi · D
100 to Si. By the guarantees of our approximation algorithm, it

holds:

dPi(w,At) ≤ (1 + ϵ) · dTi(w, Si) ≤ (1 + ϵ) ·Xi · DBC

• Property 1.b: This property is fulfilleddue to theuse ofblurryball growingwithparameterρ ∈ O
(
cblurλ
D
)
.

It holds:

d(w′, At) ≤ d(w′,KTexp(At)) + max
w∈KTexp(At)

d(w,At)

As we overestimate:

≤ d(w′,KTexp(At)) + (1 + ϵ) ·Xi · DBC

By Lemma 10.7:

≤

(
1−O

(
log logn
logn

)−1
)
· DBC

250cblurλ

+ (1 + ϵ) ·Xi · DBC

ForO
(
log logn
logn

)
≤ 1

2
:

≤ DBC

125cblurλ
+ (1 + ϵ) ·Xi · DBC

AsXt ≤ 1:

≤ DBC

125cblurλ
+ (Xt + ϵ) · DBC

≤
(
Xi +

1

125cblurλ
+ ϵ

)
· DBC

For ϵ ≤ DBC

125cblurλ
:

≤
(
Xi +

1

60cblurλ

)
· DBC

• Property 1.c: This property is also fulfilled due to the use of blurry ball growing with parameter ρ ∈
O
(
cblurλ
D
)
(cf. Lemma 10.7).

• Property 2.a: As we pick D′ ∈ O(D log2 n), a single application of Theorem 10 cuts an edge with
probabilityO (ℓz logn/D′) = O (ℓz/D logn). Therefore, we gave α(Gt−1) ∈ O(1/logn) in each recursive
step

• Property 2.b: Recall that we perform at mostO(logn) recursive step until all nodes are clustered. Fur-
ther, we have α(Gt−1) ∈ O(1/logn) for each graph, no matter the topology or size. Thus, as we apply
the decompositionO(logn) times, the parameters sum up toO(1).

204

This proves the lemma.

Now fix an edge z ∈ E. During this proof, we will only consider the connected component that contains
z. Thus, when we talk about a step At or a cluster Kt, we mean the set or cluster in z’s component. For
convenience, we further define the following terms:

λ := 4 log logn (10.39)

γz :=
ℓz
DBC

(10.40)

γ′
blur =

1

2cblurλ
(10.41)

First, we note that only because a cluster around a centerAt could potentially cut z, it does not automatically
mean that it will happen. If an edge is not cut, there are two possibilities. Either both endpoints remain active
(and will be clustered in a future iteration), or both endpoints of the edge could be added to the cluster Kt.
In the latter case, the edge would be safe as it can never be cut in future steps. Our goal is now to bound the
probability that an edge is safe. We begin this part of our analysis with a useful observation that quantifies
under which circumstances a node is added to a cluster and when it is safe from being clustered. Recall that by
(Property 1.a), the probability that both endpoints of z is added toKt if

dGt
(z,At) < Xt · DBC − γz · DBC . (10.42)

Further, by (Property 1.b), for any node v ∈ V added added toKt, it must hold:

dGt
(v,At) ≤ Xt · DBC + γ′

blur · DBC (10.43)

Going on, we say that an edge is threatened by some setAt if

Ct := {dGt
(z,At) ≥ Xt · DBC − γz · DBC}︸ ︷︷ ︸

z is not fully added to the cluster.

∩{dGt
(z,At) ≤ Xt · DBC + γ′

blur · DBC}︸ ︷︷ ︸
z may be added.

In this case, the edge is potentially affected by the blurry growing procedure andmay be cut. Note that it holds
for every edge z ∈ E by Property 1.c and Property 2.a that:

Pr
[
Cuttz | Ct

]
≤ O

(
cblur · λ · ℓz
DBC

)
︸ ︷︷ ︸

z cut byKt.

+ α(Gt−1) ·
ℓz
DBC︸ ︷︷ ︸

z cut by decomposition.

(10.44)

Otherwise, it can only be cut by the decomposition, so by Property 2.awe only have

Pr
[
Cuttz | Ct

]
≤ α(Gt−1) ·

ℓz
DBC︸ ︷︷ ︸

z cut by decomposition.

(10.45)

205

We define the set of threateners as:

Iz := {At | dGt(z,At) ≤ (1 + γ′
blur) · DBC} (10.46)

We will show that we can bound the probability of an edge being cut based on the expected number of
threateners. Note that this is slightly more general than we need it to be. It holds:

Lemma 10.21. Consider a (λ, cblur, cldd)-bounded blurry ball growing process and assume that for some universal
constants c1, c2 that are independent of λ, it holds:

E [|Iz|] ≤ c1 · e(λ+c2)·(1+γ′
blur) (10.47)

Then, for λz ∈ O (DBC/λ), it holds:

Pr[Cut] ≤ O

(
(cblur + cldd)λ · ℓz

DBC

)
(10.48)

Note that in the algorithm of Section 10.5.1 at mostO(logn) sets can threaten an edge z on expectation.
This follows, as we have at most O(logn) iterations, w.h.p., and there is at most one threatener per iteration.
Further, recall that we choose λ = 4 log logn. Therefore, we have:

c1 · e(λ+c2)·(1+γ′
blur) ≥ eλ = e4 log logn = log4(n) ≥ O(logn)

Thus, Lemma 10.21 proves Claim 10.19.
Wewill show that if an edge is endangered, the probability that both endpoints of the edge itself are added to

the cluster is constant. Thus, with a constant probability, the edge is safe from being cut in any future iteration.
Intuitively, this follows due to the exponential distribution. If the random diameter is big enough to cluster a
node close to z, it will likely also cluster z. The proof is of course more difficult as we need to account for the
fact that we truncate the distribution and the imprecision introduced by the approximate shortest paths. We
show that probability for this event depends on the expected number of centers that get close to z and - rather
surprisingly - not on the exact number. It holds:

Lemma 10.22. The probability that an edge is endangered in any of the τ steps we consider is:

τ∑
t=0

Pr[Ct] ≤
(
1− e−λ(γz+γ′

blur)
)
· eλγ

′
blur ·
(
1 +

E [|Iz|]
eλ − 1

)
(10.49)

Proof. Consider a step t. Let At be the center around which a ball is carved and let Xt be the exponentially
distributed random distance picked byAt. Further denote

ρt :=
dGt

(At, z)

DBC
(10.50)

206

as the normalized distance betweenAt and z inGt. Note thatGt and therefore also this distance depends on
the random decisions of all previous rounds, so ρt is a random variable. In the case that z is already clustered
by step t, we define the distance to be infinite. We now show that:

Claim 17. It holds:

Pr[ρt − γ′
blur ≤ Xt ≤ ρt + γz | ρt]

≤
(
1− e−λ(γ′

blur+γz)
)
· eλγ

′
blur ·
(
Pr[Xt ≥ ρt | ρt] +

1

eλ − 1

)
Proof. The proof follows directly from the definition ofXt. First, we note that it holds that

Pr[Xt > ρt − γ′
blur] =

∫ 1

ρt−γ′
blur

λ · e−λy

1− e−λ
dy =

e−(ρt−γ′
blur)·λ − e−λ

1− e−λ
(10.51)

=
e−(ρt−γ′

blur)·λ

1− e−λ
− e−λ

1− e−λ
(10.52)

=
e−(ρt−γ′

blur)·λ

1− e−λ
− 1

eλ − 1
(10.53)

On the other hand, it holds:

Pr[ρt − γ′
blur ≤ Xt ≤ ρt + γz | ρt]

=

∫ min{1,ρt+γz}

ρt−γ′
blur

λ · e−λy

1− e−λ
dy

≤ e−(ρt−γ′
blur)·λ − e−(ρt+γz)·λ

1− e−λ

Substitute ρ′ = ρt − γ′
blur

≤ e−ρ′·λ − e−(ρ
′+γ′

blur+γz)·λ

1− e−λ

≤
(
1− e−λ(γ′

blur+γz)
) e−λρ′

1− e−λ

Substitute back

≤
(
1− e−λ(γ′

blur+γz)
) e−λ(ρt−γ′

blur)

1− e−λ

≤
(
1− e−λ(γ′

blur+γz)
) e−λ(ρt−γ′

blur)

1− e−λ
− 1

eλ − 1
+

1

eλ − 1

≤
(
1− e−λ(γ′

blur+γz)
)
· eλγ

′
blur · e−λρt

1− e−λ
− 1

eλ − 1
+

1

eλ − 1

≤
(
1− e−λ(γ′

blur+γz)
)
· eλγ

′
blur ·
(
Pr[Xt > ρt | ρt] +

1

eλ − 1

)
Thus, the claim follows.

207

Next, Let Ft be the event thatKt contains (at least) one endpoint of edge z. This is clearly the case if the
random variableXt is at least ρt and we have

Pr[Ft] ≥ Pr[Xt ≥ ρt | ρt]

Further, we define the following helper variables:

α = e−λ(γ′
blur+γz)

β = eλγ
′
blur

ζ = (1− α)β

Note that by Lemma 17, we have the following relationship betweenFt and Ct:

Pr[Ct | ρt] ≤ Pr[ρt − γ′
blur ≤ Xt ≤ ρt + γz | ρt] By Definition if Ct.

≤
(
1− e−λ(γ′

blur+γz)
)
· eλγ

′
blur ·
(
Pr[Xt ≥ ρt | ρt] +

1

eλ − 1

)
By Claim 17.

:= ζ ·
(
Pr[Xt ≥ ρt | ρt] +

1

eλ − 1

)
By Definition of ζ.

Thus, by definition ofFt, it holds:

Pr[Ct | ρt] ≤ ζ ·
(
Pr[Ft | ρt] +

1

eλ − 1

)
(10.54)

In the following, let f(·) be the probability density function of ρt. By the law of total probability, we have:

Pr[Ct | At ∈ Iz] := Pr[Ct | ρt ≤ 1 + γ′
blur] By Definition ofAt.

:=

∫ 1+γ′
blur

0

Pr[Ct | ρt = x]f(x)dx By Law of Tot. Prob.

≤ ζ ·
∫ 1+γ′

blur

0

(
Pr[Ft | ρt = x] +

1

eλ − 1

)
f(x)dx By Inequality (10.54).

= ζ ·
(
Pr[Ft | ρt ≤ 1 + γ′

blur] +
1

eλ − 1

)
By Law of Tot. Prob.

= ζ ·
(
Pr[Ft | At ∈ Iz] +

1

eλ − 1

)
By Definition ofAt.

Recall that we observe our ball carving algorithm for τ steps. Note that it holds:

E [|Iz|] = E

[
τ∑

t=1

1{At∈Iz}

]
=

τ∑
t=1

E
[
1{At∈Iz}

]
=

τ∑
t=1

Pr[At ∈ Iz]

208

Further, as each endpoint of z will added to some cluster at most once, it holds:

τ∑
t=1

Pr[At ∈ Iz] · Pr[Fi | At ∈ Iz] =
τ∑

t=1

Pr[Fi] ≤ 1

Now, we compute the probability that the edge is cut in any of the τ steps. It holds:

τ∑
t=1

Pr[Ct] =
τ∑

t=1

Pr[At ∈ Iz] · Pr[Ct | At ∈ Iz]

≤ ζ ·
τ∑

t=1

Pr[At ∈ Iz] ·
(
Pr[Ft | At ∈ Iz] +

1

eλ − 1

)

≤ ζ ·

(
τ∑

t=1

Pr[At ∈ Iz] · Pr[Ft | At ∈ Iz] +
τ∑

t=1

Pr[At ∈ Iz]
eλ − 1

)

≤ ζ ·
(
1 +

E [|Iz|]
eλ − 1

)
Nowwe can wrap up the proof by considering the value of ζ .

Now, we can plug our technical results together and see that each edge (that is sufficiently short) has only a
constant probability to be endangered until step τ . Or, to put it differently, with constant probability, an edge
is added toKt if the center is close enough. It holds:

Lemma 10.23. Let λ be the parameter of the truncated exponential distribution and assume that for some uni-
versal constants c1, c2 that are independent of λ, it holds:

E [|Iz|] ≤ c1 · e(λ+c2)·(1+γ′
blur) (10.55)

Then, for γz ≤ γ′
blur, it holds:

τ∑
t=0

Pr[Ct] ∈ O (1) (10.56)

Proof. By Lemma 10.22, it holds

τ∑
t=0

Pr[Ct] ≤
(
1− e−λ(γ′

blur+γz)
)
eλγ

′
blur

(
1 +

E [|Iz|]
eλ − 1

)
(10.57)

Focusing on the last term, we see that it holds:(
1 +

E [|Iz|]
eλ − 1

)
≤ 1 +

c1 · e(λ+c2)(1+γ′
blur)

eλ − 1
= 1 +

c1 · eλ(1+γ′
blur)+c2+c2γ

′
blur

eλ − 1
(10.58)

209

Recall that it holds γ′
blur ≤ 1 and we can further simplify the formula as follows:(

1 +
E [|Iz|]
eλ − 1

)
≤ 1 +

eλc1e
3c2

eλ − 1
eλγ

′
blur (10.59)

One can easily verify that that it holds eλ

eλ−1
≤ 2 for all λ ≥ 1. To wrap things up, we define c3 := 2 · c1 · e3c2

and see that it holds: (
1 +

E [|Iz|]
eλ − 1

)
≤ 1 + 2c1e

3c2eλ(γ
′
blur) ≤ 1 + c3e

λ(γ′
blur) (10.60)

Note that c3 only depends on c1 and c2 and is independent of γ′
blur ≤ 1 and λ ≥ 1 as long as they are in their

given bounds. Moving on, we need somemore algebra to properly bound our expression. To this end, we prove
the following claim:

Claim 18. For each constant c ≥ 0 and x ∈ [0, 1/2], it holds:

ex(1− e−2x)(1 + c · ex) ≤ c · 10 · x (10.61)

Proof. We first reorder the l.h.s of the formula and see:

ex(1− e−2x)(1 + c · ex) = ex(1 + cex − e−2x − ce−x) (10.62)

= ex(1− e−2x︸ ︷︷ ︸
(∗)

+c (ex − e−x)︸ ︷︷ ︸
(∗∗)

) (10.63)

One can easily verify that for x ≤ 1, it holds e−x ≥ 1− x as this is a well-known inequality. Thus, for the first
part of the formula, it holds

(∗) = 1− e−2x ≤ 1− (1− 2x) = 2x (10.64)

Further, it holds ex ≤ 1 + x+ x2 for x ≤ 1 and thus, we have:

(∗∗) = ex − e−x ≤ (1 + x+ x2)− (1− x) = 2x+ x2 ≤ 3x (10.65)

Plugging both inequalities back into our formula gives us the following:

ex(1− e−2x)(1 + c · ex) ≤ (1 + x+ x2)(2x+ 3cx) = (1 + x+ x2)(x(3c+ 2)) (10.66)

≤ (1 + x+ x2)5cx = 5cx+ 5cx2 + 5cx3 (10.67)

≤ 10cx (10.68)

We used that x ≤ 1
2 in the last inequality. This proves the claim.

210

Now, we can finalize the proof. By choosing both γ, ϵ ∈ O
(
1
λ

)
, for a small enough hidden constant, we

can ensure that the exponent 2λ(γ′
blur) is always smaller than 1

2 . Using our claim, we get that

τ∑
t=0

Pr[Ct] ≤
(
1− e−λ(γ′

blur+γz)
)
eλγ

′
blur

(
1 +

E [|Iz|]
eλ − 1

)
As γz ≤ γ′

blur:

≤
(
1− e−λ(2γz)

)
eλγ

′
blur

(
1 +

E [|Iz|]
eλ − 1

)
By Inequality 10.60:

≤ eλγ
′
blur

(
1− e−2λγ′

blur

)
(1 + c3e

λγ′
blur)

By Claim 18:

≤ 10c3λγ
′
blur

As γ′
blur ≤

1

2 · cblur · λ
:

≤ 5c3
cblur

Thus, the lemma follows as cblur is a constant larger than one.

Finally, we can prove Lemma 10.21.

Proof of Lemma 10.21. Let Cut(τ)z be the event that edge z by some clusterKt is cut until step τ . Further, let
Cuttz be the event that edge z is cut in step t. Using all of our arguments and insights, we conclude:

Pr
[
Cut(τ)z

]
= Pr

[
τ⋃

t=0

Cuttz

]
≤

τ∑
t=0

Pr
[
Cuttz

]
By Union Bound.

=

τ∑
t=0

Pr[Ct] · Pr
[
Cuttz | Ct

]
+ Pr

[
Ct
]
· Pr
[
Cuttz | Ct

]
By Law of Tot. Prob.

≤
τ∑

t=0

Pr[Ct] ·O
(
cblur · λ · ℓz
D

)
+

τ∑
t=0

α(Gt−1) ·
ℓz
DBC

By Ineq. (10.44) and (10.45).

≤ O (1) ·O
(
cblur · λ · ℓz
D

)
+

τ∑
t=0

α(Gt−1) ·
ℓz
DBC

By Lemma 10.23.

≤ O

(
cblur · λ · ℓz
D

)
+

cldd · λ · ℓz
DBC

By (Property 2.b).

= O

(
(cblur + cldd) · λ · ℓz

D

)
This was to be shown.

Complexity Finally, we analyse the time complexity, which is straightforward.

211

Lemma 10.24 (Complexity). Each iteration of the algorithm can be implemented with Õ(k) approximate
SetSSP computations with parameter ϵ ∈ Ω(1/log2 n) and minor aggregations, w.h.p.

Proof. For the complexity, consider a fixed iteration. In the following, we summarize minor aggregations and
approximate SSSP with parameter ϵ ∈ O(1/log2 n) simply as operations. In Step 1, we compute an LDD using
the algorithm from Theorem. It requires Õ(1) operations. In Step 2, we compute a weak separator using the
algorithm from Theorem. It requires Õ(k) operations. In Step 3, we execute a SetSSP from the separator.
This clearly requires one operation. In Step 4, we execute blurry ball growing from Lemma 10.7. It requires
Õ(1) operations. Finally, Step 5 is purely local. This proves the lemma as there are at mostO(logn) iterations,
w.h.p.

10.5.2 The Refinement Phase (Proof of Lemma 10.16)

In this section, we prove Lemma 10.16 and show that a backbone clustering can easily be extended to clustering
with very favorable properties. To be precise, we show the following lemma:

Lemma10.16. Supposewehave analgorithmA that creates a (α, β, κ)-backbone clusteringwith pseudo-diameter
DBC of aweighted graphG. Then, there is analgorithmthat creates a series of disjoint clustersK := K1, . . . ,KN

withKi := (Vi, Ei). Futher, it holds:

1. Strong Diameter: Each clusterKi ∈ K has a strong diameter of at most 16 · DBC .

2. Low Edge-Cutting Probability: Each edge z := {v, w} ∈ E of length ℓe is cut between clusters with
probability (at most)O

(
ℓz·(α+logκβ)

D

)
.

3. High Clustering Probability: Each node v ∈ V is added to some clusterKi ∈ K with probability at
least 1/2.

If each path in the backbone is an exact shortest path in its cluster, the length of the paths does affect the quality
and the cutting probability improves toO

(
ℓz·(α+logκβ)

D

)
.

The algorithm requires one application ofA, Õ(κ)minor aggregations, and ˜O(1) approximate SetSSP com-
putations with ϵ ∈ O(1/log2 n).

We begin by proving a helpful auxiliary lemma. We show that we can efficiently compute so-called δ-nets
on paths with fewminor aggregations. In a δ-net, wemark a set of nodes on the path such that each node on the
path has a marked node in distance δ and two marked nodes have distance at least δ.. These nets can be seen as
a generalization of the Maximal Independent Set (MIS) or Ruling Sets for arbitrary distances and are formally
defined as follows:

Definition 10.6 (δ-nets). Let V be a set of nodes/points and let d(·, ·) : V 2 → R be a distance metric on these
nodes/points. Then, we define a δ-net of V as a setN ⊆ V , s.t., it holds:

• For each node/point v ∈ V , there is a node/point p ∈ N with d(v, p) ≤ δ.

• For two nodes/points p1, p2 ∈ N , it holds d(p1, p2) > δ.

212

Weare particularly interested in δ-nets of paths. In a sequentialmodel, these nets can trivially be constructed
by greedy algorithm that iterates over the nodes path. In the following, we sketch an algorithm that efficiently
computes these nets in our model. The idea behind the algorithm is to build distance classes of length Θ(δ)

and mark one node per class. Note that the distance between net points is w.r.t. to the path, and they could be
closer to each other when considering all paths inG (which will be important later).

Lemma 10.25. Let G = (V,E, ℓ) be a weighted graph. Consider a set of l (not necessarily shortest) paths of
length Õ(D) and let ϵ > 0 be a parameter. Then, we can compute δ-net with δ = ϵD for all paths in Õ(ϵ−1 · l)
minor aggregations.

Proof. We compute the net points on all paths sequentially. In the following, we focus on a single path P and
show that the net points can be computed with Õ(1)minor aggregations. Together with the fact that there are
l paths, this proves the lemma. We assume that w.l.o.g. each node knows whether it is the first or last node on a
path. First, all nodes compute their distance to the first node on the path (if they do not already know it). Since
the subgraphs consist of single paths, this can be done using the AncestorSum primitive. We simply need to
sum up all distances on the unique path to the first/last node. Note that the distances are exact. Next, the last
node on the path broadcasts its distance label, i.e., the length of the path, to all nodes on the path. Denote this
distance asDP in the following. Each node v ∈ P now locally computes the smallest integer i ∈ [1, DP

δ], s.t.,
it holds dP (v, v1) ≤ i ·δ. We say that v is in distance class i. Each node now exchanges its distance class with its
neighbors. This canbedone in a single local aggregation aswe can encode the distance class inO(log(nW))bits.
Finally, all nodes with an even distance class and a neighbor in a lower distance class locally declare themselves
net points. As a result of this procedure, the distance between a node and the next net point is at most 2δ and
the distance between two net points is at least 2δ. This proves the lemma for δ = ϵ/2.

Given these preliminaries, the high-level idea is to create a net on each backbone path and then use the
resulting net nodes as a center for the algorithm from Theorem 10. The algorithm works in three steps.

(Step1)CreateaBackboneClustering: Execute theblack-box algorithmA toobtain a (α, β, κ)-
backbone clusteringK = K1, . . .KN with pseudo-diamterDBC .

The following two steps are executed parallelly in each clusterKi ∈ K.

(Step 2) Create a Net on Each Backbone Path: In each of theO(κ) paths in the backboneBi
of the clusterKi, create aDBC -net. Denote the net points created by this algorithm asNi.

(Step 3) BuildClustersAroundNet Points: Apply one iteration of our algorithm fromThe-
orem 10. That means we do not reapply the main loop until all nodes are clustered; we apply it only once.
We choose the previously computed net pointsNi as centersXi in eachKi. As distance parameter choose
D = 2DBC . This

The lemma follows directly from the correctness of the subroutines that we use. Consider a single cluster
Ki created by the black box algorithmA. First, we want to show that each node v ∈ Ki has at least one net

213

point x ∈ Ni in distance D. This follows because v must be in the distance DBC to some path, and there
is a net point in the distance DBC to the closest node on that path. This holds in either of the two setups,
as it follows directly from the properties of the backbone clustering. Thus, we fulfill the covering property
required by the Theorem 10. In the packing property, we need to distinguish whether the path in the back
are approximate shortest paths or not. First, consider the case that we do not have exact shortest paths in G.
Recall that we need to bound the number of net points in distance 6D to each node as this determines the
cutting probability. As the length of each path is bounded byO(Dβ), we obtainO(β) net points per path and
O(κβ) net points in total as we have κ paths. Clearly, each node can have at most O(kβ) net points at any
distance. Thus, if we run the algorithm from Theorem with parameter τ ∈ O(kβ) and receive clusters with
strong diameter 8D = 8 · (2DBC) = 16DBC . This proves the proclaimed diameter bound from Lemma.
Further, each node is contained in a cluster with probability at least 1/2. This follows directly from Lemma
in the analysis of Theorem 10. Thereby, we showed the clustering probability of 1/2. It remains to prove the
cutting probability. An edge is cut with probabilityO(αℓzD) by the (α, β, κ)-backbone clustering in Step 1 and
with probabilityO

(
(log(κβ))ℓz

D

)
in Step 3. The former follows from the definition of the backbone clustering,

and the latter follows from Lemma 10.10 in the analysis of Theorem 10. By the union bound, the probability
ofO

(
(α+log(κβ))ℓz

D

)
follows. Further, it can be implemented with Õ(1) approximate SetSSP computations

and minor aggregations.
For the other bound, suppose eachpath is an (1+β−1)-approximate shortest path inKi. Note thatwe only

need to consider the cutting probability because the proof of the other two properties is analogous. Consider
a node v and consider all net points in the distance 6D to v. Recall that each path has length βD, and we
construct a D-net. If we compute net on approximate shortest paths of bounded length, they also have the
following extremely useful property. It holds:

Lemma 10.26. Let ϵp, ϵs ≤ 1 be two arbitrary parameters. Let P be a (1 + ϵs)-approximate shortest path of
some graphG := (V,E, ℓ) of length D · ϵ−1

s . Further, letN be a ϵpD-net on P . Then, for each c ≥ 1, every
node v ∈ V has at mostO(cϵ−1

p) net nodes in distance cD inG.

Proof. Let s ∈ V be the first node on path P , i.e., the node from which the approximate shortest path P

was computed. We now divide path P into distance classes with respect to the distancesG. For each net node
p ∈ N , we say that p is in distance class ip if ip ∈

[
1, O(ϵ−1

s)
]
is the biggest integer such that dG(s, p) ≤ i ·D,

i.e., it holds:

ip :=

⌈
dG(s, p)

D

⌉
(10.69)

Note that dG(·, ·) denotes the true distance between nodes and not the distance on path P . The latter may be
greater by (1 + ϵs)-factor.

Define p1 ∈ N to be the first net point (counting from s) on P that is in distance cD to v, i.e., it holds:

p1 = argmin
p∈N∩BG(v,cD)

dP (p, s) (10.70)

214

Note that, by this definition, all net points inBG(v, cDmust lie behind p1 on the pathP , i.e., have a greater
distance to s than p1 (with respect to path P). In the following, we will only consider these net points and do
not consider the earlier net points.

LetU ⊂ N contain the nextN = 10cϵ−1
p net nodes ofP . Denote these nodes as p1, p2, . . . , pN . Further,

as we only consider net points that are further away from s than p1, the distance between p1 and any p′ ̸∈ U is
at least:

dP (p1, p
′) =

N∑
i=1

dP (pi, pi+1) + dP (pN , p′) (10.71)

≥
N∑
i=1

dP (pi, pi+1) ≥
N∑
i=1

ϵp · D = 10 · c · D (10.72)

Further, let p1 be in distance class ip1
. We now argue that each net node p′ ∈ N that is not inU must be in

distance class at least ip1
+10c−2. First, we consider the definition of distance class ip′ , add a dummy distance

from s to v, and rearrange. We get:

ip′ =

⌈
dG(s, p

′)

D

⌉
=

⌈
dG(s, p

′)

D

⌉
+

⌈
dP (s, p

′)

D

⌉
−
⌈
dP (s, p

′)

D

⌉
=

⌈
dP (s, p

′)

D

⌉
︸ ︷︷ ︸

(∗)

−
(⌈

dP (s, p
′)

D

⌉
−
⌈
dG(s, p

′)

D

⌉)
︸ ︷︷ ︸

(∗∗)

Now recall that the distance between p1 and p′ on the path P is at least 10D by definition as p′ ̸∈ U . Thus,
for the first term, it holds:

(∗) =
⌈
dP (s, p

′)

D

⌉
(10.73)

As dP (s, p′) = dP (s, p1) + dP (p1, p
′) : (10.74)

=

⌈
dP (s, p1) + dP (p1, p

′)

D

⌉
(10.75)

By Ineq. (10.72) : (10.76)

≥
⌈
dP (s, p1) + 10cD

D

⌉
(10.77)

≥
⌈
dP (s, p1)

D

⌉
+

⌈
10cD
D

⌉
− 1 (10.78)

= iu + 10c− 1 (10.79)

215

For the second term, we use the fact that we chose ϵs to be very small. In particular, we chose it small enough
that the approximation error for all nodes of the path (even the nodes close to the end) is smaller than D. It
holds:

(∗∗) :=
⌈
dP (s, p

′)

D

⌉
−
⌈
dG(s, p

′)

D

⌉
(10.80)

≤
⌈
dG(s, p

′) + ϵs · dG(s, p′)
D

⌉
−
⌈
dG(s, p

′)

D

⌉
(10.81)

≤
⌈
ϵs · dG(s, p′)

D

⌉
(10.82)

As dG(s, p′) ≤ ϵ−1
s · D : (10.83)

<

⌈
ϵs · ϵ−1

s D
D

⌉
< 1 (10.84)

Combining our formulas, we get

ip′ =

⌈
dP (s, p

′)

D

⌉
−
(⌈

dP (s, p
′)

D

⌉
−
⌈
dG(s, p

′)

D

⌉)
(10.85)

≥ (ip + 10c− 1)− 1 = ip + 10c− 2 (10.86)

as claimed.
We now claim that only nodes in U may be close to v. Now assume for contradiction that both p1 and

p′ ̸∈ U are in distance cD to v. However, this would imply that the actual distance between p and p′ is at most
cD by the triangle inequality. It holds:

d(v, p′) ≤ cD (10.87)

Now we consider the path from s to p′. By not taking the pathP from s to p′, but instead the path via p1 and
v, we see that:

ip′ :=

⌈
dG(s, p

′)

D

⌉
(10.88)

≤
⌈
dG(s, p1) + dG(p1, v) + dG(v, p

′)

D

⌉
(10.89)

≤
⌈
dG(s, p1) + 2cD

D

⌉
(10.90)

≤ ip1
+ 2c+ 1 (10.91)

Therefore, it holds that

ip′ ≤
(10.91)

ip1 + 2c+ 1 < ip1 + 10c− 2 >
(10.85)

ip′ (10.92)

216

This is a contradiction. Thus, no node w ̸∈ U can be close to v, which implies that only nodes in U can be
close. As the number nodes in U is bounded byO(cϵ−1

p), the lemma follows.

Thus, by using Lemma 10.26 with ϵs = β−1 and ϵp = 1, there are most O(1) other points between p1

and p2. As we haveκ paths, there areO(κ) points in distanceDBC to node v. Thus, we run the algorithmwith
parameter τ ∈ O(κ), and we have an edge-cutting probability of only O(

ℓz·logκ
D). Again, the union bound

yields the claim.

10.6 RelatedWork

In the following, we review the related work for low-diameter decompositions in both sequential and dis-
tributed models. This section is structured as follows: First, in Section 10.6.1, we note many different notions
of decompositions in the literature, and the research is not restricted to the low-diameter decompositions that
follow Definition 10.1. Instead, they come in many shapes and forms with different guarantees for the clus-
ters they produce. Nevertheless, different types of decompositions are often related to each other and/or their
computations use similar techniques. We will give a short introduction to some commonly used notions of de-
compositions to give a good overview of how our algorithms perform. Then, we move on to the more specific
related work and the present the state-of-the-art decomposition algorithms. We divide this into two parts. In
the first part, we present decomposition algorithms in the (non-distributed) sequential model in Section 10.6.2.
While for general graphs, our algorithm has (asymptotically) the same quality, these algorithms perform better
than ours for restricted graph classes. However, in many cases, not by a large margin. Moreover, these algo-
rithms show what might be achievable in the future. In the second part, we move on to more directly related
works in the CONGEST model as there are no HYBRID algorithms to compare. Here, the situation is sim-
ilar. We perform better than previous work for general graphs, while for restricted graphs, we perform worse
with respect to decomposition quality. However, since our algorithm is tailored to weighted graphs, we are
much faster here than previous approaches that might take linear time while we are always bounded by the hop
diameter (which might be much smaller than n). A detailed comparison is presented in Section 10.6.3.

10.6.1 The Different Types of Decompositions

Webeginwith a generic definition that provides the basis for all forthcoming types of decomposition. A decom-
position of a weighted graphG := (V,E, ℓ)with distance parameterD is a series of subgraphsK1,K2, . . . of
G, which we will call clusters. Each node v ∈ V is contained in (at least) one of these clusters. Further, each
cluster has a diameter ofD. More precisely, we say that the cluster has a strong diameterD if the distance within
the cluster isD. In this case, the path between the nodes only uses edges where both endpoints are contained
in the cluster. Otherwise, if the distance between two nodes is only D if we are allowed to consider all edges
ofG, we say that the cluster has a weak diameterD. Note that a cluster of weak diameterD is not necessarily
connected. Given this underlying definition, we now present three types of decompositions. First, there is the
deterministic counterpart to our probabilistic LDD’s. Here, we do not bound the probability that a specific
edge of length ℓz is cut, but instead— since it is deterministic—we count the overall number of edges of length
ℓz that are cut. It holds:

217

Definition 10.7 (Deterministic Low-Diameter Decomposition). A deterministic low-diameter decomposition
with diameterD of a weighted graphG := (V,E, ℓ)withm edges is a partition ofG into subgraphsK1,K2, . . .

of diameterD, where each node is contained in exactly one cluster. We say that decomposition has quality α, the
number of edges of length ℓz with endpoint in different clusters is bound bym · α·ℓzD .

