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Kurzfassung 

Das Fachdidaktische Wissen (FDW) zählt zu den zentralen Elementen des Professionswissens 

(angehender) Lehrkräfte und seine Relevanz ist sowohl theoretisch angenommen als auch 

empirisch belegt. In der fachdidaktischen Forschung liegt daher bereits seit längerem ein Fokus 

auf der Analyse des FDW, wobei mittlerweile vor allem Auswirkungen auf die 

Handlungsqualität und auf Lernergebnisse in den Blick genommen werden. Nach wie vor stellt 

aber auch die empirisch fundierte inhaltliche Beschreibung des FDW sowie der Transfer 

entwickelter FDW-Testverfahren auf Basis von Testinstrumenten mit offenem Antwortformat 

in die Ausbildungspraxis ein Forschungsdesiderat dar. In diesem Dissertationsprojekt werden 

daher auf Basis eines Datensatzes von 846 Bearbeitungen eines FDW-Testinstruments im Fach 

Physik (1) projektübergreifende FDW-Kompetenzniveaus auf Basis von Item-Response-

Modellierungen exploriert, (2) nicht-hierarchische FDW-Kompetenzprofile auf Basis von 

(probabilistischen) Cluster- und Textanalysen beschrieben und (3) ein vollständig 

automatisiertes FDW-Assessment-System auf Basis von Machine Learning entwickelt. Dabei 

wurden insbesondere kognitive Anforderungskategorien als Subskalen des verwendeten 

Testinstruments betrachtet. Das Assessment-System wurde dabei auf Basis dieser und weiterer 

Subskalen sowie anhand der Zuordnung von Proband:innen zu den Kompetenzprofilen 

evaluiert und zeigte sowohl relativ zur Interrater-Übereinstimmung als auch absolut betrachtet 

hohe Performanzwerte. 
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Structural Analyses of Physics Pedagogical Content 
Knowledge using Machine Learning 

Abstract 

Pedagogical Content Knowledge (PCK) is one of the central elements of the professional 

knowledge of (prospective) teachers. Its relevance is theoretically established and empirically 

shown multiple times. PCK has therefore been analyzed continuously in education research, 

currently with a particular emphasis on its impact on the quality of teaching and directly on 

learning outcomes. However, there is still a lack of detailed empirically backed descriptions of 

the intricacies of PCK and of methodologies for translating developed PCK assessment 

procedures based on open-ended questionnaires into educational practice. In this dissertation 

project, therefore, three objectives are pursued, based on a dataset of 846 responses to a physics 

PCK test instrument. First, cross-project PCK competency levels are explored based on item 

response modeling. Second, non-hierarchical PCK competency profiles are described based on 

(probabilistic) cluster and text analyses. Third, a fully automated FDW assessment system 

based on Machine Learning is developed. In particular, cognitive requirement categories were 

considered as subscales of the test instrument used. The assessment system was evaluated 

based on these and other subscales, as well as the assignment of respondents to the competency 

profiles, and demonstrated high performance values both in relation to inter-rater agreement 

and in absolute terms. 
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1. Einleitung 

Die Lehrkraft ist ein wesentlicher Einflussfaktor für den schulischen Erfolg von Schülerinnen 

und Schülern (z. B. Hattie, 2012). Bereits seit geraumer Zeit steht dementsprechend das 

Professionswissen von Lehrkräften im Fokus fachdidaktischer und bildungswissenschaftlicher 

Forschung (Baumert & Kunter, 2006 ⁠; Riese, 2009 ⁠; Shulman, 1986⁠, 1987). Dabei wird 

angenommen, dass die Kompetenz von Lehrkräften im Rahmen einer Wirkungskette 

(indirekten) Einfluss auf den Unterrichtserfolg hat (Terhart, 2012). Orientiert an den 

Pionierarbeiten von insbesondere Shulman (1986) wird dabei das Professionswissen meist in 

die Bereiche Fachwissen (FW), Pädagogisches Wissen (PW) und Fachdidaktisches Wissen 

(FDW) unterteilt (mehr dazu in Abschnitt 2.1). Das FDW wird dabei als spezifisches Wissen 

von Lehrkräften verstanden, das notwendig ist, um konkretes Fachwissen konkreten 

Schülerinnen und Schülern zu vermitteln (Neumann et al., 2019 ⁠; Shulman, 1987).  

FDW spielt somit schon aus konzeptionellen bzw. theoretischen Gründen eine besondere 

Rolle. Auch empirische Ergebnisse belegen die Bedeutung von FDW für (a) die anderen beiden 

Professionswissensdomänen und deren Entwicklung (Hume et al., 2019 ⁠; Riese et al., 2017 ⁠; 

Sorge et al., 2019) sowie (b) den Unterrichtserfolg (Förtsch et al., 2016⁠; Großmann & Krüger, 

2022⁠; Schröder et al., 2020). Zur Messung des FDW, um entsprechende Studien überhaupt zu 

ermöglichen, wurden bisher (im deutschsprachigen Raum) Leistungstests mit offenen und 

geschlossenen Aufgabenformaten eingesetzt (Gramzow, 2015 ⁠; Kröger, 2019 ⁠; Tepner et al., 

2012). Dabei werden die Testaufgaben meist unter Nutzung von Aufgabenentwicklungs-

modellen erstellt, die einerseits fachdidaktische Inhaltsbereiche oder „Facetten“ und 

andererseits kognitive Anforderungen oder Wissensarten beinhalten (ebd.). Solche 

Konzeptualisierungen umfassen zwar auch implizit Beschreibungen der angenommenen 

inhaltlichen (Fein-) Struktur des FDW, allerdings sind entsprechende Unterteilungen meist 

primär theoretisch motiviert und somit von eher normativem Charakter. Es bleibt bis auf eher 

technische Argumente wie statistische Item-Response-Modellvergleiche (Riese et al., 2017) 

unklar, inwieweit diese Konzeptualisierungen auch empirisch abgesichert werden können. 

Empirische Untersuchungen von inhaltlichen Strukturen des FDW sind bislang im Bereich 

der Naturwissenschaften, genauer der Physik, primär mithilfe von hierarchischen Ansätzen auf 

Basis von Item-Response-Modellierungen durchgeführt worden (Schiering et al., 2023 ⁠; 

Schiering et al., 2019). Die Ergebnisse dieser Untersuchungen sind inhaltliche Beschreibungen 

von FDW-Leistungsniveaus, die allerdings eng in den Kontext der jeweiligen Projekte 

eingebettet sind und sich direkt auf die Inhalte der Aufgaben der entsprechenden 

Testinstrumente beziehen (ebd.). Es ist also unklar, ob und inwiefern diese Niveau-

beschreibungen zu projektunabhängigen Aussagen verallgemeinert werden können. Die 

genutzte Methodik (Mullis & Fishbein, 2020) lässt sich aber direkt oder in abgewandelter Form 

auch auf andere Datensätze übertragen, wodurch eine vergleichende Betrachtung der sich 

ergebenden Niveaubeschreibungen unterschiedlicher Projekte ermöglicht wird. Eine solche 

vergleichende Analyse ist das erste Kernziel dieses Projekts. Zur Erreichung dieses Ziels 

werden aufbauend auf Item-Response-Modellen von FDW-Score-Datensätzen aus zwei 

Projekten (𝑁1 = 427, 𝑁2 = 779) Niveaumodelle des FDW mithilfe zweier unterschiedlicher 

Methoden erstellt und vergleichend analysiert (Kapitel 4). 
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Neben der erweiterten Betrachtung hierarchischer Strukturen des FDW durch einen 

projektübergreifenden Ansatz ist eine Ausweitung der Analyse der inneren Struktur des FDW 

mithilfe nicht-hierarchischer Analysen (z. B. MacQueen, 1967 ⁠; McInnes et al., 2017 ⁠; Spurk et 

al., 2020) wünschenswert. Eine solche Betrachtung wird zudem durch Ergebnisse der 

hierarchischen Analysen nahegelegt, in denen sich zeigt, dass mit hierarchischen 

Analysemethoden Unterschiede hinsichtlich interessanter Teilkompetenzen wie dem 

Evaluieren oder Kreieren im Kontext des FDW nicht abgebildet werden können (siehe Kapitel 

4). Nicht-hierarchische Beschreibungen sind zudem nützlich, um in einem Assessment zu 

Feedbackzwecken auch nützliche empirisch fundierte Informationen zum Stand des FDWs 

liefern zu können, die über eine „bessere“ oder „schlechtere“ Gesamteinschätzung hinaus 

gehen. Eine solche nicht-hierarchische Untersuchung ist das zweite Kernziel dieses Projekts. 

Zur Erreichung dieses Ziels werden nicht-hierarchische Strukturen des FDW durch eine 

Cluster-Analyse von FDW-Score-Daten (𝑁 = 846) ermittelt und mithilfe einer explorativen 

Sprachanalyse der zugehörigen authentischen Sprachproduktionen der Proband:innen 

ausgeschärft (Kapitel 5). Aufbauend auf diesen Ergebnissen wird zudem eine Latente 

Profilanalyse (LPA, Spurk et al., 2020) durchgeführt, um die Ergebnisse stärker empirisch 

abzusichern (Kapitel 6). Die erhaltenen Strukturen werden auch als „Kompetenzprofile“ 

bezeichnet, um sie von den hierarchischen Kompetenzniveaus aus dem ersten Zielpaket 

abzugrenzen. 

Die Untersuchung der inneren Struktur des FDW ist neben (eher theoriebildenden) 

Forschungszwecken auch für die Erstellung von reichhaltigem inhaltlichem Feedback (Hattie 

& Timperley, 2007) nützlich bzw. notwendig. Für diesen Zweck ist es zudem naheliegend, die 

bereits existierenden Testinstrumente für ein Assessment zu nutzen. Die Auswertung der als 

besonders authentisch geltenden Aufgaben mit offenem Aufgabenformat (z. B. Krüger & Krell, 

2020⁠; Kulgemeyer et al., 2023) solcher Testinstrumente ist allerdings mit hohem manuellem 

Aufwand durch trainierte Kodierer:innen verbunden. Um ein solches Assessment auch 

skalierbar in die Ausbildungspraxis zu überführen und zudem eine effektive Nachnutzung der 

Testinstrumente für weitere Forschungs- und Monitoring-Zwecke zu ermöglichen, ist es also 

notwendig, die Auswertungsprozesse zu automatisieren. Eine Überführung der Aufgaben in 

geschlossene Antwortformate zu diesem Zweck ist allerdings hinsichtlich der Authentizität der 

entstehenden geschlossenen Aufgaben sowie der Übereinstimmung der durch die offenen bzw. 

geschlossenen Testinstrumente abgebildeten Konstrukte nicht unproblematisch (Kulgemeyer 

et al., 2023). Moderne Methoden aus dem Bereich des Machine Learning (ML) und Natural 

Language Processing (NLP) bieten aber alternativ die Möglichkeit bei Verfügbarkeit eines 

geeigneten Datensatzes statistische Modelle zu erstellen, die die Bepunktung offener Aufgaben 

automatisiert durchführen können (Zhai et al., 2020a; Zhai et al., 2020b; siehe auch Abschnitt 

2.6 sowie Kapitel 6). Die Entwicklung und Evaluierung eines solchen Modells für ein 

konkretes FDW-Testinstrument ist das dritte Kernziel dieses Projekts. Zu diesem Zweck wird 

ein (vergleichsweise kleines) BERT1-Sprachmodell (Devlin et al., 2019) zur automatisierten 

Bepunktung des Testinstruments entwickelt und dessen Nutzbarkeit für ein informatives 

 

1  Bidirectional Encoder Representations from Transformers 

https://unipaderbornde-my.sharepoint.com/personal/jzeller_ad_uni-paderborn_de/Documents/3.%20Promotion/write-present/main/how#CTVL0010e2078f223264907b0bb0f98380bb221
https://unipaderbornde-my.sharepoint.com/personal/jzeller_ad_uni-paderborn_de/Documents/3.%20Promotion/write-present/main/how#CTVL0010e2078f223264907b0bb0f98380bb221
https://unipaderbornde-my.sharepoint.com/personal/jzeller_ad_uni-paderborn_de/Documents/3.%20Promotion/write-present/main/how#CTVL0010e2078f223264907b0bb0f98380bb221
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Assessment auf Basis von FDW-Subskalen und der Kompetenzprofile aus dem zweiten 

Zielpaket evaluiert (Kapitel 6). In diesem Rahmen werden auch weitere mögliche Modelle 

vorgestellt und evaluiert (Abschnitt 6.7.6 & 6.7.8). 

Insgesamt wird in diesem Projekt das FDW von (angehenden) Physiklehrkräften einer 

empirisch-datenbasierten Detailanalyse zur inhaltlichen Beschreibung innerer Strukturen 

unterzogen. Dabei wird zudem ein automatisiertes Assessment-System für das FDW auf Basis 

eines etablierten Testinstruments (Gramzow, 2015) aus dem Projekt ProfiLe-P2(+) (Vogelsang 

et al., 2019) entwickelt. Zunächst werden sowohl hierarchische FDW-„Kompetenzniveaus“ 

mithilfe von Item-Response-Modellen (Kapitel 4) als auch nicht-hierarchische FDW-

„Kompetenzprofile“ mithilfe von Clustermodellen (Kapitel 5 & 6) genauer inhaltlich 

untersucht. Neben theoriebildenden Erkenntnissen aus diesen Analysen können insbesondere 

die Ergebnisse der nicht-hierarchischen Analyse genutzt werden, um ein Feedback reliabel und 

valide mit inhaltlichen Aussagen anzureichern. Im letzten Teil des Projekts wird dann ein 

BERT-Sprachmodell zur automatischen Bepunktung der offenen Aufgaben des verwendeten 

Testinstruments trainiert und die Performanz dieses Modells unter Rückgriff auf die zuvor 

gefundenen Kompetenzprofile sowie bestehende Subskalen u. Ä. evaluiert (Kapitel 6).  

 

2  Akronym ProfiLe-P: „Professionskompetenz im Lehramtsstudium Physik“, gefördert durch das 

Bundesministerium für Bildung und Forschung. In der ersten Projektphase (ProfiLe-P, siehe z. B. Riese & 

Reinhold, 2012) wurde auf die Modellierung und Operationalisierung der Domänen des Professionswissens 

für das Fach Physik fokussiert. In der zweiten Projektphase (ProfiLe-P+ siehe z. B. Vogelsang et al., 2019) 

wurde die längsschnittliche Entwicklung sowie der Zusammenhang der Domänen des Professionswissens zur 

Performanz in prototypischen Handlungssituationen in den Blick genommen. Für die hier vorgestellte Analyse 

sind primär die Daten aus dem in ProfiLe-P entwickelten und in ProfiLe-P+ verwendeten FDW-

Testinstruments (Gramzow, 2015) relevant. 
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2. Theoretische und Methodische Grundlagen 

Die Analysen dieses Projekts sind wesentlich durch theoretische Konzeptualisierungen und 

bereits bestehende Ergebnisse zur professionellen Kompetenz und insbesondere zum FDW von 

(Physik-)Lehrkräften vorbereitet und strukturiert. Zur Analyse werden einerseits „klassische“ 

Item-Response-Theorie (IRT)-basierte Niveauanalysen und andererseits ML- bzw. NLP-

Methoden eingesetzt. Im Folgenden werden daher sowohl inhaltsbezogene theoretische als 

auch methodische Grundlagen der Analysen dargestellt.  

2.1. Professionswissen von (Physik-)Lehrkräften 

Die professionelle Kompetenz von (angehenden) Lehrkräften ist bereits lange zentraler 

Gegenstand fachdidaktischer und bildungswissenschaftlicher Forschung – sowohl internat-

ional (z. B. Gess-Newsome, 1999 ⁠; Hume et al., 2019 ⁠; Neumann et al., 2019 ⁠; Shulman, 1986⁠, 

1987) als auch im deutschsprachigen Raum (Baumert & Kunter, 2006 ⁠; Kirschner et al., 2017 ⁠; 

Kleickmann et al., 2014 ⁠; Riese et al., 2015 ⁠; Sorge et al., 2019). Das Professionswissen als 

kognitive Komponente der professionellen Kompetenz (siehe auch Abbildung 2.1) wird dabei 

als wesentlich für die Handlungsqualität im Unterricht und den Unterrichtserfolg aufgefasst 

(Ball et al., 2001 ⁠; Harms & Riese, 2018 ⁠; Terhart, 2012). In den frühen Konzeptualisierungen 

nach Shulman (1987) wurde sich wesentlich auf das Professionswissen fokussiert, das in die 

sieben Bereiche (1) Content Knowledge, (2) General Pedagogical Knowledge, (3) Pedagogical 

Content Knowledge, (4) Curriculum Knowledge, (5) Knowledge of Learners and Their 

Characteristics, (6) Knowledge of Educational Contexts, (7) Knowledge of Educational Ends, 

Purposes, and Values3 unterteilt wurde. Im deutschsprachigen Raum hat sich vor allem das 

Modell für die professionelle Kompetenz von Lehrkräften nach Baumert und Kunter (2006) 

aus dem COACTIV-Projekt (Baumert & Kunter, 2011) durchgesetzt. Dieses ursprünglich für 

den Bereich der Mathematik entwickelte Modell wurde seitdem für unterschiedliche 

Fachrichtungen adaptiert.  

In der Physik wird dieser Entwicklung folgend häufig die Adaption des Modells 

professioneller Handlungskompetenz nach Riese (2009) verwendet (Abbildung 2.1). Dieses 

Modell umfasst insbesondere nicht nur Professionswissen, sondern auch motivationale, 

volitionale und soziale Aspekte. Darunter fallen beispielsweise sog. „Belief Systems“, also 

Wertesysteme und Rollenbilder der Lehrkräfte. Auch wenn diese Aspekte wichtige Elemente 

professioneller Kompetenz sind, spielen sie für die Analysen in diesem Projekt eine 

untergeordnete Rolle. Im Folgenden wird sich daher auf die Beschreibung des 

Professionswissens bzw. der kognitiven Aspekte des Modells professioneller Handlungs-

kompetenz beschränkt. 

Das Professionswissen wird im deutschsprachigen Raum meist den Modellen von Baumert 

und Kunter (2006) sowie Shulman (1987) folgend in die drei Domänen Fachwissen (FW), 

 

3  Englischsprachige Begriffe werden hier im Original benannt, um Vermischungen von Konstrukten, wie dem 

Fachdidaktischen Wissen und dem Pedagogical Content Knowledge (siehe Abschnitt 2.2) zu vermeiden. 
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Pädagogisches Wissen (PW) und Fachdidaktisches Wissen (FDW) gegliedert. Zusätzliche 

Bereiche wie beispielsweise das Curriculum Knowledge (Shulman, 1987) werden dabei 

entweder einer dieser drei übergeordneten Professionswissensdomänen oder einem anderen 

Bereich des Modells der Professionskompetenz untergeordnet. Unterschiede in den Modellen 

entstehen durch im Detail unterschiedliche Konzeptualisierungen der einzelnen Wissens- und 

Kompetenzbereiche4.  

 

Abbildung 2.1 Modell der Professionellen Handlungskompetenz nach Riese (2009) in Anlehnung an Baumert 

und Kunter (2006) sowie Blömeke et al. (2008b). 

Das FW beschreibt fachliches Wissen, zunächst ohne expliziten Bezug zum Lehrberuf 

(Baumert & Kunter, 2006 ⁠; Riese, 2009 ⁠; Shulman, 1987). Es wird allerdings davon 

ausgegangen, dass dieses Wissen über den in der Schule behandelten Umfang hinausgehen 

muss, damit die Lehrkräfte fachliche Inhalte im Rahmen eines größeren Kontextes einordnen 

können. Erst dadurch sind sie befähigt, die Entwicklungen ihrer Schülerinnen und Schüler zu 

antizipieren und sie auf eine potenzielle spätere Vertiefung ihrer Kenntnisse in Studium, 

Ausbildung oder Beruf vorzubereiten (Blömeke et al., 2008b ⁠; Krauss et al., 2008). Die 

konkreten Inhaltsbereiche des FW, in denen Lehrkräfte entsprechende Kenntnisse erwerben 

sollen, sind Teil des gesellschaftlichen und wissenschaftlichen Diskurses, für die Physik 

besteht aber weitestgehender Konsens (Schiering, 2021 ⁠; Sorge et al., 2019). Dabei sind in 

Deutschland die Bereiche Mechanik, Elektrodynamik, Optik, Thermodynamik, Festkörper-

physik, Atom- und Kernphysik, spezielle Relativitätstheorie sowie Quantenphysik festgelegt 

(Kultusministerkonferenz [KMK], 2024). Es existieren zudem empirisch fundierte 

Niveaumodelle des FW für die Physik, die in Abschnitt 2.3 noch einmal thematisiert werden. 

Das PW wird allgemein als fachunabhängiges Wissen über allgemeindidaktische und 

pädagogische Konzepte verstanden (Baumert & Kunter, 2006 ⁠; Voss et al., 2015). Es existieren 

unterschiedliche Konzeptualisierungen zu sog. „Facetten“ (∼ Unterkategorien) dieser 

Professionswissensdomäne. Beispielsweise unterteilen König und Seifert (2012) das PW in die 

 

4 Genaueres zu diesen Unterschieden insbesondere für das FDW werden in Abschnitt 2.2 genauer erläutert. 



2. Theoretische und Methodische Grundlagen 

6 

drei Bereiche (1) Erziehung und Bildung, (2) Unterricht und allgemeine Didaktik sowie (3) 

Schulentwicklung und Gesellschaft. Mit einem ähnlichen Grundansatz aber einer feineren 

Unterteilung differenzieren Kunter et al. (2017) PW in die sechs inhaltlichen Bereiche (1) 

Unterrichtsgestaltung, (2) Schulorganisation, (3) Bildungstheorie, (4) Lernen und Entwick-

lung, (5) Diagnostik und Evaluation sowie (6) Lehrerberuf als Profession und heben dabei 

außerunterrichtliche Aspekte der Tätigkeit von Lehrkräften hervor. 

Das FDW wird als das Wissen zu Vermittlung von konkretem Fachwissen an eine konkrete 

Zielgruppe verstanden (Shulman, 1987). Es wird angenommen, dass gerade das FDW diejenige 

Wissenskategorie ist, in der sich Lehrkräfte von reinen Fachwissenschaftler:innen bzw. reinen 

Pädagog:innen unterscheiden (Hume et al., 2019⁠; Neumann et al., 2019 ⁠; Shulman, 1987). Das 

FDW ist die in diesem Projekt primär betrachtete Professionswissensdimension, weshalb ihm 

hier ein eigener umfangreicherer Abschnitt gewidmet ist (Abschnitt 2.2).  

2.2. Fachdidaktisches Wissen 

Die frühen Arbeiten zum Professionswissen bzw. der professionellen Kompetenz von 

(Shulman, 1986 ⁠, 1987) können ebenso als Pionierarbeiten zur Konzeptualisierung des FDW 

angesehen werden. In seinem als Pedagogical Content Knowledge (PCK) bezeichneten 

Konstrukt fasst Shulman (1987) Wissen zusammen, das nötig ist, um bestimmtes Fachwissen 

einer bestimmten Zielgruppe zu vermitteln. Dabei wird eine grundsätzliche Abhängigkeit vom 

thematisierten Fachinhalt angenommen. Parallel dazu, sowohl in Fortführungen bzw. 

Adaptionen dieses Ansatzes als auch unter Einbezug hiesiger Bildungstraditionen, hat sich im 

deutschsprachigen Raum das Konstrukt des FDW entwickelt (Baumert & Kunter, 2006 ⁠; 

Gramzow, 2015 ⁠; Kröger, 2019 ⁠; Riese, 2009). Unter anderem aufgrund von Unterschieden 

zwischen den Bildungstraditionen des englischsprachigen und des deutschsprachigen Raums 

sind FDW und PCK zwar nah verwandt, aber nicht deckungsgleich (z. B. Gramzow et al., 2013 ⁠; 

Vollmer & Klette, 2023).  

Verortung des Fachdidaktischen Wissens in Rahmenmodellen 

Um diese Unterschiede zu verdeutlichen und das in diesem Projekt zugrundeliegende 

Verständnis des Konstrukts des FDW klar darzulegen, wird FDW in diesem Abschnitt im 

Kontext zweier Rahmenmodelle verortet. 

Rahmenmodell A). International hat sich in den letzten Jahren vor allem das sog. Refined 

Consensus Model (RCM) of PCK (Carlson et al., 2019 ⁠; Hume et al., 2019) durchgesetzt. Dieses 

Modell konzeptualisiert PCK im Rahmen von drei Domänen (Carlson et al., 2019, 83–91): 

1. Collective PCK (cPCK): Das cPCK stellt die kollektive Wissensbasis von fachdi-

daktischen Communities dar, umfasst also einen Korpus an explizierbarem, eher 

deklarativem Wissen, das beispielsweise (aber nicht exklusiv) in fachdidaktischer 

Fachliteratur zu finden ist. 

2. Personal PCK (pPCK): Das pPCK stellt die persönliche Wissensbasis der einzelnen 

Lehrkraft dar. Wie auch das cPCK wird pPCK als explizierbar betrachtet. Der Transfer 

von cPCK zu pPCK wird dabei von unterschiedlichen (z. T. äußeren) Rahmen-
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bedingungen beeinflusst, wie beispielsweise Eigenheiten der Schule, des Bildungssys-

tems oder von Schülerinnen und Schülern. Die Gesamtheit dieser „Filter“ zwischen dem 

cPCK und pPCK wird im RCM auch als Learning Context bezeichnet. Umgekehrt kann 

pPCK auch das cPCK beeinflussen, indem sich beispielsweise in einer fachdidaktischen 

Community innerhalb einer Schule bestimmte Erfahrungen zu einer kollektiven 

Wissensbasis verfestigen. 

3. Enacted PCK (ePCK): Das ePCK umschreibt das PCK, das konkreten gezeigten 

Handlungen im fachdidaktischen Kontext zugrunde liegt. Solche Handlungen sind 

beispielsweise Unterrichtsvorbereitungen oder konkret für die Physik die Erklärung 

physikalischer Phänomene. Dieses Wissen ist in der Regel nicht mehr explizierbar. Es 

wird angenommen, dass das ePCK sich im Rahmen des sog „Plan-Teach-Reflect-Cycle“ 

(PTR-Cycle) in einem zirkulären Prozess entwickelt (Alonzo et al., 2019) und, dass 

ePCK in wechselseitiger Beziehung zum pPCK steht. 

Die Filter zwischen den einzelnen PCK-Domänen, ihre Auswirkung auf die Entwicklung 

von PCK und Professionswissen und die innere Struktur der einzelnen PCK-Domänen genauer 

empirisch zu untersuchen ist herausfordernd (z. B. Behling et al., 2022a⁠; Kulgemeyer et al., 

2023). Zum ePCK gibt dabei Ansätze, die Auswirkung einer explizit dem PTR-Cycle 

folgenden Ausbildungsmaßnahme auf andere Komponenten des PCK bzw. professioneller 

Kompetenz zu untersuchen (Behling et al., 2022b). Dabei zeigten sich positive Auswirkungen 

auf das pPCK und motivationale Orientierungen. Es bleibt allerdings unklar, ob und inwieweit 

sich die im PTR-Cycle für das ePCK-beschriebene Feinstruktur in Form einer Unterscheidung 

zwischen „ePCK-plan“, „ePCK-teach“ und „ePCK-reflect“ (Alonzo et al., 2019) in ähnlicher 

Weise auch für die anderen PCK-Domänen zeigt. Zudem ist unklar, ob potenzielle trennbare 

pPCK-Komponenten auch verstärkt mit einzelnen ePCK-Komponenten zusammenhängen. 

Neben den beschriebenen Filtern zwischen den einzelnen Domänen des PCK werden im RCM 

zudem äußere Einflussfaktoren sog. Professional Knowledge Bases wie beispielsweise Wissen 

über Assessment, Wissen über das Curriculum oder auch Fachwissen beschrieben (Carlson et 

al., 2019). Diese Wissensbereiche stehen wiederum in wechselseitiger Beziehung zum PCK. 

Im RCM wird PCK also schichtweise modelliert, wie in Abbildung 2.2 dargestellt. 

Das deutschsprachige Konstrukt des FDW ist eng verwandt zum PCK, umfasst aber 

insbesondere weniger die konkret gezeigten fachdidaktischen Handlungen, bzw. das durch 

diese Handlungen implizit gezeigte Wissen (Gramzow, 2015 ⁠; Sorge et al., 2019). Die konkrete 

Handlung wird also im Konstrukt des FDW „weniger mitgedacht“. In mehreren 

Projektverbunden (Kulgemeyer et al., 2023 ⁠; Schiering et al., 2023) und theoretischen Arbeiten 

(z. B. Vollmer & Klette, 2023) wird daher FDW im Wesentlichen als vergleichbar bis 

deckungsgleich mit dem pPCK beschrieben. Auch augenscheinlich liegt es nahe, dass das in 

schriftlichen FDW-Leistungstests, wie denen nach Gramzow (2015) oder Kröger (2019), 

explizierbares persönliches Wissen der Proband:innen abgefragt wird. 

Rahmenmodell B). Ein weiteres prominentes Modell zur Konzeptualisierung von 

Kompetenzen, welches für das FDW weit verbreitet angewendet wird, ist das sog. Model of 

Competence (MoC) bzw. Kontinuumsmodell nach Blömeke et al. (2015). Dieses Modell 

beschreibt (professionelle) Kompetenz als Ganzes in Form eines Kontinuums zwischen 
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einerseits latenten kognitiven Dispositionen und andererseits Performanz in für die Profession 

prototypischen Anforderungssituationen (siehe Abbildung 2.3 Model of Competence / 

Kontinuumsmodell nach ). Dazwischen werden situationsspezifische Fähigkeiten wie 

Interpretationsfähigkeiten, Wahrnehmung und Entschei-dungsfindung positioniert. Im Kontext 

des PCK bzw. FDW kann man das RCM als diskretisierte Form des MoCs verstehen, bei denen 

konkrete Stufen zwischen Dispositionen und Performanz explizit inhaltlich voneinander 

abgegrenzt werden. PCK ist dann eher als ein Konstrukt zu verstehen, das sich über die gesamte 

Bandbreite des MoCs erstreckt, währen FDW eher auf der Seite der kognitiven Dispositionen 

zu verorten ist (Kulgemeyer et al., 2023). 

 

Abbildung 2.2 Schematische Darstellung des Refined Consensus Model of PCK (vereinfacht nach Carlson et al., 

2019, S. 83). 

 

Abbildung 2.3 Model of Competence / Kontinuumsmodell nach Blömeke et al. (2015, S. 7) 
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Ähnlich zu den Überlegungen zu potenziellen pPCK-Komponenten und deren 

Zusammenhang zu den ePCK-Komponenten im RCM stellt sich auch im Kontext des MoC die 

Frage, inwieweit einzelne Dispositionen (FDW-Komponenten) unterschieden werden können, 

die mit einzelnen Fähigkeiten bzw. der Performanz in unterschiedlichen prototypischen 

Anforderungssituationen, wie der Unterrichtsplanung (Schröder et al., 2020), dem Erklären 

physikalischer Phänomene (Kulgemeyer et al., 2020) oder der Reflexion (Kulgemeyer et al., 

2021) zusammenhängen. 

Zusammengefasst wird in dieser Arbeit PCK als Konstrukt aufgefasst, welches neben 

explizierbarem Wissen (cPCK und pPCK) auch Performanz in Handlungssituationen, bzw. das 

für solche Handlungen notwendige implizite Wissen (ePCK) umfasst. Das FDW wird primär 

als explizierbares Wissen verstanden und schließt implizites Handlungswissen nicht direkt mit 

ein. Aufgrund der Konzeption der Erhebung der in diesem Projekt genutzten Daten wird daher 

in Übereinstimmung mit ähnlichen Ansätzen (Kulgemeyer et al., 2023 ⁠; Schiering et al., 2023) 

davon ausgegangen, dass das im entsprechenden Testinstrument (Gramzow, 2015) primär 

erfasste FDW am ehesten mit dem pPCK vergleichbar ist und primär eine kognitive 

Komponente eines größeren Kompetenzbegriffs abdeckt. Im Folgenden wird daher 

hauptsächlich der Begriff „FDW“ im dargestellten Verständnis des Konstrukts 

weiterverwendet5. Zudem wurde dargestellt, dass die gebräuchlichsten Rahmenmodelle zur 

Konzeptualisierung des FDW Desiderate zur genaueren Beschreibung der inneren Struktur des 

FDW aufweisen. 

Operationalisierung und Messung des Fachdidaktischen Wissens 

In frühen Arbeiten wurde das FDW meist anhand von Selbsteinschätzungen oder über die 

Erfassung distaler Merkmale gemessen (vgl. Baumert & Kunter, 2006). In aktuellerer 

Forschung werden (zumindest im deutschsprachigen Raum) jedoch eher Leistungstests 

verwendet. Das FDW wird dabei (nicht nur zu Testzwecken) meist dreidimensional modelliert 

(z. B. Gramzow, 2015 ⁠; Kröger, 2019 ⁠; Tepner et al., 2012). Die erste Dimension ist der 

adressierte fachliche Inhalt, also in der Physik beispielsweise Inhaltsfelder wie Mechanik oder 

Optik (KMK, 2024). Darüber hinaus sind sog. fachdidaktische Inhalte oder Facetten eine 

zentrale Dimension dieser Modelle. Die Facetten beschreiben dabei unterschiedliche 

inhaltliche Bereiche des FDW und es existieren viele Konzeptualisierungen, in denen jeweils 

eine unterschiedliche Auswahl von Facetten eingeschlossen wird (z. B. Park & Oliver, 2008; 

Riese, 2009; übersichtsartig dargestellt bei Schmelzing, 2010, S. 23 Kirschner, 2013, S. 32). 

Zentrale Facetten, die bereits in Shulmans (1986) ursprünglichen Arbeiten implizit 

berücksichtigt wurden und auch als Minimalkonsens angesehen werden können (Kirschner, 

2013, S. 32⁠; Schmelzing, 2010, S. 23) sind Instruktions- und Vermittlungsstrategien sowie 

Schüler und Schülerkognitionen6. Darüber hinaus sind im Testinstrument nach Gramzow 

 

5  In den deutschsprachigen Artikeln 1 und 3 (Kapitel 4 und 6) wird der Begriff „FDW“ im selben Verständnis 

genutzt. Im englischen Artikel 2 (Kapitel 5) wird primär der Begriff „pPCK“ genutzt, um das Konstrukt auf 

eine international geläufige Weise zu bezeichnen.  

6  Die Facette Schüler und Schülerkognition sowie die Begriffe „Schülerkognition“ und „Schülervorstellungen“ 

werden der Standardliteratur (z. B. Schecker et al., 2018) folgend nicht geschlechtsneutral umformuliert. 
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(2015), das zur Erhebung der im Rahmen der hier vorgestellten Analysen verwendeten Daten 

genutzt wurde, die Facetten Experimente und Vermittlung eines angemessenen 

Wissenschaftsverständnisses (kurz Experimente) sowie Fachdidaktische Konzepte abgebildet. 

Dabei handelt es sich explizit um eine aus Gründen der Testökonomie getroffene Auswahl von 

Facetten und nicht um eine vollständige Liste (Gramzow, 2015). Für eine ausführlichere 

Beschreibung der Inhalte der einzelnen Facetten sei auf (Gramzow, 2015, S. 96–102) 

verwiesen. Während die bisherigen Dimensionen fachlicher Inhalt und fachdidaktische 

Facetten allgemein zur Modellierung des FDW dienen, wird zur Entwicklung von 

Testinstrumenten meist noch eine dritte Dimension ergänzt. Diese dient der Argumentation 

von Klieme et al. (2003) folgend der Anreicherung der Testinstrumente mit Aufgaben aus 

unterschiedlichen kognitiven Anforderungsbereichen. So beschreiben Kröger (2019) und 

Tepner et al. (2012) die Dimension Wissensart(en), während Gramzow (2015) in der 

Dimension der kognitiven Anforderungen die Kategorien Reproduzieren, Anwenden und 

Analysieren berücksichtigt. Für die genaue Beschreibung des Verständnisses dieser Kategorien 

sei erneut auf Gramzow (2015, S. 111–112) verwiesen. 

Empirische Untersuchungen zum FDW 

Mithilfe der beschriebenen Modellierungen und Operationalisierungen konnten empirisch 

Zuwächse des FDW im Studium und im Vorbereitungsdienst nachgewiesen werden 

(Kirschner, 2013 ⁠; Kröger, 2019 ⁠; Sorge et al., 2019 ⁠; Vogelsang et al., 2019). Darüber hinaus 

zeigten sich sowohl direkte Zusammenhänge zwischen FDW und FW sowie FDW und PW 

(Kirschner, 2013 ⁠; Kirschner et al., 2017 ⁠; Kulgemeyer et al., 2012 ⁠; Riese et al., 2015 ⁠; Sorge et 

al., 2019 ⁠; Tepner & Dollny, 2014) als auch die Bedeutsamkeit des FDW für die Entwicklung 

von FW und PW (Sorge et al., 2018). Mittlerweile liegen zudem Ergebnisse vor, die Effekte 

des FDW auf die Performanz in prototypischen Anforderungssituationen wie beispielsweise 

(1) der Unterrichtsplanung (Behling et al., 2022b⁠; Riese et al., 2022b⁠; Schröder et al., 2020), 

(2) dem Erklären physikalischer Phänomene (Kulgemeyer et al., 2020 ⁠; Kulgemeyer & Riese, 

2018), (3) dem Reflektieren über Unterricht (Kulgemeyer et al., 2021), (4) der kognitiven 

Aktivierung (Förtsch et al., 2016 ⁠; She et al., 2024), (5) der Nutzung von physischen Modellen 

(Förtsch et al., 2018) sowie (6) diagnostischen Handlungen (Kramer et al., 2021) zeigen. Strübe 

(2020) konnte allerdings keine bzw. nur schwache Zusammenhänge zwischen dem FDW und 

der Arbeit mit Modellen bzw. Experimenten bei Chemielehrkräften nachweisen. Detail-

Betrachtungen deuteten hier darauf hin, dass primär bestimmte Facetten des FDW 

Auswirkungen auf diese Handlungsaspekte haben könnten (Strübe, 2020, S. 208). 

Weiterhin zeigten sich auch (indirekte) Einflüsse auf die kognitive Aktivierung und 

Leistung von Schülerinnen und Schülern (Blömeke et al., 2022 ⁠; Förtsch et al., 2016), wobei 

die Studienlage zu den Auswirkungen von Professionswissen auf Schüler:innen nicht eindeutig 

ist (Cauet et al., 2015 ⁠; Liepertz & Borowski, 2019). In diesem Kontext konnten Tröger et al. 

(2017) mithilfe von Item-Response-Modellierungen (s. u.) und darauf aufbauenden 

Regressionsanalysen zeigen, dass Schüler:innen mit geringem Vorwissen von hohem FDW 

über Sprachnutzung ihrer Lehrkräfte profitieren. Weitere Analysen verdeutlichen, dass die 

Entwicklung des Professionswissens und des FDW im Speziellen durch Studienstrukturen 

bedingt wird (Schiering et al., 2021). 
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Auch, wenn Studien wie die genannten die Bedeutsamkeit des FDW weiter unterstreichen, 

so liefern sie doch keine weitere empirische Beschreibung der inneren Struktur des FDW. Die 

Dimensionalisierung mit den Achsen fachlicher Inhalt, kognitive Anforderungen und Facetten 

(oder ähnliche Modelle aus den anderen genannten Projekten) sind eher normativ motiviert. 

Auch die zentrale Dimension der fachdidaktischen Facetten ist zwar je nach Studie 

argumentativ, durch Experteninterviews und Curriculumsanalysen von Lehrerbildungs-

programmen fundiert (z. B. Kulgemeyer et al., 2020 ⁠; Magnusson et al., 1999 ⁠; Park & Oliver, 

2008⁠; Schiering et al., 2023), allerdings somit immer noch von eher theoretisch-normativem 

Charakter. Für ihr Testinstrument konnten Riese et al. (2017) bzw. Gramzow (2015) mithilfe 

von IRT-Modellvergleichen allerdings zeigen, dass sowohl die drei abgebildeten kognitiven 

Anforderungen als auch die vier eingeschlossenen Facetten als empirisch trennbare Subskalen 

aufgefasst werden können. Dies konnte aber nur für eine (relativ kleine) Stichprobe von 

fortgeschrittenen Studierenden gezeigt werden und auch die verwendeten statistischen 

Informationskriterien (AIC und BIC) zeigten nur eine schwache Bevorzugung der Modelle mit 

Subskalen. Zur empirisch fundierten Beschreibung der inneren Struktur des FDW sind also 

weitere Untersuchungen nötig. Einen dazu bereits erprobten Ansatz stellen hierarchische 

Niveaumodelle dar, die im nächsten Abschnitt genauer beschrieben werden. 

2.3. Hierarchische Niveaumodelle auf Basis von Item-Response-

Modellen 

Um Niveaus in den Ausprägungen von Kompetenzen inhaltlich auf Basis von Testdaten zu 

modellieren, haben sich IRT-basierte Niveaumodelle etabliert (Hartig, 2007 ⁠; Mullis et al., 

2016⁠; Organisation for Economic Cooperation and Development [OECD], 2018). Solchen 

Ansätzen liegt meist ein IRT-Modell der Testdaten zugrunde, welches Personenfähigkeiten 

und Aufgabenschwierigkeiten auf einer gemeinsamen Skala abbildet (s. u.). Das 

„ursprüngliche“ IRT-Modell nach Rasch (1960) basiert auf der folgenden Annahme: Die 

Wahrscheinlichkeit, dass eine Person 𝑝 mit der „Personenfähigkeit“ 𝜃𝑝 die Aufgabe 𝑖 mit der 

„Aufgabenschwierigkeit“ 𝜎𝑖 korrekt löst beträgt 

𝑃(𝑋𝑝𝑖 = 1) =
1

1 +  exp (𝜎𝑖 − 𝜃𝑝)
 . 

Aufgabenschwierigkeit und Personenfähigkeit sind somit relativ zueinander zu interpretieren. 

Ist 𝜎𝑖 ≫ 𝜃𝑝 (bzw. 𝜎𝑖 ≪  𝜃𝑝) so strebt diese Funktion gegen 0 (bzw. 1), d. h. die 

Wahrscheinlichkeit, dass Person 𝑝 die Aufgabe 𝑖 löst ist gering (bzw. hoch). Ist 𝜎𝑖 = 𝜃𝑝, so ist 

die Wahrscheinlichkeit, dass Person 𝑝 Aufgabe 𝑖 korrekt löst gerade gleich 50 %. Da nur die 

Differenz der Parameter 𝜎𝑖 und 𝜃𝑝 für die Wahrscheinlichkeit relevant sind, werden die 

Parameter demnach auf einer gemeinsamen Skala abgebildet, was in den Verfahren zur 

Niveauanalyse ausgenutzt wird (s. u.). Es gibt unterschiedliche Möglichkeiten aus der 

Datentabelle der Punktzahlen der Personen in den Aufgaben diese Schwierigkeits- bzw. 

Fähigkeitsparameter zu schätzen.  

Es existieren unterschiedliche Erweiterungen und Verallgemeinerungen des Rasch-

Modells, die zumeist alle unter der Bezeichnung „Item-Response-Modell“ bzw. IRT-Modell 
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zusammengefasst werden (z. B. Moosbrugger & Kelava, 2020). Für das hier vorgestellte 

Projekt ist insbesondere das sog. „Partial Credit Modell“ (Masters, 1982) zu nennen, welches 

das ursprüngliche Rasch-Modell auf mehrstufige (z. B. 0, 1 und 2 Punkte) Aufgaben 

verallgemeinert. Die zur Modellierung der Aufgabenschwierigkeiten genutzten Parameter sind 

dann allerdings nicht mehr so unmittelbar interpretierbar wie die Aufgaben-Parameter im 

Rasch-Modell. Die analog zum Rasch-Modell interpretierbaren „Thurstone-Threshold“-

Parameter (auch nur „Thurstone-Thresholds“) lassen sich allerdings nach dem Modell-Fit 

ebenfalls berechnen (Linacre, 1998). Somit liegt auch im Partial Credit Modell eine 

Möglichkeit vor, Aufgabenschwierigkeiten und Personenfähigkeiten auf einer gemeinsamen 

Skala abzubilden und zu modellieren. Die gemeinsame Darstellung dieser Parameter in einem 

Plot wird auch „Wright Map“ genannt (siehe Abbildung 4.6 & Abbildung 4.7). 

Zur Bildung von Niveaus auf Basis von Wright Maps und den ihnen zugrundeliegenden 

Parameterschätzungen aus IRT-Modellen existieren im Wesentlichen drei unterschiedliche 

Methoden, die Woitkowski (2020) in seiner Adaption eines dieser Ansätze zur 

Niveaumodellierung des physikalischen Fachwissens gegenüberstellt: (1) das Scale-

Anchroing-Verfahren, (2) der regressionsanalytische Ansatz und (3) die Bookmark-Methode. 

Von diesen Methoden sind für das hier vorgestellte Projekt vor allem das Scale-Anchoring-

Verfahren und der regressionsanalytische Ansatz relevant. 

Im Scale-Anchroing-Verfahren (Mullis et al., 2016) werden zunächst drei7 Personen-

gruppen gebildet, wobei jeweils eine Gruppe niedrige, eine mittlere und eine hohe 

Fähigkeitsparameter aufweist. Anhand der Anteile von Personen aus diesen Gruppen, die eine 

Aufgabe gelöst bzw. (im Falle von polytomen Aufgaben) eine bestimmte Punktzahl in der 

Aufgabe erreicht haben, werden die Aufgaben bzw. die Punkteschwellen der Aufgaben 

wiederum in Gruppen eingeteilt. Die Mittelwerte der Schwierigkeitsparameter bzw. Thurstone-

Thresholds dieser Aufgabengruppen dienen anschließend als Niveaugrenzen und die 

inhaltliche Beschreibung der Niveaus folgt aus den inhaltlichen Beschreibungen der Aufgaben, 

die sich nahe an diesen Grenzen befinden. Der genaue Ablauf des Verfahrens wird in der 

konkreten Anwendung in Abschnitt 4.4.3 noch einmal genauer erläutert. Das Scale-Anchoring-

Verfahren ist durch ein hohes Maß an Datengetriebenheit gekennzeichnet und kann in diesem 

Sinne im Vergleich zu den anderen Verfahren als besonders objektiv aufgefasst werden. Für 

besonders aussagekräftige Ergebnisse ist bei der Verwendung des Scale-Anchoring-Verfahrens 

jedoch eine hohe Anzahl an Aufgaben im Testinstrument und Proband:innen optimal, weshalb 

das Scale-Anchroing-Verfahren bisher zumeist in den großen Schulleistungsstudien wie 

TIMSS (Mullis et al., 2016) und PISA (OECD, 2018) angewendet wurde.  

Eine Alternative zum Scale-Anchroing-Verfahren stellen regressionsanalytische Ansätze 

dar (z. B. Blömeke et al., 2008a ⁠; Nold et al., 2008). Anders als beim Scale-Anchoring-

 

7  Das Scale-Anchoring-Verfahren ermöglicht auch feinere Unterteilungen der Fähigkeiten, d. h. die 

Beschreibung einer größeren Anzahl an Niveaus. Dazu müssen im ersten Schritt die Personen in eine größere 

Anzahl an Leistungsgruppen unterteilt werden. Werden die Personen in 𝑛 Gruppen eingeteilt, so erhält man 

anschließend 𝑛 + 1 Niveaus (und ein Niveau „< 0“, über das keine weiteren inhaltlichen Aussagen getroffen 

werden können). Der Übersicht halber, wird hier aber das Verfahren für lediglich drei Personengruppen bzw. 

4 Niveaustufen erläutert, da eine feinere Unterteilung mit der verfügbaren Datenbasis in diesem Projekt nicht 

angestrebt wurde (siehe Kapitel 4). 
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Verfahren findet hier eine Re-Analyse aller Aufgaben des Testinstruments bereits zu Beginn 

statt. Dazu werden geeignete schwierigkeitserzeugende Merkmale theorie- oder literaturbasiert 

ermittelt und niveauartig beschrieben. Die Aufgaben werden dann diesen Stufen zugeordnet. 

Die Passung und Eignung dieses Modells schwierigkeitserzeugender Merkmale zu den Daten 

wird mithilfe der Varianzaufklärung einer linearen Regression bzw. ANOVA bezüglich der 

IRT-Aufgabenschwierigkeiten evaluiert. Liegt eine hohe Varianzaufklärung und dement-

sprechend ausreichende Passung vor, können die Mittelwerte der Aufgabenschwierigkeiten der 

somit entstandenen Aufgabengruppen als Niveaugrenzen genutzt werden und die Personen 

gemäß ihrer Fähigkeitsparameter zu den Niveaus zugeordnet werden. Die inhaltlichen 

Beschreibungen der Niveaus folgen dann direkt aus dem Modell schwierigkeitserzeugender 

Merkmale. Im Vergleich zum Scale-Anchoring-Verfahren hat ein regressionsanalytischer 

Ansatz den Vorteil, dass von vorneherein alle Aufgaben zur Niveaubeschreibung genutzt 

werden können und somit auch kleinere Testinstrumente mit geringerer Aufgabenanzahl ggf. 

besser ausgeschöpft werden können. Allerdings stellt die Entwicklung eines geeigneten 

Modells schwierigkeitserzeugender Merkmale einen zusätzlichen aufwändigen Prozess dar, 

der zudem als weniger objektivierbar angesehen werden kann als das weitestgehend 

datengetriebene Vorgehen beim Scale-Anchoring-Verfahren. 

Regressionsanalytische Ansätze wurden bereits mehrfach im Kontext der Bildungs-

forschung im deutschsprachigen Raum genutzt. König (2009) verwendete eine Kombination 

von drei Stufen sprachlicher Komplexität und zwei kognitiven Anforderungsstufen als 

schwierigkeitserzeugende Merkmale, um ein Niveaumodell des PW zu entwickeln. Dabei hat 

sich insbesondere das kognitive Anforderungsniveau als bedeutsam herausgestellt. Bernholt 

(2010) entwickelte ein Niveaumodell für Fachwissen in der Chemie. Dabei leitete er vier 

Stufen Komplexitätsstufen orientiert am inhaltsunabhängigen Modell hierarchischer 

Komplexität (Commons et al., 2014 ⁠; Commons et al., 1998) ab. Dieser Ansatz wurde von 

Woitkowski und Riese (2017) für die Physik mit Erfolg adaptiert und genutzt, um den 

Fachwissenserwerb im Studienanfängerbereich (Woitkowski, 2019) zu untersuchen und 

Entwicklungstrajektorien über den Studienverlauf abzuleiten (Woitkowski, 2020). 

Für das FDW wurden bereits Analysen mithilfe des Scale-Anchoring-Verfahrens 

durchgeführt. Schiering et al. (2019) bzw. Schiering et al. (2023) wendeten hierbei das Scale-

Anchoring-Verfahren auf ihr Testinstrument als Ganzes an. Sie konnten keine Systematik bzgl. 

des Auftretens bestimmter fachdidaktischer Inhalte (bzw. Facetten) feststellen. Zeller et al. 

(2022) führten ähnliche Analysen mithilfe einer geschlossenen Version des Testinstruments 

von Gramzow (2015) durch, wobei die fachdidaktischen Facetten von vorneherein getrennt 

voneinander betrachtet wurden. Unabhängig von den konkreten Projektkontexten, den in den 

Instrumenten abgebildeten Facetten oder dem jeweils adressiertem Fachwissen zeigte sich in 

der Tendenz eine Parallele zwischen den Ergebnissen von Zeller et al. (2022) und Schiering et 

al. (2019) bzw. Schiering et al. (2023): Bezüglich kognitiver Prozesse scheint sich das FDW in 

niedrigen Niveaus auf reproduktive Aspekte zu beschränken und in höheren Niveaus auch 

analytische und anwendungsorientierte Elemente mit einzuschließen. Eine projekt-

übergreifende Betrachtung von FDW-Niveaustufen ist dementsprechend das erste Zielpaket 

dieses Projekts. Da die Ergebnisse von Studien der Projekte, aus denen die Analysen von 

Schiering et al. (2019) bzw. Schiering et al. (2023) und Zeller et al. (2022) hervorgegangen 
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sind, bisher aufgrund der im Detail unterschiedlichen Operationalisierung des FDW isoliert 

stehen, verspricht hier eine projektübergreifende Betrachtung von inhaltlichen FDW-Niveaus 

auch die Vorbereitung einer Herstellung von Vergleichbarkeit anderer Ergebnisse aus den 

jeweiligen Projektkontexten. Für die projektübergreifende Analyse wird zunächst aufgrund der 

bereits bestehenden vielversprechenden Ansätze das Scale-Anchoring-Verfahren auf beide 

Datensätze angewandt und ein Modellvergleich durch die sich ergebenden 

Niveauformulierungen angestrebt. Darüber hinaus wird orientiert an der erfolgreichen Nutzung 

des Modells hierarchischer Komplexität für einen regressionsanalytischen Ansatz zur 

Niveaubildung für das physikalische Fachwissen (Woitkowski & Riese, 2017) auch ein 

gemeinsames Modell hierarchischer Komplexität für das FDW entwickelt und dessen Passung 

zu den Datensätzen überprüft. Die vollständige Analyse ist in Kapitel 4 ausführlich dargestellt; 

insbesondere wird die Entwicklung bzw. Adaption des Modells hierarchischer Komplexität 

nach Commons et al. (1998; siehe auch Commons et al., 2014) für das FDW in Abschnitt 4.2.3 

ausführlicher dargestellt und daher aus Platzgründen hier nicht noch einmal wiederholt. 

Insgesamt werden somit im ersten Zielpaket inhaltliche Beschreibungen des FDW in Form 

von Niveaustufen entwickelt (siehe Abschnitt 4.5). Anders als bei den eher normativ-

theoretischen Beschreibungen im Rahmen der ursprünglichen Operationalisierungen (z. B. 

Gramzow et al., 2013⁠; Kröger, 2019 ⁠; Park & Oliver, 2008), sind diese Ergebnisse induktiv aus 

vorhandenen (quantitativen) empirischen Daten abgeleitet. Die Ergebnisse dieser Analysen des 

ersten Zielpakets deuten aber auch darauf hin, dass wesentliche interessante inhaltliche 

Strukturen des FDW mit strikt hierarchischen Methoden, wie eben Niveaumodellen, nicht 

modelliert werden können. Im zweiten Zielpaket des Projekts werden daher nicht-hierarchische 

Analysen in den Blick genommen, die auf explorativ(er)en Machine-Learning-Methoden 

basieren. Diese werden daher in den nächsten Abschnitten ausführlicher dargestellt. 

2.4. Machine Learning 

Da sich in den Ergebnissen der Analysen zum ersten Zielpaket des hier vorgestellten Projektes 

zeigt, dass hierarchische Ansätze wesentliche interessante innere Strukturen des FDW nicht 

auflösen können (siehe Kapitel 4), werden darüber hinaus explorative Machine-Learning-

Methoden zur nicht-hierarchischen Analyse des FDW in den Blick genommen (siehe Kapitel 

5 & 6). Zudem ist das Leitziel des Projekts die Ermöglichung eines informativen Assessments 

des FDW auf Basis der Ergebnisse zu dessen inneren Struktur (siehe Kapitel 1 & 3). Dieses 

Assessment soll möglichst skalierbar sein und somit vor allem ohne hohen manuellen Aufwand 

bei der Bepunktung der offenen Aufgaben des genutzten FDW-Testinstruments auskommen. 

Zu diesem Zweck werden ebenfalls ML-basierte Methoden genutzt (siehe Kapitel 6). Im 

Folgenden werden daher der Grundansatz von ML-Workflows sowie konkrete Methoden zur 

Erreichung der genannten Ziele vorgestellt. 

Definitionsansätze 

Auch wenn die Begriffe künstliche Intelligenz (KI) und Machine Learning bereits seit 

Jahrzehnten im wissenschaftlichen und wirtschaftlichen Bereich genutzt werden (z. B. Samuel, 

1959), so ist eine genaue Beschreibung ihrer eigentlichen Bedeutung nicht trivial. Früh 
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bezeichnete Samuel (1959) ML als „das Forschungsfeld, das Computern die Fähigkeit gibt zu 

lernen, ohne explizit programmiert zu sein“ (zit. nach Géron, 2019, S. 2, übers. JZ). Damit ist 

z. B. gemeint, dass keine Regel-Systeme nach dem „wenn-dann“-Prinzip zur Lösung eines 

Problems in den Computer eingegeben werden, sondern, dass das Problem eben durch 

„Lernen“ angegangen wird. Eine praktische Definition, um die eigentliche Bedeutung des 

Begriffs „Lernen“ in diesem Kontext zu fassen, stammt von Mitchell (1997): 

„A computer program is said to learn from experience 𝐸 with respect to some class 

of tasks 𝑇 and performance measure 𝑃 if its performance at tasks in 𝑇, as measured 

by 𝑃, improves with experience 𝐸.”  

– Mitchell (1997, S. 2) 

Als einfaches Beispiel kann hier eine einfache lineare Regression 𝑥 ∝ 𝑦 dienen: Der Computer 

lernt durch das Verarbeiten von Datenpaaren (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1. . . 𝑁 („experience E“), die 

Zielvariable 𝑦 in Abhängigkeit von der unabhängigen Variable 𝑥 vorherzusagen („task 𝑇“). Je 

mehr Datenpaare der Computer verarbeitet hat, umso besser ist die Vorhersagequalität 

(„performance measure 𝑃“) – vorausgesetzt, die Annahme 𝑥 ∝ 𝑦 ist zutreffend. Wie die 

„Verarbeitung“ dieser Daten stattfindet, kann unterschiedlich sein (s. u.). 

Der Begriff KI umfasst üblicherweise jegliche Methodik, die darauf ausgerichtet ist, 

menschliche Aufgaben durch Computer zu automatisieren und schließt im Unterschied zum 

ML-Begriff beispielsweise auch regelbasierte Systeme mit ein (z. B. Géron, 2019). Darüber 

hinaus wird häufig zudem der Begriff Data Science genutzt, der allgemein 

erkenntnisgewinnende, aber auch produktive Methoden unter Datennutzung zusammenfasst. 

Im Data Science Bereich wird sich dabei unter anderem der Methoden aus den KI- und ML-

Bereichen bedient. Man kann die angesprochenen Forschungs- und Entwicklungsfelder in 

einem Schema wie in Abbildung 2.4 dargestellt miteinander in Beziehung setzen. 

 

Abbildung 2.4 Darstellung der Bereiche Künstliche Intelligenz, Machine Learning, Deep Learning und Data 

Science. Der Bereich Deep Learning wird im Abschnitt 2.7 noch einmal aufgegriffen8. 

 

8  Bei dieser Abbildung handelt es sich um eine weit verbreitete Standarddarstellung, die vielfach in 

unterschiedlichen Kontexten genutzt wird, und daher nicht einer expliziten Literaturquelle zugeordnet werden 

kann. 
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Neben diesen grundlegenden eher konzeptionellen Ansätzen zur Beschreibung des ML-

Themenfeldes, gibt es auch praktischere Unterteilungen, die eher konkrete Ziele von 

entsprechenden Modellen und Verfahren in den Mittelpunkt stellen. Entscheidend ist hier 

insbesondere die Unterteilung in das sog. Supervised Learning und das sog. Unsupervised 

Learning (z. B. Duda et al., 2001 ⁠; Géron, 2019). Methoden des Supervised Learnings haben 

das Ziel, aus bestimmten verfügbaren Variablen (Features) eine Zielvariable (Target) 

vorherzusagen. Features können beispielsweise demographische Merkmale sein und ein 

mögliches Target könnte schulischer Erfolg sein. Ein Supervised-Learning-Setting erfordert 

also die Verfügbarkeit eines Datensatzes, in dem diese Target-Daten auch vorhanden sind, d. 

h. üblicherweise manuell durch Menschen generiert wurden oder historisch vorliegen. 

Insbesondere bei manuell generierten Target-Daten spricht man auch von Labels. Im 

Gegensatz dazu zielt man im Unsupervised Learning darauf ab, Muster und Strukturen in Daten 

zu finden. Es geht also darum in einem Datensatz Gruppen von Datenpunkten zu finden, die 

sich auf eine gewisse Weise ähnlich sind. Das können beispielsweise Probanden einer 

Interviewstudie sein, die durch eine ähnliche Wortwahl charakterisiert sind.  

Paradigmen 

Man kann zudem zwischen algorithmischen Modellen, die häufig primär heuristisch motiviert 

sind, und probabilistischen Modellen (manchmal auch „bayesianische“ Modelle genannt) 

unterscheiden. Bei probabilistischen Modellen wird eine Wahrscheinlichkeitsverteilung, der 

die Daten folgen sollten, angenommen und ausgehend von den tatsächlich beobachteten Daten 

die Parameter dieser Wahrscheinlichkeitsverteilung mithilfe von mathematischen Methoden 

ermittelt (McElreath, 2020 ⁠; Murphy, 2022 ⁠; Ng & Jordan, 2001; siehe auch ein Beispiel in 

Anhang A). Das Rasch-Modell (Abschnitt 2.3) ist in diesem Sinne ein Beispiel für ein 

probabilistisches Modell. Häufig können algorithmische Modelle auch ausgehend von 

probabilistischen Modellen hergeleitet werden (Bishop & Lasserre, 2007). Probabilistische 

Ansätze zur Beschreibung und Analyse von Daten haben den Vorteil, dass sie häufig 

unmittelbarer interpretierbar sind als vergleichbare klassische Ansätze und direkt Schätzungen 

für die Unsicherheit der Ergebnisse liefern. Sie werden mittlerweile auch in der 

Naturwissenschaftsdidaktik angewendet (z. B. Kubsch et al., 2021b). 

Bisher wurden nun bereits zwei Beispiele für ML-Methoden genannt – Lineare Regression 

und Rasch-Modell – die man dem ML-Bereich vielleicht eher weniger zuordnen würde, wenn 

man eher einen Hintergrund in der Tradition der „klassischen“ Hypothesen-testenden Statistik 

hat. Der grundsätzliche Unterschied zwischen den Ansätzen der Hypothesen-testenden 

Statistik und ML-Methoden sind aber nicht die genutzten mathematischen Modelle – auch, 

wenn es durchaus Modelle gibt, die eher einem der beiden Ansätze zugeordnet werden. Der 

grundlegende Unterschied ist vielmehr die Herangehensweise und die Art der 

Ergebnisevaluation und -interpretation wie Breiman (2001) darstellt.  

In der klassischen Hypothesen-testsenden Statistik („Data Modelling“ bei Breiman, 2001) 

ist das Ziel die Beschreibung von Phänomenen und Zusammenhängen durch mathematisch-

theoretische Modelle, über die im Rahmen der schließenden Statistik Aussagen bzgl. ihrer 

Gültigkeit, Unsicherheit und Bedeutung getroffen werden können, z. B. mithilfe von 
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Signifikanzen und Effektstärken. Um solche Aussagen treffen zu können, beispielsweise durch 

die Berechnung von 𝑝-Werten, müssen die genutzten Modelle wahrscheinlichkeitstheoretisch 

wohldefiniert und händelbar sein.  

Im ML-Ansatz („Algorithmic Modelling“ bei Breiman, 2001) ist das Ziel zwar auch die 

Modellierung von Phänomenen und Zusammenhängen, allerdings nicht, indem die Gültigkeit 

oder die Bedeutung der erhaltenen Modelle durch mathematisch-theoretische Sätze abgeleitet 

wird. Stattdessen ist die Generalisierung der Modelle auf neue, ungesehene Daten das zentrale 

Anliegen. Wenn der Zweck eines Modells also beispielsweise die Vorhersage des 

Studienerfolgs für Studienanfänger ist, dann wird das Modell daran bewertet, wie genau die 

Vorhersagen für Studienanfänger ist, deren Daten während des Lernprozesses des Modells 

(auch Training genannt, s. u.) nicht genutzt wurden. Um diese Generalisierung eines Modells 

einzuschätzen, also das Modell zu evaluieren, wird der für die Analyse verfügbare Datensatz 

in einen Trainings- und einen Evaluierungsdatensatz unterteilt (z. B. Géron, 2019). Das Modell 

wird dann mithilfe der Trainingsdaten erstellt und anschließend mithilfe der Evaluierungsdaten 

evaluiert. Die Vorhersagekraft oder Performanz des Modells für die Evaluierungsdaten, ggf. 

im Vergleich zur Performanz für die Trainingsdaten, ist dann das Gütekriterium anhand dessen 

das Modell bewertet wird. Die dazu nutzbaren Modelle müssen also auf mathematisch-

theoretischer Ebene nicht so wohldefiniert und händelbar sein, wie Modelle, die in der 

schließenden Statistik genutzt werden. Sind sie es doch, ist das allerdings selbstverständlich 

auch kein Hindernis, sie trotzdem im Sinne eines ML-Ansatzes zu nutzen – das Ziel und die 

Herangehensweise sind das Entscheidende.  

In den letzten Jahren haben sich diese beiden „Kulturen“, die Breiman (2001) versucht zu 

umreißen, allerdings deutlich angenähert und es existieren viele übergreifende Ansätze (z. B. 

Murphy, 2022). Trotzdem ist es hilfreich die grundsätzlichen Herangehensweisen zu kennen, 

um die Zielsetzungen konkreter Projekte und Ansätze besser einordnen und nachvollziehen zu 

können. Auch in der Naturwissenschaftsdidaktik finden solche eher algorithmischen 

Modellierungen bzw. ML-Methoden zunehmend Anwendung (z. B. Estrellado et al., 2020 ⁠; 

Zhai et al., 2021b ⁠; Zhai et al., 2020b). 

Loss-Funktionen und Training 

Es wurden nun Ansätze, ML zu konzeptualisieren und von „klassischer“ Statistik abzugrenzen, 

dargestellt. Es ist allerdings noch nicht geklärt, wie die Modelle eigentlich aus den 

Trainingsdaten „lernen“. Um dies zu erläutern, müssen zunächst einige (wenige) Notationen 

eingeführt werden. Als Modell wird hier eine Funktion (im mathematischen Sinne) verstanden, 

die Inputs 𝑥 auf Outputs 𝑓𝑤(𝑥) abbildet: 

Modell(funktion):    𝑓𝑤: 𝑋 → 𝑌,   𝑥 ↦ 𝑓𝑤(𝑥) . 

Diese Funktion hängt von Parametern 𝑤 ab. Für das „Lernen“ dieser Parameter der Funktion 

liegt ein Datensatz aus Features und Targets vor: 

𝒟 = {(𝑥𝑖, 𝑦𝑖 | 𝑖 = 1, … , 𝑁} . 

Die Features 𝑥 und Targets 𝑦 können dabei (ggf. mehrdimensionale) Zahlen, Kategorien o. Ä. 

sein. Das Ziel ist nun, die Parameter 𝑤 so anzupassen, dass die Ausgaben der Modellfunktion 
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möglichst genau bei den jeweiligen Targets liegen, d. h., dass 

𝑓𝑤̂(𝑥𝑖) ≈ 𝑦𝑖 

gilt, wobei 𝑤̂ die optimale Parameterwahl bezeichnet. Üblicherweise wird zu diesem Zweck 

eine sog. Loss-Funktion (auch einfach nur Loss) verwendet. Im Falle einer Regression ist die 

Loss-Funktion zum Beispiel typischerweise die Least-Squares-Funktion (z. B. Géron, 2019) 

ℒ(𝑤) = ∑(𝑦𝑖 − 𝑓𝑤(𝑥𝑖))2

𝑁

𝑖=1

. 

Für Klassifikationsmodelle, die anstelle eines kontinuierlichen einen diskreten Output bzw. 

diskrete Targets 𝑦 haben, wird stattdessen zumeist die sog. Cross-Entropy Loss-Funktion 

verwendet (Géron, 2019). Im Unsupervised Learning hat typischerweise jeder Ansatz eine 

eigene Loss-Funktion. Loss-Funktionen sind häufig heuristisch motiviert, lassen sich aber 

häufig aus wahrscheinlichkeitstheoretischen Überlegungen herleiten (siehe ein Beispiel in 

Anhang A).  

Das Ziel der Entwicklung eines ML-Modells lautet dann, die jeweilige Loss-Funktionen zu 

minimieren. Loss-Funktionen sind also stets so konstruiert, dass ihre Minimierung dem Ziel 

der Modellbildung entspricht. Den gesamten Prozess nennt man dann auch Training. Bei der 

oben exemplarisch dargestellten Least-Squares-Funktion wird also die Summe der 

quadratischen Abstände der Datenpunkte zur Ausgleichsgerade minimiert, sodass die 

Ausgleichsgerade „möglichst nah“ an allen Datenpunkten liegt, was dem Ziel der Regression 

genau entspricht. Diese Optimierungen werden typischerweise mit dem sog. Gradient Descent 

Algorithmus vorgenommen (z. B. Géron, 2019). Dabei werden die Parameter iterativ gemäß 

der Vorschrift 

𝑤𝑘+1 ← 𝑤𝑘 − 𝛼
𝜕ℒ(𝑤)

𝜕𝑤
 

aktualisiert, sodass ℒ(𝑤) minimiert wird9. Der frei wählbare Parameter 𝛼 wird dabei auch die 

Learning Rate genannt. In modernen Anwendungen werden aber zumeist Erweiterungen dieses 

Basisalgorithmus genutzt, wie beispielsweise der sog. Adam-Optimizer (Kingma & Ba, 2014). 

Diese Erweiterungen reagieren weniger sensibel auf suboptimale Wahlen der Learning Rate 

und sind zudem robuster bezüglich potenzieller lokaler Minima der Loss-Funktionen10. Bei 

Methoden des Unsupervised Learning und probabilistischen Ansätzen sind auch noch andere 

Optimierungsalgorithmen in Fällen gebräuchlich, in denen Gradient Descent-Varianten nicht 

angewendet werden können, wie beispielsweise die Expectation-Maximization- oder 

Variational-Inference-Methoden. Um diese darzustellen sind umfangreichere Beschreibungen 

auf Basis der Wahrscheinlichkeitstheorie notwendig, die hier aus Platzgründen nicht 

 

9  Bei „einfachen“ Loss-Funktionen wie dem Least-Squares-Loss im Falle einer linearen Regression lässt sich 

das Optimum teilweise sogar noch analytisch bestimmen, indem 𝜕ℒ(𝑤)/𝜕𝑤 = 0 nach 𝑤 aufgelöst wird. Das 

ist jedoch für komplexere Loss- bzw. Modell-Funktionen und große Datensätze nicht mehr möglich. 

10 Gerade im Deep Learning Bereich hat sich aber unter anderem Aufgrund der hohen Dimensionalität des 

Parameterraums gezeigt, dass lokale Minima ein geringeres Problem sind als intuitiv angenommen (z. B. 

Choromanska et al., 2015). Das liegt unter anderem daran, dass in hochdimensionalen Parameterräumen 

Nullstellen der Loss-Gradienten in den meisten Fällen lediglich Sattelpunkte sind. 
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vorgenommen werden können. Es sei daher auf einschlägige Literatur verwiesen (z. B. 

Murphy, 2022). 

Batching und Learning Curves 

Mit dem Modell 𝑓𝑤(𝑥), einem geeigneten Loss ℒ(𝑤) und einem Optimierungsalgorithmus wie 

Gradient Descent sind somit alle Bausteine für das Training eines ML-Modells vorhanden. In 

modernen Anwendungen gibt es allerdings noch eine weitere Hürde: Die Menge an 

Trainingsdaten ist meist zu groß, als dass alle Datenpunkte in jeder einzelnen Iteration der 

Optimierung verwendet werden können. In diesen Fällen geht man dazu über, den Datensatz 

randomisiert in kleinere Segmente, sog. Batches, zu unterteilen und diese dann nacheinander 

in den Iterationen zu nutzen (z. B. Géron, 2019). Im Falle des Gradient Descent Algorithmus 

nennt man dieses Vorgehen aufgrund der Zufälligkeit der Zuordnung zu den Batches auch 

Stochastic Grandient Descent. Die Optimierung in Batches hat sich zum de facto Standard 

entwickelt, weshalb bei den meisten anderen Optimierungsalgorithmen der Zusatz „Stochastic“ 

gar nicht genutzt wird. Das batchweise Training kann zwar etwas instabiler sein, ist aber 

üblicherweise deutlich schneller und ab einem gewissen Verhältnis zwischen verfügbarer 

Rechenleistung und Trainingsdaten unvermeidlich.  

