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Zusammenfassung:

Das Zusammenspiel zwischen Bloch-Oszillationen und zeitperiodischerModulation in räum-
lich inhomogenen optischenGittern führt zu einer Vielzahl faszinierender dynamischer Phäno-
mene. Durch theoretische Modellierung und numerische Simulationen zeigen wir zunächst,
durch ein globales parabolisches Potential zusätzlich zu einem optischen Gitter eine räumliche
Inhomogenität induziert, die traditionelle Bloch-Oszillationen verändert und neue Quanten-
e�ekte wie Kollaps und Revival sowie dynamisches Tunneln von Wellenpaketen hervorruft.
Zweitens o�enbart diese Studie durch den Einsatz einer zeitperiodischen Modulation der para-
bolischen Falle weitere Modi�kationen der Bloch-Oszillationen im inhomogenen System und
eine Vielzahl unterschiedlicher dynamischer E�ekte, die als Folge der Modulation auftreten.
Die Floquet-Theorie bietet einen geeigneten Zugang, um diese Einteilchen-Bloch-Dynamik in
getriebenen Gittern zu verstehen und vorherzusagen und ermöglicht tiefgehende Einblicke in
die Kontrolle und die Manipulation von Quantenzuständen in maßgeschneiderten Potential-
landschaften.
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Abstract:

The interplay between Bloch oscillations and time-periodic modulation in spatially-inhomo-
geneous optical lattices leads to a rich variety of fascinating dynamical phenomena. Through
theoretical modeling and numerical simulations, we �rst demonstrate that the spatial inhomo-
geneity induced by a global parabolic trap over an optical lattice modi�es traditional Bloch
oscillations, introducing new quantum e�ects such as collapse and revival and dynamical tun-
neling of wave packets. Secondly, by employing a time-periodic modulation of the parabolic
trap, this study reveals further modi�cations of Bloch oscillations in the inhomogeneous sys-
tem and a rich variety of contrasting dynamical behaviors that emerge as a consequence of
the modulation. Floquet theory provides a powerful framework for understanding and pre-
dicting these single-particle Bloch dynamics in driven lattices, o�ering deep insights into the
control and manipulation of quantum states in spatially and temporally engineered potential
landscapes.
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1Introduction

Since the advent of quantum theory, mankind has been eager to understand, control, and uti-
lize quantum phenomena. Over the years, di�erent approaches considering various paradigms
have emerged, one of which involves cooling ensembles of gas to incredibly low temperatures.
At room temperature, classical physics dominates the behavior of gases because thermal mo-
tion of particles outweighs any quantum e�ects. The large average distance between particles
allows their quantum nature to be ignorable, and their statistical properties are well-described
by the classical Boltzmann distribution. However, as temperature is lowered, quantum nature
becomes manifest.

Quantum mechanics dictates that particles of the same type, i.e., atoms of a single element,
are fundamentally identical and indistinguishable. This indistinguishability modi�es the clas-
sical Boltzmann distribution into one of two quantum distributions: Fermi-Dirac for Fermions
and Bose-Einstein for Bosons. Although this distinction is subtle at higher temperatures, it
becomes signi�cant in the ultracold regime. As the temperature approaches a critical point,
the de Broglie wavelength of the atoms increases and becomes comparable to the distance be-
tween the particles. At this stage, quantum wave functions start overlapping and a striking
phase transition occurs.

The phase transition corresponds to the emergence of Bose-Einstein condensate (BEC), a
unique state of matter �rst predicted by Albert Einstein in 1925 [1] based on Satyendra Bose’s
earlier work on photon statistics [2]. In a BEC, a large number of particles condenses into the
energetically lowest quantum state, exhibiting features of a single-coherent quantum entity.
Individual particle wave functionsmerge giving rise to coherence at a macroscopic scale, which
allows the collective behavior of particles to prevail. This fascinating state of matter allows the
observation and study of quantum dynamics in ways that were previously unreachable.

Although the BEC state was predicted in the early days of quantum mechanics, achieving it
experimentally was no small feat, instead it was the culmination of decades of work in atomic
physics and optics. The key breakthrough that made this possible was the development of laser
cooling and trapping techniques, which allow atoms to be slowed and con�ned using light. This
approach has its genesis back in the Galilean era, when Kepler surmised that comets experience
radiation pressure from the sun’s radiation.

This idea was later formalized by James Clerk Maxwell, who mathematically calculated the
radiation pressure in his famous theory of electromagnetism [3]. This was �rst experimentally
explored at the beginning of 20th century by Lebedev who measured the e�ect of light force
on a thin metallic plate [4]. Soon after, Nicols performed similar experimental investigations
which led to the veri�cation and measurement of the radiation pressure [5]. In the following
years, Lebedev expanded this research to the exploration of radiation pressure on gasmolecules
[6]. Another signi�cant leap occurred when Kapitza and Dirac theorized that a standing wave
of light could act like a di�raction grating for electrons, further demonstrating the physical
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impact of light on particles [7]. At that time, the study of the interaction between light and
atoms started gathering a lot of attention. In 1933, Frisch reported the �rst observation of
the de�ection of an atomic beam by resonant light from a sodium lamp [8]. This experiment
was crucial in showing that the mutual exchange of momentum and energy between light and
matter accounts for the mechanical action of radiation on atoms.
The momentum exchange takes place as the atoms absorb or emit photons, a concept that

Einstein himself proposed in 1917 [9]. An atom absorbing photons gains momentum in the
direction of the light beam, while the net momentum during emissions of photons is zero as
they occur in random directions. Thus, the atom experiences a force, known as the spontaneous
force or radiation pressure. Additionally, the dipole moment induced in the atom by the electric
�eld of light provides another force that pushes the atom towards high or low intensity regions
with a strength and direction that depend on the frequency of light. Atoms are drawn to regions
of high intensity in the case of red-detuned light, while they are pushed towards low intensity
regions for blue-detuned light.
These two fundamental forces, spontaneous force and the dipole force, have enabled both

cooling and trapping of atoms. While the spontaneous force lowers the kinetic energy of atoms
in subsequent events of absorption and emissions of light, thereby cooling them, the dipole
force aids in con�ning the atoms to speci�c regions of space [10]. In 1970, Ashkin succeeded in
trapping small particles using counter-propagating laser beams [11], thus giving access to con-
�nement and control of atoms, molecules, nanoparticles, and miscoscopic biological entities.
Later on, radiation pressure was used to cool neutral atoms [12] and ions [13] which caused a
surge of activities in laser cooling and trapping.
Over the course of the following 20 years, it became feasible to cool atomic ensembles to

temperatures just a few billionths of a degree above absolute zero as the laser cooling and
trapping methods improved [14] and new techniques such as sisyphus and evaporative cooling
were introduced. This outstanding accomplishment led to the �rst experimental realization of
Bose-Einstein condensation in 1995 [15], when Cornell and his team created a BEC using a
dilute rubidium atomic gas. Shortly thereafter, other teams were able to create BECs with
several atomic species, such as sodium [16] and lithium [17]. These experiments validated the
predictions made by Einstein and Bose around 70 years ago and marked the beginning of a
new era in atomic, molecular, and optical physics.
The experimental realization of BECs in dilute alkali gases has also created new avenues for

the investigation of many-body phenomena at a macroscopic scale. Unlike liquid helium [18],
where strong interactions between particles obscure e�ects caused by condensation, the weak
interactions in dilute gases set the stage for theoretical and experimental studies of matter
waves. In such a scenario, the BEC is typically described by a single macroscopic wave func-
tion, representing the collective behavior and simplifying the analysis. This along with inter-
atomic interactions treated as an additional potential leads to a particularly useful description,
formalized as the Gross-Pitaevskii equation (GPE) [19, 20]. In the limits of minimal quantum
correlations, the mean-�eld treatment of the GPE is viable in the weakly interacting regime.
Moreover, the GPE does not take account for quantum �uctuations which are added as per-
turbations in accordance with the Bogoliubov theory [21]. Together, the GPE and Bogoliubov
theory o�er a robust framework for understanding the characteristic e�ects of BECs, forming
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the basis for much of the progress in quantum many-body physics.
In the early days of BECs, it was discovered that the inter-atomic interactions can be tuned

using Feshbach resonances. An external magnetic [22, 23] or optical �eld [24] �ne-tunes the
strength of the interactions up to an extent where they can be made stronger or essentially
ignorable [25]. In the later scenario, the condensate displays characteristics identical to an
ideal gas, giving access to a controllable-macroscopic quantum entity.

Soon after, it was also noted that loading the atomic condensate inside a periodic optical
lattice potential in�uences the strength of inter-atomic interactions [25]. The depth of the
periodic potential determines the way atoms are distributed within the lattice, which in turn
a�ects the inter-atomic interactions. This initiated a search for methods to control interactions
within these adjustable lattices, with the aim of tailoring atomic behavior and investigating
various quantum e�ects.

Optical lattices are periodic potential structures formed by the interference of counter-propa-
gating laser beams. Independent laser beams can be arranged in such a way that they interact
at di�erent angles, giving rise to various shapes and dimensionalities. The most frequently en-
countered lattices include one-dimensional, sinusoidal, square, and cubic con�gurations [26],
as well as more advanced triangular [27], hexagonal [28], and kagomé [29] geometries. Optical
lattices can also be generated by retro-re�ection of laser beams. This technique, together with
the application of a holographic mask on the re�ected beam, has allowed the generation of
nearly arbitrary potentials [30].

The scalability of optical lattices, which can trap large numbers of atoms in a well-de�ned
periodic potential, makes them suitable for studying emergent phenomena arising from in-
teractions between many particles [31]. Accordingly, models such as the (Fermi)-Hubbard
model [32] and the Bose-Hubbard model [26] have been extensively investigated. Building
on latter, a quantum phase transition from a super�uid to an insulating state, known as the
Mott insulator transition, can be driven in the strong interaction regime. This transition, pre-
dicted theoretically by Fisher [33], was experimentally realized in a 3D lattice byM. Greiner and
colleagues [26], providing a profound demonstration of interaction-induced localization in a
controlled quantum system. Moreover, the Fermi-Hubbard model provides signi�cant insights
into fermionic correlations, antiferromagnetic ordering, and metal-insulator transitions.

Additionally, it was revealed that the inter-atomic interaction strength can be tuned signif-
icantly by the lattice depth, which is determined by the laser intensity, and additionally by
employing Feshbach resonances [25]. Thus, ultracold atoms in optical lattices readily allow
for the study of single-particle phenomena, as well as the e�ects of weak nonlinear interac-
tions [34]. This level of control over the interactions and lattice dimensionality has enabled
the exploration of noninteracting matter waves in reduced dimensions and the investigation
of strongly correlated systems. Consequently, new insights and perspectives into quantum
many-body physics and the nature of quantum dynamics in low-dimensional systems have
been developed.

Probing the internal states of atoms with optical lattice �elds, allows cold atoms to move in
closed loops acquiring a geometric phase similar to the Aharonov-Bohm phase acquired by a
charged particle in magnetic �eld. This technique marks the �rst creation of arti�cial gauge
�elds within optical lattices [35]. The generated strong magnetic �elds have been used to study

3



1 I�����������

topological phases in optical lattices, including the realization of the Hofstadter model [36] and
Chern insulator in cold atoms [37], where topologically protected edge states emerge. These
advancements are pivotal in understanding topological materials and quantum Hall e�ects,
as they enable the exploration of robust, dissipation-free edge transport. These new phases
provide rich ground for exploring fundamental physics.
Moreover, optical lattice systems provide a high degree of isolation from external distur-

bances, which is crucial for observing delicate quantum e�ects that can be easily disrupted by
environmental noise. As a result, phenomena such as quantum coherence, the generation of
large-scale entanglement, and quantum measurements have been studied, all of which hold
signi�cant promise for applications in quantum computation and information science. Early
work achieved controlled collisions to implement basic quantum gates, and creating Bell states
showcased the potential of cold atoms as qubits [38]. More recent experiments have been
scaled up to realize entanglement in atomic arrays and optical tweezers, which now routinely
achieve defect-free atomic arrays and quantum entanglement in large ensembles [39,40]. These
advancements have been further enhanced by the use of quantum gas microscopes, which al-
low for single-site resolution and precise manipulation of individual atoms within optical lat-
tices [41, 42]. With this level of control, researchers can directly image and manipulate atoms
at distinct lattice sites, paving the way for quantum simulation and computation on the highly-
controlled, single-atom level.
Ultracold atoms in optical lattices also play a crucial role in precision measurements. The

high degree of control they enable makes them ideal for conducting high-precision measure-
ments of fundamental constants [43,44] and testing the principles of quantum mechanics. Op-
tical lattice clocks [45], which trap atoms in a lattice to reduce perturbations, are among the
most accurate timekeeping devices that exist.
The periodic nature of optical lattices mimics crystalline structures found in solid-state

physics, with the role of Bloch electrons played by ultracold atoms [46]. While lattice spacings
in solids are generally measured in Angstroms, optical lattices feature lattice constants that
are typically three orders of magnitude larger. Keeping in view, the atomic radii of commonly
used atomic gases of few Angstroms and the size of an electron on the scale of one-tenth of
a Fermi, the matter wave picture of de-Broglie is translated to hundred thousand times larger
spatial scales. Moreover, in contrast to the usual many-body dynamics occurring in electronic
systems on the extremely short time scales of femtoseconds, the time scale of the dynamics
with ultracold atoms in optical lattices is on the order of milliseconds. Thus, ultracold atomic
systems o�er an almost one billion times longer interval for measurement and detection. Fur-
ther, considering the recoil energy (ER) of the commonly used Rubidium gas (Rb87) subject
to laser beam with wavelength 852nm amounts to 1.3 ◊ 10≠11 electron Volts (eV), and taking
typical lattice depths of about 10ER , the use of ultracold atoms in optical lattices shifts down
the usual eV-energy scale of solid state physics by no less than 10 orders of magnitude. Further-
more, one of the key advantages of optical lattices is their tunability. The depth, spacing, and
geometry of these lattices can be precisely controlled by adjusting the intensity, wavelength,
and polarization of the laser beams used to create them. This facilitates the realization of cel-
ebrated solid state phenomena like band structure [26], Anderson localization [47], Josephson
junction [48], quantum Hall e�ect [49], Bose-glass phase [50], and Bloch oscillations [34].
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Another freedom particular to optical lattices is the selective time-periodic modulation of
the lattice parameters or the lattice geometry. The former is achieved by including specialized
optical modulators, such as acousto-optic modulators, in the path of the optical laser beam,
while the latter is accomplished either by adding non-static external potentials or by dynam-
ically shifting the lattice phase. The phase-modulated optical lattice has enhanced the range
of available synthetic �elds by giving access to staggered magnetic �elds and dynamical gauge
�elds and has also led to the realization of the topological Haldanemodel [51]. Also, amplitude-
modulated optical lattices have been heavily investigated during the past two decades leading
to the observation of super�uid to Mott-insulator transition in a driven system [52]. These
twinkling lattices and shaken lattices also favor the exploration of driven dynamics and phe-
nomena such as dynamical localization [53], chaos-assisted tunneling [54], and super-Bloch
oscillations [55] have been observed. Recent experiments utilize simultaneous phase and am-
plitude modulation of optical lattices to optimally control dynamics, achieving e�ects such as
chaos-assisted tunneling [56], the Hamiltonian ratchets [57], and e�cient creation and ma-
nipulation of quantum states across the lattice band structure [58]. Thus, periodic driving
has contributed to signi�cant achievements, such as the creation of �nite-momentum Bose-
Einstein condensates and Floquet topological insulators, where new, exotic phases of matter
emerge due to periodic modulation [27]. These periodically driven systems provide access
to novel quantum states and facilitate studies of non-equilibrium dynamics, signi�cantly en-
hancing our understanding of quantum matter under time-dependent driving. Research in
this direction has advanced to employing driven bichromatic and multi-frequency lattices that
induce disorder and, through dissipation processes, allow the exploration of fundamental ques-
tions in quantum statistics and thermodynamics. In these driven quasi-periodic optical lattices,
topological pumping of bound states is also predicted to occur with the assistance of Bloch os-
cillations [59, 60].

Bloch oscillation (BO) is a wave phenomenon manifesting in quantum systems with periodic
potential and static �eld. This was �rst proposed by Felix Bloch in 1929 considering electrons
in crystals [61]. During BOs electrons in solid crystals oscillate in the presence of a static
external electric �eld. As per band theory, electrons in a periodic crystal lattice are quasi-
particles forming bands of periodic energy structures which can be represented as a function
of quasimomentum in the �rst Brillouin zone. An electron in the lowest band of the periodic
lattice �rst accelerates due to the constant force of a static �eld and then oscillates with a
periodic �ipping of quasimomentum. In 1931, Zener inferred that the periodic modulation of
quasimomentum manifests itself in terms of real-space oscillations. He also pointed out that
the BOs display additional-decay features due to tunneling to higher bands as the strength of
electric �eld increases [62,63]. The tunneling probability varies exponentially with the applied
force indicating large variation in tunneling with small changes in �eld strength.

The oscillatory behavior in real space can be described by discrete energy levels known as
Wannier-Stark ladders, as proposed by Wannier in 1960 [64]. In the tight-binding approxima-
tion, this results in Wannier-Stark states, which allow for an important analytical description
of the system [65]. Additionally, the BOs are often discussed in terms of Wannier-Stark reso-
nance states. Using perturbation techniques, this formalism also gives access to the study of
the decay of BOs, where the energy spectrum becomes continuous [66].
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Observing BOs in solid-state systems is quite challenging. Factors like scattering with im-
purities, defects, phonons, dielectric screening, dephasing, higher bands, and electron-electron
interactions all disrupt the coherence necessary for realizing this oscillatory behavior. As a
result, BOs are more easily detected in arti�cial highly-controlled environments. Speci�cally,
these oscillations were �rst observed in arti�cial solids, so called semiconductor superlattices
in 1992 [67], followed by observations of cold atoms in optical lattices in 1996 [68], and later in
coupled optical waveguides in 1998 [69]. These developments highlight the increased interest
in the phenomenon of BOs which has led to new perspectives, e�ects, and applications.
Building on the foundational concept of BOs, researchers have explored modi�ed forms of

these oscillations under various conditions such as breathing BOs [70], anharmonic BOs [71],
and super-Bloch oscillations (SBOs) [55,72–76]. SBOs arise when an additional periodic driving
�eld is applied to the system on top of the static �eld, creating a more complex modulation of
the oscillatory behavior. In such cases, the periodic driving force interacts with the underlying
BOs, resulting in oscillations that are typically larger in amplitude and have unique, tunable
frequencies. Besides SBOs, the interaction between BOs and the modulation of �eld induces
additional e�ects on top of BOs such as directed transport, ballistic spreading, and dynami-
cal localization [73, 74], enriching the possible applications and insights into the behavior of
quantum particles in engineered potentials.
In short, BOs take the central stage in the exploration of various quantum phenomena, such

as Landau-Zener tunneling, coherent oscillations or transport, breathing dynamics, dynamical
localization, SBOs, collapse and revival dynamics, and chaotic oscillations.
Although SBOs occur under the modulation of the force, BOs have also been predicted for

other related con�gurations, particularly those arising from the gradients of a parabolic po-
tential [77] or even more complex higher-order gradients [78]. The parabolic potentials exist
naturally in ultracold atomic systems where parabolic traps serve as an auxiliary element for
con�ning and manipulating cold atoms. A one-dimensional periodic optical lattice becomes
symmetrically curved when subjected to a global parabolic trap [79]. Thus cold atoms in the
parabolic lattice experience a position-dependent force. However, in a speci�c region where
the curvature of the parabolic potential varies su�ciently slowly, the force can be approxi-
mated as locally constant. Such a setting brings about dynamics very similar to BOs [79–81].
However, here the Bloch like dynamics dephases quite rapidly due to spatial variations in the
strength of the force. As, during BOs, the wave packet only explores a limited number of lattice
sites, the spatial variations remain small. In other words, the evolving wavepacket acquires dif-
ferent phases due to the anharmonic spectrum of the combined potential, leading to dephasing.
The phase mixing leads to a decay of the coherent oscillations which is followed by periodic
revivals as the phases re-accumulate.
In recent years, several experiments have investigated Bloch dynamics in periodic lattices

subject to a parabolic trapping potential. This search has also led to the �rst ever experimental
observation of BOs in real-space utilizing a deep optical lattice [77]. In the case with shallow
optical lattices subjected to parabolic con�nement, the multi-band structure becomes relevant.
Such a regime has been considered for the production of coherent matter wave packets and the
interband dynamics and collective oscillations were explored [82–84]. Similar setups also pro-
vide a cold atom analog of photoconductivity [85, 86]. Further experiments in such a setting,
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demonstrate that by creating hybridized bands, time-dependent modulation of the parabolic
lattice can generate ultrafast long-range transport across the lattice on top of BOs [87]. An-
other experiment reports that the phase of the external modulation brings about novel dy-
namics, which for one phase of the drive are fully coherent, while for another phase, exhibit
a mixture of Bloch breathing and spreading dynamics [88]. This study also examines the ob-
served contrasting dynamics using analytical theory speci�c to systems where a constant force
is present, instead of the position-dependent force of a parabolic trap. Consequently, the model
failed to describe all the observed e�ects. Although, these observations have attracted a lot of
attention, a comprehensive analysis and further exploration remained elusive.

In this thesis, we examine Bloch dynamics in both static and periodically modulated one-
dimensional parabolic optical lattices. Reviewing wave packet dynamics in parabolic optical
lattices, we uncover long-range dynamical tunneling associated with BOs in these systems. By
providing a detailed analysis of the driven dynamics, and introducing novel chirped Bloch-
harmonic transport (CBHT) [79], we o�er signi�cant insights based on a generalized acceler-
ation theorem. We solve the acceleration relation using appropriate approximations that yield
transparent interpretations of the results. Beyond the semi-classical treatment of the acceler-
ation theorem, we employ classical dynamical equations and phase space analysis to deduce
the system’s dynamics. We interpret the results using Floquet theory, which enables a deeper
understanding and highlights important experimental implications. Experimental conditions
and parameters relevant to these �ndings are also discussed.

In Chapter 2, we cover the foundational concepts of optical lattices by �rst analyzing how a
single ultracold atom interacts with a classical standingwave �eld to generate a periodic optical
potential. We then introduce essential topics such as Bloch andWannier states, band structure,
and the tight-binding approximation, setting the stage for our discussion of interacting atoms
within the Bose-Hubbard model.

In Chapter 3, we introduce the single-particle dynamics in optical lattices, focusing primarily
on BOs. We also describe driven dynamics, such as directed transport, oscillatory spreading,
and dynamical localization. We then extend this discussion by examining how these dynamics
build upon BOs, ultimately demonstrating the emergence of SBOs in a near-resonantly shaken
optical lattice.

In Chapter 4, we analyze the impact of the spatial inhomogeneity in periodic lattices on BOs
by considering examples of incommensurate and disordered lattices. We extend this discussion
to include a spatially inhomogeneous force created by the parabolic trapping potential, which
permits BOs in a speci�c region of lattice sites. While examining the e�ects of the spatial
inhomogeneity on BOs, we also explore other related quantum dynamics. We analyze the
spectral properties, which predict dynamical tunneling alongside with BOs. This dynamical
tunneling is demonstrated through a phase space analysis of the quantum states and wave
packet evolutions, including scenarios with on-site energy mismatch and interacting atoms.
Some of these �ndings are described in our recently published paper [89].