Note thatm· α·ℓzD is exactly the expectednumber of cut edges in probabilistic LDDof qualityα. Thus, with
constant probability, the probabilistic version roughly cuts the same number of edges. However, without fur-
ther information about the specific random choicesmade by the corresponding algorithm, a probabilistic LDD
could cut many more edges. While this can be mitigated with standard probability amplification techniques,
i.e., executing the algorithmO(logn) and picking the iteration that cute the fewest edges, a deterministic LDD
does not have this problem in the first place. In a deterministic LDD,we have the guarantee that nomatter what
happens in the execution of the algorithm, less thanm· α·ℓzD edges of length ℓz are cut. Thismakes these decom-
positions very useful when we do not have the time or resources forO(logn) repetitions. A typical example is
distributed algorithms for local problems, where we aim for sublogarithmic runtimes. As a final remark before
getting to the next type of decomposition, in unweighted graphs, some authors use slightly different notation
when describing LDD’s. While the definition above focuses on the clusters’ diameter, some works emphasize
the number of cut edges. That is, they define it as a decomposition that cuts ϵ ·m edges and creates a cluster of
diameterD := O(ϵ−1).

The next class of decompositions we consider in this section are so-called padded decompositions. While
an LDD only gives guarantees for single edges and node pairs, in a padded decomposition, we have a guarantee
that all nodes in a certain distance are contained in the same cluster. This makes them more versatile in many
scenarios. Formally, they are defined as follows:

Definition 10.8 (Padded Decomposition). A (β, γmax)-padded decomposition with diameter D of a weighted
graphG := (V,E, ℓ) is a partition ofG into subgraphsK1,K2, . . . of diameterD, where each node is contained
in exactly one cluster. For each v ∈ V , letK(v) denote the cluster that contains v. Then, for each γ ≤ γmax, it
holds

Pr[B(v, γD) ⊆ K(v)] ⩾ e−βγ . (10.93)

Typically, the parameter γmax is in the magnitude of C/β for someC ≥ 1, so we get a guarantee for balls of
diameter C·D/β or smaller. While other values of γmax are not forbidden by the definition, we are not aware of
any work where γmax is smaller than O(1/β). With this in mind, note that the guarantees of a padded decom-
position are provably stronger than the guarantees of a LDD, i.e., a (β,C/β)-padded decomposition implies a
(probabilistic) LDD of quality α. To verify this, consider an edge (v, w) ∈ E of length ℓz = γD and suppose
we construct a padded decomposition. By definition of the padded decomposition, the ballB(v, γD) is fully
contained inK(v) with probability e−βγ ≈ 1 − βγ = 1 − β·ℓz

D . In this case, the edge is not cut and thus,
any padded decomposition is also a low-diameter decomposition.

The final type of decomposition that we introduce is so-called neighborhood or sparse covers (both names
appear in the literature). As with padded decomposition, the goal is to create clusters, s.t., for every node v ∈ V

there is a cluster that contains the full ballB(γD). In contrast to the two previous concepts, a node can now be

218

inmore than one cluster to achieve this goal. However, the number of clusters that contain a given node should
be kept small. Formally, they are defined as follows.

Definition 10.9 (Neighborhood/Sparse Cover). A (γ, s)-neighborhood cover with diameter D of a weighted
graphG := (V,E, ℓ) is a partition ofG into subgraphsK1,K2, . . . of diameterD, where each node is contained
in at most s clusters. Then, for each node v ∈ V there is at least one clusterK that containsB(v, γD).

The paramter s is sometimes called the degree of the cover, while (1/γ) is called the diameter blowup. It is
easy to establish a connection between padded decompositions and neighborhood covers. Suppose thatwe have
(β,C/β)-padded decomposition for parameters β,C ≥ 1. Then, w.h.p., for every c ≤ C we can construct
a (c/β, O(ec · logn))-neighborhood cover through O(ec · logn)) executions of the padded decomposition
algorithm. Ifwe chooseγ = c/β, the ballB(v, γD) is contained inK(v)withprobability at least e−c after each
execution. This follows directly from the definition of a padded decomposition. Thus, after s := O(ec · logn)
independent executions of the padded decomposition algorithm, each node is in s clusters and, w.h.p., there
is one cluster that contains B(v, γD). Therefore, the difficulty in studying neighborhood covers is finding a
construction beats this simple trick.

10.6.2 Decompositions in SequentialModels

In the following, we provide an overview of seminal contributions and developments in low-diameter decom-
positions in the classical sequential model, focusing on minor-free and general graphs.

GeneralGraphs Several algorithms constructLDD’swith theoptimal qualityO(logn) for general graphs.
In an often cited paper, Bartal [Bar96] establishes LDD’s with quality O(logn) in general graphs with n ver-
tices. The techniques used in that paper bear the greatest resemblance to our work: In each step, an arbitrary
unclustered node vi and a (roughly) exponentially distributed diameterDi are chosen. Then, all nodes in the
distanceDi to vi are added to a cluster. More precisely, the paper shows that there exists a constant c such that,
for anyD > 0 and k ≥ 1, any n-vertex graph can be partitioned into partitions of diameterD, such that pairs
of vertices with a distance at most D

ck are clustered together with a probability of at least n− 1
k . Bartal [Bar96]

further proves a lower bound of O(logn) for the approximation of the metric of any graph. This can be ex-
tend to show an LDD for a general graph must have a cutting probability of at leastO(

lognℓz
D) for every edge

of length ℓz and clusters with diameterD. Thus, Bartal’s construction is optimal for general graphs. As men-
tioned earlier, there are other types of clustering for general graphs. In their seminal paper [AP90], Awerbuch
and Peleg present a neighborhood cover for general graphs with stretch 4k − 1 and degree 2kn1/k. That is,
each node is in 2kn1/k clusters of strong diameter∆ and every node’s D

4k−1 -neighborhood is in one of these
clusters. As noted by Fitsler in [Fil19], the algorithm in [AP90] createsO(k · n1/k) partitions with strong di-
ameterD, Suppose, we sample a single partition from [AP90] uniformly at random. Then, any edge (v, w) of
length D

4k−1 is preserved with probability at leastΩ
(
1
k · n

−1/k
)
. Thus, it is also a weaker form of the padded

decomposition and also weaker than an LDD as each edge is node’s D
4k−1 -neighborhood is cut with the same

probability. Recently, Fitsler [Fil19] improved this type of decomposition

219

Kr-free Graphs Now, we move the results for graphs that exclude a fixed minorKr . Starting chronologi-
cally, Klein, Plotkin, and Rao [KPR93] demonstrate that every minor-free graph of the formKr admits a weak
decomposition scheme with padding parameterO

(
r3
)
for all distancesΩ(1). This directly implies a weak di-

ameter LDDwith qualityO
(
r3
)
. Later, Fakcharoenphol andTalwar [FT03] improved the padding parameter

toO
(
r2
)
withweak diameter. Finally, Abrahamet al.[AGG+19a] prove thatKr minor free graphs admitweak

(O (r),Ω
(
1
r

)
)-padded decomposition scheme. Considering strong diameters, Abraham et al. [AGMW10]

present a strong 2O(r) LDD forKr minor-free graphs. The state-of-the-art algorithm was presented by Filtser
by building on the result of Abraham, Gavoille, Gupta, Neiman, and Talwar [AGG+19a]. Filtser showed that
this also holds for strong decompositions for distance values smaller thanO(1/r). The currently best algorithm
is an algorithm presented in [Fil19] that achieves α ∈ O(r). For graphs of bounded genus g and treewidth τ ,
[AGG+19a] presents algorithmswith padding parameterO(log g) andO(log τ). These algorithms are conjec-
tured to be optimal. However, for generalKr-free graphs, an algorithmwith paddingO(log r) remains elusive.

10.6.3 Decompositions in CONGEST

In the following, we provide an overview of seminal contributions and developments in low-diameter decom-
positions in the CONGEST model. We put our focus on minor-free graphs and general graphs and compare
the state-of-the-art with our technique. In a nutshell, the prior algorithms perform significantly better in un-
weighted graphs while our results are significantly faster in weighted graphs while still providing a highly non-
trivial bounds. The main results are summarized in Table 10.1. Therin, we also provide an overview of our
results as a reference.

General Graphs The landscape of LDD algorithms for generalweighted graphs is very comprehensible.
Asmentionedbefore, Becker, Emek andLenzen [BEL20] construct a low-diameter decompositionusing blurry
ball growing technique we reused for our construction to build a decomposition of quality O(logn) of the
graph. The decomposition is weak but has the additional property that each edge is in at mostO(logn) clus-
ters. This places it between weak and strong decompositions as they show that for many applications, their
notion is sufficient. Further, Rozhon, Elkin, Grunau andHaeupler [REGH22] make two significant improve-
ments compared to [BEL20]. They present a decomposition with strong diameter (instead of weak), and their
construction is deterministic (instead of randomized). Conversely, their quality is only O(log3 n), i.e., their
algorithms cut more edges than the algorithm of [BEL20]. Just as our algorithm, both algorithms only rely on
approximate SetSSP computations with ϵ ∈ O(1/ log3 n). Thus, they can be implemented on the CON-
GEST, PRAM, and HYBRIDmodels of computation.

Kr-free graphs We now shift our focus to Kr-free graphs. For the following comparisons, we consider
unweighted graphs that excludeKr as a minor. Note that our algorithm also works (and was, in fact, designed
for) weighted graphs. Recall that our algorithm always has a complexity of Õ(r · HD) for any goal diameter
D. However, in the unweighted case, this could be decreased to Õ(D). As our algorithm works with any
SSSP algorithm, we can use a faster one if D ≤ HD. In the unweighted case, we can simply use the trivial

220

BFS algorithm that computes the distance to all nodes in the distance r in r rounds. For simplicity and easier
comparison, we omit the factors that depend on the graph’s degree in the following.

We will now compare our work to three existing CONGEST algorithms that construct similar clusterings.
First, Levi,Medina, andRon [LMR21] design a distributed algorithm forKr-free graphs that computes a LDD
with D = ϵ−O(1) that cuts ϵ · n edges in ϵ−O(1) · O(logn) rounds. This is not immediately comparable to
our bounds, so we must look at the implications of this result. Recall that each Kr-free graph has O(r · n)
edges. Therefore, if we cut ϵ · n ∈ O

(
ϵ
r · |E|

)
edges, we cut a O(ϵ/r)-fraction. The diameter of the cluster

isD = ϵ−O(1) = ϵ−c. For simplicity, we assume that e−c ≥ r and the constant c hidden in the exponent’s
O(1) is larger than 3. Thus, if measured in terms ofD, the term ϵ

r becomes

ϵ

r
=
Dϵ
D · r

=
ϵ−cϵc·1/c

D · r
=

ϵ−c(1−1/c)

D · r
=
D1−1/c

D · r

By this calculation, we cut aO
(

D−1/c

r · |E|
)
-fraction of the edges. Now assume that we pick a random edge

z; the probability of picking an edge that is cut isO
(

D−1/c

r

)
. Given each edge’s length is ℓz = 1, the proba-

bility can be expressed asO
(

D1−1/cℓz
D·r

)
. Thus, we can view the process as LDD with qualityO(D1−1/c/r),

which means that the quality declines with increasingD. For anyD ∈ o(log logn), this algorithm cuts fewer
edges than ours, but for larger values ofD, our algorithm prevails. Similarly, forD ∈ Õ(1), the algorithm of
[LMR21] is faster, but for larger values, our algorithm is faster.

Improving this result of Levi, Medina, and Ron, Chang and Su [CS22] show that a low-diameter decom-
positionwithD = O(ϵ−1) can be computed in ϵ−O(1) · logO(1) n roundswith high probability and determin-
istically in ϵ−O(1)2O(

√
logn log logn) rounds in the CONGEST model for anyKr-free graph. Chang [Cha23]

later improved the deterministic runtime toO(D log∗ n + D5). In a direct comparison, we perform worse as
our algorithm would cut aO(ϵ · log logn)-fraction of the edges in this scenario. However, the comparison of
the runtime is more nuanced. the algorithm of [CS22] is strictly better for small diametersD ∈ Õ(1) as it is
faster, deterministic, and, as far as we can tell, has no galactic constants. On the other hand, our algorithm is
asymptotically faster for large diameters (but also cuts more edges).

The techniques used in [CS22, Cha23] differ significantly from ours. They first perform a so-called ex-
pander decomposition to create clusters of high conductance. Tobeprecise, their clusters havediameterO(ϵ−1)

and cut an ϵ-fraction of the edges. Then, they show that each cluster has a high-degree node that can gather all
edges of the cluster. This node can locally execute a sequential decomposition algorithm and inform the edges
if they are cut. Thus, their quality is good as the best sequential clustering algorithm, which currently stands
as O(r) due to [Fil19]. Compared to that, the benefit of our approach is that a) it also works on weighted
graphs and b) is model-agnostic, so we are not restricted to CONGEST. This universality is bought, however,
by cutting more edges than [CS22, Cha23].

221

Ref. Quality Type Diameter Runtime Weighted Comment
SE

Q
U
EN

T
IA

L

[KPR93] O
(
r3

)
Padded Weak Õ(polyn) ✓ Kr -free

[FT03] O
(
r2

)
Padded Weak Õ(polyn) ✓ Kr -free

[AGG+19a] O (r) Padded Weak Õ(polyn) ✓ Kr -free
[AGMW10] O(er) LDD Strong Õ(polyn) ✓ Kr -free
[AGG+19a] O

(
r2

)
Padded Strong Õ(polyn) ✓ Kr -free

[AGG+19a] O (log τ) Padded Strong Õ(polyn) ✓ Treewidth τ
[AGG+19a] O (log g) Padded Strong Õ(polyn) ✓ Genus g
[Fil19] O (r) Padded Strong Õ(polyn) ✓ Kr - free
[Bar96] O (logn) Padded Strongd General graphs

C
O
N
G
ES

T

[LMR21] O
(
D1−1/c/r

)
Det. LDD Strong O

(
DO(1)

)
× Kr -free

[CS22] O (r) Det. LDD Strong O
(
DO(1)

)
× Kr -free

Thm. 8 + Lem. 1.2 O (log τ + log logn) LDD Strong Õ(τHD) ✓ Treewidth τ
Thm. 8 + Lem. 1.2 O (log logn) LDD Strong Õ(HD) ✓ Planar
Thm. 8 + Lem. 1.3 O (log g + log logn) LDD Strong Õ(g ·HD) ✓ Genus g
Thm. 8 + Lem. 1.4 O (f(r) · log logn) LDD Strong Õ(r ·HD) ✓ Kr -free
[BEL20] O (logn) LDD Weak Õ(HD+

√
n) ✓ General graphs

[REGH22] O
(
log3 n

)
Det. LDD Strong Õ(HD+

√
n) ✓ General graphs

Thm. 8 O (logn) LDD Strong Õ(HD+
√
n) ✓ General graphs

Table 10.1: An overview of the related work on decomposition schemes for various graph families in the sequential model and LDD’s for various graph
families in the CONGEST model.

10.7 Conclusion & FutureWork

In this chapter of the thesis, we presented two novel distributed decomposition schemes for general and re-
stricted graphs that perform favorably in all relevant parameters and are applicable to a variety of models. We
conclude this chapter by summarizing our results and identifying possible directions for future work.

For general graphs, we provided a decomposition scheme that produces decompositions with strong diameter
and qualityO(logn). In the CONGEST model, the algorithm requires Õ(HD +

√
n) rounds, w.h.p. If we

ignore the polylogarithmic factors, then the runtime and quality are asymptotically optimal for randomized
algorithms on general graphs. Therefore, a possible direction for future work would be to remove the hidden
polylogarithmic factors. These factors are primarily caused by the black-box approximate SetSSP algorithm
we invokeO(logn) times. Note that improving the logarithmic factors of this algorithm is an interesting goal
on its own. Another open question that remains is if the guarantees of our algorithm can also be achieved
deterministically. Or, in other words, is the deterministic construction of decompositions for general graphs
with optimal runtime and quality? As our results are deeply connected with the properties of the (truncated)
exponential distribution, this likely requires very different techniques and/or novel ideas for derandomization.

Second,wepresented a decomposition schemewithqualityO(log k+log logn) for universallyk-path separable
graphs, a graphs class that contains many graphs of practical relevance. Albeit having decomposition quality
that is exponentially smaller than the quality for general graphs, our algorithm is not optimal and could be
improved in future work. As the research on universally k-path separable graphs is scarce, the natural question
is, what quality can one hope and/or should aim for!? To this end, recall that all universally k-path separable

222

graphs excludeK4k+1 as a minor. So, again, we use the known resultsKr-free graphs as a baseline to compare
ourselves to. It has long been conjectured that anyKr-free graph admits that padded decomposition scheme
withparameterO(log r). However, finding an algorithmthat achieves this parameter for generalKr-free graphs
remains elusive, even in the sequential setting. Here, the best-knownquality isO(r)due to Filtser [Fil19]. From
this perspective, our algorithm appears to performwell. The dependence on k is only logarithmic, just as in the
conjectured bound, and for most practical problem instances, the additive O(log logn) should be extremely
small. Thus, the bounds do not appear too bad if k is also reasonably small. But this first glance is misleading.
For a better context, recall thatKr-free graphs constitute one of the most important classes of k-path separable
graphs. To be precise, every Kr-free graph is universally 2O(poly (r))-separable. Thus, if applied to Kr-free
graphs directly, our decompositions have a quality of only O(poly (r) · log logn). Even for small values of r,
this term quickly becomes prohibitively large and unsuitable for practical applications. Therefore, the bounds
specific to minor-free graphs provide a more reasonable frame of reference.

Given this sobering insight, we identify two possible directions for future work to improve the quality of
the embeddings. First, one could try and show that allKr-free graphs are (universally) f(r)-seperable for some
f(r) ∈ O(poly(r)). The bound of f(r) ∈ 2O(poly r) proven by Abraham and Gavoille is not tight, so one
could try to improve it using the arguments that do not rely on the decomposition by Seymour and Robertson
and use perhaps more straightforward combinatorics. Here, the work by Ghaffari and Kuhn, which achieves
a similar result for different graph properties for unweighted graphs, could be a starting point [GH21]. This
direction does not (necessarily) require the conception of new algorithms. Instead, it requires new topological
insights intoKr-free graphs that may be of independent interest.

Second, one could try to develop better distributed algorithms tailored to more specific graph classes. So,
what can one hope for here? Asmentioned in the related work, a distributed algorithmwith a padding parame-
terO(r) for unweightedKr-free graphs exists already. More precisely, this algorithm can be adapted to always
match the bounds of the best-known sequential algorithm. Thus, for unweighted graphs, any improvement in
the realm of sequential algorithm immediately implies an improvement for unweighted graphs in CONGEST.
However, the runtime of the corresponding technique depends on the emerging clusters’ hop diameter. This
is undesirable for weighted graphs as here the clusters’ hop diameter can be as large asn even for smallweighted
diameters. For these graphs, we instead want the runtime to be in themagnitude ofO(poly(rHD) ·no(1)), i.e.,
polynomially in the hop diameter and parameters implied by the excluded minor but sublinear in n. There-
fore, we focus on weighted graphs and discuss how the existing sequential algorithms could be translated to
the distributed and parallel setting. We focus on Abraham et al.’s work [AGG+19a], which (together with the
improvements made by Filtser [Fil19]) provides state-of-the-art guarantees for graphs that exclude a fixed mi-
nor, graphs of bounded Euler genus, and graphs of bounded treewidth. In the following, we sketch how our
techniques could help adapt these algorithms to the distributed setting.

GeneralKr-freeGraphs For generalKr-free graphs, simply combining Abraham et al.’s algorithmwith
ours seems promising. As our algorithm for k-path separable graphs is already heavily inspired by their algo-
rithm, the general structure of the algorithms is very similar. In both algorithms, one samples a set of random
paths (in a certain way) and builds clusters around these paths. For every connected component C , the algo-

223

rithm of [AGG+19a] keeps track of all clusters that neighbor a node in C . When creating a new cluster, the
algorithm samples a set of shortest paths inC connecting all neighboring clusters. As the graph isKr-free, one
can show that this requires at most r paths. Then, the algorithms samples clusters around these paths. The
central insight of Abraham et al. is that with their sampling technique, there are at most O(2r) sets of paths
close to a given node v ∈ V on expectation. Recall that we have shown in this thesis (in large part based on
their arguments) that if there are at most τ sets of paths close to a given node v ∈ V on expectation, then one
can construct decomposition with qualityO(log τ). For τ ∈ O(2r), the quality ofO(r) follows.

This sampling technique can easily be combined with ours without blowing up the runtime. In every step,
wefirst sample a randompath according toour algorithmand then some additional paths according toAbraham
et al.’s algorithm. Thus, the main effort would be to show that the different sampling techniques do not affect
eachother toomuch. On the onehand,wemust ensure that our additional operations and restrictionsmaintain
Abraham et al. ’s invariants and prove that each node is still only threatened by at most O(2r) paths. This is
difficult because our algorithmuses approximate shortest paths instead of exact paths and shrinks the connected
components, occasionally using another padded decomposition. On the other hand, we would need to show
that we still sample a weak separator over time. However, if these changes can be carried through both the
analysis of Abraham et al. and the construction of weak separators, the quality of the emerging decomposition
would improve toO(r).

Planar Graphs If adapting the algorithm for generalKr-free graphs turns out to be too difficult or sim-
ply impossible, it seems worthwhile to focus on planar graphs instead. As each planar graph excludesK5 as a
minor, the algorithm from for generalKr-free graphs can be used. However, the adaption to the distributed
setting is much easier. Here, we can exploit that (a) exact shortest paths can be computed in Õ(D2) due to
Li and Parter [LP19] and (b) we can compute proper (and not weak) separators that consist of O(1) paths.
However, recall that our approach requires a SetSSP algorithm that can be applied that can be applied in a
divide-and-conquer fashion. It is not trivially clear the algorithm of Li and Parter supports this or can be ex-
tended to such an SetSSP algorithm, but it seems likely. Supposing that this is possible, we can consider the
exact shortest paths when sampling paths and building separators (as in Abraham et al.’s algorithm) and also do
not require the decomposition of the graph between steps (as in Abraham et al.’s algorithm). With these addi-
tional assumptions, the arguments made in the analysis of Abraham et al.’s algorithm are applicable in our case
as well 2. Therefore, a CONGEST algorithm with runtime Õ(D2) and qualityO(1) seems to follow directly
or, at the very least, with little additional work. Further, developing an exact SetSSP for planar graphs likely
has further application than just decompositions, which makes this a worthwhile direction for future work.

Graphs of Bounded Euler Genus The algorithm for graphs with bounded genus builds upon the algo-
rithm for planar graphs. It works in three steps. First, it sequentially picksO(g) shortest paths (in a certainway)
to reduce the genus to 0. Then, it grows clusters around these paths. Finally, it applies the algorithm for planar
graphs. This results in a decomposition of qualityO(log g) as each node is threatened by at mostO(g) paths
in the first step andO(1) in the last.

2To to be precise, the process follows the definition of a skeleton process as defined in Definition 6 of [AGG+19a]. Therefore, their
analysis, particularly Lemma 7, applies directly.

224

In comparison, our technique only archives the quality ofO(log g + log logn) even if we had access to an
exact shortest path algorithm. This follows because we do not compute the shortest paths whose removal de-
creases the genus but sample randompaths that intersectwith them (which requiresO(g logn)paths to remove
them all). Thus, building an algorithm that can compute these paths would greatly improve the decomposi-
tion. Computing the paths directly requires (among other things) the computation of an embedding of the
input graphG. Currently, to the best of our knowledge, no distributed algorithm achieves this in Õ(poly (D))

time for graphs of a genus greater than 0, i.e., for graphs of bounded genus that are not planar. With access
to such an embedding, our techniques would likely be sufficient to create padded decomposition. Note that
a distributed construction of such an embedding would be a breakthrough in its own right, with implications
beyond constructing decompositions.

GraphsofBoundedTreewidth Finally,we conjecture that the algorithmfor graphsofbounded treewidth
τ can converted to the distributed setting by combining the techniques in this thesis with the algorithms pre-
sented by Izumi et al. in [IKNS22]. Therin, the authors present an exact shortest path algorithm and the effi-
cient construction of separators that consist ofO(τ) nodes in Õ(poly τ ·D) time, w.h.p. As we argued before
for planar graphs, if their shortest path algorithm can be upgraded to a SetSSP algorithm, these two building
blocks (exact SetSSP and fast construction of small separators) are enough for a fast decomposition scheme of
optimal quality.

Summing up, we believe that - due to their generality- our techniques provide many opportunities to develop
better decomposition algorithms in the future. Nevertheless, no matter the graph class, some work is required
to adapt existing sequential algorithms. Further, as we heavily rely on black-box algorithms, advances in the
computation of shortest paths will immediately improve our algorithms as well.

225

226

千里之行，始于足下.
(A path of a thousand miles begins with a single step.)

Chinese Proverb, attributed to Laozi

11
Distributed Construction of Compact Routing

Schemes

In this chapter, we finally consider the second major problem that was presented in the introduction. To
be precise, we now consider the efficient construction of so-called compact routing schemes for general,
k-path separable, and planar graphs inCONGEST andHYBRID. The results in the chapter are based on

the following publication:

JinfengDou,ThorstenGötte,HenningHillebrandt,Christian Scheideler, and JulianWerthmann. Brief
announcement: Distributed construction of near-optimal compact routing schemes for planar graphs.
In Rotem Oshman, Alexandre Nolin, Magnús M. Halldórsson, and Alkida Balliu, editors, Proceedings
of the 2023 ACM Symposium on Principles of Distributed Computing, PODC 2023, Orlando, FL, USA,
June 19-23, 2023, pages 67–70. ACM, 2023

As mentioned in the introduction, routing schemes are distributed algorithms that manage the forwarding
of data packets between network devices. Thus, developing efficient routing schemes is essential to enhance
communication among multiple parties in distributed systems. More precisely, a routing scheme is defined as
follows: Each node v ∈ V gets assigned a so-called routing table Rv . With the help of these tables, a node
decides where to send a received message. Further, a routing scheme may assign a (short) labelLt to each node
t ∈ V . These labels are attached to each message intended for t ∈ V . This means the nodes have additional
information on the target node before sending the message. Upon receiving a message with label Lt, the label

227

of node t ∈ V , a node v ∈ V checks its routing tableRv and decides the message’s next hop. Thus, we can
view a routing scheme as a function f(·) that, given a tableRv and a label Lt, outputs a node w ∈ V where
the message is sent next. Repeatedly applying this function with labelLt starting at node s ∈ V creates a path
Pst from s to t inG. More formally, it holds:

Pst := (s = v1, v2, . . . , vl−1, vl = t)

For i ∈ [2, l], it holds:

vi = f
(
Rvi−1

,Lt

)
vi ∈ Nvi−1

Here,Nvi−1
denotes the neighbors of vi−1 inG.

In this chapter,we are interested in so-called compact routing schemeswith low stretch. These routing schemes
optimize the distance of their routing paths w.r.t. the shortest path metric of the graphG = (V,E, ℓ) repre-
senting the network. A trivial routing scheme could let each node store the complete network topology as the
routing table. This, of course, is highly undesirable as it causes the routing tables to be prohibitively large. Not
only does it strain the node’s memory, but larger tables also take longer to compute as the nodes need to learn
more information. Thus, an efficient routing should store as little information as possible. We call a routing
scheme compact if it only stores as little information as possible on each node, i.e., the routing tables and labels
are small, that is, strictly sublinear in the number of devices. Finally, the stretchmeasures the ratio between the
distance of the routing scheme’s path and the distance of the optimal path. Let dG(s, t) be the exact distance
between nodes s, t in G and let dPst(s, t) be the distance on the path Pst computed by the routing scheme.
Then, the routing scheme has stretch α ≥ 1 if for all s, t ∈ V , it holds:

dPst
(s, t)

dG(s, t)
≤ α.

The challenge in constructing good compact routing schemes is finding schemes of low stretch and small tables
and labels that can be computed efficiently (with respect to the model of computation).

Note that the introduction of labels simplifies the routing, as the nodes have additional information on
the target. On the flip side, this introduces the burden of distributing the label of a node t ∈ V to all nodes
that want to communicate with t. This would not be necessary in a routing scheme without labels, in so-called
name-independent routing. So, the legitimate question is why we bother with labeled routing when there is a
seemingly preferable, more general, alternative. There are both practical and theoretical justifications for this.
From a practical standpoint, there are mechanisms for coping with the fact that a node needs to know the
address of the target it wants to reach. Notably, the Internet uses labeled routing, where the routing is based
on IP addresses. The IP address of a web server is not its unique physical address but is computed and assigned
based on its location in the network. The IP address for a specificwebpage can be obtained through the so-called
DomainName Service, orDNS for short [Wik24a]. Simply put, there are so-called DNS servers that store the
IP addresses of all websites. If users want to visit, say google.com, they first send a message to a DNS server
to learn the IP address of Google’s web servers. In other words, they obtain the server’s label. Then, they use

228

google.com

this IP address to send their request to the actual server. Thus, labeled routing is frequently used in practice.
Further, from a theoretical standpoint, the assumption of labels is, in fact, necessary for a quick calculation. It
is easy to see that any routing scheme with stretchα impliesα-approximate shortest paths. In CONGEST, the
computation of approximate shortest paths takes at leastΩ(HD) time. Recall that HD is the hop diameter of
the input graph. Thus, the best we can hope for inCONGEST is a runtime ofO(HD) to compute the scheme.
On the other hand, it was shown in [LP13] that there are graphs of hop diameterO(logn) in which we require
Ω(n) time to compute a name-independent routing. Therefore, if we want fast algorithms that can efficiently
(re-)compute a routing scheme, we have to consider labeled routing.

This chapter considers the distributed construction of routing schemes in the CONGEST model and the
HYBRIDmodel. Recall that our parameterization of theHYBRIDmodel allows each node to send and receive
O(logn) bits to/from O(logn) distinct nodes of the network in addition to the communication capabilities
of CONGEST where we can sendO(logn) bits along each edge.

Beforewe get to our contribution, let us first discusswhatwe can estimate as the bounds for stretch, size, and
runtimewe are aiming for. Regardless of themodel, for a general graph, the best we hope for is a routing scheme
of the stretch of 2k − 1with routing tables of size Õ(n1/k) due to Erdös’ girth conjecture. It states that there
are very dense graphs withn1=1/k with high girth 2k−1. In theCONGESTmodel, such a routing scheme can
be computed in Õ(n

1
2+

1
k +HD) time, w.h.p., due to a result by Elkin andNeimann [EN18b]. Given a lower

bound of Ω(HD +
√
n) for approximate shortest paths on general graphs, the problem is essentially settled

for general graphs in CONGEST. For restricted graphs, which are exempt from the girth conjecture, there are
a Õ(HD2) time algorithm for planar graphs [LP19] and a Õ(τ2 · HD + τ3) time algorithm for graphs of
treewidth τ [IKNS22]. Both these algorithms construct exact routing schemes with stretch 1. This begs the
question of whether the techniques can be extended to larger classes of graphs. To put it more general, we ask
ourselves:

Is there a constant stretch compact routing scheme for a non-trivial restricted graph class that can be
constructed in Õ(HD) time in the CONGESTmodel?

In the HYBRIDmodel, the situation is bit more nuanced. In a recent article, Kuhn and Schneider [KS22]
prove that it takes Õ(n1/3) rounds to compute exact routing schemes with labels of size O(n2/3) on un-
weighted graphs in the HYBRID model and provide an algorithm that matches this. They also give polyno-
mial time lower bounds ofΩ(n1/f(k)) for routing schemes with stretch k on weighted graphs. Here, f(k) is a
function polynomial in k and independent of n. They also presented an algorithm that (almost) matches this
bound and creates routing schemes of stretch O(k) in O

(
n
1/k

logn

)
1 time. In both their lower bound and their

algorithms, they assume LOCAL communication in the local communication mode of the HYBRID model.
The lower bound, therefore, obviously also holds for us. Note that the lower bound graph is (again) a dense
graph of high girth. Thus, even in HYBRID, there is an unavoidable super-logarithmic term in the time com-
plexity for archiving constant stretch on general graphs. The paper left open how to construct routing schemes
for restricted graphs and with less local communication. Therefore, we ask ourselves:

1The concrete bound in [KS22] is even more precise. We simplify it here for easier comparison. Further, the runtime is parameterized
with the global communication capacity and can be sped up by increasing the capacity.

229

Is there a constant stretch compact routing scheme that can be constructed in no(1) time in the HY-
BRIDmodel usingO(logn) local communication per edge?