Sind einmal alle Daten des Datensatzes (möglicherweise batchweise) durchlaufen worden, 

so spricht man auch von einer Epoch absolviertem Training. Je nach Modell wird üblicherweise 

nur für wenige Epochs oder aber auch mehrere hundert Epochs trainiert. Um zu erkennen, ob 

die Optimierung konvergiert, werden üblicherweise während oder nach dem Training sog. 

Learning Curves erstellt (Géron, 2019). Dabei wird der jeweilige (Batch-)Loss gegen die 

absolvierten Trainingsschritte oder Epochs aufgetragen. Um bereits während des Trainings zu 

überwachen, wie gut das Modell auf ungesehene Daten generalisierbar ist, kann hier auch der 

Loss für die Evaluierungsdaten mit aufgetragen werden, allerdings ohne für diese Loss-

Berechnung auch einen Optimierungsschritt durchzuführen. Eine beispielhafte Learning Curve 

ist in Abbildung 2.5 dargestellt. Ergänzend zum Loss kann man vor allem bei 

Klassifikationsmodellen auch leichter interpretierbare Metriken wie die prozentuale 

Übereinstimmung (Accuracy) oder Cohens 𝜅 ergänzend auftragen. 

 

Abbildung 2.5 Beispielhafte prototypische Learning Curves. Hier sind absichtlich keine Werte für den Loss auf 

der 𝑦-Achse angegeben, da diese häufig nicht absolut interpretierbar sind. 
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Es ist hilfreich, während des Trainings die Learning Curves bezüglich der 

Evaluierungsdaten zu betrachten, um bereits im Prozess zu überwachen, ob das Modell auf 

ungesehene Daten generalisierbar ist. Das ist allerdings nicht unproblematisch. Es gibt viele 

Modelle, in denen einige Parameter bereits vor dem eigentlichen Training gewählt werden 

müssen (z. B. Regularisierungsterme, s. u.) und auch das Training selbst ist von Parametern 

wie der Learning Rate oder Größe der Batches abhängig. Solche Parameter werden 

Hyperparameter genannt (Géron, 2019). Nutzt man die Evaluierungsdaten bereits während des 

Trainings, so kann man sich nicht (ganz) sicher sein, ob die Performanz bezüglich der 

Evaluierungsdaten für eine andere Wahl von Hyperparametern nicht anders (geringer) sein 

könnte. Das heißt, man kann unbeabsichtigt die Hyperparameter manuell so optimieren, dass 

eine höhere Performanz bezüglich des Evaluierungsdatensatzes erreicht wird, die für 

„tatsächlich ungesehene“ Daten nicht vollständig repräsentativ ist. Es gibt im Wesentlichen 

zwei Möglichkeiten, um dem zu begegnen. Der erste Ansatz wäre, noch einen dritten Datensatz 

aus den Gesamtdaten abzuspalten, mit dessen Hilfe als vollständig unangetasteter Test-

Datensatz am Ende des Trainings das Modell erneut evaluiert wird. Sind nicht genügend Daten 

vorhanden, um eine solche weitere Unterteilung durchführen zu können, bietet sich das 

Verfahren der sog. Cross-Validierung (CV) an (z. B. Géron, 2019). Dazu wird der Datensatz 

in 𝑘 bis auf Rundung gleich große Segmente unterteilt. Nun wird das Modell 𝑘-mal trainiert, 

wobei jeweils eines dieser Segmente zur Evaluierung zurückgehalten wird. Die Evaluierung 

erfolgt somit einmal auf Basis aller verfügbarer Daten und ist somit deutlich robuster 

gegenüber Schwankungen und es ist unwahrscheinlicher hier durch Hyperparameter-

optimierung tatsächlich nicht-repräsentative Performanzzuwächse zu erzeugen (siehe auch 

Kapitel 6). Selbstverständlich kann man auch CV nutzen und trotzdem zusätzlich noch mithilfe 

eines vollständig separatem Test-Datensatz arbeiten. 

Overfitting 

Nachdem der Grundansatz und die Grundmethodik von ML-basierten Analysen vorgestellt 

wurden, soll nun noch ein zentrales Phänomen beschrieben werden, welches auch für das hier 

vorgestellt Projekt relevant ist. Komplexe ML-Modelle, die über eine große Anzahl 

trainierbarer Parameter verfügen, sind häufig in der Lage, sämtliche Spezifika eines 

Trainingsdatensatzes zu „erlernen“. Dieses Phänomen ist als Overfitting (z. B. Géron, 2019) 

bekannt und zeigt sich in einem deutlichen Unterschied zwischen dem Loss bezüglich der 

Trainings- und Evaluierungsdaten. Bei einem Regressionsmodell, d. h., wenn die Target-

Variable kontinuierlich ist, lässt sich dies leicht mithilfe eines entsprechenden Kurven-Fits 

verdeutlichen (Abbildung 2.6). Auch bei Klassifikationsproblemen lässt sich Overfitting 

zumindest im Falle von zweidimensionalen Features noch gut visualisieren (Abbildung 2.7, 

links). Man beachte, dass es sich bei allen Abbildungen in diesem Abschnitt um reale 

Modellfits handelt. Es gibt einige sog. Regularisierungsmethoden (z. B. Géron, 2019 ⁠; Murphy, 

2022), die man nutzen kann, um Overfitting zu verringern, von denen eine in Abbildung 2.7 

(rechts) angewendet wurde. 
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Abbildung 2.6 Darstellstellung von Overfitting bei einem Regressionsproblem. Man erkennt, wie die 

Modellfunktion (schwarze Linie) alle Trainingsdatenpunkte exakt trifft, aber jeden Evaluierungsdatenpunkt 

verfehlt. Die den Daten zugrundeliegende Funktion ist eine quadratische Funktion, die in hellgrau dargestellt ist. 

Die Daten folgen der Vorschrift 𝑌 = 𝑋2 + 𝜖, wobei 𝜖 normalverteilt ist. 

 

Abbildung 2.7 Darstellung von Overfitting und Regularisierung bei einem Klassifikationsproblem. Man erkennt, 

wie die sog. Decision Boundary, d. h. die Grenzlinie, ab der das Modell zwischen den Zuordnungen wechselt, 

sich beim linken Modell förmlich um einzelne Trainingsdaten „herumlegt“. Die Einfärbung zeigt die 

Wahrscheinlichkeit, dass das Modell die Zuordnung „wahr“ vornimmt. Je heller ein Bereich hinterlegt ist, umso 

wahrscheinlicher ist es, dass das Modell einen dort liegenden Datenpunkt als „wahr“ klassifiziert. Die 

Datenpunkte wurden gleichverteilt generiert und die tatsächliche Zuordnung wurde gemäß: 𝑥1 + 𝑥2 > 0 

vorgenommen. Allerdings wurde anschließend normalverteiltes Rauschen zu 𝑥1 und 𝑥2 addiert, um einen realen 

Datensatz zu simulieren und das Overfitting deutlicher hervorzuheben. Rechts wurde die sog. 𝐿2-Regularisierung 

(auch „weight decay“, siehe z. B. Géron, 2019) angewendet. 

Wenn die Feature- oder Target-Variablen allerdings höherdimensional sind, kann die 

Vorhersage nicht mehr so leicht visualisiert werden. Man greift stattdessen häufig auf die 

Learning Curves zurück, um einzuschätzen, ob Overfitting vorliegt (Géron, 2019). Ein sicheres 

Indiz für das Vorliegen von Overfitting ist, dass der Evaluierungsloss ab einem bestimmten 
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Trainingsschritt anfängt anzuwachsen, wie in Abbildung 2.8 links zu sehen. Das heißt, das 

Modell erlernt aktiv Spezifika des Trainingsdatensatzes und generalisiert immer schlechter auf 

die ungesehenen Evaluierungsdaten. In Abbildung 2.8 rechts dargestellt ist der Fall, indem 

zwar auch ein deutlicher Unterschied zwischen dem Loss bezüglich Evaluierungs- und 

Trainingsdaten sichtbar ist, aber nicht unbedingt Overfitting vorliegt. Hier ist auch möglich, 

dass der Trainingsdatensatz schlicht nicht die gesamte Varianz abbildet, die in der 

Grundgesamtheit vorhanden ist. 

 

Abbildung 2.8 Overfitting sichtbar in Learning Curves. Dargestellt sind die zu den Modellen, deren Decision 

Boundaries in Abbildung 2.7 dargestellt sind, gehörigen Learning Curves. 

Neben dem Overfitting existiert auch das gegenteilige Phänomen des Underfitting. 

Underfitting liegt vor, wenn das Modell an sich schon zur Beschreibung des Datensatzes nicht 

ausreichend variieren kann. Dieses Problem würde beispielsweise vorliegen, wenn man an die 

in Abbildung 2.6 dargestellten Daten eine lineare Funktion anpassen würde. Für die 

Sprachmodelle (siehe Abschnitt 2.6), die in dem hier vorgestellten Projekt die größte Rolle 

spielen, ist Underfitting bei der verfügbaren Anzahl an Modellparametern (mehrere 10 Mio. 

bis mehrere Mrd.) unwahrscheinlich. Bei den anderen hier verwendeten, einfacheren Modellen, 

wie linearen und logistischen Regressionsmodellen, könnte Underfitting zwar eine Rolle 

spielen, die Evaluierungen zeigten hier jedoch keine Problematik. Insgesamt wird daher hier 

auf ausführlichere Visualisierungen u. Ä. zum Underfitting verzichtet. 

2.5. Machine-Learning-Rahmenmodelle für naturwissenschaftsdi-

daktische Forschung 

Es wurden nun einige grundlegende Begrifflichkeiten, Workflows und Ansätze aus dem 

Bereich des ML vorgestellt. Diese dienen einerseits zur Vorbereitung der explorativen, nicht-

hierarchischen Analysen der inneren Struktur des FDW im zweiten Zielpaket dieses Projekts 
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(Kapitel 5). Andererseits sind sie aber auch die Grundlage für die Automatisierung der 

Auswertung des genutzten Testinstruments auf Basis der vorherigen Ergebnisse im Rahmen 

des dritten Zielpakets (Kapitel 6). In diesem Abschnitt werden nun Ansätze erläutert, die zur 

Strukturierung insbesondere der explorativen Analyse der inneren Struktur des FDW 

herangezogen werden. Erst im nächsten Abschnitt (2.6) werden dann einige weitere ML- und 

NLP-Methoden vertieft thematisiert.  

ML-Methoden und insbesondere Methoden des Unsupervised Learning in sozial- und 

bildungswissenschaftlichen Forschungsvorhaben anzuwenden, bringt Herausforderungen 

sowohl in der technischen Umsetzung als auch bei der Interpretation und Deutung der 

Ergebnisse mit sich (z. B. Nelson, 2020 ⁠; Zhai et al., 2020b). Zhai et al. (2020b) arbeiten im 

Rahmen ihres systematischen Reviews bestehender ML-Anwendungen im Kontext des 

Assessments im naturwissenschaftlichen Bereich heraus, dass ein Großteil bisheriger ML-

Anwendungen primär zur Unterstützung und Entlastung menschlicher Rater bei basalen 

Aufgaben dient. Zhai et al. (2020a) entwickelten parallel ein Framework, welches die 

Anwendung von ML auf einem Kontinuum zwischen reinem „Ersetzen“ (Substitution) bis hin 

zu echter „Transformation“ (Redefinition) von Assessmentprozessen systematisiert. Zhai 

(2021) hebt darüber hinaus die Potenziale der Anwendung von ML-Methoden für 

Assessmentzwecke noch einmal explizit hervor. 

Unsupervised-Learning-Methoden sind gerade für Erkenntnisgewinnung und echte 

Transformationen von Assessmentprozessen interessant, da sie (anders als Supervised-

Learning-Methoden) dazu in der Lage sind, neue bzw. bisher unerkannte Strukturen in den 

untersuchten Konstrukten sichtbar zu machen (Nelson, 2020 ⁠; Zhai et al., 2020b). Besonders 

bei Unsupervised-Learning-Methoden gestalten sich Interpretation und Deutung der 

Analyseergebnisse aber häufig als komplex. Sherin (2013) schlug daher schon früh vor, die 

Interpretationskraft und Sachkenntnis menschlicher Experten direkt in explorative 

Analyseprozesse mit einzubinden. Ein prominenter Ansatz, um diese Verschränkung von 

menschlicher Expertise und computergestützter Modellierung zu systematisieren und 

organisieren, ist die sog. Computational Grounded Theory (CGT) nach Nelson (2020). Die 

CGT wird im vorgestellten Projekt intensiv zur Konzeption der Untersuchungen zur nicht-

hierarchischen Struktur des FDW, d. h. im Rahmen des zweiten Zielpakets, genutzt (Kapitel 

5). Sie dient insbesondere zur Strukturierung explorativer Analysen unter der Nutzung von 

Unsupervised-Learning-Methoden und hat das Ziel, die Interpretation der Ergebnisse zu 

erleichtern und ihre Verlässlichkeit zu erhöhen. Nelson (2020) schlägt dafür die folgenden drei 

Schritte vor: 

1. Pattern Detection: Explorative Methoden werden zur Identifikation von neuen Mustern 

und Strukturen in den Daten genutzt. Im Falle von Daten zu psychometrischen 

Testinstrumenten können das Clusteranalysen der Scores sein. Im Falle von Interview- 

oder Freitextdaten können explorative Textanalysemethoden (siehe Abschnitt 2.6) 

angewendet werden. 

2. Pattern Refinement: Die identifizierten Muster werden durch Tiefenanalysen 

ausgeschärft. Dabei fließen menschliches Expertenwissen und Interpretationskraft in die 

Analyse ein. Im Falle von psychometrischen Testinstrumenten können dabei 
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beispielsweise Informationen über die Subskalen des Testinstruments genutzt werden. 

Im Falle von Sprachdaten können Zusammenhänge zwischen Sprachnutzung und 

Kovariaten untersucht werden oder besonders charakteristische Texte einer erneuten 

manuellen Untersuchung unterzogen werden. 

3. Pattern Confirmation: Um ein Argument für die Stabilität und in diesem Sinne auch 

Validität der identifizierten Muster und Strukturen zu bieten, wird die Vorhersagekraft 

von ML-Modellen bei der Klassifizierung der zuvor ermittelten Kategorien evaluiert. Im 

Falle von psychometrischen Testinstrumenten können typische Klassifikationsmodelle 

genutzt werden, um Proband:innen anhand ihrer Scores den Kategorien zuzuordnen. Im 

Falle von Sprachdaten können für denselben Zweck NLP-Modelle unterschiedlicher 

Komplexität (siehe Abschnitt 2.6) genutzt werden. Die Pattern Confirmation dient zur 

Bestätigung der in der Pattern Detection gefundenen Muster in folgendem Sinne: Eine 

(ausreichend) hohe Performanz von ML-Modellen bei Verortung von Datensätzen im 

Rahmen der gefundenen Muster (z. B. Zuordnung zu Clustern) dient als Nachweis der 

Existenz latenter Strukturen in den Daten, die mit diesen Mustern korrespondieren. ML-

Modelle können hierbei (anders als viele „klassische“ Verfahren wie lineare 

Regressionsmodelle oder Strukturgleichungsmodelle, siehe Moosbrugger & Kelava, 

2020) auch nicht-lineare Zusammenhänge modellieren. Der Nachteil ist, dass diese 

latenten Strukturen dann nicht unbedingt greifbar sind. Trotzdem liefert eine erfolgreiche 

Pattern Confirmation somit ein Argument für die Robustheit, (bei der Nutzung von 

Evaluierungsdaten auch) die Generalisierbarkeit und die Validität der beschriebenen 

Muster. Welche Validitätsaspekte (z. B. Messick, 1995 ⁠; Schaper, 2014) dabei adressiert 

werden, hängt von der Beziehung zwischen Feature- und Target-Daten der Pattern-

Confirmation-Modelle ab (siehe auch Ende Abschnitt 6.7.3). 

Auch, wenn die bei Nelson (2020) beschriebene Form der CGT stark auf die Analyse von 

Textdaten ausgerichtet ist, lässt sich das Verfahren auch auf andere Datentypen bzw. mehrere 

Datenquellen übertragen. In diesem Fall werden dann insbesondere die Pattern Detection und 

das Pattern Refinement als ein iterativer Prozess verstanden, in dem menschliches 

Expertenwissen an unterschiedlichen Stellen im Analyseprozess genutzt werden kann. Die 

CGT bietet somit eine Möglichkeit, Unsupervised-Learning-Ansätze für eine echte 

Transformation von Assessmentprozessen im Sinne von Zhai et al. (2020a) zu nutzen, indem 

die ermittelten Kategorien als Zielkonstrukte bzw. Targets eines Assessment-Systems genutzt 

werden. So kann sowohl neu ermitteltes als auch bestehendes Wissen über die innere Struktur 

der betrachteten Konstrukte direkt im Assessmentprozess genutzt werden. Die CGT wurde in 

der naturwissenschaftsdidaktischen Forschung bereits zur Untersuchung von Erklärprozessen 

(Rosenberg & Krist, 2021) und Argumentationsmustern von Schülerinnen und Schülern 

(Tschisgale et al., 2023) erfolgreich eingesetzt. 

Die CGT bietet zudem einen Rahmen, den Daten-Mix, der für die Analyse der inneren 

Struktur des FDW in diesem Projekt vorliegt, gesamtheitlich in den Blick zu nehmen. Dabei 

werden insbesondere die zuvor durch trainierte Kodierer manuell erstellten Scores für die 

Pattern Detection und die authentischen Sprachproduktionen der Proband:innen in den offenen 

Aufgaben des Testinstruments im Pattern Refinement genutzt. Das genaue Vorgehen und die 
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genaue Anwendung der CGT bei den Analysen zu diesem zweiten Zielpaket des Projekts 

werden in den Kapiteln 5 und 6 genauer vorgestellt. 

Darüber hinaus haben Kubsch et al. (2022) das Distributing Epistemic Functions and Tasks 

(DEFT)-Framework vorgeschlagen11, mit dem sie die Anwendung von ML- und Data-Science-

Methoden nicht nur für Assessmentzwecke, sondern für sozial- und bildungswissenschaftliche 

Forschungsvorhaben im Allgemeinen systematisieren. Sie schlagen dafür eine 

zweidimensionale Strukturierung vor, wobei auf der ersten Achse zwischen Supervised 

Settings (Targets bzw. Label sind im Voraus bekannt) und Unsupervised bzw. Grounded 

Settings (Targets bzw. Label sind nicht vordefiniert) unterschieden wird. Damit folgen sie der 

grundlegenden Unterscheidung zwischen Supervised und Unsupervised Learning, schließen 

aber „Mischformen“ nicht aus. In der hier vorliegenden Untersuchung der inneren Struktur des 

FDW sind beispielsweise Scores aus der Bepunktung des genutzten Testinstruments als 

„Labels“ vorhanden, allerdings (noch) nicht die tatsächlichen Zielkonstrukte zur inneren 

Struktur des FDW. Es kann also im Sinne des DEFT-Frameworks eher von einem Grounded 

Setting gesprochen werden. Auf der zweiten Achse des Frameworks unterscheiden Kubsch et 

al. (2022) zwischen sog. High Inference und Low Inference. In Low-Inference-Settings werden 

einfache Konstrukte bzw. unmittelbar zugängliche Kategorien, wie die reine Bepunktung eines 

Testinstruments, in den Blick genommen, während in High-Inference-Settings komplexere 

Konstrukte wie Kompetenzprofile untersucht werden.  

In diesem Abschnitt wurden die CGT und das DEFT-Framework zur Strukturierung von 

ML-basierten Analysen in (u. A.) naturwissenschaftsdidaktischer Forschung dargestellt. Dabei 

wurde insbesondere die Anwendung der CGT für die Analysen im Rahmen des zweiten und 

dritten Zielpakets des vorliegenden Projekts bereits angedeutet. Zur Analyse des vorliegenden 

Daten-Mix aus Scores und Sprachproduktionen in den offenen Aufgaben des verwendeten 

Testinstruments werden dabei explorative Sprachanalysemethoden, sog. Topic Models (Blei, 

2012), genutzt. Zur Automatisierung der Auswertung des Testinstruments im Rahmen des 

dritten Zielpakets werden Deep-Learning-Sprachmodelle (z. B. Devlin et al., 2019) verwendet. 

Aufbauend auf den ML-Grundlagen aus Abschnitt 2.4 werden daher im folgenden Abschnitt 

weitere Begriffe und Methoden aus dem Bereich des Deep Learning und der Sprachanalyse 

vorgestellt. Insbesondere die Deep-Learning-basierte Sprachanalyse ist eine zentrale 

Grundlage für das vorgestellte Projekt und ermöglicht die angestrebte Automatisierung des 

FDW-Assessments. 

2.6. Machine-Learning-basierte Sprachanalyse 

In Abschnitt 2.4 wurden einige ML-Grundbegriffe eingeführt und in Abschnitt 2.5 wurde 

insbesondere die CGT zur Strukturierung explorativer Analysen im (u. A.) 

bildungswissenschaftlichen Kontext vorgestellt. Nun werden aufbauend auf Abschnitt 2.4 

weitere ML-(basierte) Methoden beschrieben, die zur Analyse der authentischen 

Sprachprodukte (Antworten auf die offenen Testaufgaben) von Proband:innen zu den 

 

11 Für eine verwandte aber anders ausgerichtete Systematisierung sei hier auch auf die jüngst erschienenen 

Arbeiten von Nehring et al. (2025) verwiesen. 
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Aufgaben des für dieses Projekt verwendeten FDW-Testinstruments genutzt werden (Kapitel 

5 & 6). 

Encodings 

Natural Language Processing (NLP) kann als das Teilgebiet der Data Science aufgefasst 

werden, das sich mit der (computerbasierten bzw. automatisierten) Verarbeitung menschlicher 

Sprache befasst (Jurafsky & Martin, 2024). Frühe NLP-Methoden basierten teilweise auf 

expliziten Regel-Systemen („wenn-dann“) oder Word-Count Tabellen (z. B. TF-IDF, Mladenić 

et al., 2016). Moderne Methoden umfassen unter anderem probabilistische Ansätze (z. B. Blei, 

2012; Roberts et al., 2019) und Deep-Learning-basierte Sprachmodelle, die Language Models 

(LM) oder Large Language Models (LLM) genannt werden (z. B. Devlin et al., 2019; Übersicht 

bei Naveed et al., 2024). Der Grundansatz von NLP-Methoden besteht darin, die in den 

einzelnen Dokumenten des Datensatzes auftretenden Worte systematisiert zu erfassen und in 

eine mathematische Repräsentation zu überführen (Jurafsky & Martin, 2024). Die Gesamtheit 

der in den Dokumenten des Datensatzes auftauchenden Worte wird auch Vokabular genannt. 

Jedem Wort des Vokabulars wird typischerweise zunächst eine natürliche Zahl als Index 

zugeordnet. Da menschlicher Sprache aber keine hierarchische Dimension innewohnt, nach der 

man die Worte sinnvoll ordnen könnte, muss diese Indexdarstellung in eine Darstellung 

übertragen werden, die keine Reihenfolge der Worte impliziert. Üblicherweise werden dazu in 

erster Instanz sog. One-Hot-Encodings verwendet, d. h. die Worte werden als Vektoren 

dargestellt, die nur an ihrem jeweiligen Index „1“ und sonst überall „0“ sind. Diese Vektoren 

müssen allerdings so viele Einträge haben, wie Worte im Vokabular sind, und sind dadurch 

üblicherweise hochdimensional (mehrere tausend Dimensionen). Die Überführung von 

Dokumenten in One-Hot-Encodings ist in Abbildung 2.9 schematisch dargestellt. Dabei 

werden zwei „Dokumente“ (einzelne Sätze) verarbeitet. Das Vokabular enthält alle Worte im 

Korpus der Dokumente und wird genutzt, um die Dokumente in die Indexdarstellung, bei der 

jedes Wort durch den entsprechenden Index abgebildet wird, zu überführen. Die One-Hot-

Encodings können dann genutzt werden, um weitere Repräsentationen des Textes abzuleiten. 

Das Verarbeiten solcher One-Hot-Encodings ist umständlich und ineffizient, weshalb 

unterschiedliche Methoden genutzt werden, um diese Darstellungen weiter zu reduzieren bzw. 

zu verdichten (z. B. Géron, 2019 Géron, 2019; Jurafsky & Martin, 2024). Ein Standard-Ansatz 

ist der sog. Bag-of-Words-Ansatz (BoW-Ansatz), indem die Reihenfolge der Worte in den 

Dokumenten ignoriert wird und die Dokumente durch die Summierung der Encodings ihrer 

jeweiligen Worte repräsentiert werden (siehe Abbildung 2.9). Um die Dimensionalität dieser 

Vektoren weiter zu verringern, werden zudem typischerweise einige Schritte zur Reduktion 

des Vokabulars genutzt, darunter 

• Lowercasing: Alle Worte werden klein geschrieben. 

• Puncutation-Removal: Satzzeichen u. Ä. werden vernachlässigt. 

• Stopword-Removal: Worte, die in der vorliegenden Sprache der Dokumente sehr häufig 

auftauchen, aber wenig inhaltliche Bedeutung tragen, z. B. „und“, „der“, „die“, etc., 
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werden vernachlässigt. Für solche Stopwords existieren in Sprachverarbeitungssoftware 

(z. B. Bird et al., 200912) typischerweise vordefinierte Listen. 

• Word-Frequency: Worte, die in einem sehr großen oder sehr geringen Anteil an 

Dokumenten auftauchen, werden vernachlässigt. Ähnlich wie beim Stopword-Removal 

tragen diese Worte oft nur geringe inhaltliche Bedeutung für die Analyse, entweder, weil 

sie die Dokumente nicht voneinander unterscheiden, oder, weil sie so selten auftreten, 

dass die Bedeutung ihrer An- oder Abwesenheit in Dokumenten nicht (ausreichend) 

systematisch beschrieben werden kann. 

• Tokenization: Die Texte werden in sog. Token unterteilt. Dabei ist ein Token ein Wort 

oder Teil eines Wortes. Moderne Sprachverarbeitungsmodelle nutzen nicht-triviale 

Methoden, um nützliche Unterteilungen in Token vorzunehmen (z. B. Mistral AI, o. D.). 

Im Schnitt entspricht ein Token ca. ¾ eines Wortes. 

 

Abbildung 2.9 Darstellung der Überführung von Dokumenten in unterschiedliche Encodings. Die Berechnung 

von Embeddings-Encodings (unten rechts), wird am Ende des Abschnitts 2.7 beschrieben. 

 

12  Auch, wenn diese Quelle schon etwas älter ist, wird das dort eingeführte Python-Paket „Natural Language 

Toolkit (NLTK)“ (https://www.nltk.org/, zugegriffen 17. Januar 2025) nach wie vor aktiv erweitert und 

genutzt. 

https://www.nltk.org/
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Topic Models 

Mithilfe der BoW-Darstellung von Texten lassen sich bereits eine Reihe von Analysen 

durchführen. Einerseits können einfache Klassifikationsmodelle wie logistische 

Regressionsmodelle auf Basis dieser Darstellung zur Vorhersage bestimmter Labels zu den 

Dokumenten trainiert werden (z. B. Géron, 2019). Andererseits können Unsupervised-

Learning-Methoden zur Untersuchung von Mustern im Sprachgebrauch der Dokumente 

angewendet werden. Für solche explorativen Untersuchungen werden häufig sog. Topic 

Models verwendet (Chen & Liu, 2017). Dabei handelt es sich um probabilistische BoW-

Modelle, die die Wahrscheinlichkeit des Auftretens der Wörter in den Dokumenten über den 

Zwischenschritt der sog. Topics modellieren. Das ursprüngliche Topic Model (Blei, 2012), 

oder auch Latent Dirichlet Allocation-Modell (LDA, Blei et al., 2003), nimmt dabei folgenden 

Prozess für die Erzeugung der Dokumente an: 

1. Jedes Dokument beschäftigt sich anteilig mit jedem Topic13. 

2. Jedes Topic besitzt eine Wahrscheinlichkeit für jedes Wort des Vokabulars. Der 

englische Begriff Topic wird hier als ein feststehender Begriff des Topic Modelling 

genutzt, um Verwechslungen zu vermeiden. Trotzdem lassen sich die Topics als „latente 

Themen“, um die es in den Dokumenten geht, verstehen. 

3. Jeder „Wort-Platz“ in einem Dokument wird mit der Dokument-Topic-Verteilung („1.“) 

einem Topic zugeordnet. 

4. Für jeden dieser „Wort-Plätze“ wird gemäß der jeweiligen Topic-Wort-Verteilung („2.“) 

ein Wort generiert. 

Dieser Prozess lässt sich mathematisch durch eine Wahrscheinlichkeitsverteilung modellieren 

(Blei et al., 2003). Es wird dann ein Schätzalgorithmus konstruiert, der ausgehend von den 

tatsächlichen Dokumenten bzw. deren Worten im Datensatz die wahrscheinlichsten 

Dokument-Topic- und Topic-Wort-Verteilungen berechnet. Die Details dieses Vorgehens 

lassen sich nicht ohne umfangreiche Vorarbeiten im Bereich der Wahrscheinlichkeitstheorie 

bzw. des probabilistischen MLs darstellen, weshalb hier auf entsprechende Literatur verwiesen 

wird (Blei, 2012 ⁠; Blei et al., 2003 ⁠; Murphy, 2022). Das Ergebnis der Analyse sind dann die 

folgenden Werte14: 

• 𝜃𝑑𝑘 ≈ Der Anteil des Dokuments 𝑑 der dem Topic 𝑘 gewidmet ist. Ist 𝜃𝑑𝑘 groß, ist das 

Dokument 𝑑 also stark auf das Topic 𝑘 fokussiert. 

• 𝜑𝑣𝑘 ≈ Die Wahrscheinlichkeit, dass das Wort 𝑣 in Topic 𝑘 auftritt. Ist 𝜑𝑣𝑘 groß, spielt 

das Wort 𝑣 also eine zentrale Rolle in Topic 𝑘. 

 

13  Dabei wird angenommen, dass diese Dokument-Topic-Verteilung eine Dirichlet-Verteilung (z. B. Murphy, 

2022) ist. Dasselbe gilt für die Topic-Wort-Verteilung. Daher stammt auch die Bezeichnung Latent Dirichlet 

Allocation. 

14  Es sind 𝑑 = 1 … 𝑀, 𝑘 = 1 …  𝐾 und 𝑣 = 1 … 𝑉, wobei 𝑀 die Anzahl an Dokumenten, 𝐾 die Anzahl an Topics 

und 𝑉 die Größe des Vokabulars ist. 
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Die Topic-Wort-Anteile 𝜑𝑣𝑘 dienen dann zur inhaltlichen Beschreibung der bis dahin 

inhaltlich nicht näher charakterisierten Topics. Dabei werden meist die wahrscheinlichsten 

Worte der Topics genutzt, um die Topics zu interpretieren. 

Um Wissen über Kovariaten im Topic Model zu berücksichtigen, gibt es einige 

Erweiterungen des LDA-Ansatzes (Blei & Lafferty, 2005 ⁠; Hennig et al., 2012 ⁠; Roberts et al., 

2016⁠; Roberts et al., 2019). Solche erweiterten Modelle können insbesondere zusätzliche 

Informationen über die Dokumente, wie z. B. Autoren oder Entstehungszeit berücksichtigen. 

Dafür werden im angenommenen probabilistischen Prozess, der die Dokumente erzeugt (s. o.), 

entsprechende Zwischenschritte eingefügt. Die Schätzalgorithmen werden dadurch allerdings 

ebenfalls komplexer. In den Analysen zum zweiten Zielpaket dieses Projekts werden zunächst 

die Bearbeitungen des FDW-Testinstruments über eine Cluster-Analyse der Scores einer von 

vier Gruppen zugeordnet. In der explorativen Analyse der Sprachproduktionen der 

Proband:innen zur Ausschärfung der Beschreibung dieser Cluster (hin zu Kompetenzprofilen) 

werden dann die Cluster der jeweiligen Proband:innen als Kovariaten aufgefasst. Ein 

Dokument (im NLP-Sinne) sind dann alle Antworten, die eine Person in einer Bearbeitung des 

Testinstruments niedergeschrieben hat, zusammengenommen. Die Kovariate ist das Cluster, 

dem diese Person zugeordnet ist. In dieser Konfiguration wird im Rahmen der Analysen zum 

zweiten Zielpaket dann ein sog. Structural Topic Model (STM, Roberts et al., 2019) erstellt, 

bei dem die Clusterzuordnung einen Einfluss auf die Dokument-Topic-Verteilung haben kann. 

Zusätzlich zu den Dokument-Topic-Anteilen und den Topic-Wort-Verteilungen erhält man bei 

einem STM als zusätzliches Ergebnis Schätzwerte über die Stärke der Zusammenhänge 

zwischen den Topics und den Score-Clustern. Das genaue Vorgehen und die Ergebnisse zu 

dieser Untersuchung sind in Kapitel 5 dargestellt. 

2.7. Deep-Learning-basierte Sprachanalyse 

Neben den beschriebenen „klassischen“ Machine-Learning basierten Methoden zur 

Sprachanalyse haben sich (auch für die naturwissenschaftsdidaktische Forschung und 

Entwicklung) in den letzten Jahren vor allem Deep-Learning basierte Sprachmodelle als 

vielversprechender Ansatz erwiesen (z. B. Camus & Filighera, 2020; Zhai et al., 2020b; sowie 

Wulff et al., 2023 und darauf aufbauend Mientus et al., 2023). Im Folgenden werden daher 

einige Begriffe und Konzepte des Deep Learning mit besonderem Fokus auf 

Sprachmodellierung eingeführt. Die angesprochenen Modelle und Methoden stellen vor allem 

die Basis des automatisierten Assessment-Systems (Kapitel 6) dar. 

Deep Learning 

Unter Deep Learning wird letztlich „normales“ Machine Learning mit einer bestimmten, sehr 

umfangreichen Klasse von Modellen verstanden (Géron, 2019; siehe auch Abbildung 2.4). 

Diese Modellklasse wird allgemein als Neural Network (NN) bezeichnet und ist dadurch 

charakterisiert, dass schichtweise mathematische Operationen in sog. Layern hintereinander 

geschachtelt werden. In einem einfachen sog. Fully-Connected-NN (FCNN, Abbildung 2.10) 

sind diese Layer Matrixmultiplikationen. Die jeweiligen Outputs der einzelnen Layer sind in 

ihrer Dimensionalität variabel und werden auch Nodes genannt. In einem FCNN sind alle 
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Nodes einer Layer mit allen Nodes der vorherigen und folgenden Layer verbunden. Die 

Berechnung der Outputs der ersten Layer des in Abbildung 2.10 dargestellten Netzwerkes 

lautet also: 

𝑦(1) = 𝑔(𝑊(1)𝑥),       𝑊(1) ∈ ℝ4×3. 

Dabei ist 𝑔 eine nicht-lineare Funktion, die Element-weise auf die Matrix-Vektor-Produkte 

𝑊(1)𝑥 angewendet wird und auch Activation Function oder kurz Activation genannt wird. 

Jedes Matrix-Element ist in Abbildung 2.10 durch einen Pfeil visualisiert. Die Matrix-

Elemente sind dabei die trainierbaren Parameter des Modells (siehe Abschnitt 2.4). Die 

gesamte Modellfunktion des in Abbildung 2.10 dargestellten Netzwerkes lautet 

dementsprechend: 

𝑓𝑊(𝑥) = 𝑔 (𝑊(3)𝑔 (𝑊(2)𝑔(𝑊(1)𝑥))). 

Zur Übersichtlichkeit wurde hier angenommen, dass jede Layer dieselbe Activation besitzt. 

Verbreitete Activation Functions sind die Sigmoid-, tanh- oder ReLU-Activation: 

sigmoid(x) =  
1

1 + 𝑒−𝑥
, tanh(𝑥) =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
,         ReLU(𝑥) = max(0, 𝑥). 

Für die Output-Layer von Regressionsnetzwerken wird meist auf eine Activation verzichtet, 

damit alle reellen Zahlen abgebildet werden können. Für die (𝐾-dimensionale) Output-Layer 

von Klassifikationsnetzwerken wird meistens die Softmax-Activation genutzt: 

softmax(𝑥)𝑗 =
𝑒𝑥𝑗

∑ 𝑒𝑥𝑘𝐾
𝑘=1

, 𝑗 = 1 … 𝐾 . 

Die Outputs dieser Funktion sind praktikabel als Wahrscheinlichkeiten interpretierbar15. Die 

vielseitige Einsetzbarkeit der Modellklasse der NNs beruht wesentlich auf dem sog. Universal 

Approximation Theorem (Hornik et al., 1989): Unter der Annahme sehr (beliebig) großer Breite 

(Anzahl an Nodes) und Tiefe (Anzahl an Layern), sowie unter Nutzung von nicht-linearen 

Activations kann gezeigt werden, dass ein FCNN eine große Menge unterschiedlicher 

Funktionen approximieren kann. Die Nicht-Linearität der Activations ist dabei essenziell, da 

das Modell ansonsten nur eine lineare Funktion aus vielen Matrix-Multiplikationen wäre. 

Flexible NNs sind daher sehr breit und tief und weisen somit große Anzahlen an trainierbaren 

Parametern auf (∼ 105 bis 1012). 

Das Training eines NN unterscheidet sich prinzipiell nicht vom Training anderer Modelle. 

Die Schwierigkeit besteht darin, dass die Ableitungen der Modellfunktion nach den Parametern 

durch die Kettenregel der Differentialrechnung sehr komplex werden und manuell kaum 

 

15  Mathematisch betrachtet liegt das daran, dass diese Funktion den Vektor 𝑥 ∈ ℝ𝐾 auf die Menge (sog. 𝐾-

Einheitsimplexrand) {𝑦 ∈ ℝ𝐾  | 𝑦𝑖 ≥ 0, ∑ 𝑦𝑖
𝐾
𝑖=1 = 1} abbildet. Somit sind die einzelnen Output-Werte auf das 

Intervall [0,1] beschränkt und können also die Wahrscheinlichkeit für die Zuordnung zur jeweiligen Kategorie 

interpretiert werden. 
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gefasst werden können. Daher werden sog. „Autodiff“-Verfahren16 auf Basis des 

Backpropagation-Algorithmus (Rumelhart et al., 1986) verwendet, die diese Berechnungen 

automatisieren. Moderne Verfahren optimieren dabei zudem je nach verfügbarer Hardware die 

Balance zwischen verfügbarer Leistung zur Berechnung der Ableitungen und dem für ihre 

Speicherung verfügbaren Arbeitsspeicher (z. B. Chen et al., 2023 ⁠; Dao et al., 2024). 

 

Abbildung 2.10 Schematische Darstellung eines Fully-Connected-NNs. Dabei sind die Input Layer in Rosa, die 

Hidden Layers in Orange und die Output Layer in Blau dargestellt. 

Embeddings 

Zur Verarbeitung unterschiedlicher Datenstrukturen wie Bilder und Sequenzen (beispielsweise 

Text) wurden NN-Sonderformen wie Convolutional NNs (LeCun et al., 1998) oder Recurrent 

NNs (Amari, 1972) entwickelt. Solche NN-Varianten sind dadurch gekennzeichnet, dass die 

Matrix-Gewichte bei der Verarbeitung einzelner Segmente der Daten (bei Text: Worte) 

wiederverwendet werden. Einerseits wird dadurch die Anzahl an Parametern reduziert, 

andererseits können so wiederkehrende Strukturen erkannt und genutzt werden. 

Typischerweise bei Sprachdaten, mittlerweile aber vermehrt auch bei anderen Datenformaten 

wie z. B. Bildern (Dosovitskiy et al., 2021), werden zudem üblicherweise sog. Embedding-

Layer als erste Schicht des NNs genutzt (z. B. Géron, 2019). Bei Sprachdaten weist die 

Embedding-Layer jedem einzelnen Wort des Vokabulars des Datensatzes (siehe Abschnitt 2.6 

sowie Abbildung 2.9) einen Vektor mit fixer Dimension 𝑑 (üblicherweise einige 100 bis 1000) 

zu17. Die Elemente dieser Vektoren sind trainierbare Modellparameter. Allgemein werden 

solche numerischen Repräsentationen von Worten und Texten (aber auch anderen Daten-

Segmenten) Embeddings genannt (z. B. Liu et al., 2020). Sie werden häufig mithilfe von Semi-

 

16  Die üblicherweise für die Erstellung, Erprobung und Deployment von NNs genutzten Programmbibliotheken 

TensorFlow (Abadi et al., 2016) und PyTorch (Paszke et al., 2019) stellen neben einem Autodiff-Framework 

zudem Funktionen bereit, um die Rechenleistungen von Grafikkarten (Graphics Processing Units, GPUs), die 

auf die Berechnung von Matrixoperationen hin optimiert sind, für das Deep Learning zu nutzen. 

17  Eine Embedding-Layer führt letzten Endes eine Matrixmultiplikation der Embedding-Matrix mit der One-Hot-

Encoding-Repräsentation des Textes durch. 
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Supervised-Learning-Ansätzen18, wie der Vorhersage des folgenden Wortes bei gegebenem 

Satzanfang (Mikolov et al., 2013), der Vorhersage von umgebenden Worten (Pennington et al., 

2014) oder der Vorhersage des Gemeinsam-Auftretens von Worten (Peters et al., 2018) 

ermittelt. Dadurch können Embeddings erzeugt bzw. Embedding-Modelle trainiert werden, die 

semantische und syntaktische Bedeutung tragen. Ein klassisches Beispiel ist hier der bei 

Mikolov et al. (2013) beobachtete Zusammenhang: 

Embedding(Paris) − Embedding(France) + Embedding(Italy) ≈ Embedding(Rome) . 

Man hat also mithilfe der allgemeinen Sprachmodellierung in einem Self-Supervised-

Learning-Ansatz eines großen Text-Datensatzes ein Embedding-Modell geschaffen, welches 

die semantische Bedeutung des Wortes „Hauptstadt“ implizit erlernt hat. Solche Embeddings 

und Embedding-Layers sind dementsprechend nicht nur für sprachverarbeitende NNs als 

Input-Layer interessant, sondern können auch direkt selbst beispielsweise im Rahmen von 

Klassifikationsmodellen oder Cluster-Analysen (z. B. Grootendorst, 2022) genutzt werden. 

Viele Embedding-Tabellen bzw. Embedding-Modelle stehen dafür auch open-source zur 

Verfügung (z. B. Reimers & Gurevych, 2019). 

Transformer Sprachmodelle 

Ein Durchbruch in der Entwicklung von NNs war insbesondere die Entwicklung sog. Attention-

Layers (Bahdanau et al., 2014) bzw. der sog. Transformer-Modellarchitektur (Vaswani et al., 

2017). Diese Modelle sind auf die Verarbeitung von Sequenzen mehrdimensionaler Inputs 

𝑥1, 𝑥2, … , 𝑥𝑇 ∈ ℝ𝑑 ausgelegt. Das kann beispielsweise ein Text sein, bei dem die einzelnen 

Worte zuvor eine Embedding-Layer passiert haben. Das wesentliche Merkmal einer Attention-

Layer ist, dass die einzelnen Inputs im Rahmen eines sog. Attention-Mechanismus aufeinander 

bezogen werden. Ein Attention-Mechanismus kann dabei jede Funktion sein, die ausschließlich 

von den Skalarprodukten (engl.: „Dot-Product“) der Inputs abhängt: 

𝑎𝑖𝑗 = 𝑓(𝑥𝑖 ⋅ 𝑥𝑗), 𝑖, 𝑗 = 1 … 𝑇 . 

Ohne hier zu sehr ins Detail gehen zu können ermöglicht dieses Aufeinander-Beziehen der 

Inputs den Attention-Modellen die entsprechende Bezugsstruktur der Daten stärker zu 

berücksichtigen als andere Modelle es können. Die eigentlich trainierbaren Parameter-

Matrizen werden typischerweise vor und nach den Attention-Layern angewandt (z. B. Devlin 

et al., 2019⁠; Vaswani et al., 2017). Mittlerweile hat sich die Transformer-Architektur nicht nur 

für Sprachverarbeitung, sondern auch für andere Datentypen wie Bilder durchgesetzt (z. B. 

Dosovitskiy et al., 2021). Schlüssel für den Erfolg der Transformer-Architektur sind also 

einerseits die Repräsentation der Daten in Form von Embeddings und andererseits das 

Aufeinander-Beziehen dieser Embeddings in den Attention-Layers. 

 

18  Solche Ansätze werden als „Semi-Supervised“ bezeichnet da das Training zwar einem Supervised-Learning-

Workflow entspricht, allerdings Teile der „Features“ (hier Text) selbst als „Target“ genutzt werden und somit 

keine durch Menschen generierten Label benötigt werden – es sei denn, man fasst das Schreiben eines Textes 

als kontinuierliches „Labeln“ des bisher geschriebenen Textes auf. 



2. Theoretische und Methodische Grundlagen 

33 

Die meisten aktuell verwendeten Sprachmodelle z. B. GPT219 (Radford et al., 2019), GPT3 

(Brown et al., 2020) oder BERT (Devlin et al., 2019), die großen Sprachmodelle hinter Tools 

wie ChatGPT (OpenAI, 2024c) oder Konkurrenten wie Claude (Anthropic, 2024) und auch 

große Open-Source Sprachmodelle (z. B. LLaMA20, Touvron et al., 2023a bzw. Touvron et al., 

2023b oder OpenAssistant, Köpf et al., 2024) sind Transformer-Modelle21. Neben der 

Modellarchitektur ist für ein Sprachmodell auch das Training entscheidend. Typischerweise 

werden Sprachmodelle mithilfe der sog. Next-Token-Prediction trainiert, d. h. es wird der 

nächste Token Basis einer gewissen Menge vorangegangener Token trainiert. Man spricht auch 

von autoregressivem Training. Durch dieses Training mithilfe großer Datenmengen (bei Text-

Daten typischerweise einige Gigabyte bis mehrere Terabyte) „erlernen“ die Modelle eine 

umfassende Repräsentation von Sprache und können somit (je nach Größe) natürliche bzw. 

natürlich wirkende Sprache erzeugen22. Gleichzeitig kann dies aber auch genutzt werden, um 

für konkrete Anwendungsfälle höhere Performanz bzgl. anderer Aufgaben, wie dem 

automatisierten Scoren von Antworten (z. B. Camus & Filighera, 2020), zu erzielen. Beim 

expliziten Training von Sprachmodellen für konkrete Anwendungsfälle spricht man auch von 

Finetuning während man das autoregressive Training im Vorfeld auch als Pretraining 

bezeichnet. Im Rahmen der huggingface Python-Paket-Familie werden viele open-source 

Modelle und Methoden für Pretraining und Finetuning bereitgestellt (z. B. Wolf et al., 2020). 

Die Nutzung und Verbreitung immer größerer Sprachmodelle (viele Mrd. Parameter) ist 

allerdings vor dem Hintergrund ihres hohen Energieverbrauchs und der damit entstehenden 

Kosten und Umwelteinflüsse kritisch zu betrachten23 (Dhar, 2020). Zudem können solche 

Modelle nicht auf üblicher Consumer-Grade Hardware betrieben werden, da sie aufgrund ihrer 

Größe meist auf mehrere Recheneinheiten mit großen Arbeitsspeichermengen aufgeteilt 

werden müssen. Die Nutzung von Angeboten wie ChatGPT und den dazugehörigen Online-

Schnittstellen (auch Application Programming Interface, API) ist zwar möglich, allerdings aus 

zwei Gründen problematisch. Erstens müssen die auszuwertenden Text-Daten dafür an einen 

fremden Server geschickt werden. Auch wenn es sich häufig nicht um personenbezogene Daten 

handelt, ist dies datenschutztechnisch nicht immer unbedenklich, da meistens keine manuelle 

Kontrolle zwischen der Dateneingabe durch Nutzer:innen eines Tools und dem Übergeben an 

die API stattfinden kann. Zweitens werden solche APIs und auch die dort angebotenen Modelle 

kontinuierlich weiterentwickelt und befinden sich somit in stetigem Wandel. Es kann also nicht 

davon ausgegangen werden, dass die Performanz des genutzten Systems für den jeweiligen 

 

19  Die Abkürzung „GPT“ wird in unterschiedlichen Modellbezeichnungen verwendet und steht für „Generative 

Pretrained Transformer“. 

20  Large Language Model Meta AI (Touvron et al., 2023a) 

21  Aufgrund der hohen benötigten Rechenleistung der Attention-Mechanismen werden aktuell aber auch 

alternative Ansätze exploriert (Gu & Dao, 2023; Peng et al., 2023; Zhai et al., 2021a; Zhu et al., 2024). 

22  Um einen Dialog führen zu können, wie bekannte Chatbots wie ChatGPT es tun, werden die Modelle 

typischerweise noch mithilfe des sog. Reinforcement Learning from Human Feedback (z. B. Christiano et al., 

2017⁠; Ouyang et al., 2024) bzw. Instruction-Funetuning (z. B. Chung et al., 2024) weitertrainiert, um typische 

Gesprächsstrukturen abbilden zu können. 

23  Es gibt allerdings auch zunehmend Bestrebungen die notwendige Rechenleistung und Speichernutzung der 

Modelle zu Reduzieren (z. B. Dettmers et al., 2024). 
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Anwendungsfall konstant bleibt. Auch die Bedienung der APIs selbst kann sich ändern. Häufig 

reichen aber auch kleinere Modelle wie das BERT-Modell24 (Devlin et al., 2019) aus, um für 

spezifische Anwendungsfälle eine ausreichende bis gute Performanz zu erreichen (Camus & 

Filighera, 2020). Im vorliegenden Projekt wird daher auch primär der Ansatz des Trainings 

eines eigenen, kleineren Modells mit vollständiger Kontrolle über das Modell und die Daten 

gewählt, auch wenn Alternativen ergänzend exploriert und evaluiert werden (siehe Kapitel 6, 

insbesondere Abschnitt 6.7). 

Insgesamt werden ML- und Deep-Learning-basierte Methoden und Modelle sowohl für 

explorative Sprachanalysen (Blei, 2012 ⁠; Grootendorst, 2022 ⁠; Roberts et al., 2019) als auch in 

Supervised-Settings wie beispielsweise automatisiertem Scoring (Gamieldien et al., 2023⁠; Lee 

et al., 2019 ⁠; Ludwig et al., 2021 ⁠; Maestrales et al., 2021 ⁠; Mayfield & Rosé, 2012 ⁠; Sawatzki et 

al., 2022 ⁠; Yan et al., 2020) eingesetzt. Es werden auch über diese konkreten Ansätze hinaus 

große Potenziale für die Nutzung dieser Technologien im Kontext der Bildung und 

Bildungsforschung sowie konkret im naturwissenschaftsdidaktischen Bereich identifiziert, 

darunter insbesondere die Nutzung von ML-Methoden zu Forschungszwecken (Hilbert et al., 

2021⁠; Kubsch et al., 2023 ⁠; Kubsch et al., 2021a) und für automatisiertes Assessment und 

Feedback über basales Scoring hinaus (Fütterer et al., 2023 ⁠; Zhai et al., 2023). 

 

24  Ca. 110 Mio. Parametern, was bei einer Gleitkommapräzision von 32-Bit (float32) ca. 440 MB an 

Arbeitsspeicher entspricht. 
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3. Projektstruktur und Forschungsfragen 

Im hier vorgestellten Dissertationsprojekt sollen (a) die innere Struktur des FDW von 

Lehramtsstudierenden empirisch basiert detaillierter inhaltlich beschrieben werden sowie (b) 

Möglichkeiten zur Automatisierung des Assessments des FDW unter anderem auf Basis der 

gefundenen Strukturen exploriert werden. Da es sich um ein kumulatives Dissertationsprojekt 

handelt, werden vor allem konkrete theoretische Grundlagen eher im Rahmen der jeweiligen 

(auch in dieser Rahmung enthaltenen) Artikel (Kapitel 4, 5 & 6) detaillierter erläutert. 

Übergreifende theoretische Grundlagen zum Professionswissen und insbesondere zum FDW 

von Lehrkräften mit dem Fokus auf der Physik und den Naturwissenschaften wurden daher in 

den Abschnitten 2.1 und 2.2 einleitend eher knapp eingeführt. 

Da in den Artikeln oft nicht genügend Raum für ausführliche methodische Ausführungen 

verfügbar war bzw. ist, wurden folgende methodische Aspekte detaillierter erläutert: 

• Item-Response-Kompetenzniveaumodelle (Abschnitt 2.3) 

• ML mit Fokus auf Anwendungen in der naturwissenschaftsdidaktischen Forschung 

(Abschnitt 2.4 & 2.5) 

• ML-basierte und Deep-Learning-basierte Sprachverarbeitung (Abschnitt 2.6 & 2.7) 

In diesem Rahmen wurden insbesondere der allgemeine Workflow und die Herangehensweise 

bei der Nutzung von ML-Methoden und die Unterscheidung in Supervised- und Unsupervised-

Learning-Methoden vorgestellt. Unsupervised-Learning-Methoden werden in diesem Projekt 

zur explorativen Untersuchung der inneren Strukturen des FDW eingesetzt. Dabei wird die 

CGT (Nelson, 2020) genutzt, um die Analysen zu strukturieren. Supervised-Learning-

Methoden werden in diesem Projekt primär für das automatisierte Assessment der gefundenen 

FDW-Strukturen eingesetzt. Entsprechende Ansätze für automatisiertes Assessment existieren 

bereits länger, beispielsweise auf Basis von Embedding-Methoden wie der Semantic Analysis 

(z. B. Andersen & Zehner, 2021 ⁠; Leacock & Chodorow, 2003 ⁠; Zehner et al., 2016). In diesem 

Projekt wird sich primär auf die vielversprechende (z. B. Camus & Filighera, 2020) Nutzung 

von Transformer-Sprachmodellen für das Assessment fokussiert. 

In diesem Kapitel folgt nun ein Überblick über die Ziele und Forschungsfragen des Projekts 

(Abschnitt 3.1). Dabei werden die in dieser Arbeit enthaltenen Artikel bereits grob in den 

Gesamtkontext eingeordnet. Anschließend wird der verwendeten Gesamtdatensatz vorgestellt 

(Abschnitt 3.2). 

3.1. Forschungsziele und -fragen 

Im Theorieteil wurden zwei wesentliche Forschungsdesiderate dargestellt. Erstens ist eine 

detailliertere empirisch fundierte inhaltliche Beschreibung der inneren Struktur des FDW 

notwendig um (a) das FDW im Kontext gängiger Rahmenmodelle wie dem RCM oder MoC 

weiter auszudifferenzieren (Abschnitt 2.2) und (b) ein Assessment zu ermöglichen, welches 

über die reine Angabe von Scores hinausgeht. Zweitens wäre es aufgrund des hohen Aufwands 

bei der Auswertung der als besonders authentisch geltenden offenen Antwortformate 
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entsprechender Testinstrumente wünschenswert, ein solches Assessment mithilfe moderner 

Methoden der Datenverarbeitung zu automatisieren. Auf Basis der verfügbaren Daten werden 

zur Bearbeitung dieser Desiderate im Folgenden die Zielpakete dieses Dissertationsprojekts 

abgeleitet. Dabei werden die jeweiligen Forschungsfragen, die zu den Zielpaketen in den 

Artikeln fokussiert werden, hier bereits vorweggegriffen, um einen Überblick darzustellen. Die 

einzelnen Forschungsfragen unterscheiden sich den Anforderungen der jeweiligen 

Zeitschriften und Gutachtenden entsprechend teilweise in ihrem Stil und Grad der 

Konkretisierung. Zwischen den einzelnen Zielpaketen werden diese knapp im Projektkontext 

verortet und ggf. wird die Genese der entsprechenden Artikel knapp kommentiert. In 

Abbildung 3.1 ist der gesamte Workflow des Projekts noch einmal (möglichst) übersichtsartig 

dargestellt. 

 

Abbildung 3.1 Übersichtsdarstellung der drei Zielpakete und des Workflows des Projekts. Den Ausgangspunkt 

der Analysen stellen die Score- und Textdaten dar. Diese werden im Rahmen von sowohl (eher) computerbasierten 

bzw. quantitativen Methoden (orange Kästen) als auch im Rahmen von eher theoriegeleiteten Schritten (blaue 

Kästen) genutzt, um die Projektziele (grüne Kästen) zu erreichen. Die farbigen Segmente im Hintergrund 

repräsentieren die drei Artikel und die jeweiligen Schritte der Analyse, die in ihnen jeweils eine Rolle spielen. 

In Abschnitt 2.3 wurde dargestellt, dass zur empirisch basierten inhaltlichen Beschreibung 

der inneren Struktur des FDW bisher primär hierarchische Ansätze in Form von 

Niveaumodellen vorliegen. Diese Modelle sind zudem bisher weitestgehend voneinander 

isoliert, da sie sich auf die in den jeweiligen Projektkontexten unterschiedlichen konkret 

fokussierten FDW-Inhaltsbereiche bzw. FDW-Facetten beziehen. Im Rahmen des ersten 

Zielpakets soll dieser Forschungslücke durch eine projektübergreifende Analyse begegnet 

werden, deren Ergebnisse auch die späteren nicht-hierarchischen Analysen (Zielpaket 2) 

vorbereiten: 
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1. Zielpaket – Kompetenzniveaus:  

Durchführung einer (projektübergreifenden) Analyse von hierarchischen Kompetenz-

niveaus des FDW auf Basis von IRT-Modellen 

• FF1.1 (Artikel 1): Inwieweit lassen sich mithilfe des Scale-Anchoring-Verfahrens 

projektübergreifend inhaltliche Strukturen des FDW identifizieren und inhaltlich 

charakterisieren? 

• FF1.2 (Artikel 1): Inwieweit lassen sich Stufen hierarchischer Komplexität des FDW 

projektübergreifend identifizieren und inhaltlich charakterisieren? 

Der vollständig auf die Kompetenzniveauanalysen fokussierte Artikel 1 wurde in Kooperation 

zwischen den bzw. Teilen der Projektgruppen KiL25 (z. B. Schiering et al., 2019) bzw. KeiLa26 

(z. B. Schiering et al., 2023) und ProfiLe-P(+) (z. B. Riese et al., 2022b ⁠; Vogelsang et al., 2019) 

erarbeitet. Im Rahmen dieser Analysen zeigten sich zwar projektübergreifende 

Gemeinsamkeiten bezüglich kognitiver Anforderungen (Reproduzieren, Anwenden, 

Evaluieren etc., siehe Abschnitt 4.5 & 4.6), allerdings blieben die Beschreibungen der 

Niveaustufen aufgrund methodischer Limitationen recht allgemein und vor allem auf 

hierarchische Abstufungen beschränkt. Nicht-hierarchische inhaltliche Strukturen des FDW 

wurden bisher bis auf konfirmatorische Modellvergleiche (Riese et al., 2017) kaum empirisch 

fundiert untersucht. Daher wurden im zweiten Zielpaket (potenziell) nicht-hierarchische 

Strukturen genauer in den Blick genommen: 

2. Zielpaket – Kompetenzprofile:  

Durchführung von explorativen Analysen des FDW auf Basis von sowohl Scoredaten 

als auch Sprachdaten zur Beschreibung von Probandengruppen mit prototypischen 

Antwortverhalten und Kompetenzausprägungen 

• FF2.1 (Artikel 2 ∼ Pattern Detection): Welche Kompetenzprofile des FDW können 

mithilfe einer (K-Means) Clusteranalyse der Scores gefunden werden? 

• FF2.2 (Artikel 2 ∼ Pattern Refinement): Zeigen Proband:innen, die zu einem 

bestimmten Kompetenzprofil gehören, prototypische Sprachnutzung in ihren 

Antworten zu den offenen Aufgaben des eingesetzten Testinstruments? 

• FF2.3 (Artikel 2 ∼ Pattern Confirmation): Wie hoch ist die Performanz von ML-

Modellen bei der Zuordnung zu den Kompetenzprofilen für ungesehene Daten? 

 

25  Akronym KiL: „Messung professioneller Kompetenzen in mathematischen und naturwissenschaftlichen 

Lehramtsstudiengängen“, gefördert durch Leibniz Gemeinschaft. In diesem Projekt wurde das 

Professionswissen von Lehramtsstudierenden der mathematisch-naturwissenschaftlichen Fächer gemeinsam 

modelliert. Für die Physik wurde dabei ein FDW-Testinstrument von Kröger (2019) entwickelt. 

26  Akronym KeiLa: „Kompetenzentwicklung in mathematischen und naturwissenschaftlichen Lehramtsstudien-

gängen“, gefördert durch Leibniz Gemeinschaft. Aufbauend auf den Modellierungen aus KiL wurde in KeiLa 

die Entwicklung des Professionswissens im Zusammenhang mit Lerngelegenheiten und individuellen 

Merkmalen der Proband:innen untersucht (z. B. Sorge et al., 2019) Auch hier wurde das FDW-Testinstrument 

nach Kröger (2019) wieder eingesetzt. In der hier vorgestellten Analyse werden die FDW-Daten aus beiden 

Projektphasen genutzt. 
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• FF2.4 (Artikel 3 ∼ „Refined“ Pattern Detection): Welche latenten FDW-

Kompetenzprofile lassen sich durch eine GMM-basierte LPA in den FDW-Score-

Daten des Projekts ProfiLe-P bezüglich der kognitiven Anforderungskategorien 

Reproduzieren, Anwenden-Kreieren und Analysieren-Evaluieren finden? 

Die Analysen zum zweiten (und dritten) Zielpaket sind aus methodischen Gründen sowie 

Gründen des Workloads allerdings wieder auf das Projekt ProfiLe-P beschränkt. Die Analysen 

in Artikel 2 und 3 sind dabei wesentlich durch die CGT strukturiert (vgl. auch Abschnitt 2.5) 

und umfassen neben den explorativen Analysen der Scores und Textdaten in den Pattern 

Detection (FF2.1 bzw. FF2.4) bzw. Pattern Refinement Schritten (FF2.2) auch eine Analyse 

der Performanz von ML-Modellen bei der Zuordnung zu den Kompetenzprofilen für 

ungesehene Daten (FF2.3). Im Rahmen dieser FF2.3 werden die Kompetenzprofile zunächst 

ausgehend von den Scores vorhergesagt. Eine tatsächliche automatisierte Auswertung der 

offenen Aufgaben ist in Artikel 2 aus Platzgründen und Gründen der Projektgenese noch nicht 

eingeschlossen. 

In den Analysen zu Artikel 2 (FFs 2.1 bis 2.3) konnten aufgrund von methodischen 

Limitationen noch keine echt „latenten“ Kompetenzprofile ermittelt werden. Im Rahmen des 

Artikels 3 bot sich somit die Gelegenheit, die sich abzeichnenden inneren Strukturen des FDW 

noch einmal aus einer etwas anderen Perspektive mithilfe einer Latenten Profilanalyse (LPA, 

Spurk et al., 2020) zu untersuchen27. Zu diesem Zweck wurden die betrachteten kognitiven 

Anforderungskategorien entsprechend den vorangegangenen Ergebnissen zu FF1.1 und FF2.1 

zusammengefasst, sodass eine LPA ermöglicht wurde. Die LPA liefert ein stärkeres Argument 

für den prototypischen Charakter der Kompetenzprofile als eine K-Means Analyse, da sie echte 

latente Strukturen abbildet. Auch Artikel 3 ist als eher inhaltliche Analyse daher wieder 

mithilfe der CGT strukturiert. FF2.4 kann dabei als eine erweiterte („refined“) Pattern 

Detection auf Basis des vorherigen Analysezyklus (vor allem Artikel 2) aufgefasst werden. Die 

folgenden Forschungsfragen zum automatisierten Assessment (Zielpaket 3) dienen dann als 

Pattern Confirmation der neuen gefundenen Strukturen: 

3. Zielpaket – Automatisiertes Assessment:  

Erprobung der Nutzung von Machine-Learning-Modellen zur automatisierten Auswer-

tung des FDWs 

FF3.1 (Artikel 3 ∼ Pattern Confirmation I): Welche Maschine-Mensch-Übereinstim-

mung erreicht ein BERT-Sprachmodell (Devlin et al., 2019) bei der Vorhersage von 

FDW-Scores unter Nutzung eines typischen Finetuning-Workflows auf Basis von 846 

Bearbeitungen des FDW-Testinstruments? 

FF3.2 (Artikel 3 ∼ Pattern Confirmation II): Wie hoch ist die Maschine-Mensch-

Übereinstimmung einer automatisierten Zuordnung von Bearbeitungen des FDW-

 

27  Dies wurde auch im Review des dritten Artikels von Seiten der Herausgebenden und Reviewenden im Rahmen 

der stärkeren Herausarbeitung des inhaltlichen Erkenntnismehrwerts im Vergleich zu einer Fokussierung 

primär auf das automatisierte Assessment (Zielpaket 3) gewünscht. 

https://unipaderbornde-my.sharepoint.com/personal/jzeller_ad_uni-paderborn_de/Documents/3.%20Promotion/write-present/main/how#CTVL0010e2078f223264907b0bb0f98380bb221
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Testinstruments zu einem prototypischen FDW-Kompetenzprofil auf Basis der 

maschinellen Score-Vorhersagen (FF3.1)? 

Der Pattern Confirmation Schritt unter Nutzung der tatsächlichen Antworten auf die 

Testaufgaben als „Rohdaten“ (FF3.1 & FF3.2) liefert ein deutlich stärkeres Argument für die 

Robustheit und Validität der in FF2.4 gefundenen Strukturen als die Pattern Confirmation auf 

Basis der Scores im zweiten Artikel (FF2.3), wie in Abschnitt 6.7.3 noch einmal genauer 

diskutiert wird. Darüber hinaus stellt dieser Schritt auch den wesentlichen Beitrag zum 

Forschungsdesiderat der Automatisierung eines inhaltlich reichhaltigen FDW-Assessments auf 

Basis von Kompetenzprofilen und fundierten Subskalen dar. Dabei wird in Artikel 3 jedoch 

aus Platzgründen nicht auf weitere erprobte Workflows oder Modelle (neben dem BERT-

Modell) eingegangen, die allerdings im Kontext des Automatisierungsdesiderats auch für 

andere Projekte von Interesse sein können. Ergänzend werden solche Betrachtungen daher in 

Abschnitt 6.7 detaillierter dargestellt. 

3.2. Stichprobe und Datenaufbereitung 

Der für die Analysen und Erprobungen dieses Projekts hauptsächlich verwendete Datensatz 

stammt aus dem Projekt ProfiLe-P+2, in dem PW, FW, FDW, affektive Orientierungen und 

Beliefs sowie Performanz in prototypischen Handlungssituationen wie dem Planen von 

Physikunterricht und dem Erklären physikalischer Phänomene von (angehenden) Lehrkräften 

erhoben wurden. Dabei werden sowohl die quantitativen Score-Daten, d. h. die manuell 

vergebenen Scores zu den einzelnen Aufgaben, als auch qualitative Text-Daten in Form der 

Antworten auf die offenen Aufgaben des verwendeten FDW-Testinstruments genutzt.  

Für die projektübergreifenden Analysen in Artikel 1 (FF1.1 & FF1.2) stehen zudem die IRT-

Thurstone-Thresholds und IRT-Personenfähigkeiten (siehe Abschnitt 2.3) sowie einige 

demographische Informationen aus dem FDW-Datensatz der Projekte KiL und KeiLa zur 

Verfügung. Da die Vorbereitung dieses Datensatzes nicht im Aufgaben- und Verantwortungs-

bereich des Projekts selbst lag, wird dieser Datensatz und auch das Testinstrument hier nicht 

zusätzlich zu den in Artikel 1 enthaltenen Informationen (Abschnitt 4.4.1) vorgestellt28. Eine 

Beispielaufgabe aus diesem Testinstrument ist in Abbildung 4.4 dargestellt. 

Im Folgenden wird nun der zentrale FDW-Datensatz aus dem Projekt ProfiLe-P+ 

detaillierter beschrieben und es werden einige Informationen zusätzlich zu den Artikeln 

ergänzt. Das verwendete FDW-Testinstrument nach Gramzow (2015) besteht aus 20 offenen 

und 4 geschlossenen Multiple-Choice-(MC)-Aufgaben, wobei 3 der offenen Aufgaben aus je 

2 einzeln bepunkteten Teilaufgaben bestehen. Daher ist teilweise auch von 23 offenen 

Aufgaben die Rede. Die MC-Aufgaben bestehen aus 4 bis 6 einzelnen Items, sodass insgesamt 

je nach Publikation auch 20 MC-Items und somit insgesamt 43 Items berichtet werden. Die 

Aufgaben und das Kodiermanual zur Bewertung der offenen Aufgaben wurden mithilfe von 

Curriculumsanalysen, Expertenbefragungen und Think-Aloud-Studien erprobt und validiert 

 

28  Für ausführlichere Informationen zum dort verwendeten Testinstrument sei auf Kröger (2019) verwiesen. Der 

Datensatz und das IRT-Modell werden zudem in Schiering et al. (2023) bereits ausführlich vorgestellt. 
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(Gramzow, 2015). Das Testinstrument umfasst die fachdidaktischen Facetten 

Instruktionsstrategien, Schülervorstellungen, Experimente und Vermittlung eines 

angemessenen Wissenschaftsverständnisses (kurz Experimente) sowie Fachdidaktische 

Konzepte. Diese Facetten stellen eine begründete Auswahl möglicher Facetten dar. In der 

ursprünglichen Testentwicklung wurden zudem die kognitiven Anforderungen Reproduzieren, 

Anwenden und Analysieren abgedeckt. Da im Projekt ProfiLe-P eine möglichst detaillierte 

Erfassung des Professionswissens bezüglich des Fachinhalts Mechanik angestrebt wurde, ist 

auch das FDW-Testinstrument auf diesen Fachinhalt fokussiert. Das gesamte Item-

Entwicklungsmodell des Testinstruments ist in Abbildung 4.1 enthalten. Im Rahmen des hier 

vorgestellten Projekts wurden die Aufgaben aber mit einem größeren Fokus auf den kognitiven 

Anforderungen re-analysiert (Kapitel 5 & 6). Beispielaufgaben dieses Testinstruments sind in 

Abbildung 4.3 und Figure 5.3 dargestellt. 

Das FDW-Testinstrument wurde im Rahmen des Projekts ProfiLe-P+ von 2016 bis 2019 in 

Bachelor- und Masterstudiengängen des Physik-Lehramts an 12 deutschsprachigen 

Universitäten eingesetzt. Insgesamt umfasst der Datensatz 846 Bearbeitungen dieses 

Testinstruments in Quer- und Längsschnitten29. Die Bearbeitungen werden dabei hier der 

Methode virtueller Probanden (Davier et al., 2008; siehe auch Wright, 2003) folgend in allen 

Analysen als unabhängige Bearbeitungen betrachtet. Die diesen Bearbeitungen entsprechenden 

virtuellen Probanden sind im Mittel ca. 23 (𝑀 = 22.80, 𝑆𝐷 = 4.60) Jahre alt und befinden 

sich ca. im 4. Fachsemester (𝑀 = 4.11, 𝑆𝐷 = 3.51). Darüber hinaus sind 34 % weiblich und 

79 % befinden sich im Bachelorstudium, die übrigen 21 % im Masterstudium. 

Die Testhefte lagen zu Beginn dieses Dissertationsprojekts analog und teilweise als Scans 

in PDF-Format vor. Die fehlenden Testhefte wurden ebenfalls gescannt und die Antworten auf 

die offenen Aufgaben durch Hilfskräfte vollständig digitalisiert, um die späteren 

computerbasierten Textanalysen etc. zu ermöglichen. Darüber hinaus wurden bereits während 

des ProfiLe-P+- Projekts alle offenen Aufgaben durch eine trainierte Kodiererin bepunktet. 