In Chapter 5, we present the rich dynamics arising from the resonant driving of Bloch-like
oscillations in a parabolic optical lattice. In this regime, we identify CBHT and highlight its dif-
ferences from SBOs. Using a modi�ed acceleration theorem, we explain the underlying CBHT
dynamics and further demonstrate how these dynamics vary under di�erent initial conditions.
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These �ndings are also reported in our published paper [79].
In chapter 6, we analyze the complex phase-dependent Bloch dynamics in the driven parabolic

optical lattice by using Floquet theory and classical dynamics of a driven pendulum. We dis-
cuss the construction and inspection of Floquet states, occupation probabilities of which reveal
the emergence of distinct dynamics. A major part of these results is included in our published
paper [90].
This thesis concludes in Chapter 7 with a summary of our main �ndings and an outlook on

potential directions for future research.
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2Fundamentals

In this chapter, we discuss the fundamentals of optical lattices. We begin by discussing the basic
theory of optical lattices, using the example of a single ultracold atom subjected to a classical
standing wave �eld, which we solve in the interaction picture. Based on this analysis, we derive
the explicit form of the optical potential experienced by the atom. Next, while describing the
spectral properties of the single-particle system, we introduce Bloch states, Wannier states, the
band structure, and the tight-binding approximation-topics that are crucial for our later anal-
ysis. We then consider interacting atoms in optical lattices and address the strong-interaction
regime, which leads to the Bose-Hubbard model.

2.1 Optical Lattices

Optical lattices are ideal periodic potentials, o�ering exceptional precision and control for
trapping and manipulating atoms which makes them a powerful tool for studying quantum
phenomena and simulating complex physical phenomena. These potential �elds are created
through light-matter interactions, where the spatially-varying intensity of interfering laser
beams induces a position-dependent potential for the atoms. This results in a periodic "poten-
tial landscape," with potential wells separated by distances on the order of the laser wavelength.
The concept, originally proposed by Letokhov and Minogin in 1977 [91], has since become a
central element in quantum simulation and ultracold physics research.

When an atom interacts with a laser �eld, the oscillating electric component of the laser
light induces a dipole moment in the atom and shifts its energy levels through a phenomenon
known as the optical Stark shift. The magnitude of this shift depends on the intensity and
frequency of the laser relative to the frequency of a speci�c atomic transition. In a standing-
wave con�guration, the interference of laser beams produces a spatially varying light intensity,
which gives rise to a periodic potential for the atoms. These aspects are described in detail in
the following section.

2.1.1 Optical Stark Shift Potentials

Let us suppose a single ultracold atom is subjected to a classical standing wave �eld. The
�eld is generated by counter-propagating laser beams along the x-axis, emerging from mirrors
mounted in the yz-plane after retro�ection of the incoming light, with parallel polarization.
The Hamiltonian for the atom of mass M is given by

ĤA = p̂2
x

2M
+

ÿ

n

En|nÍÈn|, (2.1)
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where p̂x represents the center of mass momentum operator for the atomic motion in the x-
direction, and |nÍ denote the internal states of the atom with corresponding energies Án.
The interaction between the atom and the standing wave �eld is described in the dipole

approximation as
ĤI = ≠d̂.E(x, t), (2.2)

with d̂ the dipole moment operator, and E representing the electric �eld associated with the
standing wave. We express the electric �eld as

E(x, t) = E0 sin(kLx)(e≠iÊt + eiÊt)Áy, (2.3)

where E0 is the electric �eld amplitude, kL is the laser wave vector, Ê is the laser frequency
and Áy is the polarization vector of the lasers. The dipole operator can be expanded in the basis
of the atomic states

d̂ =
ÿ

n,m

dnm|nÍÈm|, (2.4)

with dnm denoting the matrix elements of the dipole operator.
Substituting the electric �eld and the dipole operator into the interaction Hamiltonian leads

to the following expression

ĤI = ≠E0 sin(kLx)
ÿ

n,m

Ë
(dnm.Áy) |nÍÈm|

1
e≠iÊt + eiÊt

2È
. (2.5)

Further, it is assumed that the laser frequency is tuned close to an atomic transition, typically
between the ground state |nÍ © |gÍ and an excited state |mÍ © |eÍ. Under these conditions,
solving the above equation in the rotating frame, the fast oscillating phases are neglected by
applying the rotating wave approximation [92], and we arrive at

ĤI = ≠E0 sin(kLx)
Ë
(deg.Áy) |eÍÈg| +

1
dú

eg.Áy

2
|gÍÈe|

È
. (2.6)

Introducing the space-dependent Rabi frequency,

�(x) = 2E0 sin(kLx) (deg.Áy)/~ = 2Èe|d̂.(E0 sin(kLx)Áy)|gÍ/~, (2.7)

which quanti�es the strength of the atom-�eld coupling as a function of position. Equation (2.6)
then simpli�es to

ĤI = ≠
~
2 [�(x)|eÍÈg| + �ú(x)|gÍÈe|] . (2.8)

Taking into account a detuning ” = Êeg ≠ Ê between the laser frequency and the atomic
transition frequency, such that |”| ∫ |�|, the excited state is adiabatically eliminated [93]. In
such a conservative interaction, the atomic ground state energy experiences a �eld-dependent
shift, which can be calculated using second-order perturbation theory as

E (2)
g = |Èe|ĤI |gÍ|

2

~”
= ~|�(x)|2

4”
. (2.9)
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2.2 Single-Particle Physics

Figure 2.1: Schematic representation of a standing wave �eld formed by two counter-
propagating laser beams, creating an AC Stark shift potential. The solid brown
curve indicates the generated optical potential V (x) experienced by the atom. The
blue dashed curve represents the blue-detuned standing wave �eld, which con�nes
the atoms towards its nodes. Note that the amplitudes are chosen arbitrarily; for a
proper account of the amplitudes, we refer to the main text.

This is known as the AC Stark shift which is dependent upon the laser intensity I due to
the relationship I Ã �2. Since the ultracold atom tends to remain in the ground state, the
energy shift is equivalent to an optical potential experienced by the atom. This is schematically
depicted in Fig. 2.1 where we have considered a blue-detuned standing wave �eld (” < 0)
generated by the counter-propagating laser beams. The �eld periodically raises the ground
state energy thereby creating potential wells at the nodes of the standing wave where the
atoms are repelled by the potential. On the other hand, a red-detuned laser �eld (” > 0) lowers
the ground state energy enabling attractive potentials which con�ne the atoms at the antinodes
of the standing wave (not shown).

The periodic potential generated in the standing wave con�guration has the form

V (x) = V0 sin2(kLx), (2.10)

where V0 denotes the depth of the optical potential, which is determined by the laser intensity
I and the detuning ”. The lattice period a = fi/kL is related to the laser wavelength ⁄ by the
relation a = ⁄/2.

Using additional laser beams intersecting at various angles allows for the creation of optical
potentials in two or three dimensions. Furthermore, by adjusting the alignment and polariza-
tion of these beams, a wide range of intricate geometries can be formed within the periodic
potential, greatly expanding the scope of possible experimental con�gurations and opportuni-
ties.

2.2 Single-Particle Physics

In optical lattices, cold atoms or even condensates can be experimentally tuned to behave as
non-interacting particles by making inter-atomic interactions negligible. With this in mind, we
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�rst focus on the fundamental physics of non-interacting systems. We begin by exploring the
single-particle physics in a one-dimensional periodic potential, leaving the e�ects of atom-atom
interactions for later consideration. This approach allows us to establish a clear understanding
of the basic principles before moving on to more complex many-body treatments.

2.2.1 Bloch’s Theorem and Central Equation

Optical lattices complement conventional crystal structures by o�ering a means to create pe-
riodic potentials, where atoms, rather than electrons, interact with the potential. Neglecting
the atom’s internal degrees of freedom, many characteristics of optical lattices closely mir-
ror those of traditional crystals, such as the periodicity of the potential landscape which leads
to the formation of band structures. In this context, we build upon the work of Morsch and
Oberthaler [94] and begin with a one-dimensional model of periodic potentials, which can be
naturally extended to higher dimensions. The stationary Schrödinger equation for an atom in
a potential V (x) is given by

≠
~2

2M

ˆ2Â(x)
ˆx2 + V (x)Â(x) = EÂ(x). (2.11)

For the simple case where V (x) = 0, the solutions to the above equation are plane waves.
However, in the case of a periodic potential, V (x + ma) = V (x) with lattice spacing a, the
solution follows from the famous Bloch’s Theorem [61, 95, 96]. By this theorem the eigenstates
of a particle in a periodic potential can be expressed as a product of a plane wave and a periodic
function

Â(n)
k (x) = eikxu(n)

k (x), (2.12)

where k is the crystal momentum and u(n)
k (x + a) = u(n)

k (x) is periodic with the same period
as the lattice. However, the Bloch states are quasi-periodic due to the modulation induced by
the plane wave phase factor, and they are, in Bloch’s own words, "de Broglie waves which are
modulated in the rhythm of the lattice structure" [61]. The introduction of a periodic optical
lattice transforms plane waves into Bloch states. Additionally, the presence of a periodic poten-
tial gives rise to forbidden energy zones, resulting from Bragg scattering of matter waves at the
periodic potential. This phenomenon underpins the formation of the so-called band structure
which is a fundamental concept in the study of wave packets in periodic potentials.
Using Fourier series, the Bloch states can also be written as

Â(n)
k (x) = eikx

ÿ

lœZ

c(n)
k,l eilGx, (2.13)

with the periodic functions u(n)
k (x) expanded as the sum of plane waves eilGx carrying mo-

menta Gl, where l is an integer and G = 2fi/a is the primitive reciprocal lattice vector.
In the same spirit, expanding the periodic potential V (x)

V (x) =
ÿ

mœZ

VmeimGx, (2.14)
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2.2 Single-Particle Physics

and using the Bloch states ansatz (2.13), the Schrödinger Eq. (2.11) recasts into a di�erence
equation C

~2

2M
(k + Gl)2

≠ E(n)
k

D

c(n)
k,l +

ÿ

m

Vm c(n)
k,l≠m = 0, (2.15)

which is known as the central equation [95,96]. This is a matrix equation with coupled coe�-
cients for each k-value within the �rst Brillouin zone. The eigenvalues obtained by diagonal-
izing this equation, E(n)

k , represent the energy bands labeled by the band index n.

The sinusoidal optical potential

When considering the case of a single atom in a one-dimensional sinusoidal optical lattice
potential, as described in Eq. (2.10) in Section 2.1.1, the potential can be expressed as

V (x) = V0 sin2(kLx) = V0
4 (2 ≠ e2ikLx

≠ e≠2ikLx), (2.16)

which includes only three terms, corresponding to the indices m = 0, ±1 in the Fourier ex-
pansion. Thus, in this case, the central equation reduces to

1
(kÕ + 2l)2

≠ Ẽ(n)
kÕ

2
c(n)

kÕ,l ≠
v0
4 c(n)

kÕ,l≠1 ≠
v0
4 c(n)

kÕ,l+1 = 0, (2.17)

with ẼkÕ = EÕ
kÕ ≠ v0/2 and using scaled variables. The energies E and potential depth V0

are scaled in terms of the atomic recoil energy, ER = (~kL)2/2M , such that EÕ = E/ER

and v0 = V0/ER, and the quasimomentum k is scaled by the laser wave vector, expressed as
kÕ = k/kL.

The above equation is formally equivalent to the recursion relation satis�ed by the Fourier
coe�cients of the Mathieu functions. Thus, the eigenvalue problem can be solved exactly by
associating the undetermined coe�cients with the Mathieu coe�cients and the energies with
the characteristic values of Mathieu functions [97]. In general, the characteristic values –n(q)
depend on the parameter q, which appears in the Mathieu equation and, in the present context,
is related to the optical lattice depth by the relation q = v0/4. Hence, the energies EkÕ are a
function of the lattice depth.

The Mathieu functions can be expressed in the Floquet form, representing them as the prod-
uct of periodic functions and exponential multipliers. These are known as Floquet solutions to
the Mathieu equation [97], written as

Ân(x, ‹) = ei‹x
+Œÿ

u=≠Œ
c(n)

u,‹ei2ux, (2.18)

where ‹ is the Floquet exponent. With the above solution, the characteristic values –n(q, ‹)
also become a function of ‹, and the solutions strictly depend on whether ‹ is real or complex.
The real ‹ constitute the so-called stable solutions, which form bands of eigenvalues. These
bands are separated by gaps where no eigenvalue is obtained. Nonetheless, there exist unstable
solutions in these domains for which ‹ is complex. These solutions are unbounded and non-
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Figure 2.2: Energy spectrum for a one-dimensional optical lattice V (x) = V0 sin2(kLx) as
function of the lattice depth V0. The lowest three energy bands are depicted, by the
shaded regions between blue, orange and green curves representing the 1st-, 2nd-,
and 3rd-band, respectively. Solid and dashed curves correspond to the modi�ed
Mathieu characteristic values a0, a2, a4 and b1, b3, b5, respectively. The eigenvalues
are shifted by v0/2, which modi�es the characteristic values shown.

periodic, and therefore irrelevant to the lattice problem, so they are discarded here. Further,
the integer values of ‹ correspond to periodic solutions, which for even values of ‹ are fi-
periodic and are 2fi-periodic for odd values [97]. These solutions exist for certain values of –,
designated as a2n and b2n+1, where n = 0, 1, 2... is the band index. These outline the band
edges where the lower edge emerge from the even functions and the upper edge is traced by
the odd functions. For non-integer values of ‹, there exist two independent solutions that span
the space between the bands.
From Eqs. (2.13) and (2.18), it is clear that the Floquet exponent corresponds to the quasimo-

mentum k in the lattice problem. Thus, the gaps are a hallmark of the band structure, where
the real k values de�ne the allowed bands. Taking into account the reduced Brillouin zone
scheme, the quasimomentum k is restricted to the range [≠fi/a, fi/a]. The values of k within
this range span the corresponding energy bands. Moreover, k = 0 and k = ±fi/a provides the
lower and upper edges of the nth-band, alternating between each other.
While the Mathieu functions provide important knowledge on the spectral properties of

the periodic optical lattice, instead of delving into their speci�cs, we numerically diagonalize
Eq. (2.17) to obtain the eigenvalues and eigenstates.
The band spectrum is shown in Fig. 2.2 displaying the lowest three bands of the sine-squared

lattice as a function of V0. This shows that the band edges commensurate with the Mathieu
characteristic values are shifted by v0/2. Therefore, the bandwidths can be obtained by reading
o� the band spectrum. The bandwidths decrease by increasing the lattice depth and so the band
gaps increases. Further, at high values of V0, the band gaps become equally-spaced, similar to
the energy spectrum of a harmonic oscillator. Thus, for such a deep lattice, the states are
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2.2 Single-Particle Physics

Figure 2.3: Energy band structure as a function of quasimomentum k within the �rst Brillouin
zone. The band gaps increase with the lattice depth, as illustrated from left to right:
the leftmost �gure corresponds to zero lattice depth and the depth increases pro-
gressively in the subsequent �gures in the right. The shaded regions highlight the
band widths.

harmonic oscillator-like localized around each potential well of the periodic optical lattice.
Figure 2.3 presents the band structure as a function of quasimomentum. In the absence of

the optical lattice, shown on the left, the eigenvalue Eq. (2.17) reproduces the dispersion curves
of quadratically overlapping energies of the free particle. With the onset of a periodic optical
lattice potential the overlapping energies start to form bands with subsequent band gaps. This
is demonstrated in the subsequent �gures in the right of �rst result. These �gures also con�rm
the alternating lower and upper edges of the bands at k/kL = 0 and ±1.

Like eigen energies, the eigen states, corresponding to a particular band, depend upon the
quasimomentum and have Bloch form. The eigenstate amplitude is given by the coe�cients
c(n)

k,l and the quasimomentum determines the plane wave envelope. In Fig. 2.4, we show the
eigenstates associated with the edges of the ground band at k = 0 and fi/a. This shows that
the eigenstates corresponding to the band edges are stationary states, which for k = 0 are
fi-periodic, and for k = ±fi/a are 2fi-periodic [98]. Fig. 2.5 shows the probability density of
these states for di�erent lattice depths. This reveals that the probability density is concentrated
around each lattice site inside the contiguous lattice wells. The result also exhibit that in the
absence of the periodic lattice the eigenstates are plane waves extended in space and thus the
probability density is constant. In the case of an optical lattice the eigenstates become localized
in periodic lattice wells. The increased localization at higher depths of the periodic lattice is
demonstrated. This e�ect is stronger for eigenstates with a �nite quasimomentum, where the
state at k = fi/a develops strong localization even at low lattice depths, due to its energetically
high position within the band structure.

In Fig. 2.6, the eigenstates at the edges of the �rst band are shown for varying lattice depths.
At low lattice depths, the states at k = fi/a are localized around the peaks of the optical
potential. As the lattice depth increases, the eigenstates begin to develop two distinct peaks,
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Figure 2.4: Real parts of the eigenstates corresponding to lower and upper edges of the ground
band of the periodic optical lattice, at k = 0 (a) and k = fi/a (b), respectively. The
shaded area and gray-dashed periodic curve depicts the optical potential.

Figure 2.5: Absolute-squared values of the eigenstates corresponding to the lower and upper
edges of the ground band at k = 0 (a) and k = fi/a (b), respectively, for di�erent
potential heights. The shaded area and gray-dashed periodic curve is shown to
depict the optical potential. The eigenfunctions and optical potential in each case
are normalized to unity.
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2.2 Single-Particle Physics

Figure 2.6: Absolute-squared values of the eigenstates corresponding to the upper and lower
edges of the �rst excited band at k = 0 (a) and k = fi/a (b), respectively, for di�er-
ent potential heights. The shaded area and gray-dashed periodic curve depicts the
optical potential. The eigenfunctions and optical potential in each case are normal-
ized to unity.

which gradually grow in amplitude and shift toward the potential wells. At higher lattice
depths, these states become localized along the sides of the potential wells.

The degree of eigenstate localization depends signi�cantly on whether the state corresponds
to the upper or lower band edge. For the �rst band, the upper edge is at k = 0 and states at
this edge exhibit strong localization even at low lattice depths. This is evident in Fig. 2.6(a),
where the eigenstates remain well-con�ned despite shallow lattice potentials. In contrast, for
the lower band edge at k = fi/a, strong localization develops more gradually as the lattice
depth increases. This behavior is depicted in Fig. 2.6(b), showing a progressive con�nement of
the eigenstates as the lattice depth grows.

Similar to the trends observed across the lowest two bands, for the higher bands the probabil-
ity density within the lattice varies across di�erent positions. Accordingly, cold atoms loaded
into an optical lattice distribute themselves based on the lattice depth, which also determines
the wave packet localization and occupation of speci�c bands.

2.2.2 Wannier States

Wannier states are a complete, orthonormal set of maximally-localized wavefunctions, cen-
tered around lattice sites, that describe particles within a single energy band. They can be
constructed as the superposition of all eigenstates corresponding to di�erent k-values within
a band, expressed as [99, 100]

w(n)(x ≠ ja) = 1
Ô

L

ÿ

k

Â(n)
k (x)e≠ikaj , (2.19)
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Figure 2.7: Ground bandWannier states at varying potential depths (a), together with Wannier
states corresponding to the �rst two excited bands at a �xed potential depth V0 =
8ER (b). The states are localized around xj = 0. The shaded area and the gray-
dashed periodic curve depicts the optical potential.

with the localized state centered around jth site in a lattice with L sites. Thus, Wannier states
are related to the eigenstates of the periodic lattice through a Fourier transform and serve as
an alternative yet equivalent basis. They provide a convenient basis for analyzing phenomena
such as tunneling, particle interactions, and the e�ects of external forces.

The extent of localization of Wannier states is in�uenced by the lattice depth V0 and varies
signi�cantly across di�erent bands. At shallow lattice depths, corresponding to small V0, Wan-
nier states in the ground band are localized up to the extent that few lattice sites overlap. This
re�ects tunneling between adjacent wells. As the lattice depth increases, tunneling is sup-
pressed, and Wannier states become sharply localized in individual wells. This transition illus-
trates the con�nement of particles to single lattice sites with increasing lattice depth. Fig. 2.7(a)
depicts this progression for the ground band Wannier states, illustrating the states increased
localization as the lattice depth grows.

The localization of Wannier states also connect with the width of the associated band. Nar-
rower bands lead to more localized Wannier states due to reduced energy spread. Conversely,
broader bands yield less localized states. This dependence is evident in Fig. 2.7(b), which shows
Wannier states for the lowest three bands at a �xed lattice depth. The ground band exhibits
the highest localization, while higher bands display greater spatial extent, re�ecting their wider
bandwidths. Moreover, we note that the Wannier states for the ground band and second ex-
cited band are symmetric about their center, while the �rst excited bandWannier state has odd
parity and is anti-symmetric. This re�ects the underlying symmetry of the lattice potential
inherited by Bloch states of the lower-lying bands.
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2.2 Single-Particle Physics

2.2.3 Tight-Binding Model

The Wannier representation describes the most coveted positions of particles in a periodic lat-
tice. The maximally-localized Wannier states delineate the distribution of the wavefunctions
around �xed lattice sites. Restricting ourselves to the regime where the particle wavefunction
in each well is not perfectly isolated but retains a �nite overlap to the extent that the localized
description of wavefunctions remains applicable. In such a regime, considering tunneling only
between adjacent lattice sites and restricting the particle dynamics to a single band, the frame-
work of constraints is commonly referred to as the tight-binding model. This framework is
widely used to describe cold atom-lattice systems, even when the optical lattice is augmented
by external potentials.

Assuming the cold atoms in the lowest band of the optical lattice and the external potential
Vext(x) not strong enough to induce interband transitions, the atomic wavefunction can be
expanded in terms of ground band Wannier states as

�(x, t) =
ÿ

j

„j(t)w(0)(x ≠ ja). (2.20)

The Schrödinger equation for a 1D optical lattice with the above wavefunctions leads to the
following system of coupled linear equations, governing the time evolution of the amplitudes
„j(t):

i~ ˆ

ˆt
„j(t) = ≠J(„j+1(t) + „j≠1(t)) + Áj„j(t), (2.21)

with

J = ≠

⁄
dx w(0)ú(x)

A
p2

2M
+ V (x)

B

w(0)(x ≠ a), (2.22)

and
Áj =

⁄
dxw(0)ú(x ≠ ja)Vext(x)w(0)(x ≠ ja) ¥ Vext(ja), (2.23)

where J denotes the tunneling parameter between nearest-neighbor sites and Áj represents
the onsite energy shift caused by the external potential. In the context of the Wannier rep-
resentation, Eq. (2.21) is referred to as the discrete Schrödinger equation or the tight-binding
Schrödinger equation, which in the absence of an external potential leads to the energy dis-
persion relation Ek = ≠2J cos(ka).

