PADERBORN
lL UNIVERSITY

MASTERING SCRUM

EXPLORING PRACTICAL CHALLENGES
AND DERIVING A NOVEL SOFTWARE SOLUTION

Dissertation

In partial fulfillment of the requirements for the academic degree of
Doctor rerum naturalium (Dr. rer. nat.)

Institute of Computer Science
Faculty of Computer Science, Electrical Engineering and Mathematics
Paderborn University

Adrian Hiilsmann

September 2024

Adrian Hiilsmann

Mastering Scrum:

Exploring Practical Challenges and Deriving a Novel Software Solution
September 2024

ABSTRACT

More than 75% of current software projects utilize agile development
methods, with Scrum being employed in 80% of these projects, making
it the most popular software development framework. Despite its
straightforward structure and simple rules, practical implementation
issues often hinder the methodology from achieving its full potential,
resulting in prolonged project durations and increased development
costs.

This thesis is dedicated to this problem. Focusing on analyzing cur-
rent Scrum project management solutions and identifying their failure
to adequately address the issues with Scrum, it proposes a new soft-
ware solution that fully maps the agile development framework and
better supports Scrum teams in overcoming practical implementation
problems.

ZUSAMMENFASSUNG

Mehr als 75 % aller Softwareprojekte werden heutzutage mit agilen
Methoden durchgefiihrt. Dabei wird in 8o % der Félle Scrum eingesetzt,
welches das weltweit beliebteste Softwareentwicklungsframework dar-
stellt. Durch den einfachen Aufbau und das klare Regelwerk gilt das
Scrum-Framework als leicht verstandlich. Allerdings zeigen sich in
der praktischen Umsetzung immer wieder Probleme, die dazu fiih-
ren, dass nicht das gesamte Potential der Methodik genutzt wird,
wodurch sich Projektlaufzeiten verlangern und damit die Kosten zur
Entwicklung von Software erhohen konnen.

Diesem Problem widmet sich diese Arbeit. Sie konzentriert sich
dabei auf die Analyse heutiger Projektmanagementanwendungen und
stellt fest, dass diese nicht in der Lage sind, die Probleme bei der
Umsetzung von Scrum adédquat zu adressieren. Aus diesem Grund
wird eine neue Softwareldsung vorgestellt, die das agile Entwicklungs-
framework zur Génze abbildet und Scrum-Teams bei der Bewéltigung
der praktischen Implementierungsprobleme besser untersttitzt.

iii

ACKNOWLEDGMENTS

This dissertation represents the culmination of years of work. I am
deeply grateful to everyone who has contributed to this journey.

First and foremost, I would like to express my profound gratitude to
my supervisor Prof. Dr. Gerd Szwillus. It was your initial inspiration,
back when I was a master’s student, that led me into the fascinating
world of Human-Computer Interaction. The eight years working with
you as a research assistant have been both rewarding and enriching.
Whether it was the seemingly endless number of oral student exami-
nations or discussing the intricacies of usability problems, I enjoyed
every moment. Giving me absolute freedom to explore research topics
that genuinely interested me was a gift that allowed me to grow as a
researcher, while your unwavering belief in me and my work has been
a constant source of motivation.

I would also like to extend my heartfelt thanks to Irene Roger, who,
with her incredible knowledge of every detail of university life, was
a cornerstone of our research group. I will always cherish the many
chats we shared and the invaluable assistance you provided through-
out my time as a research assistant.

My gratitude also goes to Prof. Dr. Stefan Bottcher and Prof. Dr. Karsten
Nebe, who kindly agreed to serve as reviewers of this thesis. I deeply
appreciate your time, commitment, and willingness to take on this role.

On a more personal note, I want to express my deepest gratitude to my
beloved wife, Lisi. Your patience, love, and unwavering support have
been the bedrock of my life during these challenging years. Without
your understanding and encouragement, this thesis would not have
been possible. Lisi, you have been my anchor, and I am unbelievably
thankful for everything you have done for me.

To my children, Pamina and Alwin, I owe a debt of gratitude that words
cannot fully capture. Thank you for your incredible understanding
and patience as I worked on my thesis. Pamina, your encouragement
kept me going during the toughest times, and Alwin, your question
about what life will be like after I finish my PhD was both profound
and eye-opening. Since you were born, you have known me as some-
one spending all weekends on his "Doktorarbeit," and I am so excited
to now have more time with both of you to enjoy life together.

CONTENTS

1 Introduction

1.1

1.2

1.3

Motivation and Problem Statement
Solution

Thesis Structure

Theoretical Foundation

2 Historical Background

2.1

2.2

2.3

2.4

3.1
3.2
33
3-4

3-5

3.6

37

From Human Computers to Electronic Computation .
2.1.1 17th Century - WW II: Human Computers . .
2.1.2 WW I - 1950s: Electronic Computation

From the Arise of Software to the Software Crisis
2.2.1 1950s - The Arise of Software Development
2.2.2 The mid 1960s and the Software Crisis

Software Development as an Engineering Discipline .
2.3.1 1968 - The Arise of "Software Engineering" . .
2.3.2 Reflecting on 50 Years of Software Engineering

Summary and Lessons Learned

The Evolution of SDLC Models

SDLC Definition
Terminology: Model vs. Methodology vs. Framework
Classification of SDLC Models

Plan-Driven Development
3.4.1 WaterfallModel
342 V-Model L
3.43 SpiralModel

Iterative and Incremental Development
3.5.1 Today’s Understanding of IID
3.5.2 IID as Transformative Power to the Paradigm

Shift

The Birth Of "Agile" as the Current State of the Art

3.6.1 Rapid Application Development
3.6.2 Dynamic Systems Development Method . . .
3.6.3 Extreme Programming
3.6.4 The Agile Manifesto

Summary

10
10

14
18
19
20
22
23
24
27

vii

viii

CONTENTS

4 Scrum: Theory and Practice

II

4.1 Roots and Scrum Theory

4.2 Overview of the Scrum Framework

43 SprintCycleRules

4.4 TheScrumTeam

4-4.1
4.4.2
443
44-4

Five Values and Team Size
The Product Owner
The Development Team
The Scrum Master

4.5 The Product Backlog and its Management

4.6 The SprintBacklog

47 TheScrumEvents

4.7.1
4.7.2
473
4.7-4

Sprint Planning
The Daily Scrum
Sprint Review
Sprint Retrospective

4.8 What Scrum Left Out: De Facto Standards

4.8.1
4.8.2

4.8.3

UserStories
Estimation Techniques
Tools for Monitoring Sprint Progress

Problem Analysis

Research Questions and Methods

5.1 Research Questions

5.2 Research Method Overview

Scrum Issues and Challenges

6.1 Research Method Details

6.1.1
6.1.2
6.1.3

6.2 Results

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9

Literature Review
Ethnographic Studies
Interviews o L

Overview
Challenge: Waterfall-Ish Environments
Challenge: Knowledge Management
Challenge: The Product Owner Role.
Challenge: Sprint Planning
Challenge: Daily Scrum
Challenge: Sprint Review
Challenge: Sprint Retrospective
Challenge: Understanding Scrum

73
74
77

79

82
82

85
87
89
94
95
96
98
100
102

104
105
112
118

123
123

125

6.3

CONTENTS

Summary oo

Status Quo of Scrum Tool Support
Research Method Details

7.1

7.2

7-3

7.1.1

Literature Review

7.1.2 Field Studies
7.1.3 Feature Analysis and Heuristic Evaluation . .
Results
7.2.1 Tool Types and Usage Trends
7.2.2 Limitations of Today’s Agile ALM Tools

Conclusion

III The Implemented Solution

8

Natural User Interfaces in Agile Environments

8.1
8.2

8.3
8.4

8.5

8.6

NUIs as an Outcome of HCI Evolution
Different NUI Types

8.2.1
8.2.2

Touch and Multi-Touch
Gestural, Speech, and Tangible Interfaces . . .

Basic Design Considerations for a NUI Solution

Design Considerations of Touch-Based Interfaces . . .

8.4.1
8.4.2
8.4.3

Mobile Interfaces
Tabletops
Vertical Displays

Related Work: Touch-Based NUIs in Agile Settings . .

8.5.1
8.5.2
8.5.3

8.5.4
8.5.5

8.5.6

AgilePlanner
Agile Planner for Digital Tabletops (APDT)

Ambient Surfaces: Interactive Displays in the
Informative Workspace of Co-Located Scrum
Teams
The dBoard: A Digital Scrum Board for Dis-
tributed Software Development
A Cooperative Multitouch Scrum Task Board
for Synchronous Face-to-Face Collaboration .
Nori Scrum Meeting Table

Weaknesses of Current Approaches

Introducing an Interactive Scrum Space

9.1
9.2

93

Overview o i

Implementation

9.2.1
9.2.2

System Architecture
MisterT and Object Recognition HOUDINI . .

Features and Solutions to the Identified Challenges

171
171
172
173
174
178
178
184

211

217
217

222
222
226

231

232
232
235
239
241
241
242

244
245
247
248
249

253
255

257
257
259

265

iX

X

CONTENTS

9.3.1
9.3.2
9-3-3
934
9-3-5
9.3.6

TheBacklog
Sprint Planning
Sprinting and Daily Scrum
Backlog Grooming
Sprint Review
Sprint Retrospective

9.4 Evaluation and Critical Discussion

9.4.1
9.4.2
9-4-3

944

Iterative Evaluation during Implementation .
Heuristic Evaluation
Usability Tests and Expert Interviews in Prepa-
ration for Market Entry
Discussion

10 Summary and Closing

Bibliography
List of Figures

List of Tables

List of Acronyms

292

294
297

313

319

347

351

353

INTRODUCTION

In the dynamic landscape of software development methodologies,
agility has emerged as a fundamental paradigm, with Scrum stand-
ing at the forefront as a widely adopted framework. The iterative
and incremental nature of Scrum facilitates adaptability and respon-
siveness to changes, which frequently occur in nearly any software
development project. As a result, Scrum is known for reducing time-
to-market and increasing customer satisfaction through an overall
higher software quality. However, implementing Scrum often encoun-
ters challenges that can disturb the collaborative work environment,
causing project prolongations and higher costs, which demand better
ways of managing the software development process.

This doctoral thesis delves into the multifaceted realm of Scrum,
investigates its challenges, analyzes how popular project management
tools relate to the identified issues, and finally presents a novel project
management approach utilizing a combination of single and multi-
user interfaces meticulously tailored for the intricacies and unique
demands of the Scrum methodology.

1.1 MOTIVATION AND PROBLEM STATEMENT

The impetus for this research originally stems from personal observa-
tions made during a software development project in 2009 while being
enrolled as a Master’s student in the computer science program at the
University of Paderborn. The project had a dynamic and explorative
nature with undefined outcomes and probable directional changes.
Hence, it necessitated an agile approach, leading to the adoption of
the Scrum methodology, which the supervisors initially perceived as
an ideal fit for the project group due to its structured approach and
clear rule set.

However, this first personal engagement with Scrum unveiled a
series of complexities and a significant disconnect between the theoret-
ical understanding of the framework and its practical implementation.
While the rules of Scrum were commonly understood by all team mem-
bers, the framework was soon modified to what seemed to be a better
fit for the circumstances of the group. Initially perceived as beneficial,
these modifications gradually led to a myriad of operational issues,
including difficulties in managing project requirements, distributing

INTRODUCTION

tasks and responsibilities, and ensuring efficient knowledge transfer
within the team. It quickly became evident that the deviations from
Scrum’s established protocols escalated into complex issues impacting
overall project management.

Likewise, this project also unveiled challenges regarding managing
the Scrum process via appropriate software. While the group initially
agreed to use Jira, known as the most widely used software for man-
aging software development projects, it soon revealed its inadequacy
in fully supporting integral parts of Scrum. This inadequacy neces-
sitated integrating other more lightweight tools, like spreadsheets
and pen-and-paper, to compensate for Jira’s limitations. While these
supplementary tools addressed certain immediate needs, they intro-
duced new problems, such as the synchronization of important data,
so the resultant fragmentation of information significantly slowed
down decision-making processes and reduced team efficiency.

These initial observations were later further reinforced by experi-
ences as a research assistant and turned out to be not only isolated
incidents but rather widespread issues in both academic and indus-
trial settings. The challenges faced were not unique to the specific
context of the project group but reflected a common discrepancy in
the application of Scrum, which, among experts, is characterized by
being simple to learn but difficult to master.

With more than 75% of software projects utilizing agile develop-
ment methods and Scrum being employed in more than 80% of these
projects [300], the motivation for this thesis arises from a dual recog-
nition of Scrum’s pivotal role in modern software development and
the diverse challenges experienced during its implementation. These
challenges, spanning from team-related dynamics to tool limitations,
can limit the methodology from achieving its full potential, causing
prolonged project durations and increased development costs. Conse-
quently, they prompt a comprehensive exploration aimed at enhancing
Scrum’s effectiveness.

1.2 SOLUTION

The overarching goal of this thesis is to contribute to bridging the gap
between the idealized Scrum methodology and the real-world chal-
lenges encountered during its implementation. In particular, the focus
is on better understanding the effects of agile management software
on the collaborative development process and deriving improvement
potentials for a more effective and efficient Scrum project management
practice.

1.3 THESIS STRUCTURE

First, this thesis identifies and analyzes the intricate challenges as-
sociated with the implementation of Scrum. Based on these findings,
it critically examines current Scrum management applications and
investigates how their usability, offered functionality, and proposed
feature sets relate to the identified problems. Considering the iden-
tified limitations of current tool support, this thesis finally proposes
a novel project management solution particularly designed for the
special demands of agile Scrum teams. The centerpiece of this solu-
tion is an "Interactive Scrum Space,” a combination of various single
and touch-based multi-user interfaces to foster a more engaging and
collaborative agile working environment.

The strategic use of these interfaces allows for a more natural and
intuitive interaction with project data. By simplifying the process of
managing different aspects of a Scrum project, the system enables team
members to have a clearer understanding and control over project
management tasks. This includes real-time backlog management, dy-
namic sprint planning tools, and visual representations of project
progress, all designed to address the previously identified practical
Scrum challenges and to improve team coordination and decision-
making.

1.3 THESIS STRUCTURE

Following Chapter 1, representing the current introduction, the struc-
ture of this thesis unfolds in three cohesive parts, with each part
consisting of three individual chapters.

Part I - Theoretical Foundation

The first part provides the theoretical foundation for this thesis and
elaborates on the historical backdrop of computers and electronic
computation, the rise of software development, the shift from plan-
driven to agile methodologies, and finally, examines Scrum as today’s
most popular software development framework.

Chapter 2: Historical Background

This chapter begins by tracing the historical evolution of human com-
puters to electronic computation, followed by detailing key milestones,
such as the rise of software development, the software crisis, and
the establishment of software development as an engineering disci-
pline. Finally, this chapter reflects on the last 50 years of software
engineering, extracting valuable learnings for the thesis.

Chapter 3: The Evolution of SDLC Models

Chapter 3 delves into the diverse models of the software development
lifecycle (SDLC). It defines the SDLC, clarifies the terminology around

3

INTRODUCTION

models, methodologies, and frameworks, and explores the evolution
from plan-driven development to iterative and incremental approaches
and the advent of agile methodologies.

Chapter 4: Scrum - Theory and Practice

This chapter provides an in-depth examination of the Scrum frame-
work, elucidating its roots and underlying theory. It covers the entire
ruleset about the Scrum team, roles, backlogs, and events of the sprint
cycle and also addresses aspects beyond Scrum, which, although not
part of the framework, finally evolved into de-facto standards.

Part II - Problem Analysis

After setting the theoretical foundation, the second part of this thesis
focuses on the problem analysis. With that regard, it first postulates
the research questions and explains the approach before elaborating
on the identified issues and challenges of Scrum. It further investi-
gates how the elements of Scrum are reflected in today’s agile project
management tools, thus giving an overview of the status quo of Scrum
challenges and drawbacks of existing tool support.

Chapter 5: Research Questions and Methods

What challenges do Scrum teams usually face? How are these prob-
lems reflected in existing tool support? Moreover, what could a novel
tool tailormade for the particular demands of Scrum look like? This
chapter elaborates on these research questions, outlines the research
methodology, and provides an overview of how the research questions
have been approached.

Chapter 6: Scrum Issues and Challenges

This chapter offers a detailed exploration of the challenges within the
Scrum framework. Employing diverse research methods, including
literature review, ethnographic studies, and interviews, it presents
findings on challenges related to team dynamics, knowledge manage-
ment, product owner roles, and the nuances of Scrum events.

Chapter 7: Status Quo of Scrum Tool Support

Chapter 7 investigates the existing landscape of Scrum tool support.
It encompasses a thorough analysis of tool types, usage trends, and
limitations of agile Application Lifecycle Management (ALM) tools,
shedding light on usability issues and contradictions with the rules of
Scrum.

Part III - The Implemented Solution

The third and final part of this thesis focuses on implementing a
novel software solution for the previously identified problems of
Scrum, thereby putting particular emphasis on designing a system

1.3 THESIS STRUCTURE

with dedicated support for the collaborative activities of the Scrum
framework.

Chapter 8: Natural User Interfaces in Agile Environments

This chapter explores Natural User Interfaces (NUIs) as a new ap-
proach to Human-Computer Interaction (HCI) and introduces the
concept of combining multi-user touch-based interfaces with classi-
cal single-user desktop interfaces to better support the collaborative
activities of the Scrum framework. Delving into different NUI types,
design considerations, and related work lays the groundwork for the
succeeding chapter.

Chapter 9: Introducing an Interactive Scrum Space

As a culmination of the thesis, this chapter introduces a NUI-driven
interactive Scrum space. It outlines the implementation details, fea-
tures, and solutions addressing the identified challenges. The chapter
concludes with an evaluation and critical discussion, paving the way
for future considerations.

Chapter 10: Summary and Closing

The final chapter summarizes the key findings, contributions, and
implications of this thesis and outlines potential starting points for
future research.

Part1

THEORETICAL FOUNDATION

The core of this thesis, a novel software solution for man-
aging the Scrum process, must be set against the backdrop
of how software development evolved. By this, the reader
will be able to understand core aspects of software develop-
ment in general and learn how agile methodologies finally
displaced traditional processes by incorporating a novel
work philosophy.

Central to this discussion is the emergence of Scrum as
the leading agile development approach. Scrum will be
comprehensively explored, elucidating its values, practices,
and distinctive attributes. This detailed analysis sets the
groundwork for Part II, focusing on critically examining
the issues and challenges associated with Scrum imple-
mentation.

HISTORICAL BACKGROUND

"Human history in essence is the history of ideas.” — H. G. Wells [285]

What is meant by this quote from the British science fiction author
Herbert G. Wells (1866 - 1946) is that the explanation of history cannot
be reduced to the impacts of outstanding individuals and their excep-
tional characters, acting as heroes with superior intellect and divine
inspiration for mankind - also known as the "Great Man Theory,"
which is associated with the Scottish historian Thomas Carlyle [48].
Instead, history is shaped by a complex interplay of different ideas
collectively intertwined with varying views about culture, morality,
authority, etc., all of which must be considered against their time.

As a result, every topic of discussion incorporates its own history, a
course of failure and success that has led to the actual point in time
where it becomes reinvestigated to set the stage and determine its
future path. To decide on the next steps, it is essential to consider and
learn from the past to assimilate success factors and what has been
achieved and understand the stumbling blocks and things to avoid for
not making the same mistakes again.

For this thesis, it therefore makes sense to first look at the historical
background of software development in general before investigating
the issues and challenges of Scrum as today’s leading software devel-
opment process. This historical evolution should provide insights into
the overall programming culture, culminating in the principles, tech-
niques, and patterns used today, and explore origins that might be less
familiar, thus increasing cross-cultural awareness and understanding
of the domain.

However, in the words of Barry Boehm, who, as will be shown in the
further course, is one of the many outstanding persons contributing
to the evolution of software development: "One has to be a bit pre-
sumptuous to try to characterize both the past and future of software
engineering in a few pages" [32]. Hence, this historical review does not
claim completeness but is instead intended to illustrate the milestone
ideas and collective transformative power for evolution in the field
starting with times in which "computers" were not even associated
with machines, to today’s modern "agile" development processes.

10 HISTORICAL BACKGROUND

2.1 FROM HUMAN COMPUTERS TO ELECTRONIC COMPUTATION

"With the rapid development and widespread use of electronic computers,
there is a tendency to forget that all computations were formerly done by
hand; computing a verb, has become computer, a noun.”

— Beverly E. Golemba [97]

2.1.1 17th Century - WW II: Human Computers

The word "computer" is particularly interesting since its meaning has
changed dramatically in the last few hundred years. From its origins
in Latin in the middle of the 17th century, it meant "someone who
computes” and remained associated with human activity for over
300 years before it became applied to the first electronic computation
devices [220, p. 8]. Alternatively, put in the words of the expert in
computing and society, David Alan Grier: "Before computers were
machines, they were people" [102].

2.1.1.1 Comet Halley and the First Division of Mathematical Labor

The story of human computers begins with the computation of the
orbit of Comet Halley, soon after the invention of calculus in the mid-
17th century by Issac Newton (1642 - 1727) and Gottfried Leibniz (1646 -
1716).

In 1705, the astronomer and mathematician Edmund Halley (1656
- 1742) published "A Synopsis of the Astronomy of Comets" [109],
in which he used Newton’s laws of motion and the new calculus to
compute the periodicity of the comet that later should be named after
him. While he realized that this comet’s orbit was influenced by the
mutual interactions of the sun and the planets Saturn and Jupiter,
he worked hard to find a simple mathematical expression for this
interaction. However, he ultimately failed, finally having only a crude
approximation of the comet’s orbit [102].

Some years later, the French mathematician Alexis-Claude Clairaut
(1713 - 1765) created a new mathematical model for the orbit of Comet
Halley. However, it could only be solved numerically [102]. As a
result, in 1758, he constituted a team to undertake the calculations and
recruited two mathematically skilled friends: the astronomer Joseph
Jerome Lalande (1732 — 1807) and Nicole-Reine Lepaute (1723 — 1788), the
wife of a royal clockmaker in the Luxembourg Palace.

For almost half a year, the three friends met at "a common table
in the Palais Luxembourg using goose-quill pens and heavy linen
paper" [103, p. 20] and obsessively computed the comet’s orbit under

=

2.1 FROM HUMAN COMPUTERS TO ELECTRONIC COMPUTATION

the gravitational pulls of Jupiter and Saturn by breaking down the
complicated math into an extraordinary series of mini-steps [254].
After completing their work, they announced that the comet would
reach its perihelion in the following year, on April 13th, 1759 [102]. As
it turned out, they missed the true perihelion by 31 days'. Therefore,
they earned much criticism by one of the great intellectuals of that
time, Jean-Baptiste le Rond d’Alembert (1717 — 1783), who ridiculed
Clairaut’s work as being "more laborious than deep" [254] and argued
that computation was not a proper substitute for careful analysis [102].

Apart from their calculation being a tenfold improvement over Ed-
mund Halley’s prediction, the more important innovation was the
"division of mathematical labor, the recognition that a long compu-
tation could be split into pieces that could be done in parallel by
different individuals" [103].

That is why, against the doubts of d’Alembert, others began to
organize computing groups very soon after the return of Comet Halley,
and in that same year, Lalande and Lepaute were commissioned
by the French Academie of Sciences to compute the nautical almanac
"Connaissance des Temps" [254].

2.1.1.2 The Division of Labor and Shift in the Meaning of Computation

The concept of division of labor gained more momentum after the
English economist Adam Smith (1723 - 1790) published his magnum
opus called "The Wealth of Nations" in 1776 and identified division of
labor and specialization as central elements of productive power [102].

Based on Smith’s ideas, the French mathematician Gaspard de Prony
(1755 - 1839) started a monumental project of calculation on behalf of
the French government to create seventeen volumes of trigonometric
and logarithmic tables, supposed to establish the metric system and
unify the multiple measurements and standards used throughout the
nation after the French Revolution.

Using a hierarchical "divide and conquer" approach of human com-
puters, he divided the complex computational tasks into a series of
additions and subtractions [102]. On top of the hierarchy, a handful of
"excellent mathematicians" conceived analytic formulae and strategies
for the calculation. Below them, he installed eight "calculators" with
knowledge in analysis "who would deduce from these formulas the
numbers needed to begin actual computations” [69], while at the low-
est level, up to eighty persons with only basic knowledge of arithmetic
finally performed millions of the elemental additions and subtractions.

As known today, the calculations did not consider the influences of Uranus and
Neptune, which had not been discovered in 1757. [103]

11

Using division of
labor for calculating
the orbit of Comet
Halley

"Human computers”
and the division of
mathematical labor
gained momentum

12

Women took the
positions of human
computers

HISTORICAL BACKGROUND

However, even with the division of labor and "manufacturing meth-
ods," as Prony later called them [69], it required nearly six years to
complete their work, which he described as not only leaving "nothing
to desire with respect to exactitude, but the most vast and imposing
monument to calculation ever executed or even conceived" [69].

Prony’s tables and labor division marked a shift in social perception
of human computers. While in the eighteenth century, computation
was put on a level of "intelligence" and as the distinctive activity of
philosophers, scientists, or mathematicians, it drifted by the turn of
the nineteenth century to the very opposite, namely into that of dull,
repetitive, and poorly paid bodily labor. Prony’s calculation project
brought together classes of people that seemed to be immiscible. From
mathematicians with profound knowledge of analysis to numerous
anonymous people working as human computers, knowing and per-
forming only the crudest rules of arithmetic. In the end, computation
lost its glory and was pushed away from "intelligence" towards "work"
[69].

Against this backdrop, it comes as no surprise that from then on,
primarily women, far from being socially treated as having equal men-
tal performance as men, took the positions of human computers and
performed the factory-style of computing for astronomical, statistical,
and military projects until the end of World War II.

2.1.1.3 Human Computers in War Times and the Particular Role of Women

By the early twentieth century, computing was considered women’s
work?. The First and Second World Wars further changed the job de-
mands of computation [159]. With men in war, the military recruited
large numbers of female human computers, many with a college
education, who should calculate (by hand) a variety of military prob-
lems, ranging from navigation tables, artillery trajectories, ballistics
for anti-aircraft munitions3 to shock wave propagation, stress on air-
frames, efficient bombing plans, radar reflections, optimal production
strategies, and likely cipher keys [102].

One example is the National Advisory Committee for Aeronautics
(NACA)* of the United States, which was in urgent need during
World War II to develop new aircraft that were faster and safer than
the existing ones. Many mathematically trained women were hired at
the Langley Memorial Aeronautical Laboratory as human computers for

2 This is also shown by the fact that in later years, the problem-solving horsepower of
early computing machines was approximated in "girl-years" or units of "kilo-girl."
[254]

3 A famous example of such work is the "Aberdeen Proving Ground" in Maryland,
USA, which is described as "the Manhattan Project of its day." [254]

4 NACA was founded in 1915 and renamed in 1958 into the nowadays well-known
NASA (National Air and Space Administration).

2.1 FROM HUMAN COMPUTERS TO ELECTRONIC COMPUTATION

calculating aeronautical research data, such as the first wind tunnel
experiments [97].

Another famous example of the application of human computers
during World War Il is the Mathematical Tables Project, funded by the
Works Project Administration (WPA)> in 1938 as a reaction to the Great
Depression. It was initially intended as a work relief project to create
jobs for unemployed clerks and office workers, who should tabulate
higher mathematical functions such as exponential functions, loga-
rithms, and trigonometric functions. Due to the WPA policy, which
required that all projects use the most labor-intensive methods avail-
able to keep the people busy [100], most of the calculation was done
by hand, although calculating aids, such as slide rules or mechanical
desk calculators, could have been available.

However, under the technical direction of Gertrude Blanch (1897 -
1996), the Mathematical Tables Project succeeded as an organization
of large-scale scientific computation. It became the largest®, the most
successful and most influential computing organization prior to the
invention of the digital electronic computer [102]. Blanch pioneered
the work of preparing detailed computation plans and breaking the
computation down into smaller units that used only basic arithmetic
operations. Hundreds of computers with little to no education could
perform these basic operations in parallel, so people would usually
perform only a single operation, such as addition or multiplication
[101]. By introducing self-checking worksheets, the project resulted in
highly reliable calculations and became the "most successful mathe-
matical tables project in history" [254].

Soon after the publication of the first of 28 nearly error-free volumes
of mathematical calculations, the project gained attention from the
scientific community. It became involved in the calculation of several
scientific as well as military problems until the end of World War II.
One example is the computation of nuclear fission and shock wave
propagation tables during the famous Manhattan Project, which was
set up for research purposes in nuclear technology and to develop the
first atomic bomb [254].

These examples show the great need for human computers until
World War II. The particular role of women during that era can be
summarized by a memorandum from the Computing Group Orga-
nization and Practices at the NACA, dated April 27th, 1942, which
explains:

The WPA was an agency established by U.S. President Roosevelt to alleviate
unemployment through public works.

Reaching its zenith in 1941, the Mathematical Tables Project employed 450 human
computers. [100]

13

Detailed task
preparation led to a
breakthrough of
human computers

14

HISTORICAL BACKGROUND

"It is felt that enough greater return is obtained by freeing the engineers
from calculating detail to overcome any increased expenses in the computers’
salaries. The engineers admit themselves that the girl computers do the work
more rapidly and accurately than they would and also feel that their college
and industrial experience is being wasted and thwarted by mere repetitive
calculation.” [159]

Hence, in times far from gender equality, women had to show
exceptional motivation and commitment to work hard and gain social
and scientific recognition. Gertrude Blanch and the Mathematical
Tables Project are examples of this. Starting as a work relief project,
it "proved to be a transitional institution in the history of computing,
promoting mass scientific computation and developing the numeric
methods that would eventually be used on electronic computers” [101].

To conclude this section, the history of human computers shows
that a single person, no matter how talented he or she might be, could
not easily compute complex problems all by himself/herself. Instead,
it needed many people working together as a group and the divi-
sion of labor to solve complicated tasks, ranging from calculating the
complete orbit of a comet to ballistic calculations in war times. This
division of labor, however, needed two things. First, superior intellec-
tual capabilities were required for the careful and correct preparation
of the tasks, and second, physical and mental stamina were required
to remain defiant until the end of work. Altogether, human computers
learned "how to divide their labors, how to work with hierarchical
management, and how to devise standard computing procedures"
[102].

2.1.2 WWII - 1950s: Electronic Computation

Human computation reached its zenith in the early 1940s during World
War II. Up to this point, it became a substantial field by demonstrating
the effectiveness of its work organization through large and successful
projects. It even had its own journal called "Mathematical Tables and
Other Aids to Computation,” which contributed to a living scientific
community [99].

Of course, the history of human computers went hand in hand
with the development of calculation tools to facilitate their work. Over
centuries, these tools were subject to continuous technological change
and evolved from the abacus and simple mechanical calculators over
analog computers, such as differential analyzers, to electromechanical
tabulating machines using punched cards [220].

Punched-card tabulators could work much faster than humans,
but this advantage was lost since humans had to spend several days

2.1 FROM HUMAN COMPUTERS TO ELECTRONIC COMPUTATION 15

preparing the machine [254]. In addition, a large group of human Machines started to
computers could still keep up with a tabulator relatively well, as outperform human
shown by a famous "showdown between man and machine" within ~ “"" uters

the Manhattan Project. In this showdown arranged by Richard Feynman,

human computers had to compete against a tabulating machine by

performing calculations for the plutonium bomb. For at least two days,

the human computers were able to keep up with the machine but

could not sustain their fast pace on the third day, so the punched-card

machine began to move ahead decisively since it did not need to rest

and, of course, did not get tired.

2.1.2.1 The Transfer of Computing from Human to Machine

The challenge between humans and machines was of no means with
the introduction of electronic machines towards the end of World War
IT, which clearly outperformed human computational power in speed
and accuracy.

One of the most famous examples of these very first machines is ~ ENIAC
the ENIAC7, known as "the world’s first large-scale-digital electronic
general purpose computer” [37]. ENIAC was developed by |. Presper
Eckert and John W. Mauchly at the Moore School of Engineering as part of
an alliance between the University of Pennsylvania and the U.S. Army
[289]. When finally revealed to the public, ENIAC was able to perform
several thousand additions per second.

Figure 2.1: Two women wiring ENIAC3

The physical dimensions of this machine were nothing but huge. It
filled an entire room of 5 x 10 meters, weighed 30 tons, and consisted
of over 17.000 vacuum tubes and 70.000 resistors. For its operation, it
relied on 6.000 manual switches within 40 electronic panels that were

7 ENIAC is short for "electronic numerical integrator and computer.”
8 Source: https://ftp.arl.army.mil/ftp/historic- computers

https://ftp.arl.army.mil/ftp/historic-computers

16

War times motivated
the development of
electronic computers

Humans became
“operators” of
electronic computers

HISTORICAL BACKGROUND

arranged in a U-shape along three walls [167]. Also included were
three mobile function table units and IBM punch card machines [185],
while programming was done by plugging cables, thus defining the
flow of electricity through its various components.

The motivation for the development of electronic computers during
World War II was grounded in the calculation of ballistic tables for new
weapons that were "terribly difficult to make" [12, p. 109] and required
solutions to thousands of differential equations, which had always
frustrated scientists since they need a massive amount of computations

[167].

In this context, the ENIAC was intended to automate the production
of firing tables for rockets and artillery shells, which formerly were
calculated by nearly two hundred women [159] working as human
computers at the Ballistic Research Laboratory (BRL) of the U.S. Army’s
Aberdeen Proving Ground.

While Eckert led the hardware engineering, Mauchly was head of
ENIAC’s conceptual design. Beforehand, he was an active member
of the human computers’ scientific community and lectured at the
Moore School of Engineering about the existing principles of translating
complex mathematical problems into a series of much simpler cal-
culation steps making use of nothing but additions and subtractions
[99]. He transferred these principles to ENIAC’s design so that opera-
tors of the machine could still rely on existing techniques of problem
decomposition [185].

2.1.2.2 The Arise of "Programming”

Since Mauchly modeled ENIAC’s computation techniques after those
established by human computers, he also had to initiate a shift in job
definitions [159]. Before ENIAC, a "computer" was a human being,
but since ENIAC claimed the term for itself, humans then became
"operators" and "programmers" [254] of the new machines.

In particular, six women formerly working as human computers at
the BRL were selected to program ENIAC. Since none of them had
ever programmed a computer before, they had to reverse engineer
the machine and educate themselves by using only a bunch of logic
block diagrams and creeping around the inside to understand how
this machine could be operated [159].

Even worse, the ENIAC project incorporated a clear distinction be-
tween the engineering of hardware (a man’s job) and its programming,
which was treated as a "soft" and clerical task. As a result, women
received little to no credit for their work [159]. However, this would
change in later projects during the following years, when women

2.1 FROM HUMAN COMPUTERS TO ELECTRONIC COMPUTATION

especially became pioneers in programming and also taught trainees
on electronic computers [97].

What makes ENIAC particularly interesting in terms of computa-
tional history is the intended break from the era of human computers.
Although Mauchly and Eckert treated electronic computation as an
automated form of human computation using the same principles
and techniques, none of the ENIAC inventors built up on the existing
terminology used to describe organized computing, which was "plan”
[99]. In comparison, Konrad Zuse, also a leading computer pioneer of
this era, did theoretical work on the first higher programming lan-
guage and made an apparent reference to the experience of human
computation by calling it "Plankalkiil" (plan calculus). However, the
ENIAC team separated their work from that of human computers and
therefore chose language accordingly [99].

In 1942, Mauchly introduced the term "to program" in his paper
on electronic computing [172] but used it in the manner how ENIAC
was configured, namely by the repetitive plugging of cables to define
data flows across various units as well as signal flows telling each unit
when to operate [185].

However, only four years later, in 1946, Eckert made the first use
of "to program" in today’s modern sense in one of his lectures at the
Moore School of Engineering. This was preceded by the joining of
John von Neumann to the ENIAC team in order to improve the static
design of the ENIAC since it had to be re-cabled for every problem
to be solved, which was cumbersome and limiting the machine’s area
of application [185]. As a result, they revised ENIAC into EDVAC? -
the first computer incorporating von Neumann'’s concept of a stored
program, nowadays known as "von Neumann architecture."

To conclude this section, the rise of electronic computation consti-
tuted a significant breakthrough. While earlier machines represented
nothing more than the automation of techniques and principles devel-
oped by human computers, it can be seen, especially by the example of
ENIAC, that computation has since undergone a change in paradigm.

Besides the aspects mentioned above, the impact of ENIAC on this
shift can also be seen in particular by how it was unveiled to the
public in 1946, which should have a dramatic impact on the public
consciousness and perception of computers in general. This event
was set up for maximum astonishment of the press and included the
pompous announcement of adding 5.000 numbers together by a press
of a button, which ENIAC accomplished within one second, even
before the reporters had looked up, followed by a demonstration of

9 Electronic Discrete Variable Automatic Computer

17

18

At the beginning,
"programming” was
equal to physically
wiring cables

The memory concept
of "stored-programs”
enabled the real
"programming” of
computers

HISTORICAL BACKGROUND

calculating the trajectory of a shell, that was faster than the shell itself
would need to hit the target [167].

As a result, the capabilities of electronic computation spread like
wildfire all across the world. Newspapers made extensive use of vastly
exaggerated metaphorical images describing these new machines as
"electronic brains" and as if they were healers of modern civilization
so that even Mauchly himself had to make clear that "the electronic
calculator does not replace original human thinking, but rather frees
scientific thought from the drudgery of lengthy calculating work"

[167].

2.2 FROM THE ARISE OF SOFTWARE TO THE SOFTWARE CRISIS

Programming the early electronic computers was done by plugging
cables to define the flow of data and the route of signals that control
the corresponding units for data processing. This way of program-
ming was very similar to switchboard operators working at telephone
companies, where calls were connected by inserting a pair of phone
plugs into the appropriate jacks of the board [97]. Similar to phone
calls, which needed a change in the connection of cables for varying
receivers, early computers needed a new physical setup and rewiring
for every program to be run. Even worse, the programming setup
highly depended on the physical structure of that particular machine.

Simply put, there was no distinction between hardware and soft-
ware [268]. Instead, the "soft" part was represented by the operators
themselves, and programming (a woman'’s job) was assumed to be of
little difficulty and generally was valued as less meaningful than the
engineering of hardware (a man’s job).

There was neither a distinction between the producer of a machine
and its users [268]. That is because early computers were specific-
purpose devices built for particular tasks. As a result, both the pro-
ducer and the user were closely involved in the construction process.
"User" in this context represents hardware engineers. As written above,
the programming of the actual machine was considered to be less crit-
ical, which is why operators (which we would associate with "users"
today) had to deal with machines with almost no instructions or

guides [97].

Overall, the main reason for these limitations of early computers
was lying in a missing memory. Hence, the now famous introduc-
tion of stored-program computers by John von Neumann [186] and
the ENIAC team, as explained in the previous section, constituted a
breakthrough in computing technology, proving ground for upcoming
digital instructions to the computer and getting rid of physical wiring.

10

2.2 FROM THE ARISE OF SOFTWARE TO THE SOFTWARE CRISIS

2.2.1 19505 - The Arise of Software Development

The 1950s can be described as the transition period in which the
paradigm of computer operation was subject to change and went
from "wiring" of the 1940s over "coding" in the 1950s to "program-
ming" in the 1960s. However, this decade was still characterized by a
predominant position of hardware engineering orientation™.

While hardware engineering made steady progress, software aspects
proceeded slowly. Computers were mainly used by governments for
military purposes and treated as "computing machines" [67] or au-
tomata for extensive mathematical calculations, which must be "coded"
into algorithms that the machine could process. This "coding" involved
a high amount of analytical and intellectual power since it remained
very close to higher mathematics, such as numerical analysis [67].

Overall, the area of computer application seemed very limited,
not least because of the high expenses for operation, which is nicely
illustrated by a quote from Barry Boehm, who worked at the defense
company General Dynamics and remembered the instruction of his
supervisor at his first day in the job in 1955:

"Now listen. We are paying $600 an hour for this computer and $2 an hour
for you, and I want you to act accordingly.” [32]

Consequently, this led to programmers following the advice of
"measure twice, cut once" by doing a tremendous amount of testing
and manual execution of programs before running them on a computer
[32]. However, there were also rising efforts to widen the computation
field and establish computers for performing practical tasks, such as
payrolls and inventory [107]. The clearest example can be seen in the
Eckert-Mauchly Computer Corporation, founded by the ENIAC inventors,
who were convinced that computers could be used for universal tasks
in the economy instead of just mathematical problems. Their UNIVAC
was the first commercially available computer in the United States
and allowed them to perform universal data processing [211], which
opened the field of computation from military to general business
applications.

Of course, the intent to sell computers commercially meant not only
to make them perform business tasks in any manner but also to enable
users to program these machines according to their needs. For this
reason, the Eckert-Mauchly Corporation also impacted the rise of the
first programming languages. Similar to the era of human computers,

This predominant orientation towards hardware engineering still shows in the names
of today’s leading scientific communities for software professionals: the ACM -
Association for Computing Machinery and the IEEE Computer Society.

19

Computers had high
operation costs and
were mainly used for
military purposes

The UNIVAC opened
electronic
computation to
general businesses

20

The rise of
programming
languages: getting
computers to
perform practical
tasks

Computers became
part of the public
domain and caused a
rapidly growing
demand for software

HISTORICAL BACKGROUND

it was again women who pioneered the rise of programming electronic
computers and making them accessible to society [107].

In this context, it is essential to mention Grace Murray Hopper (1906 -
1992) and Betty Holberton (1917 - 2001), both working on the UNIVAC
project. Hopper came up with the idea of using a higher language
to program computers instead of bare "0" and "1" instructions. Some
of her outstanding achievements were the introduction of the first
compiler named A-o and the development of FLOW-MATIC [143] as
a direct predecessor of COBOL, a programming language strongly
modeled on natural language and intended for business applications,
which is still in use today.

While Hopper stood out regarding visionary concepts of hardware-
independent and comprehensive programming languages, Holberton
excelled in her exceptional programming work. Beforehand, she was
one of the six human computers selected for the "programming” of
ENIAC [159]. During the UNIVAC project, Holberton developed the
first program to sort and merge files, which solved a key problem for
business applications [107]. In later years, she contributed to the en-
hancement of FORTRAN - the first high-level programming language.
Her remarkable work can also be seen by the deep appreciation of her
colleagues since Hopper described Holberton as "the best computer
programmer she knew" [107] and one of her former ENIAC work-
mates said that "Betty could do more logical reasoning while she was
asleep than most people can do awake" [89].

2.2.2 The mid 1960s and the Software Crisis

Since the 1950s, computers have started to leave closed laboratories
and set foot in the business world as a data processing tool. Times
when these machines were accessible to only a few insiders very soon
belonged to the past, and from then on, they became part of the public
domain [290]. This business domain introduced new challenges. It
needed solutions to search, sort, and manage large amounts of data
[220] so that the development of software (in the form of little pro-
grams) began to separate from the domain of hardware engineering.

As a result, computers reached a new stage during the 1960s and
were used as information systems [67]. The development of memory
mechanisms now made it possible to handle large sets of data, so
computers were increasingly used to automate administrative work
on the one hand and to use them for monitoring tasks of industrial
production processes on the other hand.

Overall, there was a rapidly growing demand for new systems
and application software, which far exceeded the availability, so pro-

2.2 FROM THE ARISE OF SOFTWARE TO THE SOFTWARE CRISIS

grammers were increasingly falling behind [220]. On the other hand,
research made massive progress during the 1960s. Computer science
was established as a new discipline at universities, and the number of
informatics departments started to grow, now with increasing empha-
sis on software [32].

The tremendous impact of that era is still visible today. Within ap-
proximately just one decade, software has grown from basic programs
for sorting and merging files to the first commercially selling prod-
ucts delivered by software development companies. Programming
languages have evolved from first assembly to higher-order languages,
such as Fortran and COBOL. Furthermore, computer science - just
founded as an individual discipline - demonstrated groundbreaking
innovations ranging from the introduction of computer graphics and
artificial intelligence [220] to the spectacular "Mother of all demos"
by Douglas Carl Engelbart (1925 - 2013) at the Fall Joint Computer
Conference in 1968. In this demonstration, Engelbart showed almost
all elements of today’s personal computing, like windows, the com-
puter mouse, hypertext, video conferencing, and collaborative work
using a real-time editor, and so basically founded the research field
of Human-Computer Interaction (HCI), including the upper goal to use
computers for the "augmentation of the human intellect" [81].

From the very beginning, people noticed that the development of
software was utterly different than the engineering of hardware. It was
much easier to modify the code once and reload new copies to different
computers afterward. In contrast, a change in hardware configuration
meant changing each individual instance of a system. Due to this
ease of modification, the programming community adopted a "code-
and-fix" approach representing the exact opposite of the principle of
"measure once - cut twice," which was the prevailing paradigm for
hardware engineering [32].

This "quick and dirty" delivery of products became a primary con-
cern because the rapid expansion of demand for software and business
applications outstripped the supply of programmers (who were math-
ematicians at that time). In turn, this made software companies open
their doors to people from other different disciplines so that non-
mathematicians could enter the field of programming and "flooded
into software development" [32].

However, both aspects, the approach to code first and fix afterward
and opening the software development process to people of other
fields, led to "spaghetti code" that was merely cobbled together and
hence extremely difficult to maintain. As a remark, this situation was
also aggravated since many of these non-specialists were influenced
by the well-known zeitgeist of the 1960s and the attitude to question
authorities, which conflicted with the companies” goal to meet project
deadlines [32].

21

The need to deliver
software quickly led
to software crafting
and "spaghetti code”

22

The software crisis
caused many failing
development projects

HISTORICAL BACKGROUND

As a result, software applications became very people-intensive, and
estimating the costs of a project was more by the rule of thumb than
profound business models [163]. Winston Royce nicely illustrates this
in his paper "Managing the Development of Large Software Systems,"
in which he said:

"In order to procure a $5 million hardware device, I would expect a 30-page
specification would provide adequate detail to control the procurement. In
order to procure $5 million worth of software, a 1500 page specification is
about right in order to achieve comparable control.” [224]

To sum up, the 1960s were an era in which software development
was evolving rapidly. Projects became increasingly difficult to estimate
in terms of costs and scope. In addition, reliability models only existed
for hardware projects and could not simply be transferred to the
software domain. People had to learn that developing software is a
much different activity than developing hardware:

"Software was invisible, it didn't weigh anything, but it cost a lot. It was
hard to tell whether it was on schedule or not, and if you added more people
to bring it back on schedule, it just got later.” — Barry Boehm [32]

This situation, known as the software crisis, led to many failing
projects, either in terms of budget or schedule (or both).

2.3 SOFTWARE DEVELOPMENT AS AN ENGINEERING DISCIPLINE

As written in the previous section, the turning point at which software
separated from hardware was during the 1950s and was established
by technological progress in terms of hardware (mainly memory
mechanisms) and, in particular, by the rise of the first compilers and
programming languages. This separation did not happen overnight
but instead was an ongoing development, which is why a precise hour
of birth of software cannot be given, as this also depends on how
"software" is defined.

Riding on the wave of technological innovation, it was during the
1960s when computers left laboratories and entered the business
and industry sectors, leading to an exploding demand for software
applications. However, projects could only be estimated and scheduled
on a rule-of-thumb basis because of missing techniques for proper
process management. In addition, software has been implemented by a
"hacking" approach through programmers with a very heterogeneous
skill set and work performance. Overall, projects encountered a wide
range of problems and failed on a regular basis.

2.3 SOFTWARE DEVELOPMENT AS AN ENGINEERING DISCIPLINE

2.3.1 1968 - The Arise of “Software Engineering”

Striving for solutions, the NATO Science Committee sponsored two
landmark conferences in 1968 (Garmisch, Germany) and 1969 (Rome,
Italy). While the second conference is of minor concern and was "far
less harmonious and successful than the first" [214], the Garmisch
conference had a tremendous impact on computer science in general
and on the development of software in particular.

It was chaired by Friedrich Bauer and attended by more than 50
people from 11 countries, all professionally involved in the software
field, including many of the leading researchers and practitioners
[40]. Their common goal was to work together against the existing
problems of late deliveries of software having low reliability but high
maintenance costs - or what they referenced by the term "software
crisis."

As a starting point, Bauer coined the term “Software Engineering” and
chose it as the conference title, which was "deliberately provocative"
[214], but already indicated the direction in which software develop-
ment should be heading. Namely to better methodologies and tools
as well as "more disciplined practices" [32] in order to strive for better
software quality control and minimize the likelihood of failures [92].

Although critical comments about the programming profession had
been stated in the years before, it was not until the NATO conference
that the term "software crisis" was coined and that problems and diffi-
culties had been discussed very openly and "with unusual frankness"
[290]. The list of topics was long and covered the whole spectrum
ranging from the relation of software to computer hardware, the de-
sign, planning, and implementation of software, to its distribution and
maintenance after delivery [40].

However, as Broy mentioned in 2018 while reflecting on the last 50
years of software engineering that followed the Garmisch conference,
it was not only the list of topics that paved the way for subsequent
research but also what was initiated by the newly introduced term
"software engineering."

By defining the development of software as an engineering disci-
pline, people became aware of the challenges, for instance, the neces-
sity to establish a scientific foundation and base all upcoming methods,
techniques, and tools on scientific theories, which can be validated and
proven in terms of correctness and efficiency (since this is characteris-
tic for an engineering discipline). As a result of this conference, many
of the early contributions to the field of software engineering were
questioning the existing, and the community started to intensely focus
on a stepwise implementation of a scientific foundation, which then

23

The NATO
Conferences started
to establish software
development as an
engineering
discipline

24

Controversy about
the term "software
engineering”

HISTORICAL BACKGROUND

opened the stage for many innovations, of which some are covered in
the following section.

2.3.2 Reflecting on 50 Years of Software Engineering

"Our discipline has exploded since 1968. In 1968, there were a number of
key people who seemed to understand the whole discipline in all its facets.
Since then, our field has come up with so many different subdisciplines and
areas of application that no one can grasp the whole field [...] anymore.”

— Manfred Broy [40]

As a first step, what is meant by the term software engineering? It
seems that even this simple question has led to many discussions
about the term itself, which started right after its introduction in 1986
and still lasts to this very day. From the introduction to the proceedings
of the first NATO conference, it says:

"The phrase "software engineering” was deliberately chosen as being
provocative, in implying the need for software manufacture to be based on the
types of theoretical foundations and practical disciplines that are traditional
in the established branches of engineering.” [214]

Nearly twenty years after its introduction, Michael Mahoney called
attention to the controversy about the term in 2004 by at first quoting
a leading practitioner, who in 1989 defined "software engineering" as
"the disciplined application of engineering, scientific, and mathemati-
cal principles and methods to the economical production of quality
software" [163]. This is followed by another quote from a colleague
of this practitioner, who declared in 1990 that "software engineering
is not yet a proper engineering discipline, but it has the potential to
become one." By these examples, Mahoney referred back to the excerpt
above and stated that this phrase was indeed provocative, but only
because all crucial terms were left undefined:

"What does it mean to ‘'manufacture’ software? Is that a goal or current
practice? What, precisely, are the 'theoretical foundations and practical
disciplines’ that underpin the "established branches of engineering’? What
roles did they play in the formation of the engineering disciplines?” [163]

He then argues that "every definition of software engineering pre-
supposes some historical model" and explains the controversy about
"software engineering" by saying that the participants of the first two
NATO conferences influenced the field up to the present time by
their varying professional and disciplinary traditions. These traditions,

2.3 SOFTWARE DEVELOPMENT AS AN ENGINEERING DISCIPLINE

in turn, result from their historical background and views of "engi-
neering," which could be applied science, mechanical engineering, or
industrial engineering [163].

According to Mahoney, the focus on "engineering" was more on
the side of applied science for the first years after the two NATO
conferences, which in particular meant theoretical and mostly mathe-
matical computer science. However, during the mid-1970s, it should
have transpired that mathematical models could not suit the diver-
sity of computing and would not quite meet the needs of software
engineering. That is why the interpretation of "software engineering"
shifted towards the influence of the other two domains.

He illustrates this by associating the upcoming concepts of "mod-
ularity" and reusable code routines during the 1970s, as well as the
resulting orientation towards achieving such reusability on a broad
scale by object-oriented programming during the 1980s, to models of
mechanical and industrial engineering, including their principles, such
as "interchangeable parts,” "division of tasks," and "mass production."

Further, he elaborates that under the influence of industrial engi-
neering, the objective of software engineering became "automation,"
which may be seen in rising terms within the scientific community,
such as "software factories" and the comparison of software develop-
ment procedures to industrial assembly lines. However, he concludes
that a factory-like form of engineering focusing on automation will
not solve software engineering problems and will lead to the misin-
terpretation of the field. Finally, he questions the term by saying that
"practitioners disagree on what software engineering is, although most
of them freely confess that, whatever it is, it is not (yet) an engineering
discipline" [163].

This argumentation is in line with Antony Bryant, who considered
the impact and role of the "engineering" metaphor and argued that
metaphors play an influential role "as an indispensable component of
cognition." He concludes that the engineering metaphor, in particular,
has moved us forward during the "critical activity of developing a
discipline for software development,” but that "we now have to move
forward to the next stage" [41].

While the term and its implications for the field are still controversial
within the scientific community, there is no question about the actual
achievements and innovations of software engineering during the last
50 years.

The following briefly touches on some examples intended to give a
small impression of the incredible variety of the associated research
field and to provide a broader perspective on the subject matter of this
thesis.

25

26

Software engineering
led to new ideas for
more careful
programming

11
12

HISTORICAL BACKGROUND

After the NATO conferences and the birth of software engineering
as a new discipline, there was a new momentum to overcome the
existent "code-and-fix" approach and to spend more time on a careful
analysis of the coding activity [32]. As an example, Boehm points out
that a letter from Edsger Dijkstra [75] has led to the movement of
structured programming, which in turn paved the way for concepts
such as "modularity” of code, "information hiding," "abstract data
types" and finally led to procedural programming techniques, such as
the revolutionary Pascal by Niklaus Wirth [290] and todays modern
object-oriented programming languages.

Besides better programming concepts and languages, there have also
been many achievements in terms of achieving better code quality. Today,
powerful IDEs™ and incorporated tools help programmers write code
according to style guides and patterns to ensure a certain level of code
quality. In addition, comprehensive software testing methods have been
developed to guarantee error-free operation for at least parts of the
software'.

Maybe the exact opposite to the 1960s approach of code first and
fix afterward can be seen in the subdiscipline of model-driven software
development, which started during the 1980s and is still the subject of
many research projects today. This software development methodology
focuses on abstract representations of knowledge (models) as the
primary artifact of the development process so that the implementation
of code can be (semi)-automatically generated from the models.

However, for this thesis, what has been achieved in terms of manag-
ing the software development process is of particular importance. In 1976,
Boehm defined software engineering as "the practical application of
scientific knowledge in the design and construction of computer pro-
grams and the associated documentation required to develop, operate,
and maintain them" [26]. This definition shifted the focus of software
engineering to what should become the standard lifecycle model of soft-
ware, which is today’s understanding of the software development
process as an interplay between the specification of requirements,
design considerations, the coding activity and its verification through
testing, as well as aspects of delivery, operation, and maintenance of
the product.

The next chapter will present the evolution of software development
lifecycle models and explain why agile methodologies and Scrum
became the leading paradigm. Beforehand, the following section ex-
tracts some "lessons learned" from this chapter about the historical
background of software development.

Integrated Development Environment

Testing cannot detect all errors in a program as it is impossible to assess every
execution path except in the simplest programs. This issue encompasses the halting
problem, which is inherently undecidable.

2.4 SUMMARY AND LESSONS LEARNED

2.4 SUMMARY AND LESSONS LEARNED

Of course, analyzing the historical background and evolution of soft-
ware development has many facets and could quickly fill several books.
Therefore, presenting only a rough sketch, as in this chapter, will natu-
rally leave important things out and may not satisfy interested readers.
However, this chapter is by no means intended to tell all the exciting
stories of all those remarkable men and women who paved the way
and contributed to how software is developed today.

Instead, it is more about giving an impression of the manifoldness
and complexity of the software development procedure based on some
historical landmarks and turning points, delivering some "lessons
learned" for the present time, and trying to build a bridge to today’s
agile way of developing software using the Scrum framework, which
is the focus point of this thesis and will be presented in Chapter 4.

These lessons reach as far back as the middle of the 17th century,
when "computation" was pure mathematics and usually performed by
highly educated experts working independently behind closed doors.
However, as seen by the example of Comet Halley (see Page 10), col-
lective efforts often surpass the capabilities of individual experts. This
evolution from isolation to collaboration is a cornerstone of modern
agile methodologies like Scrum, where communication, teamwork, and
the sharing of ideas is prioritized over individual prowess. The trans-
formation of "computation" from a solitary mathematical activity to a
collaborative, multifaceted process mirrors the evolution in software
development. It underscores the necessity of adapting to changing def-
initions and scopes of work, just as software development has evolved
from a technical coding task to a complex, collaborative process.

At the beginning of the 19th century, a turning point in the era
of human computers was the division of labor, initiated by Gaspard
de Prony when calculating trigonometric and logarithmic tables (see
Page 11), which was later brought to perfection by Gertrude Blanch
during World War II in the Mathematical Tables Project (see Page 13).
What can be derived from these examples is the utmost importance of
careful and correct preparation of tasks prior to the actual work execution.
This insight can be easily connected to today’s development practice
because, as will be shown in later chapters, many failing software
projects show problems in the implementation or coding phase (work
execution) as a result of failures in the specifications of requirements.

Moreover, the division of labor at the beginning of the 19th cen-
tury resulted in an intellectual shift and "factory-style" of (human)
computing (see Page 12), which interestingly shows a connection to
the 1980s, when the term "software factory" was coined. At that time,
software development was compared to industrial assembly lines [163]

27

The value of
teamwork over
individual genius

The importance of
careful and correct
task preparation

28

Understanding
"programming” as a
creative process

The need to establish
cross-cultural
awareness

HISTORICAL BACKGROUND

and similar to Prony’s division of labor and letting unskilled people
perform myriads of simple calculations, the movement of "automatic
programming” and "computer-aided software engineering" (CASE)
had the ultimate goal of taking a problem specification and letting the
computer transform it automatically into a working system, which es-
sentially means eliminating the programmer, just like Prony wanted to
eliminate the need for skillful mathematicians. However, in contrast to
the computation of Prony’s mathematical tables, programming turned
out to be a thoughtful and creative process so that the idea of automatic
programming ultimately failed with programmers complaining about
the term "software factory" since it connotes a devaluation of their
skills [65].

History has shown how electronic computers initiated a paradigm
shift in computation and superseded the work of human computers,
which then became operators of these machines. The evolution of this
"operation,” starting from "plugging" cables, over "coding" in machine
language to finally "programming," illustrates the liberation of the
mind from dull and repetitive work towards creative thinking. The
crucial, yet often overlooked, contributions of women and their pivotal
role, especially in the transition from manual to electronic computation
(see Page 20), highlight the need to establish cross-cultural awareness
and integrate diverse perspectives and talents into the software engi-
neering discipline. As will be shown in Chapter 4, Scrum builds up
on this insight and proposes that understanding and valuing diverse
influences can lead to more innovative and effective approaches in
software development.

The separation from hardware and the development of "program-
ming" marked the beginning of the triumph of software, which is now
everywhere and will continue to be ubiquitous in the future. At the
same time, the software crisis has revealed the inherent challenges of
software engineering, as there is nothing that can be quickly adapted
from other disciplines, leaving people in disbelief as to whether soft-
ware engineering is an engineering discipline at all.

People have been looking for solutions to overcome the software
crisis for fifty years. Researchers aimed to improve product produc-
tivity and quality and developed new programming languages, test
mechanisms, and formal methods. In addition, new process mod-
els have been proposed to better manage all aspects of the software
development lifecycle [92], as shown in the following chapter.

Nevertheless, despite all these efforts, projects still fail on a reg-
ular basis in terms of budget, scope, or both of them. None of the
achievements within the software engineering community represented
an ultimate solution, and as Brooks has shown in his famous essay
"No Silver Bullet: Essence and Accident in Software Engineering" [38],
there may not be a "silver bullet" to all the existing problems.

2.4 SUMMARY AND LESSONS LEARNED

However, as will be shown in the next chapter, agile software de-
velopment approaches that emerged approximately twenty years ago
initiated a paradigm shift by incorporating a completely different
philosophy of how software should be developed, thus bringing pro-

gramming, which is now treated as a highly collaborative team effort,
into a new era.

Before Chapter 4 presents Scrum as today’s most prominent agile ap-
proach, and the subsequent course of this thesis will sharpen towards
the central subject matter, Chapter 3 first elaborates on the evolution of
lifecycle models. Again, this is intended to provide enough backdrop
and historical context for the later analysis of Scrum’s issues and chal-
lenges, which will finally be addressed by a novel solution designed
for optimal support of Scrum teams and their specific requirements.

29

Agile software
development
approaches as an
answer to the
software crisis

THE EVOLUTION OF SDLC MODELS

"We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,
because it requires skill and ingenuity, and especially
because it produces objects of beauty.”

— Donald E. Knuth. "Computer Programming as an Art." [141]

As explained in the previous chapter, the term "software engineer-
ing" was coined after the first NATO conference in 1968, and the newly
established discipline gathered momentum in the search for solutions
to problems of the existing software crisis.

One aspect was better management of the overall process and estab-
lishing a model for the different software development phases, known
as the software development lifecycle (SDLC). During the last fifty
years, numerous approaches and methodologies for implementing this
lifecycle have been introduced, each focusing on particular aspects.
Since it is far out of scope for this thesis to elaborate on all of them, this
chapter will introduce only a selection of models and methodologies
that have proven to be most relevant for the scientific community and
which gained more momentum than others, thus contributed a lot to
the overall evolution towards today’s agile development philosophy.

Since this thesis introduces a novel solution to the development
practice and the very specific requirements of agile Scrum teams,
Chapter 4 elaborates on all details of Scrum, whereas the present chap-
ter is mainly intended to deliver some historical context and insights
from different models that preceded this development framework.
Furthermore, these previous development principles provide context
for understanding the research questions of this thesis, which will
be explained in Chapter 5, and the subsequent analysis of challenges
when implementing Scrum, which will be covered in Chapter 6.

First, a definition of the standard model of the software develop-
ment lifecycle and a subsequent section clarifying terms should help
the reader avoid getting confused when stumbling over different ter-
minologies, such as "SDLC model," "SDLC method," "SDLC methodol-
ogy," and so on. In addition, a short section about how SDLC models
could be classified should assist further reading by differentiating
between different types of models.

31

32

THE EVOLUTION OF SDLC MODELS

3.1 SDLC DEFINITION

The software development lifecycle (SDLC) can be defined as the sum of
various phases or activities within the overall process to genuinely
build a software product from the ground up (see Figure 3.1).

\

Figure 3.1: The software development lifecycle (SDLC)

While Figure 3.1 shows seven phases, other representations of the
software development lifecycle may only have six or five. This is usu-
ally when the seven phases are described in technical aspects instead
of higher-level activities. For example, the "planning" and "analysis"
phases are often reduced to "requirements analysis." Likewise, "de-
liver" and "maintain" are sometimes reduced to "deploy and operate."
However, this difference is just a question of granularity and does not
affect the distinction between the lifecycle’s individual phases.

1. Planning

Every software project involves different kinds of planning ac-
tivities. On a technical level, these activities include specifying
requirements and determining what the system should accom-
plish. On a higher level, planning also defines a roadmap for the
software project based on its scope and budget.

2. Analysis

The analysis phase is a buffer between gathering and acting on
requirements. It involves client approval or clarification about
the project to ensure the right track before more detailed work
is started. On a technical level, this phase defines the structure
of system requirements to understand all aspects of the start-
ing position and an eventually existing system that should be
improved.

3.1 SDLC DEFINITION

3. Design

The design phase considers how the product will fulfill the pre-
viously identified user requirements. It involves making many
technical decisions and creating detailed descriptions, plans,
documents, and specifications about the software to be built.

4. Coding

In the coding phase (also known as the "development" or "im-
plementation” phase), the theory is turned into practice, and
all preceding design decisions are transformed into working
program code.

5. Test

The testing phase is meant to ensure the correct behavior of the
implemented requirements and to satisfy a certain level of code
quality. During the development of complex systems, which
involves not one but several or many developers, parts of the
program code will likely be modified or overwritten by accident.
Different test levels attempt to execute different program parts
to find errors or other defects. Unit tests, for example, verify
the functionality of a specific section of code, whereas iteration
tests expose defects in the interplay and interaction between
integrated components (modules). In contrast, system tests run
on a completely integrated system to verify that the system
meets the user requirements.

6. Deliver

In the deliver phase (also known as the "deployment" or "op-
eration" phase), the built software is delivered to the customer,
integrated and installed into the existing system environment,
and put into operation.

7. Maintain

The final stage of a software development lifecycle occurs once
the built product is fully operational. Maintenance involves mon-
itoring the system performance and rectifying still-occurring
software bugs, managing change requests, and keeping the sys-
tem live with necessary updates.

At first glance, these phases define a logical, sequential order based
on the temporal relations between the phases. For instance, no one
would assume a system could be maintained before it is developed.
However, the same does not apply to testing, as an example, which
actually can be done upfront of a succeeding development or coding
phase (by an approach called test-driven development).

33

34

Models

Methodologies

Frameworks

THE EVOLUTION OF SDLC MODELS

Hence, although a particular order of these phases seems natural
and reasonable, this must not be the case. In fact, this insight goes
hand in hand with the historical evolution of SDLC models and the
shift in paradigm from sequential development processes to agile
methodologies, as will be illustrated later in this chapter.

Beforehand, and to avoid any misunderstanding, the terms "model,"
"methodology," and "framework" are examined more closely and de-
marcated against each other since they will be frequently used in the
further course of this thesis.

3.2 TERMINOLOGY: MODEL VS. METHODOLOGY VS. FRAMEWORK

A model is an abstraction or simplified version of an aspect of the real
world. Therefore, an SDLC model is an abstract representation of the
software development lifecycle. In contrast, a process methodology is a
concrete manner of how software is developed.

That means an SDLC model does not specify how to do things
but only outlines the types of things done during the lifecycle. In
contrast, a methodology is a specific way of conducting a software
project and precisely defines what, when, and how various artifacts are
produced. In that sense, a model is descriptive, whereas a methodology
is prescriptive.

However, some methodologies might only be partially explicit with
all regards and are therefore called frameworks. For instance, Scrum,
the agile methodology of primary concern for this thesis, is considered
a framework since, although it is peculiar in many aspects, it also
leaves lots of freedom to those who apply it.

The later part of this chapter will show that software development
processes have shifted from traditional SDLC models to the agile
SDLC model, which encompasses many different agile methodologies.
Moreover, before this paradigm shift occurred, speaking about rep-
resentations of the development process was focused on "models."
In that sense, the evolution of software development processes can
be seen as an emergence of abstract process descriptions (models) to
concrete process designs (agile methodologies).

3.3 CLASSIFICATION OF SDLC MODELS

Similar to the differentiation between "model," "methodology," and
"framework," it makes sense for a better understanding of the course
of this chapter to quickly investigate the set of attributes or (in some

3.3 CLASSIFICATION OF SDLC MODELS

cases) synonyms the reader might stumble upon when various authors
characterize different kinds of SDLC models.

For example, Ruparelia stated in 2010 that SDLC models fall under
three categories: linear, iterative, or a combination of linear and iterative
models [227]. However, this classification must be considered incom-
plete because it leaves out incremental models, leading to difficulties
with classifying the agile SDLC model (since this is undoubtedly both
iterative and incremental, as will be explained in the Sections 3.5 and

3.6).

In addition, various authors describe particular SDLC models with
different attributes depending on the context and what they try to
express. Therefore, a brief explanation of the terms commonly used to
describe SDLC models (and methodologies) should help to prevent
confusion and is intended to assist readers in further studies. The set of
attributes for differentiation between SDLC models and methodologies
is shown in Figure 3.2.

Linear / Sequential . Agile
Iterative Incremental
Plan-driven Lightweight
Document-driven
Waterfall methodology (Royce)
Spiral model Extreme Programming

Waterfall |

aterfall mode DSDM

V-model
Scrum

Figure 3.2: Classification of SDLC models

Linear, sometimes called sequential models, define the software de-
velopment process as a series of stages, where the completion of a
stage irrevocably leads to the initiation of the next one. As a result, the
development process is strictly one-directional and must be planned
and conducted with extreme care since there is no turning back and
decisions of preceding stages cannot be revised. These models are also
attributed as plan-driven or document-driven due to the proposed heavy
amount of documentation and precise specification plans needed to
complete a stage and enter the next one. Examples of sequential mod-
els include the Waterfall Model (see Section 3.4.1) and the V-Model (see
Section 3.4.2).

On the other hand, an SDLC model described as being iterative
means that a defined development process or concept is repeated so

35

Linear models are
also known as
sequential,
plan-driven, or
document-driven

36

Iterative models

Incremental models

The Agile model
combines iterative
and incremental
development

THE EVOLUTION OF SDLC MODELS

that every phase is revisited in future iterations. This iterative process
assumes that the artifacts or outcomes of any phase cannot be correct
on the first attempt and that requirements may change over time
so that development remains a constant endeavor for improvement
throughout the lifecycle. Examples of iterative development include
the modified Waterfall methodology by Royce (see Section 3.4.1) and the
Spiral model (see Section 3.4.3).

An incremental model is characterized by a piecewise development
and delivery of the product. So instead of developing all aspects of
the product as a whole and over the whole time, resulting in finally
delivering it in a "big-bang" style as one final piece, incremental
development is about first splitting up the system functionality into
numerous parts that are built independently from each other and
second, delivering these parts as portions throughout the project. In
doing so, the delivered parts build up on each other, and the product
can grow as more "increments" add up.

The Agile SDLC model is a notable example of both iterative and
incremental approaches, and its principles are reflected in all agile
methodologies. Developed and refined since the early 1990s [52], agile
software development methods mark a significant departure from pre-
existing approaches and represent a paradigm shift in software devel-
opment. The attribute "lightweight" describes the differences between
agile methodologies and previous "traditional" approaches, with the
latter being characterized as "heavy" in planning and documentation.
In contrast, agile methods emphasize flexible and adaptive techniques
over rigid processes and artifacts. Examples of agile methodologies
include the Dynamic Systems Development Method (see Section 3.6.2),
Extreme Programming (see Section 3.6.3), and Scrum (see Chapter 4),
which is the primary concern of this thesis. Further elaborations on the
paradigm shift from traditional to agile development principles will
be given in Section 3.5.2, while the following sections will provide an
overview of the evolution of SDLC models and their most prominent
representatives.

3.4 PLAN-DRIVEN DEVELOPMENT

The evolution of SDLC models begins with plan-driven development
processes, which, as explained before, are characterized by a heavy
amount of upfront planning and documentation, followed by linear
distinct development phases.

3.4 PLAN-DRIVEN DEVELOPMENT 37
3.4.1 Waterfall Model

The most basic and earliest SDLC model is known as the Waterfall
Model proposing a sequential execution of the lifecycle phases, as
introduced in Section 3.1. Moreover, these phases are strictly separated,
meaning that the work of one phase must be entirely finished before
activities of the succeeding phase can start. In that sense, software
development relates to a flow of water directed in one direction only,
as illustrated in Figure 3.3.

Analysis

Design
Coding
Testing

Maintenance

Figure 3.3: Waterfall Model

While the image shows five distinct phases, there are also variations
with up to seven phases (for instance, by splitting the singular "Design"
or "Testing" phases into two), but this is (as already stated in the
explanations of the individual phases, see Section 3.1) more or less
just a question of granularity and does not affect the model’s concept
of strictly separated and sequential phases.

Historically, the roots of the Waterfall Model can be traced back to
1956, when Herbert Benington documented a defined software devel-
opment process for the SAGE™ project for the U.S. and Canadian air
defense [22]. While the SAGE model was specific for military purposes,
it needs a small amount of abstraction or adjustment of wording to
identify a relatively close match between the stages used by Benington
and the phases of the later Waterfall Model [227] (see Figure 3.4).

Against the historical backdrop of software engineering, as de- The Waterfall Model
scribed in the previous chapter, it is now clear that this very first ~ stems from adapting
SDLC model originates in the manufacturing process of hardware, Z;ZZ?YZZ%ZES
in which changes to a physical product in later phases become pro- 1,4, development of
hibitively costly, if not impossible. However, since no formal software software
development methodology existed at that time, it seemed appropriate

to adapt the hardware engineering model to software development.

The term "waterfall" was coined in a paper by Bell and Thayer in
1976 [21]. It led to some confusion since they referenced and asso-

1 Semi-Automated Ground Environment

38

THE EVOLUTION OF SDLC MODELS

IOPERATIONAL PLAN I——-— R

MACHINE OPERATIONAL
SPECIFICATIONS SPECIFICATIONS

PROGRAM L
SPECIFICATIONS

]

rCODING SPECIFICATIONS

S

—]

DESIGN
e PARAMETER TESTING
JESTING (SPECIFICATIONS) |

ASSEMBLY TESTING
(SPECIFICATIONS)

e

G o - - - - -

1

]
[}
1
1
1
)
I
1
1
1
1
1
|
|
|
1
1
]
[
|
1
]
1
[}
|
]
1
]
1
]
!
-

SYSTEMEVALUATION

Figure 3.4: The first documented sequential process model [22]

ciated this term with a nowadays famous paper by Royce, who is
often supposed to be the first person who formally proposed the
Waterfall Model. However, neither Benington nor Royce has actually
used that term. In fact, Royce was the first to announce the sequential
model to a broader audience using the simplified form we are used
to nowadays. However, he has also been the first to argue against the
one-directional flow and strictly sequential development process and,
therefore, proposed a version of the "waterfall" that is enhanced by
various aspects.

At first, he identified the testing phase, which occurs at the end of
the development phase, as the moment in time when the actual behav-
ior of a system can be experienced, which is often very different from
what has been analyzed and designed in preceding phases. This mis-
match of expectations and reality could only be solved by a significant
redesign, which may be "so disruptive that the software requirements
upon which the design is based and which provides the rationale for
everything are violated" [224]. As a result, the development process
would have returned right to its beginning, thus leading to a 100%
overrun in schedule and costs (see Figure 3.5).

His solution to eliminate most of these development risks consisted
of five additional steps, which are all aggregated into his proposed
methodology?, as shown in Figure 3.6.

As a first step, he inserted a (1) preliminary design phase between
the software requirements generation phase and the analysis phase.
This is intended to (2) initiate an early simulation of the final product

Notice the difference between the terms "model" and "methodology," as described in
Section 3.2. Whereas the Waterfall Model is rather abstract, the proposed version of
Royce is a precise process description, hence a methodology.

3.4 PLAN-DRIVEN DEVELOPMENT

SYSTEM
REQUIREMENTS|

SOFTWARE
REQUIREMENTS|

N y

PROGRAM
DESIGN

| CODING
;{ TESTING l

Figure 3.5: Restarting the waterfall because of testing results [224]

by what he called a "do it twice" approach and what would be called
"prototyping" today. Furthermore, he insisted on (3) a heavy amount of
documentation through all phases of the project, (4) enhanced testing
by planning, measuring, and monitoring tests to guarantee proper
behavior and what is interesting, (5) involving the customer, so that
he has to commit himself at earlier points in time before the final
delivery.

SYSTEM
REQUIREMENTS
SYSTEM
REQUIREMENTS
GENERATION \
PRELIMINARY
PROGRAM
DESIGN

PRELIMINARY
DESIGN
ANALYSIS
PROGRAM
DESIGN

CODING

TESTING
USAGE

ANALYSIS

[

SOFTWARE
REVIEW

PROGRAM
DESIGN

| oocumenT no. 1
SOFTWARE
REQUIREMENTS

NT NO. 2|
PRELIMINARY
OESIGN

(sPEC)

TESTING

DOCUMENT NO. 3
INTERFACE

CRITICAL
SOFTWARE
REVIEW

(sPEC)

OPERATIONS.
FINAL
SOF TWARE
ACCEPTANCE
REVIEW
TEST PLAN

oESIGN

) arec) DOCUMENT NO. 6.
OPERATING

INSTRUCTIONS

DOCUMENT NO. 4
FINAL

DESIGN
(sPEC)

' "4
—
. 'DOCUMENT NO. 4|
. FINAL DOCUMENT NO. 5|

Figure 3.6: Proposed development process by Royce [224]

In the end, it is interesting to see that Royce is often falsely refer-
enced as the originator of the Waterfall Model, although he actually
identified several problems of this rigid sequential approach and
proposed the solutions mentioned above. However, the reasons can-

39

40

Software verification
vs. validation

THE EVOLUTION OF SDLC MODELS

not be reconstructed, and it can only be guessed whether his ideas
have not gone far enough to circumvent this reference since many
characteristics of the Waterfall Model are also valid for his proposed
methodology.

3.4.2 V-Model

In 1979, Barry Boehm introduced the V-Model in his "Guidelines for
Verifying and Validating Software Requirements and Design Specifica-
tions" [27]. From his studies indicating that the costs to find and fix
software errors will exponentially grow while progressing towards
later stages of the lifecycle (see Figure 3.7), he concluded the utmost
importance of resolving software problems and high-risk issues of the
lifecycle at the earliest stage possible.

"[Slavings of up to 100:1 are possible by finding and fixing problems early
rather than late in the life-cycle. Besides the major cost savings, there are also
significant payoffs in improved reliability, maintainability, and human
engineering of the resulting software product.” — Barry Boehm [29]

1000 T T T T T
S0 | & : 1BM-SSD N
DE GTE
200(~ -
0%
1001 i MEDIAN.-.TRW SURVEY -
. 20%
Relative s, 1
cost to O5C sarecuarp

fix error
20

ire- . Develop-| Accept- _
Require| posion | Code |ment P\ ance. | Opera
ments Test Test tion

Phase in which error detected

Figure 3.7: Relative costs to fix software errors [27]

Therefore, a central aspect of his V-shaped sequential process model
was the emphasis on validating and verifying the results, as seen in
Figure 3.8.

While software verification means to check whether the artifacts of a
development phase, for example, program code and design documents,
satisfy the requirements specified before, software validation considers
if these artifacts meet the actual user needs. Boehm explains the
difference very descriptively by treating verification as "building the
product right" and validation as "building the right product” [29].

3.4 PLAN-DRIVEN DEVELOPMENT 41

EXPLORATORY
CONCEPTUAL

USAGE&
SUPPORT

CONCEPT VALIDATION

PLANS &
REQUIREMENTS

INSTALLATION
OT&E

VALIDATION

RQTS. VAL l DES. VAL l l VAL. TEST I

REQUIREMENTS VERIFICATION

BASELINE

PRODUCT
DESIGN
PROD. DES. VER. ACCEPTANCE TEST

DETAILED
DESIGN

INTEGRATION
& SYSTEM TEST

PROG. DES. VER.

Figure 3.8: V-Model [27]

It can also be seen in Figure 3.8 that the V-model is strongly inspired Unit, integration,
by the Waterfall Model. Its stages are arranged in the left arm of the system, and user
"V" from top-level specifications down to the implementation at the acceptance fests
bottom. The key novelty is in the right arm: by segmentation of
test levels in unit, integration, system, and user acceptance tests and
juxtaposing these against every stage of the left side, a high level of
test coverage is pursued since the outputs and artifacts of each stage
on the left-hand side serve as a basis for the respective tests at the
right side.

As a remark, Dolezel and Felderer have recently pointed out that this
"concept of separate test levels with dedicated testing responsibilities
codified by the V-model [...] has been traditionally presented as
a form of test maturity ideal" since "the more test levels exist in
the organization and the higher number of diverse groups involved
in software testing, the more mature test process the organization
exercises" [76].

Figure 3.8 also shows that verification and validation activities are
separated by the "requirements baseline," which refers to the require-
ments specification elaborated and validated during the "Plans and
Requirements" phase. This specification is developed in an iterative
validation process, shown in the top half of Figure 3.9, and must be
approved within a "Plans and Requirements Review" to serve as the
basis for the software development contract between the customer and
the software company.

On the other hand, verification is established by comparing the
requirements baseline and all successive refinements elaborated in
successive stages. Thus, verification activities begin in the "Product

42

THE EVOLUTION OF SDLC MODELS

Project Maoager

V4V Agent Specification Agent and Customer
spproval
I 1 * Conceptual Phase
1 Review
Acquire rqts Develop, iterate !
validation tools requiremnents spec |
|
rqts. |apec. disapproval
tools : | [P E fpfl
iterations 1
Validate |
Tqte. spec. problem reports 'l
. .
validated rqts. spec Placs & Rqts.
Review
approval; rqts. baseline]‘-_ -
)
b
1
1
Acquire Develop, iterate Approve terations |
Desiga VY+V product design wifecting {
tools specifications rqts. baseline '
Develop |
Product tools l —l !
Vv £ P.D. spec, iteratioas '
Plans V+V Product !
Desige Spec 2roblem reports l[
dizapproval
m————
1
4
V+V'aed product design spec
Product Design
Product V+V plans Review
l approval

Figure 3.9: Roles of the V-Model [27]

Design" stage on the left side and conclude with the "Acceptance Test"
on the model’s right side.

In his paper, Boehm is very clear about the consequences and writes
that verification activities "do not lead to changes in the requirements
baseline; only to changes in the refinements descending from it,"
whereas "validation identifies problems which must be resolved by a
change of the requirements specification."

That is also why he admits that the separation between validation
activities above the requirements baseline and verification activities
below the baseline is not as strict as the model suggests. Instead,
there must also be validation activities throughout the whole lifecycle,
including the development phase, which he clarifies by the following:

"For example, a simulation of the product design may establish not only that
the design cannot meet the baseline performance requirements (verification),
but also that the performance requirements are too stringent for any
cost-effective product designs, and therefore need to be changed (validation).”
— Barry Boehm [29]

Besides this, the V-Model is very clear and precise about formal
processes, as can be seen in Figure 3.9, which also shows that Boehm
introduced specific roles ("V+V Agent" and "Specification Agent") to
software projects. Even more, his paper included precious assistance
for practical application, such as four elaborated criteria for require-

3.4 PLAN-DRIVEN DEVELOPMENT

ments and design specifications (completeness, consistency, feasibility,
and testability), a taxonomy of a satisfactory software specification,
an evaluation of concrete verification and validation techniques, as
well as recommendations for small, medium and large specifications
including checklists.

In conclusion, the V-Model became widely adopted and still is
the official development methodology of the German government
(although in a slightly different form).

3.4.3 Spiral Model

Seven years after introducing the V-Model, Barry Boehm published his
paper "A Spiral Model of Software Development and Enhancement"
in 1986 [30], which was republished in 1988 to make the Spiral Model
known to a broader audience [31]. Boehm modified the Waterfall
Model by introducing several iterations, which spiral from an initial
software concept over several prototypes to the final development of
the system (see Figure 3.10). By this sequence of refining prototypes,
the Spiral Model emphasized an iterative development concept [213]
(see Section 3.3), which, according to Boehm, represented a paradigm
shift from a document-driven process to a risk-driven approach [30].

4
Cumulative
cost
r“"\
Progress
through

steps

Evaluate alternatives,
identify, resolve risks

Determine

objectives,
alternatives,
constraints

Risk
analysis

Risk
analysis

Risk
analysis

Risk -
analy- | Prototype1 Prototype Prc:totyp«a3 Operational
si
Review Commitment | S] prototype
e artition f ¥ —— Simulations, models, benchmarks
P Requirements plan ——
Concept of T ———

life-cycle plan

—

operation Software

requirements

Software Detailed

product

Develop- Requirements
ment plan | validation

Integration
and test
plan

test I

Design validation
and verification

lntegrationl
I and test [

Implementation' Acceptancel
|tesl

Plan next phases | |

Develop, verity
next-level product

Figure 3.10: Spiral Model [31]

43

The Spiral Model
introduced iterations
and refining
prototypes

44

THE EVOLUTION OF SDLC MODELS

As can be seen in Figure 3.10, each spiral traverses four quadrants:
1. Determine objectives, alternatives, constraints

2. Evaluate alternatives, identify, resolve risks,

3. Develop, verify next-level product,

4. Plan next phases.

In addition, the radial dimension represents the cumulative cost
incurred over the project term, while the angular dimension repre-
sents the progress made in completing each iteration cycle of the
spiral. Boehm also points out that the model "reflects the underlying
concept that each cycle involves a progression that addresses the same
sequence of steps, for each portion of the product and for each of its
levels of elaboration, from an overall concept of operation document
down to the coding of each individual program” [31].

It is immediately apparent that Boehm’s model builds up on the
Waterfall Model, which is easily identifiable in quadrant three, where
a prototype is designed, coded, verified against its requirements, and
validated through testing. The innovation, however, is in quadrant two
because prior to the building of the prototype, there is an upstream
identification and analysis of risks, which are possible situations or
events that may cause a project to fail and not meet its goals. The set of
risks is manifold and ranges from trivial to fatal and orthogonal to that
from improbable to very certain risks. Therefore, risk management
includes a prioritization strategy depending on the impact and like-
lihood of problems and a mitigation strategy to deal with identified
risks. The overall goal is to lower development costs by early elimi-
nation of nonviable alternatives to avoid unnecessary rework. Hence,
risk management is used as a tool to compare the relationship of costs
to the expected improvement and thus to determine the amount of
time, resources, and overall effort to expend for all activities within
the cycle [227].

In this context, it is also essential to mention quadrant four, es-
pecially the review that occurs at the completion of each cycle. Its
objective is to investigate all artifacts produced during the previous
cycle and compare them to the plans for the next cycle, including
the allocation of resources. This review ensures that stakeholders are
committed to the decisions and resulting activities of the succeeding
cycle.

However, Boggs points out that although the Spiral model "does
include the user representative as an input to the success of each
cycle, it does not provide a strong vehicle for end-user involvement"
[36]. He mentioned that Boehm addressed this issue to some part in
1994 by introducing his "Next Generation Process Model" (NGPM)
[33], which "involved the stakeholders to a much larger degree and

3.5 ITERATIVE AND INCREMENTAL DEVELOPMENT

better identified user’s needs at the outset of the project." However, it
still remained fairly possible that conflicts among stakeholders would
occur. Therefore, Boehm released another iteration in 1998, twelve
years after the Spiral Model’s introduction, called the "Win-Win Spiral
Model" [35]. This model added specific "Theory W"-activities to each
spiral to identify the stakeholders and address their win conditions
explicitly. Theory W is a management theory and approach that says
making winners of the system’s key stakeholders is a necessary and
sufficient condition for project success.

While the Spiral Model became widely adopted in the industry,
Boehm pointed out that it was often misunderstood. In a special
report about a workshop on spiral development experience and imple-
mentation challenges held at the University of Southern California in
2000, he listed four main misconceptions that should be avoided [34]:

1. the spiral is just a sequence of waterfall increments,
2. everything on the project follows a single spiral sequence,

3. every element in the diagram needs to be visited in the order
indicated,

4. there can be no backtracking to revisit previous decisions.

According to Boehm, these misunderstandings result from "oversim-
plifications" in the initially published Figure 3.10 and could fit only a
few rare risk patterns but are not valid for most.

Instead, he clarified that risk management targets "lowering devel-
opment cost by early elimination of nonviable alternatives and rework
avoidance," which means that the result of planning and risk analysis
should lead to different processes for different projects. Hence, "the
spiral model is actually a risk-driven process model generator, in which
different risk patterns can lead to choosing incremental, waterfall,
evolutionary prototyping, or other subsets of the process elements in
the spiral model diagram" [34].

3.5 ITERATIVE AND INCREMENTAL DEVELOPMENT

Section 3.3 already explained that linear and sequential SDLC models
are nowadays described as "traditional," whereas the agile model is
considered a new paradigm for software development. But how did
this paradigm shift occur? And what is so special about it?

This section will show that this paradigm shift was not abrupt but a
gradual process transformation with linear, sequential models on one
end of the spectrum and agile methodologies on the other. Moreover, it

45

46

Incremental
development

THE EVOLUTION OF SDLC MODELS

will show that the combination of iterative and incremental development
(IID) has triggered the evolution.

First, this chapter presents today’s understanding and key character-
istics of IID before elaborating on the historical context and describing
its transformative power to succeeding SDLC models and software
development processes.

