Multi-Armed Bandits for Trustworthy and
Resource-Efficient Algorithm Configuration

Jasmin Brandt

January 13, 2025

PADERBORN
IL UNIVERSITY

Department of Computer Science,
Warburger StraBe 100

33098 Paderborn

Dissertation

In partial fulfillment of the requirements for the academic degree of
Doctor rerum naturalium (Dr. rer. nat.)

Multi-Armed Bandits for Trustworthy and
Resource-Efficient Algorithm Configuration

Jasmin Brandt

15t Reviewer ~ Prof. Dr. Eyke Hullermeier

Institute of Informatics
Ludwig Maximilian University of Munich

2 Reviewer Prof. Dr. Kevin Tierney

Decision and Operation Technologies Group
Bielefeld University

Supervisor Prof. Dr. Eyke Hullermeier

January 13, 2025

Jasmin Brandt

Multi-Armed Bandits for Trustworthy and Resource-Efficient Algorithm Configuration
Dissertation, January 13, 2025

Reviewers: Prof. Dr. Eyke Hiillermeier and Prof. Dr. Kevin Tierney

Supervisor: Prof. Dr. Eyke Hiillermeier

Paderborn University
Department of Computer Science
Warburger Strafse 100

33098 Paderborn

Abstract

The quality and runtime of an algorithm depend significantly on its internal pa-
rameters, which usually must be predefined by the user. Since identifying optimal
values for these parameters is often daunting or even infeasible, the field of auto-
matic Algorithm Configuration (AC) has emerged. However, most existing methods
lack theoretical guarantees regarding the quality of their suggested parameter con-
figurations, making it challenging for users to trust their outcomes. Conversely,
the few state-of-the-art methods that provide provable quality guarantees for their
configurations often fail to match the resource efficiency of heuristic methods.

One approach to derive theoretical guarantees is to adapt and apply methods
from well-studied theoretical settings, such as Multi-Armed Bandits (MABs), to
AC problems. Providing such guarantees instills user trust and ensures resource
efficiency when the configurator’s required budget aligns closely with the lower
bound necessary to solve the problem. This ensures trustworthiness without exces-
sive computational costs. However, the multitude of MAB variants — designed for
different parallelization methods, feedback types, or winning-arm criteria — makes
it challenging to identify the most suitable approach for AC. Additionally, an ideal
configurator should handle a wide range of scenarios, such as different types of
feedback. While specialized areas of AC, such as Hyperparameter Optimization
(HPO), already benefit from MAB-based methods like HYPERBAND, which performs
well in practice and comes with theoretical guarantees, no comparable approach
exists for the more general AC setting.

A challenge in developing AC methods with theoretical guarantees is that strict
adherence to theoretical limits does not always result in resource-efficient meth-
ods. In particular, the lack of knowledge about the parameter configuration space
necessitates extensive exploration, often leading to conservatively high sampling
budgets.

This thesis advances MAB-based AC methods in two directions to improve both
resource efficiency and trustworthiness. First, we propose a general MAB framework
and apply it to the broader AC setting while maintaining resource efficiency through
theoretically derived budget bounds. Second, we adapt the existing HPO algorithm
HYPERBAND, including its MAB subroutine SUCCESSIVE HALVING, to enhance resource
efficiency while preserving trustworthiness through theoretical constraints.

Specifically, we introduce a general Combinatorial Bandit framework in which a
fixed but random-sized set of arms is played in parallel at each time step. This
framework accommodates both numerical rewards and preference-based feedback
and provably identifies an optimal arm when the available budget of arm pulls is
sufficiently large. Furthermore, the necessary budget matches the derived lower
bound for such algorithms, up to a logarithmic factor. We also extended and applied
this method to the AC setting, transferring the theoretical guarantees. Notably,
we proved that our proposed configurator identifies a near-optimal configuration

Vi

with high probability when the budget is adequate and empirically demonstrated
that it narrows the performance gap between heuristic and theoretically grounded
configurators.

Additionally, this thesis presents a modification of the existing MAB method Suc-
CESSIVE HALVING (SHA), enabling it to reuse observations from previous runs with
smaller budgets. As a result, it requires only a minimal number of new samples. We
demonstrated that the same theoretical guarantees for the returned arm hold as if
the algorithm were run from scratch with entirely new samples. Furthermore, we
compared these guarantees to those we derived for asynchronous extensions of SHA,
which had not been analyzed until now. Finally, we incorporated our algorithm
as a subroutine within the HPO framework HYPERBAND, conducting a theoretical
analysis and validating its improved efficiency through experimental studies.

Zusammenfassung

Die Qualitat und Laufzeit eines Algorithmus hdngen maf3geblich von seinen internen
Parametern ab, die in der Regel vom Benutzer vorab festgelegt werden miissen. Da
es oft eine herausfordernde oder sogar unlosbare Aufgabe ist, optimale Werte fiir
diese Parameter zu identifizieren, hat sich das Forschungsfeld der automatischen
Algorithmenkonfiguration (engl. Algorithm Configuration) entwickelt. Allerdings
fehlen den meisten bestehenden Methoden theoretische Garantien beziiglich der
Qualitat ihrer vorgeschlagenen Parameterkonfigurationen, was es den Nutzern
erschwert, den Ergebnissen zu vertrauen. Im Gegensatz dazu bieten die wenigen
Methoden, die nachweisbare Qualitdtsgarantien fiir ihre Konfigurationen liefern, oft
nicht die Ressourceneffizienz heuristischer Ansétze.

Ein Ansatz zur Herleitung theoretischer Garantien besteht darin, Methoden aus
gut erforschten theoretischen Kontexten, wie Mehrarmigen Banditen (engl. Multi-
Armed Bandits), auf Algorithmenkonfigurationsprobleme anzuwenden und anzu-
passen. Solche Garantien starken das Vertrauen der Nutzer in die Ergebnisse und
stellen Ressourceneffizienz sicher, wenn das vom Konfigurator bendtigte Budget eng
mit der unteren Grenze iibereinstimmt, die fiir die Losung des Problems erforder-
lich ist. Dadurch bleibt die Vertrauenswiirdigkeit gewahrt, ohne dass iiberméf3ige
Rechenkosten entstehen. Allerdings macht die Vielzahl an Varianten von Mehrarmi-
gen Banditen — die fiir unterschiedliche Parallelisierungsmethoden, Beobachtungen
oder Kriterien zur Auswahl des besten Arms konzipiert wurden — es schwierig, die
geeignetste Methode fiir Algorithmenkonfiguration zu identifizieren. Zudem sollte
ein idealer Konfigurator in der Lage sein, eine Vielzahl von Szenarien abzudecken,
wie beispielsweise verschiedene Arten von Beobachtungen.

Wihrend spezialisierte Bereiche der Algorithmenkonfiguration, wie die Hyperparam-
eteroptimierung (engl. Hyperparameter Optimization), bereits von Mehrarmigen
Banditen-basierten Methoden wie HYPERBAND profitieren, die in der Praxis gut
funktionieren und mit theoretischen Garantien ausgestattet sind, existiert fiir die
allgemeinere Algorithmenkonfiguration derzeit keine vergleichbare Methode.

Eine Herausforderung bei der Entwicklung von Algorithmenkonfigurationsmethoden
mit theoretischen Garantien besteht darin, dass strikte Einhaltung theoretischer
Grenzen nicht immer zu ressourceneffizienten Verfahren fiihrt. Insbesondere die
fehlende Kenntnis des Parameterkonfigurationsraums erfordert eine umfassende
Exploration, was oft zu einer konservativ hohen Stichprobenanzahl fiihrt.

Diese Arbeit entwickelt Mehrarmige Banditen-basierte Algorithmenkonfigurations-
methoden in zwei Richtungen weiter, um sowohl die Ressourceneffizienz als auch
die Vertrauenswiirdigkeit zu verbessern. Erstens schlagen wir ein allgemeines
Mehrarmiges Banditen-Framework vor und wenden es auf das Algorithmenkonfigura-

vii

viii

tionsproblem an, wéihrend wir die Ressourceneffizienz durch theoretisch abgeleitete
Budgetgrenzen wahren. Zweitens passen wir den bestehenden Hyperparameterop-
timierungsalgorithmus HYPERBAND einschlie8lich seiner Mehrarmigen Banditen
Subroutine SUCCESSIVE HALVING an, um die Ressourceneffizienz weiter zu steigern
und gleichzeitig die Vertrauenswiirdigkeit durch theoretische Einschrankungen
sicherzustellen.

Konkret fithren wir ein allgemeines kombinatorisches Banditen-Framework ein, bei
dem in jedem Zeitschritt eine feste, aber zuféllig gro3e Menge von Armen parallel
gespielt wird. Dieses Framework unterstiitzt sowohl numerische Belohnungen
als auch préferenzbasierte Beobachtungen und identifiziert nachweislich einen
optimalen Arm, wenn das verfiigbare Budget fiir Armziehungen ausreichend grol3
ist. Dariiber hinaus entspricht das erforderliche Budget der abgeleiteten unteren
Grenze fiir solche Algorithmen, bis auf einen logarithmischen Faktor. Wir haben
diese Methode zudem auf Algorithmenkonfiguration erweitert und die theoretischen
Garantien {ibertragen. Insbesondere haben wir bewiesen, dass unser vorgeschlagener
Konfigurator mit hoher Wahrscheinlichkeit eine nahezu optimale Konfiguration
findet, wenn das Budget ausreichend ist, und empirisch gezeigt, dass unsere Methode
die Leistungsliicke zwischen heuristischen und theoretisch fundierten Konfiguratoren
weiter schlief3t.

Dariiber hinaus stellt diese Arbeit eine Modifikation der bestehenden Mehrarmigen
Banditenmethode SUCCESSIVE HALVING (SHA) vor, die es ermdoglicht, Beobachtun-
gen aus vorherigen Laufen mit kleineren Budgets wiederzuverwenden. Dadurch
werden nur minimale neue Stichproben benétigt. Wir haben gezeigt, dass dieselben
theoretischen Garantien fiir den zuriickgegebenen Arm gelten, als wiirde der Algo-
rithmus von Grund auf mit vollstdndig neuen Stichproben ausgefiihrt. Auf3erdem
haben wir diese Garantien mit denen verglichen, die wir fiir asynchrone Erweiterun-
gen von SHA hergeleitet haben, die bisher nicht analysiert wurden. Schlief3lich
haben wir unseren Algorithmus als Subroutine innerhalb des Hyperparameteropti-
mierungsgeriist HYPERBAND integriert, eine theoretische Analyse durchgefiihrt und
seine verbesserte Effizienz durch experimentelle Studien validiert.

Acknowledgement

In the following, I would like to express my heartfelt thanks to several people who
supported me in various ways throughout this work.

First of all, of course, I would like to thank my doctoral supervisor, Prof. Dr. Eyke
Hiillermeier, for his reliable supervision, his guidance, insightful ideas and support
during difficult phases. My gratitude also extends to the rest of the examination
committee, particularly Prof. Dr. Kevin Tierney for his expert advice during our
collaborations and for the productive and enjoyable visits to his group at Bielefeld
University.

I am deeply thankful for the DataNinja graduate school, which not only funded my
position but also connected me with many other DataNinjas. Through the program,
I had the privilege of engaging in stimulating discussions, gaining insights into a
broad range of topics, and meeting many renowned scientists.

Of course, I do not want to leave my coworkers unmentioned here. Special thanks go
to Dr. Viktor Bengs for his support and to Dr. Bjorn Haddenhorst for his collaboration
and mathematical expertise. Although it would be impossible to name everyone
individually, I am immensely grateful to have been part of such an incredible team. I
look back to interesting technical discussions, but also to funny coffee breaks and
head-clearing joint after-work runs or bouldering sessions.

I am also very grateful to Prof. Dr. Andreas Krause and his team for their warm
welcome during my time at ETH Zurich. This experience not only provided me with
inspiring professional discussions and valuable connections but also exposed me to
entirely new perspectives on topics I thought I already understood well.

Finally, T would like to thank my family and friends for always being there for
me. Who knows if I would have even discovered my passion for mathematics
without the early childhood influence of the geometric patterns on my mother’s
handbag or the daily questions from my grandparents about multiplication tables?
A very special thank you goes to my boyfriend, Toni, (including his enthusiasm for
academia) whose companionship during bike rides and runs helped me regain focus
and balance throughout this journey.

Contents

1. Introduction 1
1.1. Motivation i e e e e 1
1.2. Thesis Structure o i i it e e e e 3

2. Algorithm Configuration 5
2.1. Foundations e e e 5
2.2. Theory e e 11
2.3. Hyperparameter Optimization (HPO) 12

3. Multi-Armed Bandits 17
3.1. Stochasticsetting 17
3.2. DuelingBandits 23
3.3. Combinatorial Bandits 27
3.4. Non-stochasticsetting 31

4. State-Of-The-Art and Contributions 35
4.1. Finding Optimal Arms in Non-stochastic Combinatorial Bandits . . . 35
4.2. AC-Band 37
4.3. Incremental Successive Halving and Incremental Hyperband 39

4.3.1. Hyperband, 39
4.3.2. Related Work, 40

5. Finding Optimal Arms in Non-stochastic Combinatorial Bandits with
Semi-bandit Feedback and Finite Budget 45

6. AC-Band: A Combinatorial Bandit-Based Approach to Algorithm Con-
figuration 59

7. Best Arm ldentification with Retroactively Increased Sampling Budget
for More Resource-Efficient HPO 69

8. Conclusion and Outlook 79
8.1. Future Research Directions. 80

Bibliography 81

A. Appendix to Finding Optimal Arms in Non-stochastic Combinatorial
Bandits with Semi-bandit Feedback and Finite Budget 89

B. Appendix to AC-Band: A Combinatorial Bandit-Based Approach to
Algorithm Configuration 121

Xii

C. Appendix to Best Arm ldentification with Retroactively Increased Sam-
pling Budget for More Resource-Efficient HPO

List of Figures

List of Symbols

135

155

157

1.1

Introduction

Motivation

Due to the increasing automation of many processes, a lot of different algorithms
for various tasks exist, often with internal parameters that must be defined by the
user in advance. Additionally, the growing availability of computational resources
enables the development of larger and more complex models often characterized
by a greater number of parameters that influence the behavior of the considered
target algorithm. These parameters significantly impact the performance of the
target algorithm affecting factors such as runtime or the quality of the solution it
returns. Therefore, finding an optimal configuration for these internal parameters is
crucial to maximize the performance of the target algorithms. However, manually
tuning the parameters is a daunting, and sometimes even infeasible, task due to
the often infinitely large parameter domains and the interactions between different
parameters.

An example of such a target algorithm that should be tuned is GLUCOSE, which
solves the Boolean Satisfiability problem, or SAT problem for short. Version 4 of
GLUCOSE has a total of 41 parameters, of which 13 are binary and 28 are continuous.
For instance, the parameter Random Frequency (RF) is a float in the interval [0, 1]
that defines the probability of making a random variable assignment instead of
using the learned heuristic. In other words, RF= 1 corresponds to a random search
while RF= 0 allows GLUCOSE to assign values solely based on the learned heuristic,
thereby impeding exploration. Since there are infinitely many possibilities for the
continuous RF parameter, it would be a daunting task to fine-tune it manually.

To address this issue, the field of automated Algorithm Configuration, which aims to
automatically identify well-performing parameter configurations for a given target
algorithm, has evolved and gained significant interest in recent years. For a more
detailed overview see [Sch+22]. However, the subfield of automatic algorithm
configurators that offer theoretical guarantees for the returned parameter configura-
tion has received relatively little attention. Moreover, these theoretically grounded
approaches often lag behind the performance of many heuristic algorithm configu-
rators. At the same time, theoretical guarantees are crucial for users to trust these
methods and to ensure that the configurators perform well not only on a few tested
target algorithms and datasets but also in worst-case scenarios. Such assurances can
only be provided by a theoretical worst-case analysis. It is important to note that we
cannot make theoretical claims about the target algorithms themselves. However,
we can prove the ability to find a parameter assignment that (almost) maximizes the

2

performance of the target algorithm. Thus, we can at least guarantee that the results
of the target algorithm are as good as possible with the parameter configuration
determined by the theoretically grounded configurator.

Most automatic algorithm configurators have internal parameters that must be spec-
ified before execution. For example, one such parameter might be the maximum
resource budget, such as the runtime allocated for testing a single configuration
during the configurator’s execution. To avoid an endless recursion of algorithm
configurators for algorithm configurators - resulting in significant runtime and
computational resource overhead - it can sometimes be a better strategy to try one
specific value for the parameter, and if the results are unsatisfactory, simply rerun the
configurator with a different initialization of the parameter. However, a significant
amount of previously observed information is lost when the algorithm being rerun
cannot handle or reuse data gathered in earlier runs. To improve efficiency, there is
a need for algorithmic designs that can incorporate and compare results with previ-
ously observed information. While the idea may sound straightforward, maintaining
theoretical guarantees for the output of such a strategy is far from trivial. If we
consider the special case of an Algorithm Configuration problem with only a finite
number of configurations, it can be reduced to a best-arm identification problem in
Multi-Armed Bandits [ABM10]. In this context, we are given a finite set of possible
options, called arms, from which the learner can choose. After selecting an arm,
immediate feedback, such as a numerical reward, is observed. This potentially noisy
feedback is typically sampled from an underlying probability distribution associated
with each arm and is used to guide the selection of the next arm. The objective is to
identify the arm with the highest expected reward as quickly as possible.

If we consider a parameter configuration as an arm and the observed runtime or
solution quality with the chosen parameter configuration as feedback, then each
Algorithm Configuration problem with a finite configuration space can be regarded
as a best arm identification problem in Multi-Armed Bandits. A variety of slight
modifications of Multi-Armed Bandits have already been proposed, such as Dueling
Bandits or Combinatorial Bandits. In these variants, two arms or a subset with at
least two arms are selected simultaneously in each time step, and, for example,
only winner information is observed. In the context of Algorithm Configuration,
such settings can represent a "race," where different parameter configurations are
executed in parallel until the first one finishes. Regardless of the specific Bandit
variant, one of the primary challenges in solving best arm identification problems is
balancing exploration and exploitation. Exploration involves selecting a wide range
of arms to ensure that a good option is not overlooked. Exploitation focuses on
repeatedly choosing promising arms to obtain a more reliable estimation of their
true quality. A well-designed algorithm for identifying the best arm in a Multi-Armed
Bandit setting strikes a good balance between exploration and exploitation. One
significant advantage of this simple problem design is that it is often possible to
derive theoretical guarantees for methods addressing the best arm identification
problem. For instance, guarantees might specify the sufficient number of trials
needed to identify the best arm with high probability, which increases user trust in
the methods’ outputs. Furthermore, theoretical guarantees that the required budget

Chapter 1 Introduction

1.2

of an algorithm aligns with or approximates the lower bound of the necessary budget
for solving such problems ensure that the algorithms are also resource-efficient.

Thesis Structure

This thesis begins with two foundational chapters on Algorithm Configuration and
Multi-Armed Bandits. The first chapter delves into the existing theoretical works
in the field of Algorithm Configuration, with a particular focus on its subproblem,
Hyperparameter Optimization. The second chapter describes variants of the Multi-
Armed Bandit setting relevant to my work, such as Dueling Bandits, Combinatorial
Bandits, and the non-stochastic setting. Following these foundational chapters is a
concise overview of the state-of-the-art in my research area and my contributions
to these fields. The main parts of my work then follow, consisting of the published
papers stemming from my research. The first paper addresses the problem of finding
optimal arms in non-stochastic Combinatorial Bandits. The second extends the
Combinatorial Bandit approach to handle an infinite number of options, enabling its
application to Algorithm Configuration. The third paper enhances an existing method
for Hyperparameter Optimization by efficiently reusing information from previous
runs while maintaining the same theoretical guarantees as if the method were run
from scratch without reusing any information. Finally, I conclude by summarizing
my results and providing a brief outlook on future research directions.

1.2 Thesis Structure

2.1

Algorithm Configuration

Many algorithms have numerous internal parameters that must be set before execu-
tion, and these parameters have a significant impact on the algorithm’s performance.
Therefore, to achieve optimal performance — whether in terms of runtime or so-
lution quality — it is essential to search for the best combination of all internal
parameters. Manually tuning these parameters is a daunting or even infeasible task,
especially given the increasing complexity and time requirements of modern algo-
rithms. Furthermore, dependencies between certain parameters may exist, meaning
that tuning each parameter individually could result in suboptimal outcomes. To
address this challenge, the field of automatic Algorithm Configuration (AC) has
emerged.

In this chapter, the problems of AC and its subproblem, Hyperparameter Optimiza-
tion, are formally introduced. Given the theoretical contributions of this thesis, the
focus is particularly on the existing theoretical frameworks for these topics.

Foundations

Motivation. Let us consider a Boolean Satisfiability (SAT) problem, where the goal
is to determine an assignment of variables that makes a given Boolean expression
evaluate to true. Such an expression can look like the following.

(56‘1 \Y ﬁ.’Eg) AN (ﬁl‘l V xoV :Ug,) N —xq.

By trial and error, a human can find an assignment like z; = FALSE, 25 = FALSE and
x3 = TRUE of the variables such that the above formula is satisfied. However, with
more variables involved and clauses contained in the boolean expression, it becomes
increasingly difficult or even unfeasible for humans to find a satisfying assignment
for all variables, assuming one exists. In fact, it has been proven that solving such
a boolean satisfiability expression is NP-hard. Even the existing algorithms that
solve the boolean satisfiability problem like MINISAT [ESO4] more or less work by a
trial and backtracking approach extended with some sophisticated mechanism for
example for the selection of the next variable on which a new assignment is tested.
However, MINISAT has some parameters that have a huge influence on the behavior
of the solving process and thus also on its required solving time. Examples of these
parameters are presented in the following.

6

* restart_first is an integer that defines the interval of a complete restart of all
variable assignments to prevent the algorithm from spending excessive time
exploring unpromising regions of the search space.

* restart_inc gives the real-valued factor of increase of the restart interval.

* random_var_frequency defines the probability (expressed as a percentage) with
which the decision heuristic used to find the next variable for an assignment
chooses a random variable. Otherwise, the heuristic chooses a variable that
is contained most frequently in all remaining clauses or was included most
frequently in recent conflicts.

* var_decay is the real-valued factor in [0, 1] that is multiplied with the increment
that is added to the number of recent conflicts that is stored for each variable.
If this value is large for a variable, the heuristic is more likely to select it for
the next assignment.

It is needless to say that good instantiations of these parameters can highly boost
the performance of MINISAT. However, even only for the above-named parameters,
there are infinitely many possible configurations of parameters, which makes the
task of finding a well-performing configuration per hand daunting or even infeasible.
This challenge has led to the emergence of automated Algorithm Configuration
(AC), which has garnered significant interest in recent years. The following sections
provide a detailed explanation of Algorithm Configuration and its applications.

Problem formulation. Let A be a parameterized target algorithm and Z the space
of problem instances that A can solve. Let us assume the existence of an un-
known probability distribution P defined over the instance space Z. We denote by
O = 01 x --- x O, the configuration space that consists of all feasible parameter
configurations for the target algorithm A that has n internal parameters from the
domains Oy, ..., 0,. These parameters may be real-valued, integer-valued, binary,
or categorical, depending on the design of the target algorithm A. To guide the
selection of the parameter configurations, we need a way to measure the quality of a
specific configuration # € ©, which is usually done with a cost function ¢ : Zx© — R
that represents the potentially noisy cost ¢(, f) of running the target algorithm .4
with the parameter configuration # € © on problem instance i € Z. Common exam-
ples of this cost are the used runtime of A to finish or a numerical value representing
the quality of the returned solution of A.

The goal is to find a parameter configuration * € © that performs best on average
over the probability distribution over the instance space P(Z):

0" e argminee@/ (i, 0)dP(i).
z

Chapter 2 Algorithm Configuration

Parameterized Configuration | | Problem instance
algorithm A space © space T

o~/ RunAwithd O\
o (Select 8 € © .))
o I - _ onsomej€cZ / | Configurator

Return cost ¢(/,#)

‘,//_ Return best -\"\
N configuration #* J

Fig. 2.1.: Demonstration of the task of an algorithm configurator.

Considering the integral over the probability distribution P(Z) emphasizes the
importance of problem instances i € Z that are more likely to be sampled. In other
words, it is more important for the best parameter configuration 6* to perform well
on problem instances that are sampled more often than on problem instances that
are rarely sampled.

Figure 2.1 provides a graphical representation of the AC problem. The grey boxes
indicate the given inputs, while the dashed box represents the automatic solver,
also referred to as the configurator. Usually, it works by iteratively selecting one
or more parameter configuration(s) from the space ©, and subsequently runs the
target algorithm A with the selected parameter configuration(s) on sampled problem
instance(s) from 7 and using the observed cost for this run to guide the selection
of the next parameter configuration(s) in the following iterations. The objective of
identifying the optimal parameter configuration is highlighted at the bottom of the
figure.

However, in practice, the probability distribution P over the instance space Z is
usually unknown. Furthermore, 7 is often an infinitely large space, making it
impossible to evaluate the performance of a parameter configuration on every
problem instance. To address this issue, we can solve a proxy problem. Here, a finite
training set Ziain C Z is provided, and the goal is to identify the configuration feo
that performs best on average over this training set:

) 1 }
§ € argmin,_g —— 0
g 9€o ‘Itrain’ 1€ Ltrain C(L)

It is important to note that, if the training set is sufficiently large and randomly
sampled from the probability distribution P, the performance of § converges to that
of #* due to the law of large numbers.

2.1 Foundations

8

If the configuration space O is also infinitely large, such as in the case of continuous
parameter spaces, finding the optimal parameter configuration becomes analogous to
searching for a needle in a haystack. Hence, it is reasonable to relax the objective to
finding a near-optimal configuration instead. For instance, an e-optimal configuration
6 € © can be defined as one whose expected cost exceeds the optimal expected cost
by at most a factor of e > 0

Eiplc(i,8)] < (1+ €)OPT,

where OPT = infgco E;p|c(i, 0)] is the minimal expected cost in the whole configu-
ration space on average over the probability distribution of the instance space.

But even such a near-optimal configuration can be hard to find if the runtime distri-
butions of the configurations are heavy-tailed. In this case, running a configuration
might take an impractically long time or even fail to terminate, preventing the auto-
matic algorithm configuration from converging or returning a solution. To address
this issue, a capping timeout > 0 can be introduced, representing the maximum
time allowed for running a configuration before it is forcibly terminated if no solu-
tion is found. The x-capped observation for a configuration # € © on an instance
i € 7 is defined as min(c(i, 0), k), where the observed cost is either the actual cost
¢(i,0) or the timeout x, whichever is smaller. To choose an appropriate value for
k is far from trivial and multiple solutions for the search for x were proposed in
the literature. This includes some expensive approaches in time and resources like
making an optimistic guess for x and then doubling it until a specific fraction of the
instances finishes within the timeout as described in [WGS19].

Given these capped observations, it becomes necessary to redefine the notion of
optimal configurations to account for the introduced timeout. Otherwise, an algo-
rithm configurator could simply choose « as small as possible such that no parameter
configuration finishes within the timeout and can return any of them as an "optimal"
one according to our previous definition of (near-) optimal configurations. Thus, it is
essential to ensure that the returned configuration completes successfully on at least
a (1 — §)-fraction of the evaluated instances, where § > 0 represents the allowed
fraction of instances where the configuration may fail. In other words, we exclude a
0-fraction of instances on which the target algorithm fails to finish within the timeout
with the regarded configuration. We call § € © an (e, §)-optimal configuration if
and only if

dk >0 : Ejup[min(c(i, 6), k)] < (14€)OPT A Piop(c(i,b) > k) <.

But still, we have the problem that we need to consider all of the configurations to
decide on the (e, §)-optimality because otherwise, it is not possible to get a reliable
estimation of the optimal cost OPT. To avoid this, we can relax the notion of optimal
cost to the optimal cost after excluding the ~-fraction of best configurations for a

v € (0,1):

OPT, = gigrel]%{% | Pounit(e) (Einple(i, 0)] < x) > 7}

Chapter 2 Algorithm Configuration

According to this, we can now define an (e, 8, v)-optimal configuration 6 € © as one
that has an expected capped cost at most a factor of 1 + ¢ worse than the optimal
cost excluding the best y-fraction and which is able to return a solution within a
capping time on a (1 — §)-fraction of instances

Jk >0 : Ejup[min(c(i,0),5)] < (1+€)OPT, A Pip(c(i,0) > k) <46

A variant of the AC problem is the per-instance AC problem, which considers an online
setting. The main difference is that now the instances i; € Z arrive sequentially in
each time step ¢ € N and for each seen instance, we want to find the individual best
parameter configuration #; that leads to the best performance only on instance i;:

0; € argming.gc(i¢,0) Vt e N.

Note that the optimal per-instance configuration for a specific problem instance
may not lead to small costs on average on P(Z). This setting becomes particularly
relevant when the initial number of problem instances is limited, sampling new
instances is costly, or the environment changes over time, for example, due to
shifts in the probability distribution P over the instance space Z. The relaxations
introduced for near-optimal configurations in general AC can be straightforwardly
adapted to define near-optimal parameter configurations in the per-instance AC
setting.

Example. Even if the formal problem definition is restricted to target algorithms,
the problem can be generalized to find good configurations for a completely unknown
black-box system. For example, consider the task of optimizing a race car. Here,
the race car represents the black-box system to be optimized, while its components,
such as the engine, tires, spoiler, etc., are the internal parameters for which we aim
to find the optimal combination. The goal is to identify the components such that
the car races as fast as possible or in other words the cost function is given by the
race time of the car in this example.

In this scenario, the problem instances correspond to different race tracks, each with
unique characteristics such as varying surfaces and weather conditions. If changing
the car’s components incurs high costs, it is reasonable to focus on identifying a
configuration that performs well on average across all race tracks, which aligns with
the general AC problem.

In the per-instance AC scenario, however, we assume the ability to observe specific
track and weather conditions before selecting the car’s components. This allows us
to determine the optimal configuration tailored to the particular environment of
each race course.

2.1 Foundations

10

Existing Methods. Algorithm configurators that do not assume an underlying model
to map configurations to specific performance outcomes are referred to as model-
free. A prominent model-free method that solves the algorithm configuration (AC)
problem using simple local neighborhood search is PARAMILS [Hut+09]. To avoid
getting trapped in local optima, the search frequently restarts at random, and
configurations are iteratively compared to determine which parameter should be
perturbed next. However, a significant drawback of this method is its inability to
handle continuous parameter spaces.

Some configurators address this limitation by supporting continuous parameter
spaces through simple racing strategies. In these methods, all remaining configu-
rations are evaluated on a single problem instance, and the worst-performing con-
figurations are subsequently eliminated. One of the most sophisticated algorithms
following this strategy is IRACE [Lop+11]. Beyond eliminating poor configurations,
IRACE generates new configurations from a bivariate normal distribution over the
parameter space, centered around the previous winning configuration. To prevent
stagnation in local optima, the algorithm performs a soft restart if the current
population of configurations becomes too similar.

Another well-known model-free method is GGA [AST09]. This algorithm divides
configurations into competitive and non-competitive subsets. In each iteration, the
competitive configurations are raced against one another. Subsequently, one-third
of the configurations are modified using genetic operations such as recombination
and mutation, involving a winning configuration and a configuration from the non-
competitive subset. The process terminates once the new competitive population
ceases to outperform the previous one.

In contrast, model-based AC methods employ predictive models, such as random
forests or Bayesian networks, to identify promising configurations. For example,
GGA+ + [Ans+15] extends GGA by incorporating a surrogate model to predict the
performance of newly generated configurations. After creating new configurations
using genetic algorithms like crossover, the surrogate model predicts the rank of each
configuration in a simulated tournament, and only the top-performing configurations
are added to the competitive population. In this approach, a random forest is used
as the surrogate model, with increased resolution in areas of the parameter space
containing high-performing configurations. This enhancement significantly improved
performance compared to GGA for tuning SAT solvers.

Another classical example of a model-based method is SMAC [HHL11]. This
algorithm also builds a random forest surrogate model over the combined problem
instance and parameter configuration space. Configurations are evaluated on various
combinations of seeds and problem instances sampled at random. The model then
predicts the performance of the target algorithm A with a specific configuration on
a given problem instance, guiding the search for optimal configurations.

Chapter 2 Algorithm Configuration

2.2 Theory

What all the above-presented methods have in common is that none of them provides
a theoretical guarantee regarding the performance of the returned configuration.
This lack of guarantees is primarily due to the absence of information about the
structure of the configuration and instance spaces. Consequently, theoretical as-
sumptions about these spaces, such as continuity, are difficult to evaluate and, in
practice, often invalid. Additionally, conducting a theoretical worst-case analysis,
which tends to be highly conservative, requires extensive exploration of the infinitely
large configuration space. This leads to a waste of resources on non-promising
parameter configurations. Due to these challenges, most existing configurators rely
on heuristic methods and lack any rigorous theoretical analysis.

Nevertheless, there are exceptions in the field of AC that provide theoretical guaran-
tees. One notable example is the derivation of a bound for the estimation error:

1

o(i, 0) — /I o(i,0)dP(i)| . @2.1)

|Itrain | ieItrain

As clearly visible, this bound is highly dependent on the corresponding cost function
¢ and on the distribution P over the instance space Z. If any knowledge about the
distribution P is available, we call this estimation error data-dependent, otherwise, it
is called distribution-free and just a worst-case bound over all possible distributions.
By fixing a desired estimation error err > 0, we can set a derived upper bound that
will still depend on |Zi;,iy| for the term in 2.1 equal to err, solve the equation for
|Zirain| and get the necessary number of training samples we need to achieve the
given error err.

For instance, [KLL17] demonstrated that for specific choices of v and §, the worst-
case expected runtime of any algorithm configurator to return an (e, J, v)-optimal
configuration is in (E%C (6, 7)OPTW), where C(0,) is a parameter determined by
the choices of 6 and ~. The goal of any algorithm configurator that is guaranteed
to find such a near-optimal configuration is to match this lower bound as well as
possible.

Existing Theoretical Methods. Even though most algorithm configurators are heuris-
tic approaches, a few methods with theoretical guarantees exist. Below, some of the
basic approaches are presented.

As the name suggests, the main idea in the STRUCTURED PROCRASTINATION algo-
rithm in [KLL17] is to procrastinate the runs for hard instances. This is achieved
by maintaining a queue of (instance, timeout) pairs for each configuration. Itera-
tively, the configuration with the lowest runtime estimation so far is selected, along
with the first item from its queue. If the instance cannot be solved within the

2.2 Theory

11

2.3

12

timeout, the timeout is added to the configuration’s runtime estimation, and the
pair (instance, 2 - timeout) is placed back into the queue. If the instance is solved
within the timeout, the observed runtime is added to the runtime estimation of the
configuration, and a new unseen instance with the initial timeout is added to the
queue. The authors proved that the algorithm identifies an (¢, ¢)-optimal configu-
ration with high probability within a runtime that is optimal up to a logarithmic
factor. Specifically, they showed that the sufficient budget for their algorithm is in
O(In(5%) 5= OPT), while the lower bound for the necessary budget to solve this prob-
lem is in (52 OPT). Thus, their proposed algorithm is optimal up to the logarithmic
factor. More recent AC methods including an extension of the above-described
STRUCTURED PROCRASTINATION algorithm are explained in section 4.2.

The doubling trick is also applied in LEAPSANDBOUNDS [WGS18]. In this method, an
optimistic initial timeout is chosen, and all configurations are run on all instances in
the training set. If none of the configurations finishes before the timeout, the timeout
is doubled, and the procedure is repeated. If at least one configuration finishes
within the timeout, the fastest configuration is returned. The authors provided a
worst-case upper bound on the total runtime, which is in O(ln(%)f?OPT), to
find an (¢, ¢)-optimal configuration with probability at least 1 — (.

Utility-based algorithm configuration was proposed in [GLR23], where the existence
of a decreasing runtime utility function is assumed. This utility represents the ex-
pected well-being of a configuration and the goal is to identify the configuration that
maximizes the expected utility over time. The authors presented a naive approach
that can find an e-optimal configuration with probability at least 1 — § for a specified
accuracy parameter ¢ and a capping time k. As a more sophisticated approach,
they proposed an anytime procedure, called UTILITARIAN PROCRASTINATION. This
method gradually increases the capping time and shrinks the accuracy parameter e
during execution. The authors proved that UTILITARIAN PROCRASTINATION identifies
an e-optimal configuration with probability at least 1 — ¢ if the time horizon is
sufficiently large.

Despite these initial advances in theoretically grounded algorithm configurators,
a significant performance gap remains in practice compared to heuristic methods.
Since there is no theoretical knowledge about the configuration space, sufficient
exploration of © must be ensured. This lack of information prevents guarantees
about the quality of local neighborhood searches or genetic approaches and leads to
conservative estimates of the required number of samples to identify a near-optimal
configuration.

Hyperparameter Optimization (HPO)

Motivation. Not only classical algorithms but also machine learning algorithms
heavily depend on the quality of their preset parameters. In this specific context,

Chapter 2 Algorithm Configuration

machine learning algorithms typically have numerous internal parameters that are
learned by the algorithm itself and cannot be initialized by the user. To avoid
confusion, we will refer to these parameters learned by the algorithm simply as
parameters. Meanwhile, the parameters that must be defined by the user before
running the training process of the algorithm will be called hyperparameters.

The automatic search for an optimal hyperparameter configuration of a machine
learning algorithm for a given dataset of training instances is known as Hyperparam-
eter Optimization (HPO). This process is described in more detail in the following
section.

Problem formulation. Since HPO is a subproblem of AC, we again assume that we
are given a target machine learning algorithm A with n different hyperparameters,
each defined over its domains O, ..., ©,,. The overall hyperparameter configuration
space is denoted by © = ©; x --- x O,,. Instead of multiple problem instances, we
are provided with a training dataset Z,in, Which can be viewed as a single instance
in the context of AC. For this dataset, the goal is to find the optimal hyperparameter
configuration (HPC) 6* € ©. While in AC most algorithms aim to find a configuration
that minimizes the runtime of the target algorithm, in HPO, the cost function is
typically the validation error of A. Nonetheless, the goal in HPO remains the same:
to find the HPC that leads to the smallest cost - in this case to the validation error
- on the given training dataset Z.i,, thereby optimizing the performance of the
learning algorithm A.

An illustration of the HPO problem and the task of a hyperparameter configurator
is shown in Figure 2.2. The components provided are indicated in the grey boxes,
while the dashed box represents the hyperparameter configurator, also referred to
as the hyperparameter optimizer. Similar to AC, the goal is to identify the HPC that
results in the best performance of the target algorithm according to a loss function
[:0 —>R.

Example. Classical examples of important use cases for HPO include deep neural
networks. These networks often have numerous hyperparameters from various
domains, such as a real-valued learning rate, an integer-valued number of hidden
layers, a binary variable indicating whether to use early stopping, and a categorical
choice of optimizer. Searching manually for the optimal combination of these hyper-
parameters is highly time-consuming, as training a deep neural network typically
requires significant computational resources and time.

Using an HPO method not only reduces the manual effort required by researchers
and practitioners but also improves the performance of the neural network in terms
of validation error. Moreover, it enhances the reproducibility of scientific work and
promotes fairness when comparing different neural network architectures.

2.3 Hyperparameter Optimization (HPO)

13

14

Hyperparameter
Configuration
(HPC) space ©

Parameterized
ML algorithm A

- - : . -
(Select f €@) Train A with 0
__ and evaluate /

Return loss /()

Optimizer

‘/7 Return best ﬁ\.,
_ HPC¥* /

Fig. 2.2.: Demonstration of the task of an hyperparameter optimizer.

Existing Methods. A simple yet effective method, particularly for discrete parame-
ter domains with a small number of hyperparameters is GRID SEARCH, as used in
[Lar+07]. The core idea is to create a grid in the space of HPCs by selecting a fixed,
discrete set of values for each hyperparameter and considering all possible combina-
tions. However, since the number of HPCs that must be tested grows exponentially
with the number of hyperparameters, this approach can become inefficient when
the dimenionality is high.

An alternative approach is RANDOM SEARCH [BB12], where a finite number of HPCs
is sampled randomly. Compared to grid search, where the same values for individual
hyperparameters are tested repeatedly, random sampling better covers the range of
each hyperparameter. However, this method still has limitations: many resources
may be spent evaluating poorly performing configurations, and promising regions in
the HPC space may not be explored thoroughly.

To focus the search on promising areas, BAYESIAN OPTIMIZATION [Wu+19] can be
employed. This method iteratively selects HPCs to evaluate based on a probabilistic
surrogate model of the cost function, such as validation error. After each evaluation,
the surrogate model is updated to better guide the search toward well-performing
configurations.

An HPO method with theoretical guarantees is HYPERBAND [Li+17]. It builds on
the SUCCESSIVE HALVING algorithm, which is used for best arm identification in
Multi-Armed Bandit problems. HYPERBAND iteratively calls SUCCESSIVE HALVING
with varying sets of HPCs and budgets per configuration. This approach addresses
the trade-off between the number of HPCs to evaluate and the computational budget
allocated to each configuration. If many HPCs are evaluated, the configuration space
is well explored, but the performance estimates for individual configurations may be
unreliable due to limited budget allocation. Conversely, allocating more budget to

Chapter 2 Algorithm Configuration

fewer configurations reduces exploration, but leads to more reliable performance
estimated of each considered configuration. HYPERBAND balances this trade-off
effectively and is proven to yield a near-optimal HPC with high probability after
a given computational budget. A more detailed overview of the functionality of
HYPERBAND and its subroutine SUCCESSIVE HALVING is given in Section 4.3.1.

2.3 Hyperparameter Optimization (HPO)

15

3.1

Multi-Armed Bandits

As mentioned in Section 2.3, some Algorithm Configuration (AC) and Hyperparame-
ter Optimization (HPO) methods are inspired by approaches from the Multi-Armed
Bandit (MAB) community. In the following chapter, the settings of stochastic Multi-
Armed Bandits, Dueling Bandits, Combinatorial Bandits, and non-stochastic feed-
back are formally introduced. Alongside a description of these settings, examples of
problems addressed within each framework are provided, and the most important
methods for solving these problems are discussed. Furthermore, the connection
between Multi-Armed Bandit approaches and Algorithm Configuration is elaborated
upon, highlighting the advantages of using MAB methods in the context of AC.

Stochastic setting

Motivation. In sequential decision-making, it is crucial to strike a balance between
gaining new knowledge (referred to as "exploration") and optimizing outcomes by
leveraging existing knowledge to select the best options (referred to as "exploita-
tion"). For instance, in clinical trials, on the one hand, you want to evaluate the
effectiveness of various medical treatments (as long as sufficient prior investigation
ensures that it is ethically acceptable to administer them to patients). On the other
hand, you aim to minimize patient discomfort by providing treatments already
known to be effective. Since the impact of medical treatments can vary from person
to person, multiple trials are necessary to develop a reliable understanding of their
effects.

The Multi-Armed Bandit framework addresses this challenge by focusing on finding
an optimal tradeoff between exploration and exploitation in environments with
noisy feedback. The goal is to identify the best option as quickly as possible or to
select it as frequently as possible within a given time horizon.

Problem formulation. In the stochastic Multi-Armed Bandit setting, there are n
different options, also referred to as arms, which are denoted by their indices
{1,...,n} =: [n]. The action set 2, representing the set of choices available to the
learner at each time step, coincides with the set of arms, i.e. 2 = [n]. At each
time step ¢ € {1,...,7} within a potentially infinite time horizon 7" € NU {co} the
learner must select an action i; € 2(. Upon making this choice, the learner directly
observes feedback, typically in the form of a numerical payoff r;, ; € R, also referred

17

18

to as reward. In the stochastic setting, the reward r;, ; ~ D;, is usually drawn from
an underlying but unknown probability distribution D;, specific to each arm, each
distribution having a mean value of y;, .

The setting was first introduced by [Tho33] and [Rob52] and the name 'Multi-
Armed Bandit’ originates from the prominent example of multiple slot machines,
also known as one-armed bandits, arranged in a row. At each time step, the user
selects one of the gamblers or in other words pulls an arm and immediately receives
a payoff. In this context, the arms represent the available choices in the general
problem formulation. Returning to the earlier example of clinical trials, an arm
would correspond to a specific medical treatment, and the observed reward would
be the improvement in a patient’s health.

We can distinguish between two different problem scenarios in MABs. In the best
arm identification problem, the learner’s goal is to identify an arm * € 2 that yields
the highest average reward as quickly or as reliably as possible. Formally, we are
looking for

i* € argmax; o [t

and define the maximal mean value as p* = max;cy p;. Within the best arm
identification problem, we can further distinguish between two different directions.
The first is the fixed confidence setting in which we are given a maximum allowable
failure probability § € [0,1] and the objective is to identify the best arm with a
confidence level of at least 1 — ¢ as quickly as possible. The second problem variant
considers a fixed budget of allowed arm pulls. The objective in this setting is to
maximize the probability that the returned best arm is indeed the true best arm,
without exceeding the given budget. Note that to solve the best arm identification
problem, thorough exploration is essential, while exploitation becomes unnecessary
once we are sufficiently confident about the quality of an arm. For this reason,
this problem scenario is also referred to as the pure exploration problem in some
literature, such as in [BMS09].

The second potential problem scenario is the regret minimization problem. Here,
the goal is to select and pull the arms in such an order and with such a frequency,
that the expected regret incurred from these choices is minimized. To quantify this,
we define the cumulative regret as a measure of the cumulative suboptimality of the
chosen arms up to a given time 7" € N, as follows.

T

T
Rr = maxz Tit — Z iyt
e t=1

Choosing the best arm at every time step minimizes the cumulative regret. However,
since both the rewards and the arm choices at each time step are stochastic in
the considered setting, it is more meaningful to evaluate the cumulative regret in

Chapter 3 Multi-Armed Bandits

expectation. This measure is referred to as the expected regret and is calculated as
follows

T
E[Rr] =T - p* = pi,.
t=1

However, the learner cannot directly observe the expected regret and must estimate
the mean values of each arm’s reward distribution. While the time horizon T can, in
principle, be infinite, exploiting high-performing arms is crucial to keep the expected
regret as small as possible. However, exploration is equally important, as the learner
needs to accurately estimate the mean rewards to reliably identify good arms.

In principle, a regret minimization algorithm can be adapted to solve the best arm
identification problem by returning the arm with the highest estimated mean reward
after meeting a predefined stopping criterion, such as a specific number of time
steps. However, because regret minimization algorithms are designed to minimize
expected regret as their primary objective, they are typically suboptimal for best
arm identification. In other words, if a fixed budget of arm pulls is available, regret
minimization algorithms are unlikely to minimize the failure probability effectively.
Similarly, if a desired failure probability is specified, these methods are unlikely to
identify the best arm as quickly as algorithms specifically designed for best arm
identification. This discrepancy arises from the differing objectives of the two types
of algorithms.

Example. A classic example is choosing a restaurant for dinner, as illustrated in
Figure 3.1. Each day, you can select one of the nearby restaurants. You face the
dilemma of deciding whether to revisit your favorite restaurant—where you've dined
many times and know the food is delicious—or to try a restaurant you've visited less
frequently. Always choosing your favorite restaurant might cause you to miss out
on discovering an even better one. For instance, during your last visit to another
restaurant, the chef may have had an off day, even though they usually prepare
food that surpasses your favorite spot. On the other hand, trying a new restaurant
involves the risk of receiving food that is not as good as what your favorite restaurant
offers.

Theoretical Guarantees. One of the great advantages of MABs is the possibility
to derive some theoretical guarantees. For the best arm identification problem
with fixed confidence, there are for example some bounds on the necessary budget
required to identify the best arm with the desired confidence. This is usually
done using the law of large numbers which guarantees that the estimated mean
rewards will converge to their ground truth and some concentration inequalities
like Hoeffding’s or Bernstein’s inequality. Thus, if the time horizon is large enough,
we can distinguish which arm has a higher mean reward with high probability. In

3.1 Stochastic setting

19

20

RAND
& Srenne!

N T8
N i
4

Fig. 3.1.: The difficult choice between your favorite restaurant and a new opened one from

[@].

contrast to this, for the fixed budget setting the failure probability of selecting an
incorrect arm can be bounded.

In the scenario of regret minimization, the goal is to bound the expected regret
that is suffered until a specific time step 7' € N as the name of the problem already
suggests. Note that if you simply randomly select an arm in each time step, you
will suffer a cumulative regret that grows linearly over time. Thus the goal for the
theoretical analysis of an algorithm is to derive an upper bound on the suffered
expected regret that is sub-linear. On the other hand, it is proven e.g. in [Bub12]
that any algorithm suffers at least a logarithmic regret for Bernoulli distributed
rewards. The problem-independent lower regret bound for any distribution is of
order vnK, so the expected regret cannot get smaller than this to guarantee enough
exploration. The approach to derive this regret bound is to estimate an upper bound
on the number of times suboptimal arms are pulled.

Existing Methods. A method tackling the best arm identification problem with
fixed confidence is called TRACK-AND-STOP and was proposed in [GK16]. The main
idea is to ensure that the number of pulls for each arm remains proportional to the
theoretically optimal allocation and to stop when a statistical test confirms that one
arm has a larger estimated mean reward than all others, with an error probability of
at most ¢. The sample complexity of their algorithm to find an optimal arm with
probability at least 1 — § asymptotically matches the lower bound they derived for
the sample complexity of this problem.

An example of a method solving the fixed budget best arm identification problem
is the SUCCESSIVE HAIVING algorithm in [JT16]. The strategy involves dividing
the available budget uniformly across all iterations. After each iteration, the worst-
performing half of the arms is discarded, such that we have double of the budget
available per arm in the next iteration. The authors derived a sufficient budget to

Chapter 3 Multi-Armed Bandits

Arm selection:

Estimated

mean .

rewards 1
i o i

Adjust estimations

Arm Arm

Fig. 3.2.: Example of one time step with the Upper Confidence Bound approach.

guarantee that SUCCESSIVE HALVING returns the best arm, which is dependent on
the number of rounds that are needed to discard all except one arm log,(n), on the
number of overall arms n, the speed the rewards converge to their mean values and
the difficulty of the problem, characterized by the suboptimality gap * — p; for each

Several methods address the regret minimization scenario. A famous example is an
UpPPER CONFIDENCE BOUND (UCB) approach (see e.g. [Bub12]), where the strategy
is to construct intervals around each estimated mean reward in which the real mean
reward lies with high confidence. These confidence bounds shrink as the arm is
pulled more frequently, increasing certainty about the estimated mean. In each time
step the arm is selected that has the highest upper confidence bound which can be
interpreted as an optimistic estimate of the expected reward for each arm.

An example is shown in Figure 3.2, where the confidence intervals of the arms are
represented by the colored bars around the estimated mean rewards that are shown
by the black dots for each of the considered four arms. The arm with the highest
upper confidence interval bound is the orange arm, which is then selected by the
learner. After that, the confidence bounds are adjusted according to the observed
reward and get smaller since we have a higher confidence about the estimated mean
reward now. In the next time step, the learner would pull the blue arm which is the
one with the highest upper confidence bound value now.

For Bernoulli distributed rewards, suboptimality gaps A; := p* — u; and an ex-
ploration factor o > 1, the expected regret of UCB can be bounded by E[Ry] <

D i)\ {i*} (O‘—“Ai + QC“IA%T). The lower bound for Bernoulli distributed rewards

a—1
has the form lim inf,, o0 E[R7] > 3=;ci) (i} % as shown in [Bub12], where
kl(z,y) denotes the Kullback-Leibler divergence, which measures the dissimilarity

between two probability distributions.

An alternative approach to addressing the regret minimization problem is the prob-
ability matching strategy. Here, the goal is to pull each arm exactly with the same
probability that matches the Bayesian posterior probability that the arm is the best
option. The most famous algorithm that follows this approach is the THOMPSON

3.1 Stochastic setting

21

22

SAMPLING algorithm [KKM12]. It works by maintaining a probability distribution
for each arm’s reward (e.g., Gaussian for unbounded rewards or Beta for bounded
rewards) that approximates the posterior distribution given the observed data. In
each time step, a reward sample is drawn from the posterior distribution for each
arm, and the arm with the highest sampled reward is selected. In a theoretical anal-
ysis, the authors have shown that for every ¢ > 0, there exists a problem-dependent
constant C'(e, p1, . .., i4n), which accounts for the variability in problem complexity,
such that the expected regret suffered by THOMPSON SAMPLING can be bounded by

E[Rr] < (14 €) Tiepup (i) iy ot + C(e, i1y s in)-

Connection to Algorithm Configuration In principle, by interpreting the parameter
configurations as arms and the negative of the cost function as rewards, we can
interpret each AC problem with a finite configuration space © as a MAB problem.
While the classical AC problem in which we want to find one configuration that
performs well on average coincides with the best arm identification problem in MABs,
the per-instance AC problem can be seen as a regret minimization problem, where
the regret is defined as the difference between the observed cost for the chosen
configuration and the cost for the optimal configuration on the corresponding
problem instance.