Ground Band Tunneling Parameter

As discussed earlier, for a sine-squared lattice, i.e., V (x) = V0 sin2(kLx), the solutions to the
Schrödinger equation are Mathieu functions, and Mathieu characteristic values belonging to
the periodic solutions provide the band edges. Therefore, one can use the asymptotic expres-
sions for the even a2n and odd b2n+1 characteristic values [97], which lead to the following
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expression for the bandwidths

�(n)
≥

23n+4

n!Ôfi

3
Vo

ER

4 n
2 + 3

4
e

≠2
Ò

Vo
ER

C

1 ≠
6n2 + 14n + 7

16

Û
ER

Vo
+ O

3
ER

Vo

4D

, (2.24)

where V0 >> ER. Moreover, when using the de�nition of the Wannier states one can express
the ground band tunneling parameter as

J = ≠
1

Ô
L

ÿ

k

eika
⁄

dx Â(0)ú
k (x)

A
p2

2M
+ Vo sin2 (kx)

B

Â(0)
k (x) = ≠

1
Ô

L

ÿ

k

E(0)
k eika,

(2.25)
which leads to an analytical representation of ground band energy

E(0)
k = ≠2J cos(ka). (2.26)

Therefore, the width of the ground band is related to the tunneling parameter as �(0) = 4J .
Consequently, solving the expression (2.24) for the ground band, one has the ground band
tunneling parameter, given by [101–104]

J ≥
4

Ô
fi

3
Vo

ER

4 3
4
e

≠2
Ò

Vo
ER (2.27)

which is, thus, tunable through the optical lattice depth.

2.3 Bose-Hubbard Model

The present-day experimental advancements allow one to study ultracold atoms in optical
lattices within the single-particle treatment, described above. However, regimes exist naturally
where atom-atom interactions can be accessed. These interactions give rise to remarkable
phenomena, such as the iconic super�uid to Mott insulator quantum phase transition [26].
This transition is captured by the Bose-Hubbard model, which describes interacting Bosons in
a periodic potential. Themodel highlights the interplay between kinetic energy and interaction
potential, central to the physics of strongly correlated Bosons. In the regime where the ratio
of kinetic energy to interaction potential is large, Bosonic atoms delocalize across the lattice
to minimize their kinetic energy, resulting in a super�uid phase characterized by a gapless
excitation spectrum. Conversely, as the ratio approaches zero, on-site interactions suppress
the tunneling, leading to the exponential localization of particles. Under these conditions, the
energetically favorable con�guration corresponds to an equal distribution of particles across
the lattice sites, giving rise to the Mott insulating phase.
There has been extensive theoretical e�ort over the past decades to characterize the super�uid-

to-Mott-insulator transition beyond these regimes. The challenge arises because the mean-
�eld theory cannot be applied beyond the case of integer average �lling factors and thus an-
alytical solution become unachievable. Hence, various numerical techniques, such as renor-
malization group theories [33], strong-coupling expansions [105], and quantum Monte Carlo
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2.3 Bose-Hubbard Model

methods [106], have been developed. In particular, the density matrix renormalization group
(DMRG) has been instrumental in providing deeper insights into the behavior of the system.
More recently, advancements in hybrid numerical methods, such as the combination of tensor
network techniqueswithMonte Carlo simulations [107] andmachine learning algorithms [108]
have further enhanced our understanding of the Bose-Hubbard model. These advanced meth-
ods have signi�cantly contributed to the exploration of the Bose-Hubbard Hamiltonian.

Originally developed in the context of solid-state systems, the Bose-Hubbard model has
also been applied to describe short correlation length superconductors [109], excitons in two-
dimensional semiconductor lattices [110,111], Josephson junction arrays [112], the critical be-
havior of 4He [113], and quantum phase transitions in photonic systems [114]. In the next
subsection we review the basic properties of the Bose-Hubbard Hamiltonian.

Bose-Hubbard Hamiltonian

The many-body Hamiltonian of a cold spinless Bosonic gas subjected to an optical lattice po-
tential can be formulated within the framework of a microscopic second-quantized description
as

Ĥ =
⁄

dx �̂†(x)
A

≠
~2

Ò
2

2M
+ V (x)

B

�̂(x) +
⁄

dx �̂†(x)Vext(x)�̂(x)

+1
2

⁄
dx dxÕ �̂†(x)�̂†(xÕ)Vatm(x ≠ xÕ)�̂(x)�̂(xÕ), (2.28)

where �̂†(x) is the Bosonic creation �eld operator, V (x) is the periodic optical lattice poten-
tial, Vext(x) represents a weak external trapping potential that might be present and Vatm(x)
denotes a pseudo potential quantifying the inter-atomic interactions. It is known that for the
ultracold atoms the inter-atomic interactions are dominated by the s-wave scattering length,
as, and the interaction potential is given by

Vatm(x ≠ xÕ) = ash2

fiM
”(x ≠ xÕ). (2.29)

with h denoting Planck’s constant and M represents the mass of an atom.
As in the case of noninteracting atoms, where the single-particle wave function was ex-

pressed in Wannier functions, it is convenient to represent the �eld operators in the Wannier
basis. With the considerations that the interaction potential is signi�cantly smaller than the
energy gap between the ground and �rst excited band and the strength of the external trapping
potential is kept much smaller than the ground band width, the �eld operators can be expanded
in terms of ground band Wannier functions as

�̂(x) =
ÿ

j

âjw(0)(x ≠ ja), (2.30)

with âj the annihilation operator corresponding to site j in range [≠L/2, L/2]. Using the
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above representation in Eq. (2.28) and restricting the atomic tunneling to nearest-neighbor
sites, yields the Bose-Hubbard Hamiltonian

ĤBH = ≠J
ÿ

j

(â†
j âj+1 + â†

j+1âj) +
ÿ

j

â†
j âjÁj + U

ÿ

j

â†
j â†

j âj âj , (2.31)

where the tunneling parameter J and the onsite energy Áj correspond to the usual tight-
binding parameters given in Eqs. (2.22) and (2.23) andU denotes the onsite interaction constant
given by

U = ash2

fiM

⁄
dx|w(0)(x)|4. (2.32)

To calculateU , theWannier states in Eq. (2.32) can be approximated using the Gaussian ground
state of the local harmonic oscillator potential at a single lattice site, enabling the integral to
be evaluated analytically which results in [46, 115]

U = 4as

h
(fiM)

1
2 (V0ER) 1

4 . (2.33)

This relation o�ers the unique control of tuning the interaction strength through the optical
lattice depth. In the next chapter, we �rst discuss the single-particle dynamics that arise when
the external potential is assumed to be a potential that changes linearly with position, and
describe the e�ects of interactions and time-periodic driving at a later stage.
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3Dynamics of
Ultracold Atoms in Optical Lattices

Ultracold atoms in optical lattices can be described as matter-wave packets, resembling Bloch
electrons in a periodic solid-state crystal. Consequently, the dynamics in a periodic optical
potential are analogous to those of Bloch electrons. The ability to tune inter-atomic interac-
tions to negligible strengths enables the realization of well-known phenomena such as Bloch
oscillations, as well as more advanced super-Bloch oscillations, which so far have been ob-
served exclusively in arti�cial crystals. These dynamics have been widely discussed for their
potential to coexist with other familiar quantum dynamics and to give rise to novel quantum
phenomena.

In this chapter, we introduce the reader to Bloch oscillations, super-Bloch oscillations, dy-
namical localization and other related dynamics.

3.1 Bloch Oscillations

Consider a single ultracold atom in a one-dimensional optical lattice, subjected to an external
linear potential that tilts the lattice, creating a constant force (determined by the slope). The
Hamiltonian is

H = p2

2M
+ V (x) + Fx, (3.1)

where F represents the constant force. Let us suppose that the lattice is described by Bloch
bands and the time evolution of an initial wave packet comprising on a Bloch state Â(0)

k0
(x, t =

0) is given by

Âk0(x, t) = e
≠ i

~

1
p2
2M +V (x)+F x

2
t

Âk0(x, 0). (3.2)

Introducing the translation in space by one lattice period, i.e., x æ x + a, gives

Âk0(x + a, t) = e
≠ i

~

1
p2
2M +V (x+a)+F (x+a)

2
t

Âk0(x + a, 0). (3.3)

Employing the periodicity of the optical potential and the properties of Bloch states simpli-
�es the above equation to

Âk0(x + a, t) = e≠ i
~ ”E teik0aÂk0(x, t), (3.4)

with the energy shift ”E = Fa, which corresponds to the phase shift ”Et/~. A 2fi phase shift
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Figure 3.1: Schematic time evolution of a wave packet in the band structure of a sine-squared
lattice under the in�uence of a constant force F : In the absence of a periodic optical
lattice (left), the energy increases continuously without bound. In a periodic po-
tential (right), energy gaps emerge between Bloch bands due to the band structure.
The wave packet evolving in a particular band exhibits oscillatory motion, which
decays when tunneling to higher band is not neglectable.

infers that the wave packet comes back to its initial position at time

TB = 2fi~
Fa

, (3.5)

known as the Bloch period. This provides an initial insight on the dynamics of wave packets
e�ectuated by the constant force. The above result also relates the quasimomentum of the
wave packet to the force as k(t) = k0 ≠ Ft/~. This implies that the wave packet, with a
slowly varying envelope centered around quasimomentum k, follows the classical acceleration
law as the quasimomentum sweeps across a particular band. This semiclassical viewpoint on
the coherent evolution of wave packets in periodic potentials is known as the acceleration
theorem [70]. When the quasimomentum reaches the boundary of the �rst Brillouin zone,
it inverts due to Bragg scattering, transforming the acceleration into a coherent oscillatory
motion called Bloch oscillations (BOs). As during a BO, the energy shift is equal to the width
of the band, therefore the available space L for the motion is given by [62]

L = �/F, (3.6)

where � is the bandwidth.
Figure 3.1 depicts the motion of the wave packet in k-space, for the propagation of the

wave packet in the absence of a lattice (left) and with an optical lattice potential V (x) =
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3.1 Bloch Oscillations

Figure 3.2: Absolute values of wave packet propagation in position space exhibiting center-
of-mass Bloch oscillations in the ground band (left) and with including Landau-
Zener tunneling to �rst-excited band (right). A Gaussian wave packet with width
‡ = 10 centered at x0 = 0 and zero initial momentum is propagated. The system
parameters are F = 0.015 (2V0kL), V0 = 1(ER), ~eff =


8ER/V0, and a = 2fi.

V0 cos(2kLx) (right). The �gure highlights the unbounded increase of the quasimomentum,
upon the application of a force, in the lattice-free case and the periodic oscillations of the
quasimomentum within a band when a periodic optical lattice is present. The band gaps play
a signi�cant role in the evolution of the wave packet and with a relatively small gap between
the bands, the force couples the wave packet to the higher bands giving rise to Landau-Zener
tunneling, by which the BOs decay. The tunneling probability is given by [116]

|T |
2

¥ exp
A

fi2�
16Fa/ER

B

, (3.7)

which determines the transition rate [62]

R = 1
TB

|T |
2. (3.8)

The oscillatory dynamics in real space is shown in Fig. 3.2, which also exhibits Landau-Zener
tunneling to higher-lying band. Fig. 3.2(a) displays the time evolution of the probability density
of a broad Gaussianwave packet restricted to the ground band of the optical lattice. This reveals
coherent center-of-mass BOs in the ground band. In Figure 3.2(b) Landau-Zener tunneling
to �rst-exited band is revealed on top of BOs when all the bands of the periodic lattice are
considered. The tunneling takes place initially and at each Bloch period. The tunneled fraction
accelerates across the lattice covering large distances.
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3.1.1 Group Velocity

Another quantity of interest for the wave packet propagation in periodic potentials is the group
velocity. As noted by Jones and Zener (1934) [117], it is related to the energy dispersion relation
via

vg(t) = 1
~

dE

dk
. (3.9)

This combined with the acceleration theorem provides a powerful approach to describe the
Bloch dynamics. Considering the tight binding dispersion relation of a periodic lattice

E(k) = ≠2J cos(ka), (3.10)

the group velocity is

vg(t) = 2Ja

~ sin(ka). (3.11)

For a wave packet smoothly propagating in k-space; centered around the quasimomentum
kc(t), the acceleration theorem reads

~k̇c(t) = ≠F. (3.12)

The group velocity evaluated at the quasimomentum kc(t) using perturbation method, yields

vg(t) = 2Ja

~ sin(ÊBt + kc(0)a), (3.13)

where ÊB = Fa/~ is the Bloch frequency. Integrating the above equation gives

xc(t) = xc(0) ≠
2J

F
cos(ÊBt + kc(0)a), (3.14)

which describes the center-of-mass BOs. This semi-classical approach is highly powerful in
describing single-band tight-binding dynamics and later wewill show that this approachworks
also well for the case of a time-modulated homogeneous force and even in a special case with
a time-modulated spatially-inhomogeneous force.

3.1.2 Wannier-Stark Ladders

In order to further describe the phenomena occurring within a periodic lattice under the in�u-
ence of constant external force, it is important to introduce the concept of the Wannier-Stark
ladder. This concept �rst proposed by Wannier in 1960 [64] and it subsequently sparked a pro-
longed debate, the details of which are reviewed in [118,119]. Though the Bloch dynamics are
often described using band theory, the presence of an external force breaks the translational
symmetry of the system, making the band picture inapplicable. Instead, a di�erent form of
quantization emerges, known as the Wannier-Stark ladder. In this formulation the solutions
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3.1 Bloch Oscillations

Ïn(x) of the Schrödinger equation
A

p2

2M
+ V (x) + Fx

B

Ïn(x) = EnÏn(x), (3.15)

under translation x æ x ≠ la, solve the same equation
A

p2

2M
+ V (x) + Fx

B

Ïn(x ≠ la) = (En + laF )Ïn(x ≠ la), (3.16)

with eigen energies En,0 shifted to En,l = En,0 +laF forming an equispaced ladder-like struc-
ture of discrete energy levels. The wavefunctions Ïn,l(x) = Ïn(x ≠ la) are commonly known
as Wannier-Stark states. This description readily allows an explanation of the dynamics in the
titled periodic potential even at high strengths of the constant force. Despite, we restrict the
discussion to the weak force case and describe the dynamics without considering the Landau-
Zener tunneling and other decay processes. Thus, the index n representing the higher-lying
ladders is suppressed.

Let us consider a wave packet expansion in terms of Wannier-Stark states

�(x, t) =
ÿ

l

cl(t)Ïl(x), (3.17)

which inserted into the Schrödinger equation gives

i~
ÿ

l

ċlÏl(x) =
ÿ

l

(E0 + laF ) clÏl(x). (3.18)

The energies E0 only contributes a global phase to the time evolution and is therefore omit-
ted. Further assuming that the lattice is large enough to maintain the global translational sym-
metry and that the Wannier-Stark states are well-localized within individual wells of the tilted
lattice at sites l, it follows that adjacent eigenstates of the Hamiltonian are e�ectively identical.
This ensures that the orthogonality condition holds and the state Ïj(x) is orthogonal to its left
eigenstate Ïl(x) for l ”= j. Thus, projecting the above equation with Ïú

j (x) and integrating
results in [120]

i~ċj = jaFcj . (3.19)

The above simple integrable model captures important features of the dynamics. To bring these
to surface we decompose the coe�cients into time dependent amplitudes and phases

cj = Ô
flj ei„j , (3.20)

which leads to
i~fl̇j ≠ 2~„̇jflj = 2jaFflj . (3.21)

Separating real and imaginary parts and integrating yields the following solution for the am-
plitude

flj(t) = flj(t = 0), (3.22)
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Figure 3.3: Absolute-squared values ofwave packet evolution in real andmomentum space. Co-
herent center-of-mass Bloch oscillations for an initial broad Gaussian wave packet
are shown. The dotted line mark the initial mean position of the wave packet and
dashed line outline the boarders of the 1st Brillouin zone. The gray curves depict
the periodic potential and blue curve shows the absolute value of Wannier state in
momentum space.

and for the phase

„j(t) = ≠j
”Et

~ , (3.23)

with the energy shift ”E = Fa. These results explain the constant amplitude during center-of-
mass BOs and the time-dependent phase shift originating from the energy shift at the respective
site j.
A deeper understanding can be gained by examining the dynamics of the wave function

in momentum space. This can be achieved with the approximate solutions derived earlier.
Keeping in view, the spatial invariance of Wannier-Stark states, the Wannier-Stark states in
the momentum space are represented as

Ïj(Ÿ) = e≠ijŸaÏ0(Ÿ), (3.24)

where Ÿ is the wave vector related to the true momentum. Hence, the time evolution of wave
packet in momentum space is

�(Ÿ, t) = Ï0(Ÿ)
ÿ

j

Ô
flje≠ij(Ÿ+F t/~)a, (3.25)

which can be expressed as
�(Ÿ, t) ≥ Ï0(Ÿ)C̃(Ÿ + Ft/~), (3.26)
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3.1 Bloch Oscillations

Figure 3.4: Absolute-squared values of wave packet evolution in real and momentum space.
Bloch breathing oscillations for an initial sharply localized wave packet are shown.
The dotted line mark the initial mean position of the wave packet and dashed line
outline the boarders of the 1st Brillouin zone. The gray curves depict the periodic
potential and blue curve shows the absolute value of Wannier state in momentum
space.

where we have neglected a global phase. Here, C̃(Ÿ) represents the discrete Fourier transform
of the real-space amplitude flj . This evaluated at Ÿ + Ft/~ provides the time evolution of
the wave packet in quasimomentum-space which remain under a time-independent complex
function Ï0(Ÿ). The function C̃(Ÿ) is periodic in Ÿ-space, meaning that C̃(Ÿ + j) = C̃(Ÿ).
Consequently, C̃(Ÿ+Ft/~) is also periodic in time with a period equal to the Bloch period. For
a broad Gaussian distribution with the amplitudes flj , the discrete Fourier transform results in
a comb function with peaks located at Ÿ = j [120]. These peaks, representing the wave packet
in momentum space, evolve linearly in time under an envelope function given by Ï0(Ÿ). The
comb and envelope function are illustrated in Fig. 3.3 and Fig. 3.4, where the absolute-squared
value of the wave packet evolution is shown in real and momentum space along with the
absolute value of the momentum space Wannier-Stark state Ï0(Ÿ). The periodic evolution of
the wave packet in momentum space under an envelope function manifests as periodic BOs of
the wave packet in real space.

We have seen already that the amplitude of a broad Gaussian wave packet which moves
smoothly across the tilted lattice remains almost undisturbed. Although the amplitude of the
momentum peaks changes under the envelope function, it remains almost constant as the wave
packet translates through the Brillouin zone. The momentum space description also suggests
that a sharply localized wave packet in real space would breathe due to a large spread of the
wave packet density in momentum space. In such a case, the wave packet expectation values
vanishes while the width oscillates periodically in time. These width oscillations are termed
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Bloch breathing oscillations or Bloch breathing modes. The time evolution of the width and
the expectation values can be obtained analytically. However, instead of delving deeper into
this topic we only show the wave packet dynamics which we obtain numerically.
To demonstrate the two kind of Bloch motions, we show in Fig. 3.3 and Fig. 3.4 the real and

momentum space dynamics by taking an initial Gaussian wave packet. Fig. 3.3 illustrate that
for a broad Gaussian wave packet the dynamics is given by coherent center-of-mass BOs. In
this motion, the wave packet accelerates in the direction of the force. As the momentum wave
packet reaches the edge of Brillouin zone, its probability drops signi�cantly while it increases
at the opposite edge. Thus, with the inverted sign of momentum, the wave packet changes
direction in real space and it again accelerates towards its outset. This motion is repeated with
negligible width variations.
The wave packet evolution shown in Fig. 3.4 exhibit that instead of coherent center-of-mass

motion a sharply-localized Gaussian wave packet performs periodic breathingmotion in which
the wave packet �rst expands and then it shrinks. The wave packet expands to the localiza-
tion length at times equal to half of the Bloch period, then it shrinks returning to its original
shape. The large spread of wave packet in momentum space causes the total density to explore
opposite directions giving rise to breathing.

3.2 Driven Dynamics

Optical lattices also enable one to design time-periodically modulated potentials. The simplest
setup one can implement is an oscillating periodic lattice driven by a time-periodic potential

Vext(x, t) = Fx sin(Êt + „). (3.27)

This potential imparts an oscillating force

F (t) = F sin(Êt + „), (3.28)

which causes the quasimomentum to oscillate according to

~k̇c(t) = ≠F (t). (3.29)

As discussed in the previous chapter, an external linear potential, in general, makes the band
picture inapplicable. However, the time-periodically driven force and particular resonances in
the case with a constant force restores the band structure such that the driving compensates
for the energy o�set between neighboring wells in the lattice [121].
Thus, above Eq. (3.29) suggests that depending on the initial phase of the driving force, the

oscillations of the quasimomentum are either uniform around the center of the Brillouin zone
or shifted to one side. This is equivalent to a vanishing cycle-average momentum or a �nite
momentum experienced by the wave packet over each cycle. The latter results in a coherent
directed transport along with small periodic oscillations.
In order to demonstrate these e�ects, we consider a single atom in a periodic optical lattice

with atomic tunneling limited to nearest neighbors and the dynamics restricted to the low-
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3.2 Driven Dynamics

Figure 3.5: Absolute values of the wave packet evolution in real and quasimomentum space.
Spreading and transport dynamics in the oscillating tight-binding lattice are shown
for „ = 0 ((a) and (b)) and „ = ≠fi/2 ((c) and (d)), respectively. A broad Gaussian
wave packet with width ‡0 = 10, initial momentum k0 = 0, and initial position
j0 = 0 is evolved. The system parameters are J = 1.0ER, Fa = 0.605ER, and
~Ê = 0.5ER.

est band. The single-band tight-binding lattice in the presence of a time-periodic potential is
described by the Hamiltonian

‚H = ≠J
Œÿ

j=≠Œ
(|j + 1ÍÈj| + h.c) + F (t)a

Œÿ

j=≠Œ
j|jÍÈj|, (3.30)

where |jÍ represents the Wannier states localized at position x = ja. The initial state we
choose as a broad Gaussian wave packet

|�(t = 0)Í =
ÿ

j

1
Ò

‡0
Ô

fi
e

≠ (j≠jo)2

2‡2
0 e≠ik0(j≠jo)

|jÍ, (3.31)

where j0 represents the initial mean position, k0 denotes the initial quasimomentum, and ‡0
corresponds to the wave packet width. We then solve the Schrödinger equation with Hamilto-
nian (3.30).

