UNIVERSITAT
lL PADERBORN

Microscopic Analysis of the Nonlinear Optical
Properties of Semiconductor Quantum Well
Structures: Excitonic Anomalous Currents and
Many-Body Correlations of Charge-Transfer
Excitons

Dissertation

zur
Erlangung des Doktorgrades
der Naturwissenschaften
(Dr. rer. nat.)

der

Fakultat fiir Naturwissenschaften
der Universitat Paderborn
vorgelegt von

ConG THANH NGO

Paderborn, 2024






Erklarung der Selbststandigkeit

Hiermit versichere ich, die vorliegende Arbeit selbststindig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt sowie die Zitate deutlich kenntlich
gemacht zu haben.

Ort, Datum Unterschrift
Vorsitzender der Priiffungskommission:  Prof. Dr. Tim Bartley
Erstgutachter: Prof. Dr. Torsten Meier
Zweitgutachter: Dr. Xuekai Ma
Weiteres Mitglied: Prof. Dr. Jan Sperling

Datum der Abgabe: 20. Dezember 2024






Zusammenfassung

In dieser Dissertation werden exzitonische Effekte in der nichtlinearen optischen Antwort
von Halbleiter-Quantenfilmen mithilfe der Mehrband-Halbleiter-Bloch-Gleichungen in der
Langen-Eichung untersucht. Im ersten Ergebnisteil wird die Coulomb-Wechselwirkung in
der zeitabhéngigen Hartree-Fock-N#herung beriicksichtigt, um exzitonische Effekte zu
beschreiben. Streuprozesse von Ladungstragern mit longitudinal-optischen und longitudinal-
akustischen Phononen werden in der Born-Markov-Niherung in zweiter Ordnung ein-
bezogen, um die Zerfallsdynamik prizise zu modellieren. Eine Herausforderung bei der
Losung der Bloch-Gleichungen, die durch die zufélligen k-abhangigen Phasenfaktoren
der numerisch berechneten Wellenfunktionen entsteht, wird durch die Anwendung der
Paralleltransport- und der verdrehten Paralleltransport-Eichungen gelost. Diese gewahrleis-
ten glatte Phasen der Bloch-Eigenfunktionen und erleichtern die Beriicksichtigung von
Vielteilcheneffekten. Unsere numerischen Ergebnisse, die gut mit experimentellen Daten
ibereinstimmen, zeigen, dass Terahertz-induzierte anomale Strome nach resonanter op-
tischer Anregung durch exzitonische Effekte verstirkt werden. Zeitliche Oszillationen
dieser Strome korrelieren mit der Dynamik exzitonischer Wellenpakete. Im zweiten Ergeb-
nisteil wird die Cluster-Entwicklungsmethode verwendet, um den Einflufl von Coulomb-
Korrelationen auf die nichtlineare optische Dynamik von Typ-I- und Typ-II-Quantenfilmen
zu untersuchen. In Typ-II-Systemen ist die Coulomb-Anziehung zwischen Elektronen und
Léchern schwicher als die Coulomb-Abstoffung zwischen gleichartig geladenen Teilchen,
was zu speziellen Beitragen zur nichtlinearen optischen Antwort fiithrt. Diese Ergebnisse
liefern eine physikalische Erklarung fiir experimentelle Daten aus optischen Pump-Probe-
Experimenten an Typ-I- und Typ-II-Halbleiter-Quantenfilmen.






Summary

In this thesis excitonic effects in the nonlinear optical response of semiconductor quantum
wells are studied using the multiband semiconductor Bloch equations in the length gauge.
In the first results part, the Coulomb interaction is included in the time-dependent Hartree-
Fock approximation to describe excitonic effects. Carrier scatterings with longitudinal-
optical and longitudinal-acoustic phonons are included in the second-order Born-Markov
approximation to accurately model the decay dynamics. One challenge in solving the
Bloch equations stemming from the random k-dependent phase factors of the numerically
obtained wave functions is resolved by applying the parallel transport and the twisted
parallel transport gauges. These ensure smooth phases of the Bloch eigenfunctions while
facilitating the incorporation of many-body effects. Our numerical results, which align
well with experiments, reveal that Terahertz-induced anomalous currents after resonant
optical excitation are enhanced by excitonic effects. Temporal oscillations of these currents
correlate with the dynamics of excitonic wave packets. In the second results part, the cluster
expansion method is used to study Coulomb correlation effects in the nonlinear optical
dynamics of type-I and type-II quantum wells. In type-II systems, the Coulomb attraction
between electrons and holes is weaker than the Coulomb repulsion between carriers of
the same charge, leading to unique contributions to the nonlinear optical response. These
findings provide a physical explanation for experimental optical-pump optical-probe data
obtained on type-I and type-II quantum well structures.
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Introduction

The miniaturization of semiconductor devices, specifically through advancements in low-
dimensional nanostructures such as quantum wells, quantum wires, and quantum dots, has
brought about a revolution in the field of electronics and photonics. Unlike quantum wires,
which possess a one-dimensional structure allowing for linear electron flow, and quantum
dots, which are zero-dimensional and display discrete energy levels that depend on size,
quantum wells are notable for their two-dimensional structure [1]]. This structure consists
of a thin semiconductor layer confined between barriers with larger band gaps. Each of
these nanostructures exhibits unique electronic and optical properties. One of the key
factors that significantly influence these properties is the Coulomb interaction, which often
governs the behavior of charge carriers within these confined structures. In bulk semi-
conductors, Coulomb interactions between electrons and holes play a crucial role but are
often moderated by the three-dimensional nature of the material and dielectric screening
effects. However, in quantum wells, the spatial confinement of charge carriers enhances
the effective Coulomb interaction, leading to phenomena that are more pronounced and
easier to observe than in bulk materials. This enhanced interaction is a direct consequence
of the reduced dimensionality, which increases the overlap between electron and hole
wave functions and diminishes the screening [2-4]. The impact of Coulomb interactions in
quantum wells is multifaceted. One of the most prominent manifestations is the formation
of excitons, bound states of electrons and holes. The increased binding energy of excitons
in quantum wells compared to bulk semiconductors results from the stronger effective
electron-hole attraction in these confined structures. This, in turn, affects the optical ab-
sorption and emission spectra of quantum wells, leading to discrete excitonic peaks below
the band gap that are vital for various optoelectronic applications, such as light-emitting
diodes, and laser diodes, as well as in absorbers and photodetectors [[5-9]]. Furthermore,
Coulomb interactions influence the carrier dynamics in quantum wells. These interactions
can lead to phenomena such as band gap renormalization, carrier-carrier scattering, and
the formation of complex many-body states. Understanding these interactions is crucial
for optimizing the performance of quantum well-based optical devices, as they affect key
parameters like nonlinear optical responses, carrier mobility, recombination rates, and
relaxation and dephasing.

The motion of charge carriers in crystalline solids has fundamentally different properties
compared to their motion in vacuum. One very unusual property is the so-called anomalous
movement of charge carriers where the charge carriers move perpendicular to an electric
field even in the absence of a magnetic field. The velocity of this motion is called anomalous
velocity. It is the source of several physical phenomena, such as the spin Hall effect and
the anomalous Hall effect, directly impacting fields like spintronics, topological insulators,
and quantum computing [[10-H13[]. Currently, it is known that there are several different
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microscopic mechanisms contributing to the anomalous velocity of charge carriers. These
contributions can be divided into two main types: intrinsic and extrinsic. Intrinsic contri-
butions were first studied in Refs. [14-18]. However, it was only rather recently discovered
that they are related to the Berry curvature [[19-21]] of the material and depend solely on
the band structure [22-24]. Extrinsic contributions are caused by scattering processes of
charge carriers with impurities or phonons [25-27]]. These contributions can be subdivided
into three processes: side-jump scattering, anomalous distribution, and skew scattering.
Recently, effects induced by the Berry curvature in semiconductors have attracted more
focus [2834]. In this thesis, we focus solely on the intrinsic contribution to the anomalous
current in semiconductors quantum wells.

The pump-probe experiment is a powerful and widely used nonlinear optical technique for
investigating the ultrafast dynamics of various materials, including semiconductors and
their nanostructures [35}|36]]. In this experiment, a short laser pulse (the pump) excites the
system, creating a non-equilibrium state by promoting electrons from the valence band to
the conduction band. After a controlled delay, a second laser pulse (the probe) is used to
monitor the system’s response, allowing one to track the evolution of excited states, the
carrier dynamics, and relaxation processes on ultrafast time scales. By adjusting the time
delay between the pump and probe pulses, the transient properties of the material, such
as absorption, reflectivity, or transmission, can be measured as a function of time. This
provides detailed insight into various physical processes, including carrier recombination,
exciton dynamics, and many-body Coulomb correlations.

The objective of this thesis is to microscopically investigate excitonic effects in semicon-
ductor quantum well (QW) structures. The first part of the thesis focuses on the influence
of excitonic effects on the anomalous current induced by the Berry curvature, while the
second part extends the investigation to examine the impact of higher-order Coulomb
correlations on the excitonic nonlinear optical response of semiconductor QW structures,
using an optical-pump optical-probe (OPOP) experiment.

This thesis is organized as follows. We start in Chapter 2 by presenting the theoretical
approach and describe the interaction between classical light and the electronic system
of semiconductor QWs. The extended Kane method (also referred to as the 14-band k - p
method) within the envelope function approximation is used to obtain the energy band
structure of gallium arsenide based (GaAs) semiconductor QWs. Next, we introduce the
multiband semiconductor Bloch equations (SBE) in the length gauge (LG) to study the
system’s dynamics. This includes interband excitations, intraband acceleration, and the
many-body Coulomb interaction, which is considered here within the time-dependent
Hartree-Fock (TDHF) approximation, as well as carrier longitudinal-optical (LO) and
carrier longitudinal-acoustic (LA) phonon-scattering processes which are included on the
second-order Born-Markov level. The results section of this thesis is divided into two
parts. In part one, we focus on excitonic anomalous currents of GaAs QWs resulting from
optical interband excitation with circularly polarized light followed by the interaction
with a Terahertz (THz) field. The general gauging procedure for numerically solving the
SBE in the LG is presented in Chapter 3. Specifically, we construct gauge transformations
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to smoothen the phase of the numerically computed Bloch functions as a function of the
wave vector. The validity of the procedure is examined by comparing results obtained in
the LG with those in the velocity gauge (VG) for injection currents and shift currents. In
Chapter 4, we present numerical results and discussions of excitonic anomalous currents in
semiconductor QWs. Our simulation results reveal the appearance of a strong anomalous
current under resonant excitation at the exciton frequency. Oscillations occurring as
a function of the time delay between the optical exciton pulse and the THz pulse are
observed, which are due to the dynamics of excitonic wave packets when simultaneously
exciting the 1s and 2s exciton states. Remarkably, these results align well with experimental
data. In part two of the results section of this thesis, we extend the treatment of the
many-body terms beyond the TDHF approximation and consider many-body Coulomb
correlations in the perturbative and coherent regime by including correlations between
polarizations and charge carriers and biexcitonic correlations. By employing the cluster
expansion approach, we deal with the hierarchy problem and obtain a closed system of
equations of motion (EOM) on the singlet-doublet level. A comparison is made of the
excitonic nonlinear response between spatially-homogeneous type-I QW structures, where
transitions are direct in space (spatially-direct), and spatially-inhomogeneous type-II QW
structures, where transitions are spatially-indirect. Our theoretical analysis along with
numerical results shows that the spatial inhomogeneity of type-II structures leads to an
additional contribution to the excitonic nonlinear optical response already within the TDHF
approximation. For strong spatial inhomogeneity this TDHF contribution may dominate
over the terms that originate from many-body correlations. Finally, we summarize the
results achieved in this thesis and provide a brief outlook.






Theoretical Basics

This chapter presents the theoretical basics which are used in the following chapters of this
thesis. The detailed microscopic description of light-matter interactions in semiconductor
nanostructures is constructed by combining the k - p model with the SBE. The k - p
perturbation theory is a well-established method for calculating the band structure of bulk
semiconductors, as well as semiconductor QW and wire systems within the envelope func-
tion approximation [[37-43]]. Over the decades, various k - p models have been developed,
starting from 6-band and 8-band models focused on calculations around the I" point to
14-band models that account for spin-orbit coupling, as well as QW models that incorporate
strain effects [44-46]]. Recently, the 30-band model and even higher-order models have
been introduced, allowing for calculations over the entire Brillouin zone [47]]. Once the
energy band structure of semiconductor nanostructures is established, the dynamics of
the photoexcited system is described by the SBE, which consists of nonlinear differential
equations that characterize optical excitations within the semiconductor while accounting
for many-body interactions. In this study, the many-body interactions examined include
Coulomb interactions among charge carriers and the interactions between carriers and
both LO and LA phonons. The cluster expansion approach is applied to deal with the
hierarchy problem of many-body Coulomb interactions to obtain closed sets of EOM. The
general method for solving the SBE in the LG is presented in Chapter 3. This method
is applied to investigate the anomalous current in which the Coulomb interactions are
restricted on the TDHF approximation. We go beyond the Hartree-Fock approximation
in Chapter 5 by accounting for many-body Coulomb correlation effects to analyze the
nonlinear excitonic contribution to OPOP experiments.

2.1 Extended Kane Model

2.1.1 Bulk Semiconductors

The extended Kane model (also referred to as the 14-band k - p model) is constructed based
on k - p perturbation theory, which is a method that involves solving the Schrédinger
equation in order to find the eigenfunctions and eigenvalues of electrons in a crystal. The
Schrédinger equation describing electrons in a crystal has the following form

2

2”— + Vo (r) + Hso | Yk (1) = emntcthonic (1), (2.1)
my
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where my is the electron rest mass, Vj(r) is the periodic potential of the crystal, m is the
band index, and Hgp is the term describing the spin-orbit interaction, given by

h
Hso = 1 o (VVy xp). (2.2)

2.2
mgc

Here, o = (ax, oy, az) is the vector whose components are the Pauli matrices. The wave
function of the electron in the periodic crystal satisfies Bloch’s theorem and thus can be

written as

KT Y i (1), (2.3)

with u,k (r) being a periodic function with the crystal lattice. The Bloch functions satisfy
the orthonormality relation

¢mk = ei

<¢nk | I//mk’> = nm-Okk - (2~4)

When substituting the Bloch function from the above expression into Eq. (2.1), we obtain
the following equation

2 21.2 i

p—+V0(r)+—+—k- p+
2my 2my  mp 4dmyc

2O' X VV())

h
+ ——0 (VVj %
4mgczo-( 0xP)

Umk () = Emktimk(r). (2.5)

Next, we assume that the eigenfunctions and eigenvalues of the system at the I' point
(k = 0) in the Brillouin zone are fully known. Because the eigenfunctions at the I" point
are complete, we can expand the eigenfunctions at nearby wave vectors k in terms of the
eigenfunctions at the I" point. We thus can write

Ui (1) = 3 @ty un (¥), (26)
n
where, u, (r) are the eigenfunctions of the system at the I' point, satisfying the equation

[pz Vi }_ 0
L V@) = (), 2.7)
2my

Substituting the expression (2.6) into Eq. (2.5, we obtain the following system of equa-
tions

k- ’
Z Hnn?afnk = Emk .- (2.8)
n/
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Here, H,,- is given by

. 242 i i
HP(k) = (gg + —) S + —k - ((un|p|un/) + —— (up| o X VVpuw)
2my my

4mgc?
h

—— (uplo - (VVo X p)lup) . (2.9)
4myc
In the above expression, the first term is the diagonal component of the Hamiltonian matrix
describing free electrons. The second term is the off-diagonal component describing the
k - p interaction. The last term is the off-diagonal component describing the spin-orbit
interaction.

In the 14-band k - p model, which is known to describe III-V semiconductors like GaAs
well, the Hamiltonian consists of six bonding p-like valance bands states, two split-off band
states |7v) (|SOT>, |SOL>) and four heavy- and light-hole band states |8v) (|HHT>, |LHT>,
|LH l), |HH l)) two anti-bonding s-like conduction band states |6c) (!ST> , |Sl>), and six
p-like anti-bonding conduction band states |7c) and |8c). The schematic band structure at
the T point and related parameters for 14-band k - p model are illustrated in Fig.

Remote bands

I'zy

Vy
I‘&
FN B
P | e
TN JU ,
= 4t
Q /
A- |2
P V3
F8V
2 J
]

Figure 2.1: Schematic band structure at the I" point for the 14-band k - p model. The parameters
Ey, Ej, Ay, and Aj represent the energy separation of the bands at the I point. The
parameters P, P’, Q, and A~ represent the couplings between the bands. The modified
Luttinger parameters y;, y;, and y; take into account the contributions of the remote
band to the effective mass of the valance bands.

The basis functions are defined as common angular momentum eigenfunctions |j, j.), that
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is the s-symmetry and p-symmetry bands defined by the j = 1/2 and j = 3/2 angular
momentum eigenfunctions, respectively. Using the above-mentioned basis of the 14-band
k - p model, the Hamiltonian can be expressed in the form of a block matrix

H8c80 H8c7c H8€6c H8c8v H807v
H7cSc H7c7c H7c60 H7cSv I_I7c7v
Hisxia =|Heese Hecre Hecse Heesy  Hoerv |- (2.10)
HSVSC H8v7c H8V6c H8V8V H8V7V
Hrse Hwee Hwee Hwse Hww

It should be noted that, due to the Hermitian property, we only need to calculate the blocks
in the upper or lower triangular part of the Hamiltonian matrix; the remaining blocks can
be obtained by taking the transpose and complex conjugate. For the coordinate system
where the wave vector ky, ky, and k, correspond to the principal crystallographic direction
[100], [010] and [0 01], respectively, the block matrices of the 14-band k - p Hamiltonian
are given by

k-p _ ’
Hg s = Eo + Ay,
kp _
H7c7c - EO’
21.2
k- n°k
Hécgc =Eo + >
2m’

— 4 [{Use JyHke ky} + cp ]

k- |, , 1
HSVIS)V = _Z_mo{}/lkz -2y [(]3? - g]z)k)?} +c.p.

2
+ 5 [ J? = T2 ks + c.p.] }

2
Hl7(x;l7)v =—Ao - %y{kz,
Her, = 0,
HEP = V3P (Upks +cp.),
H;;gv = _gQ({]y;]z}kx +cp.) + %A—,
HEP = 20 (Uyzky +cp),
Hyoh, = %P'(kax +c.p.),
HED, = ~20(Tyeky +cp.).
Hyh, —gA:
HEP, = V3PT -k
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. h? , ,
;(vgv = _m [_GYZ(Uxxk;Zc + C~P~) - 12Y3(ny{kx’ ky} + C~P-)]

— iV3Ck (Uyzkx + cp.). (2.11)

H

Here, {A,B} = 1/2(AB+ BA) denotes the anticommutator, and c.p. stands for cyclic
permutations. The matrices J = (Ji, Jy» ]z) represent the angular momentum for j = 3/2.
The matrices T = (T, Ty, T;) describe the coupling between the conduction and valence
bands and transform as the components of a Cartesian tensor, denoted by T;;, where i and
j correspond to x, y and z. The matrices U = (U, Uy, U;) represent the coupling between
valance and split-off bands and are given by U; = T:. All of these matrices are provided
in Appendix and are also described in Ref. [48]]. For different orientations of wave
vectors ky, ky, k., the corresponding Hamiltonian can be obtained using Euler rotations
(see Appendix [A.3|for more details).

In the presence of strain effects, an additional term is present in the total Hamiltonian
H = HXP +H¢, with H? being the Bir-Pikus Hamiltonian [43]. The strain effect is considered
only for the p-like valance bands and s-like conduction bands, i.e., ignoring the p-like
conduction bands as the parameters for these bands are unknown. The block matrices of
the strain Hamiltonian in the first order of the strain tensor components ¢;; are given by

£ —
Heoe = ac Tre,

dy
- %(2{Jx,]y}£xy + C.p.),

1
H§V8V aV TrE - bV[(]}? - gjz)gxx + C.p.

e _
H-,, =ayTre,

HE g, = iV3Cy(Tyey, + cp.),

i
H.,, = —%Q(axeyz +cp.),
H§ 7, = =3by (Uxxéxx + C.p.) — \/Edv(Znyexy +cp.), (2.12)

where Tre = exx + €4y + €, and ag, ay, by, dy are the deformation potentials. The term
proportional to the C; parameter results from the inversion asymmetry. For the strained
layer of a semiconductor QW grown on a [0 0 1]-oriented substrate, the components of
the strain tensors are [49]

as Cr
€= — L, &xxTeéyy=E, £z = 2—f|, ExyTép=ex=0,  (213)
a Cu
where ¢|| is the in-plane strain, as and a; denote the lattice constants of the substrate and
the layer material, respectively. C;; represent the elastic stiffness constants. The negative
value of the in-plane strain corresponds to compressive strain, whereas the positive value
corresponds to tensile strain in the layer material.
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2.1.2 Semiconductor Quantum Wells

In the framework of the 14-band k - p model, within the envelope function approximation,
the wave function of an electron in a semiconductor QW grown along the z axis is written
as

14
Yo (1) = L3_1/Zeiku~ru Z:; e (Do (1), (2.14)

where A denotes the band index, k|| = k = (ky, k) is the in-plane wave vector, and upo(r)
are the basis functions of the 14-band k - p model. frfk(z) is a slowly varying envelope
function that satisfies the effective mass equation

14
k- .0 n
Z [Hm}; (k, —zg) + Ve f(z)énm} A (2) = el fA(2). (2.15)
n=1

Here, 51’1 is the band energy, and Hy,,y are the Hamiltonian matrix elements of the bulk

semiconductor, where the operator k. is replaced by —i 9k/dz. V°°(z) is the band-offset
potentials of the QW, which is introduced to describe the band discontinuity at the inter-
faces of materials that form the QW, as illustrated in Fig.

