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Kurzfassung

Kurzfassung

Das Fachdidaktische Wissen (FDW) zdhlt zu den zentralen Elementen des Professionswissens
(angehender) Lehrkrifte und seine Relevanz ist sowohl theoretisch angenommen als auch
empirisch belegt. In der fachdidaktischen Forschung liegt daher bereits seit lingerem ein Fokus
auf der Analyse des FDW, wobei mittlerweile vor allem Auswirkungen auf die
Handlungsqualitéit und auf Lernergebnisse in den Blick genommen werden. Nach wie vor stellt
aber auch die empirisch fundierte inhaltliche Beschreibung des FDW sowie der Transfer
entwickelter FDW-Testverfahren auf Basis von Testinstrumenten mit offenem Antwortformat
in die Ausbildungspraxis ein Forschungsdesiderat dar. In diesem Dissertationsprojekt werden
daher auf Basis eines Datensatzes von 846 Bearbeitungen eines FDW-Testinstruments im Fach
Physik (1) projektiibergreifende FDW-Kompetenzniveaus auf Basis von Item-Response-
Modellierungen exploriert, (2) nicht-hierarchische FDW-Kompetenzprofile auf Basis von
(probabilistischen) Cluster- und Textanalysen beschrieben und (3) ein vollstindig
automatisiertes FDW-Assessment-System auf Basis von Machine Learning entwickelt. Dabei
wurden insbesondere kognitive Anforderungskategorien als Subskalen des verwendeten
Testinstruments betrachtet. Das Assessment-System wurde dabei auf Basis dieser und weiterer
Subskalen sowie anhand der Zuordnung von Proband:innen zu den Kompetenzprofilen
evaluiert und zeigte sowohl relativ zur Interrater-Ubereinstimmung als auch absolut betrachtet
hohe Performanzwerte.
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Abstract

Structural Analyses of Physics Pedagogical Content
Knowledge using Machine Learning

Abstract

Pedagogical Content Knowledge (PCK) is one of the central elements of the professional
knowledge of (prospective) teachers. Its relevance is theoretically established and empirically
shown multiple times. PCK has therefore been analyzed continuously in education research,
currently with a particular emphasis on its impact on the quality of teaching and directly on
learning outcomes. However, there is still a lack of detailed empirically backed descriptions of
the intricacies of PCK and of methodologies for translating developed PCK assessment
procedures based on open-ended questionnaires into educational practice. In this dissertation
project, therefore, three objectives are pursued, based on a dataset of 846 responses to a physics
PCK test instrument. First, cross-project PCK competency levels are explored based on item
response modeling. Second, non-hierarchical PCK competency profiles are described based on
(probabilistic) cluster and text analyses. Third, a fully automated FDW assessment system
based on Machine Learning is developed. In particular, cognitive requirement categories were
considered as subscales of the test instrument used. The assessment system was evaluated
based on these and other subscales, as well as the assignment of respondents to the competency
profiles, and demonstrated high performance values both in relation to inter-rater agreement
and in absolute terms.
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1. Einleitung

1. Einleitung

Die Lehrkraft ist ein wesentlicher Einflussfaktor fiir den schulischen Erfolg von Schiilerinnen
und Schiilern (z. B. Hattie, 2012). Bereits seit geraumer Zeit steht dementsprechend das
Professionswissen von Lehrkriften im Fokus fachdidaktischer und bildungswissenschaftlicher
Forschung (Baumert & Kunter, 2006; Riese, 2009; Shulman, 1986, 1987). Dabei wird
angenommen, dass die Kompetenz von Lehrkriften im Rahmen einer Wirkungskette
(indirekten) Einfluss auf den Unterrichtserfolg hat (Terhart, 2012). Orientiert an den
Pionierarbeiten von insbesondere Shulman (1986) wird dabei das Professionswissen meist in
die Bereiche Fachwissen (FW), Pddagogisches Wissen (PW) und Fachdidaktisches Wissen
(FDW) unterteilt (mehr dazu in Abschnitt 2.1). Das FDW wird dabei als spezifisches Wissen
von Lehrkriaften verstanden, das notwendig ist, um konkretes Fachwissen konkreten
Schiilerinnen und Schiilern zu vermitteln (Neumann et al., 2019; Shulman, 1987).

FDW spielt somit schon aus konzeptionellen bzw. theoretischen Griinden eine besondere
Rolle. Auch empirische Ergebnisse belegen die Bedeutung von FDW fiir (a) die anderen beiden
Professionswissensdoménen und deren Entwicklung (Hume et al., 2019; Riese et al., 2017;
Sorge et al., 2019) sowie (b) den Unterrichtserfolg (Fortsch et al., 2016; GroBmann & Kriiger,
2022; Schroder et al., 2020). Zur Messung des FDW, um entsprechende Studien iiberhaupt zu
ermOglichen, wurden bisher (im deutschsprachigen Raum) Leistungstests mit offenen und
geschlossenen Aufgabenformaten eingesetzt (Gramzow, 2015; Kroger, 2019; Tepner et al.,
2012). Dabei werden die Testaufgaben meist unter Nutzung von Aufgabenentwicklungs-
modellen erstellt, die einerseits fachdidaktische Inhaltsbereiche oder ,Facetten und
andererseits kognitive Anforderungen oder Wissensarten beinhalten (ebd.). Solche
Konzeptualisierungen umfassen zwar auch implizit Beschreibungen der angenommenen
inhaltlichen (Fein-) Struktur des FDW, allerdings sind entsprechende Unterteilungen meist
primir theoretisch motiviert und somit von eher normativem Charakter. Es bleibt bis auf eher
technische Argumente wie statistische Item-Response-Modellvergleiche (Riese et al., 2017)
unklar, inwieweit diese Konzeptualisierungen auch empirisch abgesichert werden kdnnen.

Empirische Untersuchungen von inhaltlichen Strukturen des FDW sind bislang im Bereich
der Naturwissenschaften, genauer der Physik, primér mithilfe von hierarchischen Anséitzen auf
Basis von Item-Response-Modellierungen durchgefiihrt worden (Schiering et al., 2023;
Schiering et al., 2019). Die Ergebnisse dieser Untersuchungen sind inhaltliche Beschreibungen
von FDW-Leistungsniveaus, die allerdings eng in den Kontext der jeweiligen Projekte
eingebettet sind und sich direkt auf die Inhalte der Aufgaben der entsprechenden
Testinstrumente beziehen (ebd.). Es ist also unklar, ob und inwiefern diese Niveau-
beschreibungen zu projektunabhéngigen Aussagen verallgemeinert werden kdénnen. Die
genutzte Methodik (Mullis & Fishbein, 2020) lésst sich aber direkt oder in abgewandelter Form
auch auf andere Datensitze libertragen, wodurch eine vergleichende Betrachtung der sich
ergebenden Niveaubeschreibungen unterschiedlicher Projekte ermdglicht wird. Eine solche
vergleichende Analyse ist das erste Kernziel dieses Projekts. Zur Erreichung dieses Ziels
werden aufbauend auf Item-Response-Modellen von FDW-Score-Datensidtzen aus zwei
Projekten (N; = 427, N, = 779) Niveaumodelle des FDW mithilfe zweier unterschiedlicher
Methoden erstellt und vergleichend analysiert (Kapitel 4).
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Neben der erweiterten Betrachtung hierarchischer Strukturen des FDW durch einen
projektiibergreifenden Ansatz ist eine Ausweitung der Analyse der inneren Struktur des FDW
mithilfe nicht-hierarchischer Analysen (z. B. MacQueen, 1967; Mclnnes et al., 2017; Spurk et
al., 2020) wiinschenswert. Eine solche Betrachtung wird zudem durch Ergebnisse der
hierarchischen Analysen nahegelegt, in denen sich zeigt, dass mit hierarchischen
Analysemethoden Unterschiede hinsichtlich interessanter Teilkompetenzen wie dem
Evaluieren oder Kreieren im Kontext des FDW nicht abgebildet werden konnen (siehe Kapitel
4). Nicht-hierarchische Beschreibungen sind zudem niitzlich, um in einem Assessment zu
Feedbackzwecken auch niitzliche empirisch fundierte Informationen zum Stand des FDWs
liefern zu konnen, die iiber eine ,,bessere* oder ,,schlechtere® Gesamteinschitzung hinaus
gehen. Eine solche nicht-hierarchische Untersuchung ist das zweite Kernziel dieses Projekts.
Zur Erreichung dieses Ziels werden nicht-hierarchische Strukturen des FDW durch eine
Cluster-Analyse von FDW-Score-Daten (N = 846) ermittelt und mithilfe einer explorativen
Sprachanalyse der zugehorigen authentischen Sprachproduktionen der Proband:innen
ausgeschirft (Kapitel 5). Aufbauend auf diesen Ergebnissen wird zudem eine Latente
Profilanalyse (LPA, Spurk et al., 2020) durchgefiihrt, um die Ergebnisse stirker empirisch
abzusichern (Kapitel 6). Die erhaltenen Strukturen werden auch als ,,Kompetenzprofile*
bezeichnet, um sie von den hierarchischen Kompetenzniveaus aus dem ersten Zielpaket
abzugrenzen.

Die Untersuchung der inneren Struktur des FDW ist neben (eher theoriebildenden)
Forschungszwecken auch fiir die Erstellung von reichhaltigem inhaltlichem Feedback (Hattie
& Timperley, 2007) niitzlich bzw. notwendig. Fiir diesen Zweck ist es zudem naheliegend, die
bereits existierenden Testinstrumente fiir ein Assessment zu nutzen. Die Auswertung der als
besonders authentisch geltenden Aufgaben mit offenem Aufgabenformat (z. B. Kriiger & Krell,
2020; Kulgemeyer et al., 2023) solcher Testinstrumente ist allerdings mit hohem manuellem
Aufwand durch trainierte Kodierer:innen verbunden. Um ein solches Assessment auch
skalierbar in die Ausbildungspraxis zu tiberfithren und zudem eine effektive Nachnutzung der
Testinstrumente flir weitere Forschungs- und Monitoring-Zwecke zu ermdglichen, ist es also
notwendig, die Auswertungsprozesse zu automatisieren. Eine Uberfiihrung der Aufgaben in
geschlossene Antwortformate zu diesem Zweck ist allerdings hinsichtlich der Authentizitit der
entstehenden geschlossenen Aufgaben sowie der Ubereinstimmung der durch die offenen bzw.
geschlossenen Testinstrumente abgebildeten Konstrukte nicht unproblematisch (Kulgemeyer
et al., 2023). Moderne Methoden aus dem Bereich des Machine Learning (ML) und Natural
Language Processing (NLP) bieten aber alternativ die Moglichkeit bei Verfiigbarkeit eines
geeigneten Datensatzes statistische Modelle zu erstellen, die die Bepunktung offener Aufgaben
automatisiert durchfiihren konnen (Zhai et al., 2020a; Zhai et al., 2020b; siche auch Abschnitt
2.6 sowie Kapitel 6). Die Entwicklung und Evaluierung eines solchen Modells fiir ein
konkretes FDW-Testinstrument ist das dritte Kernziel dieses Projekts. Zu diesem Zweck wird
ein (vergleichsweise kleines) BERT!-Sprachmodell (Devlin et al., 2019) zur automatisierten
Bepunktung des Testinstruments entwickelt und dessen Nutzbarkeit flir ein informatives

' Bidirectional Encoder Representations from Transformers
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Assessment auf Basis von FDW-Subskalen und der Kompetenzprofile aus dem zweiten
Zielpaket evaluiert (Kapitel 6). In diesem Rahmen werden auch weitere mogliche Modelle
vorgestellt und evaluiert (Abschnitt 6.7.6 & 6.7.8).

Insgesamt wird in diesem Projekt das FDW von (angehenden) Physiklehrkriften einer
empirisch-datenbasierten Detailanalyse zur inhaltlichen Beschreibung innerer Strukturen
unterzogen. Dabei wird zudem ein automatisiertes Assessment-System fiir das FDW auf Basis
eines etablierten Testinstruments (Gramzow, 2015) aus dem Projekt ProfiLe-P?(+) (Vogelsang
et al., 2019) entwickelt. Zunédchst werden sowohl hierarchische FDW-, Kompetenzniveaus*
mithilfe von Item-Response-Modellen (Kapitel 4) als auch nicht-hierarchische FDW-
,Kompetenzprofile“ mithilfe von Clustermodellen (Kapitel 5 & 6) genauer inhaltlich
untersucht. Neben theoriebildenden Erkenntnissen aus diesen Analysen konnen insbesondere
die Ergebnisse der nicht-hierarchischen Analyse genutzt werden, um ein Feedback reliabel und
valide mit inhaltlichen Aussagen anzureichern. Im letzten Teil des Projekts wird dann ein
BERT-Sprachmodell zur automatischen Bepunktung der offenen Aufgaben des verwendeten
Testinstruments trainiert und die Performanz dieses Modells unter Riickgriff auf die zuvor
gefundenen Kompetenzprofile sowie bestehende Subskalen u. A. evaluiert (Kapitel 6).

2 Akronym ProfiLe-P: ,Professionskompetenz im Lehramtsstudium Physik®, gefordert durch das
Bundesministerium fiir Bildung und Forschung. In der ersten Projektphase (ProfiLe-P, siehe z. B. Riese &
Reinhold, 2012) wurde auf die Modellierung und Operationalisierung der Doménen des Professionswissens
fiir das Fach Physik fokussiert. In der zweiten Projektphase (ProfiLe-P+ sieche z. B. Vogelsang et al., 2019)
wurde die ldngsschnittliche Entwicklung sowie der Zusammenhang der Doménen des Professionswissens zur
Performanz in prototypischen Handlungssituationen in den Blick genommen. Fiir die hier vorgestellte Analyse
sind primdr die Daten aus dem in ProfiLe-P entwickelten und in ProfiLe-P+ verwendeten FDW-
Testinstruments (Gramzow, 2015) relevant.
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2. Theoretische und Methodische Grundlagen

Die Analysen dieses Projekts sind wesentlich durch theoretische Konzeptualisierungen und
bereits bestehende Ergebnisse zur professionellen Kompetenz und insbesondere zum FDW von
(Physik-)Lehrkréften vorbereitet und strukturiert. Zur Analyse werden einerseits ,,klassische*
Item-Response-Theorie (IRT)-basierte Niveauanalysen und andererseits ML- bzw. NLP-
Methoden eingesetzt. Im Folgenden werden daher sowohl inhaltsbezogene theoretische als
auch methodische Grundlagen der Analysen dargestellt.

2.1. Professionswissen von (Physik-)Lehrkraften

Die professionelle Kompetenz von (angehenden) Lehrkriften ist bereits lange zentraler
Gegenstand fachdidaktischer und bildungswissenschaftlicher Forschung — sowohl internat-
ional (z. B. Gess-Newsome, 1999; Hume et al., 2019; Neumann et al., 2019; Shulman, 1986,
1987) als auch im deutschsprachigen Raum (Baumert & Kunter, 2006; Kirschner et al., 2017;
Kleickmann et al., 2014; Riese et al., 2015; Sorge et al., 2019). Das Professionswissen als
kognitive Komponente der professionellen Kompetenz (sieche auch Abbildung 2.1) wird dabei
als wesentlich fiir die Handlungsqualitdt im Unterricht und den Unterrichtserfolg aufgefasst
(Ball et al., 2001; Harms & Riese, 2018; Terhart, 2012). In den frithen Konzeptualisierungen
nach Shulman (1987) wurde sich wesentlich auf das Professionswissen fokussiert, das in die
sieben Bereiche (1) Content Knowledge, (2) General Pedagogical Knowledge, (3) Pedagogical
Content Knowledge, (4) Curriculum Knowledge, (5) Knowledge of Learners and Their
Characteristics, (6) Knowledge of Educational Contexts, (7) Knowledge of Educational Ends,
Purposes, and Values® unterteilt wurde. Im deutschsprachigen Raum hat sich vor allem das
Modell fiir die professionelle Kompetenz von Lehrkrédften nach Baumert und Kunter (2006)
aus dem COACTIV-Projekt (Baumert & Kunter, 2011) durchgesetzt. Dieses urspriinglich fiir
den Bereich der Mathematik entwickelte Modell wurde seitdem fiir unterschiedliche
Fachrichtungen adaptiert.

In der Physik wird dieser Entwicklung folgend hdufig die Adaption des Modells
professioneller Handlungskompetenz nach Riese (2009) verwendet (Abbildung 2.1). Dieses
Modell umfasst insbesondere nicht nur Professionswissen, sondern auch motivationale,
volitionale und soziale Aspekte. Darunter fallen beispielsweise sog. ,,.Belief Systems®, also
Wertesysteme und Rollenbilder der Lehrkrifte. Auch wenn diese Aspekte wichtige Elemente
professioneller Kompetenz sind, spielen sie fiir die Analysen in diesem Projekt eine
untergeordnete Rolle. Im Folgenden wird sich daher auf die Beschreibung des
Professionswissens bzw. der kognitiven Aspekte des Modells professioneller Handlungs-
kompetenz beschrénkt.

Das Professionswissen wird im deutschsprachigen Raum meist den Modellen von Baumert
und Kunter (2006) sowie Shulman (1987) folgend in die drei Domdnen Fachwissen (FW),

3 Englischsprachige Begriffe werden hier im Original benannt, um Vermischungen von Konstrukten, wie dem
Fachdidaktischen Wissen und dem Pedagogical Content Knowledge (siehe Abschnitt 2.2) zu vermeiden.
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Padagogisches Wissen (PW) und Fachdidaktisches Wissen (FDW) gegliedert. Zusétzliche
Bereiche wie beispielsweise das Curriculum Knowledge (Shulman, 1987) werden dabei
entweder einer dieser drei iibergeordneten Professionswissensdominen oder einem anderen
Bereich des Modells der Professionskompetenz untergeordnet. Unterschiede in den Modellen
entstehen durch im Detail unterschiedliche Konzeptualisierungen der einzelnen Wissens- und
Kompetenzbereiche®.

Professionelle Handlungskompetenz von Lehrpersonen

Kognitive Fahigkeiten und Motivationale, volitionale und soziale
Professionswissen Bereitschaften und Fahigkeiten

N

: . Fachdidaktisches . Motivationale
{Fachllches W|ssenl [ Wissen J | Belief Systems } | R o e }

Padagogisches
Wissen

Abbildung 2.1 Modell der Professionellen Handlungskompetenz nach Riese (2009) in Anlehnung an Baumert
und Kunter (2006) sowie Blomeke et al. (2008b).

Das FW beschreibt fachliches Wissen, zundchst ohne expliziten Bezug zum Lehrberuf
(Baumert & Kunter, 2006; Riese, 2009; Shulman, 1987). Es wird allerdings davon
ausgegangen, dass dieses Wissen iiber den in der Schule behandelten Umfang hinausgehen
muss, damit die Lehrkréfte fachliche Inhalte im Rahmen eines grofleren Kontextes einordnen
konnen. Erst dadurch sind sie befdhigt, die Entwicklungen ihrer Schiilerinnen und Schiiler zu
antizipieren und sie auf eine potenzielle spétere Vertiefung ihrer Kenntnisse in Studium,
Ausbildung oder Beruf vorzubereiten (Blomeke et al., 2008b; Krauss et al., 2008). Die
konkreten Inhaltsbereiche des FW, in denen Lehrkrifte entsprechende Kenntnisse erwerben
sollen, sind Teil des gesellschaftlichen und wissenschaftlichen Diskurses, fiir die Physik
besteht aber weitestgehender Konsens (Schiering, 2021; Sorge et al., 2019). Dabei sind in
Deutschland die Bereiche Mechanik, Elektrodynamik, Optik, Thermodynamik, Festkorper-
physik, Atom- und Kernphysik, spezielle Relativititstheorie sowie Quantenphysik festgelegt
(Kultusministerkonferenz [KMK], 2024). Es existieren zudem empirisch fundierte
Niveaumodelle des FW fiir die Physik, die in Abschnitt 2.3 noch einmal thematisiert werden.

Das PW wird allgemein als fachunabhéngiges Wissen {iiber allgemeindidaktische und
padagogische Konzepte verstanden (Baumert & Kunter, 2006; Voss et al., 2015). Es existieren
unterschiedliche Konzeptualisierungen zu sog. ,Facetten (~ Unterkategorien) dieser
Professionswissensdoméne. Beispielsweise unterteilen Konig und Seifert (2012) das PW in die

4 Genaueres zu diesen Unterschieden insbesondere fiir das FDW werden in Abschnitt 2.2 genauer erldutert.
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drei Bereiche (1) Erziehung und Bildung, (2) Unterricht und allgemeine Didaktik sowie (3)
Schulentwicklung und Gesellschaft. Mit einem &dhnlichen Grundansatz aber einer feineren
Unterteilung differenzieren Kunter et al. (2017) PW in die sechs inhaltlichen Bereiche (1)
Unterrichtsgestaltung, (2) Schulorganisation, (3) Bildungstheorie, (4) Lernen und Entwick-
lung, (5) Diagnostik und Evaluation sowie (6) Lehrerberuf als Profession und heben dabei
auBerunterrichtliche Aspekte der Téatigkeit von Lehrkréften hervor.

Das FDW wird als das Wissen zu Vermittlung von konkretem Fachwissen an eine konkrete
Zielgruppe verstanden (Shulman, 1987). Es wird angenommen, dass gerade das FDW diejenige
Wissenskategorie ist, in der sich Lehrkrifte von reinen Fachwissenschaftler:innen bzw. reinen
Péddagog:innen unterscheiden (Hume et al., 2019; Neumann et al., 2019; Shulman, 1987). Das
FDW ist die in diesem Projekt primér betrachtete Professionswissensdimension, weshalb ihm
hier ein eigener umfangreicherer Abschnitt gewidmet ist (Abschnitt 2.2).

2.2. Fachdidaktisches Wissen

Die frithen Arbeiten zum Professionswissen bzw. der professionellen Kompetenz von
(Shulman, 1986, 1987) konnen ebenso als Pionierarbeiten zur Konzeptualisierung des FDW
angesehen werden. In seinem als Pedagogical Content Knowledge (PCK) bezeichneten
Konstrukt fasst Shulman (1987) Wissen zusammen, das ndtig ist, um bestimmtes Fachwissen
einer bestimmten Zielgruppe zu vermitteln. Dabei wird eine grundsétzliche Abhingigkeit vom
thematisierten Fachinhalt angenommen. Parallel dazu, sowohl in Fortfilhrungen bzw.
Adaptionen dieses Ansatzes als auch unter Einbezug hiesiger Bildungstraditionen, hat sich im
deutschsprachigen Raum das Konstrukt des FDW entwickelt (Baumert & Kunter, 2006;
Gramzow, 2015; Kroger, 2019; Riese, 2009). Unter anderem aufgrund von Unterschieden
zwischen den Bildungstraditionen des englischsprachigen und des deutschsprachigen Raums
sind FDW und PCK zwar nah verwandt, aber nicht deckungsgleich (z. B. Gramzow et al., 2013;
Vollmer & Klette, 2023).

Verortung des Fachdidaktischen Wissens in Rahmenmodellen

Um diese Unterschiede zu verdeutlichen und das in diesem Projekt zugrundeliegende
Verstdandnis des Konstrukts des FDW klar darzulegen, wird FDW in diesem Abschnitt im
Kontext zweier Rahmenmodelle verortet.

Rahmenmodell A). International hat sich in den letzten Jahren vor allem das sog. Refined
Consensus Model (RCM) of PCK (Carlson et al., 2019; Hume et al., 2019) durchgesetzt. Dieses
Modell konzeptualisiert PCK im Rahmen von drei Doménen (Carlson et al., 2019, 83-91):

1. Collective PCK (cPCK): Das cPCK stellt die kollektive Wissensbasis von fachdi-
daktischen Communities dar, umfasst also einen Korpus an explizierbarem, eher
deklarativem Wissen, das beispielsweise (aber nicht exklusiv) in fachdidaktischer
Fachliteratur zu finden ist.

2. Personal PCK (pPCK): Das pPCK stellt die personliche Wissensbasis der einzelnen
Lehrkraft dar. Wie auch das cPCK wird pPCK als explizierbar betrachtet. Der Transfer
von cPCK zu pPCK wird dabei von unterschiedlichen (z. T. &ufleren) Rahmen-
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bedingungen beeinflusst, wie beispielsweise Eigenheiten der Schule, des Bildungssys-
tems oder von Schiilerinnen und Schiilern. Die Gesamtheit dieser ,,Filter* zwischen dem
cPCK und pPCK wird im RCM auch als Learning Context bezeichnet. Umgekehrt kann
pPCK auch das cPCK beeinflussen, indem sich beispielsweise in einer fachdidaktischen
Community innerhalb einer Schule bestimmte Erfahrungen zu einer kollektiven
Wissensbasis verfestigen.

3. Enacted PCK (ePCK): Das ePCK umschreibt das PCK, das konkreten gezeigten
Handlungen im fachdidaktischen Kontext zugrunde liegt. Solche Handlungen sind
beispielsweise Unterrichtsvorbereitungen oder konkret fiir die Physik die Erklarung
physikalischer Phdnomene. Dieses Wissen ist in der Regel nicht mehr explizierbar. Es
wird angenommen, dass das ePCK sich im Rahmen des sog ,,Plan-Teach-Reflect-Cycle*
(PTR-Cycle) in einem zirkuldren Prozess entwickelt (Alonzo et al., 2019) und, dass
ePCK in wechselseitiger Beziehung zum pPCK steht.

Die Filter zwischen den einzelnen PCK-Dominen, ihre Auswirkung auf die Entwicklung
von PCK und Professionswissen und die innere Struktur der einzelnen PCK-Domaénen genauer
empirisch zu untersuchen ist herausfordernd (z. B. Behling et al., 2022a; Kulgemeyer et al.,
2023). Zum ePCK gibt dabei Ansitze, die Auswirkung einer explizit dem PTR-Cycle
folgenden AusbildungsmafBnahme auf andere Komponenten des PCK bzw. professioneller
Kompetenz zu untersuchen (Behling et al., 2022b). Dabei zeigten sich positive Auswirkungen
auf das pPCK und motivationale Orientierungen. Es bleibt allerdings unklar, ob und inwieweit
sich die im PTR-Cycle fiir das ePCK-beschriebene Feinstruktur in Form einer Unterscheidung
zwischen ,,ePCK-plan®, ,,ePCK-teach” und ,,ePCK-reflect (Alonzo et al., 2019) in dhnlicher
Weise auch fiir die anderen PCK-Doménen zeigt. Zudem ist unklar, ob potenzielle trennbare
pPCK-Komponenten auch verstiarkt mit einzelnen ePCK-Komponenten zusammenhidngen.
Neben den beschriebenen Filtern zwischen den einzelnen Doménen des PCK werden im RCM
zudem &duflere Einflussfaktoren sog. Professional Knowledge Bases wie beispielsweise Wissen
iiber Assessment, Wissen {iber das Curriculum oder auch Fachwissen beschrieben (Carlson et
al., 2019). Diese Wissensbereiche stehen wiederum in wechselseitiger Beziehung zum PCK.
Im RCM wird PCK also schichtweise modelliert, wie in Abbildung 2.2 dargestellt.

Das deutschsprachige Konstrukt des FDW ist eng verwandt zum PCK, umfasst aber
insbesondere weniger die konkret gezeigten fachdidaktischen Handlungen, bzw. das durch
diese Handlungen implizit gezeigte Wissen (Gramzow, 2015; Sorge et al., 2019). Die konkrete
Handlung wird also im Konstrukt des FDW ,weniger mitgedacht“. In mehreren
Projektverbunden (Kulgemeyer et al., 2023; Schiering et al., 2023) und theoretischen Arbeiten
(z. B. Vollmer & Klette, 2023) wird daher FDW im Wesentlichen als vergleichbar bis
deckungsgleich mit dem pPCK beschrieben. Auch augenscheinlich liegt es nahe, dass das in
schriftlichen FDW-Leistungstests, wie denen nach Gramzow (2015) oder Kroger (2019),
explizierbares personliches Wissen der Proband:innen abgefragt wird.

Rahmenmodell B). Ein weiteres prominentes Modell zur Konzeptualisierung von
Kompetenzen, welches fiir das FDW weit verbreitet angewendet wird, ist das sog. Model of
Competence (MoC) bzw. Kontinuumsmodell nach Blomeke et al. (2015). Dieses Modell
beschreibt (professionelle) Kompetenz als Ganzes in Form eines Kontinuums zwischen
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einerseits latenten kognitiven Dispositionen und andererseits Performanz in fiir die Profession
prototypischen Anforderungssituationen (siche Abbildung 2.3 Model of Competence /
Kontinuumsmodell nach ). Dazwischen werden situationsspezifische Fahigkeiten wie
Interpretationsfdahigkeiten, Wahrnehmung und Entschei-dungsfindung positioniert. Im Kontext
des PCK bzw. FDW kann man das RCM als diskretisierte Form des MoCs verstehen, bei denen
konkrete Stufen zwischen Dispositionen und Performanz explizit inhaltlich voneinander
abgegrenzt werden. PCK ist dann eher als ein Konstrukt zu verstehen, das sich iiber die gesamte
Bandbreite des MoCs erstreckt, wihren FDW eher auf der Seite der kognitiven Dispositionen

zu verorten ist (Kulgemeyer et al., 2023).

Abbildung 2.2 Schematische Darstellung des Refined Consensus Model of PCK (vereinfacht nach Carlson et al.,

2019, S. 83).
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Ahnlich zu den Uberlegungen zu potenziellen pPCK-Komponenten und deren
Zusammenhang zu den ePCK-Komponenten im RCM stellt sich auch im Kontext des MoC die
Frage, inwieweit einzelne Dispositionen (FDW-Komponenten) unterschieden werden konnen,
die mit einzelnen Fihigkeiten bzw. der Performanz in unterschiedlichen prototypischen
Anforderungssituationen, wie der Unterrichtsplanung (Schroder et al., 2020), dem Erkléren
physikalischer Phanomene (Kulgemeyer et al., 2020) oder der Reflexion (Kulgemeyer et al.,
2021) zusammenhéingen.

Zusammengefasst wird in dieser Arbeit PCK als Konstrukt aufgefasst, welches neben
explizierbarem Wissen (cPCK und pPCK) auch Performanz in Handlungssituationen, bzw. das
fiir solche Handlungen notwendige implizite Wissen (ePCK) umfasst. Das FDW wird primar
als explizierbares Wissen verstanden und schliefSt implizites Handlungswissen nicht direkt mit
ein. Aufgrund der Konzeption der Erhebung der in diesem Projekt genutzten Daten wird daher
in Ubereinstimmung mit dhnlichen Ansitzen (Kulgemeyer et al., 2023; Schiering et al., 2023)
davon ausgegangen, dass das im entsprechenden Testinstrument (Gramzow, 2015) primér
erfasste FDW am echesten mit dem pPCK vergleichbar ist und primir eine kognitive
Komponente eines grofleren Kompetenzbegriffs abdeckt. Im Folgenden wird daher
hauptsdchlich der Begriff ,FDW*“ im dargestellten Verstindnis des Konstrukts
weiterverwendet’. Zudem wurde dargestellt, dass die gebriuchlichsten Rahmenmodelle zur
Konzeptualisierung des FDW Desiderate zur genaueren Beschreibung der inneren Struktur des
FDW aufweisen.

Operationalisierung und Messung des Fachdidaktischen Wissens

In frithen Arbeiten wurde das FDW meist anhand von Selbsteinschiatzungen oder iiber die
Erfassung distaler Merkmale gemessen (vgl. Baumert & Kunter, 2006). In aktuellerer
Forschung werden (zumindest im deutschsprachigen Raum) jedoch eher Leistungstests
verwendet. Das FDW wird dabei (nicht nur zu Testzwecken) meist dreidimensional modelliert
(z. B. Gramzow, 2015; Kroger, 2019; Tepner et al., 2012). Die erste Dimension ist der
adressierte fachliche Inhalt, also in der Physik beispielsweise Inhaltsfelder wie Mechanik oder
Optik (KMK, 2024). Dariiber hinaus sind sog. fachdidaktische Inhalte oder Facetten eine
zentrale Dimension dieser Modelle. Die Facetten beschreiben dabei unterschiedliche
inhaltliche Bereiche des FDW und es existieren viele Konzeptualisierungen, in denen jeweils
eine unterschiedliche Auswahl von Facetten eingeschlossen wird (z. B. Park & Oliver, 2008;
Riese, 2009; iibersichtsartig dargestellt bei Schmelzing, 2010, S. 23 Kirschner, 2013, S. 32).
Zentrale Facetten, die bereits in Shulmans (1986) urspriinglichen Arbeiten implizit
beriicksichtigt wurden und auch als Minimalkonsens angesehen werden konnen (Kirschner,
2013, S. 32; Schmelzing, 2010, S. 23) sind Instruktions- und Vermittlungsstrategien sowie
Schiiler und Schiilerkognitionen®. Dariiber hinaus sind im Testinstrument nach Gramzow

> In den deutschsprachigen Artikeln 1 und 3 (Kapitel 4 und 6) wird der Begriff ,,FDW* im selben Verstéindnis
genutzt. Im englischen Artikel 2 (Kapitel 5) wird primir der Begriff ,,pPCK* genutzt, um das Konstrukt auf
eine international geldufige Weise zu bezeichnen.

Die Facette Schiiler und Schiilerkognition sowie die Begriffe ,,Schiilerkognition* und ,,Schiilervorstellungen*
werden der Standardliteratur (z. B. Schecker et al., 2018) folgend nicht geschlechtsneutral umformuliert.
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(2015), das zur Erhebung der im Rahmen der hier vorgestellten Analysen verwendeten Daten
genutzt wurde, die Facetten Experimente und Vermittlung eines angemessenen
Wissenschaftsverstindnisses (kurz Experimente) sowie Fachdidaktische Konzepte abgebildet.
Dabei handelt es sich explizit um eine aus Griinden der Testokonomie getroffene Auswahl von
Facetten und nicht um eine vollstindige Liste (Gramzow, 2015). Fiir eine ausfiihrlichere
Beschreibung der Inhalte der einzelnen Facetten sei auf (Gramzow, 2015, S.96-102)
verwiesen. Wihrend die bisherigen Dimensionen fachlicher Inhalt und fachdidaktische
Facetten allgemein zur Modellierung des FDW dienen, wird zur Entwicklung von
Testinstrumenten meist noch eine dritte Dimension ergénzt. Diese dient der Argumentation
von Klieme et al. (2003) folgend der Anreicherung der Testinstrumente mit Aufgaben aus
unterschiedlichen kognitiven Anforderungsbereichen. So beschreiben Kroger (2019) und
Tepner et al. (2012) die Dimension Wissensart(en), wihrend Gramzow (2015) in der
Dimension der kognitiven Anforderungen die Kategorien Reproduzieren, Anwenden und
Analysieren berticksichtigt. Fiir die genaue Beschreibung des Verstindnisses dieser Kategorien
sei erneut auf Gramzow (2015, S. 111-112) verwiesen.

Empirische Untersuchungen zum FDW

Mithilfe der beschriebenen Modellierungen und Operationalisierungen konnten empirisch
Zuwichse des FDW im Studium und im Vorbereitungsdienst nachgewiesen werden
(Kirschner, 2013; Kroger, 2019; Sorge et al., 2019; Vogelsang et al., 2019). Dariiber hinaus
zeigten sich sowohl direkte Zusammenhinge zwischen FDW und FW sowie FDW und PW
(Kirschner, 2013; Kirschner et al., 2017; Kulgemeyer et al., 2012; Riese et al., 2015; Sorge et
al., 2019; Tepner & Dollny, 2014) als auch die Bedeutsamkeit des FDW fiir die Entwicklung
von FW und PW (Sorge et al., 2018). Mittlerweile liegen zudem Ergebnisse vor, die Effekte
des FDW auf die Performanz in prototypischen Anforderungssituationen wie beispielsweise
(1) der Unterrichtsplanung (Behling et al., 2022b; Riese et al., 2022b; Schroder et al., 2020),
(2) dem Erklédren physikalischer Phinomene (Kulgemeyer et al., 2020; Kulgemeyer & Riese,
2018), (3) dem Reflektieren iiber Unterricht (Kulgemeyer et al., 2021), (4) der kognitiven
Aktivierung (Fortsch et al., 2016; She et al., 2024), (5) der Nutzung von physischen Modellen
(Fortsch et al., 2018) sowie (6) diagnostischen Handlungen (Kramer et al., 2021) zeigen. Striibe
(2020) konnte allerdings keine bzw. nur schwache Zusammenhénge zwischen dem FDW und
der Arbeit mit Modellen bzw. Experimenten bei Chemielehrkridften nachweisen. Detail-
Betrachtungen deuteten hier darauf hin, dass primdr bestimmte Facetten des FDW
Auswirkungen auf diese Handlungsaspekte haben konnten (Striibe, 2020, S. 208).

Weiterhin zeigten sich auch (indirekte) Einfliisse auf die kognitive Aktivierung und
Leistung von Schiilerinnen und Schiilern (Blomeke et al., 2022; Fortsch et al., 2016), wobei
die Studienlage zu den Auswirkungen von Professionswissen auf Schiiler:innen nicht eindeutig
ist (Cauet et al., 2015; Liepertz & Borowski, 2019). In diesem Kontext konnten Troger et al.
(2017) mithilfe von Item-Response-Modellierungen (s. u.) und darauf aufbauenden
Regressionsanalysen zeigen, dass Schiiler:innen mit geringem Vorwissen von hohem FDW
iiber Sprachnutzung ihrer Lehrkréfte profitieren. Weitere Analysen verdeutlichen, dass die
Entwicklung des Professionswissens und des FDW im Speziellen durch Studienstrukturen
bedingt wird (Schiering et al., 2021).

10
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Auch, wenn Studien wie die genannten die Bedeutsamkeit des FDW weiter unterstreichen,
so liefern sie doch keine weitere empirische Beschreibung der inneren Struktur des FDW. Die
Dimensionalisierung mit den Achsen fachlicher Inhalt, kognitive Anforderungen und Facetten
(oder dhnliche Modelle aus den anderen genannten Projekten) sind eher normativ motiviert.
Auch die zentrale Dimension der fachdidaktischen Facetten ist zwar je nach Studie
argumentativ, durch Experteninterviews und Curriculumsanalysen von Lehrerbildungs-
programmen fundiert (z. B. Kulgemeyer et al., 2020; Magnusson et al., 1999; Park & Oliver,
2008; Schiering et al., 2023), allerdings somit immer noch von eher theoretisch-normativem
Charakter. Fiir ihr Testinstrument konnten Riese et al. (2017) bzw. Gramzow (2015) mithilfe
von IRT-Modellvergleichen allerdings zeigen, dass sowohl die drei abgebildeten kognitiven
Anforderungen als auch die vier eingeschlossenen Facetten als empirisch trennbare Subskalen
aufgefasst werden konnen. Dies konnte aber nur fiir eine (relativ kleine) Stichprobe von
fortgeschrittenen Studierenden gezeigt werden und auch die verwendeten statistischen
Informationskriterien (AIC und BIC) zeigten nur eine schwache Bevorzugung der Modelle mit
Subskalen. Zur empirisch fundierten Beschreibung der inneren Struktur des FDW sind also
weitere Untersuchungen notig. Einen dazu bereits erprobten Ansatz stellen hierarchische
Niveaumodelle dar, die im néchsten Abschnitt genauer beschrieben werden.

2.3. Hierarchische Niveaumodelle auf Basis von Item-Response-
Modellen

Um Niveaus in den Auspridgungen von Kompetenzen inhaltlich auf Basis von Testdaten zu
modellieren, haben sich IRT-basierte Niveaumodelle etabliert (Hartig, 2007; Mullis et al.,
2016; Organisation for Economic Cooperation and Development [OECD], 2018). Solchen
Ansitzen liegt meist ein IRT-Modell der Testdaten zugrunde, welches Personenfdhigkeiten
und Aufgabenschwierigkeiten auf einer gemeinsamen Skala abbildet (s. u.). Das
Hurspriingliche® IRT-Modell nach Rasch (1960) basiert auf der folgenden Annahme: Die
Wahrscheinlichkeit, dass eine Person p mit der ,,Personenféhigkeit® 6,, die Aufgabe i mit der

»Aufgabenschwierigkeit™ g; korrekt 10st betragt

1
1+ exp (0, —6,)°

P(Xp,=1)=

Aufgabenschwierigkeit und Personenfahigkeit sind somit relativ zueinander zu interpretieren.
Ist g, > 6, (bzw. 0; K 6,) so strebt diese Funktion gegen 0 (bzw. 1), d. h. die

Wabhrscheinlichkeit, dass Person p die Aufgabe i 16st ist gering (bzw. hoch). Ist g; = 8,,, so ist

P>
die Wahrscheinlichkeit, dass Person p Aufgabe i korrekt 16st gerade gleich 50 %. Da nur die
Differenz der Parameter o; und 6, fiir die Wahrscheinlichkeit relevant sind, werden die
Parameter demnach auf einer gemeinsamen Skala abgebildet, was in den Verfahren zur
Niveauanalyse ausgenutzt wird (s. u.). Es gibt unterschiedliche Mdglichkeiten aus der
Datentabelle der Punktzahlen der Personen in den Aufgaben diese Schwierigkeits- bzw.

Fahigkeitsparameter zu schitzen.

Es existieren unterschiedliche Erweiterungen und Verallgemeinerungen des Rasch-
Modells, die zumeist alle unter der Bezeichnung ,,Item-Response-Modell* bzw. IRT-Modell

11
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zusammengefasst werden (z. B. Moosbrugger & Kelava, 2020). Fiir das hier vorgestellte
Projekt ist insbesondere das sog. ,,Partial Credit Modell*“ (Masters, 1982) zu nennen, welches
das urspriingliche Rasch-Modell auf mehrstufige (z. B. 0, 1 und 2 Punkte) Aufgaben
verallgemeinert. Die zur Modellierung der Aufgabenschwierigkeiten genutzten Parameter sind
dann allerdings nicht mehr so unmittelbar interpretierbar wie die Aufgaben-Parameter im
Rasch-Modell. Die analog zum Rasch-Modell interpretierbaren ,, Thurstone-Threshold*-
Parameter (auch nur ,,Thurstone-Thresholds®) lassen sich allerdings nach dem Modell-Fit
ebenfalls berechnen (Linacre, 1998). Somit liegt auch im Partial Credit Modell eine
Moglichkeit vor, Aufgabenschwierigkeiten und Personenfdhigkeiten auf einer gemeinsamen
Skala abzubilden und zu modellieren. Die gemeinsame Darstellung dieser Parameter in einem
Plot wird auch ,,Wright Map* genannt (siche Abbildung 4.6 & Abbildung 4.7).

Zur Bildung von Niveaus auf Basis von Wright Maps und den ihnen zugrundeliegenden
Parameterschitzungen aus IRT-Modellen existieren im Wesentlichen drei unterschiedliche
Methoden, die Woitkowski (2020) in seiner Adaption eines dieser Ansétze zur
Niveaumodellierung des physikalischen Fachwissens gegeniiberstellt: (1) das Scale-
Anchroing-Verfahren, (2) der regressionsanalytische Ansatz und (3) die Bookmark-Methode.
Von diesen Methoden sind fiir das hier vorgestellte Projekt vor allem das Scale-Anchoring-
Verfahren und der regressionsanalytische Ansatz relevant.

Im Scale-Anchroing-Verfahren (Mullis et al., 2016) werden zunichst drei’ Personen-
gruppen gebildet, wobei jeweils eine Gruppe niedrige, eine mittlere und eine hohe
Fahigkeitsparameter aufweist. Anhand der Anteile von Personen aus diesen Gruppen, die eine
Aufgabe gelost bzw. (im Falle von polytomen Aufgaben) eine bestimmte Punktzahl in der
Aufgabe erreicht haben, werden die Aufgaben bzw. die Punkteschwellen der Aufgaben
wiederum in Gruppen eingeteilt. Die Mittelwerte der Schwierigkeitsparameter bzw. Thurstone-
Thresholds dieser Aufgabengruppen dienen anschlieBend als Niveaugrenzen und die
inhaltliche Beschreibung der Niveaus folgt aus den inhaltlichen Beschreibungen der Aufgaben,
die sich nahe an diesen Grenzen befinden. Der genaue Ablauf des Verfahrens wird in der
konkreten Anwendung in Abschnitt 4.4.3 noch einmal genauer erldutert. Das Scale-Anchoring-
Verfahren ist durch ein hohes Mal3 an Datengetriebenheit gekennzeichnet und kann in diesem
Sinne im Vergleich zu den anderen Verfahren als besonders objektiv aufgefasst werden. Fiir
besonders aussagekréftige Ergebnisse ist bei der Verwendung des Scale-Anchoring-Verfahrens
jedoch eine hohe Anzahl an Aufgaben im Testinstrument und Proband:innen optimal, weshalb
das Scale-Anchroing-Verfahren bisher zumeist in den groflen Schulleistungsstudien wie
TIMSS (Mullis et al., 2016) und PISA (OECD, 2018) angewendet wurde.

Eine Alternative zum Scale-Anchroing-Verfahren stellen regressionsanalytische Ansitze
dar (z. B. Blomeke et al., 2008a; Nold et al., 2008). Anders als beim Scale-Anchoring-

7 Das Scale-Anchoring-Verfahren ermdglicht auch feinere Unterteilungen der Fihigkeiten, d. h. die
Beschreibung einer grofleren Anzahl an Niveaus. Dazu miissen im ersten Schritt die Personen in eine groflere
Anzahl an Leistungsgruppen unterteilt werden. Werden die Personen in n Gruppen eingeteilt, so erhélt man
anschlieBend n + 1 Niveaus (und ein Niveau ,,< 0%, iiber das keine weiteren inhaltlichen Aussagen getroffen
werden konnen). Der Ubersicht halber, wird hier aber das Verfahren fiir lediglich drei Personengruppen bzw.
4 Niveaustufen erldutert, da eine feinere Unterteilung mit der verfiigbaren Datenbasis in diesem Projekt nicht
angestrebt wurde (siehe Kapitel 4).
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Verfahren findet hier eine Re-Analyse aller Aufgaben des Testinstruments bereits zu Beginn
statt. Dazu werden geeignete schwierigkeitserzeugende Merkmale theorie- oder literaturbasiert
ermittelt und niveauartig beschrieben. Die Aufgaben werden dann diesen Stufen zugeordnet.
Die Passung und Eignung dieses Modells schwierigkeitserzeugender Merkmale zu den Daten
wird mithilfe der Varianzaufkldrung einer linearen Regression bzw. ANOVA beziiglich der
IRT-Aufgabenschwierigkeiten evaluiert. Liegt eine hohe Varianzaufkldarung und dement-
sprechend ausreichende Passung vor, konnen die Mittelwerte der Aufgabenschwierigkeiten der
somit entstandenen Aufgabengruppen als Niveaugrenzen genutzt werden und die Personen
gemdll ihrer Fahigkeitsparameter zu den Niveaus zugeordnet werden. Die inhaltlichen
Beschreibungen der Niveaus folgen dann direkt aus dem Modell schwierigkeitserzeugender
Merkmale. Im Vergleich zum Scale-Anchoring-Verfahren hat ein regressionsanalytischer
Ansatz den Vorteil, dass von vorneherein alle Aufgaben zur Niveaubeschreibung genutzt
werden konnen und somit auch kleinere Testinstrumente mit geringerer Aufgabenanzahl ggf.
besser ausgeschopft werden konnen. Allerdings stellt die Entwicklung eines geeigneten
Modells schwierigkeitserzeugender Merkmale einen zusitzlichen aufwéndigen Prozess dar,
der zudem als weniger objektivierbar angesehen werden kann als das weitestgehend
datengetriebene Vorgehen beim Scale-Anchoring-Verfahren.

Regressionsanalytische Ansédtze wurden bereits mehrfach im Kontext der Bildungs-
forschung im deutschsprachigen Raum genutzt. Konig (2009) verwendete eine Kombination
von drei Stufen sprachlicher Komplexitit und zwei kognitiven Anforderungsstufen als
schwierigkeitserzeugende Merkmale, um ein Niveaumodell des PW zu entwickeln. Dabei hat
sich insbesondere das kognitive Anforderungsniveau als bedeutsam herausgestellt. Bernholt
(2010) entwickelte ein Niveaumodell fiir Fachwissen in der Chemie. Dabei leitete er vier
Stufen Komplexititsstufen orientiert am inhaltsunabhdngigen Modell hierarchischer
Komplexitidt (Commons et al., 2014; Commons et al., 1998) ab. Dieser Ansatz wurde von
Woitkowski und Riese (2017) fiir die Physik mit Erfolg adaptiert und genutzt, um den
Fachwissenserwerb im Studienanfdngerbereich (Woitkowski, 2019) zu untersuchen und
Entwicklungstrajektorien iiber den Studienverlauf abzuleiten (Woitkowski, 2020).

Fir das FDW wurden bereits Analysen mithilfe des Scale-Anchoring-Verfahrens
durchgefiihrt. Schiering et al. (2019) bzw. Schiering et al. (2023) wendeten hierbei das Scale-
Anchoring-Verfahren auf ihr Testinstrument als Ganzes an. Sie konnten keine Systematik bzgl.
des Auftretens bestimmter fachdidaktischer Inhalte (bzw. Facetten) feststellen. Zeller et al.
(2022) fiihrten dhnliche Analysen mithilfe einer geschlossenen Version des Testinstruments
von Gramzow (2015) durch, wobei die fachdidaktischen Facetten von vorneherein getrennt
voneinander betrachtet wurden. Unabhidngig von den konkreten Projektkontexten, den in den
Instrumenten abgebildeten Facetten oder dem jeweils adressiertem Fachwissen zeigte sich in
der Tendenz eine Parallele zwischen den Ergebnissen von Zeller et al. (2022) und Schiering et
al. (2019) bzw. Schiering et al. (2023): Beziiglich kognitiver Prozesse scheint sich das FDW in
niedrigen Niveaus auf reproduktive Aspekte zu beschrdnken und in héheren Niveaus auch
analytische und anwendungsorientierte Elemente mit einzuschlieBen. Eine projekt-
tibergreifende Betrachtung von FDW-Niveaustufen ist dementsprechend das erste Zielpaket
dieses Projekts. Da die Ergebnisse von Studien der Projekte, aus denen die Analysen von
Schiering et al. (2019) bzw. Schiering et al. (2023) und Zeller et al. (2022) hervorgegangen
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sind, bisher aufgrund der im Detail unterschiedlichen Operationalisierung des FDW isoliert
stehen, verspricht hier eine projektiibergreifende Betrachtung von inhaltlichen FDW-Niveaus
auch die Vorbereitung einer Herstellung von Vergleichbarkeit anderer Ergebnisse aus den
jeweiligen Projektkontexten. Fiir die projektiibergreifende Analyse wird zunéchst aufgrund der
bereits bestehenden vielversprechenden Ansdtze das Scale-Anchoring-Verfahren auf beide
Datensdtze angewandt und ein Modellvergleich durch die sich ergebenden
Niveauformulierungen angestrebt. Dariiber hinaus wird orientiert an der erfolgreichen Nutzung
des Modells hierarchischer Komplexitidt fiir einen regressionsanalytischen Ansatz zur
Niveaubildung fiir das physikalische Fachwissen (Woitkowski & Riese, 2017) auch ein
gemeinsames Modell hierarchischer Komplexitit fiir das FDW entwickelt und dessen Passung
zu den Datensétzen lberpriift. Die vollstdndige Analyse ist in Kapitel 4 ausfiihrlich dargestellt;
insbesondere wird die Entwicklung bzw. Adaption des Modells hierarchischer Komplexitit
nach Commons et al. (1998; siche auch Commons et al., 2014) fiir das FDW in Abschnitt 4.2.3
ausfiihrlicher dargestellt und daher aus Platzgriinden hier nicht noch einmal wiederholt.

Insgesamt werden somit im ersten Zielpaket inhaltliche Beschreibungen des FDW in Form
von Niveaustufen entwickelt (sieche Abschnitt 4.5). Anders als bei den eher normativ-
theoretischen Beschreibungen im Rahmen der urspriinglichen Operationalisierungen (z. B.
Gramzow et al., 2013; Kroger, 2019; Park & Oliver, 2008), sind diese Ergebnisse induktiv aus
vorhandenen (quantitativen) empirischen Daten abgeleitet. Die Ergebnisse dieser Analysen des
ersten Zielpakets deuten aber auch darauf hin, dass wesentliche interessante inhaltliche
Strukturen des FDW mit strikt hierarchischen Methoden, wie eben Niveaumodellen, nicht
modelliert werden konnen. Im zweiten Zielpaket des Projekts werden daher nicht-hierarchische
Analysen in den Blick genommen, die auf explorativ(er)en Machine-Learning-Methoden
basieren. Diese werden daher in den nichsten Abschnitten ausfiihrlicher dargestellt.

2.4. Machine Learning

Da sich in den Ergebnissen der Analysen zum ersten Zielpaket des hier vorgestellten Projektes
zeigt, dass hierarchische Ansdtze wesentliche interessante innere Strukturen des FDW nicht
auflésen konnen (siehe Kapitel 4), werden dariiber hinaus explorative Machine-Learning-
Methoden zur nicht-hierarchischen Analyse des FDW in den Blick genommen (siehe Kapitel
5 & 6). Zudem ist das Leitziel des Projekts die Ermoglichung eines informativen Assessments
des FDW auf Basis der Ergebnisse zu dessen inneren Struktur (siehe Kapitel 1 & 3). Dieses
Assessment soll moglichst skalierbar sein und somit vor allem ohne hohen manuellen Aufwand
bei der Bepunktung der offenen Aufgaben des genutzten FDW-Testinstruments auskommen.
Zu diesem Zweck werden ebenfalls ML-basierte Methoden genutzt (siehe Kapitel 6). Im
Folgenden werden daher der Grundansatz von ML-Workflows sowie konkrete Methoden zur
Erreichung der genannten Ziele vorgestellt.

Definitionsansitze

Auch wenn die Begriffe kiinstliche Intelligenz (K1) und Machine Learning bereits seit
Jahrzehnten im wissenschaftlichen und wirtschaftlichen Bereich genutzt werden (z. B. Samuel,
1959), so ist eine genaue Beschreibung ihrer eigentlichen Bedeutung nicht trivial. Friih
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bezeichnete Samuel (1959) ML als ,,das Forschungsfeld, das Computern die Féhigkeit gibt zu
lernen, ohne explizit programmiert zu sein* (zit. nach Géron, 2019, S. 2, iibers. JZ). Damit ist
z. B. gemeint, dass keine Regel-Systeme nach dem ,,wenn-dann“-Prinzip zur Losung eines
Problems in den Computer eingegeben werden, sondern, dass das Problem eben durch
,Lernen* angegangen wird. Eine praktische Definition, um die eigentliche Bedeutung des
Begriffs ,,Lernen* in diesem Kontext zu fassen, stammt von Mitchell (1997):

A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P ifits performance at tasks in T, as measured
by P, improves with experience E.”

— Mitchell (1997, S. 2)

Als einfaches Beispiel kann hier eine einfache lineare Regression x o« y dienen: Der Computer
lernt durch das Verarbeiten von Datenpaaren (x;,y;),i = 1...N (,.experience E“), die
Zielvariable y in Abhdngigkeit von der unabhéngigen Variable x vorherzusagen (,task T*). Je
mehr Datenpaare der Computer verarbeitet hat, umso besser ist die Vorhersagequalitét
(,,performance measure P*) — vorausgesetzt, die Annahme x & y ist zutreffend. Wie die
,»Verarbeitung® dieser Daten stattfindet, kann unterschiedlich sein (s. u.).

Der Begriff KI umfasst iiblicherweise jegliche Methodik, die darauf ausgerichtet ist,
menschliche Aufgaben durch Computer zu automatisieren und schliet im Unterschied zum
ML-Begriff beispielsweise auch regelbasierte Systeme mit ein (z. B. Géron, 2019). Dariiber
hinaus wird hdufig zudem der Begriff Data Science genutzt, der allgemein
erkenntnisgewinnende, aber auch produktive Methoden unter Datennutzung zusammenfasst.
Im Data Science Bereich wird sich dabei unter anderem der Methoden aus den KI- und ML-
Bereichen bedient. Man kann die angesprochenen Forschungs- und Entwicklungsfelder in
einem Schema wie in Abbildung 2.4 dargestellt miteinander in Beziehung setzen.

/Kijnstliche Intelligenz \

Machine Learning

Deep Learning

Data Science

Abbildung 2.4 Darstellung der Bereiche Kiinstliche Intelligenz, Machine Learning, Deep Learning und Data
Science. Der Bereich Deep Learning wird im Abschnitt 2.7 noch einmal aufgegriffens.

8 Bei dieser Abbildung handelt es sich um eine weit verbreitete Standarddarstellung, die vielfach in
unterschiedlichen Kontexten genutzt wird, und daher nicht einer expliziten Literaturquelle zugeordnet werden
kann.
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Neben diesen grundlegenden eher konzeptionellen Ansédtzen zur Beschreibung des ML-
Themenfeldes, gibt es auch praktischere Unterteilungen, die eher konkrete Ziele von
entsprechenden Modellen und Verfahren in den Mittelpunkt stellen. Entscheidend ist hier
insbesondere die Unterteilung in das sog. Supervised Learning und das sog. Unsupervised
Learning (z. B. Duda et al., 2001; Géron, 2019). Methoden des Supervised Learnings haben
das Ziel, aus bestimmten verfiigbaren Variablen (Features) eine Zielvariable (Target)
vorherzusagen. Features konnen beispielsweise demographische Merkmale sein und ein
mogliches Target konnte schulischer Erfolg sein. Ein Supervised-Learning-Setting erfordert
also die Verfligbarkeit eines Datensatzes, in dem diese Target-Daten auch vorhanden sind, d.
h. iblicherweise manuell durch Menschen generiert wurden oder historisch vorliegen.
Insbesondere bei manuell generierten Target-Daten spricht man auch von Labels. Im
Gegensatz dazu zielt man im Unsupervised Learning darauf ab, Muster und Strukturen in Daten
zu finden. Es geht also darum in einem Datensatz Gruppen von Datenpunkten zu finden, die
sich auf eine gewisse Weise dhnlich sind. Das konnen beispielsweise Probanden einer
Interviewstudie sein, die durch eine dhnliche Wortwahl charakterisiert sind.

Paradigmen

Man kann zudem zwischen algorithmischen Modellen, die hdufig primér heuristisch motiviert
sind, und probabilistischen Modellen (manchmal auch ,bayesianische* Modelle genannt)
unterscheiden. Bei probabilistischen Modellen wird eine Wahrscheinlichkeitsverteilung, der
die Daten folgen sollten, angenommen und ausgehend von den tatsidchlich beobachteten Daten
die Parameter dieser Wahrscheinlichkeitsverteilung mithilfe von mathematischen Methoden
ermittelt (McElreath, 2020; Murphy, 2022; Ng & Jordan, 2001; siehe auch ein Beispiel in
Anhang A). Das Rasch-Modell (Abschnitt 2.3) ist in diesem Sinne ein Beispiel fiir ein
probabilistisches Modell. Hiufig konnen algorithmische Modelle auch ausgehend von
probabilistischen Modellen hergeleitet werden (Bishop & Lasserre, 2007). Probabilistische
Ansdtze zur Beschreibung und Analyse von Daten haben den Vorteil, dass sie hdufig
unmittelbarer interpretierbar sind als vergleichbare klassische Ansitze und direkt Schdtzungen
fiir die Unsicherheit der Ergebnisse liefern. Sie werden mittlerweile auch in der
Naturwissenschaftsdidaktik angewendet (z. B. Kubsch et al., 2021Db).

Bisher wurden nun bereits zwei Beispiele fiir ML-Methoden genannt — Lineare Regression
und Rasch-Modell — die man dem ML-Bereich vielleicht eher weniger zuordnen wiirde, wenn
man eher einen Hintergrund in der Tradition der ,klassischen* Hypothesen-testenden Statistik
hat. Der grundsitzliche Unterschied zwischen den Ansdtzen der Hypothesen-testenden
Statistik und ML-Methoden sind aber nicht die genutzten mathematischen Modelle — auch,
wenn es durchaus Modelle gibt, die eher einem der beiden Ansétze zugeordnet werden. Der
grundlegende Unterschied ist vielmehr die Herangehensweise und die Art der
Ergebnisevaluation und -interpretation wie Breiman (2001) darstellt.

In der klassischen Hypothesen-testsenden Statistik (,,Data Modelling* bei Breiman, 2001)
ist das Ziel die Beschreibung von Phdnomenen und Zusammenhdngen durch mathematisch-
theoretische Modelle, iiber die im Rahmen der schlieenden Statistik Aussagen bzgl. ihrer
Giiltigkeit, Unsicherheit und Bedeutung getroffen werden konnen, z. B. mithilfe von
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Signifikanzen und Effektstarken. Um solche Aussagen treffen zu konnen, beispielsweise durch
die Berechnung von p-Werten, miissen die genutzten Modelle wahrscheinlichkeitstheoretisch
wohldefiniert und hindelbar sein.

Im ML-Ansatz (,,4lgorithmic Modelling* bei Breiman, 2001) ist das Ziel zwar auch die
Modellierung von Phinomenen und Zusammenhéngen, allerdings nicht, indem die Giiltigkeit
oder die Bedeutung der erhaltenen Modelle durch mathematisch-theoretische Sétze abgeleitet
wird. Stattdessen ist die Generalisierung der Modelle auf neue, ungesehene Daten das zentrale
Anliegen. Wenn der Zweck eines Modells also beispielsweise die Vorhersage des
Studienerfolgs fiir Studienanfénger ist, dann wird das Modell daran bewertet, wie genau die
Vorhersagen fiir Studienanfdnger ist, deren Daten wéhrend des Lernprozesses des Modells
(auch Training genannt, s. u.) nicht genutzt wurden. Um diese Generalisierung eines Modells
einzuschitzen, also das Modell zu evaluieren, wird der flir die Analyse verfiigbare Datensatz
in einen Trainings- und einen Evaluierungsdatensatz unterteilt (z. B. Géron, 2019). Das Modell
wird dann mithilfe der Trainingsdaten erstellt und anschlieBend mithilfe der Evaluierungsdaten
evaluiert. Die Vorhersagekraft oder Performanz des Modells fiir die Evaluierungsdaten, ggf.
im Vergleich zur Performanz fiir die Trainingsdaten, ist dann das Giitekriterium anhand dessen
das Modell bewertet wird. Die dazu nutzbaren Modelle miissen also auf mathematisch-
theoretischer Ebene nicht so wohldefiniert und héndelbar sein, wie Modelle, die in der
schlieBenden Statistik genutzt werden. Sind sie es doch, ist das allerdings selbstverstindlich
auch kein Hindernis, sie trotzdem im Sinne eines ML-Ansatzes zu nutzen — das Ziel und die
Herangehensweise sind das Entscheidende.

In den letzten Jahren haben sich diese beiden ,,Kulturen®, die Breiman (2001) versucht zu
umreiflen, allerdings deutlich angendhert und es existieren viele iibergreifende Ansétze (z. B.
Murphy, 2022). Trotzdem ist es hilfreich die grundsétzlichen Herangehensweisen zu kennen,
um die Zielsetzungen konkreter Projekte und Ansétze besser einordnen und nachvollziehen zu
konnen. Auch in der Naturwissenschaftsdidaktik finden solche eher algorithmischen
Modellierungen bzw. ML-Methoden zunehmend Anwendung (z. B. Estrellado et al., 2020;
Zhai et al., 2021b; Zhai et al., 2020b).

Loss-Funktionen und Training

Es wurden nun Ansitze, ML zu konzeptualisieren und von ,,klassischer* Statistik abzugrenzen,
dargestellt. Es ist allerdings noch nicht geklirt, wie die Modelle eigentlich aus den
Trainingsdaten ,lernen“. Um dies zu erldutern, miissen zunéchst einige (wenige) Notationen
eingefiihrt werden. Als Modell wird hier eine Funktion (im mathematischen Sinne) verstanden,
die Inputs x auf Outputs f,, (x) abbildet:

Modell(funktion): f,,:X =Y, x - f,(x).

Diese Funktion hingt von Parametern w ab. Fiir das ,,Lernen* dieser Parameter der Funktion
liegt ein Datensatz aus Features und Targets vor:

D = {(xi'yi | i = 1, ,N} .
Die Features x und Targets y kdnnen dabei (ggf. mehrdimensionale) Zahlen, Kategorien o. A.

sein. Das Ziel ist nun, die Parameter w so anzupassen, dass die Ausgaben der Modellfunktion
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moglichst genau bei den jeweiligen Targets liegen, d. h., dass
fa(x) = v
gilt, wobei W die optimale Parameterwahl bezeichnet. Ublicherweise wird zu diesem Zweck

eine sog. Loss-Funktion (auch einfach nur Loss) verwendet. Im Falle einer Regression ist die
Loss-Funktion zum Beispiel typischerweise die Least-Squares-Funktion (z. B. Géron, 2019)

L) = D 0 fu ()

Fiir Klassifikationsmodelle, die anstelle eines kontinuierlichen einen diskreten Output bzw.
diskrete Targets y haben, wird stattdessen zumeist die sog. Cross-Entropy Loss-Funktion
verwendet (Géron, 2019). Im Unsupervised Learning hat typischerweise jeder Ansatz eine
eigene Loss-Funktion. Loss-Funktionen sind haufig heuristisch motiviert, lassen sich aber
hiufig aus wahrscheinlichkeitstheoretischen Uberlegungen herleiten (siehe ein Beispiel in
Anhang A).

Das Ziel der Entwicklung eines ML-Modells lautet dann, die jeweilige Loss-Funktionen zu
minimieren. Loss-Funktionen sind also stets so konstruiert, dass ihre Minimierung dem Ziel
der Modellbildung entspricht. Den gesamten Prozess nennt man dann auch 7raining. Bei der
oben exemplarisch dargestellten Least-Squares-Funktion wird also die Summe der
quadratischen Abstinde der Datenpunkte zur Ausgleichsgerade minimiert, sodass die
Ausgleichsgerade ,,moglichst nah* an allen Datenpunkten liegt, was dem Ziel der Regression
genau entspricht. Diese Optimierungen werden typischerweise mit dem sog. Gradient Descent
Algorithmus vorgenommen (z. B. Géron, 2019). Dabei werden die Parameter iterativ gemif
der Vorschrift

aL(w)
ow

Wit1 < W — &

aktualisiert, sodass £(w) minimiert wird’. Der frei wihlbare Parameter a wird dabei auch die
Learning Rate genannt. In modernen Anwendungen werden aber zumeist Erweiterungen dieses
Basisalgorithmus genutzt, wie beispielsweise der sog. Adam-Optimizer (Kingma & Ba, 2014).
Diese Erweiterungen reagieren weniger sensibel auf suboptimale Wahlen der Learning Rate
und sind zudem robuster beziiglich potenzieller lokaler Minima der Loss-Funktionen'®. Bei
Methoden des Unsupervised Learning und probabilistischen Ansétzen sind auch noch andere
Optimierungsalgorithmen in Fillen gebrduchlich, in denen Gradient Descent-Varianten nicht
angewendet werden konnen, wie beispielsweise die Expectation-Maximization- oder
Variational-Inference-Methoden. Um diese darzustellen sind umfangreichere Beschreibungen
auf Basis der Wahrscheinlichkeitstheorie notwendig, die hier aus Platzgriinden nicht

° Bei ,einfachen* Loss-Funktionen wie dem Least-Squares-Loss im Falle einer linearen Regression lisst sich
das Optimum teilweise sogar noch analytisch bestimmen, indem d£(w)/0w = 0 nach w aufgelost wird. Das
ist jedoch fiir komplexere Loss- bzw. Modell-Funktionen und grofe Datensétze nicht mehr moglich.

10 Gerade im Deep Learning Bereich hat sich aber unter anderem Aufgrund der hohen Dimensionalitit des
Parameterraums gezeigt, dass lokale Minima ein geringeres Problem sind als intuitiv angenommen (z. B.
Choromanska et al., 2015). Das liegt unter anderem daran, dass in hochdimensionalen Parameterrdumen
Nullstellen der Loss-Gradienten in den meisten Fillen lediglich Sattelpunkte sind.
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vorgenommen werden konnen. Es sei daher auf einschldgige Literatur verwiesen (z. B.
Murphy, 2022).

Batching und Learning Curves

Mit dem Modell f,, (x), einem geeigneten Loss £L(w) und einem Optimierungsalgorithmus wie
Gradient Descent sind somit alle Bausteine fiir das Training eines ML-Modells vorhanden. In
modernen Anwendungen gibt es allerdings noch eine weitere Hiirde: Die Menge an
Trainingsdaten ist meist zu grof3, als dass alle Datenpunkte in jeder einzelnen Iteration der
Optimierung verwendet werden konnen. In diesen Féllen geht man dazu tliber, den Datensatz
randomisiert in kleinere Segmente, sog. Batches, zu unterteilen und diese dann nacheinander
in den Iterationen zu nutzen (z. B. Géron, 2019). Im Falle des Gradient Descent Algorithmus
nennt man dieses Vorgehen aufgrund der Zufilligkeit der Zuordnung zu den Batches auch
Stochastic Grandient Descent. Die Optimierung in Batches hat sich zum de facto Standard
entwickelt, weshalb bei den meisten anderen Optimierungsalgorithmen der Zusatz ,,Stochastic*
gar nicht genutzt wird. Das batchweise Training kann zwar etwas instabiler sein, ist aber
iiblicherweise deutlich schneller und ab einem gewissen Verhéltnis zwischen verfiigbarer
Rechenleistung und Trainingsdaten unvermeidlich.

Sind einmal alle Daten des Datensatzes (moglicherweise batchweise) durchlaufen worden,
so spricht man auch von einer Epoch absolviertem Training. Je nach Modell wird iiblicherweise
nur fiir wenige Epochs oder aber auch mehrere hundert Epochs trainiert. Um zu erkennen, ob
die Optimierung konvergiert, werden iiblicherweise wéhrend oder nach dem Training sog.
Learning Curves erstellt (Géron, 2019). Dabei wird der jeweilige (Batch-)Loss gegen die
absolvierten Trainingsschritte oder Epochs aufgetragen. Um bereits wihrend des Trainings zu
iiberwachen, wie gut das Modell auf ungesehene Daten generalisierbar ist, kann hier auch der
Loss fiir die Evaluierungsdaten mit aufgetragen werden, allerdings ohne fiir diese Loss-
Berechnung auch einen Optimierungsschritt durchzufiihren. Eine beispielhafte Learning Curve
ist in Abbildung 2.5 dargestellt. Ergdnzend zum Loss kann man vor allem bei
Klassifikationsmodellen auch leichter interpretierbare Metriken wie die prozentuale
Ubereinstimmung (4ccuracy) oder Cohens k erginzend auftragen.

—— Trainingsdaten
Evaluierungsdaten

Loss

———

0 50 100
Epoch

Abbildung 2.5 Beispielhafte prototypische Learning Curves. Hier sind absichtlich keine Werte fiir den Loss auf
der y-Achse angegeben, da diese hiufig nicht absolut interpretierbar sind.
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Es st hilfreich, wéhrend des Trainings die Learning Curves beziiglich der
Evaluierungsdaten zu betrachten, um bereits im Prozess zu iiberwachen, ob das Modell auf
ungesehene Daten generalisierbar ist. Das ist allerdings nicht unproblematisch. Es gibt viele
Modelle, in denen einige Parameter bereits vor dem eigentlichen Training gewdhlt werden
miissen (z. B. Regularisierungsterme, s. u.) und auch das Training selbst ist von Parametern
wie der Learning Rate oder Grofle der Batches abhdngig. Solche Parameter werden
Hyperparameter genannt (Géron, 2019). Nutzt man die Evaluierungsdaten bereits wéhrend des
Trainings, so kann man sich nicht (ganz) sicher sein, ob die Performanz beziiglich der
Evaluierungsdaten fiir eine andere Wahl von Hyperparametern nicht anders (geringer) sein
konnte. Das heit, man kann unbeabsichtigt die Hyperparameter manuell so optimieren, dass
eine hohere Performanz beziiglich des Evaluierungsdatensatzes erreicht wird, die fiir
,Htatsdchlich ungesehene® Daten nicht vollstédndig reprasentativ ist. Es gibt im Wesentlichen
zwei Moglichkeiten, um dem zu begegnen. Der erste Ansatz wére, noch einen dritten Datensatz
aus den Gesamtdaten abzuspalten, mit dessen Hilfe als vollstindig unangetasteter Test-
Datensatz am Ende des Trainings das Modell erneut evaluiert wird. Sind nicht geniigend Daten
vorhanden, um eine solche weitere Unterteilung durchfiihren zu konnen, bietet sich das
Verfahren der sog. Cross-Validierung (CV) an (z. B. Géron, 2019). Dazu wird der Datensatz
in k bis auf Rundung gleich grofle Segmente unterteilt. Nun wird das Modell k-mal trainiert,
wobei jeweils eines dieser Segmente zur Evaluierung zuriickgehalten wird. Die Evaluierung
erfolgt somit einmal auf Basis aller verfiigbarer Daten und ist somit deutlich robuster
gegeniiber Schwankungen und es ist unwahrscheinlicher hier durch Hyperparameter-
optimierung tatsdchlich nicht-représentative Performanzzuwichse zu erzeugen (siehe auch
Kapitel 6). Selbstverstdndlich kann man auch CV nutzen und trotzdem zusitzlich noch mithilfe
eines vollstdndig separatem Test-Datensatz arbeiten.

