
Advanced Machine Learning Methods for
Information Leakage Detection in

Cryptographic Systems

Pritha Gupta

May 20, 2025

Department of Electrical Engineering,
Computer Science and Mathematics
Warburger Straße 100
33098 Paderborn

Research Institute
Paderborn University
Zukunftsmeile 2
33102 Paderborn

Dissertation

In partial fulfillment of the requirements for the academic degree of
Doctor rerum naturalium (Dr. rer. nat.)

Advanced Machine Learning Methods for
Information Leakage Detection in

Cryptographic Systems

Pritha Gupta

1. Reviewer Prof. Dr. Eyke Hüllermeier
Künstliche Intelligenz und Maschinelles Lernen
Ludwig-Maximilians-Universität, München

2. Reviewer Prof. Dr. Juraj Somorovsky
Department of Computer Science
Paderborn University

Supervisor Prof. Dr. Eyke Hüllermeier

May 20, 2025

Pritha Gupta
Advanced Machine Learning Methods for Information
Leakage Detection in Cryptographic Systems

Supervisor: Prof. Dr. Eyke Hüllermeier
Reviewers: Prof. Dr. Eyke Hüllermeier and Prof. Dr. Juraj Somorovsky

PhD Mentor: Dr. Marcel Wever
Research Mentor: Dr. Karlson Pfannschmidt
Postdoc Advisor: Prof. Dr. Ivan Habernal

Paderborn University
Software Innovation Campus Paderborn (SICP)

Department of Electrical Engineering
Computer Science and Mathematics
Zukunftsmeile 2
33102 Paderborn

3

Abstract

In today’s data-driven world, the proliferation of public information exacerbates
the challenge of information leakage (IL), risking the exposure of sensitive data
through observable system outputs. Traditional statistical methods, reliant
on mutual information (MI) estimation, often face significant computational
complexities and the curse of dimensionality. Meanwhile, emerging supervised
learning approaches lack a theoretical foundation and are limited to domain-
specific applications with balanced binary data.

In this work, I developed a theoretical framework integrating statistical learning
and information theory to effectively quantify and detect IL in cryptographic
systems. The proposed generalized measure leakage assessment score (LAS)
quantifies IL by leveraging Bayes predictor’s performance to estimate MI
through Log-Loss and the rank of the key byte of the AES-encrypted sys-
tems. Leveraging the consistency of automated machine learning (AutoML),
benchmark tools are employed to approximate Bayes predictor’s performance,
providing robust LAS estimates, even for systems with extensive key spaces.
Proposed approaches employ statistical tests on MI estimates, confusion matri-
ces (CMs), and accuracies obtained from AutoML tools to detect IL. These
tests are performed multiple times, and their results are aggregated using the
Holm-Bonferroni correction to ensure reliable and confident decisions regarding
the presence of IL.

Experimental results on synthetic and real-world OpenSSL TLS servers, vul-
nerable to Bleichenbacher’s side-channel attack (SCA), show that the proposed
approaches outperform baseline methods. For AES-encrypted systems, IL is

i

quantified using metrics, also providing insights on the susceptibility to tem-
plate SCAs. The proposed automated black-box approaches use benchmark
AutoML tools to optimize convolutional neural networks (CNNs) architectures,
identifying Random search as the most effective for identifying system vulnera-
bilities. However, the performance variability of these tools necessitates further
improvements for comprehensive security analysis of cryptographic systems.

ii

Kurzfassung

In der heutigen datengesteuerten IT-Landschaft verschärft die Verbreitung
öffentlicher Informationen die Herausforderung von Datenlecks und birgt die
Gefahr, dass sensible Daten unbeabsichtigt durch beobachtbare Systemaus-
gaben offengelegt werden. Herkömmliche statistische Methoden zur Detektion
von Informationslecks, die auf der Schätzung von gegenseitiger Information
beruhen, sind oft mit erheblichem Rechenaufwand und dem “Fluch der Dimen-
sionalität” konfrontiert. Auf der anderen Seite mangelt es den neuen Ansätzen
des überwachten maschinellen Lernens an einer theoretischen Grundlage und sie
sind auf domänenspezifische Anwendungen mit ausgeglichenen binären Daten
beschränkt.

In dieser Arbeit habe ich einen theoretischen Rahmen entwickelt, der statis-
tisches Lernen und Informationstheorie integriert, um Informationslecks in
kryptographischen Systemen zu quantifizieren und effektiv zu erkennen. Die
vorgeschlagene verallgemeinerte Metrik LAS quantifiziert Informationslecks,
indem es die Leistung des Bayes-Klassifikators nutzt, um die gegenseitige
Information durch Kreuz-Entropie-Verlust (Log-Loss) und den Rang des
Schlüsselbytes der AES-verschlüsselten Systeme zu schätzen. Mithilfe der Kon-
sistenz von AutoML werden Benchmark-Tools zur Approximation der Leistung
des Bayes-Klassifikators eingesetzt.Dies liefert robuste LAS-Schätzungen, die
auch Systeme mit umfangreichen Schlüsselräumen effektiv adressieren. Die
vorgeschlagenen Ansätze verwenden statistische Tests auf Schätzungen der
gegenseitigen Information, Konfusionsmatrizen und Treffergenauigkeiten (Ac-
curacy), die von AutoML-Tools erhalten wurden, um Informationslecks zu
erkennen. Diese Tests werden mehrfach durchgeführt, und ihre Ergebnisse

iii

werden mithilfe der Holm-Bonferroni-Korrektur aggregiert, um zuverlässige
und sichere Entscheidungen über das Vorhandensein von Informationslecks zu
gewährleisten.

Experimentelle Ergebnisse auf synthetischen und realen Datensätzen, erstellt
mit für Bleichenbacher’s Seitenkanalangriff verwundbaren OpenSSL TLS-
Servern, zeigen, dass die vorgeschlagenen Ansätze die bisherigen Methoden
übertreffen. Bei AES-verschlüsselten Systemen werden Informationslecks durch
Hardware-Seitenkanäle mithilfe von Metriken quantifiziert, welche auch die An-
fälligkeit für Template-Angriffe auswerten. Die vorgeschlagenen automatisierten
Blackbox-Ansätze verwenden Benchmark-AutoML-Tools zur Optimierung ver-
schiedener CNN-Architekturen und zeigen, dass die zufällige Suchstrategie
am effektivsten zur Identifizierung von Systemschwächen ist. Die Leistungss-
chwankungen dieser Tools machen jedoch weitere Verbesserungen für eine
umfassende Sicherheitsanalyse kryptographischer Systeme erforderlich.

iv

Dedication

This dissertation is dedicated, in memoriam, to my mentor, Sumedha Uniyal,
who passed away in February 2020 and was the source of my inspiration.

Your wisdom, integrity, and unwavering dedication to pursuing knowledge have
shaped my academic journey and the person I have become. You taught me
the foundations of mathematics and computer science, instilling the curiosity
and resilience that have guided me through every challenge. Your legacy lives

on through your work and the countless lives you touched, including mine.

Every equation solved, every algorithm understood, and every breakthrough
achieved are not merely milestones in my career but reflections of your
influence and guidance. You taught me that the pursuit of knowledge is

endless, and I will forever carry the lessons of perseverance, brilliance, and
humility that you embodied.

This work is for you, with my deepest gratitude and admiration.

v

Acknowledgments

I want to express my heartfelt gratitude to my supervisor, Prof. Dr. Eyke
Hüllermieier, for his invaluable guidance throughout this journey. Eyke provided
me with countless opportunities, from fruitful collaborations to giving me the
freedom and space to develop my research. His attention to detail, intuitive
approach to concepts, and ability to explain complex ideas with clarity have
set a standard I hope to match someday.

I want to thank Eyke again and Prof. Dr. Juraj Somorovsky for their invaluable
feedback on the thesis structure, detailed review, meticulous proofreading, and
insightful guidance throughout the review process. Thank you, Juraj, for always
motivating me, answering my endless security-related questions, and engaging
in deep discussions about the field. Your interest in my work during SICP
events, such as Tag der IT-Sicherheit, is greatly appreciated.

I am deeply grateful to my PhD mentor, Dr. Marcel Wever, for his invaluable
guidance and support, which provided the perfect framework for my research
and motivated me during challenging times. I am deeply grateful to Dr. Karlson
Pfandschmidt, my research mentor, for his patience and support as a research
student in the ISML group at Paderborn University under Eyke. I extend my
heartfelt gratitude to my collaborator, Dr. Jan Peter Drees, for his invaluable
insights into security issues solvable through machine learning methods and his
dedicated support in proofreading this thesis. Special thanks to Dennis Funke,
who, under Jan’s supervision, simulated real-world OpenSSL TLS servers for his
bachelor’s thesis, providing a practical problem to solve. I am also grateful to
my thesis students—Sebastian Silva, Priyanka Roy, Varun Nand Kumar Golani,
Natalie Weiß, Jiawen Wang, and Louis Wang—whose dedication enriched my

vi

research and helped me grow as an advisor. I am grateful to Stefan Heid,
Karim Belaid, and Marcel for proofreading my dissertation and to Dr. Björn
Haddenhorst for repeatedly reviewing the formal sections of my papers and
thesis.

Special thanks to the SICP team, especially Stefan Sauer and Gunnar Schomaker,
for providing a spacious office at ZM2 after Eyke’s move to Munich. I appreciate
your open-door policy, procedural guidance, and efforts to foster unity and
collaboration. The open workspace enabled me to focus on my dissertation
and maintain balance through in-office sports with my mentor’s “SPARTANS”.
Additionally, I want to thank Sonja Saage, Gabriele Stall, Elisabeth Lengeling,
Christina Lange, and Markus Franke for their invaluable organizational sup-
port during my time at the SICP, Paderborn University. Cheers to the “ZM2
gang”—for lunch breaks filled with juggling, cube-solving, and endless laughs!
Special thanks go to the itemis AG team members, Nils Weidmann, Christoph
Borowski, and Dennis Röck, for always cheering me up when I was “GRUMPY”
and providing the best coffee during my writing phase. Thanks to Jasmin
Brandt, Stefan Heid, and Karlson, the ZM2 office was always lively and fun,
primarily because of our memorable runs and bouldering sessions after work.

This dissertation was funded by BMBF (16KIS1190, AutoSCA1) and ERC-
802823. Computing time on Noctua2 at the NHR Center PC2, Paderborn
University, is also acknowledged.

I am incredibly grateful to my extended family for caring for everything in India
on my behalf. I owe a great deal of gratitude to my parents for making me
who I am today and to my sister, Shambhavi Gupta, for her unconditional love
and encouragement, specifically during the writing phase of my dissertation.
Most importantly, I want to express my most profound appreciation to my
mentor, Prajna Uniyal, for his tremendous support, unwavering belief in me,
and productive firmness that pushed me forward whenever I was down.

1https://www.sicp.de/projekte/abgeschlossene-projekte/autosca

vii

https://www.sicp.de/projekte/abgeschlossene-projekte/autosca

Contents

1. Introduction 1
1.1. Motivation . 5

1.1.1. Information Leakage Detection 6
1.1.2. Side-channel Attacks . 10
1.1.3. Foundational Theory . 15

1.2. Outline and Impact . 16
1.2.1. Thesis Outline . 16
1.2.2. Research Focus . 19
1.2.3. Co-author Contribution Statements 22
1.2.4. Thesis Impact . 25

1.3. Notation and Diagram Legend 28

2. Fundamentals 31
2.1. Information Theory . 31

2.1.1. Entropy . 32
2.1.2. Mutual Information . 35

2.2. Statistical Learning Theory: Classification Problem 38
2.2.1. Classification Problem 39
2.2.2. Learning and Evaluation Measures 42
2.2.3. Classifier Calibration . 47
2.2.4. Automated Machine Learning 58

2.3. Side-channel Attacks . 67
2.3.1. Taxonomy . 67
2.3.2. Bleichenbacher’s Attack 70
2.3.3. Template Attacks . 81

viii

Contents

2.4. Statistical Tests . 97
2.4.1. Student’s t-tests . 98
2.4.2. Fisher’s Exact Test . 100
2.4.3. Holm-Bonferroni Correction 102

3. Information Leakage Detection 103
3.1. Problem Formulation . 103
3.2. Methodology . 105

3.2.1. Leakage Assessment Score 105
3.2.2. Approaches . 106

3.3. Mutual Information Estimation Methods 116
3.3.1. Mid-point Estimation . 116
3.3.2. Log-Loss Estimation 119
3.3.3. Baselines . 122

4. Mutual Information Estimation 128
4.1. Simulating Synthetic Systems 128

4.1.1. Generation Method . 129
4.1.2. Introducing Noise (𝜖) in the System 132
4.1.3. Ground-truth MI . 135

4.2. Experimental Setup . 136
4.2.1. Evaluation Process . 137
4.2.2. Evaluation Metric . 138

4.3. Results . 139
4.3.1. Overall Results . 139
4.3.2. Generalization Capability Analysis 143

5. Automating ILD in OpenSSL TLS Servers 150
5.1. Side Channels in Network Traces 150

5.1.1. OpenSSL TLS Timing Datasets 154
5.1.2. OpenSSL TLS Error Code Datasets 155

5.2. Experimental Setup . 159
5.2.1. Evaluation Process . 160

ix

Contents

5.3. Results . 164
5.3.1. Detection Accuracy on Timing Datasets 164
5.3.2. Detection Accuracy on Error code Datasets 167
5.3.3. Summary . 169

6. Automating ILD in AES-encrypted Systems 171
6.1. ILD in AES-encrypted Systems 171

6.1.1. Automated side channel Attacks 173
6.1.2. Black-Box Automated Detection Approach 176

6.2. Experimental Setup . 177
6.2.1. NAS Parameters . 178
6.2.2. Dataset Description . 181

6.3. Parameter Study Results . 184
6.3.1. Optimal Parameters . 184
6.3.2. Parameter Reliability . 186
6.3.3. Efficiency Analysis . 188
6.3.4. Summary . 191

7. Summary and Future Directions 193
7.1. Conclusion . 193
7.2. Future Work . 196

8. Bibliography 199

Appendix A. Appendix 235
A.1. Implementation Details . 235

A.1.1. MI Estimation Approaches 237
A.1.2. Automating ILD in OpenSSL TLS Servers 238
A.1.3. Automating ILD in AES-encrypted Systems 238

A.2. ILD Performance on Error Code Datasets 240
A.2.1. Non-vulnerable OpenSSL TLS Servers 240
A.2.2. Vulnerable OpenSSL TLS Servers 242
A.2.3. Summary . 245

x

Contents

A.3. ILD Generalizability on Timing Datasets 246
A.3.1. TabPFN . 246
A.3.2. AutoGluon . 250
A.3.3. ILD Baselines . 252
A.3.4. Summary . 252

A.4. Generalizability of MI Estimation Methods 254
A.4.1. Number of Classes and Input Dimensions 257
A.4.2. Class Imbalance and Noise Level 261
A.4.3. Summary . 262

List of Figures 264

List of Tables 267

List of Algorithms 268

List of Acronyms 269

xi

1. Introduction

The problem of information leakage (IL) has become a significant and complex
challenge in today’s data-driven world [178]. The rapid proliferation of publicly
available data, coupled with the increasing use of internet of things (IoT)
technologies, has magnified the threat of IL, posing a substantial risk to the
security and confidentiality of systems [178, 105]. This heightened threat of IL
is amplified by the increasing use of IoT technologies, posing substantial risks
to the confidentiality of cryptographic systems.

IL occurs when sensitive or confidential information is inadvertently exposed to
unauthorized individuals through observable information of a system [86]. This
unintended disclosure of sensitive data can lead to severe consequences, ranging
from potential electrical blackouts to the theft of critical information such
as medical records and military secrets [86, 178]. Consequently, the efficient
detection and quantification of IL are paramount. The theoretical foundations
of quantifying IL in systems stem from the field of information theory and
propose to estimate the mutual information (MI) between observable and secret
information [28]. MI is shown to be challenging to compute specifically for
high-dimensional data, despite being a pivotal measure [69, 51]. Traditional
solutions often resort to using statistical estimation to calculate MI, but usually
encounter challenges when dealing with high-dimensional data, a problem
known as the curse of dimensionality [69, 111]. Recent works offer more robust
non-parametric approaches using Kernel density estimation (KDE) or K-nearest
neighbor (KNN) with improved convergence rates for MI estimation in complex

1

1. Introduction

datasets [182, 101, 135]. However, their implementation in high-dimensional
scenarios remains challenging due to the sophisticated statistical techniques
involved [101].

In recent years, machine learning (ML) techniques have become very popular in
the field of information leakage detection (ILD), particularly in the sub-field of
performing side-channel attacks (SCAs) on cryptographic systems [150]. These
systems unintentionally release the observable information via many modes,
such as network messages, CPU caches, power consumption, or electromagnetic
radiation called the side channels [150]. These modes are exploited by the
SCAs to reveal the secret inputs (secret keys, plaintexts) to the adversaries,
potentially rendering all implemented cryptographic protections irrelevant [136,
86]. A system is considered to contain a side channel if it is susceptible to
SCAs, thereby making it vulnerable. Therefore, detecting the existence of a side
channel in the communication channel of a cryptographic system is equivalent
to uncovering IL [86].

In this field, the most relevant literature uses ML to perform SCAs, not
preventing side channels through early detection of ILs in AES-encrypted
systems [86]. Notably, current ML-based methods in this realm detect side
channels, preventing SCAs and protecting the system on both algorithmic
and hardware levels [137, 136]. These approaches leverage the observable
information of a system to classify it as vulnerable (with IL) or non-vulnerable
(without IL) [142, 137]. These techniques extract observable information
from secure systems used as input, categorizing the systems as non-vulnerable
(labeled as 0). Subsequently, they intentionally introduce known ILs in these
systems, categorizing them as vulnerable (labeled as 1). Finally, the extracted
observable information with the corresponding class label is used to produce
the binary classification dataset for the learning model. However, this approach
confines these techniques to domain-specific scenarios and cannot be easily
transferred to detect other unknown leakage patterns [142].

2

1. Introduction

ML-based techniques have shown promising potential in estimating MI within
classification datasets generated by systems [12, 158, 39]. Compared to tradi-
tional estimators using KDE or KNN to approximate MI, mutual information
neural estimation (MINE) is more scalable for high-dimensional settings but
may require more careful tuning [12, 40]. Despite this, MINE grapple with
challenges related to convergence issues and high computational complexity [12,
39, 40]. For instance, the approach proposed by [158] introduces a lower bound
on MI using the Kullback-Leibler (KL) divergence. However, this method
underestimates MI and might not capture specific subclasses of IL. Recent
advancements have demonstrated the effectiveness of ML-based techniques in
directly detecting ILs by analyzing the accuracy of the supervised learning mod-
els on extracted system data [136, 49]. Yet, these methods exhibit limitations
in handling imbalanced and noisy datasets, commonly encountered in practical
scenarios, and tend to miss ILs by producing false negatives [207, 148].

Since most of the current approaches employing deep learning (DL) for per-
forming the SCA on AES-encrypted systems, to infer the occurrence of IL
suffer from convergence issues and finding an appropriate architecture for the
network [136, 40]. To address these issues, neural architecture search (NAS)
(subset of automated machine learning (AutoML)) approach, which aims to
find an optimal neural network architecture, has gained attention in performing
the automated SCA on AES-encrypted systems [201, 169, 1]. Though effective,
these approaches utilize the attack dataset, including the information about the
secret key for finding the architecture, which risks overfitting and data-snooping,
leading to inflated performance estimates that may not generalize to real-world,
unlabeled datasets available in black-box settings. InfoNEAT [1] evolves ar-
chitectures and hyperparameters simultaneously using one-versus-rest (OVR)
classification suited for template SCA, though it is not directly comparable to
single-architecture methods due to its distinct output structure. Also, usage of
OVR classification makes it computationally time-inefficient to perform ILDs
or SCAs. Recently, automated solutions for side-channel analysis or ILD have
been proposed, focusing on specific aspects such as feature selection, MI esti-
mation for univariate side or observable information, or leakage simulation [194,

3

1. Introduction

159, 9]. However, these remain limited in scope, underscoring the need for a
comprehensive, end-to-end automated solution for performing ILD applicable
to any multivariate observable information.

The goal of this thesis is to establish a comprehensive framework for automated
ILD formalized using a connection between MI and Bayes predictor to define a
generalized measure called leakage assessment score (LAS) which is consequently
utilized to detect and quantify IL in systems producing classification datasets.
I also define a metric called vulnerability score (VS) based on the LAS using
guessing entropy (GE) (specific for secret key byte as sensitive information) in
conjunction with trace sufficiency threshold (TST), which is used to assess IL in
AES-encrypted systems, improving precision in assessing system susceptibility
to Template SCAs. I propose to use the automated machine learning (AutoML)
(super-set of NAS) approaches to induce Bayes predictor and propose two new
MI estimation methods, based on Log-Loss and accuracy of AutoML-induced
Bayes predictor.

To detect IL in systems with sensitive information represented as class labels
(e.g., classification tasks with fewer classes), I propose using statistical test-
based approaches, utilizing one-sample t-test (OTT) on MI, Fisher’s exact
test (FET) on confusion matrices (CMs), and paired t-test (PTT) on accuracy
estimates of AutoML-induced Bayes predictor. This framework is validated
through extensive empirical studies, benchmarking the proposed ILD approaches
against state-of-the-art methods for detecting ILs via the processing time and
error code side information in network trace side channels, making the system
particularly vulnerable towards the Bleichenbacher’s SCAs.

However, in practical scenarios such as AES-encrypted systems, where template
SCAs target a single byte (256 classes) of the 16-byte or 32-byte secret key, these
statistical approaches often face limitations due to the curse of dimensionality
of noisy power consumption traces, leading to imprecise estimated scores for
a large number of classes. To address these challenges, I propose a black-
box NAS approach is proposed, benchmarking NAS-generated convolutional

4

1. Introduction

neural networks (CNNs) against fixed architectures for superior adaptability
and efficiency in detecting hardware-based vulnerabilities or ILs, countering
template SCAs on AES-encrypted systems.

The remainder of this chapter is organized as follows: Section 1.1 provides
a detailed overview of the related work, motivating the research questions
answered via the contributions to this thesis. Section 1.2 discusses this research’s
potential commercial integration and impact, outlines the thesis, and presents
co-author contribution statements for the publications on which this work is
partly based. Finally, Section 1.3 introduces the notations and standardized
visual formats used throughout the diagrams in this thesis. In line with standard
academic practice, I will use the first person singular (“I”) throughout this thesis
to reflect my role as an independent researcher while acknowledging the valuable
contributions of Jan Peter Drees, Marcel Wever, Arunselvan Ramaswamy, and
Eyke Hüllermeier.

1.1. Motivation

This work is motivated by the detailed efforts of security experts leveraging ML
methods, specifically the DL ones, to ensure system privacy, often without fully
grasping the theoretical underpinnings of why these approaches perform well in
performing ILD in cryptographic systems. To do so, I present a detailed overview
of the related work for performing ILD in cryptographic systems, specifically
those that communicate via OpenSSL TLS servers and are encrypted using the
Advanced Encryption Standard (AES) algorithm, as discussed in Section 1.1.1.
These systems exhibit IL through two primary side channel types: hardware
(local) side channels, such as power consumption and electromagnetic radiations
(EMR), which are susceptible to template SCAs for secret key extraction [79];
and software (remote) side channels in network traffic, where processing
time and error code responses can lead to Bleichenbacher SCAs [80, 81].

5

1. Introduction

Most research in this domain has focused on performing the template and
Bleichenbacher SCAs, with recent studies exploring ML and DL approaches for
conducting these attacks, as discussed in Section 1.1.2. The channel capacity
from the information theory defines MI as an essential measure for quantifying
and assessing ILs of the communication channel of cryptographic systems. To
establish the comprehensive framework, I refer to literature on template SCA
on the AES-encrypted systems linking the MI with ML algorithm loss functions
and studies that connect MI with GE (rank) of the secret key of the system
under attack, as outlined in Section 1.1.3.

1.1.1. Information Leakage Detection

Information leakage detection (ILD) in cryptographic systems remains crucial
for protecting sensitive data since they are vulnerable towards the SCAs due
to the presence of software (remote) and hardware (local) side channels.
In terms of OpenSSL TLS servers, most approaches proposed to detect specific
software (remote) side channels or vulnerabilities are based on using statistical
methods or manual analysis of the side information. In the case of template
SCAs for secret key extraction using hardware (local) side channels, such
as power consumption and EMR, typically employ statistical techniques like
Gaussian mixture model (GMM). Recent advances have explored ML and DL
methods for these tasks, including automated NAS-based solutions for template
SCAs, which further inspired the automated approach to perform ILD on
AES-encrypted systems.

OpenSSL TLS Servers Remote side channel vulnerabilities in OpenSSL
TLS servers have been extensively analyzed to assess their impact, with recent
studies performing large-scale evaluations on widely used servers. Notable
analyses include the detection of side channel vulnerabilities in ROBOT [21],
RACCOON [127], cipher block changing (CBC) padding oracle attacks [128],
POODLE [134], MARVIN [102], and others. These analyses generally rely on

6

1. Introduction

sending test messages (vectors) to servers and observing side channel indicators
in server responses. However, such methods are prone to false positives due to
network instability or variable server behavior, as a single broken Transmission
Control Protocol (TCP) connection or timeout can lead to incorrect side channel
detection and false negatives in case of novel vulnerabilities or side channels
going undetected.

Merget et al. (2019) [128] addressed this challenge by implementing re-scans
on vulnerable servers and applying robust statistical tests to improve accuracy.
These tests were later integrated into popular Transport Layer Security (TLS)
scanning tools, such as SSLlabs1 and testssl.sh2, enabling them to cover a wide
range of specific and known vulnerabilities. For example, statistical methods
such as FET and chi-squared tests were applied by Böck et al. (2018) [21] to
detect Bleichenbacher side channels in the ROBOT attacks. In contrast, TLS-
Attacker [108] identified side channels resulting from deviations in TLS message
handling and TCP connection state. Despite their effectiveness, these tools rely
on explicitly defined vulnerabilities, leaving them unable to detect new side chan-
nels that may arise from unforeseen behaviors in TLS implementations or the
underlying TCP stack, which are often not analyzed. Tools like TLS-Attacker3

leverage flexible TLS clients to manipulate padded messages and deviate from
standard handshake routines, as seen in the ROBOT [21] or MARVIN [102]
attacks. While effective in locating specific side channels, such methods cannot
easily combine multiple behavior features, limiting comprehensive detection.

Beyond targeted side channel detection, fuzzing has proven to be a valuable
complementary method [174, 195]. Walz and Sikora (2020) [195] explore
differential fuzzing, generating a wide array of primarily valid, yet diverse, TLS
handshake messages to expose improper server responses, enhancing detection
coverage in complex TLS implementations. On the other hand, Ruiter and
Poll (2015) [174] introduce protocol state fuzzing, where inferred state machines
of TLS implementations reveal unexpected server behaviors or state transitions

1https://www.ssllabs.com/ssltest/
2https://testssl.sh/
3https://github.com/TLS-attacker/TLS-Attacker

7

https://www.ssllabs.com/ssltest/
https://testssl.sh/
https://github.com/TLS-attacker/TLS-Attacker

1. Introduction

that could imply potential side channel risks. While not exhaustive for detecting
all ILs (side channels), both fuzzing approaches contribute significantly by
identifying hidden, unintended states and code paths that might otherwise
lead to exploitable vulnerabilities, thus mitigating potential IL at the protocol
level.

A recent approach by Moos et al. (2021) [136] uses a DL classifier for detecting
processing time-based ILs in AES-encrypted systems and leverages behav-
ioral features to detect arbitrary leakages. Further, Siavoshani et al. (2023)
[180] demonstrated ML-based fingerprinting across 70 domains to identify
TLS protocol-specific side channels, highlighting the potential for AutoML
approaches to perform ILD or side channel detection in systems vulnerable to
SCAs. While effective, their reliance on balanced datasets limits applicability
in imbalanced scenarios.

AES-encrypted Systems ILD in AES-encrypted systems provide critical
insight into how much information about the secret key can be inferred from
side channel traces during the encryption process. As a widely used standard
algorithm, AES-encrypted systems remain a crucial target for SCAs that
exploit physical leakages like power consumption or EMR to extract the secret
key of the system. Given the complexity and multi-round structure of AES
encryption, leakage can occur at various stages, making it an ideal subject for
ILD approaches.

Additional approaches have been explored using statistical and dynamic side
channel behavior analysis for detecting ILs [54, 34, 28]. Notably, He et al. (2017)
[82] developed a method for hardware Trojan (HT) detection that leverages
EMR side channel spectrum modeling, eliminating the need for golden chips
and offering resilience to process variation, making it highly adaptable to
varied manufacturing conditions. Similarly, a brain-inspired approach using
hierarchical temporal memory (HTM) by Faezi et al. (2021) [54] achieved a
high detection accuracy by naturally adapting to side channel changes across
an IC’s life cycle, bypassing the necessity for golden chip references. These

8

1. Introduction

techniques showcase the potential of current side channel-specific methods but
lack generalizability to evolving threats. In contrast, ML-based approaches
offer flexibility, adaptability, and automation, making them especially suited
for evolving threats in template SCAs on AES-encrypted systems.

While MI estimation is frequently employed for quantifying and detecting ILs,
challenges include managing high-dimensional AES traces and capturing non-
linear relations between the side information and the secret key bytes. Various
methods, including discretization, show slow convergence and susceptibility
to noise, particularly in high-dimensional noisy datasets [35]. Recently, DL
models have been increasingly applied to perform SCA and detect ILs in
AES-encrypted systems [136, 124, 39, 40]. For instance, MINE leverages
MI in high-dimensional spaces but often requires extensive training (up to
200 000 epochs), making side-channel analysis (ILD) and SCA computationally
intensive [39, 40]. Moreover, MINE faces slow convergence and is sensitive to
architecture tuning, particularly in imbalanced datasets [40]. Other models, like
Deep Learning Leakage Assessment (DL-LA) proposed by Moos et al. (2021)
[136], eliminate the need for pre-processing steps such as trace alignment and
multivariate leakage modeling, proving effective in non-profiled SCAs. In this
field, the most relevant literature tends to use ML or DL for performing SCAs,
rather than focusing on early detection of ILs to prevent them [86, 40]. However,
both MINE and DL-LA rely on multi-layer perceptrons (MLPs), which are
often outperformed by CNNs in exploiting side channel leakages to perform
the SCAs [206, 200, 143, 25]. Notably, current DL-based methods detect side
channels and protect systems from SCAs at both the algorithmic and hardware
levels [137, 136, 39]. Though DL models have shown effectiveness in detecting
ILs by analyzing model accuracy on system data, they struggle with imbalanced,
noisy real-world datasets, which can lead to missing novel ILs (false negatives)
or detecting non-existent ILs (false positives) [136, 207, 148].

9

1. Introduction

Current Automated ILDs Recent automated solutions for ILD provide valu-
able advances but remain limited in addressing the full scope of assessing the
side channel leakages [194, 159, 9]. Remmerswaal et al. (2024) [159] proposed
AutoPOI, a framework dedicated to automated feature selection for iden-
tifying high-leakage points, optimizing template attacks by selecting relevant
Points of Interest (POIs) or root cause of the IL. However, it focuses on feature
extraction rather than independent detection of IL in the system, which limits
its applicability in scenarios requiring comprehensive leakage analysis. Simi-
larly, Walters and Kedaigle (2014) [194] introduced SLEAK, which estimates
mutual information (MI) to identify leakage POIs. However, it assumes
independence across intermediate secret information, focusing on univariate
analysis, which may compromise accuracy when addressing complex multi-
variate leakages and interdependent data commonly observed in real-world side
channel traces. Another tool, ABBY by Bazangani et al. (2024) [9], automates
IL modeling at the microarchitectural layer to simulate side channel behavior
rather than performing direct detection of active leakage POIs. Its focus on
simulation limits its utility for immediate or complex ILD, especially in dy-
namic systems with variable countermeasures. Collectively, these tools exhibit
strengths in specific areas like feature selection, MI estimation, and simulation,
yet they lack the robustness needed for a complete, end-to-end ILD solution
that can adapt to complex, multivariate side channel leakages across diverse
cryptographic environments. This motivates the need for a comprehensive,
end-to-end automated approach for performing ILD that can accommodate
multivariate observable information.

1.1.2. Side-channel Attacks

Most of the software (remote) SCAs on OpenSSL TLS servers are proposed
based on using statistical methods or manual observations of the side informa-
tion. While the template SCAs for the secret key extraction using hardware
(local) side channels, such as power consumption and EMR, are performed
using statistical techniques like GMM, with recent studies exploring ML and

10

1. Introduction

DL approaches for conducting these attacks. Interestingly, recently, some auto-
mated NAS based solutions have also been proposed to perform the template
SCAs for recovering the secret key using hardware (local) side channels.

OpenSSL TLS Servers Bleichenbacher’s attack introduced in 1998 by Ble-
ichenbacher (1998) [20], is a foundational padding oracle SCA targeting cryp-
tographic protocols, whose evolution, history, and similar SCAs are detailed
in Section 2.3.2. This attack exploits discrepancies in server responses, such
as error codes or processing times, to reveal sensitive information about
Rivest–Shamir–Adleman (RSA)-encrypted ciphertexts.

Numerous adaptations of this SCA have emerged, leveraging side channels in
protocols like OpenSSL TLS to expose system vulnerabilities using RSA key
exchanges. Most recent SCAs on cryptographic OpenSSL TLS protocols by-
pass algorithmic security by exploiting observable side channel information, as
demonstrated in DROWN [5], ROBOT [21], RACCOON [127], POODLE [134],
MARVIN [102], and others. Padding oracle attacks, including those by Ble-
ichenbacher (1998) [20], Manger (2001) [122], and Vaudenay (2002) [192], have
revealed several vulnerabilities in TLS servers [107, 96, 6, 130, 209, 58, 172].

Notably, the ROBOT attack by Böck et al. (2018) [21] uncovered padding
oracle vulnerabilities by exploiting subtle differences in TCP session handling,
revealing padding oracles in unexpected forms, including variations in TCP ter-
mination, regardless of encryption layers. Some adaptations, including Klima’s
“bad version oracle” Klíma et al. (2003) [107] and more recent improvements,
demonstrate the persistence of these vulnerabilities in widely used crypto-
graphic libraries. These vulnerabilities extended across significant products,
including Cisco, Citrix, F5, Symantec, Cavium, and Facebook’s custom TLS
server, highlighting the diversity of padding oracle threats in open-source and
proprietary implementations. They even demonstrated a forgery of a valid
digital signature using Facebook’s RSA certificate based on a padding oracle
provided by Facebook’s and Cisco’s custom TLS server implementation.

11

1. Introduction

Noisy side channels pose challenges for accurate data extraction in SCAs.
Yet, techniques like change detection, coding theory, and repeated queries
effectively manage errors such as false positives and false negatives [66, 78].
Attacks like PREDATOR and the Marvin SCA leverage precise monitoring and
optimizations to exploit noisy conditions, highlighting the potential for ML and
DL to offer robust, noise-resistant detection for side channel vulnerabilities [202,
102]. These findings illustrate that padding oracles can emerge in unexpected
forms, such as differences in TCP session handling, without direct cryptographic
key access, highlighting the need for automated techniques to detect side
channels beyond traditional network trace analysis approaches.

Historically, padding oracle SCAs required manual analysis by expert security
researchers, who carefully scrutinized individual TLS implementations to iden-
tify unique side channel responses. This approach, however, is labor-intensive
and needs to scale better as TLS implementations continue to grow over time.
Even for experts, detecting unexpected side channels, such as those exploited
in the ROBOT attack [21], presents significant challenges, underscoring the
pressing need for generalized ML-based to detect side channels beyond typical
error code responses in alert messages in cryptographic protocols.

Recent work by Siavoshani et al. (2023) [180] leverages interpretability of the
ML models for fingerprinting-based SCAs, using data from over 70 domains to
reveal protocol-specific side channels. Although designed primarily for attacks,
these ML fingerprinting methods demonstrate the potential for ML-based IL
detection, supporting the use of automated ML approaches for side channel
identification or performing ILD.

AES-encrypted Systems Attacking cryptographic implementations through
hardware side channel emissions, via power consumption and EMR date back
to intelligence community operations in the 1950s [109]. The breakthrough in
academic research was differential power analysis (DPA), introduced by Kocher
et al. (1999) [109], which uses statistical analysis of power consumption or EMR
from cryptographic devices to reveal secret keys. This method uses extensive

12

1. Introduction

trace measurements collected over time, which are then matched to possible
computations of the executed function using statistical methods to reveal the
secret key. While effective, this approach demands extensive observations, such
as en- or descriptions, combined with measurements of the target device’s
power consumption or expectation-maximizations (EMs), limiting real-world
applicability. If a device sufficiently similar to the target device can be obtained,
for example, by buying a second copy of the device, its profile (a model of
its leakage) can be created by observing numerous cryptographic operations
with known keys and plaintexts. In the attack phase, fewer measurements
must be obtained from the target device, which is subsequently matched with
this leakage model. Template SCAs, introduced by Chari et al. (2003) [27],
addresses this limitation by creating a leakage model on a similar device with
known keys and plaintexts, reducing the number of measurements needed from
the target device.

The potential correlation of the secret keys to side channel traces opened new
opportunities for ML-based methods, capable of handling noise and misalign-
ment in traces, with early applications achieving notable success [92]. Soon, the
ML models grew more sophisticated, and the SCAs became more successful,
capable of breaking devices explicitly hardened against SCAs after observing
only a handful of attack traces [92, 115, 147, 114, 88, 72, 23, 150]. Sophisticated
techniques using CNNs and MLPs have proven powerful for SCA, making DL
especially promising, as these models can approximate continuous functions
under the universal approximation assumption [41]. However, effective DL
models rely on well-chosen architectures with optimal hyperparameters, often
requiring labor-intensive trial and error to balance performance and parameter
costs [206, 200, 143]. Designing an appropriate architecture can be more of
an art than a science, prompting a wave of experimentation with different
architectures, both created from scratch and existing ones taken from image
classification tasks [14]. In order to alleviate this issue, Perin et al. (2020) [143]
proposed using ensembles of multiple networks and aggregating their predic-
tions. While this approach improves the generalization properties of existing
CNNs architectures for template SCAs, it also increases the computational

13

1. Introduction

cost and the number of trainable parameters of the model without addressing
the underlying issue of architecture design. At the same time, it does not
guarantee a successful attack on a new device, e.g., CHES CTF dataset [143].
More recently, Cristiani et al. (2023) [40] introduced a framework for Neural
Estimated Mutual Information Analysis (NEMIA), a new attack leveraging DL
and information theory, marking the first unsupervised attack that incorpo-
rates MI estimated using MINE approach by Belghazi et al. (2018) [12] and
outperforming traditional unsupervised SCAs in low-information contexts.

Tuning ML models with appropriate hyperparameter producing the optimal
learned model have been shown to outperform classical template SCAs [149, 114,
206, 200]. This limitation drove towards optimizing neural architectures using
the NAS approaches, which explore suitable CNN or MLP architectures for
performing SCAs, offering promise for improved adaptability and performance
in cryptographic vulnerability analysis [201, 169, 1].

Current Automated SCAs In the hardware (local) SCA domain, man-
ually crafting optimal attack model architectures has prompted research on
automating this process. Recent work by Wu et al. (2024) [201] and Rijsdijk
et al. (2021) [169] introduces a white-box approach for automating architecture
creation in SCAs, applying NAS with Random and Bayesian search strate-
gies and reinforcement learning for architecture optimization. These methods
show promising results on datasets like ASCAD and CHES CTF but rely on
labeled attack data, raising concerns of overfitting and optimistic performance
estimates that may not generalize to unseen data [14].

The Q-function in these models assesses metrics such as GE and the required
traces to predict a secret key byte. However, reliance on the attack dataset for
hyperparameter optimization (HPO) can lead to data-snooping, compromising
generalization [169]. Additionally, using the same dataset for both optimization
and testing inflates performance estimates, which poses limitations for black-
box scenarios where attack datasets are unlabeled and secret key remains to
be discovered [201, 169].

14

1. Introduction

An alternative black-box approach, InfoNEAT by Acharya et al. (2023) [1],
concurrently advances NAS by evolving multiple architectures and hyperpa-
rameters in parallel, using OVR classification for each key byte and employing
information-theoretic metrics for SCA. While suitable for hardware (local)
side channels, InfoNEAT’s results cannot be directly compared with single-
architecture approaches as it involves distinct scoring for each possible key byte
value, reflecting a different model design paradigm.

1.1.3. Foundational Theory

Current theoretical frameworks proposed utilizing MI from information theory
to quantify IL in AES-encrypted system, vulnerable towards the hardware
(physical) SCAs to reveal secret key.

The unified framework by Standaert et al. (2009) [184] bridges the gap be-
tween MI used to quantify IL in AES-encrypted system and cryptographic
metrics such as GE (key rank) and success rate (SR) (probability of discov-
ering the secret key by adversary), facilitating evaluation of side channel for
the secret key recovery attacks. This framework enables a fair assessment of
security vulnerabilities in cryptographic devices, identifying optimal leakage
exploitation techniques for practical scenarios. Further, for higher-order SCAs
approximate score distributed using the multivariate normal (MVN), enabling
accurate success rate estimation even when attacks on a complete secret key
are infeasible, highlighting the usage of MI and SR in assessing countermeasure
effectiveness [118]. Whitnall and Oswald, Chérisey et al. (2011, 2019) [198, 31]
proposed that MI-based ILD approaches can excel in noisy scenarios, further
affirming MI’s utility in robust leakage evaluation, with Chérisey et al. (2019)
[31] additionally providing a link between the MI and number of queries or
traces required by an adversary to reveal the secret key, i.e.the TST. Addi-
tionally, Béguinot et al. (2022) [10] establish a bound on GE relative to SR,
while Chérisey et al. (2019) [31] derive an upper bound on MI in terms of SR,
indicating that more significant side channel information enhances the adver-

15

1. Introduction

sary’s likelihood of correctly guessing the key. Several works further relate MI
to GE by bounding GE with conditional entropy, defined as the total entropy
of the secret key (lg(𝑀)) minus the MI [123, 31, 125, 11]. Collectively, these
frameworks establish MI, GE, SR and as foundational metrics for assessing and
mitigating side channel risks in cryptographic systems, with TST providing
insight on the ease with which the SCA can be performed by an adversary. In
foundational work, Fano (1961) [56] and Hellman and Raviv (1970) [85] intro-
duced bounds on the conditional entropy (lg(#classes) - MI) in terms of the
error probability for the Bayes predictor (Bayes error rate). This work provides
an initial motivation for using ML based approaches for assessing side channel
risks in cryptographic systems and to perform SCAs on them [136, 86]. These
bounds laid the groundwork for using MI as a robust metric in performing ILD,
allowing security estimations through minimal error probabilities in guessing
secret values.

1.2. Outline and Impact

In Section 1.2.1, I outline the thesis and provide co-author contribution state-
ments for the main papers supporting this work in Section 1.2.3. Additionally,
I discuss commercial integration and potential industry applications in Sec-
tion 1.2.4.

1.2.1. Thesis Outline

This thesis is organized into chapters covering distinct aspects of the ILD
framework, from foundational concepts to practical applications and empirical
evaluations.

16

1. Introduction

Fundamentals Chapter 2 provides the essential theoretical background for
developing the ILD framework. In Section 2.1, I introduce fundamental concepts
from information theory, such as Rényi entropy and MI, which form the
basis for detecting and quantifying information leakage. Section 2.2 presents
statistical learning theory, linking classification performance with MI and
the conditions under which IL may occur. Finally, Section 2.4 details the
statistical tests used in ILD, including FET, PTT, OTT, and Holm-Bonferroni
correction, while Section 2.3 describes relevant SCAs, such as Bleichenbacher
and template attacks, and Section 2.2.4 discusses AutoML approaches like
AutoGluon and TabPFN used to detect and counteract these attacks. The
foundational background in this chapter is partially published in Gupta et
al. (2024) [81] and Gupta et al. (2023) [79].

Information Leakage Detection In this chapter, I develop the ILD frame-
work by linking Bayes predictor performance with MI, drawing from information
theory and statistical learning concepts in Section 2.1 and Section 2.2, respec-
tively. I introduce a generalized LAS measure in Section 3.2.1 to quantify
IL and outline two MI-based ILD approaches in Section 3.3 based on Bayes
predictor accuracy and Log-Loss. This chapter also introduces MI estimation
methods such as Mid-Point and Log-Loss, comparing three state-of-the-art
approaches for IL detection in OpenSSL TLS servers, discussed further in Chap-
ter 5. I also propose a specialized GE-based LAS measure for AES-encrypted
systems, as detailed in Section 3.2.2, which provides insight into side channel
vulnerabilities, expanded in Chapter 6. This chapter is based on the work
published in Gupta et al. (2024) [81] and Gupta et al. (2022) [80].

Mutual Information Estimation This chapter assesses the MI estimation
methods against state-of-the-art methods using synthetic datasets generated
by MVN distributions. In Section 4.1, I describe the process of generating
synthetic datasets for testing, while Section 4.2 details the empirical setup and
normalized mean absolute error (NMAE) as a performance metric. Results are

17

1. Introduction

summarized in Section 4.3.1, with additional insights into generalization capa-
bilities across various dimensions and noise levels, as discussed in Section 4.3.2
and further analyzed in Appendix A.4. The findings demonstrate that the
proposed approaches outperform the existing baselines. This chapter is based
on the work published in Gupta et al. (2024) [81].

Automating ILD in OpenSSL TLS Servers This chapter evaluates ILD
approaches for detecting ILs through time delays and alert/error messages to
counter Bleichenbacher SCAs on OpenSSL TLS servers. Section 5.2 outlines
the empirical setup and provides an overview of the ILD datasets, which are
generated in Section 5.1. Results confirm that the proposed ILD approaches
outperform the current state-of-the-art, presented in Section 5.3. This chapter
is based on the work published in Gupta et al. (2024) [81].

Automating ILD in AES-encrypted Systems In this chapter, I present an
automated ILD framework that uses GE and TST values to detect leakage in
AES-encrypted systems. The setup for analyzing optimal parameters, includ-
ing NAS search strategies and input feature design, is covered in Section 6.2.
Datasets and implementation details are presented in Section 6.2.2 and Ap-
pendix A.1.3. My results on parameter selection, IL assessment in terms of
VS, and efficiency in terms of TST are analyzed in Section 6.3. This chapter is
based on the work published in Gupta et al. (2023) [79].

Summary and Future Directions The final chapter provides an overall con-
clusion of the thesis, summarizing key findings and contributions in Section 7.1.
Future research directions are outlined in Section 7.2, emphasizing improv-
ing ILD frameworks and expanding their applications to other cryptographic
systems and real-world security challenges. The conclusion and outlook are
partially published in Gupta et al. (2024) [81] and Gupta et al. (2023) [79].

18

1. Introduction

1.2.2. Research Focus

Though ML methods have been applied to evaluate side channel risks and
conduct ILD in cryptographic systems, there has been no comprehensive
framework linking the Bayes predictor from statistical learning theory and
MI from information theory for ILD. Current approaches primarily focus on
estimating MI with DL models but have not demonstrated how MI can be
directly evaluated using the log-loss of Bayes predictor, specifically applicable for
the setting of AES-encrypted producing classification dataset [12, 39, 40, 158].
Additionally, foundational metrics like GE, SR, and TST assess an adversary’s
efficiency in performing SCAs but do not quantify a system’s susceptibility
to SCAs in expectation. This work addresses these gaps by establishing a
unified theoretical framework that leverages the relationship between MI and
Bayes predictor performance, quantifying IL through leakage assessment score
(LAS) and formalizing its existence conditions in a system. For detecting ILs in
AES-encrypted systems, I propose VS metric, which is based on LAS defined
using GE (rank of the secret key byte). The VS combined with TST provides
insights on the relative ease of compromising systems through SCAs. I also
propose two MI estimation methods that approximate the Bayes predictor’s
performance using AutoML tools, demonstrating their effectiveness through
empirical validation.

Current ILD and SCA methods predominantly rely on ML or DL with fixed
architectures and predefined hyperparameters [39, 40, 86, 142, 136], limiting
adaptability across diverse side channel data and often resulting in suboptimal
performance, compromising generalizability and inconsistent effectiveness of
the ILD approach. To address this, recent automated solutions utilizing
AutoML approaches for optimized hyperparameters and architectures have
been proposed [194, 159, 9]. Further, approaches using NAS (a subset of
AutoML) have shown potential for adapting CNN architectures specifically for
the side information in form of EMR and power consumption to perform the
template SCAs in AES-encrypted systems [201, 169, 1]. I propose leveraging
NAS to enable more robust ILD for AES-encrypted systems, while AutoML

19

1. Introduction

tools such as TabPFN and AutoGluon facilitating fully automated detection of
ILs in OpenSSL TLS servers, improving robustness and reducing the need for
manual configuration.

The current work is limited to detecting ILs in OpenSSL TLS servers and
AES-encrypted systems, producing balanced classification dataset [136, 49]. I
propose incorporating weighted loss functions within AutoMLs pipeline, inte-
grating statistical tests like FET and PTT to account for class imbalance [80,
81]. To mitigate noise, I aggregate resulting 𝑝-values from an ensemble of the
top-10 performing AutoMLs pipelines using the Holm-Bonferroni correction to
provide confidence in detection accuracy and produce a robust solution towards
noise [81]. I propose employing a weighted loss function to perform ILD and side
channel vulnerability analysis in AES-encrypted systems by running multiple
NAS trials across 10 deciles of attack datasets, providing a robust solution
to noise. Subsequently, I aggregate the GE estimates to generate the VS,
which, combined with TST, assesses the relative ease of compromising systems
through SCAs. Previous NAS research in SCA has focused on Bayesian and
Random search strategies, which can be computationally inefficient [201, 160].
I enhance this by evaluating Random, Greedy, Hyperband, and Bayesian

search methods through AutoKeras to optimize architectures more systemati-
cally. Additionally, I extend NAS based SCA on AES-encrypted systems by
incorporating search spaces using the 2-D CNN models already proposed to
break the post-quantum key-exchange (PQKE) protocols for improved attack
performance [103, 87].

Contributions

I address the limitations in current related work and unanswered research
questions through the following contributions

20

1. Introduction

• I establish a comprehensive theoretical framework leveraging the connec-
tion between MI and the performance of the Bayes predictor to quantify
IL using leakage assessment score (LAS) and formalize its existence
conditions in a system.

• To induce the Bayes predictor, I propose leveraging AutoML tools and
NAS approaches, which incorporate consistent learners such as ML en-
semble methods (random forest classifier (RF), gradient boosting machine
(GBM)) and DL architectures like MLPs and CNNs [18, 132]. I also
propose two MI estimation methods by approximating the Bayes predictor
induced using AutoML tools and demonstrate their effectiveness through
a rigorous empirical evaluation on synthetic datasets generated using
MVN distribution.

• As MI estimation becomes increasingly challenging with 256 possible
classes, representing the secret key byte, detecting ILs in AES-encrypted
systems benefits from the proposed VS metric, which is based on LAS
using the GE (secret key byte rank) of the system. The VS, combined
with the TST metric, offers more profound insights into the efficiency of
possible SCAs and how easily the given systems can be compromised.

• Using a cut-off on estimated MI through the OTT, I devise a MI-based
technique for performing ILD in systems generating classification datasets.
I also propose classification-based approaches, which utilize the FET on
the confusion matrix and PTT on accuracy estimates of the AutoML
tools, to detect IL.

• Furthermore, I propose using the Holm-Bonferroni correction on multiple
models’ estimates to enhance IL detection confidence by making it robust
against noise and variations in AutoML pipelines’ quality.

• I conduct an extensive empirical study, comparing the ILD methods
against state-of-the-art approaches for detecting sensitive information
leaked via processing time and error code in the network trace side
information to counter Bleichenbacher’s SCAs.

21

1. Introduction

• Inspired by automated SCAs, I propose a black-box NAS-based approach
for detecting ILs in AES-encrypted systems. This method performs
multiple independent SCAs to compute a VS, yielding more reliable GE
performance estimates.

• I expand the previous NAS-based experiments to perform SCAs into
a large-scale parameter study, investigating the impact of the search
strategy and the input feature shapes. I consider four different search
strategies, including Greedy and Hyperband. Additionally, I explore
the transformation of one-dimensional traces into two-dimensional inputs
for template SCAs, leveraging NAS with 1-D and 2-D CNN architectures,
inspired by image classification models like VGGNet and Inceptionv3,
to improve the efficiency. The evaluation is performed on 10 publicly
available reference datasets in identity (ID) leakage model.

• I also conduct a performance comparison between the CNN architectures
obtained from the NAS approach and the state-of-the-art fixed archi-
tectures for performing SCA on these datasets proposed by Benadjila
et al. (2020) [14] and Zaid et al. (2019) [206].

1.2.3. Co-author Contribution Statements

As outlined in the respective chapters, portions of this thesis were published in
workshops, conferences, and journals during my Ph.D.studies.The publications
are organized according to the thesis chapters that build upon them. This
thesis builds upon the work published in the “18th International Conference
on Availability, Reliability, and Security” by Gupta et al. (2023) [79] and the
journal paper under submission [81], which expands on work initially presented
at the “14th International Conference on Agents and Artificial Intelligence”
by Gupta et al. (2022) [80]. Additionally, I used some parts for describing the
fundamentals of Bleichenbacher’s SCA of the first workshop paper published in
the “14th ACM Workshop on Artificial Intelligence and Security” by Drees et

22

1. Introduction

al. (2021) [49]. I had the privilege of collaborating with outstanding colleagues
on these works, and in this section, I detail my specific contributions alongside
those of my co-authors.

Information Leakage Detection through Approximate Bayes-optimal
Prediction

As the first author, I established a theoretical framework linking the Bayes
predictor performance with MI for ILD. I introduced the Mid-Point MI esti-
mation approach and, in collaboration with Eyke Hüllermeier, developed the
Log-Loss MI estimation method to address the limitations of the Mid-Point

approach. The contributions included exploring calibration techniques for MI
estimation, proposing baseline models like GMM, MINE, and probabilitiy-
corrected softmax (PC-softmax), and enhancing the robustness of the GMM
and MINE approaches for high-dimensional data. I also designed the exper-
imental setup, generated synthetic datasets, and proposed statistical tests
and AutoML pipelines with Holm-Bonferroni correction to ensure reliable ILD
outcomes. Marcel Wever supported the research by exploring recent AutoML
tools, refining the result presentation, and guiding the structuring of the paper.
Eyke Hüllermeier contributed by defining key concepts from the information
and statistical learning theory and suggesting overlapping MVN distributions
could introduce noise in synthetic datasets.

Automated side channel Attacks using Black-Box Neural Architecture
Search

As the first author, I implemented the attack methodology on the Noctua2
cluster, defining the search space, selecting baseline models, and designing input-
reshaping strategies for effective model training. I developed search strategies
for NAS, analyzed attack success rates across models, and studied NAS-based
approaches and their limitations within ML. I compiled the complete method-
ology for black-box NAS-based methodology for testing the AES encryption

23

1. Introduction

systems vulnerable towards the template SCAs. Eyke Hüllermeier provided
formal guidance on NAS applications, helped shape the theoretical framework
for attack convergence, and refined the paper’s analysis and structure. Jan
Peter Drees and I jointly collected the datasets, developed the black-box SCA
methodology, and performed the result analysis and interpretation.

Automated Information Leakage Detection: A New Method Combining
Machine Learning and Hypothesis Testing with an Application to side
channel Detection in Cryptographic Protocols

As the first author, I collaborated with Arunselvan Ramaswamy, Eyke Hüller-
meier, Claudia Priesterjahn, and Tibor Jager to publish this work at the 14th
International Conference on Agents and Artificial Intelligence. My contribu-
tions included developing the relationship between IL, the Bayes predictor
accuracy, proposing and implementing PTT and FET for ILD, generating
synthetic datasets, and acquiring the results. Jointly with Jan Peter Drees, we
proposed using the Holm-Bonferroni correction and conducted result analysis
on real-world OpenSSL TLS datasets.

Automated Detection of Side Channels in Cryptographic Protocols:
DROWN the ROBOTs!

As the first author, Jan Peter Drees led this joint work with myself, Eyke
Hüllermeier, Tibor Jager, Alexander Konze, Claudia Priesterjahn, Arunselvan
Ramaswamy, and Juraj Somorovsky. He also contributed to the modular
framework for analysis of TLS clients, implemented the AutoSCA tool, designed
the feature extraction process, conducted experiments, and analyzed results. My
contributions included designing and implementing the ML module, analyzing
feature importance, and collaborating on result analysis and discussions.

24

1. Introduction

Additional Publications

During my tenure with the research group (ISML, Paderborn University or
KIML, LMU Munich) under Prof.Dr.Eyke Hüllermieier, I contributed to addi-
tional publications in preference learning and outlier detection as

• Context-Dependent Choice Functions: Pfannschmidt et al. (2022)
[145] addresses the problem of learning choice functions under context
dependence, modeling how user preferences shift based on available
options, using context-dependent utility functions.

• Deep Architectures for Context-Dependent Ranking: Pfannschmidt
et al. (2018) [146] introduces deep neural network models to capture
context-dependent rankings, adjusting predicted orderings based on other
available objects in the set.

• Pairwise vs.Pointwise Ranking: Melnikov et al. (2016) [126] provides
a comparative study on pairwise versus pointwise ranking techniques,
particularly focusing on object ranking in preference learning applications.

• Outlier Detection for Semi-Supervised Datasets: Schubert et
al. (2023) [176] explores meta-learning approaches to automate the selec-
tion of optimal outlier detectors, using metrics for detection performance
when only normal data is available.

1.2.4. Thesis Impact

The contributions made within this thesis hold the potential for significant
impact in the field of cryptographic system testing, particularly for OpenSSL
TLS servers and AES-encrypted devices, such as smart cards, hardware wallets,
and more.

25

1. Introduction

Open Source Tool

The AutoSCA tool4 provides a robust, automated solution for detecting side
channels in cryptographic protocols by leveraging ML techniques to analyze
network traffic and identify vulnerabilities. This tool implements the solution
of using the FET to detect IL in a system [156, 49]. The tool and its data5 are
made publicly available as open-source on GitHub, promoting accessible and
transparent security testing in cryptographic systems.

As illustrated in Figure 1.1, the tool has a structured pipeline that executes
sequentially to ensure effective side channel detection. The stages of this tool,
as described in [156, 49], include:

Manipulated TLS
Client TLS Server

Network Tap

Feature
Extraction

Classification
Model Learning

Report
Generation

Stage 1

Stage 2

Stage 3

Stage 4

Figure 1.1.: Components of the AutoSCA tool [49]

1. Manipulated TLS Client: This component initiates testing by connect-
ing to the TLS server under analysis and executing a series of requests
with controlled padding manipulations, enabling the capture of subtle
variations in the server’s responses.

2. Feature Extraction: Following the collection of raw data from TLS
client-server interactions, this stage converts the data into a ML-compatible
format, extracting essential features that indicate potential IL.

4https://github.com/ITSC-Group/autosca-tool
5https://github.com/ITSC-Group/autosca-data

26

https://github.com/ITSC-Group/autosca-tool
https://github.com/ITSC-Group/autosca-data

1. Introduction

3. Classification Model Learning: Various ML classifiers are trained on
the extracted dataset to detect side channels. The ensemble of classifiers
enhances detection accuracy by leveraging the strengths of different
algorithms.

4. Report Generation: Finally, the tool generates a comprehensive report
summarizing findings, including a vulnerability assessment based on
the Holm-Bonferroni statistical test and feature importance analysis.
This output assists developers in pinpointing specific vulnerabilities and
implementing necessary fixes.

One particularly effective solution within this tool provides the option of using
FET (FET-Median, FET-Mean) and PTT (PTT-Majority) combined
with the Holm-Bonferroni correction to detect IL in a system, as described
in Section 3.2.2 and proven effective in Chapter 5. This method is especially
effective for smaller datasets, enhancing detection reliability by minimizing
statistical outliers. The capability of this tool to handle complex side channel
vulnerabilities makes it an invaluable asset for developers working to secure
cryptographic protocols and systems. In the future, I would like to update
this tool to integrate AutoML based solutions with MI based ILD approaches
described in Section 3.2.2, to provide more variety of solutions.

Commercial Integration The detection mechanism was integrated into the
TLS Server Inspector by achelos GmbH, a commercial tool used to test TLS
servers for compliance in sensitive sectors like healthcare6. Thanks to the
modular design of the AutoSCA tool, achelos GmbH engineers could eas-
ily incorporate components like the TLS client and network tap, as shown
in Figure 1.1. This integration enables fully automated side channel detection,
allowing testers without cryptography expertise to include the Bleichenbacher
test seamlessly within a broader security test suite.

6https://www.achelos.de/de/services-loesungen/testsuiten/tls-test-tool/

27

https://www.achelos.de/de/services-loesungen/testsuiten/tls-test-tool/

1. Introduction

Application to Future Projects

I recently discussed the potential application of the proposed testing solution
from Chapter 6, developed from the work in Gupta et al. (2023) [79], with
Diebold-Nixdorf employees, who visited my poster during the events like Pader-
borner Tag der IT-Sicherheit7. They highlighted its potential for detecting
IL in ATMs and smart cards, supporting the prevention of identity theft and
phishing. During a visit to NSUT in Delhi, India, I also discussed with venture
capitalist Manusheel Gupta working with companies like Etherbit8 the potential
of applying this solution to enhance security in hardware wallets against IL.

1.3. Notation and Diagram Legend

This section introduces a consistent set of notations used throughout the
thesis to maintain clarity, as summarized in Table 1.1, covering key symbols
from probability, information theory, and statistical learning theory, used for
performing SCA and ILD. Additionally, diagrams follow a standardized visual
format, demonstrated in Figure 1.2, to uniformly illustrate workflows and
processes, particularly in explaining ILD and MI estimation methods, ensuring
ease of understanding through clear, consistent visuals. In this work, I the pair
of random variables 𝑋 and 𝑌 with a joint distribution 𝑝(𝑋,𝑌)(·) over 𝒳 × 𝒴,
such that 𝑋 is a continuous 𝑑-dimensional real-valued variable (𝒳 = R𝑑) and
𝑌 is a discrete variable with 𝑀 possible values (𝒴 = {1, . . . ,𝑀}). In the field
of ILD, this notation applies to cases where 𝑋 represents observed traces, and
𝑌 represents possible outputs. In the following, I simplify the notation by
using the same symbols for probability measures and their mass or density
functions, relying on context to distinguish between them.The marginals of the
joint distribution 𝑝(𝑋,𝑌)(·) are denoted by 𝑝𝑋(·) and 𝑝𝑌 (·), with conditional
distributions represented by 𝑝𝑌 |𝑋(·) and 𝑝𝑋|𝑌 (·). For statistical learning, I

7https://www.sicp.de/aktuelle-veranstaltungen/paderborner-tag-der-it-sicherheit
8https://www.etherbit.in/collections/wallets

28

https://www.sicp.de/aktuelle-veranstaltungen/paderborner-tag-der-it-sicherheit
https://www.etherbit.in/collections/wallets

1. Introduction

Table 1.1.: The table summarizes key notation utilized throughout the thesis.
Symbol Meaning

[𝑛] Set of integers {1, 2, . . . , 𝑛}, 𝑛 ∈ N
[𝑛]0 Set of integers {0, 1, . . . , 𝑛− 1}, 𝑛 ∈ N
J𝐴K Indicator function which is 1 if statement 𝐴 is true and 0 otherwise

Probability Distribution Functions

𝑝(𝑋,𝑌)(·), 𝑝(𝑋,𝑌)(·) Actual and predicted joint PDF between (𝑋,𝑌)

𝑝(𝑋,𝑌)(𝑥, 𝑦) = 𝑝(𝑋,𝑌)(𝑥, 𝑦) Joint PDF of 𝑋 and 𝑌 , at point (𝑥, 𝑦)

𝑝𝑋(·), 𝑝𝑋(·) Actual and predicted marginal PDF of 𝑋
𝑝𝑋(𝑥) = 𝑝𝑋(𝑥) Probability mass of input 𝑥

𝑝𝑌 (·), 𝑝𝑌 (·) Actual and predicted marginal PMF of 𝑌
𝑝𝑌 (𝑦) = 𝑝𝑌 (𝑦) Probability of class label 𝑦
𝑝𝑌 |𝑋(·), 𝑝𝑌 |𝑋(·) Actual and predicted conditional PDF of 𝑌 given 𝑋

𝑝𝑌 |𝑋(𝑦 |𝑥) = 𝑝𝑌 |𝑋(𝑦 |𝑥) Probability of 𝑦 given 𝑥

𝑝𝑋|𝑌 (·), 𝑝𝑋|𝑌 (·) Actual and predicted conditional PDF of 𝑌 given 𝑋

𝑝𝑋|𝑌 (𝑥 | 𝑦) = 𝑝𝑋|𝑌 (𝑥 | 𝑦) Probability of 𝑥 given 𝑦

Statistical Learning Theory

𝑋 Input (𝑥 ∈ R𝑑) random variable (d-dimensional continuous), Observed
EMR traces

𝑌 Output (𝑦 ∈ [𝑀]) random variable (discrete), Intermediate S-box output
from AES algorithm

𝒳 ∈ R𝑑 Input Space, set of 𝑥 sampled from 𝑋

𝒴 ∈ [𝑀] Output Space, set of 𝑦 sampled from 𝑌

𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 Classification dataset
𝑟 Imbalance in a dataset 𝒟
𝜖 Noise in a dataset 𝒟

Information Theory

𝐼(𝑋;𝑌) MI between 𝑋 and 𝑌

𝐻(𝑌 |𝑋) Conditional entropy for 𝑌 given 𝑋

𝐻(𝑋) , 𝐻(𝑌) Entropy for random variable 𝑋 and 𝑌

𝐻2(𝑎) = −(𝑎) lg(𝑎)− (1− 𝑎) lg(1− 𝑎) Binary cross-entropy function for 𝑎 ∈ (0, 1)

lg(𝑎), log(𝑎), ln(𝑎), 𝑎 ∈ R+ Binary (base 2), Decimal (base 10) and Natural (base 𝑒) of 𝑎

Information leakage detection (ILD) process

mErr (𝑔𝑏𝑐),mErr (𝑔𝑚𝑐) The Bayes error rate and error rate of marginal Bayes predictor
𝛿(ℓ(·)) = ℓ(·)(𝑔𝑚𝑐)− ℓ(·)(𝑔𝑏𝑐) LAS is the difference in performance of 𝑔𝑏𝑐 and 𝑔𝑚𝑐 quantifying IL
𝛿(m(·)) = |m(·)(𝑔𝑚𝑐)−m(·)(𝑔𝑏𝑐)|
𝐿 ,ℒ ILD function and IL-Dataset
𝐻0(condition) , 𝐻1(condition) Null and Alternate hypothesis for statistical tests
𝜏 ∈ [𝐽], 𝐽 ∈ N Cut-off parameter on 𝐽 hypothesis for Holm-Bonferroni correction
𝛼 = 0.01 Rejection threshold on 𝐻0 (accept 𝐻1) for statistical tests

𝐾, 𝐾̂ Device’s and Predicted 16-byte Secret Key, represented as 𝑘 =

(𝑘0, . . . , 𝑘15), ∀𝑘𝑖 ∈ 𝒦
𝑇 16-byte Plaintext random variable (discrete vector) in the space ([256]0)16,

such that 𝑡 = (𝑡0, . . . , 𝑡15), ∀𝑡𝑖 ∈ 𝒯
𝒯 ∈ [256]0 Plaintext Byte Space, set of bytes from which the plaintext 𝑡 is sampled
𝒦 ∈ [256]0 Secret Key-byte Space, where key bytes 𝑘 are sampled such that 𝑘 ∈ 𝐾

or 𝑘 ∈ 𝐾̂

29

1. Introduction

Repeated process,
function

Dataset,
Dataset-

Generator
input

Process,
Approach

Intermediate
data

condition

Output,
Evaluation

Metric

Figure 1.2.: Diagram design format

denote 𝑋 as the input variable with 𝒳 as its space, while 𝑌 is the output
space variable associated with 𝒴. The dataset 𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 contains
instances sampled from 𝑋 and 𝑌 , with parameters 𝑟 and 𝜖 for class imbalance
and noise.Information-theoretic concepts include 𝐼(𝑋;𝑌), representing mutual
information, 𝐻(𝑌 |𝑋) as conditional entropy, and 𝐻(𝑋) or 𝐻(𝑌) for the entropy
of each random variable. In the ILD process, LAS quantifies IL through the
difference in classifier performance between 𝑔𝑏𝑐 and 𝑔𝑚𝑐. The statistical tests
involve null (𝐻0) and alternate hypotheses (𝐻1), using a Holm-Bonferroni
correction with threshold 𝛼 = 0.01 and cut-off parameter 𝜏 used to imply the
existence of IL in a system. Finally, device secret keys 𝐾 and predicted secret
key 𝐾̂ are represented as 16-byte vectors in space 𝒦 and the plaintexts denoted
by the random variable 𝑇 and represented by space 𝒯 , respectively, crucial for
explaining the template SCAs.

30

2. Fundamentals

This chapter provides the foundational background for the framework and au-
tomated information leakage detection (ILD) approaches leveraging automated
machine learning (AutoML) tools. Section 2.1 covers concepts from information
theory, such as Rényi entropy and mutual information (MI), crucial for detect-
ing and quantifying information leakage (IL) in systems. Section 2.2 introduces
statistical learning theory, the classification problem, and the Bayes predictor,
which are later connected to MI and used to derive the conditions for the
occurrence of IL in a system, as discussed in Chapter 3. The AutoML methods
used to induce the Bayes predictor and automate ILD to counter template and
Bleichenbacher’s side-channel attacks (SCAs) are described in Section 2.2.4.
Section 2.4 outlines statistical tests used for ILD, while Section 2.3 details
Bleichenbacher’s and template SCAs, as detecting ILs in systems vulnerable to
these attacks is a central focus of this thesis. Notations and diagram legends are
introduced in Section 1.3.a This chapter is partially based on Gupta et al. (2024)
[81], Gupta et al. (2023) [79] and Drees et al. (2021) [49].

2.1. Information Theory

This section introduces Rényi’s entropy, a generalized measure for quantifying
information that preserves additivity for independent events [170, 161]. The
discussion then transitions to Shannon entropy as a specific case, followed by an
explanation of MI, which quantifies IL in cryptographic systems by measuring
the channel capacity [81].

31

2. Fundamentals

2.1.1. Entropy

Rényi (1961) [161] introduced a generalized measure of entropy, called Rényi’s
entropy, which unifies various notions of entropy, including Hartley entropy,
Shannon entropy, collision entropy, and min-entropy, through a tunable pa-
rameter 𝛼. This parameter adjusts the sensitivity of the entropy measure to
class probabilities, highlighting different characteristics of a probability distri-
bution.It provides a general framework to quantify information while preserving
additivity for independent events, making it a versatile metric for quantifying
the information content of a variable [170, 8].

In the following work, the same notation is used for a probability measure and
its probability mass (probability mass function (PMF)) or density function
(probability density function (PDF)) for simplicity. Typically, capital letters
represent the former and lowercase letters the latter; however, lowercase letters
are consistently applied throughout, with the context providing clarity regarding
the intended meaning.

Rényi entropy can be defined for discrete and continuous random variables [161].
In this work, entropy is calculated using the binary logarithm lg(·), with bits
as the unit of information. For a 𝑑-dimensional real-valued random variable 𝑋

is a continuous with PDF 𝑝𝑋(·) with space 𝑥 ∈ 𝒳 , the Rényi’s, 𝛼-entropy is
defined as

𝐻𝛼(𝑋):=
1

1− 𝛼
lg

⎛⎝ ∫︁
𝑥∈𝒳

𝑝𝑋(𝑥)
𝛼 𝑑𝑥

⎞⎠ .

Generally, in the context of cryptographic systems, leakage is associated with the
output discrete random variable 𝑌 , representing the discrete secret information
with 𝑀 possible values (𝒴 = {1, . . . ,𝑀}). Using the corresponding probabilities
𝑝𝑌 (𝑦𝑖) = 𝑝𝑖, the Rényi 𝛼-entropy is defined as

𝐻𝛼(𝑌):=
1

1− 𝛼
lg

(︃∑︁
𝑦∈𝒴

𝑝𝑌 (𝑦)
𝛼

)︃
, 𝛼 > 0, 𝛼 ̸= 1.

32

2. Fundamentals

In case of probabilities of 𝑌 being uniformly distributed and occurs when all
outcomes are equally likely, i.e., 𝑝𝑌 (𝑦) = 1/𝑀, ∀𝑦 ∈ [𝑀]0, all Rényi entropies
of the distribution are equal 𝐻𝛼(𝑌) = lg(𝑀).

Special Cases

This section describes the different special cases of Rényi 𝛼-entropy for discrete
random variable 𝑌 , relevant to us for IL scenario, for 𝛼 → 𝑖, 𝑖 ∈ {0, 1, 2,∞},
namely Hartley, Shannon, Collision and Min-Entropy [161]. With an increasing
value of 𝛼, the entropy measure increasingly focuses on the most likely events,
while as 𝛼 approaches zero, all events with nonzero probability are weighted
more equally, irrespective of their actual probabilities as shown in Figure 2.1.

Hartley Entropy 𝛼 → 0 Hartley entropy 𝐻0 of 𝑌 is the logarithm of the
number of possible outcomes and is defined as

𝐻0(𝑌):= lg|{𝑦 ∈ 𝒴 : 𝑝𝑌 (𝑦) > 0}|,

It is essentially the support size of 𝑌 , which considers only whether an event
can occur, not how likely it is.

Shannon Entropy 𝛼→ 1 Shannon entropy is expected value of the random
variable lg 1/𝑝𝑌 (·)

𝐻1(𝑌):= −
∑︁
𝑦∈𝒴

𝑝𝑌 (𝑦) lg(𝑝𝑌 (𝑦)),

This is a standard entropy measure used for quantifying the uncertainty or
information content in a random variable.

33

2. Fundamentals

Collision Entropy 𝛼→ 2 Collision entropy is often used in estimating the
likelihood of two randomly chosen events being the same:

𝐻2(𝑌):= − lg
𝑛∑︁

𝑦∈𝒴

𝑝𝑌 (𝑦)
2,

This entropy measure emphasizes repeated occurrences within a distribution,
making it relevant in scenarios with significant duplicates or collisions.

Min-Entropy 𝛼 → ∞ Min-entropy focuses on the most probable event,
providing a measure of the tightest bound on the predictability of 𝑌 :

𝐻∞(𝑌):= min
𝑦∈𝒴
− lg(𝑝𝑌 (𝑦)) = −max

𝑦∈𝒴
lg(𝑝𝑌 (𝑦)) = − lg max

𝑦∈𝒴
𝑝𝑌 (𝑦)

Min-entropy is used in randomness extractors and provides a measure of
predictability, focusing on the most probable event. It is crucial in the context
of IL detection and quantification as it assesses the worst-case scenario, where
the adversary’s advantage is maximized. In the context of SCAs, it evaluates
system security by identifying the most crucial leakage points.

Developing a unified framework for detecting ILs in cryptographic systems
highlights Rényi entropy’s potential in exploratory diagnostics, offering sharper
predictions for two-class scenarios and measuring uncertainty reduction when
information is exposed [13]. The relationship between entropy and minimal
error probabilities further provides bounds to quantify IL, assessing adversarial
success through a channel coding perspective [57]. Additionally, Rényi diver-
gence metrics establish a robust security framework under noisy conditions for
cryptographic primitives [155]. Nevertheless, this thesis focuses on (Shannon
entropy 𝛼 → 1) MI estimation methods for quantifying and detecting ILs,
ensuring computational feasibility for side-channel analysis.

34

2. Fundamentals

0.0 0.2 0.4 0.6 0.8 1.0

Positive Class Conditional Probability p1

0.0

0.2

0.4

0.6

0.8

1.0

E
n

tr
op

y
(i

n
b

it
s)

Rényi Entropy for Different Orders

H0(x, 1− x) H1(x, 1− x) H2(x, 1− x) H∞(x, 1− x)

Figure 2.1.: Rényi Entropy for Different Orders [36]

2.1.2. Mutual Information

Mutual information (MI), a fundamental concept in information theory, mea-
sures the extent to which knowledge of one random variable informs about
another, thereby quantifying their degree of dependence [38]. To define the MI,
a pair of random variables 𝑋 and 𝑌 with joint distribution 𝑝(𝑋,𝑌)(·) on space
𝒳 × 𝒴 are considered. Although these random variables can be of any type,
it is subsequently assumed that 𝑋 is a continuous 𝑑-dimensional real-valued
random variable (𝒳 = R𝑑) and 𝑌 is a discrete random variable with 𝑀 possible
values (𝒴 = {1, . . . ,𝑀})— in the information leakage (IL) scenario, this will
be the relevant case for us. The marginals of the joint distribution 𝑝(𝑋,𝑌)(·) is
denoted by 𝑝𝑋(·) and 𝑝𝑌 (·), and the conditional distributions by 𝑝𝑌 |𝑋(·) and
𝑝𝑋|𝑌 (·), respectively. Recall, that the Shannon entropy (Rényi’s entropy with
𝛼→ 1) of a discrete random variable 𝑌 is defined as

𝐻(𝑌):= −
∑︁
𝑦∈𝒴

𝑝𝑌 (𝑦) · lg(𝑝𝑌 (𝑦)) , (2.1)

35

2. Fundamentals

where 0 · lg(0) = 0 by definition; the continuous version — differential entropy —
is essentially obtained by replacing summation with integration. The maximum
entropy is lg(𝑀) and occurs when all outcomes are equally likely, indicating
complete uncertainty about the outcome of 𝑌 , i.e., 𝑝𝑌 (𝑦) = 1/𝑀, ∀𝑦 ∈ [𝑀]0.
The minimum entropy is 0, indicating complete certainty about 𝑌 , and occurs
for the case of a Dirac measure (one outcome 𝑦 = 𝑚 has a probability 𝑝𝑌 (𝑚) = 1,
while all others have a probability of 0, i.e., 𝑝𝑌 (𝑖) = 0 ,∀𝑖 ∈ [𝑀]0 ∖ {𝑚}). The
conditional entropy of 𝑌 given 𝑋 is defined as

𝐻(𝑌 |𝑋):= −
∫︁

𝑥∈𝒳

𝑝𝑋(𝑥)
∑︁
𝑦∈𝒴

𝑝𝑌 |𝑋(𝑦 |𝑥) · lg(𝑝𝑌 |𝑋(𝑦 |𝑥)) d𝑥 .

According to this definition, conditional entropy measures the residual uncer-
tainty in one random variable given knowledge of the other— it measures
the expected residual uncertainty, with the expectation taken with respect to
the marginal distribution of 𝑌 . 𝐻(𝑌 |𝑋) is bounded by 𝐻(𝑌), reaching its
upper bound when 𝐻(𝑌 |𝑥) follows the marginal distribution 𝑝𝑌 (·) for all
𝑥 ∈ 𝒳 , signifying that 𝑋 does not provide any information about 𝑌 . The
minimum (conditional) entropy is 0, indicating that 𝑋 completely determines
𝑌 , and again occurs in the case where all conditionals 𝑝𝑌 |𝑋(· |𝑥) are Dirac
distributions.

MI between a pair of random variables (𝑋, 𝑌) measures the reduction of
uncertainty about variable 𝑌 by observing variable 𝑋, is defined as

𝐼(𝑋;𝑌):= 𝐻(𝑌)−𝐻(𝑌 |𝑋) . (2.2)

Consequently, its value ranges from 0 to min({𝐻(𝑋), 𝐻(𝑌)}). A value of 0
indicates that 𝑋 and 𝑌 are completely independent, while the maximal value
min({𝐻(𝑋), 𝐻(𝑌)}) signifies full dependence [38].

36

2. Fundamentals

Properties

The MI is a non-negative and symmetric measure, aligning well with the nature
of IL, which is also non-negative (R+). Symmetry ensures MI can be interpreted
from both perspectives (𝑋 → 𝑌 and 𝑌 → 𝑋). in Section 3.3.2. These
properties, alongside MI’s ability to differentiate dependent and independent
variables, make it an appropriate measure for quantifying IL, as discussed
in Section 3.2.2. Estimation approaches such as the Gaussian mixture model
(GMM) baseline and the proposed Log-Loss method (c.f. Section 3.3) leverage
these properties to distinguish between dependent and independent variables,
using eqs. (2.2) and (2.3), respectively.