Al,Gai_,As GaAs Al,Ga;_,As

E,; (Al,Ga;_,As)
E, (GaAs)

VB offset

—a/2 0  a/2 #

Figure 2.2: Cross-sectional diagram of a GaAs semiconductor QW within the 14-band k - p model.

Note that replacing the operator k. can result in non-Hermitian terms in the Hamiltonian.

10
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To ensure the Hamiltonian remains Hermitian, we write these terms in a symmetrized

form as follows
A ifo P
h(z)k, — _E(Eh(z) + h(z)g),

A 0 0
h(2)k? —» ——h(z)—.
(2 = - h(2)=
To solve Eq. (2.15), the envelope function is expanded in terms of plane waves as

N

£ =D hibm(2), (2.16)

m=1

where

2 . (mm 0<z<L
— Sin 5 SZ=S >
¢m(2) = Lz LZZ ‘

0, otherwise.

(2.17)

In this case, L, is a normalization constant chosen to be several times the thickness of the
QW. Substituting expression into Eq. and multiplying both sides by ¢ (z),
followed by integration with respect to z, we obtain the following 14N X 14N matrix
eigenvalue problem

14 N

Z Z <¢I|Hnn’ + Vnann' |¢l’> CZ;{I, = E,ukCZ{(- (2~18)

n’=1’[=1

For given wave vectors k, the eigenvalues ¢, which represent the band structure, and the
expansion coefficients of the envelope function, which determine the eigenstate, |u)(k))
can be obtained from numerically diagonalizing the above 14N X 14N matrix. It is im-
portant to mention that the numerical diagonalization procedure introduces arbitrary
phases in the eigenstates at each Kk, causing phase discontinuities in |u, (k)) as k changes
continuously. As a result, these eigenstates lack uniqueness and are only defined up to a
phase factor. Additionally, such a procedure also imposes unitary gauge freedom within
the degenerate subspace, leading to an arbitrary unitary mixing of degenerate states at
each k. Consequently, the numerically obtained eigenstates do not vary smoothly with
respect to k. To ensure that |u) (k)) are smooth and differentiable with respect to k, a local
gauge transformation is applied to the Bloch states, as detailed in Chapter 3]

11
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2.2 Multiband Semiconductor Bloch Equations

2.2.1 Total Hamiltonian

In the single-particle basis formed by the Bloch states, the total many-body Hamiltonian of
the photoexcited semiconductor QW system can be expressed in terms of five components
as [4,[50]

H =Hy + Hjnt + He + Hphon + Hp. (2.19)

The first term H, represents non-interacting Bloch electrons and is given by

_ AT
H, = Z £, 1 ko (2.20)
ALk
where a;ft i and a, i are the creation and annihilation operators of an electron in band 1

with wave vector k and Eﬁ is the band energy obtained by diagonalization of band structure
Hamiltonian. The second term of Eq. (2.19) describes the light-matter interaction that in
the LG is written as

Hin: = eE(2) - Z rﬁf(,aikaﬂ/,kg (2.21)
Ak

where E(t) denotes the electric field of the laser and rﬁl{,, represents the matrix elements
of the position operator and is given by [[18}51-53]]

i = [+ au (97 + Wi |50 1), (2.22)

AN
kk’

into an interblock part gﬁ” = i (upk|Vkurk) (1 — Ay ), and an intrablock part 31/(1’1’ =
i (k| Viuy) Ay - The interblock part is also known as the transition interband dipole
matrix element, while the intrablock part is called the non-Abelian Berry connection.
The elements of the matrix A are set as unity within intrablock and zero otherwise. The
intrablock is defined within single states or between degenerate states or near degenerate
states where the corresponding eigenvalues have crossed or nearly crossed at some k, while
the interblock is defined between non-degenerate states. This scheme is demonstrated in

Fig.

Here, for convenience, following Virk and Sipe [53]], we split the position operator r

12
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Eic CB
Intrablock 9 Interblock &y
k

Figure 2.3: Schematic illustration of interblock and intrablock matrix elements.

Within the LG, it is possible to distinguish between interband transition processes, which
are induced by the interband transition dipole matrix element and the intraband acceler-
ation, which is determined by the gradient term in Eq. (2.22). According to the classical
acceleration theorem, electrons are accelerated in their respective bands [32]]. The interband
dipole matrix element can be obtained from the velocity operator via the relation

AN

, v
g = —in—X—. (2.23)
EA _ 6/1
k k

In turn, with the envelope function in Eq. (2.16) for the QW, the elements of the velocity
matrix read

14
’ * 1 k- ’
Vi = / dz >’ f’ik(z)(£Vka P) @ (2.24)

n,m=1 nm
The many-body Coulomb interaction between electrons in bands A1, A5, A3, and A4, involving

the exchange of momentum 7q is given by

1 MdaAsdy
_ 1A2A3A4 T
He = - Z Vet al i —q @l ko (2.25)

A, A2,A3,A4
kKk',q

13
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where, in the QW, the Coulomb matrix elements are given by [4} |50, [54]

2
IdoAsh, _ 2me” 1 ~lqllz-2'] 2 A4 Aok oy Ay
Vk,lk’Z,qS 4= @H//dzdz e qllz== Z i(+q(z)f (Z)Z : (Z )f;zj(’(z )
(2.26)

Here, e is the notation of the elementary charge, ¢, €, and L? are the notations of the
vacuum permittivity, relative permittivity at high frequencies of the unexcited QW, and
QW area, respectively.

In addition to many-body Coulomb interactions, electrons-phonons interactions are also
considered and represent an additional many-body contribution. These interactions lead
to dephasing and relaxation processes in the material, as well as to the formation of quasi-
particles (i.e., polarons which, however, are not considered here) [55]. The Hamiltonian of
the noninteracting phonons is the fourth term in Eq. and can be written as

1
phon - Z hwq qJ.( aqqlb%q,ql + 5)> (227)
a,q,9.1
where ba Q9L and by g4, are the creation and annihilation operators of phonons in branch

a with wave vector (q,q,) and energy hiwg, .

The last term in Eq. (2.19) is the interaction between electrons and phonons and is described

by

— a, AN ',L +
HP - Z gk+q k g1 /1 k+qa/1,,k (ba,q,QJ_ + bo{ 4,91 )s (228)
a AN kq.q.
with
a, AN _ AN
gk+qqu_ g‘l 9. Vk+qkq, (2.29)

being the coupling matrix elements between electrons and longitudinal phonons [55-58]],
where the structure parameter reads

Visqlg, / dze"”Z Fierd D). (2.30)

In the case of electrons coupling to LO phonons, the coupling matrix elements g-© are
defined by the Frohlich relation

2 1 4 1 1 1
(gLO ) _Lpgrodre 1 (11 , (2.31)
9L 2 L2L, q* + ¢* €0

14
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and for the case of the coupling to LA phonons, they are given by

( LA )2 _ h|D|2\/q2 +q%

2.32
9.1 ZCLAPMLZLZ ( )

Here, D represents the deformation constant, cy is the LA-velocity of sound, py denotes
the mass density of the lattice, and ¢, is the low-frequency (static) relative permittivity.
L, is the thickness of the QW, which is simplified when summing over the wave vectors.
In cases of GaAs material, these parameters €y = 12.9, €5, = 10.9, Hiw© = 36 meV, and
D = 8.6V [501[55}[59].

2.2.2 Cluster Expansion Approach

In the Heisenberg’s picture, the time evolution of an operator O is obtained from the
Heisenberg equation of motion as

L,
ih=-(0) = ([O.H]). (2.33)

Here, H denotes the system’s Hamiltonian (2.19), which was introduced in the previous sec-
tion. In the photoexcited semiconductor, various phenomena can be analyzed through the

single-particle expectation values defined as <a_£ KOV K > Under the homogeneous excita-
tion conditions considered in this study, momentum is conserved in all physical quantities.
As a result, only elements diagonal in k are generated, given by Pﬁ’l = <a1ka ,y,k>. This

quantity provides a comprehensive description of the occupations and coherences within
the system. For A = A/, it describes the electron and hole occupations or distributions,
expressed as

n, = <alkac’k>, nﬁ =1- <ai’kav,k> . (2.34)

For A =v and A’ = ¢, it describes the interband coherence (also referred to as microscopic
polarization) between the valence and conduction bands

Pk = <ai,kac,k> : (2.35)

For A and A’ within the same band but different subbands, it represents the intersubband
coherences between valence subbands and between conduction subbands

nif(v = <ai,ka"”k>’ nf(c = <az,kacl,k> . (2.36)
It is widely known that for the many-body Coulomb and the electron-phonon interactions,

the EOM for the single-particle quantities Pl’l’v are not a closed set of equations due to
the many-body hierarchy. In particular, the commutator between Pl’l)v and the Coulomb
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interaction produces the following terms

— AN A A3 g [ 0
ih— < a) k> = Z Vk—q,k’,q <a/1’ka/12’k,_qa;t3’k, a,14’k_q>
C A3 AK q
MAz, Az, A [ i
B Z Vk K'+q.q <all,k+qaﬂz,k’ 0,13,k'+q(1/1")y,k> : (2.37)
A, A2,143.K ,q

This equation shows that the Coulomb interaction introduces correlations, i.e., the cou-
pling of single-particle terms to two-particle terms. This pattern continues for equations
of two-particle terms and higher-order terms, generating a hierarchy of equations that
prevents a straightforward solution. Schematically, the hierarchy problem is described by
the following expression

1h% (N) = T[(N)] + V[{N + 1], (2.38)

here, (N) is the expectation value of N-particles involving N fermion creation and N
fermion annihilation operators

(N) = < )k stkNaA{’k; e a/‘l;\]’k;\]> . (2.39)

In the expression (2.38), the functional T[(N)] represents the non-interacting part of the
Hamiltonian, e.g., the band structure, and V[(N + 1)] represents many-body interactions
which introduce a coupling to the next level of (N + 1)-particle correlations, demonstrating
the recursive nature of the hierarchy. This recursive structure can typically not be solved
exactly but requires a decoupling to obtain a closed set of equations, which is achieved
through approximation methods.

There are several well-established methods that can approximate this hierarchy problem,
such as the dynamics-controlled truncation scheme (DCT) [4,/60H67], the second-order Born
approximation [4,57,68H71]], and the cluster expansion method [|55} 58} {72-82]. Note that
the two formers are subsets of the more general cluster expansion method [/55]]. For instance,
the equations obtained from the DCT scheme in the y) limit are entirely encompassed
within the singlet-doublet approximation of the cluster expansion. The cluster expansion
offers the advantage of providing a more accurate description in scenarios involving a
strong external field or a fully incoherent system.

In this thesis, we leverage the robustness of the cluster expansion approach to systematically
truncate the hierarchy of many-body correlations. The main idea is to represent the
correlations among N particles in terms of lower-order correlations called clusters, which
refer to a subset of particles correlated with each other. By keeping clusters up to a specified
order and factorizing, i.e., approximating high-order clusters, we realize a consistent
approximation. At the lowest level, where the expectation value (N) is expressed as N
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independent single-particle expectation (1) as

N
— — o T
(N5 = N = 3 07 ] (@} s ) (2.40)
o 1=

where o is a permutation of (4], k) with sign (—1)°. The above factorial with the subscript
HF is well-known as the Hartree-Fock approximation.

For higher levels, the N-particle correlation, (N), will be generalized by expressing it into
possible lower-order clusters, i.e., (1), (2), ..., (N), which are denoted for independent
single particles (singlets), correlated pairs (doublets), and correlated N-particle clusters,
respectively. This procedure is accomplished recursively via

(1) = Ds, (2.41)
(2) =(2)s + A (2), (2.42)
(3) =(3)s + (1) A(2) + A(3), (2.43)
(N)=(N)g+(N—4HAYA2)+...+(N-3)A3)+...+ A(N). (2.44)

In this formulation, the term (N) encompasses all possible correlations among N parti-
cles, including the purely correlated component A (N). Thus, A (N) can be obtained by
subtracting all lower-order components from the fully correlated expectation value (N).

This study limits the consideration of contributions up to doublet levels. The dynamics of
the singlet and doublet quantities can be examined using the following general form

ih S (1) = T+ AL)] + A ()] (2.45)
A (2) = BI@)] + Vi3] + BIA G, (2:46)

where the singlet-doublet factorization (3)gp = (3)g + (1) A (2). Within the singlet-doublet
approximation, pure triplet correlations A (3) and higher-order correlations are omitted.
This results in closed Egs. (2.46). In the singlet approximation, where correlations
are disregarded, the two-particle correlations, V;[A (2)] in Eq. (2.45), are also neglected.
It should be noted that sometimes Vi[A (2)] as well as A (3) are not simply set to zero;
instead, they are often replaced by phenomenological models, such as a simple constant
dephasing time or a more accurate diffusive dephasing model [58]], which try to account
approximate for higher-order effects. The schematic representation of the approximations

behind Egs. (2.45) and (2.46) are illustrated in Fig.
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Singlets
= @

Doublets Correlated Doublets
2-@®-00- 00

Hartree-Fock Approximation
Triplets Correlated Triplets

<3>='=§%>* '

Singlet Factorization
Singlet-Doublet Approximation

Figure 2.4: Schematic representation of the cluster expansion approach up to the singlet-doublet
level. The singlets, full doublet correlations, and full triplet correlations are introduced
in the first, second, and third rows, respectively. The second row illustrates the de-
composition of doublets into their singlet components and the correlated part. The
third row demonstrates the expansion of triplets into combinations of three singlets,
correlated doublets paired with singlets, and correlated triplets.

Applying the cluster expansion approach at a singlet-doublet level, we can obtain the EOM
for P])(W as following

2O o _(x AN WA X _ K p
ih=P, = (& - )P +hZ(Q P - o)

Alﬂﬂ/A// q’k/’k _ A#uIA// q’kl’k *
+ Z [Vk—q,k’,qc)kyp’/l” Vk—q,k',qcl'y,u’/l” . (247)

A",,u,/l',k',q
Here, the pure two-particle correlations have the form

L at
gh = A (]! asq@rica), (2.48)

and the generalized Rabi frequency is generally defined as
r_ 1 oy Mt A\ i’
oW = - E(t) - d}* + Z ( VT v )P{(’," . (2.49)

kK’ k' — kk’,0
W ok

For more clarity, we rewrite the EOM (2.47) explicitly in terms of interband coherences,
intersubband coherences, and the charge carrier occupations. The EOM for interband
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coherences pk’ = ]Zicj between holes and electrons are given by

d ; B ;
zh—pﬁ €= (”e’ )p]’i i€ hQ;’h’ (1— -n ’)
e h;_exej ejexr  hjey h,1h hye; ejhy hihj
+ Z (th n. ' —hQ) " py ) Z ( N M IO )
epy#e; 17h

hyh;  hiej ejer  hie . hiej
—eE(t) - Z&kﬂ P —Zﬂk’ . +iVip,
h) €x

p’hie'
+ TP (2.50)

Here, I} term encompasses all contributions from correlations and scattering processes.

The EOM for intersubband coherences between electrons, nk’ = P]iicj , and between holes,
hih; _ Poloj . b

n ' =P 7, are given by

i % eiej _ [~ej ~e; e e] th]el ej e;

zgnk =& —& |n. " + n) —n’

ere; €r€j ejep ezea Qhaei yhaej ejhy( hye;
vy (th e = Byt ) + Z[ e —nog™ (pe)|
e #{eiej} hj

_ *—’ﬂfz e _ e erei €1ej _ ejer eiex | g €i€j
eE(t) - (nk nk)+ Z VN Z 9 7 +iVin,

er#e; er#e;
ne;e;j
ST, (2.51)
. 3 hihj "hi "hi hihj hjhi hi hj
zhgnk = (sk - & )nk + th (nk -ny )
N Z (th/lh hah;j th iha nhi h,\) + Z [hQ]?h" (p]izje,\) —hO e,lpﬁzevl
ha#{hi,h;} €A
—eE(t) - 91}(”}1" (nﬁj - nﬁi) + Z ShAh h"h Z 3h sha h My vy n b
h,1¢h hy#h;
n,h,—h-
™ Nl (2552)

The renormalized band structure due to the repulsive Coulomb interaction between charge
carriers is given by

/1/11/1
€k = fk kk’ k- k" (253)

where A runs over all conduction and valence subbands. The renormalized Rabi frequency
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between the valence and conduction subbands is

’ 1 ’ ’
AX AA 2 "Apd
Qk = % eE(t) : gk - Vlfk/ﬂk/ kpﬁ/y > (254)
pp K

and between subbands is

’ 1 ’ ’
AN _ A wApd i
O = |eB(n) - 5 - > Vi . (2.55)
pop’ LK

The EOM for occupations of electrons n’ = P’ and hole nﬁ" =1- P are given by

h%ng = —2Im ; nope () ZhQ“’u( )+ eE(r) - Z‘ 8y (mer)
e te; er#e;
+ eE(t)-- Viny + 7%, (2.56)
h%n]’f = —2Im h;l thi?hi(n]}?h;L) Zthah (Pklm) T eE(t) - h; gt ( hi h/x)
A i A
+eE(t) - Vienl + TM. (2.57)

It should be noted that with the excitation conditions and material systems considered in
this study, the only relevant Coulomb matrix elements are VV1¢1¢2V2 Y aviveez [ yyVivavsVa gpd
Vacec Here, ¢; and v; represent conduction and valence band indices, respectively. The
terms VV191%Y2 and V9V1¥2¢2 describe the Coulomb attraction of electron and hole, giving
rise to excitonic effects. Meanwhile, VV1V2V3V4 and V1€2%% describe the Coulomb repulsion
between electrons in the valence and in the conduction bands, respectively, leading to
effects such as band energy renormalization. The remaining terms, particularly those
describing interband Auger transitions, are neglected due to their negligible impact under
the considered conditions.

Using the same procedure, the EOM for the pure correlations at a singlet-doublet level are
as follows

k' k ’ k' k
lh—cq = (.9’1 + ¢! K A)cq

ot A v K+q kT ) n
v qk k vu qk k 78% qk k ANy gk k
+h Z (Q vy,u'/l’ + Qk’ v’ M Qk’+q Apv! Qk—qc/l,u,u’v
14
q.k’ .k q.k" k
+ S/WM, + D,m,m" (2.58)

where Q " is the generalized Rabi frequency defined in Eq. (2.49), qu, v contains all
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q.k" k
Appr X
The full expression for these singlet and doublet terms are given in Appendix[A.4] In this
thesis, we restrict the analyzing of many-body correlations to the coherent regime, in
which only the coherent doublets, i.e., the hole-polarization correlation cpp = cyyye, the
electron-polarization correlation cpe = cycee, and the biexcitonic correlation cgx = cyvyec
are the relevant remaining quantities. Contributions from many-body correlations to
pump-probe spectroscopy will be investigated in detail in Chapter 5.

terms that appear from the singlet factorization, and D is from doublet factorization.

2.3 Berry Phase and Curvature

Band structures have successfully been used to describe various electronic properties
of solid-state systems. However, recent advancements in the field have emerged from a
deeper understanding of more subtle aspect of electrons in crystals: the Berry curvature
of Bloch states. The concept of the Berry phase and curvature, first proposed by Michael
Berry in 1984 [[19], has proven to be highly useful across many areas of physics. Its detailed
derivation is described in numerous works, e.g., Refs. [83-88].

Consider a quantum system that is described by a time-dependent Hamiltonian involving
a real parameter R(t) = (R, Rz, ...)