The main difference in practice is that MABs usually deal with a finite number of
arms while the parameter configuration spaces in AC are often very large and may
even be infinite. However, with an appropriate discretization of the configuration
space, it is also possible to transfer AC problems with an infinite configuration space
O to a MAB problem. The simplest possibility would be to sample a finite number of
configurations uniformly at random from © and to assume simultaneously that the
proportion of (near-)optimal configurations in the space is large enough to have at
least one of the (near-)optimal configurations contained in the sample set. Note that
one sampled configuration belongs to the ~ proportion of best configurations with
probability ~, thus if we sample n many configurations 64, ..., 0, € © uniformly at
random, the probability that at least one of the n sampled configurations belongs
to the top « proportion of configurations is 1 — (1 — «)". By defining an acceptable
failure probability ¢ € (0,1) for the algorithm configurator and setting this > to
the probability (1 —)™ that we have no configuration sampled from the best v
proportion, we can solve the equation for the number of samples n and can derive
that we need at least n > [log(¢)/log(1 — 7)] samples to ensure that at least one
configuration from the top proportion is included in the sample set with probability
at least 1 — (.

The huge advantage of using MAB methods for AC problems is that these usually
come with theoretical guarantees. By simple adjustments like discretizing the
parameter space and sampling the problem instances uniformly at random from the
instance space, it is possible to transform these guarantees to the AC setting which
leads to more trust in the returned configurations. Moreover, resource efficiency
can be guaranteed if it can be shown that the sufficient budget for the algorithm

Chapter 3 Multi-Armed Bandits

3.2

to return a near-optimal configuration with high probability (almost) matches the
theoretically derived necessary budget.

Dueling Bandits

Motivation. In some cases, it could be hard or even impossible to observe numerical
feedback for selecting an arm and it might be easier to observe relative preferences,
i.e., which arm performs better in a direct comparison. Consider, for example, a
soccer match, where we cannot directly observe a numerical value that accurately
represents the quality of a soccer team. Instead, it is often easier to observe which
team wins against another in a match. To address this scenario, the concept of
dueling bandits was introduced [YJO9; Yue+09; Ben+21] and will be described in
more detail in the subsequent section.

Problem formulation. In the Dueling Bandit or also called Preference-based Bandit
setting, we are given a set of n € N different options, denoted by [n]. In contrast
to the stochastic MAB problem, the learner can now choose in each time step
t € {1,...,T} C Ntwo arms i, j; € [n] instead of only one. Thus the action set is
given by 2 = {(i,j) | i,j € [n]}. The observed feedback is binary r, ;). € {0,1}
and can be interpreted as information on whether arm i; beats arm j; in a direct
comparison which we denote in the following as i; > j;. These direct comparisons
are also called duels since you can regard each comparison as a competition of
the two chosen arms with only one winner. Note that ties are usually not allowed
with only a few exceptions, for instance in [BHH24]. If we allow to choose the
same arm 7 € [n] twice in one duel, the observed feedback is defined as r(; ;) , = 1
with probability % and otherwise r(; ;) , = 0 which, in expectation, corresponds to
deciding the winner by tossing a coin. In Dueling Bandits, we estimate not the
rewards of an arm but rather the probabilities that an arm ¢ € [n] wins against its
competitor j # i, j € [n]. We denote the winning probabilities as p; ; € [0, 1]. Note
that when p; ; = 0.5, it is impossible to determine a better arm which motivates the
introduction of the calibrated pairwise probabilities

1
Rij =rij =5

These values define the hardness of the considered problem. If the absolute value of
A; j is large for all ¢, j € [n], the problem is easy to solve, while it gets harder as A, ;
approaches 0 for some 7, j € [n]| because it becomes more challenging for the learner
to determine whether arm i or arm j is more likely to win the majority of duels in
expectation.

In this setting, defining a best arm is more complex compared to the stochastic MAB
problem, which has led to the development of various winner concepts.

3.2 Dueling Bandits

23

24

* Obviously, a best arm would be the one that wins against every other in each
duel in expectation. We call this arm the Condorcet Winner (CW) and define it
formally as

i* e {ien]|pi;>05Vj € n]}

Note that in practice, it can happen that we have cycles in the winning prob-
abilities and thus a Condorcet Winner does not exist. An example of such a
cycle can occur in a soccer tournament, where team A beats team B, team B
beats team C and team C beats team A. In this case, a Condorcet Winner does
not exist. This is why several other winner concepts were introduced.

* If a Condorcet Winner does not exist or in other words no arm wins against
all other arms in expectation, we can weaken the notion of the best arm to
the one that wins most frequently the duels against other arms in expectation.
This arm is called the Copeland Winner and is formally defined as

iCope € {1 € [n] | di > d; Vj € [n]}, where d; = [{j € [n] | pij > 0.5}].

* The weakest of the commonly used definitions for a best arm is the so-called
Borda Winner which is the arm that maximizes the average winning probability
across all other arms. Formally, we have

" 1
Borda & AT8MAX ey Z Dij-
T jeinlgi

A common goal in the Dueling Bandit setting is to identify and return one of the
best arms defined above with minimal sample complexity or maximal confidence.
Similar to the stochastic MAB setting, the problem of identifying the best arm is also
called the best arm identification problem or pure exploration problem in Dueling
Bandits.

Analogously to the stochastic MAB setting, another goal in Dueling Bandits could be
to suffer minimal expected regret during a specific or even infinite amount of duels.
For this, we first have to clarify how to define the expected regret in the Dueling
Bandit setting. Similar to the different notions for a best arm, we also can define
various types of the expected regret for Dueling Bandits. In fact, three different
kinds of regret measures are established in the Dueling Bandit literature that are
presented in the following.

* The strong regret is the sum of the calibrated pairwise probabilities of the
overall best arm over the worst of the two chosen arms at each time step. In

Chapter 3 Multi-Armed Bandits

other words, it is only 0 in each time step if both of the chosen arms in that
time step coincide with the best arm. We write

T
strong __
RT = Z maX{Ai*ﬂ't? Ai*,jt }
t=1

From a learning perspective, choosing the same arm twice for a duel does not
make sense, since we gain no new information about the winning probability
of one arm over another. Each time the learner wants to explore some new
information, he automatically suffers some strong regret.

* The average regret sums up the average of the calibrated pairwise probabilities
of the overall best arm over both chosen arms in each time step. Formally,

—_

[Eﬂﬂ

Ry =) = (Api +Apj,).

t=1

While trying to minimize the average cumulative regret, it still makes sense
for the learner to try to choose two arms that are as good as possible, since
both are contributing equally to the suffered regret in that time step.

* The weak regret only sums up the calibrated pairwise probability of the overall
best arm over the better one of the chosen arms in each time step. We have

T
R%eak‘ — Z min{Ai*,itv Ai*vjt }
=1

When the learner aims to minimize the weak cumulative regret, it is enough to
choose one good arm in each duel. The second arm can be chosen arbitrarily
in that time step and does not play any role for the suffered weak regret.

Note that we get an induced hierarchy of the regrets of r£c®* < r3'9 < 757",

Example. Returning to the example from the stochastic MAB section about choosing
the best restaurants for dining, it might be challenging for the user to rank the quality
of a restaurant on a numerical scale. Instead, the user can more easily express a
preference between two restaurants by comparing their food directly. To make such
a comparison, the user must visit two restaurants each day and can then decide
whether the first restaurant was better or worse than the second one.

In this scenario, it is typically assumed that the quality of the restaurants is transitive.

This means that if restaurant A is better than restaurant B, and restaurant B is better
than restaurant C, then the user should also prefer restaurant A over restaurant C. A
possible goal in this example could be to identify the Condorcet Winner — in other
words, the restaurant that is better than all others in direct comparisons.

3.2 Dueling Bandits

25

26

Theoretical Guarantees. Similar to stochastic MABs, also in Dueling Bandits it is
common to prove a bound for one or multiple of the different types of the expected
regret. In addition to this and again similarly to stochastic MABs, there exist some
bounds of the expected regret that only hold with high probability in the form that
P(Rr < zgn,1) > 1 — 6 where 6 € (0, 1) represents the allowed failure probability.
The bound zg ,, 7 usually somehow depends on the n xn pairwise winning probability
matrix Q = (pi ;) j)eu, the number of arms n and the time horizon T'.

For the best arm identification problem a common aim is to derive a bound on the
sample complexity, where, in our context, sample complexity means the number
of duels required to identify the winner. Again this might not be guaranteed with
certainty but only with a high probability for an allowed error probability.

In the probably approximately correct (PAC) learning scenario the goal is to identify
an arm that is near-optimal in the sense that its winning probability is at most an ¢
worse than the winning probability of the overall best arm * or formally we call ;
an e-optimal arm if

V] S [n] DoDixj —pz,j <e.

This e-optimal arm should then be identified with a probability of at least 1 — § by
an algorithm to classify it as (¢, §)-PAC-optimal. Note that several notions of an
e-optimal arm exist and the above definition is only one possible out of multiple ones.
Another possible definition for an e-optimal arm is that its winning probabilities are
only a factor 1+ ¢ worse than the winning probabilities of the overall best arm i* like
in [Mas+20]. However, we will stick to the more commonly used first and additive
definition of e-optimality in the following.

Existing Methods. First of all, it is worth mentioning that any stochastic MAB
problem can easily be transformed into a Dueling Bandit problem and solved by a
Dueling Bandit algorithm in the following way. If we can observe two numerical
rewards 74,7 € R in the stochastic MAB setting we can simply define each
possible pair of arms (4, j) for i,j € [n] as the action set 2 and after pulling two
arms (i,j) € 2 we can define the binary winner feedback as r(; j); == 1¢, >,)
from the observed numerical rewards which can then be used as the observation in
the Dueling Bandit setting.

Due to the similarity of the stochastic MAB and the Dueling Bandit setting, some
algorithms presented earlier in the stochastic MAB section 3.1 can be adapted to the
Dueling Bandit setting. For example, for the UpPER CONFIDENCE BOUND algorithm,
there exists a preference-based version, called RELATIVE UCB [Zog+14], to solve
the best arm identification in Dueling Bandits. It works by choosing in each time
step the first arm uniformly at random from all arms that can still be the Condorcet
Winner which are the ones that have estimated winning probabilities > % against
any other arm. The second arm is then chosen as the best competitor in the face of
uncertainty or in other words, the arm with the highest upper confidence bound on

Chapter 3 Multi-Armed Bandits

3.3

the probability that it beats the first chosen arm.

As an example assume that arm 7 € [n| was selected as the first arm with p; ; >
% Vj € [n] and in Figure 3.2 are the pairwise winning probabilities p; ; shown of
arm 7 against the other arms inclusive the colored confidence bounds of the pairwise
winning probabilities. The most promising competitor for arm ¢ would then be the
orange arm, thus the algorithm executes a duel between arm 7 and the orange arm.
Depending on the observed winner, the estimated winning probabilities are updated
afterwards. The authors provide a cumulative regret bound for their algorithm of
the order O(nlogT) at any time step 7" € N.

A common assumption for a best arm identification algorithm in Dueling Bandits is
that a Condorcet Winner exists which is, as described above, not always the case and
in addition far from trivial to check this assumption beforehand. The same problem
occurs for the assumption of transitivity in the sense that if arm i beats arm j and
arm j beats arm k, then also arm ¢ beats arm k.

To overcome this problem [Had+21] introduced the so-called TESTIFICATION of
the Condorcet Winner in which the algorithm identifies a Condorcet Winner while
simultaneously testing whether one exists. Otherwise, it will simply return the
statement that no Condorcet Winner exists.

A commonly used algorithm for weak regret minimization in the Dueling Bandits
is the so-called WINNER STAYS algorithm [CF17]. It chooses one arm uniformly at
random from the arms that have a high winning probability and duels it against
each other arm. If some arm can beat it with high probability, then this arm will be
taken over to the next duel as the arm that has to be beaten now by any other. With
this strategy, you always have the arm that is currently assumed to be the best one
contained in each duel and thus you suffer 0 weak regret in each time step at least if
the estimated best arm is correct. To be more precise, the authors derived a weak
regret bound of O(nlogn) that is independent of the runtime, if a total order of the
arms exists.

Combinatorial Bandits

Motivation. Due to the growing amount of computational resources, in recent times,
it has become relatively easy to simulate multiple arm pulls in parallel during each
time step in empirical studies. In fact, to generalize the stochastic Multi-Armed
Bandits and Dueling Bandits further, we can consider scenarios where a set of K € N,
K > 2 arms are played together in each time step. Coming back to the example of
restaurant preferences, we can now assume that we can visit multiple restaurants
per day, for example, one for breakfast, one for lunch, and one for dinner. At the
end of each day, we decide which of the visited restaurants had the best food. The
example of sports tournaments can also be extended to this case if we consider now
sports with not only two teams or players competing against each other but multiple
ones. For instance, in a bicycle race in which multiple riders race against each other

3.3 Combinatorial Bandits

27

28

and try to reach the finish line as fast as possible, and, most importantly, faster
than all current competitors. Usually, the best riders get assigned points for the
world ranking afterwards depending on their positions, where the winner of the race
receives the highest number of points, and the worse the position the fewer points
are given to the athlete. In this example, the goal is to order all cyclists according to
their racing abilities as reliably as possible for the world ranking. However, there
are various goals possible in this setting. For example, a sponsor is not interested
in a ranking of all cyclists but is only interested in knowing who is the best and
wins the most races on average. If the sponsor places his advertisements on the
jersey of the best athlete, he will get the most attention. We will call this setting the
Combinatorial Bandits and explain it in the following in detail.

Problem formulation. In the Combinatorial Bandit setting we are again given a set
of n € N different alternatives which we denote by their indices [n] = {1,...,n}. At
each time step a subset of arms, referred to as a superarm S; = {i;1,... itk } C [n]
is chosen which contains exactly K € N arms. In other words, the action set can
be defined as 2 = {(i1,...,ix) | i1,...,ix € [n]} C 2[", where 2["! is the set of all
possible subsets of [n].

With a larger number of arms pulled in each time step, we also have more options
for the received feedback afterwards. The commonly used definitions as described
in [CWY13] or [ABL11] are as follows.

* In the semi-bandit feedback a numerical reward is observed for each arm
contained in the superarm. If we have S; = {i;1,...4: x} € 2 in time step ¢,
then we can observe a vector of reward values ry = (7, , 5,4, Ti, g,50,t) €
RE, where the rewards 1i,5,,+ for each arm ¢ € S; are sampled (not necessarily
independently) from an underlying probability distribution for each arm that
may be dependent on the superarm S;.

* In the full bandit feedback, the learner observes a numerical reward not only
for each arm in the selected superarm but also for all other arms i € [n]. Thus,
we can observe exactly n different numerical values r;; s, ; € R at time step ¢
after pulling superarm S; € for j € {1,...,n}. These rewards are sampled
from an underlying probability distribution for each arm that again can in
principle depend on the selected superarm S;.

* In the bandit feedback it is only possible to observe the sum of the numer-
ical rewards for every chosen arm. In other words, let ; 5, ; € R the (not
necessarily independently) sampled numerical reward for each arm i € S;
contained in the superarm .S;. Then we can only observe an overall reward of
Tt = Y ies, Ti,s,,t after playing the superarm S;.

Note that for the special case of a subset size of K = 1 and the semi-bandit feedback,
we are in the same setting as in the stochastic Multi-Armed Bandits again, so

Chapter 3 Multi-Armed Bandits

the Combinatorial Bandit setting can be viewed as a generalization of the MAB
setting.

On the other hand, assume we have only binary feedback in the semi-bandit feedback
scenario, thus, for each arm i € S; contained in the superarm S;, we receive a reward
ri s+ € {0,1}. In addition, a reward of 1 is assigned exactly to one arm in Sy; in
other words }”;.q, 3,5, = 1 in each time step ¢ € N. Each play of a superarm
can then be interpreted as a multi-duel among the K selected competitors. The
preference-based feedback indicates the winner i’ € S; of the multi-duel that has
areward of r; g, ; = 1 while for every other arm ¢ € S; with ¢ # ¢/, we observe the
reward of 7; g, + = 0. In the special case, that we have a subset size of K = 2, we
have exactly the same setting as in the Dueling Bandits. For a general subset size of
K € Nwith K > 2, we can interpret the Combinatorial Bandits as a generalization
of the Dueling Bandits. Note that the terminology for this setting varied in the
related literature and is referred to as, for example, multi-dueling [Sui+17], battling
[SG19], choice [AJA20] or preselection bandits [BH20]. We will stick to the term
Combinatorial Bandits with preference-based semi-bandit feedback.

Depending on the feedback scenario we consider, various types of regret measures
can be defined. These are typically defined by adapting and transferring the weak,
average, or strong regret measures introduced in the Dueling Bandit section to the
Combinatorial Bandit setting. To describe this in detail would be out of the scope of
this thesis.

In alignment with the various types of feedback and regret measures, also different
types of winner concepts exist.

* The first option is the aim to find a single best arm. To define this, the winner
concepts from Dueling Bandits can be extended to the Combinatorial Bandit
setting. For example, we call the arm that wins all multi-duels in which it
participates, the Generalized Condorcet Winner, but we can also consider a
Generalized Copeland Winner that wins most of the multi-duels or the Gener-
alized Borda Winner that has the highest winning probability in a multi-duel
on average. Note that in particular in the scenario where we observe some
numerical reward per chosen arm or per chosen superarm, it is possible to
define many more sensible winner concepts, e.g. the arm with the highest
average reward in the semi-bandit or full-bandit feedback scenario or the arm
that contributes the most to the reward in the bandit feedback scenario.

* The second option is the aim for learning a ranking of the arms. This setting
typically assumes an underlying probabilistic model that is for example rep-
resented by some underlying utility for each arm that somehow values the
quality of the associated arm. Using these utility values, which are learned
by the method, one can compute the position of the corresponding arms in a
ranking e.g. by using the Plackett-Luce [Pla75; CL59] or more generally, the
Bradley-Terry model [BT52].

3.3 Combinatorial Bandits

29

30

* The third option is to find the best superarm that contains the K arms yielding
optimal feedback. In the bandit feedback, this is for example easily identifiable
as the one with the highest reward. For the semi-bandit feedback with binary
rewards, it suffices to include a Generalized Condorcet Winner in the superarm,
and the rest of the arms can in principle be chosen arbitrarily. For semi-bandit
feedback with numerical rewards, the task of finding the best superarm is
related to the task of finding a ranking of the arms since naturally, the set of
the best K arms builds the best superarm if such a ranking exists.

Example. Assume you are an online shop provider with limited space to display
articles to consumers at each time step. In this scenario, the articles in the online
shop correspond to the arms, and the subset of articles displayed to the consumer
represents the superarm. Feedback is given as follows: a value of 1 is assigned to
the item chosen and purchased by the consumer, while all other displayed items
receive a feedback value of 0, indicating they were not purchased. Thus, we are in
the semi-bandit feedback scenario with binary rewards.

This problem can be interpreted as a weak regret minimization problem. Since the
online shop operates over a long time horizon, the objective for each visitor is to
display a set of items that ensures the consumer purchases at least one, thereby
generating profit for the shop. The weak cumulative regret for a given time step
is 0 if the consumer decides to buy at least one article, which aligns with the shop
owner’s goal.

Theoretical Guarantees. In the Combinatorial Bandit setting, similar theoretical
guarantees to those in the Dueling Bandit setting exist. For example in the regret
minimization problem, some regret bounds were derived, e.g. for the UCB general-
ization algorithm, the THRESHOLDING RANDOM CONFIDENCE BOUND which has an
expected utility regret bound of O(,/KT log(T')) [BH20].

For the (near-) optimal arm identification problem, there exist some proofs for the
necessary budget of arm pulls in the (¢,)-PAC-learning scenario. For example, the
SUCCESSIVE HALVING generalization HALVING BATTLE [SG18] needs a number of
pulls in O(?2 log(%)) to identify an e-optimal arm with probability at least 1 —§ under
specific assumptions, such as the existence of an underlying Plackett-Luce model for
preference probabilities. Another Successive Halving generalization called UNIFORM
ALLOCATION [SG18] provides an error probability bound for identifying the best arm
within a predefined budget, assuming that rewards adhere to a specific probabilistic
structure.

In scenarios where the goal is to find a top-k ranking with high probability, the
ALGMULTI-WISE algorithm [CLM18] provides sample complexity bounds for the
necessary pairwise comparisons.

Chapter 3 Multi-Armed Bandits

3.4

Existing Methods. Depending on the kind of feedback you can observe, the existing
algorithms for Dueling Bandits can be adapted for Combinatorial Bandits in scenarios
with preference-based feedback, while methods from stochastic Multi-Armed Bandits
are suitable for adaptation to numerical reward feedback. This is possible for both
problems, for the best arm identification as well as for the regret minimization, as
far as the used concepts for best arms and regret coincide. Thus, there are several
existing algorithms for the Combinatorial Bandit setting, addressing a wide range of
feedback types, regret measures, and winner concepts.

Famous examples of the existing algorithms for regret minimization in Combinatorial
Bandits with preference-based feedback is INDEPENDENTSELFSPARRING [Sui+17]
which is inspired by the THOMPSON SAMPLING algorithm and maintains a Beta
distribution for the winning probability of each arm. Based on these distributions,
the algorithm samples arms for selection in each time step. It is proven that the arm
estimated as the best by the algorithm converges against the true best arm as the
time horizon approaches infinity 7' — oo.

For numerical feedback, there exists an extension of the UCB framework called
MULTI-DUELING [Bro+16], where confidence bounds on the estimated mean reward
of each arm are constructed based on the number of pulls. In each time step,
the algorithm selects the K arms with the highest upper confidence bounds for
evaluation.

For best arm identification in the preference-based feedback case, [SG18] introduced
TRACE-THE-BEST which selects the currently most preferred arm together with K — 1
randomly chosen arms. This approach exploits the best arm while maintaining
exploration of other arms.

Non-stochastic setting

Motivation. To further generalize the stochastic MAB, Dueling Bandit, and Combi-
natorial Bandit settings, it is useful to relax the common assumption of an underlying
stochastic process that generates the observed feedback. This generalization ad-
dresses more practical scenarios where such stochastic distributions might not exist
or adequately represent the feedback generation process.

In many real-world applications, the observations might be generated by adversarial
processes, or the feedback might only satisfy a weaker assumption of convergence to
a limiting value for each arm over time. This relaxation broadens the applicability of
bandit frameworks to non-stationary or adversarial environments, where traditional
stochastic models fail to capture the complexity of the observed data. In this section,
we will focus on the case and examine settings where the observations for each
arm converge to a limit over time, rather than being generated by fixed stochastic
distributions.

3.4 Non-stochastic setting

31

32

Formulation. We extend the MAB, Dueling, and Combinatorial Bandit frameworks
by considering a non-stochastic feedback setting, where the observed feedback is
generated differently from the stochastic case. Instead of rewards sampled from a
stochastic distribution, we allow rewards r;; for a (super-)arm ¢ € after ¢t € N
many pulls to be generated without assuming an underlying stochastic distribution
in the non-stochastic feedback setting. The only assumption is that the time-averaged
rewards for each arm converge to a limit value:

1
tlggogszzlriys — v, €R VieXl
Note that the setting of an underlying stochastic reward distribution is a special
case of the non-stochastic setting since the arithmetic mean of the observed rewards
also converges against the expected value of the reward distribution for each arm
according to the law of large numbers. Thus we can regard the non-stochastic setting
as a generalization of the stochastic setting.

The assumption that such a limit exists automatically implies the existence of a
convergence speed. Thus we have a non-increasing function v : N — R with

1 t
Z Z Tis — Vg
s=1

This can be seen as a generalization of the law of large numbers in the stochastic
setting and is an important ingredient for the theoretical analysis of algorithms that
can solve the non-stochastic best arm identification problem. We can interpret the
convergence speed as an indicator of the hardness of the best arm identification
problem. The steeper the function + decreases, the faster the rewards converge
against its limit values, and the fewer samples of the rewards are needed to get
a reliable estimation of the limit value, thus the easier the problem is to solve.
However, the inverse of v can be used to determine the number of arm pulls that are
necessary to distinguish the quality of the arms with high probability in a theoretical
analysis. It is worth mentioning that in the case of Combinatorial Bandits, the
rewards of a single arm in the semi-bandit or full-bandit feedback scenario can
depend on the chosen superarm S; € 2 at this time. For simplicity, we omitted the
notation of these dependencies.

<A(t) Vied

Example. In some cases, problems that appear to be stochastic best arm identifica-
tion problems can be more effectively addressed by relaxing the i.i.d. assumption for
the observations. A notable example is hyperparameter optimization, where the goal
is to identify the best internal parameters for a machine learning algorithm. In such
scenarios, it can be advantageous to go beyond simple random restarts by selecting
the initial conditions strategically or dynamically allocating resources based on the
current performance of the evaluated configurations. Following this approach, the
performance metric of the target algorithm under a given configuration is no longer
an i.i.d. sample of its true quality.

Chapter 3 Multi-Armed Bandits

Existing Research. The pure exploration problem in non-stochastic MABs with
fixed budget has been studied in [JT16]. The authors derived a necessary budget to
ensure the identification of the best arm and extended their results to a PAC-learning
setting. In this setting, they guarantee the identification a near-optimal arm with a
high probability, provided the budget is sufficiently large.

In the case of feedback generated by an adversary, there exists an extensive body of
literature. For example, [BS12] and [Abb+18a] proposed a framework designed
to perform well in both scenarios: for stochastic feedback and for adversarial
feedback.

3.4 Non-stochastic setting

33

4.1

State-Of-The-Art and
Contributions

In this chapter, we briefly discuss the relevant related work and the state-of-the-art in
the field related to our contribution. In addition, we outline the specific contributions
of this thesis, highlighting how our methods differ from and improve upon existing
approaches.

Finding Optimal Arms in Non-stochastic
Combinatorial Bandits

Combinatorial Bandits with preference-based feedback. As described in Section
3.3, there exists already a huge amount of literature tackling the best arm identifi-
cation problem in Combinatorial Bandits with preference-based feedback. Famous
examples are TRACE-THE-BEST [SG19], in which the currently estimated best arm is
dueled against a random subset for a specific amount of time steps and afterwards the
worst arms are eliminated from the possible winner candidates iteratively. To return
an e-optimal arm with probability at least 1 — § for given € and §, TRACE-THE-BEST

needs a sample complexity of order O (6% log %)

Another algorithm solving the best arm identification problem in Combinatorial
Bandits with fixed confidence is DIVIDE-AND-BATTLE [SG19]. It randomly divides
all arms into subsets of size K, plays each subset a specific amount of time, and
eliminates all arms from the subset except the one that won most frequently. This
improves the logarithmic term in the sample complexity to an overall number of

sufficient samples of order O (6% log %)

The above-mentioned extensions of SUCCESSIVE HALVING called HALVING BATTLE
[SG19] and UNIFORM ALLOCATION [SG19] both randomly select a subset of K arms,
duel them for a specific amount of time and discard the worst half afterwards. While
in the HALVING BATTLE the number of pulls per subset is determined based on a
given fixed confidence § and error bias ¢, UNIFORM ALLOCATION chooses the number
of time steps one subset is dueled based on a fixed budget of time steps that is
distributed uniformly over all subsets. The authors derived a sample complexity
of O (6% log %) for the HALVING BATTLE which improves upon DIVIDE-AND-BATTLE

further. What all of these methods have in common is that they assume a stochastic

35

feedback mechanism and to our knowledge no algorithm exists that identifies the
best arm in Combinatorial Bandits in a non-stochastic preference-based feedback
setting.

Combinatorial Bandits with numerical feedback. Best arm identification with fixed
confidence in Combinatorial Bandits with numerical semi-bandit feedback was
studied by [Jou+21]. In their approach, the action set is derived from a zero-sum
two-player game where both aim to minimize the regret based on estimated weights
for each arm. However, their work assumes an underlying stochastic distribution for
the reward generation process.

The same holds for the literature regarding the bandit feedback setting, such as
[DKC20] and [Kur+20]. Moreover, to the best of our knowledge, there is no existing
work for Combinatorial Bandits that can cover both, preference-based as well as
numerical feedback.

Non-stochastic feedback. A MAB algorithm that finds the best arm in a non-
stochastic reward scenario is the well-known SUCCESSIVE HALVING algorithm [JT16]
that is described in detail in Section 4.3.1. In [BS12], the authors propose an algo-
rithm designed to cover both settings, the stochastic and non-stochastic feedback
scenario. In the context of Dueling Bandits, some works address the non-stochastic
feedback scenario like [GUC15] and [SKM20], but both aim for regret minimization
and not for best arm identification. However, all of these methods are designed
only for Dueling Bandits and none of them can handle multi-duels nor is extended
to the Combinatorial Bandit setting yet. There are some first steps to have only
one algorithm that can be used to handle Combinatorial Bandits as well as Duel-
ing Bandits done in [SJR16]. However, these algorithms were only developed for
preference-based feedback and not for numerical rewards.

Our Contribution. Our work presents a general framework capable of identifying
the best arm in Combinatorial Bandits with a variable set size K € N, also covering
the case of Dueling Bandits where only two arms are compared. The framework
supports a non-stochastic feedback mechanism, which generalizes the stochastic
feedback setting, and it accommodates both preference-based and numerical semi-
bandit feedback. Due to our derived lower bound for the problem and our theoretical
analysis of our algorithm COMBINATORIAL SUCCESSIVE ELIMINATION (CSE), we can
guarantee that the necessary budget for CSE is near-optimal. Our experimental
results validate these theoretical guarantees.

[SG19] Aadirupa Saha and Aditya Gopalan. “PAC Battling Bandits in the Plackett-Luce

36

Model”. In: Algorithmic Learning Theory ALT. vol. 98. Proceedings of Machine
Learning Research. PMLR, 2019, pp. 700-737

Chapter 4 State-Of-The-Art and Contributions

[Jou+21] Marc Jourdan et al. “Efficient Pure Exploration for Combinatorial Bandits with
Semi-Bandit Feedback”. In: Proceedings of the 32nd International Conference on
Algorithmic Learning Theory. Ed. by Vitaly Feldman et al. Vol. 132. Proceedings
of Machine Learning Research. PMLR, 2021, pp. 805-849

[DKC20] Yihan Du et al. “Combinatorial Pure Exploration with Full-Bandit or Partial
Linear Feedback”. In: AAAI Conference on Artificial Intelligence. 2020

[Kur+20] Yuko Kuroki et al. “Polynomial-Time Algorithms for Multiple-Arm Identification
with Full-Bandit Feedback”. In: Neural Computation 32.9 (2020), pp. 1733-
1773

[JT16] Kevin Jamieson and Ameet Talwalkar. “Non-stochastic Best Arm Identification
and Hyperparameter Optimization”. In: Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics (AISTATS). vol. 51. Proceed-
ings of Machine Learning Research. PMLR, 2016, pp. 240-248

[BS12] Sébastien Bubeck and Aleksandrs Slivkins. “The Best of Both Worlds: Stochas-
tic and Adversarial Bandits”. In: Proceedings of the 25th Annual Conference on
Learning Theory. Vol. 23. Proceedings of Machine Learning Research. PMLR,
2012, pp. 42.1-42.23

[GUC15] Pratik Gajane et al. “A Relative Exponential Weighing Algorithm for Adver-
sarial Utility-based Dueling Bandits”. In: International Conference on Machine
Learning (ICML). 2015

[SKM20] Aadirupa Saha et al. “Adversarial Dueling Bandits”. In: International Conference
on Machine Learning (ICML). 2020

[SJR16] Max Simchowitz et al. “Best-of-K-bandits”. In: 29th Annual Conference on
Learning Theory. Vol. 49. Proceedings of Machine Learning Research. PMLR,
2016, pp. 1440-1489

4.2 AC-Band

Theoretically grounded Algorithm Configuration. As already mentioned in Section
2.2, most methods addressing the AC problem are heuristic with only a few theoreti-
cally grounded approaches. As an extension of the first published theoretical method
STRUCTURED PROCRASTINATION, [Kle+19] proposed STRUCTURED PROCRASTINA-
TION WITH CONFIDENCE where the idea is still to delay the solve of hard problem
instances until later. But instead of selecting the configuration with the smallest
mean runtime for the next step, they consider a lower confidence bound on the
estimated mean runtime. The authors proved that an (¢, §)-optimal configuration
will be identified with high probability if the budget is large enough, and were

4.2 AC-Band

37

38

able to derive a smaller necessary budget than in STRUCTURED PROCRASTINATION,
which itself already needs only a budget that is optimal up to a logarithmic factor in
comparison to the lower bound on the budget that is of order Q (OPT%).

In 2019, [WGS19] proposed the theoretical method CAPSANDRUNS which begins by
estimating a runtime timeout for each configuration to ensure that a specific fraction
of instances can complete within the allotted time. Subsequently, a Bernstein race
is conducted over the configurations, where random instances are solved using
each configuration. Finally, configurations with excessively high average runtime
estimates are eliminated from the set of potential winners. An improved version of
this method, called IMPATIENTCAPSANDRUNS [Wei+20], was later published. This
version incorporates a "precheck" mechanism during the runtime timeout estimation
to discard poorly performing configurations more efficiently. The authors also
derived the necessary budget for identifying an (e, 4, v)-optimal configuration with
high probability for specific ranges of ¢, § and ~.

Bandits for Algorithm Configuration. Each algorithm solving the best arm identifi-
cation problem in Multi-Armed Bandits can be adapted to find the best configuration
in an Algorithm Configuration setting by considering each configuration as an arm if
the number of configurations is finite or if the space of configurations is discretized
in some way. The parallel executions of the configurations when racing them against
each other can be modeled by a Dueling or Combinatorial Bandit setting. Motivated
by this, [Li+17] use the well-known Multi-Armed Bandit algorithm SUCCESSIVE
HALVING as a subroutine in their HYPERBAND algorithm for Hyperparameter Op-
timization. However, HYPERBAND is only applicable to the special case of HPO
and not to the general AC setting in which we have to deal with different problem
instances. In the general AC setting, not only is a sampling strategy for selecting
problem instances necessary, but also the goal of the returned configuration changes
to perform well on average over all instances and not only on one specific training
dataset. In addition, a general framework that solves the AC problem should be able
to deal with different cost functions as a performance measure and not only with
the validation loss of the target algorithm.

Our Contribution. Inspired by HYPERBAND, we utilized our previously introduced
Combinatorial Bandit algorithm CSE, which generalizes SUCCESSIVE HALVING, to
develop an AC framework called AC-BAND. This framework samples a varying
number of configurations and calls CSE on these configurations with a specific
budget of resources. We successfully transferred the theoretical guarantees of CSE
to the PAC scenario and derived the necessary budget for AC-BAND to identify an
e-optimal configuration with high probability. In our experiments, AC-BAND demon-
strated significantly faster performance compared to other theoretically grounded
AC methods, while still returning high-performing configurations.

Chapter 4 State-Of-The-Art and Contributions

[Kle+19] Robert D. Kleinberg et al. “Procrastinating with Confidence: Near-Optimal,

Anytime, Adaptive Algorithm Configuration”. In: Neural Information Processing
Systems (NeurIPS). 2019

[WGS19] Gellert Weisz et al. “CapsAndRuns: An Improved Method for Approximately

Optimal Algorithm Configuration”. In: Proceedings of the 36th International
Conference on Machine Learning. Vol. 97. Proceedings of Machine Learning
Research. PMLR, 2019, pp. 6707-6715

[Wei+20] Gellert Weisz et al. “ImpatientCapsAndRuns: Approximately Optimal Algorithm

Configuration from an Infinite Pool”. In: Advances in Neural Information
Processing Systems. Vol. 33. Curran Associates, Inc., 2020, pp. 17478-17488

[Li+17] Lisha Li et al. “Hyperband: A Novel Bandit-Based Approach to Hyperparameter

Optimization”. In: Journal of Machine Learning Research 18.1 (2017), pp. 6765-
6816

4.3 Incremental Successive Halving and Incremental

4.3.1

Hyperband

Our proposed approach to tackling the HPO problem is based on the HYPERBAND
algorithm and its subroutine SUCCESSIVE HALVING. Although both methods are
described at a high level in the above chapters, we will go into more detail in
the following to clarify how these methods operate and establish the foundational
concepts for the proposed work.

Hyperband

A famous method that solves the HPO problem and has its origins in the MAB world
is HYPERBAND (HB) [Li+17]. In HPO, one of the major challenges is to find a good
tradeoff between the number of HPCs to consider and the corresponding amount
of resources like the computation time per HPC if we only have a fixed budget of
overall available resources. Sampling too many HPCs and distributing the budget
across all of them may result in insufficient resources per HPC and thus in unreliable
estimations of the costs of each HPC. On the other hand, sampling too few HPCs
may risk too little exploration in the space of HPCs and missing out some (near-)
optimal one. HYPERBAND tackles this problem by iterating over a different number of
sampled HPCs while keeping the overall budget of resources fixed in each iteration.
This leads to a different amount of resources that are assigned to each HPC in the
different iterations of HYPERBAND. While in the first iterations, a huge set of HPCs is
sampled and only tried out on a few resources, in the last iterations the number of

4.3 Incremental Successive Halving and Incremental Hyperband

39

4.3.2

40

HB lteration 1 HB Iteration 2 HB lteration 3

012 f

5 2,2

61,1 015 021 631
: 014 . . .

613 05 2,4 32

g - -) - .

Budget per — Budget per - Budget per
HPC HPC HPC
SHA SHA SHA
Time

Fig. 4.1.: Illustration of the first iterations of HYPERBAND.

sampled HPCs gets smaller, and thus the allocated resources per HPC get more. An
illustration at least of the first iterations of a run of HYPERBAND is shown in Figure
4.1. The sampled sets of HPCs with varying sizes are represented by the blue clouds,
while the amount of allocated resources per HPC is depicted by the yellow bars.
If we assume that the resources are referring to the runtime in this example, then
each iteration of HYPERBAND takes exactly the same time. In each iteration, the
Combinatorial Bandit algorithm SUCCESSIVE HALVING (SHA) [JT16] is called as a
subroutine with the set of sampled HPCs serving as the arms to be compared, and the
available budget of resources determines the number of allowed pulls. As described
above in Section 3.1, SHA evaluates all HPCs that are still potential winners in
parallel using a predefined budget of resources and eliminates the worst-performing
half after each round. This procedure is repeated until there is only one HPC left
which is then returned as the winner of the regarded sample set. An example of a
run of SHA is shown in Figure 4.2. Each line represents a different arm or in our
case a different HPC. The blue boxes are the assigned resources e.g. the runtime
for each HPC. While in the first iteration of SHA each HPC gets assigned a small
amount of runtime, only the better half of all HPCs is left in the second iteration.
These remaining HPCs can then be tested on double of the amount of resources as
in the first iteration. This procedure continues until we can decide after the third
iteration which one of the two remaining HPCs performed best in the last iteration.

Related Work

Hyperparameter Optimization. In addition to the described approaches in Section
2.3 like grid search [Lar+07], random search [BB12], or Bayesian Optimization
[Wu+19], the field of multi-fidelity optimization has emerged to tackle the HPO
problem. The idea is to allocate more resources to promising HPCs while evaluations
of poor-performing HPCs are stopped early. This results in a low-fidelity estimation of
the quality of the poor-performing HPCs, because they are only tested on such a small
amount of resources that they cannot represent the real-world system of interest. On
the other hand, we get high fidelity for well-performing HPCs that are evaluated on a

Chapter 4 State-Of-The-Art and Contributions

SHA lteration 1 SHA lteration 2 SHA lteration 3

»]]
oy
o
2 -
S 1]
D
k=
3
—
Budget
Time !

Fig. 4.2.: Illustration of a run of SUCCESSIVE HALVING.

large amount of resources. Note that SUCCESSIVE HALVING and thus also HYPERBAND
that are explained in detail in Section 4.3.1 are multi-fidelity optimizers due to their
elimination of the worst half of HPCs after each iteration. Thus only the better-
performing HPCs are kept into the next iteration and get assigned more resources.
There exist some extensions of HYPERBAND such as improving its sampling efficiency
in [FKH18] by using Bayesian Optimization to guide the sampling of new HPCs
or in [AMH21] with a differential evolution technique. [Men+23] accelerates the
evaluation process of the HPCs by canceling the recent Hyperband iteration and
jumping to the next iteration if the risk of missing out important information is low.
However, all of these extensions still have in common, that the user must predefine
the overall budget of resources. If this budget is chosen too small, only too few
resources get allocated to the HPCs leading to unreliable cost estimates for each HPC.
In the worst case, we observe in hindsight that the budget was not large enough and
have to run the whole algorithm with a larger budget again from scratch without
reusing the already gathered information.

Successive Halving Extensions. There exists a large body of literature for the best
arm identification problem in Multi-Armed Bandits with fixed budget and stochastic
feedback, e.g. [CV15; Abb+18b; Shel19; AKG21; Kat+22]. In comparison to this,
the non-stochastic feedback setting has not been extensively explored to date. To our
knowledge, the only work that investigated this kind of feedback are [JT16], [Li+17]
and our work presented in Section 5. However, the SUCCESSIVE HALVING algorithm
has some extensions like ASYNCHRONOUS SUCCESSIVE HALVING (ASHA) [Li+20]
that only promotes HPCs asynchronously to the next rung in which it gets assigned
more resources. This allows for a better parallelization of the evaluation of HPCs.
Another advantage of this method is that the maximum assigned budget of resources
per HPC can be adapted during a run of ASHA. However, the algorithmic design of
sampling new HPCs step after step and evaluating a specific amount of HPCs before
promoting one to the next rung can lead to a huge amount of unnecessary runs
and promotions to ensure that a good HPCs gets into a high rung if it is sampled
late. A further extension of ASHA is PROGRESSIVE ASHA (PASHA) [Boh+23] that

4.3 Incremental Successive Halving and Incremental Hyperband

41

only introduces higher rungs and dynamically allocates the maximum amount of
resources depending on the demand. Both methods, ASHA and PASHA are studied
empirically but are lacking theoretical analysis.

Our Contribution. In our work proposed in Section 7, we developed a method
called INCREMENTAL SUCCESSIVE HALVING (ISHA), that allows reusing already
gathered information from a previous run of the algorithm on a smaller maximal
budget. If we detect in hindsight that the chosen budget was too small and decide to
run the algorithm again with a larger budget, ISHA does not require evaluating the
same number of instances as a new run of SHA. It can compare to the previously
evaluated HPCs and fills the newly available slots for samples with additional HPCs.
In contrast to ASHA, ISHA uses the approach of synchronous promotion of all HPCs
to the next higher rung. By this, we avoid the overload of samples that are necessary
to evaluate if a good HPC is sampled late in an asynchronous algorithm and should
still get promoted to the highest rung. While the approach seems to be quite simple,
it is far from trivial to derive theoretical guarantees that ISHA finds a near-optimal
HPC. However, we have included a detailed theoretical analysis of ISHA in our
work that states exactly this and in addition, we have proven some theoretical
guarantees for ASHA to compare both. Moreover, we have derived the factor of
improvement in the sample efficiency of ISHA in comparison to SHA itself. More
theoretical guarantees are given for including ISHA as a subroutine in HYPERBAND
when enlarging the maximal budget in hindsight which is also tested empirically
and demonstrates significant runtime improvements.

[Li+17] Lisha Li et al. “Hyperband: A Novel Bandit-Based Approach to Hyperparameter

Optimization”. In: Journal of Machine Learning Research 18.1 (2017), pp. 6765-
6816

[JT16] Kevin Jamieson and Ameet Talwalkar. “Non-stochastic Best Arm Identification

and Hyperparameter Optimization”. In: Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics (AISTATS). vol. 51. Proceed-
ings of Machine Learning Research. PMLR, 2016, pp. 240-248

[Lar+07] Hugo Larochelle et al. “An Eempirical Evaluation of Deep Architectures on

Problems with Many Factors of Variation”. In: Proceedings of the 24th Inter-
national Conference on Machine Learning (ICML). Association for Computing
Machinery, 2007, pp. 473-480

[BB12] James Bergstra and Yoshua Bengio. “Random Search for Hyper-Parameter

Optimization”. In: Journal of Machine Learning Research 13 (2012), pp. 281-
305

[Wu+19] Jia Wu et al. “Hyperparameter Optimization for Machine Learning Models

42

Based on Bayesian Optimization”. In: Journal of Electronic Science and Technol-
ogy 17.1 (2019), pp. 26-40

Chapter 4 State-Of-The-Art and Contributions

[FKH18]

[AMH21]

[Men+23]

[CV15]

[Abb+18b]

[Shel9]

[AKG21]

[Kat+22]

[Li+20]

[Boh+23]

Stefan Falkner et al. “BOHB: Robust and Efficient Hyperparameter Optimiza-
tion at Scale”. In: Proceedings of the 35th International Conference on Machine
Learning. Vol. 80. Proceedings of Machine Learning Research. PMLR, 2018,
pp. 1437-1446

Noor Awad et al. “DEHB: Evolutionary Hyberband for Scalable, Robust and
Efficient Hyperparameter Optimization”. In: Proceedings of the Thirtieth Inter-
national Joint Conference on Artificial Intelligence, (IJCAI). International Joint
Conferences on Artificial Intelligence Organization, 2021, pp. 2147-2153

Pedro Mendes et al. “HyperJump: Accelerating HyperBand via Risk Modelling”.
In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence
and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence
and Thirteenth Symposium on Educational Advances in Artificial Intelligence.
AAAT'23/IAAT'23/EAAI'23. AAAI Press, 2023

Alexandra Carpentier and Michal Valko. “Simple regret for infinitely many
armed bandits”. In: Proceedings of the 32nd International Conference on Machine
Learning (ICML). vol. 37. Proceedings of Machine Learning Research. PMLR,
2015, pp. 1133-1141

Yasin Abbasi-Yadkori et al. “Best of both worlds: Stochastic & adversarial
best-arm identification”. In: Proceedings of the 31st Conference On Learning
Theory (COLT). vol. 75. Proceedings of Machine Learning Research. PMLR,
2018, pp. 918-949

Cong Shen. “Universal Best Arm Identification”. In: IEEE Transactions on
Signal Processing 67.17 (2019), pp. 4464-4478

Javad Azizi et al. “Fixed-Budget Best-Arm Identification in Structured Bandits”.
In: International Joint Conference on Artificial Intelligence (IJCAI). 2021

Masahiro Kato et al. Optimal Best Arm Identification in Two-Armed Bandits with
a Fixed Budget under a Small Gap. 2022. arXiv: 2201 .04469

Liam Li et al. “A System for Massively Parallel Hyperparameter Tuning”. In:
Proceedings of Machine Learning and Systems. Vol. 2. 2020, pp. 230-246

Ondrej Bohdal et al. “PASHA: Efficient HPO and NAS with Progressive Re-

source Allocation”. In: The Eleventh International Conference on Learning
Representations (ICLR). 2023

4.3 Incremental Successive Halving and Incremental Hyperband

43

https://arxiv.org/abs/2201.04469

Finding Optimal Arms in
Non-stochastic Combinatorial
Bandits with Semi-bandit
Feedback and Finite Budget

Author Contribution Statement

The idea of this work was developed in a common brainstorming with Viktor Bengs,
Bjorn Haddenhorst and the author. The theoretical works mainly come from the
author with support and revisions by Viktor Bengs and Bjorn Haddenhorst. The
lower bound was proven by Bjorn Haddenhorst and revised by the author and Viktor
Bengs. The implementation of the experiments was done by the author and the
paper was written mainly by the author with subsequently revisions by all authors.

Supplementary Material

An appendix to the paper is provided in Appendix A. The code of the official
implementation is provided at https://github.com/BrandtJasmin/CSE.

45

Finding Optimal Arms in Non-stochastic
Combinatorial Bandits with Semi-bandit Feedback
and Finite Budget

Jasmin Brandt?, Viktor Bengs’, Bjorn Haddenhorst®, Eyke Hiillermeier®©

“Department of Computer Science, Paderborn University, Germany
*Institute of Informatics, University of Munich (LMU), Germany
“Munich Center for Machine Learning, Germany
jasmin.brandt@upb.de, viktor.bengs@lmu.de, bjoernha@mail.upb.de, eyke@lmu.de

Abstract

We consider the combinatorial bandits problem with semi-bandit feedback under
finite sampling budget constraints, in which the learner can carry out its action
only for a limited number of times specified by an overall budget. The action is
to choose a set of arms, whereupon feedback for each arm in the chosen set is
received. Unlike existing works, we study this problem in a non-stochastic setting
with subset-dependent feedback, i.e., the semi-bandit feedback received could be
generated by an oblivious adversary and also might depend on the chosen set of
arms. In addition, we consider a general feedback scenario covering both the
numerical-based as well as preference-based case and introduce a sound theoretical
framework for this setting guaranteeing sensible notions of optimal arms, which
a learner seeks to find. We suggest a generic algorithm suitable to cover the full
spectrum of conceivable arm elimination strategies from aggressive to conservative.
Theoretical questions about the sufficient and necessary budget of the algorithm to
find the best arm are answered and complemented by deriving lower bounds for
any learning algorithm for this problem scenario.

1 Introduction

The multi-armed bandits (MAB) problem is an intensively studied problem class in the realm of
machine learning, in which a learner is facing a sequential decision making problem under uncertainty
[32]. A decision (action) corresponds to making a choice between a finite set of specific choice
alternatives (objects, items, etc.), also called arms in reference to the metaphor of gambling machines
in casinos. After each decision to choose a particular arm, the learner receives some form of feedback
— typically a numerical reward — determined by a feedback mechanism of the chosen arm. The learner
is not aware of the arms’ feedback mechanisms and consequently tries to learn these in the course
of time by performing actions according to its learning strategy. The concrete design of its learning
strategy depends essentially on two main components of the learning setting: the assumptions on the
feedback mechanisms and the learning task.

Traditionally, and even up to now the most prevalent assumption is that the feedback received by
choosing one arm is generated by means of a probability distribution of the chosen arm [41, 31]. In
this way, any useful learning strategy revolves around learning specific probabilistic features of the
arms’ distributions such as the means. These features, in turn, quite naturally provide a way to define
a notion of (sub-)optimality of an arm as well as a best arm. A relaxation of this stochastic setting is
the non-stochastic setting, in which no assumption is made in the form of probabilistic laws of the
feedback mechanisms. Instead, either no assumptions are made on the feedback mechanisms, so that

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

these can also be generated by an adversary [7], or that the sequence of feedback observations (or a
transformation thereof) of an arm converges asymptotically to a fixed point [25]. In the latter case,
the notion of an arm’s (sub-)optimality is again straightforward, given that the limit points can be
ordered, while in the former usually the best action in hindsight plays the role of the best arm.

Regarding the learning task, the most prominent one is that of regret minimization, where in each
learning round the learner suffers regret unless the optimal decision is made (determined by the
feedback mechanisms). The main challenge for the learner is to manage the trade-off between
exploration and exploitation, i.e., constantly balancing (i) the degree of new information acquisition
about some arms’ feedback mechanism in order to appropriately expand the current knowledge
base (exploration), and (ii) the degree of choosing arms considered to be optimal given the current
knowledge base in order to keep the overall regret low (exploitation). In many practical applications,
however, the learning task is of a quite different kind, as the focus is rather on finding the (approxi-
mately) correct answer to a problem specific question, e.g., which arm is the (approximately) optimal
one, within a reasonable time (number of learning rounds). This pure exploration learning task can
be considered in two variants, namely the fixed confidence and the fixed budget setting. In the former
the learner tries to find the answer within as few as possible learning rounds, while guaranteeing a
given pre-determined confidence for the correctness of its returned answer. In the latter, it is the other
way around, as the learner is provided with a limit on the possible number of learning rounds (budget)
and the confidence for the returned answer should be as high as possible. In both variants the main
challenge for designing a suitable learner is to specify a clever exploration strategy for finding the
correct answer.

In order to model more complex learning settings in practice, the basic setup of MAB problems has
been generalized in various ways, such as incorporating additional side information [3, 6, 17, 2] or
infinite number of arms [11, 38], just to name a few. Of special practical interest is the generalization
of the basic setup, where the learner is allowed to choose specific sets of arms as its action. Consider
as an example the online algorithm selection problem with parallel runs, where for sequentially
arriving problem instances one selects a subset of available algorithms (solvers) to be run in parallel
in order to solve the current problem instance.

If the feedback received is of a numerical nature, this variant has manifested itself under the term
combinatorial bandits [14] while for feedback of a qualitative nature this variant can be referred to
as preference-based bandits as put forward by [8]. Combinatorial bandits are further distinguished
with respect to the type of feedback between semi-bandit feedback, where feedback of each single
arm in the selected subset is observed, and full bandit feedback, where only some aggregated value
of the individual numerical feedback of the arms in the selected subset is observed. Although both
combinatorial and preference-based bandits consider a similar action set and for both the learner needs
to deal with the possibly exponential size of the action set, the process of learning is quite different
due to the nature of the observed feedback. The main reason for this is that in preference-based
feedback the mutual correlations that may exist between the arms in the chosen subset play a major
role in both the assumption about the feedback mechanisms and the learning task from the outset.
In contrast to this, the standard setting in combinatorial bandits with semi-bandit feedback is that
the individual reward generation mechanisms are independent of the chosen subsets. However, this
modeling assumption is questionable in a couple of practical applications, especially when humans
provide the feedback. For example, in opinion polls or rating systems where humans rate a subset of
objects (political parties/candidates, products, etc.), it is well known that the ratings of the objects
may be affected by context effects, i.e., preferences in favor of an object may depend on what other
objects are available. In the fields of economics and psychology, context effects are among others
divided into compromise [47], attention [22] and similarity [48] effects.