Non-negativity By plugging and rearranging terms in the expressions for
(conditional) entropy in eq. (2.2), one easily shows that MI equals the Kullback-
Leibler (KL) divergence of the joint distribution 𝑝(𝑋,𝑌)(·) from the product
of the marginals (i.e., the joint distribution under independence assumption):

𝐼(𝑋;𝑌) = 𝐻(𝑌)−𝐻(𝑌 |𝑋)

=

∫︁
𝑥∈𝒳

∑︁
𝑦∈𝒴

𝑝(𝑋,𝑌)(𝑥, 𝑦) · lg
(︂

𝑝(𝑋,𝑌)(𝑥, 𝑦)

𝑝𝑋(𝑥) · 𝑝𝑌 (𝑦)

)︂
𝑑𝑥 (2.3)

= 𝐷(𝑝(𝑋,𝑌)(𝑥, 𝑦)‖(𝑝𝑌 (𝑦) · 𝑝𝑋((𝑥))) = 𝐷(𝑝(𝑋,𝑌)(𝑥, 𝑦)‖𝑞(𝑋,𝑌)(𝑥, 𝑦))

= E(𝑥,𝑦)∼𝑝(𝑋,𝑌)(𝑥,𝑦)

[︂
lg

(︂
𝑝(𝑋,𝑌)(𝑥, 𝑦)

𝑞(𝑋,𝑌)(𝑥, 𝑦)

)︂]︂
where 𝑞(𝑋,𝑌)(·) represent the product of the marginals and 𝐷(𝑝(𝑋,𝑌)(·)‖𝑞(𝑋,𝑌)(·)),
represents the KL divergence between 𝑝(𝑋,𝑌)(·) and 𝑞(𝑋,𝑌)(·), which is also the
expectation of lg(𝑝(𝑋,𝑌)(·)/𝑞(𝑋,𝑌)(·)) under the joint distribution 𝑝(𝑋,𝑌)(𝑥, 𝑦).

37

2. Fundamentals

Since lg(𝑡), 𝑡 ∈ R+ is concave, the Jensen’s inequality E𝑡∈R+ [lg(𝑡)] ≤ lg(E𝑡∈R+ [𝑡])

is applied to 𝐷(𝑝(𝑋,𝑌)(·)‖𝑞(𝑋,𝑌)(·)) as follows

−𝐷(𝑝(𝑋,𝑌)(·)‖𝑞(𝑋,𝑌)(·)) = −E(𝑥,𝑦)∼𝑝(𝑋,𝑌)(𝑥,𝑦)

[︂
lg

(︂
𝑝(𝑋,𝑌)(𝑥, 𝑦)

𝑞(𝑋,𝑌)(𝑥, 𝑦)

)︂]︂
=

∫︁
𝑥∈𝒳

∑︁
𝑦∈𝒴

𝑝(𝑋,𝑌)(𝑥, 𝑦) lg

(︂
𝑞(𝑋,𝑌)(𝑥, 𝑦)

𝑝(𝑋,𝑌)(𝑥, 𝑦)

)︂
𝑑𝑥

≤ lg

⎛⎝ ∫︁
𝑥∈𝒳

∑︁
𝑦∈𝒴

𝑝(𝑋,𝑌)(𝑥, 𝑦)

(︂
𝑞(𝑋,𝑌)(𝑥, 𝑦)

𝑝(𝑋,𝑌)(𝑥, 𝑦)

)︂
𝑑𝑥

⎞⎠ = 0

=⇒ 𝐷(𝑝(𝑋,𝑌)(·)‖𝑞(𝑋,𝑌)(·)) ≥ 0 =⇒ 𝐼(𝑋;𝑌) ≥ 0

with equality if and only if 𝑋 and 𝑌 are independent, i.e., 𝑝(𝑋,𝑌)(𝑥, 𝑦) =

𝑞(𝑋,𝑌)(𝑥, 𝑦) = 𝑝𝑌 (𝑦) ·𝑝𝑋(𝑥), ∀(𝑥, 𝑦) ∈ 𝒳 ×𝒴 . This confirms the non-negativity
of the KL divergence and consequently the MI [38].

Symmetry MI is a symmetric measure, indicating that the shared information
between 𝑋 and 𝑌 is the same in both directions [38].

𝐼(𝑋;𝑌) = 𝐻(𝑌)−𝐻(𝑌 |𝑋)

= 𝐻(𝑌) +𝐻(𝑋)−𝐻(𝑋, 𝑌) = 𝐻(𝑋) +𝐻(𝑌)−𝐻(𝑌,𝑋)

= 𝐻(𝑋)−𝐻(𝑋 |𝑌) = 𝐼(𝑌 ;𝑋) .

2.2. Statistical Learning Theory: Classification

Problem

This section revisits fundamental concepts of classification problems and the
relevant metrics from statistical learning theory, with notations summarized
in Table 1.1. Building on these, the concept of the Bayes predictor and
the classification problem is introduced, which estimates (class) conditional
probabilities to induce the Bayes predictor. These concepts are essential

38

2. Fundamentals

for formalizing the conditions for IL occurrence in a system, as discussed
in Section 3.2.1. Furthermore, the benchmark AutoML approaches used to
approximate the Bayes predictor with precision are detailed in Section 2.2.4.

2.2.1. Classification Problem

In classification, the learning algorithm (learner) is provided with a training
data set 𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 ⊂ 𝒳 × 𝒴 of size 𝑁 ∈ N, where 𝒳 = R𝑑 is the
input (instance) space and 𝒴 = {0, 1, . . . ,𝑀 − 1} = [𝑀]0, 𝑀 ∈ N the output
(categorical class labels) space, and the (𝑥𝑖, 𝑦𝑖) are assumed to be independent
and identically distributed (i.i.d.) according to 𝑝(𝑋,𝑌)(·) [191]. According to
the statistical learning theory, the primary goal of the learner in standard clas-
sification is to induce a hypothesis ℎ : 𝒳 → 𝒴 , ℎ ∈ ℋ, with low generalization
error (risk):

𝑅(ℎ) = E[ℓ(𝑦, ℎ(𝑥))] =
∫︁

𝒳×𝒴

ℓ(𝑦, ℎ(𝑥)) 𝑑 𝑝(𝑋,𝑌)(𝑥, 𝑦) , (2.4)

where ℋ is the underlying hypothesis space (set of candidate functions the
learner can choose from), ℓ : 𝒴 × 𝒴 → R a loss function, and 𝑝(𝑋,𝑌)(·) is the
joint probability measure modeling the underlying data-generating process. A
loss function commonly used in standard classification is the 0-1 loss ℓ01(𝑦, 𝑦):=
Jℎ(𝑥) ̸= 𝑦K, where J·K is the indicator function as defined in Section 1.3. The
risk minimizer ℎ*, if it exists, achieves the minimum expected loss E[ℓ(·)] in
terms of the loss function ℓ across the entire joint distribution 𝑝(𝑋,𝑌)(·) and
is defined as ℎ* = arg minℎ∈ℋ 𝑅(ℎ). If no such ℎ* exists, arg min should be
interpreted as achieving the infimum over the hypothesis space ℋ.

The measure 𝑝(𝑋,𝑌)(·) in eq. (2.4) induces marginal probability (density or
mass) functions on 𝒳 and 𝒴 as well as a conditional probability of the class 𝑌

given an input instance 𝑥, i.e., 𝑝(𝑋,𝑌)(𝑥, 𝑦) = 𝑝𝑌 |𝑋(𝑦 |𝑥)× 𝑝𝑋(𝑥). In practice,
the learner does not observe these probabilities, so directly minimizing the
risk eq. (2.4) is not feasible. Instead, learning in a standard classification setting

39

2. Fundamentals

is commonly accomplished by minimizing (a regularized version of) empirical
risk for ℎ:

𝑅emp(ℎ) =
1

𝑁

𝑁∑︁
𝑖=1

ℓ(𝑦𝑖, ℎ(𝑥𝑖)) . (2.5)

In the subsequent discussions, the (learned) hypothesis that minimizes eq. (2.5),
i.e., the empirical risk minimizer, is denoted by 𝑔 = arg minℎ∈ℋ 𝑅emp(ℎ) [191].
In practice, for the available finite sampled data set 𝒟, 𝑔 is the best possible
approximation (empirical estimation) of the true risk minimizer ℎ* and is an
appropriation thereof.

Bayes-optimal Predictor

In statistical learning theory, the Bayes predictor is the optimal (pointwise)
classification function 𝑔𝑏 : 𝒳 → 𝒴 producing a minimum expected risk, i.e.,
minimizing eq. (2.4) for a given loss function ℓ(·):

𝑔𝑏(𝑥) = arg min
𝑦∈𝒴

∑︁
𝑦∈𝒴

ℓ(𝑦, 𝑦) · 𝑝𝑌 |𝑋(𝑦 |𝑥) = arg min
𝑦∈𝒴

E𝑦∼𝑝𝑌 (𝑦)[ℓ(𝑦, 𝑦) |𝑥] ,

where E𝑦[ℓ] is the expected loss of the prediction 𝑦 with respect to 𝑦 ∈ 𝒴 , and
𝑝𝑌 |𝑋(𝑦 |𝑥) is the conditional probability of the class 𝑦 given an input instance
𝑥 [47]. The Bayes predictor simplifies in case of 0-1 the loss as

𝑔𝑏𝑐(𝑥) = arg max
𝑦∈𝒴

𝑝𝑌 |𝑋(𝑦 |𝑥) . (2.6)

The expected loss of this predictor is known as the Bayes error rate mER (𝑔𝑏𝑐).To
determine the Bayes predictor, the conditional probability distribution 𝑝𝑌 |𝑋(·)
must be known for the underlying data set 𝒟.

In the case where 𝒳 and 𝒴 are independent of each other, i.e., 𝑝𝑌 |𝑋(𝑦 |𝑥)
corresponds to the marginal distribution 𝑝𝑌 (𝑦) as input features are completely
uninformative. Consequently, the marginal Bayes predictor minimizing 0-1 loss

40

2. Fundamentals

using only 𝒴 is defined as

𝑔𝑏𝑐(𝑥) ≡ 𝑔𝑚𝑐(𝑥) ≡ arg max
𝑦∈𝒴

𝑝𝑌 (𝑦) . (2.7)

It assigns to each input 𝑥 a class label from the set of labels with the highest
marginal probability. Strictly speaking, as the maximum in eq. (2.7) is not
necessarily unique, the marginal Bayes predictor may pick any label with the
highest probability— however, it is assumed that the same label is selected
for every 𝑥, making it a constant function.

Probabilistic Classification

Distinct from standard classifiers, probabilistic classifiers focus on estimating the
(conditional) class probabilities 𝑝𝑌 |𝑋(𝑦 |𝑥) for each class 𝑦 in 𝒴 , given an input
instance 𝑥 ∈ 𝒳 , with the predictions of that kind are denoted by 𝑝𝑌 |𝑋(𝑦 |𝑥).
As before, training data comes in the form 𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 ⊂ 𝒳 × 𝒴, where
the (𝑥𝑖, 𝑦𝑖) are i.i.d. according to 𝑝(𝑋,𝑌)(·), and the goal to induce a hypothesis
ℎ𝑝 : 𝒳 → P(𝒴) with low generalization error (risk):

𝑅𝑝(ℎ𝑝) = E[ℓ𝑝(𝑦, ℎ𝑝(𝑥))] =

∫︁
𝒳×𝒴

ℓ𝑝(𝑦, ℎ𝑝(𝑥)) 𝑑 𝑝(𝑋,𝑌)(𝑥, 𝑦) .

Now, however, instead of comparing a predicted class 𝑦 with a true class 𝑦, the
loss ℓ𝑝 compares a predicted probability distribution with 𝑦 — thus, the loss
is a mapping ℓ𝑝 : 𝒴 × P(𝒴)→ R, where P(𝒴) denotes the set of PMFs on 𝒴 .

Since 𝒴 is finite and consists of 𝑀 classes, P(𝒴) can be represented by the
(𝑀 − 1)-simplex, i.e., predictions are denoted by the probability vector ℎ𝑝(𝑥) =

𝑝 = (𝑝0, . . . , 𝑝𝑀−1), where 𝑝𝑚 = 𝑝[𝑚] = 𝑝𝑌 |𝑋(𝑚 |𝑥) is the probability assigned
to class 𝑚. Typically, learning predictors of that kind involve minimizing the
empirical risk

𝑅emp|𝑝(ℎ𝑝) =
1

𝑁

𝑁∑︁
𝑖=1

ℓ𝑝(𝑦𝑖, ℎ𝑝(𝑥𝑖)) . (2.8)

41

2. Fundamentals

Subsequently, in this thesis, the empirical risk minimizer is denoted by 𝑔𝑝 =

arg minℎ𝑝∈ℋ𝑝
𝑅emp|𝑝(ℎ𝑝) [19, chap. 4][191]. In the case where 𝑌 is independent

of 𝑋, the marginal Bayes predictor or estimated marginal Bayes predictor
(marginal classifier denoted by 𝑔𝑚𝑐

𝑝 in eq. (3.3)) is again the best constant
probability predictor, i.e., the one with the lowest risk eq. (2.8) among all
constant predictors.

Deterministic Prediction A probabilistic prediction may also serve as
a basis for a deterministic prediction if needed. Typically, the class la-
bel with the highest (predicted) probability is adopted in that case, i.e.,
𝑦 = arg max𝑦∈𝒴 𝑝𝑌 |𝑋(𝑦 |𝑥). As readily seen, this prediction minimizes the
standard 0-1 loss in expectation. The other way around, this also shows that to
perform well in terms of standard 0-1 loss, the learner merely needs to identify
the most probable class, or, stated differently, strong performance can even be
achieved with relatively inaccurate estimates, provided the highest predicted
probability is still assigned to the truly most probable class label [48, 30].

2.2.2. Learning and Evaluation Measures

This section describes the loss functions used for learning (probabilistic) classi-
fiers and evaluation metrics used to evaluate the performance of the learned
classifiers.

Loss Functions

This section defines an essential class of loss functions used for learning a proba-
bilistic classifier, which is so-called (strictly) proper scoring rules [73]. Roughly
speaking, such losses incentivize the learner to predict accurate probabilities.
Formally, a loss ℓ𝑝(·) is a proper scoring rule if

E𝑦∼𝑝𝑌 |𝑋(· |𝑥)[ℓ𝑝(𝑦, 𝑝𝑌 |𝑋(𝑦 |𝑥))] ≤ E𝑦∼𝑝𝑌 |𝑋(· |𝑥)[ℓ𝑝(𝑦, 𝑝𝑌 |𝑋(𝑦 |𝑥))] ,

42

2. Fundamentals

0.0 0.5 1.0

0

1

2

3

4
L

os
s

va
lu

e

Ground-truth Class 1

0.0 0.5 1.0

Ground-truth Class 0

Predicted probability for positive class (p1)

Categorical Cross-Entropy Loss (CCE) Brier Score Loss (BS) Zero-One Loss

Figure 2.2.: Behavior of various proper loss functions in binary classification setting

for all distributions 𝑝𝑌 |𝑋(·), 𝑝𝑌 |𝑋(·), and a strictly proper scoring rule is the
above inequality is strict whenever 𝑝𝑌 |𝑋(·) ̸= 𝑝𝑌 |𝑋(·). Thus, by predicting the
true distribution 𝑝𝑌 |𝑋(·) of the (categorical) random variable 𝑌 , the learner
minimizes its loss in expectation, making them apt for learning a probabilistic
classifier. Important examples of strictly proper scoring rules include the Brier
score (BS) and the categorical cross-entropy (CCE), as shown in Figure 2.2.
In this work, the CCE is used for training the multi-layer perceptron (MLP)
models in the AutoGluon tool for the experiments in Chapters 4 and 5 and
convolutional neural networks (CNNs) optimized using neural architecture
search (NAS) for the experiments in Chapter 6.

Categorical Cross-entropy The CCE is defined as

ℓCCE(𝑦,𝑝):= − ln(𝑝𝑦) = − ln(𝑝[𝑦]) .

The CCE loss (logarithmic scoring rule) [19, chap. 4] is widely recognized for
its information-theoretic interpretations and practical effectiveness [75, 173, 44].
It can also be motivated in the realm of Neyman–Pearson theory [59]. This

43

2. Fundamentals

motivation for choosing CCE over other common loss functions stems from
its ability to ensure reliable and generalizable performance across experiments
when learning MLPs and CNNs.

Brier score The BS is defined as

ℓBS(𝑦,𝑝):= −
𝑀−1∑︁
𝑚=0

(J𝑦 = 𝑚K− 𝑝𝑚)
2 = −

𝑀−1∑︁
𝑚=0

(J𝑦 = 𝑚K− 𝑝[𝑚])2

The BS loss (quadratic scoring rule) has axiomatic characteristic [73, 22]

Zero-one Score The zero-one loss function measures whether the predicted
class (the one with the highest predicted probability) matches the true class,
which is formally defined as

ℓ𝑝01(𝑦,𝑝):= J𝑦 = arg max
𝑚∈[𝑀]0

𝑝𝑚K = J𝑦 = arg max
𝑚∈[𝑀]0

𝑝[𝑚]K . (2.9)

The zero-one score is simple and interpretable, measuring accuracy by assigning
a 1 score if the predicted class matches the true class and 0 otherwise.It rewards
predictions based on the mode of the probability distribution, with reduced
scores for multiple modes, but does not define a Bregman divergence due to its
non-differentiable and non-convex entropy function [73].

Metrics

Koyejo et al., Powers (2015, 2011) [110, 154] define evaluation measures used
for evaluating the performance of classifiers, using the ground-truth labels
denoted by 𝑦 = (𝑦1, . . . , 𝑦𝑁) for a given 𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 and the predictions
denoted by the vector 𝑦 = (𝑦1, . . . , 𝑦𝑁). The predictions could be obtained
by the empirical risk minimizer 𝑔 derived using eq. (2.5) for a standard clas-

44

2. Fundamentals

sification, such that 𝑦𝑖 = 𝑔(𝑥𝑖),∀𝑖 ∈ [𝑁] or by the deterministic predictions
produced by a probabilistic classifier 𝑔𝑝 derived using eq. (2.8), such that
𝑦𝑖 = arg max𝑚∈𝑀 𝑔𝑝(𝑥𝑖)[𝑚],∀𝑖 ∈ [𝑁].

Confusion matrix (CM) Many evaluation metrics are based on the concepts
true positive (mtp), true negative (mtn), false positive (mfp), and false negative
(mfn), ground-truth positives (𝑁𝑝), ground-truth negatives (𝑁𝑛), predicted
positives (𝑁̂𝑝) and predicted negatives (𝑁̂𝑛,) which are defined as

mtn(𝑦,𝑦) =
𝑁∑︁
𝑖=1

J𝑦𝑖 = 0, 𝑦𝑖 = 0K, mtp(𝑦,𝑦) =
𝑁∑︁
𝑖=1

J𝑦𝑖 = 1, 𝑦𝑖 = 1K,

mfp(𝑦,𝑦) =
𝑁∑︁
𝑖=1

J𝑦𝑖 = 0, 𝑦𝑖 = 1K, mfn(𝑦,𝑦) =
𝑁∑︁
𝑖=1

J𝑦𝑖 = 1, 𝑦𝑖 = 0K,

𝑁𝑝 =
𝑁∑︁
𝑖=1

J𝑦𝑖 = 1K, 𝑁𝑛 =
𝑁∑︁
𝑖=1

J𝑦𝑖 = 0K, 𝑁̂𝑝 =
𝑁∑︁
𝑖=1

J𝑦𝑖 = 1K, 𝑁̂𝑛 =
𝑁∑︁
𝑖=1

J𝑦𝑖 = 0K .

The confusion matrix (CM) is defined using these metrics as

mCM(𝑦,𝑦) =

⎛⎝mtp(𝑦,𝑦) mfn(𝑦,𝑦)

mfp(𝑦,𝑦) mtn(𝑦,𝑦)

⎞⎠ . (2.10)

Table 2.1 present the common evaluation metrics and how they can be calculated
using the CM entities.

Accuracy It is defined as the proportion of correct predictions

mACC(𝑦,𝑦):=
1

𝑁

𝑁∑︁
𝑖=1

J𝑦𝑖 = 𝑦𝑖K =
mtp(𝑦,𝑦) + mtn(𝑦,𝑦)

𝑁

=
mtp(𝑦,𝑦) + mtn(𝑦,𝑦)

mtp(𝑦,𝑦) + mfn(𝑦,𝑦) + mfp(𝑦,𝑦) + mtn(𝑦,𝑦)
.

45

2. Fundamentals

Error rate It is defined as the proportion of incorrect predictions

mER(𝑦,𝑦):=
1

𝑁

𝑁∑︁
𝑖=1

J𝑦𝑖 ̸= 𝑦𝑖K =
mfn(𝑦,𝑦) + mfp(𝑦,𝑦)

𝑁

=
mfn(𝑦,𝑦) + mfp(𝑦,𝑦)

mtp(𝑦,𝑦) + mfn(𝑦,𝑦) + mfp(𝑦,𝑦) + mtn(𝑦,𝑦)
.

False negative rate (FNR) It is defined as the ratio of false negatives to the
number of positive instances.

mFNR(𝑦,𝑦) = 1−mTPR(𝑦,𝑦) =
mfn(𝑦,𝑦)

mfn(𝑦,𝑦) + mtp(𝑦,𝑦)
.

False positive rate (FPR) It is defined as the ratio of false positives to the
number of negative instances

mFPR(𝑦,𝑦) = 1−mTNR(𝑦,𝑦) =
mfp(𝑦,𝑦)

mfp(𝑦,𝑦) + mtn(𝑦,𝑦)
.

𝑁 𝑁̂𝑝 𝑁̂𝑛 Metrics
𝑁𝑝 mtp mfn mtpr =

mtp
𝑁𝑝

, mfnr =
mfn
𝑁𝑝

𝑁𝑛 mfp mtn mfpr =
mfp
𝑁𝑛

, mtnr =
mtn
𝑁𝑛

mPre =
𝑁𝑝

𝑁𝑝+𝑁𝑛
mppv =

mtp
𝑁̂𝑝

mfor =
mfn
𝑁̂𝑛

mACC = mtp +mtn
𝑁

mfdr =
mfp
𝑁̂𝑝

mnpv =
mtn
𝑁̂𝑛

mBER = mfnr +mfpr
2

mf1 =
2mppv mtpr
mppv +mtpr

= 2mtp
2mtp +mfp +mfn

mmcc =
√
mtpr mtnr mppv mnpv −

√
mfnr mfpr mfor mfdr

Table 2.1.: Classification evaluation metrics

Mathews correlation coefficient (MCC) It is a balanced measure that
considers true and false positives, including true and false negatives.It produces
a value between −1 and +1, where +1 represents a perfect prediction, 0 is

46

2. Fundamentals

random, and −1 indicates total disagreement between the predictions and
ground truths. It is formally defined as

mMCC(𝑦,𝑦) =

(︃
(mtp(𝑦,𝑦)×mtn(𝑦,𝑦)−mfp(𝑦,𝑦)×mfn(𝑦,𝑦))√︀
(mtp(𝑦,𝑦) + mfp(𝑦,𝑦))(mtp(𝑦,𝑦) + mfn(𝑦,𝑦))

)︃

×
(︃

1√︀
(mtn(𝑦,𝑦) + mfp(𝑦,𝑦))(mtn(𝑦,𝑦) + mfn(𝑦,𝑦))

)︃
.

Balanced error-rate (BER) It is the average of false positive rate (FPR)
and false negative rate (FNR), offering a balanced evaluation metric for a given
classification model as

mBER(𝑦,𝑦) =
1

2

(︂
mfp(𝑦,𝑦)

mtn(𝑦,𝑦) + mfp(𝑦,𝑦)
+

mfn(𝑦,𝑦)

mtp(𝑦,𝑦) + mfn(𝑦,𝑦)

)︂
=

mfnr(𝑦,𝑦) + mfpr(𝑦,𝑦)

2
.

2.2.3. Classifier Calibration

Ensuring the precision of probability estimates from the probabilistic risk
minimizer 𝑔𝑝 is crucial for the effectiveness of the Log-Loss and the probabilitiy-
corrected softmax (PC-softmax) baseline MI estimation approach, described
in Section 3.3. However, even with the CCE loss function, these probabilities
might not accurately reflect the ground-truth conditionals 𝑝𝑌 |𝑋 , especially in
imbalanced class scenarios [140, 48]. Famous classification methods like Naive
Bayes, random forest classifier (RF) produce inaccurate probability estimates
despite their success in accurate classification [30, 48]. Consequently, using
calibration techniques becomes essential to produce predicted probabilities close
to actual frequencies, thereby enhancing the predictive value of probabilistic
models [63]. For calibration, the post-processing methods map predicted
class probabilities to more reliable and calibrated probabilities, often achieved
through distinct models or transformation methods [63]. This work focuses

47

2. Fundamentals

on five multi-class calibration methods to improve MI estimation using the
Log-Loss approach [81]: Platt’s Scaling, Isotonic Regression, Beta Calibration,
Temperature Scaling, and Histogram Binning Section 3.3.2.

Platt’s Scaling

Platt’s scaling is a logistic regression-based calibration method designed for
binary classification, adjusting raw scores (logits) from a classifier to pro-
duce calibrated probabilities [151, 152]. In the binary classification setting
𝑀 = 2, it transforms the real-valued score 𝑠1 ∈ R of the positive class from
the classifier into a calibrated probability using a logistic (sigmoid) function
𝑓1(𝑠1;𝐴,𝐵) : R3 → (0, 1) is defined as

𝑓1(𝑠1;𝐴,𝐵) =
1

1 + exp(−𝐴 · 𝑠1 −𝐵)
,

where 𝐴 ∈ R is the weight parameter controlling the slope, and 𝐵 ∈ R is the
bias parameter shifting the curve.

These parameters are learned by maximizing the log-likelihood of the observed
data using the binary cross-entropy (BCE) loss on the given training binary
classification dataset 𝒟 = {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1 is defined as

ℓBCE(𝑠;𝐴,𝐵) = − 1

𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 ln(𝑓1(𝑠𝑖1;𝐴,𝐵)) + (1− 𝑦𝑖) ln(1− 𝑓1(𝑠𝑖1;𝐴,𝐵)) ,

where 𝑦𝑖 ∈ {0, 1} denotes the true label for instance 𝑖 ∈ [𝑁].

Multi-class Classification Platt’s scaling extends to multi-class classification
using the one-versus-rest (OVR) approach [77], where each class 𝑚 ∈ [𝑀]0 is
independently calibrated by treating it as positive and all others as negative.
The corresponding binary dataset for class 𝑚 is 𝒟𝑚 = {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1 using the

48

2. Fundamentals

following label transformation

𝑦𝑖 =

{︃
1, if 𝑦𝑖 = 𝑚

0, elif 𝑦𝑖 ̸= 𝑚

It is applied independently for each class 𝑚, resulting in 𝑀 separate logistic
regression models with their parameters 𝐴𝑚 and 𝐵𝑚, using a logistic (sigmoid)
function 𝑓𝑚(𝑠𝑚;𝐴𝑚, 𝐵𝑚) : R3 → (0, 1) is defined as

𝑓𝑚(𝑠𝑚;𝐴𝑚, 𝐵𝑚) =
1

1 + exp(−𝐴𝑚 · 𝑠𝑚 −𝐵𝑚)
,

where 𝑠𝑚 is the raw score for class 𝑚. The parameters 𝐴𝑚 and 𝐵𝑚 are estimated
by optimizing the BCE for the binary classification dataset 𝒟𝑚 = {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1

using ℓBCE(𝑠;𝐴,𝐵).

The likelihood is represented by the sum of log-likelihoods for each independent
function for class 𝑚 to evaluate the CCE over the given classification dataset
𝒟 = {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1 is defined as

ℓCCE(𝑠;𝐴,𝐵) = − 1

𝑁

𝑁∑︁
𝑖=1

𝑀−1∑︁
𝑚=0

J𝑦𝑖 = 𝑚K log(𝑓𝑚(𝑠𝑖𝑚;𝐴𝑚, 𝐵𝑚)) ,

where 𝐴 = (𝐴0, 𝐴1, . . . , 𝐴𝑀−1), 𝐵 = (𝐵0, 𝐵1, . . . , 𝐵𝑀−1) and J𝑦𝑖 = 𝑚K ensures
that only the log-probability of the true class is considered for each sample.

The calibrated probabilities are normalized to sum up to 1 as

𝑝𝑖𝑚 =
𝑓𝑚(𝑠𝑖𝑚;𝐴𝑚, 𝐵𝑚)∑︀𝑀−1
𝑗=0 𝑓𝑗(𝑠𝑖𝑗;𝐴𝑗, 𝐵𝑗)

It is easy to implement and efficient to train using standard logistic regression
with a convex loss. However, it has limitations, such as the fixed sigmoid
shape, which can lead to over-confidence and overestimation.The logistic regres-
sion model assumes that the inputs are real-valued scalars, suitable for SVM

49

2. Fundamentals

margins but not for probabilistic classifiers where inputs are in the interval
[0, 1]. Therefore, transformations like logits are necessary when calibrating
probabilistic classifiers [63].

Beta Calibration

Beta calibration is a method that extends the flexibility of Platt’s Scaling by
utilizing Beta distributions, which allow a more adaptable mapping between
predicted scores and calibrated probabilities [112]. This approach can capture
a broader range of shapes than the logistic function used in Platt’s Scaling.

Binary Classification In the binary classification setting, it aims to trans-
form the un-calibrated predicted probability 𝑝1 of the positive class from the
classifier into a calibrated probability that more accurately reflects the true
likelihood of the positive class using a Beta distribution, using a function
𝑓1(𝑝1; 𝑎, 𝑏, 𝑐) : [0, 1]× R3 → (0, 1) is defined as

𝑓1(𝑝1; 𝑎, 𝑏, 𝑐) =
1

1 + exp(−(𝑎 ln(𝑝1) + 𝑏 ln(1− 𝑝1) + 𝑐))
,

where the parameters 𝑎 ∈ R and 𝑏 ∈ R controls the influence of ln(𝑝1) and
log(1− 𝑝1), respectively and 𝑐 ∈ R is a location parameter (bias term).

These parameters are learned by minimizing the negative log-likelihood of the
calibrated probabilities using the log-loss or BCE for the given training binary
classification dataset 𝒟 = {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1 is defined as

ℓBCE(𝑝; 𝑎, 𝑏, 𝑐) = −
1

𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 ln(𝑓1(𝑝𝑖1; 𝑎, 𝑏, 𝑐)) + (1− 𝑦𝑖) ln(1− 𝑓1(𝑝𝑖1; 𝑎, 𝑏, 𝑐)) ,

where 𝑦𝑖 ∈ {0, 1} is the true label, and 𝑓1(𝑝𝑖1; 𝑎, 𝑏, 𝑐) represents the calibrated
probability for the positive class with predicted probability 𝑝𝑖1, for 𝑖 ∈ [𝑁]

instance.

50

2. Fundamentals

Multi-class Classification Beta calibration extends to multi-class classifi-
cation using the OVR approach [112, 113], where each class 𝑚 ∈ [𝑀]0 is
independently calibrated against all others. The corresponding binary dataset
for class 𝑚 is 𝒟𝑚 = {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1 using the following label transformation

𝑦𝑖 =

{︃
1, if 𝑦𝑖 = 𝑚

0, elif 𝑦𝑖 ̸= 𝑚

The Beta distribution function 𝑓𝑚(𝑝𝑚; 𝑎𝑚, 𝑏𝑚, 𝑐𝑚) : [0, 1]×R3 → (0, 1) is applied
independently for each class 𝑚, resulting in 𝑀 separate functions with their
own set of parameters 𝑎𝑚, 𝑏𝑚 and 𝑐𝑚 is defined as

𝑓𝑚(𝑝𝑚; 𝑎𝑚, 𝑏𝑚, 𝑐𝑚) =
1

1 + exp(−(𝑎𝑚 log(𝑝𝑚) + 𝑏𝑚 log(1− 𝑝𝑚) + 𝑐𝑚))

where 𝑠𝑚 is the predicted probability of class 𝑚. The parameters 𝐴𝑚 and
𝐵𝑚 are estimated by minimizing the BCE for the binary classification dataset
𝒟𝑚 = {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1 using ℓBCE(𝑝; 𝑎𝑚, 𝑏𝑚, 𝑐𝑚).

The likelihood is represented by the sum of log-likelihoods for each independent
function for class 𝑚 to evaluate the CCE over the given classification dataset
𝒟 = {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1 is defined as

ℓCCE(𝑝;𝑎, 𝑏, 𝑐) = −
1

𝑁

𝑁∑︁
𝑖=1

log

(︃
𝑀−1∑︁
𝑚=0

J𝑦𝑖 = 𝑚K · 𝑓𝑚(𝑝𝑖𝑚; 𝑎𝑚, 𝑏𝑚, 𝑐𝑚)
)︃

where 𝑎 = (𝑎0, 𝑎1, . . . 𝑎𝑀−1), 𝑏 = (𝑏0, 𝑏1, . . . 𝑏𝑀−1), and 𝑐 = (𝑐0, 𝑐1, . . . 𝑐𝑀−1)

and J𝑦𝑖 = 𝑚K ensures that only the log of predicted probability 𝑝𝑖𝑚 of the true
class 𝑚 is considered for each 𝑖th sample.

The calibrated probabilities are normalized to sum up to 1 as

𝑝𝑖𝑚 =
𝑓𝑚(𝑝𝑖𝑚; 𝑎𝑚, 𝑏𝑚, 𝑐𝑚)∑︀𝑀−1
𝑗=0 𝑓𝑗(𝑝𝑖𝑗; 𝑎𝑗, 𝑏𝑗, 𝑐𝑗)

51

2. Fundamentals

An alternative to the OVR approach is calibration using the multinomial
logistic regression, which learns unified parameters 𝑎𝑚, 𝑏𝑚, and 𝑐𝑚 across
classes 𝑚 ∈ [𝑀]0, directly adjusting the vector of predicted probabilities to
account for inter-class relationships. It allows flexibility with diverse maps, such
as inverse sigmoids and identity functions, making it adaptable for two-class
probabilistic classifiers. However, its limitation to specific calibration functions
may not suit classifiers requiring complex adjustments, where non-parametric
methods could be more effective [63].

Temperature Scaling

Temperature scaling is a calibration method that scales the logits (log-odds)
of predicted probabilities using a single “temperature” parameter 𝑡 ∈ R and
applies a linear operation before the softmax. This method calibrates the
entire distribution while maintaining the rank order of class labels according to
originally predicted class probabilities [77].

It calibrates the predicted probabilities 𝑝𝑚 for each class 𝑚 using the logits
vector 𝑧 = [𝑧0, 𝑧1, . . . , 𝑧𝑀−1] and a temperature parameter 𝑡 ∈ R+ using the
(softmax) function 𝑐𝑚(𝑧; 𝑡) : R𝑀 × R+ → (0, 1)𝑀 defined as

𝑐𝑚(𝑧; 𝑡) =
exp
(︀
𝑧𝑚
𝑡

)︀∑︀𝑀−1
𝑗=0 exp

(︀ 𝑧𝑗
𝑡

)︀
If logits 𝑧 are not available, logit transformation can be applied to predicted
probabilities as

𝑧𝑚 = logit𝑀(𝑝𝑚) = ln
𝑝𝑚

𝑝𝑀−1

,

where 𝑀 − 1 is the reference class to compute the probability ratio with the
remaining classes. The parameter is also normally estimated with the log-loss,
and the objective function to evaluate the CCE over the given classification

52

2. Fundamentals

dataset 𝒟 = {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1 as

ℓCCE(𝑧; 𝑡) = −
1

𝑁

𝑁∑︁
𝑖=1

𝑀∑︁
𝑚=1

J𝑦𝑖 = 𝑚K ln (𝑐𝑚(z𝑖; 𝑡))

It is a simple calibration method that adjusts logits using a single temperature
parameter 𝑡. This approach is efficient, easy to implement, and handles multi-
class calibration without using OVR. The single parameter helps prevent
over-fitting in small datasets but can be limiting if the required calibration map
is not within its function space. While effective for reducing overconfidence in
deep learning (DL) models, its performance is sub-optimal for more complex
calibration requirements [63].

Isotonic Regression

Isotonic regression is used in probability calibration to fit a non-decreasing,
piecewise constant function that maps predicted probabilities to calibrated
probabilities. This technique is particularly effective when the predicted prob-
abilities do not accurately reflect the true likelihoods of events, often seen in
machine learning models like decision trees or random forests [7, 205].

Binary Classification In the case of binary output variable 𝑀 = 2, it adjusts
predicted probabilities so that they form a non-decreasing sequence or have a
monotonic reliability diagram. For the positive class 𝑚 = 1, it learns a binning
function 𝑓𝑚 with parameters 𝑏 = {0, 𝑏1, 𝑏2, . . . , 𝑏𝐵},∀𝑗 ∈ [𝐵], 𝑏𝑗 ∈ [0, 1], 𝑏𝑗 <

𝑏𝑗+1 and 𝑣 = {𝑣1, 𝑣2, . . . , 𝑣𝐵},∀𝑗 ∈ [𝐵], 𝑏𝑗 ∈ [0, 1], 𝑣𝑗 ≤ 𝑣𝑗+1, where 𝐵 is the
number of bins. The calibrated function 𝑓1 : [0, 1]

3 → [0, 1] for the positive
class 𝑚 = 1 with predicted probability 𝑝1 is defined as:

𝑓1(𝑝1; 𝑏,𝑣) =
𝐵−1∑︁
𝑗=1

J𝑝1 ≥ 𝑏𝑗K · J𝑝1 < 𝑏𝑗+1K · 𝑣𝑗 ,

53

2. Fundamentals

where 𝑝1 is the predicted probability of the positive class, and 𝑣𝑗 is the calibrated
value learned from the data for bin 𝑗 ∈ [𝐵], reflecting its average calibrated
probability.

The fitted function 𝑓1 is determined by minimizing the mean squared error
(MSE) or BS between calibrated probabilities and true labels for the given
training dataset 𝒟 = {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1 defined as

ℓBS(𝑝; 𝑏,𝑣) =
1

𝑁

𝑁∑︁
𝑖=1

(𝑓1(𝑝𝑖1; 𝑏,𝑣)− 𝑦𝑖)
2

where 𝑦𝑖 ∈ {0, 1} is the true label, and 𝑝𝑖1 is the predicted probability of the
positive class for data point 𝑖 ∈ [𝑁]. The parameters are learned using the
pool adjacent violators algorithm (PAVA) to ensure the monotonicity of 𝑣. If
𝑣𝑗 does not maintain monotonicity (i.e., 𝑣𝑗 > 𝑣𝑗+1), adjacent bins are merged,
and 𝑣𝑗 is recalculated as the mean true outcome of the merged bins [205].

Multi-class Classification Isotonic regression extends via a OVR approach
for multi-class classification with 𝑀 classes, where each class is independently
calibrated against all others [205]. Specifically, for each class 𝑚 ∈ [𝑀]0, the
class 𝑚 is treated as positive, and the remaining classes as negative. The
corresponding binary dataset for class 𝑚 is 𝒟𝑚 = {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1 using the following
label transformation

𝑦𝑖 =

{︃
1, if 𝑦𝑖 = 𝑚

0, otherwise

A binning (calibration) function 𝑓𝑚 : [0, 1]3 → [0, 1] with parameters 𝑏𝑚 =

{0, 𝑏𝑚1, 𝑏𝑚2, . . . , 𝑏𝑚𝐵𝑚} is learned for class 𝑚, where 𝑏𝑚𝑗 ∈ [0, 1] and 𝑏𝑚𝑗 <

𝑏𝑚(𝑗+1) and 𝑣𝑚 = {𝑣𝑚1, 𝑣𝑚2, . . . , 𝑣𝑚𝐵𝑚} where 𝑣𝑚𝑗 ∈ [0, 1] and 𝑣𝑚𝑗 ≤ 𝑣𝑚(𝑗+1).
The function 𝑓𝑚 for class 𝑚, learned by minimizing ℓBS(·) on 𝒟𝑚, is defined

54

2. Fundamentals

as

𝑓𝑚(𝑝𝑖𝑚; 𝑏𝑚,𝑣𝑚) =
𝐵𝑚−1∑︁
𝑗=1

J𝑝𝑖𝑚 ≥ 𝑏𝑚𝑗K · J𝑝𝑖𝑚 < 𝑏𝑚(𝑗+1)K · 𝑣𝑚𝑗

ℓBS(𝑝; 𝑏𝑚,𝑣𝑚) =
1

𝑁

𝑁∑︁
𝑖=1

(𝑓𝑚(𝑝𝑖𝑚; 𝑏𝑚,𝑣𝑚)− 𝑦𝑖)
2 ,

where 𝑦𝑖 = 1 if the true class of instance 𝑖 is 𝑚, otherwise 0.

The calibrated probabilities are normalized to sum up to 1 as

𝑝𝑖𝑚 =
𝑓𝑚(𝑝𝑖𝑚; 𝑏𝑚,𝑣𝑚)∑︀𝑀−1
𝑗=0 𝑓𝑚(𝑝𝑖𝑗; 𝑏𝑗,𝑣𝑗)

It is a robust method for probability calibration, which can identify optimal
bin edges that minimize the BS under the monotonicity assumption, effectively
capturing the convex hull in Receiver Operating Characteristic (ROC) analysis.
Its non-parametric nature prevents significant model misfits, offering flexibility
in various scenarios. In multi-class settings, it independently calibrates each
class using a OVR approach, producing class-specific calibration functions
with distinct parameters tailored to the predicted score distribution of each
class [63].

Despite its strengths, isotonic regression has limitations.It tends to predict
constant values within bins, which can increase grouping loss and may yield
sub-optimal results when the un-calibrated model’s reliability diagram is non-
monotonic. Additionally, it can be resource-intensive in terms of training time
and memory on large datasets and often results in extreme confidence values
(0 and 1) in the outer bins, necessitating output clipping to avoid issues with
evaluation metrics like log-loss [63].

55

2. Fundamentals

Histogram Binning

Histogram binning is a non-parametric calibration method that provides better-
calibrated probabilities to reflect true event likelihoods [204]. Similar to Isotonic
regression, it involves partitioning the probability space into bins and assigning
calibrated values based on observed frequencies within these bins.Unlike Isotonic
regression, Histogram binning does not enforce monotonicity and discretizes the
probability space, making it suitable for cases where a non-monotonic mapping
may be necessary [204].

Binary Classification A binary output variable 𝑀 = 2 adjusts predicted prob-
abilities by assigning them to discrete bins associated with a calibrated value.
For the positive class 𝑚 = 1, the method defines a binning function 𝑓1 with
bin edges 𝑏 = {0, 𝑏1, . . . , 𝑏𝐵} and calibrated probabilities 𝑣 = {𝑣1, 𝑣2, . . . , 𝑣𝐵}.
Each bin boundary 𝑏𝑗 is calculated as 𝑏𝑗 = 𝑗

𝐵
,∀𝑗 ∈ [𝐵] = {1, . . . , 𝐵}, such that

𝑏𝑗 ∈ [0, 1] and 𝑏𝑗 < 𝑏𝑗+1.

Similar to Isotonic Regression, the calibrated function 𝑓1 : [0, 1]
3 → [0, 1] for

the positive class 𝑚 = 1 with predicted probability 𝑝1 is defined as

𝑓1(𝑝1; 𝑏,𝑣) =
𝐵−1∑︁
𝑗=1

J𝑝1 ≥ 𝑏𝑗K · J𝑝1 < 𝑏𝑗+1K · 𝑣𝑗 ,

where 𝑝1 is the predicted probability of the positive class, and 𝑣𝑗 is the calibrated
value for bin 𝑗 ∈ [𝐵].

The values 𝑣 are determined by computing the mean observed frequency of the
positive class within each bin using the training dataset 𝒟 = {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1 as

𝑣𝑗 =
𝑁∑︁
𝑖=1

J𝑝𝑖1 ≥ 𝑏𝑗K · J𝑝𝑖1 < 𝑏𝑗+1K · J𝑦𝑖 = 1K
J𝑝𝑖1 ≥ 𝑏𝑗K · J𝑝𝑖1 < 𝑏𝑗+1K

,

56

2. Fundamentals

where J(𝑦𝑖 = 1)K is equal to 1 if 𝑦𝑖 = 1 and 0 otherwise, ensuring that 𝑣𝑗 reflects
the proportion of positive class occurrences within 𝑗th bin, and 𝑣𝑗 is the final
calibrated probability for un-calibration value 𝑝1 lying in bin 𝑗 ∈ [𝐵].

Multi-class Classification Histogram Binning extends via a OVR approach
for multi-class classification with 𝑀 classes, where each class is independently
calibrated against all others [204]. Specifically, for each class 𝑚 ∈ [𝑀]0, the
class 𝑚 is treated as positive, and all other classes are negative and create the
corresponding binary classification dataset 𝒟𝑚 = {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1 by transforming
the labels as

𝑦𝑖 =

{︃
1, if 𝑦𝑖 = 𝑚

0, otherwise

For each class 𝑚, a binning function 𝑓𝑚 is learned with parameters 𝑏𝑚 =

{0, 𝑏𝑀1, . . . , 𝑏𝑚𝐵} and calibrated values 𝑣𝑚 = {𝑣𝑀1, 𝑣𝑚2, . . . , 𝑣𝑚𝐵}, where each
bin boundary 𝑏𝑚𝑗 is computed as 𝑏𝑚𝑗 =

𝑗
𝐵
,∀𝑗 ∈ [𝐵], ensuring 𝑏𝑚𝑗 ∈ [0, 1] and

𝑏𝑚𝑗 < 𝑏𝑚(𝑗+1).

The values in the vector 𝑣𝑚 are determined by computing the mean observed
frequency of the positive class within each bin 𝑗 using the training dataset
𝒟𝑚 = {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1:

𝑣𝑚𝑗 =
𝑁∑︁
𝑖=1

J𝑝𝑖𝑚 ≥ 𝑏𝑚𝑗K · J𝑝𝑖𝑚 < 𝑏𝑚(𝑗+1)K · J𝑦𝑖 = 1K
J𝑝𝑖𝑚 ≥ 𝑏𝑚𝑗K · J𝑝𝑖𝑚 < 𝑏𝑚(𝑗+1)K

,

where J(𝑦𝑖 = 1)K if the true class of instance 𝑖 is 𝑚, otherwise 0, ensuring that
𝑣𝑗 reflects the proportion of class 𝑚 occurrences within 𝑗th bin, and 𝑣𝑚𝑗 is the
final calibrated probability for un-calibration value 𝑝𝑖𝑚 lying in bin 𝑗 ∈ [𝐵].

The calibrated function 𝑓𝑚 for each class 𝑚 using the 𝑣𝑚 is defined as

𝑓𝑚(𝑝𝑖𝑚; 𝑏𝑚,𝑣𝑚) =
𝐵−1∑︁
𝑗=1

J𝑝𝑖𝑚 ≥ 𝑏𝑚𝑗K · J𝑝𝑖𝑚 < 𝑏𝑚(𝑗+1)K · 𝑣𝑚𝑗

57

2. Fundamentals

where 𝑝1 is the predicted probability of the positive class, and 𝑣𝑗 is the calibrated
value for bin 𝑗 ∈ [𝐵].

The calibrated probabilities are normalized to sum up to 1 as

𝑝𝑖𝑚 =
𝑓𝑚(𝑝𝑖𝑚; 𝑏𝑚,𝑣𝑚)∑︀𝑀−1
𝑗=0 𝑓𝑚(𝑝𝑖𝑗; 𝑏𝑗,𝑣𝑗)

Histogram Binning is a straightforward calibration method that improves the
reliability of predicted probabilities by discretizing them into bins and aligning
them with observed class frequencies. Unlike Isotonic Regression, it does
not enforce monotonicity between bins, offering flexibility for non-monotonic
probability mappings and faster training.

2.2.4. Automated Machine Learning

In the last decade, the field of AutoML has emerged as a response to the unmet
demand for engineering machine learning (ML) applications experts. While
the ultimate goal of AutoML is to automate the entire data science workflow,
the most extensively studied challenge is the combined algorithm selection
and hyperparameter optimization (CASH), which was first formally specified
by [189]. Since the introduction of CASH, various AutoML systems have been
developed [189, 60, 139, 133], demonstrating promising results in optimizing the
selection of ML algorithms and their hyperparameters for specific tasks, which
generally involve a dataset and a loss function. A comprehensive overview of
AutoML methods is available in [212]. AutoML aims to automate various stages
of the ML workflow, from data pre-processing to model deployment, with its
crucial aspect being hyperparameter optimization (HPO), which involves fine-
tuning the internal settings of ML algorithms to optimize model performance [3].
NAS, often misunderstood as a distinct problem, is a subset of HPO, with
both focusing on finding an optimal configuration within a defined search space,
though NAS automates explicitly the design of neural network architectures,
as illustrated in Figure 2.3.

58

2. Fundamentals

AutoML

Hyperparameter
Optimization

NAS

Figure 2.3.: Relation between AutoML and NAS [3]

Neural Architecture Search

NAS is a sub-field of AutoML that focuses specifically on optimizing neural
network architectures for given learning tasks [3]. Unlike general AutoML
approaches that aim to automate the entire ML pipeline, NAS is tailored
exclusively for neural networks. It seeks to discover the best possible net-
work architecture rather than selecting algorithms or tuning hyperparameters
alone [3]. By systematically exploring various network designs, NAS automates
the process of finding architectures that achieve high performance on a given
task, ultimately optimizing the structure and efficiency of neural networks [3].

Search Strategies The search strategy in NAS significantly impacts search
performance and runtime. Previous work applying NAS to SCA has primarily
focused on Bayesian and Random search strategies [201], which are not always
time-efficient [160, 117].This study examines four search strategies— Ran-

dom, Greedy, Hyperband, and Bayesian — with a fixed budget of 1000
trials, utilizing their implementations provided by AutoKeras [100]. Typically,
search strategies explore the search space by trying many substantially different
architectures. This is followed by exploitation, in which well-performing archi-
tectures are further improved via small changes. Because each search algorithm

59

2. Fundamentals

can only consider a limited number of architectures (1000 for experiments
in Chapter 6), it should have a balanced trade-off between exploration and
exploitation to perform efficiently and accurately.

Random The Random search technique uniformly chooses a unique archi-
tecture configuration at random (with replacement) from the complete search
space and evaluates its performance. This process is repeated for a specified
number of trials but is preempted if it has exhausted the search space or the
same configuration is chosen multiple times. This means it focuses only on
exploration without any exploitation.

Greedy The Greedy search algorithm proposed by Jin [99] works in two
distinct stages, exploration and exploitation. In the exploration stage, it
evaluates uniformly randomly chosen models for a limited number of trials [100].
In the exploitation stage, it generates models that are neighboring to the
best-performing model from the first stage and exclusively attempts to improve
it. This is done by traversing a hierarchical hyperparameter tree representing
the hyperparameters of the best-performing model, as well as possible changes
such that the new hyperparameter values remain close to that of the best-
performing model with high probability [99]. This tree is rebuilt if a better
architecture is found, at which point this architecture becomes the starting
point for subsequent exploitation. The algorithm continues the exploitation
process until either the trial limit is reached or until it has exhausted the entire
search space. The Greedy search algorithm is time-efficient, but it might get
stuck in local optima since it performs limited exploration, e.g., for only 1% of
the maximum number of trials in AutoKeras [99, 100].

Hyperband The Hyperband search algorithm is based on the successive
halving algorithm [117]. The Successive Halving algorithm equally divides the
resources (time, epochs) into several hyperparameter configurations. Each time
step (2-3 epochs) checks their performance and, at the end, keeps the top-half

60

2. Fundamentals

best-performing configurations. This process is repeated until only the best-
performing configurations are left. The Hyperband algorithm is time-efficient
and balances the trade-off between exploration (check many models with a
low budget) and exploitation (provide a high budget to the best-performing
architectures) very well [117].

Bayesian The Bayesian search algorithm is based on Bayesian optimization,
which assumes a (black-box) function 𝑓 ′ : Θ → R over the hyperparameter
space 𝜃 ∈ Θ = (Θ1, . . . ,Θ𝑛), such that 𝜃 = (𝜃1, . . . , 𝜃𝑛) represents one hyperpa-
rameter configuration [61]. Each hyperparameter space can be an integer, real
or categorical, i.e., Θ𝑖 ∈ R or Θ𝑖 ∈ Z or Θ𝑖 ∈ {0, . . . , 𝑐}, for some 𝑐 ∈ N, where
𝑐 is the number of categories. A probabilistic model using the Gaussian Process
finds the best configuration function 𝑓 ′, which maps a configuration 𝜃 to the
estimated real-valued validation accuracy. This probabilistic model provides
the properly balanced trade-off between exploitation and exploration of the
search space [117]. At the end of the 1000 fixed trials the best configuration is
obtained as 𝜃* = arg max𝜃∈Θ 𝑓 ′(𝜃).

State-of-the-art AutoML Tools

In recent times, various AutoML systems or tools with complementary strengths
have been proposed in the literature. A recent benchmark study [71] identifies
AutoGluon [52, 53] as one of the leading AutoML systems, demonstrating
superior performance across diverse datasets and tasks.

In contrast to traditional CASH-based approaches, introduced TabPFN, a
general-purpose predictor trained across multiple datasets that can immediately
deliver highly accurate predictions without extensive tuning [89, 90]. Yielding
competitive performance to AutoGluon, TabPFN suggests itself as a state-
of-the-art AutoML tool that returns results substantially faster than other
AutoML systems. Given their strong performance, AutoGluon and TabPFN are

61

2. Fundamentals

selected to approximate the Bayes predictor for the proposed ILD approaches
described in Section 3.2.2. The foundational concepts and strengths of these
benchmark tools are outlined below.

AutoGluon In contrast to other AutoML systems that aim to select feature
pre-processing algorithms and a learning algorithm and tune their respective
hyperparameters, AutoGluon [52, 53] follows a different approach. More
specifically, AutoGluon focuses on building a stacking ensemble, greedily adding
more models as long as they are beneficial for the overall performance of the
ensemble. To this end, AutoGluon searches over a wide range of different
ML algorithms and pre-fitted models, including DL, gradient boosting, and
linear models. Simultaneously, AutoGluon tunes hyperparameters for each
model to optimize their performance. For performing HPO, different standard
techniques can be used such as ASHA [116], Hyperband (HB) [117], Bayesian
optimization (BO) [65], or Bayesian optimization and Hyperband (BOHB) [55].
A recent benchmark study found AutoGluon to perform superior to other
AutoML systems in predictive performance and robustness. The only drawback
noted by [71] is the prediction time, as it will grow with the number of models
included in the returned stacking ensemble. Moreover, AutoGluon allows the
customization of the set of considered ML algorithms and models, including
gradient boosting machine (GBM) tree-based models and deep neural networks
(NNs). For the experiments done for this thesis, the search space of AutoGluon
is limited to the consistent classifiers [132, 18]. Table A.1 present the models
and learning algorithms with corresponding hyperparameters, including their
range values available to AutoGluon for the experiments in Chapters 4 and 5.

TabPFN TabPFN [89, 90] is an approach to AutoML that solves classification
tasks in a transductive way. Instead of fitting a model specifically to a dataset
and returning this model to the user, TabPFN is a transformer-based neural
network architecture trained on the vast number of different probability distri-
butions of tabular data. Instead of searching for a proper learning algorithm

62

2. Fundamentals

and its hyperparameter setting in the first place, TabPFN can be used to
instantaneously make predictions as it is already fitted on prior data. Due
to this, predictions can be obtained faster by orders of magnitude compared
to classical AutoML estimation baseline tools. Moreover, the predictions are
highly accurate and excel, particularly on small tabular datasets. However,
TabPFN was only considered for datasets consisting of up to 1000 training data
points, 100 numeric features, and 10 classes. Hence, in practical applications
with more data points, TabPFN is currently not reliably applicable. Due to
its highly accurate predictions, which appear to come with well-calibrated
probability estimates for the classes, TabPFN is an interesting pick for the
proposed ILD approaches to approximate the Bayes predictor. Since TabPFN
is limited to handling datasets with up to 100 numeric features, the real-world
IL-Datasets obtained from OpenSSL TLS server implementations contain more
than 100 features. To address this, dimensionality reduction techniques, espe-
cially using RF and extra trees classifier (XT) (applied only when 𝑑 > 100),
are employed. Fine-tuning is conducted on TabPFN by adjusting parameters
such as the number of reduced features, the reduction model, and the number
of prior-fitted models through HPO.Table A.1 presents the specific parameter
ranges used for the experiments detailed in Chapters 4 and 5.

Neural Networks

A Neural Network consists of a series of interconnected layers containing Neurons
that connect an input layer that is activated according to observation with
an output layer corresponding to the model’s prediction for this observation.
The structure of these interconnections and the method of layer operation
can vary significantly and define the overall Neural Architecture. The MLPs
is a very simple Neural Network, only employing fully connected, or “dense”,
layers. These were shown to perform SCA efficiently if the system applies no
countermeasures but often fails for more challenging tasks [14, 120].

63

2. Fundamentals

In recent work in the area of hardware side channels, the CNNs have proven to
be very effective in learning a multi-class classification model and breaking a
system via hardware side channels, even if such a system implements counter-
measures [206]. CNNs have shown to be very robust towards the most common
countermeasures, namely masking [120, 124] and desynchronization [23]. A
CNN contains convolutional, pooling, and dense layers as shown in Figure 6.1.
A CNN can be viewed as an MLP where only each neuron of the layer 𝑙 is
connected to a set of neurons of the layer 𝑙 − 1, therefore, can perform all the
operations that can be performed by an MLP [206]. In addition to that, the
CNN architecture imposes inductive biases that are useful for many critical ap-
plications and that the MLP networks would have to learn [206]. A recent study
shows that, overall, CNNs are more efficient and better suited for performing
SCA on hardware datasets than MLPs [25], which is why the focus is placed
on different CNN architectures [79] for the experimental study in this thesis
described in Chapter 6. The convolutional block consists of the convolutional
layer and a pooling layer, and the dense block consists of the dense (fully
connected layer). The batch normalization operation is typically applied after
the convolutional and dense layers.Each layer has some trainable parameters
𝑤̂, which are used to get the final target function 𝑓 (c.f. Section 2.3.3) and
some hyperparameters. The hyperparameters are configuration variables of
the layer external to the learning model (𝑓) and hugely influence finding an
optimal target function 𝑓 . Next, the operations performed by these layers are
briefly described.

Convolutional Operation This operation re-estimates the input value by
taking a weighted average of the neighboring values as shown in Figure 2.4a.
The weights are defined using a kernel of some size 𝑤𝑘 (𝑤𝑘 for 1-D data or
𝑤𝑘 × 𝑤𝑘 for 2-D data), and these weights are learned using back propagation
algorithm [206]. This kernel is shifted over the input data (1-D vector or 2-D
maps) with a stride until the entire data is covered. The convolutional operation
is performed for every shift and produces a weighted average value. Typically,
this operation is applied multiple times using different kernels, and this number

64

2. Fundamentals

8 4 3 60

2 1

20 8 6 9 24

Input

Output

Without Pading

9

+

x x

2 1

x x

Kernel

8 4 3 60

2 1

20 11 6 9 24

Input

Output

With Pading

9

+

x x

2 1

x x

Kernel

0

12

+

+

Pad 0

(a) Convolutional Operation

8 4 3 60

MAX

8 3 9

Input

Output

Max Pooling

9

MAX MAX

8 4 3 60

AVG

6 1.5 7.5

Input

Output

Average Pooling

9

AVG AVG

(b) Pooling Operations

8 3 6

Input

9.8 -4.7

1 .2
.2

.3.5
-1

ELU Activation
Function

 5.9-2.2

9.8 -.99 5.9

Softmax
Dense Layer

-.89

.97 1e-328e-
31e-3

Output

Units

(c) Dense Layers

Figure 2.4.: Different operations of various CNN layers

is called the filter size 𝑓𝑖 of the convolutional layer. If this operation is applied
without padding, then the dimensionality of output decreases, which is called
the valid padding operation. To preserve the dimension, the data is padded
with 0, and this operation is called same padding [206].

The number of trainable parameters for convolutional layers is [𝑖𝑛× 𝑓𝑖 × 𝑤𝑘 ×
𝑜𝑢𝑡] + 𝑜𝑢𝑡 for 1-D data and [𝑖𝑛× 𝑓𝑖×𝑤𝑘 ×𝑤𝑘 × 𝑜𝑢𝑡] + 𝑜𝑢𝑡 for 2-D data, where
𝑖𝑛 denotes the number of inputs and 𝑜𝑢𝑡 denotes number of outputs [169]. The
two hyperparameters that need to be searched for an optimal CNN architecture
are the kernel size and number of filters for each convolutional layer as listed
in Table 6.1.

Pooling Operation This operation applies down-sampling on the input
acquired from the previous layer and produces a condensed representation.
This operation reduces the trainable parameters of the CNN and avoids over-

65

2. Fundamentals

fitting [206]. The pooling operation of some size 𝑤𝑝 (𝑤𝑝 for 1-D data or 𝑤𝑝×𝑤𝑝

for 2-D data) and stride is shifted across the input, reducing it by applying a
max or average operation, as shown in Figure 2.4b. Similar to the convolutional
operation, the pooling operation could also be applied with (preserves dimen-
sionality) or without padding (dimensionality decreases), and the operations
are called same or valid padding, respectively. This layer does not have any
trainable parameters, and the hyperparameters that need to be searched for
an optimal CNN architecture are the pool-size 𝑤𝑝, number of strides, and
pooling operation type as listed in Table 6.1.

Dense Layers This layer consists of weights 𝑊 ∈ R𝑑×𝑛ℎ and biases 𝑏 ∈ R𝑛ℎ ,
where 𝑑 is the dimensionality of the input 𝑥 ∈ R𝑑 and 𝑛ℎ is the number of
hidden units of the layer [14]. The output of this layer is evaluated using
the formulae 𝑊𝑥+ 𝑏 as shown in Figure 2.4c. Typically, an activation (e.g.,
ReLU, Elu) is also applied to each output element, and the weights and biases
are learned using the back-propagation algorithm [14]. The last dense layer
is applied using the softmax function (c.f. Section 2.3.3), which converts real-
valued scores to softmax-scores as shown in Figure 2.4c. The number of
trainable parameters for dense layers is the sum of 𝑛ℎ for each input plus the
bias 𝑏: 𝑛 = (𝑖𝑛 × 𝑛ℎ + 𝑛ℎ × 𝑜𝑢𝑡) + (𝑛ℎ + 𝑜𝑢𝑡) where 𝑖𝑛 denotes the number
of inputs and 𝑜𝑢𝑡 denotes the number of outputs [169]. The hyperparameter
that needs to be searched is the number of hidden units for each dense layer as
listed in Table 6.1.

Batch Normalization Layer This layer was introduced to lower internal
covariance shift in the neural network, thus making the convergence faster
[95]. It was possible to use higher learning rates for the training process. This
layer normalizes every data point 𝑥𝑖 in a training batch by estimating the
expected mean and the variance of the training batch. The number of trainable

66

2. Fundamentals

parameters for batch normalization is 4× 𝑑, where 𝑑 is the dimensionality of
the input. To perform the NAS, the operation is chosen to be applied to each
convolutional and dense block, as depicted in Figure 6.1c.

2.3. Side-channel Attacks

This section provides a concise overview of SCAs, classifying them by the
type of leaked information, collection methods, and proximity requirements for
execution [211, 183]. It focuses on Bleichenbacher’s SCA, which targets RSA-
based encryption to extract plaintext, and template attacks that compromise
secret keys in AES-encrypted systems, detailed in Section 2.3.2 and Section 2.3.3,
respectively. As detecting ILs in these vulnerable systems is a central aim of
this thesis, an understanding of these attack methods is essential for applying
the ILD techniques presented in Chapter 3.

2.3.1. Taxonomy

A side channel is a mode through which unintended leakage of sensitive informa-
tion occurs from a computing cryptographic device, including standard modes
like network messages, CPU caches, power consumption, and expectation-
maximization (EM) radiation [211]. A SCA uses the leaked information from
one or multiple modes to reconstruct the original, sensitive data [211]. Such
attacks have historical roots in espionage, such as NATO’s TEMPEST and the
Soviet PEMIN programs, which used EM emissions from cipher machines to
decrypt diplomatic communications during the early Cold War [50].

Recent SCAs like GoFetch and SLUBStick have exposed significant vulnerabili-
ties in modern systems. The GoFetch attack exploits data memory-dependent
prefetchers (DMPs) in Apple CPUs to extract secret keys, emphasizing the
need for more robust defenses against evolving SCAs, impacting cryptographic
protocols like OpenSSL Diffie-Hellman, Rivest–Shamir–Adleman (RSA), posing

67

2. Fundamentals

a significant threat to the macOS systems [29]. SLUBStick targets the Linux
kernel leaking side-information in arbitrary memory, performing cross-cache
SCAs, threatening cloud and container security environments [119]. According
to Spreitzer et al. (2018) [183], SCAs are classified by method, mode or side
channel used to gather the information, and attacker proximity, as shown
in Figure 2.5.

Attack Methodology In passive SCAs, the attacker observes and collects
information from side channels without interacting with or altering the device’s
operations and stealthily acquires sensitive information without changing the
behavior of the device or introducing any faults into the system, making them
hard to detect [211, 183]. Active SCAs involves inducing errors or faults
via fault injection techniques like laser or clock glitching to reveal sensitive
information from cryptographic devices [183]. This thesis focuses exclusively
on noninvasive passive attacks, representing a significant threat in hardware
and software environments.

Proximity of Attacker Local SCAs require direct physical access to the
target device, such as measuring power consumption or EM emissions from
smart cards [78, 177]. Vicinity SCAs exploit shared resources, like caches
in multi-core processors, requiring proximity but not direct contact, timing-
based attacks on shared caches [202] and analysis of WiFi and Bluetooth
signals [208].

Remote SCAs can be executed over the network, exploiting processing time for
the messages [130, 68] or cache behaviors without physical proximity [179]. For
simplicity, the vicinity and remote attacks are merged under a single category,
as both can be executed without physical access.

Side Channel Type Physical (Hardware) SCAs exploit the physical char-
acteristics of devices, such as power consumption, electromagnetic emissions,
or acoustic signals, by analyzing hardware-specific side channels like power

68

2. Fundamentals

Local Vicinity/Remote

P
hy

sic
al

(H
W

)
Lo

gi
ca

l(
SW

)

Power
Consumption [78, 79]

EMR
Measurements [70, 177]

WiFi Signal
Monitoring [208]

Soundcomber [175]

Speech
Recognition [131]

Cache
Microarchitecture [202, 4]

Cache Hit-Miss
Processing Time [179, 2]

TLS Message
Processing Time [68, 81]

TLS ACK
Error Codes [49, 80]

Smart Card User Devices Cloud Storage

Figure 2.5.: Taxonomy of Side-channel Attacks [183]

and EM measurements to extract sensitive information from devices [78, 177,
175, 131]. Logical (Software) SCAs exploit the software layer by leveraging
the logical execution behavior of software to carry out attacks [68, 49]. These
attacks utilize processing time or error codes of the correctly and incorrectly
padded PKCS#1 messages, which may leak through the system’s cache or
network traces, to extract sensitive information.

Relevant for Thesis This work addresses the detection of identity (ID) leakage
in AES-encrypted systems, which are shown to be susceptible to hardware
SCAs through local side channels such as power consumption or electromagnetic
radiations (EMR) [79]. Additionally, ILs via the remote side channel of network
traffic analysis are examined, where information is leaked through processing
time, and alert responses (error codes) are Transport Layer Security (TLS)

69

2. Fundamentals

handshake messages as shown in Figure 2.7 that distinguish between correct and
incorrect plaintexts, rendering devices vulnerable to (software) Bleichenbacher
SCAs [80, 81].

2.3.2. Bleichenbacher’s Attack

Introduced by Bleichenbacher (1998) [20], Bleichenbacher’s attack is a classic
passive remote padding oracle SCA that exploits subtle server response differ-
ences, such as distinct TLS error messages or processing time variations, to
recover sensitive information from RSA PKCS#1v1.5 encrypted ciphertexts.
This attack involves sending carefully crafted ciphertexts repeatedly to a decryp-
tion oracle over the network, leveraging side information to distinguish valid
from invalid padding string (PS) (e.g., PKCS#1v1.5). Ultimately, it allows the
adversary to recover plaintexts or forge signatures, highlighting critical vulner-
abilities in cryptographic implementations, making them a key consideration
for designing robust IL detection and SCA defense strategies [20].

This section discusses the exploitation of padding errors in RSA-based encryp-
tion, as demonstrated by Bleichenbacher’s attack, starting with an overview of
the TLS handshake and attacker model, followed by the evolution of similar
SCAs and Bleichenbacher’s iterative algorithm for attacking TLS servers [49].

TLS Handshake and Authentication

TLS is the most widely used cryptographic protocol, securing web browsing, web
applications, emails, VoIP calls, and virtual private network (VPN) traffic across
most websites. Based on the Google Transparency Report, as of early 2023,
96% of web pages visited by German Chrome users on Windows were loaded
over HTTPS/TLS [76]. Known initially as Secure Sockets Layer (SSL), the
protocol was renamed to TLS in 1999 [162], and the term TLS now encompasses
all versions, including earlier SSL versions.

70

2. Fundamentals

b7 c3 [...] a9 5f 00 f9 b6 [...] dc 99

Block
Type

Padding String

Separator
PreMasterSecret

Randomness

03 04

TLS Version

0200

Figure 2.6.: Padded Pre-master secret (PMS) [163]

RSA-PKCS#1v1.5 Key Exchange All TLS cipher suites based on RSA
key transport use the RSA-PKCS#1v1.5 encryption scheme for securely trans-
mitting the pre-master secret (PMS) from the client to the server [163]. This
scheme pads the PMS using a combination of constant and random bytes,
structured as shown in Figure 2.6. The PMS is a random 48-byte string padded
with: the leading 00 02, a separator byte 00, and the TLS version number 03
03 (indicating TLS 1.2). The remaining padding string is chosen randomly
from all byte strings that exclude 00, ensuring the padded string’s total length
matches the modulus size 𝒩 . The resulting padded string 𝒫 is encrypted as
𝑐 = 𝒫𝑒 mod 𝒩 .A ciphertext is PKCS#1v1.5-conformant if 𝒫 = 𝑐1/𝑒 mod 𝒩
follows the padding structure defined in Figure 2.6. Non-conformant ciphertexts
are discussed in Section 5.1.

TLS defines a two-phase protocol: first, the handshake where the client and
server authenticate each other and establish shared cryptographic keys, followed
by the encrypted actual payload data transmission phase using the derived
keys, as shown in Figure 2.7. RSA was the first key exchange algorithm used in
TLS to secure shared secret transmission. In this scheme, the client generates
a new PMS and encrypts it using the server’s public RSA key. Once the server
receives the encrypted PMS, it decrypts it using its private key, allowing both
parties to derive the shared session keys for secure communication. Additionally,
RSA is used for digital signatures in the server’s certificate, enabling the client
to verify the server’s identity and guard against impersonation attacks.

71

2. Fundamentals

The TLS 1.2 Handshake The TLS 1.2 handshake [166], illustrated in Fig-
ure 2.7, is the fundamental process for establishing a secure connection. During
this handshake, the client and server agree on cryptographic algorithms, ex-
change secret keys, and the server authenticates its identity to the client. The
sequence of handshake messages is as follows:

Step (1) ClientHello message The client initiates the connection by send-
ing the ClientHello message, which contains a list of supported crypto-
graphic algorithms (cipher suites).

Step (2) ServerHello message The server responds by selecting a cipher
suite and sending the ServerHello message. It then proves its identity
using a digital signature linked to a certificate from a trusted third party.
The handshake flow ends with a ServerHelloDone message.

Step (3) ClientKeyExchange (CKE) The client proceeds with the key ex-
change using the agreed-upon algorithms. For RSA-based key transport,
the client generates a new random key called the PMS, which is encrypted
using the server’s public RSA key, ensuring only the server can decrypt it.
The client indicates the start of encrypted communication by sending a
ChangeCipherSpec (CCS) message and a Finished (FIN) message contain-
ing a cryptographic checksum of the key exchange messages, computed
using a key derived from the PMS.

Step (4) Server Verification and Finalization Upon receiving the encrypted
PMS, the server decrypts it using its private key. It derives cryptographic
keys to decrypt and verify the client’s FIN message. The handshake
concludes when the server sends a CCS and a final FIN message back to
the client.

From this point onward, all communications between the client and server are
secured using keys derived from the PMS and other publicly exchanged values
(e.g., nonces in the ClientHello and ServerHello messages).

72

2. Fundamentals

Client Server

Client Hello
Server Hello
Certificate
Server Hello DoneClient Key Exchange

Change Cipher Spec
Finished Change Cipher Spec

Finished

Encrypted Data

Figure 2.7.: TLS 1.2 Handshake example [166]

Evolution of Attacks

In Bleichenbacher’s attack, the oracle takes an RSA-encrypted ciphertext as
input. It reveals whether the decrypted plaintext is formatted according to
the PKCS#1v1.5 padding standard, leaking secret information in the process.
This requires a side channel within the protocol’s implementation, such as a
TLS server that returns distinct alert messages based on padding correctness.
The attack leverages these discrepancies by sending manipulated ciphertexts in
repeated TLS handshakes, observing the server’s responses, and classifying them
as “padding correct” or “padding incorrect”. By accumulating these responses,
the adversary can gradually reconstruct the original plaintext or generate valid
RSA signatures with a few thousand queries. Understanding the separation
between the attack, the oracle, the side channel, and the implementation is
crucial, as eliminating the side channel in a specific implementation can mitigate
the attack entirely.

Improvements to the oracle or attack techniques (e.g., the ROBOT enhance-
ments [21]) can make previously hidden or un-exploitable side channels a new
threat. Similarly, optimizations (such as those by Bardou et al. (2012) [6]) can
turn impractical side channel vulnerabilities into feasible attacks. Numerous
research papers have explored different methods for constructing and exploiting

73

2. Fundamentals

this oracle in specific implementations or applications [20, 107, 96, 45, 209,
130, 5, 6, 58, 21, 102], revealing that such vulnerabilities frequently reappear in
widely used software and commercial products. Consequently, Bleichenbacher-
like attacks serve as a valuable reference for developing automated methods to
detect SCAs on the protocol level, with TLS being a prime example [167].

Bleichenbacher’s attack history Bleichenbacher’s attack was first intro-
duced by Bleichenbacher (1998) [20], targeting the RSA key exchange used
in SSL version 3 [167]. Also known as the “million message attack” due to
the high number of required TLS handshakes, it exposed a critical flaw in the
PKCS#1v1.5 padding standard, which led to an update from the vulnerable
padding in version 1.5 [163] to the optimal asymmetric encryption padding
(OAEP) scheme in version 2 [164]. However, when TLS version 1.0 [162] was
introduced as the successor to SSL version 3, it did not adopt the updated
padding scheme. It continued to require PKCS#1v1.5 padding for RSA key
exchange until TLS 1.2 inclusive, while TLS 1.3 removed the RSA key ex-
change with PKCS#1v1.5 [166]. The standard specified to address the issue
by “The best way to avoid vulnerability to this attack is to treat incorrectly
formatted messages in a manner indistinguishable from correctly formatted
RSA blocks” [162, Section 7.4.7.1].

In 2003, Klíma et al. introduced a variant called the “bad version oracle”, which
exploited the rejection behavior of TLS implementations for invalid version
numbers in RSA key exchange messages. By leveraging these known version
bytes in the middle of the message instead of the initial bytes, they adapted
Bleichenbacher’s attack to use this new side channel [107]. This led to TLS
version 1.1 [165, Section 7.4.7.1] and version 1.2 [166, Section 7.4.7.1] refining
countermeasures to mask such side channels and standardizing uniform handling
of invalid paddings. Specifically, TLS version 1.1 recommended suppressing TLS
alerts for invalid version numbers, while TLS 1.2 introduced more comprehensive
measures, standardizing the uniform handling of incorrect paddings to eliminate
timing-based side channels. In 2018, new side channels were discovered when

74

2. Fundamentals

Böck et al. [21] analyzed timeout behaviors in incomplete TLS handshakes,
revealing vulnerabilities in major websites. Their analysis found that 27 of the
100 most visited websites (according to the Alexa ranking1) were susceptible to
variations of Bleichenbacher’s attack using these newly identified side channels.
Although TLS version 1.3 [168] finally removed RSA key exchanges and the
PKCS#1v1.5 padding, older versions of TLS remain in widespread use, leaving
many servers exposed. According to the 2021 F5 Labs TLS Telemetry Report,
52% web servers still allow the use of RSA key exchanges, even though the
majority of servers prefer using elliptic curve key agreements like ECDHE, which
aligns with Bleichenbacher’s attack relevance [196]. This persistence in using
outdated cryptographic practices has security implications, as highlighted by
F5’s ongoing tracking of top CVEs and DDoS trends, which show vulnerabilities
in legacy protocols and their impact on attack strategies [83, 84].

Attacks based on Bleichenbacher’s The original padding oracle attack
described by Bleichenbacher (1998) [20] relied on distinguishable error messages
in early TLS server implementations. Although later protocol versions intro-
duced countermeasures, such as standardizing indistinguishable error responses,
this did not eliminate all potential side channels. Over time, researchers have
demonstrated that padding oracles can exploit various protocol behaviors and
implementation-specific vulnerabilities. Klíma et al. (2003) [107] introduced
the bad version oracle, leveraging timing variations in the TLS handshake to
create a padding oracle.This marked a significant development in the evolution
of Bleichenbacher’s attack, as the vulnerability stemmed from subtle timing
differences rather than easily distinguishable error messages. Jager et al. (2012)
[96] demonstrated that XML Encryption, widely used in web services, could
also be vulnerable to padding oracles. This attack exposed vulnerabilities at
the application layer, highlighting that such attacks are not confined to the TLS
protocol alone. In the hardware SCA realm, Bardou et al. (2012) [6] refined the
original attack, drastically reducing the number of required oracle queries. They

1https://www.alexa.com/topsites

75

https://www.alexa.com/topsites

2. Fundamentals

revealed padding oracles in several hardware tokens, including the Estonian ID
card and RSA SecurID tokens, demonstrating that side channels can persist in
specialized cryptographic hardware.

Degabriele et al. (2012) [45] extended these attacks to the Europay-Mastercard-
Visa (EMV) payment protocol, demonstrating how padding oracles could
compromise payment systems. Similarly, Meyer et al. (2014) [130] uncovered
vulnerabilities in the Java Secure Socket Extension (JSSE) TLS implementation,
identifying side channels that were detectable over a network. One of the most
impactful advancements was the DROWN attack by Aviram et al. (2016) [5],
which exploited a flaw in OpenSSL, allowing highly efficient Bleichenbacher-style
attacks using outdated cryptography from SSLv2. This demonstrated that even
deprecated protocols could be leveraged to compromise modern cryptographic
systems. More recently, Felsch et al. (2018) [58] expanded the scope of these
attacks by demonstrating padding oracles in the IPSec Internet Key Exchange
(IKE) handshake, used by major vendors like Cisco and Huawei.

Zhang et al. (2014) [209] demonstrated that cache-based side channels in
cloud environments could allow attackers to extract information across virtual
machine boundaries, applying Bleichenbacher’s attack to XML encryption
on TLS servers in cloud hosting contexts. Jager et al. (2015) [97] showed
that even protocols like TLS 1.3 and QUIC, which do not support vulnerable
RSA key exchanges, could be impersonated using Bleichenbacher’s attack on a
different server supporting older versions like TLS 1.2. Xiao et al. (2017) [203]
further expanded the attack by targeting a TLS library running in Intel’s SGX
enclave, using side channels to decrypt TLS handshakes executed by the library.
In 2018, Böck et al. (2018) [21] reintroduced the threat of Bleichenbacher’s oracle
with the ROBOT attack, exposing new side channels through incomplete TLS
handshakes. Ronen et al. (2019) [172] took advantage of microarchitectural side
channels, particularly cache timing, to downgrade TLS handshakes and execute
parallelized versions of Bleichenbacher’s attack. Finally, Kelesidis (2021) [104]
proposed optimizations that reduced the number of necessary oracle queries
by 75%, significantly improving the efficiency of the attack. These examples

76

2. Fundamentals

highlight the ongoing relevance of Bleichenbacher’s attack, emphasizing the need
for constant surveillance and adaptation in cryptographic design to mitigate
such SCAs.

Noisy side channels Noisy side channels introduce a significant challenge
in SCAs by making extracting accurate information from the leaked data
harder. Despite this, several techniques and attacks have been developed to
effectively handle noisy observations, demonstrating that SCAs can succeed
even in a noisy environment. For instance, Frittoli et al. (2020) [66] proposed
strengthening sequential SCAs by using change detection tests to manage
errors like false positives and false negatives. This method is effective in noisy
environments as it identifies deviations in side channel leakage and corrects
them, making attacks more resilient to inaccuracies. Similarly, Guo et al. (2020)
[78] introduced Soft analytical side-channel attacks (SASCA), which applies
coding theory to handle noisy leakage data, effectively exploiting noisy side
channel information and making it robust across various attacks. Other notable
works, such as Ronen et al. (2019) [172], addressed the challenge of false
positives in noisy side channels by repeating oracle queries multiple times to
enhance reliability, while Meyer et al. (2014) [130] examined the impact of
false negatives on SCAs and showed how noise can affect the success of attacks.
Moreover, some attacks have developed methods specifically to exploit noisy
data. For example, Wu et al. (2022) [202] presented PREDATOR, a detection
mechanism that remains effective in noisy environments by using precise event
monitoring to detect microarchitectural manipulations.

Additionally, Ali and Khan (2022) [4] demonstrated that multi-core timing vari-
ations across shared hardware resources could be aggregated, making the attack
more robust against noise than traditional single-channel attacks. Furthermore,
the Marvin SCA by Kario (2024) [102] highlights how noise can be mitigated
in timing-based SCAs. The attack uses paired difference tests and system
optimizations, such as BIOS configuration, to maintain high CPU frequency
and to detect even small timing differences in noisy environments. By refining

77

2. Fundamentals

measurement techniques, the Marvin attack can bypass noisy observations and
remain effective, underscoring how modern SCAs can adapt to and exploit noisy
conditions. In summary, while noise can hinder SCAs, advanced techniques in
error correction, statistical analysis, and system optimizations allow attackers
to mitigate these challenges, making noisy side channels still vulnerable to
exploitation and corresponding systems susceptible to SCAs.