H = H(R(1)). (2.59)

The parameter R can be regarded as the influence of the external environment on the
system under consideration (such as an electric field, a magnetic field, etc.). The evolution
of the system over time is governed by the time-dependent Schrédinger equation

H(R(1)) [y (1)) = ih% ly(t)). (2.60)

Here, we are interested in the adiabatic evolution of the system over time. Therefore,
the parameter R is considered to change very slowly over time along a path C in the
parameter space R. As a result, the solution to the above equation can be expressed as a
linear combination of the instantaneous eigenstates of the Hamiltonian H(R) at the points
R as follows

WD) = Y am(De® O Im(R)). (2.61)

Here, 0,,(t) = —% /t: dt’E, ((R(t")) is the dynamical phase and the instantaneous eigen-
states [m(R)) at each point R is obtained by diagonalizing the Hamiltonian H(R) at the

points R, i.e.,

H(R) [m(R)) = Em(R) [m(R)) . (2.62)

It is important to note that the above equation is not sufficient to uniquely determine
the eigenstates [m(R)), as they may still include an arbitrary phase factor. Additionally,
there is no connection between the eigenstates |m(R)) at different points R. We can
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choose phase factors at the points R to eliminate this arbitrariness, under the condition
that the eigenstates |[m(R)) vary smoothly and are single-valued along the cycle C in the
parameter space. To determine an EOM for the expansion coefficients a,,(t), we substitute
the expression into Eq. then left multiply both sides by (n(R)|. Using the
normalized orthogonality of the eigenfunctions, we get

 an(®) = (1R T In(R)) an(1)

= 3 (RIS Im(R) om0 1) 69

m#n

The first term on the right-hand side of Eq. is dependent solely on the n-th state.,
whereas the second term involves the couplings between adiabatic states, which causes
transfer of population between these states. Next, we assume that at the initial moment,
the system is in a specific eigenstate n, [n(R(t,))), of the Hamiltonian H(R(¢,)), which
allows us to express a,(ty) = Onm. In first-order perturbation theory, the wave function of
the system can be expressed as

m(R)[d/dt[n(R))
Em(R) = En(R)

|¢(1)(t)> =e!0n () eirn (1) | |n(R)) — ifa Z (

m#*n

Im(R))|. (2.64)

The phase factor y,(t) is referred to as the geometric phase factor of the system, which
is also known as the Berry phase. Expression indicates that in the zeroth-order
approximation (the first term), the system is in a specific eigenstate [n(R(ty))) of H(R(ty))
at the initial moment, and throughout the evolution of the adiabatic process, the system
remains in the instantaneous eigenstates |[n(R)) of the Hamiltionian H(R). This is known
as the adiabatic theorem in quantum systems.

The second term on the right-hand side of Eq. gives rise to the phenomenon known
as the anomalous current, which will be examined in Chapter 4. This term, along with the
Berry phase, has been pivotal in advancing the modern theory of polarization [88}89]]. To
study this term further, we rewrite it as

(m(R)|d/dt[n(R)) _ in(n(R)|(dH(R)/dt)[m(R))
Em(R) = En(R) [Em(R) — En(R)]?

(2.65)

From this expression, one can see that if the Hamiltonian changes slowly enough, the
non-adiabatic contribution to the wave function becomes insignificant.

The Berry phase y, in Eq. can be rewritten as follows

yal(C) = /C dR - A,(R), (2:66)
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where A, (R) is referred to as Berry connection or Berry vector potential
Ap(R) =i{n(R)|VgIn(R)) . (2.67)

It should be noted that the Berry phase, as defined in Eq. (2.66), is real-valued. From the
expression (2.67), it can be seen that the geometric phase of the system depends only on
the geometric shape of the path the system traverses in the parameter space R. It does not
depend on the time variation of the parameter R (i.e., it is independent of dR/dt).

For a closed loop, the Berry phase can be rewritten as a surface integral using Stokes’
theorem as follows

¥n(C) :/st“ AdR, QLY (R), (2.68)

here, p and v are the indices of the dimensions of the parameter space, § is the surface
enclosed by the closed curve C, and dR, A dR, is the differential area element. QLY (R)
is an antisymmetric second-rank tensor, called the Berry curvature, and has the form

R aRVA;’(R). (2.69)

QU (R) = - AL(R) - ==
I

With the definitions of the Berry phase and Berry curvature given above, we can show
that the Berry curvature is a gauge-invariant quantity, so it may alter observable physical
effects. In contrast, the Berry connection is a gauge-dependent quantity and thus cannot
be observed. To derive this, we consider a gauge transformation of the eigenstates of the
system in the form |i(R)) = e#(R) |n(R)), where the phase factor f,(R) is an arbitrary
smooth function which guarantees the single valuedness of the wave function. Substituting
this expression into Eq. (2.67), we obtain

An(R) = Ap(R) + Vg B(R). (2.70)

This expression indicates that, through the gauge transformation, the Berry vector potential
is altered by an amount Vg S(R). Thus, it depends on the arbitrarily chosen phase factor
B(R). Next, by substituting expression (2.70) into expression (2.66), we obtain

¥n(C) = yn(C) —/CdRVRﬁ(R) =¥n(C) + f(R(t)) = B(R). (2.71)

In the expression above, f(R(ty)) and S(‘R) are the phase factors at the initial and final
points of the curve C in the parameter space. It shows that under the gauge transformation,
the geometric phase changes by an amount (R (#)) — S(R). At this point, we cannot yet
conclude whether the geometric phase depends on the chosen gauge or not. If the system
evolves over time along an open curve C in parameter space, the geometric phase will
depend on the choice of the phase factor f(R), making it gauge-dependent. In such cases,
we can choose a gauge that eliminates the geometric phase, leaving only the dynamic
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phase. This gauge is chosen such that the eigenstates of the system satisfy

dR

— =0. 2.72
i (2.72)

R)| SIR(R)) = (RIVRIA(R))
The above condition for the wave function is also known as the parallel transport condition,
and states that satisfy this condition are referred to as parallel states. For these states, the
geometric phase of the system cancels, leaving only the dynamic phase. However, when
the system evolves over time along a closed curve in the parameter space, Berry realized
that the geometric phase of the system is not canceled. In this case, the initial and final
points of the closed curve C coincide, i.e., R(ty) = R(t). Consequently, the initial and
final states must be identical, i.e., |n(R(t))) = |n(R(ty))). This property must hold under
gauge transformation. Additionally, due to the single valuedness of the wave function, we
have

B(R(1)) — B(R(ty)) = 27n, withn € Z. (2.73)

From the above expression, we can see that for any chosen phase factors f(R) the geometric
phase of the system can only change by an integer multiple of 2. Therefore, it cannot be
eliminated, making the geometric phase a gauge-invariant quantity in this case.

In practical numerical calculations, the previously defined expression for the Berry cur-
vature is often not used. This is because the eigenstates of the Hamiltonian at different
points R in parameter space are obtained by diagonalizing the Hamiltonian independently,
which results in no phase relation between the eigenstates at different points R. This lack
of phase continuity complicates the calculation of derivatives of the eigenstates. To avoid
this, the formula for the Berry curvature can be reformulated in a way that depends only
on the eigenstates at a single point R in parameter space as

(n(R)|(H(R) /oR,,)Im(R)) (m(R)|JH(R)/IR, |n(R)) — (n & v)

pv .
W=D (Em 82

m#n

(2.74)

This formula is also known as the Kubo-like formula for the Berry curvature. It indicates
that the Berry curvature depends only on the eigenstates, the eigenvalues of the Hamil-
tonian, and derivatives of the Hamiltonian at a specific point R. Therefore, if having an
analytical expression of the system’s Hamiltonian, we can calculate the Berry curvature
using the Kubo-like formula.

In this section, we only considered the case of a non-degenerate system. Degenerate systems
were first discussed in the work of Wilczek and Zee [20]. In first-order perturbation theory,
the wave function of the non-degenerate system is

D) O Y g Im(R) i Y, STRIEE | (279)

meA IgA
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Here, A represents all indices corresponding to the subspaces of the degenerate states. The
non-Abelian phase factor g is the unitary matrix that accounts for the geometric phase

g = exp (i ‘/C dR -A). (2.76)

Here, the non-Abelian Berry vector potential is a matrix-valued vector quantity, defined
as

Ann(R) =i{m(R)|Vg|n(R)), withm,n € A. (2.77)
The non-Abelian Berry curvature is expressed as a matrix quantity in the form
Q(R) = Vg X A(R) —iA(R) X A(R). (2.78)

As with the non-degenerate case, we can also derive a Kubo-like formula for calculating the

Berry curvature in the presence of degeneracy. The formula takes the following form [90]]

(m(R)|H(R) /dR,I(R)) (L(R)|dH(R)/oR., [n(R)) — (1 < v)
(81 - 8m)(Sl - an) .

Un(R) =1
I¢A
(2.79)

In the context of periodic systems, the reciprocal lattice serves as the parameter space,
situating our system within the closed manifold known as the Brillouin zone. For the
case of non-degeneracy, the Berry connection and Berry curvature can be defined in this
framework as

3 =i (tnk| Vicltink) , (2.80)
Qﬁ = Vi X 3‘{: = i {Viunk| X | Vi), (2.81)
and Berry berry phase
Yn(C) Z/dk~An(k) :/dS - Q, (k). (2.82)
C S

If taking this integral over the closed surface S, we will obtain a value that is an integer
multiple of 27

75 dS - Q" = 272C,,,  with Cp € Z. (2.83)
S

This integer Cy, is also known as the Chern number or the topological invariant, and it
depends solely on the solid crystal’s structure.

In the case of degeneracy or near-degeneracy, typically involving the spin degeneracy of
energy bands, we need to modify the above definition and work with a non-Abelian gauge
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field within each subspace. The non-Abelian Berry curvature has form [90, |91]
Qp = Vi X I — i X (2.84)

with 3" being the Berry connection in the degenerate case, it takes the form
K" =i (k| Viclumi),  withn,m € A, (2.85)

where A is the set containing the indices of the degenerate states. We can express the
Berry curvature in terms of the periodic components of the Bloch function as follows

Q" = i (Vieun (k)| X Vi (k)) — iz (un(K)[Vieur) X (u(K) [ Vieum (k) . (2.86)
leA

In the representation of the eigenfunctions of the band structure, Qi can be expressed in
terms of velocity matrix elements as

Im

1
v X v
o =in? ) k= k (2.87)
8 (e~ et ek - o)
where n and m are in the same degenerate or near-degenerate subspace. This expression

will be applied in Chapter 4 to evaluate the Berry curvature for semiconductor QWs,
specifically for investigating the anomalous current induced by the Berry curvature.

Finally, we discuss the effect of the symmetricity of the solid crystal structure on its Berry
curvature. For crystals with spatial inversion symmetry, the periodic components of the
Bloch function exhibit the symmetry

un,cr,—k(_r) = un,a,k(r), (2.88)

where o is the spin index for band n. Using the relation in this expression and the expression
(2.81), we obtain the following symmetry expression for the Berry curvature

QM = Q" (2.89)

oo,-k ~ "“ook’

If the crystal structure also possesses time-reversal symmetry, then the periodic compo-
nents of the Bloch function satisfy the symmetry

Uy o _1(1) = Uk (1), (2.90)

in which & denotes the spin state opposite to that of o. Similarly to the previous case, we
obtain the following symmetry relation for the Berry curvature in this case

Q= _Qmn (2.91)

oo~k — ok’

In the case where the crystal structure possesses both symmetries, combining the Berry
curvature symmetry relations (2.89) and (2.91) results in the Berry curvature of the system
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canceling out, eliminating any net effect from the Berry curvature. In the case of broken
spatial inversion symmetry, the system still exhibits microscopic Berry curvature as gov-
erned by Eq. (2.91). However, the macroscopic Berry curvature, obtained by integrating
the microscopic Berry curvature over the entire Brillouin zone, will vanish. As a result, we
do not observe a macroscopic Berry curvature effect in this case. However, if we can break
time-reversal symmetry in the system, for example, by exciting the system with circularly
polarized light pulses to induce spin polarization-a transient macroscopic Berry curvature
effect can be observed during the system’s spin relaxation time. This transient effect will
be the focus of the study in Chapter 4.
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General Numerical Approach
for Solving the
Semiconductor Bloch
Equations in the

Length Gauge

The interaction between electrons in a semiconductor and an electric laser field has been
widely studied in the VG through the coupling term A(t) - v between the vector potential
of the laser field, A(t), and the velocity of the electrons, v. Using this gauge has advantages
due to the independence of this coupling term on the wave vector k. However, it has also
some disadvantages. The vector potential A(¢) is gauge-dependent, whereas the electric
field E(¢) is not. The relation between the vector potential and a uniform electric field in
frequency space is expressed as A(w) = —iE(w)/w. This expression implies that when the
frequency w approaches zero, the vector potential becomes infinite while the electric field
remains finite. Moreover, this can magnify round-off errors at low frequencies, potentially
leading to unphysical effects if the basis set is incomplete [32}|52]. These issues do not
arise in the LG, which involves the electric field E(t) with the position operator r, E(#) - r.
From a computational perspective, however, solving the SBE in the LG is more challenging
than in the VG due to the presence of k derivatives, which require the Bloch states to be
smooth, differentiable functions with respect to k. Since Bloch states are often determined
at each k point through independent numerical diagonalizations, they acquire arbitrary k-
dependent phases. To solve this issue, we apply the method proposed by Virk and Sipe [53]]
and construct the parallel transport gauge (PTG) to transform the original eigenstates into
parallel transport states aligned with the external field direction. Additionally, we utilize the
twisted parallel transport gauge (TPTG) transformation [85} 92,93, which was introduced
for Cartesian coordinates, here, we adapt it specifically for polar coordinates to properly
solve the problem. This chapter will provide a detailed description of the construction
of the PTG and TPTG transformations and their application when numerically solving
the SBE in the LG. In order to validate our gauging procedure, we use this approach to
calculate both the injection current and shift current in a GaAs semiconductor QW. We
then compare the results from the LG with those obtained from the VG.

The dynamics of the photoexcited semiconductor system is obtained by solving the EOM
in the LG (2.47) for the single-particle expectation value. They can be rewritten in the
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matrix form using the reduced density matrix py as

d i

i
<=7 [Hox — Q0 pic| + ﬁ[eE(f) (S + V), pr] + T (3.1)

Here, the band structure Hé’}( = Eﬁé;w, and the generalized Rabi frequency Qy given by
Eq. (2.49). Ik represents all contributions from scattering and correlations. In the VG, the
equation of motion for reduced density matrix reads as [94]

i

H{Hote (0] = T IA®) Vi (D] + T (2)

2 pr(t) =
where the vector potential A(#) is obtained from the electric laser field E(#) by the relation
A(t) =- f_too E(t') dt’. In principle, using the unitary operator Q = e*A() /7 93| 95]| the
equations of motion in the LG and VG can be transformed into one another. In practice,
unlike Eq. in the LG, the equations for the reduced density matrix in the VG, as
presented in Eq. (3.2), are independent of each other for different k vectors. Thus, there is
no need for a gauge choice that ensures the smoothness of the wave function in k-space.
As demonstrated in the following section, where we compare numerical results from both
gauges, the final results are identical. However, the LG is shown to be more efficient since
it requires fewer bands to achieve convergence, and an intuitive interpretation in terms of
interband and intraband contributions is possible.

3.1 The Parallel Transport Gauge

To construct the PTG, we start with the relation of Bloch functions between two different
k points. In perturbation theory, these functions can be expressed to first order of Ak
as [51]

[wrscenic) = Y uric) (5;” —iAk- f{:v)guv(k, Kk + Ak) + O(AK?), (3.3)
uv

where the unitary matrix g(k, k + Ak) = exp (-iAk - J) accounts for arbitrary phase
factors and the arbitrary mixing of degenerate states originating from numerical band
structure calculations. &, and 9y are, respectively, the transition dipole matrix elements
between connected and disconnected states

é—li(k/lj = i(ug,k|vkul’,k> é/u" (3:4)
19.1/(1/1 = i(uA,k|VkuA/,k> Ay, |

where Ay, = 1if the two bands have the same energy at least at one k point in the Brillouin
zone, otherwise A)), = 1and Ay =1— Ay . To calculate the matrix g(k, k + Ak), one
needs the overlap matrix which is defined as Sy (k, k + Ak) = (uﬂ,k|u/y,k+Ak> between
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two neighboring k points. With the perturbative relation (3.3), one can obtain
g(l k + Ak) = Sy (k ke + AK)A, (3.5)

and

£(k) = ﬁ [S(k k + Ak)g' (k k + Ak) — g(k k + AK)S (k k + AK)|.  (3.6)

Here, S(k,k + Ak) = S(k,k + Ak)A. Equation (3.6) is symmetrized to enforce exact
hermiticity. This equation allows one to calculate the transition dipole matrix elements
from the overlap matrices, which are determined by the wave functions obtained from
the band structure calculations. This is useful in case an analytical expression for the
Hamiltonian is not available.

In practice, g(k, k + Ak) obtained from Eq. (3.5) is not exactly unitary, but it can be made
unitary by performing a singular value decomposition as

S(k,k + AK)A = U(K)=(k)V' (k). (3.7)
Finally, g(k, k + AK) is obtained from the product of two unitary matrices as
g(k, k + Ak) = U(k)V (k). (3.8)

It should be noted that when writing the overlap matrix in polar decomposition form as
S(k)A = g(k)M(k), one can see that g(k) plays the role of the angle of a complex number
and M (k) is its magnitude.

To eliminate the relative phase and unitary mixing of Bloch states between two neighboring
k points, from the relation (3.3), one performs the gauge transformation

[iscear) = ) 95,06 T + AK) [ i) - (3.9)
H

To make the Bloch functions smooth as a function of k in the j direction, one can construct
the gauge transformation matrix W/ by extending to a series of k points on a straight line
in the j direction, with the unit vector e;, starting from the first point ko, one has

W/ (ko, k) = g(ko, ko + ejAk)g(ko + e;jAk, ko + 2e;Ak) ... g(k — e;Ak, k). (3.10)
With the W/ matrix, one can obtain the new Bloch functions as

Jin) = Wr (ko, k) [uy i) - (3.11)
u

In the new basis, the transition dipole matrix & (k) is transformed as

E(k) = W (ko, k) € (k)W (ko, k), (3.12)
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which is a smooth function of k. It should be noted that the matrix g(k, k + Ak) in the
new basis becomes an identity matrix, which leads to the vanishing of the non-Abelian
Berry connection 3y and the new gauge is so-called the parallel transport gauge.

3.2 The Twisted Parallel Transport Gauge

In the case of periodicity, the phase difference when we move the k point from the begin-
ning to itself after that is the Berry phase, which represents the total phase accumulated
during the final transition. Since the Berry phase is gauge invariant, there is no gauge
transformation that can eliminate this phase difference. A possible way to overcome this
discontinuous problem is that we spread out the phase difference uniformly to the basis
at k points along the path [85} (92} [93]]. Supposed we distribute (N + 1) k points along the
k path starting at ko, and the path is a closed loop such that the states at k¢ and at ky
represented by the same Hamiltonian. In the case of non-degenerate bands, the periodicity
can be restored by applying the graded phase twist as

|ﬂ/1,kj> = ¢ i9akj/Le |L~t;ij> , (3.13)

where k; is the length of k-path between k, and k;, L¢ is the length of the closed path in
k-space, and ¢, is the Berry phase associated with band A along the closed path, whose
the discrete formulation are

—ib,r

¢ =—Imln <ﬁ,1’kN|e a/l,ko> . (3.14)

Here, the factor e ™77 is inserted only if the path involves a winding by a reciprocal lattice
vector b,. The phase twists in Eq. are known as twisted parallel-transport gauge.
The situation is more complex in the case of degenerate bands. Because of the unitary
mixing of states in the degenerate subspace, one cannot treat each band separately. In that
case, one must consider the non-Abelian Berry phase (also called multiband Berry phase),
which is given by

ot = — Im In det §(kn, ko). (3.15)

Here, g is obtained by Eq. but in the PTG basis. It is noted that the PTG states at ky
and ky are related by the unitary transformation as

i) = €™ Y da (k. Ko) [ ) - (3.16)
H

To extract the set of individual phases ¢, (non-Abelian Berry phases), we must diagonalize
the matrix §(ky, ko). Because § is unitary, its eigenvalues have the form A, = e"¥~_The
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total Berry phase can be written as the sum of the individual phase ¢,,
Prot = —Zlmln/lm = Zgbm. (3.17)
m m

With the unitary matrix V, which diagonalizes g(ky, ko), one rotates all states at all k;
to the new states which correspond to the eigenstates of the individual multiband Berry
phase as

|11;ij> = Z Via ’a#»kj> . (3.18)
u

In the basis defined by these new states, the matrix G(ky, ko) becomes diagonal with the
diagonal elements being A, = e~ ¥m_This means that each state |12)ij> will return to itself
at the end of the loop, but has acquired the Berry phase ¢,,. Now, it is straightforward to
obtain periodicity by applying the graded phase twists to the new states (3.18). In

these new states, the new gauge transformation matrices W are
W(ko, k;) = D' (k) VW (ko, k;), (3.19)
where Dy, (k;) = e~i$mki/lc is diagonal matrix and the new transition dipole matrix is
E(k;) = W (ko, k) E(k))W' (Ko, k;). (3.20)

The new gauge is now smooth and periodic along the k path. It is noted that, in the new
TPTG basis, the matrix g(k, k + AK) is not an identity matrix anymore, we can see that in
the transformation

gar (Kj kji1) = [DT(ky)V'§(k;, k) VD(kjs) | ;5 = [DF(k)D(kjsn)]
= e_imAk/LC(s/u/. (3.21)

Now, the new non-Abelian Berry connection does not vanish and becomes
5 Pa
h (k) = L_5M’~ (3.22)
C

In the above expression, we see that this new Berry connection in the TPTG is independent

of k.