When considering the tight-bind dispersion relation for the ground band of the periodic
lattice E(k) = ≠2J cos(ka), the e�ective dispersion relation for the driven system is given
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as [73, 74]

Á(k) = 1
T

⁄ T

0
dtE(kc(t)), (3.32)

with T = 2fi/Ê representing the period of the drive. This leads to

Á(k) = ≠2JJ0

3
Fa

~Ê

4
cos

3
kc(0)a +

3
Fa

~Ê

4
cos(„)

4
, (3.33)

where J represents a Bessel function of the �rst kind. The above energy dispersion provides
the average group velocity

v̄g = ˆÁ

ˆkc(0) = 2Ja

~ J0

3
Fa

~Ê

4
sin

3
kc(0)a +

3
Fa

~Ê

4
cos(„)

4
. (3.34)

Taking kc(0) = 0, the above equation reveals a vanishing of the average group velocity for
„ = ±fi/2 and obtaining a constant value, i.e., 2Ja

~ J0
1

F a
~Ê

2
sin

1
F a
~Ê

2
, for „ = 0, ±fi. This

represents periodic oscillations at „ = ±fi/2 and oscillatory directed transport for „ = 0, ±fi.
These dynamics are shown in Fig. 3.5 in both real and quasimomentum space. Figure 3.5(a)
exhibits the directed transport on top of periodic oscillations for „ = 0. These dynamics are
related to periodic oscillations of quasimomentum, displayed in Fig. 3.5(b). The wave packet
density exploring the quasimomentum values on one side of the Brillouin zone describes the
accelerated transport. In Fig. 3.5(c) and (d), the dynamics obtained at „ = ≠fi/2 are shown.
Fig. 3.5(c) also unveils a slow oscillatory spreading of wave packet on top of periodic oscil-
lations. This spreading motion develops gradually as the wave packet oscillates in real and
quasimomentum space. The dynamics of the quasimomentum are displayed in Fig. 3.5(d).
The spreading motion is related to a constant band dispersion and an e�ective tunneling for
„ = ±fi/2, while the average group velocity becomes zero. We also note that both the trans-
port and spreading reduces as the wave packet performs large amplitude oscillations inside the
Brillouin zone at a stronger driving force.

3.2.1 Dynamical Localization

At speci�c values of the ratio between the driving strength and frequency, corresponding to the
zeros of the Bessel functionJ0, both spreading and transport cease entirely. This phenomenon,
known as dynamical localization characterizes a regime where tunneling is coherently sup-
pressed and is linked to the band collapse signi�ed by Eq. (3.33) [53]. Band collapse results in
a complete decoupling between the lattice sites, with eigenfunctions becoming strictly local-
ized onto individual sites. From a physical perspective, the application of a time-periodic drive
induces coherence in the system, which in turn suppresses or can even eliminate tunneling
between neighboring sites.
Figure 3.6 demonstrates the dynamical localization for the same Gaussian wave packet as

employed in Fig. 3.5. It can be seen in Fig. 3.6(a) that the wave packet performs periodic os-
cillations in real-space even though the quasimomentum-space dynamics in Fig. 3.6(b) imply a
cycle averaged momentum. Similarly, the slow oscillatory spreading is shown to die out com-

32



3.2 Driven Dynamics

Figure 3.6: Absolute values of the wave packet evolution in real and quasimomentum space.
Dynamical localization in the oscillating tight-binding lattice are shown for „ = 0
((a) and (b)) and „ = ≠fi/2 ((c) and (d)), respectively. The initial state and the system
parameters remain the same as in Fig. 3.5, except that the wave packet, in this case,
experiences a relatively stronger force Fa = 1.2ER.

pletely in Fig. 3.6(c), although the quasimomentum-space dynamics in Fig. 3.6(d) are similar to
Fig. 3.5(d).

3.2.2 Super-Bloch oscillations

The interplay of spreading dynamics, directed transport, and dynamical localization also man-
ifests, on top of BOs, when an additional constant force is present along with the oscillating
potential. At particular resonances, where the driving frequency is a rational multiple of the
Bloch frequency, the modulation introduces additional small oscillations on top of the linear
evolution of the quasimomentum. These oscillations depend on the initial phase of the drive.
As already seen above, when the momentum distribution is symmetric around the center of the
Brillouin zone, this results in the spreading of the wave packet [55]. Conversely, an asymmetric
distribution produces a coherent directed transport.

For non-resonant driving, where the driving frequency slightly detunes from a rational mul-
tiple of the Bloch frequency, the quasimomentum oscillations gain a relative phase that sweeps
across the Brillouin zone [75]. This leads to a unique transport behavior with the wave packet
reversing its direction as the phase changes sign. The result is a slow oscillatory transport on
top of Bloch oscillations, known as super-Bloch oscillations.
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Figure 3.7: Absolute values of the wave packet evolution in real and quasimomentum space.
Super-Bloch oscillations for the same broad Gaussian wave packet as employed in
Fig. 3.5 ((a) and (b)) and a sharply localized initial state , i.e., |�j(t = 0)Í = ”j0
((c) and (d)), respectively. The system parameters are J = 1.0ER, Fa = 0.605ER,
F0a = 0.5ER, ~Ê = 0.45ER, and thus ”Ê = 0.05.

To describe these dynamics, we account for the constant force by de�ning the periodically
modulated force as F (t) = F0 + F sin(Êt + „), where the driving frequency is tuned near a
rational multiple of the Bloch frequency, such that F0a = ~(rÊ + ”Ê). Then, the solution to
the acceleration relation in Eq. (3.32) is

kc(t) = kc(0) ≠ (rÊ + ”Ê)t ≠
Fa

~Ê
cos(Êt + „) + Fa

~Ê
cos(„). (3.35)

Accordingly, the e�ective dispersion relation takes the form

Á(k) = ≠
2J

T

⁄ T

0
dt cos

3
kc(0) ≠ (rÊ + ”Ê)t ≠

Fa

~Ê
cos(Êt + „) + Fa

~Ê
cos(„)

4
, (3.36)

which can be solved by integrating over the fast oscillating phases with Ê and treating tÕ
© ”Êt

as a constant term, since tÕ
π t due to ”ÊÕ

π 1. Thus, the solution to above equation is
approximately given by [73]

Á(k) ƒ ≠2JJr

3
Fa

~Ê

4
cos

3
kc(0)a + ”Êt +

3
Fa

~Ê

4
cos(„) ≠ r(„ + fi

2 )
4

, (3.37)
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3.2 Driven Dynamics

from which the average group velocity follows as

v̄g(t) ƒ
2Ja

~ Jr

3
Fa

~Ê

4
sin

3
kc(0)a + ”Êt +

3
Fa

~Ê

4
cos(„) ≠ r(„ + fi

2 )
4

. (3.38)

These results highlight that in the presence of a static force, the tunneling parameter for a near-
resonant driving from a �xed resonance r scales with Bessel functions Jr

1
F a
~Ê

2
, rather than

being renormalized solely by J0
1

F a
~Ê

2
, as observed in the case of an oscillating force. Thus,

in the Bloch oscillating system, dynamical localization occurs at zeroes of the Bessel function
Jr determined by whether a primary resonance for r = 1 or other secondary resonances are
triggered. The time-dependent average group velocity in the presence of detuning also reveals
oscillatory transport, which takes place irrespective of the drive phase. For ”Ê = 0, the above
equation suggests spreading and transport dynamics along with BOs, which are determined
by the phase shift (Fa/~Ê) cos(„).

Integrating above equation one obtains the time evolution of the cycle-averaged position

x̄(t) ƒ
2Ja

~”Ê
Jr

3
Fa

~Ê

4 C

cos
3

kc(0)a + ”Êt +
3

Fa

~Ê

4
cos(„) ≠ r

3
„ + fi

2
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≠ cos
3

kc(0)a +
3

Fa

~Ê

4
cos(„) ≠ r

3
„ + fi

2

44 D

, (3.39)

which depends on the detuning ”Ê. This signi�es the strongly ampli�ed spatial motion with
small detuning and period TSBO = 2fi/”Ê much larger than the period of BOs TB .

The super-Bloch oscillations (SBOs) is shown in Fig. 3.7. The slow oscillatory transport
with an amplitude much longer than the ordinary BOs is visible in Fig. 3.7(a). The detun-
ing is 10 times smaller than the Bloch frequency, which corresponds to a super-Bloch period of
TSBO = 10TB . Keeping in view the ratio J/F0 = 2, theWannier-Stark interval L = 8 is much
smaller than the amplitude of super-Bloch oscillations in Fig. 3.7(a). The quasimomentum-
space dynamics shown in Fig. 3.7(b) illustrates the modulation induced rapid oscillations of
the quasimomntum, on top of its linear increase, which move inside the Brillouin zone with
a constant relative phase. The oscillations of the quasimomentum appear only once every
Bloch period in the case of a primary resonance. Moreover, a super-Bloch period is completed
as the meta-stable momentum completes one round inside the Brillouin zone. Fig. 3.7(c) and
(d) exhibit super-Bloch dynamics for a sharply localized initial wave packet, which performs
breathing SBOs due to its large spread in momentum spread. The quasimomentum dynam-
ics reveal a large spread at the metastable-momenta that results in an ampli�ed oscillatory
breathing motion.
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4Impact of Spatial
Inhomogeneity on Bloch Oscillations

Bloch oscillations typically emerge in a spatially-homogenous periodic lattice under the in�u-
ence of a constant force. However, real physical systems often exhibit spatial inhomogeneities,
such as intrinsic disorders in solid-state crystals or optically-tunable disorders engineered in
optical lattice systems. Thus, the fundamental question of how Bloch oscillations are modi�ed
by these lattice inhomogeneities arises.

In this chapter, we discuss Bloch oscillations in spatially-inhomogeneous lattices. We �rst
describe the in�uence of local and quasiperiodic disorder on Bloch oscillations, thus by pro-
viding initial understanding and context. Subsequently, we extend our analysis to globally
inhomogeneous lattices by considering the example of a parabolic optical lattice. While this
analysis highlights the modi�cations in Bloch oscillatory dynamics induced by the global in-
homogeneity, other related dynamics in the parabolic lattice system are also revealed. Finally,
these dynamics are investigated for interacting atoms.

4.1 Bloch Oscillations in a Disordered Lattice
In an ideal periodic lattice, Bloch oscillations continue inde�nitely without fading. However,
the presence of spatial disorder signi�cantly alters the dynamics, leading to dephasing and
other complex e�ects. In this section, we discuss Bloch oscillations in a disordered lattice,
focusing on two distinct types of inhomogeneities: the �rst induced by an incommensurate
optical potential and the second resulting from randomly placed impurity atoms in a periodic
potential.

4.1.1 Disorder Induced by an Incommensurate Optical Potential

A simple way to introduce disorder in an optical lattice is by combining it with an additional
incommensurate potential, which results in a quasi-disordered lattice. Let us consider the su-
perposition of an optical potential V0(x) with a weaker incommensurate periodic potential
V1(x), such that the period of V0(x) is twice the period of V1(x), resulting into a quasiperi-
odic structure, as illustrated in Fig. 4.1 (left panel). This con�guration e�ectively maps onto a
period-doubled tight-binding model carrying an energy mismatch Á between neighboring site,
describing a binary lattice [123]. The binary lattice subjected to a constant force is described
by the Hamiltonian

‚H = ≠J
Œÿ

j=≠Œ
(|j + 1ÍÈj| + h.c) +

Œÿ

j=≠Œ

!
F0a + Á

2 (≠1)j"
|jÍÈj| . (4.1)
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Figure 4.1: Schematic diagram showing two kind of disorders in a periodic lattice. Left panel:
A periodic optical lattice V0(x) is depicted at the top. The middle shows a much
weaker potential V1(x) with a period almost twice the period of the main lattice.
This potential induces disorder and the resulting quasiperiodic latticeV (x) is shown
at the bottom. Right panel: Again, a periodic lattice V (x) in the top, which is shown
superposingwith aGaussian impurity (dashed line) in themiddle. The bottom�gure
shows a disordered lattice in the presence of randomly placed impurities. Taken
from [122].

As seen in Fig. 4.2(a) and (b), Bloch oscillations in the binary lattice exhibit rapid dephasing
followed by periodic revivals. In real space, the wave packet initially follows standard Bloch
oscillatory motion, although as it evolves, the quasi-disorder causes parts of the wave packet to
accumulate phase shifts at di�erent rates, leading to dephasing. However, since the lattice fur-
nishes a quasiperiodic structure rather than being purely random, the wave packet eventually
undergoes constructive interference, resulting in a partial revival.
In quasimomentum space, the dynamics follow a similar trend, displaying dephasing fol-

lowed by revivals. This behavior suggests that while the disorder causes a decay of Bloch
oscillations, the quasi-periodicity allows for wave packet reconstruction at later times.

4.1.2 Disorder introduced by Localized Impurity Atoms

Another form of disorder arises from localized impurities embedded within the lattice. In our
analysis, we again consider the tight-binding lattice with a constant force and represent the
impurity atoms using a Gaussian potential

Vimp(j) = A e
≠ (j≠ji)2

2‡2
i , (4.2)
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4.1 Bloch Oscillations in a Disordered Lattice

Figure 4.2: Absolute values of the wave packet evolution in real and quasimomentum space.
Bloch oscillations in the quasi-disordered lattice ((a) and (b)) and in a locally disor-
dered lattice with Gaussian potential at ji ((c) and (d)), respectively. A broad Gaus-
sian wave packet with width ‡0 = 10, momentum k0 = 0, and position j0 = 0 is
evolved. The system parameters are J = 1.0ER, F0a = 0.5ER, Á = 10≠2ER and
the Gaussian potential is speci�ed by A = 10≠2ER, ‡i = 1, and ji = 5.

centered at lattice site ji, as depicted in Fig. 4.1 (right panel). This impurity acts as a local
perturbation, in�uencing the wave packet dynamics in a distinct manner compared to an in-
commensurate potential.

As shown in Fig. 4.2(c), initially some fractions of wave packet density diminish as they
encounter the disorder at j0. This leads to a phase di�erence, creating interference between
evolving fractions of density. These fractions are progressively and periodically a�ected by the
disorder, causing the interference e�ects to grow and ultimately leading to the partial collapse
of the total density. As successive portions of thewave packet reach the impurity, they continue
to split and interfere with previously scattered components. This repeated interference results
in progressive dephasing of the oscillations. However, the una�ected part of the wave packet
performs coherent oscillations.

Fig. 4.2(d) displays the quasimomentum-space representation of these dynamics. The k-
space evolution highlights the fractions of density that separate from the wave packet at the
beginning of the evolution and at every Bloch period. These fractions evolve alongside the co-
herent density, eventually causing multiple interferences as time progresses. Unlike the incom-
mensurate potential case, where revivals are prominent, the localized impurity leads to a more
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continuous decay. Although the decay feature can be quanti�ed by calculating the expectation
values and the dynamics of the width, and the revival times can be predicted analytically, here
we focus instead on providing a qualitative analysis of Bloch dynamics in disordered lattices.
In conclusion, the introduction of disorder in a periodic lattice signi�cantly in�uences Bloch

oscillations. An incommensurate optical potential induces quick dephasing followed by re-
vivals, preserving the underlying coherence of the system to some extent [124]. In contrast, a
localized impurity causes progressive dephasing through repeated wave packet splitting and
interference. These �ndings highlight the sensitivity of Bloch oscillations to di�erent forms of
lattice inhomogeneity and provide insight into their behavior in realistic experimental setups.

4.2 Bloch Oscillations in Parabolic Optical Lattices

Similar to the disordered lattice a global inhomogeneity of an optical lattice modi�es the Bloch
dynamics. If the external parabolic trapping is relatively strong an inhomogeneous periodic
lattice naturally exists which is often termed as parabolic optical lattice. In the presence of
a global harmonic trap the lattice is symmetrically curved which gives rise to rich dynamics
and Bloch oscillations-like dynamics exists in a regime of weakly curved periodic wells of the
parabolic lattice [79]. In this section, we mainly focus on Bloch oscillations in the parabolic
lattice system, while discussing some other aspects of the dynamics as well.

Parabolic Optical Lattice

The parabolic lattice system consists of ultracold atoms con�ned in an axially symmetric crossed
optical dipole trap which provides weak con�nement in the axial direction in contrast to the
strong con�nement along the transverse plane. In the regime of strong transverse con�nement,
the e�ective potential along the axial direction varies parabolically. Additionally, a 1D-optical
lattice is superimposed on the parabolic potential, creating a symmetrically curved periodic
potential. In dipole and rotating wave approximations, the dynamics of ultracold atoms in the
axial direction is e�ectively governed by the Hamiltonian

H = p2

2M
+ Vo sin2

3
fi

a
x

4
+ 1

2MÊ2
· x2, (4.3)

where Ê· denotes the frequency of the parabolic trap. The wave packet dynamics we discuss
is assumed to start by a sudden displacement of the center of the parabolic potential at t = 0.
This shift moves the atomic cloud into the curved periodic wells of the parabolic lattice, from
where begins evolution.

Single Particle Treatment

Let us assume that interatomic interactions are eliminated using Feshbach resonance tuning.
Under this condition, the behavior of noninteracting ultracold atoms can be analyzed within
the single-particle framework. Moreover, if the lattice depth is much larger than the recoil en-
ergy ER = h2/8Ma2 and the strength of the parabolic potential remains signi�cantly weaker
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4.2 Bloch Oscillations in Parabolic Optical Lattices

than the tunneling, the Hamiltonian (4.3) can be described using the single-band tight-binding
approximation as [89]

‚HT B = ≠J
Œÿ

j=≠Œ
(|j + 1ÍÈj| + |jÍÈj + 1|) + �

Œÿ

j=≠Œ
j2

|jÍÈj|, (4.4)

where |jÍ are the ground bandWannier functions and� = MÊ2a2/2 represents the strength
of the parabolic potential. The wave function |�Í can be represented as a superposition of
Wannier states as

|�(t)Í =
ÿ

j

„j(t) |jÍ. (4.5)

Substituting this into the Schrödinger equation with the Hamiltonian (4.4), leads to a system of
coupled linear di�erential equations that describe the time evolution of the complex amplitudes
„j(t)

i~„̇j = ≠J(„j+1 + „j≠1) + � j2„j . (4.6)

This system allows for stationary solutions of the form „¸
j(t) = Ï¸

je≠iE¸t/~, where Ï¸
j repre-

sents the ¸th eigenstate in Wannier space, and E¸ is the corresponding eigenenergy. Substitut-
ing this ansatz into Eq. (4.6) leads to the eigenvalue equation

E¸Ï
¸
j = ≠J(Ï¸

j+1 + Ï¸
j≠1) + � j2Ï¸

j . (4.7)

To further analyze these eigenstates, we represent them as Fourier coe�cients of a fi-periodic
function Â¸(◊), expressed as

Ï¸
j = 1

fi

⁄ fi

0
d◊ Â¸(◊)e≠2ij◊. (4.8)

This recasts Eq. (4.7) into a Mathieu equation [97],
C

ˆ2

ˆ◊2 +
34E

�

4
≠ 2

3
≠4J

�

4
cos (2◊)

D

Â¸(◊) = 0, (4.9)

with Mathieu characteristic parameters 4E/� = – and 4J/� = q. The above equation is
formally equivalent to the Schrödinger equation for a quantumpendulumwith theHamiltonian

Ĥ = �
4 L̂2

≠ 2J cos(2◊), L̂ = ≠i
ˆ

ˆ◊
, (4.10)

where Lz denotes the angular momentum of the pendulum. Thus, one can interpret the dy-
namics generated by the tight-binding system (4.4) in terms of the pendulum. Also, the above
Hamiltonian corresponds exactly to equation (4.4) represented in the Bloch basis. In this map-
ping, the pendulum momentum Lz is equivalent to the scaled position 2x/a, while the phase
◊ of the pendulum is related to the quasimomentum k via ◊ = ka/2.

Accordingly, the functions Â are fi≠periodic Mathieu Functions [97], which for even and
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Figure 4.3: Probability density of the lowest 100 eigenstates of the parabolic lattice in the single-
band tight-binding approximation. The eigenstates are obtained by diagonalizing
Eq. (4.4). Each eigenstate is shifted along the y-axis based on its corresponding
eigennumber ¸, with ¸c marking the critical point above which the eigenstates
change from harmonic oscillator-like states to Wannier-Stark-like states. The para-
metric values are J = 2.4 ◊ 10≠2ER and � = 3.2 ◊ 10≠4ER. This �gure is taken
from [89] with permission.

odd values of the quantum number ¸ are written as

Â¸(◊) =

Y
]

[

Ò
2
fi ce¸(◊, ≠q), evenÒ
2
fi se¸+1(◊, ≠q), odd

, (4.11)

with ¸ = 0, 1, 2, ..., and the energies are given by

E¸ =
I �

4 a¸(q), even
�
4 b¸+1(q), odd

, (4.12)

where a¸(q), b¸+1(q) represent the characteristic values of –. Re-substituting the solution for
Â¸(◊) into Eq. (4.8) gives (see Appendix A.1 for details)

Ï¸
j =

Y
]

[

1
fi

Ò
2
fi

s fi
0 ce¸(◊, ≠q) cos(2j◊) d◊, even

1
fi

Ò
2
fi

s fi
0 se¸+1(◊, ≠q) sin(2j◊) d◊, odd

, (4.13)

which are the symmetric and anti-symmetric fi-periodic solutions for the real-space wave
function amplitudes. The spatially-extended nature of Mathieu functions, suggests that their
Fourier coe�cients are strongly localized functions [97, 125]. These localized functions man-
ifest as eigenstates, resembling harmonic oscillator eigenfunctions concentrated around the
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4.2 Bloch Oscillations in Parabolic Optical Lattices

Figure 4.4: Husimi-Q representations of eigenstates displayed in panels (a) to (h) for ¸ =
0, 1, 15, 20, 24, 25, 35, and 80, respectively. The classical phase space of the pendu-
lum Hamiltonian (4.10) is superimposed on each result for comparison. The width
of the coherent states is ‡x = 2.23 and the system parameters remain the same as
were in Fig. 4.3. This �gure is taken from [89] with permission.

trap origin and Wannier-Stark-like localized states positioned away from the trap center [89,
126–129]. The Wannier-Stark-like states emerge as the energy E¸ exceeds the energy 2J cor-
responding to the band edge of the uniform lattice potential. The critical energy eigen number
at which the character of eigenstates changes is ¸c = ||

Ô
q||, where ||x|| denotes the nearest

integer to x. In Fig. 4.3 the probability density of the lowest 100 eigenstates is shown, which
we obtain from the eigenvectors of Eq. (4.4), as the eigenvectors correspond to the eigenstates
in the Wannier representation. The resemblance of the states below ¸c to the well-known
harmonic oscillator spectrum of states and the states above ¸c localized on both sides of the
parabola in a Wannier-Stark-like manner is visualized. The simultaneous occupation of both
sides of the parabola highlight that the Wannier-Stark-like eigenstates are (almost) two-fold
degenerate, where the localization of a state increases on both sides as the local tilt induced by
the parabolic potential becomes increasingly steep, and the localized densities are pushed one
lattice site further with each increase in r.