Using a culmination of the techniques we presented in the previous chapters, we answer both the questions
above affirmatively and present efficient routing schemes for the HYBRID and the CONGEST model. The
main results of this chapter are summarized in the following theorem.

Theorem 12. Distributed Construction of Routing Schemes

Let G = (V,E, ℓ) be a weighted graph with polynomially bounded positive edge weights. Then the
following three statements holds, w.h.p.:

• For any k > 4, we can compute routing scheme of stretch O(k2) with labels and tables of size
O(n1/k log2 n) in Õ

(
n4/k

)
time in HYBRID.

• IfG is Õ(1)-path separable, for any ϵ ≤ 1, we can compute routing scheme of stretchO(1 + ϵ)

with labels and tables of size Õ
(
ϵ−2
)
in Õ

(
ϵ−3
)
time in theHYBRIDmodel and Õ

(
ϵ−3 ·HD

)
time in CONGEST.

• If G is planar, for any ϵ ≤ 1, we can compute routing scheme of stretch O(1 + ϵ) and size
O
(
ϵ−1 log5 n

)
in Õ

(
ϵ−3
)
time in the HYBRIDmodel and Õ

(
ϵ−3 ·HD

)
in CONGEST.

For all three statements, the HYBRID model has a local capacity of λ ∈ O(logn) and a global com-
plexity of γ ∈ O(log2 n).

These results improve upon the state-of-the-art in several ways. In the following, we discuss their concrete
implications.

First, consider our HYBRID algorithm for general graphs. Our construction gets very close to the upper and
lower bounds presented in [KS22]. However, in our parameterization of the HYBRID model, each node can
only send O(logn) bits via edge. This is significantly less than in [KS22]. In that paper, they considered the
LOCAL model for the local communication mode and used it to collect each node’s nΘ(1/k)-neighborhood.
On the flip side, our stretch is polynomially worse for every possible parameter k ∈ O(logn). Nevertheless, it
offers some interesting insights depending on the value of k:

1. For constant stretch k ∈ O(1), we are only off by a constant factor, namely k while essentially having
the same runtime as [KS22].

2. On the other end of the spectrum, for k = Θ(logn), we obtain a polylogatithmic runtime with poly-
logarithmic stretch using polylogarithmic communication. Such an algorithm was not known before.
On the flip side, our stretch is worse by aO(logn) factor compared to [KS22].

3. For k = Θ(
√
logn), we arguably perform worst if compared to [KS22]. Here, we obtain a stretch of

O(logn) in2O(
√

logn) time. This is quite long compared compared to the Õ(1) time requiredby [KS22]
to obtain this stretch.

230

Thus, our algorithm performs reasonably well in the edge cases that either optimize the runtime or the stretch.
We continue with the k-path separable graphs. Here, our results are comparable with the sequential algo-

rithm of Abraham and Gavoille [AG06], which constructs labels and tables of size O
(
k · ϵ−1 log2 n

)
in the

sequential model. On the negative side, our construction is bigger by several polylogarithmic factors and (per-
haps even worse) has an additional dependency on ϵ−1. The latter is problematic for very small values of ϵ, i.e.,
if we wish to construct a nearly exact routing scheme. On the positive side, our construction can very efficiently
be implemented in a fully distributed manner in both CONGEST and the HYBRID. This is our algorithm’s
biggest novelty, as it shows that efficient routing schemes can be distributed and constructed for very large
classes of graphs if a small constant stretch is tolerable. As shown in (author?) [AG06] and [DG10], the family
of k-path separable graphs not only contains planar graphs and graphs of bounded treewidth but also, in fact,
any graph that does not contain a fixed sized minorKr . For ϵ ∈ Θ(1), i.e., when we consider the stretch to be
an arbitrary small constant, the runtimes are (asymptotically) optimal: In CONGEST, we achieve a runtime
of Õ(HD), which is the lower bound for (approximate) SetSSP computations in CONGEST. In HYBRID,
we have a runtime of Õ(1). Here, the only thing left to optimize is the polylogarithmic factor hidden in the
Õ(·)-notation, as we did nothing to optimize this. ForKr-free graphs, we gain another benefit. Recall that the
graphs are known to be f(r)-path separable for some f(r) that only depends on r [AG06]. For these graphs,
our construction avoids using the nO(r)-time embedding algorithm used in [AG06]. Therefore, although we
have larger labels and tables, our algorithm (asymptotically) is significantly faster than [AG06] if executed in a
sequential manner. As mentioned earlier, however, this speed-up is bought with a worse dependency on ϵ−1

andO(logn).
Finally, our result for planar graphs compares favorably to the related work. On the one hand, it is faster

and has smaller labels than the work of Li and Parter[LP19]. Their algorithm has a runtime of Õ(HD2) and
tables and labels of size Õ(HD). On the other hand, their labeling is exact and has stretch 1. Thus, for graphs
of low hop diameter, their result is preferable. However, if the hop diameter is large, and one is not interested
in exact paths, we perform slightly better.

11.1 Structure of this Chapter

The remainder of this chapter is dedicated to proving the three statements in the theorem. It is structured as
follows:

1. In Section 11.2 we present a meta-algorithm that constructs a compact routing scheme for a graph G

using a so-called tree cover. A tree cover is a collection of forests, such that for every pair of nodes, there
is a tree where the distance in this tree is approximately the distance between these nodes in G. The
main idea is to create a routing scheme for each tree and combine the individual schemes into a complete
routing scheme. The quality of the routing scheme, i.e., its stretch and its size, is directly dependent on
the quality of the tree cover used as the basis. The basic idea of this construction is not new, it has been
used before in the sequential and distributed setting.

We present a novel-ish implementation of it that only relies on minor aggregations (in addition to com-
puting the tree cover). More precisely, in Section 11.2, we assume that we have black-box access to an

231

algorithm that constructs tree covers where each node is in t tress. Given the black-box, we show that
with Õ(t) minor aggregations, we can construct a routing scheme for G. The stretch depends on the
tree cover.

2. In Section 11.3, as a warm-up, we show to construct a routing schemewith stretchO(k2) and labels and
tables of size Õ(n1/k) inHYBRID.Given themachinery fromSection11.2,we know that an efficient tree
cover implies a good routing scheme. Thus, we present a tree cover for general graphs in that section. The
construction is based on the pseudo-padded decompositions fromChapter 10, more precisely, Theorem
10 from Section 10.3.

3. In Section 11.4, we present an efficient tree cover fork-separable graphs, which leads to the (1+ϵ)-stretch
compact routing scheme with labels and tables of size Õ(k · ϵ−2) that is promised by Theorem 12. The
construction uses the pseudo-padded decomposition fromChapter 10 and also the weak separator from
Chapter 8. The algorithm carefully combines both constructions to achieve the proclaimed bounds.
Recall that both algorithms are based on a few Õ(1) shortest-path computations andminor aggregations
and, therefore, can be implemented efficiently if k ∈ Õ(1).

4. We present related work in Section 11.5. In particular, we give an overview of (the construction of)
compact routing schemes for several graph classes and in several models.

5. We conclude the chapter in Section 11.6 where we discuss some possible future directions.

11.2 Efficient Computation of Compact Routing Schemes Using Tree Covers

Many distributed and sequential algorithms that construct compact routing schemes (cf. [AG06, EN18b,
EN16, IKNS22, LP19, Tho04]) follow the same basic pattern. The construction is roughly divided into two
phases, a so-called covering phase and a computation phase. In the covering phase, we compute a series of sub-
forests ofG := (V,E, ℓ) that approximate the distances between all pairs of nodes. By approximate, we mean
that the distance between two nodes in a tree, i.e., the shortest path in the tree, is close to their actual shortest
path inG. Formally, we define these covers as follows:

Definition 11.1 (Tree Cover). Consider a weighted graphG := (V,E, ℓ) and parameter ϵ > 0. A (1 + ϵ)-
approximate tree cover with overlap t ≥ 1 forG is a series of t subforests T := {F1, . . . ,Ft} withFi ⊆ G, s.t.,
for each pair v, w ∈ V , there is a forestFi ∈ T with a tree T ∈ Fi with root r where

d̃T (v, w) := dT (v, r) + dT (r, w) ≤ (1 + ϵ) · dG(v, w)

Note that each node v ∈ V is in at most t trees per this definition, as it can be in at most one tree per forest.
In the subsequent computation phase, we compute the actual labels and tables for the routing scheme based on
these trees/forests. In particular, we construct an exact compact routing scheme for each individual tree in T.
We then combine these labels and tables to obtain the routing scheme forG. If wewant to route amessage from
s and t inG, we simply pick the tree with the least distance between s and t and route the message according to
this tree’s routing scheme. Crucially, the size of the resulting labels and tables depends on the number of trees a

232

node is contained in. Further, the stretch only depends on how well the trees approximate the actual distances
since the routing in the tree does not add additional distortion.

In this section, we will show how to construct a compact routing scheme from a given tree cover. In partic-
ular, we show the following:

Lemma 11.1 (Distributed Construction of Routing Schemes from Tree Covers). Let G := (V,E, ℓ) be
weighted graphs with edge weights bounded by W . Suppose that we have an (1 + ϵ)-approximate tree cover
T := {F1, . . . ,Ft} of G with overlap t. Then, we can compute a routing scheme with stretch (1 + ϵ) and
routing labels and tables of sizeO

(
t · log2 nW

)
in Õ(t)minor aggregations.

Note that the construction does not depend on the specific algorithm that computed the tree cover and,
therefore, can also be used as a black-box routing scheme construction combined with an algorithm that com-
putes the tree cover.

On a high level, our construction mirrors the approach of Elkin and Neimann [EN19], which in turn was
influenced by the seminal paper of Thorup and Zwick [TZ01]. For this, each node in a (rooted) tree needs
to learn its DFS labels, i.e., the first and last visit of a DFS started at the root. Further, it needs to count the
number of its descendants in the tree and share this number with its parent. The parent declares the child with
most descendants to be its heavy child. Given this information, the label of a node v then consists of its entry
and exit label and all the identifiers of all non-heavy children from the root to v. The DFS labels allow us to
route upward in the tree until we find the subtree that contains the target and the identifier of the non-heavy
children allow us to route down to target. The former works by checking if the target’s entry label is in between
the current nodes entry and exit label. The latter works bymoving to the current node’s heavy child per default
unless one of its non-heavy children’s identifier is in the target label. As there can be at mostO(logn) of non-
heavy children with identifiers of sizeO(logn) and DFS labels requiresO(logn) bits, the label size is for single
tree isO(log2 n). Summing up all labels for all tree yields the desired result.

However, Elkin andNeimanns’ computationswere tailored to general graphs andhad a runtimeof Õ(HD+
√
n) inCONGEST.To speed up the computation, wewill also use some techniques developed byGhaffari and

Zuzic for computations in trees[GZ22a], most notably the techniques described in Lemma 7.10. We use them
to show that all of the operations sketched above can be implemented with a Õ(1)minor aggregations for each
forest of the tree cover. To apply this lemma, we will need to exploit the fact that tree cover can be decomposed
into t disjoint forests. As T consists of t disjoint forests per definition, we obtain the runtime of Õ(t). While
this may not be surprising, especially to readers familiar with the framework of [GZ22a], it is a necessary step
to reach our runtime bounds.

The remainder is structured as follows:

• In Section 11.2.1, we present a exact compact routing scheme for trees. We will compute such a scheme
for each individual tree in the tree cover.

• Then, we describe how to combine all these labels and tables into a routing scheme for the full graph
G. The core idea is first to find the tree that best approximates the distance between source s and target
t. Note that we do this solely based on information stored on the label. Then, we use the exact routing
scheme for this tree to route to the target. We explain the details for this in Section 11.2.2.

233

• Finally, in Section 11.2.3, we prove Lemma 11.1 and show that the scheme has low stretch, uses little
memory, and can be computed quickly.

11.2.1 An Exact Routing Scheme for Trees

In this section, we present an exact routing scheme for a single tree Ti. The core idea of the routing protocol is
as follows. Suppose that we want to route from a node s to a node t. First, we determine the smallest subtree
that contains both s and t, i.e., we route from s to the lowest common ancestor of s and t (which might even
be s or t). Once at this node, we route downward until we reach t. Before we go into the details of how exactly
we find these paths, let us first define the routing tableRv(Ti) and a labelLv(Ti) that we will use for this.

The Routing Table Rv(Ti) of a Single Tree Ti: As the routing table Rv(Ti), each node v ∈ V

in the tree stores the following items: First off, it stores its parent pv , the root’s identifier, and the distance to
the root. The latter will later help us to pick the tree with the shortest distance between s and t. However,
these distances serve no further purpose for the routing within the tree and will only come into play in the
next section. For this, each node v stores entry and exit label av and bv of a depth-first search started at the
root. With these labels’ help, we can find the least common ancestor of two nodes. Finally, each node stores hv ,
the endpoint of the edge that leads to most descendants. We respectively call these the heavy edges and heavy
children. This information will help us find the path from the least common ancestor to the target. All in all,
we define the routing tables as follows:

Definition 11.2 (Exact Tree Routing Tables). Let Ti be a subtree of graphG := (V,E), then the routing table
Rv(Ti) for exact routing in tree Ti looks as follows:

Rv(Ti) :=
(
ri ⊕ div ⊕ piv ⊕ aiv ⊕ biv ⊕ hi

v

)
ri is tree Ti’s root.

div is the distance from v to ri in Ti.

piv is the parent of v in Ti.

aiv is the entry label for a DFS in Ti.

biv is the exit label for a DFS in Ti.

hi
v is the heaviest child of v in Ti.

Here, the operator⊕ describes the concatenation of two bitstrings.

TheRouting LabelLv(Ti) of a Single Tree T : Next, we get to the labelsLv(Ti) of each target node
t ∈ Ti. Each label contains all non-heavy edges on the path from the root to the target and its entry label at of
the depth first search. Again, it also stores the the distance to the root, which will only be important later.

234

Definition 11.3 (Exact Tree Labels). Let Ti be a subtree of graph G := (V,E), then label Lv(Ti) for exact
routing in tree T looks as follows:

Lv(Ti) :=
(
ri ⊕ div ⊕ aiv ⊕

[
liv(1), . . . , l

i
v(k)

])
ri is tree Ti’s root.

div is the distance from v to ri in Ti.

aiv is the entry label for a DFS in Ti.

liv(·) is the endpoint of a non-heavyedge on the path from riv to v.

Here, the operator⊕ describes the concatenation of two bitstrings.

The Routing Scheme of a Single Tree Ti: Now, we can get back to the routing scheme and fill in
the missing details. The routing scheme’s main idea is to first route to a subtree that contains the target and
then take the heavy edge per default. The subtree can be determined via the depth first search label. Suppose
the current node v ∈ V has entry label av and exit label bv . Then, if the target label is at ̸∈ (av, bv), we
send it upward to the node’s parent. This continues until we reach the least common ancestor of source and
target. If this node is not equal to the target, we send the message down to a child. Here, the identifiers of the
non-heavy children come into play. On each node on the way down, we check whether the identifier of one of
the neighbors is in the label. If so, then send the message to that neighbor. Otherwise, we take the heavy edge
by default. One can easily verify that this scheme always finds the target as it follows the unique path between
s and t in Ti.

Algorithm 1 ExactTreeRouting(v, Tv, (m, t,Lt))

if v = t then ▷ v is the message’s target t.
Deliverm

if av ≤ at ≤ bv then ▷ t is in v’s subtree. Send downward.
if ∃w ∈ {Nv \ pv} ∩ {lt(1), . . . , lt(k)} then ▷One of v’s children appears in label.

Send (m, t,Lt) to childw.
else

Send (m, t,Lt) to heavy child hv . ▷ hv is stored in v’s routing table.
else ▷ Send upward in T .

Send (m, t,Lt) to parent pv . ▷ pv is stored in v’s routing table.

11.2.2 From (Routing on) Trees to (Routing on) Graphs

Now,wewill finally construct our compact routing scheme for the full graphG. As before, wewill first describe
the contents of the routing and label of each node. For the routing table of node v ∈ V , we pick the union of
all routing tables of all trees Ti inT that contains v. Formally, these tables are defined as follows:

235

Definition 11.4 (Routing Tables forG). Let T be a tree cover forG := (V,E), then the routing tableRv(T)

for graphG looks as follows:

Rv(T) :=
⊕

Fj∈T

⊕
Ti∈Fj

Rv(Ti)

Fj is a forest inT.

Ti is the tree ofFj with v ∈ Ti.

Rv(Ti) is the routing table from Def. 11.2.

Here, the operator⊕ describes the concatenation of two bitstrings.

Likewise, we define the node labels based on the union of all tree’s labels.

Definition 11.5 (Node Labels for Routing inG). Let T be a tree cover forG := (V,E), then the labelLv(T)

for routing in graphG looks as follows:

Lv(T) :=
⊕

Fj∈T

⊕
Ti∈Fj

Lv(Ti)

Fj is a forest inT.

Ti is a tree of Tj with v ∈ Ti.

Lv(Ti) is the label from Def. 11.3.

Here, the operator⊕ describes the concatenation of two bitstrings.

We will now describe the routing scheme. Given the target label Lt(T) for t, a node s picks the tree T ∗

with the shortest distance to t that contains both s and t. By the construction of T, the distance between s

and tmust be smaller than (1 + ϵ) · d(s, t). Then, it uses the routing scheme for this specific tree to route the
message. In more detail, the routing works as follows:

(Step 1) Find Common Trees: First, we iterate over all root identifiers stored inRs(T) and Lt(T)

and use them to determine the set T(s,t) := {Ti ∈ T | s, t ∈ Ti}. This set contains all trees that contain
both s and t.

(Step 2) FindTree T ∗ with SmallestDistortion: Recall that each routing table and each label
also contains the distance to the root of each tree. We iterate over all trees Ti ∈ T(s,t) and use the distance
information to compute the values:

d̃Ti
(s, t) := dTi

(s, ris) + dTi
(ris, t)

Finally, we can determine treeT ∗ := argminTi∈T(s,t)
{d̃Ti

(s, t)} that contains the shortest path between
s and t (among all other trees from the tree cover).

236

(Step 3) Route in T ∗: In the last step, we use the routing table Rs(T
∗) and Lt(T

∗) and route the
message according to the routing protocol described in the previous section.

11.2.3 Proof of Lemma 11.1

In this section, we prove Lemma 11.1 using the properties of the tree cover and the tree operations presented in
Lemma 7.10. We divide the proof into three parts. First, we show that the routing scheme indeed has a stretch
(1+ϵ). Then, we prove that the size of the labels and tables arewithinO(t·log2 n) andO(t·logn), respectively.
Finally, we show that everything can be computed within Õ(t)minor aggregations.

Stretch We route the message in the tree T ∗ := argminTi∈T(s,t)
{d̃Ti(s, t)} that contains the shortest

path between s and t via some tree’s root. Recall that by definition of the tree cover, there must be a tree for
which it holds:

d̃Ti(s, t) := dTi(s, r
i
s) + dTi(r

i
s, t) ≤ (1 + ϵ) · dG(s, t)

Therefore, it holds d̃T∗(s, t) ≤ (1 + ϵ) · dG(s, t). Further, by the triangle inequality, it holds:

dT∗(s, t) ≤ dT∗(s, r∗s) + dTi
(r∗s , t)

:= d̃T∗(s, t) ≤ (1 + ϵ) · dG(s, t)

Thus, the distance between s and t is T ∗ is at most (1 + ϵ) · dG(s, t). As the routing scheme for T ∗ is exact,
the routing scheme has a stretch of (1 + ϵ) inG as claimed.

Label and Table Size Recall that the labels and tables are the union of t labels and tables of trees. Thus,
we show that the labels and tables of each tree are of size O(lognW) and O(log2 n + lognW), respectively.
Multiplying these values by t gives the proclaimed sizes from Lemma 11.1. We begin with the tables and show:

Lemma11.2 (Size ofRoutingTables). The tables described inDefinition11.2 canbe expressedwithinO(log(nW))

bits.

Proof. The table consists of six fields of sizeO(lognW). Three of them, the root ri, the parent piv , and heavy
child hi

v are node identifiers. These are of size O(logn) per definition. Further, two fields aiv and biv are the
entry and exit labels of a DFS. The labels of a DFS are in the range 1, . . . , |E| where |E| is the number of
edges. Thus, we require O(log |E|) bits to encode them. As |E| ∈ O(n2), this is within O(logn). Finally,
there is the distance div between v and ri. This is at mostWn and therefore requiresO(lognW) bits. As each
of these six items is either a node identifier or a number smaller thanWn2, the total information sums up to
O(log(nW)).

Next, we consider the labels and show:

Lemma11.3 (Size ofRoutingLabels). The labels described inDefinition11.3 canbe expressedwithinO(log2(n)+
log(nW)) bits.

237

Proof. First, we note that there can be at most O(logn) non-heavy edges on the path to each node. To see
this, recall that the number of nodes in a non-heavy child’s subtree is at most half the number of nodes in the
parent’s subtree. Otherwise, the child would be heavy because there cannot be two children with more than
half the descendants. So, each non-heavy edge reduces the number of possible targets by half and there can be
at most O(logn) of them. Thus, the total number of bits required for each label is O(log2(n) + log(nW))

as each of theO(logn) non-heavy edges has a label of sizeO(logn) and all other other item can be encoded in
O(lognW) bits (as argued in the proof of the previous lemma).

This concludes the analysis of the routing scheme’s size.

Complexity Finally, we consider the computation of the routing scheme forG. Again, we split our analysis
into the computationof the tables and labels. Aswewill see, for each tree, the computation requires Õ(1)minor
aggregations. Adding all these runtimes for all these trees up, yields the desired complexity. In particular, we
will make heavy use of the following lemma:

Lemma 7.10 (Tree Operations, Based on [GZ22a]). Let F := (T1, . . . , Tm) be a subforest (each edge e knows
whether e ∈ E(F) or not) of a planar graph and suppose that each treeTi has a unique root ri ∈ V , i.e., each node
knows whether it is the root and which of its neighbors are parent or children, if any. Now consider the following
three computational tasks:

1. AncestorSum and SubtreeSum: Suppose each node v ∈ Ti has an Õ(1)-bit private input xv . Further,
let Anc(v) and Dec(v) be the ancestors and descendants of v w.r.t. to ri, including v itself. Each node
computesA(v) :=

⊗
w∈Anc(v) xw andD(v) :=

⊗
w∈Dec(v) xw .

2. Path Selection: Given a nodew ∈ Ti, each node v ∈ Ti learns whether it is on the unique path from ri to
w in Ti.

3. Depth First Search Labels: Each node v ∈ Ti computes its unique entry and exit label of a depth first
search started in ri.

All of these tasks can be implemented in one round of minor aggregation.

We begin with the construction of the tables. Algorithm 2 summarizes all operations that need to be exe-
cuted to compute the table. Formally, we show that it holds:

Lemma 11.4. Let T := {F1, . . . ,Ft} be a tree cover with overlap t according to Definition 11.1. Then, the
routing tables described in Definition 11.2 can be computed in Õ(t) rounds of minor aggregations for all trees.

Proof. All items in the table can be efficiently computed using a few minor aggregations and the techniques
presented in Lemma 7.10. The lemma requires the trees on which the aggregation is executed to be disjoint,
i.e., they must be a forest. Thus, the following routine will be executed for every forest F ∈ T. The identifier
of the tree’s root can be delivered via a simple broadcast in each tree. Further, the parent in the respective tree is
already known through the construction of the tree cover. So, we need no more time to compute them. If not
already known, the distance to the root can be computed through the AncestorSum primitive from Lemma

238

Algorithm 2 ComputeTable(T)

for v ∈ V do
rv ←− RootOf(T) ▷ Computed via broadcast.
pv ←− ParentOf(v, T) ▷ Part of input.
dv ←− dT (v, rv) ▷ Distance to root in T . Computed via AncestorSum.
(av, bv)←− DFS(v, T) ▷ DFS(v, T) returns entry and exit label of a DFS.
ωv ←−

∑
w∈Desc(v,T) 1 ▷Descendants in T . Computed via SubtreeSum.

hv ←− argmaxw∈Cv
{ωw + 1} ▷Heaviest child. Computed via local aggregation.

Rv(T) := (rv, dv, pv, av, bv, hv)

return (Rv(T))v∈V

7.10. For this, each nodew ∈ V picks the distance to its parent as inputxw = d(w, pw). A depth-first search’s
entry and exit label can be computed directly with the subroutine promised in Lemma 7.10. Finally, the heavy
edges can be determined via SubtreeSum technique presented in Lemma 7.10. Each node w ∈ Ti simply
picks xw = 1 as its private input, and we chose SUM as our aggregation operator. Then, all nodes compute
D(v) =

∑
w∈Dec(v) xw as defined in Lemma 7.10. Recall thatDec(v) denotes the set of descendants of v.

Now, each node knows the total number of its descendants. Finally, each node determines the maximal value
D(w) among its children to elect the heaviest child. In case of a tie between two or more children, the node
identifier is used to break it. By Lemma 7.10, each of these operations takes Õ(1) rounds ofminor aggregations.
Repeating it for all t forestsF1, . . . ,Ft yields the result.

Now, we continue with the computation of the labels. Here, it similarly holds:

Lemma 11.5. Let T := {F1, . . . ,Ft} be a tree cover with overlap t according to Definition 11.1. Then, the
labels described in Definition 11.3 can be computed in Õ(t) rounds of minor aggregations.

Proof. Note that the labels can be efficiently computed via the minor aggregation techniques we described in
Lemma 7.10. Note that our previous lemma directly provides a runtime bound for root’s identifier, the dis-
tance, and the depth first search labels. Thus, we focus on computing the identifiers of the non-heavy edges,
which is a bit trickier. As mentioned in the computation of the routing tables, the heavy edges can be deter-
mined via SubtreeSum. Since each parent learns the identifier of their heavy child, it can also inform the
respective child that it is heavy. All children that do not get such amessage from their parents must therefore be
the endpoints of non-heavy edges. We will now use the AncestorSum primitive from Lemma 7.10 to let all
nodes learn their non-light edges on the path to the root. To this end, all endpoints of non-heavy edgesw ∈ Ti

pick their identifier as their private input xw . As the aggregation operator, we pick⊕, the concatenation. Since
there can be at mostO(logn) non-heavy edges on the path from the root to a node v, the aggregate value that
each v needs to learn is of size O(log2(n)). Thus, for each node A(v) =

⊕
w∈Anc(v) xw , where Anc(v)

means ancestors of v, the subset of the ancestors that are not heavy children of their parents, can be determined
via the AncestorSum primitive.

Thus, together both lemma imply that Õ(t)minor aggregations are required to compute routing tables and
labels for all trees in a tree cover with overlap t. This concludes the analysis and this section.

239

11.3 Tree Covers Using Pseudo-Padded Decompositions

Given themachinery introduced in theprevious section, the problemof constructing a compact routing scheme
can be reduced to finding a tree cover. For general graphs with polynomially bounded edge weights, tree cov-
ers can be easily constructed by repeatedly constructing pseudo-padded decompositions from Theorem 9 in
Section 10.2. Using them as a black box, we can show the following general lemma:

Lemma 11.6. Let G = (V,E,w) a graph with polynomially bounded edge weights. Then, for k > 4 we can
construct aO(k2)-approximate tree cover with overlapO

(
n1/k logn

)
within Õ

(
n4/k

)
time in HYBRID, w.h.p.

Proof. First, we construct a 2k − 1-spannerGk = (V,Ek) ofG. For any two nodes v, w ∈ V , its holds that:

dGk
(v, w) ≤ (2k − 1) · dG(v, w)

This takes O(k2) time using the algorithm of Baswana and Sen [BS07]. It is a CONGEST algorithm that
naturally has the same runtime in HYBRID. In the following, we perform all computations onGk instead of
G.

For the remainder of this proof, let Di := 2i. Fix two nodes v, w ∈ V and suppose that dGk
(v, w) ∈

[Di−1,Di]. We will show how to construct a tree cover that contains a tree T with dT (v, w) ∈ O(k · Di),
w.h.p. For a fixed Di, we do the following: We construct a pseudo padded decomposition from Theorem 9
with distance parameter

D′
i = 160 · k · Di

and error parameter

ϵ =
(
1000 · n1/k · logn

)−1

(11.1)

onGk. We choose every node as a possible center, sowehaveX = V . With this parameterization, the algorithm
creates clusters of strong diameterO(k ·Di). Further, each cluster contains a (1+ ϵ)-approximate SetSSP-tree
T that is rooted in the cluster’s center. Thus, if a cluster contains both v and w, there is tree T such that, it
holds:

dT (v, w) ≤ c · k · Di ≤ 2c · k · dGk
(v, w) ≤ 4c · k2 · dG(v, w)

Here, we used the assumption that dGk
(v, w) ∈ [Di−1,Di] and that Gk is a (2k − 1)-spanner. Therefore,

this tree has the desired properties. Thus, it remains to bound the probability that a cluster contains both v and
w. To this end, letCv be the cluster that contains v. Further, define

γ =
1

160 · k
(11.2)

240

Note that ϵ ≤ γ ≤ 1/32. For a fixed node v ∈ V , the probability that a nodew ∈ BGk
(v,Di) is in the same

cluster as v can be bounded as follows:

Pr[BGk
(v,Di) ⊂ Cv] = Pr[BGk

(v, γD′
i) ⊂ Cv]

By Lemma 10.2 :

≥ e−16(γ+5ϵ) logn − 160ϵ logn

As ϵ ≤ γ :

≥ e−80γ logn − 160ϵ logn

By (11.1) and (11.2) :

≥ e−
logn
k − 160 logn

1000 · logn · n1/k

≥ n−1/k − (1/2) · n−1/k = (1/2) · n−1/k

Thus, after creatingO(n1/k · logn) such decompositions, theremust be one with a cluster that contains both v
andw, w.h.p. We add all resulting spanning trees of the clusters to the tree cover. As we add one tree per cluster,
each node is inO(n1/k · logn) trees and all trees can be divided intoO(n1/k · logn) forests.

As we assume the weights ofG to polynomially bounded, there areO(logn) possible values ofDi. After
repeating the construction above for allO(logn) possible values ofDi, we obtain a suitable tree for every pair
of nodes, w.h.p. Thus, we have aO(k2)-approximate tree cover with overlapO

(
n

1
k log2 n

)
as claimed.

It remains to bound the algorithm’s time complexity. Each pseudo-padded decomposition requires exactly
one (1+ ϵ)-approximate SetSSP computation that dominates the runtime. Note thatGk has an arboricity of
O(n

1
k). Thiswas remarked in [AHK+20a]. Therefore, we canperforma (1+ϵ)-approximate SetSSPonGk in

Õ(ϵ−2 ·n 1
k) time inHYBRID by simulating the PRAM algorithm from [RGH+22]. Thus, the construction

of single decomposition takes Õ(n3/k) time, w.h.p. As we requireO(n1/k · log2 n) decompositions, the total
time complexity is Õ(n4/k), w.h.p. This proves the lemma.

Thus, using the tree cover from Lemma 11.6 in the construction from Lemma 11.1, we can construct the
routing scheme in Õ(n4/k) minor aggregations in HYBRID, w.h.p. Now recall that a minor aggregation in
HYBRID requiresO(logn) rounds. This results in a runtime of Õ(n4/k), w.h.p. This proves the first statement
from Theorem 12.

11.4 Tree Covers UsingWeak Separators

In this section, we describe a construction of compact routing schemes for k-path separable graphs that only use
approximate SetSSP computations and minor aggregations. We achieve this by efficiently constructing a tree
cover with a small overlap. As in previous works, our key idea is to find a small set of nodes that intersect with
many shortest paths, i.e., a hitting set for the shortest paths, and construct trees rooted in this set. The size of
these hitting sets greatly affects the overlap of the resulting tree cover. For example, previousworks used skeleton
graphs[LP15], hopsets[EN18b], or vertex separators [IKNS22, LP19] as the basis for their constructions. We

241

will construct a special type of separator for a k-path separable graphG that fulfills this role, namely the weak
(D, ϵ)-separator from Chapter 8. These are defined as follows:

Definition 8.1 (Weak κ-Path (D, ϵ)-Separator). Let G := (V,E,w) be a weighted graph, D > 1 be an
arbitrary distance parameter, and ϵ > 0 be an approximation parameter. Then, we call the set S(D, ϵ) :=

(P1, . . . ,Pκ) withPi := (Pi, Bi) a weak κ-path separator, if it holds:

1. Each Pi ∈ Pi is a (approximate) shortest path inG \
⋃i−1

j=1 Pj of length at most 4D.

2. EachBi ⊆ BG(Pi, ϵD) is a set of nodes surrounding path Pi.

3. For all v ∈ (V \
⋃κ

j=1 Pi) it holds |BG\S(v,D)| ≤ (7/8) · n.