In this paper, we take a step towards unifying these two variants for the best arm identification
(BAI) problem in a pure exploration learning setting with fixed budget and non-stochastic feedback
mechanisms. The main motivation for this unification is to derive a general purpose learner, which
can tackle the BAI problem in both feedback variants. In this way, for example, one can transform
a learning problem with numerical signals into a preference-based learning problem and thus con-
veniently apply such a general purpose learner. Recent works have demonstrated in two different
learning scenarios with numerical feedback that such a transformation has great potential [37, 27].

Needless to say, the main challenge is to unify both feedback variants through suitable abstractions
allowing them to be treated as instantiations of the same problem class. This bridge is built by dropping

the common independence assumption (of the chosen arm set) for the numerical combinatorial bandits
and abstracting the nature of the observations. Additionally, we simply assume that the learner is
provided with an appropriate statistic customized to the explicit nature of the feedback. By appropriate
choice of the statistic one obtains the respective setting, e.g., the empirical mean for the case of
numerical feedback and relative frequencies for the case of preference feedback.

Our contribution. Under mild assumptions on the asymptotic behavior of these statistics, we derive
a proper definition of a best arm a learner seeks to find (Section 2) as well as lower bounds on the
necessary budget for this task (Section 3). To the best of our knowledge, such lower bounds are novel
for non-stochastic settings and the derivation is rather non-standard due to the combinatorial setup
of the problem. We suggest a general algorithmic framework suitable to cover the full spectrum of
conceivable arm elimination strategies from aggressive to conservative, which we analyze theoretically
regarding the algorithms’ sufficient and necessary budget to find the best arm (Section 4). As
a consequence, we obtain to the best of our knowledge the first algorithm(s) for non-stochastic
preference-based bandits as well as for combinatorial bandits under semi-bandit feedback, in which
the individual (numerical) feedback received for an arm depends on the chosen subset due to possibly
existing mutual correlations between the arms in the chosen subset. The mild assumptions on the
asymptotics of the statistics allow to transfer our theoretical results to the stochastic counterparts of the
semi-bandit combinatorial and preference-based bandits (Section 5). We demonstrate the usefulness
of the generality of our setting in an experimental study for an algorithm selection problem with
parallel runs (Section 6), where once again the transformation of numerical feedback to preference
feedback plays a key role. Additional experiments are given in the supplementary material, where
also all proofs of the theoretical results are collected.

Related Work. A large body of literature considers the combinatorial bandit problem under
preference-based feedback, see [8] for an overview. Although dueling bandits [52] has established as
an overall agreed term for the scenario with actions of size two, the terminology for action sets of
larger sizes is still discordant, e.g., multi-dueling [10], battling [42], choice [4] or preselection bandits
[9], mainly due to subtle nuances of the motivating practical applications. While pure exploration
settings with a stochastic preference-based feedback haven been considered by a series of works
[36, 39, 15, 40, 43, 21], a pure exploration setting under a non-stochastic feedback mechanism as in
our case has yet to be studied.

Pure exploration has been intensively studied in the basic multi-armed bandits (MAB) setting with
stochastic feedback mechanisms as well, see Section 33.5 in [32] for a detailed overview. The
non-stochastic variant of the fixed budget MAB setting is considered in [25], which is the backbone
for the well-known Hyperband algorithm [34] and additionally inspired in some part the assumptions
we make for our work. Initiated by the work of [12] to design learners for regret minimization
frameworks which can perform well in both stochastic and non-stochastic settings, the fixed budget
framework has been the subject of research by [1] and [45].

Combinatorial bandits with numerical feedback have been introduced by [14] and [16] in a regret
minimization framework. The fixed confidence setting for stochastic combinatorial bandits with
semi-bandit feedback is studied in [26], and full bandit feedback in [18, 30]. Finally, the best-of-%
bandits game introduced in [46], which in some way unifies the combinatorial bandits with binary
set-dependent feedback and preference-based bandits in one joint framework similarly as we do in this
work. However, they consider a fixed confidence setting with stochastic feedback mechanisms and do
not provide a learner for the dependent arm case, although they derive lower bounds on the worst case
sample complexity for this case. The only work assuming a set-dependent feedback mechanism in
combinatorial bandits with semi-bandit feedback is in [50], where, however, the regret minimization
task is studied under stochastic feedback mechanisms. In summary, there seems to be no existing
work which considers a pure exploration setting for combinatorial bandits with non-stochastic or even
stochastic semi-bandit feedback, where the (mean) rewards of the arms in the chosen subset of arms
depends on the subset. Accordingly, our results provide new theoretical contributions to this field.

2 Problem Formulation

In our setup, we assume a set .4 of n arms, which we simply identify by their indices, i.e., A =
[n] = {1,...,n}. For some fixed k£ < n we denote the set of all possible subsets of arms with size
of at least 2 and at most k by Q< = {Q C A |2 < |Q| < k}. Further, we assume that for any

Q € Q< we can query some feedback, in the form of a feedback vector og = (0;g)icq € DIel
which in turn can be of numerical or qualitative nature specified by the domain D. If we query a
subset of arms () for ¢ many times, then o (¢) is the corresponding feedback vector. We suppose
that we are given a suitable statistic s for the type of observation vectors, which maps a multiset of
observations to some specific value relevant for the decision making. With this, sq (t) = (s;)0(t))icq
is the statistic vector derived by the sequence of feedback (0 (t)): of the query set Q € Q<y, and
s5iQ(t) = s({040(1), ..., 04q(t)}) is the relevant statistic for decision making about arm 4 in the
“context” @) after querying () for ¢ many times.

Examples. For combinatorial bandits with semi-bandit feedback, the observation oq(t) =
(0i1q(t))ieq corresponds to the reward one obtains for each arm i € @ by using @ for the ¢-th
time, so that in particular D = R. The most natural statistic in this case is the empirical mean given
for a multiset O of observations by s(0) = ﬁ > wco T, such that s;g(t) = %Z’;Zl 0ij(t'),
which is also the arguably most prevalent statistic used in the realm of bandit problems for guiding
the decision making process. However, other statistics s such as quantiles or the expected shortfall
are of interest as well [13].

In the preference-based bandit setting with winner feedback we observe after the ¢-th usage of the
query set () only a binary (winner) information, i.e., 0;(t) = 1 if arm i is preferred over the other
arms in () at “pull” ¢ and o0, (t) = 0 otherwise, so that D = {0, 1}. Once again the empirical
mean of these binary observations is a quite intuitive choice for the statistic s, as in a stochastic
feedback setting the corresponding statistic vector s;jq(t) = 1 S, 0j)q(t) would converge to the
probability vector determining how likely an arm will be preferred over all the other arms in the query
set (). For preference-based bandits with full ranking feedback we observe after the ¢-th usage of the
query set () an entire ranking of the arms in @, i.e., 0;)(t) is arm 4’s rank among the arms in @ at

“pull” ¢, so that D = {1, ..., k}. In such a case the statistic s might be a positional scoring rule [28].

Goal. The goal of the learner in our setting is to find a or the best arm (specified below) within a
fixed budget of at most B samples (numbers of queries). For any (), write ng(t) for the number of
times () has been queried until (including) time ¢. An algorithm, which tackles the problem, chooses
at time ¢ a set Q; € Q<. and observes as feedback o, (n¢, (t)) leading to an update of the relevant

statistic vector sq, (ng, (t)) = (siq, (nq,(t)))icq, -

Best arm. Inspired by the theoretical groundings of Hyperband [25, 34] for best arm identifica-
tion problems in numerical bandit problems with non-stochastic rewards, we make the following
assumption regarding the limit behavior of the statistics

(A1) :VQ € Q< Vi € Q : Sy = limy , o 8¢ (1) exists.

This assumption is in general slightly looser than assuming (stationary) stochastic feedback mech-
anisms, as (A1) is fulfilled for many prevalent statistics by means of a limits theorem such as the
strong law of large numbers. Conceptionally, our Assumption (A1) is similar to the assumption on
the sequence of losses in [25], as both have in common that the statistics (losses in [25]) converge to
some fixed point, respectively. However, due to the difference of the action spaces (single arms vs.
set of arms) and the nature of the feedback (scalar vs. vector observation), our assumption can be
seen as a combinatorial extension of the one in [25].

Given assumption (A1) a straightforward notion of a best arm is obtained by leveraging the idea
of a Borda winner from dueling bandits with pairs of arms as the possible subsets to more general
subsets of arms. A generalized Borda winner (GBW) is then an arm which has on average the largest
asympotical statistic, i.e.,

. > qeo (i) SilQ

ig € arg Iirézﬁ(SF = argmax ﬁ
where Q. (i) = {Q € O | i € Q} and SP are the asymptotic Borda scores, i.e., the limits accord-
ing to (A1) of s5(t) == Zacopm *ie®) Similarly, a generalized Copeland winner (GCopeW) is

[Q=k ()]
an arm ¢, which wins w.r.t. the asymptotic statistics on average on the most query sets, i.e.,

Yo HSio = Sw)e}
| Q=1 ()]

- C
iy € argmax S; = arg max
¢ & €A ¢ & i€ A

However, both these notions of best arm have two major drawbacks, as there might be multiple GBW's
and GCopeWs and due to averaging over all subsets in their definition, there is no way to identify a

GBW or a GCopeW within a sampling budget of o((’k‘j)) in the worst case (see Theorem 3.1).

In light of these drawbacks, we specify another reasonable notion of a best arm, for which we leverage

the concept of the generalized Condorcet winner [21, 4] from the preference-based bandits literature.
For this purpose, we introduce the following assumption

(A2) : 3i* € Asuchthat VQ € Q< (i*) Vj € Q \ {i"} it holds that S;« | > Sj0,

where Q< (i) = {Q € Q< |7 € Q} fori € [n]. We call i* the generalized Condorcet winner
(GCW), which is the arm dominating all the other arms in each possible query set containing it. It is
worth noting that such an arm may not exist, but if it exists, then it is arguably the most natural way
to define the optimal arm, even though it may differ from the GBW. Nevertheless, the existence of
the generalized Condorcet winner (or simply the Condorcet winner for the case k£ = 2) is a common
assumption in the preference-based bandits literature [4, 21, 8]. Additionally, we will show below that
identifying a GCW is possible for a sampling budget of size {2(n/k) even in worst case scenarios.

Problem characteristics. In light of (A1) and (A2), there are two key characteristics which will
determine the appeal of any learner in our setting. The first one is the speed of convergence of the
statistics s;) to their limit values S;|q. More precisely, the function v;¢ : N — R, which is the
point-wise smallest non-increasing function fulfilling |s;o(t) — Sijg| < Vi@(t) for any t € N,
plays a major role in characterizing the difficulty of the learning problem. Moreover, the worst
speed of convergence function of a query set @ € Q<. given by 7, (t) = max;eq 7vi|(t) and
the overall worst speed of convergence function J(t) := maxgeo., WQ(t) will be of relevance as
well. Assuming a stochastic setting, the role of ;)¢ is played by the minimax rate of convergence
of the statistic to its population counterpart, e.g., 1/+/¢ for the empirical mean and the expected
value. Usually the speed of convergence functions will appear implicitly by means of their (quasi-)
inverses given by Ay;‘é(oz) =min{t € N|v;q(t) < a}, :yél(t) = min;eq Ay;‘é(t) and 371 (t) ==

minQeQSk ’751(15)

The other relevant problem characteristic are the gaps of the limits statistics, i.e., Ai\Q = Six10—Si|Q
fori € [n], Q € Q<k (i) N Q<k(*). Such gaps are prevalent in the realm of bandit problems, as they
can be used to define a measure of (sub-)optimality of an arm in the stochastic feedback case. Note
that in our setting this is not straightforward, as the gaps are depending on the query set and more
importantly the speed of convergence has a decisive impact on the severeness of these gaps.

3 Lower Bounds

Let us abbreviate S := (S;0)gea~,,icq and v = (750 (t))Qea~, icq ten. Given S and v, write
&(S,) for the set of all s = (s;)¢(t))@eo~,.icq,ten that fulfill

(i) VQ € Q<i,i € Q: SQ‘Q = limy , o 54 () exists,
(i) VQ € Qci,1 € Q1 € N: [55(t) — 57 10| < (1),
(ili) VQ € Q< Img : Q — Q bijective such that SQ‘Q = Sr@)q foralli € Q.

For Qand ! € {1,...,|Q|} write S(;)o for the I-th order statistic of {S|q }icq. i-e.. {Si|@}icq =
{Swighieq and S1)j0 > -+ > S(q))|@- If Alg is a (possibly probabilistic) sequential algorithm,
we denote by B(Alg, s) the number of queries made by Alg before termination when started on s. In
the following, we provide lower bounds on E[B(Alg, s)] for algorithms Alg, which identify, for any
instance s € &(S,~), almost surely one GCW resp. GBW resp. GCopeW of s.

Theorem 3.1. Let S be such that S(1y|q > S(2yq for all Q € Q<.
(i) There exists s € &(S,) such that if Alg correctly identifies a GCW for any instance in S(S,~),
then

n ~ ~1 (Swie — Suanie
BB 9) 2 [] Qedtnieq 1@ <2> '

(i) Assume (S(1y|q, - - -, S(|q|)|@) does not depend on Q for any Q € Q—y. If Alg correctly identifies
a GBW for any instance in &(S, =), then

o e =2 ()

(iii) If Alg correctly identifies a GCopeW for any instance in &(S, =), then it fulfills

e ()]

The theorem is proven in Section B in the supplement, where we provide in fact slightly stronger
versions of these bounds.

4 Algorithms

In this section, we present a class of algorithms along with three possible instantiations solving
the corresponding learning task for the case of the generalized Condorcet winner being the best
arm. In particular, we analyze all algorithms theoretically in terms of their sufficient and necessary
budget to find the respective best arm. In light of the results in Theorem 3.1 for GBW and GCopeW
identification, it is straightforward that a simple algorithm, which enumerates all possible subsets,
pulls each of them equally often in a round-robin fashion, and returns the empirical GBW (or
GCopeW) is already optimal. For sake of completeness, we show this result for the case of GBW
identification in Section C and also include this simple algorithm in the experimental study below
(called ROUNDROBIN).

4.1 Generalized Condorcet Winner Identification

In the following we introduce a general class
of algorithms in Algorithm 1 which is instan-
tiable with various different elimination strate-
gies of the arms. Below, we present some Input: set of arms [n], subset size k < n, sam-
instantiations which build on commonly used ~ pling budget B, a function f : [k] — [k], sequence
elimination strategies in the standard multi- {£}» (number of partitions at round r), R (number
armed bandit setting. The idea of Algorithm ©f rounds in total)

1 is simply to maintain a set of active arms, Initialization: A; < [n], 7 < 1

which is successively reduced by followinga 1. while |A,| > & do

specific arm elimination strategy (Algorithm — ». ¢ + |B/(p.R)| , J < P,

2) referred to as elimination rounds. Ineach 3
elimination round r € {1,2,..., R} theset 4: jf A, ;| < k then

of active arms A,. is partitioned into P, many 5 R <_ A J—J—1
sets of size k (up to a possible remainder set) g. elge '
7
8
9
0
1

Algorithm 1 Combinatorial Successive Elimination

Arq, Ao, .. Ay Partition(A,, k)

denoted by (A, ;);jep, for which the elimi- R«

nation strategy is applied with a roundwise- end if

dependent budget b,. The budget allocated Arpr R

to a partition A,.; in round r is of the form 1o. for j € [J] do

by = [B/(R- P,)] following the idea to split . R + ArmElimination(4, ;, b,
up the available budget equally first for each FOA D)

round and second for all partitions in each 5. Ariq s A1 UR

round. The explicit arm elimination strategy 3. end for

used in Algorithm 1 is specified by Algorithm 14. 4+ 1

2 and corresponds to pulling the chosen query 15. end while

set () for a fixed number of times and after- 6. A, ., < 0

wards keeping only the best f(|Q[) arms of Q. 7. while |A,| > 1 do

Here, f : [k] — [k] is an arbitrary function 1g. A, ., + ArmElimination(A,1,b,,
with f(x) < x—1 for all z, which essentially FUA1) 77 +1

determines the aggressiveness or conserva- 19: end while

tiveness of an arm elimination strategy as we

. Th S in A,
will see below. Output: The remaining item in

In the following we provide three possible instantiations of Algorithm 1 inspired by commonly
used elimination strategies in the standard multi-armed bandit setting for pure exploration tasks.
Combinatorial Successive Winner Stays.

The most aggressive elimination strategy is Algorithm 2 ArmElimination(A’, b, [)

to keep only the arm with the best statistic 1- Use A for b times

(the winner) of each partition in each round 2: Forall i € A’, update s;// (b)

and discard all others from the set of active : - P iA

arms for the next round. Concretely, we use 3 Choosg: ‘ an ordering dy,...,7a Of
FESWS(s) = 1 for f in Algorithm 1 in this (sijar())z'eA' '
case. 4: return {iy,... 4}

The resulting instantiation of Algorithm 1 is called Combinatorial Successive Winner Stays (CSWS),
which has at most R“SW'¥ = [log, (n)] + 1 many rounds in total (at most [log, (n)] rounds in the

first while-loop and at most 1 in the second). The total number of partitions in round 7 is at most
PESWS = [n/r] .

Combinatorial Successive Reject. On the other extreme regarding the aggressiveness of the arm
elimination strategy is to dismiss only the worst arm of each partition in each round and keep all
others in the set of active arms for the next round. More specifically, we use f5R(s) = s — 1
for this variant, which can be seen as a variant of the Successive Reject algorithm [5] for best arm
identification adopted to the combinatorial bandit problem. Consequently, we call the resulting
instantiation of Algorithm 1 the Combinatorial Successive Reject (CSR) algorithm, whose number of
rounds in the first while-loop is at most [log,-1/, (!/n)] and in the second at most k& — 1. Overall,

we have a maximal number of rounds R“% = [log,_, s (/n)] 4+ k — 1 and a maximal number of
partitions per round PE5% = [n(1-1)""1 /],

Combinatorial Successive Halving. As a compromise between the aggressive elimination strategy
of CSWS and the conservative elimination strategy of CSR one could discard in every elimination
round the worse half of all arms in the partition, i.e., using f©5H(s) = [s/2] for f in Algorithm
1. This can be seen as a generalization of the successive halving algorithm [25] adopted to the
combinatorial bandit problem we are considering. Thus, the instantiation of Algorithm 1 in this spirit
will be called the Combinatorial Successive Halving (CSH) algorithm. Note that we have at most
[logy(n)] rounds in the first while-loop and additional [log, (k)] in the second while-loop resulting
in at most RS = [log,(n)] + [log, (k)] many rounds throughout a run of CSH. Furthermore, we
n

have at most PTCSH = {QT_UJ partitions in round 7.

4.2 Theoretical Guarantees

In the following, we derive the sufficient budget for Algorithm 1 to return under assumptions (A1)
and (A2) the best arm i*, i.e., the generalized Condorcet winner. For this purpose, we write A,.(i*)
for the unique set A, ; € {A,1,..., A, p } withi* € A, ; and define Ay = S+ — S(|q for
any @ C [n] with i* € Q.

Theorem 4.1. Assume P,, R are such that Algorithm 1 called with B does not exceed B as total
budget. Under Assumptions (Al) and (A2) Algorithm 1 returns i* if B is larger than

2(f, R AP hi<r<r) = Rmax,e(r) Pr - [7; (o) (B0arannsniann /2) |

The following theorem indicates optimality of z in the theorem above (cf. Sec. D.2 for the proofs).
Theorem 4.2. For any distinct asymptotic values S, there exists a family of statistics
{5i10(t) }ren,Qeaoy icq With 5,q(t) — Siq forall i € [n],Q € Q< such that if Algorithm
1 is used with a budget B < z (f, R, {P, }1<r<r) then it does not return i*.

By means of Theorem 4.1, we can infer the following result regarding the sufficient sampling budget
B for the three instantiations to output ¢* (cf. Sec. D.3 of the appendix for the proof).

Corollary 4.3. Under Assumptions (Al) and (A2), CSX € {CSWS, CSR, CSH} returns i* if it is
executed with a budget B > zcsx, where zosx = z (fCSX, RCSX, {PTCSX}lgrchsx) .

By substituting the concrete values for P,., R and f of the corresponding instantiation into Corollary
4.3 and using a rough estimate for the inverse function of the speed of convergence, we see that all of

the resulting sufficient budgets are essentially O("/k) (see Table 1) almost! matching the dependency
on n and k in Theorem 3.1. If we would allow the special case of singleton sets of arms as query sets,
i.e., k = 1, the sufficient budget for CSH matches the one derived in [25] for its non-combinatorial
counterpart in the special case of numerical feedback.

Table 1: Sufficient budget for CSWS, CSR and CSH. Here, 7 is as in (iii) in Section 3.

n __ Six1o—5Si
ZCSWS (ﬂ ([log(n)] + 1) - maxge g, :i-eQ MaX;eQ\ {i} h ! (le ‘Qﬂ

n 1 1 E—1)-) . o s=1(Sir1e=Sile
FCSR ’Vk—l 081-1 (n) + MaxQeQqy:ixeQ MMieQ\{ix} |V 3

sosn | [#] ([1ogs(n)] + [logy(k)]) - maxgeo.yureq |71 (2222 |

Regarding n and k& both lower and upper bounds coincide, but the gap-term in the lower bounds
include a min-term over Q<y,, while the gap-term in the upper bound are coming with a max-term
over Q<. The difference between these terms depends on the underlying hardness of the bandit
problem in terms of W‘l, i.e., how fast the considered statistics converge to their limit values. Due
to the generality of our setting it is difficult to specify this difference more explicitly and it would
be worth considering this for special cases, i.e., the numerical bandits or preference-based bandits
separately.

Finally, it is worth mentioning that all of the three instantiations of Algorithm 1 have only been
studied for the case of single arm pulls, but not for pulls of subsets of arms, where additionally a
dependency on the set might be present. Thus, the theoretical guarantees are novel in this regard.

5 Applications to Stochastic Settings

Numerical feedback. In stochastic combinatorial bandits [16], each arm-query set pair (¢, Q) is
associated with a probability distribution v;) and querying @ for the ¢-th time results in the feedback
0i|(t) ~ Vg, usually referred to as a reward (i.e., D = R). The sequence of rewards {0;/¢(t)}¢ is
supposed to be independent and the statistic s is the empirical mean such that (A1) holds by the law of
large numbers with Sj)g = Ex ., , [X]. If the v are sub-Gaussian, an anytime confidence bound
by [24] based on the law of iterated logarithm ensures |s;o(t) — S;j| < cs(t) for all t € N with
probability at least 1 — § for some appropriate function cs(t) € O(y/tIn(In(t)/§)). This implies the
following result, the proof of which is deferred to Section E.

Corollary 5.1. Let f,R and {P,},c[r) be as in Theorem 4.1 and suppose the reward distri-
butions v;q to be o-sub-Gaussian and such that their means Sy q satisfy (A2). There is a
function C(8,¢,k, R,0) in O (0?2 In (kR/51n (kRo/es))) such that if i* is the optimal arm for
(Si1Q)Qe<y icq@ and suPoeg_, i) Ar(Qh+1)Q < & then Algorithm I used with a budget B
larger than C(d,¢,k, R, o) - Rmax,c[g) P, returns i* with probability at least 1 — 0.

Other statistics for numerical feedback. A rich class of statistics can be obtained by applying a
linear functional U(F') = [r(x)dF (x), where F is a cumulative distribution function (CDF) and r :
R — R some measurable function [49], on the empirical CDF, i.e., §(0,z) = [O]~' ¥ ., H{z <
o}, for any 2 € R and any multiset of (reward) observations O. This leads to the statistics

t 1(00(s))

siQ(t) =U(E(0iq(L), - 0nq(t)) =D, —

which converge to Sjjq = Exnu, o [r(X)] by the law of large numbers, provided these expected
values exist. For this class of statistics we can show a quite similar result to Corollary 5.1 by
generalizing the findings in [24] (see Section E). However, the result is in fact more general than
Corollary 5.1 as for r being the identity function we can recover the empirical mean.

"Here, O hides logarithmic factors.

Preference feedback. In the preference-based bandits, we observe when querying @ for the ¢-th
time a categorical random variable with values in @, i.e., 0;/¢(t) ~ Catg(p¢) for some underlying
unknown parameter pg = (pj|q)icq- Let w;o(t) == >, -, 1{0;q(t) = i} be the number of times
arm 7 has won in the query set @ until the ¢-th pull of (). We consider as the relevant statistics

si‘Q(t) = wl‘%(t), which converge to p; g =: Sjjg by the law of large numbers. The Dvoretzky-
Kiefer-Wolfowitz inequality [19] ensures a concentration inequality on sup;cq [si(t) — Sijql;
which can be used to deduce the following result (cf. Sec. E for the proof).

Corollary 5.2. Let f,R and {P,},c[r) be as in Theorem 4.1 and suppose preference-based
winner feedback with parameter (pilQ)QGQSk7Z'€Q, which satisfies (A2). There is a function
C(d,e,k,R) € O (S’QIH(R/&“)) with the following property: If i* is the optimal arm and
SUPGeg.,(i*) A(r(Qn+1)1Q < & then Algorithm 1 used with a budget B larger than C(d,,k, R) -
Rmax,¢[g) P returns i* with probability at least 1 — 9.

By substituting the concrete values for P,., R and f of the corresponding instantiation of Algorithm
1 into the bound on the budget in Corollary 5.2 (compare to Table 1), we see that each of the
three resulting bounds almost matches the optimal sample complexity bounds for identifying the
(generalized) Condorcet Winner under fixed confidence in preference-based bandits [8, 21] indicating
near optimality of the algorithms in stochastic settings. However, since no stochastic counterpart of
our combinatorial setting for the numerical case exists, it would be interesting to investigate whether
the analogous implication by means of Corollary 5.1 for the three algorithms is nearly optimal as
well. We leave this to future work, as it is beyond the scope of our work.

6 Experimental Section

In this section we present an experimental study for our proposed algorithms on an algorithm selection
problem. Further experiments, also on synthetic data and with other statistics are provided in the
supplementary material in Section G.

Setting. In the following, we consider an algorithm selection problem, where the goal is to select
the most efficient algorithm for solving an instance of a satisfiability (SAT) problem. For this, we
randomly chose n = 20 parameterizations of the SAPS solver [23] which represent our candidate
algorithms and correspond to the arms in our terminology. Our possible problem instances are
sampled from the first 5000 problem instances from the sat_ SWGCP folder of the AClib>. We
compare CSWS, CSR, CSH and ROUNDROBIN on this problem with the Successive Halving (SH)
algorithm [25]. To the best of our knowledge, there are no algorithms available as baselines, which
are designed for the pure exploration problem with finite budget and subsets of arms as the actions,
e.g., [4] investigates a regret minimization problem, while [21] is dealing with a stochastic pure
exploration setting with fixed-confidence. However, Successive Halving serves as a baseline, which
we included as a representative for the algorithms dealing with a pure exploration problem with
finite budget and single arms as the actions. In each learning round, we randomly draw a problem
instance from the 5000 problem instances without replacement and then start a parallel solution
process with the SAPS parameterizations chosen by the corresponding learning algorithm (only one
parameterization for the case of SH), where the process is stopped as soon as the first algorithm has
solved the current instance. In particular, one obtains only for the “finisher” SAPS parameterization
an explicit numerical value (its runtime) among the chosen set of SAPS parameterizations, as the
others are right-censored. Since our proposed algorithms are designed for the case, in which feedback
for all arms in the pulled query set is observed, while SH is designed for the case in which only a
single arm is queried resulting in a single feedback, we enlarge the available budget for SH to k - B
for a fairer comparison.

Instantiation of CSE. Although we could consider the negative runtimes of the parameterizations as
rewards (i.e., runtimes correspond to losses) and use a statistic suitable for numerical feedback for
the combinatorial successive elimination (CSE) approaches, there might be a major disadvantage
due to the censored runtimes. Indeed, in order to apply a statistic suitable for numerical feedback,
some sensible imputation technique is required to deal with the censored observations, which in turn
could introduce a severe bias. However, thanks to the generality of our framework, we can simply

“http://www.aclib.net

10 10
Zos
[
0 06
o
S o4
3
n
02
—e— CSWS
00
28R 8 © g 2 SRR & & g] CSR
] a E a — CSH
» s -
Lo e 10 P o —e— RoundRobin
08 08 , +— Successive Halving
o ” - 10 -
£) .
5 y, - 08 ’
506 J 06 o o
& r N 06 o
04] o 04 / /
« -t 047 oo
027 I — 021979] 02{s-ee—t=——t=—1$ -
28] 8 ®© g 2 28] R ® g 2 288 R ® 3 2
Budget Budget Budget

Figure 1: Success rates and runtimes for different subset sizes k and budgets B.

interpret the observed feedback as a preference in the sense that the “finisher” SAPS parameterization
is preferred over the others in the chosen set of parameterizations. In this way, using a statistic based
on preference-based feedback defuses the bias issue. Quite naturally, we use the relative frequency
statistic for preference feedback as specified in Section 5.

Analysis. As the best arm (SAPS parameterization) we use the one having the smallest empirical
runtime over all problem instances such that ROUNDROBIN and SH will tendentially return this arm
if the budget is sufficiently large. The resulting success rates for our proposed algorithms and SH of
identifying the best arm are illustrated in the top panel of Figure 1. One can see, that the algorithms
which follow our CSE strategy significantly outperform SH if the budget is sufficiently large. In
addition, CSWS, CSR and CSH identify the best arm more often than ROUNDROBIN if the subset
sizes k are small, which is a realistic situation in practice. Moreover, the bottom panel in Figure
1 shows the overall runtimes of the algorithms revealing that SH takes much longer than CSWS,
CSR and CSH and as expected the difference in the runtimes gets larger with the subset sizes k.
Quite interestingly, even ROUNDROBIN needs a longer runtime than the CSE approaches, although
it queries the same number of subsets and also stops the respective run as soon as the “finisher”
SAPS parameterization is clear. Thus, the differences in the runtimes of ROUNDROBIN and the CSE
approaches are only due to the fact that the latter discard the slowest SAPS parameterizations quickly
and do not run them again, while ROUNDROBIN uses throughout all subsets the same amount of
time, even if they contain only bad performing parameterizations. In other words, the differences are
due to the sophisticated strategies of the CSE approaches.

7 Future Work

For future work, it would be interesting to investigate whether switching the elimination strategy
during the learning process leads to any performance improvements both theoretically and empirically.
A similar question could be asked regarding the considered statistic for numerical feedback variants.
Further, the goal of identifying the best set of arms in our scenario would also be interesting. However,
in the case where the observations depend on the chosen set of arms, it is far from obvious how
to define a suitable optimality term (cf. Sec. 6.3.2 in [8]). Finally, a more extensive experimental
study would definitely be a relevant future direction of research, especially for hyperparameter
optimization problems with possible parallelization options such as in [33] or for more general
algorithm configuration problems [44].

Acknowledgments and Disclosure of Funding

This work was partially supported by the German Research Foundation (DFG) within the project
“Online Preference Learning with Bandit Algorithms” (project no. 317046553) and by the research
training group “Dataninja” (Trustworthy Al for Seamless Problem Solving: Next Generation Intelli-
gence Joins Robust Data Analysis) funded by the German federal state of North Rhine-Westphalia.

10

References

[1] Yasin Abbasi-Yadkori, Peter Bartlett, Victor Gabillon, Alan Malek, and Michal Valko. Best
of both worlds: Stochastic & adversarial best-arm identification. In Proceedings of Annual
Conference on Learning Theory (COLT), pages 918-949, 2018.

[2] Yasin Abbasi-Yadkori, David Pdl, and Csaba Szepesvari. Improved Algorithms for Linear
Stochastic Bandits. In Proceedings of Advances in Neural Information Processing Systems
(NeurIPS), pages 2312-2320, 2011.

[3] Naoki Abe and Philip M Long. Associative reinforcement learning using linear probabilistic
concepts. In Proceedings of the International Conference on Machine Learning (ICML), pages
3-11, 1999.

[4] Arpit Agarwal, Nicholas Johnson, and Shivani Agarwal. Choice bandits. In Proceedings of
Advances in Neural Information Processing Systems (NeurIPS), 2020.

[5] Jean Yves Audibert, Sébastien Bubeck, and Rémi Munos. Best arm identification in multi-armed
bandits. In Proceedings of Annual Conference on Learning Theory (COLT), pages 41-53, 2010.

[6] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397-422, 2002.

[7] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. Gambling in a rigged
casino: The adversarial multi-armed bandit problem. In Proceedings of IEEE 36th Annual
Foundations of Computer Science, pages 322-331. IEEE, 1995.

[8] Viktor Bengs, Rébert Busa-Fekete, Adil El Mesaoudi-Paul, and Eyke Hiillermeier. Preference-
based online learning with dueling bandits: A survey. Journal of Machine Learning Research,
22:1-108, 2021.

[9] Viktor Bengs and Eyke Hiillermeier. Preselection bandits. In Proceedings of the International
Conference on Machine Learning (ICML), pages 778-787, 2020.

[10] Brian Brost, Yevgeny Seldin, Ingemar J. Cox, and Christina Lioma. Multi-dueling bandits and
their application to online ranker evaluation. In Proceedings of ACM International Conference
on Information and Knowledge Management (CIKM), pages 2161-2166, 2016.

[11] Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvari. X-armed bandits. Journal
of Machine Learning Research, 12(5), 2011.

[12] Sébastien Bubeck and Aleksandrs Slivkins. The best of both worlds: Stochastic and adversarial
bandits. In Proceedings of Annual Conference on Learning Theory (COLT), pages 42.1-42.23,
2012.

[13] Asaf Cassel, Shie Mannor, and Assaf Zeevi. A general approach to multi-armed bandits
under risk criteria. In Proceedings of Annual Conference on Learning Theory (COLT), pages
1295-1306, 2018.

[14] Nicolo Cesa-Bianchi and Gabor Lugosi. Combinatorial bandits. Journal of Computer and
System Sciences, 78(5):1404-1422, 2012.

[15] Wei Chen, Yihan Du, Longbo Huang, and Haoyu Zhao. Combinatorial pure exploration for
dueling bandit. In Proceedings of the International Conference on Machine Learning (ICML),
pages 1531-1541. PMLR, 2020.

[16] Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework
and applications. In Proceedings of the International Conference on Machine Learning (ICML),
pages 151-159, 2013.

[17] Wei Chu, Lihong Li, Lev Reyzin, and Robert E. Schapire. Contextual bandits with linear payoff
functions. In Proceedings of International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 208-214, 2011.

11

[18]

[19]

[20]

(21]

[24]

[25]

[26]

[34]

[35]

Yihan Du, Yuko Kuroki, and Wei Chen. Combinatorial pure exploration with full-bandit or
partial linear feedback. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
pages 7262-7270, 2021.

Aryeh Dvoretzky, Jack Kiefer, and Jacob Wolfowitz. Asymptotic minimax character of the sam-
ple distribution function and of the classical multinomial estimator. The Annals of Mathematical
Statistics, 27(3):642 — 669, 1956.

Aurélien Garivier and Emilie Kaufmann. Optimal best arm identification with fixed confidence.
In Proceedings of Annual Conference on Learning Theory (COLT), pages 998—1027, 2016.

Bjorn Haddenhorst, Viktor Bengs, and Eyke Hiillermeier. Identification of the generalized
Condorcet winner in multi-dueling bandits. Proceedings of Advances in Neural Information
Processing Systems (NeurIPS), 34, 2021.

Joel Huber and Christopher Puto. Market boundaries and product choice: Illustrating attraction
and substitution effects. Journal of Consumer Research, 10(1):31-44, 1983.

Frank Hutter, Dave AD Tompkins, and Holger H Hoos. Scaling and probabilistic smoothing:
Efficient dynamic local search for SAT. In International Conference on Principles and Practice
of Constraint Programming, pages 233-248. Springer, 2002.

Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sébastien Bubeck. 1iI’'UCB : An optimal
exploration algorithm for multi-armed bandits. In Proceedings of Annual Conference on
Learning Theory (COLT), volume 35, pages 423-439, 2014.

Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperparam-
eter optimization. In Proceedings of International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 240-248, 2016.

Marc Jourdan, Mojmir Mutny, Johannes Kirschner, and Andreas Krause. Efficient pure explo-
ration for combinatorial bandits with semi-bandit feedback. In Proceedings of the International
Conference on Algorithmic Learning Theory (ALT), pages 805-849, 2021.

Johannes Kirschner and Andreas Krause. Bias-robust Bayesian optimization via dueling bandits.
In Proceedings of the International Conference on Machine Learning (ICML), pages 5595-5605,
2021.

Anna Korba. Learning from ranking data: theory and methods. PhD thesis, Université
Paris-Saclay (ComUE), 2018.

Michael R. Kosorok. Introduction to Empirical Processes and Semiparametric Inference.
Springer, New York, USA, 2008.

Yuko Kuroki, Liyuan Xu, Atsushi Miyauchi, Junya Honda, and Masashi Sugiyama. Polynomial-
time algorithms for multiple-arm identification with full-bandit feedback. Neural Computation,
32(9):1733-1773, 2020.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Ad-
vances in Applied Mathematics, 6(1):4-22, 1985.

Tor Lattimore and Csaba Szepesvari. Bandit Algorithms. Cambridge University Press, 2020.

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan Ben-tzur, Moritz
Hardt, Benjamin Recht, and Ameet Talwalkar. A system for massively parallel hyperparameter
tuning. Proceedings of Machine Learning and Systems (MLSys), 2:230-246, 2020.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hy-
perband: A novel bandit-based approach to hyperparameter optimization. Journal of Machine
Learning Research, 18(1):6765-6816, 2017.

Pascal Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. The Annals
of Probability, 18(3):1269 — 1283, 1990.

12

[36] Soheil Mohajer, Changho Suh, and Adel Elmahdy. Active learning for top-k rank aggregation
from noisy comparisons. In Proceedings of International Conference on Machine Learning
(ICML), pages 2488-2497, 2017.

[37] Felix Mohr, Viktor Bengs, and Eyke Hiillermeier. Single player Monte-Carlo tree search based
on the Plackett-Luce Model. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), volume 35, pages 12373-12381, 2021.

[38] Rémi Munos. From bandits to Monte-Carlo tree search: The optimistic principle applied to
optimization and planning. Foundations and Trends® in Machine Learning, 7(1):1-129, 2014.

[39] Wenbo Ren, Jia Liu, and Ness Shroff. On sample complexity upper and lower bounds for exact
ranking from noisy comparisons. In Proceedings of Advances in Neural Information Processing
Systems (NeurIPS), pages 10014-10024, 2019.

[40] Wenbo Ren, Jia Liu, and Ness Shroff. The sample complexity of best-k items selection from
pairwise comparisons. In Proceedings of the International Conference on Machine Learning
(ICML), pages 8051-8072, 2020.

[41] Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the American
Mathematical Society, 58(5):527-535, 1952.

[42] Aadirupa Saha and Aditya Gopalan. Battle of bandits. In Proceedings of Conference on
Uncertainty in Artificial Intelligence (UAI), pages 805-814, 2018.

[43] Aadirupa Saha and Aditya Gopalan. From PAC to instance-optimal sample complexity in the
Plackett-Luce model. In Proceedings of International Conference on Machine Learning (ICML),
pages 8367-8376, 2020.

[44] Elias Schede, Jasmin Brandt, Alexander Tornede, Marcel Wever, Viktor Bengs, Eyke Hiiller-
meier, and Kevin Tierney. A survey of methods for automated algorithm configuration. Journal
of Artificial Intelligence Research, 75, 2022.

[45] Cong Shen. Universal best arm identification. [EEE Transactions on Signal Processing,
67(17):4464-4478, 2019.

[46] Max Simchowitz, Kevin Jamieson, and Benjamin Recht. Best-of-k-bandits. In Proceedings of
Annual Conference on Learning Theory (COLT), pages 1440-1489, 2016.

[47] Ttamar Simonson. Choice based on reasons: The case of attraction and compromise effects.
Journal of Consumer Research, 16(2):158-174, 1989.

[48] Amos Tversky. Elimination by aspects: A theory of choice. Psychological Review, 79(4):281,
1972.

[49] Larry Wasserman. All of Statistics: A concise Course in Statistical Inference. Springer Science
& Business Media, 2013.

[50] Shuo Yang, Tongzheng Ren, Inderjit S Dhillon, and Sujay Sanghavi. Combinatorial bandits
without total order for arms. arXiv preprint arXiv:2103.02741, 2021.

[51] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity. In
18th Annual Symposium on Foundations of Computer Science (SFCS), pages 222-227, 1977.

[52] Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed dueling
bandits problem. Journal of Computer and System Sciences, 78(5):1538-1556, 2012.

13

AC-Band: A Combinatorial
Bandit-Based Approach to
Algorithm Configuration

Author Contribution Statement

The idea of this work was developed in a common brainstorming with Viktor Bengs,
Kevin Tierney and the author. The theoretical works come from the author with
support and revisions by Viktor Bengs and Bjorn Haddenhorst. The implementation
of the experiments was done by Elias Schede and the paper was written mainly by
the author with subsequently revisions by all authors.

Supplementary Material

An appendix to the paper is provided in Appendix B. The code of the official
implementation is provided at https://github.com/DOTBielefeld/ACBand.

59

AC-Band: A Combinatorial Bandit-Based Approach to Algorithm Configuration

Jasmin Brandt', Elias Schede?, Bjorn Haddenhorst', Viktor Bengs>*,
Eyke Hiillermeier*, Kevin Tierney>
'Department of Computer Science, Paderborn University, Germany
Decision and Operation Technologies Group, Bielefeld University, Germany
3Institute of Informatics, LMU Munich, Germany
“Munich Center for Machine Learning (MCML), Germany
jasmin.brandt, bjoernha} @upb.de, {elias.schede, kevin.tierney } @uni-bielefeld.de, { viktor.bengs, eyke } @ifi.Imu.de
J] p y s, ey

Abstract

We study the algorithm configuration (AC) problem, in which
one seeks to find an optimal parameter configuration of a
given target algorithm in an automated way. Recently, there
has been significant progress in designing AC approaches that
satisfy strong theoretical guarantees. However, a significant
gap still remains between the practical performance of these
approaches and state-of-the-art heuristic methods. To this end,
we introduce AC-Band, a general approach for the AC prob-
lem based on multi-armed bandits that provides theoretical
guarantees while exhibiting strong practical performance. We
show that AC-Band requires significantly less computation
time than other AC approaches providing theoretical guaran-
tees while still yielding high-quality configurations.

Introduction

Algorithm configuration (AC) is concerned with the task of
automated search for a high-quality configuration (e.g., in
terms of solution quality or runtime) of a given parameter-
ized target algorithm. Parameterized algorithms are found
in many different applications, including, for example, op-
timization (e.g., satisfiability (SAT) (Audemard and Simon
2018) or mixed-integer programming (MIP) solvers (IBM
2020)), simulation, and machine learning. Finding good con-
figurations is a significant challenge for algorithm designers,
as well as for users of such algorithms who may want to ad-
just the algorithm to perform well on data specific to their use
case. Finding good configurations through trial and error by
hand is a daunting task, hence automated AC methods have
been developed on the basis of heuristics, such as ParamILS
(Hutter, Hoos, and Stiitzle 2007; Hutter et al. 2009), GGA
(Ansoétegui, Sellmann, and Tierney 2009; Ansétegui et al.
2015), irace (Birattari et al. 2002; Lopez-Ibafiez et al. 2016)
or SMAC (Hutter, Hoos, and Leyton-Brown 2013, 2011).
While heuristic configurators have had great success at
finding good configurations on a wide variety of target algo-
rithms, they do not come with theoretical guarantees. To this
end, the pioneering work of Kleinberg, Leyton-Brown, and
Lucier (2017) proposes the first algorithm configurator with
provable, theoretical guarantees on the (near-)optimality of
the configuration returned. Further improvements and adjust-
ments to those guarantees have followed (Weisz, Gyorgy, and

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Szepesvari 2018, 2019; Kleinberg et al. 2019; Weisz et al.
2020). All of these works essentially consider the runtime
as the performance objective and provide, in particular, an
upper bound on the total runtime of the respective algorithm
configurator that is (nearly) optimal in a worst-case sense.
Despite their appealing theoretical properties and the
steady progress on their empirical performance, these ap-
proaches still cannot compete with heuristic approaches in
terms of practical performance. The main issue of these theo-
retical approaches is that they are conservative in the process
of discarding configurations from the pool of potential can-
didates, as pointed out in recent work (Weisz et al. 2020).
This is indeed a key characteristic difference compared to
the heuristic approaches, which discard configurations quite
quickly after being used only on a couple of problem in-
stances. From a practical point of view, this makes sense,
as the risk of discarding all good configurations is generally
lower than wasting lots of time looking at bad configurations.

In an attempt to further bridge the gap between heuristic
configurators and theoretical approaches, we propose AC-
Band, a general algorithm configurator inspired by the pop-
ular Hyperband (Li et al. 2016) approach based on multi-
armed bandits (Lattimore and Szepesvari 2020). Hyperband
is an algorithm for the hyperparameter optimization problem
(HPO) (Yang and Shami 2020; Bischl et al. 2021b), which
is essentially a subproblem of the general AC problem fo-
cusing on configuring solution quality of algorithms, with a
particular focus on machine learning methods. While using
HPO approaches for AC looks attractive at first, it is rather
uncommon in practice due to the subtle differences between
the two problems. These differences include potentially us-
ing runtime as a configuration metric and the existence of
multiple problem instances, which are different settings or
scenarios that an optimization method must solve.

Our suggested approach reconciles the basic idea behind
the mechanism of Hyperband with the key characteristics of
the AC problem and incorporates the advantageous property
of discarding configurations quickly. This is achieved by first
replacing the underlying bandit algorithm of Hyperband, Suc-
cessive Halving (SH) (Karnin, Koren, and Somekh 2013), by
a more general variant, Combinatorial Successive Elimina-
tion (CSE) (Brandt et al. 2022), and then carefully adapting
the parameters of the iterative CSE calls over time. In contrast
to SH, as well as to all other multi-armed bandit algorithms

for pure exploration with finite budget, CSE allows (i) to steer
the aggressiveness of discarding arms (configurations in our
terminology) from the set of consideration, (ii) to pull more
than one arm simultaneously (run multiple configurations in
parallel), and (iii) to work with observations either of quan-
titative or qualitative nature. As mentioned above, the first
property seems to be of major importance in AC problems,
but the other two properties will turn out to be particularly
helpful as well. Indeed, (ii) obviously allows parallelization
of the search process, while the generality regarding the na-
ture of the observations in (iii) transfers quite naturally to the
suggested method.

The interplay of the second and third properties allows us
to instantiate AC-Band to obtain appealing practical perfor-
mance compared to existing theoretical approaches regarding
the total runtime. On the theoretical side, we derive (under
mild assumptions on the underlying AC problem) that AC-
Band is guaranteed to return a nearly optimal configuration
with high probability if used on sufficiently many problem
instances. Our theoretical result is quite general in the sense
that the notion of optimality is not restricted to the runtime
of the configurations, but also encompasses other target met-
rics such as solution quality or memory usage. The technical
appendix can be found on arXiv'.

Related Work

Theoretical advances in AC. The field of AC has grown
to include many different methods and settings; we refer to
Schede et al. (2022) for a full overview, especially with re-
gard to the heuristic methods previously mentioned. Inspired
by Kleinberg, Leyton-Brown, and Lucier (2017), who intro-
duced Structured Procrastination together with a non-trivial
worst-case runtime bound, more and more algorithms with
even better theoretical guarantees with respect to the runtime
have been proposed. LeapsAndBounds (Weisz, Gyorgy, and
Szepesvari 2018) tries to guess an upper bound on the opti-
mal runtime by doubling the last failed guess, whereas Struc-
tured Procrastination with confidence (Kleinberg et al. 2019)
works by delaying solving hard problem instances until later.
Rather, it first runs the configurations with the smallest lower
confidence bound of its mean runtime on instances that are
easy to solve. Another recent method, CapsAndRuns (Weisz,
Gyorgy, and Szepesvari 2019), first estimates a timeout for
each configuration and afterwards performs a Bernstein race
over the configurations. As a follow up method, Impatient-
CapsAndRuns (Weisz et al. 2020) uses a more aggressive
elimination strategy by filtering unlikely optimal configu-
rations in a preprocessing. Further theoretical progress has
been made regarding the analysis of the estimation error in
AC settings (Balcan et al. 2019; Balcan, Sandholm, and Viter-
cik 2020), the distribution of the computational budget (Liu
et al. 2020) and the understanding of heuristic methods (Hall,
Oliveto, and Sudholt 2019, 2020).

HPO. As a subset of AC, HPO involves setting the hyper-
parameters of algorithms, in particular machine learning ap-
proaches. The term hyperparameter differentiates parameters
that change the behavior of the algorithm being configured

"https://arxiv.org/abs/2212.00333

from parameters that are induced or learned from data and are
thus not set by a user. In contrast, AC focuses on configuring
algorithms that solve instances of a dataset independently.
We refer to Bischl et al. (2021a) for a full overview of HPO.

Bandit methods for AC. Classically, methods for multi-
armed bandits (MAB) (Lai and Robbins 1985; Bubeck
and Cesa-Bianchi 2012; Lattimore and Szepesvari 2020)
are designed to find a good balance between exploration-
exploitation of specific choice alternatives (e.g., configura-
tions or hyperparameters). The pure exploration setting, how-
ever, has attracted much research interest as well (Bubeck,
Munos, and Stoltz 2009; Karnin, Koren, and Somekh 2013;
Aziz et al. 2018), especially for HPO (Jamieson and Tal-
walkar 2015; Li et al. 2016). However, up to now bandit
algorithms making single choice alternative decisions have
been leveraged, although the parallel execution of config-
urations (or hyperparameters) in the AC (or HPO) setting
seems to be predetermined for the combinatorial bandit vari-
ant (Cesa-Bianchi and Lugosi 2012; Chen, Wang, and Yuan
2013; Jourdan et al. 2021). In light of this, the recently pro-
posed CSE algorithm (Brandt et al. 2022) seems promising
as a generalization of the popular SH approach.

Problem Formulation

We adopt the formulation of the problem as by Schede et al.
(2022). Let Z be the space of problem instances and P an
unknown probability distribution over Z. Suppose A is an
algorithm that can be run on any problem instance i € Z,
and has different parameters p; coming from a known do-
main ©; for each j € {1,...,m}. We call A the rarget
algorithm and the Cartesian product of its parameter do-
mains © = O X - - - X O, the configuration or search space
consisting of all feasible parameter configurations. For a con-
figuration § € ©, we denote by Ay an instantiation of the
target algorithm A with configuration 6. Running the target
algorithm A with configuration 6 on a specific problem in-
stance ¢ € Z results in costs specified by an unknown, and
possibly stochastic, function ¢ : Z x © — R, i.e., c(i,0)
represents the costs of using .4y for problem instance i. Here,
the costs can correspond to the runtime of Ay for ¢, but also
to other relevant target metrics such as the solution quality or
the memory usage.

Algorithm Configurator. The goal in algorithm config-
uration is, roughly speaking, to find a configuration that
is optimal, or at least nearly optimal, with respect to the
costs in a certain sense, which we specify below. The search
for such configurations is achieved by designing an algo-
rithm configurator AC that (i) selects specific configura-
tions in © and (ii) runs them on some (perhaps randomly)
chosen problem instances in Z. To this end, the algorithm
configurator uses a statistic s : | J,cyR* — R that maps
the observed cost of a configuration 6 used for a set of
problem instances %1, ...,%; to a representative numerical
value s(c(i1,0), ..., c(it, 8)), that guides the search behav-
ior of AC. For example, s could be the arithmetic mean, i.c.,
s(c(i1,0),...,c(ir, 0)) =t 130 c(is, 0).

In this work, we are interested in algorithm configurators
that can run several different configurations, up to a certain

size k, in parallel on a selected problem instance. The algo-
rithm configurator is given a fixed computational budget B,
which represents the maximum number of such parallel runs
and is set externally. For this purpose, let O ;) = {© C

0]2 < |0| < k} be the set of all possible subsets of param-
eter configurations that have at least size 2 and at most size k.
Furthermore, let O[3 1 (0) = {© € O3 | 0 € O} be the set
of all possible subsets of parameter configurations containing
the configuration 6 € ©. Note, that the observed cost c(i, 0)
for running 6 along with other configurations on an instance
1 € 7 could depend on the respectively chosen configuration
set © € Oy 1(0). For example, the algorithm configura-
tor could stop the parallel solution process as soon as one
of the configurations provides a solution, and set a default
cost (penalty) for the configurations that did not complete.
Hence, we write cg for the cost function in the following
to take this contingency into account. Finally, we introduce
sg6(t) = s(cgli1,0),. .., cg (i, 0)) which is the statistic
of after running it in parallel with the configurations in
©\{6} on ¢ problem instances i1, . . ., it.

e-optimal Configurations. Since the observed costs are
potentially dependent on the chosen set of configurations to
evaluate, we first introduce the following assumption on the
limit behavior of the statistics.

(A1) : VO €Op VI €O : Sy = Jim sg,5(2) exists.