3.3 The Gauging Procedure in Polar Coordinates

The Coulomb matrix in the generalized Rabi frequency not only involves four
band indices but also couples all two-dimensional wave vectors k and k’, making the
evaluation of the Hartree-Fock terms when solving the SBE the most computationally
demanding aspect. If using a Cartesian grid for the wave vectors, the computational effort
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scales as N*, where N represents the number of k-points in one direction. Since the band
structure is approximately parabolic near the I' point, the Cartesian grid is not an optimal
choice, leading to large N and requiring significant memory and computing time to obtain
convergent results. In contrast, if using a polar grid — a more natural choice for the near-
circular symmetry of the band structure at the T point - despite the computational scaling
of le N 925, where Nj and Ny are the number of radial k-points and the number of angles,
respectively. Both Ni. and Ny can be significantly smaller than N while still achieving
convergent results. Therefore, a polar grid is more effective for accurately describing
excitonic effects within reasonable numerical effort.

In this section, we will apply the PTG and TPTG to transform the interband term of the
SBE in polar coordinates.

First, the interband term can be split into two independent components in the polar
coordinates as

0 9 k N o |¥k (3.23)
ot Pk intra a ot k intra Ot intra’ ’
in which
S| = 2 eEE W8 pil - 3 eBE () (3.24)
ot intra h k ’ k"™ '
0 Pk i
ol == [eE* ()07, prc] — —eE“"k(t)—pk (3.25)

Here, the superscripts k and ¢ denote the components in polar coordinate. The relations
between the polar and Cartesian components for the Berry connection are

kAN _ AN AN
9 <U/1k|—k| /l’k> =cosq)k:9]’§ +s1n<pkn9fj , (3.26)

3l<fk,AA —; <ul’k|a¢7k|u/vk> = k(— sin (pkﬁl’i”w + cos (pkﬁf{/’M/), (3.27)

where k and @ are unit vectors in polar coordinates. That these unit vectors are not the
same for any k-points leads to the k-dependence of the electric field, with its components
given by

Ef(t) = cos g E*(t) + sin gxE¥ (1), (3.28)

EJF (1) = %[— sin g E* (t) + cos g EY(1)]. (3.29)

Next, we will build the gauge transformation matrix W (ko, k) by using Eq. for each
component of the polar coordinates as illustrated in Fig. For the k-component, we
choose the k-path as the straight lines starting at (0, 0) whose k-points have the same
angular coordinate. For the ¢-component, the k-path is chosen as a concentric part of a
circle starting at k,, = (k, 0) whose k-points have the same radial coordinate.
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k=(k,®)

WH(k)=g(ko,k1)g(ki,k2)
xg(ky,k3)g(k3 k)

We(k)

ko=(0,0) ko=(k,0)

Figure 3.1: Diagrammatic illustration of the operators W* and W¢ on a polar grid, where these
operators establish connections between the basis point k and the starting points kg
located on their respective grid lines. This schematic is reproduced with permission
from Ref. [96]).

Applying the PTG transform for the k-component part in Eq. (3.23) and performing some
algebraic manipulation via the relation

%wk (0,k) = —iwk(0, k)9, (3.30)

we can obtain
a |k + 1 0
w0, k)| — ‘ W (0,k)| = ——eEF(t) = pi. 3.31
( >(atpkmtm)[ 010]' =~ Ler (1) 2 i (3:31)
Now, we can take the numerical derivative in the expression above and transform it back
to the original Bloch basis

d

atpk

intra

= [w* (o, k)]*(—%eE{z(t)%pk)wk(o, K). (3.32)

For the ¢x-component part in Eq. (3.23), to reserve the periodicity in this dimension, we

35



3 General Numerical Approach for Solving the SBE in the LG

apply the TPTG transformation by using Eq. (3.19). With the relation
J - - -

— W (Kpy, k) = =iD(K) I — iW? (ky,, k) IPF, (3.33)

9Pk

and after some algebraic manipulation, we obtain

1
h

_ Ja ¢k - o ® S0k - ® J _
WPk (klﬂos k) (apk intra) [W(ﬂk (kql?o, k)] - % [eEkk (t)&kk, Pk] - eEkk (t) a_qokpk (334)
Again, taking the numerical derivative and subsequently transforming it back to the

original Bloch basis leads to

0
atpk

Pk 1

h

= [Wq"k(k(po,k)]T{%[eEl‘f"(t)glf",pk] eE;fk(t)a;;kpk}ka(k%,k). (3.35)

intra

Here, the density matrix and Berry connection are transformed with the TPTG as

- - t
pc = W (Kp, k) pre [W (K, K |, (3.36)
G0 = W (kg k)90 [WP (kg k)| (3.37)
The new Berry connection is just a diagonal matrix which has the elements
- AA/ ¢A‘
GO = K5y, (3.38)
21

where gb]’z are the non-Abelian Berry phases.

3.4 Photocurrents

In semiconductor systems lacking inversion symmetry, a nonzero second-order optical
susceptibility, y(?), allows photocurrents to be generated using a single optical pulse [26)
28, 140, |54} |94} [97H110]]. These photocurrents arise from three main mechanisms: injec-
tion, shift, and rectification currents. This section focuses on the first two contributions.
Injection currents result from an asymmetric momentum distribution of photoexcited
carriers induced by circularly polarized light, while shift currents are caused by real-space
displacements of electrons during excitation from the valence to the conduction band
under linearly polarized light. After numerical integrating the SBE in the LG (3.1), the
density of the charge current induced by the optical excitation is given by

. € A A
i0=12 2 o, (3.39)
Ak
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whereas in the VG, we have

=7 ;{ (v = =am)o @), (3.40)
sHs

The injection and shift currents are defined as the zero-frequency contributions of the
diagonal

. e
ja0) = 5 > vided (@) (3.41)
ALk
and off-diagonal
. € Au A
Joa) =75 ) wIAl®) (3.42)
Lu#Ak

contributions to the total current j(t), respectively [54}(94]].

Additionally, in the term Iy} in the EOM for the LG and the EOM for the VG, we
consider the contributions from scattering processes by accounting for the scattering be-
tween LO and LA phonons and carriers in the second-order Born-Markov approximations.
The resulting contributions for occupations are given by [4} |50, 69]

d 2 2
(Epk scatt)/u B ﬁa;%:q {
S 1L
oA~ a a,pl+ a HH AN
[5(wk+q,k,qj_) (Nq"h + 1) + 5(wk+q,k,qJ_)Nq’CIL:|pk+q(l ~ Pk )

apl— a,ul+ HH AL
(5ot INea, +8(ops )Nz, +1)] (1= £, ot } (5.43)

and for the coherences (1 # 1’) by

d _ 1 5y
(atpkscatt)/m;_ thk Z {

a,pl
gk+q,k,qi

a,pl
gk+q,k,ql

2 ’
aul’ - a Hp
[Z) (wk+q,k,qL) (Nq)qi. + pk+q)
apl’+ a _ A HH
+D (wk+q,k,qL) (Nq:‘h +1 pk+q)]
a,ly+ o py
D (wk,k+q,ql) (N‘l,‘b_ + pk+q

a,/l,u— o MU
+ D((A)k,k+q,qJ_) (Nq,qJ_ +1- pk+q)] }’

(3.44)

a,Au ’2

+ gk,k+q,ql

in which the phonon distribution is Ng, = [exp{hw(‘i‘,qL/kBT} - 1] - D(w) =iP(1/w)+

alpt _ A H a
m6(w), and O g, = /M=o /it wg, .

Below, we present results obtained from numerically integrating the SBE in the LG (3.1),
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including the scattering between carriers and LO phonons. These results will be compared
to those obtained from solving the SBE in the VG (3.2). The material used for our simulation
is a [110]-oriented GaAs/Alj35Gag¢5As QW of 10 nm wide with the crystallographic
directions [0 0 i], [Il 0], [110] taken as the x, y, z directions, respectively. The calculations
are carried out for temperatures of T = 10K and T = 300K (room temperature). The
parameters of bulk GaAs are taken from the work of Winkler [46]. Figure|3.2|is the result
of the band structure of the GaAs QW at room temperature. The band gap energy is
1.46 eV. The spin splitting is quite large in the direction [110] and vanishes in the direction
[001].

1.6

1.58 8

1.56 | 8

1.54

1.52

1.5

1.48

Energy (eV)

1.46

—0.02

—0.04

—0.06 r _

0.4 0.2 ) 0.0 0.2 . 0.4
k[OOT] (nm™+) k[ho] (nm™+)

Figure 3.2: Band structure of a 10 nm wide [110]-oriented GaAs/Aly35Gag ¢5As QW at room
temperature. The band gap energy is 1.46 eV.

After obtaining the eigenstates by diagonalization, we do construct the matrix g(k) by
the procedure described above. To verify the validity, we compare the matrix elements for
£(k) that were calculated by two different expressions and (2.23).
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Figure 3.3: Matrix elements |£(k)|? calculated by two different formulas Eq. (dashed line)
and Eq. (solid line). The left figures show the [0 01] direction, while the right
figures show the [110] direction. The red and blue lines display, respectively, x and y
components of &. It should be noted that the matrix elements are taken as the sum of
all spin states.

Figure [3.3| shows results of the squared amplitude of the & matrix elements between the
energetically highest heavy-hole bands (HH; and HH;) and the energetically highest light-
hole bands (LH;) and the energetically lowest conduction state (el). The results obtained
by the two different formulas coincide with each other.

To solve the SBE, we take into account the eight energetically highest valance bands and
the four energetically lowest s-like conduction bands. For the calculation of shift currents,
we also include twelve energetically lowest p-like conduction bands to obtain converged
results in the VG.

The excitation pulse propagates in the z direction, which is the growth direction of the
QW, resulting in the electric polarization lying in the xy plane of the QW and taking the
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time dependence
E(t) = E,(H)e! + c.c,, (3.45)

where w denotes the central frequency of the laser pulse, and E,, (¢) represents the envelope
function. In our study, it is a Gaussian-shaped form and varies slowly in time as

2

E,(t) = Eoe_ﬁ (cos 0, sin 0™, 0). (3.46)

Here, the notations of Ey and 7, denote respectively the peak amplitude and the Gaussian
pulse duration. The angle 6 represents the polarization angle relative to the x axis, and ¢
is the phase difference between the x and y components of the laser electric polarization.
In the case of a circularly polarized pulse, we set ¢ = £7/2 and 6 = /4, whereas for a
linearly polarized pulse, ¢ = 0 is used.

3.4.1 Injection Currents

The circularly polarized excitation pulse used in this section has 7w = 1.54 eV, 77 = 150 fs,
and Ey = 1% 10* V/cm. The system is excited by left and right circularly polarized pulses,
which are denoted as ¢~ and o™ in Fig.[3.4] respectively.
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Figure 3.4: Time-dependent injection current densities calculated using the LG (solid lines) and
the VG (dashed lines) for different helicities of the circularly polarized excitation pulse
as well as for two different temperatures.
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Figure [3.4|shows the numerical results of the injection current densities calculated in the
LG (solid lines) and in the VG (dashed lines) with different helicities (red and blue lines
represent the right circular polarization while purple and yellow lines are for the left
one) and different temperatures (red and purple lines are calculated at 300 K while the
blue and orange lines are at 10 K). Figure 3.4 reveals three main findings. Firstly, we can
see that the results obtained by using the two gauges, i.e., LG and VG, are, as it should
be, identical; secondly, the injection currents of two opposite helicities show a mirror
symmetry with respect to the zero axis, i.e., the helicity defines the current direction;
finally, the influence of temperature: the current decays faster at elevated temperatures.
Since at higher temperatures, more phonons exist, they interact with the carriers and lead
to a more rapid decay than at low temperatures. To explore this in more detail, we examine
how the peak values of the injection currents change when varying the number of bands
used in the calculations, see Fig.

Current density (10 A/cm)

0 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20
Number of valance bands

Figure 3.5: Peak values of the injection current densities as a function of the number of valance
bands for different numbers of considered conduction bands. The results obtained in
the LG and in the VG are depicted by the blue and red lines, respectively.

Obviously, we can see that the injection currents in the two different gauges are identical
and converge at about eight valance bands. In principle, because the injection currents
only involve resonant near or above band gap excitation, there is no difference between
the LG and the VG when varying the number of bands considered in the calculation.
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3.4.2 Shift Currents

Next, we present results on shift currents in which the LG reveals an advantage in compar-
ison to the VG. Figure [3.6|displays the x component of the shift current densities calculated
in the LG and in the VG. The excitation pulse is linearly polarized along the y direction
and has iiw = 1.54 eV, 77 = 150 fs, and Ey = 1 X 10* V/cm. The temperature is assumed to
be 300 K.
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Figure 3.6: x component of the time-dependent shift current densities calculated in the LG with
and without p-like conduction bands (solid red and dashed blue lines) and without
intraband term (dashed red line). Those of the VG with and without p-like conduction
bands are in solid and dashed black lines, respectively. The incident pulse is linearly
polarized along the y direction.

Firstly, we can see in Fig.[3.6|that the shape of the shift currents is identical to the envelope
of the excitation pulse. Then, there are two noticeable points that we want to discuss here.
The first one is the agreement of the results in the LG and in the VG, which indicates that
one can use either the LG or the VG to get the correct results. However, a remarkable
aspect lies in the fact that if using the VG, we have to take into account the contribution
of higher off-resonant bands, i.e., the p-like conduction bands, to obtain the converged
result. In contrast, there is no such contribution from these bands in the LG.

To analyze some features of the shift currents, we now study the change of the peak values
of the shift currents transients as a function of the number of p-like conduction bands.
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Figure 3.7: Peak values of the x components of shift current densities as a function of the number
of p-like conduction bands. The blue lines are calculated using the LG, whereas the red
line is for the VG. The dotted line is calculated without intraband terms. The incident
pulse is linearly polarized in the y direction.

The result is shown in Fig. where the red line is calculated in the VG and the blue
lines are in the LG, in which the dotted line is calculated without intraband terms. We
can see that when the convergence is obtained, the results from the two gauges approach
each other. However, it should be noted that based on this figure, one can learn about the
contribution of each term. On the one hand, in the LG, the p-like conduction band does not
contribute to the shift current, while it does in the VG. On the other hand, when ignoring
intraband terms, the current in the LG will be suppressed. In other words, it reveals two
different mechanisms for the two gauges.

3.5 Conclusions

To sum up, we have described a general numerical approach for solving the SBE in the
LG. In particular, the implementation of the PTG and TPTG for degenerate bands has
been elaborated in detail, enabling the integration of many-body effects in the process
of integrating the dynamical equations. Notably, the gauging procedures are validated
through their application in calculating ultrafast photocurrents, with results compared
against those obtained using the VG. The numerical results demonstrate very good agree-
ment between the two gauges. Furthermore, for the case of shift currents, it should be
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emphasized that in the LG, we do not have to include higher off-resonant conduction
bands to obtain convergence, which, however, contributes to the VG. This considerably
reduces the computational efforts, including time and resource consumption in the LG
compared to the VG.
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Excitonic Anomalous

Currents of Semiconductor
Quantum Wells

It is well-known that Berry curvature can induce an unconventional motion of charged
particles in a direction perpendicular to a slowly varying applied electric field. This phe-
nomenon is called the anomalous velocity or the anomalous current [[14-17} 86]]. Recently,
this anomalous current has been observed in GaAs QWs with appropriate designs both in
theory [111]] and experiment [[112].

Due to the spatial inversion asymmetry in the lattice structure of GaAs, the Berry curvature
of the system can exhibit non-zero values at various k points within the Brillouin zone.
However, since the Chern number of the material is zero [[111]], the macroscopic Berry
curvature in equilibrium remains zero. As a result, macroscopic Berry curvature effects
cannot be observed in the ground state. So, to break time-reversal symmetry, Virk and
Sipe [[111] proposed using a circularly polarized laser pulse to excite electrons and induce
a spin polarization in the system, thereby generating a macroscopic Berry curvature. This
approach and considered setup is illustrated in Fig.

Nevertheless, the model used in Ref. [111] is relatively simplified due to the circularly
symmetric band structure and the neglecting of many-body interactions, which include
Coulomb interactions between carriers and carrier-phonon scattering. To improve this situ-
ation, the study presented in this chapter examines the influence of many-body interactions,
with a focus on excitonic resonances and phonon scattering processes, in the generation of
anomalous currents. We also use a more realistic band-structure model which, e.g., includes
anisotropies. For more accurate results, the multiband SBE in the LG, incorporating both
Coulomb interaction between carriers and interactions between carriers and phonons, are
employed. Specifically, the Coulomb interaction is treated within the TDHF approximation.
At this level, the exciton effect arises from the Coulomb attraction term between electrons
and holes. The scattering processes between carriers and LO and LA phonons are handled
within the framework of the second-order Born-Markov approximation. It is worth noting
that carrier-phonon scattering plays a significant role in describing the decay of carrier
spin polarization, which in turn alters the decay of the macroscopic Berry curvature caused
by circularly polarized light. Here, we focus on the weak excitation regime, where the
Coulomb scattering between carriers becomes insignificant and can be disregarded.
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THz detection THz probe pulse

Optical injection pulse

Figure 4.1: Schematic for investigating anomalous currents in GaAs QWs. The green laser pulse
(optical injection pulse) is a circularly polarized optical excitation pulse used to initially
break the time-reversal symmetry of the system, thereby inducing a macroscopic Berry
curvature. The orange laser pulse (THz probe pulse) is a linearly polarized THz pulse
(with frequency on the order of THz) whose electric field component is oriented along
the x direction, which is used to accelerate the charge carriers. The orange current
(Jnormal) represents the normal current along the direction of the THz electric field,
which is generated by carriers accelerated in that direction. The blue current (Janomalous)
is the anomalous current perpendicular to the THz pulse, which results from the
presence of the macroscopic transient Berry curvature in the system. The blue THz
detection pulse is the electromagnetic radiation emitted due to the anomalous current.
The figure is reproduced with permission from Ref. [[111].

Experimentally, to detect the anomalous current [[112]] based on the theoretical framework
proposed by [[111]], two distinct pulses are used. First, a circularly polarized optical pulse is
applied to generate charged carriers in the material and break time-reversal symmetry,
inducing a finite macroscopic Berry curvature, as described in Eq. (4.5). Then, a linearly
polarized THz pulse is used to accelerate the carriers excited by the optical pulse within
their respective bands, potentially generating an anomalous current in the presence of
the finite macroscopic Berry curvature. This acceleration causes the carriers to emit THz
radiation with two polarization components: one parallel to the polarization of the THz
pulse, corresponding to the normal current, and one perpendicular, corresponding to the
anomalous current. The strength of the emitted radiation is proportional to the accelera-
tion of the charged carriers, i.e., the time derivative of both the normal and anomalous
THz-induced currents. The anomalous component of the THz radiation measured by the
experiment will be compared with the time derivative of the anomalous current obtained
from our numerical calculations. The experimental arrangement is illustrated in Fig.
and will be described in detail in the following section.
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4.1 Experimental Setup to Detect Anomalous Currents

This section details the experimental setup employed by the group of Dr. Mark Bieler at
Physikalisch-Technische Bundesanstalt [[113]] with the schematic representation shown in
Fig.|4.2] The experiments were conducted on (110)-oriented, undoped, nominally symmetric
GaAs/Aly3Gag7As QWs. These samples were chosen for their well-characterized band
structure, long relaxation times, and high-quality availability. The (110)-orientation is
particularly advantageous, as it induces significant spin splitting along the [1-10] direction,
which results in a large Berry curvature and, thereby, a substantial anomalous current.
The investigated QWs have thicknesses of 15 nm and 28 nm, with the crystallographic axes
[001], [110], and [110] aligned along the x, y, and z directions, respectively [113]].

optical
probe

A

t

optical
«— pUump
tau

Current flow perpendicular to

fixed terahertz bias.

time

Figure 4.2: Schematic diagram of the experimental setup for measuring anomalous currents in
GaAs QWs. These measurements were conducted by the group of Dr. Mark Bieler
(Physikalisch-Technische Bundesanstalt, Braunschweig).

Initially, the output from a femtosecond laser (150-fs duration pulses, tunable energy
between 1.51€eV and 1.55 €V to excite heavy-hole excitons) was split into three beams.

The first beam, a circularly polarized optical pump beam with 2 n] pulse energy, was
focused to a spot size of 200 pm, creating a carrier density of 1x 10! cm™2 in the QWs.
This excitation breaks time-inversion symmetry, which is a key condition for observing
anomalous currents in GaAs.

The second beam, a linearly polarized THz pulse, Etyy,, is generated via optical rectifi-
cation in a 2 mm thick (110)-oriented zinc telluride (ZnTe) crystal. This THz pulse, with
polarization parallel to the x axis, acts as a time-dependent electric bias, generating a
peak electric field of 10 V/cm in the sample that is aligned with the optical pump. The

47



4 Excitonic Anomalous Currents of Semiconductor Quantum Wells

combined optical/THz excitation induces an anomalous current in the QW plane along
the y direction. This ultrafast-induced anomalous current emits THz radiation, which
corresponds to an electric field that is proportional to the time derivative of the anomalous
current and orthogonal to E1yy,.