In the following, we assume we can access a weak κ-path (D, ϵ)− separator construction algorithm as a
black-box. In particular, we assume that we have access to an oracle that constructs these separators:

Definition 11.6 (Separator Oracle OD,ϵ
κ). Let G = (V,E, ℓ) be a weighted graph and let C1, . . . , CN be a

series ofN disjoint connected subgraphs ofG. Further, letD ≥ 1 and ϵ ≤ 1 be parameters. Then, an application
of the oracleOD,ϵ

κ computes a κ-path weak (D, ϵ)-separator in every C1, . . . , CN .

This allows us to use different algorithms to construct the weak path separators and also makes our con-
struction open to future improvements. We will use it to construct a (1 + ϵ)-approximate tree cover with low
overlap Õ(ϵ−1 · κ · logW).

On a high level, our algorithm is a distributed and parallel implementation of Thorup’s algorithm for tree
covers [Tho04] that was also used by Abraham and Gavoille for k-path separable graphs [AG06]. However,
our weak κ-path (D, ϵ)-separator differs from the (classical) k-path separator used in these algorithms. Not
only does it contain more paths and additional nodes, but the paths are only approximate shortest paths, and
when removed, they do not necessarily create disjoint connected subsets. For these reasons, simply replacing
the separators does not work. In addition to the weak path separators, we will also need our generic clustering
algorithms to resize the graphs. To be precise, our construction is based on so-called (ϵ,D)-additive tree covers,
which are formally defined as follows.

Lemma 11.7 ((ϵ,D)-additive Tree Cover). Let D, ϵ ≥ 0 be parameters. An (ϵ,D)-additive tree cover with
overlap t ≥ 1 for a graphG is a series of rooted trees T (ϵ,D) := (T1, T2, . . .), s.t. it holds:

1. Each node v ∈ V is in at most t trees.

2. For each pair v, w ∈ V with d(v, w) < 2D, there is a tree T ∈ T with

dT (v, w) ≤ (1 + ϵ) · dG(v, w) + ϵD

This section’s main result is that we can compute a polylogarithmic-size (ϵ,D)-additive tree cover for any
distance D and error parameter ϵ. Given the techniques we developed in the previous chapters, we show the
following lemma:

242

Lemma 11.8 (Distributed Tree Covers for k-Path Separable Graphs). Consider a weighted k-path separable
graph G := (V,E, ℓ). Suppose that we have black-box access to an oracle OD,ϵ

κ . Then, an (ϵ,D)-additive tree
coverwith overlapO(κ·ϵ−1·log4 n) can be computedwithO(log2 n)applications ofOD′,ϵ′

κ with ϵ′ ∈ Ω(ϵ/log2 n)

andD′ ∈ O
(
D · log2 n

)
.

Further, the algorithm requires Õ(κ·ϵ−1)minor aggregations and Õ(κ·ϵ−1) (1+ϵ′′)-approximate SetSSP
computations where ϵ′′ ∈ Ω(ϵ/log3 n).

For a fixedDi, the algorithmworks as follows: We then apply our pseudo-padded decomposition algorithm
promised byTheorem9with parameterD′

i := O(Di ·log2 n) and ϵ ∈ O (1/log2 n) to the graph. Recall that this
algorithm is implemented solely viaO(1) approximate shortest-path computations. The algorithmdecomposes
the graph into connected subgraphs of diameter at mostD′

i and preserves the 2 · Di-neighborhood of all but a
O(1/logn)-fraction of nodes. In each connected component, we compute a weak (D′

i, ϵ)-separatorS according
to Definition 8.1. Using the black-box algorithm OD,ϵ

κ , this results in a separator S(D, ϵ) := (P1, . . . ,Pκ)

that consists of κ approximate shortest paths P1, . . . , Pκ (and some nodes close to them). Then, we construct
a set of so-called portals on each pathPl. These are a subset of Pl’s nodes, s.t., it holds that (1) each node on Pl

is in the distance at most ϵDi to a portal, and (2) two portals are in the distance at least ϵDi from each other.
In other words, for each path, we compute aO(ϵ · Di)-net. We can use the algorithm from Lemma 10.25 for
this. As stated in the lemma, the algorithm only uses minor aggregations and can, therefore, be executed in
parallel for a single path per connected component. As there are κ paths per component, computing all nets
for all paths requires Õ(κ)minor aggregations. Finally, we sequentially compute (1+ ϵ)-approximate shortest-
path trees rooted in previously computed net points. These will be the actual trees of the tree cover. As the
length of the random paths is bounded byO(D′

i), there cannot be too many net points per path, i.e., at most
O(ϵ−1 · log2 n)many. All theseO(ϵ−1 · log2 n) trees of the κ paths will be added to the tree cover. Finally, we
recursively apply this algorithm to the remaining subgraph again until the graph is empty. As we remove a weak
D′

i-separator from every component, the subgraph that results from the decomposition at the beginning of the
algorithm contains at most (7/8) · n nodes. As k-separable graphs are closed under minor-taking [DG10], the
resulting subgraphs are k-path separable as well. Therefore, it is easy to verify that afterO(logn) such recursive
applications of this routine, the graph is empty, w.h.p. Thus, it creates O(ϵ−1 · κ · log3 n) forests in total.
Now consider a pair of nodes v, w ∈ V in the distance at most 2 · Di. In the analysis, we will show that the
algorithm above will, with constant probability, construct a tree that approximates their distance. Thus, if we
independently repeat this constructionO(logn) times, we construct a suitable tree, w.h.p. For a more detailed
description of the algorithm and the concrete choice of the parameters that we will hide in the Õ-notation, we
refer to Subsection 11.4.

Lemma 11.9 (FromAdditive To Full Tree Covers). LetAD,ϵ be an algorithm that creates and (ϵ,D)-additive
tree cover with overlap t for a graph G := (V,E, ℓ) with edge weights bounded by W . Then, d∗ := lognW
executionsAD1,ϵ

′
, . . . ,ADd∗ ,ϵ

′
withDi = 2i and ϵ′ = ϵ/6 create (1 + ϵ)-approximate tree cover with overlap

O(t · lognW).

Thehigh-level ideabehind the construction is to consider thedistance scalesDi := 2i for i ∈ [1, ⌈lognW ⌉]
separately. For each of these scales, we compute a separate tree cover that approximates the distance between

243

all pairs of nodes in the distance at most 2Di. The resulting collection of these O(lognW) tree covers T :=

{T (ϵ, 1), . . . , T (ϵ, nW)} is the desired tree cover. It is easy to see that for each pair of nodes, such aT contains
a tree that approximates the distance between them. Repeating this for allO(lognW) distance scales produces
a tree cover with overlap Õ(ϵ−1κ).

Equippedwith this lemma,we cannow show the latter two statements ofTheorem12. In particular, we use
the two separator constructions from Chapter 8 to implement the oracleOD,ϵ

Sep . In the following, we consider
the result for the k-path separable graphs and planar graphs separately.

k-Path Separable Graphs By Lemma 6, we can construct a weak κ-path (D, ϵ)-separator with O(k ·
ϵ−1 · logn) paths in bothHYBRID and CONGEST. Thus, by using the separator construction from Lemma
6 in Lemma 11.8 we can construct (D, ϵ)-additive tree covers with overlapO(k · ϵ−1 · log2 n). Plugging these
additive separators into Lemma 11.9 gives us a (1+ ϵ)-approximate tree cover with overlapO(k · ϵ−1 · log6 n).
Building a routing scheme based on this tree cover with 11.1 implies the second statement of Theorem 12. To
be precise, the labels and tables of the routing scheme are of size:

O
(
kϵ−1 log2 n

)︸ ︷︷ ︸
Paths in Separator

(Lemma 6)

·O (log(nW))︸ ︷︷ ︸
Distance Scales

·O
(
(ϵ−1 log4(n)

)︸ ︷︷ ︸
Trees per Distance Scale

(Lemma 11.8)

·O
(
(log2(nW)

)︸ ︷︷ ︸
Bits per Tree Label

)

(Lemma 11.1)

= O
(
kϵ−2 log9(nW)

)

Further, the required number of minor aggregations and SetSSP computations to construct the separator is
O(k · ϵ−1 · logn). Thus, in each application of Lemma 11.8, we requireO(k · ϵ−1 · log3 n)minor aggregations
to compute the separators. Further, the Lemma requires O(k · ϵ−1 logn) · Õ(ϵ−1) further minor aggrega-
tions and approximate SetSSP computations. We conclude that the total number of minor aggregations and
approximate SetSSP computations to compute the routing scheme is therefore Õ

(
k · ϵ−2

)
.

Finally recall that (1 + ϵ)-approximate SetSSP computations and minor aggregations, w.h.p., require
Õ
(
ϵ−2
)
time in HYBRID and Õ

(
k · ϵ−2 ·HD

)
time in CONGEST. This yields the time complexities from

Theorem 12 ifW ∈ o(nc).

PlanarGraphs The the construction for planar graphs follows the same basic scheme. However, we use a
different oracle to construct the separators. ByTheorem7, we can construct 4-path separator in bothHYBRID
andCONGEST in arbitrary decompostions of a planar graphG. Thus, using this separator algorithm as oracle
OD,ϵ

κ in the construction gives us label and tables of size:

4︸︷︷︸
Paths in Separator
(Theorem 6)

·O (log(nW))︸ ︷︷ ︸
Distance Scales

·O
(
(ϵ−1 log4(n)

)︸ ︷︷ ︸
Trees per Distance Scale

(Lemma 11.8)

·O
(
(log2(nW)

)︸ ︷︷ ︸
Bits per Tree Label

)

(Lemma 11.1)

= O
(
ϵ−1 log5(nW)

)

Recall that the construction of the separators takes — no matter how we decompose the graph — Õ(1) time
in HYBRID and Õ(HD) time in CONGEST. We need to apply this construction a total ofO(log3 n) times,
(log2 n) times for each application of Lemma 11.8 in Lemma 11.9. Thus, we spend a total of Õ(1) time in
HYBRID and Õ(HD) time inCONGEST constructing the separators. The remaining operations areO(ϵ−1)

244

approximate SetSSP computations andminor aggregations. Thus, the total complexity is Õ(ϵ−3) inHYBRID
and Õ(ϵ−3 ·HD) in CONGEST, w.h.p. This proves the last statement of Theorem 12.

This section is structured as follows. We present a formal description of the algorithm behind Lemma
11.8 in Section 11.4.1. Then, in Subsubsection 11.4.2, we analyze the algorithm and prove Lemma 11.8. We
conclude by showing that any additive tree cover can be turned into a full tree cover in Section 11.4.3 where we
prove Lemma 11.9.

11.4.1 Constructing Additive Tree Covers

Recall that the tree cover is parameterizedwith adistanceboundD ∈ [1, nW] and aparameter ϵ > 0 that trades
the number of trees with the multiplicative and additive distortion. For our algorithm, we need some helper
variables that are based on these parameters. Note that the values for the variables are chosen with hindsight
such that they can be used more easily in the analysis. We do not claim that our specific choices are optimal;
they are chosen for convenience. They can likely be optimized within constant and probably even logarithmic
factors. First, we define the relaxed distance parameter

D′ := 6400 · D · log2(n)

and the error parameter

ϵpd :=
1

16000 log2(n)
.

These will be input parameters for our pseudo-padded decomposition algorithm promised by Theorem
9. This choice will ensure that a path of length D is not cut by the padded decomposition algorithm with
probability 1−O

(
1

logn

)
, so we can apply itO(logn) times. Further, we need the following three parameters:

ϵp = ϵ/12

ϵt = ϵ/12

ϵs = ϵp/6400 log2(n)

All these parameters will be used in different subroutines.
We can now describe the main loop of the algorithm. On a high level, our algorithm is a classical recursive

divide-and-conquer algorithm that creates tree covers for subgraphs of decreasing size. For the divide step, we
use a padded decomposition to create subgraphs of diameter D′ ∈ O(D log2 n). The conquer works in five
synchronized phases that compute and remove a weak (D′, ϵs)-separator, which ensures that the size of each
subgraph shrinks by a constant factor each step. In the following, we call a node, which was not yet part of a
separator, an uncharted node. A single recursive conquer step works as follows:

245

(Step 1) Create Partitions: Let C1, C2, . . . be the connected subgraphs of uncharted nodes of
arbitrary diameter (where initially, it holds C1 := G). Compute a pseudo-padded decomposition with
diameter D′ := 6400 · D · log2 n and error parameter ϵpd in each subgraph using the algorithm from
Theorem9. Wechooseallunchartednodes as possible centers of clustersX . Thus, eachnode is coveredby
at least one (namely itself) at most n nodes. The resulting partitions are connected subgraphsP1, P2, . . .

with diameter at mostD′.

(Step 2) CreateWeak Separators in All Partitions: In each partitionPi, we compute a sep-
arator. As the distance parameter for the separator, we chooseD′, and for the approximation parameter,
we pick ϵs. This results in a weak κ-path (D′, ϵs)-separator that consists of κ paths of length at most 4D′

and nodes in distance at most ϵsD′ = ϵpD = O(ϵD) to these paths. Note that these paths (except the
first) are not necessarily (approximate) shortest paths within partition Pi.

(Step 3) Create Portals on Separators: On each separator path computed in the previous step,
create a collection of portals with distance ϵp · D to each other. As the length of each path is bounded by
4D′ = 4 · (6400 · D · log2 n) = 25600 · D · log2 n, there are 25600 · ϵ−1

p · log
2 n portals per path. This

sums up toO(κ · ϵ−1
p · log

2 n) portals. The portals can be efficiently computed using the algorithm from
Lemma 10.25.

(Step 4) Grow Trees from Portals: In this step, we compute the actual trees of the tree cover by
performing a (1 + ϵt) approximate SetSSP from each portal within their respective partition. Given our
bound on the portals, there areO(κ · ϵ−1

p · log
2 n) approximate SetSSP computations.

(Step 5) Prepare Next Recursion: Each uncharted node on the separator removes itself and its
incident edges from the graph. These nodes will not partake in future iterations. All remaining uncharted
nodes compute their respective connected component for the next recursion.

As we removed weakD′-separators S1, S2, . . . in each connected subgraphC1, C2, . . ., each node has at most
(7/8) · n other nodes in distanceD′ in the resulting partitionsC1 \ S1, C2 \ S2, . . ., Therefore, the invariant
required in the first phase of the next stop holds again. We repeat this process until all uncharted subgraphs are
empty. As we remove a separator in each step, the size of the uncharted components shrinks by a factor of 7/8
each round. Thus, the process can be stopped after 8 logn recursions as

n (1− 1/8)
8 logn ≤ n(1/e)logn = n/n = 1.

11.4.2 Proof of Lemma 11.8

One can easily verify that each step canbe executed in Õ(κ·ϵ−1) rounds ofminor aggregations and approximate
SetSSP computations because the algorithm mostly relies on subroutines we have analyzed before. Formally,
it holds:

246

Lemma 11.10. Given an algorithm OD′,ϵs
κ for a weak κ-path (D′, ϵs)-separator, each recursive step of the al-

gorithm can be implemented with one execution ofOD′,ϵs
κ , furtherO(κ · ϵ−1 · log2 n)minor aggregations, and

O(κ · ϵ−1 · log2 n) (1 +O(ϵ/log3))-approximate SetSSP computations.

Proof. In Step 1 we create a pseudo-padded decomposition using the algorithm promised by Theorem 9. As
we parameterize the algorithm with an error parameter of 1/6400 log2 n, it can be implemented with Õ(1) (1 +

1/6400 log2 n)-approximate SetSSP computations. In Step 2, we construct the separator using OD′,ϵs
κ and do

nothing else. In Step3, we construct portals on all separator paths. For a single path (per connected component)
this can be done in Õ(1)minor aggregations using the algorithm from Lemma 10.25. As we have κ paths (per
connected component) on which we compute the portals sequentially, the total complexity rises to Õ(κ). In
Step 4, we compute a (1+ ϵt)-approximate shortest path from each portal. This step consumes the lion’s share
of the runtime. Again, we can compute one approximate shortest path per component in parallel. As we have
O(ϵ−1 log2 n) portals per path and κ paths per connected component, we require a total ofO(κ · ϵ−1 · log2 n)
SetSSP computations. The final step is purely local and, thus, the lemma follows.

This proves the postulated runtimes. Therefore, it remains to prove that the resulting tree cover has the
promised properties, i.e., the approximation and overlap guarantees. First, we show that there must be a tree
with low distortion for each pair of nodes. It holds:

Lemma11.11. Letv, w ∈ V be a pair of nodeswithdistancedG(v, w) = D. Then,with constant probability,
the tree growing process with parameterD creates a tree T with root r ∈ V , such that

d̃T (v, w) := dT (v, r) + dT (r, w) ≤ (1 + ϵ) · dG(v, w) + ϵD.

Proof. Consider a shortest pathPvw := (v, . . . , w)betweenv andw. For this proof, we pessimistically assume
that there is only one such path, although there could be several. We say that the path is intact (in step i) iff all
nodes of Pvw are contained in the same connected component (in step i). Otherwise, the path is split. In each
recursive step, two events can cause the path to be split. Either the padded decomposition places nodes of Pvw

in different partitions or one ormore nodes ofPvw lie on the separator computed in this step. We call the former
a bad split and the latter a good split. Our proof consists of two parts: First, we will show that the probability
of a bad split is very low. Then, we argue that— under the condition that no bad split occurs— the procedure
must create a tree with the desired properties, w.h.p.

We begin with a probability of a bad split in a fixed step i. Let C be the connected component contain-
ing Pvw in step i and let P (v) be the partition containing v. Note that all nodes of Pvw are contained in
the ball BC(v,D) as Pvw is intact per definition. The path stays intact if this ball is also in P (v). Thus, we
compute the probability that the complete ball is contained in the same partition as v using Theorem 9. For
this, we need to determine the parameter γ, i.e., the ratio between the partition’s diameter andD. Recall that
we execute the padded decomposition with distance parameter D′ := 6400D log2(n). Therefore, we have
D := 1/6400 log2(n)D′. In particular, it holds that γ := 1/6400 log2(n) ∈ o(1), so it is below the upper bound

247

required by Theorem 9. Further, we pick all nodes as potential cluster centers, so we have τ ≤ n. Using error
parameter ϵpd = 1/16000 logn, it holds by Theorem 9 that:

Pr[BG(v, γD′) ⊂ P (v)] ≥ e−16 log(n)(γ+5ϵpd) − 160ϵpd logn

Using γ = 1/6400 log2 n :

≥ e
−16 log(n)

(
1

6400 log2 n
+5ϵpd

)
− 160ϵpd logn

Using ϵpd = 1/16000 log2 n :

≥ e
−16 log(n)

(
1

6400 log2 n
+5· 1

16000 log2 n

)
− 160 logn

16000 log2 n

≥ e
− log(n)

(
1

400 log2 n
+ 1

200 log2 n

)
− 160 logn

16000 log2 n

≥ e−
2/100 log(n) − 1/100 log(n)

Using ex ≥ 1 + x :

≥ 1− 3/100 log(n) ≥ 1− 1/16 log(n)

Finally, a simple union bound over all 8 logn recursive steps yields a constant upper bound for the probability
of a bad split, namely:

Pr[Bad Split] ≤ Pr

8 logn⋃
i=1

{BG(v, γD′) ̸⊂ Pi(v)}


≤

8 logn∑
i=1

Pr[BG(v, γD′) ̸⊂ Pi(v)]

≤
8 logn∑
i=1

(1− Pr[BG(v, γD′) ̸⊂ Pi(v)])

=

8 logn∑
i=1

1−
(
1− 1

16 logn

)
=

8 logn
16 logn

=
1

2

From now on, we assume that there is no bad split and continue with the second part. It remains to be
argued why there must be a tree with additive stretch for each pair of nodes if there is no bad split. Recall
that after O(logn) recursions, the graph is empty, w.h.p. Thus, every path is eventually split. Without bad
splits, one can easily verify that on some level of the recursion, theremust be a good split. Otherwise, the path
wouldn’t have been split, and there would be a component with at least two nodes connected by an edge. This
is a contradiction as we assume that subgraphs are empty. Thus, eventually, there must be a good split that adds
one node of path Pvw to a separator.

Let u be the first node on the path Pvw that is part of some separator S. Recall that S consists of κ paths
P1, . . . ,Pκ and (depending on the concrete construction) some setsB1, . . . , Bκ in distance at most ϵsD′ to
these paths. That means u is in distance at most ϵsD′ = ϵpD to some path Pl. Now denote u′ as the closest

248

node to u on path Pl and u′′ as the closest portal to u′ and consider the distance from v to u′′. We will now
compute that the distance between v andw in tree Tu′′ via the root u′′. By the triangle inequality, we have:

dC(v, u
′′) ≤ dC(v, u) + dC(u, u

′′)

≤ dC(v, u) + dC(u, u
′) + dC(u

′, u′′)

≤ dC(v, u) + dC(u, u
′) + dPl

(u′, u′′)

≤ dC(v, u) + ϵsD′ + ϵpD

≤ dC(v, u) + ϵpD + ϵpD

≤ dC(v, u) + 2ϵpD

Now, recall the fact that the shortest path to w in C is equal to the shortest path in G. Per definition, no
node/edge of this path was removed before. Therefore, we have:

dC(v, u
′′) = dG(v, u) + 2ϵpD (11.3)

And completely analogously, it holds for the other nodew:

dC(w, u
′′) ≤ dG(w, u) + 2ϵpD (11.4)

Therefore the distance in the approximate shortest path tree rooted in u′′ is:

d̃T (v, w) := dT (v, u
′′) + dT (u

′′, w)

≤ (1 + ϵt) (dC(v, u
′′) + dC(u

′′, w))

≤ (1 + ϵt) (dG(v, u) + dG(u,w) + 4ϵpD) ▷By inequalities (11.3) and (11.4)
= (1 + ϵt) (dG(v, w) + 4ϵpD) ▷As u ∈ Pvw

Using our bounds for ϵp = ϵt = ϵ/12, we conclude:

d̃T (v, w) ≤ (1 + ϵt)d(v, w) + 4ϵpD + 4ϵpϵtD

≤ (1 + ϵ/12)d(v, w) + (ϵ/3 + 4ϵ
2
/122)D

≤ (1 + ϵ)d(v, w) + ϵD

Thus, the tree rooted in u has (1 + ϵ)-multiplicative and ϵD-additive stretch for v and w. This was to be
shown.

Thus, if we independently construct O(logn) such tree covers with parameter ϵ and D, at least one of
them contains a tree with the desired properties for some fixed pair v, w ∈ V , w.h.p. A union bound over all
O(n2) pairs shows they all get covered, w.h.p. Therefore, it remains to bound the number of forests. Due to
the divide-and-conquer nature of the algorithm, this is straighforward. It holds:

249

v

w

(a) We consider connected subgraphs of diameter D′ ∈
O(D log2 n). They are created with the algorithm from
Theorem 9. Nodes v andw are part of the same subgraph.

B(P, ϵ∆)
u

v

w

p1 p2 p3 p4

(b) We construct a weak κ‐path (D′, ϵs)‐separator. Node
u is on the shortest path between v and w and part of the
separator.

B(P, ϵ∆)
u

v

w

ϵ∆

2ϵ∆

p1 p2 u′ u′′

ϵ∆

(c) We mark portal nodes in distance ϵpD on the separator
paths. Here,u′′ is the portal closest tou. The path between
u and u′′ has length≤ 2ϵD.

B(P, ϵ∆)
u

v

w

p1 p2 u′ u′′

ϵ∆

v6

(d) We sequentially construct a (1 + ϵt)‐approximate
shortest path tree from each of the Õ(κ) portal nodes.
These trees will added to the tree coverT.

B(P, ϵ∆)
u

v

w

p1 p2 u′ u′′

ϵ∆

v6

(e) For each v → w‐path that has a nodeu in the separator,
there is an approximate shortest path tree that contains both
v andw and approximates the path.

B(P, ϵ∆)
u

v

w

ϵ∆

2ϵ∆

p1 p2 u′ u′′

ϵ∆

v4v3

(f) The distortion of the path (via u′′) in the tree depends
on (1 + ϵt), the multiplicative error of the SetSSP, and the
distance between u and u′′ , which is only additive.

Figure 11.1: A visualization of the main ideas of our construction of the tree cover. Note that in a traditional path separator, the nodeuwould lie directly
on the separator path, which saves an addive ϵsD.

250

Lemma 11.12. A tree cover T (ϵ,D) computed by the algorithm can be divided intoO(κ · ϵ−1 · log4 n) forests.

Proof. The forests are constructed as follows. Recall that in each recursive step, we construct at most K ∈
O(κ · ϵ−1 · log2 n) trees in each connected component. We enumerate all trees in all connected components,
i.e., each tree gets assigned a number in [1,K]. Using this numbering we define the series of forests F :=

F(1,1), F(1,2), . . . where forest F(i,j) contains all tree that get assigned number j ∈ [1,K] in recursion i ∈
[1, O(logn)]. Obviously, the trees in each forest F(i,j) are disjoint as they are picked from different connected
components of their respective graph. Further, as there are atmostO(logn) recursive steps and each connected
component in each recursive stephasK forests, there areO(K logn) forests in total. Finally, aswe indepedently
repeat the algorithm O(logn) times to compute O(logn) covers, the final number of forest is O(K log2 n).
AsK ∈ O(κ · ϵ−1 · log2 n), the lemma follows.

11.4.3 From Additive Tree Covers ToHierarchical Tree Covers

The algorithm for constructing a full tree cover is very straightforward. We use the additive tree cover algorithm
to compute several fixed distances and combine them into a full cover. To be precise, we simply double the
diameter of each new tree cover until we reach the maximum possible diameter. In particular, we choose d∗ :=

log(nW), i.e., d∗ is the logarithm of the biggest possible path length. Recall that W ∈ O(nc) is the largest
possibleweight of an edge and there canbe atmostn edges to a simple path. The error parameter for all coverings
T1, . . . , Td∗ is ϵ/3where ϵ is our goal approximation. The whole procedure is summarized in Algorithm 3.

Algorithm 3 HierachialCover(G := (V,E, ℓ), ϵ)

T←− ∅ ▷ Initialize output setT.
W ←− maxw∈E{we} ▷Maximum edge weight inG.
d∗ ←− ⌈lognW ⌉ ▷Note d∗ ∈ O(logn) asW ∈ o(nc)
for i← 0, . . . , d∗ do
Di ←− 2i

Ti ←− TreeCover(G,Di, ϵ/6) ▷ From Section 11.4 (Lemma 11.7)
T←− T ∪ {Ti}

returnT

We will now prove that this simple construction fulfills the properties postulated in the definition. In par-
ticular, we must show that for each pair v, w ∈ V there is a tree that approximates the distance between and
there are at most Õ(κ · ϵ−1) forests in the cover. We prove the two properties separately:

1. Let T := T1, . . . , Td∗ be a series of tree covers as defined above. Then, for each pair of nodes v, w ∈ V

with distance d(v, w) there is a treeT with distortion dT (v, w) ≤ (1+ ϵ)d(v, w). To see this, first note
that d(v, w) < nW by definition ofW and therefore, it holds log(d(v, w)) < log(nW). By construc-
tion ofT, theremust be a tree cover Ti with i := ⌈log(d(v, w))⌉ as log(d(v, w)) < log(nW). This tree
cover has diameterDi ∈ [d(v, w), 2d(v, w)]. Using the definition of our tree cover, we conclude that
there must be a tree T ∈ Ti for which it holds:

dT (v, w) ≤ (1 + ϵ/3)dG(v, w) + ϵ/3Di

251

Now, we use the fact thatDi < 2d(v, w) and see:

dT (v, w) ≤ d(v, w) + ϵ/3dG(v, w) + 2ϵ/3dG(v, w)

= d(v, w) + (ϵ/3 + 2ϵ/3) · dG(v, w)

= d(v, w) + ϵ · dG(v, w)

= (1 + ϵ)d(v, w)

Thus, this tree provides us with a routing path of the desired stretch.

2. The number of forests follows directly from the fact that d∗, the total number of all tree covers, is loga-
rithmic. Given that each tree cover contributes Õ(κ · ϵ−1) trees for each node, w.h.p., it easy to see that
inT, each node is in at most Õ(κ · ϵ−1 · d∗) trees. As d∗ ∈ O(logn) forW ∈ O(nc), the total number
is trees is still Õ(κ · ϵ−1).

Let us end the section with the time complexity of this whole construction. Since we need to repeat the algo-
rithm from Lemma 11.8 forO(log(n ·W)) distance values, the total time complexity is alsoO(log(n ·W))

times the complexity of said algorithm.

11.5 RelatedWork

In recent years, there have been several breakthroughs in the distributed computation of such routing schemes
in almost optimal time. The concrete time bounds depend on the model of computation. In this section, we
compile the most recent and influential results from the sequential model (Section 11.5.1), the CONGEST
model (Section 11.5.2), and the HYBRIDmodel (Section 11.5.3).

11.5.1 Compact Routing Schemes in the SequentialModel

There is a plethora of compact routing schemes that can be computed in polynomial time in the classical se-
quential model. Peleg and Upfal were the first to consider the trade-off between space and stretch [PU89]
showing that any scheme with stretch k requires Ω(n1/k) memory for the routing tables. They assume that
Erdös´ girth conjecture is true and there are graphs with O(n1+1/k) and girth k. Shortly after, Awerbuch et
al. devised a scheme with stretch O(9k) and Ω(n1/k) memory per node. This was later improved to 4k − 5

by Throrup and Zwick in a highly influential publication [TZ01]. To the best of our knowledge, the current
state of the art was developed by Chechik [Che13]. Her work presents a scheme with stretch 3.85k and, thus,
almost achieves the fundamental lower bound of stretch 2k − 1 with memoryO(n1/k). Besides these results
for general graphs, there are also specialized schemes designed for numerous families of network topologies.
These schemes circumvent the impending lower bounds by Peleg and Upfal as they exclude the pathological
graphs used in their construction. These schemes achieve (almost) arbitrary stretch with a mere fraction of the
memory required for general graphs and, therefore, offer significant improvements on the stretch-space tradeoff
over universal routing schemes. The families in question include trees [TZ01], where one can devise schemes
with stretch 1 (as there is only one path between two nodes in a tree) and logarithmic memory, as well as planar

252

graphs [Tho04] and fixed-minor-free graphs in general [AG06] where one has to stretch 1 + ϵ and labels and
tables of sizeO(ϵ−1). For the minor-free graphs, the hidden constants depend on the size of the minor. Typi-
cally, this is assumed to be a (small) constant independent of n. Furthermore, schemes for graph classes can be
used to model wireless networks. In this category, we have schemes for graphs with low doubling dimension
(ddim) [AGGM06] and (arguably) the most famous graph family that model wireless networks, namely Unit
Disc Graphs (UDG) [MW20]. The ddim of graphG is defined as follows: Suppose thatG has a ddim ofα, then
it holds for any node v ∈ V and any parameter r > 0 that the ball B(v, 2r) contains at most α · B(v, r)

nodes. An often used example of a metric with low doubling dimension is the Euclidean planeR2, which has
ddim of 8. In aUDGon the other hand, all nodes aremodeled points inR2, but are only connected (i.e., have an
edge) to all nodes in distance at most 1. In both cases there are routing schemes with stretch 1+ ϵ and polyloga-
rithmic label and table sizes. Finally, there are also compact routing schemes for power-law graphs[CSTW12].
Power-law graphs constitute an important family of networks appearing in various real-world scenarios such
as the Internet. In a power-law graph, the number of nodes with degree x is proportional to x−β , for some
constant β. The power-law exponent for many real-world networks is in the range between β ∈ (2, 3). Here
one can find a routing scheme with stretch 3.

11.5.2 Compact Routing Schemes in the CONGESTModel

Let us now consider related results forCONGEST.We alreadymentioned several of them in the beginning, but
for the sake of completeness, we mention them here as well. As mentioned, for general graphs, the best we can
hope for is a stretch of 2k − 1with routing tables of size Õ(n1/k) due to Erdös’ girth conjecture [TZ01]. The
goodnews is that thiswas nearlymatched in a series of algorithmic results [EN18b,EN16,LP13,LP15,LPP19].
In particular, [EN18b] gives a solution with stretchO(k), routing tables of size Õ(n1/k), routing labels of size
Õ(k) that can be computed in Õ

(
HD + n1/2+1/k

)
· no(1) rounds. For more restricted graphs, Izumi, Kita-

mura, Naruse, and Schwartzman [IKNS22] introduce a fully polynomial-time distributed tree decomposition
algorithm. It yields a decomposition of widthO(τ2 logn) in Õ(τ2HD + τ3) rounds, where τ is the graph’s
treewidth. Additionally, they present a novel concept of a stateful walk constraint, which naturally defines a set
of feasible walks in the input graph based on their local properties. Thus, for CONGEST, they almost match
all relevant lower bounds. Further, for planar graphs, Li and Parter present an exact routing scheme that can
be computed in Õ(HD2) time [LP19] with labels and tables of size Õ(HD). Finally, Table 11.1 presents an
overview of all relevant work in CONGEST.