Insgesamt liegen somit 15600 Antwort-Score Paare (454 bis 825 pro Aufgabe) mit Scores 

zwischen 0 und 3 Punkten vor. Die MC-Aufgaben wurden dem Vorgehen in anderen Teilen 

des ProfiLe-P-Verbunds folgend (Jordans et al., 2022 ⁠; Kulgemeyer et al., 2023) entsprechend 

des K-prim-Schwellensystems (Krebs, 1997) bewertet, sodass die durch Raten erreichbaren 

Punktzahl und die Übergewichtung der MC-Aufgaben reduziert wurden. Im Rahmen dieses 

Systems werden die MC-Aufgaben gemäß ihrer Einzelitems mit 0, 1 oder 2 Punkten bewertet. 

Eine MC-Aufgabe mit beispielsweise 4 Einzelitems wird… 

• …mit 0 Punkten bewertet, wenn 2 oder weniger Einzelitems korrekt gelöst wurden. 

• …mit 1 Punkt bewertet, wenn 3 Einzelitems korrekt gelöst wurden. 

• …mit 2 Punkten bewertet, wenn alle 4 Einzelitems korrekt gelöst wurden. 

 

29  Da längsschnittliche Daten vorliegen, war zu Beginn des hier vorgestellten Projekts geplant, auch 

längsschnittliche Analysen im Kontext der Kompetenzprofile durchzuführen. Die genauere Betrachtung des 

Datensatzes zeigte aber, dass der Anteil an Proband:innen, die tatsächlich auch an mehreren Erhebungen 

teilgenommen haben, zu klein bzw. der Dropout zu groß ist, um hier belastbare Aussagen ableiten zu können 

(siehe Anhang D). 
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Fehlende Antworten werden mit 0 Punkten bewertet. Die Gesamtanzahl an Antworten bzw. 

vergebenen Punkten ist in Tabelle 3.1 dargestellt.  

Tabelle 3.1 Anzahl der Punktzahlen in den einzelnen Aufgaben 

 Offene Aufgaben Alle Aufgaben und Missings als 0 

Punktzahl 0 1 2 3 0 1 2 3 

Anzahl 8800 5128 1646 26 10071 5780 2976 26 

Neben dieser Hauptkodierung, die für die eigentlichen Analysen verwendet wurde, liegt 

noch eine weitere Kodierung von 267 Testheften (4748 Antworten zu offenen Aufgaben) 

durch einen anderen trainierten Kodierer vor. Bezüglich der offenen Aufgaben beträgt die 

Interrater-Übereinstimmung 𝜅 = 0.665 (Cohens 𝜅; z. B. Fleiss & Cohen, 1973) und ist somit 

als gute Übereinstimmung einzuordnen (Döring, 2023). Schließt man die MC-Aufgaben (nach 

Anwendung der K-prim Schwellen) mit ein und füllt fehlende Werte mit 0 Punkten, so beträgt 

die Interrater-Übereinstimmung bezogen auf das gesamte Testinstrument 𝜅 = 0.761, was als 

sehr gute Übereinstimmung eingeordnet werden kann (Döring, 2023). 

Die Datenauswertung und Analyse finden mit den Programmiersprachen R (R Core Team, 

2024) und Python (Python Software Foundation, o. D.) statt. Der vollständige Analysecode 

und sämtliche Ergebnisse etc. sind im digitalen Begleitmaterial zu finden. 
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4. Empirisch-kriterienorientierte Analyse des 

fachdidaktischen Wissens angehender Physiklehrkräfte 

(Artikel 1) 

Einordnung in das Gesamtprojekt 

Ausgangspunkt der ersten Analyse dieses Projekts bilden zwei unabhängige Niveauanalysen 

des FDW von Physiklehrkräften. Schiering et al. führten zunächst eine Scale-Anchoring-

Analyse auf Basis der Daten des KiL-Projekts (Schiering et al., 2019) und später auch des 

Gesamtdatensatzes aus den Projekten KiL und KeiLa (Schiering et al., 2023) durch. Orientiert 

an diesem Vorgehen führten Zeller et al. (2022) ebenfalls eine Scale-Anchoring-Analyse auf 

Basis eines Datensatzes zu einer geschlossenen Version des FDW-Testinstruments aus dem 

ProfiLe-P-Projekt (Jordans et al., 2022) durch. Dabei fiel auf: Auch wenn die konkreten 

Bezüge zu fachinhaltlichen Themen und fachdidaktischen Inhalten bzw. Facetten naturgemäß 

unterschiedlich waren, so deuteten sich doch Gemeinsamkeiten bezüglich lernpsychologisch 

interpretierbarerer Operatoren wie „nennen“, „kennen“, „bewerten“ etc. an. 

Da in der Analyse von Zeller et al. (2022) allerdings nur eine recht kleine Datenbasis 

verfügbar war und die Übertragbarkeit der Beobachtungen auf das ursprüngliche FDW-

Testinstrument nicht uneingeschränkt angenommen werden kann und konnte (Kulgemeyer et 

al., 2023), wurde die Analyse für den Gesamtdatensatz des ProfiLe-P+ Projekts wiederholt. 

Dabei wurde zudem vorgeschlagen, diese Analysen in einer vergleichenden Betrachtung mit 

den Ergebnissen von Schiering et al. (2023) zusammenzuführen. Es konnte allerdings kein 

gemeinsames IRT-Modell der beiden Datensätze (KiL/KeiLa und ProfiLe-P+) genutzt werden, 

da die zu diesem Zweck notwendige Verknüpfung durch gemeinsame Aufgaben oder eine 

Überschneidung in der Stichprobe nicht gegeben war. Um die bisher isoliert stehenden Modelle 

zusammenzuführen, wurde daher der Weg über die inhaltliche Beschreibung der Niveaus 

gewählt. Neben den Scale-Anchoring-Analysen wurde zudem eine regressionsanalytische 

Niveaubildung angestrebt. So sollte der beschränkten Aufgabenanzahl der Testinstrumente, die 

das Scale-Anchoring-Verfahren erschwert, begegnet werden. Nach dem Vorbild bestehender 

regressionsanalytischer Niveaumodelle für das Fachwissen (Bernholt, 2010 ⁠; Woitkowski, 

2015⁠; Woitkowski & Riese, 2017) wurde hierfür die Adaption des Modells hierarchischer 

Komplexität (Commons et al., 2014 ⁠; Commons et al., 1998) vorgeschlagen. 

Die Ergebnisse des Scale-Anchoring-Verfahrens bestätigen die Vermutungen und zeigen, 

dass sich das FDW unabhängig von den fokussierten fachdidaktischen und fachlichen Inhalten 

/ Facetten in niedrigen Niveaus auf reproduktive Aspekte beschränkt, während in hohen 

Niveaus analytische, kreative, anwendungsorientierte und bewertende Aspekte hinzukommen. 

Diese Beobachtungen und insbesondere ihr projektübergreifender Charakter dienen als 

Grundlage für die vorbereitenden Schritte der nicht-hierarchischen explorativen Analysen in 

den Artikeln 2 und 3. In diesem Sinne kann die Kompetenzniveauanalyse als erster Pattern 

Detection Schritt eines das Gesamtprojekt überspannenden CGT-Workflows aufgefasst 

werden. Die daraus folgende Fokussierung auf die kognitiven Anforderungen stellen in diesem 

Sinne dann ein theorie- und empiriegeleitetes Pattern Refinement dar. 
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Zusammenfassung 

In den letzten Jahren wurde das Professionswissen (angehender) Lehrkräfte intensiv 

untersucht. Neben Aussagen zur inneren Struktur liegen auch Ergebnisse über den 

Zusammenhang zwischen Professionswissen, Performanz in prototypischen Handlungs-

situationen sowie Unterrichtserfolg vor. In diesen Analysen hat sich gezeigt, dass insbesondere 

dem fachdidaktischen Wissen eine zentrale Rolle zukommt. Es mangelt bisher jedoch an 

empirisch fundierten Beschreibungen von Niveaustufen des fachdidaktischen Wissens. Zwar 

liegen einzelne Vorschläge vor, diese sind jedoch entweder empirisch nicht fundiert oder post 

hoc generiert, so dass unklar ist, inwieweit die Beschreibung der Ausprägungen auch außerhalb 

der jeweiligen Projektkontexte anwendbar ist. Der vorliegende Artikel stellt eine 

projektübergreifende Analyse des fachdidaktischen Wissens mithilfe zweier Ansätze zur 

Bildung von Niveaustufen vor. Dazu werden Niveaumodelle mit Daten zum fachdidaktischen 

Wissen aus zwei Projekten (𝑁 = 427 und 𝑁 = 779) mithilfe des Scale-Anchoring-Verfahrens 

sowie eines regressionsanalytischen Ansatzes auf Basis eines Modells hierarchischer 

Komplexität erstellt. Das Scale-Anchoring-Verfahren liefert Niveaubeschreibungen, die sich 

zwar bezüglich fachlicher und fachdidaktischer Inhalte unterschieden, aber Parallelen 

bezüglich lernpsychologisch interpretierbarer Operatoren zeigten. Projektübergreifend 

deuteten die Ergebnisse daraufhin, dass sich das fachdidaktische Wissen in niedrigen 

Ausprägungen auf reproduktive Aspekte beschränkt, in höheren Ausprägungen aber kreative 

und evaluierende Elemente hinzukommen. Das Modell hierarchischer Komplexität zeigte sich 

nur für einen der Datensätze als geeignet, um ein Niveaumodell abzuleiten und konnte daher 

für projektübergreifende Analysen nicht weiter genutzt werden. Nichtsdestotrotz lieferte die 

projektübergreifende Analyse mithilfe des Scale-Anchoring-Verfahrens kontextunabhängige 

Beschreibungen von Ausprägungen des fachdidaktischen Wissens und ermöglicht so erste 

Schritte in Richtung eines empirisch fundierten, inhaltlich reichhaltigen Assessments, welches 

über eine Einordnung mittels eines Scores hinaus geht. 

Schlüsselwörter: Fachdidaktisches Wissen · Niveaumodell · Projektübergreifende Analyse · 

Physik 
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Cross-project empirical and criteria-oriented analysis of pre-service 

physics teachers’ pedagogical content knowledge 

What content structures emerge in the context of different models? 

Abstract 

In recent years, the professional knowledge of (pre-service) teachers has been intensively 

investigated. In addition to statements regarding its internal structure, there are also findings 

on the relationship between professional knowledge, performance in prototypical action 

situations, and teaching effectiveness. These analyses have shown that pedagogical content 

knowledge plays a central role. However, there is still a lack of an empirically grounded 

description of competency levels of pedagogical content knowledge. There have been some 

individual proposals, though they are either not empirically grounded or post hoc generated, 

leaving the extent to which the descriptions of such levels are applicable outside the specific 

project contexts unclear. This article presents a cross-project analysis of pedagogical content 

knowledge using two approaches to establish levels of proficiency. Therefore, level models 

were constructed based on data regarding pedagogical content knowledge from two projects 

(𝑁 = 427 and 𝑁 = 779) using the Scale-Anchoring procedure and a regression-analytical 

approach based on a model of hierarchical complexity. The Scale-Anchoring procedure 

provided level descriptions that, despite differences in subject matter and pedagogical content, 

exhibited parallels in terms of operators that are interpretable in terms of learning psychology. 

Across projects, the results indicated that pedagogical content knowledge in low levels is 

limited to reproductive aspects but incorporates creative and evaluative elements in higher 

levels. The model of hierarchical complexity turned out to be properly applicable only for one 

of the datasets and thus could not be further utilized for cross-project analyses. Nevertheless, 

the cross-project analysis using the Scale-Anchoring procedure provided context-independent 

descriptions of levels of pedagogical content knowledge, thus enabling initial steps towards an 

empirically grounded, conceptually rich assessment that goes beyond solely preparing a 

quantitative score. 

Keywords: Pedagogical content knowledge · Competency level model · Cross-project analysis 

· Physics 
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4.1. Einleitung 

Die professionelle Kompetenz (angehender) Lehrkräfte steht seit langem im Fokus der 

fachdidaktischen Forschung zur Professionalisierung von Lehrkräften (Baumert & Kunter, 

2006⁠; Gess-Newsome, 1999 ⁠; Shulman, 1986 ⁠; Terhart, 2012). Die professionelle Kompetenz 

wird dabei in unterschiedlichen Konzeptualisierungen als wesentlich für die Handlungsqualität 

im Unterricht oder für den Unterrichtserfolg aufgefasst (Ball et al., 2001 ⁠; Harms & Riese, 2018 ⁠; 

Terhart, 2012). Eine zunehmende Anzahl an Studien belegt diese Annahme (z. B. Blömeke et 

al., 2022⁠; Keller et al., 2017 ⁠; Kunter et al., 2013). Speziell in den Naturwissenschaften wurden 

in den vergangenen Jahren insbesondere die innere Struktur und die globale Entwicklung des 

Professionswissens sowie die Abhängigkeit dieser Entwicklung von anderen Konstrukten 

untersucht (Neumann et al., 2019 ⁠; Riese et al., 2017 ⁠; Schiering et al., 2019 ⁠; Sorge et al., 2018). 

Darüber hinaus liegen Ergebnisse zur Bedeutung des Professionswissens für die Performanz in 

prototypischen Handlungssituationen vor (z. B. Förtsch et al., 2016 ⁠; Kulgemeyer et al., 2020 ⁠; 

Kulgemeyer & Riese, 2018 ⁠; Riese et al., 2022a). 

Im Rahmen von Projekten wie den genannten werden üblicherweise ausgehend von 

gängigen Operationalisierungen des Professionswissens Testinstrumente erstellt, die häufig 

konkrete Aspekte, wie das thematisierte Fachwissen oder spezielle Professionswis-

sensdimensionen fokussieren. Dadurch wird ein direkter Vergleich der vorliegenden 

Ergebnisse erschwert, da unklar ist, inwieweit die durch diese Testinstrumente abgebildeten 

Konstrukte deckungsgleich sind. Gleichzeitig stellt die möglichst allgemeingültige, theoretisch 

begründete und empirisch fundierte Beschreibung von Ausprägungen oder sogar 

Entwicklungsstufen des Professionswissens und der Professionswissensdimensionen bereits 

länger ein Forschungsdesiderat dar (z. B. Kaiser et al.), denn die Möglichkeit zur Einordnung 

von Personen oder Lerngruppen in ein entsprechendes Niveaumodell ist für eine inhaltlich 

nützliche Diagnose und die Identifikation von Entwicklungspotenzialen notwendig. 

Das fachdidaktische Wissen (FDW) stellt in den meisten theoretischen Modellen eine 

Kerndomäne des Professionswissens von Lehrkräften dar und eine Vielzahl empirischer 

Ergebnisse belegt seine praktische Relevanz (z. B. Kulgemeyer & Riese, 2018). Gerade für das 

FDW als „special amalgam“ (Shulman, 1987 siehe auch Neumann et al., 2019), d. h. als 

spezielle, für die Lehrprofession einzigartige „Mischung“ von fachlichem und pädagogischem 

Wissen, gestaltet sich jedoch eine projektunabhängige Beschreibung von Ausprägungen als 

herausfordernd, denn auch aufgrund dieses Mischungscharakters fokussieren die in 

unterschiedlichen Studien verwendeten Testinstrumente häufig einzelne Aspekte wie z. B. 

konkretes Fachwissen und Subskalen (siehe z. B. Hume et al.)30. Daher können bisherige 

Untersuchungen des FDW und deren Ergebnisse bisher meist nur eingeschränkt miteinander 

verglichen werden.  

 

30  Den Autoren ist bewusst, dass gewisse Unterschiede zwischen den international üblichen, auf Shulman (1986 ⁠, 

1987) zurückgehenden Konzeptualisierungen des „ Pedagogical Content Knowledge“ (PCK) und dem im 

deutschsprachigen Raum verwendeten Konstrukt des FDW gibt (z. B. Gramzow et al., 2013 ⁠; Vollmer & Klette, 

2023). Da sich die Analyse auf empirisch-inhaltliche Ergebnisse stützt, wird auf eine genaue Beschreibung der 

hier zugrundeliegenden theoretischen Modellierungen verzichtet. Ergebnisse zum Forschungsstand werden hier 

unter dem FDW gelabelt, auch wenn teilweise eher PCK untersucht wurde. 



4. Empirisch-kriterienorientierte Analyse des FDWs angehender Physiklehrkräfte (Artikel 1) 

46 

Aussagen über das FDW, die auf Analysen mithilfe quantitativer Globalscores von 

Bearbeitungen der Testinstrumente basieren, bleiben also inhaltlich recht allgemein und die 

Gültigkeit über die konkreten Projektkontexte hinaus ist trotz gemeinsamer theoretischer 

Fundierung ungeklärt, was zusammenfassende Betrachtungen und Implikationen über mehrere 

Projekte hinweg schwierig macht. Dass Operationalisierung des FDW entsprechend der Natur 

des Konstrukts in der Regel in (unterschiedliche) fachliche Kontexte / Inhaltsbereiche 

eingebettet sind31 erschwert eine Analyse zusätzlich. Die vorliegende Arbeit macht sich daher 

ein regressionsanalytisches Verfahren (z. B. Woitkowski & Riese, 2017) sowie das Scale-

Anchroing-Verfahren (Beaton & Allen, 1992; OECD, 2018) zur Bildung von Niveaumodellen 

zunutze, um die nicht unmittelbar vergleichbaren quantitativen Aussagen unter Nutzung des 

vorhandenen Datenschatzes in inhaltlich-kriterienorientierte Beschreibungen zu überführen. 

Einerseits kann mithilfe solcher Beschreibungen die Vergleichbarkeit der tatsächlich 

abgebildeten Konstrukte, die durch die in den Projekten jeweils verwendeten Testinstrumente 

erfasst werden, durch eine Gegenüberstellung eingeschätzt werden. Andererseits können 

mithilfe der inhaltich-kriterienorientierten Beschreibungen auch inhaltliche Aussagen über 

Ausprägungen oder sogar Entwicklungsstufen des FDW empirisch fundiert abgeleitet werden, 

die wiederum differenziertere Einschätzungen der Kenntnisstände von Proband:innen oder 

Lerngruppen über die bloße Angabe eines Scores hinaus ermöglichen. Solche Einschätzungen 

würden beispielsweise in einem (Self-) Assessment für Studierende eine Möglichkeit bieten, 

neben quantitativen Einordnungen auch inhaltliche Lücken wie beispielweise Nachholbedarfe 

bezüglich konkreter fachdidaktischer Inhalte oder im Kontext konkreter Anforderungs-

situationen zu ermitteln. Sowohl die Gültigkeit empirischer Ergebnisse über die konkreten 

Projektkontexte hinaus als auch eine inhaltliche Einschätzung von Proband:innen sind 

grundlegend für einen effektiven und nützlichen Transfer der wissenschaftlichen Ergebnisse in 

die Praxis der Lehramtsausbildung. 

Im Kontext des Professionswissens von Lehramtsstudierenden wurden entsprechende 

Verfahren zur Niveaubildung bereits mit Erfolg angewendet (König, 2009 ⁠; Schiering et al., 

2023⁠; Woitkowski, 2020 ⁠; Zeller et al., 2022). Hier werden erstmals im deutschsprachigen 

Raum solche Niveaumodelle genutzt, um die Ergebnisse zur empirisch-inhaltlichen 

Beschreibung des FDW zweier Projekte vergleichend zu analysieren. Dazu werden hier die 

Projekte ProfiLe-P+2 (z. B. Vogelsang et al., 2019) und KiL25 (z. B. Kleickmann et al., 2014) 

bzw. dessen Folgeprojekt KeiLa26 (z. B. Schiering et al., 2023) gemeinschaftlich in den Blick 

genommen. In beiden Projekten waren Physik-Lehramtsstudierende die primäre 

Zielpopulation der Untersuchung. Insgesamt werden 1206 Testbearbeitungen (779 aus dem 

ProfiLe-P+ - Projekt und 427 aus den Projekten KiL / KeiLa) von Physik-

Lehramtsstudierenden zum FDW genutzt, um Niveaumodelle mithilfe des Scale-Anchoring-

Verfahrens (z. B. Mullis & Fishbein, 2020) und eines regressionsanalytischen Ansatzes (z. B. 

Nold et al., 2008⁠; Woitkowski & Riese, 2017) auf Basis hierarchischer Komplexität (Commons 

et al., 1998) entwickeln, welche anschließend zu projektübergreifenden, vergleichenden 

 

31  In der hier vorliegenden Analyse wurde dabei im ProfiLe-P - Projekt der fachphysikalische Inhalt auf 

„Mechanik“ fokussiert, während in den Projekten KiL / KeiLa mehrere Fachinhalte (Mechanik, 

Elektrizitätslehre, Optik, Thermodynamik, Atom- und Kernphysik, spezielle Relativitätstheorie, 

Festkörperphysik & Quantenmechanik) abgedeckt wurden. 
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Betrachtungen auf inhaltlicher Ebene genutzt werden.  

Diese projektübergreifende Betrachtung soll, wie oben bereits angedeutet, die 

Verallgemeinerbarkeit bzw. Allgemeingültigkeit etwaiger inhaltlicher Beschreibungen 

untersuchen. Durch die bisher isoliert stehenden Modellierungen können beispielsweise 

Untersuchungen der Entwicklung des FDW mithilfe der projektspezifischen Testinstrumente, 

wie etwa zur Evaluation einer Lehrveranstaltung, keine allgemeingültigen inhaltlichen 

Aussagen über den Wissenszuwachs der Proband:innen treffen. Es bleibt unklar, ob oder 

inwieweit ein über beide Projekte äquivalenter Wissenszuwachs auf Basis quantitativer Scores 

auch ähnliche Zuwächse in der Fähigkeit konkrete Anforderungen zu bewältigen beschreibt. 

Unter Umständen kann auch aus methodischer Sicht die Vorgehensweise selbst als Vorlage für 

projektübergreifende Analysen in Fällen dienen, in denen eine direkte gemeinsame quantitative 

Analyse nicht möglich ist, da sich Testinstrumente und Stichproben unterscheiden bzw. sogar 

beide disjunkt sind. 

Abschließend werden Limitationen und Anwendungsmöglichkeiten der erhaltenen 

inhaltlichen Beschreibungen von Ausprägungen des FDW diskutiert. Darüber hinaus werden 

Optionen für weiterführende Forschung erörtert. 

4.2. Theoretischer Hintergrund 

Das Professionswissen von Lehrkräften wird in der Tradition Shulmans (1986⁠, 1987) 

üblicherweise in Fachwissen (FW), Pädagogisches Wissen (PW) und FDW gegliedert 

(Baumert & Kunter, 2006 ⁠; speziell für das Fach Physik vgl. Riese, 2009). Das FDW wird 

demnach als dasjenige Wissen aufgefasst, welches zur adressatengerechten Aufbereitung des 

FW notwendig ist und stellt somit eine zentrale Komponente des Professionswissens dar 

(Shulman, 1987). Nachfolgend wird das in diesem Beitrag fokussiert betrachtete Konstrukt des 

FDW aus der Perspektive der Naturwissenschaftsdidaktik präzisiert und in relevante 

theoretische Rahmungen eingebettet. 

4.2.1 Fachdidaktisches Wissen 

Die Modellierungen des FDW (im englischsprachigen und internationalen Raum auch 

„Pedagogical Content Knowledge“, kurz PCK, genannt30) unterscheiden sich zwar häufig im 

Detail (Gess-Newsome, 1999 ⁠; Hume et al., 2019), gemein ist jedoch allen theoretischen 

Grundmodellen die o. g. Auffassung von FDW als spezifisches Wissen von Lehrkräften, 

welches zur adressatengerechten Aufbereitung von Fachwissen notwendig ist und mit den 

anderen Domänen des Professionswissens (FW & PW) in Beziehung steht (Baumert & Kunter, 

2006⁠; Riese, 2009 ⁠; Shulman, 1986). Dabei gibt es unterschiedliche strukturelle Ansätze, das 

FDW in der Bandbreite von eher deklarativem Wissen bis hin zu gezeigten Handlungen zu 

positionieren.  

Einen prominenten Ansatz stellt hier das häufig als „Kontinuumsmodell“ bezeichnete 

Konzept von Blömeke et al. (2015) dar, das Kompetenz als Kontinuum zwischen latenten 

kognitiven Dispositionen und gezeigter Performanz in für die Profession spezifischen 

Handlungssituationen beschreibt. Das in Testinstrumenten abrufbare FDW im hier 
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beschriebenen Sinne lässt sich in diesem Modell eher auf Seite der kognitiven Dispositionen 

verorten, die wiederum eine Grundlage für situationsspezifische Fähigkeiten und Fertigkeiten 

darstellen (Blömeke et al., 2015). International speziell im Bereich der Naturwissenschafts-

didaktik etabliert ist darüber hinaus auch das sog. „Refined Consensus Model of PCK“ (kurz 

RCM, Carlson et al. 2019), welches das FDW in die Bereiche collective PCK (cPCK), personal 

PCK (pPCK) und enacted PCK (ePCK) gliedert (siehe auch Alonzo et al., 2019). Dabei stellt 

cPCK die kollektive Wissensbasis der fachdidaktischen Community dar, pPCK das explizite 

Wissen einzelner Akteur:innen und ePCK das internalisierte Wissen, welches sich durch 

Performanz in spezifischen Situationen äußert. Eine knappe Gegenüberstellung der beiden 

theoretischen Ansätze des Kontinuumsmodells und des RCMs ist z. B. bei Kulgemeyer et al. 

(2020, S. 4–7) zu finden. Beide Modelle nehmen dabei an, dass das FDW bzw. PCK eine 

wichtige Voraussetzung für späteres professionelles Handeln im Klassenzimmer ist. 

Hierzulande ist eine Gliederung des FDW in drei Dimensionen üblich (z. B. Gramzow, 

2015⁠; Kröger, 2019⁠; Tepner et al., 2012). Dabei wird das FDW grundsätzlich als abhängig vom 

konkret betrachteten Fachinhalt (Dimension 1) aufgefasst. Im Falle der Physik sind dabei 

konkrete Inhaltsgebiete wie beispielsweise „Mechanik“, „Optik“ oder „Elektrizitätslehre“ und 

nicht übergeordnete fachliche Dimensionen wie „Erkenntnisgewinnung“ gemeint. Weiterhin 

umfassen die Modellierungen meist eine Dimension, die unterschiedliche fachdidaktische 

Inhalte / Facetten (Dimension 2) wie beispielsweise Schülerkognition oder Instruktions-

strategien abbildet. Es existieren zahlreiche Kataloge relevanter Facetten, die u. a. Kirschner 

(2013) in einer Übersicht gegenübergestellt hat. Dabei ist auffällig, dass die Facetten Schüler 

und Schülerkognition32 sowie Instruktions- und Vermittlungsstrategien fast allen Modellier-

ungen gemein ist. Diese und die weiteren genutzten Facetten werden primär aus den 

ursprünglichen theoretischen Modellierungen des FDW (z. B. Carlson et al., 2019 ⁠; Shulman, 

1986), Analysen der Curricula der Lehrerbildung bzw. Literatur-Reviews (z. B. Kröger 2019; 

Gramzow et al. 2013) sowie Expertenbefragungen zu Sicherstellung der curricularen Validität 

entsprechender Items (z. B. Gramzow 2015) abgeleitet. Auch die Items zu den o. g. Facetten 

Schüler und Schülerkognition und Instruktions- und Vermittlungsstrategien wurden in den 

entsprechenden Befragungen als curricular passend eingeschätzt (Gramzow 2015, S. 166-168). 

Aus Gründen der Testökonomie und Zumutbarkeit wird bei der Entwicklung konkreter 

Testinstrumente meist eine Auswahl entsprechender Facetten getroffen. Die dritte Dimension 

der Itementwicklungsmodelle dient üblicherweise zur Anreicherung der Anforderungsbereiche 

der Testinstrumente (Klieme et al., 2003). So findet sich bei Tepner et al. (2012) sowie Kröger 

(2019) eine Dimension „Wissensarten“ (S. 19 bzw. 50) und bei Gramzow (2015) eine 

Dimension „Kognitive Aktivität“ (S. 104). 

 

32  Die Facette wird hier wie im Original benannt und daher nicht geschlechtsneutral umformuliert. 
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Abbildung 4.1 Itementwicklungsmodelle zu den Testinstrumenten nach Kröger (2019, S. 50) oben und Gramzow 

(2015, S. 104) unten. 

Für die Physik sind hier die Modelle des FDW, die den Testinstrumenten von Kröger (2019) 

und Gramzow (2015) (zur Itementwicklung) zugrunde liegen, exemplarisch dargestellt 

(Abbildung 4.1). Auffällig ist auch hier, dass in beiden Modellen jeweils eine Facette zu 

Schülerkognition und eine Facette zu Instruktionsstrategien enthalten ist. Auch Tepner et al. 

(2012) schließen in ihrer Dimensionierung, die weitgehend Analog zu der von Kröger (2019) 

aufgebaut ist, die Facette der Schülervorstellungen explizit mit ein. Die anderen beiden 

Facetten weichen jedoch voneinander ab. Für die Begründung der Auswahl der entsprechenden 

Facetten sei auf die Originalquellen (Gramzow, 2015, S. 96–105⁠; Kröger, 2019, S. 46–47⁠; 

Tepner et al., 2012, S. 13–16) verwiesen. 

Speziell für das Fach Physik belegen konkrete Forschungsergebnisse aus Quer- und 

Längsschnitten signifikante Zuwächse des FDW im Studium und Vorbereitungsdienst 

(Kirschner, 2013 ⁠; Kröger, 2019 ⁠; Riese & Reinhold, 2012). Weiterhin zeigen sich im 

naturwissenschaftlichen Bereich signifikante Zusammenhänge zwischen FDW und FW bzw. 

PW (Riese & Reinhold, 2012 ⁠; Schiering et al., 2019) und Zusammenhänge zwischen FDW und 

Performanz in prototypischen Anforderungssituationen, wie beispielsweise (1) der 

Unterrichtsplanung (Behling et al., 2022b ⁠; Riese et al., 2022b ⁠; Schröder et al., 2020), (2) dem 

Erklären physikalischer Phänomene (Kulgemeyer et al., 2020 ⁠; Kulgemeyer & Riese, 2018), (3) 

dem Reflektieren über Unterricht (Kulgemeyer et al., 2021), (4) der kognitiven Aktivierung 
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(Förtsch et al., 2016), (5) der Nutzung von physischen Modellen (Förtsch et al., 2018) sowie 

(6) diagnostischen Handlungen (Kramer et al., 2021). Für den MINT-Bereich wurden zudem 

(häufig mediative) Einflüsse des FDW auf Aspekte der Unterrichtsqualität bzw. des 

Unterrichtserfolgs (Behling et al., 2022a ⁠, 2022b ⁠; Blömeke et al., 2022 ⁠; Keller et al., 2017) 

festgestellt. Diese Ergebnisse sind konform zu den theoretischen Annahmen, beispielsweise 

der angenommenen Notwendigkeit von FDW zur Aufbereitung fachlicher Inhalte bei Shulman 

(1986). Auch die angenommene Wirkkette der schulischen Bildung nach Terhart (2012) macht 

diese Ergebnisse plausibel. Somit ist das besondere Augenmerk auf das FDW als wichtige 

Dimension des Professionswissens sowohl empirisch als auch theoretisch zu rechtfertigen. 

Statistische Zusammenhangs- und Mediationsanalysen in der Art der genannten Studien 

zielen dabei naturgemäß im Wesentlichen auf Schlussfolgerungen auf Basis quantitativer 

Ausprägungen ab (Reinhold et al., 2017) und treffen dabei keine Aussagen über die 

(inhaltliche) Art dieser Ausprägungen. In der Folge stellen Mientus et al. (2022) im Rahmen 

eines systematischen Reviews fest, dass in bisheriger internationaler Forschung zur 

inhaltlichen Charakterisierung des FDW im MINT-Bereich primär qualitative 

Untersuchungsmethoden genutzt wurden. Weiterhin beobachten sie, dass quantitative 

empirische Analysen, wenn auch zur Beantwortung unterschiedlicher Forschungsfragen und 

Untersuchung unterschiedlicher Zusammenhänge, weitestgehend auf Globaleinschätzungen 

abzielen.  

4.2.2 Kompetenzniveaumodelle 

Kompetenzniveaumodelle werden allgemein als geeignetes Mittel zur inhaltlichen 

Beschreibung von hierarchischen Ausprägungen unterschiedlicher Konstrukte aufgefasst 

(Beaton & Allen, 1992 ⁠; Lok et al., 2016) und wurden beispielsweise in den Large-Scale 

Schulleistungsstudien wie PISA und TIMSS zur inhaltlichen Beschreibung von 

Fähigkeitsniveaus verwendet (Mullis et al., 2016; OECD, 2018). Die inhaltliche Beschreibung 

entsprechender Ausprägungen auf Basis quantitativer Daten bietet dabei die Chance, 

quantitative Ergebnisse und qualitative Beschreibungen zu verbinden. Die Nutzung der 

Testdaten validierter Testinstrumente stellt hierbei auch ein Validitätsargument für die 

erhaltenen Niveaumodelle dar. Es existieren unterschiedliche Möglichkeiten, aus Testscores 

inhaltliche Niveaumodelle abzuleiten, die sich deutlich unterscheiden. Woitkowski (2020) 

stellt im Rahmen seiner Adaption eines dieser Verfahren eine Übersicht u. a. des Scale-

Anchoring-Verfahrens und regressionsanalytischer Ansätze vor. Beide Verfahren nutzen ein 

IRT33-Modell als Ausgangspunkt, mit dem eine gemeinsame Abbildung von 

Personenfähigkeiten und Aufgabenschwierigkeiten auf eine Skala mit inhärenter Hierarchie 

ausgenutzt wird, so dass Aufgaben und Personen direkt miteinander in Beziehung gesetzt 

werden können (siehe z. B. Moosbrugger & Kelava, 2020 ⁠; Neumann, 2014). 

Im Scale-Anchoring-Verfahren wird über mehrere Schritte aus einem IRT-Modell ein 

inhaltliches Niveaumodell gebildet (Mullis & Fishbein, 2020; OECD, 2018). Dabei werden 

zunächst Personengruppen mithilfe der Fähigkeits-Verteilungen gebildet (beispielsweise eine 

 

33  IRT wird als Abkürzung für Item Response Theorie verwendet. 
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Gruppe mit niedriger, eine mit mittlerer und eine mit hoher Fähigkeit). Anschließend werden 

die Aufgaben gemäß ihrer Lösungshäufigkeit in den unterschiedlichen Personengruppen 

wiederum in Gruppen eingeteilt. Die mittleren Schwierigkeitsparameter der Aufgabengruppen 

dienen dann zur Bildung der Niveaugrenzen, da sie sich durch die Nutzung des IRT-Modells 

direkt auf die Personenfähigkeiten beziehen lassen. Die inhaltlichen Beschreibungen der 

Niveaus werden anschließend durch die Aufgaben, deren Schwierigkeitsparameter sich nahe 

an den Niveaugrenzen befinden, erstellt. Der genaue Ablauf des Verfahrens wird auch in 

Abschnitt 4.4 noch einmal bei der konkreten Anwendung deutlich. Die Niveaustruktur und die 

inhaltlichen Niveaucharakterisierungen werden somit vollständig induktiv aus dem Modell 

abgeleitet, wodurch der qualitative Aufwand sich auf die inhaltliche (Re-)Analyse weniger 

Aufgaben reduziert. Das Verfahren zeichnet sich dadurch durch vergleichsweise hohe 

Objektivität und Effizienz aus. Allerdings ist eine möglichst große Anzahl an Aufgaben an den 

jeweiligen Niveaugrenzen für eine reliable Niveaucharakterisierungen hier optimal. Das Scale-

Anchoring-Verfahren wurde bereits mehrfach zur Analyse des FDW im deutschsprachigen 

Raum eingesetzt (Schiering et al., 2023 ⁠; Schiering et al., 2019 ⁠; Zeller et al., 2022). In 

Niveauanalysen im Kontext anderer Domänen des Professionswissens werden anstelle des 

Scale-Anchoring-Verfahrens meist stärker theoriegeleitete Ansätze genutzt. 

Eine Alternative zum Scale-Anchoring-Verfahren bietet beispielsweise ein 

regressionsanalytischer Ansatz (Blömeke et al., 2008b ⁠; Nold et al., 2008 ⁠; Woitkowski, 2020). 

Dazu werden schwierigkeitserzeugende Merkmale aus theoretischen Überlegungen abgeleitet 

(z. B. sprachliche Terminologie und Komplexität kognitiver Bearbeitungsprozesse bei König, 

2009) und die Aufgaben bezüglich dieser Merkmale gruppiert. Anschließend wird mithilfe 

einer linearen Regression die Varianzaufklärung dieser Gruppierung bzgl. der 

Aufgabenschwierigkeit bestimmt und somit die Eignung des Modells geprüft. Zeigt das Modell 

eine ausreichende Passung, können wiederum die mittleren Aufgabenschwierigkeiten durch 

das IRT-Modell als Niveaugrenzen aufgefasst werden (analog zu den Aufgabengruppen aus 

dem Scale-Anchoring-Verfahren). Die Niveaucharakterisierungen ergeben sich dann implizit 

durch die Beschreibung der schwierigkeitserzeugenden Merkmale. Da der regressions-

analytische Ansatz die Entwicklung eines Modells für schwierigkeitserzeugende Merkmale 

und eine (Re-)Analyse aller Aufgaben bzgl. dieser Merkmale erfordert, ist er aufwändiger als 

das Scale-Anchoring-Verfahren. Auf der anderen Seite können mithilfe des 

regressionsanalytischen Ansatzes (nach entsprechender theoretischer Vorarbeit) Informationen 

aus allen Aufgaben und Expertenwissen bzgl. aller Aufgaben zur inhaltlichen 

Charakterisierung mit herangezogen werden, weshalb dieser Ansatz gerade bei einer geringen 

Anzahl verfügbarer Aufgaben attraktiv ist. Besonders für eine projektübergreifende Analyse 

sollte das theoretisch zugrunde gelegte Modell schwierigkeitserzeugender Merkmale 

unabhängig vom konkreten Testinstrument sein. Im naturwissenschaftsdidaktischen Kontext 

wurde der regressionsanalytische Ansatz bereits mehrfach bei Fachwissenstests eingesetzt 

(Bernholt, 2010 ⁠; Woitkowski, 2019 ⁠; Woitkowski & Riese, 2017) .  

4.2.3 Hierarchische Komplexität des FDW 

Bei den in Abschnitt 4.2.2 genannten regressionsanalytischen Ansätzen zur Kompetenzniveau-

ermittlung wurde als „schwierigkeitserzeugendes Merkmal“ mehrfach ein Modell 
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hierarchischer Komplexität der Aufgabenanforderungen angelehnt an das „Model of 

hierarchical Complexity“ nach Commons et al. (1998) (siehe auch Commons et al., 2014) 

entwickelt bzw. für das jeweils fokussierte Konstrukt adaptiert. Die hierarchische Komplexität 

stellt dabei ein Schema dar, nach dem die Qualität von Wissen als propositionales Netzwerk 

im lernpsychologischen Sinne (z. B. Schnotz, 1994) eingeschätzt werden kann. Der 

grundlegende Ansatz ist, dass höhere Qualität des Wissens nicht durch bloße Breite, sondern 

durch den Grad der Vernetzung des Wissensnetzwerks entsteht. Höhere Komplexitätsstufen 

bauen dabei auf niedrigeren auf, indem sie die Wissensstrukturen dieser niedrigeren Stufen 

reorganisieren. Es stellt somit einen etablierten, vereinheitlichten Ansatz dar, um die Qualität 

von Wissensstrukturen in unterschiedlichen Bereichen zu beschreiben (siehe Woitkowski & 

Riese, 2017).  

Das Modell hierarchischer Komplexität wurde also bereits in unterschiedlichen Kontexten 

erfolgreich genutzt. Es umfasst allgemeine kognitive Prozesse und ist insofern auch für das 

FDW ein aussichtsreicher Kandidat zur vereinheitlichten Beschreibung schwierigkeits-

erzeugender Merkmale. Da für das physikalische Fachwissen bereits ein Komplexitätsmodell 

existiert, welches mit Erfolg zur Modellierung von Niveaustufen genutzt wurde (Woitkowski 

& Riese, 2017) wäre es zudem wünschenswert die Adaptierbarkeit dieses Modells für das FDW 

zu überprüfen (siehe Abschnitt 4.4). 

4.3. Ziele der Analyse 

Die empirisch fundierte inhaltliche Beschreibung von Ausprägungen des FDW z. B. in Form 

von Niveaumodellen stellt nach wie vor ein Desiderat fachdidaktischer Forschung dar. Eine 

Möglichkeit der Beschreibung solcher Ausprägungen von Studierenden und Lerngruppen, ist 

sowohl für individual- als auch systemdiagnostische Zwecke und die Entwicklung oder 

Auswahl passender Fördermöglichkeiten notwendig. Bisher liegen jedoch von empirischer 

Seite im deutschsprachigen Raum hauptsächlich quantitative, globale Analysen und Ergebnisse 

zum FDW vor, in welchen die inhaltliche Komponente weniger fokussiert wurde. Erste 

entsprechend inhaltlich angereicherte, kriterienorientierte Ergebnisse sind Projekt- bzw. 

Testinstrument-spezifisch und stehen dadurch zunächst isoliert. Prinzipiell bieten IRT-

Modellierungen die Möglichkeit, auch Datensätze zu unterschiedlichen Testinstrumenten zu 

verbinden, indem Stichproben von Proband:innen die mehrere Testinstrumente bearbeiten 

haben, gebildet werden oder indem identische Ankeritems in beiden Tests verwendet werden 

(siehe z. B. Lee & Lee, 2018). Die nachträgliche Erhebung von entsprechenden 

Normstichproben gestaltet sich aber in der Fachdidaktik aufgrund kleiner Populationsgrößen 

und schwierigem Zugriff auf geeignete Stichproben meist nicht praktikabel. Eine 

projektübergreifende inhaltliche Beschreibung von Ausprägungen des FDW ist aber sowohl 

zur Vergleichbarkeit von gefundenen quantitativen Ausprägungen des FDW unter der Nutzung 

unterschiedlicher Testinstrumente als auch zur Validierung von Einordnungen von 

Proband:innen vor dem Hintergrund einzelner Modellierungen notwendig. 

Erst seit kurzem wird auch die inhaltliche Beschreibung von Ausprägungen des FDW auf 

Basis quantitativer empirischer Ergebnisse in den Blick genommen. Dazu wurden erste 

datenbasierte kriterienorientierte / inhaltliche Beschreibungen von Ausprägungen des FDW im 
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Rahmen von IRT-Modellierungen entwickelt. Dabei wurde das Scale-Anchoring-Verfahren 

(Mullis et al., 2016) auf die Daten aus dem KiL - Projekt (Schiering et al., 2019) sowie 

vorläufigen Daten (𝑁 < 150) zu einer geschlossenen Version des in ProfiLe-P konzipierten 

und verwendeten Testinstruments (Kulgemeyer et al., 2023) angewandt (Zeller et al., 2022). 

Die Ergebnisse dieser Analysen deuteten in beiden Projekten auf übergeordnete Parallelen 

bzgl. der erhaltenen Niveaustufen hin: In niedrigen Ausprägungen schien sich das FDW vor 

allem auf reproduktive Aspekte zu beschränken, während in höheren Ausprägungen auch 

kreative und evaluierende Elemente hinzukamen (Schiering et al., 2019, S. 224⁠; Zeller et al., 

2022, S. 770). Um diese Beobachtung weiter zu systematisieren und ggf. zu bestätigen, soll in 

diesem Beitrag eine erweiterte Niveauanalyse der Daten aus den KiL / KeiLa - Projekten von 

Schiering et al. (2023) mit einer Re-Analyse des ProfiLe-P+ - Datensatzes im Rahmen von 

Niveaumodellierungen inhaltlich verglichen werden. Dieses Vorgehen kann sich unter 

Umständen als Vorlage für ähnliche projektübergreifende Betrachtungen in anderen 

verwandten Felder erweisen. 

Ziel dieses Beitrags ist also erstens die datengestützte kriterienorientiert-inhaltliche 

Beschreibung von Ausprägungen des FDW, um damit zweitens die Verknüpfung der 

Ergebnisse zweier unabhängiger Large-Scale Studien (für fachdidaktische Größenordnungen) 

auf Basis entsprechender inhaltlicher Ergebnisse zu ermöglichen. Dazu werden die folgenden 

Forschungsfragen formuliert: 

FF1: Inwieweit lassen sich mithilfe des Scale-Anchoring-Verfahrens 

projektübergreifend inhaltliche Strukturen des FDW identifizieren und inhaltlich 

charakterisieren? 

FF2: Inwieweit lassen sich Stufen hierarchischer Komplexität des FDW projekt-

übergreifend identifizieren und inhaltlich charakterisieren? 

Zunächst wird dazu analog zum Vorgehen von Schiering et al. (2023) das Scale-Anchoring-

Verfahren auf den ProfiLe-P+ - Datensatz angewendet. Der inhaltliche Vergleich der 

Ergebnisse findet dann durch eine Gegenüberstellung der erhaltenen Niveaubeschreibungen 

statt. Anschließend wird ein Modell hierarchischer Komplexität für das FDW zur 

Niveaubildung mithilfe eines regressionsanalytischen Ansatzes ausgehend vom ProfiLe-P+ - 

Datensatz vorgeschlagen und die Übertragbarkeit auf die KiL / KeiLa - Daten untersucht. Es 

wird dabei in den Blick genommen, ob mit den Scale-Anchoring-Analysen erhaltene 

inhaltliche Parallelen sich durch ein solches Modell hierarchischer Komplexität unterstützen, 

erweitern oder erklären lassen. Etwaige projektübergreifende Strukturen bieten einerseits 

Potentiale für die Nutzung als Grundlage für Feedback im Rahmen der Lehrpraxis, andererseits 

erweitern sie den Forschungsstand um allgemein zutreffende Aussagen über Ausprägungen des 

FDW. 

4.4. Methoden 

Zur Beantwortung der Forschungsfragen werden das Scale-Anchoring Verfahren und ein 

regressionsanalytischer Ansatz zur Niveaubildung synchron auf die Daten der beiden Projekte 

angewandt. Im Falle des Scale-Anchroing Verfahrens findet die projektübergreifende Analyse 
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durch die gemeinsame vergleichende Betrachtung der erhaltenen Niveauformulierungen statt. 

Die regressionsanalytische Betrachtung fußt auf einem zu diesem Zweck entwickelten Modell 

hierarchischer Komplexität für das FDW. Die projektübergreifende Analyse findet hierbei 

durch die Überprüfung der Anwendbarkeit des Komplexitätsmodells auf beide Datensätze 

statt. Beide in dieser Analyse verwendete Operationalisierungen lassen sich vor dem 

Hintergrund des RCM im Rahmen des pPCK, d. h. dem „testbaren“ persönlichen FDW der 

Proband:innen, interpretieren (siehe Riese et al., 2022b für ProfiLe-P sowie Schiering et al., 

2023 für KiL / KeiLa).  

Sowohl das Scale-Anchoring-Verfahren als auch der regressionsanalytische Ansatz 

basieren auf einem IRT-Modell des jeweiligen Datensatzes. Für die KiL / KeiLa - Daten wurde 

dasselbe IRT-Modell wie bei Schiering et al. (2023) verwendet. Für die ProfiLe-P+ - Daten 

wurde nach einer Bereinigung des Datensatzes ein neues IRT-Modell erstellt. In beiden Fällen 

wurde dabei das Paket „Test Analysis Modules“ (Robitzsch et al., 2024) auf Basis der Statistik-

Software R (R Core Team, 2024) verwendet. Der Workflow der Analysen ist in Abbildung 4.2 

dargestellt. 

 

Abbildung 4.2 Analyse-Workflow der vorgestellten Untersuchung. 

4.4.1 Testinstrumente und Stichproben 

Der Datensatz des ProfiLe-P+ - Projekts (Vogelsang et al., 2019) beinhaltet 846 Bearbeitungen 

des FDW-Testinstruments nach Gramzow (2015), das FDW in den Facetten 

Schülervorstellungen, Fachdidaktische Konzepte, Experimente und Vermittlung eines 

angemessenen Wissenschaftsbegriffs sowie Instruktionsstrategien abbildet. Beschreibungen 

des inhaltlichen Verständnisses dieser Facetten haben Riese et al. (2017, S. 103–104) knapp 

zusammengefasst. Bezüglich des fachphysikalischen Inhalts wurde sich im ProfiLe-P - 

Projektverbund übergreifend auf die Mechanik festgelegt, um zu diesem Bereich empirisch 

trennbare Teilskalen auf Facettenebene erfassen zu können (Riese et al., 2015). Insgesamt 

besteht das Testinstrument aus 20 offenen und 4 geschlossenen (Multiple-Choice) Aufgaben 

und wurde im Rahmen des ProfiLe-P+ - Projekts in den Jahren 2016 bis 2019 von Bachelor- 

und Masterstudierenden des Physik-Lehramts aus 12 deutschsprachigen Universitäten 
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bearbeitet. Ein Beispielitem aus diesem Testinstrument ist in Abbildung 4.3 dargestellt. Aus 

diesen Erhebungen blieben nach einer intensiven Bereinigung der Daten und dem Ausschluss 

von unvollständigen Bearbeitungen 779 Bearbeitungen (34 % weiblich, Studienjahr M =

2,11, 𝑆𝐷 = 1,75) für die hier verwendete Modellierung.  

In den Projekten KiL und KeiLa wurde ein FDW-Testinstrument (Kröger, 2019 ⁠; Sorge et 

al., 2019) eingesetzt, welches FDW im Rahmen der fachdidaktischen Inhalte (analoge 

Dimension zu den „Facetten“ in ProfiLe-P+) Schülerkognition, Instruktionsstrategien, 

Curriculum und Assessment abbildet. Das inhaltliche Verständnis dieser Aspekte führt Kröger 

(2019, S. 46–47) genauer aus. Es wurde darauf abgezielt, das FDW bzgl. der fachlichen Inhalte 

breit zu untersuchen und somit die fachphysikalischen Inhalte Mechanik, Elektrizitätslehre, 

Optik, Thermodynamik, Atom- und Kernphysik, spezielle Relativitätstheorie, Festkörper-

physik sowie Quantenmechanik eingeschlossen. 

 

Abbildung 4.3 Beispielitem aus dem FDW-Testinstrument des ProfiLe-P+ - Projekts (Gramzow, 2015, S. 235). 

Das Testinstrument besteht insgesamt aus 18 offenen und 21 geschlossenen Aufgaben. Ein 

Beispielitem aus diesem Testinstrument ist in Abbildung 4.4 dargestellt. Der Datensatz des 

KiL / KeiLa - IRT-Modells besteht insgesamt aus 200 Bearbeitungen dieses Testinstruments 

aus der Querschnitterhebung des KiL - Projekts (2013, 12 Universitäten) und 227 
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Bearbeitungen aus den Längsschnitterhebungen des KeiLa - Projekts (2014 bis 2017, 20 

Universitäten)34.  

 

Abbildung 4.4 Beispielitem aus dem FDW-Testinstrument des KiL – Projekts (Schiering et al., 2019, S. 225). 

4.4.2 Item-Response-Modellierungen 

Um möglichst vergleichbare Niveaumodelle zu konstruieren, wurde bereits bei der IRT-

Modellierung ein analoges Vorgehen zu der bereits bestehenden Analyse von Schiering et al. 

(2023) gewählt. Aufgrund der für die Anwendung von Niveaubildungsverfahren 

vergleichsweise geringen Aufgabenanzahl wurde ein eindimensionales Partial-Credit-Modell 

(Masters, 1982) verwendet, wobei Thurstone-Thresholds zur Schätzung der 

Itemschwierigkeiten bei polytomen Aufgaben verwendet wurden (Linacre, 1998). Zur 

gemeinsamen Modellierung wurden Datensätze, die derselben Person sind, im Rahmen der 

Methode virtueller Proband:innen (Davier et al., 2008) als unabhängige Datensätze modelliert, 

d. h. jede Bearbeitung fließt in die Modellierung als eigene „Datenzeile“ ein, ohne dass weiter 

beachtet wird, dass es sich um dieselbe Person handelt. Das erhaltene Modell für die ProfiLe-

 

34  Eine ausführlichere Beschreibung der Stichproben der Projekte KiL und KeiLa kann in Schiering et al. (2023, 

S. 8) gefunden werden. 
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P+ - Daten wies mit einer EAP-Reliabilität von 0.71 und Item-Outfits im Bereich von 0.8 bis 

1.2 hinreichende Fit-Qualität für die weitere Analyse auf. 

Für die Daten der KiL / KeiLa - Projekte wurde das bereits bestehende IRT-Modell von 

Schiering et al. (2023) basierend auf 427 Bearbeitungen herangezogen. Auch hier waren die 

Fit-Gütekriterien mit einer EAP-Reliabilität von 0.72 und Item-Outfits ebenfalls im Bereich 

von 0.8 bis 1.2 zufriedenstellend. 

4.4.3 Scale-Anchoring-Verfahren 

Zur Beantwortung der ersten Forschungsfrage wurde das Scale-Anchoring-Verfahren (z. B. 

Mullis et al., 2016) auf das IRT-Modell der ProfiLe-P+ - Daten angewendet. Im ersten Schritt 

wurden dazu die Item- und Personenparameter gemeinsam auf eine praktikablere Skala mit 

Mittelwert 500 und Standardabweichung 100 transformiert. Anschließend wurden drei 

Probandengruppen durch eine äquidistante Zerlegung der Fähigkeitsskala gebildet (Abbildung 

4.5). Zur absichernden Kontrolle, dass die so gefundenen Gruppen ausreichend unterschiedlich 

(Woitkowski & Riese, 2017) waren, wurden inferenzstatistische Betrachtung mithilfe 

verteilungsfreier Tests (Kruskal-Wallis und Mann-Whitney 𝑈 Tests) nach dem Vorbild von 

(Schiering et al., 2023) durchgeführt, die eine ausreichende Differenzierung der Gruppen 

bestätigten (Tabelle 4.1). 

Auf Basis dieser Probandengruppen wurden die Aufgaben analog zum von Schiering et al. 

(2023 adaptiert nach Mullis & Fishbein, 2020) genutzten Schema in Aufgabengruppen 

eingeteilt: 

1. Aufgabengruppe 1: Mehr als 55 % der Personen aus Personengruppe 1 haben die 

Aufgabe gelöst. 

2. Aufgabengruppe 2: Mehr als 55 % der Personen aus Personengruppe 2 und weniger als 

50 % der Personen aus Personengruppe 1 haben die Aufgabe gelöst. 

3. Aufgabengruppe 3: Mehr als 55 % der Personen aus Personengruppe 3 und weniger als 

50 % der Personen aus Personengruppe 2 haben die Aufgabe gelöst. 

4. Aufgabengruppe 3+: Weniger als 50 % der Personen aus Personengruppe 3 haben die 

Aufgabe gelöst.  

Die Mittelwerte der Schwierigkeitsparameter der Aufgabengruppen dienten dann als 

Schätzungen für die empirischen Niveaugrenzen. Auch hier wurden, um eine Vergleichbarkeit 

zu Schiering et al. (2023) beizubehalten, anschließend an die Zuordnung der Aufgaben 

verteilungsfreie statistische Tests zur Überprüfung der Unterscheidbarkeit der 

Aufgabengruppen durchgeführt (Tabelle 4.2). Dabei wurde zudem das Abstandskriterium 

überprüft, d. h. es wurde getestet, ob eine Person mit einem Fähigkeitsparameter, der der 

Niveaugrenze des Niveaus 𝑛 entspricht, einer Aufgabe an der Niveaugrenze des Niveaus 𝑛 +

 1 mit einer Wahrscheinlichkeit von maximal 30 % (Beaton & Allen, 1992) löst. Zur 

inhaltlichen Charakterisierung der Niveaus wurden diejenigen Aufgaben herangezogen, die 

sich nahe bei den Niveaugrenzen befinden. 
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Abbildung 4.5 Personengruppen aus dem ersten Schritt des Scale-Anchoring-Verfahrens (ProfiLe-P+ - Daten). 

Die Personengruppen wurden als äquidistante Abschnitte der (skalierten) Fähigkeitsparameter gewählt. Das 

Scale-Anchoring Verfahren erwies sich als robust gegenüber leichter Verschiebungen dieser Abschnitte. 

Tabelle 4.1 Beschreibung der Personengruppen aus dem ersten Schritt des Scale-Anchroing-Verfahrens (Profile-

P+ - Daten). Ein Kruskal-Wallis Test bestätigte signifikante Gruppenunterschiede (𝜒2 (2) = 335, 𝑝 < 0.001). In 

der Tabelle sind anschließend paarweise Post-Hoc Mann-Whitney 𝑈 Tests berichtet. 

Gruppe Fähigkeitsspanne 𝑵 𝑴 𝐒𝐃 Differenz und 𝒑-Wert 

1 325 – 400 115 370 23 140 (𝑊 = 0, 𝑝 < 0.001) 

2 475 – 550 218 510 19 143 (𝑊 = 0, 𝑝 < 0.001) 

3 625 – 700 76 653 22  

Tabelle 4.2 Beschreibung der Aufgabengruppen aus dem zweiten Schritt des Scale-Anchroing-Verfahrens 

(Profile-P+ - Daten). Ein Kruskal-Wallis Test bestätigte signifikante Gruppenunterschiede (𝜒2 (3)  = 29, 𝑝 <

0.001). In der Tabelle sind anschließend paarweise Post-Hoc Mann-Whitney 𝑈 Tests berichtet. Dabei ist der 

Vergleichstest für die Aufgabengruppen 1 und 2 hier nur der Vollständigkeit halber angegeben, da er aufgrund 

der geringen Aufgabenanzahl in Aufgabengruppe 1 nicht sinnvoll interpretierbar ist - hier ist 𝑝 = 0.096 bereits 

der „minimal erreichbare“ 𝑝-Wert beim Vergleich zweier Gruppen mit 2 und 5 Elementen. 

Aufgabengruppe 𝑵 𝑴 𝐒𝐃 Differenz und 𝒑-Wert 𝑷 Abstandskriterium 

1 2 -1.57 0.24 1.06 (𝑊 = 0, 𝑝 = 0.096) 0.26 

2 5 -0.51 0.24 0.84 (𝑊 = 2, 𝑝 < 0.001) 0.30 

3 13 0.32 0.41 1.52 (𝑊 = 2, 𝑝 < 0.001) 0.18 

3+ 14 1.85 0.78   
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Die Ergebnisse der Anwendung des Scale-Anchoring-Verfahrens beider Projekte sind in 

Abbildung 4.6 und Abbildung 4.7 und dargestellt. Die sich aus diesen Ergebnissen ergebenden 

inhaltlichen Niveaubeschreibungen und deren Gegenüberstellung werden in Abschnitt 4.5.1 

vorgestellt. 

 
Abbildung 4.6 Finale Wright-Map mit Ergebnissen des Scale-Anchoring-Verfahrens (ProfiLe-P+ - Daten). 

 
Abbildung 4.7 Finale Wright-Map mit Ergebnissen des Scale-Anchoring-Verfahrens (KiL/KeiLa) nach Schiering 

et al. (2023, S. 15). 
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4.4.4 Regressionsanalytisches Verfahren auf Basis eines Modells 

hierarchischer Komplexität des FDW 

In der Naturwissenschaftsdidaktik zeigen Ansätze wie die bereits genannten Analysen von 

Bernholt (2010) sowie Woitkowski und Riese (2017), dass das Modell der hierarchischen 

Komplexität nach Commons et al. (1998) geeignet sein kann, Niveaustufen im Fachwissen auf 

Basis theoretischer Überlegungen zu definieren und erklären. In einem weiteren Analyseschritt 

wurde daher überprüft, ob und inwieweit sich die gefundenen Gemeinsamkeiten in den 

Niveaumodellen des FDW mithilfe eines Modells hierarchischer Komplexität untermauern, 

erklären und ggf. erweitern lassen.  

Zu diesem Zweck wurde zunächst ein Modell hierarchischer Komplexität für das FDW 

entwickelt. Dazu wurden die bereits genannten Arbeiten zur Entwicklung von hierarchischen 

Komplexitätsmodellen für das Fachwissen von Woitkowski (2015) bzw. Woitkowski und 

Riese (2017) auf das FDW übertragen. Über mehrere Iterationen hinweg wurde das in Tabelle 

4.3 beschriebene 3-stufige Modell ausgearbeitet. Die Stufen „(I) Fakten“ und „(II) Einstufige 

Kausalität“ (Tabelle 4.3) umfassen die bloße Reproduktion sowie die Verknüpfung einzelner 

Wissenselemente und sind weitgehend analog zu den Stufen „(I) Fakten“ und „(III) Lineare 

Kausalität“ des Komplexitätsmodells nach Woitkowski und Riese (2017, S. 41) angelegt. Die 

Stufe „(II) Prozessbeschreibungen“ von Woitkowski und Riese (2017) ließ sich auf das FDW 

in der operationalisierten Form nicht übertragen, da für das FDW weniger „Prozesse“ im Sinne 

eines zeitlichen Ablaufs als vielmehr Ursache-Wirkungs-Argumentationen im Zentrum stehen. 

Daher wird die Stufe der Prozessbeschreibungen in die Einstufige Kausalität integriert (siehe 

Tabelle 4.3). Die höchste hier betrachtete Komplexitätsstufe stellt somit die Stufe „(III) 

Mehrstufige Kausalität“ dar. Sie tritt an die Stelle der Stufe „(IV) Multivariate 

Interdependenz“ des Fachwissensmodells und umfasst mehrstufige Argumentationsstränge. 

Wir argumentieren, dass es sich bei mehrstufigen Argumentationen um eine substanziell 

höhere Anforderungsstufe im Sinne des Modells hierarchischer Komplexität handelt, als bei 

einstufigen Argumentationen, da hier mehrere mentale Schemata miteinander in Beziehung 

gesetzt werden müssen und diese Beziehungen wiederum voneinander abhängig sind. 

Um die Passung dieses Komplexitätsmodells zu den empirischen Daten zu testen, wurden 

die Aufgaben der jeweiligen Testinstrumente zunächst disjunkt zu den Komplexitätsstufen 

zugeordnet. Dies geschah durch die Analyse der jeweiligen Aufgabe vor dem Hintergrund der 

in Tabelle 4.3 beschriebenen Komplexitätsstufen. Leitfragen der Zuordnung waren: 

1. Erfordert die Aufgabe lediglich die Reproduktion von Fakten? (→ Fakten) 

2. Erfordert die Aufgabe die Analyse eines komplexeren Elements (z. B. beschriebene 

Unterrichtssituation, Dialog, Zeichnung)? (→ einstufige Kausalität) 

3. Erfordert die Aufgabe die Kreation eines komplexeren Elements (z. B. Beschreibung 

eines Experiments, Beschreibung einer Handlungsoption)? (→ einstufige Kausalität) 

4. Erfordert die Aufgabe mehrere Schritte im Sinne der Frage 2 und / oder Frage 3? (→ 

mehrstufige Kausalität) 

Beide dargestellten Beispielaufgaben (Abbildung 4.3 und Abbildung 4.4) werden somit der 
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mehrstufigen Kausalität zugeordnet. In der ProfiLe-P - Aufgabe muss zunächst eine 

beschriebene Unterrichtssituation analysiert werden, um auftretende Problemstellen zu 

identifizieren und anschließend müssen darauf aufbauend geeignete Handlungsoptionen 

generiert werden, um diese Probleme zu bewältigen35. In der KiL / KeiLa - Aufgabe muss im 

ersten Schritt eine komplexe Schüleraufgabe analysiert (und dabei mutmaßlich auch selbst 

gedanklich korrekt gelöst) werden und im zweiten Schritt davon ausgehend eine typische 

falsche Lösung mithilfe des Wissens über Schülervorstellungen generiert werden36. 

Tabelle 4.3 Dreistufiges Modell hierarchischer Komplexität für das FDW. Die Charakterisierung diente als 

Grundlage für die Einordnung der Testaufgaben in das Komplexitätsmodell und wurde an die jeweiligen Rater 

gegeben. 

(I) Fakten 

– Reproduktion einzelner, unverbundener Informationen 

– Keine oder kaum Bezugnahme auf Situation oder sonstige Beschreibung 

– Keine oder kaum Verknüpfung der genannten Informationen 

– Beispiel: Nennen von Fakten zu einem Fachdidaktischen Konzept 

(II) Einstufige Kausalität 

– Verknüpfung von zwei oder mehr Fakten, Informationen oder Äußerungen zu einem 

Produkt (z. B. Schlussfolgerungen, Argumentationen) 

– Begründungen, Analysen und Argumentationen mir nur einer Argumentations- / 

Analysestufe 

– Beispiel: (einstufige) Analyse oder Evaluation einer Situation 

(III) Mehrstufige Kausalität 

– Begründungen, Argumentationen, Evaluationen mit mehr als einer Argumentations- / 

Analysestufe 

– Alle Anforderungen, die komplexere Analysen / Argumentation verlangen als II 

– Beispiel: Analyse und Evaluation einer Situation 

Diese Zuordnung wurde pro Testinstrument durch zwei Personen durchgeführt. Die 

Beurteilerübereinstimmung betrug beim ProfiLe-P - Testinstrument 𝜅 = 0.86 und beim KiL / 

KeiLa - Testinstrument 𝜅 = 0.82. Uneinigkeiten wurden durch eine kommunikative 

Validierung (Steinke, 1999) geklärt, sodass für beide Testinstrumente eine Konsens-

Aufgabenzuordnung vorlag. Tabelle 4.4 zeigt die Anzahl an Aufgaben pro Komplexitätsstufe 

nach Projekt getrennt. Diese Zuordnung wurde anschließend genutzt, um mithilfe einer 

 

35  Eine „analoge“ Aufgabe in der einstufigen Kausalität wäre beispielsweise die reine Kreation eines 

Unterrichtsverlaufs zum Fallgesetz. 

36  Eine „analoge“ Aufgabe in der einstufigen Kausalität wäre dies beispielsweise dann, wenn eine typisch falsche 

Lösung aufgrund von Schülervorstellungen bereits eingezeichnet wäre und lediglich die zugehörige 

Schülervorstellung identifiziert werden müsste. 
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linearen Regression der Aufgaben-Schwierigkeitsparameter gegen die Aufgabenzuordnung 

zum Komplexitätsmodell die Passung auf die jeweiligen Datensätze und somit die „Gültigkeit“ 

des Komplexitätsmodells für die jeweils abgebildeten Konstrukte einzuschätzen (Abschnitt 

4.5.2). 

Tabelle 4.4 Anzahl an Aufgaben in den Komplexitätsstufen nach Projekt getrennt. Die Gesamtaufgabenanzahl 

weicht hier für beide Testinstrumente von den in Abschnitt 4.4.1 ab, da Punkteschwellen (z. B. 1 vs. 2 Punkte) im 

Rahmen der Partial-Credit Modellierung getrennt wurden. 

Komplexitätsstufe 𝑵 Profile-P 𝑵 KiL/KeiLa 

I – Fakten 13 12 

II – Einstufige Kausalität 23 34 

III – Mehrstufige Kausalität 7 10 

4.5. Ergebnisse 

4.5.1 Scale-Anchoring-Verfahren: Niveauformulierungen und Vergleich 

Der zentrale Gegenstand des Scale-Anchoring-Verfahrens ist die erhaltene Wright-Map mit 

den entsprechenden Zuordnungen und Werten (Abbildung 4.6 und Abbildung 4.7) Für beide 

Datensätze zeigt sich hier ein vergleichsweise homogenes Bild, d. h. die Aufgabengruppen 

zerfasern nicht stark über die Schwierigkeitsspanne hinweg. Gleichzeitig zeigen die 

statistischen Betrachtungen (Tabelle 4.1 und Tabelle 4.2 sowie Schiering et al., 2023, S. 14–

15) die empirische Trennbarkeit der Stufen. Im Falle des ProfiLe-P+ - Modells erkennt man, 

dass das Testinstrument vergleichsweise schwierig für die Zielgruppe ist. Dementsprechend 

stehen für die Charakterisierung der unteren Niveaus nur wenige Aufgaben zur Verfügung, was 

die spätere Interpretation erschwert. Die Niveauformulierungen auf Basis der Aufgaben nahe 

der entsprechenden Niveaugrenzen sind in Tabelle 4.5 zusammengefasst, wobei eine 

Loslösung vom fachlichen Inhalt der jeweiligen Aufgabe hier vorerst nicht forciert wurde, da 

allgemein eine Abhängigkeit des FDW vom jeweils nötigen FW angenommen wird. 

Für die projektübergreifende Analyse werden die erhaltenen Niveaustufen aus beiden 

Datensätzen verglichen. Es zeigen sich keine auffälligen Parallelen in den fachlichen und 

fachdidaktischen Inhalten. Demgegenüber sind allerdings Gemeinsamkeiten der 

Niveaubeschreibungen bzgl. der auftretenden lernpsychologisch interpretierbaren Operatoren 

(Tabelle 4.6) auffällig. In den niedrigen Niveaus 1 und 2 treten primär Operatoren, welche 

reproduktive Aspekte beschreiben (grün in Tabelle 4.6), auf. In den höheren Niveaus kommen 

Operatoren, die kreative (gelb in Tabelle 4.6) und bewertende (rot in Tabelle 4.6) Aspekte 

beschreiben, hinzu. Es zeigt sich eine deutliche Parallele bezüglich des Auftretens dieser 

Operatoren auf den jeweiligen Niveaus. 
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Tabelle 4.5 Gegenüberstellung der Scale-Anchoring Niveauformulierungen der Profile-P+ - und KiL/KeiLa - 

Modelle. Die jeweiligen Aufgaben, auf die sich der Aspekt bezieht, sind in Klammern mit angegeben. 

 Profile-P+ KiL/KeiLa 

(Übers. nach Schiering et al. 2023, S. 15) 

N
iv

ea
u

 1
: 

Schülervorstellungen: Studierende können 

einzelne Ursachen für die Entstehung von 

Schülervorstellungen nennen. (A4.1) 

Experimente: Studierende können einzelne 

Ziele des Experimentierens im 

Physikunterricht nennen. (A3) 

Schülervorstellungen: Studierende unterscheiden in ihrer Charakterisierung 

wissenschaftliche Modelle von der gängigen Schülervorstellung, weil sie ein 

wissenschaftliches Modell nicht als richtig oder falsch, sondern als geeignet für 

die Erklärung eines Phänomens charakterisieren. (A32.1) 

Instruktionsstrategien: Studierende kennen typische Merkmale des 

entdeckenden Physikunterrichts. (A14.1) 

Curriculum: Studierende kennen Bedeutungsdimensionen der 

Wissenschaftsgeschichte für den Physikunterricht. (A19.2, A19.3) 

Curriculum: Studierende können zwischen zwei der drei Leistungsniveaus von 

Aufgaben unterscheiden. (A22.2) 

N
iv

ea
u

 2
: 

Schülervorstellungen: Studierende können 

einzelne problematische Äußerungen, die 

durch Schülervorstellungen zum Thema 

Kraft und Reibung entstehen, erkennen. 

(A8.1) 

Fachdidaktische Konzepte: Studierende 

können einzelne Aspekte Didaktischer 

Rekonstruktion er- kennen und nennen. 