In order to describe the dynamical features of the system, we analyze the dynamics of the
eigenstates by comparing them against the pendulum dynamics. This is done by tracing the
phase space distributions of eigenstates and comparing them against the phase space generated
by the pendulum Hamiltonian (4.10). To obtain the phase space distributions of eigenstates we
consider the Husimi-Q function [130] which is constructed through the overlap

Q‰(x, k) = |È–x,k|‰Í|
2, (4.14)

where –x,k represents coherent states with a maximal density at the coordinates x, k. The
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coherent states in position representation can be expressed as

–x,k(xÕ) = ÈxÕ
|–x,kÍ = 1

Ò
‡x

Ô
fi

e≠ (xÕ≠x)2

2‡2
x e≠ik(xÕ≠x). (4.15)

Figure 4.4 presents the results of our comparison, where the Husimi-Q functions are obtained
by setting |‰Í = |Ï¸

jÍ for a few selected values of ¸. The Husimi distributions are depicted
intersecting with the phase space of the pendulum, which consists of regions with open and
closed curves. These regions are separated by a special curve known as the separatrix. The
separatrix is de�ned as the curve where the energy of the pendulum equals the saddle-point
energy 2J . Hence, the separatrix is expressed as

xc = a

Û
2J

� (1 + cos(ka)). (4.16)

The results in Fig. 4.4 showcase harmonic oscillator-like states clinging to the closed curves,
few intermediate states lying around the separatrix curve, and the Wannier-Stark like states
evolving as per vibrational trajectories in pendulum phase space. This reveals that the dynam-
ics of harmonic oscillator-like states are analogous to vibrations of the pendulum, while the
time evolution of Wannier-Stark-like states resembles rotations of the pendulum. The vibra-
tional regime of the pendulum is equivalent to the harmonic oscillations of the wave packet
across the center of the parabolic lattice in real space and around the center of the Brillouin
zone in quasimomentum space. Also, the momentum preserving its sign and the phase fold-
ing back onto itself during full rotations of the pendulum manifests in the lattice problem as
periodic oscillations of the localized state in real-space and almost linear translation in the
quasimomentum-space. This is equivalent to a Bloch oscillations-like motion in a locally lin-
ear potential on one side of the parabolic lattice. As the eigenstates for ¸ > ¸c are strongly
localized at positions x = ±¸a/2, the locally static force experienced by a Wannier-Stark-like
state ¸ is given by F = ±�¸/a.

Thus, harmonic oscillator-like and Wannier-Stark-like states exist below and above xc, re-
spectively. Hence, an ultracold atomic wave packet occupying harmonic oscillator-like states
with an initial shift below xc exhibits harmonic-oscillator-like dynamics around the center of
the parabolic lattice, while a wave packet triggering Wannier-Stark-like state in the presence
of a large shift in position, i.e., above xc, performs Bloch oscillations-like dynamics on one
side, unless x0 < xmax, where xmax =


�/4J de�nes the maximum shift above which

Landau-Zener tunneling to higher bands sets in [89]. Note that jmax = 129 for the parame-
ters adopted in the present work. The Bloch oscillations-like dynamics are shown in Fig. 4.5
for a broad Gaussian wave packet, as de�ned in Eq. (3.32), with width ‡0 = 2.23 and initial
position j0 = 30. For the parameters stated in Fig. 4.3, and with k = 0 the separatrix lies
at xc ¥ 17. Thus, for j0 = 30 the wave packet performs Bloch oscillations-like dynamics
which dephase quite rapidly. This leads to a collapse of the Bloch dynamics which is followed
by periodic revivals [131], as shown in Fig. 4.5(a). Figure 4.5(b) also highlight the linear evo-
lution of the quasimomentum in the �rst Brillouin zone. The dephasing and revival are also
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4.2 Bloch Oscillations in Parabolic Optical Lattices

Figure 4.5: Absolute values of the wave packet evolution in real and quasimomentum space.
The dynamics resemble Bloch oscillations and dipole oscillations for a Gaussian
wave packet in the parabolic optical lattice with width ‡0 = 2.23, initial momentum
k0 = 0, and initial position x0 = 30 in (a) and (b), followed by x0 = 10 in (c) and
(d), respectively. The system parameters remain the same as in Fig. 4.3.

visible in the quasimomentum-space dynamics. In Fig. 4.5(c) harmonic oscillator-like dynamics
around the center of the parabolic lattice are obtained at j0 = 10. The corresponding oscil-
lations of the quasimomentum around the center of the Brillouin zone are also seen in the
quasimomentum-space dynamics, shown in Fig. 4.5(d). Similar to the Bloch oscillation-like dy-
namics the dipole oscillations also dephase, however, the revival times aremuch longer than the
revival in Fig. 4.5(a). The revival phenomenon is the outcome of the �nite number of discrete
lattice sites explored by the wave packet and is captured by the mean atomic velocity [80]

v̄(t) =≠
2Ja

~

Œÿ

m=≠Œ
exp

I

≠
((m + 1)2 + (m)2)

2‡2
0

J

sin
3
(k0a+ ‹t) + 2�t

~ m
4

. (4.17)

wherem = j≠j0 and ‹ represents the frequency of oscillationswhich is given by ‹B = 2�j0/~
for Bloch-like oscillations and ‹D =

Ô
4J�/~ for dipole oscillations. Replacing the sum by an

integral and solving yields

v̄(t) ¥ ≠
2Ô

fiJa‡0
~ exp

I

≠

3
t2

·2
‡

≠
1

2‡2
0

4J

sin (k0a + ‹t) . (4.18)
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where ·‡ = —~/�‡0 represents the dephasing time, with constant factor — = 1 for Bloch-
like oscillation and — = 8 for dipole oscillations. The above result suggests a quadratically
increasing exponential decay of oscillations caused by the dephasing. Moreover, Eq. (4.18)
predicts an irreversible decay of oscillations due to the approximation of the sum by an integral
and thus misses the revival phenomenon.

4.2.1 Local Acceleration Theorem

To further explain the dynamics we present a simple analytical model, which provides inter-
esting perspective on Bloch and dipole oscillations. We consider the tight binding Hamiltonian
(4.4) expressing it in Bloch basis, leading to the energy function

E(k) = ≠2J cos(ka) + �(x/a)2. (4.19)

Thus, one can de�ne the Bloch acceleration

~k̇ = ≠
ˆE(k)

ˆx
= ≠

32�
a2

4
x, (4.20)

which can be rewritten as

kc(t) = kc(0) ≠
2�
a2

⁄ t

0
xc(tÕ) dtÕ. (4.21)

Taking into account the Bloch oscillatory motion away from the center of parabolic trap and
ignoring the dephasing, the time-dependent evolution of the wave packet’s center can be rep-
resented as xc(t) = xc(0) + �x cos(‹Bt + kc(0)a). Substituting this ansatz into Eq. (4.16) we
have

kc(t) = kc(0) ≠
2�x(0)

a2~ t ≠
2��x

a2~‹B
sin(‹Bt + kc(0)a). (4.22)

With ‹B = 2�x(0)/a~ the above equation gives

kc(t) = kc(0) ≠
‹B

a
t ≠

�x

x(0)a sin(‹Bt + kc(0)a). (4.23)

For x(0) ∫ �x the last term becomes negligible, and thus kc(t) evolves linearly in time,
exhibiting Bloch oscillations-like dynamics, as seen in Fig. 4.5(a-b). The oscillation amplitude
is given by �x = Ja2/2�x(0).
Similarly, one can follow the same procedure for the dipole oscillations using the ansatz

xc(t) = xc(0) cos(‹Dt + kc(0)a). In this case Eq. (4.16) reduces to

kc(t) = kc(0) ≠
2�xc(0)
a2~‹D

[sin(‹Dt + kc(0)a) ≠ sin(kc(0)a)] . (4.24)

This represents periodic oscillations in quasimomentum-space with frequency ‹D =
Ô

4J�/~
and amplitude determined by xc(0)

a2

Ò
�
J .
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Classical Dynamical Equations

The acceleration relation and the group velocity calculated for the energy function in Eq. (4.16)
transforms back into classical equations of motion by replacing the mean values xc and kc by
classical variables x and p = ~k. Thus, one can write

ṗ = ≠
2�
a2 x, (4.25)

and
ẋ = 2J⁄ sin (p⁄) , (4.26)

where ⁄ = a/~. The above coupled equations results in an oscillator equation

p̈(t) = ≠

34J�⁄

a2

4
sin(p⁄) , (4.27)

which can be solved using the time dependent ansatz p(t) = p0 sin(‹Dt) [10]. Substituting the
ansatz above equation reduces to

p0‹2
D sin(‹Dt) = 4J�⁄

a2 sin(p0⁄ sin(‹Dt))

= 8J�⁄

a2

Œÿ

n=0
J2n+1(p0⁄) sin[(2n + 1)‹Dt] . (4.28)

Comparing the coe�cients of sin(‹Dt) on both sides we get

‹2
D = 8J�⁄

a2p0
J1(p⁄), (4.29)

Thus, the frequency of the oscillator depends upon momentum p0. For p0 approaching to zero,
we get

‹D = ⁄

a

Ô

4J� .
3
* lim

p0æ0

;
J1(p0⁄)

p0⁄

<
= 1

2

4
(4.30)

Finally, the solution for p(t) and x(t) is

p(t) = p0 sin(‹Dt) , (4.31)

x(t) = ≠

3
p0a2‹D

2�

4
cos(‹Dt) . (4.32)

Hence, in the phase space, (x, p = ~k), the particle with a �nite momentum p, e�ectively
follows rotational dynamics with frequency ‹D and maximum displacement

xc = ±

Û
2Jp0⁄a2

� J1(p0⁄). (4.33)
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4.2.2 Dynamical Tunneling atop Bloch Oscillations

The simultaneous population ofWannier-Stark-like localized states on both sides of the parabolic
lattice in Fig. 4.4 suggests the tunneling between symmetry-related pairs of states, which takes
place in the presence of a small energy splitting �E. Such a tunneling-like response between
classically disconnected regions of phase space, in the absence of a potential barrier, is known
as dynamical tunneling [132]. The tunneling time is determined by the energy splitting as
given by

Ttun = fi~
�E

. (4.34)

The asymptotic expansions of the Mathieu functions reveal an intrinsic minuscule splitting
scaling with q¸/¸(¸≠1) for ¸ ∫

Ô
q [97]. We also mention that this minute energy splitting

is not resolved in our numerical computations. Thus, dynamical tunneling is not seen in the
wave packet dynamics shown in Fig. 4.5.

Manipulating the Tunneling Times with Lattice Incommensurability

Employing an incommensurate potential, as already introduced in Sec. 4.1, one can e�ectively
enhance the energy splitting. By introducing a secondary, signi�cantly weaker lattice with
twice the periodicity of the primary lattice, an energy o�set Á is created between adjacent
sites, as described by the modi�ed tight-binding Hamiltonian

‚H Õ = ≠J
Œÿ

j=≠Œ
(|j + 1ÍÈj| + h.c) +

Œÿ

j=≠Œ

!
�j2 + Á

2 (≠1)j"
|jÍÈj| . (4.35)

Figure 4.6: Eigenvalue spectrum of the parabolic lattice without an energy mismatch (left) and
with the energy mismatch (right). Other parameters remain the same as in Fig. 4.3.

For the energy mismatch to be signi�cantly large, the binary lattice possesses two Bloch
bands, o�ering one of the simplest setups for investigating interband tunneling e�ects [123].
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4.2 Bloch Oscillations in Parabolic Optical Lattices

Figure 4.7: Absolute values of the wave packet evolution in (a) real and (b) quasimomentum
space. Dynamical tunneling on top of Bloch oscillations-like dynamics for a Gaus-
sian wave packet in a parabolic optical lattice with width ‡ = 2.23, initial momen-
tum k0 = 0, and initial position x0 = 30. The system parameters remain the same
as in Fig. 4.3. Moreover, the energy mismatch is chosen as Á = 3.6 ◊ 10≠4ER. The
�gure is reproduced with permission from Ref. [89].

In contrast we keep the mismatch to be very small, Á π J , such that the lattice can still be
described by a single band. However, the mismatch still induces a considerable shift in the
on-site energies while preserving the two-fold degeneracy of the eigenstates. This is depicted
in Fig. 4.6, where we present the eigenvalue spectrum of the system without a mismatch and in
the presence of a mismatch. Without an energy shift Fig. 4.6 exhibits doubly degenerate states
for ¸ > 24, while with an energy shift Fig. 4.6 reveals an energy di�erence between otherwise
degenerate states. The tunneling time is approximately given by

Ttun ¥
fi~
Á

, (4.36)

allowing one to tune Ttun through Á.

Figure 4.7 illustrates the tunneling, where a Gaussian wave packet is initially centered at
n0 = 30 with an initial quasimomentum k0 = 0, i.e, positioned it well above the separatrix.
As a result, the wave packet undergoes Bloch oscillations con�ned to one side of the parabolic
lattice. Over time, however, it gradually tunnels to the other side, and reappears on the other
arm. This process is cyclic, with thewave packet continuously oscillating between the two arms
while preserving coherence across signi�cant distances, as seen in Fig. 4.7(a). The computed
tunneling time for Á = 3.6 ◊ 10≠4ER is approximately 7.18 dipole periods, which aligns
well with the theoretical estimate in Eq. (4.36). Additionally, the momentum-space evolution
depicted in Fig. 4.7(b) which reveals that upon tunneling, the wave packet acquires an opposite
momentum, causing oscillations on the second arm to occur in the reverse direction relative to
its initial motion.
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4.2.3 Dynamics in the Presence of Atom-Atom interactions

We analyze the dynamics governed by Hamiltonian (4.3), considering interacting atoms within
the framework of the 1D Gross-Pitaevskii equation [94, 133],

i~ˆÂ(x, t)
ˆt

= HÂ(x, t) + g1D|Â(x, t)|2Â(x, t), (4.37)

where g1D ≥ asÊ‹N , with as representing the s-wave scattering length, Ê‹ denoting the
trapping frequency along the transverse plane, and N indicating the total number of atoms.
For comparison with the single-particle dynamics described above, we again restrict our-

selves to the single-band tight-binding approximation, under which Eq. (4.37) takes the form

i~„̇j = ≠J(„j+1 + „j≠1) + � j2„j + g|„j |
2„j , (4.38)

where g = g1D
s

|Âj(x)|4 dx ≥ asÊ‹N/a.

Figure 4.8: Absolute values of the wave packet evolution in real and quasimomentum space.
Bloch oscillations and dipole oscillations sustained by nonlinearity for the Gaussian
wave packet shown in Fig. 4.5, under the same parameters, considering weak atom-
atom interactions with strength g = 2.3 ◊ 10≠2ER.

In Fig. 4.8, the dynamics generated by Eq. (4.38) are shown. The results reveal that for the
same Gaussian wave packet initially placed at two di�erent lattice sites in Fig. 4.5, the dynam-
ics becomes coherent in the presence of weak inter-atomic interactions. Fig. 4.8(a-b) exhibits
coherent Bloch oscillations and Fig. 4.8(c-d) showcases sustained dipole oscillations. The inter-
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Figure 4.9: Absolute values of the wave packet evolution in real and quasimomentum space.
Dynamical tunneling for interacting atoms. The system parameters remain the
same as in Fig. 4.7, although the energymismatch Á = 3.6◊10≠4ER in (a-b) is made
stronger Á = 2.0 ◊ 10≠2ER in (c-d). The interaction strength is g = 2.3 ◊ 10≠2ER.

action strength is chosen as g = 2.3 ◊ 10≠2ER, which is very close to the tunneling strength.
We note that as g is raised above this value Bloch oscillations diminish, although dipole oscil-
lations exhibit such a decay at a much higher value of g. These e�ects are investigated using
variational method in Ref. [81]. The sustained oscillations in the presence of weak interactions
provides interesting perspective for experimental investigation [134].

In order to explore the e�ect of inter-atomic interactions on tunneling dynamics discussed in
Sec. 4.2.2, we again consider the energymismatch e�ectuated by an additional incommensurate
optical potential. Thus, Eq. (4.38) with Hamiltonian (4.35) takes the form

i~„̇j = ≠J(„j+1 + „j≠1) +
!
� j2 + Á

2 (≠1)j"
„j + g|„j |

2„j . (4.39)

The dynamics obtained by solving above equation are depicted in Fig. 4.9. We use the same
strength of nonlinearity as was previously shown to suppress dephasing, leading to coherent
Bloch oscillations. In Fig. 4.9(a-b), we present the tunneling dynamics by keeping the same en-
ergy mismatch as used in Fig. 4.8. The results reveal a signi�cant suppression of tunneling due
to inter-atomic interactions, with only a small fraction of the wave packet transferring. This
reduction in tunneling suggests a shift in the tunneling splitting induced by the nonlinearity.

To further investigate these e�ects, in Fig. 4.9(c-d), we examine the tunneling dynamics
under an even stronger energy mismatch. Under these conditions, the system exhibits pro-

51



4 I����� �� S������ I������������ �� B���� O�����������

nounced dynamical tunneling between opposite ends of the parabolic lattice. However, the
wave packet transfer does not occur at �xed intervals but instead follows a nontrivial time-
dependent pattern, revealing a complex interplay of competing e�ects. This observation sug-
gests the presence of a more intricate tunneling mechanism, where interactions and external
parameters collectively dictate the transport behavior.
These �ndings highlight the intricate role of nonlinearity and energy mismatches in shaping

tunneling dynamics. The observed complex interaction-driven tunneling behavior warrants
further investigation and will be explored in future work.
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5Bloch Dynamics in
ParametricallyDrivenOptical Lattices

In parabolic optical lattices, Bloch oscillations emerge in a con�ned region of space where the
parabolic trapping potential can be approximated by a locally linear potential, and the space-
dependent force from the parabolic trap remains nearly constant. Although these dynamics
dephase quite rapidly, a reconstruction usually follows due to wave packet motion across a
�nite number of lattice sites during Bloch oscillations. The dephasing is shown to be coun-
teracted by a weak nonlinearity when considering the interacting atoms [81]. The situation
becomes more interesting and complex when a time-dependent modulation of either the lat-
tice or the trapping potential is employed. As the parabolic lattice can be e�ectively described
by a quantum pendulum. Thus, the driven parabolic lattice represents a parametric oscillator.

In this chapter, we discuss Bloch dynamics in a parametrically driven parabolic optical lat-
tice. Wemainly focus on the case where a time-periodicallymodulated parabolic trap drives the
lattice. This case refers to as a parametrically-forced parabolic optical lattice where the driving
provides a spatially- and temporally-modulated force. As a near-resonant temporal modula-
tion of a constant force in the presence of an optical lattice drives super-Bloch oscillations.
Accordingly, we employ a resonant driving of Bloch-like oscillations and di�erent dynamics
which are similar but characteristically di�erent from super-Bloch oscillations.

5.1 Parametrically Driven Optical Lattices

Parametric oscillators are widely studied across various �elds of physics and engineering.
They play a crucial role in quantum optics, condensed matter physics, and nonlinear dynam-
ics. Examples include parametrically driven harmonic oscillators [135], Josephson junctions in
superconducting circuits [136], and parametrically ampli�ed signals in opto-mechanical sys-
tems [137]. These oscillators are characterized by the periodic modulation of certain system
parameters, leading to rich dynamical behavior, including resonance, instability, and synchro-
nization phenomena.

Considering a 1D-optical lattice which can be described by the Hamiltonian

Ĥ = p2

2M
+ V0 cos(2kLx), (5.1)

one may introduce the following dimensionless quantities

tÕ = Êt, xÕ = 2kLx, pÕ = 2kL

MÊ
p, V Õ

0 = V0

A
4k2

L

MÊ2

B

. (5.2)
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With these de�nitions the dimensionless e�ective Hamiltonian

H Õ = pÕ2

2 ≠ V Õ
0 cos

!
xÕ", (5.3)

corresponds to a mathematical pendulum [103]. When either the amplitude or phase of the
optical lattice is modulated in time, it behaves as a driven pendulum, and thus it is a parametric
oscillator. Classically, driven harmonic oscillators are categorized as parametrically-excited
or parametrically-forced oscillators, depending on whether a time-dependent force in�uences
the pendulum’s momentum or if its range of motion is enhanced by shaking the pivot [135].
The latter case is commonly known as the Kapitza pendulum [138]. In terms of the lattice
problem, the amplitude modulated optical lattice behaves as a parametrically excited oscillator
[88, 139]. On the other hand, a phase-modulated optical lattice induces acceleration, directly
a�ecting the momentum term [121]. Therefore, a phase-modulated optical lattice is classi�ed
as a parametrically forced oscillator.
As described in Section 4.2, the parabolic optical lattice within the single-band tight-binding

representation can also be described by a mathematical pendulum, given by Eq. (4.10). In the
context of parabolic lattice, the pendulum momentum corresponds to the position coordinate
while the angular position of the pendulum represents the quasimomentum. Thus, the role
of position and momentum is interchanged. In this case, a parametric force is achieved by
modulating the parabolic trapping potential, which we later show to o�er a unique advantage
for observing dynamics compared to parametric excitation.

5.2 Chirped Bloch-Harmonic Transport
Let us consider the tight-binding lattice driven by a time-periodically modulated parabolic
trapping potential. The Hamiltonian is

‚HT B = ≠J
Œÿ

j=≠Œ
(|j + 1ÍÈj| + |jÍÈj + 1|) + �(t)

Œÿ

j=≠Œ
j2

|jÍÈj|, (5.4)

where the time-dependent trapping energy is de�ned as �(t) = �0(1 + – sin(Êt + „)), with
–, Ê, and „ representing the strength, frequency and initial phase of the drive, respectively.
Modulating the trapping potential at the Bloch frequency ‹B = 2�0j0/~ gives rise to an os-

cillatory transport on top of Bloch oscillations, as shown in Fig. 5.1 for „ = 0. These dynamics
resemble super-Bloch oscillations although the quasimomentum-space dynamics reveal that
the relative phase in this case performs quick oscillations around the center of Brillouin zone
rather than transversing across all the quasimomentum values. The quick oscillations of the
quasimomentum indicate a relatively small amplitude of oscillations in real-space as compared
to super-Bloch oscillations. The relative phase appears due to spatial variations of the Bloch
frequency which develops from the coupling between real-space and quasimomentum-space
dynamics as indicated by the Modi�ed acceleration relation

dk(t)
dt

= ≠

32�(t)
a2~

4
x(t). (5.5)
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Figure 5.1: Absolute values of the wave packet evolution in real and quasimomentum space.
Chirped Bloch-harmonic transport for a broad Gaussian initial state with mean at
j0 = 30 and width ‡0 = 2.23 are shown. The parametric values are J = 2.4 ◊

10≠4ER, �0 = 3.2 ◊ 10≠4ER, – = 1, „ = 0 and ~Ê = ~‹B = 2�0j0 = 0.0192ER.
The �gure is adapted from Ref. [79] with permission.

The spatial variations in Bloch frequency manifest as a variable detuning and thus an oscilla-
tory transport is achieved even in the absence of an external detuning. To classify these dy-
namics we coin the term chirped Bloch-harmonic transport (CBHT). These dynamics can also
exhibit additional dephasing due to spatial anharmonicity. This dephasing leads to decay and
later revivals of coherent oscillations, though the decay and revival times di�er signi�cantly
from those in the static system.