The third beam, a linearly polarized probe, detects the THz radiation using electro-optic
sampling in a 1 mm thick, (110)-oriented ZnTe crystal [98]]. To isolate the THz radiation
and suppress ETyy,, the detection crystal was oriented accordingly and two THz polarizers
were employed.

The measurement process is conducted as follows. The delay of the probe beam is set to
capture a specific time instant ¢ of the time derivative of the anomalous current, denoted
as dJ?(¢)/dt, and its strength is assessed in relation to the delay between the optical pump
and the THz pulses. This procedure is referred to as a delay scan. To generate the contour
plots, the probe beam delay is incremented from ¢ to t + At, and a new delay scan is
performed for the updated time instant of dJ*(t)/dt. The starting point of the delay scan
is adjusted to r — ¢ — At. This process is repeated to cover the entire shape of dJ?(¢)/dt,
with each delay scan forming a column in the contour plot. A consistent optically-induced
momentum-space distribution is ensured across all time instances of the emitted THz
radiation by varying the starting point of the delay scans according to the sampled time

instant of dJ?(t)/dt.

It is important to note that the total current may also include other components, such as shift
currents. To isolate the anomalous current and eliminate these extraneous contributions,
one subtracts the measurements taken with left and right circularly polarized pump
pulses [[112]. This method works because reversing the helicity of the circular optical pulse
reverses the sign of the anomalous current while shift currents remain unchanged.

4.2 Theoretical Model

To obtain the anomalous current generated according to the scheme in Fig. we use
the SBE in the LG as presented in Chapter 3, Eq. (3.1), within the TDHF approximation.
Also, the electrons scattering with LA and LO phonons are incorporated as described by
Egs. and (3.44). Once the SBE solutions have been computed, the charge current
density induced by the light-matter interaction is determined by

J(0) =J () + (1), (1)

The first term on the right-hand side of Eq. (4.1) is the current contributed from carrier
occupations, given by

intra/,y _ € eie; e ¢ hih; h;
Jmra) = 7 ka met 3 2N M (4.2)
e,k hi k
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The above current is defined by the derivative of the band energy dispersion, Vﬁ’1 =1/ thgﬁ.
In centrosymmetric material, this current will vanish, whereas in centrosymmetric material,
this current will exist for non-symmetric carrier occupations. When a THz field is applied,
it accelerates the charged carriers within the material, causing a shift in their distribution in
k-space. This shift results in a non-symmetric carrier distribution, which in turn generates
a current aligned with the polarization direction of the THz pulse. This current is referred
to as the normal current. The second term on the right-hand side of Eq. is the current
contributed from interband and intersubband coherences, given by

i e hih; hih; e eie; eje; e hie; hie;
inter _ ity ity i€y _Citj ivj cj
Je () = i E v ml T+ i E v 'n T+ 7 E (vk N c.c). (4.3)
hi¢hj,k ej¢€j,k hi,ej,k

From the interband current J'™(¢), the anomalous current J*(¢) can be extracted by
filtering the appropriate direction and frequency. In the first-order adiabatic perturbation
with respect to the THz pulse, the anomalous currents can be approximated as [32} 86|
111]

2
3 = —%ETHZ@ X e, (Q%) (1), (4.4)

with (Q?) (t) being the macroscopic Berry curvature, given by
_ 1 z.ejej_ €; 1 Z,hihi hi
(@) () =73 ) O my + 5 )y
e,-,k hi’k

1 z.ejej ejej 1 Z,hihj hihj
+ E Z Qk nk + ﬁ Z Qk nk . (45)
e,-:Fej,k hiihj,k

Here, QIZ(’M' are the matrix elements of the non-Abelian microscopic Berry curvature
defined within a single band and between two degenerate or near-degenerate bands. Their
matrix elements can be evaluated using the Kubo-like formula [90}|91] in terms of velocity
matrix elements as

A A A A
Qz,/u' —ihzzvi ”z)ﬁ‘u _Uly(, /’z)l)ii’ (46)
k - ’ :
YR,
e, (ek ek) (ek ek)

where A and A’ lie within the same degenerate or near-degenerate subspaces.

It is important to mention that the experimentally measured anomalous current is a third-
order nonlinear process involving a second-order excitation induced by the optical field
and a linear interaction with the THz field. In second order in the optical field, three types
of currents can arise: injection, shift, and rectification currents [[54, (94, [101]], with the first
two discussed in Chapter 3. To isolate the anomalous current, we expand the SBE to third
order by calculating p‘¥ (k) for i = 1,2,3, and pl(f) o |Eopt|*Et,. We realize that pl(f)

can result from two different excitation pathways: (i) Opt-Opt-THz where p]((l) and p]((z)
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are generated by Ep; and then pl(j) is generated by Ery, from pl((z) ; and (ii) Opt-THz-Opt
where p]((l) is generated by Ep, then pl((z) by ETyy, from p]((l), and finally pl(j) by Eopt from
p]((z). Upon implementing both pathways and analyzing the results, we find that pathway
(i) vastly dominates under the conditions considered in this study.

4.3 Band Structure of GaAs Quantum Wells and their Berry
Curvatures

In the simulation, GaAs/Aly3Gag7As QWs grown in the direction [110] with widths
of 15nm and 28 nm are considered. The dependence of the band gap on temperature is
modeled using the Varshni relation [[114], expressed as E,(T) = E4(0) — aT?/(T + fB), where
a and f are material-specific parameters. Furthermore, the band parameters are given in
Appendix[A.2land were taken from Ref. [46]]. For comparison with experimental data [[112],
the calculations are performed at 4 K for the 28 nm wide QW and at 77K for the 15nm
wide QW.

The valence band structures and their microscopic Berry curvatures along the [110]
direction are displayed in Fig. The Berry curvatures shown in this figure are summed
over the spin subbands. In the [110] direction, one can see that the band structure reveals
a slight spin splitting, which arises from the inversion asymmetry of the lattice structure
and quite strong spin-orbit coupling of the GaAs material. The Berry curvatures, on the
other hand, exhibit large amplitudes near the avoided crossings of the valence bands.
Additionally, due to the material’s time-reversal symmetry, the Berry curvature summed
over spin subbands behaves as an odd function of k, resulting in a vanishing macroscopic
Berry curvature in equilibrium.

Before delving into the dynamics of the anomalous currents, it is worth examining the
characteristics of the linear absorption spectra of the QWs under consideration. These
spectra are defined by the imaginary part of optical response, a(w) o« Im[e - P(w)],
where e represents the polarization direction of the optical pulse and P(t) represents
the macroscopic optical polarization. This polarization is determined by the interband
coherence py, via

P(t) = ) &y +cc, 4.7)

here, py.(k) is the interband coherence. In the linear optical regime, py(k) is obtained
from the SBE solution as follows

. 0 Y \' in v Y v'ed'v v'e!
lhapkc = (gk - & — Tz)pkc —eE(t) - §° - Z Vk’]gf)k,_kpk, ) (4.3)

v,k
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Figure 4.3: The microscopic Berry curvatures as a function of k calculated using Eq. are
presented for (110)-oriented GaAs/Aly 3Gay.7As QWs along the [il 0] direction. These
results are obtained by summing over the spin subbands for the two highest heavy-hole
bands: hh; (solid blue lines) and hh, (dashed black lines), and are shown for QW widths
of 15nm at 77K (a) and 28 nm at 4 K (b). To enhance clarity, the valence band structures
obtained by the 14-band k - p model within the envelope function approximation are
overlaid with the red curves. For the 15 nm well, the band gap energy is 1.526 €V and
1.525 €V for the 28 nm well. The figure is reproduced with permission from Ref. [96]].

The ultrashort pulse E(t) in Eq. used to calculate the linear absorption spectrum is
modeled as a delta-function-like pulse. The scattering with phonons is phenomenologically
modeled by a constant dephasing time T,. By choosing a dephasing time T, = 2 ps, multiple
excitonic resonances can be well resolved.

When solving the multiband SBE (3.2), we account for sixteen bands: the twelve highest-
energy levels of the valence band and the four lowest-energy levels of the conduction band.
The numerical integration is performed using the fourth-order Runge-Kutta algorithm [[115].
These simulation tools and parameters are consistently applied throughout the study.

The results of the linear absorption spectra for different light polarization directions for
widths of 15 nm and the 28 nm are shown in Figs.[4.4(a) and [4.4{b), respectively. In both QW
widths and for both light polarization directions, the spectra reveal the resonances from
excitons. Specifically, the higher peaks are from the 1s heavy-hole excitons corresponding to
the e;-hh;, e;-hh,, and e;-hh; interband transitions. Additionally, smaller peaks associated
with the weakly absorbing 2s excitons are also observed. However, the linear absorption
spectra for the two polarization directions, [0 01] and [110], show minor differences in
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magnitude, reflecting the anisotropy inherent in the QWs, which is encapsulated in the
electronic band structure and wave functions [/50].

In the interest of comparison, Fig.[4.4]also includes the interband absorption calculated
without accounting for the electron-hole attraction. It is clear that the single-particle
absorption is noticeably weaker than the excitonic absorption and displays a step-like rise
at the band gap, which reflects the two-dimensional density of states in QWs.
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Figure 4.4: The linear absorption spectra for (110)-oriented GaAs/Alj 3Gag7As QWs illustrated
for light polarized along the [0 0 1] (solid blue lines) and [1 1 0] (dashed red lines) with
widths of 15 nm (a) and 28 nm (b). The spectra show peaks at the 1s and 2s heavy-hole
exciton resonances (e;-hh; and e;-hh,) at —=9.2 meV, —1.4 meV, 45 meV, and 51.4 meV
for the 15nm QW, and at —6.9 meV, —1.3 meV, 13.0 meV, and 17.3 meV for the 28 nm
QW. In support of comparison, the absorption spectra in the case without Coulomb
interaction for light polarized in the [0 0 1] direction are also provided by the dotted
black lines. The figure is reproduced with permission from Ref. [96].
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4.4 Dynamics of the Berry Curvature

Since the Berry curvature induces anomalous currents, it is insightful to examine its
dynamics first before addressing the dynamics of anomalous currents in the next section.
It is worth recalling that to simulate anomalous currents, we employ the method described
in Refs. [[111}|112], as outlined in Sec. 4.1. This approach utilizes two pulses, E(t) =
Eopi(t) + ETn, (¢ + 7), where 7 represents the time delay between them. Both pulses are
Gaussian shaped and propagate along the z direction as defined in Eqs. and (3.46).
The THz pulse is linearly polarized in the x direction with a central frequency of 2 THz,
an electric field amplitude of E, = 10 V/cm and a duration of 7, = 150 ps. The optical
excitation pulse has a tunable frequency with an amplitude of Ey = 2kV/cm and a duration
of 7 =150 fs. As previously noted, we restrict the analysis to the perturbative limit, where
the anomalous currents scale linearly with the THz field amplitude and quadratically with
the optical field amplitude (i.e., are proportional to the optical field intensity). This scaling
remains valid for THz field amplitudes up to approximately 1kV/cm and optical field
amplitudes up to around 10 kV/cm. Beyond these thresholds, additional non-perturbative
intensity-dependent effects, such as exciton ionization for stronger THz fields and phase-
space filling along with many-body Coulomb correlations (e.g., carrier-carrier scattering)
for stronger optical fields, come into play. These effects can weaken the coherent oscillatory
dynamics of excitonic wave packets and possibly alter some of the results presented here.

Now, we analyze the macroscopic Berry curvature caused by the circularly polarized
optical pulse in the two considered GaAs QWs, as shown in Fig.|[4.5| Regarding the temporal
evolution, for both QW widths, neglecting the Coulomb interaction results in a monotonic
decay of the macroscopic Berry curvature over time, see Figs. [4.5(b) and[4.5(d). In contrast,
when the Coulomb interaction is considered, see Figs. [4.5(a) and [4.5(c), the macroscopic
Berry curvature exhibits oscillations, which suggest the emergence of oscillations in the
transients of anomalous currents, as predicted by Eq. (4.4). The oscillation frequency
corresponds to the energy difference between the 1s and 2s exciton resonances, indicating
the origin of an excitonic wave packet in the optical excitation [116]. Additionally, the
primary contribution of the Coulomb interaction arises due to the hole-electron attraction,
which leads to exciton resonances in the absorption. This is reasonable since, in the low-
density regime, the repulsive interactions between carriers (electrons and holes) mainly
cause a minor renormalization of the band energy, leading to only small changes in the
oscillation frequency.
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Figure 4.5: The dynamics of the macroscopic Berry curvature [Eq. (4.5)] as a function of time and
the detuning A = hiwy, — €gap, i.¢., the difference between the optical excitation photon
energy «r, and the band gap egap. The results are displayed for (110)-oriented GaAs
QWs with widths of 15nm [(a) and (b)], and 28 nm [(c) and (d)] in the two cases: with
Coulomb interaction [(a) and (c)] and without Coulomb interaction [(b) and (d)]. The
normalized envelope of the circularly polarized excitation pulse is plotted in panel (e).
The figure is reproduced with permission from Ref. [96].

Regarding the temporal decay of (Q7), the decay is slower for both QW widths when the
excitation is below the band gap than when it is above the band gap. This difference is
because only scattering with LA phonons is relevant for excitation below the band gap.
Meanwhile, both LA and LO phonon scatterings contribute to the decay for excitation
above the band gap. Regarding the decay rate, (Q) of the 28 nm QW, see Figs. [4.5(c) and
[4.5(d), decays more slowly than for the 15 nm QW, see Figs. [4.5(a) and [4.5(b). This can be
attributed to the considered very low temperature (4K for the 28 nm QW), where phonon
occupation is very small, which leads to reduced scattering and, thus, a slower decay
rate.
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To examine the dependence on the detuning more closely, we present a slice of the
macroscopic Berry curvature from Fig.[4.5/at ¢t = 0.6 ps. For both QW widths, as shown in
Fig. one can observe that (Q7) reaches its maximum when the 1s excitons, namely 1s
e;-hh; X and 1s e;-hh; X, see Fig. are excited resonantly. In addition, Fig. indicates
that the shifts in energy and increase in magnitude are due to the electron-hole attraction.
Indeed, when the Coulomb interaction is neglected and excitation occurs below the band
gap, no absorption is possible, which results in no induced macroscopic Berry curvature.
Above the band gap, the macroscopic Berry curvature peaks at values of photon energies
corresponding to avoided crossings in the valence bands shown in Fig.[4.3] Finally, compared
to the results that include excitonic effects, the maximum macroscopic Berry curvature is
significantly lower.
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Figure 4.6: The dependence of the macroscopic Berry curvature on the detuning 7wy, — &gap,
presented for (110)-oriented GaAs/Alj 3Gag7As QWs with widths of 15nm (a) and
28 nm (b) at £ = 0.6 ps. The excitonic enhancement of the macroscopic Berry curvature
is clearly illustrated by the difference between the calculations with (solid lines) and
without (dashed lines) Coulomb interaction. The figure is reproduced with permission
from Ref. [96]].

To qualitatively explain the emergence of a macroscopic Berry curvature upon excitonic
resonant excitation, we employ a simple model based on ideal, isotropic two-dimensional
1s excitons. In k-space, the exciton ground state is described by the hydrogenic wave
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function

X2D 1y _ V2mag
s (k) PRI (4.9)
4

where ag is the exciton Bohr radius, which is related to the exciton Rydberg energy Ex

via

X,2D
Ex = B _ W . (4.10)
4 Zm,a(z)

We choose Ex to match the numerically calculated exciton binding energies, see Fig.
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Figure 4.7: The wave functions of 1s excitons in the [110] direction in k-space from the ideal two-
dimensional model, represented by cyan areas for (110)-oriented GaAs QWs of 15 nm
wide (a) and 28 nm wide (b). The binding energy for the 15nm QW is Eﬁ = 9.2 meV
with a Bohr radius of ay = 16.9 nm, while for the 28 nm QW, we use Eﬁ = 6.9meV and
ap =19.5nm. For the analysis, the Berry curvatures of the bands with a specific spin
are shown for the two highest heavy-hole bands: hh; (thick green lines) and hh; (thin
red lines). The figure is reproduced with permission from Ref. .
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Figure [4.7|illustrates that in k-space, the exciton wave function covers the region with a
significant Berry curvature. It indicates that the excitation of excitonic resonances can lead
to a large macroscopic Berry curvature. Additionally, Fig. |4.7| shows that for a particular
spin, the Berry curvatures of the bands are nearly even functions of k. Under excitation with
a circularly polarized optical pulse, only the Berry curvature with spin up (or, depending on
the helicity, spin down) is generated, which results in a finite macroscopic Berry curvature.
These findings support the experimental arguments presented in Ref. [112].

4.5 Dynamics of the Anomalous Currents

This section focuses on studying the dynamics of anomalous currents, which are propor-
tional to the emitted electromagnetic field, by analyzing their time derivatives. Figure
shows contour plots of dJ?(t)/dt as a function of time and the delay 7 between the two
laser pulses, i.e., the optical and the THz pulses.

Firstly, as predicted from the macroscopic Berry curvature presented in Fig.[4.5] the presence
of the Coulomb interaction induces oscillations in dJ?(t)/dt with respect to the time delay
7. These oscillations occur at frequencies corresponding to the energy difference between
the 1s and 2s exciton resonances of e;-hhy, see Fig.[4.4). This frequency originates from the
time-dependent evolution of macroscopic excitonic Berry curvature [117,/118].

Moreover, Fig. demonstrates that the Coulomb interaction considerably enhances
anomalous currents for both QW widths, peaking around 0.5 ps and persisting over long
delays, even after the THz and the optical pulses no longer overlap. Contrarily, to the
case without the Coulomb interaction, when the excitation is off-resonant, the current
essentially vanishes when the two pulses do not overlap.

Based on the theoretical analysis, we conclude that circularly polarized optical interband
excitations generate spin-polarized carriers in the QW’s conduction and valence bands.
The THz pulse then accelerates these carriers within their respective bands, producing
a current. This current can be detected by measuring the emitted THz radiation with
the appropriate polarization direction. Notably, when optical excitations occur in regions
where the bands exhibit a nonvanishing Berry curvature, an anomalous current component
perpendicular to the THz pulse direction is generated. When the excitation frequency
approaches excitonic resonances, the strong oscillator strength of the generated excitons
enhances the anomalous current. Furthermore, utilizing sufficiently short optical pulses,
one can excite coherent superpositions of 1s and 2s excitonic wave packets, leading to
[4.4| oscillations in the anomalous current. Finally, phonon scattering causes the currents
to decay through processes of relaxation and dephasing, dissipating energy from the
electronic systems.
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Figure 4.8: The contour plots of the time derivative of the anomalous currents, i.e., dJ*(t)/dt, as
functions of time and the time delay 7 between the optical and the THz pulses. For
visibility, the results are normalized to the same value and the respective multiplied
factors are stated in each panel. The (110)-oriented GaAs QWs are excited optically
5meV below the band gap. The results are for QWs of 15 nm thickness [(a)-(b)] and
28 nm thickness [(c)-(d)] in the two cases: with [(a) and (c)] and without Coulomb
interaction [(b) and (d)]. Additionally, the normalized incident THz pulse is provided
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in panel (e). The figure is reproduced with permission from Ref. .

It should be emphasized that comparing our simulation results to experimental data reveals
very good agreement. The simulations, which examine dJ?(¢)/dt at t = 0.1ps (derived
from Figure [4.8), align well with experimental data representing THz radiation measured
under the same conditions [112]. Figure 4.9 highlights this consistency, strengthening the

conclusions drawn from our theoretical analysis.
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Figure 4.9: The comparison between the time derivatives of the anomalous currents obtained
from the simulation results (the thick blue lines) and the measured THz emission from
the experimental data (the thin red lines) at t = 0.1ps. The results are presented for
(110)-oriented GaAs QWs of 15 nm width at 77K (a) and of 28 nm width at 4 K (b). The
figure is reproduced with permission from Ref. [[96].

4.6 Dynamics of the Normal Currents

To complete the analysis of THz pulse-induced currents, we now discuss the dynamics
of the normal currents resulting from the carrier acceleration within their bands (intra-
band acceleration) induced by the THz field after the optical excitation. This intraband
acceleration is determined by the gradient term, (e/%)Ern,(¢) Vikp(k), in the SBE (3.1).
If transforming into a time-dependent k-space, where the quasi-momentum follows the
acceleration theorem [[119H122]],

dk e
i —ﬁETHz(t)a (4.11)

one can eliminate this term from the SBE. Then, integrating this theorem, the time-

dependent wave vector is

K(t) = — /_ § %ETHZ(t’) dt’ . (4.12)
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In the perturbative regime, the normal currents are proportional to |Eopt|“Ersi,. Numeri-
cally, the normal current is calculated by projecting the vectorial current Eq. onto
a unit vector aligned with the polarization direction of the THz electric field. Under the
conditions examined in this study, our calculations show that the magnitude of the normal

current is approximately three times larger than that of the anomalous current.