(A19.1, A23.1) 

Schülervorstellungen: Studierende kennen typische und untypische 

Schülervorstellungen im Bereich des Elektromagnetismus. (A1.1) 

Schülervorstellungen: Studierende können einfache Experimente planen, um zu 

demonstrieren, dass die menschliche Haut keine Temperatur misst. (A5.1) 

Schülervorstellungen: Studierende können das Verständnis der Schüler:innen 

für wissenschaftliche Methoden durch Experimente fördern. (A7.1) 

Assessment: Studierende können zwischen allen drei Leistungsniveaus für 

Aufgaben unterscheiden. (A22.3) 

N
iv

ea
u

 3
: 

Experimente: Studierende können erste Planungselemente in Bezug 

auf eine situationsspezifische Unterrichtssituation zum Thema 

gleichmäßig beschleunigte Bewegung entwickeln. (A10.1) 

Studierende können mehrere Ziele des Experimentierens im 

Physikunterricht nennen. (A3.1) 

Schülervorstellungen: Studierende können manche 

Schülervorstellungen aus Schüleräußerungen zum Thema Kraft und 

Reibung rekonstruieren. (A21b) 

Instruktionsstrategien: Studierende können die 

Missverständlichkeit eines Diagramms im Kontext der Kinematik 

evaluieren. (A13) 

Instruktionsstrategien: Studierende kennen typische 

Merkmale verschiedener Unterrichtsmethoden. (A14.3) 

Curriculum: Studierende können Themen (z. B. zur 

Elektrizität) gemäß dem Spiralansatz anordnen. (A18.1) 

Assessment: Studierende können, Multiple-Choice-

Aufgaben hinsichtlich des Stammes und der 

Distraktoren bewerten. (A24.1) 

N
iv

ea
u

 3
+

: 

Experimente: Studierende können 

vollständige Reaktionen in Bezug auf eine 

situationsspezifische Unterrichtssituation 

zum Thema gleichmäßig beschleunigte 

Bewegung entwickeln. (A10.2) 

Schülervorstellungen: Studierende können 

mehrere Schülervorstellungen aus einem 

Schülerdialog zum 3. Newtonsches Axiom 

rekonstruieren. (A1b.2) 

Instruktionsstrategien: Studierende 

können das Vorgehen einer Lehrkraft zum 

Erklären des 3. Newtonschen Axiom 

evaluieren. (A1a.) 

Schülervorstellungen: Studierende können mögliche Quellen von 

Missverständnissen in wissenschaftlichen Darstellungen identifizieren. (A31.1) 

Schülervorstellungen: Studierende können die Vorstellungen der Schüler:innen 

zu wissenschaftlichen Experimenten (z. B. zum Verständnis der Natur der 

Wissenschaft) durch Experimente zu fördern. (A7.4) 

Instruktionsstrategien: Studierende können Anweisungen auf der Grundlage des 

Verständnisses der Schüler erstellen, die ihnen helfen, ihre wissenschaftlichen 

Konzepte zu ändern. (A33.1) 

Curriculum: Studierende können außerschulische Aktivitäten im Hinblick auf 

das Lernen der Schüler zu begründen. (A23a.1) 

Assessment: Studierende können Validität hinsichtlich eines Physiktests 

definieren. (A27b.1) 

Assessment: Studierende können Aspekte der Kompetenz der Schüler zu 

identifizieren, die durch Aufgaben bewertet werden können. (A28.1) 

 

 



4. Empirisch-kriterienorientierte Analyse des FDWs angehender Physiklehrkräfte (Artikel 1) 

64 

Tabelle 4.6 Gegenüberstellung der Scale-Anchoring Niveauformulierungen der Projekte. Die Operatoren der 

KiL/KeiLa - Ergebnisse wurden aus Schiering et al. (2023) übersetzt. 

Niveau ProfiLe-P+ KiL/KeiLa 

1 nennen, erkennen unterscheiden (×2), kennen (×2), 

charakterisieren 

2 nennen, erkennen (x2) unterscheiden, kennen, 

planen, fördern 

3 nennen, 

entwickeln, rekonstruieren, 

evaluieren 

kennen 

anordnen 

bewerten 

3+  

entwickeln, rekonstruieren, 

evaluieren 

definieren 

identifizieren (×2), erstellen, fördern, 

begründen 

4.5.2 Passung eines Modells hierarchischer Komplexität des FDW zu den 

Testdaten 

Zur Einschätzung der Passung des Modells hierarchischer Komplexität bzw. der Nutzbarkeit 

von Stufen hierarchischer Komplexität als schwierigkeitserzeugendes Merkmal des FDW 

wurden Regressionsanalysen für beide Testinstrumente bzw. beide Datensätze durchgeführt. 

Die Zuordnungen zu den Komplexitätsniveaus werden dabei als 3 Dummy-Variablen kodiert 

(Woitkowski & Riese, 2017). Die Ergebnisse der Regressionsanalysen sind in Tabelle 4.7 

zusammengefasst und Abbildung 4.8 illustriert diese mithilfe von Violinplots. 

Sowohl Abbildung 4.8 als auch die Varianzaufklärung von 𝑅2 = 0.39 (multiples 𝑅2) im 

Regressionsmodell (𝐹 (2, 40) = 12.77, 𝑝 < 0.001) zeigen, dass das Komplexitätsmodell für 

den Datensatz aus ProfiLe-P+ einen substanziellen Anteil der Varianz der Aufgaben-

schwierigkeit aufklärt. Hier wäre es durchaus geeignet, als Niveaustufenmodell für das FDW 

herangezogen zu werden. Allerdings ist dies für den Datensatz aus KiL / KeiLa nicht in gleicher 

Form möglich. In Abbildung 4.8 zeigt sich nur ein leichter tendenzieller Anstieg der 

Aufgabenschwierigkeiten mit zunehmendem Komplexitätsniveau. Das Regressionsmodell 

selbst wird nicht signifikant (𝐹 (2, 53) = 1.13, 𝑝 = 0.33) und klärt weniger als 5 % (𝑅2 =

0.041) der Varianz der Aufgabenschwierigkeit auf. 

Die Komplexitätsstufen scheinen also nicht geeignet, um eine vom Testinstrument 

unabhängige Beschreibung von inhaltlichen Ausprägungen des FDW liefern zu können. Es 

wird daher hier darauf verzichtet, mögliche Wright-Maps mit Personenzuordnungen in die 

Niveaus abzubilden. 
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Tabelle 4.7 Ergebnisse der Regressionsanalysen zur Passung des Komplexitätsmodells an die Daten. 

Signifikanzniveaus p<0.05: *, p<0.001: ***. Das Regressionsmodell ist so konfiguriert, dass die Regressions- 

konstante den Mittelwert der Schwierigkeiten der Komplexitätsstufe I - Aufgaben beschreibt. Die Mittelwerte der 

anderen Stufen ergeben sich durch Addition ihrer jeweiligen Regressionsparameter zur Konstanten. Die 

Signifikanzniveaus geben an, ob die jeweiligen Schätzer signifikant von 0 verschieden sind. Auch wenn diese 

Frage hier zweitrangig ist, sind die Signifikanzniveaus der Vollständigkeit halber hier mit angegeben. 

Komplexitätsstufe 
Regr. – Parameter 𝒃𝒊 

ProfiLe-P+ 

Regr. – Parameter 𝒃𝒊 

KiL/KeiLa 

Konstante (≃ I - Fakten) −0.11 (n. s.) −0.11 (n. s.) 

II - Einstufige Kausalität 0.71∗ 0.18 (n. s.) 

III - Mehrstufige Kausalität 2.15∗∗∗ 0.77 (n. s.) 

 

Abbildung 4.8 Violinplots der Item-Schwierigkeiten beider Projekte mit Einordnung in die Stufen hierarchischer 

Komplexität. Die Formen stellen die Wahrscheinlichkeitsverteilung der Datenpunkte dar; die Punkte sind die 

tatsächlichen Schwierigkeiten der Aufgaben. 

4.6. Diskussion 

Ziel dieses Beitrags war es, zu überprüfen, inwieweit sich projektübergreifend inhaltliche 

Ausprägungen des FDW mithilfe des Scale-Anchoring-Verfahrens sowie eines 

regressionsanalytischen Ansatzes zur Bildung von Niveaumodellen finden lassen. Solche 

inhaltlichen Beschreibungen von Ausprägungen stellen eine notwendige Voraussetzung für die 

gewinnbringende Übertragung der Forschungsergebnisse in die Lehrpraxis dar und sind 

darüber hinaus von übergeordnetem Interesse für das Forschungsfeld. Die 

projektübergreifende Analyse stellt zudem einen Forschungsansatz in Richtung einer 
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vereinheitlichten Beschreibung des FDW nicht nur auf theoretischer, sondern auch auf 

empirischer Ebene dar. Die verwendete Methode der Überführung quantitativer Ergebnisse in 

Niveaumodelle mithilfe von IRT-Analysen kann ggf. als Vorlage für andere verwandte Felder 

dienen. 

Zunächst wurden die durch das Scale-Anchoring-Verfahren erhaltenen Niveau-

beschreibungen der Projekte gegenübergestellt. Es zeigten sich dabei keine Ähnlichkeiten bzgl. 

fachlicher oder fachdidaktischer Inhalte, aber bzgl. des Auftretens von Handlungsoperatoren, 

die sich auf einer lernpsychologischen Ebene interpretieren lassen. Dabei fällt die Limitation 

der beschränkten Anzahl an Aufgaben für die Beschreibung des ersten Niveaus in ProfiLe-P(+) 

- Daten weniger ins Gewicht, da die beobachtete Systematik bzgl. des Auftretens der 

Operatoren hier für Niveau 1 und Niveau 2 gilt. Die so erhaltenen Abstufungen sind insgesamt 

konform mit Ergebnissen der Kognitionspsychologie zum Wissenserwerbsprozess (z. B. 

Gagné & White 1978) und lassen sich mit Standard-Taxonomien, wie beispielsweise der auf 

Lehr-Lernprozesse angepassten Bloom’schen Taxonomie nach Anderson und Krathwohl  

(2001; Erinnern, Verstehen, Anwenden, Analysieren, Bewerten, Kreieren) in Verbindung 

setzen. Insgesamt lässt sich somit auch die unsystematische Beobachtung zu Ähnlichkeiten in 

den Niveaumodellen der beiden Projekte (Abschnitt 4.3) im Sinne der FF1 bekräftigen: 

FDW beschränkt sich unabhängig von der konkret zugrundeliegenden 

Operationalisierung in niedrigen Ausprägungen auf reproduktive Aspekte und 

erweitert sich in höheren Ausprägungen hin zu evaluierenden und kreierenden 

Elementen. 

Bemerkenswert ist hierbei, dass sich diese Parallele trotz einem deutlich größeren Anteil an 

Anfängerstudierenden im ProfiLe-P+ - Datensatz (vgl. Abschnitt 4.4.1 und Schiering et al., 

2023, S. 8) zeigt. 

Für den Transfer der Niveaumodelle in die Lehrpraxis zeigt sich, dass die durch das Scale-

Anchoring-Verfahren erhaltenen Niveaus für die Einordnung von Lernenden in Niveaus und 

damit als Grundlage für das Erstellen entsprechenden Feedbacks geeignet sind. Die Niveaus 

und somit entsprechendes Feedback sind aber bzgl. des fachdidaktischen Inhalts abhängig vom 

jeweils verwendeten Testinstrument bzw. zugrundeliegender Modellierung. Das ist nicht direkt 

überraschend, da die beiden Testinstrumente nur in zwei von vier fachdidaktischen Facetten 

übereinstimmen und zudem im KiL / KeiLa - Testinstrument zusätzliche physikalisch-

fachliche Inhalte thematisiert werden. 

Es konnte gezeigt werden, dass die projektunabhängigen Systematiken entsprechender 

Niveaus primär eher allgemeine lernpsychologische Abstufungen darstellen, bzgl. derer dann 

auch projektunabhängige Aussagen unter Verwendung eines einzelnen Testinstruments 

getroffen werden können. Eine Einordnung von einzelnen Lernenden oder Lerngruppen in die 

Scale-Anchoring-Niveaus würde projektunabhängig bislang also beispielsweise eine 

Entscheidungshilfe für Lehrende bzgl. des Wechsels von eher theoretischen Lerninhalten (z. 

B. Vermittlung von Elementen entdeckenden Unterrichts) hin zu praxisorientierteren 

Elementen (z. B. Evaluation von Unterrichtsbeobachtungen) bieten. Auch bezüglich dieser 

lernpsychologischen Stufung kann eine Niveau-Einordnung allerdings noch keine 

differenziertere Empfehlung für eher kreative oder eher evaluierende Lerninhalte für Lernende 
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auf den höheren Niveaus unterstützen.  

Aus theoriebildender Perspektive zeigen die Ergebnisse des Scale-Anchoring-Verfahrens, 

dass bei Austausch des fachlichen Inhalts sowie der fachdidaktischen Facetten bei ansonsten 

nahezu identischen theoretischen Annahmen in der Operationalisierung im Wesentlichen 

allgemeine kognitive Anforderungen als gemeinsame Systematiken einer hierarchischen 

Modellierung des FDW verbleiben. Es stellt sich also die Frage, ob aus Datenanalysen der 

Erhebungen mit entsprechenden Testinstrumenten abgeleitete Aussagen nicht grundsätzlich 

enger an die einbezogenen fachlichen (hier: physikalischen) Inhalte und fachdidaktischen 

Facetten gekoppelt sein müssten. Andererseits kann man die Ergebnisse des Scale-Anchoring-

Verfahrens in folgendem Sinne auch als (Konstrukt-) Validitätsargument für die verwendeten 

Testinstrumente auffassen: In den beiden Testinstrumenten weichen die fokussierten Inhalte 

bzgl. der ersten zwei Dimensionen (1. fachphysikalische Inhalte und 2. fachdidaktische Inhalte 

/ Facetten) der äußerst ähnlichen Itementwicklungsmodelle voneinander ab. Die sich zeigende 

übergeordnete Niveaustruktur lässt sich anschließend gerade durch die vergleichbare übrige 

Facette der „kognitiven Aktivierung“ (Gramzow, 2015) bzw. „Wissensarten“ (Kröger, 2019 ⁠; 

Tepner et al., 2012) interpretieren. Dadurch werden die Annahmen der Operationalisierungen 

bzgl. einer entsprechenden Dimensionierbarkeit des FDW unterstützt. 

Um die Vergleichbarkeit unterschiedlicher Operationalisierungen darüber hinaus weiter zu 

untersuchen, wären Studien wünschenswert, in welchen Proband:innen Testinstrumente aus 

unterschiedlichen Projekten bearbeiten. Korrelations- und Faktorenanalysen entsprechender 

Datensätze können ggf. weitere Aufschlüsse über Gemeinsamkeiten und Unterschiede der 

entsprechenden abgebildeten Konstrukte liefern. Für die Anwendung des Scale-Anchoring 

Verfahrens wären solche Datensätze auch interessant, da dann mehr Aufgaben in einem 

gemeinsamen Datensatz vorliegen würden, sodass die Niveaus detaillierter beschrieben werden 

und ggf. bisher unerkannte Systematiken zu Tage treten können. 

Um die Ergebnisse der durch das Scale-Anchoring-Verfahren erhaltenen Stufen weiter 

auszuschärfen, wurde anschließend versucht, mithilfe der projektunabhängigen, 

lernpsychologisch begründeten Stufen hierarchischer Komplexität die Varianz der 

Aufgabenschwierigkeiten im FDW zu erklären. Während das entwickelte Modell 

hierarchischer Komplexität sich als sehr passend für die Daten aus ProfiLe-P+ erwiesen, 

zeigten sich trotz guter Übereinstimmung der Aufgabeneinordnung in das Komplexitätsmodell 

für beide Testinstrumente deutliche Limitationen in Bezug auf die Übertragbarkeit auf die 

Daten der KiL / KeiLa - Projekte. Da das Komplexitätsmodell aus dem ProfiLe-P+ - Team 

heraus vorgeschlagen wurde, ist nicht auszuschließen, dass es sich bei der mangelnden 

Übertragbarkeit auf KiL / KeiLa - Daten um ein Artefakt der Modellentwicklung handelt. Eine 

Konfundierung des Komplexitätsmodells durch bestimmte Überzeugungen und Blickwinkel 

auf das Konstrukt des FDW oder durch die Art der verwendeten Aufgabentypen des ProfiLe-

P+ - Testinstruments konnte hier eventuell nicht vollständig vermieden werden. Das FDW 

scheint als „amalgam“ (Shulman, 1987) im Vergleich zum FW eine weniger stark kumulative 

Struktur aufzuweisen, was die Konstruktion eines projektunabhängigen theoretischen Modells 

schwierigkeitserzeugender Merkmale erschwert. (Physikalisches) FW ist auch aufgrund der 

starken Mathematisierung und damit verbundenen sehr klaren Beschreibbarkeit von Begriffen 
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und Konzepten stark hierarchisch geprägt. Begriffe und Konzepte aus der Fachdidaktik sind 

oft schwieriger exakt zu beschreiben und werden erst durch die gegenseitigen Beziehungen 

greifbar (z. B. „Didaktische Rekonstruktion“, „Elementarisierung“ und „Schülervorstel-

lungen“). 

Das hier vorgeschlagene Modell hierarchischer Komplexität allein stellt somit kein 

geeignetes Modell zur projektübergreifenden Aufklärung der Aufgabenschwierigkeit dar. 

Weitere mögliche Einflussfaktoren im Sinne eines „amalgams“ sind z. B. der thematisierte 

Fachinhalt, der sich in den beiden Projekten unterschied, das auftretende Fachvokabular oder 

auch die theoretische Thematisierung unterschiedlicher didaktischer Inhalte zu 

unterschiedlichen Zeitpunkten im Studium, d. h. die vorhandene Studienstruktur (Schiering, 

2021). Letzteres kann auch einen Ansatzpunkt bieten, um zu erklären, weshalb auch auf hohen 

Niveaustufen offenbar teilweise noch neue deklarative Aspekte hinzukommen (siehe Tabelle 

4.5 & Tabelle 4.6). Die Interaktion der genannten und weiterer möglicher Einflussfaktoren, 

scheint die hierarchische Struktur des FDW deutlich komplexer werden zu lassen, als mit 

einem stark verdichteten Modell hierarchischer Komplexität fassbar ist. Für eine umfassendere 

regressionsanalytische Niveaubildung mit einer größeren Anzahl an möglichen 

schwierigkeitserzeugenden Merkmalen wären allerdings Testinstrumente mit einer deutlich 

größeren Anzahl an Testitems notwendig, damit entsprechenden multivariaten Regressions-

modellen eine ausreichende Datengrundlage geboten wird. 

Insgesamt konnten in diesem Beitrag vor allem mithilfe des Scale-Anchoring-Verfahrens 

trotz Unterschieden in der Testinstrument-Konzeption besonders hinsichtlich fachlicher und 

fachdidaktischer Inhalte projektübergreifende kriterienorientierte Systematiken von 

Ausprägungen des FDW ermittelt werden. Limitiert werden diese Beschreibungen vor allem 

durch die aus Gründen der Testökonomie und Zumutbarkeit vergleichsweise kleinen 

Aufgabenanzahl der FDW-Testinstrumente. So kann etwa in den höheren Niveaustufen keine 

Hierarchie zwischen kreierenden und evaluieren Elementen festgestellt werden. Es ist also 

noch weitere Forschung zu Vergleichen und zur Vereinheitlichung der empirischen Ergebnisse 

notwendig.  

Da für die oben vorgeschlagene Erhebung neuer Datensätze mit Proband:innen, die mehrere 

Testinstrumente bearbeiten, große organisatorische Hürden überwunden werden müssten, wäre 

es dafür auch denkbar, ein gemeinsames IRT-Modell durch eine Normierung über die mittlere 

Personenfähigkeit einer hinsichtlich relevanter demographischer Merkmale ununterscheid-

baren jeweiligen Unterstichprobe und anschließender konditionierter Schätzung der Item-

Schwierigkeiten aufzustellen. In einer neuerlichen Anwendung des Scale-Anchoring 

Verfahrens könnten dann die Aufgabenschwierigkeiten auf Basis der fixen gemeinsam 

normierten Personenparameter geschätzt werden und es stände unmittelbar ein deutlich 

vergrößerter Aufgabenpool für die Charakterisierung der Niveaustufen zur Verfügung. Dafür 

müssten sowohl die Stichproben noch einmal im Detail auf eine Vergleichbarkeit geprüft 

werden als auch eine andere Software genutzt oder selbst entwickelt werden, da das hier 

genutzte R-Paket TAM (Robitzsch et al., 2024) keine direkte Schätzung von Aufgaben-

schwierigkeiten unter fixierten Personenfähigkeiten ermöglicht. 

Die Betrachtung der Systematiken bzgl. lernpsychologisch interpretierbarer Operatoren als 
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Teil der inhaltlich kriterienorientierten Niveaubeschreibungen weisen auf eine praktikable 

Anwendbarkeit von lernpsychologischen Taxonomien auf das FDW hin. Gleichzeitig scheinen 

hierarchische Modelle evaluierende und kreative Elemente, die ab einer mittleren FDW-

Ausprägung auftreten, nicht trennen zu können. Eine Alternative zu hierarchischen Modellen 

bieten Clusteranalysen (z. B. Duda et al., 2001) oder auch eng verwandte Latente Profil- oder 

Klassenanalysen (z. B. Spurk et al., 2020), die im naturwissenschaftsdidaktischen Kontext 

bisher nur wenig eingesetzt wurden (Zhai et al., 2020a ⁠; Zhai et al., 2020b). Daher bestehen in 

diesem Kontext noch keine prototypischen Vorgehensweisen, die synchron auf Datensätze 

unterschiedlicher Projekte angewendet werden könnten; die Entwicklung entsprechender 

Vorgehensweisen ist hier also zunächst das Ziel weiterer Forschung. Für die Daten aus dem 

ProfiLe-P+ - Projekt werden in diesem Kontext aktuell Vorgehensweisen erprobt, welche 

Clusteranalysen der Scores (Zeller & Riese, 2023) mit Methoden zur Machine-Learning-

basierten Sprachanalyse der Sprachproduktionen der Proband:innen verbinden. Im Gegensatz 

zu IRT-Modellen können solche Ansätze auch nicht-hierarchische Strukturen aufdecken und 

hier womöglich zur Unterscheidung der Einflüsse von kreativen und evaluierenden Aspekten 

dienen. 

https://unipaderbornde-my.sharepoint.com/personal/jzeller_ad_uni-paderborn_de/Documents/3.%20Promotion/write-present/main/how#CTVL0010e2078f223264907b0bb0f98380bb221
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4.7. Kommentare und Ergänzungen 

Das zentrale Ergebnis, d. h. die beobachteten Parallelen bezüglich der lernpsychologischen 

Operatoren in den Scale-Anchoring-Niveaubeschreibungen (Tabelle 4.5 & Tabelle 4.6) hat für 

das zweite Zielpaket der Arbeit den Fokus insbesondere auf die FDW-Dimension der 

kognitiven Anforderungen (z. B. Abbildung 4.1) gelenkt. Auch, wenn in anderen FDW-

Modellen stattdessen teilweise die Dimension „Wissensarten“ genutzt wird (Kröger, 2019 ⁠; 

Tepner et al., 2012), so deutet das Ergebnis des ersten Artikels darauf hin, dass sich die 

Testaufgaben auch anderer Projekte im Rahmen einer gemeinsamen zugrundeliegenden 

Struktur bezüglich kognitiver Prozesse interpretieren lassen. Für das zweite Zielpaket lag daher 

der Fokus auf diese Dimension und die Nutzung einer entsprechenden lernpsychologischen 

Taxonomie (z. B. Anderson & Krathwohl, 2001) nahe. 

Auch wenn die regressionsanalytische Niveaubildung hier projektübergreifend nicht 

genutzt werden konnte, ist aus Gründen der Transparenz und Dokumentation die 

Handreichung, die als „Manual“ zur Zuordnung von Testaufgaben zu den Niveaus 

hierarchischer Komplexität des FDW erstellt wurde, in Anhang B dieser Arbeit enthalten. Sie 

stellt das Ergebnis eines iterativen Prozesses mit dem Ziel der Erreichung hoher Interrater-

Übereinstimmung bei großer Expressivität dar. Diese Handreichung beschreibt implizit auch 

das Verständnis der einzelnen Stufen noch einmal deutlich. 

Die Ergebnisse zum ersten Zielpaket haben den großen Vorteil, dass sie projektübergreifend 

sind und somit einem besonders hohen Anspruch an Generalisierbarkeit und 

projektübergreifende Bedeutsamkeit genügen. Dieser Ansatz wurde auch dadurch ermöglicht, 

dass von Seiten des KiL / KeiLa Projekts bereits ein Ergebnis sowie ein etablierter Workflow 

für Teile der Analyse vorlag.  
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5. Competency Profiles of PCK Using Unsupervised 

Learning (Artikel 2) 

Einordnung in das Gesamtprojekt 

In den Analysen zum ersten Zielpaket zeigten sich projektübergreifende hierarchische 

Strukturen, die inhaltlich im Kontext kognitiver Anforderungen interpretiert und beschrieben 

werden konnten. Diese erhaltenen Kompetenzniveaus sind allerdings (a) inhaltlich recht grob 

und (b) auf hierarchische Abstufungen beschränkt. Insbesondere kann mit ihrer Hilfe keine 

Unterscheidung zwischen Personengruppen mit Stärken oder Schwächen in den interessanten 

„oberen“ kognitiven Anforderungen wie dem Evaluieren oder Kreieren getätigt werden. 

Dementsprechend wurde anschließend eine nicht-hierarchische Analyse mithilfe von 

Unsupervised-Learning-Methoden angestrebt, die primär auf den kognitiven Anforderungen 

basiert. Zu diesem Zweck wurde das Testinstrument von drei Expert:innen bezüglich der 

Taxonomie von Anderson und Krathwohl (2001) re-analysiert. Auch in diesem iterativen 

Prozess wurde eine Handreichung für diese Zuordnungen erstellt, die in Anhang B zu finden 

ist. Diese Handreichung beschreibt implizit auch das Verständnis der einzelnen kognitiven 

Anforderungskategorien noch einmal deutlich. 

Die zur Vorbereitung der Cluster-Analyse somit angestrebte Zusammenfassung der Scores 

zu den kognitiven Anforderungen kann übergeordnet im Sinne der CGT als Pattern Refinement 

Schritt aufbauend auf den Ergebnissen der Pattern Detection in Zielpaket 1 aufgefasst werden. 

Die Cluster-Analyse selbst ist in dieser Betrachtung dann eine erneute Pattern Detection. Der 

Fokus auf die kognitiven Anforderungen (gegenüber beispielsweise den fachdidaktischen 

Facetten) erhöht vor dem Hintergrund der Ergebnisse der Niveauanalysen die 

Wahrscheinlichkeit einer projektübergreifenden Bedeutsamkeit und Anwendbarkeit der 

Ergebnisse der nicht-hierarchischen Analysen. 

Ein direkt projektübergreifendes Vorgehen wie in Artikel 1 war für die Analysen zum 

zweiten (und dritten) Zielpaket im Rahmen dieses Projekts noch nicht möglich, da die nicht-

hierarchischen Analysen hier in dieser Form erstmalig eingesetzt wurden und der Workflow 

dabei erst entstanden ist. Mithilfe der entwickelten Python- und R-Tools (siehe auch Kapitel 6 

& 7 sowie Anhang G) ist die Übertragung des Analyseworkflows auf andere Projekte mit 

ähnlichen (nicht nur FDW-) Datensätzen aber ohne großen Aufwand möglich. 
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Abstract 

There have been several attempts to conceptualize and operationalize pedagogical content 

knowledge (PCK) in the context of teachers’ professional competencies. A recent and popular 

model is the Refined Consensus Model (RCM), which proposes a framework of dispositional 

competencies (personal PCK - pPCK) that influence more action-related competencies 

(enacted PCK - ePCK) and vice versa. However, descriptions of the internal structure of pPCK 

and possible knowledge domains that might develop independently are still limited, being 

either primarily theoretically motivated or strictly hierarchical and therefore of limited use, 

e.g., for formative feedback and further development of the RCM. Meanwhile, a non-

hierarchical differentiation for the ePCK regarding the plan-teach-reflect cycle has emerged. 

In this study, we present an exploratory computational approach to investigate pre-service 

teachers’ pPCK for a similar non-hierarchical structure using a large dataset of responses to a 

pPCK questionnaire (𝑁=846). We drew on theoretical foundations and previous empirical 

findings to achieve interpretability by integrating this external knowledge into our analyses 

using the Computational Grounded Theory (CGT) framework. The results of a cluster analysis 

of the pPCK scores indicate the emergence of prototypical groups, which we refer to as 

competency profiles: (1) a group with low performance, (2) a group with relatively advanced 

competency in using pPCK to create instructional elements, (3) a group with relatively 

advanced competency in using pPCK to assess and analyze described instructional elements, 

and (4) a group with high performance. These groups show tendencies for certain language 

usage, which we analyze using a structural topic model in a CGT-inspired pattern refinement 

step. We verify these patterns by demonstrating the ability of a machine learning model to 

predict the competency profile assignments. Finally, we discuss some implications of the 

results for the further development of the RCM and their potential usability for an automated 

formative assessment. 

Keywords: Pedagogical Content Knowledge · Machine Learning · Unsupervised Learning · 

Language Analysis · Computational Grounded Theory 
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5.1. Introduction 

Since the early descriptions of teachers’ professional knowledge (e.g., Shulman, 1986 ⁠, 1987), 

extensive research has been conducted on its structure and development (e.g., Sorge et al., 

2019). Furthermore, research has explored its indirect impact on action-related skills among 

teachers (e.g., Kulgemeyer et al., 2020) and its direct impact within classrooms (e.g., Ball et 

al., 2001⁠; Blömeke et al., 2022 ⁠; Keller et al., 2017 ⁠; Kunter et al., 2013). Given that studies have 

repeatedly demonstrated the significant impact of teachers on student achievement (e.g., Hattie, 

2003⁠, 2012), high-quality teacher knowledge and training are essential. 

The central component of teachers’ professional knowledge is the pedagogical content 

knowledge (PCK, Shulman, 1986 ⁠, 1987) and considerable research has been conducted 

regarding its conceptualization and operationalization (Berry et al., 2015 ⁠; Gess-Newsome & 

Lederman, 1999 ⁠; Hume et al., 2019 ⁠; Park & Oliver, 2008). PCK can be summarized as the 

knowledge that is necessary to teach a specific subject matter (e.g., the concept of energy in 

physics or the redox reaction in chemistry) to specific students (Baumert & Kunter, 2006 ⁠; 

Shulman, 1987). Despite its significance, it remains challenging to assess the PCK’s inner 

structure and typical competency levels on an empirical basis. Some hierarchical level models 

have been developed using approaches based on item-response-modeling, which yielded 

promising results (Schiering et al., 2023; Zeller et al., 2024). Nevertheless, these models are 

methodically limited because they generate primarily hierarchical, relatively rough statements. 

Non-hierarchical descriptions of PCK are usually not as empirically grounded. Such 

approaches primarily aim at characterizing different content aspects from a theoretical 

normative perspective. On the other hand, empirical studies are carried out, assessing PCK-

related performance in action, e.g., in the context of the “plan-teach-reflect cycle” (PTR cycle, 

Alonzo et al., 2019⁠; Behling et al., 2022b). 

Therefore, more nuanced, potentially non-hierarchical, and empirically grounded 

descriptions of the PCK’s fine structure are still in demand. Such descriptions could further 

improve the current state of the internationally widely used Refined Consensus Model (RCM) 

of PCK (Carlson et al., 2019) and thereby opening new avenues for research (e.g., learning 

process studies). Furthermore, empirically grounded knowledge about the PCK’s fine structure 

including typical levels and knowledge areas that can potentially be developed independently 

from each other as well as the ability to assess such knowledge would be useful for improving 

PCK learning opportunities, especially through formative assessment (e.g., Hattie & 

Timperley, 2007).  

To meet this demand, the present study offers a comprehensive examination of a dataset 

(𝑁 = 846) that includes scores and textual responses to a well-established (e.g., Kulgemeyer 

& Riese, 2018 ⁠; Vogelsang et al., 2022) PCK questionnaire (cf. Gramzow et al., 2013). The 

sample is composed of pre-service physics teachers from 12 German-speaking universities. 

Through categorization of the questionnaire’s tasks into requirement categories and cluster 

analyses of the scores, non-hierarchical “competency profiles” are derived. These get further 

refined and supported by a computer-based probabilistic language analysis of the authentic 

open-ended student responses to the questionnaire tasks. The findings indicate the existence of 

distinct PCK competency profiles with tendencies for specific language use that can be 
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interpreted through the lens of the aforementioned PTR cycle. We finally discuss the 

implications of these findings from a theoretical perspective as well as the possibilities for their 

use in an automated end-to-end assessment tool that can be used to provide content-rich 

feedback to future pre-service teachers. 

5.2. Theoretical Background 

5.2.1 Conceptualization of Pedagogical Content Knowledge 

Over the years, various conceptualizations and operationalizations of PCK have emerged. 

There were several attempts to establish an international consensus model for PCK (Berry et 

al., 2015 ⁠; Gess-Newsome & Lederman, 1999) with the most recent model being the RCM of 

PCK (Carlson et al., 2019 ⁠; also see Hume et al., 2019). Following the RCM, PCK consists of 

three main realms, the collective PCK (cPCK), the personal PCK (pPCK), and the enacted 

PCK (ePCK). The cPCK describes the explicable, declarative knowledge base of the didactical 

community (“bookish knowledge”). The pPCK describes the internalized yet still mainly 

explicable knowledge of an individual (pre-service) teacher. Lastly, ePCK comprises the 

situational knowledge that emerges in specific teaching situations. The latter is therefore highly 

contextual, closely linked to the actions displayed in the particular situation, and thus, not 

explicable anymore. The RCM posits that the three PCK-realms impact each other via filters 

and transformation mechanisms, such as prior knowledge or professional beliefs (Carlson et 

al., 2019). It has shown to be challenging to empirically assess such filters explicitly (e.g., 

Behling et al., 2022a).  

For the ePCK, an additional differentiation in the form of the PTR cycle as a mechanism 

through which ePCK is developed has been proposed by Alonzo et al. (2019). This mechanism 

describes the development of ePCK by iterating through planning, teaching, and reflection 

phases, both on a macroscopic (≥ whole lessons) and microscopic (specific teaching situations) 

level. It is therefore assumed that specific ePCK components for each step of the PTR cycle 

exist, i.e., ePCKplan, ePCKteach, and ePCKreflect. 

Another prominent model of professional competence, and PCK in particular, is Blömeke 

et al.’s (2015) “Model of Competence” (MoC). This model postulates a continuum of 

competence ranging from dispositions to performance. In the MoC PCK as a cognitive resource 

is positioned closer to the dispositional side of the model (Kulgemeyer et al., 2020) while the 

situational knowledge that emerges in specific teaching situations is positioned closer to the 

performance side of the MoC. Although both models refer to similar cognitive resources, the 

MoC and the RCM differ in their assumption of the relationship between PCK and other main 

domains of professional competence, namely content knowledge (CK) and (general) 

pedagogical knowledge (PK). The MoC places PCK, CK, and PK side-by-side on the same 

level to elicit situation-specific performance. In contrast, the RCM views CK and PK as 

foundational to PCK and PCK itself comprises situation-specific performance in the form of 

ePCK. Amongst other reasons, these differences arise due to cultural differences in their 

respective regions of origin, with the MoC being closer to a Central European transformative 

model of PCK and the RCM being closer to an Anglo-American integrative model of PCK 
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(Gess-Newsome, 1999 ⁠; Mientus et al., 2022⁠; Vollmer & Klette, 2023). As a consequence, the 

“PCK” construct defined in the MoC corresponds primarily to the pPCK realm of the RCM 

and the MoC contains the RCM’s ePCK within the situation-specific performance. 

Roughly summarized, apart from the conceptual differences in the relationship between the 

domains of professional knowledge (PCK, CK, & PK), the RCM can be viewed as a 

discretization of the MoC’s continuum concerning PCK (for a more detailed discussion, see, 

e.g., Kulgemeyer et al., 2020 ⁠; Vollmer & Klette, 2023). Questionnaires that measure (pre-

service) teachers’ PCK can be interpreted as primarily assessing pPCK in the context of the 

RCM or as focusing more on the dispositional edge of the MoC (e.g., Kulgemeyer et al., 2020 ⁠; 

Schiering et al., 2023). Figure 5.1 summarizes the described framework models of PCK and 

professional competence (RCM and MoC) and shows the differences between the two models. 

The positioning of the construct measured by our test instrument (see Methods section) in the 

frameworks is highlighted in green. 

 

Figure 5.1 Framework models for PCK. The figure is inspired by Kulgemeyer et al. (2020) and comprises the 

basics of the Model of Competence (Blömeke et al., 2015) and the Refined Consensus Model of PCK (Carlson et 

al., 2019). We included the single ePCK components introduced in the context of the plan-teach-reflect cycle 

(Alonzo et al., 2019). The positioning of the construct measured by the test instrument used in this study is 

highlighted in green. 

5.2.2 Structure and Development of Personal Pedagogical Content 

Knowledge (pPCK) 

While the theoretical conceptualization of the ePCK is focused on actual actions occurring in 

the context of teaching and learning (e.g., planning, teaching, reflecting), theoretical 

conceptualizations of the internal structure of pPCK typically focus primarily on two 

dimensions: the associated CK and pPCK-subscales (Magnusson et al., 1999 ⁠; Park & Oliver, 

2008). The dependency on the associated CK stems from early descriptions by Shulman (1986⁠, 
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1987) and has been a widely accepted assumption ever since (e.g., Hume et al., 2019). The 

pPCK-subscales describe different subsets of knowledge that are related to knowledge transfer. 

Most models include the two main subscales that were already described by Shulman (1986), 

namely instructional strategies and student cognition, but this collection is typically enriched 

by additional components relevant to the particular study context (e.g., Kulgemeyer et al., 

2020⁠; Magnusson et al., 1999 ⁠; Park & Oliver, 2008 ⁠; Schiering et al., 2023). The subscales are 

typically identified through argumentative means, expert interviews, and curricular evaluations 

of teacher education programs (ibid.). Some models that operationalize pPCK for an 

assessment include an additional dimension representing different levels of cognitive activity 

for the development of questionnaire tasks. This also holds for the development model of the 

test instrument that was used to generate the dataset analyzed in this study (Gramzow, 2015). 

Although conceptualizations such as pPCK-subscales or the separation of cognitive 

activities provide an overview of the pPCK’s presumed inner structure, it remains mostly 

unclear how empirically supported these distinctions are. Thus, it is uncertain whether these 

knowledge domains represent discrete components that can be developed independently. 

However, analyses of such potentially independent components would pose the potential for 

(a) further development of the conceptualization of pPCK as well as (b) formative assessment 

of PCK and construction of useful feedback for pre-service teachers. 

To further investigate the internal structure of pPCK on an empirical basis, level analyses 

using item-response models have recently been conducted (Schiering et al., 2023, Zeller et al., 

2024). Comparable analyses have also been carried out for CK (Woitkowski & Riese, 2017) 

and PK (König, 2009) in the German-speaking region and have yielded promising results. For 

pPCK, the results of Schiering et al. (2023) and Zeller et al. (2024), independently of the 

concrete context of the studies, found that the pPCK is limited to more reproductive, declarative 

knowledge at lower levels and extends to more analytical, creative, and evaluative aspects at 

higher levels. 

Another line of research focuses on the relationship between pPCK and teaching practices 

(e.g., Großmann & Krüger, 2022 ⁠; Kulgemeyer et al., 2020; for a comprehensive review, see 

Mientus et al., 2022). Behling et al. (2022b) were able to show that a learning opportunity 

focused on cultivating the ePCK components assumed in the PTR cycle (plan, teach, reflect) 

can also significantly increase the pPCK. 

In summary, research on the empirical foundation of the internal structure of PCK is still 

ongoing. For pPCK, level models in particular have been discussed, while for ePCK, more 

action-related competencies have been investigated, e.g., based on the PTR cycle proposed by 

Alonzo et al. (2019). The level models for pPCK inductively showed promising results in 

describing different prototypes of pPCK in terms of operators that can be interpreted through 

the lens of cognitive psychology, e.g., analyzing, evaluating, and creating (Schiering et al., 

2023; Zeller et al., 2024). However, these descriptions are rather general and methodically 

limited to hierarchical views. Specifically, while these analyses showed that cognitive activities 

can be used for project-independent descriptions of pPCK, the models by design are unable to 

distinguish non-hierarchical groups of students. With the term “non-hierarchical” we refer to 

groups of students that share the same overall pPCK level but differ in their competence w. r. 
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t. specific knowledge areas. Analyses of such potential non-hierarchical groups, which we call 

“pPCK competency profiles”, would (a) be beneficial to further develop the description of 

pPCK beyond “lower” and “higher” levels and (b) enable the assessment and potential 

feedback that can focus on specific strengths and weaknesses of individual students. Given the 

ePCK’s non-hierarchical distinction in the context of the PTR cycle, it seems promising to 

empirically study non-hierarchical structures of the pPCK as well. Imaginable is, e.g., a 

distinction between “pPCKplan”, describing a declarative knowledgebase necessary for lesson-

planning, and “pPCKreflect”, describing a declarative knowledgebase necessary for effective 

reflection of teaching situations. Such a distinction would provide valuable insights into how 

pPCK is typically structured and could be efficiently fostered in teacher education programs. 

Therefore, our objective is to explore the emergence of such non-hierarchical structures for the 

pPCK. We conduct cluster analyses that are capable of detecting such patterns (e.g., Duda et 

al., 2001).  

Cluster analyses, as a form of unsupervised Machine Learning, have been used only 

sparingly in science education research, in part due to challenges regarding the interpretability 

of the resulting structures (Zhai et al., 2020b). However, we argue that such approaches, when 

embedded in appropriate methodological frameworks, offer opportunities for the discovery of 

novel structures and information about non-hierarchical pPCK structures. Therefore, to 

improve the interpretability of our exploratory unsupervised analyses, we use ideas and 

concepts from the methodological framework developed by Nelson (2020), namely the 

Computational Grounded Theory (CGT). To enable the reader to follow the analysis and 

arguments, we explain some basic terminology and the CGT in more detail in the following 

section. 

5.2.3 Unsupervised Learning in the framework of Computational 

Grounded Theory 

The growing capabilities and increasing accessibility of Machine Learning (ML) methods have 

stimulated research on frameworks for categorizing and directing the use of these methods in 

science education research. Roughly speaking, ML can be described as the field of research 

that aims to automate human tasks using computer-based methods by “learning” from data 

(e.g., Géron, 2019). This learning process takes place through the application of various 

algorithms, such as (linear/logistic) regression models and clustering models.  

Zhai et al. (2020b) showed that the majority of ML applications in science education 

research aim to automate assessment in supervised analysis settings. Supervised ML settings 

involve the prediction of (typically) manually generated labels, also referred to as “target”, 

given some so-called “feature”-variables by an automated model (e.g., Géron, 2019). This can 

be the prediction of a specific class, e.g., the allocation to a certain group of people (target) 

from the responses to a questionnaire (features). Zhai et al. (2020a) proposed a classification 

framework for ML-based assessment in science education. They emphasized the potential of 

these methods to evaluate more complex constructs, potentially leading to a fundamental shift 

from simply replacing basic tasks to fundamentally redefining the assessment process and 

generating new opportunities. 
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Expanding ML applications beyond supervised settings is challenging. In unsupervised 

settings, there is no pre-existing target variable to predict, unlike in supervised settings (e.g., 

Géron, 2019). Unsupervised methods, such as cluster analyses, aim to uncover new patterns in 

data that can reveal previously unnoticed structures and generate fresh perspectives (Duda et 

al., 2001). They are typically employed when the amount of data exceeds a human-processable 

amount. To make new patterns and structures detected by unsupervised ML methods 

interpretable, they need to be linked to human expert knowledge (e.g., Nelson, 2020⁠; Sherin, 

2013).  

Sherin (2013) suggested that using algorithmic ML methods “in tandem” with human expert 

knowledge and interpretive power can effectively leverage the potential of unsupervised 

analysis and increase confidence in the results generated at the same time (Sherin, 2013, p. 

602; cf. Rosenberg & Krist, 2021). Nelson (2020) proposed the CGT framework to effectively 

guide such an in-tandem analysis. The CGT consists of three main steps: 

(1) Pattern detection: Unsupervised techniques are used to identify new patterns and 

structures in the data. In the case of questionnaire data, this might be a cluster analysis of 

the available scores. 

(2) Pattern refinement: The identified patterns are refined through in-depth analysis, i.e., 

human expert knowledge and interpretation power are introduced into the analysis. In the 

case of questionnaire data, this may be the aggregation of scores in the form of subscales 

or a language analysis of open-ended responses belonging to the found clusters. 

(3) Pattern confirmation: To provide an argument for the stability and therefore validity37 of 

the identified patterns and structures, the predictive power of algorithmic models for 

classifying the previously found categories is evaluated. In the case of questionnaire data, 

various models can be used to predict the previously identified clusters. 

These steps from the original description of the CGT are strongly tailored to text analysis, 

where the first step is to find patterns in text data. However, it should be noted that these steps 

may/must be adjusted for specific projects depending on the data sources, research questions, 

and applicable methods at hand (Nelson, 2020, p. 10).  

In the case of the present study, the data sources are the manually assigned scores for the 

tasks of a pPCK questionnaire and the digitalized text responses of the participants. By 

including both components of this rich data set, we aim to fully exploit its potential. To achieve 

this, additional theoretically and methodologically motivated preparation steps were introduced 

between the CGT’s steps. The full workflow is discussed in detail in the Methods section. 

The CGT has proven effective in science education settings, e.g., for elaborating students’ ideas 

about the generality of their model-based explanations (Rosenberg & Krist, 2021) and for 

discovering argumentation patterns in students' problem-solving processes (Tschisgale et al., 

 

37  The validity is assessed in the following sense: If ML-models are able to classify instances into the categories 

found during the pattern detection (and refinement), this is evidence for the existence of latent structures in the 

data, which correspond to the respective constructs (Nelson, 2020). The use of (potentially elaborated) models 

in this step includes non-linear structures which would often be overlooked when sticking to “classical” models 

like factor analyses. 
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2023). In particular the latter application by Tschisgale et al. (2023) is specifically aimed at 

presenting a prototypical CGT-oriented analysis and therefore also serves as a methodological 

guideline for structuring the results of the present study. Recently, Kubsch et al. (2022) 

proposed the Distributing Epistemic Functions and Tasks (DEFT) framework which can be 

seen as highlighting the untapped potential of unsupervised analyses in science education 

research. They explicitly name the CGT as a promising approach for unsupervised analyses of 

complex constructs. We therefore use extensive guidance from these theoretical foundations 

and previous empirical results to thoroughly interpret the patterns found. 

The existence of non-hierarchical structures of pPCK is suggested by theoretical 

considerations in the context of the RCM. The amount of available data makes an exploratory 

analysis by human effort (e.g., qualitative manual analysis) infeasible. Using qualitative 

(manual) methods, it would be unlikely to capture or even consider all potential structural 

components of the data and it would also be challenging to link the different data sources 

available (scores and response texts). A computational, non-hierarchical analysis using 

unsupervised ML techniques is not only more efficient and perhaps more objective (in terms 

of reproducibility) but also facilitates the linkage between the different data sources. However, 

ML-based methods are limited by their inability to account for nuances and finer details, for 

example in the analysis of textual responses. 

In summary, we conducted an exploratory analysis with a cluster model of the questionnaire 

scores at its core to uncover potential non-hierarchical structures of the pPCK. Knowledge of 

such structures would provide potential for the further development of the RCM. Furthermore, 

a potential assessment based on such results would guide the selection and evaluation of 

learning opportunities offered during teacher education programs. To structure and guide the 

incorporation of human expert knowledge and theoretical foundations, we use ideas and 

concepts from the CGT and DEFT frameworks. In the following sections, we discuss our goals 

and applied methods in more detail. Some additional technical details of the methods and 

algorithms used are presented in the Methods section, along with their application in the 

analysis, instead of discussing them as part of the Theoretical Background. We have found that 

this option facilitates the understanding of the methods and enables a shorter description. 

5.3. Goal and Research Questions 

As presented, the analysis of the fine structure of PCK is essential for advancing and 

consolidating the RCM and improving learning opportunities in teacher education programs. 

Regarding pPCK, which comprises PCK components that are developed during more 

theoretically focused learning opportunities, (primarily) theoretical descriptions of content 

subscales and strictly hierarchical level models are primarily available. For ePCK, the focus 

has been on (non-hierarchical) empirical analyses, particularly in the context of the PTR cycle. 

The hierarchical item-response-theory-based models for pPCK showed the potential for 

applying psychological learning operators and taxonomies (e.g., Anderson & Krathwohl, 2001) 

to pPCK independent of the specific study context. Such operators can also be loosely mapped 

onto the ePCK’s PTR cycle, e.g., with evaluative and analytical aspects potentially being more 
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closely related to the reflect component, and applicative and creative aspects being potentially 

more closely related to the plan component.  

Therefore, this study aims to investigate which structures can be empirically detected in a 

relatively large pPCK dataset using non-hierarchical cluster analyses. Yet, we do not aim at 

simply replicating the PTR cycle’s structure for pPCK via some kind of confirmatory analysis. 

Instead, we conduct an exploratory analysis to allow for the discovery of new, previously 

undetected structures. However, previous findings related to the PTR cycle of ePCK and pPCK 

levels suggest that there might be a relationship between such structures of the pPCK and the 

PTR cycle, which will be part of the discussion. We call these (for now hypothetical) non-

hierarchical pPCK structures “competency profiles”, which should consist of content-oriented 

descriptions of strengths and weaknesses of prototypical physics (pre-service) teachers w. r. t. 

inductively analyzed criteria. The term “competency” emphasizes our focus on pPCK in the 

context of the RCM, as opposed to “performance” in action included in the ePCK, or at the 

dispositional edge of competency in terms of the MoC. The term “profiles” emphasizes our 

focus on non-hierarchical structures, as opposed to “levels”, that have been analyzed using 

item-response models. The primary difficulty lies in empirically deriving such content- and 

criterion-oriented descriptions from the two data sources at hand, namely the pPCK scores and 

the authentic open-ended responses to the pPCK questionnaire tasks. To link these data sources, 

we assume that membership in a particular competency profile should reflect prototypical 

response behavior to the questionnaire tasks and vice versa. Therefore, we aim to carry out 

non-hierarchical cluster analyses using a distinctive blend of quantitative data (the manually 

generated scores) and qualitative data (the genuine open-ended responses of the participants). 

To address the challenges discussed regarding the interpretability of the results of such 

exploratory cluster analyses, we extensively refer to the current state of research on pPCK-

level models and ePCK conceptualizations within the PTR cycle. To structure and guide this 

combination of theoretical descriptions and exploratory analyses, we draw on ideas and 

concepts from the CGT. We therefore formulate the following three research questions, with 

each of them specifically focusing on one of the three steps of the CGT. The first research 

question describes our exploratory efforts for the analysis of non-hierarchical pPCK structures: 

RQ1 (∼ pattern detection): Which competency profiles of pPCK emerge from the 

score dataset of a pPCK questionnaire using cluster analyses? 

We do not yet narrow this research question down to the analysis of connectionist relations to 

the PTR cycle, to also allow for the discovery of previously unnoticed structures. To augment 

and elaborate the (for now hypothetical) non-hierarchical structures found in the scores, we 

carry out a language analysis of the test persons’ authentic responses to the questionnaire tasks. 

This should provide valuable insights into the central thoughts and concepts on which each test 

person focuses: 

RQ2 (∼ pattern refinement): Do test persons belonging to a specific competency 

profile show tendencies for specific language use in the open-ended responses to 

the pPCK questionnaire’s tasks? 

To consolidate the findings regarding RQ1 and RQ2, we additionally analyze the predictive 
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power of ML models to recover the found structures from the data in a CGT pattern 

confirmation step: 

RQ3 (∼ pattern confirmation): How well can an (automated) ML model predict the 

competency profiles for unseen data? 

This step is rather methodologically motivated than it is necessary from a theoretical 

perspective. However, given the difficulties in interpreting and replicating exploratory results, 

we argue in line with the CGT framework that RQ3 is still a valuable and necessary step in our 

study. 

5.4. Methods 

In the upcoming sections, we will initially provide details about the dataset we used and the 

corresponding studies. Subsequently, we will discuss our analyses in more detail. 

5.4.1 Data Collection and Dataset 

The data used in the present study was collected in the ProfiLe-P38 project (Vogelsang et al., 

2022) which took place from 2016 to 2019. This project aimed to assess the longitudinal 

development of teachers’ professional competence, as well as relationships between 

professional knowledge and action-related skills. As part of this study, a (p)PCK questionnaire 

(Gramzow et al., 2013 ⁠; Kulgemeyer & Riese, 2018), which included 20 open-ended tasks and 

4 multiple-choice (MC) tasks39, was a central part of the assessments. The study and the pPCK 

test instrument focused on precisely describing the relationships between the domains of 

professional knowledge for the specific CK-area of classical mechanics. During the piloting of 

the pPCK test instrument, multiple methods were used to assess and improve its validity and 

reliability. These included a validation against typical university curricula, a think-aloud 

analysis, and an evaluation of inter-rater reliability (Gramzow, 2015). The final version of the 

test instrument demonstrated satisfactory to excellent statistical properties, with an EAP 

reliability of . 84 and a Cohen’s of 𝜅 = .87 (cf. Kulgemeyer et al., 2020). This inter-rater 

Cohen’s 𝜅 was estimated using a double coding of 267 full test edits. The test instrument covers 

the pPCK subscales students’ misconceptions and how to deal with them, instructional 

strategies, experiments and teaching of an adequate understanding of science, as well as PCK-

related theoretical concepts (Gramzow, 2015 translated by Kulgemeyer et al., 2020). 

Following the guidelines proposed by Klieme et al. (2003) a further dimension representing 

different levels of cognitive activities has been incorporated into the task development model, 

which comprises the cognitive activities reproduce, apply, and analyze. The complete model 

for task development is presented in Figure 5.2. An example of one of the questionnaire tasks 

 

38  German acronym “Professionskompetenz im Lehramtsstudium Physik” (professional competence in physics’ 

teacher training). The project was funded by the German federal ministry of education and research. 

39  Depending on which elements are considered as the codable units, a total of 43 “items” (smaller codable units 

than “tasks”) can be identified (e. g., Kulgemeyer et al., 2020). Therefore, we stick to the term “task” to denote 

the codable units we consider for this analysis. 
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belonging to the student’s misconceptions subscale, including a response given by one of the 

tested prospective teachers, is presented in Figure 5.3. 

 

Figure 5.2 Model for task-development of the used test instrument. The original categories in the three considered 

dimensions used during task development are presented in black. The two cognitive activities added in blue are 

added for a more fine-grained differentiation of cognitive activities based on the findings of Schiering et al. (2023) 

and Zeller et al. (2024). 

The final dataset used in the present study contains 846 edits of this questionnaire by pre-

service physics teachers from 12 German-speaking universities. Teacher education in Germany 

takes the form of a bachelor’s and master’s degree program at the university level. The 

corresponding curricula offer distinct courses for the different domains of professional 

knowledge. For more details on the German teacher education system, we refer to van Dusen 

et al. (2021). Since the ProfiLe-P project had a longitudinal design, some participants took part 

in assessments up to three times. The individual edits are treated independently for this analysis 

according to the method of virtual subjects (Davier et al., 2008). Participants were on average 

in their second year of study (𝑀 = 2.05, 𝑆𝐷 = 1.73) and 34 % identified as female. The test 

instrument and all collected responses are written in German. The open-ended responses were 

coded by a trained German-native coder using detailed scoring rubrics (Gramzow, 2015; 

example in Table A1) and the MC tasks were scored using thresholds (cf. Krebs, 1997). In 

addition, the open-ended responses were digitized to allow for computational language 

analyses. 

5.4.2 RQ1: Exploring Possible Competency Profiles with Score-Cluster 

Analyses 

In the pattern detection step (RQ1), we aim to apply non-hierarchical cluster analysis methods 

to the pPCK score dataset. Due to its high dimensionality (> 20 tasks), the direct application 

of clustering algorithms to the “raw” score data does not yield sufficiently interpretable 

aggregations. Therefore, we first performed a theoretically guided step. Based on the findings 
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in the context of hierarchical item-response models (Schiering et al., 2023 ⁠; Zeller et al., 2024) 

we suspected that relevant structures might emerge when focusing on common learning 

psychological operations. We therefore analyzed the questionnaire tasks using Anderson and 

Krathwohl’s (2001) taxonomy and categorized them accordingly. A similar distinction was 

already included as the dimension of cognitive activities during the task development phase of 

the questionnaire (Figure 5.2), i.e., this preparation step is primarily an augmentation of this 

dimension with a re-evaluation of the tasks in these terms. An alternative approach would have 

been to utilize the pPCK subscales as categories for our analysis. However, this would have 

resulted in a lack of generalizability of the results, as different studies often target different 

selections from a wide variety of possible subscales (e.g., Hume et al., 2019 ⁠; Park & Oliver, 

2008). Conversely, the study by Zeller et al. (2024) demonstrated that cognitive requirement 

dimensions may be a more generalizable approach for the categorization of pPCK tasks and 

for assessing pPCK content-wise regardless of the concrete operationalization used and the 

physics content areas covered. 

Although the taxonomy by Anderson and Krathwohl (2001) is intended to reflect a 

hierarchical ordering, the level analyses of the pPCK (Schiering et al., 2023 ⁠; Zeller et al., 2024) 

showed that a hierarchical approach is not sufficient to distinguish between certain operations 

at the group level. Therefore, the application of non-hierarchical methods using these 

categorizations is a promising approach. In terms of the CGT, this categorization corresponds 

to the inclusion of human expert knowledge in the analysis (Nelson, 2020). We argue that this 

approach in combination with RQ2 retains enough openness to detect previously unnoticed 

novel structures compared to a direct categorization of tasks within the PTR cycle. Moreover, 

due to the more abstract nature (compared to the fundamental idea of ePCK) of the pPCK 

questionnaire tasks at hand using the PTR cycle directly would yield questionable 

categorizations anyway. 

We focused on the operations remember, understand, apply, analyze, evaluate, and create 

(Anderson & Krathwohl, 2001). While Anderson and Krathwohl (2001) suggest that a learning 

objective should focus on a single operation in the taxonomy, we argue that it is valid and may 

even be necessary for more sophisticated and complex tasks to be able to focus on multiple 

operations. Therefore, we have allowed a single task to be categorized into more than one of 

the six operations. In an iterative process, a guideline for this task classification was established 

and refined several times to account for comprehension difficulties. A clear distinction between 

remember and understand still was difficult to make. We decided to collapse the two 

dimensions into a combined category called reproduce, i.e., tasks that primarily require the 

reproduction of explicit facts. We argue that this is still a valid step in the taxonomy and that 

this operation can be assessed from an outside perspective in a much more reliable and valid 

way. Figure 5.2 also contains the integration of the resulting five cognitive requirement 

dimensions in the task development model yielding the re-evaluation of the tasks accordingly. 
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Figure 5.3 Example task of the questionnaire used for generating the dataset analyzed in this study. The task 

belongs to the student cognition subscale. The task and response were translated by the authors. The scoring rubric 

as well as additional responses to this task from the dataset are appended as supplementary material (Table A1 & 

Table A2). 

The final categorization was done three times by experts and resulted in the categorization 

agreement shown in Table 5.1. As shown there, an additional dimension “teaching situation” 

was added to describe whether a reference to a teaching situation, e.g., in the form of a vignette 

is part of the task. This dimension was found through an inductive categorization along with 

two other dimensions that were later found to be irrelevant. While it conceptually differs from 

the five cognitive activities, it is still usable as an argument for consistency because tasks 

belonging to the create and analyze dimension often refer to teaching situations. The five levels 

of the taxonomy and the additional teaching situation dimension will be interpreted together 

and referred to as “requirement dimensions” in the following. For the subsequent analysis, a 

consensus categorization was agreed upon by the three experts. In this categorization, task 15, 

which is displayed in Figure 5.3, was categorized into the analyze and teaching situation 

requirement dimensions. Table 5.2 shows the number of tasks and the maximum score that can 

be achieved in each of the requirement dimensions. It can also be interpreted as a measure of 

the granularity of each dimension.  
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Table 5.1 Cohens’ 𝜅 values of the task-categorizations to the requirement dimensions. Based on these 

categorizations, a consensus-categorization was set up. 

Raters Reproduce Apply Analyze Evaluate Create 
Teaching-

Situation 

𝜅12 . 84 . 62 . 76 . 62 . 71 . 77 

𝜅13 . 83 . 55 . 52 . 71 1 . 84 

𝜅23 . 83 . 59 . 62 . 41 . 71 . 62 

Table 5.2 Maximum score for the dimensions based on the consensus-categorization of tasks. The test instrument 

is more focused on reproductive and analytical requirements. The implications and limitations of this for the 

analysis and the interpretation of the results are discussed in the Discussion section. If a category contains multiple 

choice tasks, this is denoted in parentheses, e.g. the Reproduce category contains 12 tasks in total of which three 

tasks are in multiple choice format. Note that a task can be allocated to multiple of the categories. 

 Reproduce Apply Analyze Evaluate Create 
Teaching 

Situation 

Task Count 12 (3 MC) 5 10 (2 MC) 4 5 12 (1 MC) 

Max. Score 23 8 13 5 9 16 

After this theoretically motivated preparatory step, the actual cluster analysis was performed 

using the aggregated scores in the requirement dimensions as input data. To generate the 

clusters, we omitted cases in which less than 50 % of the tasks were completed or in which 

more than 25 % of consecutive tasks were not worked on at the end of the test instrument. We 

interpret such cases as instances where the test instrument was either not worked on seriously 

or the work was stopped early for some reason. For the cluster generation using this selection 

779 instances remained. The aggregated score data allows for a proper interpretation of the 

clustering results using the averages of the resulting groups w. r. t. the requirement dimensions. 

The numerical properties of the dataset proved to be insufficient for the application of 

sophisticated clustering methods such as density-based algorithms (e.g., Campello et al., 2013⁠; 

McInnes et al., 2017) or probabilistic Gaussian Mixture Models (cf. Spurk et al., 2020). 

Deviations from the normal distribution as well as discretization along the requirement 

dimensions (cf. Table 5.2) prevented the formation of meaningful clusters or even the 

convergence of the algorithms when using such methods. Therefore, we reverted to the simple 

but reliable 𝐾-Means algorithm (MacQueen, 1967) that is more agnostic to certain data 

requirements. The implications of this methodological choice are discussed in the Discussion 

section. 

Additionally, we prepared the data by scaling the subscale scores to a range between 0 and 

1, which facilitates 𝐾-Means convergence and cluster localization. The 𝐾-Means algorithm 

does not itself inductively estimate an appropriate number of clusters. There are some methods 

https://unipaderbornde-my.sharepoint.com/personal/jzeller_ad_uni-paderborn_de/Documents/3.%20Promotion/write-present/main/how#CTVL0010e2078f223264907b0bb0f98380bb221
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to guide the selection of the number of clusters, such as the Silhouette-score method 

(Rousseeuw, 1987) or the elbow method (e.g., Géron, 2019). These methods aim to calculate 

metrics that represent the internal consistency of the clusters and the differentiation of the 

clusters from each other in a cluster model. In the case of the elbow plot, the sum of the 

distances of the data points from their respective cluster center is visualized. To achieve a 

balance between a low sum of distances and a moderately high number of clusters, an “elbow” 

is sought in a plot of the sum of distances against the number of clusters. This is analogous to 

the use of scree plots in exploratory factor analysis. The elbow plot for our data is presented in 

Figure 5.4. The bends in this plot at cluster numbers two and four are relatively smooth and do 

not provide a strong argument for selecting a particular cluster number. 

A silhouette score analysis is similarly uninformative for our dataset and is therefore not 

discussed or presented in more detail due to space limitations. However, both procedures 

generally favor lower cluster numbers (≲ 7). From a theoretical perspective, a cluster number 

that is large enough to enable the discovery of non-hierarchical structures would be desirable. 

A cluster number of just two would be insufficient for our theoretical goal of finding non-

hierarchical structures as it allows only for a simple differentiation between low and high-

performing test persons. From a methodological perspective, a lower number of clusters would 

be preferable for future work on automating the allocation of test edits to such clusters. Given 

the slight bend at a cluster number of four in the elbow plot and the need to balance the 

theoretical and methodological requirements, we decided to use a cluster number of four for 

the subsequent analysis. It should be noted that higher cluster numbers (five to seven) also yield 

distinct and interpretable clusters that resemble finer-grained differentiations of the sample. 

The remaining parts of the score cluster analysis lead directly to the results of RQ1 and are 

therefore described in the results section to enhance the comprehensibility of this article. 

 

Figure 5.4 Elbow-Plot to guide the decision for a fixed cluster number for the score-cluster analysis. 
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5.4.3 RQ2: Refining the Score-Clusters to Competency Profiles via Topic 

Analysis 

For the second research question, which is aimed at the pattern refinement step of the CGT, we 

provide insights into possible tendencies for specific language usage of the participants 

belonging to specific score clusters from the first analysis step. We want to gain insights into 

the focused concepts and ideas of these groups to (1) refine our knowledge about them and (2) 

provide an argument for the concurrent validity (Miller & Lovler, 2018) of the interpretation 

of the groups by assessing the consistency between their strengths and weaknesses in terms of 

the requirement dimensions and their language usage. 

Although standard works on PCK in the context of the RCM do not (yet) explicitly 

investigate connections between PCK and specific language use (e.g., Hume et al., 2019), it 

can be assumed that language can be viewed as a central medium through which cPCK and 

especially pPCK as a cognitive construct are expressed and shared. This is also reflected in the 

coding rubrics of the test instrument used in this study that specifically pay attention to 

terminology in the context of teaching and learning physics (Table A1) Therefore, investigating 

the language use of test persons belonging to the clusters discovered in the RQ1-analysis should 

yield information on central constructs and ideas that the test persons consider relevant when 

tackling the questionnaire tasks. This information can be used to gain insight into the test 

persons’ personal understanding of PCK, i.e., their pPCK and thereby extend the description 

and interpretation of the clusters beyond the score aggregations. 

To assess potential prototypical language use of groups or to identify groups of prototypical 

language use in a dataset of texts (called a corpus of individual documents) typically so-called 

topic models are used (Chen & Liu, 2017). The term topic model describes methods that aim 

at characterizing topics in a corpus. A topic is characterized by a set of words. The co-

occurrence of words in different documents determines the topics and the topic prevalence of 

the documents, i.e., how much a document addresses a particular topic. The original topic 

modeling algorithm, called Latent Dirichlet Allocation (Blei et al., 2003), was specifically 

tailored for topic modeling in the famous paper by Blei (2012). By using the basic or extended 

version of the topic modeling algorithm one can infer the topic-word and document-topic 

relations given only the words of the documents. A thorough description of the inner workings 

of the model requires considerable prior knowledge of probability theory and is beyond the 

scope of this article. Modern open-source software packages provide easy-to-use interfaces for 

applying topic models without having to delve deeply into the mathematical foundations (e.g., 

Roberts et al., 2019).  

Without claiming completeness, two lines of research can be identified for extending the 

basic topic model. The most recent iterations use deep learning-based language models (e.g., 

BERT by Devlin et al., 2019) to transform the documents into numerical representations that 

are subsequently used in cluster analyses. The documents belonging to specific clusters are 

then used to characterize the topics by extracting characteristic words (Grootendorst, 2022). 

Such approaches are already being used in science education research and are yielding 

promising results and insights into short text elements (sentences) extracted from longer 

documents (Tschisgale et al., 2023 ⁠; Wulff et al., 2022). However, applying a similar approach 
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to the dataset of the present study is not practical for our data structure, because we cannot use 

short elements like sentences in a meaningful way. 

Therefore, we refer to the second line of research on the extension of the basic topic model 

mentioned above. Models emerging from this second line of research do not use deep learning 

methods but instead, directly extend the mathematical model of the basic topic model. In doing 

so they aim to directly incorporate additional covariates into the model and thus guide the 

formation of topics by these covariates (e.g., Blei & Lafferty, 2005). A relatively new model 

that has emerged from these approaches is the so-called structural topic model (STM, Roberts 

et al., 2016 ⁠; Roberts et al., 2019). It allows the use of covariates that influence the topical 

prevalence of particular documents as well as the use of covariates that influence the content 

of particular topics, i.e., the topic-word-relation. The probabilistic model and the inference 

algorithm become even more sophisticated (Roberts et al., 2016). In our case, this model is 

particularly interesting because we can focus on the most relevant words by applying certain 

preprocessing steps to our documents, and we can guide the topic prevalence by our results 

from the first analysis steps, i.e., the score clusters to which the documents are assigned.  

We applied the following preprocessing steps guided by the R-software used (Roberts et al., 

2019⁠; Roberts et al., 2023): 

• Punctuation removal: Removing punctuation, i.e., omitting characters such as periods, 

hyphens, etc., is a common preprocessing step when applying models that are agnostic of 

the order of the occurring words. 

• Lower casing: All words are converted to lowercase to remove unnecessary variance in 

the corpus. 

• Removing stopwords: “Stopwords” are words that occur so frequently that they do not 

provide interesting insights into the documents like “and”, “I”, “the”, etc. Removing such 

stopwords can be interpreted as removing uninteresting variance from the corpus and 

reducing the document lengths for more efficient computation. 

• Removing words based on frequency: Similar to stopword removal it is common to remove 

words that are either too frequent or too rare. Removing too frequent words serves the 

same purpose as stopword removal. Removing too rare words can be seen as removing 

variance from the corpus that cannot be explained or interpreted anyway because there is 

not enough data available. We decided to categorize words appearing in more than 60 % 

of the documents as too frequent and words appearing in two or less documents as too rare 

to be further used40. 

• Stemming: Stemming refers to the reduction of words to their core component or stem, 

e.g., reducing “programming”, “programmer”, and “programs” all to “program”. Again 

this step is aimed at reducing the variance of the corpus and is a common technique when 

 

40  Using such additional thresholds is suggested by the software used Roberts et al. (2023). We found that when 

these thresholds were used, the resulting topics were much less dominated by the same very frequent words 

and therefore much more expressive. Moreover, the metrics used to determine the most characteristic words 

were less prone to “collapse” into words used only once. 
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using word-order-agnostic models. We argue that stemming specifically does not hinder 

us to understand and interpret the meaning and content of a topic. 

For the actual topic modeling, we introduced the participants’ score cluster assignments41 

from the results of the first research questions as covariates for the topic prevalence of the 

corresponding documents. Most topic models including the STM require the number of topics 

to be preset by the analyst to a fixed value. There are some ways to estimate the appropriate 

number of topics for a dataset in a data-driven way, but the corresponding metrics often yield 

inconsistent results (see e.g. Figure 3 of Gan & Qi, 2021). The choice of the topic number is 

generally not considered an exact science (Roberts et al., 2023). For our dataset, the available 

metrics of the software used roughly favored low (< 10) topic numbers. Therefore, we 

gradually estimated models with an increasing, but still comparatively low, preset number of 

topics. We reached saturation within a six-topic model, i.e., we found additional topics to be 

primarily unspecific or repetitive in content and therefore kept a topic model with six topics 

for further analysis.  

In the subsequent analysis, we first interpreted the topics using the most characteristic words 

based on the metrics provided by the software (cf. Roberts et al., 2019 ⁠; Roberts et al., 2023 for 

more details). In addition, we estimated the effect of belonging to a particular score cluster 

from RQ1 on the proportion of a document focused on a particular topic. The score clusters 

and their refinement through the topic analysis together form the groups that we refer to as 

“competency profiles” in the following. They are the lens through which we aim to describe 

non-hierarchical structures of the pPCK. Analogous to the previous section, the remaining parts 

of the topic model analysis lead directly to the results of RQ2 and are therefore described in 

the Results section. 

5.4.4 RQ3: Confirming Competency Profiles by Automatized Prediction 

The pattern refinement step of the CGT aims to assess the stability and robustness of the 

explored patterns and structures from the unsupervised analyses (Nelson, 2020). In the case of 

the present study this is primarily reflected in the stability and robustness of the identified 

competency profiles, since the workflow for assigning a participant or a questionnaire edit to a 

competency profile depends only on the scores. The topic modeling step (RQ2) is primarily 

intended to provide additional insight into the competency profiles and arguments for their 

validity; it does not influence the assignment of a person to a competency profile. To confirm 

the explored patterns, Nelson (2020) suggests assessing the predictive power of ML models 

that assign some appropriate input data (“features”) to the labels generated during the pattern 

detection and refinement steps. Taken together, this means that in our case the goal of the 

pattern confirmation is to automatically predict the score clusters from RQ1. The predictive 

power is evaluated by splitting the data into a training set and a test set (e.g., Géron, 2019). The 

ML model is then trained on the training data to predict the labels. The performance on the 

prediction task is estimated using the “unseen” test set. A high performance on the test set 

 

41  Note that we are still using an approach of virtual cases and therefore the same person can be assigned to 

different score-clusters at different times. 
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serves as an argument for the reliability and validity of the explored patterns. If only a small to 

medium sized dataset is available, the so-called “𝑘-fold cross-validation” approach (e.g., 

Géron, 2019) can be used to enhance the results. This approach is based on dividing the full 

dataset into 𝑘 segments. The model is then trained 𝑘 times on the data, with each iteration 

involving the omission of one of the 𝑘 splits for training purposes and its exclusive use for 

evaluation. Furthermore, the cross-validation procedure can additionally be repeated multiple 

times, with different so-called “random seeds”, i.e., different splits. This allows for the 

estimation reliable performance estimates. 

Now the question arises, which part of the data should serve as the features in the present 

analysis? There are two main options: First, the actual text responses could be used to predict 

the cluster assignments. Second, the score data could be used to predict the cluster assignments. 

Predicting the (score) clusters using the text responses is a much more complex inference task 

than using the scores directly because the scores have already been used as the basis for the 

cluster analysis in the pattern detection step. We followed the lead of Tschisgale et al. (2023) 

who reused the features used in the cluster analysis again in the pattern confirmation step. 

Therefore, we present a pattern confirmation analysis using the score data for prediction. Note 

that this decision significantly reduces the complexity of the prediction task compared to using 

the textual responses. Furthermore, such a model is primarily intended to be used for pattern 

confirmation to complete the CGT methodology and thereby provide an argument for the 

stability and validity of the identified competency profiles. However, it is of little practical 

relevance as the main work of assigning scores to the open-ended responses must still be done 

manually. Full automation, i.e., scoring the open-ended responses and assigning participants to 

competency profiles, requires much more sophisticated approaches that are beyond the scope 

of this article but will be part of our future work (also see “Perspectives and Outlook”).  

We evaluated a logistic regression classifier model using a 10-fold cross-validation (e.g., 

Géron, 2019) with 10 different random seeds, resulting in a total of 100 estimates for the 

performance of the model in predicting competency profiles from the scores. The dataset is 

imbalanced with an uneven distribution of the target variable, i.e., the cluster assignments (see 

Table 5.3). Therefore, the cross-validation splits were set up such that the distribution of the 

cluster assignments is almost equal in all splits. In addition to the predictive accuracy, we also 

report the weighted 𝐹1-score as well as the (linearly weighted) Cohen’s 𝜅 score for the test-set 

predictions. These scores account for imbalance in the data sets and Cohen's κ also account for 

random agreement. 

The logistic regression classifier was configured and trained using the Scikit-Learn Python 

package42 (Pedregosa et al., 2011). To facilitate the classifier's generalization from the training 

to the test data, we chose an 𝐿2-regularization value of 1.043. 

 

 

42  https://scikit-learn.org; we used version 1.3.0. 

43  For additional information on regularization in general please refer to Géron (2019, pp. 28-33). For information 

on regularization in regression models specifically please refer to Géron (2019, pp. 135-141). 

https://scikit-learn.org/
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5.5. Results 

5.5.1 RQ1: Score-Clusters in pPCK Data 

The core of the competency profiles is formed by clusters in the scores as described in the 

Methods section. The resulting six-dimensional (5+1 requirement dimensions) clusters cannot 

be visualized directly, but dimensionality reduction techniques can be used to project the data 

down to two dimensions. Figure 5.5 shows such a visualization for the pPCK scores dataset 

used for the cluster analysis. The clusters are well distinguishable even in the dimensionality-

reduced projection. Since the clusters have non-circular shapes and erratic densities, the 

deviations from a Gaussian distribution are visible. The visualization in Figure 5.5 shows the 

legitimacy of using the clusters to further describe competency profiles, but also some 

limitations related to the distributions and overlaps which will be discussed in the Discussion 

section. 

However, the shapes and distribution of the clusters especially when projected to two 

dimensions do not directly indicate the potential strengths and weaknesses of the corresponding 

competency profiles. For this purpose, we take a closer look at the average scores of all 

instances within the clusters resulting from the 𝐾-Means algorithm. For the present analysis 

with only four clusters and six-dimensional data, these averages can be displayed with radar 

plots or line plots as shown in Figure 5.6. The radar plot (Figure 5.6, top) is scaled to the highest 

score achieved in each dimension. Consequently, a “reproduce score” of 0.6 means that 60 % 

of the scores of the best-performing individual have been achieved. This is due to the scaling 

of the data to the interval [0, 1] in the cluster analysis’ pre-processing. The line plot (Figure 

5.6, bottom) is scaled to the overall best-achieving cluster to directly highlight the differences 

between the clusters. Additionally, the line plot shows the 95% confidence intervals for the 

means as shaded tubes. Clusters 1 and 4 are identified as clusters with generally low and high 

overall achievement. Clusters 2 and 3 differ significantly in their scores on the analyze/evaluate 

and apply/create requirement dimensions. While Cluster 2 achieves significantly higher scores 

in the dimensions apply and create, cluster 3 achieves significantly higher scores in the analyze 

and evaluate dimensions. Nevertheless, these clusters show little difference in their scores 

regarding the reproduce dimension. 

Table 5.3 presents additional details on the clusters. The lower-performing cluster 1 contains 

by far the largest number of students. This is most likely due to the large number of first-year 

students in the sample. Clusters 1 and 2 as well as 3 and 4 respectively show significant 

differences in their average year of study and their total pPCK score. Clusters 2 and 3 do not 

show significant differences in their year of study (𝑇 = 1.68, 𝑝 = .1, df = 320), yet they 

show (barely) significant differences in total pPCK scores (𝑇 = 2.01, 𝑝 = .05, df = 320). 

The latter is strongly influenced by the relatively large size of the groups, which is also reflected 

in the small Cohen’s 𝑑 effect sizes of these differences of 𝑑 = 0.18 and 𝑑 = 0.23 respectively. 

The absolute differences are much smaller than the differences between clusters 1 and 2 as well 

as 3 and 4 respectively. Based on the average scores of the clusters in the requirement 

dimensions and their average total pPCK score (as presented in Figure 5.6) we have created 

labels for the clusters: the Low Achievers (cluster 1), the Applying Creatives (cluster 2), the 
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Analytic Evaluators (cluster 3), and the High Achievers (cluster 4). Because the score clusters 

form the core of the competency profiles, these labels also become the names of the 

competency profiles. 

 

Figure 5.5 Two-dimensional visualization of the dataset and clusters.  Each colored dot represents one test person. 

The bold black dots represent the centroids of the respective clusters. We used the Principal Component Analysis 

dimensionality reduction technique (for details refer to, e.g., Jolliffe, 2002) to project the six-dimensional data to 

two dimensions. The percentages in the axis-labels denote how much of the variance of the full six-dimensional 

dataset is retained by the corresponding reduced dimension. The shading and contour lines represent the density 

of the datapoints. 

Table 5.3 Sizes (𝑁), average year of study and average total pPCK scores of the clusters. The counts for the full 

datasets are generated by applying the fitted model to the cases previously omitted due to incompleteness. The 

means are calculated using the filtered dataset. The differences when the previously omitted instances are included 

in these aggregations are small. 

Cluster Year of Study Total pPCK Score 𝑵 𝑵 (full dataset) 

 𝑴 𝑺𝑫 𝑴 𝑺𝑫   

1 1.34 1.20 9.17 2.99 321 383 

2 2.17 1.59 15.91 3.66 179 181 

3 2.39 1.81 16.72 3.62 144 147 

4 3.49 2.00 23.82 3.90 135 135 
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Figure 5.6 Visualizations of the cluster centroids. The cluster centroids are the means of the instances in each 

cluster and represent the typical scores of the competency profiles in each of the requirement dimensions. In the 

radar plot, the scores for each dimension are normed to the highest score a person achieved on that dimension. In 

the line plot, the scores for each dimension are normed to the mean scores of cluster 4 to emphasize differences 

between the clusters. 

5.5.2 RQ2: Typical Language Use of Participants Belonging to the Score-

Clusters 

As described in the Methods section, we used a structural topic model to further refine the 

description of the competency profiles beyond their typical scores in the requirement 

dimensions. The score cluster assignment was used as a covariate for the topic prevalence of 

the documents. The documents are the person-wise concatenated responses to the open-ended 

tasks of the pPCK test instrument. The generation and preprocessing of the documents for this 
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analysis are also described in the Methods section. Note that we decided to use the full dataset 

including the edits that were omitted for the clustering step to make use of the full language 

data available. This is possible by performing the cluster assignments for the previously 

omitted edits using the clustering model that was only fitted using the complete edits. 

The initial step involves using the characteristic words that emerge from the model to 

describe the content of the topic. Different metrics can be used together for this purpose 

(Roberts et al., 2019). Table 5.4 illustrates these word lists, excluding duplicate words 

belonging to the same topic and non-specific general words. Note that the structural topic 

model is a soft assignment model, i.e., it allows the same word to appear in different topics. 

The resulting wordlists were categorized using six deductive topics that were derived by 

interpreting the “human-interpretable” groups of words that appeared in these lists. Based on 

these deductive topics (columns in Table 5.4) the actual inductively found topics from the topic 

model (rows in  Table 5.4) were characterized. We provide a brief interpretation or title for 

each inductive topic in Table. These inductive topics will be referred to simply as “topics” in 

the following. To refine the competency profiles, we assessed the relationship between the 

assignment of a document to a score cluster and the proportion of a document dedicated to a 

specific topic. Thus, we estimated the effect that the assignment of a document to a score cluster 

has on the topic proportion of the document by aggregating the topic proportions generated by 

STM and grouped by the cluster assignments44. A full numerical comparison of these effects 

(via ANOVA and post-hoc tests) is not presented due to space limitations. In summary, with 

the exception of reasoning on examples, all topics were significantly affected by the score-

cluster assignment (𝑝 < .001 for the remaining five). To further compare these effects, we 

present them as a heatmap (Figure 5.7). 

The effect differences between the competency profiles range from 0 to . 40. For space 

reasons only important outstanding observations are reported and further refined. It is important 

to recognize that the proportions focused on specific topics in a document are always relative 

and sum to 1 when accumulated across all topics. Therefore, the proportions shown in Figure 

5.7 sum to 1 row-wise. The heatmap in Figure 5.7 shows that engagement in the student 

cognition topic is increasing alongside the average total score of the competency profile; note 

that the competency profiles are arranged with increasing total scores along the vertical axis. 

Additionally, there is a simultaneous decrease in the emphasis on general concepts (topics 

general concepts focusing subject and general concepts focusing knowledge) and the extensive 

use of examples (topic usage of examples). A similar trend, but on a smaller (non-significant) 

scale, can be seen when comparing the Analytic Evaluators with the Applying Creatives, with 

the Analytic Evaluators more strongly prioritize the student cognition topic over the usage of 

examples and reasoning on example than the Applying Creatives. Lastly, the Low Achievers 

show a significantly (𝑝 < .05 for each post hoc comparison) reduced emphasis on the symbolic 

descriptions topic when compared to the other competency profiles.  

 

44  On closer inspection, we switch from a generative probabilistic modeling approach of the STM to a more 

frequentist approach by using the STM’s initially predicted “mean” topic proportions. We decided to do this 

because this approach is much easier to follow and the actual numerical differences compared to using the 

generative utilities (Roberts et al., 2023) are negligibly small.  
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Figure 5.7 Visualizations of the effect that the assignment of a document to a cluster has on the proportion of 

documents dedicated to a specific topic. For example, the average effect of 0.46 that belonging to the High 

Achievers has on the topic of Student cognition. This indicates that, on average, 46 % of each document of a High 

Achiever is dedicated to the topic of Student Cognition. 

5.5.3 RQ3: Prediction of Competency Profiles 

To compare the logistic regression classifier to a baseline, a dummy classifier is set up that 

simply predicts the most frequently occurring competency profile. This dummy classifier 

reaches an average accuracy of . 453 and an average Cohens 𝜅 of 0. The logistic regression 

classifier achieves excellent prediction accuracy, both in absolute terms and compared to the 

dummy classifier, as presented in Table 5.5. 

Table 5.5 Pattern confirmation: Predictive power of the logistic regression classifier on the test dataset. The table 

contains the evaluation of the predictive power of the logistic regression classifier predicting the competency 

profiles from the scores are presented. All values are obtained from the test dataset. In the first row, the metric’s 

value averaged over the 10 cross-validation splits (times 10 different random seeds) is denoted. In the second row 

95 % Gaussian confidence intervals of across the 100 values in total are presented. CI=Confidence Interval, 

LL=Lower Limit, UL=Upper Limit. 

 Accuracy 𝑭𝟏 Cohen’s 𝜿 

Average value . 943 . 943 . 918 

95% CI [LL, UL] [.939, .948] [.938, .948] [.911, .925] 
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5.5.4 Summary of the Competency Profiles 

To further discuss the results of the cluster and language analyses below, we present the 

tendencies shown in our findings on RQ1 and RQ2 competency profile-wise: 

• Low Achievers: The Low Achievers show a significant focus on general concepts (focusing 

knowledge) with an emphasis on using examples. It is important to note that this 

observation is relative to the normalized topic distribution. In other words, the Low 

Achievers do not necessarily use more examples than the High Achievers. However, the 

Low Achievers do devote a greater proportion of their produced text to the topic of using 

examples compared to the High Achievers. This may be because the description of some 

general PCK-related topics or simple examples of physical phenomena might be already 

available at lower levels of pPCK. It is important to note that simply addressing these 

topics does not necessarily imply a high level of quality in the accompanying text 

segments. 

• Applying Creatives: The Applying Creatives also focus on the use of examples, but in 

addition, they incorporate the reasoning behind the use of examples and the student’s 

cognition as well as symbolic descriptions more strongly into their text productions. As a 

result, examples are more integrated with other pPCK-related concepts and additional 

aspects are considered in the thinking process.  

• Analytic Evaluators: The Analytic Evaluators place a greater emphasis on student 

cognition, while still dedicating a reasonable amount of their writing to examples. They 

appear to focus slightly less on the using examples and reasoning about examples topics 

than the Applying Creatives, although this difference is not statistically significant. 

However, this is consistent with their typical scores on the respective requirement 

dimensions: Analytical and evaluative tasks typically (sometimes even explicitly) require 

to consider student cognition, while applied and creative tasks often require this only 

implicitly upon closer examination. 

• High Achievers: The High Achievers show a strong focus on student cognition. As a result, 

the proportion of all other topics decreases, with the exception of the reasoning on 

examples topic. However, their scores indicate that they also achieve comparatively high 

scores on the create and apply requirement dimensions. These observations suggest that 

they integrate their creative text elements (such as the description of examples) in a much 

more theoretically informed manner, e.g., with additional reasoning about their usefulness 

and the consideration of student cognition. 

5.6. Discussion 

High-quality teacher knowledge is a crucial prerequisite for effective teaching and learning 

(Hattie, 2003 ⁠, 2012 ⁠; Hume et al., 2019). PCK as a central component of teachers’ knowledge 

(Shulman, 1986 ⁠, 1987) has therefore been the subject of intense research (e.g., Behling et al., 

2022a⁠, 2022b ⁠; Hume et al., 2019 ⁠; Kulgemeyer et al., 2020 ⁠; Mientus et al., 2022 ⁠; Schröder et 

al., 2020⁠; She et al., 2024 ⁠; Sorge et al., 2019). Recently, hierarchical competency level models 
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of (preservice) physics teachers’ PCK have been developed using item-response models 

(Schiering et al., 2023 ⁠; Zeller et al., 2024). Based on the used test instruments such models can 

be interpreted as describing pPCK through the lens of the RCM of PCK (Carlson et al., 2019). 

At the same time, research has been conducted on ePCK in the context of the proposed PTR 

cycle (Alonzo et al., 2019) to shed light on the processes behind the development of ePCK. 

Therefore, a non-hierarchical distinction has been made between the three components 

ePCKplan, ePCKteach, and ePCKreflect. We conducted a theoretically guided, exploratory, in large 

part computational analysis to determine whether similar non-hierarchical structures could also 

be identified for pPCK. Such empirically based structures can be used to further develop the 

RCM and to provide meaningful feedback when the corresponding test instruments are used as 

assessment tools. Therefore, we searched for prototypical response patterns in the scores and 

textual responses of participants in a large pPCK assessment focusing on classical mechanics. 

Our findings suggest that it is possible to differentiate competency profiles that show specific 

strengths and weaknesses when considering the requirement dimensions reproduce, apply, 

analyze, evaluate, create, and teaching situation, that are inspired by the aforementioned item-

response-based results. In addition, we were able to show that individuals belonging to specific 

competency profiles show tendencies to focus on certain topics in their language use when 

responding to the open-ended tasks of our pPCK questionnaire. 

5.6.1 Interpretation of the Competency Profiles 

The typical scores achieved in the requirement dimensions are the core of the competency 

profiles. These typical scores have been identified by the cluster analysis (RQ1). The 

corresponding score clusters also form the basis for assigning test persons to a competency 

profile. Two competency profiles were identified as typical low and high-achieving students 

with the Low Achievers representing the largest group in our sample. Additionally, it is worth 

noting that even the High Achievers have plenty of room for improvement (see Figure 5.6, 

top). This is not surprising, as the questionnaire has previously been shown to be challenging 

even for well-advanced pre-service teachers (Gramzow, 2015).  

In addition to the Low Achievers and High Achievers, which still show a strong hierarchical 

characteristic (see Table 5.3), two other competency profiles could be identified. Based on their 

typically reached scores in the requirement dimensions the two additional competency profiles 

were labeled as Applying Creatives and Analytic Evaluators. The Applying Creatives show a 

comparatively much higher score on the requirement dimensions aimed at applying PCK to 

described situations or generating elements of instructional actions descriptively. The Analytic 

Evaluators show a comparatively much higher score in the requirement dimensions aimed at 

using PCK analytically to draw certain conclusions from descriptions in the tasks and at using 

PCK to evaluate described elements of teaching situations. Although these two competency 

profiles differ significantly in terms of their total pPCK score and their year of study, we argue 

that the differences between them should not be perceived as hierarchical, because these 

differences have small effect sizes and are marginal compared to the gap between them and the 

Low Achievers or High Achievers. It is highly unlikely that a distinction such as that between 

the Analytic Evaluators and Applying Creatives would be possible with hierarchical, e.g., item-

response-theory-based methods. 
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Using the topic modeling approach, we were also able to identify patterns of typical 

language use in the questionnaire edits assigned to a particular competency profile. Overall, 

the student cognition topic was found to be the most significant and was predominantly present 

in high-performing edits of the questionnaire. Student cognition as a central aspect of PCK 

(Hume et al., 2019 ⁠; Shulman, 1987) was a conceptual focus of the questionnaire and our 

observation of language use underlines the importance of this concept. It is noteworthy that 

Analytic Evaluators focused significantly (𝑝 = .005) more on the student cognition topic 

compared to the Applying Creatives. 

The topic summarized as general concepts focusing knowledge was proportionally less 

focused by the Analytic Evaluators, Applying Creative, and High Achievers. This could be 

attributed to increased proficiency, since the higher performing questionnaire edits are 

generally longer, causing the proportion of the general concepts focusing knowledge topic to 

decrease, while the total amount of text devoted to this topic remained stable. On the other 

hand, it could be argued that certain terms that characterize this topic may suggest an antiquated 

transmissive understanding of teaching and learning (e.g., forget, basic knowledge, subject 

matter), which consequently diminishes as proficiency increases. However, the available 

evidence is not sufficient to thoroughly confirm such a conclusion. Given the influence of belief 

structures on performance in authentic teaching situations (e.g., Buehl & Beck, 2014 ⁠; König, 

2012⁠; Kulgemeyer & Riese, 2018) further research in this direction is encouraged. 

A similar general observation can be made about the symbolic descriptions topic. It seems 

that a certain level of knowledge regarding symbolic descriptions might be needed to succeed 

in higher-level activities (such as analyzing or applying pPCK). If the symbolic descriptions 

topic is interpreted as closely related to CK – and possibly also to mathematical knowledge in 

the field of physics – this observation is consistent with CK analyses that point to the necessity 

of a certain level of CK for the development of professional competence in general (e.g., 

Kulgemeyer & Riese, 2018 ⁠; Sorge et al., 2019). 

Considering the PTR cycle in the context of ePCK (Alonzo et al., 2019) our findings suggest 

the existence of similarly distinct pPCK knowledge domains that can be developed to some 

extent independently, similar to the distinction already suggested in the theoretical foundations 

section (“pPCKplan” vs. “pPCKreflect”). The most interesting areas are the pPCK domains aimed 

primarily at analytical, evaluative tasks, such as deriving students’ ideas from a given dialogue 

(“pPCKeval”?), and the pPCK domain aimed primarily at applicative, creative tasks, such as 

describing a suitable example experiment or real-world example to demonstrate a physical 

phenomenon (“pPCKapply”?). At first glance, the former might be more closely associated with 

ePCKreflect and the latter with ePCKplan. Given the exploratory nature of the analysis, these 

parallels do not arise primarily from information introduced into the analysis by the analysts, 

as would be the case in a confirmatory analysis. Therefore, we can frame our results as both a 

genuine, standalone description of pPCK as well as a link between the fine structures of ePCK 

and pPCK. An analogous concept for the PTR cycle in the context of ePCK might be a 

“reproduce apply evaluate” cycle in the context of pPCK. 
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5.6.2 Scope of Validity and Open Questions 

In general, it is important to note that our analysis is based on data that has been collected using 

a questionnaire that focuses on classical mechanics in terms of the subject content. This is due 

to the overarching focus of the respective study (Vogelsang et al., 2019). As the data was 

collected between 2016 and 2019, it may also be slightly outdated. Nevertheless, given the 

challenges of recruiting participants, it is unlikely that a comparably large dataset for PCK will 

be generated soon in the subject of physics. We argue that it remains valuable to use this rich 

dataset to gain further insights, especially given that the general framework of teacher 

education in Germany has not changed significantly in recent years. 

The analysis presented is an interplay between theoretically guided preparation and 

interpretation steps and computer-based automated analyses. This is the case due to our 

adoption of the CGT as a methodological framework (Nelson, 2020) and the data mixture of 

manually assigned scores and real text responses. First, the preparatory step of assigning tasks 

to requirement dimensions has implications for the interpretation of the resulting cluster 

structures. Indeed, the assignment of questionnaire tasks to the requirement dimensions is 

critical to the formation of the resulting clusters. One could argue that by using these 

dimensions, the resulting clusters differ in the dimensions in which they are allowed to differ 

and that subjective interpretations and beliefs may have overly biased the task assignment. We 

addressed these concerns by basing the requirement dimensions on previous results that 

followed a more inductive approach and by assigning the tasks with great care, secured by an 

analysis of inter-rater agreement and a consensus solution. Thus, we sought to find an 

appropriate balance between maintaining the exploratory intent of the analysis and supporting 

the interpretability of the results. In the following, further research is suggested to confirm and 

improve the presented results. 

A similar concern arises concerning the level of granularity in certain requirement 

dimension scores (see Table 5.2). Retrospective modification of the questionnaire was not 

feasible, resulting in few distinct levels in some of the dimensions due to the low number of 

tasks related to these dimensions in the questionnaire. However, in the subsequent analysis, the 

results never rely on a single requirement dimension, providing some relief from this concern. 

Nevertheless, we suggest that all requirement dimensions should be considered a priori in 

future (quantitative) research on the internal structure of the pPCK. The granularity and thus 

deviations from Gaussian-like distributions, as well as the varying density of the score data, 

hindered the application of more sophisticated clustering procedures (e.g., Campello et al., 

2013⁠; Spurk et al., 2020). Furthermore, the procedures used to determine an optimal number 

of clusters for the 𝐾-Means algorithm were inconclusive and only roughly favored smaller 

cluster numbers. The final cluster number of 4 was chosen primarily based on theoretical and 

practical considerations. Therefore, the competency profiles should only be considered as 

“latent” groups to a limited extent. A more appropriate perspective might be to consider them 

as more informed, multidimensional quantiles.  

The description of the typical language use of the competency profiles provides evidence 

for the concurrent validity of the competency profiles with the tendencies being in line with a 

priori expectations. Similarly, the average scores of the competency profile groups in the 

https://unipaderbornde-my.sharepoint.com/personal/jzeller_ad_uni-paderborn_de/Documents/3.%20Promotion/write-present/main/how#CTVL0010e2078f223264907b0bb0f98380bb221
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teaching situation requirement dimension provide a compelling argument in support of this 

assertion, as they align with the typical scores observed in the analyze and evaluate dimensions. 

However, in retrospect, it can be argued that the teaching situation dimension is superfluous 

and appears to be an impurity in the otherwise fully theoretically motivated requirement 

dimensions. Therefore, we re-evaluated the whole score cluster analysis procedure without this 

dimension. The results for the cognitive activities were almost indistinguishable from those 

presented in this article. 

In addition to the arguments for concurrent validity, the predictability of the competency 

profiles for unseen data can also be seen as an argument for the validity of their differentiation 

in the CGT framework. The power of the (rather simple) logistic regression model in predicting 

the competency profiles also shows that the overlap of the clusters in their two-dimensional 

PCA visualization (Figure 5.5) does not imply an indistinguishability of the competency 

profiles. This was also true for several other classification models evaluated for the same 

purpose as the logistic regression classifier, namely, a support vector machine, a random forest 

model, and a neural network. 

The language analysis yielded several interpretable topics, although it is limited by the 

digitization process. The initial assessment was carried out in a paper-pencil setting and the 

responses were later digitized, allowing for the introduction of spelling errors and other 

inaccuracies. Using an automated approach to correct such errors is not appropriate because 

(1) it would also correct legitimate errors that were made by the participants, and (2) it is 

difficult to apply an automated approach to a dataset that contains a significant amount of 

specialized vocabulary. Nevertheless, the interpretability and appropriateness of the identified 

topics suggest that the results retain their significance and meaningfulness. 

The impact of the competency profile assignments on the topic prevalences (as shown in 

Figure 5.7) is relatively small, with the differences often being not statistically significant in 

post hoc test analyses. Nevertheless, we argue that the results combined with the findings from 

the score cluster analysis provide valuable insights into the competency profiles and their 

integration into our interpretation is valid. Language data typically embodies a large amount of 

variety and variation (e.g., Jurafsky & Martin, 2024), so we do not expect the found effects to 

be large. Our pattern confirmation step does not (yet) make use of the language data and 

therefore cannot be considered as confirmation of the observations on typical language use. 

The usage of language data for predictive purposes in an automated scoring workflow is part 

of our future work (see below) and could then provide further pattern confirmation arguments. 

5.6.3 Perspectives and Outlook 

Overall, the identified and described competency profiles represent to a certain extent non-

hierarchical distinctions of typical pPCK profiles, indicating knowledge areas tailored for 

different operations within the context of pPCK. In particular, the identified competency 

profiles reflect a differentiation between more analytical/evaluative and more 

applicative/creative knowledge. The formation of the competency profiles also indicates that 

these knowledge areas can be developed to some extent independently of each other, although 

they do not form genuine “latent” groups. 
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These findings provide opportunities for further research aimed at describing the internal 

structure of PCK. First, we suggest that requirement dimensions, such as those relevant to the 

competency profiles, are included in future quantitative test instruments for pPCK. Based on 

our findings we argue that a strong emphasis on such a dimension is useful, especially if 

differentiating specific strengths and weaknesses of participants is relevant for the intended use 

of the test instrument.  

Second, we encourage research to assess the reproducibility of our findings using other 

pPCK-test instruments and datasets. To gain further insight into the role of language for PCK, 

it would be beneficial to examine this relationship with a similar methodology but larger data 

sets. For instance, more complex linguistic features such as whole expressions like “student 

cognition” could be analyzed rather than just single words, as was the case in our study. The 

results of this study primarily demonstrate the focus of the competency profiles on specific 

core ideas of PCK. However, there may be potential connections between the level of PCK 

demonstrated by a student and the degree of connectedness and sophistication in his/her 

language use. Similarly, given our data, it remains uncertain whether the identified pPCK 

domains we proposed above (“pPCKapply” and “pPCKeval“) are specifically associated with 

particular ePCK domains in the context of the PTR cycle. It is plausible that the 

applicative/creative pPCK components are more relevant to ePCKplan, while the more 

analytic/evaluative pPCK components are more relevant to ePCKreflect. On the contrary, all 

pPCK components may be necessary to enable effective performance in the form of ePCK, 

regardless of the concrete focused step in the PTR cycle (or similar distinctions).  

Moreover, by choosing (mainly) the cognitive requirement dimensions for the preparation 

and interpretation of the score cluster analysis, we forced the potential discoveries to be related 

to these dimensions. However, we cannot and do not rule out the existence of non-hierarchical 

structures w. r. t. other domains of the task development model, especially the pPCK subscales. 

Conversely, we even conducted a comparable score cluster analysis for the pPCK subscales45, 

which yielded similar results: an overall low-performing group, an overall high-performing 

group, and two intermediate groups. One of these intermediate groups showed strengths on the 

instructional strategies and experiments subscales and one showed strengths on the student 

cognition and theoretical PCK-related concepts subscales. However, as already mentioned in 

the Methods section, the results in the context of the pPCK subscales are less generalizable 

than the results in the context of the cognitive requirement dimension, because only four 

selected subscales are targeted in the test instrument, while other subscales are considered in 

other studies (e.g., Hume et al., 2019). 

Although the identified competency profiles cannot be considered as genuine latent groups, 

i.e., pre-service teachers, in general, may not be strictly limited to the profiles found, there are 

undoubtedly individuals who exhibit distinct strengths and weaknesses that can be interpreted 

through our findings. The competency profiles and requirement dimensions therefore represent 

a step towards empirically based formative assessment (Hattie & Timperley, 2007) that goes 

beyond a simple differentiation between “lower” and “higher” pPCK. Classifying individual 

 

45  Abbildung 5.10 
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student teachers or whole learner groups based on their competency profiles could guide 

decisions about the selection of specific learning materials and contexts. For example, a group 

that is more analytical or evaluative could be directed towards more creative tasks, such as 

producing teaching materials, while more practical or creative students could be encouraged to 

improve their ability to evaluate or reflect on teaching quality. Such applications of an 

assessment based on the competency profiles and requirement dimensions could be used to 

guide the selection of learning opportunities or exercises, as well as to evaluate the 

effectiveness of teacher education courses or practical training in schools. For instance, a shift 

in the allocation of a considerable number of participants from the Applying Creatives (pre) to 

the High Achievers (post) could indicate the intended effectiveness of a course. Contrarily, an 

unsystematic shift of participants between the Applying Creatives and the Analytic Evaluators 

profiles could indicate a lack of opportunity for the participants to connect their knowledge in 

the respective areas. 

To make such an assessment feasible and potentially even scalable, automation is required. 

One option is to convert questionnaires to a closed format, but this could raise uncertainty and 

concerns about the authenticity of the tasks (e.g., Kulgemeyer et al., 2023) and thus uncertainty 

about the validity of conclusions drawn from data generated using these newly generated test 

instruments. Instead, ML and natural language processing techniques could be used to 

automate the assessment while adhering to already established, (mostly) open-ended test 

instruments. An automation strategy following the latter approach using a language model is 

currently being explored for the questionnaire used in this study. During the exploration, we 

have already drawn two essential conclusions when working on such automation approaches 

with a data structure as the one described above: (1) an automated scoring step to assign 

previously manually generated scores to individual tasks seems to be crucial before using these 

automated scoring results for the comprehensive competency profile classification; (2) the use 

of a few multiple-choice tasks substantially increases the predictive power, which is helpful in 

settings where the available training data is too limited to achieve high accuracies for the open-

ended tasks. Using transformer language models (Devlin et al., 2019 ⁠; Vaswani et al., 2017) for 

the automated scoring step, we are currently achieving > 70 % accuracy in competency 

profiles assignment, approaching human-human-agreement values. 
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5.7. Kommentare und Ergänzungen 

Zunächst einmal soll hier erneut explizit darauf hingewiesen werden, dass in den explorativen 

Analysen zum zweiten Zielpaket komplexe Workflows durchlaufen werden. Das Ergebnis des 

zweiten Artikels sollte daher eher als eine Möglichkeit nicht-hierarchische Strukturen des FDW 

zu beschreiben aufgefasst werden, denn als die Möglichkeit. Auch, wenn gezielt die Dimension 

der kognitiven Anforderungen genutzt wurde, um vor dem Hintergrund der Ergebnisse aus dem 

ersten Zielpaket die Wahrscheinlichkeit zu erhöhen, dass die Strukturen auch 

projektunabhängig generalisierbar sind, wird hier weitere entsprechende Forschung zur 

Überprüfung der Generalisierbarkeit der gefundenen Strukturen als notwendig angesehen.  

Die ermittelten Cluster bzw. insbesondere die Analytic Evaluators und Applying Creatives 

stellen nicht-hierarchische Gruppen dar. Dies wurde im Artikel aus Platzgründen nur recht 

knapp prosaisch beschrieben und soll daher hier noch einmal ausführlicher nachgereicht 

werden. In Tabelle 5.6 werden daher paarweise T-Test zum Vergleich der Cluster berichtet. 

Zwischen den Applying Creatives und den Analytic Evaluators zeigen sich lediglich nicht bzw. 

nur knapp signifikante Unterschiede bezüglich des Studienfortschritts und des FDW-

Gesamtscores. Insbesondere beim Vergleich der Effektstärken kann hier in diesem Sinne 

definitiv von einer nicht-hierarchischen Unterscheidung ausgegangen werden. 

Tabelle 5.6 Paarweise T-Test zum Vergleich der Cluster aus Artikel 2. 

 Studienfortschritt (Years of Study) FDW-Gesamtscore 

 𝒕(𝐝𝐟), 𝒑 Cohens 𝒅 𝒕(𝐝𝐟), 𝒑 Cohens 𝒅 

Low Achievers vs. 

Applying Creatives 

𝑡(497) = 6.56 

𝑝 < 0.001 
0.61 

𝑡(497) = 22.25 

𝑝 < 0.001 
2.08 

Applying Creatives vs. 

Analytic Evaluators 

𝑡(320) = 1.67 

𝑝 = 0.10 
- 

𝑡(320) = 2.01 

𝑝 = 0.05 
0.23 

Analytic Evaluators vs. 

High Achievers 

𝑡(277) = 4.38 

𝑝 < 0.001 
0.53 

𝑡(277) = 15.78 

𝑝 < 0.001 
1.90 

5.7.1 Alternative Cluster-Modelle und Subskalen 

In Abschnitt 5.4.2 wurde beschrieben, dass Dichte-basierte Cluster-Modelle sowie GMMs auf 

den Datensatz in der bestehenden Form, d. h. aggregiert nach den Subskalen Reproduzieren, 

Anwenden, Analysieren, Evaluieren, Kreieren und Unterrichtssituation, nicht angewendet 

werden konnten. Abbildung 5.8 und Abbildung 5.9 visualisieren die dabei auftretende 

Problematik der „Kollabierung“ solcher elaborierteren Modelle aufgrund der geringen Anzahl 

an Abstufungen – in diesem Fall der Kategorie Evaluieren. Dabei wird ein GMM und ein 

Dichte-basiertes HDBSCAN46-Modell (McInnes et al., 2017) verwendet. 

 

46  Hierarchical Density-Based Spatial Clustering of Applications with Noise 
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Abbildung 5.8 PCA-Visualisierung von alternativen Score-Clustern bei der Nutzung eines HDBSCAN-Models 

(oben) und eines GMMs (unten). Im Falle des HDBSCAN-Models deutet sich zudem das beschriebene Problem 

der zu unsystematischen Dichteverteilungen bereits an, obwohl hier entsprechende Parameter zur „Glättung“ 

bereits eingestellt wurden. Im Falle des GMMs erkennt man eine lineare Struktur. Beides lässt sich mithilfe von 

Abbildung 5.9 noch einmal expliziter interpretieren. 
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Abbildung 5.9 Zentroid-Linienplots der alternativen Score Cluster bei der Nutzung eines HDBSCAN-Models 

(oben) und eines GMMs (unten). Man erkennt, wie in beiden Fällen die starke Diskretisierung der Skala 

Evaluieren dazu führt, dass die Modelle letztlich „kollabieren“ und quasi nur noch die Varianz in dieser einen 

Kategorie aufklären. Ein K-Means Modell hat sich als gegenüber dieser Problematik als robuster erwiesen und 

konnte trotzdem informative Cluster liefern. 
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Diese zusätzlichen Analysen deuten darauf hin, dass mehr Aufgaben bzw. feiner unterteilte 

Subskalen notwendig (wenn auch nicht unbedingt hinreichend) sind, um elaboriertere Cluster-

Modelle einsetzen zu können. Die Ergebnisse des Artikels 2 suggerieren zudem, dass es zu 

diesem Zweck sinnvoll sein kann, die kognitiven Anforderungen Anwenden und Kreieren bzw. 

Analysieren und Evaluieren zusammenzufassen. In Artikel 3 (Kapitel 6) wird ebendies 

angestrebt. Dabei fällt die Wahl der Cluster-Analyse auf eine GMM-basierte LPA (e.g., Spurk 

et al., 2020), da für diese bereits etablierte Workflows existieren. 

Wie bereits in Abschnitt 5.6.3 angedeutet wurde, können auch die Facetten auf analoge 

Weise wie die in Artikel 2 verwendeten sechs Anforderungskategorien zur Clusterbildung 

genutzt werden. Ähnlich wie beim K-Means Modell in Artikel 2 gibt es auch hier kaum 

nennenswerte heuristische Argumente für eine bestimmte Anzahl an Clustern (siehe Elbow- 

und Silhouette-Plots im digitalen Ergänzungsmaterial). Ein Zentroid-Linienplot eines K-

Means Modells mit 4 Clustern ist in Abbildung 5.10 dargestellt. Auch hier zeigt sich eine 

potenzielle nicht-hierarchische Struktur in Form zweier Gruppen, die sich insbesondere in 

ihren Kompetenzen hinsichtlich der Facetten Instruktionsstrategien und Experimente 

unterscheiden. Wie bereits angesprochen, stellen diese im Testinstrument abgedeckten 

Facetten aber nur eine Auswahl möglicher Facetten dar (Gramzow, 2015). Somit ist eine 

Übertragbarkeit auf andere Operationalisierungen bzw. Konzeptualisierungen des FDW 

weniger wahrscheinlich als bei den kognitiven Anforderungen. 

 

Abbildung 5.10 Zentroid-Linienplot für ein K-Means Cluster-Modell auf Basis der FDW-Facetten. 

 

https://unipaderbornde-my.sharepoint.com/personal/jzeller_ad_uni-paderborn_de/Documents/3.%20Promotion/write-present/main/how#CTVL0010e2078f223264907b0bb0f98380bb221
https://unipaderbornde-my.sharepoint.com/personal/jzeller_ad_uni-paderborn_de/Documents/3.%20Promotion/write-present/main/how#CTVL0010e2078f223264907b0bb0f98380bb221


5. Competency Profiles of PCK Using Unsupervised Learning (Artikel 2) 

110 

5.7.2 Hinweise zum Topic Modelling und Alternativen 

In Artikel 2 wurde ein STM (Roberts et al., 2019) zur Analyse von typischen Sprachgebrauchs-

mustern der Personencluster durchgeführt. Zentrales Ergebnis dieser Untersuchung sind die 

Effekte, die die Zuordnung zu einem Cluster auf die Fokussierung auf bestimmte Topics hat. 

Dabei wurde bereits angedeutet, dass die Darstellung im Artikel (Figure 5.7) deskriptiv 

abgeleitet wurde44. Die verwendete Software stellt allerdings auch eine Methode bereit, diese 

Effekte probabilistisch zu untersuchen47. Da im Rahmen des probabilistischen STMs ohnehin 

die Verteilung der Topic-Cluster Variablen ermittelt wird, kann man diese auch direkt aus dem 

Modell samplen und erhält somit auch ein Maß für die Unsicherheit der Werte (siehe digitales 

Begleitmaterial). Die Unterschiede der probabilistischen Erwartungswerte der Cluster-Topic-

Effekte zu den in Artikel 2 verwendeten, leichter interpretierbaren, frequentistischen Werten 

sind aber gering (siehe Abbildung 5.11). 

 

Abbildung 5.11 Darstellung des Effekts, den die Cluster-Zugehörigkeit auf den Anteil hat, den das entsprechende 

Dokument einem Topic widmet (probabilistische Betrachtung). 

Als Alternative zum STM wurden in Artikel 2 auch Deep-Learning-basierte Topic Models, 

der Namensgebung der verwendeten Software hier auch BERTopic-Modelle (Grootendorst, 

2022) genannt, erwähnt. In solchen Modellen wird typischerweise ein Cluster-Modell mithilfe 

von dimensionsreduzierten48 Embeddings der Dokumente gebildet. Anschließend werden die 

 

47  Siehe „estimateEffect“ in Roberts et al. (2023, S. 11–13). 

48  Zur Dimensionsreduktion wird hierbei standardmäßig (Grootendorst, 2022) das sog. „UMAP“-Modell 

(Uniform Manifold Approximation; McInnes et al., 2020) verwendet, dass gegenüber klassischen 

Vorgehensweisen wie einer PCA den Vorteil hat, dass sowohl lokale als auch globale Strukturen in der 

Projektion auf die niederdimensionale Darstellung erhalten bleiben. 
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charakteristischen Worte aus den Dokumenten, die zu einem Cluster gehören, auf Basis ihrer 

Frequenz extrahiert. Im Rahmen dieses Projekts wurden neben dem STM auch zwei 

BERTopic-Modelle erstellt. Diese bieten zwar nicht wie das STM die Möglichkeit die Topic-

Cluster-Zusammenhänge schon in der Modellierung zu berücksichtigen, sind aber interessant, 

da sie die Bag-of-Words Annahme überwinden und sich in unterschiedlichen Kontexten als 

sehr informativ und reichhaltig erwiesen haben (Grootendorst, 2022). 

Im ersten Experiment wurde dabei ein BERTopic-Modell der Gesamtantwortdokumente, 

analog zum Vorgehen in Artikel 2 erstellt. Das heißt, alle Antworten einer Bearbeitung des 

Testinstruments wurden gemeinsam als ein Dokument betrachtet. Aufgrund der 

durchschnittlichen Länge dieser Dokumente von ca. 311 (𝑆𝐷 = 125, max = 892) Worten, 

stoßen hier kleine BERT-Sprachmodelle bereits an ihre Grenzen. Stattdessen wurde das „text-

embedding-3-small“-Modell von OpenAI (o. D.-b) verwendet49, das Input-Längen von über 

8000 Token verarbeiten kann. Darüber hinaus wurde im Wesentlichen der Standard-Workflow 

des verwendeten Bertopic-Python-Pakets (Grootendorst, 2022) beibehalten. Tabelle 5.7 zeigt 

die sich ergebenden Wortlisten zur Charakterisierung möglicher Topics und die Anzahl an 

zugeordneten Dokumenten. Aus Sicht des Autors sind diese „potenziellen Topics“ sehr 

allgemein und repetitiv. Sie unterscheiden sich, wenn überhaupt, dann lediglich bezüglich 

fachlicher und nicht fachdidaktischer Konzepte. Sie sind für ein sinnstiftendes Pattern 

Refinement aus Sicht des Autors nicht brauchbar50. 

Noch eindeutiger ist die Lage, wenn man statt der Gesamtbearbeitungen die einzelnen 

Antworten als Dokumente nutzt. In diesem Kontext wird jede Antwort demjenigen Cluster 

zugeordnet, dem auch die Gesamtbearbeitung zugeordnet ist. Da die Einzelantworten deutlich 

kürzer sind als die Gesamtdokumente, kann hier zur Berechnung der Embeddings wieder ein 

BERT-Modell verwendet werden. Die sich ergebenden Topic-Begriffslisten deuten bereits 

darauf hin, dass in diesem Modell vielmehr die jeweilige Aufgabe, zu der eine Antwort gehört, 

eine Rolle für das Topic spielt, als das Personencluster, zu dem die Gesamtbearbeitung gehört. 

Zu Illustrationszwecken werden hier anstelle einer Tabelle die Topics als Embeddings-Cluster 

in Abbildung 5.12 dargestellt, wobei die jeweils wichtigsten Begriffe ebenfalls enthalten sind. 

Abbildung 5.13 und Abbildung 5.14 visualisieren den Zusammenhang zwischen Clustern und 

Topics bzw. Aufgabenzuordnungen und Topics noch einmal und bestätigt den Eindruck, der 

bereits durch die Topic-Begriffslisten entsteht: Die Topics sind primär durch die zur jeweiligen 

Antwort gehörigen Testaufgabe und nicht durch die Kompetenzprofil-Zugehörigkeit der 

Antwort-Autorin bzw. Antwort-Autoren charakterisiert. Dass beim BERTopic-Modell anders 

als beim STM die Clusterzuordnung eines Dokuments erst nach der eigentlichen Modellierung 

und lediglich deskriptiv genutzt wird, scheint für den hier verfolgten Anwendungszweck ein 

entscheidender Nachteil zu sein. 

 

49  Bei der Nutzung der OpenAI-API zur Generierung von Embeddings (Abschnitt 5.7.2 & 6.7.6) und zum 

Finetuning (Abschnitt 6.7.2 & 6.7.8) spielen Datenschutz und Privatsphäre eine Rolle. Es wurde hier (1) bereits 

bei der Digitalisierung der Testantworten (Abschnitt 3.2, 6.4.1 & 6.7.3) darauf geachtet, dass keine 

persönlichen oder sensiblen Daten im Datensatz enthalten sind und (2) die OpenAI-API derart konfiguriert, 

dass keine Daten gespeichert oder zum Training der öffentlichen Modelle verwendet wurden (siehe auch 

OpenAI, 2024a). 

50  Alle Leser:innen dieser Arbeit sind herzlich eingeladen, selbst kreativ zu werden.  
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Tabelle 5.7 Charakteristische Begriffe eines Deep-Learning-basierten Topic Models für die Gesamtbearbeitungen 

als Dokumente. 

Topic 

Nummer 

Anzahl an 

Dokumenten 
Charakteristische Begriffe 

1 117 
schülervorstellungen, physikalische, physikalischen, kraftbegriff, physik, kräfte, 

bewegungsrichtung, zentripetalkraft, reibungskraft, kreisbewegung 

2 109 
schülervorstellungen, kräfte, physikalischen, zentripetalkraft, vorstellungen, fragen, 

bewegung, messfehler, versuch, schneller 

3 91 
schülervorstellungen, kräfte, reibungskraft, gravitationskraft, physik, zentripetalkraft, 

beschleunigt, schneller, messfehler, prinzip 

4 90 
schülervorstellungen, physikalischen, kräfte, physik, zentripetalkraft, schülern, 

reibungskraft, frage, messfehler, schülers 

5 86 
kräfte, schülervorstellungen, physik, reibungskraft, zentripetalkraft, beschleunigen, 

schneller, messfehler, bewegung, messunsicherheiten 

6 80 
schülervorstellungen, beschleunigt, schülern, kräfte, physik, schneller, schülers, beispiel, 

schülerinnen, vorstellungen 

7 77 
kräfte, kreisbewegung, reibungskraft, physikalische, schülervorstellungen, 

zentripetalkraft, bewegungsrichtung, bewegung, zentrifugalkraft, beschleunigt 

8 71 
schülervorstellungen, schülern, schülers, fragen, versuch, vorstellungen, beispiel, 

reibungskraft, fehler, falsch 

9 69 
schülervorstellungen, physik, beschleunigt, schülern, kräfte, messfehler, schneller, 

schülers, reibungskraft, zentripetalkraft 

10 54 
schülervorstellungen, kräfte, reibungskraft, beschleunigt, physik, zentripetalkraft, 

schneller, frage, zentrifugalkraft, schülern 

 

Abbildung 5.12 Darstellung der Dokumente und Topics eines BERTopic Modells mit den Einzelantworten als 

Dokumente. Verwendet wird hier das das Sentence-BERT-Modell von Reimers und Gurevych (2019), das 

Abschnitt 6.7.6 noch ausführlicher vorgestellt wird. 
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Abbildung 5.13 Cluster-Topic-Zusammenhänge im Testheft-weisen BERTopic-Modell (oben) und im Aufgaben-

weisen BERTopic-Modell (unten). Die Werte sind hier etwas anders zu interpretieren als in Figure 5.7 und 

Abbildung 5.11. Das BERTopic-Modell ordnet jedes Dokument im Cluster Modell der Embeddings einem Topic 

fix zu. Das STM hingegen ist ein sog. „Soft-Assignment“ Modell, d. h. vereinfacht dargestellt, ein Dokument 

wird den Topics anteilig zugeordnet. Die Werte in den Abbildung 5.13 und Abbildung 5.14 sind daher einfach 

die Verteilungen aller Dokumente aus den Clustern bzw. Aufgaben auf die Topics. Man erkennt deutlich, dass die 

fokussierten Topics weitestgehend unspezifisch verteilt sind. Der hervorstechende Fokus des High Achievers 

Profil auf Topic 0 im Testheft-weisen Modell ist mit den zugehörigen Topic-Begriffe aus Tabelle 5.7 nicht 

einsichtig. 
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Abbildung 5.14 Aufgaben-Topic-Zusammenhänge im Aufgaben-weisen BERTopic-Modell. Die Darstellung ist 

analog zu interpretieren wie Abbildung 5.13. Man erkennt deutlich, wie stark die Aufgaben mit einzelnen Topics 

zusammenhängen. Beispielsweise spielt Topic 0, welches offenbar Experimente im Physikunterricht fokussiert 

(siehe Abbildung 5.12), eine wichtige Rolle in Antworten zu den Aufgaben A3, A10, A12, A22 und A23. Es 

überrascht daher nicht, dass die Aufgaben A3, A10, A12 und A22 auch tatsächlich in der Testkonzeption der 

fachdidaktischen Facette Experimente zugeordnet sind (Gramzow, 2015, S. 276). Andere Aufgaben müssen eher 

auf Basis ihres konkreten Inhalts betrachtet werden, um die Bezüge zu den entsprechenden Topics zu erklären. 

Auch, wenn solche Beobachtungen interessante Parallelen (oder auch Diskrepanzen) zwischen der Sprachnutzung 

von Proband:innen in ihren Antworten und den (intendierten) Inhalten der Testaufgaben ergeben können, sind sie 

für die Zielpakete dieses Projekts von untergeordneter Bedeutung und werden daher hier nicht ausführlicher 

dargestellt. 
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6. Machine-Learning-basiertes automatisiertes Assessment 

von Kompetenzprofilen des physikdidaktischen Wissens 

(Artikel 3) 

Einordnung in das Gesamtprojekt 

Der dritte Artikel dieses kumulativen Dissertationsprojekts sollte sich ursprünglich auf die 

Automatisierung des FDW-Assessments, d. h. primär auf das dritte Zielpaket, fokussieren. Die 

Cluster-Analysen sollten dabei eher als Ausgangspunkt dienen, an den der Assessment-

Workflow angeknüpft werden sollte. Im Review-Prozess des Artikels wurde von Seiten der 

Reviewenden und der Herausgebenden allerdings eine stärkere Hervorhebung des inhaltlichen 

Mehrwerts, bzw. des inhaltlichen Erkenntnisgewinns des Projekts gewünscht. Dazu wurde 

unter anderem vorgeschlagen, die Cluster-Analyse mit in den Artikel aufzunehmen. Anstatt 

dieselbe Analyse wie in Artikel 2 hier erneut einzureichen, wurde auf Basis der bestehenden 

Ergebnisse eine neuerliche Cluster-Analyse mit einem veränderten Workflow durchgeführt. 

Diese ist in Form der Forschungsfrage 2.4 in der Gesamtstrukturierung dieser Arbeit enthalten 

(siehe Abschnitt 3.1). Zusätzliche Informationen und Ergebnisse zu explorierten alternativen 

Modellen und Workflows des automatisierten Assessments sind daher aus Platzgründen nicht 

in Artikel 3 eingeschlossen und folgen in Abschnitt 6.7. 

Der Workflow der neuerlichen Cluster-Analyse zu FF2.4 / in Artikel 3 basiert einerseits auf 

der Beobachtung, dass die Anforderungskategorien Anwenden und Kreieren sowie 

Analysieren und Evaluieren anscheinend systematisch zusammenhängen (Artikel 2, bzw. 

Abschnitt 5.5.1, insbesondere Figure 5.6). Darüber hinaus zeigte sich im Rahmen weiterer 

explorativer Analysen, dass die starke Diskretisierung einzelner Anforderungskategorien 

(insbesondere Evaluieren) eine wesentliche Limitation des Datensatzes ist und die 

Anwendbarkeit elaborierterer Cluster-Modelle als dem K-Means-Modell entscheidend 

beeinträchtigt (Abschnitt 5.7.1). Für eine neuerliche Cluster-Analyse wurden daher die 

Anforderungskategorien Anwenden und Kreieren sowie Analysieren und Evaluieren 

zusammengefasst, sodass die einzelnen betrachteten Subskalen weniger stark diskretisiert sind. 

Im Sinne der CGT kann man die Cluster-Analyse in Artikel 3, d. h. die Analysen zu FF2.4 

(Abschnitt 6.4.2 & 6.5.1), also als neuerliche „refined“ Pattern Detection im Rahmen eines 

zyklischen Durchlaufens der einzelnen Phasen des CGT-Frameworks verstehen.  

Die Analysen zur automatisierten Bepunktung des Testinstruments (Abschnitt 6.4.3 & 

6.5.2) sowie der darauf aufbauenden automatisierten Zuordnung von Proband:innen zu den 

Kompetenzprofilen (Abschnitt 6.4.4 & 6.5.3) werden somit auch als Pattern-Confirmation-

Schritt interpretiert. Dabei sind die Ergebnisse dieser Pattern Confirmation aber praktisch 

wesentlich nutzbarer als die Pattern-Confirmation-Ergebnisse in Artikel 2 (FF2.3), da hier der 

Assessment Workflow nun vollständig automatisiert wird.   
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der Titel des veröffentlichten Artikels gegenüber dem Titel des Kapitels 6 in dieser Arbeit 
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Zusammenfassung 

Das fachdidaktische Wissen (FDW) stellt eine wichtige Komponente des Professionswissens 

von (angehenden) Lehrkräften dar. Es liegen bereits empirische Forschungsergebnisse zu 

Einflussfaktoren und zur Entwicklung des FDW sowie zur Bedeutung des FDW für 

Professionswissen und Qualität professioneller Handlungen vor. Für eine optimale Förderung 

der Entwicklung des FDW und weitere detailliertere Forschung sind darüber hinaus 

differenziertere empirisch begründete Beschreibungen der inneren Struktur des FDW 

notwendig. Bisher sind entsprechende Ansätze allerdings zumeist primär theoretisch-normativ 

begründet, auf hierarchische Betrachtungen beschränkt, oder nicht in der Lage, tatsächlich 

latente Strukturen zu erfassen. Im vorliegenden Beitrag wird daher ein Ansatz zur 

datenbasierten Beschreibung latenter Kompetenzprofile des FDW orientiert an der 

Computational Grounded Theory vorgestellt. Dabei wird zunächst ein Datensatz von 846 

Bearbeitungen des Physik-FDW-Testinstruments mit überwiegend offenem Antwortformat 

aus dem ProfiLe-P+ auf Basis der bisherigen Forschungsergebnisse zur inneren Struktur des 

FDW vorbereitet. Anschließend wird eine Latent Profile Analysis zur Untersuchung latenter 

Kompetenzprofile durchgeführt. Um die Ergebnisse im Sinne der Computational Grounded 

Theory zu bestätigen, wird im Anschluss ein Machine-Learning-basiertes System zur 

automatisierten Zuordnung von Testbearbeitungen (insbesondere ausgehend von den Freitext-

Antworten der Proband:innen) zu den Kompetenzprofilen erstellt. Es zeigen sich vier latente 

Kompetenzprofile mit nicht-hierarchischem Charakter, die insbesondere auf die Trennbarkeit 

analytisch-evaluativer und anwendungsorientiert-kreativer Kompetenzen hindeuten. Die 

automatisierte Zuordnung der Testbearbeitungen zu den Kompetenzprofilen mit einer 

https://doi.org/10.1007/s40573-025-00181-y
https://doi.org/10.1007/s40573-025-00181-y
https://doi.org/10.1007/s40573-025-00181-y
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Maschine-Mensch-Übereinstimmung von 𝜅 = 0,587 (Mensch-Mensch-Baseline: 𝜅 = 0,624) 

kann im Sinne der Computational Grounded Theory als Bestätigung der Validität dieser 

Strukturen aufgefasst werden. Das dabei entwickelte Machine-Learning-basierte System bietet 

zudem das Potenzial, für skalierbares automatisiertes inhaltlich reichhaltiges Assessment des 

FDW genutzt zu werden. 

Schlüsselwörter: Fachdidaktisches Wissen · Explorative Analyse · Physik · Machine Learning 

· Natural Language Processing · BERT-Modell 

Machine-Learning-based automated assessment of competency profiles in 

physics pPCK 

Abstract 

Personal Pedagogical Content Knowledge (pPCK) represents a crucial component of the 

professional knowledge of (prospective) teachers. Empirical research has assessed the 

development and influencing factors of pPCK and shown pPCK’s significance for professional 

knowledge and the quality of professional actions. For the optimal fostering of pPCK (e.g., in 

teacher education programs) and further research, descriptions of pPCK’ internal structure are 

necessary. However, existing approaches are typically primarily theoretically-normatively 

grounded, limited to hierarchical views, or unable to capture latent structures. We therefore 

present an approach for data-driven description of latent competency profiles of pPCK, guided 

by the Computational Grounded Theory. Initially, a dataset of 846 responses to the physics 

pPCK test instrument from the ProfiLe-P+ - project is pre-processed based on previous research 

findings. Subsequently, a Latent Profile Analysis is conducted to examine latent competency 

profiles. To confirm the results in the sense of the Computational Grounded Theory, a 

Machine-Learning-based system for the automated classification of test responses (particularly 

from participants’ free-text answers) into the competency profiles is developed. Four latent 

competency profiles, which exhibit a non-hierarchical nature and particularly indicate the 

separability of analytical-evaluative and application-oriented-creative competencies, are 

identified. The automated classification of test responses into the competency profiles, with a 

machine-human agreement of 𝜅 = 0.587 (human-human baseline: 𝜅 = 0.624), can be 

interpreted as a confirmation of the validity of these structures in the sense of Computational 

Grounded Theory. Moreover, the Machine-Learning-based assessment-system holds potential 

for a scalable, automated, content-rich assessment of pPCK. 

Keywords: Personal Pedagogical Content Knowledge · Exploratory Analysis · Physics · 

Machine Learning · Natural Language Processing · BERT-Model 
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6.1. Einleitung 

Erfolgreiche Lehrerbildung stellt im Kontext der Wirkkette schulischer Bildung (Terhart, 

2012) und des empirisch belegten Einflusses der Lehrperson auf schulischen Erfolg (Hattie, 

2009) eine wichtige Grundlage eines effektiven Bildungssystems dar. Das Lehramtsstudium 

zielt dabei wesentlich auf die Vermittlung von Professionswissen ab. Eine zentrale 

Komponente des Professionswissens von Lehrkräften ist neben dem Fachwissen (FW) und 

dem pädagogischen Wissen (PW) das fachdidaktische Wissen (FDW) (z. B. Baumert & 

Kunter, 2006 ⁠; Shulman, 1986). FW beinhaltet dabei das eigentliche „Sachwissen“ der 

jeweiligen Disziplin sowie fachspezifische Arbeitsweisen und Lösungswege. PW umfasst 

fachunabhängiges Wissen wie beispielsweise Wissen über Klassenführung und Diagnostik. 

Die Konzeptualisierungen und inhaltlichen Beschreibungen des FDW sind häufig weniger 

einheitlich (z. B. Gramzow et al., 2013), allgemein kann FDW aber grob als Wissen über die 

Vermittlung von bestimmtem Fachwissen and bestimmte Lernende verstanden werden (siehe 

Abschnitt 6.2.1, 6.2.2). Konkret für die Naturwissenschaften liegen mittlerweile sowohl im 

deutschsprachigen (z. B. Riese et al., 2015 ⁠; Schiering et al., 2019 ⁠; Tepner et al., 2012) als auch 

im internationalen Raum (z. B. Hume et al., 2019 ⁠; Park & Oliver, 2008) Forschungsergebnisse 

zu Operationalisierungen, Interdependenzen und Einflussfaktoren des FDW vor. Analysen 

zeigen darüber hinaus die Bedeutsamkeit des FDW sowohl (1) für das Professionswissen als 

Ganzes (z. B. Hume et al., 2019 ⁠; Sorge et al., 2019) als auch (2) für die Entwicklung zentraler, 

unterrichtsbezogener Fähigkeiten (Kulgemeyer et al., 2020 ⁠; Schröder et al., 2020) sowie (3) 

für die kognitive Aktivierung von Schüler:innen (Förtsch et al., 2016).  

Aufgrund der sowohl theoretisch angenommenen als auch empirisch belegten 

Bedeutsamkeit des FDW gibt es Bestrebungen, die innere Struktur des FDW inhaltlich zu 

beschreiben. Dazu sind neben theoretisch-normativen Modellierungen im Rahmen von häufig 

als „Facetten“ bezeichneten Subskalen (z. B. Park & Oliver, 2008 ⁠; Riese et al., 2017 ⁠; Sorge et 

al., 2019) auf empirischer Seite bislang vor allem Niveaumodelle auf Basis von Item-

Response-Modellen entwickelt worden (z. B. Schiering et al., 2023 ⁠; Schiering et al., 2019 ⁠; 

Zeller et al., 2024). Projektübergreifend zeigte sich dabei, dass FDW in niedrigen Niveaus auf 

reproduktive Aspekte beschränkt bleibt, sich in hohen Niveaus aber hin zu evaluierenden und 

kreativen Aspekten erweitert (Zeller et al., 2024). Um auch nicht-hierarchische Strukturen im 

Kontext dieser Beobachtungen beschreiben zu können, wurde in einer der hier vorgestellten 

Analyse vorangegangenen Untersuchung ein Cluster-Modell des FDW erstellt, welches auch 

distinkte nicht-hierarchische Strukturen aufdecken (Zeller & Riese, 2025) . Dabei konnten die 

resultierenden prototypischen Personengruppen aber aufgrund methodischer Limitationen 

nicht als tatsächlich „latente“ Strukturen verstanden werden (Abschnitt 6.2.2).  

Im vorliegenden Artikel wird nun ein erweiterter Ansatz vorgestellt, der aufbauend auf den 

bisherigen Erkenntnissen zur inneren Struktur des FDW und mithilfe einer erweiterten 

Methodik tatsächlich latente nicht-hierarchische Strukturen erfasst. Dazu wird orientiert an der 

Computational Grounded Theory (CGT) nach Nelson (2020) zunächst eine explorative 

Analyse unter intensiver Nutzung von Theorie- und Expertenwissen durchgeführt. Für diesen 

Zweck wird eine Latente Profilanalyse (LPA, z. B. Spurk et al., 2020) eines Datensatzes mit 

846 Bearbeitungen eines größtenteils offenen FDW-Testinstruments (Gramzow et al., 2013) 
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aus dem Projekt ProfiLe-P+ (Vogelsang et al., 2019) durchgeführt. Anschließend werden die 

gefundenen latenten Profile im Rahmen der sog. „Pattern Confirmation“ der CGT (siehe 

Abschnitt 6.2.3) in ihrer Gültigkeit bestätigt. Zu diesem Zweck wird der CGT folgend die 

Performanz eines automatisierten Systems auf der Basis von Machine-Learning-(ML)-

Modellen zur Zuordnung von Proband:innen zu den latenten Profilen evaluiert. 

Das in dieser Untersuchung verwendete Testinstrument besteht zu einem großen Anteil aus 

Aufgaben in offenem Antwortformat (Gramzow et al., 2013); auch ähnliche Testinstrumente 

weisen häufig mindestens anteilig ein offenes Aufgabenformat auf (z. B. Kröger, 2019). Die 

Auswertung zu Forschungs- und Feedbackzwecken erzeugt somit bislang meist einen hohen 

händischen Kodieraufwand. Das in diesem Beitrag im Rahmen der CGT-Pattern Confirmation 

verwendete automatisierte System basiert unter anderem auf einem ML-Modell zum 

automatisierten Scoren des Testinstruments. Als Nebenprodukt der Bestätigung der 

untersuchten latenten FDW-Strukturen entstand somit ein allgemeines automatisiertes 

Assessment-System für das FDW im Fach Physik. Abgesehen von einer zeitökonomischen 

Messung des FDW zu Forschungszwecken ermöglicht dieses System damit beispielsweise 

auch ein automatisiertes Feedback zum Stand des FDW zum Zweck der formativen Diagnostik. 

Der vorgestellte Workflow bietet also insgesamt das Potenzial, als Blaupause für den Transfer 

bisheriger Forschungsergebnisse und Messverfahren mit offenen Testitems in die Lehrpraxis 

zu dienen.  

6.2. Theoretischer Hintergrund 

6.2.1 Konzeptualisierung des Fachdidaktischen Wissens 

Es existieren unterschiedliche Ansätze, FDW zu konzeptualisieren. Gemein ist den Meisten die 

auf (Shulman, 1986 ⁠, 1987) zurückgehende grundlegende Auffassung von FDW als demjenigen 

Wissen, das zur Vermittlung von bestimmtem Fachwissen an bestimmte Lernende notwendig 

ist. Im englischsprachigen Raum hat sich parallel zu FDW dabei das Konstrukt des 

Pedagogical Content Knowledge (PCK) entwickelt, das eng verwandt, aber nicht 

deckungsgleich mit FDW ist (z. B. Vollmer & Klette, 2023). FDW lässt sich aber im Rahmen 

des international etablierten „Refined Consensus Model“ (RCM) des PCK (Carlson et al., 

2019⁠; Hume et al., 2019) interpretieren. Grob zusammengefasst konzeptualisiert das RCM das 

Konstrukt PCK in den drei Domänen collective PCK (cPCK), personal PCK (pPCK) und 

enacted PCK (ePCK). Dabei beschreibt cPCK die kollektive, explizierbare Wissensbasis der 

fachdidaktischen Community („Lehrbuchwissen“), pPCK das persönliche internalisierte (aber 

immer noch explizierbare) Wissen der Einzelpersonen („testbarer Wissensstand“) und ePCK 

das individuelle, ggf. implizite Wissen einer Lehrkraft, das in einer konkreten Situation der 

Planung, Durchführung und Reflexion von Unterricht zugrunde liegt („aus der Handlung 

rekonstruierbar“; Carlson et al., 2019, S. 83–90). Im Sinne des RCM werden 

Operationalisierungen und die durch die Testinstrumente abgebildeten FDW-Konstrukte dabei 

meist als pPCK interpretiert (z. B. Kulgemeyer et al., 2023⁠; Schiering et al., 2023). Auch dieser 

Beitrag schließt sich dieser Auffassung an. Im Folgenden wird somit der Begriff des FDW im 

Sinne eines pPCK genutzt. Neben dem RCM wird häufig auch das sog. Kontinuumsmodell 



6. ML-basiertes Assessment von Kompetenzprofilen des physikdid. Wissens (Artikel 3) 

120 

(„Model of Competence“, MoC) nach Blömeke et al. (2015) zur Konzeptualisierung des FDW 

verwendet. Das MoC beschreibt professionelle Kompetenz als ein Kontinuum zwischen 

kognitiven Dispositionen und gezeigter Performanz in konkreten Handlungssituationen. FDW 

lässt sich im Rahmen dieses Modells eher auf der Seite der kognitiven Dispositionen verorten 

(z. B. Kulgemeyer et al., 2023). 

Zur Operationalisierungen des FDW für die Naturwissenschaften und im Fach Physik (z. B. 

Gramzow et al., 2013 ⁠; Kröger, 2019 ⁠; Tepner et al., 2012) werden meist Strukturmodelle auf 

Basis der folgenden drei Dimensionen genutzt:  

1. Fachinhalte (z. B. Mechanik, Elektrizitätslehre etc.): Die grundsätzliche Abhängigkeit 

des FDW vom jeweiligen zu vermittelnden Fachinhalt wird in allen gängigen 

Konzeptualisierungen des FDW angenommen (Baumert & Kunter, 2006 ⁠; Riese et al., 

2017⁠; Shulman, 1986⁠, 1987⁠; Sorge et al., 2019). 

2. Facetten bzw. fachdidaktische Inhalte: Diese zentrale Dimension dient zur Beschreibung 

unterschiedlicher inhaltlicher Themenfelder, die FDW umfasst. Die Auswahl relevanter 

Facetten des FDW wird dabei zumeist auf Basis von theoretisch-normativen 

Modellierungen (z. B. Magnusson et al., 1999 ⁠; Park & Oliver, 2008), Analysen von 

Curricula der Lehrerbildung bzw. Literatur-Reviews (z. B. Gramzow et al., 2013 ⁠; Kröger, 

2019) und Expertenbefragungen zur Einschätzung der curricularen Validität 

entsprechender Testaufgaben (z. B. Gramzow et al., 2013) getroffen. Dabei werden in 

verschiedenen Studien häufig unterschiedliche Facetten fokussiert (Übersicht bei 

Kirschner, 2013). In den meisten Ansätzen, werden aber die zentralen Facetten 

Schülervorstellungen und Instruktionsstrategien, die bereits bei Shulman (1987) zu 

finden sind, in die Betrachtung eingeschlossen.  

3. Kognitive Aktivität bzw. Wissensarten: Üblicherweise wird in den Modellen zur 

Entwicklung von FDW-Testinstrumenten, der Empfehlung von Klieme et al. (2003) 

folgend, eine Dimension zur Anreicherung entsprechender Testaufgaben mit 

Anforderungen unterschiedlicher kognitiver Komplexität genutzt. In den im 

deutschsprachigen Raum etablierten FDW-Testinstrumenten werden dabei 

beispielsweise sog. kognitive Aktivitäten (z. B. Blömeke et al., 2008b ⁠; Riese et al., 2017) 

wie beispielsweise Reproduzieren, Anwenden und Analysieren oder auch sog. 

Wissensarten (Kröger, 2019 ⁠; Tepner et al., 2012) wie deklaratives oder prozedurales 

Wissen genutzt. 

Mithilfe der beschriebenen Konzeptualisierungen und Operationalisierungen wurde das 

FDW in unterschiedlichen Studien systematisch erhoben. Dabei zeigten sich unter anderem (a) 

Zuwächse des FDW in Studium und Vorbereitungsdienst, (b) Unterschiede im FDW zwischen 

verschiedenen Lehramtstypen (z. B. Großschedl et al., 2015⁠; Riese & Reinhold, 2012), (c) 

Zusammenhänge des FDW mit FW und PW (z. B. Sorge et al., 2019) sowie (d) 

Zusammenhänge des FDW mit gezeigter Performanz in konkreten Handlungssituationen (z. B. 

Förtsch et al., 2016 ⁠; Kulgemeyer et al., 2020 ⁠; Schröder et al., 2020). Das FDW hat sich somit 

insgesamt als bedeutsam erwiesen – sowohl für das Professionswissen und dessen Entwicklung 

als Ganzes, als auch für die Handlungsqualität von Lehrpersonen bzw. die Unterrichtsqualität 

im naturwissenschaftlichen Unterricht. 
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6.2.2 Empirische Analyse der inneren Struktur des Fachdidaktischen 

Wissens 

Neben den beschriebenen Analysen zur Bedeutung des FDW für Professionswissen und für die 

Handlungsqualität, für die eher die Gesamteinschätzung des FDW der Probanden (z. B. in 

Form von Summenscores) relevant war, wurden auch weiterführende Studien zur empirisch 

fundierten, kriterienorientierten Beschreibung der inneren Struktur des FDW durchgeführt. 

Solche inhaltlichen Beschreibungen bieten einen Ansatzpunkt für die Weiterentwicklung der 

Konzeptualisierung des FDWs als Teil des Professionswissens von Lehrkräften. Darüber 

hinaus können diese Erkenntnisse für ein differenziertes Assessment des FDW auf 

Subskalenebene, als Ausgangsbasis für inhaltsbezogenes Feedback sowie für die inhaltliche 

Charakterisierung individueller Stärken und Schwächen von Einzelpersonen genutzt werden.  