Attack Methodology

This section details how Bleichenbacher’s iterative algorithm leverages side-
channel information to refine plaintext guesses until the complete message is
recovered progressively.

Padding Oracle: Attacker Model Padding oracle attacks are a specific
type of remote SCA that exploit the handling of padding within encryption
schemes. During encryption, additional padding bytes are required to ensure
that the resulting plaintext meets the block size requirements, particularly
for block ciphers [106]. Adding randomized padding is also essential (but
not necessarily sufficient) to be able to achieve IND-CPA secure encryption
from deterministic public-key encryption schemes, like textbook RSA [106].
As such, PSs represents how the sender adds this data and how the receiver
removes it. In these attacks, an oracle returns a binary response indicating
whether the decrypted plaintext or the given ciphertext conforms to the padding
standard. Although this may seem like a minor IL, attackers can repeatedly
query the oracle with slight variations of the same ciphertext, systematically
narrowing down the plaintext until only one possibility remains. This capability
effectively allows attackers to decrypt a given ciphertext without access to the
secret key or to forge digital signatures, as seen in Bleichenbacher’s attack on
PKCS#1v1.5 RSA padding [20], Vaudenay’s attack on cipher block changing
(CBC) padding [192], and Manger’s attack on OAEP RSA padding [122]. This
effectively allows the attacker to decrypt a given ciphertext without access to

78

2. Fundamentals

the secret key or to forge a signature in the case of Bleichenbacher’s attack
on RSA. These attacks are only feasible when the ciphertexts are malleable,
allowing predictable modifications to the plaintext. For example, RSA ’s
multiplicative homomorphism enables precise adjustments, while in the CBC
mode, a modification of the initialization vector (IV) can predictably alter the
first block.

Bleichenbacher’s attacker model assumes an adversary with unlimited ability
to interact with the implementation over the network, allowing them to send
repeated messages indefinitely. This assumption is reasonable for many network
protocols, where servers—such as web or mail servers—respond to requests
persistently, making them vulnerable. Even traffic filtering mechanisms can be
circumvented by attackers using distributed networks (e.g., botnets or VPNs) or
sufficient patience. The side channel can include the primary protocol messages
and metadata like Transmission Control Protocol (TCP) packets or timing
information. In some cases, it is also assumed that the attacker has pre-existing
access to certain ciphertexts, either by passively sniffing traffic on the network
or through a man-in-the-middle (MitM) attack.

Attack Algorithm The Bleichenbacher’s attack operates on the assumption
that a padding oracle is available, which takes as input a ciphertext and reveals
whether the contained plaintext conforms to the PKCS#1v1.5 PS for a given
RSA public key (𝒩 , 𝑒). The attack uses this oracle only to decrypt RSA
PKCS#1v1.5 ciphertexts but also compute valid RSA signatures with respect
to the same RSA key contained in a server’s certificate.

Bleichenbacher described a seminal algorithm that can use such an oracle to
efficiently compute the RSA decryption function 𝑐𝑡 → 𝑐𝑡1/𝑒 mod 𝑁 for any
given ciphertext 𝑐𝑡 mod 𝑁 . The oracle operates as follows:

Oracle(𝑐𝑡) =

⎧⎨⎩1 if 𝑐𝑡 is PKCS#1 conformant w.r.t.(𝒩 , 𝑒),

0 otherwise.

79

2. Fundamentals

Such an oracle can be constructed through various side channels, such as
analyzing error messages returned by a TLS server or detecting response timing
differences.

The core idea of Bleichenbacher’s algorithm is to leverage this padding oracle
to decrypt RSA ciphertexts or compute valid RSA signatures. Essentially, the
idea of Bleichenbacher’s algorithm is as follows.

Suppose that 𝑐𝑡 = 𝒫𝑒 mod 𝒩 is a PKCS#1-conformant ciphertext. This
assumption holds without loss of generality, because if 𝑐𝑡 is not, the oracle
can be used to randomize 𝑐𝑡 by computing 𝑐𝑡 = 𝑐𝑡 · 𝜌𝑒 = (𝒫𝜌)𝑒 mod 𝒩 for a
random 𝜌, until 𝑐𝑡 is PKCS#1-conformant, and then continue with 𝑐𝑡.

The number or the PKCS#1-conformant message 𝑐𝑡𝒫1/𝑒 mod 𝒩 lies in the
interval [2ℬ, 3ℬ), where ℬ denotes a number modulo 𝒩 whose binary represen-
tation is:

ℬ = 00 01 ...00 = 28(ℓ−2)

where ℓ is the byte-length of the modulus 𝒩 .

Step 1 Bleichenbacher’s algorithm chooses a small integer 𝑠, computes:

𝑐𝑡 = (𝑐𝑡 · 𝑠𝑒) mod 𝒩 = (𝒫𝑠)𝑒 mod 𝒩

Step 2 If the padding oracle reveals that 𝑐𝑡 has valid padding, then this implies:

2ℬ ≤ 𝒫𝑠− 𝑟𝒩 < 3ℬ ,

for some integer 𝑟.

Step 3 This inequality is equivalent to the condition:

2ℬ + 𝑟𝒩
𝑠

≤ 𝒫 <
3ℬ + 𝑟𝒩

𝑠

80

2. Fundamentals

Step 4 Thus, the plaintext 𝒫 must lie within the interval:

𝒫 ∈
[︂
⌈2ℬ + 𝑟𝒩

𝑠
⌉, ⌊3ℬ + 𝑟𝒩

𝑠
⌋
)︂
.

Step 5 By repeatedly choosing new values of 𝑠, the algorithm constructs a
set of intervals that progressively narrows down the possible values of 𝒫
until only a single possibility remains, which must be the plaintext.

Bleichenbacher’s algorithm’s performance primarily depends on the precision
of the oracle’s response when checking the validity of the padding. Bardou
et al. (2012) [6] described an improvement to Bleichenbacher’s algorithm [6]
and also analyzed its concrete efficiency for various types of oracles.

2.3.3. Template Attacks

Template attacks represent one of the most potent SCAs, where the adversary
constructs detailed statistical models, called templates, based on the side channel
of known cryptographic computations. In hardware security, template attacks
exploit local, physical (hardware) side channels, such as power consumption
or EMR, requiring proximity to the device, categorizing them as active local
physical SCA, as shown in Figure 2.12. For example, Smart cards and trusted
platform modules (TPMs), encrypted using the Advanced Encryption Standard
(AES) described in Section 2.3.3 algorithm are particularly susceptible due to
the feasibility of obtaining identical devices, making template attacks a key
consideration for designing robust IL detection and SCA defense strategies.

AES Algorithm

The AES algorithm employs multiple rounds, where each round integrates the
input with secret key material and thoroughly mixes the data, ensuring that
dependencies on both input and key are propagated across all output bits [43].

81

2. Fundamentals

Secret key

Key Expansion XOR

Plaintext

SubBytes

ShiftRows

MixColumns

AddRoundKey

10
 R

ou
nd

s

CipherText

Pre-round
Key Whitening

Normal AES
Encryption Round 1...9

(10th round omits
MixColumns)

LEAKAGE

Figure 2.8.: Information leakage (IL) in AES Encryption Algorithm [43, 14]

AES operates on 256-bit cipher blocks arranged in a 4 × 4 byte matrix, in
which plaintext, keys, and intermediate states are processed. It is constructed
using a sequence of operations— AddRoundKey, SubBytes, ShiftRows, and
MixColumns, combined with a critical schedule that generates a unique round
key for each round, such that MixColumns step is omitted in the 10th round, as
illustrated in Figure 2.8. The decryption process in AES reverses the encryp-
tion steps, starting from the ciphertext and systematically applying inverse
transformations to retrieve the original plaintext. This ensures that the trans-
formations are undone exactly, mirroring the encryption sequence. Each round
uses the inverse operations— InvShiftRows, InvSubBytes, InvMixColumns,
and AddRoundKey, with the 10th round omitting the InvMixColumns step, as
shown in Figure 2.9.

Encryption The algorithm design ensures that it follows the fundamental
properties of confusion and diffusion to obscure relationships between the
plaintext, ciphertext, and key, as shown in Figure 2.8.

82

2. Fundamentals

Secret key

Key Expansion XOR

CipherText

InvShiftRows

InvSubBytes

AddRoundKey

InvMixColumns

10
 R

ou
nd

s

Plaintext

Normal AES
Decryption Round 1...9

(10th round omits
InvMixColumns)

Pre-round
Key Whitening

LEAKAGE

Figure 2.9.: Information leakage (IL) in AES Decryption Algorithm [43, 14]

Confusion maximizes the dependency of each ciphertext bit on multiple key bits,
achieved using the AddRoundKey and SubBytes operations in AES. Diffusion
ensures that changes in one input bit influence many output bits, making
it difficult to isolate specific input changes Daemen and Rijmen (2002) [43].
In AES, ShiftRows and MixColumns are used to achieve this, adhering to
the strict avalanche criterion, where a single bit change affects half of the
ciphertext output [197]. The AES encryption process consists of several core
operations applied in multiple rounds to maximize confusion and diffusion. Key
Expansion generates a unique round key for each round from the initial cipher
key using a key schedule function. The first AddRoundKey operation uses the
cipher key directly, while subsequent AddRoundKey steps utilize derived round
keys. The AddRoundKey combines the input state with the round key using
the XOR operation, defined as AddRoundKey(𝑘, 𝑡𝑥) = (𝑡𝑥0 ⊕ 𝑘0, . . . , 𝑡𝑥15 ⊕
𝑘15), where 𝑘 is the round key and 𝑡𝑥 is the input state. The SubBytes

operation substitutes each byte in the state matrix using a non-linear S-Box
transformation, constructed from the multiplicative inverse in 𝐺𝐹 (28) and an
affine function, ensuring no values remain in their original position, an example
of the S-Box transformation shown in Figure 2.10. The AES S-Box operation

83

2. Fundamentals

SBox() itself is denotes as 𝜑(𝑡𝑖, 𝑘𝑖) = SBox(𝑡𝑖 ⊕ 𝑘𝑖), where 𝑡𝑖 is the 𝑖th plaintext
byte. ShiftRows cyclically shifts each row by varying offsets to propagate

66 B3 5C 0E 6A 47 BC 14 66 79 D2 D6 4A CA 57 74

63 67 97 82 95 34 01 57 EB 9D 25 81 BF BB 14 A0

CB 39 15 FC EB 58 30 DA 3A FE A9 FF DBBB CF 0E

BDBD AE BD 32 6B 36 F3 3F F8 82 E4 32 86 14 48

A6 11 83 58 3B 0D F1 F9 08 59 34 81 53 5B 6E BB

C6 AB FC 07 AE 22 CD 50 A3 31 67 83 01 FD 85 35

69 03 35 DC BE 91 D9 2B A1 C9 BD E3 0D 5E 2F 0E

C7 CD D6 FB F8 BD 27 D4 CF EC 51 6E 34 17 99 D8

FB BB 7B EC 28 9C 0E 2C 40 58 46 08 57 80 EB 87

D7 3E 8A F2 50 87 A2 A2 20 7A 04 E9 E6 F9 28 1B

86 C8 47 0B A1 20 2F F6 96 3D D7 24 62 AB 67 D5

DA 22 C0 E2 64 AE CD 82 00 04 D9 F6 FE 8D 66 1A

88 CE 0E 59 29 7B CC B2 3E 5F E6 F0 33 FC 5F 83

DD E4 96 E6 EC 8E AA 1C 23 0C 9F 46 BA F2 55 1B

41 A9 2C 3D B8 F4 85 1B 1B 6B 2B 53 1D BD 4A 7F

F9 F6 5B D8 E6 BD E0 80 78 1A BD 78 73 CC E8 02

Input
63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

AES S-Box
33 6D 4A AB 02 A0 65 FA 33 B6 B5 F6 D6 74 5B 92

FB 85 88 13 2A 18 7C 5B E9 5E 3F 0C 08 EA FA E0

1F 12 59 B0 E9 6A 04 57 80 BB D3 16 B9 EA 8A AB

7A 7A E4 7A 23 7F 05 0D 75 41 13 69 23 44 FA 52

24 82 EC 6A E2 D7 A1 99 30 CB 18 0C ED 39 9F EA

B4 62 B0 C5 E4 93 BD 53 0A C7 85 EC 7C 54 97 96

F9 7B 96 86 AE 81 35 F1 32 DD 7A 11 D7 58 15 AB

C6 BD F6 0F 41 7A CC 48 8A CE D1 9F 18 F0 EE 61

0F EA 21 CE 34 DE AB 71 09 6A 5A 30 5B CD E9 17

0E B2 7E 89 53 17 3A 3A B7 DA F2 1E 8E 99 34 AF

44 E8 A0 2B 32 B7 15 42 90 27 0E 36 AA 62 85 03

57 93 BA 98 43 E4 BD 13 63 F2 35 42 BB 5D 33 A2

C4 8B AB CB A5 21 4B 37 B2 CF 8E 8C C3 B0 CF EC

C1 69 90 8E CE 19 AC 9C 26 FE DB 5A F4 89 FC AF

83 D3 71 27 6C BF 97 AF AF 7F F1 ED A4 7A D6 D2

99 42 39 61 8E 7A E1 CD BC A2 7A BC 8F 4B 9B 77

S-Box Output

Figure 2.10.: S-Box for AES Encryption Algorithm

byte dependencies across columns, and MixColumns replaces each byte in a
column with a linear combination of all column values, further spreading the
dependencies across the matrix. When applied sequentially across multiple
rounds, these operations destroy statistical patterns, ensuring that even small
changes in the key or plaintext result in significant differences in the ciphertext
output.

Decryption The decryption process in AES reverses the transformations
performed during encryption by systematically applying the inverse operations —
InvSubBytes, InvShiftRows, InvMixColumns, and AddRoundKey, as shown
in Figure 2.9. Each round works backward, starting from the ciphertext
and reintroducing the original plaintext bit-by-bit by reversing the non-linear
substitutions and the mixing operations Daemen and Rijmen (2002) [43]. Like
encryption, Key Expansion generates a unique round key for each step using
the same key schedule function. In contrast to the encryption procedure, the
decryption process first applies the AddRoundKey operation using the round
key, proceeding with InvSubBytes, which performs a byte-wise substitution
using the Inverse S-Box, constructed as the inverse of the standard S-Box in
𝐺𝐹 (28). As shown in Figure 2.10, input is passed through the S-Box to acquire
the encrypted output, which, when passed through the Inverse S-Box, recovers
the input back, as shown in Figure 2.11. The AES S-Box operation SBox()

84

2. Fundamentals

itself is denotes as 𝜑−1(𝑐𝑖, 𝑘𝑖) = SBox−1(𝑐𝑖 ⊕ 𝑘𝑖), where 𝑐𝑖 is the 𝑖th ciphertext
byte. Each inverse operation is designed to undo the changes made during
encryption, ensuring that dependencies between plaintext and ciphertext bits
are exactly reversed. Next, InvShiftRows shifts each row in the matrix to its

33 6D 4A AB 02 A0 65 FA 33 B6 B5 F6 D6 74 5B 92

FB 85 88 13 2A 18 7C 5B E9 5E 3F 0C 08 EA FA E0

1F 12 59 B0 E9 6A 04 57 80 BB D3 16 B9 EA 8A AB

7A 7A E4 7A 23 7F 05 0D 75 41 13 69 23 44 FA 52

24 82 EC 6A E2 D7 A1 99 30 CB 18 0C ED 39 9F EA

B4 62 B0 C5 E4 93 BD 53 0A C7 85 EC 7C 54 97 96

F9 7B 96 86 AE 81 35 F1 32 DD 7A 11 D7 58 15 AB

C6 BD F6 0F 41 7A CC 48 8A CE D1 9F 18 F0 EE 61

0F EA 21 CE 34 DE AB 71 09 6A 5A 30 5B CD E9 17

0E B2 7E 89 53 17 3A 3A B7 DA F2 1E 8E 99 34 AF

44 E8 A0 2B 32 B7 15 42 90 27 0E 36 AA 62 85 03

57 93 BA 98 43 E4 BD 13 63 F2 35 42 BB 5D 33 A2

C4 8B AB CB A5 21 4B 37 B2 CF 8E 8C C3 B0 CF EC

C1 69 90 8E CE 19 AC 9C 26 FE DB 5A F4 89 FC AF

83 D3 71 27 6C BF 97 AF AF 7F F1 ED A4 7A D6 D2

99 42 39 61 8E 7A E1 CD BC A2 7A BC 8F 4B 9B 77

S-Box Output
52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB

7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB

54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E

08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25

72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92

6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84

90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06

D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B

3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73

96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E

47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B

FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4

1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F

60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF

A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61

17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

Inverse AES S-Box
66 B3 5C 0E 6A 47 BC 14 66 79 D2 D6 4A CA 57 74

63 67 97 82 95 34 01 57 EB 9D 25 81 BF BB 14 A0

CB 39 15 FC EB 58 30 DA 3A FE A9 FF DBBB CF 0E

BDBD AE BD 32 6B 36 F3 3F F8 82 E4 32 86 14 48

A6 11 83 58 3B 0D F1 F9 08 59 34 81 53 5B 6E BB

C6 AB FC 07 AE 22 CD 50 A3 31 67 83 01 FD 85 35

69 03 35 DC BE 91 D9 2B A1 C9 BD E3 0D 5E 2F 0E

C7 CD D6 FB F8 BD 27 D4 CF EC 51 6E 34 17 99 D8

FB BB 7B EC 28 9C 0E 2C 40 58 46 08 57 80 EB 87

D7 3E 8A F2 50 87 A2 A2 20 7A 04 E9 E6 F9 28 1B

86 C8 47 0B A1 20 2F F6 96 3D D7 24 62 AB 67 D5

DA 22 C0 E2 64 AE CD 82 00 04 D9 F6 FE 8D 66 1A

88 CE 0E 59 29 7B CC B2 3E 5F E6 F0 33 FC 5F 83

DD E4 96 E6 EC 8E AA 1C 23 0C 9F 46 BA F2 55 1B

41 A9 2C 3D B8 F4 85 1B 1B 6B 2B 53 1D BD 4A 7F

F9 F6 5B D8 E6 BD E0 80 78 1A BD 78 73 CC E8 02

Recovered Input

Figure 2.11.: Inverse S-Box for AES Decryption Algorithm

original position, undoing the byte transpositions caused by the ShiftRows step.
Finally, InvMixColumns operates on each column by applying the inverse of the
MixColumns matrix multiplication, reversing the linear combination of bytes.
The 10th round omits the InvMixColumns step, similar to the encryption, to
maintain the final round’s structure and ensure the decryption’s integrity. This
omission ensures that the byte arrangement and value propagation from the
encryption’s last round are exactly restored, maintaining a consistent plaintext
output. The overall process ensures that all confusion and diffusion introduced
during encryption are precisely reversed, recovering the original plaintext from
the ciphertext.

Identity Leakage

In AES-based systems, secret information can be revealed via power traces
measured during the SubBytes operation. This results in the leakage of the
complete output (e.g., ID) of the intermediate S-Box transformation rather than
just partial information (e.g., hamming weight (HW)). The ID leakage model
assumes that each unique intermediate value within the algorithm corresponds
to a distinct and identifiable leakage pattern. For AES, this is most evident

85

2. Fundamentals

at non-linear transformations like the S-Box, where the intermediate state
𝑣 = 𝜑(𝑡𝑖, 𝑘𝑖) = SBox(𝑡𝑖 ⊕ 𝑘𝑖) is directly linked to the power consumption or
EMR leakage of the device. Each of the 256 possible S-Box outputs produces a
unique leakage pattern, enhancing the signal-to-noise ratio (SNR) and making
correct key guesses easily distinguishable, which makes the ID leakage model
highly suitable for profiling SCAs [157, 198].

Leakage via S-Box Operation In AES encryption, leakage is observed after
the S-Box operation, represented as 𝑣 = 𝜑(𝑡𝑖, 𝑘𝑖) = SBox(𝑡𝑖⊕𝑘𝑖), where 𝑡𝑖 is the
plaintext byte and 𝑘𝑖 is the corresponding key byte. Instead of correlating the
key directly with the measured leakage, the ID model targets the intermediate
value (e.g., 𝑖th plaintext byte 𝜑(𝑡𝑖, 𝑘𝑖)), making it unnecessary to know the
S-Box lookup table explicitly. Here, side channel traces form distinct patterns,
allowing attackers to match leakage with specific S-box outputs. This step,
shown in Figure 2.8, is particularly vulnerable due to the non-linear nature of
the S-Box, making it a high-risk point for SCAs.

Leakage via Inverse S-Box Operation During AES decryption, leakage
occurs at the inverse S-Box operation, modeled for each byte as SBox−1(𝑐𝑖 ⊕
RoundKey10,𝑖), ∀𝑖 ∈ [15]0, where 𝑐𝑖 is the 𝑖th byte of the ciphertext and
RoundKey10,𝑖 is the corresponding byte from the round 10 key. Unlike encryp-
tion, this scenario uses a known-ciphertext attack, where the attacker profiles
the leakage at the Inverse S-Box step in the initial round, making it an equally
attractive target for SCAs, as shown in Figure 2.9. Observing the variations in
the power consumption or EMR emissions during the inverse transformations
makes it possible to distinguish between various key byte candidates, as the
correct key guess will produce distinct leakage patterns.

86

2. Fundamentals

Generalization The S-Box transformation is applied independently to each
byte of the AES state, allowing attacks to be partitioned into 16 smaller, byte-
wise attacks: SBox(𝑡 ⊕ 𝑘) = (SBox(𝑡0 ⊕ 𝑘0), . . . , SBox(𝑡15 ⊕ 𝑘15)) [74]. This
approach significantly reduces complexity by focusing on one byte at a time,
making the attack more efficient and more accessible to implement [74].

Countermeasures

Countermeasures for SCAs can be broadly categorized as either hiding or
masking [27]. These techniques aim to decouple the measurable leakage from
the secret by reducing the observable impact of data on the side channel or by
randomizing the intermediate values to obscure the secret information.

Hiding and Masking Hiding works by reducing how much a value or com-
putation influences measurable factors such as power consumption or EMR.
This is typically achieved by altering the device’s construction or randomizing
the execution order of operations. The objective is to make the measurable
leakage independent of the processed data. However, even with precise design,
some residual leakage is often unavoidable [26]. While hiding can minimize
data-related leakage, it does not eliminate the risk of SCAs, as sophisticated
techniques could still exploit the remaining leakage.

Masking introduces an additional random hidden state into the computation,
which is later removed to reveal the correct output. Unlike hiding, masking does
not reduce the influence of intermediate values on the side channel; instead, it
randomizes those values, revealing less about the secret to potential attackers.
A well-known example of this approach is Boolean masking, where a random
value (or mask) is XORed with the input and then removed later during the
computation [109]. Masking makes the intermediate data independent of the
secret, effectively obscuring the sensitive information. However, the success of
masking depends heavily on generating sufficient entropy in the random values
used as masks.

87

2. Fundamentals

Weaknesses and Vulnerabilities Despite the effectiveness of masking as a
countermeasure, it has weaknesses. Masking assumes that attackers cannot
recover the random mask values. Obtaining sufficient entropy for masking
can be challenging, especially in hardware implementations where dedicated
hardware entropy generators significantly increase system complexity and power
consumption. Moreover, the masking process may become the target of SCAs.
For example, attackers can attempt to recover the mask value and use this
knowledge to attack the actual secret [150]. Thus, even though masking offers
significant protection, it is not foolproof.

Trained CNN
Model

Predict Key Byte

Train CNN/
Perform NAS

Predicted
Secret Key

Measurements
(power, EM)

Used
Secret Key

Measurements
(power, EM)

Template
Device

Target
device

Figure 2.12.: DL-based Template SCA

DL Based SCA In systems with first-order leaks, where the secret directly
influences the measured side channel, statistical countermeasures like masking
are generally effective [109]. However, introducing uncorrelated hidden states,

88

2. Fundamentals

such as in Boolean masking, can lead to higher-order leaks, which are more
challenging to exploit and require more advanced techniques and larger data
sets [26, 129]. DL has become a powerful method for detecting side channel
leakage, particularly in the case of higher-order leaks, where traditional ML
models struggle [120, 14, 92]. Its ability to handle complex masked systems
has made DL the preferred approach for countermeasure-resistant SCAs. This
thesis focuses on DL-based SCAs targeting AES, though the techniques are
also applicable to other cryptographic systems.DL is especially effective at
identifying vulnerabilities in masked systems, offering more robust analysis
than traditional methods.

Recent Countermeasures In response to these advanced attack strate-
gies, Chari et al. (1999) [26] developed a theoretical model to quantify how
much masking is required to protect a system from adversaries. Their concept
of higher-order masking defends against attackers capable of observing mul-
tiple data paths simultaneously.Despite this, systems using Boolean masking
have been successfully attacked, prompting researchers to explore more robust
methods, such as affine masking [199, 67]. Affine masking provides more
robust protection by adjusting intermediate values to minimize leakage. This
method’s effectiveness is demonstrated in the ASCADv2 dataset [14], which
combines affine and Boolean masking, and to date, no successful attacks have
been reported against it [150].

Attack Methodology

In a SCA, an attacker aims to determine the secret key used in a cryptographic
operation, e.g., an encryption process running on a target device. The attack
methodology of exploiting the communication channel capacity to reveal the
secret key of the system is illustrated in Figure 2.12. For non-profiled attacks,
the attacker observes the device without access to the private key, relying on
measurements such as EMRs or power consumption [150].

89

2. Fundamentals

Often, it is assumed that the attacker has access to a second, identical device,
termed a template device, to execute the attack via profiling mechanism [150].
This approach, known as profiled SCA, involves the attacker building a behav-
ioral profile by running cryptographic operations with known secret keys on
the template device, as shown Figure 2.12. The attacker collects 𝑁 observation
traces, 𝑥1, . . . ,𝑥𝑁 , during the profiling phase, each corresponding to different
secret key bytes used in the AES algorithm. These traces are time-series
measurements of power consumption or EMRs, represented as 𝑑-dimensional
real-valued vectors 𝑥𝑖 ∈ R𝑑 for 𝑖 ∈ [𝑁]. In the attack phase, this profile is
employed to recover the secret key from the observed behavior of the target
device, as depicted in Figure 2.12.

Communication Channel Capacity The SCA exploits the capacity of the
communication channel to extract information about the secret key 𝐾 from
observed leakage traces.In this setup, the secret key 𝐾 = (𝑘0, . . . , 𝑘15),∀𝑘𝑗 ∈ 𝒦,
and the plaintext 𝑇 = (𝑡0, . . . , 𝑡15), ∀𝑡𝑗 ∈ 𝒯 , are processed by the device to
produce intermediate values 𝑦𝑖 ∈ 𝒴, such as the output of an S-box in AES,
represented by 𝑌 . The information about 𝑌 is leaked through side channels
like power consumption or EMRs, via 𝑁 traces, 𝑥1, . . . ,𝑥𝑁 , represented by
the random variable 𝑋, which contains crucial information about 𝐾, as shown
in Figure 2.13.

The encoder represents the process by which the device combines the se-
cret key 𝐾 with the plaintext 𝑡𝑖 = (𝑡0, . . . , 𝑡15),∀𝑡𝑗 ∈ 𝒯 , represented by the
random variable 𝑇 , to produce intermediate values 𝑦𝑖 ∈ 𝒴, represented by
𝑌 , and how this information leaks through power or EMRs. The channel
introduces noise from the remaining parts of the device or imperfections in the
measurement setup. In contrast, the decoder is the attacker’s distinguishing
rule, which uses the 𝑁 measured traces 𝑥1, . . . ,𝑥𝑁 and the known plaintext
𝑡𝑖 = (𝑡0, . . . , 𝑡15), ∀𝑡𝑗 ∈ 𝒯 to infer the secret key 𝐾̂.

90

2. Fundamentals

This process follows a Markov chain (𝐾,𝑇)→ (𝑌, 𝑇)→ (𝑋,𝑇)→ (𝐾̂), where
the intermediate values 𝑦𝑖 ∈ 𝒴 are produced during encryption, such that
𝐼((𝐾,𝑇); (𝑋,𝑇)) ≤ 𝐼((𝑌, 𝑇); (𝑋,𝑇)) The conditional MI 𝐼(𝑋;𝑌 |𝑇) quantifies
the information leaked about the secret key 𝐾 through the traces 𝑥1, . . . ,𝑥𝑁 ,
represented by the random variable 𝑋, given the known plaintext 𝑇 . By
exploiting this leakage, the SCA recovers the secret key 𝐾̂ by utilizing the
communication channel’s capacity to reduce uncertainty about 𝐾 [31].

Encoder Channel Decoder

Figure 2.13.: Information Flow: (𝐾,𝑇)→ (𝑌, 𝑇)→ (𝑋,𝑇)→ (𝐾̂) [31]

Profiling The attacker records traces 𝑥1, . . . ,𝑥𝑁 from the template device,
such that each of these 𝑁 traces corresponds to a known secret key byte 𝑘𝑖 ∈ 𝒦,
with 𝒦 = {0, . . . , 255}, and a known plaintext byte 𝑡𝑖. If different keys are used,
the key bytes 𝑘1, . . . , 𝑘𝑁 are different in each trace, while 𝑘1 = 𝑘2 = . . . = 𝑘𝑁 =

𝑘 if the same key is used. Each profiling trace is labeled with 𝑦𝑖 = 𝜑(𝑡𝑖, 𝑘𝑖)

using a function 𝜑, which maps the plaintext 𝑡𝑖 and key 𝑘𝑖 to a value that is
assumed to relate to the deterministic part of the measured leakage 𝑥𝑖 [148].
This mapping depends on the assumed ID leakage model and is typically defined
using the AES S-box operation: 𝑦𝑖 = 𝜑(𝑡𝑖, 𝑘𝑖) = SBox(𝑡𝑖 ⊕ 𝑘𝑖).This labeling
results in the profiling dataset 𝒟Prof = {(𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁)}, which is used
by a supervised learning algorithm to build a profiling model.

91

2. Fundamentals

Supervised Learning Template SCA The goal is to predict the secret key
byte 𝑘𝑖 used in the cryptographic operation from the attack traces 𝑥𝑖, for which
the key is unknown. The profiling dataset 𝒟Prof = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 ⊂ 𝒳 ×𝒴 is used,
with 𝒳 = R𝑑 as the input space (measured traces) and 𝒴 = {0, . . . ,𝑀 − 1} as
the output space, representing the 256 possible labels produced by 𝜑(𝑡𝑖, 𝑘𝑖).Here,
𝑀 = 256 corresponds to the possible key byte values.

Then, the probabilistic function 𝑔𝑝 is learned by minimizing the empirical
risk. This function allows the aggregation of probabilities over multiple traces.
Typically, 𝑔𝑝 is learned by estimating a scoring function ℎ𝑠|𝜃(𝑥) : 𝒳 → R𝑀 ,
parameterized by 𝜃 ∈ R𝑛 [19, chap. 4]. The MLP outputs un-normalized scores
ℎ𝑠|𝜃(𝑥) = 𝑠 = (𝑠0, . . . , 𝑠𝑀−1), where 𝑠𝑚 = ℎ𝑠|𝜃(𝑥)[𝑚] is the score for class 𝑚.

The softmax function converts these scores into probabilities 𝑝 = (𝑝0, . . . , 𝑝𝑀−1):

𝑆𝜃(𝑥)[𝑦] =
exp(𝑠[𝑦])∑︀𝑀−1

𝑚=0 exp(𝑠[𝑚])
=

exp
(︀
ℎ𝑠|𝜃(𝑥)[𝑦]

)︀∑︀𝑀−1
𝑚=0 exp

(︀
ℎ𝑠|𝜃(𝑥)[𝑚]

)︀ .
The empirical risk minimizer 𝑔𝑝 is obtained by minimizing the CCE loss:

𝑅emp|𝑝(ℎ𝑠|𝜃) =
1

𝑁

𝑁∑︁
𝑖=1

− ln(𝑆𝜃(𝑥𝑖)[𝑦𝑖]) .

Attack Dataset and Key Recovery In the attack phase, the attacker records
𝑁𝑎 attack traces, 𝑥1, . . . ,𝑥𝑁𝑎 , by sending plaintexts (or ciphertexts) 𝑡1, . . . , 𝑡𝑁𝑎

to the target device. Each trace corresponds to an unknown key byte 𝑘* ∈ 𝒦
and a known plaintext 𝑡𝑖. The attacker considers every possible key byte
candidate 𝑘 ∈ 𝒦. For each instance (𝑥𝑖, 𝑡𝑖), labels are generated for each 𝑘 ∈ 𝒦
using the same function 𝜑(𝑡𝑖, 𝑘) as during profiling. The resulting labels are
denoted 𝑦𝑖 = (𝑦𝑖,0, . . . , 𝑦𝑖,𝑀−1), such that 𝑦𝑖,𝑘 = 𝜑(𝑡𝑖, 𝑘).

The attack dataset is 𝒟Att
𝑎 = {(𝑥𝑖,𝑦𝑖), . . . , (𝑥𝑁𝑎 ,𝑦𝑁𝑎)}, which the learned

profiling model uses to recover the secret key byte 𝑘*. The scoring function 𝑆𝜃

predicts scores for every key byte candidate 𝑘 ∈ 𝒦. For each attack instance

92

2. Fundamentals

(𝑥𝑖,𝑦𝑖), the scores of every key byte candidate are denoted as

𝑠𝑖 = (𝑆𝜃(𝑥𝑖)[𝑦𝑖,0], . . . 𝑆𝜃(𝑥𝑖)[𝑦𝑖,𝑀−1]) = (𝑠𝑖,0, . . . , 𝑠𝑖,𝑀−1) ,

where 𝑠𝑖,𝑘 = 𝑆𝜃(𝑥𝑖)[𝑦𝑖,𝑘] represents the score of key byte candidate 𝑘 [14].

The cumulative score function for each key byte 𝑘 is calculated using the
maximum log-likelihood as

𝑑𝑁𝑎 [𝑘] =
𝑁𝑎∑︁
𝑖=1

log(𝑠𝑖,𝑘) =
𝑁𝑎∑︁
𝑖=1

log(𝑠𝑖[𝑦𝑖,𝑘]) . (2.11)

Using the likelihood to acquire the cumulative scores is an outlier-sensitive
operation, as a single low score value can completely disqualify the true key [118].
To enhance the robustness and minimize sensitivity to low scores, the attack
is executed 𝑅𝑎 times on shuffled traces from the attack dataset 𝑁𝑎, resulting
in the corresponding cumulative scores 𝑑𝑁𝑎 [𝑘]. Using this, the ranking vector
denoted by (𝑟𝑁𝑎 = (𝑟0, . . . 𝑟255)) containing the rank of each candidate key byte
∀𝑘 ∈ 𝒦 is defined. In this context, the rank (𝑟𝑘 = 𝑟𝑁𝑎 [𝑘]) of the candidate
secret key byte 𝑘 ∈ 𝒦 is defined as

𝑟𝑁𝑎 [𝑘] = 1 +

⎛⎝ ∑︁
𝑘∈𝒦∖𝑘

J𝑑𝑁𝑎 [𝑘] > 𝑑𝑁𝑎 [𝑘]K

⎞⎠ . (2.12)

The vector is indexed with superscript 𝑁𝑎, to represent the result from per-
forming the 𝑎th attack out of 𝑅𝑎 repeated attacks with attack dataset 𝒟Att

𝑎 ,
each containing 𝑁𝑎 traces, as 𝑟𝑁𝑎 .

Evaluation Metrics

In the context of SCAs, evaluating the effectiveness of an attack relies on specific
metrics that quantify the ability of the attacker to recover the secret key. Three
widely used metrics are guessing entropy (GE), trace sufficiency threshold

93

2. Fundamentals

(TST), and success rate (SR), which are commonly applied in profiling and
non-profiling attacks [123, 184, 169]. These metrics help assess how quickly and
efficiently a SCA can be performed to acquire the secret key of the system.

0 1 2 3 4 5 6 7 8
Conditional Entropy H(Y |X)

20

22

24

26

28

G
u

es
si

n
g

E
n

tr
op

y
G
E

(Y
|X

)

Optimal Joint Range Region for H(Y |X) vs GE(Y |X)

M = 2 Tight Bound
M = 4 Tight Bound
M = 8 Tight Bound
M = 16 Tight Bound

M = 32 Tight Bound
M = 64 Tight Bound
M = 128 Tight Bound

M = 256 Tight Bound
Massey Lower Bound
Rioul Lower Bound

Figure 2.14.: Optimal joint range between 𝐻(𝑌 |𝑋) and GE 𝐺(𝑌 |𝑋) for classes 𝑀
in range [2, 256], with upper bound derived by McEliece and Yu (1995)
[125] (dashed) and lower bound by Béguinot and Rioul (2024) [11]
(solid), with the sub-optimal lower bound by Massey (1994) [123]
and Rioul (2022) [171] is 𝑀 -independent

Guessing Entropy The GE is a measure of the expected number of guesses
required for an attacker to recover the correct key byte 𝑘* [123]. The GE for the
correct key byte 𝑘* using the ranking vector 𝑟𝑁𝑎 [𝑘] in eq. (2.12) is estimated
as

mGE(𝑟
𝑁𝑎 , 𝑘*) = 𝑟𝑁𝑎 [𝑘*] ≊

1

𝑅𝑎

𝑅𝑎∑︁
𝑎=1

𝑟𝑁𝑎 [𝑘*] , (2.13)

94

2. Fundamentals

By averaging GE values across repeated 𝑅𝑎 experiments, the overall security
in terms of the actual GE, denoted by 𝐺(𝑌 |𝑋), can be estimated accurately.

Relation to Conditional Entropy The relationship between GE and condi-
tional entropy 𝐻(𝑌 |𝑋) is critical for understanding how much information is
revealed by the side channel, for which several bounds help to formalize this re-
lation, as illustrated in Figure 2.14. The sub-optimal lower bound independent
of 𝑀 is derived by Massey (1994) [123] and Chérisey et al. (2019) [31] as

Massey (1994) [123] Lower Bound

2𝐻(𝑌 |𝑋)−2 + 1 ≤ 𝐺(𝑌 |𝑋)

Chérisey et al. (2019) [31] Improved Lower Bound

2𝐻(𝑌 |𝑋)

𝑒
+

1

2
≤ 𝐺(𝑌 |𝑋)

Then McEliece and Yu (1995) [125] derived a bound on 𝐺(𝑌 |𝑋) in terms of
𝐻(𝑌 |𝑋) as

2𝐻(𝑌 |𝑋)−1 + 1 ≤ 𝐺(𝑌 |𝑋) ≤ 𝐻((𝑌 |𝑋))(𝑀 − 1)

2 lg(𝑀)
+ 1 (2.14)

However, the lower bound is only applicable when 𝐺(𝑌 |𝑋) ≥ 2. Addition-
ally, Béguinot and Rioul (2024) [11] derived a gamma-based parametric lower
bound for different 𝑀 values as

𝐻(𝑌 |𝑋) = log2

(︂
𝛾 · 1− 𝛾𝑀

1− 𝛾

)︂
− log2(𝛾) ·𝐺(𝑌 |𝑋) (2.15)

𝐺(𝑌 |𝑋) =
log2

(︁
𝛾 · 1−𝛾𝑀

1−𝛾

)︁
−𝐻(𝑌 |𝑋)

log2(𝛾)
,

95

2. Fundamentals

where 𝛾 is a parameter used to express the functional relation between 𝐻(𝑌 |𝑋)

and 𝐺(𝑌 |𝑋) in a parametric form, ranging in 𝛾 ∈ (0, 1). The parameter
𝛾 induces the truncated geometric distribution, which optimally captures
the trade-off between 𝐻(𝑌 |𝑋) and 𝐺(𝑌 |𝑋). As 𝛾 → 0+, the conditional
entropy 𝐻(𝑌 |𝑋) approaches zero, and the guessing entropy 𝐺(𝑌 |𝑋) reaches
its minimum value of 1, indicating complete IL. Conversely, for 𝛾 = 1, the
uniform distribution is achieved, where 𝐻(𝑌 |𝑋) = log(𝑀) and 𝐺(𝑌 |𝑋) = 𝑀+1

2
,

reflecting no IL. The parametric bound, therefore, allows for capturing different
levels of IL by varying 𝛾 within the range (0, 1), making it particularly effective
for analyzing small ILs in SCAs [11].

Trace Sufficiency Threshold The TST indicates the minimum number
of attack traces required for the model to guess the correct system secret
key byte 𝑘*, which is determined based on the ranking vector as 𝑄𝑡𝐺𝐸

=

arg min𝑛𝑎∈[𝑁𝑎] 𝑟
𝑛𝑎 [𝑘*] = 1 [169]. When the available 𝑁𝑎 attack traces are

insufficient, the value is set to 𝑁𝑎 for aggregation in experiments. By averaging
these values across repeated 𝑅𝑎 experiments, the overall security efficiency in
terms of the TST can be estimated accurately as

mTST(𝑟
𝑁𝑎 , 𝑘*) =

⎧⎨⎩𝑄𝑡𝐺𝐸
if 𝑟𝑁𝑎 [𝑘*] = 1, ,

𝑁𝑎 if 𝑟𝑁𝑎 [𝑘*] > 1.
≊

1

𝑅𝑎

𝑅𝑎∑︁
𝑎=1

mTST(𝑟
𝑁𝑎 , 𝑘*) (2.16)

Success Rate The SR is the probability that the correct key byte 𝑘* is ranked
first, given a fixed number 𝑁𝑎 of attack traces [184], which is formally defined
as

mSR(𝑟
𝑁𝑎 , 𝑘*) = 𝑝[𝑟𝑁𝑎 [𝑘*] = 1] ≊

1

𝑅𝑎

𝑅𝑎∑︁
𝑎=1

J𝑟𝑁𝑎 = 1K (2.17)

The SR is an accuracy metric that evaluates how frequently the correct key
can be recovered given 𝑁𝑎 traces, providing insights into the SCAs’s per-
formance [188, 118]. The actual SR, denoted as 𝑃sr(𝐾|𝑌), is estimated by

96

2. Fundamentals

calculating the percentage of instances where the rank of the actual key byte
𝑘* is successfully determined across repeated 𝑅𝑎 attacks, thereby quantifying
the extent of IL.

Relation to Guessing Entropy Béguinot et al. (2022) [10] derived the bound
on GE with respect to the SR as

(1+⌊ 1

𝑃sr(𝐾|𝑌)
⌋)(1−⌊ 1

𝑃sr(𝐾|𝑌)
⌋𝑃sr(𝐾|𝑌)

2
) ≤ 𝐺(𝑌 |𝑋) ≤ 1+

𝑀

2
(1−𝑃sr(𝐾|𝑌))

The GE is approximately inversely proportional to the SR, i.e., 𝑃sr(𝐾|𝑌) ∝
1

𝐺(𝑌 |𝑋)
particularly for small values of SRs, 𝑃sr(𝐾|𝑌) = 1 and large number of

classes 𝑀 ≥ 28, implying that a higher SR corresponds to lower GE, reflecting
an easier guessing process [11].

Relation to Mutual Information The upper bound on MI in terms of SR,
showing that greater side channel information increases the likelihood of exactly
guessing the key by an adversary, is derived by Chérisey et al. (2019) [31] as

𝐻(𝐾)−𝐻2(𝑃sr(𝐾|𝑌))− (1− 𝑃sr(𝐾|𝑌)) log2(2
𝑛 − 1) ≤ 𝐼(𝑋;𝑌 |𝑇) ,

where 𝐻2(𝑎) = −𝑎 lg(𝑎)− (1− 𝑎) lg(1− 𝑎) is the binary cross-entropy function
of the SR, and when 𝑎 = 𝑃sr(𝐾|𝑌) = 1, the MI 𝐼(𝑋;𝑌 |𝑇) reaches its maximum
to lg(𝑀), corresponding to complete leakage of the key.

2.4. Statistical Tests

This section explains the statistical tests used in the proposed ILD approaches
described in Section 3.2.2. These include two types of Student’s t-tests, namely
the one-sample t-test (OTT) and paired t-test (PTT), and the Fisher’s exact test
(FET). To enhance robustness and reliability in ILD, the Holm-Bonferroni

97

2. Fundamentals

correction is applied to account for multiple statistical tests conducted on
various top-performing models or pipelines. This approach mitigates overfitting
and reduces noisy estimates from relying on a single model [91].

2.4.1. Student’s t-tests

Student’s t-test is a statistical method for assessing whether the means of
one or more groups differ significantly from a known value or each other. It
includes the one-sample t-test (OTT), which compares the sample mean to
a known population mean, and the paired t-test (PTT), which compares the
means of paired or related samples to evaluate significant differences between
them [46].

One-sample t-test

The OTT is used to determine if the mean of a sample differs significantly
from a known expected or hypothesized population mean [46]. This test
evaluates if sample values significantly deviate from an expected mean, like
zero. The vector 𝑎 = (𝑎1, . . . , 𝑎𝐾), represents the collected 𝐾 = 10 sample
data points or observations. Next the sample mean (𝜇𝑎 = 1/𝐾

∑︀𝐾
𝑘=1 𝑎𝑘) and

the standard deviation (𝜎𝑎 =
√︁

1/(𝐾 − 1)
∑︀𝐾

𝑘=1(𝑎𝑘 − 𝜇𝑎)2) computed using the
vector 𝑎. Using the evaluated sample mean and standard deviation, the 𝑡-
value representing the standard error from the expected mean under the null
hypothesis is calculated as

𝑡 =
(𝜇𝑎 − 𝜇0)

𝜎𝑎/
√
𝐾

,

where 𝜇0 under 𝐻0(·) and 𝐾 = 10 is the sample size. Then, the 𝑡-distribution
with 𝐾− 1 degrees of freedom is analyzed to calculate the 𝑝-value, representing
the probability of observing the sample mean if the null hypothesis is true.
The null hypothesis 𝐻0(𝜇𝑎 ∼ 𝜇0) implies no significant difference from the
population mean (0 in case of IL detection), and the alternative hypothesis
𝐻1(𝜇𝑎 ≫ 𝜇0||𝜇𝑎 ≪ 𝜇0) indicates a significant deviation from the mean. In the

98

2. Fundamentals

case of quantifying and detecting IL, only the case (𝜇𝑎 ≫ 0 is considered since
the IL in a system is always greater than 0 (IL∈ R+). If the 𝑝-value is below a
predefined significance level (e.g., 𝛼 = 0.01), the 𝐻0(·) is rejected, indicating
a significant deviation from the population mean 𝜇0; otherwise, the test fails
to reject 𝐻0(·) and accept the 𝐻1(·). The one-sample t-test (OTT) assumes
a normal population distribution, independent observations, and a sufficient
sample size for the 𝑡-value to approximate the 𝑡-distribution.

Paired t-test

PTT is used to compare two paired samples (generated from the same under-
lying population) where each observation in one sample is matched with an
observation in the other sample [46]. Consider two 𝐾-sized vectors, 𝑎 and 𝑏,
representing the paired observations.

The null hypothesis is 𝐻0(𝑎 = 𝑏), which assumes no significant difference
between the paired samples, while the alternate hypothesis 𝐻1(𝑎 ̸= 𝑏) implies
that there is a significant difference between the two samples. The 𝑝-value
indicates the probability of obtaining the observed mean difference between
the two samples, assuming that the null hypothesis 𝐻0(·) holds, meaning the
observations are drawn from the same distribution or have nearly zero average
difference [46].

The 𝑡-value is computed as
𝑡 =

𝜇
𝜎/

√
𝐾
,

where 𝜇 = 1
𝐾

∑︀𝐾
𝑘=1 𝑑𝑘 represents the mean difference between the paired values

𝑑𝑘 = 𝑎𝑘 − 𝑏𝑘, and 𝜎2 =
∑︀𝐾

𝑘=1
(𝜇−𝑑𝑘)

2

𝐾−1
is the sample variance.

Nadeau (2003) [138] proposed a correction to account for dependency in esti-
mates due to 𝐾-fold cross-validation (KFCV), adjusting the variance as:

𝜎2
𝐶𝑜𝑟 = 𝜎2

(︂
1

𝐾
+

1

𝐾 − 1

)︂
.

99

2. Fundamentals

This corrected variance is used to recalculate the 𝑡-value as 𝑡 = 𝜇
𝜎𝐶𝑜𝑟

. The 𝑝-
value, derived from the area under the Student’s 𝑡-distribution curve, represents
the probability of accepting 𝐻0.

If the 𝑝-value is below a predefined significance level (e.g., 𝛼 = 0.01), the null
hypothesis 𝐻0 is rejected, indicating a significant difference between 𝑎 and 𝑏;
otherwise, the test fails to reject the 𝐻0. However, PTT relies on the assumption
of normal distribution and asymptotic behavior, which can sometimes result in
overly optimistic 𝑝-values. Additionally, accuracy measures can be misleading
for imbalanced datasets [154, 148]. Moreover, the PTT requires a sufficiently
large 𝐾 for precise results, and a small test set can affect the correction term

1
𝐾−1

, leading to less reliable estimates.

2.4.2. Fisher’s Exact Test

Fisher’s exact test (FET) is a non-parametric test that evaluates the inde-
pendence between two classification methods by analyzing the contingency
table [64]. For example, in a sample population classified by gender and cricket
preference, if men predominantly like cricket and women do not, FET would
yield a low 𝑝-value, indicating a correlation between the two classification meth-
ods. In the context of binary classification, FET uses a 2× 2 contingency table,
i.e., the CM) to assess the independence of ground truth labels 𝑦 and classifier
predictions 𝑦. The CM comprising of true positives (mtp), true negatives (mtn),
false positives (mfp), and false negatives (mfn) in eq. (2.10), which, is used to
compute the exact 𝑝-value via the hypergeometric distribution defined as

𝑝(𝑦,𝑦|𝑀) =
𝐶

(𝑅)
(mtn)

×𝐶
(𝑁−𝑅)
(𝑟−mtn)

𝐶
(𝑁)
(𝑟)

=
𝐶

(mfn +mtn)
(mtn)

×𝐶
(mfp +mtp)
(mfp)

𝐶
(mtp +mtn +mfp +mfn)
(mtn +mfp)

where 𝑟 = mtn +mfp, 𝑁 = mfp +mtp +mfn +mtn, and 𝑅 = mtn +mfn and the
binomial coefficients 𝐶(𝑛)

(𝑟) represent the number of ways to choose 𝑟 items from
𝑛 items.

100

2. Fundamentals

The 𝑝-value is computed by summing the probabilities 𝑝(𝑦,𝑦|𝑀) for all con-
tingency tables with the same marginal counts as the observed and hav-
ing a probability less than or equal to that of the observed table (𝑀).
This approach evaluates the likelihood of obtaining a table at least as “ex-
treme” under the null hypothesis of independence. The null hypothesis,
𝐻0(𝑝(𝑦,𝑦|𝑀)) = 𝑝(𝑦|𝑀)𝑝(𝑦|𝑀), posits that the two classification meth-
ods (e.g., classifier predictions and ground truth labels) are independent, im-
plying no significant relationship. In contrast, the alternative hypothesis
𝐻1(𝑝(𝑦,𝑦 |𝑀)) ̸= 𝑝(𝑦 |𝑀)𝑝(𝑦 |𝑀)) suggests significant dependence, which
could indicate a relationship between the two classifications. FET is especially
suited for small sample sizes or imbalanced datasets, where approximation-based
tests like the 𝜒2 test might fail to provide accurate results. It is commonly used
for general classification tasks, particularly when comparing the performance
of two classifiers based on their confusion matrices.

Advantages in Detecting Leakages The mathews correlation coefficient
(MCC) is another evaluation measure related to FET, often preferred over
accuracy due to its ability to handle imbalanced datasets [32]. MCC (mMCC) is
a balanced accuracy evaluation measure that penalizes mfp and mfn equally and
accounts for imbalance in the dataset [32]. Camilli (1995) [24] demonstrated
that MCC is directly proportional to the square root of the 𝜒2 statistic, i.e.,
|mMCC| =

√︀
𝜒2/𝑁, which is asymptotically equivalent to FET. This makes FET a

more reliable method for detecting ILs when dealing with imbalanced datasets,
compared to paired tests like PTTs, which may lead to overly optimistic
results due to their reliance on normality assumptions. In summary, FET
provides a rigorous and exact method for assessing the dependence between
two classification methods, making it well-suited for both general classification
tasks and specific ILD evaluations.

101

2. Fundamentals

2.4.3. Holm-Bonferroni Correction

The Holm–Bonferroni correction controls the family-wise error rate, minimizing
false positives (type-1 errors) by adjusting the rejection criteria 𝛼 for each
hypothesis within the family of null hypotheses, ℱ = {𝐻1, . . . , 𝐻𝐽}, ensuring
that the significance level of ℱ not exceeding predefined threshold of 𝛼 =

0.01 [91]. Our process begins by independently testing each of the 𝐽 models or
pipelines, resulting in 𝐽 𝑝-values (𝑝1, . . . , 𝑝𝐽), sorted in ascending order, and
making an aggregated decision. For each hypothesis 𝐻𝑗 ∈ ℱ , if its associated
𝑝-value 𝑝𝑗 is less than 𝛼/𝐽 + 1− 𝑗, the null hypothesis is rejected. This continues
until 𝑝𝜏+1 > 𝛼/𝐽 − 𝜏, with rejected hypotheses represented by ℱ𝑟 = {𝐻1, . . . , 𝐻𝜏},
and the remaining hypothesis (non-rejected) by ℱ𝑎 = {𝐻𝜏+1, . . . , 𝐻𝐽}.

The number of rejected hypotheses, denoted as 𝜏 = |ℱ𝑟|, serves as the cut-off
parameter and reflects the confidence in IL detection decisions. A higher value
of 𝜏 indicates greater confidence in the detection outcome. To detect IL, a
rejection threshold is set on the cut-off parameter 𝜏 quantifying IL detection
confidence, corresponding to the number of rejected hypotheses, |ℱ𝑟|. A higher
rejection threshold would help avoid false positives and prevent the detection
of non-existent IL while decreasing it would avoid missing ILs occurrences and
reduce false negatives. This systematic and rigorous approach empowers us
to detect and characterize IL with a high degree of confidence, ensuring the
robustness of the ILD framework.

102

3. Information Leakage
Detection

This chapter introduces the framework for the information leakage detection
(ILD) problem, utilizing the concepts of Bayes predictor and mutual information
(MI) detailed in Section 2.1 and Section 2.2, respectively, with notations
from Section 1.3. A generalized leakage assessment score (LAS) measure is
presented to quantify information leakage (IL) with its variants applied to
detect IL in a system as described in Section 3.2.1. Section 3.3 introduces
Mid-Point, Log-Loss, and state-of-the-art MI estimation methods, employed
to detect ILs in OpenSSL TLS servers using the one-sample t-test (OTT)
as detailed in Chapter 5. To quantify ILs in AES-encrypted systems with
secret key bytes, a specialized GE-based LAS measure, vulnerability score (VS),
directly correlated to MI, is proposed Section 3.2.2. Along with trace sufficiency
threshold (TST), it evaluates the susceptibility of AES-encrypted systems to
template side-channel attacks (SCAs), detailed in Chapter 6. This chapter
builds on work published in Gupta et al. (2024) [81].

3.1. Problem Formulation

ILD algorithm aims to identify unintended disclosure of secret information
through observable information of the system, by analyzing the dataset 𝒟 =

{(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 ⊂ 𝒳 × 𝒴 , 𝑁 ∈ N generated by the system, where 𝒳 = R𝑑 is the
observable information and 𝒴 = [𝑀] secret information as categorical classes.

103

3. Information Leakage Detection

The goal is to label 𝒟 with 1 indicating IL and 0 its absence, represented by
the mapping 𝐿 as

𝐿 :
⋃︁
𝑁∈N

(𝒳 × 𝒴)𝑁 → {0, 1} ,

which takes a dataset 𝒟 of any size as input and outputs the decision on the
presence of IL in the system. This approach produces the mapping 𝐿̂ and
predicts ILs in the given system.

Let ℒ = {(𝒟𝑖, 𝑧𝑖)}𝑁𝐿
𝑖=1 be an IL-Dataset, such that 𝑁𝐿 ∈ N, 𝑧𝑖 ∈ {0, 1} and

𝑧 = (𝑧1, . . . , 𝑧𝑁𝐿
) be the ground truth vector generated by 𝐿. The predicted

ILs produced by 𝐿̂ are denoted as the vector 𝑧 = (𝑧1, . . . , 𝑧𝑁𝐿
), such that

𝑧𝑖 = 𝐿̂(𝒟𝑖). The performance of an ILD approach (𝐿̂) is measured using
standard binary classification metrics (m(·)(𝑧, 𝑧)), described in Section 2.2.2.

Evaluation Metrics

The performance of an ILD approach inducing the 𝐿̂ function is assessed using
Accuracy, FPR and FNR with respect to ground-truth vector 𝑧 and predicted
IL decisions 𝑧, which are defined in Section 2.2.2.

Accuracy It is the proportion of correct predictions and is defined as

mACC(𝑧, 𝑧):=
1

𝑁

𝑁∑︁
𝑖=1

J𝑧𝑖 = 𝑧𝑖K .

False Positive Rate It is the ratio of false positives to the number of negative
instances and defined as

mFPR(𝑧, 𝑧) = 1−mTNR(𝑧, 𝑧) =
mfp(𝑧, 𝑧)

mfp(𝑧, 𝑧) + mtn(𝑧, 𝑧)
.

104

3. Information Leakage Detection

False Negative Rate It is the ratio of false negatives to the number of
positive instances and defined as

mFNR(𝑧, 𝑧) = 1−mTPR(𝑧, 𝑧) =
mfn(𝑧, 𝑧)

mfn(𝑧, 𝑧) + mtp(𝑧, 𝑧)
.

3.2. Methodology

The complete methodology for performing ILD is described by first presenting
the generalized measure, referred to as LAS, for quantifying IL in a system.
Subsequently, the different methods used to detect IL in the system are intro-
duced, which estimate various variants of LAS, namely MI, Bayes error rate
(mER (𝑔𝑏𝑐)), and guessing entropy (GE), as detailed in Section 3.2.1.

3.2.1. Leakage Assessment Score

IL occurs when observable information (𝑥 ∈ 𝒳 , represented by 𝑋) is correlated
with secret information (𝑦 ∈ 𝒴, represented by 𝑌), allowing inference of 𝑦
from 𝑥 [105, 28]. To quantify the IL, the LAS is evaluated by comparing the
(approximate) performance of the Bayes predictor and marginal Bayes predictor
on the dataset generated by the system. When using log-loss, it reduces to MI
commonly used for quantifying the IL in the given system.

The LAS 𝛿(·) evaluating the difference in average penalties of marginal Bayes
predictor and Bayes predictor using loss functions (ℓ(·)) or metrics (m(·)), is
defined as

𝛿(m(·)) = |m(·)(𝑔
𝑚𝑐)−m(·)(𝑔

𝑏𝑐)|, 𝛿(ℓ(·)) = ℓ(·)(𝑔
𝑚𝑐)− ℓ(·)(𝑔

𝑏𝑐) .

where |·| is used to avoid negative values for accuracy measures. Note, that for
log-loss loss function, LAS is equal to MI, i.e., 𝛿(ℓ𝑙𝑙) = 𝐼(𝑋;𝑌) = E[ℓ𝑙𝑙(𝑔𝑚𝑐)]−
E[ℓ𝑙𝑙(𝑔𝑏𝑐)].

105

3. Information Leakage Detection

In practice, since 𝑝(𝑋,𝑌)(.) is seldom observed, the LAS is approximated using
empirical risk minimizers (𝑔𝑝 in eq. (2.8) or 𝑔 in eq. (2.5)) as proxies for Bayes
predictor and 𝑔𝑚𝑐

𝑝 in eq. (3.3) for marginal Bayes predictor as

𝛿(m(·)) ≊ |m(·)(𝑔
𝑚𝑐
𝑝)−m(·)(𝑔)|, 𝛿(ℓ(·)) ≊ ℓ(·)(𝑔

𝑚𝑐
𝑝)− ℓ(·)(𝑔𝑝) .

For losses evaluated using (conditional) class probabilities, 𝑔𝑝 minimizing eq. (2.8)
is used as a proxy for the Bayes predictor. However, 𝑔 minimizing eq. (2.5) or
the decision rule of 𝑔𝑝 is used for classification decision-based losses, with 𝑔

being a better proxy for error rate or accuracy measure.

Detection IL is considered to occur if LAS is significantly greater than
0, i.e., 𝛿(m(·)) ≫ 0 or 𝛿(ℓ(·)) ≫ 0. Thus, ILD is conducted by analyzing
the learnability of empirical risk minimizers (𝑔𝑝 or 𝑔) on the system dataset
𝒟. Statistical tests on multiple estimates of LAS are employed to detect
IL in a system. ILD approaches are introduced using an average error rate
(0-1 loss) to quantify IL by evaluating 𝛿(mER) (or 𝛿(mACC)) and 𝛿(mMCC)

(via confusion matrix (CM)) and detecting IL using paired t-test (PTT) and
Fisher’s exact test (FET), respectively, as detailed in Section 3.2.2. MI-based
ILD approaches are proposed, utilizing the OTT on multiple MI estimates, as
described in Section 3.2.2, with Log-Loss effectively detecting IL in OpenSSL
TLS servers, discussed in Section 5.3. For ILs in AES-encrypted systems, where
the secret information is a secret key byte, a specialized GE-based LAS measure
is proposed. This measure is directly correlated to MI, as shown in Section 3.2.2,
and is used to derive a VS for the secret key byte of the AES-encrypted system,
detailed in Chapter 6.

3.2.2. Approaches

The ILD approaches are categorized based on the use of MI and the classifica-
tion performance of the Bayes predictor to detect IL in a system, referred to as
MI-based and classification-based ILD approaches, respectively. The auto-

106

3. Information Leakage Detection

𝐻(𝑋|𝑌) 𝐼(𝑋;𝑌)𝐻(𝑌 |𝑋)

𝐻(𝑋) 𝐻(𝑌)

𝐻(𝑋|𝑌) = 𝐻(𝑌 |𝑋) = 0
𝐻(𝑋)
𝐻(𝑌)

𝐼(𝑋;𝑌) = 𝐻(𝑋)

𝐼(𝑋;𝑌) > 0⇒ IL exists

𝐼(𝑋;𝑌) = 0

𝐻(𝑋|𝑌) = 𝐻(𝑋) 𝐻(𝑌 |𝑋) = 𝐻(𝑌)

𝐼(𝑋;𝑌) = 0⇒ No IL

Figure 3.1.: IL-Quantification using MI

mated machine learning (AutoML) tools, AutoGluon and TabPFN, described
in Section 2.2.4, are employed to accurately estimate empirical risk minimizers
(𝑔 or 𝑔𝑝) as proxies for the Bayes predictor. Statistical tests are applied to
the LAS evaluated using Log-Loss, accuracy, and CM of the top-performing
AutoML models or pipelines (𝑔 or 𝑔𝑝) to obtain a 𝑝-value with a predefined
significance level of 𝛼 = 0.01. If the 𝑝-value is below 𝛼, 𝐻0 is rejected, in-
dicating the presence of IL; otherwise, 𝐻0 is not rejected. For detecting ILs
in AES-encrypted systems, where the sensitive information comprises secret
key bytes, a specialized GE-based LAS measure is employed, which is directly
correlated to MI, as detailed in Section 3.2.2.

Mutual Information: Quantification and Detection

According to information theory, IL occurs in a system when the MI between
system inputs and outputs is significantly greater than 0. This condition
forms the basis for detecting IL in the given system. Figure 3.1 illustrates IL
quantification using MI, a non-negative and symmetric measure that aligns
well with the nature of IL in cryptographic systems. This makes it a robust
metric for quantifying IL, as discussed in Section 2.1.2. The leftmost diagram
in Figure 3.1 represents 𝐼(𝑋;𝑌) > 0, indicating the presence of IL in the
system. The middle diagram shows the maximum possible IL, with the MI value
reaching min({𝐻(𝑋), 𝐻(𝑌)}) = 𝐻(𝑌), signifying full dependence. Finally, the
rightmost diagram depicts 𝐼(𝑋;𝑌) = 0, indicating no IL in the system.

107

3. Information Leakage Detection

The LAS is equivalent to MI when using the log-loss loss function to evaluate the
performance of Bayes predictor and marginal Bayes predictor. The Bayes pre-
dictor and marginal Bayes predictor is estimated using empirical risk minimizers
(𝑔𝑝, 𝑔) and 𝑔𝑚𝑐

𝑝 , respectively, i.e., 𝛿(ℓ𝑙𝑙) = 𝐼(𝑋;𝑌) = E[ℓ𝑙𝑙(𝑔𝑚𝑐)] − E[ℓ𝑙𝑙(𝑔𝑏𝑐)],
marking as a foundation for the Log-Loss MI estimation approach described
in Section 3.3.2. Additionally, the Bayes error rate (mER (𝑔𝑏𝑐)) bounds MI,
forming the basis of the Mid-Point MI estimation approach in Section 3.3.1.
To ensure accurate MI estimation, the use of AutoML tools such as AutoGluon
and TabPFN, as discussed in Section 2.2.4, is recommended. This section de-
tails the application of OTT to the MI estimates obtained through Log-Loss

and Mid-Point techniques for performing ILD in a cryptographic system.

One-sample t-test Based Approach As described in Section 2.4.1, the
one-sample t-test (OTT) is used to determine if the mean of a sample differs
significantly from a known population mean [46]. The MI-based ILD approach
is founded on the condition that IL occurs in the system if MI or LAS with
log-loss must be significantly greater than 0, i.e., 𝛿(ℓ𝑙𝑙)≫ 0, as per Section 3.2.1.
In the context of detecting IL in the system, the OTT is applied to evaluate
whether the MI estimates obtained using 𝐾-fold cross-validation (KFCV)
deviate significantly from zero. To deduce the presence of IL in a system, using
the OTT, first consider the null hypothesis (𝐻0(𝐼𝑗 ∼ 0)) and the alternative
hypothesis (𝐻1(𝐼𝑗 ≫ 0)). The null hypothesis (𝐻0) posits that the MI values
are approximately zero, indicating no IL. In contrast, the alternative hypothesis
(𝐻1) suggests a significant deviation from zero, implying the presence of IL. The
𝐾 = 10 MI estimates are computed through KFCV of the top-𝑗th performing
pipeline acquired using the Log-Loss and Mid-Point techniques and the
baseline methods, represented by the vector 𝐼𝑗 = (𝐼1, . . . , 𝐼10). Using them, the
sample mean (𝜇𝐼𝑗

) and standard deviation (𝜎𝐼𝑗
) is calculated. The 𝑡-statistic

is computed as 𝑡 =
𝜇𝐼𝑗

−𝜇0

𝜎
𝐼𝑗
/
√
𝐾

, where 𝜇0 = 0.0 is the expected population mean

108

3. Information Leakage Detection

under the null hypothesis and 𝐾 is the number of MI estimates in the sample
(in this case, 10). The 𝑝-value is derived from the 𝑡-distribution with 𝐾 − 1

degrees of freedom to evaluate the significance of the calculated 𝑡-statistic.

If the null hypothesis is true, the 𝑝-value represents the probability of observing
a sample mean as extreme as the 0 obtained. If the 𝑝-value is below a predefined
threshold (e.g., 𝛼 = 0.01), 𝐻0 is rejected, indicating the presence of IL. Other-
wise, 𝐻0 is not rejected, and the alternate hypothesis 𝐻1 is accepted, suggesting
no significant IL. In summary, the OTT is applied to the MI estimates to assess
whether they deviate significantly from the expected population mean of 0
to detect potential IL in the system. Subsequently, the corresponding ILD
approaches using the MI estimation methods detailed in Section 3.3 combined
with OTT to detect ILs in systems are referred as MI-based approaches
in Chapter 5, Appendix A.2 and A.3.

Classification Performance: Quantification and Detection

This section outlines two ILD methodologies introduced in Gupta et al. (2022)
[80], which are based on the concept from statistical learning theory stating that
IL occurs in a system if the accuracy of Bayes predictor significantly surpasses
that of a marginal Bayes predictor, as explained in Section 2.2.1. These method-
ologies quantify IL by analyzing the LAS using average error rate (measured
by 0-1loss), i.e., 𝛿(mER), to quantify the performance difference between Bayes
predictor and marginal Bayes predictor, as discussed in Section 3.2.1.

An accuracy-based measure, such as 0-1loss or average error rate, can be
misleading for imbalanced datasets. To address this, the 𝛿(mMCC), measuring
the performance difference between the Bayes predictor and marginal Bayes
predictor using mathews correlation coefficient (MCC), is analyzed through
CM. FET is applied to the CM to assess the statistical dependence between
ground truth and predicted labels, effectively incorporating 𝛿(mMCC) analysis
for detecting IL, especially in imbalanced datasets.

109

3. Information Leakage Detection

Gupta et al. (2024) [81] proposes using advanced AutoML tools like AutoGluon
and TabPFN (c.f. Section 2.2.4) to evaluate the empirical risk minimizer 𝑔

in eq. (2.5), improving upon Gupta et al. (2022) [80], which relied on a predefined
set of binary classifiers to induce Bayes predictor. Leveraging AutoML ensures
better adaptability across datasets and more reliable IL detection due to its
consistent learners like multi-layer perceptron (MLP) and ensemble methods
(random forest classifier (RF), gradient boosting machine (GBM)). These
approaches are referred to as Classification-based in Chapter 5, Appendix
A.2 and A.3.

Paired t-test Based Approach Our first approach detects IL in a system by
using PTT to compare the accuracy estimates of marginal Bayes predictor using
𝑔𝑚𝑐
𝑝 in eq. (3.3) and AutoML pipelines, which approximate the performance of

Bayes predictor in eq. (2.6) using empirical risk minimizer 𝑔 minimizing eq. (2.5).
In this approach, the PTT is applied between the 𝐾 = 10 accuracy estimates
obtained through KFCV for the 𝑗th best-performing AutoML pipeline estimating
𝑔 (empirical risk minimizer) and 𝑔𝑚𝑐

𝑝 , denoted by 𝑎𝑗 and 𝑎𝑚𝑐, respectively. This
approach, which evaluates whether the performance of marginal Bayes predictor
significantly differs from Bayes predictor, is denoted as PTT-Majority [80].
A baseline approach proposed in Drees et al. (2021) [49] is also utilized, where the
PTT is employed to test whether the Bayes predictor (𝑎𝑗) performs significantly
better than a random guessing (𝑎𝑟𝑔), denoted as PTT-Random.

These paired tests assess the probability (or 𝑝-value) of observing a statistically
significant difference between the paired samples, i.e., the accuracies of 𝑔𝑚𝑐

𝑝 and
𝑔𝑝, as described in Section 2.4.1 [46]. The 𝑝-value represents the probability
of obtaining test results (mean of the accuracy differences) as extreme as
the observation, assuming the null hypothesis 𝐻0(·) holds [46]. The null
hypothesis 𝐻0(𝑎𝑚𝑐 ≊ 𝑎𝑗) implies that the accuracies are drawn from the same
distribution or that the average difference between the paired samples is nearly
zero (≊ 0), suggesting no significant difference in performance, implying no
occurrence of IL in the system [46]. The corrected version of PTT, proposed

110

3. Information Leakage Detection

by [138], is selected among commonly used paired statistical tests, which version
accounts for the dependency between the accuracy estimates from conducting
a KFCV. However, PTT has limitations, including its reliance on normality
assumptions and asymptotic behavior, which can result in overly optimistic
𝑝-values. Moreover, accuracy-based measures can be misleading for imbalanced
datasets [154, 148], making this approach less reliable. These limitations
motivated the usage of FET to analyze the LAS evaluated using MCC (via
CM) to detect IL by analyzing the corresponding LAS (𝛿(mMCC)).

Fisher’s Exact Test Based Approach To address the class imbalance in
system datasets and improve 𝑝-value estimation accuracy, the FET is proposed
for use on the evaluated 𝐾 CMs (obtained via KFCV) to detect IL, through the
LAS evaluated using MCC, i.e., 𝛿(mMCC). The 𝑝-value tests for independence,
with lower values indicating potential IL. The FET provides increased reliability
for imbalanced datasets and avoids biases inherent in PTTs. IL is considered
likely if a strong correlation exists between inputs 𝑥 and outputs 𝑦 in the system
dataset 𝒟. Since predictions produced by the AutoML pipeline, 𝑦 = 𝑔(𝑥), are
treated as single points encapsulating all input information, the existence of
a correlation between 𝑥 and 𝑦 implies that 𝑦 contains relevant information
for predicting correct outputs (mtp, mtn). Thus, FET is applied to the CM
to detect IL in a system by assessing the dependency between predictions 𝑦

and ground truths 𝑦. This test evaluates the relationships between predicted
and actual classes using the CM, making it particularly effective in imbalanced
datasets.

FET is a non-parametric test used to determine the probability of indepen-
dence (or non-dependence) between two classification methods, such as ground
truths 𝑦 and AutoML predictions 𝑦 [64]. It offers the advantage of cal-
culating 𝑝-values using the Hypergeometric distribution, ensuring precision
even for small datasets. Unlike approximation-based methods that require
large sample sizes, FET remains effective in detecting dependencies in small
or imbalanced datasets, as discussed in Section 2.4.2. The null hypothesis

111

3. Information Leakage Detection

𝐻0 (𝑝(𝑦,𝑦 |𝑀) = 𝑝(𝑦 |𝑀) · 𝑝(𝑦 |𝑀)) posits that model predictions 𝑦 and
ground-truth labels 𝑦 are independent, suggesting the absence of IL. Conversely,
the alternative hypothesis 𝐻1 (𝑝(𝑦,𝑦 |𝑀) ̸= 𝑝(𝑦 |𝑀) · 𝑝(𝑦 |𝑀)) implies sig-
nificant dependence, indicating the presence of IL.

In the context of ILD, FET is more robust than PTTs, as it directly tests
the dependence between classifier predictions 𝑦 and ground-truth labels 𝑦.
Unlike accuracy-based tests that may overestimate performance in imbalanced
cases, FET ensures that results are not biased by class imbalance. Notably,
the 𝑝-value for marginal Bayes predictor using this method is 𝑃𝑟(𝑀) = 1.0

because, for predicted class 0 (𝑦 = 0), mfp = 0, mtp = 0, and for predicted
class 1 (𝑦 = 1), mfn = 0, mtn = 0. This approach directly tests the learnability
of the empirical risk minimizer 𝑔 (a proxy for Bayes predictor), independent
of marginal Bayes predictor, and relates to MCC, which accounts for class
imbalance [24, 32]. Using KFCV, 𝐾 = 10 CMs, are obtained from the 𝑗th

best-performing pipeline, denoted by ℳ𝑗 = {𝑀 𝑘
𝑗 }𝐾𝑘=1, yielding 𝐾 𝑝-values

after applying FET. Bhattacharya and Habtzghi (2002) [17] demonstrate that
the median of multiple 𝑝-values provides the best estimate of the true 𝑝-value.
Thus, these 𝑝-values are aggregated using the median and mean for robustness,
referred to as FET-Median and FET-Mean, respectively. If the 𝑝-value is
below a predefined significance level (e.g., 𝛼 = 0.01), 𝐻0 is rejected, indicating
the presence of IL; otherwise, the test fails to reject the null hypothesis 𝐻0,
implying the absence of IL in the system.

Guessing Entropy: Quantification and Detection

In this section, bounds on MI 𝐼(𝑋;𝑌) with respect to GE 𝐺(𝑌 |𝑋), using
both the McEliece and Yu (1995) [125] upper bound and the Béguinot and
Rioul (2024) [11] gamma-parametric lower bound are derived. These bounds
relate the LAS in terms of GE 𝛿(mGE(𝑟

𝑁𝑎 , 𝑘*)) to MI 𝐼(𝑋;𝑌), allowing us to
derive conditions based on how 𝛿(mGE(𝑟

𝑁𝑎 , 𝑘*)) behaves.

112

3. Information Leakage Detection

McEliece and Yu (1995) [125] Upper Bound By substituting 𝐻(𝑌 |𝑋) =

𝐻(𝑌) − 𝐼(𝑋;𝑌) and 𝐺(𝑌 |𝑋) = 𝐺(𝑌) − 𝛿(mGE(𝑟
𝑁𝑎 , 𝑘*)) in the McEliece

and Yu (1995) [125] upper bound on GE in terms of conditional entropy
in eq. (2.14), the relationship between MI 𝐼(𝑋;𝑌) and the LAS in terms of
GE 𝛿(mGE(𝑟

𝑁𝑎 , 𝑘*)) is derived as

𝐺(𝑌)− 𝛿(mGE(𝑟
𝑁𝑎 , 𝑘*)) ≤ (𝐻(𝑌)− 𝐼(𝑋;𝑌)) · (𝑀 − 1)

2 · lg(𝑀)
+ 1 ,

𝐼(𝑋;𝑌) ≤ 𝐻(𝑌)− (𝐺(𝑌)− 𝛿(mGE(𝑟
𝑁𝑎 , 𝑘*))− 1) · 2 · lg(𝑀)

𝑀 − 1
.

Béguinot and Rioul (2024) [11] Gamma-Parametric Lower Bound Sim-
ilarly, by substituting 𝐻(𝑌 |𝑋) = 𝐻(𝑌) − 𝐼(𝑋;𝑌) and 𝐺(𝑌 |𝑋) = 𝐺(𝑌) −
𝛿(mGE(𝑟

𝑁𝑎 , 𝑘*)) into the gamma-parametric lower bound, which relates the
conditional entropy to GE in eq. (2.15), following relationship between MI
𝐼(𝑋;𝑌) and LAS in terms of GE 𝛿(mGE(𝑟

𝑁𝑎 , 𝑘*)) is derived as

𝐻(𝑌)− 𝐼(𝑋;𝑌) = log2

(︂
𝛾 · 1− 𝛾𝑀

1− 𝛾

)︂
− log2(𝛾) · (𝐺(𝑌)− 𝛿(mGE(𝑟

𝑁𝑎 , 𝑘*))) ,

𝐼(𝑋;𝑌) = 𝐻(𝑌)− log2

(︂
𝛾 · 1− 𝛾𝑀

1− 𝛾

)︂
+ log2(𝛾) · (𝐺(𝑌)− 𝛿(mGE(𝑟

𝑁𝑎 , 𝑘*))) .

Note that 𝐺(𝑌) = (𝑀+1)
2

, and when the key bytes are uniformly distributed,
𝐻(𝑌) = lg(𝑀). As shown in Figure 3.2, in the case where the system leaks max-
imum information, i.e., 𝐼(𝑋;𝑌) = 𝐻(𝑌) = lg(𝑀), the LAS 𝛿(mGE(𝑟

𝑁𝑎 , 𝑘*))

reaches its maximum possible value, 𝛿(mGE(𝑟
𝑁𝑎 , 𝑘*)) = (𝑀 − 1)/2. Con-

versely, when the system leaks no information, i.e., 𝐼(𝑋;𝑌) = 0, the LAS
𝛿(mGE(𝑟

𝑁𝑎 , 𝑘*)) is minimized to 𝛿(mGE(𝑟
𝑁𝑎 , 𝑘*)) = 0.

These insights show that LAS in terms of GE 𝛿(mGE(𝑟
𝑁𝑎 , 𝑘*)) provides a

concrete measure to quantify the IL in an AES-encrypted system, where the
secret information is the key byte of the secret key, acting as a direct indicator
of the extent of leakage.

113

3. Information Leakage Detection

Success Rate The GE is approximately inversely proportional to the success
rate (SR), i.e., 𝑃sr(𝐾|𝑌) ∝ 1

𝐺(𝑌 |𝑋)
, particularly for small SRs and large numbers

of classes (𝑀 ≥ 28), as discussed in Section 2.3.3.

A higher SR corresponds to lower GE, reflecting an easier guessing process [11].
The LAS in terms of SR is given by 𝛿(mSr(𝑟

𝑁𝑎 , 𝑘*)) = 1 − 1
𝑀

, which implies
maximum leakage when 𝑆𝑅 = 1, where 𝐼(𝑋;𝑌) = lg(𝑀). Conversely, when
𝛿(mSr(𝑟

𝑁𝑎 , 𝑘*)) = 1
𝑀

and 𝑆𝑅 = 0, 𝐼(𝑋;𝑌) = 0, indicating no leakage. Al-
though the LAS in terms of SR provides insight into the amount of IL, the
GE is chosen as a measure of IL in AES-encrypted systems as it offers more
detail regarding the rank of the actual key byte 𝑘*, rather than focusing solely
on the first rank. In many systems, multiple guesses 𝑔 are allowed, typically
3, so for 𝛿(mSr(𝑟

𝑁𝑎 , 𝑘*)) ∈
[︀
𝑀−1
2

, 𝑀+1−2𝑔
2

]︀
, the system is breakable, indicating

the presence of IL.

Vulnerability Score and Detection Rather than relying on statistical tests
for multiple values of GE, the detection of IL is proposed by calculating the
percentage of successful attacks as a direct confidence measure of IL. The VS is
derived based on the system’s allowed number of guesses and provides a more
interpretable measure than binary decisions obtained from statistical tests.

This process is automated using neural architecture search (NAS), stream-
lining the detection of leakage in AES-encrypted systems through the metric
mVS(𝑟

𝑁𝑎 , 𝑘*), which represents the percentage of successful attacks, i.e., when
the GE is less than or equal to 3 (mGE(𝑟

𝑁𝑎 , 𝑘*) ≤ 3).