Following a similar approach to the analysis of the anomalous currents, we first examine
how the time derivative of the normal currents, dJ normal(t) / dt, depends on time and the

time delay between the optical and the THz pulses, as shown in Fig.

Figure 4.10: The same as Fig. but for the time derivative of the normal currents, i.e.,
d]“"rmal(t)/dt, for (110)-oriented GaAs QWs of 15nm width [(a)-(b)] and 28 nm
width [(c)-(d)] in two cases: with Coulomb interaction [(a) and (c)] and without
Coulomb interaction [(b) and (d)]. The QWs are optically excited 5 meV. The figure is
reproduced with permission from Ref. .
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The fact that the derivative dj"o™al(¢) /dt is in phase with the THz electric field, as shown
in Fig[4.10] indicates that the phase of the normal currents has a /2 shift relative to the
THz field, Etpy,. This phase shift arises from, as implied by Eq. (4.12), the time-dependent
k(t) responsible for generating the normal current is proportional to the time integral of
the THz field. With regards to time modulation, the normal current decays more slowly
than the anomalous current. This is because scattering processes that alter the electron
spin suppress the anomalous current but do not affect the normal current. As for the
variation with the time delay 7, small oscillations in the normal current also originate from
the excitation of excitonic wave packets. For a more detailed view, specific time slices of

djrormal(t) /dt are depicted in Fig.
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Figure 4.11: A slice of the time derivative of the normal currents shown in Fig. specifically
at the instant of t = 0 ps. The results are presented for (110)-oriented GaAs QWs
with thicknesses of 15 nm (a) and 28 nm (b) in two cases: with and without Coulomb
interaction by solid and dashed lines, respectively. The figure is reproduced with
permission from Ref. [96].

4.7 Conclusions

In summary, we investigated the dynamics of the Berry curvature and of anomalous
currents in GaAs QWs by utilizing the SBE in the LG within the TDHF approximation,
incorporating both the scattering of electrons with LA and LO phonons. By successfully
implementing the PTG and TPTG transformations for degenerate bands, we were able to
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solve the dynamical equations while simultaneously considering many-body effects. Our
simulation results, which agree very well with experimental data, emphasize the crucial
role of the Coulomb interactions in describing anomalous currents induced by THz pulses
after optical excitation near the band gap.

Furthermore, we found that the inclusion of the Coulomb interaction causes the anomalous
current to peak at the exciton resonances. We also observed oscillations in the anomalous
current as a function of the time delay between the optical and the THz pulses, which is
attributed to the excitation of 1s-2s exciton wave packets. To provide a detailed microscopic
description of the temporal decay of the macroscopic excitonic Berry curvature and the
anomalous current, it is essential to account for carrier-phonon scattering.

Our findings offer in-depth insights into the generation of anomalous currents in many-
body systems, revealing novel features that emerge from the intrinsic structure of excitonic
eigenstates.
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Analysis of Many-Body
Coulomb Correlations of

Charge-Transfer Excitons

Excitons are well-known to play a crucial role in the optical response near the band gap,
particularly in low-dimensional materials, notably in two-dimensional materials such as
QWs and transition-metal dichalcogenide (TMDC) monolayers and heterostructures [[123-
126]]. Over the decades, the nonlinear response of excitons in spatially-homogeneous type-I
QW nanostructures has been thoroughly studied [60} 63} |64} |68, [127H130]. With advance-
ments in experimental techniques, the quality of semiconductor nanostructure samples
has improved significantly, alongside with progress in theoretical methods for describing
many-body Coulomb correlation effects at the microscopic level. The substantial impact of
higher-order Coulomb correlations on the nonlinear optical response has been observed,
particularly in ultrafast spectroscopy experiments conducted at low intensities with specific
polarization orientations of laser pulses. This includes effects such as excitation-induced
dephasing [[129}(131H133]] and the presence of bound biexciton resonances [66} |[134-142]].
Recently, type-II heterostructure QWs have been a focus of recent research [67} 143} |144],
exhibit charge-transfer excitons (CTX) as the energetically lowest optical resonances
in these structures. Remarkably, OPOP experiments on type-II QWs were successfully
explained using the DCT scheme [67]. In this chapter, we employ the cluster expansion
method, a more general framework than DCT approach, to investigate the nonlinear optical
response of excitons in QW structures through OPOP experiments. To account for the
effects of higher-order Coulomb correlations, the cluster expansion approach is utilized
to treat the hierarchy problem. This study limits higher-order Coulomb correlations to
those appearing up to third order in the optical laser field. This is the minimum order
required for analyzing nonlinear optical responses of pump-probe experiments. In the co-
herent limit, higher-order Coulomb correlations include interactions between polarizations
and carriers, as well as biexcitonic correlations. Performing numerical calculations that
include many-body Coulomb correlations is computationally highly demanding. There-
fore, we use a one-dimensional model in this study. Compared to two-dimensional QW
models, one-dimensional models can achieve qualitatively similar results when excitation
near the exciton resonance is considered [135} [145]]. Use this approach, we describe the
excitonic response of spatially-direct type-I QW structures and extend it to investigate
spatially-indirect type-II QW structures.
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5.1 Optical-Pump Optical-Probe Experiments on Type-I and
Type-Il Quantum Well Structures

In the following, we describe the OPOP experiments conducted on spatially-direct type-I
and spatially-indirect type-II QW structures. Figure [5.1]illustrates the type-I and type-II
QWs schematically. The type-I QW structure is composed of multiple stacked gallium
indium arsenide [(Galn)As] QW layers, each encapsulated by GaAs barrier layers, as
depicted in Fig. [5.1[a). In contrast, the type-Il QW structure has an indirect spatial design
and consists of asymmetric double QW layers, as shown in Fig. [5.1|b). Each layer of the
type-II QW includes two different QWs: one (Galn)As well and one gallium arsenide
antimonide [Ga(AsSb)] well, which are separated by a thin GaAs layer.
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(a) Type-I QW structure. (b) Type-II QW structure.

Figure 5.1: Schematic band profiles for the type-I QW heterostructure (a) and the type-II QW
heterostructure (b). In these diagrams, blue circles represent electrons in the conduction
band, while red circles represent holes in the valence band. The type-I heterostructure
consists of a (Galn)As QW surrounded by GaAs barriers. In this configuration, a
spatially-direct transition occurs within the (Galn)As layer. Conversely, the type-II
heterostructure comprises two distinct QWs, made of (Galn)As and Ga(AsSb), which
are separated by thin layers of GaAs. In this arrangement, the lowest energy transition
available within this heterostructure is a spatially-indirect transition between a hole in
the Ga(AsSb) layer and an electron in the (Galn)As layer.

QWs are typically fabricated using epitaxy, which enables the precise growth of thin semi-
conductor layers on a crystalline substrate, ensuring structural lattice uniformity. During
epitaxial growth, thin layers of different semiconductors, such as (Galn)As, Ga(AsSb), or
GaAs, are sequentially deposited to create the QW structure. Differences in lattice constants
between the constituent materials in QWs generate strain, which causes energy shifts in
the valence and conduction bands. These changes affect the electronic band structure, the
effective mass, and the binding energy of excitons [146-148]]. To compensate the strain
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within the QW structure, additional gallium arsenide phosphide [Ga(AsP)] barrier layers
are often introduced. In type-I QW structures, both the valence band maximum and the
conduction band minimum are located within the same well, resulting in a spatially-direct
exciton. In contrast, type-II QW structures have a double-well design in which the valence
band maximum and the conduction band minimum occur in different QWs. This spatial sep-
aration makes the lowest energy transition, which forms a CTX state, spatially-indirect 67,
143,|149]. In a type-II QW structure, the spatial distance between the wells leads to reduced
wave function overlap between the electrons and the holes, unlike in type-I QWs where
they are both confined in the same well. Consequently, the Coulomb attraction in type-II
QWs is weaker and the exciton binding energy is lower than that of excitons in type-I
QWs. In a type-I QW the exciton wave function is localized within a single well, while in
the CTX state of a type-Il QW the exciton wave function extends across both QWs due to
the separation of the electrons and holes. This separation leads to distinct properties of
excitons in type-IIl QWs compared to the spatially-direct excitons in type-I QWs.
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Figure 5.2: Confinement functions of the two-lowest electron states (a), three-highest heavy-
hole states (b), and their corresponding in-plane band structure (c)-(d) for a type-II
Gao.942h’10_058AS/GB.AS/G3ASO‘967Sb0.033 asymmetric double QW

To illustrate the band structure and electron-hole confinements in a type-II QW, the 14-band
k - p method within the envelope function approximation is employed to obtain the band
structure for type-II (Galn)As/GaAs/Ga(AsSb) double QWs. The calculations are performed
in two-dimensional k-space, and the results are displayed in Fig. Figure5.2(a) shows
the electron and hole confinement functions, while Fig. [5.2(b) illustrates the in-plane band
structure. The confinement function ffa(z) is obtained from the envelope functions at the
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T point, i.e., at k = 0. The type-Il QW layers have thicknesses of 7.7 nm for Gag 942In¢ 055 As
and GaAs 967Sby 033, with In and Sb concentrations of 5.8% and 3.3%, respectively. The
thin GaAs interlayer has a thickness of only 1nm. The effective masses of the electron and
hole are obtained by fitting the band structure. The effective mass for the first electron
band is 0.07m,, while the effective masses for the first and second heavy-hole bands are
0.357mq and 0.457my, respectively. These values are very close to those of bulk GaAs. In
Fig.[5.2(a), we show the overlap between the first confinement function of the electron in
the conduction band located in the (Galn)As layer and the first confinement function of
the hole in the valence band located in the Ga(AsSb) layer. The transition between these
two states generates a CTX. Meanwhile, two spatially-direct exciton states can be excited
by transitions between the second hole and the first electron band in the (Galn)As layer
and the first hole and the second electron band in the Ga(AsSb) layer. They can be seen in
the linear absorption spectrum of the type-II QW, as presented in Fig.
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Figure 5.3: The linear absorption spectrum of the type-II (Galn)As/GaAs/Ga(AsSb) double QW.
The spectrum shows the CTX at 1.452 eV, and direct excitons at 1.466 eV and 1.486 eV
for the type-I QWs in (Galn)As and Ga(AsSb), respectively. The peak around 1.476 eV
corresponds to the transition from the third heavy-hole band to the first electron band
in the (Galn)As QW layers. The experimental data is taken from Ref. [|143].

Figure [5.3| presents the linear absorption spectrum of the type-II QW, derived from nu-
merical calculations and compared with experimental data. The numerical results are
obtained by solving the SBE in two-dimensional k-space in the linear regime and show
good agreement with experiment. The linear absorption spectrum reveals three distinct
peaks at 1.452 eV, 1.466 eV, and 1.486 eV. The lowest-energy peak corresponds to the CTX
transition, while the other two peaks are attributed to type-I heavy-hole excitons in the
(Galn)As and Ga(AsSb) layers, respectively. Additionally, a peak at 1.476 eV represents the
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transition from the third heavy-hole band to the first electron band within the (Galn)As
QW. The CTX has a binding energy of 4.8 meV, while the direct excitons in the (Galn)As
QW exhibit a binding energy of 7 meV.
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Figure 5.4: Schematic illustration of an OPOP experiment, which is performed by two laser pulses:
a pump pulse and a probe pulse, with a time delay 7 between them. The differential
absorption is measured along the direction of the probe pulse and represents the
difference in absorption with and without the presence of the pump pulse.

The nonlinear optical experiments investigated in this chapter, as depicted in Fig.
utilize a pump-probe configuration involving two excitation pulses: the pump pulse and
the probe pulse. In the OPOP measurement, the system is excited by both pulses, with the
differential absorption measured in the direction of the probe. The pump pulse induces
carrier occupations, microscopic interband polarization, and correlations. In the coherent
regime considered in this study, we focus solely on coherent correlations, which encompass
the correlations between microscopic polarization and carrier occupations, as well as
biexcitonic correlations. The probe pulse induces a small change in the carrier distributions,
interband polarization, and coherent correlations. With the probe-induced polarization,
we can determine the differential absorption as Aa(w) = a(w) — ay(w), where a(w) and
a(w) represent the probe absorption with and without the pump, respectively. This probe-
induced absorption is proportional to the imaginary part of the susceptibility, expressed as
dx(w) = 6P(w)/Eprobe (@), where the probe-induced macroscopic polarization §P(w) is
obtained through a Fourier transform of

6P(1) = 5 Z (eprabe - A1) 8p25 + e (5.1)

Here, dc" denotes the dipole matrix elements and e;,;he indicates the polarization direction
of the probe pulse. The temporal envelopes of the electric fields, Eyump(t) and Eprope (£), are
described using Gaussian functions and the time delay between the two pulses is denoted
by . A positive time delay occurs when the pump pulse excites the system prior to the
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probe pulse, while a negative time delay represents the situation when the probe pulse
precedes the pump pulse.

5.2 Theoretical Approach

Computing many-body Coulomb correlation effects for two-dimensional QW structures
is numerically very demanding. Therefore, in this thesis, we use only a one-dimensional
two-band model, which includes the energetically lowest conduction and the energetically
highest valence bands and accounts for spin degeneracy. Such a one-dimensional model is
still able to provide results that are in good qualitative agreement with several experimental
observations on QW systems [[129} 135} |150]]. The energy band structure near the I' point
is approximated by a parabolic form as

Ao ke

Ea,k

= ) 5.2
2, (5.2)
with A = e for the conduction band and A = h for the heavy-hole valance band. The
excitation pulses used to investigate the nonlinear response of excitons in this study are
circularly polarized. For convenience, we use the spherical basis vectors that are defined
as

1 (1 11
e, =—|.|, e-=—|".| (5.3)
=5k =l
Because of the well-known selection rules in zinc blende materials, specifically in semi-
conductor nanostructures based on GaAs, only specific pairs of electron and hole states
couple optically [42]]. The dipole matrix elements at the I point can be expressed using
the spherical basis vectors as follows

dCV

o= dien d

fo=dien,

No=df1o=0 (5.4)

o — ™

The k-dependence of the dipole matrix elements can be obtained by a simple relation from
their values at the T point as [4]

e h
deV . =4 EU,O + 80,0 (5 5)
ook — 00,0 h .
e +¢
ok ok

In the framework of the k - p model, within the envelope function approximation, the
Coulomb matrix elements of the one-dimensional model are given by [151-153]

2
Vir .= Zﬂeoem /// dx; dx; dy; dy, Ko (|CI| \/(Xz —x1)* + (2 - yl)z)
X [ Ge,y0) | € () [EX (e y2) | EY (0, 92) - (5.6)
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Here, K, is the modified Bessel function of the second kind and §[}(x, y) is the confinement
function at the I point. In the spatially-inhomogeneous type-II QW structure, the spatial
charge separation results in the Coulomb attraction between electrons and holes being
weaker than the intrawell Coulomb repulsion between equally charged carriers. To account
for this effect in our simplified model, we multiply the attractive Coulomb matrix elements
by a constant factor to reduce their strength. Based on the multiband SBE presented
in Chapter 2, specifically Eq. (2.47), we can obtain the EOM for describing the OPOP
experiment within a two-band model including spin. The EOM for the occupations of the
system are given by

P , '
hang,k =—j (Epump(t) . d?,’k + Vw Ko kpg,k,) Por— c.c.] SN (5.7)
k/

and the EOM for the microscopic polarization are given by
i d _ [ .e h . ch E dcv
! Epa,k - Ea,k + Ea,k e po‘,k - Z ook — kpa,k’ - (t) Yok
+2n,, E(1) - 3y + Z [2 ook ~kPok Mok ~ (Vz;];,k’ + Voo ) U,k’pa,k]

-2 (2V250 = Va0 = VeSr0) 2 Mrsebon
k/
+ I5 k. (5.8)

In the above equation, the first line represents the linear optical equation, comprising
the homogeneous terms and the linear source term (the last term) associated with the
electric laser field. The homogeneous terms describe the exciton, which is formed by an
electron-hole pair through the attractive Coulomb interaction. This homogeneous equation
is referred to as the Waniner equation. In the second line, the first term represents the
nonlinear Pauli-blocking (PB) contribution. The second and third terms contain first-
order Coulomb interactions, resulting from the Hartree-Fock factorization, describing the
exchange Coulomb interaction. This includes attractive interactions between electrons and
holes and repulsive interactions between electrons or between holes. These terms couple
singlets with identical spin states. The third line contains first-order Coulomb interactions
resulting from Hartree-Fock factorization, which describes direct Coulomb interactions.
Unlike the Coulomb exchange terms, these direct terms couple the spin subspaces, as seen
in the sum over spins. This term vanishes in spatially-homogeneous systems [[62}|67]] and is
finite only in spatially-inhomogeneous systems, where there is a difference in the strength
of the attractive and repulsive Coulomb interactions. This is described by the prefactor,
which contains the difference between the sum of the two attractive interactions and the
two repulsive interactions. The final term I'; i includes contributions from higher-order
Coulomb correlations. In the cluster expansion approach, this involves on the coherent
singlet-doublet level the correlations between microscopic polarizations and electrons
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¢k’ k ,
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The EOM for the polarization-hole correlations I are
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In this equation the first three lines include the homogeneous terms describing the eigen-

states of cq f: o~ The subsequent four lines result from the singlet factorization of the

three- partlcle correlations involving singlet quantities, such as microscopic polarizations
and hole occupations. Specifically, the 4th and 5th lines involve VM o which describes
the direct Coulomb interaction between electrons and holes. In contrast the 6th and 7th
lines contain the Coulomb term V(f(/},,j, which describes the Coulomb exchange interaction.
Notably, due to the factor d,,- these exchange terms appear only for co-circular excitation.
In the case of counter-circular excitation, only the direct interaction terms contribute. The
final three lines result from the doublet factorization of the three-particle correlations,
which describes biexcitonic contributions. A similar structure is observed in the EOM for
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K k
the polarization-hole correlation ¢ as
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Both EOMs for the polarization-carrier correlations include biexcitonic correlations, in-
dicating an indirect contribution of biexcitons to the microscopic polarization through
the polarization-carrier correlations. This is unlike in the coherent DCT scheme where
biexcitonic contributions directly enter the microscopic polarization via I" [[4]|154] as

*
B ve q.k" k—q -qk'+qk
ro,k - § (pg',k’) [ VU'U' q(cBX ;00’0 o tc BX;GG’U’U
o’ k' ,q

oo’,q BX oo'o’o co’,q "BX;o00'c’ o

e, @Kk c‘q’k'+q’k“‘]. (5.12)
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The EOM for the biexcitonic correlations are given by
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In the above equation, the first four lines describe the eigenstate of the biexciton, including
bound and unbound states. A biexciton is a state formed by two excitons, each consisting
of one electron and one hole, totaling two electrons and two holes. In this state, there
are two repulsive Coulomb interactions between the two holes and between the two
electrons, as represented by the two terms in the second line. Meanwhile, the four attractive
Coulomb interactions between the two electrons and the two holes are represented by the
four terms in the third and fourth lines. Note that the contributions from attractive and
repulsive interactions are of opposite sign. The last two lines describe nonlinear source
terms resulting from the singlet factorization of three-particle correlations involving only
microscopic polarizations. The terms in the second-to-last line with Vg describe the direct
Coulomb interaction and can couple the spin subspaces. The final line’s terms, with V;,
describe the exchange interaction and only couple the singlet terms with the same spin.

The calculations in this chapter are conducted within the coherent ) limit. In first order,
the pump and probe pulses induce the interband coherences p(l) and 5p(1) , respectively.

In second order, three key quantities are generated the pump-induced occupations n( )
q.kK k(2)

k’ BX,o00’0’0"
The contributions from biexcitonic states, both bound and unbound, can be tuned by

adjusting the helicity of the pump and probe pulses, as illustrated in Fig. Under co-
circularly polarized excitation, only unbound continuum states are generated, while bound
biexcitons become significant in the case of counter-circularly polarized excitation. In third

the pump-probe induced occupations sn'*) | and the biexcitonic correlations Sc

order, the probe—induced coherence 5p(3) is generated along with polarization—occupation

(polarlzatlon electron). The
(3)

correlations, 5cph oo’ o (polarlzatlon hole) and 5cpe oo’

differential absorption is determined by the third-order probe-induced coherence, 5p
by Eq. (5.1). The EOM for all these quantities are provided in detail in Appendix[A.6]
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Figure 5.5: Schematic illustration of the optical transitions with circularly polarized excitation
and selection rules for excitons and biexciton states. |g) denotes the ground state, |X)
the exciton states, |BX)pound a0d |BX) unpound denote the bound and unbound biexciton
states, respectively.