11.5.3 Compact Routing Schemes in theHYBRIDModel

We conclude with some related work in the HYBRID model. We begin with some lower bounds: In a recent
article, Kuhn and Schneider [KS22] prove that it takes Õ(n1/3) rounds to compute exact routing schemeswith
labels of sizeO(n2/3)onunweighted graphs in theHYBRIDmodel andprovide an algorithm thatmatches this.
They also give polynomial time lower bounds of Ω(n1/f(k)) for routing schemes with stretch k on weighted
graphs. Here, f(k) is a function polynomial in k. They provide algorithms with near-matching upper bounds
for this setting as well. As in the lower bound for the memory requirement, the lower bound graph is a dense
graph of high girth. Again, the lower bound can be circumvented by considering special families of graphs.

253

Ref. Runtime Stretch Table size Label size Comment

[GZ22a] Õ
(
HD+ n1/2

)
O(1) Any Any Lower Bound

[LP13] Õ
(
HD+ n1/2+1/4k

)
6k − 1 + o(1) Õ

(
n1/2+1/k

)
O(k logn) General Graphs

[LP15] Õ
(
HD+ n1/2+1/k

)
4k − 3 Õ

(
n1/k

)
O(k logn) General Graphs

[LPP19] Õ
((
HD+ n1/2+1/k

)
· α

)
4k − 3 + o(1) Õ

(
n1/k

)
O(k log2 n) Extension of [LP13]

[EN16] Õ
((
HD+ n1/2+1/k

)
· β

)
4k − 5 + o(1) Õ

(
n1/k

)
O(k log2 n) Optimal Runtime

[EN18b] Õ
((
HD+ n1/2+1/k

)
· γ

)
4k − 5 + o(1) Õ

(
n1/k

)
O(k logn) Optimal Memory

[LP19] Õ
(
HD2

)
1 Õ (HD) O(HD) Planar Graphs

[IKNS22] Õ(τ2HD+ τ3) 1 Õ(τ2HD) O(τ2 logn) Treewidth τ

Thm. 12 + Lem. 1.2 Õ
(
ϵ−3 ·HD

)
1 + ϵ Õ

(
ϵ−1

)
Õ(ϵ−1) Planar Graphs

Thm. 12+ Lem. 1.1 Õ
(
ϵ−3 · τ ·HD

)
1 + ϵ Õ

(
τϵ−2

)
Õ(τϵ−2) Treewidth τ

Thm. 12+ Lem. 1.3 Õ
(
ϵ−3 · g ·HD

)
1 + ϵ Õ

(
gϵ−2

)
Õ(gϵ−2) Euler-genus g

Thm. 12+ Lem. 7.8 Õ
(
ϵ−3 · r ·HD

)
1 + ϵ Õ

(
f(r)ϵ−2

)
Õ(f(r)ϵ−2) Kr -free

Thm. 12 Õ
(
ϵ−3 · k ·HD

)
1 + ϵ Õ

(
kϵ−2

)
Õ(kϵ−2) k-path Separable

a α := 2O(
√

logn)

b β := min
{
2O(

√
logn), logO(k) n

}
c γ := logO(max{k,log logn}) n
d f(r) depends only on r

Table 11.1: An overview of the related work in CONGEST for general graphs, planar graphs, and graphs of bounded treewidth.

The first works that considered routing on special graphs in the HYBRID network model were [JKSS18] and
[CKS20]. In particular, they consider a UDGwith up to h so-called radio holes. These are areas enclosed by the
nodes of the UDG but do not contain any edges. For the remainder, we will refer to a UDG with up to h radio
holes simply as an h-UDGs. Jung et al. [JKSS18] show that for a bounded-degree h-UDG with a convex outer
boundary, one can compute an abstraction of UDG inO(log2 n) time so that paths of constant stretch between
all source-destination pairs can be found. On the downside, the algorithm requires some nodes to potentially
store a linear fraction of the nodes’ coordinates. In [CKS20], the same authors extend on this and show that in
h-UDGs where the bounding boxes2 of the radio holes do not overlap, the same can be donewithO(h)memory
(as long as source and target donot lie in a bounding box). However, both algorithms assumeunbounded global
communication, and furthermore, a simple extension of their approach to the outer boundaries of arbitrary
shapes seems unlikely. We want to remark that, with unlimited global communication one could gather the
topology at each node in O(logn) time and locally compute the sequential solution for UDGs. This would
beat the proposed schemes in runtime, memory, and stretch. Finally, there is a very recent line of work by Coy
et al. [CCF+22, CCS+23] that also considers h-UDGs but chooses more realistic communication parameters.
In particular, they limit the local communication to O(logn) bits and global communication to O(log2 n)
bits, i.e., they use the same bounds as we do in this work. For 0-UDGs without holes, i.e., arbitrary polygons,
[CCF+22] presents a routing scheme of stretch 36, labels and tables of size O(logn) that can be computed
in O(logn) time via a deterministic algorithm. The stretch of 36 can likely be reduced to a smaller constant
through a sharper analysis3. In the follow-up paper [CCS+23] it was further shown that for a h-UDG, the

2The bounding box of a hole is the smallest rectangle that fully contains the hole.
3This was conveyed to us in a personal communication with one of the authors.

254

Ref. Runtime Stretch Table size Label size (γ, λ) Comment

[KS22] Õ
(
n1/k

)
k O

(
n1/k

)
Any (∞, O(logn)) Lower Bound

[KS22] O
(
n1/3

)
1 O

(
n2/3

)
O(logn) (∞, O(logn)) General Graphs

[KS22] O
(
n1/k

)
k O

(
n1/k

)
O(logn) (∞, O(logn)) General Graphs

[CCF+22] O (logn) 36 O(logn) O(logn)
(
O(logn), O(log2 n)

)
0-UDGa

[CCS+23] O
(
h2 logn

)
36 O(h2 + logn) O(logn)

(
O(logn), O(log2 n)

)
h-UDGa

[JKSS18] O
(
log2 n

)
O(1) NAb NAb (∞,∞) h-UDGa

[CKS20] O
(
log2 n

)
18.55 NAb NAb (∞,∞) h-UDGa,c

Thm. 12 Õ
(
n4/k

)
O(k2) Õ

(
n1/k

)
O(log2 n)

(
O(logn), O(log2 n)

)
General Graphs

Thm. 12 + Lem. 1.2 Õ
(
ϵ−3

)
1 + ϵ Õ

(
ϵ−1

)
Õ(ϵ−1)

(
O(logn), O(log2 n)

)
Planar Graphs

Thm. 12+ Lem. 1.3 Õ
(
ϵ−3 · g

)
1 + ϵ Õ

(
τϵ−2

)
Õ(gϵ−2)

(
O(logn), O(log2 n)

)
Euler-genus g

Thm. 12 + Lem. 1.1 Õ
(
ϵ−3 · τ

)
1 + ϵ Õ

(
τϵ−2

)
Õ(τϵ−2)

(
O(logn), O(log2 n)

)
Treewidth τ

Thm. 12 + Lem. 1.4 Õ
(
ϵ−3 · r

)
1 + ϵ Õ

(
f(r)ϵ−2

)
Õ(f(r)ϵ−2)

(
O(logn), O(log2 n)

)
Kr -free

Thm. 12 Õ
(
ϵ−3 · k

)
1 + ϵ Õ

(
kϵ−2

)
Õ(kϵ−2)

(
O(logn), O(log2 n)

)
k-path Separable

a An h-UDG is a UDGwith h radio holes, i.e., areas without edges.
b [CKS20, JKSS18] do not present compact routing schemes but algorithms to compute routing paths for each s, t-pair inO(1) time
usingO(log2 n) time preprocessing. The memory requirement might be up toO(n), i.e., the nodes need to store the whole graph.

c The bounding boxes of radio holes must not overlap.

Table 11.2: An overview of the related work in the HYBRID model. All of the routing schemes assume that the nodes are able to perform a handshake
with the target, i.e., exchange one control message of size O(logn) before routing the actual message. This is a natural assumption in the HYBRID
model and leads to smaller routing labels if compared to the schemes in Table 11.1.

runtime increases to only O(h2 + logn) and table size to O(h2 logn). In other words, there is a quadratic
dependence on the number of holes. As in the previous paper, the stretch is 36 and the label size isO(logn).
Both papers also present exact routing schemes for grid graphs that are of independent interest. Note that grid
graphs are planar and therefore also subject to our algorithm. However, we only produce a scheme with stretch
1 + ϵ where ϵ > 0. Table 11.2 presents an overview of all relevant work in HYBRID and a comparison with
our results.

11.6 Conclusion & FutureWork

In this chapter, we presented algorithms that construct compact routing schemes in the CONGEST and the
HYBRID model. Our results can be divided into two areas. First, we proved that in the HYBRID model, we
can construct a compact routing scheme with constant stretch for any undirected graph (with polynomially
bounded edge weights) in sublinear time, w.h.p. For a stretch of O(log2 n), it requires only polylogarithmic
time. Thereby, it massively outperforms all comparable algorithms inCONGESTmodel that requireΩ(HD+
√
n) time for similar bounds. In particular, our algorithm only uses polylogarithmic communication in both

the global and the local mode. In earlier works, the author either assumed unlimited local communication
[KS22] or a restricted topology [CCS+22, CCS+23, JKSS18, CKS20]. Thus, our algorithm demonstrates the
massive impact that only a tiny amount of global communication has on the computation of routing schemes.
Second, we presented a compact routing schemewith a stretch 1+ϵ scheme for planar graphs and universally k-
path separable graphs. The latter class includes graphs of bounded treewidth, graphs of bounded Euler-genus,
or graphs that exclude afixedminorKr . Our schemes canbe constructed in almost optimal time except for some
(possibly large) polylogarithmic factors in CONGEST andHYBRID. This answers the fundamental question

255

of whether compact routing schemes with arbitrarily small stretch can be efficiently computed in a distributed
fashion for a plethora of restricted graph classes.

That being said, we must remark once again that our results are purely theoretical. Although comparing
favorably to other distributed algorithms, both the polynomial dependency on ϵ and the logarithmic factors in
the runtime and size of the routing tables are not optimal and likely too large for actual practical usage. They
could be improved in future work. However, this likely requires new techniques and ideas, particularly a more
efficient separator construction. Ourweak separator construction adds amultiplicative ϵ−1 that can be avoided
when using a proper path separator (as we do for planar graphs). However, even for planar graphs, we have a
linear dependency on ϵ−1 in the size of the routing table. The work of [KST13] shows that in a planar graph,
it suffices to store O(log ϵ−1 · logn) bits on average. It is unclear if their construction can be translated to
the distributed setting, but it provides a starting point. As with our previous result, our constructions can
also be improved without touching the actual algorithms. A faster algorithm for approximate SetSSP would
immediately speed up our algorithm as well. Further, proving thatKr-free graphs are poly (r)-separable leads
to faster runtimes and smaller tables forKr-free graphs.

Finally, we believe that our algorithms have applications beyond the construction of compact routing schemes
and may lead to better distributed algorithms for other types of routing schemes. In the remainder, we name
two promising examples.

Fault-Tolerant Routing Schemes A possible direction for future work could be the distributed con-
struction of fault-tolerant routing schemes for arbitrary and restricted graphs. Here, one is interested in a rout-
ing scheme that tolerates the failure of nodes and edges. That means, even if, say, f nodes or edges fail, the
scheme still finds a competitive path between source and target. Ideally, the stretch and the size of the routing
table only increase by a factor that polynomially depends on f . This topic has been heavily researched in the
past couple of years, leading to a good understanding of the problem [DP21, IEWM23, PPP24, LPS24]. How-
ever, to the best of our knowledge, existing algorithms do not present efficient distributed constructions. The
runtime is near-linear in the number of edges, namely Õ(m). However, the hop diameter HD, which is typi-
cally much smaller thanm, is conjectured to be the optimal runtime. Perhaps our techniques can help develop
efficient distributed implementations.

Oblivious Routing Schemes: By design, our compact routing schemes only consider the length of the
routing paths, not the congestion. This means that a-priori there could be nodes that lie on allO(n2) possible
paths between nodes. As a consequence, if each node actually wanted to route a message to another node, all
messages would need to cross this one specific node. Thereby, the node would experience very high congestion,
which often is unfortunate in practice. Our algorithm makes no effort to mitigate this, as this is not typically
considered in compact routing schemes.

In contrast to the routing schemes that we consider, so-called oblivious routing schemes try to minimize
the congestion (cf. [CR20, GHZ21, Rac02, Rä08, Rä09] for an overview.). Before we continue, we should
clarify whatminimizing the congestionmeans. Note that we can easily find graphs where a congestion ofO(n)

is unavoidable if each nodewants to send amessage. For example, in a balanced binary tree or a star graph. More

256

generally, for every graph, there is an optimal congestion COPT of each node, which might be up toO(n). A
good oblivious routing scheme tries to get as close to this optimal congestion as possible. Typically, the quality
is a multiplicative factor of Õ(1), i.e., the schemes have a congestion of Õ(COPT)whereCOPT is the optimal
congestion.

However, wewant to remark thatmost oblivious routing schemes that optimize congestion do not consider
the stretch, i.e., the paths that the messages take are very long. Thus, developing an algorithm that optimizes
both stretch and congestion and can efficiently computed inCONGESTorHYBRID is a worthwhile direction
for future work. In recent article [HRG22], Haeupler, Ghaffari, and Räcke presented a hybrid routing scheme
that combines both paradigms, i.e., it computes routing paths with (relatively) low stretch of 2O(

√
n) and (rel-

atively) low congestion of 2O(
√
n) times the optimal congestion. In CONGEST, the scheme can, w.h.p., be

constructed inO((HD+
√
n)2O(

√
n)) time in general graphs andO(HD · 2O(

√
n)) time in restricted graphs.

Their algorithm for oblivious and hybrid routing schemes is based on so-called (hop-constrained) expander
decompositions. In other words, they use entirely different techniques than we use for our routing schemes.
Perhaps, with an expander decomposition tailored to restricted graphs, one can also construct better oblivious
or hybrid routing schemes for restricted graphs. Our efficient construction of separators can possibly also help
here, but this is highly unclear and demands further research!

257

258

Beep Boop Beep.

R2D2, Star Wars: A NewHope

12
Approximating Simple Covering Problems Via

Beeping Algorithms

SetCover is a well-understood problem in both the centralized and distributed setting. In this chapter,
we present a new distributed algorithm for SetCover that works in a very restrictedmodel of commu-
nication. This makes it extremly versatile and good building block for distributed optimization prob-

lems. All algorithms and techniques that are presented in this chapter have been published in the following
journal article:

ThorstenGötte,ChristinaKolb,Christian Scheideler, and JulianWerthmann. Beep-and-sleep:Message
and energy efficient set cover. Theor. Comput. Sci., 950:113756, 2023

Given a collection of elements U := {u1, . . . , un} and sets S := {s1, . . . , sm} with si ⊆ U the goal
of SetCover is to cover all elements with as few sets as possible. A simple greedy algorithm that always picks
the set that covers most elements has a logarithmic approximation factor, which is the best we can hope for a
polynomial-time algorithm unless P = NP . SetCover has a wide variety of applications in many areas of
computer science. On the one hand, it plays an essential role in the analysis of large data sets, which is often
needed in fields like operations research, machine learning, information retrieval, and data mining1. On the
other hand, it is also used in purely distributed domains like ad-hoc sensor networks. An essential task in these

1See, e.g., [IMR+18, DIMV14, IV19, IMR+17] and the references therein for a comprehensive overview on the application of Set-
Cover.

259

networks is to determine a minimum set of nodes, a so-called DominatingSet, such that all nodes are within
the sensor range of this set. This set can fulfill tasks like routing, collecting sensor data from neighbors, and
various other jobs. Note that DominatingSet is a special case of SetCover. We can model each node as
an element that the solution must cover. Further, if we add a node to the solution, it covers itself and all its
neighbors. Thus, we can also model it as a set containing all these nodes. Therefore, DominatingSet is a
particular case of SetCover where all nodes need to act as both sets and elements.

Recall that we are interested in distance-based graph problems in this part of the thesis. Thus, we will look
at the following natural generalization of the DominatingSet problem.

Definition 12.1 (D-DominatingSet). Let G = (V,E,w) be a (weighted) graph and let D be a distance
parameter. Then, anD-DominatingSet is a subset S ⊆ V such that each node v ∈ V has at least node s ∈ S
in distance at mostD. Formally, for all v ∈ V , it holds:

BG(v,D) ∩ S ̸= ∅

Let SOPT be the minimal set with these properties. Then, we say that an algorithmA solves
D-DominatingSet with approximation ratio α if outputs a set SA with |SA| ≤ α|SOPT |.

An application of this particular flavor of theDominatingSet problem could be the following: Consider
an ad-hoc sensor networkwhere each device has an uplink, i.e., a separate antenna or satellite connection enables
it to communicate with a controller node, a base station, etc. It can use this uplink to send its sensor data or
to receive control information. However, doing this draws additional energy, which is typically considered a
sparse resource in ad-hoc networks. Therefore, a reasonable trade-off seems only to let a small subset of nodes
activate the uplink and ensure that these nodes are not too far away from any other nodes. Then, the remaining
nodes can use their local low-energy communication to send and receive data to and from the uplink nodes.
Note that the particular application determines whatever constitutes too far. In other words, we are looking
for the smallest possible set of nodes that are not too far away from all other nodes. Thus, our definition of a
D-DominatingSet with S being the uplink nodes andD being the maximal tolerable distance to an uplink
node, fits perfectly into this description.

Quite surprisingly, previous distributed algorithm forDominatingSet and/or SetCover did not specif-
ically consider this variant of the problem. For distributed algorithms, an instance of SetCover is usually
modeled as a so-called problem graphGP := {VU ∪ VS , E}. Each set and each element corresponds to a node
in this graph. Further, for each set si ∈ S there is a bidirected edge {uj , si} ∈ E to each element uj ∈ U it
contains. These edges model bidirected communication channels between the nodes representing the set and
element in the default distributed setup. Each set and element in each round of communication can send a
distinct message of size O(logn) over each communication edge. Several randomized algorithms in the dis-
tributed Congest model match the optimal approximation ratio, w.h.p., and have a near-optimal runtime of
O(log2 ∆) where∆ is the maximum degree of the problem graph [JRS02, KW03]. To the best of our knowl-
edge, in all popular distributed solutions to SetCover, all sets/elements extensively communicate with their
neighborhood and send (possibly distinct) messages to all their neighboring sets and elements. However, in
our case, the the communication graph is different from the problem graph! While we are are looking for a

260

DominatingSet inG(D) := (V,E)whereE(D) := {(v, w) | w ∈ BG(v,D)}, we can only communicate
inG. In the LOCALmodel, this does notmake toomuch of a difference aswe can use unboundedmessages. In
an unweighted graph, we can collect all messages from all nodes in the distanceD withinD rounds. We would
only have a slowdown of D compared to the local solutions that only communicate with neighboring nodes.
In more restricted models like CONGEST, the situation is different. Here, we cannot trivially extend existing
algorithms to distanceD. To be precise, we cannot receive a distinct message from all nodes in the distanceD
inD rounds as the communication along an edge is restricted. Thus, the communication between nodes and
the nodes they can potentially cover is much more restricted and we have to compress the information we want
to send. In spite of this, we show:

Theorem 13.D-DominatingSet in CONGEST

Let D ≥ 1 be a distance parameter, and let G = (V,E) be an unweighted graph. Suppose that for
all nodes v ∈ V , it holds BG(vD) ≤ ∆, then there is a randomized algorithm in the CON-
GESTmodel that solvesD-DominatingSet inO(D · k3) rounds with expected approximation ratio
O(∆

3
k log2 ∆)where k > 3 is an parameter. Both k and∆must be known to all nodes.

The algorithm sends only 1-bit messages and does not require to send distinctmessages to all neighbors.

Note that the algorithm can trade runtime for approximation ratio. This trade-off makes it particularly
practical for sensor networks, as their topology is often rapidly changing due to sensor nodes moving, shutting
down, or rebooting. Our algorithm can quickly react to these changes by computing a new non-trivial solution
in constant time. However, for instances of high degree, when the devices are placed densely, is approximation
ratio may still be too high. Existing solutions for special graph classes (see, e.g.,[SRS08, YJY+15] for graphs
embedded in the euclidean plane) have far better approximation ratios as they can exploit specific properties
of the problem graph. On the flip side, they have at least a logarithmic runtime, which cannot trivially be
reduced. Thus, our algorithm is suitable in cases where the degree is not too high, and a constant runtime is
more important than an optimal approximation. Finally, note that this work focuses on proving the feasibility
and not optimizing the logarithmic factors in message complexity and approximation ratios, i.e., we explicitly
do not claim our factors to be optimal.

The remainder of this section is structured as follows. First, we present some preliminaries in Section 12.1.
In particular, we introduce the so-called Beepingmodel, a simplemodel for ad-hoc networks that relies only on
carrier sensing. This model is weaker than CONGEST, but in contrast to CONGEST, a Beeping algorithm
for a nodes 1-neighborhood can easily be transformed in an algorithm for a nodes D-neighborhood. In fact,
this is exactly what we will do. Then, in Section 12.2, we present our main technical contribution, an adapted
version of Jia et al.’s. DominatingSet algorithm from [JRS02] for the aforementioned Beeping model. We
change this algorithm in two significantways: First, wemassively reduce themessages that need to be exchanged
by replacing all instanceswhere nodes are counted through randomized approximations. These approximations
only use a fraction of the messages. Second— and more importantly—we completely replace the mechanism
that lets nodes decide to join the solution. For this, weuse geometrically distributed starting timeswhere sets add
themselves when their time has come, and they have a certain threshold of uncovered neighbors. This approach

261

does not require any additional messages. Note that the independent work of [GMRV20] uses a very similar
technique2. Still, their analysis does not provide all the properties we need for our problem. Finally, we present
some related work in Section 12.3 and conclude the chapter with some ideas for future work in Section 12.4.

12.1 The BeepingModel

In wireless ad-hoc networks, one needs to take special care of the limited battery life of the nodes. In particular,
sending messages should be reduced to a minimum due to the high energy requirements of the radio mod-
ule. In practical ad-hoc networks, the number of messages is not the limiting factor. Instead, it is much more
energy-efficient to only send a single signal, a so-called Beep, to all neighboring nodes. Further, nodes can only
distinguish if at least one or none of their neighbors beeped to save energy, i.e., they only rely on carrier sensing.
These considerations have been formalized in the so-called Beeping model[CK10]. In this work, we consider
the following (standard) variant of the Beeping model [CK10, DBB18]: We consider a fixed communication
graphG := (V,E). Note that the nodes do not know their exact degree, and nodes have no identifiers. Time
proceeds in so-called slots. In each slot, a node can either beep or listen. If a node listens and any subsets of its
neighbors inG beeps, the listening node receives a Beep. It can neither distinguish which neighbors beeped nor
how many neighbors beeped, i.e., it only relies on carrier sensing. Further, a node cannot simultaneously beep
and listen but must choose one of the two options. All nodes wake up in the same slot, i.e., we consider the
Beeping model with simultaneous wake-up. We believe that our algorithm can also be extended for wake-up-
on-beep as each node only needs to be in sync with neighboring nodes. If nodes do not wake up in the same
round, their internal counters only differ by 1 as each node wakes up one slot after its earliest neighbor. In this
case, there are some standard tricks to simulate a single slot of a simultaneous wake-up algorithmwithin 3 slots
[CK10, DBB18].

For this variant of the model, the following holds:

Lemma 12.1 (Folklore). LetG be an unweighted graph. Then, every Beeping algorithm onG(D) := (V,E)

whereE(D) := {(v, w) | w ∈ BG(v,D)} can be simulated onG inD rounds of CONGEST.
In the simulation, all nodes can beep and listen simultaneously.

Proof. For the CONGEST part, each beep simply is relayed forD steps. To be precise, each slot simulated inD
rounds in CONGEST. That is, if a node v ∈ V beeps in given slot, it sends a 1-bit message to all its neighbors
inG. Then, all nodes that received one or more such messages, send a 1-bit message to all of their neighbors.
This continues forD rounds. Thus, a given node v ∈ V will receive the 1-bit message if and only if a node in
BG(v,D) beeped. It cannot tell, which node beeped (unless it happens to be its direct neighbor) nor howmany
nodes have beeped. Thus, it has the same information as in the Beepingmodel. Clearly, this also holds for the
nodes that beeped so that they can beep and listen simultaneously.

2Instead of using geometric starting times, they continuously increase a set’s probability to join until it joins or does cover enough
elements. From a probabilistic point of view, this is (almost) equivalent to picking geometric starting times.

262

12.2 An Efficient SetCover-Algorithm for the Beeping-Model

We will now describe our first algorithm, which we dub the Beep-And-Sleep algorithm, as most sets and ele-
ments will be idle during the execution. We consider a fixed communication graphG := (VS ∪ VU , E) with
VS = m and VU = n. Each set s ∈ VS has a bidirected edge {s, e} ∈ E to each element e ∈ VU it contains.
Each node can only communicate with its neighbors in G. Further, all nodes know∆, the maximum degree
ofG. This assumption can be replaced by a polynomial upper bound, i.e., an approximation of log∆, which
would only slow the algorithm down by a constant factor.

Given these assumptions, we show the following:

Theorem 14. SetCover in the BeepingModel

There is a randomized algorithm in the Beeping model that solves SetCover in time O(k3) with
expected approximation ratioO(∆

3
k log2 ∆)where k > 3 is a parameter known to all nodes.

Thus, even for a constant k, our algorithm achieves a non-trivial approximation ratio. Note that this is close
to the optimal ratio we can hope for with this runtime, as Kuhn et al. showed that any distributed algorithm
with only local communication needsO(k) time for an approximation ratio ofO(∆

1
k) [KMW06]. Note that

together with Lemma 12.1, this theorem implies Theorem 13. As the simulation allows listening and beeping
simultaneously, each node can simulate a set and and element.

The core idea behind this algorithm is that— similar to the sequential greedy algorithm—all sets that cover
themost uncovered neighbors at a given point in time add themselves to the solution. However, due to the con-
straints of the Beeping model, the uncovered elements cannot simply inform their neighboring sets that they
are uncovered. If all elements were to send a Beep simultaneously, the listening sets would only learn that they
have at least one uncovered neighbor but not how many. So, our algorithm must work around this. Further,
since we are in a distributed setting and want to achieve a short runtime, we need to add sets simultaneously.
Thus, we need to ensure that two (or more) sets we add concurrently do not overlap too much, i.e., cover the
same elements. Hence, the main difficulty stems from the following two technical challenges in the Beeping
model:

1. We need to estimate the number of uncovered neighbors correctly.

2. We need to avoid too many sets containing the same elements being added to the solution concurrently.

Note that the classical algorithmbu Jia et al.[JRS02] faced the sameproblems in theCONGESTmodel. In their
algorithm, all sets that (approximately) cover the largest number of uncovered elements try to add themselves to
the solution. Then, each of these sets locally computes the probability of joining the solution. This probability
is based on how many elements are covered by the sets in their 2-neighborhood. To be precise, each element
counts howmany sets want to cover it and sends this value to all these sets. Thus, each set receives a value from
all its uncovered elements. Then, the sets locally compute the median of these values and pick its inverse as
their probability. This calculation requires each element and set to send and receive distinct messages of size
O(log∆) to and from all of their neighbors (as all values are smaller than∆ and require O(log∆) bits to be

263

encoded). Obviously, this is trivial to implement in the CONGEST model. However, in the Beeping model,
this calculation cannot be done as easily because of the restricted communication. First, we would need at
least O(log∆) slots to submit even a single value, as we can only transmit one bit per round. Thus, a simple
simulation cannot achieve a runtime polynomial in k. Second, we cannot receive distinct values from different
neighbors in the Beepingmodel. Therefore, the computation of themedian also cannot be trivially simulated.

We will heavily use randomization and present a randommechanism to achieve the desired properties. We
begin with a helpful definition that simplifies our notation. For any i = k, . . . , 0we define

∆i :=
∆

∆
i
k

:=
(
∆

1
k

)k−i

.

Throughout this work, we will make two assumptions about the degree. First, we will assume that ∆i is an
integer for any choice of i. In other words, we assume ∆ is a multiple of ∆ 1

k . This way, we do not need to
carry rounding artifacts through our equations. Second, we assume w.l.o.g. that∆ > 4k. Note that the largest
meaningful value for k isO(log∆). For bigger values, the termO(log2 ∆) dominates the approximation ratio
given in Theorem 14. As∆ ∈ ω(log∆), our assumption holds for instances of non-constant degree. Instances
of degree ∆ ∈ O(1) admit a trivial constant-factor approximation by adding all sets, so our result remains
general.

12.2.1 AlgorithmDescription

Nowwe will describe the algorithm promised by the theorem: The algorithm runs in k phases, where in phase
i, all sets that cover approximately∆i elements try to add themselves to the solution. At the beginning of each
phase, the sets and elements do the following:

• Each set s draws a geometric random variableXs with parameter 1 − 1/∆
1
k . Values bigger than 4k are

rounded down to 4k, soXs ∈ [0, 4k] always.

• Each uncovered element u draws 4k variables Y 1
u , . . . , Y

4k
u with Y ℓ

u ∈ {0, 1} and Pr
[
Y ℓ
u = 1

]
=(

1
∆i

)
independently and uniformly at random. If at least one of these variables is positive, we say that

u is active. As we will see, this ensures that each set with∆i uncovered elements has roughly 4k active
elements in expectation.

These variables stay fixed for the duration of the phase.
Obviously, not all setswith active elements in a givenphasemaybe (simultaneously) added to the solution, as

this generally would not lead to a good approximation. Many of these sets could cover the same active elements,
so we must add them carefully and update the number of active elements after each addition. To this end,
the phases are further subdivided into 4k + 1 rounds, where only some sets try to add themselves. Here, the
geometric distribution comes into play. Each set has precisely one roundΦs ∈ [0, 4k]where it tries to enter the
solution. The round is determined byΦs := 4k−Xs. In all other rounds, the set will be idle and not try to add
itself. This roughly means that in the first couple of rounds, only very few sets will try to add themselves (and
only cover elements contained inmany sets), while in the later rounds, almost all sets will try to add themselves.
As we will see in the analysis, our particular choice of parameters ensures that in each round, only Õ(∆

1
k) sets

264

Algorithm 4 Code for Sets
procedure Sets(s,Ns, k,∆)

Ss ←− 0
A←− {⊥}4k
for i := 0, . . . , k do

PickXs ∼ Geo(1− 1/∆
1
k).

Xs ←− min{Xs, 4k}

for j := 0, . . . , 4k do
for ℓ = 1, . . . , 4k do

Aℓ ←− Listen()

if (|{Aℓ ̸= ⊥}| ≥ 3k) then
if (4k −Xs = j) then

Beep()
Ss ←− 1

A←− {⊥}4k

Algorithm 5 Code for Elements
procedure Elements(e,Ne, k,∆)

Ce ←− 0

for i := 0, . . . , k do
for ℓ = 1, . . . , 4k do

Y ℓ
e ∼ B (1/∆i)

for j := 0, . . . , 4k do
for ℓ = 1, . . . , 4k do

if (Y ℓ
e = 1) then
if (Ce = 0) then

Beep()

l←− Listen()
If l ̸= ⊥, setCe ←− 1

Figure 12.1: Pseudocode for BeepAndSleep algorithm for creating a SetCover. The pseudocode depicts the code for the elements (right) and the code
for the sets (left). Sets and elements are synchronized. Whenever the sets beep, the elements listen, and vice versa.

try to cover the same element simultaneously in expectation. Note that this geometric mechanism that lets the
sets decide to add themselves is the main difference from the classical algorithm by Jia et al. [JRS02].

We now focus on the order of events of a single round. A single round consists of 4k + 1 slots. In the first
4k slots, the sets try to estimate the number of their active elements. During this time, the sets will only listen
and count the number of beeps they hear. Each active element u (that has not yet been covered) beeps in slot
ℓ ∈ [1, 4k] if it has drawn Y ℓ

u = 1 in the beginning and remains idle otherwise. Now consider a set that has
at least∆i uncovered elements. Our choice of parameters implies that in each slot, there is (at least) one active
element that sends a Beep in expectation. After these 4k steps, the sets decide to enter the solution. Each set s
withΦs = j that received a Beep in at least 3k slots adds itself to the solution and beeps. In the final slot of the
round, the elements listen for beeps, and if they hear a beep (sent by a set that adds itself to the solution), they
consider themselves as covered. Once an element is covered, it will perform no further action. Note that in the
last phase, it holds 1

∆k
= 1, so all uncovered nodes become active and, more importantly, beep in all 4k slots.

Thus, even if there is only one uncovered element, the neighboring sets will hear a Beep in 4k slots. As each set
eventually tries to add itself, all elements will get covered.