5.2.1 Drive-Phase-Dependent Bloch Dynamics

Nextwe show that di�erent chosen initial drive phases signi�cantly e�ect CBHT. The dynamics
for di�erent phase shifts are shown in Fig. 5.2. We see that a „ = ≠fi/2 phase shift leads to
fully coherent CBHT, as shown in Fig. 5.2(a). Such a driving of the system reveals a fast relative
phase which appears more con�ed near the center of the Brillouin zone, see Fig. 5.2(b). Thus
the amplitude of the CBHT is further reduced. This results in a suppressing of dephasing and
thus coherent CBHT is achieved. The dynamics for an opposite drive phase „ = fi/2 are
shown in Fig. 5.2(c) where rapid large space asymmetric spreading of wave packet is observed.
The spreading ceases in few Bloch periods. As the wave packet stretches in space, two distinct
regions of unequal density emerge. On one end, where the density is higher and aligned with
the direction of the force, the wave packet exhibits purely breathing dynamics. On the opposite
end, with lower density, it undergoes anharmonic breathing. These breathing oscillations,
occurring half a Bloch period apart, transfer the maximum density to a revival of coherent
Bloch oscillations within just six Bloch periods. Additionally, all three types of oscillations
coexist simultaneously, with periodic variations in density. Fig. 5.2(d) shows the appearance
of modulations near the edges of the Billouin zone with a weak relative phase. Modulations
contributing to opposite momenta are also the cause of the spreading dynamics, where the
relative phase is the reason for asymmetry.

We note that the spreading dynamics are similar to the ballistically spreading dynamics
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Figure 5.2: Drive-phase-dependent dynamics. Absolute values of the wave packet evolution in
real and quasimomentum space for the drive phases „ = ≠fi/2 (a-b) and „ = fi/2
(c-d), exhibiting coherent CBHOs and asymmetric spreading oscillations, respec-
tively. A Gaussian wave packet as in 5.1 is evolved under same parameters, with
only the drive phase being changed. The �gure is adapted from Ref. [79] with per-
mission.

shown in Fig. 3.5(c-d). However, in a spatially-homogenous driven lattice ballistic spreading
appears for both the opposite parity drive phases „ = ±fi/2. On the contrary, in the spatially-
inhomogeneous lattice with a parabolic trap an asymmetric spreading is obtained for „ = fi/2,
while at „ = ≠fi/2 coherent CBHT is achieved.

5.2.2 Local Acceleration Model with Time-Dependent Driving

In this section, we provide a simple analytical model to describe the oscillatory dynamics.
Our analytical model is based upon the acceleration relation (5.5), which holds for the weak
trapping limit such that the wave packet moves slowly and coherently from one site to another.
The acceleration relation is rewritten as

kc(t) = kc(0) ≠
2
a2

⁄ t

0
�(tÕ)xc(tÕ) dtÕ. (5.6)

Keeping in view, the coherent harmonic oscillatory transport around a �xed initial position
j0 in real space and assuming that the Bloch frequency remain almost constant during a Bloch
oscillation, one may the ansatz xc(t) = xc(0) + �x cos(”‹t + “). Substituting the ansatz in
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Figure 5.3: Group velocity as a function of time for (a) „ = 0, (b) „ = ≠fi/2, and (c) „ = fi/2.
The red line represents the result of numerical calculations, while the dashed blue
line depict the dependence obtained from Eq. (9). For (a) the parametric values are
�x = 2.8a and ~”‹ = 0.14TB , while in (b) and (c) �x = 1.0a. All the other
parameters are the same as stated in Fig. 5.1. The �gure is adabted from Ref. [79]
with permission.

Eq. (5.6) we get

kc(t) = kc(0) ≠
2�0
a2

5
xc(0)t + �x

”‹
(cos(”‹t + “) ≠ cos(“))

6

+2–�0
a2

5
xc(0)

Ê
(cos(Êt + „) ≠ cos „)

û
�x

2
sin((Ê ± ”‹)t + „ ± “) ≠ sin(„ ± “)

Ê ± ”‹

6
. (5.7)

where ”‹ represents the frequency of CBHT and “ denote its phase. As these parameters
belong to our ansatz, their values are extracted numerically for further analysis.

To test the above analytical expression, we consider the tight-binding group velocity which
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is determined perturbatively as

vg = 1
~

ˆE(k)
ˆk

---
k=kc(t)

= 2Ja

~ sin (kc(t)a) . (5.8)

In Fig. 5.3, we plot Eq. (5.8) and compare it with the numerically calculated group velocity. One
can see that the approximate expression closely retraces the relative phase and e�ectively de-
scribes CBHT. For the case of a „ = ≠fi/2 drive phase, it shows very good agreement with the
numerical results. However, a disagreement arises for „ = fi/2 due to spreading oscillations
and multimode dynamics at this drive phase, which go beyond the scope of semiclassical group
velocity. Overall, Eq. (5.8) successfully captures and explains the key aspects of our �ndings.

Dynamics for Varying Initial Conditions

In this section, we present additional numerical results for the driven Bloch dynamics analyzed
in our studies. We investigate how the dynamics are a�ected by variations in the initial width
and initial position of the wavepacket considering the quadratic level spacing provided by the
parabolic trap. Moreover, we demonstrate that changing the initial position is equivalent to
modifying the Bloch frequency, allowing us to explore CBHT at secondary resonances. Addi-
tionally, we examine high-frequency drives and show that, under such conditions, the driven
dynamics reduce to Bloch-like oscillations in the stationary system.

Figure 5.4: Absolute values of the wave packet evolution in real and quasimomentum space
for the drive phase „ = fi/2. Dipole oscillations resulting from asymmetric wave
packet spreading. A Gaussian wave packet as in Fig. 5.1 is evolved under same
parameters, except that it now starts its journey from a di�erent initial position,
j0 = 30.

Figure 5.9 displays our �rst result, where we analyze the dynamics large amplitude spreading
dynamics by choosing a di�erent initial position of the Gaussian wave packet. The fact that this
position is relatively closer to the separatrix, xc ƒ 17a, makes it possible for the evolving wave
packet to reach the domain of dipole oscillations and mixed dynamics as soon as it comes into
the vicinity of the separatrix. In this domain, the a�ected wave packet moves past the center
of the parabolic lattice and starts performing a mix of breathing and dipolar dynamics with a
di�erence of half a Bloch period. This is demonstrated in Fig. 5.9(a), where the wave packet
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initially performs asymmetric spreading dynamics, as already shown in Fig. 5.9(c-d). However,
after a few Bloch periods, a small fraction of density reaches the separatrix, fromwhere it enters
the regime of dipolar and breathing dynamics. The dipole oscillating part moves towards its
outset again, and in its path, it interferes with subsequent dipole-oscillating fractions. Thus,
quantum interferences further complicate the dynamics.

This result suggests that, for driven dynamics emerging near the separatrix, a complex mix
of Bloch oscillations, driven Bloch dynamics, and dipole oscillations can be seen. The related k-
space dynamics, shown in Fig. 5.9(b), further highlight the complex dynamics. Linear evolution
of quasimomentum andmetastable momentum is recognizable initially. However, after the �rst
couple of Bloch periods, the next evolution is quite complicated. Nonetheless, a nonconstant
relative phase is still visible near the edges of the Brillouin zone. Due to the already very
complex multimode dynamics, the oscillatory evolution of dipole oscillating fractions of the
wave packet is not discernible in this �gure.

Figure 5.5: Absolute values of the wave packet evolution in real and quasimomentum space for
the drive phase „ = 0. Chirped Bloch-harmonic transport around resonant energy
state. A Gaussian wave packet as in Fig. 5.1 is evolved under same parameters,
except that it now starts its journey from varying initial positions, j0 = 40 (a-b)
and j0 = 46 (c-d).

Next, we investigate CBHT for varying initial positions of the wave packet. Figure 5.5(a-b)
demonstrates CBHT for a Gaussian wave packet placed at j0 = 40, where, as before, the driv-
ing frequency is in resonance with the Wannier-Stark-like state localized at j0 = 35. Under
these conditions, CBHT emerges centered around the resonant location j0 = 35, as seen in
Fig. 5.5(a). These dynamics remain coherent initially but later undergo dephasing; however,
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the dephasing times di�er from those observed in Fig. 5.1. The k-space dynamics, displayed
in Fig. 5.5(b), highlight the evolving relative phase, which exhibits an oscillatory pro�le. Addi-
tionally, dephasing leads to a broadening of the k-space dynamics.
Taking the wave packet further away from the resonant site induces spreading along with

CBHT. This is illustrated in Fig. 5.5(c-d) for j0 = 46. The spreading leads to anharmonic breath-
ing, which rapidly becomes a�ected due to interference with the main density that performs
dephased CBHT, and dephases further due to spreading and subsequent interferences. The
dephasing leads to a quick collapse of coherent dynamics, as shown in Fig. 5.5(c). The reasons
for this quick collapse can be inferred from the k-space evolution shown in Fig. 5.5(d), which
reveals a relative phase exploring almost entire Brillouin zone. Thus, with metastable momenta
acquiring large quasimomentum values, large-amplitude oscillations occur in real space, and
for extensive transport across the lattice, spatial inhomogeneities play a role, leading to de-
phased dynamics. Thus, the coupling between coordinate position and quasimomentum, as
described by the modi�ed acceleration theorem, plays a signi�cant role.

Figure 5.6: Absolute values of the wave packet evolution in real and quasimomentum space for
the drive phase „ = 0 (a-b) and „ = ≠fi/2 (c-d). Chirped Bloch-harmonic transport
at a secondary resonance. A Gaussian wave packet as in Fig. 5.1 is evolved under
same parameters, except that it now starts its journey from varying initial positions,
j0 = 70.

As the wave packet is set further away from the resonant site, it moves closer to a secondary
resonant state, near which the dynamics become increasingly coherent. In Fig.5.6(a-b), we
show the dynamics for a Gaussian wave packet with mean j0 = 70. The Bloch frequency at
this spatial location is twice the driving frequency. Consequently, the modulation interacts
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with Bloch oscillations at every other period. As a result, the wave packet undergoes Bloch os-
cillations, with transport being generated every other period, as shown in Fig.5.6(a). This leads
to CBHT, however these dynamics dephase within a few Bloch periods due to the metastable
momentum interacting with Bloch oscillations near the center of the Brillouin zone. Here, the
wave packet experiences momentum in opposite directions, causing it to spread. The k-space
dynamics in Fig. 5.6(b) con�rm this e�ect, as well as the evolving relative phase of CBHT, which
quickly becomes unrecognizable due to dephasing.

To further illustrate the sub-harmonic response, we consider the drive phase „ = ≠fi/2, at
which coherent CBHT was previously observed. The results shown in Fig. 5.6(c-d) display sub-
harmonic CBHT. Coherent dynamics in real space and a consistent oscillatory relative phase
are revealed in the k-space dynamics. Note that in these cases, the period of CBHT is twice
that of CBHT at a primary resonance.

Figure 5.7: Absolute values of the wave packet evolution in real and quasimomentum space for
the drive phase „ = 0. Bloch dynamics for rapid driving. A Gaussian wave packet
as in Fig. 5.1 is evolved under same parameters, except that a rapid driving is now
used, Ê = 2‹B (a-b) and Ê = 10‹B (c-d).

Next, we illustrate the driven dynamics at high-frequency driving in Fig. 5.7. When the
system is subjected to a driving frequency of Ê = 2‹B , the modulation slightly modi�es the
dynamics of the stationary system, as shown in Fig. 5.7(a). Here, the wave packet exhibits
Bloch-like oscillations with additional modulations induced by the driving, which subtly al-
ter the density distribution over time. The corresponding quasimomentum-space dynamics in
Fig. 5.7(b) reveal a rapid emergence of modulation e�ects. The k-space evolution highlights
two distinct oscillatory phases appearing on top of the underlying BOs, which are eventually
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Figure 5.8: Chirped Bloch-harmonic transport for di�erent initial width choices, ‡ = 0.0446
(a) and ‡ = 7.071 (b). Evolution of the average position (c) and width variance (d)
for initial widths ‡ = 0.0446, 2.236, 3.536, and 7.071, depicted in blue, red, green,
and purple, respectively. These calculations are performed for a Gaussian wave
packet, as taken in Fig. 5.1, using the same parameters and with the drive phase set
to „ = 0. The �gure is adapted from Ref. [79] with permission.

dominated by dephasing. These modulations lead to a fast oscillatory behavior that can be av-
eraged out over time. Accordingly, at su�ciently high driving frequencies, as demonstrated in
Fig. 5.7(c-d), the dynamics become almost entirely una�ected, with sustained Bloch-like oscil-
lations in both real and k-space, indicating that the in�uence of the drive e�ectively vanishes.

Keeping in view the lattice anharmonicity and the space-dependent variations observed in
the dynamics, it is intuitive that the dynamics changes signi�cantly for di�erent initial widths
of the wave packet. We demonstrate this e�ect in Fig. 5.8, where we plot the CBHT dynamics
for various initial widths. Figure 5.8(a) shows the real-space evolution of a sharply localized
wave packet. This reveals that, similar to super-Bloch oscillations, a sharply localized initial
wave packet also exhibits breathing dynamics at �rst. However, in this case, the wave packet’s
contraction takes place at half the CBHT period, where it partially contracts remaining away
from its outset. This reconstruction of the initial width is followed by successive expansions
and contractions that occur in an oscillatory manner around the initial position. Due to this
partial breathing motion, the overall dynamics dephase after a few Bloch periods, leading to
a collapse. Similarly, for a much wider initial state, the CBHT also exhibits partial spreading
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motion. Figure 5.8(b) shows that a wide wave packet experiences phase shifts due to lattice
anharmonicity, causing it to become sharply localized at the �rst Bloch period. This narrower
wave packet then displays a highly asymmetric long-range breathing motion where a smaller
fraction, that observes further splitting, rapidly accelerates in the direction of the force, while
a larger portion breathes slowly. In a manner similar to a harmonic oscillator, the wave packet
successively transfers its maximum density to new positions, and numerous smaller fractions
perform large spatial oscillations. The breathing is eventually followed by complex, multimode
dynamics, where a signi�cantly larger portion of the wave packet undergoes CBHT atop a
background of mixed motion. Thus, CBHT su�er heavily for very small or large initial widths.
To support this observation, in Fig. 5.8(c) and (d) we plot the time-dependence of the mean
position and the width of the wave packet for various initial widths. Figure 5.8(c) displays the
time evolution of the wave packet’s mean position for di�erent initial widths. In this �gure,
the red curve (corresponding to ‡ = 2.236) depicts sustained CBHT with minimal dephasing,
indicative of optimal behavior at „ = 0 drive phase . In contrast, a very narrow initial state
(represented by the blue curve with ‡ = 0.0446) exhibits the strongest decay of CBHT. Mean-
while, the green curve (for ‡ = 3.536), shows more pronounced dephasing associated with
CBHT, and the extreme case of a wide wave packet shown by the purple curve with ‡ = 7.071
indicate a signi�cant decay of CBHT. Furthermore, Fig. 5.8(d) presents the time evolution of
the wave packet’s width. Once again, the red curve demonstrates that an intermediate width
yields only slow-gradual increase while indicating sustained CBHT, whereas the blue curve in-
dicates a rapid high increase in width. The green and purple curves reveal an initial contraction
followed by erratic expansion. Together, these results highlight that both the average position
and the width variance remain most stable when the initial width is neither too narrow nor too
broad. Consequently, sustained CBHT emerges within a moderate width window that is far
from the extreme width values leading to either sharply narrow or overly wide wave packets.

Figure 5.9: Absolute values of the wave packet evolution in real and quasimomentum space.
Coherent chirped Bloch-harmonic transport for a lattice amplitude modulation at
„ = ≠fi/2. The parametric values are kept the same as in Figure 5.1 for comparison.
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5.3 Driven Bloch Dynamics in an Amplitude Modulated Lattice
In this section, we highlight the di�erence in the mechanism by which driven Bloch dynamics
manifest in amplitude-modulated lattices and force-modulated lattices. While both cases ex-
hibit similar dynamics in real space, a crucial distinction arises in the quasimomentum-space
evolution. Speci�cally, in the force-modulated system, a well-de�ned oscillatory phase appears
in the quasimomentum-space dynamics due to the interaction between Bloch oscillations and
the modulation. However, the relative phase is implicit when the lattice amplitude is periodi-
cally modulated. To demonstrate this, we consider a time dependence of the tunneling param-
eter J Õ(t) = J(1 + – sin(Êt + „)) in Eq. (5.4), and suppress the time-dependence of trapping
energy.
Figure 5.9 demonstrates that while the real-space wave packet exhibits coherent dynam-

ics, similar to CBHT observed with the trap modulation, the quasimomentum-space dynamics
show linear evolution of quasimomentum, re�ecting coherent Bloch oscillations and thus pro-
vide no information about the interaction with the modulation. Consequently, this di�erent
manifestation of driven dynamics sets the two driving scenarios apart. The fundamental rea-
son lies in the nature of the modulation. As with lattice amplitude modulation, the driving
induces a periodically modulated tunneling, the modulation e�ects are not manifested in the
quasimomentum-space dynamics.
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6Floquet Analysis
of Driven Bloch Dynamics

Floquet theory is a well-known mathematical formalism used to study the behavior of time-
periodic systems [140]. In quantum systems, it is particularly useful for understanding the
dynamics of systems subjected to periodic modulation [141]. Although generic time-periodic
systems are nonintegrable, the Floquet formalism enables a non-perturbative treatment of their
spectral and dynamical properties through the concept of Floquet states and quasienergies
[142].

In this chapter, we analyze driven Bloch dynamics by employing Floquet theory. Although
the Floquet states strictly depend upon the switch-on protocols for the time-periodic modula-
tion [143], using the customary example of an instantaneous turn-on, we obtain the Floquet
spectrum of the resonantly driven parabolic optical lattice [89].

The Floquet states are often classi�ed based on their analogy to the dynamics of the classical
counterpart of the driven system [144]. Accordingly, we compare and contrast the dynamics
of Floquet states to those of a driven pendulum to which the driven parabolic lattice e�ectively
maps. The driven pendulum exhibits regular dynamics associated with nonlinear resonances
that are visualized as regular islands in a partly-chaotic phase space [145]. The quantum dy-
namics corresponding to a nonlinear resonance can be e�ectively described by the Mathieu
equation, thereby mapping the time-dependent system onto a stationary system [146]. Thus,
we demonstrate the emergence of e�ective states from the unperturbed states [90].

Floquet states are characterized by time-independent coe�cients, ensuring that their occu-
pation probabilities remain constant throughout the evolution. If the drive is turned on with
di�erent phases, the occupation probability distribution changes, leading to the population of
states with di�erent characteristics. We demonstrate in detail that it is the varying occupa-
tion of Floquet states that gives rise to the drive-phase-dependent dynamics presented in the
previous chapter [79].

6.1 Floquet States and their Properties

Let us consider a time-periodically driven system represented by the Hamiltonian H(t) =
H(t + T ). Then, the time-dependent Schrödinger equation

i~ ˆ

ˆt
|Â(t)Í = H(t)|Â(t)Í, (6.1)

possesses a complete set of solutions given by the Floquet states |Â¸(t)Í, that are separable into
the product of a phase factor e≠iÁ¸t/~ and time-periodic Floquet functions |u¸(t+T )Í = |u¸(t)Í
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such that
|Â¸(t)Í = e≠iÁ¸t/~

|u¸(t)Í, (6.2)

where ¸ represents the quantumnumber labeling the states and the real quantity Á¸ is analogous
to the eigenvalues of a time-independent system, commonly referred to as the quasienergy.
Substituting Eq. (6.2) into the Schrödinger equation yields

3
H(t) ≠ i~ ˆ

ˆt

4
|u¸(t)Í = Á¸|u¸(t)Í, (6.3)

which determines the Floquet functions |u¸(t)Í and the quasienergy Á¸ in a suitable extended
Hilbert space. Taking on a particular solution |u¸(t)Í to Eq. (6.3) with eigenvalue Á¸, the func-
tion eimÊt

|u¸(t)Í, where Ê is the driving frequency and m = 0, ±1, ±2, . . ., remains a valid
solution to the eigenvalue equation, preserving the same periodicity while shifting the eigen-
values by m~Ê. Consequently, the quasienergy is not considered as a single value Á¸ but rather
as a set of an equally spaced ladder Á¸ + m~Ê. As a result, the quasienergy spectrum extends
in�nitely in both directions, forming Brillouin zones of energies, with each Floquet state’s
quasienergy having a representative within every Brillouin zone of width ~Ê. This also leads
to an irregular ordering of Floquet states based on the magnitude of their quasienergies.
An alternative formulation exists in terms of the one-period evolution operator, which, in

terms of the Floquet solutions (6.2), is expressed as [147]

U(T, 0) =
ÿ

¸

e≠iÁ¸T/~
|u¸(T )ÍÈu¸(0)| =

ÿ

¸

e≠iÁ¸T/~
|u¸(0)ÍÈu¸(0)|, (6.4)

where in the second equality the time-periodicity of Floquet functions |u¸(t)Í is employed.
Thus, the eigenvectors of U(T, 0) corresponds to the Floquet states at t=0, |Â¸(0)Í © |u¸(0)Í ©

|¸Í. The states after one complete period are

|Â¸(T )Í = U(T, 0)|Â¸(0)Í = e≠iÁ¸T/~
|Â¸(0)Í. (6.5)

The eigenvalues ÷¸ obtained from U(T, 0) provide the quasienergies through the relation Á¸ =
i~ log(÷¸)/T [148]. Since all eigenvalues of the unitary operator U(T, 0) lie on the unit circle,
it can be expressed as

U(T, 0) = e≠iGT/~, (6.6)

where G is a self-adjoint operator having real eigenvalues with the dimension of an energy.
Keeping in view the periodic ladder structure of quasienergies, the de�nition of U(T, 0) is not
unique. Despite this ambiguity, the presence of G allows for the introduction of a unitary
operator

P (t) = U(t, 0)eiGt/~, (6.7)

which is periodic in time P (t + T ) = P (t). This lead us to de�ne the time evolution operator
as

U(t, 0) = P (t)e≠iGt/~. (6.8)

The above factorization of the time-evolution operator embodies the fundamental idea of the
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Floquet theorem for quantum systems with periodic time dependence [121,140,149,150]. Thus,
a wave function |„(0)Í evolves according to

|�(t)Í = U(t, 0)|�(0)Í
=

ÿ

¸

c¸P (t)e≠iGt/~
|¸Í

=
ÿ

¸

c¸P (t)|¸Íe≠iÁ¸t/~

=
ÿ

¸

c¸|u¸(t)Íe≠iÁ¸t/~, (6.9)

where the Floquet functions are introduced as |u¸(t)Í = P (t)|¸Í, the coe�cients are given by
c¸ = È¸|�(0)Í which are time-independent and, therefore, generally provide the constant oc-
cupation probabilities |c¸|

2. Hence, any solution to the Schrödinger equation can be expressed
as a superposition of Floquet states.

In the following section, we analyze the dynamics of a resonantly driven parabolic optical
lattice by examining and comparing its classical and Floquet description. We apply Eq. (6.9)
for various drive phases and show how variations in occupation probability distributions lead
to distinct dynamics.