As discussed in Section 2.3.3, GE is approximated using 𝑅𝑎 different attack
datasets 𝒟Att

𝑎 with 𝑁𝑎 attack traces, computed as

mGE(𝑟
𝑁𝑎 , 𝑘*) ≊

1

𝑅𝑎

𝑅𝑎∑︁
𝑎=1

𝑟𝑁𝑎 [𝑘*].

114

3. Information Leakage Detection

The percentage of successful attacks, mVS(𝑟
𝑁𝑎 , 𝑘*), is estimated by performing

𝐴𝑎 different attacks with varying random seeds, as defined in eq. (6.1) as

mVS(𝑟
𝑁𝑎 , 𝑘*) =

1

𝐴𝑎

𝐴𝑎∑︁
𝑖=1

JmGE(𝑟
𝑁𝑎 , 𝑘*) ≤ 3K ≊

1

𝐴𝑎

𝐴𝑎∑︁
𝑖=1

J
1

𝑅𝑎

𝑅𝑎∑︁
𝑎=1

𝑟𝑁𝑎 [𝑘*] ≤ 3K .

This metric directly measures the AES-encrypted system’s vulnerability to-
wards template SCAs. While GE-based approaches are applicable when secret

0 2 4 6 8
Mutual Information I(X;Y)

20

22

24

26

28

δ(
m

G
E
)

=
G

(Y
)
−
G

(Y
|X

)

Max IL
δ(mGE)= M−1

2
= 0.5

Max IL

δ(mGE)= M−1
2

= 1.5

Max IL

δ(mGE)= M−1
2

= 3.5

Max IL

δ(mGE)= M−1
2

= 7.5

Max IL

δ(mGE)= M−1
2

= 15.5

Max IL

δ(mGE)= M−1
2

= 31.5

Max ILδ(mGE)= M−1
2

= 63.5

Max ILδ(mGE)= M−1
2

= 127.5

Relation between δ(mGE) vs I(X;Y)

G(Y |X) = 1.0
I(X;Y) = lg(M)
M = 2

M = 4
M = 8
M = 16

M = 32
M = 64

M = 128
M = 256

Figure 3.2.: Optimal joint range between the MI (𝐼(𝑌 |𝑋)) and GE (𝐺(𝑌 |𝑋)) for
different classes 𝑀 in [2, 256] range, with the optimal lower bound
derived by McEliece and Yu (1995) [125] shown as dashed line and the
upper bound by Béguinot and Rioul (2024) [11] shown as solid line

information corresponds to secret key byte values, the percentage of successful
attacks (mVS(𝑟

𝑁𝑎 , 𝑘*)) provides a more interpretable measure of IL in a system.
Statistical tests are unnecessary, as VS effectively indicates the probability
and extent of IL. Moreover, combined with TST, VS offers insights into SCAs

115

3. Information Leakage Detection

efficiency and system susceptibility, as detailed in Section 2.3.3. These metrics,
explored further in Chapter 6, provide a novel robust framework for assessing
vulnerabilities in AES-encrypted systems and evaluating the impact of the
template SCAs.

3.3. Mutual Information Estimation Methods

This section introduces two techniques for estimating the MI in a system gener-
ating classification datasets by approximating the Bayes predictor, rather than
relying solely on standard statistical methods. Mid-Point and Log-Loss are
briefly described in Sections 3.3.1 and 3.3.2, respectively. Additionally, Sec-
tion 3.3.3 outlines three competitive state-of-the-art MI estimation methods [51,
12, 158]. These techniques are used to perform ILD with OTT in a given
system, as detailed in Section 3.2.2.

3.3.1. Mid-point Estimation

The Mid-Point approach estimates MI by leveraging the relationship between
Bayes error rate mER (𝑔𝑏𝑐) and the conditional entropy 𝐻(𝑌 |𝑋) for a classifi-
cation task [185]. The MI is estimated using the empirical risk minimizer 𝑔

of eq. (2.5) to approximate the Bayes error rate.

The conditional entropy 𝐻(𝑌 |𝑋) is bounded as

𝐻𝑙(mER (𝑔𝑏𝑐),𝑀) ≤ 𝐻(𝑌 |𝑋) ≤ 𝐻𝑢(mER (𝑔𝑏𝑐),𝑀)

𝐻𝑙(mER (𝑔𝑏𝑐),𝑀) = lg(𝑚) +𝑚(𝑚+ 1)

(︂
lg

(︂
𝑚+ 1

𝑚

)︂)︂(︂
mER (𝑔𝑏𝑐)− 𝑚− 1

𝑚

)︂
𝐻𝑢(mER (𝑔𝑏𝑐),𝑀) = 𝐻2(mER (𝑔𝑏𝑐)) + mER (𝑔𝑏𝑐) lg(𝑀 − 1) ,

where 𝐻𝑙(·) derived by Hellman and Raviv (1970) [85] is valid for 1
𝑚+1

≤
1 −mER (𝑔𝑏𝑐) ≤ 1

𝑚
,𝑚 = 1, . . . ,𝑀 − 1 and 𝐻𝑢(·) derived by Fano (1961) [56]

uses the binary cross-entropy function, 𝐻2(𝑎) = −𝑎 lg(𝑎)− (1− 𝑎) lg(1− 𝑎).

116

3. Information Leakage Detection

Plugging in 𝐻𝑙(·) and 𝐻𝑢(·) in eq. (2.2), the bounds on MI are derived as

𝐻(𝑌)−𝐻𝑢(mER (𝑔𝑏𝑐),𝑀) ≤ 𝐼(𝑋;𝑌) ≤ 𝐻(𝑌)−𝐻𝑙(mER (𝑔𝑏𝑐),𝑀)

𝐹𝑙(mER (𝑔𝑏𝑐),𝑀) ≤ 𝐼(𝑋;𝑌) ≤ 𝐹𝑢(mER (𝑔𝑏𝑐),𝑀)

𝐻(𝑌)−𝐻2(mER (𝑔𝑏𝑐)) ≤ 𝐼(𝑋;𝑌) ≤ 𝐻(𝑌)− 2mER (𝑔𝑏𝑐) , 𝑀 = 2 .

MI is estimated as

̂︀𝐼(𝑋;𝑌) ≊
𝐹𝑢(mER (𝑔),𝑀) + 𝐹𝑙(mER (𝑔),𝑀)

2
, (3.1)

where 𝑔 is the empirical risk minimizer of eq. (2.5) and serves as a proxy of
the Bayes predictor, as mER (𝑔𝑏𝑐) ≊ mER (𝑔).

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

M
u

tu
al

In
fo

rm
at

io
n
I
(X

;Y
)

Balanced

0.0 0.1 0.2 0.3

mER(gbc) = mER(gmc) mER(gbc) = mER(gmc)

Imbalanced r = 0.3

Fano’s: Fl(·) Mid-Point MI: (Fu(·) + Fl(·)) 1
2 Hellman-Raviv’s: Fu(·)

Bayes Error-Rate mER(gbc)

Figure 3.3.: Bayes error rate versus Mid-Point MI (estimated in red)

Limitations in Imbalanced Data As shown in Figure 3.3, for balanced
binary classification, when the mid-point MI is 0, the Bayes error rate is 0.5,
indicating no IL in the system. However, for the imbalanced case 𝑟 = 0.3,
when mER (𝑔𝑏𝑐) = 0.3, the mid-point MI is more than 0, despite no actual IL

117

3. Information Leakage Detection

according to the statistical learning theory condition in Section 3.2.1. This
highlights the issue of overestimation in the Mid-Point approach, where the
true MI might correspond to the lower bound 𝐹𝑙(mER (𝑔𝑏𝑐),𝑀).

To illustrate this issue, let us consider an example where the class imbalanced
joint distribution 𝑝(𝑋,𝑌)(·), along with the calculated marginals 𝑝𝑌 (·), 𝑝𝑋(·),
and the conditional 𝑝𝑌 |𝑋(·), is defined as

Joint Distribution

𝑝(𝑋,𝑌)(𝑥, 𝑦) 𝑦 = 0 𝑦 = 1 𝑝𝑋(𝑥)

𝑥 = 0 0.5 0 0.5

𝑥 = 1 0.45 0.05 0.5

𝑝𝑌 (𝑦) 0.95 0.05 −

Conditionals on 𝑌 given 𝑋

𝑝𝑌 |𝑋(𝑦 |𝑥) 𝑦 = 0 𝑦 = 1 𝑝𝑋(𝑥)

𝑥 = 0 1 0 0.5

𝑥 = 1 0.9 0.1 0.5

𝑝𝑌 (𝑦) 0.95 0.05 −

(3.2)

In this scenario, the ground-truth MI is calculated by substituting the joint
and marginal probability mass functions (PMFs) from eq. (2.2) into eq. (2.3) as
𝐼(𝑋;𝑌) =

∑︀
𝑥∈{0,1}

∑︀
𝑦∈{0,1} 𝑝(𝑋,𝑌)(𝑥, 𝑦) lg

(︁
𝑝(𝑋,𝑌)(𝑥,𝑦)

𝑝𝑋(𝑥)𝑝𝑌 (𝑦)

)︁
= 0.0519 bits. The opti-

mal Bayes predictor for decision-making is defined as 𝑔𝑏𝑐(𝑥) = 0 using eq. (2.6),
yielding a Bayes error rate of 0.05 (mER (𝑔𝑏𝑐) =

∑︀
𝑥∈{0,1} 𝑝𝑋(𝑥)·𝑝𝑌 |𝑋(𝑦 = 1 |𝑥) =

0.05). The binary entropy of Bayes error rate and 𝑌 is then calculated us-
ing eq. (2.1), resulting in 𝐻(𝑌) = 𝐻2(mER (𝑔𝑏𝑐)) ≈ 0.286 bits. By inserting
these values into eq. (3.1), the Mid-Point MI estimate is approximately as
0.0932 bits.

In this example, the ground-truth MI is 0.0519 bits, while the Mid-Point

MI estimate is 0.0932 bits, demonstrating the issue of overestimation. This
discrepancy arises from the deterministic nature of error rates in capturing the
probabilistic relationship (MI) between the variables. error rates, therefore,
may not always be an accurate metric for assessing performance in imbalanced
datasets, potentially detecting non-existent ILs in the system, leading to false
positives.

118

3. Information Leakage Detection

To improve the estimation accuracy using these bounds, it is essential to define
a Bayes predictor that minimizes metrics such as balanced error-rate (BER) or
maximizes other metrics like MCC or F1-score, as described in Section 2.2.2.
[210] establishes a relationship between BER and MI for binary classification;
however, this relationship does not generalize to multi-class scenarios.

Baseline ILDs Oversights One common approach to identifying IL is the
PTT-Majority baseline, which relies on uncovering significant differences
in error rates between the Bayes predictor (or a suitable approximation 𝑔 or
𝑔𝑝) and the marginal Bayes predictor [80]. However, considering the example
in eq. (3.2), the Bayes predictor (𝑔𝑏𝑐(𝑥) = 0) coincides with marginal Bayes
predictor and always predicts class 0 for any given input 𝑥. This alignment
between Bayes predictor and marginal Bayes predictor leads to a situation where
the IL present in a system goes undetected by PTT-Majority. Furthermore,
the FET based ILD approaches, including FET-Mean and FET-Median,
also fall short in identifying this IL. The failure to identify the IL stems from
the Bayes predictor’s CM, which in this case is evaluated as (95 00

05 00), yielding
an exact 𝑝-value of 1 when tested using the FET [80]. Consequently, in cases
when Bayes error rate is very close to marginal Bayes predictor’s error rate,
these baseline ILD approaches fail to detect the IL in the system and produce
false negatives [80].

3.3.2. Log-Loss Estimation

The Log-Loss approach for MI estimation is proposed to address the overes-
timation and false positives of the Mid-Point approach, as well as the false
negatives of baseline ILD approaches. This approach employs the empirical
risk minimizer 𝑔𝑝, which minimizes eq. (2.8), to approximate the log-loss of the
Bayes predictor.

119

3. Information Leakage Detection

The MI between 𝑋 and 𝑌 in eq. (2.2) is defined as

𝐼(𝑋;𝑌) = −𝐻(𝑌 |𝑋) +𝐻(𝑌)

=

∫︁
𝑥∈𝒳

𝑝𝑋(𝑥)
∑︁
𝑦∈𝒴

𝑝𝑌 |𝑋(𝑦 |𝑥) lg
(︀
𝑝𝑌 |𝑋(𝑦 |𝑥)

)︀
𝑑𝑥−

∑︁
𝑦∈𝒴

𝑝𝑌 (𝑦) lg (𝑝𝑌 (𝑦))

= −E[ℓ𝑙𝑙(𝑔𝑏𝑐)] + E[ℓ𝑙𝑙(𝑔𝑚𝑐)] ≊ −E[ℓ𝑙𝑙(𝑔𝑝)] + E[ℓ𝑙𝑙(𝑔𝑚𝑐
𝑝)] ,

where E[ℓ𝑙𝑙(·)] represents the expected log-loss. The conditional entropy 𝐻(𝑌 |𝑋)

equals the expected log-loss of the Bayes predictor 𝑔𝑏𝑐, and the entropy of 𝑌 is
the expected log-loss of the marginal Bayes predictor 𝑔𝑚𝑐, making it a special
case of LAS, as discussed in Section 3.2.1.

Log-loss For probabilistic classifiers 𝑔𝑝, categorical cross-entropy (CCE) is
used to obtain estimated conditional class probabilities, forming a vector
𝑝 = (𝑝1, . . . , 𝑝𝑀) for each input 𝑥. The log-loss for 𝑔𝑝 is defined in [([)
[[]chap. 4]bishop2006pattern as

ℓ𝑙𝑙(𝑦,𝑝) = −
𝑀∑︁

𝑚=1

𝑝𝑚 lg(𝑝𝑚) = −
𝑀∑︁

𝑚=1

𝑔𝑝(𝑥)[𝑚] lg(𝑔𝑝(𝑥)[𝑚]) .

It reaches its minimum value of 0 when the class probability is high for one
class 𝑚, i.e., 𝑝𝑚 ≊ 1 and low for remaining, i.e., 𝑝𝑗 ≊ 0 ,∀𝑗 ∈ [𝑀] ∖ {𝑚}, and
its maximum value lg(𝑀) when probabilities are uniformly distributed, i.e.,
𝑝𝑚 = 1/𝑀 ,∀𝑚 ∈ [𝑀], implying that high uncertainty in the classification also
increases the log-loss, making it suitable to estimate the conditional entropy
𝐻(𝑌 |𝑋).

Marginal Bayes predictor The marginal Bayes predictor, denoted by 𝑔𝑚𝑐
𝑝 ,

is estimated from the class distribution in the dataset 𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 us-
ing eq. (2.8). The class probabilities for each input 𝑥 are

𝑔𝑚𝑐
𝑝 (𝑥) = 𝑝𝑚𝑐 = (𝑝1, . . . , 𝑝𝑀) , (3.3)

120

3. Information Leakage Detection

where 𝑝𝑚 = |{(𝑥𝑖,𝑦𝑖)∈𝒟 | 𝑦𝑖=𝑚}|
|𝒟| is the fraction of instances for class 𝑚. The log-

loss of the marginal Bayes predictor suitably estimates entropy of 𝑌 (𝐻(𝑌)),
i.e., 𝐻(𝑌) ≊ ℓ𝑙𝑙(𝑦,𝑝𝑚𝑐), ranging from 0 and lg(𝑀), attaining the maximum
value for a balanced dataset.

MI estimation The expected log-loss of the Bayes predictor and marginal
Bayes predictor is approximated by evaluating the log-loss of 𝑔𝑝 and 𝑔𝑚𝑐

𝑝 for
the dataset 𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 as

E[ℓ𝑙𝑙(𝑔𝑝)] =
1

𝑁

𝑁∑︁
𝑖=1

ℓ𝑙𝑙(𝑦𝑖, 𝑔𝑝(𝑥𝑖)) = −
1

𝑁

𝑁∑︁
𝑖=1

𝑀∑︁
𝑚=1

𝑔𝑝(𝑥𝑖)[𝑚] lg(𝑔𝑝(𝑥𝑖)[𝑚])

E[ℓ𝑙𝑙(𝑔𝑚𝑐
𝑝)] =

1

𝑁

𝑁∑︁
𝑖=1

ℓ𝑙𝑙(𝑦𝑖, 𝑔
𝑚𝑐
𝑝 (𝑥𝑖)) = −

𝑀∑︁
𝑚=1

𝑝𝑚𝑐[𝑚] lg(𝑝𝑚𝑐[𝑚]).

The MI is then estimated as

̂︀𝐼(𝑋;𝑌) ≊
𝑀∑︁

𝑚=1

(︃
1

𝑁

𝑁∑︁
𝑖=1

𝑔𝑝(𝑥𝑖)[𝑚] lg(𝑔𝑝(𝑥𝑖)[𝑚])− 𝑝𝑚𝑐[𝑚] lg(𝑝𝑚𝑐[𝑚])

)︃
. (3.4)

Classifier Calibration To enhance Log-Loss estimation accuracy, five preva-
lent multi-class calibration approaches are utilized, namely Platt’s Scaling (PS
Cal Log-Loss), Isotonic Regression (IR Cal Log-Loss), Beta Calibra-
tion (Beta Cal Log-Loss), Temperature Scaling (TS Cal Log-Loss),
and Histogram Binning (HB Cal Log-Loss). These methods, collectively
referred to as Cal Log-Loss, are described in Section 2.2.3. These techniques
are applied to improve the precision of Log-Loss, estimating MI as 0.052 bits
exactly for eq. (3.2), thereby avoiding false positives as observed with the Mid-

Point approach. When these techniques are used to estimate MI and perform
ILD via Log-Loss, they are collectively denoted as Cal Log-Loss.

121

3. Information Leakage Detection

3.3.3. Baselines

This section will briefly describe three baseline approaches recently introduced to
estimate the MI, namely Gaussian mixture model (GMM), mutual information
neural estimation (MINE) and PC-Softmax [51, 12, 158].

Gaussian Mixture Model

GMMs are widely used to estimate MI in classification datasets 𝒟 by approxi-
mating unknown probability density functions (PDFs) such as joint, marginal,
and conditional distributions (𝑝(𝑋,𝑌), 𝑝𝑋 , 𝑝𝑌) [121].

Estimation Process The estimation process begins by fitting a GMM to the
joint space 𝒳 ×𝒴 to obtain the joint PDF 𝑝(𝑋,𝑌)(·), which is then used to derive
the marginal PDFs on 𝑋 (𝑝𝑋(·)) and 𝑌 (𝑝𝑌 (·)). The MI is then computed using
the estimated PDFs (𝑝(·)) and the given dataset 𝒟 = {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1 using eq. (2.3)
as

̂︀𝐼(𝑋;𝑌) =
1

𝑁

𝑁∑︁
𝑖=1

(︀
lg(𝑝(𝑋,𝑌)(𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑖))− lg(𝑝𝑋(𝑥𝑖))− lg(𝑝𝑌 (𝑦𝑖))

)︀
.

In a GMM with 𝐾 components, each component 𝑘 has unique parameters:
mixing coefficients (𝜋𝑘), means (𝜇𝑘), and covariance matrices (Σ𝑘), such that
the sum of all coefficients must equal one, i.e.,

∑︀𝐾
𝑘=1 𝜋𝑘 = 1 [51]. Each mixing

coefficient 𝜋𝑘 is between 0 and 1, i.e., 0 < 𝜋𝑘 < 1 and is expressed as

𝜇𝑘 =

⎡⎣𝜇𝑋𝑘

𝜇𝑌𝑘

⎤⎦ , Σ𝑘 =

⎡⎣Σ𝑋𝑋𝑘
Σ𝑋𝑌𝑘

Σ𝑌 𝑋𝑘
Σ𝑌 𝑌𝑘

⎤⎦ .

The marginal GMM for 𝑋 (𝑝𝑋(·)) is constructed using the same 𝐾 components,
with mixing coefficients (𝜋𝑘), means (𝜇𝑋𝑘

) and covariance matrices (Σ𝑋𝑋𝑘
) [51].

Similarly, the marginal GMM for 𝑌 (𝑝𝑌 (·)) uses the corresponding mixing

122

3. Information Leakage Detection

coefficients (𝜋𝑘), means (𝜇𝑌𝑘
) and covariance matrices (Σ𝑌 𝑌𝑘

). The expectation-
maximization (EM) algorithm is used to fit the GMM and determine the
optimal number of components 𝐾 since too few components may miss key data
patterns, while too many can cause overfitting.

Curse of Dimensionality Although GMMs are robust and flexible for mod-
eling complex data distributions, they suffer from the curse of dimensionality
due to the quadratic growth of parameters (𝑂(𝑑2)), making them prone to
overfitting and computational inefficiency in high-dimensional settings [121, 51].
To overcome these issues,high-dimensional data clustering (HDDC) reduces
parameters by imposing constraints on covariance matrices, focusing on the
most informative dimensions (largest eigenvalues) and simplifying others [51].

To avoid overfitting in high-dimensional data, HDDC uses diagonal covariance
(assuming feature independence), spherical covariance (assumed equal variance
in all directions) suitable for isotropic data distributions, and tied covariance
(shared structure across components) to minimize the number of free parame-
ters [121]. While these strategies address the curse of dimensionality, they still
struggle with complex distributions and strong dependencies despite ensuring
compatibility with the EM algorithm [51, 121].

Improvements To address these limitations, the GMM framework in the
InfoSelect library is extended by incorporating diagonal, spherical, and tied
covariance structures to balance flexibility and computational efficiency1 [153].
Diagonal and spherical constraints effectively reduce free parameters in high-
dimensional data, minimizing overfitting, while tied covariance matrices provide
stability and robustness, especially when clusters share similar patterns. Di-
mensionality reduction is applied for datasets with more than 100 features,
preserving the most informative variables to improve MI estimation. For ro-
bustness and fair comparison, Akaike information criterion (AIC) is used as
the objective function for hyperparameter optimization (HPO) to select the

1https://github.com/felipemaiapolo/infoselect/issues/5

123

https://github.com/felipemaiapolo/infoselect/issues/5

3. Information Leakage Detection

optimal model and prevent overfitting. The AIC assists in this decision by
considering both the log-likelihood ℓ(𝜂) of the fitted model and the number of
free parameters 𝐹 , defined as AIC = −2 log ℓ(𝜂) + 2𝐹 [51]. Lower AIC values
reflect a better fit by balancing likelihood and complexity, ensuring that the
GMM captures essential patterns without overfitting.

Mutual Information Neural Estimation

MINE estimates the MI between two variables (𝑋, , 𝑌) by optimizing the
Donsker-Varadhan (DV) representation, providing a lower-bound estimate of
MI, which makes it suitable for high-dimensional data [12]. However, the DV
bound can introduce numerical instability, necessitating techniques such as
gradient clipping and careful learning rate scheduling to maintain stability
during training.MINE is particularly useful for representation learning, feature
selection, and measuring dependencies in latent variables for deep learning (DL)
models.

Estimation Process The MINE loss function used to train a neural network
𝑇𝜃(𝑥, 𝑦) : R𝑑+𝑀 → R with learnable parameters 𝜃 using the dataset 𝒟 =

{𝑥𝑖, 𝑦}𝑖 = 1𝑁 is defined a

ℓMINE(𝑥, 𝑦) = sup
𝜃

(︁
E(𝑥,𝑦)∼𝑝(𝑋,𝑌)(𝑥,𝑦)[𝑇𝜃(𝑥, 𝑦)]− log(E(𝑥,𝑦)∼𝑝𝑋(𝑥)𝑝𝑌 (𝑦)[e

(𝑇𝜃(𝑥,𝑦))])
)︁
,

The 𝑑-dimensional input 𝑥 concatenated with one-hot-encoded 𝑀 length
ground-truth class label 𝑦 serves as an input to the network. The network
architecture includes an input layer (Linear units), hidden layers with ReLU acti-
vation, and a real-valued output layer (Linear unit) to quantify the dependency
between 𝑥 and 𝑦. MINE works by maximizing the discrepancy between the
joint distribution (𝑝(𝑋,𝑌)(·)) and the product of marginals (𝑝𝑋(·)𝑝𝑌 (·)), allowing
it to capture dependencies between variables without explicitly estimating their

124

3. Information Leakage Detection

underlying distributions [12]. MINE estimates MI through iterative training
process outlined in Algorithm 1, making it effective for high-dimensional data
with complex, unobserved PDFs.

Algorithm 1 Training algorithm: MINE

Require: Dataset 𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1, Neural Network 𝑇𝜃

Ensure: Estimated MI: 𝐼𝜃
1: Initialize network parameters 𝜃 and hyperparameters
2: Set 𝑁𝑒𝑝𝑜𝑐ℎ𝑠 = 10000, Set 𝐵 such that 𝑁 mod 𝐵 = 0
3: for 𝑛 ∈ [𝑁𝑒𝑝𝑜𝑐ℎ𝑠] do
4: Define a random permutation 𝜋 on set of indices [𝑁]
5: for 𝑏 ∈ [𝐵] do
6: Define batch start and end: 𝑏𝑠 = (𝑏− 1)𝑁

𝐵
+ 1, 𝑏𝑒 = 𝑏 · 𝑁

𝐵

7: Evaluate the lower-bound:
8: 𝑉 (𝜃)← 1

𝐵

∑︀𝑏𝑒
𝑖=𝑏𝑠

𝑇𝜃(𝑥𝑖, 𝑦𝑖)− log
(︁

1
𝐵

∑︀𝑏𝑒
𝑖=𝑏𝑠

(︀
exp
(︀
𝑇𝜃(𝑥𝑖, 𝑦𝜋(𝑖))

)︀)︀)︁
9: Evaluate bias-corrected gradients (using exponential moving average)

as
10: 𝐺𝑏(𝜃)← ∇𝜃𝑉 (𝜃)
11: Update the statistics network parameters: 𝜃 ← 𝜃 +𝐺𝑏(𝜃)
12: end for
13: end for
14: Compute 𝐼𝜃 =

1

𝑁

∑︀𝑁
𝑖=1 𝑇𝜃(𝑥𝑖, 𝑦𝑖)− log

(︂
1

𝑁

∑︀𝑁
𝑖=1

(︀
exp
(︀
𝑇𝜃(𝑥𝑖, 𝑦𝜋(𝑖))

)︀)︀)︂
15: return Estimated MI: lg(e) · 𝐼𝜃

Improvements The main challenge for training MINE using Algorithm 1 lies
in determining the suitable neural network architecture for estimating MI since a
well-defined objective function is needed to identify the optimal neural network
architecture for accurate MI estimation using standard HPO methods, leading
to potential overfitting and biased results. Discrepancy-based methods like
MINE and Kullback-Leibler (KL) divergence, which compare network outputs
between shuffled and original datasets, can potentially lead to architectures
that overfit and produce biased MI estimates. An ensemble approach addresses
this by combining the outputs of the top-5 models identified through HPO

125

3. Information Leakage Detection

with mean squared error (MSE) as the objective function. This strategy
improves estimation precision and robustness, ensuring reliable performance
across diverse datasets.

PC-Softmax

PC-Softmax provides an alternative approach to estimating MI in classifi-
cation datasets 𝒟 using a modified softmax function, known as probabilitiy-
corrected softmax (PC-softmax) [158]. This method integrates PC-softmax
with the CCE loss function to derive an empirical risk minimizer 𝑔𝑝 minimiz-
ing eq. (2.8) for the given classification datasets 𝒟. The (conditional) class
probabilities predicted by 𝑔𝑝 are subsequently used to estimate MI through the
PC-softmax function [158].

One of the main advantages of this approach over methods like MINE is its
simplicity and the ease with which the network architecture can be optimized
using classification evaluation metrics or loss functions as objective functions.
PC-softmax approximates a lower bound on MI by estimating the KL divergence
between the joint distribution 𝑝(𝑋,𝑌)(·) and the product of marginals 𝑝𝑋(·), 𝑝𝑌 (·)
for variables 𝑋 and 𝑌 [158].

Estimation Process Estimating (conditional) class probabilities by the em-
pirical risk minimizer 𝑔𝑝 is challenging compared to standard classification
tasks. Typically, 𝑔𝑝 is obtained by learning a scoring function ℎ𝑠|𝜃(𝑥), which
assigns un-normalized real-valued scores to each class label, parameterized
by 𝜃. Neural networks or MLPs are commonly used for this purpose, where
ℎ𝑠|𝜃(𝑥) = 𝑠 outputs a vector of un-normalized scores 𝑠 = (𝑠1, . . . , 𝑠𝑀) for a
given instance 𝑥, where 𝑠𝑚 = ℎ𝑠|𝜃(𝑥)[𝑚] = 𝑠[𝑚] is the score assigned to class 𝑚.
The softmax function 𝑆(𝑥) : R𝑀 → [0, 1]𝑀 is then commonly used to convert
these scores into probabilities 𝑝 = (𝑝1, . . . , 𝑝𝑀), typically implemented in the
output layer with 𝑀 nodes of the MLP. This function transforms the score

126

3. Information Leakage Detection

𝑠[𝑦] to the corresponding (conditional) class probability 𝑝[𝑦] as for a given
ground-truth class 𝑦 ∈ [𝑀] as

𝑆(𝑥)[𝑦] = 𝑝[𝑦] =
exp(𝑠[𝑦])∑︀𝑀

𝑚=1 exp(𝑠[𝑚])
.

The empirical risk minimizer 𝑔𝑝 is then obtained by minimizing the CCE loss,
defined as ℓ𝐶𝐶𝐸(𝑥, 𝑦) = − ln(𝑆(𝑥)[𝑦]).

Qin and Kim (2019) [158] demonstrates that the expected CCE loss approxi-
mates MI between the input 𝒳 and output 𝒴 , up to a constant lg(𝑀) under a
uniform label distribution, i.e., 𝐼(𝑋;𝑌) ≥ ̂︀𝐼(𝑋;𝑌) ≊ −∑︀(𝑥,𝑦)∈𝒟 log(𝑆(𝑥)[𝑦]).
To further improve MI estimation, the authors extend the traditional softmax
to PC-softmax, defined as

𝑆𝑝𝑐(𝑥)[𝑦] =
exp(𝑠[𝑦])∑︀𝑀

𝑚=1 exp(𝑝𝑌 (𝑚) · 𝑠[𝑚])
.

The PC-softmax reduces to the traditional softmax when 𝑝𝑌 (𝑦) = 1
𝑀

for
all 𝑦. The corresponding CCE loss is ℓPcce(𝑥, 𝑦) = − ln(𝑆𝑝𝑐(𝑥)[𝑦]), which
improves MI estimation, especially for imbalanced datasets. To compute this,
the marginal distribution 𝑝𝑌 (·) is typically estimated from the dataset as
𝑝𝑌 (𝑦) =

|{(𝑥𝑖,𝑦𝑖)∈𝒟;|;𝑦𝑖=𝑦}|
|𝒟| . This loss function maximizes the lower bound on the

MI, making it a simple yet effective technique for estimating MI in classification
tasks. The MI for a given dataset 𝒟 = {𝑥𝑖, 𝑦}𝑁𝑖=1 is estimated as

𝐼(𝑋;𝑌) ≥ ̂︀𝐼(𝑋;𝑌) ≊
1

𝑁

∑︁
(𝑥,𝑦)∈𝒟

ℓPcce(𝑥, 𝑦)× lg(e) = − 1

𝑁

∑︁
(𝑥,𝑦)∈𝒟

lg(𝑆𝑝𝑐(𝑥)[𝑦]) .

This approach provides a lower bound on MI but offers a simpler and more
flexible method for estimation. In contrast to MINE, the MLP architecture
used here can be optimized for any given dataset 𝒟 using standard objective
functions like accuracy or validation CCE loss.

127

4. Mutual Information
Estimation

This chapter evaluates methods for estimating mutual information (MI), com-
paring them to state-of-the-art approaches using datasets generated by synthetic
systems (synthetic datasets). The terms systems and datasets are used inter-
changeably, as MI is estimated through these systems—a key step for detecting
information leakage (IL) via MI-based information leakage detection (ILD)
approaches, as discussed in Section 3.2.2. The chapter begins with the genera-
tion of synthetic datasets using the multivariate normal (MVN) distribution,
detailed in Section 4.1. Section 4.2 outlines the empirical setup, employing the
normalized mean absolute error (NMAE) metric for performance evaluation.
Results are presented in Section 4.3.2, with generalization capabilities ana-
lyzed across factors such as number of classes (𝑀), input dimensions (𝑑), class
imbalance (𝑟), and noise levels (𝜖), summarized in Section 4.3.2 and detailed
in Appendix A.4. The findings demonstrate the superior performance and
generalization of the proposed approaches over state-of-the-art methods. This
chapter is based on the work published in Gupta et al. (2024) [81].

4.1. Simulating Synthetic Systems

The MVN distribution is employed for simulating real-world vulnerable and non-
vulnerable systems that generate classification datasets, providing a straight-
forward means of obtaining ground truth MI, as described in Section 4.1.3.

128

4. Mutual Information Estimation

The MVN distribution is a natural choice due to its simplicity, well-established
statistical properties, and ability to model complex inter-variable correlations
in real-world data effectively, and it is widely employed for benchmarking
classifiers [19, chap. 2]. The central limit theorem further justifies this choice,
stating that the cumulative sum of many independent random variables always
conforms to a normal distribution [19, chap. 4]. The systems are also simulated
to generate both balanced and imbalanced datasets with varying leakage as-
sessment score (LAS) or MI levels using the MVN perturbation and proximity
techniques. Some illustrations of two-dimensional data points generated using
the two noise introduction procedures are shown in Figure 4.2.

4.1.1. Generation Method

Synthetic datasets are generated using MVN to define the joint probability
density function (PDF) (𝑝(𝑋,𝑌)) between 𝑋 and 𝑌 , inducing their marginals on
𝑋 and 𝑌 . The dataset 𝒟 is created by sampling instances from 𝑝𝑋|𝑌 (·) with
class distribution 𝑝𝑌 (𝑦), as illustrated in Figure 4.2.

Formal Definition of PDFs

The joint distribution 𝑝(𝑋,𝑌)(·) and marginal on 𝑌 𝑝𝑋(·) is defined which is
required to generate the dataset 𝒟 by sampling (𝑥𝑖, 𝑦𝑖) ∼ 𝑝𝑋|𝑌 (𝑥𝑖 | 𝑦𝑖),∀𝑖 ∈ [𝑁]

with class distribution defined by 𝑝𝑌 (𝑦). These PDFs are used to define the
conditionals 𝑝𝑌 |𝑋(·) and 𝑝𝑋|𝑌 (·) and induce the marginal on 𝒳 , denoted by
𝑝𝑋(·). The conditional PDF on 𝑋 given 𝑌 is defined for class 𝑚 as

𝑝𝑋|𝑌 (𝑥 |𝑚) = MVN(𝜇𝑚,Σ) . (4.1)

129

4. Mutual Information Estimation

where Σ is the covariance matrix and 𝜇𝑚 is the mean vector for class 𝑚. The
covariance matrix should be positive semi-definite and is typically sampled
using eigenvalue decomposition [19], defined as

𝑄 ∼ OrthogonalMatrix𝑑×𝑑 =
(︁

𝑞1,1 ... 𝑞1,𝑑
...
𝑞𝑑,1 ... 𝑞𝑑,𝑑

)︁
, 𝑞𝑖,𝑗 ∈ [−1, 1), ∀(𝑖, 𝑗) ∈ [𝑑]× [𝑑]

𝑆 ∼ Diagonal(RandomMatrix𝑑×𝑑) =
(︁ 𝑠1,1 ... 0

0 ... 0
0 ... 𝑠𝑑,𝑑

)︁
, 𝑠𝑖,𝑖 ∈ [0, 1), ∀𝑖 ∈ [𝑑]

Σ = (𝑄 · 𝑆) ·𝑄𝑇 . (4.2)

Introducing Class Imbalance (𝑟): Marginal on 𝑌 The parameter 𝑟 is
the minimum proportion of instances for any class 𝑚 ∈ [𝑀], defined as 𝑟 =

min𝑚∈[𝑀]
|{(𝑥𝑖,𝑦𝑖)∈𝒟 | 𝑦𝑖=𝑚}|

|𝒟| . For balanced datasets, 𝑟 = 1/𝑀, and for imbalanced
ones, 𝑟 < 1/𝑀, i.e., 𝑟 ∈ (0, 1/𝑀]. To generate multi-class imbalanced datasets
(𝑀 > 2), the two methods are proposed: Minority and Majority, with an
example class frequency in each case shown in Figure 4.1. In the Minority
method, the minority class is assigned 𝑟 fraction of total data points, and
remaining samples are uniformly distributed among other classes (> 𝑁

𝑀
). While

in the Majority method, all classes apart from the selected majority class is
assigned 𝑟 fraction of total data points (< 𝑁

𝑀
), and the majority class gets

the remaining data points, To generate imbalanced datasets using MVN, the
vector 𝑛g𝑟

𝑀 = (𝑛1, . . . , 𝑛𝑀) is defined, where 𝑛𝑚 denotes the sample counts for
each class 𝑚 ∈ [𝑀], defined for each generation method as

𝑛Majority
𝑀 = (⌈𝑁 · 𝑟⌉, . . . , ⌈𝑁 · 𝑟⌉, 𝑁 − (𝑀 − 1)⌈𝑁 · 𝑟⌉)

𝑛Minority
𝑀 =

(︂
⌈𝑁 − ⌈𝑁 · 𝑟⌉

(𝑀 − 1)
⌉, . . . , ⌈𝑁 − ⌈𝑁 · 𝑟⌉

(𝑀 − 1)
⌉, ⌈𝑁 · 𝑟⌉

)︂
. (4.3)

The class frequencies for each generation method are depicted in Figure 4.1.

130

4. Mutual Information Estimation

1 2
Class Label

0.0

0.2

0.4

0.6

0.8

1.0

F
re

q
u

en
cy

Binary-class

1 2 3 4 5
Class Label

Multi-class
(Majority)

1 2 3 4 5
Class Label

Multi-class
(Minority)

Figure 4.1.: Class frequencies in generated imbalanced datasets

The marginal on 𝑌 for a balanced dataset with 𝑟 = 1/𝑀 is defined as 𝑝𝑌 (𝑚) =
1/𝑀 and for imbalanced datasets using Minority or Majority generation methods
is defined as

g𝑟 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Majority

⎧⎨⎩𝑝𝑌 (𝑚) = 𝑟, if 𝑚 ∈ [𝑀]0 ∖𝑀
𝑝𝑌 (𝑚) = 1− 𝑟 · (𝑀 − 1), if 𝑚 = 𝑀

Minority

⎧⎨⎩𝑝𝑌 (𝑚) = 1−𝑟
𝑀−1

, if 𝑚 ∈ [𝑀]0 ∖𝑀
𝑝𝑌 (𝑚) = 𝑟, if 𝑚 = 𝑀

(4.4)

Joint PDF between 𝑋 and 𝑌 Using these, the joint distribution 𝑝(𝑋,𝑌)(𝑥,𝑚)

for class 𝑚 is defined as

𝑝(𝑋,𝑌)(𝑥,𝑚) = 𝑝𝑌 (𝑚) · 𝑝𝑋|𝑌 (𝑥 |𝑚) (4.5)

Marginal on 𝑋 The joint probability in eq. (4.5) induced the marginal on 𝑋

as

𝑝𝑋(𝑥) =
𝑀∑︁

𝑚=1

𝑝𝑌 (𝑚) · 𝑝𝑋|𝑌 (𝑥 |𝑚) =
𝑀∑︁

𝑚=1

𝑝𝑌 (𝑚) ·MVN(𝜇𝑚,Σ) (4.6)

131

4. Mutual Information Estimation

Conditional on 𝑌 given 𝑋 The conditional 𝑝𝑌 |𝑋(·) on 𝑌 given 𝑋 for instance
(𝑥,𝑚) is defined as

𝑝𝑌 |𝑋(𝑚 |𝑥) =
𝑝𝑌 (𝑚) · 𝑝𝑋|𝑌 (𝑥 |𝑚)∑︀𝑀

𝑚=1 𝑝𝑌 (𝑚) · 𝑝𝑋|𝑌 (𝑥 |𝑚)
=

𝑝(𝑋,𝑌)(𝑥,𝑚)

𝑝𝑋(𝑥)
. (4.7)

4.1.2. Introducing Noise (𝜖) in the System

To simulate real-world IL scenarios in cryptographic systems, the noise is
introduced to decrease the certainty about output 𝑦𝑖 ∈ 𝒴 with more observed
inputs 𝑥𝑖 ∈ 𝒳 , resulting in 𝐻(𝑌 |𝑋) > 0 and 𝐼(𝑋;𝑌) < 𝐻(𝑌). The two
techniques are proposed called the MVN perturbation and proximity techniques.
The perturbation technique introduces noise by flipping a percentage of outputs
or classes in the dataset. In contrast, the proximity technique reduces the
distance between mean vectors (𝜇𝑚) of each class, leading to overlap between
the Gaussian clusters (MVN(𝜇𝑚,Σ),∀𝑚 ∈ [𝑀]0), outlined in Algorithms 2
and 3, respectively. These methods simulate scenarios where cryptographic
systems leak no information (non-vulnerable) with 𝐼(𝑋;𝑌) = 0.

Vulnerable ε = 0.0

MVN Perturbation

Vulnerable ε = 0.5 Non-vulnerable ε = 1.0

MVN Proximity

Figure 4.2.: MVN perturbation and proximity techniques: synthetic datasets

132

4. Mutual Information Estimation

MVN Perturbation Technique

This approach introduces noise by flipping a percentage of class labels in
the dataset, simulating perturbed systems to generate classification datasets
with specified configurations, including the generation method (g𝑟), number of
classes (𝑀), input dimensions (𝑑), noise (𝜖), and class imbalance (𝑟), as outlined
in Algorithm 2. Flipping 𝜖 percentage of class labels (𝑦 ∼ 𝒴) modifies the
original conditional PDFs 𝑝𝑌 |𝑋(·) and 𝑝𝑋|𝑌 (·), defined in eqs. (4.1) and (4.7),
respectively.

Modified Output Variable 𝑌𝜖 Let random variables 𝐵 ∼ Bernoulli(𝑝 = 𝜖, 𝑞 =

1− 𝜖) and 𝑌 ∼ Categorical(𝑝𝑌 (1), . . . , 𝑝𝑌 (𝑀)) are independent of {𝑋, 𝑌 }, for
a fixed 𝜖. The modified output random variable 𝑌𝜖 is defined as 𝑌𝜖 = 𝑌 · J𝐵 =

0K + J𝐵 = 1K · 𝑌 The marginal distributions on 𝑋 remain unchanged because
only the class labels are flipped. Accordingly, the modified marginal on 𝑌𝜖 is
derived as 𝑝𝑌𝜖(𝑌𝜖 = 𝑦) = 𝜖 · 𝑝𝑌 (𝑌 = 𝑦) + (1− 𝜖) · 𝑝𝑌 (𝑌 = 𝑦) = 𝑝𝑌 (𝑌 = 𝑦). So,
the marginal on 𝑌𝜖 is the same as that of 𝑌 .

Algorithm 2 Generate MVN Perturbation Synthetic Dataset 𝒟
1: Given g𝑟, 𝑀 , 𝑑, 𝜖 and 𝑟
2: Define 𝒟 = {}, 𝑁 = 1000 ·𝑀
3: Calculate 𝑛g𝑟

𝑀 = (𝑛1, . . . , 𝑛𝑀) using eq. (4.3)
4: Sample the positive semi-definite Σ of MVNs using eq. (4.2)
5: for 𝑚 ∈ [𝑀] do
6: Define 𝜇𝑚 = (1.5𝑚, . . . , 1.5𝑚) ∈ R𝑑

7: for 𝑖 ∈ [𝑛𝑚] do
8: Sample 𝑥𝑖 ∼ MVN(𝜇𝑚,Σ)
9: Assign label 𝑦𝑖 using 𝐵 ∼ Bernoulli(𝑝 = 𝜖, 𝑞 = 1− 𝜖) ◁ Flip 𝜖 % labels

10:

{︃
𝑦𝑖 = 𝑚, 𝐵 = 0

𝑦𝑖 ∼ Categorical(𝑝𝑌 (1), . . . , 𝑝𝑌 (𝑀)), 𝐵 = 1
11:
12: 𝒟 = 𝒟 ∪ {(𝑥𝑖, 𝑦𝑖)} ◁ Add instances
13: end for
14: end for
15: return 𝒟

133

4. Mutual Information Estimation

Modified Conditional on 𝑌𝜖 given 𝑋 The conditional on the modified output
variable 𝑌𝜖 given 𝑋 is

𝑝𝑌𝜖|𝑋(𝑌𝜖 = 𝑚 |𝑥) = 𝑝𝐵(𝐵 = 0) · 𝑝𝑌 |𝑋(𝑚 |𝑥) + 𝑝𝐵(𝐵 = 1) · 𝑝𝑌 (𝑌 = 𝑚)

= (1− 𝜖) · 𝑝𝑌 |𝑋(𝑚 |𝑥) + 𝜖 · 𝑝𝑌 (𝑚) . (4.8)

Modified Conditional on 𝑋 given 𝑌𝜖 The conditional on 𝑋 given the
modified output variable 𝑌𝜖 is

𝑝𝑋|𝑌𝜖(𝑥 |𝑌𝜖 = 𝑚) =
𝑝𝑌𝜖|𝑋(𝑌𝜖 = 𝑚 |𝑥) · 𝑝𝑋(𝑥)

𝑝𝑌 (𝑚)
.

The altered conditional distribution 𝑝𝑋|𝑌𝜖(𝑥 |𝑌𝜖 = 𝑚) becomes a combination of
multiple MVN distributions, increasing complexity and making MI estimation
more challenging.

Algorithm 3 Generate MVN Proximity Synthetic Dataset 𝒟
1: Given g𝑟, 𝑀 , 𝑑, 𝜖 and 𝑟
2: Define 𝒟 = {}, 𝑁 = 1000 ·𝑀
3: Calculate 𝑛g𝑟

𝑀 = (𝑛1, . . . , 𝑛𝑀) using eq. (4.3)
4: Sample the positive semi-definite Σ of MVNsusing eq. (4.2)
5: for 𝑚 ∈ [𝑀] do
6: Define 𝜇𝑚 = (1.5 ·𝑚(1− 𝜖), . . . , 1.5 ·𝑚(1− 𝜖)) ∈ R𝑑 ◁ Distance

1.5(1− 𝜖)
7: for 𝑖 ∈ [𝑛𝑚] do
8: Sample 𝑥𝑖 ∼ MVN(𝜇𝑚,Σ)
9: 𝒟 = 𝒟 ∪ {(𝑥𝑖,𝑚)} ◁ Add instances

10: end for
11: end for
12: return 𝒟

134

4. Mutual Information Estimation

MVN Proximity Technique

The second approach introduces noise in the simulated systems by reducing
the distance between the Gaussians generated by MVN distributions. This
is achieved by moving the mean vectors 𝜇′

𝑚,∀𝑚 ∈ [𝑀]0 corresponding to
MVN distribution representing each class closer to each other. The updated
MVNs for each class 𝑚 is defined by MVN(𝜇′

𝑚,Σ), which in turn represents
the conditional PDF 𝑝𝑋|𝑌 (·) for the underlying generated system dataset.
The process for simulating systems using the proximity technique to generate
classification datasets for a unique configuration of the generation method (g𝑟),
number of classes (𝑀), input dimensions (𝑑), noise (𝜖), and class imbalance
(𝑟), is outlined in Algorithm 3. Notably, when introducing proximity, only the
original MVN is modified, which only modifies the conditional on 𝑋 given 𝑌 ,
i.e., 𝑝′𝑋|𝑌 (𝑥 |𝑚) = MVN(𝜇′

𝑚,Σ). Consequently, the conditional probability
𝑝𝑌 |𝑋(·) and the marginal on 𝑋 can be computed using eqs. (4.6) and (4.7) as

𝑝′𝑌 |𝑋(𝑚 |𝑥) =
𝑝𝑌 (𝑚) · 𝑝′𝑋|𝑌 (𝑥 |𝑚)∑︀𝑀

𝑚=1 𝑝𝑌 (𝑚) · 𝑝′𝑋|𝑌 (𝑥 |𝑚)
=

𝑝′(𝑋,𝑌)(𝑥,𝑚)

𝑝𝑋(𝑥)
. (4.9)

Therefore, the underlying distribution for synthetic datasets generated through
the introduction of noise using the proximity approach remains the same as for
the datasets using the MVN distribution with updated means.

4.1.3. Ground-truth MI

To evaluate the MI estimation methods, it is essential to calculate the ground-
truth MI for synthetic datasets generated using the conditional PDF 𝑝𝑋|𝑌 (·)
and the marginal 𝑝𝑌 (·) on 𝑌 , as defined in eqs. (4.1) and (4.4), respectively.
The maximum MI, i.e., the entropy of 𝑌 , is obtained by substituting 𝑝𝑌 (·)
into eq. (2.1). For balanced datasets (𝑟 = 1

𝑀
), the entropy of 𝑌 equals lg(𝑀),

while for imbalanced datasets (𝑟 ∈ (0, 1
𝑀
)), the entropy is lower than lg(𝑀).

By plugging in the conditional 𝑝𝑌 |𝑋(·) and the marginal 𝑝𝑌 (·) defined above

135

4. Mutual Information Estimation

in eq. (2.2), the ground truth MI for the generated system dataset 𝒟 = {𝑥𝑖, 𝑦𝑖}
is approximated as

𝐺𝐼(𝒟) ≊ 1

𝑁

𝑁∑︁
𝑖=1

𝑝𝑌 |𝑋(𝑦𝑖 |𝑥𝑖) lg
(︀
𝑝𝑌 |𝑋(𝑦𝑖 |𝑥𝑖)

)︀
−

𝑀∑︁
𝑚=1

𝑝𝑌 (𝑚) lg (𝑝𝑌 (𝑚)) .

(4.10)

For systems simulated using perturbation and proximity techniques, the mod-
ified conditional 𝑝𝑌𝜖|𝑋(·) in eq. (4.8) and 𝑝′𝑌 |𝑋(𝑚 |𝑥) in eq. (4.9), along with
the unchanged marginal on 𝑌 , are used to calculate the ground-truth MI.
Thus, this formula provides an estimate of the actual ground-truth MI for the
generated system dataset 𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1, ensuring accurate comparisons
between different MI estimation methods.

4.2. Experimental Setup

This section outlines the empirical evaluation process for the proposed MI
estimation methods compared to the baselines on various synthetic datasets,
as illustrated in Figure 4.3. The primary goal is to assess the approaches’
generalization capabilities compared to the baselines. The evaluation criteria
encompass various factors, including the number of classes (𝑀), input dimen-
sions (𝑑), class imbalance (𝑟), and noise level (𝜖) within synthetic datasets
with known MI. The synthetic systems generating datasets are simulated using
perturbation and proximity techniques for different unique configurations of
g𝑟, 𝑑,𝑀, 𝑟, 𝜖, as outlined in Table 4.1.

136

4. Mutual Information Estimation

N1S-3SCV

MID-POINT
MI Estimator

Calibration
Techniques

LOG-LOSS
MI Estimator

Synthetic
Dataset

Generator

Estimated MIsNormalized Mean
Squared Error

BASELINE
MI Estimators

AutoGluon
TabPFN

Calibrated
Class Probabilities

Class ProbabilitiesClass Probabilities

LOG-LOSS
MI Estimator

Classification
Accuracy

Ground-Truth MIs

GMM BASELINE

MINE BASELINE

PC-SOFTMAX BASELINE

Figure 4.3.: Experimental setup for evaluating MI estimation methods

4.2.1. Evaluation Process

To conduct the experiments, each MI estimation method (detailed in Sec-
tion 3.3) is applied on synthetic datasets outlined in Table 4.1. For each unique
configuration (g𝑟,𝑀, 𝑑, 𝑟, 𝜖), 10 synthetic datasets are generated, denoted as
𝒟𝑗 using different seeds 𝑗 ∈ [10]. Each approach is applied to these 10 datasets
to evaluate their performance using NMAE.

The nested cross-validation with hyperparameter optimization (HPO) is em-
ployed for accurate MI estimation on each dataset 𝒟𝑗 . The objective functions
employed for HPO include balanced error-rate (BER) for PC-Softmax, Auto-
Gluon, and TabPFN, Akaike information criterion (AIC) for Gaussian mixture
model (GMM), and mean squared error (MSE) for mutual information neural
estimation (MINE) with specific parameter ranges provided in Table A.1. The
dataset 𝒟𝑗 is split into a training dataset comprising 70% of instances and
a test dataset containing the remaining 30%. HPO is then performed with
100 function evaluations using Monte Carlo cross-validation (MCCV) with 3

137

4. Mutual Information Estimation

splits on the training dataset, reserving 30% of the instances for validation.
This process is denoted as “N1S-3SCV” indicating 1 split for test evaluation
and 3 MCCV splits for HPO using nested cross-validation (denoted by N), as
depicted in Figure 4.3. The AutoGluon is run 30 minutes with BER as an
objective using the training dataset. The best-performing model or pipeline
is chosen based on the objective function with minimum validation loss (or
maximize validation accuracy).

The best model or pipeline is used to estimate MI (𝐼𝑗) using the complete
dataset 𝒟𝑗 and compare it to the corresponding ground-truth MI (𝐼𝑗) evaluated
using eq. (4.10). The approaches are evaluated using the NMAE metric
in eq. (4.11), by comparing the actual MIs (𝐼) with the estimated MIs (𝐼).

Table 4.1.: Overview of the synthetic datasets for MI estimation experiments
MVN Perturbation & MVN Proximity Synthetic Datasets

Data set Type Generation Method (g𝑟) Input Dimensions (𝑑) Classes (𝑀) Noise Level/Flip Percentage (𝜖) Class Imbalance (𝑟)

Balanced NA {2, 4, . . . , 20} {2, 4, . . . , 10} {0.0, 0.1, . . . , 1.0} NA
Binary-class Imbalanced Minority 5 2 {0.0, 0.1, . . . , 1.0} {0.05, 0.1, . . . , 0.5}
Multi-class Imbalanced Minority, Majority 5 5 {0.0, 0.1, . . . , 1.0} {0.02, 0.04, . . . , 0.2}

4.2.2. Evaluation Metric

The generalization performance is assessed using a normalized mean absolute
error (MAE), as MI values range from 0 to lg(𝑀). The MAE is normalized
using the entropy of 𝑌 : 𝐻𝑌 (g𝑟,𝑀, 𝑟) = −∑︀𝑀

𝑚=1 𝑝𝑌 (𝑚) lg (𝑝𝑌 (𝑚)). For each
approach and dataset configuration (g𝑟, 𝑑,𝑀, 𝑟, 𝜖), the 10 ground truth MI
values are computed using eq. (4.10), denoted as the vector 𝐼 = (𝐼1, . . . , 𝐼10),
and the estimated MI values as 𝐼 = (𝐼1, . . . , 𝐼10). The performance is evaluated
using the normalized MAE (NMAE) metric as:

mNMAE(𝐼, 𝐼) =
1

10

10∑︁
𝑗=1

|𝐼[𝑗]− 𝐼[𝑗]|
𝐻𝑌 (g𝑟,𝑀, 𝑟)

=
10∑︁
𝑗=1

|𝐼𝑗 − 𝐼𝑗|
10 ·𝐻𝑌 (g𝑟,𝑀, 𝑟)

. (4.11)

138

4. Mutual Information Estimation

4.3. Results

This section provides a comprehensive analysis of the results on MI estimation
methods using MVN synthetic datasets, as detailed in Table 4.1. The overall
performance of various approaches is discussed on system datasets generated
with perturbation and proximity techniques in Section 4.3.1. Additionally, the
generalizability of top-performing approaches using AutoGluon and TabPFN
including the baselines is assessed across various factors, including the number
of classes (𝑀), input dimensions (𝑑), class imbalance (𝑟), and noise levels (𝜖)
in Section 4.3.2. For a complete overview of generalization capabilities across
all techniques, please refer to Appendix A.4.

4.3.1. Overall Results

The performance of various MI estimation methods is depicted using bar charts
displaying the mean and standard error (SE) of NMAE on systems simulated
by MVN perturbation and proximity techniques, as shown in Figure 4.4. The
analysis includes balanced, binary-imbalanced, and multi-class imbalanced
datasets, as outlined in Table 4.1, with scenarios for both no noise and 50%

noise. Additionally, the importance of accurate MI estimation is highlighted
for both vulnerable and non-vulnerable systems (𝜖 = 1.0) in enhancing ILD
performance of the MI-based approaches, discussed in Section 3.2.2.

MVN Perturbation Datasets

The results in Figure 4.4a provide insights into the performance of MI estimation
methods applied to synthetic datasets generated using the MVN perturbation
technique. In particular, balanced classification datasets highlight the strong
performance of the Log-Loss estimation method, especially when TabPFN is
combined with appropriate calibration techniques (Cal Log-Loss). TabPFN
IR Cal Log-Loss consistently excels in estimating MI (NMAE approximately

139

4. Mutual Information Estimation

0.0

0.2

0.4

0.6

0.8

1.0

Vulnerable
ε = 0.0

Vulnerable
ε = 0.5

Non-vulnerable
ε = 1.0

0.0

0.2

0.4

0.6

0.8

1.0 Binary-class Imbalanced

N
or

m
al

iz
ed

M
ea

n
A

b
so

lu
te

E
rr

or

Multi-class Imbalanced

MI Estimation Technique
AutoGluon Mid-Point
AutoGluon Log-Loss
AutoGluon PS Cal Log-Loss
AutoGluon IR Cal Log-Loss
AutoGluon Beta Cal Log-Loss
AutoGluon TS Cal Log-Loss

AutoGluon HB Cal Log-Loss
TabPFN Mid-Point
TabPFN Log-Loss
TabPFN PS Cal Log-Loss
TabPFN IR Cal Log-Loss
TabPFN Beta Cal Log-Loss

TabPFN TS Cal Log-Loss
TabPFN HB Cal Log-Loss
GMM Baseline
MINE Baseline
PC-Softmax Baseline

(a) Performance on MVN perturbation synthetic datasets

0.0

0.2

0.4

0.6

0.8

1.0

Vulnerable
ε = 0.0

Vulnerable
ε = 0.5

Non-vulnerable
ε = 1.0

0.0

0.2

0.4

0.6

0.8

1.0 Binary-class Imbalanced

N
or

m
al

iz
ed

M
ea

n
A

b
so

lu
te

E
rr

or

Multi-class Imbalanced

MI Estimation Technique
AutoGluon Mid-Point
AutoGluon Log-Loss
AutoGluon PS Cal Log-Loss
AutoGluon IR Cal Log-Loss
AutoGluon Beta Cal Log-Loss
AutoGluon TS Cal Log-Loss

AutoGluon HB Cal Log-Loss
TabPFN Mid-Point
TabPFN Log-Loss
TabPFN PS Cal Log-Loss
TabPFN IR Cal Log-Loss
TabPFN Beta Cal Log-Loss

TabPFN TS Cal Log-Loss
TabPFN HB Cal Log-Loss
GMM Baseline
MINE Baseline
PC-Softmax Baseline

(b) Performance on MVN proximity synthetic datasets

Figure 4.4.: Overall NMAE of MI estimation methods on synthetic dataset

140

4. Mutual Information Estimation

0.003), outperforming AutoGluon, particularly on balanced datasets. For
balanced datasets, TabPFN IR Cal Log-Loss achieves a low mean NMAE of
approximately 0.0026 for 𝜖 = 0.0 and 0.0056 for 𝜖 = 1.0, with low SE values.
However, for more vulnerable systems with noise (𝜖 = 5.0), IR Cal Log-Loss’s
performance decreases (NMAE ≈ 0.2115± 0.0124), while PS Cal Log-Loss

and Beta Cal Log-Loss perform better (≈ 0.067±0.0032). Notably, the HB

Cal Log-Loss method does not significantly improve Log-Loss estimation
for either automated machine learning (AutoML) tool. For systems generating
imbalanced binary-class datasets, the GMM baseline performs exceptionally well
(≈ 0.019± 0.0017), with Furthermore, TabPFN Log-Loss and IR Cal Log-

Loss also achieving good results (≊ 0.05), with very low SEs. In multi-class
imbalanced datasets, TabPFN IR Cal Log-Loss leads with a mean NMAE
of 0.0293± 0.0013, while the GMM also performs strongly (≈ 0.10± 0.002),
demonstrating adaptability to imbalanced datasets. Overall, TabPFN models
with Cal Log-Loss, particularly IR Cal Log-Loss, consistently demonstrate
robust performance across diverse MVN perturbation datasets.

MVN Proximity Datasets

The performance of MI estimation methods on synthetic datasets generated
using the MVN proximity technique is depicted in Figure 4.4b. Like the
perturbation datasets, TabPFN combined with suitable calibration techniques
(Cal Log-Loss) consistently excels, particularly for balanced classification
datasets, with TabPFN Log-Loss also exhibiting strong performance. Also,
AutoGluon models display larger NMAE values, signifying the superiority
of TabPFN for this scenario. Notably, TabPFN IR Cal Log-Loss shows
outstanding performance for vulnerable systems, with mean NMAE values of
0.0027 for 𝜖 = 0.0 and 0.0104 for 𝜖 = 0.5, with low SE. For non-vulnerable
systems, TabPFN PS Cal Log-Loss and TS Cal Log-Loss achieve the
best results with mean NMAE around 0.0163.

141

4. Mutual Information Estimation

Across binary-class imbalanced datasets, the GMM baseline continues to lead,
with the lowest NMAE of 0.017, and TabPFN IR Cal Log-Loss performs
similarly well with very low SE. In multi-class imbalanced datasets, TabPFN
IR Cal Log-Loss maintains its strong performance with the lowest mean
NMAE of 0.01625. At the same time, the GMM also demonstrates solid results,
highlighting its versatility in delivering accurate MI estimates across imbalanced
synthetic datasets. Overall, the performance of MI estimation on datasets
generated using the MVN proximity technique is slightly better than on those
generated using the MVN perturbation technique due to the reduced complexity.
As discussed in Section 4.1.2, introducing noise using perturbation techniques
makes the generated datasets more complex. However, the trends remain
consistent: TabPFN with IR Cal Log-Loss consistently outperforms, while
AutoGluon models generally exhibit higher NMAE, indicating the superiority
of TabPFN in these scenarios.

Summary

In summary, TabPFN, especially with the IR Cal Log-Loss approach, con-
sistently outperforms in MI estimation across systems using MVN perturbation
and proximity techniques. While GMM excels in imbalanced datasets, Au-
toGluon underperforms compared to TabPFN. Calibration techniques (Cal

Log-Loss) generally do not impact TabPFN Log-Loss’s performance for
balanced datasets, suggesting that TabPFN provides well-calibrated class prob-
abilities. However, calibration techniques enhance AutoGluon Log-Loss’s
performance in vulnerable datasets, indicating that AutoGluon models suffer
from poor calibration, whereas TabPFN’s class probabilities are naturally well-
calibrated, also observed in Appendix A.4. It is also observed that calibration
techniques (Cal Log-Loss) can degrade AutoGluon Log-Loss’s performance
in non-vulnerable systems, overestimating MI and causing the corresponding
ILD approach to produce false positives by detecting non-existent ILs, as
detailed in Appendix A.3.2.

142

4. Mutual Information Estimation

4.3.2. Generalization Capability Analysis

This section examines the generalization capabilities of different MI estimation
methods relative to baselines, identifying the best-performing methods using
AutoGluon and TabPFN on balanced (non-vulnerable, vulnerable with noise lev-
els 0.0 and 0.5), binary-class, and multi-class imbalanced datasets using NMAE,
as detailed in Section 4.3.1. The selection criteria rely on the mean NMAE cal-
culated for each dataset type to determine the best-performing approaches for
specific scenarios, including non-vulnerable (𝜖 = 0.0) and vulnerable synthetic
systems with noise levels 𝜖 = 0.0 and 𝜖 = 0.5.

Generalization is assessed based on the number of classes (𝑀), input dimen-
sions (𝑑), class imbalance (𝑟), and noise levels (𝜖). For class-based evaluation,
the NMAE over all input dimensions (𝑑 ∈ {2, 4, . . . , 20}) is aggregated for
each possible number of classes (𝑀 ∈ {2, 4, . . . , 10}), and similarly for input
dimensions by aggregating across all classes. Similarly, for class imbalance
generalization, the NMAE across noise levels (𝜖 ∈ {0.0, 0.1, . . . , 1.0}) is aggre-
gated for each imbalance parameter (𝑟 ∈ {0.05, 0.1, . . . , 0.5} in binary-class
datasets and 𝑟 ∈ {0.02, 0.04, . . . , 0.2} in multi-class datasets), in contrast noise
level generalization is assessed by aggregating NMAE across class imbalance
values.

The filtered results, depicted in Figures 4.5 and 4.6, present the mean NMAE for
the top-performing MI estimation methods across different scenarios on MVN
perturbation and proximity datasets, respectively. The Y-axis shows mean
NMAE relative to critical factors—number of classes (𝑀), input dimensions
(𝑑), class imbalance (𝑟), and noise level (flip percentage (𝜖) in case of MVN
perturbation dataset)—offering a detailed view of generalization capabilities for
the selected approaches compared to baselines across varied synthetic dataset
configurations.

143

4. Mutual Information Estimation

2 4 6 8 10
Classes (M)

0.0
0.2
0.4
0.6
0.8
1.0 Vulnerable ε = 0.0

2 4 6 8 10
Classes (M)

Vulnerable ε = 0.5

2 4 6 8 10
Classes (M)

Non-vulnerable ε = 1.0

4 8 12 16 20
Input Dimensions (d)

0.0
0.2
0.4
0.6
0.8
1.0

4 8 12 16 20
Input Dimensions (d)

4 8 12 16 20
Input Dimensions (d)

0.1 0.2 0.3 0.4 0.5
Class Imbalance (r)

0.0

0.2

0.4

0.6

0.8

1.0 Binary-class Imbalanced

0.04 0.08 0.12 0.16 0.20
Class Imbalance (r)

Multi-class Imbalanced

0.0 0.2 0.4 0.6 0.8 1.0
Flip Percentage (ε)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Flip Percentage (ε)

N
or

m
al

iz
ed

M
ea

n
A

b
so

lu
te

E
rr

or

MI Estimation Technique
AutoGluon TabPFN GMM Baseline MINE Baseline PC-Softmax Baseline

Figure 4.5.: Generalizability of MI estimation methods on MVN perturbation syn-
thetic datasets

144

4. Mutual Information Estimation

Number of Classes (𝑀)

The top row of Figures 4.5 and 4.6, displays the generalization capabilities of
MI estimation methods across datasets with increasing the number of classes
(𝑀 ∈ {2, 4, . . . , 10}) on the X-axis, covering results on datasets generated
by systems simulated using MVN perturbation and proximity techniques,
respectively.

In datasets generated by vulnerable systems , TabPFN consistently outper-
forms AutoGluon in MI estimation (showing lower NMAE), with accuracy
improving as the number of classes increases. AutoGluon also shows notable
gains, particularly for perturbation-based systems at 50% noise (𝜖 = 0.5).
Among baselines, MINE and PC-Softmax exhibit the poorest performance as
the number of classes increases, with MINE being the least accurate, as illus-
trated in Figures A.4 and A.5. The GMM baseline occasionally improves (mean
NMAE decreases), particularly for multi-class balanced synthetic datasets,
though overall, as the class count in vulnerable datasets rises, GMM preci-
sion tends to decline due to information loss from aggregation, as confirmed
in Figures A.4 and A.5.

For non-vulnerable systems , both TabPFN and AutoGluon show improved
MI estimation (lower mean NMAE) as the number of classes grows, with
TabPFN consistently outperforming AutoGluon. Baseline performance dete-
riorates with rising the number of classes, particularly for GMM for datasets
generated by non-vulnerable perturbation systems. As an exception to estimat-
ing MI in datasets generated by vulnerable systems, MINE and PC-Softmax

baselines perform better than GMM, particularly for perturbation systems.

145

4. Mutual Information Estimation

Input Dimensions (𝑑)

The second row of Figures 4.5 and 4.6, displays the generalization capabilities
of MI estimation methods across datasets with increasing input dimensions
(𝑑 ∈ {2, 4, . . . , 20}) on the X-axis, covering results on datasets generated
by systems simulated using MVN perturbation and proximity techniques,
respectively.

In datasets generated by both vulnerable and non-vulnerable systems, Au-
toGluon and TabPFN improve notably with more dimensions, with TabPFN
leading and AutoGluon exhibiting more significant improvements, specifically
in ones simulated using perturbation technique with 50% noise. Baseline
performance, especially for GMM, declines significantly with increasing input
dimensions, especially from 10 to 20 for both systems simulated using perturba-
tion and proximity techniques. For datasets generated by vulnerable systems,
MINE and PC-Softmax baselines also show deterioration in performance most
of the time with increasing input dimensions, which becomes significant beyond
10, also illustrated in Figures A.4 and A.5. While MINE and PC-Softmax

baselines perform relatively well with increasing input dimensions in datasets
generated by non-vulnerable systems simulated perturbation technique, their
estimation accuracy declines for proximity systems. These findings underscore
learning challenges due to the curse of dimensionality even when using deep
multi-layer perceptrons (MLPs) in MI estimation.

Class Imbalance (𝑟)

The third-row of Figures 4.5 and 4.6 displays the generalization capabilities of MI
estimation methods across datasets with varying class imbalances (𝑟 ∈ [0.05, 0.5]

for binary-class and 𝑟 ∈ [0.02, 0.2] for multi-class) on X-axis, in imbalanced
datasets generated using MVN perturbation and MVN proximity technique,
respectively.

146

4. Mutual Information Estimation

In systems generating imbalanced datasets, TabPFN and GMM consistently
demonstrate high MI estimation accuracy, especially in synthetic datasets
created using perturbation techniques, and remain unaffected by increasing
imbalance levels.

2 4 6 8 10
Classes (M)

0.0
0.2
0.4
0.6
0.8
1.0 Vulnerable ε = 0.0

2 4 6 8 10
Classes (M)

Vulnerable ε = 0.5

2 4 6 8 10
Classes (M)

Non-vulnerable ε = 1.0

4 8 12 16 20
Input Dimensions (d)

0.0
0.2
0.4
0.6
0.8
1.0

4 8 12 16 20
Input Dimensions (d)

4 8 12 16 20
Input Dimensions (d)

0.1 0.2 0.3 0.4 0.5
Class Imbalance (r)

0.0

0.2

0.4

0.6

0.8

1.0 Binary-class Imbalanced

0.04 0.08 0.12 0.16 0.20
Class Imbalance (r)

Multi-class Imbalanced

0.0 0.2 0.4 0.6 0.8 1.0
Noise Level (ε)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Noise Level (ε)

N
or

m
al

iz
ed

M
ea

n
A

b
so

lu
te

E
rr

or

MI Estimation Technique
AutoGluon TabPFN GMM Baseline MINE Baseline PC-Softmax Baseline

Figure 4.6.: Generalizability of MI estimation methods on MVN proximity synthetic
datasets

147

4. Mutual Information Estimation

For systems generating binary-class imbalanced datasets, TabPFN and GMM
maintain robust performance, with GMM slightly outperforming TabPFN in
MVN perturbation datasets. However, AutoGluon, MINE, and PC-Softmax

deteriorate, especially beyond a 0.25 imbalance level, performing better in
moderately imbalanced datasets yet underperforming compared to TabPFN
and GMM overall. In systems generating multi-class imbalanced datasets, both
TabPFN and GMM continue to perform well, with TabPFN holding a slight
edge over GMM in MVN perturbation datasets. Interestingly, AutoGluon
improves as class imbalance decreases. However, MINE and PC-Softmax

remain stable with a notable decline at a 0.04 imbalance level, highlighting
their distinct performance across binary and multi-class imbalanced settings.

Noise Level (𝜖)

The last row of Figures 4.5 and 4.6, generalization capability of MI estimation
methods across datasets with varying noise level (𝜖 ∈ [0.0, 1.0]) is depicted on
the X-axis, in imbalanced datasets generated using MVN perturbation and
MVN proximity techniques, respectively.

In systems generating binary-class imbalanced datasets, TabPFN and GMM
demonstrate high MI estimation accuracy across all noise levels, with GMM
slightly outperforming TabPFN in perturbation-based datasets. In contrast,
AutoGluon deteriorates as noise increases, while MINE and PC-Softmax base-
lines improve substantially, particularly in high-noise scenarios. For systems
generating multi-class imbalanced datasets, TabPFN and GMM again maintain
robust performance across increasing noise levels, with TabPFN slightly outper-
forming GMM in perturbation datasets. Meanwhile, AutoGluon’s performance
declines, whereas MINE and PC-Softmax baselines improved with increasing
noise in the dataset. These findings underscore the stability and reliability of
TabPFN and GMM baseline for estimating MI in systems generating noisy
imbalanced datasets.

148

4. Mutual Information Estimation

Summary

This section summarizes the key takeaways regarding the generalization capabil-
ities of the chosen approaches for balanced and imbalanced MVN perturbation
and proximity synthetic datasets.

Number of Classes (𝑀) and Input Dimensions (𝑑) The NMAE perfor-
mance analysis consistently demonstrates strong generalization capabilities for
TabPFN and AutoGluon. In contrast, the baselines struggle as both dimen-
sions increase. In particular, GMM shows significant performance degradation
beyond 10 input dimensions due to its limitations in high-dimensional spaces,
as discussed Section 3.3.3. MINE exhibits the lowest generalization, suggesting
its unsuitability for estimating MI between multi-dimensional inputs and one-
dimensional outputs in classification datasets. Detailed analysis is provided
in Appendix A.4.1.

Class Imbalance (𝑟) and Noise (𝜖) TabPFN and GMM demonstrate strong
generalization across varying class imbalances (𝑟) and noise levels (𝜖) in imbal-
anced datasets. This suggests the GMM ’s performance remains effective only
in low-dimensional datasets (𝑑 = 5) and deteriorates with higher dimensions.
In contrast, AutoGluon, MINE, and PC-Softmax baselines show weaker
generalization in response to class imbalances and noise. Detailed analysis is
provided in Appendix A.4.2.

In conclusion, TabPFN consistently demonstrates exceptional generalization in
MI estimation across multiple factors in both MVN perturbation and proximity
datasets.

149

5. Automating ILD in OpenSSL
TLS Servers

This section provides a comprehensive evaluation of information leakage de-
tection (ILD) approaches aimed at detecting side channel leaks (information
leakages (ILs)) through time delays and alert or error messages to counter
Bleichenbacher attacks on OpenSSL TLS servers, detailed in Section 2.3.2. The
empirical setup and an overview of the IL-Datasets used in experiments are
detailed in Section 5.2. The complete process of generating these datasets is
described in Section 5.1. Our results discussed in Section 5.3 conclude that
the proposed information leakage detection (ILD) approaches outperform the
state-of-the-art in terms of detection accuracy. This chapter is partially based
on the work published in Gupta et al. (2024) [81].

5.1. Side Channels in Network Traces

For Bleichenbacher’s attack, it is crucial to distinguish between messages
with valid padding and those with incorrect padding based on the server’s
network response patterns. Funke (2022) [68] generated the timing datasets
under the supervision of Drees et al. (2021) [49], who also provided the error
code datasets and the initial feature extractor [49, 68]. Drees et al. (2021)
[49] implemented a Transport Layer Security (TLS) client builds upon TLS-
Attacker3, a Java-based tool for sending customized TLS protocol messages,
which supports various protocol manipulations and has already been used to

150

5. Automating ILD in OpenSSL TLS Servers

detect new Bleichenbacher side channels [108, 21]. This client executes ℎ𝑠 TLS
handshakes (ℎ𝑠 ∈ {500, 50000}) using a Rivest–Shamir–Adleman (RSA)-based
TLS Cipher Suite, applying distinct padding manipulations [49].

The structure of the PKCS#1v1.5 padded ClientKeyExchange (CKE) message
provides multiple ways for a handshake to deviate from the specification,
referred to as manipulations. TLS-Attacker3 Böck et al. (2018) [21] supports
a range of such manipulations, including the vectors, extended to implement
manipulations presented in Meyer et al. (2014) [130], and Klíma-Pokorný-Rosa
(KPR) Klíma et al. (2003) [107]. While not exhaustive, this set captures
most potential errors in the padding of the PKCS#1v1.5 format and can be
expanded.

The client randomly selects and applies a specific manipulation to the ciphertext
before performing ℎ𝑠 TLS handshakes (with ℎ𝑠 being a parameter, e.g., 500
or 50000). Each handshake is logged with the corresponding manipulation to
facilitate analysis in subsequent stages. For example, the first byte is replaced
(which should be 0x00) with a constant (0x17), generating the manipulation
“Incorrect first byte” [49]. To simulate a standard-compliant handshake, the pre-
master secret (PMS) is replaced with randomness, ensuring that the handshake
still fails during the Finished (FIN) message processing. This approach mimics
the Bleichenbacher attack’s scenario, where the decrypted message has valid
padding. Still, the actual PMS does not match the expected value, preventing
the handshake from completing successfully. Each manipulation deviates from
the correct PKCS#1v1.5 structure in unique ways [49]:

• Correctly Formatted PKCS#1 Message (CFPM): Standard-compliant
message, the real PMS replaced with a random string of appropriate
length.

• Wrong First Byte (0x00 Set To 0x17) (WFB): Replacing the first
byte of the message, which should be 0x00, with a non-zero constant
(0x17).

151

5. Automating ILD in OpenSSL TLS Servers

• Wrong Second Byte (0x02 Set To 0x17) (WSB): Replacing the second
byte of the message (block type), which should be 0x02, with a non-zero
constant (0x17).

• Invalid TLS Version In PMS (ITV): Setting the TLS version bytes in
the payload to an incorrect constant (0x42, a non-existing version).

• No 0x00 In Message (N00M): Except for the first byte, all other bytes
in the padding string (PS) that are 0x00 (particularly the separator byte)
are replaced with 0x01.

• 0x00 In Some PKCS#1 Padding Byte (00SPB) Replacing some byte of
the PS, which should be non-zero, with 0x00.

• 0x00 In PKCS#1 Padding (First 8 Bytes After 0x00 0x02) (00FPB):
Replacing the ninth byte of the PS, which should be non-zero, with 0x00.

• 0x00 On The Last Position (|𝑃𝑀𝑆| = 0) (00LP): Placing the 0x00

separator at the last byte creates a payload of 0.

• 0x00 On The Next To Last Position (|𝑃𝑀𝑆| = 1) (00NLP): Placing
the 0x00 separator at the last-but-one byte, creating a payload of size 1.

• Correctly Formatted PKCS#1 Message |𝑃𝑀𝑆| = 47 (CFPM47): Valid
padding for a 47 bytes PMS, which should be 48 bytes long.

•

Correctly Formatted PKCS#1 PMS Message But 1 Byte Shorter

(CFPM1BS): An otherwise correctly padded message, but with the total
length being one byte too short (not matching the RSA modulus size).

To evaluate a broader range of attack scenarios, the two TLS handshake
workflows were implemented: a “full” handshake consisting of CKE, Change-
CipherSpec (CCS), and FIN messages, and a “shortened” workflow involving
only the CKE to trigger specific vulnerabilities identified in the ROBOT at-
tack [21]. This ensures that different server behaviors are captured under
various manipulated ciphertexts. Each handshake’s workflow and manipulation
are randomly selected to maintain dataset diversity and prevent ordering-based
information leakage. However, in the shortened workflow, the missing CCS

152

5. Automating ILD in OpenSSL TLS Servers

and FIN messages can result in server connection timeouts, limiting client
throughput. To handle this, Drees et al. (2021) [49] set a one-second timeout
for local experiments and a three-second timeout for remote servers to make it
suitable for handling varying network delays and ensuring the responses from
TLS libraries were captured without missing critical packets.

Feature Extraction The data obtained is recorded using tcpdump, resulting in
a .pcap file containing all messages in their original binary format and metadata.
This raw network data is processed using the Python library pyshark, which
interfaces with Wireshark to transform the messages into real-valued feature
vectors and label them with the padding manipulation applied by the client in
this handshake to make it compatible with machine learning (ML) classification
approaches [49].

Each handshake is represented as an 𝑑-dimensional vector, with the manipula-
tion type as the class label. Since the TLS client applies random manipulations,
Drees et al. (2021) [49] captures a balanced dataset across all classes. Each
handshake’s messages are grouped into a single vector, ensuring consistent
ordering for accurate pattern recognition. A known challenge is the curse of
dimensionality [94, 187], where high-dimensional features degrade ML perfor-
mance. To address this, all messages sent by the server before the manipulated
CKE are discarded, and responses relevant to the manipulation are retained
and generate a dataset with at least 5 instances for each dimension, which
effectively minimizes feature space while preserving the information needed
for attack detection. Additionally, only the Transmission Control Protocol
(TCP) and TLS layer features are extracted, discarding redundant lower-layer
information, making the experiments feasible with limited resources [128]. The
decision is based on the previous works on side-channel attacks (SCAs) [128,
21], which only detected behavioral differences on the TCP layer and above.