In words, for each possible set of configurations the (possibly
dependent) statistic of each configuration involved converges
to some limit value if run on infinitely many problem in-
stances. Recalling the example of s being the arithmetic mean,
this is arguably a mild assumption and implicitly assumed
by most approaches for AC problems, due to the considered
i.i.d. setting. Since our assumption is more general, it would
also allow considering non-stationary scenarios of AC.

The natural notion of an optimal configuration 6* is a con-
figuration that has the largest (configuration-set dependent)
limit value over all configurations. Indeed, if we would re-
place ©[2 1) by the singleton sets of all configurations in ©,
this would correspond to the commonly used definition of
the optimal configuration (see (Schede et al. 2022)), as the
limit value would be then E[c(i, §)]>. However, in our case
this notion of optimality has two decisive drawbacks, as first
of all such a 6* may not exist. Moreover, even if it exists, the
search for it might be hopeless as the configuration space is
infinite (or very large). The latter issue arises in the “usual”
AC problem scenario as well, and is resolved by relaxing the
objective to finding a “good enough” configuration. We adapt
this notion of near optimality by resorting to the definition
of an e-best arm from the preference-based bandit literature
(Bengs et al. 2021). For some fixed relaxation parameter
€ > 0, we call a configuration 6 an e-best configuration iff

VO € Opi(0) : Sye > Suye — & (1
where 5(1)\(1) > ... > S(Ié\)lé is the ordering of {Se\é}eeé'

2The expectation is w.r.t. 7 and the possible randomness due to
Ay and/or the cost generation.

Although we have relaxed the notion of optimality, finding
e-best configurations is still often like searching for a nee-
dle in a haystack. Hence, we need to ensure that there is a
sufficiently high probability that an e-best configuration is
included in a large random sample set of O:

(A2) : the proportion of e-best configurations is a € (0, 1).

Note this assumption is once again inspired by the bandit
literature dealing with infinitely many arms (de Heide et al.
2021). By fixing the probability for the non-occurrence of
an e-best configuration to some ¢ € (0, 1), Assumption (A2)
ensures that a uniformly at random sampled set of configu-
rations with size N, s = [log;_, ()] contains at least one
e-best configuration with probability at least 1 — 4.

Of course, an efficient algorithm configurator AC that
aims to find an e-best configuration #* cannot verify the
condition 5’0*‘@ > S(l)lé — ¢ for every possible query set

© € O, (0*), in particular when the number of config-
urations, and thus the cardinality of O)(6*), is infinite.
Instead, AC can only guarantee the above condition for a
finite number of query sets and therefore it will always find a
proxy for an e-best configuration that does not have to be a
true e-best configuration. To guarantee that AC finds a true
e-best configuration with high probability, we introduce the
following assumption.

(A3):VM e NVl € O:
]P’((Vi € [M]: Sy6, > Suye, —©)
= (V0 € O (0) : Sy = Suye —) 21— w(M),

where ©1,...,0) ~ Uniform(© 4 (0)) and ¢ : N —
[0,1] is a strictly monotone decreasing function. In words,
the probability that a configuration 6 is a global e-best con-
figuration increases with the number of (randomly chosen)
configuration sets on which it is a local e-best configuration,
i.e., the characteristic condition in (1) is fulfilled.

Note that (A3) is a high-level assumption on the difficulty
of the underlying AC problem. The “easier” the problem, the
steeper the form of 1) and vice versa. As we do not impose
further assumptions on v other than monotonicity, our theo-
retical results below are valid for a variety of AC problems.

AC-Band Algorithm

The AC-Band algorithm consists of iterative calls to
CSE (Brandt et al. 2022) that allow it to successively re-
duce the size of a candidate set of configurations. We first
describe how CSE works, then elaborate on its use in the
AC-Band approach.

Combinatorial Successive Elimination. CSE (Algorithm
1) is a combinatorial bandit algorithm that, given a finite set of
arms (configurations), finds an optimal arm® defined similarly
to (1) for e = 0 using only a limited amount of feedback
observations (budget). To this end, CSE proceeds on a round-
by-round basis, in each of which (i) the non-eliminated arms

31ts existence is simply assumed.

Algorithm 1: Combinatorial Successive Elimination (CSE)

Algorithm 3: AC-Band

Input: set of configurations O with |é\ = n, subset size
k < n,budget B, p € (0,log,(k)], problem instances I with
|7| = B which can be partitioned into
ReF™ — min, {g°% (n) < k}4min,{f5” (k) < 1} problem
instances I, with |I,| = Pf*™ . b, where {PPF"} =
{l7/s (£ /)" |}y, and g () = f, (K)- [#/k]+2 mod k
Initialization: © < O, r < 1

1: while |6, > k do

2: bj“ — LB/(Pr{:‘k,n;Rp,kw,n,)J , J Prp’k’"

33 0,1,0p9,...,0, 5 Partition(ér, k)
4: if |0, j| < k then

5: R+—0O,.5,J+J-1

6: else

7: R+ 0

8: endif

9: I.1,..., 1 ;< Partition(I,,b,)

10: @7"+1 <—R
11: forj € [J]do

12: R + ArmElimination(0,.;, b., f,(16,;]), I.;)
13: 67’+1 — ®r+1 UR
14: end for

150 r+r+1
16: end while
17: ©ppq 0
18: while |©,.| > 1 do
19: ©O,41 < ArmElimination(©,, b,, f,(10,]), I)
200 r+r+1
21: end while
Output: The remaining item in O,

Algorithm 2: ArmElimination(©’, b, 1, I’)

1: Use @’ for b times on problem instances I’

2: Forall § € €', update sp16¢(b)

3: Choose an ordering 01, ..., 0,5, of (sg|é,(b))9€é,
4: Output: {6;,...,0,}

are partitioned into groups of a given size k (line 3) if possible
(lines 4-8, 18-19) and (ii) feedback for each group is queried
under a round-specific budget, which, once exhausted, leads
to the elimination of a certain fraction of arms in each group
(Algorithm 2 called in lines 12 and 19). Here, the feedback
observed for an arm is mapped to a numerical value using a
statistic s that indicates the (group-dependent) utility of the
arm, and is used as the basis for elimination in each round.
The fraction of eliminated arms is steered via a function
fo : [k] = [k] with f,(x) = |#/2¢], where the predetermined
parameter p € (0,log, (k)] controls the aggressiveness of
the elimination. A large value of p corresponds to a very
aggressive elimination, retaining only the arm(s) with (the)
highest statistics, while a small p eliminates only the arm(s)
with the lowest statistics. The overall available budget is first
split equally for each round, and then for all partitions in each
round (line 2).

In light of the AC problem we are facing, querying feed-

Input: target algorithm A, configuration space O, problem
instance space Z, Budget B, subset size k, suboptimality € of
”good enough” configuration, proportion of e-best configura-
tions «, failure probability d, ng > [0(8)/ln(1—a)] € N
Initialization: £ < [log, (70/no—Na5)], ¢ < 1+ *=1/E
Cy < log, (2), Cy < 1 +log, (no + #f\?a,a ,
Cs - [log, (k)]

1: sample 6y € ©

2: for e € [E] do

3: ne = [nof2¢] + 1, po = log, (et+k—1/e),

4: sample e 1,...,0cn,-1 €O

5. sample I, C T\ U%_Y I, with |I.| = B/e.,

_ (CLE—(2F —1)(2C1 —Cy—C3))2°
where ¢, = 25 (—eC1 4021 C3)

6: 96 = CSE({GE_l, 9571, ce ,96_’7,@_1}, k, |Ie|, Pes IE)
7: end for
Output: 0

back for a group of arms corresponds to running a subset
of configurations in parallel on a problem instance, which
results in observations in the form of costs. Moreover, we
do not reuse a single problem instance for any parallel run
so that the budget is in fact equal to the number of problem
instances used. Accordingly, the overall budget of CSE cor-
responds to the number of problem instances used in total,
which are split into disjoint problem instance sets of size b,.,
i.e., the round-specific budget (line 9).

Since CSE initially assumes a finite set of arms and a fixed
parameter p guiding the overall elimination aggressiveness,
we face two trade-offs. The first is regarding the interplay be-
tween the number of initial arms and the round-wise budget:

(T1): If the initial number of configurations for CSE is small
(large), the more (fewer) runs can be carried out on
different instances, leading to potentially more reliable
(unreliable) statistics, but only on a few (many) subsets
of configurations.

The second trade-off arises through the interplay between the
round-wise budget and the elimination aggressiveness:

(T2): If the elimination behavior of CSE is aggressive (con-
servative), then more (fewer) runs can be carried out on
different instances, leading to potentially more reliable
(unreliable) statistics, but only on a few (many) subsets
of configurations.

The challenge now is to reconcile these two trade-offs and,
above all, to take into account the specifics of AC problems.

AC-Band. The design of AC-Band (Algorithm 3) seeks
to find a good balance for both tradeoffs (T1) and (T2) by
calling CSE iteratively. Initially, CSE is invoked with larger
sets of configurations, and an aggressive elimination strategy
is applied. Over time, the size of the candidate sets is suc-
cessively reduced, and the aggressiveness of the elimination
strategy is also gradually decreased. Roughly speaking, the
idea is to have high exploration in the beginning, and thus
more risk that good configurations are discarded, and become
more and more careful towards the end.

More specifically, AC-Band proceeds in epochs e &

sample new problem instances Ie@

v
'
'
FR
) .
'
'

~ samplen, — 1 configurations @
Figure 1: Illustration of AC-Band’s solving process.

{1,...,E}, in each of which CSE is called on a specific
set of problem instances using a specified degree of elimina-
tion aggressiveness p. and a set of configurations of size n.,
with both p, and n. decreasing w.r.t. e (line 3). At the end
of an epoch, i.e., when CSE terminates, a single high quality
configuration among the considered set of configurations is
returned (line 6). The set of configurations used in an epoch
consists of the high quality configuration of the previous
epoch, which is sampled randomly for the first epoch (line
1), and n. — 1 randomly sampled configurations, which have
not been considered before (line 4).

This epoch-wise procedure of AC-Band is depicted in Fig-
ure 1. Although AC-Band is similar in design to Hyperband
in that it tries to find a good balance between specific trade-
offs by successively invoking a bandit algorithm (CSE vs.
SH), AC-Band differs in the way it defines the quality of the
search objects*. Unlike Hyperband, we do not run configu-
rations individually on problem instances and consider the
cost of each configuration on its own, rather configurations
are run in parallel and we consider potential interactions. Ac-
cordingly, we do not have one global quality value that we
can compare for all configurations seen, but several at once.

The overall number of considered problem instances is B
(the evaluation budget), which is a parameter that we analyze
below. Besides the “usual” parameters of an algorithm con-
figurator, i.e., the target algorithm A4, its configuration space
© and the problem instance space Z, AC-Band requires:

* the maximum number of configurations that can be run in
parallel &,

* some relevant summary statistic s : | J,cy R* — R for the
observed costs (see Problem Formulation),

* the theoretically motivated guarantee parameters € > 0,

a € (0,1),and § € (0, 1) (see Problem Formulation)

* areference size ng for the set of epoch-wise sampled con-
In
ln(l(f)a)
With these parameters specified, AC-Band determines the
overall number of epochs F and the sufficient number of
problem instances B/c, (line 5) for an epoch-wise CSE to re-
turn a high quality configuration (see Theoretical Guarantees).
Moreover, the overall number of considered configurations

is guaranteed to be at least N, 5 = [ml(nl(f)a) 1, which in light

figurations (must be > [| for technical reasons).

“Hyperband uses hyperparameters of machine learning models
as search objects and AC-Band algorithm configurations.

of the random sampling of the configurations ensures that at
least one e-best configuration is sampled with a probability
of atleast 1 — 4.

Theoretical Guarantees

In Appendix C, we prove the following theoretical guarantee
for AC-Band regarding the sufficient evaluation budget (or
number of problem instances) to find an e-best configuration
with high probability w.r.t. P as well as the randomness
invoked by AC-Band. For the proof, we need to extend the
theoretical guarantees for CSE to the setting of finding e-best
configurations (see Appendix B).

Theorem 0.1. Let R® be the number of rounds of CSE in
epoch e € {1,...,E}, let C1, Co and C3 be as defined in
Alg. 3 and further let A,.(0*)> be the partition in round r of
CSE containing 0* and

- (1+ ’_7&1(9*)(

T ee[é?,(?g[l%c]

€ A, (14-(09))+1) A, (6%)
max {3, max, 2 H):

Ame =Sme — Sue

Vo ®) =, anin_ inf {[soia, o) (') = Soja, o)

< t}.

Under Assumptions (A1)—(A3), Algorithm 3 used with a
subset size k, an e-best configuration proportion of o, and a
failure probability of § finds an e-best configuration 0* with
probability at least min{1 — §,1 — ((RF)~1)} if

@ CIE — (2E - 1)(201 - 02 — 03)
k 28 '

Roughly speaking, AC-Band finds a near-optimal config-
uration with a probability depending on the allowed failure
probability ¢ and the probability that a locally optimal config-
uration is also a globally optimal one (see Assumption (A3))
if the budget is large enough. The sufficient budget, in turn, is
essentially driven by 4!, which depends on the difficulty of
the underlying AC problem by two characteristics: the maxi-
mal inverse convergence speed ﬁ&:(g*) of the used statistic s,

and the maximal (halved) suboptimality gap A of the limits
of the statistic between the best configuration and the best
one that will be discarded from the query set 0 is contained.
The remaining terms of the sufficient budget can be computed
explicitly once the theoretical guarantee parameters « and 9,
as well as the subset size k, are fixed. The sufficient budget
in dependence of the mentioned parameters is discussed and
plotted in Appendix C.3.

Note that the theoretical guarantee in Theorem 0.1 is
not directly comparable to the ones by the theoretical AC
approaches (Kleinberg et al. 2019; Weisz, Gyorgy, and
Szepesvari 2018, 2019; Weisz et al. 2020). This is due to
the major differences of our approach and the later ones on
how we approach the AC problem. Indeed, we do not restrict
ourselves to runtime as the target metric (or the costs), and

B>~

>A,(0) = 0 if 6 is not contained anymore in the set of active
configurations in round r.

we also take possible dependencies in the parallel runs into
account. As a consequence, the notion of near optimality of
a configuration in the other works is tailored more towards
runtimes in an absolute sense, i.e., without considering inter-
action effects, while ours is more general and in particular
focusing on such interaction effects. Thus, the theoretical
guarantee in Theorem 0.1 in the form of a sufficient eval-
uation budget to obtain a nearly optimal configuration is
sensible, as we do not commit to a specific target metric.

Experiments

We examine AC-Band on several standard datasets for evalu-
ating theoretical approaches for AC. We note that while these
datasets refer exclusively to runtimes, AC-Band is applicable
to other target metrics (see Section Problem Formulation).
In our experiments, we address the following two research
questions: Q1: Is AC-Band able to find high quality config-
urations in less CPU time than state-of-the-art AC methods
with guarantees? Q2: How does AC-Band scale with £?

Datasets. We use one SAT and two MIP datasets that have
been used before to assess theoretical works on AC (Weisz
et al. 2020). Due to space constraints, we only consider one
of the MIP datasets here, while the appendix also discusses
the other. The SAT dataset contains precomputed runtimes of
configurations of the MiniSat SAT solver (Eén and Sorens-
son 2003) obtained by solving instances that are generated
using CNFuzzDD (Weisz, Gyorgy, and Szepesvari 2018).
The dataset contains runtimes for 948 configurations on
20118 instances. The MIP datasets curated by Weisz et al.
(2020) are generated using an Empirical Performance Model
(EPM)(Hutter et al. 2014). In particular, the EPM is trained
on the CPLEX solver (IBM 2020) separately using instances
from a combinatorial auction (Regions200 (Leyton-Brown,
Pearson, and Shoham 2000)) and wildlife conservation (RCW
(Ahmadizadeh et al. 2010)) dataset. The resulting model is
used to predict runtimes for 2000 configurations and 50000
and 35640 new instances, respectively. Since all runtimes are
precomputed (a timeout of 900 seconds is used), the eval-
uation of configuration-instance pairs only required table
look-ups in our experiments.

Evaluation. To compare methods, we consider two met-
rics: (i) the accumulated CPU time needed by a method to
find a configuration, and (ii) the percent gap to the best con-
figuration. This second metric measures in percent how much
more time the configuration returned by the method needs to
solve all instances compared to the best overall configuration
for the dataset. Smaller values indicate that the configuration
found is closer to the best configuration in terms of runtime
and the best configuration has a value of 0. This allows for
comparing the quality between methods, as well as to de-
termine how “far” a configuration is from the optimal one.
In practical applications of AC, wall-clock time is often a
bottleneck, and speeding up the process of finding a suitable
configuration is the main focus. For these speedups, practi-
tioners are (usually) willing to sacrifice configuration quality
to a certain extent. The other theoretical works use the R°
metric (note that § has a different meaning in this work) to
evaluate the quality of a returned configuration. This metric
is a variation of the mean runtime, where the mean runtime

of a configuration is only computed over the (1 — §) portion
of instances with the lowest runtime. In real-world settings,
we do not have the luxury of ignoring a part of the instance
set, thus we do not view this metric as suitable for evaluating
our approach. For the sake of completeness, we nevertheless
report the R? values in Appendix D.

Initialization of AC-Band. Due to the generality of our
approach, a summary statistic s that measures the quality of a
configuration needs to be determined. In our case, the k£ con-
figurations in a subset of CSE can be evaluated in parallel for
an instance given that £ CPUs are available. When running
k configurations in parallel, time can be saved by stopping
all remaining configuration runs as soon as the first configu-
ration finishes on the given instance. Through this capping,
we obtain right-censored feedback where a runtime is only
observed for the “finisher”. A statistic that is able to deal with
this censored feedback is needed to avoid using an imputa-
tion technique that could potentially add bias to the feedback.
In line with Brandt et al. (2022), we interpret the obtained
feedback as a preference: the finishing configuration is pre-
ferred over the remaining, unfinished configurations. Once
we have obtained these preferences for multiple instances,
we can use a preference-based statistic such as the relative
frequency to establish an ordering over the configurations in
k. In particular, we count how many times a configuration
finishes first over a set of instances®.

Competitors. AC-Band is compared against ICAR,
CAR++ (Weisz et al. 2020) and Hyperband (Li et al. 2016).
At the moment, ICAR is the best performing AC method
that comes with theoretical guarantees. We use the imple-
mentation provided by Weisz et al. (2020) with the same
hyperparameter settings. Since AC-Band is inspired by Hy-
perband, we also adapt Hyperband for the AC setting for
a comparison. Specifically, we set the parameter R of Hy-
perband such that it uses the same total budget (number of
instances) as AC-Band. In addition, we use the average run-
time over instances as the validation loss and consequently
return the configuration with smallest average runtime. Fi-
nally, we set Spaz = [(10g, (Pmaz))], adjust the calculation
of r; slightly to account for instances that were already seen,
and try different values of 7.

Choice of §. Varying ¢ can lead to significantly differ-
ent performance of AC-Band and other techniques. Due to
space constraints, we only show results for two datasets for
0 = 0.05 since this setting has also been used in previous
work (Weisz et al. 2020). We note, however, that other set-
tings are just as valid, and therefore also provide results for
0 = 0.01 and additional datasets in Appendix D. In fact,
using § = 0.01 can result in finding better configurations,
albeit it is up to the user of the AC approach to decide which
0 best suits their needs.

Q1 Figure 2 shows the CPU time used by each method and
the percent gap to best configuration. With a small value of &,
AC-Band lies on the Pareto front of percent gap versus CPU
time for both datasets (for the third, Regions200, as well).
This allows us to answer Q1 in the affirmative. In particular,
with k = 2 AC-Band is 72% percent faster than ICAR and

8Code: https://github.com/DOTBielefeld/ACBand

Alpha = 0.05 Alpha = 0.02 Alpha = 0.01
030 030 030
- ICAR
8 g oas 0.25 CAR++ 0.25
No ACBand k = 2
2= 020 AC-Band k = 4 020
5 %u 159 o 0as{ ® v ACBandk-=8 0.15
= o ® ACBand k = 16
o ®
_@ g oo 0.10 Hyperband eta = 8 | 010
c g Hyperband eta=5
S @ oos %® 0.05 & 0.051{ @ ®
a
0.00 0009 0.00 1+
20 40 60 80 100 0 50 150 200 250 0 100 200 300 400 500
CPU time (days) CPU time (days) CPU time (days)
U.ds ULy 0>
- ®
$ 0.20 ® ® 0.20 0.20
= o
g *+ 015 0.15 ® 0.15
g o
= g ® ®
E 1 0.10 0.10 0101 @
a & ®
08
& 0.05 0.05 0.05
a

e
o
S

04 06 08 1 1.2 14 16 18 0.5 1

CPU time (thousand days)

1‘.5 2
CPU time (thousand days)

5 6 7

T S
CPU time (thousand days)

25 3 3.5 V]

Figure 2: Mean CPU time and percent gap to best over 5 seeds for 6 = 0.05 and different « (columns) for AC-Band, ICAR,
CAR++ and Hyperband on CNFuzzDD (top) and RCW (bottom). Circles indicate variants of AC-Band. Rectangles represent the
standard error over the seeds. The number of configurations tried for CAR++: {97, 245, 492}, ICAR: {134, 351, 724}, AC-Band:
{60,153, 303}, Hyperband(n = 5): {842}, Hyperband(n = 8): {618}.

73% faster than Hyperband for § = 0.05 over all « and
datasets, while providing configurations that are only 7% and
6% worse in terms of the gap to the best configuration. For
most real-world applications, this is an acceptable trade-off
in time versus quality. For all datasets, the percent gap to
best decreases when AC-Band samples more configurations
(smaller o). This increase in exploration does not lead to a
significant increase in CPU time for a fixed k, since AC-Band
still has the same budget, i.e., additional configurations are
evaluated on fewer instances.

Hyperband samples more configurations in total than AC-
Band, which helps it to achieve a better percent gap to best
on datasets where the majority of configurations have a high
mean runtime. On these datasets, only a few good configura-
tions are present. This is the case for the RCW dataset (and
the Regions200 dataset in the appendix) where only a few
instances are needed to determine that a configuration should
be discarded. On datasets where the runtime of configurations
is more evenly distributed, such as the CNFuzzDD dataset,
using too few instances may lead to discarding promising
configurations early, giving AC-Band an edge by evaluating
less configurations more thorough. Lastly, since Hyperband
does not use capping, its CPU time deteriorates.

Q2 Our experiments clearly indicate that lower values of &k
are preferable. With k£ = 2, more CSE rounds are performed
and thus the number of configurations decreases slower than
with a higher k. With a larger k, the opposite occurs, and
significant amounts of CPU time are expended with little
information gain. However, note that higher &’s have a lower
wall-clock time, so a user would receive answers sooner.

Conclusion

In this paper we introduced AC-Band, a versatile approach for
AC problems that comes with theoretical guarantees even for
arange of target metrics in addition to runtime. We showed
that AC-Band returns a nearly optimal configuration w.r.t. the
target metric with high probability if used with a sufficient
number of problem instances and the underlying AC problem
satisfies some mild assumptions. In our experimental study,
we considered an instantiation of AC-Band based on prefer-
ence feedback, which generally leads to faster average CPU
times than other theoretical approaches, while still returning
a suitable configuration in the end.

Our results open up several possibilities for future work.
First, it would be interesting to analyze AC-Band specifically
for the case in which runtime is the relevant target metric and
investigate whether a similar worst-case overall runtime guar-
antee can be derived as for the other theoretical approaches
in this vein. Next, a theoretical as well as empirical analysis
regarding the interplay between the explicit instantiation of
AC-Band w.r.t. the underlying statistic s and the characteris-
tics of the underlying AC would be desirable. In other words,
on what types of AC problems does a specific instantiation
of AC perform well or poorly? Also, our mild Assumption
(A1) would even allow some leeway in the configuration or
problem instance sampling strategy of the algorithm config-
urator, which is currently simply uniformly at random for
AC-Band. Finally, real-world AC applications generally have
only a handful of instances available, thus it would be ad-
vantageous to have strong theoretical guarantees even for
scenarios without thousands of instances.

Acknowledgements

This research was supported by the research training group
Dataninja (Trustworthy Al for Seamless Problem Solving:
Next Generation Intelligence Joins Robust Data Analy-
sis) funded by the German federal state of North Rhine-
Westphalia and by the German Research Foundation (DFG)
within the project “Online Preference Learning with Bandit
Algorithms” (project no. 317046553).

References

Ahmadizadeh, K.; Dilkina, B.; Gomes, C. P.; and Sabharwal,
A. 2010. An empirical study of optimization for maximizing
diffusion in networks. In International Conference on Prin-
ciples and Practice of Constraint Programming, 514-521.
Springer.

Ansétegui, C.; Malitsky, Y.; Samulowitz, H.; Sellmann, M.;
and Tierney, K. 2015. Model-Based Genetic Algorithms for
Algorithm Configuration. In IJCAIL.

Ansétegui, C.; Sellmann, M.; and Tierney, K. 2009. A
Gender-Based Genetic Algorithm for the Automatic Con-
figuration of Algorithms. 142-157.

Audemard, G.; and Simon, L. 2018. On the glucose SAT
solver. International Journal on Artificial Intelligence Tools,
27(01): 1840001.

Aziz, M.; Anderton, J.; Kaufmann, E.; and Aslam, J. 2018.
Pure exploration in infinitely-armed bandit models with fixed-
confidence. In Algorithmic Learning Theory, 3-24. PMLR.

Balcan, M.; DeBlasio, D. F.; Dick, T.; Kingsford, C.; Sand-
holm, T.; and Vitercik, E. 2019. How much data is sufficient
to learn high-performing algorithms? CoRR, abs/1908.02894.

Balcan, M.; Sandholm, T.; and Vitercik, E. 2020. Refined
bounds for algorithm configuration: The knife-edge of dual
class approximability. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML, volume 119,
580-590. PMLR.

Bengs, V.; Busa-Fekete, R.; El Mesaoudi-Paul, A.; and Hiiller-
meier, E. 2021. Preference-based Online Learning with Du-
eling Bandits: A Survey. Journal of Machine Learning Re-
search, 22: 1-108.

Birattari, M.; Stiitzle, T.; Paquete, L.; and Varrentrapp, K.
2002. A Racing Algorithm for Configuring Metaheuristics.
In Gecco, 11-18.

Bischl, B.; Binder, M.; Lang, M.; Pielok, T.; Richter, J.;
Coors, S.; Thomas, J.; Ullmann, T.; Becker, M.; Boulesteix,
A.-L.; Deng, D.; and Lindauer, M. 2021a. Hyperparameter
Optimization: Foundations, Algorithms, Best Practices and
Open Challenges.

Bischl, B.; Binder, M.; Lang, M.; Pielok, T.; Richter, J.;
Coors, S.; Thomas, J.; Ullmann, T.; Becker, M.; Boulesteix,
A.-L.; et al. 2021b. Hyperparameter optimization: Founda-
tions, algorithms, best practices and open challenges. arXiv
preprint arXiv:2107.05847.

Brandt, J.; Haddenhorst, B.; Bengs, V.; and Hiillermeier, E.
2022. Finding Optimal Arms in Non-stochastic Combinato-
rial Bandits with Semi-bandit Feedback and Finite Budget.

Bubeck, S.; and Cesa-Bianchi, N. 2012. Regret Analysis of
Stochastic and Nonstochastic Multi-armed Bandit Problems.
CoRR, abs/1204.5721.

Bubeck, S.; Munos, R.; and Stoltz, G. 2009. Pure exploration
in multi-armed bandits problems. In International conference
on Algorithmic learning theory, 23-37. Springer.
Cesa-Bianchi, N.; and Lugosi, G. 2012. Combinatorial ban-
dits. Journal of Computer and System Sciences, 78(5): 1404—
1422.

Chen, W.; Wang, Y.; and Yuan, Y. 2013. Combinatorial Multi-
Armed Bandit: General Framework and Applications. In
Proceedings of the 30th International Conference on Machine
Learning, 151-159.

de Heide, R.; Cheshire, J.; Ménard, P.; and Carpentier, A.
2021. Bandits with many optimal arms. In Advances in
Neural Information Processing Systems, volume 34, 22457—
22469. Curran Associates, Inc.

Eén, N.; and Sorensson, N. 2003. An extensible SAT-solver.
In International conference on theory and applications of
satisfiability testing, 502-518. Springer.

Hall, G. T.; Oliveto, P. S.; and Sudholt, D. 2019. On the
Impact of the Cutoff Time on the Performance of Algorithm
Configurators. CoRR, abs/1904.06230.

Hall, G. T.; Oliveto, P. S.; and Sudholt, D. 2020. Anal-
ysis of the Performance of Algorithm Configurators for
Search Heuristics with Global Mutation Operators. CoRR,
abs/2004.04519.

Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2013. Bayesian
Optimization With Censored Response Data. arXiv preprint
arXiv:1310.1947.

Hutter, F.; Hoos, H.; Leyton-Brown, K.; and Stiitzle, T. 2009.
ParamILS: An Automatic Algorithm Configuration Frame-
work. J. Artif. Intell. Res. (JAIR), 36: 267-306.

Hutter, F.; Hoos, H.; and Stiitzle, T. 2007. Automatic Algo-
rithm Configuration based on Local Search. In Proceedings
of the Twenty-Second Conference on Artifical Intelligence
(AAAI °07).

Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011. Se-
quential Model-Based Optimization for General Algorithm
Configuration. In Learning and Intelligent Optimization,
507-523. Springer Berlin Heidelberg.

Hutter, F.; Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2014.
Algorithm runtime prediction: Methods & evaluation. Artifi-
cial Intelligence, 206: 79—-111.

IBM. 2020. ILOG CPLEX Optimization Studio 20.1.0:
User’s Manual.

Jamieson, K. G.; and Talwalkar, A. 2015. Non-stochastic
Best Arm Identification and Hyperparameter Optimization.
CoRR, abs/1502.07943.

Jourdan, M.; Mutny, M.; Kirschner, J.; and Krause, A. 2021.
Efficient pure exploration for combinatorial bandits with
semi-bandit feedback. In Algorithmic Learning Theory, 805—
849. PMLR.

Karnin, Z.; Koren, T.; and Somekh, O. 2013. Almost op-
timal exploration in multi-armed bandits. In International
Conference on Machine Learning, 1238—1246. PMLR.

Kleinberg, R.; Leyton-Brown, K.; and Lucier, B. 2017. Ef-
ficiency Through Procrastination: Approximately Optimal
Algorithm Configuration with Runtime Guarantees. In Pro-
ceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI, 2023-2031. ijcai.org.

Kleinberg, R.; Leyton-Brown, K.; Lucier, B.; and Graham,
D. 2019. Procrastinating with confidence: Near-optimal,
anytime, adaptive algorithm configuration. arXiv preprint
arXiv:1902.05454.

Lai, T.; and Robbins, H. 1985. Asymptotically efficient
adaptive allocation rules. Advances in Applied Mathematics,
6(1): 4-22.

Lattimore, T.; and Szepesvari, C. 2020. Bandit algorithms.
Cambridge University Press.

Leyton-Brown, K.; Pearson, M.; and Shoham, Y. 2000. To-
wards a universal test suite for combinatorial auction algo-
rithms. In Proceedings of the 2nd ACM conference on Elec-
tronic commerce, 66-76.

Li, L.; Jamieson, K. G.; DeSalvo, G.; Rostamizadeh, A.; and
Talwalkar, A. 2016. Efficient Hyperparameter Optimization
and Infinitely Many Armed Bandits. CoRR, abs/1603.06560.

Liu, S.; Tang, K.; Lei, Y.; and Yao, X. 2020. On Performance
Estimation in Automatic Algorithm Configuration. In The
Thirty-Fourth Conference on Artificial Intelligence, AAAI,
2384-2391. AAAI Press.

Loépez-Ibaiiez, M.; Dubois-Lacoste, J.; Pérez Céceres, L.;
Birattari, M.; and Stiitzle, T. 2016. The irace package: Iterated
racing for automatic algorithm configuration. Operations
Research Perspectives, 3: 43-58.

Schede, E.; Brandt, J.; Tornede, A.; Wever, M.; Bengs,
V.; Hiillermeier, E.; and Tierney, K. 2022. A Survey of
Methods for Automated Algorithm Configuration. CoRR,
abs/2202.01651.

Weisz, G.; Gyorgy, A.; Lin, W.; Graham, D. R.; Leyton-
Brown, K.; Szepesviri, C.; and Lucier, B. 2020. Impatient-
CapsAndRuns: Approximately Optimal Algorithm Configu-
ration from an Infinite Pool. In Annual Conference on Neural
Information Processing Systems, NeurlIPS.

Weisz, G.; Gyorgy, A.; and Szepesvari, C. 2018. LEAP-
SANDBOUNDS: A Method for Approximately Optimal Al-
gorithm Configuration. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, ICML, volume 80
of Proceedings of Machine Learning Research, 5254-5262.
PMLR.

Weisz, G.; Gyorgy, A.; and Szepesvdri, C. 2019. CapsAn-
dRuns: An Improved Method for Approximately Optimal
Algorithm Configuration. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, ICML, volume 97,
6707-6715. PMLR.

Yang, L.; and Shami, A. 2020. On hyperparameter optimiza-

tion of machine learning algorithms: Theory and practice.
Neurocomputing, 415: 295-316.

Best Arm Identification with
Retroactively Increased
Sampling Budget for More
Resource-Efficient HPO

Author Contribution Statement

The original idea of this works comes from Marcel Wever and was revisited by the
author. The theoretical guarantees were proven by the author with support and
revisions by Viktor Bengs. The implementation of the experiments was done by
Marcel Wever and the paper was written mainly by the author with subsequently
revisions by all authors.

Supplementary Material

An appendix to the paper is provided in Appendix C. The code of the official
implementation is provided at https://github.com/mwever/incremental-successive-
halving.

69

Best Arm Identification with Retroactively Increased Sampling Budget for More
Resource-Efficient HPO

Jasmin Brandt', Marcel Wever??, Viktor Bengs?>? and Eyke Hiillermeier?3

IPaderborn University, Germany

2LMU Munich, Germany
3Munich Center for Machine Learning, Germany

jasmin.brandt@upb.de, {viktor.bengs, marcel.wever, eyke} @ifi.lmu.de

Abstract

Hyperparameter optimization (HPO) is indispens-
able for achieving optimal performance in machine
learning tasks. A popular class of methods in
this regard is based on Successive Halving (SHA),
which casts HPO into a pure-exploration multi-
armed bandit setting under finite sampling bud-
get constraints. This is accomplished by consid-
ering hyperparameter configurations as arms and
rewards as the negative validation losses. While
enjoying theoretical guarantees as well as work-
ing well in practice, SHA has several hyperparam-
eters itself, one of which is the maximum budget
that can be allocated to evaluate a single arm (hy-
perparameter configuration). Although there are
already solutions to this meta hyperparameter op-
timization problem, such as the doubling trick or
asynchronous extensions of SHA, these are either
practically inefficient or lack theoretical guaran-
tees. In this paper, we propose incremental SHA
(iSHA), a synchronous extension of SHA, allowing
to increase the maximum budget a posteriori while
still enjoying theoretical guarantees. Our empirical
analysis of HPO problems corroborates our theoret-
ical findings and shows that iSHA performs more
reliably than existing SHA-based approaches.

1 Introduction

Hyperparameter optimization (HPO) is a crucial step in the
process of engineering machine learning (ML) applications,
as optimal performance can only be obtained if parameter-
ized ML algorithms are tuned to the task at hand [Feurer and
Hutter, 2019; Bischl er al., 2023]. Such a task is specified
in the form of a dataset D and a loss function ¢. Typically,
HPO is carried out in a trial-and-error fashion by evaluating
£ on the given data D for various candidate hyperparameter
configurations (HPCs).

In the early days of HPO, grid search and random search
[Bergstra er al., 2011] have been the main tools. However,
they can be criticized for their disability in finding an optimal
hyperparameter configuration as well as their computational
cost. In the age of deep learning, a highly efficient HPO

method is inevitable, as evaluating hundreds or even thou-
sands of configurations is prohibitive. To address this chal-
lenge, several HPO methods have been proposed to improve
sampling or evaluation efficiency. For the former, the meth-
ods mainly focus on Bayesian Optimization [Hutter et al.,
20111, whereas for the latter, the HPO problem is extended
by a budget parameter. Using this parameter, the optimizer
can specify for which budget a hyperparameter configuration
should be evaluated. This area of the HPO literature is also
referred to as multi-fidelity optimization.

Probably the simplest procedure in this area is the succes-
sive halving algorithm (SHA) [Karnin et al., 2013], which is
rooted in the multi-armed bandit (MAB) literature [Lattimore
and Szepesvari, 2020]. Tt first evaluates a set of candidate
hyperparameter configurations (arms) for a minimum start-
ing budget Ry, discards the worse half, and continues evalu-
ation with the better half for a doubled budget. This proce-
dure is repeated until a maximum budget of R is reached. By
concentrating the budget on more promising hyperparameter
configurations, the reliability of the evaluations is gradually
increased, but also their evaluation costs. In contrast, less
promising solutions are discarded early on with little budget.

Following the terminology of the multi-armed bandits,
SHA attempts to solve a best arm identification problem for
a given fixed sampling budget. [Jamieson and Talwalkar,
2016b] as well as [Li et al., 2018] have derived theoreti-
cal bounds on the necessary sampling budget to guarantee
to find an optimal or near-optimal arm (hyperparameter con-
figuration) with high probability. However, these theoretical
bounds have two problems regarding practical application:
Firstly, they depend on problem parameters that are unknown
in practice, and secondly, they are derived for worst-case sce-
narios and are therefore often too conservative. Accordingly,
the common approach is to set a budget in an ad-hoc manner
and later check whether it was sufficiently large to support the
reliability of the returned HPC. If this is not the case, the bud-
get is increased retrospectively, which is problematic as SHA
is not incremental by design, so that the entire algorithm must
be re-run. This is not only costly but also comes with a loss
of valuable knowledge already accumulated. Needless to say,
from an ecological perspective, this is undesired either, as the
computational resources, as well as the consumed energy for
optimizing the hyperparameters for the lower maximum bud-
get, is essentially wasted [Tornede et al., 2023].

Although there are two variants of SHA that do not need
to specify the maximum budget R in advance, these have
the decisive disadvantage that they come without theoretical
guarantees. Asynchronous SHA (ASHA) [Li er al., 2020]
is the first variant, in which decisions about candidate eval-
uations for larger budgets are made asynchronously, allow-
ing for higher parallelization. This variant has recently been
further developed into PASHA [Bohdal er al., 2023], which
progressively increases the budget if the ranking of the con-
figurations in the top two high-fidelity sets has not stabilized.
However, asynchronous decision-making comes at the risk of
mistakenly promoting HPCs to the next budget level. While
[Li er al., 2020] invoke the law of large numbers to argue that
this is not an issue, the problem remains in the case of finite
budget constraints, where only a limited number of hyperpa-
rameter configurations can be considered.

Contributions. We will focus on the HPO application for
the most part when presenting the necessary concepts and our
results. However, our theoretical results apply to the more
general bandit setting and can therefore be carried over to
applications other than HPO. Following the terminology of
the MAB literature, we are considering the best arm identi-
fication (BAI) problem for which the sampling budget is in-
creased retroactively. Our contributions can be summarized
as follows:

* We provide the first theoretical results for ASHA, analyz-
ing its capabilities in setups with constraints on the overall
budget. These findings are accompanied by empirical evi-
dence for a set of HPO benchmarks.

* We propose an incremental extension of SHA (iSHA) that
still allows one to increase the maximum allocatable bud-
get R retrospectively in a synchronous manner.

* A theoretical and empirical analysis of iSHA is provided,
finding iISHA to be theoretically sound relative to the orig-
inal SHA, while being provably more resource-efficient.

* In an extensive empirical study, we compare iSHA to the
original SHA, and PASHA embedded into the Hyperband
framework. We find iSHA to give more robust results
compared to PASHA, often yielding higher quality hy-
perparameter configurations, while being more resource-
efficient than SHA.

* We show a long-missing lower bound on the necessary
budget for finding a nearly-optimal arm under common as-
sumptions of the non-stochastic BAI problem.

2 (Near-)Optimal Arm Identification

The best arm identification problem in multi-armed bandits
(MAB:) is a sequential decision-making problem in which an

agent has to choose in each time step ¢ € {1,..., B} within
a fixed budget B € N uU {oo} one out of n € N possible op-
tions that we denote by their indices [n] := {1,...,n} and

call arms in the following. After choosing (or pulling) one
arm, the agent directly observes a loss £(i) for the chosen
arm ¢ € [n] given by a loss function ¢ : [n] — R. The ob-
served loss after r pulls of arm ¢ € [n] will be denoted ¢,-(4).
In the non-stochastic setting, which is the setting we consider,
the observed losses are not necessarily governed by an under-
lying stochastic distribution. Instead, a common assumption

is that the sequence of losses of an arm converges asymptot-
ically to a fixed final value [Jamieson and Talwalkar, 2016b;
Li et al., 2018; Brandt et al., 2023].

Assumption 2.1. Vi € [n] and for R € Nu {oo} the loss
function converges against a limit value v; = lim,_, g £,.(4).

Note, that the stochastic scenario in which (¢ (7))gs1 for
each ¢ € [n] is an i.i.d. sample from a stochastic distribu-
tion with E[¢y(¢)] = v; can be treated as a special case of our
setting [Jamieson and Talwalkar, 2016b].

Goal. Usually, the goal in best arm identification is to find
the arm with the smallest loss i* € arg min,p,,) ;. We will re-
lax this goal to only identify a near-optimal arm where “near-
optimal” is defined in the following way.

Definition 2.2. Let € > 0, then we call i € [n] an e-optimal
arm if v; < v« + €.

It is straightforward to extend the scenario to the case in
which we deal with a countably infinite set of stochastic ban-
dit arms indexed by ¢ = 1,2, . ..

Hyperparameter Optimization. Hyperparameter opti-
mization (HPO) deals with the problem of finding a suitable
hyperparameter configuration A of an ML algorithm .4 with
a corresponding hyperparameter space A for a given learning
task (e.g. image classification, regression analysis, etc.). For
a suitable loss function ¢ and a finite set of HPC samples,
say A, from the possibly uncountable infinite space A, we
can consider each HPO problem as a MAB problem, by
simply considering the HPCs as arms. An example of a loss
function is the validation error of a (supervised) learning
algorithm A with parameterization A and resource allocation
r, which could be for instance the wall-clock time, number
of used data points, etc. Sampling or generating a finite set of
HPCs A can be done in different ways, for example, simple
uniform sampling from A [Li ef al., 2018] or by leveraging a
Bayesian search mechanism [Falkner et al., 2018].

3 Successive Halving and Hyperband

The successive halving algorithm (SHA) by [Karnin et al.,
2013] is applicable for the non-stochastic best arm identifi-
cation problem with a finite set of arms under a fixed bud-
get constraint. By sampling n hyperparameter configurations
(HPCs) uniformly at random, it has already been applied suc-
cessfully to HPO by [Jamieson and Talwalkar, 2016a]. Start-
ing from a minimum budget R for which all the n available
arms are evaluated, it iteratively discards the worse half and
continues to evaluate the remaining arms with double the bud-
get. This procedure is repeated until either only a single arm
is left or a maximum allocatable budget R is reached (max-
imum for a single arm). Typically, the number of arms 7 is
chosen such that at least one candidate reaches the final it-
eration of the algorithm. A budget level for which arms are
evaluated is also referred to as rung in the following. Further-
more, we write that an arm is promoted to the next rung if it
was not discarded and thus considered in the next iteration of
SHA. While SHA allows allocating exponentially more bud-
get on the more promising arms, its final performance cru-
cially depends on its parameterization. The parameters n, R

and Ry need to be chosen with care and depending on the
task. With regard to HPO, starting with a too low initial bud-
get Ry, we face the problem of rejecting actually promising
arms (HPCs) too early, namely those that require more bud-
get, e.g., more data or more training iterations, to perform
well enough to remain in the set of promising candidates.
The Hyperband (HB) algorithm [Li et al., 2018] comes with a
heuristic of how to choose different values for n and R, and
subsequently uses SHA as a subroutine. Even if it can gener-
ally be used for a bandit problem with an infinite number of
arms, its design is tailored to HPO. HB allows different allo-
cation strategies to be considered for the tradeoff between (i)
considering many arms (HPCs) n starting with a rather small
Ry, and (ii) giving some arms (HPCs) more budget from the
beginning. The latter is motivated by the fact that in ma-
chine learning, some HPCs may require a larger amount of
resources to show off their better performance. We refer to
each call of SHA as a bracket [Li et al., 2018], for which the
set of arms (HPCs) is sampled uniformly at random and given
to SHA as an input.

4 Related Work

The pure-exploration and best arm identification problem in
MABs has been studied intensively with a stochastic feed-
back mechanism (see [Gong and Sellke, 2023] for a more re-
cent overview). Especially in the case of a fixed budget, there
is some work in this direction [Carpentier and Valko, 2015;
Abbasi-Yadkori et al., 2018; Shen, 2019; Azizi et al., 2022,
Kato er al., 2022]. However, the non-stochastic setting, as
considered in our work, has so far only been investigated in
[Jamieson and Talwalkar, 2016a; Li et al., 2018] and [Brandt
et al., 2022]. The first two with a special focus on HPO simi-
lar to our work and the latter with a focus on algorithm selec-
tion/configuration [Rice, 1976].

Considering HPO as a black-box optimization problem, var-
ious methods can be used to tackle this problem [Feurer and
Hutter, 2019; Bischl et al., 2023]. Grid search and random
search are rather straightforward solutions. However, both
are rather expensive, and thus, methods emerged to improve
sample efficiency and evaluation efficiency. While the former
methods are mostly centered around Bayesian optimization
[Frazier, 2018; Hutter ef al., 2011], the latter emerged in the
branch of multi-fidelity optimization.

In multi-fidelity optimization, the goal is to distribute the bud-
get for evaluating HPCs in a way that more budget is concen-
trated on the more promising HPCs and less so on inferior
candidates. The successive halving algorithm (SHA), ini-
tially proposed by [Karnin er al., 2013] and later used by
[Jamieson and Talwalkar, 2016b; Jamieson and Talwalkar,
2016a] for HPO, devises a powerful HPO method, which has
been incorporated as a subroutine in the well-known HPO
method Hyperband [Li ef al., 2018]. Hyperband has been
extended in various directions such as improving its sam-
pling efficiency [Falkner et al., 2018; Awad et al., 2021,
Mallik et al., 2023] and introducing shortcuts in the evalu-
ation process [Mendes et al., 2021].

But also SHA has been subject to improvements. [Li et al.,
2020] extend SHA to asynchronous SHA (ASHA), which

Algorithm 1 Incremental Successive-Halving Algorithm
(iSHA)

1: Input: S initial set of HPCs, r, maximum resource R,

reduction factor i, (C})1 sequence of HPCs promoted in

previous run, (L) old sequence of losses
Initialize: S < S, 7 = |Cyl, n = |So| +|Col, s = log, (R)

»

3: for k€ {0,1,...,s} do

4y = nfn*] =1/t =t

5: pull each arm in Sy, for r times

6: ifk<s-1then

7: Ski1 < keep the best [n/n**1| - [7/n**!] arms
from Sj U Ck\CkJrl

8. else

9: Sp41 < keep the best |n/n**!| arms from S}, u C,

10: endif

11: end for

12: Output: Remaining configuration

Co So

L J

C S1
Cy Ss
S3

Figure 1: Illustration of how iSHA continues a previously conducted
SHA run.

helps to better leverage parallel computing resources by pro-
moting candidates asynchronously to the next rung. Simul-
taneously, the maximum budget R can be adapted on-the-
fly. Progressive ASHA (PASHA) proposed by [Bohdal et
al., 2023] builds on ASHA and incorporates a mechanism
to only introduce higher rungs where necessary. While both
ASHA and PASHA have been extensively studied empiri-
cally, a thorough (theoretical) analysis of the costs of the
asynchronous promotion scheme is still lacking. Also, these
empirical studies have considered comparably large setups
with vast amounts of resources. In our study, we consider
small-scale setups and analyze the behavior of ASHA and
PASHA in that scope.

5 Incremental Successive Halving

Due to the static budget setting in SHA, the execution of
SHA cannot simply be continued for an adapted parameteri-
zation, e.g., a higher maximum allocatable budget R. By re-
running SHA from scratch, however, knowledge about pre-
viously evaluated hyperparameter configurations (HPCs) is
discarded and resources already allocated are wasted. As an-
other extreme, ASHA and PASHA allow to dynamically in-
crease the maximum allocatable budget R, devising a scheme

for asynchronous promotions to higher rungs. However, as
we show in Sections 6 and 7.2, the asynchronous promotions
in ASHA and PASHA can be erroneous and thus impede the
identification of the optimal hyperparameter configurations.

With incremental successive halving (iISHA), we propose a
middle ground for budget-constrained scenarios, i.e., scenar-
ios in which we cannot rely on the law of large numbers as re-
quired by [Li ez al., 2020]. Similar to ASHA and PASHA, we
allow the maximum allocatable budget to be increased after
an SHA run, making SHA in principle stateful. Algorithm 1
translates this into pseudocode. Differences from the original
SHA are highlighted in blue. While Algorithm 1 also covers
the case of ASHA, adding a single configuration at a time, we
assume |S| + |Co| = |Co| - 1 for our theoretical and empirical
analysis, where Cj are the configurations in the beginning of
the previous run, S are the new configurations and > 1 is a
reduction factor.

In Figure 1 we see the mechanism underlying iSHA to con-
tinue a previously conducted run of SHA that resulted in the
rungs Cy, Cq and Cs. The initially sampled set of HPCs Cj is
padded with newly sampled HPCs Sy to initially achieve the
same number of HPCs as if SHA had been restarted. How-
ever, only the new configurations are executed (following the
typical SHA budget allocation) and finally compared with the
previous configurations from Cj. The already promoted con-
figurations in C; from the previous SHA run will remain and
only the required number of configurations will be promoted,
i.e., S1, such that the size of the union of C'; and S; matches
the size of the second rung if SHA had been restarted. This
mechanism is then iteratively continued for subsequent rungs.

Intuitively speaking, the strategy of iSHA is to continue a
previous SHA run in the most efficient, and thus, resource-
saving way. However, similarly to ASHA and PASHA, this
efficiency may come at the cost of a potential drop in per-
formance, as previously made decisions cannot be revoked.
More specifically, in the worst case, all promotions of the
previous run would not have occurred if we had known the
complete set of candidate HPCs from the start. Only filling
up the rungs leaves less space for the desired candidates to be
promoted to the highest rung.

Nevertheless, we prove in the next section that we are still
able to identify near-optimal solutions with a high probability,
which will be confirmed by empirical results in Section 7.2
later on. Furthermore, we demonstrate that this robustness
gives iSHA an edge over ASHA and PASHA when it comes
to the quality of returned hyperparameter configurations in
settings with limited budget.

6 Theoretical Results

We split the theoretical results into four parts. First, we
present a lower bound for the necessary budget for the e-
optimal arm identification problem. Second, we provide a
theoretical analysis of ASHA. Third, we give some theoreti-
cal guarantees for iSHA, our extension of SHA, and fourth,
we extend these guarantees to an incremental extension of
Hyperband.

As a prerequisite for the theoretical results, we ease the no-
tation by simply writing ¢; ; instead of ¢,(z). Since by as-

sumption 2.1 there exists a limit value of the loss function for
every arm, we denote the corresponding convergence speed
by v(t) > sup; [;+ — vi|, Vt e N.

6.1 Lower Bound

Although there is already literature tackling the problem of
e-optimal arm identification in MABs like [Li et al., 2018], a
lower bound for the necessary budget was missing until now.

Theorem 6.1 (Lower bound for €/2-optimal arm identifica-
tion). If an algorithm Alg correctly identifies an €/2-optimal
arm for any loss function {, then there exist slightly modified
limits {¥; }iern) with |v; — 5] < €/2 for each i € {1,...,n}
such that Alg needs at least n - y~! (Inax {%, i}) total
pulls of arms in expectation.

The proof is deferred to Section D.

6.2 Theoretical Analysis of ASHA

We now analyze ASHA [Li et al., 2020], which, to the best
of our knowledge, is the only algorithm with a similar goal of
more efficient resource use as our proposed iSHA.

Theorem 6.2 (Necessary Budget for ASHA). Fix n arms and
assume v1 < ... < vy,. Let

zasma =n([log, (1) + 1) - max{ maxegrey 77"

=1 (Y|lrungg_1lpm)+1 "Y1
v (2)7

-K “1(vizva
n ierug;?(}\({l} i ()}’

where K < |log, (n)]| is the top rung of ASHA. If ASHA’s
total number of pulls exceeds zasua, then the best arm is
returned.

The dependence is linear-logarithmic in n, and the limit
gap from the best arm to the other arms occurs in the inverted
convergence rate ' The first term in the maximum makes
sure that the best arm reaches the top rung K, while the sec-
ond term makes sure that the best arm will eventually be re-
turned. In view of the lower bound in Theorem 6.1, ASHA is
nearly optimal.

As a corollary of Theorem 6.2 (see the proof in Section C),
we obtain the following result regarding the mechanism of
the sampling process pursued by ASHA.