6.2 Floquet Dynamics of Driven Parabolic Optical Lattices

Let us again refer to the single-band tight-binding lattice driven by a periodically modulated
trapping potential. If the trapping potential is time-periodically modulated with a frequency Ê
and a relative modulation strength –, the combined system is described by the Hamiltonian

‚H(t) = ‚H0 + ‚Hint(t), (6.10)

with
‚H0 = ≠J

Œÿ

j=≠Œ
(|j + 1ÍÈj| + |jÍÈj + 1|) + �0

Œÿ

j=≠Œ
j2

|jÍÈj|, (6.11)

and
‚Hint(t) = –�0 f(t) sin(Êt + „)

ÿ

j

j2
|jÍÈj|, (6.12)

where the dimensionless function f(t) represents a switch-on function describing the way the
drive is turned on within a time interval from ti = 0 to tf , such that

f(t) =
I

0 , t < 0
1 , t > tf .

(6.13)

For example, the extreme case of a sudden turn-on is represented by a Heaviside function
function

f(t) = �(t) . (6.14)
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Additionally, de�ning the instant ti = 0 as the turn-on moment gives physical signi�cance to
the drive phase „.

6.2.1 Classical Pendulum Dynamics

Let us �rst describe the classical counterpart of the driven system. Expressing the Hamiltonian
system (6.10) in the Bloch basis, leads us to write

‚H(t) = ≠2J cos
1

‚ka
2

+ �(t)(‚x/a)2. (6.15)

The classical dynamics generated by this Hamiltonian can be described by mapping it to a
mathematical pendulum. In this regard, we treat the operators ‚x and ‚k as continuous variables
x and k, and note that the product kx remains dimensionless. However, since the product
of two canonically conjugate variables must have the dimension of action, we employ the de
Broglie relation p = ~k, that takes us to the Hamiltonian function

Hcl(t) = ≠2J cos(p⁄) + �(t)(x/a)2. (6.16)

where ⁄ = a/~. This expression clearly represents a driven pendulum; however, the usual
roles of position and momentum are interchanged. Additionally, the system behaves as if it
has a time-dependent e�ective mass, varying periodically as 1/�(t). The resulting equations
of motion are

ṗ = ≠
2�(t)

a2 x,

ẋ = 2J⁄ sin (p⁄) . (6.17)

In the study of Hamiltonian systems with periodic time dependence, a common approach is to
analyze the dynamics emerging from the above set of equations using stroboscopic Poincaré
surfaces of sections. For this, the coupled evolution of position and momentum coordinate is
determined numerically starting with an appropriately chosen set of initial conditions (pi, xi)
in phase space. The resulting trajectories are then sampled at intervals corresponding to the
driving period T = 2fi/Ê. The stroboscopic Poincaré sections obtained for the system (6.17)
are displayed in Fig. 6.1 for varying values of the drive strength –. For a signi�cantly weak
driving strength – = 0.01, for which �(t) ¥ �0, the dynamical equations reproduce the
well-known phase portrait of the undriven pendulum, as shown in Fig. 6.1(a). We note that
as the driving strength is raised, the phase space trajectories, which are in 1 : 1 resonance
with the drive start to curl around and give rise to new �xed points in addition to previous
ones. This is illustrated for – = 0.25 in Fig. 6.1(b), where the resonance-induced �xed points
appear in pairs at x/a ƒ ±35 due to resonance e�ect on both sides of the parabolic lattice. The
emergence of resonance-induced �xed points, (at least) one hyperbolic and one elliptic �xed
point, is in accordance with the Poincaré-Birkho� theorem. As the drive strength increases fur-
ther, a prominent chaotic region emerges, engul�ng the separatrix of the undriven pendulum.
Fig. 6.1(c) illustrates this scenario at a driving strength of – = 5, where stochastic behavior be-
gins to develop at the resonance-induced hyperbolic �xed points. The region of periodic orbits
surrounding the elliptic �xed points remains well-ordered and is gradually overtaken by chaos
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Figure 6.1: Stroboscopic Poincaré sections for the classical pendulum system (6.16) under
strictly periodic driving at f(t) = 1, with parameters J/~Ê = 1.071 and �0/~Ê =
0.0143. The driving strengths are – = 0.01, 0.25, 1.00, and 5.00 for panels (a)-(d),
respectively. All sections are plotted at t = ≠„/Ê mod 2fi/Ê. The �gure is taken
from [90] with permission.

as the driving strength increases, as depicted in Fig. 6.1(d) for – = 5. At su�ciently strong
driving, the chaotic region expands throughout the entire phase space, with the resonant �xed
points, which encircle regular curves, becoming fully immersed in the chaotic sea [144].

6.2.2 Mathieu Approximation and Near-Resonant Floquet States

In order to form a connection with the classical dynamics and to build the basis for later dis-
cussion of phase-dependent occupation probabilities, we introduce theMathieu approximation,
which o�ers a general description of the system’s characteristics at resonant driving.

The formal development of the Mathieu-approximation begins with the eigenenergies E¸

and eigenstates |Ï¸Í of the undriven system. The spectrum of energies for the stationary
parabolic optical lattice is described in Sec. 4.2. The eigenstates are categorized as states re-
sembling harmonic oscillator-eigenfunctions at low energy and states localized at positions
x ± n0a in a Wannier-Stark-like manner at high energy. These high-energy states correspond
to eigenvalues that are approximately equal to the on-site energy �0j2

0 and due to the spatial-
symmetry of the trap these states appear in pairs. As the stationary system free from any exter-
nal perturbations furnishes a minuscle energy splitting between high energy states, therefore
the coupling between these states can be ignored. Thus, one can consider the states restricted
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to only one side of the parabolic lattice. In addition to this restriction, it is assumed that the en-
ergy spacing between consecutive levels varies slowly so that the �rst derivative can be taken
as EÕ

¸ © E¸+1 ≠ E¸. Further, suppose that there exists a certain eigennumber r, the energy of
which is matched by the energy of the driving �eld, such that one can write,

EÕ
r = ~Ê. (6.18)

Under these conditions, the following ansatz for the near-resonant Floquet states can be con-
sidered

|Â(t)Í = e≠iErt/~ ÿ

¸

c¸(t) |Ï¸Íe
≠i(¸≠r)(Êt+„≠fi/2). (6.19)

The factor e≠i(¸≠r)(„≠fi/2) ensures the synchronization of the Floquet states with the drive
phase. Inserting this ansatz into the time-dependent Schrödinger equation gives [89]

i~ ċ¸(t) + 1
2(¸ ≠ r)2E

ÕÕ
r c¸(t) = E¸c¸(t) + �V [c¸+1(t) + c¸≠1(t)], (6.20)

where V = V¸+1¥ V¸≠1 are the o�-diagonal matrix elements which are approximately con-
stant near the potential minimum in the tight-binding approximation. Additionally, this in-
volves approximating the energies using a second-order Taylor expansion, accounting for the
quadratic level spacing of the parabolic lattice. Furthermore, in the spirit of the rotating-wave
approximation, only the secular terms are retained. Note that these approximations are fairly
justi�ed within the context of the system under discussion.

Introducing the Fourier representation

c¸(t) = 1
fi

⁄ fi

o
dzf(z)ei(¸≠r)2ze≠iW t/~

¥ f(¸≠r) e≠iW t/~, (6.21)

where we also separate the time-dependent amplitudes into Fourier coe�cients of a fi-periodic
function and a time dependent phase factor carrying energies W . The use of fi-periodic func-
tions directly takes us to the standard form of the Mathieu equation [97]

f
ÕÕ(z) + 8W

EÕÕ
r

f(z) ≠
8V

EÕÕ
r

f(z) cos(2z) = 0. (6.22)

Thus, the energies W are given by

Wm = E
ÕÕ
r

8 “m(q), (6.23)

where “m represents the Mathieu characteristic energies [97]

“m(q) =
I

am(q); m = 0, 2, 4......

bm+1(q); m = 1, 3, 5......,
(6.24)
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Figure 6.2: (a) One Brillouin zone of exact quasienergies, computed numerically and taken
modulo ~Ê. The quasienergies are plotted as a function of the increasing driving
strength under resonant driving condition. The curve with the strongest descent
characterizes the ground statem = 0. The parameters remain the same as in Fig. 6.1.
(b) Approximate quasienergies determined by Eq. (6.24). Note that the spectrum of
quasienergies is (almost) two-fold degenerate and the states corresponding to the
other representatives of energies that fold back on to the spectrum lie at the oppo-
site arm of the parabolic lattice. The �gure is taken from [90] with permission.

and q = 8V/E
ÕÕ
r is the Mathieu-characteristic parameter.

Along the same lines, f(z) are the fi-periodic Mathieu functions and the Fourier coe�cients
of these functions plugged into Eq. (6.19) provide the near-resonant Floquet states

|Âm(t)Í =
ÿ

¸

fm
(¸≠r) |Ï¸Íe≠i(¸≠r)(Êt+„≠fi/2)e≠i(Er+Wmt/~). (6.25)

Hence, the quasienergies are

Ám = Er + Wm, mod ~Ê, (6.26)

where Wm corresponds to the energies of a pendulum associated with the Mathieu equation
(Eq. (6.22)).

In Fig. 6.2 the numerically obtained quasienergies of the driven system and the Mathieu
characteristic energies are displayed. Although the above procedure involves a series of ap-
proximations, the resulting predictions prove to be strikingly accurate. Thus, a near-resonant
driving establishes a distinct hierarchy of states which are covered by the Mathieu equation.
This way the time-dependent system reduces to an e�ective time-independent one. The emer-
gence of these ordered Mathieu states holds important implications for the dynamics, which
we will explore later in this chapter.
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6.2.3 Phase Space Quantization

A correspondence between Floquet states and the classical phase space can be established
through a semiclassical perspective. Speci�cally, one can quantize the classical phase space
by applying Bohr-Sommerfeld-like quantization conditions to the periodic orbits surrounding
the elliptic �xed points, yielding a semiclassical approximation to the Floquet states. In the ex-
tended phase space (k, x, t), which also incorporates time t, the periodic orbits form invariant
tubes around the stable elliptic �xed point. The quantization condition [146, 151]

j

“m

k dx = 2fi
3

m + 1
2

4
, m = 0, 1, 2, . . . , (6.27)

where “m winds once around the invariant tube at a �xed time t, selects those tubes that
support a Floquet state. This naturally leads to a reordering of the Floquet states based on a
new quantum number, corresponding to the number of quantized tubes residing within the
resonance zone. The state corresponding to m = 0 then represents the innermost quantized
tube and can therefore be regarded as a ground state. Likewise, the state with m = 1 is associ-
ated with the adjacent tube in the hierarchy established by Eq. (6.27), making it the �rst excited
state, followed by subsequently ordered states. Essentially, the integer m in the quantization
rule Eq. (6.27) directly aligns with the quantum number m used to label the Mathieu states.
Moreover, Eq. (6.27) suggests that each Floquet state occupies an area of 2fi in the (k, x)

phase-space plane at any given instant. As a result, the resonant zones observed in Fig. 6.1(c),
when considered collectively, are expected to accommodate approximately 10 pairs of nearly
degenerate Floquet states.

6.2.4 Visualizing the Floquet States in Real-Space

To support the above formulation, a similar line of reasoning can be presented in a purely
quantum yet alternative manner. For this, we rely on a particular visualization of Floquet
states which uses the Wannier basis. Intrinsically, Floquet states do not have a prede�ned or-
dering, however they can be labeled based on their energy expectation values averaged over
one driving period. Although this requires computing the mean energy at every instant of
time, a reasonable ordering can still be achieved by labeling the states according to instanta-
neous expectation values Èu¸(t0)| „H0|u¸(t0)Í, where t0 refers to the time at which the drive
vanishes. While this ordering scheme is not perfect, it provides a meaningful order compared
to an arbitrary ordering. The instantaneous ordering scheme is implemented as

Èu¸(t0)| „H0|u¸(t0)Í Æ Èu¸+1(t0)| „H0|u¸+1(t0)Í (6.28)

for ¸ = 0, 1, 2, . . .. To visualize the Floquet states the tight-binding system provides distinct
advantage of the representation in terms of the Wannier basis. Thus Floquet states can be ex-
pressed in the discretized real-space. In Fig. 6.3, we display the lowest 120 unperturbed states
and Floquet states visualized in Wannier space. The unperturbed spectrum is once again pre-
sented for comparison. As described in Sec. 4.2, the unperturbed states correspond to the phase
space of the undriven pendulum, i.e., Fig. 6.1(a). In this context, regular states are characterized
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Figure 6.3: Unperturbed eigenstates of the parabolic optical lattice (a) and Floquet states in
the presence of external driving (b), visualized in real-space through the Wannier
basis. The parametric values remain the same as in Fig. 6.1. In addition, the unper-
turbed eigenstates correspond to Fig. 6.1(a), while the Floquet states connect with
Fig. 6.1(c). The �gure is taken from [90] with permission.

as harmonic oscillator-like at low energies and doubly-degenerate Wannier-Stark-like local-
ized states at high energies, as shown in Fig. 6.3(a). Similarly, the lowest and highest Floquet
states in Fig. 6.3(b) are also harmonic oscillator-like and Wannier-Stark-like localized states,
appearing as remnants of the undriven system, though the Wannier-Stark-like Floquet states
are signi�cantly broadened. The states in the middle are much involved. In particular, the Flo-
quet states near the critical index, where states change their nature in the undriven system,
appear blurred, corresponding to the intricate region of classical motion depicted in Fig. 6.1(c).
A closer look at the intermediate states reveals states corresponding to secondary resonances.
However, the main highlight remains the ordered states centered around j = ±35, which cor-
respond to the spatial locations where the center of the resonant island lies in Fig. 6.1(c). These
states re�ect the e�ect of resonance and con�rm the predictions of the Mathieu approxima-
tion. Thus, the driven system provides a broad range of states that can be harnessed to achieve
di�erent dynamics.

6.2.5 Classical Characterization of Floquet States

To demonstrate the exact connection between the classical dynamics and the Floquet states
we plot the phase-space distributions of these states. For this purpose, we again consider the
Husimi representation Eq. (4.14). Fig. 6.4 displays the comparison between color-coded density
plots of the Husimi Q-function for the Floquet states and the stroboscopic Poincaré phase space
of the driven quantum pendulum. Evidently, the harmonic oscillator-like Floquet states are
attached to the regular invariant tubes.

In Fig. 6.4(a) and (b) the ground state and the second excited state of the driven quantum
pendulum are shown, which fall onto the elliptical curves in an orderly manner. Fig. 6.4(c)
highlights a state that belongs to a chain of islands. This state presents a distinct feature, i.e.,
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Figure 6.4: Color-coded Husimi distributions of the Floquet states labelled by the index ¸ =
0, 10, 15, 45, 58, 65, 85, and 86, which are ordered using the instantaneous energy
ordering scheme, ((a)-(h)) superimposed on the stroboscopic Poincaré map taken
from Fig. 6.1(c). The �gure is taken from [90] with permission.

it maintains coherence even though it evolves through the chaotic region. Fig. 6.4(d) shows
a state that is linked to vibrational trajectories. This state exhibits a Bloch oscillations-like
evolution, a signature of regular motion, suggesting a stable, periodic progression within the
phase space. The Husimi-distriutions of the resonant Floquet states are shown in Fig. 6.4(e)
and (f). In this case, the total density lies inside the resonance-induced regular islands. These
states possess Floquet micro-motion similar to Bloch oscillations, on top of which harmonic
oscillations are observed between the periods. Next, in Fig. 6.4(g), we see a chaotic state popu-
lating the stochastic region outside the resonant zone. This state re�ects the chaotic dynamics
induced by the resonance in the driven pendulum, further indicating the transition from reg-
ular to chaotic behavior. In (h), another vibrational state is shown, which, like the state in (d),
follows Bloch-like evolution, signaling a regular, stable behavior in the system.
Therefore, the Floquet states can be broadly categorized as ‘regular’, ‘resonant-regular’, and

‘chaotic’. In the following we show that the di�erent occupations of these states leads to dif-
ferent dynamics.

6.2.6 Floquet State Occupation Probabilities for Sudden Turn On

Typically the occupation probabilities of Floquet states do depend strongly on the drive turn
on function f(t). However, the Floquet states are associated with a strictly periodic driving
and, as such, do not rely on the function f(t). To investigate how the occupation probabili-
ties change with the sudden activation of modulation with di�erent phases, we disregard the
actual switch-on process (6.13) and use f(t) = 1, which refers to strictly periodic driving and
thus the Floquet description holds. As these states repeat themselves after a period, there-
fore they remain una�ected by the drive phase. Given an initial wave packet |�(0)Í at t = 0,
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6.2 Floquet Dynamics of Driven Parabolic Optical Lattices

Figure 6.5: Floquet-state occupation probabilities |c¸|
2 obtained after a sudden turn-on of the

trap modulation for initial Gaussian wave packets (3.32) with width ‡ = 2.23, cen-
tered at j0 = 35, with „ = ±fi/2. Once again, the parameters are �xed as in
Fig. 6.1(c). The �gure is taken from [90] with permission.

which is considered the moment of a sudden turn-on, the expansion coe�cients are obtained
by projecting this initial state onto the Floquet states, such that

c¸ = Èu¸(0)|�(0)Í. (6.29)

As Floquet states can be synchronized with the argument of the drive by writing |Âu¸(Êt + „)Í
instead of |u¸(t)Í, selecting di�erent phases „ at t = 0 corresponds to sampling the Floquet
states at various points in their evolution. As a result, the expansion coe�cients, and conse-
quently the occupation probabilities, depend on the drive phase „ [90].

We take an initial Gaussian state (3.32) as employed in previous chapters to demonstrate the
wave packet dynamics. The parameters of the system and Gaussian state are kept the same to
match the conditions in Sec. 5.2.1.

The occupation probabilities are shown in Fig. 6.5 for the initial Gaussian state with mean
position j0 = 35. This position corresponds to the resonance zone in Fig. 6.1(c). In this case,
for „ = ≠fi/2, only a few Floquet states that correspond to the regular-resonant island are
populated. A signi�cant portion of the occupation is concentrated on the resonant ground
state with ¸ = 58. In contrast, for „ = fi/2, occupation is shared by many more states,
particularly those associated with the hyperbolic �xed point of the resonant pendulum. The
high density observed at the hyperbolic �xed point is attributed to the scarring e�ect, which
can be perceived as the slowing down of the motion near the classical turning points of the
pendulum.

To illustrate the resulting wave packet dynamics, we analyze the periodic evolution of the
most signi�cantly occupied Floquet states, as shown in Figs. 6.6 and 6.7. Additionally, we
present the quasiperiodic solutions that emerge from the superposition of multiple Floquet
states. In Figs. 6.6(a) and (b), we depict the absolute values of the one-period evolution for the
Floquet states at indices ¸ = r = 58 and ¸ = 60, which exhibit the highest occupation in
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Figure 6.6: Absolute values of the one-period evolution of the maximally-occupied Floquet
states corresponding to ¸ = r = 58 in (a) and ¸ = 60 in (b) for the case with
„ = ≠fi/2. (c) One period evolution generated by the superposition of all the oc-
cupied Floquet states and (d) the corresponding long-time dynamics. The �gure is
taken from [90] with permission.

Fig. 6.5 for the case „ = ≠fi/2. These states belong to the Mathieu hierarchy, with Fig. 6.6(a)
corresponding to the e�ective Floquet ground state (m = 0) and Fig. 6.6(b) representing the
�rst excited state (m = 1). Their slow oscillatory motion within one driving period re�ect
Bloch-like dynamics along the arms of the parabolic lattice [79–81].
In contrast, Fig. 6.6(c) illustrates the one-period evolution generated by the Gaussian wave

packet, comprising a superposition of all occupied Floquet states. Since the Floquet ground
state dominates the occupation probability, the overall evolution closely resembles its dynam-
ics. However, over extended timescales, small implicit variations accumulate, leading to ob-
servable net transport of the wave packet across the lattice, as demonstrated in Fig. 6.6(d).
Because only a limited number of Floquet states within the 1 : 1 resonant island contribute
to the dynamics, the wave packet retains coherence, generating subharmonic motion with a
period equivalent to the period of the regular island.
In Fig. 6.7(a)-(d), the absolute values of the one-period evolution for Floquet states with

indices ¸ = 45, 54, 57, and 81 are shown. These states carry a signi�cant share of population,
as shown in Fig. 6.5 for „ = ≠fi/2. These are the separatrix states located on the broken
separatrix surrounding the regular resonant island on the positive axis. The state shown in
Fig. 6.7(a) exhibits intricate, mixed dynamics. In contrast, Fig. 6.7(b) shows breathing motion
along the separatrix. Like Fig. 6.7(a), the state in Fig. 6.7(c) also displays several modes, with
complex dynamics. The phase space evolution of these two states is similar to Fig. 6.4(g), and
therefore, these are considered chaotic states. Fig. 6.7(d) shows a highly excited state of the
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6.2 Floquet Dynamics of Driven Parabolic Optical Lattices

Figure 6.7: Absolute values of the one-period evolution of the maximally occupied Floquet
states corresponding to ¸ = 45 in (a), ¸ = 54 in (b), ¸ = 57 in (c) and ¸ = 81 in (d),
for the case with „ = fi/2. (e) One period evolution generated by the superposition
of all occupied Floquet states and (f) the corresponding long-time dynamics. The
�gure is taken from [90] with permission.

resonance-induced pendulum, located near the separatrix.

Given the high population of separatrix states, we expect to see nonuniform spreading mo-
tion when all states are superimposed. This spreading motion is clearly visible in the propa-
gated Gaussianwave packet in Fig. 6.7(e). The resulting quasiperiodic evolution leads to further
spreading and recombinations, producing complex dynamics, as shown in Fig. 6.7(f). These dy-
namics are a combination of Bloch-breathing and -oscillatory modes, re�ecting the persistent
Bloch-like oscillatory behavior seen in the these examples [79]. However, the variation in the
dynamics emerges from the diverse nature of the states triggered by the external periodic driv-
ing. Thus, by controlling the drive phase, one can tune the occupation of Floquet states thus
giving rise to di�erent dynamics.

77



6 F������ A������� �� D����� B���� D�������

Figure 6.8: Color-coded Husimi distribution of the initial Gaussian state superimposed on the
Poincaré sections traced under the opposite phase drive cases with „ = ≠fi/2 (a)
and „ = fi/2 (b). All other parameters remain the same as in Fig. 6.1(c). The �gure
is taken from [90] with permission.

6.2.7 Role of Floquet States and the Poincaré Orbit Topology

A clear picture on the varying occupation probabilities of Floquet states can be obtained by
analyzing the Poincaré surfaces of section traced at times corresponding to the driving phase.
This is illustrated in Fig. 6.8, where the Poincaré phase space is plotted at Êt = ±fi/2, re-
vealing di�erent positions for the regular resonant islands. The Poincaré sections are shown
superposed on the Husimi distribution of the initial Gaussian state. In Fig. 6.8(a), for „ = ≠fi/2,
the initial Gaussian wave packet intersects the regular resonant island, highlighting the occu-
pation of near-resonant Floquet states. On the other hand, for „ = fi/2, Fig. 6.8(b) shows the
emergence of separatrix states as the wave packet overlaps with the separatrix trajectory at
the hyperbolic �xed point. These observations emphasize changing occupation probabilities
with the drive phase
This also leads us to conclude that the quantumdynamics corresponding to a classical regular

island di�er signi�cantly from those outside it. Moreover, these dynamics can be accessed by
properly choosing the drive phase. The topology of classical Poincaré phase space provides
a general overview of the dynamical regimes of the driven parabolic optical lattice. Besides
the phase-dependent dynamics it also evince sub- or super-harmonic responses and chaotic
dynamics. However, there exist collapse and revivals are fully quantum mechanical and that
are beyond the classical description.
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7Summary and Outlook

In this thesis, we have explored the collective dynamics of ultracold atoms in a one-dimensional
optical lattice subjected to both static and time-dependent external potentials.