5.3 Numerical Results

In this section, we present numerical results of OPOP simulations for spatially-homogeneous
type-I and spatially-inhomogeneous type-II QW structures. The pump pulse excites both
resonantly and off-resonantly, either at or below the direct exciton or the CTX. The probe
pulse has a duration of 7 = 10 fs to test a broad frequency range, while the pump pulse has
a duration of 7 = 1ps to excite a well-defined spectral region. In the coherent limit, the
phenomenological relaxation times are chosen as Ty = T, /2 for the occupations, Tgx = T>/2
for the biexcitonic correlations, and T, = T, /3 for the polarization-carrier correlations.

First, we investigate the excitonic nonlinear response of the spatially-homogeneous type-I
QW structure. Figure |5.6| shows the pump-induced differential absorption Aa(w) for co-
circularly polarized pump and probe pulses in panels (a) and (b), and for counter-circularly
polarized pulses in panels (c) and (d). The optical pump pulse excites the direct exciton
resonantly. The exciton binding energy is 7 meV. In Fig. [5.6(a), the total response near the
direct exciton originates from pump-induced exciton bleaching and induced absorption
above the exciton due to transitions from the exciton to unbound biexcitons. Figure [5.6(b)
shows the individual contributions to the nonlinearity originating from PB, the first-order
Coulomb interactions (Clj5), and the higher-order Coulomb correlations (Cleoyr).

Under resonant exciton excitation, the PB contribution is relatively weak compared to the
Coulomb-induced contributions. PB causes pure bleaching at the exciton resonance. The
Clyst and Clgoyr contributions have dispersive lineshapes, Cljs; causes a blueshift, while
CL oy results in a redshift. These two contributions mostly cancel each other, such that
the total signal primarily reflects exciton bleaching. If we only consider the theoretical
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framework up to the TDHF approximation, Cl;ss would dominate and result in an overall
blueshift. This highlights the importance of including higher-order Coulomb correlation
effects when investigating excitonic nonlinear responses [64}|135].

Additionally, the Cl.,,, contribution causes weak excited-state absorption above the exci-
ton, corresponding to the transition from the exciton to unbound biexciton states. This
contribution cannot be canceled by Cly and is visible in the total signal.
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Figure 5.6: Differential absorption signals of the spatially-homogeneous type-I QW structure are
shown, where the spatially-direct exciton is resonantly excited with no time delay
between the pump and probe pulses. Panels (a) and (c) display the total differential
absorption for co-circular (6 o) and counter-circular (6% ¢ ™) excitations, respectively.
The corresponding individual contributions to nonlinearity are shown in panels (b)
and (d), with the Pauli-blocking term indicated by gray lines, the first-order Coulomb
interaction (Cljs) by blue lines, and the higher-order Coulomb correlations (Cleoy) by
red lines. The dashed black lines represent Cl,, as calculated via the DCT approach.
The exciton binding energy is 7 meV and the biexciton binding energy is 1.44 meV. The
dephasing time is set to T, = 4 ps.

Next, we examine the case of counter-circularly polarized excitation for the type-I QW
structure. The total differential absorption is shown in Fig. [5.6(c) and the individual non-
linearity contributions are shown in Fig. d). In this case, we see that only the Cleoyr
contribution contributes to the total signal, meaning the response arises purely from
higher-order Coulomb correlations. Examining the EOM reveals that only the terms that
couple different spin states give a finite contribution. For this reason, the PB contribution
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vanishes due to the selection rules. In the case of Coulomb-induced nonlinear contribution,
there are two types of terms: one that couples the same spin states and the other one that
couples the spin subspaces. For Clj4, these terms are described by the second and third
lines of Eq. (5.8), respectively. Under counter-circular excitation conditions and depending
on the system’s structure, only the terms that couple the spin subspaces can contribute.
This contribution has the following form

.0
iP5 = D (2Vas0 = Voo = Vasro) D MoviePoc (5.14)
o’ k’

In the expression above, the prefactor contains the difference between the Coulomb
attraction and the Coulomb repulsion. This demonstrates that the contribution is finite
only in spatially-inhomogeneous systems, where the Coulomb repulsion and the Coulomb
attraction between alike-charged and oppositely charged carriers, respectively, do not
cancel each other. In the case of spatially-inhomogeneous type-II QWs, due to the spatial
separation, the attractive interaction between electrons and holes across different layers of
the QW is weaker than the repulsive interaction between alike-charged carriers within the
same QW layer. Due to this imbalance, the repulsive interaction is not completely canceled
by the attractive interaction. This results in a finite residual repulsion, which introduces
an additional contribution and can, therefore, influence the system’s physical response
under excitation conditions. For Cl oy, in contrast to Clig, the terms that couple different
spin states are still finite for both spatially-homogeneous and spatially-inhomogeneous
systems.

In summary, for counter-circularly polarized excitation in spatially-homogeneous systems
the nonlinear response is determined purely by higher-order Coulomb correlations. This
includes excited-state absorption above the exciton resonance, as seen in the case of co-
circular excitation due to transitions from excitons to unbound biexciton states. In the
counter-circular case, the Cl.,,, term also includes induced absorption due to transitions
to bound biexcitons that appear below the exciton resonance at —1.44 meV meV, which is
visible in Figs.|5.6(c) and (d). This energy difference is the binding energy of the bound
biexciton. It should be noted that in all the results presented in this section, the correlation
contributions align completely with the DCT approach [64}|67,[135]], as represented by the
dashed black lines, highlighting our successful implementation of the cluster expansion
method.

Next, we examine the nonlinear response for a spatially-inhomogeneous type-II QW, as
shown in Fig. For ease of comparison, we keep the excitation conditions the same but
switch to a type-Il QW structure by reducing the Coulomb attraction between electrons and
holes by a constant factor while keeping the repulsive interaction between alike-charged
carriers unchanged. This constant factor is tuned to match the binding energy of 4.8 meV
for the CTX observed in experiments [67].
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Figure 5.7: Differential absorption signals of the spatially-homogeneous type-II QW structure
are shown, where the CTX is resonantly excited with no time delay between the
pump and probe pulses. Panels (a) and (c) display the total differential absorption for
co-circular (6*¢™) and counter-circular (¥ 0 ~) excitations, respectively. The corre-
sponding individual contributions to nonlinearity are shown in panels (b) and (d), with
the Pauli-blocking term indicated by gray lines, the first-order Coulomb interaction
(CILt) by blue lines, and the higher-order Coulomb correlations (Cl,;) by red lines.
The dashed black lines represent Cl.,,, as calculated via coherent DCT scheme. The
CTX binding energy is 4.7 meV. The dephasing time is set to T, = 4 ps.

For the case of co-circularly polarized excitation, the features observed near the CTX in
the type-II QW structure [Fig.[5.7(b)] and the spatially-direct exciton in the type-I QW
structure [Fig. [5.6(b)] exhibit almost similar nonlinear contributions to the differential
absorption. However, under counter-circularly polarized excitation, the differential ab-
sorption spectrum displays significant differences compared to the results observed for
the spatially-homogeneous type-I QW structure. As discussed above, the terms coupling
between excitons with different spins of Cljy in Eq. lead to a finite contribution to the
optical response of inhomogeneous systems. This phenomenon is not present in spatially-
homogeneous systems, such as type-1 QW structures. Regarding the Cl.,,, contribution
to the differential absorption spectrum under counter-circular excitation [Fig.[5.7(d)], we
observe only minor absorption of unbound biexcitons, with no bound biexciton-induced
absorption as seen in the type-I QW structure; instead, a redshift occurs. This is because,
in CTX, the attractive Coulomb interaction between the electron and hole in different QW
layers is weaker than the repulsive Coulomb interaction between electrons and between
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holes within the same QW layer. Consequently, when the spatial separation between
electron and hole in CTX is large enough, the weak Coulomb attraction can no longer lead
to the formation of a bound two-exciton state, leaving only unbound two-exciton states.

To gain a better understanding of the contributions of the TDHF to the nonlinear optical
response from type-II QW structures, we examine a simple model which can be solved
analytically. Similar models have been successfully applied to explain the behavior of
type-1 QW structures [66}155]]. However, in the case of type-IIl QWs, an additional term
must be included to account for the system’s inhomogeneity. For the resonant excitation
at the 1s exciton, we can expand the coherent p, in the exciton basis, i.e., the solutions
of the Wannier equation, as

Z¢akp0 ~ o'kpo' (515)

In the coherent limit, by replacing n,1 = p*, pox and inserting Eq. into Eq. (5.8),
then left-multiplying by (xp};k) and summing over k, we obtain

i p, = (Eﬁ—iz)pg—]i(t)-d J5% (r = 0) + E(t) - d by |po|?
ot T

+ 3 Voo lpor *po. (5.16)

Here, l}}f (r) is the Fourier transform of lpj:k, = dg , is the constant dipole matrix
element, and T, = #/y; is dephasing time. The ﬁrst term describes the 1s exciton, the
second term represents the linear source term, and the third and fourth terms account for

contributions from nonlinear PB and Cly;. The terms b, and V- are defined as

c=2) (lp}j,k) g (5.17)
k
Ve 1s * 'A% cC 1s 2 1s 2
Voor = 5‘7‘7 Z 2V0'0' k- ak’ (wo,k) - (Vaa,k’ VO'O' k- ) lpogk’ l//U,k
kK
2 2
(20 = Vo = Vo) 2| 2 (5.18)
k’ k

By using delta-function ultrashort pulses for the pump pulse Epymp = €pump pump5 (t + 1),
and the probe pulse Eprobe = €probe probec? (1), where 7 is the time delay between them, we
obtain the solutions at third order for the nonlinear PB contribution as

FO  pmilon-i/T)t

.\ 3
5PPB ) = (%) bO’ (epump ’ do’)z (ePYObe ’ d probe

pump |

x [e(t)e(f)e‘ﬁ +0(t + f)e(—f)], (5.19)
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and for nonlinear Clg contribution as

4
l T e ! —i
Spg &) = Z 2(5) Voo (€pump - dU’)z(eProbe : ’ E° e i oni/t

< pump probe 2
0(1)0(r) (1 - e‘#z)e*ﬁ +0(t + 1)0(~1) (1 - eTz/)] (5.20)

Here, 6(t) is the step function. From the above solutions for §p,, Egs. (5.19) and (5.20), we
obtain the probe-induced change of the macroscopic polarization in the dlrectlon of probe
pulse by 8P(t) = X5 (€probe - do)5po. By taking the Fourier transformation of §P(t) and
then getting their imaginary part, we obtain the differential absorption A« for the case of
T > 0, i.e,, the pump before the probe pulse, as

1 2 1 e_ﬁ

A(XPB = — Z §b5|epump . do-| (epmbe . d pump‘ EprobeT 5" (521)

2 1
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2 T,
Aacr, = Z ﬁVG(f”epump ’ dU' erbe ) | Pump| Eprobe?e T2/2
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1 1

X (0 = w1s) - . (5.22)

(-0 + (%) (-0 + ()

The expression for Aapp describes exciton bleaching under co-circularly excitation
and vanishes for counter-circularly excitation. For Cljy contribution, given by expres-
sions , the Coulomb term V, affects Aacry,,,, which is influenced when the Coulomb
interaction strength is suppressed. Furthermore, Aacy,,, will result in a blueshift if V,;,» > 0
and a redshift if V.- < 0. Assumed that V¥ = V/a (a > 0), V% =V =V, Eq. can
be rewritten as

2

1 *
o e e
kk’
+(1-1/a)2Vse 0 Voo 1o (5.23)

For the case of spatially-homogeneous type-I QW structures (¢ = 1), the second term
vanishes. The first term is finite only under co-circular excitation, as indicated by the 5
factor in the first line. In this scenario, V,, > 0 and leads to the well-known blueshift
induced by the first-order Coulomb interaction. In the case of spatially-inhomogeneous
type-II QW structures (¢ > 0) under co-circular excitation, the value of the first term
gradually decreases as « increases and can become negative with further increases in a.
This reduction leads to a transition of the first term’s contribution from a blueshift to a
redshift. Meanwhile, the second term’s value under co-circular excitation is positive and
increases with «, resulting in an overall blueshift. Under counter-circular excitation, only
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the second term remains and its contribution increases steadily as « increases.

Now, we study the effect of gradually reducing the attractive Coulomb interaction and
examine the optical response. The results are shown in Fig. for both co-circularly
and counter-circularly polarized excitations, with an exciton binding energy obtained as
7meV for the type-I QW structure and lower exciton binding energies for the type-II QW
structures.
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Figure 5.8: Differential absorption spectra when gradually reducing the exciton binding energy by
reducing the electron-hole attraction for the case of resonant optical excitation with
no time delay between the pump and probe pulses. Panels (a) and (d) display the total
differential absorption for co-circular (c*o*) and counter-circular (6% 07) excitations,
respectively. The corresponding individual contributions to nonlinearity are shown
in panels (b) and (e) for the first-order Coulomb interaction (Cl;s), and panels (c) and
(f) for the higher-order Coulomb correlations (Cl.oy). The exciton binding energy of
7meV corresponds to the case of a type-I QW. The dephasing time is set to T, = 4 ps.

The total signal for co-circularly polarized excitation, shown in Fig. [5.8{(a), reveals the
modulation of the differential absorption spectrum when gradually reducing the exciton
binding energy from 7 meV (corresponding to type-I QW structure) to 4.8 meV (corre-
sponding to type-II QW structure). The nonlinear contributions caused by Coulomb terms
Clyst and Clopy are shown in Figs. a) and b), respectively. The results indicate that
the enhancement of the differential absorption spectrum primarily originates from Cly;,
while CI,;r remains nearly unchanged as the Coulomb attraction is reduced. Theoretical
analysis shows that the increased blueshift in Cl;s stems from the term in Eq. (5.14), which
describes the contribution from the system’s inhomogeneity.
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For the case of counter-circularly polarized excitation, the total differential absorption
signal is shown in Fig. d), with the contributions from Cls and Cle,,, displayed in
Figs. [5.8|e) and [5.8(f), respectively. Here, the Cl contribution shows the same charac-
teristics as for the co-circularly polarized excitation case, with the only difference that
this contribution vanishes for type-I QWs, as there is no spin-subspace coupling term.
Regarding the Cl.,,, contribution, we observe a gradual reduction in the biexciton binding
energy as the Coulomb attraction weakens, resulting in a gradual change to a redshift. This
reduction in biexciton binding energy, as discussed earlier, is due to the weaker Coulomb
attraction between oppositely charged particles compared to the repulsive Coulomb inter-
action between alike-charged particles.

By the results presented above, we analyze the nonlinear excitonic response under resonant
excitation conditions. For off-resonant excitation with direct excitons and CTX with optical
detunings, A = Awpump — Ex, the results for both co-circularly and counter-circularly
polarized excitations are shown in Fig. [5.9|for type-I QW structures and in Fig. for
type-II QW structures. In all cases, the differential absorption signal decreases significantly
as the excitation becomes more off-resonantly.

First, examining the signal in the type-I QW case as illustrated in Fig.[5.9(a), we see that

the primary response is a blueshift at an optical detuning of A = —2 meV, while exciton
bleaching remains weak. For larger optical detunings, the blueshift becomes the dominant
effect. The detailed contributions of nonlinear components at A = —8 meV are shown in

Fig.[5.9(b). Here, we see that the blueshift in the total signal primarily originates from
contributions by PB and Cljg, while the Cl o contribution introduces a slight redshift.
Among these contributions, PB is more dominant than the other components.

For the case of counter-circularly polarized excitation, the results are presented in Fig.[5.9(c).
The signal at A = —2 meV shows exciton bleaching, along with induced absorption caused
by transitions to both bound and unbound biexcitons appearing below and above the
exciton resonance, which is similar to the resonant excitation case. For larger detunings, the
total signal gradually changes to a redshift and the biexciton-induced absorption disappears.
The results for the contributing components at A = -8 meV are shown in Fig. [5.9(d),
indicating that the redshift in this case purely arises from the Cl.q,, contribution.
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Figure 5.9: Differential absorption signals of the spatially-homogeneous type-I QW structure

for different detuned pumping to exciton, i.e., A = fiwpump — Ex. The spatially-direct
exciton is excited off-resonantly with zero time delay between pump and probe pulses.
(a) and (c) show the total differential absorptions with different detuning to exciton
for co-circular excitation (¢ ¢*) and counter-circular excitation (¢*¢~), respectively.
Note that in panel (c), for better visibility, the signals for A = —4meV, —6 meV, and
—8 meV are multiplied by a factor of 3. The corresponding individual nonlinearity
contributions for A = —8 meV are shown in (b) and (d). The PB contributions are in
dotted red lines, the first-order Coulomb (Cly) contribution in solid red lines, and
higher-order Coulomb correlations (Clcoyy) contribution in dashed red lines. The dotted
black lines show the CI ., contribution obtained by coherent DCT scheme. The exciton
binding energy is 7meV and the binding energy of the bound biexciton is 1.44 meV.
The dephasing time is set to T, = 4 ps.

For the case of the type-Il QW shown in Fig. the total signal under both co-circularly
and counter-circularly polarized off-resonance excitation exhibits a blueshift. The contribut-
ing components are similar to those for the case of the type-I QW under far-off-resonant
pumping but with one notable difference: under counter-circular excitation, a blueshift
occurs because of the predominant contribution from Cly.
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Figure 5.10: Differential absorption signals of the spatially-inhomogeneous type-II QW structure
for different detuned pumping to exciton, i.e., A = fiopump — Ex. The CTX is excited
off-resonantly with zero time delay between pump and probe pulses. (a) and (c)
show the total differential absorptions with different detuning to exciton for co-
circular excitation (6 ¢*) and counter-circular excitation (¢* ¢ ™), respectively. The
corresponding individual nonlinearity contributions for A = -8 meV are shown in
(b) and (d). The PB contributions are in dotted red lines, the first-order Coulomb
(Clyst) contribution in solid red lines, and higher-order Coulomb correlations (Cleo)
contribution in dashed red lines. The dotted black lines show the Cl,,; contribution
obtained by coherent DCT scheme. The exciton binding energy is 4.7 meV. The
dephasing time is set to T, = 4 ps.

Figure illustrates the modulation of the differential absorption spectra when the
exciton binding energy is reduced gradually for the case of detuned excitation below 6 meV
of the exciton resonance. For co-circular excitation, the total signal shows a blueshift. In
contrast, for counter-circular excitation, the total signal gradually changes from a redshift
to a blueshift. An analysis of the Coulomb-induced nonlinearity reveals that the primary
contribution to this change arises from Clys. This blueshift is further enhanced by the
decreased Coulomb attraction, which originates from the system’s inhomogeneity.
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Figure 5.11: Differential absorption spectra when gradually reducing exciton binding energy for
the case of excitation at 6 meV below the exciton, with no time delay between the
pump and probe pulses. Panels (a) and (d) display the total differential absorption
for co-circular (6*¢™") and counter-circular (6*0~) excitations, respectively. The
corresponding individual contributions to nonlinearity are shown in panels (b) and
(e) for the first-order Coulomb interaction (Clys), and panels (c) and (f) for the higher-
order Coulomb correlations (Clcorr). The exciton binding energy of 7meV corresponds
to the case of a type-I QW, and the dephasing time is set to T, = 4 ps.

5.4 Conclusions

In this chapter, we develop a theoretical model and implement numerical calculations
to analyze the nonlinear optical response of excitons in spatially-homogeneous type-I
QW structure and CTXs in spatially-inhomogeneous type-II QW structure through OPOP
experiments. To achieve a deeper and more comprehensive understanding of the nonlinear
excitonic response, we expand our analysis of the Coulomb interaction beyond the TDHF
approximation. Through the application of the cluster expansion method, we obtain the
EOM that accurately represent many-body correlation effects. In the coherent third-order
limit, the relevant contributions to correlations include correlations between polarizations
and electrons in the conduction band or holes in the valence band, as well as biexciton
correlations.

Our numerical calculations and theoretical analysis uncover distinctive features in OPOP
experiments when exciting CTXs in spatially-inhomogeneous type-II QWs, as well as
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variations in the differential absorption spectrum with different polarizations of the excita-
tion pulses. Significantly, we identify additional contributions already at the Hartree-Fock
level in type-II QWs. The analysis of the EOM clearly demonstrates this finite contribu-
tion, highlighting its role in coupling spin subspaces and its occurrence exclusively in
spatially-inhomogeneous systems.

Furthermore, in the limit of the coherent y(3) approximation, the results obtained from
the cluster expansion method are practically identical to those within the DCT method.
This is because the DCT method is fully encompassed within the cluster expansion, which
confirms the successful implementation of our approach.
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Conclusions and Outlook

In this thesis, we develop microscopic descriptions to theoretically and numerically in-
vestigate many-body Coulomb interactions in optically-excited semiconductor quantum
well structures. The interaction between light and the quantum wells is modeled using a
combination of the 14-band k - p approach within the envelope function approximation
and the semiconductor Bloch equations in the length gauge. The first results part of this
study focuses on exploring the influence of excitonic effects on the anomalous current
generated by the Berry curvature in type-I semiconductor quantum wells. In the second
results part, we expand the simulations to examine not only the impact of excitonic effects
but also of many-body Coulomb correlations on the nonlinear optical response of spatially-
homogeneous type-I and spatially-inhomogeneous type-II quantum well structures, which
are analyzed through optical-pump optical-probe experiments.