Corollary 6.3 (Worst Case Promotion Costs). Assume all
rungs to be full, i.e., no promotion is possible, and the top
rung K only contains the current incumbent arm. If at that
time a new best arm (HPC) i is sampled, then promoting i to
the sole solution of the new top rung K + 1 requires the sam-
pling of n - 1 additional arms (HPCs) and a total of n*+"
many jobs.

From these results, we can draw two major conclusions.
The more arms (HPCs) have already been considered in
ASHA when 7 enters the pool of considered hyperparameter
configurations, i.e., the later in the process, the more budget
needs to be spent to promote 7 to the top rung. Particularly,
in a scenario with a limited budget, e.g., limited by the over-
all budget (total number of pulls) or by the number of arms

to be sampled, ASHA fails to return ¢, if the required budget
for promoting the best configuration exceeds the remaining
budget. A similar result can be shown for PASHA, since its
sampling mechanism is similar to ASHA.

6.3 Theoretical Analysis of iSHA

For iSHA (Algorithm 1), we first prove a lower bound on the
necessary budget to return a nearly optimal arm (configura-
tion), when n/7 = 1 which corresponds to |S|+|Co| = |Co| .
The proof is given in Appendix B.1.

Theorem 6.4 (Necessary Budget for iSHA). Fix n arms from
which n arms were already considered in a previous run, and
assume vy < -+ <vp aswell as € (RIn®)s-0.. (r)- For
any € >0 let

..,1log,,

zisna =1[log, (n)]

. : -1 € Vi~V
Z:Igl,axnz(l + min {R,’y (max{z7 Tl}) })
If iSHA’s total number of pulls exceeds zisua, then an arm i
is returned that satisfies v; — vy < €/2.

As the dependency on n and the gap is similar as for
ASHA, we conclude from Theorem 6.1 that iSHA 1is nearly
optimal as well. Further, we can specify the improvement of
iSHA over the costly re-run of SHA.

Theorem 6.5 (Improvement of number of pulls of iSHA in
comparison to SHA). Fix a maximal budget per arm of R, r
and n. Assume that we have already run SHA on 1. arms with
R, r, and n. Now sample n—n new arms with n = nn, and (re-
Jrun SHA and iSHA over s rounds with the above variables.
Then, forn- =n—1and s* = s+ 1 we have

#{total pulls of 1 SHA} 1- (s*)(ﬁRﬁ-ns)(n,)—(ng—1)(2R+n)
#{rotal pulls of SH}y ~ — (s*)(nR+n®)(n-)-(nsT =1)(R+n) *

Again, as a corollary of Theorem 6.5 (see Section Appendix
B.2), we obtain the following result regarding the “limit
case”, i.e., if we would increase the maximum size R in-
finitely often, or, equivalently, the number of possible rungs s
infinitely often.

Corollary 6.6. If we run iSHA and SHA infinitely often with

(i) an ever-increasing maximum size R, and

(ii) such that the newly sampled number of configurations in
each new run of iSHA fulfills |S| + |Co| = |Co| - =, where
Cy is the number of configurations in the previous run
and x> 1,

then the ratio of total pulls of iSHA and total pulls of SHA

convergesto 1 —x71.

In our setting, we use x = 7, so that the improvement ratio
is 1 — n~1. Note that a comparison similar to Theorem 6.5
or Corollary 6.6 is difficult to make for ASHA or PASHA,
since both do not include the parameter R. Finally it is worth
mentioning that no similar statement as Corollary 6.3 holds
for iISHA, since ¢ can be still (and very likely will be) returned
as an output for the available budget.

6.4 Incremental Hyperband

Like the original version of SHA and its extensions ASHA
and PASHA, we can also employ iSHA as a subroutine in

Hyperband. To this end, Hyperband needs to be made incre-
mental itself, as done in Algorithm 4 in the appendix, which
we call incremental Hyperband (iHB). In the following, we
provide a theoretical analysis of this incremental version of
Hyperband with iSHA as a subroutine. Figure 3 in the ap-
pendix illustrates how every Hyperband bracket is updated
after increasing the maximum budget R.

Recall, that for ¢ > 0, we aim to find an e-optimal con-
figuration X which was defined as vs, —var < e for X e
argminy ., Vx. To ensure that the search is possible by sam-
pling merely a finite subset of HPCs, we make the following
assumption similar to [Brandt er al., 2023]:

Assumption 6.7. The proportion of e-optimal configurations
inAisae(0,1).

Note that we now have at least one e-optimal configuration
in a sampled set of configurations with probability at least 1 -
d, if the sample size is at least [log,_,,(d)] for a fixed failure
probability § € (0,1). With this, we can state the following
theorem, the proof of which is given in Appendix B.3.

Theorem 6.8. Let 1, R, o and 6§ be fixed such that

R > max { [10g,_ ()] (1) + 1,77 (L1, 5 +4

L ,RJ*l)
o Lnnl S log, (k)
2 | Ly r]+1

for 7 =maxeo |1,) WAz, 0, (14
min{Rﬁ_l(maX{i %})})

and Ly r = logn(R)7 then iHB finds an e-optimal configura-
tion with probability at least 1 - 6.

To conclude, despite the incremental extension of Hyper-
band, we can maintain the theoretical guarantees of the orig-
inal Hyperband. Although promotions in iSHA are also to
some extent performed asynchronously, we can still identify
anearly best arm when doing promotions in a batch, provided
a sufficiently large batch size.

7 Empirical Evaluation

In addition to the theoretical results of the previous section,
we evaluate iSHA empirically and compare it to PASHA [Bo-
hdal et al., 2023] and SHA [Jamieson and Talwalkar, 2016a].
We are especially interested in the following two research
questions:

RQ1 Is iSHA able to retain the quality of returned HPCs as
compared to applying SHA from scratch?

RQ2 How does the proposed iSHA compare to the state-of-
the-art algorithms ASHA and PASHA?

7.1 Experiment Setup

In our experimental evaluation, we compare iSHA to
two asynchronous extensions of SHA, namely ASHA and
PASHA. For the comparison, we integrate all SHA variants
as subroutines in Hyperband to answer the research ques-
tions RQ1 and RQ2. To this end, we conduct extensive ex-
periments tackling numerous HPO tasks, considering various

Benchmark | Model | #Inst. | Objective | Fidelity
Icbench neural network 34 val_accuracy | epochs
rbv2_svm SVM 106 acc fraction
rbv2_ranger | random forest 119 acc fraction
rbv2_xgboost XGBoost 119 acc fraction
nb301 neural network 1 val_accuracy | epochs

Table 1: List of considered benchmarks from YAHPO-Gym with the
type of learner, number of considered datasets, objective function,
and the type of budget that can be used as a fidelity parameter.

Benchmark /¢ | 0001 | 0005 | 00l | 005
Icbench | 0.0004£0.0011 | 0.0042:0.0147 | 0.0095:0.0284 | 0.0919:0.1599
nb301 0.0001£0.0000 | 0.0001£0.0000 | 0.0078£0.0000 | 0.8962::0.0000
rbv2.svm | 0.0092:0.0397 | 0.0554£0.1296 | 0.126+0.1995 | 0.4927+0.2995

0.0026+0.0095 | 0.0365+0.1323 | 0.0732+0.1967 | 0.5336+0.3778
0.0123+0.0308 | 0.0213+0.0560 | 0.0316+0.0845 | 0.1541+0.2306

rbv2_ranger
rbv2_xgboost

Table 2: Mean (+ standard deviation) proportion of 10,000 randomly
sampled hyperparameter configurations that are within an e distance
of the best hyperparameter configuration’s performance.

types of learners and two different fidelity parameters: the
number of epochs and the fraction of the training data used
for fitting a model.

As a benchmark library, we use YAHPO Gym [Pfisterer et
al., 2022], which provides fast-to-evaluate surrogate bench-
marks for HPO with particular support for multi-fidelity op-
timization, rendering it a perfect fit for our study. From
YAHPO Gym, we select the benchmarks listed in Table 1.
All the benchmarks consist of several datasets, which are re-
ferred to as benchmark instances, allowing for a broad com-
parison. Due to space limitations, we only present a summary
of the results here, whereas detailed results can be found in
Appendix E.

In Table 2, we show the mean fraction of 10,000 randomly
sampled hyperparameter configurations to be at most ¢ worse
than the best hyperparameter configuration. As can be seen,
the considered benchmarks are of varying difficulty and the
size of the e-optimal fraction also varies substantially in size
across the datasets contained in the corresponding benchmark
suites as indicated by the standard deviation.

Furthermore, we set the initial max size R;_1 = 16 and in-
crease it after the first run by a factor of 7 to R, = n Ry_1,
as this is a budget that is supported by all benchmark sce-
narios. Since ASHA and PASHA automatically increase the
maximum budget depending on the observed performances,
we only ensure an upper limit of R; for both to ensure a fair
comparison. As a termination criterion, we use that the num-
ber of HPCs would exceed the pool size of the Hyperband
bracket. For benchmarks considering a fraction of the train-
ing dataset as a fidelity parameter, we translate a budget r by
/R, into a fraction between 0 and 1.

Furthermore, we repeat each combination of algorithm,
7, and benchmark instance for 30 seeds, resulting in a total
amount of 30 x 3 x 2 x 379 = 68,220 hyperparameter op-
timization runs. We run all experiments on a single work-
station equipped with 2xIntel Xeon Gold 5122 and 256GB
RAM. The code is publicly available via GitHub'.

"https://github.com/mwever/incremental-successive-halving

g :
2 2
$ 0.000 '
£ '
()]
o —0.005 :
O :
T :
& 3
5 —0.010 .
£
(0]
o

00 01 02 03 04 05

Relative Saved budget

o 0.010
()
e
g 0.005
QL :
5 0.000 i
[0
€ —0.005 .
e :
50010
& -0.015

00 01 02 03 04 05
Relative Saved budget

» ASHA PASHA « iSHA
Figure 2: Scatter plots relating the performance on the y-axis and
the consumed budget on the z-axis to the performance achieved and
budget consumed by SHA. Note that the ranges for the performance
and budget vary from 7 = 2 (top) to n = 3 (bottom). Higher values
are better for both relative saved budget and relative performance.

7.2 Empirical Results

In Figure 2 we present the performance of the finally cho-
sen hyperparameter configuration and the budget saved by
ASHA, PASHA, and iSHA relative to the performance of
the solution returned and the budget consumed by re-running
SHA from scratch for the higher maximum budget R;.
Hence, a relative performance of 0.0 means that the solution
quality matches the one returned by SHA, which is also indi-
cated by the red dashed line, a larger (smaller) value means a
performance improvement (degradation) w.r.t. SHA. The rel-
ative saved budget denotes the percentage of the budget that
any of the approaches saves in contrast to the re-run of SHA.
Therefore, a relative saved budget of 0 means that the con-
sumed budget is on par with the budget of SHA. A higher rel-
ative saved budget correspondingly means that the approach
was more efficient than SHA.

As can be seen, iSHA robustly yields competitive perfor-
mance to re-running SHA from scratch for a larger maxi-
mum assignable budget R, while substantially reducing the
consumed budget to roughly 75% for n = 2 and 84.5% for
n = 85%. Regarding RQ1, we can confirm that iSHA retains
the quality of returned HPCs.

Performance Budget

Approach Impr Degr Tie Mean Std

~ PASHA 12 72295 0.6926 0.007
I ASHA 9 81 289 0.7520 0.0
= iSHA 4 5 370 07520 0.0
«» PASHA 49 114 216 0.7908 0.0
- ASHA 11 75 293 0.8448 0.0
S iSHA 4 14 361 0.8448 0.0

Table 3: Aggregated statistics across benchmark instances compar-
ing the performance and budget to natively applying SHA. Differ-
ences in accuracy larger than 0.001 are considered for improvements
or degradations.

On the contrary, the performances of ASHA and PASHA
show way more variance, including variations. Since higher
rungs are only introduced in PASHA whenever necessary, i.e.,
if the soft ranking over the configurations of the last two rungs
changes, PASHA has the potential to reduce the consumed
budget even more than iSHA or ASHA do. However, there is
no guarantee that this will maintain performance. As can be
seen for 17 = 3, PASHA is clearly less robust than ASHA sug-
gesting that the progressive nature of PASHA is introducing
even more variance.

This is again confirmed by the results in Table 3, where we
simply count the number of benchmark instances for which
an improvement, degradation, or tie w.r.t. the performance of
re-running SHA is obtained. While PASHA gives the most
improvements in terms of performance for both values of 7, it
also comes with the most performance degradations for n = 3
which outnumber the improvements by a factor of 2 to 3,
whereas for n = 2 degradations occur more frequently than
improvements by a factor of 4 to 5. Furthermore, we pro-
vide the average and the standard deviations for the relative
budget consumed across the benchmark instances. On aver-
age, for both values of 7, iISHA and ASHA reduce the budget
consistently but PASHA can reduce the budget even more.

While, of course, performance improvements are desirable,
the selection of the returned solution is made on the same set
of candidates in all approaches, including SHA. Therefore,
improvements cannot be interpreted as an advantage of one
method over SHA but as random noise effects as these deci-
sions highly depend on the order of hyperparameter config-
urations being considered in the successive halving variant.
Assuming the original behavior of SHA to be the ground truth
behavior, we can thereby define a consistency metric between
ASHA, PASHA, iSHA and the ground truth behavior of SHA.
In Table 4, we present consistencies of ASHA, PASHA, and
iSHA to SHA. Fixing a benchmark, the consistency is calcu-
lated as follows:

(M) 3, Mlisa(i) = posma()] < 0.001]],

where [[-]] is the indicator function, pgp 4 (%) is the full bud-
get performance for the returned hyperparameter configura-
tions by SHA on instance 7 and pi;sm.4 (%) the performance
of another considered approach xSHA and M is the number
of instances in the respective benchmark. In this comparison,
iSHA stands out to be by far the most consistent approach.

1 | ASHA | PASHA | iSHA

2| 0.7625 | 0.7783 | 0.9763
3105699 | 0.7731 | 0.9525

Table 4: Consistency of the performance of hyperparameter configu-
rations returned by ASHA, PASHA, and iSHA with the performance
of those returned by SHA.

From these results, we can conclude that iSHA is a robust
and more resource-efficient incremental version of SHA, and
the theoretical guarantees given in the previous section can
be validated in practice as well. PASHA is able to reduce the
consumed budget drastically. However, the reduced budget
comes at the risk of losing consistency and lack of perfor-
mance guarantees. In turn, ASHA reduces the consumed bud-
get in the same way as iSHA does but also performs poorly in
terms of consistent behavior with the original SHA version.

8 Conclusion and Future Work

In this paper, we proposed an extension to the well-known
HPO method Successive Halving (SHA), called Incremental
Successive Halving (iSHA), aiming to improve its efficiency
when the max size hyperparameter R of SHA needs to be in-
creased post-hoc. We derived theoretical guarantees on the
quality of the final choice, as well as on the saved budget,
when a previous SHA run is continued. Furthermore, we pro-
vide the first theoretical analysis of asynchronous SHA, em-
phasizing the price that needs to be paid for the asynchronous
promotions. In an empirical study, we also find that iSHA
yields results similar to the much more expensive baseline
variant of SHA and often better results than the current state-
of-art among the asynchronous variants of SHA. In fact, our
approach only requires the budget of the sole run with the
increased max size.

It is worth noting that we considered a synchronous sce-
nario to have a fair comparison with our proposed method.
When a (GPU) cluster is available, the asynchronous nature
of both ASHA and PASHA might lead to a parallelization
speedup for HPO. However, for many practitioners who do
not have such a cluster available, but for instance only one
GPU, the speedup of an asynchronous approach is lost. In
such a case, a more reliable, incremental and synchronous
method such as iSHA is exactly the desired approach.

In future work, we plan to combine our SHA extensions
with more sophisticated strategies for sampling hyperparame-
ter configurations, as for example done by [Awad et al., 2021]
or [Falkner et al., 2018] and HyperJump, to improve iHB’s ef-
ficacy and efficiency even further. Another interesting avenue
of future research is outlined by PriorBand, where a prior
distribution is incorporated for sampling new hyperparame-
ter configurations [Mallik et al., 2023].

Ethical Statement

There are no ethical issues.

Acknowledgments

This work was partially supported by the research training
group “Dataninja” (Trustworthy Al for Seamless Problem
Solving: Next Generation Intelligence Joins Robust Data
Analysis) funded by the German federal state of North Rhine-
Westphalia.

Contribution Statement

Jasmin Brandt and Marcel Wever had an equal contribution
on this paper. While Jasmin Brandt was responsable for the
theoretical parts, Marcel Wever did the empirical analysis.
All authors were involved in devoloping the ideas and writing
the paper draft in multiple iterations.

References

[Abbasi-Yadkori et al., 2018] Yasin Abbasi-Yadkori, Peter
Bartlett, Victor Gabillon, Alan Malek, and Michal Valko.
Best of Both Worlds: Stochastic & Adversarial Best-arm
Identification. In Proceedings of the 31st Conference On
Learning Theory, volume 75 of Proceedings of Machine
Learning Research, pages 918-949. PMLR, 06-09 Jul
2018.

[Awad er al., 2021] Noor H. Awad, Neeratyoy Mallik, and
Frank Hutter. DEHB: Evolutionary Hyberband for Scal-
able, Robust and Efficient Hyperparameter Optimization.
In Proceedings of the 30th International Joint Conference
on Artificial Intelligence, pages 2147-2153, 2021.

[Azizi et al., 2022] Mohammad Javad Azizi, Branislav Kve-
ton, and Mohammad Ghavamzadeh. Fixed-Budget Best-
Arm Identification in Structured Bandits. In Proceedings
of the Thirty-First International Joint Conference on Artifi-
cial Intelligence, IJCAI, pages 2798-2804. ijcai.org, 2022.

[Bergstra er al., 2011] James Bergstra, Rémi Bardenet,
Yoshua Bengio, and Baldzs Kégl. Algorithms for
Hyper-Parameter Optimization. In Advances in Neural
Information Processing Systems, pages 25462554, 2011.

[Bischl et al., 2023] Bernd Bischl, Martin Binder, Michel
Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek
Thomas, Theresa Ullmann, Marc Becker, Anne-Laure
Boulesteix, et al. Hyperparameter Optimization: Foun-
dations, Algorithms, Best Practices and Open Challenges.
Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, 13, 2023.

[Bohdal er al., 2023] Ondrej Bohdal, Lukas Balles, Martin
Wistuba, Beyza Ermis, Cédric Archambeau, and Giovanni
Zappella. PASHA: Efficient HPO and NAS with Progres-
sive Resource Allocation. In The 11th International Con-
ference on Learning Representations, 2023.

[Brandt et al., 2022] Jasmin Brandt, Viktor Bengs, Bjoérn
Haddenhorst, and Eyke Hiillermeier. Finding Optimal
Arms in Non-stochastic Combinatorial Bandits with Semi-
bandit Feedback and Finite Budget. In Advances in Neural
Information Processing Systems, 2022.

[Brandt et al., 2023] Jasmin Brandt, Elias Schede, Bjoérn
Haddenhorst, Viktor Bengs, Eyke Hiillermeier, and Kevin

Tierney. AC-Band: A Combinatorial Bandit-Based Ap-
proach to Algorithm Configuration. Proceedings of the
AAAI Conference on Artificial Intelligence, 37(10):12355-
12363, 2023.

[Carpentier and Valko, 2015] Alexandra Carpentier —and
Michal Valko. Simple regret for infinitely many armed
bandits. In Proceedings of the 32nd International
Conference on Machine Learning, ICML, volume 37 of
JMLR Workshop and Conference Proceedings, pages
1133-1141. JMLR.org, 2015.

[Falkner et al., 2018] Stefan Falkner, Aaron Klein, and
Frank Hutter. BOHB: Robust and Efficient Hyperparame-
ter Optimization at Scale. In Proceedings of the 35th Inter-
national Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 1436—
1445. PMLR, 2018.

[Feurer and Hutter, 2019] Matthias Feurer and Frank Hutter.
Hyperparameter Optimization. In Automated Machine
Learning - Methods, Systems, Challenges, The Springer
Series on Challenges in Machine Learning, pages 3-33.
Springer, 2019.

[Frazier, 2018] Peter I. Frazier. A Tutorial on Bayesian Op-
timization. CoRR, abs/1807.02811, 2018.

[Gong and Sellke, 2023] Xiao-Yue Gong and Mark Sellke.
Asymptotically Optimal Pure Exploration for Infinite-
Armed Bandits. CoRR, abs/2306.01995, 2023.

[Hutter et al., 2011] Frank Hutter, Holger H. Hoos, and
Kevin Leyton-Brown. Sequential Model-Based Optimiza-
tion for General Algorithm Configuration. In Learning
and Intelligent Optimization - 5th International Confer-
ence, volume 6683 of Lecture Notes in Computer Science,
pages 507-523. Springer, 2011.

[Jamieson and Talwalkar, 2016a] Kevin Jamieson and
Ameet Talwalkar. Non-stochastic Best Arm Identification
and Hyperparameter Optimization. In Proceedings of the
19th International Conference on Artificial Intelligence
and Statistics, volume 51 of Proceedings of Machine
Learning Research, pages 240-248. PMLR, 2016.

[Jamieson and Talwalkar, 2016b] Kevin G. Jamieson and
Ameet Talwalkar. Non-stochastic Best Arm Identifica-
tion and Hyperparameter Optimization. In Proceedings
of the 19th International Conference on Artificial Intelli-
gence and Statistics, AISTATS, volume 51 of JMLR Work-
shop and Conference Proceedings, pages 240-248, 2016.

[Karnin et al., 2013] Zohar Karnin, Tomer Koren, and Oren
Somekh. Almost Optimal Exploration in Multi-Armed
Bandits. In International Conference on Machine Learn-
ing, pages 1238-1246. PMLR, 2013.

[Kato et al., 2022] Masahiro Kato, Kaito Ariu, Masaaki
Imaizumi, Masatoshi Uehara, Masahiro Nomura, and
Chao Qin. Optimal Fixed-Budget Best Arm Identification
using the Augmented Inverse Probability Weighting Es-
timator in Two-Armed Gaussian Bandits with Unknown
Variances. CoRR, abs/2201.04469, 2022.

[Lattimore and Szepesvari, 2020] Tor Lattimore and Csaba
Szepesvari. Bandit Algorithms. Cambridge University
Press, 2020.

[Li et al., 2018] Lisha Li, Kevin Jamieson, Giulia DeSalvo,
Afshin Rostamizadeh, and Ameet Talwalkar. Hyper-
band: A Novel Bandit-Based Approach to Hyperparame-
ter Optimization. Journal of Machine Learning Research,
18(185):1-52, 2018.

[Liet al., 2020] Liam Li, Kevin Jamieson, Afshin Ros-
tamizadeh, Ekaterina Gonina, Jonathan Ben-Tzur, Moritz
Hardt, Benjamin Recht, and Ameet Talwalkar. A System
for Massively Parallel Hyperparameter Tuning. Proceed-
ings of Machine Learning and Systems, 2:230-246, 2020.

[Mallik er al., 2023] Neeratyoy Mallik, Edward Bergman,
Carl Hvarfner, Danny Stoll, Maciej Janowski, Marius Lin-
dauer, Luigi Nardi, and Frank Hutter. PriorBand: Practical
Hyperparameter Optimization in the Age of Deep Learn-
ing. arXiv preprint arXiv:2306.12370, 2023.

[Mendes et al., 2021] Pedro Mendes, Maria Casimiro, and
Paolo Romano. HyperJump: Accelerating HyperBand via
Risk Modelling. arXiv preprint arXiv:2108.02479, 2021.

[Pfisterer et al., 2022] Florian Pfisterer, Lennart Schneider,
Julia Moosbauer, Martin Binder, and Bernd Bischl.
YAHPO Gym - An Efficient Multi-Objective Multi-
Fidelity Benchmark for Hyperparameter Optimization. In
International Conference on Automated Machine Learn-
ing, AutoML 2022, volume 188 of Proceedings of Machine
Learning Research, pages 3/1-39. PMLR, 2022.

[Rice, 1976] John R. Rice. The Algorithm Selection Prob-
lem. Advances in Computers, 15:65-118, 1976.

[Shen, 2019] Cong Shen. Universal Best Arm Identification.
IEEFE Trans. Signal Process., 67(17):4464-4478, 2019.

[Tornede er al., 2023] Tanja Tornede, Alexander Tornede,
Jonas Hanselle, Felix Mohr, Marcel Wever, and Eyke
Hiillermeier. Towards green automated machine learning:
Status quo and future directions. Journal of Artificial In-
telligence Research, 77:427-457, 2023.

[Yao, 1977] Andrew Chi-Chin Yao. Probabilistic computa-
tions: Toward a unified measure of complexity. In /8th
Annual Symposium on Foundations of Computer Science
(SFCS), pages 222-227, 1977.

Conclusion and Outlook

Our general framework proposed in Chapter 5 is applicable to many different
scenarios. For example, it can handle different set sizes in Combinatorial Bandits,
including the special case of Dueling Bandits and different kinds of feedback like
numerical rewards or preference-based winner information either sampled by a
stochastic process or of a non-stochastic kind. In addition, it works for different
aggregation functions for the observations like the arithmetical mean, but also, for
example, risk measures. The user does not have to choose a different method for
different kinds of problems anymore, but can simply always use the same approach.
Due to our derived theoretical guarantees about the arm that is returned by the
algorithm, the users can trust our method and its returned solutions. Since the
derived sufficient budget depends on parameters that are sometimes unknown
in practice, like the suboptimality gap between the arms, we have shown in the
experiments, that the algorithm works well anyway for different values of the
available budget.

Extending these results to the setting of Algorithm Configuration in Chapter 6
also allowed us to transfer the theoretical guarantees to this scenario. The value of
theoretical worst-case guarantees is often underestimated in this field and thus, there
are not many existing AC approaches that come with theoretical analyses. However,
the user does not take any risk of getting a suboptimal parameter configuration
when using a method with a proven quality guarantee about the returned parameter
configuration. In addition to the trustworthiness the user gains by adhering to
worst-case guarantees, the Configurators are also proven to be resource-efficient
if the sufficient budget (almost) matches the necessary budget to identify the best
configuration with high probability. Due to the lack of research in the area of
theoretically grounded Algorithm Configurators, there is still a performance gap
to heuristic Algorithm Configurators, that we narrowed down since our algorithm
returns a well-performing solution much faster than the state-of-the-art methods.

Finally, we enabled a much more resource-efficient and thus also more sustainable
Hyperparameter Optimization by enhancing the entire typical workflow by a sophis-
ticated modification of the widely used HYPERBAND algorithm and its Multi-Armed
Bandit subroutine SUCCESSIVE HALVING. With our modifications, both are able to
reuse already observed information from previous runs, need only a small amount
of new samples they can compare to the previously collected information, and still
keep the theoretical guarantees they had when rerunning from scratch with a much
greater amount of newly considered samples. We extended all existing guarantees
to the resource-efficient extensions of the methods and confirmed these results in an
experimental study.

79

8.1

80

Future Research Directions

In future research, it would be interesting to study specific instantiations of our
Combinatorial Bandit approach in more detail. For example, an interesting question
is whether we can derive some specific theoretical guarantees for choosing other
aggregations functions of the observations than the arithmetic mean, e.g. some risk
measures like in [CMZ18]. In addition, the portions of arms that are discarded in
each iteration stay fixed for a whole run at the moment, but maybe it would make
sense to adopt a more aggressive elimination strategy in the early stages — when
a larger number of arms are being tested, and get more careful when eliminating
arms in the last iterations where we have only arms left that are at least better than
a lot of already discarded ones.

Even if our theoretical Algorithm Configurator AC-BAND makes a huge step to close
the performance gap to heuristic Algorithm Configurators, this gap still exists. Here,
the obvious goal is to narrow it further by adapting some heuristic strategies such
that under specific assumptions some theoretical guarantees can be derived for
them. A promising direction would be the creation of new parameter configuration
samples. To ensure enough exploration, the theoretical methods like AC-BAND
still sample the considered configurations uniformly at random from the space
of parameter configurations. However, in practice also approaches like a local
neighborhood search like [Hut+09] or evolutionary methods like [AST09] seem
to perform well, even if we usually cannot assume a continuity in the space of
parameter configurations. In this regard, it is worth thinking about appropriate, but
realistic assumptions on the space to create promising parameter configurations,
such that we can prove a theoretical guarantee about the quality of the returned
configuration.

The same improvement could be possible for our proposed Hyperparameter Opti-
mization method ISHA. Also here, a more sophisticated hyperparameter selection
strategy than random sampling will likely massively improve the performance in
the regard of necessary samples that must be evaluated to guarantee a sufficiently
well-performing returned configuration. In addition, we can think of combining our
method with some already existing improvements of HYPERBAND like HYPERJUMP
[Men+23] for even more efficiency in the hyperparameter configuration evalua-
tions.

Chapter 8 Conclusion and Outlook

Bibliography

[Abb+18a]

[Abb+18b]

[AJA20]

[Ans+15]

[AST09]

[ABL11]

[ABM10]

[AMH21]

[AKG21]

Yasin Abbasi-Yadkori, Peter Bartlett, Victor Gabillon, Alan Malek, and Michal
Valko. “Best of both worlds: Stochastic & adversarial best-arm identification”.
In: Proceedings of the 31st Conference On Learning Theory. Vol. 75. Proceedings
of Machine Learning Research. PMLR, 2018, pp. 918-949 (cit. on p. 33).

Yasin Abbasi-Yadkori, Peter Bartlett, Victor Gabillon, Alan Malek, and Michal
Valko. “Best of both worlds: Stochastic & adversarial best-arm identification”.
In: Proceedings of the 31st Conference On Learning Theory (COLT). Vol. 75.
Proceedings of Machine Learning Research. PMLR, 2018, pp. 918-949 (cit.
on pp. 41, 43).

Arpit Agarwal, Nicholas Johnson, and Shivani Agarwal. “Choice Bandits”. In:
Advances in Neural Information Processing Systems (NeurIPS). Vol. 33. Curran
Associates, Inc., 2020, pp. 18399-18410 (cit. on p. 29).

Carlos Ansotegui, Yuri Malitsky, Horst Samulowitz, Meinolf Sellmann, and
Kevin Tierney. “Model-Based Genetic Algorithms for Algorithm Configura-
tion”. In: Proceedings of the 24th International Conference on Artificial Intelli-
gence (IJCAI). IJCAT'15. AAAI Press, 2015, pp. 733-739 (cit. on p. 10).

Carlos Ansotegui, Meinolf Sellmann, and Kevin Tierney. “A Gender-Based Ge-
netic Algorithm for the Automatic Configuration of Algorithms”. In: Principles
and Practice of Constraint Programming. Springer Berlin Heidelberg, 2009,
pp.- 142-157 (cit. on pp. 10, 80).

Jean-Yves Audibert, Sébastien Bubeck, and Gabor Lugosi. “Minimax Policies
for Combinatorial Prediction Games”. In: Proceedings of the 24th Annual
Conference on Learning Theory (COLT). Vol. 19. Proceedings of Machine
Learning Research. PMLR, 2011, pp. 107-132 (cit. on p. 28).

Jean-Yves Audibert, Sébastien Bubeck, and Remi Munos. “Best Arm Identifi-
cation in Multi-Armed Bandits”. In: 2010, pp. 41-53 (cit. on p. 2).

Noor Awad, Neeratyoy Mallik, and Frank Hutter. “DEHB: Evolutionary Hy-
berband for Scalable, Robust and Efficient Hyperparameter Optimization”.
In: Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, (IJCAI). International Joint Conferences on Artificial Intelligence
Organization, 2021, pp. 2147-2153 (cit. on pp. 41, 43).

Javad Azizi, Branislav Kveton, and Mohammad Ghavamzadeh. “Fixed-Budget
Best-Arm Identification in Structured Bandits”. In: International Joint Confer-
ence on Artificial Intelligence (IJCAI). 2021 (cit. on pp. 41, 43).

81

82

[Ben+21]

[BHH24]

[BH20]

[BB12]

[Boh+23]

[BT52]

[Bro+16]

[Bub12]

[BMSO09]

[BS12]

[CL59]

[CV15]

Viktor Bengs, Rébert Busa-Fekete, Adil El Mesaoudi-Paul, and Eyke Hiiller-
meier. “Preference-based online learning with dueling bandits: a survey”. In:
Journal of Machine Learning Research 22.1 (2021) (cit. on p. 23).

Viktor Bengs, Bjorn Haddenhorst, and Eyke Hiillermeier. “Identifying Copeland
Winners in Dueling Bandits with Indifferences”. In: Proceedings of The 27th
International Conference on Artificial Intelligence and Statistics (AISTATS).
Vol. 238. Proceedings of Machine Learning Research. PMLR, 2024, pp. 226~
234 (cit. on p. 23).

Viktor Bengs and Eyke Hiillermeier. “Preselection Bandits”. In: Proceedings
of the 37th International Conference on Machine Learning (ICML). Vol. 119.
Proceedings of Machine Learning Research. PMLR, 2020, pp. 778-787 (cit.
on pp. 29, 30).

James Bergstra and Yoshua Bengio. “Random Search for Hyper-Parameter
Optimization”. In: Journal of Machine Learning Research 13 (2012), pp. 281-
305 (cit. on pp. 14, 40, 42).

Ondrej Bohdal, Lukas Balles, Martin Wistuba, et al. “PASHA: Efficient HPO
and NAS with Progressive Resource Allocation”. In: The Eleventh International
Conference on Learning Representations (ICLR). 2023 (cit. on pp. 41, 43).

Ralph Allan Bradley and Milton E. Terry. “Rank Analysis of Incomplete Block
Designs: I. The Method of Paired Comparisons”. In: Biometrika 39.3/4 (1952),
PP- 324-345 (cit. on p. 29).

Brian Brost, Yevgeny Seldin, Ingemar J. Cox, and Christina Lioma. “Multi-
Dueling Bandits and Their Application to Online Ranker Evaluation”. In:
Proceedings of the 25th ACM International on Conference on Information
and Knowledge Management. Association for Computing Machinery, 2016,
pp. 2161-2166 (cit. on p. 31).

Sébastien Bubeck. Regret Analysis of Stochastic and Nonstochastic Multi-armed
Bandit Problems. Jan. 2012 (cit. on pp. 20, 21).

Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. “Pure Exploration in Multi-
armed Bandits Problems”. In: Algorithmic Learning Theory. Springer Berlin
Heidelberg, 2009, pp. 23-37 (cit. on p. 18).

Sébastien Bubeck and Aleksandrs Slivkins. “The Best of Both Worlds: Stochas-
tic and Adversarial Bandits”. In: Proceedings of the 25th Annual Conference on
Learning Theory. Vol. 23. Proceedings of Machine Learning Research. PMLR,
2012, pp. 42.1-42.23 (cit. on pp. 33, 36, 37).

Violet R. Cane and R. Duncan Luce. “Individual Choice Behavior: A Theoreti-
cal Analysis.” In: 1959 (cit. on p. 29).

Alexandra Carpentier and Michal Valko. “Simple regret for infinitely many
armed bandits”. In: Proceedings of the 32nd International Conference on Ma-
chine Learning (ICML). Vol. 37. Proceedings of Machine Learning Research.
PMLR, 2015, pp. 1133-1141 (cit. on pp. 41, 43).

Bibliography

[CMZ18]

[CF17]

[CWY13]

[CLM18]

[DKC20]

[ES04]

[FKH18]

[GUC15]

[GK16]

[GLR23]

[Had+21]

Asaf Cassel, Shie Mannor, and Assaf Zeevi. “A General Approach to Multi-
Armed Bandits Under Risk Criteria”. In: Proceedings of the 31st Conference On
Learning Theory (COLT). Vol. 75. Proceedings of Machine Learning Research.
PMLR, 2018, pp. 1295-1306 (cit. on p. 80).

Bangrui Chen and Peter I. Frazier. “Dueling Bandits with Weak Regret”. In:
Proceedings of the 34th International Conference on Machine Learning (ICML).
Vol. 70. Proceedings of Machine Learning Research. PMLR, 2017, pp. 731-
739 (cit. on p. 27).

Wei Chen, Yajun Wang, and Yang Yuan. “Combinatorial Multi-Armed Bandit:
General Framework and Applications”. In: Proceedings of the 30th Inter-
national Conference on Machine Learning (ICML). Vol. 28. Proceedings of
Machine Learning Research 1. PMLR, 2013, pp. 151-159 (cit. on p. 28).

Xi Chen, Yuanzhi Li, and Jieming Mao. “A nearly instance optimal algorithm
for top-k ranking under the multinomial logit model”. In: Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. Society
for Industrial and Applied Mathematics, 2018, pp. 2504-2522 (cit. on p. 30).

Yihan Du, Yuko Kuroki, and Wei Chen. “Combinatorial Pure Exploration
with Full-Bandit or Partial Linear Feedback”. In: AAAI Conference on Artificial
Intelligence. 2020 (cit. on pp. 36, 37).

Niklas Eén and Niklas Sorensson. “An Extensible SAT-solver”. In: Theory
and Applications of Satisfiability Testing. Springer Berlin Heidelberg, 2004,
pp. 502-518 (cit. on p. 5).

Stefan Falkner, Aaron Klein, and Frank Hutter. “BOHB: Robust and Efficient
Hyperparameter Optimization at Scale”. In: Proceedings of the 35th Inter-
national Conference on Machine Learning. Vol. 80. Proceedings of Machine
Learning Research. PMLR, 2018, pp. 1437-1446 (cit. on pp. 41, 43).

Pratik Gajane, Tanguy Urvoy, and Fabrice Clérot. “A Relative Exponential
Weighing Algorithm for Adversarial Utility-based Dueling Bandits”. In: In-
ternational Conference on Machine Learning (ICML). 2015 (cit. on pp. 36,
37).

Aurélien Garivier and Emilie Kaufmann. “Optimal Best Arm Identification
with Fixed Confidence”. In: Proceedings of the 29th Conference on Learn-
ing Theory, COLT. Vol. 49. JMLR Workshop and Conference Proceedings.
JMLR.org, 2016, pp. 998-1027 (cit. on p. 20).

Devon R. Graham, Kevin Leyton-Brown, and Tim Roughgarden. “Utilitarian
Algorithm Configuration”. In: Thirty-seventh Conference on Neural Information
Processing Systems (NeurIPS). 2023 (cit. on p. 12).

Bjorn Haddenhorst, Viktor Bengs, Jasmin Brandt, and Eyke Hiillermeier.
“Testification of Condorcet Winners in dueling bandits”. In: Proceedings of
the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI).
Vol. 161. Proceedings of Machine Learning Research. PMLR, 2021, pp. 1195~
1205 (cit. on p. 27).

Bibliography

83

84

[HHL11]

[Hut+09]

[JT16]

[Jou+21]

[Kat+22]

[KKM12]

[KLL17]

[Kle+19]

[Kur+20]

[Lar+07]

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “Sequential Model-
Based Optimization for General Algorithm Configuration”. In: Learning and
Intelligent Optimization. Springer Berlin Heidelberg, 2011, pp. 507-523 (cit.
on p. 10).

Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stiitzle.
“ParamILS: an automatic algorithm configuration framework”. In: Journal
of Artificial Intelligence Research (JAIR) 36.1 (2009), pp. 267-306 (cit. on
pp- 10, 80).

Kevin Jamieson and Ameet Talwalkar. “Non-stochastic Best Arm Identification
and Hyperparameter Optimization”. In: Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics (AISTATS). Vol. 51. Proceed-
ings of Machine Learning Research. PMLR, 2016, pp. 240-248 (cit. on pp. 20,
33, 36, 37, 40-42).

Marc Jourdan, Mojmir Mutny, Johannes Kirschner, and Andreas Krause. “Effi-
cient Pure Exploration for Combinatorial Bandits with Semi-Bandit Feedback”.
In: Proceedings of the 32nd International Conference on Algorithmic Learning
Theory. Ed. by Vitaly Feldman, Katrina Ligett, and Sivan Sabato. Vol. 132.
Proceedings of Machine Learning Research. PMLR, 2021, pp. 805-849 (cit.
on pp. 36, 37).

Masahiro Kato, Kaito Ariu, Masaaki Imaizumi, Masahiro Nomura, and Chao
Qin. Optimal Best Arm Identification in Two-Armed Bandits with a Fixed Budget
under a Small Gap. 2022. arXiv: 2201.04469 (cit. on pp. 41, 43).

Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. “Thompson Sampling:
An Asymptotically Optimal Finite-Time Analysis”. In: Algorithmic Learning
Theory. Springer Berlin Heidelberg, 2012, pp. 199-213 (cit. on p. 22).

Robert Kleinberg, Kevin Leyton-Brown, and Brendan Lucier. “Efficiency
Through Procrastination: Approximately Optimal Algorithm Configuration
with Runtime Guarantees”. In: Proceedings of the 26th International Joint
Conference on Artificial Intelligence (IJCAI). AAAI Press, 2017, pp. 2023-2031
(cit. on p. 11).

Robert D. Kleinberg, Kevin Leyton-Brown, Brendan Lucier, and Devon R.
Graham. “Procrastinating with Confidence: Near-Optimal, Anytime, Adap-
tive Algorithm Configuration”. In: Neural Information Processing Systems
(NeurIPS). 2019 (cit. on pp. 37, 39).

Yuko Kuroki, Liyuan Xu, Atsushi Miyauchi, Junya Honda, and Masashi
Sugiyama. “Polynomial-Time Algorithms for Multiple-Arm Identification with
Full-Bandit Feedback”. In: Neural Computation 32.9 (2020), pp. 1733-1773
(cit. on pp. 36, 37).

Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and
Yoshua Bengio. “An Eempirical Evaluation of Deep Architectures on Problems
with Many Factors of Variation”. In: Proceedings of the 24th International Con-
ference on Machine Learning (ICML). Association for Computing Machinery,
2007, pp. 473-480 (cit. on pp. 14, 40, 42).

Bibliography

https://arxiv.org/abs/2201.04469

[Li+20]

[Li+17]

[Lop+11]

[Mas+20]

[Men+23]

[Pla75]

[Rob52]

[SG18]

[SG19]

[SKM20]

[Sch+22]

[Shel9]

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, et al. “A System for Massively
Parallel Hyperparameter Tuning”. In: Proceedings of Machine Learning and
Systems. Vol. 2. 2020, pp. 230-246 (cit. on pp. 41, 43).

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. “Hyperband: A Novel Bandit-Based Approach to Hyperparame-
ter Optimization”. In: Journal of Machine Learning Research 18.1 (2017),
pp. 6765-6816 (cit. on pp. 14, 38, 39, 41, 42).

Manuel Lépez-Ibéiiez, Jérémie Dubois-Lacoste, Thomas Stiitzle, and Mauro
Birattari. “The irace Package: Iterated Racing for Automatic Algorithm Con-
figuration”. In: Operations Research Perspectives 3 (Jan. 2011) (cit. on p. 10).

Blake Mason, Lalit Jain, Ardhendu Tripathy, and Robert Nowak. “Finding All
e-Good Arms in Stochastic Bandits”. In: Advances in Neural Information Pro-
cessing Systems (NeurIPS). Vol. 33. Curran Associates, Inc., 2020, pp. 20707-
20718 (cit. on p. 26).

Pedro Mendes, Maria Casimiro, Paolo Romano, and David Garlan. “Hyper-
Jump: Accelerating HyperBand via Risk Modelling”. In: Proceedings of the
Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Confer-
ence on Innovative Applications of Artificial Intelligence and Thirteenth Sympo-

sium on Educational Advances in Artificial Intelligence. AAAI'23/TIAAT'23/EAAT'23.

AAAI Press, 2023 (cit. on pp. 41, 43, 80).

R. L. Plackett. “The Analysis of Permutations”. In: Journal of the Royal Statis-
tical Society. Series C (Applied Statistics) 24.2 (1975), pp. 193-202 (cit. on
p- 29).

Herbert Robbins. “Some aspects of the sequential design of experiments”.
In: Bulletin of the American Mathematical Society 58.5 (1952), pp. 527-535
(cit. on p. 18).

Aadirupa Saha and Aditya Gopalan. “PAC Battling Bandits in the Plackett-
Luce Model”. In: International Conference on Algorithmic Learning Theory.
2018 (cit. on pp. 30, 31).

Aadirupa Saha and Aditya Gopalan. “PAC Battling Bandits in the Plackett-
Luce Model”. In: Algorithmic Learning Theory ALT. Vol. 98. Proceedings of
Machine Learning Research. PMLR, 2019, pp. 700-737 (cit. on pp. 29, 35,
36).

Aadirupa Saha, Tomer Koren, and Y. Mansour. “Adversarial Dueling Bandits”.
In: International Conference on Machine Learning (ICML). 2020 (cit. on pp. 36,
37).

Elias Schede, Jasmin Brandt, Alexander Tornede, et al. “A Survey of Methods
for Automated Algorithm Configuration”. In: Journal of Artificial Intelligence
Research 75 (2022) (cit. on p. 1).

Cong Shen. “Universal Best Arm Identification”. In: IEEE Transactions on
Signal Processing 67.17 (2019), pp. 4464—-4478 (cit. on pp. 41, 43).

Bibliography

85

86

[SJR16]

[Sui+17]

[Tho33]

[WGS18]

[WGS19]

[Wei+20]

[Wu+19]

[Yue+09]

[YJO9]

[Zog+14]

Max Simchowitz, Kevin Jamieson, and Benjamin Recht. “Best-of-K-bandits”.
In: 29th Annual Conference on Learning Theory. Vol. 49. Proceedings of
Machine Learning Research. PMLR, 2016, pp. 1440-1489 (cit. on pp. 36,
37).

Yanan Sui, Vincent Zhuang, Joel W- Burdick, and Yisong Yue. “Multi-Dueling
Bandits with Dependent Arms”. In: 2017 (cit. on pp. 29, 31).

William R. Thompson. “On the Likelihood that One Unknown Probability
Exceeds Another in View of the Evidence of Two Samples”. In: Biometrika
25.3/4 (1933), pp. 285-294 (cit. on p. 18).

G. Weisz, A. Gyorgy, and Cs. Szepesvari. “LeapsAndBounds: A Method for
Approximately Optimal Algorithm Configuration”. In: Proceedings of the 35th
International Conference on Machine Learning (ICML). July 2018 (cit. on
p- 12).

Gellert Weisz, Andras Gyorgy, and Csaba Szepesvari. “CapsAndRuns: An
Improved Method for Approximately Optimal Algorithm Configuration”. In:
Proceedings of the 36th International Conference on Machine Learning. Vol. 97.
Proceedings of Machine Learning Research. PMLR, 2019, pp. 6707-6715
(cit. on pp. 8, 38, 39).

Gellert Weisz, Andras Gyorgy, Wei-I Lin, et al. “ImpatientCapsAndRuns:
Approximately Optimal Algorithm Configuration from an Infinite Pool”. In:
Advances in Neural Information Processing Systems. Vol. 33. Curran Associates,
Inc., 2020, pp. 17478-17488 (cit. on pp. 38, 39).

Jia Wu, Xiu-Yun Chen, Hao Zhang, et al. “Hyperparameter Optimization for
Machine Learning Models Based on Bayesian Optimization”. In: Journal of
Electronic Science and Technology 17.1 (2019), pp. 26-40 (cit. on pp. 14, 40,
42).

Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. “The
K-armed Dueling Bandits Problem.” In: vol. 78. 2009 (cit. on p. 23).

Yisong Yue and Thorsten Joachims. “Interactively optimizing information
retrieval systems as a dueling bandits problem”. In: Proceedings of the 26th An-
nual International Conference on Machine Learning. Association for Computing
Machinery, 2009, pp. 1201-1208 (cit. on p. 23).

Masrour Zoghi, Shimon Whiteson, Remi Munos, and Maarten Rijke. “Relative
Upper Confidence Bound for the K-Armed Dueling Bandit Problem”. In:
Proceedings of the 31st International Conference on Machine Learning (ICML).
Vol. 32. Proceedings of Machine Learning Research 2. PMLR, 2014, pp. 10-18
(cit. on p. 26).

Bibliography

Webpages

[@] Berkeley AI Course, lecture 11. URL: https://ai.berkeley.edu/lecture_
slides.html (cit. on p. 20).

Webpages 87

https://ai.berkeley.edu/lecture_slides.html
https://ai.berkeley.edu/lecture_slides.html

Appendix to Finding Optimal
Arms in Non-stochastic
Combinatorial Bandits with
Semi-bandit Feedback and
Finite Budget

89

A List of Symbols

The following table contains a list of symbols that are frequently used in the main paper as well as in
the following supplementary material.

Basics

1{-} indicator function

N set of natural numbers (without 0), i.e., N={1,2,3,...}

R set of real numbers

D observation domain (categorical or numerical)

A = [n] set of arms

n number of arms

k maximal possible subset size

B budget for the learner

O<k all subsets of A of size < k: {Q C A|2 < |Q| <k}

O<i(7) all subsets in Q< which contain arm ¢: {Q € Q< | i € Q}

O all subsets of A of size k : {Q C A||Q| =k}

O—k(7) all subsets of A of size k which contain arm i : {Q € Q= | i € Q}

oq(t) observed feedback vector by querying @ for the ¢-th time

Modelling related

s relevant statistic for the decision making process

sijo(t) statistics for arm ¢ € @ derived by the observed feedback at the ¢-th usage of query set @

sq(t) vector of statistics for all arms in the query set @ after its ¢-th usage: (s;)0)icq(t)

Siq limit of the statistics for arm 4 in query set Q: lim¢— o 5i|Q (t

¥ best arm or generalized Condorcet winner: VQ € Q< with ¢ € @ it holds that
Si*|Q > Sj\Q for anyj € Q\{’L*}

s2(t) Borda score of arm ¢ at time ¢: Zqeo_, () %ilQ(®)/|o_, ()|

SB limit Borda score of arm 4: im0 s> (t)

iB generalized Borda winner: ij; € arg max;e S2

ng(t) number of times query set () was used until time ¢

Yil@(t) point-wise smallest non-increasing function bounding the difference |s;| (t) — S| (rate
of convergence)

Fo(t) maximal ;g (t) overalli € Q

(1) maximal v¢ (¢) over all Q € Q<

fyl_‘% () quasi-inverse of ;) : min{t € N | ;o (t) < o}

Yo () minimal ;¢ (t) over all i € Q

(1) minimal y¢ (¢) over all Q € Q<

5 (t) rate of convergence of the Borda score for arm 4: m 2oco_, i e

yig () max{%i(t), 9; () }-

Ay gap of the limit statistic of arm ¢ € @ to the limit statistic of the generalized Condorcet
winner: |S;xq — Sijq| forany Q@ € Q< (i) N Q<x(i")

Swyq- Awyq I-th order statistic of {S;|q }icq forl € {1,2,...,|Q|} and its gap Ay @ = Si=jg —
S D|Q

- Algorithm related

f function from [k] to [k] specifying the nature of the arm elimination strategy

R, R* number of rounds of the learning algorithm (A)

P, P number of partitions of the learning algorithm (A) in round r

. j-th partition in round 7

A7) the partition in round r containing ¢* (emptyset otherwise)

br budget used in round r for a partition

Za sufficient budget for learning algorithm A to return ¢* (or ¢ if A is ROUNDROBIN)

ROUNDROBIN the naive algorithm introduced in Section C

CSE the generic combinatorial successive elimination algorithm (Algorithm 1)

CSWS the combinatorial successive winner stays algorithm resulting by using f(z) = 1 in CSE

CSR the combinatorial successive rejects algorithm resulting by using f(z) = = — 1in CSE

CSH the combinatorial successive halving algorithm resulting by using f(z) = [z/2] in CSE

SH the successive halving algorithm for pure exploration settings in standard multi-armed
bandits (cf. [25])

GBW Generalized Borda winner

GCW Generalized Condorcet winner

B Proofs for Section 3

In this section, we prove the general lower bounds on the necessary budget for identifying the
generalized Condorcet winner (GCW), the generalized Borda winner (GBW) or the generalized
Copeland winner (GCopeW). For this purpose, let us first fix some further notation. If Alg is a
possibly probabilistic algorithm and s is fixed, we write Alg(s) for the output of Alg executed on
the instance s. We restrict ourselves only to algorithms whose output is solely determined by the
sequence of observations it has received as well as the corresponding statistics. Moreover, for
Q € Q<i, we write Bg(Alg,s) € NU {oo} for the number of times Alg queries () when started
on instance s. Note that Alg(s) as well as Bg(Alg,s) and B(Alg,s) = > 5.o_, Bo(Alg,s) are

random variables, because they depend on the innate randomness of Alg.

Given s, let us write GCW(s), GBW(s) and GCopeW(s) for the set of all GCWs, GBWs and
GCopeWs of s, respectively. In case |GCW(s)| = 1, |GBW(s)| = 1 resp. |GCopeW(s)| = 1, with
a slight abuse of notation, we may denote by GCW (s), GBW(s) resp. GCopeW (s) simply the only
GCW, GBW resp. GCopeW of s. Recall that the GCW, the GBWs and the GCopeWs of s only
depend on the limits S = (S;Q)@eo.,.icq With Sjjg = lim; _, o 54 ().

Definition B.1. Ler Alg be a (possibly probabilistic) sequential algorithm.
(i) Alg solves Pacow (S,) if P(Alg(s) € GCW(s)) = 1 forany s in &(S,).
(ii) Alg solves Pgew (S,~) if P(Alg(s) € GBW(s)) = 1 for any s in &(S,~).
(iii) Alg solves Pgcopew (S,) if P(Alg(s) € GCopeW(s)) = 1 for any s in S(S,).