Overfitting

Nachdem der Grundansatz und die Grundmethodik von ML-basierten Analysen vorgestellt
wurden, soll nun noch ein zentrales Phdnomen beschrieben werden, welches auch fiir das hier
vorgestellt Projekt relevant ist. Komplexe ML-Modelle, die iiber eine grofe Anzahl
trainierbarer Parameter verfiigen, sind hdufig in der Lage, sdmtliche Spezifika eines
Trainingsdatensatzes zu ,,erlernen®. Dieses Phdnomen ist als Overfitting (z. B. Géron, 2019)
bekannt und zeigt sich in einem deutlichen Unterschied zwischen dem Loss beziiglich der
Trainings- und Evaluierungsdaten. Bei einem Regressionsmodell, d. h., wenn die Target-
Variable kontinuierlich ist, ldsst sich dies leicht mithilfe eines entsprechenden Kurven-Fits
verdeutlichen (Abbildung 2.6). Auch bei Klassifikationsproblemen ldsst sich Overfitting
zumindest im Falle von zweidimensionalen Features noch gut visualisieren (Abbildung 2.7,
links). Man beachte, dass es sich bei allen Abbildungen in diesem Abschnitt um reale
Modellfits handelt. Es gibt einige sog. Regularisierungsmethoden (z. B. Géron, 2019; Murphy,
2022), die man nutzen kann, um Overfitting zu verringern, von denen eine in Abbildung 2.7
(rechts) angewendet wurde.
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® Trainingsdaten
@ Evaluierungsdaten
—— Modellvorhersagen

Target

Feature

Abbildung 2.6 Darstellstellung von Overfitting bei einem Regressionsproblem. Man erkennt, wie die
Modellfunktion (schwarze Linie) alle Trainingsdatenpunkte exakt trifft, aber jeden Evaluierungsdatenpunkt
verfehlt. Die den Daten zugrundeliegende Funktion ist eine quadratische Funktion, die in hellgrau dargestellt ist.
Die Daten folgen der Vorschrift Y = X? + €, wobei € normalverteilt ist.

Overfitting Regularisierung

Bl Trainingsdaten

W Evaluierungsdaten
X Label "Wahr"
@® Label "Falsch"

Feature 2
Feature 2

Feature 1 Feature 1

Abbildung 2.7 Darstellung von Overfitting und Regularisierung bei einem Klassifikationsproblem. Man erkennt,
wie die sog. Decision Boundary, d. h. die Grenzlinie, ab der das Modell zwischen den Zuordnungen wechselt,
sich beim linken Modell formlich um einzelne Trainingsdaten ,herumlegt. Die Einfirbung zeigt die
Wahrscheinlichkeit, dass das Modell die Zuordnung ,,wahr* vornimmt. Je heller ein Bereich hinterlegt ist, umso
wahrscheinlicher ist es, dass das Modell einen dort liegenden Datenpunkt als ,,wahr* klassifiziert. Die
Datenpunkte wurden gleichverteilt generiert und die tatsdchliche Zuordnung wurde geméB: x; +x, >0
vorgenommen. Allerdings wurde anschlieBend normalverteiltes Rauschen zu x; und x, addiert, um einen realen
Datensatz zu simulieren und das Overfitting deutlicher hervorzuheben. Rechts wurde die sog. L,-Regularisierung
(auch ,,weight decay®, siehe z. B. Géron, 2019) angewendet.

Wenn die Feature- oder Target-Variablen allerdings hoherdimensional sind, kann die
Vorhersage nicht mehr so leicht visualisiert werden. Man greift stattdessen hdufig auf die
Learning Curves zuriick, um einzuschétzen, ob Overfitting vorliegt (Géron, 2019). Ein sicheres
Indiz fiir das Vorliegen von Overfitting ist, dass der Evaluierungsloss ab einem bestimmten
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Trainingsschritt anfangt anzuwachsen, wie in Abbildung 2.8 links zu sehen. Das heif3t, das
Modell erlernt aktiv Spezifika des Trainingsdatensatzes und generalisiert immer schlechter auf
die ungesehenen Evaluierungsdaten. In Abbildung 2.8 rechts dargestellt ist der Fall, indem
zwar auch ein deutlicher Unterschied zwischen dem Loss beziiglich Evaluierungs- und
Trainingsdaten sichtbar ist, aber nicht unbedingt Overfitting vorliegt. Hier ist auch moglich,
dass der Trainingsdatensatz schlicht nicht die gesamte Varianz abbildet, die in der
Grundgesamtheit vorhanden ist.

—— Trainingsdaten

Evaluierungsdaten \

Wi %]
v 1]
8 g
T T T T T T T T T T
0 100 200 300 400 0 100 200 300 400
Epoch Epoch

Abbildung 2.8 Overfitting sichtbar in Learning Curves. Dargestellt sind die zu den Modellen, deren Decision
Boundaries in Abbildung 2.7 dargestellt sind, gehdrigen Learning Curves.

Neben dem Overfitting existiert auch das gegenteilige Phidnomen des Underfitting.
Underfitting liegt vor, wenn das Modell an sich schon zur Beschreibung des Datensatzes nicht
ausreichend variieren kann. Dieses Problem wiirde beispielsweise vorliegen, wenn man an die
in Abbildung 2.6 dargestellten Daten eine lineare Funktion anpassen wiirde. Fiir die
Sprachmodelle (sieche Abschnitt 2.6), die in dem hier vorgestellten Projekt die grofite Rolle
spielen, ist Underfitting bei der verfligbaren Anzahl an Modellparametern (mehrere 10 Mio.
bis mehrere Mrd.) unwahrscheinlich. Bei den anderen hier verwendeten, einfacheren Modellen,
wie linearen und logistischen Regressionsmodellen, konnte Underfitting zwar eine Rolle
spielen, die Evaluierungen zeigten hier jedoch keine Problematik. Insgesamt wird daher hier
auf ausfiihrlichere Visualisierungen u. A. zum Underfitting verzichtet.

2.5. Machine-Learning-Rahmenmodelle fiir naturwissenschaftsdi-
daktische Forschung

Es wurden nun einige grundlegende Begrifflichkeiten, Workflows und Ansdtze aus dem
Bereich des ML vorgestellt. Diese dienen einerseits zur Vorbereitung der explorativen, nicht-
hierarchischen Analysen der inneren Struktur des FDW im zweiten Zielpaket dieses Projekts
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(Kapitel 5). Andererseits sind sie aber auch die Grundlage fiir die Automatisierung der
Auswertung des genutzten Testinstruments auf Basis der vorherigen Ergebnisse im Rahmen
des dritten Zielpakets (Kapitel 6). In diesem Abschnitt werden nun Ansétze erldutert, die zur
Strukturierung insbesondere der explorativen Analyse der inneren Struktur des FDW
herangezogen werden. Erst im néchsten Abschnitt (2.6) werden dann einige weitere ML- und
NLP-Methoden vertieft thematisiert.

ML-Methoden und insbesondere Methoden des Unsupervised Learning in sozial- und
bildungswissenschaftlichen Forschungsvorhaben anzuwenden, bringt Herausforderungen
sowohl in der technischen Umsetzung als auch bei der Interpretation und Deutung der
Ergebnisse mit sich (z. B. Nelson, 2020; Zhai et al., 2020b). Zhai et al. (2020b) arbeiten im
Rahmen ihres systematischen Reviews bestehender ML-Anwendungen im Kontext des
Assessments im naturwissenschaftlichen Bereich heraus, dass ein Grofiteil bisheriger ML-
Anwendungen primir zur Unterstlitzung und Entlastung menschlicher Rater bei basalen
Aufgaben dient. Zhai et al. (2020a) entwickelten parallel ein Framework, welches die
Anwendung von ML auf einem Kontinuum zwischen reinem ,,Ersetzen® (Substitution) bis hin
zu echter , Transformation® (Redefinition) von Assessmentprozessen systematisiert. Zhai
(2021) hebt dariiber hinaus die Potenziale der Anwendung von ML-Methoden fiir
Assessmentzwecke noch einmal explizit hervor.

Unsupervised-Learning-Methoden sind gerade fiir Erkenntnisgewinnung und echte
Transformationen von Assessmentprozessen interessant, da sie (anders als Supervised-
Learning-Methoden) dazu in der Lage sind, neue bzw. bisher unerkannte Strukturen in den
untersuchten Konstrukten sichtbar zu machen (Nelson, 2020; Zhai et al., 2020b). Besonders
bei Unsupervised-Learning-Methoden gestalten sich Interpretation und Deutung der
Analyseergebnisse aber hdufig als komplex. Sherin (2013) schlug daher schon friih vor, die
Interpretationskraft und Sachkenntnis menschlicher Experten direkt in explorative
Analyseprozesse mit einzubinden. Ein prominenter Ansatz, um diese Verschrinkung von
menschlicher Expertise und computergestiitzter Modellierung zu systematisieren und
organisieren, ist die sog. Computational Grounded Theory (CGT) nach Nelson (2020). Die
CGT wird im vorgestellten Projekt intensiv zur Konzeption der Untersuchungen zur nicht-
hierarchischen Struktur des FDW, d. h. im Rahmen des zweiten Zielpakets, genutzt (Kapitel
5). Sie dient insbesondere zur Strukturierung explorativer Analysen unter der Nutzung von
Unsupervised-Learning-Methoden und hat das Ziel, die Interpretation der Ergebnisse zu
erleichtern und ihre Verlésslichkeit zu erh6hen. Nelson (2020) schligt dafiir die folgenden drei
Schritte vor:

1. Pattern Detection: Explorative Methoden werden zur Identifikation von neuen Mustern
und Strukturen in den Daten genutzt. Im Falle von Daten zu psychometrischen
Testinstrumenten konnen das Clusteranalysen der Scores sein. Im Falle von Interview-
oder Freitextdaten konnen explorative Textanalysemethoden (siche Abschnitt 2.6)
angewendet werden.

2. Pattern Refinement: Die identifizierten Muster werden durch Tiefenanalysen
ausgeschérft. Dabei flieBen menschliches Expertenwissen und Interpretationskraft in die
Analyse ein. Im Falle von psychometrischen Testinstrumenten konnen dabei
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beispielsweise Informationen iiber die Subskalen des Testinstruments genutzt werden.
Im Falle von Sprachdaten kénnen Zusammenhinge zwischen Sprachnutzung und
Kovariaten untersucht werden oder besonders charakteristische Texte einer erneuten
manuellen Untersuchung unterzogen werden.

3. Pattern Confirmation: Um ein Argument fiir die Stabilitidt und in diesem Sinne auch
Validitit der identifizierten Muster und Strukturen zu bieten, wird die Vorhersagekraft
von ML-Modellen bei der Klassifizierung der zuvor ermittelten Kategorien evaluiert. Im
Falle von psychometrischen Testinstrumenten kénnen typische Klassifikationsmodelle
genutzt werden, um Proband:innen anhand ihrer Scores den Kategorien zuzuordnen. Im
Falle von Sprachdaten konnen fiir denselben Zweck NLP-Modelle unterschiedlicher
Komplexitit (siche Abschnitt 2.6) genutzt werden. Die Pattern Confirmation dient zur
Bestitigung der in der Pattern Detection gefundenen Muster in folgendem Sinne: Eine
(ausreichend) hohe Performanz von ML-Modellen bei Verortung von Datensitzen im
Rahmen der gefundenen Muster (z. B. Zuordnung zu Clustern) dient als Nachweis der
Existenz latenter Strukturen in den Daten, die mit diesen Mustern korrespondieren. ML-
Modelle konnen hierbei (anders als viele ,klassische Verfahren wie lineare
Regressionsmodelle oder Strukturgleichungsmodelle, sieche Moosbrugger & Kelava,
2020) auch nicht-lineare Zusammenhinge modellieren. Der Nachteil ist, dass diese
latenten Strukturen dann nicht unbedingt greifbar sind. Trotzdem liefert eine erfolgreiche
Pattern Confirmation somit ein Argument fiir die Robustheit, (bei der Nutzung von
Evaluierungsdaten auch) die Generalisierbarkeit und die Validitdt der beschriebenen
Muster. Welche Validititsaspekte (z. B. Messick, 1995; Schaper, 2014) dabei adressiert
werden, héngt von der Beziehung zwischen Feature- und Target-Daten der Pattern-
Confirmation-Modelle ab (siehe auch Ende Abschnitt 6.7.3).

Auch, wenn die bei Nelson (2020) beschriebene Form der CGT stark auf die Analyse von
Textdaten ausgerichtet ist, ldsst sich das Verfahren auch auf andere Datentypen bzw. mehrere
Datenquellen iibertragen. In diesem Fall werden dann insbesondere die Pattern Detection und
das Pattern Refinement als ein iterativer Prozess verstanden, in dem menschliches
Expertenwissen an unterschiedlichen Stellen im Analyseprozess genutzt werden kann. Die
CGT bietet somit eine Moglichkeit, Unsupervised-Learning-Ansdtze fiir eine echte
Transformation von Assessmentprozessen im Sinne von Zhai et al. (2020a) zu nutzen, indem
die ermittelten Kategorien als Zielkonstrukte bzw. Targets eines Assessment-Systems genutzt
werden. So kann sowohl neu ermitteltes als auch bestehendes Wissen iiber die innere Struktur
der betrachteten Konstrukte direkt im Assessmentprozess genutzt werden. Die CGT wurde in
der naturwissenschaftsdidaktischen Forschung bereits zur Untersuchung von Erklarprozessen
(Rosenberg & Krist, 2021) und Argumentationsmustern von Schiilerinnen und Schiilern
(Tschisgale et al., 2023) erfolgreich eingesetzt.

Die CGT bietet zudem einen Rahmen, den Daten-Mix, der fiir die Analyse der inneren
Struktur des FDW in diesem Projekt vorliegt, gesamtheitlich in den Blick zu nehmen. Dabei
werden insbesondere die zuvor durch trainierte Kodierer manuell erstellten Scores fiir die
Pattern Detection und die authentischen Sprachproduktionen der Proband:innen in den offenen
Aufgaben des Testinstruments im Pattern Refinement genutzt. Das genaue Vorgehen und die
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genaue Anwendung der CGT bei den Analysen zu diesem zweiten Zielpaket des Projekts
werden in den Kapiteln 5 und 6 genauer vorgestellt.

Dartiber hinaus haben Kubsch et al. (2022) das Distributing Epistemic Functions and Tasks
(DEFT)-Framework vorgeschlagen!!, mit dem sie die Anwendung von ML- und Data-Science-
Methoden nicht nur fiir Assessmentzwecke, sondern flir sozial- und bildungswissenschaftliche
Forschungsvorhaben im Allgemeinen systematisieren. Sie schlagen dafiir eine
zweidimensionale Strukturierung vor, wobei auf der ersten Achse zwischen Supervised
Settings (Targets bzw. Label sind im Voraus bekannt) und Unsupervised bzw. Grounded
Settings (Targets bzw. Label sind nicht vordefiniert) unterschieden wird. Damit folgen sie der
grundlegenden Unterscheidung zwischen Supervised und Unsupervised Learning, schlieen
aber ,,Mischformen* nicht aus. In der hier vorliegenden Untersuchung der inneren Struktur des
FDW sind beispielsweise Scores aus der Bepunktung des genutzten Testinstruments als
,Labels® vorhanden, allerdings (noch) nicht die tatsdchlichen Zielkonstrukte zur inneren
Struktur des FDW. Es kann also im Sinne des DEFT-Frameworks eher von einem Grounded
Setting gesprochen werden. Auf der zweiten Achse des Frameworks unterscheiden Kubsch et
al. (2022) zwischen sog. High Inference und Low Inference. In Low-Inference-Settings werden
einfache Konstrukte bzw. unmittelbar zugéngliche Kategorien, wie die reine Bepunktung eines
Testinstruments, in den Blick genommen, wihrend in High-Inference-Settings komplexere
Konstrukte wie Kompetenzprofile untersucht werden.

In diesem Abschnitt wurden die CGT und das DEFT-Framework zur Strukturierung von
ML-basierten Analysen in (u. A.) naturwissenschaftsdidaktischer Forschung dargestellt. Dabei
wurde insbesondere die Anwendung der CGT fiir die Analysen im Rahmen des zweiten und
dritten Zielpakets des vorliegenden Projekts bereits angedeutet. Zur Analyse des vorliegenden
Daten-Mix aus Scores und Sprachproduktionen in den offenen Aufgaben des verwendeten
Testinstruments werden dabei explorative Sprachanalysemethoden, sog. Topic Models (Blei,
2012), genutzt. Zur Automatisierung der Auswertung des Testinstruments im Rahmen des
dritten Zielpakets werden Deep-Learning-Sprachmodelle (z. B. Devlin et al., 2019) verwendet.
Aufbauend auf den ML-Grundlagen aus Abschnitt 2.4 werden daher im folgenden Abschnitt
weitere Begriffe und Methoden aus dem Bereich des Deep Learning und der Sprachanalyse
vorgestellt. Insbesondere die Deep-Learning-basierte Sprachanalyse ist eine zentrale
Grundlage fiir das vorgestellte Projekt und erméglicht die angestrebte Automatisierung des
FDW-Assessments.

2.6. Machine-Learning-basierte Sprachanalyse

In Abschnitt 2.4 wurden einige ML-Grundbegriffe eingefiihrt und in Abschnitt 2.5 wurde
insbesondere die CGT zur Strukturierung explorativer Analysen im (u. A.)
bildungswissenschaftlichen Kontext vorgestellt. Nun werden aufbauend auf Abschnitt 2.4
weitere ML-(basierte) Methoden beschrieben, die zur Analyse der authentischen
Sprachprodukte (Antworten auf die offenen Testaufgaben) von Proband:innen zu den

' Fiir eine verwandte aber anders ausgerichtete Systematisierung sei hier auch auf die jiingst erschienenen
Arbeiten von Nehring et al. (2025) verwiesen.
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Aufgaben des fiir dieses Projekt verwendeten FDW-Testinstruments genutzt werden (Kapitel
5 & 6).

Encodings

Natural Language Processing (NLP) kann als das Teilgebiet der Data Science aufgefasst
werden, das sich mit der (computerbasierten bzw. automatisierten) Verarbeitung menschlicher
Sprache befasst (Jurafsky & Martin, 2024). Frithe NLP-Methoden basierten teilweise auf
expliziten Regel-Systemen (,,wenn-dann‘‘) oder Word-Count Tabellen (z. B. TF-IDF, Mladeni¢
et al., 2016). Moderne Methoden umfassen unter anderem probabilistische Ansitze (z. B. Blei,
2012; Roberts et al., 2019) und Deep-Learning-basierte Sprachmodelle, die Language Models
(LM) oder Large Language Models (LLM) genannt werden (z. B. Devlin et al., 2019; Ubersicht
bei Naveed et al., 2024). Der Grundansatz von NLP-Methoden besteht darin, die in den
einzelnen Dokumenten des Datensatzes auftretenden Worte systematisiert zu erfassen und in
eine mathematische Représentation zu iiberfiihren (Jurafsky & Martin, 2024). Die Gesamtheit
der in den Dokumenten des Datensatzes auftauchenden Worte wird auch Vokabular genannt.
Jedem Wort des Vokabulars wird typischerweise zunéchst eine natiirliche Zahl als Index
zugeordnet. Da menschlicher Sprache aber keine hierarchische Dimension innewohnt, nach der
man die Worte sinnvoll ordnen konnte, muss diese Indexdarstellung in eine Darstellung
iibertragen werden, die keine Reihenfolge der Worte impliziert. Ublicherweise werden dazu in
erster Instanz sog. One-Hot-Encodings verwendet, d. h. die Worte werden als Vektoren
dargestellt, die nur an ihrem jeweiligen Index ,,1° und sonst iiberall ,,0° sind. Diese Vektoren
miissen allerdings so viele Eintrdge haben, wie Worte im Vokabular sind, und sind dadurch
iiblicherweise hochdimensional (mehrere tausend Dimensionen). Die Uberfiihrung von
Dokumenten in One-Hot-Encodings ist in Abbildung 2.9 schematisch dargestellt. Dabei
werden zwei ,,Dokumente® (einzelne Sitze) verarbeitet. Das Vokabular enthélt alle Worte im
Korpus der Dokumente und wird genutzt, um die Dokumente in die Indexdarstellung, bei der
jedes Wort durch den entsprechenden Index abgebildet wird, zu iiberfithren. Die One-Hot-
Encodings konnen dann genutzt werden, um weitere Représentationen des Textes abzuleiten.

Das Verarbeiten solcher One-Hot-Encodings ist umstdndlich und ineffizient, weshalb
unterschiedliche Methoden genutzt werden, um diese Darstellungen weiter zu reduzieren bzw.
zu verdichten (z. B. Géron, 2019 Géron, 2019; Jurafsky & Martin, 2024). Ein Standard-Ansatz
ist der sog. Bag-of-Words-Ansatz (BoW-Ansatz), indem die Reihenfolge der Worte in den
Dokumenten ignoriert wird und die Dokumente durch die Summierung der Encodings ihrer
jeweiligen Worte reprisentiert werden (sieche Abbildung 2.9). Um die Dimensionalitét dieser
Vektoren weiter zu verringern, werden zudem typischerweise einige Schritte zur Reduktion
des Vokabulars genutzt, darunter

o Lowercasing: Alle Worte werden klein geschrieben.
e Puncutation-Removal: Satzzeichen u. A. werden vernachlissigt.

o Stopword-Removal: Worte, die in der vorliegenden Sprache der Dokumente sehr hiufig
auftauchen, aber wenig inhaltliche Bedeutung tragen, z. B. ,,und®, ,der®, ,,die“, etc.,
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werden vernachléssigt. Fiir solche Stopwords existieren in Sprachverarbeitungssoftware
(z. B. Bird et al., 2009'?) typischerweise vordefinierte Listen.

o JWord-Frequency: Worte, die in einem sehr grolen oder sehr geringen Anteil an
Dokumenten auftauchen, werden vernachlissigt. Ahnlich wie beim Stopword-Removal
tragen diese Worte oft nur geringe inhaltliche Bedeutung fiir die Analyse, entweder, weil
sie die Dokumente nicht voneinander unterscheiden, oder, weil sie so selten auftreten,
dass die Bedeutung ihrer An- oder Abwesenheit in Dokumenten nicht (ausreichend)
systematisch beschrieben werden kann.

o Tokenization: Die Texte werden in sog. Token unterteilt. Dabei ist ein Token ein Wort
oder Teil eines Wortes. Moderne Sprachverarbeitungsmodelle nutzen nicht-triviale
Methoden, um niitzliche Unterteilungen in Token vorzunehmen (z. B. Mistral Al o. D.).
Im Schnitt entspricht ein Token ca. % eines Wortes.

Dokumente

i. ,lchbin ein Lehrer”
ii. ,lch bin ein Fachdidaktiker.”

Vokabular
{

»Ich®: 1, ,bin%: 2, ,ein%: 3,
plehrer«: 4,
»Fachdidaktiker«: 5

3

Indexdarstellung

i [1, 2, 3, 4]
i. [1, 2, 3, 5]

One-Hot-Encoding

[ [1| 91 EJJ 0, e]l
[0, 1, 0, 0, 0],
[e, o, 1, 0, 0],
[, 8, 0, 1, 0] ]
[ [1, 0, ©, 0, 0],
[e, 1, 0, 0, 0],
[e, o, 1, o, 0],
Bag-of-Words-Encoding [e, 8, 0, 0, 1] ]
i [1, 1, 1, 1, o]
i. [1, 1, 1, 0, 1]
Embeddings-Encoding
i [[e.2 o.3],
[-0.1, @©.2],
[-0.5, -8.4],
[ 0.3, -0.6] ]
[ [e.2, 8.3],
[-0.1, ©.2],
[-0.5, -8.4],
[ 0.3, -0.71 1

Abbildung 2.9 Darstellung der Uberfiihrung von Dokumenten in unterschiedliche Encodings. Die Berechnung
von Embeddings-Encodings (unten rechts), wird am Ende des Abschnitts 2.7 beschrieben.

12" Auch, wenn diese Quelle schon etwas ilter ist, wird das dort eingefiihrte Python-Paket ,,Natural Language
Toolkit (NLTK)“ (https://www.nltk.org/, zugegriffen 17. Januar 2025) nach wie vor aktiv erweitert und
genutzt.
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Topic Models

Mithilfe der BoW-Darstellung von Texten lassen sich bereits eine Reihe von Analysen
durchfiihren. Einerseits konnen einfache Klassifikationsmodelle wie logistische
Regressionsmodelle auf Basis dieser Darstellung zur Vorhersage bestimmter Labels zu den
Dokumenten trainiert werden (z. B. Géron, 2019). Andererseits konnen Unsupervised-
Learning-Methoden zur Untersuchung von Mustern im Sprachgebrauch der Dokumente
angewendet werden. Fiir solche explorativen Untersuchungen werden hiufig sog. Topic
Models verwendet (Chen & Liu, 2017). Dabei handelt es sich um probabilistische BoW-
Modelle, die die Wahrscheinlichkeit des Auftretens der Worter in den Dokumenten iiber den
Zwischenschritt der sog. Topics modellieren. Das urspriingliche Topic Model (Blei, 2012),
oder auch Latent Dirichlet Allocation-Modell (LDA, Blei et al., 2003), nimmt dabei folgenden
Prozess fiir die Erzeugung der Dokumente an:

1. Jedes Dokument beschiiftigt sich anteilig mit jedem Topic'>.

2. Jedes Topic besitzt eine Wahrscheinlichkeit fiir jedes Wort des Vokabulars. Der
englische Begriff Topic wird hier als ein feststehender Begriff des Topic Modelling
genutzt, um Verwechslungen zu vermeiden. Trotzdem lassen sich die Topics als ,,latente
Themen®, um die es in den Dokumenten geht, verstehen.

3. Jeder ,,Wort-Platz* in einem Dokument wird mit der Dokument-Topic-Verteilung (,,1.%)
einem Topic zugeordnet.

4. Fiir jeden dieser ,,Wort-Platze™ wird gemal der jeweiligen Topic-Wort-Verteilung (,,2.)
ein Wort generiert.

Dieser Prozess lasst sich mathematisch durch eine Wahrscheinlichkeitsverteilung modellieren
(Blet et al., 2003). Es wird dann ein Schéatzalgorithmus konstruiert, der ausgehend von den
tatsdachlichen Dokumenten bzw. deren Worten im Datensatz die wahrscheinlichsten
Dokument-Topic- und Topic-Wort-Verteilungen berechnet. Die Details dieses Vorgehens
lassen sich nicht ohne umfangreiche Vorarbeiten im Bereich der Wahrscheinlichkeitstheorie
bzw. des probabilistischen MLs darstellen, weshalb hier auf entsprechende Literatur verwiesen
wird (Blei, 2012; Blei et al., 2003; Murphy, 2022). Das Ergebnis der Analyse sind dann die
folgenden Werte'*:

e 0, = Der Anteil des Dokuments d der dem Topic k gewidmet ist. Ist 84 groB, ist das
Dokument d also stark auf das Topic k fokussiert.

* ¢, = Die Wahrscheinlichkeit, dass das Wort v in Topic k auftritt. Ist ¢, groB, spielt
das Wort v also eine zentrale Rolle in Topic k.

13 Dabei wird angenommen, dass diese Dokument-Topic-Verteilung eine Dirichlet-Verteilung (z. B. Murphy,
2022) ist. Dasselbe gilt fiir die Topic-Wort-Verteilung. Daher stammt auch die Bezeichnung Latent Dirichlet
Allocation.

4 Essindd=1..M,k=1..Kundv =1..V,wobei M die Anzahl an Dokumenten, K die Anzahl an Topics
und V die GroBe des Vokabulars ist.

28



2. Theoretische und Methodische Grundlagen

Die Topic-Wort-Anteile ¢, dienen dann zur inhaltlichen Beschreibung der bis dahin
inhaltlich nicht ndher charakterisierten Topics. Dabei werden meist die wahrscheinlichsten
Worte der Topics genutzt, um die Topics zu interpretieren.

Um Wissen iiber Kovariaten im Topic Model zu beriicksichtigen, gibt es einige
Erweiterungen des LDA-Ansatzes (Blei & Lafferty, 2005; Hennig et al., 2012; Roberts et al.,
2016; Roberts et al., 2019). Solche erweiterten Modelle kdnnen insbesondere zusitzliche
Informationen tliber die Dokumente, wie z. B. Autoren oder Entstehungszeit beriicksichtigen.
Dafiir werden im angenommenen probabilistischen Prozess, der die Dokumente erzeugt (s. o.),
entsprechende Zwischenschritte eingefiigt. Die Schitzalgorithmen werden dadurch allerdings
ebenfalls komplexer. In den Analysen zum zweiten Zielpaket dieses Projekts werden zunéchst
die Bearbeitungen des FDW-Testinstruments iiber eine Cluster-Analyse der Scores einer von
vier Gruppen zugeordnet. In der explorativen Analyse der Sprachproduktionen der
Proband:innen zur Ausschérfung der Beschreibung dieser Cluster (hin zu Kompetenzprofilen)
werden dann die Cluster der jeweiligen Proband:innen als Kovariaten aufgefasst. Ein
Dokument (im NLP-Sinne) sind dann alle Antworten, die eine Person in einer Bearbeitung des
Testinstruments niedergeschrieben hat, zusammengenommen. Die Kovariate ist das Cluster,
dem diese Person zugeordnet ist. In dieser Konfiguration wird im Rahmen der Analysen zum
zweiten Zielpaket dann ein sog. Structural Topic Model (STM, Roberts et al., 2019) erstellt,
bei dem die Clusterzuordnung einen Einfluss auf die Dokument-Topic-Verteilung haben kann.
Zusitzlich zu den Dokument-Topic-Anteilen und den Topic-Wort-Verteilungen erhélt man bei
einem STM als zusitzliches Ergebnis Schitzwerte iiber die Stirke der Zusammenhinge
zwischen den Topics und den Score-Clustern. Das genaue Vorgehen und die Ergebnisse zu
dieser Untersuchung sind in Kapitel 5 dargestellt.

2.7. Deep-Learning-basierte Sprachanalyse

Neben den beschriebenen ,klassischen® Machine-Learning basierten Methoden zur
Sprachanalyse haben sich (auch fiir die naturwissenschaftsdidaktische Forschung und
Entwicklung) in den letzten Jahren vor allem Deep-Learning basierte Sprachmodelle als
vielversprechender Ansatz erwiesen (z. B. Camus & Filighera, 2020; Zhai et al., 2020b; sowie
Wulff et al., 2023 und darauf aufbauend Mientus et al., 2023). Im Folgenden werden daher
einige Begriffe und Konzepte des Deep Learning mit besonderem Fokus auf
Sprachmodellierung eingefiihrt. Die angesprochenen Modelle und Methoden stellen vor allem
die Basis des automatisierten Assessment-Systems (Kapitel 6) dar.

Deep Learning

Unter Deep Learning wird letztlich ,,normales Machine Learning mit einer bestimmten, sehr
umfangreichen Klasse von Modellen verstanden (Géron, 2019; sieche auch Abbildung 2.4).
Diese Modellklasse wird allgemein als Neural Network (NN) bezeichnet und ist dadurch
charakterisiert, dass schichtweise mathematische Operationen in sog. Layern hintereinander
geschachtelt werden. In einem einfachen sog. Fully-Connected-NN (FCNN, Abbildung 2.10)
sind diese Layer Matrixmultiplikationen. Die jeweiligen Outputs der einzelnen Layer sind in
threr Dimensionalitét variabel und werden auch Nodes genannt. In einem FCNN sind alle

29



2. Theoretische und Methodische Grundlagen

Nodes einer Layer mit allen Nodes der vorherigen und folgenden Layer verbunden. Die
Berechnung der Outputs der ersten Layer des in Abbildung 2.10 dargestellten Netzwerkes
lautet also:

y@® = g(W(l)x), W@ e R4*3.

Dabei ist g eine nicht-lineare Funktion, die Element-weise auf die Matrix-Vektor-Produkte
Wy angewendet wird und auch Activation Function oder kurz Activation genannt wird.
Jedes Matrix-Element ist in Abbildung 2.10 durch einen Pfeil visualisiert. Die Matrix-
Elemente sind dabei die trainierbaren Parameter des Modells (sieche Abschnitt 2.4). Die
gesamte Modellfunktion des in Abbildung 2.10 dargestellten Netzwerkes lautet
dementsprechend:

fu) = g (WO g (WOg(Ww®x))),

Zur Ubersichtlichkeit wurde hier angenommen, dass jede Layer dieselbe Activation besitzt.
Verbreitete Activation Functions sind die Sigmoid-, tanh- oder ReLU-Activation:

X —X

sigmoid(x) = , tanh(x) = , ReLU(x) = max(0, x).

1+e™™ eX+e*
Fiir die Output-Layer von Regressionsnetzwerken wird meist auf eine Activation verzichtet,
damit alle reellen Zahlen abgebildet werden konnen. Fiir die (K-dimensionale) Output-Layer
von Klassifikationsnetzwerken wird meistens die Softmax-Activation genutzt:
e*i ]
softmax(x); = W, j=1..K.

Die Outputs dieser Funktion sind praktikabel als Wahrscheinlichkeiten interpretierbar!”. Die
vielseitige Einsetzbarkeit der Modellklasse der NNs beruht wesentlich auf dem sog. Universal
Approximation Theorem (Hornik et al., 1989): Unter der Annahme sehr (beliebig) grof3er Breite
(Anzahl an Nodes) und Tiefe (Anzahl an Layern), sowie unter Nutzung von nicht-linearen
Activations kann gezeigt werden, dass ein FCNN eine grofle Menge unterschiedlicher
Funktionen approximieren kann. Die Nicht-Linearitit der Activations ist dabei essenziell, da
das Modell ansonsten nur eine lineare Funktion aus vielen Matrix-Multiplikationen wiére.
Flexible NNs sind daher sehr breit und tief und weisen somit gro3e Anzahlen an trainierbaren

Parametern auf (~ 10° bis 1012).

Das Training eines NN unterscheidet sich prinzipiell nicht vom Training anderer Modelle.
Die Schwierigkeit besteht darin, dass die Ableitungen der Modellfunktion nach den Parametern
durch die Kettenregel der Differentialrechnung sehr komplex werden und manuell kaum

15 Mathematisch betrachtet liegt das daran, dass diese Funktion den Vektor x € R¥ auf die Menge (sog. K-
Einheitsimplexrand) {y € RX | y; = 0, YK, y; = 1} abbildet. Somit sind die einzelnen Output-Werte auf das
Intervall [0,1] beschrinkt und kénnen also die Wahrscheinlichkeit fiir die Zuordnung zur jeweiligen Kategorie
interpretiert werden.
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gefasst werden konnen. Daher werden sog. , Autodiff‘-Verfahren'® auf Basis des
Backpropagation-Algorithmus (Rumelhart et al., 1986) verwendet, die diese Berechnungen
automatisieren. Moderne Verfahren optimieren dabei zudem je nach verfiigbarer Hardware die
Balance zwischen verfiigbarer Leistung zur Berechnung der Ableitungen und dem fiir ihre
Speicherung verfligbaren Arbeitsspeicher (z. B. Chen et al., 2023; Dao et al., 2024).

O
O

QOO
QOO0
QOO

Abbildung 2.10 Schematische Darstellung eines Fully-Connected-NNs. Dabei sind die Input Layer in Rosa, die
Hidden Layers in Orange und die Output Layer in Blau dargestellt.

Embeddings

Zur Verarbeitung unterschiedlicher Datenstrukturen wie Bilder und Sequenzen (beispielsweise
Text) wurden NN-Sonderformen wie Convolutional NNs (LeCun et al., 1998) oder Recurrent
NNs (Amari, 1972) entwickelt. Solche NN-Varianten sind dadurch gekennzeichnet, dass die
Matrix-Gewichte bei der Verarbeitung einzelner Segmente der Daten (bei Text: Worte)
wiederverwendet werden. Einerseits wird dadurch die Anzahl an Parametern reduziert,
andererseits konnen so wiederkehrende Strukturen erkannt und genutzt werden.
Typischerweise bei Sprachdaten, mittlerweile aber vermehrt auch bei anderen Datenformaten
wie z. B. Bildern (Dosovitskiy et al., 2021), werden zudem {iiblicherweise sog. Embedding-
Layer als erste Schicht des NNs genutzt (z. B. Géron, 2019). Bei Sprachdaten weist die
Embedding-Layer jedem einzelnen Wort des Vokabulars des Datensatzes (siche Abschnitt 2.6
sowie Abbildung 2.9) einen Vektor mit fixer Dimension d (liblicherweise einige 100 bis 1000)
zu'’. Die Elemente dieser Vektoren sind trainierbare Modellparameter. Allgemein werden
solche numerischen Représentationen von Worten und Texten (aber auch anderen Daten-
Segmenten) Embeddings genannt (z. B. Liu et al., 2020). Sie werden hédufig mithilfe von Semi-

16 Die iiblicherweise fiir die Erstellung, Erprobung und Deployment von NNs genutzten Programmbibliotheken
TensorFlow (Abadi et al., 2016) und PyTorch (Paszke et al., 2019) stellen neben einem Autodiff-Framework
zudem Funktionen bereit, um die Rechenleistungen von Grafikkarten (Graphics Processing Units, GPUs), die
auf die Berechnung von Matrixoperationen hin optimiert sind, fiir das Deep Learning zu nutzen.

17 Eine Embedding-Layer fiihrt letzten Endes eine Matrixmultiplikation der Embedding-Matrix mit der One-Hot-
Encoding-Représentation des Textes durch.
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Supervised-Learning-Ansitzen'8, wie der Vorhersage des folgenden Wortes bei gegebenem
Satzanfang (Mikolov et al., 2013), der Vorhersage von umgebenden Worten (Pennington et al.,
2014) oder der Vorhersage des Gemeinsam-Auftretens von Worten (Peters et al., 2018)
ermittelt. Dadurch konnen Embeddings erzeugt bzw. Embedding-Modelle trainiert werden, die
semantische und syntaktische Bedeutung tragen. Ein klassisches Beispiel ist hier der bei
Mikolov et al. (2013) beobachtete Zusammenhang;:

Embedding(Paris) — Embedding(France) + Embedding(Italy) ~ Embedding(Rome) .

Man hat also mithilfe der allgemeinen Sprachmodellierung in einem Self-Supervised-
Learning-Ansatz eines groflen Text-Datensatzes ein Embedding-Modell geschaffen, welches
die semantische Bedeutung des Wortes ,,Hauptstadt™ implizit erlernt hat. Solche Embeddings
und Embedding-Layers sind dementsprechend nicht nur fiir sprachverarbeitende NNs als
Input-Layer interessant, sondern kdnnen auch direkt selbst beispielsweise im Rahmen von
Klassifikationsmodellen oder Cluster-Analysen (z. B. Grootendorst, 2022) genutzt werden.
Viele Embedding-Tabellen bzw. Embedding-Modelle stehen dafiir auch open-source zur
Verfligung (z. B. Reimers & Gurevych, 2019).

Transformer Sprachmodelle

Ein Durchbruch in der Entwicklung von NNs war insbesondere die Entwicklung sog. Attention-
Layers (Bahdanau et al., 2014) bzw. der sog. Transformer-Modellarchitektur (Vaswani et al.,
2017). Diese Modelle sind auf die Verarbeitung von Sequenzen mehrdimensionaler Inputs
X1, X5, ..., Xy € R% ausgelegt. Das kann beispielsweise ein Text sein, bei dem die einzelnen
Worte zuvor eine Embedding-Layer passiert haben. Das wesentliche Merkmal einer Attention-
Layer ist, dass die einzelnen Inputs im Rahmen eines sog. Attention-Mechanismus aufeinander
bezogen werden. Ein Attention-Mechanismus kann dabei jede Funktion sein, die ausschlieBlich
von den Skalarprodukten (engl.: ,,Dot-Product®) der Inputs abhéngt:

aij=f(xi-xj), l,]=1T

Ohne hier zu sehr ins Detail gehen zu kénnen ermdglicht dieses Aufeinander-Beziehen der
Inputs den Attention-Modellen die entsprechende Bezugsstruktur der Daten stirker zu
beriicksichtigen als andere Modelle es konnen. Die eigentlich trainierbaren Parameter-
Matrizen werden typischerweise vor und nach den Attention-Layern angewandt (z. B. Devlin
etal., 2019; Vaswani et al., 2017). Mittlerweile hat sich die Transformer-Architektur nicht nur
fiir Sprachverarbeitung, sondern auch fiir andere Datentypen wie Bilder durchgesetzt (z. B.
Dosovitskiy et al., 2021). Schliissel fiir den Erfolg der Transformer-Architektur sind also
einerseits die Reprisentation der Daten in Form von Embeddings und andererseits das
Aufeinander-Beziehen dieser Embeddings in den Attention-Layers.

18 Solche Ansidtze werden als ,,Semi-Supervised “ bezeichnet da das Training zwar einem Supervised-Learning-
Workflow entspricht, allerdings Teile der ,,Features™ (hier Text) selbst als ,, Target* genutzt werden und somit
keine durch Menschen generierten Label bendtigt werden — es sei denn, man fasst das Schreiben eines Textes
als kontinuierliches ,,Labeln* des bisher geschriebenen Textes auf.
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Die meisten aktuell verwendeten Sprachmodelle z. B. GPT2!'? (Radford et al., 2019), GPT3
(Brown et al., 2020) oder BERT (Devlin et al., 2019), die gro3en Sprachmodelle hinter Tools
wie ChatGPT (OpenAl, 2024c) oder Konkurrenten wie Claude (Anthropic, 2024) und auch
groBe Open-Source Sprachmodelle (z. B. LLaMA?°, Touvron et al., 2023a bzw. Touvron et al.,
2023b oder OpenAssistant, Képf et al., 2024) sind Transformer-Modelle?!. Neben der
Modellarchitektur ist fiir ein Sprachmodell auch das Training entscheidend. Typischerweise
werden Sprachmodelle mithilfe der sog. Next-Token-Prediction trainiert, d. h. es wird der
nichste Token Basis einer gewissen Menge vorangegangener Token trainiert. Man spricht auch
von autoregressivem Training. Durch dieses Training mithilfe groer Datenmengen (bei Text-
Daten typischerweise einige Gigabyte bis mehrere Terabyte) ,.erlernen” die Modelle eine
umfassende Reprisentation von Sprache und kénnen somit (je nach Grofie) natiirliche bzw.
natiirlich wirkende Sprache erzeugen?®?. Gleichzeitig kann dies aber auch genutzt werden, um
fiir konkrete Anwendungsfille hohere Performanz bzgl. anderer Aufgaben, wie dem
automatisierten Scoren von Antworten (z. B. Camus & Filighera, 2020), zu erzielen. Beim
expliziten Training von Sprachmodellen fiir konkrete Anwendungsfélle spricht man auch von
Finetuning wihrend man das autoregressive Training im Vorfeld auch als Pretraining
bezeichnet. Im Rahmen der huggingface Python-Paket-Familie werden viele open-source
Modelle und Methoden fiir Pretraining und Finetuning bereitgestellt (z. B. Wolf et al., 2020).

Die Nutzung und Verbreitung immer groferer Sprachmodelle (viele Mrd. Parameter) ist
allerdings vor dem Hintergrund ihres hohen Energieverbrauchs und der damit entstehenden
Kosten und Umwelteinfliisse kritisch zu betrachten®® (Dhar, 2020). Zudem konnen solche
Modelle nicht auf iiblicher Consumer-Grade Hardware betrieben werden, da sie aufgrund ihrer
GroBe meist auf mehrere Recheneinheiten mit groBen Arbeitsspeichermengen aufgeteilt
werden miissen. Die Nutzung von Angeboten wie ChatGPT und den dazugehoérigen Online-
Schnittstellen (auch Application Programming Interface, API) ist zwar mdglich, allerdings aus
zwei Griinden problematisch. Erstens miissen die auszuwertenden Text-Daten dafiir an einen
fremden Server geschickt werden. Auch wenn es sich hiufig nicht um personenbezogene Daten
handelt, ist dies datenschutztechnisch nicht immer unbedenklich, da meistens keine manuelle
Kontrolle zwischen der Dateneingabe durch Nutzer:innen eines Tools und dem Ubergeben an
die API stattfinden kann. Zweitens werden solche APIs und auch die dort angebotenen Modelle
kontinuierlich weiterentwickelt und befinden sich somit in stetigem Wandel. Es kann also nicht
davon ausgegangen werden, dass die Performanz des genutzten Systems fiir den jeweiligen

Die Abkiirzung ,,GPT* wird in unterschiedlichen Modellbezeichnungen verwendet und steht fiir ,,Generative
Pretrained Transformer®.

20 Large Language Model Meta Al (Touvron et al., 2023a)

2 Aufgrund der hohen bendtigten Rechenleistung der Attention-Mechanismen werden aktuell aber auch

alternative Ansétze exploriert (Gu & Dao, 2023; Peng et al., 2023; Zhai et al., 2021a; Zhu et al., 2024).

22 Um einen Dialog fithren zu konnen, wie bekannte Chatbots wie ChatGPT es tun, werden die Modelle

typischerweise noch mithilfe des sog. Reinforcement Learning from Human Feedback (z. B. Christiano et al.,
2017; Ouyang et al., 2024) bzw. Instruction-Funetuning (z. B. Chung et al., 2024) weitertrainiert, um typische

Gesprachsstrukturen abbilden zu kénnen.
23 Es gibt allerdings auch zunehmend Bestrebungen die notwendige Rechenleistung und Speichernutzung der

Modelle zu Reduzieren (z. B. Dettmers et al., 2024).
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Anwendungsfall konstant bleibt. Auch die Bedienung der APIs selbst kann sich d&ndern. Haufig
reichen aber auch kleinere Modelle wie das BERT-Modell** (Devlin et al., 2019) aus, um fiir
spezifische Anwendungsfille eine ausreichende bis gute Performanz zu erreichen (Camus &
Filighera, 2020). Im vorliegenden Projekt wird daher auch primér der Ansatz des Trainings
eines eigenen, kleineren Modells mit vollstindiger Kontrolle {iber das Modell und die Daten
gewihlt, auch wenn Alternativen ergidnzend exploriert und evaluiert werden (siehe Kapitel 6,
insbesondere Abschnitt 6.7).

Insgesamt werden ML- und Deep-Learning-basierte Methoden und Modelle sowohl fiir
explorative Sprachanalysen (Blei, 2012; Grootendorst, 2022; Roberts et al., 2019) als auch in
Supervised-Settings wie beispielsweise automatisiertem Scoring (Gamieldien et al., 2023; Lee
et al., 2019; Ludwig et al., 2021; Maestrales et al., 2021; Mayfield & Ros¢, 2012; Sawatzki et
al., 2022; Yan et al., 2020) eingesetzt. Es werden auch iiber diese konkreten Ansétze hinaus
grole Potenziale flir die Nutzung dieser Technologien im Kontext der Bildung und
Bildungsforschung sowie konkret im naturwissenschaftsdidaktischen Bereich identifiziert,
darunter insbesondere die Nutzung von ML-Methoden zu Forschungszwecken (Hilbert et al.,
2021; Kubsch et al., 2023; Kubsch et al., 2021a) und fiir automatisiertes Assessment und
Feedback iiber basales Scoring hinaus (Fiitterer et al., 2023; Zhai et al., 2023).

24 Ca. 110 Mio. Parametern, was bei einer Gleitkommaprizision von 32-Bit (float32) ca. 440 MB an
Arbeitsspeicher entspricht.
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3. Projektstruktur und Forschungsfragen

Im hier vorgestellten Dissertationsprojekt sollen (a) die innere Struktur des FDW von
Lehramtsstudierenden empirisch basiert detaillierter inhaltlich beschrieben werden sowie (b)
Moglichkeiten zur Automatisierung des Assessments des FDW unter anderem auf Basis der
gefundenen Strukturen exploriert werden. Da es sich um ein kumulatives Dissertationsprojekt
handelt, werden vor allem konkrete theoretische Grundlagen eher im Rahmen der jeweiligen
(auch in dieser Rahmung enthaltenen) Artikel (Kapitel 4, 5 & 6) detaillierter erldutert.
Ubergreifende theoretische Grundlagen zum Professionswissen und insbesondere zum FDW
von Lehrkriften mit dem Fokus auf der Physik und den Naturwissenschaften wurden daher in
den Abschnitten 2.1 und 2.2 einleitend eher knapp eingefiihrt.

Da in den Artikeln oft nicht geniigend Raum fiir ausfiihrliche methodische Ausfithrungen
verfligbar war bzw. ist, wurden folgende methodische Aspekte detaillierter erlautert:

¢ [tem-Response-Kompetenzniveaumodelle (Abschnitt 2.3)

e ML mit Fokus auf Anwendungen in der naturwissenschaftsdidaktischen Forschung
(Abschnitt 2.4 & 2.5)

e ML-basierte und Deep-Learning-basierte Sprachverarbeitung (Abschnitt 2.6 & 2.7)

In diesem Rahmen wurden insbesondere der allgemeine Workflow und die Herangehensweise
bei der Nutzung von ML-Methoden und die Unterscheidung in Supervised- und Unsupervised-
Learning-Methoden vorgestellt. Unsupervised-Learning-Methoden werden in diesem Projekt
zur explorativen Untersuchung der inneren Strukturen des FDW eingesetzt. Dabei wird die
CGT (Nelson, 2020) genutzt, um die Analysen zu strukturieren. Supervised-Learning-
Methoden werden in diesem Projekt primir fiir das automatisierte Assessment der gefundenen
FDW-Strukturen eingesetzt. Entsprechende Ansétze flir automatisiertes Assessment existieren
bereits ldnger, beispielsweise auf Basis von Embedding-Methoden wie der Semantic Analysis
(z. B. Andersen & Zehner, 2021; Leacock & Chodorow, 2003; Zehner et al., 2016). In diesem
Projekt wird sich primir auf die vielversprechende (z. B. Camus & Filighera, 2020) Nutzung
von Transformer-Sprachmodellen fiir das Assessment fokussiert.

In diesem Kapitel folgt nun ein Uberblick iiber die Ziele und Forschungsfragen des Projekts
(Abschnitt 3.1). Dabei werden die in dieser Arbeit enthaltenen Artikel bereits grob in den
Gesamtkontext eingeordnet. AnschlieBend wird der verwendeten Gesamtdatensatz vorgestellt
(Abschnitt 3.2).

3.1. Forschungsziele und -fragen

Im Theorieteil wurden zwei wesentliche Forschungsdesiderate dargestellt. Erstens ist eine
detailliertere empirisch fundierte inhaltliche Beschreibung der inneren Struktur des FDW
notwendig um (a) das FDW im Kontext gingiger Rahmenmodelle wie dem RCM oder MoC
weiter auszudifferenzieren (Abschnitt 2.2) und (b) ein Assessment zu ermdglichen, welches
iber die reine Angabe von Scores hinausgeht. Zweitens wére es aufgrund des hohen Aufwands
bei der Auswertung der als besonders authentisch geltenden offenen Antwortformate
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entsprechender Testinstrumente wiinschenswert, ein solches Assessment mithilfe moderner
Methoden der Datenverarbeitung zu automatisieren. Auf Basis der verfiigbaren Daten werden
zur Bearbeitung dieser Desiderate im Folgenden die Zielpakete dieses Dissertationsprojekts
abgeleitet. Dabei werden die jeweiligen Forschungsfragen, die zu den Zielpaketen in den
Artikeln fokussiert werden, hier bereits vorweggegriffen, um einen Uberblick darzustellen. Die
einzelnen Forschungsfragen unterscheiden sich den Anforderungen der jeweiligen
Zeitschriften und Gutachtenden entsprechend teilweise in ihrem Stil und Grad der
Konkretisierung. Zwischen den einzelnen Zielpaketen werden diese knapp im Projektkontext
verortet und ggf. wird die Genese der entsprechenden Artikel knapp kommentiert. In
Abbildung 3.1 ist der gesamte Workflow des Projekts noch einmal (moglichst) iibersichtsartig
dargestellt.

Person Al A2. A3, Ad. Person Al A2, A3.
D1 0 2 1 0 D1 k b 0
Targets
A 4
Anforderungsanalyse — =
(Kognitive Anforderungen) h 4 Automatisiertes Scoring
Topic Modelling (Sprachmodell)
A 4 (STM & Topic-Interpretation) &
Niveauanalysen & \.Q
(Komplexitat & Scale-Anchoring) o]
& &
\ 4
Clusteranalyse
— 2. Artikel: K-Means & Automatisierte Zuordnung zu
3. Artikel: LPA o« fil
] &
Motivation
Targets
v
2. FDW-
Kompetenzprofile
. . .
1. Artikel 2. Artikel 3. Artikel

Abbildung 3.1 Ubersichtsdarstellung der drei Zielpakete und des Workflows des Projekts. Den Ausgangspunkt
der Analysen stellen die Score- und Textdaten dar. Diese werden im Rahmen von sowohl (eher) computerbasierten
bzw. quantitativen Methoden (orange Kisten) als auch im Rahmen von eher theoriegeleiteten Schritten (blaue
Kisten) genutzt, um die Projektziele (griine Késten) zu erreichen. Die farbigen Segmente im Hintergrund
reprasentieren die drei Artikel und die jeweiligen Schritte der Analyse, die in ihnen jeweils eine Rolle spielen.

In Abschnitt 2.3 wurde dargestellt, dass zur empirisch basierten inhaltlichen Beschreibung
der inneren Struktur des FDW bisher primér hierarchische Ansdtze in Form von
Niveaumodellen vorliegen. Diese Modelle sind zudem bisher weitestgehend voneinander
isoliert, da sie sich auf die in den jeweiligen Projektkontexten unterschiedlichen konkret
fokussierten FDW-Inhaltsbereiche bzw. FDW-Facetten beziehen. Im Rahmen des ersten
Zielpakets soll dieser Forschungsliicke durch eine projektiibergreifende Analyse begegnet
werden, deren Ergebnisse auch die spiteren nicht-hierarchischen Analysen (Zielpaket 2)
vorbereiten:

36



3. Projektstruktur und Forschungsfragen

1. Zielpaket — Kompetenzniveaus:

Durchfiihrung einer (projektiibergreifenden) Analyse von hierarchischen Kompetenz-
niveaus des FDW auf Basis von IRT-Modellen

o FFI1.1 (Artikel 1): Inwieweit lassen sich mithilfe des Scale-Anchoring-Verfahrens
projektiibergreifend inhaltliche Strukturen des FDW identifizieren und inhaltlich
charakterisieren?

o FF1.2 (Artikel 1): Inwieweit lassen sich Stufen hierarchischer Komplexitit des FDW
projektiibergreifend identifizieren und inhaltlich charakterisieren?

Der vollstindig auf die Kompetenzniveauanalysen fokussierte Artikel 1 wurde in Kooperation
zwischen den bzw. Teilen der Projektgruppen KiL?® (z. B. Schiering et al., 2019) bzw. Keila*
(z. B. Schiering et al., 2023) und ProfiLe-P(+) (z. B. Riese et al., 2022b; Vogelsang et al., 2019)
erarbeitet. Im Rahmen dieser Analysen zeigten sich zwar projektiibergreifende
Gemeinsamkeiten beziiglich kognitiver Anforderungen (Reproduzieren, Anwenden,
Evaluieren etc., siche Abschnitt 4.5 & 4.6), allerdings blieben die Beschreibungen der
Niveaustufen aufgrund methodischer Limitationen recht allgemein und vor allem auf
hierarchische Abstufungen beschrdnkt. Nicht-hierarchische inhaltliche Strukturen des FDW
wurden bisher bis auf konfirmatorische Modellvergleiche (Riese et al., 2017) kaum empirisch
fundiert untersucht. Daher wurden im zweiten Zielpaket (potenziell) nicht-hierarchische
Strukturen genauer in den Blick genommen:

2. Zielpaket — Kompetenzprofile:

Durchfiihrung von explorativen Analysen des FDW auf Basis von sowohl Scoredaten
als auch Sprachdaten zur Beschreibung von Probandengruppen mit prototypischen
Antwortverhalten und Kompetenzauspragungen

o FF2.1 (Artikel 2 ~ Pattern Detection): Welche Kompetenzprofile des FDW konnen
mithilfe einer (K-Means) Clusteranalyse der Scores gefunden werden?

o FF2.2 (Artikel 2 ~ Pattern Refinement): Zeigen Proband:innen, die zu einem
bestimmten Kompetenzprofil gehodren, prototypische Sprachnutzung in ihren
Antworten zu den offenen Aufgaben des eingesetzten Testinstruments?

o FF2.3 (Artikel 2 ~ Pattern Confirmation): Wie hoch ist die Performanz von ML-
Modellen bei der Zuordnung zu den Kompetenzprofilen fiir ungesehene Daten?

25 Akronym KiL: ,Messung professioneller Kompetenzen in mathematischen und naturwissenschaftlichen
Lehramtsstudiengdngen, gefordert durch Leibniz Gemeinschaft. In diesem Projekt wurde das
Professionswissen von Lehramtsstudierenden der mathematisch-naturwissenschaftlichen Fiacher gemeinsam
modelliert. Fiir die Physik wurde dabei ein FDW-Testinstrument von Kroger (2019) entwickelt.

26 Akronym Keila: ,,Kompetenzentwicklung in mathematischen und naturwissenschaftlichen Lehramtsstudien-

gangen*, gefordert durch Leibniz Gemeinschaft. Aufbauend auf den Modellierungen aus KiL wurde in KeilLa
die Entwicklung des Professionswissens im Zusammenhang mit Lerngelegenheiten und individuellen
Merkmalen der Proband:innen untersucht (z. B. Sorge et al., 2019) Auch hier wurde das FDW-Testinstrument
nach Kroger (2019) wieder eingesetzt. In der hier vorgestellten Analyse werden die FDW-Daten aus beiden
Projektphasen genutzt.
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o FF2.4 (Artikel 3 ~ , Refined“ Pattern Detection): Welche latenten FDW-
Kompetenzprofile lassen sich durch eine GMM-basierte LPA in den FDW-Score-
Daten des Projekts ProfiLe-P beziiglich der kognitiven Anforderungskategorien
Reproduzieren, Anwenden-Kreieren und Analysieren-Evaluieren finden?

Die Analysen zum zweiten (und dritten) Zielpaket sind aus methodischen Griinden sowie
Griinden des Workloads allerdings wieder auf das Projekt ProfiLe-P beschrinkt. Die Analysen
in Artikel 2 und 3 sind dabei wesentlich durch die CGT strukturiert (vgl. auch Abschnitt 2.5)
und umfassen neben den explorativen Analysen der Scores und Textdaten in den Pattern
Detection (FF2.1 bzw. FF2.4) bzw. Pattern Refinement Schritten (FF2.2) auch eine Analyse
der Performanz von ML-Modellen bei der Zuordnung zu den Kompetenzprofilen fiir
ungesehene Daten (FF2.3). Im Rahmen dieser FF2.3 werden die Kompetenzprofile zunichst
ausgehend von den Scores vorhergesagt. Eine tatsdchliche automatisierte Auswertung der
offenen Aufgaben ist in Artikel 2 aus Platzgriinden und Griinden der Projektgenese noch nicht
eingeschlossen.

In den Analysen zu Artikel 2 (FFs 2.1 bis 2.3) konnten aufgrund von methodischen
Limitationen noch keine echt ,,latenten” Kompetenzprofile ermittelt werden. Im Rahmen des
Artikels 3 bot sich somit die Gelegenheit, die sich abzeichnenden inneren Strukturen des FDW
noch einmal aus einer etwas anderen Perspektive mithilfe einer Latenten Profilanalyse (LPA,
Spurk et al., 2020) zu untersuchen?’. Zu diesem Zweck wurden die betrachteten kognitiven
Anforderungskategorien entsprechend den vorangegangenen Ergebnissen zu FF1.1 und FF2.1
zusammengefasst, sodass eine LPA ermoglicht wurde. Die LPA liefert ein stirkeres Argument
fiir den prototypischen Charakter der Kompetenzprofile als eine K-Means Analyse, da sie echte
latente Strukturen abbildet. Auch Artikel 3 ist als eher inhaltliche Analyse daher wieder
mithilfe der CGT strukturiert. FF2.4 kann dabei als eine erweiterte (,,refined*) Pattern
Detection auf Basis des vorherigen Analysezyklus (vor allem Artikel 2) aufgefasst werden. Die
folgenden Forschungsfragen zum automatisierten Assessment (Zielpaket 3) dienen dann als
Pattern Confirmation der neuen gefundenen Strukturen:

3. Zielpaket — Automatisiertes Assessment:

Erprobung der Nutzung von Machine-Learning-Modellen zur automatisierten Auswer-
tung des FDWs

FF3.1 (Artikel 3 ~ Pattern Confirmation I): Welche Maschine-Mensch-Ubereinstim-
mung erreicht ein BERT-Sprachmodell (Devlin et al., 2019) bei der Vorhersage von
FDW-Scores unter Nutzung eines typischen Finetuning-Workflows auf Basis von 846
Bearbeitungen des FDW-Testinstruments?

FF3.2 (Artikel 3 ~ Pattern Confirmation II): Wie hoch ist die Maschine-Mensch-
Ubereinstimmung einer automatisierten Zuordnung von Bearbeitungen des FDW-

27 Dies wurde auch im Review des dritten Artikels von Seiten der Herausgebenden und Reviewenden im Rahmen
der stirkeren Herausarbeitung des inhaltlichen Erkenntnismehrwerts im Vergleich zu einer Fokussierung
primér auf das automatisierte Assessment (Zielpaket 3) gewiinscht.
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Testinstruments zu einem prototypischen FDW-Kompetenzprofil auf Basis der
maschinellen Score-Vorhersagen (FF3.1)?

Der Pattern Confirmation Schritt unter Nutzung der tatsichlichen Antworten auf die
Testaufgaben als ,,Rohdaten* (FF3.1 & FF3.2) liefert ein deutlich stirkeres Argument fiir die
Robustheit und Validitét der in FF2.4 gefundenen Strukturen als die Pattern Confirmation auf
Basis der Scores im zweiten Artikel (FF2.3), wie in Abschnitt 6.7.3 noch einmal genauer
diskutiert wird. Dariiber hinaus stellt dieser Schritt auch den wesentlichen Beitrag zum
Forschungsdesiderat der Automatisierung eines inhaltlich reichhaltigen FDW-Assessments auf
Basis von Kompetenzprofilen und fundierten Subskalen dar. Dabei wird in Artikel 3 jedoch
aus Platzgriinden nicht auf weitere erprobte Workflows oder Modelle (neben dem BERT-
Modell) eingegangen, die allerdings im Kontext des Automatisierungsdesiderats auch fiir
andere Projekte von Interesse sein konnen. Ergdnzend werden solche Betrachtungen daher in
Abschnitt 6.7 detaillierter dargestellt.

3.2. Stichprobe und Datenaufbereitung

Der fiir die Analysen und Erprobungen dieses Projekts hauptsichlich verwendete Datensatz
stammt aus dem Projekt ProfiLe-P+2, in dem PW, FW, FDW, affektive Orientierungen und
Beliefs sowie Performanz in prototypischen Handlungssituationen wie dem Planen von
Physikunterricht und dem Erkldren physikalischer Phinomene von (angehenden) Lehrkriften
erhoben wurden. Dabei werden sowohl die quantitativen Score-Daten, d. h. die manuell
vergebenen Scores zu den einzelnen Aufgaben, als auch qualitative Text-Daten in Form der
Antworten auf die offenen Aufgaben des verwendeten FDW-Testinstruments genutzt.

Fiir die projektiibergreifenden Analysen in Artikel 1 (FF1.1 & FF1.2) stehen zudem die IRT-
Thurstone-Thresholds und IRT-Personenfdahigkeiten (sieche Abschnitt 2.3) sowie einige
demographische Informationen aus dem FDW-Datensatz der Projekte KiL und Keila zur
Verfligung. Da die Vorbereitung dieses Datensatzes nicht im Aufgaben- und Verantwortungs-
bereich des Projekts selbst lag, wird dieser Datensatz und auch das Testinstrument hier nicht
zusitzlich zu den in Artikel 1 enthaltenen Informationen (Abschnitt 4.4.1) vorgestellt?®. Eine
Beispielaufgabe aus diesem Testinstrument ist in Abbildung 4.4 dargestellt.

Im Folgenden wird nun der zentrale FDW-Datensatz aus dem Projekt ProfiLe-P+
detaillierter beschrieben und es werden einige Informationen zusétzlich zu den Artikeln
erginzt. Das verwendete FDW-Testinstrument nach Gramzow (2015) besteht aus 20 offenen
und 4 geschlossenen Multiple-Choice-(MC)-Aufgaben, wobei 3 der offenen Aufgaben aus je
2 einzeln bepunkteten Teilaufgaben bestehen. Daher ist teilweise auch von 23 offenen
Aufgaben die Rede. Die MC-Aufgaben bestehen aus 4 bis 6 einzelnen Items, sodass insgesamt
je nach Publikation auch 20 MC-Items und somit insgesamt 43 Items berichtet werden. Die
Aufgaben und das Kodiermanual zur Bewertung der offenen Aufgaben wurden mithilfe von
Curriculumsanalysen, Expertenbefragungen und Think-Aloud-Studien erprobt und validiert

28 Fiir ausfiihrlichere Informationen zum dort verwendeten Testinstrument sei auf Kroger (2019) verwiesen. Der
Datensatz und das IRT-Modell werden zudem in Schiering et al. (2023) bereits ausfiihrlich vorgestellt.
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(Gramzow, 2015). Das Testinstrument umfasst die fachdidaktischen Facetten
Instruktionsstrategien,  Schiilervorstellungen,  Experimente und  Vermittlung eines
angemessenen Wissenschaftsverstindnisses (kurz Experimente) sowie Fachdidaktische
Konzepte. Diese Facetten stellen eine begriindete Auswahl moglicher Facetten dar. In der
urspriinglichen Testentwicklung wurden zudem die kognitiven Anforderungen Reproduzieren,
Anwenden und Analysieren abgedeckt. Da im Projekt ProfiLe-P eine mdglichst detaillierte
Erfassung des Professionswissens beziiglich des Fachinhalts Mechanik angestrebt wurde, ist
auch das FDW-Testinstrument auf diesen Fachinhalt fokussiert. Das gesamte Item-
Entwicklungsmodell des Testinstruments ist in Abbildung 4.1 enthalten. Im Rahmen des hier
vorgestellten Projekts wurden die Aufgaben aber mit einem grof3eren Fokus auf den kognitiven
Anforderungen re-analysiert (Kapitel 5 & 6). Beispielaufgaben dieses Testinstruments sind in
Abbildung 4.3 und Figure 5.3 dargestellt.

Das FDW-Testinstrument wurde im Rahmen des Projekts ProfiLe-P+ von 2016 bis 2019 in
Bachelor- und Masterstudiengéingen des Physik-Lehramts an 12 deutschsprachigen
Universititen eingesetzt. Insgesamt umfasst der Datensatz 846 Bearbeitungen dieses
Testinstruments in Quer- und Lingsschnitten®”. Die Bearbeitungen werden dabei hier der
Methode virtueller Probanden (Davier et al., 2008; siehe auch Wright, 2003) folgend in allen
Analysen als unabhingige Bearbeitungen betrachtet. Die diesen Bearbeitungen entsprechenden
virtuellen Probanden sind im Mittel ca. 23 (M = 22.80, SD = 4.60) Jahre alt und befinden
sich ca. im 4. Fachsemester (M = 4.11, SD = 3.51). Dariiber hinaus sind 34 % weiblich und
79 % befinden sich im Bachelorstudium, die iibrigen 21 % im Masterstudium.

Die Testhefte lagen zu Beginn dieses Dissertationsprojekts analog und teilweise als Scans
in PDF-Format vor. Die fehlenden Testhefte wurden ebenfalls gescannt und die Antworten auf
die offenen Aufgaben durch Hilfskrifte vollstindig digitalisiert, um die spiteren
computerbasierten Textanalysen etc. zu ermdglichen. Dariiber hinaus wurden bereits wihrend
des ProfiLe-P+- Projekts alle offenen Aufgaben durch eine trainierte Kodiererin bepunktet.
Insgesamt liegen somit 15600 Antwort-Score Paare (454 bis 825 pro Aufgabe) mit Scores
zwischen 0 und 3 Punkten vor. Die MC-Aufgaben wurden dem Vorgehen in anderen Teilen
des ProfiLe-P-Verbunds folgend (Jordans et al., 2022; Kulgemeyer et al., 2023) entsprechend
des K-prim-Schwellensystems (Krebs, 1997) bewertet, sodass die durch Raten erreichbaren
Punktzahl und die Ubergewichtung der MC-Aufgaben reduziert wurden. Im Rahmen dieses
Systems werden die MC-Aufgaben gemél ihrer Einzelitems mit 0, 1 oder 2 Punkten bewertet.
Eine MC-Aufgabe mit beispielsweise 4 Einzelitems wird...

e ...mit 0 Punkten bewertet, wenn 2 oder weniger Einzelitems korrekt geldst wurden.
e ...mit 1 Punkt bewertet, wenn 3 Einzelitems korrekt geldst wurden.

e ...mit 2 Punkten bewertet, wenn alle 4 Einzelitems korrekt geldst wurden.

2 Da ldngsschnittliche Daten vorliegen, war zu Beginn des hier vorgestellten Projekts geplant, auch
langsschnittliche Analysen im Kontext der Kompetenzprofile durchzufiihren. Die genauere Betrachtung des
Datensatzes zeigte aber, dass der Anteil an Proband:innen, die tatsdchlich auch an mehreren Erhebungen
teilgenommen haben, zu klein bzw. der Dropout zu grof3 ist, um hier belastbare Aussagen ableiten zu kdnnen
(siche Anhang D).
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Fehlende Antworten werden mit 0 Punkten bewertet. Die Gesamtanzahl an Antworten bzw.
vergebenen Punkten ist in Tabelle 3.1 dargestellt.

Tabelle 3.1 Anzahl der Punktzahlen in den einzelnen Aufgaben

Offene Aufgaben Alle Aufgaben und Missings als 0
Punktzahl 0 1 2 3 0 1 2 3
Anzahl 8800 5128 1646 26 10071 5780 2976 26

Neben dieser Hauptkodierung, die fiir die eigentlichen Analysen verwendet wurde, liegt
noch eine weitere Kodierung von 267 Testheften (4748 Antworten zu offenen Aufgaben)
durch einen anderen trainierten Kodierer vor. Beziiglich der offenen Aufgaben betrdgt die
Interrater-Ubereinstimmung x = 0.665 (Cohens k; z. B. Fleiss & Cohen, 1973) und ist somit
als gute Ubereinstimmung einzuordnen (Déring, 2023). SchlieBt man die MC-Aufgaben (nach
Anwendung der K-prim Schwellen) mit ein und fiillt fehlende Werte mit O Punkten, so betragt
die Interrater-Ubereinstimmung bezogen auf das gesamte Testinstrument k = 0.761, was als
sehr gute Ubereinstimmung eingeordnet werden kann (Déring, 2023).