Nach dem Vorbild großer Schulleistungsstudien wie PISA oder TIMSS wurden bereits in 

unterschiedlichen Studien empirisch basierte inhaltliche Beschreibungen von Niveaustufen des 

FW (z. B. Bernholt, 2010 ⁠; Woitkowski & Riese, 2017) und des PW (z. B. König, 2009) auf 

Basis von Item-Response-Modellen erstellt. Daran angelehnt analysierten Schiering et al. 

(2019, 2023) sowie Zeller et al. (2022) Niveaustufen des FDW mithilfe des Scale Anchoring 

Verfahrens (z. B. Mullis et al., 2016). Die im Rahmen solcher unabhängigen Analysen 

gefundenen Parallelen konnten in einer projektübergreifenden Betrachtung bestätigt werden 

(Zeller et al., 2024): In niedrigen Niveaustufen beschränkt sich das FDW primär auf 

reproduktive Aspekte, während in höheren Niveaustufen kreative und evaluierende Elemente 

hinzukommen. Die Ergebnisse deuten zudem darauf hin, dass eine genaue Betrachtung der 

Dimensionen wie der kognitiven Aktivierung (s. o.) unter Einbeziehung zusätzlicher 

Anforderungsbereiche, wie den Stufen der Taxonomie nach Anderson und Krathwohl (2001), 

sinnvoll und für die genauere Untersuchung der Feinstruktur des FDW vielleicht sogar 

notwendig ist (Zeller & Riese, 2024). Die Methodik dieser auf Item-Response-Modellen 

basierenden Analysen ist allerdings auf hierarchische Betrachtungen beschränkt, sodass so 

beispielsweise keine Unterteilung von typischen Proband:innen mit Stärken im Kreieren oder 

Evaluieren von Unterrichtselementen möglich war. 

Um die Limitation der ausschließlich hierarchischen Beschreibungen im Rahmen von 

Niveaumodellen zu überwinden, führten Zeller und Riese (angenommen) eine nicht-

hierarchische Cluster-Analyse des FDW mithilfe des K-Means-Algorithmus (MacQueen, 

1967) unter Betrachtung der kognitiven Anforderungsbereiche Reproduzieren, Analysieren, 

Anwenden, Evaluieren und Kreieren (angelehnt an Anderson & Krathwohl, 2001) durch. Das 

Cluster-Modell auf Basis der Scores sowie eine darauf aufbauende computerbasierte 

Sprachanalyse der Antworten der Proband:innen zu den offenen Aufgaben des 

zugrundeliegenden Testinstruments deuteten auf die Trennbarkeit dieser fünf kognitiven 

Anforderungen als Teilkompetenzen des FDW hin und zeigten die Existenz von 

Personengruppen mit prototypischem Antwortverhalten und prototypischen Kompetenz-

ausprägungen im Rahmen dieser Teildimensionen. Insgesamt zeigte sich sowohl in der 

inhaltlichen Re-Analyse des Testinstruments zur Zuordnung der Aufgaben zu den kognitiven 

Anforderungsbereichen als auch in den Personen-Clustern, dass Kompetenzen im Evaluieren 

häufig mit Kompetenzen im Analysieren und Kompetenzen im Kreieren häufig mit 
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Kompetenzen im Anwenden einhergehen.  

Die Analyse von Zeller und Riese (angenommen) ist allerdings durch die teilweise niedrige 

Anzahl an Aufgaben in den oben genannten kognitiven Anforderungskategorien limitiert. 

Diese Einschränkung des Testinstruments führte dazu, dass Modelle zur Untersuchung echt 

latenter Strukturen, wie beispielsweise die im Rahmen von LPAs typischerweise genutzten 

Gaussian-Mixture-Models (GMM, z. B. Spurk et al., 2020), nicht konvergierten und eine K-

Means-Analyse genutzt werden musste. Die erhaltenen Cluster sind somit eher als 

„datengestützte Leistungsquantile“ in den kognitiven Anforderungen aufzufassen, denn als 

latente Gruppen. 

Die bestehenden Ansätze zur empirisch gestützten inhaltlichen Beschreibung der inneren 

Struktur des FDW sind also bisher limitiert. Im vorliegenden Beitrag werden daher zusätzliche 

vorbereitende Schritte bei der Datenverarbeitung verwendet, um eine erweiterte Analyse nicht-

hierarchischer Strukturen mithilfe einer LPA (z. B. Spurk et al., 2020) unter der Nutzung von 

GMMs (z. B. Murphy, 2022) des FDW-Datensatzes aus dem Projekt ProfiLe-P+ (Vogelsang 

et al., 2019) durchzuführen. Vergleichbare explorative Analysen werden zur Absicherung ihrer 

Aussagekraft häufig unter Nutzung der CGT nach (Nelson, 2020) strukturiert (z. B. Tschisgale 

et al., 2023), die daher im folgenden Abschnitt vorgestellt wird. 

6.2.3 Machine-Learning-basierte Analysen im Rahmen der Computational 

Grounded Theory 

Explorative ML-basierte Analysen bergen zwar das Potenzial, bislang unerkannte Strukturen 

in den jeweils untersuchten Konstrukten aufzudecken, es stellt aber eine Herausforderung dar, 

die Interpretierbarkeit der Ergebnisse zu gewährleisten (z. B. Sherin, 2013 ⁠; Zhai et al., 2020b). 

In ihrem systematischen Review von ML-Anwendungen in der naturwissenschaftsdidaktischen 

Forschung stellen Zhai et al. (2020b) dementsprechend fest, dass ein Großteil der 

Forschungsprojekte bislang primär auf die Entlastung von menschlichen Ratern bei basalen 

Aufgaben des Assessments ausgerichtet ist. Gleichzeitig arbeiten aber Zhai et al. (2020a) das 

Potenzial von explorativen Methoden, die im ML-Kontext auch als Unsupervised-Learning-

Methoden bezeichnet werden, zur Untersuchung bisher unerkannter Strukturen heraus. Auch 

Kubsch et al. (2022) unterstreichen diese Potenziale im Rahmen der Entwicklung ihres 

Frameworks zu Einordnung von ML-basierten Analysen. Um den methodischen Workflow des 

hier vorgestellten Projekts und die einzelnen Schritte der zur Strukturierung der Analyse 

herangezogenen CGT darzustellen, werden im Folgenden einige Begriffe aus dem ML-Kontext 

eingeführt bzw. in den ML-Kontext eingeordnet. 

Im ML-Bereich wird zwischen sog. dem Supervised Learning und Unsupervised Learning 

unterschieden (z. B. Géron, 2019). Im Supervised Learning geht es um die automatisierte 

Vorhersage bestimmter Ziel-Variablen (auch Targets oder Labels) mithilfe unabhängiger 

Variablen (sog. Features). Das kann beispielsweise ein Regressionsmodell zur Vorhersage von 

Studienerfolg (Target) auf Basis von Prädiktoren wie der Abiturnote und dem IQ (Features) 

sein. Die Erstellung eines solchen Modells auf Basis eines vorhandenen Datensatzes wird auch 

als Training bezeichnet. Dazu wird meist eine sog. Loss-Funktion (auch kurz Loss) optimiert, 

die von den Parametern des Modells abhängig ist. Im Falle eines (hier beispielhaft 
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zweidimensionalen) Regressionsmodells ist der Loss üblicherweise die Mean-Squared-Error-

Funktion (MSE), die von den Regressionsgewichten des Modells (𝑤1, 𝑤2 und 𝑏), sowie den 

Trainingsdaten (Targets 𝑦(𝑖) und Features 𝑥1
(𝑖)

, 𝑥2
(𝑖)

, 𝑖 = 1 … 𝑁) abhängt: 

MSE(𝑤1, 𝑤2, 𝑏) =  ∑(𝑦(𝑖) − 𝑤1𝑥1
(𝑖)

− 𝑤2𝑥2
(𝑖)

− 𝑏)
2

𝑁

𝑖=1

. 

Zur Anpassung des Modells an die Daten werden die Modellparameter mithilfe 

mathematischer Verfahren so optimiert, dass die Loss Funktion minimiert wird (z. B. Géron, 

2019). Für Klassifikationsmodelle, bei denen die Targets diskrete Kategorien anstelle von 

kontinuierlichen Größen sind, existieren andere Loss-Funktionen (z. B. die sog. Cross-

Entropy), die hier aus Platzgründen nicht ausführlicher dargestellt werden. Das grundsätzliche 

Vorgehen beim Training bleibt aber gleich.  

Bei großen Datensätzen und hochdimensionalen Feature-Variablen (beispielsweise 

Sprachdaten) können in einem Optimierungsschritt aufgrund von Limitationen der Rechen-

kapazität meist nicht alle verfügbaren Datenpunkte auf einmal verwendet werden. Man geht 

dann dazu über, den Gesamtdatensatz in kleinere Einheiten, sog. Batches aufzuteilen und in 

einem einzelnen Optimierungsschritt jeweils nur einen einzelnen Batch zu nutzen. So wird 

iterativ der Datensatz durchlaufen, wobei man, wenn einmal der gesamte Trainingsdatensatz 

durchlaufen worden ist, auch von einer Epoch an Training spricht. Zur Einschätzung der 

Vorhersagegenauigkeit (auch Performanz) des Modells wird meist nicht direkt der Loss, 

sondern andere, leichter interpretierbare Metriken, wie beispielsweise die Varianzaufklärung 

𝑅2 bei Regressionsmodellen oder die prozentuale Übereinstimmung (Accuracy) und Cohens 𝜅 

zwischen Labeln und Vorhersagen bei Klassifikationsmodellen genutzt. 

ML-Modelle mit einer hohen Anzahl an Parametern können Spezifika des Trainingsdaten-

satzes sehr genau abbilden51, man spricht auch von Overfitting (z. B. Géron, 2019). Eine hohe 

Performanz des Modells für die Trainingsdaten gewährleistet daher noch keine hohe 

Performanz für Daten, die während des Trainings nicht genutzt wurden. Für die tatsächliche 

Nutzung eines Modells ist aber gerade die Performanz für solche „ungesehenen“ Daten von 

Interesse (z. B. Breiman, 2001). Um anschließend an das Training das Modell zu evaluieren, 

wird daher ein separater Evaluierungs- oder Test-Datensatz verwendet, der vom Training 

ausgeschlossen ist. Dieses Vorgehen lässt sich auch zur sog. 𝑘-Fold-Cross-Validierung (CV) 

erweitern, bei der der verfügbare Gesamtdatensatz in 𝑘 gleich große Segmente unterteilt wird. 

Das Modell wird dann 𝑘-mal neu trainiert, wobei jeweils eines der Segmente zu 

Evaluierungszwecken zurückgehalten wird. Die Evaluierung erfolgt dann im Anschluss auf 

Basis der Modellvorhersagen für die jeweiligen Evaluierungsdaten aus dem wiederholten 

Training. 

Anders als beim Supervised Learning liegen beim Unsupervised Learning keine a priori 

bekannten Targets vor, sondern es geht um die Untersuchung von Mustern und Strukturen in 

Daten (z. B. Duda et al., 2001). Dazu können unterschiedliche Modelle verwendet werden, 

 

51  Man stelle sich beispielsweise ein Polynom hohen Grades vor, welches an vergleichsweise wenige 

Datenpunkte angepasst wird. 
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deren Trainingsalgorithmen sich mitunter unterscheiden. Als Beispiel dient hier das GMM, bei 

dem davon ausgegangen wird, dass folgender (hier vereinfacht dargestellter) Prozess die Daten 

generiert, d. h., dass die Daten der sich dadurch ergebenden Verteilung folgen (z. B. Murphy, 

2022): 

1. Für jeden Datenpunkt wird eines von 𝐾 Clustern gewählt. Die Wahrscheinlichkeit für 

jedes einzelne Cluster ist durch einen entsprechenden Parameter gegeben52. 

2. Der tatsächliche Datenpunkt ergibt sich aus einer von 𝐾 Normalverteilungen, deren 

jeweilige Mittelwert- und Kovarianz-Parameter sich von Cluster zu Cluster 

unterscheiden können. 

Mithilfe eines Algorithmus, der hier aus Platzgründen nicht näher erläutert werden kann (z. 

B. Murphy, 2022) können aus den Daten diejenigen Cluster-Zuordnungen und Parameter der 

𝐾 Normalverteilungen ermittelt werden, die die beobachteten Daten am wahrscheinlichsten 

beschreiben. Zur Evaluierung der Passung solcher Modelle zu den Daten existieren 

unterschiedliche Metriken, wobei häufig das sog. Bayesian Information Criterion (BIC) 

verwendet wird. Ein höherer BIC-Score bedeutet eine höhere Wahrscheinlichkeit, dass das 

Modell die Daten adäquat beschreibt. 

Eine Schwierigkeit bei der Anwendung von explorativen Unsupervised-Learning-Methoden 

stellt insbesondere die mitunter hohe Dimensionalität der verwendeten Daten dar (z. B. Géron, 

2019⁠; Sherin, 2013). Beispielsweise wird eine Cluster Analyse eines Score-Datensatzes zu 

einem Testinstrument mit über 20 Aufgaben nur wenig interpretierbare Cluster liefern, die stark 

von einzelnen Aufgaben abhängen. Sherin (2013) rät daher, zur Erhöhung der 

Interpretierbarkeit und somit Nutzens solcher Methoden, die Computer-basierten algorith-

mischen Auswertungsschritte bereits im Analyseprozess mit menschlichem Expertenwissen 

und menschlicher Interpretationskraft zu verknüpfen. Um eine solche Verknüpfung zu 

strukturieren, schlägt Nelson (2020) die CGT vor. Im Wesentlichen besteht ihr Ansatz aus drei 

Schritten: 

• Pattern Detection: Es werden explorative Methoden zur Untersuchung potenziell bisher 

unerkannter Strukturen in den Daten angewendet. 

• Pattern Refinement: Die identifizierten Strukturen werden durch inhaltliche 

Detailanalysen und / oder Einbeziehung von menschlichem Expertenwissen 

ausgeschärft. 

• Pattern Confirmation: Die Performanz von ML-Modellen zur Vorhersage der 

identifizierten Strukturen wird evaluiert. Dies dient zur Bestätigung der beobachteten 

Strukturen hinsichtlich ihrer Reliabilität und Validität. 

Die ursprünglich publizierte Beschreibung der CGT ist stark auf Text-Daten ausgerichtet, es 

wird aber betont, dass für die jeweilige Analyse und konkreten Daten insbesondere Pattern 

Detection und Pattern Refinement eher als Teile eines iterativen Prozesses betrachtet werden 

 

52  Die Zuordnung zu den Kategorien folgt also einer verallgemeinerten Bernoulli Verteilung (auch „Categorical 

Distribution“, Murphy, 2022). 
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können bzw. müssen (Nelson, 2020). Konkret in der Physikdidaktik nutzten Tschisgale et al. 

(2023) die CGT erfolgreich zur explorativen Analyse von Problemlösestrategien von 

Schülerinnen und Schülern auf Basis von Text-Daten. Sie stellen dabei die Potenziale der CGT 

und die Vorteile dar, die eine ML-basierte Analyse gegenüber einer manuellen explorativen 

Analyse haben kann. 

6.3. Ziele und Forschungsfragen 

Für die Weiterentwicklung der Konzeptualisierung des FDWs als Teil des Professionswissens 

von Lehrkräften ist eine detailliertere inhaltliche Beschreibung der inneren Struktur des FDW 

und eine differenziertere Analyse von Zusammenhangsstrukturen innerhalb des 

Professionswissens von Lehrkräften notwendig. Darüber hinaus können empirisch 

abgesicherte Beschreibungen solcher Strukturen als Basis für Feedback genutzt werden, das 

über eine reine quantitative Gesamteinschätzung hinaus geht. Die bestehenden Ansätze für eine 

solche Untersuchung der inneren Struktur des FDW sind aber bisher limitiert. Mithilfe von 

Niveauanalysen (z. B. Schiering et al., 2023 ⁠; Zeller et al., 2024) konnten zwar 

projektübergreifend Kompetenzniveaus ermittelt werden, diese sind allerdings methodisch auf 

hierarchische Beschreibungen beschränkt. Darüber hinaus liefern die Niveauanalysen primär 

entweder projektspezifische, meist wenig generalisierbare oder nur recht grobe 

Beschreibungen. Insbesondere können sie nicht zwischen Lernenden mit Stärken bzw. 

Schwächen bei bestimmten kognitiven Anforderungen wie dem Evaluieren und Kreieren 

unterscheiden. Der bislang genutzte nicht-hierarchische Ansatz auf Basis von K-Means-

Cluster-Analysen (Zeller & Riese, 2025)  kann eine solche Unterscheidung vornehmen. Hier 

wird die Aussagekraft der Ergebnisse allerdings dadurch eingeschränkt, dass das bislang 

genutzte bzw. aufgrund von Limitationen des Datensatzes einzig nutzbare Cluster-Modell 

keine tatsächlich latenten Strukturen beschreiben kann. Bei den im Rahmen dieser Analyse 

beschriebenen Clustern handelt es sich also eher um „datenbasierte Leistungsquantile“. 

Die vorgestellte Studie verfolgt dementsprechend das Ziel, nicht-hierarchische, tatsächlich 

latente Strukturen des FDW in Form von Personengruppen mit typischen Ausprägungen des 

FDW zu beschreiben. Dazu wird aufbauend auf einem Datensatz von 846 Bearbeitungen des 

größtenteils offenen FDW-Testinstruments aus dem ProfiLe-P+ - Projekt (Vogelsang et al., 

2019; siehe auch Abschnitt 6.4.1) eine LPA auf Basis von GMMs durchgeführt. Zunächst 

werden die Daten dafür auf Basis von bisherigen Modellierungen und Ergebnissen sowie aus 

methodischen Gründen (siehe Abschnitt 6.4.2) zu Summenscores in den kognitiven 

Anforderungskategorien Reproduzieren, Anwenden-Kreieren und Analysieren-Evaluieren 

akkumuliert. Dies kann im Rahmen der CGT als Element eines „vorgezogenen“ Pattern 

Refinements verstanden werden. Verortet man die hier vorgestellte Analyse im Gesamtprojekt, 

so zeigt sich ein zyklisch-iteratives Vorgehen in Fortführung der Vorläuferanalyse (Zeller & 

Riese, 2025), das ebenfalls im Rahmen der CGT begründet werden kann. Die (bisher 

hypothetischen) Cluster dieser LPA werden latente Kompetenzprofile genannt. Die erste 

Forschungsfrage widmet sich im Sinne der CGT der „Detection“ dieser Cluster: 

FF1 (∼ Pattern Detection): Welche latenten FDW-Kompetenzprofile lassen 

sich durch eine GMM-basierte LPA in den FDW-Score-Daten des Projekts 
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X bezüglich der kognitiven Anforderungskategorien Reproduzieren, 

Anwenden-Kreieren und Analysieren-Evaluieren finden? 

Die Kompetenzprofile werden dabei durch ihre durchschnittlichen Summenscores bezüglich 

der betrachteten Anforderungskategorien interpretiert.  

Um die Kompetenzprofile im Sinne der CGT zu bestätigen, soll die Performanz von ML-

Modellen bei ihrer automatisierten Erfassung evaluiert werden. Einerseits könnten zu diesem 

Zweck wie bei Tschisgale et al. (2023) diejenigen Daten verwendet werden, welche auch bei 

der Erstellung des Cluster-Modells genutzt wurden53. Im Falle des vorliegenden Beitrags wären 

das die Scores. Ein stärkeres Argument für die Robustheit der Zuordnung von Proband:innen 

zu den Kompetenzprofilen als Pattern Confirmation wäre aber eine automatisierte Zuordnung 

direkt auf Basis der authentischen Test-Bearbeitungen der Proband:innen. Diese bestehen zu 

größtenteils aus den Text-Antworten auf die offenen Aufgaben des Testinstruments (siehe 

Abschnitt 6.4.1). Explorative Analysen zur Zuordnung von Proband:innen zu den 

Kompetenzprofilen haben gezeigt, dass ein dafür nutzbares ML-System eine deutlich höhere 

Performanz erreicht, wenn zunächst die automatisierte Bepunktung der offenen Aufgaben des 

Testinstruments und erst darauf aufbauend die Zuordnung zu den Kompetenzprofilen in den 

Blick genommen wird. Eine automatisierte Bepunktung bzw. Klassifikation von 

Textelementen wurde in der Naturwissenschaftsdidaktik bereits mehrfach durch sog. 

Finetuning von BERT-Sprachmodellen erfolgreich vorgenommen (Camus & Filighera, 2020 ⁠; 

Wulff et al., 2021 ⁠; Zhai et al., 2020b). Beim Finetuning wird ein vortrainiertes Sprachmodell 

für eine konkrete Aufgabe nach-trainiert (Details in Abschnitt 6.4.3). Die Pattern Confirmation 

wird also mithilfe der folgenden Forschungsfragen strukturiert: 

FF2a (∼ Pattern Confirmation 1): Welche Maschine-Mensch-Übereinstimmung 

erreicht ein BERT-Sprachmodell (Devlin et al., 2019) bei der Vorhersage von 

FDW-Scores unter Nutzung eines typischen Finetuning-Workflows auf Basis von 

846 Bearbeitungen des FDW-Testinstruments? 

FF2b (∼ Pattern Confirmation 2): Wie hoch ist die Maschine-Mensch-

Übereinstimmung einer automatisierten Zuordnung von Bearbeitungen des FDW-

Testinstruments zu einem prototypischen FDW-Kompetenzprofil auf Basis der 

maschinellen Score-Vorhersagen (FF2a)? 

Details zur Auswahl des Sprachmodells und dessen Training bzw. Finetuning (FF2a) werden 

in Abschnitt 6.4.3 erläutert. Durch die Trennung des automatisierten Scorings von der Cluster-

Vorhersage in zwei separate Modelle können detailliertere Informationen aus dem Datensatz 

in Form der Scores in die Entwicklung des Systems aufgenommen werden. Neben der Nutzung 

dieser Modelle im Rahmen der Pattern Confirmation können sie zudem als Basis eines 

skalierbaren automatisierten FDW-Assessments dienen. 

 

 

53  Bei Tschisgale et al. (2023) wurden Cluster in numerischen Repräsentationen (sog. Embeddings) von Sätzen 

untersucht. Für das Pattern Refinement wurden diese Cluster ausgehend von den Embeddings zugeordnet. 
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6.4. Methode 

6.4.1 Testinstrument und Datensatz 

Die im vorliegenden Beitrag verwendeten Daten entstammen dem ProfiLe-P+ - Projekt 

(Vogelsang et al., 2019) und wurden im Zeitraum von 2016 bis 2019 an 12 deutschsprachigen 

Universitäten erhoben. Ziel des Projekts war unter anderem die Erfassung des FDWs 

angehender Physiklehrkräfte. Dazu wurde das im Vorgängerprojekt ProfiLe-P (Riese et al., 

2015) von Gramzow (2015) entwickelte FDW-Testinstrument bestehend aus 23 offenen und 4 

Multiple-Choice (MC) Aufgaben eingesetzt. Die Entwicklung des Testinstruments fand durch 

ein intensives Literaturreview gängiger Modellierungen und Operationalisierungen des FDW 

statt. Zur Validierung der ausgewählten Facetten und auch der Testaufgaben im Allgemeinen 

wurden sowohl qualitative Untersuchungen wie Think-Aloud-Studien und Expertenbefra-

gungen als auch quantitative Untersuchungen insbesondere auf Basis von Item-Response-

Modellen durchgeführt (Gramzow, 2015). Das Testinstrument erfasst physikdidaktisches 

Wissen in den vier Facetten Schülervorstellungen, Instruktionsstrategien, Fachdidaktische 

Konzepte (z. B. didaktische Rekonstruktion) sowie Experimente und Vermittlung eines 

angemessenen Wissenschaftsverständnisses (kurz Experimente) und den kognitiven 

Anforderungen Reproduzieren, Anwenden und Analysieren (Abbildung 6.1). Da im Projekt 

ProfiLe-P(+) Zusammenhänge in einem exemplarisch fokussierten fachphysikalischen 

Inhaltsbereich differenziert auf Subskalenebene (vgl. Riese et al., 2017) betrachtet wurden, 

konzentriert sich der verwendete FDW-Tests auf den physikalischen Fachinhalt Mechanik. 

Eine Beispielaufgabe des Testinstruments inklusive einer beispielhaften Antwort aus dem 

Datensatz zeigt Abbildung 6.2. Der finale Datensatz besteht aus 846 Bearbeitungen dieses 

Testinstruments durch Physik-Lehramtsstudierende der Sekundarstufe im Bachelor- und 

Masterstudiengang in Quer- und Längsschnitt, wobei diese Bearbeitungen als unabhängige 

virtuelle Proband:innen (Davier et al., 2008) betrachtet werden. Demographische Eckdaten 

sind in Tabelle 6.1 dargestellt. 

 

Abbildung 6.1 Itementwicklungsmodell des FDW-Testinstruments des ProfiLe-P(+) - Projekts nach (Gramzow 

et al., 2013). 
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Abbildung 6.2 Beispielaufgabe des FDW-Testinstruments mit Vignette und beispielhafte Antwort aus dem 

Datensatz (nach Gramzow et al., 2013). Diese Aufgabe ist der Facette Schülervorstellungen und der kognitiven 

Anforderung Analysieren zugeordnet. 

Tabelle 6.1 Demographische Eckdaten des Datensatz bezogen auf die Einzelbearbeitungen (virtuelle Probanden). 

Gesamtanzahl 

Bearbeitungen 

Fachsemester  

Physik 

Anzahl 

Bachelor 

Anzahl 

Master 

Anteil 

weiblich 

846 4,1 (3,5) 672 174 34 % 

 

Die Text-Antworten wurden mithilfe eines Kodiermanuals (Gramzow, 2015) bepunktet und 

nachträglich für Computer-basierte Analysen und das Training des automatisierten 

Auswertungssystems digitalisiert. Die Verwendung von offenen Aufgaben erhöht zwar den 

Aufwand bei der Auswertung der Testbearbeitungen, ermöglicht aber eine breitere Abbildung 

kognitiver Anforderungen (vgl. Krüger & Krell, 2020). Die nachträgliche Schließung 

entsprechender Testinstrumente eröffnet zudem Fragen nach der Authentizität der 

entstehenden geschlossenen Aufgaben (Kulgemeyer et al., 2023). 
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Die Berechnung der Metriken und Visualisierungen der Interrater-Übereinstimmungen als 

„Mensch-Mensch“ Baseline zur Evaluierung der ML-Modelle (FF2a, FF2b) basiert auf einer 

Doppelkodierung von 267 Bearbeitungen des Testinstruments. Die Interrater-Überein-

stimmung inklusive der MC-Aufgaben beträgt für das Testinstrument 𝜅 = 0,761 und es weist 

eine interne Konsistenz von Cronbach’s 𝛼 = 0,80 bezogen auf die durch die trainierten 

Kodierer:innen erstellten Scores auf. Es hat somit vergleichbare quantitative Eigenschaften wie 

vergleichbare FDW-Tests aus anderen Studien (z. B. Krauss et al., 2008 ⁠; Kröger, 2019). 

6.4.2 FF1: Latente Profilanalyse des FDW 

Zur Identifikation latenter Kompetenzprofile des FDW wird eine LPA (z. B. Spurk et al., 

2020) durchgeführt. Im Rahmen von LPAs werden typischerweise mehrere Modelle einer 

Modellklasse mit unterschiedlichen Spezifikationen (z. B. Cluster-Anzahl) anhand des BIC 

verglichen und eines der best-passenden Modelle theoretisch basiert ausgewählt. Die genaue 

Modellklasse ist dabei nicht festgelegt, gemein ist aber allen für LPAs genutzten 

Modellklassen, dass sie die Cluster-Zugehörigkeit als latente Variable modellieren (müssen). 

Für die hier vorliegende Datenstruktur aus FDW-Scores, die bezüglich dreier Subskalen 

aggregiert sind (s. u.), bietet sich die häufig in LPAs genutzte Modellklasse der GMMs an. 

Aus den bislang durchgeführten Studien (Schiering et al., 2023 ⁠; Zeller & Riese, 2025 ⁠; Zeller 

et al., 2024) ist bekannt, dass kognitive Anforderungskategorien dazu geeignet sind, empirisch 

basiert projektübergreifend anwendbare inhaltliche Beschreibungen des FDW zu generieren. 

Im vorangegangenen Ansatz zur Beschreibung nicht-hierarchischer Strukturen wurden die 

Aufgaben des Testinstruments re-analysiert und orientiert an der Taxonomie kognitiver 

Anforderungen nach Anderson und Krathwohl (2001) den fünf kognitiven 

Anforderungskategorien Reproduzieren, Anwenden, Analysieren, Evaluieren und Kreieren 

zugeordnet (Zeller & Riese, 2025) . Wegen des aus Gründen der Testökonomie begrenzten 

Umfang des Testinstruments konnten den Kategorien teilweise nur wenige Aufgaben 

zugeordnet werden, sodass latente GMMs, die kontinuierliche Daten voraussetzen, nicht 

sinnvoll verwendet werden konnten. Im Rahmen der hier vorgestellten Analyse wurde daher 

die Beobachtung genutzt, dass Kompetenzen im Anwenden häufig mit Kompetenzen im 

Kreieren zusammenhängen und das Kompetenzen im Analysieren häufig mit Kompetenzen im 

Evaluieren zusammenhängen (Zeller & Riese, 2025 ⁠; Zeller et al., 2024). In der hier 

vorgestellten Analyse wurden die fünf Anforderungskategorien daher zu den drei Kategorien 

Reproduzieren, Anwenden-Kreieren und Analysieren-Evaluieren zusammengefasst. Zusätzlich 

zu den bereits genannten Argumenten für dieses Vorgehen ermöglicht es die spätere 

unmittelbare Interpretation der Cluster. Die Re-Analyse zur Zuordnung der Aufgaben zu den 

Anforderungskategorien wurde von drei Expert:innen durchgeführt. Die 

Übereinstimmungswerte dieser drei Personen bei der Zuordnung der Testaufgaben zu diesen 

zusammengefassten Kategorien sind in Tabelle 6.2 dargestellt. Auf Basis dieser Zuordnungen 

als Diskussionsgrundlage wurde von den drei Expert:inenn gemeinsam eine Konsens-

Zuordnung erstellt. Die Anzahl an Aufgaben und erreichbaren Punkten pro 

Anforderungskategorie bezogen auf diese Konsens-Zuordnung sind in Tabelle 6.3 dargestellt. 

https://unipaderbornde-my.sharepoint.com/personal/jzeller_ad_uni-paderborn_de/Documents/3.%20Promotion/write-present/main/how#CTVL0010e2078f223264907b0bb0f98380bb221
https://unipaderbornde-my.sharepoint.com/personal/jzeller_ad_uni-paderborn_de/Documents/3.%20Promotion/write-present/main/how#CTVL0010e2078f223264907b0bb0f98380bb221
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Tabelle 6.2 Übereinstimmungsmaße (Cohens 𝜅) der Zuordnung der Testaufgaben zu den kognitiven 

Anforderungskategorien der drei Expert:innen 

Übereinstimmung Reproduzieren Anwenden-Kreieren Analysieren-Evaluieren 

𝜅12 0,84 0,74 0,92 

𝜅13 0,83 0,67 0,55 

𝜅23 0,83 0,76 0,62 

Tabelle 6.3 Aufgaben- und Punkteanzahl in der Konsens-Zuordnung der Testaufgaben zu den kognitiven 

Anforderungskategorien.  

Die Zuordnungen sind nicht vollständig disjunkt. 

 Reproduzieren Anwenden-Kreieren Analysieren-Evaluieren 

Aufgabenanzahl 12 7 11 

Erreichbare Punktzahl 23 12 14 

Um den Datensatz nicht durch unzureichende Bearbeitungen zu verzerren, wurden 

Personen, die weniger als 50 % der Aufgaben bearbeitet haben, von der LPA zu FF1 

ausgeschlossen. Es blieben dadurch 785 Bearbeitungen für die LPA. Die Score-Daten wurden 

zunächst im Rahmen dieser Anforderungskategorien akkumuliert. Die akkumulierten Scores 

in diesen Subskalen wurden anschließend auf das Intervall [0, 1] normiert, um die Konvergenz 

der GMMs zu erleichtern. Im Rahmen der LPA wurden insgesamt 40 GMMs mit einer Cluster-

Anzahl von 1 bis 10 an die Daten angepasst. Pro Cluster-Anzahl wurden dabei die folgenden 

vier Konfigurationen der Kovarianzmatrizen der jeweiligen Normalverteilungen der GMMs 

modelliert54: 

• „Spherical“: Es gibt keine Kovarianzen zwischen den Skalen (d. h. 

Anforderungskategorien) und die Varianz ist in allen Skalen ist gleich. 

• „Diagonal“: Es gibt keine Kovarianzen zwischen den Skalen, die Varianz in den 

Skalen kann sich aber unterscheiden. 

• „Tied“: Es gibt Kovarianzen zwischen den Skalen, diese Kovarianzen sind aber für alle 

Cluster gleich. 

• „Full“: Es gibt Kovarianzen zwischen den Skalen, die sich von Cluster zu Cluster 

unterscheiden können. 

Für diese Modellierungen wurden die sich ergebenden BIC-Scores für die Auswahl eines 

 

54  Für diese Analyse wurde das Python Paket scikit-learn (Pedregosa et al., 2011; siehe auch https://scikit-

learn.org/stable/modules/mixture.html) verwendet.  

https://scikit-learn.org/stable/modules/mixture.html
https://scikit-learn.org/stable/modules/mixture.html
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geeigneten Modells verglichen. Aus einer theoretischen Perspektive heraus, wäre es zu 

erwarten, dass durchaus Kovarianzen zwischen den Scores in den Anforderungskategorien 

bestehen, wobei es keinen Grund gäbe, anzunehmen, dass diese Kovarianzen sich zwischen 

den Clustern unterscheiden. Dieses Setting würde einer Tied-Kovarianzmodellierung 

entsprechen. Gleichzeitig sind für das Ziel der Beschreibung nicht-hierarchischer Strukturen 

Clustermodelle ab einer Cluster-Anzahl von vier Clustern besonders interessant, da 

Modellierungen mit weniger Clustern i. d. R. lediglich hierarchische Abstufungen ergeben. 

6.4.3 FF2a: Automatisiertes Scoren des FDW-Testinstruments 

Wie in Abschnitt 6.2.3 beschrieben muss zur Analyse der Performanz eines ML-Modells 

zunächst ein geeigneter Split zwischen Trainings- und Evaluierungsdaten erstellt werden. Da 

hier insgesamt darauf abgezielt wird, Aussagen über die Kompetenzprofile, d. h. insbesondere 

Aussagen auf Personen-Ebene und nicht nur auf Aufgaben-Ebene zu treffen, muss auch dieser 

Split personenweise erfolgen. Da in diesem Projekt ein für ML-Zwecke vergleichsweise 

kleiner Datensatz vorliegt, werden in den Analysen zu FF2a und FF2b wieder alle 846 

Bearbeitungen genutzt, wobei die in der LPA ausgeschlossenen Bearbeitungen nachträglich 

dem jeweils passendsten Cluster zugeordnet wurden55. Darüber hinaus wurde eine 10-Fold-CV 

(siehe Abschnitt 6.2.3) durchgeführt, die eine Balance zwischen erhöhtem Zeitaufwand für das 

wiederholte Training des Modells und erhöhter Verlässlichkeit der erhaltenen 

Performanzschätzungen bietet.  

Als Modell für das automatisierte Scoring bietet sich ein Sprachmodell (auch „Language 

Model“, bzw. LM) an. LMs sind Neuronale Netze (siehe z. B. Géron, 2019) mit einer großen 

Anzahl an trainierbaren Parametern (einige 10 Mio. bis mehrere 100 Mrd.) zur Verarbeitung 

von Sprache. Es hat sich gezeigt, dass LMs klassische ML-Modelle in der Performanz 

bezüglich einer Vielzahl an Sprachverarbeitungsaufgaben inklusive des automatisierten 

Scorens von offenen Testaufgaben systematisch übertreffen (z. B. Camus & Filighera, 2020). 

LMs werden mithilfe allgemeiner Sprachverarbeitungsaufgaben, wie beispielsweise dem 

Vorhersagen des nächsten Wortes bei gegebenen Satzanfängen o. Ä., unter der Nutzung großer 

Datenmengen „vor“-trainiert (z. B. Hoffmann et al., 2024). Dadurch „erlernen“ LMs eine 

allgemeine Repräsentation von Sprache, durch die sie sich flexibel an konkrete 

Anwendungsfälle anpassen können. Das anschließende Training des LMs für einen solchen 

Anwendungsfall wird auch als Finetuning bezeichnet. Im Falle des automatisierten Scorings 

besteht das Finetuning aus einem klassischen Supervised-Learning. Das Python-Paket 

„huggingface transformers“ (Wolf et al., 2020) bietet einen großen Umfang an Tools für 

solches Finetuning und implementiert insbesondere typische Workflows. 

Für die vorliegende Studie wurde das sog. BERT-Modell (Devlin et al., 2019) gewählt. Das 

Modell steht in einer deutschen Variante open-source für huggingface transformers zur 

Verfügung und wird dort bereitgestellt durch das „Münchener DigitalisierungsZentrum“ 

 

55 Die genutzte Software bietet bei GMMs die Möglichkeit, nachträgliche Clusterzuordnungen für Daten, die nicht 

während des Cluster-Bildungsprozesses genutzt wurden, vorzunehmen. 
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(MDZ) der Bayerischen Staatsbibliothek56. Neben der leichten Zugänglichkeit dieses BERT-

Modells und der hohen Vertrauenswürdigkeit des MDZ als Bezugsquelle gibt es weitere 

Gründe, die für die Nutzung dieses Modells sprechen. Zunächst wurde das BERT-Modell im 

deutschsprachigen Raum bereits mehrfach erfolgreich im Rahmen 

naturwissenschaftsdidaktischer Sprachanalyse für explorative Analysen und auch 

Klassifkationsprobleme genutzt (z. B. Tschisgale et al., 2023 ⁠; Wulff et al., 2023). Kürzlich 

konnten zudem Latif et al. (2024) zeigen, dass das deutsche BERT-Modell geeignet ist, um 

offene Antworten auf naturwissenschaftliche Fragen der PISA-Studien automatisiert zu 

scoren57. Die Nutzung des BERT-Modells erscheint also auch für den hier vorliegenden 

Datensatz als vielversprechend.  

 Das BERT-Modell wurde mit dem Aufgabentext als Input und dem Score als Output nach 

dem Vorbild von Latif et al. (2024) auf Basis aller Aufgaben gemeinsam trainiert. Es gibt also 

nur ein gemeinsames finegetunetes BERT-Modell für alle Aufgaben58. Insgesamt liegen für 

das Training 15600 Bearbeitungen einzelner Aufgaben vor. Die Text-Antworten zu den 

Aufgaben umfassen im Mittel ca. 17 Worte (Min = 1, Max = 99). In Abbildung 6.3 ist ein 

Histogramm der Antwortlängen dargestellt. Um darzustellen, welche zentralen Begriffe in den 

Antworten typischerweise auftreten, ist in Abbildung 6.4 zudem eine Wortwolke, die die 

verwendeten Begriffe entsprechend ihrer Häufigkeit skaliert dargestellt59. Zentral sind vor 

allem Begriffe aus dem Bereich des Lehrens und Lernens (z. B. „Vorstellung“ und „Schüler“) 

sowie Begriffe aus dem im Testinstrument adressierten Fachinhalt Mechanik (z. B. 

„Geschwindigkeit“ und „Kraft“). Die Verteilung der Score-Labels innerhalb des gesamten 

Datensatzes ist in Tabelle 6.4 dargestellt.  

Tabelle 6.4 Verteilung der Score-Labels im Gesamtdatensatz (nur Textaufgaben). 

Score Absolute Häufigkeit 
Relative Häufigkeit 

(gerundet) 

0 8800 0,56 

1 5128 0,33 

2 1672 0,11 

 

56  https://huggingface.co/dbmdz/bert-base-german-uncased  

57  Anders, als der Name „SciEdBERT“ des Modells von Latif et al. (2024) vermuten lassen könnte, ist nicht zu 

erwarten, dass die Weiternutzung dieses Modells für das hier genutzte FDW-Testinstrument einen Vorteil 

gegenüber dem „normalen“ BERT-Modell bietet. Das liegt daran, dass die Aufgaben im hier vorliegenden 

Testinstrument einen deutlich anderen Inhalt abbilden: hier geht es um FDW, bei SciEdBERT um Fachwissen 

auf (mittlerem) schulischem Niveau. Eine zur Absicherung dieser Vermutung durchgeführte 3-Fold-CV konnte 

wie erwartet keine Performanzzuwächse durch die Nutzung von SciEdBERT feststellen. 

58  Anders als bei Latif et al. (2024) konnten durch ein zusätzliches aufgabenweises Finetuning, während dem 

dann 23 unterschiedliche BERT-Modelle generiert wurden, im Rahmen einer explorativen 3-Fold-CV keine 

Performanzzuwächse erreicht werden. 

59  Bei Erstellen der Wortwolke (Abbildung 6.4) wurden sog. Stopwords, d. h. häufig auftretende Worte, ohne 

große inhaltliche Bedeutung wie „der“, „die“, „das“, „aber“, „wie“ etc. vernachlässigt. 

https://huggingface.co/dbmdz/bert-base-german-uncased
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Abbildung 6.3 Histogramm der Längen der einzelnen Antworten zu den offenen Aufgaben des FDW-

Testinstruments. 

 

Abbildung 6.4 Wortwolke zur Darstellung zentraler Begriffe in den Antworten zu den offenen Aufgaben des 

FDW-Testinstruments. 

Das Finetuning des BERT-Modells wurde dem Standard-Workflow des huggingface-

transformers Python Pakets60 folgend implementiert. Dabei wurden die Trainingsparameter 

wie Batch-Größe o. Ä. nicht verändert.  

 

60  Ein Tutorial, in dem dieser Workflow grob vorgestellt wird, ist unter https://huggingface.co/docs/transformers/ 

tasks/sequence_classification zu finden. 

https://huggingface.co/docs/transformers/tasks/sequence_classification
https://huggingface.co/docs/transformers/tasks/sequence_classification
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6.4.4 FF2b: Automatisierte Zuordnung zu Kompetenzprofilen 

Zur Vorhersage der Kompetenzprofile wurde hier zunächst direkt das GMM aus FF1 

verwendet, da so der Vergleich zur Mensch-Mensch Übereinstimmung als Baseline ermöglicht 

wird. Dieses „wahre“ Cluster-Modell liegt vollständig aus den Analysen zu FF1 vor und wurde 

dementsprechend nicht mehr trainiert. D. h., es wurden die Kompetenzprofile auf Basis der 

maschinell vorhergesagten Scores direkt mit den Kompetenzprofilen auf Basis der 

menschlichen Scores verglichen. Zur Bestimmung der Mensch-Mensch Referenzwerte wurden 

die Scores von Kodierer:in 1 als „wahre Scores“ und die Scores von Kodierer:in 2 als 

„Vorhersagen“ betrachtet.  

Ergänzend wurde ein logistisches Regressionsmodell (LR-Modell) zur Vorhersage der 

Kompetenzprofile auf Basis der maschinellen Score-Vorhersagen trainiert, um im Sinne der 

CGT sicherzugehen, dass auch ein „neues“ ML-Modell zur Vorhersage der Kompetenzprofile 

in der Lage ist. Der Vergleich zu einem analogen Modell für den Mensch-Mensch-Datensatz 

wäre hier aber nicht zielführend, da der Mensch-Mensch Datensatz (267 Test-Bearbeitungen) 

deutlich kleiner ist als der für das automatisierte Scoren verfügbare Datensatz (846 Test-

Bearbeitungen). Für das Training des LR-Modells konnten die CV-Splits aus dem Training des 

Scoring-Modells (FF2a) wiederverwendet werden, da sie personenweise erstellt wurden. Zu 

diesem Zweck wurden während des Trainings des Scoring-Modells neben den Evaluierungs-

Vorhersagen auch die Trainings-Vorhersagen zu jedem CV-Split abgespeichert. Diese wurden 

nun zum Training des LR-Modells genutzt. Auch das LR-Modell wurde dementsprechend um 

Rahmen der CV 10-mal neu trainiert. Somit ist sichergestellt, dass auch beim Training des LR-

Modells keine Vermischung von Trainings- und Evaluierungsdaten stattfindet. 

6.5. Ergebnisse 

6.5.1 FF1: Latente Kompetenzprofile des FDW 

Zur Pattern Detection wurde eine LPA durchgeführt, bei der 40 GMMs an die Daten angepasst 

und anhand ihres BIC-Scores verglichen wurden (FF1). In Abbildung 6.5 erkennt man, dass 

die beiden höchsten BIC-Werte für die Konfigurationen „2 Cluster, Kovarianz: Full“ (BIC =

1491) und „4 Cluster, Kovarianz: Tied“ (BIC = 1483) erreicht werden. Der Unterschied in 

diesen beiden BIC-Scores ist klein, sodass auf Basis des BIC beide Modelle zur Beschreibung 

latenter Strukturen herangezogen werden können. Aus theoretischen und pragmatischen 

Gründen ist es zielführender, das „4 Cluster, Kovarianz: Tied“-Modell weiter zu untersuchen, 

da eine „Tied“-Kovarianzmodellierung der theoretischen Erwartung am ehesten entspricht und 

vier Cluster zur Beschreibung nicht-hierarchischer Strukturen geeignet sind (siehe Abschnitt 

6.4.2). Die Cluster-Datenpunkte dieses Modells sind in einem Paarplot in Abbildung 6.6 

dargestellt. Man erkennt deutlich, dass die Dimensionen Anwenden-Kreieren und Analysieren-

Evaluieren für die Zuordnung zu den Clustern zentral sind (Abbildung 6.6, untere mittlere 

Kachel). Die Cluster-Zentren sind in Abbildung 6.7 inklusive ihrer jeweiligen 

Mittelwertsstreuung dargestellt. 
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Abbildung 6.5 Darstellung der BIC-Scores für die 40 Gaussian Mixture Models der Latent Profile Analysis. 

 

Abbildung 6.6 Paarplot-Darstellung der einzelnen FDW-Score Datenpunkte mit Kompetenzprofilen. Auf der 

Diagonale werden die jeweiligen geschätzten Wahrscheinlichkeitsverteilungen der Scores der einzelnen Cluster 

in den jeweiligen Anforderungskategorien mithilfe sog. Kerndichteschätzungen (≈ kontinuierliche Histogramme) 

dargestellt. Auf den Nicht-Diagonalelementen werden die Score-Paare der einzelnen Testbearbeitungen immer 

im Rahmen von zwei Anforderungskategorien gegeneinander aufgetragen. Die Scores sind dabei kategorienweise 

auf das Intervall [0, 1] skaliert. Um eine etwas bessere Darstellung der einzelnen Punkte der Punktwolken zur 

erhalten, wurde zu den Daten hier jeweils im Intervall [−0,025; 0,025] gleichverteiltes Rauschen von addiert. 

Die Bezeichnungen der Cluster werden in Abschnitt 6.5.1 eingeführt. 
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Abbildung 6.7 Linienplot der Score-Mittelwerte der Kompetenzprofile. Auch hier sind die Werte auf das Intervall 

[0, 1] normiert, d. h., dass beispielsweise die High Achievers durchschnittlich etwa 66 % des Maximalscores in 

der Dimension Anwenden-Kreieren erreichen. Die hell eingefärbten Bänder um die Mittelwertslinien stellen die 

Mittelwertsstreuung dar. 

Die latenten Kompetenzprofile werden auf Basis ihrer durchschnittlichen Scores in den 

kognitiven Anforderungsdimensionen (Abbildung 6.7) benannt. Aufgrund der Parallelen zu 

den (nicht-latenten) Personenclustern aus der Vorgängerstudie (Zeller & Riese, 2025)  werden 

die bereits dort verwendeten englischen Bezeichnungen wiederverwendet. Zudem lassen sich 

die Kompetenzprofile im Englischen griffiger und insbesondere leicht geschlechtsneutral 

bezeichnen: 

1. Low Achievers: Insgesamt in allen Teildimensionen niedriges Kompetenzniveau. 

2. Applying Creatives: Stärken im Kreieren von Unterrichtselementen und Anwenden von 

FDW auf beschriebene (Unterrichts-) Situationen u. Ä. 

3. Analytic Evaluators: Stärken im Analysieren und Bewerten beschriebener (Unterrichts-) 

Situationen oder beschriebenem Handeln einer Lehrperson u. Ä. 

4. High Achievers: Insgesamt in allen Teildimensionen hohes Kompetenzniveau. 

Die durchschnittlichen FDW-Scores und absolvierten Fachsemester des Physik-

Lehramtsstudiums sowie der Anzahl an Proband:innen in den Kompetenzprofilen sind in 

Tabelle 6.5 dargestellt.  

6.5.2 FF2a: Maschine-Mensch Übereinstimmung des Scoring-LMs 

Der erste Schritt der Pattern Confirmation ist die Erstellung eines ML-Modells zur 

automatischen Bepunktung der offenen Aufgaben des verwendeten Testinstruments (FF2a). 

Dazu wurde hier ein BERT-Sprachmodell zur Bepunktung dieser Aufgaben finegetuned. Das 
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Modell wurde für drei Epochs trainiert. Die Entwicklung der Werte der verwendeten Cross-

Entropy-Loss-Funktion und der Accuracy über das Training sind in Abbildung 6.8 gemittelt 

über alle CV-Splits gegen die durchlaufenden Epochs aufgetragen. Man erkennt beginnendes 

Overfitting ab dem Beginn der dritten Epoch, d. h. das BERT-Modell fängt an, Details des 

Trainingsdatensatzes „auswendig zu lernen“. Da die hier vor allem relevante diskrete 

Accuracy-Metrik bezüglich der Evaluierungsdaten aber während der dritten Epoch noch weiter 

leicht ansteigt, zusätzliches Training über die dritte Epoch hinaus aber keine weiteren 

Performanzzuwächse bewirkte, wird das 3-Epoch Modell verwendet.  

Die Performanz des Scoring-Modells ist in Tabelle 6.6 und Abbildung 6.9 dargestellt. 

Insgesamt erreicht das Modell Maschine-Mensch-Übereinstimmungswerte, die 80 bis 90 % der 

Mensch-Mensch-Übereinstimmungswerte entsprechen (Tabelle 6.6). Schließt man die MC-

Aufgaben in diese Betrachtung mit ein und bewertet fehlende Antworten mit „0 Punkten“, so 

erreicht das Scoring-System eine gute (Döring, 2023) Übereinstimmung von 𝜅 = 0.680 

(Mensch-Mensch-Baseline: 𝜅 = 0.761). Das Scoring-Modell zeigt bis auf eine etwas 

„strengere“ Bewertung keine systematischen Verzerrungen der Vorhersagen (Abbildung 6.9). 

Tabelle 6.5 Vergleich der latenten Kompetenzprofile in Hinsicht auf Fachsemester, FDW-Gesamtscore und 

Umfang. Die Spalte „𝑁 (Gesamtdatensatz)“ schließt die 41 Bearbeitungen des Testinstruments, die aus der 

Erstellung des Clustermodells ausgeschlossen wurden, mit ein (siehe Abschnitt 6.4.2, 6.4.3). 

Kompetenzprofil 
Fachsemester 

Physik 
FDW-Gesamtscore 𝑵 𝑵 (Gesamtdatensatz) 

 M SD M SD   

Low Achievers 2,87 2,56 12,86 2,07 411 470 

Applying Creatives 5,31 3,59 18,97 2,93 166 167 

Analytic Evaluators 5,28 3,92 19,32 2,58 112 113 

High Achievers 6.96 3,71 25,44 3,53 96 96 

Tabelle 6.6 Scorer Performanz. Hier wurden keine Missings oder MC-Aufgaben betrachtet. 

 
Mensch-Maschine- 

Übereinstimmung 

Mensch-Mensch- 

Baseline 

Anzahl Daten (𝑵) 15 600 4 748 

Accuracy 0,751 0,813 

Cohens 𝜿 0,560 0,665 
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Abbildung 6.8 Learning Curves des Scorer-Trainings “gemittelt” über die 10 CV-Splits. Die eingefärbten 

Bereiche stellen die Standardabweichungen der jeweils 10 Werte (10 CV-Splits) pro Log-Punkt dar.  

 

Abbildung 6.9 Darstellung der Score-Vorhersageübereinstimmung als Heatmap. Die abgebildeten Werte sind 

Zeilen-weise normiert, d. h. der Eintrag „15 %“ in der oberen mittleren Zelle ist beispielsweise wie folgt zu 

interpretieren: 15 % der Bearbeitungen, die von dem/der Kodierer:in mit null Punkten bewertet wurden (die also 

0 als Target haben) bewertet der BERT-Scorer mit einem Punkt. 
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6.5.3 FF2b: Maschine-Mensch Übereinstimmung der latenten 

Kompetenzprofile 

Der zweite Schritt der Pattern Confirmation ist die ML-basierte Zuordnung zu den 

Kompetenzprofilen auf Basis der automatischen Bepunktung (FF2b). Die Ergebnisse der 

Evaluierung der automatisierten Zuordnung zu den Kompetenzprofilen mithilfe des „wahren“ 

GMMs und des LR-Modells sind in Tabelle 6.7 und Abbildung 6.10 dargestellt. In Tabelle 6.7 

sind zudem die Übereinstimmungswerte der beiden menschlichen Kodierer:innen auf Basis 

einer Zuordnung mit dem GMM dargestellt. Tatsächlich erreicht das LR-Modell mit 𝜅 = 0,612 

sogar eine etwas größere Performanz als die Zuordnung auf Basis des „wahren“ GMMs mit 

𝜅 = 0.587. Die Maschine-Mensch-Übereinstimmung auf Basis des GMMs entspricht dabei 94 

% der Mensch-Mensch-Übereinstimmung auf Basis des GMMs (𝜅 = 0,624). Diese Werte 

können als gute Übereinstimmungen eingeordnet werden (Döring, 2023).  

Neben der Klassifikation auf Basis der Bearbeitungen des Testinstruments, d. h. der 

Sprachantworten zu den offenen Aufgaben des Testinstruments und den Antworten im Rahmen 

der MC-Aufgaben, wurde ergänzend die Vorhersage direkt auf Basis der manuell kodierten 

Scores evaluiert. Damit wird wie bei Tschisgale et al. (2023) die Vorhersage der Cluster auf 

Basis der für die Erstellung des Cluster-Modells genutzten numerischen Daten angestrebt. Die 

Komplexität dieser Klassifikationsaufgabe ist gegenüber der Zuordnung ausgehend von den 

„rohen“ Test-Bearbeitungen deutlich verringert und ein logistisches Regressionsmodell 

erreicht hierbei im Rahmen einer 10-fold-CV (𝑁eval = 846) exzellente Übereinstim-

mungswerte (94,5 %, 𝜅 = 0,918). 

Insgesamt kann die CGT-Pattern-Confirmation unter Beachtung der Komplexität des zu 

erfassenden Konstrukts des FDW bzw. der zu erfassenden Kompetenzprofile insbesondere 

beim Vergleich der Maschine-Mensch-Übereinstimmung mit der Mensch-Mensch-Baseline 

als erfolgreich angesehen werden. 

Tabelle 6.7 Performanz der automatisierten Kompetenzprofil-Zuordnungen. Auch hier wurden zur Bestimmung 

der Mensch-Maschine-Übereinstimmung alle Validierungsdaten zusammen betrachtet. 

 
Logistische 

Regression 

Wahres GMM-

Cluster Modell (FF1) 

Mensch-Mensch- 

Baseline 

Anzahl Testhefte (𝑵) 846 846 267 

Accuracy 0,759 0,743 0,787 

Cohens 𝜿 0,612 0,587 0,624 
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Abbildung 6.10 Darstellung der Kompetenzprofil-Vorhersageübereinstimmungen als Heatmap. Oben sind die 

Werte für das Logistische Regressionsmodell berichtet, unten die für das „wahre“ GMM-Cluster Modell. Die 

abgebildeten Werte sind analog zu interpretieren, wie in Abbildung 6.9 beschrieben.61 

 

61  In Abbildung A5 ist auch der entsprechende Plot für die Mensch-Mensch-Übereinstimmung dargestellt. 
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6.6. Diskussion 

6.6.1 Zusammenfassung und Einordnung 

Für die empirisch fundierte Weiterentwicklung der Modellierung des Fachdidaktischen 

Wissens (FDW) sind datenbasierte Beschreibungen der inneren Struktur des FDW notwendig 

(Kapitel 2). Zu diesem Zweck wurde im vorliegenden Beitrag eine explorative empirische 

Analyse nicht-hierarchischer Strukturen des FDW angehender Physiklehrkräfte durchgeführt. 

Im Rahmen von FF1 wurden vier latente nicht-hierarchische Kompetenzprofile ermittelt, deren 

Robustheit und Validität in den Analysen zu FF2a und FF2b bestätigt wurden. Dazu wurde die 

Gesamtanalyse im Sinne der Computational Grounded Theory (CGT, Nelson, 2020) 

strukturiert. Die explorative Analyse der Kompetenzprofile (FF1) stellt in diesem Framework 

eine Pattern Detection dar. Menschliches Expertenwissen und Interpretationskraft auf Basis 

des Forschungsstands ist hier nicht in einem separaten CGT-Pattern Refinement Schritt, 

sondern bereits zur Vorbereitung der Pattern Detection in Form der Re-Analyse der 

Testaufgaben im Kontext kognitiver Anforderungskategorien und einer entsprechenden 

Aggregierung der Scores eingeflossen. Im Rahmen der Pattern Confirmation wurde ein 

Assessment System auf Basis eines BERT-Sprachmodells (FF2a) sowie eines 

Klassifikationsmodells (FF2b) erstellt, das Testbearbeitungen den Kompetenzprofilen 

automatisiert zuordnen kann und somit im Sinne der CGT die gefundenen Strukturen bestätigt. 

Die vier erhaltenen Kompetenzprofile Low Achievers, Applying Creatives, Analytic 

Evaluators und High Achievers stellen somit vier latente Gruppen von Proband:innen mit 

prototypischen Stärken und Schwächen dar. Die Applying Creatives und Analytic Evaluators 

zeigen dabei deutlich eine nicht hierarchische Struktur im Sinne von FF1 (Abbildung 6.7, 

Anhang E). Auffällig ist darüber hinaus, dass selbst die High Achievers noch einiges 

Verbesserungspotenzial bezogen auf die Maximalpunktzahlen des Testinstruments haben 

(Abbildung 6.7). Ähnliches wurde bereits bei früheren Einsätzen des Testinstruments 

beobachtet (Gramzow et al., 2013 ⁠; Riese et al., 2017). Beeinflusst ist diese Beobachtung aber 

auch durch den hohen Anteil an Anfängerstudierenden im Datensatz; Studierende in den ersten 

zwei Studienjahren bilden ca. 62 % der Gesamtstichprobe. 

Die gefundenen Kompetenzprofile und die zugehörigen kognitiven Anforderungskategorien 

lassen sich zudem im Rahmen des RCM of PCK auf das ePCK zurückbeziehen. Von ePCK 

wird angenommen, dass es sich im Rahmen des sog. „Plan-Teach-Reflect-Cycles“ (PTR-

Cycle, Alonzo et al., 2019) iterativ entwickelt. Empirische Ergebnisse stützen dieses Modell 

(z. B. Behling et al., 2022b). Dem PTR-Cycle folgend werden somit auch entsprechende 

einzelnen ePCK-Komponenten, d. h. ePCK-plan, ePCK-teach und ePCK-reflect unterschieden. 

Die kognitiven Anforderungskategorien, die sich im Rahmen der hier vorgestellten Studie für 

das FDW (im Sinne eines pPCK) als bedeutsam erwiesen haben, können auch als empirische 

Hinweise auf die Existenz einer entsprechenden inneren Struktur des pPCK gedeutet werden, 

wie beispielsweise die Trennung von „pPCK-apply“ und „pPCK-analyze“. Für eine 

gesichertere Aussage sollten an dieser Stelle aber weitere ggf. konfirmatorische Analysen 

insbesondere auch mit anderen Datensätzen durchgeführt werden. Darüber hinaus sollte die 

Beziehung zwischen den potenziellen pPCK-Komponenten und den ePCK-Komponenten in 
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den Blick genommen werden. Es ist bisher unklar, ob einzelne pPCK-Komponenten auch mit 

einzelnen ePCK-Komponenten korrespondieren, oder, ob ggf. erst die Integration der pPCK-

Bestandteile zur Steigerung oder Entwicklung von ePCK führt. 

Die fachdidaktischen Facetten stellen prinzipiell eine Alternative zu den kognitiven 

Anforderungsdimensionen bei der theoriegeleiteten Akkumulierung der Scores als 

Vorbereitung der Cluster Analysen dar. Fachdidaktische Facetten bzw. Inhalte werden, wie 

bereits beschrieben, in unterschiedlichen FDW-Testinstrumenten im naturwissenschaftlichen 

Bereich genutzt (z. B. Kröger, 2019 ⁠; Tepner et al., 2012) und haben sich im Rahmen von IRT-

Modellierungen bereits als trennbare Subskalen erwiesen (Riese et al., 2017). Allerdings sind 

die Facetten gegenüber der Nutzung der kognitiven Anforderungen weniger gut auf andere 

Testinstrumente bzw. Operationalisierungen generalisierbar, da in den Einzelprojekten meist 

eine unterschiedliche Auswahl von Facetten betrachtet wird (z. B. Kirschner, 2013). Für die 

kognitiven Anforderungskategorien weisen die Ergebnisse der projektübergreifenden Analyse 

von Zeller et al. (2024) hingegen auf eine Übertragbarkeit der Kategorien auf unterschiedliche 

Testinstrumente hin. Das Generalisierungspotenzial der kognitiven Anforderungskategorien 

sollte dementsprechend auch genutzt werden, um zu überprüfen, ob ähnliche Analysen anderer 

FDW-Testinstrumente die hier vorgestellten Ergebnisse in Form der latenten 

Kompetenzprofile unterstützen. Dies gilt insbesondere vor dem Hintergrund der Limitation der 

hier berichteten Ergebnisse aufgrund der Beschränkung des verwendeten Testinstruments auf 

den Fachinhalt Mechanik.  

Der Bedarf an weiteren Analysen zur Überprüfung der Reproduzierbarkeit der vorgestellten 

Ergebnisse gilt insbesondere vor dem Hintergrund, dass der vorgestellten Analyse ein 

komplexer methodischer Workflow zugrunde liegt und sie aufgrund ihres explorativen 

Charakters viele „Moving Parts“ umfasst. Aus methodischer Sicht wäre hier auch die Nutzung 

eines Testinstruments interessant, welches eine gleichmäßigere Anzahl an Aufgaben in den 

einzelnen kognitiven Anforderungskategorien umfasst, um eine bessere Auflösung der 

Kompetenzprofile im Rahmen der GMMs (oder ähnlicher Modelle) erreichen zu können. 

Darüber hinaus wäre die Nutzung von Methoden zum Umgang mit ungleich verteilten 

Datensätzen (z. B. Lemaître et al., 2017) mit Blick auf das Training des BERT-Modells für das 

automatische Scoring lohnend, um zu untersuchen, ob sich die in Abschnitt 6.5.2 beschriebene 

„Strenge“ des Systems abmildern lässt. 

6.6.2 Ausblick 

Wie bereits beschrieben, wird theoriebasiertes menschliches Expertenwissen und menschliche 

Interpretationskraft im Sinne der CGT in der hier vorgestellten Analyse bereits während bzw. 

vor dem eigentlichen Pattern Detection Schritt einbezogen. Ein zusätzliches Pattern 

Refinement zur weiteren Detailbeschreibung der Kompetenzprofile wurde hier aus 

Platzgründen nicht vorgestellt. Analog zur Vorgängeranalyse (Zeller & Riese, 2025)  ließen 

sich aber auch hier mithilfe von Topic Models (z. B. Blei, 2012⁠; Roberts et al., 2019) 

praktikabel Zusammenhänge zwischen der Kompetenzprofil-Zugehörigkeit und der Nutzung 

bestimmter Begriffe bzw. Fokussierung auf bestimmte Konzepte untersuchen. Eine vorläufige 

Analyse dieser Art zeigt beispielsweise, dass die High Achievers sich in ihren Antworten auf 
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die offenen Testaufgaben deutlich stärker auf Konzepte aus dem Bereich der 

Schülervorstellungen (Begriffe wie „Schülervorstellungen“, „kognitiv“, „Konflikt“ oder 

„Alltagserfahrungen“) fokussieren als die übrigen Kompetenzprofile. 

Neben der Nutzung für die Pattern Confirmation bietet auch das hier vorgestellte BERT-

Modell zum automatisierten Scoring Ansatzpunkte, selbst Gegenstand weiterer 

Untersuchungen zu werden. Dazu könnten (ohne Anspruch auf Vollständigkeit) Analysen (1) 

zur Bedeutung bestimmter Merkmale von Antworten (Antwortlänge, Wortwahl etc.) für die 

Performanz des Scoring-Modells (z. B. Zesch et al., 2023), (2) zur Erklärung von bestimmten 

Modellentscheidungen (z. B. Gombert et al., 2023) sowie (3) zur Fairness des Modells (z. B. 

Barocas et al., 2023) durchgeführt werden. Erste Ansätze in diese Richtungen wurden bereits 

erprobt: 

1) Bei einer Aufgaben-weisen Betrachtung zeigte sich, dass die Maschine-Mensch-

Übereinstimmung nicht nennenswert mit der durchschnittlichen Antwortlänge in den 

Aufgaben, aber signifikant mit der Mensch-Mensch-Übereinstimmung zusammenhängt 

(Spearman-Korrelation von 0.612∗∗ zwischen den Maschine-Mensch-𝜅s und Mensch-

Mensch-𝜅s). Aufgaben, bei denen eine hohe Interrater-Reliabilität besteht, scheinen also 

auch besonders reliabel automatisiert bepunktet zu werden. 

2) Ähnlich dem Ansatz von Gombert et al. (2023) wurden erste Analysen zur 

Bedeutsamkeit bestimmter Worte für die Bepunktung durch das BERT-Modell 

durchgeführt. Dabei wurde die sog. Attribution-Metrik verwendet, die beschreibt, wie 

stark jedes einzelne Wort für oder gegen die Klassifikation des eingegebenen Textes 

„arbeitet“ (Sundararajan et al., 201762). Die Ergebnisse dieses Vorgehens lassen sich wie 

in Abbildung 6.11 gezeigt visualisieren. Bei einer ersten Aufgaben-übergreifenden 

Aggregierung der Bedeutsamkeit der Worte konnte bislang keine interessante Systematik 

festgestellt werden, was wahrscheinlich daran liegt, dass in den einzelnen Aufgaben 

unterschiedliche fachliche und fachdidaktische Konzepte relevant sind. 

 

Abbildung 6.11 Darstellung der Attribution der einzelnen Worte offener Testantworten zu Aufgabe 15 auf die 

jeweilige Klassifikation durch den Scorer. Eine grüne (bzw. rote) Einfärbung bedeutet, dass das Wort die 

Entscheidung für die Score-Entscheidung positiv (bzw. negativ) beeinflusst hat. Die ungewöhnliche Formatierung 

des Textes hängt mit der Vorverarbeitung der Inputs durch das BERT-Sprachmodell zusammen. 

 

62  Dazu wurde das Python-Paket transformers-interpret (https://github.com/cdpierse/transformers-interpret) 

verwendet. 

https://github.com/cdpierse/transformers-interpret
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3) Zur Analyse der Fairness von ML-Modellen werden üblicherweise potenziell 

benachteiligte Gruppen und die Performanz bezüglich dieser Gruppen betrachtet (z. B. 

Barocas et al., 2023). Im hier verwendeten Datensatz liegen kaum derartige Daten vor. 

Für die Geschlechter ergab eine Betrachtung keine bedeutsamen Unterschiede in der 

Performanz (𝜅𝑊 = 0,57 ± 0,05, 𝜅𝑀 = 0,55 ± 0,0563) und auch keinen Unterschied 

bezüglich der zu „strengen“ Bewertung. 

Das erhaltene Modell lässt sich im Rahmen eines automatisierten Systems für das 

Assessment des FDW flexibel einsetzen. Ein entsprechendes Webtool unter Nutzung von 

Open-Source Software mit einem Interface zur digitalen Bearbeitung des Testinstruments und 

einer automatisierten Erstellung eines Reports ist bereits angelegt. Es liefert die 

Rückmeldungen zu Bearbeitungen des Tests je nach verfügbarer Hardware innerhalb weniger 

Sekunden. Dabei ist geplant, Zuordnungen zu den Kompetenzprofilen und Summenscores 

bezüglich der kognitiven Anforderungen und Facetten in ein formativ nutzbares Feedback 

einzuschließen. Die Rückmeldung von Scores in den einzelnen Aufgaben wird nicht 

angestrebt, denn Testinstrumente wie das genutzte lassen üblicherweise keine reliable 

Einschätzung auf Ebene der Einzelaufgaben zu. 

Das Assessment-System aus Scoring- und Cluster-Modell kann genutzt werden, um 

Studierenden unmittelbares, inhaltliches Feedback zu ihren Kompetenzstand im FDW zu 

bieten. Es kann dabei helfen, Verbesserungspotenziale zu identifizieren und ggf. gezielt 

Lerngelegenheiten zu empfehlen. Über eine individuelle Nutzung hinaus könnte das System 

auch für Lehrende von Interesse sein, die mithilfe einer Einordnung ihrer Lerngruppen gezielt 

Lehrinhalte auswählen oder Materialien gestalten können. Auch für weitere Forschungszwecke 

könnte ein automatisiertes digitales System den bislang eher schwierigen Zugriff auf große 

Stichproben erleichtern und gleichzeitig den Aufwand bei der Kodierung offener Aufgaben 

minimieren. 

Der hier dargestellte Workflow zur Erstellung und Evaluierung eines automatisierten 

Assessment-Systems auf Basis eines Testinstruments mit offenen und geschlossenen 

Aufgaben, inklusive der explorativen Untersuchung von Kompetenzprofilen, ist nicht auf 

Konstrukte wie das FDW beschränkt. Die Abstrahierung des genutzten Python-Codes für die 

Analysen und das Webtool für eine flexible Übertragung auf andere Testinstrumente ist in 

Arbeit. 

 

63  Die Unsicherheiten dieser Übereinstimmungswerte wurden mithilfe der Bootstrap-Methode aus den 

Vorhersagen ermittelt. 



6. ML-basiertes Assessment von Kompetenzprofilen des physikdid. Wissens (Artikel 3) 

145 

Beiträge der Autoren 

• Datenakquise: Josef Riese (und andere Wissenschaftler:innen, die an diesem Artikel 

nicht konkret beteiligt waren) 

• Methode und Analysen: Jannis Zeller 

• Ergebnisinterpretation: Jannis Zeller 

• Ursprünglicher Entwurf: Jannis Zeller, Josef Riese 

• Review und Überarbeitung: Jannis Zeller, Josef Riese 

• Fördermittelbeschaffung: Jannis Zeller, Josef Riese 

Förderung 

Professionskompetenz im Lehramtsstudium Physik“ (Akronym ProfiLe-P+) wurde vom 

Bundesministerium für Bildung und Forschung im Rahmen des BMBF-Rahmenprogramms 

”Kompetenzmodelle und Instrumente der Kompetenzerfassung im Hochschulsektor - 

Validierungen und methodische Innovationen“ (Akronym KoKoHs) unter dem Kennzeichen 

01PK15005A-D gefördert. 

Die hier verwendeten Daten stammen aus dem o. g. Projekt. Das Manuskript ist im Rahmen 

einer kumulativen Promotion entstanden, die mit einem Promotionsstipendium der 

Studienstiftung des deutschen Volkes gefördert wurde. 

Interessenskonflikt 

Jannis Zeller und Josef Riese erklären, dass keine Interessenkonflikte vorliegen 

 



6. ML-basiertes Assessment von Kompetenzprofilen des physikdid. Wissens (Artikel 3) 

146 

6.7. Kommentare und Ergänzungen 

Da der Fokus von Artikel 3 eher auf den inhaltlichen Erkenntnissen liegt / liegen sollte, mussten 

viele methodische und technische Anmerkungen stark gekürzt oder vollständig gestrichen 

werden. Daher folgen nun zu Artikel 3 recht umfangreiche zusätzliche Informationen und 

Analysen. 

6.7.1 Zusätzliche Daten zu den latenten Kompetenzprofilen 

Die latenten Kompetenzprofile stellen den Kern der inhaltlichen Analyse des FDW dar und in 

Tabelle 6.5 wurden bereits einige zusätzliche Informationen über durchschnittliche FDW-

Gesamtscores und absolvierte Fachsemester berichtet. In Tabelle 6.8 werden nun noch weitere 

demographische Daten ergänzt. Auffällig ist hierbei vor allem der hohe Anteil an weiblichen 

Probandinnen unter den High Achievers und ihr geringer Anteil unter den Analytic Evaluators. 

In Anhang E sind zudem weitere Werte aus anderen Erhebungen des ProfiLe-P+ Projekts 

dargestellt, die hier aus Platzgründen nicht alle systematisch eingeführt werden. 

Tabelle 6.8 Zusätzliche demographische Daten zu den Kompetenzprofilen.  

 Abschluss-

note 

Letzte Punktzahl (Schule) Außerschulische 

Lehrerfahrung 

Anteil 

weiblich 

  Physik Mathematik Deutsch   

Anzahl an Daten 649 474 510 504 841 845 

Low Achievers 2,35 11,45 10,97 9,19 78 % 34 % 

Applying Creatives 2,07 12,38 12,05 10,42 86 % 35 % 

Analytic Evaluators 2,09 11,90 11,48 9,86 84 % 24 % 

High Achievers 1,83 12,72 12,42 10,63 92 %  43 % 

6.7.2 Keine direkte Vorhersage von Clustern ohne Scoring 

In Artikel 3 wurde nur am Rande angedeutet, dass eine direkte Vorhersage der 

Kompetenzprofile ausgehend von den Gesamtantworttexten problematisch ist. Um dies zu 

evaluieren, wurden vor allem zwei Experimente mit den Text-Daten durchgeführt. Zunächst 

wurden dazu die Einzelantworten der Personen zu „Gesamttexten“ zusammengefasst, wobei 

für jede Einzelantwort der Zusatz „Aufgabe X: …“ hinzugefügt wurde, um die einzelnen 

Aufgaben sprachlich voneinander abzugrenzen. Das Setting ist demnach ein klassisches 

Supervised-Learning-Problem mit den Kompetenzprofil-Zuordnungen als Labels. 

Im ersten Ansatz wurde dasselbe BERT-Modell zur Vorhersage der Kompetenzprofile 

trainiert, das auch in Artikel 3 zum automatischen Scoring verwendet wird. Problematisch ist, 

dass dieses Modell nur Texte mit einer Länge von bis zu 512 Token (ca. 320 Worte) verarbeiten 

kann (man spricht hier auch von Kontextlänge), die Gesamttexte aber bis zu 1493 Token (ca. 
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928 Worte) umfassen. Alle längeren Dokumente werden ab dem 513ten Token gekappt. Bei 

den Dokumenten, die über 512 Token lang sind, werden dadurch im Durchschnitt ca. 23 % des 

Dokuments vernachlässigt. Insgesamt werden so ca. 18 % der Gesamttextdaten aller 

Proband:innen zusammengenommen nicht genutzt. Das BERT-Modell wurde anschließend im 

Rahmen einer 3-fold-CV (siehe Abschnitt 2.4) analog zum Vorgehen in Artikel 3 evaluiert. Es 

erreicht eine Accuracy von 57,0 % und ein Cohens 𝜅 von 0,262. Die Confusion Matrix ist in 

Abbildung 6.12 oben dargestellt. Die Übereinstimmung ist deutlich schlechter als die 

Ergebnisse mit dem automatisierten Scoring als Zwischenschritt. 

Aufgrund der Limitation des BERT-Modells durch die geringe Kontextlänge wurde als 

Alternative über die OpenAI-API ein GPT4o-mini Modell mit einer Kontextlänge von 

128.000 Token (OpenAI, 2024b) ebenfalls im Rahmen einer 3-fold-CV trainiert und 

evaluiert49. Es erreicht mit einer Accuracy von 63,3 % und einem Cohens 𝜅 von 0,375 

ebenfalls nur mittlere Übereinstimmungswerte. In Abbildung 6.12 (unten) erkennt man, dass 

insbesondere das Analytic Evaluators Kompetenzprofil von beiden Modellen nicht reliabel 

erkannt wird und auch insgesamt hohe Fehlerquoten auftreten. 

Aufgrund dieser Ergebnisse wurde bereits früh im Projekt zum „Scoring-First-Clustering-

Second“-Workflow übergegangen, dem auch in Artikel 3 gefolgt wird. Ein wichtiger 

Eckpfeiler dieses Workflows ist die strikte Trennung von Trainings- und Evaluierungsdaten 

über beide Vorhersageschritte (erst Scores, dann Kompetenzprofile / Cluster) hinweg, wie auch 

in Abschnitt 6.7.3 noch einmal detaillierter beschrieben wird. 

6.7.3 Zusätzliche Anmerkungen zum Workflow 

Zunächst muss betont werden, dass der verwendete Fragebogen in einem analogen Pencil-

Paper-Format durchgeführt wurde. Zur computerbasierten Analyse der Antwort-Texte wurden 

die Papier-Testhefte dementsprechend durch Hilfskräfte digitalisiert. Die Bepunktung der 

Testhefte ist bereits in früheren Projektphasen manuell vorgenommen worden (Vogelsang et 

al., 2019). Mithilfe von Personencodes aus dem Demographie-Teil des Fragebogens konnten 

die Testhefte lückenlos den bestehenden Scores zugeordnet werden. Die Digitalisierung durch 

die Hilfskräfte wurde im Rahmen der Möglichkeiten engmaschig überwacht, Tippfehler u. Ä. 

können aber nicht ausgeschlossen werden. Es ist allerdings unwahrscheinlich, dass solche 

marginalen „Verfälschungen“ einen großen Einfluss auf die verwendeten Modelle haben. Eine 

zukünftig möglicherweise volldigitale Bearbeitung des Testinstruments könnte die 

Antwortstrukturen aber systematisch verändern. Für die Assessment Modelle empfiehlt sich 

daher bei einer Nachnutzung im Rahmen eines volldigitalen Settings in jedem Fall gerade zu 

Beginn ein Monitoring inklusive einer Evaluierung, um sicherzustellen, dass die Performanz 

der ML-Modelle auch in einem volldigitalen Format den Erwartungen entspricht. 

Die Zuordnung der Aufgaben zu den Anforderungskategorien wurde zur Vorbereitung der 

latenten Profilanalysen analog zu Artikel 2 ebenfalls gemäß des Zuordnungsmanuals (Anhang 

B) vorgenommen. Dabei wurden die Kategorien zusammengefasst, indem die Aufgaben nach 

dem „Inklusiven-Oder“-Prinzip zugeordnet wurden. Beispielsweise wird eine Aufgabe der 

Kategorie Analysieren-Evaluieren zugeordnet, wenn sie der Kategorie Analysieren und / oder 

der Kategorie Evaluieren zugeordnet ist. 
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Abbildung 6.12 Confusion-Matrizen der direkten Kompetenzprofil-Vorhersage mit BERT und GPT4o-mini. 

Bei der automatisierten Bepunktung des Testinstruments wurde in Artikel 3 und auch in den 

hier noch folgenden zusätzlichen Analysen nur eine Punktzahl von 0 bis 2 Punkten pro Aufgabe 

berücksichtigt. Tatsächlich können in Aufgabe 23 allerdings bis zu drei Punkte erreicht werden. 

Bezogen auf alle Testhefte erreichen allerdings nur 26 Personen drei Punkte in Aufgabe 23, 

was ca. 3 % der Stichprobe entspricht. Ein ML-Modell zur automatisierten Bepunktung, das 

alle Aufgaben bepunkten können soll, müsste dementsprechend einen marginalen Anteil an 

Antworten mit 3 Punkten erkennen (0.17 % bezogen auf die Werte in Tabelle 6.4). Diese 

Kategorie tritt also deutlich zu selten auf, um durch ein Klassifikationsmodell reliabel erkannt 
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zu werden. Daher werden für die Analysen zum automatisierten Assessment alle „3 Punkte“ in 

Aufgabe 23 durch „2 Punkte“ ersetzt. Dadurch entstehende Limitationen werden im Rahmen 

der Personen-weisen Evaluierung der Zuordnung von Kompetenzprofilen (Abschnitt 6.5.3) 

sowie der Vorhersage von Subskalenscores (Abschnitt 6.7.4) automatisch berücksichtigt und 

quantifiziert. 

Da nur ein gemeinsames Scoring-Modell für alle Aufgaben verwendet wird, besteht zudem 

die Möglichkeit, dass das Modell Punktzahlen vergibt, die das Testinstrument eigentlich nicht 

vorsieht. So kann beispielsweise in Aufgabe 11 nur 1 Punkt erreicht werden, das Modell kann 

grundsätzlich aber auch 2 Punkte vorhersagen. Für das in Artikel 3 vorgestellte BERT-Modell 

geschieht eine solche Vergabe unzulässiger Punktzahlen allerdings bemerkenswerterweise für 

kein einziges der 15.600 verarbeiteten Antwort-Score-Paare – weder in den Trainings- noch 

den Evaluierungsvorhersagen. Dies wird in Abschnitt 6.7.6 noch einmal aufgegriffen. 

In Artikel 3 wurde bereits darauf hingewiesen, dass die CV-Splits personenweise erfolgen, 

da im Assessment-Setting typischerweise Aussagen auf Personen-Ebene (Kompetenzprofil, 

Summenscore, Subskalenscore etc.) von Interesse sind. Neue Daten, die das Modell in einem 

tatsächlichen Assessment-Workflow verarbeiten müsste, wären ebenfalls in Form einer 

vollständigen Testbearbeitung strukturiert. Die CV-Splits Personen-weise durchzuführen ist 

also eine notwendige Maßnahme um sog. Data Leakage, also die Vermischung von Trainings- 

und Evaluierungsdaten (Kapoor & Narayanan, 2023 ⁠; Kaufman et al., 2012; siehe auch 

Tschisgale et al., 2025) zu verhindern und verlässlichere Schätzwerte für die Performanz des 

gesamtem Assessment-Systems zu erhalten, auch wenn dadurch die Komplexität des 

Workflows deutlich zunimmt. 

Um die Schätzwerte für die Assessment-Performanz in einen nützlichen Vergleich 

einzubetten, wurden in Artikel 3 Mensch-Mensch-Übereinstimmungswerte bzgl. der 

doppeltkodierten Teilstichprobe von 267 Testheften berichtet (siehe Abschnitt 6.4.4). Für die 

Bepunktung der einzelnen Aufgaben können hier für einen Vergleichswert direkt die 

jeweiligen Scores der beiden Kodierer:innen als Vorhersagen bzw. Targets verwendet werden. 

Für die Evaluierung von weiterführenden Teilen des Assessment Systems, beispielsweise der 

Vorhersage von Kompetenzprofilen oder Summenscores bzgl. der Subskalen des 

Testinstruments (s. u.), muss allerdings weitergedacht werden. Grundsätzlich lassen sich unter 

Nutzung der CV-Splits aus der Automatisierung des Scorings auch solche weiteren, sog. 

„Downstream-Modelle“ trainieren bzw. evaluieren. Dazu werden im Workflow der Analyse 

nicht nur die zur Evaluierung des Scoring Systems notwendigen Vorhersagen bzgl. der 

Evaluierungs-Splits abgespeichert, sondern zusätzlich auch alle Vorhersagen bzgl. der 

jeweiligen Trainings-Splits. Bei einer 𝑘-fold-CV wird dadurch zwar die notwendige 

Datenmenge zum Speichern der Vorhersagen um den Faktor 𝑘 erhöht, allerdings können die 

Datensplits so weitergenutzt werden: Um beispielsweise ein logistisches Regressionsmodell zu 

evaluieren, welches auf Basis der Scores das jeweilige Kompetenzprofil vorhersagen soll, 

liegen nun wieder 𝑘 CV-Splits vor, die direkt verwendet werden können. Dieser Workflow 

funktioniert, ohne dass die Scoring-Modelle aller Splits erneut trainiert oder genutzt werden 

müssen – sie müssen nicht einmal mehr verfügbar sein. Dabei werden dann beim Training 

sowohl des Scoring-Modells als auch des Downstream-Modells ausschließlich die 
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Trainingsdaten verwendet und Data Leakage somit ausgeschlossen.  

Ein Problem bei diesem Vorgehen ist allerdings, dass die Performanz eines solchen 

Downstream-Modells von der Größe des verwendeten Datensatzes abhängen kann. Für die 

Automatisierung wird aber der Gesamtdatensatz von 846 Testheften verwendet, was gut dem 

Dreifachen des doppeltkodierten Datensatzes entspricht. Tatsächlich „trainierte“ Downstream-

Modelle für den Gesamtdatensatz mit einem analogen trainierten Modell für den Mensch-

Mensch-Datensatz zu vergleichen, würde die Performanz des Downstream-Modells gegenüber 

der jeweiligen Mensch-Mensch-Übereinstimmung also ggf. überschätzen. Daher werden für 

Vergleiche von Downstream-Modellen mit der Mensch-Mensch-Übereinstimmung meist 

Modelle gewählt, die nicht mehr weiter trainiert werden. Im Falle der Kompetenzprofil-

Vorhersage ist das das „wahre“ GMM aus der explorativen Analyse und im Falle der 

Vorhersage von Subskalenscores werden die Scores der Einzelaufgaben einfach gemäß der 

Zuordnung der Testaufgaben zu den Subskalen summiert. Die jeweiligen Maschine-Mensch-

Übereinstimmungsmaße lassen sich dann sinnvoll mit den Mensch-Mensch-Übereinstim-

mungsmaßen vergleichen. Im weiteren Verlauf werden darüber hinaus dann aber teilweise 

trotzdem noch „lernende“ Downstream-Modelle wie logistische Regressionsmodelle genutzt, 

um zu zeigen, dass ggf. durchaus höhere Übereinstimmungswerte erreicht werden können, 

indem das Downstream-Modell „Fehler“ des Scoring-Modells ausgleicht. Es ist dann aber zu 

erwarten, dass ein analoges Modell für einen gleichgroßen Mensch-Mensch-Datensatz eine 

entsprechend des vorherigen Vergleichs erhöhte Performanz erreichen würde. Die Performanz 

von trainierten Downstream-Modellen ist also weniger im Verhältnis zu den vorher berichteten 

Mensch-Mensch-Übereinstimmungen zu interpretieren, sondern eher absolut. 

Auch, wenn eine direkte Zuordnung der Antworttexte zu den Kompetenzprofilen nicht bzw. 

nur mit unzufriedenstellender Genauigkeit möglich ist (Abschnitt 6.7.2), so liefert dieser 

zweistufige Ansatz dennoch ein Pattern-Confirmation-Argument in folgendem Sinne: Es wird 

eine latente Zusammenhangsstruktur zwischen den Antworttexten und den Kompetenzprofilen 

„mediiert“ durch die Bepunktung der Aufgaben und MC-Scores gefunden. Die Antworttexte 

können dabei als Repräsentationen des Wissens der Proband:innen als kognitives Konstrukt 

aufgefasst werden (Halliday, 1978). Dadurch liefert die vorgestellte Pattern Confirmation 

neben der praktischen Nutzbarkeit für ein Assessment sowie den Argumenten für Robustheit 

und Generalisierbarkeit der Kompetenzprofile hier insbesondere auch ein Argument für die 

kognitive Validität (Messick, 1995) der Kompetenzprofile. 

6.7.4 Zusätzliche Analysen zu den bestehenden Modellen 

Bei der Nutzung von ML-Modellen für praktische Anwendungen besteht häufig die 

Problematik, dass sich die Daten aus dem realen Anwendungsfall systematisch von den beim 

Training genutzten Daten unterscheiden. Dieses Phänomen wird auch als Distribution Shift 

bezeichnet (z. B. Koh et al., 2021 ⁠; Webb et al., 2018; siehe auch Martin & Graulich, 2024). In 

Standard-Evaluierungsworkflows (wie der CV) wird meist ein zugrundeliegender 

Gesamtdatensatz verwendet, der randomisiert in Trainings- und Evaluierungssegemente 

unterteilt wird. So können aber potenzielle Distribution Shifts nicht abgebildet werden, da per 

Konstruktion die Evaluierungs- und Trainingsdaten dabei stets aus derselben Grundgesamtheit 
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stammen und somit im mathematischen Sinne derselben Verteilung folgen. Daher ist es bei der 

Evaluierung von ML-Modellen sinnvoll, wenn möglich, neben den „klassischen“ 

Evaluierungstechniken auch eine sog. externale Evaluierung (z. B. Varshney, 2019) 

anzustreben. Dabei werden Daten aus anderen Bezugsquellen herangezogen, um die 

Robustheit des Modells gegenüber Distribution Shifts zu evaluieren.  

Die oben bereits angesprochene Nutzung der hier entwickelten FDW-Assessment-Modelle 

in einem volldigitalen Format stellt einen möglichen Distribution Shift dar. Hier liegen 

allerdings bislang keine Daten vor, die für eine entsprechende externale Evaluierung geeignet 

wären. Der doppeltkodierte Teildatensatz (267 Testhefte) bietet aber eine Möglichkeit für eine 

externale Validierung, um die Robustheit des Modells im Allgemeinen einzuschätzen. Die 

Modellvorhersagen zu den Evaluierungssplits können neben den Bepunktungen von 

Kodiererin 1 auch mit der alternativen Bepunktung von Kodierer 2 verglichen werden. In einer 

entsprechenden Evaluierung stimmten die maschinellen Scores (BERT-Modell) in 72,3 % der 

Fälle (𝜅 = 0,508) mit den Scores des zweiten Kodierers überein, was immer noch als gute 

Übereinstimmung aufzufassen ist. Auch die Zuordnung zu den Kompetenzprofilen auf Basis 

des „wahren“ GMM (s. o.) lieferte noch gute Übereinstimmungswerde (73,0 % Accuracy, 𝜅 =

0.532). Es kann also begründet davon ausgegangen werden, dass das Modell nur in einem eher 

geringen Maße „Kodierer:in-spezifische“ Strategien erlernt hat, obwohl im Training 

ausschließlich die Daten der ersten Kodiererin verwendet wurden. Das spricht grundsätzlich 

für die Robustheit des Modells. 

Neben den Kompetenzprofilen sind auf Personen-Ebene auch Summenscores für ein 

automatisiertes Assessment von Interesse. Dabei ist es naheliegend, die Vorhersagegüte 

bezüglich theoretisch fundierter Subskalen, d. h. hier den fachdidaktischen Facetten sowie den 

kognitiven Anforderungskategorien, zu betrachten. Auch der Gesamtscore kann mit in diese 

Betrachtung aufgenommen werden. Um einen direkten Vergleich zur Mensch-Mensch-

Baseline zu ermöglichen, werden hier erneut keine zusätzlichen Modelle trainiert (s. o.), 

sondern lediglich die bestehenden Score-Vorhersagen zu Summenscores bzgl. der betrachteten 

Skalen aggregiert64. Es werden die 10 Skalen Gesamtscore, Instruktionsstrategien, 

Schülervorstellungen, Experimente, Fachdidaktische Konzepte, Reproduzieren, Anwenden, 

Analysieren, Evaluieren und Kreieren betrachtet. Für die Mensch-Mensch-Übereinstimmung 

werden dabei analog zum Vorgehen in Artikel 3 die Bepunktungen von Kodiererin 1 als 

Targets und die Bepunktungen von Kodierer 2 als Vorhersagen betrachtet. Die 

Zusammenhänge zwischen den Vorhersagen und den Targets sind in Abbildung 6.13 

dargestellt. Man erkennt deutlich, dass die Annahme von linearen Zusammenhängen zwischen 

den Targets und den Vorhersagen der Subskalenscores angemessen ist. In Tabelle 6.9 sind die 

Übereinstimmungen mithilfe von Korrelationen und 𝑅2-Werten quantifiziert. Die 

maschinellen Vorhersagen weisen sowohl im Vergleich zur Mensch-Mensch-Baseline als auch 

absolut betrachtet hohe Korrelationen mit den menschlichen Bepunktungen auf. Insgesamt 

kann also davon ausgegangen werden, dass Proband:innen mithilfe des Scoring-Modells valide 

 

64  Im digitalen Begleitmaterial ist sind auch die Ergebnisse unter Nutzung von linearen Regressionsmodellen zur 

Vorhersage der Summenscores enthalten. Die Übereinstimmungswerte sind marginal besser, als die hier 

berichteten. 
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und reliable Rückmeldungen über ihre Kompetenzen in den unterschiedlichen, durch die 

Subskalen abgedeckten Kompetenzbereichen erhalten können. 

 

 

Abbildung 6.13 Darstellung der Zusammenhäng zwischen Summenscore-Targets und -Vorhersagen. Im oberen 

Plot sind die Mensch-Mensch-Übereinstimmungen, im unteren Plot die Maschine-Mensch-Übereinstimmungen 

dargestellt. Die schwarzen Linien stellen jeweils Ausgleichsgeraden dar. Die schraffierten Bereiche repräsentieren 

die Verteilung der Datenpunkte. Man erkennt, dass in allen Fällen ein linearer Zusammenhang angenommen 

werden kann, auch wenn für die Mensch-Mensch-Daten die Verteilungen der Datenpunkte etwas stärker um die 

jeweiligen Ausgleichsgeraden konzentriert sind. 

Tabelle 6.9 Quantifizierung der Übereinstimmungswerte der Summenscore-Vorhersagen. 

 Maschine-Mensch Mensch-Mensch 

 Korrelation  

(Person 𝑟) 

 𝑹𝟐  

(Vorhersage ∝ Target) 

Korrelation  

(Person 𝑟) 

 𝑹𝟐  

(Vorhersage ∝ Target) 

Minimum 0,71*** 0,50 0,75*** 0,56 

Median 0,84*** 0,70 0,88*** 0,77 

Maximum 0,93*** 0,86 0,96*** 0,91 
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Um die Übertragbarkeit der Beobachtungen bezüglich des Sprachgebrauchs der K-Means-

Kompetenzprofile aus Artikel 2 auf die latenten Kompetenzprofile aus Artikel 3 einzuschätzen, 

wurde hier zudem erneut ein STM (Roberts et al., 2019) erstellt. Um eine Vergleichbarkeit zu 

den Analysen in Artikel 2 herzustellen, wurde das Modell analog – insbesondere ebenfalls mit 

6 Topics – konfiguriert. Aus den Wortlisten der Topics lassen sich analog zum Vorgehen in 

Artikel 2 (Abschnitt 5.5.2) Kurzbeschreibungen / Titel für die Topics ableiten (Tabelle A5). 

Die sich ergebenden Topics sind ähnlich zu denen in Artikel 2. Auch hier wurde anschließend 

der Zusammenhang zwischen der Kompetenzprofilzugehörigkeit und den Topics quantifiziert 

(Abbildung 6.14). Dabei sind deutliche Parallelen zu den Ergebnissen der K-Means Analyse 

(Figure 5.7) zu erkennen. Insbesondere die Fokussierung der High-Achievers auf das Topic 

Schülervorstellungen ist hier sogar stärker. 

 

Abbildung 6.14 Zusammenhang zwischen Kompetenzprofilzugehörigkeit (LPA) und Topics. 

Zuletzt sei hier noch angemerkt, dass ausführlichere Interpretierbarkeitsbetrachtungen und 

Fairnessanalysen nicht mehr Teil dieses Projekts sind, auch wenn entsprechende erste 

Analysen im Ausblick von Artikel 3 genannt wurden. Die Ansätze im digitalen Begleitmaterial 

zu dieser Arbeit können allerdings als Ausgangspunkt für etwaige Folgeprojekte dienen. 

6.7.5 Aufgabenweise Performanzanalysen 

Zhai et al. (2021b) arbeiten heraus, dass im Kontext des automatisierten Scorings weitere 

Forschung zu Einflussfaktoren auf die Modellperformanz notwendig ist. Zesch et al. (2023) 

stellen im Rahmen ihrer Untersuchung unterschiedlicher Testinstrumente (auf Schulniveau) 

fest, dass unter anderem die durchschnittliche Länge der Antworten zu einer Aufgabe einen 
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Einfluss auf die Performanz eines Scoring-Modells haben kann: Je länger die Antworten zu 

einer Aufgabe im Mittel sind, umso geringer ist die Modellperformanz. Im Rahmen des 

vorliegenden Projekts liegen einige weitere interessante Daten vor, die auf die 

Modellperformanz bezogen werden können. Somit kann hier ein Beitrag zum Forschungstand 

geleistet werden, auch, wenn die Ergebnisse aufgrund der vergleichsweisen kleinen Anzahl an 

Aufgaben eher als Indizien aufzufassen sind. Dazu wird hier die Performanz des BERT-

Scoring Modells aus Artikel 3 aufgabenweise genauer betrachtet. Als potenzielle 

Einflussfaktoren werden herangezogen: 

1. Die Anzahl an Antworten, die für die jeweilige Aufgabe vorhanden sind. Beispielsweise 

sind im Datensatz zu Aufgabe 17 nur 454 Antworten vorhanden, während zu Aufgabe 3 

825 Antworten verfügbar sind. 

2. Die „Schiefe“ (Kokoska & Zwillinger, 2000, Abschnitt 2.2.24.1) der Verteilung der 

Scores der jeweiligen Aufgaben. Die Schiefe ist größer, je ungleichmäßiger die 

Punktzahlen zwischen 0, 1 und 2 verteilt sind. 

3. Die durchschnittliche Länge der Antworten zur jeweiligen Aufgabe. 

4. Die Inter-Rater-Reliabilität in Form des Mensch-Mensch-Cohens-𝜅 für die jeweilige 

Aufgabe. 

Zur Quantifizierung der Modellperformanz wird das Maschine-Mensch-Cohens-𝜅 

verwendet, da so die ungleichmäßige Verteilung der Score-Labels berücksichtigt wird. Für die 

Analyse wurde ein 𝑧-standardisiertes lineares Regressionsmodell mit den o. g. vier Prädiktoren 

und dem Maschine-Mensch-Cohens-𝜅 als abhängige Variable erstellt (Tabelle 6.10, Abbildung 

6.15). Relevante Einflussfaktoren sind diesem Modell zufolge die durchschnittliche 

Antwortlänge sowie die Mensch-Mensch-Übereinstimmung: Die durchschnittliche Antwort-

länge hängt signifikant negativ und die Mensch-Mensch-Übereinstimmung signifikant positiv 

mit der Modellperformanz zusammen. Beide Einflussfaktoren weisen eine große Effektstärke 

(Regressions-𝛽) auf. Die Anzahl an verfügbaren Antwort-Score Paaren für das Modelltraining 

sowie die Schiefe der Score-Verteilung zeigen hier (erstaunlicherweise) keinen signifikanten 

Zusammenhang zur Modellperformanz. 

Tabelle 6.10 Einflussfaktoren auf die (aufgabenweise) Performanz des BERT-Scoring-Modells (Regression). Da 

hier die aufgabenweise Performanz untersucht wird, entspricht das 𝑁 des Regressionsmodells (𝐹(4, 18) = 5,596, 

𝑝 = 0.004∗∗) der Anzahl an Aufgaben mit offenem Antwortformat im Testinstrument, d. h., 𝑁 = 23. 

Prädiktor 𝜷 𝑻 𝒑-Wert 

Intercept 0 0 1 

Anzahl an Antworten −0,096 −0,605 0,553 

Schiefe der  

Punktzahl-Verteilung 
0,037 0,227 0,823 

Durchschnittliche 

Antwortlänge 
−𝟎, 𝟒𝟕𝟏 −𝟐, 𝟔𝟖𝟑 𝟎, 𝟎𝟏𝟓∗ 

Mensch-Mensch-𝜅 𝟎, 𝟒𝟏𝟕 𝟐, 𝟑𝟎𝟕 𝟎, 𝟎𝟑𝟒∗ 
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Abbildung 6.15 Relevanteste potenzielle Einflussfaktoren auf die (aufgabenweise) Performanz des BERT-

Scoring-Modells (Regression). 

6.7.6 Embedding Basierte Scoring-Modelle 

Im Folgenden werden Embedding-basierte (s. u. sowie Abschnitt 2.7) Scoring-Modelle 

vorgestellt, die im Rahmen der Analysen zu Artikel 3 exploriert wurden. Solche Modelle sind 

interessant, da sie die Dauer des Trainings- bzw. Evaluierungsworkflows gegenüber dem 

Finetuning eines gesamten Sprachmodells um einen Faktor 5 bis ~100 verkürzen und für ihre 

Nutzung deutlich weniger Rechenleistung und Speicher benötigt wird. Darüber hinaus wird die 

Auswirkung bestimmter Vorverarbeitungs- und Workflowschritte anhand solcher Modelle 

evaluiert. 

Sämtliche Modelle und Workflow-Alternativen sind mithilfe von CVs evaluiert. Dabei ist 

zu beachten, dass die Anzahl an verwendeten CV-Splits einen Einfluss auf die Schätzwerte der 

Performanz des erhaltenen Modells haben kann: Je mehr CV-Splits verwendet werden, umso 

höher und akkurater sind typischerweise die Schätzwerte für die Modellperformanz 

(Abbildung A4). In einer 10-fold-CV werden beispielsweise in jedem CV-Schritt ca. 90 % des 

Datensatzes für das Training und 10 % für die Evaluierung genutzt. Das Modell kann also 

einen großen Teil der Varianz im Datensatz potenziell erlernen. In einer 3-fold-CV werden in 

jedem CV-Schritt dagegen nur ca. 67 % des Datensatzes für das Training und 33 % für die 

Evaluierung genutzt. Das heißt, hier wird weniger Varianz des Datensatzes im Training 

abgedeckt. Die genauesten Performanzschätzwerte erhält man daher mit einer sog. „Leave-

One-Out“-CV (z. B. Géron, 2019), bei der jeder einzelne Datenpunkt einmal als 

„Evaluierungsdatensatz“ genutzt wird. Für die meisten Anwendungsfälle ist eine solche 

Evaluierung aber zu aufwändig; im Falle dieses Projekts müsste dafür jedes Modell im CV-

Workflow 846-mal trainiert werden. Für das BERT-Modell aus Artikel 3 ergibt sich in der 10-

fold-CV eine Accuracy von 75,1 % und ein Cohens 𝜅 von 0,560. In einer 3-fold-CV ergeben 

sich für dasselbe Modell eine Accuracy von 74,2 % und ein Cohens 𝜅 von 0,544. Die 

Unterschiede sind also gering, aber spürbar. Aus Zeit- und Effizienzgründen konnte nicht jedes 

Modell, welches hier exploriert wurde, im Rahmen einer 10-fold-CV evaluiert werden. 
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Insbesondere bei den finegetuneten Modellen wurde daher teilweise lediglich eine 3-fold-CV 

durchgeführt. Dabei ist zu beachten, dass primär Modelle mit der gleichen Anzahl an CV-Splits 

direkt miteinander verglichen werden65. Wenn im Folgenden keine explizite Anmerkung zu 

einem Modell vorhanden ist, kann davon ausgegangen werden, dass es sich bei finegetuneten 

Modellen um eine 3-fold-CV und bei Embedding-basierten Modellen um eine 10-fold-CV 

handelt. 

Wie bereits eingangs in Abschnitten 2.6 und 2.7 dargestellt, ist ein wesentliches Element 

der automatisierten bzw. ML-basierten Sprachverarbeitung die Repräsentation von Worten und 

Texten als Zahlen. Im mathematischen Sinne handelt es sich bei diesen Zahlen um Vektoren, 

die im Kontext der automatisierten Sprachverarbeitung meist Embeddings genannt werden. 

Embeddings lassen sich aus Transformer-Sprachmodellen (siehe Abschnitt 2.7) über 

Embedding-Layer und Zwischenrepräsentationen extrahieren. Transformer-Sprachmodelle 

können auch explizit zur Generierung aussagekräftiger Embeddings trainiert werden (z. B. 

Reimers & Gurevych, 2019). Auf Basis dieser Embeddings können dann „klassische“ ML-

Modelle wie beispielsweise logistische Regressionsmodelle, Decision Trees bzw. 

Entscheidungsbäume, Random Forests oder Support Vector Machines (SVM) trainiert werden 

(z. B. Géron, 2019 ⁠; Rao & McMahan, 2019)66. Der Vorteil bei diesem Vorgehen ist, dass man 

die verfügbaren Texte nur ein einziges Mal mithilfe des Sprachmodells in Embeddings 

umwandeln muss. Das weitere Training ist dann je nach verwendetem ML-Modell deutlich 

schneller und effizienter als beim vollständigen Finetuning eines Sprachmodells.  

Hier wurden zunächst Embeddings auf Basis dreier unterschiedlicher Sprachmodelle 

verwendet: 

1. SBERT: Das Sentence-BERT Modell (Reimers & Gurevych, 2019) ist im Prinzip ein 

klassisches BERT-Modell. Der Unterschied liegt im Pretraining: Das SBERT-Modell 

wurde explizit so trainiert, dass ähnliche Texte ähnliche Embeddings ergeben. Die 

Embeddings sind 384-dimensional und das Modell hat ca. 110 Mio. Parameter. 

2. LLaMA 3.2-1B: Die LLaMA-Modellfamilie (Touvron et al., 2023a ⁠; Touvron et al., 

2023b) ist eine von Meta veröffentlichte und open-source-verfügbare Familie von 

Sprach- bzw. multimodalen67 Modellen. Hier wurde das LLaMA 3.2-1B-Modell (Meta, 

2024) mit einer Größe von ca. 1 Mrd. Parametern unter Nutzung der Open-Source-

Software Ollama68 (Ollama, 2024) verwendet. Die Embeddings sind 2048-dimensional. 

 

65  Abbildung A4 zeigt aber, dass die Unterschiede zwischen einer 3-fold- und einer 10-fold-CV eher in der 

Größenordnung von 1 bis 2 % bezüglich der Accuracy liegen, also überschaubar sind. 

66  Für detailliertere Informationen über die unterschiedlichen genutzten ML-Modelle sei hier auf entsprechende 

Literatur (z. B. Géron, 2019) verwiesen. 

67  Aufgrund des großen Erfolges von Transformer Modellen nicht nur bei der Text- sondern beispielsweise auch 

bei der Bildverarbeitung (z. B. Dosovitskiy et al., 2021 ⁠; Esser et al., 2021) sind große Transformermodelle 

mittlerweile oft Multimodal und können insbesondere Text-, Ton- und Bilddaten verarbeiten. 

68  Ollama kann genutzt werden, um einen in den Programmiersprachen Go und C implementierten lokalen Server 

zu hosten, der eine Auswahl an Open-Source Modellen betreiben kann. Um die Modelle zu nutzen, können 

dann einfach Anfragen an diesen Server gesendet werden. Dadurch wird die hohe Performanz von Go und C 
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3. TE3s49: Das Modell „text-embedding-3-small“ ist die kleinere Version des aktuellen 

(Januar 2025) Embedding-Modells von OpenAI (o. D.-b)69. Das Modell kann über die 

OpenAI-API kostengünstig genutzt werden und liefert 1536-dimensionale Embeddings. 

Im ersten Schritt werden unabhängig vom später genutzten ML-Modell die Embeddings 

generiert. Für den hier verwendeten Datensatz nimmt dies bei allen drei genutzten Embedding-

Modellen mit den Implementierungen, die im digitalen Begleitmaterial hinterlegt sind, 

lediglich einige Minuten in Anspruch70.  

Um die Embedding-Modelle zu evaluieren, wurde zunächst einheitlich ein logistisches 

Regressionsmodell im Rahmen einer 10-fold-CV für das Scoring genutzt. Abbildung 6.16 stellt 

die Übereinstimmungswerte im automatisierten Scoring dar. Als Vergleichswert ist dort zudem 

die Performanz des finegetuneten BERT-Modells aus Artikel 3 dargestellt. Die Embedding-

Modelle kombiniert mit logistischer Regression bleiben deutlich hinter dem finegetuneten 

Modell zurück. Insbesondere das Modell auf Basis der LLaMA-Embeddings zeigt eine 

niedrige Performanz. Die LLaMA-Embeddings werden daher aus Gründen der 

Übersichtlichkeit im Folgenden nicht mehr betrachtet. 

 

Abbildung 6.16 Vergleich der Performanz des automatisierten Scorings auf Basis dreier Embedding-Modelle mit 

logistischer Regression. 

 

genutzt, aber ein einfaches Interface beispielsweise in Python oder Javascript bereitgestellt. Weitere 

Informationen unter https://github.com/ollama. 

69  OpenAI sind dabei weder bezüglich der zugrundeliegenden GPT-Version (z. B. GPT3.5 oder GPT4o) noch der 

Parameteranzahl des Modells transparent. Gemessen an der mit über 8000 Token recht großen Kontextlänge 

ist hier allerdings mit einigen 100 Mio. bis einigen Mrd. Parametern zu rechnen. 

70  Für die Analysen dieser Arbeit wurde ein Computer mit einem AMD Ryzen 3700X, 32 Gigabyte 

Arbeitsspeicher und einer Nvidia RTX 2080-GPU Super mit 8 Gigabyte Grafikspeicher genutzt. 

https://github.com/ollama
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6.7.7 Auswirkung von Vorverarbeitungsschritten und Modellwahl auf die 

Performanz des Assessment-Systems 

Eine Möglichkeit, der ungleichmäßigen Verteilung der Score-Labels (Tabelle 6.4) zu begegnen 

ist das sog. Oversampling (Lemaître et al., 2017). Dabei werden die Datenpunkte mit den 

selteneren Labels randomisiert öfter im Training verwendet, sodass insgesamt eine 

gleichmäßige Abdeckung der Label-Verteilung im Training erzeugt wird. In Abbildung 6.17 

sind für die SBERT- und OpenAI-Embeddings sowie das finegetunete BERT-Modell die 

Auswirkungen von Oversampling auf die Performanz dargestellt. Man erkennt insbesondere 

die positive Auswirkung auf Cohens 𝜅, was für das automatisierte Scoring (insbesondere bei 

ungleichmäßiger Score-Verteilung) die wichtigste Metrik darstellt. Dabei sei erwähnt, dass die 

Evaluierungsdaten nicht dem Oversampling unterzogen werden (dürfen). Für das finegetunete 

BERT-Modell ist eine derartige positive Auswirkung des Oversamplings nicht zu beobachten 

(Abbildung 6.17, grau / schwarz). Beim Finetuning lohnt es sich hier also nicht, die (durch die 

hohe Schiefe der Score-Label-Verteilung deutlich) erhöhte Trainingsdauer in Kauf zu nehmen. 

 

Abbildung 6.17 Auswirkung von Oversampling auf die Scoring-Modelle. Die Embedding-basierten Modelle 

(SBERT und OpenAI TE3s) bestehen aus den Embeddings gefolgt von einem logistischen Regressionsmodell 

und wurden mithilfe einer 10-fold-CV evaluiert. Das finegetunete BERT-Modell ist analog zu Artikel 3 trainiert, 

wurde allerdings hier zur Betrachtung der Auswirkung des Oversamplings nur im Rahmen einer 3-fold-CV 

evaluiert. 

Analog zum Effekt des Oversamplings kann man auch den Effekt, den das Hinzufügen der 

Aufgabennamen in der Form „Aufgabe X: …“ zu den Antworttexten hat, quantifizieren. Dazu 

wurden die verwendeten Embeddings der Antworttexte einmal mit und einmal ohne die 

Aufgabennamen erstellt. Im Falle des BERT-Modells aus Artikel 3 kann direkt mit oder ohne 

hinzufügen der Aufgabennamen gearbeitet werden. Alle bisher berichteten Modelle sind mit 

Aufgabennamen trainiert worden, daher wird hier in Abbildung 6.18 explizit darauf 

hingewiesen, welche Modelle ohne Aufgabennamen trainiert wurden. Man erkennt einen leicht 

positiven Effekt der Nutzung der Aufgabennamen auf die Performanz, insbesondere auch für 

das finegetunete BERT-Modell. Hier kann zudem noch die Anzahl an „unmöglichen“ 
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Punktzahlen betrachtet werden: Wie bereits in Abschnitt 6.7.3 erwähnt, können die Modelle 

grundsätzlich Punktzahlen vorhersagen, die das Testinstrument eigentlich nicht vorsieht, da 

nicht alle Aufgaben des Testinstruments die gesamte Spanne von 0 bis 2 Punkten abdecken. 

Für das SBERT-Modell sinkt die Anzahl an illegitimen Scores durch das Hinzufügen der 

Aufgabennamen von 49 auf 3, für das OpenAI-TE3s-Modell von 9 auf 0 und für das 

finegetunete BERT-Modell von 22 auf 0. Auch wenn dies im Vergleich zu den insgesamt 

15.600 Evaluierungsvorhersagen kleine Werte sind, kann die Fehlerquote hier doch stark 

verringert werden, ohne, dass ein echter Mehraufwand in Kauf genommen werden muss. 

 

Abbildung 6.18 Auswirkung des Hinzufügens der Aufgabennamen zu den Aufgabentexten beim automatisierten 

Scoring. 

Neben dem logistischen Regressionsmodell wurde für die Embedding-basierten Scoring-

Modelle auch mit weiteren ML-Modellen experimentiert71. Einen nennenswerten 

Performanzzuwachs brachte dabei die Nutzung von SVMs: Eine SVM auf Basis der OpenAI-

Embeddings erreicht hier ebenso hohe Übereinstimmungswerte, wie das finegetunete BERT-

Modell aus Artikel 3 (Abbildung 6.19, links). Das Oversampling ermöglich dabei zudem eine 

deutlich bessere Vorhersage im Falle von 2 erreichten Punkten (Abbildung 6.19, rechts). Es 

muss allerdings beachtet werden, dass sich bei einer SVM (zumindest bei der Nutzung der 

gängigen Python-Software Scikit-Learn, Pedregosa et al., 2011) die Dauer des Workflows auch 

wieder auf ca. 1/3 der Dauer des Finetuning-Workflows erhöht. Die ~100-fache 

Beschleunigung des Workflows bei der Nutzung von Embeddings mit logistischer Regression 

kann mit SVMs leider nicht erreicht werden.  

Auch, wenn das Modell auf Basis der OpenAI-TE3s-Embeddings eine größere Performanz 

erreicht, ist das SBERT-Modell trotzdem eine interessante Alternative. Wie auch das 

finegetunete BERT-Modell ist auch das SBERT-Modell vergleichsweise klein und zudem 

 

71  Dabei wurden ein Fully-Connected-Neural-Network, ein Random Forest, logistische Regressionsmodelle unter 

der Nutzung unterschiedlicher Optimierungsalgorithmen sowie SVMs verwendet (siehe digitales 

Begleitmaterial). Für Informationen zu diesen Modellklassen sei beispielsweise auf Géron (2019) verwiesen. 
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open-source verfügbar. Es kann also ohne Probleme vollständig lokal genutzt werden, ohne 

dass man auf die Nutzung von APIs Dritter angewiesen ist. Die Nutzung der SBERT-

Embeddings ist vor allem interessant, wenn die verfügbare Hardware für ein vollständiges 

Finetuning nicht leistungsstark genug ist, denn das Erstellen der Embeddings erfordert deutlich 

weniger Rechenleistung und Arbeitsspeicher als ein vollständiges Finetuning72. 

 

Abbildung 6.19 Performanz von SVMs auf Basis der Embedding-Modelle gegenüber der Performanz des 

finegetuneten BERT-Modell. 

Auch die Score-Vorhersagen auf Basis der Embedding-Modelle können analog zum 

Vorgehen in Artikel 3 zur Vorhersage der Kompetenzprofile genutzt werden. Um auch hier die 

Vergleichbarkeit zur Mensch-Mensch-Übereinstimmung zu verbessern, wurde ebenfalls das 

„wahre“ GMM zur Zuordnung zu den Kompetenzprofilen auf Basis der Score-Vorhersagen 

genutzt. Abbildung 6.20 stellt die Performanz der unterschiedlichen Modelle bezüglich der 

Kompetenzprofilzuordnung dar. Zum Vergleich ist außerdem das BERT-Modell aus Artikel 3 

enthalten. Darüber hinaus sind sowohl für die OpenAI-Embeddings als auch für die SBERT-

Embeddings die Werte dargestellt, die man erhält, wenn ein logistisches Regressionsmodell 

zur Zuordnung der Cluster ausgehend von den Scores trainiert wird (Zusatz „Cluster-Fit“ in 

der Legende von Abbildung 6.20). Das SBERT-basierte Modell mit einer SVM für das Scoring 

und einem auf diesen Scores aufbauenden logistischen Regressionsmodells zur Vorhersage der 

Kompetenzprofile erreicht hierbei auffällig hohe Performanzwerte. 

Analog zum Vorgehen in Abschnitt 6.7.4 kann auch für die anderen Scoring-Modelle die 

Performanz neben der Zuordnung zu den Kompetenzprofilen auch mit der Vorhersagegüte 

bezüglich der Subskalen-Summenscores evaluiert werden. Aus Platzgründen wird hier nicht 

für jedes Scoring-Modell eine ausführliche Betrachtung wie in Abschnitt 6.7.4 vorgestellt. 

Stattdessen werden hier die (Pearson-)Korrelationen zwischen den menschlichen und 

maschinellen Subskalen-Scores bezüglich der 10 Skalen (siehe Abschnitt 6.7.4) 

zusammengefasst als Boxplots dargestellt (Abbildung 6.21). Dabei wird sich ebenfalls analog 

zum vorherigen Vorgehen auf die schlichte Summierung der Score-Vorhersagen ohne ein 

 

72  Je nach genutztem Optimierungsverfahren sind die Speicheranforderungen beim Finetuning um einen Faktor 

5 bis 10 gegenüber der sog. Inference, d. h. der Benutzung eines bestehenden Modells, erhöht. 
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zusätzliches Downstream-Modell bezogen, um eine Vergleichbarkeit zu den Mensch-Mensch-

Werten herzustellen. Selbst das schlechteste Modell, d. h. das SBERT-Embedding-basierte 

Scoring-Modell mithilfe logistischer Regression, erreicht auch im schlechtesten Falle noch 

eine Korrelation von knapp 0,6. Die Modelle nähern sich in der Performanz der Mensch-

Mensch-Übereinstimmung an. Um Subskalen-Scores vorherzusagen, scheinen also viele 

Modelle in Frage zu kommen, die teilweise innerhalb kurzer Zeit auch mit begrenzten 

Ressourcen trainiert bzw. evaluiert werden können. 

 

Abbildung 6.20 Kompetenzprofil-Vorhersagen aus Basis der Embedding-basierten Scoring-Modelle. 

 

Abbildung 6.21 Korrelationen zwischen maschinellen und menschlichen Subskalen-Scores – unterschiedliche 

Modelle. In die einzelnen Boxplots gehen die Korrelationswerte bezüglich der 10 Skalen Gesamtscore, 

Instruktionsstrategien, Schülervorstellungen, Experimente, Fachdidaktische Konzepte, Reproduzieren, 

Anwenden, Analysieren, Evaluieren und Kreieren ein. Es werden hier auch bereits die Werte der in Abschnitt 

6.7.8 betrachteten finegetuneten Modelle (GPT4o-mini & SciEdBERT) dargestellt. Das GPT4o-mini Modell 

wurde im Rahmen einer 3-fold-CV evaluiert, alle anderen Modelle im Rahmen einer 10-fold-CV. Das 

SciEdBERT73-Modell wird in Abschnitt 6.7.8 eingeführt. 
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Zuletzt sei hier noch kurz angemerkt, dass auch auf Basis von Embeddings versucht werden 

kann, die Kompetenzprofile direkt, d. h. ohne vorheriges Scoring der Aufgaben, 

vorherzusagen. Die dabei erreichten Übereinstimmungswerte sind jedoch ähnlich 

unzufriedenstellend, wie beim analogen Ansatz mit finegetuneten Modellen (Abschnitt 6.7.2). 

Lediglich die Gleichmäßigkeit der Falsch-Klassifikationen kann durch Oversampling etwas 

erhöht werden (siehe digitales Begleitmaterial). 

6.7.8 Finegetunete Scoring-Modelle und ChatGPT als Scorer 

Embedding-basierte Modelle stellen eine praktische Alternative für das automatisierte Scoring 

dar. Um einige Randbemerkungen aus Artikel 3 noch empirisch zu untermauern und darüber 

hinaus Vergleiche zu anderen bestehenden Ansätzen durchführen zu können, werden hier 

abschließend noch Informationen zu weiteren explorierten Modellen ergänzt, die wie das 

BERT-Modell in Artikel 3 vollständig finegetuned wurden. 

In Artikel 3 wird erwähnt, dass sich weiteres Training über die dritte Epoch hinaus für das 

BERT-Modell nicht lohnt. In Abbildung 6.22 wird dies noch einmal verdeutlicht: Zusätzliches 

Training führt lediglich zu Overfitting, welches durch den steigenden Evaluierungsloss 

sichtbar wird. Die Performanz bezüglich der nicht-kontinuierlichen Metriken (Abbildung 6.22, 

rechts) bleibt allerdings fast identisch. 

 

Abbildung 6.22 Auswirkung von zusätzlichen Trainingsepochs auf die Performanz des BERT-Scoring-Modells. 

Als Alternative für das verwendete BERT-Modell wird in Artikel 3 das SciEdBERT73-

Modell von Latif et al. (2024) erwähnt. Es ist begrüßenswert, dass in der deutschsprachigen 

naturwissenschaftsdidaktischen Forschung Ansätze verfolgt werden, flexibel einsetzbare 

Sprachmodelle zu entwickeln, die gegenüber den allgemein vortrainierten Modellen (wie 

BERT) ggf. einen Mehrwert bieten. Allerdings wurden für das domänenspezifische Training 

von SciEdBERT fachphysikalische Aufgaben auf Schulniveau aus den PISA-Studien von 2015 

und 2018 verwendet, sodass hier nicht unbedingt zu erwarten ist, dass die Nutzung von 

SciEdBERT für die Bepunktung von fachdidaktischen Aufgaben auf universitärem Niveau 

 

73  Science-Education-BERT 
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einen Vorteil hat. Dieser Verdacht bestätigte sich in einer 10-fold-CV, bei der in einem 

analogen Workflow zu Artikel 3 SciEdBERT eine Accuracy von 75,4 % und ein Cohens 𝜅 von 

0,563 erreichte. Die Unterschiede zur Performanz des „klassischen“ BERT-Modells aus 

Artikel 3 (75,1 %, 𝜅 = 0,560) sind also marginal. In Abbildung 6.21 sieht man zudem, dass 

SciEdBERT auch bezüglich der Vorhersage der Subskalen-Scores keine nennenswerten 

Vorteile bietet. In Abbildung 6.23 sind zudem die Performanzwerte aller finegetuneten 

Scoring-Modelle noch einmal im Rahmen einer 3-fold-CV dargestellt. Man erkennt, dass die 

durch die randomisierte Erstellung der CV-Splits entstehende statistische Schwankung der 

Performanzwerte den vermeintlichen minimalen Vorteil des SciEdBERT-Modells egalisiert 

(siehe auch Abbildung A4). 

Neben dem Training von SciEdBERT stellen Latif et al. (2024) zudem einen Workflow vor, 

bei dem das Scoring-Modell neben dem gemeinsamen Training mit allen Aufgaben auch 

anschließend noch für jede einzelne Aufgabe finegetuned wird. Sie nutzen dabei einen 

Datensatz für das Finetuning eines BERT-Modells mithilfe von allen Aufgaben und einen 

zweiten Datensatz für das aufgabenspezifische Finetuning, sodass Data Leakage vermieden 

wird. Das somit zusätzlich finegetunete Modell erreicht dadurch im Durchschnitt aller 

Aufgaben einen Performanzzuwachs von ca. 10 %74. Da im hier vorgestellten Projekt kein 

zusätzlicher Datensatz für ein aufgabenweises Finetuning verfügbar ist, wird der bereits zuvor 

verwendete CV-Ansatz verfeinert. Der Evaluierungsworkflow lautet dann wie folgt: 

1) Unterteile den Gesamtdatensatz randomisiert in 𝑘 Segmente (CV-Splits). 

2) Für jedes dieser Segmente: 

a) Trainiere ein BERT-Modell auf Basis aller Antwort-Score-Paare außer denen in diesem 

Segment (Segment X). 

b) Optional: Speichere die Vorhersagen des Modells aus Schritt a) bezüglich aller Antwort-

Score Paare in Segment X. 

c) Für jede Aufgabe (Aufgabe Y) des Fragebogens (23 Aufgaben): 

i) Erstelle eine Kopie des Modells aus Schritt a) und trainiere es erneut bezüglich aller 

Antwort-Score-Paare der aktuellen Aufgabe Y, außer denen in Segment X. Dieses Modell 

wird Modell X-Y genannt. 

ii) Für alle Antwort-Score Paare zur aktuellen Aufgabe Y in Segment X: Speichere die 

Vorhersagen des Modells X-Y zu den Antworten für die spätere Evaluierung 

3) Evaluiere die aufgabenweise finegetuneten Modelle mit den Vorhersagen aus Schritt 2.c.ii). 

4) Optional: Evaluiere das Aufgaben-agnostische Modell mit den Vorhersagen aus Schritt 2.b). 

Ohne die Schritte 2.c) und 3) ist dies der „normale“ CV-Workflow, der auch in Artikel 3 

verwendet wird. Die Schritte 2.c) und 3) ermöglichen eine Data-Leakage-freie Evaluierung der 

 

74  In den bisher (Stand Januar 2025) von Latif et al. (2024) zur Verfügung gestellten Reports und Code-Teilen 

wird der Workflow allerdings noch nicht ganz deutlich. Die Performanzzuwächse können beispielsweise auch 

dadurch entstehen, dass beim aufgabenweisen Finetuning noch einmal zusätzliche Daten verwendet werden, 

der Trainingsdatensatz sich also insgesamt vergrößert. Im ihren bisherigen Preprint bleiben Latif et al. (2024) 

hier recht vage. 
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aufgabenweise finegetuneten Modelle. Die Performanzwerte der aufgabenweisen 

finegetuneten Modelle sind in Abbildung 6.23 unter dem Label „BERT (aufgabenweise, 3cv)“ 

enthalten. Man erkennt nur kleine Zuwächse. Zusätzlich muss man nach einem aufgabenweisen 

Finetuning anstatt eines einzelnen Modells hier 23 Modelle nutzen. Anstatt ein einzelnes 

BERT-Modell von ca. 440 Megabyte in den Arbeitsspeicher des Servers zu laden, müssten 

dann insgesamt über 10 Gigabyte an BERT-Modellen geladen und wieder freigegeben werden, 

was einen großen Overhead an notwendiger Rechenleistung und -dauer erzeugt. Für die nur 

geringen Performanzzuwächse erscheint das nicht als lohnend75. 

 

Abbildung 6.23 Performanz der explorierten Finetuning-Scoring-Modelle. Die Hinzunahme von GPT4o-mini 

wird unten noch diskutiert. Es ist zu beachten, dass SciEdBERT und BERT mit einer 10-fold-CV und das 

aufgabenweise BERT-Modell sowie GPT4o-mini lediglich mit einer 3-fold-CV evaluiert wurden. 

Zuletzt wird am Beispiel von GPT4o-mini (OpenAI, 2022 ⁠, 2024b) untersucht, ob die 

Nutzung bzw. das Finetuning von großen Sprachmodellen (LLMs) einen lohnenden Mehrwert 

gegenüber den anderen verwendeten Modellen bietet. Mittlerweile stellen die Anbieter von 

LLM-Tools wie ChatGPT vermehrt auch Funktionen zum Finetuning der Modelle für konkrete 

Anwendungszwecke bereit (z. B. OpenAI, o. D.-a)49. Latif und Zhai (2023) berichten in diesem 

Zusammenhang von Zuwächsen in der Performanz von bis zu 10 % bei der Nutzung eines 

finegetuneten GPT3.5-Modells gegenüber einem BERT-Modell für automatisiertes Scoring 

von Physikaufgaben auf Mittelstufenniveau. Inspiriert von diesen Ergebnissen wurde auch hier 

die OpenAI-API verwendet, um die aktuelle ChatGPT-Version (GPT4o-mini) zur Bepunktung 

der FDW-Aufgaben zu trainieren. Dies wurde im Rahmen einer 3-fold-CV evaluiert. Die 

 

75  In diesem Kontext könnte die Anwendung der sog. Low-Rank-Adaptation Methode (LoRA, Hu et al., 2022) 

interessant sein. Dabei werden nur Teile eines Modells bei einem Finetuning verändert. Bei der erweiterten 

quantisierten LoRA-Methode (QLoRA, Dettmers et al., 2024) werden die Modellparameter zusätzlich in ein 

Speicherformat mit geringerer Speichernutzung überführt, sodass auch größere Sprachmodelle in den Blick 

genommen werden können. Da für den hier verfügbaren Datensatz aber sogar ein vollständiges Finetuning 

kaum Performanzzuwächse bringt, ist eine Evaluierung mit LoRA hier nicht zielführend, ggf. aber 

vielversprechend für inhaltlich verschiedene aber strukturell ähnlich Datensätze. 
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erhaltenen Performanzwerte bezüglich des automatisierten Scorings sind in Abbildung 6.23 

enthalten. GPT4o-mini übertrifft das BERT-Modell dabei lediglich um ca. 3 % bzgl. der 

Accuracy und um ein Delta von 0,05 bzgl. Cohens 𝜅. Dabei sei angemerkt, dass ein einzelner 

CV-Durchlauf beim hier vorliegenden Datensatz mit GPT4o-mini ca. 10 € an Kosten erzeugt 

und keine Zeitersparnis gegenüber dem Finetuning von BERT (bei Verfügbarkeit einer 

mittelstarken GPU70) erzielt wird. Abbildung 6.21 und Abbildung 6.24 zeigen entsprechende 

Zuwächse in den Übereinstimmungswerten auch für die auf dem Scoring basierende 

Vorhersage von Subskalen-Scores und Kompetenzprofilen. 

 

Abbildung 6.24 Cluster-Vorhersagen auf Basis von BERT und GPT4o-mini. Dargestellt sind sowohl die 

Vorhersageübereinstimmungen auf Basis des GMMs aus Artikel 3 zum direkten Vergleich mit der Mensch-

Mensch-Baseline als auch auf Basis eines zusätzlichen logistischen Regressionsmodells zur Vorhersage der 

Cluster auf Basis der Scores („Cluster-Fit“-Zusatz in der Legende). 

GPT4o-mini übertrifft die übrigen Modelle also leicht im automatisierten Scoring. Der 

Workflow für das Trainieren und Evaluieren des Modells ist aber ähnlich langwierig, wie das 

Finetuning von BERT und dabei deutlich kostspieliger. Wenn man trotzdem bei einer 

Implementation des Assessments auf GPT4o-mini setzen würde, wäre man zudem davon 

abhängig, dass OpenAI ihre API nicht verändert, sich also die Struktur der Anfragen und 

Antworten an den Server nicht verändert. Solche Änderungen würden entsprechende 

Anpassungen an den Code und Workflow eines Assessment-Tools notwendig machen.  

Im Kontext von LLMs hat sich in den letzten Jahren ein Paradigmenwechsel vollzogen (Liu 

et al., 2023). Bei kleineren Sprachmodellen wie BERT besteht der typische Workflow aus 

einem Pre-Training mithilfe großer, allgemeiner Datensätze (z. B. Wikipedia-Texten, siehe 

Devlin et al., 2019) gefolgt von einem anwendungsspezifischen Finetuning, wie auch eingangs 

(Abschnitt 2.7) bereits beschrieben wurde. Große Sprachmodelle wie GPT3.5 oder GPT4o 

werden allerdings häufig auch auf eine andere Weise verwendet. Die Menge an Pre-Training-

Daten und ihre Größe ermöglicht es solchen Modellen, in einem „Chat“-Setting teilweise ohne 

weiteres Finetuning bestimmte Aufgaben zu erfüllen. In diesem Setting ist dann die 

Entwicklung eines geeigneten Prompts, d. h. einer Aufforderung, die dem Modell übergeben 
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wird, zentral. Der Paradigmenwechsel vollzieht sich also von einem „Pretrain-Finetune-

Predict-Workflow“ hin zu einem „Pretrain-Prompt-Predict-Workflow“ (Liu et al., 2023). Mit 

wachsender Kontextlänge der angebotenen Sprachmodelle bzw. ChatBots haben sich hierbei 

auch Methoden ausgebildet, bei denen größere Mengen an Informationen den Modellen mit 

dem Prompt mit übergeben werden. Beispielsweise hat GPT4o-mini eine Kontextlänge von 

128.000 Token, was der Größenordnung der vorliegenden Arbeit entspricht76. Bei Prompting-

Strategien wird unter anderem zwischen dem sog. „Zero-Shot-Prompting“ (Sanh et al., 2022 ⁠; 

Wei et al., 2022) und „Few-Shot-Prompting“ (Brown et al., 2020) unterschieden. Beim Zero-

Shot-Prompting wird der Prompt ohne Rückgriff auf den Datensatz erstellt, während beim 

Few-Shot-Prompting Beispieldaten genutzt werden. Ein Few-Shot-Prompt für das 

automatisierte Scoring einer Aufgabe könnte Beispiele für Antworten unterschiedlicher 

Punktzahlen aus dem tatsächlichen Datensatz enthalten. 

Dai et al. (2023) berichten, dass ChatGPT (bei ihnen in der Version basierend auf GPT3.5) 

in einem Zero-Shot-Ansatz in der Lage sei, Feedback zu Data-Science-Projektbeschreibungen 

durch Studierende zu erstellen. Betrachtet man aber die begrenzte tatsächliche 

Übereinstimmung mit menschlichen Bewertungen (Dai et al., 2023, Tabelle 1) muss man zu 

dem Schluss kommen, dass das durch ChatGPT erstellte Feedback zwar offenbar 

augenscheinlich als valide aufgefasst wurde, für ein tatsächliches automatisiertes Assessment 

hier aber keine ausreichende Übereinstimmung erreicht wird, um menschliche Rater zu 

ersetzen. 

Für den hier vorliegenden Datensatz liefert ein einfacher Zero-Shot-Prompt in der Form 

Classify the following German response to the questionnaire-task ("Aufgabe") 
on teacher knowledge into one of the three score-levels: 

<scores> 

[0, 1, 2] 

</scores> 

Here is the German response: 

<responses> 

{response (hier wird die Antwort eingefügt)} 

</responses> 

Respond using this format: 

<score> 

The score goes here as an integer. 

</score> 

mit ChatGPT (GPT4o-mini49) keine Übereinstimmung mit dem menschlichen Bepunktungen 

(Cohens 𝜅 = 0,054), was nicht überrascht, da das Modell, wie eigentlich auch bei Dai et al. 

 

76  Die großen Kontextlängen haben zur Ausbildung einer Vielzahl an teilweise komplexen Workflows geführt, 

die auch unter dem Oberbegriff Retrieval-Augmented Generation (Gao et al., 2024) zusammengefasst werden. 

Gemein ist diesen Workflows, dass die Sprachgenerierung des Modells bzw. ChatBots durch zusätzlich 

herangezogene Quellen („Retrieval“) verbessert bzw. erweitert wird. 
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(2023), keine Anhaltspunkte zur Vergabe der Scores hat. In einem weiteren Experiment wurde 

daher stattdessen ein Prompt aus dem Erwartungshorizont des Testinstruments (Gramzow, 

2015) exemplarisch zu zwei Aufgaben erstellt. Dazu wurden die beiden Aufgaben 1a) und 3) 

ausgewählt, da sie häufig bearbeitet wurden und zwei unterschiedliche Aufgabentypen 

darstellen: Aufgabe 1a) erfordert die Analyse einer beschriebenen Unterrichtssituation und 

Aufgabe 3) erfordert die Reproduktion von fachdidaktischem Wissen. Die Prompts bzw. 

Prompt-Templates, in die die Antworten der Proband:innen im Workflow an entsprechender 

Stelle automatisiert eingefügt wurden, sind in Anhang F enthalten. Die erhaltenen 

Übereinstimmungswerte zu den menschlichen Bepunktungen sind in Abbildung 6.25 den 

entsprechenden Werten des BERT-Scoring-Modells aus Artikel 3 gegenübergestellt. Für 

Aufgabe 1a) erreicht das GPT4o-mini-Modell mit dem Prompt in Anhang F deutlich höhere 

Übereinstimmungswerte, während es für Aufgabe 3) leicht hinter der Performanz des BERT-

Modells zurückbleibt. Eine Evaluierung für alle Aufgaben liegt außerhalb der Zielsetzung 

dieses Projekts; diese Ergebnisse deuten aber darauf hin, dass es sich, insbesondere bei 

modernen Modellen wie GPT4, lohnen kann, für ein automatisiertes Scoring Zero-Shot-

Prompting auf Basis von Kodiermanualen bzw. Erwartungshorizonten in den Blick zu nehmen. 

Die Nutzung von solchen Zero-Shot-Ansätzen ist besonders interessant, wenn nicht genügend 

Daten für das Finetuning eines Modells vorliegen. Weitere Evaluierungen von Zero-Shot-

Prompting-Methoden auch auf Basis anderer Aufgaben und Testinstrumente werden hier 

nachdrücklich empfohlen. 

 

Abbildung 6.25 Zero-Shot Performanz von GPT4o-mini beim Scoring der Aufgaben 1a) und 3). 
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7. Zusammenfassende Diskussion 

Im hier vorgestellten kumulativen Dissertationsprojekt wurde das fachdidaktische Wissen 

(FDW) von (angehenden) Physiklehrkräften einer detaillierten Untersuchung unterzogen. 

Aufbauend auf theoretischen (Baumert & Kunter, 2006 ⁠; Blömeke et al., 2015 ⁠; Gramzow, 2015⁠; 

Hume et al., 2019 ⁠; Riese, 2009) und empirischen sowie methodischen (Schiering et al., 2023 ⁠; 

Woitkowski & Riese, 2017 ⁠; Zeller et al., 2022) Grundlagen und Vorarbeiten wurden dazu 

zunächst datengetriebene exploratorische Analysen durchgeführt, um die innere Struktur des 

FDW detaillierter als bislang zu beschreiben. Dabei konnten empirisch basiert sowohl 

hierarchische Kompetenzniveaus als auch nicht-hierarchische Kompetenzprofile insbesondere 

mit Fokus auf kognitiven Anforderungen (Anderson & Krathwohl, 2001) identifiziert und 

beschrieben werden. Anschließend wurden sowohl bestehende Subskalen als auch die 

identifizierten Kompetenzprofile genutzt, um ein vollständig automatisiertes FDW-

Assessment-System auf Basis von Machine Learning (ML) und Natural Language Processing 

(NLP) zu entwickeln und zu evaluieren. Hierzu wurden unterschiedliche Möglichkeiten und 

Workflows vorgestellt, von denen mehrere eine (verglichen mit der Interrater-

Übereinstimmung) gute Performanz erreichten und somit für einen realen Einsatz zum 

Assessment in Frage kommen. 

Im Folgenden werden nun noch einmal zusammenfassend die Ergebnisse und Beiträge der 

einzelnen Artikel des Projekts in den Kontext der jeweiligen Zielformulierung (Abschnitt 3.1) 

eingeordnet und mit einem Fokus auf der potenziellen Generalisierbarkeit der Ergebnisse sowie 

entsprechender Limitationen diskutiert (Abschnitt 7.1). Anschließend werden die Beiträge der 

Analysen zusammenfassend aus theoretischer und methodischer Sicht in den Forschungsstand 

eingeordnet (Abschnitt 7.2). Zuletzt werden im Ausblick (Abschnitt 7.3) offene Enden und 

Anknüpfungspunkte für mögliche Folgeprojekte aufgezeigt und die Beiträge des Projekts noch 

einmal übersichtsartig dargestellt (Abschnitt 7.4). 

7.1. Beiträge und Limitationen der einzelnen Artikel 

In Artikel 1 wurden mithilfe des Scale-Anchoring-Verfahrens (Mullis & Fishbein, 2020) auf 

Basis von item-response-theoretischen (IRT) Modellen Niveaustufen des FDW für zwei 

unterschiedliche Projekte und FDW-Testinstrumente identifiziert. Dabei zeigten sich 

projektübergreifende Parallelen bezüglich des Auftretens von Operatoren, die im Kontext 

lernpsychologischer Taxonomien (z. B. Anderson & Krathwohl, 2001) interpretierbar sind: In 

niedrigen Niveaus ist FDW auf reproduktive Aspekte beschränkt, während in höheren Niveaus 

bewertende und kreative Elemente hinzukommen. Bezüglich der Forschungsfrage 1.1 (FF1.1) 

konnten also projektunabhängige Niveaus gefunden werden, die allerdings lediglich recht grob 

gefasst werden können. Da sich die verwendeten Testinstrumente hinsichtlich fachlicher und 

fachdidaktischer Inhalte unterscheiden, konnten hier keine Aussagen über mögliche 

Ähnlichkeiten von Niveaustufen bezüglich dieser Dimensionen getroffen werden. Das ist 

allerdings nicht unerwartet, da allgemein angenommen wird, dass FDW vom betrachteten 

Fachinhalt abhängig ist (z. B. Hume et al., 2019) und zudem in einzelnen Testinstrumenten 

meist lediglich eine Auswahl möglicher fachdidaktischer Inhalte bzw. Facetten betrachtet wird 
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(z. B. Schmelzing, 2010). Ein größerer Detailgrad der Niveaubeschreibungen würde also 

immer mit einer Einschränkung der Generalisierbarkeit einhergehen. 

Mit einem regressionsanalytischen Ansatz (FF1.2) konnten in Artikel 1 trotz des Versuchs 

der Erstellung eines projektunabhängigen Modells hierarchischer Komplexität (Commons et 

al., 1998) zur Beschreibung schwierigkeitserzeugender Merkmale des FDW keine 

projektübergreifenden Strukturen gefunden werden. Das für das FDW adaptierte Modell 

hierarchischer Komplexität hat sich dabei durch eine vermeintlich zu große Nähe zum FDW-

Testinstrument des ProfiLe-P(+)2-Projekts als limitiert erwiesen und lies sich nicht 

gewinnbringend auf das Testinstrument des KiL25/KeiLa26-Projekts übertragen. Vor dem 

Hintergrund der Ergebnisse zum zweiten Zielpaket (nicht-hierarchische Strukturen) kann 

allerdings auch grundsätzlich angezweifelt werden, ob die innere Struktur des FDW überhaupt 

mithilfe eines derart strikt hierarchischen Ansatzes beschrieben werden kann bzw. sollte. Es 

besteht die Möglichkeit, dass das adaptierte Modell hierarchischer Komplexität eher die 

Aufgabenstruktur des ProfiLe-P-Tests widerspiegelt, als dass es tatsächlich die Qualität des 

FDW (beispielsweise gemessen über den Grad der Vernetztheit, z. B. Schnotz, 1994) abbildet. 

Interessant wäre hier der Versuch der Übertragung des Modells hierarchischer Komplexität auf 

andere Testinstrumente, die ggf. eine ähnlichere Aufgabenstruktur zum ProfiLe-P-Test 

aufweisen. Auch eine weitere Nutzung des hier entwickelten Modells hierarchischer 

Komplexität im Rahmen der Entwicklung zukünftiger Testinstrumente erscheint nützlich. 

Die Scale-Anchoring-Analysen sind zunächst methodisch dadurch limitiert, dass keine 

Möglichkeit für eine direkte Verknüpfung der beiden verwendeten Datensätze (Anker-Items 

oder Linking-Stichprobe) vorlag. Daher wurden die entsprechenden Niveaumodelle zunächst 

getrennt voneinander entwickelt und anschließend durch einen inhaltlichen Vergleich 

zusammengebracht, anstatt ein Gesamtmodell auf Basis beider Datensätze zu erstellen. Das 

ProfiLe-P-Testinstrument ist zudem auf den Fachinhalt Mechanik beschränkt, während in 

KiL/KeiLa mehrere Fachinhalte abgedeckt wurden. Es ist somit auch im Kontext der 

Niveaumodelle noch nicht abschließend geklärt, inwieweit sich die gefundenen Strukturen 

auch auf andere Fachinhalte übertragen lassen, auch wenn die Nutzung der KiL/KeiLa-Daten 

hier eine Generalisierbarkeit vermuten lässt. Auch die eher grobe Beschreibung der Niveaus 

erhöht die Wahrscheinlichkeit ihrer Generalisierbarkeit, ist aber für die Bearbeitung des 

Desiderats der detaillierteren inhaltlichen Beschreibung des FDW problematisch. Obwohl das 

Scale-Anchoring-Verfahren relativ robust gegenüber Verschiebungen der manuell wählbaren 

Parameter des Workflows ist (Mullis & Fishbein, 2020), hat sich in den Arbeiten zu Artikel 1 

gezeigt, dass der hohe Schwierigkeitsgrad des ProfiLe-P-Testinstruments eine Hürde für die 

Anwendbarkeit des Verfahrens ist: Nur unter Ausschluss der Personen, die das Testinstrument 

nur in Teilen bearbeitet haben, war eine sinnvolle Niveaubildung möglich. Wenn man diese 

wahrscheinlichen Test-Abbrecher in die Analyse einschließt, wird die Personengruppe mit 

niedrigem Fähigkeitsparameter so groß, dass sich die Aufgabengruppen des Scale-Anchoring-

Verfahrens (siehe Abschnitt 4.4.3) sehr weit bezüglich der Schwierigkeitsparameter nach oben 

verschieben und eine sinnvolle Niveaubeschreibung nicht mehr möglich ist. Um hier eine 

Vergleichbarkeit zu den anderen Analysen (Zielpaket 2) beizubehalten, wurden auch dort die 

wahrscheinlichen Test-Abbrecher aus den explorativen Analysen ausgeschlossen. 
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Insgesamt konnten in Artikel 1 entsprechend dem projektübergreifenden Ansatz zwar 

Kompetenzniveaubeschreibungen mit einem hohen Grad an Generalisierbarkeit ermittelt 

werden, diese gehen aber kaum über eher grobe, allgemeinpsychologische Beschreibungen 

hinaus. Es deutete sich dabei bereits an, dass das FDW bezüglich lernpsychologischer 

Operatoren nicht-hierarchische Strukturen aufweist. Insofern waren diese Ergebnisse hilfreich, 

um die nicht-hierarchischen Analysen des zweiten und dritten Zielpakets zu leiten: Um eine 

(projektübergreifende) Generalisierbarkeit der Ergebnisse weiterer Analysen wahrscheinlicher 

zu machen, lohnt sich demnach insbesondere der Fokus auf die kognitiven Anforderungen 

anstelle beispielsweise der fachdidaktischen Facetten. Die verwendete Methodik der 

Zusammenführung von Ergebnissen aus unterschiedlichen Projekten ohne eine gemeinsame 

Stichprobe oder ein gemeinsames Testinstrument über den strukturierten Vergleich der Scale-

Anchoring-Niveaus kann zudem auch auf andere Forschungsinhalte übertragen werden. 

Aufbauend auf den Ergebnissen zur Generalisierbarkeit von Aussagen auf Basis von 

kognitiven Anforderungen aus Artikel 1 wurden in Artikel 2 nicht-hierarchische Cluster-

Analysen mit Fokus auf den Anforderungskategorien Reproduzieren, Anwenden, Analysieren, 

Evaluieren und Kreieren durchgeführt. Aufgrund der aus Gründen der Testökonomie 

begrenzten Anzahl an Aufgaben pro Anforderungskategorie (Gramzow, 2015), konnte hier nur 

der K-Means Algorithmus verwendet werden. Daher sollten die vier gefundenen Cluster bzw. 

Kompetenzprofile Low Achievers, Applying Creatives, Analytic Evaluators und High 

Achievers (FF2.1) eher als „fundiertere Leistungsquantile“ denn als tatsächlich latente 

Personengruppen aufgefasst werden. Um die Ergebnisse stärker empirisch zu untermauern 

wurde daher ein Workflow auf Basis der Computational Grounded Theory (CGT, Nelson, 

2020) entwickelt und die Ergebnisse auf Basis der quantitativen Score-Daten zusätzlich mit 

den authentischen Sprachproduktionen in Beziehung gesetzt (FF2.2). Dabei zeigte ein 

Structural Topic Model (STM, Roberts et al., 2019) erwartungskonform, dass die Applying 

Creatives einen Fokus auf die Beschreibung und Begründung von Beispielen zum Einsatz in 

Unterrichtssituationen legen, während die Analytic Evaluators und insbesondere die High 

Achievers eher Schülervorstellungen thematisieren. Die Interpretation der Ergebnisse von 

STMs ist allerdings ein qualitativer Analyseprozess, weshalb hier die Objektivierbarkeit 

teilweise kritisiert wird (Chang et al., 2009). Um dieser Limitation zu begegnen, wurde (1) ein 

strukturierter Prozess zur Beschreibung der Topics (Abschnitt 5.4.3 & 5.5.2) durchgeführt und 

(2) alle Zwischenergebnisse transparent berichtet (siehe auch digitales Begleitmaterial). 

Auch wenn die Kompetenzprofile der K-Means Analyse aus methodischen Limitationen 

heraus für sich genommen wenig generalisierbar sind, legen die erwartungskonformen und 

informativen Systematiken bzgl. des prototypischen Sprachgebrauchs der Personencluster eine 

Generalisierbarkeit der Ergebnisse über das konkrete Analysesetting hinaus nahe. Eine CGT-

Pattern-Confirmation-Analyse, bei der die Vorhersagbarkeit der Kompetenzprofile auf Basis 

der Scores gezeigt wurde, unterstreicht zusätzlich die Robustheit der identifizierten 

Kompetenzprofile (FF2.4). Nichtsdestotrotz ist der Workflow zur Analyse der nicht-

hierarchischen FDW-Strukturen komplex und mit vielen Design-Entscheidungen wie der Wahl 

der Cluster- und Topicanzahl, Datenvorverarbeitungsschritten etc. verbunden. Da das 

verwendete K-Means-Clustermodell zudem keine latenten Strukturen abbildet, kann das 

Ergebnis eher als eine von unterschiedlichen denkbaren validen Möglichkeiten aufgefasst 
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werden, nicht-hierarchische Strukturen des FDW zu beschreiben. 

Der genutzte Daten-Mix aus einerseits Bepunktungen und andererseits den 

Textproduktionen zu offenen Testaufgaben ist ein prototypisches Setting (nicht nur) für die 

Kompetenzmessung in der Bildungsforschung. Die genutzte Methodik bzw. der genutzte 

Workflow mit der Cluster-Analyse als CGT-Pattern-Detection, der Sprachanalyse mithilfe von 

STMs als CGT-Pattern-Refinement und auch der Vorhersage der Cluster auf Basis der Scores 

als Pattern-Confirmation sind in diesem Setting für die Analyse von prototypischen 

Personengruppen auch auf andere Datensätze und Projekte generalisierbar und übertragbar. 

Der zur Analyse verwendete Programmcode ist daher einerseits im digitalen Begleitmaterial 

dieser Arbeit enthalten und andererseits in weiten Teilen im Rahmen eines Open-Source-

Projekts angelegt77. Dadurch wird auch eine Überprüfung der Generalisierbarkeit vorbereitet, 

da ein analoger Workflow unter Nutzung des bestehenden Codes nun mit minimalem Aufwand 

auch auf andere FDW-Testinstrumente bzw. FDW-Datensätze angewendet werden kann. 

Die Ergebnisse aus Artikel 2 sind in zweierlei Hinsicht limitiert. Erstens sind die 

Kompetenzprofile aus der K-Means-Analyse aus methodischen Gründen nur begrenzt als 

tatsächlich latente bzw. prototypische Personengruppen zu verstehen. Auch, wenn diese 

Problemstelle durch die Anwendung des CGT-Workflows etwas abgemildert wird, bleibt die 

grundsätzliche Einschränkung des Algorithmus bestehen. Zweitens ist die ML-basierte 

Vorhersage der Kompetenzprofil-Zugehörigkeit auf Basis der Scores zwar für die Pattern 

Confirmation geeignet (siehe z. B. Tschisgale et al., 2023), allerdings hat ein solches ML-

Modell nur wenig praktische Relevanz, denn der hohe Aufwand der manuellen Bepunktung 

bleibt für ein etwaiges Assessment so trotzdem notwendig. Beiden Limitationen wird in Artikel 

3 durch eine erweiterte Cluster-Analyse und einen erweiterten Pattern-Confirmation-Workflow 

begegnet. 

In Artikel 3 wurde auf Basis der Beobachtung, dass Kompetenzen im Analysieren und 

Evaluieren bzw. Anwenden und Kreieren tendenziell zusammenhängen (Artikel 2), zunächst 

der Datenverarbeitungs-Workflow der Clusteranalyse angepasst. Anstelle der fünf kognitiven 

Anforderungskategorien aus Artikel 2 wurde sich nun auf die drei Kategorien Reproduzieren, 

Anwenden-Kreieren und Analysieren-Evaluieren fokussiert. Dadurch wurden die Abstufungen 

der einzelnen betrachteten Subskalen feiner („mehr Punkte pro Kategorie“), sodass nun eine 

latente Profilanalyse (LPA, Spurk et al., 2020) angewendet werden konnte (FF2.4). Diese 

bestätigte im Wesentlichen bezüglich der Score-Cluster die Beobachtungen aus Artikel 2, 

weshalb auch die Kompetenzprofil-Bezeichnungen beibehalten wurden. Ein zusätzliches 

Pattern-Refinement bezüglich dieser latenten Kompetenzprofile wurde erneut mit einem STM 

durchgeführt und konsolidierte die beobachteten Parallelen zwischen den Cluster-Ergebnissen 

aus Artikel 2 und 3 weiter (Abschnitt 6.7.4).  

Die latenten Kompetenzprofile weisen aus methodischer Sicht eine gegenüber den K-

Means-Clustern aus Artikel 2 deutlich erhöhte Generalisierbarkeit auf. Trotzdem sind auch hier 

die Aussagen bisher weiterhin auf das konkret verwendete Testinstrument und den zugehörigen 

Datensatz limitiert. Dabei sei hier erneut erwähnt, dass das verwendete Testinstrument 

 

77  https://github.com/JannisZeller/questionnaire-tools, siehe auch Anhang G. 

https://unipaderbornde-my.sharepoint.com/personal/jzeller_ad_uni-paderborn_de/Documents/3.%20Promotion/write-present/main/how#CTVL0010e2078f223264907b0bb0f98380bb221
https://github.com/JannisZeller/questionnaire-tools
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(Gramzow, 2015) – wie auch das Projekt ProfiLe-P (Riese et al., 2015) als Ganzes – auf den 

Fachinhalt Mechanik fokussiert ist. Auch hier wäre weitere Forschung zur Reproduzierbarkeit 

mithilfe weiterer Testinstrumente und Datensätze wünschenswert78. Neben der Erweiterung 

der Cluster-Analyse selbst wurde in Artikel 3 zusätzlich vor allem der Pattern-Confirmation-

Schritt der Analyse erweitert. Anstatt die Kompetenzprofile lediglich auf Basis der Scores 

vorherzusagen, wurde nun ein zweistufiger Workflow entwickelt, bei dem zunächst die 

Aufgaben automatisiert bepunktet werden (FF3.1) und anschließend eine Zuordnung zu den 

Kompetenzprofilen auf Basis der Score-Vorhersagen vorgenommen wird (FF3.2). Somit wird 

hier eine Zuordnung von Bearbeitungen des Tests zu den Kompetenzprofilen vollständig ohne 

manuellen Aufwand durch Kodierung o. Ä. vorgenommen, was im Sinne der CGT ein 

verstärktes Argument für die Robustheit und Generalisierbarkeit der Kompetenzprofile 

darstellt (Nelson, 2020). Zusätzlich wurde im Rahmen dieser Pattern-Confirmation der latenten 

Kompetenzprofile der zweistufige Workflow für die Cross-Validierung (CV) der verwendeten 

Modelle mit einem personenweisen CV-Splitting systematisiert. So kann das automatisierte 

Assessment System neben dem reinen Scoring auch anhand der Kompetenzprofil-Zuordnung 

und der Vorhersage von Subskalen-Scores evaluiert werden. Insbesondere dieser Workflow ist 

in einer Testinstrument-unabhängigen Version im digitalen Begleitmaterial in Form von 

entsprechendem Code enthalten.  

Wie die explorativen Analysen aus Artikel 2 basieren auch die explorativen latenten 

Profilanalysen in Artikel 3 auf einem komplexen Workflow. Obwohl die latenten 

Kompetenzprofile aus methodischen Gründen (latentes Cluster-Modell und erweiterte Pattern 

Confirmation) eine höhere Robustheit und höheres Generalisierungspotenzial aufweisen, sind 

demnach auch hier weitere (ggf. konfirmatorische) Analysen zur möglichen Übertragbarkeit 

und praktischen Relevanz ratsam. Die automatisierte Auswertung als Pattern Confirmation 

deutet hier allerdings darauf hin, dass es sich bei den gefundenen Personengruppen zumindest 

um eine Systematik mit hoher Validität handelt, auch wenn sie keine Aussagen über die 

praktische Relevanz ermöglicht. Das automatische Assessment als Anwendungszweck hat sich 

als insbesondere verglichen mit der Mensch-Mensch-Baseline sehr performant erwiesen, 

allerdings sind vor allem für das Training entsprechender Modelle als auch für die spätere 

Nutzung von trainierten Modellen einige Hardwareanforderungen70 zu erfüllen. Darüber 

hinaus sollten für einen realen Einsatz des Assessments die bisher eher nüchternen und 

teilweise eher quantitativen Aussagen, die durch die Modelle geliefert werden, noch in ein 

prosaisches Format transformiert werden, welches im Sinne eines formativen Feedbacks 

(Hattie & Timperley, 2007) auch Hinweise auf mögliche Verbesserungspotenziale gibt und 

nächste Schritte explizit macht. 

Insgesamt kann man zusammenfassen, dass alle Zielpakete der Arbeit mit Erfolg bearbeitet 

wurden und die entsprechenden Fragestellungen als beantwortet aufgefasst werden können. Zu 

Beginn des Projekts waren auch längsschnittliche Betrachtungen geplant, diese sind allerdings 

zugunsten des ersten Zielpakets zurückgestellt worden. Erste explorative Betrachtungen 

 

78  Gerade hier wird die Weiternutzung des oben angesprochenen Analysecodes interessant: Wie im digitalen 

Begleitmaterial zu sehen ist, müssen für die Überführung der K-Means-Analyse in die LPA-Analyse im 

Wesentlichen nur einige wenige Zeilen Code verändert werden.  
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zeigten hier, dass der Datensatz – trotz seiner für den deutschsprachigen Raum im Kontext der 

Professionswissensforschung von Physiklehrkräften einzigartigen Größe – offenbar nicht 

umfangreich genug für aussagekräftige längsschnittliche Betrachtungen bezüglich der FDW-

Kompetenzprofile ist (siehe Anhang D). 

7.2. Beitrag des Dissertationsprojekts als Ganzes 

Den Ausgangpunkt dieses Projekts stellt ein umfangreicher verfügbarer Datensatz zum 

Professionswissen von (angehenden) Physiklehrkräften dar. Ohne diese bereits vorhandene 

umfangreiche Datenbasis, wären die methodisch aufwändigen Analysen in diesem 

Dissertationsprojekt nicht möglich gewesen. Bezüglich des Fachwissens (FW) und 

Pädagogischen Wissens (PW) existieren bereits Ansätze zur detaillierteren Beschreibung der 

inneren Struktur (Kaiser et al., 2020 ⁠; König, 2009 ⁠; Woitkowski & Riese, 2017). Zum FDW 

liegen zudem hierarchische Niveaubeschreibungen einzelner Projekte isoliert voneinander vor 

(Schiering et al., 2023 ⁠; Schiering et al., 2019 ⁠; Zeller et al., 2022). Darüber hinaus wurde sich 

im Kontext des FDW in der Naturwissenschaftsdidaktik zuletzt eher auf die Untersuchung von 

handlungsnäheren Kompetenzen im Sinne eines enacted Pedacogical Content Knowledge 

(ePCK) im Rahmen des Refined Consensus Model (RCM, Carlson et al., 2019) fokussiert, wie 

beispielsweise dem Planen von Unterricht (Behling et al., 2022b ⁠; Schröder et al., 2020), dem 

Erklären physikalischer Phänomene (Kulgemeyer et al., 2020 ⁠; Kulgemeyer & Tomczyszyn, 

2015), dem Reflektieren über Unterricht (Kulgemeyer et al., 2021 ⁠; Reimer & Tepner, 2022) 

oder konkretem Handeln im Klassenzimmer (Förtsch et al., 2016 ⁠; Förtsch et al., 2018 ⁠; She et 

al., 2024). Dabei stellt aber auch die empirisch basierte Beschreibung innerer Strukturen des 

FDW im Sinne eines personal PCK (pPCK) des RCM bzw. einer Disposition des 

Kontinuumsmodells (MoC, Blömeke et al., 2015) nach wie vor ein Forschungsdesiderat dar 

(Kaiser et al., 2020 ⁠; Riese et al., 2017). Darüber hinaus gestaltet sich ein authentisches und 

valides Assessment des FDW insbesondere mit Aufgaben in offenem Antwortformat 

(Kulgemeyer et al., 2023) als sehr aufwändig, da bislang hierzu meist händische Kodierungen 

vorgenommen werden müssen (Gramzow, 2015⁠; Kröger, 2019). 

Im hier vorgestellten Projekt wurde diesen Desideraten entsprechend das FDW einer 

empirisch basierten, inhaltlichen Detailanalyse unterzogen. Dabei wurden zunächst IRT-

Niveaumodelle in den Blick genommen und projektübergreifend betrachtet. Mithilfe des Scale-

Anchoring-Verfahrens konnten hier generalisierbare aber eher allgemeine Aussagen über das 

FDW abgeleitet werden (s. o.). Basierend auf diesen Ergebnissen wurden anschließend auch 

nicht-hierarchische Analysen durchgeführt, sodass nun latente prototypische Kompetenz-

profile des FDW beschrieben werden können, die ein hohes Maß an Validität und Robustheit 

aufweisen und für die die Wahrscheinlichkeit einer Reproduzierbarkeit im Kontext anderer 

FDW-Datensätze und Projekte entsprechend hoch ist. Diese Kompetenzprofile können zudem 

genutzt werden, um weitere Forschung zum FDW bzw. PCK mit einer größeren Auflösung 

von Personengruppen und Subskalen vorzunehmen. Besonders interessant erscheint hierbei die 

Untersuchung des Zusammenhangs zwischen den latenten (pPCK-)Kompetenzprofilen und 

den Komponenten des ePCK, die im Rahmen des Plan-Teach-Reflect-Cycles (PTR-Cylce, 

Alonzo et al., 2019) identifiziert bzw. charakterisiert werden. Die latenten Kompetenzprofile 
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zeigen in diesem Kontext, dass auch für das FDW bzw. pPCK eine Unterteilung 

unterschiedlicher Teilkompetenzen wie beim ePCK oder den handlungsnahen Aspekten des 

MoC sinnvoll sein kann. Die dargestellten Sprachanalysen auf Basis von Topic Modelling 

unterstreichen dies auch auf Basis konkreter verwendeter Begrifflichkeiten und fokussierter 

Themen. Insgesamt wird hier also eine systematische Möglichkeit zur Beschreibung von 

Teilkompetenzen des FDW angebahnt. Weitere potenziell konfirmatorische Analysen zur 

Trennbarkeit der durch die Kompetenzprofile suggerierten potenziellen Teilkompetenzen 

„FDW-Reproduzieren“, „FDW-Anwenden-Kreieren“ und „FDW-Analysieren-Evaluieren“ 

nach dem Vorbild des ePCK-plan, ePCK-teach und ePCK-reflect des PTR-Cycles wären hier 

ein nächster Anknüpfungspunkt. Auch Betrachtungen zum Zusammenhang dieser 

Teilkomponenten mit anderen Professionswissensdomänen (z. B. Fachwissen oder 

Pädagogisches Wissen) sowie mit handlungsnahen Kompetenzen (z. B. Planen von Unterricht) 

werden hierdurch ermöglicht und nahegelegt. Erste solche Analysen auf Basis basaler 

Gruppenvergleiche und Korrelationsbetrachtungen erweisen sich allerdings bisher nicht als 

informativ (siehe Abbildung A3). 

Neben diesem inhaltlichen Beitrag wurden zudem Workflows entwickelt und erprobt, die 

mehr oder weniger nahtlos auch auf ähnliche strukturierte Datensätze anderer Projekte 

angewandt werden können. Dabei sind zunächst die explorativen IRT-Niveauanalysen mit 

einer projektübergreifenden Niveaubetrachtung auf Basis von lernpsychologischen 

Operatoren, sowie die Cluster-Analyse auf Basis von Subskalen des Testinstruments zu 

nennen. Auch die STM-Anwendung zur Ausschärfung der Beschreibung der identifizierten 

Personengruppen kann bei Bedarf auf die entsprechenden Sprachdaten angewandt werden. 

Insbesondere der zweistufige Workflow für die CGT-Pattern-Confirmation der explorativen 

Analysen, bestehend aus einem Scoring-Modell und darauf aufbauenden weiteren 

Downstream-Modellen zur Vorhersage von Gruppenzugehörigkeiten oder Subskalenscores, ist 

ggf. auch für andere Projekte von Interesse. Um die Nutzbarkeit dieser methodischen Beiträge 

für das Forschungsfeld zu erleichtern, wurden sämtliche Code-Elemente im Rahmen des 

digitalen Begleitmaterials dieser Arbeit festgehalten und insbesondere der zweistufige 

Workflow wurde bereits in einer Testinstrument-unabhängigen Weise in Code umgesetzt (und 

genutzt). Somit können vergleichbare Analysen mit geringem Aufwand durchgeführt werden. 

Im Rahmen des zweistufigen Workflows zur Pattern Confirmation wurde zudem ein 

vollständig automatisiertes Assessment-System des FDW entwickelt, welches im Vergleich 

zur Mensch-Mensch-Übereinstimmung und auch absolut betrachtet gute bis sehr gute 

Übereinstimmungswerte zu den menschlichen Assessment-Ergebnissen wie (Summen-)Scores 

und Kompetenzprofilen aufweist. Im Sinne des DEFT-Frameworks (Kubsch et al., 2022, siehe 

auch Abschnitt 2.5) wurden dabei im zweiten Zielpaket des Projekts eher Grounded-High-

Inference-Untersuchungen zur Ermittlung der Kompetenzprofile durchgeführt (Kapitel 5 & 6), 

während die Arbeiten zum dritten Zielpaket darauf aufbauend eher als Supervised Settings mit 

sowohl Low(er)-Inference- (Bepunktung des Testinstruments) als auch High-Inference-

Elementen (FDW-Kompetenzprofile und FDW-Subskalen) eingeordnet werden können 

(Kapitel 6). 

Orientiert an der Nutzung von BERT-Modellen (Devlin et al., 2019) in anderen 
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naturwissenschaftsdidaktischen Forschungsvorhaben (z. B. Mientus et al., 2021 ⁠; Tschisgale et 

al., 2023 ⁠; Wulff et al., 2023) wurde auch hier primär ein BERT-Modell verwendet, der 

Workflow ist aber nicht auf dieses beschränkt (siehe Abschnitt 6.7.6 & 6.7.8). So konnten 

zudem punktuelle Beiträge zum Forschungsstand über den Zusammenhang von 

Aufgabencharakteristika und automatischer „Scorebarkeit“ von Aufgaben (Abschnitt 6.7.5), 

zur Anwendbarkeit von rein Embedding-basierten Modellen für automatisiertes Assessment 

(Abschnitt 6.7.6 & 6.7.7), zur Auswirkung bestimmter Vorverarbeitungsschritte auf die 

Assessment-Modellperformanz (Abschnitt 6.7.7) sowie zur Nutzbarkeit von großen 

Sprachmodell-Tools wie ChatGPT (Abschnitt 6.7.8) geleistet werden. Um die hierzu 

berichteten Ergebnisse weiter zu konsolidieren, ist aber noch weitere Forschung über das 

verwendete Testinstrument bzw. den verwendeten Datensatz hinaus notwendig. 

7.3. Ausblick 

Wie bereits mehrfach beschrieben, ist der erste und wichtigste Anknüpfungspunkt für weitere 

Forschung die Evaluierung der Übertragbarkeit der Ergebnisse auf weitere FDW-Datensätze. 

Da die inhaltlichen Aussagen (Kompetenzniveaus und -profile) primär auf allgemeingültige 

kognitive Anforderungskategorien bezogen sind, ist man hierfür nicht auf das Fach Physik oder 

die Naturwissenschaften beschränkt. Auch eine Übertragbarkeitsbetrachtung für andere Fächer 

erscheint sinnvoll. Die für die explorativen Analysen entwickelten und erprobten Workflows 

können zudem leicht im Kontext anderer Subskalen wie fachdidaktischer Facetten angewendet 

werden (siehe auch Abschnitt 5.7.2). Auf der inhaltlichen Ebene wäre zudem die systematische 

Untersuchung des Zusammenhangs von Kompetenzprofilen oder Kompetenzausprägungen 

bzgl. der kognitiven Anforderungen mit anderen Professionswissensdomänen oder eher 

handlungsnahen Kompetenzen (im Sinne eines ePCK) interessant. Hier liegen aus dem Projekt 

ProfiLe-P+ auch bereits Daten vor (z. B. Kulgemeyer et al., 2020 ⁠; Schröder et al., 2020), deren 

systematische Betrachtung hier aber nicht mehr zu den Projektzielen gehörte.  

Um Analysen zur Übertragbarkeit etc. durchzuführen oder die Workflows für das 

automatisierte Assessment auch für andere Testinstrumente und Datensätze durchzuführen, 

kann der als Open-Source-Projekt angelegte Python-Code dieser Arbeit auch für andere 

Projekte interessant sein. In diesem Projekt ist daher auch eine Dokumentation (siehe Anhang 

G) enthalten, die bereits viele Erläuterungen und Beispiele enthält. Besonders ist an diesem 

Code vor allem, dass er Testinstrument-unabhängig gestaltet ist. Die Konfiguration des 

Testinstruments kann verändert werden, sodass die Analysen bei minimalen Code-

Anpassungen auch für unterschiedliche Kombinationen von offenen und geschlossenen 

Aufgaben mit unterschiedlichen Bepunktungsverfahren, Maximalscores, Subskalen etc. 

durchgeführt werden können. 

Darüber hinaus wären auf methodischer Seite auch weitere, detailliertere Betrachtungen der 

Interpretierbarkeit bzw. Erklärbarkeit und Modellfairness des BERT-Scoring-Modells aus 

Artikel 3 interessant. Die ersten Analysen in Artikel 3 (Abschnitt 6.6.2) sind eher als 

Machbarkeitsnachweis gedacht und haben noch nicht den Anspruch hier bereits einen größeren 

Beitrag zu leisten. Die bestehenden Ansätze insbesondere zur Erklärbarkeit des Modells, d. h. 

der Zurückführung von Score-Entscheidungen auf konkreten Sprachgebrauch und Wortwahl 
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(Gombert et al., 2023⁠; Sundararajan et al., 2017), können aber praktikabel genutzt werden, um 

die Betrachtungen zu intensivieren. Ähnliches gilt auch für die aufgabenweisen Analysen zu 

Einflussfaktoren auf die Scoring-Performanz (Zesch et al., 2023 ⁠; Zhai, 2021 Abschnitt 6.7.5), 

wobei der Code des Projekts hierfür bereits Methoden enthält, die auch auf andere 

Testinstrumente und Datensätze direkt angewandt werden können. 

Ein weiterer Anknüpfungspunkt sind auch die explorierten alternativen Scoring-Modelle. 

Dabei sind Embedding-basierte Ansätze (Abschnitt 6.7.6) aufgrund des deutlich verringerten 

Aufwands beim Training gerade für sehr große Datensätze interessant. Die exemplarische 

Untersuchung der Fähigkeit von GPT4o-mini Aufgaben auf Basis eines Prompts, der aus dem 

Kodiermanual abgeleitet wurde, zuverlässig zu bepunkten (Abschnitt 6.7.8) ist dagegen gerade 

für kleine Datensätze interessant, da hierfür überhaupt keine Trainingsdaten benötigt werden. 

Zuletzt wurden auch Methoden zur Anreicherung von Datensätzen (insbesondere im Kontext 

der ungleichmäßigen Verteilung von Labels) mithilfe generativer KI in den Blick genommen 

(Kieser et al., 2023 ⁠; Martin & Graulich, 2024). Dies könnte einen Ansatzpunkt darstellen, um 

die Performanz der hier bereits explorierten Modelle weiter zu erhöhen. 

Die entwickelten Modelle dienen zwar in den Artikeln primär als Mittel zum Zweck, um im 

Rahmen des CGT-Frameworks die Validität der gefundenen inhaltlichen Strukturen zu 

unterstreichen, ihr potenzieller Nutzen für ein vollautomatisiertes FDW-Assessment liegt 

jedoch auf der Hand und wurde bereits mehrfach in dieser Arbeit erwähnt. Um diese Modelle 

in der Praxis tatsächlich für ein Assessment einzusetzen, müssten sie allerdings nutzbar 

gemacht werden. Einerseits können hierfür Datensätze über klassische Umfragetools 

gesammelt werden und im Anschluss manuell mithilfe des bestehenden Modells über den 

Programmcode dieses Projekts bepunktet und ausgewertet werden. Für einen solchen Einsatz 

sind alle notwendigen Voraussetzungen somit bereits erfüllt. In diesem Setting ist zwar der 

manuelle Aufwand der Kodierung und somit der größte Arbeitsanteil automatisiert, allerdings 

wäre dabei immer noch ein Zwischenschritt mit menschlicher Beteiligung notwendig. 

Praktikabler wäre die direkte Anbindung des Scoring-Modells an entsprechende 

Umfragesoftware, was sich allerdings bei den üblichen Anbietern entsprechender Tools (z. B. 

LimeSurvey79) meist als schwierig bis unmöglich erweist. Als mögliche Alternative wurde 

daher in diesem Projekt auch ein Proof of Concept für ein vollständiges Open-Source-Webtool 

erstellt, welches die Bearbeitung des Testinstruments ermöglicht und auch das BERT-Modell 

für die automatisierte Auswertung umfasst80. Einige Impressionen der „Beta-Version“ dieses 

Webtools sind in Anhang H festgehalten; hier ist allerdings noch weitere Entwicklungsarbeit 

und im Anschluss auch eine Evaluierung des Tools notwendig.  

 

 

79  https://www.limesurvey.org/de, Zugegriffen 17. Januar 2025  

80  Dieses Webtool wurde ausschließlich mit frei verfügbaren Python- und Javascript-Bibliotheken erstellt und die 

Datenorganisation orientiert sich an den von Buschhüter et al. (2023) vorgeschlagenen Strukturen für eine 

flexible Datenverwaltung im Forschungskontext. Auch der Code für das Webtool ist in einer Testinstrument-

unabhängigen Form denkbar. Wie der Analysecode ist auch der Code für das Webtool als Open-Source-Projekt 

öffentlich verfügbar (https://github.com/JannisZeller/questionnaire-webtool), um für eine etwaige 

Weiterentwicklung und Nachnutzung bereit zu stehen. Siehe auch Anhang H. 

https://www.limesurvey.org/de
https://github.com/JannisZeller/questionnaire-webtool
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7.4. Beiträge des Dissertationsprojekts als Übersicht 

Beiträge zur Theoriebildung im Kontext des FDW 

• Entwicklung projektübergreifend gültiger (aber recht allgemeiner) FDW-Kompetenzniveaus auf 

Basis von Item-Response-Modellierungen zweier FDW-Datensätze aus unterschiedlichen 

Projekten (Kapitel 4 / Artikel 1). 

• Entwicklung eines Modells hierarchischer Komplexität für das FDW in Physik durch Adaption 

eines bestehenden Modells hierarchischer Komplexität für physikalisches Fachwissen (Kapitel 4 

/ Artikel 1), allerdings mit eingeschränkter Übertragbarkeit auf FDW-Testinstrumente außerhalb 

des Projekts ProfiLe-P. 

• Theoretisch fundierte Analyse von FDW-Testaufgaben mit Fokus auf lernpsychologische 

Operatoren angelehnt an die Taxonomie von Anderson und Krathwohl (2001) inklusive der 

Betrachtung von Interrater-Übereinstimmungswerten dreier Expert:innen (Kapitel 5 / Artikel 2). 

• Ermittlung und Bestätigung (im Sinne der CGT) von K-Means-Clustern (Kapitel 5 / Artikel 2) 

und latenten Kompetenzprofilen (Kapitel 6 / Artikel 3) des FDW mit prototypischen Stärken und 

Schwächen bezüglich der Anforderungsbereiche „Anwenden-Kreieren“ und „Analysieren-

Evaluieren“ sowie Tendenzen zu prototypischem Sprachgebrauch in den Antworten auf die 

offenen Fragen des Testinstruments. Insbesondere diese Ergebnisse deuten auf die Trennbarkeit 

von entsprechenden einzelnen FDW-Komponenten hin, die im Rahmen der Weiterentwicklung 

von FDW-Rahmenmodellen wie dem RCM of PCK oder dem Kontinuumsmodells von Interesse 

sind. 

Methodische und Praktische Beiträge 

• Entwicklung eines Verfahrens zur gemeinsamen Niveaubetrachtung eines Konstrukts auf Basis 

von unterschiedlichen Datensätze und IRT-Modellen (Kapitel 4 / Artikel 1). 

• Entwicklung eines CGT-orientierten Workflows für interpretierbare und informative Cluster-

Analysen von Score-Datensätzen durch die Betrachtung theoretisch fundierter Subskalen 

(Kapitel 5 & 6 / Artikel 2 & 3) → Bereitstellung von entsprechendem Testinstrument-

unabhängigen Python-Analysecode für zukünftige Analysen. 

• Entwicklung eines zweistufigen Workflows zur Evaluierung eines automatisierten Scoring-

Systems mit der Betrachtung zusätzlicher „Downstream-Tasks“ (Kompetenzprofile & 

Subskalenscores) über die reine Bepunktung hinaus (Kapitel 6 / Artikel 3). Dabei wird 

insbesondere ein Data-Leakage freies Cross-Validation-Verfahren beschrieben (siehe auch 

Abschnitt 6.7.3) → Bereitstellung von entsprechendem Testinstrument-unabhängigen Python-

Analysecode für zukünftige Analysen. 

• Exploration der Nutzung unterschiedlicher Modelle und Tools für ein automatisiertes Scoring 

der Freitextaufgaben mit Kurzantworten (Abschnitt 6.7.5, 6.7.6 & 6.7.8). 

• Entwicklung eines Proof-of-Concept für ein vollautomatisiertes Machine-Learning-basiertes 

Assessment-Webtool unter der Nutzung von Open-Source-Software (Anhang H). 
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A. Beispielhafte Herleitung einer Loss Funktion 

Die folgende an den Ausführungen von Murphy (2022) orientierte Betrachtung ist vereinfacht 

dargestellt. Es liege ein Datensatz (𝑥𝑖, 𝑦𝑖), 𝑖 = 1 … 𝑁 vor, bei dem angenommen wird, dass die 

abhängige Variable 𝑌 = (𝑌1, … 𝑌𝑁) der Gauß- bzw. Normalverteilung 

𝑌 | 𝑊 ∼ 𝒩(𝑓𝑊(𝑥), 𝜎2𝟏) 

mit einer (stetigen) Funktion 𝑓𝑊 folgt, wobei die Funktionsparameter 𝑊 = (𝑊1, … , 𝑊𝑀) selbst 

einer (noch nicht näher bestimmten) Wahrscheinlichkeitsverteilung folgen. Hier stellen zudem 

𝑥 den Vektor (𝑥1, … , 𝑥𝑁) und 𝟏 die Einheitsmatrix dar. Die Wahrscheinlichkeitsverteilung ist 

dann für 𝑦 = (𝑦1, … , 𝑦𝑁) gegeben durch 

𝑃(𝑌 = 𝑦 | 𝑊 = 𝑤) =
1

(2𝜋)𝑁/2𝜎
 exp (−

∑ (𝑦𝑖 − 𝑓𝑤(𝑥𝑖))
2𝑁

𝑖=1

2𝜎2
) . 

Man nennt in diesem Wahrscheinlichkeitsverteilung 𝑃(𝑌 | 𝑊) auch Likelihood. Um nun aus 

den vorhandenen (𝑥𝑖, 𝑦𝑖)-Daten die wahrscheinlichsten Funktionsparameter 𝑤̂, die zu diesen 

Daten passen, muss nach dem Satz von Bayes 

𝑃(𝑊 = 𝑤 | 𝑌 = 𝑦) =  
𝑃( 𝑌 = 𝑦 | 𝑊 = 𝑤 ) ⋅ 𝑃(𝑊 = 𝑤) 

𝑃(𝑌 = 𝑦)
 

in 𝑤 maximiert werden. Diese Wahrscheinlichkeit wird auch die A-Posteriori-

Wahrscheinlichkeit (engl. „Posterior“) genannt. Den Ansatz nennt man dementsprechend auch 

die Maximum-a-posteriori Schätzung (MAP). Es gilt also: 

𝑤̂ = argmax
𝑤

𝑃(𝑊 = 𝑤 | 𝑌 = 𝑦) = argmax
𝑤

 𝑃( 𝑌 = 𝑦 | 𝑊 = 𝑤 ) ⋅ 𝑃(𝑊 = 𝑤) , 

wobei der Nenner aus der vorherigen Gleichung nicht relevant ist, da er nicht von 𝑤 abhängt. 

Mit dem üblichen Trick (Logarithmus ist strikt monoton wachsend), 

argmax
𝑤

 𝑓(𝑤) = argmin
𝑤

 (−𝑓(𝑤)) = argmin
𝑤

 (− log 𝑓(𝑤)) , 

kann man dies umformen zu: 

𝑤̂ = argmin
𝑤

 (−log 𝑃( 𝑌 = 𝑦 | 𝑊 = 𝑤 ) − log  𝑃(𝑊 = 𝑤)) . 

Für den zweiten Summanden ist nun eine Annahme über die A-Priori-Verteilung (engl. 

„Prior“) der Funktionsparameter 𝑊 notwendig. Exemplarisch wird hier angenommen, dass 𝑊 

ebenfalls normalverteilt ist mit  

𝑊 ∼  𝒩(0, 𝜏2𝟏) . 

Durch Einsetzen der Wahrscheinlichkeitsverteilung der Gaußverteilung ergibt sich mit den 

Regeln für den Logarithmus und nach Wegstreichen von bezüglich 𝑤 konstanter Terme: 

𝑤̂ = argmin
𝑤

 (∑(𝑦𝑖 − 𝑓𝑤(𝑥𝑖))
2

𝑁

𝑖=1

 +  
𝜎2

𝜏2
∑ 𝑤𝑗

2

𝑀 

𝑗=1

) . 
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Der erste Term ist leicht zu erkennen als die klassische (vermeintlich heuristische) Least-

Squares Loss-Funktion, die auch in der linearen Regression, d. h. für 𝑓𝑤(𝑥𝑖) = 𝑤 ⋅ 𝑥𝑖, zum 

Einsatz kommt. Der Zweite Term entspricht dem sog. Ridge-Regularisierungsterm (Murphy, 

2022; Géron, 2019), der dafür sorgt, dass die Parameter 𝑤 in der Optimierung eine „Tendenz 

in Richtung 0“ erhalten. Der Regularisierungsterm fällt weg, wenn angenommen wird, dass 𝑊 

gleichverteilt ist. Alternativ kann auch direkt 𝑃(𝑌 | 𝑊) optimiert werden, dann ändert sich aber 

die Interpretation der gefundenen 𝑤̂: Anstelle der bei gegebenem Datensatz wahrscheinlichsten 

Parameter findet man dann die Parameter, unter deren Annahme die Wahrscheinlichkeit, die 

erhaltenen Daten zu observieren, maximal ist. Diese Option nennt man auch die Maximum 

Likelihood Schätzung (MLE), die vielen algorithmischen Modellen zugrunde liegt, bei denen 

keine Annahmen über die Verteilung der Parameter 𝑊 mit in die Modellierung einfließen 

(Murphy, 2022). An den zwei Formulierungen zur Interpretation der 𝑤̂ im MAP- bzw. MLE-

Ansatz erkennt man zudem leicht die Vorteile der Interpretierbarkeit des probabilistischen 

MAP-Ansatzes, die in Abschnitt 2.4 schon angedeutet wurden. 
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B. Handreichung zur Einordnung der FDW-Testaufgaben  

Handreichung zur Zuordnung der FDW-Testaufgaben zu Stufen hierarchi-

scher Komplexität 

Schließen sich gegenseitig aus! 

Fakten (I) 

• Reproduktion einzelner, unverbundener Informationen 

• Keine oder kaum Bezugnahme auf Situation oder sonstige Beschreibung  

• Keine oder kaum Verknüpfung der genannten Informationen 

• Beispiel: Nennen von Fakten zu einem Fachdidaktischen Konzept 

Einstufige Kausalität (II) 

• Verknüpfung von zwei oder mehr Fakten, Informationen oder Äußerungen zu einem Produkt 

(z. B. Schlussfolgerungen, Argumentationen) 

• Begründungen, Analysen und Argumentationen mir nur einer Argumentations- / 

Analysestufe  

• Beispiel: (einstufige) Analyse oder Evaluation einer Situation 

Mehrstufige Kausalität (III) 

• Begründungen, Argumentationen, Evaluationen mit mehr als einer Argumentations- / 

Analysestufe  

• Alle Anforderungen, die komplexere Analysen / Argumentation verlangen als II 

• Beispiel: Analyse und Evaluation einer Situation 

Handreichung zur Zuordnung der FDW-Testaufgaben zu Anforderungs-

kategorien 

Kognitive Prozesse nach Anderson und Krathwohl (2001) 

Mehrfachnennung möglich!  

Erinnern:  

• Etwas wiederzuerkennen oder abzurufen und dies nennen bzw. wiederzugeben, ist 

Kernbestandteil der Aufgabe.  

• Weite Teile der Aufgabe sollten allein durch Erinnern an Fachdidaktische Inhalte lösbar sein.  

• Es wird nach „typischen“ Aspekten (z. B. Schülervorstellungen) gefragt, was impliziert, dass 

es um konsens-Wissen geht, welches explizit in Lehrveranstaltungen erworben werden kann.  

• Beispiel: Fakten zu bestimmten Fachdidaktischen Konzepten nennen  
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• Gegenbeispiel: Eine Schüleräußerung wird betrachtet.  

Verstehen:  

• Ein Element Fachdidaktischen Wissens verstanden zu haben, bedeutet, dieses Element 

beschreiben, klassifizieren, vergleichen und erklären zu können, bzw. es in ein Begriffsnetz 

einordnen zu können.  

• Eine Aufgabe wird der Dimension „Verstehen“ zugeordnet, wenn diese Fähigkeiten / 

Kompetenzen die Bearbeitung der Aufgabe vereinfachen.  

• Weite Teile der Aufgabe sollten allein durch das Verstehen Fachdidaktischer Inhalte lösbar 

sein, insbesondere ohne die Konzepte bereits auf Situationen übertragen zu müssen.  

• Beispiel: Die Funktionen von Unterrichtselementen (z. B. Einleitung, Sicherung, 

Experimentieren) erleichtert deren Auflistung.  

• Gegenbeispiel: Eine Situation oder ein konkreter Gegenstand wird betrachtet.  

Anwenden:  

• Fachdidaktisches Wissen, ein Verfahren oder eine Prozedur anzuwenden oder zu ermitteln, 

wann die Anwendung einer Prozedur legitim ist, ist Kernbestandteil der Aufgabe.  

• Konstruktion / geeignete Auswahl von physikalischen Beispielen zu gegebenen 

Fragestellungen.  

• Beispiel: Prognostizieren von typischen Fehlern mithilfe von Wissen über 

Schülervorstellungen  

• Gegenbeispiel: Analyse eines exemplarischen Unterrichtsmaterials  

Analysieren:  

• Einen Aspekt, eine Situation, eine Äußerung zu analysieren, ist Kernbestandteil der Aufgabe 

und / oder eine Analyse wird explizit in der Aufgabenstellung eingefordert.  

• Beispiel: Rekonstruktion von Schülervorstellungen aus Äußerungen  

• Gegenbeispiel: Auswahl eines geeigneten Beispiels zur Vermittlung eines Fachinhalts  

Evaluieren:  

• Qualitätsurteile über fachdidaktisch relevante Elemente (z. B. Handlungen, Material, etc.) 

auf Basis von Kriterien und Standards bzw. des Wissens treffen, d. h. zu überprüfen und 

kritisieren, ist Kernbestandteil der Aufgabe.  

• Auch die Begründung eines (möglicherweise vorgegebenen) Qualitätsurteil fällt unter diese 

Kategorie.  

• Dabei liegt der Fokus auf der Evaluation von fachdidaktisch relevanten Elementen und nicht 

der Evaluation von Fachwissen beispielsweise in Schüler:innenäußerungen.  

• Beispiel: Ein beschriebenes Vorgehen einer Lehrkraft bewerten / kommentieren  

• Gegenbeispiel: Eigenes Vorgehen wird begründet  
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Kreieren:  

• Selbst auf Basis einer Situation oder Beschreibung Elemente fachdidaktisch relevanter 

Handlungen oder vollständige fachdidaktisch relevante Handlungsketten zu kreieren, ist 

Kernbestandteil der Aufgabe.  

• Beispiel: Selbst eine Lösungsstrategie entwickeln oder Alltagsbeispiele unter konkreten 

Zielsetzungen begründet auswählen  

 

Zusätzliche Dimensionen  

Mehrfachnennung möglich!  

Notwendigkeit des Einbezugs von Fachwissen:  

• Zur Lösung der Aufgabe ist verstärkt explizites physikalisches Fachwissen notwendig.  

Bezug auf ein Beispiel:  

• Ein physikalisches Beispiel kann ein Alltagsbeispiel, ein Beispielexperiment etc. sein  

• Die Aufgabe beinhaltet die Beschreibung oder Betrachtung eines Beispiels entweder durch 

den / die Probandin selbst oder die Betrachtung eines Beispiels (z. B. in einer 

Unterrichtsvignette) ist wesentlicher Teil der Aufgabe  

Bezug auf Unterrichtssituation:  

• Die Aufgabe bezieht sich auf Elemente konkreter Unterrichtssituationen, die in Stamm der 

Aufgabe beschrieben wird. 

• Die Aufgabe muss sich mindestens auf konkrete Handlungen / Äußerungen von 

Schüler:innen und / oder Lehrkräften beziehen.  

 

Kommentare  

• Bei Erinnern und Verstehen genügt es nicht, dass eines der beiden notwendige 

Voraussetzung zur Bearbeitung der Aufgabe ist  

• Betrachtet werden die Kategorien unter der Annahme, dass ein:r durchschnittliche:r 

Studierende:r die Aufgabe bearbeitet und entsprechende Lehrveranstaltungen bereits besucht 

hat.  

Literatur  

Anderson, L. W. & Krathwohl, D. R. (Hrsg.). (2001). A taxonomy for learning, teaching, and 

assessing: A revision of Bloom’s taxonomy of educational objectives (4. Aufl.). New York: 

Longman. 
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C. Material zur Bepunktung des Testinstruments 

In den folgenden zwei Tabellen sind zusätzliche Informationen zur Bepunktung des 

Testinstruments exemplarisch als Supplement zu Artikel 2 dargestellt. 

Table A1 Scoring rubric for task 15 of the pPCK-test instrument used for the analysis. This the scoring rubric for 

the task presented in Figure 5.3; translated from German to English. The task is scored dichotomous, i.e., zero or 

one point. The example responses stem from real samples or expert interviews of the test instrument’s piloting 

phase (Gramzow, 2015). 

Expectation correct Expectation incorrect 

The channel no longer hinders the ball, and the 

centrifugal force can therefore continue to act 

outwards. Only the centrifugal force exists, only the 

channel hinders it, e.g. 

“Student imagines that the centrifugal force 

drives the ball away from the center.”  

The centrifugal force must be named or described. 

The resulting movement of the ball must be made 

clear. 

Edge cases: 

“Ball seeks compensation for the constraint of 

the trajectory curve”  

“The ball contains a twist in the trajectory and 

therefore rolls outwards” 

“The student believes that a force is acting 

outwards on the ball at point R. If the channel 

is no longer there to hold the ball in place, the 

ball must move to the right.” 

Answers that do not refer to a content matter concept, 

e.g.:  

“Student thinks there is a repulsion from the 

center” 

“Student has not understood the principle of 

centripetal force” 

“The mass has no energy directed eastwards, as it exits 

R vertically. But the student assumes that it does, 

because the ball moves in an easterly direction from 

the start to point R.” 

All kinds of responses that do not describe what the 

student does not understand. 

Table A2 Further exemplary responses to task 15 of the used pPCK test instrument. Further exemplary responses 

from the dataset for the task presented in Figure 5.3; translated from German to English. 

Correct responses (1 point) Incorrect responses (0 points) 

“The path is not left tangentially / the ball is 

“pushed” outwards” 

“The assumption that there is a force driving the 

ball outwards (as seen on the circular path).” 

“This is based on the idea that a so-called 

centrifugal force exists. The student assumes that 

the ball must therefore move away from the 

center.” 

“That the ball does not follow the curve and that the 

ball can simply change direction” 

“- Objects always have a rightward velocity - Objects 

always “fall” downwards in a curve” 

“The centripetal force causes the ball to fly outwards. 

Inertia is not applied.” 
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D. Entwicklungsverläufe bezüglich der LPA-Kompetenzprofile 

Die folgenden beiden Abbildungen visualisieren Entwicklungsverläufe bezüglich der in der 

LPA (Artikel 3 / Kapitel 6) ermittelten Kompetenzprofile. In den Blöcken zu den jeweiligen 

Messzeitpunkten ist die Anzahl der Proband:innen im entsprechenden Kompetenzprofil 

abgebildet. Auf Basis dieser Datenlage sind verlässliche Aussagen über Systematiken nicht 

gerechtfertigt. Interaktive Versionen dieser Abbildungen sind auch im digitalen 

Ergänzungsmaterial enthalten. 

 

Abbildung A1 Sankey Plots der Bachelor- und Master-Proband:innen ohne Dropout. Bemerkenswert ist 

insbesondere, dass die Master-MZPs vor und nach dem Praxissemester lagen. Damit erscheint der Zuwachs an 

Applying Creatives plausibel. Gleichzeitig ist die Instabilität insbesondere des „High Achievers“ Profils für einen 

nachhaltigen Kompetenzerwerb sicherlich suboptimal. 
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Abbildung A2 Sankey Plots der Bachelor- und Master-Proband:innen mit Dropout. 
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E. Zusätzliche Analysen zu den LPA-Kompetenzprofilen 

Die folgenden Tabellen zeigt zusätzliche Analysen zur Beschreibung der latenten 

Kompetenzprofile aus Artikel 3. 

Tabelle A3 Vergleich der latenten Kompetenzprofile in Hinsicht auf Fachsemester, FDW-Gesamtscore, 

Demographischer Daten, Umfang und Durchschnittscores in den kognitiven Anforderungsdimensionen. In den 

„T-Test“- und „Cohens d“-Zeilen werden entsprechende Vergleiche zwischen dem FDW-Profil und dem nächst 

„niedrigerem“ Kompetenzprofil berichtet. 𝑁tot bezeichnet die Anzahl an Personen im Cluster bzgl. des 

Gesamtdatensatzes, d. h., wenn vormals ausgeschlossene Proband:innen (siehe Abschnitt 6.4.4) nachträglich 

zugeordnet werden. Im Sinne einer besseren Übersicht, werden hier alle anderen Werte als Relativwerte bezogen 

auf die in der ursprünglichen LPA einbezogenen 785 Proband:innen dargestellt. 

  Low-Achievers 
Applying 

Creatives 

Analytic 

Evaluators 

High-

Achievers 

𝑵 / 𝑵𝐭𝐨𝐭  411 / 470 166 / 167 112 / 113 96 / 96 

T-Test-

Freiheitsgrade 
 - 575 276 206 

Anteil weiblich  34 % 34 % 25 % 43 % 

Schulabschlussnote  2,33 2,07 2,07 1,83 

Fachsemester 

Physik 

𝑀 2,87 5,31 5,28 6,96 

𝑆𝐷 2,56 3,59 3,92 3,71 

T-Test - 
𝑇 = 9,2 

𝑝 < 0,001 

𝑇 = 0,1 

𝑝 = 0.94 

𝑇 = 3,2 

𝑝 = 0.002 

Cohens d - 0,84 - 0,44 

FDW-Gesamt 

𝑀 0,22 0,41 0,43 0,58 

𝑆𝐷 3,27 3,28 3,67 3,765 

T-Test - 
𝑇 = 25,6 

𝑝 < 0,001 

𝑇 = 1,34 

𝑝 = 0.18 

𝑇 = 12,9 

𝑝 < 0,001 

Cohens d - 2,36 - 1,79 

Reproduzieren 

𝑀 0,31 0,53 0,52 0,69 

𝑆𝐷 0,14 0,15 0,18 0,16 

T-Test - 
𝑇 = 17,1 

𝑝 < 0,001 

𝑇 = 0,4 

𝑝 = 0,67 

𝑇 = 7,1 

𝑝 < 0,001 

Cohens d - 1,58 - 0,99 

FDW: 

Anwenden-

Kreieren 

𝑀 0,18 0,51 0,32 0,67 

𝑆𝐷 0,12 0,11 0,10 0,13 

T-Test - 
𝑇 = 30,9 

𝑝 < 0,001 

𝑇 = −14,4 

𝑝 < 0,001 

𝑇 = 21,8 

𝑝 < 0,001 

Cohens d - 2,84 −1,77 3,03 

FDW: 

Analysieren-

Evaluieren 

𝑀 0,21 0,32 0,57 0,64 

𝑆𝐷 0,12 0,10 0,10 0,13 

T-Test - 
𝑇 = 11,2 

𝑝 < 0,001 

𝑇 = 20,5 

𝑝 < 0,001 

𝑇 = 4,5 

𝑝 < 0,001 

Cohens d - 1,03 2,50 0,62 
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Tabelle A4 Durchschnittliche Scores der latenten Kompetenzprofile bezüglich anderer ProfiLe-P+ - Tests. Im 

Sinne einer besseren Übersicht, werden hier alle Werte als Relativwerte bezogen auf die in der ursprünglichen 

LPA einbezogenen 785 Proband:innen dargestellt (siehe Abschnitt 6.4.2). Weitere Informationen zu den 

Testinstrumenten sind aus den entsprechenden Quellen zu entnehmen (für eine Übersicht siehe auch Vogelsang 

et al., 2018): Mathematisches Wissen (MaW) bei Riese et al. (2015) – Fachwissen (FW) bei Enkrott (2021) – 

Pädagogisches Wissen (PW) bei Riese (2009) 

  
Low 

Achievers 

Applying 

Creatives 

Analytic 

Evaluators 

High 

Achievers 

𝑵  411 166 112 96 

PW 

𝑀 0,83 0,87 0,88 0,94 

𝑆𝐷 0,13 0,16 0,15 0,21 

T-Test - 
𝑇 = 3,0 

𝑝 = 0,003 

𝑇 = 0,8 

𝑝 = 0.43 

𝑇 = 2,0 

𝑝 = 0.044 

Freiheitsgrade - 575 276 206 

Cohens d - 0,42 - 0,28 

FW 

𝑀 0,55 0,59 0,59 0,61 

𝑆𝐷 0,09 0,06 0,06 0,05 

T-Test - 
𝑇 = 4,5 

𝑝 < 0,001 

𝑇 = 0,2 

𝑝 = 0.85 

𝑇 = 1,9 

𝑝 = 0.07 

Freiheitsgrade - 449 221 153 

Cohens d - 0,63 - - 

MaW 

𝑀 0,48 0,66 0,63 0,70 

𝑆𝐷 0,23 0,21 0,24 0,22 

T-Test - 
𝑇 = 7,7 

𝑝 < 0,001 

𝑇 = 1,0 

𝑝 = 0.33 

𝑇 = 1,9 

𝑝 = 0.06 

Freiheitsgrade - 449 221 153 

Cohens d - 1,07 - - 

 

Abbildung A3 Heatmap der Korrelationen der FDW-Skalen und weiterer Professionswissensdimensionen. Die 

Abkürzungen zu den einzelnen Konstrukten werden in Tabelle A4 erläutert.  
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F. Zusätzliche Analysen zum Automatisierten Assessment 

 

Abbildung A4 Auswirkungen der Anzahl an CV-Splits auf die Performanz-Schätzung. Hier wurde exemplarisch 

ein Scoring-Modell auf Basis der SBERT-Embeddings (siehe Abschnitt 6.7.6) trainiert. Man erkennt deutlich, 

wie die erhaltene Schätzung für die prozentuale Übereinstimmung zwischen den Score-Vorhersagen (Maschine) 

und Score-Labels (Mensch) mit zunehmender Anzahl an CV-Splits zunimmt und sich (unter statistischem 

Rauschen) asymptotisch einem Maximum annähert. Der Unterschied in der Performanz-Schätzung zwischen nur 

2 und 30 CV-Splits beträgt allerdings gerade einmal 1,2 %. Das Kosten-Nutzen-Verhältnis bei der Nutzung sehr 

vieler CV-Splits ist also begrenzt. 

 

Abbildung A5 Darstellung der Mensch-Mensch-Übereinstimmungen der Kompetenzprofil-Zuordnung als 

Heatmap. Im Vergleich mit Abbildung 6.10 fällt auf, dass trotz der höheren Gesamtübereinstimmung die Mensch-

Mensch-Übereinstimmung punktuell deutlich geringer ausfällt und ungleichmäßiger ist. 
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Zero-Shot Prompt mit Kodiermanual für Aufgabe 1a. 

Leerzeilen und Formatierungen sind nur für die Darstellung hier eingefügt und haben keine 

Bedeutung für den tatsächlichen Prompt. Die Hashtag-Symbole („#“) dienen der Formatierung 

des Prompts auf eine Weise, die auch dem Sprachmodell zugänglich ist (sog. Markdown-

Syntax). 

Die Aufgabe, die bepunktet werden soll, lautet wie folgt: 

<aufgabe> 

Ein Lehrer hat das Wechselwirkungsprinzip "Actio=Reactio" (3. Newtonsches 
Axiom) in einer 9. Klasse eingeführt. Nachfolgend spielt sich folgende Szene 
ab. 

Lehrer: Stellt euch jetzt einmal vor, ein Apfel hängt an einem Baum. Wo haben 
wir hier jetzt Actio und Reactio? 

Schüler A: Na, ist doch klar, der Apfel zieht am Ast und der Ast hält den 
Apfel oben! 

Die Klasse signalisiert Zustimmung 

Lehrer: Ja richtig - schön, ihr habt es verstanden! Was ist denn dann, wenn 
der Apfel jetztherunterfällt? Also während des Fallens, wo ist da Actio 
und Reactio? 

Ein Gemurmel stellt sich ein 

Schüler B: Ja gilt das denn dann überhaupt noch? Ich meine, ist doch immer 
nur ideal, dass das gilt?!? 

Schüler A: Klar hast du noch Actio und Reactio, nur Actio wird halt immer 
größer, der Apfel wird ja schließlich schneller beim Fallen! 

Schüler B: Ich dachte, die müssen gleich sein? Wo willst du überhaupt Reactio 
haben, der fällt doch frei und wird nicht mehr gehalten!?! 

Schüler A: Hm. Na Actio hast du auf jeden Fall schon mal, er bewegt sich ja. 
Und er wird ja auch nicht beliebig schnell, die Luftreibung bremst ihn 
ja. Das ist deine Reactio! 

a) Offensichtlich haben die Schüler die Ausführungen des Lehrers nicht 
richtig verstanden, die Übertragung auf die Situation mit dem frei fallenden 
Apfel gelingt nicht. Analysieren Sie die Szene: Inwiefern ist das Vorgehen 
des Lehrers nicht optimal? 

</aufgabe> 

Dann folgt ein Textfeld für die mögliche Antwort. 

Der Erwartungshorizont für diese Aufgabe sieht wie folgt aus: 

<erwartungshorizont> 

Kodierung: Dichotom kodieren (0 oder 1 Punkt) 

Ziel: Nennung von Aspekten, die die Lehrkraft in fachlicher Hinsicht nicht 
optimal umgesetzt hat 

## Erwartungshorizont korrekt 
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### Fachlicher Bezug wichtig 

### Vermischungsaspekt: 

Der Lehrer begeht einen Planungsfehler. Er verwirrt die Schüler, da er 
verschiedene physikalische Konzepte / Probleme verknüpft und vermischt: 
Zunächst handelt es sich um eine mechanische Wechselwirkung, im Fallen ist 
jedoch kein Angriffspunkt zu erkennen, da die Gewichtskraft berührungslos / 
gravitativ wirkt. Weiterhin handelt es sich zunächst um ein statisches 
Kräftegleichgewicht (1. Newtonsches Axiom), beim Fallen handelt es sich um 
einen dynamischen Fall (2. Newtonsches Axiom), d.h. es wird nicht zwischen 
Kräftegleichgewicht und Wechselwirkungsprinzip unterschieden. 

### Überforderungsaspekt: 

Es wird zu schnell abstrahiert bei dieser komplexen Thematik, die Schüler 
sind überfordert. Mit einer mündlichen Erklärung allein ist ein solches 
Konzept nicht einzuführen, es wäre eine Begleitung - etwa durch ein Tafelbild 
mit eingezeichneten Kräften - nötig, in der die auftretenden Kräfte 
veranschaulicht werden. 

## Erwartungshorizont inkorrekt 

Es werden Aussagen gemacht, die sich nicht auf das fachliche Problem beziehen, 
das der Lehrer durch seine Vorgehensweise provoziert 

- z.B. "Der Lehrer überschätzt die Schüler." 

Aussagen, die sich lediglich darauf beziehen, dass die Erklärung des Lehrers 
nicht ausreicht oder besser sein müsste, reichen nicht aus. 

Aussagen, die sich lediglich darauf beziehen, dass die Erklärung des Lehrers 
nicht ausreicht oder besser sein müsste, reichen nicht aus. 

Es werden Aussagen gemacht, die keinen direkten Bezug zur dargestellten 
Unterrichts-situation haben oder die physikdidaktisch nicht zutreffend sind.  

- z.B. mangelnde Gesprächsführung) 
- z.B. "Der Lehrer unterbricht die Schüler zu spät"  
- "Der Lehrer gibt keine Hilfestellungen" 

Es werden Aussagen gemacht, die nicht den Kern des Problems treffen.  

- allg. Aussage zu mangelndem Verständnis 
- z. B. "Übergeneralisierung nach Aussage von Schüler A. Vielleicht hat 

es die ganze Klasse eben nicht verstanden."  
- "Das Prinzip actio=reactio wurde nicht richtig verstanden." 

</erwartungshorizont>  

Ordne die folgende Antwort zu deiner Aufgabe des Fragebogens gemäß diesem 
obigen Erwartungshorizont ein: 

<scores> 

[0, 1] 

</scores> 

Hier ist die Antwort des Probanden: 
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<antwort> 

{response (hier wird die Antwort eingefügt)} 

</antwort> 

Antworte in folgendem Format: 

<score> 

Die Punktzahl folgt hier als Integer-Zahl. 

</score> 

Zero-Shot Prompt mit Kodiermanual für Aufgabe 3. 

Leerzeilen und Formatierungen sind nur für die Darstellung hier eingefügt und haben keine 

Bedeutung für den tatsächlichen Prompt. Die Hashtag-Symbole („#“) dienen der Formatierung 

des Prompts auf eine Weise, die auch dem Sprachmodell zugänglich ist (sog. Markdown-

Syntax). 

Die Aufgabe, die bepunktet werden soll, lautet wie folgt: 

<aufgabe> 

Das Experiment spielt im Physikunterricht eine zentrale Rolle. 

Nennen Sie bitte zwei verschiedene Ziele bzw. Funktionen des Experiments im 
Physikunterricht. 

</aufgabe> 

Dann folgen zwei Textfelder für die möglichen Antworten. 

Der Erwartungshorizont für diese Aufgabe sieht wie folgt aus: 

<erwartungshorizont> 

Kodierung: 1 Punkt pro richtige Funktion (max. 2 Punkte) 

0 Punkte für gar keine Funktion 

## Erwartungshorizont korrekt 

### Pädagogische Funktion 

Es trägt zur Bildung der Schüler bei, indem sie kausales und funktionales 
Denken, Kreativität fördern 

### Lernpsychologische Funktion: 

- Experimente motivieren, wecken Interesse, machen das Lernen erfahrbar. 
Grenzfall: "Gemeinschaftliches Event, hebt sich ab vom Lernalltag" 

- Physik in Technik und Alltag aufzeigen 
- Motivation durch kognitive Konflikte 
- „mehrkanaligen“ Zugang 
- Selbsttätigkeit 
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- mögliche Individualisierung 
- Förderung des Selbstwertgefühls 

### Erkenntnistheoretische Funktion:  

Das Experiment ist Methode der Erkenntnisgewinnung in der Physik  

### Überprüfung von physikalischen Gesetzen, Modellen 

### Fachliche Funktion: 

Experimente visualisieren/veranschaulichen physikalische Sachverhalte, 
unterstützen die Bildung von Begriffen, Überführung von Theorie und Praxis 
ineinander, z. B.  

- "Zum Erarbeiten eines physikalischen Konzepts.", oder  
- "Praktische Anwendung von Modellen" 

### Praktische Funktion: 

- Schüler üben den Umgang mit Messdaten, deren Auswertung, mit dem Umgang 
von Messgeräten 

- Verantwortlicher Umgang  
- Grenzfall: "Sorgfältiges Arbeiten lernen" 
- experimentelle Kompetenzen erwerben 

### Leistungsbeurteilung: 

Leistungen von Schülern im Rahmen einer experimentellen Aufgabe überprüfen 

### Soziale Kompetenzen 

Kooperationsfähigkeit Kommunikationsfähigkeit 

### Methodologische Funktion: 

Experiment als Lerninhalt, naturwissenschaftliche Arbeitsweisen (z.B. auch 
Beobachtung) 

### Sonstige Mögliche Funktionen: 

- (Schüler-)Vorstellungen prüfen 
- Handlungskompetenz erlernen 
- Kritik- und Reflexionsfähigkeit 
- Meilensteine unserer Kulturgeschichte aufzeigen 

## Erwartungshorizont inkorrekt 

- "Abwechslung" 
- "Experimente führen zu besserem Verständnis“ oder „Verständnis" 
- Ziel oder Funktion im Unterricht ist die Abwechslung 

Es werden keine oder Antworten gegeben, die sich keinem der fünf Bereiche 
des korrekten 

Erwartungshorizontes zuordnen lassen, 

- z.B. Experimente haben keine unterrichtliche Funktion 
- Experimente müssen vorkommen aufgrund des Lehrplans 
- Experimente machen den Unterricht zeitökonomischer 
- "Durch Experimente behält man das Wissen eher im Kopf." 

</erwartungshorizont> 
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Ordne die folgende Antwort zu deiner Aufgabe des Fragebogens gemäß diesem 
obigen Erwartungshorizont ein: 

<scores> 

[0, 1, 2] 

</scores> 

Hier ist die Antwort des Probanden: 

<antwort> 

{response (hier wird die Antwort eingefügt)} 

</antwort> 

Antworte in folgendem Format: 

<score> 

Die Punktzahl folgt hier als Integer-Zahl. 

</score> 
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G. Auszüge aus der Dokumentation des Analysecodes 

Teil des digitalen Begleitmaterials ist unter anderem auch die Dokumentation des verwendeten 

Analysecodes, der in Form eines Python-Pakets (ca. 13,000 Zeilen Code) strukturiert ist. Diese 

Dokumentation wurde mit dem Tool MkDocs (https://www.mkdocs.org/) erstellt und lässt sich 

im Webbrowser betrachten. Sie ist als Teil eines Open-Source-Projekts zur fortgeführten 

Nutzung des Codes gedacht und befindet sich somit unter aktiver Entwicklung. Sie hat zum 

Zeitpunkt der Fertigstellung dieser Arbeit noch nicht den Anspruch, jede Funktionalität bis ins 

Detail ausführlich zu erläutern. Die Darstellung hier dient der Illustration der Vision für die 

Fortführung der methodischen und technischen Ansätze des Projekts. Der Code ist auch in 

einer etwas entschlackten Version als Open-Source Projekt online verfügbar 

(https://github.com/JannisZeller/questionnaire-tools). 

Die Willkommensseite der Dokumentation des Analysecodes sieht wie folgt aus: 

 

Abbildung A6 Willkommensseite der Dokumentation des Analysecodes. 

Auf der linken Seite lassen sich dann die entsprechenden Seiten für einzelne Pakete unter „Full 

Reference“ öffnen, wobei sowohl Beispielcode… 

https://www.mkdocs.org/
https://github.com/JannisZeller/questionnaire-tools
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Abbildung A7 Beispielseite der Dokumentation des Analysecodes für Cluster-Analysen. 
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…als auch die Implementierung und Nutzung der einzelnen Methoden beschrieben werden. 

 

Abbildung A8 Beispielansicht der Einzelbeschreibungen der Methoden des Analysecodes. 
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H. Auszüge aus der Webumgebung für das Assessment 

Im Folgenden werden einige Eindrücke des Webtools, welches als Proof of Concept zur 

Anwendung des Assessment Workflows in einem realen Assessment Setting entworfen wurde, 

dargestellt. Ähnlich wie auch das Paket für die Nachnutzung des Analysecodes (Anhang G) 

versteht sich auch das Webtool als Projekt unter aktiver Entwicklung und hat somit noch nicht 

den Anspruch einsatzbereit für ein reales Deployment zu sein. Es ist aktuell als Open-Source-

Projekt (ca. 4,000 Zeilen Python-Code sowie einige hundert Zeilen JavaScript- und einige 

tausend Zeilen HTML-Code) unter https://github.com/JannisZeller/questionnaire-webtool 

hinterlegt. 

Die Willkommensseite des Webtools sieht wie folgt aus: 

 

Abbildung A9 Willkommensseite des Assessment-Webtools. Dargestellt ist insbesondere das Cookie-Banner 

sowie die Login- und Registrierungsoptionen. 

Nachdem die Cookies etc. akzeptiert sind kann man einen Account erstellen und sich 

einloggen. Die Bearbeitung des Testinstruments ist dann mithilfe von Eingabemasken wie der 

Folgenden möglich: 

https://github.com/JannisZeller/questionnaire-webtool
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Abbildung A10 Beispielansicht einer Testaufgabe im Assessment-Webtool. Eingaben werden automatisch mit 

dem Server synchronisiert, um bei Verbindungsproblemen immer minimalen Datenverlust zu gewährleisten. Das 

Testinstrument kann zudem teilweise bearbeitet und zu einem späteren Zeitpunkt fortgesetzt werden. 

Dabei werden alle Eingaben automatisch gespeichert. Im Menü unter „Report“ kann man nach 

der Bearbeitung des Tests dann eine Anfrage zur Erstellung eines Reports an den Server 

senden, wo dann basierend auf den Modellen aus Kapitel 6 eine automatisierte Bepunktung 

etc. stattfindet. Das Ergebnis hat dann die folgende Form: 
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Abbildung A11 Beispielhafte Darstellung des Ergebnisses eines automatischen Assessments. Diese 

Aufführungen sind eher als Platzhalter zu sehen. Zukünftig sind hier wahrscheinlich stärker inhaltliche Aussagen 

sinnvoller. Die Entwicklung und Evaluierung solcher finaler Gestaltungsfragen bezüglich des Feedbacks sind 

allerdings nicht mehr Teil dieses Dissertationsprojekts. 

Bisher handelt es sich bei den dargestellten Informationen primär um Platzhalter, die 

Illustrieren, wozu das Modell grundsätzlich im Stande ist. Für reale Anwendungen wäre hier 

eine eher „prosaische Darstellung“ für eine Rückmeldung an die Proband:innen wahrscheinlich 

hilfreicher. 
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