The pseudocode for the algorithm is given in Figure 12.1. In the following, we elaborate on some of the
notation used in the code. If a set or element wants to send a beep, it calls the eponymous method Beep(). If a
set or element wishes to listen to Beeps, it calls the method Listen(), which either returns Beep if at least one
neighboring node called Beep() or ⊥ otherwise. We use B(p) and Geo(p) to refer to the Bernoulli and geo-
metric distribution, respectively. In addition to the variables that store the aforementioned random variables,

265

the nodes have little additional state information. Each set s has a variable Ss ∈ {0, 1} that is 1 if s part of the
solution set and 0 otherwise. This variable is initially set to 0. Further, each set has array A ∈ {⊥,Beep}4k

of size 4k that is used the count the beeps of neighboring elements received in one round. This array is reset
after each round, so a set’s total memory is onlyO(k) bits. The elements have the variableCe ∈ {0, 1}, which
takes value 1 if the element is covered and 0 otherwise. Together with the variables Y1, . . . , Y4k that store the
random choices, the elements also need to storeO(k) bits.

12.2.2 Analysis (Proof of Theorem 14)

We will prove Theorem 14 and show that our algorithm fulfills the promised bounds. The runtime ofO(k3)

follows almost trivially. The algorithm is structured ink phases, eachphase again in4k+1 rounds. Further, each
round again consists of4k+1 slots, whichbrings the total runtime toO(k3). Since the runtime is deterministic,
we only need to prove the expected approximation ratio.

Lemma 12.2. The algorithm outputs aO
(
∆

3
k log2 ∆

)
-approximate solution in expectation.

Since the algorithm, for the most part, follows the algorithm by Jia et al.[JRS02], a generalized version of
their core lemma also holds for our case. In particular, they showed that their algorithm only deviates by a
constant factor from the greedy solution. They use the fact that each set can exactly count howmany elements
it covers, whereas our algorithms can only approximate it. Thus, we need to parameterize the analysis further
to account for this.

Note that an element can only get covered in the last slot of a round. As we have k + 1 phases and 4k + 1

rounds in a phase, there are τ := 4(k + 1)2 − 3 rounds in total. For this analysis, we denote each round as
a tuple (i, j) where i ∈ [0, k] is the phase and j ∈ [0, 4k] is the round of that phase. Thus, when we write
round (i, j), we mean the jth round of the ith phase. Note that i and j correspond to the loop counters in the
pseudocode. We choose this notation because the phase i is very important for calculating the probabilities, so
we need to carry it with us. In the following, we consider the round (0, 0) ≤ (i, j) ≤ (k, 4k) in which element
u ∈ VU is covered. Since all elements are eventually covered (because in the last phase, all uncovered elements
beep until one of their neighboring sets adds itself), this phase is well-defined. For each element covered by our
algorithm, we define the random variables η(i,j)(u) ∈ [1,∆] andµ(i,j)(u) ∈ [1,∆]. We define η(i,j)(u) to be
the ratio between the best set in u’s neighbor and the worst set picked by the algorithm, i.e., the ratio by which
the choice of our algorithm differs from the greedy solution. Further, let µ(i,j)(u) be the random variable that
denotes the number of candidates covering u ∈ VU in the round where it is first covered.

Moreover, we define the functions c(i,j)min(u) ∈ [1∆ , 1] and c
(i,j)
max(u) ∈ [1∆ , 1] for each covered element

u ∈ VU . Let Nu ⊂ VS denote the sets that can cover u. Likewise, let Ns denote the elements contained in
some set s ∈ VS . Suppose u is covered by setsC(i,j)(u) ⊆ Nu, i.e., these sets add themselves simultaneously.
Further, let d(i,j)(s) for s ∈ Nu be the span of set s, i.e., the number of uncovered elements neighboring s.
Based on this, we define c(i,j)max(u) based on the set with fewest uncovered elements, i.e., the set that deviates the
most from whatever set the greedy solution would have picked. It holds:

c(i,j)max(u) = max
s∈C(i,j)(u)

1

d(i,j)(s)

266

The value c(i,j)min(u), on the other hand, is determined by the set in u’s neighborhood with the biggest possible
span, i.e., the set that the greedy solution would have picked. Note that this set may not be part of C(i,j)(u).
Formally, we have the following:

c
(i,j)
min(u) = min

s∈Nu

1

d(i,j)(s)

On the other hand, by the definition of η(i,j)(u), it holds:

c(i,j)max(u) = η(i,j)(u) · c
(i,j)
min(u)

Finally, we define the following values:

1. Let S(i,j) be set of candidates that add themselves to S in round i.

2. For each s ∈ S(i,j) let U(i,j)(s) ⊂ Ns denote the uncovered elements in s. Note that d(i,j)(s) :=

|U(i,j)(s)|, i.e., the cardinality ofU(i,j)(s) is the set’s span.

3. Let U(i,j) :=
⋃

s∈S(i,j)
U(i,j)(s) denote the set of elements that are uncovered at the start of round

(i, j) and are covered in this round.

Given these definitions, the number of sets that are added to the solution in round (i, j) can be bounded as
follows:

|S(i,j)| ≤
∑

s∈S(i,j)

d(i,j)(s)

d(i,j)(s)

As s covers exactly d(i,j)(s) elements:

≤
∑

s∈S(i,j)

|U(i,j)(s)|
1

d(i,j)(s)

As 1/d(i,j)(s) ≤ c(i,j)max(u) :

≤
∑

s∈S(i,j)

∑
u∈U(i,j)(s)

c(i,j)max(u)

As each u ∈ U(i,j) is covered by µ(i,j)(u) sets:

=
∑

u∈U(i,j)

c(i,j)max(u) · µ(i,j)(u)

As c(i,j)max(u) := η(i,j)(u) · c
(i,j)
min(u):

≤
∑

u∈U(i,j)

c
(i,j)
min(u) · η(i,j)(u) · µ(i,j)(u)

267

Nowwe consider the expected value of |S(i,j)|. Using the linearity of expectation and the inequality above, we
get that:

E
[
|S(i,j)|

]
≤
∑
u∈VU

Pr
[
u ∈ U(i,j)

]
· E
[
µ(i,j)(u) · η(i,j)(u) · c

(i,j)
min(u)

]
(12.1)

≤
∑
u∈VU

Pr
[
u ∈ U(i,j)

]
· E
[
µ(i,j)(u)

]
· E
[
η(i,j)(u) · c

(i,j)
min(u)

]
(12.2)

The second line follows from the fact that the random events that determine η(i,j)(u) and µ(i,j)(u) are inde-
pendent. We will now bound E

[
η(i,j)(u)c

(i,j)
min(u)

]
and E

[
µ(i,j)(u)

]
separately. In particular, for µ(i,j)(u),

we show the following:

Lemma 12.3. For all elements u ∈ VU and all round (i, j), it holds:

E
[
µ(i,j)(u)

]
≤ 3∆

1
k

The proof is based on the specific properties of the geometric distribution and can be found in Section
12.2.3. It can be regarded as the primary technical contribution of this section as it requires some non-trivial
observations on the dependencies between the random decisions made by the algorithm. Similarly, it holds for
the difference between the best and the worst set:

Lemma 12.4. Let k ≥ 3. Then, for every element u and round (i, j) in which u is covered, it holds

E
[
η(i,j)(u)c

(i,j)
min(u)

]
≤ 25 · log∆ ·

(
∆

1
k

)2
E
[
c
(i,j)
min(u)

]
In contrast to the previous lemma, this statement can be shown via fundamental calculations and elemen-

tary combinatorics. The proof can be found in Section 12.2.4. Putting these two insights back in the formula
from Equation (12.2), we get:

E
[
|S(i,j)|

]
≤
∑
u∈V

Pr
[
u ∈ U(i,j)

]
· E
[
µ(i,j)(u)

]
E
[
η(i,j)(u) · c

(i,j)
min(u)

]
(12.3)

By Lemma 12.3: (12.4)

≤
(
3∆

1
k

)∑
u∈V

Pr
[
u ∈ U(i,j)

]
· E
[
η(i,j)(u) · c

(i,j)
min(u)

]
(12.5)

By Lemma 12.4: (12.6)

≤
(
3∆

1
k

)(
25
(

k
√
∆
)2

log∆
)∑

u∈V

Pr
[
u ∈ U(i,j)

]
E
[
c
(i,j)
min(u)

]
(12.7)

≤
(
75∆

3
k log∆

)∑
u∈V

Pr
[
u ∈ U(i,j)

]
E
[
c
(i,j)
min(u)

]
(12.8)

268

Now recall that each element gets covered eventually, so eventually, each u gets assigned as cost c(i,j)min(u). For
each u ∈ VU define the expected cost as:

E [cmin(u)] :=

k∑
i=0

4k∑
j=0

Pr
[
u ∈ U(i,j)

]
E
[
c
(i,j)
min(u)

]

Next, we can use the linearity of expectation to sum over all k2 rounds and get:

E [|S|] =
k∑

i=0

4k∑
j=0

E
[
|S(i,j)|

]
▷Linearity of Exp.

≤
(
75∆

3
k log∆

) k∑
i=0

4k∑
j=0

∑
u∈VU

Pr
[
u ∈ U(i,j)

]
E
[
c
(i,j)
min(u)

]
▷Inequality (12.8)

=
(
75∆

3
k log∆

) ∑
u∈VU

E [cmin(u)] ▷Law of Total Exp.

It only remains to bound the expected cost assigned to an element when it is covered. By the analysis of the
greedy algorithm by Jia et al., it holds that:

Lemma 12.5 (Lemma 3.5 in [JRS02]). Let |SOPT | be the size of the optimal solution, then it holds:∑
u∈VU

E [cmin(u)] ≤ H∆|SOPT | ≤ log∆|SOPT |

Here, the termH∆ denotes the∆th harmonic number.

Proof. Fix any execution A of the algorithm, i.e., assign each element a round in which it is covered. We will
argue that for all possible executions, the maximal cost ofH∆|SOPT | is assigned. The proof exploits that cmin

can always be bounded by the span of a set from the optimal solution.
Consider a set s ∈ SOPT of degree∆s. This set may not be a part solution computed by the algorithm; we

only use it to bound the assigned cost. We consider only the rounds inwhich someneighbor of s is covered in the
following. We ignore all the rounds in between. Suppose that there are r distinct rounds (i1, j1), . . . , (ir, jr)
in which neighbors are covered. To simplify notation, we can enumerate these rounds as 1, . . . , r. Note that
the concrete indices of the phase and round inwhich an element is covered donotmatter for this proof. Further,
we can define values δ1, . . . , δr that denote the number of neighbors covered in the corresponding round. To
be precise, in the lth roundwhere some elements of s are covered, the algorithm covers exactly δl ≥ 1 elements.
All these values are entirely determined byA.

In the first round, where any element of s is covered, it is assigned a cost of atmost 1
∆s

(if there is a set with a
bigger span, the cost can only get smaller). In the second round, where any neighbor of s is covered, it is assigned
a cost of at most 1

∆s−δ1
. Recall that δ1 counts howmany elements were covered in the first round. Therefore,

269

s must have a span of∆s − δ1 because, per definition, no other neighbor of s was covered in between. This
argument can be repeated inductively, such that the total cost after the rth round is bounded by

∑
u∈Ns

E [cmin(u) | A] ≤
r∑

l=1

1

∆s − δl

Seeking an upper bound, let u1, . . . , u∆s
be elements such that uℓ is covered before or in the same round as

uℓ+1. Then, the cost assigned touℓ is boundedby 1
∆s−(ℓ−1) . Thus, themaximal cost that a node of the optimal

solution can assign is bounded by

∑
u∈Ns

E [cmin(u) | A] ≤
r∑

l=1

1

∆s − δl

≤
∆s∑
ℓ=1

1

∆s − (ℓ− 1)

≤ H∆s
≤ H∆

Since there are |SOPT | sets in the optimal solution, which all assign costH∆, the lemma follows for assignment
A. As this bound holds for all possible executions of the algorithm, the law of total expectation yields the
lemma.

Putting everything together, we get:

E [|S|] ≤
(
75∆

3
k log∆

) ∑
u∈VU

E [cmin(u)]

≤
(
75∆

3
k log∆

)
·H∆ · |SOPT | ▷Lemma 12.5

≤
(
75∆

3
k log∆

)
· log (∆) · |SOPT |

≤
(
75∆

3
k log2 ∆

)
· |SOPT |

∈ O
(
∆

3
k log2 (∆)|SOPT |

)
This proves the main theorem.

12.2.3 Proof of Lemma 12.3

We will show that for any node u ∈ VU , it holds that the probability that u is covered by more than t sets
simultaneously is exponentially declining in t. In particular, this is independent of the phase and round in
which u is covered. The main result of this section is:

Lemma 12.6. For any value t > 1, any element u ∈ V and any round (i, j) in which u is covered, it holds:

Pr
[
µ(i,j)(u) = t

]
≤ max{e−t/4, 2

(
1− 1/∆

1
k

)t−1}

270

We aim to use a result byMiller et al. [MPVX15b] (which needs to be adapted for geometric values). They
showed that the number of candidates that pick the earliest possible wake-up time is∆ 1

k in expectation3. For
each node u ∈ VU , we consider the phase in which u is covered. Recall that every element is always covered
because in the last roundof the last phase, all remaining sets that cover at least one element simply add themselves
to the solution.

In the remainder, we will focus only on a single phase i. For readability, we refer to the number of sets that
cover u simply as µ(u) (and not as µ(i,j)(u)) during this proof. Further, since we focus on a single fixed phase,
we will just write round j instead of round (i, j). In particular, when we talk about a round j ∈ [0, 4k], we
always mean round j of phase i.

Throughout this proof, we divide the sets into two subsets.

1. First, letNu be the set of sets in u’s neighborhood, i.e., the sets that can cover u. We call these the neigh-
boring candidates.

2. Second, letNN := VS \Nu be all other sets. We call these the non-neighboring candidates.

Further, we define the wakeup time Φs of each s ∈ VS as Φs := 4k − Xs. Now we consider the concrete
round j in which u is covered. Here, we must distinguish between round j = 0 and all other rounds. First,
we consider the elements covered in round j = 0. In this case, the values Xs of all candidates that cover u
must be bigger than or equal to 4k (before being rounded down). Otherwise, if it held Xs < 4k, the value
Φs := 4k −Xs would be strictly positive, and the corresponding set would wake up in a later round. In the
following, we call a set s ∈ VS early if it holdsXs ≥ 4k. Given this definition, it holds:

Lemma 12.7. Denote Eu as the number of early sets covering u. Then it holds:

E [Eu] ≤
1

∆2

Proof. For a single candidate s ∈ Nu, the probability to be early is at most

Pr[s is early] =
∞∑
i=0

Pr[Xs = 4k + i]

=

∞∑
i=0

(
1

∆
1
k

)4k+i(
1− 1

∆
1
k

)

≤
∞∑
i=0

(
1

∆
1
k

)4k (
1

∆
1
k

)i

=
1

∆4

∞∑
i=0

(
1

∆
1
k

)i

≤ 2

∆4

3Note that that the analysis of a similar result in [GMRV20] only bounds this term in expectation (and not the exact probability) and
does not parameterize it on the number of phases as we do. We need both these aspects for our problem. Adding these two aspects to
their analysis does not seem straightforward as they use a rather complex term to bound the expectation. In contrast, we can exploit the
geometric distribution’s fundamental properties.

271

This follows directly from the definition of the geometric distribution. As there are at most ∆ neighboring
candidates that cover u, the expected number of early candidates is at most 2

∆3 as it holds that:

E [Eu] =
∑
s∈Nu

Pr[s is early] =
∑
s∈Nu

2

∆4
≤ 2∆

∆4
=

2

∆3

As∆ ≥ 2 this further simplifies to 1
∆2 .

Given the fact that all set pick theirwake-up time independently, theChernoffbound implies the following:

Lemma 12.8. Suppose u gets covered in the first round of the phase, then

Pr[µ(u) ≥ t | u is covered in round 0] ≤ e−
t
4

Proof. Since all candidates pick their wake-up time independently and µ(u) is exactly the number of early can-
didates, i.e., it holds µ(u) = Eu, we can use the Chernoff bound (cf. Lemma 1.6) to show that:

Pr[µ(u) ≥ 4t′ | u is covered in round 0] = Pr[Eu ≥ 4t′]

= Pr
[
Eu ≥ 4t′∆2 1

∆2

]
By Lemma 12.7:

≤ Pr
[
Eu ≥ 4 · t′ ·∆2 · E [Eu]

]
≤ Pr

[
Eu ≥

(
1 + 3 · t′ ·∆2

)
E [Eu]

]
Using the Chernoff bound:

≤ e
−3t′·∆2

∆2·3 ≤ e−t′

The lemma follows by substituting t = t′/4.

Having dealt with round 0, we now assume that u gets covered in any other round j > 0. This part is more
complex than the previous one as it requires a more careful analysis of the starting times. First, we will fix all of
the random decisions made by the algorithm except the decision of the neighboring candidates. In particular,
we condition on the following three variables:

1. The wake-up times of the non-neighboring sets ZNN .

It holds ZNN := (ϕs1 , . . . , ϕs|NN|), such that the non-neighboring set sl ∈ NN wakes up in round
ϕsl .

2. The slots ZU in which the uncovered elements send a Beep.

This random variable contains all random choices made by the uncovered elements. We define it as the
set of vectors ZU := {(Y 1

u′ , . . . , Y 4k
u′) | u′ ∈ VU}. Here, the variable Y ℓ

u′ denotes whether u′ is active

272

and beeps in slot ℓ. Based on this, we can define the number of slots in which a set s ∈ NN receives a
Beep from an element in subsetU ⊆ VU as follows:

Slots(s, U) :=
∣∣{ℓ ∈ [1, 4k]|∃u′ ∈ U ∩Ns : Y

ℓ
u′ = 1

}∣∣ (12.9)

3. The initial set of uncovered elements U0.

This is the set of uncovered elements in round0of phase i. Note that this set is determined in theprevious
phases. We do not make any statements about its size or the nodes it contains.

We will see that the decision, if a neighboring candidate of u adds itself to the solution, depends on solely
that candidate’s wake-up time if we fix all these choices. Recall that a set adds itself in round j if and only if
a) it wakes up in round j and b) hears a Beep in at least 3k slots of round j. We will show that the random
choices of the other nodes define a round ρ ∈ [−1, 4k] such that in all rounds prior to ρ, s will hear at least
3k Beeps and in all later round it will not (and therefore will not add itself). If there is no round where s hears
more than 3k Beeps, we define ρ := −1. Thus, ρ is the last possible round where a candidate may add itself
to the solution. If it wakes up after this round, i.e., if it holds 4k −Xs > ρ, it will not add itself because it will
not hear enough Beeps in that round. If it wakes up in or before this round, i.e., if it holds 4k−Xs ≤ ρ, then
it wakes up in a round where it receives sufficiently many Beeps. Thus, in the latter case, the concrete round
in which it adds itself is only determined by the geometric distribution. This intuitive description of ρ is now
captured in the following claim:

Claim 19. Given (ZNN , ZU ,U0) for each neighboring set s ∈ Nu there is a value ρs ∈ [−1, 4k] that denotes
the last round in which s can cover u (or takes value ρs = −1 if there is no such round). Formally, it holds

Pr[s covers u first | Φs > ρs] = 0

Proof. The idea behind the construction is that the fixed values U0, ZNCC , and ZU can clearly define the sets
A0 ⊂ VS that add themselves to the solution in round 0. Given ZNN , we see which sets wake up and count
the Beeps of their uncovered elements. These Beeps are based on U0 and ZU , so we see if enough elements
beep in distinct slots. In particular, the set must receive a Beep in at least 3k slots, so it must hold that

A0 := {s ∈ NNu | ϕs = 0 ∧ (|Slots(s,U0)| ≥ 3k)}

Given A0, i.e., the sets that add themselves in round 0, we can then compute U1 ⊆ U0, i.e., all uncovered
elements in round 1. Then, by repeating the construction, we can use U1, ZNCC , and ZU to determine A1

and therefore U2 and so on. This can be continued until round τ by the following recursive formulas:

At = {s ∈ NNu | ϕs = 0 ∧ (|Slots(s,Ut)| ≥ 3k)}

273

and

Ut =

{
u′ ∈ U \ {u} | ∃s ∈

t−1⋃
i=0

Ai

}

This yields the uncovered elements U0, . . . ,Uτ . For each candidate s ∈ Nu, we can then clearly identify the
last round ρs where s receives enough Beeps to add itself or whether there is no such round. We define:

ρs :=

argmax0≤τ≤4k{Slots(s,Uτ) ≥ 3k} if ∃τ ∈ [0, 4k] : {Slots(s,Uτ) ≥ 3k}

−1 else

Thus, if the wake-up time is later than ρs, s will not hear sufficiently Beeps. This holds in particular for ρs =

−1 sinceΦ−Xs ≥ 0.

Given this observation, we can map each outcome of ZNCC , ZU , and U0 to a collection of thresholds
ρ := (ρ1, . . . , ρ||Nu

), one for each neighboring set, with the properties above. If we now condition on ρ we
get — similar to Miller et al. in [MPVX15b]— that:

Lemma 12.9. For any possible realization of thresholds ρ it holds:

Pr[µ(u) = t | ρ] ≤ 2
(
1− 1/∆

1
k

)t−1

Proof. For each neighboring set s ∈ Nu, define the adapted wake-up time as:

Φ′
s :=

(Φ−Xs) if (Φ−Xs) ≤ ρs

∞ else

HereXs is the geometric random variable drawn to determine the wake-up time. Suppose that u has exactly
∆u neighboring sets, all of which have a well-defined wake-up time (whichmay be infinite). We can now order
the these adapted wakeup times Φ′

(1), . . . ,Φ
′
(∆u)

such that Φ′
(1) is the earliest wakeup and Φ′

(∆u)
is the last.

For each of these ordered wake-up timesΦ(ℓ) we define

• s(ℓ) to be the candidate that achieves this time

• X(ℓ) is the variable drawn by this set, and

• ρ(ℓ) is the threshold.

Given thatΦ(ℓ) ≤ ∞, it holds:

Φ′
(ℓ) := Φ−X(ℓ)

So the variableX(1) is not the smallest variable that any neighboring candidate drew, but instead the smallest
variable by any neighboring candidate with finite wake-up time. Given this definition, we claim the following:

274

Claim 20. The candidate s(1) archievingΦ′
(1) covers u if and only ifΦ′

(1) ≤ ∞.

Proof. This claim can easily be verified by considering the two possibilities. If Φ′
(1) ≤ ∞, then Φ′

(1) is still
the earliest round where some neighborhood candidate tries to add itself and is still a candidate. This follows
directly from the definition ofΦ′

(1). To be precise, the corresponding set s(1) wakes up in roundΦ
′
(1) and—

sinceΦ′
(1) ≤ ρ(1) —counts more than 3k Beeps in this round. Thus, s(1) must cover u as no candidate could

have done it before. Otherwise, ifΦ′
(1) =∞, then it must holds thatΦ−X(1) ≥ ρ(1). Moreover, this implies

that Φ − X(ℓ) ≥ ρ(ℓ) for all other candidates as well. This follows from two facts. First, Φ′
(1) is the smallest

wake-up time by definition, so all others must be infinity, too. Second, ρ(ℓ) is at most 4k and, thus, finite by
definition. In this case, all potential candidates do not cover enough elements when they wake up. This follows
directly from the definition of each ρ(ℓ). Thus, in this phase, no candidate will cover u.

Thus, for µ(u) = t, the t smallest values must all be equal and non-infinity. Formally:

Pr[µ(u) = t] = Pr
[
Φ′

(1) = · · · = Φ′
(t) | Φ(1) ≤ ∞

]
Next, we need fundamental calculations based onMiller et al.’s proof for exponential random variables. How-
ever, wemust adapt them to geometric variables boundedby somemaximal value. First, wedealwith thebound-
ing. Recall that all of our variables must be smaller than 4k (otherwise, uwould have been covered in round 0).
However, the Law of Total Probability implies:

Pr
[
µ(u) = t | X(1), . . . , X(∆u) ≤ 4k

]
≤ Pr[µ(u) = t]

Pr
[
X(1), . . . , X(∆u) ≤ 4k

]
As i is early iffXi ≥ 4k:

≤ Pr[µ(u) = t]

1− Pr[Eu ≥ 1]

By Lemma 12.7:

≤ Pr[µ(u) = t]

1− Pr
[
Eu ≥ ∆2E [Eu]

]
ByMarkov’s inequality:

≤ Pr[µ(u) = t](
1− 1

∆2

)
Using∆ > 2:

≤ 2Pr[µ(u) = t]

Thus, in the following, we will analyze the variables as if they were not bounded. To be precise, we assume that
allXi ∼ Geo(1− 1/∆

1
k). Ultimately, we multiply our final result by 2 to get the desired bound. With this in

mind, we show the following claim:

275

Claim 21. For any 0 ≤ x ≤ ρ(ℓ), it holds:

Pr
[
Φ′

(ℓ) < x | Φ′
(ℓ) ≤ x

]
= (1/∆1/k)

Proof. Let x := ρ(ℓ) − x′, then it holds by the definition ofΦ′
(ℓ):

Pr
[
(Φ−X(ℓ)) ≤ ρ(ℓ) − x′] = Pr

[
−X(ℓ) ≤ ρ(ℓ) − Φ− x′]

= Pr
[
X(ℓ) ≥ (Φ− ρ(ℓ)) + x′]

And therefore, for any x ≤ ρ(ℓ) we see that the wake-up time is only determined by the parameter of the
geometric distribution, namely

Pr
[
Φ′

(ℓ) < ρ(ℓ) − x′ | Φ′
(ℓ) ≤ ρ(ℓ) − x′

]
=Pr

[
(Φ−X(ℓ)) < ρ(ℓ) − x′ | (Φ−X(ℓ)) ≤ ρ(ℓ) − x′]

=Pr
[
X(ℓ) > (Φ− ρ(ℓ)) + x′ | X(ℓ) ≥ (Φ− ρ(ℓ)) + x′]

Nowwe can use the fact that the geometric distribution is memoryless and see:

Pr
[
Φ′

(ℓ) < x | Φ′
(ℓ) ≤ x

]
= Pr

[
X(ℓ) > (Φ− ρ(ℓ)) + x′ | X(ℓ) ≥ (Φ− ρ(ℓ)) + x′]

Set y := (Φ− ρ(ℓ)) + x′ :

= Pr
[
X(ℓ) > y | X(ℓ) ≥ y

]
AsX(ℓ) ∼ Geo(1− 1/∆

1
k) :

= Pr
[
X(ℓ) > 0

]
= (1/∆1/k)

Therefore, we can conclude that for two consecutiveΦ(i) andΦ(i+1), it holds that::

Pr
[
Φ′

(ℓ) < x | Φ′
(ℓ+1) = x

]
= Pr

[
Φ′

(ℓ) < x | Φ′
(ℓ) ≤ x

]
▷AsΦ′

(ℓ) ≤ Φ′
(ℓ+1)

=

(
1

∆
1
k

)
And thus, for the opposite event, it holds:

Pr
[
Φ′

(ℓ) = x | Φ′
(ℓ+1) = x

]
=

(
1− 1

∆
1
k

)

276

Finally, we condition on Φ′
(t) = τ for a round 0 ≤ τ ≤ 4k. Using the chain rule of conditional probability,

we see that:

Pr
[
Φ′

(1), . . . ,Φ
′
(t) = τ | Φ′

(t) = τ
]
=

t−1∏
i=1

Pr
[
Φ′

(ℓ) = τ | Φ′
(ℓ+1) = τ, . . . ,Φ′

(t) = τ
]

=

t−1∏
i=1

Pr
[
Φ′

(ℓ) = τ | Φ′
(ℓ+1) = τ

]
≤

t−1∏
i=1

(
1− 1

∆
1
k

)
=

(
1− 1

∆
1
k

)t−1

Note that this is independent of the actual round, so the law of total probability yields the result. It holds:

Pr[µ(u) = t] :=

4k∑
τ=1

Pr
[
Φ′

(t) = τ
]
Pr
[
Φ′

(1), . . . ,Φ
′
(t) = τ | Φ′

(t) = τ
]

=

4k∑
τ=1

Pr
[
Φ′

(t) = τ
](

1− 1

∆
1
k

)t−1

=

(
1− 1

∆
1
k

)t−1

As the concrete values of the ρ’s are immaterial, the lemma follows by the law of total probability.

Nowwe can conclude our proof and calculate the expected value of µ. Given the previous work, the calcu-
lation of the expected value is straightforward (as we will show below).

Proof of Lemma 12.3. As implied by the previous lemmas, we split the proof into two parts. First, we consider
the easy case, whenu is covered in the first round of a phase. Here, Lemma 12.7 lets us upper bound the number
of additional nodes that also wake up in round 0 as follows:

E [µ(u) | u covered in round 0] ≤ 1

∆2
≤ 1.

Second, if u is covered in any later round of a phase, we need to use Lemma 12.6. The lemma shows that the
number of sets is geometrically distributed (with additional factors). Using the limit of the geometric series, we
can show that:

E [µ(u) | u not covered in round 0] ≤
∞∑
t=2

t · Pr[µ = t | u not covered in round 0]

≤
∞∑
t=2

2t
(
1− 1/∆

1
k

)t−1
= 2

1

1−
(
1− 1/∆

1
k

) = 2∆
1
k

Finally, the law of total expectation yields that:

E [µ(u)] ≤ E [µ(u) | u covered in round 0] + E [µ(u) | u not covered in round 0] = 3∆
1
k .

This proves the lemma.

277

12.2.4 Proof of Lemma 12.4

In the following, we fix an element u ∈ VU and suppose it is covered in phase i. As we will see, all rounds of
phase i have the same upper bound. To simplify notation, wewill not condition on the specific round (of phase
i) in which u is covered. We begin our proof by defining two bad events:

1. First, we let B1 be the event that there is any set with span bigger than 6 · log∆ ·∆
1
k ·∆i.

2. Second, we let B2 be the event any set smaller than ∆i

4·∆
1
k
joins the solution.

Recall that our goal in phase i is to add sets that cover roughly ∆i uncovered elements. So these two events
imply that there are sets that greatly deviate from this value. The event B1 implies that there is a set with too
many uncovered neighbors that should have been added earlier, while B2 implies that there is a set added too
early because it has too few uncovered neighbors for this phase. In the worst case, both these events hold, and
the difference between the sets of the largest and lowest span is huge. This assigns a high cost η(i,j)(u) to any
element u ∈ VU that is covered. On the other hand, if neither of the two events holds, we can bound η(i,j)(u)
to

E
[
η(i,j)(u) | ¬B

]
≤ 6 · log∆ ·∆ 1

k ·∆i

∆i/4·∆
1
k

= 24 · log∆ ·
(
∆

1
k

)2
.

This comes very close to what we want to show. Thus, we want to show that η(i,j)(u) is small in expectation.
To do this, we define eventB := B1∪B2 where bothB1 andB2 hold and bound its probability. If we can show
that Pr[B] is small, the lemma follows. In particular, assuming that Pr[B] ≤ 2/∆, the law of total expectation
implies:

E
[
η(i,j)(u)c

(i,j)
min(u)

]
=Pr[¬B] · E

[
η(i,j)(u)c

(i,j)
min(u) | ¬B

]
+ Pr[B] · E

[
η(i,j)(u)c

(i,j)
min(u) | B

]
≤24 · log∆ ·

(
∆

1
k

)2
E
[
c
(i,j)
min(u) | ¬B

]
+

2

∆
·∆ · E

[
c
(i,j)
min(u) | B

]
≤25 · log∆ ·

(
∆

1
k

)2 (
E
[
η(i,j)(u)c

(i,j)
min(u) | ¬B

]
+ E

[
η(i,j)(u)c

(i,j)
min(u) | B

])
≤25 · log∆ ·

(
∆

1
k

)2
E
[
c
(i,j)
min(u)

]
Thus, in the following, we show that Pr[B] is at most 2

∆ . For this, we need some further definitions. Let
Hi

u ⊆ Nu denote all neighbors that span more than 6 · log∆ · ∆ 1
k · ∆i uncovered elements at any point in

phase i and likewise letLi
u ⊆ Nu denote all neighbors that span less than ∆i

4·∆
1
k
at any point in the phase. Note

that it holds

Pr[B1] = Pr
[
∃s ∈ Hi

u

]

278

Further, let Si denote the sets that add themselves to the solution in phase i. Then, we have:

Pr[B2] = Pr

 ⋃
s∈Li

u

s ∈ Si

.
Then, it holds via union bound that:

Pr[B] := Pr[B1 ∪ B2] ≤ Pr[B1] + Pr[B2] ≤ Pr
[
∃s ∈ Hi

u

]
+ Pr

 ⋃
s∈Li

u

s ∈ Si


First, we show thatHi

u is emptywith prob. 2/∆. For this, we consider the sets inHi
u in the previous phase i−1.

We define H̃i−1
u as the sets which had

6 · log∆ ·∆ 1
k ·∆i := 6 · log∆ ·∆i−1

uncovered neighbors when they woke up in phase i− 1. For these sets, it holds:

Claim 22. Let s ∈ V be a set and c > 6 be a constant. Suppose that s has at least c · log∆ ·∆i−1 uncovered
neighbors when it wakes up in phase i− 1. Then, the probability that s is not added to the solution is smaller than
∆−(c−2). Formally, it holds:

Pr
[
s ̸∈ Si−1 | s ∈ H̃i−1

u

]
≤ 1

∆(c−2)

Proof. First, note that for k < log∆, it holds c · log∆ ·∆i−1 > 4k as we assume c > 6. Now consider the
round of phase i − 1 where s woke up. The probability that in a fixed slot (of the 4k slots of that round), no
elements beeps is at most:

Pr[No Beep in slot ℓ] ≤
(
1− 1

∆i−1

)c·log∆·∆i−1

(12.10)

≤ e−c log∆ =
1

∆c
(12.11)

This follows from the fact that s has c · log∆ ·∆i−1 uncovered neighbors. Now recall that we initially assumed
w.l.o.g. that∆ is bigger than 4k. Here we finally need this assumption. If c ≥ 6, a union bound over all k slots
then yields that all that with probability higher than 1− 1

∆2 , in every slot, there was at least one active element
in the neighborhood of s that beeped. In particular, s counted a Beep in more than 3k slots when it woke up.
Thus, the set in question must have added itself to the solution in phase i− 1. Formally, it holds:

Pr[s ∈ Si−1] ≤
4k∑
ℓ=1

Pr[No Beep in slot ℓ] ≤
4k∑
ℓ=1

1

∆c
≤ 1

∆c−1

This was to be shown.

279

Recall that any set s ∈ Hi
u must not have joined the solution in phase i − 1. Suppose that a set has

c · log∆ ·∆ 1
k ·∆i uncovered neighbors in phase i. Then it had at least c · log∆ ·∆i−1 uncovered neighbors

when it woke up in phase i − 1 as their number can only decrease from phase to phase. So s ∈ Hi
u directly

implies s ∈ H̃i−1
u . Given the claim from above, the probability that s did not join the solution is

Pr
[
s ̸∈ Si−1 | s ∈ H̃i−1

u

]
≤ 1

∆6−4
≤ 1

∆2

Here, we used the claimwith c = 6, which follows from the definition ofHi
u. Thus, we have the desired bound

on the sets that spanmany uncovered elements. Now, we consider a set s ∈ Li
u and show that this set is unlikely

to add itself to the solution in phase i. We formalize this in the following claim.

Claim 23. Let s be set with less than ∆i

4·∆
1
k
uncovered elements when it wakes up in phase i. Then, the probability

that s joins the solution in phase i is lower than 1
∆2 . Formally, let Si denote that add themselves to the solution in

phase i, then it holds:

Pr
[
s ∈ Si | s ∈ Li

u

]
≤ 1

∆2

Proof. Recall that swill eventuallywake up in some roundphase ibut only adds itself to the solution if it hears a
Beep in at least 3k slots of that round. Obviously, this requires at least 3k variablesY ℓ

u (whereu is an uncovered
neighbor of s and ℓ is a slot) must be 1. We define:

Bs :=
∑

u∈Ns,Cu=0

4k∑
ℓ=1

Y ℓ
u

280

Thus,Bs is the sum of 4k · ∆i

4∆
1
k
< k∆ variables as the have at most ∆i

4∆
1
k
uncovered elements and 4k rounds.

Then, the probability ofBs being bigger than 3k is bounded as follows:

Pr[Bs ≥ 3k] ≤
k∆∑
l=3k

(
4k · ∆i

4∆
1
k

l

)(
1

∆i

)l

=

k∆∑
l=3k

(
k · ∆i

∆
1
k

l

)(
1

∆i

)l

As
(
n

x

)
< (en/x)x

≤
k∆∑
l=3k

(
e · k ·∆i

∆
1
k · l

)l
1

∆l
i

As l ≥ 3k ≥ ek

=

k∆∑
l=3k

(
ek

l

)l (
∆i

∆
1
k

)l
1

∆l
i

≤
k∆∑
l=3k

(
ek

3k

)l (
∆i

∆
1
k

)l
1

∆l
i

≤
k∆∑
l=3k

(
1

∆
1
k

)l

Setting l = 3k + (l′ − 1)

=

k∆−3k∑
l′=1

(
1

∆3

)l′

=

(
1

∆3

)
·
k∆−3k∑
l′=1

(
1

∆
1
k

)l′−1

As
∞∑

l′=0

al
′
≤ 1

1− a

≤
(

1

∆3

)
·

∞∑
l′=1

(
1

∆
1
k

)l′−1

≤
(

1

∆3

)
·

∞∑
l′=0

(
1

∆
1
k

)l′

≤ 2

∆3

As∆ ≥ 2

≤ 1

∆2

Thus, the probability that s has beeping neighbors in 3k distinct slots (and therefore adds itself to the solution)
can only be smaller. This proves the claim.

281

We now combine our two bounds and see that it holds:

Pr[B] ≤ Pr
[
∃s ∈ Hi

u

]
+ Pr

 ⋃
s∈Li

u

s ∈ Si


≤ Pr

 ⋃
s∈Hi

u

s ̸∈ Si−1 | s ∈ H̃i−1
u

+ Pr

 ⋃
s∈Li

u

s ∈ Si


≤ ∆

1

∆2
+∆

1

∆2
= 2∆

1

∆2
=

2

∆

This is what we wanted to show.

12.3 RelatedWork

Finally, we review some fully distributed approaches for SetCover and related optimization problems. As
mentioned before, Jia et al.[JRS02] as well as Kuhn and Wattenhofer[KW03] have presented fast distributed
algorithms to solve the DominatingSet problem in time in O(log2 n). The goal is to find the minimal set
of nodes adjacent to all nodes in the graphG := (V,E). Kuhn et al. further presented an algorithm to solve
SetCover (and any covering and packing LP) inO(log2 n) rounds in the CONGESTmodel [KMW06] with
logarithmic approximation ratio. This is close to the optimal runtime ofO(logn), which is also proven in that
paper. Roughgarden et al. presented a distributed algorithm for convex optimization problems (which includes
SetCover) thatworks on any eventually connected communicationnetwork [MRS10]. In particular, it works
on dynamic communication networks that can change from round to round. Even though this algorithm is
fully distributed, it heavily relies on sequential calculations to copewith these general communicationnetworks.
Therefore, its runtime and message complexity are polynomial in the number of nodes. Finally, some works
already consider theDominatingSet problem inmodels tailored to ad-hoc networks. First, there is a paper by
Scheideler et al.[SRS08] that considers the SINRmodel where the nodes aremodeled as points in the Euclidean
plane. Second, there already is a solution to theDominatingSet-problem in theBeeping-model for unit-disk
graphs[YJY+15]. Their algorithm is similar to ours but does not apply to general graphs.

12.4 Conclusion & FutureWork

Wepresented amessage-efficient algorithmfor the SetCover-problemproblemthat operateswithin theBEEP-
INGmodel and canbe extended to solve theD-DominatingSet-problemproblem in theCONGESTmodel.
The algorithm achieves an approximation ratio close to the theoretical optimum and due to its simplicity has
potential as a versatile building block for tackling other (distributed) optimization problems.

For future work, we envision two promising directions: exploring an extensions of the algorithm to more
general optimization problems and addressing the Shortcutting Problem.

Adding Packing or Cost Constraints: In the classical SetCover problem that we considered, each
element must be contained in one set of the solution. This definition can be generalized in several ways. For

282

example, one could add an integer δu to each set u ∈ U , s.t., each set umust be contained in δu sets. In case of
the uplink problem that we mentioned in the introduction of this chapter, this variant of the problem may be
used tomodel redundancy. Further, one can imagine a variant of the problem that assigns weights to sets. Each
set s ∈ S is assigned a positive weight cs (representing its cost), and the goal is to find the cheapest collection
of sets that contain all elements. Note that the classical SetCover corresponds to all sets having a weight of 1.

We believe that, with some engineering, our algorithm can be adapted to handle both these variants of
SetCover. Our optimism for this stems from the fact that the algorithm of Jia et al. [JRS02] (which builds
the basis for our algorithm) can be extended to solve these variants.

The Shortcutting Problem: The Shortcutting problem is closely related to the uplink problemwemen-
tioned in the introduction. It comes in two versions. In both versions, we can assume that we are given a
weighted undirected graphG = (V,E,w) and a nonnegative real number δ. In the first version, we are given a
parameterk and our goal is to addk shortcut edges of length δ in order tominimize the diameter of the resulting
graph. In the second version, we are given a parameterD and our goal is to add as few shortcut edges of length
δ as possible in order to obtain a graph of diameterD.

There is surprisingly little research on this problem, especially in the distributed setting. In the sequential
model the problem is understood better, but the research [DZ10, BGP12, FGGM15, LVWX22] is mostly lim-
ited to general graphs. Thus, there is much room and opportunity for future work. In particular, we believe
that a combination of our SetCover algorithm and the tree covers we computed in the previous chapter has
the potential for an efficient and competitive approximation algorithm for restricted graphs that can be imple-
mented in a distributed model.

283

284

13
Conclusion to Part II

In this part of the thesiswe exploreddistributed algorithmsdesigned to solve distance-based graphproblems.
Our goal was to address the challenges of working in distributed computing environments, which require
efficient and scalable solutions. Further, we put an emphasis on restricted graph classes like planar graphs,

graphs of bounded treewidth, and graphs that exclude a fixed minor because these graph classes not only offer
better solutions but also allow for faster algorithms with being to prohibitive for practical applications. We
provided algorithms for the fundamental problems of computing low-diameter decompositions and compact
routing schemes, which can also act as distance oracles. Our algorithms have near-optimal running time and all
established models of distributed computing. In the HYBRIDmodel, which (arguably) captures the behavior
of many modern communication networks, we archive polylogarithmic runtimes. In contrast, in the classical
CONGEST model, the runtime depends on the hop diameter HD. Both the bounds are optimal, excluding
polylogarithmic factors. As HD may be up n, this emphasizes the algorithmic power of adding just a little
global communication to anetwork. Further, the quality of our distributed solutions in termsof approximation
guarantees is not far behind their sequential counterparts and/or the provably best quality.

To achieve our results, we massively extend the toolbox for distributed algorithms dealing with restricted
graph classes. We believe that these tools are of independent interest for future algorithms. Our new tools
include a generic construction of a weak path separator. Unlike classical separators, a weak separator only sep-
arates nodes with respect to the graph’s shortest path metric. Our algorithms prove that, in many situations,
it is as good as (or at least not significantly worse) a classical separator but can be computed much faster. We
believe that there aremore graph problemswhere this is the case. Moreover, we provided an exact analysis of the
well-known exponential starting time clustering [MPVX15a, EN16] when used together (1 + ϵ)-approximate

285

shortest path computations. This algorithm has been used before, e.g., in [BEL20], but your analysis revealed
more nuances in the distribution of the resulting clusters. This allowed even allowed us to improve existing
results. Notably, all of our new tools can be implemented with only approximate shortest path computations
and minor aggregations. This makes them easily applicable to CONGEST and HYBRID algorithms.

286

References

[AAC+05] Dana Angluin, James Aspnes, Jiang Chen, Yinghua Wu, and Yitong Yin. Fast Construction of
Overlay Networks. In Proc. of the 17th Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 145–154, 2005.

[ABI86] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm for the
maximal independent set problem. J. Algorithms, 7(4):567–583, 1986.

[ABN08] Ittai Abraham, Yair Bartal, and Ofer Neiman. Nearly tight low stretch spanning trees. In 49th An-
nual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadel-
phia, PA, USA, pages 781–790. IEEE Computer Society, 2008.

[ACC+20] John Augustine, Keerti Choudhary, Avi Cohen, David Peleg, Sumathi Sivasubramaniam, and
Suman Sourav. Distributed graph realizations †. In 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), NewOrleans, LA, USA,May 18-22, 2020, pages 158–167. IEEE, 2020.

[AG06] Ittai Abraham and Cyril Gavoille. Object location using path separators. In Eric Ruppert and Dahlia
Malkhi, editors, Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed
Computing, PODC 2006, Denver, CO, USA, July 23-26, 2006, pages 188–197. ACM, 2006.

[AGG+14] Ittai Abraham, Cyril Gavoille, AnupamGupta, Ofer Neiman, and Kunal Talwar. Cops, robbers,
and threatening skeletons: padded decomposition for minor-free graphs. In David B. Shmoys, editor,
Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
79–88. ACM, 2014.

[AGG+19a] Ittai Abraham, Cyril Gavoille, AnupamGupta, OferNeiman, andKunal Talwar. Cops, robbers,
and threatening skeletons: Paddeddecomposition forminor-free graphs. SIAMJ.Comput., 48(3):1120–
1145, 2019.

[AGG+19b] John Augustine, Mohsen Ghaffari, Robert Gmyr, Kristian Hinnenthal, Fabian Kuhn, Jason Li,
and Christian Scheideler. Distributed computation in node-capacitated networks. In Proc. of the 31st
Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2019.

[AGG+19c] John Augustine, Mohsen Ghaffari, Robert Gmyr, Kristian Hinnenthal, Christian Scheideler,
Fabian Kuhn, and Jason Li. Distributed computation in node-capacitated networks. In The 31st ACM
on Symposium on Parallelism in Algorithms and Architectures, SPAA 2019, Phoenix, AZ, USA, June 22-
24, 2019, pages 69–79. ACM, 2019.

[AGGM06] Ittai Abraham, Cyril Gavoille, Andrew V. Goldberg, and Dahlia Malkhi. Routing in networks
with lowdoubling dimension. In26th IEEE InternationalConference onDistributedComputing Systems
(ICDCS 2006), 4-7 July 2006, Lisboa, Portugal, page 75. IEEE Computer Society, 2006.

[AGMW10] Ittai Abraham, Cyril Gavoille, DahliaMalkhi, andUdiWieder. Strong-diameter decompositions
of minor free graphs. Theory Comput. Syst., 47(4):837–855, 2010.

287

[AHK+20a] John Augustine, Kristian Hinnenthal, Fabian Kuhn, Christian Scheideler, and Philipp Schnei-
der. Shortest paths in a hybrid network model. In Proceedings of the 2020 ACM-SIAM Symposium on
Discrete Algorithms, SODA2020, Salt LakeCity, UT,USA, January 5-8, 2020, pages 1280–1299. SIAM,
2020.

[AHK+20b] John Augustine, Kristian Hinnenthal, Fabian Kuhn, Christian Scheideler, and Philipp Schnei-
der. Shortest paths in a hybrid network model. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1280–1299. SIAM, 2020.

[AKS23] NogaAlon,Michael Krivelevich, and Benny Sudakov. Completeminors and average degree: A short
proof. Journal of Graph Theory, 103(3):599–602, 2023.

[ALH+23] Ioannis Anagnostides, Christoph Lenzen, Bernhard Haeupler, Goran Zuzic, and Themis
Gouleakis. Almost universally optimal distributed laplacian solvers via low-congestion shortcuts. Dis-
tributed Comput., 36(4):475–499, 2023.

[AN19] Ittai Abraham and Ofer Neiman. Using petal-decompositions to build a low stretch spanning tree.
SIAM J. Comput., 48(2):227–248, 2019.

[AP90] Baruch Awerbuch andDavid Peleg. Sparse partitions (extended abstract). In 31st Annual Symposium
on Foundations of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume II, pages
503–513. IEEE Computer Society, 1990.

[APR+15] John Augustine, Gopal Pandurangan, Peter Robinson, Scott T. Roche, and Eli Upfal. Enabling
robust and efficient distributed computation in dynamic peer-to-peer networks. In Proc. of 56th IEEE
Annual Symposium on Foundations of Computer Science (FOCS), pages 350–369, 2015.

[AS03] James Aspnes and Gauri Shah. Skip graphs. In Proc. of the 14th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 384–393, 2003.

[AS18] John Augustine and Sumathi Sivasubramaniam. Spartan: A framework for sparse robust address-
able networks. In Proc. of the 32nd IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 1060–1069, 2018.

[ASW19] Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. Massively parallel algorithms for finding well-
connected components in sparse graphs. In Peter Robinson and Faith Ellen, editors, Proc. of the 2019
ACM Symposium on Principles of Distributed Computing (PODC), pages 461–470. ACM, 2019.

[AW07] James Aspnes and Yinghua Wu. O(logn)-time overlay network construction from graphs with out-
degree 1. InEduardoTovar, PhilippasTsigas, andHacèneFouchal, editors,Proc. of the 11th International
Conference on Principles of Distributed Systems (OPODIS), volume 4878 of Lecture Notes in Computer
Science, pages 286–300. Springer, 2007.

[Bar96] Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applications. In 37th
Annual Symposium on Foundations of Computer Science, FOCS ’96, Burlington, Vermont, USA, 14-16
October, 1996, pages 184–193. IEEE Computer Society, 1996.

[Bar98] Yair Bartal. On approximating arbitrary metrices by tree metrics. In Jeffrey Scott Vitter, editor, Pro-
ceedings of the ThirtiethAnnual ACMSymposium on the Theory of Computing, Dallas, Texas, USA,May
23-26, 1998, pages 161–168. ACM, 1998.

[Bar04] Yair Bartal. Graph decomposition lemmas and their role in metric embedding methods. In Susanne
Albers and Tomasz Radzik, editors,Algorithms - ESA 2004, 12th Annual European Symposium, Bergen,
Norway, September 14-17, 2004, Proceedings, volume 3221 of Lecture Notes in Computer Science, pages
89–97. Springer, 2004.

288

[BBD+19] Soheil Behnezhad, Sebastian Brandt,Mahsa Derakhshan,Manuela Fischer, Taghi Hajiaghayi, Mo-
hammad,RichardMKarp, and JaraUitto. Massively parallel computation ofmatching andmis in sparse
graphs. In Proceedings of the 2019 ACMSymposium on Principles of Distributed Computing, pages 481–
490, 2019.

[BBH+21] Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. Lower bounds for maximal matchings and maximal independent sets. J. ACM, 68(5), De-
cember 2021.

[BE10] Leonid Barenboim and Michael Elkin. Sublogarithmic distributed MIS algorithm for sparse graphs
using Nash-Williams decomposition. Distributed Computing, 22(5-6):363–379, 2010.

[BEGL19] Ruben Becker, Yuval Emek, Mohsen Ghaffari, and Christoph Lenzen. Distributed algorithms
for low stretch spanning trees. In Jukka Suomela, editor, 33rd International Symposium on Distributed
Computing,DISC2019, October 14-18, 2019, Budapest, Hungary, volume 146 ofLIPIcs, pages 4:1–4:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[BEL20] Ruben Becker, Yuval Emek, and Christoph Lenzen. Low Diameter Graph Decompositions by Ap-
proximate Distance Computation. In Thomas Vidick, editor, 11th Innovations in Theoretical Com-
puter Science Conference (ITCS 2020), volume 151 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 50:1–50:29, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik.

[BEPS16] Leonid Barenboim,Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of distributed
symmetry breaking. Journal of the ACM, 63(3):20:1–20:45, 2016.

[BFU19] Sebastian Brandt, Manuela Fischer, and Jara Uitto. Breaking the linear-memory barrier in mpc: Fast
mis on trees with strongly sublinear memory. In International Colloquium on Structural Information
and Communication Complexity, pages 124–138. Springer, 2019.

[BGK+11] Guy E. Blelloch, AnupamGupta, Ioannis Koutis, Gary L. Miller, Richard Peng, and Kanat Tang-
wongsan. Near linear-workparallel sdd solvers, low-diameter decomposition, and low-stretch subgraphs.
In Proc. of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
SPAA ’11, page 13–22, New York, NY, USA, 2011. Association for ComputingMachinery.

[BGP12] Davide Bilò, Luciano Gualà, and Guido Proietti. Improved approximability and non-
approximability results for graph diameter decreasing problems. Theoretical Computer Science, 417:12–
22, 2012. Mathematical Foundations of Computer Science (MFCS 2010).

[BGP13] Andrew Berns, Sukumar Ghosh, and Sriram V. Pemmaraju. Building self-stabilizing overlay net-
works with the transitive closure framework. Theor. Comput. Sci., 512:2–14, 2013.

[Bod93] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11(1-2):1–21, Jan. 1993.

[BS07] Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm for computing
sparse spanners in weighted graphs. Random Structures & Algorithms, 30(4):532–563, 2007.

[But14] Vitalik Buterin. Ethereum: A next-generation smart contract and decentralized application platform,
2014. Accessed: 2016-08-22.

[CCF+22] SamCoy, Artur Czumaj, Michael Feldmann, KristianHinnenthal, Fabian Kuhn, Christian Schei-
deler, Philipp Schneider, and Martijn Struijs. Near-Shortest Path Routing in Hybrid Communication

289

Networks. InQuentinBramas, VincentGramoli, andAlessiaMilani, editors, 25th InternationalConfer-
ence on Principles of Distributed Systems (OPODIS 2021), volume 217 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 11:1–11:23, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.

[CCS+22] SamCoy,ArturCzumaj, Christian Scheideler, Philipp Schneider, and JulianWerthmann. Routing
Schemes forHybridCommunicationNetworks inUnit-DiskGraphs,October 2022. arXiv:2210.05333
[cs].

[CCS+23] Sam Coy, Artur Czumaj, Christian Scheideler, Philipp Schneider, and Julian Werthmann. Rout-
ing schemes for hybrid communication networks. In Sergio Rajsbaum, Alkida Balliu, Joshua J. Day-
mude, and Dennis Olivetti, editors, Structural Information and Communication Complexity - 30th In-
ternational Colloquium, SIROCCO2023, Alcalá deHenares, Spain, June 6-9, 2023, Proceedings, volume
13892 of Lecture Notes in Computer Science, pages 317–338. Springer, 2023.

[Cha23] Yi-Jun Chang. Efficient distributed decomposition and routing algorithms in minor-free networks
and their applications. In Rotem Oshman, Alexandre Nolin, Magnús M. Halldórsson, and Alkida Bal-
liu, editors, Proceedings of the 2023 ACM Symposium on Principles of Distributed Computing, PODC
2023, Orlando, FL, USA, June 19-23, 2023, pages 55–66. ACM, 2023.

[Che13] Shiri Chechik. Compact routing schemes with improved stretch. In Panagiota Fatourou and Gadi
Taubenfeld, editors, ACM Symposium on Principles of Distributed Computing, PODC ’13, Montreal,
QC, Canada, July 22-24, 2013, pages 33–41. ACM, 2013.

[CHFSV19] Keren Censor-Hillel, Eldar Fischer, Gregory Schwartzman, and Yadu Vasudev. Fast distributed
algorithms for testing graph properties. Distributed Computing, 32(1):41–57, 2019.

[CHL01] K. A.Wong Chong, Yijie Han, and Tak Wah Lam. Concurrent threads and optimal parallel mini-
mum spanning trees algorithm. Journal of the ACM, 48:297–323, 2001.

[CK10] Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with beeps. InDistributed Com-
puting, 24th International Symposium, DISC 2010, Cambridge,MA, USA, September 13-15, 2010. Pro-
ceedings, volume 6343 of Lecture Notes in Computer Science, pages 148–162. Springer, 2010.

[CKS20] JannikCastenow, ChristinaKolb, andChristian Scheideler. A bounding box overlay for competitive
routing in hybrid communication networks. In Nandini Mukherjee and Sriram V. Pemmaraju, editors,
ICDCN 2020: 21st International Conference on Distributed Computing and Networking, Kolkata, In-
dia, January 4-7, 2020, pages 14:1–14:10. ACM, 2020.

[CR20] Philipp Czerner and Harald Räcke. Compact Oblivious Routing in Weighted Graphs, July 2020.
arXiv:2007.02427 [cs].

[CS22] Yi-Jun Chang and Hsin-Hao Su. Narrowing the LOCAL-CONGEST gaps in sparse networks via
expander decompositions. In AlessiaMilani and PhilippWoelfel, editors, PODC ’22: ACMSymposium
on Principles of Distributed Computing, Salerno, Italy, July 25 - 29, 2022, pages 301–312. ACM, 2022.

[CSTW12] WeiChen, Christian Sommer, Shang-HuaTeng, and YajunWang. A compact routing scheme and
approximate distance oracle for power-law graphs. ACMTrans. Algorithms, 9(1):4:1–4:26, 2012.

[DBB18] Fabien Dufoulon, Janna Burman, and Joffroy Beauquier. Beeping a Deterministic Time-Optimal
Leader Election. In Proceedings of the 32nd International Symposium on Distributed Computing (DISC
2018), volume 121 of Leibniz International Proceedings in Informatics (LIPIcs), pages 20:1–20:17,
Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

290

[DG10] Emilie Diot and Cyril Gavoille. Path separability of graphs. In Der-Tsai Lee, Danny Z. Chen, and Shi
Ying, editors, Frontiers inAlgorithmics, 4th InternationalWorkshop, FAW2010,Wuhan, China, August
11-13, 2010. Proceedings, volume 6213 of Lecture Notes in Computer Science, pages 262–273. Springer,
2010.

[DGH+23] Jinfeng Dou, Thorsten Götte, Henning Hillebrandt, Christian Scheideler, and Julian Werth-
mann. Brief announcement: Distributed construction of near-optimal compact routing schemes for
planar graphs. In Rotem Oshman, Alexandre Nolin, Magnús M. Halldórsson, and Alkida Balliu, ed-
itors, Proceedings of the 2023 ACM Symposium on Principles of Distributed Computing, PODC 2023,
Orlando, FL, USA, June 19-23, 2023, pages 67–70. ACM, 2023.

[DGH+25] Jinfeng Dou, Thorsten Götte, Henning Hillebrandt, Christian Scheideler, and Julian Werth-
mann. Distributed and parallel low-diameter decompositions for arbitrary and restricted graphs. In
Raghu Meka, editor, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025), New
York City, NY, USA, January 7–10, 2025, Leibniz International Proceedings in Informatics (LIPIcs),
page (to appear), Dagstuhl, Germany, 2025. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[DGS16] Maximilian Drees, Robert Gmyr, and Christian Scheideler. Churn- and dos-resistant overlay net-
works based on network reconfiguration. In Proc. of the 28th ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), pages 417–427, 2016.

[Die10] Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer, Heidel-
berg; New York, fourth edition, 2010.

[DIMV14] Erik D. Demaine, Piotr Indyk, SepidehMahabadi, and Ali Vakilian. On streaming and communi-
cation complexity of the set cover problem. InDistributed Computing - 28th International Symposium,
DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings, volume 8784 of Lecture Notes in Com-
puter Science, pages 484–498. Springer, 2014.

[DP21] MichalDory andMerav Parter. Fault-tolerant labeling and compact routing schemes. InAveryMiller,
Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21: ACM Symposium on Principles of
Distributed Computing, Virtual Event, Italy, July 26-30, 2021, pages 445–455. ACM, 2021.

[dV23] Tijn de Vos. Minimum cost flow in the CONGEST model. In Sergio Rajsbaum, Alkida Balliu,
Joshua J. Daymude, and Dennis Olivetti, editors, Structural Information and Communication Com-
plexity - 30th International Colloquium, SIROCCO 2023, Alcalá deHenares, Spain, June 6-9, 2023, Pro-
ceedings, volume 13892 of Lecture Notes in Computer Science, pages 406–426. Springer, 2023.

[DZ10] ErikD.Demaine andMortezaZadimoghaddam.Minimizing thediameter of anetworkusing shortcut
edges. InAlgorithm Theory - SWAT 2010, 12th Scandinavian Symposium andWorkshops on Algorithm
Theory, Bergen, Norway, June 21-23, 2010. Proceedings, pages 420–431, 2010.

[Edm60] J.R. Edmonds. A Combinatorial Representation for Oriented Polyhedral Surfaces. University of
Maryland, 1960.

[EEST08] Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-Hua Teng. Lower-stretch spanning
trees. SIAM J. Comput., 38(2):608–628, 2008.

[EFN20] Michael Elkin, Arnold Filtser, and Ofer Neiman. Distributed construction of light networks. In
PODC ’20: ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, August 3-7,
2020, pages 483–492. ACM, 2020.

291

[EN16] Michael Eålkin and Ofer Neiman. On efficient distributed construction of near optimal routing
schemes: Extended abstract. InGeorge Giakkoupis, editor, Proceedings of the 2016 ACMSymposium on
Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, pages 235–244.
ACM, 2016.

[EN18a] Michael Elkin and Ofer Neiman. Efficient algorithms for constructing very sparse spanners and em-
ulators. ACMTransactions on Algorithms (TALG), 15(1):1–29, 2018.

[EN18b] Michael Elkin andOferNeiman. Near-optimal distributed routingwith lowmemory. InProceedings
of the 2018 ACM Symposium on Principles of Distributed Computing, PODC ’18, page 207–216, New
York, NY, USA, 2018. Association for ComputingMachinery.

[EN19] Michael Elkin and Ofer Neiman. Efficient algorithms for constructing very sparse spanners and em-
ulators. ACMTrans. Algorithms, 15(1):4:1–4:29, 2019.

[ENS15] Michael Elkin, Ofer Neiman, and Shay Solomon. Light spanners. SIAM J. Discret. Math.,
29(3):1312–1321, 2015.

[FGGM15] Fabrizio Frati, Serge Gaspers, JoachimGudmundsson, and LukeMathieson. Augmenting graphs
to minimize the diameter. Algorithmica, 72(4):995–1010, 2015.

[FGS19] Michael Feldmann, Thorsten Götte, and Christian Scheideler. A loosely self-stabilizing protocol for
randomized congestion control with logarithmic memory. In Mohsen Ghaffari, Mikhail Nesterenko,
Sébastien Tixeuil, Sara Tucci, and Yukiko Yamauchi, editors, Stabilization, Safety, and Security of Dis-
tributed Systems - 21st International Symposium, SSS 2019, Pisa, Italy, October 22-25, 2019, Proceedings,
volume 11914 of Lecture Notes in Computer Science, pages 149–164. Springer, 2019.

[FHS20] Michael Feldmann, Kristian Hinnenthal, and Christian Scheideler. Fast hybrid network algorithms
for shortest paths in sparse graphs. In Proceedings of the 24th International Conference on Principles of
Distributed Systems (OPODIS), pages 31:1–31:16, 2020.

[Fil19] Arnold Filtser. On Strong Diameter Padded Decompositions. In Dimitris Achlioptas and László A.
Végh, editors,Approximation, Randomization, andCombinatorial Optimization. Algorithms andTech-
niques (APPROX/RANDOM 2019), volume 145 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 6:1–6:21, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik.

[Flo62] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, 1962.

[FN22] Arnold Filtser andOferNeiman. Light spanners for high dimensional norms via stochastic decompo-
sitions. Algorithmica, 84(10):2987–3007, 2022.

[FPR+10] Nathan Farrington, George Porter, SivasankarRadhakrishnan,HamidHajabdolali Bazzaz, Vikram
Subramanya, Yeshaiahu Fainman, George Papen, and Amin Vahdat. Helios: a hybrid electrical/optical
switch architecture for modular data centers. In Proceedings of the ACM SIGCOMM2010 Conference,
pages 339–350, 2010.

[FRT04] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004.

[FSS20] Michael Feldmann, Christian Scheideler, and Stefan Schmid. Survey on algorithms for self-stabilizing
overlay networks. ACMComputing Surveys, 53(4), 2020.

292

[FT03] Jittat Fakcharoenphol and Kunal Talwar. An Improved Decomposition Theorem for Graphs Exclud-
ing a Fixed Minor. In Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, Sanjeev Arora, Klaus Jansen,
José D. P. Rolim, and Amit Sahai, editors, Approximation, Randomization, and Combinatorial Opti-
mization.. Algorithms and Techniques, volume 2764, pages 36–46. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2003. Series Title: Lecture Notes in Computer Science.

[FV18] Hendrik Fichtenberger and Yadu Vasudev. A two-sided error distributed property tester for conduc-
tance. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS
2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[GG23] Mohsen Ghaffari and Christoph Grunau. Faster deterministic distributed MIS and approximate
matching. In Barna Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Sym-
posium on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 1777–1790.
ACM, 2023.

[GG24] Mohsen Ghaffari and Christoph Grunau. Near-optimal deterministic network decomposition and
ruling set, and improved MIS. In 65th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2024, Chicago, IL, USA, October 27-30, 2024, pages 2148–2179. IEEE, 2024.

[GGJ20] Mohsen Ghaffari, Christoph Grunau, and Ce Jin. Improved MPC Algorithms for MIS, Match-
ing, and Coloring on Trees and Beyond. In Hagit Attiya, editor, 34th International Symposium on
Distributed Computing (DISC 2020), volume 179 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 34:1–34:18, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik.

[GGK+18] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrović, and Ronitt Rubin-
feld. Improved massively parallel computation algorithms for mis, matching, and vertex cover. In Pro-
ceedings of the 2018 ACM Symposium on Principles of Distributed Computing, pages 129–138, 2018.