Since Bleichenbacher’s SCAs exploits server behavior to differentiate correctly
formatted decrypted messages from incorrect ones [20, 108, 21]. For this the-
sis, Drees et al. (2021) [49] generated two types of vulnerabilities: one based

153

5. Automating ILD in OpenSSL TLS Servers

on distinct alert messages (error codes) and another on timing variations in
response to padding manipulations, as discussed in Sections 5.1.1 and 5.1.2, re-
spectively. Initially focused on alert messages in Gupta et al. (2022) [80], Gupta
et al. (2024) [81] later expanded to timing-based side channels, using a dataset
with precise measurements to capture subtle server processing time variations
from different padding manipulations, as described in Section 5.1.1. However,
incorporating timing-based features poses challenges: a non-constant-time client
implementation, like TLS-Attacker, could unintentionally leak manipulation
details, leading to false positives.

To address this, Drees et al. (2021) [49] refined feature extraction using the
implementation in AutoSCA-tool4 [15] to filter out timing features that could
leak client-side behavior. Later, Funke (2022) [68] enhanced AutoSCA with
high-precision timing cards, enabling it to detect side channels down to 30 µs
on local networks. Our experiments combined error code and timing-based side
channels, yielding a comprehensive view of vulnerability detection. However,
like Funke (2022) [68], no new side channels were revealed in widely-used
open-source TLS libraries.

5.1.1. OpenSSL TLS Timing Datasets

Funke (2022) [68] target side channel vulnerabilities in cryptographic software to
validate the approaches using network traffic from an OpenSSL TLS server. A se-
cure server exhibits no time difference when processing correctly and incorrectly
formatted messages, ensuring no leakage of secret information. In contrast, a
vulnerable OpenSSL TLS server reveals secret information through processing
time differences or delays, which Denis leverages for testing the approaches.
For the experiments, the timing side channel or time delay, i.e., observable
differences in server computation times when processing messages with correct
and manipulated padding, is introduced as per the Java TLS implementation

154

5. Automating ILD in OpenSSL TLS Servers

vulnerability CVE-2014-04111 [40]. Note that the DamnVulnerableOpenSSL2

server is built upon the OpenSSL 1.0.2l3, which initially contained multiple
intentional side channels, which were removed to in turn add a new patch to
include an artificial time delay. Datasets were provided by Funke (2022) [68]
from the vulnerable DamnVulnerableOpenSSL2 TLS server, which exhibits
longer computation times for incorrectly formatted messages with manipulated
padding and non-vulnerable OpenSSL 1.0.2l3 TLS server, which shows no time
delay (no IL). There are 10 padding manipulations: five cause longer processing
times (simulating IL, 𝑧 = 1), and five do not (no IL, 𝑧 = 0). Each IL-Dataset
ℒ contains 10 binary-class datasets corresponding to 10 padding manipula-
tions 𝒟, with label 0 instances corresponding to correctly formatted messages
and positive label (𝑦 = 1) instances to incorrectly formatted messages. The
IL-Datasets generated for time delays of 𝑡 ∈ {20, 21, . . . , 28} ∪ {5, 10, . . . , 35}
(in micro-seconds, 𝜇s) serving as the system’s leakage assessment score (LAS),
and class imbalances of 𝑟 ∈ {0.1, 0.3, 0.5} uploaded on OpenML4, are detailed
in Table 5.1. Padding manipulations with delay include: CFPM1BS, 00FPB,
N00M, WFB, and WSB, while the ones without delay include: 00SPB, 00LP,
00NLP, CFPM47, and ITV.

5.1.2. OpenSSL TLS Error Code Datasets

side channel vulnerabilities in cryptographic software are analyzed through net-
work traffic from a modified OpenSSL TLS server that leaks secret information
via error codes in alert messages (ACK messages). A TLS server returns iden-
tical alert responses for correctly and incorrectly formatted messages. However,
a vulnerable server responds differently, for example, using an alert message
like handshake failure instead of bad record mac or issuing a TCP discon-
nect for incorrectly formatted messages. Additionally, vulnerability depends on
whether a full handshake occurs, as certain imitation servers are only vulnerable

1https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0411
2https://github.com/tls-attacker/DamnVulnerableOpenSSL
3https://www.openssl.org/source/old/1.0.2/

155

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0411
https://github.com/tls-attacker/DamnVulnerableOpenSSL
https://www.openssl.org/source/old/1.0.2/

5. Automating ILD in OpenSSL TLS Servers

to incomplete handshakes. This behavior is a key feature in the error code
datasets, making these types of ILs easier to detect using the ILD approaches,
as discussed in Section 5.3.2. Detecting vulnerabilities through alert messages
becomes challenging due to subtle timing issues in older OpenSSL versions.
Although one such vulnerability was only fixed in 2022, these timing differences
are very small (< 10𝜇s)—rendering them undetectable in the experiments.

The analysis includes OpenSSL-1.1.1k, DamnVulnerableOpenSSL, OpenSSL-
0.9.7a, OpenSSL-0.9.7b, and OpenSSL-1.1.1t, each implemented using the
TLS-Docker-Library4. These servers are example TLS implementations from
the OpenSSL source code, compiled from public releases and run within Docker
containers to provide various vulnerability profiles. DamnVulnerableOpenSSL,
for instance, represents a legacy OpenSSL version with intentionally patched
vulnerabilities, helpful in examining known side channel weaknesses in TLS
configurations. The latest OpenSSL version 1.1.1k5 is used as the baseline
for a non-vulnerable server implementation, as it is considered secure against
Bleichenbacher padding oracle attacks due to extensive scrutiny from the
open-source community and security researchers. Similar to OpenSSL-1.1.1k5,
OpenSSL-1.1.1t6 is widely regarded as resilient against padding oracle or the
Bleichenbacher’s attacks, serving as a secure baseline due to community scrutiny
and continuous updates.

The baseline for a vulnerable server is DamnVulnerableOpenSSL2, a TLS
implementation intentionally crafted with a padding oracle vulnerability for
experimental purposes.DamnVulnerableOpenSSL returns distinct TLS alerts
for invalid paddings (e.g., handshake failure instead of bad record mac),
confirming its feedback accuracy. Our approach also identifies subtle error-
handling differences: upon padding failure, the server disconnects the TCP
connection differently, sending a TCP reset immediately after the TCP finished
message instead of waiting for client acknowledgment [49, 80]. Consequently,

4https://github.com/tls-attacker/TLS-Docker-Library
5https://mta.openssl.org/pipermail/openssl-announce/2021-March/000197.html
6https://mta.openssl.org/pipermail/openssl-announce/2023-February/000249.
html

156

https://github.com/tls-attacker/TLS-Docker-Library
https://mta.openssl.org/pipermail/openssl-announce/2021-March/000197.html
https://mta.openssl.org/pipermail/openssl-announce/2023-February/000249.html
https://mta.openssl.org/pipermail/openssl-announce/2023-February/000249.html

5. Automating ILD in OpenSSL TLS Servers

this sets the reset (RST) TCP flag on the second disconnect message only
for invalid padding, appearing as a significant feature for classification. The
acknowledgment counter shifts forward in the TCP reset case, showing one
fewer acknowledgment in contrast to the regular TCP finished message.

Imitating KPR side channels To detect real-world side channels in older
implementations, the OpenSSL changelog7 revealed several vulnerabilities via
side channels in prior versions. Initial countermeasures against Bleichenbacher’s
attack were introduced before version 0.9.5, following its 1998 publication,
but were insufficient, as padding failure errors were not adequately masked.
These countermeasures were even accidentally removed in version 0.9.5, with
version 0.9.6b (2001) later containing the first effective protection against
Bleichenbacher’s attack. Unfortunately, the source code of these versions is no
longer available for download.

Further changes in versions 0.9.6j and 0.9.7b (2003) addressed the recently
discovered KPR bad version oracle side channel vulnerability, as detailed
in Klíma et al. (2003) [107], the Tenable plugin report8, and CVE-2003-00789.

Versions 0.9.7a (vulnerable to KPR with CVE-2003-00789) and 0.9.7b (not
vulnerable) are available and can be compiled and analyze the approach when
faced with a bad version side channel. In the analysis, version 0.9.7a displayed
side channel behavior during TLS handshakes with manipulated CKE messages,
which was correctly detected by the AutoSCA tool4 [49]. Testing with version
0.9.7b (non-vulnerable) confirmed that applied countermeasures successfully
prevented these side channels, as the AutoSCA tool4 returned a “not vulnerable”
result.

7https://www.openssl.org/news/changelog.html
8https://www.tenable.com/plugins/nessus/199565
9https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0078

157

https://www.openssl.org/news/changelog.html
https://www.tenable.com/plugins/nessus/199565
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0078

5. Automating ILD in OpenSSL TLS Servers

Imitating ROBOT side channels The ROBOT paper by Böck et al. (2018)
[21] revealed numerous ILs via real-world side channels across public web servers,
especially in closed-source TLS server implementations. Vendors of affected
devices were informed, leading to software updates that likely closed these
vulnerabilities in most web-facing TLS servers.

To confirm the efficacy of the AutoSCA tool for large-scale internet scans
and tested it on Alexa Top 500 domains, with each domain undergoing 500
initial handshakes [49]. Five domains indicated possible vulnerabilities in Drees
et al. (2021) [49]; however, further testing with 50 000 handshakes revealed that
four were false positives, while cnblogs.com was genuinely vulnerable. This was
verified by other scanners, including ssllabs10, tls-scanner11, and testssl.sh12,
which confirmed the side channel presence. The server operators were contacted
and notified of the issue.

Our approach scales to hundreds of web servers, albeit with a higher runtime
than other ROBOT scanners. Unlike these, the AutoSCA tool4 assumes
less about the specific nature of the side channel, thus proving its real-world
applicability where network behavior variably affects traffic traces.

Most ROBOT side channels have been removed from prominent servers, so
they are re-implemented using Mbed-TLS 13 configurations, mimicking four
ROBOT vulnerabilities that cover a representative set of server behaviors as

Facebook F5 v1 (CVE-2017-616814) and Facebook v2 use a single CKE mes-
sage, causing a TCP timeout if the padding is invalid, as the server waits
for CCS and FIN messages. For invalid paddings, these servers do not
wait but abort prematurely with a TLS alert or a TCP disconnect (TCP
finished message).

10https://www.ssllabs.com/ssltest
11https://github.com/tls-attacker/TLS-Scanner
12https://testssl.sh/
13https://github.com/Mbed-TLS/mbedtls
14https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6168

158

https://www.ssllabs.com/ssltest
https://github.com/tls-attacker/TLS-Scanner
https://testssl.sh/
https://github.com/Mbed-TLS/mbedtls
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6168

5. Automating ILD in OpenSSL TLS Servers

Cisco Cisco ACE (CVE-2017-1742815) returns a TLS alert 47 instead of 20
when padding fails.

NetScalerGCM Citrix NetScaler (CVE-2017-1738216) provides a TLS alert 51
for valid padding but times out for invalid padding, exposing a padding
oracle vulnerability.

PAN-OS PAN-OS (CVE-2017-1784117) sends a TLS alert 40 in both cases
but duplicates the alert when padding fails.

5.2. Experimental Setup

This section outlines the empirical process for all ILD approaches, including
the baselines for detecting timing side channel leaks in OpenSSL TLS servers,
as depicted in Figure 5.1. Our main objective is to assess the generalization
capability of various ILD approaches discussed in Section 3.2.2 across different
class imbalances (𝑟 ∈ {0.1, 0.3, 0.5}) in the system dataset using detection
accuracy. Additionally, the generalization capability of these approaches is
assessed with respect to the complexity of IL in the system, quantified by the
time delay of the OpenSSL TLS server, refer to Appendix A.3 for details.

Table 5.1.: Overview of the OpenSSL TLS timing IL-Datasets used for the ILD
experiments.

Time Delay
(in micro-seconds,𝜇s) # Folds IL-Dataset ℒ configuration Dataset 𝒟 configuration

Systems |ℒ| # 𝑧 = 0 # 𝑧 = 1 Imbalance 𝑟 |𝒟| # 𝑦 = 0 # 𝑦 = 1 # Features

{20, 21, . . . , 28} 3 10 5 5
0.1 [1886, 2128] [1698, 1916] [188, 212]

1240.3 [1212, 1368] [849, 958] [363, 410]
0.5 [1725, 1929] [849, 958] [829, 989]

{10, 15, . . . , 35} 10 10 5 5
0.1 [1924, 3992] [1732, 3594] [192, 398]

[124, 154]0.3 [1237, 2910] [866, 2037] [371, 873]
0.5 [1721, 4084] [866, 2037] [826, 2104]

15https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17428
16https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17382
17https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17841

159

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17428
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17382
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17841

5. Automating ILD in OpenSSL TLS Servers

To achieve this, multiple IL-Datasets generated by Funke (2022) [68] with time
delay values ranging from 1 to 256 and class imbalances 𝑟 ∈ {0.1, 0.3, 0.5} are
used, as described in Table 5.1. Additionally, Funke (2022) [68] generated 9

datasets from different OpenSSL TLS servers, which are vulnerable due to
distinct TLS alert messages (e.g., handshake failure instead of bad record

mac) in response to certain manipulated paddings within the network traces,
as detailed in Table 5.2.

5.2.1. Evaluation Process

To conduct the experiments, each ILD approach depicted in Figure 5.1a on a
set of IL-Datasets detailed in Tables 5.1 and 5.2 are employed. The experiments
aim to evaluate the generalizability of ILD approaches under class imbalance
and detect ILs of varying magnitudes in the systems via the generated dataset.
Each ILD approach employs the detection process with a rejection threshold of
⌊𝐽
2
⌋ = 5 on the cut-off parameter 𝜏 .

Methodology The process of detecting IL in a system generating classification
dataset by various ILD approaches is depicted in Figure 5.1. To enhance IL
detection confidence, the Holm-Bonferroni correction is applied on 𝑝-values
by using statistical tests (details in Section 2.4) on performance estimates
of the top-10 automated machine learning (AutoML) models or pipelines
from AutoGluon and TabPFN obtained through hyperparameter optimization
(HPO). The ILD process involves rigorous estimation, statistical assessment,
and correction techniques to detect IL in a system confidently. The process
starts with obtaining accurate mutual information (MI) or Bayes predictor
performance estimates using nested 𝐾-fold cross-validation (KFCV) with HPO
and specific parameter ranges provided in Table A.1. The dataset 𝒟 is split
into 90% training and 10% test sets using 𝐾-fold cross-validation (KFCV)
(10), conducting HPO with 100 evaluations using Monte Carlo cross-validation
(MCCV) with 3 splits, reserving 30% of training data for validation, denoted

160

5. Automating ILD in OpenSSL TLS Servers

as “N10F-3SCV”, as depicted in Figure 5.1a. Objective functions for HPO
include balanced error-rate (BER) for PC-Softmax, AutoGluon, and TabPFN,
Akaike information criterion (AIC) for Gaussian mixture model (GMM), and
mean squared error (MSE) for mutual information neural estimation (MINE)
with parameter ranges provided in Table A.1. The top-10 best-performing
pipelines are identified from running AutoGluon for 1800 seconds and top-
performing models using HPO on GMM, MINE PC-Softmax and TabPFN,
using validation loss or accuracy. KFCV is applied to the top-10 models or
pipelines, generating 10 estimates from the entire dataset 𝒟, which statistical
tests use to produce 𝑝-values, which are assessed to detect IL. The 10 MI
estimates, accuracies, and confusion matrices (CMs) are obtained for each
of the 𝑗-th best-performing model/AutoML pipeline, denoted by 𝐼𝑗, 𝑎𝑗 and
ℳ𝑗 = {𝑀 𝑘

𝑗 }𝐾𝑘=1, respectively. The one-sample t-test (OTT) is used on MI
estimates(𝐼𝑗), paired t-test (PTT) compares the accuracies (𝑎𝑗) with that of
𝑔𝑚𝑐
𝑝 (𝑎𝑚𝑐), and Fisher’s exact test (FET) is applied to CMs(ℳ𝑗 = {𝑀 𝑘

𝑗 }𝐾𝑘=1),
producing 10 𝑝-values which are aggregated using mean and median operators.

The Holm-Bonferroni correction enhances robustness and reliability in ILD
by mitigating overfitting and noise from single-model estimates [91]. After
obtaining 10 𝑝-values from top-10 models/pipelines, the correction is applied
to acquire the number of rejected hypotheses or the cut-off parameter 𝜏 = |ℱ𝑟|,
quantifying IL detection confidence. To detect IL efficiently, it is imperative to
set an appropriate rejection threshold on the cut-off parameter 𝜏 , as a higher
threshold avoids false positives and a lower value reduces false negatives, as
detailed in Section 2.4.3. It is concluded in Gupta et al. (2022) [80] to set the
rejection threshold to ⌊𝐽/2⌋ on the cut-off parameter 𝜏 to ensure robust and
accurate IL detection, i.e., 𝜏 ≥ 5 [80, 81].

Evaluation Each IL-Dataset (ℒ = {(𝒟𝑖, 𝑧𝑖)}10𝑖=1) consists of 10 different system
datasets, each corresponding to a distinct incorrect padding manipulation, as
discussed in Section 5.1. Specifically, within an IL-Dataset generated by an
OpenSSL TLS server vulnerable to processing times, five systems contain IL

161

5. Automating ILD in OpenSSL TLS Servers

N10F-3SCV

System
Under Test

Data

AutoGluon
TabPFN

BASELINE
MI Estimator

Fisher's Exact
Test

Paired t-test

PTT-MAJORITY

FET-MEDIAN

FET-MEAN

MID-POINT

LOG-LOSS

CAL LOG-LOSS

One-Sample
t-test BASELINE

Mid-Point MIs

Log-Loss MIs

Median

Confusion
Matrices

Mean

Calibrated
Log-Loss MIs

Accuracies
&

Estimated MIs

One-Sample
t-test

One-Sample
t-test

One-Sample
t-test

Accuracies
&

PTT-RANDOM

(a) Calculation of 𝑝-value by different ILD approaches

Leakage Decision
Holm-

Bonferroni
Correction

Check if

Base Leakage
Detector

System
Data

Top 10 Best
Models

-value
Calculation

Hyperparameter
Optimization

10 p-values

(b) Information leakage (IL) detection process

Figure 5.1.: Procedure of using ILD approaches to detect ILs in a systems generating
classification dataset 𝒟

162

5. Automating ILD in OpenSSL TLS Servers

(i.e., 𝑧 = 1), and five systems do not contain IL (i.e., 𝑧 = 0), as detailed
in Section 5.1.1. Additionally, within an IL-Dataset generated by 9 real-world
OpenSSL TLS servers vulnerable to error codes with three of them are entirely
non-vulnerable servers with all 10 systems do not contain IL (i.e., 𝑧 = 0)
and remaining servers being vulnerable to some of the padding manipulations,
as detailed in Section 5.1.2. Each ILD approach all IL-Datasets to generate
predicted IL decisions denoted by a vector 𝑧 = (𝑧1, . . . , 𝑧10). These predictions
are then compared to the corresponding ground-truth vector 𝑧 = (𝑧1, . . . , 𝑧10)

using standard binary classification metrics, as defined in Section 3.1.

Table 5.2.: Overview of the OpenSSL TLS error code IL-Datasets.
Server IL-Dataset ℒ configuration Dataset 𝒟 configuration

Systems |ℒ| # 𝑧 = 0 # 𝑧 = 1 Vulnerable Classes Imbalance 𝑟 |𝒟| # 𝑦 = 0 # 𝑦 = 1 # Features

OpenSSL TLS Servers with KPR side channels

DamnVulnerableOpenSSL 10 4 6
00FPB, 00LP

CFPM1BS, N00M
WFB, WSB

0.1 22331 20098 2233
940.3 [22331, 28711] 20098 [2233, 8613]

0.5 [22331, 40221] 20098 [2233, 20123]

OpenSSL-0.9.7a 10 9 1 ITV
0.1 22106 19896 2210

1240.3 [22106, 28422] 19896 [2210, 8526]
0.5 [22106, 40272] 19896 [2210, 20376]

Non-vulnerable OpenSSL TLS servers

OpenSSL-0.9.7b 10 10 0 Non-vulnerable
0.1 22174 19957 2217

1240.3 [22174, 28510] 19957 [2217, 8553]
0.5 [22174, 40214] 19957 [2217, 20257]

OpenSSL-1.1.1t 10 10 0 Non-vulnerable
0.1 22100 19890 2210

940.3 [22100, 28414] 19890 [2210, 8524]
0.5 [22100, 40106] 19890 [2210, 20216]

OpenSSL-1.1.1k 10 10 0 Non-vulnerable
0.1 5153 4638 515

1160.3 [5153, 6625] 4638 [515, 1987]
0.5 [5153, 9291] 4638 [515, 4653]

OpenSSL TLS servers with ROBOT side channels

Cisco 10 6 4
00FPB, 00LP
WFB, WSB

0.1 1568 1412 156
2520.3 [1008, 1568] [706, 1412] [156, 302]

0.5 [1008, 1568] [706, 1412] [156, 737]

Facebook 10 4 6
00FPB, 00SPB

CFPM1BS, N00M
WFB, WSB

0.1 3884 3496 388
1800.3 [2497, 3884] [1748, 3496] [388, 749]

0.5 [2497, 3884] [1748, 3496] [388, 1857]

NetScalerGCM 10 4 6
00FPB, 00SPB

CFPM1BS, N00M
WFB, WSB

0.1 1616 1456 160
2520.3 [1040, 1616] [728, 1456] [160, 312]

0.5 [1040, 1616] [728, 1456] [160, 741]

PAN-OS 10 4 6
00FPB, 00SPB

CFPM1BS, N00M
WFB, WSB

0.1 1450 1306 144
1960.3 [932, 1450] [653, 1306] [144, 279]

0.5 [932, 1450] [653, 1306] [144, 747]

163

5. Automating ILD in OpenSSL TLS Servers

5.3. Results

This comprehensively analyzes the performance of various ILD approaches in
detecting ILs through time delays and error codes in the alert messages to
counter Bleichenbacher attacks on OpenSSL TLS servers. The generalization
performance of various ILD approaches, the results are analyzed with varying
levels of class imbalance in the underlying dataset generated by the system. Ad-
ditionally, various systems simulated using the OpenSSL TLS servers configured
with different values of time delays ranging from 2 to 256 𝜇s (micro-seconds),
which can be exploited to perform the Bleichenbacher SCAs. This experiment
provides insights into the robustness of ILD approaches in detecting small ILs
in the systems.

5.3.1. Detection Accuracy on Timing Datasets

The performance of various ILD approaches is comprehensively analyzed with
respect class imbalances (𝑟 ∈ 0.1, 0.3, 0.5) and time delays ranging from 2

to 256 𝜇s (in micro-seconds). This study focuses on OpenSSL TLS systems
with short time delays (≤ 25 𝜇s), which are associated with complex ILs that
are challenging to detect and with significant time delays (≥ 25 𝜇s), where
detection is relatively simple. These factors are crucial in understanding how
different approaches perform based on class imbalance in the OpenSSL TLS
system datasets and the complexity of the IL patterns.

To evaluate the performance of ILD approaches, the mean detection accu-
racy with standard error (SE) for each method across different IL-Datasets
is presented, employing a rejection threshold of 5 on the cut-off parameter 𝜏 ,
as discussed in Section 5.2.1. For a more detailed analysis of generalization
capability in terms of Accuracy, FPR, and FNR concerning IL complexity, refer
to Appendix A.3.

164

5. Automating ILD in OpenSSL TLS Servers

Selected ILD Approaches To identify the best-performing calibration ap-
proach for both TabPFN and AutoGluon using Log-Loss estimation, their
performance with respect to normalized mean absolute error (NMAE) is as-
sessed obtained from all experiments detailed in Section 4.3.1. This process
evaluated the performance of binary-class synthetic datasets to determine the
optimal calibration approach for each AutoML tool, separately for balanced
(𝑟 = 0.5) and imbalanced (𝑟 ∈ {0.1, 0.3}) datasets.

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Class Imbalance
r = 0.1

Class Imbalance
r = 0.3 Balanced

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

D
et

ec
ti

on
A

cc
u

ra
cy

Detection Technique
AutoGluon Mid-Point
AutoGluon Log-Loss
AutoGluon Cal Log-Loss
AutoGluon PTT-Majority
AutoGluon PTT-Random
AutoGluon FET-Mean

AutoGluon FET-Median
TabPFN Mid-Point
TabPFN Log-Loss
TabPFN Cal Log-Loss
TabPFN PTT-Majority
TabPFN PTT-Random

TabPFN FET-Mean
TabPFN FET-Median
GMM Baseline
MINE Baseline
PC-Softmax Baseline

Time Delay ≤ 25 µs

Time Delay ≥ 25 µs

ILD with Rejection Threshold = 5, τ ≥ 5

Figure 5.2.: Detection accuracy of ILD approaches in detecting timing side channels
in OpenSSL TLS servers

Based on this evaluation, AutoGluon TS Cal Log-Loss is the most effective
for both cases, while TabPFN IR Cal Log-Loss performed best on imbalanced
datasets, and TabPFN PS Cal Log-Loss excelled in balanced ones.

165

5. Automating ILD in OpenSSL TLS Servers

Short Time Delay

Our first set of experiments focuses on systems with short time delays (≤ 25

𝜇s) with more complex or noisy ILs.

Imbalanced Detecting ILs in systems that generate imbalanced datasets with
short time delays or LAS proves to be particularly challenging, as most ILD
approaches struggle to detect ILs effectively. The TabPFN Cal Log-Loss

approach consistently demonstrates higher detection accuracy, while AutoGluon
FET-Median also performs reasonably well. For 𝑟 = 0.1, TabPFN Cal Log-

Loss detects 69% of ILs, and AutoGluon FET-Median detects around 54%.
At 𝑟 = 0.3, both TabPFN Cal Log-Loss and AutoGluon FET-Median

detect 58% of ILs. Overall, these scenarios remain challenging due to missed
ILs and high false positive rates (FPRs), as detailed in Appendix A.3.

Balanced Detecting ILs in systems generating balanced datasets with short
time delays remains challenging but more manageable than generating imbal-
anced ones. AutoGluon Log-Loss and Cal Log-Loss approaches outperform,
detecting a significant proportion of ILs (approximately 68%). IR Cal Log-

Loss enhances TabPFN Log-Loss detection accuracy to 67%, making it a
competent approach, while PS Cal Log-Loss does not improve its detection
accuracy, as confirmed in Appendix A.3.1. Compared to imbalanced ones, Auto-
Gluon Mid-Point performs better on balanced datasets, achieving around 64%

accuracy. Overall, AutoGluon outperforms TabPFN, with PTT-Majority

detecting over 61% of ILs, outperforming the ones using FET to detect ILs.

Long Time Delay

Our second set of experiments focuses on systems with long time delay (≥ 25

𝜇s) with more straightforward to detect ILs.

166

5. Automating ILD in OpenSSL TLS Servers

Imbalanced Detecting ILs in systems with more significant time delay (≥ 25

𝜇s) or LAS, generating imbalanced datasets becomes more manageable, with
all approaches consistently performing well, detecting significantly more than
50% of ILs. The TabPFN Cal Log-Loss approach, one of the top performers,
detected about 94% of ILs, while AutoGluon FET-Median detecting over
92% for 𝑟 = 0.3 and around 72% for 𝑟 = 0.1. It is worth noting that FET based
approaches outperform PTT-Majority for imbalanced datasets generated by
systems with long time delays, which aligns with the findings for detecting ILs
via alert messages in Section 5.3.2.

Balanced In systems with balanced datasets and longer time delays (≥ 25 𝜇s),
detecting ILs becomes significantly more straightforward, with most methods
achieving high detection rates. AutoGluon Mid-Point and TabPFN IR Cal

Log-Loss consistently detect the majority (around 99%) of ILs, confirming
IR Cal Log-Loss’s offering an alternative calibration technique to improve
the efficacy for TabPFN Log-Loss approach, as confirmed in Appendix A.3.1.
TabPFN PS Cal Log-Loss and Log-Loss approaches detect 97%, showing
no improvement with the selected calibration technique, while TabPFN Mid-

Point detects 85%. Amongst the classification-based approaches, PTT-

Majority using both AutoML tools consistently outperforms, detecting 99%

of ILs. In contrast, AutoGluon FET-Median detects 96% and TabPFN FET-

Median only 90% of ILs. This finding differs from the results in Section 5.3.2,
where FET-based approaches perform significantly better in detecting ILs via
alert messages, while PTT performs better ILD for timing-based SCAs.

5.3.2. Detection Accuracy on Error code Datasets

The performance of various ILD approaches is analyzed using the detection
accuracy, FPR, and false negative rate (FNR) in datasets extracted using
network traces simulated from 9 OpenSSL TLS servers, which leaks information
through TLS alerts or error codes (in ACK messages), making them vulnerable

167

5. Automating ILD in OpenSSL TLS Servers

to Bleichenbacher attacks. The overall detection accuracy results for datasets
systems with different class imbalances (𝑟 ∈ 0.1, 0.3, 0.5), aggregated across
all servers, are summarized in Figure 5.3, with detailed analysis of all ILD
approaches on each OpenSSL TLS server in Appendix A.2.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
et

ec
ti

o
n

A
cc

u
ra

cy

Class Imbalance
r = 0.1

Class Imbalance
r = 0.3 Balanced

Detection Technique
AutoGluon Mid-Point
AutoGluon Log-Loss
AutoGluon Cal Log-Loss
AutoGluon PTT-Majority
AutoGluon PTT-Random
AutoGluon FET-Mean

AutoGluon FET-Median
TabPFN Mid-Point
TabPFN Log-Loss
TabPFN Cal Log-Loss
TabPFN PTT-Majority
TabPFN PTT-Random

TabPFN FET-Mean
TabPFN FET-Median
GMM Baseline
MINE Baseline
PC-Softmax Baseline

ILD with Rejection Threshold = 5, τ ≥ 5

Figure 5.3.: Detection accuracy of Selected ILD approaches in detecting side chan-
nels in OpenSSL TLS servers

Imbalanced

When detecting ILs in systems that generate imbalanced datasets, detection
accuracy is notably lower compared to ones generating balanced datasets.
Among MI-based approaches, Log-Loss and Cal Log-Loss using AutoGluon
detected more than 90% of ILs, outperforming ones using TabPFN, in contrast
to findings in Section 5.3.1, where TabPFN Cal Log-Loss is the top performer.
Generally, the classification-based approaches FET-Mean, FET-Median, and
PTT-Majority worked very well for imbalanced system datasets. As expected,
Mid-Point and PTT-Random approaches failed, producing false positives
and confirming that Mid-Point suffers from MI overestimation, indicating
a fundamental limitation in handling class distribution shifts, as discussed
in eq. (3.2) in Section 3.3.1.

168

5. Automating ILD in OpenSSL TLS Servers

The top performers are TabPFN FET-Mean, TabPFN FET-Median, and
TabPFN PTT-Majority, each achieving around 95% detection accuracy.
Among classification-based approaches using AutoGluon, FET-Mean achieved
93% detection accuracy for datasets with a class imbalance of 0.1, but only
60% for those with an imbalance of 0.3. Interestingly, MINE and probabilitiy-
corrected softmax (PC-softmax) detected more than 62% of ILs, while GMM
detected less than 50%, performing worse than random guessing, a result
contrary to the performance observed in Section 5.3.1.

Balanced

Similar to observations in Section 5.3.1, ILD approaches detected more than
90% of ILs in systems, including all MI-based and classification-based methods
using TabPFN, as well as AutoGluon Log-Loss and AutoGluon Cal Log-

Loss. Among classification-based approaches using AutoGluon, the ones using
FET detected over 80% of ILs in systems, while those using PTT detect more
than 75% of ILs. Interestingly, MINE and PC-softmax also detected over 62%,
whereas GMM again detected less than 50%, performing worse than random
guessing and contrasting with results in Section 5.3.1. The reason for this is
that it overfits due to the overestimation of MI and production of false positives
in detecting ILs, as detailed in Appendix A.2, A.3 and A.4.

5.3.3. Summary

Detecting IL is generally easier in systems generating balanced datasets, where
FET-Mean, PTT-Majority using AutoGluon, and TabPFN demonstrate
strong performance.Unlike observations by Gupta et al. (2022) [80], PTT-
based approaches sometimes outperform FET-based ones on balanced datasets,
indicating that ILD effectiveness varies with IL patterns.Classification-based
approaches FET-Mean, FET-Median, and PTT-Majority perform well

169

5. Automating ILD in OpenSSL TLS Servers

on imbalanced datasets, while Mid-Point and PTT-Random struggle, often
producing false positives due to Mid-Point’s MI overestimation, a limitation
in handling imbalanced datasets noted in Section 3.3.1.

TabPFN Cal Log-Loss consistently outperforms other methods, emphasizing
the importance of calibrating TabPFN Log-Loss for precise MI estimation.
For OpenSSL TLS timing balanced datasets, IR Cal Log-Loss enhances
detection accuracy over PS Cal Log-Loss, as shown in Appendix A.3, aligning
with synthetic dataset results in Section 4.3.1. In error code TLS datasets, HB

Cal Log-Loss surpasses both PS Cal Log-Loss and IR Cal Log-Loss, as
detailed in Appendix A.2, highlighting the need for dataset-specific calibration
selection. Feature reduction in TabPFN (from 150 to [20, 50]) and scarce positive
samples in imbalanced datasets further emphasize the dependence of calibration
choice on dataset characteristics. For AutoGluon, Log-Loss calibration often
overfits and overestimates MI, causing false positives in OpenSSL TLS timing
balanced datasets, as observed in Section 4.3.1. However, in error code datasets,
Log-Loss calibration demonstrates robust performance, underlining the critical
role of dataset-specific calibration in Log-Loss.

In timing datasets, baseline methods detect only about 50% of ILs, reflecting
random detection patterns, as confirmed in Appendix A.3. Conversely, in
error code datasets, GMM detects less than 50%, performing below random
guessing, while MINE and PC-softmax exceed 62%, contrasting timing dataset
results (c.f. Section 5.3.1). MINE and PC-softmax fail to detect ILs, producing
false negatives due to MI underestimation, while GMM overfits, overestimating
MI and producing false positives, as detailed in Appendix A.3 and A.2. In
timing datasets, MI-based approaches using TabPFN outperform those using
AutoGluon, while in error code datasets, AutoGluon outperforms TabPFN. This
suggests that AutoML tools are suited to specific vulnerabilities: AutoGluon
for error code and TabPFN for timing datasets, implying that tailoring and
selection of the AutoML tool depends on the underlying system dataset, also
confirmed in Appendix A.3 and A.2.

170

6. Automating ILD in
AES-encrypted Systems

This chapter provides an overview of the automated framework using the guess-
ing entropy (GE) and trace sufficiency threshold (TST) values designed to detect
and assess information leakage (IL) in AES-encrypted systems, in Section 6.1.
Additionally, the experimental setup to analyze the optimal parameters is
described, i.e., the search strategy employed for neural architecture search
(NAS) and the shape of the input features in Section 6.2, with methodology
in Section 6.1.1 and Section 6.2.2 presents the datasets used for the experiments.
Implementation details are summarized in Appendix A.1.3. The results of
selecting the optimal parameters, IL assessment in terms of vulnerability score
(VS) and efficiency in terms of TST, is detailed in Section 6.3. This chapter is
based on the work published in Gupta et al. (2023) [79].

6.1. ILD in AES-encrypted Systems

Information leakage detection (ILD) in AES encrypted systems is crucial for
understanding how much information about the secret key can be inferred from
side channel traces during the encryption process. As Advanced Encryption
Standard (AES) is widely employed for securing sensitive data, it becomes
an attractive target for side-channel attacks (SCAs), where attackers exploit
physical leakages, such as power consumption or electromagnetic radiations

171

6. Automating ILD in AES-encrypted Systems

(EMR), to extract secret key information. Given the complexity and multi-
round structure of AES encryption, leakage can occur at various stages, making
it an ideal subject for ILD techniques, as discussed in Section 2.3.3.

While mutual information (MI) estimation is commonly used to quantify and
detect IL, challenges arise with the high-dimensional nature of AES traces and
the difficulty in capturing non-linear relationships between leakage and secret
key bytes. These include discretization, slow convergence, and bias, particularly
in noisy datasets [35]. Recently, deep learning (DL) models have been increas-
ingly applied to perform SCA and detect ILs in AES encrypted systems [124].
One such approach is mutual information neural estimation (MINE), which
MI using DL, which allows scalable estimation in high-dimensional spaces,
but it requires up to 200, 000 epochs, making the analysis computationally
expensive [39, 40]. Moreover, MINE faces slow convergence and is sensitive to
architecture tuning, particularly in imbalanced datasets [40]. Similarly, Deep
Learning Leakage Assessment (DL-LA) uses DL models to bypass traditional
pre-processing steps, such as trace alignment and multivariate leakage modeling,
proving effective for detecting ILs in non-profiled SCAs. However, both MINE
and DL-LA rely on multi-layer perceptrons (MLPs) for MI estimation, which
limits their applicability in AES encrypted systems, as MLPs are often out-
performed by convolutional neural networks (CNNs) in detecting side channel
leakage [206, 200, 143, 25]. In this field, the most relevant literature tends to
use machine learning (ML) or DL for performing SCAs, rather than focusing
on early detection of ILs to prevent them [86]. Notably, current DL-based
methods detect side channels and protect systems from SCAs at both the
algorithmic and hardware levels [137, 136, 39]. Though DL models have shown
effectiveness in detecting ILs by analyzing model accuracy on system data, they
struggle with imbalanced, noisy real-world datasets, which can lead to missed
ILs, producing false negatives [136, 207, 148].

To overcome these limitations, it is proposed to use GE of the learned DL
model on the traces acquired from the system as a metric for quantifying IL.
GE is directly related to MI and provides a more interpretable measure by

172

6. Automating ILD in AES-encrypted Systems

quantifying how many guesses an attacker needs to recover the encryption
key, as detailed in Section 3.2.1. Additionally, to address the challenges of
noisy traces and architecture tuning, NAS is employed on CNNs, which has
been shown to perform better than MLPs in detecting side channel leakage.
By automating the ILD process with NAS, multiple optimal models can be
generated to analyze various GE values to assess leakage by evaluating the VS,
as detailed in Section 3.2.2. This approach also incorporates the analysis of
TST values to offer a clear measure of system vulnerability and assesses IL in
AES encrypted systems.

6.1.1. Automated side channel Attacks

The first handcrafted CNN architecture is shown in Figure 6.1a, was initially
developed by Benadjila et al. (2020) [14] to target the ASCAD dataset, manually
refined to create smaller, dataset-specific versions, such as those shown in Fig-
ure 6.1b developed by Zaid et al. (2019) [206], which were tailored for attacking
ASCAD_f 50ms and ASCAD_f 100ms datasets. This demonstrates that the
optimal CNN architecture is highly dependent on the dataset, and manually
designing such architectures requires significant expertise. This challenge is not
exclusive to SCAs, which has led to the adoption of automated solutions like
Neural architecture search (NAS). NAS frames the task of finding an appro-
priate architecture for a given dataset as an optimization problem based on a
defined objective function, allowing it to be solved automatically. Typically,
NAS employs an evaluation metric, such as accuracy or a loss function, as its
objective, which serves as the performance criterion for evaluating architectures,
as detailed in Section 2.2.4. The dataset is split into a training set 𝒟𝑡𝑟𝑎𝑖𝑛, used
to train an architecture 𝐴 ∈ 𝒜, and a validation set 𝒟𝑣𝑎𝑙, used to assess its
performance using a chosen objective, such as accuracy, which is ultimately
used to identify the best-performing architecture as shown in Figure 6.2. This
approach inspired the use of NAS in SCAs, where the profiling dataset is
provided as input, allowing NAS to automatically generate an optimal CNN
architecture for the dataset in question [160].

173

6. Automating ILD in AES-encrypted Systems

White-box Automated side channel Attacks Recent works have explored
the use of NAS for SCA initially defined white-box metrics to guide NAS,
employing Random and Bayesian search strategies[201] [201, 169]. These
white-box evaluate the cumulative score of the secret key byte on a labeled
attack dataset to measure the performance of the generated architecture [201].
This work was extended by introducing a reinforcement learning-based NAS

CONVOLUTION
POOLING

DENSE LAYER

SOFTMAX DENSE LAYER

INPUT

256 SOFTMAX SCORES

DENSE LAYER

CONVOLUTION
POOLING

CONVOLUTION
POOLING

CONVOLUTION
POOLING

CONVOLUTION
POOLING

(a) ASCAD baseline [14]

CONVOLUTION
POOLING

DENSE LAYER

INPUT

DENSE LAYER

CONVOLUTION
POOLING

CONVOLUTION
POOLING

DENSE LAYER

SOFTMAX DENSE LAYER

256 SOFTMAX SCORES

(b) ZAID baseline [206]

DENSE BLOCK

CONV BLOCK
CONVOLUTION

BATCH NORMALIZATION
DENSE LAYER

SOFTMAX DENSE LAYER

INPUT

256 SOFTMAX SCORES

BATCH NORMALIZATION
POOLING

(c) Our NAS base structure

Figure 6.1.: Baseline CNN architectures versus the NAS base structure

method, where the white-box objective functions as a reward for learning
the Q-function, which then guides the search for the optimal architecture by
selecting hyperparameters for the next architecture [169]. The Q-function uses
metrics like guessing entropy and the number of traces (TST) to evaluate the
performance of the system’s secret key byte 𝑘*. However, these approaches suffer
from two key drawbacks. First, they use the attack dataset for hyperparameter
optimization (HPO), leading to potential overfitting, which occurs when a model
performs exceptionally well on the data it has seen but does not generalize to

174

6. Automating ILD in AES-encrypted Systems

Search
Strategy

Evaluate

Accuracy of

Architecture

Profiling
Dataset PROF

Train

Attack
Dataset ATT

Decile 1

Decile 10

Final Model

Evaluate

10 GE
Values

Neural
Architecture

Search

Validation
Data

Best
Architecture

Training
Data

Search
Space

Train

10 TST
Values

Vulnerability
Score

Efficiency
Analysis

Figure 6.2.: Schematic of the NAS approach for black-box attacks

new, unseen data. To detect overfitting, a hold-out dataset must be withheld
from model selection, parameter tuning, and training to evaluate the model’s
generalization ability. If the hold-out dataset is used in any part of the process,
it can no longer assess generalization, leading to data-snooping issues [98].
This problem affects the experiments in [169] and [201], raising concerns about
whether overfitting occurred.

Second, testing a model on the same dataset used to optimize its architecture
overestimates its real-world performance. In scenarios where the architecture
is optimized for an unknown key, this approach is unsuitable for a black-
box setting, where the attack dataset remains unlabeled for training and is
ultimately used to acquire the same secret key of the system. While this may
be acceptable in white-box or gray-box settings, it is incompatible with the
black-box assumptions of the work. Consequently, the performance results
in [169] and [201] may not accurately represent real-world performance on
unlabeled datasets and cannot be compared directly to the work.

175

6. Automating ILD in AES-encrypted Systems

6.1.2. Black-Box Automated Detection Approach

A black-box approach for HPO and neural architecture design, developed
concurrently by Acharya et al. (2023) [1], is InfoNEAT. This method simulta-
neously evolves neural network architectures and hyperparameters, training
a separate model for each key byte using a one-versus-rest (OVR) classifica-
tion. Though its information-theoretic metrics suit hardware SCA, it cannot
be directly compared to single-architecture methods, with the output layer
predicting probability and real-valued scores for each possible key byte value [1].
Motivated by current automated solutions for SCAs, the goal is to develop
an unbiased, optimal CNN architecture in a black-box setting using NAS.
Figure 6.2 illustrates the NAS approach, adhering to the standard training-
test-validation split commonly employed in ML methods to satisfy black-box
requirements. The profiling dataset is divided into a training set 𝒟𝑡𝑟𝑎𝑖𝑛, used
for training the architecture, and a validation set 𝒟𝑣𝑎𝑙, which evaluates its
performance. The search strategy operates within a predefined search space 𝒜
(c.f. Table 6.1), which contains various CNN architectures (1-D or 2-D based
on the input). Initially, architectures 𝐴 ∈ 𝒜 are randomly selected (explo-
ration), and their accuracy is used to inform future selections (exploitation).
The training data 𝒟𝑡𝑟𝑎𝑖𝑛 is used to train these architectures, and validation
data 𝒟𝑣𝑎𝑙 evaluates their performance. By only using the profiling dataset
for both searching and evaluating architectures, the NAS method qualifies
as a black-box approach [169], contrasting with the white-box methods used
by Wu et al. (2024) [201] and Rijsdijk et al. (2021) [169], which rely on the
test dataset, leading to biased performance estimates. After identifying the
best-performing architecture, it is retrained on the full profiling dataset 𝒟profiling

to improve performance with minimal computational overhead. The attack
dataset 𝒟𝑎𝑡𝑡𝑎𝑐𝑘 is divided into 10 equal parts (deciles), and each part is used to
evaluate the VS using the GE values and efficiency using the TST values, as
shown in Figure 6.2.

176

6. Automating ILD in AES-encrypted Systems

Vulnerability Score While the statistical tests are typically used to detect
leakage, as outlined in Section 3.2.2, a more direct approach for IL detection is
proposed employing the percentage of successful attacks through the VS. This
method offers a more explicit confidence measure of IL based on the allowed
number of guesses, i.e., GE to compromise a system.

To streamline the automated process of detection of leakage through NAS
in AES-encrypted systems using the VS metric mVS(𝑟

𝑁𝑎 , 𝑘*). This metric
represents the ratio percentage of successful attacks, i.e., when the GE is
less than or equal to 3 (mGE(𝑟

𝑁𝑎 , 𝑘*) ≤ 3). As discussed in Section 2.3.3, the
GE is approximated using 𝑅𝑎 different attack datasets 𝒟Att

𝑎 with 𝑁𝑎 attack
traces, and is computed using eq. (2.13).

The percentage of successful attacks, denoted by mVS(𝑟
𝑁𝑎 , 𝑘*), is estimated by

performing 𝐴𝑎 different attacks with models generated by the black-box NAS
approach with varying random seeds, calculated as

mVS(𝑟
𝑁𝑎 , 𝑘*) =

1

𝐴𝑎

𝐴𝑎∑︁
𝑖=1

JmGE(𝑟
𝑁𝑎 , 𝑘*) ≤ 3K ≊

1

𝐴𝑎

𝐴𝑎∑︁
𝑖=1

J
1

𝑅𝑎

𝑅𝑎∑︁
𝑎=1

𝑟𝑁𝑎 [𝑘*] ≤ 3K .

(6.1)
This provides a precise measure of the system’s vulnerability, used to assess
the IL in AES encrypted systems, as discussed in Section 6.3.2. Moreover, TST
values provide additional insights into the efficiency of a possible SCAs and
how easily a given system can be compromised, as discussed in Section 6.3.3.

6.2. Experimental Setup

The performance of the final model returned by NAS largely depends on two
key factors: the search strategy employed for NAS and the shape of the input
features, as discussed in Section 6.2.1. First is the search strategy employed
for NAS, which significantly influences search performance and runtime, and
second is the shape of the input features. The methodology for this study is
outlined in Section 6.1.1, while Section 6.2.2 presents the datasets used for the

177

6. Automating ILD in AES-encrypted Systems

experiments. The goal of investigating the automated NAS setup in comparison
to manually crafted fixed baseline CNN architectures, trained using hardware,
is detailed in Appendix A.1.3.

6.2.1. NAS Parameters

The performance of the final model produced by NAS depends on two key
factors: the search strategy, which affects the efficiency and runtime of the
proposed NAS approach, and the input feature shape. The study aims to
identify optimal choices for both.

Two-Dimensional Input Reshaping

The measurement traces of the datasets have to be transformed into the
proper shape for the neural network to process. The most straightforward
transformation is to produce a One-Dimensional input from the time series
input and define a search space containing 1-D CNN architectures (c.f. Table 6.1)
and to apply NAS to find an optimal architecture. While most of the 1-D
CNN architectures that are explored for performing SCA to break AES-128
encryption were initially inspired by popular 2-D CNN architectures proposed
for image classification, like VGGNet, Inceptionv3 [14], they are only applied
on one-dimensional inputs. Recent work has shown that using 2-D CNNs
could increase the accuracy and efficiency for breaking post-quantum key-
exchange (PQKE) protocols [103, 87]. This also motivated me to explore using
two-dimensional inputs for AES-128 attacks, applying NAS on a search space
containing 2-D CNN architectures (c.f. Table 6.1). Two techniques are proposed
to convert the one-dimensional input to two-dimensional input: Square and
Rectangle. In the Square approach, a square of dimension ⌊

√
𝑑⌋ + 1 is

constructed, and the remaining parts filled with the mean value of the instance

178

6. Automating ILD in AES-encrypted Systems

8 4 3 60 9

Square with length

8 4 3

60 9

5 5 5
Mean-value
Imputation

(a) Square Input Conversion

8 4 3 60 9

Rectangle Dimension

8 4 3
60 9

(b) Rectangle Input Conversion

Figure 6.3.: Converting 1-D input to 2-D Square and 2-D Rectangle input

are shown in Figure 6.3a. To form a Rectangle input, the dimensions closest
to a square are determined using the two factors of 𝑑 nearest to

√
𝑑, avoiding

the need for filling with imputed values, as illustrated in Figure 6.3b.

Search Strategies

The previous work on applying NAS for performing SCA only considered
Bayesian and Random search strategies [201], which are not necessarily time-
efficient [160, 117]. The four search strategies Random, Greedy, Hyperband,
and Bayesian were explored with 1000 fixed trials, utilizing their respective
implementations provided by AutoKeras [100], as described in Section 2.2.4.

Architecture Search Space To perform NAS, the search space is defined
based on the input shape of NAS. In Table 6.1, a search space is described
containing various configurations for 2-D CNN architectures with Rectangle

and Square inputs, as well as a search space for 1-D CNN architectures with
One-Dimensional inputs.

The hyperparameters for the convolutional layer are the kernel size and the
number of filters, the pooling layer is the pool-size 𝑤𝑝, the number of strides
and pooling operation type, and for a dense layer is the number of hidden units,
as described in Section 2.2.4. The range for each hyperparameter is selected by

179

6. Automating ILD in AES-encrypted Systems

analyzing the related work [169, 201]. The search space includes all possible
1-D baseline CNN architectures [206, 14], ensuring that the search strategies
could, in theory, find these fixed architectures and match their performance. In
particular, Random search strategy is guaranteed to identify these architectures
eventually.

The range of each hyperparameter is also included from the search space
designed for 1-D CNN architectures proposed by the current work on NAS
for performing SCA [169, 201]. If the dataset’s characteristics are known in
advance, this search space can be reduced to improve search efficiency. However,
the search space is not tailored to the dataset to ensure that the architecture
design process remains fully automated, requiring no manual dataset analysis.

The network, layer, and dense block hyperparameters are the same for both
1-D CNN search space and 2-D CNN search space. Additionally, the range
of convolutional kernel size, convolutional filters, and pooling types for each
convolutional block is the same for both search spaces. To avoid the formation
of invalid 2-D CNN architectures, the range of pooling strides is smaller, and
the pool-size value is set using the kernel size, which is the suggested default
of AutoKeras [100]. This reduces the search space for 2-D CNNs. The padding
type is set to “same” for convolutional layers and “valid” for pooling layers in
the 1-D CNNs search space. To prevent the creation of invalid 2-D CNNs, the
padding type for both the convolutional and pooling layers is determined based
on the kernel size of the convolutional layer, following the formulae proposed by
AutoKeras [100]. The total number of possible hyperparameter configurations
for 1-D CNNs is 40 758 681 600 and for 2-D CNNs is 2 264 371 200. For the
experiments, the maximum number of trials is set to 1000 , implying that only
1000 possible architectures were explored by NAS out of such a large search
space. Each search strategy is provided with the same budget limit, which
means that only around 5× 10−5% of 2-D search space and 2.5× 10−6% of
1-D search space is explored to produce an optimal CNN architecture.

180

6. Automating ILD in AES-encrypted Systems

Table 6.1.: Overview of the Search Space for the NAS approach.

Hyperparameter Type Hyperparameter Possible Options

Whole Network
Optimizer {Adam, Adam_with_weight_decay }
Learning rate {1e1, 5e2, 1e2, 5e3, 1e3, 5e4, 1e4, 5e5, 1e5}

Every Layer
Dropout {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}
Use Batch Normalization {True, False}
Activation Function { ReLU, SELU, Elu, Tanh }

Convolutional
Block

#Blocks {1, 2, 3, 4, 5}
Convolutional Kernel Size {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
Convolutional Filters {2, 8, 16, 32, 64, 128, 256}
Pooling Type {’max’ , ’average’}
Pooling Strides 1-D CNN {2, 3, 4, 5, 6, 7, 8, 9, 10}
Pooling Poolsize 1-D CNN {2, 3, 4, 5}
Pooling Strides 2-D CNN {2, 4}
Pooling Poolsize 2-D CNN Convolutional Kernel Size-1

Dense Block
#Blocks {1, 2, 3}
Hidden Units {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}

6.2.2. Dataset Description

To investigate the behavior of NAS across a wide range of settings and enable
direct comparisons with other works in hardware SCAs, five well-known datasets
were selected: ASCAD v1, DPA contest v4.1, AES_RD, AES_HD, and CHES
CTF 2018. These datasets have been extensively studied in prior research
and are recorded from an AES-128 encrypted system. These datasets record
implementations of AES-128, meaning the same overall approach should work
automatically for each without needing dataset-specific tuning. However, the
systems incorporate different ILs countermeasures, e.g., masking or random
delays. The attack setup (dataset, target byte, features) is identical to the
one described in [206, 14], with the configurations for all these datasets listed
in Table 6.2.

181

6. Automating ILD in AES-encrypted Systems

ASCAD The ASCAD dataset was proposed as a benchmark dataset, contain-
ing expectation-maximization (EM) radiation measurements obtained from an
ATMega8515 (8-bit micro-controller with AVR architecture) device running a
masked implementation of AES-128 [14].

Table 6.2.: Details of the datasets acquired from the AES-encrypted systems.

Dataset name #Features #Profiling traces #Attack traces Attack byte

ASCAD_f 700 50000 10000 2
ASCAD_f desync50 700 50000 10000 2
ASCAD_f desync100 700 50000 10000 2
ASCAD_r 1400 50000 100000 2
ASCAD_r desync50 1400 50000 100000 2
ASCAD_r desync100 1400 50000 100000 2
CHES CTF 2200 45000 5000 2
AES_HD 1250 50000 25000 0
AES_RD 3500 25000 25000 0
DP4CONTEST 4000 4500 5000 0

This dataset is available in different versions, and the original v1 dataset is
utilized in both with the fixed secret key (ASCAD_f1) and variable secret key
(ASCAD_r2) variants. The traces in these datasets have been aligned such that
the AES computation always starts at the same sample within each trace. The
points of interest in the raw data have been analyzed using the signal-to-noise
ratio, and only a small subset of samples from the full traces is used [14].
Additionally, versions that add random amounts of desynchronization to each
trace are considered. These versions were created by Benadjila et al. (2020) [14]
to simulate imprecise temporal alignment of the traces by adding an artificial
jitter to each trace. The traces have been desynchronized by a maximum of 50
and 100 samples, resulting in the 6 different varieties of the ASCAD dataset
listed in Table 6.2.

1https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_
fixed_key/

2https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_
variable_key/

182

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key/
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key/
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key/
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key/

6. Automating ILD in AES-encrypted Systems

CHES CTF The CHES CTF dataset comprises traces initially produced for
the CHES 2018 AES-128 CTF challenge. Note that the dataset used in this
study 3 is a single reduced version (45 000 traces) derived from the original
measurements (500 000 traces) and not identical to the datasets published as
part of the actual contest4, which consists of 6 different sets (42 000 traces).
This reduced version is used in the AISY framework and has already been
preprocessed [144].

AES_RD AES_RD5 was initially used to investigate random delay counter-
measures [37]. The traces for this dataset are collected from an 8-bit ATMEL
AVR microcontroller running an AES-128 implementation incorporating ran-
dom delays. The converted dataset as analyzed in Zaid et al. (2019) [206] is
used6.

AES_HD AES_HD7 dataset contains EM measurements obtained from
Xilinx Virtex-5 FPGA (coded in VHDL) implementing an unprotected AES-
128 implementation [148]. A big difference in this dataset is that it records
the AES decryption operation instead of the encryption operation. The labels
are generated for a difference leakage model based on the ciphertext bytes 𝑐𝑗𝑖
used in the decryption, specifically the 12th (𝑐11𝑖) and 8th (𝑐7𝑖) ciphertext bytes.
The resulting label is then calculated with 𝜑(𝑐𝑖, 𝑘𝑖) = 𝑠𝑏𝑜𝑥−1(𝑐11𝑖 ⊕ 𝑘𝑖) ⊕ 𝑐7𝑖

(c.f. section 2.3.3). Once again, the converted dataset as analyzed in Zaid
et al. (2019) [206] is used8.

3http://aisylabdatasets.ewi.tudelft.nl/ches_ctf.h5
4https://chesctf.riscure.com/2018/content?show=training
5https://github.com/ikizhvatov/randomdelays-traces/
6https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/
tree/master/AES_RD/AES_RD_dataset

7https://github.com/AESHD/AES_HD_Dataset/
8https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/
blob/master/AES_HD/AES_HD_dataset.zip

183

http://aisylabdatasets.ewi.tudelft.nl/ches_ctf.h5
https://chesctf.riscure.com/2018/content?show=training
https://github.com/ikizhvatov/randomdelays-traces/
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/tree/master/AES_RD/AES_RD_dataset
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/tree/master/AES_RD/AES_RD_dataset
https://github.com/AESHD/AES_HD_Dataset/
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/blob/master/AES_HD/AES_HD_dataset.zip
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/blob/master/AES_HD/AES_HD_dataset.zip

6. Automating ILD in AES-encrypted Systems

DPAv4 The DPAv4 dataset9 contains traces obtained from ATMEL AVR-163
microcontroller running an AES-128 implementation protected with rotating
Sbox masking (RSM) [16]. It was used in the fourth version of the DPA contest,
from which only the “improved” masked AES-128 target contained in dataset
version 4.2 is employed. Again the extracted dataset10 from [206] is actually
used. To be consistent while comparing the approach with the performance
of the baselines proposed by [206], the mask value is assumed to be known,
essentially nullifying the masking.

6.3. Parameter Study Results

The complete parameter study outlined in Section 6.2 combined the possible
options for search strategy and input shape. These configurations were applied
to the 10 datasets detailed in Section 6.2.2 for an identity (ID) leakage model.
Additionally, the baseline architectures described in Appendix A.1.3 were
trained for each dataset.

6.3.1. Optimal Parameters

To address the second question, the VS is plotted for every possible NAS
parameter combination of input shape and search strategy. These plots were
created separately for synchronized and desynchronized datasets due to the
significant difference in performance between the two.

9http://www.dpacontest.org/v4/42_traces.php/
10https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/

blob/master/DPA-contest%20v4/DPAv4_dataset.zip

184

http://www.dpacontest.org/v4/42_traces.php/
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/blob/master/DPA-contest%20v4/DPAv4_dataset.zip
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/blob/master/DPA-contest%20v4/DPAv4_dataset.zip

6. Automating ILD in AES-encrypted Systems

Synchronized Datasets

Figure 6.4a shows the influence of the choice of each possible NAS parameter
combination (input shape and the search strategy) on the overall performance
of synchronized datasets for ID leakage. This clearly shows that the choice of
search strategy has a significant impact on the VS, which rises from around
20% to around 70% when going from Bayesian search via Greedy and
Hyperband to Random search. Random search strategy outperforms the
other strategies. Still, it comes at the price of being slower, taking about 5

times longer than Greedy and Hyperband (c.f. Appendix A.1.3), mainly
because it keeps exploring the search space until the limit of 1000 trials is
reached. For synchronized datasets, using the Hyperband strategy might
be a viable alternative, as it still produces a CNN with a VS of around 50%

while being substantially faster than Random search. When comparing input

Bayesian
Greedy

Hyperband
Random

Search Strategy

0%

20%

40%

60%

80%

100%

V
u

ln
er

ab
ili

ty
S

co
re

Input Shape
One-Dimensional Rectangular Square

Bayesian
Greedy

Hyperband
Random

(a) Synchronized datasets (b) Desynchronized datasets

Figure 6.4.: Influence of NAS parameters on detecting ILs in AES-encrypted systems

shapes, there does not appear to be a consistent difference between 1-D and 2-D

185

6. Automating ILD in AES-encrypted Systems

for synchronized datasets, demonstrating the ability of NAS to adjust to vastly
different situations. This demonstrates that 2-D CNNs offer no advantage over
the 1-D input shape.

Desynchronized Datasets

Figure 6.4b shows the influence of the parameter choices on the VS for desyn-
chronized datasets. The difference between Random and its competitors grows
even larger on these datasets, so choosing Hyperband for its speed is no longer
a viable option. When desynchronization is introduced, the input shape plays
a major role. The 1-D CNN architecture can compensate for desynchronization
to a large degree, with its performance essentially unchanged when paired
with Random search. Wouters et al. (2020) [200] observed a similar behavior
where the first convolutional block successfully removes the desynchronization
in the dataset by using the convolutional and pooling operation on neighboring
values in the trace. Converting 1-D to 2-D inputs changes the local relationship
between neighboring values, which makes re-synchronizing the traces more diffi-
cult. The 2-D architectures struggle with re-synchronization in the experiments
and are not viable for desynchronized datasets.

6.3.2. Parameter Reliability

To determine the overall reliability of the NAS approach, the VS is determined
for all experiments executed on each dataset in the ID leakage model. In this
context, an attack is considered successful if the final GE reaches a value of
1 after processing all traces in the respective attack dataset decile. The per-
dataset attack VS is shown in Figure 6.5a, providing a rough indication of the
difficulty level of attacking each dataset. One notable observation is the relative
ease of attacking the DPAv4 dataset: Even when accounting for all suboptimal

186

6. Automating ILD in AES-encrypted Systems

combinations of the search strategy and input shape, over 75% of the attacks
were successful. This is unsurprising, as the considered variant of the dataset
effectively contains no countermeasures, as detailed in Section 6.2.2.

When comparing the synchronized versions of ASCAD_f and ASCAD_r to
their desynchronized counterparts, the degradation in reliability caused by the
increased difficulty incurred by desynchronization is evident. However, some of
the attacks were still successful. The disastrous performance of NAS on the
CHES CTF dataset must also be highlighted, where only a handful of attacks
successfully recovered the complete identity value. This can be traced back
to a reduced number of 500 attack traces available for the attack because of
the decile split, with the convergence indicating that all models would have
succeeded given a larger attack dataset.

0%

20%

40%

60%

80%

100%

V
u

ln
er

ab
ili

ty
S

co
re

Dataset
AES RD
AES HD
CHES CTF
DPAv4

ASCAD f
ASCAD r
ASCAD f desync50

ASCAD r desync50
ASCAD f desync100
ASCAD r desync100

(a) Over all parameter choices (b) Using 1-D and Random

Figure 6.5.: Vulnerability score for various AES-encrypted systems

187

6. Automating ILD in AES-encrypted Systems

Reliability of Optimal Parameters

The analysis above demonstrates that the highest likelihood of producing a
CNN model capable of successfully breaking the system is created by combining
the Random search strategy with One-Dimensional inputs, particularly
in desynchronized scenarios. To evaluate the VS achieved with this specific
combination, it is plotted per dataset in Figure 6.5b. The results indicate that,
except for the CHES CTF dataset, over 57% of the attacks were successful,
with some datasets achieving a remarkable VS of 100%. The anomaly observed
in AES_HD and CHES CTF will be investigated further. Thus, it can be
concluded that the combination of a One-Dimensional input shape and the
Random search strategy is the optimal choice for reliably creating successful
attack models.

6.3.3. Efficiency Analysis

As concluded, using the Random search strategy and One-Dimensional

input shape yields CNN architectures capable of performing SCA with a high
VS. Additionally, the efficiency of these NAS architectures and their comparison
to traditional fixed architectures were also investigated.

Comparison of Trace Sufficiency Threshold For a fair comparison, the
baseline architectures presented in Appendix A.1.3 were considered in this work.
Efficiency is measured using the TST, which quantifies the number of attack
traces required for the model to achieve a GE of 1, with lower TST values
indicating greater efficiency. Table 6.3 shows the median TST values for the 7

NAS models generated by the Random search strategy on One-Dimensional

inputs, compared against the ASCAD and ZAID baseline architectures.

On the simpler datasets such as AES_RD and DPAv4, the NAS models perform
instantaneous attacks, requiring only a single trace. For 4 out of 10 datasets, the
NAS models outperform the baselines. However, for desynchronized datasets,

188

6. Automating ILD in AES-encrypted Systems

100 101 102 103
0

30
60
90

120
150
180

AES RD

100 101 102 103

AES HD

100 101 102
0

30
60
90

120
150
180

CHES CTF

100 101

DPAv4

100 101 102 103
0

30
60
90

120
150
180

M
ea

n
G

u
es

s
E

n
tr

op
y ASCAD f

Architecture

Our NAS Models ASCAD Baseline ZAID Baseline

100 101 102 103 104

ASCAD r

100 101 102 103
0

30
60
90

120
150
180

ASCAD f desync50

100 101 102 103 104

ASCAD r desync50

100 101 102 103

Number of Attack Traces

0
30
60
90

120
150
180

ASCAD f desync100

100 101 102 103 104

ASCAD r desync100

Figure 6.6.: Convergence of the 7 NAS models compared to the fixed baseline
architectures for each dataset

189

6. Automating ILD in AES-encrypted Systems

Table 6.3.: Median TST comparison across datasets, italics indicate GE not reaching
1; the best model per dataset is in bold.

Dataset ASCAD ZAID Our NAS

AES_RD 270.3 3.0 1.0
AES_HD 2500.0 504.4 1172.8
CHES CTF 498.5 500.0 500.0
DPAv4 49.3 2.9 1.0
ASCAD_f 0ms 703.5 116.5 118.3
ASCAD_r 0ms 322.0 10000.0 136.3
ASCAD_f 50ms 920.9 136.9 202.0
ASCAD_r 50ms 4449.0 56.1 139.7
ASCAD_f 100ms 974.6 82.5 391.7
ASCAD_r 100ms 6664.2 10000.0 87.9

especially where the ZAID baseline is specialized, NAS only surpasses the
ASCAD baseline and the Notably, baselines fail to produce successful attacks
for CHES CTF, synchronized ASCAD, and ASCAD_f desync50 datasets. This
highlights an issue when relying on TST alone, as unsuccessful attacks are
still counted in the total number of attack traces, influencing the average TST.
Figure 6.6 further illustrates the GE convergence of the 7 NAS models compared
to the fixed architectures for each dataset, which shows the convergence of
each NAS model and only takes the average GE over the 10 attack deciles.
In most cases, the best NAS model outperforms the baselines in 6 out of 10
datasets. However, individual outliers exhibit significantly slower convergence,
particularly in the AES_HD and ASCAD_r datasets. For example, while most
NAS architectures perform comparably to the ZAID baseline on AES_HD,
3 out of 7 models become outliers with slower convergence, with one model
diverging before achieving a decent GE toward the end. A similar pattern is
seen in ASCAD_r, where 5 out of 7 NAS models surpass the ASCAD baseline,
but 2 models show much slower convergence. Outliers appear in 6 out of 10 cases
on desynchronized datasets. Interestingly, even the fixed ZAID architecture for

190

6. Automating ILD in AES-encrypted Systems

ASCAD_f desync50 is affected by an outlier model, highlighting that random
variations can impact both fixed and NAS models. Such variability underscores
that while NAS often matches or exceeds the performance of fixed architectures,
its generalization capability can sometimes falter due to randomization and
slight changes in the dataset splits.

6.3.4. Summary

The parameter study highlights the performance and efficiency of NAS-generated
architectures compared to traditional fixed baselines for SCA on various datasets.
For synchronized datasets, Random search with 1-D input shapes proved to
be the optimal parameter combination, delivering consistent and high VS.
At the same time, Hyperband provided a faster alternative with moderate
performance. The performance gap widened on desynchronized datasets, with
Random search being the only viable strategy, as 2-D input shapes struggled
to handle desynchronization effectively.

Generalization NAS achieved state-of-the-art performance on several datasets
exhibiting significant variability based on the train-validation splits, indicating
sensitivity to small dataset changes. For instance, the best NAS models on
ASCAD_r and AES_HD datasets were highly efficient in some splits but
underperformed in others, highlighting the generalization challenge. This
variability suggests that while NAS can find optimal architectures for specific
datasets, its generalization across different splits or datasets remains a concern,
as it may overfit specific patterns in the training data. Such overfitting can
reduce robustness, particularly in side-channel analysis tasks where slight
changes in attack scenarios or desynchronization levels can drastically affect
model performance. This issue is common in ML processes where randomization
or small changes in data splits can lead to varying results. Additionally, in the
CHES_CTF dataset, splitting into deciles revealed that none of the models
achieved a GE of 1 by the end of the experiment, possibly due to the small

191

6. Automating ILD in AES-encrypted Systems

dataset size or the complexity of the attack traces. These findings suggest
that while NAS models can match or outperform fixed architectures in terms
of attack efficiency, their inconsistent performance remains a limitation, and
generalization becomes a critical question when using NAS for full key recovery,
as described in Section 2.3.3. A future research direction could investigate
using techniques such as cross-validation or regularization to reduce overfitting,
helping ensure that NAS architectures perform consistently across a broader
range of datasets and scenarios. Despite this variability, NAS can potentially
eliminate manual per-dataset architecture design, but further refinement is
needed to ensure consistent performance across a wide range of datasets.

192

7. Summary and Future
Directions

The final chapter provides an overall conclusion of the thesis, summarizing key
findings and contributions in Section 7.1. Future research directions are outlined
in Section 7.2, emphasizing improving ILD frameworks and expanding their
applications to other cryptographic systems and real-world security challenges.
The conclusion and outlook are partially published in Gupta et al. (2024) [81]
and Gupta et al. (2023) [79].

7.1. Conclusion

This thesis introduces a comprehensive theoretical framework for addressing
the ILD problem in cryptographic systems, bridging gaps between the channel
capacity from information theory and statistical learning to justify the reasons
for widespread usage and accuracy of ML, specifically DL methods. A central
contribution of this work is the proposal of the leakage assessment score (LAS)
as a generalized measure of IL in systems, which is derived using the connection
between MI and Bayes predictor and calculated by assessing the Bayes predictor
performance. This metric is particularly important since when MI estimation
becomes increasingly challenging with 256 possible classes, representing the
secret key byte, detecting ILs in AES-encrypted systems benefits from the
proposed VS metric, which is based on evaluating LAS using the GE (key
byte rank) of the system. I establish robust methodologies for identifying

193

7. Summary and Future Directions

vulnerabilities by detecting leakages in systems using different variants of LAS
and enhancing cybersecurity through this systematic framework. Due to the
learning consistency of DL-based and ensemble ML methods using bagging and
boosting like random forest classifier (RF), gradient boosting machine (GBM),
I proposed using the state-of-the-art automated machine learning (AutoML)
tools, such as TabPFN and AutoGluon to induce the Bayes predictor.

I introduced two techniques to quantify and detect IL by estimating MI between
the observable and secret information, leveraging the approximation of Bayes
predictor performance in terms of Log-Loss and accuracy. First, I compared
the proposed MI estimation approaches with the state-of-the-art by performing
the experiments on the systems simulated using multivariate normal (MVN) gen-
erating classification datasets with known MI. Several approaches are proposed
to detect ILs in the systems using statistical tests, like the cut-off technique us-
ing one-sample t-test (OTT) on the MI estimates, Fisher’s exact test (FET) on
the confusion matrices (CMs), and paired t-test (PTT) on accuracy estimates of
the AutoML tools. These tests are performed multiple times, and their results
are aggregated using the Holm-Bonferroni correction to ensure reliable and
confident decisions regarding the presence of IL in the cryptographic systems,
making it robust towards noise. I also proposed using the black-box NAS
(using only profiling dataset) as a promising realist approach for performing
SCAs on AES-encrypted systems exploiting the power consumption or EMRs
to reveal the secret key, extending its application to perform vulnerability
analysis of the systems using the VS metric (using GE). Through a large-scale
parameter study, I assess the impact of NAS configurations, focusing on search
strategies and input shapes (1-D and 2-D), on the performance of CNN architec-
tures. I evaluate four search strategies implemented by AutoKeras—Random,
Greedy, Hyperband, and Bayesian —and explore the transformation of
one-dimensional inputs into two-dimensional rectangular and square formats to
enable the use of 2-D CNNs, inspired by VGGNet and Inceptionv3 proposed for
image classification. This comprehensive study examines these factors across
10 datasets in the ID leakage model, providing insights into their influence
on model performance. Additionally, I provided a detailed analysis of the

194

7. Summary and Future Directions

efficiency of the proposed automated NAS approach by analyzing the TST by
performing multiple attacks using best models generated across 7 independent
NAS runs to account for the uncertainty in estimates. This analysis offers a
detailed perspective on the ease with which the AES-encrypted system can be
compromised.

Our proposed approaches, employing two powerful AutoML tools, enable
automated, scalable, and precise approximation of Bayes predictor to estimate
LAS, also MI effectively. This, in turn, facilitates the detection of IL in
imbalanced, high-dimensional datasets, significantly reducing reliance on manual
configurations and traditional statistical techniques. Our empirical findings
demonstrate that the proposed approach, which approximates calibrated Log-

Loss using TabPFN, is highly effective and robust in precisely estimating MI
in synthetic datasets and detecting side channel leaks via network traces in
OpenSSL Transport Layer Security (TLS) servers compared to state-of-the-art
methods, as detailed in Chapters 4 and 5. Furthermore, this work concludes that
the choice and requirement of calibration techniques for Log-Loss estimation
depend on the characteristics of the system datasets. Upon detailed analysis
of the results in analyzing the vulnerability of the AES-encrypted systems, I
concluded that using the Random search strategy on one-dimensional inputs
yields the best-performing CNN architectures for the available medium-sized
computational budgets. I compared the efficiency of the NAS models with
state-of-the-art CNN baselines and demonstrated that, for the synchronized
datasets generated by systems implementing no or weak countermeasures, the
7 best models generated by NAS were more efficient, requiring fewer traces
(low TST) than the baselines.

Considering that the proposed approach matched the performance of hand-
crafted architectures, NAS demonstrates its potential for fully automated
attacks on devices or datasets with unknown characteristics. These experiments
underscore the importance of exploration in selecting search strategies for
hardware attacks, emphasizing the need to account for broader parameter
spaces. Real-world attackers with access to larger budgets could achieve even

195

7. Summary and Future Directions

better results using Random search, positioning the presented findings as a
conservative estimate of actual capabilities. Additionally, the flexibility of NAS
enables unbiased comparisons of SCA methods, addressing the limitations of
current evaluations that rely on fixed architectures, such as predefined loss
functions. A notable challenge observed was the susceptibility of ML models to
variations in training datasets—a factor often overlooked in existing ML-based
SCA studies. This issue became apparent through repeated training with
different validation splits, highlighting the need for a systematic discussion on
improving consistency in performance evaluations for ML-based SCA.

In summary, the empirical evaluation showcases the robustness of the proposed
approaches across diverse datasets, including leakage via processing time and
error codes in the network traces of the OpenSSL TLS servers and hardware
side channels in AES-encrypted systems. This thesis establishes a foundation
for an automated ILD adaptable to various real-world cybersecurity scenarios
by addressing key challenges such as noise, imbalance, and generalizability. This
work also emphasizes the importance of unbiased and consistent performance
evaluation in ML-based SCA research, advocating for broader discussions on
mitigating variability in training datasets and improving reliability in evaluation
protocols. The proposed methodologies advance the state-of-the-art in ILD and
pave the way for fully automated and efficient side channel detection in crypto-
graphic systems. In conclusion, this thesis contributes to the theoretical and
practical aspects of ILD, offering scalable and adaptable solutions that address
the evolving challenges of cybersecurity in cryptographic environments.

7.2. Future Work

In the future, I would like to explore extending the current framework to
estimate Rényi entropy, leveraging its tunable parameter 𝛼 to analyze leakage
distributions more comprehensively [57, 13]. This approach would provide
deeper insights into how uncertainty and adversarial success probabilities vary
across different leakage scenarios, complementing MI-based evaluations [155].

196

7. Summary and Future Directions

I also want to provide a fully automated solution on the high dimensional
dataset with numerous classes, mitigating the limitations of the approaches
using TabPFN [89]. Furthermore, this work concludes that the choice and
requirement of calibration techniques for Log-Loss estimation depend on
the characteristics of the system datasets. Specifically, I intend to develop an
end-to-end AutoML tool, containing possible usage of MLPs and CNNs as
well, that selects appropriate dimensionality reduction techniques in conjunc-
tion with calibration methods to accurately estimate MI and detect IL in any
given cryptographic system. Considering that the Mid-Point approach does
not account for system dataset imbalance, it is crucial to determine a Bayes
predictor that reduces metrics like balanced error-rate (BER) or maximizes
mathews correlation coefficient (MCC), F1-score, and so on, as defined in Sec-
tion 2.2.2. To improve the estimation using the Mid-Point approach, I intend
to expand upon the relationship between BER and MI for binary classification
provided by Zhao et al. (2013) [210] and adapt it to accommodate multiple
classes. Another future direction could be to integrate the fast Westfall–Young
permutation procedure to improve statistical power and empirically adjust the
Holm-Bonferroni cut-off thresholds to a widely accepted significance level of
𝛼 = 0.05 [186, 46]. Future work could also involve evaluating the applicability
and limitations of classical and neural MI estimation methods in more complex
scenarios, such as high-dimensional settings, sparse interactions, long-tailed
distributions, and high MI values, beyond the synthetic MVN datasets ana-
lyzed [42]. Additionally, future work includes detecting leaks through other
side channels such as CPU caches, speech recognition, Soundcomber, and
WiFi signal radiations [137, 150], as well as extending these methods to other
cryptographic protocols. It also involves exploring advanced NAS strategies
to enhance further the adaptability and efficiency of automated SCAs and
ILD systems. I also intend to explore adaptive techniques that dynamically
adjust and fine-tune the IL detection process based on changing environments
or evolving attack strategies, utilizing reinforcement learning, online learning,
and other adaptive methods [54].

197

7. Summary and Future Directions

While most of the current research in detecting hardware ILs in side-information
observable via the power consumption or EMR side channels of the AES-
encrypted systems primarily addresses systems employing more straightforward
defenses, such as Boolean masking. Our study was restricted to detecting the ID
leakage in AES-encrypted systems. At the same time, I intend also to analyze
the vulnerability in terms of the hamming weight (HW) or hamming distance
(HD) leakage. Future work could explore detecting hardware ILs in systems
incorporating advanced countermeasures like affine masking to offer more robust
resistance to SCAs in datasets like ASCADv2. Additionally, analyzing complete
input traces instead of truncated ones could provide deeper insights into the
vulnerabilities of systems employing higher-order masking and complex defenses.
I focused on four search strategies, but more advanced alternatives have proven
to be more time-efficient and effective than, for example, search in finding
optimal architectures [160]. Another potential efficiency enhancement is early
stopping, which involves aborting hyperparameter optimization runs early if
performance is consistently poor or no further improvement is observed.

198

8. Bibliography

[1] Rabin Yu Acharya, Fatemeh Ganji, and Domenic Forte. “Information Theory-
based Evolution of Neural Networks for Side-channel Analysis”. In: IACR
Transactions on Cryptographic Hardware and Embedded Systems 2023.1
(Nov. 2023), pp. 401–437. doi: 10.46586/tches.v2023.i1.401-437.
url: https://doi.org/10.46586/tches.v2023.i1.401-437.

[2] Onur Acıiçmez and Çetin Kaya Koç. “Trace-Driven Cache Attacks on
AES (Short Paper)”. In: Information and Communications Security. Ed. by
Peng Ning, Sihan Qing, and Ninghui Li. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 112–121. isbn: 978-3-540-49497-3.

[3] Md. Abdullah Al Alamin and Gias Uddin. “How far are we with automated
machine learning? Characterization and Challenges of AutoML Toolkits”. In:
Empirical Software Engineering 29.4 (2024), p. 91. doi: 10.1007/s10664-
024-10450-y. url: https://doi.org/10.1007/s10664-024-10450-y.

[4] U. Ali and O. Khan. “MultiCon: An Efficient Timing-based Side Channel
Attack on Shared Memory Multicores”. In: 2022 IEEE 40th International
Conference on Computer Design (ICCD). 2022 IEEE 40th International
Conference on Computer Design (ICCD). 2022, pp. 97–104. doi: 10.1109/
ICCD56317.2022.00024. url: https://doi.org/10.1109/ICCD56317.
2022.00024.

[5] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger, Maik
Dankel, Jens Steube, Luke Valenta, David Adrian, J. Alex Halderman, Viktor
Dukhovni, Emilia Käsper, Shaanan Cohney, Susanne Engels, Christof Paar,
and Yuval Shavitt. “DROWN: Breaking TLS Using SSLv2”. In: 25th USENIX
Security Symposium (USENIX Security 16). Ed. by Thorsten Holz and Stefan

199

https://doi.org/10.46586/tches.v2023.i1.401-437
https://doi.org/10.46586/tches.v2023.i1.401-437
https://doi.org/10.1007/s10664-024-10450-y
https://doi.org/10.1007/s10664-024-10450-y
https://doi.org/10.1007/s10664-024-10450-y
https://doi.org/10.1109/ICCD56317.2022.00024
https://doi.org/10.1109/ICCD56317.2022.00024
https://doi.org/10.1109/ICCD56317.2022.00024
https://doi.org/10.1109/ICCD56317.2022.00024

8. Bibliography

Savage. Austin, TX, USA: USENIX Association, Aug. 2016, pp. 689–706.
isbn: 978-1-931971-32-4. url: https://www.usenix.org/system/
files/conference/usenixsecurity16/sec16_paper_aviram.pdf.