B.1 Proof of Theorem 3.1 (i): Lower Bound for GCW Identification

The proof of (i) in Theorem 3.1 is prepared with the next lemma.

Lemma B.2. Let Alg be a deterministic solution to Pacew (S,~) and s, s’ € &(S,~).

(i) If Alg(s) # Alg(s’), then
3Q € Qi € Q, t € {1,...,min{Bg(Alg,s), Bo(Alg,s")}} : s;0(t) # S;‘Q(t).

(ii) If s and s’ coincide on {t < B'} and on oc Q<y, in the sense that
VQ € Q< Vie Q,Vt < B : siq(t) = s;‘Q(t) ¢))

and _
VQ e Q,ViecQVteN : 5;0(t) = s,’ilQ(t), ()

then Alg(s) # Alg(s’) implies
3Q € Q<x \ Q : min{Bg(Alg,s), Bo(Alg,s')} > B'.

Proof. (i) To prove the contraposition, suppose that
VQ € Qi € Q, t € {1,...,min{Bg(Alg,s), Bo(Alg,s')}} : sijq(t) = sjo(t) (3)
holds.

Claim 1: Bg(Alg,s) = Bg(Alg,s’) forany Q € Q<y.

Proof: Assume this was not the case. Let) € Q< be the first set, for which Alg exceeds
its budget on one of s, s’ but does not reach it on the other instance, and suppose w.l.o.g.
Bg(Alg,s) > Bg(Alg,s’). Since Alg has observed until this point exactly the same
feedback on s as on s/, this is a contradiction as Alg is deterministic. |
Combining Claim 1 and (3) yields that Alg observes on s exactly the same feedback as on
s’ until its termination. Since Alg is deterministic, this implies Alg(s) = Alg(s’).

(ii) If Alg(s) # Alg(s’), then (i) together with (2) yields

3Q € Q< \ Q.i € Q,t < min{Bq(Alg,s), Bo(Alg,s)} 1 s;q(t) # sjio(t),

and thus (1) implies
3Q € Q<1 \ O : min{Bg(Alg,s), Bo(Alg,s')} > B'.
O

Lemma B.2 is the main ingredient for the proof of Theorem 3.1, as we first analyze the lower bound
for deterministic algorithms and then apply Yao’s minimax principle [51] to infer the lower bound for
any randomized algorithm.

Proof of Theorem 3.1 (i). We split the proof into two parts.

Part 1: The statement holds in case Alg is a deterministic algorithm.

Abbreviate B = minQ'Eng minjeq 'Vji\é (M

). Fix a family {7q}qeo., of per-
mutations 7o : Q +— Q such that Sy (1)j¢ = S(1)|@ holds for any Q € Q<(1), and define

s = (51 (t)) ey icq ten Via

SwietSuenie /
si1(t) = 2 BN B/’
Sro ()@ ift > B'.

Regarding our assumption on S, GCW(s) = 1 holds by construction. For t < B’ <

1 /Sy 05 S Syjo—58
'Vi\clg (W), which implies ;)¢ (t) > =SSN we have due to Sg1)jo > Sijg >

S(1q))|q the inequality

Swie *Sgepie _ g
9 i|lQ

’SﬂQ(i) — limtg)oo 8i|Q(t>| = ‘

Swie +Suenie Swie +Suenie
= maX{SMQ - 5 : 5 — Sganie
_ Swmie —Senie
2
< ijQ(t)

for any ¢ € . This shows s € &(S,~).

Forany [€ {2,...,n} define an instance s'

for any () € Q< with! ¢ @ and
Se1y0+S .
W7 %ft < B:, -
N (t) = S(l)‘Q, ift > B andt =,
e Siqs ift > B" and i = argmax;. 5|

= (5110 (t)QeQ<y icq ren such that ', (-) = 5.10(")

s,;‘Q(t), else,

forall Q € Q<x(l), i € Q and t € N. According to its definition, we have GCW(s!) = [, and
similarly as above one may check s' € &(S, 7).

Since Alg solves Pgcow (S,), it satisfies Alg(s) = 1 # 2 = Alg(s?). Regarding that s and s>
coincide on {t < B’} and on {Q € Q< |1 ¢ Qor2 ¢ Q} in the sense of (1) and (2), Lemma
B.2 (ii) assures the existence of some @)1 € Q< with 1 € @ and ¢y = 2 € @ such that
B, (Alg,s) > min{ By, (Alg,s), Bg, (Alg,s™)} > B’. Let F} := [n] \ @1 and fix an arbitrary
io € Fy. Then, Alg(s) = 1 # i, = Alg(s?) and since s and s’ coincide on {t < B’} and
{Q € Q< iz ¢ Q}, Lemma B.2 (ii) yields the existence of some Q2 € Q<j with iz € Q2
such that Bg, (Alg,s) > min{Bg, (Alg,s), Bg,(Alg,s)} > B’. From iy € I} = [n] \ Q; and
is € Q2 we infer Q1 # Q2. With this, we define Fp := F; \ Q2 = [n] \ (Q1 U Q2).

Inductively, whenever F; # (), we may select an element 4,1 € F} and infer from Lemma B.2
(i), due to Alg(s) = 1 # ;41 = Alg(s+!) and the similarity of s and s“+! on {t < B’}
and {Q € Q<gliit1 ¢ Q}, the existence of a set Q11 € Q< with 441 € Q41 such that
Bg,,,(Alg,s) > B', and define Fi1 = F; \ Q1. Then, ijyy € Fy = [n]\ (Q1U---UQ))

and ;41 € Q41 assure Q11 € {Q1,...,Q:}. This procedure terminates at the smallest I’ such
that F;y = 0, and Q1,...,Qy are distinct. Regarding that |Fj41| — |F| < |@Qi] < k for all
le{l,...,I' =1}, we have I’ > []. Consequently,

l/
B(Alg,s) > > Bg,(Alg,s) > {%W B
=1

holds, which shows the claim for deterministic algorithms with regard to the definition of B’.

Part 2: The statement holds for arbitrary Alg,.

Let 2 be the set of all deterministic algorithms® and s be the instance from the first part. Write Jg
for the probability distribution on {s}, which assigns s probability one, i.e., the Dirac measure on s.
Note that for any randomized algorithm Alg there exists a probability distribution P on 2(such that
Alg ~ P. By applying Yao’s minimax principle [51] and using part one we conclude

E[B(Alg,s)] = Eagr~p[B(Alg',s)] > infalgea Esns, [B(Alg, s')]
. n
= infaex B(Alg,s) > 2] B,

where B’ is as in part one. O

Remark B.3. (i) The above proof reveals even a stronger version of Theorem 3.1 (i). Indeed,
in the proof we explicitly construct n distinct instances s' = s,...,s" € &(S,~) with
GCW(s!) = I forall 1 € [n), and in fact show: Any (possibly random) algorithm Alg,
which is able to correctly identify the best arm for any s’ € {s1,...,s,} (i.e., Alg does not
necessarily have to solve Pccow (S,) fulfills

n . 1 (Swie —Sqenie
> | = ol\l————71-
E[B(Alg,s) = [7] Guin minygg (>

(it) Condition (iii) in the definition of &(S,~) assures that the term S(1)|q resp. S(q|)|q in
our lower bound from Theorem 3.1 coincides with SE1)|Q resp. SZ\Q\HQ’ when Szle =

limg o 84 (t) fors € &(S, 7).

B.2 Proof of Theorem 3.1 (ii): Lower Bound for GBW Identification

Recall that GBW (s) is the set of elements i € [n], for which the limits S;j = lim; _; o ;)¢ (t) have
the highest Borda score

B — ZQEQ:k(i) SilQ _ ZQEQ:k(i) SilQ
' | Q= (1) (1)
We call S = (Sj)q)q@eo-,.icq homogeneous if (S(1)q, - - -,5(q|) @) does not depend on Q. Thus,
if S is homogeneous, we may simply write S(;y for S| for any () € Q—.
The next two lemmata serves as a preparation for the proof of (ii) and (iii) in Theorem 3.1.
Lemma B.4. For any W C Q_j, we have 377, |Q—1(j) N W| = k[W|.

Proof of Lemma B.4. Let W C Q_y be fixed. For any Q = {i1,...,4} € Q= N W we have that
Q € Qi (iy) "W forany | € [k], whereas Q & Q_(j) N W forany j € [n] \ {i1,...,%x}. Hence,

S lea@ i =k | U (@))| = k(U @) nw| = ki,
O

Lemma B.5. For any W' C Q_p and W = Q_, \ W' with [W'| < (;Lln/f%k () there exists
J €]\ {1} with [Q—x(j) " W| > |Q=r(1) " W'|.

3At any time ¢ € N, a deterministic algorithm Alg € 2 may either make a query Q € Q< or terminate
with a decision X € {1,...,n}. Thus, 2 is a countable set.

Proof of Lemma B.5. For j € [n] \ {1} abbreviate a; := |Q—x(j) N W| — |Q=x(1) N W|. Due to

wi= () - w1
() () s ()

k k+n-—2

s (o)
- (170) - ((5))0

By using Lemma B.4 and the fact that (W N Q—x(1)) U (W' N Q—x(1)) = Q—x(1) is a disjoint
union, we obtain

Y= Z#I 1Q-4G) W] — (0 =)]Qs(1) W

=2) W] = [Q(1) NW] = [Qi(1) NW| = (n = 2)| Qi (1) N W'|
—k|W|f|Q: Dl (o es) W

>kl (3 2)) - (-2

- G22) o ())

Consequently, there exists j € [n] \ {1} with a; > 0. O

we have

N

Proof of Theorem 3.1 (ii). Similarly as in the proof of Theorem 3.1 (i), we proceed in two steps.

Part 1: The statement holds in case Alg is deterministic.

Abbreviate B’ == 7! (M) and fix a family of permutations (7q)geo., With S(1)q
Sro)@ for all @ € Q«(1). Exactly as in the proof of Theorem 3.1 (i), we define s =
(5110 (1))Qeg<y ic@ ten Via

SwietSuenie /
ilQ(t) = {5 : ’ it i g,
TQ(1)|Q> it > B

In the proof of Theorem 3.1 (i) we have already verified s € &(S,~). Forany j € {2,...,m} and
Qe 0r(1)N Q k() we have Sjjo > Sj|q. and using that [Q_ (i) \ Q—x(j’)| is the same for
every distinct i, j' € [n] we thus have

ZQEQ:k(l)SllQizQEQ DNCn(d) S1\Q+5(1) |Q—1r(1)\ Q=1 (j)]

- ZQEQ:k(i)ﬂQ:k(l) Siia + S - 1Q=k(1) \ Q=r(1)|

> S:io.
ZQGQ:k(i) 79

As |Q=(1)] = |Q= (s) =1

In the following, we will show that

W' :={Q € Q—;, : Alg started on s queries () at least B’ times}

contains at least %(') elements. For this, let us assume on the contrary [W'| < % (

and write W := Q_; \ W. Lemma B.5 allows us to fix a j € [n] \ {1} with |Q—,(j) N W| >

|Q:k(1) N W’|, Now, define s’ = (5;|Q(t)>Q€ng,i€Q,t€N via Sle(.) — SA‘Q<-) for any Q €
(Q<i \ (Q=k(1) U Q—x(j))) UW' and*

siq(t), ift< B or{l,j} ZQ,

Sy, ifi=jeQandt > B,

oo (t) = Sqahs ifi=1€Qandt> DB,

ie S110s ift > B',i = argming . Syjg and 1 € Q Z j,
Sj|Q, ift> B'i= argmaxl,eQSl/|Q andj € Q #1,
Sil@ otherwise,

for Q € (Q=x(1) U Q—k(4)) N W. Similarly as for s, we see s’ € &(S,~). The corresponding limit
values S = lim¢ _, oo 5} (¢) fulfill

VQ € Q—(1)NW: Si\Q = S(|Q|) and VQ € Q_x(j)NW: S]/le = S(l),

and trivially also S|y < S;\Q < S forany Q € Q—y,i € Q. Therefore, by choice of j, the
corresponding Borda scores (S’)? for s’ fulfill

n—1 nNB _ r
(k - 1> (507 = ZQegzk(l) Siie = ZQGQ:k(l)ﬂW’ Say + ZQEQ:k(l)ﬂW Sten

=Q=k(1) NW'|- Sy + |Q=k(1) N W] - S
< Q=) "W - Sy + 9=k () "W'| - Sqap

—1
< o (" v
= ZQEQ:k(j) S]|Q (k- _ 1) (S)J)

where we have used that |Q—r (1) "W/ |+ |Q=r(1)NW| = |Q—(1)| = |Q=r (j) "W'|+|Q=x () N
W|. This show 1 ¢ GBW(s'). But since s.|.(-) = s/, (-) holds on {t < B’} as well as on W', Alg
observes for s until termination exactly the same feedback as for s’. Consequently, it outputs for
both instances the same decision. Since GBW(s) = 1 ¢ GBW(s'), it makes on at least one of the
instances a mistake, which contradicts the correctness of Alg.

Thus, |W'| > (;Lln/f%k (%) has to hold and we conclude

1 k n
B(Alg,s) > ZQGW’ BQ(Alg,s) > |W/| -B' > (1 - n) k—l—n—Q(k)B/.

Since 1 — % > 1/2 and k < n + 2 hold by assumption, we have in particular

k (m__1 (S —SqaD Lim—=1__; (Sw —Sga) n—1
> = =0 FUED) = 2 = =KD .
B(Alg’s)—zm(k)” (2 i\k-1)" 2 <{lroa

Part 2: The statement holds for arbitrary Alg.
Similarly as for the proof of (i) in Theorem 3.1, the proof follows by means of Yao’s minimax
principle. O

Remark B.6. (i) To compare the bounds for ROUNDROBIN in Theorem C.1 with the lower
bound from Theorem 3.1 (ii) suppose in the following S to be homogeneous with S(1y > S(2)
and let v be homogeneous in the sense that v; o (t) = ¥(t) forall Q € Q—,i € Q,t € N
for some v : N — [0,00). Moreover, let s be the instance from the proof of Theorem 3.1
(ii), and denote by S the family of limits S; g = lim; _, o 8;)0(t), @ € Q<k,i € Q. Let
us write S‘(Bl), e Sa) for the order statistics of{SiB}ie[n}, ie., S(Bl) > > S(KZ). Then,
ROUNDROBIN returns a GBW of s € &(S,~) if it is executed with a budget B at least

SB 758
ZRR = (Z) By with B = 771 ((1)2(2)> .

“That is, for constructing s’, we proceed for @ € W as follows: If {1,5} C Q, we exchange S1)q with
Sjio-If1 € Q # j, we exchange Sy with S(g)g.- Andif j € Q # 1, we exchange S with S(1)|q.

In comparison to this, the lower bound just shown reveals that any (possibly deterministic)
solution to Papw (S, v) fulfills

1 ko (n . ——1 (S~ Sqa)
> - — - = 1 .
E[B(Alg,s)] > (1 n) e— (k:) By with By =% (5

Consequently, the optimality-gap between the upper and lower bound is of the order
1 k
B{'By([1——) ———.
L2 < n> k+n-—2

(ii) In the proof of Theorem 3.1 (ii), where we showed that |W'| > %(:) leads to
a contradiction, we have constructed an instance s' € &(S,~) with GBW(s) = 1 ¢
GBW(s') such that Alg observes on s the same feedback as on s'. To finish the proof,
we have only used that Alg is correct for s and for s', but we did not require correctness
of Alg on any instance s” € &(S,v) \ {s,s'}. The construction of s’ therein dependeds
on the behaviour of Alg only by means of the choices of YW and j in the proof, i.e., we

have the dependence s' = s'(W, j). Recall that for constructing s’ we used that |W| =

|Q—i| — W' = (}) — (z_ln/f%k (), so that for j € [n] \ {1}, the set

{s’(W,j) ‘W C Q_y, with |W| > (Z) - m(Z) and j € [n] \ {1}}

of possible choices for s’ has at most

- (2 (&)
N:=(n- 1)212[(2,),M(g)] <]lc)

k4+n—2
elements, say s}, ... ,s. Thus, the formulation of the theorem may be strengthened in the
Jollowing way:
If S is homogeneous and ~y fixed, then there exist N + 1 instances s, s}, ..., sy with the

following property: Whenever a (possibly probabilistic) sequential testing algorithm Alg
correctly identifies the GBW for any of these N + 1 instances, then

E[B(A,s)] > <1 - i) k+i—2<z>71 <S<1>—25<Ql>> .

B.3 Proof of Theorem 3.1 (iii): Lower Bound for GCopeW Identification

Recall that GCopeW (s) is the set of elements i € [n], for which the limits .S = lim; —, o 54 (%)
have the highest Copeland score

oo _ aconi MO1e = Swiet _ Laeo,m 110 = Sue}
i . - n—1 :
| Q=1 (9)] (x21)

Proof of Theorem 3.1.(iii). Similarly as in the proofs (i) and (ii) Theorem 3.1, we proceed in two
steps.

Part 1: The statement holds in case Alg is deterministic.

—1 (S(U\Q*SUQ\)\Q
2

Abbreviate B’ = mingeg_, minieq Yio) and fix a family of permutations

(TQ)Qeo~, With S(1)jo = Sry1)q for all Q € Q< (1). Exactly as in the proofs of the lower
bounds for GCW and GBW identification, we define s = (50 (t))qeo-, icq ten Via

SwietSgenie /
SZ\Q(t) — 2) lft < B/
SﬂQ(i)‘Q, ift > B'.

In the proof of the lower bound of GCW identification we have already verified s € &(S, «). For any
Jj€{2,...,m}and Q € Q_(1)NQ—x(j) we have Sy > S}, and using that |Q— (i")\ Q= (j')]

is the same for every distinct i, j* € [n] we thus have

> {80 = Suye}

QeQ—(1)

= > 1{S10 = Swye} + > WS = Swie}
QEQK(1)NQ= () QeQ=r(\Q=r(9)

- 3 1{S110 = Saye} + 1Q=k(1) \ Q=x(j)|
QEQ—r(1)NQ=x(j)

> S S0 = Smye) +19-1() \ Q=i (1)]
QEQ_1(1)NQ=r(4)

> > 1{Sj10 = Sy} + > 1{Sj10 = Swye}t
QEQ—r(1)NQ=x(4) QEQ_1(J)\Q=x(1)

= > Sjo=Sue}
QEQ—k(J)

As |Q_k(1)| = |Q=k(j)|, this shows GCopeW (s) = 1.

Similarly as in the proof of (ii), we will show indirectly that

W' = {Q € Q—; : Alg started on s queries Q at least B’ times}

contains at least

(;:rln/f;k (2) elements. For this purpose, let us assume on the contrary [W'| <

(;rln/f;k () and write W := Q_; \ W'. Lemma B.5 allows us to fix a j € [n] \ {1} with
|Q=k(j) N W] > [Q=x(1) N W'|. Now, define 8" = (s}, (t)) Qe 0<,.icq.ten analogously as in the
proof of (ii), i.e., via sf‘Q(-) = s.g() forany Q € (Q<x \ (Q=x(1) U Q=(j))) UW' and

sio(t), ift<Bor{l,j}ZaQ,
Swye: ifi=j€Qandt > B,
Stenie, ifi=1€Qandt> B,

/. t =
sie(t) S0, ift > B',i = argmin, . Sygand 1 € Q Z j,
Sjl0, ift > B'i= argmax; ¢Sy and j € Q Z1,
Silas otherwise,

for @ € (Q=x(1) U Q_k(j)) N W. Similarly as for s, we see s’ € &(S, ~). The corresponding limit
values S, = limy , o 57 (t) fulfill

VQ € Ok (1)NW: Si\Q = S(|Q|)|Q and VQ € Q—x(j)NW: S_;|Q = S(l)|Q,

and trivially also S(\Q\)IQ < S'ZlQ < S(l)|Q forany QQ € Q_k,i € Q. Therefore, by choice of j, the
corresponding Copeland scores (.5)¢ for s’ fulfill

n—1 c)
<k - 1> (57 = ZQeg:km {S1q = Swie!

= > YSie=Swett Y, USie=Sue!
gea o geal Ty

= > YSye=Swiel+ D>, HSuenie =Swie}
QEQ—(H)NW’ QEQ—(H)NW

= Q= (1) NW/|

< |Q=x(j) "W

= Y YSue=Swe}
Qi (j)NW

Y USjio=Se!

Q_r(j)NW

Yo USjo=Shiett D USe=5he)
oW o W

Y S =Se

QEQ—i(J)
_ n—1 N\C

where we used that (1) = 5(;o- This shows 1 ¢ GCopeW (s’). But since s.|.(-) = s/, (-) holds

on {t < B’} as well as on W', Alg observes for s until termination exactly the same feedback as
for s’. Consequently, it outputs for both instances the same decision. Since GCopeW(s) = 1 ¢

GCopeW (s'), it makes on at least one of the instances a mistake, which contradicts the correctness
of Alg.

Thus, [W'| > %jrln/f;k (%) has to hold and we conclude

IA

1 k n
B(Alg,s) > ZQGW’ Bg(Alg,s) > [W'|- B > (1 — n> Pa— (k) B

Since 1 — % > 1/2and k < n + 2 hold by assumption, we have in particular

E(m\ . . _1{Swie—Sine
> - ol =
B(Alg,s) = 1 <k> Qeos, ieq iIQ (2

_ -1y (Swie — Sanie n-1

Part 2: The statement holds for arbitrary Alg,.
Similarly as for the proofs of the lower bound of (i) and (ii) of this theorem, the proof follows by
means of Yao’s minimax principle. O

C Generalized Borda Winner Identification

Let ROUNDROBIN be the algorithm, which enumerates all possible subsets of the fixed subset size k,
chooses each subset in a round-robin fashion and returns the arm with the highest empirical Borda
score s? after the available budget is exhausted. It is a straightforward baseline method, which
we analyze theoretically in terms of the sufficient and necessary budget to return a generalized
Borda winner (GBW) i}. For this purpose, let 4;(t) = m 2oQeo_, (i) VilQ(t) and () =

max{7i(t),%; (t)}.

Theorem C.1. ROUNDROBIN returns iy if it is executed with a budget B > zrr, where

mr= () max (Amax)_l LB;% _ SE
RR - k) ped s %;;,p 9 .

The latter bound is tight in a worst-case scenario, as the following result shows (cf. Sec. D.1 for the
proofs).

Theorem C.2. For any asymptotical Borda scores ST, ..., SB, there exists a corresponding instance
s such that if B < zrr then ROUNDROBIN will not return i};.

Thus, ROUNDROBIN is already nearly-optimal (up to a factor O(n/k)) with respect to worst-case
scenarios due to Theorem 3.1 (see Rem. B.6 for a more detailed discussion.).
D Proofs of Section 4

B

()

In this section we provide the detailed proofs of Section 4. We assume throughout that is a natural

number, i.e., the budget is a multiple of (;')
D.1 Proof of Theorems C.1 and C.2

Proof of Theorem C.1. After relabeling the arms in round r we may assume w.Lo.g. iz = 1. We will
prove the theorem by contradiction and therefore assume

B
p = argmax;c 4 s; <(n)> #1
k

ot (&) <t () ()
o SE 5B < 5P (é)) Sy ST <<§)>
) m 5 <Sp|Q ((%) _ S,,|Q) + m > (SlQ — 5110 (

QeQ=k(p) - QeQ—k(1)

= 58— 58 <4, ((”f)) o (é>

B
:>ng—5'5<2-'?‘“5"‘<)

G

where 4;(t) = m 2_Qea_ () YilQ(t) and 47 (1) = max{%;(t),¥;(t)}. With this, however,

. (8B _gB
= ZRR = (’AYTZLX) ' (12p> (Z) > B,

which contradicts the assumption we make on the budget B. Thus, it holds that the returned arm is
p=1. O

—

=l
N——
N——

we can derive

Proof of Theorem C.2. Let B(t) be an arbitrary, monotonically decreasing function of ¢ with
lim; oo () = 0. We define for all j € A with j # i the empirical Borda scores to be
s?(t) = Sf + B(t) and s% t) = S% — B(t), where (SP)c(,) are arbitrary real values such

that Sg is the unique maximum for some i} € [n]. We can again assume after relabeling all arms

10

that w.l.o.g. that i3z = 1 and argmax;_, SJ = 2. Note that 4;(¢) = (t) for all i € A. In light
of these considerations, ROUN DROBIN returns 1 as the best arm if and only if

#() 7t () =0 () ()
& 88— 4, (5) > 55 + 4 <(f))

N (é) + 2 (é)) <SP -85

2 max B
<2 712 ((n)) <518_S2B
k
n ~max) —1 SB — SB
<:>B2<k>(712) (12 2)‘
Thus, the necessary budget is zg g in this case concluding the claim. O

D.2 Proofs of Theorem 4.1 and 4.2

Proof of Theorem 4.1. For the sake of convenience, let us abbreviate [R] := {1,..., R} and A, =
A, ; in the following. By possibly relabeling the arms and query sets queried by the algorithm, we
can assume w.l.o.g. i* =1 and A, (1) = A, forall € [R] in the following. In particular, we have
S1ja.. = Sq)|a,, forall - € [R]. We prove the correctness of the algorithm indirectly. Thus, we start
by assuming that the best arm is not contained in the last partition (i.e., the remaining active arm):

Apyr # {1}
IreR:1¢ A1 A1LEA,

=3r e [R]: Y Ysija, (0r) = s1a,, (00)} > f(An])
i€A

=3re[R]: Y MSia, — Sijan < S1an — S1ja, () = Sija,, + sija,, (00)} > fF(1An])
1€EA

=3re[R]: Y Sia, — Sijan < IS1an = $118,, (0n) + [Sija,, — sijan, (00)} > F(1An])
1€EAM

=3re[R]: Y YSia, — Sian < 274 (00)} > (1A
1€EAM
=3r € [R] : S1ja,, — S+ o < 274, (0r)

=3r e [R} : \‘ J = br < '7_1 < 1A (f(Ar1)+1)|Ar1>

P.R Ar 2
S - S
=3Ire[R]: B< PR {——1 < 1A <f2<|A,,.1\)+1>|A,,.1 ﬂ
_B<R p 5o (Suan = SutamDIDIAn || _ D
maXre[R] FYA 1 9 =z (f, R, { T}1§T§R) s
which contradicts the assumption we make on the budget B. Thus, it holds that the remaining active
arm inround R + 1is¢* = 1. U

Remark D.1. Using the definition of 7¢(t) and ¥(t) we can derive the following more coarser
bounds on the sufficient budget:

S - S
Z1 (fa R7 {Pr}lﬁT’SR) = RmaXre[R] P’r ’7’71 < 1|A'r'1 (fQ(‘ATl‘)#‘»l)‘ATl >—‘)

Si0— S
2 (f, R.{P, }1<r<r) = R (max,¢[p) Pr) maxgeo., [’71 < e (g(Q)H)Qﬂ :

11

Proof of Theorem 4.2. After relabeling, we may suppose w.l.o.g. i* = 1. Let 8 : N — (0, c0) be an
arbitrary strictly decreasing function with 8(t) — O ast — oo and

{W;QE Q<p,j GQ} c B(N).

Then, 3 is invertible on 3(N) and its inverse function 3! : 3(N) — N trivially fulfills ~!(a) =
min{t € N : S(t) < a} forall @ € B(N). Define for any Q € Q< and i € Q the family of
statistics by means of

sio(t) = Siig — B(t), ifi= argmax;cSj|Q;
LA Sio + B(t), otherwise,

and note that 7 () = B(t) forall Q € Q<. and ¢t € N. Writing b, = { o J we obtain due to the
choice of 3 that

S - S
B < Rmax,cim Pyt (1A (f2(|Am>+1>\AT1)

2
Stiam = S(Am DDA } _ g (51\Ar1 - 5<f<mr1\>+1>m,~1)

T
=3r € [R] : B < RP, min {t EN : 7y, (t) < 2 = 2T AR DD Am }

2 2

=3r € [R]: 28 (br) > Sijany = S(r1am D+DIA = S1]an (br) + BOr) = (S(r(1an h+1) 180 (0r) — B(br))
=3r € [R] = s1ja,, (0r) < S(p(lara) +1)1ar (br)

=3IreR:1¢ A1

=1¢& Ap41.

:>HTG[R]:bT<min{tEN s) <

This shows that z (f, R, { P, }1<r<r) is the necessary budget for returning the best arm ¢* in this
scenario. O]

D.3 Proof of Corollary 4.3

For sake of convenience, we provide the entire pseudo-code of CSWS in Algorithm 3, which results
by using f(z) = 2 — 1 as well as PC5WS and R®SWS as defined in Section 4.1 in Algorithm 1.

Proof of Corollary 4.3 (CSWS case). Suppose B > 0 to be arbitrary but fixed. First, note that
there are at most [log,,(n)] rounds within the first while-loop and at most 1 in the second, so that
we have at most [log,(n)] + 1 many rounds in total. The total number of partitions in round
r € {1,...,[log,(n)] + 1} is at most [/%]. Abbreviating R := R®WS and P, := PZSWS

for the moment, the budget allocated to a partition in round r is by definition b, = _%J =
12— |.H h 1 i
{] -(Uogk(")Hl)J ence, the total budget used by CSWS is
[logy, (n)]+1 [logy (n)]1+1 n B
#{partitions in round r} - b, = 7 - <B
2 % el st

Thus, the stated correctness of CSWS follows directly from Theorem 4.1.
]

For sake of convenience, we provide the entire pseudo-code of CSR in Algorithm 4, which results by
using f(x) = 1 as well as PSSR and ROSR as defined in Section 4.1 in Algorithm 1.

Proof of Corollary 4.3 (CSR case). Suppose B > 0 to be arbitrary but fixed. First, note that there
are at most {logk% (%)—‘ rounds within the first while-loop and at most k£ — 1 in the second, so that

we have at most {loglf 1 (%)—‘ + k — 1 many rounds in total. The total number of partitions in round

12

Algorithm 3 Combinatorial Successive Winner Stays (CSWS)
Input: set of arms [n], subset size k& < n, sampling budget B

PSR THBTEN ._ B
Initialization: For each r € {1,..., [log,(n)]| + 1} let b, := \‘ = -(rlogk(n)Hl)J , A« [n],
r«1

1: while |A;| > k do

2. J=[3]

30 Ap, Ao, ... A g« Partition(Ar, k)

4: if|A, j| < k then

S: R+—A 5, J—J-1

6: else

7: R+ 0

8: endif

9: AT+1 < @
10: for j € [J] do
11: Play the set A,. ; for b, times
12: Forall i € A, ;, update s;,. , (br)
13: Letw € argmax; sya, ; (br)
14: Ar+1 < AT+1 U {w}
15: end for

16: Arp1 Ay UR

17: r+r+1

18: end while

19: A7~+1 «~0

20: while |A,| > 1do

21: Play the set A, for b, times
22: Foralli € A, update s;5, (br)
23: Letw € argmax; s;a, (br)
24: AT+1 “— A1~+1 U {w}

25: r«r+1

26: end while

Output: The remaining item in A,

n(l—+

r—1
re{l,..., {logl,% (%)—‘ + k — 1} is at most [%W The budget allocated to a partition in
round r (i.e., b,) is by definition given by

B

] (o (] +5- 1)
Consequently, the total budget used by CSR is
’710&7% (%)—‘ +k—1
Z #{partitions in round r} - b,

[mgl;(}l)w k-1 _—
_ {”(1) -‘ _ B
r=1 k [%—‘ Glogl_% (%)—‘ +k— 1)
< B.

Therefore, the statement follows from Theorem 4.1.

be = |B/(ROSRPOSH)| =

O

For sake of convenience, we provide the entire pseudo-code of CSH in Algorithm 5, which results by
using f(z) = [x/2] as well as P52 and RCH as defined in Section 4.1 in Algorithm 1.

Proof of Corollary 4.3 (CSH case). Suppose B > 0 to be arbitrary but fixed. First, note that there
are at most [log,(n)] rounds within the first while-loop and at most [log, (k)] in the second, so that

13

Algorithm 4 Combinatorial Successive Reject (CSR)
Input: set of arms [n], subset size k& < n, sampling budget B

Initialization: For eachr € {0, ..., [log,_1 ()]} letb, := TR B ,
; {n] W ([10g17l(%)1+k71)
k

A [nl,r«1

1: while |A,| > k do
. _rr=—p)rt

2= respth

3 Ari,Ava, .. Ay« Partition(A,, k)
4: if |Ar s| < k then

5: R+ A, J—J—-1

6: else

7 R+ 0

8: endif

9: A7-+1 < AT

10: forj € [J]do

11: Play the set A,. ; for b, times
12: Forall i € A ;, update s;4, (br)
13: Letw € argmin; s;a, ; (br)
14: Ar+1 = AT+1\{U)}
15: end for

16: AT-+1 — Ar+1 UR

17: rr+1

18: end while

19: A,«Jrl < Ar

20: while |A,| > 1do

21: Play the set A, for b, times
22: Foralli € A, update s;4,. (br)
23: Letw € argmin; s;a, (br)
24 AT+1 = Ar+1\{w}

25: r<—r+1

26: end while

Output: The remaining item in A,

we have at most [log,(n)] 4 [log, (k)] many rounds in total. The total number of partitions in round

r=1,..., logy(n)] + [logy(k)] is at most [527 | . The budget allocated to a partition in round
is

B
be = LB/(RESHPSSH)| = | — :
[| - ([ogy(n)] + [log,(K)1)
In particular, the total budget used by CSH is
[log, (n)1+[log, (k)1
Z #{partitions in round r} - b,
r=1
[logy (n) 1+ [logs (k)1

Bk
=X | Mmmogmﬂ T ﬂogQ(k‘ﬂ)J
< B.

Once again, Theorem 4.1 allows us to conclude the proof. O

E Proofs of Section 5

E.1 Stochastic Numerical Feedback: Proof of Corollary 5.1
A rich class of statistics can be obtained by applying a linear functional U(F) = [r(z)dF(z),

where F' is a cumulative distribution function and » : R — R some measurable function, on the
empirical distribution function [49], i.e., for any = € R and any multiset of (reward) observations O

14

Algorithm 5 Combinatorial Successive Halving (CSH)

Input: set of arms [n], subset size k& < n, sampling budget B

Initialization: For each r € {0,. .., [log,(n)] + [log,(k)]} let b, := \‘

Bk
[7= 1([Togz (n)[+[loga (K)1) |*

A+ [n],r+1

1: while |A;| > k do

20 J= (50

3 Avi,Ava, .. Ay g < Partition(Ar, k)
4: if |Ar ;| < k then

5: R+ A, J—J—-1

6: else

7: R+ 0

8: end if

9: forj e [J]do
10: Play the set A,. ; for b, times
11: Forall i € A, ;, update s;,. , (br)
12: Define 5 <— Median({s;a, ; (br)}iea, ;)
13: Ar+1 — {Z S AT’J“SZ‘\AT,]’ (b7) < §}
14: end for

15: Arp1 Ay UR

16: r<r+1

17: end while

18: A, < A, U {k — |A,| random elements from [n]\A, }
19: while |A,| > 1do

20: Play the set A, for b, times

21: Foralli € A, update s;4, (br)

22: Define 5 +— Median({s;|4,. (br)}ica,)
23: Apyr < {i € Arlsya, (br) < 5}

24: r«r+1

25: end while

Output: The remaining item in A,

5(0,x) = ﬁ > oco Hz < o}

This leads to the statistics

suat) = UG(o1q(1) - oyt) = 3 12,

s=1

which converge to Sjjg = Ex~u, o [r(X)] by the law of large numbers, provided these expected
values exist. In this section we show the following result which generalizes Corollary 5.1 for statistics
of the above kind.
Corollary E.1. Let f, R and {P,},¢[r) be as in Theorem 4.1 and suppose that r(0;(t)) are
o-sub-Gaussian and such that their means Sy g = Ex~, , [r(X)] satisfy (A2). Then, there is a
function

C(0,e,k,R,0) € O (0% 2 In (kF/sIn (kRo/c5)))

with the following property: If i* is the GCW and supgeo_, (i+) Arqan+nQ < & then Algorithm

1 used with a budget B larger than C(6,¢,k, R,0) - Rmax,¢[r) P returns i* with probability at
least 1 — 9.

Note that we immediately obtain the proof for Corollary 5.1 as a special case of Corollary E.1 by
using the the identity function r(z) = z.

The following two lemmata serve as a preparation for the proof of Corollary E.1. The proof of
Lemma E.2 is an adaptation of the proof of Lemma 3 in [24].

Lemma E.2. Let X1, Xo,... ~ X be iid real-valued random variables and r : R — R such that
r(X) is o%-sub-Gaussian. For any € € (0,1) and 6 € (0,log(1 + €)/e) one has with probability at

15

(1+e)
least 1 — (21'6) (log(i+e)) foranyt > 1

Z) =t Exox[r(X)] < (1+ m\/zgz(l + o)tlog (W)

Moreover, the same concentration inequality holds for — (Z§=1 r(X;) —t - Exox[r(X)]) as well.

Proof. We denote in the following ¥ (z) = 4/202zlog (log(x)) and Ry, = Y./ r(Xi) —t -

Ex~x[r(X)] and define a sequence of integers (uy) as up = 1 and ugy1 = [(1 + €)ug]. The
maximal Azuma-Hoeffding Inequality states that for any martingale difference sequence S7, S, . . .
with each element being o2-sub-Gaussian, it holds that for any a > 0,n > 1:

a?
P (max;cin Si —So > a) <exp| ——=7— | -
(€l) (223':1 ‘732')

In the following let Fy = {0,Q} be the trivial o-algebra and for k& € {1,...,n} let F}, =
o(X1,..., X)) be the o-algebra generated by the observations X7, ..., Xi. Then

E[R1]F] = E[r(Xeq1) — Exox[r(X)] + Re| F]
= E[r(Xep1)|Fi] = Excx[r(X)] + E[R | F]
which shows the martingale property of R;. Note, that Ry = 0 and Ry — Ry = r(X¢y1) —

Ex~x[r(X)], which is according to the assumption o%-sub-Gaussian and has zero mean, for any
t € N. Thus, we can apply the maximal Azuma-Hoeffding inequality for R, Ra, ..., R;.

Step 1.

In the first step of the proof we derive a bound for the probability of a lower bound of R, for
k > 1. For this we use the union bound, the maximal Azuma-Hoeffding inequality, the fact that
ug, > (14 €)*, a sum-integral comparison and some simple transformations and obtain

P(3k>1: Ry > VI+ep(u))
< ip (R, > VIF ()

. (_ (1+ e>w<uk>2>

M T

2u 02

e (s one ()
o (-0 s (250.2))

9 >(1+e) (1>(1+e)
log((1+¢€)) = \Fk

(1+€

(1+€)
1
log((l +¢€) (*)
(1+e) (1+5)
1 +/
k=1

bl
Il
—_

plqg

o
Il

é%g

k

M

>
Il

I
A/\A

IN

log((l + e)

16

- (bg((f +e>>>(1+€) (1 * {‘1 (DT)
(1+¢)
- <1og<d5 T e)>) (1 * 1) |
Step 2.

Next, we bound the probability that the difference between some R and R; exceeds a lower bound for
some s = u, k € Nand s <t < wujpy;. Note that Ry — R, and R;_,, have the same distribution,
such that we obtain

]P’(Hte {uk+1,...,uk+1 —1} : Rt_Ruk > \@w(ukﬂ))
=P (Ht € [ugs1 —ux — 1] + Ry > \/g’l/}(uk»+1))
e (upp1)?)

< _
=P < 202 (ug+1 — up — 1)

Cexp [log(up+1)
Uk+1 — Uk — 1 1)
€Ukt 1 log(ug+1)

< — 1

—eXp< A+ ur+1—up—1 °g< 5

1
= exp (Ykt log (Og(uk+1)>>
Uk 1)

o (0 o (512

: (<k+1>1f>g(1+e>>l+€’

where we used once again the maximal Azuma-Hoeffding inequality and that ux+1 > (1 + €)ug
as well as that ui’;—:l > 1 + €. For all possible £ € N we get with the union bound and a similar
sum-integral comparison as above

P(Hk eN, Jte {Uk + 1, Uky1 — 1} Ry — Ruk > \/El/)(uk+1))

= g:l ((k+1)l((5)g(1+e)>1+€

oo 6 1+e
< /. (siia)
k=1 \klog(1l+e¢)

5 ey
B <log<1 + e)) €
Step 3.

Finally, by combining Step 1 and 2 we can infer that forany £ > Oand ¢ € {ug + 1,...,up+1 — 1}
it holds

Ri,=R,— R, + R,
< Ver(upy1) + V14 ep(uy)
<Vep((1+ e)t) + V1 + ep(t)
<A+ Veop((1+e),

)

1+e€
m) leading to the first claim of the lemma.

with probability at least 1 — 2£¢ (

€

Step 4.

17

Note that Ry = t-Ex.x [r(X)]— 2221 r(X;) is a martingale difference sequence with RtH —R; =
—Ry + Riy1 = Exox[r(X)] — 7(X¢41), which is according to the assumption o2-sub-Gaussian
and has zero mean, for any ¢ € N. Thus, repeating Step 1-3 for Ry, Ry, ..., R, shows the second
claim of the lemma. O]

Lemma E.3. Let X1, Xo,... ~ X be iid real-valued random variables and r : R — R such that
7(X) is 0%-sub-Gaussian. For any ~y € (0,1) we have

t
102/3 In(3t/2)
: i) —1t- ~ 2 _ <
]P’(HteN ;r(X) t-Exox[r(X)]] > (1—1—\/1/2)\/30 t1n< 2 n(3)2)) <~
Proof. Let~ € (0,1) be fixed and := 1/2. Then, 7' == (7)*/* In(3/2) fulfills
2+E ,y/ 1+e 7 2/3 3/2 B
2 (kg) =5 (onore) " —ap

and moreover ' < (1/10)%/31n(3/2) < e~!1n(3/2). Consequently, Lemma E.2 yields with

&)= (1+ @\/202(1 +e)thn (W) =1+ M)\/ so%tin (W)

that
P <3t EN:Y r(X;) —t-Exoxlr(X)] > Ev(t)> <v/2.

as well as

P (Elt EN:— (ZT(Xi) —t- Exwx[r(X)}> > 57@)) <7/2

=0

Thus, we obtain
¢

P (Elt eN:|Y r(Xi) —t-Exoxlr(X)]

<P (Elt eN: ir(X,») —t-Exx[r(X)] > 57(t)>
+P (Ht eN:— (Zr(xi) —t- EXNX[T(X)]) > 57(15))

<v/24+7/2=1.

We are now ready to prove Corollary E.1.

Proof of Corollary E.1. Recall the definition of ¢, (¢) from the proof of Lemma E.3 and let

o2 2/31n

forany v € (0,1), t € N. For any fixed v, ¢y : N = (0,00),t — ¢(t) is strictly monotonically
decreasing with lim; _, o ¢, (t) = 0. Contraposition of (1) in [24] states

. iln(mn((l +w€)/(6w))) s %m <ln<<1w+€>t>) Vi> 1€ (0,1),e>0,w< 1.

18

. . _ 4**m@3/2) | _ o? _
For any a > 0 and v € (0, 1), using this with w = T—575">, ¢ = ERESV Y ande = 1/2
reveals

cgl(a) =min{t e N : ¢,(t) < a}

o 1 (10751(3t/2) o?
~ min {t €N : - ln(1273 In(3/2)) = 21+ V1727 }

%1 (W) and we know, that this statement is true if ¢ >

Thus, we have ¢

>
In (21“((1+5)/ (F“’))) In particular also for the smallest such ¢, for which holds ¢

1
Hl (M)—‘ + 1. It follows

) < {12(1 + ;/Qm)%? . (2.10%% (18 10231 + \/W)%ﬂ)ﬂ L

72/31n(3/2) 72/31n(3/2) a2
which is of the order O(c?a~? Inln(a~to)Iny~1).

Now, suppose maxqeo., (i) Ar(@))+1)|@ < € and that Algorithm 1 is started with a budget B
larger than -

cg/l(kR) (¢/2) - Rmax,¢c(g) Pr.
Recall that ’mQ(t) = |Si‘Q(t) — Si|Q|, Si‘Q(t) = %22:1 T(Oi‘Q(S)) and SﬂQ =]EXN,,‘Q[T(X)].

With this, we obtain for any possible sequence of partitions (E,),c(r] € (Q<y)™ with P(A,.(i*)
E,.Vr € [R]) > 0 that

(Ht €N, 7€ [R],i € By : yip, (t) > c5/<kR>(t)() = B, Vr e [R])

dteN: 71|Er t) > C5/(kR) t)‘ =FE.Vr e [R])
7‘€ lEEr

Z > P(3teN:

R|i€E, t/

r(oﬂE,‘ () = Exeay, [P(X)]| 2 50m () | A, (7) = Ervr € [R})

t'=1

P(HteN t‘ Zr(ol‘Er(t)) =t Exnu, g, [F(X)]] >c(;/(kp)(t)‘A (i*) = B, Vr € [R]>

'LEEr

—ZZ

[R] zGEr

t'=1

JHeN: ’Zr(ol‘Er(t)) —t-Exnvyp, [T(X)]‘ > &5 0em) (1) ‘A (i*) = B, Vr € [R])

where we used Lemma E.3 for the second last inequality. Using the law of total probability for all
possible sequences of partitions (E;.),¢c[r), We see that the event

&= {Ht eN,re [R],Z S Ar(’t*) : 7i|AT(i*)(t) > Cé/(kR)(t)}
occurs with probability

P(€)
o (Elt EN,r € [Rli € By, () > cs/um) () ’AT(i*) —E,Vre [R})
(Er)re(r)
x P(A.(i") = E.Vr € [R])
<9 Z » IP’(A *) = E,Vr € [R]) = 0.

On £° we have VA,.(i*)(t) < ¢5/(kr)(t) forall t € N,r € [R] and thus in particular 7;1(1 () =
cg/l(kR)() for any a € (0, 00). Since maxgeo_, (i-) A(f(|Q))+1)/Q < & Theorem 4.1 thus lets us

19

conclude

P(Alg. 1 retuns i*) > P A(f(A\r(i*))+1)|Aw~(i*)>>

(B > Rmax,c[g] PT'yA () (5
({B > Rmax,¢[g] PTW&:(Z'*) (5/2)} N 5‘0)
({B > Rmax,¢[r]Prcg/l(kR) (8/2)} N EC)
= P(gc) >1-4,

where the equality holds due to the assumption on B. Consequently, we can conclude the proof by
defining

0(57 & k:v R) = C;/l(kR) (5/2)

< [48(1 + \/1/72)202 In (2(10kR)2/3 I (72 . (lOkR)2/3(1 + \/m)202>>“ .

52/31n(3/2) 52/3¢21n(3/2)
cogm(u())

E.2 Stochastic Preference Winner Feedback: Proof of Corollary 5.2

The following two lemmata serve as a preparation for the proof of Corollary 5.2. But first let us
introduce the (k — 1)-simplex

k
S = {m»ak] e Y p

izl/\ViniZO}.

Lemma E.4 (Dvoretzky-Kiefer-Wolfowitz inequality for categorical random variables). Let { X, }ien
be a sequence of iid random variables X; ~ Cat(p) for some p € S. Fort € N let p' be the

corresponding empirical distribution after the t observations X1, ..., Xy, i.e., pt = % 2221 1ix,—i)
foralli € [k]. Then, we have for any € > 0 and t € N the estimate

B(|[p —pll, >¢) <aet/

Proof. Confer [19, 35] as well as Theorem 11.6 in [29]. Moreover, note that the cumulative dis-
tribution functions F resp. F' of X; ~ Cat(p) resp. p’ fulfill p; = F(j) — F(j — 1) and
pt = F(j) — F'*(j — 1) and thus

165 — il < |F'(G) = FOG) +F' (G —1) = F(j = 1)].
for each j € [k]. 0

Lemma E.5. Forevery 5 € [1,¢/2], ¢1,c2 > 0 the number
T = 22 In Ci; +Inln C—;
1 cq cq

Proof. This is Lemma 18 in [20]. O

fulfills cyx > In(coz?).

Proof of Corollary 5.2. Fort € Nand ~ € (0, 1) define

41n(272t2/(3))
t

ey (1) =

20

and note that, for any fixed +, the function ¢, : N — (0,00),t +— ¢4(t) is strictly monotonically
decreasing with lim; _, o ¢y(t) = 0. For any o > 0, v € (0, 1), we obtain via Lemma E.5 with the

and ¢y = 1/2/(37)7 the estimate

choices =1,¢; =

Il oofR

c,?l(oz) min {¢t € N : 4In(27%%/(37)) < ta®}
= min {t eN: (\/Wﬂ't) < St}
<

8 8v/2/(3 8v/2/(3
’7042 (111 (g;y 7re> +Inln (ég W)W)>-‘ +1
Now, suppose maxgeo., (i) A(s(1Q)+1)|@ < ¢ and that Algorithm 1 is started with a budget B
larger than B

C(;_/IR(E/Z) : Rmaxre[R] PT.

Recall that in this preference-based setting we use as the statistic the empirical mean of the (winner)
observations we obtained for arm ¢ after querying @) (with ¢ € @) for ¢ many times. In particular, we

set ()
Wi|Q t 1 t
sijo(t) = — ranni Zt':l 0ijq(t),

where 0i|Q(t') = 1if arm 7 is the preferred (or winning) arm among the arms in @, if @) is queried
for the ¢'-th time, and 0 otherwise. Thus, wi|Q(t) is the total number of times arm ¢ has won in
the query set @ after ¢ queries. Moreover, v;o(t) = |s;jo(t) — Siql, where S;j¢o = pjjq and
0ijg(t") ~ Cat(pq). With this, we obtain for any ¢ € N and any possible sequence of partitions
(Er)relr) € (Q<k)® with P(A,(i*) = E, Vr € [R]) > 0 that

3r € [R] : v, (t) > cs/r(t) | Ar(i*) = E.Vr € [R]
2)| 4)

__}:p(mEt)>%mth y_EvremD

re€[R]
41 242
_ (maXZEE 15 o () - 5, M ‘A (i*) = E, Vr € [R])
T‘G[R] t’ 1
772t2’

where we used Lemma E.4 in the last inequality. Using the law of total probability for all possible
sequences of partitions (E,),c[g), We see that the event

Ez{ﬂeNremkﬁmﬂﬂzqm@}
occurs with probabi]ity
HESDY (%equ@>WW‘A@ &WEW)
teEN (Er) ¢ (R
x P(A,(i") = E,.Vr € [R])
69
< —) = <o.
_E;mﬂﬂ (Emmpmm) E.Nre[R]) <4
On £° we have 7, (;+1(t) < c5/r(t) forallt € N,r € [R] and thus in particular 7&3(1*)(00 >
C(;_/IR(O‘) for any o € (0, 00). Since maxgeo_, (i+) A(r(|Q))+1)j@ < & Theorem 4.1 thus lets us

conclude
A Z* N Z*
P (Alg. 1 returns i*) > P(B:>Rnwx%uﬂRqA@)< (F(A(?+m&()>>

>P ({B > Rmax,¢r) P, TWA (i) (5/2)} ﬂé‘c)

> P ({B > Rmax.eqn Py y (/2)} N E°)
=PE) 213,

21

where the equality holds due to the assumption on B. Consequently, the statement holds with
C(d,e,k,R) = cg/lR(s/Q)

{32 (m <32\/2R;£(35)7re> il (32\/21;/(35 W))} o

IN

2

co(2u(4)

22

F Comparisons of the Algorithms

In the following we summarize the theoretical results obtained for our proposed algorithms in a
concise way. First of all, we give an overview of the individual key quantities of each algorithm in
Table 2, where we assume w.l.o.g. that (2) is a divisor of B in ROUNDROBIN to make the assignments
of R, P, and f(s) for ROUNDROBIN well-defined. The maximal number of different query sets is
derived in Section F.1.

Table 2: Comparison of the maximal number of rounds, the maximal number of partitions per
round, the amount of retained arms from each partition and the maximal number of query sets for
ROUNDROBIN and our proposed algorithms CSWS, CSR and CSH.

Alg. R P, f(z) max #query_sets
ROUNDROBIN 1] T "
CSWS [log,(n)] +1 [2] =1 ROSWS 4. (%)

_1yr-) AV
CSR [loglff(-‘ +k-1 P“ ‘lk) - -‘ z—x—1 RESE g 1—(1—%)“()&*%(””“ !
CSH Mog,(n)] + [logy (k)] [52e7 | s [£2] ROSH 4 2n (7 /oMo (m)]+Tlos, (K)T)

Using Remark D.1 we can derive the following sufficient budgets of the algorithms summarized in
the following table, where 7(Q) € @ be the L%J + 1- th best arm with respect to (.S)icq-

Table 3: Comparison of the sufficient budget for ROUNDROBIN and our proposed algorithms CSWS,
CSR and CSH.