Die Datenauswertung und Analyse finden mit den Programmiersprachen R (R Core Team,
2024) und Python (Python Software Foundation, o. D.) statt. Der vollstindige Analysecode
und sdmtliche Ergebnisse etc. sind im digitalen Begleitmaterial zu finden.
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4. Empirisch-kriterienorientierte Analyse des
fachdidaktischen Wissens angehender Physiklehrkrifte
(Artikel 1)

Einordnung in das Gesamtprojekt

Ausgangspunkt der ersten Analyse dieses Projekts bilden zwei unabhéngige Niveauanalysen
des FDW von Physiklehrkréaften. Schiering et al. fiihrten zundchst eine Scale-Anchoring-
Analyse auf Basis der Daten des KiL-Projekts (Schiering et al., 2019) und spéter auch des
Gesamtdatensatzes aus den Projekten KiL und Keila (Schiering et al., 2023) durch. Orientiert
an diesem Vorgehen fiihrten Zeller et al. (2022) ebenfalls eine Scale-Anchoring-Analyse auf
Basis eines Datensatzes zu einer geschlossenen Version des FDW-Testinstruments aus dem
ProfiLe-P-Projekt (Jordans et al., 2022) durch. Dabei fiel auf: Auch wenn die konkreten
Beziige zu fachinhaltlichen Themen und fachdidaktischen Inhalten bzw. Facetten naturgemaf
unterschiedlich waren, so deuteten sich doch Gemeinsamkeiten beziiglich lernpsychologisch
interpretierbarerer Operatoren wie ,,nennen®, ,,kennen®, ,,bewerten* etc. an.

Da in der Analyse von Zeller et al. (2022) allerdings nur eine recht kleine Datenbasis
verfiigbar war und die Ubertragbarkeit der Beobachtungen auf das urspriingliche FDW-
Testinstrument nicht uneingeschriankt angenommen werden kann und konnte (Kulgemeyer et
al., 2023), wurde die Analyse fiir den Gesamtdatensatz des ProfiLe-P+ Projekts wiederholt.
Dabei wurde zudem vorgeschlagen, diese Analysen in einer vergleichenden Betrachtung mit
den Ergebnissen von Schiering et al. (2023) zusammenzufiihren. Es konnte allerdings kein
gemeinsames IRT-Modell der beiden Datensitze (KiL/KeilLa und ProfiLe-P+) genutzt werden,
da die zu diesem Zweck notwendige Verkniipfung durch gemeinsame Aufgaben oder eine
Uberschneidung in der Stichprobe nicht gegeben war. Um die bisher isoliert stehenden Modelle
zusammenzufiihren, wurde daher der Weg liber die inhaltliche Beschreibung der Niveaus
gewihlt. Neben den Scale-Anchoring-Analysen wurde zudem eine regressionsanalytische
Niveaubildung angestrebt. So sollte der beschriankten Aufgabenanzahl der Testinstrumente, die
das Scale-Anchoring-Verfahren erschwert, begegnet werden. Nach dem Vorbild bestehender
regressionsanalytischer Niveaumodelle fiir das Fachwissen (Bernholt, 2010; Woitkowski,
2015; Woitkowski & Riese, 2017) wurde hierfiir die Adaption des Modells hierarchischer
Komplexitidt (Commons et al., 2014; Commons et al., 1998) vorgeschlagen.

Die Ergebnisse des Scale-Anchoring-Verfahrens bestdtigen die Vermutungen und zeigen,
dass sich das FDW unabhingig von den fokussierten fachdidaktischen und fachlichen Inhalten
/ Facetten in niedrigen Niveaus auf reproduktive Aspekte beschrinkt, wihrend in hohen
Niveaus analytische, kreative, anwendungsorientierte und bewertende Aspekte hinzukommen.
Diese Beobachtungen und insbesondere ihr projektiibergreifender Charakter dienen als
Grundlage fiir die vorbereitenden Schritte der nicht-hierarchischen explorativen Analysen in
den Artikeln 2 und 3. In diesem Sinne kann die Kompetenzniveauanalyse als erster Pattern
Detection Schritt eines das Gesamtprojekt liberspannenden CGT-Workflows aufgefasst
werden. Die daraus folgende Fokussierung auf die kognitiven Anforderungen stellen in diesem
Sinne dann ein theorie- und empiriegeleitetes Pattern Refinement dar.
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Zusammenfassung

In den letzten Jahren wurde das Professionswissen (angehender) Lehrkréfte intensiv
untersucht. Neben Aussagen zur inneren Struktur liegen auch Ergebnisse iiber den
Zusammenhang zwischen Professionswissen, Performanz in prototypischen Handlungs-
situationen sowie Unterrichtserfolg vor. In diesen Analysen hat sich gezeigt, dass insbesondere
dem fachdidaktischen Wissen eine zentrale Rolle zukommt. Es mangelt bisher jedoch an
empirisch fundierten Beschreibungen von Niveaustufen des fachdidaktischen Wissens. Zwar
liegen einzelne Vorschldge vor, diese sind jedoch entweder empirisch nicht fundiert oder post
hoc generiert, so dass unklar ist, inwieweit die Beschreibung der Auspriagungen auch au3erhalb
der jeweiligen Projektkontexte anwendbar ist. Der vorliegende Artikel stellt eine
projektiibergreifende Analyse des fachdidaktischen Wissens mithilfe zweier Ansitze zur
Bildung von Niveaustufen vor. Dazu werden Niveaumodelle mit Daten zum fachdidaktischen
Wissen aus zwei Projekten (N = 427 und N = 779) mithilfe des Scale-Anchoring-Verfahrens
sowie eines regressionsanalytischen Ansatzes auf Basis eines Modells hierarchischer
Komplexitit erstellt. Das Scale-Anchoring-Verfahren liefert Niveaubeschreibungen, die sich
zwar beziiglich fachlicher und fachdidaktischer Inhalte unterschieden, aber Parallelen
beziiglich lernpsychologisch interpretierbarer Operatoren zeigten. Projektiibergreifend
deuteten die Ergebnisse darauthin, dass sich das fachdidaktische Wissen in niedrigen
Auspriagungen auf reproduktive Aspekte beschrinkt, in hoheren Auspridgungen aber kreative
und evaluierende Elemente hinzukommen. Das Modell hierarchischer Komplexitit zeigte sich
nur fiir einen der Datensitze als geeignet, um ein Niveaumodell abzuleiten und konnte daher
fiir projektiibergreifende Analysen nicht weiter genutzt werden. Nichtsdestotrotz lieferte die
projektiibergreifende Analyse mithilfe des Scale-Anchoring-Verfahrens kontextunabhéngige
Beschreibungen von Ausprigungen des fachdidaktischen Wissens und ermoglicht so erste
Schritte in Richtung eines empirisch fundierten, inhaltlich reichhaltigen Assessments, welches
tiber eine Einordnung mittels eines Scores hinaus geht.

Schliisselworter: Fachdidaktisches Wissen - Niveaumodell - Projektiibergreifende Analyse -
Physik
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Cross-project empirical and criteria-oriented analysis of pre-service
physics teachers’ pedagogical content knowledge

What content structures emerge in the context of different models?

Abstract

In recent years, the professional knowledge of (pre-service) teachers has been intensively
investigated. In addition to statements regarding its internal structure, there are also findings
on the relationship between professional knowledge, performance in prototypical action
situations, and teaching effectiveness. These analyses have shown that pedagogical content
knowledge plays a central role. However, there is still a lack of an empirically grounded
description of competency levels of pedagogical content knowledge. There have been some
individual proposals, though they are either not empirically grounded or post hoc generated,
leaving the extent to which the descriptions of such levels are applicable outside the specific
project contexts unclear. This article presents a cross-project analysis of pedagogical content
knowledge using two approaches to establish levels of proficiency. Therefore, level models
were constructed based on data regarding pedagogical content knowledge from two projects
(N =427 and N = 779) using the Scale-Anchoring procedure and a regression-analytical
approach based on a model of hierarchical complexity. The Scale-Anchoring procedure
provided level descriptions that, despite differences in subject matter and pedagogical content,
exhibited parallels in terms of operators that are interpretable in terms of learning psychology.
Across projects, the results indicated that pedagogical content knowledge in low levels is
limited to reproductive aspects but incorporates creative and evaluative elements in higher
levels. The model of hierarchical complexity turned out to be properly applicable only for one
of the datasets and thus could not be further utilized for cross-project analyses. Nevertheless,
the cross-project analysis using the Scale-Anchoring procedure provided context-independent
descriptions of levels of pedagogical content knowledge, thus enabling initial steps towards an
empirically grounded, conceptually rich assessment that goes beyond solely preparing a
quantitative score.

Keywords: Pedagogical content knowledge - Competency level model - Cross-project analysis
- Physics
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4.1. Einleitung

Die professionelle Kompetenz (angehender) Lehrkréfte steht seit langem im Fokus der
fachdidaktischen Forschung zur Professionalisierung von Lehrkriften (Baumert & Kunter,
2006; Gess-Newsome, 1999; Shulman, 1986; Terhart, 2012). Die professionelle Kompetenz
wird dabei in unterschiedlichen Konzeptualisierungen als wesentlich fiir die Handlungsqualitét
im Unterricht oder fiir den Unterrichtserfolg aufgefasst (Ball et al., 2001; Harms & Riese, 2018;
Terhart, 2012). Eine zunehmende Anzahl an Studien belegt diese Annahme (z. B. Blomeke et
al., 2022; Keller et al., 2017; Kunter et al., 2013). Speziell in den Naturwissenschaften wurden
in den vergangenen Jahren insbesondere die innere Struktur und die globale Entwicklung des
Professionswissens sowie die Abhédngigkeit dieser Entwicklung von anderen Konstrukten
untersucht (Neumann et al., 2019; Riese et al., 2017; Schiering et al., 2019; Sorge et al., 2018).
Dariiber hinaus liegen Ergebnisse zur Bedeutung des Professionswissens fiir die Performanz in
prototypischen Handlungssituationen vor (z. B. Fortsch et al., 2016; Kulgemeyer et al., 2020;
Kulgemeyer & Riese, 2018; Riese et al., 2022a).

Im Rahmen von Projekten wie den genannten werden iiblicherweise ausgehend von
gangigen Operationalisierungen des Professionswissens Testinstrumente erstellt, die hdufig
konkrete Aspekte, wie das thematisierte Fachwissen oder spezielle Professionswis-
sensdimensionen fokussieren. Dadurch wird ein direkter Vergleich der vorliegenden
Ergebnisse erschwert, da unklar ist, inwieweit die durch diese Testinstrumente abgebildeten
Konstrukte deckungsgleich sind. Gleichzeitig stellt die moglichst allgemeingiiltige, theoretisch
begriindete und empirisch fundierte Beschreibung von Ausprigungen oder sogar
Entwicklungsstufen des Professionswissens und der Professionswissensdimensionen bereits
langer ein Forschungsdesiderat dar (z. B. Kaiser et al.), denn die Mdglichkeit zur Einordnung
von Personen oder Lerngruppen in ein entsprechendes Niveaumodell ist fiir eine inhaltlich
niitzliche Diagnose und die Identifikation von Entwicklungspotenzialen notwendig.

Das fachdidaktische Wissen (FDW) stellt in den meisten theoretischen Modellen eine
Kerndoméne des Professionswissens von Lehrkréiften dar und eine Vielzahl empirischer
Ergebnisse belegt seine praktische Relevanz (z. B. Kulgemeyer & Riese, 2018). Gerade fiir das
FDW als ,,special amalgam® (Shulman, 1987 sieche auch Neumann et al., 2019), d. h. als
spezielle, fiir die Lehrprofession einzigartige ,,Mischung® von fachlichem und padagogischem
Wissen, gestaltet sich jedoch eine projektunabhéngige Beschreibung von Auspragungen als
herausfordernd, denn auch aufgrund dieses Mischungscharakters fokussieren die in
unterschiedlichen Studien verwendeten Testinstrumente hiufig einzelne Aspekte wie z. B.
konkretes Fachwissen und Subskalen (siche z. B. Hume et al.)’*. Daher kénnen bisherige
Untersuchungen des FDW und deren Ergebnisse bisher meist nur eingeschrinkt miteinander
verglichen werden.

30 Den Autoren ist bewusst, dass gewisse Unterschiede zwischen den international iiblichen, auf Shulman (1986,
1987) zuriickgehenden Konzeptualisierungen des ,, Pedagogical Content Knowledge® (PCK) und dem im
deutschsprachigen Raum verwendeten Konstrukt des FDW gibt (z. B. Gramzow et al., 2013; Vollmer & Klette,
2023). Da sich die Analyse auf empirisch-inhaltliche Ergebnisse stiitzt, wird auf eine genaue Beschreibung der
hier zugrundeliegenden theoretischen Modellierungen verzichtet. Ergebnisse zum Forschungsstand werden hier
unter dem FDW gelabelt, auch wenn teilweise eher PCK untersucht wurde.
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Aussagen iiber das FDW, die auf Analysen mithilfe quantitativer Globalscores von
Bearbeitungen der Testinstrumente basieren, bleiben also inhaltlich recht allgemein und die
Giiltigkeit iiber die konkreten Projektkontexte hinaus ist trotz gemeinsamer theoretischer
Fundierung ungeklért, was zusammenfassende Betrachtungen und Implikationen tiber mehrere
Projekte hinweg schwierig macht. Dass Operationalisierung des FDW entsprechend der Natur
des Konstrukts in der Regel in (unterschiedliche) fachliche Kontexte / Inhaltsbereiche
eingebettet sind®! erschwert eine Analyse zusitzlich. Die vorliegende Arbeit macht sich daher
ein regressionsanalytisches Verfahren (z. B. Woitkowski & Riese, 2017) sowie das Scale-
Anchroing-Verfahren (Beaton & Allen, 1992; OECD, 2018) zur Bildung von Niveaumodellen
zunutze, um die nicht unmittelbar vergleichbaren quantitativen Aussagen unter Nutzung des
vorhandenen Datenschatzes in inhaltlich-kriterienorientierte Beschreibungen zu iiberfiihren.
Einerseits kann mithilfe solcher Beschreibungen die Vergleichbarkeit der tatsdchlich
abgebildeten Konstrukte, die durch die in den Projekten jeweils verwendeten Testinstrumente
erfasst werden, durch eine Gegeniiberstellung eingeschitzt werden. Andererseits konnen
mithilfe der inhaltich-kriterienorientierten Beschreibungen auch inhaltliche Aussagen iiber
Auspriagungen oder sogar Entwicklungsstufen des FDW empirisch fundiert abgeleitet werden,
die wiederum differenziertere Einschédtzungen der Kenntnisstinde von Proband:innen oder
Lerngruppen tiber die bloBe Angabe eines Scores hinaus ermoglichen. Solche Einschitzungen
wiirden beispielsweise in einem (Self-) Assessment fiir Studierende eine Moglichkeit bieten,
neben quantitativen Einordnungen auch inhaltliche Liicken wie beispielweise Nachholbedarfe
beziiglich konkreter fachdidaktischer Inhalte oder im Kontext konkreter Anforderungs-
situationen zu ermitteln. Sowohl die Giiltigkeit empirischer Ergebnisse iiber die konkreten
Projektkontexte hinaus als auch eine inhaltliche Einschédtzung von Proband:innen sind
grundlegend fiir einen effektiven und niitzlichen Transfer der wissenschaftlichen Ergebnisse in
die Praxis der Lehramtsausbildung.

Im Kontext des Professionswissens von Lehramtsstudierenden wurden entsprechende
Verfahren zur Niveaubildung bereits mit Erfolg angewendet (Konig, 2009; Schiering et al.,
2023; Woitkowski, 2020; Zeller et al., 2022). Hier werden erstmals im deutschsprachigen
Raum solche Niveaumodelle genutzt, um die Ergebnisse zur empirisch-inhaltlichen
Beschreibung des FDW zweier Projekte vergleichend zu analysieren. Dazu werden hier die
Projekte ProfiLe-P+? (z. B. Vogelsang et al., 2019) und KiL* (z. B. Kleickmann et al., 2014)
bzw. dessen Folgeprojekt KeilLa? (z. B. Schiering et al., 2023) gemeinschaftlich in den Blick
genommen. In beiden Projekten waren Physik-Lehramtsstudierende die primére
Zielpopulation der Untersuchung. Insgesamt werden 1206 Testbearbeitungen (779 aus dem
ProfiLe-P+ - Projekt und 427 aus den Projekten KiLL / KeilLa) von Physik-
Lehramtsstudierenden zum FDW genutzt, um Niveaumodelle mithilfe des Scale-Anchoring-
Verfahrens (z. B. Mullis & Fishbein, 2020) und eines regressionsanalytischen Ansatzes (z. B.
Nold et al., 2008; Woitkowski & Riese, 2017) auf Basis hierarchischer Komplexitit (Commons
et al.,, 1998) entwickeln, welche anschlieBend zu projektiibergreifenden, vergleichenden

31 In der hier vorliegenden Analyse wurde dabei im ProfiLe-P - Projekt der fachphysikalische Inhalt auf
,»Mechanik fokussiert, wédhrend in den Projekten KilL / KeilLa mehrere Fachinhalte (Mechanik,
Elektrizititslehre, Optik, Thermodynamik, Atom- und Kernphysik, spezielle Relativititstheorie,
Festkorperphysik & Quantenmechanik) abgedeckt wurden.
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Betrachtungen auf inhaltlicher Ebene genutzt werden.

Diese projektiibergreifende Betrachtung soll, wie oben bereits angedeutet, die
Verallgemeinerbarkeit bzw. Allgemeingiiltigkeit etwaiger inhaltlicher Beschreibungen
untersuchen. Durch die bisher isoliert stehenden Modellierungen konnen beispielsweise
Untersuchungen der Entwicklung des FDW mithilfe der projektspezifischen Testinstrumente,
wie etwa zur Evaluation einer Lehrveranstaltung, keine allgemeingiiltigen inhaltlichen
Aussagen liber den Wissenszuwachs der Proband:innen treffen. Es bleibt unklar, ob oder
inwieweit ein iiber beide Projekte dquivalenter Wissenszuwachs auf Basis quantitativer Scores
auch dhnliche Zuwéchse in der Fahigkeit konkrete Anforderungen zu bewiltigen beschreibt.
Unter Umstidnden kann auch aus methodischer Sicht die Vorgehensweise selbst als Vorlage fiir
projektiibergreifende Analysen in Fallen dienen, in denen eine direkte gemeinsame quantitative
Analyse nicht moglich ist, da sich Testinstrumente und Stichproben unterscheiden bzw. sogar
beide disjunkt sind.

AbschlieBend werden Limitationen und Anwendungsmoglichkeiten der erhaltenen
inhaltlichen Beschreibungen von Ausprigungen des FDW diskutiert. Dariiber hinaus werden
Optionen fiir weiterfithrende Forschung erortert.

4.2. Theoretischer Hintergrund

Das Professionswissen von Lehrkridften wird in der Tradition Shulmans (1986, 1987)
iiblicherweise in Fachwissen (FW), Pddagogisches Wissen (PW) und FDW gegliedert
(Baumert & Kunter, 2006; speziell fiir das Fach Physik vgl. Riese, 2009). Das FDW wird
demnach als dasjenige Wissen aufgefasst, welches zur adressatengerechten Aufbereitung des
FW notwendig ist und stellt somit eine zentrale Komponente des Professionswissens dar
(Shulman, 1987). Nachfolgend wird das in diesem Beitrag fokussiert betrachtete Konstrukt des
FDW aus der Perspektive der Naturwissenschaftsdidaktik préizisiert und in relevante
theoretische Rahmungen eingebettet.

4.2.1 Fachdidaktisches Wissen

Die Modellierungen des FDW (im englischsprachigen und internationalen Raum auch
,Pedagogical Content Knowledge*, kurz PCK, genannt®’) unterscheiden sich zwar hiufig im
Detail (Gess-Newsome, 1999; Hume et al., 2019), gemein ist jedoch allen theoretischen
Grundmodellen die o. g. Auffassung von FDW als spezifisches Wissen von Lehrkriften,
welches zur adressatengerechten Aufbereitung von Fachwissen notwendig ist und mit den
anderen Doménen des Professionswissens (FW & PW) in Beziehung steht (Baumert & Kunter,
2006; Riese, 2009; Shulman, 1986). Dabei gibt es unterschiedliche strukturelle Ansitze, das
FDW in der Bandbreite von eher deklarativem Wissen bis hin zu gezeigten Handlungen zu
positionieren.

Einen prominenten Ansatz stellt hier das hdufig als , Kontinuumsmodell* bezeichnete
Konzept von Blomeke et al. (2015) dar, das Kompetenz als Kontinuum zwischen latenten
kognitiven Dispositionen und gezeigter Performanz in fiir die Profession spezifischen
Handlungssituationen beschreibt. Das in Testinstrumenten abrufbare FDW im hier

47



4. Empirisch-kriterienorientierte Analyse des FDWs angehender Physiklehrkrafte (Artikel 1)

beschriebenen Sinne ldsst sich in diesem Modell eher auf Seite der kognitiven Dispositionen
verorten, die wiederum eine Grundlage fiir situationsspezifische Fahigkeiten und Fertigkeiten
darstellen (Blomeke et al., 2015). International speziell im Bereich der Naturwissenschafts-
didaktik etabliert ist dariiber hinaus auch das sog. ,,Refined Consensus Model of PCK* (kurz
RCM, Carlson et al. 2019), welches das FDW in die Bereiche collective PCK (cPCK), personal
PCK (pPCK) und enacted PCK (ePCK) gliedert (siche auch Alonzo et al., 2019). Dabei stellt
cPCK die kollektive Wissensbasis der fachdidaktischen Community dar, pPCK das explizite
Wissen einzelner Akteur:innen und ePCK das internalisierte Wissen, welches sich durch
Performanz in spezifischen Situationen duflert. Eine knappe Gegeniiberstellung der beiden
theoretischen Ansitze des Kontinuumsmodells und des RCMs ist z. B. bei Kulgemeyer et al.
(2020, S. 4-7) zu finden. Beide Modelle nehmen dabei an, dass das FDW bzw. PCK eine
wichtige Voraussetzung fiir spéteres professionelles Handeln im Klassenzimmer ist.

Hierzulande ist eine Gliederung des FDW in drei Dimensionen iiblich (z. B. Gramzow,
2015; Kroger, 2019; Tepner et al., 2012). Dabei wird das FDW grundsétzlich als abhéngig vom
konkret betrachteten Fachinhalt (Dimension 1) aufgefasst. Im Falle der Physik sind dabei
konkrete Inhaltsgebiete wie beispielsweise ,,Mechanik®, ,,Optik* oder ,,Elektrizitatslehre* und
nicht libergeordnete fachliche Dimensionen wie ,,Erkenntnisgewinnung* gemeint. Weiterhin
umfassen die Modellierungen meist eine Dimension, die unterschiedliche fachdidaktische
Inhalte / Facetten (Dimension 2) wie beispielsweise Schiilerkognition oder Instruktions-
strategien abbildet. Es existieren zahlreiche Kataloge relevanter Facetten, die u. a. Kirschner
(2013) in einer Ubersicht gegeniibergestellt hat. Dabei ist auffillig, dass die Facetten Schiiler
und Schiilerkognition®’ sowie Instruktions- und Vermittlungsstrategien fast allen Modellier-
ungen gemein ist. Diese und die weiteren genutzten Facetten werden primidr aus den
urspriinglichen theoretischen Modellierungen des FDW (z. B. Carlson et al., 2019; Shulman,
1986), Analysen der Curricula der Lehrerbildung bzw. Literatur-Reviews (z. B. Kroger 2019;
Gramzow et al. 2013) sowie Expertenbefragungen zu Sicherstellung der curricularen Validitat
entsprechender Items (z. B. Gramzow 2015) abgeleitet. Auch die Items zu den o. g. Facetten
Schiiler und Schiilerkognition und Instruktions- und Vermittlungsstrategien wurden in den
entsprechenden Befragungen als curricular passend eingeschétzt (Gramzow 2015, S. 166-168).
Aus Griinden der Testokonomie und Zumutbarkeit wird bei der Entwicklung konkreter
Testinstrumente meist eine Auswahl entsprechender Facetten getroffen. Die dritte Dimension
der Itementwicklungsmodelle dient iiblicherweise zur Anreicherung der Anforderungsbereiche
der Testinstrumente (Klieme et al., 2003). So findet sich bei Tepner et al. (2012) sowie Kroger
(2019) eine Dimension ,,Wissensarten® (S. 19 bzw. 50) und bei Gramzow (2015) eine
Dimension ,,Kognitive Aktivitit™ (S. 104).

32 Die Facette wird hier wie im Original benannt und daher nicht geschlechtsneutral umformuliert.
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Abbildung 4.1 Itementwicklungsmodelle zu den Testinstrumenten nach Kroger (2019, S. 50) oben und Gramzow
(2015, S. 104) unten.

Fiir die Physik sind hier die Modelle des FDW, die den Testinstrumenten von Kroger (2019)
und Gramzow (2015) (zur Itementwicklung) zugrunde liegen, exemplarisch dargestellt
(Abbildung 4.1). Auffillig ist auch hier, dass in beiden Modellen jeweils eine Facette zu
Schiilerkognition und eine Facette zu Instruktionsstrategien enthalten ist. Auch Tepner et al.
(2012) schlieBen in ihrer Dimensionierung, die weitgehend Analog zu der von Kroger (2019)
aufgebaut ist, die Facette der Schiilervorstellungen explizit mit ein. Die anderen beiden
Facetten weichen jedoch voneinander ab. Fiir die Begriindung der Auswahl der entsprechenden
Facetten sei auf die Originalquellen (Gramzow, 2015, S. 96-105; Kroger, 2019, S. 46-47;
Tepner et al., 2012, S. 13—-16) verwiesen.

Speziell fir das Fach Physik belegen konkrete Forschungsergebnisse aus Quer- und
Langsschnitten signifikante Zuwéchse des FDW im Studium und Vorbereitungsdienst
(Kirschner, 2013; Kroger, 2019; Riese & Reinhold, 2012). Weiterhin zeigen sich im
naturwissenschaftlichen Bereich signifikante Zusammenhénge zwischen FDW und FW bzw.
PW (Riese & Reinhold, 2012; Schiering et al., 2019) und Zusammenhénge zwischen FDW und
Performanz in prototypischen Anforderungssituationen, wie beispielsweise (1) der
Unterrichtsplanung (Behling et al., 2022b; Riese et al., 2022b; Schroder et al., 2020), (2) dem
Erkldren physikalischer Phdnomene (Kulgemeyer et al., 2020; Kulgemeyer & Riese, 2018), (3)
dem Reflektieren iiber Unterricht (Kulgemeyer et al., 2021), (4) der kognitiven Aktivierung
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(Fortsch et al., 2016), (5) der Nutzung von physischen Modellen (Fortsch et al., 2018) sowie
(6) diagnostischen Handlungen (Kramer et al., 2021). Fiir den MINT-Bereich wurden zudem
(hdufig mediative) Einfliisse des FDW auf Aspekte der Unterrichtsqualitit bzw. des
Unterrichtserfolgs (Behling et al., 2022a, 2022b; Blomeke et al., 2022; Keller et al., 2017)
festgestellt. Diese Ergebnisse sind konform zu den theoretischen Annahmen, beispielsweise
der angenommenen Notwendigkeit von FDW zur Aufbereitung fachlicher Inhalte bei Shulman
(1986). Auch die angenommene Wirkkette der schulischen Bildung nach Terhart (2012) macht
diese Ergebnisse plausibel. Somit ist das besondere Augenmerk auf das FDW als wichtige
Dimension des Professionswissens sowohl empirisch als auch theoretisch zu rechtfertigen.

Statistische Zusammenhangs- und Mediationsanalysen in der Art der genannten Studien
zielen dabei naturgemill im Wesentlichen auf Schlussfolgerungen auf Basis quantitativer
Auspriagungen ab (Reinhold et al., 2017) und treffen dabei keine Aussagen iiber die
(inhaltliche) Art dieser Auspragungen. In der Folge stellen Mientus et al. (2022) im Rahmen
eines systematischen Reviews fest, dass in bisheriger internationaler Forschung zur
inhaltlichen Charakterisierung des FDW im MINT-Bereich primédr qualitative
Untersuchungsmethoden genutzt wurden. Weiterhin beobachten sie, dass quantitative
empirische Analysen, wenn auch zur Beantwortung unterschiedlicher Forschungsfragen und
Untersuchung unterschiedlicher Zusammenhénge, weitestgehend auf Globaleinschitzungen
abzielen.

4.2.2 Kompetenzniveaumodelle

Kompetenzniveaumodelle werden allgemein als geeignetes Mittel zur inhaltlichen
Beschreibung von hierarchischen Auspriagungen unterschiedlicher Konstrukte aufgefasst
(Beaton & Allen, 1992; Lok et al., 2016) und wurden beispielsweise in den Large-Scale
Schulleistungsstudien wie PISA und TIMSS zur inhaltlichen Beschreibung von
Féhigkeitsniveaus verwendet (Mullis et al., 2016; OECD, 2018). Die inhaltliche Beschreibung
entsprechender Ausprigungen auf Basis quantitativer Daten bietet dabei die Chance,
quantitative Ergebnisse und qualitative Beschreibungen zu verbinden. Die Nutzung der
Testdaten validierter Testinstrumente stellt hierbei auch ein Validititsargument fiir die
erhaltenen Niveaumodelle dar. Es existieren unterschiedliche Moglichkeiten, aus Testscores
inhaltliche Niveaumodelle abzuleiten, die sich deutlich unterscheiden. Woitkowski (2020)
stellt im Rahmen seiner Adaption eines dieser Verfahren eine Ubersicht u. a. des Scale-
Anchoring-Verfahrens und regressionsanalytischer Ansétze vor. Beide Verfahren nutzen ein
IRT*#-Modell als Ausgangspunkt, mit dem eine gemeinsame Abbildung von
Personenfahigkeiten und Aufgabenschwierigkeiten auf eine Skala mit inharenter Hierarchie
ausgenutzt wird, so dass Aufgaben und Personen direkt miteinander in Beziehung gesetzt
werden konnen (siehe z. B. Moosbrugger & Kelava, 2020; Neumann, 2014).

Im Scale-Anchoring-Verfahren wird iiber mehrere Schritte aus einem IRT-Modell ein
inhaltliches Niveaumodell gebildet (Mullis & Fishbein, 2020; OECD, 2018). Dabei werden
zunéchst Personengruppen mithilfe der Fihigkeits-Verteilungen gebildet (beispielsweise eine

3 IRT wird als Abkiirzung fiir Item Response Theorie verwendet.
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Gruppe mit niedriger, eine mit mittlerer und eine mit hoher Féhigkeit). Anschlieend werden
die Aufgaben gemil ihrer Losungshdufigkeit in den unterschiedlichen Personengruppen
wiederum in Gruppen eingeteilt. Die mittleren Schwierigkeitsparameter der Aufgabengruppen
dienen dann zur Bildung der Niveaugrenzen, da sie sich durch die Nutzung des IRT-Modells
direkt auf die Personenfihigkeiten beziehen lassen. Die inhaltlichen Beschreibungen der
Niveaus werden anschlieBend durch die Aufgaben, deren Schwierigkeitsparameter sich nahe
an den Niveaugrenzen befinden, erstellt. Der genaue Ablauf des Verfahrens wird auch in
Abschnitt 4.4 noch einmal bei der konkreten Anwendung deutlich. Die Niveaustruktur und die
inhaltlichen Niveaucharakterisierungen werden somit vollstindig induktiv aus dem Modell
abgeleitet, wodurch der qualitative Aufwand sich auf die inhaltliche (Re-)Analyse weniger
Aufgaben reduziert. Das Verfahren zeichnet sich dadurch durch vergleichsweise hohe
Objektivitdt und Effizienz aus. Allerdings ist eine moglichst grole Anzahl an Aufgaben an den
jeweiligen Niveaugrenzen fiir eine reliable Niveaucharakterisierungen hier optimal. Das Scale-
Anchoring-Verfahren wurde bereits mehrfach zur Analyse des FDW im deutschsprachigen
Raum eingesetzt (Schiering et al., 2023; Schiering et al., 2019; Zeller et al., 2022). In
Niveauanalysen im Kontext anderer Doménen des Professionswissens werden anstelle des
Scale-Anchoring-Verfahrens meist stirker theoriegeleitete Ansétze genutzt.

Eine Alternative zum  Scale-Anchoring-Verfahren bietet beispielsweise ein
regressionsanalytischer Ansatz (Blomeke et al., 2008b; Nold et al., 2008; Woitkowski, 2020).
Dazu werden schwierigkeitserzeugende Merkmale aus theoretischen Uberlegungen abgeleitet
(z. B. sprachliche Terminologie und Komplexitét kognitiver Bearbeitungsprozesse bei Konig,
2009) und die Aufgaben beziiglich dieser Merkmale gruppiert. AnschlieBend wird mithilfe
einer linearen Regression die Varianzaufklirung dieser Gruppierung bzgl. der
Aufgabenschwierigkeit bestimmt und somit die Eignung des Modells gepriift. Zeigt das Modell
eine ausreichende Passung, konnen wiederum die mittleren Aufgabenschwierigkeiten durch
das IRT-Modell als Niveaugrenzen aufgefasst werden (analog zu den Aufgabengruppen aus
dem Scale-Anchoring-Verfahren). Die Niveaucharakterisierungen ergeben sich dann implizit
durch die Beschreibung der schwierigkeitserzeugenden Merkmale. Da der regressions-
analytische Ansatz die Entwicklung eines Modells fiir schwierigkeitserzeugende Merkmale
und eine (Re-)Analyse aller Aufgaben bzgl. dieser Merkmale erfordert, ist er aufwéndiger als
das Scale-Anchoring-Verfahren. Auf der anderen Seite konnen mithilfe des
regressionsanalytischen Ansatzes (nach entsprechender theoretischer Vorarbeit) Informationen
aus allen Aufgaben und Expertenwissen bzgl. aller Aufgaben zur inhaltlichen
Charakterisierung mit herangezogen werden, weshalb dieser Ansatz gerade bei einer geringen
Anzahl verfiigbarer Aufgaben attraktiv ist. Besonders fiir eine projektiibergreifende Analyse
sollte das theoretisch zugrunde gelegte Modell schwierigkeitserzeugender Merkmale
unabhidngig vom konkreten Testinstrument sein. Im naturwissenschaftsdidaktischen Kontext
wurde der regressionsanalytische Ansatz bereits mehrfach bei Fachwissenstests eingesetzt
(Bernholt, 2010; Woitkowski, 2019; Woitkowski & Riese, 2017) .

4.2.3 Hierarchische Komplexitit des FDW

Bei den in Abschnitt 4.2.2 genannten regressionsanalytischen Ansétzen zur Kompetenzniveau-
ermittlung wurde als ,schwierigkeitserzeugendes Merkmal“ mehrfach ein Modell
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hierarchischer Komplexitit der Aufgabenanforderungen angelehnt an das ,,Model of
hierarchical Complexity* nach Commons et al. (1998) (siche auch Commons et al., 2014)
entwickelt bzw. fiir das jeweils fokussierte Konstrukt adaptiert. Die hierarchische Komplexitét
stellt dabei ein Schema dar, nach dem die Qualitét von Wissen als propositionales Netzwerk
im lernpsychologischen Sinne (z. B. Schnotz, 1994) eingeschitzt werden kann. Der
grundlegende Ansatz ist, dass hohere Qualitidt des Wissens nicht durch bloBe Breite, sondern
durch den Grad der Vernetzung des Wissensnetzwerks entsteht. Hohere Komplexitétsstufen
bauen dabei auf niedrigeren auf, indem sie die Wissensstrukturen dieser niedrigeren Stufen
reorganisieren. Es stellt somit einen etablierten, vereinheitlichten Ansatz dar, um die Qualitét
von Wissensstrukturen in unterschiedlichen Bereichen zu beschreiben (sieche Woitkowski &
Riese, 2017).

Das Modell hierarchischer Komplexitdt wurde also bereits in unterschiedlichen Kontexten
erfolgreich genutzt. Es umfasst allgemeine kognitive Prozesse und ist insofern auch fiir das
FDW ein aussichtsreicher Kandidat zur vereinheitlichten Beschreibung schwierigkeits-
erzeugender Merkmale. Da fiir das physikalische Fachwissen bereits ein Komplexitidtsmodell
existiert, welches mit Erfolg zur Modellierung von Niveaustufen genutzt wurde (Woitkowski
& Riese, 2017) wire es zudem wiinschenswert die Adaptierbarkeit dieses Modells fiir das FDW
zu Uiberpriifen (siche Abschnitt 4.4).

4.3. Ziele der Analyse

Die empirisch fundierte inhaltliche Beschreibung von Auspriagungen des FDW z. B. in Form
von Niveaumodellen stellt nach wie vor ein Desiderat fachdidaktischer Forschung dar. Eine
Moglichkeit der Beschreibung solcher Auspridgungen von Studierenden und Lerngruppen, ist
sowohl fiir individual- als auch systemdiagnostische Zwecke und die Entwicklung oder
Auswahl passender Fordermdglichkeiten notwendig. Bisher liegen jedoch von empirischer
Seite im deutschsprachigen Raum hauptséchlich quantitative, globale Analysen und Ergebnisse
zum FDW vor, in welchen die inhaltliche Komponente weniger fokussiert wurde. Erste
entsprechend inhaltlich angereicherte, kriterienorientierte Ergebnisse sind Projekt- bzw.
Testinstrument-spezifisch und stehen dadurch zunichst isoliert. Prinzipiell bieten IRT-
Modellierungen die Moglichkeit, auch Datensédtze zu unterschiedlichen Testinstrumenten zu
verbinden, indem Stichproben von Proband:innen die mehrere Testinstrumente bearbeiten
haben, gebildet werden oder indem identische Ankeritems in beiden Tests verwendet werden
(sieche z. B. Lee & Lee, 2018). Die nachtriagliche Erhebung von entsprechenden
Normstichproben gestaltet sich aber in der Fachdidaktik aufgrund kleiner Populationsgrof3en
und schwierigem Zugriff auf geeignete Stichproben meist nicht praktikabel. Eine
projektiibergreifende inhaltliche Beschreibung von Ausprigungen des FDW ist aber sowohl
zur Vergleichbarkeit von gefundenen quantitativen Auspriagungen des FDW unter der Nutzung
unterschiedlicher Testinstrumente als auch zur Validierung von Einordnungen von
Proband:innen vor dem Hintergrund einzelner Modellierungen notwendig.

Erst seit kurzem wird auch die inhaltliche Beschreibung von Auspriagungen des FDW auf
Basis quantitativer empirischer Ergebnisse in den Blick genommen. Dazu wurden erste
datenbasierte kriterienorientierte / inhaltliche Beschreibungen von Auspridgungen des FDW im
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Rahmen von IRT-Modellierungen entwickelt. Dabei wurde das Scale-Anchoring-Verfahren
(Mullis et al., 2016) auf die Daten aus dem KiL - Projekt (Schiering et al., 2019) sowie
vorldufigen Daten (N < 150) zu einer geschlossenen Version des in ProfiLe-P konzipierten
und verwendeten Testinstruments (Kulgemeyer et al., 2023) angewandt (Zeller et al., 2022).
Die Ergebnisse dieser Analysen deuteten in beiden Projekten auf iibergeordnete Parallelen
bzgl. der erhaltenen Niveaustufen hin: In niedrigen Ausprdagungen schien sich das FDW vor
allem auf reproduktive Aspekte zu beschrinken, wéhrend in hoheren Ausprigungen auch
kreative und evaluierende Elemente hinzukamen (Schiering et al., 2019, S. 224; Zeller et al.,
2022, S. 770). Um diese Beobachtung weiter zu systematisieren und ggf. zu bestétigen, soll in
diesem Beitrag eine erweiterte Niveauanalyse der Daten aus den KiL / Keil.a - Projekten von
Schiering et al. (2023) mit einer Re-Analyse des ProfiLe-P+ - Datensatzes im Rahmen von
Niveaumodellierungen inhaltlich verglichen werden. Dieses Vorgehen kann sich unter
Umstédnden als Vorlage fiir &dhnliche projektiibergreifende Betrachtungen in anderen
verwandten Felder erweisen.

Ziel dieses Beitrags ist also erstens die datengestiitzte kriterienorientiert-inhaltliche
Beschreibung von Ausprigungen des FDW, um damit zweitens die Verkniipfung der
Ergebnisse zweier unabhéngiger Large-Scale Studien (fiir fachdidaktische Grof3enordnungen)
auf Basis entsprechender inhaltlicher Ergebnisse zu ermoglichen. Dazu werden die folgenden
Forschungsfragen formuliert:

FFI1: Inwieweit lassen sich mithilfe des Scale-Anchoring-Verfahrens
projektiibergreifend inhaltliche Strukturen des FDW identifizieren und inhaltlich
charakterisieren?

FF2: Inwieweit lassen sich Stufen hierarchischer Komplexitit des FDW projekt-
iibergreifend identifizieren und inhaltlich charakterisieren?

Zunichst wird dazu analog zum Vorgehen von Schiering et al. (2023) das Scale-Anchoring-
Verfahren auf den ProfiLe-P+ - Datensatz angewendet. Der inhaltliche Vergleich der
Ergebnisse findet dann durch eine Gegeniiberstellung der erhaltenen Niveaubeschreibungen
statt. AnschlieBend wird ein Modell hierarchischer Komplexitit fiir das FDW zur
Niveaubildung mithilfe eines regressionsanalytischen Ansatzes ausgehend vom ProfilLe-P+ -
Datensatz vorgeschlagen und die Ubertragbarkeit auf die KiL / KeiLa - Daten untersucht. Es
wird dabei in den Blick genommen, ob mit den Scale-Anchoring-Analysen erhaltene
inhaltliche Parallelen sich durch ein solches Modell hierarchischer Komplexitét unterstiitzen,
erweitern oder erkldren lassen. Etwaige projektiibergreifende Strukturen bieten einerseits
Potentiale fiir die Nutzung als Grundlage fiir Feedback im Rahmen der Lehrpraxis, andererseits
erweitern sie den Forschungsstand um allgemein zutreffende Aussagen liber Auspragungen des
FDW.

4.4. Methoden

Zur Beantwortung der Forschungsfragen werden das Scale-Anchoring Verfahren und ein
regressionsanalytischer Ansatz zur Niveaubildung synchron auf die Daten der beiden Projekte
angewandt. Im Falle des Scale-Anchroing Verfahrens findet die projektiibergreifende Analyse
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durch die gemeinsame vergleichende Betrachtung der erhaltenen Niveauformulierungen statt.
Die regressionsanalytische Betrachtung fullt auf einem zu diesem Zweck entwickelten Modell
hierarchischer Komplexitét fiir das FDW. Die projektiibergreifende Analyse findet hierbei
durch die Uberpriifung der Anwendbarkeit des Komplexititsmodells auf beide Datensitze
statt. Beide in dieser Analyse verwendete Operationalisierungen lassen sich vor dem
Hintergrund des RCM im Rahmen des pPCK, d. h. dem ,,testbaren persénlichen FDW der
Proband:innen, interpretieren (siche Riese et al., 2022b fiir ProfiLe-P sowie Schiering et al.,
2023 fiir KiL / KeiLa).

Sowohl das Scale-Anchoring-Verfahren als auch der regressionsanalytische Ansatz
basieren auf einem IRT-Modell des jeweiligen Datensatzes. Fiir die KiL / Keila - Daten wurde
dasselbe IRT-Modell wie bei Schiering et al. (2023) verwendet. Fiir die ProfiLe-P+ - Daten
wurde nach einer Bereinigung des Datensatzes ein neues IRT-Modell erstellt. In beiden Fallen
wurde dabei das Paket ,,Test Analysis Modules* (Robitzsch et al., 2024) auf Basis der Statistik-
Software R (R Core Team, 2024) verwendet. Der Workflow der Analysen ist in Abbildung 4.2
dargestellt.

v

Regressions- Niveaubildung mit
analytische = Scale-Anchoring = ’

Niveaubildung

ProfiLe-P(+)
FDW-Datensatz

(N = 779)
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Komplexitat
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/”"IK,iL/KeiE:“\""‘\ (" IRT-Modell ‘ Regressions-
( FDW-Datensatz )ﬁ{ (] }— analytische  CJ§
\‘\1,_@{ =427) ~ MiM/ Niveaubildung (Schiering et al. 2023)

Abbildung 4.2 Analyse-Workflow der vorgestellten Untersuchung.

4.4.1 Testinstrumente und Stichproben

Der Datensatz des ProfilLe-P+ - Projekts (Vogelsang et al., 2019) beinhaltet 846 Bearbeitungen
des FDW-Testinstruments nach Gramzow (2015), das FDW in den Facetten
Schiilervorstellungen, Fachdidaktische Konzepte, Experimente und Vermittlung eines
angemessenen Wissenschaftsbegriffs sowie Instruktionsstrategien abbildet. Beschreibungen
des inhaltlichen Verstindnisses dieser Facetten haben Riese et al. (2017, S. 103—104) knapp
zusammengefasst. Beziiglich des fachphysikalischen Inhalts wurde sich im ProfilLe-P -
Projektverbund tibergreifend auf die Mechanik festgelegt, um zu diesem Bereich empirisch
trennbare Teilskalen auf Facettenebene erfassen zu konnen (Riese et al., 2015). Insgesamt
besteht das Testinstrument aus 20 offenen und 4 geschlossenen (Multiple-Choice) Aufgaben
und wurde im Rahmen des ProfiLe-P+ - Projekts in den Jahren 2016 bis 2019 von Bachelor-
und Masterstudierenden des Physik-Lehramts aus 12 deutschsprachigen Universitdten
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bearbeitet. Ein Beispielitem aus diesem Testinstrument ist in Abbildung 4.3 dargestellt. Aus
diesen Erhebungen blieben nach einer intensiven Bereinigung der Daten und dem Ausschluss
von unvollstindigen Bearbeitungen 779 Bearbeitungen (34 % weiblich, Studienjahr M =
2,11, SD = 1,75) fiir die hier verwendete Modellierung.

In den Projekten KiL und KeilLa wurde ein FDW-Testinstrument (Kroger, 2019; Sorge et
al., 2019) eingesetzt, welches FDW im Rahmen der fachdidaktischen Inhalte (analoge
Dimension zu den ,Facetten in ProfiLe-P+) Schiilerkognition, Instruktionsstrategien,
Curriculum und Assessment abbildet. Das inhaltliche Verstidndnis dieser Aspekte fiihrt Kroger
(2019, S. 46—47) genauer aus. Es wurde darauf abgezielt, das FDW bzgl. der fachlichen Inhalte
breit zu untersuchen und somit die fachphysikalischen Inhalte Mechanik, Elektrizititslehre,
Optik, Thermodynamik, Atom- und Kernphysik, spezielle Relativititstheorie, Festkorper-
physik sowie Quantenmechanik eingeschlossen.

Aufgabe 10 [27d]
Im Physikunterricht der Klasse 10 moéchten Sie als Ziel lhrer Unterrichtsstunde den Zusammenhang

zwischen Weg und Zeit (s ~ £2) beim freien Fall im Schiilerversuch erarbeiten lassen.

Im Klassengesprich wurden Vermutungen iiber denkbare Zusammenhdnge von Weg und Zeit
formuliert und an der Tafel zur Priifung durch Schiilerversuche festgehalten. Von den Schiilern
wurden ein linearer und ein nicht-linearer Zusammenhang vermutet.

Im Schiilerversuch lassen Schiilergruppen jeweils eine kleine Stahlkugel im Treppenhaus der Schule
aus verschiedenen Héhen fallen und messen die Zeit vom Loslassen bis zum Aufschlagen mit einer
Stoppuhr.

AnschlieRend tragen sie ihre Messergebnisse jeweils in ein Zeit-Weg-Diagramm ein und stellen die
von ihnen daraus gezogenen Schlussfolgerungen bei der abschlieBenden Prasentation auf Folien
dar.

Sie bemerken, dass die Gruppen zu keinem eindeutigen Ergebnis gekommen sind. Einige
prisentieren einen quadratischen, andere einen linearen, wieder andere einen nicht linearen
Zusammenhang.

Formulieren Sie eine angemessene Reaktion: Skizzieren Sie dazu stichwortartig lhr mégliches
Vorgehen im weiteren Unterrichtsverlauf, um ausgehend von der gegebenen Situation den

Zusammenhang s ~ tZ zu erarbeiten.

Abbildung 4.3 Beispielitem aus dem FDW-Testinstrument des ProfiLe-P+ - Projekts (Gramzow, 2015, S. 235).

Das Testinstrument besteht insgesamt aus 18 offenen und 21 geschlossenen Aufgaben. Ein
Beispielitem aus diesem Testinstrument ist in Abbildung 4.4 dargestellt. Der Datensatz des
KiL / KeiLa - IRT-Modells besteht insgesamt aus 200 Bearbeitungen dieses Testinstruments
aus der Querschnitterhebung des KilL - Projekts (2013, 12 Universititen) und 227
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Bearbeitungen aus den Langsschnitterhebungen des Keila - Projekts (2014 bis 2017, 20
Universititen)*.

Schiilerinnen und Schiilern fillt es oft schwer, die Newtonschen Axiome zur Losung konkreter
Aufgaben anzuwenden.

Betrachten Sie die folgende Situation: Ein kleiner Korper der Masse m bewegt sich reibungsfrei und
mit konstanter Geschwﬁndigkeit v nach rechts. Auf den Kérper wirken dabei drei Kriifte. Zwei davon
sind eingezeichnet. Sie bitten die Schiilerinnen und Schiiler, die dritte Kraft einzuzeichnen.

Bewegungsrichtung
»
V = const.

Welche physikalisch falsche Antwort wiirden Sie von den Schiilerinnen und Schiilern erwarten?

Mdgliche korrekte Antworten:

[Krafipfeil in Bewegungsrichtung] — Es muss eine Kraft fiir die Bewegung verantwortlich sein.
[Krafipfeil als Summe von F; und F»] — Reflexartiges Zeichnen eines Krifteparallelogramms.
[Krafipeil als Verlingerung von F;] — Summe aller Kréfte muss in Bewegungsrichtung zeigen.

Abbildung 4.4 Beispielitem aus dem FDW-Testinstrument des KiL — Projekts (Schiering et al., 2019, S. 225).

4.4.2 Item-Response-Modellierungen

Um moglichst vergleichbare Niveaumodelle zu konstruieren, wurde bereits bei der IRT-
Modellierung ein analoges Vorgehen zu der bereits bestehenden Analyse von Schiering et al.
(2023) gewdhlt. Aufgrund der fiir die Anwendung von Niveaubildungsverfahren
vergleichsweise geringen Aufgabenanzahl wurde ein eindimensionales Partial-Credit-Modell
(Masters, 1982) verwendet, wobei Thurstone-Thresholds zur Schitzung der
Itemschwierigkeiten bei polytomen Aufgaben verwendet wurden (Linacre, 1998). Zur
gemeinsamen Modellierung wurden Datensitze, die derselben Person sind, im Rahmen der
Methode virtueller Proband:innen (Davier et al., 2008) als unabhingige Datensitze modelliert,
d. h. jede Bearbeitung flie3t in die Modellierung als eigene ,,Datenzeile* ein, ohne dass weiter
beachtet wird, dass es sich um dieselbe Person handelt. Das erhaltene Modell fiir die ProfilLe-

3 Eine ausfiihrlichere Beschreibung der Stichproben der Projekte KiL und KeiLa kann in Schiering et al. (2023,
S. 8) gefunden werden.
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P+ - Daten wies mit einer EAP-Reliabilitdt von 0.71 und Item-Outfits im Bereich von 0.8 bis
1.2 hinreichende Fit-Qualitit fiir die weitere Analyse auf.

Fiir die Daten der KiL / KeilLa - Projekte wurde das bereits bestehende IRT-Modell von
Schiering et al. (2023) basierend auf 427 Bearbeitungen herangezogen. Auch hier waren die
Fit-Giitekriterien mit einer EAP-Reliabilitdt von 0.72 und Item-Outfits ebenfalls im Bereich
von 0.8 bis 1.2 zufriedenstellend.

4.4.3 Scale-Anchoring-Verfahren

Zur Beantwortung der ersten Forschungsfrage wurde das Scale-Anchoring-Verfahren (z. B.
Mullis et al., 2016) auf das IRT-Modell der ProfiLe-P+ - Daten angewendet. Im ersten Schritt
wurden dazu die Item- und Personenparameter gemeinsam auf eine praktikablere Skala mit
Mittelwert 500 und Standardabweichung 100 transformiert. AnschlieBend wurden drei
Probandengruppen durch eine dquidistante Zerlegung der Fahigkeitsskala gebildet (Abbildung
4.5). Zur absichernden Kontrolle, dass die so gefundenen Gruppen ausreichend unterschiedlich
(Woitkowski & Riese, 2017) waren, wurden inferenzstatistische Betrachtung mithilfe
verteilungsfreier Tests (Kruskal-Wallis und Mann-Whitney U Tests) nach dem Vorbild von
(Schiering et al., 2023) durchgefiihrt, die eine ausreichende Differenzierung der Gruppen
bestitigten (Tabelle 4.1).

Auf Basis dieser Probandengruppen wurden die Aufgaben analog zum von Schiering et al.
(2023 adaptiert nach Mullis & Fishbein, 2020) genutzten Schema in Aufgabengruppen
eingeteilt:

1. Aufgabengruppe 1: Mehr als 55 % der Personen aus Personengruppe 1 haben die
Aufgabe gel0st.

2. Aufgabengruppe 2: Mehr als 55 % der Personen aus Personengruppe 2 und weniger als
50 % der Personen aus Personengruppe 1 haben die Aufgabe gelost.

3. Aufgabengruppe 3: Mehr als 55 % der Personen aus Personengruppe 3 und weniger als
50 % der Personen aus Personengruppe 2 haben die Aufgabe gelost.

4. Aufgabengruppe 3+: Weniger als 50 % der Personen aus Personengruppe 3 haben die
Aufgabe gel0st.

Die Mittelwerte der Schwierigkeitsparameter der Aufgabengruppen dienten dann als
Schétzungen fiir die empirischen Niveaugrenzen. Auch hier wurden, um eine Vergleichbarkeit
zu Schiering et al. (2023) beizubehalten, anschlieBend an die Zuordnung der Aufgaben
verteilungsfreie  statistische Tests zur Uberpriifung der Unterscheidbarkeit der
Aufgabengruppen durchgefiihrt (Tabelle 4.2). Dabei wurde zudem das Abstandskriterium
iberpriift, d. h. es wurde getestet, ob eine Person mit einem Fahigkeitsparameter, der der
Niveaugrenze des Niveaus n entspricht, einer Aufgabe an der Niveaugrenze des Niveaus n +
1 mit einer Wahrscheinlichkeit von maximal 30 % (Beaton & Allen, 1992) 16st. Zur
inhaltlichen Charakterisierung der Niveaus wurden diejenigen Aufgaben herangezogen, die
sich nahe bei den Niveaugrenzen befinden.
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Abbildung 4.5 Personengruppen aus dem ersten Schritt des Scale-Anchoring-Verfahrens (ProfiLe-P+ - Daten).
Die Personengruppen wurden als dquidistante Abschnitte der (skalierten) Féhigkeitsparameter gewihlt. Das
Scale-Anchoring Verfahren erwies sich als robust gegeniiber leichter Verschiebungen dieser Abschnitte.

Tabelle 4.1 Beschreibung der Personengruppen aus dem ersten Schritt des Scale-Anchroing-Verfahrens (Profile-
P+ - Daten). Ein Kruskal-Wallis Test besttigte signifikante Gruppenunterschiede (x? (2) = 335, p < 0.001). In
der Tabelle sind anschlieBend paarweise Post-Hoc Mann-Whitney U Tests berichtet.

Gruppe Fihigkeitsspanne N M SD Differenz und p-Wert
1 325 -400 115 370 23 140 (W = 0,p < 0.001)
2 475 —550 218 510 19 143 (W = 0,p < 0.001)
3 625 —-700 76 653 22

Tabelle 4.2 Beschreibung der Aufgabengruppen aus dem zweiten Schritt des Scale-Anchroing-Verfahrens
(Profile-P+ - Daten). Ein Kruskal-Wallis Test bestitigte signifikante Gruppenunterschiede (y2 (3) =29, p <
0.001). In der Tabelle sind anschlieend paarweise Post-Hoc Mann-Whitney U Tests berichtet. Dabei ist der
Vergleichstest fiir die Aufgabengruppen 1 und 2 hier nur der Vollstindigkeit halber angegeben, da er aufgrund
der geringen Aufgabenanzahl in Aufgabengruppe 1 nicht sinnvoll interpretierbar ist - hier ist p = 0.096 bereits
der ,,minimal erreichbare* p-Wert beim Vergleich zweier Gruppen mit 2 und 5 Elementen.

Aufgabengruppe N M SD Differenz und p-Wert P Abstandskriterium
1 2 -1.57 0.24 1.06 (W = 0,p = 0.096) 0.26
2 5 -0.51 0.24 0.84 (W =2,p <0.001) 0.30
3 13 0.32 0.41 1.52 (W = 2,p < 0.001) 0.18
3+ 14 1.85 0.78
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Die Ergebnisse der Anwendung des Scale-Anchoring-Verfahrens beider Projekte sind in
Abbildung 4.6 und Abbildung 4.7 und dargestellt. Die sich aus diesen Ergebnissen ergebenden
inhaltlichen Niveaubeschreibungen und deren Gegeniiberstellung werden in Abschnitt 4.5.1
vorgestellt.
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Abbildung 4.6 Finale Wright-Map mit Ergebnissen des Scale-Anchoring-Verfahrens (ProfiLe-P+ - Daten).
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Abbildung 4.7 Finale Wright-Map mit Ergebnissen des Scale-Anchoring-Verfahrens (KiL/KeilLa) nach Schiering
et al. (2023, S. 15).
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4.4.4 Regressionsanalytisches Verfahren auf Basis eines Modells
hierarchischer Komplexitit des FDW

In der Naturwissenschaftsdidaktik zeigen Ansétze wie die bereits genannten Analysen von
Bernholt (2010) sowie Woitkowski und Riese (2017), dass das Modell der hierarchischen
Komplexitidt nach Commons et al. (1998) geeignet sein kann, Niveaustufen im Fachwissen auf
Basis theoretischer Uberlegungen zu definieren und erkliren. In einem weiteren Analyseschritt
wurde daher {berpriift, ob und inwieweit sich die gefundenen Gemeinsamkeiten in den
Niveaumodellen des FDW mithilfe eines Modells hierarchischer Komplexitit untermauern,
erkldren und ggf. erweitern lassen.

Zu diesem Zweck wurde zunichst ein Modell hierarchischer Komplexitét fir das FDW
entwickelt. Dazu wurden die bereits genannten Arbeiten zur Entwicklung von hierarchischen
Komplexitidtsmodellen fiir das Fachwissen von Woitkowski (2015) bzw. Woitkowski und
Riese (2017) auf das FDW iibertragen. Uber mehrere Iterationen hinweg wurde das in Tabelle
4.3 beschriebene 3-stufige Modell ausgearbeitet. Die Stufen ,, (1) Fakten “ und ,, (Il) Einstufige
Kausalitdt“ (Tabelle 4.3) umfassen die bloBe Reproduktion sowie die Verkniipfung einzelner
Wissenselemente und sind weitgehend analog zu den Stufen ,, (1) Fakten und ,, (IIl) Lineare
Kausalitdit* des Komplexititsmodells nach Woitkowski und Riese (2017, S. 41) angelegt. Die
Stufe ,, (1I) Prozessbeschreibungen “ von Woitkowski und Riese (2017) lieB sich auf das FDW
in der operationalisierten Form nicht tibertragen, da fiir das FDW weniger ,,Prozesse® im Sinne
eines zeitlichen Ablaufs als vielmehr Ursache-Wirkungs-Argumentationen im Zentrum stehen.
Daher wird die Stufe der Prozessbeschreibungen in die Einstufige Kausalitét integriert (siche
Tabelle 4.3). Die hochste hier betrachtete Komplexitétsstufe stellt somit die Stufe ,, (111)
Mehrstufige Kausalitdt™ dar. Sie tritt an die Stelle der Stufe ,,(IV) Multivariate
Interdependenz“ des Fachwissensmodells und umfasst mehrstufige Argumentationsstriange.
Wir argumentieren, dass es sich bei mehrstufigen Argumentationen um eine substanziell
hohere Anforderungsstufe im Sinne des Modells hierarchischer Komplexitét handelt, als bei
einstufigen Argumentationen, da hier mehrere mentale Schemata miteinander in Beziehung
gesetzt werden miissen und diese Beziehungen wiederum voneinander abhingig sind.

Um die Passung dieses Komplexitdtsmodells zu den empirischen Daten zu testen, wurden
die Aufgaben der jeweiligen Testinstrumente zunédchst disjunkt zu den Komplexitétsstufen
zugeordnet. Dies geschah durch die Analyse der jeweiligen Aufgabe vor dem Hintergrund der
in Tabelle 4.3 beschriebenen Komplexitétsstufen. Leitfragen der Zuordnung waren:

1. Erfordert die Aufgabe lediglich die Reproduktion von Fakten? (= Fakten)

2. Erfordert die Aufgabe die Analyse eines komplexeren Elements (z. B. beschriebene
Unterrichtssituation, Dialog, Zeichnung)? (= einstufige Kausalitét)

3. Erfordert die Aufgabe die Kreation eines komplexeren Elements (z. B. Beschreibung
eines Experiments, Beschreibung einer Handlungsoption)? (= einstufige Kausalitét)

4. Erfordert die Aufgabe mehrere Schritte im Sinne der Frage 2 und / oder Frage 3? (=
mehrstufige Kausalitit)

Beide dargestellten Beispielaufgaben (Abbildung 4.3 und Abbildung 4.4) werden somit der
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mehrstufigen Kausalitit zugeordnet. In der ProfiLe-P - Aufgabe muss zundchst eine
beschriebene Unterrichtssituation analysiert werden, um auftretende Problemstellen zu
identifizieren und anschlieBend miissen darauf aufbauend geeignete Handlungsoptionen
generiert werden, um diese Probleme zu bewiltigen®®. In der KiL / KeiLa - Aufgabe muss im
ersten Schritt eine komplexe Schiileraufgabe analysiert (und dabei mutmalBlich auch selbst
gedanklich korrekt geldst) werden und im zweiten Schritt davon ausgehend eine typische
falsche Losung mithilfe des Wissens iiber Schiilervorstellungen generiert werden>®.

Tabelle 4.3 Dreistufiges Modell hierarchischer Komplexitdt fir das FDW. Die Charakterisierung diente als
Grundlage fiir die Einordnung der Testaufgaben in das Komplexititsmodell und wurde an die jeweiligen Rater
gegeben.

(I Fakten
- Reproduktion einzelner, unverbundener Informationen
- Keine oder kaum Bezugnahme auf Situation oder sonstige Beschreibung
- Keine oder kaum Verkniipfung der genannten Informationen
- Beispiel: Nennen von Fakten zu einem Fachdidaktischen Konzept
(1) Einstufige Kausalit:it

- Verkniipfung von zwei oder mehr Fakten, Informationen oder AuBerungen zu einem
Produkt (z. B. Schlussfolgerungen, Argumentationen)

- Begriindungen, Analysen und Argumentationen mir nur einer Argumentations- /
Analysestufe

- Beispiel: (einstufige) Analyse oder Evaluation einer Situation
(111) Mehrstufige Kausalitit

- Begriindungen, Argumentationen, Evaluationen mit mehr als einer Argumentations- /
Analysestufe

- Alle Anforderungen, die komplexere Analysen / Argumentation verlangen als II

- Beispiel: Analyse und Evaluation einer Situation

Diese Zuordnung wurde pro Testinstrument durch zwei Personen durchgefiihrt. Die
Beurteileriibereinstimmung betrug beim ProfiLe-P - Testinstrument k¥ = 0.86 und beim KiL /
KeilLa - Testinstrument x = 0.82. Uneinigkeiten wurden durch eine kommunikative
Validierung (Steinke, 1999) geklért, sodass fiir beide Testinstrumente eine Konsens-
Aufgabenzuordnung vorlag. Tabelle 4.4 zeigt die Anzahl an Aufgaben pro Komplexitétsstufe
nach Projekt getrennt. Diese Zuordnung wurde anschliefend genutzt, um mithilfe einer

35 Eine ,analoge” Aufgabe in der einstufigen Kausalitit wire beispielsweise die reine Kreation eines
Unterrichtsverlaufs zum Fallgesetz.

3 Eine ,,analoge Aufgabe in der einstufigen Kausalitéit wire dies beispielsweise dann, wenn eine typisch falsche
Losung aufgrund von Schiilervorstellungen bereits eingezeichnet wire und lediglich die zugehorige
Schiilervorstellung identifiziert werden miisste.
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linearen Regression der Aufgaben-Schwierigkeitsparameter gegen die Aufgabenzuordnung
zum Komplexitidtsmodell die Passung auf die jeweiligen Datensétze und somit die ,,Giiltigkeit*
des Komplexitdtsmodells fiir die jeweils abgebildeten Konstrukte einzuschétzen (Abschnitt
4.5.2).

Tabelle 4.4 Anzahl an Aufgaben in den Komplexitétsstufen nach Projekt getrennt. Die Gesamtaufgabenanzahl
weicht hier fiir beide Testinstrumente von den in Abschnitt 4.4.1 ab, da Punkteschwellen (z. B. 1 vs. 2 Punkte) im
Rahmen der Partial-Credit Modellierung getrennt wurden.

Komplexititsstufe N Profile-P N KiL/KeiLa
I — Fakten 13 12
II — Einstufige Kausalitét 23 34
IIT — Mehrstufige Kausalitit 7 10

4.5. Ergebnisse

4.5.1 Scale-Anchoring-Verfahren: Niveauformulierungen und Vergleich

Der zentrale Gegenstand des Scale-Anchoring-Verfahrens ist die erhaltene Wright-Map mit
den entsprechenden Zuordnungen und Werten (Abbildung 4.6 und Abbildung 4.7) Fiir beide
Datensitze zeigt sich hier ein vergleichsweise homogenes Bild, d. h. die Aufgabengruppen
zerfasern nicht stark {iber die Schwierigkeitsspanne hinweg. Gleichzeitig zeigen die
statistischen Betrachtungen (Tabelle 4.1 und Tabelle 4.2 sowie Schiering et al., 2023, S. 14—
15) die empirische Trennbarkeit der Stufen. Im Falle des ProfiLe-P+ - Modells erkennt man,
dass das Testinstrument vergleichsweise schwierig fiir die Zielgruppe ist. Dementsprechend
stehen fiir die Charakterisierung der unteren Niveaus nur wenige Aufgaben zur Verfiigung, was
die spatere Interpretation erschwert. Die Niveauformulierungen auf Basis der Aufgaben nahe
der entsprechenden Niveaugrenzen sind in Tabelle 4.5 zusammengefasst, wobei eine
Loslosung vom fachlichen Inhalt der jeweiligen Aufgabe hier vorerst nicht forciert wurde, da
allgemein eine Abhéngigkeit des FDW vom jeweils nétigen FW angenommen wird.

Fir die projektiibergreifende Analyse werden die erhaltenen Niveaustufen aus beiden
Datensétzen verglichen. Es zeigen sich keine auftilligen Parallelen in den fachlichen und
fachdidaktischen Inhalten. Demgegeniiber sind allerdings Gemeinsamkeiten der
Niveaubeschreibungen bzgl. der auftretenden lernpsychologisch interpretierbaren Operatoren
(Tabelle 4.6) auftillig. In den niedrigen Niveaus 1 und 2 treten primédr Operatoren, welche
reproduktive Aspekte beschreiben (griin in Tabelle 4.6), auf. In den hoheren Niveaus kommen
Operatoren, die kreative (gelb in Tabelle 4.6) und bewertende (rot in Tabelle 4.6) Aspekte
beschreiben, hinzu. Es zeigt sich eine deutliche Parallele beziiglich des Auftretens dieser
Operatoren auf den jeweiligen Niveaus.
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Tabelle 4.5 Gegeniiberstellung der Scale-Anchoring Niveauformulierungen der Profile-P+ - und KiL/KeilLa -
Modelle. Die jeweiligen Aufgaben, auf die sich der Aspekt bezieht, sind in Klammern mit angegeben.

Profile-P+

KiL/KeilLa

(Ubers. nach Schiering et al. 2023, S. 15)

Schiilervorstellungen: Studierende konnen
einzelne Ursachen fiir die Entstehung von
Schiilervorstellungen nennen. (A4.1)

Schiilervorstellungen: Studierende unterscheiden in ihrer Charakterisierung
wissenschaftliche Modelle von der géngigen Schiilervorstellung, weil sie ein
wissenschaftliches Modell nicht als richtig oder falsch, sondern als geeignet fiir
die Erklarung eines Phanomens charakterisieren. (A32.1)

— Experimente: Studierende konnen einzelne

g Ziele des  Experimentierens  im | Instruktionsstrategien: Studierende kennen typische Merkmale des

.E Physikunterricht nennen. (A3) entdeckenden Physikunterrichts. (A14.1)

Curriculum: Studierende kennen Bedeutungsdimensionen der
Wissenschaftsgeschichte fiir den Physikunterricht. (A19.2, A19.3)
Curriculum: Studierende konnen zwischen zwei der drei Leistungsniveaus von
Aufgaben unterscheiden. (A22.2)

Schiilervorstellungen: Studierende konnen | Schiilervorstellungen: Studierende kennen typische und untypische

einzelne problematische AuBerungen, die | Schiilervorstellungen im Bereich des Elektromagnetismus. (A1.1)

.. durch Schiilervorstellungen zum Thema ST I Sl ol . i

& Rl chii erw{rste g tu et Lol Gaadic xpenmenfe planen, um zu

2 (A8.1) demonstrieren, dass die menschliche Haut keine Temperatur misst. (AS.1)

&) .

z el oneasie S tAS}*hul.ervorst}ellhfgz‘gfln.NSItu}(liujirem(iie kc;lngen dz.is Verst;n((iims de[i 7Sclhuler.1nnen
T e N tir wissenschaftliche Methoden durch Experimente fordern. (A7.1)
Rekonstruktion er- kennen und nennen. | gssessment: Studierende kénnen zwischen allen drei Leistungsniveaus fiir
(A19.1, A23.1) Aufgaben unterscheiden. (A22.3)

Experimente: Studierende konnen erste Planungselemente in Bezug | Instruktionsstrategien: Studierende kennen typische
auf eine situationsspezifische Unterrichtssituation zum Thema | Merkmale verschiedener Unterrichtsmethoden. (A14.3)
gleichmaBig beschleunigte Bewegung entwickeln. (A10.1) . . .

. .. . . . . Curriculum: Studierende konnen Themen (z. B. zur
Studierende konnen mehrere Ziele des Experimentierens im Eloktriziti 36 dem Spiral d AlS.1

& T —— ) ektrizitit) gemaB dem Spiralansatz anordnen. (A18.1)

= ) . . B o e,

§ Schiilervorstellungen: Studierende konnen manche issfess];nent. HStgd;e;er;]de dkonnesn, PG (;hmze

z Schiilervorstellungen aus Schiilerduerungen zum Thema Kraft und D}l gaken b1n51c tlic A24els tammes - un er
Reibung rekonstruieren. (A21b) e ST CHlEE TP ST, (R )

Instruktionsstrategien: Studierende konnen die
Missverstandlichkeit eines Diagramms im Kontext der Kinematik
evaluieren. (A13)
Experimente: Studierende konnen | Schiilervorstellungen: Studierende konnen mogliche Quellen von
vollstindige Reaktionen in Bezug auf eine | Missverstandnissen in wissenschaftlichen Darstellungen identifizieren. (A31.1)
situationsspezifische Unterrichtssituation . . . . .
. s . Schiilervorstellungen: Studierende konnen die Vorstellungen der Schiiler:innen

zum Thema gleichmdflig beschleunigte ) ) X Lo

. zu wissenschaftlichen Experimenten (z. B. zum Versténdnis der Natur der
Bewegung entwickeln. (A10.2) . A )

Wissenschaft) durch Experimente zu fordern. (A7.4)

¥ Schiilervorstellungen: Studierende konnen . . . . .

& . ] Instruktionsstrategien: Studierende konnen Anweisungen auf der Grundlage des
mehrere Schiilervorstellungen aus einem L - o > . X

g .. . . Verstiandnisses der Schiiler erstellen, die ihnen helfen, ihre wissenschaftlichen

S Schiilerdialog zum 3. Newtonsches Axiom K, . - A33.1

-% rekonstruieren. (A1b.2) DUZRHH AN ETEL 1)

Studierende
konnen das Vorgehen einer Lehrkraft zum
Erkldren des 3. Newtonschen Axiom
evaluieren. (Ala.)

Instruktionsstrategien:

Curriculum: Studierende konnen auBlerschulische Aktivititen im Hinblick auf
das Lernen der Schiiler zu begriinden. (A23a.1)

Assessment: Studierende konnen Validitdt hinsichtlich eines Physiktests
definieren. (A27b.1)

Assessment: Studierende konnen Aspekte der Kompetenz der Schiiler zu
identifizieren, die durch Aufgaben bewertet werden konnen. (A28.1)
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Tabelle 4.6 Gegeniiberstellung der Scale-Anchoring Niveauformulierungen der Projekte. Die Operatoren der
KiL/KeilLa - Ergebnisse wurden aus Schiering et al. (2023) {ibersetzt.