To carry out simulations, we develop a general method for numerically solving the semi-
conductor Bloch equations in the length gauge. When numerically diagonalizing the
Hamiltonian of the band structure, phase discontinuities appear at different k points in the
Bloch states. We address this by constructing parallel transport gauge transformations of
the Bloch states. As a result, we obtain smooth eigenfunctions as a function of k. To ensure
wave function periodicity, we employ twisted parallel transport gauge transformations
to distribute the Berry phase uniformly along the k-path. These transformations are per-
formed in each time step of the numerical integration, which simplifies the incorporation
of many-body interactions. We validate this approach by calculating optical injection
and shift photocurrents and by comparing these results with those obtained from the
semiconductor Bloch equations in the velocity gauge. The agreement between the two
approaches confirms the correctness and accuracy of our method.

Next, we apply this method to study the influence of excitonic effects on anomalous cur-
rents generated by the Berry curvature in semiconductor quantum wells which are excited
by a THz pulse following excitation by a circularly polarized optical pulse. The calculations
show that the anomalous current is significantly enhanced when the excitation is resonant
with the exciton, demonstrating a significant excitonic Berry curvature in the system.
Additionally, both the anomalous and normal currents display oscillations that depend
on the time delay between the optical and the THz pulses, with oscillation frequencies
matching the energy difference between the 1s and 2s exciton states. This suggests that
the oscillations arise from wave packet dynamics when both 1s and 2s excitons are simul-
taneously excited. The damping dynamics of the system are microscopically described
through interactions of electrons and holes with longitudinal optical and longitudinal
acoustic phonons. The results show that the current’s dynamics and decay align well
with experimental observations. These theoretical findings highlight the crucial role of
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excitonic effects on the anomalous currents that are generated by the Berry curvature in
nanostructures and affirm the presence of an excitonic Berry curvature. This study can be
extended in the future to additionally investigate extrinsic contributions to anomalous cur-
rents, such as side-jump and skew-scattering effects, which depend on scattering processes
between carriers and phonons.

Finally, we extend the theory to study many-body Coulomb interactions beyond the time-
dependent Hartree-Fock approximation. To deal with the hierarchy problem, we apply the
cluster expansion method to account for many-body correlations on the singlet-doublet
level. In the perturbative and coherent regime, these correlations include correlations
between polarizations and conduction-band electrons or valence-band holes, as well as
biexcitonic correlations. Using this approach, we develop a theoretical model to simulate
optical-pump optical-probe experiments and investigate the nonlinear optical response of
excitons in spatially-homogeneous type-I quantum well structures and of charge-transfer
excitons in spatially-inhomogeneous type-II quantum well structures. The numerical re-
sults reveal the substantial influence of many-body Coulomb correlations on the nonlinear
excitonic response of semiconductor nanostructures and highlight fundamental differences
between type-I and type-II quantum wells. Notably, in type-II structures, both numerical
simulations and the analysis of the equations of motion identify additional contributions
at the Hartree-Fock level arising from the coupling between spin subspaces. This effect is
unique to spatially-inhomogeneous systems and may dominate over the the contributions
from many-body correlations.

This thesis primarily examines theoretical models within the weak excitation regime,
considering correlation effects only within a framework limited to the third-order sus-
ceptibility, y®) and the coherent regime. Nowadays, interest has grown in investigating
effects induced by stronger fields. Expanding the equations of motion to incorporate
higher-order correlation contributions, enabling comparison with experimental results at
high intensities, represents a promising direction for future research development.
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Appendix

A.1 Block Matrices of the Extended Kane Model

The following is the list of Pauli spin-1/2 matrices, the J spin-3/4 matrices, matrices T,
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A Appendix

A.2 Model Parameters for the Extended Kane Model

Table A.1: The table of parameters for the extended Kane model taken from [37} (46| |156].

GaAs Al().g Ga0.7As

Ey (eV) 1.519 1.884
Ej (eV) 4.488 4.504
Ao (eV) 0.341 0.329
A (eV) 0.171 0.165
A~ (eV) -0.05 —-0.05
P (eVnm) 1.0493 1.004
P’ (eVnm) 0.478 0.478
Q (eVnm) 0.8165 0.817
Ck (éVnm) —0.00034 —0.00018
N 6.85 5.77
Y2 2.1 1.67
Y3 2.9 2.4
m* [myg 0.067 0.091

The relationship between the effective masses m* and the Luttinger parameters y, y2, 3
obtained from experiments, and the modified parameters m’, y;, y;, y; used in the 14-band
k - p model is determined through the third-order Lowdin perturbation theory as [46]

my mo 2m0 2 2 1 ’9 1 2
— =—+ —|P| — + +P -+ y ;
m* m’ 3h2 E, Ey+ Ay E, - EO Ey - EO - AO

4 1 1
+=PP'A~ ~ - —|. (A1)
3 (Eo + Do) (Eo —Ey)  Eo(Eo — Ey — Ay)
,2mg (P? QP 2 2 PP'A’
Y1=Y1+120 —+Q—,+ SRR (A2)
3n2 \Eo  E, E,+A, 3E(E,+
. 2my [1P2 10Q0* 1 PP'A-
=Yt —— |-+ A3
IV S (28, T 2E, T 3E(E, +Ay) (A3
. 2mp (1P? 1Q* 1 PPA-
=3+ —|l-=+=-=+- A4
BEBT S (28 " 2E, T 3E(E, + Ay) A9
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A.3 Rotation of the Coordinate System

In the 14-band k - p model presented in Chapter 2, the x, y, and z coordinates of the
system align with the crystal axes [100], [010], and [0 01], respectively. To transform
the coordinate system, we use Euler rotations [[84]. With this transformation, we rotate
the coordinate system around the z — y — z axes by angles @ —  — y. The rotation operator
for the wave vector k is a matrix that is given by

R =R (a) Ry(p) Rz(y)
cos(a) —sin(a) O0\f cos(f) 0 sin(f)\[cos(y) —sin(y) O

=|sin(a) cos(a) 0 0 1 0 sin(y) cos(y) 0]
0 0 1\=sin(f) 0 cos(p) 0 0 1
(A.5)
With the above operator, the wave vector k transforms as follows
ky k.
ky|=R ky . (A.6)
k, k

z

The rotation operator for the momentum vectors with j = 1/2 and j = 3/2 is a matrix
given by

Dyjz = Dy}, (@) D), (B) D5 (v)

(el b co

0 exp{i%} sin(

J —sin(5) ol e

) cos(g) 0 exp{ig}

N oS

(A7)

and

Dyj2 = D, (@) DY, (F) D (y)

exp{—i%a} 0 0 0

B 0 exp{-ila} 0 0

- 0 0 exp{i%a} 0
0 0 0 exp{i%a}
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A Appendix

A.4 Singlet and Doublet Terms in the Equations of Motion for

Many-Body Correlations

The following are lists of singlet and doublet terms in the EOM for the many-body correla-

tions Eq. (2.58). The singlet term is

q.k’ .k

— VAN /1/1 V' pv o A v A v
Sﬂuu Z Z Z ka’ Py Z ka' P Pk’+q S | Py
v V A// y/
_ AV vApAT wvvp A A VA
Z Zka' Pk’+q Z ka' k P = 6w Pk—q
v,V A ll,
K kq k’+q k' kq k—q VAT )Tk
v’vl ”// /’l
744 NNy pAAT VA AvpA A yInY v
DN DI S S g e (Pk, - 5V,J)Pk,+q, (A.9)
V,V, /1// A”
and the doublet term is
q,k’,k _ Z Z V o P)' 2 Z VV A Ay A” b q,k’,k“
A’ k"-qkq" k k”-qkq Py q | Vv
V, V/’k// AII A//
_ W'V o W o | gk’ .k
Z Vk’ k7 +q, qu’+q Z Vk’ Kk +q, qu’ C)L,V’;v,/l’
V,V,,k" y// #
A" V' V/l ulv V/l /1 /l —j,k',k”
+ Z Vick” 4 JP K'+q Z Vk,k”+j,j P ey
V, V,,k,, AN ”N
_ V/I’/l”v A vip'uv Hp” A -k k
k” _]k’_]Pk’ Z |4 " —j, k’_]Pk q | Avivy
v, V’,k" A” ,U”
A v W' v q’ .k +q.k—q *
* Z B Z Z Viek q'+q (C/V,u’;/l”,V’
V,V’ q/ }1”
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1 kq'+q \ A v 2
q/ A//
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A.5 Derivation of Anomalous Currents using the
Semiconductor Bloch Equations within the First-Order
Adiabatic Perturbation

A.5.1 The Abelian Case

Applying the first-order perturbation to the SBE with THz field and assuming that the

system already has a population nﬁ’(o)

%Ay(l) hz( Ay o) _ (1)Hv”)——eE(t) Z(‘fkv (0) _ An(0) g )

Ap A (1
qupku()

o+ i) ey g (e - k). a1y

which was generated by an optical field, we have

This equation has the form of an inhomogeneous differential equation, so we can write
the solution as

/Ul (1)(t) / dt’e l(w 'HYk )(f )1 E(t) E ( w(0) _ ;1(,(0))

d Al AR (p g 1
=/ dtld’ i 411 )(tt)} Lm0 - )
AL +ihy

t
:e( iy )(t t) 1 eE(t') - :_f (u(O) )L,(O))
AA”+ihyk

+ g:)ty / dt’e 1(m ”+1yk )(t t")

—00

1 eE(t )‘( (0) _ f;(o))

A’ly+1h}/’1‘u dt’

k

_ 1 1,(0) /L(O))
= T eE(t ) - § ( —-ny
I y

¢ S Ap L A 4
N

1 _e (UM (0) _ A,(O))_

A+ iy At
(A.12)

Assuming that the electric field varying slowly in time compared to the inverse of the
energy gaps between two bands, i.e.,

d
ﬁ” eE() =0, (A.13)
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we can approximately ignore the second integral term, and thereby obtain

m 1 ,
PO = e eB() - £ (e — ™). (A14)
A My 1hyk

Taking the expectation value of the velocity operator, we have

<V<1>(t)>:$ 3T v

LAk
1 A 1 A (0
- Z (2 )2 dkvkﬂ i m (eE(l‘) f )( © _ ﬁ( )). (A.15)
Aptd AT A+ ihy,
Next, using the Dirac’s identity
1 1
— =P —iné(Ae), (A.16)
Ae + iy Ae
we obtain
1 A 1 ; A ’ A A, X
(0) = 3 b [ - imoagh | (e ) (e - o)
R A

(A.17)

Because Aiﬂ is always different from zero when the indices A, ; belong to disconnected
band, we can eliminate the term with the Dirac delta function

(v (1)) = e )Z/dk D v“’ (eE(t) g )( “‘”—nﬁ"‘”). (A.18)

Ap#Ed

Using the relation between §£” and Vﬁ”

= —ih W A.19
L el (A.19)
we obtain
(vV(1) = (2711)2 /dk A;Avﬁ” (Aﬁ ( E(t) - VWL)( A,(0) _ ﬁ’(o))
1 in
- (ZJT)Z/dk{A;AVin( eE(t') - v ) 2,(0)
A
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Then, grouping the terms with the same index of ni’(o) , we get
1) A0y —ih A N A
(v (1)) = dk > nf v [ (E(t) v”)—v (eE(t)-vk)].
Ap#EA k )
(A.21)
Applying the triplet vector identity
AB-C)-C(B-A) =Bx(AxC), (A.22)
and the Kubo-like formula for Abelian Berry curvature
Ap A
v x v
Q} = in? Z MR (A.23)
« pEA (AyA)Z
k
we finally obtain
A
1 Hxvt!
<V(1)(t)> = o) / dk ——eE(t) x |in? Z k " k i,(o)
/1
pEA (Aﬁ )
dk > -ZE(t) x Qn ). A24
- o7 — [ Z () (A24)

A.5.2 The Non-Abelian Case

Applying the first-order perturbation to the SBE with THz field and assuming that the

system has initial population and coherence between degenerate or near-degenerate states
(0)

Pk (A p € 2)), we have
d P = (1) A1) gvu Avp1i0) _ pAn(0) g
P hZ( o = ) < e Z( K &)
A (1)
~ Vi P
A Av,
= ifop + it o - E(t) ST - 3 g (a25)

vex, veEX)
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Here, X) contains all indices of states which are degenerate with state A. As in the Abelian
case, we also obtain the approximate solution by assuming a slowly varying THz field as

A, (1 0 Av,
pk/l (1) _ - AeE(t) Z §kvp]‘:ll( ) Z ka (0) §ll’/1 ) (A.26)
Ay + lh H Ve, veX)

Taking the expectation value of the velocity operator, we have

<V(1)(t)>:L_12 Z VO ()

Ap#2,k
1 / A £l vp<o> Av,(0) zvp
= dkv” ———¢E(1) - "p py &
2 k A k k
a;m (27) N+ iny, Zzl Zzl

~€E(t) Z vﬁvplz/l(O) Z pHV(O) vA

/1,;!:#2,1 (Ak ) VEX) VES,

1 Au —ih pv vA,(0)
) (2n)2/dk{ 2, TR0 ),

Lp#ES), (Aﬁ ) veX,

- Z vﬁ‘u —in seE(t) - Zp”v(o) M} (A.27)

YNTEOW) (Ak ) VGZ

In the same way as for the Abelian case, by grouping the appropriate terms in the sum-
mation in the expression above with the note that the energy bands within degenerate or
near-degenerate band are approximately the same, we obtain the final expression for the
velocity as

Av VH
3 vV XV
N 22 k kK pA(0)
v ) = 2/d ~ZE(t) x ih prk ()
) ApES h Vg Ak Ak
- / dk " ——E(t)xQ PO (1), (A.28)
(Zﬂ) Apuex
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A.6 Optical-Pump Optical-Probe Equations of Motion in the
Coherent y® Limit

In this Appendix, we present the EOM in the coherent y®) limit which are used to simulate
the optical-pump optical-probe experiment. In this experiment, the system is excited by
the pump and probe pulses. The pump pulse E,ump(t) induces the carrier occupation n ok
and interband polarization p _, . The probe pulse Eprope (¢) induces a small change of the
carrier distributions dn, , of the interband polarization 6p, k. The coherent Coulomb
correlations are induced only by the probe pulse in the y) limit. These correlations include
polarization and hole correlations dcyyye, polarization and electron correlations dcyece, and
biexcitonic correlations dcpix. The differential absorption which is measured in the probe
direction, Kprobe + (Kpump — Kpump), is in the )((3) limit proportional to Eprobe|Epump|2- The
pump and probe pulses propagating into the direction k; have the form

Ei(t) = E&V (1) [eRir=it) 4 cc ], (A.29)

where E{™(¢) is the slowly varying amplitude. By applying the rotating wave approxi-
mation, we multiply both sides of the above expression for pump and probe pulses with
e~ ilkir=wpmpt) apnq keeping only the resonant terms, we have

pump(t)e Kpump T~ opunp?) = Epimp (1), (A.30)
probe ( t) e~ probe r— wpump E;l:(\;be ( t) el((dpump (Uprobe)t _ E;l:(\;be ( t) eiA(ULt . (A3 1)

In the first order, the pump and probe pulses induce interband coherences due to the linear
source term E(t) - d, which are given by the following linear optical EOM

1)(1]0 h 1)(1]0 Vi 1)(1]0
ih P()(l) (fy,k‘”a,k_hwpump ’)’2) e ZVa;k' ka;llEH

= Epimp () - 7 (A.32)
zh (Sp(l)mll) ( €1t eg’k — hpump — iy2 )5p(1)(0|1) Z Vot 5p2])((,0|1)
k/
—Egi (1) - a3 et (A.33)

Here, the superscript (I)(m|n) denotes the I-th order in the electric fields with a spatial
dependence proportional to e’ ("Kpump*nkprobe
quantities. The first two are the pump-induced and probe-induced occupations, obtained
by expanding the EOM

) Tn second order, there are three relevant

52 L @000) _

. 1)(1/0 1)(1]0

-n n((yz])((mo)’ (A.34)

97



A Appendix

9 ¢ (2)(-11) _
h—c?nu’k

n Vi 1)(1]0 1) (0|1
(EEuEp(f)'dff,kaZVaékf WPoie )) N

(E;r:gbe(t) dcv ihort | Z V;/; o él])éﬁl)) (pf)-l])((ll())) l
— pon ), (A.35)
In the above EOM for the correlations, we can see that only the biexcitonic correlations in

second order with direction (1[1) are relevant. By expanding the EOM (5.13) and keeping
only the relevant terms, we obtain

q.k k,(2)(1]1) _ e h h . q.k" k (2)(1]1)
5 Cpx; ;00’0’0 - gak q + Eo",k’+q + ga’,k’ + gcr,k Zhwpump Iyr 5CBX;O'O"O"0'
q—k”,k’+k",k—k”,(2)(1|1) ce k” k' k,(2)(1]1)
+ Z ( o Uk” CBX:00’0’ 0 + Vao‘ K7 - q5 BX;o0’'0’ o
k//
_y7ve q.k k”,(2)(1]1) ve k" +q-k k" k", (2)(1]1)
VO'O' k- 5 BX oco'c’o Vcrcr Kk — k(S BX;o0'c’c

VS VI
+ (V;U f,”lif"” V:%qépéf?ﬁf’lii)pfii“"”
~(V5a0ei" = Vaad it Py
+(qupc(71)]9|0) quc(rl)&o‘i)ép(l>(0|1)
~ (Vo ek = Ve i) 9Pty
e (7 i o

(Vcc 5p(1)(0|1) Vv 5p(1)(0|1))p(1)(1|0)

00y ooj 'ok—-q ok
ve . (1)(1]0) v (1D(1]0) ) ¢ (1)(0]1)
(V C_lpak' -V, Vjpak q )5p0',k'+q
oy _ 1 (10) ) ¢ (1)(0[1)
_( o Do VeriPoted )5p ] (A.36)

By expanding the EOM (5.8) and including all lower-order source contributions, we obtain

the probe-induced coherence in the coherent third-order response along the direction
kprobe as

inl 5p(3)(0|1)_(ak+5k Ry zy)5p(3)(0|1) SV i Sp L

ook’ - ok’
k/
2)(0]0 2 11
+2n ( )( | )E;Irl;/be(t) . d‘cjv zAth +28n ( )( | )E;ﬁ‘rlnp(t) . d(cka
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Here, the last term in the above equation represents the contribution from Coulomb
correlations, which is given by

ST = 3 (ch S BI O | ec 5 ak ko (3)(01)
ok

oo’,q phUUO’O’ oo’,q” “pe;oo’c’ o
o’ k' q

oo’.q phaaac oo’,q” “pe;oo’c’o

Ly se K rakoa (30 _pve 5 -k rak- q<3><°1>) (A.38)

For the probe-induced polarization-carrier occupation correlations, we obtain by expanding

the EOMs (5.10) and (5.11) to third order and keeping only terms with direction (0|1)

q.k k,(3)(0[1) _ & h h . q.k’".k,(3)(0]1)
zh 5 Cohooro’o = Eak q  Eowiq t o Yok T fiwpump — 1yT 5cph;m,g,g
LRI =K (3) (011) _ e LAKI(3) (01D
+Z( crok”5 phioo’c’ o VGGk” 5phaaoa
k//

_ye s Tk kK k. (3)(0[1)
o’ k”-K'~"phioo’c’c

(1)(0|1) (1)(ol1) ) (2)(0]0)
+(VC¥CC“1 UUqéka q ) o’ k’+q
(1)(0|1) (1)(0[1) o)\, (1)alo)
(V;CC“] V(?VUqapak—q )(pa’ k’+q) pa’,k’
(1)(110) w o (1)(1]0) (2)(-1]1)
+( UUqPO'k VO'/O',qPO'k q )5 o‘k’+q
(1)(110) (1)(110) (1)(110) (1)(0l1)
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+ Joor ( Ugjépak—q V;§J5pak’ ) ak’+q

(1 (0[1) (1) (0l1) ®l0)\*, 1)(0)
(V;;}épo_ k—q V;ffjapok’ )(po,k’+q ) po,k
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(A.40)

With the closed set of EOM presented above we can calculate the differential absorption
which is determined by the differential polarization 5p(3)(0|1) There are three nonlinear

source terms contributing to 5p(3) OV which are the Pauli-blocking contribution (PB), the
first-order Coulomb contribution Cl;st, and higher-order Coulomb correlations (Cleo). By
decomposing Eq. (A.37) into the three nonlinear source terms, we obtain

lh 5p(3)(0|1) ,PB ( Z,k + Eg,k _ hwpump _ iyz)gpfl)((OU),PB _ Z yve 5p(3)(0|1) .PB

oo k' — ok’

+2n(2)(0|0)Eenv () - dcv eiboLt 4 o5, (2)( 1|1)Eenv () - do'k’ (A.41)
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(2)(0|0) (1)(0|1) (Z)(—lll) (1)(1]0)
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