Algorithm Sufficient budget

n -1 SF* 75?
ROUNDROBIN (}) max;e 4 ii, (,ﬁzax) i

CSWS {%1 ([log,(n)]+1) - MAXQe Q. i+ cQ MAXieQ\ {i+} h‘l (Wﬂ
CSR {%1 <’710g1_11€ (%)w + k- 1> cMAXQeQy1i*€Q minieQ\{i*} ['_Yil (Si*‘Q;SZ‘Q)w
CsH %1 (Noga(n)] + MNoga(k)]) - maxqeouireq [771 (21252222 |

In Section F.2 we compare these quantities for the special case, in which the gaps A = ;-0 — S|
are all equal to some A > 0, while in Section F.3 we derive the sufficient budgets resulting from
Corollaries 5.1 and 5.2 for the reward setting and preference-based setting, respectively, to return
the best arm with high probability in the stochastic setting. Note that if ;) (t) = (t) and S(2)|q =

- = 5(qp)q are fulfilled for all Q € Q<«,7 € Q and t € N, then the lower bound in Theorem 3.1
(i) matches the above upper bound for CSWS up to a factor C = [log(n)] + 1.

F.1 Maximal Number of Different Query Sets

The maximal number of required query sets for each algorithm is Zfil P,. Note that this is a
geometric series and thus the partial sum can easily be computed for each of our proposed algorithms.

23

CSWS By using the specified valued of R and P, for CSWS, we obtain that the number of different
query set is at most

ROSWS [logy (n)]+1 n
CSWS _
>oeeve= | E
r=1 r=1
[ogy, (n)]+1 n
<1 1 —
<flogy(m)]+1+ > -

r=1

[logy (n)]+1 1 T
=11 1 . - -1
o+ 140+ (> (4)

r=0
1— 1/k[10gk(n)1+2
~ Roge(n)] + 1+ n- (1T

1— 1/]<;f10gk(nﬂ+1
—flogk(n)]+1+n-< 1 >,

where we used for the inequality that [x] < z + 1 for any z € R.

CSR For CSR we get as an upper bound on the number of different query sets:

ROSR Uogl,%(n)‘\‘i'k 1 11

| n(l-%)
Z P,.CSR _ Z ’V kk: -‘
r=1

r=1
1
)
§ n r=1
. (1og17%(%)1+k—2 N
n
(1 (- et @re)
= log <1> th—142
= 1—
n k (1-(1-%)
1]’logli%(%)kkkfl
= 10g1_<n) +k—-—1+n 1_<1_k> .

CSH Similarly, we can obtain for CSH the following maximum number of different query sets:

“Ogl—% (%)1+k—1

r—1
T i)

IN

ROSH [logy(n)]4[log, (k)] n
pCSH _ [71
; T ; or-1k

[ogy (n) 1+ [log, (k) |

< [logy(n)] + [logy (k)] + 1)

2

[logy(n)]+[logy (k)] —1 1\
— Tlogy(n)] + [loga(k)] + ()

r=0

= logy(n)] + oga(k)] + 7 (1 = 1/2/os(1flosa(b1)

These upper bounds on the maximum number of different query sets are summarized in Table 2. Note
that ROUNDROBIN by design queries the possible query sets of Q_ in a round-robin fashion, so
that the number of different query sets is indeed |Q—x| = (7).

24

F.2 Comparison of Sufficient Budgets

In order to compare the derived sufficient budgets of the different algorithms (see Table 3), we
consider in the following the setting where the generalized Condorcet winner coincides with the
generalized Borda winner. In addition we assume that the limit statistic S, for each arm i € A
has always the same difference to the limit of the optimal arm S;-|q if i* € Q). More precisely, for
each arms ¢ € A and each query set Q € Q< we have A; o = A for some fixed A > 0. In this

way, the y-dependent term present in the sufficient budget for each algorithm is simply [A’y‘l (%)1 .
As a consequence, we can neglect this term as it has no influence on the differences in the desired
budgets for the various algorithms and the remaining term based on the product of the number of
rounds, i.e. R, and the number of partitions in round 1, i.e. P, is driving the (rough) sufficient budget
bounds (see Table 2). However, the number of partitions in round 1 is the same for all algorithms, so
that we can neglect this term as well. With a slight abuse of denotation, we refer to this remainder
term simply as the sufficient budget in the following. With these considerations, it is easy to see that
ROUNDROBIN requires the highest sufficient budget even for moderate sizes of n if & is sufficiently
lower than n. To get an impression how the sufficient budget behaves for the more sophisticated
algorithms based on the successive elimination strategy, we plot these in Figure 2 as curves depending
on the number of arms n for different subset sizes k. Note, that in contrast to CSWS and CSH, the
sufficient budget of CSR is higher for bigger subset sizes k, since only a smaller proportion of all
arms is discarded after each round. In the case k = 2 the number of rounds are all the same, so that
consequently the sufficient budget is the same for all three algorithms.

k=2 k=3
500 500
—o— CSWS
q00{ ~* GR 400 1
o —o— (SH
=]
2 300 4 300 1
5
T 200 1 200
5
un
100 1 100 1
D T T T T T T D
W o220 B 50 75 100
k=6
600 600
500 4 | 500
£ 400 | o 400 -
S
5]
£ 300 1 - 300
z e
L
£ 200 200 1
=]
5} p
100 1 100 1
D T T 1 T T T D T T T T T T
W o220 B 50 75 100 0 0 . 50 75 100
#arms #arms

Figure 2: Comparison of required budget for our proposed algorithms for different values of the
number of arms n and the subset size k.

25

F.3 Applications to Stochastic Settings

In Table 4 the sufficient budgets for our proposed algorithms in the stochastic setting with reward
feedback and preference-based feedback are listed. Note, that these results are simply derived by
applying Corollary 5.1 and resp. Corollary 5.2 with the specific instantiations of R and P, for our
algorithms (see Tables 2 and 3).

Table 4: Comparison of the sufficient budgets for our proposed algorithms CSWS, CSR and CSH in
the reward and preference-based setting.

Alg. Budget in reward setting
CSWS Ln (’“(“ngg"”*” In (1‘“”1"“6(5””“))) - (Mogy ()] +1) [#]

1 1

N A R G A R

€ €

CSH ELZ In <’€(“032("ﬂ;[1082(kﬂ) In (k(ﬂogz(n)lgr ﬂogz(k)W))) - ([og,(n)] + [log, (k)]) {%]

Alg. Budget in preference-based setting
csws L (Lm0 - (log, (n)] + 1) [#]
log ,L(%) +k—1
CSR LI % (rogi—y (2)] +#=1) [#]

CSH L n (Losalitlons®) - (f1og,(n)] + [logy(k)]) [7]

€

26

G Further Experiments

In the following, we present some further experiments comparing our proposed algorithms with each
other on synthetic data including a detailed description of the data generation and the experiment
setting.

G.1 Synthetic Data

For each Q € Q<j, with @ = {41, ..., i‘Q‘} we consider the case where the observation vector og is
a random sample from a multivariate Gaussian distribution with mean pq = (i, (g, - -, Wi |Q)T
and a diagonal covariance matrix diag(c;,|qg,. .- ;0 QHQ)' Here, f1;,)¢ are values in [0,1] for
i; # 1* and 05 in [0.05,0.2] (all randomly sampled). For any @ with i* € @ we set
Hixj@ = MaXjeq, j£ix 1y @ + € for some € > 0, which ensures (A2) to hold for the expected

values. In our experiments we always use a value of € = 0.1. In the following we vary the values of
n € {50,100}, k € {2,4,6,8,10} and B € {50, 100, 200, 300, 500}.

We consider a reward setting and use the empirical mean as the statistic (see Section 5). We do not
force the generalized Borda winner to be the same as the generalized Condorcet winner, but they
naturally coincidence in most of the runs by sampling the observation vector as defined above.

n=50k=2 n=50k=4 n=50k=6 n=50k=8 n =50, k=10

—*| 015 {& P/ 075 " — Gws
SR
050 050 —e CSH
—+~ RoundRabin

{

Success rate

PP P & P FH P & PP P & &
n =100 k=10

e

-

—— CSWS
CSR
~#- CSH
—e— RoundRobin

Success rate

N I e
Budget Budget Budget. Budget Budget.

Figure 3: Success rates of our proposed algorithms for varying n, k and budget B in the reward
setting.

The success rates of our proposed algorithms for identifying ¢* given a budget B are shown in Figure
3. It is visible, that in particular for the challenging scenario, where the budget B and the subset size
k are small and the number of arms n is large, both CSH and CSR perform well. Especially CSH has
overall a solid performance.

Reward setting. In contrast to the experiments with reward feedback shown in the main paper,
we try in the following experiments to force the generalized Borda winner to be different from
the generalized Condorcet winner. For this purpose, we fix one random arm i}; € [n]\{i*} as the
prospective generalized Borda winner and set its expected value to p;x 1@ = max;cq,j#iy M| + 2€
forany @ € Q< with iz € Q and i* ¢ Q. Thus, i} is likely the generalized Borda winner and is
different from the generalized Condorcet winner. Since our goal is to find the generalized Condorcet
winner ¢*, ROUNDROBIN will probably fail most of the times in finding ¢*. This is due to the fact
that ROUNDROBIN focuses on identifying i}, i.e., the the generalized Borda winner, which, however,
does not coincidence with the generalized Condorcet winner ¢*.

This suspicion is confirmed by the results of the experiments shown in Figure 4 illustrating the
empirical success rates for finding the generalized Condorcet winner in the setting described above.
Except for some cases where the subset size k is relatively large in comparison to the total number of
arms, such that the generalized Condorcet winner is already contained in most of the seen subsets
and hence is automatically also the generalized Borda winner, ROUNDROBIN performs poorly in
finding the generalized Condorcet winner and is always outperformed by the algorithms based on the
combinatorial successive elimination strategy in Section 4.1.

Preference-based setting with different GCW and GBW. In the preference-based setting we
ignore the explicit numerical values of the observation vector and only use the information which

27

B=50k=2 B=50k=4 B=50k=6 B=50k=8 B=50k=10

- G
=~ RoundRobin

02 \'—a__ 02 02
00 00
ERE) E) 100 ERE]) 00
B=500k=2 8 =500,k =10
10 10 F S —
08 08
_ - s
~— 06 06 - R
—y - G
04 04 e~ RoundRabin
S D N— L 02
00 00 00
ERE) E) 100 ERE]) 0
B=1000,k=2 B=1000,k=4 B=1000,k = 10
10 10{e—s . - 10 10 —
08 08 08 08
= - cws
H — | 06 06 06 - R
H — G
oa 04 04 04 e~ RoundRabin
02 \\/ 02 02 02
00 00 00 00
ERE) E) 100 B 100 ERE]) 100

E) E))
number of ams number of ams numberof arms. number of arms. number of arms

Figure 4: Success rates of our proposed algorithms for varying n, k and budget B in the reward
setting with different generalized Condorcet winner and generalized Borda winner.

n=50k=2 n=50k=4

100
g ors — CsWS
- - SR
i 050 H"éx —o- CSH
E] > —#~ RoundRobin
A 025 /.——P—_.

000

FP
n=100k=2

100
E 075 —. WS
- - SR
4 050 e CSH
2 T —e— RoundRobin
@ 025 =

/ —" -
0.00 4= ’ ; = v v | 000 4 T— v 0,00 T T T
e F S £ & £ o £ F & P £ F s
Budget Budget Budget Budget Budget

Figure 5: Success rates of our proposed algorithms for varying n, k and budget B in the preference-
based setting with different generalized Condorcet winner and generalized Borda winner.

arm was (not) the winner, i.e., which had (not) the highest observation value in the query set used
formally s;,10(t) = + 30 1{0;,o(s) = max;—;, i, 0ijq(s)}. Additionally, we fix one arm
i € [n]\{i"} and set p1;x)@ = max;eq,jzi Hjjq + 2¢ forany Q with iz € Q and 7* ¢ Q. In this
way, iy is the generalized Borda winner and different from ¢*.

The success rates of our proposed algorithms for identifying ¢* in this setting are shown in Figure 5.
As expected our methods outperform ROUNDROBIN in all scenarios.

Preference-based setting. We now investigate the case, in which we do not force the generalized
Borda winner and the generalized Condorcet winner to be different, thus they will naturally coinci-
dence in most of the cases. This is achieved by considering the problem configuration as in the reward
setting specified in Section 6, and ignoring the explicit numerical values (as in the preference-setting
above).

The resulting success rates for finding the generalized Condorcet winner illustrated in Figure 6 are
similar to the results in the reward setting for matching generalized Condorcet winner and generalized

28

Borda winner. This means that, in particular, when the budget is small, the number of arms is
large and the subset size is small, the algorithms following the combinatorial successive elimination
strategy outperform ROUNDROBIN. Note that this setting is arguably the most relevant setup for
practical applications. Moreover, Figure 6 illustrates the natural effect one would expect for the
number of arms n on success rates, namely that success rates decrease with a larger number of arms.

B=50k=2 B=50k=4 B=50k=6 B=50.k=8 B=50k=10

Success rate

B=100.k=4 B=100.k=6 B=100.k=38 8=100.k=10

Success rate

-GS

Success rate

ey
e~ Roundhobin

-GS

Success rate

ey
e~ Roundhabin

E) E)
B=500.k=2 B=500.k=4 B=500.k=6

-

Success rote

By
04 e~ Roundhobin

100 ERE) 100 ERE)

B
5

E) E) E)))
number of ams number of ams number of arms. number of arms. number of arms

Figure 6: Success rates of our proposed algorithms for varying n, k and budget B in the preference-
based setting with (mostly) matching generalized Condorcet winner and generalized Borda winner.

29

G.2 Statistics beyond the Arithmetic Mean

We consider in the following the reward setting, where each observation is random sampled from the
following distribution

H1lQ 911Q
oqg(t) ~ N : ; :
Hiele 71QllQ
for y1;q is sampled randomly from [0, 1] and ;)¢ from [0.05,0.2] for each arm i € Q.
Median An alternative to the arithmetic mean would be to measure the quality of the arms by the
median of the seen observations. In particular, when the observations are prone to outliers, the median

provides a more robust statistic: s;|¢(t) = MEDIAN(0;(1),...,0;¢(t)) for each arm i € Q. The
results for this setting are illustrated in Figure 7.

n=50k=2

- CSWS

o SR

- CsH

—e— RoundRobin

/

Success rate
s o o o =
g % 8 a8

R I) O L D P I I D O O

n=100k=2 n=100k=4 n=100 k=6 n=100 k=8 n =100, k = 10

025 ‘ﬁg J
000 —
P P & PP F P E A CE & PP £ &

Budget Budget Budget Budget Budget

-
-~ (SWS

- SR

- CSH

—e~ RoundRobin

Success rate
=
I
4

Figure 7: Success rates of our proposed algorithms for varying n, k and budget B in the rewards
setting with (mostly) matching generalized Condorcet winner and generalized Borda winner and
using the median as the statistic.

Power-Mean Another possibility is to use the so called power-mean, which is a compromise
between the maximum and the arithmetic mean for a (multi)set of observations. Since the arithmetic
mean is known to underestimate the true quality of an arm, while the maximum overestimates it,
the power mean is often a good compromise, as it lies between the two. It is defined by s (t) =

1/q
(% Z:'=1 oi|Q(t’)‘1) for each arm ¢ € () and a fixed ¢ € N. We use in the following ¢ = 2. The

results for this setting are illustrated in Figure 8.

n=50k=2 n=50k=4

- CSWS

* SR

-~ CSH

—&~ RoundRobin

Success rate
=
7
2

2

- CSWS

o SR

- CSH

—e— RoundRobin

Success rate

R I X I T R T

Budget Budget Budget Budget Budget

Figure 8: Success rates of our proposed algorithms for varying n, k and budget B in the rewards
setting with (mostly) matching generalized Condorcet winner and generalized Borda winner and
using the power mean as the statistic.

30

Appendix to AC-Band: A B
Combinatorial Bandit-Based

Approach to Algorithm

Configuration

121

A List of Symbols

The following table contains a list of symbols that are frequently used in the main paper as well as in the following supplementary
material.

Basics

Indicator function

Set of natural numbers (without 0), i.e., N = {1,2,3,...}
Set of real numbers

Space of problem instances

Probability distribution over instance space Z

Target algorithm that can be run on problem instance ¢ € 7
Configuration search space consisting all feasible parameter configurations
Instantiation of .A with configuration €

i,0) c:Z x © — R costs of using .4y on problem instance i € 7
Algorithm configurator

Maximal possible subset size

Budget for the learner (algorithm configurator)

=
-
—~

T RSSO INEZ

Ol2,x] All subsets of © of size at least 2 and at most k: {é co|2< |(:)\ <k}

O2,1)(0) All subsets in Oz ;) which contain configuration 6: {© € O) | 6 € O} .

cs Cost of running 6 on problem instance i € Z in parallel with configurations §’ € © € 2,1\ {0}
Modelling related

s Statistic mapping costs to a numerical value: s : UsenR® — R, (c(i1, 0), ... c(it, 0)) = s(c(ir, 0), ..., c(it, 0))

s016(t) sga(t) = s(cg(i1,0), ..., cg(i, 0)) statistic of & € © after running © in parallel

SOIC:) Limit of the statistics for configuration € in query set (:), i.e., im0 se‘é(t) (see Assumption (Al))

€ Near-optimality parameter, € € (0, 1)

@ Proportion of e-best configurations in ©, o € (0, 1) (see Assumption (A2))

é Fixed error probability for identifying an e-best configuration, § € (0, 1)

Na,s Na,s = [log;_,(8)] number of configurations that have to be sampled to ensure that at least one e-best configuration is

contained with probability at least 1 — §

fyg‘@ Pointwise minimal function such that |sy 5 () — Sg 6] < 756(t) forall ¢

'ye‘e(t) min{t’ € N | [sy5(t') — Sy 6] < t} (exists due to Assumption (A1)

"gl(t) Minimal fyg_‘g(t) =min{t’' € N||s55(t") — g5l ~§ t} over all § € © (exists due to Assumption (A1))

Swes Awye I-th order statistic of {Sp g toep forl € {1,2,..., |0} andits gap Ay 6 = Sy 16 — Sy
Algorithm related

CSE The generic combinatorial successive elimination algorithm (Algorithm 1)

fo Function from [k] to [k], f,(x) = |#/2°] for a p € (0,log, (k)] specifying the nature of the configuration elimination

strategy

no Variable to specify the initial sample size, ng € (Na,s5,2Na,s)

Ne ne = [m0/2¢] + 1 number of considered configurations in epoch e € [E]

E Number of epochs E = [logy(70/no—Ny.5)]

C1 Internal constant variable for AC-Band, C; = log1 pht (2)

Cs Internal constant variable for AC-Band, Cs = 1 + log1 pht (no + 4%7]“)

Cs Internal constant variable for AC-Band, Cs = [log1 ko1 (k)-‘

Ce Internal variable for AC-Band in epoch e € [E]: ce = _ @ 2%? _eléngézfé C3))2°

Be Budget for call of CSE in epoch e € [E]: B. = B/c, for an overall budget of B for AC-Band

Rpekine Number of rounds in CSE in epoch e € [E]

Ppekme Number of partitions in CSE in epoch e € [F] and round r € [RPe*"e]

A.(0) The partition in round r of CSE containing 6 (emptyset otherwise)

by Budget used in round r of CSE for a partition

B Extension of CSE for Finding e-best Arms

B.1 Adjustments of Algorithm Parameters
We modify the definition of the function f in (Brandt et al. 2022) and thus define f,(z) = |55 | fora p € (0,log,(k)] and obtain
for

* p = 1: Combinatorial Succesive Halving (CSH) with f,(k) = | 4|

* p = log, (k) : Combinatorial Succesive Winner Stays (CSWS) with f,(k) =1

* p — 0 : Combinatorial Succesive Rejects (CSR) with f,(k) =k — 1.
Note that for a fixed subset size k and for a fixed p € (0, log,(k)], one can derive the number of rounds and number of partitions
per round as follows. The number of rounds in the first while loop of Algorithm 1 can be computed as
x

RY™ = {minz : ¢! (n) < k} for g(x) = f, (k) - {k

J+:r mod k,

where g(°*) denotes the z-times composition of g. Furthermore, it holds that R/ < [log n)], which we use for the sake

To(®
of ease to estimate R/ R in the following in our theoretical analyses. In the second while-loop of Algorithm 1, we have only k
arms left, thus we can calculate the number of rounds as

RS% = {minx : f,E"T)(k) < 1}.

Forall k € N, R0F < flog% (k)]. The overall number of rounds is therefore RP-F:n = ROF™ 4 REF < Dog% (n)] +

fo(k fp(k)

[log% (k)]. The number of partitions per round r € {1,..., Rf»"*"} is given by

pptn {Z (T)J |

Thus, we can automatically compute the number of rounds and partitions in Algorithm 1 if the parameter p for the discard
function f,, the subset size k, and the number of arms n are given. In contrast to (Brandt et al. 2022), we do not need to estimate
and specify R and { P,.} by hand before we can run Algorithm 1.

B.2 Theoretical Guarantees

The first step for extending Algorithm 1 to the context of AC is to extend the theoretical guarantees to the context of finding an
e-best arm of a finite set of arms (configurations in our terminology) and to derive a sufficient budget for CSE that is necessary to
find such an e-best arm, provided that an e-best arm is defined as follows.

Definition B.1. Assume we have n arms (configurations) 61, ... ,0,. Let 0* be such that
VO™ € O k)(07) Sgep = Siayi0 — €

We call 6* an e-best arm.
Note that we only have a finite set of n arms (configurations) 61, . . ., 6,,, which we identify simply by their indices 1, ..., n in the
following. Further assume in the following that an e-best arm exists. We identify this arm by ¢*, and write A 6= S 1)6 ~ Si\é-

In addition, let A, be the set of active arms in round r € [R**"], which will then be partitioned into Art,o A pokn.

Theorem B.2 (Sufficient budget for CSE for finding an e-best arm). Using Algorithm 1 with n arms, a discard function f,, and
a subset size k returns an arm i*, which is an e-best arm if the budget B is larger than

A - -
. ppkn p.kn -1 € (Fo (1A () N+1)[A(5%)
ok = 0 s e s (1l (me {5) 1))

where A,.(i*) denotes the partition in round r of CSE containing i* (or 6*).

Proof of Theorem B.2. Step 1: Algorithm 1 never requires a number of problem instances that exceeds the budget B:

Rp,k,n Rp,k,n RP,k,"

o= S || < 8

r=1

Step 2: Assume in the following B > z(p, k,n, €), then we have for each round r € [R¥:"] that

he— B
PR . Reskin

1 € A(s, (1A D+ A G)
it (1 (e {5 oy SRR))

A i* i*
= max ik (max{; max | DUe(A-G)D+D A)})

Te[Rp,k,n] TE[R/’*k*"] 2

Y%

We can assume in the following w.l.o.g. i* = 1 and A, (1) = A, by relabeling the arms (configurations) and query sets (sets of
configurations). Now, we first show, that 1|4, (t) — si|a,, (t) > 0 for all rounds r € [RPF1], all arms i € A,q and all t > 7; =

AKX, {0k ,7&7‘11 (maxre[m’kﬁ] Ai\;\\rl) Define 7, g as the pointwise minimal function such that \selé(t) — Se\(l)‘ < %lé(t)
for all £ and 75 = max, g Vo6 Thus, 7; > f’ygrll (%) for all » € [R?*"], and according to the definition of v we have

AVITN.
2

|85, () = Sija | <74, () < fort > 7.

Thus, for all t > 7,

S$11An (1) = Sijan, (£) = s1ja,, (8) — S1ja., + Sty — Sijan + Sijan — Sijan., ()
= 514, (8) = St — (i1, (8) — Sijan,) + Stjan — Sijan
> =294, () + S1jan — Sijan,

2S1\Ar1 - SilArl

2

In this scenario, arm ¢ will be eliminated before arm 1, since the f,(|A,|) arms with the lowest statistic s are discarded in each
round r € [RPF1].

> — + S1ja,, — Sija, = 0.

Now consider a round r € [R***"] and assume that by reordering the arms, w.l.o.g., S1am = S2iam = 0 2 Sjaa|lb -
Since Sz-| A,, 18 non-increasing in ¢, the 7; are non-increasing in z: 75 > 73 > Thus,
t>T1 = S1)A (t) > Si| Ay (t) 2)

Assume now that 1 € A, A1 ¢ A,

= Z]l{silAn(br) > S1|Am (br)} > fﬂ(|AT1|)

1€ML
= > b, <7} > fo(|An])
1€ML
= br < Tp, (A])4+1-
This implies
1€ A, AD, ZTfp(|Ar1\)+1 =1€hA 4. 3)

At Uar (%) D+ 1Ar (%) })
2

Recall that b, > maxre[Rp,k,n]ﬁgrl(i*) (max 5> MAX,c[Ro k] and Ty(a))+1 =

——1 Aspa D+l
maXTE[Rp,k,n] ’)/Arl (maXTE[Rp,k,n] %)

BfpUhr DA
2 -

and 1 € A,.

We have b, > maxX,.c[ge.kn) "y&ll (maxre[Rp,k,n]

Case 1: maX,¢[gokn) 5

A N
M) = T¢,(|Am|)+1- By (3) we have that 1 € Ay

AfpapD+1la
2

= < gand 1 € A,.
We have b, > max,.¢(go.kn) 7, () and

Case 2: maX,¢[gokn)

——1 (e ~—1 AfpUbp DA) _
max (i) T (5) < mAXyeiponn) T3 (MK empin ALY <1)

If 1 € A, 41, Algorithm 1 continues in round + 1 with case 1 or case 2. Now assume 1 ¢ A, and let
S1lam — Sijan

indicA ‘ > &
'=min< ¢ 1 max z——————— > — %,
b . re[Rekn] 2 -2

By the assumption of the case 2, we have p > f,(|A,1]) + 1 and

b > max 7, ' (E) > max 7, max Difar = 7; forall i > p.
- re[RPkn] r1\2/) — re[Rekm) 1 re[Rekm) 2 -
Thus, by (2) we have sy, (b,) > SilAn (by) fori > p, so all arms ¢ > p are eliminated before arm 1.
Moreover, we have

max Sjja,, = maxSa,, = Sija,, — €
1€EA, 41 1<p

since

S — Silan S1ja €
2 re[Rekn) 2 2

In addition, by definition of p it holds even for all r € [Rf”k*"] that Sjj,, > S1ja,, — ¢ Thus, although CSE might
discard ¢, it is ensured that an e-best arm is still active. Consequently, we relabel the arms such that the still active
e-best arm is now denoted by *.

Case3: 1 ¢ A,.
Since 1 € Ay, there was a round 7 < 7 such that 1 € Az and 1 ¢ Az;. For this round 7 only case 2 was possible,
otherwise 1 € Az;1. Since case 2 was true and 1 ¢ Az, 1, we have

max Sy, > Sya; — €
1€EAF L1

and also for all other rounds r € [RP*"] that Sja,, > Sija,, — €.

C Guarantees for AC-Band
C.1 Number of Epochs

Let Nos = [lnl(nl(f)a)] be the number of sampled configurations necessary to ensure that an e-best configuration is contained in

the samples with probability at least 1 — § provided the proportion of e-best configurations in the configuration space is « (see

Assumption (A2)). In each epoch e, we consider in total n. = [52] + 1 configurations and keep the winner of the last epoch,
no

such that we have to sample at least [52 | new configurations in epoch e. To be precise, we sample in one run of AC-Band, the
following number of configurations in total:

>[5

e=1

Y

@

E
>

=1

®

This value must be greater than N, s to guarantee that we have an e-best configuration contained in the sampled configurations
with probability at least 1 — §. Rearranging the above inequality leads to

2E>L
T ng _Na,(s

no
= E>1 _
el 0g2 <TLO _ Na76>)

where we consider that ng > N, s. Since we want our algorithm to finish as fast as possible, F = [Iog2 (2o)_‘ isa

no—Na,s
suitable choice. In addition, we need to guarantee that the number of epochs is well defined, thus we must ensure that

!
E > log, (no> >1

o — NO(,(S
n
s — 0 > 2
o — Na,(S

& ng <2Ng4;.
Putting everything together, we get the condition that ng € (Na,(;7 2Na,5} .

C.2 Sufficient Budget
Lemma C.1. For N € N and any a, b, c € R it holds that

2 2N ’
i=1
Proof.
N . N
—ia+b+c i 1
s =) bt) o
i=1 i=1 i=1
Al Al
=—a Z§+(b+c)~ 2571
=0 =0
N N+1

1 1
sk et S SR (.
1
(z-1)

_ZaNV AN ED (b0 <1—1>

oN oN-1 oN
—aN +a(2N +2) — a2V (b+e)(2V - 1)
= QN + 2N
aN — (2¥ —1)(2a —b—c)
= 2N 5

where the closed-form sum formulas of the geometric series are used in the third equality.

O

Proof of Thm. 0.1. If the total budget B for AC-Band is such that the epoch-wise budget for CSE is at least z(pe, k, 1., €) for
each epoch e (see Theorem B.2), AC-Band will return a configuration that is locally e-best. With the help of Assumption (A3),

we can then infer the claim.
Thus, the sufficient budget to guarantee that AC-Band finds a local e-best configuration ¢* can be computed as

E
Z(Pe; k, e, 5)

[0
I

I
\gEl

INTRRE
RPe,k-,TLe max -Ppe,k,’ne . max | (1 +:Yg1(,*) (max{e max (fo (JA-(E*)D+1)]A()}))

rE[Rpe -k ne] r re[Rpekine 2’T€[Rpe,k,n,e] 2

e=1

I
M=

peskine | ppesky | Me | - € A £, (14D +D)IA)
R e L e e 0)

Il
-

€

=: (*

Note that for p. = log, (“2=1), we have f, (z) = | £ | = { ze J.We can estimate R?*"""™ now by

~

e+k—1

Rphe < flog L (ne)]

fpe (k)

fona (210

etk—1

<l ()

log

= k 1
log (B + 2
log 1 4 k=1

B log (no + 28+1 — log(2¢)
B log (14 %)

_ log (g + 27+1) — elog(2)
- log (14 %)

_log <no + 210g2<”0’n10v“,6)+2) —elog(2)
<

log (1+ #5+)

log (no + 4nojlz(zfa,5) log(2)
= —_ e .
log (1+%) log (1+ %)
<1+ 10g1+ﬂ <n0 + 4”0> —e- 10g1+E (2).
B o — Naﬁ N £ ,
—Co =:C
pesk

We can proceed analogously to get an upper bound for Rf

< [logif(k)—‘ = [IOgH%(k)—‘
< [1og1+%(k)] = O3 < O

In the next step we can put the above estimations together.

E n 1
(%) < Z {(20 + 2) kJ - (—eCy + Cy + Cs)

__ € A(r,(18,G%))+1) A, ()
. 1 L h °
7'6[11%;?,}75,"4 < T ’YAT (i) (max { 2 ’ 7'6[11%2?}15171@] 2

A - -
< max max (1+,YA1(_*) (max{e e UGN +DIA(>}>>
e€[E] re[Rrekme] r(2’ re[Rre ke 2

-1

E E
ng —eCi + Cy + C3 204 2E(Cy + C5)
' (kz_kz ‘%

2¢ k

-7 k 2F k
according to Lemma C.1 and the Gaussian sum formula.
A cruder bound for the sufficient budget is given by
__1 no+ 2FE+1 C1E — (2E — 1)(201 —Cy — 03)
T 28 '

51, <"0 CCiE — (2P —1)(2C1 — G — C3) N 2E(Cy 4 C3) — CLE(E + 1))

“

Recall that the number of parallel runs is decreasing with the epoch e, so that in the worst case the configuration returned
by AC-Band is sampled only in the last epoch E. Consequently it will be run in parallel only with configurations, which are
considered in the last epoch F/| and guaranteed to be a local e-best configuration (see Theorem B.2). By Assumption (A3), the
local e-best property corresponds to a global e-best property with probability of at least

- ! =1 (RPE,k‘,TLE)_l
#query sets containing ¢* in epoch E

for this worst case. In addition we have to take into account that an e-best configuration is contained only with probability at least
1 — 4, such that we get an overall probability of at least

min{1 — 6,1 — (Re=kne) "1
that AC-Band returns an e-best configuration. O
Note that the total budget of AC band is divided among the epoch-wise calls of CSE by means of the quotient c,:
o (CLE — (28 — 1)(2C, — Cy — C3))2°
¢ 2E(—eCy + Oy + C3) '
This quotient is obtained by bounding the sufficient budget for CSE similar as in the proof of Theorem 0.1 to obtain (4):

Z(Pes Ky Ne, €) = RPekne max ppekine
re[Rpre-kine]

- € A(r, (1A D+ DA ()
i (1098 (e {5, SO0))

<3R4 RS [

-1 Mo + 2B+ . —eC1+ Cy 4+ Cs
k 2e '

AC-Band thus allocates its entire budget such that any call to CSE is guaranteed to return an appropriate configuration once the
total budget is sufficiently large.

<7

C.3 Discussion of Sufficient Budget

The behavior of the sufficient budget with respect to k, o and 9 is illustrated in Figure 3. Note that we ignore the v~! terms in
these plots, as these depend on the underlying AC problem and occur as a multiplicative constant in the sufficient budget.

—e— k=3 k=6 +— k=9
delta = 0.01 delta = 0.05 delta = 0.1
6000 2500
- 5000 3000 2000
on J
= 4000 1500 4
2 3000 | 2000 4
. 1000
£ 200
5 2000 1000
Y 1000 - 500 -
0 ’ - 0 - . 0
0.01 0.05 010 0.01 0.05 0.10 0.01 0.05 010
alpha alpha alpha

Figure 3: Sufficient budget for different values for k, v and 6.
The dependency of the sufficient budget on k, o and § is as expected, since it decreases with increasing k, o and 9, respectively.

D Extended Experiments

We provide further details regarding the experiments in Section . In particular, the results from Figure 2 are reported in more
detail in Table 1 and augmented by the results for the Regions200 dataset, for which we provide a similar illustration of the
results in Figure 4 Moreover, we outline additional experimental results and provide additional metrics to evaluate the quality of
the configurations found. The experimental setup used here is the same as in the main paper. We report two additional metrics to
provide additional insights: the percent gap to subset-best and the R® metric used in previous works (Kleinberg et al. 2019; Weisz,

Gyorgy, and Szepesvari 2018, 2019; Weisz et al. 2020) within the following tables. The percent gap to subset-best is a variation
of the percent gap to best metric where only the configurations that were sampled by the method during a run are considered. In
this way, we can see how good a method performs within the sample it selects. A value of 0 means the configuration returned is
the best in the subset. A 10% cutoff is used for the J-capped runtime. We provide results for two additional experiments: (i)
varying the ¢ for AC-Band and (I)CAR(++) and, (ii) increasing the configuration sampling budget of AC-band.

Alpha = 0.05 Alpha = 0.02 Alpha = 0.01

0.5 ® 0.5 0.5
o -
<B4
ﬁ_o 0.4 0.4 0.4
58 ®
53] @ ® 0.3 - 0.3
o .
x © @
;E’ 0.2 0.2 ® 0.2
s
Ug_) 0.1 0.1 0.1 @ ®

0.0 0.0 0.0

100 200 300 400 500 600 700 200 300 400 500 600 700 200 400 600 800 1000
CPU time (days) CPU time (days) CPU time (days)

Figure 4. Mean CPU time and percent gap to best over 5 seeds for § = 0.05 and different o (columns) for AC-Band,
ICAR, CAR++ and Hyperband on the Regions200 dataset. Circles indicate variants of AC-Band. Rectangles represent the
standard error over the seeds. The number of configurations tried for CAR++: {97,245, 492}, ICAR: {134, 351, 724}, AC-Band:
{60,153, 303}, Hyperband(n = 5): {842}, Hyperband(n = 8): {618}.

Varying § The user must decide § based on their preferences, thus there is no “correct” value to set to in our experiments.
Therefore, we also experiment with 6 = 0.01 in addition to the results in Section where § = 0.05 is used. The results for a lower
0 (see Figure 5 or Table 2) are consistent with the results reported for 6 = 0.05. In particular, AC-Band with k = 2 lies on the
Pareto front of percent gap to best and CPU time, backing up the claim that a lower value of k is preferable. With § = 0.01 and
k = 2, AC-Band is 80% percent faster than ICAR and 74% faster than Hyperband over all and all datasets, while providing
configurations that are only 7% and 6% worse in terms of the gap to the best configuration. Furthermore, AC-Band exhibits a
nearly linear speedup with the number of available cores, leading to a low wallclock time for increasing k. We note that a real
parallel implementation would, of course, suffer from some extra overhead.

Looking closer at the results obtained for the CNFuzzDD dataset for « = 0.01, we note that the percent gap to best increases
for k = 8. This increase is solely due to one seed for which a percent gap to best value of 5.74 is obtained. AC-Band uses most
of its sampling budget in the first rounds, where large sets of configurations are evaluated on large sets of instances. Over the
course of AC-Band, both the configuration and instance sets become smaller. For the seed in question, AC-Band samples one
new configuration in the last round that is able to beat the current incumbent on 18 instances. Since the configuration wins, it is
returned, even though the incumbent has seen more instances and proven worthy over the previous 8 epochs. The possibility
of this happening grows with the number of configurations to sample (decreasing «) since the same amount of instances is
distributed among more configurations.

Increasing the sampling budget of AC-Band AC-Band samples fewer configurations than Hyperband or (I)CAR(++) and
leaves more of the configuration space unexplored. This explains, in part, why AC-Band usually has a worse percent gap to best
than its competitors, but less runtime. To investigate this further, we let AC-Band sample the same number of configurations
as CAR++ and Hyperband with 77 = 8 in Table 3 and Table 4. In particular, we set /N to be equal to the number of samples of
either method and set ng = N + 1. Note that we do not sample exactly the same amount of configurations due to the rounding
operations within AC-Band.

On the CNFuzzDD and RCW dataset (see Table 3), a larger sampling budget for AC-Band leads to a gap to best that is
nearly as good as those obtained by (I)CAR(++), while needing significantly less CPU time. The same can be seen for the
Regions200dataset, however with some exceptions where the gap to best increases. Specifically, for « = 0.05 where only 101
configurations out of 2000 are examined. For a few seeds, no good configuration is contained in the 101 samples, leading to
these results.

Table 4 report the results obtained for Hyperband with different values of 7 as well as the AC-Band results with a sampling
budget of 618 configurations. For all three datasets, AC-Band comes closer to the results of Hyperband in terms of gap to best,
while needing significantly less CPU time. This is especially true for the Regions200 and RCW datasets. On the CNFuzzDD
dataset, AC-Band’s performance is weaker, which may be due to this dataset containing the smallest number of instances.

CPU Time (thousand days)

Percent gap to best

Percent gap to subset-best

RS

@

0.05

0.02

0.01

0

.05

0.02

0.01

0.05

0.02

0.01

0.05

0.

02

0.01

Method

N

o

“w

o I o

N

o

N

o

“

o

w

o

o

o

w

o

“w

o

w

o

o

o

ICAR
CAR++
CAR

100.64
92.30
157.76

12.74
5.48
18.07

242.74
22421
367.86

14.96 467.32 25.08
16.38 452.06 18.08
7.24 77145 21.72

0.02
0.05
0.04

0.04
0.04
0.03

0.01
0.01
0.01

0.01
0.01
0.01

0.02
0.01
0.01

0.03
0.01
0.01

0.01
0.02
0.01

0.02
0.03
0.02

0.01
0.00
0.00

0.01
0.01
0.01

0.02
0.01
0.01

0.03
0.01
0.01

5.0
52
52

0.1
0.2
0.2

4.9
4.9
4.9

0.1
0.1
0.1

49
4.9
4.9

0.1
0.1
0.1

00 = BN

13.05
16.32
20.09

2.04
1.91
1.92

11.76
1491
21.58

0.90
0.68
1.24

11.02
14.82
21.21

oo

-
o

37.87

346 36.07 1.71 3845

CPU Time (days)

0.56
0.53
0.91
0.32

0.14
0.05
0.12
0.05

0.17
0.06
0.14

0.16
0.02
0.01

0.19
0.03
0.01

0.05
0.01
0.01

0.06

0.05 0.07 0.05

0.10

0.08
0.02
0.01

0.09
0.00
0.06

0.12
0.00
0.11

0.14
0.00
0.00

0.19
0.01
0.01

0.05
0.01
0.01

0.08
0.02
0.01

0.02

0.03 0.03 0.05 0.05 0.10

(a): CNFuzzDD dataset

Percent gap to best

Percent gap to subset-best

5.

57
53
5.6
2

0.3

0.90
0.3
0.8

5.7
5.1
5.0

1.0
02
0.1

5.1
49
49

5.0

0352

RS

0.5
0.1
0.1
0.6

0.05

0.02

0

.01

0.05

0.02

0.01

0.05

0.02

0.01

0.05

0.02

0.01

[e3
Method

“w

o

“

o

“w

o] u

o

w

o

w

o

“w

o

o

o

o

o

n o

n o

o

o

ICAR
CAR++
CAR

164.30
229.29
523.69

91.05
19.93
53.34

274.84
566.99
1294.87

100.72
28.21
64.11

420.15
1097.90
2549.22

103.24
88.41
199.00

0.24
0.27
0.27

0.16
0.17
0.17

0.09
0.15
0.16

0.09
0.07
0.09

0.04
0.09
0.09

0.04
0.09
0.09

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.10

0.00
0.00
0.30

0.00
0.00
0.00

0.00
0.00
0.00

348 4.3
353 43

35.3 4.5 31

29.8
32.0

22
22

9 1.6

28.5
29.8
29.8

1.8
1.8
2.2

L S
LT

=
o © B N

154.27
227.07
271.02
513.57

25.29
33.18
60.26

142.68

137.79
200.72
292.56
469.19

7.59
20.76
31.26
46.49

132.00
194.88

272.56
519.70

CPU Time (thousand days)

21.64
42.30

7.78
12.07

0.31
0.29
0.29
0.50

0.21
0.17
0.17
0.48

0.23
0.19
0.21
0.32

0.12
0.17
0.14
0.27

0.08
0.12
0.13
0.10

0.11
0.12
0.13
0.10

0.00
0.00
0.00
0.00

(b): Regions200 dataset

Percent gap to best

0.00
0.00
0.00
0.00

0.01
0.00
0.01
0.03

0.02
0.00
0.02
0.06

Percent gap to subset-best

0.00
0.01
0.01
0.00

0.00
0.02
0.02
0.00

36.6 5.9
362 4.4
362 6.3
40.0 9.0

RS

34.6
343
335
36.8

5.0
54
3.5
6.9

30.2
31.8
31.1
30.6

1.6
2.7
2.2
1.7

@

0

.05

0.02

0.01

0

.05

0.

02

0.01

0.05

0.02

0.01

0.05

0.02

0.01

Method

1

o

I

o

1

o

o

o u

o

"

o

w

o

©w

o

o

o

1

o

oo

1

o

ICAR
CAR++
CAR

1.28
1.73
3.30

0.39
0.37
0.50

2.03
3.64
7.59

0.30
0.18
0.19

4.07
7.52
15.65

0.24
0.13
0.25

0.14
0.17
0.17

0.08 0.08
0.09 0.10
0.09 0.10

0.03
0.03
0.03

0.06
0.06
0.06

0.02
0.02
0.02

0.00
0.00
0.00

0.01
0.01
0.01

0.00 0.00

0.00
0.00

0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

156.1
162.1
160.1

11.9
11.9
133

146.5 4.1

149.1
149.1

41
47

143.3
143.3
143.3

49
4.9
4.9

00 = N

0.30
0.52
0.69

0.02
0.04
0.09

0.27
0.47
0.72

0.01
0.03
0.03

0.26
0.45
0.71

0.01
0.02
0.04

0.18
0.21
0.20

0.13 0.12
0.08 0.19
0.11 0.23

0.12
0.22
0.22

0.10
0.07
0.09

0.04
0.08
0.09

0.02
0.03
0.04

0.03
0.03
0.06

0.04
0.08
0.14

0.07
0.16
0.15

0.04
0.02
0.06

0.04
0.03
0.07

164.1
169.8
165.6

322
185
24.0

1522 17.8
1652 36.5
173.0 42.5

144.7
139.8
143.0

29
8.4
14.0

-

F oo
(=]

1.42 0.29 1.31 0.06 1.43 0.08|0.21 0.08 0.15 0.16 0.12 0.06 | 0.05 0.07 0.03 0.06 0.05 0.04 | 167.6 15.5 158.2 30.5 146.4 4.6

(c): RCW dataset

Table 1: Mean () and standard derivation (o) for CPU time, percent gap to best, percent gap to subset-best and mean §-capped
runtime over 5 seeds for 6 = 0.05 and different o (columns) for AC-Band, ICAR, CAR++, CAR on the CNFuzzDD (top),
Regions200 (middle) and RCW (bottom) dataset. The number of configurations tried for CAR(++): {97, 245,492}, ICAR:
{134, 351,724}, AC-Band: {60, 153, 303}.

Minisat/CNFuzzDD
Percent gap to best Percent gap to best

CPLEX/Regions200

CPLEX/RCW
Percent gap to best

- Alpha = 0.05 - Alpha = 0.02 s Alpha = 0.01
’ ’ ICAR @
10 o CAR++ 10
' B + ACBandk =2 :
AC-Band k = 4
0.8 0.8 v ACBandk=8 0.8
* AC-Bandk = 16
0.6 0.6 Hyperband eta = 8 0.6
& Hyperbandeta=5
0.4 0.4 0.4
> 4
0.2 0.2 0.2
0.0 D@ 0.0 LB ® 0,012
20 40 60 80 100 120 140 50 100 150 200 250 300 0 100 200 300 400 500 600
CPU time (days) CPU time (days) CPU time (days)
0.45 0.45 0.45
0.40 ; 0.40 0.40
@ ®
0.35 035 035
0.30 0.30 0.30
0.25 ® 025{ ® 0.25
0.20 0.20 0.20 ®
® @%
0.15 0.15 o 0.15 ®
0.10 > 0.10 4 0.10 L
0.05 0.05 0.05
0.00 0.00 0.00
200 300 400 500 600 700 200 300 400 500 600 700 800 200 400 600 800 1000 1200 1400 1600
CPU time (days) CPU time (days) CPU time (days)

0.16 0.16
0.25 0.14 0.14
0.20 @ ® 0.12 é @/; ® 0.12

® 0.10 0.10

0.15 Y

0.08 0.08

L 3 @

0.10 0.06 0.06

0.04 0.04
0.05

0.02 0.02
0.00 0.00 0.00

0.5 1 1.5 2
CPU time (thousand days)

1 2 3 4 5
CPU time (thousand days)

0

2 4 6 8
CPU time (thousand day:

10

s)

Figure 5: Mean CPU time and percent gap to best over 5 seeds for = 0.01 and different & (columns) for AC-Band, ICAR,
CAR++ and Hyperband on CNFuzzDD (top), Regions200 (middle) and RCW (bottom). Circles indicate variants of AC-Band.
Rectangles represent the standard error over the seeds. The number of configurations tried for CAR++: {128, 325,652}, ICAR:
{166,431,884}, AC-Band: {93,232, 462}, Hyperband(n = 5): {842}, Hyperband(n = 8): {618}.

RS
0.02
wo o

49 0.1
49 0.1
49 0.1
49 0.1
49 00 53
54 0.7 13.0
50 02 50

CPU Time (days)
0.02
"
325.61
327.18
554.95
11.17
13.29
20.38
33.77

Percent gap to best

0.05 0.02 0.01

I I M
0.02 0.01 0.02
0.02 0.01 0.03
0.01 0.01 0.02
0.10 0.00 0.08
0.02 0.01 0.09
0.02 0.10 2.16
0.02 0.02 0.02

Percent gap to subset-best

0.05 0.02 0.01

H " I
0.01 0.01 0.02
0.01 0.01 0.03
0.00 0.01 0.01
0.08 0.00 0.08
0.00 0.01 0.09
0.00 0.09 1.16
0.00 0.01 0.02

0.05
I o
130.57 13.14
128.14 15.59
220.33 29.17
11.56 0.77
1438 0.63
2143 245
29.18 199

0.01
o W
1180 619.16
935 654.46
19.47 1169.06
032 1120
050 14.11
063 2198
082 3170

e
Method
ICAR
CAR++
CAR

0.05

w
5.0
5.0
5.1
5.5
5.1
5.1
5.0

0.01
©w
49
4.9
4.9
5.4

(e
15.58
12.68
12.44

0.65
0.36
0.52
0.45

o
0.04
0.04
0.02
0.14
0.03
0.03
0.02

o
0.01
0.01
0.01
0.00
0.02
0.14
0.03

o
0.03
0.02
0.02
0.15
0.14
2.29
0.04

[eg
0.02
0.02
0.00
0.15
0.00
0.00
0.00

o
0.01
0.01
0.01
0.00
0.01
0.12
0.02

o
0.03
0.02
0.02
0.14
0.14
1.29
0.04

[eg
0.2
0.2
0.2
0.8
0.1
0.1
0.1

o
0.1
0.1
0.1
0.8
0.8

16.1
0.3

T o
LT

-
o 0 BN

(a): CNFuzzDD dataset

CPU Time (days)

Percent gap to best

Percent gap to subset-best

RS

0.05

0.02 0

.01

0.05

0.02

0.01

0.05 0.02 0.01

0.05

0

.02

0.01

“w

o

“

o “

o

o

o

w

o

w

o

n o

o

o

o

o

n o

n o

n o

226.12
349.44
798.6

127.05
29.05
74.21

374.51
813.73
1885.13

131.49

579.64

35.96 1604.52
83.41 3717.16

145.09
133.59
264.71

0.24
0.24
0.24

0.16
0.16
0.16

0.09
0.11
0.11

0.09
0.08
0.08

0.04
0.04
0.04

0.04
0.04
0.04

0.01
0.00
0.00

0.03
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

34.8
34.8
34.8

4.3
43
4.3

29.8
30.6
30.6

22
22
1.6

285 1.8
285 1.8
285 1.8

147.24
186.61
283.07
368.87

8.72
17.15
58.47
43.25

143.81
182.01
267.06
433.53

9.80
17.80
23.24
28.73

129.57
172.98
283.98
403.93

5.53
771
2241
27.27

0.38
0.40
0.37
0.26

0.17
0.15
0.20
0.17

0.25
0.31
0.17
0.18

0.22
0.23
0.11
0.12

0.17
0.17
0.20
0.17

0.10
0.10
0.09
0.11

0.00
0.00
0.02
0.00

0.00
0.00
0.04
0.00

0.02
0.03
0.02
0.00

0.03
0.03
0.02
0.00

0.05
0.01
0.03
0.02

0.07
0.02
0.02
0.02

389
39.6
38.1
352

49
3.5
49
54

344
36.0
31.5
33.0

52
5.6
33
2.8

31.6 3.5
31.6 3.5
320 3.0
312 3.0

(b): Regions200 dataset

CPU Time (thousand days)

Percent gap to best

Percent gap to subset-best

RS

0.05 0.02 0.01
“ w_o p
127 264 029 5.6
2.20 521 0.25 10.82
4.44 10.79 0.26 22.60

0.05

©w
0.11
0.14
0.14

o
Method

0.02 0.01
© ©
0.08 0.06
0.08 0.06
0.08 0.06

0.05 0.02 0.01
“ w w
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00

0.05

1
150.1 23
156.1 2.3
156.1 11.9

0.02
nwo o
146.2 3.7
146.5 3.7
146.5 4.1

0.01
no o
142.1 5.9
1433 5.9
1433 4.9

o
0.22
0.32
0.48

o
0.40
0.38
0.61

o
0.03
0.08
0.08

(el
0.03
0.03
0.03

o
0.04
0.02
0.02

o
0.00
0.00
0.00

o
0.00
0.00
0.00

o
0.00
0.00
0.00

o

0.29

0.01

0.27

0.09 0.26

0.01

0.21

0.14

0.11

0.04

0.09

0.04

0.07

0.08

0.04

0.04

0.03

0.03

168.7 25.9

145.1

3.6

141.9

4.7

0.45
0.69
1.05

0.03
0.02
0.04

0.42
0.70
1.23

0.01 042
0.03 0.74
0.05 1.17

0.02
0.05
0.05

0.16
0.20
0.18

0.12
0.13
0.15

0.10
0.11
0.12

0.04
0.04
0.05

0.09
0.09
0.07

0.05
0.05
0.06

0.05
0.05
0.06

0.09
0.09
0.09

0.04
0.04
0.04

0.04
0.04
0.04

0.04
0.04
0.02

0.04
0.04
0.02

156.9 19.6
164.2 21.7
163.7 272

144.9
145.1
145.6

33
3.6
3.8

141.8
141.8
139.4

4.6
4.6
50

(c): RCW dataset

Table 2: Mean () and standard derivation (o) for CPU time, percent gap to best, percent gap to subset-best and mean §-capped
runtime over 5 seeds for § = 0.01 and different values of & (columns) for AC-Band, ICAR, CAR++, CAR on the CNFuzzDD
(top), Regions200 (middle) and RCW (bottom) datasets. The number of configurations tried for CAR(++): {128, 325, 652},
ICAR: {166,431, 884}, AC-Band: {93,232, 462}.

CPU Time (days) Percent gap to best Percent gap to subset-best RS

a 0.05 0.02 0.01 0.05 0.02 0.01 0.05 0.02 0.01 0.05 0.02 0.01

Method I o m o m o L o u o U o n o nw oo p ol p o p o p o

ICAR [100.64 12.74 242.74 14.96 467.32 25.08 | 0.02 0.04 0.01 0.01 0.02 0.03 [0.01 0.02 0.01 0.01 0.02 0.03 5.0 0.1 49 0.1 49 0.1

CAR++ | 9230 5.48 22421 16.38 452.06 18.08 | 0.05 0.04 0.01 0.01 0.01 0.01|0.02 0.03 0.00 0.01 0.01 0.01 |52 0.2 49 0.1 49 0.1

CAR |157.76 18.07 367.86 7.24 771.45 21.72|0.04 0.03 0.01 0.01 0.01 0.01|0.01 0.02 0.00 0.01 0.01 0.01 5.2 0.2 49 0.1 49 0.1

k=2/|1166 087 1150 025 10.83 0.25]/0.03 0.02 0.02 0.02 0.09 0.13 {0.00 0.00 0.01 0.02 0.09 0.14|5.1 0.1 50 0.2 5.3 0.7

k=4[1418 049 1453 042 1351 0.35]0.03 0.03 0.10 0.16 0.03 0.04 [0.00 0.00 0.09 0.14 0.03 0.05|5.1 0.1 54 0.8 5.0 0.2

k=28|2239 082 2145 059 20.17 0.58]0.02 0.03 0.02 0.01 0.00 0.01|0.00 0.00 0.01 0.01 0.00 0.01|5.1 0.2 5.0 0.1 49 0.1

k=16| 2956 1.61 30.00 1.18 3228 0.43[0.04 0.03 0.01 0.01 0.02 0.03|0.00 0.00 0.00 0.00 0.02 0.03|5.2 0.2 50 0.1 50 0.1

(a): CNFuzzDD dataset
CPU Time (days) Percent gap to best Percent gap to subset-best RS
o 0.05 0.02 0.01 0.05 0.02 0.01 0.05 0.02 0.01 0.05 0.02 0.01
Method o o I o I o W o u o U o I - - -
ICAR [164.30 91.05 274.84 100.72 420.15 103.24 [0.24 0.16 0.09 0.09 0.04 0.04|0.00 0.00 0.00 0.00 0.00 0.00 | 34.8 4.3 29.8 2.2 28.5 1.8
CAR++ (22929 1993 566.99 28.21 1097.90 88.41|0.27 0.17 0.15 0.07 0.09 0.09 | 0.00 0.00 0.00 0.00 0.00 0.00 | 353 4.3 32.0 2.2 29.8 1.8
CAR |523.69 53.34 1294.87 64.11 2549.22 199.00 | 0.27 0.17 0.16 0.09 0.09 0.09 | 0.00 0.00 0.10 0.30 0.00 0.00 |35.3 4.5 31.9 1.6 29.8 2.2
k=2 (14829 10.60 136.75 12.34 12529 3.91(0.35 0.20 0.15 0.13 0.04 0.04 {0.01 0.03 0.01 0.02 0.00 0.01 [37.8 5.6 31.8 3.0 289 1.8
k =4 |184.87 19.23 187.03 15.01 166.71 6.53|0.58 0.51 0.16 0.18 0.09 0.10|0.14 0.28 0.00 0.00 0.02 0.05 | 42.4 9.7 32.3 4.5 30.0 1.5
k =8 [310.18 25.52 263.16 19.92 24198 13.160.39 0.27 0.12 0.09 0.14 0.14|0.04 0.08 0.01 0.01 0.05 0.10|38.6 6.5 30.7 1.6 31.1 2.4
k = 16380.15 43.31 358.15 4036 384.76 22.49(0.36 0.19 0.18 0.18 0.09 0.10|0.01 0.03 0.02 0.03 0.01 0.02|38.1 5.2 32.5 44 300 1.5
(b): Regions200 dataset
CPU Time (days) Percent gap to best Percent gap to subset-best RS
a 0.05 0.02 0.01 0.05 0.02 0.01 0.05 0.02 0.01 0.05 0.02 0.01

Method nw o nw o m o nw o pu o p o nw o n o n o nw o nw o nw o

ICAR [1.28 0.40 2.03 0.30 4.07 0.24|0.14 0.08 0.08 0.03 0.06 0.02 {0.00 0.01 0.00 0.00 0.00 0.00 [156.1 11.9 146.5 4.1 1433 49

CAR++ |1.72 0.37 3.64 0.18 7.52 0.13.[0.17 0.09 0.10 0.03 0.06 0.02|0.00 0.01 0.00 0.00 0.00 0.00 [162.1 11.9 149.1 4.1 1433 49

CAR [3.30 0.50 7.59. 0.19 15.65 0.26 | 0.17 0.09 0.10 0.03 0.06 0.02|0.00 0.01 0.00 0.00 0.00 0.00 | 160.1 13.3 149.1 4.7 143.3 4.9

k =2 (030 0.02 027 0.01 027 0.01[0.14 0.09 0.11 0.04 0.12 0.06 | 0.01 0.03 0.04 0.04 0.07 0.05|154.5 16.1 145.1 3.6 146.4 4.6

k =4 (043 0.02 0.04 0.01 0.04 0.01]0.18 0.11 0.11 0.04 0.10 0.10 | 0.04 0.03 0.03 0.04 0.07 0.06 | 161.3 24.1 145.1 3.6 1459 123

k =8 [0.81 0.06 0.73 0.03 0.69 0.02]0.18 0.11 0.11 0.05 0.13 0.06 | 0.04 0.05 0.03 0.04 0.09 0.05|159.8 18.9 146.6 6.7 1485 6.3

k =16|1.09 0.10 1.06 0.04 1.17 0.04 |0.23 0.20 0.09 0.05 0.15 0.06 | 0.08 0.11 0.03 0.04 0.10 0.06 | 169.8 39.2 141.8 4.6 151.8 6.3

(c): RCW dataset

Table 3: Mean (1) and standard derivation (o) for CPU time, percent gap to best, percent gap to subset-best and mean J-capped
runtime over 5 seeds for § = 0.05 and different values of « (columns) for AC-Band, ICAR, CAR++, CAR on the CNFuzzDD
(top), Regions200 (middle) and RCW (bottom) datasets. For AC-Band /N was set to the number of configurations sampled by
CAR++ for the respective « value. The number of configurations tried for CAR(++): {97, 245, 492}, ICAR: {134, 351,724},
AC-Band: {101, 247, 492}. Note that AC-Band samples slightly more configurations due to rounding operations.

CPU Time Percent gap Percent gap RS
(days) to best to subset-best
Method " o I o " o 1 o
2 n=4 80.05 18.36 0.14 0.17 0.13 0.16 57 0.0
_'nz n=>5 83.37 11.50 0.27 0.26 0.27 0.26 6.3 0.1
2 n==6 77.64 23.71 0.13 0.14 0.11 0.13 58 0.8
= n=3~8 65.43 14.21 0.16 0.14 0.16 0.14 5.7 0.8
] k=2 10.55 0.32 0.39 0.53 0.39 0.53 7.1 3.0
§ k=4 13.66 0.26 0.06 0.08 0.06 0.08 52 0.5
19) k=8 19.49 0.26 0.21 0.36 0.21 0.36 6.1 2.1
< k=16 3335 0.57 0.01 0.02 0.01 0.02 5.0 0.1
(a): CNFuzzDD dataset
CPU Time Percent gap Percent gap RS
(days) to best to subset-best
Method m o I o n o I o
b n=4 798.58 64.32 0.06 0.06 0.06 0.05 29.0 23
_§ n=>5 668.78 120.01 0.10 0.11 0.04 0.05 30.7 3.1
2 n==6 662.96 94.83 0.06 0.07 0.06 0.06 28.6 2.4
= n=3~8 559.19 64.26 0.07 0.08 0.00 0.00 29.9 2.5
k] k=2 117.68 6.73 0.09 0.09 0.05 0.07 29.6 1.92
r:% k=4 165.07 11.85 0.09 0.09 0.05 0.07 29.6 1.92
) k=38 230.52 25.96 0.09 0.09 0.02 0.02 29.6 1.92
< k=16 385.45 325 0.09 0.09 0.04 0.02 29.2 2.03
(b): Regions200 dataset
CPU Time Percent gap Percent gap RS
(days) to best to subset-best
Method n o " o m o 12 o
2 n=4 991.58 5548 0.07 0.08 0.07 0.07 141.4 9.1
_;Ej n=>5 883.04 67.03 0.12 0.08 0.07 0.07 147.6 12.2
2 n==6 873.19 56.11 0.10 0.11 0.10 0.10 144.3 22.1
= n=3~8 796.60 59.49 0.04 0.08 0.00 0.00 138.0 9.3
=] k=2 250.98 6.87 0.14 0.10 0.11 0.05 151.1 14.0
r§ k=4 411.85 11.33 0.12 0.12 0.09 0.07 148.5 15.1
o) k=38 657.61 25.65 0.11 0.12 0.07 0.07 146.6 17.4
< k=16 1196.41 38.75 0.08 0.07 0.07 0.07 139.3 16.0

(c): RCW dataset

Table 4: Mean (1) and standard derivation (o) for CPU time, percent gap to best, percent gap to subset-best and mean J-capped
runtime over 5 seeds for different 7 for Hyperband and AC-Band on the CNFuzzDD (top), Regions200 (middle) and RCW
(bottom) datasets. The number of configurations tried for Hyperband: {378, 842,280,618}, AC-Band: {618}. Note that we use
a value of 7 for which no more than the available number of configurations in a dataset would be sampled.

Appendix to Best Arm C
|dentification with

Retroactively Increased
Sampling Budget for More
Resource-Efficient HPO

135

Organization of Appendix

A Algorithms

Proofs

B.1 Proof of Theorem 6.4 e
B.2 Comparison of SHA and 1SHA L o e
B.3 Incremental-Hyperband e e

C Theoretical Analysis of ASHA
D Lower Bound for -optimal Arm Identification

E Detailed Empirical Results
E.1 Resultsforlcbench e
E.2 Results for rbv2_xgboost benchmark e
E.3 Results for rbv2_ranger benchmark L
E.4 Results forrbv2_svm benchmark
E.5 Results for nb301 benchmark e

A Algorithms

[S—

O O\ W W

11

Variants of iSHA. While iSHA is arguably the most efficient way to continue a previous run of SHA synchronously, there are
also other possible ways to do so. One way, which we call discarding Incremental-SuccessiveHalving (given in Algorithm 2),
is when the start pool of hyperparameter configurations is extended by the new hyperparameter configurations, it is allowed
to discard hyperparameter configurations that were promoted in the previous run and have already been evaluated on a larger
budget. Another way that is more efficient and reusing previous evaluations of hyperparameter configurations, is by conserving
the information about hyperparameter configurations that have already been evaluated for a specific budget but have been
discarded in a previous iteration. In this way, hyperparameter configurations that were already discarded are allowed to return
to the pool of promising candidates. This variant will be called preserving Incremental-SuccessiveHalving algorithms and is

given in Algorithm 3.

Algorithm 2 Discarding Incremental-SuccessiveHalving (d—1 SHA)

Input: S set of arms, r, max size R, 1, (C) old sequence of configurations, (Ly) old sequence of losses
Initialize: Sy < S'UCo, n=[So|, s =min{t e N : nR(t+1)n~" < B, t <log, (min{R,n})}
for k€ {0,1,...,s} do
ni. = o). v = vy
pull each arm in Sy \C}, for 7, times
Sps1 < keep the best |n/n**!| arms from S,
end for
Output: Remaining configuration

Algorithm 3 Preserving Incremental-SuccessiveHalving (p—1SHA)

Input: S set of arms, r, max size R, 1, (Ck), old sequence of configurations, (Ly) old sequence of losses
Initialize: Sy < S'UCo, n=[So|, s =min{t e N : nR(t+1)n~" < B, t <log, (min{R,n})}
for k€ {0,1,...,s} do
ny, = [n/n*], r = ro*
pull each arm in Sy \C}, for rj, times
Si41 < keep the best |n/n**!| arms from S}, u C,
end for
Output: Remaining configuration

Smaz Smar — 1 = Sinaz Smay — 2= Sinaz — 1 1 0

oo 1 flp
fie Joenyiig,
ni‘mu‘ — /

g1, 1,..., g, 1o
1 :ﬂ‘fum' ni,,,“—l: " ’ 1

- fig+1,...,M

a2t 1y e oy a2 e
L7 P FPRU P

fog e + oo ooy Mpgy

Figure 3: Illustration of how the brackets of incremental hyperband are arranged and filled up when the maximum budget R is increased.

Incremental Hyperband. The incremental Hyperband variant mentioned in Section 6.4 is given in Algorithm 4, where all
differences to the original Hyperband algorithm by [Li et al., 2018] are indicated by a blue text color.

Algorithm 4 Incremental-Hyperband (iHB)

Inmput: max size R, n > 2, old max size R « {0,R/n}, old sequence of configuration samples
((Cs»k)ke{owws})86{0,..A,10gn(1~:&")} and losses ((Ls,k)ke{o,...,s})se{o,...,logn(é)}
Initialize: 5,4, = [log,(R)], B = ($maz + 1)R
if R>0then ~ ~
Smaz = [10g, (R)| = 8maz — 1, B = (3maz + 1)R
end if
for s € {Smaz, Smaz — 1,...,0} do
ns =[5yl s = R/n®
1fR>()ands>Othen R
S=s-1,n4= [g (9’11)1’ 7s=R/n® =1
else
ns=0
end if
S <« sample ng — s configurations
x-ISHA(S, 75, R, 1, (Cs k) keqo,....5}> (La k) keqo,....5})
end for
Output: Configuration with smallest intermediate loss

B Proofs

B.1 Proof of Theorem 6.4

Proof of Theorem 6.4. This proof consists of two parts: First, we will focus on the efficient Incremental-SuccessiveHalving
Algorithm given in Algorithm 1, i.e., iSHA. Second, we will show a similar lower bound on the number of necessary samples
for the discarding and preserving Incremental-SuccessiveHalving algorithms given in Algorithm 2 and Algorithm 3.

Part I: iSHA analysis
Let ny = |Sk| + |Ck| and 7y, = |Cy| such that ny = n and 7, = 7. Without loss of generality, we assume that the limit
values of the losses are ordered, such that v; < v, < --- < 1,. Note, that due to the above condition also the limit values
of arms in Sy, and resp. in Cj are ordered, e.g. for v;,v; € S with ¢ < j we have v; < v;. Let in the following be), =
min {|ng/n| +1,|7x/n] + |nx/n] + 1}. Also denote by B the total number of pulls by iSHA and assume that B > zjsia, then
we have for each round &
B

"2 e — i) [log, ()]

" max i(1+min{R,'y_1(maX z,yi_yl})})—l

" g, - g i=20m 2
an?ﬁki;(1+nnn{R;y4(nmx{i,W;;V#H})‘l

S e i e min R (s (.) -
- (vemin o (s (5 255 7)) -

= min {R,77 (max {5,),

where the fourth line () follows from:
* Case1: i} = |fig/n] + 1.
We have
i, > 11 2> (g = 7) [1).
o Case2: i) = |7ig/n] + |nk-1/n] + 1.
If g, = 0, we have

If ng, > 1, we have

AL WL N |

n n

I |

n

ng+(n—1ng+ng—n

- n

> Dk T
n n

where line 3 follows from ng = |ng_1/n] and line 4 from ny > 7, > 1 and 7 > 2, so we have n — 1 > 1, so we can estimate

ng > 1.

Next, we show that ¢;; — ¢;; > 0 forall ¢t > 7; := 7’1(%). Given the definition of 7, we have for all ¢ € [n] that
[€i.e — v < y(t) < %57 where the last inequality holds for ¢ > ;. Thus, for ¢ > 7; we have
gi,t - fl,t = fz‘,t — VitV -V +UV — él,t
=lit—vi— (b1 —11) +v— 11
>-2v(t) +v;— 11

vi—1
22— +v; -1
2

v

=0.

Under this scenario, we will eliminate arm ¢ before arm 1 since on each round the arms are sorted by their empirical losses
and the top half are discarded. Note that by the assumption the v; limits are non-decreasing in ¢ so that the 7; values are
non-increasing in <.

Fix a round k and assume 1 € S u C}, (note, 1 € Sy u Cy). The above calculation shows that

tZTi — gi,t Zélyt. (1)
We regard two different scenarios in the following.

e Casel: k<s-1.
In this case, we keep the best | ng /1| — | 7ix /1] arms from the set Sy, U Cx\Cr+1 and have already promoted the best |7 /7 |
from CY.

{1e€S,uCk, 1¢8Sk1UCrir}

— { Yo Wl <l } 2 ne/n] - [2n/n],
1€S,UCK\Cri1

Z l{gi,rk <Lyt Lﬁk/WJ}

1€C
= { Y. Wre<m} /o] - aw/n),
1€SpUCK\Cr41
> U <n} 2 Vlk/VlJ}
1€Ch
[k /n]=17k/n]+ ik /n]+1
- l{T’k<Ti/\’iESkUCk\Ck+1}ZLnk/’r]J
1=2
[Pk /nl+nk-1/n]+1
—L’ﬁk/’l]J, Z 1{Tk<TiAiECk}ZLka/nJ
=2

= {re <min {7 mje1s g /mls e nle1))

= {7k < Tmax{lnu/l+1lae/nl+ s nl+1}
where the first line follows by the definition of the algorithm and the second by Equation 1. In the third line we assume
the worst case scenario, where the best |ny/n| — | g /n| arms in Sy U Ci\C1 are all worse than the best |7 /1| arms
in C}, (which are kept in the set C41) and vice versa that the best |7ix/n7| arms in Cj, are worse than all arms in Sy. The
fourth line follows by 7; being non-increasing (for all ¢ < j we have 7; > 7; and consequently, 1{ry <7;} > 1{ry < 7;} so
the first indicators of the sum not including 1 would be on before any other i’s in Sy, ¢ [n] sprinkled throughout [n]).

e Case2: k=s.
In this case we keep the best |ng/n| arms from Sy U Cy, and have Cy,1 = @, thus we get analogously as above

{1€SkUCk, 1¢Sk+1} <~ { Z 1{&),«,C <‘€1,rk}2lnk/77J}
€S UC

— { S o1{rp<m)> Lnk/ﬂJ}

1€SLUCK
[nx/n]+1
— > rp <7} > [ne/n]
i=2
= {re <M }-

Overall, we can conclude, that 1 € S, UC and 1 ¢ Sp41 U Clqq if
Tk < Tmax{[ng/n|+1, i /n|+|ne/n]+1}- Lhis implies
{LeSLuCh, 27y} = {1€Sk1 Uk} 2)

Recalling that rj, > 7' (max { £, V%Q_Vl }) and

1// -1

Ty = 'y‘l() we examine the following three exhaustive cases:
k

e Case 1: - fand 1€ S, uCy

v~

In this case, r >y~ (’”’2) =T . By Equation 2 we have that 1 € Si.1 U Cj1 since 1 € Sy, u Cy,.

e Case 2: <fandleSkuCk

In this case 1y > v~ (Z) but v~ (Z) < Ty Equation 2 suggests that it may be possible for 1 € Sy UC but 1 ¢ S UCk41.
On the good event that 1 € Sy, U Ci41, the algorithm continues and on the next round either case 1 or case 2 could be
true. So assume 1 ¢ Sy41 U Cyy1. Here we show that {1 € S, uCl, 1¢ S}c+1 UCks1} — MAXjeS), UCke Vi S V1 + €/2.
Because 1 € Sy u Cy, this guarantees that Algorlthm 1 either exits with arm ¢ = 1 or some arm ¢ satisfying v <vp+€f2.
Let p = min{i € [n] : 5% > {}. Note that p > i} by the criterion of the case and

1(€ (vi—1n) .
Tk 2 -2 — =7, VYi>p.
B2 (4) 7 (2 b
Thus, by Equation 1 (¢t > ;, = ¢;; > {1 ;) we have that arms ¢ > p would always have ¢; ,, > ¢ ,, and be eliminated
before or at the same time as arm 1, presuming 1 € Si U C. In conclusion, if arm 1 is eliminated so that 1 € S} u C}, but
1 ¢ Sk+1 U Chs1 then maxies, ,,uc,,, Vi < MaXi<p V; < 1 + €/2 by the definition of p.

e Case3:1¢S,uCy
Since 1 € SouCy, there exists some r < k such that 1 € S,.uC). and 1 ¢ S, UC,.,1. For this r, only case 2 is possible since
case 1 would proliferate 1 € S,.,1 U C,..1. However, under case 2, if 1 ¢ S,41 U Cyy1 then maxies, ,,uc,.,, Vi < V1 + €/2.

r+1

Because 1 € Sy u Cp, we either have that 1 remains in Sy U C}, (possibly alternating between cases 1 and 2) for all k£ until the
algorithm exits with the best arm 1, or there exists some & such that case 3 is true and the algorithm exits with an arm ¢ such
that v; < vy +€/2.

Part I1: iSHA variants analysis

Next, we proof the same guarantee for the discarding and preserving Incremental-SuccessiveHalving algorithms given in
Algorithm 2 and Algorithm 3.
Therefore we proceed in two steps: First, we will reduce the d-iSHA algorithm to the SHA algorithm to take over its
theoretical guarantees. Second, we will show where the proof of SHA has to be modified to achieve the same theoretical
guarantees for our p—1 SHA algorithm.

Step 1: We will distinguish two different cases in the following in order to reduce the discarding Incremental-
SuccessiveHalving algorithm 2 to the original version of Successive Halving by [Jamieson and Talwalkar, 2016a] (or [Karnin
etal., 2013]).

e Casel: (Cp)p=0

If we have (Cy)r = @, we have simply the Successive Halving algorithm by [Jamieson and Talwalkar, 2016a] and can
keep their theoretical guarantees.

e Case2: (Cp)r + @.

Thus the interesting case which we will consider in the following is the case (Ck); # @. Assume that Algorithm 2 is
called as subroutine by Algorithm 4. Since (Cy) # @, Algorithm 2 was already called before with number of arms 72 and
budget 7, = R/n° = R/ns "= R/n® =y for s € {0,..., [log, (R)]}. Thus, the arms in (C}),, were already pulled for ry,
times and their loss values (Lg)x were observed. Combining these with the loss values we observe in each iteration k in
Algorithm 2 for 7, pulls of the arms in Sj,\C},, we can keep the best | n/n*! | arms from S}, regarding the observed losses
of the recent pulls of Sx\C% and the before observed losses of Cj. Therefore, we get the same arms in Sy, as starting
Algorithm 3 from scratch with (Cy)x = @ and S = S u Cj and can apply Case 1.

To conclude both cases, we can keep the theoretical result that was proven by [Li er al., 2018] for the original version of
Successive Halving in a finite horizon setting (R < o).

Step 2: To achieve the same guarantee for the preserving Incremental-SuccessiveHalving algorithm, we can proceed analogue
as in the proof of Successive Halving by [Li et al., 2018]. For a fixed round k and 1 € Sy u Cy, since 1 € So u C, we have

1€SLUCK

{1eS,uCi,1¢ Sk} = { Yoo Wl <l > [nk/ﬁJ}

= { Y Hre<m}2 Lnk/nJ}
iESkUCk
ng+|Cp\(SknC)[+1
=

Hrp <7} > [nk/ﬁJ}

=2

< {1k < Tjny/nj+1)-

The rest of the proof is the same as that for Successive Halving in [Li et al., 2018]. O

B.2 Comparison of SHA and iSHA

Proof of Theorem 6.5. Let us first regard the number of total pulls when we run SHA in comparison to a run of iSHA, where
we assume that we had already run SHA for 7 many arms and r = 1 which is equal to 7 = R/n® for s = log, (R). We
concentrate in the following on a lower bound on the pulls of SHA re-used on n arms.

k=0 =oLn® n°
s Rk
22(2—1)(il —1)
k=0 \" n®
s k
:ZHR——RU —%4—1

_ k(;+1)(nR+n5) R Zsjnk—ni (l)k

n° n° i=o k=0 \ 7
_(+)@mR+n) R -1) n(-(1/n)*")
U n*(n-1) 1-1/n
—
7”("75];151) n(re+lo1)
n=-1 7% (n-1)

n
_(s+D)(nR+n°) - (1= 1)(R+n)
B s n*(n-1)
_(s+D@R+7°)(n-1) - ("' = 1)(R +n)
n*(n-1) ’
where we used the closed form for the geometric series in the fifth line and simple transformations in all other lines.
An upper bound on the total pulls of iSHA(n, r) is given by

k
Z mri = Y (Infa) - /') ﬁ”J

k=0
n- n Rn*
(5)
(+1)(n- n)R R i
ns 7] ,;)
_(s+1)(n-n)R . R(n*™ -1)
) 7 n*(n-1)
_(s+)(n-n)R(n-1) + R(n*** - 1)
n*(n-1) '

Finally, we compare both by building the quotient
#{total pulls of 1 SHA (n,r)} < (s+1)(n-n)R(n-1)+R(n**1 -1)
#{total pulls of SH(n,)} ~ (s+1)(nR+n%)(n-1)-(n**'-1)(R+n)
(s+D(@aR+n*)(n-1) - ("' ~1)(2R+n)
s+ DR+1)(n=1) = (> = 1)(R+n)

It is worth mentioning that we can do a similar analysis for the discarding and preserving Incremental-SuccessiveHalving
algorithms given in Algorithm 2 and Algorithm 3:

Analogously as in the proof of Theorem 6.5, we first need an upper bound on the total pulls in a run of d-iSHA(n,). While
we only sample n — 7 new arms in the first round of d—1iSHA, the best n/n arms may be all from the newly sampled ones and
thus none of the arms which are kept into the next round of d—1iSHA was already pulled with a higher budget in the run of
SH(n, 7). In this worst case, we can estimate

Soe-oen| 2] 5|2
 (n-M)R n)R Z

_ (n- n)R . @
n® n?

_R((s+1)n-n)

= pe .

Again, we can now compute the quotient of the pulls as follows.
#{total pulls of d-iSHA (n,r)} < (n-DR((s+1)n-n)
#{total pulls of SH(n,”)} ~ (n-1)(s+1)(nR+n%) - (n**1 -1)(R+n)
(n-1)((s +1)n° + Rit) - (°* ~1)(R +n)
S =D+ DmBR+p) - (T = 1)(R+n)’

Note that we can apply the same for the number of pulls of p—1SHA since we have the same worst-case scenario where we
only keep newly sampled configurations into the next round of p—iSHA and none of the previously promoted configurations.

To get an intuition for the improvement in the number of total pulls, we show in Figure 4 and Figure 5 the above terms for
different values of rounds s, maximal budgets per round R and discarding portion 1. Note that the above results assume the
worst-case scenario for the p—1iSHA resp. the d—iSHA algorithm in which all previously promoted configurations perform
worse than all newly sampled ones. In most problem scenarios the average improvement in the number of total pulls of
p-1SHA resp. d—1SHA will lie between the plotted curves of the worst case scenario in Figure 4 and the best case scenario
which coincidences with i SHA and is shown in Figure 5. Since our proposed methods will never need a greater number of total
pulls than SH, we plotted the minimum value of 1 and our derived fractions in Theorem 6.5.

Proof of Corollary 6.6. In the following, we only regard the asymptotic behavior of the number of pulls for an infinite large
budget and when r = R/n® and s = log, (R). In this case, we can ignore the flooring functions since the asymptotic behavior is
not affected by those. We get for the asymptotic ratio between the number of pulls of rerunning SHA and iSHA that

e el 1 T e P B
L]

7

where we used that in each new run of iSHA it holds that n = |S| + |Cy| = |Co| - z, where Cy is the number of configurations in
the previous run with cardinality 7. O

p-iSHA Improvement, eta = 2.0 p-iSHA Improvement, eta = 3.0

1.0 | 1.0
& 0.8 T 08
- -
o o
- -
2 2
— 0.6 — 0.6
T T
o o
=} =}
(=} (=}
5 0.4 _ 5 0.4 _
@ — R=16 @ — R=81
= —— R=32 = —— R=243
o o
—— R=64 —— R=729
0.2 4 R=128 0.2 4 —— R=2187
—— R=256 —— R=6561
—— R=512 —— R=19683
0.0 T T T T T T T T T 0.0 T T T T T T T T T
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
s

Figure 4: Fraction of the number of total pulls of p—1 SHA resp. d—1iSHA and SHA for different values of rounds of SHA s, maximal budgets
per round R and discarding fraction 7).

iSHA Improvement, eta = 3.0

1.0
% 0.8 A
o
(=]
n
H
= 0.6
I
[
=]
L]
%5 0.4 -
o — R=81
s —— R=243
a
— R=729
0.2 4 — R=2187
—— R=6561
—— R=19683
0.0 1— . ‘ . : : ‘ ‘ :
1 2 3 4 5 6 7 8 9

Figure 5: Fraction of number of total pulls of i SHA for different values of rounds of SHA s and maximal budgets per round R.

B.3 Incremental-Hyperband

Proof of Theorem 6.8. To derive the necessary budget of iHB in Algorithm 4, we simply have to sum up all necessary budgets
for each call of xi SHA. Luckily, the necessary budgets for 1 SHA, d—1iSHA and p—iSHA do not differ, thus a run of iHB uses
independent of the variant of the called Successive Halving algorithm a total budget of

[log,, (R)]

Z BUdgeLXiSHA(S& s, R, n, (Cé,k)ke{() 5} (Ls k)ké{() })
s=0

[log, (R)]

- 5 i, ([om0 25

s=0

(o o557
Z:Jgnaxn z(+ m1n{ v max)

= (%),
Here, we denoted by Sj the set of configurations sampled in round s. Due to simple estimates and transformations, we get

nftog, ([Log, (1)1 + 1))] <[t (08,20 = 1[5
" K s+1 K n s+1

775
=7 logn([logn(R)+1]) +10gn([D]

s+1
<n log (log, (R) +2) +log (L lﬂ
B K K T\s+1
<n log (log,(R)) +2 +log (n—s) + 1}
B K K T\s+1

[1ogn logn(R)) +log, (n°) —log, (s +1) + 3]
<1 (log, (log, (R)) + s —log, (s+1) +4).
Note that the fourth line follows from
log, (z+1) <log, (z) + 1
sr+lin-x
<> r>—

n- 1

In our setting, we have 7 > 2, thus log, (x + 1) > log, () + 1 if and only if z > 1. We have -’ > 1 for s > 0 and also wlog.
logn(R) > 2, otherwise the value of s,,4, and thus the run of Hyperband would be trivial.
We can continue with
[log, (R)]
(%)< Z n (logn (logn(R)) +s—log, (s+1)+ 4)

s=0

. . -1 € V-1
. max max 4[1+min{R,v " [max{ -,
.S:O,...,[logn(R)J 1=2,...,n 4 2

=y-1

[log, (R)] [log, (R)]

=7 (([logn(R)J + 1) (logn(logn(R)) + 4) + Z 5 — Z log, (s + 1)) 51

s=0 s=0

llog,,(R)] ([log, (R)| +1)
2

= 77(([logn(R)J + 1) (logn(logn(R)) + 4) +

[log,, (R)] .
- log, ([T (s+ 1)))7

s=0

llog,, (R)] (|log, (R)] +1)
2

= 77(([10gn(R)J + 1) (1ogn(logn(R)) + 4) +

- log, (([logn(R)J +1)))ﬁl.

Since we choose the budget B in our iHB algorithm as B = (Spax + 1)R = (Llogn(R)J +1) R, we can divide both by
(llog, (R)| +1) and get

llog, (R)] log, ((|log,(R)]+1)!)\ __,
R>n (logn(logn(R)) +4+ 5 - llog, (R)] + 1 .

n°
s+1

Recall that in each call of xi SHA in round s of iHB we compare n, = (|log, (R)]+1)
we get an overall number of samples of

hyperparameter configurations, thus

[log, (R)] 7]8
log, (R)] +1
(Log, (M) +1) 3 1
Llog,, (R)]
> >
s=0
Geometric Sum nllOgn(R)J"'l -1
= T
R-1
>t
n-1

By assumption 6.7 we have an e-optimal hyperparameter configuration in our sample set with probability at least 1 — § if and
only if

R-1

n- 1 2 [logl—a(éﬂ
o R>[log, ,(5)](n-1)+1.

C Theoretical Analysis of ASHA

Proof of Theorem 6.2. For sake of simplicity, we denote the configurations by their indices and assume without loss of gener-
ality that the configurations are ordered, such that the optimal configuration has index 1, the second best 2 etc. In the worst
case, we observe the configurations in such an order that we have never two consistent rankings in two successive rungs, thus
we have to enlarge the rung each time we have at least 7 configurations in the recent top rung K. With this, we get in each rung
k at least | »/n* | configurations for which the budget by, = 1" is used by algorithm design. In addition, we can bound the index
of the top rung K by [1ogn(n)J, because we have at least 7 times many configurations in rung k + 1 in comparison to rung k
and the first rung has index 0. We can compute the following upper bound for the budget of ASHA:

K
B =" |rung;| - bk

£

r

IN

>

n

nk
n
‘N

IN

k=0
=(K+1)-rn

< ([log, (n)] + 1)rn.
By simple transformations we get

. B

roo———

([log, (n)] +1)n

We prove the correctness of ASHA indirectly, so we assume in the following that ASHA does not return the near-optimal

configuration. For sake of convenience, we write [K - 1]y = {0,1,2,..., K — 1}. We can regard two different cases for this
scenario.

¢ Case 1: Configuration 1 does not even reach the top rung K.

1¢rung, < Jke[K -1]p: 1erung, Al ¢rung,,,

< dk e [K - 1]0 : Z 1{€17bk > gi,bk} > w
ierung, \{1}

<dke[K-1lo: X 1{Vz'—V1<Vi—€i,bk—vl+€1,bk}>%
ierung, \{1}

=3ke[K-1]o:)] 1{%‘—’/1<|Vi—&,bk|+|'/1—€1,bk|}>%
ierung, \{1}

=3ke[K-1]o:) 1{V¢—1/1<27(bk)}>%
derung; \{1} Ui

=3Jke[K-1]p: Vg |/ |41 — V1 < 27(by)
Vlrngl/n]+1 ~ V1

A=)

V0lrungge |/ |[+1 — V1)

=3Jke[K-1]p: rnk:bk<771(

< 3Jke[K-1]o: r<n7k771(

2
B —k_-1 (V[““"gk-l\/nhl -)
<1< Vlse-slfn)+1 ~ V1
= oz, ()] + 1yn = E§"T Y ;
b1 Vet~ VL
:B<(Uog"(n”+1)nz§ﬁ%n 7 (#)

By contradiction, we get the following condition for the budget of ASHA to ensure that configuration 1 gets promoted into
the top rung K:

(V["”"gk—l‘/nJ+1 !)
— 5 /)

k-1
Bz(llogn(n)J+1)n;I€1[a;(x]n gt

* Case 2: Configuration 1 is contained in the top rung K, but is not returned by ASHA.
return(ASHA) # {1} A 1 e rung
< Jierung \{1} ¢ lipy > lige
< Jierung N1} 2 v —v1 <v—Lip — 1+ by
= Fierung, \{1} : v —v1 <|vy = Lipe |+ |1 — L1l
= Jierung, \{1} : v; — 11 <29(bk)

= i erng\(1} i = b <7 (U52)
A B K 71(1/1*—U1)
B 1}V : —m0————— < _
= i erung\{1} (log, (m)] + 1y =" =17 2

= B<(|log, (n)]+1)nn % max ’1(u).
(|log,,(n)]| +1)nn s 5

By contradiction, ASHA returns a near-optimal solution if it is contained in the top rung K and if

B> (|1 + D K *1(u).
([log,,(n)| + 1)nn L 5

To summarize both cases, ASHA needs a budget of
B > (|log, (n)] + 1)n - max { max n %y~ (M) % max A7 (452
n ke[K] 2 derung ; \{1} 2

to ensure that the optimal configuration will be returned. U

D Lower Bound for 5-optimal Arm Identification

For a given limit vector v = (v1,...,v,) € R™ and a convergence rate sequence v := (7;(t))ic[n],ten, We write £(v/,~y) for the
set of all loss sequences £ = (£;(t));e[n],zen that fulfill

(i) Vie[n]: v =limy, o £;(t) exists,
() Vie[n],teN:|6;(t) —v]| <vi(t),
(iii) 37 :[n] - [n] bijective such that v{ = v (;) for all i € [n].
For sake of convenience, we will simply write ¢; ; for £;(t) and likewise ~y; ; for ;(t).
For a given limit vector v = (v1,...,1;,) € R™ and some € > 0, we write OPT.(v) for the set of all optimal arms:

OPT, (v) := {z e [n]

Vi = argming) Vg < e}‘

If Alg is a (possibly probabilistic) sequential algorithm, we denote by B(Alg, ¢) the number of total pulls made by Alg before
termination when used for the loss sequence £ € £(v,). Similarly, B;(Alg, £) denotes the number of pulls of arm 4, when we
run Alg on the loss function £. We write Alg(¢) for the output of Alg executed on the instance ¢. In the following, we provide
lower bounds on E[B(Alg, ¢)] for algorithms Alg, which identify, for any sequence of losses £ € £(v,~), almost surely an
€/2-optimal arm, i.e., P(Alg(¢) e OPT j5(v)) = 1.
The proof of the lower bound for ¢/2-optimal arm identification is prepared with the next lemma.

Lemma D.1. Let Alg be a deterministic solution for the €/2-optimal arm identification problem and £,{' € £(v,~) be two loss
sequences.

(i) IfAlg(¢) +# Alg({"), then
Jie[n], te{l,..., min{B;(Alg, (), Bi(Alg,t')}} : L1 # L.
(ii) If € and U’ coincide on {t < B'} and on I c [n] in the sense that
vie[n], Vi< B : =0, 3)

and
Viel VteN: liy=10;, 4
then Alg(0) # Alg(¢") implies
Ji e [n]\I : min{B;(Alg,?), B;(Alg,¢")} > B’

Proof. (i) To prove the contraposition, suppose that
Vie[n], te{l,...,min{B;(Alg, (), B;(Alg,{')}} : L; =1}, (5)

holds.
Claim 1: B;(Alg,¢) = B;(Alg, ¢') for any i € [n].
Proof: Assume this was not the case. Let 7 € [n] be the first set, for which Alg exceeds its budget on one of ¢, ¢ but does
not reach it on the other instance, and suppose w.l.o.g. B;(Alg, £) > B;(Alg,¢"). Since Alg has observed until this point
exactly the same feedback on £ as on £, this is a contradiction as Alg is deterministic. [|
Combining Claim 1 and equation 5 yields that Alg observes on £ exactly the same feedback as on ¢’ until its termination.
Since Alg is deterministic, this implies Alg(¢) = Alg(¢').

(i) If Alg(£) # Alg(¢"), then (i) together with equation 4 yields

Ji e [n]\I,t <min{B;(Alg,0), Bi(Alg,{')} : L # ;.

and thus equation 3 implies
Ji e [n]\I : min{B;(Alg,?), B;(Alg,¢')} > B'.
O

Lemma D.1 is the main ingredient for the proof of the lower bound in Theorem 6.1, since we first derive the lower bound
for deterministic algorithms and then apply Yao’s minimax principle [Yao, 1977] to infer the lower bound for any randomized
algorithm.

Given our notation, we state Theorem 6.1 in the following more formal way:

Theorem D.2 (Lower bound for €/2-optimal Arm Identification). Let v be such that |OPTo(v)| = 1, i.e., arg min,; v; is unique.
If Alg is a (possibly probabilistic) sequential algorithm that correctly identifies almost surely an €/2-optimal arm for any loss
sequence in £(v,~y), then there exists { € £(v,) such that

E[B(Alg,0)]2n-v! (max{yﬂ ; i , z}) .

Proof of Theorem D.2. We split the proof into two parts.

Part 1: The statement holds in case Alg is a deterministic algorithm.
Abbreviate B’ = 471 (max{%, i}) and define (%) = maxe[,,] ;... Without loss of generality assume that v; <vp <... <
Vn, as otherwise we can find a permutation 7, : [n] + [n] of the indicies such that this holds. Now, define £ = (£; ¢)ic[n] e
via
wiifg< B,
éi,t =4V + %, ift > B’ and v; -1 <
Vi, else.

£
PRI

Since v; < vy < -+ < vy, we obtain that OPT j5(v) = {1}. Fort < B’ < 1 (max{%,%}), which implies vy(t) >

Yn—V1

max {T, %} we have due to v; < v; < v, the following inequalities for a fixed but unknown arm ¢ € [n] :
In the case i is an $-optimal arm, we get

. V1 + €
‘Eiﬂf - hmtﬁoo Zi,t| = 2 L. v — 5
V1 +v; €
<|—— -1 - =
2 2
Vi — 11 € € € _ €
o2 20714 2] 4
VUp —1V1 €
< max — ¢ <v(2).
{ 2 4} 7®)
In the other case, i.e., in which 7 is not %—optimal, we have
. V1 +v;
[€ir — iMoo €; 4] = L -y

vy = Vi_Vl<Vn_Vl
2 2 B 2

Up—UV1] €
< =t <y(t).
max{ . 4} (1)

This shows that ¢; ; is a valid loss sequence, i.e., an element of £(v,~y) with the limit values {1/1- +5-Hyi-v < %}}ie[n] .

For any j € {2,...,n} define an instance ¢/ = (Eit)ie[n],tel\! such that
—”15”", ift<B’,
vy, ift>B andi =7,
P L2 ift>B"andi=1andv; —vy > 5
it

vi+§, ift>B'andi=1landv;-v; <5
5, ift>B'andi¢{1,5}andv; —v; <
Ui+, else,

€
v; + 5

for all i € [n] and ¢ € N. By construction, we have that ¢/ is a valid loss sequence with limit value v/ such that OPT/»(17) =
{J}-

Since Alg solves the problem to find an (5)-optimal arm, it satisfies Alg(?') =1 # 4y = 2 = Alg(£?). Regarding that ¢!
and ¢? coincide on {t < B’} and on all k € [n]\{1,2} in the sense of equation 3 and equation 4, Lemma D.1 (ii) assures the
existence of some 7 € {1,2} such that B;(Alg, ¢*) > min{B;(Alg, ('), B;(Alg,¢?)} > B’. Let I, = [n]\{1,4,} and fix an
arbitrary iy € Fy. Then, Alg(¢') = 1 # iy = Alg(£"?) and since ¢! and ¢ coincide on {t < B}, Lemma D.1 (ii) yields the
existence of some i € {1,45} such that B;(Alg,¢') > min{B;(Alg, '), B;(Alg,¢2)} > B’. From iy € Fy = [n]\{1,i,} we
infer i; # io. With this, we define F5 = Fy\{ia} = [n]\{1,1,i2}.

Inductively, whenever Fj # @, we may select an element i;,1 € Fj and infer from Lemma D.1 (ii), due to Alg(¢') = 1 #4141 =
Alg(¢%+1) and the similarity of £* and ¢“'+! on {t < B’} the existence of an element i € {1,4;,1 } such that B;(Alg,¢') > B’, and
define Fy.q == Fi\{4;41}. Then, i41 € F} = [n]\{1,41,%2,...,4;} assures i;41 ¢ {1,41,42,...,4;}. This procedure terminates at
the smallest I’ such that F = @, and i1, ..., are distinct. Regarding that |Fj,1| — [F;| = 1 forall [€ {1,...,l’ - 1}, we have
" = n. Consequently,

ll
B(Alg, (') > > B;, (Alg,¢')>n- B’
=1

holds, which shows the claim for deterministic algorithms with regard to the definition of B’.

Part 2: The statement holds for arbitrary Alg.

Let 2 be the set of all deterministic algorithms? and ¢! be the instance from the first part. Write d,1 for the probability
distribution on {1}, which assigns ¢! probability one, i.e., the Dirac measure on ¢!. Note that for any randomized algorithm
Alg there exists a probability distribution P on 2 such that Alg ~ P. By applying Yao’s minimax principle [Yao, 1977] and
using part one we conclude

E[B(Alg, f)] = EAlg/Np[B(Alg,,g)] > ianlgte Egmg(l [B(Alg, é')]
= ianlgEQJ. B(Alg, El) >n: B’7

where B’ is as in part one. O

At any time ¢ € N, a deterministic algorithm Alg € 2l may either make a query i € {1,...,n} or terminate with a decision X € {1,...,n}.
Thus, 2l is a countable set.

E Detailed Empirical Results

In this section we provide the results of the empirical study in more detail, providing individual figures for every benchmark set
and value for 7.

E.1 Results for Icbench

Icbench, n=2 Icbench, n=3
0.004
0.002 & &
o (o}
o
(o} —_
0.002 |
0.000
T 1 o :
[} (O] °
: | g T ;
& 0.0001
QL —0.002 ° o §
2 QL
= = L
[a)] ° 0O —0.002
8 ~0.004 8
G 5 3 !
= £ 0004 ? 1
& —0.006 =
o o
4= [t
- - 8
& & o006 ¢
~0.008
~0.008
~0.010 ¢
-+ o
X X X X X X
03 & © ¥ & ©

n | ASHA | PASHA | iSHA

2| 03235 | 0.4412 | 0.7353
3] 0.6765 | 0.5588 | 0.8824

Table 5: Consistency between ASHA, PASHA and iSHA with respect to SHA on Icbench.

E.2 Results for rbv2_xgboost benchmark

0.005

0.000

—0.005

—0.010

—0.015

Performance Difference

—0.020

—0.025

rbv2_xgboost, n=2

oo

v v
2 &

Performance Difference

0.020

0.015

0.010

0.005 -

0.000

—0.005

—0.010+

—0.015

—0.020

rbv2 xgboost, n=3

n | ASHA | PASHA | iSHA

2
3

0.9916
0.9076

[o]
[o]
° 8 ¢
° o
(o]
(0]
? 8
o
[o] (o]
¥ ¥ <X
X & &

Table 6: Concistency between ASHA, PASHA and iSHA with respect to SHA on rbv2_xgboost.

E.3 Results for rbv2_ranger benchmark

0.006

0.004

0.002

0.000

—0.002

Performance Difference

—0.004

rbv2 ranger, n=2

o3

o e 8
8 1 i
° 8
o
o o

o
o
N N N

v & <

Performance Difference

0.002

0.000 -

—0.002

—0.004

—0.006

—0.008

—0.010

—0.0124

rbv2 ranger, n=3

5=
P8

o
o 0]
0]
0]
o
[}
o
N X N
¥ & <

n | ASHA | PASHA | iSHA

2 | 09076 | 0.8655 | 0.9664
3| 0.8655 | 0.8067 | 0.9832

Table 7: Concistency between ASHA, PASHA and iSHA with respect to SHA on rbv2 _ranger.

E.4 Results for rbv2_svm benchmark

rbv2 _svm, n=2 rbv2 svm, n=3
0.002 4
o]
] 8 °
0.000 .:i*: 0.000 1 Aéy
8
o
()] Q@ -0.002 g it
o o
C -0.002 8 © [?
g 8 8 o i i
Q @ 8 O —0.004 A
E E
o -0.004 4 8 —0.006 1
(O (O]
o o
c c
© © —0.008
: :
8 ~0.006 1 qg
|- - -0.010+
(V) (O]
o o
—0.012
—0.008 1
—0.014 4
[0} o
¥ g g g ;%V g
v & N4 ¥ & ¢

n | ASHA | PASHA | iSHA

2 1 0.8396 | 0.8396 | 0.9906
31 0.8774 | 0.8302 | 0.9906

Table 8: Concistency between ASHA, PASHA and iSHA with respect to SHA on rbv2_svm.

E.5 Results for nb301 benchmark

Remark: nb301 only comprises a single instance, i.e., CIFAR-10. Therefore, the boxplots are flat as only results on a single
benchmark instance are reported.

nb301, n=2 nb301, n=3
—0.00010 4 —_— 0.00000 - —_—
—0.00015 4
—0.00002 1
(O] (0]
[v] O
c c
8 —0.00020 —_— &)
L QL
Y= o —0.00004 1
[a)] o
@ -0.00025 A]
[v] O
c c
© ©
—0.00006 §
£ £
o —0.00030 1 o
Yo Y
— | -
(O] (0]
o o
—0.00008
—0.00035 4
—0.00040 — —0.00010 4 —_— —_—
g g g g Ng Ng
v X A ¥ & ©

n | ASHA | PASHA | iSHA
2 ‘ 1.0 ‘ 1.0 ‘ 1.0

3 1.0 1.0 1.0

Table 9: Concistency between ASHA, PASHA and iSHA with respect to SHA on nb301.

List of Figures

2.1.
2.2,

3.1.

3.2.

4.1.
4.2.

Demonstration of the task of an algorithm configurator. 7
Demonstration of the task of an hyperparameter optimizer. 14
The difficult choice between your favorite restaurant and a new opened

onefrom [@].. o e 20
Example of one time step with the Upper Confidence Bound approach. . 21
Ilustration of the first iterations of HYPERBAND. v v v v o v . . 40
Ilustration of a run of SUCCESSIVE HALVING. 41

155

List of Symbols

AC

O=0;x---x0,
c:ITx0 =R

9*

OPT

PAC
OPT,

Tirain
HPO
HPC
[:0 =R
MAB

]
2A
T

Tit

D;
K

Algorithm Configuration

target alorithm in AC problem

problem instance space

probability distribution over 7

parameter configuration space of n parameters
cost function for running .4 with a specific problem
instance and parameter configuration

best parameter configuration over distribution of
instances 0* € argming g [; c(Z,60)dP(i)

minimal expected cost over all configurations
OPT = infgegEipr [C(i, 9)]

capping timeout > 0

failure probability

suboptimality

probably approximately correct

minimal expected cost exclud-
ing the best ~-fraction OPT, =
infyer{ | Pounifo) (Einplc(i, 0)] < 2) > 7}
training set of instances C 7

Hyperparameter Optimization

Hyperparameter Configuration

loss function for running .A with a specific HPC
Multi-Armed Bandits

number of considered configurations / arms

set of arm indices [n] := {1,...,n}

action set

time horizon € N U {co}

reward of arm ¢ € [n] at time ¢ € [T

reward distribution for arm i € [n]

mean reward for arm i € [n]

best arm, e.g. for stochastic MABs * €
argmax;co(fi

maximal reward p* = max;cy

cumulative regret up to time 7: Ry =
max;c9(Z?:1 Tit — Z?:1 Tit

suboptimality gabs A; = u* — p;

winning probability of arm ¢ € [n] over arm j € [n],
pi,j€[0,1]

calibrated pairwise probabilities A; ; = p; j — 3

157

iCope Copeland Winner Z.ikCope ce{ien]|d >d;jVvje
[n]}, where d; = |{j € [n] | p;; > 0.5}

B orda Borda Winner Borda €
argmax;cy) ﬁ > jeln).j#i Pij
R;}tr‘mg strong regret R;}tm"g =T max{As 4, A}
R average regret R7 = 21 L (Ap s, + Ap)
R?eak weak regret R%eak = Zthl min{ Ay ;,, Ng= 5, }
St superarm at time step ¢ € [T]: Sy =
{it71, e ,ZﬁK} Q [TL]
K subset size e N, K <n
Vi limit value to which averaged rewards converge
lim; o0 % 2221 Tis — Vi € R Vie
v:N—=R convergence speed ’% 2:1 ris —vi| < (t) Vie
A

158 List of Figures

Colophon

This thesis was typeset with BIgX 2. It uses the Clean Thesis style developed by
Ricardo Langner. The design of the Clean Thesis style is inspired by user guide
documents from Apple Inc.

Download the Clean Thesis style at http://cleanthesis.der-ric.de/.

http://cleanthesis.der-ric.de/

Declaration

I hereby declare that this dissertation is my original work, composed independently,
and without the use of any unauthorized materials and additional, non-indicated
help. All sources and references utilized are properly acknowledged and cited.
This dissertation has not been previously submitted to any other faculty or institu-
tion. Furthermore, I confirm that I have not undergone an unsuccessful doctoral
examination, not have I been stripped of any previously earned doctoral degrees.

Paderborn, January 13, 2025

Jasmin Brandt

	Cover
	Titlepage
	Abstract
	Zusammenfassung
	Acknowledgement
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Thesis Structure

	2 Algorithm Configuration
	2.1 Foundations
	2.2 Theory
	2.3 Hyperparameter Optimization (HPO)

	3 Multi-Armed Bandits
	3.1 Stochastic setting
	3.2 Dueling Bandits
	3.3 Combinatorial Bandits
	3.4 Non-stochastic setting

	4 State-Of-The-Art and Contributions
	4.1 Finding Optimal Arms in Non-stochastic Combinatorial Bandits
	4.2 AC-Band
	4.3 Incremental Successive Halving and Incremental Hyperband
	4.3.1 Hyperband
	4.3.2 Related Work

	5 Finding Optimal Arms in Non-stochastic Combinatorial Bandits with Semi-bandit Feedback and Finite Budget
	6 AC-Band: A Combinatorial Bandit-Based Approach to Algorithm Configuration
	7 Best Arm Identification with Retroactively Increased Sampling Budget for More Resource-Efficient HPO
	8 Conclusion and Outlook
	8.1 Future Research Directions

	Bibliography
	A Appendix to Finding Optimal Arms in Non-stochastic Combinatorial Bandits with Semi-bandit Feedback and Finite Budget
	B Appendix to AC-Band: A Combinatorial Bandit-Based Approach to Algorithm Configuration
	C Appendix to Best Arm Identification with Retroactively Increased Sampling Budget for More Resource-Efficient HPO
	List of Figures
	List of Symbols
	Colophon
	Declaration