Niveau ProfiLe-P+ KiL/KeiLa

1 nennen, erkennen unterscheiden (x2), kennen (x2),
charakterisieren

2 nennen, erkennen (x2) unterscheiden, kennen,

planen, férdern

3 nennen, kennen
entwickeln, rekonstruieren, anordnen
evaluieren bewerten
3+ definieren
entwickeln, rekonstruieren, identifizieren (x2), erstellen, fordern,
evaluieren begriinden

4.5.2 Passung eines Modells hierarchischer Komplexitit des FDW zu den
Testdaten

Zur Einschitzung der Passung des Modells hierarchischer Komplexitit bzw. der Nutzbarkeit
von Stufen hierarchischer Komplexitét als schwierigkeitserzeugendes Merkmal des FDW
wurden Regressionsanalysen fiir beide Testinstrumente bzw. beide Datensétze durchgefiihrt.
Die Zuordnungen zu den Komplexititsniveaus werden dabei als 3 Dummy-Variablen kodiert
(Woitkowski & Riese, 2017). Die Ergebnisse der Regressionsanalysen sind in Tabelle 4.7
zusammengefasst und Abbildung 4.8 illustriert diese mithilfe von Violinplots.

Sowohl Abbildung 4.8 als auch die Varianzaufklirung von R? = 0.39 (multiples R?) im
Regressionsmodell (F (2,40) = 12.77, p < 0.001) zeigen, dass das Komplexitidtsmodell fiir
den Datensatz aus ProfiLe-P+ einen substanziellen Anteil der Varianz der Aufgaben-
schwierigkeit aufklirt. Hier wére es durchaus geeignet, als Niveaustufenmodell fiir das FDW
herangezogen zu werden. Allerdings ist dies fiir den Datensatz aus KiL / KeiLa nicht in gleicher
Form moglich. In Abbildung 4.8 zeigt sich nur ein leichter tendenzieller Anstieg der
Aufgabenschwierigkeiten mit zunehmendem Komplexititsniveau. Das Regressionsmodell
selbst wird nicht signifikant (F (2,53) = 1.13, p = 0.33) und klirt weniger als 5 % (R? =
0.041) der Varianz der Aufgabenschwierigkeit auf.

Die Komplexititsstufen scheinen also nicht geeignet, um eine vom Testinstrument
unabhingige Beschreibung von inhaltlichen Auspriagungen des FDW liefern zu konnen. Es
wird daher hier darauf verzichtet, mogliche Wright-Maps mit Personenzuordnungen in die
Niveaus abzubilden.
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Tabelle 4.7 Ergebnisse der Regressionsanalysen zur Passung des Komplexititsmodells an die Daten.
Signifikanzniveaus p<0.05: *, p<0.001: ***. Das Regressionsmodell ist so konfiguriert, dass die Regressions-
konstante den Mittelwert der Schwierigkeiten der Komplexititsstufe I - Aufgaben beschreibt. Die Mittelwerte der
anderen Stufen ergeben sich durch Addition ihrer jeweiligen Regressionsparameter zur Konstanten. Die
Signifikanzniveaus geben an, ob die jeweiligen Schétzer signifikant von 0 verschieden sind. Auch wenn diese
Frage hier zweitrangig ist, sind die Signifikanzniveaus der Vollstdndigkeit halber hier mit angegeben.

Regr. — Parameter b; Regr. — Parameter b;

Komplexititsstufe ProfiLe-P+ KiL/KeiLa

Konstante (= I - Fakten) —0.11 (n. s.) —0.11 (n. s.)

II - Einstufige Kausalitit 0.71* 0.18 (n. s.)

III - Mehrstufige Kausalitit 2 15%** 0.77 (n. s.)
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Abbildung 4.8 Violinplots der Item-Schwierigkeiten beider Projekte mit Einordnung in die Stufen hierarchischer
Komplexitit. Die Formen stellen die Wahrscheinlichkeitsverteilung der Datenpunkte dar; die Punkte sind die

tatsdchlichen Schwierigkeiten der Aufgaben.

4.6. Diskussion

Ziel dieses Beitrags war es, zu Uberpriifen, inwieweit sich projektiibergreifend inhaltliche
Ausprigungen des FDW mithilfe des Scale-Anchoring-Verfahrens sowie eines
regressionsanalytischen Ansatzes zur Bildung von Niveaumodellen finden lassen. Solche
inhaltlichen Beschreibungen von Auspragungen stellen eine notwendige Voraussetzung fiir die
gewinnbringende Ubertragung der Forschungsergebnisse in die Lehrpraxis dar und sind
dariiber hinaus von ibergeordnetem Interesse fiir das Forschungsfeld. Die
projektiibergreifende Analyse stellt zudem einen Forschungsansatz in Richtung einer
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vereinheitlichten Beschreibung des FDW nicht nur auf theoretischer, sondern auch auf
empirischer Ebene dar. Die verwendete Methode der Uberfiihrung quantitativer Ergebnisse in
Niveaumodelle mithilfe von IRT-Analysen kann ggf. als Vorlage fiir andere verwandte Felder
dienen.

Zunichst wurden die durch das Scale-Anchoring-Verfahren erhaltenen Niveau-
beschreibungen der Projekte gegeniibergestellt. Es zeigten sich dabei keine Ahnlichkeiten bzgl.
fachlicher oder fachdidaktischer Inhalte, aber bzgl. des Auftretens von Handlungsoperatoren,
die sich auf einer lernpsychologischen Ebene interpretieren lassen. Dabei fillt die Limitation
der beschriankten Anzahl an Aufgaben fiir die Beschreibung des ersten Niveaus in ProfiLe-P(+)
- Daten weniger ins Gewicht, da die beobachtete Systematik bzgl. des Auftretens der
Operatoren hier fiir Niveau 1 und Niveau 2 gilt. Die so erhaltenen Abstufungen sind insgesamt
konform mit Ergebnissen der Kognitionspsychologie zum Wissenserwerbsprozess (z. B.
Gagné & White 1978) und lassen sich mit Standard-Taxonomien, wie beispielsweise der auf
Lehr-Lernprozesse angepassten Bloom’schen Taxonomie nach Anderson und Krathwohl
(2001; Erinnern, Verstehen, Anwenden, Analysieren, Bewerten, Kreieren) in Verbindung
setzen. Insgesamt lisst sich somit auch die unsystematische Beobachtung zu Ahnlichkeiten in
den Niveaumodellen der beiden Projekte (Abschnitt 4.3) im Sinne der FF1 bekréftigen:

FDW  beschrinkt sich unabhdngig von der konkret zugrundeliegenden
Operationalisierung in niedrigen Ausprdgungen auf reproduktive Aspekte und
erweitert sich in hoheren Ausprdgungen hin zu evaluierenden und kreierenden
Elementen.

Bemerkenswert ist hierbei, dass sich diese Parallele trotz einem deutlich groeren Anteil an
Anfangerstudierenden im ProfiLe-P+ - Datensatz (vgl. Abschnitt 4.4.1 und Schiering et al.,
2023, S. 8) zeigt.

Fiir den Transfer der Niveaumodelle in die Lehrpraxis zeigt sich, dass die durch das Scale-
Anchoring-Verfahren erhaltenen Niveaus fiir die Einordnung von Lernenden in Niveaus und
damit als Grundlage fiir das Erstellen entsprechenden Feedbacks geeignet sind. Die Niveaus
und somit entsprechendes Feedback sind aber bzgl. des fachdidaktischen Inhalts abhéngig vom
jeweils verwendeten Testinstrument bzw. zugrundeliegender Modellierung. Das ist nicht direkt
iiberraschend, da die beiden Testinstrumente nur in zwei von vier fachdidaktischen Facetten
ibereinstimmen und zudem im KiL / Keila - Testinstrument zusétzliche physikalisch-
fachliche Inhalte thematisiert werden.

Es konnte gezeigt werden, dass die projektunabhingigen Systematiken entsprechender
Niveaus primir eher allgemeine lernpsychologische Abstufungen darstellen, bzgl. derer dann
auch projektunabhéngige Aussagen unter Verwendung eines einzelnen Testinstruments
getroffen werden konnen. Eine Einordnung von einzelnen Lernenden oder Lerngruppen in die
Scale-Anchoring-Niveaus wiirde projektunabhéngig bislang also beispielsweise eine
Entscheidungshilfe fiir Lehrende bzgl. des Wechsels von eher theoretischen Lerninhalten (z.
B. Vermittlung von FElementen entdeckenden Unterrichts) hin zu praxisorientierteren
Elementen (z. B. Evaluation von Unterrichtsbeobachtungen) bieten. Auch beziiglich dieser
lernpsychologischen Stufung kann eine Niveau-Einordnung allerdings noch keine
differenziertere Empfehlung fiir eher kreative oder eher evaluierende Lerninhalte fiir Lernende
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auf den hoheren Niveaus unterstitzen.

Aus theoriebildender Perspektive zeigen die Ergebnisse des Scale-Anchoring-Verfahrens,
dass bei Austausch des fachlichen Inhalts sowie der fachdidaktischen Facetten bei ansonsten
nahezu identischen theoretischen Annahmen in der Operationalisierung im Wesentlichen
allgemeine kognitive Anforderungen als gemeinsame Systematiken einer hierarchischen
Modellierung des FDW verbleiben. Es stellt sich also die Frage, ob aus Datenanalysen der
Erhebungen mit entsprechenden Testinstrumenten abgeleitete Aussagen nicht grundsétzlich
enger an die einbezogenen fachlichen (hier: physikalischen) Inhalte und fachdidaktischen
Facetten gekoppelt sein miissten. Andererseits kann man die Ergebnisse des Scale-Anchoring-
Verfahrens in folgendem Sinne auch als (Konstrukt-) Validitdtsargument fiir die verwendeten
Testinstrumente auffassen: In den beiden Testinstrumenten weichen die fokussierten Inhalte
bzgl. der ersten zwei Dimensionen (1. fachphysikalische Inhalte und 2. fachdidaktische Inhalte
/ Facetten) der duBlerst dhnlichen Itementwicklungsmodelle voneinander ab. Die sich zeigende
iibergeordnete Niveaustruktur ldsst sich anschlieBend gerade durch die vergleichbare iibrige
Facette der ,,kognitiven Aktivierung* (Gramzow, 2015) bzw. ,,Wissensarten* (Kroger, 2019;
Tepner et al., 2012) interpretieren. Dadurch werden die Annahmen der Operationalisierungen
bzgl. einer entsprechenden Dimensionierbarkeit des FDW unterstiitzt.

Um die Vergleichbarkeit unterschiedlicher Operationalisierungen dariiber hinaus weiter zu
untersuchen, wiren Studien wiinschenswert, in welchen Proband:innen Testinstrumente aus
unterschiedlichen Projekten bearbeiten. Korrelations- und Faktorenanalysen entsprechender
Datensitze konnen ggf. weitere Aufschliisse iiber Gemeinsamkeiten und Unterschiede der
entsprechenden abgebildeten Konstrukte liefern. Fiir die Anwendung des Scale-Anchoring
Verfahrens wiren solche Datensétze auch interessant, da dann mehr Aufgaben in einem
gemeinsamen Datensatz vorliegen wiirden, sodass die Niveaus detaillierter beschrieben werden
und ggf. bisher unerkannte Systematiken zu Tage treten konnen.

Um die Ergebnisse der durch das Scale-Anchoring-Verfahren erhaltenen Stufen weiter
auszuschdrfen, wurde anschlieBend versucht, mithilfe der projektunabhingigen,
lernpsychologisch begriindeten Stufen hierarchischer Komplexitit die Varianz der
Aufgabenschwierigkeiten im FDW zu erkliren. Waiahrend das entwickelte Modell
hierarchischer Komplexitét sich als sehr passend fiir die Daten aus ProfilLe-P+ erwiesen,
zeigten sich trotz guter Ubereinstimmung der Aufgabeneinordnung in das Komplexititsmodell
fiir beide Testinstrumente deutliche Limitationen in Bezug auf die Ubertragbarkeit auf die
Daten der KiL / KeiLa - Projekte. Da das Komplexitidtsmodell aus dem ProfiLe-P+ - Team
heraus vorgeschlagen wurde, ist nicht auszuschlieen, dass es sich bei der mangelnden
Ubertragbarkeit auf KiL / KeiLa - Daten um ein Artefakt der Modellentwicklung handelt. Eine
Konfundierung des Komplexititsmodells durch bestimmte Uberzeugungen und Blickwinkel
auf das Konstrukt des FDW oder durch die Art der verwendeten Aufgabentypen des ProfiLe-
P+ - Testinstruments konnte hier eventuell nicht vollstindig vermieden werden. Das FDW
scheint als ,,amalgam‘ (Shulman, 1987) im Vergleich zum FW eine weniger stark kumulative
Struktur aufzuweisen, was die Konstruktion eines projektunabhédngigen theoretischen Modells
schwierigkeitserzeugender Merkmale erschwert. (Physikalisches) FW ist auch aufgrund der
starken Mathematisierung und damit verbundenen sehr klaren Beschreibbarkeit von Begriffen
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und Konzepten stark hierarchisch geprégt. Begriffe und Konzepte aus der Fachdidaktik sind
oft schwieriger exakt zu beschreiben und werden erst durch die gegenseitigen Beziehungen
greifbar (z. B. ,Didaktische Rekonstruktion®, , Elementarisierung® und ,,Schiilervorstel-
lungen®).

Das hier vorgeschlagene Modell hierarchischer Komplexitit allein stellt somit kein
geeignetes Modell zur projektiibergreifenden Aufklidrung der Aufgabenschwierigkeit dar.
Weitere mogliche Einflussfaktoren im Sinne eines ,,amalgams® sind z. B. der thematisierte
Fachinhalt, der sich in den beiden Projekten unterschied, das auftretende Fachvokabular oder
auch die theoretische Thematisierung unterschiedlicher didaktischer Inhalte zu
unterschiedlichen Zeitpunkten im Studium, d. h. die vorhandene Studienstruktur (Schiering,
2021). Letzteres kann auch einen Ansatzpunkt bieten, um zu erkldren, weshalb auch auf hohen
Niveaustufen offenbar teilweise noch neue deklarative Aspekte hinzukommen (siehe Tabelle
4.5 & Tabelle 4.6). Die Interaktion der genannten und weiterer moglicher Einflussfaktoren,
scheint die hierarchische Struktur des FDW deutlich komplexer werden zu lassen, als mit
einem stark verdichteten Modell hierarchischer Komplexitit fassbar ist. Fiir eine umfassendere
regressionsanalytische Niveaubildung mit einer groBeren Anzahl an mdglichen
schwierigkeitserzeugenden Merkmalen wiren allerdings Testinstrumente mit einer deutlich
groBeren Anzahl an Testitems notwendig, damit entsprechenden multivariaten Regressions-
modellen eine ausreichende Datengrundlage geboten wird.

Insgesamt konnten in diesem Beitrag vor allem mithilfe des Scale-Anchoring-Verfahrens
trotz Unterschieden in der Testinstrument-Konzeption besonders hinsichtlich fachlicher und
fachdidaktischer Inhalte projektiibergreifende kriterienorientierte  Systematiken von
Auspriagungen des FDW ermittelt werden. Limitiert werden diese Beschreibungen vor allem
durch die aus Griinden der Testokonomie und Zumutbarkeit vergleichsweise kleinen
Aufgabenanzahl der FDW-Testinstrumente. So kann etwa in den hoheren Niveaustufen keine
Hierarchie zwischen kreierenden und evaluieren Elementen festgestellt werden. Es ist also
noch weitere Forschung zu Vergleichen und zur Vereinheitlichung der empirischen Ergebnisse
notwendig.

Da fiir die oben vorgeschlagene Erhebung neuer Datensitze mit Proband:innen, die mehrere
Testinstrumente bearbeiten, grofle organisatorische Hiirden iiberwunden werden miissten, wire
es dafiir auch denkbar, ein gemeinsames IRT-Modell durch eine Normierung iiber die mittlere
Personenfihigkeit einer hinsichtlich relevanter demographischer Merkmale ununterscheid-
baren jeweiligen Unterstichprobe und anschlieBender konditionierter Schitzung der Item-
Schwierigkeiten aufzustellen. In einer neuerlichen Anwendung des Scale-Anchoring
Verfahrens konnten dann die Aufgabenschwierigkeiten auf Basis der fixen gemeinsam
normierten Personenparameter geschitzt werden und es stinde unmittelbar ein deutlich
vergroflerter Aufgabenpool fiir die Charakterisierung der Niveaustufen zur Verfligung. Dafiir
miissten sowohl die Stichproben noch einmal im Detail auf eine Vergleichbarkeit gepriift
werden als auch eine andere Software genutzt oder selbst entwickelt werden, da das hier
genutzte R-Paket TAM (Robitzsch et al., 2024) keine direkte Schitzung von Aufgaben-
schwierigkeiten unter fixierten Personenfahigkeiten ermoglicht.

Die Betrachtung der Systematiken bzgl. lernpsychologisch interpretierbarer Operatoren als

68



4. Empirisch-kriterienorientierte Analyse des FDWs angehender Physiklehrkrafte (Artikel 1)

Teil der inhaltlich kriterienorientierten Niveaubeschreibungen weisen auf eine praktikable
Anwendbarkeit von lernpsychologischen Taxonomien auf das FDW hin. Gleichzeitig scheinen
hierarchische Modelle evaluierende und kreative Elemente, die ab einer mittleren FDW-
Ausprigung auftreten, nicht trennen zu konnen. Eine Alternative zu hierarchischen Modellen
bieten Clusteranalysen (z. B. Duda et al., 2001) oder auch eng verwandte Latente Profil- oder
Klassenanalysen (z. B. Spurk et al., 2020), die im naturwissenschaftsdidaktischen Kontext
bisher nur wenig eingesetzt wurden (Zhai et al., 2020a; Zhai et al., 2020b). Daher bestehen in
diesem Kontext noch keine prototypischen Vorgehensweisen, die synchron auf Datensétze
unterschiedlicher Projekte angewendet werden konnten; die Entwicklung entsprechender
Vorgehensweisen ist hier also zunichst das Ziel weiterer Forschung. Fiir die Daten aus dem
ProfiLe-P+ - Projekt werden in diesem Kontext aktuell Vorgehensweisen erprobt, welche
Clusteranalysen der Scores (Zeller & Riese, 2023) mit Methoden zur Machine-Learning-
basierten Sprachanalyse der Sprachproduktionen der Proband:innen verbinden. Im Gegensatz
zu IRT-Modellen konnen solche Ansétze auch nicht-hierarchische Strukturen aufdecken und
hier womdglich zur Unterscheidung der Einfliisse von kreativen und evaluierenden Aspekten
dienen.
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4.7. Kommentare und Erginzungen

Das zentrale Ergebnis, d. h. die beobachteten Parallelen beziiglich der lernpsychologischen
Operatoren in den Scale-Anchoring-Niveaubeschreibungen (Tabelle 4.5 & Tabelle 4.6) hat fiir
das zweite Zielpaket der Arbeit den Fokus insbesondere auf die FDW-Dimension der
kognitiven Anforderungen (z. B. Abbildung 4.1) gelenkt. Auch, wenn in anderen FDW-
Modellen stattdessen teilweise die Dimension ,,Wissensarten* genutzt wird (Kroger, 2019;
Tepner et al., 2012), so deutet das Ergebnis des ersten Artikels darauf hin, dass sich die
Testaufgaben auch anderer Projekte im Rahmen einer gemeinsamen zugrundeliegenden
Struktur beziiglich kognitiver Prozesse interpretieren lassen. Fiir das zweite Zielpaket lag daher
der Fokus auf diese Dimension und die Nutzung einer entsprechenden lernpsychologischen
Taxonomie (z. B. Anderson & Krathwohl, 2001) nahe.

Auch wenn die regressionsanalytische Niveaubildung hier projektiibergreifend nicht
genutzt werden konnte, ist aus Griinden der Transparenz und Dokumentation die
Handreichung, die als ,,Manual“ zur Zuordnung von Testaufgaben zu den Niveaus
hierarchischer Komplexitit des FDW erstellt wurde, in Anhang B dieser Arbeit enthalten. Sie
stellt das Ergebnis eines iterativen Prozesses mit dem Ziel der Erreichung hoher Interrater-
Ubereinstimmung bei groBer Expressivitit dar. Diese Handreichung beschreibt implizit auch
das Verstindnis der einzelnen Stufen noch einmal deutlich.

Die Ergebnisse zum ersten Zielpaket haben den groBen Vorteil, dass sie projektiibergreifend
sind und somit einem besonders hohen Anspruch an Generalisierbarkeit und
projektiibergreifende Bedeutsamkeit geniigen. Dieser Ansatz wurde auch dadurch ermdglicht,
dass von Seiten des KiL / KeilLa Projekts bereits ein Ergebnis sowie ein etablierter Workflow
fiir Teile der Analyse vorlag.
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5. Competency Profiles of PCK Using Unsupervised
Learning (Artikel 2)

Einordnung in das Gesamtprojekt

In den Analysen zum ersten Zielpaket zeigten sich projektiibergreifende hierarchische
Strukturen, die inhaltlich im Kontext kognitiver Anforderungen interpretiert und beschrieben
werden konnten. Diese erhaltenen Kompetenzniveaus sind allerdings (a) inhaltlich recht grob
und (b) auf hierarchische Abstufungen beschrinkt. Insbesondere kann mit ihrer Hilfe keine
Unterscheidung zwischen Personengruppen mit Stiarken oder Schwichen in den interessanten
»oberen“ kognitiven Anforderungen wie dem Evaluieren oder Kreieren getédtigt werden.
Dementsprechend wurde anschlieBend eine nicht-hierarchische Analyse mithilfe von
Unsupervised-Learning-Methoden angestrebt, die primir auf den kognitiven Anforderungen
basiert. Zu diesem Zweck wurde das Testinstrument von drei Expert:innen beziiglich der
Taxonomie von Anderson und Krathwohl (2001) re-analysiert. Auch in diesem iterativen
Prozess wurde eine Handreichung fiir diese Zuordnungen erstellt, die in Anhang B zu finden
ist. Diese Handreichung beschreibt implizit auch das Verstindnis der einzelnen kognitiven
Anforderungskategorien noch einmal deutlich.

Die zur Vorbereitung der Cluster-Analyse somit angestrebte Zusammenfassung der Scores
zu den kognitiven Anforderungen kann iibergeordnet im Sinne der CGT als Pattern Refinement
Schritt aufbauend auf den Ergebnissen der Pattern Detection in Zielpaket 1 aufgefasst werden.
Die Cluster-Analyse selbst ist in dieser Betrachtung dann eine erneute Pattern Detection. Der
Fokus auf die kognitiven Anforderungen (gegeniiber beispielsweise den fachdidaktischen
Facetten) erhoht vor dem Hintergrund der Ergebnisse der Niveauanalysen die
Wahrscheinlichkeit einer projektiibergreifenden Bedeutsamkeit und Anwendbarkeit der
Ergebnisse der nicht-hierarchischen Analysen.

Ein direkt projektiibergreifendes Vorgehen wie in Artikel 1 war fiir die Analysen zum
zweiten (und dritten) Zielpaket im Rahmen dieses Projekts noch nicht mdglich, da die nicht-
hierarchischen Analysen hier in dieser Form erstmalig eingesetzt wurden und der Workflow
dabei erst entstanden ist. Mithilfe der entwickelten Python- und R-Tools (siehe auch Kapitel 6
& 7 sowie Anhang G) ist die Ubertragung des Analyseworkflows auf andere Projekte mit
dhnlichen (nicht nur FDW-) Datensétzen aber ohne groflen Aufwand moglich.
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Abstract

There have been several attempts to conceptualize and operationalize pedagogical content
knowledge (PCK) in the context of teachers’ professional competencies. A recent and popular
model is the Refined Consensus Model (RCM), which proposes a framework of dispositional
competencies (personal PCK - pPCK) that influence more action-related competencies
(enacted PCK - ePCK) and vice versa. However, descriptions of the internal structure of pPCK
and possible knowledge domains that might develop independently are still limited, being
either primarily theoretically motivated or strictly hierarchical and therefore of limited use,
e.g., for formative feedback and further development of the RCM. Meanwhile, a non-
hierarchical differentiation for the ePCK regarding the plan-teach-reflect cycle has emerged.
In this study, we present an exploratory computational approach to investigate pre-service
teachers’ pPCK for a similar non-hierarchical structure using a large dataset of responses to a
pPCK questionnaire (N=846). We drew on theoretical foundations and previous empirical
findings to achieve interpretability by integrating this external knowledge into our analyses
using the Computational Grounded Theory (CGT) framework. The results of a cluster analysis
of the pPCK scores indicate the emergence of prototypical groups, which we refer to as
competency profiles: (1) a group with low performance, (2) a group with relatively advanced
competency in using pPCK to create instructional elements, (3) a group with relatively
advanced competency in using pPCK to assess and analyze described instructional elements,
and (4) a group with high performance. These groups show tendencies for certain language
usage, which we analyze using a structural topic model in a CGT-inspired pattern refinement
step. We verify these patterns by demonstrating the ability of a machine learning model to
predict the competency profile assignments. Finally, we discuss some implications of the
results for the further development of the RCM and their potential usability for an automated
formative assessment.

Keywords: Pedagogical Content Knowledge - Machine Learning - Unsupervised Learning -
Language Analysis - Computational Grounded Theory
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5.1. Introduction

Since the early descriptions of teachers’ professional knowledge (e.g., Shulman, 1986, 1987),
extensive research has been conducted on its structure and development (e.g., Sorge et al.,
2019). Furthermore, research has explored its indirect impact on action-related skills among
teachers (e.g., Kulgemeyer et al., 2020) and its direct impact within classrooms (e.g., Ball et
al., 2001; Blomeke et al., 2022; Keller et al., 2017; Kunter et al., 2013). Given that studies have
repeatedly demonstrated the significant impact of teachers on student achievement (e.g., Hattie,
2003, 2012), high-quality teacher knowledge and training are essential.

The central component of teachers’ professional knowledge is the pedagogical content
knowledge (PCK, Shulman, 1986, 1987) and considerable research has been conducted
regarding its conceptualization and operationalization (Berry et al., 2015; Gess-Newsome &
Lederman, 1999; Hume et al., 2019; Park & Oliver, 2008). PCK can be summarized as the
knowledge that is necessary to teach a specific subject matter (e.g., the concept of energy in
physics or the redox reaction in chemistry) to specific students (Baumert & Kunter, 2006;
Shulman, 1987). Despite its significance, it remains challenging to assess the PCK’s inner
structure and typical competency levels on an empirical basis. Some hierarchical level models
have been developed using approaches based on item-response-modeling, which yielded
promising results (Schiering et al., 2023; Zeller et al., 2024). Nevertheless, these models are
methodically limited because they generate primarily hierarchical, relatively rough statements.
Non-hierarchical descriptions of PCK are usually not as empirically grounded. Such
approaches primarily aim at characterizing different content aspects from a theoretical
normative perspective. On the other hand, empirical studies are carried out, assessing PCK-
related performance in action, e.g., in the context of the “plan-teach-reflect cycle” (PTR cycle,
Alonzo et al., 2019; Behling et al., 2022b).

Therefore, more nuanced, potentially non-hierarchical, and empirically grounded
descriptions of the PCK’s fine structure are still in demand. Such descriptions could further
improve the current state of the internationally widely used Refined Consensus Model (RCM)
of PCK (Carlson et al., 2019) and thereby opening new avenues for research (e.g., learning
process studies). Furthermore, empirically grounded knowledge about the PCK’s fine structure
including typical levels and knowledge areas that can potentially be developed independently
from each other as well as the ability to assess such knowledge would be useful for improving
PCK learning opportunities, especially through formative assessment (e.g., Hattie &
Timperley, 2007).

To meet this demand, the present study offers a comprehensive examination of a dataset
(N = 846) that includes scores and textual responses to a well-established (e.g., Kulgemeyer
& Riese, 2018; Vogelsang et al., 2022) PCK questionnaire (cf. Gramzow et al., 2013). The
sample is composed of pre-service physics teachers from 12 German-speaking universities.
Through categorization of the questionnaire’s tasks into requirement categories and cluster
analyses of the scores, non-hierarchical “competency profiles” are derived. These get further
refined and supported by a computer-based probabilistic language analysis of the authentic
open-ended student responses to the questionnaire tasks. The findings indicate the existence of
distinct PCK competency profiles with tendencies for specific language use that can be
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interpreted through the lens of the aforementioned PTR cycle. We finally discuss the
implications of these findings from a theoretical perspective as well as the possibilities for their
use in an automated end-to-end assessment tool that can be used to provide content-rich
feedback to future pre-service teachers.

5.2. Theoretical Background

5.2.1 Conceptualization of Pedagogical Content Knowledge

Over the years, various conceptualizations and operationalizations of PCK have emerged.
There were several attempts to establish an international consensus model for PCK (Berry et
al., 2015; Gess-Newsome & Lederman, 1999) with the most recent model being the RCM of
PCK (Carlson et al., 2019; also see Hume et al., 2019). Following the RCM, PCK consists of
three main realms, the collective PCK (cPCK), the personal PCK (pPCK), and the enacted
PCK (ePCK). The cPCK describes the explicable, declarative knowledge base of the didactical
community (“bookish knowledge”). The pPCK describes the internalized yet still mainly
explicable knowledge of an individual (pre-service) teacher. Lastly, ePCK comprises the
situational knowledge that emerges in specific teaching situations. The latter is therefore highly
contextual, closely linked to the actions displayed in the particular situation, and thus, not
explicable anymore. The RCM posits that the three PCK-realms impact each other via filters
and transformation mechanisms, such as prior knowledge or professional beliefs (Carlson et
al., 2019). It has shown to be challenging to empirically assess such filters explicitly (e.g.,
Behling et al., 2022a).

For the ePCK, an additional differentiation in the form of the PTR cycle as a mechanism
through which ePCK is developed has been proposed by Alonzo et al. (2019). This mechanism
describes the development of ePCK by iterating through planning, teaching, and reflection
phases, both on a macroscopic (= whole lessons) and microscopic (specific teaching situations)
level. It is therefore assumed that specific ePCK components for each step of the PTR cycle
exist, 1.e., ePCKpian, e€PCKreacn, and ePCKefrect.

Another prominent model of professional competence, and PCK in particular, is Blomeke
et al.’s (2015) “Model of Competence” (MoC). This model postulates a continuum of
competence ranging from dispositions to performance. In the MoC PCK as a cognitive resource
is positioned closer to the dispositional side of the model (Kulgemeyer et al., 2020) while the
situational knowledge that emerges in specific teaching situations is positioned closer to the
performance side of the MoC. Although both models refer to similar cognitive resources, the
MoC and the RCM differ in their assumption of the relationship between PCK and other main
domains of professional competence, namely content knowledge (CK) and (general)
pedagogical knowledge (PK). The MoC places PCK, CK, and PK side-by-side on the same
level to elicit situation-specific performance. In contrast, the RCM views CK and PK as
foundational to PCK and PCK itself comprises situation-specific performance in the form of
ePCK. Amongst other reasons, these differences arise due to cultural differences in their
respective regions of origin, with the MoC being closer to a Central European transformative
model of PCK and the RCM being closer to an Anglo-American integrative model of PCK
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(Gess-Newsome, 1999; Mientus et al., 2022; Vollmer & Klette, 2023). As a consequence, the
“PCK” construct defined in the MoC corresponds primarily to the pPCK realm of the RCM
and the MoC contains the RCM’s ePCK within the situation-specific performance.

Roughly summarized, apart from the conceptual differences in the relationship between the
domains of professional knowledge (PCK, CK, & PK), the RCM can be viewed as a
discretization of the MoC’s continuum concerning PCK (for a more detailed discussion, see,
e.g., Kulgemeyer et al., 2020; Vollmer & Klette, 2023). Questionnaires that measure (pre-
service) teachers’ PCK can be interpreted as primarily assessing pPCK in the context of the
RCM or as focusing more on the dispositional edge of the MoC (e.g., Kulgemeyer et al., 2020;
Schiering et al., 2023). Figure 5.1 summarizes the described framework models of PCK and
professional competence (RCM and MoC) and shows the differences between the two models.
The positioning of the construct measured by our test instrument (see Methods section) in the
frameworks is highlighted in green.
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Figure 5.1 Framework models for PCK. The figure is inspired by Kulgemeyer et al. (2020) and comprises the
basics of the Model of Competence (Blomeke et al., 2015) and the Refined Consensus Model of PCK (Carlson et
al., 2019). We included the single ePCK components introduced in the context of the plan-teach-reflect cycle
(Alonzo et al., 2019). The positioning of the construct measured by the test instrument used in this study is
highlighted in green.

5.2.2 Structure and Development of Personal Pedagogical Content
Knowledge (pPCK)

While the theoretical conceptualization of the ePCK is focused on actual actions occurring in
the context of teaching and learning (e.g., planning, teaching, reflecting), theoretical
conceptualizations of the internal structure of pPCK typically focus primarily on two
dimensions: the associated CK and pPCK-subscales (Magnusson et al., 1999; Park & Oliver,
2008). The dependency on the associated CK stems from early descriptions by Shulman (1986,
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1987) and has been a widely accepted assumption ever since (e.g., Hume et al., 2019). The
pPCK-subscales describe different subsets of knowledge that are related to knowledge transfer.
Most models include the two main subscales that were already described by Shulman (1986),
namely instructional strategies and student cognition, but this collection is typically enriched
by additional components relevant to the particular study context (e.g., Kulgemeyer et al.,
2020; Magnusson et al., 1999; Park & Oliver, 2008; Schiering et al., 2023). The subscales are
typically identified through argumentative means, expert interviews, and curricular evaluations
of teacher education programs (ibid.). Some models that operationalize pPCK for an
assessment include an additional dimension representing different levels of cognitive activity
for the development of questionnaire tasks. This also holds for the development model of the
test instrument that was used to generate the dataset analyzed in this study (Gramzow, 2015).

Although conceptualizations such as pPCK-subscales or the separation of cognitive
activities provide an overview of the pPCK’s presumed inner structure, it remains mostly
unclear how empirically supported these distinctions are. Thus, it is uncertain whether these
knowledge domains represent discrete components that can be developed independently.
However, analyses of such potentially independent components would pose the potential for
(a) further development of the conceptualization of pPCK as well as (b) formative assessment
of PCK and construction of useful feedback for pre-service teachers.

To further investigate the internal structure of pPCK on an empirical basis, level analyses
using item-response models have recently been conducted (Schiering et al., 2023, Zeller et al.,
2024). Comparable analyses have also been carried out for CK (Woitkowski & Riese, 2017)
and PK (Ko6nig, 2009) in the German-speaking region and have yielded promising results. For
pPCK, the results of Schiering et al. (2023) and Zeller et al. (2024), independently of the
concrete context of the studies, found that the pPCK 1is limited to more reproductive, declarative
knowledge at lower levels and extends to more analytical, creative, and evaluative aspects at
higher levels.

Another line of research focuses on the relationship between pPCK and teaching practices
(e.g., GroBmann & Kriiger, 2022; Kulgemeyer et al., 2020; for a comprehensive review, see
Mientus et al., 2022). Behling et al. (2022b) were able to show that a learning opportunity
focused on cultivating the ePCK components assumed in the PTR cycle (plan, teach, reflect)
can also significantly increase the pPCK.

In summary, research on the empirical foundation of the internal structure of PCK is still
ongoing. For pPCK, level models in particular have been discussed, while for ePCK, more
action-related competencies have been investigated, e.g., based on the PTR cycle proposed by
Alonzo et al. (2019). The level models for pPCK inductively showed promising results in
describing different prototypes of pPCK in terms of operators that can be interpreted through
the lens of cognitive psychology, e.g., analyzing, evaluating, and creating (Schiering et al.,
2023; Zeller et al., 2024). However, these descriptions are rather general and methodically
limited to hierarchical views. Specifically, while these analyses showed that cognitive activities
can be used for project-independent descriptions of pPCK, the models by design are unable to
distinguish non-hierarchical groups of students. With the term “non-hierarchical” we refer to
groups of students that share the same overall pPCK level but differ in their competence w. r.
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t. specific knowledge areas. Analyses of such potential non-hierarchical groups, which we call
“pPCK competency profiles”, would (a) be beneficial to further develop the description of
pPCK beyond “lower” and “higher” levels and (b) enable the assessment and potential
feedback that can focus on specific strengths and weaknesses of individual students. Given the
ePCK’s non-hierarchical distinction in the context of the PTR cycle, it seems promising to
empirically study non-hierarchical structures of the pPCK as well. Imaginable is, e.g., a
distinction between “pPCK,, ", describing a declarative knowledgebase necessary for lesson-
planning, and “pPCK,eee”’, describing a declarative knowledgebase necessary for effective
reflection of teaching situations. Such a distinction would provide valuable insights into how
pPCK is typically structured and could be efficiently fostered in teacher education programs.
Therefore, our objective is to explore the emergence of such non-hierarchical structures for the
pPCK. We conduct cluster analyses that are capable of detecting such patterns (e.g., Duda et
al., 2001).

Cluster analyses, as a form of unsupervised Machine Learning, have been used only
sparingly in science education research, in part due to challenges regarding the interpretability
of the resulting structures (Zhai et al., 2020b). However, we argue that such approaches, when
embedded in appropriate methodological frameworks, offer opportunities for the discovery of
novel structures and information about non-hierarchical pPCK structures. Therefore, to
improve the interpretability of our exploratory unsupervised analyses, we use ideas and
concepts from the methodological framework developed by Nelson (2020), namely the
Computational Grounded Theory (CGT). To enable the reader to follow the analysis and
arguments, we explain some basic terminology and the CGT in more detail in the following
section.

5.2.3 Unsupervised Learning in the framework of Computational
Grounded Theory

The growing capabilities and increasing accessibility of Machine Learning (ML) methods have
stimulated research on frameworks for categorizing and directing the use of these methods in
science education research. Roughly speaking, ML can be described as the field of research
that aims to automate human tasks using computer-based methods by “learning” from data
(e.g., Géron, 2019). This learning process takes place through the application of various
algorithms, such as (linear/logistic) regression models and clustering models.

Zhai et al. (2020b) showed that the majority of ML applications in science education
research aim to automate assessment in supervised analysis settings. Supervised ML settings
involve the prediction of (typically) manually generated labels, also referred to as “target”,
given some so-called “feature”-variables by an automated model (e.g., Géron, 2019). This can
be the prediction of a specific class, e.g., the allocation to a certain group of people (target)
from the responses to a questionnaire (features). Zhai et al. (2020a) proposed a classification
framework for ML-based assessment in science education. They emphasized the potential of
these methods to evaluate more complex constructs, potentially leading to a fundamental shift
from simply replacing basic tasks to fundamentally redefining the assessment process and
generating new opportunities.
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Expanding ML applications beyond supervised settings is challenging. In unsupervised
settings, there is no pre-existing target variable to predict, unlike in supervised settings (e.g.,
Géron, 2019). Unsupervised methods, such as cluster analyses, aim to uncover new patterns in
data that can reveal previously unnoticed structures and generate fresh perspectives (Duda et
al., 2001). They are typically employed when the amount of data exceeds a human-processable
amount. To make new patterns and structures detected by unsupervised ML methods
interpretable, they need to be linked to human expert knowledge (e.g., Nelson, 2020; Sherin,
2013).

Sherin (2013) suggested that using algorithmic ML methods “in tandem” with human expert
knowledge and interpretive power can effectively leverage the potential of unsupervised
analysis and increase confidence in the results generated at the same time (Sherin, 2013, p.
602; cf. Rosenberg & Krist, 2021). Nelson (2020) proposed the CGT framework to effectively
guide such an in-tandem analysis. The CGT consists of three main steps:

(1) Pattern detection: Unsupervised techniques are used to identify new patterns and
structures in the data. In the case of questionnaire data, this might be a cluster analysis of
the available scores.

(2) Pattern refinement: The identified patterns are refined through in-depth analysis, i.e.,
human expert knowledge and interpretation power are introduced into the analysis. In the
case of questionnaire data, this may be the aggregation of scores in the form of subscales
or a language analysis of open-ended responses belonging to the found clusters.

(3) Pattern confirmation: To provide an argument for the stability and therefore validity*’ of
the identified patterns and structures, the predictive power of algorithmic models for
classifying the previously found categories is evaluated. In the case of questionnaire data,
various models can be used to predict the previously identified clusters.

These steps from the original description of the CGT are strongly tailored to text analysis,
where the first step is to find patterns in text data. However, it should be noted that these steps
may/must be adjusted for specific projects depending on the data sources, research questions,
and applicable methods at hand (Nelson, 2020, p. 10).

In the case of the present study, the data sources are the manually assigned scores for the
tasks of a pPCK questionnaire and the digitalized text responses of the participants. By
including both components of this rich data set, we aim to fully exploit its potential. To achieve
this, additional theoretically and methodologically motivated preparation steps were introduced
between the CGT’s steps. The full workflow is discussed in detail in the Methods section.
The CGT has proven effective in science education settings, e.g., for elaborating students’ ideas
about the generality of their model-based explanations (Rosenberg & Krist, 2021) and for
discovering argumentation patterns in students' problem-solving processes (Tschisgale et al.,

37 The validity is assessed in the following sense: If ML-models are able to classify instances into the categories
found during the pattern detection (and refinement), this is evidence for the existence of latent structures in the
data, which correspond to the respective constructs (Nelson, 2020). The use of (potentially elaborated) models
in this step includes non-linear structures which would often be overlooked when sticking to “classical” models
like factor analyses.
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2023). In particular the latter application by Tschisgale et al. (2023) is specifically aimed at
presenting a prototypical CGT-oriented analysis and therefore also serves as a methodological
guideline for structuring the results of the present study. Recently, Kubsch et al. (2022)
proposed the Distributing Epistemic Functions and Tasks (DEFT) framework which can be
seen as highlighting the untapped potential of unsupervised analyses in science education
research. They explicitly name the CGT as a promising approach for unsupervised analyses of
complex constructs. We therefore use extensive guidance from these theoretical foundations
and previous empirical results to thoroughly interpret the patterns found.

The existence of non-hierarchical structures of pPCK is suggested by theoretical
considerations in the context of the RCM. The amount of available data makes an exploratory
analysis by human effort (e.g., qualitative manual analysis) infeasible. Using qualitative
(manual) methods, it would be unlikely to capture or even consider all potential structural
components of the data and it would also be challenging to link the different data sources
available (scores and response texts). A computational, non-hierarchical analysis using
unsupervised ML techniques is not only more efficient and perhaps more objective (in terms
of reproducibility) but also facilitates the linkage between the different data sources. However,
ML-based methods are limited by their inability to account for nuances and finer details, for
example in the analysis of textual responses.

In summary, we conducted an exploratory analysis with a cluster model of the questionnaire
scores at its core to uncover potential non-hierarchical structures of the pPCK. Knowledge of
such structures would provide potential for the further development of the RCM. Furthermore,
a potential assessment based on such results would guide the selection and evaluation of
learning opportunities offered during teacher education programs. To structure and guide the
incorporation of human expert knowledge and theoretical foundations, we use ideas and
concepts from the CGT and DEFT frameworks. In the following sections, we discuss our goals
and applied methods in more detail. Some additional technical details of the methods and
algorithms used are presented in the Methods section, along with their application in the
analysis, instead of discussing them as part of the Theoretical Background. We have found that
this option facilitates the understanding of the methods and enables a shorter description.

5.3. Goal and Research Questions

As presented, the analysis of the fine structure of PCK is essential for advancing and
consolidating the RCM and improving learning opportunities in teacher education programs.
Regarding pPCK, which comprises PCK components that are developed during more
theoretically focused learning opportunities, (primarily) theoretical descriptions of content
subscales and strictly hierarchical level models are primarily available. For ePCK, the focus
has been on (non-hierarchical) empirical analyses, particularly in the context of the PTR cycle.
The hierarchical item-response-theory-based models for pPCK showed the potential for
applying psychological learning operators and taxonomies (e.g., Anderson & Krathwohl, 2001)
to pPCK independent of the specific study context. Such operators can also be loosely mapped
onto the ePCK’s PTR cycle, e.g., with evaluative and analytical aspects potentially being more
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closely related to the reflect component, and applicative and creative aspects being potentially
more closely related to the plan component.

Therefore, this study aims to investigate which structures can be empirically detected in a
relatively large pPCK dataset using non-hierarchical cluster analyses. Yet, we do not aim at
simply replicating the PTR cycle’s structure for pPCK via some kind of confirmatory analysis.
Instead, we conduct an exploratory analysis to allow for the discovery of new, previously
undetected structures. However, previous findings related to the PTR cycle of ePCK and pPCK
levels suggest that there might be a relationship between such structures of the pPCK and the
PTR cycle, which will be part of the discussion. We call these (for now hypothetical) non-
hierarchical pPCK structures “competency profiles”, which should consist of content-oriented
descriptions of strengths and weaknesses of prototypical physics (pre-service) teachers w. . t.
inductively analyzed criteria. The term “competency” emphasizes our focus on pPCK in the
context of the RCM, as opposed to “performance” in action included in the ePCK, or at the
dispositional edge of competency in terms of the MoC. The term “profiles” emphasizes our
focus on non-hierarchical structures, as opposed to “levels”, that have been analyzed using
item-response models. The primary difficulty lies in empirically deriving such content- and
criterion-oriented descriptions from the two data sources at hand, namely the pPCK scores and
the authentic open-ended responses to the pPCK questionnaire tasks. To link these data sources,
we assume that membership in a particular competency profile should reflect prototypical
response behavior to the questionnaire tasks and vice versa. Therefore, we aim to carry out
non-hierarchical cluster analyses using a distinctive blend of quantitative data (the manually
generated scores) and qualitative data (the genuine open-ended responses of the participants).

To address the challenges discussed regarding the interpretability of the results of such
exploratory cluster analyses, we extensively refer to the current state of research on pPCK-
level models and ePCK conceptualizations within the PTR cycle. To structure and guide this
combination of theoretical descriptions and exploratory analyses, we draw on ideas and
concepts from the CGT. We therefore formulate the following three research questions, with
each of them specifically focusing on one of the three steps of the CGT. The first research
question describes our exploratory efforts for the analysis of non-hierarchical pPCK structures:

RQI (~ pattern detection): Which competency profiles of pPCK emerge from the
score dataset of a pPCK questionnaire using cluster analyses?

We do not yet narrow this research question down to the analysis of connectionist relations to
the PTR cycle, to also allow for the discovery of previously unnoticed structures. To augment
and elaborate the (for now hypothetical) non-hierarchical structures found in the scores, we
carry out a language analysis of the test persons’ authentic responses to the questionnaire tasks.
This should provide valuable insights into the central thoughts and concepts on which each test
person focuses:

RQ2 (~ pattern refinement): Do test persons belonging to a specific competency
profile show tendencies for specific language use in the open-ended responses to
the pPCK questionnaire’s tasks?

To consolidate the findings regarding RQ1 and RQ2, we additionally analyze the predictive
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power of ML models to recover the found structures from the data in a CGT pattern
confirmation step:

RQ3 (~ pattern confirmation): How well can an (automated) ML model predict the
competency profiles for unseen data?

This step is rather methodologically motivated than it is necessary from a theoretical
perspective. However, given the difficulties in interpreting and replicating exploratory results,
we argue in line with the CGT framework that RQ3 is still a valuable and necessary step in our
study.

5.4. Methods

In the upcoming sections, we will initially provide details about the dataset we used and the
corresponding studies. Subsequently, we will discuss our analyses in more detail.

5.4.1 Data Collection and Dataset

The data used in the present study was collected in the ProfiLe-P>® project (Vogelsang et al.,
2022) which took place from 2016 to 2019. This project aimed to assess the longitudinal
development of teachers’ professional competence, as well as relationships between
professional knowledge and action-related skills. As part of this study, a (p)PCK questionnaire
(Gramzow et al., 2013; Kulgemeyer & Riese, 2018), which included 20 open-ended tasks and
4 multiple-choice (MC) tasks®’, was a central part of the assessments. The study and the pPCK
test instrument focused on precisely describing the relationships between the domains of
professional knowledge for the specific CK-area of classical mechanics. During the piloting of
the pPCK test instrument, multiple methods were used to assess and improve its validity and
reliability. These included a validation against typical university curricula, a think-aloud
analysis, and an evaluation of inter-rater reliability (Gramzow, 2015). The final version of the
test instrument demonstrated satisfactory to excellent statistical properties, with an EAP
reliability of .84 and a Cohen’s of k¥ = .87 (cf. Kulgemeyer et al., 2020). This inter-rater
Cohen’s k was estimated using a double coding of 267 full test edits. The test instrument covers
the pPCK subscales students’ misconceptions and how to deal with them, instructional
strategies, experiments and teaching of an adequate understanding of science, as well as PCK-
related theoretical concepts (Gramzow, 2015 translated by Kulgemeyer et al., 2020).
Following the guidelines proposed by Klieme et al. (2003) a further dimension representing
different levels of cognitive activities has been incorporated into the task development model,
which comprises the cognitive activities reproduce, apply, and analyze. The complete model
for task development is presented in Figure 5.2. An example of one of the questionnaire tasks

38 German acronym “Professionskompetenz im Lehramtsstudium Physik” (professional competence in physics’
teacher training). The project was funded by the German federal ministry of education and research.

3 Depending on which elements are considered as the codable units, a total of 43 “items” (smaller codable units
than “tasks”) can be identified (e. g., Kulgemeyer et al., 2020). Therefore, we stick to the term “task™ to denote
the codable units we consider for this analysis.
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belonging to the student’s misconceptions subscale, including a response given by one of the
tested prospective teachers, is presented in Figure 5.3.

Physics Content
Area Cognitive
Activities

Analyze

Apply
Evaluate
Reproduce

Mechanics — Create

| | I | ‘ pPCK Subscales

Instructional ~ Student Experiments PCK-related
Strategies Cognition [...] theoretical concepts

Figure 5.2 Model for task-development of the used test instrument. The original categories in the three considered
dimensions used during task development are presented in black. The two cognitive activities added in blue are
added for a more fine-grained differentiation of cognitive activities based on the findings of Schiering et al. (2023)
and Zeller et al. (2024).

The final dataset used in the present study contains 846 edits of this questionnaire by pre-
service physics teachers from 12 German-speaking universities. Teacher education in Germany
takes the form of a bachelor’s and master’s degree program at the university level. The
corresponding curricula offer distinct courses for the different domains of professional
knowledge. For more details on the German teacher education system, we refer to van Dusen
et al. (2021). Since the ProfiLe-P project had a longitudinal design, some participants took part
in assessments up to three times. The individual edits are treated independently for this analysis
according to the method of virtual subjects (Davier et al., 2008). Participants were on average
in their second year of study (M = 2.05, SD = 1.73) and 34 % identified as female. The test
instrument and all collected responses are written in German. The open-ended responses were
coded by a trained German-native coder using detailed scoring rubrics (Gramzow, 2015;
example in Table Al) and the MC tasks were scored using thresholds (cf. Krebs, 1997). In
addition, the open-ended responses were digitized to allow for computational language
analyses.

5.4.2 RQ1: Exploring Possible Competency Profiles with Score-Cluster
Analyses

In the pattern detection step (RQ1), we aim to apply non-hierarchical cluster analysis methods

to the pPCK score dataset. Due to its high dimensionality (> 20 tasks), the direct application

of clustering algorithms to the “raw” score data does not yield sufficiently interpretable
aggregations. Therefore, we first performed a theoretically guided step. Based on the findings
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in the context of hierarchical item-response models (Schiering et al., 2023; Zeller et al., 2024)
we suspected that relevant structures might emerge when focusing on common learning
psychological operations. We therefore analyzed the questionnaire tasks using Anderson and
Krathwohl’s (2001) taxonomy and categorized them accordingly. A similar distinction was
already included as the dimension of cognitive activities during the task development phase of
the questionnaire (Figure 5.2), i.e., this preparation step is primarily an augmentation of this
dimension with a re-evaluation of the tasks in these terms. An alternative approach would have
been to utilize the pPCK subscales as categories for our analysis. However, this would have
resulted in a lack of generalizability of the results, as different studies often target different
selections from a wide variety of possible subscales (e.g., Hume et al., 2019; Park & Oliver,
2008). Conversely, the study by Zeller et al. (2024) demonstrated that cognitive requirement
dimensions may be a more generalizable approach for the categorization of pPCK tasks and
for assessing pPCK content-wise regardless of the concrete operationalization used and the
physics content areas covered.

Although the taxonomy by Anderson and Krathwohl (2001) is intended to reflect a
hierarchical ordering, the level analyses of the pPCK (Schiering et al., 2023; Zeller et al., 2024)
showed that a hierarchical approach is not sufficient to distinguish between certain operations
at the group level. Therefore, the application of non-hierarchical methods using these
categorizations is a promising approach. In terms of the CGT, this categorization corresponds
to the inclusion of human expert knowledge in the analysis (Nelson, 2020). We argue that this
approach in combination with RQ2 retains enough openness to detect previously unnoticed
novel structures compared to a direct categorization of tasks within the PTR cycle. Moreover,
due to the more abstract nature (compared to the fundamental idea of ePCK) of the pPCK
questionnaire tasks at hand using the PTR cycle directly would yield questionable
categorizations anyway.

We focused on the operations remember, understand, apply, analyze, evaluate, and create
(Anderson & Krathwohl, 2001). While Anderson and Krathwohl (2001) suggest that a learning
objective should focus on a single operation in the taxonomy, we argue that it is valid and may
even be necessary for more sophisticated and complex tasks to be able to focus on multiple
operations. Therefore, we have allowed a single task to be categorized into more than one of
the six operations. In an iterative process, a guideline for this task classification was established
and refined several times to account for comprehension difficulties. A clear distinction between
remember and understand still was difficult to make. We decided to collapse the two
dimensions into a combined category called reproduce, i.e., tasks that primarily require the
reproduction of explicit facts. We argue that this is still a valid step in the taxonomy and that
this operation can be assessed from an outside perspective in a much more reliable and valid
way. Figure 5.2 also contains the integration of the resulting five cognitive requirement
dimensions in the task development model yielding the re-evaluation of the tasks accordingly.
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Exercise 15

Students should consider the following situation: A ball rolls in the channel
shown (top view) and leaves it at point R.

Student A draws the following path that the ball should follow after leaving the
channel:

Solution of student A

Assuming that the student correctly understands the drawing as a top view:
What wrong conception of student A causes the drawn trajectory?

Test person’s answer:

“The student thinks that the centripetal force acts outwards and not
towards the center of the circle.”

Figure 5.3 Example task of the questionnaire used for generating the dataset analyzed in this study. The task
belongs to the student cognition subscale. The task and response were translated by the authors. The scoring rubric
as well as additional responses to this task from the dataset are appended as supplementary material (Table Al &
Table A2).

The final categorization was done three times by experts and resulted in the categorization
agreement shown in Table 5.1. As shown there, an additional dimension “teaching situation™
was added to describe whether a reference to a teaching situation, e.g., in the form of a vignette
is part of the task. This dimension was found through an inductive categorization along with
two other dimensions that were later found to be irrelevant. While it conceptually differs from
the five cognitive activities, it is still usable as an argument for consistency because tasks
belonging to the create and analyze dimension often refer to teaching situations. The five levels
of the taxonomy and the additional feaching situation dimension will be interpreted together
and referred to as “requirement dimensions” in the following. For the subsequent analysis, a
consensus categorization was agreed upon by the three experts. In this categorization, task 15,
which is displayed in Figure 5.3, was categorized into the analyze and teaching situation
requirement dimensions. Table 5.2 shows the number of tasks and the maximum score that can
be achieved in each of the requirement dimensions. It can also be interpreted as a measure of
the granularity of each dimension.
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Table 5.1 Cohens’ k values of the task-categorizations to the requirement dimensions. Based on these
categorizations, a consensus-categorization was set up.

Raters Reproduce Apply Analyze Evaluate Create Tsii‘::tiil:)i-
K1 .84 .62 .76 .62 .71 .77
K13 .83 .55 .52 .71 1 .84
K3 .83 .59 .62 .41 .71 .62

Table 5.2 Maximum score for the dimensions based on the consensus-categorization of tasks. The test instrument
is more focused on reproductive and analytical requirements. The implications and limitations of this for the
analysis and the interpretation of the results are discussed in the Discussion section. If a category contains multiple
choice tasks, this is denoted in parentheses, e.g. the Reproduce category contains 12 tasks in total of which three
tasks are in multiple choice format. Note that a task can be allocated to multiple of the categories.

Teaching
R d Appl Anal Evaluat Creat
eproduce pply nalyze valuate reate Situation
Task Count 12 (3 MC) 5 10 (2 MC) 4 5 12 (I MC)
Max. Score 23 8 13 5 9 16

After this theoretically motivated preparatory step, the actual cluster analysis was performed
using the aggregated scores in the requirement dimensions as input data. To generate the
clusters, we omitted cases in which less than 50 % of the tasks were completed or in which
more than 25 % of consecutive tasks were not worked on at the end of the test instrument. We
interpret such cases as instances where the test instrument was either not worked on seriously
or the work was stopped early for some reason. For the cluster generation using this selection
779 instances remained. The aggregated score data allows for a proper interpretation of the
clustering results using the averages of the resulting groups w. r. t. the requirement dimensions.
The numerical properties of the dataset proved to be insufficient for the application of
sophisticated clustering methods such as density-based algorithms (e.g., Campello et al., 2013;
Mclnnes et al., 2017) or probabilistic Gaussian Mixture Models (cf. Spurk et al., 2020).
Deviations from the normal distribution as well as discretization along the requirement
dimensions (cf. Table 5.2) prevented the formation of meaningful clusters or even the
convergence of the algorithms when using such methods. Therefore, we reverted to the simple
but reliable K-Means algorithm (MacQueen, 1967) that is more agnostic to certain data
requirements. The implications of this methodological choice are discussed in the Discussion
section.

Additionally, we prepared the data by scaling the subscale scores to a range between 0 and
1, which facilitates K-Means convergence and cluster localization. The K-Means algorithm
does not itself inductively estimate an appropriate number of clusters. There are some methods
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to guide the selection of the number of clusters, such as the Silhouette-score method
(Rousseeuw, 1987) or the elbow method (e.g., Géron, 2019). These methods aim to calculate
metrics that represent the internal consistency of the clusters and the differentiation of the
clusters from each other in a cluster model. In the case of the elbow plot, the sum of the
distances of the data points from their respective cluster center is visualized. To achieve a
balance between a low sum of distances and a moderately high number of clusters, an “elbow”
is sought in a plot of the sum of distances against the number of clusters. This is analogous to
the use of scree plots in exploratory factor analysis. The elbow plot for our data is presented in
Figure 5.4. The bends in this plot at cluster numbers two and four are relatively smooth and do
not provide a strong argument for selecting a particular cluster number.

A silhouette score analysis is similarly uninformative for our dataset and is therefore not
discussed or presented in more detail due to space limitations. However, both procedures
generally favor lower cluster numbers (< 7). From a theoretical perspective, a cluster number
that is large enough to enable the discovery of non-hierarchical structures would be desirable.
A cluster number of just two would be insufficient for our theoretical goal of finding non-
hierarchical structures as it allows only for a simple differentiation between low and high-
performing test persons. From a methodological perspective, a lower number of clusters would
be preferable for future work on automating the allocation of test edits to such clusters. Given
the slight bend at a cluster number of four in the elbow plot and the need to balance the
theoretical and methodological requirements, we decided to use a cluster number of four for
the subsequent analysis. It should be noted that higher cluster numbers (five to seven) also yield
distinct and interpretable clusters that resemble finer-grained differentiations of the sample.

The remaining parts of the score cluster analysis lead directly to the results of RQ1 and are
therefore described in the results section to enhance the comprehensibility of this article.

K-Means Elbow-Plot
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Figure 5.4 Elbow-Plot to guide the decision for a fixed cluster number for the score-cluster analysis.
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5.4.3 RQ2: Refining the Score-Clusters to Competency Profiles via Topic
Analysis

For the second research question, which is aimed at the pattern refinement step of the CGT, we
provide insights into possible tendencies for specific language usage of the participants
belonging to specific score clusters from the first analysis step. We want to gain insights into
the focused concepts and ideas of these groups to (1) refine our knowledge about them and (2)
provide an argument for the concurrent validity (Miller & Lovler, 2018) of the interpretation
of the groups by assessing the consistency between their strengths and weaknesses in terms of
the requirement dimensions and their language usage.

Although standard works on PCK in the context of the RCM do not (yet) explicitly
investigate connections between PCK and specific language use (e.g., Hume et al., 2019), it
can be assumed that language can be viewed as a central medium through which ¢cPCK and
especially pPCK as a cognitive construct are expressed and shared. This is also reflected in the
coding rubrics of the test instrument used in this study that specifically pay attention to
terminology in the context of teaching and learning physics (Table A1) Therefore, investigating
the language use of test persons belonging to the clusters discovered in the RQ1-analysis should
yield information on central constructs and ideas that the test persons consider relevant when
tackling the questionnaire tasks. This information can be used to gain insight into the test
persons’ personal understanding of PCK, i.e., their pPCK and thereby extend the description
and interpretation of the clusters beyond the score aggregations.

To assess potential prototypical language use of groups or to identify groups of prototypical
language use in a dataset of texts (called a corpus of individual documents) typically so-called
topic models are used (Chen & Liu, 2017). The term topic model describes methods that aim
at characterizing topics in a corpus. A topic is characterized by a set of words. The co-
occurrence of words in different documents determines the topics and the topic prevalence of
the documents, i.e., how much a document addresses a particular topic. The original topic
modeling algorithm, called Latent Dirichlet Allocation (Blei et al., 2003), was specifically
tailored for topic modeling in the famous paper by Blei (2012). By using the basic or extended
version of the topic modeling algorithm one can infer the topic-word and document-topic
relations given only the words of the documents. A thorough description of the inner workings
of the model requires considerable prior knowledge of probability theory and is beyond the
scope of this article. Modern open-source software packages provide easy-to-use interfaces for
applying topic models without having to delve deeply into the mathematical foundations (e.g.,
Roberts et al., 2019).

Without claiming completeness, two lines of research can be identified for extending the
basic topic model. The most recent iterations use deep learning-based language models (e.g.,
BERT by Devlin et al., 2019) to transform the documents into numerical representations that
are subsequently used in cluster analyses. The documents belonging to specific clusters are
then used to characterize the topics by extracting characteristic words (Grootendorst, 2022).
Such approaches are already being used in science education research and are yielding
promising results and insights into short text elements (sentences) extracted from longer
documents (Tschisgale et al., 2023; Wulff et al., 2022). However, applying a similar approach
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to the dataset of the present study is not practical for our data structure, because we cannot use
short elements like sentences in a meaningful way.

Therefore, we refer to the second line of research on the extension of the basic topic model
mentioned above. Models emerging from this second line of research do not use deep learning
methods but instead, directly extend the mathematical model of the basic topic model. In doing
so they aim to directly incorporate additional covariates into the model and thus guide the
formation of topics by these covariates (e.g., Blei & Lafferty, 2005). A relatively new model
that has emerged from these approaches is the so-called structural topic model (STM, Roberts
et al., 2016; Roberts et al., 2019). It allows the use of covariates that influence the topical
prevalence of particular documents as well as the use of covariates that influence the content
of particular topics, i.e., the topic-word-relation. The probabilistic model and the inference
algorithm become even more sophisticated (Roberts et al., 2016). In our case, this model is
particularly interesting because we can focus on the most relevant words by applying certain
preprocessing steps to our documents, and we can guide the topic prevalence by our results
from the first analysis steps, i.e., the score clusters to which the documents are assigned.

We applied the following preprocessing steps guided by the R-software used (Roberts et al.,
2019; Roberts et al., 2023):

e Punctuation removal: Removing punctuation, i.e., omitting characters such as periods,
hyphens, etc., is a common preprocessing step when applying models that are agnostic of
the order of the occurring words.

e Lower casing: All words are converted to lowercase to remove unnecessary variance in
the corpus.

e Removing stopwords: “Stopwords” are words that occur so frequently that they do not
provide interesting insights into the documents like “and”, “I””, “the”, etc. Removing such
stopwords can be interpreted as removing uninteresting variance from the corpus and
reducing the document lengths for more efficient computation.

e Removing words based on frequency: Similar to stopword removal it is common to remove
words that are either too frequent or too rare. Removing too frequent words serves the
same purpose as stopword removal. Removing too rare words can be seen as removing
variance from the corpus that cannot be explained or interpreted anyway because there is
not enough data available. We decided to categorize words appearing in more than 60 %
of the documents as too frequent and words appearing in two or less documents as too rare
to be further used*’.

o Stemming: Stemming refers to the reduction of words to their core component or stem,

e.g., reducing “programming”, “programmer”, and “programs” all to “program”. Again
this step is aimed at reducing the variance of the corpus and is a common technique when

40 Using such additional thresholds is suggested by the software used Roberts et al. (2023). We found that when
these thresholds were used, the resulting topics were much less dominated by the same very frequent words
and therefore much more expressive. Moreover, the metrics used to determine the most characteristic words
were less prone to “collapse” into words used only once.

89



5. Competency Profiles of PCK Using Unsupervised Learning (Artikel 2)

using word-order-agnostic models. We argue that stemming specifically does not hinder
us to understand and interpret the meaning and content of a topic.

For the actual topic modeling, we introduced the participants’ score cluster assignments*!
from the results of the first research questions as covariates for the topic prevalence of the
corresponding documents. Most topic models including the STM require the number of topics
to be preset by the analyst to a fixed value. There are some ways to estimate the appropriate
number of topics for a dataset in a data-driven way, but the corresponding metrics often yield
inconsistent results (see e.g. Figure 3 of Gan & Qi, 2021). The choice of the topic number is
generally not considered an exact science (Roberts et al., 2023). For our dataset, the available
metrics of the software used roughly favored low (< 10) topic numbers. Therefore, we
gradually estimated models with an increasing, but still comparatively low, preset number of
topics. We reached saturation within a six-topic model, i.e., we found additional topics to be
primarily unspecific or repetitive in content and therefore kept a topic model with six topics
for further analysis.

In the subsequent analysis, we first interpreted the topics using the most characteristic words
based on the metrics provided by the software (cf. Roberts et al., 2019; Roberts et al., 2023 for
more details). In addition, we estimated the effect of belonging to a particular score cluster
from RQ1 on the proportion of a document focused on a particular topic. The score clusters
and their refinement through the topic analysis together form the groups that we refer to as
“competency profiles” in the following. They are the lens through which we aim to describe
non-hierarchical structures of the pPCK. Analogous to the previous section, the remaining parts
of the topic model analysis lead directly to the results of RQ2 and are therefore described in
the Results section.

5.4.4 RQ3: Confirming Competency Profiles by Automatized Prediction

The pattern refinement step of the CGT aims to assess the stability and robustness of the
explored patterns and structures from the unsupervised analyses (Nelson, 2020). In the case of
the present study this is primarily reflected in the stability and robustness of the identified
competency profiles, since the workflow for assigning a participant or a questionnaire edit to a
competency profile depends only on the scores. The topic modeling step (RQ2) is primarily
intended to provide additional insight into the competency profiles and arguments for their
validity; it does not influence the assignment of a person to a competency profile. To confirm
the explored patterns, Nelson (2020) suggests assessing the predictive power of ML models
that assign some appropriate input data (“features”) to the labels generated during the pattern
detection and refinement steps. Taken together, this means that in our case the goal of the
pattern confirmation is to automatically predict the score clusters from RQI1. The predictive
power is evaluated by splitting the data into a training set and a test set (e.g., Géron, 2019). The
ML model is then trained on the training data to predict the labels. The performance on the
prediction task is estimated using the “unseen” test set. A high performance on the test set

41 Note that we are still using an approach of virtual cases and therefore the same person can be assigned to
different score-clusters at different times.
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serves as an argument for the reliability and validity of the explored patterns. If only a small to
medium sized dataset is available, the so-called “k-fold cross-validation” approach (e.g.,
Géron, 2019) can be used to enhance the results. This approach is based on dividing the full
dataset into k segments. The model is then trained k times on the data, with each iteration
involving the omission of one of the k splits for training purposes and its exclusive use for
evaluation. Furthermore, the cross-validation procedure can additionally be repeated multiple
times, with different so-called “random seeds”, i.e., different splits. This allows for the
estimation reliable performance estimates.

Now the question arises, which part of the data should serve as the features in the present
analysis? There are two main options: First, the actual text responses could be used to predict
the cluster assignments. Second, the score data could be used to predict the cluster assignments.
Predicting the (score) clusters using the text responses is a much more complex inference task
than using the scores directly because the scores have already been used as the basis for the
cluster analysis in the pattern detection step. We followed the lead of Tschisgale et al. (2023)
who reused the features used in the cluster analysis again in the pattern confirmation step.
Therefore, we present a pattern confirmation analysis using the score data for prediction. Note
that this decision significantly reduces the complexity of the prediction task compared to using
the textual responses. Furthermore, such a model is primarily intended to be used for pattern
confirmation to complete the CGT methodology and thereby provide an argument for the
stability and validity of the identified competency profiles. However, it is of little practical
relevance as the main work of assigning scores to the open-ended responses must still be done
manually. Full automation, i.e., scoring the open-ended responses and assigning participants to
competency profiles, requires much more sophisticated approaches that are beyond the scope
of this article but will be part of our future work (also see “Perspectives and Outlook™).

We evaluated a logistic regression classifier model using a 10-fold cross-validation (e.g.,
Géron, 2019) with 10 different random seeds, resulting in a total of 100 estimates for the
performance of the model in predicting competency profiles from the scores. The dataset is
imbalanced with an uneven distribution of the target variable, i.e., the cluster assignments (see
Table 5.3). Therefore, the cross-validation splits were set up such that the distribution of the
cluster assignments is almost equal in all splits. In addition to the predictive accuracy, we also
report the weighted F;-score as well as the (linearly weighted) Cohen’s k score for the test-set
predictions. These scores account for imbalance in the data sets and Cohen's k also account for
random agreement.

The logistic regression classifier was configured and trained using the Scikit-Learn Python
package*? (Pedregosa et al., 2011). To facilitate the classifier's generalization from the training

to the test data, we chose an L,-regularization value of 1.043.

42 https://scikit-learn.org; we used version 1.3.0.

4 For additional information on regularization in general please refer to Géron (2019, pp. 28-33). For information
on regularization in regression models specifically please refer to Géron (2019, pp. 135-141).
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5.5. Results

5.5.1 RQ1: Score-Clusters in pPCK Data

The core of the competency profiles is formed by clusters in the scores as described in the
Methods section. The resulting six-dimensional (5+1 requirement dimensions) clusters cannot
be visualized directly, but dimensionality reduction techniques can be used to project the data
down to two dimensions. Figure 5.5 shows such a visualization for the pPCK scores dataset
used for the cluster analysis. The clusters are well distinguishable even in the dimensionality-
reduced projection. Since the clusters have non-circular shapes and erratic densities, the
deviations from a Gaussian distribution are visible. The visualization in Figure 5.5 shows the
legitimacy of using the clusters to further describe competency profiles, but also some
limitations related to the distributions and overlaps which will be discussed in the Discussion
section.

However, the shapes and distribution of the clusters especially when projected to two
dimensions do not directly indicate the potential strengths and weaknesses of the corresponding
competency profiles. For this purpose, we take a closer look at the average scores of all
instances within the clusters resulting from the K-Means algorithm. For the present analysis
with only four clusters and six-dimensional data, these averages can be displayed with radar
plots or line plots as shown in Figure 5.6. The radar plot (Figure 5.6, top) is scaled to the highest
score achieved in each dimension. Consequently, a “reproduce score” of 0.6 means that 60 %
of the scores of the best-performing individual have been achieved. This is due to the scaling
of the data to the interval [0, 1] in the cluster analysis’ pre-processing. The line plot (Figure
5.6, bottom) is scaled to the overall best-achieving cluster to directly highlight the differences
between the clusters. Additionally, the line plot shows the 95% confidence intervals for the
means as shaded tubes. Clusters 1 and 4 are identified as clusters with generally low and high
overall achievement. Clusters 2 and 3 differ significantly in their scores on the analyze/evaluate
and apply/create requirement dimensions. While Cluster 2 achieves significantly higher scores
in the dimensions apply and create, cluster 3 achieves significantly higher scores in the analyze
and evaluate dimensions. Nevertheless, these clusters show little difference in their scores
regarding the reproduce dimension.

Table 5.3 presents additional details on the clusters. The lower-performing cluster 1 contains
by far the largest number of students. This is most likely due to the large number of first-year
students in the sample. Clusters 1 and 2 as well as 3 and 4 respectively show significant
differences in their average year of study and their total pPCK score. Clusters 2 and 3 do not
show significant differences in their year of study (T = 1.68, p = .1, df = 320), yet they
show (barely) significant differences in total pPCK scores (T = 2.01, p = .05, df = 320).
The latter is strongly influenced by the relatively large size of the groups, which is also reflected
in the small Cohen’s d effect sizes of these differences of d = 0.18 and d = 0.23 respectively.
The absolute differences are much smaller than the differences between clusters 1 and 2 as well
as 3 and 4 respectively. Based on the average scores of the clusters in the requirement
dimensions and their average total pPCK score (as presented in Figure 5.6) we have created
labels for the clusters: the Low Achievers (cluster 1), the Applying Creatives (cluster 2), the
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Analytic Evaluators (cluster 3), and the High Achievers (cluster 4). Because the score clusters
form the core of the competency profiles, these labels also become the names of the

competency profiles.
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Figure 5.5 Two-dimensional visualization of the dataset and clusters. Each colored dot represents one test person.

The bold black dots represent the centroids of the respective clusters. We used the Principal Component Analysis
dimensionality reduction technique (for details refer to, e.g., Jolliffe, 2002) to project the six-dimensional data to
two dimensions. The percentages in the axis-labels denote how much of the variance of the full six-dimensional
dataset is retained by the corresponding reduced dimension. The shading and contour lines represent the density

of the datapoints.

Table 5.3 Sizes (N), average year of study and average total pPCK scores of the clusters. The counts for the full
datasets are generated by applying the fitted model to the cases previously omitted due to incompleteness. The
means are calculated using the filtered dataset. The differences when the previously omitted instances are included

in these aggregations are small.

Cluster Year of Study Total pPCK Score N N (full dataset)
M SD M SD
1 1.34 1.20 9.17 2.99 321 383
2 2.17 1.59 1591 3.66 179 181
3 2.39 1.81 16.72 3.62 144 147
4 3.49 2.00 23.82 3.90 135 135

93



5. Competency Profiles of PCK Using Unsupervised Learning (Artikel 2)

Radar Plot of Cluster Centroids
Create Apply Cluster
—— 1
2
3
—— 4
Analyze Reproduce
0 01020304050,
Evaluate Teaching Situation
Lineplot of Cluster-Averages
1.0 -
0.8
i
[
5 —1
A 2
%0.6 3
] — 4
2
0.4
0.2
Re‘-_.(c!‘?“"”'e pottd cre?® N\a\‘ile E\,ia\\.\ﬂ"e g\tuat'\ﬂ“

‘(eac’“‘“q

Figure 5.6 Visualizations of the cluster centroids. The cluster centroids are the means of the instances in each
cluster and represent the typical scores of the competency profiles in each of the requirement dimensions. In the
radar plot, the scores for each dimension are normed to the highest score a person achieved on that dimension. In
the line plot, the scores for each dimension are normed to the mean scores of cluster 4 to emphasize differences
between the clusters.

5.5.2 RQ2: Typical Language Use of Participants Belonging to the Score-
Clusters

As described in the Methods section, we used a structural topic model to further refine the
description of the competency profiles beyond their typical scores in the requirement
dimensions. The score cluster assignment was used as a covariate for the topic prevalence of
the documents. The documents are the person-wise concatenated responses to the open-ended
tasks of the pPCK test instrument. The generation and preprocessing of the documents for this
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analysis are also described in the Methods section. Note that we decided to use the full dataset
including the edits that were omitted for the clustering step to make use of the full language
data available. This is possible by performing the cluster assignments for the previously
omitted edits using the clustering model that was only fitted using the complete edits.

The initial step involves using the characteristic words that emerge from the model to
describe the content of the topic. Different metrics can be used together for this purpose
(Roberts et al., 2019). Table 5.4 illustrates these word lists, excluding duplicate words
belonging to the same topic and non-specific general words. Note that the structural topic
model is a soft assignment model, i.e., it allows the same word to appear in different topics.
The resulting wordlists were categorized using six deductive topics that were derived by
interpreting the “human-interpretable” groups of words that appeared in these lists. Based on
these deductive topics (columns in Table 5.4) the actual inductively found topics from the topic
model (rows in Table 5.4) were characterized. We provide a brief interpretation or title for
each inductive topic in Table. These inductive topics will be referred to simply as “topics” in
the following. To refine the competency profiles, we assessed the relationship between the
assignment of a document to a score cluster and the proportion of a document dedicated to a
specific topic. Thus, we estimated the effect that the assignment of a document to a score cluster
has on the topic proportion of the document by aggregating the topic proportions generated by
STM and grouped by the cluster assignments**. A full numerical comparison of these effects
(via ANOVA and post-hoc tests) is not presented due to space limitations. In summary, with
the exception of reasoning on examples, all topics were significantly affected by the score-
cluster assignment (p < .001 for the remaining five). To further compare these effects, we
present them as a heatmap (Figure 5.7).

The effect differences between the competency profiles range from 0 to .40. For space
reasons only important outstanding observations are reported and further refined. It is important
to recognize that the proportions focused on specific topics in a document are always relative
and sum to 1 when accumulated across all topics. Therefore, the proportions shown in Figure
5.7 sum to 1 row-wise. The heatmap in Figure 5.7 shows that engagement in the student
cognition topic is increasing alongside the average total score of the competency profile; note
that the competency profiles are arranged with increasing total scores along the vertical axis.
Additionally, there is a simultaneous decrease in the emphasis on general concepts (topics
general concepts focusing subject and general concepts focusing knowledge) and the extensive
use of examples (topic usage of examples). A similar trend, but on a smaller (non-significant)
scale, can be seen when comparing the Analytic Evaluators with the Applying Creatives, with
the Analytic Evaluators more strongly prioritize the student cognition topic over the usage of
examples and reasoning on example than the Applying Creatives. Lastly, the Low Achievers
show a significantly (p < .05 for each post hoc comparison) reduced emphasis on the symbolic
descriptions topic when compared to the other competency profiles.

4 On closer inspection, we switch from a generative probabilistic modeling approach of the STM to a more
frequentist approach by using the STM’s initially predicted “mean” topic proportions. We decided to do this
because this approach is much easier to follow and the actual numerical differences compared to using the
generative utilities (Roberts et al., 2023) are negligibly small.
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Effect of the Score Cluster-Assignment on Topic Prevalence

High Achievers

Analytic
Evaluators

Applying
Creatives

Low Achievers

(=) (=)

OQQ G@Q o G 5 00 X

o™ -, ot o\ 0\\ 8) ~(\Q W)

NC \3‘08 2 < 0\:4\6 dio '\0(\6 ?.‘»Qe \e® o™ \e® \\)6?' %
) < N a0t o ) SV
00O & S (R V2ol Q‘B@ @ o
G N G° o0 G G*B e-f:b (,Qg
o

Topic

Figure 5.7 Visualizations of the effect that the assignment of a document to a cluster has on the proportion of
documents dedicated to a specific topic. For example, the average effect of 0.46 that belonging to the High

Achievers has on the topic of Student cognition. This indicates that, on average, 46 % of each document of a High
Achiever is dedicated to the topic of Student Cognition.

5.5.3 RQ3: Prediction of Competency Profiles

To compare the logistic regression classifier to a baseline, a dummy classifier is set up that
simply predicts the most frequently occurring competency profile. This dummy classifier
reaches an average accuracy of .453 and an average Cohens k of 0. The logistic regression
classifier achieves excellent prediction accuracy, both in absolute terms and compared to the
dummy classifier, as presented in Table 5.5.

Table 5.5 Pattern confirmation: Predictive power of the logistic regression classifier on the test dataset. The table
contains the evaluation of the predictive power of the logistic regression classifier predicting the competency
profiles from the scores are presented. All values are obtained from the test dataset. In the first row, the metric’s
value averaged over the 10 cross-validation splits (times 10 different random seeds) is denoted. In the second row
95 % Gaussian confidence intervals of across the 100 values in total are presented. CI=Confidence Interval,
LL=Lower Limit, UL=Upper Limit.

Accuracy Fq Cohen’s k
Average value .943 .943 .918
95% CI [LL, UL] [.939,.948] [.938,.948] [.911,.925]
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5.5.4 Summary of the Competency Profiles

To further discuss the results of the cluster and language analyses below, we present the
tendencies shown in our findings on RQ1 and RQ2 competency profile-wise:

e Low Achievers: The Low Achievers show a significant focus on general concepts (focusing
knowledge) with an emphasis on using examples. It is important to note that this
observation is relative to the normalized topic distribution. In other words, the Low
Achievers do not necessarily use more examples than the High Achievers. However, the
Low Achievers do devote a greater proportion of their produced text to the topic of using
examples compared to the High Achievers. This may be because the description of some
general PCK-related topics or simple examples of physical phenomena might be already
available at lower levels of pPCK. It is important to note that simply addressing these
topics does not necessarily imply a high level of quality in the accompanying text
segments.

o Applying Creatives: The Applying Creatives also focus on the use of examples, but in
addition, they incorporate the reasoning behind the use of examples and the student’s
cognition as well as symbolic descriptions more strongly into their text productions. As a
result, examples are more integrated with other pPCK-related concepts and additional
aspects are considered in the thinking process.

o Analytic Evaluators: The Analytic Evaluators place a greater emphasis on student
cognition, while still dedicating a reasonable amount of their writing to examples. They
appear to focus slightly less on the using examples and reasoning about examples topics
than the Applying Creatives, although this difference is not statistically significant.
However, this is consistent with their typical scores on the respective requirement
dimensions: Analytical and evaluative tasks typically (sometimes even explicitly) require
to consider student cognition, while applied and creative tasks often require this only
implicitly upon closer examination.

e High Achievers: The High Achievers show a strong focus on student cognition. As a result,
the proportion of all other topics decreases, with the exception of the reasoning on
examples topic. However, their scores indicate that they also achieve comparatively high
scores on the create and apply requirement dimensions. These observations suggest that
they integrate their creative text elements (such as the description of examples) in a much
more theoretically informed manner, e.g., with additional reasoning about their usefulness
and the consideration of student cognition.

5.6. Discussion

High-quality teacher knowledge is a crucial prerequisite for effective teaching and learning
(Hattie, 2003, 2012; Hume et al., 2019). PCK as a central component of teachers’ knowledge
(Shulman, 1986, 1987) has therefore been the subject of intense research (e.g., Behling et al.,
2022a, 2022b; Hume et al., 2019; Kulgemeyer et al., 2020; Mientus et al., 2022; Schroder et
al., 2020; She et al., 2024; Sorge et al., 2019). Recently, hierarchical competency level models
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of (preservice) physics teachers’ PCK have been developed using item-response models
(Schiering et al., 2023; Zeller et al., 2024). Based on the used test instruments such models can
be interpreted as describing pPCK through the lens of the RCM of PCK (Carlson et al., 2019).
At the same time, research has been conducted on ePCK in the context of the proposed PTR
cycle (Alonzo et al., 2019) to shed light on the processes behind the development of ePCK.
Therefore, a non-hierarchical distinction has been made between the three components
ePCKplan, €PCKieach, and ePCKefieet. We conducted a theoretically guided, exploratory, in large
part computational analysis to determine whether similar non-hierarchical structures could also
be identified for pPCK. Such empirically based structures can be used to further develop the
RCM and to provide meaningful feedback when the corresponding test instruments are used as
assessment tools. Therefore, we searched for prototypical response patterns in the scores and
textual responses of participants in a large pPCK assessment focusing on classical mechanics.
Our findings suggest that it is possible to differentiate competency profiles that show specific
strengths and weaknesses when considering the requirement dimensions reproduce, apply,
analyze, evaluate, create, and teaching situation, that are inspired by the aforementioned item-
response-based results. In addition, we were able to show that individuals belonging to specific
competency profiles show tendencies to focus on certain topics in their language use when
responding to the open-ended tasks of our pPCK questionnaire.

5.6.1 Interpretation of the Competency Profiles

The typical scores achieved in the requirement dimensions are the core of the competency
profiles. These typical scores have been identified by the cluster analysis (RQ1). The
corresponding score clusters also form the basis for assigning test persons to a competency
profile. Two competency profiles were identified as typical low and high-achieving students
with the Low Achievers representing the largest group in our sample. Additionally, it is worth
noting that even the High Achievers have plenty of room for improvement (see Figure 5.6,
top). This is not surprising, as the questionnaire has previously been shown to be challenging
even for well-advanced pre-service teachers (Gramzow, 2015).

In addition to the Low Achievers and High Achievers, which still show a strong hierarchical
characteristic (see Table 5.3), two other competency profiles could be identified. Based on their
typically reached scores in the requirement dimensions the two additional competency profiles
were labeled as Applying Creatives and Analytic Evaluators. The Applying Creatives show a
comparatively much higher score on the requirement dimensions aimed at applying PCK to
described situations or generating elements of instructional actions descriptively. The Analytic
Evaluators show a comparatively much higher score in the requirement dimensions aimed at
using PCK analytically to draw certain conclusions from descriptions in the tasks and at using
PCK to evaluate described elements of teaching situations. Although these two competency
profiles differ significantly in terms of their total pPCK score and their year of study, we argue
that the differences between them should not be perceived as hierarchical, because these
differences have small effect sizes and are marginal compared to the gap between them and the
Low Achievers or High Achievers. It is highly unlikely that a distinction such as that between
the Analytic Evaluators and Applying Creatives would be possible with hierarchical, e.g., item-
response-theory-based methods.
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Using the topic modeling approach, we were also able to identify patterns of typical
language use in the questionnaire edits assigned to a particular competency profile. Overall,
the student cognition topic was found to be the most significant and was predominantly present
in high-performing edits of the questionnaire. Student cognition as a central aspect of PCK
(Hume et al., 2019; Shulman, 1987) was a conceptual focus of the questionnaire and our
observation of language use underlines the importance of this concept. It is noteworthy that
Analytic Evaluators focused significantly (p = .005) more on the student cognition topic
compared to the Applying Creatives.

The topic summarized as general concepts focusing knowledge was proportionally less
focused by the Analytic Evaluators, Applying Creative, and High Achievers. This could be
attributed to increased proficiency, since the higher performing questionnaire edits are
generally longer, causing the proportion of the general concepts focusing knowledge topic to
decrease, while the total amount of text devoted to this topic remained stable. On the other
hand, it could be argued that certain terms that characterize this topic may suggest an antiquated
transmissive understanding of teaching and learning (e.g., forget, basic knowledge, subject
matter), which consequently diminishes as proficiency increases. However, the available
evidence is not sufficient to thoroughly confirm such a conclusion. Given the influence of belief
structures on performance in authentic teaching situations (e.g., Buehl & Beck, 2014; Konig,
2012; Kulgemeyer & Riese, 2018) further research in this direction is encouraged.

A similar general observation can be made about the symbolic descriptions topic. It seems
that a certain level of knowledge regarding symbolic descriptions might be needed to succeed
in higher-level activities (such as analyzing or applying pPCK). If the symbolic descriptions
topic is interpreted as closely related to CK — and possibly also to mathematical knowledge in
the field of physics — this observation is consistent with CK analyses that point to the necessity
of a certain level of CK for the development of professional competence in general (e.g.,
Kulgemeyer & Riese, 2018; Sorge et al., 2019).

Considering the PTR cycle in the context of ePCK (Alonzo et al., 2019) our findings suggest
the existence of similarly distinct pPCK knowledge domains that can be developed to some
extent independently, similar to the distinction already suggested in the theoretical foundations
section (“pPCKpian” vs. “pPCKirefiect””). The most interesting areas are the pPCK domains aimed
primarily at analytical, evaluative tasks, such as deriving students’ ideas from a given dialogue
(“pPCKevar”?), and the pPCK domain aimed primarily at applicative, creative tasks, such as
describing a suitable example experiment or real-world example to demonstrate a physical
phenomenon (“pPCKuppi”?). At first glance, the former might be more closely associated with
ePCKefiect and the latter with ePCKplan. Given the exploratory nature of the analysis, these
parallels do not arise primarily from information introduced into the analysis by the analysts,
as would be the case in a confirmatory analysis. Therefore, we can frame our results as both a
genuine, standalone description of pPCK as well as a link between the fine structures of ePCK
and pPCK. An analogous concept for the PTR cycle in the context of ePCK might be a
“reproduce apply evaluate” cycle in the context of pPCK.
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5.6.2 Scope of Validity and Open Questions

In general, it is important to note that our analysis is based on data that has been collected using
a questionnaire that focuses on classical mechanics in terms of the subject content. This is due
to the overarching focus of the respective study (Vogelsang et al., 2019). As the data was
collected between 2016 and 2019, it may also be slightly outdated. Nevertheless, given the
challenges of recruiting participants, it is unlikely that a comparably large dataset for PCK will
be generated soon in the subject of physics. We argue that it remains valuable to use this rich
dataset to gain further insights, especially given that the general framework of teacher
education in Germany has not changed significantly in recent years.

The analysis presented is an interplay between theoretically guided preparation and
interpretation steps and computer-based automated analyses. This is the case due to our
adoption of the CGT as a methodological framework (Nelson, 2020) and the data mixture of
manually assigned scores and real text responses. First, the preparatory step of assigning tasks
to requirement dimensions has implications for the interpretation of the resulting cluster
structures. Indeed, the assignment of questionnaire tasks to the requirement dimensions is
critical to the formation of the resulting clusters. One could argue that by using these
dimensions, the resulting clusters differ in the dimensions in which they are allowed to differ
and that subjective interpretations and beliefs may have overly biased the task assignment. We
addressed these concerns by basing the requirement dimensions on previous results that
followed a more inductive approach and by assigning the tasks with great care, secured by an
analysis of inter-rater agreement and a consensus solution. Thus, we sought to find an
appropriate balance between maintaining the exploratory intent of the analysis and supporting
the interpretability of the results. In the following, further research is suggested to confirm and
improve the presented results.

A similar concern arises concerning the level of granularity in certain requirement
dimension scores (see Table 5.2). Retrospective modification of the questionnaire was not
feasible, resulting in few distinct levels in some of the dimensions due to the low number of
tasks related to these dimensions in the questionnaire. However, in the subsequent analysis, the
results never rely on a single requirement dimension, providing some relief from this concern.
Nevertheless, we suggest that all requirement dimensions should be considered a priori in
future (quantitative) research on the internal structure of the pPCK. The granularity and thus
deviations from Gaussian-like distributions, as well as the varying density of the score data,
hindered the application of more sophisticated clustering procedures (e.g., Campello et al.,
2013; Spurk et al., 2020). Furthermore, the procedures used to determine an optimal number
of clusters for the K-Means algorithm were inconclusive and only roughly favored smaller
cluster numbers. The final cluster number of 4 was chosen primarily based on theoretical and
practical considerations. Therefore, the competency profiles should only be considered as
“latent” groups to a limited extent. A more appropriate perspective might be to consider them
as more informed, multidimensional quantiles.

The description of the typical language use of the competency profiles provides evidence
for the concurrent validity of the competency profiles with the tendencies being in line with a
priori expectations. Similarly, the average scores of the competency profile groups in the
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teaching situation requirement dimension provide a compelling argument in support of this
assertion, as they align with the typical scores observed in the analyze and evaluate dimensions.
However, in retrospect, it can be argued that the teaching situation dimension is superfluous
and appears to be an impurity in the otherwise fully theoretically motivated requirement
dimensions. Therefore, we re-evaluated the whole score cluster analysis procedure without this
dimension. The results for the cognitive activities were almost indistinguishable from those
presented in this article.

In addition to the arguments for concurrent validity, the predictability of the competency
profiles for unseen data can also be seen as an argument for the validity of their differentiation
in the CGT framework. The power of the (rather simple) logistic regression model in predicting
the competency profiles also shows that the overlap of the clusters in their two-dimensional
PCA visualization (Figure 5.5) does not imply an indistinguishability of the competency
profiles. This was also true for several other classification models evaluated for the same
purpose as the logistic regression classifier, namely, a support vector machine, a random forest
model, and a neural network.

The language analysis yielded several interpretable topics, although it is limited by the
digitization process. The initial assessment was carried out in a paper-pencil setting and the
responses were later digitized, allowing for the introduction of spelling errors and other
inaccuracies. Using an automated approach to correct such errors is not appropriate because
(1) it would also correct legitimate errors that were made by the participants, and (2) it is
difficult to apply an automated approach to a dataset that contains a significant amount of
specialized vocabulary. Nevertheless, the interpretability and appropriateness of the identified
topics suggest that the results retain their significance and meaningfulness.

The impact of the competency profile assignments on the topic prevalences (as shown in
Figure 5.7) is relatively small, with the differences often being not statistically significant in
post hoc test analyses. Nevertheless, we argue that the results combined with the findings from
the score cluster analysis provide valuable insights into the competency profiles and their
integration into our interpretation is valid. Language data typically embodies a large amount of
variety and variation (e.g., Jurafsky & Martin, 2024), so we do not expect the found effects to
be large. Our pattern confirmation step does not (yet) make use of the language data and
therefore cannot be considered as confirmation of the observations on typical language use.
The usage of language data for predictive purposes in an automated scoring workflow is part
of our future work (see below) and could then provide further pattern confirmation arguments.

5.6.3 Perspectives and Outlook

Overall, the identified and described competency profiles represent to a certain extent non-
hierarchical distinctions of typical pPCK profiles, indicating knowledge areas tailored for
different operations within the context of pPCK. In particular, the identified competency
profiles reflect a differentiation between more analytical/evaluative and more
applicative/creative knowledge. The formation of the competency profiles also indicates that
these knowledge areas can be developed to some extent independently of each other, although
they do not form genuine “latent” groups.
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These findings provide opportunities for further research aimed at describing the internal
structure of PCK. First, we suggest that requirement dimensions, such as those relevant to the
competency profiles, are included in future quantitative test instruments for pPCK. Based on
our findings we argue that a strong emphasis on such a dimension is useful, especially if
differentiating specific strengths and weaknesses of participants is relevant for the intended use
of the test instrument.

Second, we encourage research to assess the reproducibility of our findings using other
pPCK-test instruments and datasets. To gain further insight into the role of language for PCK,
it would be beneficial to examine this relationship with a similar methodology but larger data
sets. For instance, more complex linguistic features such as whole expressions like “student
cognition” could be analyzed rather than just single words, as was the case in our study. The
results of this study primarily demonstrate the focus of the competency profiles on specific
core ideas of PCK. However, there may be potential connections between the level of PCK
demonstrated by a student and the degree of connectedness and sophistication in his/her
language use. Similarly, given our data, it remains uncertain whether the identified pPCK
domains we proposed above (“pPCKappy” and “pPCKeva®) are specifically associated with
particular ePCK domains in the context of the PTR cycle. It is plausible that the
applicative/creative pPCK components are more relevant to ePCKyian, while the more
analytic/evaluative pPCK components are more relevant to ePCKieflect. On the contrary, all
pPCK components may be necessary to enable effective performance in the form of ePCK,
regardless of the concrete focused step in the PTR cycle (or similar distinctions).

Moreover, by choosing (mainly) the cognitive requirement dimensions for the preparation
and interpretation of the score cluster analysis, we forced the potential discoveries to be related
to these dimensions. However, we cannot and do not rule out the existence of non-hierarchical
structures w. r. t. other domains of the task development model, especially the pPCK subscales.
Conversely, we even conducted a comparable score cluster analysis for the pPCK subscales*’,
which yielded similar results: an overall low-performing group, an overall high-performing
group, and two intermediate groups. One of these intermediate groups showed strengths on the
instructional strategies and experiments subscales and one showed strengths on the student
cognition and theoretical PCK-related concepts subscales. However, as already mentioned in
the Methods section, the results in the context of the pPCK subscales are less generalizable
than the results in the context of the cognitive requirement dimension, because only four
selected subscales are targeted in the test instrument, while other subscales are considered in
other studies (e.g., Hume et al., 2019).

Although the identified competency profiles cannot be considered as genuine latent groups,
i.e., pre-service teachers, in general, may not be strictly limited to the profiles found, there are
undoubtedly individuals who exhibit distinct strengths and weaknesses that can be interpreted
through our findings. The competency profiles and requirement dimensions therefore represent
a step towards empirically based formative assessment (Hattie & Timperley, 2007) that goes
beyond a simple differentiation between “lower” and “higher” pPCK. Classifying individual

4 Abbildung 5.10
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student teachers or whole learner groups based on their competency profiles could guide
decisions about the selection of specific learning materials and contexts. For example, a group
that is more analytical or evaluative could be directed towards more creative tasks, such as
producing teaching materials, while more practical or creative students could be encouraged to
improve their ability to evaluate or reflect on teaching quality. Such applications of an
assessment based on the competency profiles and requirement dimensions could be used to
guide the selection of learning opportunities or exercises, as well as to evaluate the
effectiveness of teacher education courses or practical training in schools. For instance, a shift
in the allocation of a considerable number of participants from the Applying Creatives (pre) to
the High Achievers (post) could indicate the intended effectiveness of a course. Contrarily, an
unsystematic shift of participants between the Applying Creatives and the Analytic Evaluators
profiles could indicate a lack of opportunity for the participants to connect their knowledge in
the respective areas.

To make such an assessment feasible and potentially even scalable, automation is required.
One option is to convert questionnaires to a closed format, but this could raise uncertainty and
concerns about the authenticity of the tasks (e.g., Kulgemeyer et al., 2023) and thus uncertainty
about the validity of conclusions drawn from data generated using these newly generated test
instruments. Instead, ML and natural language processing techniques could be used to
automate the assessment while adhering to already established, (mostly) open-ended test
instruments. An automation strategy following the latter approach using a language model is
currently being explored for the questionnaire used in this study. During the exploration, we
have already drawn two essential conclusions when working on such automation approaches
with a data structure as the one described above: (1) an automated scoring step to assign
previously manually generated scores to individual tasks seems to be crucial before using these
automated scoring results for the comprehensive competency profile classification; (2) the use
of a few multiple-choice tasks substantially increases the predictive power, which is helpful in
settings where the available training data is too limited to achieve high accuracies for the open-
ended tasks. Using transformer language models (Devlin et al., 2019; Vaswani et al., 2017) for
the automated scoring step, we are currently achieving > 70 % accuracy in competency
profiles assignment, approaching human-human-agreement values.
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5.7. Kommentare und Erginzungen

Zunéchst einmal soll hier erneut explizit darauf hingewiesen werden, dass in den explorativen
Analysen zum zweiten Zielpaket komplexe Workflows durchlaufen werden. Das Ergebnis des
zweiten Artikels sollte daher eher als eine Moglichkeit nicht-hierarchische Strukturen des FDW
zu beschreiben aufgefasst werden, denn als die Moglichkeit. Auch, wenn gezielt die Dimension
der kognitiven Anforderungen genutzt wurde, um vor dem Hintergrund der Ergebnisse aus dem
ersten Zielpaket die Wahrscheinlichkeit zu erhohen, dass die Strukturen auch
projektunabhidngig generalisierbar sind, wird hier weitere entsprechende Forschung zur
Uberpriifung der Generalisierbarkeit der gefundenen Strukturen als notwendig angesehen.

Die ermittelten Cluster bzw. insbesondere die Analytic Evaluators und Applying Creatives
stellen nicht-hierarchische Gruppen dar. Dies wurde im Artikel aus Platzgriinden nur recht
knapp prosaisch beschrieben und soll daher hier noch einmal ausfiihrlicher nachgereicht
werden. In Tabelle 5.6 werden daher paarweise T-Test zum Vergleich der Cluster berichtet.
Zwischen den Applying Creatives und den Analytic Evaluators zeigen sich lediglich nicht bzw.
nur knapp signifikante Unterschiede beziiglich des Studienfortschritts und des FDW-
Gesamtscores. Insbesondere beim Vergleich der Effektstdrken kann hier in diesem Sinne
definitiv von einer nicht-hierarchischen Unterscheidung ausgegangen werden.

Tabelle 5.6 Paarweise T-Test zum Vergleich der Cluster aus Artikel 2.

Studienfortschritt (Years of Study) FDW-Gesamtscore
t(df),p Cohens d t(df), p Cohens d

Low Achievers vs. t(497) = 6.56 0.61 t(497) = 22.25 208
Applying Creatives p < 0.001 ’ p < 0.001

Applying Creatives vs. t(320) = 1.67 t(320) = 2.01 0.23
Analytic Evaluators p=0.10 p = 0.05

Analytic Evaluators vs. t(277) = 4.38 0.53 t(277) = 15.78 1.90
High Achievers p < 0.001 ' p < 0.001

5.7.1 Alternative Cluster-Modelle und Subskalen

In Abschnitt 5.4.2 wurde beschrieben, dass Dichte-basierte Cluster-Modelle sowie GMMs auf
den Datensatz in der bestehenden Form, d. h. aggregiert nach den Subskalen Reproduzieren,
Anwenden, Analysieren, Evaluieren, Kreieren und Unterrichtssituation, nicht angewendet
werden konnten. Abbildung 5.8 und Abbildung 5.9 visualisieren die dabei auftretende
Problematik der ,,Kollabierung® solcher elaborierteren Modelle aufgrund der geringen Anzahl
an Abstufungen — in diesem Fall der Kategorie Evaluieren. Dabei wird ein GMM und ein
Dichte-basiertes HDBSCAN*6-Modell (MclInnes et al., 2017) verwendet.

46 Hierarchical Density-Based Spatial Clustering of Applications with Noise
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Abbildung 5.8 PCA-Visualisierung von alternativen Score-Clustern bei der Nutzung eines HDBSCAN-Models
(oben) und eines GMMs (unten). Im Falle des HDBSCAN-Models deutet sich zudem das beschriebene Problem

der zu unsystematischen Dichteverteilungen bereits an, obwohl hier entsprechende Parameter zur ,,Glattung*
bereits eingestellt wurden. Im Falle des GMMs erkennt man eine lineare Struktur. Beides lisst sich mithilfe von
Abbildung 5.9 noch einmal expliziter interpretieren.
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Abbildung 5.9 Zentroid-Linienplots der alternativen Score Cluster bei der Nutzung eines HDBSCAN-Models
(oben) und eines GMMs (unten). Man erkennt, wie in beiden Fillen die starke Diskretisierung der Skala

Evaluieren dazu fiihrt, dass die Modelle letztlich ,kollabieren® und quasi nur noch die Varianz in dieser einen
Kategorie aufkldren. Ein K-Means Modell hat sich als gegeniiber dieser Problematik als robuster erwiesen und
konnte trotzdem informative Cluster liefern.
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Diese zusitzlichen Analysen deuten darauf hin, dass mehr Aufgaben bzw. feiner unterteilte
Subskalen notwendig (wenn auch nicht unbedingt hinreichend) sind, um elaboriertere Cluster-
Modelle einsetzen zu konnen. Die Ergebnisse des Artikels 2 suggerieren zudem, dass es zu
diesem Zweck sinnvoll sein kann, die kognitiven Anforderungen Anwenden und Kreieren bzw.
Analysieren und Evaluieren zusammenzufassen. In Artikel 3 (Kapitel 6) wird ebendies
angestrebt. Dabei fillt die Wahl der Cluster-Analyse auf eine GMM-basierte LPA (e.g., Spurk
et al., 2020), da fiir diese bereits etablierte Workflows existieren.

Wie bereits in Abschnitt 5.6.3 angedeutet wurde, konnen auch die Facetten auf analoge
Weise wie die in Artikel 2 verwendeten sechs Anforderungskategorien zur Clusterbildung
genutzt werden. Ahnlich wie beim K-Means Modell in Artikel 2 gibt es auch hier kaum
nennenswerte heuristische Argumente fiir eine bestimmte Anzahl an Clustern (siche Elbow-
und Silhouette-Plots im digitalen Ergénzungsmaterial). Ein Zentroid-Linienplot eines K-
Means Modells mit 4 Clustern ist in Abbildung 5.10 dargestellt. Auch hier zeigt sich eine
potenzielle nicht-hierarchische Struktur in Form zweier Gruppen, die sich insbesondere in
ithren Kompetenzen hinsichtlich der Facetten Instruktionsstrategien und Experimente
unterscheiden. Wie bereits angesprochen, stellen diese im Testinstrument abgedeckten
Facetten aber nur eine Auswahl moglicher Facetten dar (Gramzow, 2015). Somit ist eine
Ubertragbarkeit auf andere Operationalisierungen bzw. Konzeptualisierungen des FDW
weniger wahrscheinlich als bei den kognitiven Anforderungen.

Centroid-Linienplot der K-Means Cluster bzgl. FDW Facetten
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Abbildung 5.10 Zentroid-Linienplot fiir ein K-Means Cluster-Modell auf Basis der FDW-Facetten.
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5.7.2 Hinweise zum Topic Modelling und Alternativen

In Artikel 2 wurde ein STM (Roberts et al., 2019) zur Analyse von typischen Sprachgebrauchs-
mustern der Personencluster durchgefiihrt. Zentrales Ergebnis dieser Untersuchung sind die
Effekte, die die Zuordnung zu einem Cluster auf die Fokussierung auf bestimmte Topics hat.
Dabei wurde bereits angedeutet, dass die Darstellung im Artikel (Figure 5.7) deskriptiv
abgeleitet wurde**. Die verwendete Software stellt allerdings auch eine Methode bereit, diese
Effekte probabilistisch zu untersuchen*’. Da im Rahmen des probabilistischen STMs ohnehin
die Verteilung der Topic-Cluster Variablen ermittelt wird, kann man diese auch direkt aus dem
Modell samplen und erhélt somit auch ein MaB fiir die Unsicherheit der Werte (siehe digitales
Begleitmaterial). Die Unterschiede der probabilistischen Erwartungswerte der Cluster-Topic-
Effekte zu den in Artikel 2 verwendeten, leichter interpretierbaren, frequentistischen Werten
sind aber gering (siche Abbildung 5.11).

Effect of the Score Cluster-Assignment on Topic Prevalence

High-Achievers 0.09

Analytic
o Evaluators Effect
2 0.4
3 0.3
o 0.2
Applying 0.1
Creatives

Low-Achievers

Topic

Abbildung 5.11 Darstellung des Effekts, den die Cluster-Zugehorigkeit auf den Anteil hat, den das entsprechende
Dokument einem Topic widmet (probabilistische Betrachtung).

Als Alternative zum STM wurden in Artikel 2 auch Deep-Learning-basierte Topic Models,
der Namensgebung der verwendeten Software hier auch BERTopic-Modelle (Grootendorst,
2022) genannt, erwédhnt. In solchen Modellen wird typischerweise ein Cluster-Modell mithilfe
von dimensionsreduzierten*® Embeddings der Dokumente gebildet. AnschlieBend werden die

47 Siehe ,,estimateEffect* in Roberts et al. (2023, S. 11-13).

4 Zur Dimensionsreduktion wird hierbei standardmiBig (Grootendorst, 2022) das sog. ,,UMAP“-Modell
(Uniform Manifold Approximation; Mclnnes et al., 2020) verwendet, dass gegeniiber klassischen
Vorgehensweisen wie einer PCA den Vorteil hat, dass sowohl lokale als auch globale Strukturen in der
Projektion auf die niederdimensionale Darstellung erhalten bleiben.
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charakteristischen Worte aus den Dokumenten, die zu einem Cluster gehdren, auf Basis ihrer
Frequenz extrahiert. Im Rahmen dieses Projekts wurden neben dem STM auch zwei
BERTopic-Modelle erstellt. Diese bieten zwar nicht wie das STM die Moglichkeit die Topic-
Cluster-Zusammenhinge schon in der Modellierung zu beriicksichtigen, sind aber interessant,
da sie die Bag-of-Words Annahme iiberwinden und sich in unterschiedlichen Kontexten als
sehr informativ und reichhaltig erwiesen haben (Grootendorst, 2022).

Im ersten Experiment wurde dabei ein BERTopic-Modell der Gesamtantwortdokumente,
analog zum Vorgehen in Artikel 2 erstellt. Das heif3t, alle Antworten einer Bearbeitung des
Testinstruments wurden gemeinsam als ein Dokument betrachtet. Aufgrund der
durchschnittlichen Lénge dieser Dokumente von ca. 311 (SD = 125, max = 892) Worten,
stoBBen hier kleine BERT-Sprachmodelle bereits an ihre Grenzen. Stattdessen wurde das ,,text-
embedding-3-small“-Modell von OpenAl (0. D.-b) verwendet*, das Input-Lingen von iiber
8000 Token verarbeiten kann. Dariiber hinaus wurde im Wesentlichen der Standard-Workflow
des verwendeten Bertopic-Python-Pakets (Grootendorst, 2022) beibehalten. Tabelle 5.7 zeigt
die sich ergebenden Wortlisten zur Charakterisierung moglicher Topics und die Anzahl an
zugeordneten Dokumenten. Aus Sicht des Autors sind diese ,,potenziellen Topics® sehr
allgemein und repetitiv. Sie unterscheiden sich, wenn iiberhaupt, dann lediglich beziiglich
fachlicher und nicht fachdidaktischer Konzepte. Sie sind fiir ein sinnstiftendes Pattern
Refinement aus Sicht des Autors nicht brauchbar>°.

Noch eindeutiger ist die Lage, wenn man statt der Gesamtbearbeitungen die einzelnen
Antworten als Dokumente nutzt. In diesem Kontext wird jede Antwort demjenigen Cluster
zugeordnet, dem auch die Gesamtbearbeitung zugeordnet ist. Da die Einzelantworten deutlich
kiirzer sind als die Gesamtdokumente, kann hier zur Berechnung der Embeddings wieder ein
BERT-Modell verwendet werden. Die sich ergebenden Topic-Begriffslisten deuten bereits
darauf hin, dass in diesem Modell vielmehr die jeweilige Aufgabe, zu der eine Antwort gehort,
eine Rolle fiir das Topic spielt, als das Personencluster, zu dem die Gesamtbearbeitung gehort.
Zu Illustrationszwecken werden hier anstelle einer Tabelle die Topics als Embeddings-Cluster
in Abbildung 5.12 dargestellt, wobei die jeweils wichtigsten Begriffe ebenfalls enthalten sind.
Abbildung 5.13 und Abbildung 5.14 visualisieren den Zusammenhang zwischen Clustern und
Topics bzw. Aufgabenzuordnungen und Topics noch einmal und bestétigt den Eindruck, der
bereits durch die Topic-Begriffslisten entsteht: Die Topics sind primér durch die zur jeweiligen
Antwort gehorigen Testaufgabe und nicht durch die Kompetenzprofil-Zugehorigkeit der
Antwort-Autorin bzw. Antwort-Autoren charakterisiert. Dass beim BERTopic-Modell anders
als beim STM die Clusterzuordnung eines Dokuments erst nach der eigentlichen Modellierung
und lediglich deskriptiv genutzt wird, scheint fiir den hier verfolgten Anwendungszweck ein
entscheidender Nachteil zu sein.

4 Bei der Nutzung der OpenAI-API zur Generierung von Embeddings (Abschnitt 5.7.2 & 6.7.6) und zum
Finetuning (Abschnitt 6.7.2 & 6.7.8) spielen Datenschutz und Privatsphére eine Rolle. Es wurde hier (1) bereits
bei der Digitalisierung der Testantworten (Abschnitt 3.2, 6.4.1 & 6.7.3) darauf geachtet, dass keine
personlichen oder sensiblen Daten im Datensatz enthalten sind und (2) die OpenAI-API derart konfiguriert,
dass keine Daten gespeichert oder zum Training der offentlichen Modelle verwendet wurden (siehe auch
OpenAl, 2024a).

30" Alle Leser:innen dieser Arbeit sind herzlich eingeladen, selbst kreativ zu werden.
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Tabelle 5.7 Charakteristische Begriffe eines Deep-Learning-basierten Topic Models fiir die Gesamtbearbeitungen
als Dokumente.

Topic Anzahl an

Charakteristische Begriff
Nummer Dokumenten araitenstische begritle

1 117 schiilervorstellungen, physikalische, physikalischen, kraftbegriff, physik, kréfte,
bewegungsrichtung, zentripetalkraft, reibungskraft, kreisbewegung

schiilervorstellungen, krifte, physikalischen, zentripetalkraft, vorstellungen, fragen,
2 109
bewegung, messfehler, versuch, schneller

schiilervorstellungen, krifte, reibungskraft, gravitationskraft, physik, zentripetalkraft,
3 91 . O
beschleunigt, schneller, messfehler, prinzip

schiilervorstellungen, physikalischen, kréfte, physik, zentripetalkraft, schiilern,
4 90 ; .
reibungskraft, frage, messfehler, schiilers

krifte, schiilervorstellungen, physik, reibungskraft, zentripetalkraft, beschleunigen,
5 86 b .
schneller, messfehler, bewegung, messunsicherheiten

6 80 schiilervorstellungen, beschleunigt, schiilern, krifte, physik, schneller, schiilers, beispiel,
schiilerinnen, vorstellungen

7 77 kréfte, kreisbewegung, reibungskraft, physikalische, schiilervorstellungen,
zentripetalkraft, bewegungsrichtung, bewegung, zentrifugalkraft, beschleunigt

] 71 schiilervorstellungen, schiilern, schiilers, fragen, versuch, vorstellungen, beispiel,
reibungskraft, fehler, falsch

9 69 schiilervorstellungen, physik, beschleunigt, schiilern, kréifte, messfehler, schneller,
schiilers, reibungskraft, zentripetalkraft

schiilervorstellungen, krifte, reibungskraft, beschleunigt, physik, zentripetalkraft,
10 54 . ..
schneller, frage, zentrifugalkraft, schiilern

Dokumenten-Embeddings und Topics

D2 0_experimente_experimenten_wissenschaftliches

1_schilervorstellung_schiilervorstellungen_schiler
2_kraften_kraft_krafte
3_alltaglichen_alltagliche_beispielsweise
4_auto_autos_autofahrt
14jahrradfah|kfah rrad féhrt 5_reactio_reaction_actio
A 6_vorstellungen_vorstellung_esingehen
7_geschwindigkeit_geschwindigkeiten_beschleunigung

16 chwindi | ‘geschwin geschwindigkeits vindigkei .
N “ﬁ u G autofaw z_geg;hl\-l.Ir;d;lglzelﬁ_gesihmndlgkeltsanderung_kraft
g! 10 | h°"'§."§“5‘%§ﬁ' rw@hmaﬂlge_geﬂtmdlgkewen - u. all_ball_balles .
10_hdhenmeter_geht_diagramm
w W,gesghwmd\g I geschwmdlgkeltendﬁs lﬂ'!% 11_schlitten_schlittens_schneller
i Il - - -
ﬂchen@g‘éﬁ_&lwm nten 355@"“"‘5&'“"‘55 b bales 12_fuBball_scheinkraft_schleuderball
1.3 | sim svecv Fz £12 fuBball_sch ft= scillguderball X
D1 . ’ 13_sim_vecv_fz

14_fahrradfahrer_fahrrad_fahrt

3 allt AT geféﬁmﬁ Flg emqehe ™ 15_beschleunigung_gleichmaBige_geschwindigkeiten
- t 16_geschwindigkeiten_geschwindigkeit_geschwindigkeits

17_teilchen_vorstellungen_aufteilung

5_reactio.reaction, actio

Abbildung 5.12 Darstellung der Dokumente und Topics eines BERTopic Modells mit den Einzelantworten als
Dokumente. Verwendet wird hier das das Sentence-BERT-Modell von Reimers und Gurevych (2019), das
Abschnitt 6.7.6 noch ausfiihrlicher vorgestellt wird.
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Kompetenzprofile mit Themenanteilen (Testheft-weises Modell)

-1.0

High Achievers
-0.8
Analytic Evaluators 0.6
Applying Creatives e
0.2

Low Achievers
0.0

Topic

Kompetenzprofile mit Themenanteilen (Aufgaben-weises Modell)

High Achievers : 5 0.07 0.06 0.06 0.04 0.05 0.04 0.03

Analytic Evaluators . . 0.07 0.07 0.06 .04 0.01 0.01

Applying Creatives : - X 0.08 008 006

Low Achievers ; : : X 0.09 0.07 0.05

Topic

Abbildung 5.13 Cluster-Topic-Zusammenhinge im Testheft-weisen BERTopic-Modell (oben) und im Aufgaben-
weisen BERTopic-Modell (unten). Die Werte sind hier etwas anders zu interpretieren als in Figure 5.7 und

Abbildung 5.11. Das BERTopic-Modell ordnet jedes Dokument im Cluster Modell der Embeddings einem Topic
fix zu. Das STM hingegen ist ein sog. ,,Soft-Assignment* Modell, d. h. vereinfacht dargestellt, ein Dokument
wird den Topics anteilig zugeordnet. Die Werte in den Abbildung 5.13 und Abbildung 5.14 sind daher einfach
die Verteilungen aller Dokumente aus den Clustern bzw. Aufgaben auf die Topics. Man erkennt deutlich, dass die
fokussierten Topics weitestgehend unspezifisch verteilt sind. Der hervorstechende Fokus des High Achievers
Profil auf Topic 0 im Testheft-weisen Modell ist mit den zugehoérigen Topic-Begriffe aus Tabelle 5.7 nicht
einsichtig.
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Aufgaben mit Themenanteilen (Aufgaben-weises Modell) Lo
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Abbildung 5.14 Aufgaben-Topic-Zusammenhénge im Aufgaben-weisen BERTopic-Modell. Die Darstellung ist
analog zu interpretieren wie Abbildung 5.13. Man erkennt deutlich, wie stark die Aufgaben mit einzelnen Topics
zusammenhédngen. Beispielsweise spielt Topic 0, welches offenbar Experimente im Physikunterricht fokussiert
(siehe Abbildung 5.12), eine wichtige Rolle in Antworten zu den Aufgaben A3, A10, A12, A22 und A23. Es
iiberrascht daher nicht, dass die Aufgaben A3, A10, A12 und A22 auch tatsdchlich in der Testkonzeption der
fachdidaktischen Facette Experimente zugeordnet sind (Gramzow, 2015, S. 276). Andere Aufgaben miissen eher
auf Basis ihres konkreten Inhalts betrachtet werden, um die Beziige zu den entsprechenden Topics zu erkldren.
Auch, wenn solche Beobachtungen interessante Parallelen (oder auch Diskrepanzen) zwischen der Sprachnutzung
von Proband:innen in ihren Antworten und den (intendierten) Inhalten der Testaufgaben ergeben konnen, sind sie
fiir die Zielpakete dieses Projekts von untergeordneter Bedeutung und werden daher hier nicht ausfiihrlicher
dargestellt.
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6. Machine-Learning-basiertes automatisiertes Assessment
von Kompetenzprofilen des physikdidaktischen Wissens
(Artikel 3)

Einordnung in das Gesamtprojekt

Der dritte Artikel dieses kumulativen Dissertationsprojekts sollte sich urspriinglich auf die
Automatisierung des FDW-Assessments, d. h. primir auf das dritte Zielpaket, fokussieren. Die
Cluster-Analysen sollten dabei eher als Ausgangspunkt dienen, an den der Assessment-
Workflow angekniipft werden sollte. Im Review-Prozess des Artikels wurde von Seiten der
Reviewenden und der Herausgebenden allerdings eine stdrkere Hervorhebung des inhaltlichen
Mehrwerts, bzw. des inhaltlichen Erkenntnisgewinns des Projekts gewiinscht. Dazu wurde
unter anderem vorgeschlagen, die Cluster-Analyse mit in den Artikel aufzunehmen. Anstatt
dieselbe Analyse wie in Artikel 2 hier erneut einzureichen, wurde auf Basis der bestehenden
Ergebnisse eine neuerliche Cluster-Analyse mit einem verdnderten Workflow durchgefiihrt.
Diese ist in Form der Forschungsfrage 2.4 in der Gesamtstrukturierung dieser Arbeit enthalten
(siche Abschnitt 3.1). Zusitzliche Informationen und Ergebnisse zu explorierten alternativen
Modellen und Workflows des automatisierten Assessments sind daher aus Platzgriinden nicht
in Artikel 3 eingeschlossen und folgen in Abschnitt 6.7.

Der Workflow der neuerlichen Cluster-Analyse zu FF2.4 / in Artikel 3 basiert einerseits auf
der Beobachtung, dass die Anforderungskategorien Anwenden und Kreieren sowie
Analysieren und Evaluieren anscheinend systematisch zusammenhéngen (Artikel 2, bzw.
Abschnitt 5.5.1, insbesondere Figure 5.6). Dariiber hinaus zeigte sich im Rahmen weiterer
explorativer Analysen, dass die starke Diskretisierung einzelner Anforderungskategorien
(insbesondere Evaluieren) eine wesentliche Limitation des Datensatzes ist und die
Anwendbarkeit elaborierterer Cluster-Modelle als dem K-Means-Modell entscheidend
beeintrachtigt (Abschnitt 5.7.1). Fiir eine neuerliche Cluster-Analyse wurden daher die
Anforderungskategorien Anwenden und Kreieren sowie Analysieren und Evaluieren
zusammengefasst, sodass die einzelnen betrachteten Subskalen weniger stark diskretisiert sind.
Im Sinne der CGT kann man die Cluster-Analyse in Artikel 3, d. h. die Analysen zu FF2.4
(Abschnitt 6.4.2 & 6.5.1), also als neuerliche ,,refined” Pattern Detection im Rahmen eines
zyklischen Durchlaufens der einzelnen Phasen des CGT-Frameworks verstehen.

Die Analysen zur automatisierten Bepunktung des Testinstruments (Abschnitt 6.4.3 &
6.5.2) sowie der darauf aufbauenden automatisierten Zuordnung von Proband:innen zu den
Kompetenzprofilen (Abschnitt 6.4.4 & 6.5.3) werden somit auch als Pattern-Confirmation-
Schritt interpretiert. Dabei sind die Ergebnisse dieser Pattern Confirmation aber praktisch
wesentlich nutzbarer als die Pattern-Confirmation-Ergebnisse in Artikel 2 (FF2.3), da hier der
Assessment Workflow nun vollstindig automatisiert wird.
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ersten Review-Runde mit zusdtzlichen redaktionellen Korrekturen enthalten.

In der hier enthaltenen Version ist der Artikel primir auf die Automatisierung der Zuordnung
von Proband:innen zu den Kompetenzprofilen und somit die Entwicklung eines automatisierten
FDW-Assessments fokussiert. Im Review-Prozess wurde eine stirkere Fokussierung auf den
inhaltlichen Erkenntnismehrwert gewiinscht, sodass in der veroffentlichten Version des Artikels
ein deutlich stirkerer Fokus auf ausgeschérften inhaltlich-explorativen Analysen — éhnlich zu
denen in Artikel 2 — liegt. Das automatisierte Assessment ist in der verdffentlichten Version des
Artikels eher ,,Mittel zum Zweck® und wird nur recht knapp beschrieben. Somit hat sich auch
der Titel des verodffentlichten Artikels gegeniiber dem Titel des Kapitels 6 in dieser Arbeit
verandert.

Zusammenfassung

Das fachdidaktische Wissen (FDW) stellt eine wichtige Komponente des Professionswissens
von (angehenden) Lehrkriften dar. Es liegen bereits empirische Forschungsergebnisse zu
Einflussfaktoren und zur Entwicklung des FDW sowie zur Bedeutung des FDW fiir
Professionswissen und Qualitét professioneller Handlungen vor. Fiir eine optimale Forderung
der Entwicklung des FDW und weitere detailliertere Forschung sind dariiber hinaus
differenziertere empirisch begriindete Beschreibungen der inneren Struktur des FDW
notwendig. Bisher sind entsprechende Ansétze allerdings zumeist primér theoretisch-normativ
begriindet, auf hierarchische Betrachtungen beschrinkt, oder nicht in der Lage, tatsdchlich
latente Strukturen zu erfassen. Im vorliegenden Beitrag wird daher ein Ansatz zur
datenbasierten Beschreibung latenter Kompetenzprofile des FDW orientiert an der
Computational Grounded Theory vorgestellt. Dabei wird zundchst ein Datensatz von 846
Bearbeitungen des Physik-FDW-Testinstruments mit iiberwiegend offenem Antwortformat
aus dem ProfiLe-P+ auf Basis der bisherigen Forschungsergebnisse zur inneren Struktur des
FDW vorbereitet. AnschlieBend wird eine Latent Profile Analysis zur Untersuchung latenter
Kompetenzprofile durchgefiihrt. Um die Ergebnisse im Sinne der Computational Grounded
Theory zu bestitigen, wird im Anschluss ein Machine-Learning-basiertes System zur
automatisierten Zuordnung von Testbearbeitungen (insbesondere ausgehend von den Freitext-
Antworten der Proband:innen) zu den Kompetenzprofilen erstellt. Es zeigen sich vier latente
Kompetenzprofile mit nicht-hierarchischem Charakter, die insbesondere auf die Trennbarkeit
analytisch-evaluativer und anwendungsorientiert-kreativer Kompetenzen hindeuten. Die
automatisierte Zuordnung der Testbearbeitungen zu den Kompetenzprofilen mit einer
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Maschine-Mensch-Ubereinstimmung von x = 0,587 (Mensch-Mensch-Baseline: k = 0,624)
kann im Sinne der Computational Grounded Theory als Bestdtigung der Validitit dieser
Strukturen aufgefasst werden. Das dabei entwickelte Machine-Learning-basierte System bietet
zudem das Potenzial, fiir skalierbares automatisiertes inhaltlich reichhaltiges Assessment des
FDW genutzt zu werden.

Schliisselworter: Fachdidaktisches Wissen - Explorative Analyse - Physik - Machine Learning
- Natural Language Processing - BERT-Modell

Machine-Learning-based automated assessment of competency profiles in
physics pPCK

Abstract

Personal Pedagogical Content Knowledge (pPCK) represents a crucial component of the
professional knowledge of (prospective) teachers. Empirical research has assessed the
development and influencing factors of pPCK and shown pPCK’s significance for professional
knowledge and the quality of professional actions. For the optimal fostering of pPCK (e.g., in
teacher education programs) and further research, descriptions of pPCK’ internal structure are
necessary. However, existing approaches are typically primarily theoretically-normatively
grounded, limited to hierarchical views, or unable to capture /atent structures. We therefore
present an approach for data-driven description of latent competency profiles of pPCK, guided
by the Computational Grounded Theory. Initially, a dataset of 846 responses to the physics
pPCK test instrument from the ProfiLe-P+ - project is pre-processed based on previous research
findings. Subsequently, a Latent Profile Analysis is conducted to examine latent competency
profiles. To confirm the results in the sense of the Computational Grounded Theory, a
Machine-Learning-based system for the automated classification of test responses (particularly
from participants’ free-text answers) into the competency profiles is developed. Four latent
competency profiles, which exhibit a non-hierarchical nature and particularly indicate the
separability of analytical-evaluative and application-oriented-creative competencies, are
identified. The automated classification of test responses into the competency profiles, with a
machine-human agreement of x = 0.587 (human-human baseline: x = 0.624), can be
interpreted as a confirmation of the validity of these structures in the sense of Computational
Grounded Theory. Moreover, the Machine-Learning-based assessment-system holds potential
for a scalable, automated, content-rich assessment of pPCK.

Keywords: Personal Pedagogical Content Knowledge - Exploratory Analysis - Physics -
Machine Learning - Natural Language Processing - BERT-Model
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6.1. Einleitung

Erfolgreiche Lehrerbildung stellt im Kontext der Wirkkette schulischer Bildung (Terhart,
2012) und des empirisch belegten Einflusses der Lehrperson auf schulischen Erfolg (Hattie,
2009) eine wichtige Grundlage eines effektiven Bildungssystems dar. Das Lehramtsstudium
zielt dabei wesentlich auf die Vermittlung von Professionswissen ab. Eine zentrale
Komponente des Professionswissens von Lehrkriften ist neben dem Fachwissen (FW) und
dem péddagogischen Wissen (PW) das fachdidaktische Wissen (FDW) (z. B. Baumert &
Kunter, 2006; Shulman, 1986). FW beinhaltet dabei das eigentliche ,,Sachwissen* der
jeweiligen Disziplin sowie fachspezifische Arbeitsweisen und Losungswege. PW umfasst
fachunabhingiges Wissen wie beispielsweise Wissen iiber Klassenfithrung und Diagnostik.
Die Konzeptualisierungen und inhaltlichen Beschreibungen des FDW sind hédufig weniger
einheitlich (z. B. Gramzow et al., 2013), allgemein kann FDW aber grob als Wissen iiber die
Vermittlung von bestimmtem Fachwissen and bestimmte Lernende verstanden werden (siche
Abschnitt 6.2.1, 6.2.2). Konkret fiir die Naturwissenschaften liegen mittlerweile sowohl im
deutschsprachigen (z. B. Riese et al., 2015; Schiering et al., 2019; Tepner et al., 2012) als auch
im internationalen Raum (z. B. Hume et al., 2019; Park & Oliver, 2008) Forschungsergebnisse
zu Operationalisierungen, Interdependenzen und Einflussfaktoren des FDW vor. Analysen
zeigen dariiber hinaus die Bedeutsamkeit des FDW sowohl (1) fiir das Professionswissen als
Ganzes (z. B. Hume et al., 2019; Sorge et al., 2019) als auch (2) fiir die Entwicklung zentraler,
unterrichtsbezogener Fahigkeiten (Kulgemeyer et al., 2020; Schroder et al., 2020) sowie (3)
fiir die kognitive Aktivierung von Schiiler:innen (Fortsch et al., 2016).

Aufgrund der sowohl theoretisch angenommenen als auch empirisch belegten
Bedeutsamkeit des FDW gibt es Bestrebungen, die innere Struktur des FDW inhaltlich zu
beschreiben. Dazu sind neben theoretisch-normativen Modellierungen im Rahmen von héufig
als ,,Facetten‘ bezeichneten Subskalen (z. B. Park & Oliver, 2008; Riese et al., 2017; Sorge et
al., 2019) auf empirischer Seite bislang vor allem Niveaumodelle auf Basis von Item-
Response-Modellen entwickelt worden (z. B. Schiering et al., 2023; Schiering et al., 2019;
Zeller et al., 2024). Projektiibergreifend zeigte sich dabei, dass FDW in niedrigen Niveaus auf
reproduktive Aspekte beschrankt bleibt, sich in hohen Niveaus aber hin zu evaluierenden und
kreativen Aspekten erweitert (Zeller et al., 2024). Um auch nicht-hierarchische Strukturen im
Kontext dieser Beobachtungen beschreiben zu konnen, wurde in einer der hier vorgestellten
Analyse vorangegangenen Untersuchung ein Cluster-Modell des FDW erstellt, welches auch
distinkte nicht-hierarchische Strukturen aufdecken (Zeller & Riese, 2025) . Dabei konnten die
resultierenden prototypischen Personengruppen aber aufgrund methodischer Limitationen
nicht als tatsdchlich ,latente Strukturen verstanden werden (Abschnitt 6.2.2).

Im vorliegenden Artikel wird nun ein erweiterter Ansatz vorgestellt, der aufbauend auf den
bisherigen Erkenntnissen zur inneren Struktur des FDW und mithilfe einer erweiterten
Methodik tatsdchlich latente nicht-hierarchische Strukturen erfasst. Dazu wird orientiert an der
Computational Grounded Theory (CGT) nach Nelson (2020) zunidchst eine explorative
Analyse unter intensiver Nutzung von Theorie- und Expertenwissen durchgefiihrt. Fiir diesen
Zweck wird eine Latente Profilanalyse (LPA, z. B. Spurk et al., 2020) eines Datensatzes mit
846 Bearbeitungen eines groBtenteils offenen FDW-Testinstruments (Gramzow et al., 2013)
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aus dem Projekt ProfiLe-P+ (Vogelsang et al., 2019) durchgefiihrt. Anschliefend werden die
gefundenen latenten Profile im Rahmen der sog. ,,Pattern Confirmation* der CGT (siche
Abschnitt 6.2.3) in ihrer Giiltigkeit bestétigt. Zu diesem Zweck wird der CGT folgend die
Performanz eines automatisierten Systems auf der Basis von Machine-Learning-(ML)-
Modellen zur Zuordnung von Proband:innen zu den latenten Profilen evaluiert.

Das in dieser Untersuchung verwendete Testinstrument besteht zu einem groen Anteil aus
Aufgaben in offenem Antwortformat (Gramzow et al., 2013); auch dhnliche Testinstrumente
weisen hiufig mindestens anteilig ein offenes Aufgabenformat auf (z. B. Kréger, 2019). Die
Auswertung zu Forschungs- und Feedbackzwecken erzeugt somit bislang meist einen hohen
hiandischen Kodieraufwand. Das in diesem Beitrag im Rahmen der CGT-Pattern Confirmation
verwendete automatisierte System basiert unter anderem auf einem ML-Modell zum
automatisierten Scoren des Testinstruments. Als Nebenprodukt der Bestitigung der
untersuchten latenten FDW-Strukturen entstand somit ein allgemeines automatisiertes
Assessment-System fiir das FDW im Fach Physik. Abgesehen von einer zeitbkonomischen
Messung des FDW zu Forschungszwecken ermoglicht dieses System damit beispielsweise
auch ein automatisiertes Feedback zum Stand des FDW zum Zweck der formativen Diagnostik.
Der vorgestellte Workflow bietet also insgesamt das Potenzial, als Blaupause fiir den Transfer
bisheriger Forschungsergebnisse und Messverfahren mit offenen Testitems in die Lehrpraxis
zu dienen.

6.2. Theoretischer Hintergrund

6.2.1 Konzeptualisierung des Fachdidaktischen Wissens

Es existieren unterschiedliche Ansédtze, FDW zu konzeptualisieren. Gemein ist den Meisten die
auf (Shulman, 1986, 1987) zuriickgehende grundlegende Auffassung von FDW als demjenigen
Wissen, das zur Vermittlung von bestimmtem Fachwissen an bestimmte Lernende notwendig
ist. Im englischsprachigen Raum hat sich parallel zu FDW dabei das Konstrukt des
Pedagogical Content Knowledge (PCK) entwickelt, das eng verwandt, aber nicht
deckungsgleich mit FDW ist (z. B. Vollmer & Klette, 2023). FDW lisst sich aber im Rahmen
des international etablierten ,,Refined Consensus Model* (RCM) des PCK (Carlson et al.,
2019; Hume et al., 2019) interpretieren. Grob zusammengefasst konzeptualisiert das RCM das
Konstrukt PCK in den drei Domiénen collective PCK (cPCK), personal PCK (pPCK) und
enacted PCK (ePCK). Dabei beschreibt cPCK die kollektive, explizierbare Wissensbasis der
fachdidaktischen Community (,,Lehrbuchwissen®), pPCK das personliche internalisierte (aber
immer noch explizierbare) Wissen der Einzelpersonen (,,testbarer Wissensstand*) und ePCK
das individuelle, ggf. implizite Wissen einer Lehrkraft, das in einer konkreten Situation der
Planung, Durchfithrung und Reflexion von Unterricht zugrunde liegt (,,aus der Handlung
rekonstruierbar®; Carlson et al.,, 2019, S.83-90). Im Sinne des RCM werden
Operationalisierungen und die durch die Testinstrumente abgebildeten FDW-Konstrukte dabei
meist als pPCK interpretiert (z. B. Kulgemeyer et al., 2023; Schiering et al., 2023). Auch dieser
Beitrag schliet sich dieser Auffassung an. Im Folgenden wird somit der Begriff des FDW im
Sinne eines pPCK genutzt. Neben dem RCM wird héufig auch das sog. Kontinuumsmodell
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(,,Model of Competence*, MoC) nach Blomeke et al. (2015) zur Konzeptualisierung des FDW
verwendet. Das MoC beschreibt professionelle Kompetenz als ein Kontinuum zwischen
kognitiven Dispositionen und gezeigter Performanz in konkreten Handlungssituationen. FDW
lasst sich im Rahmen dieses Modells eher auf der Seite der kognitiven Dispositionen verorten
(z. B. Kulgemeyer et al., 2023).

Zur Operationalisierungen des FDW fiir die Naturwissenschaften und im Fach Physik (z. B.
Gramzow et al., 2013; Kroger, 2019; Tepner et al., 2012) werden meist Strukturmodelle auf
Basis der folgenden drei Dimensionen genutzt:

1. Fachinhalte (z. B. Mechanik, Elektrizititslehre etc.): Die grundsitzliche Abhédngigkeit
des FDW vom jeweiligen zu vermittelnden Fachinhalt wird in allen gingigen
Konzeptualisierungen des FDW angenommen (Baumert & Kunter, 2006; Riese et al.,
2017; Shulman, 1986, 1987; Sorge et al., 2019).

2. Facetten bzw. fachdidaktische Inhalte: Diese zentrale Dimension dient zur Beschreibung
unterschiedlicher inhaltlicher Themenfelder, die FDW umfasst. Die Auswahl relevanter
Facetten des FDW wird dabei zumeist auf Basis von theoretisch-normativen
Modellierungen (z. B. Magnusson et al., 1999; Park & Oliver, 2008), Analysen von
Curricula der Lehrerbildung bzw. Literatur-Reviews (z. B. Gramzow et al., 2013; Kroger,
2019) und Expertenbefragungen zur FEinschitzung der curricularen Validitét
entsprechender Testaufgaben (z. B. Gramzow et al., 2013) getroffen. Dabei werden in
verschiedenen Studien hdufig unterschiedliche Facetten fokussiert (Ubersicht bei
Kirschner, 2013). In den meisten Ansdtzen, werden aber die zentralen Facetten
Schiilervorstellungen und Instruktionsstrategien, die bereits bei Shulman (1987) zu
finden sind, in die Betrachtung eingeschlossen.

3. Kognitive Aktivitit bzw. Wissensarten: Ublicherweise wird in den Modellen zur
Entwicklung von FDW-Testinstrumenten, der Empfehlung von Klieme et al. (2003)
folgend, eine Dimension zur Anreicherung entsprechender Testaufgaben mit
Anforderungen unterschiedlicher kognitiver Komplexitit genutzt. In den im
deutschsprachigen =~ Raum  etablierten = FDW-Testinstrumenten werden dabei
beispielsweise sog. kognitive Aktivitdten (z. B. Blomeke et al., 2008b; Riese et al., 2017)
wie beispielsweise Reproduzieren, Anwenden und Analysieren oder auch sog.
Wissensarten (Kroger, 2019; Tepner et al., 2012) wie deklaratives oder prozedurales
Wissen genutzt.

Mithilfe der beschriebenen Konzeptualisierungen und Operationalisierungen wurde das
FDW in unterschiedlichen Studien systematisch erhoben. Dabei zeigten sich unter anderem (a)
Zuwéchse des FDW in Studium und Vorbereitungsdienst, (b) Unterschiede im FDW zwischen
verschiedenen Lehramtstypen (z. B. GroBschedl et al., 2015; Riese & Reinhold, 2012), (¢)
Zusammenhidnge des FDW mit FW und PW (z. B. Sorge et al.,, 2019) sowie (d)
Zusammenhinge des FDW mit gezeigter Performanz in konkreten Handlungssituationen (z. B.
Fortsch et al., 2016; Kulgemeyer et al., 2020; Schrdder et al., 2020). Das FDW hat sich somit
insgesamt als bedeutsam erwiesen — sowohl fiir das Professionswissen und dessen Entwicklung
als Ganzes, als auch fiir die Handlungsqualitdt von Lehrpersonen bzw. die Unterrichtsqualitat
im naturwissenschaftlichen Unterricht.
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6.2.2 Empirische Analyse der inneren Struktur des Fachdidaktischen
Wissens

Neben den beschriebenen Analysen zur Bedeutung des FDW fiir Professionswissen und fiir die
Handlungsqualitét, fiir die eher die Gesamteinschitzung des FDW der Probanden (z. B. in
Form von Summenscores) relevant war, wurden auch weiterfiihrende Studien zur empirisch
fundierten, kriterienorientierten Beschreibung der inneren Struktur des FDW durchgefiihrt.
Solche inhaltlichen Beschreibungen bieten einen Ansatzpunkt fiir die Weiterentwicklung der
Konzeptualisierung des FDWs als Teil des Professionswissens von Lehrkriften. Dariiber
hinaus koénnen diese Erkenntnisse fiir ein differenziertes Assessment des FDW auf
Subskalenebene, als Ausgangsbasis fiir inhaltsbezogenes Feedback sowie fiir die inhaltliche
Charakterisierung individueller Starken und Schwichen von Einzelpersonen genutzt werden.

Nach dem Vorbild groBBer Schulleistungsstudien wie PISA oder TIMSS wurden bereits in
unterschiedlichen Studien empirisch basierte inhaltliche Beschreibungen von Niveaustufen des
FW (z. B. Bernholt, 2010; Woitkowski & Riese, 2017) und des PW (z. B. Konig, 2009) auf
Basis von Item-Response-Modellen erstellt. Daran angelehnt analysierten Schiering et al.
(2019, 2023) sowie Zeller et al. (2022) Niveaustufen des FDW mithilfe des Scale Anchoring
Verfahrens (z. B. Mullis et al., 2016). Die im Rahmen solcher unabhédngigen Analysen
gefundenen Parallelen konnten in einer projektiibergreifenden Betrachtung bestétigt werden
(Zeller et al., 2024): In niedrigen Niveaustufen beschrinkt sich das FDW primér auf
reproduktive Aspekte, wihrend in hoheren Niveaustufen kreative und evaluierende Elemente
hinzukommen. Die Ergebnisse deuten zudem darauf hin, dass eine genaue Betrachtung der
Dimensionen wie der kognitiven Aktivierung (s. o.) unter Einbeziehung zusétzlicher
Anforderungsbereiche, wie den Stufen der Taxonomie nach Anderson und Krathwohl (2001),
sinnvoll und fiir die genauere Untersuchung der Feinstruktur des FDW vielleicht sogar
notwendig ist (Zeller & Riese, 2024). Die Methodik dieser auf Item-Response-Modellen
basierenden Analysen ist allerdings auf hierarchische Betrachtungen beschrinkt, sodass so
beispielsweise keine Unterteilung von typischen Proband:innen mit Stirken im Kreieren oder
Evaluieren von Unterrichtselementen moglich war.

Um die Limitation der ausschlieflich hierarchischen Beschreibungen im Rahmen von
Niveaumodellen zu iiberwinden, fiihrten Zeller und Riese (angenommen) eine nicht-
hierarchische Cluster-Analyse des FDW mithilfe des K-Means-Algorithmus (MacQueen,
1967) unter Betrachtung der kognitiven Anforderungsbereiche Reproduzieren, Analysieren,
Anwenden, Evaluieren und Kreieren (angelehnt an Anderson & Krathwohl, 2001) durch. Das
Cluster-Modell auf Basis der Scores sowie eine darauf aufbauende computerbasierte
Sprachanalyse der Antworten der Proband:innen zu den offenen Aufgaben des
zugrundeliegenden Testinstruments deuteten auf die Trennbarkeit dieser fiinf kognitiven
Anforderungen als Teilkompetenzen des FDW hin und zeigten die Existenz von
Personengruppen mit prototypischem Antwortverhalten und prototypischen Kompetenz-
auspragungen im Rahmen dieser Teildimensionen. Insgesamt zeigte sich sowohl in der
inhaltlichen Re-Analyse des Testinstruments zur Zuordnung der Aufgaben zu den kognitiven
Anforderungsbereichen als auch in den Personen-Clustern, dass Kompetenzen im Evaluieren
hiufig mit Kompetenzen im Analysieren und Kompetenzen im Kreieren hiufig mit

121



6. ML-basiertes Assessment von Kompetenzprofilen des physikdid. Wissens (Artikel 3)

Kompetenzen im Anwenden einhergehen.

Die Analyse von Zeller und Riese (angenommen) ist allerdings durch die teilweise niedrige
Anzahl an Aufgaben in den oben genannten kognitiven Anforderungskategorien limitiert.
Diese Einschrinkung des Testinstruments fithrte dazu, dass Modelle zur Untersuchung echt
latenter Strukturen, wie beispielsweise die im Rahmen von LPAs typischerweise genutzten
Gaussian-Mixture-Models (GMM, z. B. Spurk et al., 2020), nicht konvergierten und eine K-
Means-Analyse genutzt werden musste. Die erhaltenen Cluster sind somit echer als
,datengestiitzte Leistungsquantile® in den kognitiven Anforderungen aufzufassen, denn als
latente Gruppen.

Die bestehenden Ansédtze zur empirisch gestiitzten inhaltlichen Beschreibung der inneren
Struktur des FDW sind also bisher limitiert. Im vorliegenden Beitrag werden daher zusétzliche
vorbereitende Schritte bei der Datenverarbeitung verwendet, um eine erweiterte Analyse nicht-
hierarchischer Strukturen mithilfe einer LPA (z. B. Spurk et al., 2020) unter der Nutzung von
GMMs (z. B. Murphy, 2022) des FDW-Datensatzes aus dem Projekt ProfiLe-P+ (Vogelsang
et al., 2019) durchzufiihren. Vergleichbare explorative Analysen werden zur Absicherung ihrer
Aussagekraft hiufig unter Nutzung der CGT nach (Nelson, 2020) strukturiert (z. B. Tschisgale
et al., 2023), die daher im folgenden Abschnitt vorgestellt wird.

6.2.3 Machine-Learning-basierte Analysen im Rahmen der Computational
Grounded Theory

Explorative ML-basierte Analysen bergen zwar das Potenzial, bislang unerkannte Strukturen
in den jeweils untersuchten Konstrukten aufzudecken, es stellt aber eine Herausforderung dar,
die Interpretierbarkeit der Ergebnisse zu gewihrleisten (z. B. Sherin, 2013; Zhai et al., 2020b).
In ihrem systematischen Review von ML-Anwendungen in der naturwissenschaftsdidaktischen
Forschung stellen Zhai et al. (2020b) dementsprechend fest, dass ein Grofteil der
Forschungsprojekte bislang primir auf die Entlastung von menschlichen Ratern bei basalen
Aufgaben des Assessments ausgerichtet ist. Gleichzeitig arbeiten aber Zhai et al. (2020a) das
Potenzial von explorativen Methoden, die im ML-Kontext auch als Unsupervised-Learning-
Methoden bezeichnet werden, zur Untersuchung bisher unerkannter Strukturen heraus. Auch
Kubsch et al. (2022) unterstreichen diese Potenziale im Rahmen der Entwicklung ihres
Frameworks zu Einordnung von ML-basierten Analysen. Um den methodischen Workflow des
hier vorgestellten Projekts und die einzelnen Schritte der zur Strukturierung der Analyse
herangezogenen CGT darzustellen, werden im Folgenden einige Begriffe aus dem ML-Kontext
eingeflihrt bzw. in den ML-Kontext eingeordnet.

Im ML-Bereich wird zwischen sog. dem Supervised Learning und Unsupervised Learning
unterschieden (z. B. Géron, 2019). Im Supervised Learning geht es um die automatisierte
Vorhersage bestimmter Ziel-Variablen (auch Targets oder Labels) mithilfe unabhéngiger
Variablen (sog. Features). Das kann beispielsweise ein Regressionsmodell zur Vorhersage von
Studienerfolg (Target) auf Basis von Priadiktoren wie der Abiturnote und dem IQ (Features)
sein. Die Erstellung eines solchen Modells auf Basis eines vorhandenen Datensatzes wird auch
als Training bezeichnet. Dazu wird meist eine sog. Loss-Funktion (auch kurz Loss) optimiert,
die von den Parametern des Modells abhingig ist. Im Falle eines (hier beispielhaft
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zweidimensionalen) Regressionsmodells ist der Loss iiblicherweise die Mean-Squared-Error-
Funktion (MSE), die von den Regressionsgewichten des Modells (w;, w, und b), sowie den

Trainingsdaten (Targets y ) und Features xf), xéi), i =1..N)abhéngt:

N
MSE(w;, w,, b) = Z(y(i) —wyxD — woxd) — b)z.

i=1
Zur Anpassung des Modells an die Daten werden die Modellparameter mithilfe
mathematischer Verfahren so optimiert, dass die Loss Funktion minimiert wird (z. B. Géron,
2019). Fiir Klassifikationsmodelle, bei denen die Targets diskrete Kategorien anstelle von
kontinuierlichen Grofen sind, existieren andere Loss-Funktionen (z. B. die sog. Cross-
Entropy), die hier aus Platzgriinden nicht ausfiihrlicher dargestellt werden. Das grundsétzliche
Vorgehen beim Training bleibt aber gleich.

Bei groBen Datensidtzen und hochdimensionalen Feature-Variablen (beispielsweise
Sprachdaten) konnen in einem Optimierungsschritt aufgrund von Limitationen der Rechen-
kapazitdt meist nicht alle verfligbaren Datenpunkte auf einmal verwendet werden. Man geht
dann dazu iiber, den Gesamtdatensatz in kleinere Einheiten, sog. Batches aufzuteilen und in
einem einzelnen Optimierungsschritt jeweils nur einen einzelnen Batch zu nutzen. So wird
iterativ der Datensatz durchlaufen, wobei man, wenn einmal der gesamte Trainingsdatensatz
durchlaufen worden ist, auch von einer Epoch an Training spricht. Zur Einschitzung der
Vorhersagegenauigkeit (auch Performanz) des Modells wird meist nicht direkt der Loss,
sondern andere, leichter interpretierbare Metriken, wie beispielsweise die Varianzautklarung
R? bei Regressionsmodellen oder die prozentuale Ubereinstimmung (Accuracy) und Cohens k
zwischen Labeln und Vorhersagen bei Klassifikationsmodellen genutzt.

ML-Modelle mit einer hohen Anzahl an Parametern konnen Spezifika des Trainingsdaten-
satzes sehr genau abbilden®!, man spricht auch von Overfitting (z. B. Géron, 2019). Eine hohe
Performanz des Modells fiir die Trainingsdaten gewihrleistet daher noch keine hohe
Performanz fiir Daten, die wéihrend des Trainings nicht genutzt wurden. Fiir die tatsdchliche
Nutzung eines Modells ist aber gerade die Performanz fiir solche ,,ungesehenen* Daten von
Interesse (z. B. Breiman, 2001). Um anschlieend an das Training das Modell zu evaluieren,
wird daher ein separater Evaluierungs- oder Test-Datensatz verwendet, der vom Training
ausgeschlossen ist. Dieses Vorgehen lésst sich auch zur sog. k-Fold-Cross-Validierung (CV)
erweitern, bei der der verfiigbare Gesamtdatensatz in k gleich gro3e Segmente unterteilt wird.
Das Modell wird dann k-mal neu trainiert, wobei jeweils eines der Segmente zu
Evaluierungszwecken zuriickgehalten wird. Die Evaluierung erfolgt dann im Anschluss auf
Basis der Modellvorhersagen fiir die jeweiligen Evaluierungsdaten aus dem wiederholten
Training.

Anders als beim Supervised Learning liegen beim Unsupervised Learning keine a priori
bekannten Targets vor, sondern es geht um die Untersuchung von Mustern und Strukturen in
Daten (z. B. Duda et al., 2001). Dazu kénnen unterschiedliche Modelle verwendet werden,

51 Man stelle sich beispielsweise ein Polynom hohen Grades vor, welches an vergleichsweise wenige
Datenpunkte angepasst wird.
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deren Trainingsalgorithmen sich mitunter unterscheiden. Als Beispiel dient hier das GMM, bei
dem davon ausgegangen wird, dass folgender (hier vereinfacht dargestellter) Prozess die Daten
generiert, d. h., dass die Daten der sich dadurch ergebenden Verteilung folgen (z. B. Murphy,
2022):

1. Fiir jeden Datenpunkt wird eines von K Clustern gewihlt. Die Wahrscheinlichkeit fiir
jedes einzelne Cluster ist durch einen entsprechenden Parameter gegeben>2.

2. Der tatsdchliche Datenpunkt ergibt sich aus einer von K Normalverteilungen, deren
jeweilige Mittelwert- und Kovarianz-Parameter sich von Cluster zu Cluster
unterscheiden konnen.

Mithilfe eines Algorithmus, der hier aus Platzgriinden nicht néher erldutert werden kann (z.
B. Murphy, 2022) konnen aus den Daten diejenigen Cluster-Zuordnungen und Parameter der
K Normalverteilungen ermittelt werden, die die beobachteten Daten am wahrscheinlichsten
beschreiben. Zur Evaluierung der Passung solcher Modelle zu den Daten existieren
unterschiedliche Metriken, wobei hédufig das sog. Bayesian Information Criterion (BIC)
verwendet wird. Ein hoherer BIC-Score bedeutet eine hohere Wahrscheinlichkeit, dass das
Modell die Daten addquat beschreibt.

Eine Schwierigkeit bei der Anwendung von explorativen Unsupervised-Learning-Methoden
stellt insbesondere die mitunter hohe Dimensionalitit der verwendeten Daten dar (z. B. Géron,
2019; Sherin, 2013). Beispielsweise wird eine Cluster Analyse eines Score-Datensatzes zu
einem Testinstrument mit tiber 20 Aufgaben nur wenig interpretierbare Cluster liefern, die stark
von einzelnen Aufgaben abhédngen. Sherin (2013) rdt daher, zur Erhohung der
Interpretierbarkeit und somit Nutzens solcher Methoden, die Computer-basierten algorith-
mischen Auswertungsschritte bereits im Analyseprozess mit menschlichem Expertenwissen
und menschlicher Interpretationskraft zu verkniipfen. Um eine solche Verkniipfung zu
strukturieren, schldgt Nelson (2020) die CGT vor. Im Wesentlichen besteht ihr Ansatz aus drei
Schritten:

e Pattern Detection: Es werden explorative Methoden zur Untersuchung potenziell bisher
unerkannter Strukturen in den Daten angewendet.

o Pattern Refinement: Die identifizierten Strukturen werden durch inhaltliche
Detailanalysen und / oder Einbeziehung von menschlichem Expertenwissen
ausgeschirft.

e Pattern Confirmation: Die Performanz von ML-Modellen zur Vorhersage der
identifizierten Strukturen wird evaluiert. Dies dient zur Bestdtigung der beobachteten
Strukturen hinsichtlich ihrer Reliabilitdt und Validitét.

Die urspriinglich publizierte Beschreibung der CGT ist stark auf Text-Daten ausgerichtet, es
wird aber betont, dass fiir die jeweilige Analyse und konkreten Daten insbesondere Pattern
Detection und Pattern Refinement eher als Teile eines iterativen Prozesses betrachtet werden

32 Die Zuordnung zu den Kategorien folgt also einer verallgemeinerten Bernoulli Verteilung (auch ,,Categorical
Distribution, Murphy, 2022).
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konnen bzw. miissen (Nelson, 2020). Konkret in der Physikdidaktik nutzten Tschisgale et al.
(2023) die CGT erfolgreich zur explorativen Analyse von Problemlosestrategien von
Schiilerinnen und Schiilern auf Basis von Text-Daten. Sie stellen dabei die Potenziale der CGT
und die Vorteile dar, die eine ML-basierte Analyse gegeniiber einer manuellen explorativen
Analyse haben kann.

6.3. Ziele und Forschungsfragen

Fiir die Weiterentwicklung der Konzeptualisierung des FDWs als Teil des Professionswissens
von Lehrkriften ist eine detailliertere inhaltliche Beschreibung der inneren Struktur des FDW
und eine differenziertere Analyse von Zusammenhangsstrukturen innerhalb des
Professionswissens von Lehrkriaften notwendig. Dariiber hinaus konnen empirisch
abgesicherte Beschreibungen solcher Strukturen als Basis fiir Feedback genutzt werden, das
iiber eine reine quantitative Gesamteinschitzung hinaus geht. Die bestehenden Ansétze fiir eine
solche Untersuchung der inneren Struktur des FDW sind aber bisher limitiert. Mithilfe von
Niveauanalysen (z. B. Schiering et al., 2023; Zeller et al., 2024) konnten zwar
projektiibergreifend Kompetenzniveaus ermittelt werden, diese sind allerdings methodisch auf
hierarchische Beschreibungen beschrinkt. Dariiber hinaus liefern die Niveauanalysen primér
entweder projektspezifische, meist wenig generalisierbare oder nur recht grobe
Beschreibungen. Insbesondere konnen sie nicht zwischen Lernenden mit Stirken bzw.
Schwichen bei bestimmten kognitiven Anforderungen wie dem Evaluieren und Kreieren
unterscheiden. Der bislang genutzte nicht-hierarchische Ansatz auf Basis von K-Means-
Cluster-Analysen (Zeller & Riese, 2025) kann eine solche Unterscheidung vornehmen. Hier
wird die Aussagekraft der Ergebnisse allerdings dadurch eingeschrinkt, dass das bislang
genutzte bzw. aufgrund von Limitationen des Datensatzes einzig nutzbare Cluster-Modell
keine tatsdchlich latenten Strukturen beschreiben kann. Bei den im Rahmen dieser Analyse
beschriebenen Clustern handelt es sich also eher um ,,datenbasierte Leistungsquantile®.

Die vorgestellte Studie verfolgt dementsprechend das Ziel, nicht-hierarchische, tatsdchlich
latente Strukturen des FDW in Form von Personengruppen mit typischen Auspragungen des
FDW zu beschreiben. Dazu wird aufbauend auf einem Datensatz von 846 Bearbeitungen des
groftenteils offenen FDW-Testinstruments aus dem ProfilLe-P+ - Projekt (Vogelsang et al.,
2019; siehe auch Abschnitt 6.4.1) eine LPA auf Basis von GMMs durchgefiihrt. Zunéchst
werden die Daten dafiir auf Basis von bisherigen Modellierungen und Ergebnissen sowie aus
methodischen Griinden (siehe Abschnitt 6.4.2) zu Summenscores in den kognitiven
Anforderungskategorien Reproduzieren, Anwenden-Kreieren und Analysieren-Evaluieren
akkumuliert. Dies kann im Rahmen der CGT als Element eines ,,vorgezogenen* Pattern
Refinements verstanden werden. Verortet man die hier vorgestellte Analyse im Gesamtprojekt,
so zeigt sich ein zyklisch-iteratives Vorgehen in Fortfiihrung der Vorlduferanalyse (Zeller &
Riese, 2025), das ebenfalls im Rahmen der CGT begriindet werden kann. Die (bisher
hypothetischen) Cluster dieser LPA werden latente Kompetenzprofile genannt. Die erste
Forschungsfrage widmet sich im Sinne der CGT der ,,Detection® dieser Cluster:

FF1 (~ Pattern Detection): Welche latenten FDW-Kompetenzprofile lassen
sich durch eine GMM-basierte LPA in den FDW-Score-Daten des Projekts
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X beziiglich der kognitiven Anforderungskategorien Reproduzieren,
Anwenden-Kreieren und Analysieren-Evaluieren finden?

Die Kompetenzprofile werden dabei durch ihre durchschnittlichen Summenscores beziiglich
der betrachteten Anforderungskategorien interpretiert.

Um die Kompetenzprofile im Sinne der CGT zu bestétigen, soll die Performanz von ML-
Modellen bei ihrer automatisierten Erfassung evaluiert werden. Einerseits konnten zu diesem
Zweck wie bei Tschisgale et al. (2023) diejenigen Daten verwendet werden, welche auch bei
der Erstellung des Cluster-Modells genutzt wurden®*. Im Falle des vorliegenden Beitrags wiren
das die Scores. Ein stiarkeres Argument fiir die Robustheit der Zuordnung von Proband:innen
zu den Kompetenzprofilen als Pattern Confirmation wére aber eine automatisierte Zuordnung
direkt auf Basis der authentischen Test-Bearbeitungen der Proband:innen. Diese bestehen zu
groBtenteils aus den Text-Antworten auf die offenen Aufgaben des Testinstruments (siche
Abschnitt 6.4.1). Explorative Analysen zur Zuordnung von Proband:innen zu den
Kompetenzprofilen haben gezeigt, dass ein dafiir nutzbares ML-System eine deutlich hohere
Performanz erreicht, wenn zunéchst die automatisierte Bepunktung der offenen Aufgaben des
Testinstruments und erst darauf auftbauend die Zuordnung zu den Kompetenzprofilen in den
Blick genommen wird. FEine automatisierte Bepunktung bzw. Klassifikation von
Textelementen wurde in der Naturwissenschaftsdidaktik bereits mehrfach durch sog.
Finetuning von BERT-Sprachmodellen erfolgreich vorgenommen (Camus & Filighera, 2020;
Wulff et al., 2021; Zhai et al., 2020b). Beim Finetuning wird ein vortrainiertes Sprachmodell
fiir eine konkrete Aufgabe nach-trainiert (Details in Abschnitt 6.4.3). Die Pattern Confirmation
wird also mithilfe der folgenden Forschungsfragen strukturiert:

FF2a (~ Pattern Confirmation 1): Welche Maschine-Mensch-Ubereinstimmung
erreicht ein BERT-Sprachmodell (Devlin et al., 2019) bei der Vorhersage von
FDW-Scores unter Nutzung eines typischen Finetuning-Workflows auf Basis von
846 Bearbeitungen des FDW-Testinstruments?

FF2b (~ Pattern Confirmation 2). Wie hoch ist die Maschine-Mensch-
Ubereinstimmung einer automatisierten Zuordnung von Bearbeitungen des FDW-
Testinstruments zu einem prototypischen FDW-Kompetenzprofil auf Basis der
maschinellen Score-Vorhersagen (FF2a)?

Details zur Auswahl des Sprachmodells und dessen Training bzw. Finetuning (FF2a) werden
in Abschnitt 6.4.3 erldutert. Durch die Trennung des automatisierten Scorings von der Cluster-
Vorhersage in zwei separate Modelle konnen detailliertere Informationen aus dem Datensatz
in Form der Scores in die Entwicklung des Systems aufgenommen werden. Neben der Nutzung
dieser Modelle im Rahmen der Pattern Confirmation konnen sie zudem als Basis eines
skalierbaren automatisierten FDW-Assessments dienen.

33 Bei Tschisgale et al. (2023) wurden Cluster in numerischen Repriisentationen (sog. Embeddings) von Sitzen
untersucht. Fiir das Pattern Refinement wurden diese Cluster ausgehend von den Embeddings zugeordnet.
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6.4. Methode

6.4.1 Testinstrument und Datensatz

Die im vorliegenden Beitrag verwendeten Daten entstammen dem ProfiLe-P+ - Projekt
(Vogelsang et al., 2019) und wurden im Zeitraum von 2016 bis 2019 an 12 deutschsprachigen
Universititen erhoben. Ziel des Projekts war unter anderem die Erfassung des FDWs
angehender Physiklehrkrifte. Dazu wurde das im Vorgingerprojekt ProfiLe-P (Riese et al.,
2015) von Gramzow (2015) entwickelte FDW-Testinstrument bestehend aus 23 offenen und 4
Multiple-Choice (MC) Aufgaben eingesetzt. Die Entwicklung des Testinstruments fand durch
ein intensives Literaturreview giangiger Modellierungen und Operationalisierungen des FDW
statt. Zur Validierung der ausgewihlten Facetten und auch der Testaufgaben im Allgemeinen
wurden sowohl qualitative Untersuchungen wie Think-Aloud-Studien und Expertenbefra-
gungen als auch quantitative Untersuchungen insbesondere auf Basis von Item-Response-
Modellen durchgefiihrt (Gramzow, 2015). Das Testinstrument erfasst physikdidaktisches
Wissen in den vier Facetten Schiilervorstellungen, Instruktionsstrategien, Fachdidaktische
Konzepte (z. B. didaktische Rekonstruktion) sowie Experimente und Vermittlung eines
angemessenen Wissenschaftsverstindnisses (kurz Experimente) und den kognitiven
Anforderungen Reproduzieren, Anwenden und Analysieren (Abbildung 6.1). Da im Projekt
ProfiLe-P(+) Zusammenhinge in einem exemplarisch fokussierten fachphysikalischen
Inhaltsbereich differenziert auf Subskalenebene (vgl. Riese et al., 2017) betrachtet wurden,
konzentriert sich der verwendete FDW-Tests auf den physikalischen Fachinhalt Mechanik.
Eine Beispielaufgabe des Testinstruments inklusive einer beispielhaften Antwort aus dem
Datensatz zeigt Abbildung 6.2. Der finale Datensatz besteht aus 846 Bearbeitungen dieses
Testinstruments durch Physik-Lehramtsstudierende der Sekundarstufe im Bachelor- und
Masterstudiengang in Quer- und Lingsschnitt, wobei diese Bearbeitungen als unabhéngige
virtuelle Proband:innen (Davier et al., 2008) betrachtet werden. Demographische Eckdaten
sind in Tabelle 6.1 dargestellt.

Inhaltsbereiche ‘ Kognitive
Analysicren Anforderungen
Anwenden
Reproduzieren
Mechanik —

| I I I Facetten

Instruktions-  Schiiler- Experimente Fachdidaktische

strategien  vorstellungen [...] Konzepte

Abbildung 6.1 Itementwicklungsmodell des FDW-Testinstruments des ProfiLe-P(+) - Projekts nach (Gramzow
etal., 2013).
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Aufgabe 15

Schiler sollen folgende Situation betrachten: Ein Ball rollt in der dargestellten Rinne
(Draufsicht) und verlasst diese am Punkt R.

Schuler A zeichnet folgende Bahn, die der Ball nach Verlassen der Rinne beschreiben soll:

Losung von Schiiler A

Angenommen, der Schiler versteht die Zeichnung korrekt als Draufsicht: Welche fachlich
nicht korrekte Vorstellung des Schiilers A liegt bei der gezeichneten Bahnkurve zugrunde?

Antwort einer Probandin / eines Probanden:

“Der Schiiler denkt, dass die Zentripetalkraft nach auffien und nicht zum
Kreismittelpunkt wirkt.”

Abbildung 6.2 Beispielaufgabe des FDW-Testinstruments mit Vignette und beispielhafte Antwort aus dem
Datensatz (nach Gramzow et al., 2013). Diese Aufgabe ist der Facette Schiilervorstellungen und der kognitiven

Anforderung Analysieren zugeordnet.

Tabelle 6.1 Demographische Eckdaten des Datensatz bezogen auf die Einzelbearbeitungen (virtuelle Probanden).

Gesamtanzahl Fachsemester Anzahl Anzahl Anteil
Bearbeitungen Physik Bachelor Master weiblich
846 4,1 (3,5 672 174 34 %

Die Text-Antworten wurden mithilfe eines Kodiermanuals (Gramzow, 2015) bepunktet und
nachtrdglich fiir Computer-basierte Analysen und das Training des automatisierten
Auswertungssystems digitalisiert. Die Verwendung von offenen Aufgaben erhoht zwar den
Aufwand bei der Auswertung der Testbearbeitungen, ermoglicht aber eine breitere Abbildung
kognitiver Anforderungen (vgl. Kriiger & Krell, 2020). Die nachtrigliche SchlieBung
entsprechender Testinstrumente erdffnet zudem Fragen nach der Authentizitit der
entstehenden geschlossenen Aufgaben (Kulgemeyer et al., 2023).
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Die Berechnung der Metriken und Visualisierungen der Interrater-Ubereinstimmungen als
,Mensch-Mensch* Baseline zur Evaluierung der ML-Modelle (FF2a, FF2b) basiert auf einer
Doppelkodierung von 267 Bearbeitungen des Testinstruments. Die Interrater-Uberein-
stimmung inklusive der MC-Aufgaben betrigt fiir das Testinstrument k = 0,761 und es weist
eine interne Konsistenz von Cronbach’s @ = 0,80 bezogen auf die durch die trainierten
Kodierer:innen erstellten Scores auf. Es hat somit vergleichbare quantitative Eigenschaften wie
vergleichbare FDW-Tests aus anderen Studien (z. B. Krauss et al., 2008; Kroger, 2019).

6.4.2 FF1: Latente Profilanalyse des FDW

Zur Identifikation latenter Kompetenzprofile des FDW wird eine LPA (z. B. Spurk et al.,
2020) durchgefiihrt. Im Rahmen von LPAs werden typischerweise mehrere Modelle einer
Modellklasse mit unterschiedlichen Spezifikationen (z. B. Cluster-Anzahl) anhand des BIC
verglichen und eines der best-passenden Modelle theoretisch basiert ausgewihlt. Die genaue
Modellklasse ist dabei nicht festgelegt, gemein ist aber allen fiir LPAs genutzten
Modellklassen, dass sie die Cluster-Zugehdorigkeit als latente Variable modellieren (miissen).
Fiir die hier vorliegende Datenstruktur aus FDW-Scores, die beziiglich dreier Subskalen
aggregiert sind (s. u.), bietet sich die hdufig in LPAs genutzte Modellklasse der GMMs an.

Aus den bislang durchgefiihrten Studien (Schiering et al., 2023; Zeller & Riese, 2025; Zeller
et al., 2024) ist bekannt, dass kognitive Anforderungskategorien dazu geeignet sind, empirisch
basiert projektiibergreifend anwendbare inhaltliche Beschreibungen des FDW zu generieren.
Im vorangegangenen Ansatz zur Beschreibung nicht-hierarchischer Strukturen wurden die
Aufgaben des Testinstruments re-analysiert und orientiert an der Taxonomie kognitiver
Anforderungen nach Anderson und Krathwohl (2001) den fiinf kognitiven
Anforderungskategorien Reproduzieren, Anwenden, Analysieren, Evaluieren und Kreieren
zugeordnet (Zeller & Riese, 2025) . Wegen des aus Griinden der Testokonomie begrenzten
Umfang des Testinstruments konnten den Kategorien teilweise nur wenige Aufgaben
zugeordnet werden, sodass latente GMMs, die kontinuierliche Daten voraussetzen, nicht
sinnvoll verwendet werden konnten. Im Rahmen der hier vorgestellten Analyse wurde daher
die Beobachtung genutzt, dass Kompetenzen im Anwenden héufig mit Kompetenzen im
Kreieren zusammenhéngen und das Kompetenzen im Analysieren hdufig mit Kompetenzen im
Evaluieren zusammenhidngen (Zeller & Riese, 2025; Zeller et al.,, 2024). In der hier
vorgestellten Analyse wurden die fiinf Anforderungskategorien daher zu den drei Kategorien
Reproduzieren, Anwenden-Kreieren und Analysieren-Evaluieren zusammengefasst. Zusatzlich
zu den bereits genannten Argumenten fiir dieses Vorgehen ermdglicht es die spitere
unmittelbare Interpretation der Cluster. Die Re-Analyse zur Zuordnung der Aufgaben zu den
Anforderungskategorien =~ wurde  von  drei  Expertiinnen  durchgefiihrt.  Die
Ubereinstimmungswerte dieser drei Personen bei der Zuordnung der Testaufgaben zu diesen
zusammengefassten Kategorien sind in Tabelle 6.2 dargestellt. Auf Basis dieser Zuordnungen
als Diskussionsgrundlage wurde von den drei Expert:inenn gemeinsam eine Konsens-
Zuordnung erstellt. Die Anzahl an Aufgaben und erreichbaren Punkten pro
Anforderungskategorie bezogen auf diese Konsens-Zuordnung sind in Tabelle 6.3 dargestellt.

129


https://unipaderbornde-my.sharepoint.com/personal/jzeller_ad_uni-paderborn_de/Documents/3.%20Promotion/write-present/main/how#CTVL0010e2078f223264907b0bb0f98380bb221
https://unipaderbornde-my.sharepoint.com/personal/jzeller_ad_uni-paderborn_de/Documents/3.%20Promotion/write-present/main/how#CTVL0010e2078f223264907b0bb0f98380bb221

6. ML-basiertes Assessment von Kompetenzprofilen des physikdid. Wissens (Artikel 3)

Tabelle 6.2 UbereinstimmungsmaBe (Cohens k) der Zuordnung der Testaufgaben zu den kognitiven
Anforderungskategorien der drei Expert:innen

Ubereinstimmung Reproduzieren Anwenden-Kreieren Analysieren-Evaluieren
K12 0,84 0,74 0,92
K13 0,83 0,67 0,55
K3 0,83 0,76 0,62

Tabelle 6.3 Aufgaben- und Punkteanzahl in der Konsens-Zuordnung der Testaufgaben zu den kognitiven
Anforderungskategorien.
Die Zuordnungen sind nicht vollstdndig disjunkt.

Reproduzieren Anwenden-Kreieren Analysieren-Evaluieren
Aufgabenanzahl 12 7 11
Erreichbare Punktzahl 23 12 14

Um den Datensatz nicht durch unzureichende Bearbeitungen zu verzerren, wurden
Personen, die weniger als 50 % der Aufgaben bearbeitet haben, von der LPA zu FF1
ausgeschlossen. Es blieben dadurch 785 Bearbeitungen fiir die LPA. Die Score-Daten wurden
zunichst im Rahmen dieser Anforderungskategorien akkumuliert. Die akkumulierten Scores
in diesen Subskalen wurden anschlie8end auf das Intervall [0, 1] normiert, um die Konvergenz
der GMMs zu erleichtern. Im Rahmen der LPA wurden insgesamt 40 GMMs mit einer Cluster-
Anzahl von 1 bis 10 an die Daten angepasst. Pro Cluster-Anzahl wurden dabei die folgenden
vier Konfigurationen der Kovarianzmatrizen der jeweiligen Normalverteilungen der GMMs
modelliert™:

o , Spherical“: Es gibt keine Kovarianzen zwischen den Skalen (d. h.
Anforderungskategorien) und die Varianz ist in allen Skalen ist gleich.

e , Diagonal“: Es gibt keine Kovarianzen zwischen den Skalen, die Varianz in den
Skalen kann sich aber unterscheiden.

e , Tied“: Es gibt Kovarianzen zwischen den Skalen, diese Kovarianzen sind aber fiir alle
Cluster gleich.

e , Full*: Es gibt Kovarianzen zwischen den Skalen, die sich von Cluster zu Cluster
unterscheiden konnen.

Fiir diese Modellierungen wurden die sich ergebenden BIC-Scores fiir die Auswahl eines

3 Fiir diese Analyse wurde das Python Paket scikit-learn (Pedregosa et al., 2011; siehe auch https://scikit-
learn.org/stable/modules/mixture.html) verwendet.
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geeigneten Modells verglichen. Aus einer theoretischen Perspektive heraus, wire es zu
erwarten, dass durchaus Kovarianzen zwischen den Scores in den Anforderungskategorien
bestehen, wobei es keinen Grund gibe, anzunehmen, dass diese Kovarianzen sich zwischen
den Clustern unterscheiden. Dieses Setting wiirde einer Tied-Kovarianzmodellierung
entsprechen. Gleichzeitig sind fiir das Ziel der Beschreibung nicht-hierarchischer Strukturen
Clustermodelle ab einer Cluster-Anzahl von vier Clustern besonders interessant, da
Modellierungen mit weniger Clustern i. d. R. lediglich hierarchische Abstufungen ergeben.

6.4.3 FF2a: Automatisiertes Scoren des FDW-Testinstruments

Wie in Abschnitt 6.2.3 beschrieben muss zur Analyse der Performanz eines ML-Modells
zunéchst ein geeigneter Split zwischen Trainings- und Evaluierungsdaten erstellt werden. Da
hier insgesamt darauf abgezielt wird, Aussagen tiber die Kompetenzprofile, d. h. insbesondere
Aussagen auf Personen-Ebene und nicht nur auf Aufgaben-Ebene zu treffen, muss auch dieser
Split personenweise erfolgen. Da in diesem Projekt ein fir ML-Zwecke vergleichsweise
kleiner Datensatz vorliegt, werden in den Analysen zu FF2a und FF2b wieder alle 846
Bearbeitungen genutzt, wobei die in der LPA ausgeschlossenen Bearbeitungen nachtriglich
dem jeweils passendsten Cluster zugeordnet wurden®. Dariiber hinaus wurde eine 10-Fold-CV
(sieche Abschnitt 6.2.3) durchgefiihrt, die eine Balance zwischen erhdhtem Zeitaufwand fiir das
wiederholte Training des Modells und erhohter Verlésslichkeit der erhaltenen
Performanzschitzungen bietet.

Als Modell fiir das automatisierte Scoring bietet sich ein Sprachmodell (auch ,,Language
Model“, bzw. LM) an. LMs sind Neuronale Netze (siche z. B. Géron, 2019) mit einer gro3en
Anzahl an trainierbaren Parametern (einige 10 Mio. bis mehrere 100 Mrd.) zur Verarbeitung
von Sprache. Es hat sich gezeigt, dass LMs klassische ML-Modelle in der Performanz
beziiglich einer Vielzahl an Sprachverarbeitungsaufgaben inklusive des automatisierten
Scorens von offenen Testaufgaben systematisch ilibertreffen (z. B. Camus & Filighera, 2020).
LMs werden mithilfe allgemeiner Sprachverarbeitungsaufgaben, wie beispielsweise dem
Vorhersagen des nichsten Wortes bei gegebenen Satzanfingen o. A., unter der Nutzung groBer
Datenmengen ,,vor“-trainiert (z. B. Hoffmann et al., 2024). Dadurch ,,erlernen” LMs eine
allgemeine Reprisentation von Sprache, durch die sie sich flexibel an konkrete
Anwendungsfille anpassen konnen. Das anschlieBende Training des LMs fiir einen solchen
Anwendungsfall wird auch als Finetuning bezeichnet. Im Falle des automatisierten Scorings
besteht das Finetuning aus einem klassischen Supervised-Learning. Das Python-Paket
,huggingface transformers® (Wolf et al., 2020) bietet einen groBen Umfang an Tools fiir
solches Finetuning und implementiert insbesondere typische Workflows.

Fiir die vorliegende Studie wurde das sog. BERT-Modell (Devlin et al., 2019) gewéhlt. Das
Modell steht in einer deutschen Variante open-source flir huggingface transformers zur
Verfiigung und wird dort bereitgestellt durch das ,,Miinchener DigitalisierungsZentrum

3 Die genutzte Software bietet bei GMMs die Mdglichkeit, nachtrigliche Clusterzuordnungen fiir Daten, die nicht
wihrend des Cluster-Bildungsprozesses genutzt wurden, vorzunehmen.
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(MDZ) der Bayerischen Staatsbibliothek®®. Neben der leichten Zuginglichkeit dieses BERT-
Modells und der hohen Vertrauenswiirdigkeit des MDZ als Bezugsquelle gibt es weitere
Griinde, die fiir die Nutzung dieses Modells sprechen. Zunédchst wurde das BERT-Modell im
deutschsprachigen Raum bereits mehrfach erfolgreich im Rahmen
naturwissenschaftsdidaktischer ~Sprachanalyse fiir explorative Analysen und auch
Klassifkationsprobleme genutzt (z. B. Tschisgale et al., 2023; Wulff et al., 2023). Kiirzlich
konnten zudem Latif et al. (2024) zeigen, dass das deutsche BERT-Modell geeignet ist, um
offene Antworten auf naturwissenschaftliche Fragen der PISA-Studien automatisiert zu
scoren’’. Die Nutzung des BERT-Modells erscheint also auch fiir den hier vorliegenden
Datensatz als vielversprechend.

Das BERT-Modell wurde mit dem Aufgabentext als Input und dem Score als Output nach
dem Vorbild von Latif et al. (2024) auf Basis aller Aufgaben gemeinsam trainiert. Es gibt also
nur ein gemeinsames finegetunetes BERT-Modell fiir alle Aufgaben®®. Insgesamt liegen fiir
das Training 15600 Bearbeitungen einzelner Aufgaben vor. Die Text-Antworten zu den
Aufgaben umfassen im Mittel ca. 17 Worte (Min = 1, Max = 99). In Abbildung 6.3 ist ein
Histogramm der Antwortldngen dargestellt. Um darzustellen, welche zentralen Begriffe in den
Antworten typischerweise auftreten, ist in Abbildung 6.4 zudem eine Wortwolke, die die
verwendeten Begriffe entsprechend ihrer Hiufigkeit skaliert dargestellt™. Zentral sind vor
allem Begriffe aus dem Bereich des Lehrens und Lernens (z. B. ,,Vorstellung® und ,,Schiiler*)
sowie Begriffe aus dem im Testinstrument adressierten Fachinhalt Mechanik (z. B.
,Geschwindigkeit” und , Kraft). Die Verteilung der Score-Labels innerhalb des gesamten
Datensatzes ist in Tabelle 6.4 dargestellt.

Tabelle 6.4 Verteilung der Score-Labels im Gesamtdatensatz (nur Textaufgaben).

Score Absolute Hiufigkeit Relat(z:rﬂz‘;ggkeit
0 8800 0,56
1 5128 0,33
2 1672 011

56 https://huggingface.co/dbmdz/bert-base-german-uncased

57 Anders, als der Name ,,SciEdBERT* des Modells von Latif et al. (2024) vermuten lassen kdnnte, ist nicht zu
erwarten, dass die Weiternutzung dieses Modells fiir das hier genutzte FDW-Testinstrument einen Vorteil
gegeniiber dem ,,normalen” BERT-Modell bietet. Das liegt daran, dass die Aufgaben im hier vorliegenden
Testinstrument einen deutlich anderen Inhalt abbilden: hier geht es um FDW, bei SciEdBERT um Fachwissen
auf (mittlerem) schulischem Niveau. Eine zur Absicherung dieser Vermutung durchgefiihrte 3-Fold-CV konnte
wie erwartet keine Performanzzuwichse durch die Nutzung von SciEdBERT feststellen.

58 Anders als bei Latif et al. (2024) konnten durch ein zusitzliches aufgabenweises Finetuning, wihrend dem
dann 23 unterschiedliche BERT-Modelle generiert wurden, im Rahmen einer explorativen 3-Fold-CV keine
Performanzzuwiéchse erreicht werden.

% Bei Erstellen der Wortwolke (Abbildung 6.4) wurden sog. Stopwords, d. h. hiufig auftretende Worte, ohne
grof3e inhaltliche Bedeutung wie ,,der”, ,,die*, ,,das*, ,,aber", ,,wie* etc. vernachléssigt.
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Anzahl
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Abbildung 6.3 Histogramm der Lingen der einzelnen Antworten zu den offenen Aufgaben des FDW-
Testinstruments.

veranschaulichung warum

e ggmm4)aljﬁmdgréﬁer verstanden :

schalervorstellungen ) actio I‘eactlo geht @ @ E lassen s
O chtige medien erklarung uma E’
| Z e l t deutlich® reibung falschen h beim “h"en < é 2 c
+, 1lung menr ; 1c
Ug VO r S t e vorhanden .. schnur begriffe S(hctl:ahl'l-g u g e m j'cklf’n‘ Q
m bZ L u S S e n unterricht fahren hrmggn

Dy L3

n
e,
ungen

ation

geschwindigk€it reactio 2'3Z

. zusammenhang ein begriff fommt . kurve = : U

o korper themé““i“ richtung - £v

_vorstellungen

"L e WISSE ﬁ-‘nggpegm!’ iment: ergebmsse =0
béschleunigungsrklarenK " g tz—i

gleuhf

reibungskratc beweggng tragheit =t jmmer apfel :q_

strecke zwei kraft wirkt ng l

zentrl uga,

beschleunigt werte

gibtr alltagi; fehler SUS krafte

Abbildung 6.4 Wortwolke zur Darstellung zentraler Begriffe in den Antworten zu den offenen Aufgaben des
FDW-Testinstruments.

Das Finetuning des BERT-Modells wurde dem Standard-Workflow des huggingface-
transformers Python Pakets® folgend implementiert. Dabei wurden die Trainingsparameter
wie Batch-GroBe o. A. nicht verindert.

0 Ein Tutorial, in dem dieser Workflow grob vorgestellt wird, ist unter https://huggingface.co/docs/transformers/
tasks/sequence_classification zu finden.
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6.4.4 FF2b: Automatisierte Zuordnung zu Kompetenzprofilen

Zur Vorhersage der Kompetenzprofile wurde hier zunichst direkt das GMM aus FFI
verwendet, da so der Vergleich zur Mensch-Mensch Ubereinstimmung als Baseline ermoglicht
wird. Dieses ,,wahre* Cluster-Modell liegt vollstindig aus den Analysen zu FF1 vor und wurde
dementsprechend nicht mehr trainiert. D. h., es wurden die Kompetenzprofile auf Basis der
maschinell vorhergesagten Scores direkt mit den Kompetenzprofilen auf Basis der
menschlichen Scores verglichen. Zur Bestimmung der Mensch-Mensch Referenzwerte wurden
die Scores von Kodierer:in 1 als ,,wahre Scores® und die Scores von Kodierer:in 2 als
,Vorhersagen* betrachtet.

Ergédnzend wurde ein logistisches Regressionsmodell (LR-Modell) zur Vorhersage der
Kompetenzprofile auf Basis der maschinellen Score-Vorhersagen trainiert, um im Sinne der
CGT sicherzugehen, dass auch ein ,,neues* ML-Modell zur Vorhersage der Kompetenzprofile
in der Lage ist. Der Vergleich zu einem analogen Modell fiir den Mensch-Mensch-Datensatz
wire hier aber nicht zielfithrend, da der Mensch-Mensch Datensatz (267 Test-Bearbeitungen)
deutlich kleiner ist als der fiir das automatisierte Scoren verfligbare Datensatz (846 Test-
Bearbeitungen). Fiir das Training des LR-Modells konnten die CV-Splits aus dem Training des
Scoring-Modells (FF2a) wiederverwendet werden, da sie personenweise erstellt wurden. Zu
diesem Zweck wurden wihrend des Trainings des Scoring-Modells neben den Evaluierungs-
Vorhersagen auch die Trainings-Vorhersagen zu jedem CV-Split abgespeichert. Diese wurden
nun zum Training des LR-Modells genutzt. Auch das LR-Modell wurde dementsprechend um
Rahmen der CV 10-mal neu trainiert. Somit ist sichergestellt, dass auch beim Training des LR-
Modells keine Vermischung von Trainings- und Evaluierungsdaten stattfindet.

6.5. Ergebnisse

6.5.1 FF1: Latente Kompetenzprofile des FDW

Zur Pattern Detection wurde eine LPA durchgefiihrt, bei der 40 GMMs an die Daten angepasst
und anhand ihres BIC-Scores verglichen wurden (FF1). In Abbildung 6.5 erkennt man, dass
die beiden hochsten BIC-Werte fiir die Konfigurationen ,,2 Cluster, Kovarianz: Full* (BIC =
1491) und ,,4 Cluster, Kovarianz: Tied” (BIC = 1483) erreicht werden. Der Unterschied in
diesen beiden BIC-Scores ist klein, sodass auf Basis des BIC beide Modelle zur Beschreibung
latenter Strukturen herangezogen werden konnen. Aus theoretischen und pragmatischen
Griinden ist es zielfiilhrender, das ,,4 Cluster, Kovarianz: Tied“-Modell weiter zu untersuchen,
da eine ,,Tied*“-Kovarianzmodellierung der theoretischen Erwartung am ehesten entspricht und
vier Cluster zur Beschreibung nicht-hierarchischer Strukturen geeignet sind (siche Abschnitt
6.4.2). Die Cluster-Datenpunkte dieses Modells sind in einem Paarplot in Abbildung 6.6
dargestellt. Man erkennt deutlich, dass die Dimensionen Anwenden-Kreieren und Analysieren-
Evaluieren fiir die Zuordnung zu den Clustern zentral sind (Abbildung 6.6, untere mittlere
Kachel). Die Cluster-Zentren sind in Abbildung 6.7 inklusive ihrer jeweiligen
Mittelwertsstreuung dargestellt.
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Abbildung 6.5 Darstellung der BIC-Scores fiir die 40 Gaussian Mixture Models der Latent Profile Analysis.
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Abbildung 6.6 Paarplot-Darstellung der einzelnen FDW-Score Datenpunkte mit Kompetenzprofilen. Auf der
Diagonale werden die jeweiligen geschétzten Wahrscheinlichkeitsverteilungen der Scores der einzelnen Cluster
in den jeweiligen Anforderungskategorien mithilfe sog. Kerndichteschitzungen (= kontinuierliche Histogramme)
dargestellt. Auf den Nicht-Diagonalelementen werden die Score-Paare der einzelnen Testbearbeitungen immer
im Rahmen von zwei Anforderungskategorien gegeneinander aufgetragen. Die Scores sind dabei kategorienweise
auf das Intervall [0, 1] skaliert. Um eine etwas bessere Darstellung der einzelnen Punkte der Punktwolken zur
erhalten, wurde zu den Daten hier jeweils im Intervall [—0,025; 0,025] gleichverteiltes Rauschen von addiert.
Die Bezeichnungen der Cluster werden in Abschnitt 6.5.1 eingefiihrt.
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Abbildung 6.7 Linienplot der Score-Mittelwerte der Kompetenzprofile. Auch hier sind die Werte auf das Intervall
[0, 1] normiert, d. h., dass beispielsweise die High Achievers durchschnittlich etwa 66 % des Maximalscores in
der Dimension Anwenden-Kreieren erreichen. Die hell eingefiarbten Bander um die Mittelwertslinien stellen die
Mittelwertsstreuung dar.

Die latenten Kompetenzprofile werden auf Basis ihrer durchschnittlichen Scores in den
kognitiven Anforderungsdimensionen (Abbildung 6.7) benannt. Aufgrund der Parallelen zu
den (nicht-latenten) Personenclustern aus der Vorgéngerstudie (Zeller & Riese, 2025) werden
die bereits dort verwendeten englischen Bezeichnungen wiederverwendet. Zudem lassen sich
die Kompetenzprofile im Englischen griffiger und insbesondere leicht geschlechtsneutral
bezeichnen:

1. Low Achievers: Insgesamt in allen Teildimensionen niedriges Kompetenzniveau.

2. Applying Creatives: Stiarken im Kreieren von Unterrichtselementen und Anwenden von
FDW auf beschriebene (Unterrichts-) Situationen u. A.

3. Analytic Evaluators: Stirken im Analysieren und Bewerten beschriebener (Unterrichts-)
Situationen oder beschriebenem Handeln einer Lehrperson u. A.

4. High Achievers: Insgesamt in allen Teildimensionen hohes Kompetenzniveau.

Die durchschnittlichen FDW-Scores und absolvierten Fachsemester des Physik-
Lehramtsstudiums sowie der Anzahl an Proband:innen in den Kompetenzprofilen sind in
Tabelle 6.5 dargestellt.

6.5.2 FF2a: Maschine-Mensch Ubereinstimmung des Scoring-LMs

Der erste Schritt der Pattern Confirmation ist die Erstellung eines ML-Modells zur
automatischen Bepunktung der offenen Aufgaben des verwendeten Testinstruments (FF2a).
Dazu wurde hier ein BERT-Sprachmodell zur Bepunktung dieser Aufgaben finegetuned. Das
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Modell wurde fiir drei Epochs trainiert. Die Entwicklung der Werte der verwendeten Cross-
Entropy-Loss-Funktion und der Accuracy iiber das Training sind in Abbildung 6.8 gemittelt
iiber alle CV-Splits gegen die durchlaufenden Epochs aufgetragen. Man erkennt beginnendes
Overfitting ab dem Beginn der dritten Epoch, d. h. das BERT-Modell fingt an, Details des
Trainingsdatensatzes ,,auswendig zu lernen“. Da die hier vor allem relevante diskrete
Accuracy-Metrik beziiglich der Evaluierungsdaten aber wihrend der dritten Epoch noch weiter
leicht ansteigt, zusétzliches Training iiber die dritte Epoch hinaus aber keine weiteren
Performanzzuwichse bewirkte, wird das 3-Epoch Modell verwendet.

Die Performanz des Scoring-Modells ist in Tabelle 6.6 und Abbildung 6.9 dargestellt.
Insgesamt erreicht das Modell Maschine-Mensch-Ubereinstimmungswerte, die 80 bis 90 % der
Mensch-Mensch-Ubereinstimmungswerte entsprechen (Tabelle 6.6). SchlieBt man die MC-
Aufgaben in diese Betrachtung mit ein und bewertet fehlende Antworten mit ,,0 Punkten®, so
erreicht das Scoring-System eine gute (Déring, 2023) Ubereinstimmung von x = 0.680
(Mensch-Mensch-Baseline: k = 0.761). Das Scoring-Modell zeigt bis auf eine etwas
,strengere” Bewertung keine systematischen Verzerrungen der Vorhersagen (Abbildung 6.9).

Tabelle 6.5 Vergleich der latenten Kompetenzprofile in Hinsicht auf Fachsemester, FDW-Gesamtscore und
Umfang. Die Spalte ,,N (Gesamtdatensatz)* schlieit die 41 Bearbeitungen des Testinstruments, die aus der
Erstellung des Clustermodells ausgeschlossen wurden, mit ein (siche Abschnitt 6.4.2, 6.4.3).

Fachsemester

Kompetenzprofil Physik FDW-Gesamtscore N N (Gesamtdatensatz)
M SD M SD
Low Achievers 2,87 2,56 12,86 2,07 411 470
Applying Creatives 5,31 3,59 18,97 2,93 166 167
Analytic Evaluators 5,28 3,92 19,32 2,58 112 113
High Achievers 6.96 3,71 25,44 3,53 96 96

Tabelle 6.6 Scorer Performanz. Hier wurden keine Missings oder MC-Aufgaben betrachtet.

Mensch-Maschine- Mensch-Mensch-
Ubereinstimmung Baseline
Anzahl Daten (N) 15600 4748
Accuracy 0,751 0,813
Cohens k 0,560 0,665
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Abbildung 6.8 Learning Curves des Scorer-Trainings “gemittelt” iiber die 10 CV-Splits. Die eingefarbten
Bereiche stellen die Standardabweichungen der jeweils 10 Werte (10 CV-Splits) pro Log-Punkt dar.
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Abbildung 6.9 Darstellung der Score-Vorhersageiibereinstimmung als Heatmap. Die abgebildeten Werte sind
Zeilen-weise normiert, d. h. der Eintrag ,,15 % in der oberen mittleren Zelle ist beispielsweise wie folgt zu
interpretieren: 15 % der Bearbeitungen, die von dem/der Kodierer:in mit null Punkten bewertet wurden (die also
0 als Target haben) bewertet der BERT-Scorer mit einem Punkt.
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6.5.3 FF2b: Maschine-Mensch Ubereinstimmung der latenten
Kompetenzprofile

Der zweite Schritt der Pattern Confirmation ist die ML-basierte Zuordnung zu den
Kompetenzprofilen auf Basis der automatischen Bepunktung (FF2b). Die Ergebnisse der
Evaluierung der automatisierten Zuordnung zu den Kompetenzprofilen mithilfe des ,,wahren*
GMMs und des LR-Modells sind in Tabelle 6.7 und Abbildung 6.10 dargestellt. In Tabelle 6.7
sind zudem die Ubereinstimmungswerte der beiden menschlichen Kodierer:innen auf Basis
einer Zuordnung mit dem GMM dargestellt. Tatsdchlich erreicht das LR-Modell mitx = 0,612
sogar eine etwas groflere Performanz als die Zuordnung auf Basis des ,,wahren” GMMs mit
k = 0.587. Die Maschine-Mensch-Ubereinstimmung auf Basis des GMMs entspricht dabei 94
% der Mensch-Mensch-Ubereinstimmung auf Basis des GMMs (x = 0,624). Diese Werte
konnen als gute Ubereinstimmungen eingeordnet werden (Déoring, 2023).

Neben der Klassifikation auf Basis der Bearbeitungen des Testinstruments, d. h. der
Sprachantworten zu den offenen Aufgaben des Testinstruments und den Antworten im Rahmen
der MC-Aufgaben, wurde erginzend die Vorhersage direkt auf Basis der manuell kodierten
Scores evaluiert. Damit wird wie bei Tschisgale et al. (2023) die Vorhersage der Cluster auf
Basis der fiir die Erstellung des Cluster-Modells genutzten numerischen Daten angestrebt. Die
Komplexitit dieser Klassifikationsaufgabe ist gegeniiber der Zuordnung ausgehend von den
,rohen* Test-Bearbeitungen deutlich verringert und ein logistisches Regressionsmodell
erreicht hierbei im Rahmen einer 10-fold-CV (Ngyy = 846) exzellente Ubereinstim-
mungswerte (94,5 %, k = 0,918).

Insgesamt kann die CGT-Pattern-Confirmation unter Beachtung der Komplexitét des zu
erfassenden Konstrukts des FDW bzw. der zu erfassenden Kompetenzprofile insbesondere
beim Vergleich der Maschine-Mensch-Ubereinstimmung mit der Mensch-Mensch-Baseline
als erfolgreich angesehen werden.

Tabelle 6.7 Performanz der automatisierten Kompetenzprofil-Zuordnungen. Auch hier wurden zur Bestimmung
der Mensch-Maschine-Ubereinstimmung alle Validierungsdaten zusammen betrachtet.

Logistische Wahres GMM- Mensch-Mensch-
Regression Cluster Modell (FF1) Baseline
Anzahl Testhefte (N) 846 846 267
Accuracy 0,759 0,743 0,787
Cohens k 0,612 0,587 0,624
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Abbildung 6.10 Darstellung der Kompetenzprofil-Vorhersageiibereinstimmungen als Heatmap. Oben sind die
Werte fiir das Logistische Regressionsmodell berichtet, unten die fiir das ,,wahre® GMM-Cluster Modell. Die
abgebildeten Werte sind analog zu interpretieren, wie in Abbildung 6.9 beschrieben.*!

o' In Abbildung A5 ist auch der entsprechende Plot fiir die Mensch-Mensch-Ubereinstimmung dargestellt.

140



6. ML-basiertes Assessment von Kompetenzprofilen des physikdid. Wissens (Artikel 3)

6.6. Diskussion

6.6.1 Zusammenfassung und Einordnung

Fiir die empirisch fundierte Weiterentwicklung der Modellierung des Fachdidaktischen
Wissens (FDW) sind datenbasierte Beschreibungen der inneren Struktur des FDW notwendig
(Kapitel 2). Zu diesem Zweck wurde im vorliegenden Beitrag eine explorative empirische
Analyse nicht-hierarchischer Strukturen des FDW angehender Physiklehrkrifte durchgefiihrt.
Im Rahmen von FF1 wurden vier latente nicht-hierarchische Kompetenzprofile ermittelt, deren
Robustheit und Validitit in den Analysen zu FF2a und FF2b bestétigt wurden. Dazu wurde die
Gesamtanalyse im Sinne der Computational Grounded Theory (CGT, Nelson, 2020)
strukturiert. Die explorative Analyse der Kompetenzprofile (FF1) stellt in diesem Framework
eine Pattern Detection dar. Menschliches Expertenwissen und Interpretationskraft auf Basis
des Forschungsstands ist hier nicht in einem separaten CGT-Pattern Refinement Schritt,
sondern bereits zur Vorbereitung der Pattern Detection in Form der Re-Analyse der
Testaufgaben im Kontext kognitiver Anforderungskategorien und einer entsprechenden
Aggregierung der Scores eingeflossen. Im Rahmen der Pattern Confirmation wurde ein
Assessment System auf Basis eines BERT-Sprachmodells (FF2a) sowie eines
Klassifikationsmodells (FF2b) erstellt, das Testbearbeitungen den Kompetenzprofilen
automatisiert zuordnen kann und somit im Sinne der CGT die gefundenen Strukturen bestitigt.

Die vier erhaltenen Kompetenzprofile Low Achievers, Applying Creatives, Analytic
Evaluators und High Achievers stellen somit vier latente Gruppen von Proband:innen mit
prototypischen Stirken und Schwichen dar. Die Applying Creatives und Analytic Evaluators
zeigen dabei deutlich eine nicht hierarchische Struktur im Sinne von FF1 (Abbildung 6.7,
Anhang E). Auffillig ist dariiber hinaus, dass selbst die High Achievers noch einiges
Verbesserungspotenzial bezogen auf die Maximalpunktzahlen des Testinstruments haben
(Abbildung 6.7). Ahnliches wurde bereits bei fritheren Einsitzen des Testinstruments
beobachtet (Gramzow et al., 2013; Riese et al., 2017). Beeinflusst ist diese Beobachtung aber
auch durch den hohen Anteil an Anféngerstudierenden im Datensatz; Studierende in den ersten
zwel Studienjahren bilden ca. 62 % der Gesamtstichprobe.

Die gefundenen Kompetenzprofile und die zugehorigen kognitiven Anforderungskategorien
lassen sich zudem im Rahmen des RCM of PCK auf das ePCK zuriickbeziehen. Von ePCK
wird angenommen, dass es sich im Rahmen des sog. ,,Plan-Teach-Reflect-Cycles* (PTR-
Cycle, Alonzo et al., 2019) iterativ entwickelt. Empirische Ergebnisse stiitzen dieses Modell
(z. B. Behling et al., 2022b). Dem PTR-Cycle folgend werden somit auch entsprechende
einzelnen ePCK-Komponenten, d. h. ePCK-plan, ePCK-teach und ePCK-reflect unterschieden.
Die kognitiven Anforderungskategorien, die sich im Rahmen der hier vorgestellten Studie fiir
das FDW (im Sinne eines pPCK) als bedeutsam erwiesen haben, konnen auch als empirische
Hinweise auf die Existenz einer entsprechenden inneren Struktur des pPCK gedeutet werden,
wie beispielsweise die Trennung von ,,pPCK-apply*“ und ,,pPCK-analyze®“. Fiir eine
gesichertere Aussage sollten an dieser Stelle aber weitere ggf. konfirmatorische Analysen
insbesondere auch mit anderen Datensédtzen durchgefiihrt werden. Dariiber hinaus sollte die
Beziehung zwischen den potenziellen pPCK-Komponenten und den ePCK-Komponenten in
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den Blick genommen werden. Es ist bisher unklar, ob einzelne pPCK-Komponenten auch mit
einzelnen ePCK-Komponenten korrespondieren, oder, ob ggf. erst die Integration der pPCK-
Bestandteile zur Steigerung oder Entwicklung von ePCK fiihrt.

Die fachdidaktischen Facetten stellen prinzipiell eine Alternative zu den kognitiven
Anforderungsdimensionen bei der theoriegeleiteten Akkumulierung der Scores als
Vorbereitung der Cluster Analysen dar. Fachdidaktische Facetten bzw. Inhalte werden, wie
bereits beschrieben, in unterschiedlichen FDW-Testinstrumenten im naturwissenschaftlichen
Bereich genutzt (z. B. Kroger, 2019; Tepner et al., 2012) und haben sich im Rahmen von IRT-
Modellierungen bereits als trennbare Subskalen erwiesen (Riese et al., 2017). Allerdings sind
die Facetten gegeniiber der Nutzung der kognitiven Anforderungen weniger gut auf andere
Testinstrumente bzw. Operationalisierungen generalisierbar, da in den Einzelprojekten meist
eine unterschiedliche Auswahl von Facetten betrachtet wird (z. B. Kirschner, 2013). Fiir die
kognitiven Anforderungskategorien weisen die Ergebnisse der projektiibergreifenden Analyse
von Zeller et al. (2024) hingegen auf eine Ubertragbarkeit der Kategorien auf unterschiedliche
Testinstrumente hin. Das Generalisierungspotenzial der kognitiven Anforderungskategorien
sollte dementsprechend auch genutzt werden, um zu iiberpriifen, ob dhnliche Analysen anderer
FDW-Testinstrumente die hier vorgestellten Ergebnisse in Form der latenten
Kompetenzprofile unterstiitzen. Dies gilt insbesondere vor dem Hintergrund der Limitation der
hier berichteten Ergebnisse aufgrund der Beschriankung des verwendeten Testinstruments auf
den Fachinhalt Mechanik.

Der Bedarf an weiteren Analysen zur Uberpriifung der Reproduzierbarkeit der vorgestellten
Ergebnisse gilt insbesondere vor dem Hintergrund, dass der vorgestellten Analyse ein
komplexer methodischer Workflow zugrunde liegt und sie aufgrund ihres explorativen
Charakters viele ,,Moving Parts* umfasst. Aus methodischer Sicht wére hier auch die Nutzung
eines Testinstruments interessant, welches eine gleichméBigere Anzahl an Aufgaben in den
einzelnen kognitiven Anforderungskategorien umfasst, um eine bessere Auflosung der
Kompetenzprofile im Rahmen der GMMs (oder dhnlicher Modelle) erreichen zu konnen.
Dariiber hinaus wire die Nutzung von Methoden zum Umgang mit ungleich verteilten
Datensitzen (z. B. Lemaitre et al., 2017) mit Blick auf das Training des BERT-Modells fiir das
automatische Scoring lohnend, um zu untersuchen, ob sich die in Abschnitt 6.5.2 beschriebene
»atrenge* des Systems abmildern 1dsst.

6.6.2 Ausblick

Wie bereits beschrieben, wird theoriebasiertes menschliches Expertenwissen und menschliche
Interpretationskraft im Sinne der CGT in der hier vorgestellten Analyse bereits wihrend bzw.
vor dem eigentlichen Pattern Detection Schritt einbezogen. Ein zusitzliches Pattern
Refinement zur weiteren Detailbeschreibung der Kompetenzprofile wurde hier aus
Platzgriinden nicht vorgestellt. Analog zur Vorgingeranalyse (Zeller & Riese, 2025) lieBen
sich aber auch hier mithilfe von Topic Models (z. B. Blei, 2012; Roberts et al., 2019)
praktikabel Zusammenhinge zwischen der Kompetenzprofil-Zugehorigkeit und der Nutzung
bestimmter Begriffe bzw. Fokussierung auf bestimmte Konzepte untersuchen. Eine vorlaufige
Analyse dieser Art zeigt beispielsweise, dass die High Achievers sich in ihren Antworten auf
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die offenen Testaufgaben deutlich stirker auf Konzepte aus dem Bereich der
Schiilervorstellungen (Begriffe wie ,,Schiilervorstellungen®, ,kognitiv, ,Konflikt“ oder
»Alltagserfahrungen®) fokussieren als die {ibrigen Kompetenzprofile.

Neben der Nutzung fiir die Pattern Confirmation bietet auch das hier vorgestellte BERT-
Modell zum automatisierten Scoring Ansatzpunkte, selbst Gegenstand weiterer
Untersuchungen zu werden. Dazu konnten (ohne Anspruch auf Vollstindigkeit) Analysen (1)
zur Bedeutung bestimmter Merkmale von Antworten (Antwortlinge, Wortwahl etc.) fiir die
Performanz des Scoring-Modells (z. B. Zesch et al., 2023), (2) zur Erkldrung von bestimmten
Modellentscheidungen (z. B. Gombert et al., 2023) sowie (3) zur Fairness des Modells (z. B.
Barocas et al., 2023) durchgefiihrt werden. Erste Ansétze in diese Richtungen wurden bereits
erprobt:

1) Bei einer Aufgaben-weisen Betrachtung zeigte sich, dass die Maschine-Mensch-
Ubereinstimmung nicht nennenswert mit der durchschnittlichen Antwortlinge in den
Aufgaben, aber signifikant mit der Mensch-Mensch-Ubereinstimmung zusammenhiingt
(Spearman-Korrelation von 0.612** zwischen den Maschine-Mensch-ks und Mensch-
Mensch-ks). Aufgaben, bei denen eine hohe Interrater-Reliabilitét besteht, scheinen also
auch besonders reliabel automatisiert bepunktet zu werden.

2) Ahnlich dem Ansatz von Gombert et al. (2023) wurden erste Analysen zur
Bedeutsamkeit bestimmter Worte flir die Bepunktung durch das BERT-Modell
durchgefiihrt. Dabei wurde die sog. Attribution-Metrik verwendet, die beschreibt, wie
stark jedes einzelne Wort fiir oder gegen die Klassifikation des eingegebenen Textes
arbeitet* (Sundararajan et al., 2017%%). Die Ergebnisse dieses Vorgehens lassen sich wie
in Abbildung 6.11 gezeigt visualisieren. Bei einer ersten Aufgaben-iibergreifenden
Aggregierung der Bedeutsamkeit der Worte konnte bislang keine interessante Systematik
festgestellt werden, was wahrscheinlich daran liegt, dass in den einzelnen Aufgaben
unterschiedliche fachliche und fachdidaktische Konzepte relevant sind.

Beispiel-Antwort zu Aufgabe 15 aus Abb. 2:

[CLS] aufgabe a ##15 . : der schule ##r denkt , dass die zentr ##ipe ##tal
#tkraft nach aullen und nicht zum kreis ##mittel ##punkt wirkt . [SEP]

Weitere Antwort zu Aufgabe 15:
[CLS] schule ##r stellt sich vor , dass die zentr ##if ##uga ###lk #iraft
den ball nach aullen treibt . [SEP]

Abbildung 6.11 Darstellung der Attribution der einzelnen Worte offener Testantworten zu Aufgabe 15 auf die
jeweilige Klassifikation durch den Scorer. Eine griine (bzw. rote) Einfdarbung bedeutet, dass das Wort die

Entscheidung fiir die Score-Entscheidung positiv (bzw. negativ) beeinflusst hat. Die ungewohnliche Formatierung
des Textes hangt mit der Vorverarbeitung der Inputs durch das BERT-Sprachmodell zusammen.

©2 Dazu wurde das Python-Paket transformers-interpret (https:/github.com/cdpierse/transformers-interpret)
verwendet.
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3) Zur Analyse der Fairness von ML-Modellen werden iiblicherweise potenziell
benachteiligte Gruppen und die Performanz beziiglich dieser Gruppen betrachtet (z. B.
Barocas et al., 2023). Im hier verwendeten Datensatz liegen kaum derartige Daten vor.
Fiir die Geschlechter ergab eine Betrachtung keine bedeutsamen Unterschiede in der

Performanz (xy,, = 0,57 + 0,05, k), = 0,55 £+ 0,05%3) und auch keinen Unterschied
beziiglich der zu ,,strengen* Bewertung.

Das erhaltene Modell ldsst sich im Rahmen eines automatisierten Systems fiir das
Assessment des FDW flexibel einsetzen. Ein entsprechendes Webtool unter Nutzung von
Open-Source Software mit einem Interface zur digitalen Bearbeitung des Testinstruments und
einer automatisierten Erstellung eines Reports ist bereits angelegt. Es liefert die
Riickmeldungen zu Bearbeitungen des Tests je nach verfiigbarer Hardware innerhalb weniger
Sekunden. Dabei ist geplant, Zuordnungen zu den Kompetenzprofilen und Summenscores
beziiglich der kognitiven Anforderungen und Facetten in ein formativ nutzbares Feedback
einzuschlieBen. Die Riickmeldung von Scores in den einzelnen Aufgaben wird nicht
angestrebt, denn Testinstrumente wie das genutzte lassen {lblicherweise keine reliable
Einschitzung auf Ebene der Einzelaufgaben zu.

Das Assessment-System aus Scoring- und Cluster-Modell kann genutzt werden, um
Studierenden unmittelbares, inhaltliches Feedback zu ihren Kompetenzstand im FDW zu
bieten. Es kann dabei helfen, Verbesserungspotenziale zu identifizieren und ggf. gezielt
Lerngelegenheiten zu empfehlen. Uber eine individuelle Nutzung hinaus kénnte das System
auch fiir Lehrende von Interesse sein, die mithilfe einer Einordnung ihrer Lerngruppen gezielt
Lehrinhalte auswihlen oder Materialien gestalten konnen. Auch fiir weitere Forschungszwecke
konnte ein automatisiertes digitales System den bislang eher schwierigen Zugriff auf grofie
Stichproben erleichtern und gleichzeitig den Aufwand bei der Kodierung offener Aufgaben
minimieren.

Der hier dargestellte Workflow zur Erstellung und Evaluierung eines automatisierten
Assessment-Systems auf Basis eines Testinstruments mit offenen und geschlossenen
Aufgaben, inklusive der explorativen Untersuchung von Kompetenzprofilen, ist nicht auf
Konstrukte wie das FDW beschriankt. Die Abstrahierung des genutzten Python-Codes fiir die
Analysen und das Webtool fiir eine flexible Ubertragung auf andere Testinstrumente ist in
Arbeit.

% Die Unsicherheiten dieser Ubereinstimmungswerte wurden mithilfe der Bootstrap-Methode aus den
Vorhersagen ermittelt.
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6.7. Kommentare und Erginzungen

Da der Fokus von Artikel 3 eher auf den inhaltlichen Erkenntnissen liegt / liegen sollte, mussten
viele methodische und technische Anmerkungen stark gekiirzt oder vollstindig gestrichen
werden. Daher folgen nun zu Artikel 3 recht umfangreiche zusétzliche Informationen und
Analysen.

6.7.1 Zusiitzliche Daten zu den latenten Kompetenzprofilen

Die latenten Kompetenzprofile stellen den Kern der inhaltlichen Analyse des FDW dar und in
Tabelle 6.5 wurden bereits einige zusitzliche Informationen {iber durchschnittliche FDW-
Gesamtscores und absolvierte Fachsemester berichtet. In Tabelle 6.8 werden nun noch weitere
demographische Daten erginzt. Auffillig ist hierbei vor allem der hohe Anteil an weiblichen
Probandinnen unter den High Achievers und ihr geringer Anteil unter den Analytic Evaluators.
In Anhang E sind zudem weitere Werte aus anderen Erhebungen des ProfiLe-P+ Projekts
dargestellt, die hier aus Platzgriinden nicht alle systematisch eingefiihrt werden.

Tabelle 6.8 Zusitzliche demographische Daten zu den Kompetenzprofilen.

Abschluss- Letzte Punktzahl (Schule) AuBerschulische  Anteil
note Lehrerfahrung  weiblich

Physik Mathematik  Deutsch

Anzahl an Daten 649 474 510 504 841 845
Low Achievers 2,35 11,45 10,97 9,19 78 % 34 %
Applying Creatives 2,07 12,38 12,05 10,42 86 % 35%
Analytic Evaluators 2,09 11,90 11,48 9,86 84 % 24 %
High Achievers 1,83 12,72 12,42 10,63 92 % 43 %

6.7.2 Keine direkte Vorhersage von Clustern ohne Scoring

In Artikel 3 wurde nur am Rande angedeutet, dass eine direkte Vorhersage der
Kompetenzprofile ausgehend von den Gesamtantworttexten problematisch ist. Um dies zu
evaluieren, wurden vor allem zwei Experimente mit den Text-Daten durchgefiihrt. Zunéchst
wurden dazu die Einzelantworten der Personen zu ,,Gesamttexten® zusammengefasst, wobei
fiir jede Einzelantwort der Zusatz ,,Aufgabe X: ...“ hinzugefiigt wurde, um die einzelnen
Aufgaben sprachlich voneinander abzugrenzen. Das Setting ist demnach ein klassisches
Supervised-Learning-Problem mit den Kompetenzprofil-Zuordnungen als Labels.

Im ersten Ansatz wurde dasselbe BERT-Modell zur Vorhersage der Kompetenzprofile
trainiert, das auch in Artikel 3 zum automatischen Scoring verwendet wird. Problematisch ist,
dass dieses Modell nur Texte mit einer Lénge von bis zu 512 Token (ca. 320 Worte) verarbeiten
kann (man spricht hier auch von Kontextlinge), die Gesamttexte aber bis zu 1493 Token (ca.
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928 Worte) umfassen. Alle langeren Dokumente werden ab dem 513ten Token gekappt. Bei
den Dokumenten, die iiber 512 Token lang sind, werden dadurch im Durchschnitt ca. 23 % des
Dokuments vernachldssigt. Insgesamt werden so ca. 18 % der Gesamttextdaten aller
Proband:innen zusammengenommen nicht genutzt. Das BERT-Modell wurde anschlieend im
Rahmen einer 3-fold-CV (siehe Abschnitt 2.4) analog zum Vorgehen in Artikel 3 evaluiert. Es
erreicht eine Accuracy von 57,0 % und ein Cohens k von 0,262. Die Confusion Matrix ist in
Abbildung 6.12 oben dargestellt. Die Ubereinstimmung ist deutlich schlechter als die
Ergebnisse mit dem automatisierten Scoring als Zwischenschritt.

Aufgrund der Limitation des BERT-Modells durch die geringe Kontextlinge wurde als
Alternative iiber die OpenAI-API ein GPT4o0-mini Modell mit einer Kontextlinge von
128.000 Token (OpenAl, 2024b) ebenfalls im Rahmen einer 3-fold-CV trainiert und
evaluiert”. Es erreicht mit einer Accuracy von 63,3 % und einem Cohens k von 0,375
ebenfalls nur mittlere Ubereinstimmungswerte. In Abbildung 6.12 (unten) erkennt man, dass
insbesondere das Analytic Evaluators Kompetenzprofil von beiden Modellen nicht reliabel
erkannt wird und auch insgesamt hohe Fehlerquoten auftreten.

Aufgrund dieser Ergebnisse wurde bereits frith im Projekt zum ,,Scoring-First-Clustering-
Second“-Workflow iibergegangen, dem auch in Artikel 3 gefolgt wird. Ein wichtiger
Eckpfeiler dieses Workflows ist die strikte Trennung von Trainings- und Evaluierungsdaten
iiber beide Vorhersageschritte (erst Scores, dann Kompetenzprofile / Cluster) hinweg, wie auch
in Abschnitt 6.7.3 noch einmal detaillierter beschrieben wird.

6.7.3 Zusdtzliche Anmerkungen zum Workflow

Zunichst muss betont werden, dass der verwendete Fragebogen in einem analogen Pencil-
Paper-Format durchgefiihrt wurde. Zur computerbasierten Analyse der Antwort-Texte wurden
die Papier-Testhefte dementsprechend durch Hilfskrifte digitalisiert. Die Bepunktung der
Testhefte ist bereits in fritheren Projektphasen manuell vorgenommen worden (Vogelsang et
al., 2019). Mithilfe von Personencodes aus dem Demographie-Teil des Fragebogens konnten
die Testhefte liickenlos den bestehenden Scores zugeordnet werden. Die Digitalisierung durch
die Hilfskrifte wurde im Rahmen der Moglichkeiten engmaschig iiberwacht, Tippfehler u. A.
konnen aber nicht ausgeschlossen werden. Es ist allerdings unwahrscheinlich, dass solche
marginalen ,,Verfilschungen® einen grofen Einfluss auf die verwendeten Modelle haben. Eine
zukiinftig moglicherweise volldigitale Bearbeitung des Testinstruments konnte die
Antwortstrukturen aber systematisch verdandern. Fiir die Assessment Modelle empfiehlt sich
daher bei einer Nachnutzung im Rahmen eines volldigitalen Settings in jedem Fall gerade zu
Beginn ein Monitoring inklusive einer Evaluierung, um sicherzustellen, dass die Performanz
der ML-Modelle auch in einem volldigitalen Format den Erwartungen entspricht.

Die Zuordnung der Aufgaben zu den Anforderungskategorien wurde zur Vorbereitung der
latenten Profilanalysen analog zu Artikel 2 ebenfalls gemdfl des Zuordnungsmanuals (Anhang
B) vorgenommen. Dabei wurden die Kategorien zusammengefasst, indem die Aufgaben nach
dem ,,Inklusiven-Oder*“-Prinzip zugeordnet wurden. Beispielsweise wird eine Aufgabe der
Kategorie Analysieren-Evaluieren zugeordnet, wenn sie der Kategorie Analysieren und / oder
der Kategorie Evaluieren zugeordnet ist.
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Abbildung 6.12 Confusion-Matrizen der direkten Kompetenzprofil-Vorhersage mit BERT und GPT40-mini.

Bei der automatisierten Bepunktung des Testinstruments wurde in Artikel 3 und auch in den
hier noch folgenden zusétzlichen Analysen nur eine Punktzahl von 0 bis 2 Punkten pro Aufgabe
beriicksichtigt. Tatsdchlich kénnen in Aufgabe 23 allerdings bis zu drei Punkte erreicht werden.
Bezogen auf alle Testhefte erreichen allerdings nur 26 Personen drei Punkte in Aufgabe 23,
was ca. 3 % der Stichprobe entspricht. Ein ML-Modell zur automatisierten Bepunktung, das
alle Aufgaben bepunkten koénnen soll, miisste dementsprechend einen marginalen Anteil an
Antworten mit 3 Punkten erkennen (0.17 % bezogen auf die Werte in Tabelle 6.4). Diese
Kategorie tritt also deutlich zu selten auf, um durch ein Klassifikationsmodell reliabel erkannt
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zu werden. Daher werden fiir die Analysen zum automatisierten Assessment alle ,,3 Punkte* in
Aufgabe 23 durch ,,2 Punkte ersetzt. Dadurch entstehende Limitationen werden im Rahmen
der Personen-weisen Evaluierung der Zuordnung von Kompetenzprofilen (Abschnitt 6.5.3)
sowie der Vorhersage von Subskalenscores (Abschnitt 6.7.4) automatisch beriicksichtigt und
quantifiziert.

Da nur ein gemeinsames Scoring-Modell fiir alle Aufgaben verwendet wird, besteht zudem
die Moglichkeit, dass das Modell Punktzahlen vergibt, die das Testinstrument eigentlich nicht
vorsieht. So kann beispielsweise in Aufgabe 11 nur 1 Punkt erreicht werden, das Modell kann
grundsitzlich aber auch 2 Punkte vorhersagen. Fiir das in Artikel 3 vorgestellte BERT-Modell
geschieht eine solche Vergabe unzulédssiger Punktzahlen allerdings bemerkenswerterweise fiir
kein einziges der 15.600 verarbeiteten Antwort-Score-Paare — weder in den Trainings- noch
den Evaluierungsvorhersagen. Dies wird in Abschnitt 6.7.6 noch einmal aufgegriffen.

In Artikel 3 wurde bereits darauf hingewiesen, dass die CV-Splits personenweise erfolgen,
da im Assessment-Setting typischerweise Aussagen auf Personen-Ebene (Kompetenzprofil,
Summenscore, Subskalenscore etc.) von Interesse sind. Neue Daten, die das Modell in einem
tatsdchlichen Assessment-Workflow verarbeiten miisste, wiren ebenfalls in Form einer
vollstdndigen Testbearbeitung strukturiert. Die CV-Splits Personen-weise durchzufiihren ist
also eine notwendige MaBBnahme um sog. Data Leakage, also die Vermischung von Trainings-
und Evaluierungsdaten (Kapoor & Narayanan, 2023; Kaufman et al., 2012; siehe auch
Tschisgale et al., 2025) zu verhindern und verlésslichere Schiatzwerte fiir die Performanz des
gesamtem Assessment-Systems zu erhalten, auch wenn dadurch die Komplexitit des
Workflows deutlich zunimmt.

Um die Schitzwerte fiir die Assessment-Performanz in einen niitzlichen Vergleich
einzubetten, wurden in Artikel 3 Mensch-Mensch-Ubereinstimmungswerte bzgl. der
doppeltkodierten Teilstichprobe von 267 Testheften berichtet (sieche Abschnitt 6.4.4). Fiir die
Bepunktung der einzelnen Aufgaben konnen hier fiir einen Vergleichswert direkt die
jeweiligen Scores der beiden Kodierer:innen als Vorhersagen bzw. Targets verwendet werden.
Fiir die Evaluierung von weiterfiihrenden Teilen des Assessment Systems, beispielsweise der
Vorhersage von Kompetenzprofilen oder Summenscores bzgl. der Subskalen des
Testinstruments (s. u.), muss allerdings weitergedacht werden. Grundsétzlich lassen sich unter
Nutzung der CV-Splits aus der Automatisierung des Scorings auch solche weiteren, sog.
,2Downstream-Modelle* trainieren bzw. evaluieren. Dazu werden im Workflow der Analyse
nicht nur die zur Evaluierung des Scoring Systems notwendigen Vorhersagen bzgl. der
Evaluierungs-Splits abgespeichert, sondern zusitzlich auch alle Vorhersagen bzgl. der
jeweiligen Trainings-Splits. Bei einer k-fold-CV wird dadurch zwar die notwendige
Datenmenge zum Speichern der Vorhersagen um den Faktor k erhoht, allerdings konnen die
Datensplits so weitergenutzt werden: Um beispielsweise ein logistisches Regressionsmodell zu
evaluieren, welches auf Basis der Scores das jeweilige Kompetenzprofil vorhersagen soll,
liegen nun wieder k CV-Splits vor, die direkt verwendet werden konnen. Dieser Workflow
funktioniert, ohne dass die Scoring-Modelle aller Splits erneut trainiert oder genutzt werden
miissen — sie miissen nicht einmal mehr verfiigbar sein. Dabei werden dann beim Training
sowohl des Scoring-Modells als auch des Downstream-Modells ausschlieBlich die
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Trainingsdaten verwendet und Data Leakage somit ausgeschlossen.

Ein Problem bei diesem Vorgehen ist allerdings, dass die Performanz eines solchen
Downstream-Modells von der GroBBe des verwendeten Datensatzes abhidngen kann. Fiir die
Automatisierung wird aber der Gesamtdatensatz von 846 Testheften verwendet, was gut dem
Dreifachen des doppeltkodierten Datensatzes entspricht. Tatséchlich ,.trainierte” Downstream-
Modelle fiir den Gesamtdatensatz mit einem analogen trainierten Modell fiir den Mensch-
Mensch-Datensatz zu vergleichen, wiirde die Performanz des Downstream-Modells gegeniiber
der jeweiligen Mensch-Mensch-Ubereinstimmung also ggf. iiberschitzen. Daher werden fiir
Vergleiche von Downstream-Modellen mit der Mensch-Mensch-Ubereinstimmung meist
Modelle gewihlt, die nicht mehr weiter trainiert werden. Im Falle der Kompetenzprofil-
Vorhersage ist das das ,,wahre GMM aus der explorativen Analyse und im Falle der
Vorhersage von Subskalenscores werden die Scores der Einzelaufgaben einfach gemif der
Zuordnung der Testaufgaben zu den Subskalen summiert. Die jeweiligen Maschine-Mensch-
UbereinstimmungsmafBe lassen sich dann sinnvoll mit den Mensch-Mensch-Ubereinstim-
mungsmalen vergleichen. Im weiteren Verlauf werden dariiber hinaus dann aber teilweise
trotzdem noch ,,lernende* Downstream-Modelle wie logistische Regressionsmodelle genutzt,
um zu zeigen, dass ggf. durchaus hohere Ubereinstimmungswerte erreicht werden kdnnen,
indem das Downstream-Modell ,,Fehler* des Scoring-Modells ausgleicht. Es ist dann aber zu
erwarten, dass ein analoges Modell fiir einen gleichgroBen Mensch-Mensch-Datensatz eine
entsprechend des vorherigen Vergleichs erhohte Performanz erreichen wiirde. Die Performanz
von trainierten Downstream-Modellen ist also weniger im Verhiltnis zu den vorher berichteten
Mensch-Mensch-Ubereinstimmungen zu interpretieren, sondern eher absolut.

Auch, wenn eine direkte Zuordnung der Antworttexte zu den Kompetenzprofilen nicht bzw.
nur mit unzufriedenstellender Genauigkeit moglich ist (Abschnitt 6.7.2), so liefert dieser
zweistufige Ansatz dennoch ein Pattern-Confirmation-Argument in folgendem Sinne: Es wird
eine latente Zusammenhangsstruktur zwischen den Antworttexten und den Kompetenzprofilen
,mediiert durch die Bepunktung der Aufgaben und MC-Scores gefunden. Die Antworttexte
konnen dabei als Reprédsentationen des Wissens der Proband:innen als kognitives Konstrukt
aufgefasst werden (Halliday, 1978). Dadurch liefert die vorgestellte Pattern Confirmation
neben der praktischen Nutzbarkeit fiir ein Assessment sowie den Argumenten fiir Robustheit
und Generalisierbarkeit der Kompetenzprofile hier insbesondere auch ein Argument fiir die
kognitive Validitat (Messick, 1995) der Kompetenzprofile.

6.7.4 Zusiitzliche Analysen zu den bestehenden Modellen

Bei der Nutzung von ML-Modellen fiir praktische Anwendungen besteht héufig die
Problematik, dass sich die Daten aus dem realen Anwendungsfall systematisch von den beim
Training genutzten Daten unterscheiden. Dieses Phdnomen wird auch als Distribution Shift
bezeichnet (z. B. Koh et al., 2021; Webb et al., 2018; siehe auch Martin & Graulich, 2024). In
Standard-Evaluierungsworkflows (wie der CV) wird meist ein zugrundeliegender
Gesamtdatensatz verwendet, der randomisiert in Trainings- und Evaluierungssegemente
unterteilt wird. So kdnnen aber potenzielle Distribution Shifts nicht abgebildet werden, da per
Konstruktion die Evaluierungs- und Trainingsdaten dabei stets aus derselben Grundgesamtheit
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stammen und somit im mathematischen Sinne derselben Verteilung folgen. Daher ist es bei der
Evaluierung von ML-Modellen sinnvoll, wenn moglich, neben den ,klassischen*
Evaluierungstechniken auch eine sog. externale Evaluierung (z. B. Varshney, 2019)
anzustreben. Dabei werden Daten aus anderen Bezugsquellen herangezogen, um die
Robustheit des Modells gegentiber Distribution Shifts zu evaluieren.

Die oben bereits angesprochene Nutzung der hier entwickelten FDW-Assessment-Modelle
in einem volldigitalen Format stellt einen moglichen Distribution Shift dar. Hier liegen
allerdings bislang keine Daten vor, die fiir eine entsprechende externale Evaluierung geeignet
wiren. Der doppeltkodierte Teildatensatz (267 Testhefte) bietet aber eine Moglichkeit fiir eine
externale Validierung, um die Robustheit des Modells im Allgemeinen einzuschitzen. Die
Modellvorhersagen zu den Evaluierungssplits konnen neben den Bepunktungen von
Kodiererin 1 auch mit der alternativen Bepunktung von Kodierer 2 verglichen werden. In einer
entsprechenden Evaluierung stimmten die maschinellen Scores (BERT-Modell) in 72,3 % der
Fille (x = 0,508) mit den Scores des zweiten Kodierers iiberein, was immer noch als gute
Ubereinstimmung aufzufassen ist. Auch die Zuordnung zu den Kompetenzprofilen auf Basis
des ,,wahren“ GMM (s. 0.) lieferte noch gute Ubereinstimmungswerde (73,0 % Accuracy, k =
0.532). Es kann also begriindet davon ausgegangen werden, dass das Modell nur in einem eher
geringen Mafe ,Kodierer:in-spezifische® Strategien erlernt hat, obwohl im Training
ausschlieBlich die Daten der ersten Kodiererin verwendet wurden. Das spricht grundsitzlich
fiir die Robustheit des Modells.

Neben den Kompetenzprofilen sind auf Personen-Ebene auch Summenscores fiir ein
automatisiertes Assessment von Interesse. Dabei ist es naheliegend, die Vorhersagegiite
beziiglich theoretisch fundierter Subskalen, d. h. hier den fachdidaktischen Facetten sowie den
kognitiven Anforderungskategorien, zu betrachten. Auch der Gesamtscore kann mit in diese
Betrachtung aufgenommen werden. Um einen direkten Vergleich zur Mensch-Mensch-
Baseline zu ermoglichen, werden hier erneut keine zusitzlichen Modelle trainiert (s. o.),
sondern lediglich die bestehenden Score-Vorhersagen zu Summenscores bzgl. der betrachteten
Skalen aggregiert®®. Es werden die 10 Skalen Gesamtscore, Instruktionsstrategien,
Schiilervorstellungen, Experimente, Fachdidaktische Konzepte, Reproduzieren, Anwenden,
Analysieren, Evaluieren und Kreieren betrachtet. Fiir die Mensch-Mensch-Ubereinstimmung
werden dabei analog zum Vorgehen in Artikel 3 die Bepunktungen von Kodiererin 1 als
Targets und die Bepunktungen von Kodierer 2 als Vorhersagen betrachtet. Die
Zusammenhinge zwischen den Vorhersagen und den Targets sind in Abbildung 6.13
dargestellt. Man erkennt deutlich, dass die Annahme von linearen Zusammenhéngen zwischen
den Targets und den Vorhersagen der Subskalenscores angemessen ist. In Tabelle 6.9 sind die
Ubereinstimmungen mithilfe von Korrelationen und RZ2-Werten quantifiziert. Die
maschinellen Vorhersagen weisen sowohl im Vergleich zur Mensch-Mensch-Baseline als auch
absolut betrachtet hohe Korrelationen mit den menschlichen Bepunktungen auf. Insgesamt
kann also davon ausgegangen werden, dass Proband:innen mithilfe des Scoring-Modells valide

% Im digitalen Begleitmaterial ist sind auch die Ergebnisse unter Nutzung von linearen Regressionsmodellen zur
Vorhersage der Summenscores enthalten. Die Ubereinstimmungswerte sind marginal besser, als die hier
berichteten.
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und reliable Riickmeldungen iiber ihre Kompetenzen in den unterschiedlichen, durch die
Subskalen abgedeckten Kompetenzbereichen erhalten konnen.

Mensch-Mensch-Ubereinstimmung
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Abbildung 6.13 Darstellung der Zusammenhéng zwischen Summenscore-Targets und -Vorhersagen. Im oberen
Plot sind die Mensch-Mensch-Ubereinstimmungen, im unteren Plot die Maschine-Mensch-Ubereinstimmungen
dargestellt. Die schwarzen Linien stellen jeweils Ausgleichsgeraden dar. Die schraffierten Bereiche représentieren
die Verteilung der Datenpunkte. Man erkennt, dass in allen Fillen ein linearer Zusammenhang angenommen
werden kann, auch wenn fiir die Mensch-Mensch-Daten die Verteilungen der Datenpunkte etwas starker um die
jeweiligen Ausgleichsgeraden konzentriert sind.

Tabelle 6.9 Quantifizierung der Ubereinstimmungswerte der Summenscore-Vorhersagen.

Maschine-Mensch Mensch-Mensch
Korrelation R? Korrelation R?
(Person ) (Vorhersage « Target) (Person ) (Vorhersage « Targer)
Minimum 0,71%*** 0,50 0,75%** 0,56
Median 0,84 *** 0,70 0,88%** 0,77
Maximum 0,93#** 0,86 0,96%** 091
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Um die Ubertragbarkeit der Beobachtungen beziiglich des Sprachgebrauchs der K-Means-
Kompetenzprofile aus Artikel 2 auf die latenten Kompetenzprofile aus Artikel 3 einzuschétzen,
wurde hier zudem erneut ein STM (Roberts et al., 2019) erstellt. Um eine Vergleichbarkeit zu
den Analysen in Artikel 2 herzustellen, wurde das Modell analog — insbesondere ebenfalls mit
6 Topics — konfiguriert. Aus den Wortlisten der Topics lassen sich analog zum Vorgehen in
Artikel 2 (Abschnitt 5.5.2) Kurzbeschreibungen / Titel fiir die Topics ableiten (Tabelle AS).
Die sich ergebenden Topics sind dhnlich zu denen in Artikel 2. Auch hier wurde anschlieSend
der Zusammenhang zwischen der Kompetenzprofilzugehorigkeit und den Topics quantifiziert
(Abbildung 6.14). Dabei sind deutliche Parallelen zu den Ergebnissen der K-Means Analyse
(Figure 5.7) zu erkennen. Insbesondere die Fokussierung der High-Achievers auf das Topic
Schiilervorstellungen ist hier sogar stérker.

Effekt der Kompetenzprofil-Zuordnung auf die Topic Prevalence
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Analytic
Evaluators
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Applying
Creatives
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Abbildung 6.14 Zusammenhang zwischen Kompetenzprofilzugehorigkeit (LPA) und Topics.

Zuletzt sei hier noch angemerkt, dass ausfiihrlichere Interpretierbarkeitsbetrachtungen und
Fairnessanalysen nicht mehr Teil dieses Projekts sind, auch wenn entsprechende erste
Analysen im Ausblick von Artikel 3 genannt wurden. Die Ansdtze im digitalen Begleitmaterial
zu dieser Arbeit konnen allerdings als Ausgangspunkt fiir etwaige Folgeprojekte dienen.

6.7.5 Aufgabenweise Performanzanalysen

Zhai et al. (2021b) arbeiten heraus, dass im Kontext des automatisierten Scorings weitere
Forschung zu Einflussfaktoren auf die Modellperformanz notwendig ist. Zesch et al. (2023)
stellen im Rahmen ihrer Untersuchung unterschiedlicher Testinstrumente (auf Schulniveau)
fest, dass unter anderem die durchschnittliche Linge der Antworten zu einer Aufgabe einen
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Einfluss auf die Performanz eines Scoring-Modells haben kann: Je ldnger die Antworten zu
einer Aufgabe im Mittel sind, umso geringer ist die Modellperformanz. Im Rahmen des
vorliegenden Projekts liegen einige weitere interessante Daten vor, die auf die
Modellperformanz bezogen werden kdnnen. Somit kann hier ein Beitrag zum Forschungstand
geleistet werden, auch, wenn die Ergebnisse aufgrund der vergleichsweisen kleinen Anzahl an
Aufgaben cher als Indizien aufzufassen sind. Dazu wird hier die Performanz des BERT-
Scoring Modells aus Artikel 3 aufgabenweise genauer betrachtet. Als potenzielle
Einflussfaktoren werden herangezogen:

1. Die Anzahl an Antworten, die fiir die jeweilige Aufgabe vorhanden sind. Beispielsweise
sind im Datensatz zu Aufgabe 17 nur 454 Antworten vorhanden, wahrend zu Aufgabe 3
825 Antworten verfiigbar sind.

2. Die ,,Schiefe* (Kokoska & Zwillinger, 2000, Abschnitt 2.2.24.1) der Verteilung der
Scores der jeweiligen Aufgaben. Die Schiefe ist groBer, je ungleichmifBiger die
Punktzahlen zwischen 0, 1 und 2 verteilt sind.

3. Die durchschnittliche Lange der Antworten zur jeweiligen Aufgabe.

4. Die Inter-Rater-Reliabilitit in Form des Mensch-Mensch-Cohens-k fiir die jeweilige
Aufgabe.

Zur Quantifizierung der Modellperformanz wird das Maschine-Mensch-Cohens-x
verwendet, da so die ungleichméBige Verteilung der Score-Labels berticksichtigt wird. Fiir die
Analyse wurde ein z-standardisiertes lineares Regressionsmodell mit den o. g. vier Pradiktoren
und dem Maschine-Mensch-Cohens-k als abhiingige Variable erstellt (Tabelle 6.10, Abbildung
6.15). Relevante Einflussfaktoren sind diesem Modell zufolge die durchschnittliche
Antwortlinge sowie die Mensch-Mensch-Ubereinstimmung: Die durchschnittliche Antwort-
linge hiingt signifikant negativ und die Mensch-Mensch-Ubereinstimmung signifikant positiv
mit der Modellperformanz zusammen. Beide Einflussfaktoren weisen eine gro3e Effektstéirke
(Regressions-f) auf. Die Anzahl an verfiigbaren Antwort-Score Paaren fiir das Modelltraining
sowie die Schiefe der Score-Verteilung zeigen hier (erstaunlicherweise) keinen signifikanten
Zusammenhang zur Modellperformanz.

Tabelle 6.10 Einflussfaktoren auf die (aufgabenweise) Performanz des BERT-Scoring-Modells (Regression). Da
hier die aufgabenweise Performanz untersucht wird, entspricht das N des Regressionsmodells (F (4, 18) = 5,596,
p = 0.004™) der Anzahl an Aufgaben mit offenem Antwortformat im Testinstrument, d. h., N = 23.

Pridiktor /] T p-Wert
Intercept 0 0 1
Anzahl an Antworten —0,096 —-0,605 0,553
Schiefe der
0,037 0,227 0,823
Punktzahl-Verteilung
Durchschm}tllche ~0,471 —2.683 0,015*
Antwortldnge
Mensch-Mensch-k 0,417 2,307 0,034"
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Relevanteste Einflussfaktoren auf Modellperformanz
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Abbildung 6.15 Relevanteste potenzielle Einflussfaktoren auf die (aufgabenweise) Performanz des BERT-
Scoring-Modells (Regression).

6.7.6 Embedding Basierte Scoring-Modelle

Im Folgenden werden Embedding-basierte (s. u. sowie Abschnitt 2.7) Scoring-Modelle
vorgestellt, die im Rahmen der Analysen zu Artikel 3 exploriert wurden. Solche Modelle sind
interessant, da sie die Dauer des Trainings- bzw. Evaluierungsworkflows gegeniiber dem
Finetuning eines gesamten Sprachmodells um einen Faktor 5 bis ~100 verkiirzen und fiir ihre
Nutzung deutlich weniger Rechenleistung und Speicher benétigt wird. Dariiber hinaus wird die
Auswirkung bestimmter Vorverarbeitungs- und Workflowschritte anhand solcher Modelle
evaluiert.

Sdamtliche Modelle und Workflow-Alternativen sind mithilfe von CVs evaluiert. Dabei ist
zu beachten, dass die Anzahl an verwendeten CV-Splits einen Einfluss auf die Schiatzwerte der
Performanz des erhaltenen Modells haben kann: Je mehr CV-Splits verwendet werden, umso
hoher und akkurater sind typischerweise die Schitzwerte fiir die Modellperformanz
(Abbildung A4). In einer 10-fold-CV werden beispielsweise in jedem CV-Schritt ca. 90 % des
Datensatzes fiir das Training und 10 % fiir die Evaluierung genutzt. Das Modell kann also
einen groBen Teil der Varianz im Datensatz potenziell erlernen. In einer 3-fold-CV werden in
jedem CV-Schritt dagegen nur ca. 67 % des Datensatzes flir das Training und 33 % fiir die
Evaluierung genutzt. Das heiflt, hier wird weniger Varianz des Datensatzes im Training
abgedeckt. Die genauesten Performanzschitzwerte erhdlt man daher mit einer sog. ,,Leave-
One-Out“-CV (z. B. Géron, 2019), bei der jeder einzelne Datenpunkt einmal als
,EBvaluierungsdatensatz®“ genutzt wird. Fiir die meisten Anwendungsfille ist eine solche
Evaluierung aber zu aufwindig; im Falle dieses Projekts miisste dafiir jedes Modell im CV-
Workflow 846-mal trainiert werden. Fiir das BERT-Modell aus Artikel 3 ergibt sich in der 10-
fold-CV eine Accuracy von 75,1 % und ein Cohens k von 0,560. In einer 3-fold-CV ergeben
sich fiir dasselbe Modell eine Accuracy von 74,2 % und ein Cohens x von 0,544. Die
Unterschiede sind also gering, aber spiirbar. Aus Zeit- und Effizienzgriinden konnte nicht jedes
Modell, welches hier exploriert wurde, im Rahmen einer 10-fold-CV evaluiert werden.
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Insbesondere bei den finegetuneten Modellen wurde daher teilweise lediglich eine 3-fold-CV
durchgefiihrt. Dabei ist zu beachten, dass primir Modelle mit der gleichen Anzahl an CV-Splits
direkt miteinander verglichen werden®. Wenn im Folgenden keine explizite Anmerkung zu
einem Modell vorhanden ist, kann davon ausgegangen werden, dass es sich bei finegetuneten
Modellen um eine 3-fold-CV und bei Embedding-basierten Modellen um eine 10-fold-CV
handelt.

Wie bereits eingangs in Abschnitten 2.6 und 2.7 dargestellt, ist ein wesentliches Element
der automatisierten bzw. ML-basierten Sprachverarbeitung die Repréasentation von Worten und
Texten als Zahlen. Im mathematischen Sinne handelt es sich bei diesen Zahlen um Vektoren,
die im Kontext der automatisierten Sprachverarbeitung meist Embeddings genannt werden.
Embeddings lassen sich aus Transformer-Sprachmodellen (sieche Abschnitt 2.7) iiber
Embedding-Layer und Zwischenreprasentationen extrahieren. Transformer-Sprachmodelle
konnen auch explizit zur Generierung aussagekréftiger Embeddings trainiert werden (z. B.
Reimers & Gurevych, 2019). Auf Basis dieser Embeddings konnen dann ,klassische® ML-
Modelle wie beispielsweise logistische Regressionsmodelle, Decision Trees bzw.
Entscheidungsbidume, Random Forests oder Support Vector Machines (SVM) trainiert werden
(z. B. Géron, 2019; Rao & McMahan, 2019)%. Der Vorteil bei diesem Vorgehen ist, dass man
die verfiigbaren Texte nur ein einziges Mal mithilfe des Sprachmodells in Embeddings
umwandeln muss. Das weitere Training ist dann je nach verwendetem ML-Modell deutlich
schneller und effizienter als beim vollstdndigen Finetuning eines Sprachmodells.

Hier wurden zundchst Embeddings auf Basis dreier unterschiedlicher Sprachmodelle
verwendet:

1. SBERT: Das Sentence-BERT Modell (Reimers & Gurevych, 2019) ist im Prinzip ein
klassisches BERT-Modell. Der Unterschied liegt im Pretraining: Das SBERT-Modell
wurde explizit so trainiert, dass dhnliche Texte dhnliche Embeddings ergeben. Die
Embeddings sind 384-dimensional und das Modell hat ca. 110 Mio. Parameter.

2. LLaMA 3.2-1B: Die LLaMA-Modellfamilie (Touvron et al., 2023a; Touvron et al.,
2023b) ist eine von Meta verdffentlichte und open-source-verfiigbare Familie von
Sprach- bzw. multimodalen®” Modellen. Hier wurde das LLaMA 3.2-1B-Modell (Meta,
2024) mit einer Gréfe von ca. 1 Mrd. Parametern unter Nutzung der Open-Source-
Software Ollama®® (Ollama, 2024) verwendet. Die Embeddings sind 2048-dimensional.

5 Abbildung A4 zeigt aber, dass die Unterschiede zwischen einer 3-fold- und einer 10-fold-CV eher in der

GroBenordnung von 1 bis 2 % beziiglich der Accuracy liegen, also iiberschaubar sind.

% Fiir detailliertere Informationen iiber die unterschiedlichen genutzten ML-Modelle sei hier auf entsprechende

Literatur (z. B. Géron, 2019) verwiesen.

7 Aufgrund des groBen Erfolges von Transformer Modellen nicht nur bei der Text- sondern beispielsweise auch

bei der Bildverarbeitung (z. B. Dosovitskiy et al., 2021; Esser et al., 2021) sind gro3e Transformermodelle
mittlerweile oft Multimodal und konnen insbesondere Text-, Ton- und Bilddaten verarbeiten.

% QOllama kann genutzt werden, um einen in den Programmiersprachen Go und C implementierten lokalen Server

zu hosten, der eine Auswahl an Open-Source Modellen betreiben kann. Um die Modelle zu nutzen, kénnen
dann einfach Anfragen an diesen Server gesendet werden. Dadurch wird die hohe Performanz von Go und C
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3. TE3s*: Das Modell ,text-embedding-3-small“ ist die kleinere Version des aktuellen
(Januar 2025) Embedding-Modells von OpenAl (o. D.-b)*°. Das Modell kann iiber die
OpenAl-API kostengiinstig genutzt werden und liefert 1536-dimensionale Embeddings.

Im ersten Schritt werden unabhingig vom spiter genutzten ML-Modell die Embeddings
generiert. Fiir den hier verwendeten Datensatz nimmt dies bei allen drei genutzten Embedding-
Modellen mit den Implementierungen, die im digitalen Begleitmaterial hinterlegt sind,
lediglich einige Minuten in Anspruch’.

Um die Embedding-Modelle zu evaluieren, wurde zunéchst einheitlich ein logistisches
Regressionsmodell im Rahmen einer 10-fold-CV fiir das Scoring genutzt. Abbildung 6.16 stellt
die Ubereinstimmungswerte im automatisierten Scoring dar. Als Vergleichswert ist dort zudem
die Performanz des finegetuneten BERT-Modells aus Artikel 3 dargestellt. Die Embedding-
Modelle kombiniert mit logistischer Regression bleiben deutlich hinter dem finegetuneten
Modell zuriick. Insbesondere das Modell auf Basis der LLaMA-Embeddings zeigt eine
niedrige Performanz. Die LLaMA-Embeddings werden daher aus Griinden der
Ubersichtlichkeit im Folgenden nicht mehr betrachtet.

Embedding Modelle Performanz (Logistische Regression)

1.0
I [LaMA 3.2-1b
[ SBERT
EEE OpenAl-TE3s
0.8 A Il BERT finetuned
g 0.6 A
=
b=
b=
U
= 0.4 -
0.2 A
0.0 -
Accuracy F1 (weighted) Cohens Kappa
Metrik

Abbildung 6.16 Vergleich der Performanz des automatisierten Scorings auf Basis dreier Embedding-Modelle mit
logistischer Regression.

genutzt, aber ein einfaches Interface beispiclsweise in Python oder Javascript bereitgestellt. Weitere
Informationen unter https://github.com/ollama.

% OpenAl sind dabei weder beziiglich der zugrundeliegenden GPT-Version (z. B. GPT3.5 oder GPT40) noch der
Parameteranzahl des Modells transparent. Gemessen an der mit iiber 8000 Token recht grolen Kontextlidnge
ist hier allerdings mit einigen 100 Mio. bis einigen Mrd. Parametern zu rechnen.

0 Fir die Analysen dieser Arbeit wurde ein Computer mit einem AMD Ryzen 3700X, 32 Gigabyte
Arbeitsspeicher und einer Nvidia RTX 2080-GPU Super mit 8 Gigabyte Grafikspeicher genutzt.
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6.7.7 Auswirkung von Vorverarbeitungsschritten und Modellwahl auf die
Performanz des Assessment-Systems

Eine Mdglichkeit, der ungleichméBigen Verteilung der Score-Labels (Tabelle 6.4) zu begegnen
ist das sog. Oversampling (Lemaitre et al., 2017). Dabei werden die Datenpunkte mit den
selteneren Labels randomisiert ofter im Training verwendet, sodass insgesamt eine
gleichmifBige Abdeckung der Label-Verteilung im Training erzeugt wird. In Abbildung 6.17
sind fiir die SBERT- und OpenAl-Embeddings sowie das finegetunete BERT-Modell die
Auswirkungen von Oversampling auf die Performanz dargestellt. Man erkennt insbesondere
die positive Auswirkung auf Cohens k, was fiir das automatisierte Scoring (insbesondere bei
ungleichméBiger Score-Verteilung) die wichtigste Metrik darstellt. Dabei sei erwidhnt, dass die
Evaluierungsdaten nicht dem Oversampling unterzogen werden (diirfen). Fiir das finegetunete
BERT-Modell ist eine derartige positive Auswirkung des Oversamplings nicht zu beobachten
(Abbildung 6.17, grau / schwarz). Beim Finetuning lohnt es sich hier also nicht, die (durch die
hohe Schiefe der Score-Label-Verteilung deutlich) erh6hte Trainingsdauer in Kauf zu nehmen.

Scoring-Modelle Performanz - Oversampling
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Abbildung 6.17 Auswirkung von Oversampling auf die Scoring-Modelle. Die Embedding-basierten Modelle
(SBERT und OpenAl TE3s) bestehen aus den Embeddings gefolgt von einem logistischen Regressionsmodell
und wurden mithilfe einer 10-fold-CV evaluiert. Das finegetunete BERT-Modell ist analog zu Artikel 3 trainiert,
wurde allerdings hier zur Betrachtung der Auswirkung des Oversamplings nur im Rahmen einer 3-fold-CV
evaluiert.

Analog zum Effekt des Oversamplings kann man auch den Effekt, den das Hinzufiigen der
Aufgabennamen in der Form ,,Aufgabe X: ...“ zu den Antworttexten hat, quantifizieren. Dazu
wurden die verwendeten Embeddings der Antworttexte einmal mit und einmal ohne die
Aufgabennamen erstellt. Im Falle des BERT-Modells aus Artikel 3 kann direkt mit oder ohne
hinzufiigen der Aufgabennamen gearbeitet werden. Alle bisher berichteten Modelle sind mit
Aufgabennamen trainiert worden, daher wird hier in Abbildung 6.18 explizit darauf
hingewiesen, welche Modelle ohne Aufgabennamen trainiert wurden. Man erkennt einen leicht
positiven Effekt der Nutzung der Aufgabennamen auf die Performanz, insbesondere auch fiir
das finegetunete BERT-Modell. Hier kann zudem noch die Anzahl an ,junmdglichen*
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Punktzahlen betrachtet werden: Wie bereits in Abschnitt 6.7.3 erwdhnt, konnen die Modelle
grundsitzlich Punktzahlen vorhersagen, die das Testinstrument eigentlich nicht vorsieht, da
nicht alle Aufgaben des Testinstruments die gesamte Spanne von 0 bis 2 Punkten abdecken.
Fir das SBERT-Modell sinkt die Anzahl an illegitimen Scores durch das Hinzufiigen der
Aufgabennamen von 49 auf 3, fiir das OpenAI-TE3s-Modell von 9 auf 0 und fiir das
finegetunete BERT-Modell von 22 auf 0. Auch wenn dies im Vergleich zu den insgesamt
15.600 Evaluierungsvorhersagen kleine Werte sind, kann die Fehlerquote hier doch stark
verringert werden, ohne, dass ein echter Mehraufwand in Kauf genommen werden muss.

Scoring-Modelle Performanz - Aufgabennamen
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Abbildung 6.18 Auswirkung des Hinzufiigens der Aufgabennamen zu den Aufgabentexten beim automatisierten
Scoring.

Neben dem logistischen Regressionsmodell wurde fiir die Embedding-basierten Scoring-
Modelle auch mit weiteren ML-Modellen experimentiert’!. Einen nennenswerten
Performanzzuwachs brachte dabei die Nutzung von SVMs: Eine SVM auf Basis der OpenAl-
Embeddings erreicht hier ebenso hohe Ubereinstimmungswerte, wie das finegetunete BERT-
Modell aus Artikel 3 (Abbildung 6.19, links). Das Oversampling ermdglich dabei zudem eine
deutlich bessere Vorhersage im Falle von 2 erreichten Punkten (Abbildung 6.19, rechts). Es
muss allerdings beachtet werden, dass sich bei einer SVM (zumindest bei der Nutzung der
gingigen Python-Software Scikit-Learn, Pedregosa et al., 2011) die Dauer des Workflows auch
wieder auf ca. 1/3 der Dauer des Finetuning-Workflows erhoht. Die ~100-fache
Beschleunigung des Workflows bei der Nutzung von Embeddings mit logistischer Regression
kann mit SVMs leider nicht erreicht werden.

Auch, wenn das Modell auf Basis der OpenAI-TE3s-Embeddings eine groflere Performanz
erreicht, ist das SBERT-Modell trotzdem eine interessante Alternative. Wie auch das
finegetunete BERT-Modell ist auch das SBERT-Modell vergleichsweise klein und zudem

7! Dabei wurden ein Fully-Connected-Neural-Network, ein Random Forest, logistische Regressionsmodelle unter
der Nutzung unterschiedlicher Optimierungsalgorithmen sowie SVMs verwendet (siehe digitales
Begleitmaterial). Fiir Informationen zu diesen Modellklassen sei beispielsweise auf Géron (2019) verwiesen.
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open-source verfiigbar. Es kann also ohne Probleme vollstindig lokal genutzt werden, ohne
dass man auf die Nutzung von APIs Dritter angewiesen ist. Die Nutzung der SBERT-
Embeddings ist vor allem interessant, wenn die verfligbare Hardware fiir ein vollstindiges
Finetuning nicht leistungsstark genug ist, denn das Erstellen der Embeddings erfordert deutlich
weniger Rechenleistung und Arbeitsspeicher als ein vollstindiges Finetuning’?.

Scoring Modelle: Finetuning vs. Embeddings OpenAl TE3s Embeddings (SVM, oversampled)

1.0

BN BERT finetuned
W SBERT-Embeddings (SVM, oversampled)
N OpenAl TE3s-Embeddings (SVM, oversampled)

0.8
0.75 0.75

Metrik-Wert
=g
o
Wahre Scores

o
'S

0.2

0.0

Accuracy F1 (weighted) Cohens Kappa
Metrik Vorhergesagte Scores

Abbildung 6.19 Performanz von SVMs auf Basis der Embedding-Modelle gegeniiber der Performanz des
finegetuneten BERT-Modell.

Auch die Score-Vorhersagen auf Basis der Embedding-Modelle kénnen analog zum
Vorgehen in Artikel 3 zur Vorhersage der Kompetenzprofile genutzt werden. Um auch hier die
Vergleichbarkeit zur Mensch-Mensch-Ubereinstimmung zu verbessern, wurde ebenfalls das
,wahre® GMM zur Zuordnung zu den Kompetenzprofilen auf Basis der Score-Vorhersagen
genutzt. Abbildung 6.20 stellt die Performanz der unterschiedlichen Modelle beziiglich der
Kompetenzprofilzuordnung dar. Zum Vergleich ist aulerdem das BERT-Modell aus Artikel 3
enthalten. Dartiber hinaus sind sowohl fiir die OpenAl-Embeddings als auch fiir die SBERT-
Embeddings die Werte dargestellt, die man erhilt, wenn ein logistisches Regressionsmodell
zur Zuordnung der Cluster ausgehend von den Scores trainiert wird (Zusatz ,,Cluster-Fit* in
der Legende von Abbildung 6.20). Das SBERT-basierte Modell mit einer SVM fiir das Scoring
und einem auf diesen Scores aufbauenden logistischen Regressionsmodells zur Vorhersage der
Kompetenzprofile erreicht hierbei auffillig hohe Performanzwerte.

Analog zum Vorgehen in Abschnitt 6.7.4 kann auch fiir die anderen Scoring-Modelle die
Performanz neben der Zuordnung zu den Kompetenzprofilen auch mit der Vorhersagegiite
beziiglich der Subskalen-Summenscores evaluiert werden. Aus Platzgriinden wird hier nicht
fiir jedes Scoring-Modell eine ausfiihrliche Betrachtung wie in Abschnitt 6.7.4 vorgestellt.
Stattdessen werden hier die (Pearson-)Korrelationen zwischen den menschlichen und
maschinellen Subskalen-Scores beziiglich der 10 Skalen (siche Abschnitt 6.7.4)
zusammengefasst als Boxplots dargestellt (Abbildung 6.21). Dabei wird sich ebenfalls analog
zum vorherigen Vorgehen auf die schlichte Summierung der Score-Vorhersagen ohne ein

72 Je nach genutztem Optimierungsverfahren sind die Speicheranforderungen beim Finetuning um einen Faktor
5 bis 10 gegeniiber der sog. Inference, d. h. der Benutzung eines bestehenden Modells, erhoht.
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zusitzliches Downstream-Modell bezogen, um eine Vergleichbarkeit zu den Mensch-Mensch-
Werten herzustellen. Selbst das schlechteste Modell, d. h. das SBERT-Embedding-basierte
Scoring-Modell mithilfe logistischer Regression, erreicht auch im schlechtesten Falle noch
eine Korrelation von knapp 0,6. Die Modelle ndhern sich in der Performanz der Mensch-
Mensch-Ubereinstimmung an. Um Subskalen-Scores vorherzusagen, scheinen also viele
Modelle in Frage zu kommen, die teilweise innerhalb kurzer Zeit auch mit begrenzten
Ressourcen trainiert bzw. evaluiert werden konnen.

Mesch-Mensch vs. Maschine-Mensch (Embedding Modelle)

Mensch-Mensch
1.0 I BERT finetuned

I OpenAl Embeddings (SVM, oversampled, Cluster-Fit)
I OpenAl Embeddings (SVM, oversampled)
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Abbildung 6.20 Kompetenzprofil-Vorhersagen aus Basis der Embedding-basierten Scoring-Modelle.
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Abbildung 6.21 Korrelationen zwischen maschinellen und menschlichen Subskalen-Scores — unterschiedliche
Modelle. In die einzelnen Boxplots gehen die Korrelationswerte beziiglich der 10 Skalen Gesamtscore,

Instruktionsstrategien, Schiilervorstellungen, Experimente, Fachdidaktische Konzepte, Reproduzieren,
Anwenden, Analysieren, Evaluieren und Kreieren ein. Es werden hier auch bereits die Werte der in Abschnitt
6.7.8 betrachteten finegetuneten Modelle (GPT40-mini & SciEdBERT) dargestellt. Das GPT40-mini Modell
wurde im Rahmen einer 3-fold-CV evaluiert, alle anderen Modelle im Rahmen einer 10-fold-CV. Das
SciEdBERT”*-Modell wird in Abschnitt 6.7.8 eingefiihrt.
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Zuletzt sei hier noch kurz angemerkt, dass auch auf Basis von Embeddings versucht werden
kann, die Kompetenzprofile direkt, d. h. ohne vorheriges Scoring der Aufgaben,
vorherzusagen. Die dabei erreichten Ubereinstimmungswerte sind jedoch #hnlich
unzufriedenstellend, wie beim analogen Ansatz mit finegetuneten Modellen (Abschnitt 6.7.2).
Lediglich die GleichmiBigkeit der Falsch-Klassifikationen kann durch Oversampling etwas
erhoht werden (siche digitales Begleitmaterial).

6.7.8 Finegetunete Scoring-Modelle und ChatGPT als Scorer

Embedding-basierte Modelle stellen eine praktische Alternative fiir das automatisierte Scoring
dar. Um einige Randbemerkungen aus Artikel 3 noch empirisch zu untermauern und dariiber
hinaus Vergleiche zu anderen bestehenden Ansétzen durchfithren zu kénnen, werden hier
abschlieend noch Informationen zu weiteren explorierten Modellen ergidnzt, die wie das
BERT-Modell in Artikel 3 vollstdndig finegetuned wurden.

In Artikel 3 wird erwéhnt, dass sich weiteres Training tiber die dritte Epoch hinaus fiir das
BERT-Modell nicht lohnt. In Abbildung 6.22 wird dies noch einmal verdeutlicht: Zusétzliches
Training fiihrt lediglich zu Overfitting, welches durch den steigenden Evaluierungsloss
sichtbar wird. Die Performanz beziiglich der nicht-kontinuierlichen Metriken (Abbildung 6.22,
rechts) bleibt allerdings fast identisch.
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Abbildung 6.22 Auswirkung von zusétzlichen Trainingsepochs auf die Performanz des BERT-Scoring-Modells.

Als Alternative fiir das verwendete BERT-Modell wird in Artikel 3 das SciEdBERT”*-
Modell von Latif et al. (2024) erwéhnt. Es ist begriiBenswert, dass in der deutschsprachigen
naturwissenschaftsdidaktischen Forschung Ansétze verfolgt werden, flexibel einsetzbare
Sprachmodelle zu entwickeln, die gegeniiber den allgemein vortrainierten Modellen (wie
BERT) ggf. einen Mehrwert bieten. Allerdings wurden fiir das doménenspezifische Training
von SciEdBERT fachphysikalische Aufgaben auf Schulniveau aus den PISA-Studien von 2015
und 2018 verwendet, sodass hier nicht unbedingt zu erwarten ist, dass die Nutzung von
SciEdBERT fiir die Bepunktung von fachdidaktischen Aufgaben auf universitirem Niveau

73 Science-Education-BERT
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einen Vorteil hat. Dieser Verdacht bestétigte sich in einer 10-fold-CV, bei der in einem
analogen Workflow zu Artikel 3 ScIEdBERT eine Accuracy von 75,4 % und ein Cohens k von
0,563 erreichte. Die Unterschiede zur Performanz des ,klassischen* BERT-Modells aus
Artikel 3 (75,1 %, k = 0,560) sind also marginal. In Abbildung 6.21 sicht man zudem, dass
SciEdBERT auch beziiglich der Vorhersage der Subskalen-Scores keine nennenswerten
Vorteile bietet. In Abbildung 6.23 sind zudem die Performanzwerte aller finegetuneten
Scoring-Modelle noch einmal im Rahmen einer 3-fold-CV dargestellt. Man erkennt, dass die
durch die randomisierte Erstellung der CV-Splits entstehende statistische Schwankung der
Performanzwerte den vermeintlichen minimalen Vorteil des SciEABERT-Modells egalisiert
(siehe auch Abbildung A4).

Neben dem Training von SciEABERT stellen Latif et al. (2024) zudem einen Workflow vor,
bei dem das Scoring-Modell neben dem gemeinsamen Training mit allen Aufgaben auch
anschlieend noch fiir jede einzelne Aufgabe finegetuned wird. Sie nutzen dabei einen
Datensatz fiir das Finetuning eines BERT-Modells mithilfe von allen Aufgaben und einen
zweiten Datensatz fiir das aufgabenspezifische Finetuning, sodass Data Leakage vermieden
wird. Das somit zusitzlich finegetunete Modell erreicht dadurch im Durchschnitt aller
Aufgaben einen Performanzzuwachs von ca. 10 %’%. Da im hier vorgestellten Projekt kein
zusitzlicher Datensatz fiir ein aufgabenweises Finetuning verfiigbar ist, wird der bereits zuvor
verwendete CV-Ansatz verfeinert. Der Evaluierungsworkflow lautet dann wie folgt:

1) Unterteile den Gesamtdatensatz randomisiert in k Segmente (CV-Splits).
2) Fiir jedes dieser Segmente:

a) Trainiere ein BERT-Modell auf Basis aller Antwort-Score-Paare auBler denen in diesem
Segment (Segment X).

b) Optional: Speichere die Vorhersagen des Modells aus Schritt a) beziiglich aller Antwort-
Score Paare in Segment X.

c¢) Fiir jede Aufgabe (Aufgabe Y) des Fragebogens (23 Aufgaben):

i) Erstelle eine Kopie des Modells aus Schritt a) und trainiere es erneut beziiglich aller
Antwort-Score-Paare der aktuellen Aufgabe Y, auller denen in Segment X. Dieses Modell
wird Modell X-Y genannt.

ii) Fiir alle Antwort-Score Paare zur aktuellen Aufgabe Y in Segment X: Speichere die
Vorhersagen des Modells X-Y zu den Antworten fiir die spitere Evaluierung

3) Evaluiere die aufgabenweise finegetuneten Modelle mit den Vorhersagen aus Schritt 2.c.ii).

4) Optional: Evaluiere das Aufgaben-agnostische Modell mit den Vorhersagen aus Schritt 2.b).

Ohne die Schritte 2.c) und 3) ist dies der ,,normale* CV-Workflow, der auch in Artikel 3
verwendet wird. Die Schritte 2.c) und 3) ermoglichen eine Data-Leakage-freie Evaluierung der

% In den bisher (Stand Januar 2025) von Latif et al. (2024) zur Verfiigung gestellten Reports und Code-Teilen
wird der Workflow allerdings noch nicht ganz deutlich. Die Performanzzuwiachse konnen beispielsweise auch
dadurch entstehen, dass beim aufgabenweisen Finetuning noch einmal zusétzliche Daten verwendet werden,
der Trainingsdatensatz sich also insgesamt vergroflert. Im ihren bisherigen Preprint bleiben Latif et al. (2024)
hier recht vage.
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aufgabenweise finegetuneten Modelle. Die Performanzwerte der aufgabenweisen
finegetuneten Modelle sind in Abbildung 6.23 unter dem Label ,,BERT (aufgabenweise, 3cv)*
enthalten. Man erkennt nur kleine Zuwiéchse. Zusitzlich muss man nach einem aufgabenweisen
Finetuning anstatt eines einzelnen Modells hier 23 Modelle nutzen. Anstatt ein einzelnes
BERT-Modell von ca. 440 Megabyte in den Arbeitsspeicher des Servers zu laden, miissten
dann insgesamt iiber 10 Gigabyte an BERT-Modellen geladen und wieder freigegeben werden,
was einen groBBen Overhead an notwendiger Rechenleistung und -dauer erzeugt. Fiir die nur
geringen Performanzzuwichse erscheint das nicht als lohnend’.

Performanz der finegetuneten Maodelle

Il SciEdBERT
1.0 W BERT
HEl BERT (aufgabenweise, 3cv)
BN GPT4o0-mini (3cv)
0.8
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Abbildung 6.23 Performanz der explorierten Finetuning-Scoring-Modelle. Die Hinzunahme von GPT40-mini
wird unten noch diskutiert. Es ist zu beachten, dass SciEABERT und BERT mit einer 10-fold-CV und das
aufgabenweise BERT-Modell sowie GPT40-mini lediglich mit einer 3-fold-CV evaluiert wurden.

Zuletzt wird am Beispiel von GPT40-mini (OpenAl, 2022, 2024b) untersucht, ob die
Nutzung bzw. das Finetuning von gro3en Sprachmodellen (LLMs) einen lohnenden Mehrwert
gegeniiber den anderen verwendeten Modellen bietet. Mittlerweile stellen die Anbieter von
LLM-Tools wie ChatGPT vermehrt auch Funktionen zum Finetuning der Modelle fiir konkrete
Anwendungszwecke bereit (z. B. OpenAl, 0. D.-a)*’. Latif und Zhai (2023) berichten in diesem
Zusammenhang von Zuwichsen in der Performanz von bis zu 10 % bei der Nutzung eines
finegetuneten GPT3.5-Modells gegeniiber einem BERT-Modell fiir automatisiertes Scoring
von Physikaufgaben auf Mittelstufenniveau. Inspiriert von diesen Ergebnissen wurde auch hier
die OpenAI-API verwendet, um die aktuelle ChatGPT-Version (GPT40-mini) zur Bepunktung
der FDW-Aufgaben zu trainieren. Dies wurde im Rahmen einer 3-fold-CV evaluiert. Die

7> In diesem Kontext konnte die Anwendung der sog. Low-Rank-Adaptation Methode (LoRA, Hu et al., 2022)
interessant sein. Dabei werden nur Teile eines Modells bei einem Finetuning verdndert. Bei der erweiterten
quantisierten LoRA-Methode (QLoRA, Dettmers et al., 2024) werden die Modellparameter zusitzlich in ein
Speicherformat mit geringerer Speichernutzung iiberfiihrt, sodass auch grofere Sprachmodelle in den Blick
genommen werden konnen. Da fiir den hier verfligbaren Datensatz aber sogar ein vollstindiges Finetuning
kaum Performanzzuwichse bringt, ist eine Evaluierung mit LoRA hier nicht zielfithrend, ggf. aber
vielversprechend fiir inhaltlich verschiedene aber strukturell dhnlich Datensétze.
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erhaltenen Performanzwerte beziiglich des automatisierten Scorings sind in Abbildung 6.23
enthalten. GPT40-mini tbertrifft das BERT-Modell dabei lediglich um ca. 3 % bzgl. der
Accuracy und um ein Delta von 0,05 bzgl. Cohens k. Dabei sei angemerkt, dass ein einzelner
CV-Durchlauf beim hier vorliegenden Datensatz mit GPT40-mini ca. 10 € an Kosten erzeugt
und keine Zeitersparnis gegeniiber dem Finetuning von BERT (bei Verfiigbarkeit einer
mittelstarken GPU?) erzielt wird. Abbildung 6.21 und Abbildung 6.24 zeigen entsprechende
Zuwiichse in den Ubereinstimmungswerten auch fiir die auf dem Scoring basierende
Vorhersage von Subskalen-Scores und Kompetenzprofilen.

Embeddings vs. Finegetunedte Modelle: Cluster-Zuordnung Performanz
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Abbildung 6.24 Cluster-Vorhersagen auf Basis von BERT und GPT4o-mini. Dargestellt sind sowohl die
Vorhersageiibereinstimmungen auf Basis des GMMs aus Artikel 3 zum direkten Vergleich mit der Mensch-
Mensch-Baseline als auch auf Basis eines zusitzlichen logistischen Regressionsmodells zur Vorhersage der
Cluster auf Basis der Scores (,,Cluster-Fit“-Zusatz in der Legende).

GPT4o0-mini tiibertrifft die iibrigen Modelle also leicht im automatisierten Scoring. Der
Workflow fiir das Trainieren und Evaluieren des Modells ist aber dhnlich langwierig, wie das
Finetuning von BERT und dabei deutlich kostspieliger. Wenn man trotzdem bei einer
Implementation des Assessments auf GPT4o0-mini setzen wiirde, wire man zudem davon
abhéngig, dass OpenAl ihre API nicht verdndert, sich also die Struktur der Anfragen und
Antworten an den Server nicht verindert. Solche Anderungen wiirden entsprechende
Anpassungen an den Code und Workflow eines Assessment-Tools notwendig machen.

Im Kontext von LLMs hat sich in den letzten Jahren ein Paradigmenwechsel vollzogen (Liu
et al., 2023). Bei kleineren Sprachmodellen wie BERT besteht der typische Workflow aus
einem Pre-Training mithilfe groBer, allgemeiner Datensitze (z. B. Wikipedia-Texten, siche
Devlin et al., 2019) gefolgt von einem anwendungsspezifischen Finetuning, wie auch eingangs
(Abschnitt 2.7) bereits beschrieben wurde. Grole Sprachmodelle wie GPT3.5 oder GPT4o0
werden allerdings héufig auch auf eine andere Weise verwendet. Die Menge an Pre-Training-
Daten und ihre GréBe ermoglicht es solchen Modellen, in einem ,,Chat“-Setting teilweise ohne
weiteres Finetuning bestimmte Aufgaben zu erfiillen. In diesem Setting ist dann die
Entwicklung eines geeigneten Prompts, d. h. einer Aufforderung, die dem Modell iibergeben
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wird, zentral. Der Paradigmenwechsel vollzieht sich also von einem ,Pretrain-Finetune-
Predict-Workflow* hin zu einem ,,Pretrain-Prompt-Predict-Workflow* (Liu et al., 2023). Mit
wachsender Kontextldnge der angebotenen Sprachmodelle bzw. ChatBots haben sich hierbei
auch Methoden ausgebildet, bei denen groBBere Mengen an Informationen den Modellen mit
dem Prompt mit libergeben werden. Beispielsweise hat GPT40-mini eine Kontextldnge von
128.000 Token, was der GroBenordnung der vorliegenden Arbeit entspricht’®. Bei Prompting-
Strategien wird unter anderem zwischen dem sog. ,,Zero-Shot-Prompting® (Sanh et al., 2022;
Wei et al., 2022) und ,,Few-Shot-Prompting* (Brown et al., 2020) unterschieden. Beim Zero-
Shot-Prompting wird der Prompt ohne Riickgriff auf den Datensatz erstellt, wihrend beim
Few-Shot-Prompting Beispieldaten genutzt werden. Ein Few-Shot-Prompt fiir das
automatisierte Scoring einer Aufgabe konnte Beispiele fiir Antworten unterschiedlicher
Punktzahlen aus dem tatsidchlichen Datensatz enthalten.

Dai et al. (2023) berichten, dass ChatGPT (bei ihnen in der Version basierend auf GPT3.5)
in einem Zero-Shot-Ansatz in der Lage sei, Feedback zu Data-Science-Projektbeschreibungen
durch Studierende zu erstellen. Betrachtet man aber die begrenzte tatsdchliche
Ubereinstimmung mit menschlichen Bewertungen (Dai et al., 2023, Tabelle 1) muss man zu
dem Schluss kommen, dass das durch ChatGPT erstellte Feedback zwar offenbar
augenscheinlich als valide aufgefasst wurde, fiir ein tatséchliches automatisiertes Assessment
hier aber keine ausreichende Ubereinstimmung erreicht wird, um menschliche Rater zu
ersetzen.

Fiir den hier vorliegenden Datensatz liefert ein einfacher Zero-Shot-Prompt in der Form

Classify the following German response to the questionnaire-task ("Aufgabe")
on teacher knowledge into one of the three score-levels:

<scores>
[0, 1, 2]
</scores>

Here is the German response:
<responses>
{response (hier wird die Antwort eingefiigt)}
</responses>

Respond using this format:
<score>
The score goes here as an integer.
</score>

mit ChatGPT (GPT40-mini*’) keine Ubereinstimmung mit dem menschlichen Bepunktungen
(Cohens k = 0,054), was nicht iiberrascht, da das Modell, wie eigentlich auch bei Dai et al.

76 Die groBen Kontextlingen haben zur Ausbildung einer Vielzahl an teilweise komplexen Workflows gefiihrt,
die auch unter dem Oberbegriff Retrieval-Augmented Generation (Gao et al., 2024) zusammengefasst werden.
Gemein ist diesen Workflows, dass die Sprachgenerierung des Modells bzw. ChatBots durch zuséitzlich
herangezogene Quellen (,,Retrieval®) verbessert bzw. erweitert wird.

166



6. ML-basiertes Assessment von Kompetenzprofilen des physikdid. Wissens (Artikel 3)

(2023), keine Anhaltspunkte zur Vergabe der Scores hat. In einem weiteren Experiment wurde
daher stattdessen ein Prompt aus dem Erwartungshorizont des Testinstruments (Gramzow,
2015) exemplarisch zu zwei Aufgaben erstellt. Dazu wurden die beiden Aufgaben 1a) und 3)
ausgewdhlt, da sie héufig bearbeitet wurden und zwei unterschiedliche Aufgabentypen
darstellen: Aufgabe 1a) erfordert die Analyse einer beschriebenen Unterrichtssituation und
Aufgabe 3) erfordert die Reproduktion von fachdidaktischem Wissen. Die Prompts bzw.
Prompt-Templates, in die die Antworten der Proband:innen im Workflow an entsprechender
Stelle automatisiert eingefiigt wurden, sind in Anhang F enthalten. Die erhaltenen
Ubereinstimmungswerte zu den menschlichen Bepunktungen sind in Abbildung 6.25 den
entsprechenden Werten des BERT-Scoring-Modells aus Artikel 3 gegeniibergestellt. Fiir
Aufgabe 1a) erreicht das GPT40-mini-Modell mit dem Prompt in Anhang F deutlich héhere
Ubereinstimmungswerte, wihrend es fiir Aufgabe 3) leicht hinter der Performanz des BERT-
Modells zuriickbleibt. Eine Evaluierung fiir alle Aufgaben liegt auBerhalb der Zielsetzung
dieses Projekts; diese Ergebnisse deuten aber darauf hin, dass es sich, insbesondere bei
modernen Modellen wie GPT4, lohnen kann, fiir ein automatisiertes Scoring Zero-Shot-
Prompting auf Basis von Kodiermanualen bzw. Erwartungshorizonten in den Blick zu nehmen.
Die Nutzung von solchen Zero-Shot-Ansitzen ist besonders interessant, wenn nicht geniigend
Daten fiir das Finetuning eines Modells vorliegen. Weitere Evaluierungen von Zero-Shot-
Prompting-Methoden auch auf Basis anderer Aufgaben und Testinstrumente werden hier
nachdriicklich empfohlen.
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Abbildung 6.25 Zero-Shot Performanz von GPT40-mini beim Scoring der Aufgaben 1a) und 3).
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Im hier vorgestellten kumulativen Dissertationsprojekt wurde das fachdidaktische Wissen
(FDW) von (angehenden) Physiklehrkréiften einer detaillierten Untersuchung unterzogen.
Aufbauend auf theoretischen (Baumert & Kunter, 2006; Blomeke et al., 2015; Gramzow, 2015;
Hume et al., 2019; Riese, 2009) und empirischen sowie methodischen (Schiering et al., 2023;
Woitkowski & Riese, 2017; Zeller et al., 2022) Grundlagen und Vorarbeiten wurden dazu
zunéchst datengetriebene exploratorische Analysen durchgefiihrt, um die innere Struktur des
FDW detaillierter als bislang zu beschreiben. Dabei konnten empirisch basiert sowohl
hierarchische Kompetenzniveaus als auch nicht-hierarchische Kompetenzprofile insbesondere
mit Fokus auf kognitiven Anforderungen (Anderson & Krathwohl, 2001) identifiziert und
beschrieben werden. AnschlieBend wurden sowohl bestehende Subskalen als auch die
identifizierten Kompetenzprofile genutzt, um ein vollstindig automatisiertes FDW-
Assessment-System auf Basis von Machine Learning (ML) und Natural Language Processing
(NLP) zu entwickeln und zu evaluieren. Hierzu wurden unterschiedliche Moglichkeiten und
Workflows vorgestellt, von denen mehrere eine (verglichen mit der Interrater-
Ubereinstimmung) gute Performanz erreichten und somit fiir einen realen Einsatz zum
Assessment in Frage kommen.

Im Folgenden werden nun noch einmal zusammenfassend die Ergebnisse und Beitrdge der
einzelnen Artikel des Projekts in den Kontext der jeweiligen Zielformulierung (Abschnitt 3.1)
eingeordnet und mit einem Fokus auf der potenziellen Generalisierbarkeit der Ergebnisse sowie
entsprechender Limitationen diskutiert (Abschnitt 7.1). Anschlieend werden die Beitrdge der
Analysen zusammenfassend aus theoretischer und methodischer Sicht in den Forschungsstand
eingeordnet (Abschnitt 7.2). Zuletzt werden im Ausblick (Abschnitt 7.3) offene Enden und
Ankniipfungspunkte fiir mogliche Folgeprojekte aufgezeigt und die Beitrige des Projekts noch
einmal tibersichtsartig dargestellt (Abschnitt 7.4).

7.1. Beitriage und Limitationen der einzelnen Artikel

In Artikel 1 wurden mithilfe des Scale-Anchoring-Verfahrens (Mullis & Fishbein, 2020) auf
Basis von item-response-theoretischen (IRT) Modellen Niveaustufen des FDW fiir zwei
unterschiedliche Projekte und FDW-Testinstrumente identifiziert. Dabei zeigten sich
projektiibergreifende Parallelen beziiglich des Auftretens von Operatoren, die im Kontext
lernpsychologischer Taxonomien (z. B. Anderson & Krathwohl, 2001) interpretierbar sind: In
niedrigen Niveaus ist FDW auf reproduktive Aspekte beschrankt, wiahrend in hheren Niveaus
bewertende und kreative Elemente hinzukommen. Beziiglich der Forschungsfrage 1.1 (FF1.1)
konnten also projektunabhéngige Niveaus gefunden werden, die allerdings lediglich recht grob
gefasst werden konnen. Da sich die verwendeten Testinstrumente hinsichtlich fachlicher und
fachdidaktischer Inhalte unterscheiden, konnten hier keine Aussagen iiber mogliche
Ahnlichkeiten von Niveaustufen beziiglich dieser Dimensionen getroffen werden. Das ist
allerdings nicht unerwartet, da allgemein angenommen wird, dass FDW vom betrachteten
Fachinhalt abhéngig ist (z. B. Hume et al., 2019) und zudem in einzelnen Testinstrumenten
meist lediglich eine Auswahl moglicher fachdidaktischer Inhalte bzw. Facetten betrachtet wird
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(z. B. Schmelzing, 2010). Ein groBerer Detailgrad der Niveaubeschreibungen wiirde also
immer mit einer Einschrankung der Generalisierbarkeit einhergehen.

Mit einem regressionsanalytischen Ansatz (FF1.2) konnten in Artikel 1 trotz des Versuchs
der Erstellung eines projektunabhéngigen Modells hierarchischer Komplexitidt (Commons et
al., 1998) zur Beschreibung schwierigkeitserzeugender Merkmale des FDW keine
projektiibergreifenden Strukturen gefunden werden. Das fiir das FDW adaptierte Modell
hierarchischer Komplexitét hat sich dabei durch eine vermeintlich zu grofle Néhe zum FDW-
Testinstrument des ProfiLe-P(+)*>-Projekts als limitiert erwiesen und lies sich nicht
gewinnbringend auf das Testinstrument des KilL?*/KeiLa%$-Projekts iibertragen. Vor dem
Hintergrund der Ergebnisse zum zweiten Zielpaket (nicht-hierarchische Strukturen) kann
allerdings auch grundsitzlich angezweifelt werden, ob die innere Struktur des FDW {iberhaupt
mithilfe eines derart strikt hierarchischen Ansatzes beschrieben werden kann bzw. sollte. Es
besteht die Moglichkeit, dass das adaptierte Modell hierarchischer Komplexitit eher die
Aufgabenstruktur des ProfiLe-P-Tests widerspiegelt, als dass es tatsdchlich die Qualitét des
FDW (beispielsweise gemessen iliber den Grad der Vernetztheit, z. B. Schnotz, 1994) abbildet.
Interessant wire hier der Versuch der Ubertragung des Modells hierarchischer Komplexitit auf
andere Testinstrumente, die ggf. eine &dhnlichere Aufgabenstruktur zum ProfiLe-P-Test
aufweisen. Auch eine weitere Nutzung des hier entwickelten Modells hierarchischer
Komplexitidt im Rahmen der Entwicklung zukiinftiger Testinstrumente erscheint niitzlich.

Die Scale-Anchoring-Analysen sind zunichst methodisch dadurch limitiert, dass keine
Moglichkeit fiir eine direkte Verkniipfung der beiden verwendeten Datensétze (Anker-Items
oder Linking-Stichprobe) vorlag. Daher wurden die entsprechenden Niveaumodelle zunichst
getrennt voneinander entwickelt und anschlieBend durch einen inhaltlichen Vergleich
zusammengebracht, anstatt ein Gesamtmodell auf Basis beider Datensitze zu erstellen. Das
ProfiLe-P-Testinstrument ist zudem auf den Fachinhalt Mechanik beschrinkt, wihrend in
KiL/KeiLa mehrere Fachinhalte abgedeckt wurden. Es ist somit auch im Kontext der
Niveaumodelle noch nicht abschlieend geklért, inwieweit sich die gefundenen Strukturen
auch auf andere Fachinhalte iibertragen lassen, auch wenn die Nutzung der KiL/KeiLa-Daten
hier eine Generalisierbarkeit vermuten ldsst. Auch die eher grobe Beschreibung der Niveaus
erhoht die Wahrscheinlichkeit ihrer Generalisierbarkeit, ist aber fiir die Bearbeitung des
Desiderats der detaillierteren inhaltlichen Beschreibung des FDW problematisch. Obwohl das
Scale-Anchoring-Verfahren relativ robust gegeniiber Verschiebungen der manuell wéhlbaren
Parameter des Workflows ist (Mullis & Fishbein, 2020), hat sich in den Arbeiten zu Artikel 1
gezeigt, dass der hohe Schwierigkeitsgrad des ProfiLe-P-Testinstruments eine Hiirde fiir die
Anwendbarkeit des Verfahrens ist: Nur unter Ausschluss der Personen, die das Testinstrument
nur in Teilen bearbeitet haben, war eine sinnvolle Niveaubildung moglich. Wenn man diese
wahrscheinlichen Test-Abbrecher in die Analyse einschlie3t, wird die Personengruppe mit
niedrigem Fahigkeitsparameter so grof3, dass sich die Aufgabengruppen des Scale-Anchoring-
Verfahrens (siehe Abschnitt 4.4.3) sehr weit beziiglich der Schwierigkeitsparameter nach oben
verschieben und eine sinnvolle Niveaubeschreibung nicht mehr moglich ist. Um hier eine
Vergleichbarkeit zu den anderen Analysen (Zielpaket 2) beizubehalten, wurden auch dort die
wahrscheinlichen Test-Abbrecher aus den explorativen Analysen ausgeschlossen.
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Insgesamt konnten in Artikel 1 entsprechend dem projektiibergreifenden Ansatz zwar
Kompetenzniveaubeschreibungen mit einem hohen Grad an Generalisierbarkeit ermittelt
werden, diese gehen aber kaum {iber eher grobe, allgemeinpsychologische Beschreibungen
hinaus. Es deutete sich dabei bereits an, dass das FDW beziiglich lernpsychologischer
Operatoren nicht-hierarchische Strukturen aufweist. Insofern waren diese Ergebnisse hilfreich,
um die nicht-hierarchischen Analysen des zweiten und dritten Zielpakets zu leiten: Um eine
(projektiibergreifende) Generalisierbarkeit der Ergebnisse weiterer Analysen wahrscheinlicher
zu machen, lohnt sich demnach insbesondere der Fokus auf die kognitiven Anforderungen
anstelle beispielsweise der fachdidaktischen Facetten. Die verwendete Methodik der
Zusammenfiihrung von Ergebnissen aus unterschiedlichen Projekten ohne eine gemeinsame
Stichprobe oder ein gemeinsames Testinstrument iiber den strukturierten Vergleich der Scale-
Anchoring-Niveaus kann zudem auch auf andere Forschungsinhalte tibertragen werden.

Aufbauend auf den Ergebnissen zur Generalisierbarkeit von Aussagen auf Basis von
kognitiven Anforderungen aus Artikel 1 wurden in Artikel 2 nicht-hierarchische Cluster-
Analysen mit Fokus auf den Anforderungskategorien Reproduzieren, Anwenden, Analysieren,
Evaluieren und Kreieren durchgefiihrt. Aufgrund der aus Griinden der Testokonomie
begrenzten Anzahl an Aufgaben pro Anforderungskategorie (Gramzow, 2015), konnte hier nur
der K-Means Algorithmus verwendet werden. Daher sollten die vier gefundenen Cluster bzw.
Kompetenzprofile Low Achievers, Applying Creatives, Analytic Evaluators und High
Achievers (FF2.1) eher als ,fundiertere Leistungsquantile denn als tatsdchlich latente
Personengruppen aufgefasst werden. Um die Ergebnisse stirker empirisch zu untermauern
wurde daher ein Workflow auf Basis der Computational Grounded Theory (CGT, Nelson,
2020) entwickelt und die Ergebnisse auf Basis der quantitativen Score-Daten zusétzlich mit
den authentischen Sprachproduktionen in Beziehung gesetzt (FF2.2). Dabei zeigte ein
Structural Topic Model (STM, Roberts et al., 2019) erwartungskonform, dass die Applying
Creatives einen Fokus auf die Beschreibung und Begriindung von Beispielen zum Einsatz in
Unterrichtssituationen legen, wihrend die Analytic Evaluators und insbesondere die High
Achievers eher Schiilervorstellungen thematisieren. Die Interpretation der Ergebnisse von
STMs ist allerdings ein qualitativer Analyseprozess, weshalb hier die Objektivierbarkeit
teilweise kritisiert wird (Chang et al., 2009). Um dieser Limitation zu begegnen, wurde (1) ein
strukturierter Prozess zur Beschreibung der Topics (Abschnitt 5.4.3 & 5.5.2) durchgefiihrt und
(2) alle Zwischenergebnisse transparent berichtet (siche auch digitales Begleitmaterial).

Auch wenn die Kompetenzprofile der K-Means Analyse aus methodischen Limitationen
heraus fiir sich genommen wenig generalisierbar sind, legen die erwartungskonformen und
informativen Systematiken bzgl. des prototypischen Sprachgebrauchs der Personencluster eine
Generalisierbarkeit der Ergebnisse iiber das konkrete Analysesetting hinaus nahe. Eine CGT-
Pattern-Confirmation-Analyse, bei der die Vorhersagbarkeit der Kompetenzprofile auf Basis
der Scores gezeigt wurde, unterstreicht zusétzlich die Robustheit der identifizierten
Kompetenzprofile (FF2.4). Nichtsdestotrotz ist der Workflow zur Analyse der nicht-
hierarchischen FDW-Strukturen komplex und mit vielen Design-Entscheidungen wie der Wahl
der Cluster- und Topicanzahl, Datenvorverarbeitungsschritten etc. verbunden. Da das
verwendete K-Means-Clustermodell zudem keine latenten Strukturen abbildet, kann das
Ergebnis eher als eine von unterschiedlichen denkbaren validen Moglichkeiten aufgefasst
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werden, nicht-hierarchische Strukturen des FDW zu beschreiben.

Der genutzte Daten-Mix aus einerseits Bepunktungen und andererseits den
Textproduktionen zu offenen Testaufgaben ist ein prototypisches Setting (nicht nur) fiir die
Kompetenzmessung in der Bildungsforschung. Die genutzte Methodik bzw. der genutzte
Workflow mit der Cluster-Analyse als CGT-Pattern-Detection, der Sprachanalyse mithilfe von
STMs als CGT-Pattern-Refinement und auch der Vorhersage der Cluster auf Basis der Scores
als Pattern-Confirmation sind in diesem Setting fiir die Analyse von prototypischen
Personengruppen auch auf andere Datensdtze und Projekte generalisierbar und iibertragbar.
Der zur Analyse verwendete Programmcode ist daher einerseits im digitalen Begleitmaterial
dieser Arbeit enthalten und andererseits in weiten Teilen im Rahmen eines Open-Source-
Projekts angelegt’’. Dadurch wird auch eine Uberpriifung der Generalisierbarkeit vorbereitet,
da ein analoger Workflow unter Nutzung des bestehenden Codes nun mit minimalem Aufwand
auch auf andere FDW-Testinstrumente bzw. FDW-Datensétze angewendet werden kann.

Die Ergebnisse aus Artikel 2 sind in zweierlei Hinsicht limitiert. Erstens sind die
Kompetenzprofile aus der K-Means-Analyse aus methodischen Griinden nur begrenzt als
tatsidchlich latente bzw. prototypische Personengruppen zu verstehen. Auch, wenn diese
Problemstelle durch die Anwendung des CGT-Workflows etwas abgemildert wird, bleibt die
grundsdtzliche Einschrinkung des Algorithmus bestehen. Zweitens ist die ML-basierte
Vorhersage der Kompetenzprofil-Zugehorigkeit auf Basis der Scores zwar fiir die Pattern
Confirmation geeignet (siche z. B. Tschisgale et al., 2023), allerdings hat ein solches ML-
Modell nur wenig praktische Relevanz, denn der hohe Aufwand der manuellen Bepunktung
bleibt fiir ein etwaiges Assessment so trotzdem notwendig. Beiden Limitationen wird in Artikel
3 durch eine erweiterte Cluster-Analyse und einen erweiterten Pattern-Confirmation-Workflow
begegnet.

In Artikel 3 wurde auf Basis der Beobachtung, dass Kompetenzen im Analysieren und
Evaluieren bzw. Anwenden und Kreieren tendenziell zusammenhéngen (Artikel 2), zunichst
der Datenverarbeitungs-Workflow der Clusteranalyse angepasst. Anstelle der fiinf kognitiven
Anforderungskategorien aus Artikel 2 wurde sich nun auf die drei Kategorien Reproduzieren,
Anwenden-Kreieren und Analysieren-Evaluieren fokussiert. Dadurch wurden die Abstufungen
der einzelnen betrachteten Subskalen feiner (,,mehr Punkte pro Kategorie*), sodass nun eine
latente Profilanalyse (LPA, Spurk et al., 2020) angewendet werden konnte (FF2.4). Diese
bestitigte im Wesentlichen beziiglich der Score-Cluster die Beobachtungen aus Artikel 2,
weshalb auch die Kompetenzprofil-Bezeichnungen beibehalten wurden. Ein zusétzliches
Pattern-Refinement beziiglich dieser latenten Kompetenzprofile wurde erneut mit einem STM
durchgefiihrt und konsolidierte die beobachteten Parallelen zwischen den Cluster-Ergebnissen
aus Artikel 2 und 3 weiter (Abschnitt 6.7.4).

Die latenten Kompetenzprofile weisen aus methodischer Sicht eine gegeniiber den K-
Means-Clustern aus Artikel 2 deutlich erhdhte Generalisierbarkeit auf. Trotzdem sind auch hier
die Aussagen bisher weiterhin auf das konkret verwendete Testinstrument und den zugehdrigen
Datensatz limitiert. Dabei sei hier erneut erwidhnt, dass das verwendete Testinstrument

77 https://github.com/JannisZeller/questionnaire-tools, sieche auch Anhang G.
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(Gramzow, 2015) — wie auch das Projekt ProfiLe-P (Riese et al., 2015) als Ganzes — auf den
Fachinhalt Mechanik fokussiert ist. Auch hier wére weitere Forschung zur Reproduzierbarkeit
mithilfe weiterer Testinstrumente und Datensitze wiinschenswert’®. Neben der Erweiterung
der Cluster-Analyse selbst wurde in Artikel 3 zusétzlich vor allem der Pattern-Confirmation-
Schritt der Analyse erweitert. Anstatt die Kompetenzprofile lediglich auf Basis der Scores
vorherzusagen, wurde nun ein zweistufiger Workflow entwickelt, bei dem zunichst die
Aufgaben automatisiert bepunktet werden (FF3.1) und anschlieBend eine Zuordnung zu den
Kompetenzprofilen auf Basis der Score-Vorhersagen vorgenommen wird (FF3.2). Somit wird
hier eine Zuordnung von Bearbeitungen des Tests zu den Kompetenzprofilen vollstindig ohne
manuellen Aufwand durch Kodierung o. A. vorgenommen, was im Sinne der CGT ein
verstiarktes Argument fiir die Robustheit und Generalisierbarkeit der Kompetenzprofile
darstellt (Nelson, 2020). Zuséitzlich wurde im Rahmen dieser Pattern-Confirmation der latenten
Kompetenzprofile der zweistufige Workflow fiir die Cross-Validierung (CV) der verwendeten
Modelle mit einem personenweisen CV-Splitting systematisiert. So kann das automatisierte
Assessment System neben dem reinen Scoring auch anhand der Kompetenzprofil-Zuordnung
und der Vorhersage von Subskalen-Scores evaluiert werden. Insbesondere dieser Workflow ist
in einer Testinstrument-unabhéngigen Version im digitalen Begleitmaterial in Form von
entsprechendem Code enthalten.

Wie die explorativen Analysen aus Artikel 2 basieren auch die explorativen latenten
Profilanalysen in Artikel 3 auf einem komplexen Workflow. Obwohl die latenten
Kompetenzprofile aus methodischen Griinden (latentes Cluster-Modell und erweiterte Pattern
Confirmation) eine hohere Robustheit und hoheres Generalisierungspotenzial aufweisen, sind
demnach auch hier weitere (ggf. konfirmatorische) Analysen zur mdglichen Ubertragbarkeit
und praktischen Relevanz ratsam. Die automatisierte Auswertung als Pattern Confirmation
deutet hier allerdings darauf hin, dass es sich bei den gefundenen Personengruppen zumindest
um eine Systematik mit hoher Validitit handelt, auch wenn sie keine Aussagen iiber die
praktische Relevanz ermdglicht. Das automatische Assessment als Anwendungszweck hat sich
als insbesondere verglichen mit der Mensch-Mensch-Baseline sehr performant erwiesen,
allerdings sind vor allem fiir das Training entsprechender Modelle als auch fiir die spitere
Nutzung von trainierten Modellen einige Hardwareanforderungen’® zu erfiillen. Dariiber
hinaus sollten fiir einen realen Finsatz des Assessments die bisher eher niichternen und
teilweise eher quantitativen Aussagen, die durch die Modelle geliefert werden, noch in ein
prosaisches Format transformiert werden, welches im Sinne eines formativen Feedbacks
(Hattie & Timperley, 2007) auch Hinweise auf mogliche Verbesserungspotenziale gibt und
néchste Schritte explizit macht.

Insgesamt kann man zusammenfassen, dass alle Zielpakete der Arbeit mit Erfolg bearbeitet
wurden und die entsprechenden Fragestellungen als beantwortet aufgefasst werden kénnen. Zu
Beginn des Projekts waren auch ldngsschnittliche Betrachtungen geplant, diese sind allerdings
zugunsten des ersten Zielpakets zuriickgestellt worden. Erste explorative Betrachtungen

78 Gerade hier wird die Weiternutzung des oben angesprochenen Analysecodes interessant: Wie im digitalen
Begleitmaterial zu sehen ist, miissen fiir die Uberfiilhrung der K-Means-Analyse in die LPA-Analyse im
Wesentlichen nur einige wenige Zeilen Code verdndert werden.
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zeigten hier, dass der Datensatz — trotz seiner fiir den deutschsprachigen Raum im Kontext der
Professionswissensforschung von Physiklehrkréiften einzigartigen GroBe — offenbar nicht
umfangreich genug fiir aussagekréftige langsschnittliche Betrachtungen beziiglich der FDW-
Kompetenzprofile ist (siche Anhang D).

7.2. Beitrag des Dissertationsprojekts als Ganzes

Den Ausgangpunkt dieses Projekts stellt ein umfangreicher verfiigbarer Datensatz zum
Professionswissen von (angehenden) Physiklehrkriften dar. Ohne diese bereits vorhandene
umfangreiche Datenbasis, widren die methodisch aufwéndigen Analysen in diesem
Dissertationsprojekt nicht moglich gewesen. Beziiglich des Fachwissens (FW) und
Pddagogischen Wissens (PW) existieren bereits Ansitze zur detaillierteren Beschreibung der
inneren Struktur (Kaiser et al., 2020; Konig, 2009; Woitkowski & Riese, 2017). Zum FDW
liegen zudem hierarchische Niveaubeschreibungen einzelner Projekte isoliert voneinander vor
(Schiering et al., 2023; Schiering et al., 2019; Zeller et al., 2022). Dariiber hinaus wurde sich
im Kontext des FDW in der Naturwissenschaftsdidaktik zuletzt eher auf die Untersuchung von
handlungsnéheren Kompetenzen im Sinne eines enacted Pedacogical Content Knowledge
(ePCK) im Rahmen des Refined Consensus Model (RCM, Carlson et al., 2019) fokussiert, wie
beispielsweise dem Planen von Unterricht (Behling et al., 2022b; Schrdder et al., 2020), dem
Erkldren physikalischer Phanomene (Kulgemeyer et al., 2020; Kulgemeyer & Tomczyszyn,
2015), dem Reflektieren iiber Unterricht (Kulgemeyer et al., 2021; Reimer & Tepner, 2022)
oder konkretem Handeln im Klassenzimmer (Fortsch et al., 2016; Fortsch et al., 2018; She et
al., 2024). Dabei stellt aber auch die empirisch basierte Beschreibung innerer Strukturen des
FDW im Sinne eines personal PCK (pPCK) des RCM bzw. einer Disposition des
Kontinuumsmodells (MoC, Blomeke et al., 2015) nach wie vor ein Forschungsdesiderat dar
(Kaiser et al., 2020; Riese et al., 2017). Dariiber hinaus gestaltet sich ein authentisches und
valides Assessment des FDW insbesondere mit Aufgaben in offenem Antwortformat
(Kulgemeyer et al., 2023) als sehr aufwindig, da bislang hierzu meist hdandische Kodierungen
vorgenommen werden miissen (Gramzow, 2015; Kroger, 2019).

Im hier vorgestellten Projekt wurde diesen Desideraten entsprechend das FDW einer
empirisch basierten, inhaltlichen Detailanalyse unterzogen. Dabei wurden zunéchst IRT-
Niveaumodelle in den Blick genommen und projektiibergreifend betrachtet. Mithilfe des Scale-
Anchoring-Verfahrens konnten hier generalisierbare aber eher allgemeine Aussagen tliber das
FDW abgeleitet werden (s. o0.). Basierend auf diesen Ergebnissen wurden anschlieBend auch
nicht-hierarchische Analysen durchgefiihrt, sodass nun latente prototypische Kompetenz-
profile des FDW beschrieben werden konnen, die ein hohes Mal} an Validitdt und Robustheit
aufweisen und flir die die Wahrscheinlichkeit einer Reproduzierbarkeit im Kontext anderer
FDW-Datensétze und Projekte entsprechend hoch ist. Diese Kompetenzprofile konnen zudem
genutzt werden, um weitere Forschung zum FDW bzw. PCK mit einer groferen Auflosung
von Personengruppen und Subskalen vorzunehmen. Besonders interessant erscheint hierbei die
Untersuchung des Zusammenhangs zwischen den latenten (pPCK-)Kompetenzprofilen und
den Komponenten des ePCK, die im Rahmen des Plan-Teach-Reflect-Cycles (PTR-Cylce,
Alonzo et al., 2019) identifiziert bzw. charakterisiert werden. Die latenten Kompetenzprofile
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zeigen in diesem Kontext, dass auch fiir das FDW bzw. pPCK eine Unterteilung
unterschiedlicher Teilkompetenzen wie beim ePCK oder den handlungsnahen Aspekten des
MoC sinnvoll sein kann. Die dargestellten Sprachanalysen auf Basis von Topic Modelling
unterstreichen dies auch auf Basis konkreter verwendeter Begrifflichkeiten und fokussierter
Themen. Insgesamt wird hier also eine systematische Moglichkeit zur Beschreibung von
Teilkompetenzen des FDW angebahnt. Weitere potenziell konfirmatorische Analysen zur
Trennbarkeit der durch die Kompetenzprofile suggerierten potenziellen Teilkompetenzen
,FDW-Reproduzieren®, ,FDW-Anwenden-Kreieren® und ,,FDW-Analysieren-Evaluieren®
nach dem Vorbild des ePCK-plan, ePCK-teach und ePCK-reflect des PTR-Cycles wiren hier
ein ndchster Ankniipfungspunkt. Auch Betrachtungen zum Zusammenhang dieser
Teilkomponenten mit anderen Professionswissensdomédnen (z. B. Fachwissen oder
Péadagogisches Wissen) sowie mit handlungsnahen Kompetenzen (z. B. Planen von Unterricht)
werden hierdurch ermdglicht und nahegelegt. Erste solche Analysen auf Basis basaler
Gruppenvergleiche und Korrelationsbetrachtungen erweisen sich allerdings bisher nicht als
informativ (siche Abbildung A3).

Neben diesem inhaltlichen Beitrag wurden zudem Workflows entwickelt und erprobt, die
mehr oder weniger nahtlos auch auf &dhnliche strukturierte Datensétze anderer Projekte
angewandt werden konnen. Dabei sind zundchst die explorativen IRT-Niveauanalysen mit
einer projektiibergreifenden Niveaubetrachtung auf Basis von lernpsychologischen
Operatoren, sowie die Cluster-Analyse auf Basis von Subskalen des Testinstruments zu
nennen. Auch die STM-Anwendung zur Ausschirfung der Beschreibung der identifizierten
Personengruppen kann bei Bedarf auf die entsprechenden Sprachdaten angewandt werden.
Insbesondere der zweistufige Workflow fiir die CGT-Pattern-Confirmation der explorativen
Analysen, bestehend aus einem Scoring-Modell und darauf aufbauenden weiteren
Downstream-Modellen zur Vorhersage von Gruppenzugehdorigkeiten oder Subskalenscores, ist
ggf. auch fiir andere Projekte von Interesse. Um die Nutzbarkeit dieser methodischen Beitrage
fiir das Forschungsfeld zu erleichtern, wurden sdmtliche Code-Elemente im Rahmen des
digitalen Begleitmaterials dieser Arbeit festgehalten und insbesondere der zweistufige
Workflow wurde bereits in einer Testinstrument-unabhéngigen Weise in Code umgesetzt (und
genutzt). Somit konnen vergleichbare Analysen mit geringem Aufwand durchgefiihrt werden.

Im Rahmen des zweistufigen Workflows zur Pattern Confirmation wurde zudem ein
vollstindig automatisiertes Assessment-System des FDW entwickelt, welches im Vergleich
zur Mensch-Mensch-Ubereinstimmung und auch absolut betrachtet gute bis sehr gute
Ubereinstimmungswerte zu den menschlichen Assessment-Ergebnissen wie (Summen-)Scores
und Kompetenzprofilen aufweist. Im Sinne des DEFT-Frameworks (Kubsch et al., 2022, sieche
auch Abschnitt 2.5) wurden dabei im zweiten Zielpaket des Projekts eher Grounded-High-
Inference-Untersuchungen zur Ermittlung der Kompetenzprofile durchgefiihrt (Kapitel 5 & 6),
wihrend die Arbeiten zum dritten Zielpaket darauf aufbauend eher als Supervised Settings mit
sowohl Low(er)-Inference- (Bepunktung des Testinstruments) als auch High-Inference-
Elementen (FDW-Kompetenzprofile und FDW-Subskalen) eingeordnet werden konnen
(Kapitel 6).

Orientiert an der Nutzung von BERT-Modellen (Devlin et al, 2019) in anderen
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naturwissenschaftsdidaktischen Forschungsvorhaben (z. B. Mientus et al., 2021; Tschisgale et
al., 2023; Wulff et al., 2023) wurde auch hier primir ein BERT-Modell verwendet, der
Workflow ist aber nicht auf dieses beschrinkt (sieche Abschnitt 6.7.6 & 6.7.8). So konnten
zudem punktuelle Beitrdge zum Forschungsstand {iber den Zusammenhang von
Aufgabencharakteristika und automatischer ,,Scorebarkeit” von Aufgaben (Abschnitt 6.7.5),
zur Anwendbarkeit von rein Embedding-basierten Modellen fiir automatisiertes Assessment
(Abschnitt 6.7.6 & 6.7.7), zur Auswirkung bestimmter Vorverarbeitungsschritte auf die
Assessment-Modellperformanz (Abschnitt 6.7.7) sowie zur Nutzbarkeit von groB3en
Sprachmodell-Tools wie ChatGPT (Abschnitt 6.7.8) geleistet werden. Um die hierzu
berichteten Ergebnisse weiter zu konsolidieren, ist aber noch weitere Forschung tiber das
verwendete Testinstrument bzw. den verwendeten Datensatz hinaus notwendig.

7.3. Ausblick

Wie bereits mehrfach beschrieben, ist der erste und wichtigste Ankniipfungspunkt fiir weitere
Forschung die Evaluierung der Ubertragbarkeit der Ergebnisse auf weitere FDW-Datensiitze.
Da die inhaltlichen Aussagen (Kompetenzniveaus und -profile) primir auf allgemeingiiltige
kognitive Anforderungskategorien bezogen sind, ist man hierfiir nicht auf das Fach Physik oder
die Naturwissenschaften beschrinkt. Auch eine Ubertragbarkeitsbetrachtung fiir andere Féicher
erscheint sinnvoll. Die fiir die explorativen Analysen entwickelten und erprobten Workflows
konnen zudem leicht im Kontext anderer Subskalen wie fachdidaktischer Facetten angewendet
werden (siehe auch Abschnitt 5.7.2). Auf der inhaltlichen Ebene wére zudem die systematische
Untersuchung des Zusammenhangs von Kompetenzprofilen oder Kompetenzauspragungen
bzgl. der kognitiven Anforderungen mit anderen Professionswissensdoménen oder eher
handlungsnahen Kompetenzen (im Sinne eines ePCK) interessant. Hier liegen aus dem Projekt
ProfiLe-P+ auch bereits Daten vor (z. B. Kulgemeyer et al., 2020; Schrdder et al., 2020), deren
systematische Betrachtung hier aber nicht mehr zu den Projektzielen gehorte.

Um Analysen zur Ubertragbarkeit etc. durchzufiihren oder die Workflows fiir das
automatisierte Assessment auch fiir andere Testinstrumente und Datensédtze durchzufiihren,
kann der als Open-Source-Projekt angelegte Python-Code dieser Arbeit auch fiir andere
Projekte interessant sein. In diesem Projekt ist daher auch eine Dokumentation (sieche Anhang
G) enthalten, die bereits viele Erlauterungen und Beispiele enthélt. Besonders ist an diesem
Code vor allem, dass er Testinstrument-unabhédngig gestaltet ist. Die Konfiguration des
Testinstruments kann verdndert werden, sodass die Analysen bei minimalen Code-
Anpassungen auch fiir unterschiedliche Kombinationen von offenen und geschlossenen
Aufgaben mit unterschiedlichen Bepunktungsverfahren, Maximalscores, Subskalen etc.
durchgefiihrt werden kénnen.

Dariiber hinaus wéren auf methodischer Seite auch weitere, detailliertere Betrachtungen der
Interpretierbarkeit bzw. Erklarbarkeit und Modellfairness des BERT-Scoring-Modells aus
Artikel 3 interessant. Die ersten Analysen in Artikel 3 (Abschnitt 6.6.2) sind eher als
Machbarkeitsnachweis gedacht und haben noch nicht den Anspruch hier bereits einen gréf3eren
Beitrag zu leisten. Die bestehenden Ansétze insbesondere zur Erklarbarkeit des Modells, d. h.
der Zuriickfithrung von Score-Entscheidungen auf konkreten Sprachgebrauch und Wortwahl
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(Gombert et al., 2023; Sundararajan et al., 2017), konnen aber praktikabel genutzt werden, um
die Betrachtungen zu intensivieren. Ahnliches gilt auch fiir die aufgabenweisen Analysen zu
Einflussfaktoren auf die Scoring-Performanz (Zesch et al., 2023; Zhai, 2021 Abschnitt 6.7.5),
wobei der Code des Projekts hierfiir bereits Methoden enthdlt, die auch auf andere
Testinstrumente und Datensétze direkt angewandt werden kdnnen.

Ein weiterer Ankniipfungspunkt sind auch die explorierten alternativen Scoring-Modelle.
Dabei sind Embedding-basierte Ansétze (Abschnitt 6.7.6) aufgrund des deutlich verringerten
Aufwands beim Training gerade flir sehr groBe Datensétze interessant. Die exemplarische
Untersuchung der Fahigkeit von GPT40-mini Aufgaben auf Basis eines Prompts, der aus dem
Kodiermanual abgeleitet wurde, zuverldssig zu bepunkten (Abschnitt 6.7.8) ist dagegen gerade
fiir kleine Datensétze interessant, da hierfiir tiberhaupt keine Trainingsdaten bendtigt werden.
Zuletzt wurden auch Methoden zur Anreicherung von Datensétzen (insbesondere im Kontext
der ungleichmiBigen Verteilung von Labels) mithilfe generativer KI in den Blick genommen
(Kieser et al., 2023; Martin & Graulich, 2024). Dies konnte einen Ansatzpunkt darstellen, um
die Performanz der hier bereits explorierten Modelle weiter zu erhohen.

Die entwickelten Modelle dienen zwar in den Artikeln primér als Mittel zum Zweck, um im
Rahmen des CGT-Frameworks die Validitit der gefundenen inhaltlichen Strukturen zu
unterstreichen, ihr potenzieller Nutzen fiir ein vollautomatisiertes FDW-Assessment liegt
jedoch auf der Hand und wurde bereits mehrfach in dieser Arbeit erwdhnt. Um diese Modelle
in der Praxis tatsdchlich fiir ein Assessment einzusetzen, miissten sie allerdings nutzbar
gemacht werden. Einerseits konnen hierfiir Datensédtze iiber klassische Umfragetools
gesammelt werden und im Anschluss manuell mithilfe des bestehenden Modells iiber den
Programmcode dieses Projekts bepunktet und ausgewertet werden. Fiir einen solchen Einsatz
sind alle notwendigen Voraussetzungen somit bereits erfiillt. In diesem Setting ist zwar der
manuelle Aufwand der Kodierung und somit der grofte Arbeitsanteil automatisiert, allerdings
wire dabei immer noch ein Zwischenschritt mit menschlicher Beteiligung notwendig.
Praktikabler wire die direkte Anbindung des Scoring-Modells an entsprechende
Umfragesoftware, was sich allerdings bei den iiblichen Anbietern entsprechender Tools (z. B.
LimeSurvey’®) meist als schwierig bis unmdglich erweist. Als mdgliche Alternative wurde
daher in diesem Projekt auch ein Proof of Concept fiir ein vollstindiges Open-Source-Webtool
erstellt, welches die Bearbeitung des Testinstruments ermoglicht und auch das BERT-Modell
fiir die automatisierte Auswertung umfasst®®. Einige Impressionen der ,,Beta-Version* dieses
Webtools sind in Anhang H festgehalten; hier ist allerdings noch weitere Entwicklungsarbeit
und im Anschluss auch eine Evaluierung des Tools notwendig.

7 https://www.limesurvey.org/de, Zugegriffen 17. Januar 2025

8 Dieses Webtool wurde ausschlieBlich mit frei verfiigbaren Python- und Javascript-Bibliotheken erstellt und die
Datenorganisation orientiert sich an den von Buschhiiter et al. (2023) vorgeschlagenen Strukturen fiir eine
flexible Datenverwaltung im Forschungskontext. Auch der Code fiir das Webtool ist in einer Testinstrument-
unabhingigen Form denkbar. Wie der Analysecode ist auch der Code fiir das Webtool als Open-Source-Projekt
offentlich verfiigbar (https:/github.com/JannisZeller/questionnaire-webtool), um flir eine etwaige
Weiterentwicklung und Nachnutzung bereit zu stehen. Siehe auch Anhang H.
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7.4. Beitrige des Dissertationsprojekts als Ubersicht

Beitrage zur Theoriebildung im Kontext des FDW

Entwicklung projektiibergreifend giiltiger (aber recht allgemeiner) FDW-Kompetenzniveaus auf
Basis von Item-Response-Modellierungen zweier FDW-Datensédtze aus unterschiedlichen
Projekten (Kapitel 4 / Artikel 1).

Entwicklung eines Modells hierarchischer Komplexitit fiir das FDW in Physik durch Adaption
eines bestehenden Modells hierarchischer Komplexitét fiir physikalisches Fachwissen (Kapitel 4
/ Artikel 1), allerdings mit eingeschrinkter Ubertragbarkeit auf FDW-Testinstrumente auBerhalb
des Projekts ProfiLe-P.

Theoretisch fundierte Analyse von FDW-Testaufgaben mit Fokus auf lernpsychologische
Operatoren angelehnt an die Taxonomie von Anderson und Krathwohl (2001) inklusive der
Betrachtung von Interrater-Ubereinstimmungswerten dreier Expert:innen (Kapitel 5 / Artikel 2).

Ermittlung und Bestétigung (im Sinne der CGT) von K-Means-Clustern (Kapitel 5 / Artikel 2)
und latenten Kompetenzprofilen (Kapitel 6 / Artikel 3) des FDW mit prototypischen Stérken und
Schwéchen beziiglich der Anforderungsbereiche ,,Anwenden-Kreieren und ,,Analysieren-
Evaluieren* sowie Tendenzen zu prototypischem Sprachgebrauch in den Antworten auf die
offenen Fragen des Testinstruments. Insbesondere diese Ergebnisse deuten auf die Trennbarkeit
von entsprechenden einzelnen FDW-Komponenten hin, die im Rahmen der Weiterentwicklung
von FDW-Rahmenmodellen wie dem RCM of PCK oder dem Kontinuumsmodells von Interesse
sind.

Methodische und Praktische Beitrige

Entwicklung eines Verfahrens zur gemeinsamen Niveaubetrachtung eines Konstrukts auf Basis
von unterschiedlichen Datensétze und IRT-Modellen (Kapitel 4 / Artikel 1).

Entwicklung eines CGT-orientierten Workflows fiir interpretierbare und informative Cluster-
Analysen von Score-Datensdtzen durch die Betrachtung theoretisch fundierter Subskalen
(Kapitel 5 & 6 / Artikel 2 & 3) > Bereitstellung von entsprechendem Testinstrument-
unabhéngigen Python-Analysecode fiir zukiinftige Analysen.

Entwicklung eines zweistufigen Workflows zur Evaluierung eines automatisierten Scoring-
Systems mit der Betrachtung zusitzlicher ,,Downstream-Tasks“ (Kompetenzprofile &
Subskalenscores) tiber die reine Bepunktung hinaus (Kapitel 6 / Artikel 3). Dabei wird
insbesondere ein Data-Leakage freies Cross-Validation-Verfahren beschrieben (siehe auch
Abschnitt 6.7.3) = Bereitstellung von entsprechendem Testinstrument-unabhéngigen Python-
Analysecode fiir zukiinftige Analysen.

Exploration der Nutzung unterschiedlicher Modelle und Tools fiir ein automatisiertes Scoring
der Freitextaufgaben mit Kurzantworten (Abschnitt 6.7.5, 6.7.6 & 6.7.8).

Entwicklung eines Proof-of-Concept fiir ein vollautomatisiertes Machine-Learning-basiertes
Assessment-Webtool unter der Nutzung von Open-Source-Software (Anhang H).
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A. Beispielhafte Herleitung einer Loss Funktion

Die folgende an den Ausfiihrungen von Murphy (2022) orientierte Betrachtung ist vereinfacht
dargestellt. Es liege ein Datensatz (x;,y;),i = 1...N vor, bei dem angenommen wird, dass die
abhingige Variable Y = (Y7, ... Yy) der GauB3- bzw. Normalverteilung

YW ~N(fw(x),0%1)

mit einer (stetigen) Funktion fy,, folgt, wobei die Funktionsparameter W = (W4, ..., W) selbst
einer (noch nicht ndher bestimmten) Wahrscheinlichkeitsverteilung folgen. Hier stellen zudem
x den Vektor (x4, ..., xy) und 1 die Einheitsmatrix dar. Die Wahrscheinlichkeitsverteilung ist
dann fir y = (y4, ..., Yy ) gegeben durch

PY=y|W=w)=

exp (_ (i - fw(xi))z) _
(2m)N/2g 20?2

Man nennt in diesem Wahrscheinlichkeitsverteilung P(Y | W) auch Likelihood. Um nun aus
den vorhandenen (x;, y;)-Daten die wahrscheinlichsten Funktionsparameter w, die zu diesen
Daten passen, muss nach dem Satz von Bayes

P(Y=y|W=w)-P(W=w)
P(Y =y)

in w maximiert werden. Diese Wahrscheinlichkeit wird auch die A-Posteriori-
Wabhrscheinlichkeit (engl. ,,Posterior ‘) genannt. Den Ansatz nennt man dementsprechend auch

PW=wl|Y=y)=

die Maximum-a-posteriori Schitzung (MAP). Es gilt also:
w=argmaxP(W =w|Y =y) =argmaxP(Y =y | W =w) - P(W =w),
w w

wobei der Nenner aus der vorherigen Gleichung nicht relevant ist, da er nicht von w abhéingt.
Mit dem iiblichen Trick (Logarithmus ist strikt monoton wachsend),

argmax f(w) = argmin (—f(w)) = argmin (—log f(w)),

kann man dies umformen zu:

w = argmin (—logP(Y =y |W =w) —log P(W =w)).
w

Fir den zweiten Summanden ist nun eine Annahme {iber die A4-Priori-Verteilung (engl.
,Prior ) der Funktionsparameter W notwendig. Exemplarisch wird hier angenommen, dass W
ebenfalls normalverteilt ist mit

W ~ N(0,721).
Durch Einsetzen der Wahrscheinlichkeitsverteilung der GauBverteilung ergibt sich mit den
Regeln fiir den Logarithmus und nach Wegstreichen von beziiglich w konstanter Terme:

. M

N

~ . 2 o

W = argmin Z(yi — fw(x))” + T_ZZ sz
W i=1

j=1
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Der erste Term ist leicht zu erkennen als die klassische (vermeintlich heuristische) Least-
Squares Loss-Funktion, die auch in der linearen Regression, d. h. fur f,(x;) = w - x;, zum
Einsatz kommt. Der Zweite Term entspricht dem sog. Ridge-Regularisierungsterm (Murphy,
2022; Géron, 2019), der dafiir sorgt, dass die Parameter w in der Optimierung eine ,,Tendenz
in Richtung 0 erhalten. Der Regularisierungsterm féllt weg, wenn angenommen wird, dass W
gleichverteilt ist. Alternativ kann auch direkt P(Y | W) optimiert werden, dann dndert sich aber
die Interpretation der gefundenen w: Anstelle der bei gegebenem Datensatz wahrscheinlichsten
Parameter findet man dann die Parameter, unter deren Annahme die Wahrscheinlichkeit, die
erhaltenen Daten zu observieren, maximal ist. Diese Option nennt man auch die Maximum
Likelihood Schdtzung (MLE), die vielen algorithmischen Modellen zugrunde liegt, bei denen
keine Annahmen tiber die Verteilung der Parameter W mit in die Modellierung einflie3en
(Murphy, 2022). An den zwei Formulierungen zur Interpretation der w im MAP- bzw. MLE-
Ansatz erkennt man zudem leicht die Vorteile der Interpretierbarkeit des probabilistischen
MAP-Ansatzes, die in Abschnitt 2.4 schon angedeutet wurden.
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B. Handreichung zur Einordnung der FDW-Testaufgaben

Handreichung zur Zuordnung der FDW-Testaufgaben zu Stufen hierarchi-
scher Komplexitit

Schliefien sich gegenseitig aus!

Fakten (I)
e Reproduktion einzelner, unverbundener Informationen
e Keine oder kaum Bezugnahme auf Situation oder sonstige Beschreibung
e Keine oder kaum Verkniipfung der genannten Informationen

e Beispiel: Nennen von Fakten zu einem Fachdidaktischen Konzept

Einstufige Kausalitit (II)

e Verkniipfung von zwei oder mehr Fakten, Informationen oder AuBerungen zu einem Produkt
(z. B. Schlussfolgerungen, Argumentationen)

e Begriindungen, Analysen und Argumentationen mir nur einer Argumentations- /
Analysestufe

e Beispiel: (einstufige) Analyse oder Evaluation einer Situation

Mehrstufige Kausalitat (I1T)

e Begriindungen, Argumentationen, Evaluationen mit mehr als einer Argumentations- /
Analysestufe

e Alle Anforderungen, die komplexere Analysen / Argumentation verlangen als 1

e Beispiel: Analyse und Evaluation einer Situation

Handreichung zur Zuordnung der FDW-Testaufgaben zu Anforderungs-
kategorien

Kognitive Prozesse nach Anderson und Krathwohl (2001)
Mehrfachnennung moglich!

Erinnern:

o Etwas wiederzuerkennen oder abzurufen und dies nennen bzw. wiederzugeben, ist
Kernbestandteil der Aufgabe.

e Weite Teile der Aufgabe sollten allein durch Erinnern an Fachdidaktische Inhalte 16sbar sein.

e Es wird nach ,,typischen Aspekten (z. B. Schiilervorstellungen) gefragt, was impliziert, dass
es um konsens-Wissen geht, welches explizit in Lehrveranstaltungen erworben werden kann.

e Beispiel: Fakten zu bestimmten Fachdidaktischen Konzepten nennen
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Gegenbeispiel: Eine SchiilerduBerung wird betrachtet.

Verstehen:

Ein Element Fachdidaktischen Wissens verstanden zu haben, bedeutet, dieses Element
beschreiben, klassifizieren, vergleichen und erklidren zu kénnen, bzw. es in ein Begriffsnetz
einordnen zu konnen.

Eine Aufgabe wird der Dimension ,,Verstehen* zugeordnet, wenn diese Fahigkeiten /
Kompetenzen die Bearbeitung der Aufgabe vereinfachen.

Weite Teile der Aufgabe sollten allein durch das Verstehen Fachdidaktischer Inhalte 16sbar
sein, insbesondere ohne die Konzepte bereits auf Situationen iibertragen zu miissen.

Beispiel: Die Funktionen von Unterrichtselementen (z. B. Einleitung, Sicherung,
Experimentieren) erleichtert deren Auflistung.

Gegenbeispiel: Eine Situation oder ein konkreter Gegenstand wird betrachtet.

Anwenden:

Fachdidaktisches Wissen, ein Verfahren oder eine Prozedur anzuwenden oder zu ermitteln,
wann die Anwendung einer Prozedur legitim ist, ist Kernbestandteil der Aufgabe.

Konstruktion / geeignete Auswahl von physikalischen Beispielen zu gegebenen
Fragestellungen.

Beispiel: Prognostizieren von typischen Fehlern mithilfe von Wissen {iber
Schiilervorstellungen

Gegenbeispiel: Analyse eines exemplarischen Unterrichtsmaterials

Analysieren:

Einen Aspekt, eine Situation, eine AuBerung zu analysieren, ist Kernbestandteil der Aufgabe
und / oder eine Analyse wird explizit in der Aufgabenstellung eingefordert.

Beispiel: Rekonstruktion von Schiilervorstellungen aus AuBerungen

Gegenbeispiel: Auswahl eines geeigneten Beispiels zur Vermittlung eines Fachinhalts

Evaluieren:

Qualititsurteile tiber fachdidaktisch relevante Elemente (z. B. Handlungen, Material, etc.)
auf Basis von Kriterien und Standards bzw. des Wissens treffen, d. h. zu tiberpriifen und
kritisieren, ist Kernbestandteil der Aufgabe.

Auch die Begriindung eines (moglicherweise vorgegebenen) Qualitétsurteil fallt unter diese
Kategorie.

Dabei liegt der Fokus auf der Evaluation von fachdidaktisch relevanten Elementen und nicht
der Evaluation von Fachwissen beispielsweise in Schiiler:innenduflerungen.

Beispiel: Ein beschriebenes Vorgehen einer Lehrkraft bewerten / kommentieren

Gegenbeispiel: Eigenes Vorgehen wird begriindet
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Kreieren:

o Selbst auf Basis einer Situation oder Beschreibung Elemente fachdidaktisch relevanter
Handlungen oder vollstindige fachdidaktisch relevante Handlungsketten zu kreieren, ist
Kernbestandteil der Aufgabe.

e Beispiel: Selbst eine Losungsstrategie entwickeln oder Alltagsbeispiele unter konkreten
Zielsetzungen begriindet auswihlen

Zusitzliche Dimensionen

Mehrfachnennung moglich!

Notwendigkeit des Einbezugs von Fachwissen:

e Zur Losung der Aufgabe ist verstérkt explizites physikalisches Fachwissen notwendig.

Bezug auf ein Beispiel:
e Ein physikalisches Beispiel kann ein Alltagsbeispiel, ein Beispielexperiment etc. sein

e Die Aufgabe beinhaltet die Beschreibung oder Betrachtung eines Beispiels entweder durch
den / die Probandin selbst oder die Betrachtung eines Beispiels (z. B. in einer
Unterrichtsvignette) ist wesentlicher Teil der Aufgabe

Bezug auf Unterrichtssituation:

e Die Aufgabe bezieht sich auf Elemente konkreter Unterrichtssituationen, die in Stamm der
Aufgabe beschrieben wird.

e Die Aufgabe muss sich mindestens auf konkrete Handlungen / AuBerungen von
Schiiler:innen und / oder Lehrkraften beziehen.

Kommentare

e Bei Erinnern und Verstehen geniigt es nicht, dass eines der beiden notwendige
Voraussetzung zur Bearbeitung der Aufgabe ist

o Betrachtet werden die Kategorien unter der Annahme, dass ein:r durchschnittliche:r
Studierende:r die Aufgabe bearbeitet und entsprechende Lehrveranstaltungen bereits besucht
hat.

Literatur

Anderson, L. W. & Krathwohl, D. R. (Hrsg.). (2001). A taxonomy for learning, teaching, and
assessing: A revision of Bloom’s taxonomy of educational objectives (4. Aufl.). New York:
Longman.
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C. Material zur Bepunktung des Testinstruments

In den folgenden zwei Tabellen sind zusitzliche Informationen zur Bepunktung des
Testinstruments exemplarisch als Supplement zu Artikel 2 dargestellt.

Table A1 Scoring rubric for task 15 of the pPCK-test instrument used for the analysis. This the scoring rubric for
the task presented in Figure 5.3; translated from German to English. The task is scored dichotomous, i.e., zero or
one point. The example responses stem from real samples or expert interviews of the test instrument’s piloting
phase (Gramzow, 2015).

Expectation correct Expectation incorrect
The channel no longer hinders the ball, and the Answers that do not refer to a content matter concept,
centrifugal force can therefore continue to act e
outwards. Only the centrifugal force exists, only the
channel hinders it, e.g. “Student thinks there is a repulsion from the
center”
“Student imagines that the centrifugal force
drives the ball away from the center.” “Student has not understood the principle of
. . centripetal force”

The centrifugal force must be named or described. petal f
The resulting movement of the ball must be made “The mass has no energy directed eastwards, as it exits
clear. R vertically. But the student assumes that it does,

because the ball moves in an easterly direction from

Edge cases: ) ”
the start to point R.

“Ball seeks compensation for the constraint of

. . All kinds of responses that do not describe what the
the trajectory curve

student does not understand.
“The ball contains a twist in the trajectory and
therefore rolls outwards”

“The student believes that a force is acting
outwards on the ball at point R. If the channel
is no longer there to hold the ball in place, the
ball must move to the right.”

Table A2 Further exemplary responses to task 15 of the used pPCK test instrument. Further exemplary responses
from the dataset for the task presented in Figure 5.3; translated from German to English.

Correct responses (1 point) Incorrect responses (0 points)
“The path is not left tangentially / the ball is “That the ball does not follow the curve and that the
“pushed” outwards” ball can simply change direction”
“The assumption that there is a force driving the “- Objects always have a rightward velocity - Objects
ball outwards (as seen on the circular path).” always “fall” downwards in a curve”
“This is based on the idea that a so-called “The centripetal force causes the ball to fly outwards.
centrifugal force exists. The student assumes that Inertia is not applied.”

the ball must therefore move away from the

’

center.’
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D. Entwicklungsverlaufe beziiglich der LPA-Kompetenzprofile

Die folgenden beiden Abbildungen visualisieren Entwicklungsverldufe beziiglich der in der
LPA (Artikel 3 / Kapitel 6) ermittelten Kompetenzprofile. In den Blocken zu den jeweiligen
Messzeitpunkten ist die Anzahl der Proband:innen im entsprechenden Kompetenzprofil
abgebildet. Auf Basis dieser Datenlage sind verldssliche Aussagen iiber Systematiken nicht
gerechtfertigt. Interaktive Versionen dieser Abbildungen sind auch im digitalen
Erginzungsmaterial enthalten.

Bachelor
Low Achievers I

Low Achievers

Low Achievers

Applying Creatives | 14

Applying Creatives —

Analytic Evaluators | 39
E Applying Creatives
EIAnalytic Evaluators o
E Analytic Evaluators T AR TS I
T i . High Achievers
MZP1 (ca. 1,8 Fachsemester) MZP2 (ca. 3,2) MZP3 (ca. 5,2)

m Low Achievers -
Low Achievers

Applying Creatives
Applying Creatives

E| Analytic Evaluators Analytic Evaluators

High Achievers High Achievers
M2P1 (ca. 8,5) MZP2 (ca. 9,8)
Abbildung A1 Sankey Plots der Bachelor- und Master-Proband:innen ohne Dropout. Bemerkenswert ist
insbesondere, dass die Master-MZPs vor und nach dem Praxissemester lagen. Damit erscheint der Zuwachs an

Applying Creatives plausibel. Gleichzeitig ist die Instabilitéit insbesondere des ,,High Achievers Profils fiir einen
nachhaltigen Kompetenzerwerb sicherlich suboptimal.
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Low-Achievers

4—'

Applying Creatives o

p—

.,ma,. -
e

v ' / igh Achievers

— G High Achievers
Analytic Evaluators

ﬁ’High‘A’cﬁlavers
Dropout Dropout
Dropout
MZP1 (ca. 1,8 Fachsemester) MZP2 (ca. 3,2) MZP3 (ca. 5,2)

g . N
(7 Joropout H

MZP1 (ca. 8,5) MZP2 (ca. 9,8)

Abbildung A2 Sankey Plots der Bachelor- und Master-Proband:innen mit Dropout.
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E. Zusitzliche Analysen zu den LPA-Kompetenzprofilen

Die folgenden Tabellen zeigt zusétzliche Analysen zur Beschreibung der latenten

Kompetenzprofile aus Artikel 3.

Tabelle A3 Vergleich der latenten Kompetenzprofile in Hinsicht auf Fachsemester, FDW-Gesamtscore,
Demographischer Daten, Umfang und Durchschnittscores in den kognitiven Anforderungsdimensionen. In den
,, I-Test“- und ,,Cohens d“-Zeilen werden entsprechende Vergleiche zwischen dem FDW-Profil und dem néchst
Hniedrigerem™ Kompetenzprofil berichtet. Ny, bezeichnet die Anzahl an Personen im Cluster bzgl. des
Gesamtdatensatzes, d. h., wenn vormals ausgeschlossene Proband:innen (siche Abschnitt 6.4.4) nachtriglich
zugeordnet werden. Im Sinne einer besseren Ubersicht, werden hier alle anderen Werte als Relativwerte bezogen
auf die in der urspriinglichen LPA einbezogenen 785 Proband:innen dargestellt.

Low-Achievers éll')ef:{llvnegs Eé:lzl‘llgtt(i)crs Aclilliigs;rs
N /Nt 411/ 470 166 /167 112/113 96 /96
T-Test-
Freiheitsgrade i 575 276 206
Anteil weiblich 34 % 34 % 25% 43 %
Schulabschlussnote 2,33 2,07 2,07 1,83
M 2,87 5,31 5,28 6,96
Fach . SD 2,56 3,59 3,92 3,71
acpfl‘;‘:ﬂe(s e - ] T =092 T=01 T =32
p < 0,001 p =094 p = 0.002
Cohens d - 0,84 - 0,44
M 0,22 0,41 0,43 0,58
SD 3,27 3,28 3,67 3,765
FDW-Gesamt T =25,6 T =1,34 T=129
T-Test ) p < 0,001 p=0.18 p < 0,001
Cohens d - 2,36 - 1,79
M 0,31 0,53 0,52 0,69
SD 0,14 0,15 0,18 0,16
Reproduzieren T=171 T=04 T=71
T-Test -
p < 0,001 p =067 p < 0,001
Cohens d - 1,58 - 0,99
M 0,18 0,51 0,32 0,67
FDW: SD 0,12 0,11 0,10 0,13
Anwenden- T =309 T =-14,4 T =218
Kreieren I-Test - p < 0,001 p < 0,001 p < 0,001
Cohens d - 2,84 —-1,77 3,03
M 0,21 0,32 0,57 0,64
FDW: SD 0,12 0,10 0,10 0,13
Analysieren- T =112 T = 20,5 T =45
Evaluieren T-Test ) p < 0,001 p < 0,001 p < 0,001
Cohens d - 1,03 2,50 0,62
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Tabelle A4 Durchschnittliche Scores der latenten Kompetenzprofile beziiglich anderer ProfiLe-P+ - Tests. Im
Sinne einer besseren Ubersicht, werden hier alle Werte als Relativwerte bezogen auf die in der urspriinglichen
LPA einbezogenen 785 Proband:innen dargestellt (siche Abschnitt 6.4.2). Weitere Informationen zu den
Testinstrumenten sind aus den entsprechenden Quellen zu entnehmen (fiir eine Ubersicht siehe auch Vogelsang
et al., 2018): Mathematisches Wissen (MaW) bei Riese et al. (2015) — Fachwissen (FW) bei Enkrott (2021) —
Péadagogisches Wissen (PW) bei Riese (2009)

Low Applying Analytic High
Achievers Creatives Evaluators Achievers
N 411 166 112 96
M 0,83 0,87 0,88 0,94
SD 0,13 0,16 0,15 0,21
PW T-Test ) T=30 T=08 T=20
p = 0,003 p =043 p = 0.044
Freiheitsgrade - 575 276 206
Cohens d - 0,42 - 0,28
M 0,55 0,59 0,59 0,61
SD 0,09 0,06 0,06 0,05
T =4,5 T=0.2 T=19
W [-Test ] p < 0,001 p =085 p =007
Freiheitsgrade - 449 221 153
Cohens d - 0,63 - -
M 0,48 0,66 0,63 0,70
SD 0,23 0,21 0,24 0,22
MaW T Tost ) T=77 T=1,0 T=19
p < 0,001 p =033 p =0.06
Freiheitsgrade - 449 221 153
Cohens d - 1,07 - -

Korrelationen der Skalen und PCK-Dimensionen

1.00
(FDW) Reproduzieren SSeNyi:E)]
0.75

(FDW) Anwenden-Kreieren - 1.0 (785)

-0.50
(FDW) Analysieren-Evaluieren - e 0BG 0.47 (785) EENNEEE)) -0.25
aol'E 0.92 (785)  0.73 (785) 0.8 (785) -0.00

-=0.25

Maw- 0.34 (606) 0.32 (606) 0.32 (606) 0.39 (606)

-—0.50

I—D.?S

—1.00

FW- 0.22 (606) 0.22 (606) 0.24 (606) 0.28 (606) 0.23 (606) EESLE{S]

PW- 0.22 (785) 0.18 (785) 0.15(785) 0.24 (785) 0.07 (606) 0.1 (606) EEMAVEE)

dui‘e‘e“ e cer®” g\la\d\?-‘e“ ol watt o wl

Abbildung A3 Heatmap der Korrelationen der FDW-Skalen und weiterer Professionswissensdimensionen. Die
Abkiirzungen zu den einzelnen Konstrukten werden in Tabelle A4 erléautert.
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F. Zusitzliche Analysen zum Automatisierten Assessment

K-Fold Cross-Validation: Effekt der k-Wahl auf die Performanz
Beispielhaft anhand eines SBERT-Embedding-Scoring-Modells

68.2% -

68.0% -

67.8%

67.6%

67.4%

Prozentuale Ubereinstimmung

67.2%

67.0% 1

5 10 15 20 25 30
Cv-Splits

Abbildung A4 Auswirkungen der Anzahl an CV-Splits auf die Performanz-Schitzung. Hier wurde exemplarisch
ein Scoring-Modell auf Basis der SBERT-Embeddings (siche Abschnitt 6.7.6) trainiert. Man erkennt deutlich,
wie die erhaltene Schitzung fiir die prozentuale Ubereinstimmung zwischen den Score-Vorhersagen (Maschine)
und Score-Labels (Mensch) mit zunehmender Anzahl an CV-Splits zunimmt und sich (unter statistischem
Rauschen) asymptotisch einem Maximum annhert. Der Unterschied in der Performanz-Schétzung zwischen nur
2 und 30 CV-Splits betrdgt allerdings gerade einmal 1,2 %. Das Kosten-Nutzen-Verhéltnis bei der Nutzung sehr
vieler CV-Splits ist also begrenzt.

Low Achievers -

- 80
5 Applying Creatives 60
@
=
(]
<
£ 40
= Analytic Evaluators
20

High Achievers

-0

€ X

R )

pe® N\a\“
Vorhergesagte Cluster

Abbildung AS Darstellung der Mensch-Mensch-Ubereinstimmungen der Kompetenzprofil-Zuordnung als
Heatmap. Im Vergleich mit Abbildung 6.10 fillt auf, dass trotz der hdheren Gesamtiibereinstimmung die Mensch-

Mensch-Ubereinstimmung punktuell deutlich geringer ausfillt und ungleichméBiger ist.
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Zero-Shot Prompt mit Kodiermanual fir Aufgabe 1a.

Leerzeilen und Formatierungen sind nur fiir die Darstellung hier eingefiigt und haben keine
Bedeutung fiir den tatsdchlichen Prompt. Die Hashtag-Symbole (,,#*) dienen der Formatierung
des Prompts auf eine Weise, die auch dem Sprachmodell zugénglich ist (sog. Markdown-
Syntax).

Die Aufgabe, die bepunktet werden soll, lautet wie folgt:

<aufgabe>

Ein Lehrer hat das Wechselwirkungsprinzip "Actio=Reactio” (3. Newtonsches
Axiom) in einer 9. Klasse eingefiihrt. Nachfolgend spielt sich folgende Szene
ab.

Lehrer: Stellt euch jetzt einmal vor, ein Apfel hdngt an einem Baum. Wo haben
wir hier jetzt Actio und Reactio?

Schiiler A: Na, ist doch Kklar, der Apfel zieht am Ast und der Ast halt den
Apfel oben!

Die Klasse signalistiert Zustimmung

Lehrer: Ja richtig - schon, ihr habt es verstanden! Was ist denn dann, wenn
der Apfel jetztherunterfdllt? Also wihrend des Fallens, wo ist da Actio
und Reactio?

Ein Gemurmel stellt sich ein

Schiiler B: Ja gilt das denn dann iberhaupt noch? Ich meine, ist doch immer
nur ideal, dass das gilt?!?

Schiiler A: Klar hast du noch Actio und Reactio, nur Actio wird halt immer
grofler, der Apfel wird ja schliefilich schneller beim Fallen!

Schiiler B: Ich dachte, die miissen gleich sein? Wo willst du liberhaupt Reactio
haben, der fallt doch frei und wird nicht mehr gehalten!?!

Schiiler A: Hm. Na Actio hast du auf jeden Fall schon mal, er bewegt sich ja.
Und er wird ja auch nicht beliebig schnell, die Luftreibung bremst ihn
ja. Das ist deine Reactio!

a) Offensichtlich haben die Schiiler die Ausfiihrungen des Lehrers nicht
richtig verstanden, die Ubertragung auf die Situation mit dem frei fallenden
Apfel gelingt nicht. Analysieren Sie die Szene: Inwiefern ist das Vorgehen
des Lehrers nicht optimal?

</aufgabe>

Dann folgt ein Textfeld fiir die mdégliche Antwort.

Der Erwartungshorizont fiir diese Aufgabe sieht wie folgt aus:

<erwartungshorizont>

Kodierung: Dichotom kodieren (0 oder 1 Punkt)
Ziel: Nennung von Aspekten, die die Lehrkraft in fachlicher Hinsicht nicht

optimal umgesetzt hat

## Erwartungshorizont korrekt
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### Fachlicher Bezug wichtig

#i## Vermischungsaspekt:

Der Lehrer begeht einen Planungsfehler. Er verwirrt die Schiiler, da er
verschiedene physikalische Konzepte / Probleme verkniipft und vermischt:
Zunachst handelt es sich um eine mechanische Wechselwirkung, im Fallen ist
jedoch kein Angriffspunkt zu erkennen, da die Gewichtskraft beriihrungslos /
gravitativ wirkt. Weiterhin handelt es sich zunachst um ein statisches
Kraftegleichgewicht (1. Newtonsches Axiom), beim Fallen handelt es sich um
einen dynamischen Fall (2. Newtonsches Axiom), d.h. es wird nicht zwischen
Kraftegleichgewicht und Wechselwirkungsprinzip unterschieden.

### Uberforderungsaspekt:

Es wird zu schnell abstrahiert bei dieser komplexen Thematik, die Schiiler
sind Uberfordert. Mit einer miindlichen Erkldrung allein ist ein solches
Konzept nicht einzufiihren, es ware eine Begleitung - etwa durch ein Tafelbild
mit eingezeichneten Kraften - notig, in der die auftretenden Krafte
veranschaulicht werden.

## Erwartungshorizont inkorrekt

Es werden Aussagen gemacht, die sich nicht auf das fachliche Problem beziehen,
das der Lehrer durch seine Vorgehensweise provoziert

- z.B. "Der Lehrer liberschatzt die Schiiler."

Aussagen, die sich lediglich darauf beziehen, dass die Erkldarung des Lehrers
nicht ausreicht oder besser sein miisste, reichen nicht aus.

Aussagen, die sich lediglich darauf beziehen, dass die Erkldarung des Lehrers
nicht ausreicht oder besser sein miisste, reichen nicht aus.

Es werden Aussagen gemacht, die Kkeinen direkten Bezug zur dargestellten
Unterrichts—-situation haben oder die physikdidaktisch nicht zutreffend sind.

- z.B. mangelnde Gesprachsfiihrung)
- z.B. "Der Lehrer unterbricht die Schiiler zu spat"
- "Der Lehrer gibt keine Hilfestellungen"

Es werden Aussagen gemacht, die nicht den Kern des Problems treffen.

- allg. Aussage zu mangelndem Versténdnis

- z. B. "Ubergeneralisierung nach Aussage von Schiiler A. Vielleicht hat
es die ganze Klasse eben nicht verstanden."

- "Das Prinzip actio=reactio wurde nicht richtig verstanden."

</erwartungshorizont>

Ordne die folgende Antwort zu deiner Aufgabe des Fragebogens gemifl diesem
obigen Erwartungshorizont ein:

<scores>
o, 1]

</scores>

Hier ist die Antwort des Probanden:
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<antwort>
{response (hier wird die Antwort eingefiigt)}

</antwort>
Antworte in folgendem Format:

<score>
Die Punktzahl folgt hier als Integer-Zahl.

</score>

Zero-Shot Prompt mit Kodiermanual fiir Aufgabe 3.

Leerzeilen und Formatierungen sind nur fiir die Darstellung hier eingefiigt und haben keine
Bedeutung fiir den tatsdchlichen Prompt. Die Hashtag-Symbole (,,#*) dienen der Formatierung
des Prompts auf eine Weise, die auch dem Sprachmodell zuginglich ist (sog. Markdown-
Syntax).

Die Aufgabe, die bepunktet werden soll, lautet wie folgt:

<aufgabe>

Das Experiment spielt im Physikunterricht eine zentrale Rolle.
Nennen Sie bitte zwei verschiedene Ziele bzw. Funktionen des Experiments im

Physikunterricht.

</aufgabe>

Dann folgen zwei Textfelder fiir die méglichen Antworten.

Der Erwartungshorizont fiir diese Aufgabe sieht wie folgt aus:

<erwartungshorizont>

Kodierung: 1 Punkt pro richtige Funktion (max. 2 Punkte)

0 Punkte fiir gar keine Funktion

## Erwartungshorizont korrekt

### Pidagogische Funktion

Es trdgt zur Bildung der Schiiler bei, indem sie Kkausales und funktionales
Denken, Kreativitat fordern

### Lernpsychologische Funktion:

— Experimente motivieren, wecken Interesse, machen das Lernen erfahrbar.
Grenzfall: "Gemeinschaftliches Event, hebt sich ab vom Lernalltag"

- Physik in Technik und Alltag aufzeigen

- Motivation durch kognitive Konflikte

- ,mehrkanaligen“ Zugang

- Selbsttatigkeit
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- mogliche Individualisierung
- Foérderung des Selbstwertgefiihls
#i## Erkenntnistheoretische Funktion:

Das Experiment ist Methode der Erkenntnisgewinnung in der Physik
### Uberpriifung von physikalischen Gesetzen, Modellen

### Fachliche Funktion:

Experimente visualisieren/veranschaulichen physikalische Sachverhalte,
unterstiitzen die Bildung von Begriffen, Uberfiihrung von Theorie und Praxis
ineinander, z. B.

- "Zum Erarbeiten eines physikalischen Konzepts.", oder
- "Praktische Anwendung von Modellen"
### Praktische Funktion:

— Schiiler iiben den Umgang mit Messdaten, deren Auswertung, mit dem Umgang
von Messgerdten

- Verantwortlicher Umgang

- Grenzfall: "Sorgfaltiges Arbeiten lernen"

- experimentelle Kompetenzen erwerben

### Leistungsbeurteilung:

Leistungen von Schiilern im Rahmen einer experimentellen Aufgabe {iberpriifen

### Soziale Kompetenzen

Kooperationsfahigkeit Kommunikationsfdahigkeit

### Methodologische Funktion:

Experiment als Lerninhalt, naturwissenschaftliche Arbeitsweisen (z.B. auch
Beobachtung)

#i## Sonstige Mogliche Funktionen:

- (Schiiler-)Vorstellungen priifen

- Handlungskompetenz erlernen

— Kritik- und Reflexionsfdhigkeit

- Meilensteine unserer Kulturgeschichte aufzeigen

## Erwartungshorizont inkorrekt

- "Abwechslung"
- "Experimente fiihren zu besserem Verstandnis“ oder ,Verstandnis"
- Ziel oder Funktion im Unterricht ist die Abwechslung

Es werden keine oder Antworten gegeben, die sich keinem der fiinf Bereiche
des korrekten

Erwartungshorizontes zuordnen lassen,

- z.B. Experimente haben keine unterrichtliche Funktion
- Experimente miissen vorkommen aufgrund des Lehrplans

— Experimente machen den Unterricht zeitdékonomischer
"Durch Experimente behdlt man das Wissen eher im Kopf."

</erwartungshorizont>
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Ordne die folgende Antwort zu deiner Aufgabe des Fragebogens gemdff diesem
obigen Erwartungshorizont ein:

<scores>
[o, 1, 2]

</scores>

Hier ist die Antwort des Probanden:

<antwort>
{response (hier wird die Antwort eingefiigt)}

</antwort>

Antworte in folgendem Format:

<score>
Die Punktzahl folgt hier als Integer-Zahl.

</score>
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G. Ausziige aus der Dokumentation des Analysecodes

Teil des digitalen Begleitmaterials ist unter anderem auch die Dokumentation des verwendeten
Analysecodes, der in Form eines Python-Pakets (ca. 13,000 Zeilen Code) strukturiert ist. Diese
Dokumentation wurde mit dem Tool MkDocs (https://www.mkdocs.org/) erstellt und ldsst sich
im Webbrowser betrachten. Sie ist als Teil eines Open-Source-Projekts zur fortgefiihrten
Nutzung des Codes gedacht und befindet sich somit unter aktiver Entwicklung. Sie hat zum
Zeitpunkt der Fertigstellung dieser Arbeit noch nicht den Anspruch, jede Funktionalitit bis ins
Detail ausfiihrlich zu erldutern. Die Darstellung hier dient der Illustration der Vision fiir die
Fortfiihrung der methodischen und technischen Ansidtze des Projekts. Der Code ist auch in
einer etwas entschlackten Version als Open-Source Projekt online verfligbar

(https://github.com/JannisZeller/questionnaire-tools).

Die Willkommensseite der Dokumentation des Analysecodes sicht wie folgt aus:

@ oo 0 Qe

Home

Full Reference

About
License I
Imprint

This package provides methods to analyze questionnaire-style data using clustering methods and to

automize the scoring process of its open-ended tasks.

| wrote this code during my PhD st the Machine-Learning-based analysis of a questionnaire
containing closed-format- (multipl 1 open-format ta nd items. | generalized the code, such

that it is applicable for other questi es as well by setting up a suitable configuration file.

However, this is definitely a "researchy" codebase with much to be done to call it a proper package. There

are various open ToDos (see a li ich could and should be tackeled in the future, but doing this
all alone in my free n PhD-analyses are basically completed, is not much fun. | therefore
invite all interested folks, that could make use of the current (and future) functionalities provided to

contribute to the project. Open ToDos include:

1. Refactoring the code such that it an analyses is set up as a project with fixed and automatically
findable configuration and datafiles such that the load-and-save logic of the different objects can be
simplified dramatically.

e finetuning capabilities currently integrated in the QuFinetuneScorer -
t of this class into a wrapper for QuScorer objects, s. t. the code can be simplified and
separated.

3. Setting up tests for the different modules using toy-data (there is already some toy-data in the

_toydata -directory).

Abbildung A6 Willkommensseite der Dokumentation des Analysecodes.

Auf der linken Seite lassen sich dann die entsprechenden Seiten fiir einzelne Pakete unter ,,Full
Reference® 6ffnen, wobei sowohl Beispielcode. ..
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a QuTools

Home usters
Full Referen Exploratory q
IR Exploratory questionnaire score-cluster analyses
cluster_wrapper
This submodule is used for exploratory cluster analyses of questionnaire scores. It implement:
ways to evaluate and visualize the and models, including the u dimensionality red
niques for the visualization of the cluster centroids and silhouette-score- and elbow-plots for k-
selection when using the K-Means algorithm. It is relatively strongly taylored towa the K-M
ome of the methods might not work with other clustering algorithms, and might be need tc
e adapted or extended for other
from_dir

Example from_pi
Imprint -

for applyingthe QuScor:
ring model usigna Q
can not b
d here (find it in the qui
understanding of the required data-structure and the setup.

QuConfig
Qubat

udata = QuDatal

sconfig d_lineplot

quclst_elb
tter_plot
st_silhouette plot

ransform

K-Means Silhouette-Plot

Resulting (average) Silhouette Score

5 6 7
Preset Number of Clusters

quclst. se
quelst.centroid_lineplat

Lineplot of Cluster-Averages

Average scores

Abbildung A7 Beispielseite der Dokumentation des Analysecodes fiir Cluster-Analysen.
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...als auch die Implementierung und Nutzung der einzelnen Methoden beschrieben werden.

d clusters

cluster_r
drop_incomplet:
drop_earlystoppers=True,

mpr
Imprint a—

A for the analysis of clusters in the ques
Parameters:
Description Default
required

The Qi
of qudata and qusul

_lineplot

cluster_method
AN', *HDEBS
CustonClust (it quelst_s

q

op_incomplate

99 Source code in quteols/clustering/clusters.py
centroid_lineplot

subs es=None
norm_to_highest=False,

Alineplot of the centroids.

Parameters:

Type Description Default

list[str] The subscales to include. If None al
also be used to change the order in which the sub:

rwith the
to save the

Returns:

Type Description

Figure

Abbildung A8 Beispielansicht der Einzelbeschreibungen der Methoden des Analysecodes.
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H. Ausziige aus der Webumgebung fiir das Assessment

Im Folgenden werden einige Eindriicke des Webtools, welches als Proof of Concept zur
Anwendung des Assessment Workflows in einem realen Assessment Setting entworfen wurde,
dargestellt. Ahnlich wie auch das Paket fiir die Nachnutzung des Analysecodes (Anhang G)
versteht sich auch das Webtool als Projekt unter aktiver Entwicklung und hat somit noch nicht
den Anspruch einsatzbereit flir ein reales Deployment zu sein. Es ist aktuell als Open-Source-
Projekt (ca. 4,000 Zeilen Python-Code sowie einige hundert Zeilen JavaScript- und einige
tausend Zeilen HTML-Code) unter https://github.com/JannisZeller/questionnaire-webtool
hinterlegt.

Die Willkommensseite des Webtools sieht wie folgt aus:

FDW-Assessment

@ Diese Webseite nutzt Cookies & verwandte Technologien fiir bestimmte Funktionen (Da
gibt auf dieser Webseite keine werbebezogenen Cookies. Mit der Nutzung der Webseite akz
Nutzung dieser Tools:

OK

Willkommen beim FDW-Assessment Physik

Diese Webseite dient als (Selbst-) Assessment Ihres Fachdidaktischen Wissens (FDW). FDW
beschreibt spezifisches Wissen (ber die Vermittlung von bestimmtem Fachwissen an Lernende.
FDW ist dementsprechend fach- und sogar inhaltsspezifisch. Der in diesem Assessment zum
Einsatz kommende Fragebogen zum FDW fokussiert das Fach Physik und genauer den

Inhaltsbereich der klassischen Mechanik.

Damit Sie das Testinstrument zeitlich flexibel bearbeiten und ihre Ergebnisse flexibel einsehen
kénnen, haben wir ein Nutzer-Account System implementiert. Sie kénnen sich mit einem
Nutzernamen und einem Passwort einen Account erstellen. Zusatzlich bitten wir Sie, eine E-Mail
Adresse anzugeben. Wir empfehlen |hnen aus Griinden der Anonymisierung einen Nutzernamen
zu wahlen, der keine Riickschlisse auf Ihre Person zuldsst. Weitere Informationen zur
Anonymisierung, zum Datel nd insbesondere zur Verschliisselung |hrer E-Mail Adresse

konnen sie den Datenschutzh sen entnehmen.

Das Assessment verwendet ein automatisiertes Machine Learning Modell, um lhnen schnell und
effizient eine Riickmeldung bieten zu kénnen. Dieses Modell wurde auf Basis eines bestehenden
Datensatzes von Bearbeitungen des verwendeten nstruments entwickelt. Bitte beachten Sie
bei der Bewertung und Interpretation lhrer etwaigen Riickmeldung Folgendes: Ein Modell wie das
hier verwendete kann, insbesondere bei nur vergleichsweise wenig verfigbaren Daten flir das
*Training”, nur Hinweise und Tendenzen liefern. Sie sollten sich die Ergebnisse also ggf. nicht zu
sehr zu Herzen nehmen, wenn Sie z. B. nicht lhrer eigenen Leistungserwartung entsprechen.

Nutzen Sie das Feedback primar um Hinweise auf mogliche Entwicklungspotenziale zu erhalten.

Login

Noch kein Account?

Registrieren

Abbildung A9 Willkommensseite des Assessment-Webtools. Dargestellt ist insbesondere das Cookie-Banner
sowie die Login- und Registrierungsoptionen.

Nachdem die Cookies etc. akzeptiert sind kann man einen Account erstellen und sich

einloggen. Die Bearbeitung des Testinstruments ist dann mithilfe von Eingabemasken wie der
Folgenden moglich:
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FDW-Assessment @® 955  Meni -

Testaufgaben

Sie befinden sich in deiner Testbearbeitung "Standard (ID 0)". Um die aktive Testbearbeitung
zu wechseln oder eine neue hinzuzufiigen, nutzen Sie bitte die Einstellungen unter "Account".

Aufgabe 3

Das Experiment spielt im Physikunterricht eine zentrale Rolle.

Nennen Sie bitte zwei verschiedene Ziele bzw. Funktionen des Experiments im
Physikunterricht.

1. Erkenntnisgewinnung

2. Uberpriifen von Hypothesen

<« Vorherige Aufgabe Nachste Aufgabe »

Abbildung A10 Beispielansicht einer Testaufgabe im Assessment-Webtool. Eingaben werden automatisch mit
dem Server synchronisiert, um bei Verbindungsproblemen immer minimalen Datenverlust zu gewéhrleisten. Das
Testinstrument kann zudem teilweise bearbeitet und zu einem spéteren Zeitpunkt fortgesetzt werden.

Dabei werden alle Eingaben automatisch gespeichert. Im Menii unter ,,Report* kann man nach
der Bearbeitung des Tests dann eine Anfrage zur Erstellung eines Reports an den Server
senden, wo dann basierend auf den Modellen aus Kapitel 6 eine automatisierte Bepunktung
etc. stattfindet. Das Ergebnis hat dann die folgende Form:
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FDW-Assessment ® 2641 Meni-

Report

Sie befinden sich in deiner Testbearbeitung "Standard (ID 0)". Um die aktive Testbearbeitung
zu wechseln oder eine neue hinzuzufiigen, nutzen Sie bitte die Einstellungen unter "Account”.

Wenn Sie den Fragebogen fertig bearbeitet haben, oder ein Zwischenergebnis wiinschen,
nutzen Sie den folgenden Button, um einen Report zu erstellen oder zu aktualisieren. Der
Server berechnet dann lhre Ergebnisse und diese Seite wird sich automatisch aktualisieren,
sobald die Ergebnisse bereit sind.

Letzte Testbearbeitung: 28.11.2024 - 15:48:22 (UTC)

Letzte Reporterstellung: 28.11.2024 - 15:54:56 (UTC)

Report erstellen / aktualisieren

Sie befinden sich am ehesten im Kompetenzprofil: “high*.

LER A1b. A2.
1 2 2

Gesamtscore Reproduzieren Anwenden

Maximalscore 43.00 23.00 8.00
Unsicherheit (SD) 240 1.64 1.26
Unsicherheit relativ 0.06 0.07 0.16
Erreichter Score 40.00 22.00 8.00
Erreichter Score

) 0.93 0.96 1.00
relativ

Abbildung A11 Beispielhafte Darstellung des Ergebnisses eines automatischen Assessments. Diese
Auffithrungen sind eher als Platzhalter zu sehen. Zukiinftig sind hier wahrscheinlich stiarker inhaltliche Aussagen
sinnvoller. Die Entwicklung und Evaluierung solcher finaler Gestaltungsfragen beziiglich des Feedbacks sind
allerdings nicht mehr Teil dieses Dissertationsprojekts.

Bisher handelt es sich bei den dargestellten Informationen primédr um Platzhalter, die
[lustrieren, wozu das Modell grundsétzlich im Stande ist. Fiir reale Anwendungen wire hier
eine eher ,,prosaische Darstellung* fiir eine Rlickmeldung an die Proband:innen wahrscheinlich
hilfreicher.
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