[6] Romain Bardou, Riccardo Focardi, Yusuke Kawamoto, Lorenzo Simionato,
Graham Steel, and Joe-Kai Tsay. “Efficient Padding Oracle Attacks on
Cryptographic Hardware”. In: Advances in Cryptology – CRYPTO 2012.
Ed. by Reihaneh Safavi-Naini and Ran Canetti. Vol. 7417. Lecture Notes in
Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 2012, pp. 608–625. doi: 10.1007/978-3-642-32009-5_36.

[7] R. E. Barlow and H. D. Brunk. “The Isotonic Regression Problem and Its
Dual”. In: Journal of the American Statistical Association 67.337 (Nov.
1972), pp. 140–147. issn: 01621459. doi: 10.2307/2284712.

[8] Vanessa Barros and Jérôme Rousseau. “Shortest Distance Between Multiple
Orbits and Generalized Fractal Dimensions”. In: Annales Henri Poincaré 22.6
(June 2021), pp. 1853–1885. issn: 1424-0661. doi: 10.1007/s00023-
021-01039-y.

[9] Omid Bazangani, Alexandre Iooss, Ileana Buhan, and Lejla Batina. “ABBY:
Automating Leakage Modelling for Side-Channel Analysis”. In: Proceedings
of the 19th ACM Asia Conference on Computer and Communications
Security (ASIA CCS ’24). Singapore, Singapore: Association for Computing
Machinery, Apr. 2024, pp. 231–244. doi: 10.1145/3634737.3637665.
url: https://doi.org/10.1145/3634737.3637665.

[10] Julien Béguinot, Wei Cheng, Sylvain Guilley, and Olivier Rioul. “Be My
Guess: Guessing Entropy vs. Success Rate for Evaluating Side-Channel
Attacks of Secure Chips”. In: 2022 25th Euromicro Conference on Digital
System Design (DSD). Maspalomas, Spain, Sept. 2022, pp. 496–503. doi:
10.1109/DSD57027.2022.00072.

[11] Julien Béguinot and Olivier Rioul. “What can Information Guess? Guessing
Advantage vs. Rényi Entropy for Small Leakages”. In: 2024 IEEE Interna-
tional Symposium on Information Theory (ISIT). 2024 IEEE International

200

https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_aviram.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_aviram.pdf
https://doi.org/10.1007/978-3-642-32009-5_36
https://doi.org/10.2307/2284712
https://doi.org/10.1007/s00023-021-01039-y
https://doi.org/10.1007/s00023-021-01039-y
https://doi.org/10.1145/3634737.3637665
https://doi.org/10.1145/3634737.3637665
https://doi.org/10.1109/DSD57027.2022.00072

8. Bibliography

Symposium on Information Theory (ISIT). 2024, pp. 2963–2968. doi:
10.1109/ISIT57864.2024.10619150. url: https://doi.org/10.
1109/ISIT57864.2024.10619150.

[12] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair,
Yoshua Bengio, Aaron Courville, and Devon Hjelm. “Mutual Information
Neural Estimation”. In: Proceedings of the 35th International Conference
on Machine Learning. Vol. 80. Stockholmsmässan, Stockholm, Sweden:
Proceedings of Machine Learning Research, July 2018, pp. 531–540.

[13] M. Ben-Bassat and J. Raviv. “Renyi’s Entropy and the Probability of
Error”. In: IEEE Transactions on Information Theory 24.3 (May 1978),
pp. 324–331. issn: 0018-9448. doi: 10.1109/TIT.1978.1055890. url:
https://doi.org/10.1109/TIT.1978.1055890.

[14] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. “Deep Learning for Side-Channel Analysis and Introduction to
ASCAD Database”. In: Journal of Cryptographic Engineering 10.2 (June
2020), pp. 163–188. issn: 2190-8516. doi: 10.1007/s13389-019-00220-
8. url: https://doi.org/10.1007/s13389-019-00220-8.

[15] Anastasija Berlinblau. “Detection of Timing Side Channels: Extending the
AutoSCA Tool”. Bachelor’s Thesis. Bergische Universität Wuppertal, 2021.

[16] Shivam Bhasin, Nicolas Bruneau, Jean-Luc Danger, Sylvain Guilley, and
Zakaria Najm. “Analysis and Improvements of the DPA Contest v4 Implemen-
tation”. In: Security, Privacy, and Applied Cryptography Engineering – 4th
International Conference, SPACE 2014. Ed. by Rajat Subhra Chakraborty,
Vashek Matyas, and Patrick Schaumont. Vol. 8804. Lecture Notes in Com-
puter Science. Cham: Springer International Publishing, 2014, pp. 201–218.
isbn: 978-3-319-12060-7. doi: 10.1007/978-3-319-12060-7_14. url:
https://doi.org/10.1007/978-3-319-12060-7_14.

[17] Bhaskar Bhattacharya and Desale Habtzghi. “Median of the<i>p</i>Value
Under the Alternative Hypothesis”. In: The American Statistician 56.3
(Nov. 2002), pp. 202–206. issn: 0003-1305, 1537-2731. doi: 10.1198/
000313002146.

201

https://doi.org/10.1109/ISIT57864.2024.10619150
https://doi.org/10.1109/ISIT57864.2024.10619150
https://doi.org/10.1109/ISIT57864.2024.10619150
https://doi.org/10.1109/TIT.1978.1055890
https://doi.org/10.1109/TIT.1978.1055890
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/978-3-319-12060-7_14
https://doi.org/10.1007/978-3-319-12060-7_14
https://doi.org/10.1198/000313002146
https://doi.org/10.1198/000313002146

8. Bibliography

[18] Gérard Biau, Luc Devroye, and Gábor Lugosi. “Consistency of Random
Forests and Other Averaging Classifiers”. In: Journal of Machine Learning
Research 9.66 (June 2008), pp. 2015–2033. issn: 1532-4435.

[19] Christopher M. Bishop. Probability Distributions. New York, NY: Springer
New York, NY, 2006. isbn: 978-0387310732. doi: 10.5555/1162264.

[20] Daniel Bleichenbacher. “Chosen Ciphertext Attacks Against Protocols Based
on the RSA Encryption Standard PKCS #1”. In: Advances in Cryptology –
CRYPTO ’98. Ed. by Hugo Krawczyk. Vol. 1462. Lecture Notes in Computer
Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug.
1998, pp. 1–12. isbn: 978-3-540-68462-6. doi: 10.1007/BFb0055716.

[21] Hanno Böck, Juraj Somorovsky, and Craig Young. “Return Of Bleichen-
bacher’s Oracle Threat (ROBOT)”. In: 27th USENIX Security Symposium
(USENIX Security 18). Ed. by William Enck and Adrienne Porter Felt. Bal-
timore, MD, USA: USENIX Association, Aug. 2018, pp. 817–849. isbn:
978-1-939133-05-5. url: https://www.usenix.org/conference/
usenixsecurity18/presentation/boeck.

[22] GLENN W. BRIER. “VERIFICATION OF FORECASTS EXPRESSED IN
TERMS OF PROBABILITY”. In: Monthly Weather Review 78.1 (Jan. 1950),
pp. 1–3. doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.
url: https://journals.ametsoc.org/view/journals/mwre/78/1/
1520-0493_1950_078_0001_vofeit_2_0_co_2.xml.

[23] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. “Convolutional Neural
Networks with Data Augmentation Against Jitter-Based Countermeasures -
Profiling Attacks Without Pre-processing”. In: Cryptographic Hardware and
Embedded Systems - CHES 2017: 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings. Ed. by Wieland Fischer and
Naofumi Homma. Vol. 10529. Lecture Notes in Computer Science. Springer
International Publishing. Berlin, Heidelberg: Springer, Sept. 2017, pp. 45–68.
isbn: 978-3-319-66787-4. doi: 10.1007/978-3-319-66787-4_3. url:
https://doi.org/10.1007/978-3-319-66787-4_3.

202

https://doi.org/10.5555/1162264
https://doi.org/10.1007/BFb0055716
https://www.usenix.org/conference/usenixsecurity18/presentation/boeck
https://www.usenix.org/conference/usenixsecurity18/presentation/boeck
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://journals.ametsoc.org/view/journals/mwre/78/1/1520-0493_1950_078_0001_vofeit_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/mwre/78/1/1520-0493_1950_078_0001_vofeit_2_0_co_2.xml
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3

8. Bibliography

[24] Gregory Camilli. “The Relationship between Fisher’s Exact Test and Pear-
son’s Chi-Square Test: A Bayesian Perspective”. In: Psychometrika 60.2
(June 1995), pp. 305–312. issn: 1860-0980. doi: 10.1007/BF02301418.
url: https://doi.org/10.1007/BF02301418.

[25] Lipeng Chang, Yuechuan Wei, Shuiyu He, and Xiaozhong Pan. “Research on
Side-Channel Analysis Based on Deep Learning with Different Sample Data”.
In: Applied Sciences 12.16 (Aug. 2022). issn: 2076-3417. doi: 10.3390/
app12168246. url: https://www.mdpi.com/2076-3417/12/16/8246.

[26] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
“Towards Sound Approaches to Counteract Power-Analysis Attacks”. In: Ad-
vances in Cryptology — CRYPTO ’99. Ed. by Michael J. Wiener. Vol. 1666.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin
Heidelberg, Aug. 1999, pp. 398–412. isbn: 978-3-540-48405-9. doi: 10.
1007/3-540-48405-1_26.

[27] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. “Template Attacks”.
In: Cryptographic Hardware and Embedded Systems - CHES 2002. Ed.
by Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar. Vol. 2523.
Lecture Notes in Computer Science. Redwood Shores, CA, USA: Springer
Berlin Heidelberg, Aug. 2003, pp. 13–28. isbn: 978-3-540-36400-9. doi:
10.1007/3-540-36400-5_3. url: https://doi.org/10.1007/3-540-
36400-5_3.

[28] Konstantinos Chatzikokolakis, Tom Chothia, and Apratim Guha. “Statistical
Measurement of Information Leakage”. In: Tools and Algorithms for the
Construction and Analysis of Systems. Ed. by Javier Esparza and Rupak
Majumdar. Vol. 6015. Lecture Notes in Computer Science. Paphos, Cyprus:
Springer Berlin Heidelberg, 2010, pp. 390–404. isbn: 978-3-642-12002-2.
doi: 10.1007/978-3-642-12002-2_33. url: https://doi.org/10.
1007/978-3-642-12002-2_33.

[29] Boru Chen, Yingchen Wang, Pradyumna Shome, Christopher Fletcher, David
Kohlbrenner, Riccardo Paccagnella, and Daniel Genkin. “GoFetch: Break-
ing Constant-Time Cryptographic Implementations Using Data Memory-

203

https://doi.org/10.1007/BF02301418
https://doi.org/10.1007/BF02301418
https://doi.org/10.3390/app12168246
https://doi.org/10.3390/app12168246
https://www.mdpi.com/2076-3417/12/16/8246
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-642-12002-2_33
https://doi.org/10.1007/978-3-642-12002-2_33
https://doi.org/10.1007/978-3-642-12002-2_33

8. Bibliography

Dependent Prefetchers”. In: 33rd USENIX Security Symposium (USENIX
Security 24). Philadelphia, PA: USENIX Association, Aug. 2024, pp. 1117–
1134. isbn: 978-1-939133-44-1. url: https : / / www . usenix . org /

conference/usenixsecurity24/presentation/chen-boru.

[30] Weiwei Cheng and Eyke Hüllermeier. “Probability Estimation for Multi-class
Classification Based on Label Ranking”. In: Machine Learning and Knowledge
Discovery in Databases. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 83–98. isbn: 978-3-642-33486-3.

[31] Eloi de Chérisey, Sylvain Guilley, Olivier Rioul, and Pablo Piantanida. “Best
Information is Most Successful: Mutual Information and Success Rate in
Side-Channel Analysis”. In: IACR Transactions on Cryptographic Hardware
and Embedded Systems 2019.2 (Feb. 2019), pp. 49–79. issn: 2569-2925.
doi: 10.13154/tches.v2019.i2.49-79. url: https://tches.iacr.
org/index.php/TCHES/article/view/7385.

[32] Davide Chicco, Niklas Tötsch, and Giuseppe Jurman. “The Matthews
correlation coefficient (MCC) is more reliable than balanced accuracy, book-
maker informedness, and markedness in two-class confusion matrix evalua-
tion”. In: BioData Mining 14.1 (Feb. 2021), p. 13. issn: 1756-0381. doi:
10.1186/s13040-021-00244-z.

[33] Francois Chollet et al. Keras. 2015. url: https://github.com/fchollet/
keras.

[34] Tom Chothia and Apratim Guha. “A Statistical Test for Information Leaks
Using Continuous Mutual Information”. In: 2011 IEEE 24th Computer
Security Foundations Symposium. 2011, pp. 177–190. doi: 10.1109/CSF.
2011.19.

[35] Aakash Chowdhury, Carlo Brunetta, Arnab Roy, and Elisabeth Oswald. Leak-
age Certification Made Simple. Cryptology ePrint Archive, Paper 2022/1201.
2022. url: https://eprint.iacr.org/2022/1201.

[36] Wikipedia contributors. Rényi Entropy. 2023. url: https://en.wikipedia.
org/wiki/R%5C’enyi_entropy.

204

https://www.usenix.org/conference/usenixsecurity24/presentation/chen-boru
https://www.usenix.org/conference/usenixsecurity24/presentation/chen-boru
https://doi.org/10.13154/tches.v2019.i2.49-79
https://tches.iacr.org/index.php/TCHES/article/view/7385
https://tches.iacr.org/index.php/TCHES/article/view/7385
https://doi.org/10.1186/s13040-021-00244-z
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1109/CSF.2011.19
https://doi.org/10.1109/CSF.2011.19
https://eprint.iacr.org/2022/1201
https://en.wikipedia.org/wiki/R%5C'enyi_entropy
https://en.wikipedia.org/wiki/R%5C'enyi_entropy

8. Bibliography

[37] Jean-Sébastien Coron and Ilya Kizhvatov. “An Efficient Method for Random
Delay Generation in Embedded Software”. In: Cryptographic Hardware and
Embedded Systems – CHES 2009. Ed. by Christophe Clavier and Kris
Gaj. Vol. 5747. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, Sept. 2009, pp. 156–170. isbn: 978-3-642-
04138-9. doi: 10 . 1007 / 978 - 3 - 642 - 04138 - 9 _ 12. url: https :

//doi.org/10.1007/978-3-642-04138-9_12.

[38] Thomas M. Cover and Joy A. Thomas. “Entropy, Relative Entropy, and
Mutual Information”. In: Elements of Information Theory. Wiley Series in
Telecommunications and Signal Processing. Wiley-Interscience, Sept. 2006,
pp. 13–55. isbn: 9780471748823. doi: 10.1002/047174882X.ch2. url:
https://doi.org/10.1002/047174882X.ch2.

[39] Valence Cristiani, Maxime Lecomte, and Philippe Maurine. “Leakage Assess-
ment Through Neural Estimation of the Mutual Information”. In: Applied
Cryptography and Network Security Workshops. Ed. by Jianying Zhou,
Mauro Conti, Chuadhry Mujeeb Ahmed, Man Ho Au, Lejla Batina, Zhou Li,
Jingqiang Lin, Eleonora Losiouk, Bo Luo, Suryadipta Majumdar, Weizhi
Meng, Martín Ochoa, Stjepan Picek, Georgios Portokalidis, Cong Wang, and
Kehuan Zhang. Lecture Notes in Computer Science. Rome, Italy: Springer
International Publishing, 2020, pp. 144–162. isbn: 978-3-030-61638-0. doi:
10.1007/978-3-030-61638-0_9. url: https://doi.org/10.1007/
978-3-030-61638-0_9.

[40] Valence Cristiani, Maxime Lecomte, and Philippe Maurine. “Revisiting
Mutual Information Analysis: Multidimensionality, Neural Estimation and
Optimality Proofs”. In: Journal of Cryptology 36.4 (Aug. 2023), p. 38.
issn: 1432-1378. doi: 10.1007/s00145-023-09476-0. url: https:
//doi.org/10.1007/s00145-023-09476-0.

[41] G. Cybenko. “Approximation by superpositions of a sigmoidal function”. In:
Mathematics of Control, Signals, and Systems 2.4 (Dec. 1989), pp. 303–314.
issn: 0932-4194, 1435-568X. doi: 10.1007/bf02551274.

205

https://doi.org/10.1007/978-3-642-04138-9_12
https://doi.org/10.1007/978-3-642-04138-9_12
https://doi.org/10.1007/978-3-642-04138-9_12
https://doi.org/10.1002/047174882X.ch2
https://doi.org/10.1002/047174882X.ch2
https://doi.org/10.1007/978-3-030-61638-0_9
https://doi.org/10.1007/978-3-030-61638-0_9
https://doi.org/10.1007/978-3-030-61638-0_9
https://doi.org/10.1007/s00145-023-09476-0
https://doi.org/10.1007/s00145-023-09476-0
https://doi.org/10.1007/s00145-023-09476-0
https://doi.org/10.1007/bf02551274

8. Bibliography

[42] Paweł Czyż, Frederic Grabowski, Julia E. Vogt, Niko Beerenwinkel, and
Alexander Marx. “Beyond Normal: On the Evaluation of Mutual Information
Estimators”. In: Proceedings of the 37th International Conference on Neural
Information Processing Systems 36 (Dec. 2024), pp. 16957–16990. issn:
1049-5258. doi: 10.5555/3666122.3666864. url: https://dl.acm.
org/doi/10.5555/3666122.3666864.

[43] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. 1st ed. Information Security and Cryp-
tography. Copyright Information: Springer-Verlag Berlin Heidelberg 2002.
Berlin, Heidelberg: Springer-Verlag, Feb. 2002, pp. XVII, 238. isbn: 978-
3-540-42580-9. doi: 10.1007/978- 3- 662- 04722- 4. url: https:
//doi.org/10.1007/978-3-662-04722-4.

[44] Daryl J. Daley and David Vere-Jones. “Scoring Probability Forecasts for
Point Processes: The Entropy Score and Information Gain”. In: Journal of
Applied Probability 41.A (Dec. 2004), pp. 297–312. issn: 0021-9002. doi:
10.1239/jap/1082552206.

[45] Jean Paul Degabriele, Anja Lehmann, Kenneth G. Paterson, Nigel P. Smart,
and Mario Strefler. “On the Joint Security of Encryption and Signature in
EMV”. In: Topics in Cryptology – CT-RSA 2012. Ed. by Orr Dunkelman.
Vol. 7178. Lecture Notes in Computer Science. San Francisco, CA, USA:
Springer Berlin Heidelberg, 2012, pp. 116–135. isbn: 978-3-642-27953-9.
doi: 10.1007/978-3-642-27954-6_8. url: https://doi.org/10.
1007/978-3-642-27954-6_8.

[46] Janez Demšar. “Statistical Comparisons of Classifiers over Multiple Data
Sets”. In: Journal of Machine Learning Research 7.1 (2006), pp. 1–30. issn:
1532-4435.

[47] Luc Devroye, László Györfi, and Gábor Lugosi. “The Bayes Error”. In:
A Probabilistic Theory of Pattern Recognition. Vol. 31. New York, NY:
Springer New York, 1996. Chap. 2, pp. 9–20. isbn: 978-1-4612-0711-5.
doi: 10.1007/978-1-4612-0711-5_2. url: https://doi.org/10.
1007/978-1-4612-0711-5_2.

206

https://doi.org/10.5555/3666122.3666864
https://dl.acm.org/doi/10.5555/3666122.3666864
https://dl.acm.org/doi/10.5555/3666122.3666864
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1239/jap/1082552206
https://doi.org/10.1007/978-3-642-27954-6_8
https://doi.org/10.1007/978-3-642-27954-6_8
https://doi.org/10.1007/978-3-642-27954-6_8
https://doi.org/10.1007/978-1-4612-0711-5_2
https://doi.org/10.1007/978-1-4612-0711-5_2
https://doi.org/10.1007/978-1-4612-0711-5_2

8. Bibliography

[48] Pedro Domingos and Michael Pazzani. “On the Optimality of the Simple
Bayesian Classifier under Zero-One Loss”. In: Machine Learning 29.2/3 (Nov.
1997), pp. 103–130. issn: 0885-6125. doi: 10.1023/a:1007413511361.

[49] Jan Peter Drees, Pritha Gupta, Eyke Hüllermeier, Tibor Jager, Alexander
Konze, Claudia Priesterjahn, Arunselvan Ramaswamy, and Juraj Somorovsky.
“Automated Detection of Side Channels in Cryptographic Protocols”. In:
Proceedings of the 14th ACM Workshop on Artificial Intelligence and
Security. Virtual Event, Republic of Korea: Association for Computing
Machinery, Nov. 2021, pp. 169–180. isbn: 9781450386579. doi: 10.1145/
3474369.3486868. url: https://doi.org/10.1145/3474369.3486868.

[50] David Easter. “The impact of ’Tempest’ on Anglo-American communications
security and intelligence, 1943–1970”. In: Intelligence and National Security
36.1 (Jan. 2021), pp. 1–16. doi: 10.1080/02684527.2020.1798604.
url: https://doi.org/10.1080/02684527.2020.1798604.

[51] Emil Eirola, Amaury Lendasse, and Juha Karhunen. “Variable selection for
regression problems using Gaussian mixture models to estimate mutual
information”. In: 2014 International Joint Conference on Neural Networks
(IJCNN). Beijing, China: IEEE, July 2014, pp. 1606–1613. doi: 10.1109/
ijcnn.2014.6889561.

[52] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy,
Mu Li, and Alexander Smola. “AutoGluon-Tabular: Robust and Accurate
AutoML for Structured Data”. In: arXiv preprint arXiv:2003.06505 (2020).

[53] Nick Erickson, Xingjian Shi, James Sharpnack, and Alexander Smola. “Mul-
timodal AutoML for Image, Text and Tabular Data”. In: Proceedings of the
28th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. New York, NY, USA: Association for Computing Machinery,
Aug. 2022, pp. 4786–4787. isbn: 9781450393850. doi: 10.1145/3534678.
3542616.

207

https://doi.org/10.1023/a:1007413511361
https://doi.org/10.1145/3474369.3486868
https://doi.org/10.1145/3474369.3486868
https://doi.org/10.1145/3474369.3486868
https://doi.org/10.1080/02684527.2020.1798604
https://doi.org/10.1080/02684527.2020.1798604
https://doi.org/10.1109/ijcnn.2014.6889561
https://doi.org/10.1109/ijcnn.2014.6889561
https://doi.org/10.1145/3534678.3542616
https://doi.org/10.1145/3534678.3542616

8. Bibliography

[54] Sina Faezi, Rozhin Yasaei, Anomadarshi Barua, and Mohammad Abdullah
Al Faruque. “Brain-Inspired Golden Chip Free Hardware Trojan Detection”.
In: IEEE Transactions on Information Forensics and Security 16 (2021),
pp. 2697–2708. doi: 10.1109/TIFS.2021.3062989. url: https:

//ieeexplore.ieee.org/document/9366548.

[55] Stefan Falkner, Aaron Klein, and Frank Hutter. “BOHB: Robust and Effi-
cient Hyperparameter Optimization at Scale”. In: Proceedings of the 35th
International Conference on Machine Learning (ICML). Ed. by Jennifer Dy
and Andreas Krause. Vol. 80. Proceedings of Machine Learning Research.
Stockholmsmässan, Stockholm, Sweden: Proceedings of Machine Learning
Research, July 2018, pp. 1437–1446. url: http://proceedings.mlr.
press/v80/falkner18a.html.

[56] Robert M Fano. Transmission of Information: A Statistical Theory of Com-
munications. Cambridge, MA: The MIT Press, 1961.

[57] M. Feder and N. Merhav. “Relations between Entropy and Error Probability”.
In: IEEE Transactions on Information Theory 40.1 (Jan. 1994), pp. 259–266.
issn: 0018-9448. doi: 10.1109/18.272494. url: https://doi.org/
10.1109/18.272494.

[58] Dennis Felsch, Martin Grothe, Jörg Schwenk, Adam Czubak, and Marcin
Szymanek. “The Dangers of Key Reuse: Practical Attacks on IPsec IKE”. In:
27th USENIX Security Symposium (USENIX Security 18). Ed. by William
Enck and Adrienne Porter Felt. Baltimore, MD, USA: USENIX Association,
Aug. 2018, pp. 567–583. isbn: 978-1-939133-04-5. url: https://www.
usenix.org/conference/usenixsecurity18/presentation/felsch.

[59] Andrey Feuerverger and Sheikh Rahman. “Some Aspects of Probability
Forecasting”. In: Communications in Statistics - Theory and Methods
21.6 (Jan. 1992), pp. 1615–1632. issn: 0361-0926. doi: 10 . 1080 /

03610929208830868.

[60] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springen-
berg, Manuel Blum, and Frank Hutter. “Auto-sklearn: Efficient and Robust
Automated Machine Learning”. In: Automated Machine Learning: Meth-

208

https://doi.org/10.1109/TIFS.2021.3062989
https://ieeexplore.ieee.org/document/9366548
https://ieeexplore.ieee.org/document/9366548
http://proceedings.mlr.press/v80/falkner18a.html
http://proceedings.mlr.press/v80/falkner18a.html
https://doi.org/10.1109/18.272494
https://doi.org/10.1109/18.272494
https://doi.org/10.1109/18.272494
https://www.usenix.org/conference/usenixsecurity18/presentation/felsch
https://www.usenix.org/conference/usenixsecurity18/presentation/felsch
https://doi.org/10.1080/03610929208830868
https://doi.org/10.1080/03610929208830868

8. Bibliography

ods, Systems, Challenges. Ed. by Frank Hutter, Lars Kotthoff, and Joaquin
Vanschoren. Vol. 2520. Lecture Notes in Computer Science. Print ISBN:
978-3-030-05317-8. Cham: Springer International Publishing, 2019, pp. 113–
134. isbn: 978-3-030-05318-5. doi: 10.1007/978-3-030-05318-5_6.
url: https://doi.org/10.1007/978-3-030-05318-5_6.

[61] Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. “Initializing
Bayesian Hyperparameter Optimization via Meta-Learning”. In: Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence. AAAI’15.
Austin, Texas, USA: AAAI Press, 2015, pp. 1128–1135. isbn: 0262511290.
doi: 10.1609/aaai.v29i1.9354. url: https://doi.org/10.1609/
aaai.v29i1.9354.

[62] Matthias Feurer, Jan N. Van Rijn, Arlind Kadra, Pieter Gijsbers, Neeratyoy
Mallik, Sahithya Ravi, Andreas Müller, Joaquin Vanschoren, and Frank
Hutter. “OpenML-Python: An Extensible Python API for OpenML”. In:
Journal of Machine Learning Research 22.1 (Jan. 2021). issn: 1532-4435.

[63] Telmo Silva Filho, Hao Song, Miquel Perello-Nieto, Raul Santos-Rodriguez,
Meelis Kull, and Peter Flach. “Classifier Calibration: A Survey on How to
Assess and Improve Predicted Class Probabilities”. In: Machine Learning
112.9 (Sept. 2023), pp. 3211–3260. issn: 1573-0565. doi: 10.1007/
s10994-023-06336-7. url: https://doi.org/10.1007/s10994-023-
06336-7.

[64] R. A. Fisher. “On the Interpretation of 𝜒 2 from Contingency Tables, and
the Calculation of P”. In: Journal of the Royal Statistical Society 85.1 (Jan.
1922), p. 87. issn: 0952-8385. doi: 10.2307/2340521.

[65] Peter I. Frazier. “Optimization via Simulation with Bayesian Statistics and
Dynamic Programming”. In: Proceedings of the 2012 Winter Simulation
Conference (WSC). Ed. by Oliver Rose and Adelinde M. Uhrmacher. Winter
Simulation Conference. Berlin, Germany: IEEE, Dec. 2012, pp. 1–16. doi:
10.1109/WSC.2012.6465237. url: https://doi.org/10.1109/WSC.
2012.6465237.

209

https://doi.org/10.1007/978-3-030-05318-5_6
https://doi.org/10.1007/978-3-030-05318-5_6
https://doi.org/10.1609/aaai.v29i1.9354
https://doi.org/10.1609/aaai.v29i1.9354
https://doi.org/10.1609/aaai.v29i1.9354
https://doi.org/10.1007/s10994-023-06336-7
https://doi.org/10.1007/s10994-023-06336-7
https://doi.org/10.1007/s10994-023-06336-7
https://doi.org/10.1007/s10994-023-06336-7
https://doi.org/10.2307/2340521
https://doi.org/10.1109/WSC.2012.6465237
https://doi.org/10.1109/WSC.2012.6465237
https://doi.org/10.1109/WSC.2012.6465237

8. Bibliography

[66] Luca Frittoli, Matteo Bocchi, Silvia Mella, Diego Carrera, Beatrice Rossi,
Pasqualina Fragneto, Ruggero Susella, and Giacomo Boracchi. “Strengthen-
ing Sequential Side-Channel Attacks Through Change Detection”. In: IACR
Transactions on Cryptographic Hardware and Embedded Systems 2020.3
(June 2020), pp. 1–21. doi: 10.13154/tches.v2020.i3.1-21. url:
https://doi.org/10.13154/tches.v2020.i3.1-21.

[67] Guillaume Fumaroli, Ange Martinelli, Emmanuel Prouff, and Matthieu Rivain.
“Affine Masking against Higher-Order Side Channel Analysis”. In: Selected
Areas in Cryptography. Ed. by Alex Biryukov, Guang Gong, and Douglas R.
Stinson. Vol. 6544. Waterloo, Ontario, Canada: Springer Berlin Heidelberg,
Aug. 2011, pp. 262–280. isbn: 978-3-642-19574-7. doi: 10.1007/978-3-
642-19574-7_18.

[68] Dennis Funke. “Pushing the AutoSCA Tool to Picosecond Precision: Im-
proving Timing Side Channel Detection”. Bachelor’s thesis. Sept. 2022. doi:
10.13140/RG.2.2.33070.08005. url: https://doi.org/10.13140/
RG.2.2.33070.08005.

[69] Shuyang Gao, Greg Ver Steeg, and Aram Galstyan. “Efficient Estimation of
Mutual Information for Strongly Dependent Variables”. In: Proceedings of the
Eighteenth International Conference on Artificial Intelligence and Statistics.
Ed. by Guy Lebanon and S. V. N. Vishwanathan. Vol. 38. Proceedings of
Machine Learning Research. San Diego, California, USA: PMLR, May 2015,
pp. 277–286. url: https://proceedings.mlr.press/v38/gao15.html.

[70] Catherine H. Gebotys, Simon Ho, and C. C. Tiu. “EM analysis of rijndael and
ECC on a wireless java-based PDA”. In: Proceedings of the 7th International
Conference on Cryptographic Hardware and Embedded Systems. CHES’05.
Edinburgh, UK: Springer-Verlag, 2005, pp. 250–264. isbn: 3540284745. doi:
10.1007/11545262_19. url: https://doi.org/10.1007/11545262_19.

[71] Pieter Gijsbers, Marcos L. P. Bueno, Stefan Coors, Erin LeDell, Sébastien
Poirier, Janek Thomas, Bernd Bischl, and Joaquin Vanschoren. “AMLB:
an AutoML Benchmark”. In: Journal of Machine Learning Research 25.101
(2024), pp. 1–65.

210

https://doi.org/10.13154/tches.v2020.i3.1-21
https://doi.org/10.13154/tches.v2020.i3.1-21
https://doi.org/10.1007/978-3-642-19574-7_18
https://doi.org/10.1007/978-3-642-19574-7_18
https://doi.org/10.13140/RG.2.2.33070.08005
https://doi.org/10.13140/RG.2.2.33070.08005
https://doi.org/10.13140/RG.2.2.33070.08005
https://proceedings.mlr.press/v38/gao15.html
https://doi.org/10.1007/11545262_19
https://doi.org/10.1007/11545262_19

8. Bibliography

[72] Richard Gilmore, Neil Hanley, and Maire O’Neill. “Neural Network-Based
Attack on a Masked Implementation of AES”. In: 2015 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2015,
pp. 106–111. doi: 10.1109/HST.2015.7140247. url: https://doi.
org/10.1109/HST.2015.7140247.

[73] Tilmann Gneiting and Adrian E. Raftery. “Strictly Proper Scoring Rules,
Prediction, and Estimation”. In: Journal of the American Statistical Associ-
ation 102.477 (Mar. 2007), pp. 359–378. issn: 0162-1459. doi: 10.1198/
016214506000001437.

[74] Aron Gohr and Sven Jacob and Werner Schindler. “CHES 2018 Side Channel
Contest CTF - Solution of the AES Challenges”. In: IACR Cryptology ePrint
Archive (2019), p. 94. url: https://eprint.iacr.org/2019/094.

[75] I. J. Good. “Rational Decisions”. In: Breakthroughs in Statistics: Foundations
and Basic Theory. New York, NY: Springer New York, 1992, pp. 365–377.
isbn: 978-1-4612-0919-5. doi: 10.1007/978-1-4612-0919-5_24.

[76] Google. HTTPS Encryption on the Web. Accessed: 2023-03-22. 2023. url:
https://transparencyreport.google.com/https/overview (visited
on 03/22/2023).

[77] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. “On Calibration
of Modern Neural Networks”. In: Proceedings of the 34th International Con-
ference on Machine Learning , (ICML). Sydney, NSW, Australia: JMLR.org,
2017, pp. 1321–1330.

[78] Qian Guo, Vincent Grosso, and François-Xavier Standaert. “Modeling Soft
Analytical Side-Channel Attacks from a Coding Theory Viewpoint”. In: IACR
Transactions on Cryptographic Hardware and Embedded Systems 2020.3
(June 2020), pp. 1–21. doi: 10.13154/tches.v2020.i3.1-21. url:
https://tches.iacr.org/index.php/TCHES/article/view/8581.

[79] Pritha Gupta, Jan Peter Drees, and Eyke Hüllermeier. “Automated Side-
Channel Attacks using Black-Box Neural Architecture Search”. In: Proceed-
ings of the 18th International Conference on Availability, Reliability and

211

https://doi.org/10.1109/HST.2015.7140247
https://doi.org/10.1109/HST.2015.7140247
https://doi.org/10.1109/HST.2015.7140247
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1198/016214506000001437
https://eprint.iacr.org/2019/094
https://doi.org/10.1007/978-1-4612-0919-5_24
https://transparencyreport.google.com/https/overview
https://doi.org/10.13154/tches.v2020.i3.1-21
https://tches.iacr.org/index.php/TCHES/article/view/8581

8. Bibliography

Security. ARES ’23. Benevento, Italy: Association for Computing Machinery,
2023. isbn: 9798400707728. doi: 10.1145/3600160.3600161. url:
https://doi.org/10.1145/3600160.3600161.

[80] Pritha Gupta, Arunselvan Ramaswamy, Jan Drees, Eyke Hüllermeier, Claudia
Priesterjahn, and Tibor Jager. “Automated Information Leakage Detection:
A New Method Combining Machine Learning and Hypothesis Testing with
an Application to Side-channel Detection in Cryptographic Protocols”. In:
Proceedings of the 14th International Conference on Agents and Artificial
Intelligence. INSTICC. Virtual Event: SCITEPRESS - Science and Tech-
nology Publications, 2022, pp. 152–163. isbn: 978-989-758-547-0. doi:
10.5220/0010793000003116.

[81] Pritha Gupta, Marcel Wever, and Eyke Hüllermeier. “Information Leakage
Detection through Approximate Bayes-optimal Prediction”. In: arXiv preprint
arXiv:2401.14283 (2024).

[82] Jiaji He, Yiqiang Zhao, Xiaolong Guo, and Yier Jin. “Hardware Trojan
Detection Through Chip-Free Electromagnetic Side-Channel Statistical
Analysis”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 25 (2017), pp. 2939–2948. doi: 10.1109/TVLSI.2017.2727985.
url: https://ieeexplore.ieee.org/document/7994702.

[83] Malcolm Heath. Scanning for CVE-2017-9841 Drops Precipitously. 2024.
url: https://www.f5.com/labs/articles/threat-intelligence/
sensor-intel-series-top-cves-july-2024 (visited on 11/07/2024).

[84] Malcolm Heath and David Warburton. 2024 DDoS Attack Trends. 2024. url:
https://www.f5.com/labs/articles/threat-intelligence/2024-

ddos-attack-trends (visited on 11/07/2024).

[85] M. Hellman and J. Raviv. “Probability of error, equivocation, and the
Chernoff bound”. In: IEEE Transactions on Information Theory 16.4 (July
1970), pp. 368–372. issn: 0018-9448. doi: 10.1109/tit.1970.1054466.

212

https://doi.org/10.1145/3600160.3600161
https://doi.org/10.1145/3600160.3600161
https://doi.org/10.5220/0010793000003116
https://doi.org/10.1109/TVLSI.2017.2727985
https://ieeexplore.ieee.org/document/7994702
https://www.f5.com/labs/articles/threat-intelligence/sensor-intel-series-top-cves-july-2024
https://www.f5.com/labs/articles/threat-intelligence/sensor-intel-series-top-cves-july-2024
https://www.f5.com/labs/articles/threat-intelligence/2024-ddos-attack-trends
https://www.f5.com/labs/articles/threat-intelligence/2024-ddos-attack-trends
https://doi.org/10.1109/tit.1970.1054466

8. Bibliography

[86] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. “Applications of
Machine Learning Techniques in Side-Channel Attacks: A Survey”. In: Journal
of Cryptographic Engineering 10.2 (June 2020), pp. 135–162. issn: 2190-
8516. doi: 10.1007/s13389-019-00212-8. url: https://doi.org/
10.1007/s13389-019-00212-8.

[87] Benjamin Hettwer, Tobias Horn, Stefan Gehrer, and Tim Güneysu. “Encoding
Power Traces as Images for Efficient Side-Channel Analysis”. In: 2020 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST).
San Jose, CA, USA: IEEE, 2020, pp. 46–56. doi: 10.1109/HOST45689.
2020.9300289. url: https://doi.org/10.1109/HOST45689.2020.
9300289.

[88] Annelie Heuser, Stjepan Picek, Sylvain Guilley, and Nele Mentens. “Lightweight
Ciphers and Their Side-Channel Resilience”. In: IEEE Transactions on Com-
puters 69.10 (2020), pp. 1434–1448. doi: 10.1109/TC.2017.2757921.
url: https://doi.org/10.1109/TC.2017.2757921.

[89] Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter.
“TabPFN: A Transformer That Solves Small Tabular Classification Prob-
lems in a Second”. In: The Eleventh International Conference on Learning
Representations. 2023. url: https://openreview.net/forum?id=
cp5PvcI6w8_.

[90] Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar,
Max Körfer, Shi Bin Hoo, Robin Tibor Schirrmeister, and Frank Hutter.
“Accurate predictions on small data with a tabular foundation model”. In:
Nature 637.8045 (Jan. 2025), pp. 319–326. issn: 1476-4687. doi: 10.
1038/s41586-024-08328-6. url: https://doi.org/10.1038/s41586-
024-08328-6.

[91] Sture Holm. “A Simple Sequentially Rejective Multiple Test Procedure”. In:
Scandinavian Journal of Statistics 6.2 (1979), pp. 65–70.

213

https://doi.org/10.1007/s13389-019-00212-8
https://doi.org/10.1007/s13389-019-00212-8
https://doi.org/10.1007/s13389-019-00212-8
https://doi.org/10.1109/HOST45689.2020.9300289
https://doi.org/10.1109/HOST45689.2020.9300289
https://doi.org/10.1109/HOST45689.2020.9300289
https://doi.org/10.1109/HOST45689.2020.9300289
https://doi.org/10.1109/TC.2017.2757921
https://doi.org/10.1109/TC.2017.2757921
https://openreview.net/forum?id=cp5PvcI6w8_
https://openreview.net/forum?id=cp5PvcI6w8_
https://doi.org/10.1038/s41586-024-08328-6
https://doi.org/10.1038/s41586-024-08328-6
https://doi.org/10.1038/s41586-024-08328-6
https://doi.org/10.1038/s41586-024-08328-6

8. Bibliography

[92] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede,
and Joos Vandewalle. “Machine learning in side-channel analysis: a first
study”. In: Journal of Cryptographic Engineering 1.4 (Dec. 2011), pp. 293–
302. issn: 2190-8516. doi: 10.1007/s13389-011-0023-x. url: https:
//doi.org/10.1007/s13389-011-0023-x.

[93] Jeremy Howard and Sylvain Gugger. “Fastai: A Layered API for Deep
Learning”. In: Information 11.2 (2020). issn: 2078-2489. doi: 10.3390/
info11020108.

[94] G. Hughes. “On the mean accuracy of statistical pattern recognizers”. In:
IEEE Transactions on Information Theory 14.1 (Jan. 1968), pp. 55–63.
issn: 0018-9448. doi: 10.1109/tit.1968.1054102.

[95] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. In: Proceedings
of the 32nd International Conference on Machine Learning (ICML). Ed.
by Francis R. Bach and David M. Blei. Vol. 37. JMLR Workshop and
Conference Proceedings. Lille, France: JMLR.org, 2015, pp. 448–456. url:
http://proceedings.mlr.press/v37/ioffe15.html.

[96] Tibor Jager, Sebastian Schinzel, and Juraj Somorovsky. “Bleichenbacher’s
Attack Strikes again: Breaking PKCS#1 v1.5 in XML Encryption”. In:
Computer Security – ESORICS 2012. Ed. by Sara Foresti, Moti Yung, and
Fabio Martinelli. Vol. 7459. Lecture Notes in Computer Science. Pisa, Italy:
Springer Berlin Heidelberg, 2012, pp. 752–769. isbn: 978-3-642-33167-1.
doi: 10.1007/978-3-642-33167-1_43.

[97] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. “On the Security of
TLS 1.3 and QUIC Against Weaknesses in PKCS#1 v1.5 Encryption”.
In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. CCS ’15. Denver, Colorado, USA: Association
for Computing Machinery, 2015, pp. 1185–1196. isbn: 9781450338325.
doi: 10.1145/2810103.2813657. url: https://doi.org/10.1145/
2810103.2813657.

214

https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.3390/info11020108
https://doi.org/10.3390/info11020108
https://doi.org/10.1109/tit.1968.1054102
http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1007/978-3-642-33167-1_43
https://doi.org/10.1145/2810103.2813657
https://doi.org/10.1145/2810103.2813657
https://doi.org/10.1145/2810103.2813657

8. Bibliography

[98] David Jensen. “Data Snooping, Dredging and Fishing: The Dark Side of Data
Mining - A SIGKDD99 Panel Report”. In: SIGKDD Explorations Newsletter
1.2 (Jan. 2000), pp. 52–54. issn: 1931-0145. doi: 10.1145/846183.
846195. url: https://doi.org/10.1145/846183.846195.

[99] Haifeng Jin. “Efficient Neural Architecture Search for Automated Deep
Learning”. AAI29241617. PhD thesis. Texas, USA: Texas A&M University,
2021. isbn: 9798438744504. url: https://oaktrust.library.tamu.
edu/bitstream/handle/1969.1/193093/JIN-DISSERTATION-2021.

pdf.

[100] Haifeng Jin, Qingquan Song, and Xia Hu. “Auto-Keras: An Efficient Neural
Architecture Search System”. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. KDD ’19.
Anchorage, AK, USA: Association for Computing Machinery, Aug. 2019,
pp. 1946–1956. isbn: 9781450362016. doi: 10.1145/3292500.3330648.
url: https://doi.org/10.1145/3292500.3330648.

[101] Kirthevasan Kandasamy, Akshay Krishnamurthy, Barnabýs Póczos, Larry
Wasserman, and James M. Robins. “Nonparametric von Mises Estimators
for Entropies, Divergences and Mutual Informations”. In: Proceedings of the
28th International Conference on Neural Information Processing Systems
- Volume 1. Montreal, Canada: Neural Information Processing Systems
Foundation, Inc., 2015, pp. 397–405.

[102] Hubert Kario. “Everlasting ROBOT: The Marvin Attack”. In: Computer
Security – ESORICS 2023: 28th European Symposium on Research in
Computer Security, The Hague, The Netherlands, September 25–29, 2023,
Proceedings, Part III. Ed. by Gene Tsudik, Mauro Conti, Kaitai Liang, and
Georgios Smaragdakis. Vol. 14137. Lecture Notes in Computer Science. The
Hague, The Netherlands: Springer Nature Switzerland, 2024, pp. 243–262.
isbn: 978-3-031-51478-4. doi: 10.1007/978-3-031-51479-1_13. url:
https://doi.org/10.1007/978-3-031-51479-1_13.

215

https://doi.org/10.1145/846183.846195
https://doi.org/10.1145/846183.846195
https://doi.org/10.1145/846183.846195
https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/193093/JIN-DISSERTATION-2021.pdf
https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/193093/JIN-DISSERTATION-2021.pdf
https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/193093/JIN-DISSERTATION-2021.pdf
https://doi.org/10.1145/3292500.3330648
https://doi.org/10.1145/3292500.3330648
https://doi.org/10.1007/978-3-031-51479-1_13
https://doi.org/10.1007/978-3-031-51479-1_13

8. Bibliography

[103] Priyank Kashyap, Furkan Aydin, Seetal Potluri, Paul D. Franzon, and
Aydin Aysu. “2Deep: Enhancing Side-Channel Attacks on Lattice-Based
Key-Exchange via 2-D Deep Learning”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 40.6 (June 2021), pp. 1217–
1229. issn: 0278-0070. doi: 10.1109/TCAD.2020.3038701. url: https:
//doi.org/10.1109/TCAD.2020.3038701.

[104] Evgnosia-Alexandra Kelesidis. “An Optimization of Bleichenbacher’s Oracle
Padding Attack”. In: Innovative Security Solutions for Information Technol-
ogy and Communications, 14th International Conference, SecITC 2021. Ed.
by Peter Y. A. Ryan and Cristian Toma. Vol. 13195. Lecture Notes in Com-
puter Science. Cham: Springer International Publishing, Nov. 2021, pp. 145–
155. isbn: 978-3-031-17510-7. doi: 10.1007/978-3-031-17510-7_10.
url: https://doi.org/10.1007/978-3-031-17510-7_10.

[105] John Kelsey. “Compression and Information Leakage of Plaintext”. In: Fast
Software Encryption. Ed. by Joan Daemen and Vincent Rijmen. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002, pp. 263–276. isbn: 978-3-
540-45661-2.

[106] Eike Kiltz, Adam O’Neill, and Adam Smith. “Instantiability of RSA-OAEP
under Chosen-Plaintext Attack”. In: Journal of Cryptology 30.3 (July 2017),
pp. 889–919. issn: 0933-2790. doi: 10.1007/s00145-016-9238-4. url:
https://doi.org/10.1007/s00145-016-9238-4.

[107] Vlastimil Klíma, Ondrej Pokorný, and Tomáš Rosa. “Attacking RSA-Based
Sessions in SSL/TLS”. In: Cryptographic Hardware and Embedded Systems
– CHES 2003. Ed. by Colin D. Walter, Çetin Kaya Koç, and Christof Paar.
Vol. 2779. Lecture Notes in Computer Science. Cologne, Germany: Springer,
Heidelberg, Germany, 2003, pp. 426–440. isbn: 978-3-540-45238-6. doi:
10.1007/978-3-540-45238-6_33.

[108] Vlastimil Klíma and Tomáš Rosa. “Further Results and Considerations
on Side Channel Attacks on RSA”. In: Cryptographic Hardware and Em-
bedded Systems – CHES 2002. Ed. by Burton S. Kaliski, Çetin Kaya
Koç, and Christof Paar. Vol. 2523. Lecture Notes in Computer Science.

216

https://doi.org/10.1109/TCAD.2020.3038701
https://doi.org/10.1109/TCAD.2020.3038701
https://doi.org/10.1109/TCAD.2020.3038701
https://doi.org/10.1007/978-3-031-17510-7_10
https://doi.org/10.1007/978-3-031-17510-7_10
https://doi.org/10.1007/s00145-016-9238-4
https://doi.org/10.1007/s00145-016-9238-4
https://doi.org/10.1007/978-3-540-45238-6_33

8. Bibliography

Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 244–259. isbn:
978-3-540-36400-9. doi: 10.1007/3-540-36400-5_19. url: https:
//doi.org/10.1007/3-540-36400-5_19.

[109] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power Analy-
sis”. In: Advances in Cryptology — CRYPTO ’99, 19th Annual International
Cryptology Conference. Ed. by Michael J. Wiener. Vol. 1666. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, Aug.
1999, pp. 388–397. isbn: 978-3-540-48405-9. doi: 10.1007/3-540-
48405-1_25. url: https://doi.org/10.1007/3-540-48405-1_25.

[110] Oluwasanmi Koyejo, Pradeep Ravikumar, Natara01 Nagarajan, and Inderjit
S. Dhillon. “Consistent Multilabel Classification”. In: Proceedings of the
28th International Conference on Neural Information Processing Systems
- Volume 2. Montreal, Canada: MIT Press, 2015, pp. 3321–3329. doi:
10.5555/2969442.2969610.

[111] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. “Estimating
mutual information”. In: Physics Review E 69 (6 June 2004), p. 066138.
doi: 10.1103/PhysRevE.69.066138. url: https://link.aps.org/
doi/10.1103/PhysRevE.69.066138.

[112] Meelis Kull, Telmo Silva Filho, and Peter Flach. “Beta calibration: a well-
founded and easily implemented improvement on logistic calibration for
binary classifiers”. In: Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics. Vol. 54. Proceedings of Machine
Learning Research, Apr. 2017, pp. 623–631.

[113] Fabian Küppers, Jan Kronenberger, Amirhossein Shantia, and Anselm Hasel-
hoff. “Multivariate Confidence Calibration for Object Detection”. In: The
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops. Los Alamitos, CA, USA: IEEE, June 2020, pp. 1322–1330. doi:
10.1109/cvprw50498.2020.00171.

[114] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. “A Machine
Learning Approach Against a Masked AES — Reaching the Limit of Side-
Channel Attacks with a Learning Model”. In: Journal of Cryptographic

217

https://doi.org/10.1007/3-540-36400-5_19
https://doi.org/10.1007/3-540-36400-5_19
https://doi.org/10.1007/3-540-36400-5_19
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.5555/2969442.2969610
https://doi.org/10.1103/PhysRevE.69.066138
https://link.aps.org/doi/10.1103/PhysRevE.69.066138
https://link.aps.org/doi/10.1103/PhysRevE.69.066138
https://doi.org/10.1109/cvprw50498.2020.00171

8. Bibliography

Engineering 5.2 (June 2015), pp. 123–139. issn: 2190-8516. doi: 10.
1007/s13389-014-0089-3. url: https://doi.org/10.1007/s13389-
014-0089-3.

[115] Liran Lerman, Romain Poussier, Olivier Markowitch, and François-Xavier
Standaert. “Template Attacks versus Machine Learning Revisited and the
Curse of Dimensionality in Side-Channel Analysis: Extended Version”. In:
Journal of Cryptographic Engineering 8.4 (Nov. 2018), pp. 301–313. issn:
2190-8516. doi: 10.1007/s13389-017-0162-9. url: https://doi.
org/10.1007/s13389-017-0162-9.

[116] Liam Li, Kevin G. Jamieson, Afshin Rostamizadeh, Ekaterina Gonina,
Jonathan Ben-tzur, Moritz Hardt, Benjamin Recht, and Ameet Talwalkar.
“A System for Massively Parallel Hyperparameter Tuning”. In: Proceed-
ings of Machine Learning and Systems 2020 (MLSys 2020). Ed. by In-
derjit S. Dhillon, Dimitris S. Papailiopoulos, and Vivienne Sze. Vol. 2.
Austin, TX, USA: mlsys.org, Mar. 2020, pp. 230–246. url: https :

/ / proceedings . mlsys . org / paper _ files / paper / 2020 / file /

a06f20b349c6cf09a6b171c71b88bbfc-Paper.pdf.

[117] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. “Hyperband: A Novel Bandit-Based Approach to Hyperparameter
Optimization”. In: Journal of Machine Learning Research 18.185 (Jan. 2018),
pp. 1–52. issn: 1532-4435. url: http://jmlr.org/papers/v18/16-
558.html.

[118] Victor Lomné, Emmanuel Prouff, Matthieu Rivain, Thomas Roche, and
Adrian Thillard. “How to Estimate the Success Rate of Higher-Order Side-
Channel Attacks”. In: Cryptographic Hardware and Embedded Systems –
CHES 2014. Ed. by Lejla Batina and Matthew Robshaw. Vol. 8731. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 35–54. isbn: 978-3-662-44709-3. doi: 10.1007/978-3-662-
44709-3_3. url: https://doi.org/10.1007/978-3-662-44709-3_3.

218

https://doi.org/10.1007/s13389-014-0089-3
https://doi.org/10.1007/s13389-014-0089-3
https://doi.org/10.1007/s13389-014-0089-3
https://doi.org/10.1007/s13389-014-0089-3
https://doi.org/10.1007/s13389-017-0162-9
https://doi.org/10.1007/s13389-017-0162-9
https://doi.org/10.1007/s13389-017-0162-9
https://proceedings.mlsys.org/paper_files/paper/2020/file/a06f20b349c6cf09a6b171c71b88bbfc-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/a06f20b349c6cf09a6b171c71b88bbfc-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/a06f20b349c6cf09a6b171c71b88bbfc-Paper.pdf
http://jmlr.org/papers/v18/16-558.html
http://jmlr.org/papers/v18/16-558.html
https://doi.org/10.1007/978-3-662-44709-3_3
https://doi.org/10.1007/978-3-662-44709-3_3
https://doi.org/10.1007/978-3-662-44709-3_3

8. Bibliography

[119] Lukas Maar, Stefan Gast, Martin Unterguggenberger, Mathias Oberhu-
ber, and Stefan Mangard. “SLUBStick: Arbitrary Memory Writes through
Practical Software Cross-Cache Attacks within the Linux Kernel”. In: 33rd
USENIX Security Symposium (USENIX Security 24). Philadelphia, PA:
USENIX Association, Aug. 2024, pp. 4051–4068. isbn: 978-1-939133-44-1.
url: https://www.usenix.org/conference/usenixsecurity24/
presentation/maar-slubstick.

[120] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. “Break-
ing Cryptographic Implementations Using Deep Learning Techniques”. In:
Security, Privacy, and Applied Cryptography Engineering. Ed. by Claude
Carlet, M. Anwar Hasan, and Vishal Saraswat. Cham: Springer International
Publishing, 2016, pp. 3–26. doi: 10.1007/978-3-319-49445-6_1.

[121] Felipe Maia Polo and Renato Vicente. “Effective sample size, dimensionality,
and generalization in covariate shift adaptation”. In: Neural Computing
and Applications 35.25 (Jan. 2022), pp. 18187–18199. issn: 0941-0643,
1433-3058. doi: 10.1007/s00521-021-06615-1.

[122] James Manger. “A Chosen Ciphertext Attack on RSA Optimal Asym-
metric Encryption Padding (OAEP) as Standardized in PKCS #1 v2.0”.
In: Advances in Cryptology — CRYPTO 2001: 21st Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19–23, 2001,
Proceedings. Ed. by Joe Kilian. Vol. 2139. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 230–238.
isbn: 978-3-540-44647-7. doi: 10.1007/3-540-44647-8_14. url:
https://doi.org/10.1007/3-540-44647-8_14.

[123] J. L. Massey. “Guessing and Entropy”. In: Proceedings of 1994 IEEE Inter-
national Symposium on Information Theory. 1994, p. 204. doi: 10.1109/
ISIT.1994.394764. url: https://doi.org/10.1109/ISIT.1994.
394764.

219

https://www.usenix.org/conference/usenixsecurity24/presentation/maar-slubstick
https://www.usenix.org/conference/usenixsecurity24/presentation/maar-slubstick
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/s00521-021-06615-1
https://doi.org/10.1007/3-540-44647-8_14
https://doi.org/10.1007/3-540-44647-8_14
https://doi.org/10.1109/ISIT.1994.394764
https://doi.org/10.1109/ISIT.1994.394764
https://doi.org/10.1109/ISIT.1994.394764
https://doi.org/10.1109/ISIT.1994.394764

8. Bibliography

[124] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. “A Comprehensive
Study of Deep Learning for Side-Channel Analysis”. In: IACR Transactions
on Cryptographic Hardware and Embedded Systems 2020.1 (Nov. 2019),
pp. 348–375. issn: 2569-2925. doi: 10.13154/tches.v2020.i1.348-375.
url: https://doi.org/10.13154/tches.v2020.i1.348-375.

[125] R. J. McEliece and Z. Yu. “An Inequality on Entropy”. In: Proceedings of
1995 IEEE International Symposium on Information Theory. 1995, p. 329.
doi: 10.1109/ISIT.1995.550316. url: https://doi.org/10.1109/
ISIT.1995.550316.

[126] Vitalik Melnikov, Eyke Hüllermeier, Daniel Kaimann, Bernd Frick, and Pritha
Gupta. “Pairwise versus Pointwise Ranking: A Case Study”. In: Schedae
Informaticae (2016), pp. 73–83. doi: 10.4467/20838476SI.16.006.6187.

[127] Robert Merget, Marcus Brinkmann, Nimrod Aviram, Juraj Somorovsky, Jo-
hannes Mittmann, and Jörg Schwenk. “Raccoon Attack: Finding and Exploit-
ing Most-Significant-Bit-Oracles in TLS-DH(E)”. In: 30th USENIX Security
Symposium (USENIX Security 21). Baltimore, MD, USA: USENIX Asso-
ciation, Aug. 2021, pp. 213–230. isbn: 978-1-939133-24-3. url: https:
//www.usenix.org/conference/usenixsecurity21/presentation/

merget.

[128] Robert Merget, Juraj Somorovsky, Nimrod Aviram, Craig Young, Janis
Fliegenschmidt, Jörg Schwenk, and Yuval Shavitt. “Scalable Scanning
and Automatic Classification of TLS Padding Oracle Vulnerabilities”. In:
28th USENIX Security Symposium (USENIX Security 19). SEC’19. Santa
Clara, CA, USA: USENIX Association, Aug. 2019, pp. 1029–1046. isbn:
978-1-939133-06-9. url: https://www.usenix.org/conference/
usenixsecurity19/presentation/merget.

[129] Thomas S. Messerges. “Using Second-Order Power Analysis to Attack DPA
Resistant Software”. In: Cryptographic Hardware and Embedded Systems —
CHES 2000. Ed. by Çetin Kaya Koç and Christof Paar. Vol. 1965. Lecture

220

https://doi.org/10.13154/tches.v2020.i1.348-375
https://doi.org/10.13154/tches.v2020.i1.348-375
https://doi.org/10.1109/ISIT.1995.550316
https://doi.org/10.1109/ISIT.1995.550316
https://doi.org/10.1109/ISIT.1995.550316
https://doi.org/10.4467/20838476SI.16.006.6187
https://www.usenix.org/conference/usenixsecurity21/presentation/merget
https://www.usenix.org/conference/usenixsecurity21/presentation/merget
https://www.usenix.org/conference/usenixsecurity21/presentation/merget
https://www.usenix.org/conference/usenixsecurity19/presentation/merget
https://www.usenix.org/conference/usenixsecurity19/presentation/merget

8. Bibliography

Notes in Computer Science. Worcester, Massachusetts, USA: Springer
Berlin Heidelberg, Aug. 2000, pp. 238–251. isbn: 978-3-540-44499-2. doi:
10.1007/3-540-44499-8_19.

[130] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg Schwenk, Se-
bastian Schinzel, and Erik Tews. “Revisiting SSL/TLS Implementations:
New Bleichenbacher Side Channels and Attacks”. In: 23rd USENIX Security
Symposium (USENIX Security 14). Ed. by Kevin Fu and Jaeyeon Jung.
San Diego, CA, USA: USENIX Association, Aug. 2014, pp. 733–748. isbn:
978-1-931971-15-7. url: https://www.usenix.org/system/files/
conference/usenixsecurity14/sec14-paper-meyer.pdf.

[131] Yan Michalevsky, Dan Boneh, and Gabi Nakibly. “Gyrophone: Recogniz-
ing Speech from Gyroscope Signals”. In: 23rd USENIX Security Sympo-
sium (USENIX Security 14). San Diego, CA: USENIX Association, Aug.
2014, pp. 1053–1067. isbn: 978-1-931971-15-7. url: https://www.
usenix.org/conference/usenixsecurity14/technical-sessions/

presentation/michalevsky.

[132] Jan Mielniczuk and Joanna Tyrcha. “Consistency of multilayer perceptron
regression estimators”. In: Neural Networks 6.7 (Jan. 1993), pp. 1019–1022.
issn: 0893-6080. doi: 10.1016/s0893-6080(09)80011-7.

[133] Felix Mohr, Marcel Wever, and Eyke Hüllermeier. “ML-Plan: Automated
Machine Learning via Hierarchical Planning”. In: Machine Learning 107.8-10
(Sept. 2018), pp. 1495–1515. issn: 0885-6125, 1573-0565. doi: 10.1007/
s10994-018-5735-z. url: https://doi.org/10.1007/s10994-018-
5735-z.

[134] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This POODLE Bites:
Exploiting The SSL 3.0 Fallback. 2014. url: https://www.openssl.org/
~bodo/ssl-poodle.pdf.

[135] Kevin R. Moon, Kumar Sricharan, and Alfred O. Hero. “Ensemble Estimation
of Generalized Mutual Information With Applications to Genomics”. In:
IEEE Transactions on Information Theory 67.9 (2021), pp. 5963–5996. doi:
10.1109/TIT.2021.3100108.

221

https://doi.org/10.1007/3-540-44499-8_19
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-meyer.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-meyer.pdf
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/michalevsky
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/michalevsky
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/michalevsky
https://doi.org/10.1016/s0893-6080(09)80011-7
https://doi.org/10.1007/s10994-018-5735-z
https://doi.org/10.1007/s10994-018-5735-z
https://doi.org/10.1007/s10994-018-5735-z
https://doi.org/10.1007/s10994-018-5735-z
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://doi.org/10.1109/TIT.2021.3100108

8. Bibliography

[136] Thorben Moos, Felix Wegener, and Amir Moradi. “DL-LA: Deep Learning
Leakage Assessment: A Modern Roadmap for SCA Evaluations”. In: IACR
Transactions on Cryptographic Hardware and Embedded Systems 2021.3
(July 2021), pp. 552–598. issn: 2569-2925. doi: 10.46586/tches.v2021.
i3.552-598. url: https://doi.org/10.46586/tches.v2021.i3.552-
598.

[137] Maria Mushtaq, Ayaz Akram, Muhammad Khurram Bhatti, Maham Chaudhry,
Vianney Lapotre, and Guy Gogniat. “NIGHTs-WATCH: A Cache-Based Side-
Channel Intrusion Detector Using Hardware Performance Counters”. In:
Proceedings of the 7th International Workshop on Hardware and Archi-
tectural Support for Security and Privacy. Los Angeles, California: Associ-
ation for Computing Machinery, June 2018. isbn: 9781450365000. doi:
10.1145/3214292.3214293.

[138] Claude Nadeau. “Inference for the Generalization Error”. In: Machine Learn-
ing 52.3 (Sept. 2003), pp. 239–281. issn: 0885-6125. doi: 10.1023/a:
1024068626366.

[139] Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore.
“Evaluation of a Tree-based Pipeline Optimization Tool for Automating
Data Science”. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference 2016. Denver, Colorado, USA: Association for Com-
puting Machinery, July 2016, pp. 485–492. isbn: 9781450342063. doi:
10.1145/2908812.2908918.

[140] Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. “Obtaining
Well Calibrated Probabilities Using Bayesian Binning”. In: Proceedings of
the AAAI Conference on Artificial Intelligence 29.1 (Feb. 2015). issn:
2374-3468, 2159-5399. doi: 10.1609/aaai.v29i1.9602.

[141] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, 06jie Bai, and Soumith Chintala. “PyTorch: An Imperative Style,

222

https://doi.org/10.46586/tches.v2021.i3.552-598
https://doi.org/10.46586/tches.v2021.i3.552-598
https://doi.org/10.46586/tches.v2021.i3.552-598
https://doi.org/10.46586/tches.v2021.i3.552-598
https://doi.org/10.1145/3214292.3214293
https://doi.org/10.1023/a:1024068626366
https://doi.org/10.1023/a:1024068626366
https://doi.org/10.1145/2908812.2908918
https://doi.org/10.1609/aaai.v29i1.9602

8. Bibliography

High-Performance Deep Learning Library”. In: Proceedings of the 33rd Inter-
national Conference on Neural Information Processing Systems. Red Hook,
NY, USA: Curran Associates Inc., 2019.

[142] Thomas Perianin, Sebastien Carré, Victor Dyseryn, Adrien Facon, and Sylvain
Guilley. “End-to-end automated cache-timing attack driven by machine learn-
ing”. In: Journal of Cryptographic Engineering 11.2 (June 2020), pp. 135–
146. issn: 2190-8508, 2190-8516. doi: 10.1007/s13389-020-00228-5.

[143] Guilherme Perin, Łukasz Chmielewski, and Stjepan Picek. “Strength in
Numbers: Improving Generalization with Ensembles in Machine Learning-
Based Profiled SCA”. In: IACR Transactions on Cryptographic Hardware
and Embedded Systems 2020.4 (Aug. 2020), pp. 337–364. issn: 2569-2925.
doi: 10.13154/tches.v2020.i4.337-364. url: https://doi.org/
10.13154/tches.v2020.i4.337-364.

[144] Guilherme Perin, Lichao Wu, and Stjepan Picek. AISY - Deep Learning-
based Framework for Side-channel Analysis. Cryptology ePrint Archive,
Report 2021/357. https://eprint.iacr.org/2021/357 and https:

//github.com/AISyLab/AISY_Framework. 2021. url: https://
eprint.iacr.org/2021/357.

[145] Karlson Pfannschmidt, Pritha Gupta, Björn Haddenhorst, and Eyke Hüller-
meier. “Learning context-dependent choice functions”. In: International
Journal of Approximate Reasoning 140 (Jan. 2022), pp. 116–155. issn:
0888-613X. url: https://www.sciencedirect.com/science/article/
pii/S0888613X21001614.

[146] Karlson Pfannschmidt, Pritha Gupta, and Eyke Hüllermeier. Deep Archi-
tectures for Learning Context-dependent Ranking Functions. 2018. arXiv:
1803.05796 [stat.ML]. url: https://arxiv.org/abs/1803.05796.

[147] Stjepan Picek, Annelie Heuser, and Sylvain Guilley. “Template Attack versus
Bayes Classifier”. In: Journal of Cryptographic Engineering 7.4 (Nov. 2017),
pp. 343–351. issn: 2190-8516. doi: 10.1007/s13389-017-0172-7. url:
https://doi.org/10.1007/s13389-017-0172-7.

223

https://doi.org/10.1007/s13389-020-00228-5
https://doi.org/10.13154/tches.v2020.i4.337-364
https://doi.org/10.13154/tches.v2020.i4.337-364
https://doi.org/10.13154/tches.v2020.i4.337-364
https://eprint.iacr.org/2021/357
https://github.com/AISyLab/AISY_Framework
https://github.com/AISyLab/AISY_Framework
https://eprint.iacr.org/2021/357
https://eprint.iacr.org/2021/357
https://www.sciencedirect.com/science/article/pii/S0888613X21001614
https://www.sciencedirect.com/science/article/pii/S0888613X21001614
https://arxiv.org/abs/1803.05796
https://arxiv.org/abs/1803.05796
https://doi.org/10.1007/s13389-017-0172-7
https://doi.org/10.1007/s13389-017-0172-7

8. Bibliography

[148] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco
Regazzoni. “The Curse of Class Imbalance and Conflicting Metrics with
Machine Learning for Side-channel Evaluations”. In: IACR Transactions
on Cryptographic Hardware and Embedded Systems 2019.1 (Nov. 2018),
pp. 209–237. issn: 2569-2925. doi: 10.13154/tches.v2019.i1.209-237.
url: https://doi.org/10.13154/tches.v2019.i1.209-237.

[149] Stjepan Picek, Annelie Heuser, Alan Jovic, Simone A. Ludwig, Sylvain
Guilley, Domagoj Jakobovic, and Nele Mentens. “Side-Channel Analysis and
Machine Learning: A Practical Perspective”. In: 2017 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2017, pp. 4095–4102. doi:
10.1109/IJCNN.2017.7966373. url: https://doi.org/10.1109/
IJCNN.2017.7966373.

[150] Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla Batina.
“SoK: Deep Learning-Based Physical Side-Channel Analysis”. In: ACM Com-
puting Surveys 55.11 (Feb. 2023). issn: 0360-0300. doi: 10.1145/3569577.
url: https://doi.org/10.1145/3569577.

[151] John C. Platt. “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods”. In: Advances in large margin
classifiers 10.3 (1999), pp. 61–74.

[152] John C. Platt. “Probabilities for SV Machines”. In: Advances in Large-Margin
Classifiers. Cambridge: MIT Press, 2000, pp. 61–73. isbn: 9780262283977.
doi: 10.7551/mitpress/1113.001.0001.

[153] Felipe Maia Polo and Felipe Leno Da Silva. InfoSelect - Mutual Information
Based Feature Selection in Python. 2020.

[154] David Martin Powers. “Evaluation: From precision, recall and f-measure
to roc., informedness, markedness & correlation”. In: Journal of Machine
Learning Technologies 2.1 (2011), pp. 37–63.

[155] Thomas Prest, Dahmun Goudarzi, Ange Martinelli, and Alain Passelègue.
“Unifying Leakage Models on a Rényi Day”. In: Advances in Cryptology –
CRYPTO 2019: 39th Annual International Cryptology Conference, Santa

224

https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.1109/IJCNN.2017.7966373
https://doi.org/10.1109/IJCNN.2017.7966373
https://doi.org/10.1109/IJCNN.2017.7966373
https://doi.org/10.1145/3569577
https://doi.org/10.1145/3569577
https://doi.org/10.7551/mitpress/1113.001.0001

8. Bibliography

Barbara, CA, USA, August 18–22, 2019, Proceedings, Part I. Ed. by Alexan-
dra Boldyreva and Daniele Micciancio. Santa Barbara, CA, USA: Springer
International Publishing, 2019, pp. 683–712. isbn: 978-3-030-26948-7. doi:
10.1007/978-3-030-26948-7_24. url: https://doi.org/10.1007/
978-3-030-26948-7_24.

[156] Claudia Priesterjahn, Jan Peter Drees, Pritha Gupta, and Simon Oberthur.
Anwendung von maschinellem Lernen zum automatischen Erkennen von
Padding-Orakel-Seitenkanälen. de. Text/Conference Paper. 2023. url:
https://dl.gi.de/handle/20.500.12116/43481,.

[157] Emmanuel Prouff. “DPA Attacks and S-Boxes”. In: Fast Software Encryption.
Ed. by Henri Gilbert and Helena Handschuh. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 424–441. isbn: 978-3-540-31669-5.

[158] Zhenyue Qin and Dongwoo Kim. “Rethinking Softmax with Cross-Entropy:
Neural Network Classifier as Mutual Information Estimator”. In: CoRR
abs/1911.10688 (2019). arXiv: 1911.10688.

[159] Mick G.D. Remmerswaal, Lichao Wu, Sébastien Tiran, and Nele Mentens.
“AutoPOI: Automated Points of Interest Selection for Side-Channel Analysis”.
In: Journal of Cryptographic Engineering 14.3 (Sept. 2024), pp. 463–474.
doi: 10.1007/s13389-023-00328-y. url: https://doi.org/10.
1007/s13389-023-00328-y.

[160] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-yao Huang, Zhihui Li, Xiaojiang
Chen, and Xin Wang. “A Comprehensive Survey of Neural Architecture
Search: Challenges and Solutions”. In: ACM Computing Surveys (CSUR)
54.4 (May 2021), article 76, 1–34. issn: 0360-0300. doi: 10.1145/3447582.
url: https://doi.org/10.1145/3447582.

[161] Alfréd Rényi. “On measures of entropy and information”. In: Proceedings of
the fourth Berkeley symposium on mathematical statistics and probability,
volume 1: contributions to the theory of statistics. Vol. 4. University of
California Press. 1961, pp. 547–562.

225

https://doi.org/10.1007/978-3-030-26948-7_24
https://doi.org/10.1007/978-3-030-26948-7_24
https://doi.org/10.1007/978-3-030-26948-7_24
https://dl.gi.de/handle/20.500.12116/43481,
https://arxiv.org/abs/1911.10688
https://doi.org/10.1007/s13389-023-00328-y
https://doi.org/10.1007/s13389-023-00328-y
https://doi.org/10.1007/s13389-023-00328-y
https://doi.org/10.1145/3447582
https://doi.org/10.1145/3447582

8. Bibliography

[162] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246 (Historic).
RFC. Obsoleted by RFC 4346, updated by multiple RFCs. Fremont, CA,
USA, Jan. 1999. doi: 10.17487/RFC2246. url: https://www.rfc-
editor.org/rfc/rfc2246.txt.

[163] B. Kaliski. PKCS #1: RSA Encryption Version 1.5. RFC 2313 (Informational).
RFC. Obsoleted by RFC 2437. Fremont, CA, USA, Mar. 1998. doi: 10.
17487/RFC2313. url: https://www.rfc-editor.org/rfc/rfc2313.
txt.

[164] B. Kaliski and J. Staddon. PKCS #1: RSA Cryptography Specifications
Version 2.0. RFC 2437 (Informational). RFC. Obsoleted by RFC 3447.
Fremont, CA, USA, Oct. 1998. doi: 10.17487/RFC2437. url: https:
//www.rfc-editor.org/rfc/rfc2437.txt.

[165] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.1. RFC 4346 (Historic). RFC. Obsoleted by RFC 5246, updated
by multiple RFCs. Fremont, CA, USA, Apr. 2006. doi: 10.17487/RFC4346.
url: https://www.rfc-editor.org/rfc/rfc4346.txt.

[166] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard). RFC. Obsoleted by RFC 8446,
updated by multiple RFCs. Fremont, CA, USA, Aug. 2008. doi: 10.17487/
RFC5246. url: https://www.rfc-editor.org/rfc/rfc5246.txt.

[167] A. Freier, P. Karlton, and P. Kocher. The Secure Sockets Layer (SSL)
Protocol Version 3.0. RFC 6101 (Historic). RFC. Fremont, CA, USA, Aug.
2011. doi: 10.17487/RFC6101. url: https://www.rfc-editor.org/
rfc/rfc6101.txt.

[168] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446 (Proposed Standard). RFC. Fremont, CA, USA, Aug. 2018. doi:
10.17487/RFC8446. url: https://www.rfc- editor.org/rfc/
rfc8446.txt.

226

https://doi.org/10.17487/RFC2246
https://www.rfc-editor.org/rfc/rfc2246.txt
https://www.rfc-editor.org/rfc/rfc2246.txt
https://doi.org/10.17487/RFC2313
https://doi.org/10.17487/RFC2313
https://www.rfc-editor.org/rfc/rfc2313.txt
https://www.rfc-editor.org/rfc/rfc2313.txt
https://doi.org/10.17487/RFC2437
https://www.rfc-editor.org/rfc/rfc2437.txt
https://www.rfc-editor.org/rfc/rfc2437.txt
https://doi.org/10.17487/RFC4346
https://www.rfc-editor.org/rfc/rfc4346.txt
https://doi.org/10.17487/RFC5246
https://doi.org/10.17487/RFC5246
https://www.rfc-editor.org/rfc/rfc5246.txt
https://doi.org/10.17487/RFC6101
https://www.rfc-editor.org/rfc/rfc6101.txt
https://www.rfc-editor.org/rfc/rfc6101.txt
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/rfc/rfc8446.txt
https://www.rfc-editor.org/rfc/rfc8446.txt

8. Bibliography

[169] Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan Picek. “Rein-
forcement Learning for Hyperparameter Tuning in Deep Learning-based
Side-channel Analysis”. In: IACR Transactions on Cryptographic Hardware
and Embedded Systems 2021.3 (July 2021), pp. 677–707. issn: 2569-
2925. doi: 10 . 46586 / tches . v2021 . i3 . 677 - 707. url: https :

//tches.iacr.org/index.php/TCHES/article/view/8989.

[170] Olivier Rioul. “This is IT: A Primer on Shannon’s Entropy and Information”.
In: Information Theory: Poincaré Seminar 2018. Ed. by Bertrand Duplantier
and Vincent Rivasseau. Cham: Springer International Publishing, 2021,
pp. 49–86. isbn: 978-3-030-81480-9. doi: 10.1007/978-3-030-81480-
9_2.

[171] Olivier Rioul. “Variations on a Theme by Massey”. In: IEEE Transactions
on Information Theory 68.5 (2022), pp. 2813–2828. doi: 10.1109/TIT.
2022.3141264. url: https://doi.org/10.1109/TIT.2022.3141264.

[172] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi Shamir, David Wong, and
Yuval Yarom. “The 9 Lives of Bleichenbacher’s CAT: New Cache ATtacks on
TLS Implementations”. In: 2019 IEEE Symposium on Security and Privacy
(SP). 2019 IEEE Symposium on Security and Privacy (SP). San Francisco,
CA, USA: IEEE Computer Society Press, 2019, pp. 435–452. doi: 10.1109/
SP.2019.00062. url: https://doi.org/10.1109/SP.2019.00062.

[173] Mark S. Roulston and Leonard A. Smith. “Evaluating Probabilistic Forecasts
Using Information Theory”. English. In: Monthly Weather Review 130.6
(June 2002), pp. 1653–1660.

[174] Joeri de Ruiter and Erik Poll. “Protocol State Fuzzing of TLS Implementa-
tions”. In: 24th USENIX Security Symposium (USENIX Security 15). Pro-
ceedings of the 24th USENIX Conference on Security Symposium. SEC’15.
Washington, D.C., USA: USENIX Association, Aug. 2015, pp. 193–206.
isbn: 978-1-939133-11-3. url: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/de-ruiter.

227

https://doi.org/10.46586/tches.v2021.i3.677-707
https://tches.iacr.org/index.php/TCHES/article/view/8989
https://tches.iacr.org/index.php/TCHES/article/view/8989
https://doi.org/10.1007/978-3-030-81480-9_2
https://doi.org/10.1007/978-3-030-81480-9_2
https://doi.org/10.1109/TIT.2022.3141264
https://doi.org/10.1109/TIT.2022.3141264
https://doi.org/10.1109/TIT.2022.3141264
https://doi.org/10.1109/SP.2019.00062
https://doi.org/10.1109/SP.2019.00062
https://doi.org/10.1109/SP.2019.00062
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter

8. Bibliography

[175] Roman Schlegel, Kehuan Zhang, Xiao-yong Zhou, Mehool Intwala, Apu
Kapadia, and XiaoFeng Wang. “Soundcomber: A Stealthy and Context-
Aware Sound Trojan for Smartphones.” In: NDSS. Vol. 11. 2011, pp. 17–
33.

[176] David Schubert, Pritha Gupta, and Marcel Wever. “Meta-learning for Au-
tomated Selection of Anomaly Detectors for Semi-supervised Datasets”.
In: Advances in Intelligent Data Analysis XXI. Ed. by Bruno Crémilleux,
Sibylle Hess, and Siegfried Nijssen. Cham: Springer Nature Switzerland,
2023, pp. 392–405. isbn: 978-3-031-30047-9.

[177] Matthias Schulz, Patrick Klapper, Matthias Hollick, Erik Tews, and Stefan
Katzenbeisser. “Trust The Wire, They Always Told Me! On Practical Non-
Destructive Wire-Tap Attacks Against Ethernet”. In: Proceedings of the 9th
ACM Conference on Security & Privacy in Wireless and Mobile Networks.
WiSec ’16. Darmstadt, Germany: Association for Computing Machinery,
2016, pp. 43–48. isbn: 9781450342704. doi: 10.1145/2939918.2940650.
url: https://doi.org/10.1145/2939918.2940650.

[178] Asaf Shabtai, Yuval Elovici, and Lior Rokach. A Survey of Data Leakage
Detection and Prevention Solutions. 1st ed. SpringerBriefs in Computer
Science. New York, NY, USA: Springer US, Mar. 2012, pp. VIII, 92. isbn:
978-1-4614-2052-1. doi: 10.1007/978-1-4614-2053-8. url: https:
//doi.org/10.1007/978-1-4614-2053-8.

[179] Aria Shahverdi, Mahammad Shirinov, and Dana Dachman-Soled. “Database
Reconstruction from Noisy Volumes: A Cache Side-Channel Attack on
SQLite”. In: 30th USENIX Security Symposium (USENIX Security 21).
USENIX Association, Aug. 2021, pp. 1019–1035. isbn: 978-1-939133-24-3.
url: https://www.usenix.org/conference/usenixsecurity21/
presentation/shahverdi.

228

https://doi.org/10.1145/2939918.2940650
https://doi.org/10.1145/2939918.2940650
https://doi.org/10.1007/978-1-4614-2053-8
https://doi.org/10.1007/978-1-4614-2053-8
https://doi.org/10.1007/978-1-4614-2053-8
https://www.usenix.org/conference/usenixsecurity21/presentation/shahverdi
https://www.usenix.org/conference/usenixsecurity21/presentation/shahverdi

8. Bibliography

[180] Mahdi Jafari Siavoshani, Amirhossein Khajehpour, Amirmohammad Ziaei
Bideh, Amirali Gatmiri, and Ali Taheri. “Machine learning interpretability
meets TLS fingerprinting”. In: Soft Computing 27.11 (June 2023), pp. 7191–
7208. issn: 1433-7479. doi: 10.1007/s00500-023-07949-9. url:
https://doi.org/10.1007/s00500-023-07949-9.