[GGR21] Mohsen Ghaffari, Christoph Grunau, and Václav Rozhon. Improved deterministic network de-
composition. In DánielMarx, editor, Proceedings of the 2021 ACM-SIAMSymposium onDiscrete Algo-
rithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2904–2923. SIAM, 2021.

[GH16a] Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks I: planar
embedding. In George Giakkoupis, editor, Proceedings of the 2016 ACM Symposium on Principles of
Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, pages 29–38. ACM, 2016.

[GH16b] Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks II: low-
congestion shortcuts, mst, and min-cut. In Robert Krauthgamer, editor, Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA,
January 10-12, 2016, pages 202–219. SIAM, 2016.

[GH21] Mohsen Ghaffari and Bernhard Haeupler. Low-congestion shortcuts for graphs excluding dense mi-
nors. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21: ACM Sym-
posium on Principles of Distributed Computing, Virtual Event, Italy, July 26-30, 2021, pages 213–221.
ACM, 2021.

[Gha16] MohsenGhaffari. An improved distributed algorithm formaximal independent set. InProceedings of
the 27th annual ACM-SIAM symposium on Discrete algorithms (SODA), pages 270–277. SIAM, 2016.

[Gha19] Mohsen Ghaffari. Distributed maximal independent set using small messages. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, page 805–820. Society
for Industrial and AppliedMathematics, 2019.

293

[GHS19a] Thorsten Götte, Kristian Hinnenthal, and Christian Scheideler. Faster construction of overlay
networks. In Keren Censor-Hillel andMichele Flammini, editors, Structural Information and Commu-
nication Complexity - 26th International Colloquium, SIROCCO 2019, L’Aquila, Italy, July 1-4, 2019,
Proceedings, volume 11639 of Lecture Notes in Computer Science, pages 262–276. Springer, 2019.

[GHS19b] Thorsten Götte, Kristian Hinnenthal, and Christian Scheideler. Faster construction of overlay
networks. In International Colloquium on Structural Information and Communication Complexity
(SIROCCO), pages 262–276. Springer, 2019.

[GHSS17] Robert Gmyr, KristianHinnenthal, Christian Scheideler, and Christian Sohler. DistributedMon-
itoring of Network Properties: The Power of Hybrid Networks. In Proc. of the 44th International Col-
loquium on Automata, Languages, and Programming (ICALP), pages 137:1–137:15, 2017.

[GHSW21] Thorsten Götte, Kristian Hinnenthal, Christian Scheideler, and Julian Werthmann. Time-
optimal construction of overlay networks. In Avery Miller, Keren Censor-Hillel, and Janne H. Ko-
rhonen, editors, PODC ’21: ACM Symposium on Principles of Distributed Computing, Virtual Event,
Italy, July 26-30, 2021, pages 457–468. ACM, 2021.

[GHSW23] Thorsten Götte, Kristian Hinnenthal, Christian Scheideler, and Julian Werthmann. Time-
optimal construction of overlay networks. Distributed Comput., 36(3):313–347, 2023.

[GHZ21] Mohsen Ghaffari, Bernhard Haeupler, and Goran Zuzic. Hop-constrained oblivious routing. In
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 1208–1220,
Virtual Italy, June 2021. ACM.

[GKK+18] Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and Boaz Patt-Shamir.
Near-optimal distributed maximum flow. SIAM J. Comput., 47(6):2078–2117, 2018.

[GKSW21] Thorsten Götte, Christina Kolb, Christian Scheideler, and Julian Werthmann. Beep-and-sleep:
Message and energy efficient set cover. In Leszek Gasieniec, Ralf Klasing, and Tomasz Radzik, editors,
Algorithms for Sensor Systems - 17th International Symposium onAlgorithms and Experiments forWire-
less Sensor Networks, ALGOSENSORS 2021, Lisbon, Portugal, September 9-10, 2021, Proceedings, vol-
ume 12961 of Lecture Notes in Computer Science, pages 94–110. Springer, 2021.

[GKSW23] Thorsten Götte, Christina Kolb, Christian Scheideler, and Julian Werthmann. Beep-and-sleep:
Message and energy efficient set cover. Theor. Comput. Sci., 950:113756, 2023.

[GMRV20] ChristophGrunau, SlobodanMitrovic, Ronitt Rubinfeld, andAli Vakilian. Improved local com-
putation algorithm for set cover via sparsification. In Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2993–3011.
SIAM, 2020.

[GMS04] Christos Gkantsidis, MilenaMihail, and Amin Saberi. Randomwalks in peer-to-peer networks. In
Proc. of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies (INFO-
COM). IEEE, 2004.

[GP16] Mohsen Ghaffari and Merav Parter. Mst in log-star rounds of congested clique. In Proceedings of the
2016 ACM Symposium on Principles of Distributed Computing, pages 19–28, 2016.

[GP17] Mohsen Ghaffari and Merav Parter. Near-optimal distributed DFS in planar graphs. In Andréa W.
Richa, editor, 31st International Symposium on Distributed Computing, DISC 2017, October 16-20,
2017, Vienna, Austria, volume 91 of LIPIcs, pages 21:1–21:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017.

294

[GPRT20] Seth Gilbert, Gopal Pandurangan, Peter Robinson, and Amitabh Trehan. Dconstructor: Efficient
and robust network construction with polylogarithmic overhead. In Proc. of ACMSymposium on Prin-
ciples of Distributed Computing (PODC), pages 438–447. ACM, 2020.

[GS22] ThorstenGötte andChristian Scheideler. Brief announcement: The (limited) power ofmultiple iden-
tities: Asynchronous byzantine reliable broadcast with improved resilience through collusion. In Kunal
Agrawal and I-Ting Angelina Lee, editors, SPAA ’22: 34th ACM Symposium on Parallelism in Algo-
rithms and Architectures, Philadelphia, PA, USA, July 11 - 14, 2022, pages 99–101. ACM, 2022.

[GSS18] ThorstenGötte, Christian Scheideler, andAlexander Setzer. On underlay-aware self-stabilizing over-
lay networks. In Taisuke Izumi and Petr Kuznetsov, editors, Stabilization, Safety, and Security of Dis-
tributed Systems - 20th International Symposium, SSS 2018, Tokyo, Japan, November 4-7, 2018, Proceed-
ings, volume 11201 of Lecture Notes in Computer Science, pages 50–64. Springer, 2018.

[GVS19a] Thorsten Götte, Vipin Ravindran Vijayalakshmi, and Christian Scheideler. Always be two steps
ahead of your enemy. In 2019 IEEE International Parallel and Distributed Processing Symposium,
IPDPS 2019, Rio de Janeiro, Brazil, May 20-24, 2019, pages 1073–1082. IEEE, 2019.

[GVS19b] Thorsten Götte, Vipin Ravindran Vijayalakshmi, and Christian Scheideler. Always be Two Steps
Ahead of Your Enemy. In Proc. of the 33rd IEEE International Parallel andDistributed Processing Sym-
posium (IPDPS), 2019.

[GZ22a] MohsenGhaffari andGoran Zuzic. Universally-OptimalDistributed ExactMin-Cut. InProceedings
of the 2022 ACMSymposium on Principles of Distributed Computing, pages 281–291, Salerno Italy, July
2022. ACM.

[GZ22b] MohsenGhaffari andGoranZuzic. Universally-OptimalDistributed ExactMin-Cut. InProceedings
of the 2022 ACMSymposium on Principles of Distributed Computing, pages 281–291, Salerno Italy, July
2022. ACM.

[HKP+11] Daniel Halperin, Srikanth Kandula, Jitendra Padhye, Paramvir Bahl, and David Wetherall. Aug-
menting data center networks with multi-gigabit wireless links. In Proceedings of the ACMSIGCOMM
2011 conference, pages 38–49, 2011.

[HL18] BernhardHaeupler and JasonLi. Faster distributed shortest path approximations via shortcuts. InUl-
rich Schmid and JosefWidder, editors, 32nd International Symposium onDistributedComputing, DISC
2018, New Orleans, LA, USA, October 15-19, 2018, volume 121 of LIPIcs, pages 33:1–33:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[HRG22] Bernhard Haeupler, Harald Räcke, and Mohsen Ghaffari. Hop-constrained expander decomposi-
tions, oblivious routing, and distributed universal optimality. In Stefano Leonardi and AnupamGupta,
editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June
20 - 24, 2022, pages 1325–1338. ACM, 2022.

[HWZ21] Bernhard Haeupler, DavidWajc, and Goran Zuzic. Universally-optimal distributed algorithms for
known topologies. In Samir Khuller and Virginia VassilevskaWilliams, editors, STOC ’21: 53rd Annual
ACMSIGACTSymposium onTheory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1166–
1179. ACM, 2021.

[HZ01] Shay Halperin and Uri Zwick. Optimal Randomized EREW PRAM Algorithms for Finding Span-
ning Forests. Journal of Algorithms, 39(1):1–46, 2001.

295

[IEWM23] Taisuke Izumi, Yuval Emek, Tadashi Wadayama, and Toshimitsu Masuzawa. Deterministic fault-
tolerant connectivity labeling scheme. In Rotem Oshman, Alexandre Nolin, Magnús M. Halldórsson,
and Alkida Balliu, editors, Proceedings of the 2023 ACM Symposium on Principles of Distributed Com-
puting, PODC 2023, Orlando, FL, USA, June 19-23, 2023, pages 190–199. ACM, 2023.

[IKNS22] Taisuke Izumi, Naoki Kitamura, Takamasa Naruse, and Gregory Schwartzman. Fully polynomial-
time distributed computation in low-treewidth graphs. In Kunal Agrawal and I-Ting Angelina Lee,
editors, SPAA ’22: 34th ACMSymposium on Parallelism in Algorithms andArchitectures, Philadelphia,
PA, USA, July 11 - 14, 2022, pages 11–22. ACM, 2022.

[IMR+17] Piotr Indyk, Sepideh Mahabadi, Ronitt Rubinfeld, Jonathan R. Ullman, Ali Vakilian, and Anak
Yodpinyanee. Fractional set cover in the streaming model. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18,
2017, Berkeley, CA, USA, volume 81 of LIPIcs, pages 12:1–12:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017.

[IMR+18] Piotr Indyk, SepidehMahabadi, Ronitt Rubinfeld, Ali Vakilian, andAnak Yodpinyanee. Set cover
in sub-linear time. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 2467–2486. SIAM, 2018.

[IV19] Piotr Indyk and Ali Vakilian. Tight trade-offs for the maximum k-coverage problem in the general
streaming model. In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, pages 200–217.
ACM, 2019.

[JKSS18] Daniel Jung, ChristinaKolb, Christian Scheideler, and Jannik Sundermeier. Competitive routing in
hybrid communication networks. In Algorithms for Sensor Systems - 14th International Symposium on
Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2018, Helsinki, Finland,
August 23-24, 2018, Revised Selected Papers, pages 15–31, 2018.

[JN18] Tomasz Jurdziński and Krzysztof Nowicki. Mst in o(1) rounds of congested clique. In Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2620–2632. SIAM,
2018.

[JRS02] Lujun Jia, Rajmohan Rajaraman, and Torsten Suel. An efficient distributed algorithm for construct-
ing small dominating sets. Distributed Comput., 15(4):193–205, 2002.

[JRS+14] Riko Jacob, Andréa W. Richa, Christian Scheideler, Stefan Schmid, and Hanjo Täubig. Skip+: A
self-stabilizing skip graph. Journal of the ACM, 61(6):36:1–36:26, 2014.

[Kar00] DavidRKarger. Minimumcuts in near-linear time. Journal of the ACM(JACM), 47(1):46–76, 2000.

[KL14] Tsz Chiu Kwok and Lap Chi Lau. Lower bounds on expansions of graph powers. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2014). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

[KL24] Tuukka Korhonen andDaniel Lokshtanov. Induced-minor-free graphs: Separator theorem, subexpo-
nential algorithms, and improved hardness of recognition. In David P. Woodruff, editor, Proceedings of
the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA, January
7-10, 2024, pages 5249–5275. SIAM, 2024.

[Kle24] Klein, Philip and Mozes, Shay. Optimization algorithms for planar graphs. https://planarity.org,
2024. [Online; accessed 14-June-2024].

296

[KMW04] Fabian Kuhn, Thomas Moscibroda, and Rogert Wattenhofer. What cannot be computed locally!
In Proceedings of the twenty-third annual ACM symposium on Principles of distributed computing, pages
300–309, 2004.

[KMW06] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price of being near-sighted. In
Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006,
Miami, Florida, USA, January 22-26, 2006, pages 980–989. ACM Press, 2006.

[Kol22] Christina Kolb. Competitive routing in hybrid communication networks andmessage efficient SetCover
in Ad Hoc networks. PhD thesis, University of Paderborn, Germany, 2022.

[KPR93] Philip N. Klein, Serge A. Plotkin, and Satish Rao. Excluded minors, network decomposition, and
multicommodity flow. In S. RaoKosaraju, David S. Johnson, andAlokAggarwal, editors,Proceedings of
the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA,
USA, pages 682–690. ACM, 1993.

[KS22] Fabian Kuhn and Philipp Schneider. Routing Schemes and Distance Oracles in the Hybrid Model.
In Christian Scheideler, editor, 36th International Symposium on Distributed Computing (DISC 2022),
volume 246 of Leibniz International Proceedings in Informatics (LIPIcs), pages 28:1–28:22, Dagstuhl,
Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[KST13] Ken-ichi Kawarabayashi, Christian Sommer, andMikkel Thorup. More compact oracles for approx-
imate distances in undirected planar graphs. In SanjeevKhanna, editor,Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA,
January 6-8, 2013, pages 550–563. SIAM, 2013.

[KTT93] Ming-Yang Kao, Shang-Hua Teng, and Kentaro Toyama. Improved parallel depth-first search in
undirected planar graphs. In G. Goos, J. Hartmanis, Frank Dehne, Jörg-Rüdiger Sack, Nicola San-
toro, andSueWhitesides, editors,AlgorithmsandData Structures, volume709, pages 409–420. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1993. Series Title: Lecture Notes in Computer Science.

[KW03] Fabian Kuhn and RogerWattenhofer. Constant-time distributed dominating set approximation. In
Proceedings of theTwenty-SecondACMSymposiumonPrinciples ofDistributedComputing, PODC2003,
Boston, Massachusetts, USA, July 13-16, 2003, pages 25–32. ACM, 2003.

[LGT14] James R Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning and higher-
order cheeger inequalities. Journal of the ACM (JACM), 61(6):1–30, 2014.

[ŁMOS20] Jakub Łącki, SlobodanMitrović, Krzysztof Onak, and Piotr Sankowski. Walking randomly, mas-
sively, and efficiently. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Com-
puting, pages 364–377, 2020.

[LMR21] Reut Levi, Moti Medina, and Dana Ron. Property testing of planarity in the CONGEST model.
Distributed Comput., 34(1):15–32, 2021.

[LP13] Christoph Lenzen and Boaz Patt-Shamir. Fast routing table construction using small messages: ex-
tended abstract. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June
1-4, 2013, pages 381–390, 2013.

[LP15] Christoph Lenzen and Boaz Patt-Shamir. Fast partial distance estimation and applications. InChryssis
Georgiou and Paul G. Spirakis, editors, Proceedings of the 2015 ACM Symposium on Principles of Dis-
tributed Computing, PODC 2015, Donostia-San Sebastián, Spain, July 21 - 23, 2015, pages 153–162.
ACM, 2015.

297

[LP19] Jason Li andMerav Parter. Planar diameter via metric compression. InMoses Charikar and Edith Co-
hen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, Phoenix, AZ, USA, June 23-26, 2019, pages 152–163. ACM, 2019.

[LPP19] Christoph Lenzen, Boaz Patt-Shamir, and David Peleg. Distributed distance computation and rout-
ing with small messages. Distributed Comput., 32(2):133–157, 2019.

[LPS24] Yaowei Long, Seth Pettie, and Thatchaphol Saranurak. Connectivity labeling schemes for edge and
vertex faults via expander hierarchies. CoRR, abs/2410.18885, 2024.

[LS90] László Lovász andMiklós Simonovits. The mixing rate of markov chains, an isoperimetric inequality,
and computing the volume. In Proc. of 31st Annual Symposium on Foundations of Computer Science
(FOCS), pages 346–354. IEEE, 1990.

[LS03] ChingLawandKai-Yeung Siu. Distributed construction of randomexpander networks. InProceedings
IEEE INFOCOM2003, The 22ndAnnual Joint Conference of the IEEEComputer and Communications
Societies, San Franciso, CA, USA,March 30 - April 3, 2003, pages 2133–2143. IEEE Computer Society,
2003.

[LSZ20] Daniel Lokshtanov, Saket Saurabh, andMeirav Zehavi. Efficient graphminors theory and parameter-
ized algorithms for (planar) disjoint paths. In FedorV. Fomin, StefanKratsch, andErik Jan vanLeeuwen,
editors, Treewidth, Kernels, and Algorithms - Essays Dedicated to Hans L. Bodlaender on the Occasion of
His 60th Birthday, volume 12160 of Lecture Notes in Computer Science, pages 112–128. Springer, 2020.

[LT80] Richard J. Lipton and Robert Endre Tarjan. Applications of a planar separator theorem. SIAM J.
Comput., 9(3):615–627, 1980.

[LTZ20] Sixue Cliff Liu, Robert E. Tarjan, and Peilin Zhong. Connected components on a PRAM in log
diameter time. In Christian Scheideler and Michael Spear, editors, Proc. of the 32nd ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), Virtual Event, USA, July 15-17, 2020, pages
359–369. ACM, 2020.

[Lub86] Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM journal
on computing, 15(4):1036–1053, 1986.

[LVWX22] Kevin Lu, Virginia Vassilevska Williams, Nicole Wein, and Zixuan Xu. Better lower bounds for
shortcut sets and additive spanners via an improved alternation product. In Joseph (Seffi)Naor andNiv
Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA
2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 3311–3331. SIAM, 2022.

[MPVX15a] Gary L. Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. Improved parallel algorithms
for spanners and hopsets. In Proc. of the 27th ACM symposium on Parallelism in Algorithms and Archi-
tectures (SPAA), pages 192–201, 2015.

[MPVX15b] Gary L. Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. Improved parallel algorithms
for spanners and hopsets. In Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms
and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015, pages 192–201. ACM, 2015.

[MPX13] Gary L. Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions using random
shifts. In Guy E. Blelloch and Berthold Vöcking, editors, 25th ACMSymposium on Parallelism in Algo-
rithms and Architectures, SPAA ’13,Montreal, QC, Canada - July 23 - 25, 2013, pages 196–203. ACM,
2013.

298

[MRNZ09] Yves Métivier, John Michael Robson, Saheb-Djahromi Nasser, and Akka Zemmari. An optimal
bit complexity randomized distributedmis algorithm. In International Colloquium on Structural Infor-
mation and Communication Complexity (SIROCCO), pages 323–337. Springer, 2009.

[MRS10] Damon Mosk-Aoyama, Tim Roughgarden, and Devavrat Shah. Fully distributed algorithms for
convex optimization problems. SIAM J. Optim., 20(6):3260–3279, 2010.

[MS06] Damon Mosk-Aoyama and Devavrat Shah. Computing separable functions via gossip. In Proceed-
ings of the Twenty-Fifth Annual ACMSymposium on Principles of Distributed Computing, PODC 2006,
Denver, CO, USA, July 23-26, 2006, pages 113–122, 2006.

[MT01] B.Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins Studies in Nineteenth CArchitec-
ture Series. Johns Hopkins University Press, 2001.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing. Cambridge University Press,
2005.

[MW20] Wolfgang Mulzer and Max Willert. Compact routing in unit disk graphs. In Yixin Cao, Siu-
Wing Cheng, andMinming Li, editors, 31st International Symposium on Algorithms and Computation,
ISAAC 2020, December 14-18, 2020, Hong Kong, China (Virtual Conference), volume 181 of LIPIcs,
pages 16:1–16:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, Dec 2008. Accessed: 2015-07-01.

[Now19] Krzysztof Nowicki. A deterministic algorithm for the mst problem in constant rounds of congested
clique. arXiv preprint arXiv:1912.04239, 2019.

[NW64] C. St.J. A. Nash-Williams. Decomposition of finite graphs into forests. Journal of the LondonMath-
ematical Society, s1-39(1):12–12, 1964.

[OG02] Scott Oaks and Li Gong. Jxta in a Nutshell. O’Reilly & Associates, Inc., USA, 2002.

[Pel00] DavidPeleg.DistributedComputing: ALocality-SensitiveApproach. Society for Industrial andApplied
Mathematics, USA, 2000.

[PPP24] Merav Parter, Asaf Petruschka, and Seth Pettie. Connectivity labeling and routing with multiple
vertex failures. In Bojan Mohar, Igor Shinkar, and Ryan O’Donnell, editors, Proceedings of the 56th
Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28,
2024, pages 823–834. ACM, 2024.

[PR02] Seth Pettie andVijayaRamachandran. A randomized time-work optimal parallel algorithm for finding
a minimum spanning forest. SIAM Journal on Computing, 31:1879–1895, 2002.

[PU89] David Peleg and Eli Upfal. A trade-off between space and efficiency for routing tables. J. ACM,
36(3):510–530, 1989.

[Rac02] H. Racke. Minimizing congestion in general networks. In The 43rd Annual IEEE Symposium on
Foundations of Computer Science, 2002. Proceedings., pages 43–52, Vancouver, BC, Canada, 2002. IEEE
Comput. Soc.

[REGH22] Václav Rozhon, Michael Elkin, Christoph Grunau, and Bernhard Haeupler. Deterministic low-
diameter decompositions for weighted graphs and distributed and parallel applications. In 63rd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 -
November 3, 2022, pages 1114–1121. IEEE, 2022.

299

[RG20] Václav Rozhon and Mohsen Ghaffari. Polylogarithmic-time deterministic network decomposition
and distributed derandomization. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani,
Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 350–363. ACM,
2020.

[RGH+22] Václav Rozhon, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Jason Li. Undi-
rected (1+ϵ)-shortest paths via minor-aggregates: near-optimal deterministic parallel and distributed al-
gorithms. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT
Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 478–487. ACM, 2022.

[RR89] Vijaya Ramachandran and JohnH. Reif. An optimal parallel algorithm for graph planarity (extended
abstract). In30thAnnual SymposiumonFoundations ofComputer Science, ResearchTriangle Park,North
Carolina, USA, 30 October - 1 November 1989, pages 282–287. IEEE Computer Society, 1989.

[RS86] Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects of tree-width. J. Algo-
rithms, 7(3):309–322, 1986.

[RS03] Neil Robertson and Paul D Seymour. Graph minors. xvi. excluding a non-planar graph. Journal of
Combinatorial Theory, Series B, 89(1):43–76, 2003.

[Rä08] Harald Räcke. Optimal hierarchical decompositions for congestion minimization in networks. In
Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 255–264, Victoria
British Columbia Canada, May 2008. ACM.

[Rä09] Harald Räcke. Survey on Oblivious Routing Strategies. In Klaus Ambos-Spies, Benedikt Löwe, and
WolfgangMerkle, editors,Mathematical Theory and Computational Practice, volume 5635, pages 419–
429. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. Series Title: Lecture Notes in Computer
Science.

[Sch00] Christian Scheideler. Probabilistic Methods for Coordination Problems. Habilitation, Universität
Paderborn, Heinz Nixdorf Institut, Theoretische Informatik, 2000. ISBN 3-931466-77-9.

[Sch23a] Philipp Schneider. Power and limitations of hybrid communication networks. PhD thesis, University
of Freiburg, Freiburg im Breisgau, Germany, 2023.

[Sch23b] Jonas Stephan Schweichhart. MinimumEdge Cuts in Overlay Networks. Master’s thesis, Paderborn
University, Paderborn, Germany, March 2023.

[Sin12] Alistair Sinclair. Algorithms for random generation and counting: aMarkov chain approach. Springer
Science & Business Media, 2012.

[SJ89] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and rapidly mixing
markov chains. Inf. Comput., 82(1):93–133, 1989.

[SMPU13] Atish Das Sarma, Anisur Rahaman Molla, Gopal Pandurangan, and Eli Upfal. Fast distributed
pagerank computation. In International Conference on Distributed Computing and Networking, pages
11–26. Springer, 2013.

[SR06] Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-peer networks. IMC ’06, page
189–202, New York, NY, USA, 2006. Association for ComputingMachinery.

300

[SRS08] Christian Scheideler, Andréa W. Richa, and Paolo Santi. An o(log n) dominating set protocol for
wireless ad-hoc networks under the physical interference model. In Proceedings of the 9th ACM Intera-
tional Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc 2008, Hong Kong, China,
May 26-30, 2008, pages 91–100. ACM, 2008.

[TBKC18] Anis Tell, Wale Babalola, George Kalaba Kalebaila, and Krishna C. Chinta. Sd-wan: A modern
hybrid-wan to enable digital transformation for businesses. 2018.

[Tho04] Mikkel Thorup. Compact oracles for reachability and approximate distances in planar digraphs. J.
ACM, 51(6):993–1024, nov 2004.

[TV85] Robert E Tarjan and Uzi Vishkin. An efficient parallel biconnectivity algorithm. SIAM Journal on
Computing, 14(4):862–874, 1985.

[TZ01] Mikkel Thorup and Uri Zwick. Compact routing schemes. In Arnold L. Rosenberg, editor, Proceed-
ings of the Thirteenth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA 2001,
Heraklion, Crete Island, Greece, July 4-6, 2001, pages 1–10. ACM, 2001.

[Wag37] K. Wagner. Über eine eigenschaft der ebenen komplexe. Mathematische Annalen, 114:570–590,
1937.

[Wik24a] Wikipedia contributors. Domain name system — Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Domain_Name_System&oldid=1228283936, 2024. [Online;
accessed 14-June-2024].

[Wik24b] Wikipedia contributors. Kazaa —Wikipedia, the free encyclopedia. https://en.wikipedia.org/
w/index.php?title=Kazaa&oldid=1210646824, 2024. [Online; accessed 1-June-2024].

[Wik24c] Wikipedia contributors. Mastodon (social network) — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Mastodon_(social_network)&oldid=1225774368,
2024. [Online; accessed 1-June-2024].

[Wik24d] Wikipedia contributors. Napster — Wikipedia, the free encyclopedia. https://en.wikipedia.
org/w/index.php?title=Napster&oldid=1225531804, 2024. [Online; accessed 1-June-2024].

[Xu17] ShenChenXu. Exponential StartTimeClustering and itsApplications in SpectralGraphyTheory. PhD
thesis, CarnegieMellonUniversity, Pittsburgh, August 2017. CMUCSTechReport CMU-CS-17-120.

[YJY+15] Jiguo Yu, Lili Jia, Dongxiao Yu, Guangshun Li, and Xiuzhen Cheng. Minimum connected dom-
inating set construction in wireless networks under the beeping model. In 2015 IEEE Conference on
Computer Communications, INFOCOM 2015, Kowloon, Hong Kong, April 26 - May 1, 2015, pages
972–980. IEEE, 2015.

301

https://en.wikipedia.org/w/index.php?title=Domain_Name_System&oldid=1228283936
https://en.wikipedia.org/w/index.php?title=Domain_Name_System&oldid=1228283936
https://en.wikipedia.org/w/index.php?title=Kazaa&oldid=1210646824
https://en.wikipedia.org/w/index.php?title=Kazaa&oldid=1210646824
https://en.wikipedia.org/w/index.php?title=Mastodon_(social_network)&oldid=1225774368
https://en.wikipedia.org/w/index.php?title=Napster&oldid=1225531804
https://en.wikipedia.org/w/index.php?title=Napster&oldid=1225531804

This thesis was typeset using LATEX, orig-
inally developed by Leslie Lamport and based
on Donald Knuth’s TEX. The body text is set

in 11 point Egenolff-Berner Garamond, a revival of
Claude Garamont’s humanist typeface. The above il-
lustration, “Science Experiment 02”, was created by
Ben Schlitter and released under cc by-nc-nd 3.0.
A template that can be used to format a PhD thesis
with this look and feel has been released under the
permissive mit (x11) license, and can be found on-
line at github.com/suchow/Dissertate or from its au-
thor, Jordan Suchow, at suchow@post.harvard.edu.
This template was adapted byNikolay Harutyunyan.
You can get the source code to this template onOver-
leaf or fromhim, at nikolay.harutyunyan [at] fau.de.
However, Thorsten Götte hacked around in this par-
ticular version.

302

http://creativecommons.org/licenses/by-nc-nd/3.0/
https://github.com/suchow/Dissertate
mailto:suchow@post.harvard.edu
https://www.overleaf.com/latex/templates/phd-dissertation-and-doktorarbeit-latex-template-for-fau-friedrich-alexander-universitat-erlangen-nurnberg/tpmfykhzbkpz
https://www.overleaf.com/latex/templates/phd-dissertation-and-doktorarbeit-latex-template-for-fau-friedrich-alexander-universitat-erlangen-nurnberg/tpmfykhzbkpz

303

	Introduction
	Contributions & Structure of this Thesis
	Part I: Fast Construction of Overlays and its Applications
	Part II: Distributed Algorithms for Graph Problems

	Preliminaries & Notations
	Basic Terms from Graph Theory
	Restricted Graph Classes
	Basic Terms from Complexity Theory
	Basic Terms from Probability Theory

	Model(s)
	The CONGEST and LOCAL model
	The NCC0 and P2P-CONGEST model
	The HYBRID model

	List of Own Publications

	I Fast Overlay Construction and its Applications
	Time-Optimal Construction Of Overlays
	The Overlay Construction Algorithm
	Mathematical Preliminaries for Theorem 1
	Random Walks on Regular Graphs
	A Cut-Based Union Bound

	Analysis of CreateExpander
	Bounding the Communication Complexity
	Bounding the Conductance of G_i
	Ensuring That Each G_i is Benign
	Finalizing the Proof

	Fast Computation of Connected Components
	Algorithm Description
	Analysis

	Fast Construction of Spanning Forests
	Algorithm Description
	Analysis

	An O(log Delta + loglog n)-Time Algorithm for MIS
	Preliminaries
	The Shattering Technique of Ghaffari
	The Algorithm of Metevier et al.

	Algorithm Description
	Analysis

	Conclusion to Part I
	Related Work
	Applications & Implications
	Open Questions & Possible Future Work

	II Distributed Graph Algorithms for Distance Based Problems
	Preliminaries for Part II
	A Divide-And-Conquer Theorem for Distributed Algorithms
	The Minor Aggregation Framework
	Approximate Set-Source Shortest Paths in CONGEST and HYBRID
	A Divide-And-Conquer Theorem for Restricted Graphs

	The Tree Operations of Ghaffari and Zuzic

	Weak Separators Via Approximate Distances
	Why Weak Separators?
	Algorithm Description
	Analysis
	Proof of Lemma 8.2
	Proof of Lemma 8.1

	Fast Construction of Separators for Planar Graphs
	Planar Graphs: Embeddings, Faces, and Augmentations
	Fast Separators in CONGEST
	A Small Toolkit for Planar Graphs in CONGEST
	Subroutine 1: Finding and Communicating in Biconnected Components
	Subroutine 2: Making Planar Graphs Biconnected
	Subroutine 3: Computing (Weighted) Path Separators
	Analysis of ComputePathSep
	Main Algorithm Description & Analysis (Proof of Lemma 9.1)

	Fast Separators in the PRAM and the HYBRID Model

	Strong Low-Diameter Decompositions Via Approximate Distances
	Structure of this Chapter
	Pseudo-Padded Decompositions Using Approximate Shortest Paths
	Algorithm Description
	Analysis

	Low-Diameter Clusterings from Pseudo-Padded Decompositions
	Algorithm Description
	Analysis

	Low-Diameter Decompositions for General Graphs
	Low-Diameter Decompositions for k-path Separable Graphs
	The Backbone Clustering Phase (Proof of Lemma 10.15)
	The Refinement Phase (Proof of Lemma 10.16)

	Related Work
	The Different Types of Decompositions
	Decompositions in Sequential Models
	Decompositions in CONGEST

	Conclusion & Future Work

	Distributed Construction of Compact Routing Schemes
	Structure of this Chapter
	Efficient Computation of Compact Routing Schemes Using Tree Covers
	An Exact Routing Scheme for Trees
	From (Routing on) Trees to (Routing on) Graphs
	Proof of Lemma 11.1

	Tree Covers Using Pseudo-Padded Decompositions
	Tree Covers Using Weak Separators
	Constructing Additive Tree Covers
	Proof of Lemma 11.8
	From Additive Tree Covers To Hierarchical Tree Covers

	Related Work
	Compact Routing Schemes in the Sequential Model
	Compact Routing Schemes in the CONGEST Model
	Compact Routing Schemes in the HYBRID Model

	Conclusion & Future Work

	Approximating Simple Covering Problems Via Beeping Algorithms
	The Beeping Model
	An Efficient SetCover-Algorithm for the Beeping-Model
	Algorithm Description
	Analysis (Proof of Theorem 14)
	Proof of Lemma 12.3
	Proof of Lemma 12.4

	Related Work
	Conclusion & Future Work

	Conclusion to Part II
	References