In Chapter 3, we introduce (the reader to) Bloch oscillations, which play a central role in the
various dynamical phenomena explored in this thesis. The Bloch oscillations phenomenon is
known to demonstrate di�erent manifestations of wave packet dynamics as the system con-
ditions are changed. Time-periodic driving is a commonly used tool to modify the system’s
characteristics which introduces novel features that are unachievable in the undriven scenario.
The time-periodic driving of an optical lattice with an external linear potential that vanishes
at every drive period, generates a cycle average transport of a localized wave packet. This
transport dies out completely at speci�c ratios of the driving amplitude and its frequency, a
phenomenon known as dynamical localization. These dynamics are described using the dis-
persion relation for the driven system and the tight-binding group velocity averaged over one
period. We describe the emergence of these dynamics on top of Bloch oscillations when the
oscillating linear potential retains a static component, even at vanishing drive strengths, which
is resonant with the drive. Thus, we demonstrate super-Bloch oscillations, which arise as a re-
sult of the interplay between the static and driven components of the potential, leading to an
ampli�ed oscillatory motion of the wave packet.

Bloch dynamics are characterized by spatially-periodic potentials and spatially-constant forces.
However, systems exist where these conditions are nulli�ed or are asymptotically modi�ed. We
consider the latter and explore how changed a spatial-inhomogeneity modi�es Bloch oscilla-
tions or even super-Bloch oscillations. In this pursuit, in Chapter 4, we �rst consider disordered
lattices, where a quasi-disorder is seen to bring about collapse and revivals of Bloch oscillations.
Further, localized disorder at distinct lattice sites acts as a scatterer, disrupting the amplitude
of the wave packet and leading to a progressive loss of density. Besides this, a global inhomo-
geneity is explored, which uses a global parabolic trap over the periodic optical lattice. The
parabolic potential provides a space-dependent force, although for weakly curved traps, the
force can be considered as constant in a restricted region of space. This furnishes dynamics
very similar to Bloch oscillations, although the evolving wave packet dephase due to anhar-
monicity of the spectrum. The dephasing engenders collapse and revival dynamics. In this
regime, Wannier-Stark-like states emerge which due to the trap symmetry appears in pairs
localized on opposite sides of the parabolic lattice. These states intrinsically carry a minuscule
energy mismatch, which permits tunneling to the other arm at exceedingly large time scales.
We show that the system augmented by a quasi-disorder, induced by an additional weak incom-
mensurate potential, provides a unique control over the tunneling time. That is by carefully
choosing the incommensurate potential one engineers a tunable energy-mismatch between the
states while preserving the two-fold degeneracy. In this manner, Bloch oscillations-like dynam-
ics manifest a beating motion between the opposite ends of the parabolic lattice. This kind of

79



7 S������ ��� O������

barrier free wave packet connection is known as dynamical tunneling, which in the present set
up holds signi�cant promise for the realization of long-range macroscopic tunneling. We also
found that, while Bloch-like oscillations in the parabolic lattice stabilize with the inclusion of
weak atom-atom interactions, the tunneling dynamics in the bichromatic parabolic lattice are
counteracted. Nonetheless, a dominant disorder with large energy mismatch reactivates the
tunneling dynamics where the tunneling follows an unusual pattern in time. Accordingly, the
interacting system is worthy of further attention. Hence, while the spatially-inhomogeneous
system is expected to destroy the coherent Bloch motion. The present analysis suggests that it
also adds additional features and novel manifestations of these dynamics.

Next, as Bloch oscillations are seen to emerge in the parabolic lattice, a straightforward ex-
tension would be to investigate these in the presence of external time-periodic driving. This we
address in Chapter 5. Keeping in view, the near-resonance condition for super-Bloch oscilla-
tion, we employ the resonantly drive the Bloch-like oscillations with a time-periodically mod-
ulated parabolic trap. Our studies reveal that this brings about dynamics similar to Bloch oscil-
lations, although here important di�erences exist. In the driven parabolic lattice, the strongly
ampli�ed transport is generated due to a coupling between the mean position and the mean
quasimomentum of the evolving wave packet, which manifest as parametrically oscillating
Bloch frequency. This is inferred by a modi�ed acceleration theorem which predicts a relative
phase even in the absence of an external detuning. It furnishes a non-constant, yet oscillatory,
phase factor between the modulation and the Bloch oscillations with which the modulation
interacts with Bloch oscillations at only a partial region of the Brillouin zone. Thus, this phase
is similar yet di�erent from the constant relative phase of the super-Bloch oscillations, with
which the modulation explores quasimomentum values across the entire Brillioun zone and
thus a large transport is generated. However, this comes at a cost, that is with super-Bloch os-
cillations a constant detuning always furnishes an inversely proportional amplitude. However,
with the oscillations in the parabolic system, these we call chirped Bloch-harmonic transport
(CBHT), the direct relation breaks down, as the amplitude and frequency is determined by the
coupling. Thus, CBHT can be utilized to generate comparatively small amplitude oscillations
at smaller e�ective frequencies. Further, we note that the relative phase appears con�ned to
di�erent regions of the Brillouin zone if the drive phase is varied. For an opposite parity drive,
this leads to signi�cantly contrasting dynamics which for one phase are fully coherent and are
totally delocalized at other. Thus we note that the dynamics change with the phase of the drive,
which is again in contrast with super-Bloch oscillations. Furthermore, di�erent regions of the
parabolic lattice exhibit varying strengths of lattice anharmonicity and coupling between posi-
tion and quasimomentum; thus, the dynamics change depending on the initially choosen wave
packet and system conditions . Hence, driven parabolic optical lattices presents rich dynamics,
which can be accessed by suitably choosing the initial conditions.

The coupling between the coordinate position and the quasimomentum can be deduced in
a classical manner through the phase space. Thus, we note that the classical dynamics of the
system provides important information about the system’s dynamics. At a nonlinear reso-
nance regions of periodic dynamics appear in the stroboscopically determined phase space of
the driven system. Related to these regular regions exist harmonic oscillator-like states which
are covered by a Mathieu equation in a purely quantum mechanical manner. For a proper
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comparison of the quantum dynamics to the classical ones, we consider the Floquet formal-
ism under which the periodically driven system can be e�ectively described by Floquet states
which repeat over a period. As the Floquet picture applies to systems with a strictly periodic
drive, therefore we assume an instantaneous turn on of the drive with di�erent phases and an-
alyze the Floquet spectrum. The analysis shows that the Floquet states can be categorized by
comparing their dynamics to the classical dynamics of the system. Given the di�erent nature
of the observed Floquet states, the dynamics of an initial wave packet vary depending on the
changing occupation probabilities of these states. Coherent dynamics appears for the popu-
lation of states belonging to the regular regions in phase space, while wave packet spreading
occurs for states lying in a chaotic region. We demonstrate that the occupation probabilities
change if the initial phase of the drive is varied or parameters of the wave packet are changed.
Thus, Floquet theory provides important information about the wave packet dynamics in the
driven parabolic lattice, where a general overview of the dynamics can be obtained from the
classical dynamics of the system. These results are described in Chapter 6.

The ability to engineer spatially-inhomogeneous periodic potentials in cold atom optical
lattice systems presents exciting opportunities to explore novel quantum transport phenom-
ena. The interplay between decay, revivals, and tunneling dynamics in such systems o�ers a
rich landscape for investigating quantum coherence, long-range tunneling, and macroscopic
quantum e�ects. The enhancement of tunneling splitting through bichromatic lattices, while
preserving state degeneracy, opens pathways for controlled manipulation of quantum states.

Looking ahead, this exploration may lay the ground for interesting and challenging future
work, concerning, e.g., the inclusion of time-periodic driving to study the dynamical tunneling
between distant regular islands in a partly chaotic phase space, or the investigation of rami�-
cations of many-body interactions.

Exploring the impact of resonant driving on Bloch-like oscillations in spatially inhomoge-
neous lattices with parabolic traps may further re�ne our understanding of quantum transport
and spreading dynamics. This also o�er a new paradigm for lattice dynamics not accessible
in traditional solid-state systems, but open to experimental veri�cation with ultracold atom
experiments.

Additionally, the Floquet framework serves as a powerful tool for explaining phase-dependent
dynamics and understanding long-time evolution in driven systems. Investigations into non-
linear Floquet states and their connections to time crystals remain largely unexplored and could
reveal new regimes of quantum behavior. The connection between classical and quantum dy-
namics in driven optical lattices also o�ers a compelling avenue for studying quantum-classical
correspondence.

Overall, these �ndings lay the groundwork for further experimental and theoretical devel-
opments, opening new possibilities for exploring quantum coherence, control, and transport
in driven optical lattices and beyond.
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AAppendix

A.1 Eigenstates of the Parabolic Optical Lattice

As given by Eq. (4.8), the eigenstates of the parabolic optical lattice are related to the fi-periodic
Mathieu functions through a Fourier transform. This equation is written as

Ï¸
j =

Y
]

[

1
fi

Ò
2
fi

s fi
0 ce¸(◊, ≠q)e≠2ij◊ d◊, even

1
fi

Ò
2
fi

s fi
0 se¸+1(◊, ≠q)e≠2ij◊ d◊, odd

, (A.1)

which we solve using the trigonometric Fourier expansion of Mathieu functions,

ce¸ (◊, ≠q) =
Œÿ

m=0
A¸

m(≠q) cos (2m◊) , (A.2)

se¸+1 (◊, ≠q) =
Œÿ

m=0
B¸+1

m (≠q) sin (2m◊) , (A.3)

such that

Ï¸
j =

Y
__]

__[

1
fi

Ò
2
fi

Œq
m=0

A¸
m(≠q)

s fi
0 cos(2m◊)e≠2ij◊ d◊, even

1
fi

Ò
2
fi

Œq
m=0

B¸+1
m (≠q)

s fi
0 sin(2m◊)e≠2ij◊ d◊, odd

. (A.4)

Hence, Eq. (A.1) is simpli�ed as

Ï¸
j =

Y
__]

__[

1Ô
2fi

Œq
m=0

A¸
m(≠q)”(j + m), even

1Ô
2fi

Œq
m=0

B¸+1
m (≠q)”(j + m), odd

, (A.5)

with the coe�cients A¸
l (≠q) and B¸+1

l (≠q) given by

A¸
m(q) = 2

fi

⁄ fi

0
cer(◊, ≠q) cos(2l◊) d◊, (A.6)

B¸+1
m (q) = 2

fi

⁄ fi

0
ser+1(◊, ≠q) sin(2l◊) d◊. (A.7)

These are the Fourier coe�cients of fi-periodic Mathieu functions. The asymptotic expansions
of these functions provide an analytical representation of the eigenstates and eigenenergies
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[127].

A.1.1 Low Energy Solutions (¸ < ¸c)

In the limit 4J Ø �, the asymptotic expansions for the eigenstates and eigenenergies in
Eq. (A.4) can be expressed as [97, 127]

Ï(2¸)
j ¥ A¸ exp

C

≠›2
A

1
2 + 3 + 2¸

16Ô
q

B

+ ›4

48Ô
q

D

(A.8)

◊

ÿ̧

k=0
h(¸)

k ›2k

C

1 + (3k ≠ k2 + 10k¸)
24Ô

q

D

, (A.9)

Ï(2¸+1)
j ¥ A¸ exp

I

≠›2
C

1
2 + 3 + 2¸

16Ô
q

D

+ ›4

48Ô
q

J

(A.10)

◊

ÿ̧

k=0
h̃(¸)

k ›2k+1
C

1 + (7k ≠ k2 + 10k¸)
24Ô

q

D

, (A.11)

where

› = j
1
4

4
Ô

q
, h(¸)

k = (≠1)¸k22k2¸!/(2k)!(¸ ≠ k)! (A.12)

h̃(¸)
k = (≠1)¸k22k+1(2¸ + 1)!/(2k + 1)!(¸ ≠ k)! (A.13)

and A¸ is a normalization constant. The coe�cients h(¸)
k and h̃(¸)

k are associated with the
Hermite polynomial H¸(x) through

H2¸(x) =
ÿ̧

k=0
h(¸)

k x2k, H2¸+1(x) =
ÿ̧

k=0
h̃(¸)

k x2k+1. (A.14)

The eigenenergies are approximately given by

Elow
¸ ¥

�
4

I

≠2q + 4Ô
q

3
¸ + 1

2

4
≠

(2¸ + 1)2 + 1
8 (A.15)

≠
[(2¸ + 1)3 + 3(2¸ + 1)]

27Ô
q

+ O
31

q

4J

. (A.16)

If higher-order corrections 1/
Ô

q and above are neglected, and only the �rst two terms in
the eigenenergy expression are considered, the eigenstates and eigenenergies simplify to

E¸ = ≠
�q

2 + �Ô
q

3
¸ + 1

2

4
, (A.17)
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A.2 Velocity of the Wave Packet’s Mean Position

Ï(¸)
j ¥

ı̂ıÙ
Ô

2
2¸¸!


qfi2 exp

A

≠
›2

2

B

H¸(›). (A.18)

These solutions correspond to the eigenvalues and eigenenergies (shifted by ≠�q/2) of a
harmonic oscillator with an e�ective trapping frequency Êú and an e�ective mass mú, given
by

~Êú = �Ô
q = ~ÊT

Ú
m

mú , (A.19)

mú = ~2

2Ja2 . (A.20)

The harmonic oscillator nature of the lowest energy eigenstates in the parabolic optical lat-
tice is consistent with the fact that near the bottom of the Bloch band, the dispersion relation
follows the free-particle form with m replaced by mú.

A.1.2 High Energy Solutions (¸ Ø ¸c)

The asymptotic expansions of eigenenergies and eigenstates in this regime are [97, 127]

Ehigh
¸=2r ¥ Ehigh

¸=2r≠1 ¥
�
4

I

(2r)2 + q2

2[(2r)2 ≠ 1] + q4(7 + 5(2r)2)
32[(2r)2 ≠ 1]3[(2r)2 ≠ 4] + . . .

J

, (A.21)

Ï(high)¸=2r
j ¥ Ï(high)¸=2r≠1

j ¥ A¸

I

”j,r ≠
q

4

3
”j,r≠1
2r ≠ 1 ≠

”j,1+r

1 + 2r

4

+ q2

32

C
”j,r≠2

(2r ≠ 2)(2r ≠ 1) ≠
2(1 + 4r2)”j,r

(2r ≠ 1)2(1 + 2r)2

D

+ ”j,2+r

(1 + 2r)(2 + 2r)

J

± {j æ ≠j}. (A.22)

For ¸ ∫
Ô

q, only the �rst term in Eq. (A.21) plays a signi�cant role, which represents the
well-known free-particle energies. Since free-particle wavefunctions are extended in space,
their Fourier coe�cients should be well-localized functions, which highlight the localization
character of eigenstates in this regime.

A.2 Velocity of the Wave Packet’s Mean Position

Let us consider the single band tight-binding Hamiltonian,

Ĥ = ≠J
Œÿ

j=≠Œ
(â†

j âj+1 + h.c.) + �
Œÿ

j=≠Œ
j2 â†

j âj . (A.23)
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Introducing the transformation operator,

Û(t) = e
i(�

q
j

j2 â†
j âj)t/~

, (A.24)

which follows,
Û †(t) âj Û(t) = âj ei(� j2 â†

j âj)t/~, (A.25)

and
Û †(t) Ĥ Û(t) = i~ ˆ

ˆt
+ �

ÿ

j

j2 â†
j âj . (A.26)

Using the identities,

âj(t) = e
i
~ (�j2)tâj(t) ; âj+1(t) = e

i
~ (�(j+1)2)tâj+1(t) (A.27)

the Hamiltonian (A.23) is expressed as,

Ĥ Õ(t) = ≠J
ÿ

j

1
â†

j+1âj e≠ i
~ (2�j)t + h.c.

2
. (A.28)

Expressing the �eld operators in terms of Wannier states the above hamiltonian can be written
as

Ĥ Õ(t) = ≠J
ÿ

j

1
|j + 1ÍÈj| e≠ i

~ (2�j)t + |jÍÈj + 1| e
i
~ (2�j)t

2
. (A.29)

Let us de�ne the operators,

k̂(t) =
ÿ

j

|jÍÈj + 1|e
i
~ (2�j)t, k̂(t)|jÍ = |j ≠ 1Íe

i
~ (2�j)t, (A.30)

and
x̂ = aĴ = a

ÿ

j

j |j >< j|, (A.31)

which leads us to rede�ne the Hamiltonian (A.29) is rewritten as,

Ĥ(t) = ≠J [k̂(t) + k̂†(t)]. (A.32)

Using the commutators,

[k̂(t), Ĵ] = k̂(t), [k̂†(t), Ĵ] = k̂†(t), [k̂(t), k̂†(t)] = 0. (A.33)

The time evolution of the position operator is given by,

x̂o = i

~ [Ĥ(t), x̂], (A.34)
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x̂o = ≠
iJ

~ [{k̂(t) + k̂†(t)}, aĴ], (A.35)

v(t) = ≠
iJa

~ [k̂(t), Ĵ] ≠
iJa

~ [k̂†(t), Ĵ], (A.36)

= ≠
iJa

~ k̂(t) ≠
iJa

~ {≠k̂†(t)}, (A.37)

= iJa

~ {k̂†(t) ≠ k̂(t)}, (A.38)

= iJa

~ {k̂†(t) ≠ k̂(t)}, (A.39)

v(t) = iJa

~
ÿ

j

(|j + 1 >< j| e≠ i
~ (2�j)t + h.c.). (A.40)

Thus, we have the time-dependent velocity,

v(t) = 2Ja

~ Im

S

U
ÿ

j

(|j + 1 >< j| e≠ i
~ (2�j)t)

T

V . (A.41)

We calculate the mean velocity as

v̄(t) = 2Ja

~

S

UIm

Q

a
ÿ

j

ÈÂ(0)|j + 1Í Èj|Â(0)Íe≠ i
~ (2�j)t

R

b

T

V , (A.42)

v̄(t) = 2Ja

~

S

UIm

Q

a
ÿ

j,kÕ,k

ÈÂ(0)|kÕ
ÍÈkÕ

|j + 1Í Èj|kÍÈk|Â(0)Íe≠ i
~ (2�j)t

R

b

T

V , (A.43)

v̄(t) = 2Ja

~

S

UIm

Q

a
ÿ

j,kÕ,k

ÈÂ(0)|kÕ
Í

3
a

2fi
e≠ikÕa e≠ijkÕa eijkd

4
Èk|Â(0)Í e≠ i

~ (2�j)t

R

b

T

V , (A.44)

v̄(t) = 2Ja

~

S

UIm

Q

a
ÿ

j,kÕ,k

ÈÂ(0)|kÕ
Í

3
a

2fi
eija(k≠kÕ≠ 2�

~a t)
4

Èk|Â(0)Íe≠ikÕa

R

b

T

V , (A.45)

v̄(t) = 2Ja

~

S

UIm

Q

a
ÿ

kÕ,k

ÈÂ(0)|kÕ
Í”

3
k ≠ kÕ

≠
2�
~a

t
4

Èk|Â(0)Íe≠ikÕa

R

b

T

V . (A.46)

This implies kÕ = k ≠ 2�t/~a by which the above equation reduces to

v̄(t) = 2Ja

~

C

Im

A
ÿ

k

ÈÂ(0)
--k ≠ 2�t/~aÍ Èk|Â(0)Í e≠ika e≠ i

~2�t

BD

, (A.47)
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v̄(t) = 2Ja

~

S

UIm

Q

a
ÿ

k,jÕ,j

Â†
jÕÂjÈjÕ--k ≠ 2�t/~aÍ Èk|jÍ e≠ika e≠ i

~2�t

R

b

T

V , (A.48)

v̄(t) = 2Ja

~

S

UIm

Q

a
ÿ

k,jÕ,j

Â†
jÕÂj

3
a

2fi
eijÕa(k≠ 2�

~a t)e≠ijkae≠ikae≠ i
~2�t

4R

b

T

V , (A.49)

v̄(t) = 2Ja

~

S

UIm

Q

a
ÿ

jÕ,j

Â†
jÕÂj

3
a

2fi

ÿ

k

eik(jÕ≠j≠1) e≠ i
~2�t(jÕ≠1)

4R

b

T

V , (A.50)

v̄(t) = 2Ja

~

S

UIm

Q

a
ÿ

jÕ,j

Â†
jÕÂj”(jÕ

≠ j ≠ 1)e≠ i
~2�t(jÕ≠1)

R

b

T

V . (A.51)

Thus jÕ = j + 1 and the above equation simpli�es to

v̄(t) = 2Ja

~

S

UIm

Q

a
ÿ

j

Â†
j+1 Âj e≠ i

~ (2�j)t

R

b

T

V . (A.52)

Let us take
|Â(0)Í =

ÿ

j

Âj |jÍ, (A.53)

with

Âj = e
≠

! (j≠jo)2

‡2
0

+ik0aj
"

, (A.54)

which is normalized to unity. With this, the order parameter is

Â†
j+1Âj = e

≠
! (j≠jo+1)2+(j≠jo)2

2‡2
0

"

e≠ik0a, (A.55)

and thus

v̄(t) = ≠
2Ja

~

S

U
ÿ

j

e
≠

! 2(j≠j0)2+2(j≠j0)+1
2‡2

0

"

sin
3

k0a + 2�t

~ j
4T

V . (A.56)

Taking m = j ≠ j0 the above equation is rewritten as

v̄(t) = ≠
2Ja

~

C Œÿ

m=≠Œ
e

≠
!

2m2+2m+1
2‡2

0

"

sin
3

k0a + 2�t

~ (m + j0)
4D

, (A.57)

where m = j ≠ j0. Approximating the summation over spatial index m by an integral and
using the standard integral [152],

⁄ Œ

≠Œ
e≠(ax2+2bx+c) sin

1
px2 + 2qx + r

2
dx =

Ô
fi

(a2 + p2) 1
4

e

!
a(b2≠ac)≠(aq2≠2bpq+cp2)

a2+p2
"
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◊ sin
A

1
2 arctan p

a
≠

p(q2
≠ pr) ≠ (pb2

≠ 2abq + a2r)
a2 + p2

B

, (A.58)

the above equation is simpli�ed as,

v̄(t) ¥ ≠
2Ô

fiJd‡0
~ e

≠
! �2‡2

0
~2 t2≠ 1

2‡2
0

"

sin
3

k0a + 2�j0
~ t

4
, (A.59)

where ‹ = 2�j0/~ is the frequency of oscillations.
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