[181] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks
for Large-Scale Image Recognition”. In: 3rd International Conference on
Learning Representations (ICLR 2015). Conference Track Proceedings. San
Diego, CA, USA: Computational and Biological Learning Society, 2015,
pp. 1–14. doi: 10.48550/arXiv.1409.1556. url: https://arxiv.org/
abs/1409.1556.

[182] Shashank Singh and Barnabás Póczos. “Finite-Sample Analysis of Fixed-k
Nearest Neighbor Density Functional Estimators”. In: Advances in Neural
Information Processing Systems 29. Ed. by Daniel D. Lee, Masashi Sugiyama,
Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett. Barcelona, Spain:
Neural Information Processing Systems Foundation, Inc., 2016, pp. 1217–
1225.

[183] Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, and Stefan Man-
gard. “Systematic Classification of Side-Channel Attacks: A Case Study for
Mobile Devices”. In: IEEE Communications Surveys & Tutorials 20.1 (2018),
pp. 465–488. doi: 10.1109/COMST.2017.2779824.

[184] François-Xavier Standaert, Tal Malkin, and Moti Yung. “A Unified Frame-
work for the Analysis of Side-Channel Key Recovery Attacks”. In: Advances in
Cryptology - EUROCRYPT 2009. Ed. by Antoine Joux. Vol. 5479. Cologne,
Germany: Springer Berlin Heidelberg, Apr. 2009, pp. 443–461. isbn: 978-
3-642-01001-9. doi: 10.1007/978-3-642-01001-9_26. url: https:
//doi.org/10.1007/978-3-642-01001-9_26.

[185] D. Tebbe and S. Dwyer. “Uncertainty and the probability of error (Corresp.)”
In: IEEE Transactions on Information Theory 14.3 (May 1968), pp. 516–518.
issn: 0018-9448. doi: 10.1109/tit.1968.1054135.

229

https://doi.org/10.1007/s00500-023-07949-9
https://doi.org/10.1007/s00500-023-07949-9
https://doi.org/10.48550/arXiv.1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/COMST.2017.2779824
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1109/tit.1968.1054135

8. Bibliography

[186] Aika Terada, Koji Tsuda, and Jun Sese. “Fast Westfall-Young permutation
procedure for combinatorial regulation discovery”. In: 2013 IEEE International
Conference on Bioinformatics and Biomedicine. 2013, pp. 153–158. doi:
10.1109/BIBM.2013.6732479.

[187] Sergios Theodoridis and Konstantinos Koutroumbas. “Chapter 5 - Feature
Selection”. In: Pattern Recognition (Fourth Edition). Ed. by Sergios Theodor-
idis and Konstantinos Koutroumbas. 4th. Boston: Academic Press, 2009,
pp. 261–322. isbn: 978-1-59749-272-0. doi: 10.1016/B978-1-59749-
272-0.50007-4. url: https://www.sciencedirect.com/science/
article/pii/B9781597492720500074.

[188] Adrian Thillard, Emmanuel Prouff, and Thomas Roche. “Success through
Confidence: Evaluating the Effectiveness of a Side-Channel Attack”. In:
Cryptographic Hardware and Embedded Systems - CHES 2013. Ed. by Guido
Bertoni and Jean-Sébastien Coron. Vol. 7966. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 21–36.
isbn: 978-3-642-40349-1. doi: 10.1007/978-3-642-40349-1_2.

[189] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
“Auto-WEKA: Combined Selection and Hyperparameter Optimization of
Classification Algorithms”. In: Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD
’13. New York, NY, USA: Association for Computing Machinery, 2013,
pp. 847–855. isbn: 978-1-4503-2174-7. doi: 10.1145/2487575.2487629.
url: https://doi.org/10.1145/2487575.2487629.

[190] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo.
“OpenML: Networked Science in Machine Learning”. In: SIGKDD explo-
rations newsletter 15.2 (June 2014), pp. 49–60. issn: 1931-0145. doi:
10.1145/2641190.2641198.

[191] V. Vapnik. “Principles of Risk Minimization for Learning Theory”. In: Pro-
ceedings of the 4th International Conference on Neural Information Process-
ing Systems. Denver, Colorado: Morgan Kaufmann Publishers Inc., 1991,
pp. 831–838. isbn: 1558602224.

230

https://doi.org/10.1109/BIBM.2013.6732479
https://doi.org/10.1016/B978-1-59749-272-0.50007-4
https://doi.org/10.1016/B978-1-59749-272-0.50007-4
https://www.sciencedirect.com/science/article/pii/B9781597492720500074
https://www.sciencedirect.com/science/article/pii/B9781597492720500074
https://doi.org/10.1007/978-3-642-40349-1_2
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1145/2641190.2641198

8. Bibliography

[192] Serge Vaudenay. “Security Flaws Induced by CBC Padding — Applications
to SSL, IPSEC, WTLS...” In: Advances in Cryptology — EUROCRYPT 2002.
Ed. by Lars R. Knudsen. Vol. 2332. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 534–545. isbn:
978-3-540-46035-0. doi: 10.1007/3-540-46035-7_35.

[193] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson,
K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones,
Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Hen-
riksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors.
“SciPy 1.0: fundamental algorithms for scientific computing in Python”. In:
Nature Methods 17.3 (Mar. 2020), pp. 261–272. issn: 1548-7105. doi:
10.1038/s41592-019-0686-2.

[194] A.D. Walters and E. Kedaigle. “SLEAK: A Side-Channel Leakage Eval-
uator and Analysis Kit”. In: Technical Paper (Nov. 2014). Accessed on
24 September 2020. url: https://www.mitre.org/publications/
technical-papers/sleak-a-side-channel-leakage-evaluator-

and-analysis-kit.

[195] Andreas Walz and Axel Sikora. “Exploiting Dissent: Towards Fuzzing-Based
Differential Black-Box Testing of TLS Implementations”. In: IEEE Trans-
actions on Dependable and Secure Computing 17.2 (2020), pp. 278–291.
doi: 10.1109/TDSC.2017.2763947.

[196] David Warburton and Sander Vinberg. The 2021 TLS Telemetry Re-
port. 2021. url: https://www.f5.com/labs/articles/threat-
intelligence/the-2021-tls-telemetry-report (visited on 11/07/2024).

231

https://doi.org/10.1007/3-540-46035-7_35
https://doi.org/10.1038/s41592-019-0686-2
https://www.mitre.org/publications/technical-papers/sleak-a-side-channel-leakage-evaluator-and-analysis-kit
https://www.mitre.org/publications/technical-papers/sleak-a-side-channel-leakage-evaluator-and-analysis-kit
https://www.mitre.org/publications/technical-papers/sleak-a-side-channel-leakage-evaluator-and-analysis-kit
https://doi.org/10.1109/TDSC.2017.2763947
https://www.f5.com/labs/articles/threat-intelligence/the-2021-tls-telemetry-report
https://www.f5.com/labs/articles/threat-intelligence/the-2021-tls-telemetry-report

8. Bibliography

[197] A. F. Webster and S. E. Tavares. “On the Design of S-Boxes”. In: Advances
in Cryptology — CRYPTO ’85 Proceedings. Ed. by Hugh C. Williams.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1986, pp. 523–534. isbn:
978-3-540-39799-1. doi: 10.1007/3-540-39799-X_41.

[198] Carolyn Whitnall and Elisabeth Oswald. “A Comprehensive Evaluation
of Mutual Information Analysis Using a Fair Evaluation Framework”. In:
Advances in Cryptology – CRYPTO 2011. Ed. by Phillip Rogaway. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 316–334. isbn: 978-3-
642-22792-9.

[199] Manfred von Willich. “A Technique with an Information-Theoretic Basis for
Protecting Secret Data from Differential Power Attacks”. In: Cryptography
and Coding: Proceedings of the 8th IMA International Conference. Ed. by
Bahram Honary. Vol. 2260. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, Dec. 2001, pp. 44–62. isbn: 978-3-
540-45325-3. doi: 10.1007/3-540-45325-3_6.

[200] Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel.
“Revisiting a Methodology for Efficient article Architectures in Profiling
Attacks”. In: IACR Transactions on Cryptographic Hardware and Embedded
Systems 2020.3 (June 2020), pp. 147–168. issn: 2569-2925. doi: 10.
13154/tches.v2020.i3.147-168. url: https://doi.org/10.13154/
tches.v2020.i3.147-168.

[201] Lichao Wu, Guilherme Perin, and Stjepan Picek. “I Choose You: Automated
Hyperparameter Tuning for Deep Learning-Based Side-Channel Analysis”.
In: IEEE Transactions on Emerging Topics in Computing 12.2 (2024),
pp. 546–557. issn: 2168-6750. doi: 10.1109/TETC.2022.3218372. url:
https://www.openaccess.nl/en/you-share-we-take-care.

[202] M. Wu, S. McCamant, P.-C. Yew, and A. Zhai. “PREDATOR: A Cache
Side-Channel Attack Detector Based on Precise Event Monitoring”. In:
2022 IEEE International Symposium on Secure and Private Execution

232

https://doi.org/10.1007/3-540-39799-X_41
https://doi.org/10.1007/3-540-45325-3_6
https://doi.org/10.13154/tches.v2020.i3.147-168
https://doi.org/10.13154/tches.v2020.i3.147-168
https://doi.org/10.13154/tches.v2020.i3.147-168
https://doi.org/10.13154/tches.v2020.i3.147-168
https://doi.org/10.1109/TETC.2022.3218372
https://www.openaccess.nl/en/you-share-we-take-care

8. Bibliography

Environment Design (SEED). 2022 IEEE International Symposium on Secure
and Private Execution Environment Design (SEED). 2022, pp. 25–36. doi:
10.1109/SEED55351.2022.00010.

[203] Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian Zhang. “STACCO:
Differentially Analyzing Side-Channel Traces for Detecting SSL/TLS Vul-
nerabilities in Secure Enclaves”. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’17. Dallas,
Texas, USA: Association for Computing Machinery, 2017, pp. 859–874.
isbn: 9781450349468. doi: 10.1145/3133956.3134016. url: https:
//doi.org/10.1145/3133956.3134016.

[204] Bianca Zadrozny and Charles Elkan. “Obtaining Calibrated Probability Esti-
mates from Decision Trees and Naive Bayesian Classifiers”. In: Proceedings
of the 18th International Conference on Machine Learning , (ICML). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001, pp. 609–616.
isbn: 1558607781.

[205] Bianca Zadrozny and Charles Elkan. “Transforming Classifier Scores into
Accurate Multiclass Probability Estimates”. In: Proceedings of the 8th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.
Edmonton, Alberta, Canada: Association for Computing Machinery, 2002,
pp. 694–699. isbn: 158113567X. doi: 10.1145/775047.775151.

[206] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
“Methodology for Efficient article Architectures in Profiling Attacks”. In:
IACR Transactions on Cryptographic Hardware and Embedded Systems
2020.1 (Nov. 2019), pp. 1–36. issn: 2569-2925. doi: 10.13154/tches.
v2020.i1.1-36. url: https://doi.org/10.13154/tches.v2020.i1.
1-36.

[207] Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu, and Nenghai Yu.
“A Novel Evaluation Metric for Deep Learning-Based Side Channel Analysis
and Its Extended Application to Imbalanced Data”. In: IACR Transactions
on Cryptographic Hardware and Embedded Systems 2020.3 (June 2020),
pp. 73–96. issn: 2569-2925. doi: 10.46586/tches.v2020.i3.73-96.

233

https://doi.org/10.1109/SEED55351.2022.00010
https://doi.org/10.1145/3133956.3134016
https://doi.org/10.1145/3133956.3134016
https://doi.org/10.1145/3133956.3134016
https://doi.org/10.1145/775047.775151
https://doi.org/10.13154/tches.v2020.i1.1-36
https://doi.org/10.13154/tches.v2020.i1.1-36
https://doi.org/10.13154/tches.v2020.i1.1-36
https://doi.org/10.13154/tches.v2020.i1.1-36
https://doi.org/10.46586/tches.v2020.i3.73-96

8. Bibliography

[208] Jie Zhang, Xiaolong Zheng, Zhanyong Tang, Tianzhang Xing, Xiaojiang
Chen, Dingyi Fang, Rong Li, Xiaoqing Gong, and Feng Chen. “Privacy
Leakage in Mobile Sensing: Your Unlock Passwords Can Be Leaked through
Wireless Hotspot Functionality”. In: Mobile Information Systems 2016.1
(Jan. 2016), p. 8793025. issn: 1574-017X. doi: 10.1155/2016/8793025.
url: https://doi.org/10.1155/2016/8793025.

[209] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. “Cross-
Tenant Side-Channel Attacks in PaaS Clouds”. In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security.
Ed. by Gail-Joon Ahn, Moti Yung, and Ninghui Li. CCS ’14. Scottsdale,
AZ, USA: Association for Computing Machinery, 2014, pp. 990–1003.
isbn: 9781450329576. doi: 10.1145/2660267.2660356. url: https:
//dl.acm.org/doi/10.1145/2660267.2660356.

[210] Ming-Jie Zhao, Narayanan Edakunni, Adam Pocock, and Gavin Brown.
“Beyond Fano’s Inequality: Bounds on the Optimal F-Score, BER, and
Cost-Sensitive Risk and Their Implications”. In: Journal of Machine Learning
Research 14.32 (2013), pp. 1033–1090.

[211] Yongbin Zhou and Dengguo Feng. “Side-Channel Attacks: Ten Years After
Its Publication and the Impacts on Cryptographic Module Security Testing”.
In: IACR Cryptology ePrint Archive (Oct. 2005). url: http://eprint.
iacr.org/2005/388.

[212] Marc-André Zöller and Marco F. Huber. “Benchmark and Survey of Au-
tomated Machine Learning Frameworks”. In: Journal of Artificial Intel-
ligence Research 70 (May 2021), pp. 409–472. issn: 1076-9757. doi:
10.1613/jair.1.11854. url: https://www.jair.org/index.php/
jair/article/view/11854.

234

https://doi.org/10.1155/2016/8793025
https://doi.org/10.1155/2016/8793025
https://doi.org/10.1145/2660267.2660356
https://dl.acm.org/doi/10.1145/2660267.2660356
https://dl.acm.org/doi/10.1145/2660267.2660356
http://eprint.iacr.org/2005/388
http://eprint.iacr.org/2005/388
https://doi.org/10.1613/jair.1.11854
https://www.jair.org/index.php/jair/article/view/11854
https://www.jair.org/index.php/jair/article/view/11854

A. Appendix

The appendix provides detailed results and comprehensive implementation
details for the experiments conducted.

A.1. Implementation Details

This section presents the implementation details, including parameters for
performing HPO and the Python packages used for running the experiments
conducted to detect ILDs in OpenSSL TLS Servers and AES-encrypted Systems,
as described in Chapter 5 and Chapter 6, respectively. Additionally, the details
of the experiments conducted to compare the MI estimation methods described
in Chapter 4 are outlined as well.

Hyperparameter Optimization The models, learning algorithms, and their
respective hyperparameters and range values used for HPO in the AutoGluon
tool are outlined in Table A.1. The objective functions for HPO include BER
for PC-Softmax, AutoGluon, and TabPFN, Akaike information criterion
(AIC) for GMM, and mean squared error (MSE) for MINE. The search space
in AutoGluon includes tree-based ensemble models such as RF, XT, and GBM
algorithms (LightGBM, CatBoost, and XGBoost), as well as MLP implemented
using PyTorch and the trained MLP provided by fastai [132, 93, 18]. For
high-dimensional datasets (𝑑 > 100), dimensionality reduction techniques are

235

A. Appendix

Ta
bl

e
A
.1

.:
H

yp
er

pa
ra

m
et

er
ra

ng
es

fo
r

A
ut

oM
L

to
ol

s:
A
ut

oG
lu

on
m

od
el

s
an

d
Ta

bP
FN

in
cl

ud
in

g
th

e
M

I
es

tim
at

io
n

ba
se

lin
e

ap
pr

oa
ch

es
(G

au
ss

ia
n

m
ix

tu
re

m
od

el
(G

M
M

),
M

IN
E,

an
d

P
C

-S
o
ft

m
a
x
)

A
ut

oG
lu

on

Tr
ee

-b
as

ed
En

se
m

bl
e

M
od

el
s

Le
ar

ne
r

Le
ar

ni
ng

R
at

e
#

Es
tim

at
or

s
M

ax
D

ep
th

#
Le

av
es

Fe
at

ur
e

Fr
ac

tio
n

B
ag

gi
ng

Fr
ac

tio
n

M
in

D
at

a
in

Le
af

La
m

bd
a

L1
/

La
m

bd
a

L2

Li
gh

t
gr

ad
ie

nt
bo

os
tin

g
m

ac
hi

ne
(L

ig
ht

G
B
M

)
[0

.0
1,

0.
5]

[2
0,

30
0]

[3
,2

0]
[2

0,
30

0]
[0

.2
,0

.9
5]

[0
.2

,0
.9

5]
[2

0,
50

00
]

[1
e−

6,
1e
−
2]

C
at

eg
or

ic
al

bo
os

tin
g

m
ac

hi
ne

(C
at

B
oo

st
)

[0
.0

1,
0.

5]
N

A
[4

,1
0]

N
A

N
A

N
A

N
A

[0
.1

,1
0]

EX
tr

em
e

gr
ad

ie
nt

bo
os

tin
g

m
ac

hi
ne

(X
G

B
oo

st
)

[0
.0

1,
0.

5]
[2

0,
30

0]
[3

,1
0]

N
A

N
A

N
A

N
A

N
A

R
F

N
A

[2
0,

30
0]

[6
,2

0]
N

A
N

A
N

A
N

A
N

A
Ex

tr
a

tr
ee

s
cl

as
sifi

er
(X

T
)

N
A

[2
0,

30
0]

[6
,2

0]
N

A
N

A
N

A
N

A
N

A

N
eu

ra
lN

et
w
or

ks
(M

LP
s)

Le
ar

ni
ng

R
at

e
D

ro
po

ut
P
ro

b
#

La
ye

rs
#

U
ni

ts
O

th
er

Pa
ra

m
et

er
s

FA
ST

A
I

[1
e−

5,
1e
−
1]

[0
.0

,0
.5

]
N

A
N

A
N

A
N

A
N

A
N

A
N

N
_

T
O

R
C
H

[1
e−

5,
1e
−
1]

[0
.0

,0
.5

]
[2

,2
0]

[8
,2

56
]

N
A

N
A

N
A

N
A

T
ab

P
F
N

Le
ar

ne
r

R
ed

uc
tio

n
Te

ch
ni

qu
e

#
R
ed

uc
ed

Fe
at

ur
es

#
En

se
m

bl
es

O
th

er
Pa

ra
m

et
er

s

Ta
bP

FN
R
F

,X
T

[1
0,

50
]

[3
2,

20
0]

N
A

N
A

N
A

N
A

N
A

B
as

el
in

es

Le
ar

ne
r

R
ed

uc
tio

n
Te

ch
ni

qu
e

#
R
ed

uc
ed

Fe
at

ur
es

C
ov

ar
ia

nc
e

M
at

rix
Ty

pe
R
eg

ul
ar

iz
at

io
n

St
re

ng
th

O
th

er
Pa

ra
m

et
er

s

G
M

M
R
F

,X
T

[1
0,

50
]

{F
ul

l,
D

ia
go

na
l,

T
ie

d,
Sp

he
ric

al
}

[1
e−

10
,1

e−
1]

N
A

N
A

N
A

N
A

Le
ar

ni
ng

R
at

e
O

pt
im

iz
er

Ty
pe

#
La

ye
rs

#
U

ni
ts

R
eg

ul
ar

iz
at

io
n

St
re

ng
th

Ea
rly

St
op

pi
ng

B
at

ch
N

or
m

al
iz

at
io

n
O

th
er

Pa
ra

m
et

er
s

M
IN

E
[1
e−

5,
1e
−
1]

{R
MS

Pr
op

,S
GD

,A
da

m
}

[1
,5

0]
[2

,2
56

]
[1
e−

10
,0

.2
]

{T
ru

e,
Fa

lse
}

{T
ru

e,
Fa

lse
}

N
A

P
C

-S
o
ft

m
a
x

[1
e−

5,
1e
−
1]

{R
MS

Pr
op

,S
GD

,A
da

m
}

[1
,5

0]
[2

,2
56

]
[1
e−

10
,0

.2
]

{T
ru

e,
Fa

lse
}

{T
ru

e,
Fa

lse
}

N
A

236

A. Appendix

applied to TabPFN and GMM. The detailed hyperparameters and range values
for TabPFN, AutoGluon models, and the baseline MI estimators, including
GMM, MINE, and PC-Softmax, are provided in Table A.1.

A.1.1. MI Estimation Approaches

The synthetic datasets using the MVN distribution, including the ground-
truth MI calculation, are generated using the multivariate_normal and
ortho_group functions provided by scipy [193]. The HPO process is performed
using Bayesian optimization (BO) as implemented by the BayesSearchCV in
scikit-optimize1. The code for implementing all MI estimation methods and
synthetic dataset generation processes is publicly available on GitHub2, along
with the scripts used for experiments3.

The MI estimation methods leverage TabPFN and AutoGluon, as detailed
in Section 2.2.4, to induce the Bayes predictor. Additionally, the implemen-
tations of five calibration techniques for the Cal Log-Loss approaches are
provided by netcal [113]. The InfoSelect library is extended to support
multiple covariance structures (diagonal, spherical, and tied)1, with dimension-
ality reduction applied for high-dimensional datasets (𝑑 > 100) to implement
the GMM approach. The architectures and objective function for the MINE
approach are implemented using PyTorch [141], while the MLP architectures,
including the categorical cross-entropy (CCE) loss for the PC-Softmax ap-
proach, are implemented using Keras [33].

1https://github.com/scikit-optimize/scikit-optimize
2https://github.com/LeakDetectAI/AutoMLQuantILDetect
3https://github.com/LeakDetectAI/automl-qild-experiments

237

https://github.com/scikit-optimize/scikit-optimize
https://github.com/LeakDetectAI/AutoMLQuantILDetect
https://github.com/LeakDetectAI/automl-qild-experiments

A. Appendix

A.1.2. Automating ILD in OpenSSL TLS Servers

The MI-based ILD approaches employ the OTT statistical test on estimated
MIs, as discussed in Section 3.2.2. The classification-based ILD approaches,
such as PTT-Majority, FET-Mean, and FET-Median, induce the Bayes
predictor using TabPFN and AutoGluon, as detailed in Section 2.2.4. The
statistical tests, including FET, PTT, OTT, and Holm-Bonferroni correction,
are implemented using scipy [193]. The 10 IL-Datasets corresponding to each
time delay and error message are converted into a multi-class classification
dataset containing 11 padding classes, including correctly padded messages
(labeled as 0).These datasets, designed by [190], are uploaded to OpenML4

using openml [62]. The documented code for implementing all ILD approaches
and parsing OpenML real IL-Datasets is available on GitHub2, with the scripts
for experiments hosted on GitHub3.

A.1.3. Automating ILD in AES-encrypted Systems

To implement NAS for different search strategies, search spaces, and input
shapes, the AutoModel, DenseBlock, ConvBlock, and ClassificationHead

classes from the AutoKeras library [100] are extended. The code for experiments
and plot generation is publicly available on GitHub5.

Baseline Architectures

Fixed baseline architectures are trained for comparison with the NAS approach.
The ASCAD architecture proposed by Benadjila et al. (2020) [14] and the ZAID
architectures by Zaid et al. (2019) [206] are utilized. The ASCAD baseline is a
CNN model inspired by the VGG-16 CNN model [181], as shown in Figure 6.1a.

4https://www.openml.org/s/417
5https://github.com/LeakDetectAI/deep-learning-sca

238

https://www.openml.org/s/417
https://github.com/LeakDetectAI/deep-learning-sca

A. Appendix

For the ASCAD_r datasets, the baselines for corresponding fixed-key versions
are used. For the CHES CTF dataset, the deepest CNN proposed by Zaid
et al. (2019) [206] is employed, as shown in Figure 6.1b.

Computing Hardware and Runtime

The experiments necessitate the training of millions of CNN models, requiring
thousands of hours of GPU time. These experiments are executed in parallel
on a supercomputer equipped with GPU nodes, enabling the completion of the
entire parameter study within a few weeks. The GPU nodes consist of two
AMD Milan 7763 CPUs operating at 2.45GHz, 512GB of main memory, and
four Nvidia A100 GPUs connected via NVLink and equipped with 40GB HBM2
GPU memory. A single NAS experiment, which identifies the best architecture
through repeated intermediate model training followed by a final model training,
requires less than 2 days on these shared GPU nodes. All search strategies are
allocated a budget of testing 1000 architectures. The Random and Bayesian

strategies consistently utilize the entire budget, whereas the Greedy strategy
uses only a portion of the budget, resulting in a maximum runtime of 5

hours. The preemption technique employed by Hyperband reduces the
maximum runtime to 12 hours. Some experiments are also conducted on
consumer hardware, represented by a $2500 gaming PC, where the most
extended experiment takes 22 hours. This gaming PC is equipped with an
AMD Ryzen 9 3950X CPU operating at 3.5GHz, 64GB of main memory, and
a single GeForce RTX 2080 Super GPU featuring 8GB GDDR6 GPU memory.
The runtime for an example experiment on the AES_HD dataset on this gaming
PC is 22 hours for Random, 3 hours and 45 minutes for Hyperband, 2 hours
and 55 minutes for Greedy, and 10 hours and 12 minutes for Bayesian. This
runtime is a reasonable estimate for an attacker’s lower bound of computational
resources to allocate to a single attack.However, attackers with better-equipped
systems are likely to exceed these constraints significantly.

239

A. Appendix

A.2. ILD Performance on Error Code Datasets

This section evaluates the performance of the ILD approaches against state-
of-the-art methods. Heatmaps with a fixed rejection threshold of 5 (𝜏 = 5)
are used to illustrate key performance metrics, including Accuracy, FPR, and
FNR.These metrics provide a detailed comparison of ILD approaches on the 9

OpenSSL TLS server datasets, as shown in Figure A.1.

A.2.1. Non-vulnerable OpenSSL TLS Servers

The performance of ILD approaches is focused on three non-vulnerable OpenSSL
TLS servers—OpenSSL-1.1.1k, OpenSSL-0.9.7b, and OpenSSL-1.1.1t—while
considering class imbalance cases (𝑟 ∈ 0.1, 0.3, 0.5). These servers are rep-
resented as configurations less susceptible to Bleichenbacher SCAs, allowing
detection trends to be observed in scenarios where actual ILs are minimal or
non-existent.

OpenSSL-1.1.1k

Out of MI-based ILD approaches using Log-Loss or Cal Log-Loss and
classification-based techniques including FET-Mean, FET-Median and PTT-

Majority maintain high accuracy (100% at 𝑟 = 0.5) with low FPR, demon-
strating robustness even in imbalanced datasets, with AutoGluon outperforming
TabPFN. However, approaches such as PTT-Random and Mid-Point exhibit
high FPR (up to 90%), leading to false positives for imbalanced datasets.
TabPFN FET-Mean and PTT-Majority reach 100% accuracy consistently,
while baseline methods, such as GMM, fall below 10%, reflecting random-like
performance in the absence of true ILs. While, the MINE and probabilitiy-
corrected softmax (PC-softmax) detects over 90% of the ILs.

240

A. Appendix

AutoGluon Mid-Point
AutoGluon Log-Loss

AutoGluon IR Cal Log-Loss
AutoGluon PS Cal Log-Loss

AutoGluon Beta Cal Log-Loss
AutoGluon TS Cal Log-Loss
AutoGluon HB Cal Log-Loss

AutoGluon PTT-Majority
AutoGluon PTT-Random

AutoGluon FET-Mean
AutoGluon FET-Median

TabPFN Mid-Point
TabPFN Log-Loss

TabPFN IR Cal Log-Loss
TabPFN PS Cal Log-Loss

TabPFN Beta Cal Log-Loss
TabPFN TS Cal Log-Loss
TabPFN HB Cal Log-Loss

TabPFN PTT-Majority
TabPFN PTT-Random

TabPFN FET-Mean
TabPFN FET-Median

GMM Baseline
MINE Baseline

PC-Softmax Baseline

.10 .60 .10 .00 .00 .38 .60 .66 .60

.92 .84 .90 .96 1.0 .60 .86 .84 .92

.92 .66 .28 .32 .16 .40 .66 .76 .72

.92 .84 .90 .96 1.0 .60 .86 .84 .92

.92 .84 .90 .96 1.0 .60 .86 .84 .92

.92 .84 .90 .96 1.0 .60 .86 .84 .92

.92 .66 .28 .32 .16 .42 .66 .76 .72

.84 .62 .20 .30 .06 .56 .98 .90 .98

.10 .60 .10 .00 .00 .38 .60 .62 .60

1.0 .90 .90 1.0 1.0 .62 .94 .98 1.0

1.0 .84 .54 .80 .84 .60 .68 1.0 .96

.00 .60 .10 .00 .00 .40 .60 .60 .60

.00 .60 .10 .00 .00 .40 .60 .60 .60

.97 .61 .10 .00 .00 .52 1.0 .91 .95

.00 .60 .10 .00 .00 .40 .60 .60 .60

.00 .60 .10 .00 .00 .40 .60 .60 .60

.00 .60 .10 .00 .00 .40 .60 .60 .60

.93 .61 .10 .00 .00 .60 1.0 1.0 1.0

1.0 .90 1.0 1.0 1.0 .60 1.0 1.0 1.0

.00 .60 .10 .00 .00 .40 .60 .60 .60

1.0 .90 1.0 1.0 1.0 .60 1.0 1.0 1.0

1.0 .90 1.0 1.0 1.0 .60 1.0 1.0 1.0

.04 .56 .12 .08 .00 .40 .58 .60 .58

.92 .40 .78 .88 .80 .64 .38 .42 .36

.92 .40 .84 .96 1.0 .62 .40 .40 .58

Detection Accuracy
.90 1.0 1.0 1.0 1.0 1.0 1.0 .85 1.0

.08 .15 .11 .04 .00 .03 .00 .00 .00

.08 .80 .80 .68 .84 .90 .85 .60 .70

.08 .15 .11 .04 .00 .03 .00 .00 .00

.08 .15 .11 .04 .00 .03 .00 .00 .00

.08 .15 .11 .04 .00 .03 .00 .00 .00

.08 .80 .80 .68 .84 .87 .85 .60 .70

.16 .90 .89 .70 .94 .47 .05 .10 .00

.90 1.0 1.0 1.0 1.0 1.0 1.0 .95 1.0

.00 .00 .11 .00 .00 .47 .15 .00 .00

.00 .25 .51 .20 .16 .50 .80 .00 .10

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

.03 .97 1.0 1.0 1.0 .63 .00 .23 .12

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

.07 .97 1.0 1.0 1.0 .50 .00 .00 .00

.00 .00 .00 .00 .00 .50 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

.00 .00 .00 .00 .00 .50 .00 .00 .00

.00 .00 .00 .00 .00 .50 .00 .00 .00

.96 .95 .98 .92 1.0 1.0 .95 1.0 1.0

.08 .05 .13 .12 .20 .07 .15 .10 .20

.08 .10 .07 .04 .00 .00 .00 .00 .00

Class Imbalance r = 0.1
False Positive Rate

.00 .00 .00 .00 .00 .05 .00 .00 .00

.00 .17 .00 .00 .00 .95 .23 .27 .13

.00 .03 .00 .00 .00 .15 .00 .00 .00

.00 .17 .00 .00 .00 .95 .23 .27 .13

.00 .17 .00 .00 .00 .95 .23 .27 .13

.00 .17 .00 .00 .00 .95 .23 .27 .13

.00 .03 .00 .00 .00 .15 .00 .00 .00

.00 .03 .00 .00 .00 .40 .00 .10 .03

.00 .00 .00 .00 .00 .05 .00 .00 .00

.00 .17 .00 .00 .00 .25 .00 .03 .00

.00 .10 .00 .00 .00 .25 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .25 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .25 .00 .00 .00

.00 .17 .00 .00 .00 .25 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .17 .00 .00 .00 .25 .00 .00 .00

.00 .17 .00 .00 .00 .25 .00 .00 .00

.00 .10 .00 .00 .00 .00 .07 .00 .03

.00 .97 1.0 .00 .00 .80 .93 .90 .93

.00 .93 1.0 .00 .00 .95 1.0 1.0 .70

False Negative Rate

AutoGluon Mid-Point
AutoGluon Log-Loss

AutoGluon IR Cal Log-Loss
AutoGluon PS Cal Log-Loss

AutoGluon Beta Cal Log-Loss
AutoGluon TS Cal Log-Loss
AutoGluon HB Cal Log-Loss

AutoGluon PTT-Majority
AutoGluon PTT-Random

AutoGluon FET-Mean
AutoGluon FET-Median

TabPFN Mid-Point
TabPFN Log-Loss

TabPFN IR Cal Log-Loss
TabPFN PS Cal Log-Loss

TabPFN Beta Cal Log-Loss
TabPFN TS Cal Log-Loss
TabPFN HB Cal Log-Loss

TabPFN PTT-Majority
TabPFN PTT-Random

TabPFN FET-Mean
TabPFN FET-Median

GMM Baseline
MINE Baseline

PC-Softmax Baseline

.08 .60 .10 .00 .00 .42 .60 .64 .74

.92 .86 .94 .96 1.0 .62 .98 .92 .94

1.0 .60 .12 .14 .06 .40 .72 .68 .80

.94 .90 .94 .98 1.0 .62 .98 .92 .94

.98 .88 1.0 .98 1.0 .62 .98 .92 .94

.92 .86 .94 .96 1.0 .62 .98 .92 .94

1.0 .60 .12 .12 .04 .42 .72 .68 .80

.98 .60 .12 .02 .00 .62 .94 1.0 .98

.10 .60 .10 .00 .00 .44 .62 .68 .82

1.0 .60 .12 .14 .06 .62 .98 .88 .94

1.0 .60 .12 .14 .06 .60 .96 1.0 1.0

.00 .60 .10 .00 .00 .40 .60 .60 .60

.00 .60 .10 .00 .00 .40 .60 .60 .60

.26 .60 .10 .00 .00 .48 1.0 .86 .96

.00 .60 .10 .00 .00 .40 .60 .60 .60

.00 .60 .10 .00 .00 .40 .60 .60 .60

.00 .60 .10 .00 .00 .40 .60 .60 .60

.24 .60 .10 .00 .00 .60 1.0 1.0 1.0

1.0 .90 1.0 1.0 1.0 .60 1.0 1.0 1.0

.00 .60 .10 .00 .00 .40 .60 .60 .60

1.0 .90 1.0 1.0 1.0 .60 1.0 1.0 1.0

1.0 .90 1.0 1.0 1.0 .60 1.0 1.0 1.0

.00 .60 .16 .06 .00 .36 .60 .58 .56

.88 .40 .80 .84 .94 .56 .40 .42 .46

.94 .40 .84 .96 1.0 .58 .42 .42 .52

.92 1.0 1.0 1.0 1.0 .93 1.0 .90 .65

.08 .10 .07 .04 .00 .47 .00 .00 .00

.00 1.0 .98 .86 .94 .97 .70 .80 .50

.06 .00 .07 .02 .00 .47 .00 .00 .00

.02 .05 .00 .02 .00 .47 .00 .00 .00

.08 .10 .07 .04 .00 .47 .00 .00 .00

.00 1.0 .98 .88 .96 .93 .70 .80 .50

.02 1.0 .98 .98 1.0 .47 .15 .00 .05

.90 1.0 1.0 1.0 1.0 .90 .95 .80 .45

.00 1.0 .98 .86 .94 .47 .00 .00 .00

.00 1.0 .98 .86 .94 .50 .10 .00 .00

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

.74 1.0 1.0 1.0 1.0 .80 .00 .35 .10

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

.76 1.0 1.0 1.0 1.0 .50 .00 .00 .00

.00 .00 .00 .00 .00 .50 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

.00 .00 .00 .00 .00 .50 .00 .00 .00

.00 .00 .00 .00 .00 .50 .00 .00 .00

1.0 1.0 .93 .94 1.0 1.0 1.0 1.0 1.0

.12 .10 .11 .16 .06 .07 .05 .10 .10

.06 .10 .07 .04 .00 .03 .00 .00 .00

Class Imbalance r = 0.3
.00 .00 .00 .00 .00 .05 .00 .00 .00

.00 .17 .00 .00 .00 .25 .03 .13 .10

.00 .00 .00 .00 .00 .05 .00 .00 .00

.00 .17 .00 .00 .00 .25 .03 .13 .10

.00 .17 .00 .00 .00 .25 .03 .13 .10

.00 .17 .00 .00 .00 .25 .03 .13 .10

.00 .00 .00 .00 .00 .05 .00 .00 .00

.00 .00 .00 .00 .00 .25 .00 .00 .00

.00 .00 .00 .00 .00 .05 .00 .00 .00

.00 .00 .00 .00 .00 .25 .03 .20 .10

.00 .00 .00 .00 .00 .25 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .10 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .25 .00 .00 .00

.00 .17 .00 .00 .00 .25 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .17 .00 .00 .00 .25 .00 .00 .00

.00 .17 .00 .00 .00 .25 .00 .00 .00

.00 .00 .00 .00 .00 .10 .00 .03 .07

.00 .93 1.0 .00 .00 1.0 .97 .90 .83

.00 .93 1.0 .00 .00 1.0 .97 .97 .80

1 2 3 4 5 6 7 8 9

AutoGluon Mid-Point
AutoGluon Log-Loss

AutoGluon IR Cal Log-Loss
AutoGluon PS Cal Log-Loss

AutoGluon Beta Cal Log-Loss
AutoGluon TS Cal Log-Loss
AutoGluon HB Cal Log-Loss

AutoGluon PTT-Majority
AutoGluon PTT-Random

AutoGluon FET-Mean
AutoGluon FET-Median

TabPFN Mid-Point
TabPFN Log-Loss

TabPFN IR Cal Log-Loss
TabPFN PS Cal Log-Loss

TabPFN Beta Cal Log-Loss
TabPFN TS Cal Log-Loss
TabPFN HB Cal Log-Loss

TabPFN PTT-Majority
TabPFN PTT-Random

TabPFN FET-Mean
TabPFN FET-Median

GMM Baseline
MINE Baseline

PC-Softmax Baseline

1.0 .90 .20 .16 1.0 .62 1.0 1.0 1.0

.92 .90 .78 1.0 1.0 .60 1.0 .98 .98

.24 .64 .10 .00 .04 .40 .66 .80 .86

.92 .90 .78 1.0 1.0 .60 1.0 .98 .98

.92 .90 .78 1.0 1.0 .60 1.0 .98 .98

.92 .90 .78 1.0 1.0 .60 1.0 .98 .98

.38 .66 .10 .00 .06 .50 .68 .82 .88

1.0 .90 .20 .00 1.0 .60 1.0 1.0 1.0

1.0 .90 .18 .36 1.0 .62 1.0 1.0 1.0

1.0 .90 .30 .98 1.0 .62 .96 .82 .88

1.0 .90 .20 .58 1.0 .60 1.0 1.0 1.0

.90 .90 .99 1.0 1.0 .62 .90 .81 .70

.94 .86 .94 .97 1.0 .60 1.0 1.0 1.0

.99 .86 .94 .97 1.0 .60 1.0 .99 1.0

.94 .86 .94 .97 1.0 .60 1.0 1.0 1.0

.94 .86 .94 .97 1.0 .60 1.0 1.0 1.0

.94 .86 .94 .97 1.0 .60 1.0 1.0 1.0

.92 .86 .94 .97 1.0 .60 1.0 1.0 1.0

1.0 .90 .97 1.0 1.0 .60 1.0 1.0 1.0

.99 .90 .98 1.0 1.0 .60 1.0 1.0 1.0

1.0 .90 1.0 1.0 1.0 .60 1.0 1.0 1.0

1.0 .90 .91 1.0 1.0 .60 1.0 1.0 1.0

.00 .62 .10 .06 .00 .40 .58 .60 .58

.88 .42 .84 .94 .90 .60 .46 .44 .44

.94 .40 .84 .96 1.0 .60 .42 .44 .64

1 2 3 4 5 6 7 8 9

.00 .00 .89 .84 .00 .47 .00 .00 .00

.08 .00 .24 .00 .00 .47 .00 .05 .00

.76 .85 1.0 1.0 .96 .87 .85 .50 .35

.08 .00 .24 .00 .00 .47 .00 .05 .00

.08 .00 .24 .00 .00 .47 .00 .05 .00

.08 .00 .24 .00 .00 .47 .00 .05 .00

.62 .80 1.0 1.0 .94 .67 .80 .45 .30

.00 .00 .89 1.0 .00 .50 .00 .00 .00

.00 .00 .91 .64 .00 .47 .00 .00 .00

.00 .00 .78 .02 .00 .43 .00 .00 .00

.00 .00 .89 .42 .00 .50 .00 .00 .00

.10 .00 .01 .00 .00 .63 .25 .47 .75

.06 .10 .07 .03 .00 .50 .00 .00 .00

.01 .10 .07 .03 .00 .50 .00 .03 .00

.06 .10 .07 .03 .00 .50 .00 .00 .00

.06 .10 .07 .03 .00 .50 .00 .00 .00

.06 .10 .07 .03 .00 .50 .00 .00 .00

.08 .10 .07 .03 .00 .50 .00 .00 .00

.00 .00 .03 .00 .00 .50 .00 .00 .00

.01 .00 .02 .00 .00 .50 .00 .00 .00

.00 .00 .00 .00 .00 .50 .00 .00 .00

.00 .00 .10 .00 .00 .50 .00 .00 .00

1.0 .95 1.0 .94 1.0 .93 1.0 1.0 1.0

.12 .05 .07 .06 .10 .07 .00 .10 .05

.06 .10 .07 .04 .00 .00 .00 .00 .00

Balanced

1 2 3 4 5 6 7 8 9

.00 .17 .00 .00 .00 .25 .00 .00 .00

.00 .17 .00 .00 .00 .30 .00 .00 .03

.00 .03 .00 .00 .00 .20 .00 .00 .00

.00 .17 .00 .00 .00 .30 .00 .00 .03

.00 .17 .00 .00 .00 .30 .00 .00 .03

.00 .17 .00 .00 .00 .30 .00 .00 .03

.00 .03 .00 .00 .00 .25 .00 .00 .00

.00 .17 .00 .00 .00 .25 .00 .00 .00

.00 .17 .00 .00 .00 .25 .00 .00 .00

.00 .17 .00 .00 .00 .30 .07 .30 .20

.00 .17 .00 .00 .00 .25 .00 .00 .00

.00 .17 .00 .00 .00 .00 .00 .00 .00

.00 .17 .00 .00 .00 .25 .00 .00 .00

.00 .17 .00 .00 .00 .25 .00 .00 .00

.00 .17 .00 .00 .00 .25 .00 .00 .00

.00 .17 .00 .00 .00 .25 .00 .00 .00

.00 .17 .00 .00 .00 .25 .00 .00 .00

.00 .17 .00 .00 .00 .25 .00 .00 .00

.00 .17 .00 .00 .00 .25 .00 .00 .00

.00 .17 .00 .00 .00 .25 .00 .00 .00

.00 .17 .00 .00 .00 .25 .00 .00 .00

.00 .17 .00 .00 .00 .25 .00 .00 .00

.00 .00 .00 .00 .00 .10 .03 .00 .03

.00 .93 1.0 .00 .00 .90 .90 .87 .90

.00 .93 1.0 .00 .00 1.0 .97 .93 .60

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

OpenSSL Server
1: OpenSSL-1.1.1k
2: DamnVulnerableOpenSSL
3: OpenSSL-0.9.7a

4: OpenSSL-0.9.7b
5: OpenSSL-1.1.1t

6: Cisco
7: Facebook

8: NetScalerGCM
9: PAN-OS

ILD with Rejection Threshold = 5, τ ≥ 5

Figure A.1.: Performance of ILD approaches for all OpenSSL TLS Servers

241

A. Appendix

OpenSSL-0.9.7b

OpenSSL-0.9.7b similarly highlights the efficacy of Cal Log-Loss, with
TabPFN and AutoGluon calibration-based methods maintaining near-perfect
accuracy at 𝑟 = 0.5, achieving low FPR and consistent detection rates for
balanced datasets. For imbalanced cases (𝑟 = 0.1 and 0.3), FET approaches
under AutoGluon still perform well, while PTT-Random and Mid-Point

continue to struggle, with FPR exceeding 90%. Baseline methods like GMM
show significantly lower performance with below 10% detection accuracy, with
MINE and PC-softmax detecting over 90% of the ILs.

OpenSSL-1.1.1t

For OpenSSL-1.1.1t, AutoGluon Log-Loss (calibrated Cal Log-Loss),
TabPFN FET-based and TabPFN PTT-Majority approaches almost all
achieve 100% accuracy across all class imbalances, with minimal false positives,
reflecting consistent calibration effectiveness. Here, AutoGluon Log-Loss

and TabPFN FET-Mean outperform other approaches, including MINE and
PC-softmax baseline methods, which yield detection rates of more than 90%

in non-vulnerable environments. Notably, Mid-Point and PTT-Random

report high FPR for systems generating imbalanced datasets, confirming their
susceptibility to false positives in scenarios without substantial ILs.

A.2.2. Vulnerable OpenSSL TLS Servers

In this subsection, the performance of ILD techniques is analyzed on two
highly vulnerable OpenSSL TLS servers—OpenSSL-0.9.7a and DamnVulnera-
bleOpenSSL—across various class imbalances (𝑟 ∈ 0.1, 0.3, 0.5). Additionally,
different imitation servers—Cisco, Facebook, NetScalerGCM, and PAN-OS—are
analyzed to identify numerous ILs revealed via real-world side channels across
public web servers, particularly in closed-source TLS server implementations.

242

A. Appendix

These servers present significant ILs that render them susceptible to Bleichen-
bacher SCAs, which allows the detection effectiveness of various methods to be
examined in environments with prevalent vulnerabilities.

OpenSSL-0.9.7a

For OpenSSL-0.9.7a, the MI-based AutoGluon Cal Log-Loss and TabPFN
classification-based (FET-Mean, FET-Median, PTT-Majority) ILD ap-
proaches demonstrate strong detection rates, especially in balanced datasets
(𝑟 = 0.5), achieving near-perfect accuracy (100%) with minimal FPR. However,
for lower imbalances (𝑟 = 0.1, 0.3), approaches like PTT-Random and Mid-

Point yield high FPR values, reducing overall detection reliability. Notably,
TabPFN FET-Mean and PTT-Majority are among the top-performing
techniques, maintaining 100% detection accuracy across all imbalance levels.
The GMM baseline fall below 12%, indicating random-like detection and MINE
and PC-softmax detects more the 80% of the ILs.

DamnVulnerableOpenSSL

Similar to OpenSSL-0.9.7a, for DamnVulnerableOpenSSL the MI-based Auto-
Gluon Cal Log-Loss and TabPFN classification-based (FET-Mean, FET-

Median, PTT-Majority) ILD approaches demonstrate strong detection rates
of 90%, especially in balanced datasets (𝑟 = 0.5), achieving near-perfect accu-
racy (100%) with minimal FPR. However, imbalanced datasets (𝑟 = 0.1, 0.3)
see elevated FPR for almost all techniques, specifically PTT-Random and
Mid-Point, reaching 100% FPR, which underscores their vulnerability in
distinguishing false positives. Among the classification-based methods, FET-

Mean, FET-Median, and PTT-Majority maintain robust accuracy levels,
highlighting their adaptability across varying imbalance levels. The GMM
baseline detect around 60% of ILs, while MINE and PC-softmax falls below
50%, , indicating random-like detection.

243

A. Appendix

Cisco

The Cisco server, a vulnerable imitation, presents unique challenges in detection
accuracy across all tested ILD approaches, with none surpassing an overall
accuracy of 60% on imbalanced datasets. Performance slightly improves on
balanced datasets, as seen with TabPFN and AutoGluon methods like Mid-

Point, FET-Mean, and PTT-Majority, which show consistency around
60% accuracy. However, these methods still struggle with high false positive
rate (FPR), especially in imbalanced scenarios, indicating significant sensitivity
to class distribution shifts. This contrasts with the relatively better accuracy
levels in other vulnerable servers, where most approaches detect 90% of ILs.

Notably, while methods like PC-softmax achieve lower FPR in Cisco’s balanced
datasets, they are still hampered by false negative rates (FNRs) close to 100%

in imbalanced conditions, underscoring the limited generalization capability on
this server. The consistently low accuracy across class imbalances highlights
the Cisco server’s distinct detection challenge, suggesting a need for specialized
tuning to manage the unique IL signature.

Facebook

The Facebook server shows varied performance across ILD approaches, es-
pecially under different class imbalances.For high imbalances (𝑟 = 0.1, 0.3),
TabPFN’s IR Cal Log-Loss and HB Cal Log-Loss reach perfect accuracy
with no false positives, while AutoGluon’s PTT-Majority achieves 98%

accuracy with a minor false positive rate of 5%.However, other approaches,
particularly AutoGluon’s Log-Loss and TS Cal Log-Loss, show moderate
success, managing 86% accuracy.With a balanced dataset, most techniques,
including AutoGluon Mid-Point and TabPFN’s FET-Mean, achieve 100%

accuracy, effectively reducing false positives and negatives, demonstrating a
robust detection capability for Facebook’s data patterns.

244

A. Appendix

NetScalerGCM

On the NetScalerGCM server, ILD approaches illustrate differences in perfor-
mance across imbalanced datasets. At 𝑟 = 0.1, 0.3, AutoGluon’s FET-Median

attains perfect accuracy, while TabPFN’s FET-Mean and PTT-Majority

consistently achieve 100% accuracy across all imbalances.This server highlights
the effectiveness of both TabPFN and AutoGluon approaches in detecting
information leakage, with TabPFN’s IR Cal Log-Loss performing strongly
as imbalance decreases. For balanced datasets, all approaches reach 100%

accuracy, implying high sensitivity of these techniques in identifying ILs.

PAN-OS

The PAN-OS server results show that both AutoGluon and TabPFN techniques
can achieve near-perfect detection performance, especially on more balanced
datasets. With high imbalance (𝑟 = 0.1), TabPFN’s FET-Median and
AutoGluon’s FET-Mean reach 100% accuracy, while others, like TabPFN’s
HB Cal Log-Loss, maintain zero false positives. As the dataset becomes more
balanced, most approaches, including AutoGluon Log-Loss and TabPFN TS

Cal Log-Loss, achieve 100% accuracy. PAN-OS demonstrates high detection
accuracy across different class imbalances in the dataset, making it one of the
most detectable servers.

A.2.3. Summary

The results suggest that methods like FET-Mean, FET-Median, PTT-

Majority, and calibration-based Cal Log-Loss approaches are well-suited
for environments with significant vulnerabilities, consistently achieving high
detection rates across servers vulnerable to error codes. Baseline methods,
particularly MINE and PC-softmax, generally fail to detect vulnerabilities
but occasionally perform well on non-vulnerable servers by correctly miss-
ing non-existent ILs, as noted in Sections A.4 and 4.3. This reflects their

245

A. Appendix

tendency to underestimate MI, limiting their sensitivity to nuanced leaks in
vulnerable contexts but proving useful for non-vulnerable scenarios. Notably,
ILD approaches using AutoGluon outperform TabPFN on error code datasets,
contrasting with TabPFN’s superior performance on timing-based servers, as
detailed in Appendix A.3 and Section 5.3. This suggests that AutoGluon
excels in error code contexts, while TabPFN is better suited for timing-based
vulnerabilities, emphasizing the importance of aligning AutoML tool selection
with dataset characteristics.

A.3. ILD Generalizability on Timing Datasets

In this section, the generalizability of ILD approaches is explored in comparison
to state-of-the-art methods. Heatmaps are employed to depict key performance
metrics, such as Accuracy, FPR, and FNR, with respect to the time delay. The
time delay is defined as the difference in computation time between correctly
padded messages and manipulated (incorrectly) padded messages sent to the
OpenSSL TLS server. The generalization capability of various ILD approaches
to detect timing side channels is assessed to mitigate the Bleichenbacher attack,
with a focus on performance metrics like detection accuracy, FPR, and FNR.
The analysis uses the heatmaps with a fixed rejection threshold of 5 (𝜏 = 5)
to illustrate the generalization performance of these ILD approaches. The
performance is demonstrated relative to time delays in linear increments of 5 µs
and to delays in logarithmic steps of 2 µs, in Figures A.2 and A.3, respectively.

A.3.1. TabPFN

This section delves into a comprehensive analysis of MI and classification-based
ILD approaches using TabPFN. Typically, ILD approaches employing TabPFN
show reduced effectiveness in detecting ILs in systems generating imbalanced

246

A. Appendix

AutoGluon Mid-Point
AutoGluon Log-Loss

AutoGluon IR Cal Log-Loss
AutoGluon PS Cal Log-Loss

AutoGluon Beta Cal Log-Loss
AutoGluon TS Cal Log-Loss
AutoGluon HB Cal Log-Loss

AutoGluon PTT-Majority
AutoGluon PTT-Random

AutoGluon FET-Mean
AutoGluon FET-Median

TabPFN Mid-Point
TabPFN Log-Loss

TabPFN IR Cal Log-Loss
TabPFN PS Cal Log-Loss

TabPFN Beta Cal Log-Loss
TabPFN TS Cal Log-Loss
TabPFN HB Cal Log-Loss

TabPFN PTT-Majority
TabPFN PTT-Random

TabPFN FET-Mean
TabPFN FET-Median

GMM Baseline
MINE Baseline

PC-Softmax Baseline

.50 .50 .49 .50 .50 .50

.49 .50 .50 .53 .48 .52

.50 .50 .49 .50 .50 .50

.49 .50 .50 .53 .48 .52

.49 .50 .50 .52 .47 .51

.49 .50 .50 .53 .48 .52

.50 .50 .49 .50 .50 .50

.47 .53 .48 .48 .47 .48

.50 .50 .49 .50 .50 .50

.52 .52 .48 .50 .61 .60

.51 .54 .58 .55 .58 .62

.50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .50 .50

.51 .55 .56 .72 .93 .97

.50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .50 .50

.50 .50 .51 .48 .50 .52

.50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .50 .50

.50 .50 .53 .50 .50 .50

.49 .47 .51 .49 .51 .47

.49 .49 .51 .53 .48 .52

Detection Accuracy
1.0 1.0 1.0 1.0 1.0 1.0

.04 .08 .10 .04 .10 .04

1.0 1.0 .98 .98 1.0 1.0

.04 .08 .10 .04 .10 .04

.04 .08 .10 .04 .10 .04

.04 .08 .10 .04 .10 .04

1.0 1.0 .98 .98 1.0 1.0

.10 .06 .22 .16 .06 .18

1.0 1.0 1.0 1.0 1.0 1.0

.10 .02 .04 .06 .14 .02

.32 .20 .12 .18 .48 .22

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

.04 .03 .04 .02 .01 .03

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

.00 .00 .00 .04 .02 .02

.00 .00 .00 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 1.0

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

1.0 1.0 .94 1.0 1.0 1.0

.06 .16 .12 .04 .06 .10

.04 .08 .06 .04 .10 .04

Class Imbalance r = 0.1
False Positive Rate

.00 .00 .02 .00 .00 .00

.98 .92 .90 .90 .94 .92

.00 .00 .04 .02 .00 .00

.98 .92 .90 .90 .94 .92

.98 .92 .90 .92 .96 .94

.98 .92 .90 .90 .94 .92

.00 .00 .04 .02 .00 .00

.96 .88 .82 .88 1.0 .86

.00 .00 .02 .00 .00 .00

.86 .94 1.0 .94 .64 .78

.66 .72 .72 .72 .36 .54

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

.94 .87 .83 .54 .12 .02

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

1.0 1.0 .98 1.0 .98 .94

1.0 1.0 1.0 1.0 1.0 1.0

.00 .00 .00 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

.00 .00 .00 .00 .00 .00

.96 .90 .86 .98 .92 .96

.98 .94 .92 .90 .94 .92

False Negative Rate

AutoGluon Mid-Point
AutoGluon Log-Loss

AutoGluon IR Cal Log-Loss
AutoGluon PS Cal Log-Loss

AutoGluon Beta Cal Log-Loss
AutoGluon TS Cal Log-Loss
AutoGluon HB Cal Log-Loss

AutoGluon PTT-Majority
AutoGluon PTT-Random

AutoGluon FET-Mean
AutoGluon FET-Median

TabPFN Mid-Point
TabPFN Log-Loss

TabPFN IR Cal Log-Loss
TabPFN PS Cal Log-Loss

TabPFN Beta Cal Log-Loss
TabPFN TS Cal Log-Loss
TabPFN HB Cal Log-Loss

TabPFN PTT-Majority
TabPFN PTT-Random

TabPFN FET-Mean
TabPFN FET-Median

GMM Baseline
MINE Baseline

PC-Softmax Baseline

.50 .50 .50 .50 .50 .51

.48 .50 .47 .54 .72 .89

.50 .50 .50 .50 .50 .51

.48 .51 .48 .54 .73 .88

.48 .49 .48 .53 .72 .87

.48 .50 .47 .54 .72 .89

.50 .50 .50 .50 .50 .51

.50 .50 .49 .49 .47 .48

.50 .50 .51 .51 .49 .50

.55 .56 .68 .76 .78 .83

.58 .66 .67 .72 .86 .87

.50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .50 .50

.69 .82 .91 .98 .96 .97

.50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .50 .50

.51 .49 .54 .92 .98 1.0

.50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .50 .50

.52 .48 .51 .49 .49 .50

.49 .50 .50 .52 .48 .52

1.0 1.0 1.0 1.0 1.0 .98

.04 .04 .06 .04 .06 .02

1.0 1.0 1.0 1.0 1.0 .98

.04 .02 .04 .02 .02 .02

.04 .02 .04 .04 .06 .02

.04 .04 .06 .04 .06 .02

1.0 1.0 1.0 1.0 1.0 .98

.00 .04 .02 .02 .06 .04

.98 .98 .98 .98 1.0 1.0

.12 .02 .06 .00 .00 .02

.40 .24 .30 .34 .12 .26

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

.00 .06 .08 .03 .08 .05

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

.00 .02 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 1.0

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 1.0

.06 .12 .04 .06 .08 .10

.04 .08 .10 .04 .10 .04

Class Imbalance r = 0.3
.00 .00 .00 .00 .00 .00

1.0 .96 1.0 .88 .50 .20

.00 .00 .00 .00 .00 .00

1.0 .96 1.0 .90 .52 .22

1.0 1.0 1.0 .90 .50 .24

1.0 .96 1.0 .88 .50 .20

.00 .00 .00 .00 .00 .00

1.0 .96 1.0 1.0 1.0 1.0

.02 .02 .00 .00 .02 .00

.78 .86 .58 .48 .44 .32

.44 .44 .36 .22 .16 .00

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

.62 .30 .10 .00 .00 .00

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

.99 1.0 .92 .16 .03 .00

1.0 1.0 1.0 1.0 1.0 1.0

.00 .00 .00 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

.00 .00 .00 .00 .00 .00

.90 .92 .94 .96 .94 .90

.98 .92 .90 .92 .94 .92

10 15 20 25 30 35

AutoGluon Mid-Point
AutoGluon Log-Loss

AutoGluon IR Cal Log-Loss
AutoGluon PS Cal Log-Loss

AutoGluon Beta Cal Log-Loss
AutoGluon TS Cal Log-Loss
AutoGluon HB Cal Log-Loss

AutoGluon PTT-Majority
AutoGluon PTT-Random

AutoGluon FET-Mean
AutoGluon FET-Median

TabPFN Mid-Point
TabPFN Log-Loss

TabPFN IR Cal Log-Loss
TabPFN PS Cal Log-Loss

TabPFN Beta Cal Log-Loss
TabPFN TS Cal Log-Loss
TabPFN HB Cal Log-Loss

TabPFN PTT-Majority
TabPFN PTT-Random

TabPFN FET-Mean
TabPFN FET-Median

GMM Baseline
MINE Baseline

PC-Softmax Baseline

.59 .74 .90 .95 1.0 1.0

.74 .79 .79 .82 .85 .84

.50 .50 .50 .50 .50 .50

.74 .79 .79 .82 .85 .84

.74 .79 .79 .82 .85 .84

.74 .79 .79 .82 .85 .84

.52 .54 .51 .54 .51 .55

.57 .78 .91 .95 .99 1.0

.56 .64 .83 .92 .99 .97

.50 .50 .59 .80 .83 .96

.53 .53 .78 .87 .98 1.0

.48 .61 .68 .78 .89 .97

.50 .50 .47 .91 .96 .98

.49 .83 .97 .99 .97 .98

.50 .50 .47 .91 .96 .98

.50 .50 .47 .91 .96 .98

.50 .50 .47 .91 .96 .98

.47 .67 .94 .97 .96 .99

.50 .64 .80 .93 .98 .99

.49 .55 .66 .82 .94 .94

.50 .50 .52 .60 .78 .82

.50 .50 .60 .73 .87 .93

.50 .50 .49 .50 .49 .49

.49 .50 .51 .53 .50 .48

.49 .50 .50 .53 .50 .53

10 15 20 25 30 35

Delay in micro-seconds (µs)

.10 .00 .00 .00 .00 .00

.52 .42 .42 .36 .30 .32

1.0 1.0 1.0 1.0 1.0 1.0

.52 .42 .42 .36 .30 .32

.52 .42 .42 .36 .30 .32

.52 .42 .42 .36 .30 .32

.96 .92 .98 .92 .98 .90

.12 .00 .00 .00 .00 .00

.04 .00 .02 .00 .00 .00

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

.34 .14 .22 .35 .18 .04

.00 .06 .08 .04 .07 .04

.03 .04 .04 .02 .04 .04

.00 .06 .08 .04 .07 .04

.00 .06 .08 .04 .07 .04

.00 .06 .08 .04 .07 .04

.06 .04 .02 .05 .08 .02

.00 .00 .00 .00 .00 .00

.02 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 1.0

.08 .08 .12 .00 .04 .16

.04 .08 .10 .04 .06 .02

Balanced

10 15 20 25 30 35

.72 .52 .20 .10 .00 .00

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

.74 .44 .18 .10 .02 .00

.84 .72 .32 .16 .02 .06

1.0 1.0 .82 .40 .34 .08

.94 .94 .44 .26 .04 .00

.70 .64 .42 .09 .04 .01

1.0 .94 .99 .13 .01 .00

.99 .30 .02 .00 .03 .00

1.0 .94 .99 .13 .00 .00

1.0 .94 .99 .13 .00 .00

1.0 .94 .99 .13 .00 .00

1.0 .63 .10 .00 .00 .00

1.0 .73 .41 .14 .04 .01

1.0 .89 .68 .35 .12 .13

1.0 1.0 .96 .80 .45 .36

1.0 1.0 .79 .53 .26 .15

.00 .00 .02 .00 .02 .02

.94 .92 .86 .94 .96 .88

.98 .92 .90 .90 .94 .92

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ILD with Rejection Threshold = 5, τ ≥ 5

Figure A.2.: Performance of ILD approaches versus time delay with 5 µs steps

247

A. Appendix

AutoGluon Mid-Point
AutoGluon Log-Loss

AutoGluon IR Cal Log-Loss
AutoGluon PS Cal Log-Loss

AutoGluon Beta Cal Log-Loss
AutoGluon TS Cal Log-Loss
AutoGluon HB Cal Log-Loss

AutoGluon PTT-Majority
AutoGluon PTT-Random

AutoGluon FET-Mean
AutoGluon FET-Median

TabPFN Mid-Point
TabPFN Log-Loss

TabPFN IR Cal Log-Loss
TabPFN PS Cal Log-Loss

TabPFN Beta Cal Log-Loss
TabPFN TS Cal Log-Loss
TabPFN HB Cal Log-Loss

TabPFN PTT-Majority
TabPFN PTT-Random

TabPFN FET-Mean
TabPFN FET-Median

GMM Baseline
MINE Baseline

PC-Softmax Baseline

.50 .50 .50 .50 .50 .50 .50 .50 .50

.43 .43 .57 .47 .53 .50 .50 .83 .93

.53 .50 .50 .50 .50 .50 .50 .50 .50

.47 .43 .57 .47 .53 .50 .50 .83 .93

.43 .43 .57 .47 .53 .50 .50 .80 .93

.43 .43 .57 .47 .53 .50 .50 .83 .93

.53 .50 .50 .50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .53 .50 .50 .63 1.0

.53 .50 .50 .50 .50 .50 .50 .50 .50

.50 .50 .53 .50 .47 .53 .80 1.0 1.0

.50 .47 .57 .60 .50 .60 .87 .87 .93

.50 .50 .50 .50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .50 .50 .50 .50 .50

.52 .57 .52 .57 .60 .90 1.0 1.0 1.0

.50 .50 .50 .50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .50 .50 .50 .50 .50

.50 .50 .53 .50 .50 .60 1.0 1.0 1.0

.50 .50 .50 .50 .50 .50 .50 .78 1.0

.50 .50 .50 .50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .50 .50 .50 .97 1.0

.50 .50 .50 .50 .50 .50 .50 1.0 1.0

.50 .50 .50 .50 .50 .47 .50 .50 .50

.53 .50 .57 .50 .50 .43 .47 .50 .50

.43 .47 .57 .47 .53 .53 .53 .50 .47

Detection Accuracy
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

.13 .13 .00 .07 .00 .07 .07 .00 .13

.87 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

.07 .13 .00 .07 .00 .07 .07 .00 .13

.13 .13 .00 .07 .00 .07 .07 .00 .13

.13 .13 .00 .07 .00 .07 .07 .00 .13

.87 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

.07 .00 .00 .00 .07 .00 .00 .00 .00

.93 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

.00 .00 .00 .00 .07 .00 .00 .00 .00

.13 .33 .00 .07 .13 .40 .27 .27 .13

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

.03 .13 .00 .07 .07 .07 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

.00 .20 .00 .07 .07 .27 .07 .07 .00

.13 .07 .00 .07 .00 .00 .07 .00 .07

Class Imbalance r = 0.1
False Positive Rate

.00 .00 .00 .00 .00 .00 .00 .00 .00

1.0 1.0 .87 1.0 .93 .93 .93 .33 .00

.07 .00 .00 .00 .00 .00 .00 .00 .00

1.0 1.0 .87 1.0 .93 .93 .93 .33 .00

1.0 1.0 .87 1.0 .93 .93 .93 .40 .00

1.0 1.0 .87 1.0 .93 .93 .93 .33 .00

.07 .00 .00 .00 .00 .00 .00 .00 .00

.93 1.0 1.0 1.0 .87 1.0 1.0 .73 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

1.0 1.0 .93 1.0 1.0 .93 .40 .00 .00

.87 .73 .87 .73 .87 .40 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.93 .73 .97 .80 .73 .13 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

1.0 1.0 .93 1.0 1.0 .80 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 1.0 1.0 .43 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 1.0 1.0 .07 .00

1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 .00

.00 .00 .00 .00 .00 .07 .00 .00 .00

.93 .80 .87 .93 .93 .87 1.0 .93 1.0

1.0 1.0 .87 1.0 .93 .93 .87 1.0 1.0

False Negative Rate

AutoGluon Mid-Point
AutoGluon Log-Loss

AutoGluon IR Cal Log-Loss
AutoGluon PS Cal Log-Loss

AutoGluon Beta Cal Log-Loss
AutoGluon TS Cal Log-Loss
AutoGluon HB Cal Log-Loss

AutoGluon PTT-Majority
AutoGluon PTT-Random

AutoGluon FET-Mean
AutoGluon FET-Median

TabPFN Mid-Point
TabPFN Log-Loss

TabPFN IR Cal Log-Loss
TabPFN PS Cal Log-Loss

TabPFN Beta Cal Log-Loss
TabPFN TS Cal Log-Loss
TabPFN HB Cal Log-Loss

TabPFN PTT-Majority
TabPFN PTT-Random

TabPFN FET-Mean
TabPFN FET-Median

GMM Baseline
MINE Baseline

PC-Softmax Baseline

.50 .50 .53 .50 .50 .50 .50 .50 .50

.47 .50 .57 .47 .50 .87 1.0 1.0 .93

.50 .50 .53 .50 .50 .50 .50 .50 .50

.50 .50 .57 .47 .50 .83 1.0 1.0 .93

.50 .50 .57 .50 .50 .87 1.0 1.0 .97

.47 .50 .57 .47 .50 .87 1.0 1.0 .93

.50 .50 .53 .50 .50 .50 .50 .50 .50

.47 .50 .50 .47 .50 .50 .77 1.0 1.0

.50 .47 .50 .50 .53 .50 .53 .50 .50

.50 .50 .50 .50 .50 .57 1.0 1.0 1.0

.50 .53 .50 .53 .53 .97 1.0 1.0 1.0

.50 .50 .50 .50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .50 .50 .50 .50 .50

.47 .63 .52 .53 .60 .88 .98 .95 .92

.50 .50 .50 .50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .53 1.0 1.0 1.0 1.0

.50 .50 .50 .50 .50 .50 .73 1.0 1.0

.50 .50 .50 .50 .50 .50 .50 .50 .50

.50 .50 .50 .50 .50 .50 .82 1.0 1.0

.50 .50 .50 .50 .50 .50 1.0 1.0 1.0

.50 .50 .50 .50 .50 .50 .50 .50 .50

.47 .47 .43 .47 .47 .50 .43 .53 .47

.43 .47 .57 .47 .50 .50 .53 .50 .43

1.0 1.0 .93 1.0 1.0 1.0 1.0 1.0 1.0

.07 .00 .00 .07 .00 .00 .00 .00 .13

1.0 1.0 .93 1.0 1.0 1.0 1.0 1.0 1.0

.00 .00 .00 .07 .00 .00 .00 .00 .13

.00 .00 .00 .00 .00 .00 .00 .00 .07

.07 .00 .00 .07 .00 .00 .00 .00 .13

1.0 1.0 .93 1.0 1.0 1.0 1.0 1.0 1.0

.07 .00 .00 .07 .00 .00 .07 .00 .00

1.0 .93 .93 .93 .93 1.0 .93 1.0 1.0

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

.27 .10 .17 .10 .40 .23 .03 .10 .17

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

.07 .13 .13 .07 .07 .07 .13 .00 .13

.13 .07 .00 .07 .00 .07 .07 .00 .13

Class Imbalance r = 0.3
.00 .00 .00 .00 .00 .00 .00 .00 .00

1.0 1.0 .87 1.0 1.0 .27 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

1.0 1.0 .87 1.0 1.0 .33 .00 .00 .00

1.0 1.0 .87 1.0 1.0 .27 .00 .00 .00

1.0 1.0 .87 1.0 1.0 .27 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 1.0 .40 .00 .00

.00 .13 .07 .07 .00 .00 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 .87 .00 .00 .00

1.0 .93 1.0 .93 .93 .07 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.80 .63 .80 .83 .40 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

1.0 1.0 1.0 1.0 .93 .00 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 1.0 .53 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 1.0 .37 .00 .00

1.0 1.0 1.0 1.0 1.0 1.0 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

1.0 .93 1.0 1.0 1.0 .93 1.0 .93 .93

1.0 1.0 .87 1.0 1.0 .93 .87 1.0 1.0

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

AutoGluon Mid-Point
AutoGluon Log-Loss

AutoGluon IR Cal Log-Loss
AutoGluon PS Cal Log-Loss

AutoGluon Beta Cal Log-Loss
AutoGluon TS Cal Log-Loss
AutoGluon HB Cal Log-Loss

AutoGluon PTT-Majority
AutoGluon PTT-Random

AutoGluon FET-Mean
AutoGluon FET-Median

TabPFN Mid-Point
TabPFN Log-Loss

TabPFN IR Cal Log-Loss
TabPFN PS Cal Log-Loss

TabPFN Beta Cal Log-Loss
TabPFN TS Cal Log-Loss
TabPFN HB Cal Log-Loss

TabPFN PTT-Majority
TabPFN PTT-Random

TabPFN FET-Mean
TabPFN FET-Median

GMM Baseline
MINE Baseline

PC-Softmax Baseline

.50 .50 .50 .50 .57 1.0 1.0 1.0 1.0

.50 .50 .63 .57 .77 .80 .83 .80 .87

.50 .50 .50 .50 .53 .50 .50 .50 .50

.50 .50 .63 .57 .77 .80 .83 .80 .87

.50 .50 .63 .57 .77 .80 .83 .80 .87

.50 .50 .63 .57 .77 .80 .83 .80 .87

.47 .53 .57 .50 .53 .53 .53 .57 .53

.50 .50 .50 .50 .60 1.0 1.0 1.0 1.0

.50 .50 .50 .50 .53 .93 1.0 1.0 1.0

.50 .50 .50 .50 .50 .70 1.0 1.0 1.0

.50 .50 .50 .50 .50 .93 1.0 1.0 1.0

.52 .40 .40 .57 .45 .85 .77 .90 .77

.47 .47 .53 .50 .52 1.0 1.0 1.0 .97

.50 .47 .52 .50 .78 1.0 1.0 1.0 .98

.47 .47 .53 .50 .52 1.0 1.0 1.0 .97

.47 .47 .53 .50 .52 1.0 1.0 1.0 .97

.47 .47 .53 .50 .52 1.0 1.0 1.0 .97

.48 .47 .57 .50 .60 .97 .98 1.0 .97

.50 .50 .50 .50 .57 .98 1.0 1.0 1.0

.50 .50 .50 .50 .50 .93 1.0 1.0 .97

.50 .50 .50 .50 .50 .55 1.0 1.0 1.0

.50 .50 .50 .50 .50 .77 1.0 1.0 1.0

.50 .50 .50 .50 .50 .53 .50 .50 .50

.47 .53 .60 .50 .53 .47 .53 .53 .47

.43 .47 .57 .47 .53 .50 .57 .50 .43

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

Delay in micro-seconds (µs)

.00 .00 .00 .00 .00 .00 .00 .00 .00

.53 .53 .33 .53 .47 .40 .33 .40 .27

1.0 1.0 1.0 1.0 .93 1.0 1.0 1.0 1.0

.53 .53 .33 .53 .47 .40 .33 .40 .27

.53 .53 .33 .53 .47 .40 .33 .40 .27

.53 .53 .33 .53 .47 .40 .33 .40 .27

1.0 .93 .80 1.0 .93 .93 .93 .87 .93

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.40 .53 .40 .33 .20 .27 .47 .20 .47

.07 .07 .00 .00 .00 .00 .00 .00 .07

.00 .07 .03 .00 .00 .00 .00 .00 .03

.07 .07 .00 .00 .00 .00 .00 .00 .07

.07 .07 .00 .00 .00 .00 .00 .00 .07

.07 .07 .00 .00 .00 .00 .00 .00 .07

.03 .07 .00 .00 .00 .07 .03 .00 .07

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .07

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 .93 1.0 1.0 1.0

.13 .07 .07 .07 .07 .07 .07 .00 .20

.13 .07 .00 .07 .00 .07 .07 .00 .13

Balanced

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

1.0 1.0 1.0 1.0 .87 .00 .00 .00 .00

.47 .47 .40 .33 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.47 .47 .40 .33 .00 .00 .00 .00 .00

.47 .47 .40 .33 .00 .00 .00 .00 .00

.47 .47 .40 .33 .00 .00 .00 .00 .00

.07 .00 .07 .00 .00 .00 .00 .00 .00

1.0 1.0 1.0 1.0 .80 .00 .00 .00 .00

1.0 1.0 1.0 1.0 .93 .13 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 .60 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 .13 .00 .00 .00

.57 .67 .80 .53 .90 .03 .00 .00 .00

1.0 1.0 .93 1.0 .97 .00 .00 .00 .00

1.0 1.0 .93 1.0 .43 .00 .00 .00 .00

1.0 1.0 .93 1.0 .97 .00 .00 .00 .00

1.0 1.0 .93 1.0 .97 .00 .00 .00 .00

1.0 1.0 .93 1.0 .97 .00 .00 .00 .00

1.0 1.0 .87 1.0 .80 .00 .00 .00 .00

1.0 1.0 1.0 1.0 .87 .03 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 .13 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 .90 .00 .00 .00

1.0 1.0 1.0 1.0 1.0 .47 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.93 .87 .73 .93 .87 1.0 .87 .93 .87

1.0 1.0 .87 1.0 .93 .93 .80 1.0 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ILD with Rejection Threshold = 5, τ ≥ 5

Figure A.3.: Performance of ILD approaches versus time delay with logarithmic
step of 2 µs

248

A. Appendix

datasets compared to those producing balanced ones. Remarkably, TabPFN IR

Cal Log-Loss stands out in terms of generalization performance, detecting
over 60% of the ILs in systems with a minimal time delay less than 20 µs.

Classification-based Approaches

When focusing on the balanced datasets, TabPFN PTT-Majority stands out
in detecting ILs. On the other hand, TabPFN FET-Median proves to be more
adept in detecting ILs for imbalanced datasets. In the context of imbalanced
datasets, the classification-based ILD approaches using TabPFN can detect
ILs only when the time delay of the systems exceeds 35 µs. For delays shorter
than 35 µs, these methodologies fall short in detecting in any ILs, resulting
in a 100% FNR. Amongst all, TabPFN FET-Median showcases the best
detection performance for imbalanced synthetic datasets. Detecting ILs in
systems generating balanced datasets is comparatively easier. In this context,
the classification-based ILD approaches using TabPFN In systems producing
balanced datasets, the classification-based ILD approaches using TabPFN can
detect ILs in systems even with a slight time delay of at least 15 µs. For systems
with minimal time delay below 15 µs, all these approaches fail in detecting
ILs, yielding a 100% FNR. Particularly, TabPFN PTT-Majority displays
superior detection Accuracy, occasionally detecting over 60% of the ILs in
systems with time delay beyond 15 µs.

MI-based Approaches

Overall, TabPFN IR Cal Log-Loss is the most proficient in detecting ILs for
balanced and imbalanced synthetic datasets. In the context of the imbalanced
datasets, most MI-based approaches using TabPFN, except for IR Cal Log-

Loss and HB Cal Log-Loss, face challenges in detecting 50% of the ILs,
leading to random detection decisions. This behavior arises because these
approaches tend to overfit by overestimating MI, leading to the detection of
non-existent ILs and yielding a 100% FPR. Both TabPFN IR Cal Log-Loss

249

A. Appendix

and HB Cal Log-Loss approach detect over 80% of the ILs in systems with
time delay above 32 µs. Impressively, TabPFN IR Cal Log-Loss approach
occasionally detects over 55% of the ILs in systems with very minimal time delay
under 20 µs. This highlights the remarkable enhancement IR Cal Log-Loss

brings to the Log-Loss approach, with HB Cal Log-Loss also contributing
positively. For systems producing balanced datasets, MI-based ILD approaches
using TabPFN display significantly improved performance. They can reliably
detect ILs even in systems with short delays of 15 µs, with TabPFN IR Cal

Log-Loss occasionally detecting more than 80% of the ILs. However, for
systems with delays under 15 µs, detection fails with a 100% FNR.

A.3.2. AutoGluon

This section delves into a comprehensive analysis of classification and MI-based
ILD approaches using AutoGluon. Generally, ILD approaches using AutoGluon
face greater challenges with imbalanced synthetic datasets, especially with
shorter time delays. Notably, the generalization capability of ILD approaches
using AutoGluon is commendable, detecting occasionally over 65% of ILs in
systems, even with time delays under 20 µs.

Classification-based Approaches

The FET based classification ILD approaches using AutoGluon reveal compa-
rable performances for both balanced and imbalanced synthetic datasets, albeit
with minor differences. However, the AutoGluon PTT-Majority approach
demonstrates superior detection performance on balanced synthetic datasets
compared to the imbalanced ones. For imbalanced datasets, the classification-
based ILD approaches using AutoGluon start reliably detecting ILs in systems
with time delays exceeding 30 µs. Below this threshold, their detection perfor-
mance plummets significantly, often missing the majority of ILs, resulting in
an elevated FNR (typically around 100%). The AutoGluon FET-Median

250

A. Appendix

approach appears to have a slight edge over the other. When considering
balanced synthetic datasets, AutoGluon’s classification-based ILD approaches
excel, reliably detecting ILs even in systems with a brief time delay of 15 µs,
occasionally achieving over 60% detection accuracy. Mirroring the findings
from TabPFN, the PTT-Majority approach using AutoGluon consistently
stands out as the top performer for balanced synthetic datasets.