3.5.1 Today’s Understanding of IID

Iterative and incremental development approaches have been briefly
presented in Section 3.3 in the context of various SDLC models. Here,
they are presented in direct comparison to understand that the trans-
formative power of the paradigm shift towards agile methodologies
(presented in the next section) was only possible by combining both.

Jeff Paton beautifully illustrated the differences between iterative
and incremental development in his now famous talk "Embrace Un-
certainty," presented at the "XP Day 2007" in London, which in a
summarized form was later published as an article on his blog [205].
Inspired by John Armitage and his illustrations of the Mona Lisa in
his paper "Are agile methods good for design" [10], Patton adapted
this vivid example to explain the differences as follows.

/-_"\-—"\

Figure 3.11: Incremental development [205]

According to Patton, incremental development creates software by
a piecewise delivery of increments that add up to the final product -
similar to building a wall by adding bricks. By this, two aspects are
worth mentioning. At first, this means that every brick (the increment)
is finished once added to the wall. It was shaped (developed) to fit
a particular gap but will not be touched again once set. Like in the
image above, notice that every piece that is added to the Mona Lisa
is finished and complete, and, apart from adding glue to its borders
(representing the integration into the product), will not be modified in
terms of what has been drawn (what has been developed according to
the user requirements).

Second, due to the completeness of each increment, there must
be a detailed understanding of what is being built, and this must
exist before any execution action. Speaking of the Mona Lisa example,

3.5 ITERATIVE AND INCREMENTAL DEVELOPMENT

the artist (as the originator) would need to constantly have the final
painting in his mind or (as a restorer or copyist) use a template, similar
to a bricklayer who builds the wall according to a predetermined plan.

Especially this last aspect can also be identified in the definition
of Alistair Cockburn, who described incremental development as a
"staging and scheduling strategy in which various parts of the system
are developed at different times or rates, and integrated as they are
completed" [54]. Here, the emphasis is on "staging strategy," which
explains the need for extensive upfront planning.

woman - e~
" pasforal
rSeihma

J

Figure 3.12: Iterative development [265]

On the other hand, iterative development is almost the exact opposite.

As can be seen in Figure 3.12, each iteration of the Mona Lisa delivers
a complete image, which is not split into parts and does not grow by
separately developed increments, but rather the image as a whole is
modified and refined with ongoing iterations. Again, there are two
essential aspects to be aware of.

The first is that this approach assumes that a product cannot be built
in perfect condition and to total satisfaction by just a single attempt, as it is
almost impossible to get everything right according to the customer’s
needs on the first try. Instead, not just a few but several attempts
are necessary, each one delivering new insights, which then lead to
adaptations of the product. On the other hand, this also means that a
rough mental image of what should be built is sufficient to start the practical
action since it sharpens throughout the course of development.

So, Cockburn defines iterative development as a "rework scheduling
strategy in which time is set aside to revise and improve parts of
the system" [54]. Here, the emphasis is on "rework strategy," which
incorporates the two aspects mentioned above.

However, one fundamental distinction of iterative development
has not been mentioned yet, and it does not show up clearly in
Cockburn’s definitions or Patton’s explanations. To "rework" and
"revise," there must be a gain in knowledge. This, in turn, is only
possible through constant verification and validation. Verification or
"building the product right" is a matter of the software creators. It is
up to the artist and his expert knowledge to choose his brushes and
colors wisely to guarantee a certain quality so that, for instance, colors
do not start to fade after the Mona Lisa has been delivered.

47

Iterative
development

48

Combining iterative
and incremental
development

THE EVOLUTION OF SDLC MODELS

On the other hand, validation or "building the right product" is a
matter of constant feedback from the customers. Hence, iterating is
fundamentally different from incrementing because every iteration
starts with a new or modified set of requirements. This set has to
be derived from valuable3 external feedback; otherwise, an iteration
would not make sense.

As separate approaches, incremental and iterative development have
significant ups and downsides, but the combination of both becomes
more than the sum of its parts. Steven Thomas has built up on the
Mona Lisa example of Jeff Patton in 2012 and added an illustration of
the combined approach, which is shown in Figure 3.13 [265].

Figure 3.13: Combined incremental and iterative development [265]

As can be seen, at every one of the six steps, the increment adds
new features and expands the scope of the offered functionalities -
this is the incremental part. But each increment also refines parts of
the existing functionality - that, on the other hand, is the iterative part.
In other words, due to the iterative aspect, the increment no longer
needs to be complete and developed to its full extent. Instead, it can
be rather abstract since future iterations will sharpen it. Furthermore,
to turn it around, due to the incremental aspect, the refinement of
an iteration must no longer consider the whole product but only the
parts of concern.

Now, back to the claim that this IID is more than the sum of its parts
and hence can be seen as the source of the evolution from sequential
SDLC models towards modern agile development processes. Sticking
to the Mona Lisa example, the overall development process might
start with a specification from a customer saying, "I want you to paint
a beautiful lady with a mysterious smile in a landscape setting." The
benefits of IID and their meaning for a software project can be seen
right at the first step of Figure 3.13.

The word "valuable" is emphasized to highlight and show the connection to the four
agile values (see Chapter 3.6.4), one of which is "customer feedback."

3.5 ITERATIVE AND INCREMENTAL DEVELOPMENT

Even with this rough specification, the development process can
start. In contrast to pure incremental development, there is no need for
a complete upfront specification so that a first version of what has been
understood so far can be created quickly. Notice that it is yet unknown
which parts of the body will be important to the customer. However,
since the smile was explicitly mentioned, the face was considered a
primary concern, and, therefore, more time was spent on its details.

In case of feedback from the customer that the outcome is entirely
wrong or if the customer loses interest in the project, money is lost
for the work to come that far. However, the first outcome could be
validated early, and only a few resources have been spent compared
to the big upfront specification of pure incremental development (see
Step o of Figure 3.11), which is in no way guaranteed to be free of
misunderstandings or errors. On the other hand, in comparison to
pure iterative development, the customer can give feedback specifically
to the main important parts. For instance, in Step 1 of Figure 3.13, a
first draft of the color concept can be evaluated, whereas Step 1 of
Figure 3.12 does not show colors at all.

In addition, the flexibility and new possibilities of IID can also be
seen in Step 2 of Figure 3.13. As a result of the validation of the
previous step, the customer may think about whether just the face of
the lady could be enough, so he may decide to focus on the face to a
greater extent and postpone the decision concerning the less important
parts to a later point in time. At least he already got an impression
of these parts and how the overall painting could look like. Step 2 of
Figure 3.13 now shows the entirely new possibilities of IID in the form
of new choices for the customer. If he decides that the top priority
functionality (face of the lady) is enough and satisfies his wishes, the
project can stop with a good return on investment. It is not perfect
since time and effort were spent on less critical parts of the image,
which became redundant by his decision to stop the project. However,
the extra amount is acceptable and much lower than it would be by
either one of the individual development approaches.

In summary, IID is characterized by much better risk control since
there is no need to understand and address the complete scope at
the very beginning of a project. A rough idea is sufficient so that
the building process can start earlier. Short iterations then promote
constant feedback loops, following a strategy that cancels out the
disadvantages of the individual approaches, thus incorporating the
benefits into a new, very flexible, and risk-on-investment-balanced
development process.

49

50

THE EVOLUTION OF SDLC MODELS

3.5.2 1ID as Transformative Power to the Paradigm Shift

Incremental and iterative development (IID) is a fundamental aspect
of the agile SDLC model and some of its methodologies, which will be
presented in the following section. In fact, by investigating the history
and evolution of software development processes, IID reveals itself as
a condition sine qua non for the fulfillment of inherent properties of
software projects that have led to the software crisis (see Section 2.2.2).
Therefore, to understand its importance, it is worth looking at the
influence of IID on the progress of software development processes
and how it acted as a transformative power to evolve from sequential,
document-driven processes towards today’s agile methodologies.

Larman and Basili have shown that the roots of IID can be traced
back decades ago and that the principles of iterative and incremental
development were the "common theme" underlying various upcoming
SDLC models - all of them very different but with the mutual goal
of avoiding a sequential one-way and document-driven development
process with gated steps [155].

They dated IID as far back as the Project Mercury, which was the first
human spaceflight program of NASA in the early 1960s, and quoted
Gerald M. Weinberg, who worked on the project:

"All of us, as far as I can remember, thought waterfalling of a huge project
was rather stupid, or at least ignorant of the realities... I think what the
waterfall description did for us was make us realize that we were doing
something else, something unnamed except for ‘software development.””
[155]

According to Larman and Basili, this "unnamed" practice was, in
fact, an IID approach, making use of very short iteration cycles of just
half a day and incorporating aspects of what later became Extreme
Programming (see Section 3.6.3).

In order to follow the historical evolution of IID as the transfor-
mative power of SDLC models, Section 3.4.1 has already explained
that Royce was the first to openly address problems of the Waterfall
Model in 1970 and proposed a "do it twice" approach, by adding
an iteration to the otherwise strictly sequential development process.
Although this by itself is not IID, his solutions also show the first signs
of a feedback-based iterative step, representing a very early form of
adaptation [155].

Speaking of the 1970s, Larman and Basili also identified several
approaches to IID within life-critical military projects of the U.S. De-
partment of Defense. However, all of them still had significant upfront
specification effort. The first example describes the development of

3.5 ITERATIVE AND INCREMENTAL DEVELOPMENT

a command and control system for the first U.S. Trident submarine
(a project with more than one million lines of code), which had to be
delivered by a specific date, or the executing company would face a
penalty of $ 100.000 for each day the deadline is exceeded. The team
addressed problems of managing the risks and the complexity of this
large-scale development by dividing the process into four time-boxed
iterations of six months each.

A second example describes an extensive application of IID during
the development of the Light Airborne Multipurpose System for anti-
submarine warfare helicopters of the U.S. Navy, a project (of several
millions of lines of code) that was successfully and incrementally deliv-
ered within 45 iterations and for the first time made use of an iteration
length of one month, which is in the proposed range of later appearing
agile development methodologies. Furthermore, Larman and Basili
mention a project for ballistic missile defense conducted by TRW (a
company in the defense industry and where Royce and Boehm both
worked simultaneously), which made use of feedback-based iterations,
as well as NASA'’s space shuttle and its primary avionics software sys-
tem as a "striking example of a major IID success" exhibiting several of
the IID characteristics, such as short and time-boxed iterations, small
incremental releases and feedback-driven refinement of requirements

[155].

These examples show that aspects of IID already have been applied
before and during the 1970s, although primarily within governmental
projects "behind closed doors." However, due to the software crisis (as
explained in Section 2.2.2) and the inflexibility of the existing Waterfall
Model to deal with prevalent problems, researchers and practitioners
began to publish novel ideas for better software development and
spoke to a broader audience, so that the idea of IID began to spread.

This can be shown by several publications, especially during the
1980s, when the Waterfall Model was massively called into question.

In 1976, Tom Gilb, one of the most active IID promotors, introduced
his practice of "evolutionary project management" and initiated that
not only the concepts of software development processes have changed
over time, but the meaning of the phrase "iterative development" has
been subject to change as well. He invoked that it evolved from basic
"rework" (see the "do it twice" approach of Royce on Page 39) to the
understanding of modern IID and its implication of "evolutionary
advancement" [155], which can be seen in the agile development con-
text including light and adaptive iterations, where iterating is not just
revisiting work, but rather also the possibility for constant innovations.
His massive questioning of sequential software development can best
be seen by a statement from his paper "Evolutionary Delivery versus
the Waterfall Model" [95], in which he said that "the "waterfall model’
may be unrealistic, and dangerous to the primary objectives of any

51

The concept of 1ID
began to spread
during the 1970s

The shift from
“rework” to
“evolutionary
delivery”

52

Widespread criticism
of sequential models
and the promotion of
IID during the 1980s

THE EVOLUTION OF SDLC MODELS

software project." Instead, it needs "evolutionary delivery" with itera-
tive and incremental software development, delivered to the customer
every few weeks to obtain feedback. His final ideas were later pub-
lished in 1988 in his book "Principles of Software Engineering," which,
according to Larman and Basili, is "the first book with substantial
chapters dedicated to IID discussion and promotion" [155].

Further reconsiderations of the Waterfall Model can, for instance,
be found in the paper "Life-Cycle Concept Considered Harmful" by
McCracken and Jackson from 1982 [175], where the interesting title is
an homage to Dijkstra’s classic "GoTo Statement Considered Harmful"
[75] and furthermore shows that during this period the Waterfall
Model was so dominant in use that it was synonym to "lifecycle."

Besides this, two landmark publications promoted IID during the
1980s. The first was Boehm'’s Spiral Model [30], already presented in
Section 3.4.3 as the first formalized approach using several iterations
based on risk assessment. The second is Frederick Brooks’s "No Sil-
ver Bullet" paper [38], in which he commented on the predominant
sequential way to develop software by saying;:

"Much of present-day software acquisition procedure rests upon the
assumption that one can specify a satisfactory system in advance, get bids for
its construction, have it built, and install it. I think this assumption is
fundamentally wrong, and that many software acquisition problems spring
from that fallacy.” [38]

Afterward, he treats iterative and incremental development as
"promising attacks on the conceptual essence" and states:

"Nothing in the past decade has so radically changed my own practice or its
effectiveness.” [38]

According to Larman and Basili, Brooks’s rejection of sequential
development processes intensified over several years and finally cul-
minated in a clear opinion, which shows in his keynote speech at the
"1995 International Conference on Software Engineering" entitled "The
waterfall model is wrong!” [155].

These examples illustrate that the 1980s were a decade of mas-
sive questioning of sequential development processes. Nevertheless,
projects starting to incorporate aspects of IID still struggled to get rid
of extensive preliminary upfront specifications [155]. This controversy
can also be seen in the publication "A Rational Design Process: How
and Why to Fake It" by Parnas and Clements in 1986, in which the
authors list many reasons why thorough specifications before devel-
opment are "impractical" and "unrealistic," but nonetheless necessary
and part of a "rational, ideal software design process" [204].

3.5 ITERATIVE AND INCREMENTAL DEVELOPMENT

During the 1990s, the renunciation of what are now called "tradi-
tional" SDLC models accelerated, and the rather theoretical concept
of IID was incorporated into practical application in the form of new
arising process methodologies. Many of these should later be called
"agile," such as Rapid Application Development (RAD, see Section 3.6.1,
Dynamic Systems Development Method (DSDM, see Section 3.6.2), Ex-
treme Programming (XP, see Section 3.6.3), Feature-Driven-Development
(FDD) or Scrum (see Chapter 4).

However, not all approaches incorporating the ideas of IID have
later become "agile." To be very clear, the concepts of IID are necessary
for an agile process, but as will be shown in the following section, there
is more to it than just the combination of incremental and iterative
development.

As an example, the Rational Unified Process (RUP) introduced by
Philippe Kruchten [147] is one of the upcoming IID approaches of the
1990s that is not considered to be agile. Although the combination of
iterative and incremental development is one of its main components,
RUP is very formal and describes a phase-driven software develop-
ment process that still needs a certain amount of upfront specifications
and analysis. In addition, it is use-case-driven and model-heavy be-
cause it is closely linked to the invention of the Unified Modeling
Language (UML), which was simultaneously developed by represen-
tatives of object-oriented programming known as the "three amigos"
Grady Booch, Ivar Jacobson, and James Rumbaugh, to unify various
existing software specification notations [142].

To conclude, while the 1980s were the decade of massive ques-
tioning of the traditional, sequential, and document-driven software
development process, the 1990s were the decade of transforming that
questioning into new methodologies, all of them with individual pro-
cess definitions but mutually sharing the fundamental combination of
incremental and iterative or "evolutionary" development.

In 1994, the often cited "CHAQOS Report" from the Standish Group
[105] finally underpinned the substantial significance of IID to soft-
ware development. By investigating failure factors of more than 8.000
projects, the report identified sequential development practices and
complete upfront requirements specification as top reasons for project
failures in scope and budget. In the end, a key conclusion propos-
ing the adoption of IID can be found in the report’s penultimate
paragraph:

"Research [...] indicates that smaller time frames, with delivery of software
components early and often, will increase the success rate. Shorter time
frames result in an iterative process of design, prototype, develop, test, and
deploy small elements. This process is known as 'growing” software, as
opposed to the old concept of ‘developing” software.

53

Arising IID
methodologies
during the 1990s,
which later will be
coined "agile”

54

THE EVOLUTION OF SDLC MODELS

Growing software engages the user earlier [...] and expectations are
realistically set. [...] Making the projects simpler is a worthwhile endeavor
because complexity causes only confusion and increased cost.” [105]

After this conclusion, the report closes with the final statement:

"There is one final aspect to be considered in any degree of project failure. All
success is rooted in either luck or failure. If you begin with luck, you learn
nothing but arrogance. However, if you begin with failure and learn to
evaluate it, you also learn to succeed. Failure begets knowledge. Out of
knowledge, you gain wisdom, and it is with wisdom that you can become
truly successful.” [105]

This quote is of particular interest since it anticipates a central aspect
of the rising agile mindset, which further extends Gilb’s concept of IID
as a form of "evolutionary advancement" - and that is giving people
the freedom to experiment and to make mistakes.

The next chapter will elaborate on the agile mindset, the incorpo-
rated values and principles as a distinction to IID, and some of the
new methodologies mentioned before.

3.6 THE BIRTH OF "AGILE" AS THE CURRENT STATE OF THE ART

Driven by the growing awareness about the necessity to transform the
existing way of software development into something more flexible,
resistant to risk, and adaptable to different kinds of projects, many
so-called "lightweight" approaches were published during the 1990s
when the theoretical concept of IID was incorporated into different
forms of practical application.

Some of them are briefly presented in the following sections to give
an impression of their different focal points and areas of emphasis. At
the same time, all share a common philosophy that will be coined as
"agile values" some years later.

3.6.1 Rapid Application Development

The approach Rapid Application Development (RAD) was published in
1991 within the same-titled book by James Martin [168]. He developed it
during his employment at IBM in the 1980s as a modified version of the
existing methodology of Scott Shultz called Rapid Iterative Production
Prototyping (RIPP), which in turn was heavily influenced by previous
work of Barry Boehm and his Spiral Model (introducing software
prototyping as a way of reducing risk, see Section 3.4.3) and Tom

3.6 THE BIRTH OF "AGILE" AS THE CURRENT STATE OF THE ART

Gilb’s concept of evolutionary development (where a prototype is
grown and refined iteratively into the final product, see Page 3.5.2).

Re

qui Planning

l

Joint Application Design

l

Build and User/Customer
Evolve Review
Prototype
Time Box

Evaluate System

Cut Over
Figure 3.14: Rapid Iterative Production Prototyping (RIPP) [295]

As shown in Figure 3.14, the RIPP development process is defined
as follows. It starts with the usual requirements planning but is im-
mediately followed by a novel Joined Application Design (JAD) session.
JAD itself also originated at IBM in the late 1970s to target the problem
of insufficient user involvement in existing software development pro-
cesses [49]. Although, at that time, there was general agreement that
involving users in the entire software development lifecycle would
lead to more successful systems, there were still no models nor opera-
tionalization of user involvement in the actual development lifecycle.
In practice, users have, therefore, been only included for a matter of
approval at discrete points in the development process, for instance,
in signoff meetings, but not as active members of the creative process.

For that reason, JAD was created to tackle existing problems, such
as the great challenge of compressing the development time while
simultaneously handling fluctuating requirements and satisfying the
need for innovative system design. As a solution, JAD introduced fa-
cilitated meeting structures to the development lifecycle, necessitating
early and rigorous user involvement. These meetings aim to gather all
relevant people and decision-makers in one place simultaneously so
that participants can share their individual viewpoints and expertise.
With a focus on encouraging creativity through collaborative brain-
storming and because of arising synergies and new dynamics of this
group work setting, users have been the driving force for specifying
the requirements and design details, leading to faster development
and innovative system designs [49].

55

RIPP promoted JAD
sessions as the first
operationalization of
user involvement

56

RAD stipulates the
use of CASE tools

THE EVOLUTION OF SDLC MODELS

Besides the analysis and system design, RIPP also includes users
in the actual development phase, which follows an iterative and in-
cremental approach and makes use of development cycles that are
restricted to a certain amount of time (time-boxed), during which soft-
ware is built through the development of prototypes, which become
production subsystems if user/customer consensus is obtained [295].
That makes user involvement a critical method for prototyping and
managing the risks of potentially changing requirements.

Meant to be a progression of RIPP, James Martin based Rapid Appli-
cation Development (RAD) upon this development process, including
the JAD session and iterative prototyping, but adapted it "to take max-
imum advantage of powerful development software that has evolved
recently" [168].

In comparison, both approaches focus on a much faster develop-
ment time and results with higher quality than those achieved with
the traditional lifecycle model. However, RIPP only emphasizes build-
ing working prototypes that can handle data input so that users can
evaluate what will become the final product. In contrast, RAD is more
stringent how prototypes must be developed. For instance, develop-
ment teams must consist of 2-4 so-called SWAT# developers - meaning
people who are highly capable of using the most advanced CASE>
tools of that time.

These tools were meant to change the method of software develop-
ment by resolving the dependency between code quality and individ-
ual developer skills through design-automation techniques, automatic
generation of executable code, and computer-aided planning and anal-
ysis, like visual data and process modeling. Thus, as a progression of
RIPP, RAD is more specific on its methodology, the people involved,
the overall management, and the tools being used and, therefore,
claims to be much faster and less error-prone so that the development
of an arbitrary system would not take longer than 120 days [122].

Since its introduction in 1991 by Martin’s methodology, the term
"Rapid Application Development" and its acronym RAD have been
used in the community in a broader, more generic sense, describing
various techniques and methods for speeding application development
through prototyping and software frameworks. However, the problem
with this was that the defined process of Martin’s RAD was soon
misunderstood as a "quick and dirty" approach without the need for
technical cleanliness, as stated by Paul Herzlich®:

4 Specialists With Advanced Tools

5 Computer Aided Software Engineering

6 Inventor of the W-Model as a successor of the V-Model (see Section 3.4.2) and
advocate of testing all artifacts in a staged process - both documentary and software.

3.6 THE BIRTH OF "AGILE" AS THE CURRENT STATE OF THE ART

"RAD'’s flashy name leads to misunderstanding. It is easily perceived by a
new generation of developers as development with racing stripes.

It sounds enticingly free from the shackles of the traditional methodologies -
documentation, reviews, test plans, signoffs - all the things which
programmers generally hate, and quality assurance depends on.” [115]

In addition, Herzlich says that the confusion about RAD was also
reinforced by vendors of modern CASE tools for rapid prototyping by
massively using the sonorous terms "RAD" and "Rapid Application
Development" in their marketing campaigns, hence portraying RAD
as simply a matter of choosing proper development tools.

"It may be true that all these tools climbing on the RAD bandwagon
facilitate prototyping and allow you to write programs faster, but their
capabilities are not, by a wide margin, sufficient in total for delivering
fit-for-purpose systems faster, which is the real akin of RAD." [115]

In reality, buying and using specific CASE tools also meant becom-
ing dependent on the development processes prescribed by the tool
vendors, which led to myriads of different implementations of what
was marketed as RAD. So, in conclusion, the contradicting situation
with great marketing hype about RAD by the tool vendors on the one
side but no defined standard for an iterative process supporting the
new kind of development on the other, the acronym became negatively
connoted, and many jokes about what RAD stands for were made,
like "rapidly achieving disaster" or "really awful design" [256].

Nevertheless, although the term RAD was misunderstood and used
as a general alternative to the Waterfall Model, the approach by James
Martin laid a cornerstone for widespread interest in the core of RAD.
Rapid prototyping and including the user in the development process,
together with prototypes that incrementally evolve into the final prod-
uct, enabled faster feedback-response cycles and mitigation of risks,
resulting in faster development projects with a much higher chance of
staying within budget.

3.6.2 Dynamic Systems Development Method

Against the backdrop and circumstances that RAD was heavily mis-
understood as a "quick and dirty approach,” a group of sixteen RAD
practitioners met in the UK in January 1994 in order to discuss a
new standard following some of the original principles of Martin’s
approach [155]. This group consisted of information systems profes-
sionals from small and large organizations and project managers from
some of the biggest IT companies, such as IBM and Oracle [256]. To-
gether, they formed a not-for-profit Consortium, which dedicated its

57

False marketing led
to RAD being
misunderstood as a
"quick and dirty”
approach

58

DSDM was
envisioned to better
promote the
misunderstood
concepts of RAD

A feasibility study
identifies potential
project risks

THE EVOLUTION OF SDLC MODELS

work to "develop and evolve continuously a public-domain method
for rapid application development" [256], which should be specified
in a way that can be widely taught and promoted through provided
training and certification courses [179]. The outcome was the Dynamic
Systems Development Method (DSDM), which provided a framework
of controls and best practices for developing high-quality business
applications.

Due to its high influence on other agile methodologies, DSDM will
be captured here in more detail.

The following figure shows the first version of the DSDM develop-
ment life cycle, also known as "three pizzas and a cheese," which was
released in 1995 and quickly gained popularity. Over the years and
by following feedback from adopters of the framework, the DSDM
consortium also addressed particular needs and, therefore, made some
additions by publishing White Papers, for instance, about how to in-
corporate the use of UML in DSDM projects [62]. However, the core
principles, which are described in the following, remained the same.

The lifecycle is divided into five main phases, as illustrated by the
darker shadings in Figure 3.15, framed by a prior pre- and succeeding
post-project phase (not shown in the figure).

Agree schedule

e >

Review
business

User approved and
user guidelines

Identify
functional

Functional
model
iteration

Implementation

Review prototype

Identify
design prototypes

Review
design
proto-

types

Design & build
iteration

schedule

Create design
prototypes

Figure 3.15: DSDM [256]

Once the pre-project phase has led to a positive decision about a
project, e.g., by ensuring that funding is available, a feasibility study
is conducted in order to identify potential risks to DSDM success
that need to be addressed upfront and to determine whether or not a
prospective project complies with the criteria for DSDM and its RAD
principles. The goal is to take a realistic look at the starting position,

3.6 THE BIRTH OF "AGILE" AS THE CURRENT STATE OF THE ART

for instance, by investigating the working environment and the people
involved to decide whether the project is likely to be feasible from a
technical perspective and appears to be cost-effective from a business
perspective. This upfront effort lasting no longer than a few weeks
should be just enough to decide on tailoring DSDM for the given
situation and to set the project up correctly or to stop it right at the
beginning if it turns out to be not viable [258].

After this, provided that the project qualifies, a business study is
conducted, in which the business area is analyzed deep enough within
highly collaborative facilitated workshops between knowledgable staff
and decision-makers. The outcome is a Business Area Definition, repre-
senting a high-level view of the process, for instance, in the form of
data-flow and entity-relationship diagrams or business object models
with outlined use cases, which all together outline a draft for later
development, including a list of prioritized features to be implemented.
Besides understanding the functionality from the business perspec-
tive, this phase is also concerned with decisions about fundamental
technical requirements in preparation for the succeeding development
iterations, such as the System Architecture Definition describing the de-
velopment and target platforms, as well as a Development Plan covering
strategies about prototyping and testing activities.

DSDM differentiates between two development phases: the func-
tional model iteration and the design and build iteration. As can be seen,
both define a feedback-response cycle consisting of four activities:

1. Identify requirements and define what should be done,
2. Agree on a development strategy and schedule,
3. Create or refine prototype,

4. Check result against requirements and review outcome.

What the image of the lifecycle is not showing precisely, but what
should be noted is that both iterations imply several of these feedback-
response cycles per iteration, i.e., the activities above are repeated
as long as the review does not release a satisfactory solution, which
serves as input for the next phase.

Regarding content, the functional model iteration is about analysis
models and software components containing the primary functionality.
These are built side by side and mutually influence each other so
that the findings of prototyping activities feed back into extended
analysis models, which in turn trigger the refinement and testing of
prototypes so that they progressively move towards potentially re-
leasably software. However, these prototypes might not be engineered
to the deepest extent to be truly releasable; for instance, performance
optimizations could have been left out.

59

A business study
investigates use
cases and outlines a
draft for later
development

The functional model
iteration is about
prototyping and
defining primary
functionality

60

The design and build
iteration evolves the
functional prototypes
into truly releasable
software components

The implementation
phase puts the
development into
operational use

The nine DSDM
principles

THE EVOLUTION OF SDLC MODELS

For that reason, the content of the design and build iteration is about
bringing the system to a sufficiently high engineering standard in
order to start the implementation process (notice that in DSDM, "im-
plementation" refers neither to "coding" or "development" activities,
but rather to deploy the system and prepare it for use). Mainly, this
includes testing non-functional aspects and triggering cycles that let
the functional prototypes evolve into truly releasable components as
input for the implementation phase. Notice that in the lifecycle dia-
gram, there is also a backward arrow from the review activity to the
identification of requirements in the functional model iteration. That
is because it may be more sensible to address particular functionalities
together with related designs of non-functional aspects, depending on
the tools and technologies of the development environment and how
the application breaks down into separate components. In that case,
functional and design prototypes may evolve simultaneously.

Finally, the implementation phase serves as a cutover from the devel-
opment environment to the operational environment, which includes
approval by accountable senior users of the team and the creation of
necessary documentation for being able to train end-users as well as
persons of the system’s future operational support once it is deployed
and running. While this phase is usually conducted once, it may also
iterate in case of a dispersed user population, for instance, in case of
major system rollouts across multiple nations [62]. Once the system is
rolled out, the lifecycle is concluded by a review activity resulting in
an Increment Review Document, which summarizes the achievements
of the project and compares requirements that have been identified
during development against the implemented software components.
Depending on the review, subsequent improvements may be identi-
fied, re-triggering parts of the DSDM lifecycle, as illustrated by the
back arrows of the implementation phase in Figure 3.15.

For instance, during development, it could be discovered that an
important area of business functionality was not considered, which
was then deferred to meet the delivery date. In that case, returning to
the business study is necessary to scope another development cycle.
More probable, however, is that either lower prioritized functionality
or non-functional aspects have been omitted during development
because of time constraints so that the delivered system still satisfies
in the short term but should be refined for long-term use by returning
to the respective functional model or design phases.

The framework is based upon the following nine principles, and the
DSDM specification is very clear about their importance, saying that
"if one of them is ignored, the whole basis of DSDM is endangered."
Moreover, even if some projects may find it hard to apply all of
these principles and would like to drop only a few, the inventors

3.6 THE BIRTH OF "AGILE" AS THE CURRENT STATE OF THE ART

make clear that in those cases, "the use of DSDM should be seriously
reconsidered" [256, p. 11].

While the first four principles define the very core foundations and
the philosophy on which DSDM is built, the other five guide the
structure of the framework’s development process.

1. Active user involvement is imperative.

The inventors stress that user involvement is not only active but
"pro-active" [62] in the sense that throughout the project, a few
senior users support and actively participate in a development
team to ensure that development is continuously heading in the
right direction by providing detailed knowledge and in-depth
understanding about the underlying business and its processes.

2. DSDM teams must be empowered to make decisions.

With expert users in the team knowing what business requires
and continuously providing feedback, as written above, team
members must be empowered to make their own decisions about
the direction to take for development. If decisions would need to
wait for approval and move up and down the management hier-
archy, the involvement of expert users to speed up development
would not make sense. As a result of this new empowerment,
managers have to deal with losing control, a major issue of agile
approaches in general, as will be shown in later chapters. How-
ever, DSDM provides a structure for "escalating decisions" and
distinguishes between smaller and frequent decisions that can
and should be made by the team and more fundamental deci-
sions with severe consequences that are within the responsibility
of senior management [62].

3. The focus is on frequent delivery of products.

By this principle, DSDM emphasizes a product-based approach,
but what is meant by "products" is not completely operational
systems. Instead, it is about components of the final software
(or increments in terms of IID, as explained in Section 3.5),
in the sense of something tangible (e.g., the data model of the
application) that can be verified as acceptable by staff outside the
team. By frequently delivering and verifying a new component
or part of the business application, management regains control
of the project’s direction and can adjust if the development team
makes erroneous decisions.

4. Fitness for business purposes is the essential criterion for
acceptance of deliverables.

With this formulation, the fourth principle of DSDM clarifies
that developers must "build the right product before building the

61

62

THE EVOLUTION OF SDLC MODELS

product right." In other words, validation is more important than
verification. So, instead of delivering "gold-plated" solutions,
the focus should be on maximizing the business benefit. This
means that minor (technical) issues are acceptable if they are less
relevant and will not directly affect the business purpose.

. Iterative and incremental development is necessary to converge

on an accurate business solution.

By this principle, the DSDM specification stresses a mindset
assuming that rework is an integral part of the development pro-
cess and must be accepted as something positive - a profitable
result of continuously processing the business case and under-
standing it better. Furthermore, since actual users are part of the
development team, it is possible to gather instant feedback and
let systems evolve by iterative and incremental development so
that errors are trapped very early, instead of taking a "one-shot"
approach, where errors are not only costly to correct, but may
endanger the whole system development.

. All changes during development are reversible.

Closely linked to the previous one, this principle is about proper
process management to guarantee that the possibility of return-
ing to a safe point of development exists so that wrong paths
do not lead to vast amounts of discarded work. With this, it
builds onto the third principle, the frequent delivery of verified
components, and adds strategies in case of wrong development
decisions.

. Requirements are baselined at a high level.

This principle means that the requirements identified during the
business study serve as an agreement defining the high-level
scope of the project. As a result, further details are determined
during the following iterative prototyping activities. This pre-
vents over-specification and guarantees that prototyping can
start immediately, focusing on the essential aspects.

. Testing is integrated throughout the lifecycle.

With this principle, DSDM emphasizes that testing is such an
integral part that it should never be done after development
in a separate phase but rather in parallel to the actual coding
process in the form of a "test as you go" philosophy. With de-
velopers testing software components for technical aspects and
the users in the team testing for functional suitability, all forms
of acceptance tests are carried out incrementally. In addition,
DSDM stipulates that due to the evolutionary development of
software components, integration and regression tests must be
performed as soon as new versions evolve.

3.6 THE BIRTH OF "AGILE" AS THE CURRENT STATE OF THE ART

9. A collaborative and cooperative approach between all stake-
holders is essential.

In DSDM, responsibilities are shared, meaning that "collabora-
tion and co-operation are important, but also that all stakehold-
ers need to buy into the approach” [62]. For this purpose, not
only must there be a close collaboration between developers and
end-users to determine what is needed, but also cooperation
between different parts of the company, such as business and IT
organizations, in order to avoid barriers that arise when depart-
ments consider themselves as being independent of all the other.
This principle also means that stakeholders must understand
that the contract about what should be delivered cannot be cast
in stone due to the iterative and incremental approach. For in-
stance, when development works against time constraints and
new important requirements arise that have not been considered
before, they cannot be simply added to the workload. Instead, a
compromise is needed, and stakeholders need to cooperate and
agree on a modified list of what is essential to be delivered.

Besides these principles, another aspect of DSDM should be men-
tioned since it became popular for other time-constrained development
approaches, especially for Scrum, which is the primary concern of
this thesis. It is known as the MoSCoW prioritization of requirements,
yet the "0’s" have no meaning and represent filling letters around
the acronym "MSCW," which stands for "Must have," "Should have,"
"Could have," and "Want to have but will not have this time round"
[62].

Must have requirements are fundamental to the system and alto-
gether define the minimal usable subset without which the system
would not be able to work appropriately and, therefore, would be
useless for the user. For example, for an online shop, customers must
be able to complete the whole ordering process, including selecting
items and making the payment via credit card.

Should have requirements are not mandatory since the system will
be useful and usable without them. However, they add tremendous
value to the user experience, so they are classified as the second most
important features that should be implemented during the project.
For instance, offering additional payment options, such as paying via
invoice, bank transfer, or PayPal, would certainly add value to the user
experience, but the ordering process would still be usable without
them.

In contrast, could have requirements are "nice to have" but may be
easily left out of the project. Usually, they will only be considered
if the higher prioritized features can be implemented so flawlessly
that time is still left over. Regarding the online shop example, the

63

The MoSCoW
prioritization of
requirements

64

XP proposes five
team values and
twelve development
practices

THE EVOLUTION OF SDLC MODELS

possibility of seeing items in a 3D perspective before buying would be
a big difference for the user. However, it is not an essential feature for
the ordering process in general.

Lastly, requirements prioritized as want to have but will not have this
time round represent features with a certain amount of value (for the
stakeholders and users) but are not considered yet since they can wait
for later development. For instance, the online shop could be adapted
to different languages. It is not yet necessary, but it is certainly useful
in the later stages of development.

While all requirements determine a full system, the MoSCoW rules
provide a basis for decision-making about what will be covered during
which time-box of a given project.

3.6.3 Extreme Programming

Besides Scrum as the most prominent agile development framework
and the primary concern of this thesis, Extreme Programming (XP)
has also become one of the most famous lightweight approaches in
software development.

XP was created by Kent Beck in 1996 when Chrysler asked him to be-
come the Project Lead on the Chrysler Comprehensive Compensation
System (C3) [113]. The C3 project was born out of necessity because
Chrysler’s payroll accounting was handled by three different systems,
each over twenty years old, requiring separate programming staff for
maintenance and a separate customer staff to use them.

Previous attempts utilizing the Waterfall Model to develop a re-
placement for these legacy systems failed, so Kent Beck was hired to
finally rescue the project and develop a new payroll system that should
"allow Payroll Services [...] to more easily manage the requirements
for accurate and timely service [Chrysler’s] [...] 86,000 employees by
reducing the duplication of effort the legacy systems require" [6].

Together with Ward Cunningham and Ron Jeffries, Beck established
a new development process by taking twelve best practices of software
development to the "extreme" and structuring them around five val-
ues [18], which later would strongly influence the basis of all agile
methodologies, known as the "Agile Manifesto" (see Section 3.6.4).

The five values of XP are:

1. Communication: XP stresses the importance of clear and fre-
quent communication among all stakeholders, including team
members, developers, and customers. This ensures everyone
works jointly at every project stage and is aligned on project
goals, requirements, and progress.

3.6 THE BIRTH OF "AGILE" AS THE CURRENT STATE OF THE ART

2. Simplicity: Developers focus on creating the simplest possible
solution that works and meets customer needs. This means
avoiding unnecessary complexity and being willing to conduct
code refactoring frequently to minimize risk.

3. Feedback: XP emphasizes that team members deliver software
frequently to get feedback as early and often as possible, which
helps to address issues promptly and align the project with
customer requirements.

4. Courage: Team members are encouraged to take on challenging
tasks, make necessary changes, and stand by their commitments,
even under difficult circumstances.

5. Respect: Mutual respect among team members and stakeholders
is crucial. Everyone’s contributions are valued, and team mem-
bers work in a cooperative and supportive environment to strive
for a common goal.

Based on these values, XP proposes 12 software development practices:

1. The Planning Game: XP proposes a two-step planning process
addressing the crucial software development questions: what
will be achieved by the deadline and what to do next.

Release Planning involves the customer presenting desired fea-
tures to the programmers, who then estimate the difficulty of
implementing these features. Using these estimates and under-
standing the importance of each feature, the customer develops
a project plan. Initially, this plan is imprecise as priorities and
estimates may not be fully defined, and the team’s pace is still
unknown. However, the first release plan is sufficiently accurate
for making initial decisions, and XP teams regularly update it
every few months (see Figure 3.16 on Page 67) as the project
progresses.

Iteration Planning, on the other hand, is a bi-weekly meeting
where the team receives direction from the customer for the
next iteration. Programmers detail the proposed iteration plan
into tasks and estimate their cost more precisely than in Release
Planning before finally committing to the iteration’s scope.

2. Small Releases: Software is developed in small, frequent re-
leases to allow rapid feedback and course correction. First, this
includes releasing running and tested software to the customer
and delivering the proposed business value at the end of every
iteration. Second, this also includes releasing to end users as
often as daily to conduct acceptance tests (see Figure 3.16 on
Page 67), receive feedback, and monitor how a feature works in
production.

66

THE EVOLUTION OF SDLC MODELS

3. Metaphor: XP teams develop a shared vision of how the product

works, called the "metaphor.” For example, as explained by Ron
Jeffries, an agent-based information retrieval system could be
envisioned to work "like a hive of bees, going out for pollen and
bringing it back to the hive" [221]. While such a poetic metaphor
may not arise in any case, a metaphor should still use analogies
to describe the system and its functionality to aid understanding
and communication.

. Simple Design: Design is kept as simple as possible, exactly ful-

filling the system’s current functionality but not over-engineering
future possibilities. This means that design in XP is not a one-
time activity but instead an ongoing process throughout the
entire course of development.

. Test-Driven Development: XP strongly emphasizes feedback,

which highly depends on effective testing. To ensure that the
developed software is always in a functioning state, teams utilize
test-driven development that entails adding a test before work-
ing on even the smallest feature and making the test pass. This
approach typically results in code with nearly 100% of test cov-
erage. However, simply writing tests is not enough because they
must be consistently run, which in XP is taken to the "extreme"
because every piece of code released to the repository (which
happens multiple times per day) triggers the execution of all
unit tests, which have to pass entirely each and every time be-
fore working on the next feature. This rigorous testing regime
ensures high-quality code, provides immediate feedback to pro-
grammers on their work, and offers crucial support for ongoing
software design improvements.

. Refactoring: While focusing on delivering business value in

every iteration, XP teams also make continuous design improve-
ments, coined as "refactoring” of code by Martin Fowler [87].
Refactoring includes removing redundancy, eliminating unnec-
essary functions, increasing code coherency, and, at the same
time, decoupling elements.

. Pair Programming: XP proposes that two developers work to-

gether on a single computer to write and review code in real
time. While it may seem inefficient to have two developers doing
the job of one, this practice ensures that all production code
is reviewed by at least one other programmer, which results in
better design, better testing, and better code [221]. Moreover, pair
programming also serves to communicate knowledge through-
out the team because, as a result of switching pairs, everyone
benefits from everyone’s individual and specialized knowledge.

3.6 THE BIRTH OF "AGILE" AS THE CURRENT STATE OF THE ART

8. Collective Code Ownership: This practice declares that code is
owned by the team as a whole, and any team member can make
changes anywhere in the codebase. The benefit of this is that all
code gets the attention of all developers, thus leading to better
code quality. Simultaneously, pair programming ensures that
knowledge is spread throughout the team so that each developer
knows the right place when adding or modifying code for a new
feature.

9. Continuous Integration: XP proposes that code changes are
integrated very frequently, usually multiple times per day. This
continuous integration ensures that the system is always in a
working state and hence prevents code freezes, meaning that
developers are blocked and cannot work on important features
because of unpredictable problems, which are likely to happen
with infrequently integrated code.

10. 40-hour Week: XP teams maintain a sustainable pace of work,
focusing on work-life balance, thus sticking to a maximum of
40-hour work per week and trying to prevent overtime.

11. On-site Customer: The customer should fully participate in
the development and be present to answer team questions, set
priorities, and resolve disputes if necessary.

12. Coding Standards: XP teams follow a set of agreed-upon coding
standards to maintain consistency and make the codebase easy
to understand. As explained by Ron Jeffries, coding standards
should result in code that "looks as if it was written by a single —
very competent — individual." While "the specifics of the standard
are not important,” it is more important "that all the code looks
familiar, in support of collective ownership" [221].

_ Release Plan

Monthé
Iteration Plan

Weeks
Acceptance Test
Days
Stand Up Meeting

One Day

Pair Negotiation

Hours

Unit Test
Minutes
/—P Pair Programming
. SeconAdS/

Code

Figure 3.16: XP feedback loop?

7 Image based on work by Don Wells:
http://www.extremeprogramming.org/map/loops.html

http://www.extremeprogramming.org/map/loops.html

68

The four values of
the Agile Manifesto

THE EVOLUTION OF SDLC MODELS

Given these values and practices, XP does not have a formally
defined structure for the software development lifecycle. Instead, it
is more concerned with how teams should work together and how
tasks should be approached on a day-to-day basis, thus focusing on
frequent releases, continuous feedback, and embracing changes.

Before investigating Scrum as the most prominent agile develop-
ment framework in Chapter 4, the following section elaborates how
representatives of the previously presented "lightweight" approaches
coined "agile" as a new development paradigm based on four firmly
anchored values and twelve common development principles, alto-
gether forming the "Agile Manifesto."

3.6.4 The Agile Manifesto

The sections above illustrate a small selection of "lightweight" ap-
proaches published in the 1990s. Although some of the inventors were
competitors to each other, they soon realized that all of them shared a
common vision about a new way of developing software based on an
equal set of values and principles.

Therefore, seventeen leaders and representatives of Scrum [234],
Extreme Programming [16], DSDM [256], Adaptive Software Development
[116], Crystal [53], Feature Driven Development [202], Pragmatic Program-
ming [119] and others managed to meet and discuss their approaches
as alternatives to the existent heavyweight, document-driven software
development process.

In a conference-type atmosphere, this group of independent thinkers
shared their ideas and very soon decided to favor the term "agile"
instead of "light" or "lightweight" as a classification of their approaches
to give more meaning to their mutual philosophy and to convey
the essence of what these methodologies were about. Despite initial
concerns of some representatives that this group of competitors would
never agree on anything substantive, the meeting revealed a deep
connection between its members, and they soon agreed on a set of
compatible values classified as essential for developing software the
agile way. These fundamental values were jointly signed in the form of
the "Manifesto for Agile Software Development," often shortly referred
to as the Agile Manifesto [19].

¢ Individuals and interactions over processes and tools
* Working software over comprehensive documentation
¢ Customer collaboration over contract negotiation

¢ Responding to change over following a plan

3.6 THE BIRTH OF "AGILE" AS THE CURRENT STATE OF THE ART

As a complement to these four values, the authors also added
"twelve principles of agile development" in order to elaborate on
consequences, i.e., what it means for the development process if these
values are thoughtfully implemented:

1.

Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

. Welcome changing requirements, even late in development. Ag-

ile processes harness change for the customer’s competitive
advantage.

. Deliver working software frequently, from a couple of weeks to

a couple of months, with a preference for a shorter timescale.

. Business people and developers must work together daily and

throughout the project.

. Build projects around motivated individuals. Give them the

environment and support they need, and trust them to get the
job done.

. The most efficient and effective method of conveying information

to and within a development team is face-to-face conversation.

. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors,

10.

11.

12.

developers, and users should be able to maintain a constant pace
indefinitely.

. Continuous attention to technical excellence and good design

enhances agility.

Simplicity-the art of maximizing the amount of work not done-is
essential.

The best architectures, requirements, and designs emerge from
self-organizing teams.

At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

When the manifesto was published in 2001, it struck a nerve and
received much attention in the software development community.
That is because it provided a mission statement and concentrated the
individual ideas of former lightweight approaches into one formulated
document conveying the foundation of agile development philosophy.
By this, together with an article that was published in the "Software
Development Magazine" [86], which provided comments about the
manifesto by two of its authors (Martin Fowler and Jim Highsmith),
the ongoing movement, facilitating change over the attempt to prevent
it, gained huge momentum.

69

The twelve principles
of agile development

70

THE EVOLUTION OF SDLC MODELS

Initiated by the paradigm shift of IID (see Section 3.5), realizing that
planning and development cannot be a one-shot process in turbulent
environments, the new development philosophy finally found its
name: "agile."

While the manifesto authors did not claim leadership of the agile
community itself and treated themselves as just the ones who helped
to launch the ship, some of these authors later actively contributed
to a newly formed "Agile Alliance," which is a non-profit group of
researchers and experts "promoting the concepts of agile software
development as outlined in the agile manifesto" [5].

Until today, the manifesto, with its four values and twelve principles,
must be treated as the essence of what agile development is about. It
is the foundation and solid ground upon which individual methodolo-
gies or frameworks, such as XP, DSDM, or Scrum, can be built. This
should be stressed in particular because, as will be explained in Part
II of this thesis, many of the existing problems when the industry is
trying to adopt agile development arise from the fact that the solid
foundation with its core values and principles is often not taken into
account or taken seriously enough.

3.7 SUMMARY

As outlined in the chapter, the evolution of SDLC models reflects a
significant shift in software development practices over time.

This evolution can be concluded as follows:

e From Rigidity to Flexibility: Early models like the Waterfall
and V-Model represented a rigid, linear approach to software
development, emphasizing strict phases and a lack of iteration.
Over time, the recognition of the limitations of these models,
especially in handling changing requirements and uncertainties,
led to the development of more flexible approaches.

* Emergence of Iterative Models: The Spiral Model marked a
transition by introducing iteration and risk management into
the development process. This paved the way for Iterative and
Incremental Development (IID), which further broke down the
rigidity of traditional models, allowing for repeated cycles of
development and enabling more adaptability and responsiveness
to change.

¢ Transformation Through Agile: The advent of agile methodolo-
gies like Rapid Application Development (RAD), Dynamic Sys-
tems Development Method (DSDM), and Extreme Programming
(XP) brought a profound transformation. These methodologies

3.7 SUMMARY

emphasized rapid prototyping, continuous customer feedback,
and adaptive planning. They focused on collaboration, customer
satisfaction, and efficient response to change, contrasting sharply
with earlier models” highly structured and documentation-heavy
approaches.

* Consolidation in the Agile Manifesto: The culmination of this
evolutionary journey is seen in the Agile Manifesto, which dis-
tilled the core values and principles underpinning agile method-
ologies. This represented a paradigm shift in software develop-
ment, moving away from conventional, plan-driven approaches
to a more dynamic, user-centered methodology that values in-
dividuals and their interactions and favors working software
over comprehensive documentation, thus necessitating customer
collaboration and embracing changes.

In conclusion, the evolution of SDLC models reflects a broader
industry trend towards more dynamic, flexible, and collaborative ap-
proaches to software development. This shift acknowledges the com-
plex, changeable nature of software projects and prioritizes adaptabil-
ity, customer involvement, and team collaboration over rigid planning
and strict adherence to predefined processes.

With Scrum being at the forefront of all agile development method-
ologies, the following chapter will now elaborate on all its details.

71

SCRUM: THEORY AND PRACTICE

Originating as one of the lightweight methodologies from the 1990s
opposing the traditional way of software development, Scrum began
its triumphant advance together with the agile movement and until
today became the most frequently used and widely accepted software
development process framework (see Figure 4.1).

SerumBan Scrum / XP Hybrid

Kanban

4% Iterative

1% XP
1% Lean Startup

Other

2% Don’t know

Figure 4.1: Distribution of agile approaches’

However, as the second part of this thesis will show, applying
Scrum does not necessarily mean implementing it correctly. Too often,
teams ignore essential parts of the framework due to environmental
restrictions or limited social interactions and, therefore, cannot reach
their full potential.

For that reason, the overall goal of this thesis is to contribute to the
mastering of Scrum by providing an environment and novel software
solution, which is presented in the third and final part and is aimed at
helping teams stick to the principles and practices that have proven to
be essential, by either the official definition of Scrum itself or leading
experts in the field. Beforehand, this chapter lays the foundation by
presenting the very details of Scrum, its rules, and best practices to
follow. It thus defines the ideal situation serving as the target goal of
the later provided solution.

1 Image based on the "15th State of Agile Report" [299]

73

74

The Scrum Guide is
the official reference
and was released in
2010 by Schwaber
and Sutherland

SCRUM: THEORY AND PRACTICE

4.1 ROOTS AND SCRUM THEORY

The roots of Scrum can be traced back to the milestone article "The
New New Product Development Game," written by Takeuchi and Non-
aka for the Harvard Business Review magazine in 1986 [262]. These
two organization theorists observed that several companies from Japan
and the United States at that time, such as Fuji-Xerox, Honda, 3M,
Hewlett-Packard, and others, started to establish new approaches for
their product development processes. Using analogies from sports,
Takeuchi and Nonaka compared the traditional, sequential develop-
ment process to a "relay race," in which the baton is passed from one
product development phase to the next, which may not be optimized
for maximum speed and flexibility. In contrast, the companies men-
tioned above seem to use a novel "rugby" method, "where a team tries
to go the distance as a unit, passing the ball back and forth" [262].

In their article, Takeuchi and Nonaka identified several character-
istics of this new approach, including "built-in instability" or "self-
organizing project teams," and laid the theoretical foundation for a
new way of working that better suits the requirements for a fast-paced,
competitive product development process.

Some years later, Ken Schwaber and Jeff Sutherland adapted their
ideas to the domain of software development and introduced Scrum as
a new process framework in 1997 [234]. The connection to the article
by Takeuchi and Nonaka is shown by the chosen name "Scrum,"
which is also derived from rugby, where the purpose of a scrum is "to
restart a play quickly, safely and fairly, after a minor infringement or
a stoppage" [217].

While Scrum slowly enjoyed popularity after its introduction in 1997,
the inventors decided to distill the framework into a freely available
document known as the Scrum Guide, which was released in 2010 and
provided an official reference that has been deliberately kept short in
order to spread knowledge quickly by avoiding any filling material
and only focusing on the essential aspects of the framework.

Since its introduction, the Scrum Guide has been revised six times.
In its latest version, Schwaber and Sutherland define Scrum as:

"a framework within which people can address complex adaptive problems,
while productively and creatively delivering products of highest possible
value.” [2537]

By this definition, the originators indicate two aspects. At first, the
definition opens up a broader perspective by suggesting Scrum for
"complex problems" in general, which implies that it may not be

4.1 ROOTS AND SCRUM THEORY

limited to the domain of software development but could be applied
to other areas as well.

Second, the creators also emphasize Scrum as a framework and not as
a "process," "technique,” or "method." That is because the Scrum Guide
is not strict in employing the process since it neither prescribes con-
crete techniques nor specific tactics for using the framework. Instead,
it states these "vary and are described elsewhere" [237].

This definition might be very broad and seems unsharp at first
glance. However, the specification of the core development process
is strict in two respects. At first, it is defined by rules describing an
interplay of specific roles, artifacts, and events, which will be consid-
ered in the following sections. Second, it stresses the importance of its
theoretical foundation based on interlinking concepts from iterative
and incremental software development, as presented in Section 3.5,
with elements from the empirical process control theory, which is shortly
introduced in the following.

In traditional sequential methodologies, development follows a
defined process control model. The same outputs are generated every
time given a well-defined set of inputs, i.e., a defined deterministic
process run until completion always leads to the same results [236]. As
explained in Chapter 3.4.1, this theoretical model matches a sequential
development process that originates in industrial manufacturing and
could be easily adapted to the construction of hardware, which follows
a series of well-defined steps. It represents a plan-based approach,
where the blueprints are fixed and will not change during construction.
As a consequence of this entirely determined pre-ahead planning, the
outcome is also predictable regarding costs and schedule. However,
as shown in previous chapters, the assumption that requirements are
fixed and will not change is rarely valid for software projects due to
the high complexity and unpredictable side effects of implemented
features. When sticking to a defined process control model, a change
of requirements during the process affects the original predetermined
plan. As a result, the budget and schedule must be changed, too, in
terms of higher costs and a later completion date. However, this often
becomes impossible due to contractual agreements, so teams still must
deliver by the date they initially committed. As written before, this is
exactly when projects start to go out of control and are likely to fail.

On the contrary, the agile approach establishes an opposite mindset
by assuming that the upfront requirements cannot be understood
entirely in advance. Moreover, these initial requirements will not even
be fixed since no one knows to what degree future customer feedback
will lead to new decisions, which in turn may completely alter the
initial requirements set. In fact, the agile approach welcomes changes -
even late in the development process - as something positive, ensuring
that the correct product is being built. Nonetheless, the agile mindset

75

Besides being a
framework, Scrum is
very strict regarding
its roles, artifacts,
and events

The defined process
control model of
sequential
approaches

76

Scrum is based on
the three pillars of
empirical process
control theory

Transparency

Inspection and
Adaptation

SCRUM: THEORY AND PRACTICE

prioritizes delivering a project by a certain date but allows for flexibility
in requirements, as these are expected to evolve. Using value-driven
development, i.e., prioritizing and completing those requirements
that provide the most value to the customer, agile approaches accept
that not all requirements may be finished by the delivery date but
emphasize the importance of delivering enough key features to create
a valuable and functional system for the customer.

Therefore, progress cannot be measured against a checklist of prede-
termined requirements but by mechanisms of empirical process control,
assuming that the only reliable knowledge in highly unpredictable
environments comes from observation and experience. Using em-
piricism, therefore, means to measure progress in a fact-based and
evidence-based manner. Scrum ensures this by interlinking many of
its elements to the three pillars of empirical process control, which
are transparency, inspection, and adaptation, which are building on one
another.

Transparency means presenting the facts as is. Any parts of the
process that affect the outcome are visible and known to everyone in
response to the outcome. This includes everybody’s ability to observe
progress and the project’s current state, which also requires that all
people involved share a common language and a mutual understand-
ing of what is being seen by defined standards. Scrum ensures these
aspects through certain artifacts and progress definitions, acting as
information radiators for the whole team by visualizing the state of
project planning and progress. As will be explained in the following
chapters, these are the product backlog and the definition of ready (see
Section 4.5), the sprint backlog (see Section 4.6), and the definition of
done (see Section 4.3).

However, in Scrum, transparency means more than just visualizing
everybody’s work status to everyone else. It also means incorporating
a work setting of mutual trust and courage to keep each other abreast
of good and bad news, which is why no one has any hidden agenda.
This is particularly addressed by the five values of a Scrum team, which
will be presented in Section 4.4.1.

When a process becomes transparent, inspection is meant to maxi-
mize value and control risk by analyzing progress in detecting unde-
sirable variances when heading towards a specific goal. In terms of
Scrum, the development process is not inspected by external auditors
but by everyone in the Scrum team, which is continuously heading
towards improvement and adapts to the inspection results.

For example, the team closely collaborates with the customer to
gather constant feedback on whether the outcome meets the cus-
tomer’s expectations. This inspection is treated as an opportunity to
clarify the requirements to guarantee that the product will be accept-

4.2 OVERVIEW OF THE SCRUM FRAMEWORK

able. If some aspects deviate outside acceptable limits, everybody will
adjust the process as soon as possible to minimize further deviations
that otherwise would build up quickly.

In Scrum, inspection and adaption go hand in hand with one an-
other and are subject to four formal events, of which three are con-
cerned with ensuring that what is being built is acceptable. These
events are sprint planning (see Section 4.7.1), the daily Scrum (see Sec-
tion 4.7.2), and the sprint review (see Section 4.7.3). In addition, there is
one event in particular for inspecting the internal development process
and how the group performs as a team, aiming at generating insights
and strategies for adapting to identified hindrances to guarantee con-
tinuous improvement. It is called the sprint retrospective and will be
explained in Section 4.7.4.

4.2 OVERVIEW OF THE SCRUM FRAMEWORK

The Scrum framework consists of specific parts, all of which interplay
with each other by various rules. Since it is difficult to consider each
part separately without referencing its related parts, this section gives
an introductory overview of the framework structure. This should
help establish an approximate idea of all individual aspects before
elaborating on details in later sections. If not otherwise stated, all the
following information is based on the official Scrum Guide [237].

As Scrum is based on iterative and incremental approaches (see
Chapter 3.5), the overall development process is characterized by suc-
ceeding iteration cycles, at which end must be an increment to the
product which fulfills the requirement to be potentially releasable.
Such a development cycle is called sprint and functions as a superordi-
nate structure to the interplay of the remaining Scrum components:
roles, meetings, and artifacts, as illustrated in Table 4.1.

Scrum is designed around a self-organizing team composed of three
roles. As the name already suggests, the product owner solely takes
responsibility for managing the product by deciding what to build
and in which order. His main concern and artifact to work with is
the product backlog, an ordered list of informal items representing
requirements, features, ideas, or other aspects relating to the product.
On the other hand, the Scrum master is in charge of the process by
removing impediments to development and guiding the whole team
to ensure everybody sticks to the values, principles, and rules. The
final role is represented by the development team, defined as a small
cross-functional collection of professionals with all necessary skills to
turn the requirements defined by the product owner into a working
product.

77

Roles

78 SCRUM: THEORY AND PRACTICE

Product Owner
Roles Scrum Master

Development Team

Sprint Planning
Meetings Daily Scrum
Sprint Review

Sprint Retrospective

Product Backlog
Artifacts Sprint Backlog

Increment

Table 4.1: Scrum components

In addition to these roles, Scrum also requires specific meetings,
which take place at various points in time of a sprint and which shall
ensure that the aspects of empirical process control (see Section 4.1)
are put into practice.

BN Lo

! =0 ,) Da115 Scrum
Sprint planmng) 71 | k
Product badd

Gl (Vv B,
. 1 ¥ ; E} :J L]] 4";_1\\ a Sprint execution
% e B @y
j‘ <
(ﬂoommﬂ \ N
Potentiall

[
RECT \‘S“U ' Shippable frad?«,f
S/-.’ -~ F) 1 increment

ik vori
Sprint vetrogpective Sprint review

Figure 4.2: The sprint cycle?

As illustrated in Figure 4.2, each sprint begins with the sprint plan-

Meetings and ning meeting, in which the team collectively defines a sprint goal and
artifacts agrees to a set of items from the product backlog to be implemented
during the current sprint. This selection represents the scope of work

and is organized by the sprint backlog. During the execution of the

sprint, the development team is self-organizing its way of working

to finally deliver an increment at the end of the sprint that fulfills

the requirements as specified before in the sprint backlog. For every

member of the development team, it is obligatory to attend the daily

Scrum meeting, which, as the name suggests, takes place every day as

a short gathering of all developers in order to coordinate their tasks

2 Source: "Essential Scrum" by Kenneth S. Rubin [226, p. 17]

4.3 SPRINT CYCLE RULES

and speak about possibly occurring hindrances of their work. In the
end, the sprint review meeting aims to demonstrate the implemented
functionality from the development team to the product owner and
invited stakeholders. In addition, all participants collectively think
about possible next steps for improving the product in succeeding
sprints. Before everything is repeated in future iterations, the whole
Scrum team is conducting the sprint retrospective, which is a meeting in
order to inspect and adapt the process of the recent sprint, providing
an opportunity to examine which aspects of the development process
went well and where is room for improvement.

While this is the basic underlying structure of the Scrum framework,
the following sections will elaborate on the individual parts in more
detail, beginning with the sprint cycle and its underlying rule set.

4.3 SPRINT CYCLE RULES

The sprint as the key Scrum component reflecting the cyclic iterative
and incremental development process represents a timebox of one
month or less with the fundamental purpose of creating a "potentially
releasable product increment” [237]. While the term "increment" will
be described in the succeeding section, this section proceeds with the
underlying rule set of a sprint, which is a fundamental prerequisite
for implementing Scrum correctly.

The timebox of a sprint is limited to one month or less, which
ensures that the overall risk for failing is also limited to one month
of cost. As an explanation, the Scrum Guide mentions that longer
horizons lead to a rise in complexity since the requirements are more
likely to change, which increases the risk of false developments [237].

This rule of a short sprint length has a clear connection to the
problems of sequential development models, as described in Chapter
3.4. A sequential or "one-way" development method needs perfect
upfront planning and specification of the requirements. However, this
is conflicting with the real world because of what Boehm already
pointed out in 1981 [28] by what Steve McConnell [174] later coined
as the cone of uncertainty (see Figure 4.3).

This uncertainty is especially problematic for longer projects with a
more extensive set of requirement specifications because, for a larger
set, the amount of uncertainty has more impact, and the consequences
are more serious. For this reason, Scrum treats every sprint as a self-
contained project, including a transparent and formulated goal, and
thus divides the whole project effort into the work of several sprints,
where the risk of failing is limited to one month.

79

A sprint represents a
timeboxed iteration
of one month or less

8o

The sprint has a
consistent timebox

A sprint can only be
canceled if its goal
becomes obsolete

SCRUM: THEORY AND PRACTICE

Project
Schedule

1.6x

1.25x

1.15x
1.1x

0.9x
0.85x

0.8x

0.6x

A A A A A A

Initial Approved Requirements Product Detailed Accepted

Product Product Specification Design Design Software
Definition Definition Specification Specification

Figure 4.3: The cone of uncertainty narrows as the project progresses3

While one month is the maximum, there is no official lower bound
for the length of the timebox and no rules for determining the opti-
mum sprint length. However, this decision should not be taken lightly
since the timebox determines what Mitch Lacey calls the "stimulus-to-
response cycle." He identified three factors that should be considered
for determining the best sprint length: the expected duration of the
overall project, the customers and stakeholders, and the Scrum team
itself [152, p. 80]. In his book "The Scrum Field Guide," he offers a
recommender system in the form of a quiz, in which a person must
select answers to several considerations for every factor. Based on a
scoring key, these answers are translated into point values so that
finally, the sprint length with the highest value is recommended as the
most suitable for balancing the project duration against the amount
of risk someone is willing to take, the ability of the team and the
tolerance of the customer [152, p. 87].

The decision about the length of the timebox is also critical because
sprints are also specified to have consistent durations. However, this
rule of consistency is not as strict as the timebox limitation. Neverthe-
less, it needs very good reasons to change the sprint duration because
of the constant pace of the team. The Scrum Guide also regulates that
a new sprint must contain all of the obligatory ceremonies (sprint
planning, daily Scrums, sprint review, and sprint retrospective) and
that it starts immediately after the conclusion of the previous one.
Furthermore, a sprint is only allowed to be canceled if - and this is
the only exception - the goal of the sprint has become obsolete in the
meantime, for instance, due to changes in the market or technological
conditions. But overall, sprint cancellation is described as traumatic to
the Scrum team and should be very uncommon [237].

3 Source: "Agile Estimation and Planning" by Mike Cohn [56]

4.3 SPRINT CYCLE RULES

When a sprint is started, it not only consists of a set of features that
have been determined to be of the highest value to the customer and
hence must be implemented during the iteration, but it also defines
a concrete goal. This goal ensures that the whole team knows why it
is worthwhile to run the sprint and what should be achieved on a
higher level [209]. While goal is what really drives the sprint work,
it may be possible to re-negotiate the sprint’s scope because of new
knowledge. However, it would not be allowed to apply changes that
endanger meeting the sprint goal since this would affect the quality of
the increment to be delivered.

A typical example is a sprint that starts deviating from what has
been planned because of unforeseeable problems or new knowledge
that has been gained in the meantime. In a well-planned sprint, there
should be room to drop particular features that do not directly con-
tribute to the overall goal. That way, the team can still meet the sprint’s
overall goal and deliver a high-quality increment, while features left
open can be addressed in later iterations.

In this context of Scrum, it is important to know that the term
"increment” must not be equated with the piecewise delivery of a
software product of the purely "incremental development" approach,
as explained on Page 46. That is because Scrum incorporates both
incremental and iterative development. Therefore, "increment" refers
to a piece of software that builds up on previously delivered code,
including new but also refined functionality of previous sprints.

For this reason, the Scrum Guide defines it as a "step toward a vision
or goal" and as "the sum of all the Product Backlog items completed
during a Sprint and the value of the increments of all previous Sprints"
[237].

The characteristic of the increment to be "potentially releasable" is
of utmost importance and, according to Cohn, one of the biggest chal-
lenges for a Scrum team to achieve, but at the same time essential for
becoming agile. The term actually covers several aspects, as explained
in the following.

At first, it refers to "working software" - one of the four critical agile
values declared by the Agile Manifesto (see Chapter 3.6.4) - which,
according to Cohn, allows valuable "hands-on" customer feedback,
helps to avoid unfinished pieces of work for better measuring of the
progress and allows the product to be shipped at any time (maybe
with fewer features) in order to quickly respond to changes of the com-
petitive market [57, p. 258]. On the other hand, the word "potentially"
indicates that the increment does not need to be "truly" releasable.
Cohn explains this distinction by an example of a customer who wants
to add the functionality of print and print preview to his product.
The Scrum team may decide first to implement the print preview in

81

Every sprint must
fulfill a concrete goal,
and it is not allowed
to make any changes
that would endanger
reaching this goal by
the end of the sprint

The increment must
be “potentially
releasable”

82

The definition of
done determines
conditions for being
potentially releasable

A team consists of
3-9 developers, one
product owner, and

one Scrum master

SCRUM: THEORY AND PRACTICE

one sprint, followed by the functionality to initiate and perform the
printing in the succeeding sprint. In that case, a release to the customer
after the first sprint would not be reasonable because although the
print preview is solid and usable and hence could potentially be deliv-
ered, the outcome is not cohesive because of the strong relationship to
the second sprint [57, p. 260].

Another aspect is covered by Rubin, who noticed that "potentially
releasable" is also a "state of confidence" that the work of a sprint is
really done, so there is nothing crucial left over when the business
decision to ship the results of the sprint is taken [226, p. 74]. In order
to determine whether the increment has reached the state of being
potentially releasable, the team must have agreed upon a well-defined
definition of done (DOD), which is a checklist of conditions that must
be satisfied to declare the increment as being "done." For example,
conditions could be that all features are coded, designed according to
a set of style guides, well-written, integrated into a mutual code base,
and verified by succeeding test mechanisms.

These conditions of satisfaction are transparent to all team members
and may evolve over time as the team gains more knowledge, thus
making the definition of done subject to inspection and adaptation as
elements of the empirical process control.

4.4 THE SCRUM TEAM

According to the role model of Scrum, a team consists of a product
owner, a Scrum master, and the development team. Before investigating
these individual roles, the following section elaborates on the team
size and five essential values contributing to solid team cohesion
and mandatory spirit when working in turbulent, fast-paced agile
environments.

4.4.1 Five Values and Team Size

In terms of the overall team, Scrum stipulates two rules. The first is
about the team size, which should be small and consist of no more
than three to nine people forming the development team plus one
person, each occupying the role of the product owner and Scrum
master. The second rule is about five values or character traits every
member of the Scrum team should have internalized: commitment,
courage, focus, openness, and respect (see Figure 4.4).

4.4 THE SCRUM TEAM

COURAGE
Scrum Team members have courage to
do the right thing and work on tough
problems
FOCUS
Everyone focuses on the work of the
Sprint and the goals of the Scrum Team

COMMITMENT
People personally commit to achieving
the goals of the Scrum Team

RESPECT

=~
{ @ Scrum Team members respect each
other to be capable, independent people

P

2) The Scrum Team and its stakeholders
agree to be open about all the work and
the challenges with performing the work

ﬁ OPENNESS

Figure 4.4: Scrum values*

Small team size is necessary to establish a working environment in
which all members commit to achieving the goals as a group, while
each individual member needs to have courage to work on challeng-
ing problems and must preserve focus on the work and goals of the
whole team. Being open about tasks, goals, and challenges is crucial
for establishing a transparent process, which holds not only for the
Scrum team itself but for the stakeholders as well. Team members
must respect each other, being capable, independent people with indi-
vidual strengths and weaknesses. According to the inventors, only by
living these values, "the Scrum pillars of transparency, inspection, and
adaptation come to life" and build trust for everyone [237].

In the case of a bigger team size, the originators state that complexity
would increase, and sticking to the values mentioned above would
be harder to guarantee. As indicated by the values, Scrum focuses on
professionals working in a corporate culture, inspiring an atmosphere
that promotes team spirit, mutual cooperation, and willingness to
help each other. Although differentiated by the already mentioned
role concept, they mutually share responsibility for the outcome of
the product development process and make decisions on their own
without being driven from the outside, which is why the team is
limited in size to function as one unit.

In particular, the size of the development team is limited to 3-9
persons to be "small enough to remain nimble and large enough
to complete significant work within a Sprint" [237]. According to
Schwaber and Sutherland, smaller teams (< 3 persons) could be unable
to deliver an increment of high quality because of skill constraints. In
contrast, bigger teams (> 9 persons) would need too much coordination
and hence exceed the useful amount of complexity for an empirical
process.

4 Source: https://www.scrum.org/resources/scrum-values-poster

83

Each team member
must work according
to five values

https://www.scrum.org/resources/scrum-values-poster

84

SCRUM: THEORY AND PRACTICE

Although not explicitly mentioned, this thought builds upon the
outcome of the famous book "The Mythical Man-Month," published
in 1975 by Frederick Brooks [39], also known as "Brooks’s Law":

"Adding manpower to a late software project makes it later.”

— Frederick Brooks [39]

The rationale behind this is that the overhead of communication
and coordination tends to rise as the square of the number of commu-
nication paths between developers, or more precisely by the following
formula, which is illustrated in Figure 4.5:

n(n—1)

Number of communication paths = 5

where 7 is equal to the number of developers.

[] . 7 | ®
° ° . ’]
° °
(Y » & » & >
L -
. °
& .
¢ ® & ® ——9 L o
3 people, 3 lines 5 people, 10 lines 9 people, 36 lines 13 people, 78 lines

Figure 4.5: Brooks’s law: people and resulting lines of communication

For that reason, and since face-to-face communication is considered
to be "the most efficient and effective method of conveying information
to and within a development team," as stated in the sixth principle of
the Agile Manifesto (see Chapter 3.6.4), more developers would not
scale to comply with the conditions of a transparent process.

But what if software projects are bigger in size and cannot be
accomplished with a single Scrum team? Moreover, how may the
Scrum philosophy that works well for one team be applied to the
organization as a whole? These are questions concerning the scaling
of Scrum, which are out of the scope of this thesis, focusing on the
challenges and issues of single Scrum teams and Scrum in general. It
should, therefore, only be said at this point that various scaling models
exist, e.g., LeSS, developed by Bas Vodde and Craig Larman [264], Safe,
developed by Dean Leffingwell [230], Scrum@Scale, developed by the
co-creator of Scrum Jeff Sutherland [242], and Nexus, developed by
the co-creator of Scrum Ken Schwaber [248], which each extend the
Scrum framework by their own rules about the interaction of several
teams to work from a single product backlog and build an integrated
increment at the end of each sprint.

4.4 THE SCRUM TEAM
4.4.2 The Product Owner

The product owner is one dedicated person, and his first and fore-
most task is to maximize the value of the product by deciding what
to build and in which order [237]. He, therefore, is working in close
collaboration with external (e.g., clients or customers) and internal
stakeholders (e.g., marketing or sales division) to distill a shared vision
of the product and constantly gather new information for updating
the requirements that are specified in the product backlog, for which
he is solely responsible. In addition, he represents the link between the
stakeholders and the development team (see Figure 4.6) by assuring a
proper product backlog management (see Section 4.5) so that everybody
understands the stakeholders” needs (specified as requirements in
the product backlog), their priority (reflected in the ordering of the
product backlog) and works towards the right goal.

Stakeholders Scrum team

Internal stakeholders

c

‘\ %D‘ Frvdw«éwner ‘v’ iwumMasfer
o 0] (o)
P f o] a2

J/

o

.

Customers/users Development team

Figure 4.6: The product owner role>

By this, the product owner becomes the "empowered central point
of product leadership” [226, p. 165]. Being close to the business side,
he defines and priorities the features to be developed and also ac-
cepts or rejects the work results, resulting in responsibility for the
profitability of the product and the stakeholders’ return on investment
by constantly comparing the vision against the reality and making
tradeoffs between scope, budget, and quality [57, p. 125].

4.4.3 The Development Team

The development team consists of 3-9 people who are solely respon-
sible for turning the workload of the sprint (as defined by the sprint
backlog, see Section 4.6) into a "potentially releasable increment."
While the sprint backlog results from the product owner’s decisions

5 Source: "Essential Scrum" by Kenneth S. Rubin [226, p. 165]

85

The product owner
decides what to build

86

Developers are
cross-functional,
self-organizing and
decide how to turn
the sprint backlog
into a releasable
product increment

SCRUM: THEORY AND PRACTICE

about what to build according to his priorities, it is entirely up to
the development team how to achieve this. For this, the Scrum Guide
defines the development team to be cross-functional and self-organizing.

Cross-functional means that all team members are equipped with
the necessary skills to create the increment. Scrum is against using spe-
cific titles for individual team members (e.g., "architect,” "tester," "UX
designer," etc.) and requests to omit sub-teams for specific domains of
the development lifecycle. This is fundamentally different from tradi-
tional approaches, where individual job roles are typically assigned to
different people, so teams are apparently formed by several experts
occupying specialized, role-specific positions. For example, a team of
software architects could be responsible for modeling and structuring
the application, whereas a team of programmers implements features
that are subsequently validated by another team of testers. Scrum
has firmly discarded this notion of developer roles and role-specific
teams since there are neither titles nor sub-teams in the development
team. So, instead of working on "horizontal slices" of the product, each
member of the development team is considered equal, regardless of
his or her individual experience and specialty, and therefore works on
"vertical slices" of the product, i.e., each member designs, implements,
integrates, and tests end-to-end functionality of the increment [226, p.

195].

However, this cross-functionality is not meant to exclude members
with specialized skills or focus areas [7]. In fact, Rubin mentions that it
would be unrealistic to assume that each developer is equally good at
everything and therefore proposes that members of the development
team should have both broad and individual "deep" skills, which
he refers to as a "T-shaped skill set" [226, p. 201]. The "deep" skills
are individual focus areas and specialties, which allow developers
to guide the rest of the team in particular aspects, whereas a broad
skill set not only allows them to participate in every part of the
implementation process but also leads to additional flexibility of the
team, because of overlapping knowledge. If the team is, for instance,
behind testing, a developer with less profound testing skills could still
support developers with more sophisticated testing skills to overcome
development bottlenecks [226, p. 201].

The example above also shows the second characteristic of the de-
velopment team, which is the request for self-organization. It allows
developers to organize and manage their own work and autonomously
determine the best way how to achieve their goals and turn require-
ments into releasable functionality. No one outside the development
team, neither the product owner nor the Scrum master, should be in a
position to exert influence. Therefore, it is up to the Scrum master to
protect the development team against outside influences in order to
optimize its efficiency and effectiveness, which is in accordance with

4.4 THE SCRUM TEAM

the eleventh principle from the Agile Manifesto stating that "the best
architectures, requirements, and designs emerge from self-organizing
teams" [19] (see Chapter 3.6.4).

With these two characteristics of the development team, Scrum
serves two purposes. At first, cross-functionality and no titles en-
courage that accountability of the outcome always belongs to the
development team as a whole, making all team members responsible
for both the success and the failure of sub-systems or the entire system
[52]. Thus, it prevents blaming, finger-pointing, and too much time
spent complaining when something goes wrong [226, p. 171]. Second,
self-organization targets close collaboration between team members.
The former stereotype developer from traditional approaches, isolated
by others and without the urge to talk to anyone else for the rest of the
day, does not apply to Scrum. Instead, developers actively participate
in the various Scrum activities and constantly inspect and adapt their
development process [57, p. 177].

4.4.4 The Scrum Master

While the product owner is in charge of the product, the Scrum master
is responsible for the process. He has to ensure that the Scrum theory,
rules, practices, and values are understood, enacted, and enforced
among all parties involved. This role represents an important link
between the company’s management level and the Scrum team by
providing services to the organization, the product owner, and the
development team as a form of servant leadership.

The list of services described by the Scrum Guide is shown in Table
4.2. While some aspects might look simple, such as managing and
coordinating the Scrum meetings or collecting status information from
the team members, Lacey exhorts the complexity of the work and says
there might be a tendency to underestimate it. He describes the Scrum
master as a "change agent" with tremendous impact on the attitude
and company culture in terms of living the agile philosophy, in which
the Scrum master represents "the fluid that ensures the team’s gears
are turning at optimum effectiveness" [152, p. 71].

With respect to the development team, the Scrum master may be
seen as being in a contradictory position since the Scrum Guide de-
scribes the role as a servant leader on the one hand, but also someone
without authority (since the development team is self-organizing).
Cohn clarifies this contradiction by saying that the Scrum master has
indeed no authority over the team but authority over the process and
compares this role to a "personal trainer" who provides motivation,
reminds of the goals, and tries to make people perform at their best

[57, p- 118].

87

The Scrum master
constantly enhances
the development
process according to
the Scrum rules

88

SCRUM: THEORY AND PRACTICE

Scrum Master Service to the Organization

Leading and coaching the organization in its Scrum adoption
Planning Scrum implementations within the organization

Helping employees and stakeholders understand and enact Scrum
and empirical product development

Causing change that increases the productivity of the Scrum Team

Working with other Scrum Masters to increase the effectiveness of
the application of Scrum in the organization

Scrum Master Service to the Product Owner

Ensuring that goals, scope, and product domain are understood by
everyone on the Scrum Team as well as possible

Finding techniques for effective Product Backlog management

Helping the Scrum Team understand the need for clear and concise
Product Backlog items

Understanding product planning in an empirical environment

Ensuring the Product Owner knows how to arrange the Product
Backlog to maximize value

Understanding and practicing agility

Facilitating Scrum events as requested or needed

Scrum Master Service to the Development Team

Coaching the Development Team in self-organization and cross-
functionality

Helping the Development Team to create high-value products
Removing impediments to the Development Team’s progress
Facilitating Scrum events as requested or needed

Coaching the Development Team in organizational environments in
which Scrum is not yet fully adopted and understood

Table 4.2: Scrum master services [237]

Many further paraphrases for the Scrum master role can be found,
giving strong evidence for its complexity of work (see Figure 4.7).
For example, Rubin describes the role as "coach" of the Scrum values
and principles as well as "impediment remover" for the development
team, taking responsibility for any barriers or problems that would
slow down the developing process while at the same time acting as a
protection shield for the development team, blocking any interferences
from the outside [226, p. 185].

In this sense, the Scrum Master is also a "mediator" between the
product owner and the development team, as described by Cohn

4.5 THE PRODUCT BACKLOG AND ITS MANAGEMENT

~&3

L ol Servant leader

—0| Process au‘f‘horifﬂ

v ScrumMaster
£V responsibilities

—O[Interference shield J

—o(lmred iment re,mo»/e,r]

. Ghanﬂe aﬂerrl'

Figure 4.7: The Scrum master role®

[57, p- 131]. While the product owner may strive for the maximal
workload of the development team to achieve the greatest amount
of throughput, the Scrum master is responsible for balancing the
product owner’s expectations against the health and well-being of the
development team. According to Cohn, this is why both roles should
be clearly separated and never occupied by the same person, because
this positive tension promotes the team’s efficiency [57, p. 131].

4.5 THE PRODUCT BACKLOG AND ITS MANAGEMENT

Scrum’s most important and exclusive artifact for planning the devel-
opment process and managing requirements is the product backlog. It
is defined as "an ordered list of everything that is known to be needed
in the product” [237]. While this definition seems rather general, it
unifies nearly all critical aspects mentioned in the Scrum Guide, which
are investigated in the following.

At first, the product backlog is the “list of everything,” meaning
it is the single source of requirements, and the development of every
individual product is driven by only one product backlog accordingly.
"Everything" also indicates that the product backlog does not only
contain specific types of elements. An element of the list is referred
to as product backlog item (PBI) and may represent different types
of requirements, such as feature definitions, bug fixes for existing
functionality, or visions for future enhancements (see Figure 4.8).

6 Source: "Essential Scrum" by Kenneth S. Rubin [226, p. 186]

89

The product backlog
is a prioritized list of
everything needed to
improve a product

90

A good product
backlog is "DEEP”

SCRUM: THEORY AND PRACTICE

ltem | Size
]
‘ | \
’ |
R
| T
- -
| e |
| e |
| ()
> Froduct baok.log items
NN (PBL)
— B
-o[Knowledgo auluiCH‘ion]

_/

Figure 4.8: Product backlog items”

While the Scrum Guide omits concrete recommendations for the
appearance and design of a PBI (however, there is a de-facto standard,
which is presented in Chapter 4.8.1), it does say that an item must
have a description, order, estimation, and (business) value [237].

Secondly, the product backlog represents “everything that is known to
be needed,” which by itself indicates several aspects all at once, which
can be addressed by an acronym used by Roman Pichler, who de-
scribes a good product backlog as being DEEP - detailed appropriately,
emergent, estimated, and prioritized [208, p. 48].

To begin with, the phrase above alludes to software development as
a process of gaining knowledge about the product. Knowledge results
from a learning process gained through experience and, therefore,
is never complete as long as learning continues. For that reason, a
product backlog cannot be declared "complete" as long as the product
is being developed or maintained. Instead, it is officially described
as a living artifact, making it fundamentally different from formal
requirements documents of traditional software development models
since Scrum acknowledges that it is impossible to gather all require-
ments correctly upfront and that changes are inevitable. As the project
evolves, more knowledge is acquired with every increment delivered
and through continuous feedback from the customer.

As a result, new requirements will emerge in the form of new PBIs,
which is why product backlogs may become very big over time. In
addition, knowledge that has been acquired about something that is

7 Source: "Essential Scrum" by Kenneth S. Rubin [226, p. 100]

4.5 THE PRODUCT BACKLOG AND ITS MANAGEMENT

yet not finally existent (the future increment) is also by no means static
and cannot be assured (this represents the "evolutionary" aspect of
IID, as described in Chapter 3.5.2). Hence, customer feedback can also
affect existing requirements, which must be adapted to fit the newly
acquired knowledge. For this, the Scrum Guide explicitly mentions
product backlog refinement as an ongoing process in which the product
owner and the development team collaborate on reviewing and revis-
ing existing items, which should consume no more than 10% of the
development team’s capacity.

This progressive refinement or product backlog grooming, as it is called
by Cohn [59], includes adding details, (re)-estimating the amount of
effort, updating the ordering according to the new business value, or
even deleting items when it becomes clear that they are not needed
anymore (see Figure 4.9).

Hem Size

<+— Ectimate
<«— Insert item

ARRRRANNY
|

D Repriortize. Hems

Origial lavge itom —> sgq— Refine Hems

—l Delete item
— f

Figure 4.9: Product backlog grooming®

The aspect of an emergent product backlog goes hand in hand with
the characteristic of PBIs that Pichler describes as detailed appropriately.
The product backlog is dynamic not only in terms of its size and
the number of elements contained but also in terms of the degree
of specification of individual items. This means that not all PBIs are
specified down to the last detail, which again would be equal to the
heavy upfront planning of traditional software development processes
and lead to the problems discussed in Chapter 3.4.

Instead, Scrum makes use of an approach that is just-in-time and
just-enough. This means the team invests time only when required
and plans as little ahead as necessary. As Cohn points out, nearly
all projects are time-constrained. Hence, it is wasteful to treat all

8 Source: "Essential Scrum" by Kenneth S. Rubin [226, p. 105]

91

Product backlog
grooming

92

SCRUM: THEORY AND PRACTICE

requirements as equivalent when there is actually no need to do
so because things are very likely to change, and priorities will shift
over the course of a project [57, p. 245]. This likeliness of change is
especially true for functionality, which is planned to be implemented
in the distant future. It will have many dependencies on previously
implemented features, so the specification of details is error-prone.
Moreover, it might even be that the functionality becomes obsolete and
will not be implemented at all. In both cases, the Scrum team would
waste valuable time continuously updating detailed specifications or
putting a reasonable amount of work into something unnecessary.

That is why PBIs are big and roughly specified for product function-
ality that might be implemented in the future, whereas they are small
and very detailed for functionality that will certainly be implemented
anytime soon. The size of PBIs, "big" and "small," references Pichler’s
third characteristic of a good product backlog, which is estimation. Usu-
ally, there is a correlation between the level of specification of a PBI
and the estimated effort for implementing its functionality. PBls with
rough specifications have a greater amount of uncertainty. Hence, they
are bigger in terms of the estimated effort. On the contrary, when cus-
tomer feedback or other strategic decisions lead to increasing demand,
so the product owner decides to implement the item, it gets progres-
sively refined into several more detailed PBIs, which are smaller and
estimated with less effort since they became well-understood. Figure
4.10 shows an estimated product backlog using the "story points" and
"T-shirt sizes" metrics, which will be explained in Section 4.8.2.

tem | Size

Each item has a Size estimate
| 2

Most estimates are ;‘l'orﬂ point
or ideal daﬂ ectimates

L Very large items near the bottom
may not ‘have an estimate or ma

XL be “estimated in T=shirt Gizes

Figure 4.10: Product backlog estimation?

9 Source: "Essential Scrum" by Kenneth S. Rubin [226, p. 103]

4.5 THE PRODUCT BACKLOG AND ITS MANAGEMENT

Estimation also strongly relates to the priority of an item - Pichler’s
final characteristic of a good product backlog - and the ordering re-
quested by the Scrum Guide. As described in Section 4.4.2, the product
owner represents a "value maximizer" for the product by deciding
what to build and in which order. This decision is based on the priority
of individual PBIs, which should also be reflected in their ordering for
maximum transparency across the whole Scrum team.

Therefore, PBIs with a higher priority are located at the top of the
product backlog, whereas lower-valued items are at the bottom. Since
the product backlog is emergent and depends on customer feedback,
the priority of an item itself is constantly re-evaluated - and hence the
position in the backlog - and determined by several factors, including
the business value, estimated effort reflecting the cost, as well as the
knowledge and risk [226, p. 18]. However, Rubin mentions that it is
not practical to prioritize every individual PBI. Instead, he suggests an
unambiguous priority only for the items planned to be delivered soon.
These are well-known and determined, whereas PBIs representing
functionality that might be implemented in the future are likely to
change (since they are less detailed, as mentioned before). Therefore,
a differentiation in priority does not make sense [226, p. 103].

Overall, these DEEP characteristics are strongly connected: PBIs
with the highest priority and the most detailed specification and a
smaller estimation of effort, which ensures the practical feasibility
within one sprint, are at the top of the product backlog. On the
contrary, features with less priority and fewer details and, therefore
more uncertainty, lead to bigger items at the bottom of the product
backlog. This ordering, as a result of the DEEP characteristics, ensures
that the development team constantly works on the most important
features and hence maximizes the value of the product [57, p. 254] by
selecting the topmost items first.

According to the Scrum Guide, this selection process should be
supported by a definition of ready (DOR), which represents a checklist
with conditions of satisfaction every PBI must fulfill to declare it as
"ready" for being added to a sprint [237].

Rubin has given the following DOR as an example [226, p. 110]:

¢ The business value is clearly articulated
¢ Details are sufficiently understood by the development team

* The PBIl is estimated and small enough to comfortably be com-
pleted in one sprint

* Acceptance criteria are clear and testable

¢ The Scrum team understands how to demonstrate the finished
PBI at the sprint review

93

The priority of an
item is reflected by
its position in the
product backlog

The definition of
ready determines
whether an item can
be considered for the
next sprint

94

SCRUM: THEORY AND PRACTICE

Notice that PBIs fulfilling this exemplary definition of ready have
not been necessarily specified to the furthest extent. Instead, the DOR
only ensures that "details are sufficiently understood" so that the
development team can be confident in delivering the functionality
within the timebox of the actual sprint and commit to the PBI’s clearly
defined and testable acceptance criteria. With this example, Rubin ref-
erences the previously mentioned practice of specifying "just enough”
and deferring decisions about details to the last responsible moment
[226, p. 249]. As a remark, this strategy applies not only to the product
owner and the specification of PBIs, as illustrated within this section,
but also to the development team and their work management during
the sprint, as will be explained in Chapter 4.8.3.1.

According to Rubin, all the aspects mentioned should be considered
for a well-managed product backlog as a snapshot of everything
known (or, more precisely, "expected") to be needed in the product to
fulfill the customer’s desires. Thereby, considering the DEEP criteria
and a strong definition of ready "will substantially improve the Scrum
team’s chance of successfully meeting its sprint goal" [226, p. 110].

46 THE SPRINT BACKLOG

The sprint backlog results from the sprint planning event (see Figure
4.11) and is defined by the Scrum Guide as "the set of PBIs that have
been selected for the actual sprint, plus a plan for delivering the
product Increment and realizing the Sprint Goal" [237].

Sprint P!anninﬂ

Froduct backlg { Sprint backlog

a 4 e 1L I

—Ferture © | ~ B Tagks = how to do it
What o.do : =‘ { eI 10 J}a i

{ oo

@mominﬂ \
| -

Sprint planning ic
the first Farp of
every sprinf

Figure 4.11: The sprint backlog as outcome of the sprint planning event*®

With this definition, the primary purpose of the sprint backlog is
to link what should be built during the sprint with strategies how to
achieve this, thus making decisions and progress transparent to the
whole Scrum team.

10 Source: "Essential Scrum” by Kenneth S. Rubin [226, p. 21]

4.7 THE SCRUM EVENTS

The "what" part is the result from the sprint planning event in
the form of several items from the product backlog, selected by the
highest priority and specified just enough so that the development
team was able to commit to being able to deliver them within the
timebox of the sprint and under consideration of the definition of
done (see Section 4.3). In conjunction with a specified sprint goal, the
sprint backlog represents a forecast to all stakeholders about what
functionality can be expected by the end of the sprint in the form of a
potentially releasable increment.

On the other hand, the "how" part is by no means predetermined by
the beginning of the sprint. The actual development plan emerges after
the initial planning event, and it gets continuously adapted throughout
the sprint, thus making the sprint backlog a highly dynamic artifact.
When the development team learns more about the necessary work
and its technical implementation and discusses the progress in their
daily Scrum meetings (see Section 4.7.2), the sprint backlog is mod-
ified, i.e., concrete tasks for the next steps are added, whereas other
elements of the development plan are removed, once they are deemed
unnecessary.

While the Scrum Guide states that the sprint backlog should overall
always act as "a highly visible, real-time picture of the work that
the Development Team plans to accomplish during the Sprint" [237],
there are hardly any rules concerning the management, handling
or appearance of the sprint backlog. It is important, though, that it
belongs exclusively to the development team. No outstanding person is
allowed to add, remove, or modify items from the sprint backlog - not
even the product owner or other persons from the management level.
This rule guarantees that the development team stays self-organized,
which means that all team members mutually have full responsibility
for their decisions concerning the implementation of the product and
for organizing their work according to their own needs.

Among product-related aspects, the sprint backlog must also contain
at least one high-priority process improvement, which results from
the sprint retrospective of the previous sprint (see Section 4.7.4). This
regulation ensures that process and team improvements become part
of daily business and are treated equally important to implementing
product functionality.

4.7 THE SCRUM EVENTS

A sprint cycle, as illustrated in Figure 4.2 on Page 78, consists of four
events, which will now be explained in chronological order.

95

The sprint backlog is
the outcome of the
sprint planning
event and contains a
set of backlog items,
the sprint goal, and
at least one process
improvement

96

Sprint planning is
timeboxed to twice
the hours of number
of weeks of a sprint

The "what” part of
sprint planning

SCRUM: THEORY AND PRACTICE

4.7.1 Sprint Planning

As the name suggests, the sprint planning meeting (see Figure 4.12)
aims to plan the work for the next sprint. The event itself is time-
boxed to a maximum of 8 hours for a sprint of one-month length, as
specified by the Scrum Guide, or, as suggested by Lacey, twice the
number of hours compared to the number of weeks in a sprint [152, p. 361].
This timebox ensures focusing on the essentials and avoids too much
upfront planning.

f’ayﬁoiranf’;
&ﬁf 2
Inpucts Scrum tam
= Sprinf pfannin3 Outputs
N
Product baoldoj Sprinf backlo
| #) le ’
Vel | | sl
—_——
Team upabth‘he& P

Initial gprint ﬂoal

Figure 4.12: Sprint planning™*

The meeting considers two aspects of planning:
1. What can be delivered at the end of the sprint?
2. How is this work supposed to be done?

The first part of sprint planning is deciding what can be done during
the sprint, and it involves the entire scrum team. Since the product
backlog has been ordered by priority (see Section 4.5), the product
owner should be able to describe the objective of the present sprint
and explain the prepared items he considers to be of highest value to
the customer.

After the team established a common understanding, the devel-
opment team eventually re-estimates PBIs from the prepared set,

11 Source: "Essential Scrum” by Kenneth S. Rubin [226, p. 337]

4.7 THE SCRUM EVENTS

depending on whether an item has changed in the meantime, so the
mutual understanding and hence the existing estimation could no
longer be guaranteed, or if the item has not yet been estimated at
all. In any case, at some point, there must be a well-prepared set of
PBIs fulfilling the definition of ready (see Page 4.5) so that the Scrum
team can make a joint decision and mutual agreement on which items
should be selected for the sprint. For this, it is important to understand
that only the development team can assess what can be accomplished
during the sprint and hence solely decides on the actual number of
selected items from the product backlog, taking into account how
the development team performed in the past and what the projected
capacity is during the present sprint.

Besides this selection of items from the product backlog, the what-
aspect of the sprint planning activity also includes the collaborative
crafting of a sprint goal, which is specified as "an objective that will be
met within the Sprint through the implementation of the [selection
from the] Product Backlog" [237]. By formulating the desired outcome
of the sprint, the sprint goal provides context for selecting PBIs and,
therefore, guidance to the development team by giving meaning to the
intended outcome.

In addition, it allows a certain amount of flexibility regarding the
functionality to be implemented during the sprint. If, for instance,
the development team realizes that unpredictable issues lead to more
work than initially thought, it has to collaborate with the product
owner to negotiate the scope of the sprint. However, as long as the
sprint goal can be met, the remaining work is still valuable and target-
oriented. The only reason and essential criterion for canceling a sprint
is when the sprint goal does not provide a target and no longer
makes sense, for example, due to superseded strategical decisions or
outside circumstances, like changes in the market or advancements
in technology. In conclusion, the sprint goal creates alignment among
the whole Scrum team, making everyone work towards a common
objective and allowing easier communication with stakeholders about
what the Scrum team is working on [208, p. 59].

Once the decision about what should be implemented during the
sprint is taken, the selected PBIs are transferred to the sprint backlog
(see Section 4.6), and the development team creates a plan for how to
implement the selected functionality into an increment fulfilling the
definition of done (see Section 4.3).

The official specification of Scrum does not provide details on how
the "how" should be specified by the development team since this is a
matter of self-organization. However, it mentions that the development
team designs the system and the work needed to convert the sprint
backlog items into a working product increment by decomposing
them into smaller units of one working day or less. Due to the general

97

The sprint goal
provides an objective
for the sprint

The "how” part of
sprint planning

98 SCRUM: THEORY AND PRACTICE

strategy of just enough upfront planning, this decomposition of tasks
is not a one-time task but rather an ongoing activity during the sprint.
That is why the "how" part of sprint planning only considers work
for the first days of the sprint so that the development team can
immediately start to build the increment after the sprint planning is
closed.

As can be imagined, specifying the "how" of development includes
many technical details. These are of no concern to the product owner,
which is why it is common practice to split the entire sprint planning
into two succeeding sessions - the first attended by the whole Scrum
team to determine the selection of PBIs for the sprint and to craft
the sprint goal, the second only attended by the development team
and invited other domain experts to decompose selected items into
low-level action steps describing development tasks.

4.7.2 The Daily Scrum

During sprint execution (see Figure 4.13), the daily Scrum is the devel-
The daily Scrum is opment team’s central meeting for applying inspection and adaptation
an internal developer a5 part of the empirical process control (see Section 4.1). It is meant
meeting w: ﬂ;,a f ;Ed to be an internal meeting for the developers and targets improving
10 THHEE Hmenes communications, promoting quick decision-making, and reinforcing
the team’s knowledge level. Independent from the sprint length, the
event is time-boxed to 15 minutes and, as the name suggests, held on a

daily basis (see Figure 4.14).

$Prin+ execution takes up the mgjori‘l‘ﬂ of time ;Penf in each sprinf

. >
Sprint backlog \ Sprint execution
he — JIC I Al
e LI ' Each feature. has a ot
T 3@ e, of tasks that the team
— ,’,“\\ @ performs in order to
T E

>

/ o= complete that feature

Figure 4.13: Sprint execution™

It is also essential that the meeting takes place at the same time and
location because this habit reduces complexity since there is no need
for invitations, announcements, or extra organizational efforts.

12 Source: "Essential Scrum” by Kenneth S. Rubin [226, p. 23]

4.7 THE SCRUM EVENTS 99

The main objective of the daily Scrum is to plan the work for the
next 24 hours by synchronizing the activities of the development team,
identifying impediments, and collectively understanding how the
team members are progressing towards completion of the sprint goal
[226, p. 354]. For this, the team inspects the achievements since the
last daily Scrum, adapts the sprint backlog accordingly, and forecasts
what should be implemented until the next day.

’a

e |0|9|e
E\/er524houv§—) ,a;;;.
il | 3| @
\ l Da”ﬂcmm
I")\\
4
Pt
)\\ q)i//:
44 Yy
S-= | —

Figure 4.14: Daily Scrum?3

The Scrum Guide does not specify details about the structure of The three questions
the meeting since it is up to the self-organized development team to o the daily Scrum
shape it according to their needs. However, it references an example
that has become a prevalent method, which structures the daily Scrum
meeting by what is known as "the three questions" each developer
must answer one after the other:

* What did I do yesterday?
* What will I do today?

e Are there any impediments blocking my way?

However, this structure should not suggest treating the daily Scrum
as the sum of individual status reportings, as noted by Jeff Sutherland,
one of the Scrum creators. This would be a bad habit by developers
acting as "Scrum Zombies" and not in line with the original intention
of Scrum following a rugby approach, where the daily Scrum is closer
to a team huddle, full of engagement by motivated players and a solid
commitment to a quickly elaborated strategy on how to move forwards
towards victory [260]. Therefore, all development team members must

13 Source: "Essential Scrum” by Kenneth S. Rubin [226, p. 24]

100

The sprint review is
timeboxed to the
same number of

hours as the number

of weeks in a sprint

SCRUM: THEORY AND PRACTICE

understand how the daily Scrum aims to live the team spirit and
work together to develop a daily strategy for accomplishing the sprint
goal. For this reason, the daily Scrum must be short. That way, all
participants will stay focused and have the chance to foster the "let’s
do it" culture collaboratively.

Ensuring that the development team is conducting the daily Scrum
and sticks to the limitation of 15 minutes is of great importance and
falls within the responsibilities of the Scrum master. He also collects
the identified impediments and initiates that problems get resolved as
soon as possible.

Usually, the daily Scrum also reveals topics that need cooperation
between individual developers, like task overlaps, functional depen-
dencies, or technical challenges, so a person might have to rely on
help from another team member. These topics must be addressed
separately after the daily Scrum by the persons directly involved since
they are of no concern to the team as a whole.

4.7.3 Sprint Review

The sprint review is one of two important inspect-and-adapt meetings
held at the end of the sprint. It is time-boxed to the same number
of hours as the number of weeks in a sprint (e.g., 2 hours for a 2-week
sprint), which should be sufficient time for the main objective, which
is to inspect the work of the current sprint and adapt the future
development, as illustrated by Figure 4.15.

Inputs to this meeting are the sprint goal, the sprint backlog, and
the outcome of sprint execution, i.e., the potentially releasable incre-
ment. On this basis, the increment is inspected and reviewed against
what has been specified before. Feedback from all participants of the
meeting then leads to a set of identified enhancements and additional
features of the product that are reflected in an update (adaptation) of
the product backlog [226, p. 369].

To obtain feedback, the sprint review is not only attended by the
entire Scrum team to demonstrate the outcome and answer questions
but also by other interested parties that have been invited by the prod-
uct owner to see and discuss the sprint results. These could be internal
stakeholders, such as business owners, executives, or managers who
are invited to see the progress firsthand in order to suggest course
corrections if necessary, or representatives from other internal depart-
ments, like sales, marketing, or product support, that might want to
provide feedback or ask questions concerning their particular domain.
Moreover, external stakeholders could be invited, such as customers,

4.7 THE SCRUM EVENTS 101
Parhupan’k

TBe, B

O

m

External stakeholders Intermal stakeholders Scrum team Others
Inpurts Sprint review Outputs
G d product backl

Sprint goal ?Ec e ';m l‘= 3
Sprint baddoﬂ @

v | 4| 5] »

v | | 5| s D “’\ =

| il ‘I J I Updated velease plan

Shlﬂaable, voduct

increment

Figure 4.15: Sprint review'4

users of the final product, or key partners that could provide valuable
feedback for future development [226, p. 364].

The Scrum Guide explicitly mentions that the sprint review is in- The sprint review is
formal and not a status report meeting. Instead, its purpose is to @/l about collecting
"elicit feedback and foster collaboration," which is why the increment {;:ng;]; :’:ep;orz) dfct
should be presented as a demo (and hence why it must be "potentially
releasable" and "working," see Section 4.3), so that the review can be
hands-on, which enables creative thinking and valuable insights for
improvements.

On the other hand, this also means that the development team
can only demonstrate work that is entirely "done" (see Section 4.3).
However, unfinished work should become transparent, and it should
be discussed what problems the development team ran into during
the sprint and how they were tackled [237].

While a demonstration helps gather feedback, Rubin makes clear
that it is not the first and foremost aim of the sprint review, which he
describes as "in-depth conversation and collaboration among the par-
ticipants to enable productive adaptations to surface and be exploited"
[226, p. 370]. In that sense, a demonstration of the working increment
is not the primary concern of the sprint review. However, it represents

14 Source: "Essential Scrum” by Kenneth S. Rubin [226, p. 369]

102

SCRUM: THEORY AND PRACTICE

a focal point for the conversation and provides something concrete all
participants can inspect and elaborate on.

Nonetheless, it is not only the increment that gets reviewed but
also the overall context of the development. In order to decide how
to proceed with development during the next sprint and what steps
would be most valuable for the product, it is, for instance, important
to know whether the market condition or potential use of the product
has changed in the meantime. In addition, invited customers might
also want to examine certain aspects of the project management, like
time or budget constraints, as well as rough ideas of functionality and
capabilities of the product for future releases.

Overall, the outcome of the sprint review is a set of identified
features, enhancements, and future ideas, all of which are incorporated
into a revised product backlog, which then constitutes the basis for
planning activities of the next sprint.

4.7.4 Sprint Retrospective

While the sprint review concerns the product, the sprint retrospective is
about inspecting the development process (see Figure 4.16).

Participants
Sorum team Others
'"P"’f‘ Sprint review Outpets
lmrrwamon‘f ao'hon;
Oge,ofm. data lmrwvod oamandono
sugu,m am A D “\

'n{lﬂh‘f

Figure 4.16: Sprint retrospective'>

It is held after the sprint review and before the next sprint planning
so that it represents the concluding meeting of the sprint before the

15 Source: "Essential Scrum” by Kenneth S. Rubin [226, p. 381]

4.7 THE SCRUM EVENTS

next cycle begins. During the meeting, the inspection of the process is,
for example, concerned with aspects of interpersonal communication,
relationships between people, or issues of the environment, like the
tools used for development. Anything affecting the product’s creation
during the sprint could be discussed.

Due to the broad range of topics and because everybody was in-
volved in the development process, the sprint retrospective is of natural
importance to any team member, and therefore, it is mandatory to
participate. Facilitating the identification of relevant topics should be
the particular concern of the Scrum master because, as the accountable
person for the Scrum process, he or she knows best what worked well
and what kind of problems existed during the sprint. With ongoing
discussions, the Scrum master should also ensure that the atmosphere
of the meeting stays positive and productive by encouraging the team’s
unstinting willingness to improve its Scrum implementation and the
way of working.

Thus, the overall goal of the sprint retrospective is not only to create
a shared awareness about concerns of the development process but,
more specifically, to generate a plan for enhancing the Scrum process
represented by an ordered list of so-called insights or improvements,
which are concrete ideas about things to change for a better work
process [226, p. 376].

From this list, at least one improvement must be considered during
the next sprint planning, which then becomes part of the sprint back-
log. Similar to the ordinary sprint backlog items, the insight is also
broken down into a series of actionable steps so that its achievement
can be verified during the next sprint retrospective. This makes the
sprint retrospective the "sprint review" for previously identified in-
sights. In contrast, the implementation of identified improvements in
the next sprint is the adaptation to the inspection of the Scrum team
itself, so that, in conclusion, the Scrum team does not only improve on
the product but also on the process of building it, which according to
Rubin can significantly affect the overall quality of the outcome [226,

p- 376].

While the Scrum Guide emphasizes that the whole Scrum team
is attending the sprint retrospective, some experts like Lacey point
out that the main focus is on the members of the development team
and their self-organized collaborative way of working since they are
responsible for building the product. Therefore, it is in the interest
of the development team that the product owner should not always
be present in the retrospective, for instance, if developers would feel
inhibited from speaking freely about their problems [152, p. 194].

On the contrary, Rubin picks up on that point and makes clear that
"the product owner is a critical part of the Scrum process and as such

103

Insights on how to
improve the process
are collected in an
improvement backlog

Each sprint must
include at least one
improvement

104

The sprint
retrospective is
timeboxed to three
quarters the hours of
the weeks of a sprint

SCRUM: THEORY AND PRACTICE

should be part of discussions about that process" [226, p. 377]. He
argues that excluding the product owner from the retrospective to
ensure honest discussions between the participants strongly indicates
a lack of trust between the product owner and the development team.
This lack of trust, however, may lead to severe problems and hence
should be targeted by the Scrum master immediately by individual
coaching to establish a safer and more trustful environment. In addi-
tion, he remarks that the participation of the product owner is essential
since he is "the channel or conduit through which requirements flow"
and, therefore, "critical to achieving the fast, flexible flow of business
value" to the team [226, p. 377]. For that reason, the product owner’s
activities should also be addressed during the retrospective, for in-
stance, whether product backlog items are well-groomed and clearly
specified by the start of the sprint planning event.

Apart from the Scrum team itself, other persons like stakeholders or
managers may also join the sprint retrospective by invitation, which is
neither mentioned nor forbidden by the Scrum Guide. However, there
is consensus among experts that although transparency is one of the
framework’s core values, companies have usually not (yet) established
a level of agility and safety to promote the regular attendance of
non-Scrum team members [226, p. 377].

Regarding its temporal duration, as with all other meetings, the
sprint retrospective is time-boxed and limited to three hours for a one-
month sprint. However, for individual teams, the meeting length heavily
depends on several factors. First of all, shorter sprints are tantamount
to more frequent process evaluations, resulting in a greater likelihood
of well-established procedures, whereas longer sprints usually need
more extended reflection because they are more likely for process
errors to creep in and have a higher chance that issues like bad habits
are manifested.

Second, the length of the sprint retrospective depends on the team
size. Smaller teams are easier to handle in terms of the process, so they
usually need less time to inspect how they work. Several other factors,
such as the team’s experience, may also affect how long the team needs
to identify improvement needs. For this reason, Derby and Larsen
noted that good sprint retrospectives can also be substantially shorter.
They may, for instance, only take 15 minutes to have a significant
impact on the overall process quality [73, p. 17].

48 WHAT SCRUM LEFT OUT: DE FACTO STANDARDS

So far, all backlogs have been introduced without even describing
what an individual item looks like. That is because the Scrum Guide
leaves this design decision entirely to the Scrum team. However, Scrum

48 WHAT SCRUM LEFT OUT: DE FACTO STANDARDS

does regulate that elements of the product backlog must contain a
description, order, estimation, and value but does not deliver examples
or techniques for practical application.

For instance, Scrum is not telling how to specify a product backlog
item. Is it textual or by using some formal specification language like
UML? Nor is any information given about how the work required
to implement a feature could be estimated so that the development
team can confidently claim to deliver that particular feature within the
limited timebox of one sprint. Is the development team, for instance,
anticipating working hours, or how does estimation work?

These questions are meant to illustrate that Scrum has to be con-
sidered a framework rather than a fully formulated methodology, as
explained in Section 4.1. It is particularly mentioned here since there
are existing de facto standards for the specification of requirements
and their estimation. However, what belongs to the core of Scrum
and what does not should be very clear. That is because, as will be
shown in later chapters, it is Scrum’s dichotomy - being very strict in
terms of its rules on the one hand and being very open to variances
in practical application on the other hand - that may lead to severe
problems with its implementation, especially when people begin to
introduce variances to the essential rules as well.

That being said, the following sections will introduce techniques,
concepts, and artifacts outside the official Scrum framework that
became de facto standards and, therefore, can be found in nearly all
Scrum-related development projects.

4.8.1 User Stories

Originally, user stories stem from Extreme Programming and were
introduced in the late 1990s as part of the "planning game" to define
the scope of a project (see Page 65) [17].

In contrast to use cases, which were introduced by Ivar Jacobson
in 1987 as "a special sequence of transactions, performed by a user
and a system in a dialogue" [301], and which were usually realized
by formal specifications and diagrams (see Figure 4.17), user stories
represent a narrative description of a use case that fits on one index card, as
shown in Figure 4.18 [16].

Very soon, they were adopted by other agile approaches, and it
became apparent that a user story differs from a use case. For instance,
in 1999, Imaz and Benyon only treated them as the "first artifacts"
used to describe interactions but stated that something formal, such
as use cases, is needed for implementation purposes [121].

105

Use case vs.
user story

106

SCRUM: THEORY AND PRACTICE

Three years later, Rachel Davies contributed to the discussion "user
story vs. use case" by saying that both have the common purpose of
describing functional requirements, so the difference between these
methods could appear to be just a matter of the level of detail or
precision in their descriptions. In that sense, user stories could be seen
as lightweight versions of a use case scenario, with fewer words and
less formal constraints [70].

Use Case “Control Vehicle Speed”

Change History

Date Version Description Author State
01/18/2019 0.9 Initial Wording Joe Pen planned

Use Case Number UC-CP-744

References Documentation Distant Control Version 2.3, Documentation Cockpit Technology 7.1

Brief Description The cruise control regulates the speed set by the driver depending on the traffic situation (distance
to the vehicle ahead, permissable maximum speed on the the traffic section being driven on, wheater
and road conditions) and location. The desired speed is transmitted to the engine control system

via a signal. The aim is to maintain the desired speed, including increase and decrease

Actors Driver

Triggers Driver sets speed

Pre-Conditions

Cruise control is activated, vehicle speed is higher than 50 km/h, vehicle is outside a built-up area

Standard Procedure Driver starts engine Cruise control is ready.
Driver selects desired speed. Cruise control stores the information
Driver takes his food off the accelator. Cruise control accelerates to the desired speed
Driver wants to reduce desired speed Cruise control stores new desired speed
Driver wants to switch off cruise control. Cruise control switches off.
Driver switches engine off. Cruise control switches off.

Figure 4.17: Use case’®

Find Reviens Near Address

A a tupical user | want to See unbiased

reviews of a reStaurant near an address

6o that | can decide where to go for

dinner.

)/

Figure 4.18: User story'”

However, Davies has argued that the key differentiating factor is
not the level of detail but rather that user stories are limited in scope
because of the timeboxed aspect, which makes the activity of writing
them "a powerful driver in the planning of software development iter-
ations." Since then, user stories gained increasing popularity beyond
Extreme Programming and, through various publications, developed
into today’s powerful yet simple format for specifying features and
requirements within any agile development processes [158, p. 100].

16 Source: "Essential Scrum” by Kenneth S. Rubin [226, p. 83]
17 Source: "What is an Use Case?" by t2informatik [301]

48 WHAT SCRUM LEFT OUT: DE FACTO STANDARDS 107

4.8.1.1 The Role-Feature-Benefit Template

The Role-Feature-Benefit template is today’s standard user story for-
mat and was invented in 2001 at Connextra®®, a former web develop-
ment company in the UK, where the aforementioned Rachel Davies
worked as a software developer in one of the earliest teams adopting
the Extreme Programming approach.

At Connextra, early stories have just been feature requests written
by people from sales and marketing, so developers struggled to have
conversations because of the missing context and intention of the story
[206]. As a result, they came up with the following template in order
to remind people to pay attention to specifying not only "what" the
feature is supposed to include but also "who" is the target audience
and "why" the feature is relevant to them [3]:

As a [someone]
I want to [do something]
So that [some result or benefit]

According to Leffingwell, this template is exceedingly helpful be- The Role-Feature-
cause it spans the solution space or activity, explaining the product Benefit template
functionality and the problem space, including the delivered business }]Zi’: 2 ;Z;rs_tfebrﬁi?ca
value. Therefore, clearly expressing the benefit of functionality fora — j,pe1opment
particular user would automatically lead to valuable product backlog
items. Furthermore, this template would foster a user-centric approach
to requirements engineering, which helps to empathize with real users,

their needs, and problems [158, p. 103].

However, a blog post by Antony Marcano explains that this template
is often misunderstood in the sense that user stories are analogous to
product features or just a different way to write old-style software re-
quirements [165]. He argues that people still capture product features
and business benefits but only dress them in the template above. That
is why he exhorts to think of a user story as "a short story that a user
will be able to tell about what they want to do and why they want to do
it." This thinking represents a shift in perspectives, where the focus is
not on a particular feature of the product but rather on what the user
will be able to achieve. As a result and in contrast to the traditional way
of specifying requirements, a single user story may lead to changes of
multiple features.

According to Marcano, it is important to understand that user stories
and the Connextra template were actually introduced as a new form
of specification, intended to invoke a paradigm shift that should help
to step out of the "feature-ish" way of thinking and shift the focus on
user needs. In that context, he quotes Jeff Patton, who states:

18 Hence, the Role-Feature-Benefit template is also known as the "Connextra format.”

108

User stories should
be written on cards

User stories
foster ongoing
conversations

SCRUM: THEORY AND PRACTICE

"Stories aren’t a different way to write requirements,
they’re a different way to work.” — Jeff Patton [165]

However, on its own, the Role-Feature-Benefit template was not
enough to strengthen awareness about the paradigm shift due to the
problems mentioned by Marcano. Hence, further contributions were
made, leading to today’s fundamental principles about how to gain
the most benefit when specifying user stories correctly. Three of these
contributions are presented in the following sections.

4.8.1.2 Critical Aspects of User Stories: the three C’s

In 2001, Ron Jeffries pointed out that user stories have three critical
components, nowadays known as the "three C’s" [130]:

* Cards (their physical medium),
* Conversation (the discussion surrounding them),

* Confirmation (tests that verify them).

First of all, user stories must be written on cards because, with
this, a requirement cannot be described to the last detail. The card’s
size limitation naturally narrows the description down to just enough
information to act as a reminder of what the story is about. Moreover,
a card represents the bundled, concrete, and atomic representation
of the yet non-existent and, therefore, abstract requirement. Jeffries
states that "the card is a token representing the requirement." What
he means is that cards are manageable, and people can interact with
them. During planning activities, notes and cost or priority labels
can be added, and cards can be passed around to developers for
implementing the story and back to the customer once the story is
complete and ready to be reviewed.

The restriction in specification also makes a card the medium of
conversation, which is Jeffries’s second aspect and means that exact
details of a user story have to be communicated via verbal conversa-
tions. Just as the elements of the product backlog are highly dynamic,
so is the conversation about a user story, not a singular event but
an ongoing process. Short and bidirectional feedback loops of verbal
communication help to avoid misinterpretations and foster a shared
understanding of the envisioned functionality [226, p. 82]. Thereby,
a card is a placeholder during planning activities, which acts as a
constant reminder to hold conversations about details of the user story
whenever needed.

Finally, this leads to the before mentioned paradigm shift of user
stories - from writing about features to talking about them [57, p. 238].
These conversations are a key tool for Scrum teams because they

48 WHAT SCRUM LEFT OUT: DE FACTO STANDARDS 109

"enable a richer form of exchanging information and collaborating,"
which ensures that requirements are discussed and finally understood
by everyone [226, p. 84]. This, in turn, is also reflected by one of
the twelve principles behind the Agile Manifesto (see Chapter 3.6.4),
suggesting that "the most efficient and effective method of convey-
ing information to and within a development team is face-to-face
conversation" [86].

In terms of the Scrum roles, a user story serves as a two-way promise User stories
between the product owner and the development team members. should include
According to Cohn, developers promise to talk to the product owner confirmations
before beginning to work on the story, which frees the product owner
from concerns that every last detail must have been written on the
card. Likewise, the product owner promises to be available when
developers need clarification on details so that the development team
can trustfully commit to the goal and workload of a sprint without
knowing all of the minutiae upfront [57, p. 239].

However, Jeffries did not limit conversations to just verbal commu-
nication. Instead, he suggested supplementing discussions about user
stories with other documents to provide more clarity. These might
be Ul sketches [226, p. 84] or, at best, executable examples, which he
called confirmations.

While the card represents the very essence of the user story, and Acceptance criteria
its details are elaborated during conversations, Jeffries stated that a define howff story
great level of uncertainty about the outcome is still likely. However, " be verified
there should be no attempt to compensate for this lack of clarity with
formal prerequisites, such as use case definitions, more sophisticated
UI sketches, or extensive documentation. Instead, he proposed that
conversations should lead to clear and testable conditions of satisfaction,
also known as acceptance criteria, which are added to the card and
represent a mutual agreement (in terms of Scrum between product
owner and development team) on how the correct implementation of
a story should be verified (see Figure 4.19).

Upload File Conditions of Saticfaction
A a wiki user | want to upload a file to Verify with Axt and .doc files
the wiki o that | can share it with Verify with jpg, gif, and .png file
my colleagues. Verify with .mpt files <= 1 &%
Verify no PRM-restricted files

X

Figure 4.19: User story with acceptance criteria’®

19 Source: "Essential Scrum” by Kenneth S. Rubin [226, p. 85]

110

The INVEST
checklist helps to
assess a user
story’s quality

Independent

SCRUM: THEORY AND PRACTICE

According to Jeffries, this confirmation provided by the testable ac-
ceptance criteria makes the simple approach of card and conversation
practically feasible and allows to settle the details of what needs to be
done into clear expectations [130].

For the development team, these conditions determine the scope
of work and define when the story is complete. Ideally, they are
transformed into automated tests so that passing these tests confirms
the correct implementation of the user story>°.

In any case, when developers demonstrate that the working incre-
ment at the end of the iteration complies with the specified criteria,
expectations are confirmed, and so trust is built between the product
owner as the representative of the customer and the development team.
It is, therefore, all the more important that the development team has
a clear understanding of the conditions of satisfaction, especially since
elements of the product backlog are emergent and detailed appropri-
ately (see Section 4.5), which means that acceptance criteria are also
subject to change as long as the story has not been selected for a sprint.
That is also why Rubin added "clear and testable acceptance criteria"
to his exemplary definition of ready (see Page 93) as a prerequisite for
the sprint planning meeting.

4.8.1.3 The INVEST checklist

While Jeffries’s "three C’s" describe the core philosophy of user stories
and the relationships between cards, conversations, and confirmation,
the INVEST checklist helps to assess a user story’s overall quality.
It originates in a web article by Bill Wake from 2003 [276] and was
brought to a broader audience in 2004 by Cohn’s book "User Stories
Applied" [55]. According to Wake, the acronym INVEST serves as a
reminder for characteristics qualifying a user story as "good."

At first, stories are meant to be independent because this allows
scheduling and implementing them in any order. This would be way
more difficult if stories were interconnected by the common types of
dependency identified by Wake, which are overlap, order, and contain-
ment [277].

Overlapping stories in terms of functionality may lead to severe
problems because of confusion about whether sub-functionality is
covered at all or more than once due to the functional overlap.

By contrast, order dependencies (user story A must be implemented
before user story B) may complicate the plan to deliver the most
valuable stories first (if B is more valuable than A), but Wake mentions

20 This approach is known as "test-driven-development.”

48 WHAT SCRUM LEFT OUT: DE FACTO STANDARDS

that this type of dependency is usually harmless, since "the business
will tend to schedule these stories in a way that reflects it."

The containment dependency results from a hierarchical organization
of stories (user story B is contained in user story A) by using super-
ordinate elements, such as "epics" or "themes," which bundle stories
under a certain aspect. Wake argues that this hierarchical structure
encourages a "depth-first" strategy for scheduling the implementation
epic by epic, whereas a schedule driven by value usually contains
stories covering aspects of the whole system.

A good story is also negotiable and not an exact contractual obli-
gation. It captures the essence but leaves room for the customer and
developer to work on details during the development collaboratively.
This aspect also hints at the evolutionary design of user stories as a
response to change from customer feedback and reflects the third key
value of agile software development, defined by the Agile Manifesto
as "customer collaboration over contract negotiation."

Furthermore, stories must be valuable first and foremost to the
customer. This has been addressed before in the rules of Scrum’s
product backlog, where the value of an item is reflected by its ordering.
Wake targets this characteristic more technically by saying that value
is a matter of breaking functionality down into a set of stories, where
each story is a vertical slice through different implementation layers.
This means the functionality of a story is a complete bundle and may
affect all layers, from data storage (database layer) to the user interface
(presentation layer). He mentions that developers tend to implement
systems layer by layer. However, for instance, a complete database
layer has little value to the customer if it cannot be used right from
the beginning in its intended context.

Moreover, good stories can be estimated. It must not be exact in terms
of person-hours, but on a level, so that the implementation effort of
stories can be compared against each other to help the customer (or
in the case of Scrum, the product owner) to decide on a schedule. As
shown in chapter 4.8.2.1, user stories are usually estimated with an
abstract unit called story points.

The ability to estimate directly depends on a user story’s size. Bigger
stories are more challenging to estimate because they include more
uncertainty about the scope. Therefore, good stories tend to be small.

Finally, good stories are testable. This characteristic is a direct match
to the "confirmation" as one of Jeffries’s "three C’s," which have been
described in the previous section.

Overall, the INVEST checklist is a very simple way to determine
the quality of user stories. It did not reinvent the wheel since many
aspects have been covered before and can be found in the explanations

111

Negotiable

Valuable

Estimable

Small

Testable

112

Estimation must
be quick to drive
conversations and
decision-making

SCRUM: THEORY AND PRACTICE

of Jeffries’s "three C’s" and, in terms of Scrum, also in the DEEP
acronym for good product backlog management (see Chapter 4.5).
However, it did unify all aspects of managing the requirements in agile
environments under one memorable term. Therefore, it contributed a
lot to the success of user stories as the de facto specification technique
of software requirements in agile environments.

4.8.2 Estimation Techniques

As explained in Chapter 4.5, product backlog items must be estimated
before being considered for the next sprint to plan the amount of work
the development team can handle and balance the workload of an
item against its proposed business value.

Usually, estimation occurs during the sprint planning event (see
Chapter 4.7.1), in which the Scrum team agrees on a feature set for
implementation during the next sprint. While the product owner
presents the items that he considers most valuable and most important,
he clarifies open questions and explains the acceptance criteria to the
development team. After that, the development team has to assign an
estimation value to each item representing the size, i.e., the estimated
workload to transform the requirements into potentially releasable
code. This estimation, in turn, serves as input to the product owner to
balance business value against implementation effort, which may lead
to the re-prioritization of items.

As an example, it could turn out that two items, which the product
owner initially treated as indispensable for the next sprint, have been
estimated by the development team with low effort for the first item
and a very high amount of work for the second one. It is then up to
the product owner to decide whether the more complex item should
still be selected for the next sprint or if several other items (each with
less effort but equal in the overall sum) may provide more value to
the customer. It is also possible that the product owner might split
the bigger and, hence, costlier item into several smaller ones so that
important sub-parts could still be delivered with less effort.

However, what this example is meant to illustrate is that Scrum
is such an agile and, therefore, dynamic process that it needs mech-
anisms and tools for making decisions quickly and on the fly since
these decisions may immediately pose new questions and trigger new
actions accordingly.

For that reason, estimating the workload of product backlog items
should be just enough for the planning process to continue and hence
be abstracted from the particular times it takes to implement its indi-
vidual facets, like designing the user interface, coding the backend,

48 WHAT SCRUM LEFT OUT: DE FACTO STANDARDS

testing all functionality and integrating everything into the existing
codebase. Cohn makes this very clear by saying that it is "one esti-
mate, not many" [56, p. 46] that is assigned to a user story to prevent
discussions about details that are not relevant for a rough estimation.
This roughness of estimation is especially important since agile de-
velopment methods generally encourage change over following a plan
(according to the fourth value of the Agile Manifest, see Chapter 3.6.4)
and Scrum, in particular with its time-boxed meetings, balances the
effort and investment in planning with the knowledge that each plan
will certainly be revised through the course of the project.

The following sections will introduce two different metrics and one
particular technique for acquiring a quick joint decision and mutual
agreement concerning the estimation value of a product backlog item.

4.8.2.1 Story Points, T-Shirt Sizes and Velocity

The first thing that comes to mind when estimating the size or work-
load of an item is the time it would take to implement its require-
ments, for example, by guessing the possibly performed person-hours
or person-days. While this time-honored approach is still common
for traditional software development projects, it is nowadays entirely
discarded by the agile movement [259].

This is because humans are not good at estimating hours or time
for future tasks in general. Although research was aware of this phe-
nomenon before, it gained more popularity when the term "planning
fallacy" was first introduced by Daniel Kahneman and Amos Tversky
in 1979, describing the cognitive quirk that humans tend to underesti-
mate the amount of time a project will take and display an optimism
bias when estimating time for their own future tasks [133]. Over the
years, many psychological studies and research results from social
sciences have confirmed their findings and investigated various causes
for this effect [42]. Findings include temporal frames that influence
the subjective distance to deadlines [229], missing awareness that most
previous predictions were overly optimistic [43], sociological effects of
group settings, in which people want to make a good impression and
please others by "planning for success" [44] and hence tend to be more
optimistic, while subconsciously insinuating being able to be faster,
because of assuming to be better than others [50].

Agile development approaches have recognized the importance
of this planning fallacy early on and started to abstract the scope of
work from its implementation time within their planning activities. As a
result, the implementation effort is not measured by the actual time for
development but by comparing an item to other features and deriving
a value that represents its relative complexity, which in theory could be
in any unit of measurement.

113

Estimation should
not be based on time
because of human’s
"planning fallacy”

Estimation should be
by relative measures

114

SCRUM: THEORY AND PRACTICE

Figure 4.20: The "animal scale"

As an example, Figure 4.20 illustrates an "animal scale" so that
features can be compared against each other and classified as being
a "mouse," "house cat," "tiger," "elephant," or "blue whale." With this
estimation scale, it becomes obvious that a feature estimated as a
"tiger" is way more complex than a "mouse" feature. Similarly, a "tiger"
feature is much smaller than a "blue whale" and will take less time
to develop. But how much time exactly? This cannot be known in
advance, so the agile philosophy promotes relative measurement due to
social and psychological aspects of estimation, as mentioned by the
Agile Alliance. According to them, emphasizing relative difficulty over
absolute duration relieves tension between developers and managers
when estimating workloads and development times because managers
are likely to hold developers accountable for their estimations [4]. That
is why agile teams need to understand that no value of estimation will
ever directly relate to a particular time for development. Except that
"bigger" features will usually take more time than "smaller" features
and vice versa, but on its own, a "tiger" classification may stand for
one day of work for team A, while it can also represent a whole week
of work for team B.

non

During the years, there have been several proposed units within
the agile community, ranging from the whimsical "gummi bears" unit,
which was first mentioned by Ron Jeffries in 1999 [129], over the term
"Nebulous Units of Time" (NUTs) coined by Joshua Kerievsky in 2003
[55, p- 871, to "T-Shirt sizes" and "story points," which are the two most
commonly used scales today.

N\ =
N =/
e
|xs|

Figure 4.21: T-shirt sizes

48 WHAT SCRUM LEFT OUT: DE FACTO STANDARDS

As illustrated in Figure 4.21, an estimation using T-shirt sizes is
analogous to the "animals scale" above. Both aim to simplify the
comparability of the effort of two items using a simple-to-understand
visual representation. In contrast, story points are just numerical
values originating from when user stories became popular.

12 3 4567 8 9 10

Figure 4.22: Story points in a linear scale

While in the beginning story points have been linear sets, as shown
in Figure 4.22, it soon turned out that linear scales may provoke
unnecessary discussions during planning activities [298]. Taking, for
example, a scale of 1-10, then discussing whether an item should
be estimated with 7 points instead of 8 points will not deliver any
insights. It is not very meaningful and only adds complexity to the
decision-making process. Instead, the essential insight is that the team
estimates the item as something "big, but not the biggest imaginable,"
which means it is obviously not 10 points (the highest value from the
scale above) but likewise not a medium value like 5 points.

To fasten mutual decision-making, agile teams nowadays use non-
linear scales, e.g., a modification of the Fibonacci scale (see Figure 4.23),
which works well since it "reflect[s] the greater uncertainty associated
with estimates for larger units of work" [56, p. 52].

172 3 5 8 13 20 40 100

Figure 4.23: Story points in a non-linear modified Fibonacci scale

Naturally, turning away from estimating the concrete implementa-
tion time of requirements has consequences for higher-level planning,
for instance, when anticipating the timeframe for the next release of
a particular feature set or planning the whole project’s duration. In
this context, it is important to remember that experiences from the
software crisis (see Chapter 2.2.2) and the aforementioned "Chaos
Study" from the Standish Group [105] have shown the full extent
of estimation problems within traditional software projects, which
finally led to the realization that it is nearly impossible for software
projects to derive a release plan with a fixed scope (set of features),
fixed budget and a fixed release date altogether [226, p. 311f]. Instead,
at least one of these three parameters must be flexible to compensate
for sudden and unexpected development changes that are known to
occur very likely [57, p. 292f].

115

Today, estimation is
commonly based on
story points

116

Fixed budget vs.
fixed scope

The velocity
represents the
average team
performance

SCRUM: THEORY AND PRACTICE

For that reason, agile approaches began to introduce flexibility to
project plans by expressing budget as the possible number of iterations
and therefore by release schedules that either have a fixed scope but
variable date and budget, so that it cannot be ruled out that more
iterations are needed to implement the scope, or as an alternative, by
schedules with a fixed date and budget but a variable scope, so that
the number of iterations and therefore the costs are pre-determined,
whereas the delivered set of features might deviate from the initial
plan. For both approaches, however, it is necessary to know the team’s
performance, i.e., what it can usually deliver during an iteration.

This average team performance is known as velocity. In the case of
story points as an estimation unit, it is easily computed as the average
number of story points a team is able to complete during one iteration,
using historical data of the last three sprints, for example. If the team
uses non-numerical values for estimation, like T-shirt sizes, a velocity
value can still be generated by mapping the abstract estimation scale
to numerical values.

The Agile Alliance describes velocity as a "dimensionless" quantity
[4], since for the reasons that estimation of items is abstracted from
their concrete implementation times, velocity values of different teams
cannot be compared. That means, on its own, there is nothing to gain
from a comparison of team A having a velocity of 15 and team B
having a velocity of 9o. Besides having a lower velocity value, team A
could nonetheless outperform team B. While comparing two teams’
velocity values is meaningless, it is, however, an important metric for
analyzing and comparing the performance of one team over time and
helps to detect performance drops, e.g., as a result of impediments
occurring in a sprint.

4.8.2.2 Planning Poker

Besides story points and T-shirt sizes as de-facto standards for esti-
mation units, one particular estimation technique is widespread for
quickly reaching a mutual agreement within agile group settings.

This consensus-based technique is called planning poker and was
first defined by James Grenning in 2002 [98] as a variation of the Wide-
band Delphi method, which Barry Boehm and John Farquhar proposed
during the 1970s [9o] and which was brought to a greater audience by
Boehm'’s book "Software Engineering Economics" in 1981 [28]. At that
time, the Wideband Delphi method had already replaced existing fore-
casting approaches like the Delphi method, which relied on structured
communication techniques, i.e., a panel of experts answering ques-
tionnaires over multiple rounds. In contrast, Wideband Delphi was
characterized by greater participant interaction and communication.

21

48 WHAT SCRUM LEFT OUT: DE FACTO STANDARDS

Building upon this aspect and by adapting it to the typical agile
planning setting, including user stories and story points, Grenning’s
planning poker gained immense popularity, especially since 2005
when it was mentioned by Mike Cohn in his famous book "Agile
Estimation and Planning" [56], whose company later trademarked the
term.

The technique works as follows. At the beginning of a planning
poker session, each developer holds a deck of cards consisting of
all values of the estimation scale used by the team?'. The product
owner introduces a new backlog item, which is thoroughly discussed
by the team so that everybody has a chance to ask questions and
clarify the details. Afterward, each developer privately selects a card
representing his or her estimate. Once all developers have made a
decision, all selected cards are revealed simultaneously.

If it turns out that all participants selected the same value, it be-
comes the estimate, and the team moves on to the next feature. If no
consensus is reached, the developers must discuss and share reasons
for their individual selections. This discussion applies, in particular,
to estimates at the outer ends because these outliers may reveal inter-
esting aspects that the majority of the group may not have considered.
Based on the agile philosophy, these discussions must be short and
just enough to establish a sufficient understanding of each other’s
thought processes. With this gain in knowledge, the next poker round
is triggered. Like before, every developer privately selects an estimate
card until all cards are finally revealed simultaneously once everybody
made a decision. This whole process is repeated until either consensus
is reached or until it becomes evident that there is missing information,
so the team cannot agree on a particular estimation value. In that case,
the item was not properly specified in advance and thus has to be
deferred to a later point in time [61].

Planning poker is especially powerful since it usually takes no more
than three rounds for the team to decide on an estimate. With develop-
ers as being both the estimators and the ones that will implement the
features, and through establishing a lively dialogue in which people
are called upon by their teammates to justify their estimates, it is
proven to enhance the accuracy of estimates and to eliminate under-
estimation as an effect of the previously mentioned planning fallacy
[90]. For that reason, planning poker became today’s de-facto standard
technique within agile planning scenarios, including Scrum’s activities

For story points, a deck usually consists of ten cards representing the values of the
modified Fibonacci scale (see Figure 4.23). Some teams prefer adding the cards "o"
and "?", with "o" expressing that there is zero effort to implement an item, e.g.,
because the feature was already implemented in a previous sprint, and "?"
expressing that a developer is not confident in estimating, e.g., because of rising
questions or missing information.

117

The planning
poker game

118

A task board
visualizes finished
and remaining work

SCRUM: THEORY AND PRACTICE

of sprint planning (see Chapter 4.7.1) or product backlog grooming
(see Chapter 4.5).

4.8.3 Tools for Monitoring Sprint Progress

Chapter 4.6 introduced the sprint backlog more on a conceptual level
as determined by the Scrum Guide, i.e., as a selection of items from
the product backlog plus a plan for delivering the product increment
and realizing the sprint goal. But what is meant by the "plan," and
how do teams measure progress and whether they are on track to
reach the sprint goal? Altogether, what does the sprint backlog look
like in practice?

Indeed, the Scrum Guide does not provide any answers to these
questions. That is because Scrum emphasizes the self-organization of
the development team, which also includes complete freedom regard-
ing the implementation of the sprint backlog itself. However, similar
to how user stories became the quasi-standard of product backlog
items, there are concrete visualizations of the sprint backlog and the
progress of the development team, which became indispensable and
are nowadays adopted by the vast majority of Scrum teams.

4.8.3.1 Task Board

Recommended by many experts like Roman Pichler, Mike Cohn, Jeff
Sutherland, and others, the task board is the most favored way of
visualizing the sprint backlog and the plan for development [271]. Ac-
cording to Cohn, it serves a dual purpose: "giving a team a convenient
mechanism for organizing their work and a way of seeing at a glance
how much work is left" [56, p. 227].

gprint | lfems ToDo In Progress Done
Goal |
—— — Task Task
1.Story = \ K
Tas \ as
/]7
— Task Task Task Task \\ Task ‘
7'7 ry e
Task \ Task !
\ = =] Task
3. story \ Task Task
——
——d
Task Task I
4.Story - P — Task
Task Task
|——"]

Figure 4.24: Task board??

22 Source: "Creating effective sprint goals" by Roman Pichler [210]

48 WHAT SCRUM LEFT OUT: DE FACTO STANDARDS 119

As illustrated in Figure 4.24, a task board is oriented in rows and
columns, with each row consisting of one particular user story and
several associated tasks. Tasks are organized in columns representing
different states that follow one another. Since the development team is
self-organizing, it is solely responsible for the task board. That means
only developers define and create the tasks needed to deliver the
feature as specified by the user story, which usually begins right after
the whole Scrum team commits to the set of sprint backlog items as
an outcome of the sprint planning event (see Chapter 4.7.1).

However, not all tasks of each story are specified at the beginning
of a sprint. Usually, developers only create and assign themselves
to tasks of stories they are working on or will work on soon. Over
time, a task moves within the board from the left "To Do" column
to the right "Done" column, symbolizing that this task is finished. In
between, there should be at least one additional column for tasks that
are currently processed by the development team, but, commonly,
teams add more columns to the board, like, for instance, "Tested" or
"Code Reviewed," which are often used to provide more details and a
finer granularity about the different stages of implementation work.

Ideally, the task board not only reflects the state of tasks but also
provides an overview in terms of the team’s definition of done (see
Section 4.3). This could be achieved by adding special columns with
checkmarks that refer to the user story of each row, which makes the
task board an extremely powerful process visualization of the current
progress and all the remaining sprint work [56, p. 229].

4.8.3.2 Burndown Chart

The second widely adopted tool for tracking the progress of an it-
eration is visualizing the remaining work as a burndown chart, as
illustrated in Figure 4.25.

225
200 J\ P

75 o<,

t& ts50 ALY

S 15 o,

£ 100 \,_

=

£ 75 \
W S

50

25
o Lt 1 1 1 1 1 1 1 1 [~

12 34 5 6 7 89 1o 11 12 13 14
Daﬂc within a cprint

Figure 4.25: Burndown chart®3

23 Modified version of source: "Essential Scrum" by Kenneth S. Rubin [226, p. 385]

120

A burndown chart
visualizes the sum of
remaining story
points for each day of
the sprint

SCRUM: THEORY AND PRACTICE

While the x-axis shows the days within the current sprint, the y-axis
represents the remaining workload as the sum of story points of all
user stories that have not yet been implemented to their full extent
[226, p. 358] at a given day. In addition to the real progress, the graph
can show the ideal progress as a straight line from the initial value to
zero on the last day of the sprint. Thus, comparing both lines makes it
immediately apparent whether the team is on track to finish all stories
by the end of the sprint.

Task boards and burndown charts are simple yet powerful tools for
monitoring the progress of the sprint. In combination, they mutually
complement each other since the task board uses the granularity of
tasks to provide more details about the actual work status. In contrast,
the burndown chart is on the level of user stories, which is the level of
mutual understanding serving as a basis for all discussions between
members of the Scrum team. In addition, the burndown chart pro-
motes forecasting since it is much easier to determine trends within a
graph-based visual representation than in a table-based representation.

Part II

PROBLEM ANALYSIS

The second part of this thesis constitutes the problem anal-
ysis. Although Scrum is known for being simple to learn,
putting it into application is a stumbling process. But why?

What are the typical challenges for Scrum teams, and why
do Scrum projects fail? Moreover, what role do existing
Scrum tools play in managing the development process?
Are they beneficial, or do they hinder the framework’s
correct implementation?

By providing answers to these questions, the objective of
Part II is to derive a status quo of tool support and iden-
tify common challenges that prevent Scrum teams from
reaching their full potential. Upon the outcome, the final
part of this thesis will present a novel project management
solution that addresses most of the identified problems.

RESEARCH QUESTIONS AND METHODS

Over the years since its introduction in 2001, Scrum has become
by far the most commonly used agile process model for software
development with a share of 87% out of other used agile practices in
the industry [300].

Scrum is, moreover, known for reducing the time-to-market and
boosting team productivity between 300% and 400% [20] when com-
pared to more conventional project management techniques.

However, despite the continuous growth and adoption of Scrum in
the industry, there is a fundamental downside to the agile develop-
ment framework, which is revealed in the following statement of the
inventors:

"Scrum is lightweight, simple to understand, difficult to master.”

— The Scrum Guide [237]

5.1 RESEARCH QUESTIONS

The statement above raises the question: How shall something declared
as lightweight and simple to understand result in something that is
difficult to master?

Wouldn’t we assume at first glance that true comprehension of
any theory also encourages its practical application? So, what are the
stumbling blocks causing the "simple to understand” Scrum theory
to suddenly become complicated when put into practice, thus miss-
ing the chance to realize Scrum’s full potential, leading to project
prolongations and higher development costs? What kind of practical
challenges exist for Scrum teams, and what are the consequences if
people do not face them? These questions are aggregated into the first
research question (RQ) of this thesis, asking:

What are typical challenges and issues for Scrum teams? (RQ 1)

Based on the answers given to this question, the overall goal is
to identify potential starting points for a yet non-existing software
solution for Scrum teams with the intention of finally inventing novel
functionality specifically designed to address the previously identified
problems.

123

124

RESEARCH QUESTIONS AND METHODS

For this reason, it is essential to analyze, as a first step, which
kinds of tools Scrum teams use and what fundamental differences
exist between them. Based on that, the investigation of the most
commonly utilized tools and leading software products on the market
should further complete the picture of which functionality exists for
supporting Scrum teams in their development process and which
aspects still need to be covered. Moreover, to understand how the
existing functionality integrates into the special demands for agility
and the particular needs of the Scrum team roles, it is also important to
understand the user experience and usability of existing user interfaces
and how they relate to the issues identified before. All of these aspects
are part of the second research question, asking;:

What is the status quo of Scrum tool support? (RQ 2)

In combination, both research questions should reveal an upper
limit of Scrum tool capabilities, which are assumed to be related to
the fact that existing tool support is fundamentally stuck in the still
dominant interaction paradigm using graphical user interfaces con-
sisting of windows, icons, menus, and pointers (so-called WIMP user
interfaces). Claiming that the WIMP paradigm is not only unsuitable
but an impediment to the new challenging demands of agile software
development like cooperative, self-organizing teams heavily using
face-to-face communication, the thesis will later propose that agile
teams require a new kind of digital tool support.

Similar to the process of software development, which fulfilled the
paradigm shift from a heavy, sequential, and document-driven process
to a lightweight, incremental, and iterative way of creating software,
agile teams might break the chains and begin incorporating tools
relying on succeeding interaction paradigms. Regarding WIMP and
graphical user interfaces, the succeeding paradigm is Natural User
Interfaces, primarily based on multi-touch technology and interactive
surfaces operated directly via finger input. Can this kind of technology
add something new to the digital support of Scrum teams? This is the
third research question, asking:

What could a novel Scrum tool look like utilizing NUI technologies for
collaborative activities? (RQ 3)

All three research questions will be covered separately in the follow-
ing chapters. Together, they form the problem analysis and represent
the second part of this thesis.

Beforehand, the following section briefly overviews the different
research methods used and how the questions were addressed over
time.

5.2 RESEARCH METHOD OVERVIEW

5.2 RESEARCH METHOD OVERVIEW

Because of their diversity in subject matter, all three research questions
have been treated individually in terms of the underlying research
method. Moreover, an intertwined mixed-method approach was used
so that each question was investigated by a combination of three
research methods, as illustrated in Table 5.1. The combination of differ-
ent methods is intended to target open issues and preliminary results
from different perspectives, thus giving more substance to the topics
and research outcomes.

RESEARCH QUESTION METHODS

. Literature review
What are typical challenges and

issues for Scrum Teams? Ethnographic studies

Interviews

Literature review
Field studies

Heuristic evaluation

What is the status quo of Scrum
tool support?

What could a novel Scrum tool ~ Literature review

look like utilizing NUI Interviews
technologies for collaborative Prototype development and eval-
activities? uation

Table 5.1: Research methods

While more details about the individual methods will be given in
the respective chapters of the research questions, this chapter aims to
provide an overview of the different methods used and to illustrate
their overall connection.

As seen in Figure 5.1, research for this thesis started in the middle of
2012. It lasted until 2019 and culminated in a startup funding project
to transform the developed prototype of Chapter 9 into a commercial
product. This dissertation was written simultaneously with the market
launch and company-building process, which is why its finalization
took until 2024.

However, despite the long research timeline, it must be clearly said
that all of the analysis results presented throughout this thesis remain
valid. This also includes the identified problems from investigating
common Scrum software tools in Chapter 7, whose usability issues
still exist in 2024 when this dissertation was finalized.

125

126

RESEARCH QUESTIONS AND METHODS

2012 2013 2014 2015 2016 2017 2018 2019

RQ 1: What are typical challenges and issues for Scrum teams?

Literature review
Ethnographic studies

Interviews

RQ 2: What is the status quo of Scrum tool support?

Literature review

Field studies

Heuristic evaluation

LR

LR
n 12 I3 14 I5

LR LR

HE

RQ 3: What could a novel Scrum tool look like utilizing NUI technologies for collaborative activities?

Literature review

Interviews

Prototype development

Prototype evaluation

Funding project and
go-to-market

LR LR

n 12 I3 14 I5

MA JM @ 7 MASTER THESES

Figure 5.1: Research timeline

Behind this background, Figure 5.1 presents all research activities
over the course of time. As can be seen, the individual research ques-
tions of this dissertation have not been investigated one after the other
but with certain temporal overlaps. The following explanations help
to understand how these activities relate to each other.

At the beginning of 2012, the first research question (RQ 1) was
investigated by a literature review conducted prior to an ethnographic
study about issues and challenges of a Scrum team represented by
the student project group "PG MAGIC," whose members incorporated
Scrum for their software development process. For managing the
project, this group alternated between different Scrum tools, which
therefore were field-tested in practical use, so that PG MAGIC not
only contributed to investigating typical challenges and issues for
Scrum teams but also delivered valuable data for the second research
question (RQ 2) asking about status quo of Scrum tool support, which
was also initially investigated by a literature review.

The purpose of PG MAGIC was to investigate novel interaction
techniques and to identify potential application scenarios for future
user interfaces based on the new interaction paradigm of "Natural
User Interfaces" (NUIs), which do not rely on input via mouse or
keyboard but for instance, via finger input using gestures and multi-
touch technology. Near the end of PG MAGIC, the Scrum development
process was identified as a promising application area for touch-
based Natural User Interfaces. As a result, the third research question
emerged, asking about the potential benefits of NUIs for managing the

5.2 RESEARCH METHOD OVERVIEW

Scrum development process, which was initially studied by reviewing
existing literature.

Once it became clear that Natural User Interfaces had barely been
researched in the context of Scrum and that the third research question
(RQ 3) would address a nearly unexplored area, it became the main
focus of attention. However, a holistic approach was chosen to take
into consideration that RQ 1 and RQ 2 were still relevant since their
results would provide the necessary backdrop against which the third
research question should be investigated.

That is why all interviews conducted with Scrum experts and practi-
tioners have been designed to simultaneously obtain data for RQ 1 and
RQ 3. However, while the first two interviews in 2014 provided good
results for RQ 1, respondents did not feel able to assess RQ 3 without
being experts in the domain of HCI research and, in particular, without
being able to experience a running system using NUI technology. As
a result, another project group, "PG MAGICIAN," started in the last
quarter of 2014 with the aim of developing such a running and testable
system, building up on the first draft of a NUI-based Scrum project
management tool envisioned by Julian Maicher, a former student of
PG MAGIC, as part of his master thesis "Innovate Tool Support for
Agile Scrum Teams" [164].

As shown in Figure 5.1, the contribution of PG MAGICIAN with
a term of one year was manifold. First, and as already mentioned,
the project group addressed RQ 3 and developed a usable prototype
of a Scrum tool using NUI technologies and novel interaction con-
cepts. Since the members of PG MAGICIAN incorporated Scrum, the
team initially (within the first three months) organized their work
by alternating between the same Scrum tools, which PG MAGIC has
previously investigated. That way, research data for RQ 2 from the
field study component could be gained from at least two different
Scrum teams to check the initial results against possible side effects
resulting from team composition. For the same reasons, the Scrum
team of PG MAGICIAN was also the subject matter for the second
ethnographic study of RQ 1. Lastly, the project group PG MAGICIAN
self-evaluated the developed system during the last two-thirds of the
term (for further details, see Chapter 9.4.1).

Between the end of 2015 and the beginning of 2017, each research
question was re-assessed by further literature reviews to synchro-
nize the data obtained through the project groups with results from
scientific case studies of Scrum (in case of RQ 1), which have been
published in the meantime, surveys about tool-support (in case of
RQ 2) and papers about cooperative working scenarios using NUI
technologies (in case of RQ 3).

127

128

RESEARCH QUESTIONS AND METHODS

In addition, a series of heuristic evaluations investigated RQ 2 and
usability concerns of standard Scrum tools during 2016. They revealed
significant gaps in functional and non-functional requirements, thus
resulting in a poor user experience for Scrum team members within
an agile work setting, as later explained in Chapter 9.4.2.

Subsequently and as part of RQ 3, these gaps have been analyzed
by supervising various master theses concerned with particular Scrum
aspects and enhancements of the developed prototype (see Table 5.2).

AUTHOR THESIS
Concept and prototypical implementation of digital
A. Gehle . S
support for sprint retrospectives in Scrum [91]
O. Blinova Release Planning as long-term vision in Scrum [25]
S Gerhardt Supporting Decision-Making in Agile Development

[93]

Conception and prototypical development of a task
M. Stember board as a tangible user interface to support the
agile process model Scrum[257]

Conception and further development of a tool to

A. Quapp support the review process in Scrum [212]

Tool support for quality assurance in agile Scrum

M. Rose .
projects [222]

A Virtual Scrum Coach to Improve Agile Process

C. Klaussner Quality [140]

Table 5.2: Supervised master theses

The resulting system was further evaluated by more interviews in
2018 aimed at providing expert opinions about RQ 1 and RQ 3. In
comparison to the first interviews in 2014, the respondents in 2018
were able to provide valuable insights about RQ 3 since they could
experience the then-existing prototype and share their thoughts about
the potential of NUI technologies for Scrum work settings. Afterward
and because of the overall positive evaluation results, the developed
prototype was transformed into a commercial product as part of a
European startup funding program, during which the system was
further evaluated by usability tests and expert interviews, as will be
explained in Chapter 9.4.3.

While this overview should explain the interrelations between the
different research questions and the methods used, the following
chapters will provide more details about the individual methods and
present the respective research results.

SCRUM ISSUES AND CHALLENGES

This chapter investigates the first research question, asking about the
typical challenges and issues of Scrum teams. By laying the foundation
for deriving possible software requirements for solving the identified
issues, this chapter connects to the following one, in which the analysis
to which degree existing tools support the identified problem areas
will be one aspect of examining the status quo of Scrum tool support.

Beginning with details on the respective research methods, the find-
ings of this investigation will be presented in an aggregated form by
several individual subchapters representing different types of chal-
lenges.

6.1 RESEARCH METHOD DETAILS

As shown by Table 6.1, the investigation of Scrum issues and chal-
lenges was addressed by a combination of literature review, ethno-
graphic studies, and interviews.

RESEARCH METHODS SUBJECT MATTER

Scrum books
Literature review Scientific case studies

Systematic literature reviews

Project group MAGIC

Ethnographic studies
Project group MAGICIAN

. Scrum coaches
Interviews

Industry experts

Table 6.1: Research methods used for the analysis of Scrum challenges

The literature review is based on two primary sources. First, a
selection of the highest-rated Scrum books recommended by industry
experts, and second, several scientifically conducted case studies of
Scrum implementations and published systematic paper reviews about
Scrum problems.

In addition to the identified issues and challenges of Scrum teams
taken from the literature, two types of qualitative studies were con-

129

130

SCRUM ISSUES AND CHALLENGES

ducted to augment the results with personal experience and observa-
tions. The first are two ethnographic studies of student groups using
Scrum to manage their software development process, and the second
are interviews conducted with Scrum coaches and industry experts to
further augment the level of understanding of the problem domain by
comparing personal experiences against third-party knowledge.

The following sections provide more details about each research
method.

6.1.1 Literature Review

Initially, reviewing literature about common pitfalls of Scrum began in
mid-2012, as illustrated in the research overview on Page 126. While
this diagram shows two periods of time for simplifying reasons, it
was, in fact, rather an ongoing and reoccurring process during which
books and especially papers that have been published in the meantime
were checked against new insights.

The decision to review both books and papers derives from the fact
that the selected books are often written by authors with a background
very close to the originators of Scrum, which means that the authors
not only internalized its philosophy and principles but actively con-
tributed to the development of Scrum from the very beginning. Hence,
the book sections about Scrum issues and challenges have substan-
tial value. On the other hand, these authors mostly describe Scrum
problems in the form of narratives obtained from their vast experience
in the field but do not provide scientific data. This, in turn, is the
subject matter of scientifically published case studies about Scrum
implementations or systematic paper reviews analyzing the set of
paper publications against a particular research question. However,
these authors may or may not be Scrum experts themselves, so in-
terpretations and conclusions of obtained data must be treated with
more caution compared to the old hands. Therefore, the investigation
of both sources of literature should provide a more complete picture.

6.1.2 Ethnographic Studies

Both ethnographic studies were conducted over one year each with
two student project groups using Scrum to manage their software
development process. The first group, MAGIC, lasted from October
2012 to September 2013, while the second group, MAGICIAN, lasted
from October 2014 to September 2015. Participants of both groups were
master students (11 in the case of MAGIC and 12 for MAGICIAN) who

6.1 RESEARCH METHOD DETAILS

had to take part in a project group course due to the study schedule
of the computer science master program at the Paderborn University.

6.1.2.1 Study Context: Project Group MAGIC

In order to provide contrast to the domains of software development
that have been investigated through the previously mentioned litera-
ture review, the subject matter of the student project group was not as
strict as it usually is in the industry. Instead, it was designed to explore
the manifold research domain of human-computer interaction (HCI)
by creating and investigating novel interaction techniques for different
application scenarios, which were elaborated by the group members
themselves. The openness for different aspects of HCI research is also
reflected by the project group name, whereby "MAGIC" is an acronym
for "Multitouch Applications and General Interaction Concepts.” Thus,
the very nature of the project course was to promote creative think-
ing, and by developing something with personal belonging to the
participants (nine of them male and two female), the overall rationale
was also to quickly establish a conscious group thinking and team
spirit, which was shown in Chapter 4.4.1 to be essential for agile work
settings.

To illustrate the diversity of the projects and to point out that for
all participants it was more than simply fulfilling the duty to take
the project course’, it is mentioned here that within one year, the
group developed two tabletop games that strategically heavily rely
on cooperative multitouch gestures for winning, a wedding planner
application for tablets using gestures and optimization algorithms
supporting simple seat place management, a digitally augmented
location-based outdoor sports game for smartphones, and a tabletop
application augmenting the daily Scrum meeting of developers by
visualizing and providing access to data of the sprint backlog.

The latter is of particular importance because it was near the end of
the project group when the participants realized that the technology
and interaction techniques they have developed for different kinds of
applications could also help enhance their own Scrum process. Given
the freedom to experiment, the group quickly developed an initial
prototype of a tabletop application for collaborative work planning
of Scrum developers during their daily Scrum meeting (similar to a
task board, as shown in Figure 4.24 on Page 118). It is worth noting
that this marked the beginning of research associated with the third
research question of this thesis, asking about the potential benefits of
using novel interfaces for managing Scrum projects.

1 This fact could be seen from the given student feedback during the course evaluation.

131

132

SCRUM ISSUES AND CHALLENGES

6.1.2.2 Study Context: Project Group MAGICIAN

One year after PG MAGIC had ended, the second project group
started to build up on the work of Julian Maicher, a former participant
of PG MAGIC, who further developed the just mentioned tabletop
application for the daily Scrum meeting in the course of his master
thesis "Innovative Tool Support for Agile Scrum Teams" [164], in which
he drafted a concept for richer support of Scrum teams by combining
different kinds of in- and output devices.

As opposed to PG MAGIC, the problems to investigate were much
more specific, again reflected by the project group’s name, whereby
MAGICIAN stands for Multitouch Applications and Great Interaction
Concepts In Agile eNvironments. Hence, the purpose again was to
investigate novel approaches and techniques of human-computer inter-
action, but this time, solely concentrating on the application scenario
of agile team settings.

6.1.2.3 Familiarizing the Project Group Participants With Scrum

At the beginning of both project courses, the students had neither prac-
tical expertise with Scrum nor any other agile development methodol-
ogy. However, they were all familiar with sequential process models
and were used to longer planning phases before starting the imple-
mentation. That is because although the university’s curriculum for
the computer science bachelor course stipulated practical software
development training in the form of the "Softwaretechnikpraktikum" -
a one-year project during which a group of bachelor students mutually
work on an implementation task - students were only familiarized
with the traditional, document-driven development process.

In light of these circumstances, it was necessary for each group to
provide a profound introduction to the essentials of Scrum. This was
done by an initial seminar phase to establish theoretical knowledge
about the underlying theory and various aspects of the framework.

In addition, a subsequent phase of three months was reserved
for gaining practical Scrum experience in a sample "mini-project.”
During this period, the students worked on the task of creating an
interactive tabletop game, but as a means of familiarizing themselves
with all Scrum ceremonies and building the necessary team spirit.
This introductory phase was vital for laying a strong foundation for
their subsequent project work.

6.1 RESEARCH METHOD DETAILS

6.1.2.4 Data Collection

During the data collection process, the supervision of groups was
combined with active participation in the development process. This
involved taking on the role of the product owner and attending sprint
planning, sprint review, and sprint retrospective meetings. While
occupying the product owner role, it was important to pay close
attention during these meetings. To ensure comprehensive coverage
of important data points and to avoid disrupting the meeting flow,
both note-taking and audio recordings were used. These recordings
were analyzed immediately to identify team issues and challenges,
transcribed, and then integrated with the meeting notes to create a
detailed session record.

In addition to the mandatory meetings with regard to occupying the
role of the product owner, participation also included a daily Scrum
meeting once a week, silently taking notes on dialogues, interactions,
and identified impediments as well as the Scrum issues observed, of
which some have also been identified by the team members themselves
during the regular inspection of the development process through the
sprint retrospective.

While the students implemented Scrum using a sprint length of
two weeks, there was hardly any difference to a professional Scrum
team, except for one major. Due to the course specifications and the
university program, the daily participation of all students could not
be demanded, which conflicts with Scrum’s daily meeting for the
developers. However, to overcome this problem, members of both
project groups organized their individual work and study schedules
accordingly to agree on a compromise solution, defining three mutual
presence days per week with a regular daily Scrum meeting. In order
to also keep track of progress or impediments that occurred outside
of the mutual working days (for instance, during weekends, when
students decided to work on the project), the groups made use of
a messenger application and decided that every participant had to
publish answers to the three questions of the daily Scrum (see Page 99)
once he/she worked on the project on a day other than the presence
days.

These special organizational issues of a student Scrum team embed-
ded in a university project course have also been considered for the
analysis of the collected data. This means that particular problems
resulting from the given circumstances have been excluded from the
report since they cannot be applied to a general business setting.

133

134 SCRUM ISSUES AND CHALLENGES

6.1.3 Interviews

In addition to the ethnographic studies, the first research question was
also addressed by interviews as another qualitative method to aug-
ment the knowledge level further and compare personal experiences
against third parties.

6.1.3.1 Participants

In total, five interviews have been conducted, as shown in Table 6.2.

PARTICIPANT BACKGROUND

Person 1 Group manager of a software development com-
pany building components and simulations for the
automotive sector. Obtained PhD in computer sci-
ence in 2003, so had theoretical knowledge about
Scrum, but no practical experience. Took the role
of the Scrum master in a project where Scrum
failed.

Person 2 Self-employed certified Scrum coach and Scrum
master. Worked at larger software development
companies beforehand. Has several years of ex-
perience as a senior developer at a U.S. software
company, which developed one of the Scrum tools
presented in Section 7.1.3.

Person 3 CEO of a design and software agency using Scrum
for managing the development process of web and
mobile applications. Certified product owner with
several years of practical experience.

Person 4 Self-employed venture capital investor and busi-
ness angel. Beforehand entrepreneur with long-
term experience as a senior software developer
and CTO of different companies. Certified Scrum
coach and Scrum master.

Person 5 CEO of a software development and agile consult-
ing agency. Certified Scrum master.

Table 6.2: Interview participants

6.1 RESEARCH METHOD DETAILS

6.1.3.2 Interview Design

The interviews have been designed with a semi-structured approach
following the interview guidelines of Turner [267] and pieces of advice
for asking questions by Leech [157] and Dumay and Qu [79].

All interviews have been conducted on-site (except for the third,
which was conducted via phone due to great distance) and at a time
and place of the participant’s choice to ensure that the person feels
comfortable. At the beginning of each interview, an introduction was
given to the participants, taking into account the preparation steps
proposed by McNamara, consisting of explaining the purpose of the
interview, addressing terms of confidentiality, explaining the format
of the interview, indicating how long it might take and asking for
permission to audio record the conversation for later analysis [176].

Each interview started with a couple of predetermined structured
questions to gather information about the background of the partici-
pant and about how Scrum was introduced to the company. Afterward,
the transition to a narrative flow was initiated by what Spradley calls
a "typical grand tour question" [255, p. 86-88], asking, "Could you
describe a typical sprint cycle of your Scrum team?"

Carefully and with particular attention to not disturbing the narra-
tive flow of the conversation, the interview was guided by a previously
prepared and tested set of briefly formulated questions ordered by
themes. During the talk, the actual order and precise formulation of
questions were adapted to the language and wording of the participant
for gaining rapport [157] and thus allowing to evoke more profound
responses from the interviewee [79].

Besides careful preparation, a particular challenge of the interviews
was to identify Scrum issues and challenges that derive from a po-
tential lack of understanding or appreciation of the framework’s core
elements and values since it was very likely that participants would
not recognize their own weaknesses and hence would not be able to
speak about them.

For this reason, the soft laddering method [106] was used in order to
encourage interviewees to reflect on their motives while at the same
time restricting the natural flow of the respondent’s speech as little as
possible. The motivation behind laddering is to "gain insight into the
participant’s underlying assumptions about the constructs in their web
of associations" and "to elaborate on the meaning of his/her personal
constructs by narratively forging links between them" [233]. This is
achieved by repeatedly asking how and why questions, as shown in
the following extract from the first interview.

135

136

SCRUM ISSUES AND CHALLENGES

question: What do you think, how close did you stick to the cere-
monies and meetings as stipulated in the Scrum frame-
work?

response: We have stuck to the rules Scrum prescribes and imple-
mented all of the meetings. Regular planning, review - all
of that.

question: How did you manage the retrospective?

response: It was not held on a regular basis, but depending on the
needs and aspects of the sprint that I needed to communi-
cate to the team.

question: Why was it not held on a regular basis, just like the other
meetings?

response: If everything went well in the sprint, there was no need
for the retrospective to take place.

question: Why do you think that there was no need for the retro-
spective in this case?

response: It would be a waste of time. If everything went well and I
noticed that people managed to get their work done, there
would be nothing to talk about.

question: How did you measure if everything went well during the
sprint?

response: Depending on the amount of work that has been accom-
plished in the sprint.

In this case, the laddering technique gave first hints about the main
motivation of the Scrum master to hold a retrospective, which, in his
view, is to guarantee a certain level of throughput of implemented
features. As it later turned out, he had fundamental problems estab-
lishing sprint retrospectives, where the Scrum team members should
meet on equal footing and collectively elaborate on improvements to
the process.

Accustomed to his position as group manager and due to the exist-
ing hierarchical structures of the company, he did not seem to question
his own decisions, which became apparent because he did not real-
ize that he, as the Scrum master, tried to introduce the framework
without sticking to its fundamental agile values and continuously
stressed that the project failed, because "the developers were incapable
of implementing and adapting their manner of working."

6.2 RESULTS

6.2 RESULTS

For a better understanding, the results of investigating the first re-
search question are initially presented in an overview to provide
context between individual issues and challenges of Scrum teams that
relate to each other. Afterward, individual sections for each finding
will elaborate on the identified problems.

6.2.1 QOverview

As explained in Section 6.1, the results of the first research question,
which investigates challenges and particular issues of Scrum teams,
have been derived from a combination of literature review, ethno-
graphic studies, and interviews. Before providing an overview of the
results, one particular paper from the literature is worth mentioning
because it represents the closest match to comparable research in terms
of the underlying question and presentation of the results.

In their paper "Exploring ScrumBut anti-patterns,” [269] Eloranta et
al. investigated "ways of potentially harmful mishandling of Scrum" in
the industry and presented their results in the form of 14 anti-patterns,
which represent deviations from core Scrum principles with negative
consequences (see Figure 6.1).

Product

Big Owner
requirements Customer without
documentation Product Authori
Owner
Sprint review
Product backlog Product owner Long or non-

existent
feedback loops

Unordered Hours in
Product oy Progress
- Too long Backlog EsTumates Monitoring
Varying sprint Givento
Sprint eam:
Length
Sprint planning Sprint progress
Sprint
Testing Semiy Customer
innext functional e Invisible
sprint teams disruption progress

Cross-functional Development
team team

Business Scrum master
as usual
Daily Scrum

Retrospective

Figure 6.1: Scrum anti-patterns according to Eloranta et al.?

2 Source: "Exploring ScrumBut — An Empirical Study of Scrum Anti-Patterns" by
Eloranta et al. [269]

137

138

SCRUM ISSUES AND CHALLENGES

However, two important aspects must be considered when looking
at their results. At first, Eloranta et al. conducted 18 interviews but
used a survey method with a fixed set of 48 predetermined questions
[269], from which only less than half asked about details of Scrum.
Moreover, on closer look, these questions did not manage to cover all
aspects of Scrum (for instance, there are no questions addressing the
daily Scrum meeting), and some of them are on a rather superficial
level or formulated in a closed form (e.g., "Is the team self-organizing
or who decides what will people work on?"). This closed form, how-
ever, possibly leads to rash answers from the interview participants so
that deeper problems may not have a chance to be unveiled.

Second, the authors mostly asked for elements or specific aspects of
Scrum but did not take a holistic view when interpreting the answers
given. This means that some anti-patterns may result from outside
influences that cannot be investigated by asking questions restricted
to Scrum aspects only. For that reason, the interviews conducted for
this thesis have been designed in a semi-structured form with a strong
focus on open questions, which, in combination with the laddering
technique, allow to shed light on the answers given from different
perspectives for a more profound background analysis.

While Eloranta et al. identified 14 Scrum anti-patterns, the following
results of investigating the first research question of this thesis revealed
42 Scrum issues clustered into eight challenge areas (see Figure 6.2).

6.2.2 Challenge: Waterfall-Ish Environments

Being embedded in a working environment that still uses the tradi-
tional software development process can be very problematic and will
likely result in a Scrum team incapable of unleashing the full potential
of being agile. That means, although teams embrace the agile idea and
adopt basic Scrum principles like the roles, ceremonies, and planning
activities, it is very common that the agile mindset is not lived within
the company as a whole. Dave West explains that companies trying
to adopt the agile approach often fall back on tradition because of
long-term experiences with elaborated processes and management
tools that are difficult to throw overboard. So, even if companies claim
to be agile or adopted an agile development approach, the reality
often is that plans still drive the funding of projects:

"The plan defines the project. It includes a detailed description of the tasks,
resources, and time the project requires, translated into cost and time
estimates. The project’s justification is the difference between the benefits
described in the business case and the initial estimates and plan.”

— Dave West [287]

—

6.2 RESULTS 139

s
The Daily Scrum Documents Are Treati Omitting the
. L reating the No Testable
Downgrades into Still Driving the Reviewgas Venue — Acceptance —_ Demo _for
a Status Report Development o Technical
N of Approval Criteria .
Meeting Process Implementations
Command and
Control by the
Management Monitoring Hours
for Estimation and
Reporting
No Team-Based No Discussions, e Absent Product
Decisions No Feedback Owner
| |
Resource Customers Are ;tﬁ:g::g;s of Business Analysts
Management and Not Participanting the Sprint Become Product
Project Culture Backlog Owner
Low Team Spirit
Development
K led Team Is Not
ant)w et 9e Focusing on
otspots Relevant Content

Scrum Team is
Not Allowed to Be
Cross-Functional

No Documentation
of Decisions

No Routine Beginning

Timebox

No Retrospective
or Low
Attendance

Not Considering

Low Willingness
to Help

Improvements Goal
| People Don't
Listen to Each
Incorrect Other
Handling of
Identified Insights
Too Detailed
Planning
Depressing and
Energy-Draining I
Retrospectives Unfinished Stories
Spill over to the
New Sprint
The Retrospective No Slack Time

Is Poorly
Facilitated by the
Scrum Master

Ignoring the
Definition of
Ready

Dominant Product
Owners

Ignoring Technical
Debt

Challenge Areas

Waterfall-Ish Environments Knowledge Management

Understanding Scrum Sprint Review Sprint Retrospective

Discussions and
Exceeding the

The Product Owner Role

Lack of Authority
and No Ordering
of the Backlog

Disregard of
Grooming Meetings

/|

Bad Preparation
of Stories

Not Using a Sprint

Developers Are
Left out from the
Requirement
Analysis

Overestimating
the Sprint Scope

Certification as
the Single Source
of Knowledge

Scrum as a
Framework
Provokes

ScrumButs

Sprint Planning Daily Scrum

Figure 6.2: Scrum challenges and issues

140

SCRUM ISSUES AND CHALLENGES

If plans drive the funding of projects, a heavy amount of detailed
specification is still shifted towards the very beginning of the devel-
opment process, and overall, the waterfall model is not abandoned
at all. Instead, it is either hidden behind a series of sprints still rep-
resenting the sequential phases of the waterfall model, or Scrum is
only incorporated within the actual "coding" phase. In both cases,
claiming to be agile is, in reality, a process model that Dave West calls
the "Water-Scrum-Fall" (see Figure 6.3).

WATER SCRUM FALL

Requirements

Planning

i Development

Sprint

F, .
. Implementation
)‘ Integration

Design

Testing

Figure 6.3: Water-Scrum-Fall

The problem with the Water-Scrum-Fall model is that agile teams are
waiting for work due to discrete planning processes ("Water"). While
they can accelerate during design, development, and implementation
("SCRUM"), the delivery is slowed by traditional and manual processes
("FALL"), resulting in slow feedback loops.

In principle, this process could work for a Scrum team that is
independent of its non-agile environment. However, this is rarely the
case. Instead, it is common for many interconnections and outside
influences to exert significant pressure on the Scrum team, which then
has to deal with traditionally established structures, like hierarchical
management of the organization and business concerns. This causes
the Scrum team to be unable to break the chains from traditional
behavior, as illustrated by some of the following examples.

6.2.2.1 Issue: Business Analysts Become Product Owner

West explains that it is common for established companies to oc-
cupy the product owner role by previous business analysts or project
managers, assuming that the associated competence areas are closely
related. However, the relationship is not as close as it may look at first
glance. While business analysts or project managers are competent
in communicating the customer’s intent to the development team,
they often lack credibility and responsibility to really own the prod-

6.2 RESULTS

uct and drive the business by their own decisions [287]. In addition,
they usually do not have enough technical knowledge to work closely
with the development team. As a result, this misunderstanding of
the product owner’s role is causing severe problems like insufficient
backlog management and slowing the team down in making decisions,
potentially affecting the outcome and jeopardizing meeting the sprint
goal.

6.2.2.2 Issue: Resource Management and Project Culture

Another aspect of grown management structures, limiting the poten-
tial for true agility, is the intent to maximize the utilization of human
resources by spreading individual developers across multiple projects and
spending their time on different problems in varying teams. However,
the most central component of Scrum is a well-coordinated and ex-
perienced team that delivers software in close collaboration with its
members. This also means that an established Scrum team should stay
together across projects, not only to reduce the overhead in time for
familiarizing with each other and socializing shared working prac-
tices but also to keep the knowledge that has been mutually gained.
Therefore, re-composing teams for particular activities and slicing
a person’s time across multiple projects make it very hard for team
members to organize themselves for close collaboration and hinder
the opportunity to grow together. In addition, time slicing between
projects includes considerable risk for a team to lose momentum be-
cause of the context switching. It, therefore, unnecessarily endangers
the overall commitment of the team [287].

6.2.2.3 Issue: Scrum Team is Not Allowed to Be Cross-Functional

A further issue when making an agile development approach in a non-
agile organization is that the development team is often not allowed
to be cross-functional. Not in the sense that it is explicitly forbidden,
but as a result of the Water-Scrum-Fall, as seen in Figure 6.3. Here,
the separation of concerns as a tradition of the waterfall phases is
very likely. A classic example of this is, according to West, testing. In
Scrum, all testing activities are part of the sprint, ensuring the quality
of the potentially releasable increment (see Chapter 4).

In contrast, non-agile environments often make use of separate test-
ing teams and move the validation of functionalities and code outside
of the development team, thus increasing time for correction of errors
and leading to a loss of rapid feedback, which is essential for agile
teams [287]. However, the problem relates not only to testing but, more
generally, to any specialist departments, such as dedicated groups of
architects, designers, etc., separated from the actual Scrum develop-

141

142

SCRUM ISSUES AND CHALLENGES

ment team. While these groups certainly have clear responsibilities for
the separate stages of the Waterfall model, this is not the case in terms
of Scrum, which, in contrast, is designed around a cross-functional
team that is solely responsible for delivering the product increment,
including any aspects of the software development lifecycle (design,
code, testing, etc.).

6.2.2.4 Issue: Developers Are Left out from the Requirement Analysis

Similar to the previous issue, where the Scrum team lost control of
specific aspects of development, it is also problematic when the team
members, especially the developers, are left out of the requirements
process. This is quite common in the Waterfall model, where business
analysts define the requirements by creating documents describing
the business problem, which then form the contract between business
and development [287].

However, Scrum needs developers to be part of the requirements
process since they are experts in technical feasibility and can provide
valuable feedback. Therefore, the specification of requirements should
not be the concern of business analysts separated from the Scrum
team. Instead, close collaboration between the product owner and
development team, in the form of grooming events and tight feedback
loops, ensures that the team can cope with constant changes in the
requirements, which are very common.

6.2.2.5 Issue: Documents Are Still Driving the Development Process

While traditional software development processes heavily depend on
creating documents to mitigate the risk of the false implementation
of requirements, the emphasis on documents has appreciable conse-
quences for Scrum teams embedded in a waterfall-ish environment. In
terms of the Water-Scrum-Fall, as illustrated in Figure 6.3, plans still
drive funding of projects, which means that many (design) decisions
are excluded from the Scrum team and anticipated by previous stages
in the form of documents that stakeholders can sign off to start the
actual coding. Not only is this detailed upfront specification against
one of the core agile values ("Responding to change over following
a plan," see Section 3.6.4), but it also affects the Scrum team itself in
terms of the need to stick to the central values (see Section 4.4.1).

Commitment and motivation of the team members are at risk when
predefined plans leave little room for errors and if developers do not
understand the necessity for all of the Scrum ceremonies, which might
be the case when many aspects of the product have already been
signed off by specifications within documents. Therefore, the great

6.2 RESULTS

danger of this plan-driven development is to make the tight feedback-
response cycle of Scrum, including its ceremonies for collaborative
inspection and review of the outcome, superfluous.

6.2.2.6 Issue: Customers Are Not Participating

The conducted interviews revealed another critical issue caused by a
traditional environment, which is out of scope even for a company
implementing Scrum and the agile philosophy perfectly. That is a
"traditional" customer who is unwilling or unable to contribute to the
tight feedback-response cycle by regularly attending the sprint review
and providing feedback to the Scrum team, although this is essential
for refining requirements for future iterations.

This issue was also experienced and reported by Juyun Cho [52] as
one of the significant problems of any agile development approach.
While he links it to communication issues with the customer, responses
in the interviews revealed that the reasons for this issue seem to be
manifold and on different levels. For instance, the answers range
from difficulties to agreeing on a regular date because of temporal
overlaps between the customer and Scrum team schedules, over an
insufficient understanding of their role as contributors of feedback,
which enables iterative and incremental development in the first place,
to direct refusal and lack of willingness to spend time and effort for
something that should be the duty of others. The last reason was
mentioned by one interviewee with long-term experience as a Scrum
coach, and he referred to this as the "I already pay enough for it, so
do it alone"-mentality of certain customers. Nevertheless, he also said
that this kind of customer behavior is rather the exception than the
norm and agreed with the common statement that it is primarily the
lack of understanding of the agile model that causes low interest in
actively participating in the development process.

6.2.2.7 Issue: Monitoring Hours for Estimation and Reporting

A Scrum team should always strive to deliver the most valuable
product increment at the end of each iteration. Since during a sprint,
the development team works towards this increment in an undisturbed
and self-organized manner, the goal and the selection of items should
be determined only once at the sprint planning event.

Here, it is crucial that the product owner has previously prioritized
the backlog according to the items’ business value for the customer.
However, the decision about selecting an item for the sprint is not
taken on the item’s priority alone. Instead, it must be balanced against
the implementation effort, which is estimated by the development

143

144

SCRUM ISSUES AND CHALLENGES

team, to optimize for the biggest return on investment. In this context,
it is important to understand that this estimation serves two aspects.
At first, it is a measure that allows the team to decide whether the
item is, in fact, small enough so that it can be finished by the end
of the sprint and, hence, becomes part of the increment. Second, the
estimation is a comparative measure. For example, we can imagine
two items with the same business value. When deciding which one to
include in the sprint, it is sufficient to determine which item takes less
effort, which may be achieved by comparing them side by side. This
principle of comparative effort measurement allows quick decision-
making because for prioritizing items according to the return on
investment, it is not necessary to calculate the effort as an exact and
absolute measure, e.g., in the form of working hours. In fact, discussion
about exact working hours would slow down the planning process.

However, in hierarchical organizations, in which agile principles
have not yet evolved to a mature level, project managers often use
working hours as the calculation for feature or project prices [269].
Hence, this principle is also transferred to the sprint planning event
when estimating items of the backlog. However, this may have severe
consequences. At first, an estimate will always be inaccurate, especially
at the beginning of the sprint. Even if an item is understood by the
team and its scope is well defined by clear and testable acceptance
criteria, there still is an amount of uncertainty. Hence, a discussion
about whether an item takes, for instance, five or six hours to imple-
ment is useless and represents a waste of time. Second, estimating
working hours also generates wrong expectations at the management
level because of reports and forecasts of features to particular dates.
Overall, this creates the illusion of being able to know everything in
advance and carries the danger that the original estimates are clung
to too much, and it is to be forgotten that they were, in fact, only
estimates.

6.2.3 Challenge: Knowledge Management

As described in Chapter 3.6.4, agile methodologies introduced an alter-
native approach for managing knowledge, which is so fundamentally
different from the traditional way that it is addressed by two of the
four values of the agile manifesto:

"Working software over comprehensive documentation" expresses
that the ultimate measure of progress is working software that the
customer can review through live testing. This contrasts with written
documentation that only describes what the software could do in
theory but cannot provide any real user experience.

6.2 RESULTS

In addition, "responding to change over following a plan" indicates
that all plans (and this includes a priori documentation) are subject
to change. As a result of these two aspects, documents became less
important as a criterion of customer approval, whereas the running
software itself, which is constantly adapted to the customer’s needs,
became the first and foremost matter of success monitoring. Due to
this shift, agile methodologies generally tend to dispense with external
documents, significantly reducing the amount of overall documenta-
tion [52]. Instead, they claim the code itself should be the document
since this naturally is the source of change that is inherently updated
with any software alteration.

However, this gives rise to the following consequences.

6.2.3.1 Issue: No Documentation of Decisions

Given the dispense of external documents and developers placing
more comments in the code, Cho identified that this leads to problems
in terms of a missing global overview. Without any documents except
the code itself, new developers joining the team at a later project
stage had difficulties understanding why certain things were done
in a particular way and, therefore, would appreciate specification
documents for easy access to the system [52]. Furthermore, these
difficulties apply not only to new developers but also to those working
on parts of the system they have never worked on before.

Not understanding the decisions that led to the actual situation
slows developers down. They will ask many questions to get clarifica-
tion, which takes time away from implementing items of the sprint
backlog, especially if these circumstances have not already been con-
sidered during the sprint planning event in terms of additional time
for teaching and learning.

6.2.3.2 Issue: Knowledge Hotspots

Theoretically, the idea behind reducing documents is supported by
Scrum’s demand for self-organized and cross-functional development
teams since this pursues sharing skills and mutual knowledge on the
system, as explained in Chapter 4.4.3. That way, the absence of one
developer can be compensated by others sharing the same knowledge
so that the team’s overall performance is not so heavily affected as to
endanger the sprint goal.

However, the conducted interviews revealed that, in reality, devel-
opment teams are often unable to cope with such situations because
of knowledge hotspots of particular team members. This term describes
knowledge about specific parts of the system that is exclusive to a

145

146

SCRUM ISSUES AND CHALLENGES

few developers or, in an extreme case, even restricted to only one
developer. Knowledge hotspots make individual persons irreplaceable,
and project success depends on those persons” availability.

This phenomenon was - with only one exception - mentioned by all
interview participants regarding their own development teams and
could also be clearly identified in both project groups. Interestingly,
the respondents seemed to be conscious of the consequences of such
knowledge hotspots in the case of a longer absence of particular
persons. On further inquiry, they partially admitted to neglecting this
issue for various reasons (mainly for reasons of time), whereas one
respondent was very open and stated that his team members are
closing their eyes to the consequences because they did not attach
sufficient importance to the problem in the past and now feel like
having reached a point of no return, where no one is confident to
embrace change to the given situation, nor have any of the developers
an incentive to work themselves into the "dark parts" of the system.

6.2.4 Challenge: The Product Owner Role

Compared to all of the other Scrum roles, the product owner role is
probably the most challenging one, as shown by Eloranta et al. [269].
That is because this role is connected with a high level of responsibility
since it is the central pivotal point through which various parties
exchange expectations. In order to satisfy these expectations and to
take ownership of the product, it requires versatile knowledge and
a complex set of skills [15]. On the customer side, for example, the
product owner has to understand and analyze the given problems
before deciding how to deliver valuable features. For this, he or she
keeps an eye on functional and non-functional aspects, which requires
deep knowledge about the product itself, the domain and market
trends, and the users of the future system.

Simultaneously, the product owner bridges the gap between the
client and the development team and, therefore, needs the ability to
communicate on equal footing with developers about various aspects
of the implementation process. This applies in particular to the fact that
the product owner also balances decisions regarding the further course
of action upon technical dependencies, which must be considered
when formulating the acceptance criteria of user stories, for example.

Overall, the product owner must be capable of acting on different
levels, ranging from strategic to tactical to operational, when develop-
ing the product strategy and demonstrating it to all involved parties
while continuously aiming at the best return on investment. Conse-
quently, issues related to the product owner have a high risk of failing
the whole project.

6.2 RESULTS

6.2.4.1 Issue: Absent Product Owner

During their studies about anti-patterns of Scrum, Eloranta et al.
noticed that surprisingly often, teams reported not having a product
owner at all [269]. In other cases, the role is assigned within a Scrum
team, but the person in charge is not always available, for instance,
because of part-time work or further responsibilities apart from the
role itself [146].

This issue was also mentioned by three of the five interview partici-
pants, who stated that the absence of the product owner had caused
several problems and unnecessary impediments in the past. In partic-
ular, it turned out that two product owners do not attend the sprint
review on a regular basis, especially when the customer is not able to
attend as well. In these cases, the team "self-inspects" the sprint result,
and developers start to make decisions on their own. This, in turn,
disconnects the development team from the customer feedback and is
likely to lead to the delivery of incorrect or wrong features at the end
of the project.

In addition, the respondents said that the lack of rapid feedback to
arising questions of the development team has the effect that the team
starts to maintain the backlog and determine the stories” acceptance
criteria on their own, which is absolutely against the rules of Scrum
because it softens the responsibility of product ownership. This is
closely connected to the issue of lack of authority (see Section 6.2.4.2).

Overall, the interviews showed that the product owner’s presence
is crucial to establishing the communication channel between develop-
ment and the client side. This role is in charge of answering questions
quickly and providing valuable information on time so that availability
never becomes the bottleneck of development progress.

In that respect, personal experiences as the product owner of the
two project groups also showed that even the most careful preparation
in advance for a temporary absence did not provide protection against
this issue. In this regard, it must be noted that the product owner (me)
was on parental leave for one month in each of the project groups. As
preparation for each absence, a sufficiently large set of user stories was
specified, which was prioritized and carefully discussed with the team
before the parental leave so that each story fulfilled the definition of
ready. The preparation ensured that everybody understood all of the
acceptance criteria and that potential technical dependencies had been
discussed. In addition, the groups agreed to change the sprint length
from one week to two weeks. This change was made because of the
offering to attend the Scrum meetings nonetheless to prevent further
problems during the vacation.

147

148

SCRUM ISSUES AND CHALLENGES

However, neither project group made use of this offer. Instead, the
development teams started to make their own decisions whenever
questions or problems arose, which normally would have required an
inquiry from the product owner. As a result, the outcomes showed
significant deviations from the initially agreed acceptance criteria.
When asked about this, it turned out that each development team had
a member who felt encouraged to take the lead about the product and,
driven by false ambition, treated inquiry as a form of weakness. This
outcome was even more surprising since the relationships between
the students and the product owner (myself) were intentionally built
on trust and equal footing to promote an ideal agile cooperation.

6.2.4.2 Issue: Lack of Authority and No Ordering of the Backlog

Further issues identified by Eloranta et al. concerning the product
owner role result from persons not being able to fulfill that role’s
duties. As a reason, they mention insufficient understanding of the
broad remit and associated tasks, lack of motivation to use Scrum,
missing interest in the product owner role, and fragmentation of re-
sponsibilities, especially in large organizations with multiple products
and development teams [269]. Consequently, this would lead to the
absence of authority regarding the product.

An example of missing authority might be that development team
members are promoted as product owners when product managers
or former business analysts are not interested in using Scrum or
feel uncomfortable with agile thinking (see Section 6.2.2.1). Moreover,
persons of a higher level of management might undermine a product
owner’s authority by interfering with decisions that should be taken
by the product owner alone. Additionally, Eloranta et al. mention
scenarios in which product owners did not have direct contact with
the customer at all and, therefore, cannot provide information about
the value of features to the customer.

In any case, the result of missing authority often is that the product
owner cannot decide which items to implement and which to discard,
making prioritization less meaningful. For that reason, many teams
are observed to work with an unordered product backlog because of
missing competence to do so.

Not only is this leading to a loss of vision about how to satisfy
the customer needs, for instance, because of a team that is working
on features that are of no value to the customer or will rarely be
used, but it also promotes that the challenging features that are more
difficult to implement are postponed, whereas features that are easy to
deliver will be picked at first. This overall increases the risk for smaller
problems to develop into severe impediments during later stages of
the project.

6.2 RESULTS

6.2.4.3 Issue: Bad Preparation of Stories

The following three issues all fall into the category of bad backlog
management prior to the sprint planning event and have been derived
from the conducted interviews. The first is about a bad preparation
of user stories, which could be identified in all of the respondent’s
answers to a greater or lesser extent.

At first, it turned out that many backlogs were maintained without
clear knowledge about what aspects of a user story must be fulfilled in
preparation for the sprint planning event. This goes hand in hand with
not implementing a definition of ready (see Section 4.5). Second, some
product owners do not use acceptance criteria at all or do not use
them on a regular basis. Instead, they sometimes use continuous text
to describe the expected result or, in many cases, do not provide any
additional information other than just the story title itself, assuming
that it is self-instructive to the development team.

However, as reported, insufficient backlog preparation can lead to
severe problems regarding the subsequent sprint planning events.
This is because it promotes discussions and leads to time-consuming
queries when developers first have to understand the full extent of
a story’s description. More importantly, exhaustive sprint planning
meetings have been mentioned as highly demotivating for the team
and affecting the overall commitment to reaching the sprint goal.

6.2.4.4 Issue: Disregard of Grooming Meetings

Another issue affecting the overall quality of preparing the backlog
before the sprint planning event is when product owners neglect
to have grooming meetings with developers (see Section 4.5) and,
therefore, treat every aspect of the backlog maintenance as their sole
responsibility. While the latter is true according to the Scrum Guide,
a complete disregard of grooming events nevertheless indicates a
false understanding of Scrum’s role model. It is often forgotten that
grooming meetings are an essential part of the Scrum framework, too,
and especially made to take feedback from the development team
into consideration when managing the backlog. They further help
to decide whether stories are too big or should be split because of
technical dependencies of which the product owner alone cannot be
aware.

Similar to the previous issue, a backlog not groomed by collabora-
tion in advance adds unnecessary complexity to the sprint planning
event.

149

150

SCRUM ISSUES AND CHALLENGES

6.2.4.5 Issue: No Testable Acceptance Criteria

The last issue belonging to the category of bad product backlog
management could be treated as a sub-aspect of insufficient story
preparation. However, it is treated as a separate problem because the
interviews revealed that even when a story seems to be well prepared
and thus defines a list of acceptance criteria to be fulfilled after its
implementation, product owners regularly fail to specify acceptance
criteria in a manner that they are indeed testable.

This aspect also becomes apparent when looking at recent survey
data, revealing that only one-third of agile projects use test-driven
development approaches, whereas even less, namely less than one-
fifth, incorporate a behavior-driven approach [271].

6.2.4.6 Issue: Subsequent Modifications of the Sprint Backlog

Although explicitly mentioned in the Scrum Guide as something to
avoid, case studies revealed that some development teams do not
comply with the feature specifications to whom they mutually agreed
in the sprint planning meeting. Instead, they modify the set of work
on their own as the sprint progresses.

According to Krasteva and Ilieva, this behavior is an indicator of a
much bigger problem, which is about questioning the ownership of
the product and, hence, the sole responsibility of the product owner
[145]. By investigating different teams, they discovered that the reasons
for this issue may vary widely. For instance, in their case study, the
developers of one team were determined to build a great product, so
they changed the stories of the product owner for "better ones," thus
undermining his authority by their supreme motivation. On the other
hand, another team modified the specifications of the sprint work
because of a product owner who had an insufficient technological
foundation to clarify the requirements. In both cases, an open and
honest process inspection during the retrospective should have led
to insights about closer work between the product owner and the
development team to guarantee that the whole team understands and
commits to what has been specified in the sprint planning meeting.

Experts agree that sticking to the determined feature specification is
crucial for proper Scrum implementation because this is what builds
trust between the roles. Developers can be sure that their workload
is limited and will be approved once it fulfills the acceptance criteria
and definition of done, whereas the product owner can anticipate the
outcome of the sprint and head for planning the next iteration before
the actual one has even ended. Together with proper inspection and
adaption of the process, this keeps the overall project flow going.

6.2 RESULTS

6.2.5 Challenge: Sprint Planning

The overall purpose of the sprint planning event is to constantly align
the product owner and the development team on what to implement
during the next sprint, delivering the highest possible value to the
customer.

The emphasis is here on constant alignment because software de-
velopment is characterized by unpredictable contingencies and the
resulting likelihood of rapid requirement changes, for which reason
Scrum uses individually planned sprints. In this respect, the partic-
ular challenge of sprint planning is to remain focussed on the most
value-giving features, laying the foundations for the later sprint work
and thus optimizing the whole development flow with regard to these
uncertainties.

There are two crucial parts to this workflow optimization. The first
one is keeping the team at a maximum yet constant pace, which
means aiming for an average velocity (i.e., an equal amount of story
points) in each sprint because this allows some forecasting in terms of
cycles that are bigger than one sprint only, like planning the release
dates of higher-level features that will be implemented over multiple
sprints. The second one is balancing this pace against room for process
improvement so that the team has a chance to constantly inspect and
adapt their way of working.

As will be seen throughout the following sections, the issues pre-
sented seem to be caused by this conflict between planning for the
increment — delivering as many value-giving features as possible —
and planning for team improvement.

6.2.5.1 Issue: Overestimating the Sprint Scope

As the interviews and the personal experiences as a product owner
revealed, overestimating the development team’s capacity for what to
achieve during the sprint is not the exception but rather the norm of
sprint planning. Of course, this leads inevitably to the situation that a
sprint backlog is almost never completely processed at the end of the
sprint. Why is this, and what problems might arise?

From the product owner’s point of view, the scope of a sprint is
deliberately designed to exceed the team’s usual velocity because he
or she wants to guarantee that there is still enough work left in case
the implementation of all other features goes surprisingly well. On its
own, this behavior is not problematic, but it certainly gets when the
development team is simultaneously expected to implement all features
of the sprint backlog. This expectation was reported to be often the
case and is either caused by an imbalance between the product owner

151

152

SCRUM ISSUES AND CHALLENGES

and development team regarding decision-power (see Section 6.2.2.1
and 6.2.4.2) or a misunderstanding of the sprint goal (see Section
6.2.5.6).

However, it is not only the product owner who contributes to an
overestimation of the team’s capacity but also the developers them-
selves, who forget to take everything into account, which simply
requires time and, therefore, might affect their ability to deliver. Exam-
ples include public holidays during the sprint, team members on sick
leave or vacation, time for other Scrum events like backlog grooming,
training new team members, and many more.

In any case, there are strong indications that constantly overesti-
mating capacity harms the development team’s overall motivation,
especially when teams associate unfinished sprint backlog items with
failure.

6.2.5.2 Issue: Dominant Product Owners

While Eloranta et al. identified "product owners without authority" as
a typical anti-pattern of Scrum [269], the conducted interviews with
Scrum coaches as part of this thesis also revealed dominant product
owners as a severe issue.

The problem stems from a false assumption that the development
team is subordinate to the product owner’s decisions, which is of-
ten the case when former management staff become product owners
(see Section 6.2.2.1). Typical negative effects of this issue are exerting
pressure and pushing the development team to take more tasks than
it could realistically handle, as well as last-minute changes that are
squeezed into the sprint backlog and which possibly violate the def-
inition of ready (see Section 6.2.5.7) or lead to less slack time of the
team (see Section 6.2.5.4).

As already stated in Section 6.2.4, the role of the product owner is
critical in arising problems when the corresponding person cannot em-
brace the core of Scrum, especially the underlying values (see Section
4.4.1). Concerning sprint planning, dominant behavior undermines
the development team’s authority about the actual sprint work and
the members’ professional expertise and prerogative to pick product
backlog items rather than being told which ones to implement.

However, it should be noted that "dominance" does not only relate
to product owners with a leadership personality. In the interviews, it
was reported that undermining the development team’s authority can
also happen unconsciously, for instance, when product owners are not
able to say "no" to stakeholders and thus make unrealistic promises,
which causes more stress for the development team.

6.2 RESULTS

6.2.5.3 Issue: Ignoring Technical Debt

According to experts, about 15% of resources during a sprint should
be spent on tackling technical debt, e.g., fixing bugs or refactoring the
codebase [104]. In the Scrum framework, a strategy to reduce technical
debt is given by the concept of a definition of done (see Section
4.3), which is a checklist of quality criteria that must be fulfilled for
considering an implemented feature as "done" and ready for delivering
it as part of the product increment.

While a well-specified definition of done is known to improve code
quality [71], product owners are likely to ignore the need for handling
technical debt due to their focus on delivering features. And so do they
ignore that problems arising from postponing code quality to later
points in time will catch up with the team soon. Its future product
delivery capability will decrease substantially because of increasing
complexity and unclear code dependencies.

This problem can be seen when developers are urged to execute
"refactoring sprints." These do not include any features but solely
concentrate on tackling the technical debt of the codebase, which has
no value to the stakeholders. To avoid turning into an output-focused
feature factory, it is, therefore, the responsibility of the development
team to demand adequate capacity for tackling aspects of code quality
during the sprint.

6.2.5.4 Issue: No Slack Time

Similar to not demanding time for assuring code quality by reducing
technical debt, the problem of decreasing development performance
over time is also affected by over-utilizing the team’s capacity during
the sprint planning and forgetting to include a slack time buffer.

While the Scrum Guide speaks of reserving 10% of the sprint time
for mutual backlog grooming, experts agree that there should be at
least another 10% of slack time for other collaborative activities, like,
for instance, supporting other members of the development team
or, doing pair programming. The idea behind this is to ensure that
the team can work at a sustainable pace and maintain a healthy
environment [226, p. 208] on the one hand, but also to leave room for
learning new skills and sharpen cross-functionality of the team.

As Rubin argues, planning the scope of a sprint without consider-
ing slack time leads to a situation where everyone solely focuses on
his own tasks. This, in turn, enables individual members to become
bottlenecks and impede the whole implementation flow. Overall, over-
utilization would push developers into a less collaborative mindset,
impeding Scrum’s core aspect of a self-organizing development team.

153

154

SCRUM ISSUES AND CHALLENGES

6.2.5.5 Issue: Too Detailed Planning

From the experiences of the project groups, it became apparent that
Scrum novices especially tend to conduct sprint planning sessions
with too much detail and upfront specifications, which experienced
professionals later confirmed during the interviews.

This is because of a misunderstanding of the "how" part of the sprint
planning event (see Section 4.7.1), where developers break the selected
user stories further down into development tasks. However, planning
every single task of the upcoming sprint in advance is a waste of
time. Instead, there should be just enough tasks for developers to
start working. Moreover, they can also start learning because the sprint
backlog is meant to be emergent (on the level of tasks) - just like
the product backlog is on the level of stories (see Section 4.5) - to be
prepared for technical changes during the sprint that are yet unknown.

Another issue regarding too-detailed planning and time-wasting
is when estimation is brought down to the level of tasks. This is of
no value to any person directly involved with the development of
the product and is usually only done for reasons of accounting for
hours. Therefore, it indicates that the team might be embedded in a
waterfall-ish environment with the resulting problems that have been
explained in Section 6.2.2.

6.2.5.6 Issue: Not Using a Sprint Goal

Using no goal for the sprint is a common anti-pattern of the sprint
planning event [208]. The problem with this is that the selection of
product backlog items degrades into a random assortment of features,
providing no cohesion regarding a clear business objective.

According to Pichler, it is crucial for everyone to understand why
the sprint is carried out [209]. Not only does a sprint goal align the
product owner’s business objective with the overall product vision,
but it also acts as a kind of negotiation between the product owner and
the development team regarding what must be achieved at the end of
the sprint. In this respect, the sprint goal becomes the mechanism to
deal with the problems of decreasing motivation and team commit-
ment due to constant overestimation (see Section 6.2.5.1). It shifts the
expectations about a successful sprint away from "implement all items
of the sprint backlog" to the fulfillment of the business objective. This
business objective should be deliverable even when the development
team has not been able to implement the complete feature set of the
sprint backlog.

6.2 RESULTS

6.2.5.7 Issue: Ignoring the Definition of Ready

Adding items to the sprint backlog that do not meet the definition
of ready is a popular anti-pattern of Scrum in terms of the sprint
planning event and was mentioned by all of the persons interviewed.
The development team’s rationale behind not rejecting items is the
false assumption of an already existing mutual understanding of the
story. The missing parts are treated as being obvious and known to
everybody so that, for instance, specifying acceptance criteria appears
to be redundant.

However, the reality is that unready items will often cause disrup-
tions during the sprint precisely because of arising questions that must
be answered by the product owner anyhow. This disturbs the overall
development flow and unnecessarily endangers achieving the sprint
goal.

6.2.5.8 Issue: Unfinished Stories Spill over to the New Sprint

Transferring unfinished stories from the last sprint to the new one
is an obvious and often reasonable decision since these items have
already been considered to be of the highest value to the customer,
which is why they were included in the previous sprint.

The problem, however, is when items "spill over without any dis-
cussion," as stated by the professional Scrum trainer Stefan Wolpers
[293], because this automatism is possibly a result of what is known as
"sunk cost fallacy" [9]. This term relates to a cognitive bias in strategic
decision-making, which is known to affect project decisions in soft-
ware development [64] and describes that humans tend to continue
a behavior or endeavor as a result of previously invested "costs," like
the donated time, the money spent or the already invested effort.

Therefore, the product owner and the development team must
be conscious when transferring items from the last sprint to the new
sprint and constantly question whether interim changes to the product
backlog - new or modified items - could be more valuable to deliver.

6.2.5.9 Issue: Not Considering Improvements

The issue of not including at least one insight as a result of the previous
sprint retrospective is, first of all, the responsibility of the Scrum master
as the accountable person for aspects of process improvements.

It is particularly mentioned here because it is during the sprint
planning when previously identified insights are added to the sprint
backlog, making this event the starting point of mutual decision-

155

156

SCRUM ISSUES AND CHALLENGES

making regarding product and process-related developments during
the sprint.

As an overall impression from the interviews, and as will be ex-
plained in Section 6.2.8, it must be said that there is a strong indication
of a missing awareness of constant process improvement, which is one
of the core aspects of the Scrum framework.

6.2.5.10 Issue: No Team-Based Decisions

To live Scrum’s values and establish a trustful relationship with highly
motivated individuals, it is essential to understand that sprint planning
is meant to be a team effort and that everyone’s voice must be heard.
However, three occasions might impose the sprint forecast as a team-
based decision.

The first one is the result of a dominant product owner, as explained
in Section 6.2.5.2, who defines the scope of the sprint according to his
personal ideas. The second one is when the Scrum team is not free from
outside influence, so external forces can impact the planning process.
A typical example of this is given by stakeholders (which can be
customers or representatives from higher management), who request
to take more items after pointing at the team’s previous velocity -
an attitude that Stefan Wolpers describes as "we need to fill the free
capacity” [293]. Finally, there can be "tech leads" of the development
team acting as spokesmen and making forecasts on behalf of the other
team members. This is especially true for senior developers, who can
claim leadership regarding development decisions and might even
assign tasks to individual developers.

6.2.6 Challenge: Daily Scrum

According to the Scrum Guide, the daily meeting is relatively modest
in terms of the underlying rules. The daily basis, preferably at the
same time and place, and the limitation to a timebox of 15 minutes
are intended to synchronize the efforts of the team members in order
to ensure that everybody is aware of how the team as a whole is
tracking towards the sprint goal. For this, every developer updates the
other team members about what has been achieved since the last daily
meeting and if there are any impediments to progress.

Because of this, one would generally not expect many difficulties
when holding a daily meeting. However, interestingly, it is this meeting
in particular where severe other problems are brought to light, as will
be explained within the issues presented in the following.

6.2 RESULTS

6.2.6.1 Issue: No Routine

This issue describes a scenario in which the daily Scrum meeting does
not happen at the same time and place every day or, even worse, is
skipped on an occasional basis. As a reason, the interview respondents
mentioned the late arrival of one or more participants, no presence
because of members working from home, other conflicting obligations
of particular persons, and the absence of "leading" persons of the
development team or the Scrum master.

Altogether, there is a strong indication that the importance of the
daily Scrum is often underestimated, so even relatively small organi-
zational problems can disturb the establishment of a daily routine. On
the other hand, the issue also relates to severe misunderstandings of
other parts of the Scrum framework, which manifest in not being ca-
pable of conducting a fifteen-minute standup meeting every day. This
applies, for example, to development teams lacking self-organization
or not living the Scrum values (see Chapter 4.4.3), but also to teams
with management dependencies (see Section 6.2.2.2) or not enough
slack time so that the meeting becomes superfluous since everybody
is solely focusing on his or her own concerns anyhow (see Section

6.2.5.4).

6.2.6.2 Issue: Low Team Spirit

Since the daily Scrum meeting is meant for the development team
to align all members on their way toward achieving the sprint goal,
it naturally becomes the place where weaknesses in the overall team
spirit immediately reveal themselves in various forms. Some examples
that have also been reported by the interview participants are given
by Stefan Wolpers in his article about daily Scrum anti-patterns [291].

Disrespect among team members may be revealed when talking
with others while someone is trying to share his or her progress
with all those present. In addition, it manifests in showing up late or
not participating at all, which poses a severe risk to the development
team’s ability to inspect and adapt the plan toward achieving the sprint
goal because of incomplete information. Furthermore, cluelessness, a
general lack of interest, and indifference towards an active contribution
become apparent when team members are not prepared for the daily
Scrum meeting and thus claim not to remember their work status
or are unwilling to share their progress. Lastly, spotlight-seekers or
persons with a quest for self-glorification may criticize other members,
sparking a discussion within the meeting itself (see Section 6.2.6.4)
instead of providing helpful assistance once the meeting is over (see
Section 6.2.6.5).

157

158

SCRUM ISSUES AND CHALLENGES

6.2.6.3 Issue: People Don't Listen to Each Other

A particular issue of the daily meeting mentioned by Moe [181] that
also was observed within both ethnographic studies of the project
groups was that members of the development team often do not listen
to the currently reporting person - even if a strong team spirit is
otherwise existent. Unfortunately, there is no clear discernible pattern
in the given data. While it seemed at first that this problem depended
on individual characters and a person’s ability to listen, it later turned
out that nearly every group member was affected, sometimes more,
sometimes less.

During the project group’s process inspection, this issue was an-
alyzed, and people reflected on having lower attention spans when
listening about the progress of particular features or elements of the
sprint backlog in which they were not immediately involved. As a
reason, it was mentioned that people were not able to connect to the
work of others when there was not any kind of mental support or
visual aid helping to recall what a person talked about in the last daily
meeting in order to understand and improve the awareness about his
or her actual tasks, how he or she is making progress and how his or
her problems might relate to someone’s own work.

6.2.6.4 Issue: Beginning Discussions and Exceeding the Timebox

Another issue that was observable in both project groups was that
members occasionally deviated from answering the three questions of
the daily meeting (see Chapter 4.7.2). They reported impediments to
their work but immediately began to dive into problem-solving, which
was time-consuming because of in-depth discussions. As a result, the
participants were often not able to keep the timeframe to the intended
fifteen minutes, and other members of the team, not taking part in
these conversations, seemed to lose interest and began to talk with
each other about topics not related to development [181].

From the data obtained, this problem seems to depend on the par-
ticipants” overall Scrum experience. While the timebox was exceeded
on a regular basis and with stronger deviations from the target at
the beginning and when the practical Scrum experience was low, the
exceedance rate dropped continuously as each group managed to
analyze this issue during their regular process inspections and briefed
their Scrum masters to watch for arising discussions carefully. In addi-
tion, one group made use of what Scrum experts call a "parking lot"
[199] [153], which further improved the daily synchronization of work
between members of the development team by simply "parking" topics
of arising discussions in a designated section of a whiteboard. That
way, the flow of the daily meeting was not affected by conversations

6.2 RESULTS

about specific problems that were irrelevant to the rest of the team. At
the same time, the Scrum master was able to ensure that interested
persons could address parked items after the meeting.

From the answers given in the interviews, this issue also relates
to problems described in Section 6.2.4.3 and 6.2.6.2. In case of bad
sprint preparation, for example, the development team abuses the
daily Scrum as a kind of sprint planning meeting and thus violates
the timebox by refining user stories or discussing new requirements.
In the event of a low team spirit, the reason might lie in members
commenting on every issue or having long monologs.

6.2.6.5 Issue: Low Willingness to Help

According to Wolpers, team members experiencing difficulties in
accomplishing a task over several consecutive days are a strong indica-
tion of deeper problems that manifest during the daily Scrum meeting
and stem from the fact that nobody seems capable or willing to offer
help [291].

He interprets this issue as either a result of low team commitment,
meaning that people may not trust each other or simply do not care
for the problems of others, or alternatively as an outcome of bad sprint
planning with respect to sufficient slack team (see Section 6.2.5.4).

6.2.6.6 Issue: The Daily Scrum Downgrades into a Status Report Meeting

An often misunderstood aspect of the daily Scrum is that it is consid-
ered a status report meeting from the development team to the Scrum
master, product owner, or members of higher management. It goes
hand in hand with another false assumption, which is widespread and
can even be found in various scientific publications, e.g., by Sharma
and Hasteer saying, "The Scrum master also conducts the daily meet-
ing in order to get the status of the project” [251].

However, both are wrong, as explained on the official Scrum website:

"The Scrum Master ensures that the Development Team has the meeting, but
the Development Team is responsible for conducting the Daily Scrum. The
Scrum Master teaches the Development Team to keep the Daily Scrum
within the 15-minute time-box.

The Daily Scrum is an internal meeting for the Development Team. If others
are present, the Scrum Master ensures that they do not disrupt the meeting.
The Daily Scrum is not a Status Meeting.” [247]

There is particular emphasis on this fact because status reports have
an obligatory character and usually proceed from lower to higher

159

160

SCRUM ISSUES AND CHALLENGES

management levels within a certain form of hierarchy, hence staying
in conflict with the central demand for self-organizing teams in agile
work settings. In that sense, treating the daily Scrum as a status report
meeting contributes to failing Scrum adoptions [145].

6.2.6.7 Issue: Command and Control by the Management

An even stronger derivation from the daily Scrum principle is when
the meeting is subconsciously under command and control by the
higher management, as explained by Stefan Wolpers [291].

This happens when line managers attend the daily Scrum meeting
not just for participation but to gather performance data on individual
developers in order to assume control over the team. This behavior
relates to the general issue of teams embedded in a waterfall-ish
environment and, in this example, defies the very purpose of self-
organization. Another example is supervisors waiting until the daily
Scrum is over but then reaching out to particular developers to request
more specific reporting, which unnecessarily distracts the development
team.

6.2.7 Challenge: Sprint Review

As written in Chapter 4.7.3, the sprint review is the central learning
loop in the Scrum framework for understanding customer needs.
It serves as a constant feedback-response cycle for iteratively and
incrementally adapting the development of the product and heading
it in the most valuable direction.

Based on empiricism, its proper execution is a central component
for the correct verification and validation of the sprint result. It thus
contributes a lot to the overall quality of the Scrum process.

According to Rubin, the preparation of the sprint review should
consist of five actions [226, p. 366]:

1. Determine whom to invite

2. Schedule the activity

3. Confirm that sprint work is done
4. Prepare for demo

5. Determine who does what

At first, the Scrum team should aim to get the right people into the
room to obtain the most valuable feedback. A core group is typically
invited to every review, but attendees might vary depending on the

6.2 RESULTS

implemented features. The team should not forget to focus on specific
persons whose feedback is essential for particular aspects of the sprint
work and, hence, must be invited, too.

Furthermore, because the sprint review is the only Scrum ceremony
that includes participants other than the Scrum team itself, it must
be scheduled accordingly. As a result, the determination of the per-
sons who are assumed to provide the most valuable feedback has
direct consequences for the scheduling activity because of their higher
attendance priority.

The third preparation step is to confirm that what is shown in
the review is really done, followed by the fourth and fifth aspects of
proper review preparation, namely deciding how the outcome of the
sprint will be presented and who will be assigned to which parts of
the demonstration.

Altogether, team members must be aware that leaving out one (or
more) of these aspects may result in a bad flow during the review
session, thus affecting its overall quality and, more importantly, peo-
ple’s perception of the meeting as being something valuable [226, p.
366]. These potential pitfalls will be explained in more detail in the
following identified issues.

6.2.7.1 Issue: No Discussions, No Feedback

Since the central idea of the sprint review is to obtain feedback and
check whether the team is on the right track, possibly the gravest prob-
lem is when this feedback is either not received or not incorporated
into the next sprint.

One possible reason is that customers are unwilling to participate
in the meeting, which has already been discussed in Section 6.2.2.6.
However, other issues belonging to the Scrum team itself also con-
tribute to this problem. One example is when the Scrum team has a
"we-know-what-to-build" attitude [292]. This may lead to not inviting
the stakeholders so that the review is either not conducted at all or not
used to discuss the current state of the product with the customers
but rather to seek acknowledgment.

As another example, Scrum teams have to deal with participating
stakeholders who sometimes may even be passive and unengaged in
giving feedback. In this case, passing the reins to the invited persons
is necessary to drive the meeting themselves.

161

162

SCRUM ISSUES AND CHALLENGES

6.2.7.2 Issue: Omitting the Demo for Technical Implementations

This issue occurs when the development team spends most time of
the sprint on architectural work or so-called "glue-code" [226, p. 370]
and therefore argues that it is not feasible to demonstrate the results
in the review.

At first glance, this seems reasonable, but Rubin clarifies that this
assumption is based on an inconsequent implementation of Scrum
principles. That is because the product owner must have approved
that the team will spend most of the sprint work on technical backlog
items during the sprint planning meeting. With this, he must have
understood the value of this work and, therefore, should have specified
concrete criteria of acceptance, which are essential since it is obligatory
that only complete work is presented during the review. In addition,
the definition of ready, which every item must pass to be part of the
sprint, should contain a check whether the team understands how to
demonstrate its implementation. That is why successful architectural
work can at least be presented by passing tests, demonstrating its
correctness.

6.2.7.3 Issue: Development Team Is Not Focusing on Relevant Content

According to personal experience as the product owner of both project
groups and from the answers given in the interviews, a common
problem of the sprint review is that the development team is over-
ambitious in terms of presenting what has been achieved during the
sprint and is not focussed on what is relevant for establishing valuable
discussions between the stakeholders and the Scrum team.

A typical example is well-prepared slideshow presentations, which
fail to take effect because invited stakeholders are not meant to sit
and hear but rather to have engaging and interactive discussions with
the Scrum team. On the other hand, demoing and talking about every
task accomplished is also not the right way. Instead, Wolpers suggests
focusing on telling "a compelling story at the beginning of the review
to engage the stakeholders" [292], possibly leaving out user stories or
tasks that have been necessary but are not in the spotlight of the story
being told.

Lastly, many teams seem to violate the concept of "done" and show
work that has not been finished during the sprint. Occasionally, there
might be a good reason for this, for example, if the implementation
cannot proceed further without customer feedback. However, in gen-
eral, it is not a good idea to include unfinished work because it softens
the concept of "done" as a means to ensure code quality and reduce
technical debt.

6.2 RESULTS

6.2.7.4 Issue: Treating the Review as Venue of Approval

First and foremost, the purpose of the review is to inspect the com-
pleted work and adapt development based on the feedback obtained.
That is why participants in the review not only include the whole
Scrum team but, more importantly, invited stakeholders, who can
provide valuable comments and inputs to consider for planning the
next iteration.

However, some teams misunderstand the review as being the venue
for approving or rejecting implemented features, thus degenerating
the meeting into a formal sign-off event [226, p. 372] acting as a
stage-gate similar to a sequential waterfall process. This is against
the definition of Scrum, declaring the review meeting as an informal
feedback event, which in turn means that the product owner should
approve or reject implemented items of the sprint before the actual
meeting since he occupies the central role of product leadership and
decides whether the implemented features met the definition of done,
and as part of that, its specified criteria of acceptance. This process
guarantees that only done items are part of the review meeting and
prevents discussions about approval by senior-level stakeholders or
participants, who otherwise hinder the flow of feedback.

6.2.8 Challenge: Sprint Retrospective

In his book "Essential Scrum," Rubin describes the retrospective as
"one of the most important [but at the same time] least appreciated
practices in the Scrum framework" [226, p. 375]. This assumption is
supported by the answers given in the interviews, which revealed
that the retrospective is the first of the Scrum events being ignored
or left out on purpose. However, underestimating the retrospective’s
importance for continuous improvement is a serious problem since this
puts Scrum’s foundation of empirical process control into question
and, therefore, endangers the very core of its agile philosophy. In
particular, the following issues have been identified.

6.2.8.1 Issue: No Retrospective or Low Attendance

According to Rubin [226, p. 392], the issue of neglecting the retro-
spective stems from organizational problems on the one hand. This
happens when people are assigned to multiple teams, so scheduling
conflicts could prevent them from attending the meeting. A further
example is remote participants who might find attending the meet-
ing inconvenient because of schedule but also due to the fact that

163

164

SCRUM ISSUES AND CHALLENGES

remote participation is generally limited and does not provide the
same atmosphere, presence, and feel compared to physical attendance.

On the other hand, there seems to be a lack of awareness or missing
value for the retrospective as a tool for enhancing the overall Scrum
process and the way people work together as a team. In fact, Rubin
identified that people might dissociate from participating by thinking
that anything that is not part of their particular working task (like
coding or testing) is not worth their time. In his opinion, this dis-
engagement stems from "naiveté regarding Scrum and its focus on
continuous improvement" [226, p. 392]. However, he also mentions
that an attitude that is quite the opposite could lead to the same prob-
lem. This happens when team members believe they have reached the
"perfect Scrum implementation," with no room for further improve-
ments and nothing to learn from other teammates or insights about
their own work.

6.2.8.2 Issue: The Retrospective Is Poorly Facilitated by the Scrum Master

Reoccurring poorly facilitated retrospective meetings have a rein-
forcing effect on team members with a negative attitude towards
collaborative process inspection and give substance to the belief that
participating is a waste of time. Rubin gives some examples and men-
tions "all fluff - no stuff" retrospectives, in which team members are
busy and actively discussing but do not come up with concrete in-
sights representing actionable items to consider and work on during
the next sprint.

As another example, Rubin has observed that Scrum masters might
struggle to take the leadership role in the process. This reveals itself
when team members "ignore the elephant in the room," meaning that
safety issues could prevent people from bringing up critical problems
for discussion, although they obviously have a dramatic effect on the
team.

6.2.8.3 Issue: Depressing and Energy-Draining Retrospectives

Neglecting the retrospective also stems from repeated negative energy-
draining experiences that finally become associated with this meeting.
This might be the case when people do not feel comfortable, for
instance, when being confronted with results from a bad sprint, which
makes them relive the misery [226, p. 393].

Further examples include finger-pointing and mutual recriminations
between team members, which is a behavioral pattern that is of utmost
importance to be prevented from developing in the first place, or when

6.2 RESULTS

retrospectives degrade into therapeutic complaining sessions with a
low desire to improve, but to complain about frustrating aspects.

6.2.8.4 Issue: Incorrect Handling of Identified Insights

Beforehand, Section 6.2.8.2 mentioned "all fluff, no stuff " retrospec-
tives, in which teams actively discuss but do not come up with concrete
things to improve. However, even if insights have been generated and
the team also specified actions for implementing these insights, it may
fail in two aspects.

At first, Rubin mentions that teams might get overly ambitious
and, as a result, set unrealistic goals for improvement. This leads
to disappointment once the team realizes that it will not be able to
achieve what its members proposed to do.

Second, and according to Rubin, the biggest issue of the retrospec-
tive is probably when teams actually generate insights and specify
realistic actions for improvement during the next sprint but then fail
to implement or work on them. With this, the retrospective itself may
be experienced as productive, whereas there is no actual consequence
for improvement.

This problem could also be observed in both project groups. While
the retrospectives themselves were positive, and the teams were able
to generate valuable insights, including concrete actions for the next
sprint, the members forgot to actually work on these tasks regularly.
During the investigations, it turned out that unconsciously, these
tasks have not been considered equal to normal sprint work since
implemented features directly impact the sprint outcome and the
increment that will be demonstrated in the sprint review. In contrast,
work spent on identified process improvements is not as visible and,
therefore, felt less valuable.

6.2.9 Challenge: Understanding Scrum

For the sake of research clarity, it should be noted that this section
about the challenge of understanding Scrum is not based on empirical
research but solely on personal experience obtained during the last
tive years. It therefore does not reflect any scientific results but only a
personal opinion.

During market research as part of a European funding project for
the software system presented in Chapter 9, there was the chance to
speak with more than 50 Scrum masters, all of whom held one or more
official Scrum certifications. During these conversations, two things
could be noticed over and over again. First, a substantial percentage

165

166

SCRUM ISSUES AND CHALLENGES

of these certified Scrum masters seemed only to have a superficial
knowledge of the underlying agile principles on which Scrum is
based. Second, the Scrum masters reported that there are sometimes
substantial deviations from the ideal Scrum process when theory is
put into practice. However, when asked for reasons in more detail, it
turned out that the people could not specify them.

The following sections try to give possible answers to both effects.

6.2.9.1 Issue: Certification as the Single Source of Knowledge

The institution Scrum.org was founded by Ken Schwaber as an official
place for "training, resources, assessments, and certifications to help
people and teams solve complex problems" with Scrum [235]. While
certification generally is a good concept to assure a certain quality of
teaching and likewise to test someone for having obtained profound
knowledge, there should be skepticism in terms of the Scrum master
certification program.

That is because, from personal experience, there seems to be a
misleading trust in the effectiveness of this program, in the sense of
a guarantee that a certified person has indeed obtained substantial
knowledge. While this is just a personal hypothesis and far from
scientifically proven, the following numbers and explanations should
at least support this opinion.

The "Professional Scrum Master" certification program (PSM) of
Scrum.org is divided into three parts, with independent certifications
(PSM 1, PSM 1II, and PSM 1III) and an increasing degree of difficulty.

All assessments are carried out as online exams. In terms of PSM I
and PSM II, the exams consist of multiple choice, multiple answers,
and true/false questions, of which 85% must be answered correctly to
pass the certification. In the case of PSM I compared to PSM 1I, signifi-
cantly more questions (80 vs. 30) must be answered in a shorter time
(60 vs. go minutes). However, these questions are primarily based on
the Scrum Guide, whereas the PSM 1II questions go deeper and cover
two additional focus areas (including the scaling framework Nexus).
The most difficult exam, however, is the PSM 1II certification, which
timeframe is 120 minutes and not only requires correctly answering
85% of 30 multiple choice questions but also writing an essay in which
a solution to a complex problem from the field must be outlined and
solved.

The personal criticism is that even though the PSM I certificate is
relatively easy to obtain and is essentially only based on the knowledge
of the Scrum Guide, it is nevertheless apparently seen in the industry
as a sufficient quality feature for the professional implementation of
Scrum. This observation is supported by job advertisements for Scrum

6.2 RESULTS

masters, which usually only ask for the PSM I qualification, and also
by the following certification statistics.

Until the end of 2020, a total of 355,224 PSM program certifications
have been successfully completed worldwide. However, when looking
at the distributions, extreme differences become apparent, as 345,318
of these certifications fall on PSM I (approx. 97%), 9,032 on PSM 11
(approx. 2.5%), and only 874 on PSM III (approx. 0.25%) [244].

Accordingly, the "Scrum Master Report" of 2019 showed that 55%
of the investigated professional Scrum masters said to have only one
certificate. In 53% of all the survey participants, this has been the
entry-level PSM I certificate [243].

However, PSM I should be just the starting point for succeeding
certifications to guarantee a certain level of quality within the industry
and professional Scrum adoption. Maybe for this reason, Scrum.org
describes PSM III not only as "highly recognized in the industry" but
also as "the only Scrum certification based on testing of knowledge
and understanding," which makes it "significantly more valuable than
available alternatives" [245].

6.2.9.2 Issue: Scrum as a Framework Provokes ScrumButs

The second issue relating to the challenge of understanding Scrum
results from the fact that it is considered a framework, which opens
itself to modifications, as described in Chapter 4.8.

In particular, framework means that not everything is prescribed to
the smallest detail, so teams still have room for adapting Scrum to
their own needs and personal preferences. User stories are an example
of that (see Section 4.8.1). Although they are extremely popular, they
are not part of Scrum, and teams may decide to use other specification
techniques instead.

Besides filling the gaps left out by the framework, there might
also be variations to some aspects that actually are part of Scrum.
For example, it may be better for some teams to neglect estimating
items in the backlog. This may seem surprising since estimation is
a recommended technique for limiting the risk of being unable to
deliver an increment at the end of a sprint, which might happen if
items turn out to be more complex than expected. However, estimation
alone adds neither customer nor business value to the sprint outcome.
Hence, experienced teams may skip estimation completely to further
speed up the development process, thus delivering more valuable
features within the same amount of time without negative effects.

However, the crux is that leaving room for modifications also carries
the risk of making adjustments that are indeed harmful. With the is-

167

168

SCRUM ISSUES AND CHALLENGES

sue of not understanding Scrum properly, chances are high that these
teams are just cherry-picking the "simple" elements but neglecting
to take full advantage of all the other components, which may need
more effort and willingness to implement. As a result, core compo-
nents are rejected and replaced by workarounds, whereby justification
sounds rather like an excuse. This problem is very common [114] and
referenced as "ScrumBut" [146] represented by a statement following
a particular syntax:

ScrumBut - Reason - Workaround
Scrum.org gives the following examples of ScrumButs: [246]

"We use Scrum, but having a Daily Scrum every day is too much overhead,
so we only have one per week.

We use Scrum, but Retrospectives are a waste of time, so we don’t do them.”

According to the Scrum inventors, a ScrumBut usually results from
an arising problem during the adoption of Scrum that seems too hard
to fix, so it is retained "while modifying Scrum to make it invisible
so that the dysfunction is no longer a thorn in the side of the team"
[246]. That way, ScrumButs are known for masking more significant
problems whose solution is often inconvenient because of existing
work processes.

Therefore, when adapting Scrum, it is crucial to consciously address
arising challenges and not eliminate them by ScrumButs as a quick
fix. Instead, teams need to assess their agile maturity level since not
all modifications to Scrum are generally bad, as described above. In
any case, deciding whether a modification is reasonable requires a
high degree of self-reflection and honesty about a team’s abilities and
weaknesses.

6.3 SUMMARY

The following findings can be derived from the results above.

On the one hand, it becomes apparent that the challenges in im-
plementing Scrum are manifold. For example, external factors such
as the working environment or the grown company structures can
significantly influence the practice of Scrum. This is particularly ev-
ident when the supposedly agile process actually corresponds to a
waterfall-like procedure, which is reflected, for example, in the fact
that plans and documents continue to drive the development process.

However, evolved structures can also be challenging with regard
to the Scrum role model. In particular, the role of the product owner

6.3 SUMMARY

should be mentioned here, whose challenges and problems show
strong interactions with other Scrum components. For example, filling
this role with previous business analysts or classic project managers
can create hierarchies within the Scrum team and give developers less
room for their own decisions, e.g., in the form of self-organization of
their work. The importance of this role, in particular, should not be un-
derestimated because resulting problems can have far-reaching effects,
as illustrated in Figure 6.2 on Page 139. For example, proper owner-
ship of the product is essential to create clear accountability regarding
backlog management, counter problems in prioritizing requirements,
and establish clear acceptance criteria.

Furthermore, the results clearly show how closely the individual
components of Scrum are interlinked because problems in one area
can have a direct impact on other parts. For example, insufficient
alignment between the product owner and the development team can
manifest itself in poor sprint planning, which leads to an overload
of the development team during the sprint due to unscheduled slack
time. As a consequence, the retrospective can be omitted in order to
gain additional time for achieving the sprint goal, which, however,
deprives the team of the opportunity for self-reflection in order to
better deal with these problems the next time.

In summary, the close interlocking of the Scrum components de-
mands a high degree of caution and personal responsibility from
a team so that problems do not build up and thus develop into a
negative spiral.

Before an approach for better tool-side support of this interlocking
is presented in the further course of this thesis, the following chapter
is dedicated to examining the existing Scrum tools to understand if
and how current applications address the identified problems.

169

STATUS QUO OF SCRUM TOOL SUPPORT

This chapter addresses the second research question (RQ 2), which asks
about the status quo of Scrum tool support. Specifically, and following
the results of the previous chapter, the investigations include:

* examining which tools are commonly used by Scrum teams,
* how they differ in terms of offered functionality,

e and how this functionality aligns with the Scrum ruleset and
relates to the challenges and issues that have been presented
before.

Similar to the previous chapter, details on the respective research
methods will be shown first before the results are presented in aggre-
gated form in several individual subchapters representing the different
aspects of RQ 2 mentioned above.

7.1 RESEARCH METHOD DETAILS

As shown in Table 7.1, a combination of three research methods was
chosen to investigate the different aspects of RQ 2 from various angles.

RESEARCH METHODS SUBJECT MATTER

. . Surveys
Literature Review y

Scientific Papers

Field Studies PG MAGIC
PG MAGICIAN
Usability Analysis Heuristic Evaluation

Table 7.1: Research methods for investigating the status quo of Scrum tools

First, a literature review should identify and gather data about the
landscape of tools that Scrum teams use to organize their develop-
ment work. This is followed by two field studies where some of these
tools have been used in practice to gather hands-on experience while
comparing their functionality against the Scrum ruleset. Lastly, these
findings have been combined with results from a usability analysis, in
which a selection of different tools, particularly designed for manag-

171

172

Agile surveys

Scientific papers

STATUS QUO OF SCRUM TOOL SUPPORT

ing agile Scrum projects, have been investigated regarding usability
problems concerning the previously identified challenges and issues
presented in Chapter 6.

7.1.1 Literature Review

Two types of literature have been used to investigate how Scrum teams
incorporate different tools to organize their development lifecycle and
understand the landscape of tool variety.

The first type represents statistical surveys providing information
on a global scale on general aspects of agile adoption or Scrum prac-
tices in particular. One survey with particular interest for this thesis
is the "Annual State of Agile Survey" conducted by CollabNet Ver-
sionOne, which, after its start in 2007, has emerged as the largest,
longest-running, and most widely cited agile survey in the world
[271]. Every year, the survey investigates both the challenges faced
by organizations jumping on the agile bandwagon and the benefits
that the agile development process has brought them. It also explores
the usage of agile principles and specific tools as well as incorporated
techniques for scaling enterprise agility. By gathering data annually
from all over the world, the survey aims to "provide insight about
the adoption of agile; what new practices are emerging; and how
the culture of agile is changing" [270]. Behind this background, it is
important to know that the survey is not consistent over the years
but shows certain variances in methodology, and hence, comparisons
between data sets of different years have limited comparability, which
must be taken into consideration while interpreting the data. Another
point of criticism is that the reports mainly show results in percent
value, so whereas the overall numbers of respondents are transparent
to the reader, it remains unclear for individual questions whether
respondents may have skipped it. However, for identifying which
types of tools are used by agile teams, the reports are well-suited and
clearly show unquestionable results.

The second type of literature represents scientifically published papers,
which, in contrast to surveys, focus on specific questions about agile
tool support. However, it must be said that research in the area of agile
tool support is widely unexplored. In particular, it is more focused
on providing selection mechanisms of existing tools to help Scrum
teams in decision-making, e.g., [261] and [275], instead of analyzing
whether the tools existent are suitable and built according to the agile
values or the rules of the Scrum framework. In this respect, it was
surprising that not a single paper about usability aspects of tools and
their consequences for agile adoption could be found, which is why
this thesis is apparently the first to do so.

7.1 RESEARCH METHOD DETAILS

7.1.2 Field Studies

As explained in Chapter 6.1.2, the project groups MAGIC and MA-
GICIAN were used for field studies and to gain hands-on experience
about how various tools integrate with the Scrum development pro-
cess. Each group used the same set of tools, which are as follows.

The first is the most basic analog toolset, pen and paper. The product
backlog consisted of handwritten index cards representing user stories.
The sprint backlog was implemented as a task board, using a white-
board and sticky notes for the individual tasks, which that way could
be easily moved between the columns, while the whiteboard allowed
to add handwritten notes for special notations, such as annotating
impediments or temporal relations between tasks.

Second, the project management software JIRA was chosen for two
reasons. First, this tool obtains clear market leadership and is the most
widely used and established application for managing agile software
development projects [270]. As a second reason, the interviews, as well
as personal discussions with Scrum coaches, gave a strong indication
that despite the fact of claiming market leadership, Jira is explicitly not
recommended by many agile experts but is seen as a "necessary evil"
[200] because of missing other digital tool alternatives. Because of this
apparent contradiction, Jira was considered interesting to investigate.

Lastly, the tool ScrumDo was chosen for comparing Jira’s functional-
ity against a new competitor and promising application, which was
advertised for including novel features explicitly designed for Scrum.

In the case of PG MAGIC, the students worked on different top-
ics over the course of one year. Hence, tools could be switched in
between, thus allowing a natural break and fresh start between the
independent sub-projects. As a result, each tool was used on average
for four months. This was different in the case of PG MAGICIAN,
which had only the single project goal of developing and evaluating
a novel Scrum tool by incorporating it into the group’s own devel-
opment process from the very beginning. For that reason, the three
tools investigated were used for only one month each during PG
MAGICIAN's initial phase of Scrum adoption.

For collecting data, the regular process inspection interval was used,
i.e., both project groups decided to include a fixed "tool review" into
the sprint retrospective, thus elaborating concerns about the user
experience and usability.

173

174

The analysis used a
fictional scenario to
simulate a software
development project

STATUS QUO OF SCRUM TOOL SUPPORT

7.1.3 Feature Analysis and Heuristic Evaluation

The field studies identified limitations that formed the basis for the last
component of the investigation of the second research question, which
was a profound feature and usability analysis of four digital software
development management tools, as shown in Table 7.2.

TOOL WEBSITE

Jira Www.jira.com
ScrumDo www.scrumdo.com
VersionOne www.collabnet.com
IceScrum Www.icescrum.com

Table 7.2: Investigated Scrum tools

For the same reasons as during the project groups, Jira was selected
as being the market leader and ScrumDo for being a promising com-
petitor with features that have been particularly designed for Scrum.
In addition, VersionOne was chosen because it is a widely used agile
project management tool and regularly gets the highest recommenda-
tion rates in the annual "State of Agile Reports" [271]. Lastly, IceScrum
was chosen because, on the one hand, it represents a European repre-
sentative among the otherwise American vendors and, on the other
hand, it has positioned itself as a direct competitor to Jira, but with the
distinction of being a "true agile project management tool." Therefore,
among other possible candidates, it was the most promising for the
analysis to derive a status quo of tool support for Scrum.

As preparation for the tool analysis, a fictional project scenario was
created, simulating the development of a mobile shopping list applica-
tion based on a simple set of requirements. As shown in Table 7.3, the
core functionality of this mobile application is assumed to only consist
of managing various shopping lists, which means that the future user
can create/delete lists and add/remove items to/from those lists.

Notably, this scenario shows that the development of even this
simple set of features must be planned because of temporal relations
between different development requirements. For instance, it would
make sense to work on frontend aspects at first and start to design
UI mockups because visual layouts with different navigational flows
usually have consequences on the optimal way to store and retrieve
data from the database, hence may affect the information architecture.
The same holds for the selection of the UI framework because various
frameworks work best with certain types of databases for the backend
of the application. Testing, on the other hand, depends on the kind
of test. For instance, usability testing regarding the user interface can

7.1 RESEARCH METHOD DETAILS

ASPECT REQUIREMENT

Create shopping list
Core functionality Delete shopping list
Add item to shopping list

Remove item from shopping list

UI design mockup and navigation flow

Frontend
Framework selection
Backend Database setup
Information architecture
Testing and Conducting user tests
publishing Publishing the app in stores (Android, iOS)

.. Location-based notifications about deals
Visionary features

Product availability and nearest stores

Table 7.3: Requirements of the simulated mobile shipping list project

be done upfront in any development work using throwaway paper
prototypes. In contrast, software testing requires at least parts of
the real system, e.g., small individual units (unit testing) up to the
whole implemented system (acceptance testing). Lastly, the scenario
also shows that, typically, development is never complete. There is
always something to improve or visionary features to implement in the
future. In this example, the mobile shopping list application could
be enhanced by providing location-based notifications about special
deals at stores near the user’s current location. As another example, a
shopping list may visualize the availability of products and suggest
the nearest store to buy certain items from the list.

Using this scenario as a starting point for the investigations of the
four applications, the feature analysis started by simulating actions of
a common sprint cycle scenario, including:

1. the necessary steps for preparing a sprint and managing require-
ments, such as creating user stories in the backlog, grouping
them, specifying acceptance criteria, attaching additional ma-
terial (e.g., images) to a story, as well as prioritizing stories
according to the Scrum rules concerning proper management of
the product backlog,

2. actions of the sprint planning event, such as displaying the back-
log in a group setting, estimating stories with story points, se-
lecting stories for a sprint, defining a sprint goal, creating tasks
and assigning developers,

175

176

Heuristic evaluation

STATUS QUO OF SCRUM TOOL SUPPORT

3. digital support of the daily meeting, in which each developer
answers the three questions "What have I done yesterday?",
"What will I do today?", and "What are my impediments?",

4. possibilities to groom the backlog, so that developers and the
product owner are supported in refining stories collaboratively,

5. support of the sprint review event by presenting what has been
achieved in the sprint and collecting new requirements for the
next iteration,

6. and features for conducting a sprint retrospective, such as collect-
ing data like emotions or personal opinions about certain aspects
of the development process, defining insights and process im-
provements, and considering them for the next sprint during the
succeeding sprint planning event.

While paying attention to comparing the offered functionality to
the Scrum issues and challenges presented in Chapter 6, the usability
analysis was conducted with heuristic evaluation as initially presented
by Jakob Nielsen and Rolf Molich [193]. In this "discount” inspection
technique, usability experts evaluate user interfaces against heuristic
principles, representing "rules of thumb" as a well-established and
proven set of guidelines that tend to result in good interface design.

Since Nielsen had shown that the percentage of found usability
problems ranges only between 20% and 51% per individual evaluator,
the findings from four evaluators® have been aggregated. According to
Nielsen, this is the number with the optimal ratio of benefits to costs
and sufficient to identify the most significant problems because of the
logarithmic nature of the proportion of usability problems found by
various numbers of evaluators (see Figure 7.1) [188][192].

100%

75%

50%

Problems Found

25%

Proportion of Usability

0%

0 5 10 15
Number of Evaluators

Figure 7.1: Heuristic evaluation: costs vs. benefits [189]

1 Myself and three selected computer science master students with HCI focus area and
profound knowledge about usability inspection methods.

7.1 RESEARCH METHOD DETAILS

For the inspection of the four Scrum tools, Nielsen’s modified set of
10 heuristics was used [189], which were initially published as follows:

1.

10.

Simple and natural dialogue: Dialogues should not contain infor-
mation that is irrelevant or rarely needed. Every extra unit of
information in a dialogue competes with the relevant units of in-
formation and diminishes their relative visibility. All information
should appear in a natural and logical order.

. Speak the user’s language: The dialogue should be expressed

clearly in words, phrases, and concepts familiar to the user
rather than in system-oriented terms.

. Minimize the user’s memory load: The user should not have to

remember information from one part of the dialogue to another.
Instructions for the use of the system should be visible or easily
retrievable whenever appropriate.

. Consistency: Users should not have to wonder whether different

words, situations, or actions mean the same thing.

. Feedback: The system should always keep users informed about

what is going on through appropriate feedback within a reason-
able time.

. Clearly marked exits: Users often choose system functions by

mistake and will need a clearly marked "emergency exit" to leave
the unwanted state without having to go through an extended
dialogue.

. Shortcuts: Accelerators - unseen by the novice user - may often

speed up the interaction for the expert user such that the system
can cater to both inexperienced and experienced users.

. Good error messages: They should be expressed in plain language

(no codes), precisely indicate the problem, and constructively
suggest a solution.

. Prevent errors: Even better than good error messages is a careful

design that prevents a problem from occurring in the first place.

Help and documentation: Even though it is better if the system can
be used without documentation, it may be necessary to provide
help and documentation. Any such information should be easy
to search, be focused on the user’s task, list concrete steps to be
carried out, and not be too large.

Since heuristics are not necessarily rigid and allow a certain degree
of interpretation, this evaluation technique is an informal method of
usability analysis. Therefore, it may deliver different results than an
empirical testing of the software with real users. For instance, Law and
Hvannberg have compared the effectiveness of a heuristic evaluation

177

The Nielsen
heuristics

178

Analog tools

STATUS QUO OF SCRUM TOOL SUPPORT

with usability testing and concluded that heuristic evaluation will find
between 30% and 50% of problems found in a concurrent usability
test [156]. However, while Jeff Sauro has echoed these findings, he has
also shown that heuristic evaluation will, on the other hand, uncover
the most common issues (in his report, he speaks about 100% of the
top ten most common problems and 75% of the twenty most common
issues), thus making heuristic evaluation a valuable method to deliver
quick insights about fundamental usability concerns.

7.2 RESULTS

The following sections present the results obtained from the different
studies explained above.

7.2.1 Tool Types and Usage Trends

First of all, tool support for agile teams can be divided into two main
categories, which are analog and digital tools.

Analog tools utilize physical objects, commonly index cards with
handwritten notations, for specifying product requirements, e.g., in
the form of user stories. As a result, the product backlog is represented
by a prioritized stack of index cards, whereas the sprint backlog is
usually visualized as a task board in which tasks are represented by
sticky notes that are associated with particular stories that previously
have been selected for the sprint (see Figure 7.2).

Figure 7.2: Analog task board?

2 Source: https://medium.com/@sashabondareva/

scrum-task-board-offline-or-online-b341719fa472

https://medium.com/@sashabondareva/scrum-task-board-offline-or-online-b341719fa472
https://medium.com/@sashabondareva/scrum-task-board-offline-or-online-b341719fa472

7.2 RESULTS

This choice is because user stories contain more information, like
a title describing what the story is about, a short description in the
user story format, acceptance criteria, or notes added to the story to
clarify details. In contrast, a task usually consists of a single sentence
description plus an assignment to one or more team members. In
addition, sticky notes are particularly suitable because tasks must be
moved between different columns of the task board, depending on the
actual state. Therefore, attaching and re-attaching is well supported
because of the stickyness of the note.

Due to their flexibility and since analog tools are ubiquitous, they
are still the first choice of many Scrum experts. However, there is a
clear downward trend. While 44% of agile projects used analog tools
in 2013 [270], this number continuously decreased to 28% in 2018 [271].
Given these numbers, it is important to know that analog tools are
seldom used alone but rather in combination with digital tools, which
will be explained in the following.

In contrast to analog tools, digital tools of agile Scrum teams can be
further divided and broadly fall into the following categories:

* general-purpose office tools (spreadsheets),
e application lifecycle management,
e agile application management,

¢ and lightweight web-based project management tools.

Spreadsheet applications run locally, like Microsoft Excel, or within
the cloud as web applications, such as Google Docs, whereby the cloud
versions allow a simplified collaboration because of shared documents
between different users. Since spreadsheets are general-purpose ap-
plications initially designed for different calculation purposes in the
context of office work, teams usually use templates to incorporate
the necessary features for managing the Scrum process. These range
from being very simple, like the one presented by Mike Cohn [58]
(see Figure 7.3), to sophisticated commercially available documents
supporting complex reports and process analysis features.

From a user experience point of view, spreadsheets are characterized
by low interactivity. While documents can be customized to a great
extent (especially by using macros), everything has to stay within the
range of the spreadsheet metaphor, consisting of lists and tables. As
a result, the application logic of the process template is limited to
the logic of the spreadsheet application itself, so user inputs are not
provided by interactions like button clicks or drag-drop functionality
but primarily via textual data operations.

179

Digital tools

Spreadsheet
applications

180

ALM applications

STATUS QUO OF SCRUM TOOL SUPPORT

ID |Theme As a/an Iwantto ... so that ... Notes Priority Status
2 Game moderator ~ Create a new game by enteringa | can start inviting If games cannot Required done
name and an optional description = estimators be saved and

returnd to, the
description is
unneccessary

3 Game moderator Invite estimators by giving thema We can start the The url should done
url where they can access the game be formatted so
game that it's easy to

give it by phone

5 Game estimator Join a game by entering my name | can participate done
on the page | received the url for

6 Game moderator Start a round by entering anitem We can estimate it done
in a single multi-line text field

8 Game estimator See the item we’re estimating I know what I'm done
giving an estimate
for

40 Game participi Ahways-have-th ds-in-th Replaced with A08 Fode
cl Htipl because | didn’t want
the story to talk about
»the same order” as that

might be a Ul
implementation detail
35 non- user Have the application respond I don’t get bored done
functional quickly to my actions
36 non- user Have nice error pages when | can trust the done
functional something goes wrong system and its

developers

Figure 7.3: Spreadsheet product backlog [58]

Despite these limitations, agile teams widely use spreadsheet appli-
cations, with a slight downward trend over the last five years. With a
three-quarter share in 2014 and 2015, the value decreased to a share
of approximately two-thirds in 2018 [271] and one-third in 2022 [300].
However, the annual state of agile surveys did not investigate the
actual use case of spreadsheet application within agile teams, which
means it remains unclear whether the investigated teams use spread-
sheets as the central component for managing the whole development
process or just for particular aspects, like for instance calculating
project budgets. Nevertheless, what can be shown is that each year,
spreadsheet applications out of all tools mentioned by agile teams
have by far the lowest rate of future usage plans and belong to the
tools with the lowest satisfaction or recommendation rate [271].

In contrast to spreadsheets, application lifecycle management (ALM)
applications are much more specific in terms of providing extensive
features for tracking and organizing the project management pro-
cess, such as planning resources and scheduling of tasks, monitoring
and visualizing progress, e.g., through Gantt charts, as well as rich
functionality for status reporting or data analysis.

As identified by agile surveys, Microsoft Project and Microsoft TFS3
(see Figure 7.4) are the most commonly used applications of this
category and are used by approximately one-quarter of agile teams
[271].

MS Project is a standalone application that strongly resembles MS
Excel, not only in terms of the graphical user interface design but also
in terms of the user experience and spreadsheet-like interaction.

3 Nowadays known as "Azure DevOps Server"

7.2 RESULTS

ﬂ Visual Studio Team Foundation Server 2015 / Fabrikam Fiber

HOME CODE WORK BUILD TEST

Backlogs Queries

¢

Initiatives Stories
I pics Backlog Board I .
acklog oarn dapping Off Parents Show In progress items Show [
I Features
1 Stories New] = Create query Column options i Filter Y
4 Current Type User Story - *
lteration 1 Title Add
4 Future
fteration 2 rk Item Type Title State Value Area
fteration 2 Initiative 4 || Suppoert customer mobility in all services Mew Business
Epic 4 I World-class customer suppaort New Business
Feature 4 I Mitigate impact of low-coverage areas New Business
User Story I Data cache improvements New Business
User Story I Performance boost in low-bandwidth modems New Business
Feature 4 I Use customer data in targeting service expansions New Business
User Story I Self-report coverage dead zones New Business

Figure 7.4: Microsoft TFS [178]

In contrast, Microsoft TFS is not a standalone application but a
software platform that provides different services and connects, for
instance, MS Project to other applications of the Microsoft software
development environment. As an example, this integration allows to
associate programming code written in the IDE Visual Studio with tasks
that are managed by MS Project and also to include these references as
status reports in source code management modules of TFS to establish
a link between data of the project management tool and the version
control system.

From the user experience perspective, ALM applications such as Mi-
crosoft TFS are characterized by complex functionality and a rich but
cluttered feature set often provided through connected other services.
Because of this, these tools require more significant configuration
effort and have a steep learning curve. Hence, users need a certain
amount of training before using them.

The third category of digital tools is agile ALM applications, which -
as the name suggests - differentiate from traditional project manage-
ment applications in terms of claiming to offer an agile-specific set
of features, which is, for instance, characterized by functionality for
enhanced team collaboration and self-organized management of tasks.
When looking at these applications, it is interesting to see that some of
them are promoted as "general agile" tools (e.g., Jira, VersionOne, CA
Agile Central), whereas some others address a particular methodology
(e.g., GitScrum, ScrumDo).

Of all agile project management tools, Jira (see Figure 7.5) is by far
the most frequently used application for managing the development
process and is utilized by 65% of all agile teams [271].

181

Agile ALM
applications

182

Lightweight project
management apps

STATUS QUO OF SCRUM TOOL SUPPORT

® © ® jirateamsinspace.com

¢ Q Teams in Space Board Release
Software project

Backlo y
g g Q QuickFilters v
0 Board
T0DOS INPROGRESS 5 CODE REVIEW 2 DONE&
&2 Reports
o Engage Jupiter Express for Requesting available flights Register with the Mars Homepage footer uses an
& HEEEm outer solar system travel is now taking > 5 seconds. Ministry of Revenue inline style- should use a class
€9 Components ‘SPACE TRAVEL PARTNERS
MA s Tis-25 §@) A Ts-8 @ A TIS-1 A TiS-68
i’ [E € oa & 0Oz - (¢]
<> Repository Create 90 day plans for all Engage Saturn Shuttle Lines Draft network plan for Mars Engage JetShuttle
departments in the Mars Office for group tours office SpaceWays for travel
5 Additem
|SPACE TRAVEL PARTNERS |SPACE TRAVEL PARTNERS
£ settings oY s Tis-12 Aa Tis-15 @) A Tis-15 @ DAs Tis-23 @

Engage Saturn Shuttle Lines
for group tours

Establish a catering vendor
to provide meal service

Engage Satur's Rings Resort
as a preferred provider

e PAGE TRAVEL PARTNERS)
DA ns-17 @ A ns1s @ £ ns1s @

Establish a catering vendor
to provide meal service

Engage Saturn Shuttle Lines
for group tours

Enable Speedy SpaceCraft
as the preferred

Figure 7.5: Jira*

Moreover, the annual State of Agile survey identified Jira and Ver-
sionOne as the tools with the highest recommendation rate. Therefore,
because these tools have been explicitly designed for supporting agile
processes, this category has been the focus of research concerning the
status quo of Scrum tool support for this thesis.

Lastly, another category of tools emerged over the last years and
can be referenced as lightweight project management web apps. These
applications are characterized by a simpler set of features and, thus, do
not provide a solution for all but only for particular aspects of project
management with aesthetically pleasing and modern user interfaces.

Typical representatives of this category are applications like Trello
(see Figure 7.6), Asana, and Monday, which are all concerned with
managing user tasks.

Team Goal Setting Central vorsce | [@Teeloine Free ~ © oftentin (NP PFBE =

Goal 1: Grow Customers By 25% Goal 2: Reduce Office Supply Costs Goal Template Done (Q12019) Done (Q4 2018)
— By 16%
§ Trello Tip: Keep a list "template" that o § o
Trello Tip: Set S. M. A. R. T Goals -— — — a— Trello Tip: Put finished projects and Trello Tip: Create new "Done” lists

you can copy and rename for each

(Click for more info) new goal

closed goals here. for each quarter to build a history of

accomplished goals.

Trello Tip: Card labels! What do they
mean? (Click for more info)

-—
Hire 5 new people for 2019!

€69

Goal Stakeholders

Goal Stakeholders

. , ‘o Goal Stakeholders
- |8Ee?

Current Progress Towards "Reduce

Office Supply $$ By 15%

-—
Reduce total team printing volume

Y 20% 6 a2

-—
Current Progress Towards Goal

Current Progress Towards "Grow

Customers By 26%"
€9

Launch customer referral email
program.

CEEEm- @@

-—
Trello Tip: Cards can summarize
specific projects and efforts that
your team is working on to reach the
goal.

Trello Tip: Try these 5 team-building
exercises for setting goals! (Click for
more info)

LAl

-—
Negotiate loyalty discount with
supplier for new fiscal year

892

Figure 7.6: Trello>

4 Source: https://www.atlassian.com/de/software/dev-tools
5 Source: https://trello.com

https://www.atlassian.com/de/software/dev-tools
https://trello.com

7.2 RESULTS

In this connection, the objective of Trello is to use boards consisting
of freely definable columns representing statuses and containing cards
that may represent any arbitrary type of item. With this flexible con-
cept, the application applies the concept of "cards in columns" to a
wide range of scenarios. For these, it also provides many templates,
e.g., for tracking interview studies, managing publishing processes,
conducting heuristic evaluations, and even wedding planning. Among
many others, there are also templates for agile contexts, such as sprint
backlogs visualized as task boards.

In contrast to Trello, Asana and Monday (see Figure 7.7) do not
make use of cards that are moved between different columns but
instead focus on highly customizable lists and tables, which also may
be used for a wide range of application scenarios.

Project planning 288 -

Next steps

y st i meline Team
New feature release (@Y @ “ n May 08 - June 09 #Product

| Conference in New York (@Y “ May 05 - May 23 #0Ops

| weostereaese o5 Wiy e 2

Milestones

Hie new poduct manager o I o o9 e 22 e
[~}

Approve Q3 budget 3 n June 02 - June 10 #Finance
| Launch campaign [@Y ! June 02 - June 24
= a g —

Figure 7.7: Monday®

Regarding suitability for specific tasks, these kinds of applications
are a two-edged sword. On the one hand, they provide great flexi-
bility due to their customization options. On the other hand, there
are clear limitations because of the general-purpose design, which
is nonetheless restrictive in terms of the underlying architecture and
design metaphor. For this reason, these applications may not have
been identified by surveys and reports as commonly used by agile
teams. Nevertheless, they are mentioned here because, in the case of
the conducted interviews as part of this thesis, many of the respon-
dents referred to actually using these types of applications for specific
tasks, especially in situations when the main process management
application is either not supporting a particular use case at all or
provides an unsatisfactory user experience so that teams want to gain
benefit from the applications’ simplicity.

6 Source: https://monday.com

183

https://monday.com

184

STATUS QUO OF SCRUM TOOL SUPPORT

7.2.2 Limitations of Today’s Agile ALM Tools

What features do agile ALM tools offer? Which parts of the Scrum
framework are covered? More importantly, are there any aspects that
are missing?

These questions have been the rationale behind the feature analysis
and heuristic evaluation of four agile ALM tools (see Section 7.1.3),
from which two have also been tested in practical application during
field studies in the project groups.

Based on these findings, this section will present usability concerns
and fundamental limitations regarding the given features and how
they contradict the given Scrum rules and agile philosophy. By draw-
ing connections to the previously identified challenges and issues
of Scrum, a status quo of Scrum tool support will be derived and
presented at the end of this chapter.

7.2.2.1 Terminology: The Importance to Speak the User’s Language

Violations against the Nielsen heuristic "Speak the user’s language"
[193] have mainly been found in Jira, VersionOne, and ScrumDo. In
this context, it is essential to know that the gravity of inappropriate
language depends on the actual consequences for the user. For in-
stance, it may result in relatively small usability problems affecting
how the user can solve a particular task, but moreover, it may also give
a false picture, which is misleading him or her on a more substantial
level of understanding.

For example, ScrumDo does not use the term "backlog item" but
instead speaks of "cards" as items in the backlog. This is considered a
minor problem because of how a backlog is managed without digital
tool support, which is by using physical cards, as explained in Section
7.2.1. Thus, although "card" is not Scrum terminology, it is well-known
and actually may help former analog Scrum team members orientate
themselves. However, the more important point is that the term "card"
is descriptive and has no evaluative character.

In contrast, Jira describes all items of the backlog as "issues," which
is a term with a negative connotation’. In this case, the violation of
the heuristic can be considered a severe problem because treating
backlog items as something inherently problematic conveys the wrong
message and is against the core agile value to actually welcome changes
of product requirements.

These examples should show that not speaking the user’s language
may lead to minor, but also to major usability problems [187] and

7 The term "issue" stems from Jiras background as a bug tracker application.

7.2 RESULTS

therefore should be avoided carefully. Although wrong terminology
may have no impact on persons having considerable Scrum experience,
it may nevertheless unnecessarily affect novices on a subconscious
level when trying to learn the agile philosophy. However, it should be
noted that this assumption is based on personal experience and not
on scientific evaluation. However, it stems from witnessing hundreds
of oral student exams, where the results clearly showed that students
using correct terminology also better understood the underlying re-
lationships and rules of the subject matter. In contrast, students who
had not internalized specific terms often could not explain facts and
important coherences. Hence, the same could be true for learning
Scrum properly. Therefore, using the correct Scrum terminology is
considered important.

7.2.2.2 Complexity and Consequences for Agility

Three of the four agile ALM tools showed massive complexity during
the evaluations, which led to long familiarization periods. This applies
to Jira, VersionOne, and ScrumDo. Behind this background, many
violations against the heuristic "Simple and natural dialogue" were
found (more than 20 per application). However, since describing each
violation would not be helpful for this thesis, the following examples
shall be enough to illustrate the resulting problems.

sssssssss

©
@

@mo» 0O

Figure 7.8: ScrumDo

To begin with, Figure 7.8 shows the main view of the ScrumDo
application. Even on the very top level, the user interface shows sig-
nificant problems regarding a very nested layout and overall structure.
From left to right, it begins with a small global menu bar (1), a wider
project-related menu bar (2), a collapsable area offering functionality
for the backlog and two types of dashboards (3), the main content area
(4) and a collapsable area showing a list of iterations (5).

185

186

STATUS QUO OF SCRUM TOOL SUPPORT

Two main aspects prevent this structure from being a simple and
natural dialog. The first relates to clustering the navigation space into
comprehensible semantical chunks or coherent information groups.
For instance, the small menu bar on the left (1) mainly contains global
functionality, such as a search function, a feature for managing up-
loaded files, and a global wiki. However, this schema is not consistent
because it also contains a "story mapping" feature (the third from the
top), which is a technique invented by Jeff Patton [205] as an alterna-
tive to a product backlog, better suited to provide a "big picture" of
a project by illustrating dependencies and connections between user
stories [206]. The critical point to recognize here is that story mapping
is not on a global level but related to a specific project and, hence,
should be placed in the project menu bar (2). Along the same line
of reasoning, "Backlog" should also be part of the project menu (2)
instead of extracting it into a separate area (3), which is especially
hard to read because of its vertical menu.

Second, the main user interface is also problematic because of un-
derlying and incomprehensible interrelations, which also relate to prob-
lems of the "Consistency" heuristic. For instance, clicking on "Sum-
mary" in the project menu (2) makes the "Board" menu entry disappear,
which can only be brought back by clicking on an item of the iteration
list (5). Since list (5) could have collapsed to the right edge of the
screen, something trivial, such as accessing the board, may become a
very challenging task.

B-01045 ey E LB X

R Create shopping list

w

‘‘‘‘‘‘ ty Classof Service Complesity Code Complexiy Rank (0-100)

nnnnnnnnnn

Tasks Add Inline ¥
Upstream Dependencies Assign
Downstream Dependencies Assign
Issues Resolved Assign
Blocking Issues Assign

Requests Assign

Figure 7.9: VersionOne

7.2 RESULTS

As a second example, Figure 7.9 shows the user interface of Ver-
sionOne, which opens after the user clicks on a backlog item to see its
details. In this context, it is crucial to understand that looking at an
item’s details is an essential feature of any agile planning application
because these details are continuously needed and accessed during all
sprint activities.

The top half of the image shows the "essential" details of an item. At
least, that is what a user would expect since the white area is visible
at first sight, whereas other details are clustered below that area into
individual subgroups, all of which are initially collapsed and must be
opened before accessing the given information. However, apart from
the fact that very relevant information is initially hidden (such as the
tasks), even by just considering the top half, this dialog is far from
being simple or natural for several reasons.

At first, the user is likely to be overburdened by the sheer amount
of input fields, which count up to 24 plus one hidden field (because
the title is editable by clicking it, which reveals another input field).
On closer inspection, it turned out that many of these fields are un-
necessary, either because of over-specification, which is something to
avoid in agile planning, or because of redundancy. For example, there
is no need to specify three values for estimating an item’s complexity,
like in this case by using "Planned Estimate Pts.," "Complexity," and
"Code Complexity." Instead, it is intended for agile planning to use
only one single and abstract value of estimation [56].

Second, there is hardly any relationship between coherent infor-
mation. For instance, the three input fields dealing with the item’s
complexity do not appear next to each other. Likewise, there are sev-
eral input fields for specifying some sort of ownership or personnel
assignments such as "Team," "Owners," "Product Owner," and "Re-
quested By," none of which seem to be related to any of the others
because of missing coherent groups.

In the context of grouping, the cognitive overload of the user is
also caused by violations against the law of proximity (see Figure 7.10).
This law is part of the "Gestalt principles” [138] and describes how
the human eye perceives relations between elements that are visually
close to each other, whereas item sets that are separated from each
other, e.g., by whitespace, are perceived as unrelated.

As a result, the human eye identifies two groups of items in Figure
7.10, one at the left and one at the right, whereas in the case of the
dialog in VersionOne, everything is near each other so that groups
cannot be identified by visual perception.

187

188

STATUS QUO OF SCRUM TOOL SUPPORT

HOON
o>He

HEEOe)
>HOO
HOREN

Figure 7.10: Law of proximity®

Furthermore, the user interface of VersionOne (see Figure 7.9 on
Page 186) shows many other usability problems, such as disregarding a
logical order. For example, it is incomprehensible why the description
of the item is not directly placed after the title but instead right in
the middle of the overall flood of other information. Moreover, the
heuristic "Speak the user’s language" is violated by, among others,
prominently showing the internal ID of the backlog item at the very
top, which has no meaning for the actual user.

These examples illustrate that many of the identified usability prob-
lems arise from the sheer complexity of the features provided. More
features generate larger dependencies, which usually manifest in clut-
tered user interfaces. For instance, Jira provides a tremendous amount
of customization options. However, the user interface must be flexible
enough to handle a huge set of various things to display.

Regarding the feature sets provided by Jira, ScrumDo, and Ver-
sionOne, large parts of the functionality must be questioned as to
whether they are helpful in agile development contexts. Features like
time tracking of tasks, sophisticated hierarchies of requirement specifi-
cations, detailed pre-ahead planning, complex progress measurements,
and control mechanisms all stem from classical project management
and the era of sequential development models. Agility, however, is
characterized by getting rid of anything unimportant to deliver what
momentarily has the most value for the customer. As a result, the fun-
damental shift from sequential to agile development models should
also be reflected in a feature set that breaks the chains from traditional
approaches and can support the essentials of Scrum or agile values in
general.

8 Source: https://www.chrbutler.com/gestalt-principles-of-design-proximity

https://www.chrbutler.com/gestalt-principles-of-design-proximity

7.2 RESULTS

7.2.2.3 Backlog Management

In Scrum, everything revolves around the sprint as the central element
of the iterative development process, at the end of which an increment
of the product is potentially deliverable. Among a team of skilled and
professional developers, it is first of all indispensable that the backlog
is thoroughly prepared by the product owner to ensure that everybody
will continuously work on the most valuable items.

Surprisingly, the investigations revealed that well-established ap-
plications lack basic but essential aspects for preparing a sprint and
managing requirements. The following will illustrate this limitation
using the market leader Jira as an example.

GMMEMW . projects | Mablle Shapping App MSA board
o
Backlog & Share e
m MsAboars
a @ Only Mylssues Recently Updated
8 Backog
2 Reports, H Create shopping list Core functionality MSA-1 5 Create shopping list
Delete shopping list Corefunetionaiiy) wsa-2 T - e)
Additem to shopping list Coratlnctionaiiy) MsA-3
& Releases. =
Remove item from shopping list Core functionality ~ MSA-4. - ToDo v
@ issues and filters
= Ul design mockup and navigtion flow Frontend MSA-5
g ~ Deseription
ages vk selecti rontend MSA
Framework selection EIMERT) MSA-6 As user of the app, | want to create shopping lists, to
€9 Components Database setup Backend] MsA- B take pressure off my memory.
3 Addmem Information architecture Backend) Msas T - o
Conducting user tests Testing and Publishing
£ Project settings Unassigned
Publishing the app in different stores Testing and Publishing | M5A-10
Reporter
Location-b ns about deals Visionary features &
@ Adrian Hilsmann

Product availabilty and nearest stores Visionary features JIVCIRE]

Figure 7.11: Jira backlog

Figure 7.11 shows Jira after the requirements of the fictitious project
scenario (see Table 7.3) have been specified. The backlog is shown in
the middle, whereas details of a selected item are displayed on the
right side, which is shown enlarged in Figure 7.12 on the next page.

As can be seen, Jira does not support the specification of acceptance
criteria, nor does the application provide the possibility to check the
specification of an item against a definition of ready. This circumstance
has severe consequences because acceptance criteria are the only con-
cept for verifying the sprint outcome. Equally, the definition of ready
(see Chapter 4.5) serves as a control mechanism for the sprint planning
event to ensure that selected items fulfill a certain specification quality,
to which acceptance criteria are probably the most important factor.

Besides this, Figure 7.11 and 7.12 show further negative aspects of
backlog management. The consequences of conveying a false picture
of agile planning, which arise from naming backlog items "issues,"
have already been discussed in the previous section. However, more
issues within the figures are worth mentioning.

189

190 STATUS QUO OF SCRUM TOOL SUPPORT

MSA-13 /

MSA‘—‘\ Lo < X
Create shopping list
@ @
ToDo v

Description
As user of the app, | want to create shopping lists, to
take pressure off my memory.

Assignee

Unassigned

Reporter

E} Adrian Hiilsmann

Labels

None

Story Points

None

Epic Link

Core functionality

Priority

Medium

Figure 7.12: Jira issue details

The first is about backlog prioritization. At the bottom of details
section, Jira provides an input field to specify the priority of an item.
By default, a "medium" priority is assigned to each new item, which
appears in the backlog as an orange arrow pointing up. However,
as described in Chapter 4.5, it is the order of the backlog that is
meant to always represent the priority in terms of sorting the items
by their expected business value. Thus, adding any further concept
of prioritization to the backlog undermines its simplistic design by
adding an unnecessary orthogonal dimension. In other words, from
an architectural point of view, an item by itself has no priority at all.
Prioritization only comes into consideration when multiple items are
in comparison with each other. Therefore, prioritization is meant to be
solely part of the backlog and should be reflected by ordering items
alone. Otherwise, contradictory requirement specifications cannot be
avoided, for instance, when an item is specified with a "high" priority
but simultaneously put to the very end of the backlog.

Another example of undermining the Scrum framework with ques-
tionable features can be seen in the possibility of assigning states to
backlog items. As can be seen in Figure 7.12, the details view of a
backlog item provides a dropdown to select a state, which by default
is set to "To Do" and may be changed to "In Progress" or "Done."
Again, this concept adds no particular value to managing the backlog
or the overall Scrum framework but instead increases the likelihood of

7.2 RESULTS

inconsistencies in terms of sprint preparation and misunderstanding
essential Scrum components. For example, what does it mean if an
item of the product backlog is "In Progress" when this backlog is
meant to be a collection of items for future development?

In Scrum, items are naturally "In Progress" once they are selected
for the sprint (at which point they are transferred from the product
backlog to the sprint backlog as a separate collection). Likewise, an
item is "Done" only when it was implemented during the sprint
and fulfills the team’s definition of done, i.e., it cannot be done and
simultaneously still be part of the product backlog.

However, while Jira is used as an example, problems concerning
backlog management could have been identified in all of the investi-
gated applications.

7.2.2.4 Sprint Planning

As described in Chapter 4.7.1, the sprint planning event consists of
the following steps and therefore always has the same sequence:

¢ displaying the backlog to the Scrum team,

¢ discussing the prepared set of user stories,

* reaching a mutual understanding about the acceptance criteria,
* estimating stories with story points,

* defining the sprint backlog by choosing stories plus at least one
process improvement and balancing estimation against proposed
business value,

* and defining the sprint goal as a mutual commitment of what
should be accomplished in the sprint.

In the following, each point is discussed and compared with the
results of the studies.

Starting with displaying the backlog to the Scrum team and discussing
the prepared set of user stories, it turned out that even this simple task
is not as trivial as it may look at first glance and indeed not well
supported by the investigated applications. The reason is that all
applications provide user interfaces designed to work for a single
person only but do not offer a dedicated view that suits a collaborative
setting or meeting situation.

For example, during the field studies with the project groups, the
backlog was displayed to the whole team by connecting the product
owner’s laptop to a video projector. Hence, the standard desktop view
was visible to the group.

191

192

STATUS QUO OF SCRUM TOOL SUPPORT

The first thing to mention is that the font sizes of the applications
were too small, so user stories were difficult for some meeting atten-
dees to read. As a result, the font size had to be increased using the
standard built-in browser functionality. However, for two reasons, this
was not an applicable solution. First, manually increasing the font size
can lead to broken layouts. Second, this kind of "zooming in" means
that relevant information is likely to no longer fit into the application’s
viewport, which is the visible section of the screen. Consequently,
scrolling must be heavily increased to access various parts of user
story information necessary for enabling group discussion. Hidden
information also means higher cognitive loads because of the necessity
to remember what has been seen before.

The field studies further revealed that the need to manually adapt
the applications” Uls for better readability is affected by group dynam-
ics or sociological aspects. That is because the question for increasing
the font size was not posed in the first meeting. It seems that some
students must feel comfortable enough to admit not being able to read
what is projected on the screen. Interestingly, this was not a barrier to
reach only once. Even after the groups agreed to generally increase
the font size for all future meetings, the presenting person sometimes
forgot it. However, the attendees did not remind the presenting person
to increase the font size. Instead, it could be observed that the request
was only posed after some of the user stories had already been dis-
cussed and apparently without all of the team members being able to
read and understand what the stories were about.

Another downside of not having a dedicated view for the sprint
planning event is that many Ul elements and features are present,
which are not important and, therefore, not used within the meeting.
Not only is this distracting from the essential parts of what the meeting
is about, but it also contributes to the problem mentioned before and
further limits the available screen space.

Regarding reaching a mutual understanding about the acceptance criteria,
it must be said that the field studies clearly revealed difficulties when
acceptance criteria are not supported in the applications, as already
described in Section 7.2.2.3. In these cases, the criteria were nonetheless
discussed during the sprint planning. However, it was observable that
the sprint outcome often derived from what had been anticipated
because of misunderstandings about the product owners” explanations.
In many cases, this led to unnecessary revisions of features that were
implemented incorrectly.

While all of the investigated applications provided input fields for
estimating the implementation effort of a user story with story points,
features for supporting the estimation process itself show great differ-
ences.

7.2 RESULTS

Jira has no support for the estimation process.

IceScrum provides a slider with green, yellow, and red regions,
indicating that bigger stories will likely cause more problems during
implementation. Below the slider are two columns for comparing the
selected estimation value with other stories (see Figure 7.13).

Estimate effort by comparison

5
Effort | _

Compare with others stories

5 0 stories 12 stories

1 Create shopping ist 4 Remove item from shopping list

Accepted

3 Add item to shopping list

Cancel Update

Figure 7.13: Estimation in IceScrum

ScrumDo offers an interactive planning poker session, shown in
Figure 7.14. By starting the session from the backlog item’s details, all
other logged in team members will be notified to join. Regardless of
the page the actual team member is looking at, joining the planning
poker session will open an overlay, which initially shows the backlog
item to vote for and a set of story points to choose from. After the
user selects a value, a list on the right side will show all stories of
the product backlog that have been estimated with the same value
before. Like IceScrum, this serves to base the decision on references
to previous estimations. Only after the own decision is locked in the
other members’ votes are shown, thus simulating a planning poker
session with physical cards as described in Chapter 4.8.2.2.

Planning Poker

Create shopping list

Select Your Points

Reset /6 ‘

Figure 7.14: Planning Poker in ScrumDo

Other 5 point cards:

Ul design a8
mockup and navigation
flow

Backlog

-3 Additemto [E
shopping list

Backlog

-8 Information 8
architecture

Backlog

193

194

STATUS QUO OF SCRUM TOOL SUPPORT

VersionOne supports the estimation process by a free external
service called Estimably™, allowing teams to run a planning poker
game to estimate their backlog collaboratively. When a game is started
within the application, it creates a URL containing a unique ID that
must be shared with the team manually. The members can then use
that URL to log into the game session. Together, this procedure creates
two views. The facilitator view, as shown in Figure 7.15, is part of the
main application and shown to the person starting the session.

Backlog © Estimably

W Show Unestimated Only "W VERSIONONE®
[*7 Delete RMA (5))
Accounting Integration - Spike (8 Bl o 3
- T o) € ESTIMATION Gl
[*7 Accounting Integration - main (3) Game ID: HHZJZ
[Credit Check https://estimably.com/join/HHZ)Z

[} Legal Check

) Call Time Reporting Selected Estimation Item:

S-01062 Credit Check

[Customer ID Incorrect)
- HINT: Drag over another item to replace the current one.

[™ Orders Shipping to BillTo Address (0.5)
[™ Icon Background is Wrong Color .
, Begin Round

[*7 Dynamic Lookups (5)

[Error - new item creation (1) .
- - Current Participants:
™ Processing Filter Misalignment (1) =
Alfred Andre Boris Danny's Phone

[*7 Remote Customer Lookups (3) Tammy
« Customer Management (0.5)
« Order Management (0.5)

« Reporting (0.25)

' Security (0.25)

« Load Testing (0.5)

Figure 7.15: Facilitator view of Estimably

In contrast, the participant view, as shown in Figure 7.16, is provided
through the connected external service to each of the participants who
logged into the game session.

W VERSIONONE
)

THE ESTIMATION G’.'. =

Current Estimation Item:
S-01062 Credit Check

0 05 1 2
3 5 8 13
20 40 100 ?

Total Participants: 5

Figure 7.16: Participant view of Estimably

7.2 RESULTS

The initiator of the game selects an item for estimation by dragging it
from the backlog into the facilitator view. There, he can see the already
connected team members and start an estimation round, which then
updates the participants” views so that they can choose a point value.
The group result is finally revealed in the facilitator’s view once each
participant made a decision and took a story point vote.

During the heuristic evaluation, it turned out that all applications
offering features for the estimation process have significant downsides
concerning the requirement to minimize the user’s memory load. That is
because relevant story information is no longer visible once the voting
is triggered so that details of the story and the acceptance criteria must
be remembered. This applies not only to the details of the story to vote
for but also to the details of the reference stories since they only show
the title and the story point value. During the vote, it is impossible
to access either detail because no links or information are embedded
into the estimation views. This problem also surfaced during the field
studies. By comparing sessions of analog planning poker using physi-
cal cards with the digital counterparts of the applications, it turned
out that the mentioned increase in memory load did provoke greater
disagreements among the team members concerning the estimation
value. Thus, more rounds had to be triggered to achieve a mutual
result, which slowed down the estimation process and put stress on
the meeting concerning staying in the intended timebox.

Surprisingly, defining the sprint backlog by transferring the most
valuable stories from the product backlog into a separate collection as
well as specifying a sprint goal, also have both been more problematic
than initially expected, with all except the IceScrum application.

The first issue to mention relates to violations against the feedback
heuristic, which stem from not using state-of-the-art web technology.
Modern web frameworks allow reactive user interfaces characterized
by views that can automatically update to match the state of the
underlying backend data. In contrast, traditional web architectures
rely on synchronous data fetching and explicit server-side rendering.
Thus, they may only update the page of the user who triggered the
data change but cannot update the views of all other users looking at
the same page. If not considered properly, this technical limitation may
lead to a bad user experience, particularly affecting the flow within
cooperative group settings because of resulting distractions.

Especially this became apparent when defining the sprint backlog.
The applications provide convenient drag-and-drop operations to
move items from the product backlog into the sprint backlog or dialogs
with multiple-select options to select product backlog items, which
are finally transferred to the sprint backlog with one click. However,
in none of the applications is this operation reactive. That means all
connected clients still show the entire product backlog, but no sprint

195

196

STATUS QUO OF SCRUM TOOL SUPPORT

backlog, and people have to manually refresh the page to receive the
data update. Furthermore, the implementation of drag and drop was
often slow and erroneous. This technical downside particularly applies
to ScrumDo since the visual feedback of the dragging interaction has
so much lag that the drop-operation itself is not triggered correctly,
and consequently, adding an item to the sprint often fails.

Regarding the sprint goal, the investigations revealed that although
all applications offer the possibility to specify a sprint goal, they cannot
benefit the Scrum team, thus making the feature itself insufficient to
fulfill the underlying concept of what the sprint goal is about. What is
meant by that shall be explained by the following example.

In Jira, a sprint backlog is created on the backlog page by clicking
the blue "Create sprint" button (see Figure 7.17). This creates a new
drop zone on top of the backlog, to which items from the product
backlog can be dragged (see Figure 7.18).

Projects Mobile Shopping App MSA board

Backlog & Share
Q @ Only My Issues Recently Updated
5 Backlog 12 issues
@2
g Ul design mockup and navigation flow Frontend MSA-5 T ' 5
o Framework selection Frontend MSA-6 7 2
i Database setup Backend MSA-7 T 3
Information architecture Backend MSA-8 T &
Create shopping list Core functionality MSA-1 T 8
J Add item to shopping list Core functionality MSA-3 T 5
LJ Remove item from shopping list Core functionality MSA-4 T 2
Delete shopping list Core functionality MSA-2 T 3
) Conducting user tests Testing and Publishing MSA-9 T 13
L) Publishing the app in different stores Testing and Publishing MSA-10 T 1
L) Location-based notifications about deals MsA-11 T
Product availability and nearest stores MSA-12 T

+ Create issue

Figure 7.17: Backlog in Jira

Projects / Mobile Shopping App MSA board

Backlog & Share

Q @ Only My Issues Recently Updated

SNOISY¥IA

Plan your sprint

0 As a team, agree on what work needs to be completed, and drag these
= issues to the sprint.

$old3

+ Create issue

Figure 7.18: Drop zone of the empty sprint backlog in Jira

7.2 RESULTS

As can be seen in Figure 7.19, this new sprint backlog is given a
name that is derived from the initial letters of the project name and
the consecutive sprint number (in this example "MSA Sprint 1").

Projects / Mobile Shopping App / MSA board

Backlog

Q @ 8 Only My Issues

v MSA Sprint1 4 issues

SNOISH3A

[J Ul design mockup and navigation flow

$01d3

) Framework selection
[Database setup

[Information architecture

+ Create issue

Backlog 8 issues

[Create shopping list

<: Share

Frontend MSA-5 T 5
Frontend MSA-6 T 2
[Backend! MsA-7 T 3
[Backend| MsA-8 T 5

4 issues Estimate 15

Create sprint

[Core functionality. MsA-1 T '8

197

[Add item to shopping list [Core functionality' MsA-3 T 5
) Remove item from shopping list ‘Core functionality| MsA-4 T 2
[J Delete shopping list [Core functionality MsA-2 T 3
[Conducting user tests \—wm MSA-9 T 13
[Publishing the app in different stores [Testing and Publishing' MSA-10 T 1
[J Location-based notifications about deals Visionary features Y SAINN

[Product availability and nearest stores Ay MSA-12 T

+ Create issue
Figure 7.19: Filled sprint backlog in Jira

Once the sprint backlog is filled, the sprint can be started by clicking
the "Start sprint" button, which opens the dialog shown in Figure 7.20.

Start sprint

4 issues will be included in this sprint.

Sprint name:"

MSA Sprint 1|

Duration:*
' 2 weeks B

Start date:"
13/Apr/20 9:46 AM

End date:"

Sprint goal:
Prepare frontend and backend for feature development

Start Cancel

Figure 7.20: "Start sprint" dialog in Jira

198

STATUS QUO OF SCRUM TOOL SUPPORT

Here, the team is able to change the default name of the sprint,
define the sprint length, and specify the goal. However, the important
point is that the sprint planning event is not goal-driven when the
goal is specified at the end of the planning process. Instead, it should
be specified at the very beginning because, as Rubin says, the sprint
goal "describes the business purpose and value of the sprint," and by
providing a "clear, single focus" for the sprint planning meeting, it
becomes "the foundation of a mutual commitment made by the team
and the product owner" [226, p. 69].

That is also why the goal should always be present to the whole
team during the entire sprint because it creates awareness of what to
achieve, and "by adhering to a sprint goal, the Scrum team is able to
stay focused [...] on a well-defined, valuable target" [226, p. 69].

However, even if input fields are provided, all of the investigated
applications consider the sprint goal not more than being of secondary
importance because one half is either not displaying it on other pages
at all (IceScrum, ScrumDo) and the other half is using designs in
which the sprint goal is upstaged by other interface elements (Jira,
VersionOne), thus making it unable to increase the team’s awareness,
as shown in Figure 7.21.

MSA Sprint 1 ?r O 9daysremaining Complete sprint o5 +er

Q O Only My Issues Recently Updated

+[) MSA-5 T0DO | 6 sub-tasks Ul design mockup and navigation flow

Install Balsamiq

MSA-18

Create mockup for shipping list creation

MSA-19

Create mockup for shopping list deletion

MSA-20

create mockup for adding items to a list

MSA-21

create mockup for removing an item from a list

MSA-22

create rough sketch of two visionary features

MSA-23

Figure 7.21: Small display of the sprint goal in Jira (highlighted)

7.2.2.5 Sprinting

After the sprint planning, the development team starts the implemen-
tation work and turns the requirements of the sprint backlog into
working code. During this sprinting, developers use several other
applications, like IDEs, test suites, and code repositories, which pro-
vide functionality for creating the product increment in the form of
executable and potentially shippable source code.

7.2 RESULTS

While many agile ALM applications provide integrations to some
of these developer tools, their primary purpose in supporting the
implementation process lies in the management of development tasks.

Overall, all of the investigated applications support this well. De-
velopers can easily create tasks, assign team members, quickly access
their personal tasks, and update the status according to their imple-
mentation progress. However, three main problem areas have been
identified.

The first problem relates to the already mentioned non-support of
acceptance criteria. Since the underlying idea is to establish concrete
testable conditions for validating that the implementation meets the
expectations of the product owner, acceptance criteria also build the
foundation for the development tasks. Hence, no matter how well
the management of tasks is supported, as long as the development
team does not know how to validate the requirements, fundamental
misconceptions are very likely.

The second problem concerning missing reactivity due to technical
limitations of the applications has also been mentioned before. Re-
garding sprinting and managing tasks, the field studies revealed that
this leads to a severe drawback regarding Scrum’s demand for trans-
parency (see Section 4.1). Because of missing reactivity, team members
often have not been informed about important updates. For instance,
the update of a developer picking a task could not be automatically
pushed to the connected clients of the other members. Consequently,
their user interfaces were outdated until they would manually refresh
the page to receive the data change. However, manually refreshing
the page to receive data that may eventually be changed by others is
not what people expect. Therefore, it is not surprising that the studies
revealed that although people were aware of this technical limitation,
they nonetheless forgot to update their views and frequently provoked
data conflicts.

Depending on the actual context, it turned out that missing reac-
tivity may have severe consequences. For example, several times, two
developers picked the same task without knowing it and thus unneces-
sarily duplicated the work. Another example was when team members
did not automatically receive information about arising impediments
blocking certain user stories or preventing tasks from being started.
In these cases, for instance, when the impediment lies in ambiguities
that must be eliminated by the product owner at first, it happened
that developers, being unaware of these impediments, nonetheless
started to work but later came to realize that the requirements have
changed in the meantime so that their work became useless. Not only
is this demotivating for the team, but it also endangers the sprint goal,
especially if the team does not consider enough buffer time during
the sprint planning.

199

200

STATUS QUO OF SCRUM TOOL SUPPORT

Lastly, none of the investigated applications allow the development
team to check their implementation work against a definition of done
(see Section 4.3). In this respect, the only application that at least
provides some functionality is IceScrum, which offers an empty text
field for every sprint to specify a definition of done. However, the
problem with this is that this definition is not copied or stored on a
higher level but must be re-entered for every sprint. More importantly,
it has no connection to items of the sprint backlog. This means that the
"done" state of user stories cannot be assessed and verified against the
individual criteria of that definition because it is specified as free-text
(and not as a list of checkable criteria), and even worse, it is not shown
on the story’s details page. This issue must be considered crucial since
it was observable in the field studies that not using a definition of
done diminishes the overall code quality of the delivered product,
which matches the relation between technical debt and the definition
of done given by Rubin:

"Work that we should have performed when a feature was built, but ended
up deferring until a later time, is an important cause of technical debt.
Using Scrum, we want a strong definition of done [. ..] to help guide the
team to a low- or no-debt solution at the end of each sprint.” [226]

In the course of several sprints, neglecting a definition of done leads
to an increased amount of refactoring, which in turn limits the overall
return on investment. The field studies teams, for example, both came
to the point where they needed to insert "refactoring sprints." These
are sprints with the only goal of performing technical debt reduction
and code optimization work. According to Rubin, such sprints "are
to be avoided whenever possible" [226, p. 159] because, during this
period, the team is not going to deliver any customer value. For that
reason, using a definition of done ensures raising the team’s awareness
that reducing technical debt is something to deal with a little bit each
sprint so that refactoring occurs incrementally instead of using a
sledgehammer method.

7.2.2.6 Daily Scrum

As explained in Section 4.7.2, the idea of the daily Scrum meeting
is to synchronize the work between all development team members
and provide transparency about the progress towards fulfilling the
sprint goal. It is usually held as a standup meeting to underline the
importance of its fifteen-minute time limitation. This timebox should
be sufficient to update the team about what has been done since
the last daily Scrum and what is intended for the current day. It
should also allow clarification of any arising impediments so that
other developers or the Scrum master can offer their help.

7.2 RESULTS

Based on the field and feature studies, it must be said that the
applications investigated do not support this process well. None pro-
vides dedicated views for co-located group scenarios or any particular
assistance for the daily Scrum meeting.

In particular, this means that the user interfaces are not designed
to be viewed by multiple persons in co-located work settings, e.g.,
by displaying the applications on a projector or (as in the case of
the project groups” daily meetings) on a large screen. This is because
small font sizes are hard to read from some feet away, leading to the
problems already discussed in the sprint planning event (see Section
7.2.2.4). Apart from this, the applications also have no particular
functionality to support the daily Scrum event in a meaningful way.

For instance, due to the lack of alternatives, both project groups
of the field studies decided to use the applications’ task boards for
their daily Scrum meetings. While this view generally provides a
good overview of the actual work status, and although some of the
applications also allow filtering the tasks by single team members,
there is still one major drawback: none of the applications is designed
to cover any meeting support, e.g., information like the burndown
graph is spread through various pages and not accessible on a single
page. This has already been discussed in terms of inadequate views
and graphical interfaces, but here, it must be mentioned that this
limitation is on a much more structural prospect with regard to the
applications” architecture. Specifically, this means that meeting-specific
data is not stored. Consequently, it is impossible to relate to other
daily meetings that were held previously.

Hence, when members of the project groups wanted to answer what
they did since the last daily Scrum and what they intend to work
on for the current day, it caused them a lot of memory stress. That is
because they needed to remember what has been prospected in the last
daily meeting in order to compare it against what has been achieved.
However, this comparison is an essential aspect of the daily Scrum
since differences provide hints about possible impediments to the rest
of the team, which may be unconscious to the person speaking.

From Chapter 4.7.2, it should be recalled that transparency about
the difference between the previous and current daily Scrum is the
foundation for continuous inspection of the development progress,
which in turn is the foundation for possible adaptions to ensure that
the team will meet the sprint goal. For that reason, the limitations of
the investigated applications can be considered significant.

This is not only because of the team members’ memory stress but
also due to the observable negative effects. From the experience of both
project groups, it could be seen that the need to remember disturbs
the overall flow of the daily meeting and thus not only increases the

201

202

STATUS QUO OF SCRUM TOOL SUPPORT

risk for people not listening to others (see Section 6.2.6.3), but also
provokes the unwillingness to provide help by other team members
(see Section 6.2.6.5), since impediments would not have been broad to
light.

7.2.2.7 Grooming the Backlog

While Section 7.2.2.3 already explained problems regarding the general
management of the backlog, this section focuses on grooming it, which
differs in that it is a collaborative effort between the product owner and
some members of the development team, whereas general backlog
management is done by the product owner alone.

As written in Section 4.5, grooming describes the action of refining
the backlog as preparation for the next sprint planning event. This
includes presenting the prepared backlog to some developers, who
may then ask questions that typically would arise during the planning
event. However, by asking these questions earlier, the product owner
is given a chance to act on unsolved issues and better prepare for the
actual planning event to avoid problems that might arise and that
might prevent an important item from being included in the sprint.

For that reason, to have sufficient time to address the identified
questions, Cohn suggests scheduling this short meeting three days
before the end of the current sprint [60]. Though it is the responsibility
of the product owner, he or she is not the only one who benefits
from this action since grooming contributes to establishing a shared
understanding of the product vision within the whole Scrum team
and aligns members in terms of the work left to be done [249].

However, as Padmini et al. found out, many teams do not consider
the backlog grooming activity during their projects. In their studies,
only half of the respondents mentioned conducting this ceremony.
While the authors think that "this indicates that either scrum teams do
not know about the importance of the [...] backlog grooming ceremony
or they are not considering it as adding value to the project,” they also
mention that those respondents were the ones with "no idea about the
story acceptance criteria and definition of done," as well as the ones
without "properly defined stories in their projects" [201].

Therefore, collaborative backlog grooming activities are, in fact, an
essential part of Scrum. However, it turned out that the tools investi-
gated did not support this ceremony directly. While the backlog can
be viewed and edited by a single person working at a personal com-
puter, none of the investigated applications was designed to support a
collaborative way of working, e.g., when the computer is connected to
a projector as a result of the usability problems that have already been
mentioned in Section 7.2.2.4.

7.2 RESULTS

Besides this, it was impossible to display multiple elements of the
backlog so that their details would be visible simultaneously. However,
this would have been a benefit because members of both project groups
independently reported having difficulties with comparing various
story contents during the grooming activity when the individual
details were not accessible at the same time. This made the grooming
activity unnecessarily complex.

In addition, using a projector and standing in front of it meant that
things discussed were often not recorded in writing. This was because
the switch to typing with the connected keyboard led to pauses in
the discussion and thus disrupted the overall flow of the collaborative
ceremony. As a result, it was often decided against using the keyboard
for taking notes, i.e., notes were not taken at all. However, in many
cases, this led to the need for renewed queries because things that had
been discussed were sometimes forgotten after the session had been
completed.

7.2.2.8 Review Meeting

As explained in Chapter 4.7.3, the main objective of the sprint review
is to inspect the outcome of the current sprint in order to adapt to
future development. The main focus here is on feedback from stake-
holders and customers, which significantly influences what will be
implemented in the subsequent sprint. However, as explained in Chap-
ter 6.2.7, common problems of the sprint review include passive and
unengaged invited participants (see Section 6.2.7.1), losing focus on
relevant content (see Section 6.2.7.3) and treating the review as venue
of approval (see Section 6.2.7.4).

These problems were confirmed in the field studies and occurred
equally in both project groups. In the feature analysis of existing
project management applications, it also became apparent that no
vendor provides explicit functionality to support the sprint review
for the actual meeting or to prepare for it during the sprint. This has
serious consequences, which are explained in the following.

As Rubin makes clear, the inputs to the sprint review are the sprint
goal, the sprint backlog, and the sprint outcome, which is the poten-
tially shippable product increment [226, p. 367]. While none of the
investigated applications offers dedicated views for the sprint review,
these basic elements are nonetheless accessible in the provided task
boards (except for IceScrum and ScrumDo, which do not display the
sprint goal at all). Hence, all reviews of the field studies were con-
ducted using the applications’ task board views, which corresponds
to the usual procedure in the industry, as was later confirmed by the
interviews.

203

204

STATUS QUO OF SCRUM TOOL SUPPORT

However, the task board view is problematic and may induce some
of the aforementioned review problems. This is because of the follow-
ing reasons.

1. Tasks are not relevant and lead to discussions.
2. There is no clear distinction between finished /unfinished stories.

3. The reasons for failure are not visible.

The first thing that could be observed was that the visibility of
development tasks leads to unnecessary discussions in the sprint
review. However, these tasks primarily serve the development team.
They are not relevant for the product owner or the customer because
the common level of understanding between all parties is user stories,
which are the basis of all planning activities. The visibility of tasks
shifts the basis for discussion to a deeper level, which is not only
more fine-grained but also often technical, covering implementation
details that are not relevant for obtaining feedback on the sprint result.
Special care should be taken here because by shifting the discussion
level to technical details, invited guests can be quickly disconnected,
which can make them behave rather passively and reluctantly, leading
to the problems described in Section 6.2.7.1.

The visibility of tasks also contributes to another problem. This is
because the provided view of the task board seems to weaken a clear
distinction between finished or unfinished items of the sprint backlog.
For example, it could be observed that user stories were more often
declared as "finished" and thus discussed in the review, although, in
fact, they were not. This was especially the case in situations where
most of the tasks had already been completed and, therefore, could be
seen on the right side of the board. Depending on the relation between
finished and unfinished tasks and their position on the board, the
threshold to consider the corresponding story as finished seems to get
lower or higher. Less unfinished tasks seem to increase the likelihood
of accepting the story for the review, whereas more unfinished tasks
seem to increase the probability that the story is not treated as being
"done." More precise statements about this relationship cannot be
made and would require further investigation. However, the important
point is that the visibility of tasks seems to influence the decision of
whether a story is finished at all. Not only does this weaken the
"definition of done," which can lead to software quality issues, but
it also causes the decision on acceptance to be moved to the review
meeting itself, thus leading to treating the review as the venue of
approval with the corresponding problems discussed in Section 6.2.7.4.

Lastly, the field studies and feature analyses revealed that the task
board is not suited for conducting the review meeting because it does
not provide an opportunity to present comments about problems

7.2 RESULTS

that occurred during the sprint. Although the primary purpose of
the sprint review is to generate feedback on the completed features,
it is often forgotten that short explanations at the beginning about
why the other items could not be completed are also a valuable part
of the meeting and in line with the requirement for inspection and
transparency. Therefore, a brief look at the requirements that have not
been achieved is useful in two respects. Firstly, to generate possible
insights for the next sprint and secondly, to mentally check off the
unfinished features and thus concentrate on reviewing the product
increment.

This second point, in particular, was confirmed positively in the
tield studies. This is because both of the teams examined found in the
course of their projects that their sprint review meetings often led to
discussions about the items that had not been implemented. In the
subsequent retrospective, it became apparent that these meetings were
sometimes assessed as strenuous and not productive, which meant
that the teams had to take action and decided that unfinished items
should be addressed at the beginning of the review in order to be able
to devote themselves entirely to demonstrating the sprint outcome.
During later process analyses, both groups assessed this procedure as
very useful and maintained it until the end of their projects. During the
review meeting, however, the participants had to gather background
information on unfinished stories, as these were often hidden in the
comments on the respective story pages, and these comments were
not prepared or made available on the task board. This resulted in
frequently switching between the task board and the detailed views of
individual stories, which was perceived as distracting, so one project
group decided to write down notes about problems in the sprint on
an extra sheet of paper to use it during the review.

After the inspection of the sprint backlog, the adaptation part of
the sprint review follows, i.e., the feedback gained on the increment
flows directly into the planning of the next iteration. This is done
by revising and reprioritizing the product backlog, which may also
result in changes in the release plan [226, p. 368f]. In the end, the
outcome of the sprint review is a clear high-level roadmap for the
further development process, whereby details of individual stories
(such as the exact elaboration of the acceptance criteria) are usually
worked out by the product owner until the next sprint planning event.

For this adaptation part, the demand for tool support lies in quick
and easy changes between the view, where the sprint feedback is
actually gained, and the product backlog, where this feedback is then
considered by revising and reprioritizing new and older requirement
specifications. However, it turned out that this change between views
may mean several clicks because of complex menu layouts and naviga-
tional architecture, which become frustrating since the switch between

205

206

STATUS QUO OF SCRUM TOOL SUPPORT

product backlog and task board is not done once but multiple times
during feedback processing. This would have been a minor problem if
the user could use the browser’s back and forward navigation buttons.
However, this workaround was not a solution for three of the four
applications because they did not correctly preserve the application
state, i.e., the view of the last page visited.

Overall, there is a higher cognitive load when the product backlog
is not immediately accessible, which disrupts the flow of the meeting.
As a result of this tool limitation, during the field studies, feedback col-
lected during the sprint review has not been worked into a revisioned
backlog immediately. Instead, the product owner (myself) decided
to take notes on paper. While this preserved the feedback flow, it
disconnected the other attendees from planning the future iteration,
making it difficult to establish a shared picture since the notes were
not visible to all team members.

7.2.2.9 Retrospective Meeting

While the sprint review is the central learning loop for assuring that
the team is building the most valuable product, the sprint retrospective
is the fundamental security mechanism for ensuring that the team
stays in a healthy and satisfied condition by reflecting its own work
practices and identifying improvements for the development process.
Hence, it is probably the most important of all the Scrum meetings.
It is where all team members consciously take their time to share
thoughts, openly speak about new ideas, discuss existing problems,
and mutually decide how to improve as a team.

Surprisingly, the studies revealed that only one of the investi-
gated applications provides basic features for a retrospective meeting,
whereas support is practically nonexistent in all others.

In Jira, completing a sprint will automatically open a sprint re-
port showing a burndown graph and a popup asking the user to
create a new retrospective page, which is nothing more than a link to
Confluence, an external wiki application of the same tool vendor. This
means, on its own, Jira offers no features for conducting a retrospective
meeting, and even by taking into account the Confluence application,
support is limited to manually creating shared text documents.

The same holds for IceScrum. Although no external services are
necessary here, the support of the retrospective again only consists of
an input option for text. Moreover, Figure 7.22 shows that this textual
description is stored on a global level in the dashboard for the whole
project. This means, as opposed to Jira and its Confluence integration,
there is no connection to individual sprints or teams, which further
limits the usefulness of this function.

7.2 RESULTS

Meetings

Create @ mesting or a collaborative session

History

Retrospecti

Figure 7.22: "Retrospective” text field in IceScrum

ScrumDo has even less support and neither provides any input
option nor mentions the sprint retrospective.

In VersionOne, functionality for conducting a sprint retrospective
can be found in a sub-menu-group, which is labeled as "Review"
and is organized under the top-level menu entry "Team" of the main
navigation (see Figure 7.23).

b Portfolio %7 Product 8 Release L2 Team
Sprint Planning () Sprint Tracking (3) Review ()
[Sprint Scheduling O Detail Tracking £ Close Sprint
Team pulls work it can deliver from Allopen workin the selected Close or move Workiters at the
priortized backiog teration/Sprint end of a Sprint/teration
[Detail Planning 2 Member Tracking ¥ Retrospectives
with team membersin Meet and Review your tearis
Tasks and Tests asprint/iteration Hteration or Release
D Owne 2 Member Planning 11| Storyboard
a y config
1-01006 team member Workitem status values
/\ Issues 11| Taskboard
Assets iguring Task
dependencies status values
11l Testboard
Visually configure status values
across a board for Tests
/\ lIssues

Assets that capture roadblocks or
dependencies

Figure 7.23: Top-level menu "Team" in VersionOne

This menu is interesting because it tries to organize features along

the natural flow of a sprint, starting with "Sprint Planning" on the left
side, over "Sprint Tracking" in the middle to "Review" on the right
side. While the concept of mirroring the course of a sprint with the
navigational architecture of the application is generally a good idea
because it is likely to help users find the right feature for a given
situation, VersionOne is not capable of doing so. The dialog breaks
with the usability heuristic "simple and natural dialogue" because of

207

208

STATUS QUO OF SCRUM TOOL SUPPORT

confusing menu item allocations, which becomes evident since the
entry "Issues" appears not in one but two of the navigational groups.
In addition, it also breaks with the heuristic "consistency" by assigning
"Retrospectives" to the menu group "Review," which is irritating since
these are special Scrum terms meaning different things. A further issue
with this menu is that the entry "Retrospectives" is below an entry
for closing the current sprint, again suggesting some ordering along
the course of actions. However, closing the sprint before conducting a
retrospective is causing problems, as will be explained shortly.

Although it is not immediately apparent due to the single menu
entry, the retrospective feature is actually separated into two steps. One
is for preparing, and one is for conducting the meeting. Preparing a ret-
rospective is done by clicking the "Retrospectives" menu entry, which
opens the page shown in Figure 7.24, where all currently prepared
retrospectives are listed.

‘y E System (All Projects) th Portfolio %/ Product 3 Release 2 Team ®»H @
™) Team: (Al) %)
Retrospectives Add Retrospective
Y @ My Views

Q

Title Project Sprint Facilitator Date (¢4

No Results To Display

Figure 7.24: Retrospectives list in VersionOne

Clicking the "Add Retrospective" button opens the dialog shown
in Figure 7.25, where the user is provided with options to specify a
title and assign the retrospective to a project, sprint, and team. For
the assignment of a sprint, it is necessary that the sprint has not
been closed already. However, this will likely happen because of the
aforementioned menu structure and interaction flow.

From a usability perspective, this violation of the heuristic "prevent
errors" is highly problematic because stumbling blocks in planning
a retrospective could prevent it from being held in the first place.
Moreover, from a technical perspective, the manual assignments to a
project, sprint, and team could be avoided if the application is built
upon an architecture according to the rules of Scrum. What is meant
by that is that teams are naturally associated with a sprint (and project)
because of a one-to-one relation. Hence, the requirement to assign both
makes the preparation for the retrospective unnecessarily complex.

7.2 RESULTS

Retrospective GER) o

Title:

Project: System (All Projects) v |+

Sprint:
Team:

B 7 YU S I Fomas~ EB~ i

ifi
ifi
lil
il
(\\0
3]

Agenda:

Facilitator:

Date:

B 7 Y & I Fomats~ EH~

i
ifi
Ll
il
S

I

Summary:

Figure 7.25: Preparing a retrospective in VersionOne

Apart from these assignment options, the retrospective preparation
in Figure 7.25 offers two text inputs. The first allows setting up an
agenda, which may be helpful to introduce the topics to discuss to
the actual meeting participants. This helpfulness is especially true for
invited people who are not part of the core Scrum team and do not
participate on a regular basis.

The second text field is for creating a summary. However, it remains
unclear whether this is meant as a summary of the meeting itself
(which would not make much sense since, at this point, the meeting
has not been conducted yet) or as an option to specify the summary
of the sprint. This, in turn, would not be useful either because the
retrospective is about mutually inspecting and analyzing the sprint
data in all of its facets, which should not be summarized in advance

(especially not by a single person) to preserve an unaltered starting
point.

After the preparations have been saved, a new meeting shows up in
the retrospectives list, as shown in Figure 7.26.

The prepared retrospective can then be started by the "Conduct"
button, which opens the meeting view that is shown in Figure 7.27.

209

210 STATUS QUO OF SCRUM TOOL SUPPORT

YW (& System (AllProjects) th Portfolio %7 Product % Release 2 Team @ @

Iy Team: (Al =)
* Retrospectives Add Retrospective
o

Y My Views
A

Close v -1of 1 N
= Title Project Sprint Facilitator Date
® Retro of Sprint 1 System (All Projects) Sprint 2: Adrian 01.05.2020 Conduct v
®
A4
al
9
&

Figure 7.26: A prepared retrospective in VersionOne

Retrospective et

THle Retwof Sprnti
Project: System (Al Project)
Spint Spint2
Tear
Agenda: Speakabout

o

Summary: - Some summary here

Issues Add Issue v

ot 2
Tite o Owner Prority Project <

Nolcense 1-01007 System (All Projects) Edit v

Identified Backlog Items ‘Add Backlog ltem

+10f1 Y
Title D Owner Status Project Sprint <

Anidentified Backiog item 801058 System (All Projects) Edit v

Details

‘Select anitem from the st above.

Figure 7.27: Meeting view of a retrospective in VersionOne

As mentioned before, the meeting views in VersionOne are unsuited
for group settings, where the page is displayed on a projector. As seen
in Figure 7.27, the font sizes are too small to read even from a small
distance. Besides that, the possibility of conducting a retrospective is
also highly limited. Apart from displaying the agenda and summary
of the retrospective preparation, the meeting view consists of two
lists only. The first labeled as "Issues" is for collecting problems as a
result from a mutual sprint inspection, while the second labeled as
"Identified Backlog Items" is for creating process improvements.

A fundamental limitation of the first list lies in the lack of support for
actually getting to the point of identifying issues. Neither is any sprint
data shown from which the team could derive insights and identify
problems within their development process, nor are there any links
to possible data sources the team could inspect. For instance, the task
board is not accessible during the retrospective because VersionOne

7.3 CONCLUSION

hides the main navigation during the mode of conducting a meeting.
What is more, once the retrospective meeting has been closed, it is
automatically deleted and no longer shows in the retrospectives list
of Figure 7.26. Hence, there is no potential workaround to access any
sprint data during the meeting. Overall, not having access to the sprint
data during the retrospective is a massive violation of the heuristic
to "minimize the user’s memory load" and limits the possibility of
identifying problems.

Regarding the second list, the term "backlog items" violates the
heuristic "consistency." It further breaks with the whole retrospective
concept because, at the end of the meeting, the team should agree
on improvements (sometimes called insights). These are not "backlog
items" in the proper sense because this term is usually a shortened
form of "product backlog items." However, improvements do not relate
to the product itself; they relate to a given team and describe actions
to enhance the development process. Since the feature to specify
improvements is not given in VersionOne, the usefulness of the whole
meeting functionality for retrospective purposes must be strongly
doubted.

7.3 CONCLUSION

This chapter aimed to derive a status quo of Scrum tool support by
investigating a selection of agile project management applications and
analyzing their limitations regarding usability, features, and function-
ality. The purpose of this section is to conclude the status quo from
the many individual findings presented before.

In summary, the identified problems can be categorized into three
areas, which are:

1. general usability issues,
2. missing out core elements of the Scrum framework,

3. and limitations in cooperative work support.

General usability issues may range from only cosmetic effects to
very severe problems, all of which have been identified in any of the
investigated applications. One of the minor issues is, for example, that
the user is shown the internal ID of a backlog item or task, which does
not correspond to his natural language and does not offer any added
value. However, using this internal ID can quickly become a major
problem if it is not only displayed but also used for reference, e.g., in
a search field, and the user is forced to remember these cryptic strings
of characters and numbers.

211

General usability
issues

212

Technical weaknesses

High complexity

Low consistency and
missing feedback

Missing features

No guidance

Inadequate meeting
support

STATUS QUO OF SCRUM TOOL SUPPORT

Furthermore, usability problems may result not only from design
deficiencies but also technological weaknesses, leading to bad interactive
experiences, as in the case of Jira and ScrumDo, in particular. These
include, for example, the fact that changes to the database are not
automatically reflected in an update of the user interface. Thus, a user
may not notice changes made by others unless he or she has actively
reloaded the page beforehand. However, field studies have shown that
this reloading is often forgotten, even when users are aware of the
technological limitations of an application. This is because today’s
web applications quickly give the impression of native applications
due to their structure and visual appearance, and thus, corresponding
feedback is also expected from the ground up. Therefore, weaknesses
in the technology can easily lead to frustration and confusion.

However, the negative usability also results from the high complexity
of the applications examined. This is reflected, among other things, in
nested menu structures or a large number of settings or features that
are not likely to be relevant for most users.

Moreover, low consistency and missing feedback of the applications
also lead to an unnecessary additional load for the users. For example,
even when predefined templates for Scrum are selected, terminolo-
gies other than those of the framework are sometimes used in the
applications. In addition, system states are possible (or in some cases
even necessary) that contradict the rules of the Scrum framework. This
includes multiple sprints of a team taking place in parallel, which is
against the core concept of sprinting, or setting a processing state of a
backlog item in terms of its implementation, as described at the end
of Section 7.2.2.3.

In addition to usability deficiencies, which, as already mentioned,
can range from merely minor effects to major problems with regard
to tool usage, it is above all the missing features that can have severe
consequences for the entire way of working in accordance with Scrum.

It is noticeable that the applications examined have no guidance
through the clearly defined Scrum process or consider it in the user
interfaces. Except for IceScrum, which at least offers a clearly defined
sequence of actions in the context of backlog management up to the
planning of a sprint, functions are scattered and do not follow a clear
structure, which the scheme of a sprint would specity.

In addition, it is noticeable that the focus of the applications ex-
amined is primarily on the planning aspects, whereas significantly
less attention is paid to the actual activities within a sprint that build
on this. For example, there are neither functions for a sprint review
nor for conducting a sprint retrospective, which also leaves out in-
spection and adaptation as essential cornerstones of empirical process
control (see Chapter 4.1). Therefore, in practical use, other tools must

7.3 CONCLUSION

be used additionally, which, on the other hand, can lead to media
discontinuities, synchronization problems, and, therefore, to a higher
expenditure of time. In the case of the project groups, these additional
tools were mainly notes and pens to track the product or process
changes identified within the review and retrospective meetings.

In addition to the inadequate Scrum meeting support, other weaknesses
of central Scrum components were also revealed. For example, the role
model is not mapped in any applications examined or addressed by a
particular range of functions for developers, product owners, or Scrum
masters. Established measures for increasing product quality, such as
acceptance criteria, the definition of ready, and the definition of done,
are also insufficiently taken into account.

Lastly, the identified problems reveal strongly limited support for
collaborative activities. This is due to the fact that all of the applications
examined are intended to run on desktop computers and were thus
designed to be used by a single person. The resulting problems mani-
fest most notably during the Scrum ceremonies. For example, if the
backlog is displayed on a beamer during sprint planning, the con-
tent is difficult to read even from a short distance. Within the project
groups, it was observed that these deficiencies in the display could
already have such an effect that people become less involved during a
meeting due to the poor legibility of the information displayed.

Another example is the hurdles concerning the daily Scrum meet-
ings. Although all applications can display the overall progress of a
sprint in the form of a task board, in the meeting, it is primarily a
matter of each developer briefly communicating his own individual
progress so that further tasks and any arising obstacles become trans-
parent to all team members. For this purpose, it would be helpful, for
example, to display the changes that have occurred since the last daily
meeting automatically so that people do not have to remember them
laboriously.

In summary, all of the meetings provided for Scrum are only insuf-
ficiently supported. In the case of the review and the retrospective,
the applications do not even offer any dedicated functions. However,
it is precisely the meetings and their processes that create the frame-
work for a collaborative working method in Scrum, which is oriented
towards the principles of empirical process control. Here, the inspec-
tion of a work genesis and the adaptation of the working method
must be carried out jointly. Review and retrospective are the "most
important learning loops" [226, p. 364], and ensure that the entire team
participates in the ongoing learning process.

In addition to the lack of features, a possible reason for the insuf-
ficient meeting support could be the applications” implementation
and design as classic desktop applications representing single-user

213

Weaknesses of
central Scrum
components

Limited support
for collaborative
activities

214

STATUS QUO OF SCRUM TOOL SUPPORT

interfaces. The mouse and keyboard interactions and the underlying
paradigm of the single point of focus limit the applications” usability
to scenarios with a single-person operation. Therefore, such applica-
tions reach their limits in collaborative work environments involving
several people. This could also be observed within the project groups,
where the dynamic interaction sequences in meeting situations led to
media discontinuities and second-intent disruptions, which negatively
affected the meeting flow.

Thus, in addition to developing missing features and optimizing the
identified usability issues, there is also the question of how collabora-
tive Scrum meetings could be better supported by other technologies
and input paradigms.

Therefore, the next chapter considers Natural User Interfaces (NUIs)
as successors to classic desktop applications before concluding the the-
sis with a novel Scrum management application proposal, particularly
addressing the identified issues.

Part III

THE IMPLEMENTED SOLUTION

Up to this point, this thesis explored the challenges and
issues when implementing the Scrum framework, and it
identified the limitations of current project management
applications to help Scrum teams face these problems.

While the investigations uncovered a significant gap in
supporting key elements of the Scrum framework, particu-
larly collaborative activities represented by the obligatory
meetings, this brings into question whether traditional,
single-user interfaces, such as laptops or desktop comput-
ers, are sufficient for fostering the particular demands of
agile Scrum teams.

As a result, Part III explores Natural User Interfaces (NUISs),
which are known for their potential to support collabora-
tion, especially in face-to-face interactions.

By investigating the third research question, "What could
a novel Scrum tool look like that utilizes NUI technologies
for collaborative activities?", this thesis finally proposes an
"interactive Scrum space," whose objective is to combine
traditional single-user interfaces with various touch-based
NUIs to offset their individual shortcomings, thus creating
a more effective and collaborative work environment.

NATURAL USER INTERFACES IN AGILE
ENVIRONMENTS

In contrast to other interaction paradigms, the term "Natural User
Interface" (NUI) is not as simple to grasp. This is because of the
question of which aspects make an interface "natural" and what is
meant by that. To provide more context when answering this question,
it helps to briefly look at how NUIs have evolved from the evolution
of human-computer interaction paradigms.

8.1 NUIS AS AN OUTCOME OF HCI EVOLUTION

Historically, human-computer interaction began with the paradigm of
physical operation. Early computing machines that could fill an entire
room consisted of tens of thousands of vacuum tubes, capacitors,
resistors, and relays, all contained and grouped within various control
and calculation units. Programming these machines meant plugging
cables and physically connecting the various units through electrical
wires before using punch cards for both system input and output.
However, since "interaction" describes an interplay of at least two
actors through a shared communication channel, it may be questioned
whether "physical operation” can be considered the first interaction
paradigm due to the missing bi-directional input-response cycle.

Even if working with computers in the early days only meant
operating and "acting" by feeding the system with information without
immediately processing the system output, it is nonetheless mentioned
here to provide a more complete picture. As shown by Figure 8.1, the
evolution of "real" interaction between humans and computers can be
divided into three main paradigms.

» Codified * Metaphor « Direct
« Strict » Exploratory * Intuitive

Figure 8.1: HCI paradigms’

1 Source: https://en.wikipedia.org/wiki/Natural user_interface

217

https://en.wikipedia.org/wiki/Natural_user_interface

218

Command-line
interfaces

Graphical User
Interfaces

NATURAL USER INTERFACES IN AGILE ENVIRONMENTS

The first is command-line interfaces (CLI), which came to arise during
the mid-1960s in the form of terminals and consoles. In CLIs, the shared
communication channel between user and machine is based on textual
in- and output and the interaction follows a sequentially strict input-
response cycle. It begins with the user entering specific commands
and associated parameters as character strings via the keyboard. The
system then executes the command by an interpreter known as shell
before the operation result is printed on the screen. To indicate the state
of the interaction cycle, CLIs use a prompt, which either signals that
the system is ready and waiting for input or otherwise not available
during the execution of a command. Although CLlIs are the oldest
form of human-computer interaction, they are still very common. That
is because commands and associated parameters represent a direct
and, hence, very fast way of telling a machine what to do. With later
improvements, such as multi-line commands, command blocks, and
endless possibilities for shortcuts and granular control, CLIs are still
indispensable for many expert environments like server environments
and remain the foundation of all Unix-based operating systems, as
shown in Figure 8.2.

o090 klecks — -zsh — 83x24

[klecks@AdrianskMachine ~ % 1s -1

klecks staff Applications

klecks staff 3 28: Desktop
klecks staff e Dev
klecks staff Documents
klecks staff Downloads
klecks staff B Library
klecks staff Movies
klecks staff 7 Music
klecks staff 8 Pictures
klecks staff Public
klecks staff 2] Splice
klecks staff TempDiss
klecks staff Zotero
I-X 6 klecks staff z sIc
ks@AdrianskMachine ~ % [

Figure 8.2: Command-line interface

The first paradigm shift in human-computer interaction describes
the change from CLIs to graphical user interfaces (GUISs). This shift was
already heralded in 1968 at the Stanford Research Institute, when
Douglas Engelbart presented a futuristic computer system intended for
"augmenting the human intellect" [81].

In the now famous "Mother of all Demos," he presented the "oN-Line
System" showcasing a scenario of an architect who designs a building
using an application similar in structure to today’s modern CAD?
programs. His demonstrations contained so many groundbreaking
innovations that many viewers had problems understanding what
they saw, such as a display with multiple windows, mouse interactions

2 Computer Aided Design

8.1 NUIS AS AN OUTCOME OF HCI EVOLUTION

for selecting objects and triggering commands, full-screen document
editing, hypertext linking, e-mail, instant messaging, and even video
conferencing.

However, neither the Stanford Research Institute nor Engelbart
turned these novel ideas into commercial products. Instead, this was
initiated by the photocopier company Xerox. In fear of Engelbart’s
vision of a paperless office, which would inevitably decline their paper-
based business, the company decided to control this new technology
so that it would not be overrun. Hence, Xerox formed the Xerox Palo
Alto Research Center (PARC) in 1970 and gave top computer science
researchers absolute freedom to explore whatever dreams they had
about the future of computing. PARC soon became the hotspot of
many novel, groundbreaking innovations - both in terms of software
and hardware, e.g., the "Xerox Alto" - the first workstation with a
graphical user interface using a typewriter-like keyboard, a three-
button mouse, and a novel ethernet connection.

Moreover, with the first object-oriented programming language
Smalltalk (see Figure 8.3), PARC researchers set the standard for a
consistent user interface approach in 1974 by defining the WIMP
interaction paradigm, describing windows, icons, menus, and pointers
as the essential components of a graphical interface through which a
user can interact with a computer system.

System Browser|
cllections-Sequerf —- -
Collections-Text | Interval B
| Gollections=Arrays LinkedList copying o: i
| | Coliections-Straan| MappedCollection | adding docandBetweanDa:

- | Collections-SupporfOrderedCallection § ramoving promotefirstSuchT)
Graphics=Primitivag S ction fanumerating f revarse
Graphics-Display (—-=---==<==< private ravarsg ek

i Graphu:: Media | 20 |esessseseeee selact: |Form Editor|

p Patns p——— T
instancell class

.| collect: aBlock 31
E “Eyalpate aBlock with each of my elemsnts ar the crgument. O ‘9 I

i rezulting velues fate a coliection that is Iike me. Answer with
f collsction. Override supercless in order fo wse add:, not ot put:)

| newCaollgction |

newColleetion + salf spacias naw,

salf do: [iwach | newCoilection add: (aBlock value: each)].
+nawCollection

Usar Interrupt el
Paragraph;charactarBlockAtPoint:

dugriph»muumﬁuluct tor ‘ 4
J¥rpr i
Cot Con(mlllr(?arag_aghtdltor))plncusMuu!uBullonl 51
‘Codetiontroller PAragraphE ditor [ycantrotAc vty |
Codal trofler{Controllar)y>controlloop
cont
saif scroiBarContainsCursor
ifTrue:
[seif scraii}
ifFalse: -
[sslf procasskeybo| [1SRobsonISHT | !
seif p lene [<ROB3SON>BF)BCraanForm.st *
lene] <Robson cramnformChanges.st i
blugButid 31@537 corner Filene]¢Robson? §F>WordGraphics.form i
serolber) ‘gs@770020 ¢ |Tommmmm—m—
markar ry
savedArd Rectangle fromUser arigin I
paragrap|

startBlog ScraenForm satFullPageWidth, Bi

(Form readFrom; ‘FilladSkats.form”) edit !ﬂ

Figure 8.3: Smalltalk [154]

219

220

Natural User
Interfaces

Ubiquitous
Computing

NATURAL USER INTERFACES IN AGILE ENVIRONMENTS

Although other companies like Apple and Microsoft took over
during the mid-1980s to commercialize the ideas developed at PARC,
it was Smalltalk and the Alto that, in 1974, defined how graphical user
interfaces should look like, including the WIMP paradigm and many
other of today’s GUI elements, such as borders, title bars, overlapping
windows, icons, popup menus, the desktop metaphor, scroll bars,
radio buttons and dialog boxes, all of which remain standard in
todays operating systems.

Besides the shift from CLI to GUI, PARC has also strongly con-
tributed to the second major paradigm shift in human-computer in-
teraction, which is from GUISs to natural user interfaces (NUIs). During
the early 1990s, researchers at PARC worked on new ideas to break
the boundary of desktop applications and envisioned several types of
post-WIMP interfaces [68]. Their main intention was to develop new
interaction concepts that better integrate with the physical environment
and real life of the user. That is because standard GUISs rely on com-
puter systems with keyboard and mouse and, therefore, inherently
prescribe single-user application scenarios in which the user’s freedom
of interaction is limited to the desktop screen. To break down this
limitation, Mark Weiser and other researchers at Xerox Parc envisioned
a less demanding form of human-computer interaction. They called it
ubiquitous computing, in which technology becomes "calm" by embed-
ding it in the natural environment [283]. Instead of requiring the user
to sit in front of a technical device and thus adapt to the technology
in his natural behavior, in ubiquitous computing, it should instead be
the technology itself that is integrated into the user’s environment in
such a self-evident way that it is no longer perceived as such [286].

"The most profound technologies are those that disappear.
They weave themselves into the fabric of everyday life
until they are indistinguishable from it.”

— Mark Weiser [282]

However, to "disappear” into the environment does not necessarily
mean being hidden from view. Instead, as suggested by cognitive
scientist Don Norman, it is meant "to make technology conform to the
needs of people" [195, p. 261]. For this purpose, it is necessary that
the devices are conveniently at hand and do not require special effort
for their use. Hence, being ready-at-hand and using devices without
thought contributes to "disappearing" technology [139].

"Just as a good, well-balanced hammer 'disappears’ in the hands of a
carpenter and allows him or her to concentrate on the big picture, we hope
that computers can participate in a similar magic disappearing act.”

— Mark Weiser [281]

8.1 NUIS AS AN OUTCOME OF HCI EVOLUTION

While the concept of ubiquitous computing transformed the funda-
mental understanding of human-computer interaction by envisioning
a "proliferation of devices and systems that enable access to compu-
tation in a variety of ways" [139], it also was the driving factor for
developing novel devices and technologies that built up on the user’s
given habits and capabilities making them "naturally" simple to use.

Today, these "Natural User Interfaces" (NUIs) "enable users to in-
teract with computers in the way we interact with the world" [126]
and represent the latest paradigm in human-computer interaction.
Like ubiquitous computing, NUIs "aim to provide a seamless user
experience where the technology is invisible" [126]. However, where
ubiquitous computing delivered the overall vision of augmenting the
natural environment with an interplay of various embedded technolo-
gies, NUIs can be understood as concrete instances of novel interactive
devices designed to make use of naturally acquired human skills, such
as touch, gestures, or speech [272].

For that reason, NUIs exhibit a high degree of heterogeneity com-
pared to previous interaction paradigms. While CLIs are characterized
by a keyboard input in a command line and GUIs are primarily ori-
ented towards the WIMP scheme with a keyboard and mouse as input
devices, the appearance of NUIs is manifold since they are not lim-
ited to particular input and output technologies. This circumstance
also makes NUIs more challenging to define, especially by a simple
one-sentence. This is also reflected in the fact that researchers still
discuss what "natural" really means to specific audiences, for instance,
children [51]. However, the following definition from the wiki of the
NUI Group3, an expert forum and online community for researchers
in this domain, shall conclude this section:

"A NUI is an emerging paradigm shift in man-machine interaction of
computer interfaces to refer to a user interface that [...] becomes invisible with
successive learned interactions to its users. The word natural is used because
most computer interfaces use artificial control devices whose operation has to
be learned. A NUI relies on a user being able to carry out relatively natural
motions, movements, or gestures that they quickly discover to control the
computer application or manipulate the on-screen content.” [250]

The following section will provide a short overview of the dominant
input modalities to further illustrate the great variety and different
form factors of natural user interfaces. By quickly elaborating on
their individual strength and weaknesses and design considerations,
it shall also serve as a starting point for the succeeding section about
combining various NUIs to an interactive space that suits the special
demands of agile Scrum teams.

The definition was originally accessible at [197]. Recently, the forum has been shut
down because the host depreciated the community forum software.

221

222

Touch screens were
first introduced in
the 1970s

Multitouch displays
were researched in
the 1980s but
became publicly
aware in 2006

NATURAL USER INTERFACES IN AGILE ENVIRONMENTS

8.2 DIFFERENT NUI TYPES

The following sections provide an overview of various NUI types.

8.2.1 Touch and Multi-Touch

Of all NUIs, touch interfaces are by far the most common and in-
dispensable part of today’s world, in which smartphones and tablet
computers have become integral to daily life. While most people as-
sociate touch interfaces with these mobile devices, it is important to
know that research has also long been concerned with other imple-
mentations, such as multitouch tabletops or large interactive walls,
which are particularly interesting to this thesis.

The history of touch and multitouch technologies goes back longer
than one might think at first glance. Even before the development of
the PC, early synthesizers and electronic musical instruments could
be operated by touch-sensitive pads using capacitance sensors to
manually control and influence the music produced [296]. Touch
screens were first introduced to the public in the 1970s but could only
detect and process a single touch point [180]. During the heyday of the
PC in the 1980s, research was already beginning on multitouch displays,
devices capable of recognizing multiple touches simultaneously and
independently [45]. However, it was not until 2006 that the public
became aware of this technology when Jeff Han presented the result
of his research [111] at the famous TED conference (see Figure 8.4).
In his talk entitled "The radical promise of the multitouch interface"
[110], he demonstrated a "cheap, scalable multitouch and pressure-
sensitive computer screen interface” and several application examples
that caused a sensation among the audience.

Figure 8.4: Jeff Han at the TED conference#

4 Source: https://www.ted.com/speakers/jeff_han

https://www.ted.com/speakers/jeff_han

8.2 DIFFERENT NUI TYPES

Just one year later, with Apple’s presentation of the iPhone in 2007,
multitouch became suitable for mass use and, within a very short
time, succeeded as the dominant technology for new devices such as
smartphones and tablets. Next to these smaller devices, multitouch
technology was also incorporated into larger displays. Also in 2007,
Microsoft released the "Surface" - the first interactive tabletop capable
of identifying various objects and their position on the screen besides
sensing multiple fingers and hands. For Bill Buxton, this was "a key
indication of this technology making the transition from research,
development, and demo to mainstream commercial applications" [45].

However, to understand touch interfaces, it is crucial to know that
their facets are extremely diverse:

"The term "touch screen interface’ can mean so many things that, in effect, it
means very little, or nothing, in terms of the subtle nuances that define the
[...] appropriateness of the design for the task, user, or context.”

— Bill Buxton [45]

At first, it makes a real difference in terms of the directness of touch,
whether the interactive surface also is the display for the user interface
or, in contrast, only functions as an input device (like touch pads in
notebook computers) [45].

Besides the capability to display the interface, many more design
considerations also depend on the given sensor technology of the
touch surface. For instance, technical aspects define the degrees of
freedom (DOF) and therefore limit the richness of possible interactions.
Touch displays capable of detecting only one touchpoint have 2DOF
and are similar to conventional GUIs, where a mouse pointer is moved
on a 2D screen. In contrast, if a sensor allows tracking two fingers
simultaneously, the user will already encounter 4DOF, allowing for a
much richer interaction experience.

Of course, tracking multiple fingers is not only useful for single-user
applications but especially interesting for collaborative scenarios in
which multiple users simultaneously work with an interactive surface,
e.g., in the form of tabletops or wall displays. In these contexts, it
would be valuable to know which touch point belongs to which
person. This would allow to distinguish between users, for instance, to
provide personalized user interfaces or access to user-specific data
[297] but also to differentiate whether an interaction is executed by
one person with multiple fingers or if multiple persons execute two
(or more) concurrent interactions.

However, the capability of differentiating between multitouch and
multi-user is still a subject of technological research. Either solutions
rely on very specific hardware components or complex tracking algo-
rithms, both having several constraints.

223

Since the first iPhone
in 2007, multitouch
displays have become
mainstream

Characteristics of
touch interfaces

User distinction

224

Richness of
touch data

Lack of precision

Missing tactile
feedback

NATURAL USER INTERFACES IN AGILE ENVIRONMENTS

The MERL DiamondTouch system [74], for example, is capable of
assigning touch points to different users on the hardware side but
limits the freedom of movement of the users by physically wiring
them to the device. Moreover, it suffers from "ambiguous responses
when a single user exercises multiple contacts on the surface," which
"limits the ability [...] to provide full support of common multitouch
interactions” [46]. Other systems try to distinguish users by additional
cameras for detecting their shoes [216], body [297], hand-contours
[232] or incorporate additional wearable technology like smart-rings
[24] or vibration-sensors [170] for user assignment. Without going into
too much detail, the last thing to mention is the Fiberio system [118].
Its unique feature lies in a special technical structure that makes it
possible to distinguish users and identify them by their fingerprints,
which opens up new application possibilities [151].

In addition to the distinguishability of individual users, differences
between touch interfaces can also be seen in the information they can
obtain from a single contact point. In addition to recognizing that the
surface was touched at a specific position (binary touch/no touch),
some systems can also recognize the degree of contact and interpret it as
variation in pressure or angle of attack and can calculate force vectors,
all of which can be used to enrich the user experience with real-world
gestures, e.g., flicking virtual objects on the screen [45].

In addition to the extended possibilities offered by touch interfaces
compared to classic GUI systems, there are also some disadvantages.
Although object selection or manipulation with the finger is often
superior to mouse interaction in terms of speed, it is clearly inferior in
terms of precision [278]. Depending on the particular action, this lack of
accuracy significantly affects the nature of the interaction. For instance,
typing a particular letter on a smartphone keyboard already requires a
high level of accuracy. However, selecting the gap between two letters
to correct a misspelling is way more difficult. Contrasting to that, flick
or slide actions, for example, used when swiping through images,
are far less demanding and do not require interaction precision. In
addition, precise interactions also demand for greater visual attention
because of missing tactile feedback.

The lack of precision is also immediately apparent when experienc-
ing the difference between using a graphical or physical keyboard.
Whereas physical keys guide the user and make him or her feel their
location, the absence of tactile feedback and haptic reference points
requires the user to leave the eyes on a virtual keyboard. As Buxton
pointed out, what is meant by missing "feedback" is indeed missing
"feedforward,” which he describes as "feedback for the task of finding
the appropriate control, not activating it" [45].

This also relates to a significantly lower use of muscle memory,
amplified by the fact that controls on touch interfaces are not persistent

8.2 DIFFERENT NUI TYPES

in their location. Instead, several control elements typically appear at
the same location at different times, increasing the user’s cognitive
load and limiting the potential for motor learning. Depending on the
application scenario, the lack of haptics, together with the lack of
precision, can be significant downsides.

For this reason, touch tablets are often equipped with digital stylus
pens since they provide a much better user experience in the context of
artistic drawing or even handwriting. Besides, some larger interactive
surfaces, especially tabletops, make use of additional physical ele-
ments, so-called tangibles (see Figure 8.5), which not only compensate
for the downsides of touch but also add new possibilities for both user
input and system feedback.

Figure 8.5: Tangibles on the "Reactable" [132]

Next to technological differences, which already bring a great deal
of complexity when designing touch interfaces, there are also very
basic things to consider for appropriate usability. To name two, and
beginning with the fact that arms and fingers are not transparent,
touch interaction has to deal with the problem of occlusion. This is
even more pronounced in collaborative work scenarios and increases
with the number of people interacting on the surface simultaneously.
In addition, collaboration on interactive tabletops suffers from an
orientation problem since content (especially text) is not equally well
recognizable from all sides.

As can be seen, touch interfaces have many different aspects to
consider depending on the technology, context of use, application
scenario, and much more, so what has been mentioned before is by
no means complete. However, the purpose of this section is only to
show that there is a lot more to the design of touch interfaces than to
classical desktop GUIs because of the great variety of challenges and
many considerations to take.

225

Compensating the
lack of haptics with
digital pens and
tangibles

226

Gestural interfaces

NATURAL USER INTERFACES IN AGILE ENVIRONMENTS

8.2.2 Gestural, Speech, and Tangible Interfaces

Out of the great variety of NUIs, touch-based interfaces are the most
common. This section now looks at some other also well-known repre-
sentatives.

Many applications require hands-free interaction with computer
systems. For example, virtual reality (VR) environments try to avoid
external controls to increase the immersive feel, thus making the
user experience in the virtual world seem as real as possible. Clinical
environments with crucial demands on hygiene could also benefit
from no-touch interactions.

In these scenarios, gestural interfaces might be a natural solution,
where the computer system is operated by a set of gestural com-
mands that are triggered by in-air movements of various body parts,
commonly hands, arms, and fingers, but also head, legs, and feet.

From an interaction point of view, utilizing gestures that are exe-
cuted freely in three-dimensional space opens up new possibilities. At
the same time, however, it also represents the greatest challenge from a
technical point of view. That is because the translation and mapping of
gestures to commands is a challenging task due to the motion richness,
including arbitrary poses, locations, and self-occlusion [263], which
requires expert knowledge in computer vision and machine learning
to develop algorithmic pipelines with high recognition accuracy [150].
In addition, as Liu and Thomas point out, designing gestures in a
way that they are quickly and reliably recognized by imaging systems
often comes at the expense of user effort. However, the effort greatly
impacts a user’s willingness to actually use a gesture-based system
[162]. So, although usability studies have shown that some application
scenarios have stronger user preference towards gesture interfaces as
compared to touch interaction because of the overall more natural and
intuitive feel [198], the trade-off between system reliability and user
effort still is a major drawback.

Other usability challenges include missing tactile feedback [88] and
the fact that simple pointing operations in gesture interfaces can be
significantly slower compared to classic mouse interaction and may
also lead to fatigue more often depending on the use case [47].

In summary, gesture interfaces in which interactions take place in
free space offer a wide range of possibilities but present new chal-
lenges to developers, designers, and users equally. To better address
these, Frederic Kaplan suggests that gestures and movements in space
should not be understood as an emulation of a mouse pointer that
can trigger a set of commands. Instead, gesture-based interaction is "a
fundamentally different approach to the design of human-computer
interfaces" in which the digital system must merge with the user’s

8.2 DIFFERENT NUI TYPES

physical environment to create a "halo" of interactivity [137]. This
would lead to a reference shift that no longer positions the user in
front of a digital system but instead adapts the interface itself so that
the user can ubiquitously interact with interface components around

his body.

Another type of touch-less NUIs is voice user interfaces (VUIs), which
enable communication between humans and machines through voice-
based interactions, i.e., natural speech. Technically, VUIs are made
possible through speech recognition and natural language processing,
which allows interpreting human speech to understand verbal com-
mands. In HCI research, VUIs have played a minor role for a long
time compared to other interface types. However, with the release
of voice assistants by major tech companies in recent years, e.g., Siri
from Apple, Alexa from Amazon, and the Google Assistant, which
rapidly gained in popularity, research activities in the domain of voice
interfaces also seem to accelerate.

Beginning with the benefits of VUISs, the first one is that they allow
not only a touch-less but also an eyes-free interaction. This suits many
situations where the user would otherwise be considered occupied,
for example, while driving a car or cooking a meal. In these scenarios,
voice interactions can be more convenient than physical ones because
they do not rely on visual attention or require hand availability. Like-
wise, to users with disabilities like visual impairments or limited hand
dexterity who have difficulties accessing conventional display-based
devices, VUIs can be the most efficient (or, in severe cases, the only
viable) form of interaction [83]. However, as stated by Corbett and
Weber, it is a general best practice of HCI and interaction design to
advise against voice as a primary interaction modality since physical
inputs are usually considered to be most efficient [63].

Apart from that, several fundamental and practical limitations in
VUIs hinder the ubiquitous adoption of this technology [72]. For
example, speech processing is often error prone [288] for several
reasons. At first, making speech recognition systems robust to noisy
environments is a significant challenge, so the performance of VUIs
still heavily depends on the acoustic setting and cleanliness of speech
data. Secondly, the error rate increases with a conversational and
more casual style of speech [72]. That is because natural language
is more than just words [13]. Free speech contains a lot of inexplicit
utterances, such as ellipsis and deixis, which VUIs must be capable
of dealing with [112]. In addition, language interpretation requires
semantic knowledge, i.e., meaning, and pragmatic knowledge about
the application context to achieve a common sense of what has been
said [72].

All of this makes natural language interfaces not only difficult to
engineer but also leads to frustration and confusion on the user side

227

Voice user interfaces

228

Tangible User
Interfaces

NATURAL USER INTERFACES IN AGILE ENVIRONMENTS

because of unrealistic expectations regarding the technical capabilities
of VUIs [183].

Complicating this, the discoverability of voice commands is a fundamen-
tal challenge to any VUI user. That is because users have inaccurate
and often inconsistent mental models of what the system can under-
stand. Hence, people must learn the speaking style recommended by
the recognition software [203]. However, the ephemerality of voice
input does not allow for sophisticated user guidance and assisted
learning because of missing affordances, interaction metaphors, and
the fact that commands are forgotten over time [63]. Moreover, the
temporal and transient nature of audio makes listening to VUIs more
demanding than visually scanning the screen of a GUI since informa-
tion cannot be accessed directly or easily browsed [11] but has to be
remembered instead.

Lastly, what further contributes to the fact that VUIs are challeng-
ing is that there are yet no established guidelines or taxonomies for
assisting developers in building and designing more usable speech
interfaces [184].

While gestural and speech interaction has been subject to research
for a longer time, another subcategory of NUIs has gained more
attention in recent years. Tangible User Interfaces (TUIs) have been
coined by Hiroshi Ishii and the Tangible Media Group at the MIT
Media Laboratory in the mid-1990s [169]. According to Ishii, "TUIs
represent a new way to embody Mark Weiser’s vision of ubiquitous
computing by weaving digital technology into the fabric of the physical
environment, rendering the technology invisible" [123].

In GUIs, digital information is rendered on displays; thus, it is
perceivable by vision only before being manipulated by mouse and
keyboard, which act as general-purpose devices for interacting with
all kinds of data. In contrast, the central idea of TUIs is to give digital
information a concrete physical form that both serves as representation
and control for its digital counterpart.

To illustrate this further, the Marble Answering Machine (MAM) will
serve as an example. This conceptional device was presented in 1992
by Durell Bishop during his studies at the Royal College of Art and
represented the very first concept of a TUI. Despite the age, it is still
well-suited to demonstrate the benefits of the underlying idea, which
is accessing digital information by manipulating physical objects.

Instead of displays, buttons, and dials, this answering machine
incorporates marbles as central interaction objects. Whenever a caller
leaves a message, a marble rolls out of the machine and lines up with
other marbles representing previous calls, as shown in the upper right
images in Figure 8.6.

8.2 DIFFERENT NUI TYPES 229

pléy delete store

Figure 8.6: Marble Answering Machine>

The callee can then (1) play the message by taking the associated
marble and laying it in an indentation, (2) delete the message by feeding
the marble back into the machine, or (3) store the message by keeping
the marble at a save place, such as a tray next to the machine.

But what is the benefit of the MAM when comparing this tangible
design to a classical answering machine? To answer this question,
imagine a person entering the room and briefly taking a look to see
whether he or she might have missed some calls. Even if the classical
machine uses a display showing the number of incoming calls, it
would be difficult to read from a greater distance. In contrast, the
MAM easily allows spotting incoming calls from further distance by
just looking for marbles that came out of the machine. Suppose we
further imagine that the color of a marble encodes a specific person. In
that case, the MAM makes it possible to comfortably identify related
calls and play messages in any order without additional effort. In
contrast, the user of a classical machine would likewise need to jug
through dials or operate the device through a bunch of button presses.

This example shows that TUIs can simplify interactions with a
digital artifact (in this case, a telephone call) by making it accessible
and directly manipulatable through an associated physical counterpart,
a concept that Hiroshi Ishii has later coined "tangible bits" [124].

In addition, it also illustrates that TUIs are usually designed for
unique operations. Deleting calls by feeding marbles back into the

5 http://dataphys.org/list/durrell-bishops-marble-answering-machine/

http://dataphys.org/list/durrell-bishops-marble-answering-machine/

230

NATURAL USER INTERFACES IN AGILE ENVIRONMENTS

machine is a unique and very clear operation, so it is highly unlikely
that the user will delete the message (feeding it back into the machine
through a hole at the top) instead of listening to it (placing the marble
into the indentation at the right side of the machine). As a result, the
deletion of calls does not require extra confirmation, as is the case with
classical answering machines, where the press of a button is a generic
operation, so that incorrect actions are therefore more likely to occur,
for instance, due to confusion. Lastly the MAM also demonstrates
that TUIs have a unique potential for user engagement and personal
connections since interactions take place in the physical environment
and reality. In terms of the MAM, a person can, for instance, store
all calls of his or her loved one by keeping the associated marbles
in a place with personal reference. It would even be conceivable to
form a necklace and "wear" the calls to create an exceptional personal
connection. This kind of personal reference is hardly imaginable with
a classical answering machine, where information and interaction
remain in the digital space.

Overall, TUIs are a novel approach to human-computer interaction.
Building on the foundation of ubiquitous computing (see Page 220) to
make technology seamless and invisible, TUIs can hide the controls
while simultaneously making the system’s state evident on the sur-
face as the physical form of the interface itself. Since research in this
area has intensified significantly in recent years, it remains to be seen
whether TUIs will no longer be counted as natural user interfaces in
the future but will possibly trigger a paradigm shift of their own. In
particular, Ishii’s idea of Tangible Bits has also evolved into a vision
of "Radical Atoms" [125]. These are TUIs that map the physical mani-
festation of digital data through shape-changing materials, allowing
changes in the digital system to be reflected in changes to the physical
form of the interface.

However, a significant disadvantage of TUISs is that each interface is
custom-built and usually designed for one particular task only. This
circumstance also makes it more difficult to establish standards, which
in turn are necessary to promote the development and dissemination
of TUIs. For this reason, voice-based, gestural, and, most importantly,
touch interfaces will probably remain the predominant type of NUIs
for the time being because they are much more versatile, and their
types of interactions can be used for a variety of different purposes.

After explaining the major paradigm shifts in human-computer
interaction towards natural user interfaces and presenting their main
representatives, the following sections will now start drawing a con-
nection to the identified Scrum issues and challenges of Chapter 6 by
proposing an alternative solution based on touch-based NUIs.

Beginning with basic design considerations that help understand
why the novel approach only incorporates touch-based NUIs, the

83 BASIC DESIGN CONSIDERATIONS FOR A NUI SOLUTION

following sections will elaborate on important design considerations
for individual interface types (mobile, tabletop, and vertical touch
displays).

Afterward, a brief look at existing touch-based NUI approaches in
the context of agile software development will be given, followed by
an analysis of their weaknesses before proposing a novel system in
Chapter 9.

83 BASIC DESIGN CONSIDERATIONS FOR A NUI SOLUTION

When developing a NUI-based approach for addressing the challenges
of Scrum teams (see Chapter 6) and tackling the problems of GUI-
based project management applications (see Chapter 7), the first thing
to consider is which type of NUI to select. That is because, as explained
in Section 8.2, NUIs come in great variety and different form factors,
each with individual strengths and weaknesses. So, when deciding
whether Scrum teams should be supported through gesture, voice,
touch, or tangible interaction, some basic requirements and design
considerations must be clarified first.

First, the new system should be capable of being operated by multiple
persons simultaneously. This requirement serves to support collaborative
work situations better, as they arise in particular during the mandatory
Scrum meetings, which have turned out to be problematic with regard
to existing GUI-based agile ALM applications (see Section 7.3).

What is more, interaction should be as natural as possible and should be
performed without additional technological components only serving the
need of the system to work properly. Examples of such components
include, for instance, wearable gloves. In gestural interfaces, these
gloves only serve as a workaround to increase the pointing precision
and overcome the technical constraints of current visual tracking
approaches. However, from the user’s perspective, these gloves are
an unnecessary obstacle that can impede the interaction flow [166].
For this reason, the system to build should be operated without any
further components than what the user brings naturally®.

Lastly, technology must integrate appropriately into the existing Scrum
processes and workflows. This means particular attention should be
paid to the fact that the individual meeting types of Scrum are carried
out in different ways and may require various types of technological
support and interaction design. When comparing, for example, the

In this context, "naturally” does not necessarily relate to body parts only but more to
any object that is commonly part of the interaction environment. For example, a
digitally enhanced pen to recognize and process written information can "naturally”
sit in the environment of a sprint planning meeting. It may be used just like a normal
pen and therefore becomes "invisible" or "natural” as a technological device.

231

Simultaneous
operation by
multiple persons

Natural interaction
without additional
components

Integrating with
Scrum processes and
workflows

232

NATURAL USER INTERFACES IN AGILE ENVIRONMENTS

sprint planning event with the daily Scrum, both meetings are dif-
ferent in terms of the content to discuss, duration, and overall setup.
While the sprint planning event can take several hours and partici-
pants usually sit, the daily Scrum is supposed to be 15 minutes only
and, therefore, is held as a standup meeting. These aspects must be
considered when designing a usable system that adapts to the given
work situations and processes instead of vice versa.

Based on these basic requirements, touch-based interfaces were
selected for the system to be developed because they can fulfill all
criteria, whereas other NUI types could easily be excluded because of
significant disadvantages. Gestural interfaces have been considered
inappropriate because the requirements above would demand a visual
tracking technology capable of simultaneously processing gestures
from multiple persons. However, this is not yet reliably possible. Like-
wise, speech interfaces have been excluded because they require just
one person to speak at a given time. Moreover, speech processing is
still limited to a command-based interaction, which would negatively
affect Scrum workflows and meetings. Tangible User Interfaces, on the
other hand, due to their free form of design and diversity, are certainly
a suitable way to support the work of Scrum teams technologically
in a new way. However, as stated on Page 230, each TUI is usually
custom-built and designed for one particular task only. This circum-
stance makes TUISs less versatile for the complex work environment
of agile Scrum teams, whereas touch interfaces can adapt to different
tasks by switching the user interface on the touch screen.

84 DESIGN CONSIDERATIONS OF TOUCH-BASED INTERFACES

Given the decision to design a novel interactive system for agile
Scrum teams that uses touch-based NUIs, the following sections elab-
orate more on important design considerations for three main touch-
interface types.

8.4.1 Mobile Interfaces

According to Rogers et al., mobile touch-based interfaces refer to any
computing devices designed for handheld interaction via touch input
while being on the move [219]. While this definition generally covers
a broader range of devices, e.g., e-book readers, the largest share is
first of all represented by modern smartphones, which, after the intro-
duction of Apple’s iPhone in 2007, rapidly became the biggest trend
in personal computing and quickly developed into an indispensable
part of today’s life [96].

84 DESIGN CONSIDERATIONS OF TOUCH-BASED INTERFACES 233

That is because smartphones are way more than just mobile phones.
Instead, they are internet-enabled computing devices with enough
processing power and memory capacity to run all kinds of different
applications, so-called apps. In terms of interaction, modern smart-
phones usually do not provide physical buttons but mainly rely on
the finger as a natural pointing device on the touchscreen. In addi-
tion, current mobile devices include many different sensors, such as
cameras, microphones, accelerometers, or near-field communication
modules, all of which create many opportunities for novel applications
and interaction techniques.

In general, the possibilities of app development for mobile devices
are already very advanced. This includes, among other things, new
development technologies and advanced APIs?, as well as mature
design standards for different operating systems that greatly simplify
the programming of apps.

However, besides new possibilities, mobile devices are also natu- Design
rally limited in various usability aspects. To further understand the considerations
possibilities and limitations of mobile interfaces, the most important
design considerations are outlined below.

One of the biggest challenges in designing mobile interfaces arises Limited display space
from the limited space for displaying control elements due to the small
screen size. This restriction could be circumvented by making com-
plex action sequences accessible via multi-level navigation hierarchies.
However, this also increases the cognitive load for the user [23]. Hence,
Nielsen advises designing mobile interfaces list-like so that the action
space can be increased at will via vertical scrolling. Principally, though,
he recommends limiting the displayed functions and information to
those that are most important for the current use case [194]. Another
piece of advice for dealing with the problem of limited display space
is given by Shneiderman and Plaisant, who recommend using es-
tablished design patterns and visualization techniques for grouping
information and creating a more streamlined mobile experience. How-
ever, they generally recommend optimizing mobile interfaces for short
and simple tasks while simultaneously moving complex and longer
tasks to the desktop whenever possible [252].

This recommendation also makes sense because the already small ~ Occlusion and less
action space of the mobile display is further reduced by occlusion ~ precise touch input
of the fingers. After all, whenever a finger touches the surface, it
covers a visible part of the screen. Due to this relatively large contact
area, finger interaction is also less precise in comparison to the pixel-
precise pointing with the mouse when using desktop computers. As a
consequence, although the finger as a pointing device is more intuitive
and provides a "stronger feeling of having control over the interactions"

7 Application Programming Interfaces

234

Lack of secondary
interactions and
hover states

Gestures

Software keyboards

NATURAL USER INTERFACES IN AGILE ENVIRONMENTS

[14], mobile interfaces can be more difficult to use, which is especially
true for users with poor manual dexterity or bigger fingers [219]. For
this reason, Nielsen recommends that mobile applications should not
demand pixel-level precision and that interactive components should
be sufficiently large [194].

Besides occlusion and lack of precision, touch interaction also lacks
other features that are an integral part of classical WIMP interfaces. For
example, the mouse usually has additional controls, such as buttons
and clickable scroll wheels, which trigger predefined secondary control
options like opening context menus. However, the finger is a pointing
device without additional control "features." Moreover, it naturally
inhibits the rendering of a cursor on the screen and consequently does
not allow the detection of hover states, further limiting the capabilities
of interface design [190].

On the other hand, interaction designers of touch interfaces can take
advantage of gestures, which "add a welcome feeling of activity to the
otherwise joyless ones of pointing and clicking" [196]. However, with
respect to gestures, there are some important aspects to be aware of.
One is that gestures have no visible signifiers. On the positive side,
this benefits the limited size of mobile touch screens and prevents
cluttering the UI with further controls. On the other hand, the absence
of visual clues means that the user has to deduce the possible space
of actions on his own. It also means that gestures pose more cognitive
load on the user because they have to be memorized and cannot be
accessed through visual cues in the Ul Consequently, gestures should
be as self-revealing, intuitive, and easy to learn as possible [14]. While
this is feasible for simple tasks like zooming, rotating, and swiping,
it is, however, very challenging for complex tasks, which is a further
reason to leave those tasks for desktop computers.

Besides pointing, mobile touch interfaces are also highly different
in terms of typing. In contrast to desktop computers and laptops,
smartphones do not have physical but solely rely on software key-
boards, which are less satisfying because of several downsides. At
first, text entry on a software keyboard cannot match the speed and
efficiency of the physical pendants [219]. In addition, the lack of tactile
feedback also leads to higher error rates [80], which in the case of
smartphones are even worse due to small key sizes combined with oc-
clusion, as mentioned before. Furthermore, software keyboards claim
a reasonable portion of the screen during text entry, further limiting
the application’s viewport. As a result, the user cannot see more than
a limited portion of the written text. For this reason, text entry on
smartphones should be reduced whenever possible, and applications
demanding higher amounts of text input should better be brought to
the desktop [252]. Nonetheless, as Nielsen stated, text entry remains
an integral part of many mobile applications and, therefore, should

84 DESIGN CONSIDERATIONS OF TOUCH-BASED INTERFACES

be enhanced through algorithmic approaches, such as auto-complete,
type-ahead search, or automatic spelling correction for a better user
experience [194].

In addition to the points mentioned so far, mobile devices also dif-
fer in how they are used in different contexts. In contrast to desktop
computers and laptops, the context of smartphones changes more
frequently because "mobile" also implies that these devices are ready
at hand and, hence, used in many more situations under diverse
ambient conditions. That is why mobile users are also more easily dis-
tracted due to various external influences, e.g., noise or interruptions
from other persons. As a consequence, they usually have less time
to perform a task, which could explain why mobile browsing is ob-
served to be shorter and more goal-directed, whereas it is less-directed
("surfing") in the case of desktop computers [266].

Apart from that, the context also determines how tasks are executed
on a mobile device. Task performance may, for instance, depend on
the location, so users need different functionality for a given task
depending on whether they are in their office at work or traveling
by train. For this reason, Benyon promotes context-aware mobile
interfaces, which can adapt to the current situation and task at hand by
providing context-sensitive functionalities depending on the location,
the computational environment, and the history of interactions with
the environment [23].

8.4.2 Tabletops

Interactive tabletops have gained more attention in the research com-
munity since 1993 when Pierre Wellner introduced the DigitalDesk. This
computationally enhanced desk was operated via touch gestures and
could augment physical paper with digital information through a
top-projected interface [284]. Since then, and especially throughout the
last ten to fifteen years, interactive tabletops have become a substantial
topic in HCI research, especially in relation to co-located activities and
collaborative work scenarios.

Out of all interaction devices, the table probably feels most natural
to humans since we incorporate tables as a place to meet in our daily
lives [108]. From eating dinner with friends to collaborative business
activities with colleagues or customers, tables are an indispensable
part of our social interactions. As part of this, we share verbal and
non-verbal communication cues while interacting with objects on the
surface, like, for instance, paper.

The same holds for interactive tabletops, which, similar to their
physical pendants, also represent a place to meet, while their large

235

Context of use

236

Design
considerations

Software keyboards

Shared input

Concurrent
multi-user
interaction

NATURAL USER INTERFACES IN AGILE ENVIRONMENTS

multitouch surface simultaneously extends the capabilities of ordinary
tables by providing a shared digital workspace, which can be operated
by multiple persons simultaneously. Naturally, this makes interactive
tabletops particularly suited for all kinds of collaborative activities,
which benefit from higher awareness about each other’s interactions.
However, while tabletops offer many opportunities and affordances,
they pose additional challenges to interface designers [241].

Regarding basic touch input, it could be assumed that the design
considerations for mobile interfaces also apply to tabletops since the
problem of occlusion and less precise input as a result of the finger
as an input device should remain the same. However, as pointed
out by Watson et al., the larger interaction space of tabletops allows
designers to better compensate for these problems, for example, by
adding more complex multi-finger gestures to the interaction set,
which, in contrast to mobile interfaces, are simpler to perform on
tabletops because of the bigger interaction space [279]. What is more,
they report that "both speed and accuracy improved when using the
[tabletop] multitouch display over a mouse" and that "participants
were happier, more engaged" and generally felt more competent as
well as more immersed.

Regarding text input, however, tabletops are equally limited as mo-
bile interfaces and not suited for text-heavy tasks. The bigger display
space does not contribute to the overall downside of software key-
boards, which is a lack of tactile feedback that provides a significantly
worse user experience than physical keyboards. As a result, Ryall et al.
state that "providing virtual keyboards on the tabletop has proved a
feasible, but tedious, solution" [228] and thus indicate that software
keyboards are only used for lack of alternatives.

Similarly, designers should generally avoid using traditional WIMP
components in tabletop applications or, even worse, not just run ex-
isting WIMP applications on the tabletop. While this is technically
possible, it should be clear that Ul components initially implemented
for the desktop and designed as single pointer interfaces cannot exploit
the capabilities of shared input for which tabletops excel. Switching
between different collaboration styles, e.g., working in parallel, sequen-
tially, or under assumed roles, is what people naturally expect when
collaboratively interacting with artifacts on the tabletop surface. For
these natural workflows and group dynamics, tabletop interfaces must
support concurrent multi-user interaction because this is what allows
teams to focus on the given tasks and to choose among various inter-
action styles instead of being forced to coordinate and take turns [108].
Technically, shared input may pose particular challenges for designers
depending on the work scenario. While tabletops provide multitouch
technology for shared input, this does not imply that touch points can
be associated with individual users. Identifying and tracing personal

84 DESIGN CONSIDERATIONS OF TOUCH-BASED INTERFACES

interactions can (depending on the actual tabletop technology) be
very challenging [252]. That is because authorizing touch points to
individual users usually demands special hardware [74] or complex
workarounds [1]. However, these are only necessary if the application
scenario requires unique assignments of touch points to users, which
is mostly not the case.

In addition to shared input, Scott et al. recommend designing col-
laborative tabletop interfaces for fluid transitions between various input
modes [241], e.g., textual input for text entry or positional input for
drawing on the surface. Switching between various activities with little
or no overhead would allow users to focus on communication instead
of operating the interface. For doing so, they propose universal input
devices, e.g., a stylus, which can be used for multiple activities, e.g.,
text entry and drawing, and therefore avoids switching between differ-
ent input techniques. However, in terms of tabletops, using a stylus is
rather uncommon due to technical limitations. That is because while
writing with a stylus, the ball of the hand usually touches the surface
for ergonomic reasons. However, most systems cannot differentiate
what is actually causing a touch point, thus leading to many false
inputs, which may heavily affect task execution.

Another design consideration special to interactive tabletops is the
interface’s orientation. When interacting with a tabletop during group
work, people naturally distribute across all sides and hence do not
share a common perspective. This problem of orientation, i.e., viewing
the interface from various angles, fundamentally differs from classical
desktop GUIs and presents designers with major challenges [108]. In
particular, this problem occurs with any presentation of text because,
for proper text reading, it should be aligned with the direction of the
reader’s gaze, which, however, is impossible to achieve for multiple
people spread around the tabletop sides.

The simplest solution to manage orientation while using digital
tabletops is to let users manually rotate items on the surface [231].
However, designers must decide on an interaction technique even for
this simple task of rotating objects. It may be as simple as adding
rotation handles to any object on the surface or more complex like
the Rotate 'n Translate (RNT) technique [149], which uses multitouch
gestures and physical calculations for simulating surface friction to
mimic the experience when manipulating physical documents on a
usual table. In any case, it is important to know that manually rotating
digital objects on tabletop surfaces can be more difficult to use and
time-consuming when compared to traditional media [148].

For this reason, several automatic orientation techniques have been
proposed in order to rotate an item towards the reader and therefore
minimize manual rotations, e.g., TNT by Liu et al. [160] or Vector
Fields by Dragicevic and Shi [78]. Technically, these techniques rely

237

Fluid transitions

Orientation and
readability of text

238

Physical dimensions

Individual vs. group
activities

Owerarching
workflows

NATURAL USER INTERFACES IN AGILE ENVIRONMENTS

on either the position of the document itself, e.g., by assuming that
documents positioned closer to one side of the tabletop should be
rotated to the side accordingly, or the position of the user, which
may be calculated from the touch point vectors of fingers and wrists
[231]. Both approaches, however, cannot solve the problem of the
resulting orientation not being appropriate for shared objects and users
distributed along the tabletop sides. However, according to Scott et al.,
automatic orientation can be a good solution for private work objects or
personal, user-associated regions on a tabletop [241]. For cooperative
use cases, though, techniques of manual object rotation remain the best
choice. That is also because they enable users to facilitate orientation
as a resource for group interaction since "collaborators often use [a]
temporary and partial rotation of objects for communicative purposes,
such as directing the group’s focus, sharing information, and assisting
others" [241].

Regarding group interaction, it is also important to consider the
physical dimensions of a tabletop because it relates to the size of the
group, its dynamics, and social behavior. While the number of people
comfortably fitting around a tabletop is naturally limited, it is also
restricted due to social norms since people need a sufficient amount
of personal space to maintain a feeling of privacy [218]. In addition,
people have a strong tendency to work at arm’s length and try to
avoid reaching into someone else proximity to respect their personal
space [241]. According to Haller et al., it is therefore crucial for active
group participation that designers have considered closer interaction
proximity, i.e., objects should be in direct reach, and users should not
be forced to reach across the whole tabletop in order to perform an
action [108].

Furthermore, it is important to know that people commonly switch
between individual and group activities [108]. Hence, tabletop interface
designers should consider this behavior and enable both personal
and group work, for instance, by dividing the tabletop surface into
private and shared territories [240] or providing further displays in
addition to the group interface. The combination of tabletop and wall
displays is particularly suitable for this purpose because it allows
various collaboration styles and enables fluid transitions in group
work [128].

Fluid transitions also play an essential role in integrating collabora-
tive tabletop tasks into overarching workflows. While the tabletop might
be the interface of choice for collaborative work, a classical WIMP
interface might suit better for related subtasks or even overarching
activities [85]. Therefore, designers should enable fluid transitions
between tabletop collaboration and personal work. This includes per-
sistent data provisioning for further processing the collaborative work
results at desktop computers [108], but also incorporating external

84 DESIGN CONSIDERATIONS OF TOUCH-BASED INTERFACES

work into the collaboration by allowing attendees to use externally
generated artifacts on the tabletop [241].

8.4.3 Vertical Displays

Similar to interactive tabletops and the rapid development of multi-
touch technologies, multitouch-enabled vertical displays also gained in
popularity during the last ten to fifteen years within the research com-
munity. Given the fact that we are used to interacting with physical
boards in our everyday lives, it is hardly surprising that interactive
displays quickly emerged as successors of existing traditional white-
boards.

Compared to horizontal tabletops, vertical interactive displays pro-
vide similar input capabilities, e.g., they also offer a large interaction
space and are equipped with a touchscreen, enabling multiple users
to interact with the display simultaneously. However, the vertical ar-
rangement also results in fundamental differences, for instance, better
visibility of displayed data and a shared view to distant users, which
is an important aspect, especially for collaborative work scenarios.
Better visibility also reflects in the fact that vertical displays have more
capabilities to raise informational awareness, which is why they are often
used for monitoring and dynamically displaying recent information

[252].

Moreover, vertical displays lead to a different perception and usage
of the space of action due to social conditioning [108] because people
have different use cases for physical tabletops and whiteboards, which
also project to their digital counterparts. As a result, vertical displays
call for individual design considerations, the most important of which
are outlined in the following.

While there is an orientation problem for interactive tabletops, there
is generally none for user interfaces of vertical displays. That is be-
cause, due to their alignment, all users share the same perspective,
making vertical displays more visible to a larger audience and read-
able from a greater distance. According to Haller et al., the alignment
makes the interface design also closer to the traditional WIMP ap-
proach [108]. However, this must be questioned because, regarding the
means of input and display size, special design considerations must
be taken for interactive vertical displays.

Probably the most profound is that vertical arm movements are
way more demanding than arm movements on a horizontal tabletop
surface. They quickly cause fatigue and "a feeling of heaviness in the
arm," which has been coined the "gorilla arm effect" [117].

239

Visibility and
informational
awareness

Design
considerations

Consistent
orientation

Gorilla arm effect

240

Software keyboards

Reachability

Audience sizes and
visibility aspects

Less interactive
collaboration

NATURAL USER INTERFACES IN AGILE ENVIRONMENTS

While this name sounds amusing, the impact of the "gorilla arm" is
substantial and should not be underestimated, as shown by a study
of Pedersen and Hornbaek, in which 13 of 16 participants preferred
working on a horizontal tabletop, because "[the] vertical surface was
found physically more demanding to use" [207]. Further complicating
this issue is the study of Kajastila and Lokki showing that arm fatigue
even occurs when the vertical display is only operated for a short
period of time [134].

Consequently, Shoemaker et al. suggest using vertical displays to-
gether with alternative input concepts, preferably those that can man-
age interaction without vertical arm movements like mobile devices
or horizontal mid-air gestures [253]. Moreover, since software key-
boards are unsuited to be operated vertically, they also propose that
textual input should be reduced to an absolute minimum, and soft-
ware keyboards should be replaced by alternative input options, such
as pen-based input or mid-air input techniques.

In addition, touch interaction can also be challenging because of
the sheer display size. This is especially true for very large vertical
touch displays, also called "wall displays." These are much bigger than
usual desktop displays, so the reachability of user interface elements
can, therefore, become an issue [108]. As a result, the user experience
can suffer from far-reaching arm movements when particular action
sequences require the user to interact with widespread user interface
elements.

However, a particular benefit of these large wall displays is that "they
can accommodate groups that are likely to change in size, and where
information that needs to be shown and discussed is to an audience
of people" [218]. Compared to tabletops, where the number of people
who can comfortably view the surface is limited to only a few, vertical
displays have a clear advantage. However, as the number of group
members increases, the distance between participants and the display
also increases, which in turn results in visibility problems, especially
with regard to the readability of texts. Therefore, it is important to
consider the size of user interface elements with regard to the expected
distance of the audience, which is especially true for informational
displays, whose primary purpose is to provide a shared view for
distant users.

Another important aspect to consider is that vertical displays seem
to promote a weaker kind of collaboration, which is less interactive
compared to tabletops. In their study about the effects of the physi-
cal affordances of interactive displays, Rogers and Lindley observed
different behaviors in terms of group work depending on whether a
group was using vertical interactive displays or horizontal tabletops.

85 RELATED WORK: TOUCH-BASED NUIS IN AGILE SETTINGS

While the tabletop groups "switched more between roles, explored
more ideas and had a greater awareness of what each other was doing,"
groups with the vertical display condition found it more difficult and
uncomfortable to work closely together and described their experience
as "awkward" [218]. Moreover, vertical displays seem more likely to
disturb collaboration because interacting persons tend to switch into
a relatively persistent presenter role and turn their backs on the rest
of the group. According to Rogers and Lindley, this behavior moves
others out of the focus of attention, which makes it difficult to maintain
group awareness.

As a result, it can be concluded that vertical displays are, in contrast
to interactive tabletops, rather unsuitable for group activities that
require close collaboration. Instead, Rogers and Lindley suggest that
they are better at "providing a shared surface for communal and
audience-based viewing and annotating of information that is to be
talked about and referred to" [218]. This is also confirmed by Haller
et al., stating that vertical interactive displays are "well suited for
presentation tasks" and for "displaying information that are relevant
for everyone [in the present group]" rather than for tasks requiring
concurrent multi-user interaction [108].

85 RELATED WORK: TOUCH-BASED NUIS IN AGILE SETTINGS

While touch-based NUIs have been the subject of numerous research
in recent years, their intended use within agile working scenarios is
relatively unexplored. This section provides an overview of the work
to date.

8.5.1 AgilePlanner

The AgilePlanner system shown in Figure 8.7 was developed by Liu et
al. as "an environment for collaborative iteration planning" [161].

It was designed for two activities. The first one is referred to as user
story management, which the authors describe as a collaborative process
in which the attendees would usually use pen and paper (especially
sticky notes) for gathering and defining product requirements from the
user’s perspective. Building upon this principle, the authors substitute

this "pen and paper" metaphor with digital pens and tablet computers.

That way, each attendee uses a digital pen to write stories on a tablet
computer through an input form provided by a custom "MASE"
application.

This application also serves as the system’s backbone, so user stories
created on these tablets automatically show up on a digital tabletop

241

242

NATURAL USER INTERFACES IN AGILE ENVIRONMENTS

)
Digital Tabletop
N
=

Figure 8.7: The "AgilePlanner" system [161]

representing a shared workspace for the second activity, referred to
as iteration management. For this purpose, the user stories previously
created on the tablets can be moved with the fingers on the tabletop
and arranged collectively. A particular area on the tabletop serves as a
container for the sprint backlog so that all stories placed in this area
are considered to be included in the next iteration.

While the authors claim to have created a "fully digital collaborative
planning environment" [161], they likewise remark that the system
only represents a proof of concept since it has not been evaluated in
any way nor investigated in terms of its usefulness.

8.5.2 Agile Planner for Digital Tabletops (APDT)

The Agile Planner for Digital Tabletops (APDT) by Weber et al. is de-
scribed as "an advanced prototype that applies tabletop technology
to support collocated and distributed agile planning meetings" [294].
It allows for multimodal interaction, i.e., besides touch, APDT also
incorporates mouse and keyboard interaction, digital pen input, and
voice commands to interact with the tabletop [280].

Regarding the usage scenario, APDT solely focuses on emulating
agile planning meetings and thus tries to establish an orientation-
independent workspace for discussing digital user story cards. In this
process, the user is able to perform basic operations, such as creating,
selecting, moving, rotating, and deleting cards on the tabletop.

These operations can be triggered via touch interaction or voice
commands (in the case of the create and delete operations). In addi-
tion, the system allows cards to be labeled using either fingertips or

85 RELATED WORK: TOUCH-BASED NUIS IN AGILE SETTINGS

Figure 8.8: Agile Planner for Digital Tabletops (APDT) [280]

electronic pens. In both cases, the strokes are converted to text by a
handwriting recognition engine [94].

During their evaluations of APDT, the authors focused on two
questions. The first was about whether the system could facilitate agile
planning meetings, which was investigated through observations and
survey responses from usability tests with nine individuals who had
to complete fifteen predefined tasks [294]. Based on this, the second
question was about the system’s usefulness in agile planning contexts
[94] and whether it would maintain or change the behavior known
from traditional pen and paper-based agile planning meetings [294].

The results show that the tabletop was generally perceived posi-
tively for the scenario of agile planning. However, according to their
observations, the authors remark that most of the time of the collabora-
tive meeting is actually spent on discussions rather than operating the
tabletop surface and interacting with digital artifacts. While tool inter-
action is minimal, it is nonetheless crucial to provide a seamless user
experience with great usability so that face-to-face communication is
guaranteed not to be disturbed.

However, according to the results, APDT could not meet these
requirements due to usability shortcomings and technical limitations.
For instance, the participants complained that the implemented finger
gestures were not easy to remember, thus increasing the cognitive load
instead of providing a better workflow. Simultaneously, the experience
of mutually manipulating the digital artifacts was low since the system
only allowed processing two touchpoints at a given time [294].

Moreover, the other input modalities and, thus, the multimodal
approach itself also revealed some major downsides. Voice control was
not considered useful in such a collaborative work scenario because
it necessitates quiet environments and thus implies a very orderly
behavior of the participants, which poses an obstacle to free face-to-

243

244

NATURAL USER INTERFACES IN AGILE ENVIRONMENTS

face communication. Similarly, the handwritten editing of the cards
was also declined because it felt unnatural to write with the fingertip.
Writing with the electric stylus was also considered less helpful be-
cause resting the wrist on the surface caused false inputs and had to
be prevented carefully.

8.5.3 Ambient Surfaces: Interactive Displays in the Informative Workspace
of Co-Located Scrum Teams

In 2016, Schwarzer et al. investigated how so-called ambient surfaces
might influence the work of co-located Scrum teams [238].

Based on the premise that permanently displaying relevant informa-
tion about the development progress would be beneficial, the authors
conducted a long-term study with a software development company
using two multitouch displays that were installed in a freely accessi-
ble location next to a shared printer within the workspace of several
Scrum teams. On these displays, the teams had permanent access to
charts visualizing sprint progress, the teams” wiki system containing
declarations and announcements, status reports from the test system,
and an overview summarizing build failures and errors, all of which
they could interact with using their fingers.

Although all of this information was already available to the in-
dividuals through programs on their desktop PCs, and they would
have been able to display various types of data within a dashboard,
for example, it became apparent that these ambient surfaces could
additionally enrich the information workspace and thereby increase
awareness within the Scrum team.

Over the course of two years, the authors observed how people
used their system and investigated how it might influence a team’s
understanding of the development process. As it turned out, usage
occurred during the daily Scrum meetings and mainly in informal
situations, e.g., during lunch breaks or while waiting for team meet-
ings to begin. In these situations, it could be observed that a single
person interacting with the displays automatically attracted others
to join, which led to spontaneous discussions and, as a result, en-
riched communication about the development progress among the
team members. This result was also evident in the study survey, where
over 90% of the participants said they frequently discussed issues with
other people in front of the system. However, in terms of interaction,
the overwhelming use was passive, i.e., people looked at the displays
but rarely actively operated them with their fingers.

Overall, the ambient surfaces of Schwarzer et al. seem to be a sim-
ple yet promising approach to enriching the information space of

85 RELATED WORK: TOUCH-BASED NUIS IN AGILE SETTINGS

co-located Scrum teams. As perceived by three-quarters of the par-
ticipants, the system increased visibility and provided easy access to
information about the team’s development progress, thus contributing
to becoming more aware of what others were doing.

8.5.4 The dBoard: A Digital Scrum Board for Distributed Software Devel-
opment

The dBoard by Esbensen et al. is a combined digital task board and
videoconferencing tool for distributed agile software development
teams [82]. It consists of a 65" multitouch display, a camera and
microphone for capturing video and audio, and a sensor to detect
the proximity of users. Two dBoards installed at distinct locations can
establish a permanent connection in the form of a "virtual window"
between distributed teams by superimposing a shared task board on
top of videoconferencing (see Figure 8.9).

Figure 8.9: The "dBoard" system [82]

According to the authors, the background video stream shall pro-
vide the same feeling as "looking through a window into another
office" [82]. Simultaneously, both sides are able to operate the super-
imposed task board, which appears to levitate in mid-air between the
rooms (see Figure 8.10).

By reassembling traditional physical task boards, tasks in the dBoard
are represented as small digital sticky notes. By touch, these can be
moved across the board, assigned to developers, filtered within the
board, and opened to access more detailed information, such as the
task’s description, time estimate, the work state, and change history.

245

246

NATURAL USER INTERFACES IN AGILE ENVIRONMENTS

Figure 8.10: Tasks shown on the dBoard [82]

Thereby, system states are kept synchronized across the two connected
sites. As a result, tasks filtered on one board will also be filtered on
the other side. Moreover, Ul states are also synchronized so that touch
points on either side are visualized as small red pointers on both
dBoards, just like a task is highlighted in red when touched on either
side.

With this feature set, the authors describe the dBoard as an "active
meeting support tool" during daily Scrum meetings [82]. Furthermore,
by visualizing the current work status as a task board, the dBoard
is supposed to act as a "passive information radiator." Lastly, the
system is intended to establish an "immersive interactive media space."
What the authors mean by that is that the connection between two
dBoards is permanent, so both sides are always on. Video and audio
are automatically captured when walking up to a board by proximity-
based interaction, which should enhance awareness about the presence
of remote team colleagues.

While the evaluation results show neutral responses regarding pos-
sible performance improvements, the overall usefulness of the system
was rated positively. Though people were unsure if the dBoard could
speed up development, they rated touch interaction on the board as
easy to use and very helpful. They also perceived the combination of
videoconferencing and Scrum board as very useful.

85 RELATED WORK: TOUCH-BASED NUIS IN AGILE SETTINGS

8.5.5 A Cooperative Multitouch Scrum Task Board for Synchronous Face-
to-Face Collaboration

The Multitouch Scrum Task Board by Jessica Rubart is a proof of concept
and has been designed for organizational and planning activities
within daily Scrum meetings of co-located teams [225]. In contrast to
others, Rubart’s task board does not target vertical displays but large
interactive horizontal tabletops.

In terms of functionality, the system is, however, rather limited. By
touch, tasks can be moved between different columns representing
their status of work, such as "To Do," "In Progress," and "Done."
Through common gestures, such as pinch-and-zoom, tasks can further
be resized and rotated by multiple users simultaneously. New tasks
can be created and assigned to a work status by double-tapping
the respective column, and the new tasks will show up afterward.
For further actions, a simple tap on a task opens a menu offering
possibilities for deleting a task, splitting it, or specifying details via
on-screen keyboards.

Besides task actions, the board also offers reporting views in the
form of documents containing burndown charts and the number of
task splits, which, according to Rubart, shall help evaluate the life
cycle of tasks during sprint retrospectives. These documents can be
moved, resized, rotated, and visually arranged by multitouch gestures,
as well as annotated by touch and finger strokes, to support group
discussions during sprint analysis.

While Rubart’s system only represents a proof of concept for apply-
ing horizontal interactive tabletops to Scrum task boards and using
common multitouch gestures for cooperative group settings, the us-
ability evaluation brought two key insights. As expected, the common
multitouch gestures for moving, resizing, and rotating tasks were
well received. However, editing tasks via on-screen keyboards was
considered difficult and slow. Although all test persons have been
used to on-screen keyboards from their personal smartphones, the
bigger pendants caused usability problems on horizontal tabletops
and were considered negative. Furthermore, the evaluation revealed a
need for coordination when performing certain tasks. Creating a task,
switching between task and report views, and annotating documents
all required a certain amount of agreement in terms of responsibility
and coordination in terms of actions to avoid getting in the way of
other group members.

247

248

NATURAL USER INTERFACES IN AGILE ENVIRONMENTS

8.5.6 Nori Scrum Meeting Table

Voss and Schneider presented Nori as an interactive, multitouch-
enabled meeting table supporting the whole Scrum software develop-
ment process [274]. However, this statement must be viewed critically
since the range of functions and usability are severely limited.

Regarding its features, the tabletop is restricted to basic backlog and
team management functionality. In the backlog view, cards represent-
ing user stories can be created via touch and specified in more detail
using an on-screen keyboard. Interestingly, backlog items cannot be
moved or freely arranged in the backlog view but are bound to a
predefined grid layout, which limits the number of collaborative inter-
actions. For prioritizing backlog items, the backlog can be switched
into another view (see Figure 8.11), in which cards can be freely moved
into one of three different areas representing different levels of priority
(low, medium, and high) so that cards moved into these areas are
prioritized accordingly.

Like the backlog, the team management feature offers two distinct
views. The first shows team members as avatars, which can be freely
arranged on the surface. A team is created by touching a special
team symbol with one finger while drawing lines to each avatar with
a second finger to create a connection between team members. In
the second view, similar to the prioritization of backlog items, team
members can be associated with various roles by moving avatars into
distinct areas on the tabletop surface.

Figure 8.11: The "Nori" system [274]

Although the authors claim that the interactive meeting table would
increase the efficiency of Scrum teams in a software development
process [274], its usefulness must be doubted since the feature set
described is by far not enough to support Scrum teams and targeting

8.6 WEAKNESSES OF CURRENT APPROACHES

the challenges identified in Chapter 6. In addition, Nori’s demo video
shows two main drawbacks in terms of its usability. At first, elements
on the surface cannot be rotated or arranged freely to compensate
for different viewing angles of persons standing around the table.
Instead, the system allows the orientation of all elements to be flipped
so that only two opposing sides of the table are allowed to read texts
properly, whereas the other two sides are neglected. Secondly, the
system also shows technical weaknesses, such as long latency during
touch interactions as well as faulty touch detections and recognition
errors, which limit the system and its interaction experience to such
an extent that it would hardly be accepted in practical use.

8.6 WEAKNESSES OF CURRENT APPROACHES

Comparing the research work of touch-based NUIs in agile envi-
ronments with the many problems identified in leading agile ALM
applications (see Chapter 7) shows that GUIs and NUIs share the same
weaknesses.

On the GUI side, technical weaknesses are less pronounced because
of existing and mature technological standards. However, as seen in
Section 7.2.2, outdated web technologies are still common, especially
in applications with a longer history on the market, and may result in
slow and non-responsive interfaces, strongly affecting a team’s work
efficiency.

In contrast, technical weaknesses seem to be a more substantial
problem in current touch-based NUI approaches. The APDT system,
for example, is limited to two simultaneous touchpoints. Moreover,
handwriting with a digital pen causes wrong inputs while the wrist
is laid onto the surface, triggering false touch events (see Section
8.5.2). Both problems result from insufficient technology, just like the
unreliable touch-processing of the Nori system, which has long latency
and unstable gesture recognition (see Section 8.5.6).

Overall, these technical drawbacks are not uncommon and can be
found in many of the bigger touch surfaces. That is because bigger
surfaces are usually not built with the same precise and reliable
capacitive touchscreen technology known from today’s smartphones
and tablets. Instead, for reasons of costs, bigger surfaces typically rely
on optical touch tracking systems, which are significantly cheaper but
also less error-prone®. As a result, current NUI systems using such
optical tracking mechanisms are not technically mature yet and, hence,
often only represent rudimentary prototypes.

More discussion on this topic can be found in Chapter 9.2.2, where a custom-built
tracking system will be introduced that overcomes many of the existing technical
limitations.

249

Technical weaknesses

250

Poor interface
designs

Limited functionality

NATURAL USER INTERFACES IN AGILE ENVIRONMENTS

Another weakness shared by both the GUI and NUI interaction
paradigms lies in poor interface designs, which can create severe us-
ability problems, highly limiting a system’s overall usefulness. In the
case of the investigated agile ALM applications, it was, for example,
shown that inconsistent or cluttered Uls cause unnecessary cognitive
load on the user (see Section 7.2.2.2). Likewise, on-screen keyboards
cause usability problems on horizontal tabletops. This is especially
problematic when systems such as the Multitouch Scrum Task Board
(see Section 8.5.5) are designed around the central action of editing in-
terface components via the on-screen keyboard, thus making it a very
common task. In addition, this system also showed that cooperative
working practices with multiple persons interacting simultaneously
place special demands on the interface design. Coordination in terms
of actions between people must be considered to avoid people getting
in the way of others when interacting with the touch surface. This also
includes, for example, that the interface is not limited to individual
viewing angles, as in the case of Nori (see Section 8.5.6).

Lastly, the current systems are also severely limited in terms of
proposed functionality. In the case of GUIs and the investigated agile
ALM tools, Chapter 7 revealed drawbacks and a lack of features, espe-
cially in collaborative activities like the mandatory Scrum meetings.
Partly, and as explained in Chapter 7.3, these limitations stem from the
fact that desktop GUISs represent single-user interfaces. They, hence,
are naturally limited for true co-local collaborative contexts, which
would be the preferred way of working according to Scrum and the
underlying agile values, as explained in Chapter 3.6.4. Likewise, the
limitations also result from a functional overblow, causing the usabil-
ity problems mentioned in Section 7.2.2.2, which make the systems
difficult to work with.

On the other hand, the current NUI-based systems are substantially
different since they are typically designed as multi-user interfaces
and, therefore, might be a better choice for collaborative environments.
However, the current systems are severely limited in features and
functionality. As seen in Section 8.5, they only focus on the aspects of
sprint planning and operating a basic task board, leaving out many
aspects of Scrum. So, in terms of features, the existing NUI approaches
only represent limited research prototypes, but they are far from being
an applicable working solution for real agile environments.

In summary, neither the existing agile ALM applications nor the
current NUI approaches provide a perfect match with the agile philos-
ophy and the special demands of collaborative Scrum teams. While
rich in features and technically mature, GUI applications lack support
for co-local collaborative activities and suffer from overblown Uls.

On the other hand, touch-based NUISs still show strong technical
weaknesses, for instance, in the recognition and processing of touch

8.6 WEAKNESSES OF CURRENT APPROACHES

points. Moreover, the existing approaches show poor interface designs
and inappropriate interaction techniques, and they reveal large gaps
on the feature side regarding various aspects of the Scrum framework.

As a novel solution, the next chapter is about combining both
paradigmes, i.e., classical desktop GUIs and modern touch-based NUI
technologies, to an integrated solution representing an interactive Scrum
space carefully designed for single-user as well as collaborative activi-
ties of the Scrum framework.

251

INTRODUCING AN INTERACTIVE SCRUM SPACE

Given the landscape of today’s touch-based NUIs, it is interesting that
they strongly relate to Weiser’s vision of ubiquitous computing from
1991, as explained on Page 220. Based on his premise that computers
should "fit the human environment, instead of forcing humans to enter
theirs" [282], Weiser thought about pervasive displays of different sizes
and form factors and envisioned three scales of interaction devices,
each optimized for particular tasks.

Inch-scale tabs have been described "as computationally enhanced
Post-It notes," foot-scale pads were designed as digital sheets of paper,
and yard-scale displays were envisioned as interactive whiteboards.
These devices, however, were not supposed to exist in isolation. As
stated by Weiser, "[the] real power [...] emerges from the interaction of
all of them" [282]. With this, he shifted the focus away from a single
interface towards an interactive workspace, where various devices enter
the focus of attention when needed and vanish into the background
when not. To achieve this, he further envisioned permanent connec-
tions between these devices and ubiquitous software applications.

Today, this "computation of the inch, foot, and yard" [77] indeed
became a reality. Smartphones (inch-size), tablets (foot-size), and inter-
active wall displays or tabletops (yard-size) are permanently connected
to the internet and thus provide everything needed to create ubiqui-
tous applications for various work scenarios.

This is also recognized by Shneiderman and Plaisant, who verify
Weiser’s influential idea and believe in the opportunities arising there-
from. According to them, touch-based NUIS, i.e., smartphones, tablets,
tabletops, and interactive wall displays, can be integrated to provide
more productive work environments [252].

Such environments are referred to by Haller et al. as "interactive
spaces" and are defined as rooms incorporating different digital sur-
faces in a single space to facilitate work processes [108], e.g., by seam-
lessly providing data during face-to-face collaboration, thus enhancing
social interactions, and allowing users to establish more inventive and
creative workflows [131].

Regarding interactive spaces, Haller et al. further identified the
following design considerations [108, p. 442].

253

Design
considerations of
interactive spaces

254

Multiplicity and
heterogeneity of tasks

Creation and access
of shared documents

Integration of
meetings into
overarching
activities

Combined use
of mobile and
collaborative
interfaces

INTRODUCING AN INTERACTIVE SCRUM SPACE

The first is to consider the multiplicity and heterogeneity of tasks arising
from the wide variety and diversity of collaborative activities, which
they consider one of the main challenges for interactive workspaces.
Presentations, for instance, call for different interaction techniques
and design considerations than brainstorming sessions and decision-
making. Hence, the design of an interactive space should be tailored
to a particular use case and also consider that collaborative activities
can be composed of various tasks, accommodating individual work
phases simultaneously performed by each participant.

Furthermore, interactive workspaces should have features that en-
able the collective creation and access of shared documents, as this is
a common practice during face-to-face collaboration. According to
Haller et al., this promotes the development of mutual understanding,
facilitates the coordination of activities, and provides a shared memory
for the group. Therefore, during collaboration, it is essential to be able
to create and manipulate these documents simultaneously, and they
should be viewable by everyone involved at the same time.

Moreover, collaboration often involves a larger activity that extends
beyond the current session. For instance, a tabletop or board interac-
tion may be just one aspect of a meeting, which, in turn, may be part of
a larger project. Hence, it is important to integrate the current meeting’s
work into overarching activities and the larger context by incorporating
previously generated information and ensuring that the information
produced during the meeting is easily accessible later on.

Lastly, Haller et al. suggest using combinations of mobile and collabo-
rative interfaces to exploit the individual benefits of these devices and
overcome their shortcomings. For example, when it comes to digi-
tal tabletops and wall displays, using software keyboards has been
found to be very unpleasant and should be avoided. This presents an
opportunity to use mobile devices, such as smartphones, as remote
keyboards for collaborative interfaces because users rely on typing on
these devices on a daily basis, e.g., when composing short messages.

Mobile devices can also serve as intelligent, general-purpose con-
trollers that allow interaction with interactive tabletops and wall dis-
plays beyond simple character input. For instance, they can be used
to enhance the creation of new shared artifacts or better interact with
existing ones, which has been confirmed by various research stud-
ies, e.g., by Roth and Unger [223], McAdam and Brewster [173], or
Dachselt and Buchholz [66]. Moreover, since mobile devices are inher-
ently personal and most collaborators are likely to possess one, they
can be used as private displays in conjunction with sharable interfaces
to facilitate fluent transitions between personal and group activities
during collaborative work.

0.1 OVERVIEW

Besides the combination of mobile and shared group interfaces,
interactive tabletops and digital wall displays can also be used to
complement each other. While tabletops promote collaboration and
concurrent multi-user interaction, wall displays are better suited for
communal viewing and providing a shared perspective for all collab-
orators. Therefore, digital boards can augment interactive tabletops
by simultaneously displaying contextual information relevant to and
readable by all collaborators. Furthermore, as collaborative efforts are
commonly composed of group work and phases of presentation, the
conjunctive use of these devices also has the potential to enable fluent
transitions between these types of activities.

Behind this background, this chapter introduces a novel interactive
Scrum space whose purpose is

* to better support Scrum’s collaborative activities, i.e., the manda-
tory Scrum meetings,

¢ and to overcome the weaknesses of existing touch-based NUI
approaches in the context of agile environments.

Furthermore, the system should go beyond the scope of a research
prototype. This means it should support the entire Scrum process, not
just parts of it, and be technically mature enough to be used in both
research environments and industrial practice.

9.1 OVERVIEW

Figure 9.1 shows that the envisioned interactive Scrum space consists
of four different interface types, all connected via an agile project
management application called edelsprint. This web application has
been developed to fulfill the design considerations of interactive spaces
proposed by Haller et al., as explained in the previous section, and
with special attention to

e offer Scrum-specific functionality for all activities and tasks
during a sprint cycle,

¢ address the Scrum challenges and issues that have been identi-

fied in Chapter 6,

* overcome the usability issues of existing agile ALM applications
that have been analyzed in Chapter 7,

* enhance the Scrum workflow by supporting both individual
tasks and collaborative activities,

¢ and therefore distributing functionality across personal (desk-
top and mobile) and collaborative interface types (tabletop and
interactive display).

255

Combined use of
tabletops and wall
displays

256

Desktop interface

Mobile interface

INTRODUCING AN INTERACTIVE SCRUM SPACE

Desktop I edelsprint \
- edelsprim-

i‘ Interactive Tabletop |

Figure 9.1: edelsprint interfaces

i Interactive Display

Since edelsprint is a web application, all interfaces can be simulta-
neously accessed by many clients, i.e., through the browser of each
user’s end device.

The desktop interface is the primary interface for all personal and pri-
vate work situations, whereby "desktop" not only refers to stationary
desktop PCs but also to mobile laptop computers. With its mouse or
touchpad and a hardware keyboard, the desktop interface allows quick
and pixel-precise interactions and haptic text input. For the product
owner, the desktop interface is used for all tasks relating to managing
the product backlog and preparing user stories for succeeding sprints.
For the Scrum master, it allows monitoring the sprint progress, prepar-
ing meetings, and supporting the development team to achieve the
sprint goal. For developers, the desktop interface is used to manage
tasks and make the development progress transparent to the rest of
the team. Besides these personal work situations, the desktop interface
is also used within group settings when plugging a laptop computer
into a projector to display its content to the meeting attendees.

The mobile interface is also used for personal work. However, com-
pared to the desktop interface, it only provides a reduced set of
features, which benefit from being always accessible and the fact that
mobile phones are always ready at hand. Primarily, this set includes
features for managing user stories and tasks. The product owner,
for example, can use the mobile interface to quickly create drafts of
new stories when being at the customer and (perhaps while having a
walk) discussing new ideas. Likewise, a developer can use the mobile
interface to check off tasks or create new ones while chatting with
colleagues during coffee breaks.

In addition to giving users more freedom and access to their work
while being on the go, the mobile interface is also used as an authenti-
cator and secondary interaction device while collaboratively working

9.2 IMPLEMENTATION

on the tabletop. The fact that a mobile phone naturally belongs to one
person is, for instance, used during the daily Scrum meeting when a
developer can lay his phone on the tabletop to identify himself and
show his current work status to the other team members.

The tabletop interface provides dedicated features for short collabora-
tive group work of a sprint cycle, i.e., backlog grooming and the daily
Scrum meeting. It is not intended for longer collaborative sessions,
such as sprint planning, review, and retrospective events, because
due to their longer timespan, these demand a more presentation-like
situation with people sitting, looking at the front, and discussing
what is shown to the group. Therefore, for these events, the desktop
interface is used and usually displayed to all attendees via a laptop
computer linked to a projector. In contrast, backlog grooming and the
daily Scrum meeting only allow for a limited number of participants
and are much shorter. Therefore, they can (and should, see Chapter
4.7.2 and Page 232) be held while standing, which also contributes
to more interaction between participants, which in turn can be better
supported by an interactive tabletop with its capability to be operated
by multiple persons simultaneously.

The vertical interactive display or wall interface is used as an addition
to the tabletop interface and serves as an information radiator that com-
pensates for the tabletop’s inability to display information in a way
that it can be equally seen from all sides. While the tabletop offers
a natural feel and fluid interactions that benefit collaborative back-
log grooming and the daily Scrum, the vertical display ensures that
content is visible to everyone. Thus, the combination of tabletop and
vertical display strengthens their benefits while simultaneously com-
pensating for their individual weaknesses, as explained in Chapters
8.4.2 and 8.4.3.

9.2 IMPLEMENTATION

The following two sections explain the overall system architecture and
elaborate on the custom-built tabletop hardware.

9.2.1 System Architecture

Figure 9.2 illustrates the system’s architecture. At the top, it shows
three backend components: the Application Server (API), the Real-time
Application Server, and a PostgreSQL Database. At the bottom, it shows
the front end represented by single-page applications (SPAs) for the
four interface types: desktop, mobile, tabletop, and wall interface.

257

Tnbletop interface

Vertical wall
interface

258

INTRODUCING AN INTERACTIVE SCRUM SPACE

(6] Database
[C_l PostgreSQL n d ¢ @
I Real-time
g Application Server
Application Server PN Nodejs
Ruby on Rails Backend
'y A
HTTP/JSON I WebSocket Il
'y A
I A I v
g
Desktop Interface Mobile Interface Table Interface Wall Interface
Single Page Application Single Page Application Single Page Application Single Page Application
TYNGULARJS TNGULARJS)3 TYNGULARJS

Figure 9.2: edelsprint architecture

The application server is implemented in Ruby on Rails' and pro-
vides the API (Application Programming Interface) for executing
CRUD (create, read, update, delete) operations on the PostgreSQL
database. This API is used by the four interfaces of the edelsprint
software (desktop, mobile, tabletop, wall). It can be called through
RESTful URIs, which on the client side are handled by Angular]S*
resources and asynchronous HTTP requests (AJAX).

In addition, a Node.js3-based real-time application server (also called
reactive server) is used for establishing WebSocket connections to the
interfaces. Because of this advanced technology, it is "possible to
open a two-way interactive communication session between the user’s
browser and a server," which means that the user’s browser "can
send messages to a server and receive event-driven responses without
having to poll the server for a reply" [182].

Therefore, for each API call updating the data model, the real-time
server is also triggered and automatically distributes the transferred
data to the connected interfaces. As a result, the edelsprint application
becomes "reactive" so that changes made by a user are passed to all
other users on the fly and without the need to refresh the page, thus
overcoming the technical limitations of existing agile ALM applica-
tions and the resulting usability problems, as mentioned in Section

7.2.2.5.

Moreover, each interface is implemented as a so-called single page
application (SPA) built with either the Angular]S (in case of desktop,
mobile, and wall interfaces) or the D3* framework (in case of the
tabletop interface). Due to these SPAs, client-side routing and AJAX
allow dynamic rewriting of the current web page with new data from

1 https://rubyonrails.org/

2 https://angularjs.org/
3 https://nodejs.org/en/
4 https://d3js.org/

https://rubyonrails.org/
https://angularjs.org/
https://nodejs.org/en/
https://d3js.org/

9.2 IMPLEMENTATION

the server instead of loading new pages entirely. In addition, edel-
sprint uses content caching and stores user-specific interface states
within the local browser cache. These mechanisms allow faster tran-
sitions to already loaded pages and make the web application feel
more like a native app, e.g., by preserving the scroll position or the
collapsed/expanded state of certain Ul components.

9.2.2 MisterT and Object Recognition HOUDINI

While the desktop, mobile, and wall interface could be realized with
standard components, the tabletop was custom-built with particular
attention to overcoming the technical weaknesses of existing tabletop
systems, as explained in Chapter 8.6.

Especially in academic settings, tabletops usually rely on optical
tracking mechanisms and image processing to determine the location
of touch points on the surface. That is because bigger tabletops relying
on optical tracking can be built at a relatively low cost.

The principle of optical touch tracking is shown in Figure 9.3. The user
interface gets projected onto a glass or acrylic screen that is equipped
with a diffuser foil to "stop" the projected image at the tabletop surface
and make it visible to the human eyes. For tracking touch points, the
surface is enriched with infrared (IR) light that gets reflected down
into an IR camera as soon as fingers or objects hit the surface. Then,
the extracted touch information is further processed within image
processing software before it is sent to the application, where it is used
to trigger user interface events.

| ;«n@%{w: B ._::_z%c':?'-'. == 7 -_-TT_.. - | |

|
H Infra Red Lighting
—— Infra Red Light

Projector Seen by the Camera

Infra Red Camera

Mirror ﬂ

Multitouch
Application

Tracking

Computer b
Application

Figure 9.3: Optical touch tracking>

5 Source: https://sethsandler.com/multitouch/

259

Optical touch
tracking

https://sethsandler.com/multitouch/

260

Rear Diffused
Humination

Object tracking with
fiducial markers

INTRODUCING AN INTERACTIVE SCRUM SPACE

The predominant methods for optical touch tracking only differ in
how they enrich the touch surface with IR light. They are outlined in
the following, including their pros and cons, which are summarized
in Table 9.1 to be considered when building a custom tabletop system.

Rear Diffused Illumination (RDI) is one of the earlist optical tracking
approaches [171]. As shown in Figure 9.4, the IR illumination occurs
from below the tabletop surface, which can be achieved with cheap
standard components, e.g. IR lamps.

Diffuser
(Not needed if using e.g. frosted glass)

Acrylic (Plexiglass) Surface

Infra Red Lighting %Infta Red Camera

Figure 9.4: Rear Diffused Illumination (RDI)®

Besides touch, this simple setup also allows the tracking of objects
through attached fiducial markers [136]. As shown in Figure 9.5, a
fiducial is a special symbol that can be easily printed on paper and is
attached to the bottom of an object, allowing the camera to calculate
the object’s position and rotation, given that the fiducial (and hence
the object’s bottom) is well lit with IR light.

Figure 9.5: Fiducial markers [135]

However, the downside of RDI is the relatively low tracking quality,
causing false inputs, which can massively affect the user experience.
These tracking errors result from the difficulty of illuminating the
underside of the tabletop surface evenly (causing so-called tracking
hotspots) as well as the fact that Rear-DI causes touch-points with
low contrast that are more difficult to track when compared to other
principles, as shown in Figure 9.6.

6 Source: https://sethsandler.com/multitouch/reardi/

https://sethsandler.com/multitouch/reardi/

9.2 IMPLEMENTATION

" L3

DI FTIR DSI LLP

Figure 9.6: Comparison of touch points?

In Frustrated Total Internal Reflection (FTIR), IR light is brought into
the tabletop surface from the side where it is trapped (because of the
equally named physical principle) until a touch of a finger makes it
reflect down into the camera [111] (see Figure 9.7).

Acrylic (Plexiglass) Surface

Frustrated Total Internal Reflection
Total Internal Reflection

pE————— B

Projection Material

%— Infra Red Camera

Infra Red Lighting

Figure 9.7: Frustrated Total Internal Reflection (FTIR)®

FTIR delivers stable touch tracking that allows fast finger move-
ments. That is because of the evenly distributed IR lighting, which
delivers high-contrasting touch points. However, FTIR cannot detect
objects via fiducial symbols and needs an acrylic surface to ensure the
physical effect of total internal reflection. Consequently, larger tabletop
sizes are difficult to achieve since acrylic is less stable in shape than
glass and deflects with bigger dimensions. Therefore, to counter this
problem, the acrylic needs to be considerably thicker, which rapidly
increases the overall setup costs.

Diffused Surface Illumination (DSI) has a similar setup to FTIR with
IR light coming from the sides, as shown in Figure 9.8. However, it
does not rely on the physical effect of total internal reflection but
evenly scatters the IR light using a special Endlighten™ acrylic as
surface material [2].

Because of this light scattering, DSI allows object recognition through
tiducial symbols. However, the Endlighten™ acrylic is rather expensive
and shows the same weaknesses regarding form stability as mentioned

7 Source: https://sethsandler.com/multitouch/
8 Source: https://sethsandler.com/multitouch/ftir/

261

Frustrated Total
Internal Reflection

Diffused Surface
Hlumination

https://sethsandler.com/multitouch/
https://sethsandler.com/multitouch/ftir/

262 INTRODUCING AN INTERACTIVE SCRUM SPACE

Diffuser Endlighten Acrylic

I a1 T

P —

-— 1
&
LT

Infra Red Lighting %7"]&3 Red Camera

Figure 9.8: Diffused Surface Illumination (DSI)?

before. Moreover, the scattering of light also leads to low-contrastive
touch points and, therefore, less stable tracking results.

Laser Light Plane (LLP) uses infrared lasers and so-called line-generating
Laser Light Plane lenses to establish a plane of IR light just slightly above the tabletop
surface (see Figure 9.9). This light gets scattered down into the IR
camera as soon as a finger touches the surface [239].

Top View

Infra Red Laser

Line Generating Lense

Projection Material .
SN om
| . !

l Acrylic or Glass Surface

%7 Infra Red Camera

Figure 9.9: Laser Light Plane (LLP)*®

Since the surface of LLP tabletops is not directly illuminated and the
IR camera only captures light when the plane of IR light gets scattered
during touch input, the camera image is very rich in contrast, which
allows a stable and reliable tracking of touch points, even during fast
finger movements. In addition, LLP tabletops can be built with much
bigger dimensions. First, this is due to lasers, i.e., the plane of IR light
can span an arbitrarily large surface size. This contrasts DI, FTIR, and
DSI, where a bigger surface requires more or stronger IR light emitters,
which in turn increases the likelihood of IR hotspots leading to bad
tracking results. Second, LLP allows using glass panes for the tabletop
surface, which results in bigger dimensions because of their stability

9 Source: https://sethsandler.com/multitouch/dsi/
10 Source: https://sethsandler.com/multitouch/1lp/

https://sethsandler.com/multitouch/dsi/
https://sethsandler.com/multitouch/llp/

11
12

9.2 IMPLEMENTATION

while also being significantly cheaper than acrylic. On the other hand,
LLP tabletops lack fiducial object tracking, and their setup is rather
complicated because an exact laser alignment is needed to establish
an IR light plane just slightly above the surface.

However, both problems could be solved when building a custom
LLP tabletop for the interactive Scrum space, which therefor is not
subject to the technical weaknesses of other tabletop systems, as ex-
plained in Chapter 8.6. Moreover, LLP was chosen since the stability
and reliability of tracking touch input, as well as suitable surface
dimensions, were considered most important.

PROS CONS
+ cheap components - inequal illumination
RDI + simple setup - low contrast
+ fiducial object tracking - tracking errors
+ equal illumination - expensive setup
FTIR + high blob contrast - no fiducial object tracking
+ stable tracking - limited tabletop size
+ equal illumination - expensive setup
DSI + fiducial object tracking - limited tabletop size
- tracking errors
+ equal illumination - difficult setup
+ high blob contrast - no fiducial object tracking

LLP
+ stable tracking

+ large tabletop sizes

Table 9.1: Comparison of optical tracking technologies

The built tabletop is called MisterT'* and provides a 160 cm x 9o cm
touch surface, which is big enough to fit 6-8 people (the size of a usual
Scrum team, see Chapter 4.4.1) comfortably around the sides. For the
user interface, it offers 108op Full-HD resolution provided through
rear projection and a special projector foil on top of the glass sheet.
The IR laser light plane is established through four lasers with 120°
line-generating lenses™. Thanks to custom-built mountings at every
corner, the lasers can be aligned very precisely so that the light plane
can be adjusted to hover as low as 1 mm above the tabletop surface
without bouncing off at any position.

Multitouch Interactive Surface & Tangible Exploration Research Table

Using multiple lasers helps to prevent occlusion, which may occur if only one laser is
used and when fingers are in alignment so that the front finger may block the laser
beam for the rear fingers.

263

264

HOUDINI

Object tracking

INTRODUCING AN INTERACTIVE SCRUM SPACE

In addition to the tracking of touch input, MisterT is also equipped
with the HOUDINI tracking engine, which was developed and pub-
lished as part of this thesis and represented the first ever method for
tracking objects and pen input on LLP-based tabletops [120].

HOUDINI is designed to support fast and reliable tracking of mul-
tiple passive objects (without additional electronics). The tracking
data includes translation and rotation of objects without limiting the
processing speed of touch input data from fast-moving fingers. Ad-
ditionally, the system supports state changes of objects, i.e., objects
can be equipped with a physical button triggering a state change, for
example, to confirm a prior selection in the graphical user interface
(see Figure 9.10).

Figure 9.10: Tangible object with attached markers

In contrast to other object tracking approaches, HOUDINI does
not rely on visual fiducial symbols but instead uses physical markers
attached to the bottom of objects, which break the laser light plane
and thus form individual "touch" patterns that the system can identify
(see Figure 9.10 and the purple circles in Figure 9.11).

Figure 9.11: Source image (left) and identified pen and object patterns (right)

13

9.3 FEATURES AND SOLUTIONS TO THE IDENTIFIED CHALLENGES

The massive benefit of this approach is that object recognition is
performed at the level of touch information rather than analyzing the
camera’s video stream frame by frame, resulting in reliable tracking,
even when objects are manipulated very fast.

The principle of recognizing distinct patterns from different touch
point arrangements also applies to identifying pen input. Usually, the
palm naturally rests on the writing surface while writing with a pen,
as shown in Figure 9.12.

Figure g9.12: Resting palm while writing

With the palm breaking the laser light plane, HOUDINI can identify
the resulting big touch point as a resting palm. An occurring small
touch point located in a circular area with a certain distance to this
identified palm can then be interpreted as the tip of a pen (see the
blue circle in Figure 9.11).

A particular advantage of this method is that it does not require any
additional electronic parts and allows using standard office pens'3,
which can be reliably tracked without the need for a special writing
surface overlay, which would considerably reduce the contrast of the
visual display and is, for instance, required for other pen recognition
systems, such as the digital "Anoto Pen" [8].

9.3 FEATURES AND SOLUTIONS TO THE IDENTIFIED CHALLENGES

According to its system design, the edelsprint application offers dis-
tributed functionality across personal (desktop and mobile) and col-
laborative interface types (tabletop and wall display). However, the
implemented features are not equally available in every interface. In-
stead, they are only implemented and accessible where it makes sense
according to the underlying task.

Pens should be used without removing the cap to prevent them from really writing
on the surface.

265

Pen tracking

266

INTRODUCING AN INTERACTIVE SCRUM SPACE

The following subchapters describe the implemented features and
how they relate to the identified Scrum challenges of Chapter 6 and
the problems of existing ALM applications, as described in Chapter 7.
For better comprehension, they are presented in an order following
the sprint logic of Scrum, i.e., beginning with managing the backlog,
followed by planning a sprint to executing the Scrum ceremonies.

9.3.1 The Backlog

As explained in Chapter 4.4.2, managing the backlog is the sole re-
sponsibility of the product owner. It is not a collaborative task and is
therefore only implemented for the desktop and mobile interfaces.

To comprehend the issue of insufficient backlog ordering (see Sec-
tion 6.2.4.2), edelsprint introduces backlog sections as a novel and flexi-
ble way to order and manage different parts of the backlog.

edelsprint Backlog Sprint Board 3 o s
Create Story Drag stories into the sections below to prioritize your backlog.
| Which payment options? - | User analysis - | Customer journey -
Must have 35
Product details 8 Put products into shopping cart 8 Remove products from shopping cart 3
As a show owner, | want to present product As a user, | want to put multiple products As a user, | want to remove products from
details to my customers using text and into my shopping cart, so that | see the my shopping cart, so that | prevent errors
graphics, so that my customers can see total amount of money. and don't get items that | do not want to
product and understand its use. buy.
Product availability 8 Checkout and payment 5 Customer support 2
As a show owner, | want to update the As a user, | want to complete my order by As a user, | want to contact support using a
available quantity of my products, so that paying with my credit card, so that | will get live chat widget
users know how many items are left in the the items in the shopping cart.
store.
Should have 13
Different payment options - Receipts and invoices 13 Data persistency ?
As a user, | want to pay with Paypal and As a user, | want to get reiceipts and As a user, | want to retain my shopping cart
other services. invoices via email shortly after completing even after | close the browser window, so
my order, so that | can prepare bank that | can make a pause and turn back on
transactions. the shopping process a few days later.
Could have 0
Ul color theme - Shipping estimate -
As a show owner, | want to change the As a user, | want to get a correct estimate
color theme of the whole website, so that it of the shipping costs, so that | know the
fits my branding. total costs in advance.

Figure 9.13: The edelsprint backlog

9.3 FEATURES AND SOLUTIONS TO THE IDENTIFIED CHALLENGES 267

Backlog sections can be used to group backlog items according
to freely selected criteria. As an example, Figure 9.13 shows "Must
have," "Could have," and "Should have" sections representing the
MoSCoW prioritization method (see Page 63). Another example might
be a "Ready for Sprint Planning" section that could contain all items
sufficiently specified to be discussed in the next sprint planning event.
Similarly, a section could contain items of a particular category, e.g.,
all "Frontend" items, or follow different semantics, such as "Things to
discuss," or "Top priority."

In addition, sections show the sum of story points contained, which
further helps the product owner to prepare future sprints. Moreover,
each section can be collapsed (see Figure 9.14), which is useful to save
some display space and shift the focus of attention to a particular set
of items, e.g., while conducting a sprint planning event.

ede\sprint Backlog Sprint Board o @ [c3
Create Story
Things to discuss 0 =
| Which payment options? - | User analysis - I Customer journey -
& Top priority 3B =
| Product details 8 | Put products into shopping cart 8 | Remove products from shopping cart 3
| Product availability 8 Different payment options - Checkout and payment 5
Customer support 2 Product quantity 1
& Next 13
Receipts and invoices 13 Shipping estimate -
As a user, | want to get reiceipts and As a user, | want to get a correct estimate
invoices via email shortly after completing of the shipping costs, so that | know the
my order, so that | can prepare bank total costs in advance.
transactions.
. Future visions 0 =
Ul color theme - | Data persistency ?

Figure 9.14: Backlog with collapsed sections

While all Scrum team members can create new stories, which will
show at the top of the backlog, the product owner is in control of the
ordering. Items can not only be moved back and forth between sections
via drag and drop, but entire sections with their items contained can
also be quickly and easily moved further up or down in the backlog.

268

Isprint

Backend

Receipts and invoices 9 13

As a user, | want to

Acceptance Criteria

The order number and the products are mentioned in the email

Email is sent immediately after order is completed

Tasks

so that | can prepare bank transactions. a

INTRODUCING AN INTERACTIVE SCRUM SPACE

This arrangement of items and sections should better support the
order of the backlog and bring it more into the foreground since it
reflects the items’ prioritization and, thus, their importance according
to the Scrum rules. An additional priority field at the item level is
deliberately omitted to counteract contradictions in the prioritization,
as they can occur in existing agile ALM applications (see Section

7.2.2.3).

Speaking of backlog items, these are consistently designed to the
de facto standard of user stories. As shown in Figure 9.15, a user
story is represented as a card that contains a title, a description, and a
category. In addition, the card also shows the estimated effort in the
form of story points (see Section 4.8.2.1) and the person in charge of
the story. However, the latter is not necessarily directly involved in the
implementation. Rather, he or she should serve as the first point of
contact for the whole team in case of questions and assume a certain
degree of accountability during sprint execution, e.g., for presenting
the story during the sprint review.

Backlog Sprint Board < a [

get reiceipts and invoices via email shortly after completing my order,

3456
X

Business value is articulated

Story is understood by the whole team
Acceptance criteria are clear and testable
Story is estimated

Story is small enough to complete in one sprint

Setup an email account To do at

Get customer email adresses from database To do a*
Call email API endpoint Todo at
Notes
D s a
Talk with the design team about the email template.
Add Note

Figure 9.15: User story

Below the user story card, there are three more sections. In the first
one, a list of acceptance criteria can precisely specify what the user story
is about. These acceptance criteria allow the product owner to prepare

9.3 FEATURES AND SOLUTIONS TO THE IDENTIFIED CHALLENGES

the sprint planning and the development team to better plan and test
the implementation (see Section 6.2.4.5), which has been lacking in all
the investigated applications (see Section 7.2.2.3).

Moreover, since a bad preparation of stories is a common issue (see
Section 6.2.4.3), a user story also shows a definition of ready located
below the Scrum team members at the right side. It is represented as
a ticking list with criteria to fulfill before a story is considered "ready"
for sprint planning. Thereby, the state of readiness, i.e., the check-
marks, are individually stored for each story and not on a global level.
Therefore, the degree of specification of a story can be transparently
traced at any time, and the extent to which the exact requirements have
been understood by the team, thus counteracting later undesirable
developments from the very beginning.

How a story is implemented by the development team, i.e., the exact
steps during sprint execution, on the other hand, is mapped in a list of
tasks. It is located directly below the acceptance criteria to better relate
development tasks to the final criteria for fulfilling the implementation.
As in other agile ALM applications, task descriptions, the state of
progress, and the assignments of tasks to users are visible to the entire
team. However, unlike other applications, edelsprint intentionally does
not provide options for tracking the time spent on tasks and omits
estimating tasks. This is to bring the focus to estimating user stories
(and not tasks) and counter the problems from monitoring working
hours, as explained in Section 6.2.2.7. Moreover, a task can be assigned
to not only one but multiple team members. This should encourage
team members to help others (see Section 6.2.6.5), since their help
becomes visible to the entire team.

Below the list of tasks, notes can be used to add further details
to the story, for example, by uploading design documents or image
files. Especially during personal meetings, teams often produce quick
drafts or whiteboard sketches. Hence, the mobile interface offers a
quick upload feature using the smartphone’s built-in camera. This way,
edelsprint also targets the challenge of proper knowledge management
(see Section 6.2.3) by storing all relevant information directly within
the user story and making decisions transparent to the whole team
(see Section 6.2.3.1).

Demo video of managing the backlog:
https://youtu.be/3b4hLT191FE?si=T3¢c3211FIDIuzHiy

Demo video of creating a user story:
https://youtu.be/ic3k6LIYA207?si=hX15p_qvR3_WgMA5

269

https://youtu.be/3b4hLT19lFE?si=T3c321lFJDIuzHiy
https://youtu.be/ic3k6LIYA2o?si=hX15p_qvR3_WgMA5

270 INTRODUCING AN INTERACTIVE SCRUM SPACE
9.3.2 Sprint Planning

Since sprint planning can take several hours and involves the entire
Scrum team, it is usually conducted in a typical meeting room environ-
ment where the product owner presents the sprint goal and explains
the prepared user stories.

For this purpose, the desktop interface is used and shown to the
audience via a beamer. For the execution of the meeting, edelsprint
provides a dedicated sprint planning event with features carefully
designed so that the displayed information and controls can be easily
read on a projector, even from a greater distance. This is to prevent
less willingness to participate and a decrease in attention among
participants, which have been observed with the investigated agile
ALM applications, as explained in Section 7.2.2.4.

cdclsprint = @ 0:00 /4:00 hours

@ Shopping cart is ready to use 190.2020 to 1:11.2020 Finish Sprint Planning

; B &

STORY POINTS
Team Improvements O
More co de reviews 3

Code should always be reviewed when a
story done.

Figure 9.16: The "Plan Improvements" step of sprint planning

As shown in Figure 9.16, the user interface of the sprint planning
event consists of four parts. At the very top, the event bar replaces the
standard menu bar, thus indicating that a meeting is taking place. In
order to encourage the attendees to stay focused, it also visualizes the
past and remaining time according to the corresponding time box.

Below, the sprint goal is displayed in a particular large manner. It
is designed to be specified by the product owner before the actual
meeting when creating a new sprint and continuously shows during
any of the Scrum meetings. All of this is to prevent the problem of
teams not using a sprint goal at all (see Section 6.2.5.6) and to address

9.3 FEATURES AND SOLUTIONS TO THE IDENTIFIED CHALLENGES 271

the issues of existing agile ALM applications, in which the sprint goal
is given little to no importance, as explained in Section 7.2.2.4.

Below the sprint goal are the meeting guide at the left and the meeting
sidebar at the right, which will be explained in the following.

The meeting guide helps to process the sprint planning event in a
step-by-step manner. At first, the Plan Improvements step visualizes
the improvement backlog, which contains mutual agreements of things
to improve in terms of the Scrum process (see Figure 9.16). This step
is designed to promote including at least one improvement as an
outcome of preceding sprint retrospective meetings since neglecting to
work on identified improvements has been identified to be a common
issue (see Section 6.2.5.9). In order to emphasize the importance of
improvements, they were designed analogously to user stories, i.e.,
they also contain an effort estimate in the form of story points and lists
of acceptance criteria and tasks. This should ensure that improvements
are given the same importance as user stories in sprint planning and
that their workload must be planned accordingly.

cdclsprint = © 0:00 /400 hours
@ Shopping cart is ready to use 1910.2020 to 111.2020 Finish Sprint Planning
Sprint Selection a g Q
STORY POINTS
Backlog 3
Create Story
Ready for next Sprint 26
Put products into shopping cart 8 Remove products from shopping cart 2 Data persistence 8
As a user, | want to put multiple products into my As a user, | want to remove products from my As a user, | want to retain my shopping cart even
shopping cart. shopping cart after | close the window.
Product quantity 3 Shipping estimate 5
As a user, | want to change the quantity of As a user, | want to get a correct estimate of the
individual products in my shopping cart. shipping cost.
Must have 0

Receipts and invoices - Different payment methods - Customer support -

As a user, | want to get receipts and invoices via As a user, | want to pay with PayPal and other As a user, | want to contact support using a live chat
email after completing my order. services. widget.

Figure 9.17: The "Select Stories" step of sprint planning

Likewise, the Select Stories step of the meeting guide visualizes the
backlog with all its sections and stories contained (see Figure 9.17).
In both steps, items can be added to the sprint by dragging them
into the sprint backlog section sitting on top of both backlogs. Due to
edelsprint’s real-time application server (see Section 9.2.1), any change
in data is immediately shown in the UI and does not require manual
page reloads, which were found to be disturbing in the investigated
agile ALM applications (see Section 7.2.2.4).

272

cdclsprint =

INTRODUCING AN INTERACTIVE SCRUM SPACE

The design of the sprint backlog section has been particularly chosen
to encourage product owners to prioritize the backlog correctly, i.e., by
keeping the most important items at the top of the backlog. By doing
so, the dragging distance towards the sprint backlog section is short.
If the backlog, however, is not prioritized correctly, this distance will
become increasingly larger, thus making the selection of items to add
to the sprint consciously more difficult.

Moreover, the sprint planning meeting also provides an estimation
functionality for improvements and user stories. For this, edelsprint
offers interactive planning poker sessions, which is the de-facto standard
for agile estimation (see Section 4.8.2.2). During an estimation session,
the attendees” mobile user interfaces will automatically update and
show the planning poker cards with story points to choose from. After
a selection has been made, the desktop interface automatically updates
and shows a green checkmark above the person’s avatar to indicate
that he/she has given a vote. Once all participants have submitted
an estimate, the session is automatically closed, and the results are
displayed in a distribution graph (see Figure 9.18).

Return to Sprint Planning 0:00 / 4:00 hours

Feature

Put products into shopping cart

As

a user. | want to put multiple products into my shopping cart.

Acceptance Criteria

Clicking on "Add to cart" adds a product to the shopping cart

Alink in the header navigates to the shopping cart.

Figure 9.18: Planning poker results

While edelsprint highlights the most picked story point value, the
attendees can either decide to take it or further discuss the results in
case of uncertainties and start another session. To reduce the cognitive
load, which has been a problem of the planning poker implementa-
tions of the investigated agile ALM applications (see Section 7.2.2.4),
all of the story details remain visible during the estimation session.
In addition, the desktop interface also randomly shows two already
estimated stories, which serve as a reference and thereby facilitate the

9.3 FEATURES AND SOLUTIONS TO THE IDENTIFIED CHALLENGES

current estimation. Moreover, the interactive session has been designed
to still support individual navigation, which means that users can
also navigate to other stories and make comparisons on their mobile
phones without affecting the flow of other attendees.

Furthermore, the planning poker feature has been designed to
facilitate team-based decisions and address the problem of dominant
product owners (see Section 6.2.5.10). Several things should contribute
to this. On the one hand, the participation of the product owner
in the voting can be switched off so that he cannot influence the
result himself. On the other hand, the product owner is also made
more responsible in the preparation since the voting is carried out
exclusively at the level of the acceptance criteria, which must be
prepared accordingly. As mentioned before, effort estimation on the
task level is not possible, which should avoid unnecessary and time-
consuming discussions. This design decision and the clear structure
of user stories are also intended to do better justice to agile planning
and counter the problems resulting from too-detailed planning (see
Section 6.2.5.5).

Next to the meeting guide is the meeting sidebar, which shows the
attending and absent Scrum team members. For the sprint planning
event, it also prominently shows the definition of ready as a tick list for
each user story, thus targeting the problem of teams ignoring the defi-
nition of ready (see Section 6.2.5.7). In addition, the meeting sidebar
shows the sum of story points of backlog items and improvements
that have been selected for the sprint. This shall further contribute to
treating sprint planning as a mutual agreement between the product
owner and the development team regarding the sprint scope, while the
definition of ready ensures that the development team has everything
needed to transform requirements into a working product increment.

Regarding the sprint scope, the problem of continuous over-estimation
(see Section 6.2.5.1) is also addressed by saving the actually imple-
mented story points, i.e., story points of "done" user stories, at the end
of a sprint and making them available in the sprint history (see Figure
9.19). This enables the determination of a team’s velocity and, thus, an
understanding of the usual work performance of the team, which can
be taken into account in advance during the sprint planning event.

The sprint history is also used for knowledge management (see Sec-
tion 6.2.3) and should lead to a better understanding and traceability
of previous decisions (see Section 6.2.3.1) through the documentation
of past sprint goals and implemented stories, which are available at
any time and can be opened for each of the past sprints.

273

274 INTRODUCING AN INTERACTIVE SCRUM SPACE
Current Sprint
@ Shopping cart is ready to use please finish before adding a new sprint 19.10.2020 to 1.11.2020
@ Customers can pay with wire transfer 5.10.2020 to 18.10.2020 Finished: 25
@ User interface design is completed 21.9.202010 4102020 Finished: 21
@ Customers agg able to log in to their accounts 7.9.2020 10 20.9.2020 Finished: 27
Finished Stories

Authentication provider - Login page - Mobile login - Password reset

Evaluate authentication providers and As a user, | want to log in with my email As a user, | want to be able to log in As a user, | want to reset my password if

choose one. and password from my phone. I forget it

Account details Customer list

As a user, | want to be able to change As a shop owner, | want to see a list of

my email and password. my registered customers.
@ Advanced product catalog increases shop owner productivity 24.8.2020t0 6.9.2020 Finished: 19
@ Basic shopping front-end is usable 10.8.2020 10 23.8.2020 Finished: 25
@ Basic product catalog is working 27.7.2020t0 9.8.2020 Finished: 26

Figure 9.19: The sprint history shows all previous sprints including the "done" stories

Demo video of sprint planning
https://youtu.be/v7t5_0yLLcY?si=XIAJtVpUBWbC-Syw

Demo video of creating a sprint:
https://youtu.be/Bt-6KTYbn6A?si=kcms3duXpuVoJl4zS

9.3.3 Sprinting and Daily Scrum

During a sprint, the development team transforms the user stories of
the sprint backlog into an executable product increment. For this pur-
pose, developers specify tasks describing the necessary steps to fulfill
the user stories” acceptance criteria. To emphasize this relationship in
edelsprint, tasks are managed directly under the acceptance criteria of
a user story.

A single task consists of a short description, a status, and an assign-
ment to one or more developers (see Figure 9.20). The progress of the
task can be mapped via the status, which can take one of four values.
To do means that the task has been defined but has not started. In
Progress means that the task is currently being processed by the person
responsible. With Blocked, a developer can express that the work on
this task is blocked and cannot be continued. The completion of a task
is represented by the Done status.

Tasks can be defined and updated via both the desktop and the
mobile interface. While the desktop interface allows developers to

https://youtu.be/v7t5_0yLLcY?si=XIAJtVpUBWbC-Syw
https://youtu.be/Bt-6KTYbn6A?si=kcms3duXpuVoJ4zS

9.3 FEATURES AND SOLUTIONS TO THE IDENTIFIED CHALLENGES

Tasks

Setup an email account In progress a
Get customer email adresses from database Blocked a
Call email APl endpoint To do &

Finished 8

Figure 9.20: Tasks

work on the same device and quickly switch back and forth between
the familiar programming environment and their own task manage-
ment, the mobile interface, on the other hand, offers the advantage
of being able to quickly manage tasks on the go. This enables better
digital support for ad-hoc meetings, such as those between developers
having a chat at the coffee machine, by allowing content and outcomes
of spontaneous discussions to be captured directly. This includes the
ability to quickly add notes and images to a user story using the
mobile interface and smartphone camera.

Furthermore, in contrast to the agile ALM applications examined,
edelsprint also offers the possibility to work with a definition of done
and thus improve control over the technical debt during a sprint (see
Section 7.2.2.5). The criteria for fulfilling the DOD can be defined
individually for each team in the settings. Once a story is added to the
sprint, it no longer shows the definition of ready but the definition of
done instead. Like the DOR, the DOD is then displayed as a checklist
on the detail page of a user story under the team (see Figure 9.21). The
status of the criteria, i.e., whether they have been met or not, is stored
individually for each user story, i.e., the developers can manage the
degree of fulfillment of the DOD for each user story and thus track
the measures to reduce technical debt in the course of a sprint.

33856
36 1

Acceptance criteria are fulfilled
All tests are passing

Code is reviewed

Code is merged

Code is deployed

Figure 9.21: Definition of done

275

276

INTRODUCING AN INTERACTIVE SCRUM SPACE

Besides working on tasks and updating the definition of done of
particular stories, the team should also have a permanent understand-
ing of the overall sprint progress, thus making it possible to adapt
their work accordingly. For this reason, edelsprint provides the board,
which is a specially designed task board consisting of four columns,
To do, In Progress, Review, and Done, which reflect the work status of
the user stories contained (see Figure 9.22).

edelsprint Backiog Sprint Board & (]
@ Shopping cart is ready to use 1.8.2024 to 15.8.2024
Todo In progress Review Done
Product quantity 1 Receipts and invoices 13 Product availability 8 Put products into shopping cart 8
As a user, | want to change the quantity of As a show owner, | want to update the As a user, | want to put multiple products into
individual products in my shopping cart, so Setup an email account available quantity of my products, so that my shopping cart, so that | see the total
that | do not need to add items again to I brogress a users know how many items are left in the amount of money.
increase the quantity. D store.
Get customer email adresses from
i database i i
Blocked 8
Different payment options - Call email API endpoint Checkout and payment 5 Remove products from shopping cart 3
As a user, | want to pay with Paypal and other Todo 2 As a user. | want to complete my order by As a user, | want to remove products from my
services, paying with my credit card, so that | will get shopping cart, so that | prevent errors and
the items in the shopping cart. don't get items that | do not want to buy.
Finished ']
i i i

Product details

As a show owner, | want to present product
details to my customers using text and
graphics, so that my customers can see
product and understand its use.

Figure 9.22: Board

At the beginning of the sprint and right after the sprint planning
has been finished, all selected user stories (and improvements) appear
in the "To do" column. During the sprint, user stories can be moved
through the columns via drag and drop, thus making it possible for
the whole team to understand the sprint progress.

While this design is very common and was found in all other
investigated agile ALM applications, the edelsprint board offers a far
more advanced feature set. First, it shows the sprint goal prominently
on top, thus serving as a constant reminder of what to achieve during
the sprint so that the team can base decisions accordingly. Second,
it shows the Scrum team members, which can be clicked to filter
the board for user stories and tasks to which the selected person is
assigned.

Moreover, the board allows users to view all story details separately
and independently of all other user stories. For this, the card’s content
can be switched to either show the story’s description, acceptance
criteria, or tasks, as shown in Figure 9.22. The benefit of this design is
that developers can look at the details of individual user stories, e.g.,
the ones they currently work on, while simultaneously keeping an
overview of all other user stories without being visually distracted.

9.3 FEATURES AND SOLUTIONS TO THE IDENTIFIED CHALLENGES

For the coordination of developers among each other, edelsprint
provides an interactive daily Scrum, which has been designed as a
standup meeting carried out at the tabletop in combination with an
interactive vertical display. This particular setup was chosen because
tabletop and vertical display complement each other well, thus com-
pensating for their respective weaknesses, which have been discussed
in Sections 8.4.2 and 8.4.3.

The vertical display is an information radiator for the team and
provides two views that can be switched with a button. It either shows
the task board mentioned before or the burndown graph of the current
sprint, both styled to be operated via touch and comfortably read from
a further distance. During a daily Scrum, the display also shows a 15-
minute timer, which shall help the attendees to keep the meeting short,
thus addressing the common problem of daily Scrums exceeding the
timebox, as explained in Section 6.2.6.4.

While the vertical display’s primary purpose is to display infor-
mation to all attendees of the daily Scrum, the tabletop serves as
an interaction device for the currently speaking person. Due to the
edelsprint architecture (see Section 9.2.1), triggered functionalities at
the tabletop automatically update the UI of the vertical display, thus
allowing the attendees to follow along without being disturbed by a
blocked view.

By default, the tabletop shows the user stories of the current sprint in
a card-like manner, which can be arranged freely on the surface. When
tapping a user story, it is brought into focus, and both the tabletop and
vertical display show all of its details, including acceptance criteria,
notes, and tasks. The latter are also draggable components on the
tabletop that arrange themselves around the user story they belong to.

Moreover, edelsprint is capable of facilitating the daily Scrum meet-
ing by supporting developers to answer the typical three questions:
"What did I do yesterday?", "What will I do today?" and "What are
my impediments?" (see Section 4.7.2). For this, the tabletop identifies
the current speaker via his or her mobile phone laid on the tabletop
surface and tracked via the custom device recognition HOUDINI (see
Page 264).

When a user is identified at the tabletop, the task board on the
vertical display is automatically filtered, i.e., it only shows the stories
the user is involved in and displays the corresponding task lists. In
addition, tasks the user has been working on since the last daily
Scrum are automatically highlighted, thus reducing the cognitive load
to recall "What did I do yesterday?". To answer the question "What
will I do today?", the user can assign himself to tasks by dragging
them from the tabletop surface towards his mobile phone. As a result,
the task board automatically updates and highlights these new task

277

278

INTRODUCING AN INTERACTIVE SCRUM SPACE

assignments. Finally, for answering "What are my impediments?" the
task board also highlights tasks that are in the "Blocked" status, again
making it easy to recall problems and ask others for help.

Altogether, these features are intended to keep the attention high,
thus targeting the problems mentioned in Sections 6.2.6.3 and 6.2.6.2
and should help to increase the overall team spirit by keeping the
meeting short and engaging.

Demo video of the board:
https://youtu.be/KODsIf7e2QI?si=Qgd04KaDrhGbnCch

9.3.4 Backlog Grooming

Grooming meetings are a proven means of refining the backlog as
preparation for the next sprint planning event and thus represent an
important connection between the product owner and the develop-
ment team, as described in Chapter 7.2.2.7.

For the product owner, the advantage of the grooming meeting is
that technical aspects of the implementation can already be considered
during the planning and prioritization of backlog items. For example,
the development team can uncover technical dependencies between
user stories that are difficult for the product owner to assess alone. The
advantage of the grooming meeting for the developers is that they can
better prepare for the content of future sprints and, thus, if necessary,
make appropriate preparations that facilitate their development work.

However, as seen in Chapter 6.2.4, conducting grooming meetings
with members of the development team is a challenging task for the
product owner that is often neglected (see Section 6.2.4.4). Moreover,
as shown in Chapter 7.2.2.7, none of the investigated agile ALM appli-
cations offers dedicated features for supporting grooming meetings.

In the edelsprint system, grooming meetings take place at the table-
top (see Figure 9.23). A meeting can be initiated on the product
owner’s mobile phone when it is laid on the tabletop surface. Once
the meeting starts, the mobile interface automatically switches to the
backlog view, displaying all items in a scrollable list. Since grooming
meetings only focus on a few backlog items (usually the ones to be
considered for the next sprint planning event), the product owner can
decide which items to discuss by swiping these items from the backlog
of the mobile phone onto the tabletop surface.

Due to the edelsprint architecture (see Chapter 9.2.1) and the HOU-
DINI object tracking system, selected backlog items will appear im-
mediately on the tabletop surface and automatically arrange around

https://youtu.be/KODsIf7e2QI?si=QgdO4KaDrhGbnCch

9.3 FEATURES AND SOLUTIONS TO THE IDENTIFIED CHALLENGES

Figure 9.23: Backlog grooming at the tabletop

the mobile phone’s position, thus providing a smooth user experience
that blends interactions between the mobile and tabletop interface.

On the tabletop surface, backlog items can be dragged around,
resized, rotated, and focused as desired. This free spatial arrangement of
backlog items allows the product owner to prioritize stories ad hoc
during the discussion by visualizing dependencies through different
spatial arrangements, e.g., by making use of the law of proximity (see
Page 187).

When an item is being discussed and brought into focus by double-
tapping on it, the card animates to a bigger version, providing a
predefined set of quick tags (see Figure 9.24).

Depending on the discussion result, an item can be easily tagged as:

¢ Delete - to indicate that the item is no longer needed,

e Discuss - to indicate that this item has been discussed, but it
still needs more elaboration to investigate its requirements,

* Refine - to mark the item as being too complex, so it should
better be split into multiple backlog items,

* Ready - to indicate that the item can stay as is, i.e., from the
developers’ perspective, it is ready to be presented during sprint
planning.

Besides supporting a collaborative grooming meeting at the tabletop,
the developed system was also designed to bring the meeting results
into action on the product owner’s side. For this, all backlog items
processed during a grooming meeting are transferred into a new
section within the product backlog, whose title refers to the grooming
meeting and the time it took place. This feature is intended to help the

279

280

INTRODUCING AN INTERACTIVE SCRUM SPACE

Figure 9.24: Quick tags

product owner by reducing the cognitive load for recalling discussed
items when returning to his desk so that he can immediately begin to
refine the backlog according to the outcomes of the grooming meeting.

9.3.5 Sprint Review

The sprint review aims to gather feedback about the developed prod-
uct increment, then initiate a revision of the backlog and consider
the new findings for further product development. It is, therefore, an
integral part of Scrum’s inspect and adapt approach as part of the
built-in empirical process control (see Page 75). However, as described
in Section 6.2.7.4, the common problem is that the sprint review is
often treated as the venue of approval, which can result in unnecessary
discussions in the presence of stakeholders and thus massively restrict
the flow of feedback. To work against this problem, edelsprint pursues
two approaches. On the one hand, functions are offered to review
user stories already during the sprint. On the other hand, it provides
dedicated support for core aspects of the review meeting.

The establishment of a review process in the course of a sprint
begins with preventing subsequent modifications of the sprint backlog
to overcome the review issues mentioned in Section 6.2.4.6. edelsprint
has a built-in role model that prevents developers from modifying the
sprint goal and adding or removing items from the sprint backlog, thus
ensuring the sprint’s integrity as planned. Subsequent modifications
are limited to the product owner role, but as explained in Section 4.7.1,
these shall be an absolute exception, which the application also draws
special attention to by warning the product owner when modifying
an ongoing sprint.

9.3 FEATURES AND SOLUTIONS TO THE IDENTIFIED CHALLENGES

In order to establish a tight feedback loop between the development
team and the product owner, edelsprint furthermore provides review
requests. When working on a user story, a developer might want
feedback from the product owner regarding the implemented solution.
For this, edelsprint provides a "request review" button below the
list of acceptance criteria. When triggered, an indicator shows that
the user story is currently being reviewed by the product owner.
Simultaneously, the story shows in the "Review requested" section
of the product owner’s review list. This list consists of four sections
containing all user stories of the sprint. From top to bottom, these
sections are:

* Review requested: user stories with active review requests

* Partially accepted: user stories where some but not all acceptance
criteria are met

* Accepted: user stories for which all acceptance criteria are met

* Not reviewed: user stories for which a review has not yet been
initiated

When a story shows under "Review requested,” the product owner
can review its implementation and mark individual acceptance criteria
as being fulfilled or not. If the story meets the product owner’s expec-
tation completely, i.e., all acceptance criteria are marked fulfilled, it
is automatically moved to the "Accepted" section of the review list. If
only some acceptance criteria are fulfilled, it will show in the "Partially
accepted" section instead.

For the development team, which does not have access to the review
list, the review results are shown on the user story details page in the
form of green check marks (fulfilled) or red warnings (not fulfilled)
next to the acceptance criteria. This way, both the development team
and product owner have a mutual understanding of the development
progress and state of ongoing sprint review.

Another feature contributing to establishing a review process during
a sprint is the definition of done, which has already been mentioned
in Chapter 9.3.3. This checklist with individually checkable criteria is
displayed on each element of the sprint backlog and should establish a
uniform understanding of which criteria must be fulfilled to consider
a sprint backlog item as finished. The display is deliberately chosen
to be very present so that, on the one hand, the development team
is urged to adhere to the definition of done during implementation.
On the other hand, the stakeholders can have more confidence in
the quality of the presented product increment because of clarity in
communication [152] and increased trust [226].

281

282 INTRODUCING AN INTERACTIVE SCRUM SPACE

Besides supporting ongoing reviews during the sprint, edelsprint
also provides a dedicated sprint review meeting. Similar to the sprint
planning, the sprint review has been implemented for the desktop
interface and, hence, is intended to be conducted using a projector to
provide a good view for all participants.

edelsprint = & 0:03 /200 hours
@ Shopping cart is ready to use 1.8.2024 t0 15.8.2024 Finish Sprint Review
Story Feedback a Q’ ‘ | \% @
] \
Finished Stories e Q a
Product details 9s Product quantity " X Checkout and payment Ds
As a show owner, | want to present product As a user, | want to change the quantity of As a user, | want to complete my order by
details to my customers using text and individual products in my shopping cart, so paying with my credit card, so that | will
graphics, so that my customers can see that | do not need to add items again to get the items in the shopping cart + Add Feedback
product and understand its use. increase the quantity.
@ No sprint feedback. yet.
Product availability 6 s Put products into shopping cart), 8 Remove products from shopping cart 3
As a show owner, | want to update the As a user, | want to put multiple products As a user, | want to remove products from
available quantity of my products, so that into my shopping cart, so that | see the my shopping cart, so that | prevent errors
users know how many items are left in the total amount of money. and don't get items that | do not want to
store. buy.
Unfinished Stories
Different payment options - Receipts and invoices (%]
As a user, | want to pay with Paypal and As a user, | want to get reiceipts and
other services. invoices via email shortly after completing
my order, so that | can prepare bank
transactions.

Figure 9.25: The "Story Feedback" step of the sprint review

The main view of the sprint review event is shown in Figure 9.25.
It consists of three sections. The first is the sprint goal, prominently
shown at the top. Below are the guided meeting tour and the meeting
sidebar at the right.

At the beginning of the event, the guided meeting tour starts with
the Story Feedback step showing all items of the sprint with a clear
distinction between finished and unfinished items. "Finished" in this
case means that the item has been moved towards the "Done" column
of the board and that all criteria of the definition of done are fulfilled.
This shall ensure that only finished stories are presented during the
sprint review meeting, thus preventing the problems mentioned in
Section 6.2.7.3.

In order to establish responsibility for the implemented solution,
each user story features a representative shown on the top right corner
of the card, which can be assigned via the user story’s details page.
During the sprint, this person is meant to be the first point of contact
for the product owner and other Scrum team members in case of
questions. This does not necessarily mean that this person is actively
involved in working on the story’s tasks. Rather, this feature is de-
signed to ensure that a particular person is in charge of keeping the

9.3 FEATURES AND SOLUTIONS TO THE IDENTIFIED CHALLENGES 283

story’s progress up to date and that its result will be presented during
the sprint review.

During the presentation, story details, like acceptance criteria, tasks,
and notes, can be accessed at all times by clicking on the corresponding
card, which will open up the user story details page. This is also
true for unfinished stories, which are not completely hidden from
the review but only sorted into their own "unfinished" section. This
design decision was made because access to unfinished stories within
the sprint review can help discuss dependencies and interrelations
between finished and unfinished stories.

In order to preserve feedback from the attendees, the meeting side-
bar provides a note-taking feature. These notes may be anything worth
mentioning for later use, for example, remarks concerning the product
increment, more details on certain requirements, or arising ideas for
new user stories.

When all finished stories have been presented, and the feedback
has been gathered, the guided meeting tour can be switched to the
Backlog Refinement step (see Figure 9.26). This will bring up the product
backlog so the attendees can mutually work on the collected feedback
and refine existing user stories or create new ones. Refinement and
creating new stories, however, are supposed to be done quickly and in
bullet points to keep the meeting short and engaging. After the review
meeting, the product owner is responsible for the detailed revision of
the backlog, including reprioritizing its items.

edelsprint = & 0:07 /200 hours
@ Shopping cart is ready to use 1.8.2024 t0 15.8.2024 Finish Sprint Review
Backlog Refinement -l Continue g \
4 \“}
Create Story e 6 Q
Things to discuss 0=
| Which payment options? - Customer journey - + Add feedback
Ul Improvements
o et 2 Adjust the button colors to match our
& Top priority branding
Customer support 2 User analysis - Shipping estimate
Confirmation dialogs
As a user, | want to contact support As developers, we have to understand As a user. | want to get a correct o
using a live chat widget our users to develop the most valuable estimate of the shipping costs, so that | Add confirmation dialogs to the form when
features know the total costs in advance. the user deletes an item from the
shopping cart.
Make the quantity more prominent
The quantity should be made bigger so
users have a bigger fear of missing out
& Next 0 and are likely to buy a product.

Ul color theme - Data persistency ?
As a show owner. | want to change the As a user, | want to retain my shopping
color theme of the whole website, so cart even after | close the browser

that it fits my branding. window, so that | can make a pause and
turn back on the shopping process a
few days later

Figure 9.26: The "Backlog Refinement" step of the sprint review

284

INTRODUCING AN INTERACTIVE SCRUM SPACE

In order to counter the problems of Section 6.2.5.8, edelsprint does
not automatically transfer the unfinished items to a new sprint but
transfers them back to the backlog. For this, it automatically creates a
new section at the top of the backlog with the name of the completed
sprint, in which the unfinished items can be revised according to the
newly gained knowledge.

Demo video of the sprint review:
https://youtu.be/Y0Q0cC65zvA?si=qjtvCc92eFqZZ3_3

9.3.6 Sprint Retrospective

As the investigations in Chapter 7.2.2.9 show, the tool-side support for
a sprint retrospective is severely limited in the selected agile ALM ap-
plications. It is essentially restricted to creating shared text documents
in which the results of a retrospective can be recorded. Dedicated
functions to support the execution of a retrospective, such as detecting
problems in the sprint or identifying improvement potentials, are not
offered. The data for analyzing the sprint and reflecting on teamwork
is also completely missing. Unsurprisingly, there are also no func-
tions for managing identified improvements, i.e., concrete actions for
optimizing the development process.

In contrast, edelsprint provides several dedicated features to work
against the identified sprint retrospective problems.

To address the problem of low sprint retrospective attendance (see
Section 6.2.8.1), edelsprint has been designed to capture two metrics
for any of the obligatory Scrum events. For any Scrum event, it tracks
the duration and the attendance of individual team members. Based on
this, it calculates an attendance score that is visualized on the overview
page of each meeting type. This is intended to increase awareness
about deviations from the Scrum rules by making meeting durations
and attendance rates transparent to the whole team.

To address the issue of poorly facilitated (see Section 6.2.8.2) and
energy-draining retrospectives (see Section 6.2.8.3), edelsprint fur-
thermore provides guided retrospective formats in four steps, which
include several feedback mechanisms to constantly gather insights about
the sprint process and identify improvement potentials.

The first step is called Set the Stage and utilizes the common ap-
proach of beginning the retrospective with an icebreaker event to
get everyone in the mood to reflect on the sprint process. For this,
edelsprint provides a quick satisfaction poll, where attendees can ex-

https://youtu.be/YOQOcC65zvA?si=qjtvCc92eFqZZ3_3

9.3 FEATURES AND SOLUTIONS TO THE IDENTIFIED CHALLENGES 285

press their satisfaction with the sprinting experience on a 5-point scale,
represented by different emoticons (see Figure 9.27).

How do you feel about this Sprint?

B

[Confirm vote |

Figure 9.27: Satisfaction poll

The result of this voting, which is executed similarly to the story
point estimation (see Page 272), is carried out via the attendees” mo-
bile phones and is then displayed graphically (see Figure 9.28), thus
making it possible to quickly form an initial impression of whether
the participants” assessments are similar or whether there are possibly
larger discrepancies in their perception of the sprint, which overall
should help to set the stage for further analysis, as suggested by the
Scrum expert Kenneth S. Rubin [226, p. 382].

© 0:00 /200 hours

@ Shopping cart is ready to use 1910.2020 to 111.2020 Finish Sprint Retrospective

9385
a6 8

Use the result as a starting point. Your team will come up with improvements in the further course of the Sprint Retrospective. + Create Improvement

This is how your team feels about this Sprint

Shorter Daily Scrums. o

We often exceed the 15 minute time-box.
Let's have shorter Daily Scrums!

Figure 9.28: The "Set the Stage" step of a sprint retrospective

The second step is called Story Feedback and provides a dedicated
view of the feedback given to finished and unfinished stories of a
sprint, which is captured in the following way. When a story is part of
a sprint, its details view contains a story feedback section below the
definition of done (see Figure 9.29). Feedback to a story is indepen-
dently saved for each team member and consists of an emoticon to
express the feeling about the story and a text field to provide details.

286 INTRODUCING AN INTERACTIVE SCRUM SPACE

[$ 3 il N
Y4 \
@ Acceptance criteria are fulfilled
@ All tests are passing
@ Code is reviewed

@ Code is merged
Code is deployed

Some Ul design elements were missing. =

Figure 9.29: Feedback given to a user story

Since feedback is stored independently for each user, the story
feedback section only shows the feedback provided by the currently
logged-in user. As long as the sprint is running, this feedback can
be changed. Only during the sprint retrospective, the collected story
feedback will be accessible to other team members and shown to the
whole group via the Story Feedback step (see Figure 9.30).

lclsprint = & 0:00 /200 hours
@ Shopping cart is ready to use 19:10.2020 to 1:1.2020 Finish Sprint Retrospective
Story Feedback Back [a @ t @ @

o @ 9 ﬂ
©\ore code reviews 3 Put products into shopping cart 8 Remove products from shopping .. 2 Shipping estimate 5 :

Code should always be reviewed when a As a user. | want to put multiple As a user, | want to remove products As a user, | want to get a correct

story s done products into my shopping cart from my shopping cart. estimate of the shipping cost.

+ Create Improvement
N N Shorter Daily Scrums [
=0 © L4 =2 o4 4 < =1 We often exceed the 15 minute time-box.
Let's have shorter Daily Scrums!
Data persistence 8

As a user, | want to retain my shopping
cart even after | close the window.

Time for training 5

Allocate more time for technical courses
e - and tutorials.

Unfinished

Product quantity 3
As a user, | want to change the
quantity of individual products in my
shopping cart.

Figure 9.30: The "Story Feedback" step

Here, each story shows its user feedback responses through high-
lighting the corresponding emoticons at the bottom of the card next
to the number of feedback responses. This way, the group can easily
identify different opinions, which means that different emoticons are

9.3 FEATURES AND SOLUTIONS TO THE IDENTIFIED CHALLENGES 287

highlighted, or consent opionions, which means that there are multiple
responses but only one emoticon is highlighted (see Figure 9.31).

Put products into shopping cart 8 Remove products from shopping .. 2
As a user, | want to put multiple As a user, | want to remove products
products into my shopping cart. from my shopping cart.
= Ea
= e =2 T %4

Figure 9.31: Different opinions (left) vs. consent opinions (right)

When clicking on the emoticons, the team can further investigate the
feedback given to a story and see the provided comments. However,
to increase willingness to incorporate user feedback into the sprint ret-
rospective and minimize feedback bias due to participant uncertainty,
results are presented anonymously, as shown in Figure 9.32.

© 0:00 /200 hours

@ Shopping cart is ready to use 19:10.2020 to 1:11.2020 Finish Sprint Retrospective

256
2

Story Feedback :EH Continue

83

Put products into shopping cart
+ Create Improvement
As a user, | want to put multiple products into my shopping

Shorter Daily Scrums 0

We often exceed the 15 minute time-box.
Let's have shorter Daily Scrums!

Some Ul design elements were missing

k3
@
This was easy to implement
Time for training 5
Allocate more time for technical courses
and tutorials.

Figure 9.32: Anonymized feedback given to a story

Overall, the story feedback feature allows team members to capture
observations and reflections on their work in real-time. Recording
feedback directly on the related user story ensures that insights are not
lost or forgotten during a sprint. Additionally, it should allow for more
efficient retrospective analyses, as the Scrum team can quickly identify
problematic stories and discuss the areas of potential improvements
in the work.

288

cdclsprint =

INTRODUCING AN INTERACTIVE SCRUM SPACE

While story feedback is on the level of user stories, the third step
of the retrospective is called Team Feedback and provides the results
of a higher-level and more general feedback mechanism. For this,
edelsprint uses the Start-Stop-Continue method, which is a survey that
the Scrum master can initiate during the sprint. The team members
then receive an email with an access link to participate in the survey.
Using this access link, a team member can provide feedback and
share ideas about things that should be started, stopped, or continued to
improve the sprint process. As long as the sprint runs, this feedback
can be edited using the personal access link.

During the sprint retrospective, the anonymized results of all team
members are shown in the Team Feedback step (see Figure 9.33). This
allows teams to quickly gain insight into problems in the collaboration,
which they can then jointly address at an early stage.

© 0:00 /200 hours

@ Shopping cart is ready to use 19:10.2020 to 1.11.2020 Finish Sprint Retrospective

Start

Write more unit tests

Team Feedback s m a @ ’ \% @
A
Stop Continue a @ !

Discussing too many details during Sprint Sticking to the meeting time-boxes
Planning

+ Create Improvement

Consider the velocity during Sprint Planning. Team breakfast on Friday.

Play Scrum Poker more regularly. Having regular code reviews,

Skipping the Daily Scrum.

Ul designs o
Get more input from the design team before
implementing new features.

Defining the Ul designs more clearly.

Having shorter feedback cycles.

Shorter Daily Scrums. o
We often exceed the 15 minute time-box.
Let's have shorter Daily Scrums!

Time for training 5
Allocate more time for technical courses
and tutorials,

Figure 9.33: The "Team Feedback" step

During all stages of the retrospective, the team can use the provided
feedback to create insights and decide on improvements, which can be
recorded in the improvement backlog visualized in the meeting sidebar
at the right (see Figure 9.33).

In order to prevent the typical Scrum problem of incorrect insight
handling (see Section 6.2.8.4), the retrospective finally offers a Decide
How to Improve step. This step aims to mutually work on the identified
insights and transform them into executable improvements. While
improvements are slightly differently visualized, they are nonetheless
equally treated as user stories, i.e., they have acceptance criteria, tasks,
notes, and can also be estimated since working on improvements is an
effort that should be considered during sprint planning.

9.4 EVALUATION AND CRITICAL DISCUSSION 289

© 0:00 /200 hours

@ Shopping cart is ready to use LGP RSSEIPAPWI Finish Sprint Retrospective

256
0

E}
Nearly done! e’

Now specify the improvement details and discuss about their priority by ordering them via drag and drop.

()

@

Team Improvements

Don't skip the Daily Scrum oul designs oshonar Daily Scrums 0 oTlme for training 5
Have a Daily Scrum every dayl Get more input from the design team We often exceed the 15 minute time- Allocate more time for technical courses
before implementing new features. box. Let's have shorter Daily Scrums! and tutorials.

Figure 9.34: The "Decide How to Improve" step

For that reason, the improvement backlog is also shown as the first
step of the sprint planning event (see Section 9.3.2), in which one or
two improvements should be selected for the next sprint to create a
sustainable teamwork optimization.

Demo video of the sprint retrospective:
https://youtu.be/LITpZKkLM-xQ?si=y1vCd336UTdRgmGY

9.4 EVALUATION AND CRITICAL DISCUSSION

Before concluding this thesis, this section will evaluate the imple-
mented system and discuss how it can positively impact the previously
identified Scrum challenges and issues, as well as the still-existing
drawbacks and limitations.

9.4.1 Iterative Evaluation during Implementation

A unique feature of this thesis is that the evaluation of the proposed
system was done to a large extent simultaneously with its development
and not - as it is often the case - exclusively afterward.

This is due to the special circumstances that, as mentioned in Chap-
ter 5, the prototypical development took place in the project group
MAGICIAN, whereby the participants of the project group were both

https://youtu.be/LJTpZkLM-xQ?si=y1vCd336UTdRqmGY

290

INTRODUCING AN INTERACTIVE SCRUM SPACE

developers and end users of the prototype. Since they worked accord-
ing to the Scrum rules and used the prototype’s current status for
their own planning and execution of further development (see Figure
5.1 on Page 126), the evaluation thus took place continuously during
the usual sprint work.

After the newly developed functions had been used in a sprint,
they were subsequently discussed in the sprint review regarding
their usability, and improvements were jointly developed, which were
recorded in the backlog. Through this Plan-Do-Check-Act cycle, which is
already given by the correct implementation of the Scrum framework,
the prototype was successively improved, adapted, and expanded to
the needs of a team working in accordance with the Scrum rules.

An excellent example of this iterative approach can be seen in
the development of the planning poker feature, which is used in
sprint planning to jointly estimate the workload of a user story (see
Chapter 4.8.2.2). This feature was revised four times in the course of
development, as explained in the following.

In the first iteration, planning poker was implemented on mobile
devices so that the display showed a card over its entire surface. The
user could use a swiping gesture to go to the next card and mark it
as a selection with a tap. However, during the effort estimation in the
subsequent sprint planning, this implementation turned out to be less
user-friendly, as the smallest poker card was displayed on the mobile
devices first with each new vote, so many swiping gestures had to be
made to get to higher cards.

Therefore, the planning poker feature was adapted in the second
iteration so that swiping gestures were dispensed entirely. Instead, all
poker cards were shown simultaneously on the display of the mobile
devices, whereby a card could again be selected by tapping. In the
sprint review, however, half of the participants found this version
difficult to use, as their displays were relatively small, and the fact
that all cards were shown at once made it challenging to select them
easily.

As a result, the third iteration combined the display of all planning
poker cards at once, which was triggered when a mobile phone is held
horizontally in landscape format, with the ability to swipe through
individual cards, which was triggered when a phone is held verti-
cally. While this approach satisfied the group members regarding the
feature’s interaction usability, the sprint review revealed that some
members found it difficult to decide on a planning poker value when
estimating a user story because of a missing estimation reference.

Hence, the fourth iteration introduced reference user stories. These
are previously estimated user stories, randomly selected from the past
three sprints, which show up on the user story’s details page when

9.4 EVALUATION AND CRITICAL DISCUSSION 201

planning poker is triggered on the desktop interface. Since this inter-
face is displayed to all attendees via a projector, the reference cards are
shown to all group members as long as they take their vote using their
mobile phones. This approach sufficiently simplified the estimation
process, so no further iteration was needed for improvement.

With members of the project group being both developers and
final users of the developed system, and due to the inspection and
adaptation approach of Scrum, the system was continuously evaluated
in a tight feedback loop. Moreover, this setting allowed the project
group to experience Scrum in a very particular manner, which was
honored with a teaching award from the Paderborn University'4.

However, it must be noted that the merging of developer and end-
user roles also always carries the risk of a possible bias in the as-
sessment of one’s own development results. For example, someone
trying hard to implement a feature successfully might prejudice its
suitability when actually using it in the following sprint. As a result,
the assessment during the final sprint review can be biased when the
developer might argue for keeping a feature because of being attached
to it since so much time was spent on developing it.

Therefore, special attention was paid to the students” working envi-
ronment by establishing team-building measures, encouraging people
to try new things, and living an open culture of error to welcome
change. Moreover, to give more reserved people a voice, the sprint
retrospective also included anonymous feedback polls to measure par-
ticipants’” satisfaction and reveal possible hidden needs or problems
that might negatively influence evaluating the development.

Last but not least, the evaluation scheme of the project group was
communicated with the participants in advance to make clear that the
assessment does not consider contributions to what is considered the
end result. In other words, an evaluation was neither based on lines
of code nor on developed features that made it to the final prototype.
Rather, the evaluation of a participant was based on how he or she
contributed to the strengthening of the Scrum team and to the progress
of the development, whereby progress can also mean that things that
have already been developed have to be revised and, if necessary, even
completely reworked.

14 https://www.uni-paderborn.de/universitaet/
bildungsinnovationen-hochschuldidaktik/lehrpreis/lehrpreis-2015

https://www.uni-paderborn.de/universitaet/bildungsinnovationen-hochschuldidaktik/lehrpreis/lehrpreis-2015
https://www.uni-paderborn.de/universitaet/bildungsinnovationen-hochschuldidaktik/lehrpreis/lehrpreis-2015

202

INTRODUCING AN INTERACTIVE SCRUM SPACE

9.4.2 Heuristic Evaluation

In addition to constantly evaluating the prototype during the project
group’s own Scrum process, it was also tested using two usability
evaluation methods.

The first method used is heuristic evaluation, in which course a user
interface is examined by usability experts, taking into account well-
established usability principles, e.g., the "10 Usability Heuristics for
User Interface Design" by Jakob Nielsen [191] or the "8 golden rules of
interface design" by Jakob Shneiderman [252].

Heuristic evaluation was already introduced in Chapter 7, and as
explained in Section 7.1.3, each expert examines the interface alone
and independently of the others, which is intended to exclude mutual
influence.

During the evaluation, which can be based on a typical application
usage scenario, the experts examine the user interface’s components,
dialogs, and interaction elements and look for violations of the chosen
usability principles. The outcome is a list of identified problems,
including justifications for each problem explaining which principle is
violated and their level of severity, i.e., the "expected impact on the
users," taking into consideration the frequency and persistency of a
problem [187].

To evaluate the prototye, the Nielsen heuristics were chosen (see
Page 177), which are recommended to be used by three to five usability
experts for having the greatest return on investment regarding the
evaluation effort on the one hand and identifying as many different
issues as possible on the other hand [193]. The investigation was con-
ducted by four master students who previously successfully passed
the course "Usability Engineering" at the University of Paderborn and
hence were well familiar with the Nielsen heuristics and the heuristic
evaluation method. One of those students further used heuristic eval-
uation to compare the developed prototype against the Scrum tools
mentioned in Section 7.2.2 as part of his master thesis [177].

Before conducting the heuristic analysis, a fictional usage scenario
covering most aspects of the Scrum framework was created, which
has been explained on Page 174. The investigators were guided along
this usage scenario and used the Nielsen heuristics to analyze the
developed system in terms of the implemented features, from back-
log grooming and sprint planning to the daily Scrum and sprinting
towards the sprint review and sprint retrospective.

Opverall, the evaluators identified the following seventeen problems.
Six problems were classified as "cosmetic," i.e., having no impact on
executing the task but may be nonetheless disturbing for the user,

9.4 EVALUATION AND CRITICAL DISCUSSION

while eleven problems were classified as "low," i.e., affecting task
execution in a way that the user can still perform the task but may
require more (cognitive) effort than necessary.

Cosmetic:

1. The button for adding tasks is styled differently from the rest.

2. The button for saving acceptance criteria can be clicked, although
no input has been made.

3. The input field for adding a section name has no label.

4. Dragging a section is only possible via the drag handle, not the
entire section header.

5. Cancelling a sprint requires navigating to another menu item.

6. There is no visual signifier in the sprint list for unfolding a sprint
to see its items.

Low:
7. Creating a section in the backlog cannot be canceled directly.
8. Product backlog items cannot be filtered by category.
9. The category names do not show in the settings.
10. The backlog items only show colors but no category names.
11. A planning poker vote can be made without selecting a card.

12. The reference cards during planning poker can stem from differ-
ent projects.

13. Creating a sprint without an end date results in a technical error
message.

14. Tasks names are cut off on the board when they are too long.
15. Tags are cut off in the board.
16. The task list does not filter for unassigned tasks.

17. The task list does not filter for someone’s own tasks.

The fact that only less severe usability problems were identified
may be surprising at first. However, it must be considered that the
investigation was conducted at the end of the project group when the
students stopped working on it, i.e., the prototype was continuously
evaluated and optimized during its development, while likewise,
the participants tried to finish the implementation and deliver the
prototype in as flawless a condition as possible’>.

15 All of the remaining problems identified via the heuristic evaluation were fixed in
the funding program, which will be explained in the following section.

293

294

INTRODUCING AN INTERACTIVE SCRUM SPACE

The second usability evaluation method used is usability tests, which
were conducted during a funding program and will be explained in
the following section.

9.4.3 Usability Tests and Expert Interviews in Preparation for Market
Entry

Due to the prototype’s overall positive results and the already exten-
sive feature set, the idea was born to further develop the system into
a marketable product. As a result, the funding program "START-UP-
Hochschulausgriindungen NRW" was chosen, which idea is "to further
develop research results/know-how with great market potential and
a convincing business concept and to convert it into the foundation of
an own company."®

In the course of the funding program’s approval process, the fur-
ther development of the prototype was evaluated by a commission of
experts from both economic and technical points of view and found
to be positive in 2019. Four persons on this commission held leading
positions in IT companies or consulting firms and were well famil-
iar with agile methodologies. They confirmed the Scrum problems
pointed out in Chapter 6 with their own experiences and saw great
potential to solve some of them with the presented system, which is
why the funding application was granted with a volume of 240.000
Euro provided by the European Union (EFRE)'” and the state North
Rhine-Westphalia.

The technical work packages of the funded project included a re-
implementation to ensure the scalability of the software to many users
with strict data separation, as well as an extension of the feature set
with Al functions, which will be briefly addressed in the outlook of
this thesis, but also further usability tests and evaluations with pilot
customers to advance the market readiness of the product.

Since the management of the backlog and the processing of tasks is
an essential part of agile ALM software, special attention was paid to
these functions, and a usability test of the prototype was carried out
with ten people at the beginning of the funding project, in which the
test subjects were guided through a previously defined scenario.

This scenario included:

1. the creation of a user story in the backlog, including the definition
of acceptance criteria and the definition of a category,

16 Translated from the funding program website [273]
17 Européischer Fonds fiir regionale Entwicklung [144]

18

9.4 EVALUATION AND CRITICAL DISCUSSION 205

2. the preparation of a sprint, including the creation of a new section
in the backlog and adding backlog items to this section,

3. the creation of a new sprint, including the definition of a sprint
goal, sprint duration and a selection of backlog items from the
previously created section, and

4. the execution of typical sprint work including creation of tasks, def-
inition of responsibilities, and processing of tasks in the board.

Using the "Thinking-Aloud" evaluation method [127], it was possible
to understand how the test subjects think while using the software,
leading to further usability optimizations.

After finishing the re-implementation work, the product launch took
place at the end of 2020 in form of a minimum viable product8. At the
beginning of 2021, in the course of ongoing product validations, a
user experience survey was conducted when the first 150 users were
reached, and a Net Promoter Score (NPS) was determined on the basis
of 68 collected data points.

While the NPS is not an official usability evaluation method, it is
"a loyalty metric that correlates well with the perception of usability"
with the benefit of being "easy to understand and administer" [84].

The evaluation is made by asking users to answer the question,
"How likely are you to recommend this product to a friend or relative
on a scale of o (do not recommend at all) to 10 (highly recommend)?"

All answers are later grouped into the following three categories:

¢ Promoters are at the top of the scale with responses of 9 or 10,
thus indicating high satisfaction and a strong likelihood of a
product recommendation.

e Detractors are at the lower end of the scale with responses be-
tween o and 6, thus indicating dissatisfaction and likely criticism.

* Passives are responses of 7 or 8 indicating moderate satisfaction
but low likelihood of recommendation.

The NPS is then calculated by subtracting the percentage of detrac-
tors from the percentage of promoters:

_ Promoters x 100 _ Detractors x 100
 TotalRespondents TotalRespondents

NPS

The concept of a minimum viable product (MVP) comes from the Lean Startup
methodology, emphasizing the importance of learning during new product
development. According to Eric Ries, an MVP is the initial version of a new product
that enables a team to gather the most validated learning about customers with the
least amount of effort. This validated learning is in the form of whether customers
will actually purchase the product or not.

206

INTRODUCING AN INTERACTIVE SCRUM SPACE

As can be seen, passives do not contribute to the score except being
part of the total respondents. That is because they are neither likely to
promote the product to others nor likely to advise against using it,
whereas promoters and detractors both have a direct impact on the NPS.

Interestingly, the cutoff points are strict, limiting promoters to a
score of 9 or 10, whereas detractors have a much larger range from o to
6, which results in passives being beyond the mathematical midpoint
of the scale. However, this is because raters "tend to be generous
and give fairly high scores," so the expected level of satisfaction is
indeed not 5, but the "perceived mid-point" on the o-10 scale has been
identified as 7 [84].

Theoretically, the NPS can range from -100 (only detractors) to 100
(only promoters). However, it is more restricted in practice because,
usually, not all participants tend towards either of the extreme values.
While considering positive values as "good" and negative values as
"bad" may be obvious, interpreting the NPS is not as simple as it
seems at first glance.

A loosely agreed-upon standard [215], which is also suggested
by the creators of the NPS metric, Bain & Company, is the following
classification:

* 0-20: "good"

* 21 - 50: "great”

* 51 - 80: "amazing"

* 8o+: top percentile, dominant market leader

For using this classification, also known as absolute NPS, it is im-
portant to know that the score is compared to the results across all
industries. However, the average NPS widely varies across different
industries, so an NPS of 40 might outperform the market leader of
one industry, whereas it might turn out to be the worst score in a
different industry. Hence, it is usually more meaningful to benchmark
the NPS with competitors of the same industry, which is known as
relative NPS.

For the evaluation mentioned above, edelsprint received an NPS of
30, which, as an absolute score, can be considered a "great" result.

Considering that the NPS of software products has been identified
to range from -26% to 40%, with an average of 15% [215], the over-
all interpretation of the received NPS must be considered positive,
representing strong user loyalty and high perceived usability.

9.4 EVALUATION AND CRITICAL DISCUSSION

9.4.4 Discussion

This section will critically examine the proposed system for address-
ing the Scrum challenges and problems identified in Chapter 6 and
solving the existing limitations of the investigated agile ALM tools, as
described in Chapter 7.2.2.

Afterward, the limitations of the developed system will be discussed
before closing this thesis in Chapter 10 with an outlook showing
possible improvement potentials and expansion options.

9.4.4.1 Addressed Scrum Issues and Challenges

A central outcome of the Scrum challenges examination of Chapter 6 is
that many severe issues are related to the obligatory Scrum meetings,
which also were identified in Chapter 7.2.2 as being hardly supported
by existing agile ALM tools.

Regarding the sprint planning meeting, the developed system ad-
dresses most of the identified issues, as shown in Table 9.2. This
is made possible primarily by new features that are absent in the
investigated agile ALM tools.

ISSUES OF SPRINT PLANNING

Overestimating the sprint scope

No slack time

Too detailed planning

Not using a sprint goal

Ignoring the definition of ready

Unfinished stories spill over to the new sprint
Not considering improvements

No team-based decisions

Ignoring technical debt

b Ol <IN <IN < << << <<

Dominant product owner

Table 9.2: Addressed sprint planning issues

Overestimating the sprint scope and no slack time are made trans-
parent through a warning message that is shown to the whole team
during the sprint planning event when the sum of story points se-
lected for the sprint exceeds a certain threshold. This threshold is
re-calculated for each sprint planning and represents the average of
story points finished within the latest three sprints plus a 10% slack
time buffer, as explained in Section 6.2.5.4.

297

298

INTRODUCING AN INTERACTIVE SCRUM SPACE

In order to maximize efficiency and prevent too detailed planning,
the developed system shows a meeting timer visualizing the time
past and the time available according to the rules of the Scrum Guide.
Together with the sum of the stories already selected for the sprint,
the team can thus estimate at any time whether they will manage
with the remaining time of the meeting or shorten discussions about
unnecessary details if necessary. In addition, the backlog items have
been designed according to the story card metaphor with deliberately
reduced space for text input to avoid written over-specification of
requirements and instead foster the use of acceptance criteria as a
lightweight specification approach.

The issue of not using a sprint goal has been faced by dispensing a
technical designation of a sprint, e.g., by using a numbered identifier
(e.g., "Sprint 1," "Sprint 2," etc.) and instead making the sprint goal
freely definable and a central element by visualizing it prominently in
the user interface of both the sprint planning event and later in the
board when the sprint has started.

Since ignoring the definition of ready was identified as a common
problem of the sprint planning event, the developed system offers a
freely configurable definition of ready, displayed as a separate checklist
for each backlog item. This allows each backlog item to be clearly
identified as to whether it has already been sufficiently specified,
prepared, and understood by the team to be included in a sprint.

The common issue that unfinished stories spill over to the next
sprint is prevented by the developed system by automatically making
all unfinished stories of a sprint return to the backlog in a new section
labeled as "Unfinished items from sprint <Sprint Goal>" when a sprint
is closed. While all elements of an item are preserved, i.e., the title,
description, notes, list of acceptance criteria and tasks, the definition
of ready is reset, which shall further ensure that the element goes
through the same steps of planning before it is included in a sprint
again at a later time.

Not considering improvements during a sprint has been identified
as a problem that renders the efforts of the retrospective for identifying
insights obsolete and limits the team’s chance for working and spend-
ing time on self-improvement. The developed system emphasizes the
importance of including an insight into the sprint by integrating the
selection of improvements into the sprint planning process. Even be-
fore the actual backlog items are discussed, the improvement backlog
is first displayed, and selecting at least one item from it is encouraged.

Features targeting the issue of no team-based decisions first of
all include the backlog item’s list of acceptance criteria, which shall
ensure that the criteria of acceptance are known to the whole team
before the item is considered for a sprint. While the acceptance criteria

9.4 EVALUATION AND CRITICAL DISCUSSION

are the pure responsibility of the product owner, this does however not
mean that the development team has no decision-making power. This
is because it takes the whole team to agree to check off items in the
definition of ready, which usually includes accepting the acceptance
criteria. The development team, therefore, has a kind of veto right
through the definition of ready and can declare the acceptance criteria
as not (yet) ready, which blocks the inclusion of the item in the sprint.
In addition, the planning poker feature is available to the develop-
ment team to estimate the implementation effort of a story. Overall,
this encourages team-based decision-making in the sprint planning
because while the product owner remains ownership of what has to
be achieved in the sprint, it is up to the development team to estimate
the reasonable scope and reject stories that would put too much stress
on the team, for instance, due to unclear acceptance criteria.

The issue of ignoring technical debt is addressed by the developed
system in two ways. At first, the backlog can be configured and used
so that the team takes care of technical debt during sprint planning.
This could be done by defining a "technical debt" story category
and collecting all stories belonging to that category in a dedicated
section on top of the backlog. Therefore, this section will be presented
during the sprint planning event, encouraging the team to incorporate
refactoring tasks and cleaning the code base into the usual sprint work.
Second, and most importantly, sprint backlog items can be individually
checked against the definition of done, which is prominently displayed
on each story details page and contributes to ensuring that cleaning
the code is part of the implementation work.

In contrast to the previously mentioned, the issue of a dominant
product owner is not particularly addressed by the developed system.
That is because this problem stems from social and cultural misman-
agement within a company as well as a false understanding of agile
values, as described in Section 6.2.5.2. While the developed software
fosters collaboration according to the rules of Scrum, it cannot prevent
the misbehavior of the product owner or any other team member,
strictly violating the framework’s rules. For that reason, the presence
of a Scrum master, acting as an agile authority and occupying the role
of a servant leader, as described in Section 4.4.4, must be ensured.

Regarding the daily Scrum, five of the seven issues are particularly
addressed by the developed system, as shown in Table 9.3.

In order to prevent teams from having no routine for the daily
Scrum meeting, the developed system provides a guided step-by-step
process through any of the Scrum meetings. For the daily Scrum, this
includes extended support for making each team member answer
the three questions "What have I done yesterday?", "What will I do
today?" and "What are my impediments?" using the features of the
implemented board (see Chapter 9.3.3).

299

300

INTRODUCING AN INTERACTIVE SCRUM SPACE

ISSUES OF THE DAILY SCRUM

No routine

Low team spirit

People don’t listen to each other

Beginning discussions and exceeding the timebox

Low willingness to help

The daily Scrum downgrades into a status report meeting

b S Gl <IN <IN < <<

Command and control by the management

Table 9.3: Addressed daily Scrum issues

While this clear structure of the process shall foster building a
routine, it shall also lay the foundation for targeting the issue of low
team spirit and the common problem that people don’t listen to each
other. Both problems should benefit from the clear flow of the given
structure of the daily Scrum. They are furthermore addressed by the
dedicated meeting Ul that is specifically designed to be shown on
projected screens, allowing participants to easily read information
from a further distance, thus enhancing the prerequisites for actively
participating in the event.

Reducing visual elements and only showing relevant information
during the daily Scrum together with the meeting counter visualiz-
ing the past and remaining time shall further prevent the problem
of beginning discussions and exceeding the timebox. Keeping the
daily Scrum short should also contribute to increasing the attendees’
attention and counter low willingness to help others. Moreover, the
developed system introduces "blocker" states, which visualize tasks
that are blocked for whatever reason and cannot be further processed
by the assigned person. The developed system ensures that all of these
blocker tasks are shown in the daily Scrum, thus highlighting the
need for help. In contrast to other tools, tasks can also be assigned
to multiple persons. With this, people willing to help can be easily
added to tasks on the fly while keeping the flow of the meeting going.

While the daily Scrum of the developed system has been first and
foremost designed to fulfill the needs of the development team, it does
not particularly address the issue that the daily Scrum downgrades
into a status report meeting or the problem of command and control
by the management. Both stem from mismanagement and a false
understanding of the agile principles and the roles of Scrum, according
to which the development team is supposed to be self-organized and
solely responsible for turning the items of the sprint backlog into a
working increment. Similar to the issue of a dominant product owner
of the sprint planning, these problems should be, therefore, addressed
and handled by a professional Scrum master.

9.4 EVALUATION AND CRITICAL DISCUSSION

Regarding the sprint review, three of the four identified issues are
addressed by the developed system, as shown in Table 9.4.

ISSUES OF THE SPRINT REVIEW

No discussions, no feedback
Development team is not focusing on relevant content

Treating the review as venue of approval

b Ol < <M<

Omitting the demo for technical implementations

Table 9.4: Addressed sprint review issues

To counter the problem of no discussions and no feedback, the
user interface of the sprint review meeting is (as all other meetings)
designed with elements and font sizes that can be seen from a greater
distance to ensure that any attendee can read properly and concentrate
on what is presented. In addition, the meeting allows users to quickly
collect feedback from the attendees, which is omnipresent and can
be worked into the backlog later on or on the fly, even during the
meeting.

The issues of the development team not focusing on relevant
content and treating the review as the venue of approval are both
targeted by clearly differentiating between finished and unfinished
sprint backlog items in the sprint review. An item is automatically
classified as finished when it is part of the "Done" column of the board,
and all points of its definition of done are checked. In any other case, an
item is considered to be unfinished. That way, the development team
can focus on presenting what has been finished while stakeholders can
focus on giving feedback to derive new ideas for improvement. The
clear distinction between finished and unfinished items shall further
encourage the product owner to establish an ongoing review process
throughout the whole sprint instead of treating the meeting itself as
the venue of approval. Otherwise, the sprint review meeting would
show all items as unfinished, which will certainly lead to questions
from the stakeholders present.

However, since the developed system only focuses on the aspects of
project management and the unique components of Scrum, it offers no
integrations for other tools. It hence cannot track whether the team is
omitting the demo for technical implementations or demonstrating
results in general. As a result, the Scrum master must still ensure that
the review is executed correctly.

Regarding the sprint retrospective, the developed system addresses
all of the identified issues, as shown in Table 9.5.

301

302

INTRODUCING AN INTERACTIVE SCRUM SPACE

ISSUES OF THE SPRINT RETROSPECTIVE

No retrospective or low attendance
The retrospective is poorly facilitated by the Scrum master

Depressing and energy-draining retrospectives

(<<

Incorrect handling of identified insights

Table 9.5: Addressed sprint retrospective issues

What compensates that teams have no retrospective or low atten-
dance is that the developed system clearly shows the supposed sprint
process, including all of the obligatory meetings. While this does not
prevent intentionally skipping the retrospective, it brings it into the
same focus as all other events, thus stressing its importance. In addi-
tion, the attendance of each team members is tracked for each meeting
type and made transparent to the whole team by visualizing it on the
event page, which should motivate to keep the attendance rate high.

The issues that the retrospective is poorly facilitated by the Scrum
master and may become depressing and energy-draining are ad-
dressed by several features which are intended to collect feedback
from the team to derive valuable insights for improvement, yet keep-
ing the meeting short and efficient. Each retrospective starts with an
icebreaker poll, which serves the purpose of getting a quick snapshot
of how the team feels about the sprint. Afterward, the team can use
the story feedback feature to derive insights from working on the
stories of the sprint, as well as the team feedback feature utilizing the
Start-Stop-Continue method to manage ideas for improving as a team.
All of this collected data is intended to prevent incorrect handling of
identified insights and to support deriving improvements. By pro-
viding an improvement backlog and making it part of the next sprint
planning event, the system furthermore puts particular emphasis on
improving as a team according to the Scrum rules.

Regarding the product owner role, the developed system addresses
four of the six identified issues, as shown in Table 9.6.

ISSUES OF THE PRODUCT OWNER ROLE

Bad preparation of stories

No testable acceptance criteria

Disregard of grooming meetings

Subsequent modifications of the sprint backlog

Lack of authority and no ordering of the backlog

xXosasae

Absent product owner

Table 9.6: Addressed issues of the product owner role

9.4 EVALUATION AND CRITICAL DISCUSSION

The provided features for implementing a custom definition of
ready into the backlog management process target the issue of a
bad preparation of stories together with other backlog management
features, such as user story categories or draggable backlog sections
for easily ordering stories according to their priority.

As described in Section 9.3.4, backlog sections furthermore play an
important role in addressing the identified issue of disregarding the
grooming meeting because they are used to highlight the results of
backlog grooming sessions. As the developed system offers dedicated
functionality for collaborative backlog grooming events, the stories
discussed are automatically transferred to new sections and tagged
with actions to simplify later refinement by the product owner.

In contrast to the investigated agile ALM applications, the developed
system also addresses the common issue of no testable acceptance
criteria by providing a dedicated list of acceptance criteria for each
user story. By design, this list encourages the product owner to keep
each criterion’s description short and testable.

The issue of subsequent modifications of the sprint backlog is
targeted not by preventing modifications at all because it cannot be
ruled out that there may be good reasons to change the sprint backlog
even though the sprint has already started, but by making subsequent
modifications a very conscious decision by the whole Scrum team.
That is because, in contrast to the investigated agile ALM tools, the
developed system introduces dedicated collaborative meeting events,
and modifying the sprint backlog is only possible during a sprint plan-
ning event, which is clearly visualized as the starting point of a sprint.
So, subsequently modifying the sprint backlog requires the product
owner to start another sprint planning event and move through all of
its steps, as described in Section 9.3.2, thus making these modifications
a conscious decision taken by the whole team instead of the product
owner alone.

The issue of a product owner with lack of authority and no ordering
of the backlog is partly addressed by introducing novel ordering
and filtering features for the product backlog, i.e., draggable backlog
sections and user story categories. However, the underlying problem
of the identified issue is not the ordering per se, but the fact that
it results from a product owner without authority not owning the
product, hence not fulfilling the duties of the role, which might be for
various mismanagement reasons, such as promoting former business
analysts to become product owners, interfering decisions taken by
higher management, or fragmentation of responsibilities, as described
in Chapter 6.2.4.2. Altogether, these problems are related to the internal
company organization and are therefore out of the scope of this thesis.

303

304

INTRODUCING AN INTERACTIVE SCRUM SPACE

For the same reasons, the issue of an absent product owner is not
targeted by the developed system, which is also rooted in incorrect
appointments to the product owner role and a false awareness of the
importance of this position for the success of the entire Scrum team.

In terms of knowledge management, both of the identified issues
are addressed by the developed system, as shown in Table 9.7.

ISSUES OF KNOWLEDGE MANAGEMENT

No documentation of decisions
Knowledge hotspots

Table 9.7: Addressed knowledge management issues

Having no documentation of decisions is targeted by providing a
history of previous sprints, including the individual goals, the user
stories contained, as well as their acceptance criteria, tasks, and notes.
Furthermore, by using proper code committing standards, e.g., pull
requests®, developers can draw a connection between their work in the
codebase and the user stories of a sprint, enabling other developers to
track decisions about the course of development both at the user story
level and the software code level.

Knowledge hotspots are addressed by making the work of every-
body transparent to the whole Scrum team, and that is true for both
the level of user stories and the level of tasks. As a result, it will be-
come evident if a person only works on specific user story types, e.g.,
stories belonging to the "frontend" category, or is solely responsible for
a specific task, e.g., "writing tests" for different stories. Both scenarios
would be against the idea of being a cross-functional team, which is
about sharing skills and having mutual knowledge, as explained in
Chapter 4.4.3.

In terms of understanding Scrum, the developed system addresses
one of the two identified issues, as shown in Table 9.8.

ISSUES OF UNDERSTANDING SCRUM

Scrum as a framework provokes ScrumButs

X Certification as the single source of knowledge

Table 9.8: Addressed issues of understanding Scrum

As described in Chapter 6.2.9.2, deriving from the Scrum framework
often leads to harmful modifications, which in the end lead to negative
results with regard to the agile work setting and overall team efficiency.

19 Pull requests allow developers to inform others about code changes pushed to a

branch in a shared repository.

9.4 EVALUATION AND CRITICAL DISCUSSION

The developed system addresses this issue that Scrum as a frame-
work provokes ScrumButs by offering functionality that is very much
tailored to the official rules of the Scrum Guide. Beginning with sup-
porting each of the obligatory Scrum meetings, followed by offering
the necessary features for collaborative planning and sprint work, the
developed system specifies the sequence of an ideal Scrum process.
However, the developed system does not restrict users from having
any deviations at all. For example, a team may decide not to conduct
a sprint retrospective. While this "ScrumBut" is not actively prevented,
the developed system will nonetheless show the deviation from the
ideal process, thus making it transparent to the team.

The issue of treating a single Scrum certification as the single source
of knowledge is not particularly addressed by the developed system.
However, due to its design and guidance through the sprint cycle, it
can serve as a helpful tool to learn about Scrum and its individual
components. But still, an experienced Scrum master is absolutely
necessary to overcome many of the issues presented in Chapter 6 and
remove impediments from the Scrum team.

This is especially true for issues resulting from teams being em-
bedded in waterfall-ish environments. Regarding this challenge, the
developed system addresses three of the seven identified issues, as
shown in Table 9.9.

ISSUES OF WATERFALL-ISH ENVIRONMENTS

Developers are left out from the requirement analysis
Documents are still driving the development process
Monitoring hours for reporting

Business analysts become product owners

Resource management and project culture

Scrum team is not allowed to be cross-functional

XXXXaea@

Customers are not participating

Table 9.9: Addressed issues of waterfall-ish environments

In order to counter that developers are left out from the require-
ment analysis, the developed system offers collaborative backlog
grooming events, which take place at the tabletop and can be quickly
started to foster discussions about the backlog between the product
owner and members of the development team. In addition, developers
are free to suggest new ideas to the backlog, which, when created, are
displayed in a separate backlog section. This way, ownership of the
backlog and its prioritization and ordering still belong to the product
owner, while the whole team is invited to come up with their own
ideas for product improvements.

305

306

INTRODUCING AN INTERACTIVE SCRUM SPACE

To address the issue that documents are still driving the devel-
opment process, the developed system provides an extensive set of
features ranging from acceptance criteria lists and attachable images
or other file types over backlog sections and user story categories to
readiness checklists represented by the definition of ready, to ensure
that the backlog can be operated as "single source of truth" in terms
of managing product requirements.

As described in Chapter 6.2.2.7, another common problem for teams
in waterfall-ish environments is monitoring hours for reporting,
which results from project managers using working hours as cal-
culation for features or project prices (see Page 144) and contributes
to false expectations at the management level, because of reports and
forecasts of features to particular dates. Since this creates the illusion
of being able to know everything in advance and neglects the ever-
existing amount of uncertainty, the developed system only provides
story points as an estimation technique and, through this conscious
design decision, prevents planning or reports from being based on a
precise hourly calculation.

The issue that business analysts become product owners is not
particularly addressed by the developed system because personnel
decisions are out of the scope of a project management tool. How-
ever, it does address some of the resulting problems, e.g., the lack
of responsibility to really own the product and drive the business by
own decisions through extensive role-specific backlog management
features, e.g., by only allowing the product owner to define and mod-
ify acceptance criteria, thus strengthening responsibility for product
development decisions.

Likewise, this issues of bad resource management and project
culture and when a Scrum team is not allowed to be cross-functional
are not addressed and out of the scope of the developed system
because these issues result from grown management structures within
a company, limiting the potential for true agility, as described in
Section 6.2.2.2.

The problem when customers are not participating in the feedback-
response cycle is also, and for the same reason, not particularly ad-
dressed. While the developed system does provide dedicated features
to conduct beneficial sprint review meetings for attending customers,
it seems out of scope for software to affect the motivation and willing-
ness of individuals to participate in a meeting in the first place.

9.4 EVALUATION AND CRITICAL DISCUSSION

9.4.4.2 Limitations of the Developed System

While the previous section summarized how the developed prototype
addresses the identified Scrum challenges and issues from Chapter 6,
this section will now discuss the remaining drawbacks and limitations.

As mentioned in the previous section, the developed system does
not resolve all identified issues. Specifically, it does not address the
problems outlined in Table 9.10.

ISSUES NOT ADDRESSED

Dominant Product Owner

The daily Scrum downgrades into a status report meeting
Command and control by the management

Omitting the demo for technical implementations

Lack of authority and no ordering of the backlog

Absent Product Owner

Certification as the single source of knowledge

Business Analysts become Product Owners

Resource Management and Project Culture

Scrum Team is not allowed to be cross-functional

XXXXXXO0OX XXX

Customers are not participating

Table g.10: Issues not addressed

Most of these problems result from former mismanagement and
grown company structures, e.g., waterfall-ish environments. As de-
scribed in Chapter 6.2.2, in many cases, these environments leave no
room for agility and counteract the special demands of self-organizing,
cross-functional Scrum teams. Hence, it must be said that the effect of
a novel software tool, although tailor-made for Scrum, is nonetheless
somewhat limited when the foundation for Scrum is not in place.

Regarding the addressed issues, it must be said that "addressed"
does by no means imply that the developed system is a guaranteed
solution to the identified problems. Rather, it means that it provides
dedicated features for these problems, which were developed with re-
gard to the Scrum-specific challenges of Chapter 6 and taking into
account the analysis of existing agile ALM tools of Chapter 7.

The developed system, therefore, does not enforce correct work
according to the Scrum rules but merely offers support in order to be
able to carry out a development process close to the Scrum ideal, and
with the help of mandatory meetings, roles, and artifacts. Although a
violation of the rules is recognized at various points in the software
and indicated by warnings, users can make a conscious decision not

307

308

INTRODUCING AN INTERACTIVE SCRUM SPACE

to follow some Scrum rules correctly. For example, the sprint planning
issues "overestimating the sprint scope" and "not using a sprint goal"
cannot be entirely prevented by the developed software. Although a
warning is displayed if the sum of the story points of a planned sprint
exceeds a certain threshold, the sprint could still be started. Similarly,
although a sprint cannot be created without a sprint goal, there is no
check as to whether this sprint goal makes sense (or just consists of
an arbitrary sequence of characters).

Compliance with the rules and ensuring that the development
process runs as smoothly as possible should, therefore, remain the
responsibility of the Scrum master, who must also continue to be
responsible for protecting the development team from tasks that do
not achieve their objectives, e.g., in the daily Scrum through command
and control by the management (see Section 6.2.6.7) or preventing the
team from being influenced by an overly dominant product owner
(see Section 6.2.5.2).

This should be emphasized in particular because, during the market
launch of edelsprint, it became apparent that some customers, after an
internal company evaluation phase of the software, no longer intended
to fill the Scrum master position due to the software-side support of the
Scrum rules and thus wanted to save costs. However, this is strongly
discouraged, and the developed system is by no means intended nor
suitable to replace the work of a Scrum master, as this goes far beyond
mere adherence to the rules, such as resolving impediments during a
sprint or mediating between the development team and the product
owner, which require interpersonal interactions and cannot be carried
out by functions of a software tool, no matter how sophisticated they
may be.

A further possible limitation of edelsprint is that the structure of the
software is based on an ideal, i.e., textbook-accurate, Scrum process.
This is reflected on the one hand in support of all relevant artifacts
(user stories, product, sprint, and improvement backlog, the definition
of ready, the definition of done, etc.) and on the other hand in the
provision of functions to conduct all Scrum meetings interactively and
collaboratively - from sprint planning to the retrospective.

As described in Chapter 9.3.2, each meeting has a clearly defined
process specified by the software. For less experienced teams and
newcomers to the field of agile development, this fixed structure
certainly offers the advantage of quickly getting to know the Scrum
framework and, at the same time, receiving guidance through the
process and its mandatory rules. On the other hand, experienced
teams may find the meeting process too rigid and want more flexibility
about the predefined processes, making it challenging to meet the
requirements of both sides.

9.4 EVALUATION AND CRITICAL DISCUSSION

For example, as described in Section 9.3.6, the sprint retrospective
in edelsprint always follows the same step-by-step pattern. Starting
with a short atmosphere survey as an icebreaker and introduction to
the meeting, the story feedback, i.e., feedback from team members
on individual user stories of the sprint, is then discussed, followed
by the team feedback step, in which the Start-Stop-Continue method
is applied to then fill the improvement backlog with new ideas and
prioritize them accordingly for the next sprint.

As described in Chapter 4.7.4, this approach is based on the rec-
ommendations of experts but can also seem forced for experienced
teams and become boring in the long run. Deviations from the "norm"
can, as described in Chapter 6.2.9.2, quickly lead to a softening of the
Scrum rules, so-called ScrumButs, which in turn can have negative
consequences. Nevertheless, Scrum should be seen as a framework
within which free modifications should be possible, such as a free
and thus varied design of the implementation of a retrospective, to
maintain the team’s motivation to carry it out in the long term.

It is, therefore, once again the task of the Scrum master to design the
retrospective in a varied and meaningful way. For experienced teams,
this should also be possible without any problems despite the rigid
process in edelsprint, as the content of the individual phases of a ret-
rospective "Set the Stage," "Gather data," "Generate insights," "Decide
what to do," which edelsprint is based on, can be skipped if necessary
and replaced or supplemented by other methods. Numerous examples
of different methods are collected by various experts and can be found
at the website https://retromat.org, along with explanations of how
teams can use them within the retrospective, either analogously with
pen and paper or with the help of online whiteboards, and use them
to self-reflect on their work.

A similar problem concerning the diversity of the target groups
arises for the scope of the features developed. The developed system
is clearly limited to the core functions of Scrum. Although the ele-
ments of the framework are mapped in their entirety, functions that
go beyond this scope were deliberately omitted. This is because, as
shown in Chapter 7.2.2.2, a large number of functions can lead to an
overload of the user interface, which can have a negative impact on
the simplicity of operation, which in turn can be detrimental to agile
working.

However, depending on the team or project management require-
ments, there may be a need for more far-reaching functions. A typical
example would be functions representing a higher planning level, such
as roadmaps or calendar functions for planning project-related releases,
which typically extend over several sprints. Planning at a strategic
level is also widespread, e.g., using the Objectives Key Result (OKR)
method, which is widely used in companies and serves to track the

309

https://retromat.org

310

INTRODUCING AN INTERACTIVE SCRUM SPACE

achievement of strategic goals (objectives) through measurable per-
formance indicators (key results). Such planning levels can only be
represented to a limited extent with edelsprint, at best via the possi-
bility of dividing the product backlog into different sections, whereby
a section could, for example, contain all stories for a specific release.

Nevertheless, it must be clearly stated that the functions of edel-
sprint only focus on mapping the Scrum framework as accurately as
possible and are also limited to this. For the reasons mentioned above,
a comprehensive extension that covers other aspects outside of Scrum
has been avoided in order to keep the application deliberately simple.
However, it is conceivable that data could be retrieved from edelsprint
via a REST-API in the future, which would allow the sprint goal, user
stories, and tasks to be integrated with external software products,
such as Jira*°, which are better suited for higher planning levels of a
project.

A direct connection to versioning solutions and code management
systems, such as Github>', is also not currently available. This would
be useful to automatically link the planning level of a sprint, i.e.,
the progress of individual user stories, with specific changes to the
source code, and thus be able to correlate them permanently. However,
these relationships can also be achieved without a direct connection
by adhering to the conventions of the development team regarding
handling the versioning solution. For example, it is advisable to create
a code branch for each user story of the current sprint that bears the
name of the user story. The ID of the user story can then be placed in
front of each published code change as a prefix to the commit message,
creating a clear assignment between changes to the source code and
the respective user story of the sprint.

With regard to the implemented multi-touch technologies, it can
be said that they performed well in the evaluations and also received
a lot of positive feedback in the expert interviews, but the lack of
dissemination of these technologies still poses a challenge in terms of
marketing the developed system.

Smartphones, which are used for user-specific interactions in col-
laborative scenarios (e.g., in the daily Scrum, as explained in Section
9.3.3, or as part of sprint planning, as explained in Section 9.3.2), are
ubiquitous nowadays, and larger vertical displays are also increasingly
being used in companies” meeting rooms to mutually discuss digital
content. On the other hand, interactive tabletops such as those pre-
sented in Chapter 8 are hardly widespread and can only be found in
very few companies. One of the main reasons for this is that table-
top application development differs significantly from conventional

20 https://www.atlassian.com/software/jira
21 https://github.com/

https://www.atlassian.com/software/jira
https://github.com/

9.4 EVALUATION AND CRITICAL DISCUSSION

desktop software development. While the latter is characterized by
classic WIMP-UlIs and single-user functionalities, tabletop applications
can represent multi-user scenarios, which poses unique challenges
concerning the presentation of the user interface with people around a
tabletop having different viewing angles and the processing of touch
inputs from different people.

Despite an overall positive evaluation of the tabletop interface as
part of the prototype developed, the commercial development of the
system has therefore focused primarily on desktop, tablet, mobile,
and wall interfaces. The support of a tabletop interface as described
in Chapter 9.1 did not prove to be reasonable within the framework
of the funding program, which focused on the commercial ability
and further development of the system into a market-ready product,
as the low prevalence of tabletops contradicted their overall higher
development requirements.

311

SUMMARY AND CLOSING

This doctoral thesis examined the challenges and problems in imple-
menting the Scrum framework, analyzed existing tools that support
this methodology, and, based on these findings, showcased a new
project management software utilizing Natural User Interfaces to bet-
ter map the Scrum process.

With Part I aiming at setting the theoretical foundation for this the-
sis, Chapter 2 commenced with a historical overview of the evolution
of computers and software development as an engineering discipline
and derived some important lessons learned for today’s development
principles, e.g., that programming is a thoughtful and creative process
and that it benefits from cross-cultural awareness when integrating
diverse perspectives and talents into the software engineering disci-
pline. While all history is characterized by outstanding people, the
illustrated historical milestones also underscore the fact that collective
efforts often outstrip the capabilities of individual experts, no matter
how brilliant they may be. And so is the history of computation and
software development, a history of the evolution from isolation to
collaboration, which is now at the very core of agile methodologies
like Scrum, where communication, teamwork, and sharing ideas are
prioritized over individual prowess. Likewise, historical examples
showed the incredible result of careful and correct preparation of tasks
prior to the actual work execution, which became one of the most
important software development principles because failures in the
specification of requirements can have a tremendous impact in later
coding phases and often lead to failing projects.

For this reason, Chapter 3 illustrated the evolution of software
development lifecycle models, all of which address task preparation
through different planning and execution strategies. While plan-driven
development models focus on extensive upfront planning with all
details contained in heavy documentation, the principles of iterative
and incremental software development began to initiate a paradigm
shift, as it turned out that plans, no matter how detailed and thought
out, can always be thwarted by unforeseen events, which are difficult to
handle because of the models” sequential nature, where requirements
are more or less cast in stone from the beginning and difficult to change
in later stages. On the other hand, lightweight approaches, which later
should be coined "agile," can better compensate for unforeseen events

313

314

SUMMARY AND CLOSING

because of their adaptability to change resulting from short iterative
and incremental development cycles.

Based on this and completing the theoretical foundations of this
thesis, Chapter 4 provided a comprehensive examination of the Scrum
framework as the most widely used agile development method. Cover-
ing its entire ruleset, including the different roles, artifacts, and sprint
cycle events, it shows that Scrum is very logically structured and fol-
lows a straightforward empirical process model based on inspection,
adaptation, and transparency.

Therefore, it is all the more surprising that Scrum, while easy to
understand, is known for being difficult to master.

Getting to the bottom of this apparent contradiction was the ob-
jective of Part II of this dissertation. With Chapter 5 explaining the
various research methods used for this thesis, Chapter 6 was guided
by the first research question:

"What are typical challenges and issues for Scrum teams?"

By employing diverse research methods, including literature re-
views, ethnographic studies, and interviews utilizing open questions
and the laddering technique (see Section 6.1.3.2), this thesis provided
new insights and contributed to a better understanding of the prob-
lems of agile Scrum teams. It identified a wide range of 42 Scrum
issues, substantially more than previous research in this field, and
clustered them into eight challenge areas:

e waterfall-ish environments (7 issues),
¢ the product owner role (6 issues),

* sprint planning (10 issues),

¢ daily Scrum (7 issues),

* sprint review (4 issues),

* sprint retrospective (4 issues),

¢ knowledge management (2 issues),

¢ understanding Scrum (2 issues).

However, the key takeaway is not only that the challenges in imple-
menting Scrum are manifold and are particularly evident in waterfall-
ish environments, the product owner role, and the collaborative Scrum
events. But also that many of the issues identified are connected and
show dependencies, which leaves the impression that the Scrum frame-
work is built like clockwork, with many individual cogwheels that
need to mesh together to make it work smoothly, as shown by Figure
6.2 on Page 139. If one fails, this can significantly impact other parts
of the framework due to dependency effects, which can quickly lead

SUMMARY AND CLOSING

to a downward spiral, thus affecting the team’s agility in executing a
sprint and moving forward quickly.

To better understand the strength of dependencies, further studies
can build on the provided results and explore the relationships be-
tween different problem areas in greater depth. While Scrum belongs
to the domain of computer science, the results could open research
for other domains. Especially the challenge of Scrum teams being em-
bedded in waterfall-ish environments should be further investigated
by occupational and organizational psychology researchers to shine
more light on the influence of a company’s working setting and the
resulting performance of an agile software development team.

Based on the broad range of identified issues and given the fact that
Scrum teams utilize agile ALM tools for managing their daily work,
Chapter 7 aimed at exploring the connection between Scrum problems
and tools by investigating the second research question:

"What is the status quo of Scrum tool support?"

As not all programs available on the market could be examined, the
analysis focused on four agile project management applications, two
market leaders, and two other programs that explicitly advertise their
Scrum-specific feature set. By analyzing these four tools in the field
and investigating their usability through heuristic evaluation, this the-
sis clearly illustrates the capabilities and boundaries of today’s Scrum
tools because all investigated applications share the same problems.

Besides general usability issues, which were shown to affect teams
working methods, the most profound outcome is that the investigated
applications lack core elements of the Scrum framework, such as
acceptance criteria, the definition of ready and definition of done, or
even the sprint goal, and beyond that, to some degree, even contradict
the obligatory rule set.

What is more, the investigated applications showed severe limita-
tions for cooperative work carried out during the sprint cycle events.
The lack of dedicated support for the daily Scrum, sprint review, and
sprint retrospective means that essential parts of the Scrum framework
are being ignored. However, these are the cornerstones of Scrum’s
built-in empirical process control, which serves to inspect progress
and adapt work to achieve a mutual (sprint) goal. Hence, it must be
concluded that the limitations of the investigated tools are not only of
a minor nature but must be considered serious deficiencies.

Given the fact that these programs are used on a daily basis and
are, therefore, an essential part of the software development process,
it must also be concluded that today’s agile ALM tools not only relate
but contribute to the previously identified Scrum challenges and is-
sues, particularly because many of these issues were also identified

315

316

SUMMARY AND CLOSING

in the area of the collaborative Scrum meetings, which are barely
supported by the investigated applications. The lack of central ele-
ments of the Scrum process further strengthens the suspicion that
the relationship between project management applications and Scrum
problems could be closer than expected. While this relationship has
not been sufficiently investigated before, further research could take
the provided results as a starting point to shed more light on this
connection and better understand the influence of software tools on
agile development principles.

Besides missing features, the field studies of this thesis further
showed that today’s agile project management applications are natu-
rally limited because of their underlying interaction paradigm. Graph-
ical User Interfaces (GUIs) relying on mouse or keyboard interactions
are designed from the bottom up to be operated by a single user on
a notebook or desktop computer. As a result, they are constrained in
their ability to support co-local collaborative activities, which demand
smooth and simultaneous multi-user interactions to foster mutual
discussions and decision-making.

Considering the results that today’s agile project management ap-
plications are not tailored to the special demands of Scrum teams,
the purpose of the final part of this thesis was two-fold. First, it
aimed at developing a novel agile management tool that particularly
addresses the previously identified Scum issues, thus providing dedi-
cated features for all the framework’s components. Second, it aimed
to investigate the new human-computer interaction paradigm of Nat-
ural User Interfaces (NUIs), known to suit collaborative environments
better because, in contrast to GUIs, NUIs do not rely on single points
of focus (via mouse pointers or keyboards) but can process multiple
inputs simultaneously (via touch, speech, or gestures), thus allowing
multiple users to interact at the same time. Therefore, Part III focused
on the third research question, asking:

"What could a novel Scrum tool look like utilizing NUI technolo-
gies for collaborative activities?"

To answer this question, Chapter 8 first presented various NUI
types and compared speech, gestural, and touch interfaces against
their individual benefits and weaknesses. By deriving important de-
sign considerations for integrating NUIs into the Scrum process and
concluding that touch-based NUIs are best suited to enhance collab-
orative Scrum activities because of their ability to adapt to different
tasks and their versatility of interaction devices, this thesis laid the
ground for future work in this relatively unexplored research domain.

While existing NUI systems do not exceed the state of being rudi-
mentary research prototypes and hence show significant limitations
for practical use, e.g., because of unreliable touch point processing,

SUMMARY AND CLOSING

poor interface designs causing bad usability, and the lack of essential
Scrum-related features, the final part of this thesis strived for higher
standards and aimed for developing a full-fledged Scrum management
tool that addresses the previously identified Scrum problems.

As a result, Chapter 9 presented an "interactive Scrum space” con-
sisting of desktop, mobile, vertical display, and tabletop interfaces, all
being connected through the central edelsprint application. For the first
time, this novel approach combines both interaction paradigms of clas-
sical desktop GUIs and modern touch-based NUI technologies into an
integrated solution carefully designed for both single-user and collabo-
rative activities within the Scrum framework and taking into account
the individual strengths and weaknesses resulting from different form
factors of the interaction devices.

Thanks to its strict structure according to the Scrum rules and
the dedicated support for the entire framework, it was shown that
the developed application addresses 31 of the 42 identified Scrum
problems. This must be treated as a very positive result since the
remaining 11 problems are hardly manageable by software at all but
primarily result from former mismanagement of companies, leaving no
room for agility, and hence should be targeted by change management
to optimize internal work processes.

Furthermore, it must be considered a success that the developed
software went beyond the scope of a research prototype and was
brought to market, where it received excellent feedback from both
users and industry experts. Nonetheless, it is worth mentioning that
these positive outcomes do not automatically imply long-term com-
mercial success of the application because of the sheer dominance of
today’s market leaders and the fact that companies are pretty resistant
to changing their software tools.

However, without further notes about future business strategies,
which might also include open-sourcing, this thesis presented a novel
full-fledged agile project management application covering the entire
Scrum framework, including dedicated features to support all of its
obligatory meetings. This achievement is especially mentioned because
not only does the software surpass the features of existing Scrum tools,
but the dedicated meeting support following the sprint cycle rules
also opens exciting new possibilities for unseen research.

As an example, supporting all facets of the framework, including
all activities of the sprint cycle, lays the ground for enabling a project
management application to capture all sorts of process-related data,
including but certainly not limited to the following examples:

317

318

SUMMARY AND CLOSING

¢ checking whether meetings have been conducted at the same
time and calculating conduction rates,

¢ checking whether meetings exceed the timebox on a regular
basis and calculating exceedance rates,

¢ checking the meeting attendance and calculating show and no-
show rates of participants,

¢ checking whether new improvements are derived from the sprint
retrospective and if at least one process improvement is included
in the sprint,

¢ checking whether all participants of the daily Scrum share their
work progress on a regular basis,

¢ checking whether daily Scrums lead to new shared task assign-
ments (indicating willingness to help others),

¢ checking whether items are mutually estimated during the sprint
planning event and calculating the average estimation time.

Future research could build upon this foundation to derive new
insights from analyzing data that is now available for the first time.
For example, it is conceivable to use Al technology to analyze a team’s
collected sprint data to measure its performance and automatically
identify improvement potentials for a better mastering of Scrum.

Leveraging Al potentials could furthermore derive quality measures
of proper backlog management, e.g., by analyzing the formulation
of acceptance criteria, deriving correlation with finish rates of user
stories, or investigating relationships between backlog items and their
positions in the backlog.

All of these are interesting examples of what could be possible in
the near future, given that project management applications start to
collect the necessary data, thus enabling Al technologies to analyze
the software development process.

Overall, the ultimate purpose of this thesis was to investigate the
issues of Scrum and contribute to a better mastery of the most widely
used software development framework. With the insights and results
presented, this goal now should be one step closer.

BIBLIOGRAPHY

[1]

[2]

8]

[9]

Christopher Ackad et al. “Seamless and continuous user iden-
tification for interactive tabletops using personal device hand-
shaking and body tracking.” In: Proceedings of the 2012 ACM
annual conference extended abstracts on Human Factors in Comput-
ing Systems Extended Abstracts - CHI EA “12. Austin, Texas, USA:
ACM Press, 2012, p. 1775. URL: https://doi.org/10.1145/
2212776.2223708.

Nao Akechi, Tsukasa Mizumata, and Ryuuki Sakamoto. “Hov-
ering fingertips detection on diffused surface illumination.”
In: Proceedings of the ACM International Conference on Interac-
tive Tabletops and Surfaces. ITS '11. New York, NY, USA: As-
sociation for Computing Machinery, Nov. 2011. URL: https:
//doi.org/10.1145/2076354.2076422.

Agile Alliance. What is Role-Feature-Reason? Dec. 2015. URL:
https://www.agilealliance.org/glossary/role- feature/
(visited on 01/22/2019).

Agile Alliance. Advancing the Practice of Agile. June 2019. URL:
https://www.agilealliance.org/ (visited on 11/09/2019).

Agile Alliance. What are Story Points? | Agile Alliance. 2019.
URL: https://www.agilealliance.org/glossary/points -
estimates-in/ (visited on 12/30/2019).

Ann Anderson et al. “Chrysler goes to "extremes".” In: Dis-
tributed computing 1.10 (1998), pp. 24-28. URL: https://www.cs.
hmc . edu/courses /2004 /spring/csl21/papers/xpChrysler.
pdf.

Samuil Angelov, Marcel Meesters, and Matthias Galster. “Ar-
chitects in Scrum: What Challenges Do They Face?” In: Software
Architecture. Ed. by Bedir Tekinerdogan, Uwe Zdun, and Ali
Babar. Lecture Notes in Computer Science. Springer Interna-
tional Publishing, 2016, pp. 229-237. URL: https://doi.org/
10.1007/978-3-319-48992-6_17.

Anoto AB. Bridging the anaolog and digital divide. 2024. URL:
https://www.anoto.com/ (visited on 05/20/2024).

Hal R. Arkes and Catherine Blumer. “The psychology of sunk
cost.” In: Organizational Behavior and Human Decision Processes
35.1 (1985), pp. 124—140. URL: https://doi.org/10.1016/0749-
5978(85)90049-4.

319

https://doi.org/10.1145/2212776.2223708
https://doi.org/10.1145/2212776.2223708
https://doi.org/10.1145/2076354.2076422
https://doi.org/10.1145/2076354.2076422
https://www.agilealliance.org/glossary/role-feature/
https://www.agilealliance.org/
https://www.agilealliance.org/glossary/points-estimates-in/
https://www.agilealliance.org/glossary/points-estimates-in/
https://www.cs.hmc.edu/courses/2004/spring/cs121/papers/xpChrysler.pdf
https://www.cs.hmc.edu/courses/2004/spring/cs121/papers/xpChrysler.pdf
https://www.cs.hmc.edu/courses/2004/spring/cs121/papers/xpChrysler.pdf
https://doi.org/10.1007/978-3-319-48992-6_17
https://doi.org/10.1007/978-3-319-48992-6_17
https://www.anoto.com/
https://doi.org/10.1016/0749-5978(85)90049-4
https://doi.org/10.1016/0749-5978(85)90049-4

320

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

John Armitage. “Are Agile Methods Good for Design?” In:
Interactions 11.1 (Jan. 2004), pp. 14—23. URL: https://doi.org/
10.1145/962342.962352.

Barry Arons. “SpeechSkimmer: a system for interactively skim-
ming recorded speech.” In: ACM Transactions on Computer-
Human Interaction 4.1 (Mar. 1997), pp. 3—38. URL: https://doi.
org/10.1145/244754.244758.

Stan Augarten. Bit by Bit: An Illustrated History of Computers.
New York: Houghton Mifflin Harcourt, Nov. 1984.

Matthew P. Aylett, Benjamin R. Cowan, and Leigh Clark. “Siri,
Echo and Performance: You have to Suffer Darling.” In: Ex-
tended Abstracts of the 2019 CHI Conference on Human Factors
in Computing Systems. CHI EA "19. New York, NY, USA: As-
sociation for Computing Machinery, May 2019, pp. 1-10. URL:
https://doi.org/10.1145/3290607.3310422.

Stefan Bachl et al. “Challenges for Designing the User Expe-
rience of Multi-touch interfaces.” In: vol. Proceedings of the
ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems. Berlin, EU: ACM, Jan. 2010. URL: http://hdl.
handle.net/20.500.12708/53538.

Julian M. Bass et al. “An empirical study of the product owner
role in scrum.” In: Proceedings of the 4oth international confer-
ence on software engineering: Companion proceeedings. ICSE "18.
New York, NY, USA: Association for Computing Machinery,
2018, pp. 123-124. URL: https://doi.org/10.1145/3183440.
3195066.

K. Beck. “Embracing change with extreme programming.” In:
Computer 32.10 (Oct. 1999), pp. 70—77. URL: https://doi.org/
10.1109/2.796139.

Kent Beck. “Extreme programming: A humanistic discipline of
software development.” In: Fundamental Approaches to Software
Engineering. Ed. by Egidio Astesiano. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 1998, pp. 1-6. URL:
https://doi.org/10.1007/BFb0053579.

Kent Beck and Cynthia Andres. Extreme Programming Explained:
Embrace Change. 2nd edition. Boston: Addison-Wesley Profes-
sional, Nov. 2004.

Kent Beck et al. Manifesto for agile software development. 2001.
URL: http://www.agilemanifesto.org/.

Jeff Beckman. The Most Critical Scrum Usage Statistics [2023 Edi-
tion]. Aug. 2023. URL: https://techreport.com/statistics/
scrum-usage-statistics/ (visited on 02/24/2024).

https://doi.org/10.1145/962342.962352
https://doi.org/10.1145/962342.962352
https://doi.org/10.1145/244754.244758
https://doi.org/10.1145/244754.244758
https://doi.org/10.1145/3290607.3310422
http://hdl.handle.net/20.500.12708/53538
http://hdl.handle.net/20.500.12708/53538
https://doi.org/10.1145/3183440.3195066
https://doi.org/10.1145/3183440.3195066
https://doi.org/10.1109/2.796139
https://doi.org/10.1109/2.796139
https://doi.org/10.1007/BFb0053579
http://www.agilemanifesto.org/
https://techreport.com/statistics/scrum-usage-statistics/
https://techreport.com/statistics/scrum-usage-statistics/

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

BIBLIOGRAPHY

T. E. Bell and T. A. Thayer. “Software Requirements: Are They
Really a Problem?” In: Proceedings of the 2Nd International Confer-
ence on Software Engineering. ICSE "76. Los Alamitos, CA, USA:
IEEE Computer Society Press, 1976, pp. 61-68. URL: https :
//dl.acm.org/doi/10.5555/800253.807650.

H. D. Benington. “Production of large computer programs.” In:
Proceedings of the 9th international conference on software engineer-
ing. Icse "87. Washington, DC, USA: IEEE Computer Society
Press, 1987, pp. 299—310. URL: https://dl.acm.org/doi/10.
5555/41765.41799.

David Benyon. Designing Interactive Systems: A Comprehensive
Guide to HCI and Interaction Design. 2nd ed. Harlow Munich:
Pearson Education Limited, Apr. 2010.

Andrea Bianchi and Seungwoo Je. “Disambiguating touch with
a smart-ring.” In: Proceedings of the 8th Augmented Human Inter-
national Conference. AH "17. New York, NY, USA: Association
for Computing Machinery, Mar. 2017, pp. 1-5. URL: https :
//doi.org/10.1145/3041164.3041196.

Olga Blinova. Release Planning as long-term vision in Scrum. Mas-
ter Thesis. Paderborn University, 2017.

Barry W. Boehm. “Software Engineering.” In: IEEE Trans. Com-
put. 25.12 (Dec. 1976), pp. 1226—1241. URL: https://doi.org/
10.1109/TC.1976.1674590.

Barry W. Boehm. “Guidelines for Verifying and Validating
Software Requirements and Design Specifications.” In: Euro
IFIP 79. North Holland, 1979, p. 20.

Barry W. Boehm. Software Engineering Economics. Englewood
Cliffs, N.J: Prentice-Hall, 1981.

Barry. W. Boehm. “Verifying and Validating Software Require-
ments and Design Specifications.” In: IEEE Softw. 1.1 (Jan. 1984),
pp. 75-88. URL: https://doi.org/10.1109/MS.1984.233762.

Barry W. Boehm. “A Spiral Model of Software Development
and Enhancement.” In: ACM SIGSOFT Software Engineering
Notes 11.4 (Aug. 1986), pp. 14—24. URL: https://doi.org/10.
1145/12944.12948.

Barry W. Boehm. “A spiral model of software development and
enhancement.” In: IEEE Computer 21.5 (May 1988), pp. 61—72.
URL: https://doi.org/10.1109/2.59 (visited on 12/21/2018).

Barry W. Boehm. “A view of 20th and 21st century software
engineering.” In: Proceeding of the 28th international conference
on Software engineering - ICSE "06. Shanghai, China: ACM Press,
2006, p. 12. URL: https://doi.org/10.1145/1134285.1134288.

321

https://dl.acm.org/doi/10.5555/800253.807650
https://dl.acm.org/doi/10.5555/800253.807650
https://dl.acm.org/doi/10.5555/41765.41799
https://dl.acm.org/doi/10.5555/41765.41799
https://doi.org/10.1145/3041164.3041196
https://doi.org/10.1145/3041164.3041196
https://doi.org/10.1109/TC.1976.1674590
https://doi.org/10.1109/TC.1976.1674590
https://doi.org/10.1109/MS.1984.233702
https://doi.org/10.1145/12944.12948
https://doi.org/10.1145/12944.12948
https://doi.org/10.1109/2.59
https://doi.org/10.1145/1134285.1134288

322

BIBLIOGRAPHY

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

Barry W. Boehm and P. Bose. “A collaborative spiral software
process model based on Theory W.” In: Proceedings of the Third
International Conference on the Software Process. Applying the Soft-
ware Process. Reston, VA, USA: IEEE Comput. Soc. Press, 1994,
pp- 59-68. URL: https://doi.org/10.1109/SPCON. 1994 .
344423.

Barry W. Boehm and Wilfred J. Hansen. Spiral Development:
Experience, Principles, and Refinements: tech. rep. Fort Belvoir,
VA: Defense Technical Information Center, July 2000. URL: http:
//www.dtic.mil/docs/citations/ADA382590.

Barry W. Boehm et al. “Using the WinWin Spiral Model: A
Case Study.” In: Computer 31.7 (July 1998), pp. 33—44. URL:
https://doi.org/10.1109/2.689675.

Roy Boggs. “The sdlc and six sigma - an essay on which is
which and why?” In: Issues in Information Systems V.1 (2004),
pPp- 36—42. URL: https://www.researchgate.net/publication/
288009904 _The_SDLC_and_Six_Sigma_An_Essay_on_Which_
is_Which_and_Why.

John G. Brainerd. “Genesis of the ENIAC.” In: Technology and
Culture 17.3 (July 1976), p. 482. URL: https://doi.org/10.
2307/3103527.

Brooks. “No Silver Bullet Essence and Accidents of Software
Engineering.” In: Computer 20.4 (Apr. 1987), pp. 10-19. URL:
https://doi.org/10.1109/MC.1987.1663532.

Frederick P. Brooks. The mythical man-month - essays on software
engineering (2. ed.) Addison-Wesley, 1995.

Manfred Broy. “Yesterday, Today, and Tomorrow: 50 Years
of Software Engineering.” In: IEEE Software 35.5 (Sept. 2018),
pp- 38-43. URL: https://doi.org/10.1109/MS.2018.290111138.

7

Antony Bryant. “’It's Engineering Jim ... but not as we know it
- Software Engineering - solution to the software crisis, or part
of the problem?” In: Proceedings of the 2000 International Confer-
ence on Software Engineering. ICSE 2000 the New Millennium. 2000,
pp. 78-87. URL: https://doi.org/10.1145/337180.337191.

Roger Buehler, Dale Griffin, and Michael Ross. “Exploring the
"Planning Fallacy": Why People Underestimate Their Task Com-
pletion Times.” In: Journal of Personality and Social Psychology
67.3 (1994), pp- 366—381. URL: https://doi.org/10.1037/0022-
3514.67.3.366.

Roger Buehler, Dale Griffin, and Michael Ross. “Inside the
planning fallacy: The causes and consequences of optimistic
time predictions.” In: Heuristics and biases: The psychology of
intuitive judgment. New York, NY, US: Cambridge University

https://doi.org/10.1109/SPCON.1994.344423
https://doi.org/10.1109/SPCON.1994.344423
http://www.dtic.mil/docs/citations/ADA382590
http://www.dtic.mil/docs/citations/ADA382590
https://doi.org/10.1109/2.689675
https://www.researchgate.net/publication/288009904_The_SDLC_and_Six_Sigma_An_Essay_on_Which_is_Which_and_Why
https://www.researchgate.net/publication/288009904_The_SDLC_and_Six_Sigma_An_Essay_on_Which_is_Which_and_Why
https://www.researchgate.net/publication/288009904_The_SDLC_and_Six_Sigma_An_Essay_on_Which_is_Which_and_Why
https://doi.org/10.2307/3103527
https://doi.org/10.2307/3103527
https://doi.org/10.1109/MC.1987.1663532
https://doi.org/10.1109/MS.2018.290111138
https://doi.org/10.1145/337180.337191
https://doi.org/10.1037/0022-3514.67.3.366
https://doi.org/10.1037/0022-3514.67.3.366

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

BIBLIOGRAPHY

Press, 2002, pp. 250-270. URL: https://doi.org/10.1017/
CB09780511808098.016.

Roger Buehler, Deanna Messervey, and Dale Griffin. “Collabo-
rative planning and prediction: Does group discussion affect
optimistic biases in time estimation?” In: Organizational Behav-
ior and Human Decision Processes 97.1 (May 2005), pp. 47-63.
URL: https://doi.org/10.1016/j.0obhdp.2005.02.004.

Bill Buxton. Multi-Touch Systems that I Have Known and Loved.
May 2020. URL: http://billbuxton.com/multitouchOverview.
html (visited on 03/11/2021).

Frangois Bérard and Yann Laurillau. “Single user multitouch
on the DiamondTouch: from 2 x 1D to 2D.” In: Proceedings of the
ACM International Conference on Interactive Tabletops and Surfaces.
ITS "09. New York, NY, USA: Association for Computing Ma-
chinery, Nov. 2009, pp. 1-8. URL: https://doi.org/10.1145/
1731903.1731905.

Marcio C. Cabral, Carlos H. Morimoto, and Marcelo K. Zuffo.
“On the usability of gesture interfaces in virtual reality environ-
ments.” In: Proceedings of the 2005 Latin American conference on
Human-computer interaction. CLIHC "o5. New York, NY, USA:
Association for Computing Machinery, Oct. 2005, pp. 100-108.
URL: https://doi.org/10.1145/11113660.1111370.

T. Carlyle and E. Markham. On heroes, hero-worship, and the heroic
in history: Six lectures, reported, with emendations and additions. D.
Appleton & Company, 1842. URL: https://books.google.de/
books?id=wNA5AQAAMAAJ.

E. Carmel, J. E. George, and J. F. Nunamaker. “Supporting joint
application development (JAD) and electronic meeting systems:
moving the CASE concept into new areas of software devel-
opment.” In: Proceedings of the Twenty-Fifth Hawaii International
Conference on System Sciences. Vol. iii. Jan. 1992, 331-342 vol.3.
URL: https://doi.org/10.1109/HICSS.1992.183501.

Gavin Cassar. “Are individuals entering self-employment overly
optimistic? an empirical test of plans and projections on nascent
entrepreneur expectations.” In: Strategic Management Journal
31.8 (2010), pp. 822—-840. URL: https://doi.org/10.1002/smj .
833.

Elisa Marques de Castro and Luciana Martinez Zaina. “Inves-
tigating the interaction of children through NUI in e-learning
applications.” In: Proceedings of the XVI Brazilian Symposium
on Human Factors in Computing Systems. IHC 2017. New York,
NY, USA: Association for Computing Machinery, Oct. 2017,
pp- 1—10. URL: https://doi.org/10.1145/3160504.31605109.

323

https://doi.org/10.1017/CBO9780511808098.016
https://doi.org/10.1017/CBO9780511808098.016
https://doi.org/10.1016/j.obhdp.2005.02.004
http://billbuxton.com/multitouchOverview.html
http://billbuxton.com/multitouchOverview.html
https://doi.org/10.1145/1731903.1731905
https://doi.org/10.1145/1731903.1731905
https://doi.org/10.1145/1111360.1111370
https://books.google.de/books?id=wNA5AQAAMAAJ
https://books.google.de/books?id=wNA5AQAAMAAJ
https://doi.org/10.1109/HICSS.1992.183501
https://doi.org/10.1002/smj.833
https://doi.org/10.1002/smj.833
https://doi.org/10.1145/3160504.3160519

324

BIBLIOGRAPHY

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Juyun Cho. “Issues and challenges of agile software develop-
ment with Scrum.” In: Issues in Information Systems 9.2 (2008),
p- 8. URL: https://doi.org/10.48009/2_1iis_2008_188-195.

Alistair Cockburn. Crystal Clear: A Human-Powered Methodology
for Small Teams: A Human-Powered Methodology for Small Teams.
Boston: Addison-Wesley Professional, Oct. 2004.

Alistair Cockburn. “Using Both Incremental and Iterative Devel-
opment.” In: STSC CrossTalk (USAF Software Technology Support
Center) 21.5 (2008), pp. 27-30.

Mike Cohn. User Stories Applied: For Agile Software Development.
1st ed. Boston: Addison-Wesley Professional, Mar. 2004.

Mike Cohn. Agile Estimating and Planning. 1st ed. Upper Saddle
River, NJ: Prentice Hall, Nov. 2005.

Mike Cohn. Succeeding with Agile: Software Development Using
Scrum. Pearson Education, 2010.

Mike Cohn. Agile Excel Spreadsheet for the Product Backlog. July
2011. URL: https://www.mountaingoatsoftware.com/blog/a-
sample-format-for-a-spreadsheet-based-product-backlog
(visited on 03/22/2020).

Mike Cohn. Product Backlog Refinement. May 2015. URL: https:
//www . mountaingoatsoftware. com/blog/product - backlog -
refinement-grooming (visited on 01/20/2024).

Mike Cohn. Product backlog refinement (grooming). 2015. URL:
http://athena.ecs.csus.edu/~buckley/CSc233/Backlog_
Grooming.pdf (visited on 12/12/2020).

Mike Cohn. Planning Poker: An Agile Estimating and Planning
Technique. 2020. URL: https://www.mountaingoatsoftware .
com/agile/planning-poker (visited on 01/15/2020).

DSDM Consortium. DSDM: Business Focused Development. Pear-
son Education, 2003.

Eric Corbett and Astrid Weber. “What can I say? addressing
user experience challenges of a mobile voice user interface for
accessibility.” In: Proceedings of the 18th International Conference
on Human-Computer Interaction with Mobile Devices and Services.
MobileHCI "16. New York, NY, USA: Association for Comput-
ing Machinery, Sept. 2016, pp. 72-82. URL: https://doi.org/
10.1145/2935334.2935386.

José Adson Oliveira Guedes da Cunha and Hermano Perrelli
de Moura. “Towards a substantive theory of project decisions
in software development project-based organizations: A cross-
case analysis of IT organizations from Brazil and Portugal.”
In: 2015 10th Iberian Conference on Information Systems and Tech-

https://doi.org/10.48009/2_iis_2008_188-195
https://www.mountaingoatsoftware.com/blog/a-sample-format-for-a-spreadsheet-based-product-backlog
https://www.mountaingoatsoftware.com/blog/a-sample-format-for-a-spreadsheet-based-product-backlog
https://www.mountaingoatsoftware.com/blog/product-backlog-refinement-grooming
https://www.mountaingoatsoftware.com/blog/product-backlog-refinement-grooming
https://www.mountaingoatsoftware.com/blog/product-backlog-refinement-grooming
http://athena.ecs.csus.edu/~buckley/CSc233/Backlog_Grooming.pdf
http://athena.ecs.csus.edu/~buckley/CSc233/Backlog_Grooming.pdf
https://www.mountaingoatsoftware.com/agile/planning-poker
https://www.mountaingoatsoftware.com/agile/planning-poker
https://doi.org/10.1145/2935334.2935386
https://doi.org/10.1145/2935334.2935386

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

BIBLIOGRAPHY

nologies (CISTI). June 2015, pp. 1-6. URL: https://doi.org/10.
1109/CISTI.2015.7170515

M. A. Cusumano. “The software factory: a historical inter-
pretation.” In: IEEE Software 6.2 (Mar. 1989), pp. 23—30. URL:
https://doi.org/10.1109/MS.1989.1430446.

Raimund Dachselt and Robert Buchholz. “Natural throw and
tilt interaction between mobile phones and distant displays.”
In: CHI ‘09 Extended Abstracts on Human Factors in Computing
Systems. CHI EA "09. New York, NY, USA: Association for
Computing Machinery, Apr. 2009, pp. 3253—3258. URL: https:
//doi.org/10.1145/1520340.1520467.

Bo Dahlbom. “The New Informatics.” In: Scandinavian Journal of
Information Systems 8.2 (Jan. 1996). URL: https://aisel.aisnet.
org/sjis/vol8/iss2/3.

Andries van Dam. “Post-WIMP user interfaces.” In: Commu-
nications of the ACM 40.2 (Feb. 1997), pp. 63—67. URL: https:
//doi.org/10.1145/253671.253708.

Lorraine Daston. “Enlightenment Calculations.” In: Critical In-
quiry 21.1 (Oct. 1994), pp. 182—202. URL: https://www.journals.
uchicago.edu/doi/10.1086/448745.

Rachel Davies. The Power of Stories. 2001. URL: https://www.
researchgate . net/publication /2532068 _The_Power_of_
Stories.

Noopur Davis. “Driving Quality Improvement and Reducing
Technical Debt with the Definition of Done.” In: 2013 Agile
Conference. Nashville, TN, USA: IEEE, Aug. 2013, pp. 164-168.
URL: https://doi.org/10.1109/AGILE.2013.21.

Li Deng and Xuedong Huang. “Challenges in adopting speech
recognition.” In: Communications of the ACM 47.1 (Jan. 2004),
pp. 69—75. URL: https://doi.org/10.1145/962081.962108.

Esther Derby and Diana Larsen. Agile Retrospectives: Making
Good Teams Great. 1st ed. Raleigh, NC: O’Reilly UK Ltd., Aug.
2006.

Paul Dietz and Darren Leigh. “DiamondTouch: a multi-user
touch technology.” In: Proceedings of the 14th annual ACM sym-
posium on User interface software and technology. UIST "o1. New
York, NY, USA: Association for Computing Machinery, Nov.
2001, pp. 219-226. URL: https://doi.org/10.1145/502348.
502389.

Edsger W. Dijkstra. “Letters to the Editor: Go to Statement
Considered Harmful.” In: Commun. ACM 11.3 (Mar. 1968),
pPP- 147-148. URL: https://doi.org/10.1145/362929.362947.

325

https://doi.org/10.1109/CISTI.2015.7170515
https://doi.org/10.1109/CISTI.2015.7170515
https://doi.org/10.1109/MS.1989.1430446
https://doi.org/10.1145/1520340.1520467
https://doi.org/10.1145/1520340.1520467
https://aisel.aisnet.org/sjis/vol8/iss2/3
https://aisel.aisnet.org/sjis/vol8/iss2/3
https://doi.org/10.1145/253671.253708
https://doi.org/10.1145/253671.253708
https://www.journals.uchicago.edu/doi/10.1086/448745
https://www.journals.uchicago.edu/doi/10.1086/448745
https://www.researchgate.net/publication/2532068_The_Power_of_Stories
https://www.researchgate.net/publication/2532068_The_Power_of_Stories
https://www.researchgate.net/publication/2532068_The_Power_of_Stories
https://doi.org/10.1109/AGILE.2013.21
https://doi.org/10.1145/962081.962108
https://doi.org/10.1145/502348.502389
https://doi.org/10.1145/502348.502389
https://doi.org/10.1145/362929.362947

326

BIBLIOGRAPHY

[76]

(771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

Michal DoleZel and Michael Felderer. “Organizational Pat-
terns between Developers and Testers - Investigating Testers’
Autonomy and Role Identity:” in: Proceedings of the 2o0th Inter-
national Conference on Enterprise Information Systems. Funchal,
Madeira, Portugal: SCITEPRESS - Science and Technology Pub-
lications, 2018, pp. 336—344. URL: https://doi.org/10.5220/
0006783703360344.

Paul Dourish. Where the Action Is: The Foundations of Embodied
Interaction. Cambridge, Mass: MIT Press, Nov. 2001.

Pierre Dragicevic and Yuanchun Shi. “Visualizing and manipu-
lating automatic document orientation methods using vector
fields.” In: Proceedings of the ACM International Conference on
Interactive Tabletops and Surfaces. ITS '09. New York, NY, USA:
Association for Computing Machinery, Nov. 2009, pp. 65-68.
URL: https://doi.org/10.1145/1731903.1731918.

John Dumay and Sandy Q. Qu. “The qualitative research in-
terview.” In: Qualitative Research in Accounting & Management
8.3 (Aug. 2011), pp. 238—264. URL: https://doi.org/10.1108/
11766091111162070.

M. D. Dunlop and M. Montgomery Masters. “Pickup usability
dominates: a brief history of mobile text entry research and
adoption.” In: International Journal of Mobile Human Computer
Interaction 1.1 (2009), Pp. 42—59. URL: https://doi.org/10.
4018/jmhci.2009010103.

Douglas C. Engelbart and William K. English. “A Research
Center for Augmenting Human Intellect.” In: Proceedings of the
December 9-11, 1968, Fall Joint Computer Conference, Part 1. AFIPS
‘68 (Fall, part I). New York, NY, USA: ACM, 1968, pp. 395—410.
URL: https://doi.org/10.1145/1476589.1476645.

Morten Esbensen et al. “The dBoard: A Digital Scrum Board
for Distributed Software Development.” In: Proceedings of the
2015 International Conference on Interactive Tabletops & Surfaces -
ITS '15. Madeira, Portugal: ACM Press, 2015, pp. 161-170. URL:
https://doi.org/10.1145/2817721.2817746.

Jinjuan Feng et al. “Speech-based navigation and error correc-
tion: a comprehensive comparison of two solutions.” In: Univer-
sal Access in the Information Society 10.1 (Mar. 2011), pp. 17-31.
URL: https://doi.org/10.1007/s10209-010-0185-9.

Therese Fessenden. Net Promoter Score: What a Customer-Relations
Metric Can Tell You About Your User Experience. Oct. 2016. URL:
https://www.nngroup.com/articles/nps - ux/ (visited on
08/13/2023).

https://doi.org/10.5220/0006783703360344
https://doi.org/10.5220/0006783703360344
https://doi.org/10.1145/1731903.1731918
https://doi.org/10.1108/11766091111162070
https://doi.org/10.1108/11766091111162070
https://doi.org/10.4018/jmhci.2009010103
https://doi.org/10.4018/jmhci.2009010103
https://doi.org/10.1145/1476589.1476645
https://doi.org/10.1145/2817721.2817746
https://doi.org/10.1007/s10209-010-0185-9
https://www.nngroup.com/articles/nps-ux/

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

BIBLIOGRAPHY

Clifton Forlines et al. “Direct-touch vs. mouse input for tabletop
displays.” In: Proceedings of the SIGCHI conference on Human
factors in computing systems - CHI "07. San Jose, California, USA:
ACM Press, 2007, p. 647. URL: https://doi.org/10.1145/
1240624.1240726.

Martin Fowler. “The new methodology.” In: Wuhan University
Journal of Natural Sciences 6.1-2 (Mar. 2001), pp. 12—24. URL:
https://doi.org/10.1007/BF03160222.

Martin Fowler. Refactoring: Improving the Design of Existing Code.
2nd ed. Addison Wesley, Jan. 2019.

Euan Freeman, Stephen Brewster, and Vuokko Lantz. “Tac-
tile Feedback for Above-Device Gesture Interfaces: Adding
Touch to Touchless Interactions.” In: Proceedings of the 16th In-
ternational Conference on Multimodal Interaction. ICMI "14. New
York, NY, USA: Association for Computing Machinery, Nov.
2014, Pp. 419—426. URL: https://doi.org/10.1145/2663204.
2663280.

W. Barkley Fritz. “The Women of ENIAC.” In: [EEE Ann. Hist.
Comput. 18.3 (Sept. 1996), pp. 13—28. URL: https://doi.org/10.
1109/85.511940.

Taghi Javdani Gandomani. “A Case Study Research on Soft-
ware Cost Estimation Using Experts” Estimates, Wideband Del-
phi, and Planning Poker Technique.” In: International Journal of
Software Engineering and Its Applications 8.11 (2014), pp. 173-182.
URL: https://api.semanticscholar.org/CorpusID:11128442.

Andreas Gehle. Konzept und prototypische Implementierung einer
digitalen Unterstiitzung von Sprint-Retrospektiven in Scrum. Mas-
ter Thesis. Paderborn University, 2017.

E Georgiadou. “Software Process and Product Improvement:
A Historical Perspective.” In: Cybernetics and Systems Analysis.
39 1. Plenum Publishing Corporation, 2003, pp. 125-142. URL:
https://doi.org/10.1023/A:1023833428613.

Sebastian Gerhardt. Supporting Decision-Making in Agile Devel-
opment. Master Thesis. Paderborn University, 2018.

Yaser Ghanam, Xin Wang, and Frank Maurer. “Utilizing Digital
Tabletops in Collocated Agile Planning Meetings.” In: Agile
2008 Conference. Toronto, ON, Canada: IEEE, 2008, pp. 51-62.
URL: https://doi.org/10.1109/Agile.2008.13.

Tom Gilb. “Evolutionary Delivery Versus the "Waterfall Model".”
In: SIGSOFT Softw. Eng. Notes 10.3 (July 1985), pp. 49—61. URL:
https://doi.org/10.1145/1012483.1012490.

Gerard Goggin. “Adapting the mobile phone: The iPhone and
its consumption.” In: Continuum 23.2 (Apr. 2009), pp. 231-244.
URL: https://doi.org/10.1080/10304310802710546.

327

https://doi.org/10.1145/1240624.1240726
https://doi.org/10.1145/1240624.1240726
https://doi.org/10.1007/BF03160222
https://doi.org/10.1145/2663204.2663280
https://doi.org/10.1145/2663204.2663280
https://doi.org/10.1109/85.511940
https://doi.org/10.1109/85.511940
https://api.semanticscholar.org/CorpusID:11128442
https://doi.org/10.1023/A:1023833428613
https://doi.org/10.1109/Agile.2008.13
https://doi.org/10.1145/1012483.1012490
https://doi.org/10.1080/10304310802710546

328

BIBLIOGRAPHY

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Beverly E. Golemba. “Human Computers: The Women in Aero-
nautical Research.” In: Unpublished (1995). URL: http://crgis.
ndc.nasa.gov/crgis/images/c/c7/Golemba.pdf.

James Grenning. “Planning Poker or How to avoid analysis
paralysis while release planning.” In: Hawthorn Woods: Renais-
sance Software Consulting 3 (2002).

David Alan Grier. “The ENIAC, the verb "to program" and the
emergence of digital computers.” In: IEEE Annals of the History
of Computing 18.1 (1996), pp. 51-55. URL: https://doi.org/10.
1109/85.476561.

David Alan Grier. “Gertrude Blanch of the Mathematical Tables
Project.” In: IEEE Annals of the History of Computing 19.4 (Oct.
1997), pp- 18—27. URL: https://doi.org/10.1109/85.627896.

David Alan Grier. “The Math Tables Project of the work projects
administration: the reluctant start of the computing era.” In:
IEEE Annals of the History of Computing 20.3 (Sept. 1998), pp. 33—
50. URL: https://doi.org/10.1109/85.707573.

David Alan Grier. “Human computers: the first pioneers of
the information age.” In: Endeavour 25.1 (Mar. 2001), pp. 28-32.
URL: https://doi.org/10.1016/50160-9327(00)01338-7.

David Alan Grier. When Computers Were Human. Princeton
University Press, 2005.

Isaac Griffith et al. “A simulation study of practical methods
for technical debt management in agile software development.”
In: Proceedings of the Winter Simulation Conference 2014. Savanah,
GA, USA: IEEE, Dec. 2014, pp. 1014-1025. URL: https://doi.
org/10.1109/WSC.2014.7019961.

The Standish Group. The CHAOS Report (1994). Tech. rep. 1994.
URL: https://www. standishgroup . com/sample_research_
files/chaos_report 1994.pdf (visited on 01/07/2019).

Klaus G. Grunert and Suzanne C. Grunert. “Measuring subjec-
tive meaning structures by the laddering method: Theoretical
considerations and methodological problems.” In: International
Journal of Research in Marketing 12.3 (Oct. 1995), pp. 209—225.
URL: https://doi.org/10.1016/0167-8116(95)00022-T.

Denise Giirer. “Women in computing history.” In: ACM SIGCSE
Bulletin 34.2 (June 2002), p. 116. URL: https://doi.org/10.
1145/543812.543843.

Michael Haller et al. Interactive Displays and Next-Generation
Interfaces. Hagenberg Research. Springer-Verlag Berlin Heidel-
berg, 2009.

Edmund Halley. A Synopsis of the Astronomy of Comets. Tech. rep.
Printed for John Senex, 1705, p. 58.

http://crgis.ndc.nasa.gov/crgis/images/c/c7/Golemba.pdf
http://crgis.ndc.nasa.gov/crgis/images/c/c7/Golemba.pdf
https://doi.org/10.1109/85.476561
https://doi.org/10.1109/85.476561
https://doi.org/10.1109/85.627896
https://doi.org/10.1109/85.707573
https://doi.org/10.1016/S0160-9327(00)01338-7
https://doi.org/10.1109/WSC.2014.7019961
https://doi.org/10.1109/WSC.2014.7019961
https://www.standishgroup.com/sample_research_files/chaos_report_1994.pdf
https://www.standishgroup.com/sample_research_files/chaos_report_1994.pdf
https://doi.org/10.1016/0167-8116(95)00022-T
https://doi.org/10.1145/543812.543843
https://doi.org/10.1145/543812.543843

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

BIBLIOGRAPHY

Jetf Han. The radical promise of the multi-touch interface. Feb.
2006. URL: https://www. ted.com/talks/jeff_han_the_
radical_promise_of_the_multi_touch_interface (visited on
03/15/2021).

Jefferson Y. Han. “Low-cost multi-touch sensing through frus-
trated total internal reflection.” In: Proceedings of the 18th annual
ACM symposium on User interface software and technology - UIST
‘05. Seattle, WA, USA: ACM Press, 2005, p. 115. URL: https:
//doi.org/10.1145/1095034.1095054.

Zaliyana Mohd Hanafiah et al. “Human-robot speech interface
understanding inexplicit utterances using vision.” In: CHI "04
Extended Abstracts on Human Factors in Computing Systems. CHI
EA "04. New York, NY, USA: Association for Computing Ma-
chinery, Apr. 2004, pp. 1321-1324. URL: https://doi.org/10.
1145/985921.986054.

J. Haungs. “Pair programming on the C3 project.” In: Computer
34.2 (Feb. 2001), pp. 118-119. URL: https://doi.org/10.1109/
2.901173.

Ville T. Heikkild, Maria Paasivaara, and Casper Lassenius.
“ScrumBut, But Does it Matter? A Mixed-Method Study of
the Planning Process of a Multi-team Scrum Organization.”
In: 2013 ACM / IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement. Oct. 2013, pp. 85-94. URL:
https://doi.org/10.1109/ESEM.2013.27.

P. Herzlich. “RAD and quality principles.” In: IEE Colloquium on
Will Tickit and ISO 9ooo Survive Rapid Application Development?
Dec. 1995, pp. 2/1-2/5. URL: https://doi.org/10.1049/ic:
19951553.

James A. Highsmith. Adaptive Software Development: An Evolu-
tionary Approach to Controlling Chaotic Systems: A Collaborative
Approach to Managing Complex Systems. New York: Dorset House
Publishing Co Inc.,U.S., Dec. 1999.

Juan David Hincapié-Ramos et al. “Consumed endurance: a
metric to quantify arm fatigue of mid-air interactions.” In:
Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. CHI "14. New York, NY, USA: Association for
Computing Machinery, Apr. 2014, pp. 1063-1072. URL: https:
//doi.org/10.1145/2556288.2557130.

Christian Holz and Patrick Baudisch. “Fiberio: a touchscreen
that senses fingerprints.” In: Proceedings of the 26th annual ACM
symposium on User interface software and technology. UIST "13.
New York, NY, USA: Association for Computing Machinery,
Oct. 2013, pp. 41-50. URL: https://doi.org/10.1145/2501988.
2502021.

329

https://www.ted.com/talks/jeff_han_the_radical_promise_of_the_multi_touch_interface
https://www.ted.com/talks/jeff_han_the_radical_promise_of_the_multi_touch_interface
https://doi.org/10.1145/1095034.1095054
https://doi.org/10.1145/1095034.1095054
https://doi.org/10.1145/985921.986054
https://doi.org/10.1145/985921.986054
https://doi.org/10.1109/2.901173
https://doi.org/10.1109/2.901173
https://doi.org/10.1109/ESEM.2013.27
https://doi.org/10.1049/ic:19951553
https://doi.org/10.1049/ic:19951553
https://doi.org/10.1145/2556288.2557130
https://doi.org/10.1145/2556288.2557130
https://doi.org/10.1145/2501988.2502021
https://doi.org/10.1145/2501988.2502021

330

BIBLIOGRAPHY

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Andrew Hunt, David Thomas, and Ward Cunningham. The
Pragmatic Programmer. From Journeyman to Master. 1st ed. Read-
ing, Mass: Addison Wesley, Oct. 1999.

Adrian Hiilsmann and Julian Maicher. “HOUDINI: Introduc-
ing Object Tracking and Pen Recognition for LLP Tabletops.”
In: Human-Computer Interaction. Advanced Interaction Modali-
ties and Techniques. Ed. by David Hutchison et al. Vol. 8511.
Cham: Springer International Publishing, 2014, pp. 234-244.
URL: https://doi.org/10.1007/978-3-319-07230-2_23.

M. Imaz and D. Benyon. “How Stories Capture Interactions.” In:
IFIP TC13 International Conference on Human-Computer Interac-
tion. 1999. URL: https://api.semanticscholar.org/CorpusID:
5508979.

CASEMaker Inc. “What is Rapid Application Development
(RAD).” In: Unpublished. 1997. URL: https://www.iro.umontreal.
ca/~dift6803/Transparents/Chapitrel/Documents/rad_wp.
pdf (visited on 06/21/2019).

Hiroshi Ishii. “The tangible user interface and its evolution.”
In: Communications of the ACM 51.6 (June 2008), pp. 32—36. URL:
https://doi.org/10.1145/1349026.1349034.

Hiroshi Ishii and Brygg Ullmer. “Tangible bits: towards seam-
less interfaces between people, bits and atoms.” In: Proceedings
of the SIGCHI conference on Human factors in computing systems
- CHI ’97. Atlanta, Georgia, United States: ACM Press, 1997,
PP- 234—241. URL: https://doi.org/10.1145/258549.258715.

Hiroshi Ishii et al. “Radical atoms: beyond tangible bits, toward
transformable materials.” In: Interactions 19.1 (Jan. 2012), pp. 38—
51. URL: https://doi.org/10.1145/2065327.2065337.

Jhilmil Jain, Arnold Lund, and Dennis Wixon. “The future of
natural user interfaces.” In: Proceedings of the 2011 annual con-
ference extended abstracts on Human factors in computing systems -
CHI EA "11. Vancouver, BC, Canada: ACM Press, 2011, p. 211.
URL: https://doi.org/10.1145/1979742.1979527.

Jakob Nielsen. Thinking Aloud: The #1 Usability Tool. Jan. 2012.
URL: https://www.nngroup.com/articles/thinking-aloud-
the-1-usability-tool/ (visited on 05/27/2024).

Mikkel R. Jakobsen and Kasper HornbZk. “Up close and per-
sonal: Collaborative work on a high-resolution multitouch wall
display.” In: ACM Transactions on Computer-Human Interaction
21.2 (Feb. 2014), 11:1-11:34. URL: https://doi.org/10.1145/
2576099.

Ron Jeffries. We'll Try. July 1999. URL: https://ronjeffries.
com/xprog/articles/well_try/ (visited on o1/11/2020).

https://doi.org/10.1007/978-3-319-07230-2_23
https://api.semanticscholar.org/CorpusID:5508979
https://api.semanticscholar.org/CorpusID:5508979
https://www.iro.umontreal.ca/~dift6803/Transparents/Chapitre1/Documents/rad_wp.pdf
https://www.iro.umontreal.ca/~dift6803/Transparents/Chapitre1/Documents/rad_wp.pdf
https://www.iro.umontreal.ca/~dift6803/Transparents/Chapitre1/Documents/rad_wp.pdf
https://doi.org/10.1145/1349026.1349034
https://doi.org/10.1145/258549.258715
https://doi.org/10.1145/2065327.2065337
https://doi.org/10.1145/1979742.1979527
https://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/
https://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/
https://doi.org/10.1145/2576099
https://doi.org/10.1145/2576099
https://ronjeffries.com/xprog/articles/well_try/
https://ronjeffries.com/xprog/articles/well_try/

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

BIBLIOGRAPHY

Ron Jeffries. Essential XP: Card, Conversation, Confirmation. Aug.
2001. URL: http://ronjeffries.com/xprog/articles/ (visited
on 01/23/2019).

Hans Jetter, Harald Reiterer, and Florian Geyer. “Blended In-
teraction: understanding natural human-computer interaction
in post-WIMP interactive spaces.” In: Personal and Ubiquitous
Computing 18.5 (June 2014), pp. 1139-1158. URL: https://doi.
org/10.1007/s00779-013-0725-4.

Sergi Jorda. “The reactable: tangible and tabletop music perfor-
mance.” In: Proceedings of the 28th of the international conference
extended abstracts on Human factors in computing systems - CHI
EA ’10. Atlanta, Georgia, USA: ACM Press, 2010, p. 2989. URL:
https://doi.org/10.1145/1753846.1753903.

D. Kahneman and A. Tversky. “Intuitive Prediction: Biases and
Corrective Procedures.” In: TIMS Studies in Management Science
12 (1979), pp. 313—327. URL: https://apps.dtic.mil/sti/
citations/ADA047747.

Raine Kajastila and Tapio Lokki. “Eyes-free interaction with
free-hand gestures and auditory menus.” In: International Jour-
nal of Human-Computer Studies 71.5 (May 2013), pp. 627-640.
URL: https://doi.org/10.1016/j.1jhcs.2012.11.003.

Martin Kaltenbrunner. “reacTIVision and TUIO: a tangible
tabletop toolkit.” In: Proceedings of the ACM International Con-
ference on Interactive Tabletops and Surfaces - ITS 09. Banff, Al-
berta, Canada: ACM Press, 2009, p. 9. URL: http://portal.
acm.org/citation.cfm?doid=1731903.1731906 (visited on
11/17/2018).

331

Martin Kaltenbrunner and Ross Bencina. “reacTIVision: a computer-

vision framework for table-based tangible interaction.” In: Pro-
ceedings of the 1st international conference on Tangible and embedded
interaction - TEI "07. Baton Rouge, Louisiana: ACM Press, 2007,
p- 69. URL: https://doi.org/10.1145/1226969.1226983.

Frederic Kaplan. “Are gesture-based interfaces the future of
human computer interaction?” In: Proceedings of the 2009 interna-
tional conference on Multimodal interfaces. ICMI-MLMI "09. New
York, NY, USA: Association for Computing Machinery, Nov.
2009, pp. 239—240. URL: https://doi.org/10.1145/1647314.
1647365.

Kendra Cherry. What Are the Gestalt Principles? Mar. 2023.
URL: https://www.verywellmind . com/gestalt - laws - of -
perceptual-organization-2795835 (visited on 04/11/2024).

http://ronjeffries.com/xprog/articles/
https://doi.org/10.1007/s00779-013-0725-4
https://doi.org/10.1007/s00779-013-0725-4
https://doi.org/10.1145/1753846.1753903
https://apps.dtic.mil/sti/citations/ADA047747
https://apps.dtic.mil/sti/citations/ADA047747
https://doi.org/10.1016/j.ijhcs.2012.11.003
http://portal.acm.org/citation.cfm?doid=1731903.1731906
http://portal.acm.org/citation.cfm?doid=1731903.1731906
https://doi.org/10.1145/1226969.1226983
https://doi.org/10.1145/1647314.1647365
https://doi.org/10.1145/1647314.1647365
https://www.verywellmind.com/gestalt-laws-of-perceptual-organization-2795835
https://www.verywellmind.com/gestalt-laws-of-perceptual-organization-2795835

332

BIBLIOGRAPHY

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

Sam Kinsley. Addressing ubicomp: Computing people, places and
things. Mar. 2010. URL: http://www.samkinsley.com/2010/
03/13/addressing-ubicomp- computing-people-places-and-
things/ (visited on 03/05/2021).

Christian Klaussner. A Virtual Scrum Coach to Improve Agile
Process Quality. Master Thesis. Paderborn University, 2019.

Donald E. Knuth. “Computer programming as an art.” In:
Communications of the ACM 17.12 (Dec. 1974), pp. 667—673. URL:
https://doi.org/10.1145/361604.361612.

Cris Kobryn. “UML 2001: A Standardization Odyssey.” In:
Commun. ACM 42.10 (Oct. 1999), pp. 29—37. URL: https://doi.
org/10.1145/317665.317673.

A. M. Koss. “Programming on the Univac 1: a woman’s ac-
count.” In: IEEE Annals of the History of Computing 25.1 (Jan.
2003), PpP. 48-59. URL: https://doi.org/160.1109/MAHC.2003.
11798709.

Marek Kotodziejski. Europdischer Fonds fiir regionale Entwick-
lung (EFRE) | Kurzdarstellungen zur Europdischen Union | Eu-
ropiisches Parlament. Mar. 2023. URL: https://www.europarl.
europa.eu/factsheets/de/sheet/95/europaischer- fonds -
fur-regionale-entwicklung-efre- (visited on 07/29/2023).

Iva Krasteva and Sylvia Ilieva. “Adopting an agile method-
ology: why it did not work.” In: Proceedings of the 2008 in-
ternational workshop on Scrutinizing agile practices or shoot-out
at the agile corral. APOS “08. Leipzig, Germany: Association
for Computing Machinery, May 2008, pp. 33—36. URL: https:
//doi.org/10.1145/1370143.1370150.

V. Krishna and A. Basu. “Scrum+:: Is it “ScrumBut” or “Scru-
mAnd”.” In: 2011 Annual IEEE India Conference. Dec. 2011, pp. 1-
4. URL: https://doi.org/10.1109/INDCON.2011.6139625.

Philippe Kruchten. The Rational Unified Process: An Introduction.
Boston, MA, USA: Addison-Wesley Longman Publishing Co.,

Inc., 1999.

Russell Kruger et al. “How people use orientation on tables:
comprehension, coordination and communication.” In: Pro-
ceedings of the 2003 international ACM SIGGROUP conference
on Supporting group work. GROUP “03. New York, NY, USA:
Association for Computing Machinery, Nov. 2003, pp. 369-378.
URL: https://doi.org/10.1145/958160.958219.

Russell Kruger et al. “Fluid integration of rotation and transla-
tion.” In: Proceedings of the SIGCHI conference on Human factors
in computing systems - CHI ‘05. Portland, Oregon, USA: ACM
Press, 2005, p. 601. URL: https://doi.org/10.1145/1054972.
1055055.

http://www.samkinsley.com/2010/03/13/addressing-ubicomp-computing-people-places-and-things/
http://www.samkinsley.com/2010/03/13/addressing-ubicomp-computing-people-places-and-things/
http://www.samkinsley.com/2010/03/13/addressing-ubicomp-computing-people-places-and-things/
https://doi.org/10.1145/361604.361612
https://doi.org/10.1145/317665.317673
https://doi.org/10.1145/317665.317673
https://doi.org/10.1109/MAHC.2003.1179879
https://doi.org/10.1109/MAHC.2003.1179879
https://www.europarl.europa.eu/factsheets/de/sheet/95/europaischer-fonds-fur-regionale-entwicklung-efre-
https://www.europarl.europa.eu/factsheets/de/sheet/95/europaischer-fonds-fur-regionale-entwicklung-efre-
https://www.europarl.europa.eu/factsheets/de/sheet/95/europaischer-fonds-fur-regionale-entwicklung-efre-
https://doi.org/10.1145/1370143.1370150
https://doi.org/10.1145/1370143.1370150
https://doi.org/10.1109/INDCON.2011.6139625
https://doi.org/10.1145/958160.958219
https://doi.org/10.1145/1054972.1055055
https://doi.org/10.1145/1054972.1055055

BIBLIOGRAPHY 333

[150] Eyal Krupka et al. “Toward Realistic Hands Gesture Interface:
Keeping it Simple for Developers and Machines.” In: Proceed-
ings of the 2017 CHI Conference on Human Factors in Comput-
ing Systems. CHI "17. New York, NY, USA: Association for
Computing Machinery, May 2017, pp. 1887-1898. URL: https:
//doi.org/10.1145/3025453.3025508.

[151] Sven Kohler, Christian Holz, and Patrick Baudisch. “Demon-
stration and Applications of Fiberio: A Touchscreen That Senses
Fingerprints.” In: Proceedings of the Ninth ACM International
Conference on Interactive Tabletops and Surfaces. ITS '14. New
York, NY, USA: Association for Computing Machinery, Nov.
2014, Pp- 443—446. URL: https://doi.org/10.1145/2669485.
2669530.

[152] Mitch Lacey. Scrum Field Guide, The: Practical Advice for Your
First Year. 1st ed. Upper Saddle River, NJ: Addison-Wesley
Professional, Mar. 2012.

[153] Mitch Lacey. g4 Secrets to a Successful Daily Scrum. 2018. URL:
https : //www . mitchlacey . com/blog/4 - secrets - to - a -
successful-daily-scrum (visited on 05/04/2019).

[154] Butler Lampson. “Personal distributed computing: The alto
and ethernet software.” In: A History of Personal Workstations,
ed. A. Goldberg, Addison-Wesley (Jan. 1988), pp. 291—-344. URL:
https://doi.org/10.1145/61975.66921.

[155] C.Larman and V.R. Basili. “Iterative and incremental develop-
ments. a brief history.” In: Computer 36.6 (June 2003), pp. 47-56.
URL: https://doi.org/10.1109/MC.2003.1204375 (visited on
01/10/2019).

[156] Lai-Chong Law and Ebba Thora Hvannberg. “Complementarity
and Convergence of Heuristic Evaluation and Usability Test: A
Case Study of Universal Brokerage Platform.” In: Proceedings
of the Second Nordic Conference on Human-computer Interaction.
NordiCHI ‘02. New York, NY, USA: ACM, 2002, pp. 71-80. URL:
http://doi.acm.org/10.1145/572020.572030.

[157] Beth L. Leech. “Asking Questions: Techniques for Semistruc-
tured Interviews.” In: PS: Political Science & Politics 35.4 (Dec.
2002), pp. 665-668. URL: https://doi.org/10.1017/51049096502001129.

[158] Dean Leffingwell. Agile Software Requirements: Lean Requirements
Practices for Teams, Programs, and the Enterprise. 1 edition. Upper
Saddle River, NJ: Addison-Wesley Professional, Jan. 2011.

[159] Jennifer S. Light. “When Computers Were Women.” In: The
Johns Hopkins University Press and the Society for the History of

Technology 40.3 (1999), pp- 455-483.

https://doi.org/10.1145/3025453.3025508
https://doi.org/10.1145/3025453.3025508
https://doi.org/10.1145/2669485.2669530
https://doi.org/10.1145/2669485.2669530
https://www.mitchlacey.com/blog/4-secrets-to-a-successful-daily-scrum
https://www.mitchlacey.com/blog/4-secrets-to-a-successful-daily-scrum
https://doi.org/10.1145/61975.66921
https://doi.org/10.1109/MC.2003.1204375
http://doi.acm.org/10.1145/572020.572030
https://doi.org/10.1017/S1049096502001129

334

BIBLIOGRAPHY

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

Jun Liu et al. “TNT: improved rotation and translation on
digital tables.” In: Proceedings of graphics interface 2006. Gi "06.
CAN: Canadian Information Processing Society, 2006, pp. 25—
32. URL: https://dl.acm.org/doi/10.5555/1143079.1143084.

L. Liu, H. Erdogmus, and F. Maurer. “An environment for col-
laborative iteration planning.” In: Agile Development Conference
(ADC’05). Denver, CO, USA: IEEE Comput. Soc, 2005, pp. 80—
89. URL: https://doi.org/10.1109/ADC.2005.12.

Xiaoxing Liu and Geb W. Thomas. “Gesture Interfaces: Minor
Change in Effort, Major Impact on Appeal.” In: Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems.
CHI "17. New York, NY, USA: Association for Computing
Machinery, May 2017, pp. 4278-4283. URL: https://doi.org/
10.1145/3025453.3025513.

Michael S Mahoney. “Finding a History for Software Engineer-
ing.” In: IEEE Annals of the History of Computing 26.1 (2004),
pp. 8-19. URL: https://doi.org/0.1109/MAHC.2004.1278847.

Julian Maicher. Innovative Tool Support for Agile Scrum Teams.
Master Thesis. Paderborn University, 2014.

Antony Marcano. How the industry broke the Connextra Template
| antonymarcano.com. Aug. 2016. URL: http://antonymarcano.
com/blog/2016/08/how-the-industry-broke-the-connextra-
template/ (visited on o1/22/2019).

Nicolai Marquardt, Johannes Kiemer, and Saul Greenberg.
“What caused that touch?: expressive interaction with a surface
through fiduciary-tagged gloves.” In: ACM International Confer-
ence on Interactive Tabletops and Surfaces - ITS "10. Saarbriicken,
Germany: ACM Press, 2010, p. 139. URL: https://doi.org/10.
1145/1936652.1936680.

Dr C. Dianne Martin. “ENIAC: The Press Conference That
Shook the World.” In: IEEE Technology and Society Magazine 14.4
(2002), pp. 3—10. URL: https://doi.org/10.1109/44.476631.

James Martin. Rapid Application Development. Indianapolis, IN,
USA: Macmillan Publishing Co., Inc., 1991.

Massachusetts Institute of Technology. Tangible Media Group.
2021. URL: https://tangible.media.mit.edu/ (visited on
05/09/2021).

Damien Masson et al. “WhichFingers: Identifying Fingers on
Touch Surfaces and Keyboards using Vibration Sensors.” In:
Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology. UIST "17. New York, NY, USA: Asso-
ciation for Computing Machinery, Oct. 2017, pp. 41—48. URL:
https://doi.org/10.1145/3126594.3126619.

https://dl.acm.org/doi/10.5555/1143079.1143084
https://doi.org/10.1109/ADC.2005.12
https://doi.org/10.1145/3025453.3025513
https://doi.org/10.1145/3025453.3025513
https://doi.org/0.1109/MAHC.2004.1278847
http://antonymarcano.com/blog/2016/08/how-the-industry-broke-the-connextra-template/
http://antonymarcano.com/blog/2016/08/how-the-industry-broke-the-connextra-template/
http://antonymarcano.com/blog/2016/08/how-the-industry-broke-the-connextra-template/
https://doi.org/10.1145/1936652.1936680
https://doi.org/10.1145/1936652.1936680
https://doi.org/10.1109/44.476631
https://tangible.media.mit.edu/
https://doi.org/10.1145/3126594.3126619

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

BIBLIOGRAPHY

Nobuyuki Matsushita and Jun Rekimoto. “HoloWall: designing
a finger, hand, body, and object sensitive wall.” In: Proceedings
of the 10th annual ACM symposium on User interface software and
technology - UIST '97. Banff, Alberta, Canada: ACM Press, 1997,
Pp- 209—210. URL: https://doi.org/10.1145/263407.263549
(visited on 08/18/2022).

John W. Mauchly. “The Use of High Speed Vacuum Tube
Devices for Calculating.” In: The Origins of Digital Computers:
Selected Papers. Ed. by Brian Randell. Texts and Monographs in
Computer Science. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1982, pp. 355-358. URL: https://doi.org/10.1007/978-
3-642-61812-3_28

Christopher McAdam and Stephen Brewster. “Using Mobile
Phones to Interact with Tabletop Computers.” In: Proceedings
of the ACM International Conference on Interactive Tabletops and
Surfaces, ITS'11. Kobe, Japan: Association for Computing Ma-
chinery, Nov. 2011, pp. 232-241. URL: https://doi.org/10.
1145/2076354.2076395

Steve McConnell. Software Project Survival Guide. 1 edition. Red-
mond, Wash: Microsoft Press, Oct. 1997.

Daniel D. McCracken and Michael A. Jackson. “Life Cycle
Concept Considered Harmful.” In: SIGSOFT Softw. Eng. Notes
7.2 (Apr. 1982), pp. 29—32. URL: https://doi.org/10.1145/
1005937.1005943.

Carter McNamara. General Guidelines for Conducting Research
Interviews. May 2010. URL: https ://managementhelp . org/
businessresearch/interviews.htm (visited on 04/24/2019).

Dominic Merten. Usability-Evaluierung ausgewihlter Scrum-Tools
samt konzeptioneller Verbesserungsvorschlige fiir scrummage. Mas-
ter Thesis. Paderborn University, Sept. 2016.

Microsoft. Add portfolio backlogs - Azure DevOps & TFS. Dec. 2017.
URL: https://docs.microsoft.com/en-us/azure/devops/
reference/add-portfolio-backlogs (visited on 03/23/2020).

D. Millington and J. Stapleton. “Developing a RAD standard.”
In: IEEE Software 12.5 (Sept. 1995), pp. 54—55. URL: https://
doi.org/10.1109/52.406757.

Margaret R. Minsky. “Manipulating simulated objects with real-
world gestures using a force and position sensitive screen.” In:
ACM SIGGRAPH Computer Graphics 18.3 (Jan. 1984), pp. 195—
203. URL: https://doi.org/10.1145/964965.808598.

335

https://doi.org/10.1145/263407.263549
https://doi.org/10.1007/978-3-642-61812-3_28
https://doi.org/10.1007/978-3-642-61812-3_28
https://doi.org/10.1145/2076354.2076395
https://doi.org/10.1145/2076354.2076395
https://doi.org/10.1145/1005937.1005943
https://doi.org/10.1145/1005937.1005943
https://managementhelp.org/businessresearch/interviews.htm
https://managementhelp.org/businessresearch/interviews.htm
https://docs.microsoft.com/en-us/azure/devops/reference/add-portfolio-backlogs
https://docs.microsoft.com/en-us/azure/devops/reference/add-portfolio-backlogs
https://doi.org/10.1109/52.406757
https://doi.org/10.1109/52.406757
https://doi.org/10.1145/964965.808598

336

BIBLIOGRAPHY

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

Nils Brede Moe and Torgeir Dingseyr. “Scrum and Team Ef-
fectiveness: Theory and Practice.” In: Agile Processes in Software
Engineering and Extreme Programming. Ed. by Pekka Abrahams-
son et al. Lecture Notes in Business Information Processing.
Springer Berlin Heidelberg, 2008, pp. 11—20. URL: https://doi.
org/10.1007/978-3-540-68255-4_2.

Mozilla Corporation. The WebSocket API (WebSockets) - Web
APIs | MDN. 2022. URL: https://developer.mozilla.org/en-
US/docs/Web/API/WebSockets API (visited on 08/17/2022).

Jesse Mu and Advait Sarkar. “Do We Need Natural Language?
Exploring Restricted Language Interfaces for Complex Do-
mains.” In: Extended Abstracts of the 2019 CHI Conference on
Human Factors in Computing Systems. CHI EA "19. New York,
NY, USA: Association for Computing Machinery, May 2019,
pp- 1-6. URL: https://doi.org/10.1145/3290607.3312975.

C. Murad et al. “Revolution or Evolution? Speech Interaction
and HCI Design Guidelines.” In: IEEE Pervasive Computing 18.2
(Apr. 2019), pp. 33—45. URL: https://doi.org/10.1109/MPRV.
2019.2906991.

H. Neukom. “The Second Life of ENIAC.” In: IEEE Annals of
the History of Computing 28.2 (Apr. 2006), pp. 4-16. URL: https:
//doi.org/10.1109/MAHC.2006.39.

J. von Neumann. “First draft of a report on the EDVAC.” In:
IEEE Annals of the History of Computing 15.4 (1993), pp. 27-75.
URL: https:/doi.org/10.1109/85.238389.

Jakob Nielsen. “Finding usability problems through heuristic
evaluation.” In: Proceedings of the SIGCHI conference on Human
factors in computing systems - CHI ‘92. Monterey, California,
United States: ACM Press, 1992, pp. 373—380. URL: https://
doi.org/10.1145/142750.142834.

Jakob Nielsen. “Enhancing the Explanatory Power of Usability
Heuristics.” In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI "94. New York, NY, USA:
ACM, 1994, pp. 152-158. URL: https://doi.org/10.1145/
191666.191729.

Jakob Nielsen. How to Conduct a Heuristic Evaluation. Nov. 1994.
URL: https://www.nngroup.com/articles/how-to-conduct-
a-heuristic-evaluation/ (visited on 02/24/2019).

Jakob Nielsen. Mouse vs. Fingers as Input Device. Apr. 2012. URL:
https://www.nngroup.com/articles/mouse - vs - fingers -
input-device/ (visited on 01/13/2022).

Jakob Nielsen. 10 Usability Heuristics for User Interface Design.
Oct. 2020. URL: https://www.nngroup.com/articles/ten -
usability-heuristics/ (visited on 06/04/2023).

https://doi.org/10.1007/978-3-540-68255-4_2
https://doi.org/10.1007/978-3-540-68255-4_2
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://doi.org/10.1145/3290607.3312975
https://doi.org/10.1109/MPRV.2019.2906991
https://doi.org/10.1109/MPRV.2019.2906991
https://doi.org/10.1109/MAHC.2006.39
https://doi.org/10.1109/MAHC.2006.39
https:/doi.org/10.1109/85.238389
https://doi.org/10.1145/142750.142834
https://doi.org/10.1145/142750.142834
https://doi.org/10.1145/191666.191729
https://doi.org/10.1145/191666.191729
https://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation/
https://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation/
https://www.nngroup.com/articles/mouse-vs-fingers-input-device/
https://www.nngroup.com/articles/mouse-vs-fingers-input-device/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/

[192]

[193]

[194]

[195]
[196]

[197]

[198]

[199]

[200]

[201]

[202]

BIBLIOGRAPHY

Jakob Nielsen and Thomas K. Landauer. “A Mathematical
Model of the Finding of Usability Problems.” In: Proceedings of
the INTERACT "93 and CHI 93 Conference on Human Factors in
Computing Systems. CHI "93. New York, NY, USA: ACM, 1993,
pp. 206—213. URL: https://doi.org/10.1145/169059.169166.

Jakob Nielsen and Rolf Molich. “Heuristic Evaluation of User
Interfaces.” In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ‘go. New York, NY, USA:
ACM, 1990, pp. 249-256. URL: https://doi.org/10.1145/
97243.97281.

Erik Nilsson. “Design Patterns for User Interface for Mobile
Applications.” In: Advances in Engineering Software 40 (Jan. 2009),
pp- 1318-1328. URL: https://doi.org/10.1007/978-1-84882-
206-1_28.

Don Norman. The Invisible Computer. The MIT Press, 1999.

Donald A. Norman and Jakob Nielsen. “Gestural interfaces: a
step backward in usability.” In: Interactions 17.5 (Sept. 2010),
pPpP. 46—49. URL: https://doi.org/10.1145/1836216.1836228.

Nuigroup. Wiki: Natural User Interface. 2014. URL: http: //
wiki.nuigroup.com/Natural_User_Interface#Publications
(visited on 10/10/2014).

Vyacheslav Olshevsky et al. “Touchless Gestures for Interac-
tive Messaging: Gesture Interface for Sending Emoji.” In: 22nd
International Conference on Human-Computer Interaction with Mo-
bile Devices and Services. MobileHCI "20. New York, NY, USA:
Association for Computing Machinery, Oct. 2020, pp. 1—4. URL:
https://doi.org/10.1145/3406324.3410535.

Barry Overeem. Daily Scrum - Tips & Tactics. Sept. 2015. URL:
https://www.scrum.org/resources/blog/daily-scrum-tips-
tactics (visited on 05/04/2019).

Barry Overeem. Jira - A Necessary Evil? Dec. 2016. URL: https:
//www.scrum.org/resources/blog/jira- necessary-evil
(visited on 03/18/2020).

K. V. Jeeva Padmini et al. “Challenges Faced by Agile Testers: A
Case Study.” In: 2018 Moratuwa Engineering Research Conference
(MERCon). May 2018, pp. 431—436. URL: https://doi.org/10.
1109/MERCon.2018.8421968.

Stephen R. Palmer. Practical Guide to Feature-Driven Development,
A. Upper Saddle River, NJ: Prentice Hall, Feb. 2002.

337

https://doi.org/10.1145/169059.169166
https://doi.org/10.1145/97243.97281
https://doi.org/10.1145/97243.97281
https://doi.org/10.1007/978-1-84882-206-1_28
https://doi.org/10.1007/978-1-84882-206-1_28
https://doi.org/10.1145/1836216.1836228
http://wiki.nuigroup.com/Natural_User_Interface#Publications
http://wiki.nuigroup.com/Natural_User_Interface#Publications
https://doi.org/10.1145/3406324.3410535
https://www.scrum.org/resources/blog/daily-scrum-tips-tactics
https://www.scrum.org/resources/blog/daily-scrum-tips-tactics
https://www.scrum.org/resources/blog/jira-necessary-evil
https://www.scrum.org/resources/blog/jira-necessary-evil
https://doi.org/10.1109/MERCon.2018.8421968
https://doi.org/10.1109/MERCon.2018.8421968

338

BIBLIOGRAPHY

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

Shelly Park et al. “An interactive speech interface for summa-
rizing agile project planning meetings.” In: CHI 06 Extended
Abstracts on Human Factors in Computing Systems. CHI EA “06.
New York, NY, USA: Association for Computing Machinery,
Apr. 2006, pp. 1205-1210. URL: https://doi.org/10.1145/
1125451.1125677.

D. L. Parnas and P. C. Clements. “A rational design process:
How and why to fake it.” In: IEEE Transactions on Software
Engineering SE-12.2 (Feb. 1986), pp. 251-257. URL: https://doi.
org/10.1109/TSE.1986.6312940.

Jeff Patton. Don’t Know What I Want, But I Know How to Get It.
Jan. 2008. URL: https://www.jpattonassociates.com/dont_
know_what_ i want/ (visited on 10/01/2021).

Jeff Patton. User Story Mapping: Discover the Whole Story, Build
the Right Product. 1st ed. Beijing ; Sebastopol, CA: O'Reilly and
Associates, Oct. 2014.

Esben Warming Pedersen and Kasper Hornbaek. “An exper-
imental comparison of touch interaction on vertical and hor-
izontal surfaces.” In: Proceedings of the 7th Nordic Conference
on Human-Computer Interaction: Making Sense Through Design.
NordiCHI "12. New York, NY, USA: Association for Computing
Machinery, Oct. 2012, pp. 370-379. URL: https://doi.org/10.
1145/2399016.2399074.

Roman Pichler. Agile Product Management with Scrum: Creating
Products that Customers Love. 1st ed. Upper Saddle River, NJ:
Addison-Wesley Professional, Mar. 2010.

Roman Pichler. A Template for Formulating Great Sprint Goals.
Mar. 2014. URL: https://www.romanpichler.com/blog/sprint-
goal-template/ (visited on 12/07/2019).

Roman Pichler. Creating Effective Sprint Goals. Dec. 2022. URL:
https://www. romanpichler.com/blog/effective- sprint-
goals/ (visited on 02/03/2024).

H. Polachek. “History of the journal Mathematical Tables and
other Aids to Computation, 1959-1965.” In: IEEE Annals of
the History of Computing 17.3 (1995), pp.- 67—74. URL: https:
//doi.org/10.1109/85.397062.

Alexei Quapp. Konzeption und Weiterentwicklung eines Tools zur
Unterstiitzung des Review-Prozesses in Scrum. Master Thesis.
Paderborn University, Jan. 2017.

L. B. S. Raccoon. “Fifty years of progress in software engineer-
ing.” In: ACM SIGSOFT Software Engineering Notes 22.1 (Jan.
1997), pp- 88-104. URL: https://doi.org/10.1145/251759.
251878.

https://doi.org/10.1145/1125451.1125677
https://doi.org/10.1145/1125451.1125677
https://doi.org/10.1109/TSE.1986.6312940
https://doi.org/10.1109/TSE.1986.6312940
https://www.jpattonassociates.com/dont_know_what_i_want/
https://www.jpattonassociates.com/dont_know_what_i_want/
https://doi.org/10.1145/2399016.2399074
https://doi.org/10.1145/2399016.2399074
https://www.romanpichler.com/blog/sprint-goal-template/
https://www.romanpichler.com/blog/sprint-goal-template/
https://www.romanpichler.com/blog/effective-sprint-goals/
https://www.romanpichler.com/blog/effective-sprint-goals/
https://doi.org/10.1109/85.397062
https://doi.org/10.1109/85.397062
https://doi.org/10.1145/251759.251878
https://doi.org/10.1145/251759.251878

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

BIBLIOGRAPHY

Brian Randell. “The 1968/69 nato software engineering re-
ports.” In: History of Software Engineering (1996), p. 37.

Fred Reichheld. The Ultimate Question: Driving Good Profits and
True Growth. 1st ed. Boston, Mass: Harvard Business School
Press, Mar. 2006.

Stephan Richter, Christian Holz, and Patrick Baudisch. “Boot-
strapper: recognizing tabletop users by their shoes.” In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems. CHI "12. New York, NY, USA: Association for
Computing Machinery, May 2012, pp. 1249-1252. URL: https:
//doi.org/10.1145/2207676.2208577.

Enrique TOPO Rodriguez. Rugby: The Art of Scrummaging: A
History, a Manual and a Law Dissertation on the Rugby Scrum. 1st
reprint 2018 of 1st edition 2014. Meyer & Meyer Sport, Apr.
2018.

Yvonne Rogers and Sian Lindley. “Collaborating Around Verti-
cal and Horizontal Large Interactive Displays: Which Way Is
Best?” In: Interacting with Computers 16 (Dec. 2004), pp. 1133—
1152. URL: https://doi.org/10.1016/j.intcom.2004.07.008.

Yvonne Rogers, Helen Sharp, and Jenny Preece. Interaction
Design: Beyond Human-Computer Interaction. 4th ed. Chichester:
Wiley John + Sons, May 2015.

Ratl Rojas and Ulf Hashagen. The First Computers History and
Architectures. Cambridge, MA, USA: MIT Press, 2000.

Ron Jeffries. What is Extreme Programming? Mar. 2011. URL:

339

https://ronjeffries.com/xprog/what-is-extreme-programming/

(visited on 01/04/2024).

Mario Rose. Tool-Support zur Qualititssicherung in agilen Scrum
Projekten. Master Thesis. Paderborn University, 2016.

Jorg Roth and Claus Unger. “Using Handheld Devices in Syn-
chronous Collaborative Scenarios.” In: Handheld and Ubiqui-
tous Computing. Ed. by Peter Thomas and Hans-W. Gellersen.
Berlin, Heidelberg: Springer, 2000, pp. 187-199. URL: https:
//doi.org/10.1007/3-540-39959-3_14.

Dr Winston W Royce. “Managing the development of large soft-
ware systems.” In: Proceedings IEEE WESCON. 1970, pp. 328-

338.

Jessica Rubart. “A Cooperative Multitouch Scrum Task Board
for Synchronous Face-to-Face Collaboration.” In: Proceedings
of the Ninth ACM International Conference on Interactive Table-
tops and Surfaces - ITS '14. Dresden, Germany: ACM Press,
2014, pp- 387-392. URL: https://doi.org/10.1145/2669485.
2669551.

https://doi.org/10.1145/2207676.2208577
https://doi.org/10.1145/2207676.2208577
https://doi.org/10.1016/j.intcom.2004.07.008
https://ronjeffries.com/xprog/what-is-extreme-programming/
https://doi.org/10.1007/3-540-39959-3_14
https://doi.org/10.1007/3-540-39959-3_14
https://doi.org/10.1145/2669485.2669551
https://doi.org/10.1145/2669485.2669551

340

BIBLIOGRAPHY

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

K.S. Rubin. Essential Scrum: A Practical Guide to the Most Popular
Agile Process. Addison-Wesley Signature Series (Cohn). Pearson
Education, 2013.

Nayan B. Ruparelia. “Software development lifecycle models.”
In: ACM SIGSOFT Software Engineering Notes 35.3 (May 2010),
p- 8. URL: https://doi.org/10.1145/1764810.1764814.

K. Ryall et al. “Experiences with and observations of direct-
touch tabletops.” In: First IEEE international workshop on horizon-
tal interactive human-computer systems (TABLETOP "06). 2006, 8
pp-— URL: https://doi.org/10.1109/TABLETOP.2006.12.

Lawrence] Sanna et al. “The hourglass is half full or half empty:
Temporal framing and the group planning fallacy.” In: Group
Dynamics: Theory, Research, and Practice 9.3 (2005), p. 173. URL:
https://doi.org/10.1037/1089-2699.9.3.173.

Scaled Agile Inc. SAFe 6.0 Framework. 2024. URL: https://
scaledagileframework.com/ (visited on 01/14/2024).

Gianluca Schiavo et al. “Evaluating an automatic rotation fea-
ture in collaborative tabletop workspaces.” In: CHI ‘11 Extended
Abstracts on Human Factors in Computing Systems. CHI EA "11.
New York, NY, USA: Association for Computing Machinery,
May 2011, pp. 1315-1320. URL: https://doi.org/10.1145/
1979742.1979767.

Sebastian Schmidt et al. “A set of multi-touch graph interac-
tion techniques.” In: ACM International Conference on Interactive
Tabletops and Surfaces - ITS '10. Saarbrücken, Germany:
ACM Press, 2010, p. 113. URL: https://doi.org/10.1145/
1936652.1936673.

Ulrike Schultze and Michel Avital. “Designing interviews to
generate rich data for information systems research.” In: Infor-
mation and Organization 21.1 (Jan. 2011), pp. 1-16. URL: https:
//doi.org/10.1016/j.infoandorg.2010.11.001.

Ken Schwaber. “SCRUM Development Process.” In: Business
Object Design and Implementation. Ed. by Jeff Sutherland et al.
London: Springer London, 1997, pp. 117-134. URL: https://
doi.org/10.1007/978-1-4471-0947-1_11.

Ken Schwaber. About. 2020. URL: https://www.scrum.org/
about (visited on 11/28/2020).

Ken Schwaber and Mike Beedle. Agile Software Development
with Scrum. 1st. Upper Saddle River, NJ, USA: Prentice Hall
PTR, 2001.

Ken Schwaber and Jeff Sutherland. The Scrum Guide. Nov. 2017.
URL: https://scrumguides.org/docs/scrumguide/v2017/
2017-Scrum-Guide-US. pdf (visited on 11/19/2018).

https://doi.org/10.1145/1764810.1764814
https://doi.org/10.1109/TABLETOP.2006.12
https://doi.org/10.1037/1089-2699.9.3.173
https://scaledagileframework.com/
https://scaledagileframework.com/
https://doi.org/10.1145/1979742.1979767
https://doi.org/10.1145/1979742.1979767
https://doi.org/10.1145/1936652.1936673
https://doi.org/10.1145/1936652.1936673
https://doi.org/10.1016/j.infoandorg.2010.11.001
https://doi.org/10.1016/j.infoandorg.2010.11.001
https://doi.org/10.1007/978-1-4471-0947-1_11
https://doi.org/10.1007/978-1-4471-0947-1_11
https://www.scrum.org/about
https://www.scrum.org/about
https://scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf

[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

BIBLIOGRAPHY

Jan Schwarzer et al. “Ambient Surfaces: Interactive Displays
in the Informative Workspace of Co-located Scrum Teams.”
In: Proceedings of the 9th Nordic Conference on Human-Computer
Interaction. NordiCHI "16. Gothenburg, Sweden: Association
for Computing Machinery, Oct. 2016, pp. 1—4. URL: https :
//doi.org/10.1145/2971485.2971493.

Johannes Schoning et al. “Building Interactive Multi-Touch
Surfaces.” In: J. Graphics, GPU, & Game Tools 14 (Jan. 2009),

PpP- 35-55. URL: https://doi.org/10.1080/2151237X.2009.

10129285.

Stacey D. Scott, M. Sheelagh T. Carpendale, and Kori Inkpen.
“Territoriality in collaborative tabletop workspaces.” In: Pro-
ceedings of the 2004 ACM conference on Computer supported coop-
erative work. CSCW “04. New York, NY, USA: Association for
Computing Machinery, Nov. 2004, pp. 294-303. URL: https:
//doi.org/10.1145/1031607.1031655.

Stacey D. Scott, Karen D. Grant, and Regan L. Mandryk. “Sys-
tem Guidelines for Co-located, Collaborative Work on a Table-
top Display.” In: ECSCW 2003. Ed. by Kari Kuutti et al. Dor-
drecht: Springer Netherlands, 2003, pp. 159-178. URL: https:
//doi.org/10.1007/978-94-010-0068-0_9.

Scrum Inc. The Official Scrum@Scale Guide. 2021. URL: https:
//www.scrumatscale.com/scrum-at-scale-guide/ (visited on
01/14/2024).

Scrum.org. 2019 Scrum Master Trends Report. 2019. URL: https:

//www.scrum.org/resources/2019-scrum-master- trends -
report (visited on 11/28/2020).

Scrum.org. Professional Scrum Certified Count. 2020. URL: https:
//www.scrum.org/professional - scrum- certifications/
count (visited on 11/28/2020).

Scrum.org. Professional Scrum Master™ III. 2020. URL: https://

www.scrum.org/professional-scrum-master-iii-certification

(visited on 12/01/2020).

Scrum.org. What is ScrumBut? 2020. URL: https://www.scrum.
org/resources/what-scrumbut (visited on 12/13/2020).

Scrum.org. What is a Daily Scrum? 2020. URL: https://www.
scrum.org/resources/what-is-a-daily- scrum (visited on
03/08/2020).

Scrum.org. Online Nexus Guide | Scrum.org. Jan. 2021. URL:
https://www.scrum.org/resources/online - nexus - guide
(visited on 01/14/2024).

341

https://doi.org/10.1145/2971485.2971493
https://doi.org/10.1145/2971485.2971493
https://doi.org/10.1080/2151237X.2009.10129285
https://doi.org/10.1080/2151237X.2009.10129285
https://doi.org/10.1145/1031607.1031655
https://doi.org/10.1145/1031607.1031655
https://doi.org/10.1007/978-94-010-0068-0_9
https://doi.org/10.1007/978-94-010-0068-0_9
https://www.scrumatscale.com/scrum-at-scale-guide/
https://www.scrumatscale.com/scrum-at-scale-guide/
https://www.scrum.org/resources/2019-scrum-master-trends-report
https://www.scrum.org/resources/2019-scrum-master-trends-report
https://www.scrum.org/resources/2019-scrum-master-trends-report
https://www.scrum.org/professional-scrum-certifications/count
https://www.scrum.org/professional-scrum-certifications/count
https://www.scrum.org/professional-scrum-certifications/count
https://www.scrum.org/professional-scrum-master-iii-certification
https://www.scrum.org/professional-scrum-master-iii-certification
https://www.scrum.org/resources/what-scrumbut
https://www.scrum.org/resources/what-scrumbut
https://www.scrum.org/resources/what-is-a-daily-scrum
https://www.scrum.org/resources/what-is-a-daily-scrum
https://www.scrum.org/resources/online-nexus-guide

342

BIBLIOGRAPHY

[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256]

[257]

[258]

[259]

[260]

T. Sedano, P. Ralph, and C. Péraire. “The Product Backlog.”
In: 2019 IEEE/ACM g41st International Conference on Software
Engineering (ICSE). May 2019, pp. 200—211. URL: https://doi.
org/10.1109/ICSE.2019.00036.

Dorothy Shamonsky. The Idea of a Natural User Interface is Not
Naturally Easy to Grasp. June 2019. URL: https ://medium .
com/swlh/the - idea- of - a- natural - user - interface- is -
not - naturally - easy - to - grasp - a4a5a9160be9 (visited on
03/11/2021).

Vibhu Saujanya Sharma and Vikrant Kaulgud. “Agile Work-
bench: Tying People, Process, and Tools in Distributed Agile
Delivery.” In: 2016 IEEE 11th International Conference on Global
Software Engineering (ICGSE). Aug. 2016, pp. 69—73. URL: https:
//doi.org/10.1109/ICGSE.2016.17.

Ben Shneiderman et al. Designing the User Interface: Strategies for
Effective Human-Computer Interaction. 6th ed. Boston: Pearson,
Apr. 2016.

Garth Shoemaker et al. “Mid-air text input techniques for very
large wall displays.” In: Proceedings of Graphics Interface 2009.
GI "09. CAN: Canadian Information Processing Society, May
2009, pp. 231—238. URL: https://dl.acm.org/doi/10.5555/
1555880.1555931.

David Skinner. “The Age of Female Computers.” In: The New At-
lantis - a journal of technology & society Spring 2006 (2006), pp. 96—
103. URL: https://www. thenewatlantis.com/publications/
the-age-of-female-computers.

James P. Spradley. The Ethnographic Interview. New York: Thom-
son Learning, Apr. 1979.

Jennifer Stapleton. DSDM, Dynamic Systems Development Method:
The Method in Practice. Cambridge University Press, 1997.

Martin Stember. Konzeption und prototypische Entwicklung eines
Taskboards als Tangible User Interface zur Unterstiitzung des agilen
Vorgehensmodells Scrum. Master Thesis. Paderborn University,
2018.

Steve Messenger. Chapter 6: Process. 2014. URL: https://www.
agilebusiness . org/ page/ProjectFramework _ 06 _ Process
(visited on 07/30/2019).

Jeff Sutherland. Story Points: Why are they better than hours? May
2013. URL: https://www.scruminc.com/story-points-why-
are-they-better-than/ (visited on 12/31/2019).

Jeff Sutherland and J. J. Sutherland. Scrum: The Art of Doing

Twice the Work in Half the Time. 1st edition. New York: Currency,
Sept. 2014.

https://doi.org/10.1109/ICSE.2019.00036
https://doi.org/10.1109/ICSE.2019.00036
https://medium.com/swlh/the-idea-of-a-natural-user-interface-is-not-naturally-easy-to-grasp-a4a5a9160be9
https://medium.com/swlh/the-idea-of-a-natural-user-interface-is-not-naturally-easy-to-grasp-a4a5a9160be9
https://medium.com/swlh/the-idea-of-a-natural-user-interface-is-not-naturally-easy-to-grasp-a4a5a9160be9
https://doi.org/10.1109/ICGSE.2016.17
https://doi.org/10.1109/ICGSE.2016.17
https://dl.acm.org/doi/10.5555/1555880.1555931
https://dl.acm.org/doi/10.5555/1555880.1555931
https://www.thenewatlantis.com/publications/the-age-of-female-computers
https://www.thenewatlantis.com/publications/the-age-of-female-computers
https://www.agilebusiness.org/page/ProjectFramework_06_Process
https://www.agilebusiness.org/page/ProjectFramework_06_Process
https://www.scruminc.com/story-points-why-are-they-better-than/
https://www.scruminc.com/story-points-why-are-they-better-than/

[261]

[262]

[263]

[264]

[265]

[266]

[267]

[268]

[269]

[270]

[271]

BIBLIOGRAPHY

Mohsen Taheri and S. Masoud Sadjadi. “A Feature-Based Tool-
Selection Classification for Agile Software Development.” In:
July 2015, pp. 700—704. URL: https://doi.org/10.18293/
SEKE2015-234.

Hirotaka Takeuchi and Ikujiro Nonaka. “The New New Prod-
uct Development Game.” In: Harvard Business Review 64.1
(1986), p. 12.

Hao Tang et al. “GestureGAN for Hand Gesture-to-Gesture
Translation in the Wild.” In: Proceedings of the 26th ACM inter-
national conference on Multimedia. MM "18. New York, NY, USA:
Association for Computing Machinery, Oct. 2018, pp. 774—782.
URL: https://doi.org/10.1145/3240508.3240704.

The LeSS Company B.V. LeSS Framework. 2024. URL: https :
//less.works/less/framework (visited on 01/14/2024).

Steven Thomas. Revisiting the Iterative Incremental Mona Lisa.
Dec. 2012. URL: http://itsadeliverything.com/revisiting-

the-iterative-incremental-mona-lisa (visited on 01/03/2019).

Chad Tossell et al. “Characterizing web use on smartphones.”
In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. CHI "12. New York, NY, USA: Associa-
tion for Computing Machinery, May 2012, pp. 2769—2778. URL:
https://doi.org/10.1145/2207676.2208676.

Daniel W Turner. “Qualitative Interview Design: A Practical
Guide for Novice Investigators.” In: The Qualitative Report 15.3
(2010), pp. 754—760. URL: https://nsuworks.nova.edu/tqr/
voll5/iss3/19.

Maria Eloina Pelaez Valdez. “A Gift From Pandora’s Box -
The Software Crisis.” PhD thesis. Edinburgh: University of
Edinburgh, 1988.

Veli-Pekka Eloranta, Kai Koskimies, and Tommi Mikkonen. “Ex-
ploring ScrumBut—An empirical study of Scrum anti-patterns.”
In: Information and Software Technology 74 (June 2016), pp. 194—
203. URL: https://doi.org/10.1016/j.infsof.2015.12.003.

VersionOne. gth Annual State of Agile Report. Apr. 2017. URL:
https://www.stateofagile.com/#ufh-i-338592759 - 9th -

annual-state-of-agile-report/473508 (visited on 02/12/2019).

VersionOne. 13th Annual State of Agile Survey | The Largest,

343

Longest-Running Agile Survey. Feb. 2019. URL: https://stateofagile.

versionone.com/ (visited on 02/12/2019).

https://doi.org/10.18293/SEKE2015-234
https://doi.org/10.18293/SEKE2015-234
https://doi.org/10.1145/3240508.3240704
https://less.works/less/framework
https://less.works/less/framework
http://itsadeliverything.com/revisiting-the-iterative-incremental-mona-lisa
http://itsadeliverything.com/revisiting-the-iterative-incremental-mona-lisa
https://doi.org/10.1145/2207676.2208676
https://nsuworks.nova.edu/tqr/vol15/iss3/19
https://nsuworks.nova.edu/tqr/vol15/iss3/19
https://doi.org/10.1016/j.infsof.2015.12.003
https://www.stateofagile.com/#ufh-i-338592759-9th-annual-state-of-agile-report/473508
https://www.stateofagile.com/#ufh-i-338592759-9th-annual-state-of-agile-report/473508
https://stateofagile.versionone.com/
https://stateofagile.versionone.com/

344

BIBLIOGRAPHY

[272]

[273]

[274]

[275]

[276]

[277]

[278]

[279]

[280]

Frank Vetere et al. “Social NUI: social perspectives in natural
user interfaces.” In: Proceedings of the 2014 companion publica-
tion on Designing interactive systems. DIS Companion "14. New
York, NY, USA: Association for Computing Machinery, June
2014, pp. 215—218. URL: https://doi.org/10.1145/2598784.
2598802.

Dr. Hendrik Vollrath. START-UP-Hochschul-Ausgriindungen NRW.
2018. URL: https://www.efre.nrw.de/wege-zur-foerderung/
weitere- foerderprogramme/start-up-transfernrw/start-
up-hochschul-ausgruendungen-nrw/ (visited on 07/30/2023).

Henning Voss and Georg Schneider. “Nori Scrum meeting
table.” In: Proceedings of the ACM International Conference on
Interactive Tabletops and Surfaces. ITS '09. New York, NY, USA:
Association for Computing Machinery, Nov. 2009, p. 1. URL:
https://doi.org/10.1145/1731903.1731956.

Gerard Wagenaar, Sietse Overbeek, and Remko Helms. “De-
scribing Criteria for Selecting a Scrum Tool Using the Technol-
ogy Acceptance Model.” In: Intelligent Information and Database
Systems. Ed. by Ngoc Thanh Nguyen et al. Lecture Notes in
Computer Science. Cham: Springer International Publishing,
2017, pp. 811-821. URL: https://doi.org/10.1007/978-3-319-
54430-4_77.

Bill Wake. INVEST in Good Stories, and SMART Tasks. Aug.
2003. URL: https://xpl23.com/articles/invest-in-good-
stories-and-smart-tasks/ (visited on 01/26/2019).

Bill Wake. Independent Stories in the INVEST Model. Feb. 2012.
URL: https://xpl23.com/articles/independent - stories -
in-the-invest-model/ (visited on 01/26/2019).

Feng Wang and Xiangshi Ren. “Empirical evaluation for finger
input properties in multi-touch interaction.” In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems.
CHI "09. New York, NY, USA: Association for Computing
Machinery, Apr. 2009, pp. 1063-1072. URL: https://doi.org/
10.1145/1518701.1518864.

Diane Watson et al. “Deconstructing the touch experience.” In:
Proceedings of the 2013 ACM international conference on Interactive
tabletops and surfaces. ITS "13. New York, NY, USA: Association
for Computing Machinery, Oct. 2013, pp. 199-208. URL: https:
//doi.org/10.1145/2512349.25128109.

Sebastian Weber et al. “APDT: An Agile Planning Tool for
Digital Tabletops.” In: Agile Processes in Software Engineering
and Extreme Programming. Ed. by Pekka Abrahamsson et al.
Lecture Notes in Business Information Processing. Springer

https://doi.org/10.1145/2598784.2598802
https://doi.org/10.1145/2598784.2598802
https://www.efre.nrw.de/wege-zur-foerderung/weitere-foerderprogramme/start-up-transfernrw/start-up-hochschul-ausgruendungen-nrw/
https://www.efre.nrw.de/wege-zur-foerderung/weitere-foerderprogramme/start-up-transfernrw/start-up-hochschul-ausgruendungen-nrw/
https://www.efre.nrw.de/wege-zur-foerderung/weitere-foerderprogramme/start-up-transfernrw/start-up-hochschul-ausgruendungen-nrw/
https://doi.org/10.1145/1731903.1731956
https://doi.org/10.1007/978-3-319-54430-4_77
https://doi.org/10.1007/978-3-319-54430-4_77
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
https://xp123.com/articles/independent-stories-in-the-invest-model/
https://xp123.com/articles/independent-stories-in-the-invest-model/
https://doi.org/10.1145/1518701.1518864
https://doi.org/10.1145/1518701.1518864
https://doi.org/10.1145/2512349.2512819
https://doi.org/10.1145/2512349.2512819

[281]

[282]

[283]

[284]

[285]

[286]

[287]

[288]

[289]

[290]

[291]

BIBLIOGRAPHY

Berlin Heidelberg, 2008, pp. 202—203. URL: https://doi.org/
10.1007/978-3-540-68255-4_21.

M. Weiser, R. Gold, and J. S. Brown. “The origins of ubiquitous
computing research at PARC in the late 1980s.” In: IBM Systems
Journal 38.4 (1999), pp. 693—696. URL: https://doi.org/10.
1147/sj.384.0693.

Mark Weiser. “The Computer for the 21 st Century.” In: Scien-
tific American 265.3 (1991), pp. 94—105. URL: http://www.jstor.
org/stable/24938718.

Mark Weiser and John Seely Brown. “Designing calm tech-
nology.” In: Xerox PARC (1995). URL: https://calmtech.com/
papers/designing-calm-technology (visited on 10/15/2021).

Pierre Wellner. “Interacting with paper on the DigitalDesk.”
In: Communications of the ACM 36.7 (July 1993), pp. 87-96. URL:
https://doi.org/10.1145/159544.159630.

H. G. Wells. H.G. Wells - The Sea Lady: "Human history in essence
is the history of ideas.” Horse’s Mouth, Feb. 2017.

Dave West. “Water-Scrum-Fall Is The Reality Of Agile For Most
Organizations Today.” In: Application Development & Delivery
Professionals Forrester Research, Inc (2011), p. 17. URL: https://
www . verheulconsultants.nl/water-scrum- fall_Forrester.
pdf (visited on 10/20/2020).

Matthew T. West. “Ubiquitous computing.” In: Proceedings of the
39th annual ACM SIGUCCS conference on User services. SIGUCCS
"11. New York, NY, USA: Association for Computing Machinery,
Nov. 2011, pp. 175-182. URL: https://doi.org/10.1145/
2070364.2070410.

Jerome White and Mayuri Duggirala. “Speech-interface prompt
design: lessons from the field.” In: Proceedings of the Seventh
International Conference on Information and Communication Tech-
nologies and Development. ICTD "15. New York, NY, USA: As-
sociation for Computing Machinery, May 2015, pp. 1—4. URL:
https://doi.org/10.1145/2737856.2737861.

Michael R. Williams. A History of Computing Technology, 2nd
Edition. 2 edition. Los Alamitos, Calif: Wiley-IEEE Computer
Society Pr, Mar. 1997.

Niklaus Wirth. “A Brief History of Software Engineering.” In:
IEEE Annals of the History of Computing 30.3 (July 2008), pp. 32—
39. URL: https://doi.org/10.1109/MAHC.2008. 33.

Stefan Wolpers. Sprint Review Anti-Patterns: 15 Ways how Scrum
Teams Can Improve. Nov. 2019. URL: https://age-of-product.
com/sprint-review-anti-patterns/ (visited on 03/08/2020).

345

https://doi.org/10.1007/978-3-540-68255-4_21
https://doi.org/10.1007/978-3-540-68255-4_21
https://doi.org/10.1147/sj.384.0693
https://doi.org/10.1147/sj.384.0693
http://www.jstor.org/stable/24938718
http://www.jstor.org/stable/24938718
https://calmtech.com/papers/designing-calm-technology
https://calmtech.com/papers/designing-calm-technology
https://doi.org/10.1145/159544.159630
https://www.verheulconsultants.nl/water-scrum-fall_Forrester.pdf
https://www.verheulconsultants.nl/water-scrum-fall_Forrester.pdf
https://www.verheulconsultants.nl/water-scrum-fall_Forrester.pdf
https://doi.org/10.1145/2070364.2070410
https://doi.org/10.1145/2070364.2070410
https://doi.org/10.1145/2737856.2737861
https://doi.org/10.1109/MAHC.2008.33
https://age-of-product.com/sprint-review-anti-patterns/
https://age-of-product.com/sprint-review-anti-patterns/

346

BIBLIOGRAPHY

[292]

[293]

[294]

[295]

[296]

[297]

(298]

[299]

[300]

[301]

Stefan Wolpers. The Daily Scrum: 16 Stand-up Anti-Patterns to
Avoid. Oct. 2019. URL: https://age-of-product.com/stand-
up-anti-patterns/ (visited on 03/07/2020).

Stefan Wolpers. Scrum: 20 Sprint Planning Anti-Patterns. Jan.
2020. URL: https://age- of - product. com/scrum- sprint -
planning-anti-patterns/ (visited on 03/04/2020).

Xin Wang and Frank Maurer. “Tabletop AgilePlanner: A tabletop-
based project planning tool for agile software development
teams.” In: 2008 3rd IEEE International Workshop on Horizontal
Interactive Human Computer Systems. Amsterdam: IEEE, Oct.
2008, pp. 121-128. URL: https://doi.org/10.1109/TABLETOP.
2008.4660194.

Raymond T. Yeh. “System Development as a Wicked Problem.”
In: International Journal of Software Engineering and Knowledge
Engineering 1.2 (1991), pp. 117-130. URL: https://doi.org/10.
1142/50218194091000123.

Gayle Young. HughLeCaine.com - Instruments. 1999. URL: http:
//www . hughlecaine . com/en/instruments . html (visited on
03/15/2021).

Ulrich von Zadow et al. “YouTouch! Low-Cost User Identi-
fication at an Interactive Display Wall.” In: Proceedings of the
International Working Conference on Advanced Visual Interfaces.
AVI "16. New York, NY, USA: Association for Computing Ma-
chinery, June 2016, pp. 144-151. URL: https://doi.org/10.
1145/2909132.2909258.

Hind Zahraoui and Mohammed Abdou Janati Idrissi. “Adjust-
ing story points calculation in scrum effort time estimation.”
In: 2015 10th International Conference on Intelligent Systems: The-
ories and Applications (SITA). Oct. 2015, pp. 1-8. URL: https:
//doi.org/10.1109/SITA.2015.7358400.

digital.ai. 15th Annual State Of Agile Report. July 2021. URL:
https://stateofagile.com/ (visited on 01/13/2024).

digital.ai. 16th Annual State Of Agile Report. July 2022. URL:
https://stateofagile.com/ (visited on 01/13/2024).

tzinformatik. What is an Use Case? Oct. 2019. URL: https :
//t2informatik.de/en/smartpedia/use - case/ (visited on
01/21/2024).

https://age-of-product.com/stand-up-anti-patterns/
https://age-of-product.com/stand-up-anti-patterns/
https://age-of-product.com/scrum-sprint-planning-anti-patterns/
https://age-of-product.com/scrum-sprint-planning-anti-patterns/
https://doi.org/10.1109/TABLETOP.2008.4660194
https://doi.org/10.1109/TABLETOP.2008.4660194
https://doi.org/10.1142/S0218194091000123
https://doi.org/10.1142/S0218194091000123
http://www.hughlecaine.com/en/instruments.html
http://www.hughlecaine.com/en/instruments.html
https://doi.org/10.1145/2909132.2909258
https://doi.org/10.1145/2909132.2909258
https://doi.org/10.1109/SITA.2015.7358400
https://doi.org/10.1109/SITA.2015.7358400
https://stateofagile.com/
https://stateofagile.com/
https://t2informatik.de/en/smartpedia/use-case/
https://t2informatik.de/en/smartpedia/use-case/

LIST OF FIGURES

Figure 2.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 4.21
Figure 4.22
Figure 4.23
Figure 4.24

Two women wiring ENIAC 15
The software development lifecycle (SDLC) . . 32
Classification of SDLC models 35
Waterfall Model 37
The first documented process model 38
Restarting the waterfall 39
Proposed development process by Royce . .. 39
Relative costs to fix software errors 40
V-Model 41
Roles of the V-Model 42
Spiral Model 43
Incremental development 46
Iterative development 47
Incremental and iterative development 48
Rapid Iterative Production Prototyping (RIPP) 55
DSDM. 58
XP feedbackloop 67
Distribution of agile approaches 73
The sprintcycle 78
The cone of uncertainty 8o
Scrumvalues., 83
Brooks'slaw 84
The product ownerrole 85
The Scrum masterrole 89
Product backlog items 90
Product backlog grooming 91
Product backlog estimation 92
The sprint backlog 94
Sprint planning L. 96
Sprint execution L. 98
Daily Scrum 0L 99
Sprintreview L. 101
Sprint retrospective L. 102
Usecase 106
Userstory 106
User story with acceptance criteria 109
The "animal scale" 114
T-shirtssizes 114
Story points in a linear scale 115
Story points in a non-linear scale 115
Taskboard 118

347

348

LIST OF FIGURES

Figure 4.25
Figure 5.1
Figure 6.1
Figure 6.2
Figure 6.3
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11
Figure 7.12
Figure 7.13
Figure 7.14
Figure 7.15
Figure 7.16
Figure 7.17
Figure 7.18
Figure 7.19
Figure 7.20
Figure 7.21
Figure 7.22
Figure 7.23
Figure 7.24
Figure 7.25
Figure 7.26
Figure 7.27
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Figure 8.7
Figure 8.8
Figure 8.9
Figure 8.10
Figure 8.11
Figure 9.1
Figure 9.2
Figure 9.3

Burndownchart L. 119
Research timeline 126
Scrum anti-patterns 137
Scrum challenges and issues 139
Water-Scrum-Fall 140
Heuristic evaluation. 176
Analog taskboard 0L 178
Spreadsheet product backlog 180
Microsoft TFS 181
Jira. 182
Trello 182
Monday 183
ScrumDo oo 185
VersionOne 186
Law of proximity 188
Jirabacklog. 189
Jiraissuedetails 190
Estimation in IceScrum 193
Planning Poker in ScrumDo 193
Facilitator view of Estimably 194
Participant view of Estimably 194
BackloginJira 196
Empty sprint backlog in Jira 196
Filled sprint backlog in Jira 197
"Start sprint” dialogin Jira 197
Small display of the sprint goal in Jira 198
"Retrospective" text field in IceScrum 207
Top-level menu "Team" in VersionOne 207
Retrospectives list in VersionOne 208
Preparing a retrospective in VersionOne 209
A prepared retrospective in VersionOne 210
Meeting view of a retrospective in VersionOne 210
HCI paradigms 217
Command-line interface 218
Smalltalk 219
Jeff Han at the TED conference 222
Tangibles on the "Reactable” 225
Marble Answering Machine 229
The "AgilePlanner” system 242
Agile Planner for Digital Tabletops (APDT) . . 243
The "dBoard" system 245
Tasks shown on the dBoard 246
The "Nori"system 248
edelsprint interfaces 256
edelsprint architecture 258
Optical touch tracking 259

Figure 9.4

Figure 9.5

Figure 9.6

Figure 9.7

Figure 9.8

Figure 9.9

Figure 9.10
Figure 9.11
Figure 9.12
Figure 9.13
Figure 9.14
Figure 9.15
Figure 9.16
Figure 9.17
Figure 9.18
Figure 9.19
Figure 9.20
Figure 9.21
Figure 9.22
Figure 9.23
Figure 9.24
Figure 9.25
Figure 9.26
Figure 9.27
Figure 9.28
Figure 9.29
Figure 9.30
Figure 9.31
Figure 9.32
Figure 9.33
Figure 9.34

LIST OF FIGURES

Rear Diffused Illumination (RDI) 260
Fiducial markers 260
Comparison of touch points 261
Frustrated Total Internal Reflection (FTIR) . . . 261
Diffused Surface lllumination (DSI) 262
Laser Light Plane (LLP) 262
Tangible object with attached markers 264
HOUDINI pen and object patterns 264
Resting palm while writing 265
The edelsprint backlog 266
Backlog with collapsed sections 267
Userstory 268
The "Plan Improvements" step 270
The "Select Stories"step 271
Planning poker results 272
The sprint history 274
Tasks 275
Definitionofdone 275
Board 276
Backlog grooming at the tabletop 279
Quicktags 280
The "Story Feedback"step 282
The "Backlog Refinement" step 283
Satisfactionpoll 285
The "Set the Stage"step. 285
Feedback given to a user story 286
The "Story Feedback"step 286
Different opinions vs. consent opinions 287
Anonymized feedback given to a story 287
The "Team Feedback"step 288
The "Decide How to Improve"step 289

349

LIST OF TABLES

Table 4.1
Table 4.2
Table 5.1
Table 5.2
Table 6.1
Table 6.2
Table 7.1
Table 7.2
Table 7.3
Table 9.1
Table 9.2
Table 9.3
Table 9.4
Table 9.5
Table 9.6
Table 9.7
Table 9.8
Table 9.9
Table 9.10

Scrum components L 78
Scrum master services L. 88
Research methods 125
Supervised master theses 128
Research methods (RQ 1). 129
Interview participants 134
Research methods (RQ2). 171
Investigated Scrum tools 174
Requirements of the simulated project scenario 175
Comparison of optical tracking technologies . 263
Sprint planning issues 297
Daily Scrumissues 300
Sprint review issues 301
Sprint retrospective issues 302
Issues of the product owner role 302
Knowledge management issues 304
Issues of understanding Scrum 304
Issues of waterfall-ish environments 305
Issuesnotadressed 307

351

ACRONYMS

Al
ALM
APDT
API
BRL
CAD
CASE
CLI
CRUD
DOD
DOF
DOR
DSDM
DSI
EDVAC
ENIAC
FDD
FTIR
GUI
HCI
IDE
IR

D
JAD
LLP
MAM
MVP
NACA
NASA
NPS
NUI
OKR
PARC
PC
PBI
PSM

RDI
RIPP
RQ

RUP

Artificial Intelligence

Application Lifecycle Management
Agile Planner for Digital Tabletops
Application Programming Interface
Ballistic Research Laboratory
Computer Aided Design

Computer Aided Software Engineering
Command Line Interfaces

Create Read Update Delete

Definition of Done

Degrees of freedom

Definition of Ready

Dynamic Systems Development Method
Diffused Surface Illumination
Electronic Discrete Variable Automatic Computer
Electronic Numerical Integrator And Computer
Feature-Driven Development
Frustrated Total Internal Reflection
Graphical User Interface
Human-Computer Interaction
Integrated Development Environment
Infrared

Iterative and Incremental Development
Joined Application Design

Laser Light Plane

Marble Answering Machine

Minimum Viable Product

National Advisory Committee for Aeronautics
National Air and Space Administration
Net Promoter Score

Natural User Interface

Objectives Key Result

Palo Alto Research Center

Personal Computer

Product Backlog Item

Professional Scrum Master

Rapid Application Development

Rear Diffused Illumination

Rapid Iterative Production Prototyping
Research Question

Rational Unified Process

353

354

ACRONYMS

SDLC
SPA
SWAT
TUI
Ul
UML
URI
URL
UX
VR
VUI
WIMP
WPA
XP

Software Development Lifecycle
Single Page Application
Specialists With Advanced Tools
Tangible User Interface

User Interface

Unified Modeling Language
Uniform Resource Identifier
Uniform Resource Locator

User Experience

Virtual Reality

Voice User Interface

Windows, Icons, Menus, Pointers
Works Project Administration
Extreme Programming

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Solution
	1.3 Thesis Structure

	 Theoretical Foundation
	2 Historical Background
	2.1 From Human Computers to Electronic Computation
	2.1.1 17th Century - WW II: Human Computers
	2.1.2 WW II - 1950s: Electronic Computation

	2.2 From the Arise of Software to the Software Crisis
	2.2.1 1950s - The Arise of Software Development
	2.2.2 The mid 1960s and the Software Crisis

	2.3 Software Development as an Engineering Discipline
	2.3.1 1968 - The Arise of "Software Engineering"
	2.3.2 Reflecting on 50 Years of Software Engineering

	2.4 Summary and Lessons Learned

	3 The Evolution of SDLC Models
	3.1 SDLC Definition
	3.2 Terminology: Model vs. Methodology vs. Framework
	3.3 Classification of SDLC Models
	3.4 Plan-Driven Development
	3.4.1 Waterfall Model
	3.4.2 V-Model
	3.4.3 Spiral Model

	3.5 Iterative and Incremental Development
	3.5.1 Today's Understanding of IID
	3.5.2 IID as Transformative Power to the Paradigm Shift

	3.6 The Birth Of "Agile" as the Current State of the Art
	3.6.1 Rapid Application Development
	3.6.2 Dynamic Systems Development Method
	3.6.3 Extreme Programming
	3.6.4 The Agile Manifesto

	3.7 Summary

	4 Scrum: Theory and Practice
	4.1 Roots and Scrum Theory
	4.2 Overview of the Scrum Framework
	4.3 Sprint Cycle Rules
	4.4 The Scrum Team
	4.4.1 Five Values and Team Size
	4.4.2 The Product Owner
	4.4.3 The Development Team
	4.4.4 The Scrum Master

	4.5 The Product Backlog and its Management
	4.6 The Sprint Backlog
	4.7 The Scrum Events
	4.7.1 Sprint Planning
	4.7.2 The Daily Scrum
	4.7.3 Sprint Review
	4.7.4 Sprint Retrospective

	4.8 What Scrum Left Out: De Facto Standards
	4.8.1 User Stories
	4.8.2 Estimation Techniques
	4.8.3 Tools for Monitoring Sprint Progress

	 Problem Analysis
	5 Research Questions and Methods
	5.1 Research Questions
	5.2 Research Method Overview

	6 Scrum Issues and Challenges
	6.1 Research Method Details
	6.1.1 Literature Review
	6.1.2 Ethnographic Studies
	6.1.3 Interviews

	6.2 Results
	6.2.1 Overview
	6.2.2 Challenge: Waterfall-Ish Environments
	6.2.3 Challenge: Knowledge Management
	6.2.4 Challenge: The Product Owner Role
	6.2.5 Challenge: Sprint Planning
	6.2.6 Challenge: Daily Scrum
	6.2.7 Challenge: Sprint Review
	6.2.8 Challenge: Sprint Retrospective
	6.2.9 Challenge: Understanding Scrum

	6.3 Summary

	7 Status Quo of Scrum Tool Support
	7.1 Research Method Details
	7.1.1 Literature Review
	7.1.2 Field Studies
	7.1.3 Feature Analysis and Heuristic Evaluation

	7.2 Results
	7.2.1 Tool Types and Usage Trends
	7.2.2 Limitations of Today's Agile ALM Tools

	7.3 Conclusion

	 The Implemented Solution
	8 Natural User Interfaces in Agile Environments
	8.1 NUIs as an Outcome of HCI Evolution
	8.2 Different NUI Types
	8.2.1 Touch and Multi-Touch
	8.2.2 Gestural, Speech, and Tangible Interfaces

	8.3 Basic Design Considerations for a NUI Solution
	8.4 Design Considerations of Touch-Based Interfaces
	8.4.1 Mobile Interfaces
	8.4.2 Tabletops
	8.4.3 Vertical Displays

	8.5 Related Work: Touch-Based NUIs in Agile Settings
	8.5.1 AgilePlanner
	8.5.2 Agile Planner for Digital Tabletops (APDT)
	8.5.3 Ambient Surfaces: Interactive Displays in the Informative Workspace of Co-Located Scrum Teams
	8.5.4 The dBoard: A Digital Scrum Board for Distributed Software Development
	8.5.5 A Cooperative Multitouch Scrum Task Board for Synchronous Face-to-Face Collaboration
	8.5.6 Nori Scrum Meeting Table

	8.6 Weaknesses of Current Approaches

	9 Introducing an Interactive Scrum Space
	9.1 Overview
	9.2 Implementation
	9.2.1 System Architecture
	9.2.2 MisterT and Object Recognition HOUDINI

	9.3 Features and Solutions to the Identified Challenges
	9.3.1 The Backlog
	9.3.2 Sprint Planning
	9.3.3 Sprinting and Daily Scrum
	9.3.4 Backlog Grooming
	9.3.5 Sprint Review
	9.3.6 Sprint Retrospective

	9.4 Evaluation and Critical Discussion
	9.4.1 Iterative Evaluation during Implementation
	9.4.2 Heuristic Evaluation
	9.4.3 Usability Tests and Expert Interviews in Preparation for Market Entry
	9.4.4 Discussion

	10 Summary and Closing
	Bibliography
	List of Figures
	List of Figures

	List of Tables
	List of Tables

	List of Acronyms
	Acronyms