MI-based Approaches

Upon a deeper performance inspection of MI-based ILD approaches using
AutoGluon, it is evident that AutoGluon Mid-Point notably thrives in de-
tecting ILs in balanced synthetic datasets, whereas AutoGluon Log-Loss

is exceptionally proficient for imbalanced ones. Intriguingly, the calibration
techniques (Cal Log-Loss) fail to enhance the performance of AutoGluon
Log-Loss approach and, in some instances, even deteriorate its effectiveness.
Within imbalanced datasets, AutoGluon’s MI-based approaches generally strug-
gle, especially for shorter delays. Their performance consistency improves for
time delays beyond 25 µs, with Log-Loss variant emerging as the front runner.
Most calibration techniques (Cal Log-Loss) do not augment the Log-Loss

approach’s performance. In fact, employing the IR Cal Log-Loss and HB

Cal Log-Loss methods negatively impact its performance, leading to the
detection of non-existent ILs, potentially stemming from overfitting or over-
estimating MI, leading to a 100% FPR, which is consistent with the findings
in Sections 4.3.1 and 5.3.1. As expected, the AutoGluon Mid-Point approach
also mistakenly detects non-existent ILs, leading to a 100% FPR. For balanced
datasets, the MI-based approaches exhibit enhanced performance, with most
methods detecting approximately 74% ILs in systems with time delay over
10 µs, AutoGluon Mid-Point approach emerging as the front runner. However,
like the imbalanced counterparts, calibration techniques (Cal Log-Loss) do
not improve the Log-Loss approach’s performance. In fact, employing the IR

Cal Log-Loss and HB Cal Log-Loss methods diminish its efficacy, leading

251

A. Appendix

to the detection of non-existent ILs, potentially stemming from overfitting
or overestimating MI, leading to a 100% FPR, which is consistent with the
findings in Sections 4.3.1 and 5.3.1.

A.3.3. ILD Baselines

For the ILD baselines, the performance analysis predominantly indicates a
consistent behavior, regardless of the system’s datasets being balanced or
imbalanced. Generally, all baselines consistently achieve a detection accuracy
approximately equal to 50%. Interestingly, while MINE and PC-Softmax

often miss most of the ILs and produces false negatives, GMM leans towards
the opposite end of the spectrum, generating false positives and overestimating
MI. This tendency of GMM to overestimate MI is more pronounced in high-
dimensional datasets, where it’s traditionally known to be susceptible to mis-
estimation due to overfitting. However, it’s worth noting that occasionally,
both MINE and PC-Softmax demonstrate better performance, detecting
60% of ILs. Despite these occasional spikes in detection accuracy, the overall
performance of baselines emphasizes the necessity and superiority of more
specialized approaches in the realm of ILD.

A.3.4. Summary

Summarizing the observations, while calibration techniques (Cal Log-Loss)
tend to improve the detection capabilities of TabPFN Log-Loss, they some-
times either diminish the performance of AutoGluon Log-Loss or leave it
unaffected. In contrast, calibration techniques (Cal Log-Loss) didn’t signifi-
cantly impact TabPFN Log-Loss’s performance, as discussed in Section 4.3.1,
which indicate that the application and necessity of calibration techniques are
contingent upon the underlying system’s datasets, as discussed in Section 5.3.3.
For systems yielding balanced datasets, except IR Cal Log-Loss and HB

Cal Log-Loss methods using AutoGluon when detecting nearly 50% of ILs,

252

A. Appendix

often errs by overlooking most ILs, resulting in an elevated FNR (typically
around 100%). When AutoGluon employs the IR Cal Log-Loss and HB

Cal Log-Loss techniques detecting about 50% of ILs, tends to make arbitrary
detection decisions due to the identification of non-existent ILs, yielding a 100%

FPR, possibly because of overfitting or overestimation of MI. The observation
in Sections A.4 and 4.3.1 back the reason behind this behavior, where the
usage of calibration techniques for AutoGluon Log-Loss approach mostly
leads to overfitting and overestimating MI in non-vulnerable synthetic datasets,
resulting in the detection of non-existent ILs.

For systems with time delays between 1 to 256 𝜇-seconds that generate imbal-
anced datasets, the majority of MI-based approaches are prone to arbitrary
detection decisions, producing approximately 50% Accuracy. These approaches
often misidentify non-existent ILs, incurring around a 100% FPR, likely stem-
ming from overfitting or MI overestimations. The remaining MI-based ap-
proaches, which detect over 50% of the ILs in systems with longer time delays,
generally falter due to missing new ILs and yielding high FNR. Similarly,
classification-based approaches also underperform by failing to detect novel ILs
and producing high FNR. The baseline ILD approaches remain subpar, merely
detecting 50% of the ILs across all systems, making random decisions due to
elevated FPR or FNR (typically around 100%).

In summary, overall TabPFN IR Cal Log-Loss consistently demonstrate
robust performance across systems, whether those producing balanced or
imbalanced datasets. When using AutoGluon, the FET-Median method
stands out for imbalanced synthetic datasets, whereas the Mid-Point and
PTT-Majority strategies excel at detecting ILs in the systems producing
balanced datasets.

Notably, ILD approaches using TabPFN outperform AutoGluon on timing
datasets, while AutoGluon excels on error code servers, as detailed in Appendix
A.2 and Section 5.3. This suggests each AutoML tool is suited to specific
vulnerabilities, reinforcing the importance of adapting tool deployment to the
system’s dataset characteristics.

253

A. Appendix

2

4

6

8

10

C
la

ss
es

(M
)

.02 .01 .01 .01 .00 .00 .00 .00 .00 .00

.01 .01 .00 .00 .00 .00 .00 .00 .00 .00

.02 .01 .00 .00 .00 .00 .00 .00 .00 .00

.01 .01 .00 .00 .00 .00 .00 .00 .00 .00

.02 .01 .00 .00 .00 .00 .00 .00 .00 .00

AutoGluon Mid-Point

.42 .47 .36 .47 .50 .82 .48 .58 .51 .46

.39 .30 .36 .15 .18 .49 .62 .34 .54 .32

.35 .20 .12 .21 .32 .45 .46 .59 .49 .70

.35 .09 .24 .15 .20 .31 .23 .42 .20 .41

.38 .49 .22 .13 .12 .22 .19 .22 .34 .31

AutoGluon Log-Loss

.02 .01 .00 .01 .00 .01 .00 .00 .01 .01

.01 .01 .01 .20 .00 .00 .00 .00 .00 .00

.01 .01 .00 .00 .00 .00 .00 .00 .00 .00

.02 .01 .00 .00 .00 .00 .00 .00 .00 .20

.01 .00 .00 .00 .00 .00 .00 .00 .00 .00

AutoGluon IR Cal Log-Loss

2

4

6

8

10

C
la

ss
es

(M
)

.02 .02 .01 .00 .00 .00 .00 .00 .00 .00

.02 .01 .00 .00 .00 .00 .00 .00 .00 .00

.02 .01 .01 .00 .00 .00 .00 .00 .00 .00

.02 .00 .00 .00 .00 .00 .00 .00 .00 .00

.03 .01 .01 .00 .00 .00 .00 .00 .00 .00

TabPFN Mid-Point

.03 .02 .00 .00 .00 .00 .00 .00 .00 .00

.01 .00 .00 .00 .00 .00 .00 .00 .00 .00

.01 .00 .00 .00 .00 .00 .00 .00 .00 .00

.02 .01 .00 .00 .00 .00 .00 .00 .00 .00

.01 .01 .00 .00 .00 .00 .00 .00 .00 .00

TabPFN Log-Loss

.03 .02 .00 .00 .00 .00 .00 .00 .00 .00

.01 .00 .00 .00 .00 .00 .00 .00 .00 .00

.01 .01 .00 .00 .00 .00 .00 .00 .00 .00

.02 .01 .00 .00 .00 .00 .00 .00 .00 .00

.01 .01 .00 .00 .00 .00 .00 .00 .00 .00

TabPFN PS Cal Log-Loss

2 4 6 8 10 12 14 16 18 20
Input Dimensions (d)

2

4

6

8

10

C
la

ss
es

(M
)

.01 .01 .01 .02 .11 .53 .40 .70 1.00 1.00

.01 .00 .00 .01 .07 .25 .28 .49 1.00 .80

.01 .00 .00 .01 .07 .27 .26 .44 .98 .39

.00 .00 .00 .01 .09 .29 .26 .50 .97 1.00

.00 .00 .00 .01 .07 .26 .26 .42 .96 1.00

GMM Baseline

2 4 6 8 10 12 14 16 18 20
Input Dimensions (d)

.82 .57 .95 .80 1.00 .22 .70 .62 .91 1.00

.69 .77 .78 .83 .80 .99 .82 .99 .82 .89

.91 .98 .96 .79 .98 .88 1.00 1.00 .90 .99

.72 .95 .98 1.00 .99 1.00 .97 1.00 1.00 .99

.90 .97 .97 .98 .99 .94 .99 .96 .90 1.00

MINE Baseline

2 4 6 8 10 12 14 16 18 20
Input Dimensions (d)

.58 .68 .47 .48 .49 .46 .57 .46 .46 .56

.62 .87 .70 .70 .66 .71 .72 .76 .66 .79

.68 .84 .78 .73 .76 .78 .75 .77 .90 .76

.85 .77 .83 .84 .76 .85 .75 .63 .67 .89

.82 .81 .88 .76 .75 .90 .83 .80 .83 .82

PC-Softmax Baseline

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Vulnerable ε = 0.0

(a) Balanced MVN perturbation synthetic dataset with 0% noise level

2

4

6

8

10

C
la

ss
es

(M
)

.02 .01 .01 .01 .00 .00 .00 .00 .00 .00

.02 .01 .00 .00 .00 .00 .00 .00 .00 .00

.02 .01 .00 .00 .00 .00 .00 .00 .00 .00

.02 .01 .00 .00 .00 .00 .00 .00 .00 .00

.02 .01 .00 .00 .00 .00 .00 .00 .00 .00

AutoGluon Mid-Point

.49 .55 .40 .38 .34 .51 .44 .58 .53 .44

.50 .18 .35 .21 .13 .53 .52 .48 .37 .39

.49 .15 .16 .20 .26 .35 .29 .37 .39 .38

.48 .13 .18 .17 .20 .37 .21 .43 .39 .41

.44 .24 .17 .13 .08 .33 .23 .28 .37 .30

AutoGluon Log-Loss

.02 .00 .01 .01 .00 .00 .00 .00 .00 .00

.01 .01 .01 .00 .00 .00 .00 .00 .00 .00

.01 .01 .00 .20 .00 .00 .00 .00 .00 .00

.01 .01 .00 .00 .00 .00 .00 .00 .00 .00

.01 .01 .20 .00 .00 .00 .00 .00 .00 .00

AutoGluon IR Cal Log-Loss

2

4

6

8

10

C
la

ss
es

(M
)

.02 .02 .01 .00 .00 .00 .00 .00 .00 .00

.02 .01 .00 .00 .00 .00 .00 .00 .00 .00

.02 .01 .01 .00 .00 .00 .00 .00 .00 .00

.02 .00 .00 .00 .00 .00 .00 .00 .00 .00

.03 .01 .01 .00 .00 .00 .00 .00 .00 .00

TabPFN Mid-Point

.03 .02 .00 .00 .00 .00 .00 .00 .00 .00

.01 .00 .00 .00 .00 .00 .00 .00 .00 .00

.01 .00 .00 .00 .00 .00 .00 .00 .00 .00

.02 .01 .00 .00 .00 .00 .00 .00 .00 .00

.01 .01 .00 .00 .00 .00 .00 .00 .00 .00

TabPFN Log-Loss

.03 .02 .00 .01 .00 .00 .00 .00 .00 .00

.01 .00 .00 .00 .00 .00 .00 .00 .00 .00

.01 .00 .00 .00 .00 .00 .00 .00 .00 .00

.02 .01 .00 .00 .00 .00 .00 .00 .00 .00

.01 .01 .00 .00 .00 .00 .00 .00 .00 .00

TabPFN TS Cal Log-Loss

2 4 6 8 10 12 14 16 18 20
Input Dimensions (d)

2

4

6

8

10

C
la

ss
es

(M
)

.01 .01 .01 .02 .11 .53 .40 .70 1.00 1.00

.01 .00 .00 .01 .07 .25 .28 .49 1.00 .80

.01 .00 .00 .01 .07 .27 .26 .44 .98 .39

.00 .00 .00 .01 .09 .29 .26 .50 .97 1.00

.00 .00 .00 .01 .07 .26 .26 .42 .96 1.00

GMM Baseline

2 4 6 8 10 12 14 16 18 20
Input Dimensions (d)

.82 .60 .95 .61 1.00 .41 .70 .76 .91 .98

.71 .79 .78 .83 .80 .99 .82 .99 .82 .89

.91 .98 .96 .79 .98 .88 1.00 1.00 .90 .99

.66 .95 .96 1.00 .99 1.00 .97 1.00 1.00 .99

.90 .97 .97 .98 .99 .94 .99 .96 .90 1.00

MINE Baseline

2 4 6 8 10 12 14 16 18 20
Input Dimensions (d)

.58 .68 .47 .48 .49 .46 .57 .46 .46 .56

.62 .87 .70 .70 .66 .71 .72 .76 .66 .79

.68 .84 .78 .73 .76 .78 .75 .77 .90 .76

.85 .77 .83 .84 .76 .85 .75 .63 .67 .89

.82 .81 .88 .76 .75 .90 .83 .80 .83 .82

PC-Softmax Baseline

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Vulnerable ε = 0.0

(b) Balanced MVN proximity synthetic dataset with 0% noise level

Figure A.4.: Generalizability of MI estimation methods on noise-free vulnerable
systems

A.4. Generalizability of MI Estimation Methods

The generalization capability of the MI estimation methods is assessed using
both AutoGluon and TabPFN in comparison to baseline methods, with the nor-
malized mean absolute error (NMAE) performance metric defined in eq. (4.11).
For each dataset type, namely balanced, binary-class, and multi-class imbal-

254

A. Appendix

2

4

6

8

10

C
la

ss
es

(M
)

.16 .17 .20 .20 .24 .21 .22 .19 .21 .20

.19 .23 .19 .20 .19 .22 .20 .20 .19 .20

.21 .21 .24 .21 .21 .21 .21 .21 .21 .24

.21 .22 .21 .24 .21 .22 .21 .21 .21 .21

.22 .22 .25 .22 .30 .22 .22 .22 .22 .22

AutoGluon Mid-Point

.12 .09 .12 .09 .12 .20 .09 .08 .17 .16

.18 .15 .19 .15 .22 .16 .10 .10 .10 .08

.12 .11 .14 .09 .13 .13 .17 .17 .14 .25

.20 .12 .16 .13 .11 .07 .11 .13 .15 .12

.12 .08 .06 .09 .10 .13 .13 .13 .12 .18

AutoGluon Log-Loss

.08 .13 .22 .22 .35 .22 .28 .27 .26 .20

.04 .16 .05 .17 .11 .11 .21 .13 .07 .22

.05 .11 .18 .16 .17 .11 .09 .10 .11 .10

.04 .20 .08 .17 .14 .29 .16 .08 .10 .05

.15 .22 .31 .24 .16 .17 .13 .09 .15 .06

AutoGluon IR Cal Log-Loss

2

4

6

8

10

C
la

ss
es

(M
)

.15 .16 .15 .15 .16 .16 .16 .15 .18 .19

.19 .20 .20 .20 .20 .20 .20 .20 .21 .22

.20 .21 .21 .21 .21 .21 .21 .21 .22 .23

.20 .21 .21 .21 .21 .21 .22 .22 .23 .23

.21 .21 .22 .22 .22 .22 .22 .22 .22 .23

TabPFN Mid-Point

.08 .07 .08 .09 .10 .11 .13 .12 .13 .13

.07 .07 .08 .09 .10 .11 .12 .12 .12 .13

.08 .08 .08 .07 .07 .07 .07 .06 .06 .05

.07 .06 .06 .04 .04 .03 .03 .03 .03 .03

.02 .02 .02 .04 .04 .05 .05 .07 .07 .08

TabPFN Log-Loss

.08 .07 .08 .09 .09 .10 .12 .12 .11 .12

.07 .07 .07 .09 .09 .09 .10 .09 .08 .07

.07 .08 .07 .07 .06 .05 .04 .03 .03 .03

.07 .06 .05 .03 .03 .03 .03 .03 .04 .05

.02 .02 .03 .04 .05 .07 .06 .08 .09 .10

TabPFN PS Cal Log-Loss

2 4 6 8 10 12 14 16 18 20
Input Dimensions (d)

2

4

6

8

10

C
la

ss
es

(M
)

.02 .03 .02 .04 .09 .18 .22 .22 .23 .27

.02 .05 .16 .22 .25 .28 .27 .31 .34 .39

.08 .11 .27 .28 .29 .27 .27 .30 .42 .39

.11 .09 .14 .19 .27 .27 .28 .33 .53 .57

.20 .21 .23 .24 .30 .35 .31 .39 .53 .64

GMM Baseline

2 4 6 8 10 12 14 16 18 20
Input Dimensions (d)

.15 .20 .21 .22 .26 .24 .30 .22 .26 .21

.21 .12 .19 .23 .22 .20 .27 .22 .22 .20

.23 .19 .28 .23 .26 .23 .29 .26 .25 .22

.20 .25 .23 .27 .23 .24 .30 .29 .28 .30

.24 .26 .28 .31 .30 .32 .31 .30 .31 .30

MINE Baseline

2 4 6 8 10 12 14 16 18 20
Input Dimensions (d)

.17 .12 .15 .15 .11 .13 .12 .11 .13 .16

.22 .26 .22 .24 .25 .23 .22 .22 .23 .25

.24 .27 .26 .24 .26 .27 .26 .27 .28 .27

.25 .28 .28 .29 .28 .26 .29 .30 .28 .27

.25 .28 .29 .31 .29 .30 .29 .30 .31 .30

PC-Softmax Baseline

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Vulnerable ε = 0.5

(a) Balanced MVN perturbation synthetic dataset with 50% noise level

2

4

6

8

10

C
la

ss
es

(M
)

.06 .04 .04 .04 .02 .02 .02 .01 .01 .01

.03 .03 .03 .03 .02 .01 .01 .00 .01 .01

.02 .03 .02 .02 .02 .01 .01 .01 .01 .00

.03 .02 .02 .02 .02 .01 .01 .00 .00 .00

.04 .03 .02 .02 .02 .00 .00 .00 .00 .00

AutoGluon Mid-Point

.28 .39 .35 .45 .41 .19 .42 .52 .51 .26

.28 .26 .42 .32 .29 .39 .19 .15 .26 .17

.28 .23 .30 .19 .33 .30 .28 .19 .29 .28

.23 .43 .32 .15 .25 .27 .34 .32 .26 .24

.35 .19 .34 .30 .25 .18 .26 .19 .30 .26

AutoGluon Log-Loss

.07 .07 .06 .05 .03 .02 .02 .01 .01 .03

.02 .08 .05 .03 .02 .11 .12 .00 .01 .01

.03 .05 .03 .02 .02 .12 .01 .01 .11 .01

.03 .14 .13 .12 .11 .11 .01 .01 .01 .01

.02 .03 .02 .12 .02 .20 .11 .00 .20 .10

AutoGluon IR Cal Log-Loss

2

4

6

8

10

C
la

ss
es

(M
)

.06 .04 .02 .02 .01 .01 .00 .00 .01 .00

.03 .03 .01 .01 .01 .01 .00 .00 .00 .00

.04 .03 .02 .01 .00 .00 .00 .00 .00 .00

.04 .03 .03 .01 .01 .00 .00 .00 .00 .00

.05 .05 .03 .01 .01 .01 .00 .00 .01 .00

TabPFN Mid-Point

.06 .05 .03 .01 .01 .01 .01 .01 .01 .00

.03 .03 .03 .01 .01 .00 .00 .00 .00 .00

.03 .02 .01 .01 .01 .00 .00 .00 .00 .00

.04 .04 .03 .02 .01 .00 .00 .00 .00 .00

.03 .03 .02 .01 .01 .01 .01 .01 .01 .01

TabPFN Log-Loss

.05 .04 .03 .01 .01 .01 .01 .01 .01 .00

.03 .03 .03 .01 .00 .00 .00 .00 .00 .00

.03 .02 .01 .01 .01 .00 .00 .00 .00 .00

.04 .04 .03 .01 .01 .00 .00 .00 .00 .00

.03 .03 .02 .01 .01 .01 .01 .01 .01 .01

TabPFN TS Cal Log-Loss

2 4 6 8 10 12 14 16 18 20
Input Dimensions (d)

2

4

6

8

10

C
la

ss
es

(M
)

.03 .04 .02 .03 .11 .53 .40 .70 .99 1.00

.01 .01 .01 .01 .05 .29 .27 .49 .89 .80

.01 .08 .00 .01 .06 .27 .26 .44 .97 1.00

.01 .01 .01 .02 .10 .29 .36 .50 .96 1.00

.00 .00 .01 .01 .06 .26 .26 .42 .95 1.00

GMM Baseline

2 4 6 8 10 12 14 16 18 20
Input Dimensions (d)

.52 .45 .85 .75 .69 .61 .99 .88 .70 .81

.42 .78 .87 .77 .72 .80 .84 .91 .94 .85

.63 .68 .84 .85 .98 .82 .75 .99 .92 .84

.74 .58 .72 .96 .95 .99 .98 1.00 .96 1.00

.71 .84 .85 .94 .92 .92 .98 .96 .97 .95

MINE Baseline

2 4 6 8 10 12 14 16 18 20
Input Dimensions (d)

.37 .54 .55 .49 .54 .64 .66 .51 .73 .71

.52 .69 .72 .75 .79 .78 .67 .81 .78 .83

.58 .74 .78 .71 .85 .80 .84 .76 .84 .81

.65 .75 .84 .81 .77 .88 .79 .86 .76 .88

.69 .71 .81 .84 .89 .89 .81 .83 .85 .90

PC-Softmax Baseline

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Vulnerable ε = 0.5

(b) Balanced MVN proximity synthetic dataset with 50% noise level.

Figure A.5.: Generalizability of MI estimation methods on noisy vulnerable systems

ance, the NMAE is determined for every unique configuration of the number of
classes (𝑀), input dimensions (𝑑), class imbalance (𝑟), and noise level (𝜖). The
top-performing calibration technique (selected from among IR Cal Log-Loss,
PS Cal Log-Loss, Beta Cal Log-Loss, TS Cal Log-Loss, and HB Cal

Log-Loss) is utilized to improve the efficiency of the Log-Loss approach
for MI estimation due to spatial constraints. A comprehensive assessment is
conducted, incorporating heatmaps to illustrate the generalizability of these

255

A. Appendix

approaches. Specifically, the generalizability with respect to the number of
classes (𝑀) and input dimensions (𝑑) in balanced synthetic datasets are dis-
cussed in Appendix A.4.1. Conversely, Appendix A.4.2 includes a discussion
on the generalizability with respect to class imbalance (𝑟) and noise level (𝜖)
within binary-class and multi-class imbalance synthetic datasets.

2

4

6

8

10

C
la

ss
es

(M
)

.21 .28 .26 .24 .44 .41 .41 .39 .38 .29

.08 .07 .05 .06 .26 .17 .20 .10 .13 .16

.08 .08 .15 .14 .07 .13 .08 .08 .22 .09

.11 .11 .12 .15 .20 .14 .07 .10 .08 .15

.13 .13 .11 .10 .11 .11 .11 .10 .11 .12

AutoGluon Mid-Point

.05 .02 .02 .01 .07 .04 .01 .03 .02 .01

.02 .01 .01 .01 .01 .01 .01 .01 .01 .00

.01 .01 .01 .01 .01 .00 .01 .01 .01 .01

.01 .01 .01 .01 .02 .01 .01 .01 .00 .01

.01 .01 .00 .01 .00 .00 .00 .00 .00 .06

AutoGluon Log-Loss

.25 .36 .33 .30 .51 .52 .56 .56 .51 .36

.04 .04 .04 .05 .31 .10 .26 .10 .14 .12

.05 .05 .12 .14 .05 .11 .07 .08 .19 .09

.06 .07 .09 .12 .21 .12 .06 .09 .06 .19

.07 .08 .08 .09 .11 .08 .16 .16 .08 .18

AutoGluon IR Cal Log-Loss

2

4

6

8

10

C
la

ss
es

(M
)

.05 .05 .05 .05 .02 .04 .05 .04 .11 .17

.06 .08 .09 .09 .12 .15 .20 .21 .29 .36

.06 .07 .07 .07 .07 .11 .13 .16 .21 .28

.06 .05 .04 .02 .01 .01 .01 .01 .00 .00

.06 .07 .07 .08 .08 .07 .07 .06 .06 .07

TabPFN Mid-Point

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .01 .01 .01 .01 .01 .01 .01 .01

.01 .01 .01 .01 .01 .01 .01 .01 .01 .01

.01 .01 .01 .01 .01 .01 .01 .01 .01 .01

.01 .01 .01 .01 .01 .01 .01 .01 .01 .01

TabPFN Log-Loss

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .01 .01 .01 .01 .01 .01 .01 .01

.01 .01 .01 .01 .01 .01 .01 .01 .01 .01

.01 .01 .01 .01 .01 .01 .01 .01 .01 .01

.01 .01 .01 .01 .01 .01 .01 .01 .01 .01

TabPFN PS Cal Log-Loss

2 4 6 8 10 12 14 16 18 20
Input Dimensions (d)

2

4

6

8

10

C
la

ss
es

(M
)

.01 .02 .02 .03 .02 .11 .10 .25 .38 .53

.00 .00 .01 .01 .07 .22 .28 .39 .76 .92

.01 .01 .02 .05 .14 .34 .34 .45 .81 .94

.01 .01 .03 .06 .16 .38 .37 .49 .85 .95

.01 .01 .03 .06 .19 .42 .41 .53 .87 .96

GMM Baseline

2 4 6 8 10 12 14 16 18 20
Input Dimensions (d)

.00 .04 .05 .03 .08 .06 .04 .18 .15 .07

.01 .01 .03 .02 .03 .02 .02 .03 .01 .00

.00 .01 .01 .01 .01 .01 .01 .01 .01 .01

.01 .01 .01 .00 .01 .01 .01 .01 .01 .01

.01 .01 .01 .01 .01 .01 .01 .01 .01 .01

MINE Baseline

2 4 6 8 10 12 14 16 18 20
Input Dimensions (d)

.00 .01 .01 .01 .02 .00 .00 .01 .02 .00

.00 .01 .01 .01 .01 .01 .01 .01 .01 .01

.00 .01 .01 .01 .01 .01 .01 .01 .01 .01

.01 .01 .01 .01 .01 .01 .01 .01 .01 .01

.01 .01 .01 .01 .01 .01 .01 .01 .01 .01

PC-Softmax Baseline

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Non-vulnerable ε = 1.0

(a) Balanced MVN perturbation synthetic dataset with 100% noise level

2

4

6

8

10

C
la

ss
es

(M
)

.16 .23 .23 .30 .37 .32 .26 .33 .29 .28

.05 .10 .12 .12 .21 .10 .30 .17 .17 .12

.07 .08 .07 .18 .16 .14 .22 .26 .18 .20

.07 .05 .11 .11 .11 .08 .22 .28 .22 .13

.09 .06 .07 .09 .07 .09 .19 .26 .19 .11

AutoGluon Mid-Point

.01 .03 .03 .08 .09 .17 .20 .20 .10 .15

.01 .02 .06 .08 .10 .12 .15 .13 .08 .08

.04 .03 .06 .10 .13 .14 .14 .19 .17 .09

.02 .10 .07 .14 .10 .15 .17 .09 .11 .09

.03 .10 .08 .13 .07 .10 .22 .24 .13 .20

AutoGluon Log-Loss

.22 .25 .26 .42 .47 .35 .30 .40 .32 .29

.03 .07 .12 .11 .13 .09 .25 .16 .23 .06

.05 .06 .05 .09 .12 .14 .14 .15 .17 .15

.05 .04 .04 .13 .12 .07 .21 .18 .15 .06

.07 .05 .08 .08 .05 .06 .08 .17 .18 .03

AutoGluon IR Cal Log-Loss

2

4

6

8

10

C
la

ss
es

(M
)

.04 .06 .05 .07 .04 .04 .05 .07 .07 .09

.05 .07 .08 .06 .07 .06 .07 .06 .09 .13

.04 .05 .02 .02 .03 .04 .04 .03 .07 .07

.04 .02 .02 .01 .02 .02 .02 .02 .03 .02

.03 .01 .01 .01 .01 .02 .02 .02 .02 .01

TabPFN Mid-Point

.01 .01 .02 .03 .02 .02 .02 .03 .02 .02

.01 .02 .03 .03 .02 .02 .03 .02 .03 .04

.02 .02 .01 .02 .02 .02 .02 .02 .02 .02

.01 .02 .01 .02 .01 .01 .01 .03 .01 .02

.01 .01 .01 .02 .01 .01 .01 .02 .01 .01

TabPFN Log-Loss

.01 .01 .02 .03 .02 .02 .02 .03 .02 .02

.01 .02 .03 .03 .02 .02 .02 .01 .02 .02

.02 .02 .01 .02 .01 .02 .01 .02 .02 .02

.01 .02 .01 .02 .01 .01 .01 .02 .01 .01

.01 .01 .01 .02 .01 .01 .01 .01 .01 .01

TabPFN TS Cal Log-Loss

2 4 6 8 10 12 14 16 18 20
Input Dimensions (d)

2

4

6

8

10

C
la

ss
es

(M
)

.01 .01 .01 .05 .05 .13 .23 .19 .21 .33

.01 .01 .01 .02 .08 .12 .15 .21 .35 .27

.01 .01 .01 .02 .02 .08 .06 .18 .37 .45

.00 .01 .01 .03 .04 .08 .15 .16 .37 .50

.01 .01 .01 .01 .03 .06 .14 .29 .55 .48

GMM Baseline

2 4 6 8 10 12 14 16 18 20
Input Dimensions (d)

.03 .05 .14 .13 .11 .22 .28 .38 .18 .11

.02 .04 .07 .20 .15 .17 .20 .21 .15 .24

.07 .07 .08 .20 .19 .14 .30 .31 .17 .20

.07 .08 .10 .18 .13 .18 .16 .29 .24 .21

.09 .07 .11 .20 .18 .28 .33 .22 .28 .22

MINE Baseline

2 4 6 8 10 12 14 16 18 20
Input Dimensions (d)

.01 .02 .03 .06 .07 .11 .20 .13 .08 .08

.04 .04 .06 .14 .12 .17 .22 .23 .17 .15

.06 .07 .11 .17 .16 .18 .30 .23 .19 .22

.08 .10 .14 .20 .19 .21 .27 .28 .19 .22

.11 .13 .14 .22 .21 .24 .32 .31 .23 .24

PC-Softmax Baseline

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Non-vulnerable ε = 1.0

(b) Balanced MVN proximity synthetic dataset with 100% noise level

Figure A.6.: Generalizability of MI estimation methods on non-vulnerable systems

256

A. Appendix

A.4.1. Number of Classes and Input Dimensions

To delve into a deeper understanding of the generalizability of MI estimation
methods across balanced synthetic datasets, the NMAE performance is analyzed
in terms of the number of classes (𝑀) and input dimensions (𝑑). In vulnerable
systems at noise levels of 0% and 50% the performance results are depicted
in Figures A.4 and A.5, respectively, while the performance on non-vulnerable
synthetic systems at a noise level of 100% are showcased in Figure A.6. The

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F
li
p

P
er

ce
n

ta
g

e
(ε

)

.69 .51 .37 .26 .18 .11 .07 .03 .01 .01

.71 .54 .44 .34 .25 .21 .15 .14 .10 .11

.71 .56 .45 .36 .29 .23 .18 .17 .17 .13

.72 .55 .44 .36 .28 .22 .18 .18 .15 .17

.71 .56 .45 .37 .30 .24 .20 .17 .16 .18

.72 .54 .44 .35 .29 .23 .20 .18 .18 .16

.68 .53 .44 .33 .27 .22 .19 .15 .16 .18

.61 .52 .42 .32 .26 .21 .17 .17 .13 .13

.66 .51 .42 .31 .22 .18 .15 .12 .11 .17

.43 .33 .27 .27 .21 .16 .13 .18 .08 .12

.44 .26 .40 .29 .38 .28 .46 .32 .35 .25

AutoGluon Mid-Point

.19 .41 .37 .52 .39 .40 .24 .29 .53 .46

.21 .31 .33 .37 .48 .22 .30 .19 .26 .44

.16 .26 .28 .33 .32 .35 .25 .21 .21 .29

.14 .22 .26 .25 .21 .25 .27 .16 .27 .19

.10 .16 .19 .20 .19 .21 .15 .15 .21 .18

.07 .12 .14 .14 .17 .15 .14 .10 .10 .13

.05 .07 .09 .10 .11 .11 .10 .10 .07 .07

.03 .04 .05 .05 .06 .06 .06 .05 .05 .04

.02 .02 .03 .03 .03 .03 .03 .02 .02 .01

.00 .01 .01 .01 .01 .01 .01 .01 .01 .00

.00 .00 .00 .00 .01 .02 .09 .03 .19 .01

AutoGluon Log-Loss

.02 .02 .01 .01 .01 .01 .01 .02 .01 .01

.02 .06 .02 .02 .02 .09 .06 .09 .05 .04

.07 .04 .05 .05 .05 .03 .10 .10 .13 .08

.07 .06 .08 .11 .05 .07 .07 .14 .07 .15

.08 .07 .07 .11 .05 .07 .10 .03 .06 .09

.06 .09 .11 .11 .07 .06 .06 .09 .09 .10

.05 .07 .06 .10 .08 .04 .05 .06 .14 .13

.03 .04 .05 .05 .06 .03 .02 .08 .04 .06

.02 .02 .03 .03 .03 .02 .02 .05 .10 .14

.00 .01 .01 .01 .02 .02 .03 .19 .03 .10

.03 .00 .09 .09 .28 .19 .57 .39 .37 .34

AutoGluon TS Cal Log-Loss

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F
li
p

P
er

ce
n

ta
g

e
(ε

)

.71 .52 .39 .28 .18 .10 .05 .03 .01 .01

.73 .57 .43 .34 .26 .20 .15 .11 .11 .10

.74 .57 .46 .37 .30 .23 .19 .15 .14 .14

.73 .60 .47 .37 .30 .25 .19 .16 .14 .15

.75 .59 .48 .37 .29 .24 .19 .17 .16 .16

.76 .60 .47 .38 .30 .23 .19 .17 .15 .17

.76 .62 .49 .38 .31 .24 .20 .16 .14 .16

.77 .63 .49 .40 .31 .24 .19 .14 .12 .13

.79 .65 .52 .41 .31 .23 .15 .11 .09 .10

.80 .67 .54 .43 .33 .25 .17 .11 .06 .07

.81 .67 .55 .44 .33 .25 .18 .12 .05 .03

TabPFN Mid-Point

.00 .00 .00 .01 .00 .01 .01 .01 .00 .01

.02 .03 .06 .07 .08 .08 .07 .08 .11 .09

.04 .05 .09 .11 .11 .09 .09 .10 .11 .11

.05 .08 .09 .11 .12 .10 .09 .09 .09 .10

.07 .09 .11 .11 .11 .09 .07 .08 .08 .09

.08 .11 .11 .12 .11 .08 .06 .07 .07 .07

.09 .13 .13 .13 .12 .08 .05 .04 .05 .05

.09 .13 .13 .13 .11 .07 .04 .02 .02 .02

.10 .13 .13 .12 .09 .06 .03 .01 .01 .01

.11 .14 .14 .12 .09 .06 .03 .02 .00 .00

.11 .14 .15 .13 .09 .07 .04 .02 .00 .00

TabPFN Log-Loss

.00 .00 .01 .01 .00 .00 .01 .01 .00 .01

.03 .04 .07 .06 .07 .06 .05 .06 .09 .07

.04 .04 .08 .08 .07 .04 .04 .07 .08 .07

.05 .07 .05 .08 .10 .08 .05 .08 .08 .10

.07 .08 .08 .08 .07 .04 .03 .07 .07 .08

.07 .07 .07 .08 .06 .05 .04 .09 .07 .07

.05 .07 .08 .07 .09 .05 .05 .06 .07 .07

.04 .06 .05 .06 .06 .05 .05 .05 .05 .05

.03 .04 .05 .04 .03 .04 .04 .03 .04 .04

.02 .02 .04 .02 .04 .02 .02 .03 .03 .05

.02 .01 .01 .01 .02 .01 .02 .03 .05 .02

TabPFN IR Cal Log-Loss

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

Class Imbalance (r)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F
li
p

P
er

ce
n

ta
g

e
(ε

)

.00 .01 .01 .00 .00 .18 .01 .01 .01 .00

.01 .02 .03 .03 .03 .03 .02 .02 .02 .01

.03 .02 .01 .01 .02 .02 .02 .02 .02 .02

.02 .02 .02 .04 .04 .03 .02 .02 .05 .02

.01 .02 .02 .03 .04 .01 .03 .02 .03 .03

.02 .03 .03 .01 .03 .02 .02 .04 .02 .03

.01 .02 .02 .02 .02 .01 .01 .03 .01 .02

.02 .01 .01 .02 .02 .04 .03 .02 .01 .02

.00 .01 .01 .01 .02 .02 .02 .02 .03 .00

.01 .01 .01 .02 .01 .01 .01 .01 .01 .01

.00 .01 .00 .02 .00 .01 .00 .01 .01 .01

GMM Baseline

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

Class Imbalance (r)

.23 .36 .49 .42 .43 .71 .56 .76 .74 .42

.17 .22 .36 .17 .29 .30 .54 .41 .68 .17

.12 .09 .23 .28 .22 .38 .49 .41 .23 .41

.10 .14 .21 .27 .25 .18 .30 .31 .31 .24

.09 .14 .15 .20 .13 .16 .20 .18 .19 .26

.05 .10 .13 .13 .13 .13 .13 .11 .12 .13

.05 .06 .07 .08 .06 .06 .09 .13 .09 .09

.04 .04 .05 .05 .06 .09 .04 .06 .07 .05

.02 .02 .02 .02 .03 .03 .02 .05 .04 .04

.02 .01 .04 .01 .01 .01 .03 .02 .02 .01

.00 .00 .00 .00 .00 .00 .03 .02 .01 .01

MINE Baseline

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

Class Imbalance (r)

.20 .33 .37 .36 .43 .47 .59 .63 .73 .66

.14 .24 .30 .34 .42 .35 .58 .37 .54 .48

.12 .19 .22 .29 .25 .28 .29 .27 .27 .36

.08 .14 .17 .22 .25 .29 .18 .27 .31 .30

.08 .14 .12 .17 .15 .15 .18 .13 .15 .20

.06 .07 .10 .12 .11 .12 .10 .13 .13 .13

.03 .06 .06 .07 .07 .08 .09 .07 .12 .05

.03 .04 .05 .04 .05 .04 .05 .04 .06 .04

.01 .02 .02 .02 .02 .01 .01 .03 .02 .01

.00 .01 .01 .01 .01 .01 .00 .01 .00 .01

.00 .00 .00 .00 .00 .02 .00 .03 .01 .00

PC-Softmax Baseline

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Binary-class Imbalanced

Figure A.7.: Generalizability of MI estimation methods on MVN perturbation syn-
thetic binary-class imbalanced datasets

Y-axis represents the number of classes (𝑀 ∈ {2, 4, . . . , 10}), and the X-axis
represents input dimensions (𝑑 ∈ {2, 4, . . . , 20}).

257

A. Appendix

TabPFN

Overall, it is observed that the MI estimation methods using TabPFN, including
Mid-Point, Log-Loss, and Cal Log-Loss, show strong generalization across
classes (𝑀) and dimensions (𝑑). However, Mid-Point struggles for high-
dimensional datasets (𝑑 ≥ 14) simulated by vulnerable systems , especially for
MVN perturbation systems, reaching a maximum NMAE of 0.20. The TabPFN

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o

is
e

L
ev

el
(ε

)

.71 .53 .39 .28 .19 .13 .07 .03 .02 .01

.71 .53 .39 .28 .19 .12 .07 .03 .01 .02

.72 .54 .40 .28 .18 .12 .08 .04 .02 .02

.71 .54 .42 .27 .21 .14 .08 .03 .02 .04

.73 .56 .44 .31 .22 .17 .14 .06 .03 .04

.75 .61 .49 .37 .28 .19 .16 .08 .07 .07

.75 .56 .55 .44 .28 .24 .19 .15 .11 .09

.77 .65 .56 .47 .40 .33 .26 .28 .15 .12

.79 .71 .57 .51 .42 .34 .22 .18 .20 .12

.82 .62 .62 .52 .46 .38 .28 .22 .18 .12

.83 .82 .68 .60 .48 .47 .44 .46 .26 .39

AutoGluon Mid-Point

.04 .36 .33 .48 .52 .39 .48 .43 .42 .50

.17 .21 .31 .50 .36 .45 .42 .45 .59 .39

.17 .23 .29 .45 .35 .34 .52 .32 .43 .41

.17 .28 .17 .39 .33 .23 .36 .26 .40 .46

.14 .20 .25 .24 .31 .36 .29 .20 .38 .24

.09 .08 .08 .10 .05 .12 .19 .14 .29 .31

.05 .10 .07 .06 .03 .05 .07 .09 .14 .18

.09 .17 .19 .07 .10 .13 .03 .02 .10 .11

.10 .19 .15 .18 .20 .11 .10 .08 .06 .15

.11 .15 .13 .14 .26 .13 .14 .14 .11 .14

.08 .13 .19 .07 .15 .08 .13 .05 .00 .17

AutoGluon Log-Loss

.00 .01 .01 .01 .01 .02 .02 .02 .02 .01

.01 .01 .02 .02 .03 .02 .02 .02 .02 .02

.02 .02 .03 .03 .03 .04 .04 .03 .03 .03

.02 .02 .06 .02 .05 .03 .05 .02 .01 .05

.03 .05 .07 .07 .06 .07 .12 .06 .03 .06

.06 .09 .15 .13 .16 .11 .12 .08 .09 .10

.08 .11 .24 .24 .14 .14 .15 .16 .16 .09

.12 .15 .19 .30 .27 .25 .28 .35 .16 .10

.10 .22 .25 .36 .22 .31 .18 .17 .21 .06

.14 .25 .37 .38 .38 .35 .27 .19 .13 .05

.07 .35 .31 .43 .21 .51 .56 .63 .30 .37

AutoGluon TS Cal Log-Loss

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o

is
e

L
ev

el
(ε

)

.71 .52 .39 .27 .18 .11 .06 .02 .01 .01

.71 .52 .38 .27 .18 .11 .06 .02 .01 .01

.71 .52 .38 .27 .18 .11 .05 .02 .01 .02

.71 .53 .39 .27 .19 .12 .06 .03 .01 .01

.72 .54 .40 .28 .20 .13 .07 .03 .02 .02

.72 .54 .40 .29 .21 .15 .09 .05 .02 .02

.73 .55 .42 .31 .23 .16 .11 .08 .05 .05

.74 .57 .43 .33 .25 .18 .14 .11 .08 .08

.76 .59 .46 .36 .27 .20 .15 .12 .09 .09

.78 .62 .49 .39 .29 .21 .15 .11 .08 .08

.81 .67 .55 .44 .34 .26 .18 .11 .05 .01

TabPFN Mid-Point

.01 .00 .01 .01 .01 .01 .01 .01 .01 .01

.01 .00 .01 .01 .01 .01 .01 .01 .01 .01

.01 .01 .01 .02 .02 .02 .02 .02 .02 .02

.01 .01 .02 .02 .03 .02 .02 .03 .03 .02

.02 .02 .03 .03 .04 .03 .04 .04 .04 .04

.03 .04 .05 .05 .06 .05 .05 .06 .05 .06

.04 .05 .06 .06 .08 .06 .07 .07 .07 .07

.06 .07 .07 .08 .09 .07 .08 .08 .07 .07

.08 .08 .09 .09 .09 .07 .07 .07 .06 .06

.09 .11 .10 .09 .08 .05 .05 .04 .02 .02

.12 .15 .14 .12 .09 .07 .04 .02 .00 .00

TabPFN Log-Loss

.00 .00 .01 .01 .01 .01 .01 .01 .01 .01

.01 .00 .01 .01 .01 .02 .01 .02 .01 .01

.01 .01 .02 .02 .02 .02 .02 .02 .01 .01

.01 .02 .02 .02 .03 .02 .02 .02 .01 .01

.02 .02 .02 .03 .04 .03 .02 .02 .03 .02

.02 .03 .03 .03 .04 .02 .03 .04 .03 .03

.02 .02 .03 .04 .04 .02 .03 .05 .05 .05

.02 .03 .04 .04 .04 .03 .04 .05 .05 .05

.02 .03 .03 .04 .04 .03 .04 .05 .04 .04

.02 .02 .04 .04 .03 .02 .03 .04 .03 .03

.00 .00 .01 .01 .00 .00 .01 .01 .01 .00

TabPFN IR Cal Log-Loss

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

Class Imbalance (r)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o

is
e

L
ev

el
(ε

)

.00 .09 .00 .00 .00 .00 .01 .01 .01 .00

.01 .10 .00 .00 .01 .01 .01 .01 .01 .01

.01 .01 .00 .01 .01 .01 .01 .01 .01 .01

.01 .01 .01 .01 .02 .17 .02 .02 .02 .01

.01 .01 .01 .01 .01 .01 .02 .03 .02 .02

.01 .01 .02 .01 .02 .02 .03 .04 .01 .01

.02 .02 .03 .03 .03 .02 .03 .03 .02 .02

.02 .01 .02 .03 .03 .02 .01 .02 .02 .01

.01 .01 .02 .02 .02 .02 .02 .02 .01 .02

.01 .01 .01 .01 .01 .02 .01 .01 .01 .01

.00 .00 .00 .00 .00 .01 .01 .01 .01 .01

GMM Baseline

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

Class Imbalance (r)

.27 .44 .48 .68 .63 .81 .70 .80 .40 .61

.23 .44 .41 .41 .47 .81 .69 .41 .59 .76

.15 .33 .44 .63 .44 .64 .68 .83 .40 .71

.20 .24 .40 .47 .60 .77 .68 .46 .71 .69

.14 .35 .28 .39 .37 .59 .46 .43 .49 .49

.19 .24 .19 .29 .42 .44 .57 .65 .48 .69

.11 .25 .26 .35 .33 .51 .46 .51 .37 .46

.12 .14 .21 .15 .29 .31 .42 .32 .39 .34

.09 .13 .21 .20 .09 .24 .30 .29 .32 .32

.07 .11 .12 .14 .17 .19 .23 .20 .22 .08

.01 .00 .03 .00 .04 .00 .00 .02 .03 .01

MINE Baseline

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

Class Imbalance (r)

.23 .29 .32 .54 .58 .42 .54 .64 .58 .56

.20 .34 .37 .40 .59 .43 .59 .53 .65 .55

.18 .33 .42 .45 .47 .52 .67 .67 .58 .71

.17 .26 .42 .39 .51 .54 .62 .53 .62 .52

.16 .28 .33 .35 .46 .40 .49 .53 .58 .56

.14 .22 .30 .43 .30 .42 .38 .31 .32 .33

.11 .20 .27 .31 .28 .35 .30 .34 .34 .38

.09 .12 .18 .20 .26 .26 .23 .30 .22 .38

.07 .11 .14 .18 .22 .22 .22 .21 .21 .28

.05 .09 .08 .13 .15 .10 .16 .16 .19 .17

.00 .01 .00 .00 .00 .01 .00 .00 .00 .01

PC-Softmax Baseline

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Binary-class Imbalanced

Figure A.8.: Generalizability of MI estimation methods on MVN proximity synthetic
binary-class imbalanced datasets

Log-Loss and TabPFN Cal Log-Loss approaches consistently outperform
the remaining, achieving an NMAE of around 0.01 across most cases, indicating
estimation precision largely independent of the number of classes (𝑀) and
input dimensions (𝑑), except in vulnerable systems with 50% noise in MVN
perturbation datasets Calibration (Cal Log-Loss) does not improve TabPFN
Log-Loss precision, aligning with prior findings in Section 4.3.1 and consistent
with the generalization results in Section 4.3.2.

258

A. Appendix

AutoGluon

In most cases, all MI estimation methods using AutoGluon generally perform
well across varying the number of classes (𝑀) and input dimensions (𝑑), with
a few exceptional cases, which are missed in the findings in Section 4.3.2, due
to loss of information due to aggregation. However, Mid-Point and Cal

Log-Loss with AutoGluon tend to overestimate MI due to overfitting in
non-vulnerable system with binary-class datasets (𝑀 = 2), resulting in false
positives in ILD by detecting non-existent ILs, as also observed in Section 5.3.
Additionally, Cal Log-Loss’s performance with AutoGluon sometimes declines
as the number of classes and input dimensions increases in datasets. Calibrated

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F
li
p

P
er

ce
n

ta
g

e
(ε

)

.42 .32 .43 .26 .16 .10 .05 .02 .01 .00

.48 .38 .52 .34 .25 .18 .14 .12 .10 .09

.50 .41 .55 .39 .31 .24 .19 .16 .14 .14

.51 .43 .57 .42 .33 .26 .22 .19 .18 .17

.53 .44 .59 .44 .34 .28 .24 .21 .20 .19

.52 .44 .61 .44 .35 .29 .25 .23 .21 .21

.54 .45 .59 .45 .35 .29 .25 .23 .22 .22

.49 .44 .57 .42 .33 .28 .24 .21 .20 .20

.45 .38 .52 .38 .30 .24 .20 .20 .16 .15

.37 .55 .44 .30 .24 .19 .15 .11 .10 .09

.09 .34 .15 .07 .11 .18 .08 .05 .03 .13

AutoGluon Mid-Point

.19 .33 .17 .13 .23 .14 .10 .27 .21 .15

.36 .30 .27 .28 .34 .27 .22 .19 .22 .35

.32 .40 .35 .33 .22 .21 .16 .16 .21 .13

.26 .31 .31 .26 .21 .25 .11 .14 .16 .11

.18 .25 .23 .25 .20 .17 .12 .16 .12 .15

.13 .16 .18 .17 .17 .15 .12 .06 .05 .10

.12 .14 .14 .12 .12 .11 .09 .09 .06 .06

.07 .09 .08 .07 .06 .07 .06 .06 .05 .05

.04 .04 .04 .04 .04 .03 .03 .03 .02 .03

.01 .02 .01 .01 .01 .01 .01 .01 .01 .01

.00 .00 .00 .00 .00 .01 .00 .00 .00 .00

AutoGluon Log-Loss

.09 .14 .07 .04 .09 .04 .03 .16 .13 .06

.18 .20 .10 .14 .14 .11 .14 .12 .11 .33

.23 .27 .12 .14 .12 .09 .16 .13 .17 .14

.22 .27 .25 .15 .12 .10 .16 .14 .14 .20

.18 .21 .22 .15 .12 .10 .13 .05 .07 .19

.13 .21 .16 .16 .12 .10 .09 .12 .12 .12

.09 .13 .11 .11 .09 .08 .04 .05 .06 .06

.07 .09 .08 .09 .08 .06 .06 .03 .02 .06

.04 .04 .03 .04 .03 .04 .03 .03 .02 .02

.01 .02 .01 .01 .01 .01 .01 .01 .01 .01

.00 .00 .00 .00 .00 .01 .00 .00 .00 .00

AutoGluon Beta Cal Log-Loss

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F
li
p

P
er

ce
n

ta
g

e
(ε

)

.43 .33 .43 .26 .16 .09 .05 .02 .01 .01

.48 .39 .51 .35 .25 .18 .14 .11 .10 .08

.50 .41 .54 .39 .30 .23 .19 .16 .14 .14

.51 .43 .57 .42 .32 .25 .21 .18 .17 .17

.53 .45 .59 .44 .34 .28 .23 .21 .19 .19

.53 .45 .60 .45 .35 .29 .24 .22 .21 .21

.54 .45 .61 .45 .35 .29 .25 .23 .21 .21

.53 .46 .33 .46 .35 .27 .23 .20 .20 .19

.52 .45 .32 .46 .35 .27 .21 .16 .13 .15

.49 .42 .30 .44 .33 .25 .18 .12 .07 .09

.47 .40 .28 .43 .32 .25 .17 .12 .07 .03

TabPFN Mid-Point

.00 .00 .00 .01 .00 .00 .00 .00 .00 .00

.07 .08 .09 .10 .10 .09 .10 .10 .11 .10

.10 .12 .12 .13 .13 .13 .14 .13 .14 .14

.11 .14 .13 .14 .13 .12 .14 .13 .13 .14

.11 .14 .13 .13 .13 .12 .12 .11 .10 .11

.11 .15 .14 .12 .11 .08 .08 .07 .06 .07

.10 .14 .13 .10 .08 .05 .04 .03 .02 .02

.10 .14 .12 .09 .06 .04 .02 .02 .02 .03

.11 .15 .13 .10 .07 .05 .03 .02 .03 .03

.12 .16 .13 .10 .07 .05 .03 .01 .01 .01

.13 .17 .14 .11 .08 .05 .03 .01 .00 .00

TabPFN Log-Loss

.01 .01 .01 .01 .00 .00 .00 .01 .00 .01

.03 .03 .04 .03 .03 .02 .03 .03 .03 .03

.05 .04 .04 .04 .04 .03 .04 .02 .03 .04

.05 .05 .04 .05 .04 .02 .03 .02 .03 .03

.05 .06 .04 .05 .05 .04 .04 .03 .03 .04

.05 .08 .05 .05 .05 .03 .03 .03 .03 .04

.05 .07 .05 .05 .04 .03 .03 .03 .03 .03

.04 .05 .04 .05 .04 .02 .03 .02 .02 .02

.03 .04 .03 .03 .02 .02 .01 .02 .01 .01

.03 .02 .02 .02 .02 .01 .01 .01 .01 .01

.02 .02 .02 .02 .02 .01 .02 .01 .01 .01

TabPFN IR Cal Log-Loss

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

Class Imbalance (r)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F
li
p

P
er

ce
n

ta
g

e
(ε

)

.00 .00 .00 .00 .00 .00 .00 .00 .10 .00

.14 .16 .14 .23 .25 .30 .20 .22 .15 .27

.16 .18 .24 .24 .22 .15 .23 .16 .18 .20

.17 .30 .29 .21 .19 .16 .18 .17 .15 .12

.16 .20 .19 .17 .13 .14 .13 .11 .17 .10

.14 .14 .16 .08 .12 .12 .11 .15 .16 .16

.10 .11 .15 .12 .07 .09 .09 .11 .11 .10

.06 .08 .07 .08 .07 .06 .05 .05 .07 .07

.03 .05 .04 .04 .04 .03 .03 .03 .03 .03

.01 .01 .01 .01 .01 .01 .01 .01 .01 .01

.00 .00 .00 .00 .00 .00 .00 .00 .01 .00

GMM Baseline

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

Class Imbalance (r)

.70 .93 .95 .84 .84 .98 .89 .81 .77 .55

.49 .64 .50 .68 .59 .69 .62 .61 .70 .66

.43 .55 .50 .55 .51 .49 .48 .36 .42 .35

.26 .40 .42 .41 .36 .38 .36 .40 .36 .21

.23 .33 .27 .21 .24 .25 .27 .23 .33 .09

.18 .20 .22 .24 .16 .17 .19 .21 .20 .15

.10 .12 .13 .10 .09 .14 .16 .14 .12 .13

.06 .09 .09 .07 .06 .08 .07 .07 .07 .07

.04 .05 .04 .04 .04 .02 .04 .03 .04 .03

.01 .02 .01 .01 .01 .01 .01 .01 .01 .01

.00 .00 .00 .00 .00 .01 .00 .00 .00 .00

MINE Baseline

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

Class Imbalance (r)

.56 .76 .79 .90 .72 .74 .76 .64 .74 .79

.50 .61 .54 .63 .55 .52 .56 .59 .51 .60

.37 .48 .49 .41 .42 .42 .43 .48 .44 .41

.30 .38 .36 .39 .28 .38 .34 .38 .34 .33

.24 .26 .28 .30 .26 .26 .26 .29 .28 .30

.15 .22 .20 .21 .19 .21 .20 .19 .18 .19

.11 .15 .15 .13 .12 .13 .13 .12 .12 .11

.07 .08 .08 .08 .08 .08 .08 .07 .08 .08

.04 .04 .04 .04 .04 .04 .04 .04 .04 .04

.01 .01 .01 .01 .01 .01 .01 .01 .01 .01

.00 .00 .00 .00 .00 .00 .00 .00 .01 .00

PC-Softmax Baseline

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Multi-class Imbalanced

Figure A.9.: Generalizability of MI estimation methods on MVN perturbation syn-
thetic multi-class imbalanced datasets

AutoGluon Log-Loss frequently overestimate MI in non-vulnerable systems ,
while improving MI estimation precision in vulnerable systems , as depicted

259

A. Appendix

in Figure A.6 and Figures A.4 and A.5, respectively, aligning with the findings
in Section 4.3.1. These observations on the generalizability of AutoGluon align
with those in Section 4.3.2.

Baselines

All baseline approaches show reduced generalization for both vulnerable and
non-vulnerable systems, with performance degrading as the number of
classes (𝑀) and input dimensions (𝑑) increase. The GMM baseline especially

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o

is
e

L
ev

el
(ε

)

.43 .33 .43 .26 .17 .10 .06 .03 .01 .00

.43 .33 .43 .27 .17 .09 .05 .02 .01 .01

.43 .33 .44 .27 .16 .10 .05 .03 .01 .01

.45 .33 .43 .27 .16 .10 .06 .05 .02 .01

.44 .33 .45 .27 .17 .12 .07 .03 .03 .02

.43 .32 .43 .27 .18 .11 .07 .02 .03 .01

.46 .34 .46 .27 .17 .13 .07 .04 .02 .02

.52 .35 .50 .28 .21 .17 .13 .07 .04 .04

.46 .36 .49 .35 .25 .17 .10 .10 .09 .09

.53 .50 .60 .42 .35 .31 .21 .22 .22 .22

.61 .58 .49 .38 .55 .47 .36 .24 .13 .14

AutoGluon Mid-Point

.03 .04 .09 .07 .05 .06 .07 .19 .21 .21

.02 .03 .05 .03 .12 .11 .12 .06 .15 .35

.03 .04 .05 .09 .05 .09 .07 .16 .19 .29

.04 .08 .04 .07 .14 .06 .17 .13 .18 .29

.05 .02 .08 .03 .09 .06 .10 .17 .19 .27

.06 .03 .04 .03 .10 .14 .15 .19 .20 .16

.04 .02 .06 .06 .06 .06 .10 .09 .16 .27

.13 .10 .09 .05 .11 .12 .10 .11 .13 .30

.08 .09 .15 .11 .11 .10 .10 .10 .11 .15

.22 .35 .19 .26 .38 .22 .13 .20 .19 .24

.29 .49 .48 .46 .46 .31 .31 .15 .04 .10

AutoGluon Log-Loss

.01 .01 .01 .01 .01 .01 .01 .01 .01 .01

.02 .01 .01 .01 .02 .01 .01 .01 .02 .01

.02 .02 .03 .03 .02 .02 .02 .02 .03 .03

.03 .02 .03 .03 .03 .02 .13 .04 .02 .02

.04 .04 .03 .04 .05 .03 .05 .04 .04 .03

.06 .05 .06 .16 .07 .03 .03 .04 .07 .05

.18 .08 .07 .08 .08 .09 .08 .07 .07 .07

.11 .09 .12 .10 .06 .07 .06 .07 .08 .07

.08 .13 .13 .14 .10 .08 .08 .19 .09 .09

.18 .33 .28 .23 .24 .22 .17 .11 .19 .13

.23 .35 .34 .26 .37 .18 .18 .16 .11 .14

AutoGluon IR Cal Log-Loss

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o

is
e

L
ev

el
(ε

)

.43 .32 .43 .26 .16 .09 .05 .02 .01 .01

.42 .32 .42 .26 .16 .09 .05 .02 .01 .01

.42 .32 .42 .26 .16 .09 .05 .02 .01 .01

.42 .32 .42 .25 .15 .09 .05 .02 .01 .01

.42 .31 .41 .24 .15 .08 .05 .02 .02 .02

.42 .31 .41 .24 .14 .08 .04 .02 .02 .02

.42 .32 .41 .24 .15 .09 .04 .02 .02 .02

.43 .33 .43 .26 .16 .09 .05 .03 .02 .01

.45 .35 .47 .30 .20 .13 .08 .05 .03 .03

.48 .39 .54 .37 .26 .19 .14 .11 .08 .07

.46 .40 .28 .43 .32 .25 .18 .12 .07 .03

TabPFN Mid-Point

.00 .00 .00 .01 .00 .00 .00 .01 .00 .00

.01 .01 .01 .01 .01 .01 .01 .01 .01 .01

.01 .01 .01 .01 .01 .01 .01 .01 .01 .01

.01 .02 .02 .02 .02 .01 .01 .01 .01 .02

.02 .02 .02 .02 .02 .02 .02 .02 .02 .02

.03 .03 .03 .03 .03 .03 .03 .03 .03 .03

.04 .04 .04 .04 .04 .03 .03 .04 .03 .04

.05 .05 .05 .05 .05 .04 .04 .04 .04 .04

.07 .08 .07 .06 .05 .05 .04 .04 .04 .04

.09 .11 .10 .08 .07 .06 .05 .04 .03 .03

.13 .17 .14 .11 .08 .05 .03 .01 .00 .00

TabPFN Log-Loss

.01 .00 .01 .01 .01 .00 .01 .01 .01 .01

.01 .01 .01 .01 .01 .01 .01 .01 .01 .01

.01 .01 .01 .01 .01 .01 .01 .01 .01 .01

.01 .01 .01 .01 .01 .01 .01 .01 .01 .01

.02 .02 .02 .02 .02 .01 .01 .01 .01 .02

.02 .02 .02 .02 .02 .01 .01 .02 .02 .02

.02 .02 .02 .02 .02 .02 .02 .02 .02 .02

.03 .03 .03 .03 .02 .02 .02 .02 .02 .02

.03 .03 .03 .03 .03 .02 .02 .02 .02 .02

.04 .03 .03 .03 .03 .03 .03 .03 .02 .03

.02 .02 .01 .01 .01 .01 .01 .01 .01 .01

TabPFN IR Cal Log-Loss

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

Class Imbalance (r)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o

is
e

L
ev

el
(ε

)

.00 .01 .01 .02 .00 .02 .00 .00 .00 .00

.01 .01 .01 .00 .00 .01 .01 .01 .00 .00

.09 .01 .01 .01 .00 .01 .01 .01 .01 .01

.01 .01 .01 .01 .00 .00 .01 .01 .01 .01

.01 .10 .02 .00 .00 .01 .00 .09 .01 .01

.01 .03 .02 .09 .11 .00 .01 .01 .01 .01

.01 .13 .03 .01 .00 .07 .01 .01 .02 .01

.02 .02 .02 .02 .01 .02 .03 .01 .02 .01

.02 .06 .02 .03 .01 .01 .04 .04 .01 .01

.01 .07 .07 .06 .01 .01 .01 .02 .01 .01

.03 .00 .00 .00 .00 .00 .00 .00 .00 .00

GMM Baseline

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

Class Imbalance (r)

.55 .75 .86 .82 .87 .85 .79 .87 .89 .84

.63 .86 .87 .76 .72 .72 .84 .61 .75 .70

.60 .86 .87 .87 .78 .67 .67 .58 .80 .69

.55 .77 .85 .81 .77 .77 .63 .64 .83 .90

.59 .80 .76 .56 .69 .65 .64 .72 .71 .86

.42 .66 .67 .80 .74 .67 .69 .66 .64 .67

.45 .59 .47 .68 .37 .45 .55 .63 .56 .61

.44 .46 .40 .49 .55 .56 .45 .56 .42 .41

.33 .43 .39 .46 .23 .43 .37 .39 .44 .25

.21 .16 .25 .27 .26 .28 .24 .26 .23 .29

.02 .00 .00 .00 .01 .01 .01 .01 .02 .01

MINE Baseline

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

Class Imbalance (r)

.54 .65 .74 .75 .70 .69 .69 .70 .70 .73

.51 .74 .82 .75 .75 .76 .69 .84 .69 .83

.57 .76 .79 .72 .62 .70 .73 .76 .77 .65

.54 .70 .66 .71 .76 .65 .69 .74 .67 .80

.51 .77 .62 .71 .65 .70 .71 .63 .67 .71

.53 .63 .63 .69 .59 .61 .64 .65 .61 .59

.42 .55 .60 .53 .56 .56 .52 .58 .58 .55

.37 .50 .52 .48 .49 .49 .48 .49 .51 .50

.31 .40 .39 .44 .38 .38 .35 .39 .40 .39

.20 .22 .28 .27 .28 .25 .20 .28 .23 .20

.00 .00 .01 .01 .00 .00 .01 .00 .00 .00

PC-Softmax Baseline

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Multi-class Imbalanced

Figure A.10.: Generalizability of MI estimation methods on MVN proximity synthetic
multi-class imbalanced datasets

struggles with high-dimensional data, degrading beyond 10 dimensions, yet
generally surpasses PC-Softmax and MINE, except in non-vulnerable systems
simulated with MVN perturbation, also observed in Sections 4.3.1 and 4.3.2.

260

A. Appendix

A.4.2. Class Imbalance and Noise Level

The generalizability of MI estimation methods with respect to class imbalance
(𝑟) and noise level (𝜖) is analyzed by assessing their performance using NMAE
on binary-class and multi-class imbalanced datasets generated through MVN
perturbation and proximity techniques.The results are illustrated in heatmaps
in Figures A.7 and A.8 for binary-class datasets and in Figures A.9 and A.10
for multi-class datasets. The Y-axis is represented by noise levels (𝜖 ∈ [0.0, 1.0]),
while the X-axis corresponds to class imbalances, i.e., 𝑟 ∈ [0.05, 0.5] for binary-
class datasets and 𝑟 ∈ [0.02, 0.2] for multi-class datasets.

TabPFN

Overall, Log-Loss and Cal Log-Loss approaches using TabPFN exhibit
strong generalizability with respect to class imbalance and noise levels, showing
resilience in both binary-class and multi-class imbalanced synthetic datasets.
While TabPFN Mid-Point performs well regarding noise levels, it underper-
forms in highly imbalanced datasets due to its tendency to overestimate MI
in these cases, as detailed in Section 3.3.1. Using calibration techniques (Cal

Log-Loss) with TabPFN Log-Loss significantly enhances MI estimation
precision, especially in multi-class systems simulated using the MVN pertur-
bation technique. These findings align with the observations in Sections 4.3.1
and 4.3.2.

AutoGluon

The generalization of MI estimation methods using AutoGluon for class im-
balances and noise levels in imbalanced datasets displays mixed results. The
AutoGluon Mid-Point approach generally performs the worst, particularly in
highly imbalanced datasets (𝑟 ≤ 0.2 for binary-class and 𝑟 ≤ 0.08 for multi-class)
and with increased noise levels, aligning with its tendency to overestimate MI
in imbalanced cases, as discussed in Section 3.3.1. AutoGluon Log-Loss and

261

A. Appendix

Cal Log-Loss approaches also tend to overestimate MI, showing overfitting
under specific class imbalances and lower noise levels, especially in binary-class
datasets generated by systems simulated using the MVN proximity technique.
A distinctive observation with AutoGluon pertains to its response to changing
noise levels. With increasing noise, Cal Log-Loss’s performance fluctuates,
revealing potential sensitivity to noise in imbalanced synthetic datasets. The
AutoGluon Log-Loss approach with Cal Log-Loss performs well at average
noise levels, demonstrating its utility in multi-class datasets, but calibration
can reduce MI estimation accuracy in non-vulnerable, imbalanced datasets.
These findings align with the observations in Sections 4.3.1 and 4.3.2.

Baselines

The MINE and PC-Softmax baselines generally struggle with imbalanced
datasets, both binary and multi-class, as their generalization capability declines
with decreasing class imbalance and noise levels. However, these baselines
estimate MI accurately in binary-class and multi-class non-vulnerable datasets,
also observed in Section 4.3. The GMM baseline generally adapts well to class
imbalance and noise levels, especially in synthetic systems simulated using
MVN perturbation, generating multi-class datasets, with slightly outperforming
TabPFN in case of imbalanced binary-class datasets. The strong generalization
of GMM is linked to the low dimensionality (𝑑 = 5) of imbalanced datasets,
indicating its primary challenges lie in estimating MI for high-dimensional data,
with noise and class imbalance having minimal impact. These observations on
the generalizability of baselines align with the findings in Section 4.3.2.

A.4.3. Summary

In conclusion, TabPFN Cal Log-Loss consistently exhibits strong generaliza-
tion in estimating MI across multiple factors in both MVN perturbation and
proximity synthetic datasets. Notably, applying Cal Log-Loss calibration to

262

A. Appendix

TabPFN Log-Loss significantly enhances MI estimation accuracy for vulnera-
ble synthetic datasets but leads to considerable precision loss in non-vulnerable
datasets. This disparity explains why the AutoGluon Cal Log-Loss ILD
approach frequently detects non-existent ILs in OpenSSL TLS timing datasets,
resulting in false positives, while TabPFN Cal Log-Loss surpasses other
TabPFN-based ILD approaches, as seen in Sections A.3.4 and 5.3.1. However,
the AutoGluon Cal Log-Loss ILD technique performs effectively in detect-
ing ILs in OpenSSL TLS error code datasets, as highlighted in Section 5.3.2.
Overall, baseline methods struggle with high-dimensional, imbalanced, noisy
synthetic datasets, with these limitations becoming especially evident when
contrasted with Cal Log-Loss approaches using TabPFN and AutoGluon. In
OpenSSL TLS error code datasets, for instance, GMM detects under 50%, per-
forming below random guessing, whereas MINE and PC-softmax exceed 62%,
which contrasts with their performance on timing datasets (see Section 5.3.1).
These observations align with the findings in Section 4.3.

263

List of Figures

1.1. Components of the AutoSCA tool [49] 26
1.2. Diagram design format . 30

2.1. Rényi Entropy for Different Orders [36] 35
2.2. Behavior of various proper loss functions in binary classification

setting . 43
2.3. Relation between AutoML and NAS [3] 59
2.4. Different operations of various CNN layers 65
2.5. Taxonomy of Side-channel Attacks [183] 69
2.6. Padded Pre-master secret (PMS) [163] 71
2.7. TLS 1.2 Handshake example [166] 73
2.8. Information leakage (IL) in AES Encryption Algorithm [43, 14] . 82
2.9. Information leakage (IL) in AES Decryption Algorithm [43, 14] . 83
2.10. S-Box for AES Encryption Algorithm 84
2.11. Inverse S-Box for AES Decryption Algorithm 85
2.12. DL-based Template SCA . 88
2.13. Information Flow: (𝐾,𝑇)→ (𝑌, 𝑇)→ (𝑋,𝑇)→ (𝐾̂) [31] 91
2.14. Optimal joint range between 𝐻(𝑌 |𝑋) and GE 𝐺(𝑌 |𝑋) for classes

𝑀 in range [2, 256], with upper bound derived by McEliece and
Yu (1995) [125] (dashed) and lower bound by Béguinot and
Rioul (2024) [11] (solid), with the sub-optimal lower bound
by Massey (1994) [123] and Rioul (2022) [171] is 𝑀 -independent 94

3.1. IL-Quantification using MI . 107

264

List of Figures

3.2. Optimal joint range between the MI (𝐼(𝑌 |𝑋)) and GE (𝐺(𝑌 |𝑋))
for different classes 𝑀 in [2, 256] range, with the optimal lower
bound derived by McEliece and Yu (1995) [125] shown as dashed
line and the upper bound by Béguinot and Rioul (2024) [11]
shown as solid line . 115

3.3. Bayes error rate versus Mid-Point MI (estimated in red) . . . 117

4.1. Class frequencies in generated imbalanced datasets 131
4.2. MVN perturbation and proximity techniques: synthetic datasets 132
4.3. Experimental setup for evaluating MI estimation methods . . . 137
4.4. Overall NMAE of MI estimation methods on synthetic dataset . 140
4.5. Generalizability of MI estimation methods on MVN perturbation

synthetic datasets . 144
4.6. Generalizability of MI estimation methods on MVN proximity

synthetic datasets . 147

5.1. Procedure of using ILD approaches to detect ILs in a systems
generating classification dataset 𝒟 162

5.2. Detection accuracy of ILD approaches in detecting timing side
channels in OpenSSL TLS servers 165

5.3. Detection accuracy of Selected ILD approaches in detecting side
channels in OpenSSL TLS servers 168

6.1. Baseline CNN architectures versus the NAS base structure . . . 174
6.2. Schematic of the NAS approach for black-box attacks 175
6.3. Converting 1-D input to 2-D Square and 2-D Rectangle input179
6.4. Influence of NAS parameters on detecting ILs in AES-encrypted

systems . 185
6.5. Vulnerability score for various AES-encrypted systems 187
6.6. Convergence of the 7 NAS models compared to the fixed baseline

architectures for each dataset 189

A.1. Performance of ILD approaches for all OpenSSL TLS Servers . . 241
A.2. Performance of ILD approaches versus time delay with 5 µs steps 247

265

List of Figures

A.3. Performance of ILD approaches versus time delay with logarith-
mic step of 2 µs . 248

A.4. Generalizability of MI estimation methods on noise-free vulner-
able systems . 254

A.5. Generalizability of MI estimation methods on noisy vulnerable
systems . 255

A.6. Generalizability of MI estimation methods on non-vulnerable
systems . 256

A.7. Generalizability of MI estimation methods on MVN perturbation
synthetic binary-class imbalanced datasets 257

A.8. Generalizability of MI estimation methods on MVN proximity
synthetic binary-class imbalanced datasets 258

A.9. Generalizability of MI estimation methods on MVN perturbation
synthetic multi-class imbalanced datasets 259

A.10.Generalizability of MI estimation methods on MVN proximity
synthetic multi-class imbalanced datasets 260

266

List of Tables

1.1. The table summarizes key notation utilized throughout the thesis. 29

2.1. Classification evaluation metrics 46

4.1. Overview of the synthetic datasets for MI estimation experiments138

5.1. Overview of the OpenSSL TLS timing IL-Datasets used for the
ILD experiments. 159

5.2. Overview of the OpenSSL TLS error code IL-Datasets. 163

6.1. Overview of the Search Space for the NAS approach. 181
6.2. Details of the datasets acquired from the AES-encrypted systems.182
6.3. Median TST comparison across datasets, italics indicate GE not

reaching 1; the best model per dataset is in bold. 190

A.1. Hyperparameter ranges for AutoML tools: AutoGluon models
and TabPFN including the MI estimation baseline approaches
(GMM, MINE, and PC-Softmax) 236

267

List of Algorithms

1. Training algorithm: MINE . 125

2. Generate MVN Perturbation Synthetic Dataset 𝒟 133
3. Generate MVN Proximity Synthetic Dataset 𝒟 134

268

List of Acronyms

00FPB 0x00 In PKCS#1 Padding

(First 8 Bytes After 0x00

0x02).

00LP 0x00 On The Last Position

(|𝑃𝑀𝑆| = 0).

00NLP 0x00 On The Next To Last

Position (|𝑃𝑀𝑆| = 1).

00SPB 0x00 In Some PKCS#1

Padding Byte.

AES Advanced Encryption Standard.

AIC Akaike information criterion.

AutoML automated machine learn-
ing.

AutoSCA Automatisierte Schwach-
stellenanalyse von kryptographis-
chen Protokollen.

BCE binary cross-entropy.

BER balanced error-rate.

BMBF Bundesministerium für Bil-
dung und Forschung.

BO Bayesian optimization.

BOHB Bayesian optimization and Hy-
perband.

BS Brier score.

CASH combined algorithm selection
and hyperparameter optimiza-
tion.

CatBoost categorical boosting ma-
chine.

CBC cipher block changing.

CCE categorical cross-entropy.

CCS ChangeCipherSpec.

CFPM Correctly Formatted

PKCS#1 Message.

CFPM1BS Correctly Formatted

PKCS#1 PMS Message But 1

Byte Shorter.

269

List of Acronyms

CFPM47 Correctly Formatted

PKCS#1 Message |𝑃𝑀𝑆| = 47.

CKE ClientKeyExchange.

CM confusion matrix.

CNN convolutional neural network.

DL deep learning.

DL-LA Deep Learning Leakage As-
sessment.

DPA differential power analysis.

DV Donsker-Varadhan.

EM expectation-maximization.

EMR electromagnetic radiations.

EMV Europay-Mastercard-Visa.

ERC European Research Council.

FET Fisher’s exact test.

FIN Finished.

FNR false negative rate.

FPR false positive rate.

GBM gradient boosting machine.

GE guessing entropy.

GMM Gaussian mixture model.

HB Hyperband.

HD hamming distance.

HDDC high-dimensional data cluster-
ing.

HPO hyperparameter optimization.

HT hardware Trojan.

HTM hierarchical temporal memory.

HW hamming weight.

ID identity.

IKE Internet Key Exchange.

IL information leakage.

ILD information leakage detection.

IoT internet of things.

ITV Invalid TLS Version In PMS.

IV initialization vector.

JSSE Java Secure Socket Extension.

KDE Kernel density estimation.

KFCV 𝐾-fold cross-validation.

KL Kullback-Leibler.

KNN K-nearest neighbor.

KPR Klíma-Pokorný-Rosa.

LAS leakage assessment score.

270

List of Acronyms

LightGBM light gradient boosting
machine.

MAE mean absolute error.

MCC mathews correlation coefficient.

MCCV Monte Carlo cross-validation.

MI mutual information.

MINE mutual information neural esti-
mation.

MitM man-in-the-middle.

ML machine learning.

MLP multi-layer perceptron.

MSE mean squared error.

MVN multivariate normal.

N00M No 0x00 In Message.

NAS neural architecture search.

NEMIA Neural Estimated Mutual In-
formation Analysis.

NMAE normalized mean absolute er-
ror.

NN neural network.

OAEP optimal asymmetric encryp-
tion padding.

OTT one-sample t-test.

OVR one-versus-rest.

PAVA pool adjacent violators algo-
rithm.

PC-softmax probabilitiy-corrected
softmax.

PDF probability density function.

PMF probability mass function.

PMS pre-master secret.

POI Point of Interest.

PQKE post-quantum key-exchange.

PS padding string.

PTT paired t-test.

RF random forest classifier.

ROC Receiver Operating Characteris-
tic.

RSA Rivest–Shamir–Adleman.

RSM rotating Sbox masking.

RST reset.

SASCA Soft analytical side-channel
attacks.

SCA side-channel attack.

SE standard error.

SNR signal-to-noise ratio.

271

List of Acronyms

SR success rate.

SSL Secure Sockets Layer.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

TPM trusted platform module.

TST trace sufficiency threshold.

VPN virtual private network.

VS vulnerability score.

WFB Wrong First Byte (0x00

Set To 0x17).

WSB Wrong Second Byte (0x02

Set To 0x17).

XGBoost eXtreme gradient boosting
machine.

XT extra trees classifier.

272

Declaration of Authorship

I hereby declare that this thesis is my original work, independently composed
without unauthorized materials or unacknowledged assistance. All sources and
aids used have been appropriately cited or acknowledged. This dissertation has
not been previously submitted to any other faculty or institution. Additionally,
I confirm that I have not undergone an unsuccessful doctoral examination nor
been stripped of any previously earned postgraduate (Dr.) degrees. Any text
passages quoted verbatim or closely paraphrased from external sources and
figures taken from or adapted from external sources are explicitly marked and
adequately referenced. Figures based on foundational concepts or significantly
modified are not referenced in the caption.

I further declare that this thesis has not been submitted to any other examina-
tion board in the same or similar form.

. .

Place, Date

. .

Pritha Gupta

	Cover
	Titlepage
	Introduction
	Motivation
	Information Leakage Detection
	Side-channel Attacks
	Foundational Theory

	Outline and Impact
	Thesis Outline
	Research Focus
	Co-author Contribution Statements
	Thesis Impact

	Notation and Diagram Legend

	Fundamentals
	Information Theory
	Entropy
	Mutual Information

	Statistical Learning Theory: Classification Problem
	Classification Problem
	Learning and Evaluation Measures
	Classifier Calibration
	Automated Machine Learning

	Side-channel Attacks
	Taxonomy
	Bleichenbacher's Attack
	Template Attacks

	Statistical Tests
	Student's t-tests
	Fisher's Exact Test
	Holm-Bonferroni Correction

	Information Leakage Detection
	Problem Formulation
	Methodology
	Leakage Assessment Score
	Approaches

	Mutual Information Estimation Methods
	Mid-point Estimation
	Log-Loss Estimation
	Baselines

	Mutual Information Estimation
	Simulating Synthetic Systems
	Generation Method
	Introducing Noise () in the System
	Ground-truth MI

	Experimental Setup
	Evaluation Process
	Evaluation Metric

	Results
	Overall Results
	Generalization Capability Analysis

	Automating ILD in OpenSSL TLS Servers
	Side Channels in Network Traces
	OpenSSL TLS Timing Datasets
	OpenSSL TLS Error Code Datasets

	Experimental Setup
	Evaluation Process

	Results
	Detection Accuracy on Timing Datasets
	Detection Accuracy on Error code Datasets
	Summary

	Automating ILD in AES-encrypted Systems
	ILD in AES-encrypted Systems
	Automated side channel Attacks
	Black-Box Automated Detection Approach

	Experimental Setup
	NAS Parameters
	Dataset Description

	Parameter Study Results
	Optimal Parameters
	Parameter Reliability
	Efficiency Analysis
	Summary

	Summary and Future Directions
	Conclusion
	Future Work

	Bibliography
	Appendix Appendix
	Implementation Details
	MI Estimation Approaches
	Automating ILD in OpenSSL TLS Servers
	Automating ILD in AES-encrypted Systems

	ILD Performance on Error Code Datasets
	Non-vulnerable OpenSSL TLS Servers
	Vulnerable OpenSSL TLS Servers
	Summary

	ILD Generalizability on Timing Datasets
	TabPFN
	AutoGluon
	ILD Baselines
	Summary

	Generalizability of MI Estimation Methods
	Number of Classes and Input Dimensions
	Class Imbalance and Noise Level
	Summary

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms

