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Abstract

With the swift progress of current Al systems’ capabilities, there is a pressing need
for explainable Al methods to understand the behavior of these systems. To this
end, class expression learning in description logics holds enormous potential. A
class expression provides a clear description of why a given example is classified
as positive, and is hence a white-box model. Most existing approaches for class
expression learning are search-based methods which generate many candidate class
expressions and select the one with the highest classification score. While these
approaches often perform well on small datasets, their search space is infinite and its
exploration becomes arduous on large datasets even for a single learning problem. In
this thesis, we develop several neuro-symbolic approaches to tackle class expression
learning at scale. Our first approach CLIP uses neural networks to learn concept
lengths, and utilizes trained concept length predictors to solve learning problems
efficiently. Neural class expression synthesizers (NCES) tackle class expression
learning in ALC in a fashion akin to machine translation, and support sophisticated
computing hardware such as GPUs. NCES2 extends NCES to the description logic
ALCHIOP) | integrates an embedding model for end-to-end training, and employs a
data augmentation technique to enhance generalization to unseen learning problems.
Finally, ROCES uses iterative sampling to improve the robustness of neural class
expression synthesizers to changes in the number of input examples. Experimental
results on benchmark datasets suggest that our proposed approaches are significantly
faster than the state of the art (up to 10,000x with NCES, NCES2 and ROCES) while
being highly competitive in predictive performance.
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Kurzfassung

Angesichts der rasanten Entwicklung der Fahigkeiten moderner KI-Systeme besteht
ein dringender Bedarf an erkldrbaren KI-Methoden, um das Verhalten dieser Sys-
teme zu verstehen. Lernen von Klassenausdriicken in Beschreibungslogiken birgt
enormes Potenzial dafiir. Ein Klassenausdruck liefert eine klare Beschreibung, warum
ein bestimmtes Beispiel als positiv oder negativ eingestuft wird und ist somit ein
White-Box-Modell. Bei den meisten existierende Ansédtzen zum Lernen von Klasse-
nausdriicken handelt es sich um suchbasierte Methoden, die viele verschiedene
Klassenausdriicke generieren und denjenigen mit der hochsten Klassifizierungspunk-
tzahl auswihlen. Wihrend diese Ansétze bei kleinen Datensitzen oft gut funktion-
ieren, ist ihr Suchraum unendlich grof3 und dessen Erkundung wird gerade bei
grofRen Datensitzen zeitaufwéandig. In dieser Arbeit entwickeln wir mehrere neuro-
symbolische Ansétze, um das Lernen von Klassenausdriicken in grolem Malf3stab zu
bewdltigen. Unser erster Ansatz CLIP verwendet neuronale Netze, um Konzeptlin-
gen zu lernen, und nutzt trainierte Konzeptldngenpréadiktoren, um Lernprobleme
effizient zu 16sen. Neuronale Klassenausdrucksynthetisierer (NCES) gehen das
Lernen von Klassenausdriicken in ALC #hnlich wie maschinelle Ubersetzung an
und unterstiitzen anspruchsvolle Computerhardware wie GPUs. NCES2 erweitert
NCES auf die Beschreibungslogik ALCHZOP), integriert ein Einbettungsmodell
fiir das End-to-End-Training und setzt eine Datenerweiterungstechnik ein, um die
Generalisierung auf ungesehene Lernprobleme zu verbessern. SchlieRlich verwendet
ROCES iteratives Sampling, um die Robustheit von neuronalen Klassenausdrucksyn-
thetisierern gegeniiber Anderungen in der Anzahl der Eingabebeispiele zu verbessern.
Experimentelle Ergebnisse auf Benchmark-Datenséatzen deuten darauf hin, dass die
von uns vorgeschlagenen Ansétze deutlich schneller sind als der Stand der Technik
(bis zu 10.000x mit NCES, NCES2 und ROCES) und gleichzeitig in der Vorher-
sageleistung vergleichbar gut abschneiden.
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Introduction

There is a pressing need for explainable Al methods to understand the behavior of
Al systems [161, 164, 249]. For example, the EU Al Act' mandates transparency
for Al systems [136]. Moreover, Article 22 of the GDPR? grants data subjects
the right to understand how Al systems use their data to reach conclusions. In
this thesis, we contribute to the need for explainable Al methods by developing
scalable neuro-symbolic approaches for class expression learning in description logics.
The thesis comprises 8 chapters. In Chapter 1, we further motivate our research,
identify relevant gaps in existing literature, formulate our research questions, and
highlight our contributions. In Chapters 2 and 3, we present the prerequisites needed
throughout the thesis, and describe related works, respectively. In Chapters 4—7,
we present our research contributions. In Chapter 8, we summarize the thesis and
outline future work.

1.1 Motivation

Artificial intelligence (AI) has revolutionized our approach to problem-solving and
the way we interact with the rest of the world. Whether in our everyday life, e.g.,
product purchase with Al-powered recommendation systems [140, 245], social
media [7, 96], smart homes [59, 76], or complex application domains such as
biomedical sciences [2, 13], or autonomous driving [73, 238], Al has become an
integral part of our existence. Let us delve into the last two application domains.
In medical diagnosis, Al systems analyze large amounts of data to assist healthcare
professionals in identifying diseases at early stages [42, 218]. For example, deep
learning models such as convolutional neural networks (CNNs) have shown remark-
able success in interpreting medical images like X-rays, magnetic resonance imaging
(MRI) or computerized tomography (CT) scans [93, 179, 186, 192, 203]. These
models can detect subtle patterns that may be invisible to humans, which yields an
enormous potential for earlier intervention and improved patient outcomes. Al has
also been successfully applied in protein structure prediction, e.g., AlphaFold2 [99].

'https://artificialintelligenceact.eu
*https://gdpr-info.eu/art-22-gdpr. Accessed on January 28th, 2025.
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In fact, two authors of AlphaFold2 have been awarded the 2024 Nobel Prize in
Chemistry® for their valuable work in protein structure prediction. With accurate
protein structure prediction, scientists can now improve their understanding of
chemical reactions in proteins, and generate real-time 3D images of proteins with
specific properties, e.g., the ability to decompose plastic [60, 175].

Autonomous driving [70, 73, 125, 238] is another critical application of Al. Here,
complex algorithms concert to interpret real-time data from various sources (e.g.,
cameras, sensors), helping vehicles to navigate safely in dynamic environments. Most
of these algorithms leverage advanced machine learning techniques—particularly
deep learning—to enhance perception, decision-making, and control systems [73,
151]. The aim is that, with these techniques, autonomous vehicles identify ob-
stacles, predict the behavior of other road users, and make informed decisions
on navigation paths, e.g., accelerate or break to avoid a collision. Moreover, the
integration of technologies such as LiDAR (light detection and ranging) and radar
can further support Al algorithms and enhance the overall situational awareness of
a vehicle [137, 240].

Despite its immense potential across several applications, Al faces significant barriers
to effective adoption, particularly in critical domains such as healthcare. This is
because, in contrast to symbolic Al methods which use human comprehensible se-
mantics and logic-based reasoning [95], the best-performing Al approaches currently
rely primarily on deep neural networks [9, 21]. Deep neural networks have complex
prediction mechanisms which are difficult to interpret, leading to their classification
as “black boxes”. However, as pointed out in [212], it is hard to trust Al when we
cannot understand how it reaches its conclusions. Transparency in Al is therefore
essential for its effective adoption in various application domains. The search for
these transparent Al methods has lead to the ever-growing interest to reconcile
symbolic AI with deep learning [68, 84, 95], resulting in a plethora of methods for
explainable AI (XAI) [3, 11, 12, 74, 130, 145, 211]. Some of these methods are
post-hoc, i.e., they aim to explain existing black-box models [39, 98, 114, 115, 204],
while others are self-explained , i.e., ante-hoc [181].

This thesis contributes to advancing both the fields of learning from examples [27, 43,
62, 119, 177, 185] and explainable AI [3, 11, 12, 74, 130, 145, 211], with a focus
on scalability. More specifically, we develop scalable neuro-symbolic approaches for
class expression learning (CEL) in description logics (DLs). Our approaches combine
the strengths of deep neural networks, which are parallelizable and can handle

*https://www.nobelprize.org/prizes/chemistry/2024/press-release. Accessed on October
14th, 2024.
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different data formats (e.g., image, text, audio), and symbolic Al methods, which
have clear semantics and can produce interpretable results, e.g., a class expression
in description logics. A class expression is human-readable and interpretable* and
is hence a white-box model. For instance, a class expression to describe penguins
is (Bird M CanSwim) L! (Animal I HasWings 1 —CanFly), which stands for birds

that can swim or animals that have wings and cannot fly.

A
p(Person)| --- [Place] - | Organisation

\ 4
| p(Person (3 attendsSome. T)) |

T

| Personll (3 attendsSome.Talk) | e | p(Person (Y attendsSome. (Workshop L Conference))) |

Y
e | Person Tl (V attendsSome.Conference) 13 hasChild.Human |

Figure 1.1: Search tree of refinement operator-based approaches for class expression learn-
ing. p is a downward refinement operator as defined in the next chapter. Green
rectangles correspond to the selected concepts (which are considered the most
promising according to some heuristic function) for further exploration. Hor-
izontal and vertical suspension points indicate that the tree expands further
horizontally and vertically, respectively.

Early approaches for CEL are search-based [82, 120, 121, 122, 177, 185]. Some of
these approaches employ a refinement operator [15, 123] to construct an infinite
conceptual space, and a heuristic function to traverse it. Figure 1.1 illustrates a
search tree for refinement operator-based approaches. Given sets of positive and
negative examples, the search process starts with the most general concept® T which
is refined to yield a sequence of more specific concepts, each covering some part
of positive examples and ruling out a number of negative examples. The most
promising refinement according to a heuristic function is then selected for further
exploration (see the concept “Person” in Figure 1.1). The search process continues
until, e.g., a solution is found (a refinement which perfectly covers all positive

“Here, “interpretability” refers to the fact that the string representation of a class expression carries
an intuitive meaning which is accessible to human readers.

>Some refinement operator-based approaches start with the bottom concept L and use an upward
refinement operator to iteratively construct a solution.
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examples while ruling out all negative examples) or until the maximum number of
iterations is reached®. While not based on refinement operators, EvoLearner [82]
and ECII [185] employ a similar search strategy, i.e., they construct a search tree
akin to the one in Figure 1.1. As such, given certain requirements on the quality of
the solution sought (e.g., a solution must achieve at least 99% F; score), the search
tree can grow indefinitely large. This makes search-based approaches time-inefficient
and they often yield poor results on especially large datasets where they fail to find
suitable solutions within a reasonable amount of time [109, 113].

There have been efforts to improve the scalability of search-based approaches for
CEL, including DRILL [48] and NERO [47]. DRILL learns the search space traversal
via deep Q-learning [144]. To this end, DRILL can either be pretrained in an
unsupervised manner, e.g. by learning from example learning problems, or actively
learn space traversal during a class expression learning task. In both cases, DRILL
requires a refinement operator to construct its search space (akin to the one in
Figure 1.1), a trainable heuristic function and a scoring function (an extension of
CELOE’s scoring function) to guide the search. Although DRILL outperforms some
existing search-based approaches in terms of runtime, its reliance on a refinement
operator and a scoring function during search can still constitute a drawback on
especially large datasets.

NERO [47] learns permutation-invariant continuous vector representations for sets
of positive/negative examples tailored towards predicting the F} scores of predefined
class expressions with respect to input examples. Given sets of examples for a
learning problem, NERO selects the class expression with the highest predicted score
as solution. A clear limitation of NERO is that it cannot find solutions outside the
predefined set, making it a sub-optimal approach especially for complex learning
problems. The synthesis-based approaches presented in this thesis (see Chapters 5—
7) overcome many of the aforementioned limitations. For instance, by synthesizing
class expressions using atomic concept and role names as well as description logic-
specific symbols (e.g., 3, <), our approaches are not limited to any predefined set
of class expressions, i.e., they are fully flexible w.r.t. the construction of a solution.
The development of our approaches was guided by a number of research questions,
which we present below.

®Note that there are other termination criteria which can be used, e.g., a set timeout, or a minimum
solution score.
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1.2 Research Questions and Contributions

To tackle class expression learning, several approaches have been proposed, most of
which are refinement operator-based [120, 121, 122, 177]. A refinement operator-
based approach builds a search tree whose nodes are concepts and whose edges
represent hierarchies between those concepts. This tree is then traversed using
heuristic functions which measure the likelihood of a given path leading to a solu-
tion (see Chapter 3 for details). As illustrated by Figure 1.1, this search tree can grow
indefinitely on large datasets. This makes current refinement operator-based ap-
proaches computationally inefficient. Below, we formulate our first research question
which aims to prune the search space of refinement operator-based approaches.

1.2.1 Concept Length Prediction

In our quest for ways to improve the scalability of refinement operator-based ap-
proaches, we envisage possible links between the length of a concept (as defined
in Section 2.2) and its set of instances. For this, we ask ourselves the following

question.

Research Question 1

Can we learn concept lengths in the description logic ALC?

To answer this research question, we develop an approach to automatically generate
numerous non-redundant class expressions with various lengths, each with a non-
empty instance set referred to as the set of positive examples. We then use the closed-
world assumption (CWA) [121, 174] to construct a set of negative examples for each
generated class expression. Finally, we use knowledge graph embedding techniques
(see Chapter 2) to compute continuous vector representations for examples and
use them as input features for neural network architectures capable of predicting
concept lengths. Experimental results on several benchmark datasets suggest that all
of our chosen neural networks outperform a random model which gives preference
to the most represented concept lengths on each dataset. Moreover, recurrent neural
networks perform best at the task of concept length prediction, surpassing many
other architectures, including multilayer perceptrons (MLPs) and convolutional
neural networks (CNNSs).

With the success of neural networks in concept length prediction, we were interested
in knowing whether this could help accelerate class expression learning. This lead
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to the development of our complete approach CLIP (concept learner with integrated
length prediction) [107] which we detailedly present in Chapter 4. In short, we
incorporate trained concept length predictors into refinement operator-based concept
learners (CELOE [122] in our experiments), and compare the resulting algorithm
to baselines, namely CELOE, ELTL, and OCEL [120]. Given sets of positive and
negative examples for a learning problem, our approach CLIP first predicts the length
of the target concept and uses it as the radius of the search space. More specifically,
refinements whose lengths are above the predicted value are discarded during the
search process. Experimental results suggest that CLIP is significantly faster (p-value
< 0.05 with the Wilcoxon Signed Rank test) than base algorithms while being more
accurate in most cases.

1.2.2 Neural Class Expression Synthesis

While CLIP showed significant improvements over search-based approaches for CEL,
its reliance on a refinement operator can still be seen as a hindrance on real world
datasets which are increasingly growing in size. For instance, the October 2023
crawl’ of the web revealed that around 98 billion triple-formatted statements can
be extracted. This number was only 82 billion in October 20218, indicating an
increase of nearly 20 billion datapoints within 2 years. The pruning technique in
CLIP might therefore not be sufficient on such datasets, especially when real-time
solutions to learning problems are needed. To further mitigate the scalability issues
of search-based approaches, we consider tackling class expression learning from a
completely different angle, summarized in the following research question.

Research Question 2

Can we develop an approach for class expression learning in the description
logic ALC that can compute solutions without a search process?

To answer this research question, we develop a novel family of approaches [113]
(also see Chapter 5) dubbed synthesis-based approaches which compute a solution
to a learning problem in a fashion akin to machine translation [35, 228]. In this
way, sets of positive and negative examples are translated to class expressions in
description logics without the need for a costly exploration. To achieve this goal,
we implement neural network architectures able to encode sets of examples, e.g.,

’October 2023: https://webdatacommons .org/structureddata/#results-2023-1 Accessed on
October 24th 2024

80ctober 2021: http://webdatacommons . org/structureddata/#results-2021-1 Accessed on Oc-
tober 24th 2024
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Set-Transformer, and output a sequence of tokens which form a class expression.
These network architectures utilize a vocabulary of tokens, which is fixed for each
input knowledge base, and learn output token positions based on input examples by
minimizing the cross-entropy loss, see Chapter 5 for details. Experimental results on
benchmark datasets suggest that our neural class expression synthesizers (NCES)
are highly accurate and significantly faster than search-based approaches for CEL (p-
value < 0.05 with the Wilcoxon Signed Rank test) as they can compute solutions to
learning problems within a fraction of a second. Moreover, NCES can solve multiple
learning problems in parallel, and support sophisticated computing hardware such
as GPUs.

1.2.3 Neural Class Expression Synthesis in ALCHZQ™P)

Our proposed family of synthesis-based approaches require pretrained embeddings
for input knowledge bases, and can solve learning problems in ALC. Although they
perform well with the pretrained embeddings available for benchmark datasets,
most real world knowledge bases do not have precomputed embeddings, and can be
represented in more expressive description logics. We therefore consider another set
of research questions to further improve our synthesis-based approaches.

Research Question 3

Is neural class expression synthesis possible in more expressive description
logics, e.g., ACCHZQ™P)?

To extend neural class expression synthesizers to ALCHZQOP) | we add new tokens
to the vocabulary of NCES, e.g., “>" and “<” for cardinality and value restrictions,
and “~” for inverse roles. We also adopt an approach based on information gain to
precompute data value thresholds [82] which we add to NCES’s vocabulary to fully
support ALCHTZQOP).

To alleviate dependency on pretrained embeddings, we also investigate the inte-
gration of an embedding model into synthesis-based approaches (see the following
research question) for end-to-end training and inference.

Research Question 4

Can we train an embedding model end-to-end with a neural synthesizer?

Here, we combine an embedding model and a neural synthesizer supporting the
description logic ALCHT 9®) (as described above) into a unified learner which we
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call NCES2 [109], see Chapter 6 for more details. During training, the embedding
model receives a batch of triples representing factual knowledge, e.g., relationships
between individuals in the input knowledge base, and the neural synthesizer receives
a batch of class expressions with their corresponding examples. The embedding
model provides current vector representations of examples to the neural synthesizer,
and the loss from both components are backpropagated simultaneously. NCES2
also introduces a new data generation technique which improves the generalization
capability of synthesis-based approaches to unseen learning problems. Experimen-
tally, NCES2 shows a better predictive performance compared to the initial family of
neural synthesizers (NCES) especially on complex learning problems, while being
equally fast at inference time.

1.2.4 Robust Class Expression Synthesis via lterative
Sampling

During our investigation of the two research questions in Section 1.2.3, we real-
ized that neural synthesizers are sensitive to small changes in input examples. In
particular, their performance drops drastically at inference time when dealing with
learning problems whose example sets are smaller than those they are trained on.
However, in real world applications of class expression learning such as ontology
engineering [122], a knowledge engineer may be interested in describing a few or
many examples at a time. Consequently, a class expression learner should be able
to handle learning problems with arbitrary numbers of examples, which is not the
case with our previous neural synthesizers. We therefore consider the following
research question which aims to improve the robustness’ of neural class expression
synthesizers with respect to changes in the number of input examples.

Research Question 5

How can we ensure that neural class expression synthesizers are robust to
changes in the numbers of input examples?

To answer the above research question, we develop our approach ROCES [111],
presented in Chapter 7. In ROCES, we propose a generalization of the classical
learning problem which encourages class expression learners to solve learning prob-
lems by using cardinality-minimal sets of examples. We also propose a learning
algorithm for synthesis-based approaches which combines interative sampling and

“Here, the term “robustness” refers to the ability of neural class expression synthesizers to compute
correct solutions to learning problems with complete or few input examples.

Chapter 1 Introduction



gradient-based optimization to solve our generalized learning problem. Our experi-
mental results suggest that ROCES significantly outperforms search- and previous
synthesis-based approaches on learning problems with limited examples, while being
highly competitive on full learning problems.

1.3 Thesis Outline

In this section, we present the structure of the thesis which comprises 8 chapters.
In the current chapter, we motivate our research in class expression learning, iden-
tify limitations of existing approaches, and provide an overview of the scientific
contributions made herein. The rest of the thesis is organized as follows:

Chapter 2 establishes the foundational knowledge required for a comprehensive
understanding of this thesis.

Chapter 3 presents existing works in class expression learning and related tasks.
These include the state of the art for class expression learning, e.g., CELOE [122],
EvoLearner [82], and inductive logic programming approaches.

Chapter 4 presents our approach CLIP [107] which integrates concept length
predictors to prune the search space of refinement operator-based approaches for
class expression learning. The source code of CLIP is available on GitHub at https:
//github.com/dice-group/LearnALCLengths. CLIP is also implemented in the
structured machine learning library Ontolearn (https://github.com/dice-group/

Ontolearn).

Chapter 5 introduces NCES [113], our family of synthesis-based approaches (also
called neural class expression synthesizers) for ALC, which can compute a solution
without a search process. NCES is implemented in the structured machine learning
library Ontolearn (https://github.com/dice-group/Ontolearn), and experimen-
tal results reported herein can be reproduced at https://github.com/dice-group/

NeuralClassExpressionSynthesis.

Chapter 6 describes NCES2 [109], an instance of synthesis-based approaches that
supports the description logic ALCHZQP) and integrates an embedding model
for end-to-end training and inference. The source code of NCES2 is available on
GitHub at https://github.com/dice-group/NCES2. NCES2 is also implemented
in Ontolearn.

1.3 Thesis Outline
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Chapter 7 presents ROCES [111], our approach to improve the robustness of class
expression learners in general, and that of neural class expression synthesizers in
particular. The source code of ROCES is available on GitHub at https://github.
com/dice-group/ROCES. ROCES is also integrated into Ontolearn.

Chapter 8 concludes the thesis and outlines future work.
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Background

This thesis leverages findings from different well-established fields of research,
including machine learning, deep learning, description logics, and knowledge graphs.
In this chapter, we present the prerequisites needed throughout the thesis so it is
self-contained.

2.1 Machine Learning

2.1.1 Overview

Machine learning (ML) is a branch of artificial intelligence that focuses on the
development of statistical algorithms able to learn from data, generalize to unseen
data, and perform tasks autonomously [10, 14]. For example, artificial neural
networks (ANNs) or simply neural networks (NNs), which are inspired by the (hu-
man) brain structure, have revolutionized the fields of natural language processing,
computer vision, speech recognition, and many others [8, 103, 236], surpassing
the good old-fashioned AI (GOFAI) systems which are mainly based on symbolic
representations [134, 182]. Apart from single-layered networks like Hopfield net-
works [87, 88], the most prominent neural networks are composed of an input
layer, one (or many) hidden' layer(s), and an output layer. Each layer consists of
one or many artificial neurons which carry messages (typically real numbers) and
eventually transfer them to other neurons. A neural network with many hidden
layers is called a deep neural network, and the learning process is then referred to as
“deep learning” [72, 117]. In Figure 2.1a, we show the picture of a neural network,
and in Figure 2.1b, the picture of a deep neural network. In both figures, nodes
represent artificial neurons, and arrows indicate connections between nodes in terms
of message reception and transfer. In a forward pass, a node aggregates information
from (some of) its predecessors and pass it onto (some of) its successors. During
training, information about the incurred loss travels backward from the output to
the input layer (via chain rule in gradient computation) to help update the state of

'Hidden layers are intermediate layers, i.e., they locate between the input and output layers.
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Figure 2.1: Structure of a neural network

each node. Popular optimization algorithms used to train neural networks include
Adam [104] and its variants, ADOPT [199], SGD [178], and RMSProp [202].

Unlike simple neural networks, deep learning models are well-known for their ability
to learn from unlabelled data (i.e., unsupervised learning) where they automatically
extract important features and characteristics from the input data. Large language
models (LLMs), e.g., GPT [1], LLama [205], Gemma [201], and DeepSeek [75, 131]
are examples of deep neural networks that are trained in an auto-regressive manner
(i.e., predict the next token given a sequence of preceding tokens) using unlabelled
text data.

2.1.2 Neural Network Architectures
Multi-layer Perceptron

A multi-layer perceptron (MLP) is a neural network architecture consisting of multi-
ple layers transmitting information in a single direction [19, 167]. Such a neural
network can be defined by its weight matrices and bias vectors:

f@(l’) = Un(Wn( .. O’Q(WQ(Ul(Wll‘ + bl)) + bz) + bn), 2.1

where z is an input vector, § = {(W;, b;) }}_; weight matrices and bias vectors, and
{0i}_, non-linear activation functions. Note that activation functions may not
be applied to the output of certain layers. For instance, in regression tasks the
outputs of the last layer are usually not activated. One limitation of MLP is its
inability to natively handle multi-dimensional inputs such as images. To process such
inputs, a flattening operation is necessary, which often leads to high-dimensional
input vectors and costly computations. To mitigate this issue, other types of neural
network architectures have been proposed, including convolutional neural networks,
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recurrent neural networks, and transformers. These complex architectures often
employ MLP as the head (last layer) producing the final outputs.

Convolutional Neural Network

A basic convolutional neural network (CNN) [6, 227, 234] consists of a convolution
kernel, and a linear layer. Formally, given an input vector z, a simple convolutional
neural network with kernel w computes its output as:

fo(x) = Wvec(w * z) + b, (2.2)

where x denotes a convolution operation, § = {w, W, b} trainable parameters, and
vec(.) a flattening function that transforms a high-dimensional array into a one-

2 The shape of the kernel w depends on the input. As an

dimensional vector.
example, w is a vector in R* for one-dimensional inputs = € R? such as audio signals.
For RGB images (which are three-dimensional), the kernel w is three-dimensional.
Convolutional neural networks are well known for their capability to process high-
dimensional data efficiently. In Figure 2.2, we show how a convolution operation is
performed on 2D (two-dimensional) inputs such as grey images. Basically, the kernel
matrix is multiplied element-wise with a portion of the input and the coefficients of
the resulting sub-matrix are added up. This process is repeated on different portions
of the input to produce the final output. It is important noting that activation
functions may be applied to intermediate outputs (e.g., between a convolution and

a linear layer) or to the final output.

The main hyperparameters of a convolutional neural network are the kernel size
(also known as filter size), the stride, and the padding. The kernel size determines
the receptive field of the neural network; roughly, this refers to the size of a portion
of the input that is captured by the network at a time. For instance, a larger kernel
size captures more information in the input, but it increases the size of the network.
The stride determines the step size by which the kernel moves while operating on
the input. Finally, padding is a technique used to augment the input and reduce
information loss at its edges. This involves adding zeros around the edges of the
input. In Figure 2.2, the kernel size is 2 x 2, the stride is (1, 1), and the padding
is (0,0). These hyperparameters also control the size of the output. Along each

2One-dimensional in this case refers to vectors in R?, as opposed to real numbers.
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Figure 2.2: Convolution operation on 2D inputs

dimension D, the relationship between the size of the input and the size of the
output is given by:
(D) _ Input®) + 2 x Padding(D) — Kernel_Size(D)

Output?) = + 1. 2.3
P Stride(?) 2.3)

In complex convolutional neural networks, e.g., Unet [179], multiple convolution
layers are composed to capture intricate patterns in the input.

Recurrent Neural Network

Recurrent neural networks (RNNs) [85, 142, 188] are a family of neural architec-
tures able to process sequential data, e.g., times series, text, videos (sequence of
frames). The fundamental component of an RNN is a recurrent unit, which embodies
a hidden state (also called a memory state) capable of remembering some part of
the past information in an input sequence at a given time step. Recurrent units share
common weight matrices Wy, and W,;, and eventually a bias vector b. The basic
equation to describe a recurrent unit is

he = o(Winhi—1 + Wpa +b), 2.4)
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where o is a non-linear activation function such as tanh, h; the current hidden state
(i.e., at time step t), h;—1 the previous hidden state, and x; the input at time step

t. In Figure 2.3, we illustrate a three-layer recurrent neural network processing a

sequence of words. Rectangles annotated with hgj )

L)

i

are recurrent units, and each
is a hidden state. The superscript .(!) indicates that a hidden state is from the
first RNN layer, whereas .(2) and .(3) correspond to the second and third layers,
respectively. The first layer receives an initial hidden state h( in addition to the
input. From the left to the right, the RNN processes the input tokens “Love”, “the”,
“life”, “you”, and aims to predict the next token, which in this case could be “live”. As
input tokens are received, at each layer, the RNN updates its hidden states following
Equation 2.4 above.

live
3

hyY > hY > B > B

A A \ A
hgz) R hgz) > hff) > hf)

A A A A

>l o 72 (1 ol 2 (1 o7 (1
ho B ST B o (1)
Love the life you

Figure 2.3: Two-layer RNN. The network processes multiple input tokens (“Love”, “the”,
“life”, “you”) and sequentially updates its hidden states h7) . In this figure, the
network aims to predict the next token, e.g., “live” that is most likely to come
after the consumed tokens.
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There are several RNN variants. Examples include BiRNN, LSTM, and GRU. BiRNN
is short for bidirectional RNN, a recurrent neural network that processes an input
sequence in two directions: from the start of the sequence to its end, and from the
end of the sequence to its starting point. This is often achieved by two RNNs, the
outputs of which are combined to produce the final output. LSTM, long short-term
memory, is an RNN architecture that operates in a read-write-forget principle by
introducing three gates: an input gate i., a forget gate f;, and an output gate o;. The
forget gate decides which part of the past information may be forgotten depending
on the target output. LSTM equations are as follows:

iy = o(Wisxe + bis + Whihi—1 + bri), (2.5)
Fo = o (Wipmy + big + Wiphe_y + i), (2.6)
o = 0(Wioxt + bio + Whohi—1 + bho), 2.7)
¢ = tanh(Wiczy + bic + Whehi—1 + bre), 2.8)
¢t = froci—1 +it0d, (2.9)
ht = o o tanh(c). (2.10)

In the equations 2.5-2.10, hy, ¢;, and x; are the hidden state, the cell state, and
the input at time step ¢, respectively. h;_; is the hidden state at time step ¢ — 1.
i+, f+, and o; are the input, forget, and output gates, respectively. ¢ is candidate
for the cell state at time step ¢. The W’s and b’s are trainable weight matrices and
weight vectors. o is the sigmoid activation function, and o is the element-wise
multiplication (also called Hadamard product). By introducing the three gates,
LSTM outperforms simple RNNs on tasks involving long input sequences. GRU,
gated recurrent unit, is a simplification of LSTM where the output gate is removed.
GRU equations are as follows:

re = o(Wirxy + bip + Wiphi—1 + by ), (2.11)
2z = o(Wizxy + bz + Whohi—1 + byz), (2.12)
ny = tanh(Winxy + bip, + 11 0 Whnhi—1 + bpn)), (2.13)
ht =1 —z)ong+ z 0 hy—q, (2.14)

where r4, z;, and n; are the reset gate, the update gate, and a candidate activation
vector, respectively. In terms of predictive performance, GRUs are competitive with
LSTMs, but the former are more parameter-efficient.

While RNNs and their variants perform relatively well on learning tasks involving
sequential input data, e.g., statistical machine translation (SMT) [36], they often
suffer exploding or vanishing gradients as input sequences get longer. Moreover, the
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back-propagation through time (BPTT) algorithm [223] via which these networks are
trained is computationally expensive. These limitations have led to the development
of the transformer architecture as an alternative to RNNs. In the next lines, we
present the transformer architecture and elucidate its building blocks, namely, the
attention and multi-head attention functions.

Transformer

A transformer [79, 209, 210, 225] is a deep neural network architecture based on the
multi-head attention mechanism which captures dependencies between the elements
of an input sequence and their weighted contribution to the desired output, without
recurrence or convolution. A basic transformer model is composed of an encoder
and a decoder, both based on a multi-head attention mechanism. A multi-head
attention function applies multiple attention functions in parallel, the outputs of
which are combined for the final prediction. Additionally, this architecture employs
a positional encoding technique to preserve the ordering information in an input
sequence. Together, these components enhance the transformer’s expressive power
and computational efficiency.

Attention. An attention function Att(-) takes three inputs: queries, keys, and
values, and computes its output as a weighted sum of values [210]. Formally, let
Q € Rra*d% K ¢ R™*% and V € R™*% be the query, key, and value matrices,
respectively. The dot-product attention (also called multiplicative attention) function
is defined as

Att(Q, K, V) = Softmaz(QKT)V. (2.15)

There are two main attention functions: dot-product attention, and additive atten-
tion [16]. Although the two have comparable model size and expressive power,
the dot-product attention is computationally more efficient [25]. However, as the
embedding dimension dj increases, additive attention tends to outperform the
dot-product attention [25]. Vaswani et al. [210] therefore proposed to rescale the
dot-product in the attention computation by ﬁ:

T
Att(Q, K, V) = Softmax (?/% ) V. (2.16)
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Figure 2.4: Transformer architecture. Source: Vaswani et al. [210].

The scaling factor prevents the dot-products from reaching high values which would
lead to vanishing gradients during training.

Multi-head Attention. The multi-head attention function [118, 210] with » heads

is defined as

Multihead(Q, K, V) = Concat(|head;, heada, . . . ,headh})Wo, (2.17)
head; = Att(QWE, KWK VW), (2.18)

where W& e Rk *dmodet WK  Rdk*dmodet and W) € R *dmodet are head-specific
projection layers for queries, keys, and values, respectively. WO € R *dmodet is the
final projection layer, d, is the size of hidden layers, and Concat a horizontal con-
catenation function. For computational efficiency, the dimension of each attention
head is often chosen such that hd, = hdy = dmodel, thus dy, = di, = dpoder /b

Initially developed as an alternative to RNNs for machine translation [36, 133],
transformers have since been adopted in various fields of Al, including large-
scale natural language processing [209, 213, 225], computer vision (with vision

Chapter 2 Background



MatMul
c -

Scaled Dot-Product h
Mask (opt.) t[ Attetnlnon t[ .u
' | o 1

Linear Linear Linear

Figure 2.5: (Left): Scaled dot-product attention function. (Right): Multi-head attention
function. Source: Vaswani et al. [210], and Weng [222].

transformers) [80, 102], reinforcement learning [32, 128], multi-modal applica-
tions [168, 231], and robotics [26, 217]. In each of these subfields, transformers
achieve state-of-the-art performance. The success of transformers, especially in the
field of natural language processing (NLP), has led to the creation of pre-trained
systems, such as generative pre-trained transformers (GPTs) among which feature
the well-known OpenATI’s ChatGPT and GPT-4[1], Google’s Gemini [200], or Meta’s
Llama [205], only to mention a few.

2.1.3 Permutation-Invariant Neural Network Architectures for
Set Inputs

In this thesis, we mainly deal with set-structured input data (i.e., sets of positive and
negative examples for a given learning problem) as in 3D shape recognition [169],
multiple instance learning [54], and few-shot learning [63, 194]. These tasks benefit
from machine learning models that produce the same results for any arbitrary
reordering of the elements in the input set. Another desirable property of these
models is the ability to handle sets of arbitrary sizes.

DeepSets

In recent years, several approaches have been developed to meet the aforementioned
requirements. The most prominent of these approaches include DeepSets [242]
and Set-Transformer [118]. The DeepSets model encodes each element in an input
set independently and uses a pooling layer, e.g., averaging, to produce the final
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representation of the set. More specifically, it maps an input set x = {z1, z2,...,2,}
into a hidden representation following the equation

reX

DeepSets(x) = fo (Z gbg(m)) , (2.19)

where fy and ¢; are deep neural networks with trainable parameters 6 and 0,
respectively. Obviously, the final hidden representation of the input set does not
depend on the order of its elements. This makes DeepSets a suitable architecture
for many set-input learning tasks. However, recent results suggest that attention-
based network architectures such as Set-Transformer outperform DeepSets on many
learning tasks.

Set-Transformer

Set-Transformer [118] is similar to the transformer architecture presented in Sec-
tion 2.1.2, but it does not use positional encoding since it takes sets as input and the
order of their elements does not matter. Set-Transformer employs a self-attention
mechanism to encode an input set, which allows pair-wise and even higher-order
interactions between its elements. Set-Transformer outperforms DeepSets on many
set-input learning tasks with a comparable model size [118]. For this reason, our
works in Chapters 5, 6, and 7 use the Set-Transformer architecture. Its building
blocks are described below.

Multi-head Attention Block (MAB). Lee et al. [118] introduced a modified version
of multi-head attention blocks tailored toward set-structured inputs. We employ the
same attention blocks but without layer normalisation, as the latter did not improve
the results in our learning tasks. For any X, Y € R"*?, we define MAB as:

H = X + Multihead (X, Y, Y), (2.20)
MAB(X,Y) := H + FF(H), (2.21)

where FF is a feedforward neural network layer and n is the number of elements in
the input sets X and Y.
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Set Attention Block (SAB). This module operates on a single set of embedding
vectors. Following [118], we define SAB as:

SAB(X) := MAB(X, X). (2.22)

SAB aims to capture interactions between the elements of a input set via an attention
mechanism. However, the computational complexity of SAB grows quadratically
with the size of the input set. This has lead to the introduction of the induced set
attention block, as described below.

Induced Set Attention Block (ISAB). To reduce the computational complexity in
attention mechanisms for especially large sets, Lee et al. [118] proposed using the
so-called inducing points. The main idea is to introduce a (small) fixed-size trainable
matrix ] € R™*¢ as a bridge in SAB. More specifically, ISAB is defined for any
X € R™¥4 as:

H =MAB(I, X) € R™*4, (2.23)
ISAB(X) := MAB(X, H) € R"™*¢, (2.24)

Note that the computation cost in ISAB is 4 x (m x d x n). This is less than that of
SAB which is 2 x (n x d x n), for n >> m.

Pooling by Multi-head Attention (PMA). As opposed to the pooling mechanism
in [242], where the learned features from the encoder are summed (decoding), the
decoder in Set-Transformer [118] applies a multi-head attention function between a
trainable feature matrix and the features from the encoder. Formally, a Pooling by
Multi-head Attention layer (PMA) with & seed vectors S € R¥*? is defined for any
X € R"*4 by:

PMA(X) := MAB(S, X). (2.25)

Unlike the set attention block SAB and the induced set attention block ISAB that
output a matrix with n rows (i.e., the number of elements in the input set), the PMA
module outputs a matrix with &£ rows. For class expression learning (see Chapters
5, 6, and 7), we use an additional linear layer on top of PMA to match the desired
output shape.

2.1 Machine Learning
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Connection to Our Contributions. Our proposed approaches for class expression
learning are based on deep neural networks. This choice is in part motivated by the
fact that deep neural networks are universal function approximators [40, 90] and
can therefore be trained to perform the task of class expression learning. Another
reason is that deep learning models support fast computation hardware such as
GPUs and can run on several computing resources in parallel (multiprocessing and
multi-GPU computing), which is not the case for previous search-based approaches
for class expression learning.

Our proposed approach CLIP (Chapter 4) uses LSTM, GRU, CNN, and MLP archi-
tectures. NCES (Chapter 5) supports three network architectures: LSTM, GRU,
and Set-Transformer. NCES2 (Chapter 6) and ROCES (Chapter 7) use the Set-
Transformer architecture to learn mappings between sets of input examples and
class expressions in description logics. Training machine learning models can be
seen as an empirical risk minimization problem, as described below.

2.1.4 Expected and Empirical Risk Minimization

Let X, be an input (feature) space, and an output space of a learning task,
respectively. Also let £ : Y)x) — R be aloss function that measures the discrepancy
between two elements in ). Then, the expected risk of a hypothesis f on X x )
with respect to L is defined as [44, 126]

E(:v,y)NXxy‘C(f(x)a y) = / £(f($), y)dPXXy(:E7 y)a (2.26)
XxY

where Pyyy : X x Y — [0, 1] is the true distribution of the data X x ). Assuming
that F is the set of all possible hypotheses, the expected risk minimization problem is
defined as the task of finding a hypothesis f* € F with minimum risk on X’ x ):

f* = argmin / L(f(z),y)dPrxy(x,y). (2.27)
feF ANy

In the context of machine learning with real world datasets, the distribution Py
is often unknown, and only some part D = {(z1,v1), (x2,y2), ..., (Tn,yn)} T X xX Y
of the data is observed, with samples (x;,y;) assumed to be independent and
identically distributed (i.i.d). Moreover, the set of hypotheses F is restricted to a
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class of functions, e.g., parameterized functions { fy}9co. In this case, the goal is to
find parameters 6* € © with minimum risk on D:

~ argmm/ﬁ fo(x),y)dPrxy(x,y) (2.28)
0cO

= arg min E(fg(x), Y) (2.29)
6co (JC e D]

= arg min — L(fo(zi),yi (2.30)
gmin - 221 (fo(@:), i)-

This optimization problem is known as empirical risk minimization [126]. While in
Equations 2.28-2.30 the goal hypothesis 6* is assumed to achieve the lowest risk, it
is rare to find such a hypothesis in practice. This is because computing resources or
time for a given learning task are often limited, and hence the best hypothesis found
within the allowed budget is retained.

In the case of linear regression, maximum likelihood estimation (MLE) and maximum
a posteriori probability estimation (MAP) can be used to find an optimal hypothesis
0* [34, 44]. MLE aims to find a hypothesis 6 that maximizes the probability of
the data D. For instance, assuming a Gaussian model P()Y = y|X = z;0) =

\/ﬁ exp (— (GT;U_zy)2), the MLE is equivalent to the expected risk minimization
problem with mean squared error loss:
1 n
0* = arg min — Z(HT:EZ- - yl-)Q. (2.3D)

gerd T T

In MAP, there is a prior belief about the hypothesis class F (i.e., hypotheses are
assumed to come from a known distribution), and the goal is to maximize the
likelihood of observing a particular hypothesis given the data D. Since MLE and
MAP are not relevant for this thesis, we refer the reader to [44] (Section 2), and
[58, 69] for further details.

Connection to Our Contributions. In the general case, a machine learning task is
concerned with the search for a hypothesis (in a given hypothesis class) that explains
(fits) some given data, i.e., the hypothesis achieves a low risk as defined in Equa-
tion 2.28. In this sense, any machine learning task can be modeled as an empirical
risk minimization problem since it is usually the case that the data is incomplete, and
the expected risk as defined in Equation 2.27 cannot be computed. Class expression
learning with our proposed deep learning-based approaches is not an exception to
this general setting, i.e., we make use of empirical risk minimization.

2.1 Machine Learning
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2.1.5 Loss Functions in Machine Learning

In machine learning, a loss function (also called error function, criterion, objective,
or cost function) is a component used to quantify the difference between a predicted
value and a target value [127, 158]. Formally, let the output space of a learning task
be ). A loss function is a mapping £ : ) x Y — R, which returns a positive real
number or zero for any input pair (9, y) € Y x Y. The value of a loss function is often
directly associated to the performance of the considered predictor. High loss values
indicate poor performance, and low values indicate better performance in terms
of predictive accuracy. However, when evaluating a machine learning model, it is
also important to consider the contextual implications of the loss function. This is
because different loss functions capture various aspects of predictive accuracy; some
may prioritize large errors, while others might also consider smaller discrepancies.
Several loss functions exist for different learning tasks. Below, we present a non-
exhaustive list of frequently used loss functions.

Mean Squared Error Loss (MSE)

The mean squared error loss [158, 216] is a function suited for regression tasks, i.e.,
targets are real numbers.®> Given a batch of n predicted real-valued outputs § € R"
and the corresponding targets y € R", the MSE loss computes the average squared
difference between ¢ and y:

n

MSE(3,4) = - (s — 90 (232
i=1

By squaring the difference between the target and the prediction, the MSE loss can
effectively capture the magnitudes of prediction errors in a robust manner, ensuring
that larger discrepancies (e.g., outliers) are given more weight in the loss calculation.
This makes MSE an appropriate choice for regression tasks with medium to large
target values (i.e., when target values are outside the unit interval [0, 1]) since any
significant differences between predictions and targets are then strongly reflected in
the loss values. An example of such regression tasks include the prediction of real
estate price, with values often ranging between hundreds of thousands to millions
of dollars.

3Targets can also be real-valued vectors, matrices, or higher dimensional arrays. In this case, the loss
is applied along all dimensions, and the results are averaged.
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Mean Absolute Error Loss (MAE)

Similarly to MSE, the mean absolute error (MAE) loss [158, 216] is used for regres-
sion tasks. For any batch of real-valued predictions § € R™ and its corresponding
targets y € R", we have

MAE(j Z lyi — il (2.33)

One difference between MAE and MSE is that the former treats all prediction errors
linearly, as opposed to the latter which squares them. This makes MAE more robust
in scenarios where outliers can negatively impact model performance. Consequently,
while MAE may not penalize large errors as severely as MSE does, it reliably delivers
an accurate representation of average model performance, which can be of particular
importance in many real-world applications.

Binary Cross-Entropy Loss (BCE)

The binary cross-entropy loss [139, 216] is a function used for binary classification
tasks. The binary cross-entropy loss between a batch of predictions g € [0, 1]™ and
targets y € {0,1}" is defined as

BCE(j,y) = —— Zyz log §; + (1 — y;) log(1 — ). (2.34)

In Equation 2.34, ¢; denotes the probability that the i — th sample belongs to class
1. 1 — g; denotes the probability that the i — th sample belongs to class 0. The
BCE loss is a widely used loss function in machine learning, e.g., for skin cancer
detection [91, 172, 220], due to its desirable properties. When predictions are
confidently close to either O or 1, the loss value is low, reflecting better model
performance. In contrast, when predictions are uncertain (e.g., close to 0.5), the loss
value is high, indicating that the model needs improvement. However, BCE cannot
handle multi-class classification tasks, e.g., classifying mammals into their species,
since there are about 7000 mammal species in total. To overcome this limitation,
categorical cross-entropy loss (or simply cross-entropy loss) has been proposed as a
generalization of BCE loss.

2.1 Machine Learning
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Categorical Cross-Entropy Loss (CE)

The categorical cross-entropy loss or cross-entropy loss (CE) [139, 216] has been
proposed as an extension of the BCE loss for multi-class classification. For a classifi-
cation task with K > 2 classes, a batch of predicted probabilities is two-dimensional
(¥ € [0,1]™*%) and the corresponding batch of targets is one-dimensional and non-
binary for K > 2 (y € [0, K — 1]")* , where n denotes the batch size. In this case
the cross-entropy loss is defined as

n K-1

1
CE n Z Z ]1 yzk - k logyzlw (235)

=1 k=0

where 1 denotes the indicator function which returns 1 if the input condition is true
and 0 otherwise. The indicator function ensures that the logarithm is only applied to
the predicted probability of the true class for each datapoint. Consequently, the cross-
entropy loss aims to maximize the probability of the correct class labels by minimizing
the negative log-likelihood of the predicted probabilities. This formulation captures
the essence of multi-class classification, where each instance is associated with a
single class label.

The cross-entropy loss is widely used in image classification (e.g., on ImageNet [52]),
but also in training large language models (LLMs). In the latter, the cross-entropy
loss can be used to build a conditional probability distribution over a vocabulary of
tokens, e.g., predict the next token in a sequence given the preceding context.

There are many other loss functions that we do not cover in this chapter; we refer
the reader to [158, 216] for further readings. In the most general case, training a
machine learning model can be seen as the problem of minimizing a loss function
on the available data, see Section 2.1.4. This is achieved by optimization algorithms,
as described in the next section.

Connection to Our Contributions. Our neural network-based approaches for class
expression learning are trained using one or multiple loss functions. Concept length
predictors in CLIP are trained using the cross-entropy loss (CE). The deep neural
synthesizer in NCES is trained using the cross-entropy loss as well. NCES2 and
ROCES incorporate two main components: an embedding model which provides
embeddings for input examples, and a deep neural synthesizer responsible for
producing description logic class expressions. Both components are trained jointly

“Here, we assume that the first class is labelled as 0, thus possible classes are 0,1, ..., K — 1.
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with different loss functions: the binary cross-entropy loss (BCE) for the embedding
model, and the cross-entropy loss (CE) for the deep neural synthesizer.

2.1.6 Optimization Algorithms for Machine Learning

In the following, D is a finite dataset, and B C D a batch of datapoints in D. We de-
note the average loss achieved by a model fy on a batch B of datapoints by L5(6). As
pointed out in Section 2.1.1, training machine learning models is usually achieved by
using optimization algorithms. Most of these algorithms are gradient-based. Below,
we present some of the most prominent optimization algorithms for machine learn-
ing, including stochastic gradient descent (SGD) [178], Momentum [166], adaptive
gradients (AdaGrad) [57], root mean squared propagation (RMSProp) [202], and
adaptive moment estimation (Adam) [104].

SGD

Stochastic gradient decent (SGD) [178] (in fact, minibatch stochastic gradient
descent)® was one of the first optimization algorithms to be successful and widely
adopted in machine learning. It provides a simple and efficient parameter update
rule by using gradients computed on batches of uniformly sampled datapoints, and
a fixed learning rate (also known as step size). Formally, at time step ¢, parameter
updates are performed as follows:

gt = VoLlp(0i—1), # Gradient at of the loss w.r.t 0 (2.36)
0; = 0,1 — gy, # Parameter update (2.37)

where B is a batch of training datapoints, and « is the learning rate. Note that
the learning rate « is constant and the same for all parameters. However, in
some learning scenarios, different parameters might require different learning rates
for maximum performance. The optimization algorithms that we present below
introduce the notions of adaptive learning rate, momentum, or adaptive moments to
mitigate this issue. We denote the Hadamard product by o and use the simplification

gtogt:gtz'

°In the literature, the term SGD is often used to refer to the optimization algorithm that performs
parameter updates using a single datapoint drawn uniformly from the training data. However,
this approach is rarely employed in contemporary machine learning; instead, SGD usually denotes
minibatch stochastic gradient descent.
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Momentum

Momentum [166] is a generalization of SGD that linearly combines a momentum
vector with the gradient before parameter update. Its parameter update rule is as

follows:
gt = VoLp(0i-1), (2.38)
vy = pve—1 + (1 — p)gy, # Momentum update (2.39)
9t = 91571 — V¢, (240)

where 4 is the momentum parameter, and « the learning rate. Note that in some
literature, momentum update is performed as v; = uv;_1 + ¢g;. By using the mo-
mentum vector, this optimization algorithm significantly improves the convergence
speed.

RMSProp

RMSProp [202] with momentum updates parameters after rescaling the gradients:

gt = VoLp(0i—1), (2.41)
v = Bue—1 + (1 — B)g?, (2.42)
9t = et_l — O[gt/(E + \/’U»t)7 (243)

where § is the rescaling parameter, ¢ a positive infinitesimal number (often used
to prevent division by zero)® and « the learning rate. The rescaling step allows
RMSProp to assign different learning rates to different parameters, and achieves
state-of-the-art performance on several learning tasks, including image classifica-
tion [198], and reinforcement learning [83].

®It has been reported that e can also be used as a hyperparameter to further improve training
performance, see for example [198] where € = 1.0.
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AdaGrad

AdaGrad [57] is a stochastic optimization algorithm that rescales a given subgradient
using all of the previous corresponding subgradients. Its update rule reads

gt = VoLp(0i-1), (2.44)

¢
b = 011 — g/ (6 + ng) ; (2.45)
i=1

where « is the learning rate, and ¢ an infinitesimal positive number. AdaGrad is
known to work well with sparse gradients, and effectively handles vanishing and
exploding gradients thanks to the adaptive rescaling factor.

Adam

Adam [104] is a stochastic optimization algorithm that uses first and second moment
estimates of gradients to compute individual adaptive learning rates for different
parameters. It combines the strengths of AdaGrad [57] (known to work well with
sparse gradients) and RMSProp [202] (which excels at online and non-stationary
settings). The update rule of Adam is as follows:

vg = mo = 0, (2.46)
gt = VoLp(0i-1), (2.47)
my = frme—1 + (1 — B1)ge, (2.48)
v = Bavr—1 + (1= Ba)g7, (2.49)
e =my/(1— BY), (2.50)
0 = v/ (1= B3), (2.51)
Or = 011 — cring/ (€ + \/Dy), (2.52)

where (5, and (3, are exponential decay rates, o the learning rate (step size), and
€ a positive infinitesimal number preventing division by zero. ADOPT [199] is a
modification of Adam which improves convergence by changing the order of the
momentum update and using a different normalization term. Since its introduc-
tion, Adam has consistently ranked in the top best-performing and most popular
optimization algorithms in deep learning.
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Connection to Our Contributions. Our deep neural network-based approaches CLIP
(Chapter 4), NCES (Chapter 5), NCES2 (Chapter 6), and ROCES (Chapter 7) are
trained using the Adam optimizer. In our preliminary experiments, we tried different
optimizers, and found out that Adam was the best-performing algorithm.

2.2 Description Logics

Description logics (DLs) [153, 154] are a family of languages for formal representa-
tion of knowledge in a variety of application domains such as artificial intelligence,
bio-informatics, the semantic web, and automated reasoning. They are generally
more expressive than propositional logic [28] but less expressive than first-order
logic [18]. The Attributive Language with Complements (ALC) is the smallest (in
terms of expressiveness) description logic that allows to expression the conjunction,
disjunction, negation, full existential and universal role restrictions of concepts.

Definition 2.1 (Concepts in ALC [121, 153, 154]). T, 1, and all atomic concepts
are concepts in ALC. If C, D are concepts in ALC, and r a role, then the following are
also concepts in ALC:

1. =C (negation)

2. C 1 D (conjunction)

3. C U D (disjunction)

4. 3 r.C (existential quantification)
5. V r.C (universal quantification)

Definition 2.2 (Length of a Concept in ALC [107, 120]). T, 1, and all atomic
concepts are of length 1. In complex concepts, every constructor (e.g., —,3,V, etc, see
other constructors in Table 2.1) and every role are counted. Hence, given concepts C, D,
and a role r, we have the following:

1. length(—C) =1+ length(C)
2. length(C'M D) = length(C U D) = 1+ length(C) + length(D)
3. length(3 r.C) = length(¥Y r.C) = 2 + length(C)

In Definition 2.1 above, we can observe that ALC concepts are constructed induc-
tively, starting from the most basic ones. For instance, given the concepts Person,
Father, and the role hasChild, the following are concepts in ALC: Person I1
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Father, —Father, d hasChild.Person, Father LI 3 hasChild.Person. Another im-
portant aspect of Definition 2.1 is that it does not restrict how long’” ALC concepts
can be, which suggests that infinitely many concepts can be constructed in ALC.
Consequently, ALC concepts can get infinitely long. Yet, this does not push the
boundaries of the description logic in any way. As an example, there is no concept
in ALC to describe the set of people with at most one child. Such limitations show the
need for more expressive description logics—extensions of ALC. Such extensions
are obtained by adding one or more of the following:

. Equivalent to ALC with support for role transitivity

. Role hierarchies, e.g., marriedTo C partnerOf

. Nominals, i.e., sets of objects are concepts, e.g., {Peter, Anna}

. Role inversions, e.g., hasChild = hasParent™

. Number restrictions, e.g., > 3 hasLeg

. Qualified number restrictions, e.g., < 1 hasChild.Child

7. Allows to express that a role r is functional, i.e., <17r =T, e.g.,

< 1 hasAge = T, which states that a thing (e.g., a person) can have at most

N U1 AW N -

one age

8. Complex role inclusions, e.g., colleagueOf o worksFor C worksFor,
which states that if Person A is a colleague of Person B, and Person B works
for {Company C}, then Person A also works for {Company C}

9. @ Use of data types, concrete roles, or data values. These allow to define con-
cepts based on data values, e.g., > 1.80m hasHeight, which can be interpreted
as the set of things with a height of at least 1.80 meters.

Obviously, with the addition of the constructor (i.e., in ALCQ), our previous
example about describing the set of people with at most one child can now be
expressed: < 1 hasChild.Child or even < 1 hasChild.Person since a child is
also (in principle) a person. Translating complex concepts into the sets of things
they describe is often achieved via an interpretation as defined below.

Definition 2.3 (Interpretation [121, 153, 154]). An interpretation is a tuple (A%, -T),
where AT is a non-empty set, and X an interpretation function which assigns a subset
CT C AT to every concept C, and a subset rZ C AT x AT to every role r.

Note that in Definition 2.3, AZ often excludes data values, and concrete roles are
not taken into account. To account for these, a set of data values D can be added

7See Definition 2.2 for a definition of concept lengths. While the definition focuses on .ALC concepts,
it can be easily extended to more expressive description logics such as SROZQ™®. For this, one
would need to account for the lengths of complex roles, e.g., length(3ros.C) = 5,length(r™) = 2,
etc.
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and a concrete role r. would then be interpreted as a subset rcI C AT x D. The
syntax and semantics of ALCHZQP) are given in Table 2.1.

Table 2.1: Syntax and semantics of ALCHZQP). T = (AZ,.T) is an interpretation where
A7 is its domain and -Z is the interpretation function. D denotes the set of data
values, e.g., strings, numbers, Boolean values, etc.

Syntax Construct Semantics
ALC
r abstract role T C AT x AT
T top concept AT
1 bottom concept 0
C atomic concept CcT Cc AT
-C negation AT\ CT
cub union ctuD?
CcnDbD intersection ctn Dt
Ir.C existential restriction {a € AT| 3 b € CF, (at,bT) € rT}
vr.C universal restriction {a € AT|VbT, (a®,bF) € rT = bT € CT}
H
ry Cry  abstract role hierarchy rF CrZ
z
r- inverse abstract role {(bT,aT) € AT x AZ| (aT,bT) € rT}
Q

<nr.C max. card. restricion  {a? € AZ| |{bT € CT : (aZ,bT) € rT}| < n}
>nr.C  min card. restricion  {a? € AZ| |{bT € CT : (aZ,bT) € rT}| > n}
=nr.C exactcard. restricion  {a? € AZ| |{bT € CT : (aZ,bT) € rT}| = n}

(D)
Te concrete role (ro)f CAT xD
re <w max. restriction {a? € AT| Fw e D, (al,w) € (re)f ANw < v}
Te > min. restriction {aT € AT|Jw € D, (aI, w) € (r ) Aw > v}
re=v  exact value restriction {at € AZ| (aT,v) € rL}

Description logics can be easily translated into a machine readable format, the web
ontology language (OWL). In OWL, atomic concepts are called classes, roles are
called properties, and complex concepts are called class expressions [120]. OWL
is built on top of other technologies such as RDF/XML®, RDFS?, etc. We refer the
reader to the official page'® of OWL for further details. Note that in the scope of this
thesis, we employ the terms “concept” and “class expression” interchangeably.

Due to their readability and expressive power in knowledge representation, de-
scription logics are being massively used to create and maintain a special type of

$https://www.w3.org/TR/rdf12-xml/
“https://www.w3.org/2001/sw/wiki/RDFS
Ohttps://www.w3.org/TR/2012/REC-owl2-overview—-20121211/
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knowledge bases—description logic (DL) knowledge bases, often stored as OWL
documents. In such knowledge bases, which we formally define below, one part
of the knowledge is expressed in terms of hierarchies between concepts or roles,
while the other part describes the relationships between individuals or between
individuals and concepts.

2.3 Knowledge Base in Description Logics

In this section, we introduce the notion of knowledge base in the context of de-
scription logics. We start with a formal definition before delving into different
characteristics of DL knowledge bases and associated notions.

Definition 2.4 (DL Knowledge Base). A DL (description logic) knowledge base is an
ordered pair (T, A), where

1. T (also called the terminological box or TBoxz) contains hierarchy information
(axioms of the form C' C D) about concepts or roles,

2. A (known as the assertional box or ABoz) contains membership information
(statements of the form C(a), (a,,b)) about individuals, and how they relate to
each other.

Elements of T are called axioms and those of A assertions. The set of individuals in a
knowledge base is denoted by N, and the set of roles is denoted by Ng.

Note that in some literature, axioms about roles (e.g., role subsumption, role
chaining, role transitivity, etc) are often separated into a new set called RBox, and a
DL knowledge base is then defined a triplet (TBox, RBox, ABox). The reason for this
is often to emphasize on the expressivity of the underlying description logic. In this
thesis, however, we assume axioms from the RBox to be merged into the TBox.

Example 2.5 (DL Knowledge Base). Consider the sets A and T below:

T ={Penguin C —CanFly, hasParent = hasChild ,
3 hasChild.Person C Person},
A ={Person(Bob), Penguin(Peng 0), hasChild(Peter, Bob)}.

2.3 Knowledge Base in Description Logics
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The pair K defined by K := (7,.A) is a DL knowledge base. In this example, one
can deduce that Person(Peter), that is, Peter is an instance of the concept Person.
This is achieved by using the two assertions in .4 and the last axiom in 7, which
states that every individual that has a child that is a person is also a person. The
process of combining assertions in the ABox and/or axioms in the TBox to deduce
new facts is known as reasoning in DL knowledge bases. This is often achieved by
using so-called DL (or OWL) reasoners. Example reasoners include Pellet [193],
FaCT+ + [208], HermiT [71], and RacerPro [77]. Reasoners support a number of
services, including consistency check, satisfiability, subsumption, instance retrieval, etc.
We introduce some of these notions below and provide examples where possible.

In the rest of this chapter, we simply write 7 to denote the interpretation (A%, 1),
unless stated otherwise. A DL knowledge base is also simply called knowledge
base.

Definition 2.6 (Axiom Satisfaction, Assertion Satisfaction [120, 153, 154]). Let T be
a TBoz, A an ABoz, C, D concepts, r, s roles, a,b individuals, and 7 an interpretation.
An axiom of the form C C D (respectively, r C s) is satisfied with respect to Z if and
only if CT C D7 (respectively, r* C s7).

Similarly, an assertion of the form C(a) (respectively, r(a, b)) is satisfied with respect
to T if and only if a* € C7T (respectively, (a*,b*) € r%).

Definition 2.7 (Model of a TBox [120, 153, 154]). Let T be a TBoz. An interpretation
7 is a model of T if and only if all axioms in T are satisfied with respect to I.

Definition 2.8 (Model of an ABox [120, 153, 154]). Let A be an ABox, and N 4 the
set of all individuals appearing in A. An interpretation Z is a model of A if and only if

1. T maps every individual a € N4 to an element o € AZ,
2. all assertions in A are satisfied with respect to .

Definition 2.9 (Model of a DL Knowledge Base [120, 153, 154]). Let K = (T,.A)
be a knowledge base, and Ny the set of all individuals in K. An interpretation Z is a

model of K if and only if T maps every individual a € N; to an element a* € A%, and
T is a model of both T and A.

Note that N 4 is always a subset of N;, and the requirement to map every individual
in N7 to an element of the domain AZ does not conflict with Definition 2.8.
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Example 2.10 (Model of a DL Knowledge Base). Consider the knowledge base in
Example 2.5. Let AT = {Bob, Peter}, and - the function defined by

I(x) = z if v € {Bob, Peter, Peng 0},

L (Person) = {Bob, Peter},

Z(hasChild) = -L(hasParent™) = {(Bob, Peter)},

(
(
L (Penguin) = -L(~CanFly) = {Peng 0},
(
(

(3 hasChild.Person) = { Peter}.

Then, (A?,-T) is an interpretation as per Definition 2.3. Moreover, (AT, 1) satisfies
all properties in Definition 2.9 with respect to the example knowledge base K. It is
therefore a model of K.

Definition 2.11 (Knowledge Base Consistency [120, 153, 154]). A knowledge base
K = (T,.A) is consistent if and only if it has a model.

Example 2.12 (Knowledge Base Consistency). The knowledge base in Example 2.5 is
consistent since it has a model (see Example 2.10). However, if one adds the assertion
—Person(Peter) to the ABoz of the example knowledge base, then the latter becomes
inconsistent. The reason for this is that we would have two contradicting assertions:
—Person(Peter) and Person(Peter) while Person1 —Person C L (this is satisfied
for every concept in general). Remember the assertion Person(Peter) is derived from
Person(Bob), hasChild(Peter, Bob), and 3 hasChild.Person C Person.

Definition 2.13 (Concept Satisfiability [121, 153, 154]). Let T,C be a TBoz and
concept, respectively. C is satisfiable if and only if there exists an interpretation Z that

maps C to a non-empty set. We say that C'is satisfiable with respect to T if and only if
there is a model of T for which C is satisfiable.

Example 2.14 (Concept Satisfiability). Considering our knowledge base in Exam-
ple 2.5, the concepts Penguin and Person are satisfiable. However, the concept Penguin
M CanFly is not satisfiable with respect to T due to Penguin C —CanFly.

Definition 2.15 (Concept Subsumption [121, 153, 154]). Let T be a TBoz, A an
ABog, and C and D concepts. We say that C'is subsumed by D and write C' C D if and
only if for every model T of A and T, C* C D%. C is subsumed by D with respect to T
(denoted C "7 D) if and only if for every model T of T, C* C DZ.

When C' C D (respectively, C Ty D) and D C C (respectively, D T C), we say that
C' is equivalent to D and write C = D (respectively, C =7 D).

2.3 Knowledge Base in Description Logics
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Definition 2.16 (Role Subsumption). Let 7 be a TBoz, A an ABoz, and r and s
roles. r is subsumed by s (denoted r C s) if and only if for every model Z of T and A,
rT C sT.

When r C s and s C r, we say that r is equivalent to s and write r = s.

Example 2.17 (Concept Subsumption, Role Subsumption). In the TBoz of the knowl-
edge base in Example 2.5, the concept Penguin is subsumed by the concept ~CanFly,
that is, no penguin can fly. In the same TBoz, hasChild = hasParent™ is a double
role subsumption, that is, (hasChild T hasParent™) A (hasParent™ C hasChild).

Subsumptions allow to build the terminological box of knowledge bases and to reason
about the membership of individuals to concepts (see instance retrieval check) and the
relationships that they share.

The notions of instance check and instance retrieval are based on entailments, which
we introduce first.

Definition 2.18 (TBox Entailment). Let 7 be a TBox, asn an assertion, and azm an
axiom. 7T entails asn (respectively, T entails axm) denoted T |= asn (respectively,
T E axm) if and only if for every model Z of T asn is satisfied (respectively, axm is
satisfied) with respect to 7.

Definition 2.19 (ABox Entailment). Let A be an ABox and asn an assertion. A entails
asn denoted A |= asn if and only if for every model T of A asn is satisfied with respect
to 7.

Definition 2.20 (Knowledge Base Entailment). Let K = (7,.A) be a knowledge base,
asn an assertion in A, and axm an axiom in 7. We say that K entails asn (respectively,
K entails axm) and write K |= asn (respectively, K = axm) if and only if T = asn or
A |= asn (respectively, T | axm).

Definition 2.21 (Instance Check [120, 153, 154]). Let K = (7T, .A) be a knowledge
base, C' a concept, and a an individual. « is an instance of C with respect to A
(respectively, K) if and only if A = C(a) (respectively, K = C(a)).

Definition 2.22 (Instance Retrieval [120, 153, 154]). Let K = (T, .A) be a knowledge
base and C a concept. The instance retrieval of C with respect to A denoted R4(C') is
the set of all individuals a that satisfy A = C(a).

Similarly, the instance retrieval of C' with respect to K denoted Ry (C) is the set of all
individuals a that satisfy K = C(a).
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Note that the TBox alone cannot entail the membership of an individual to a concept;
one would need additional information from the ABox. This is the reason why
Definition 2.22 does not introduce the notion of instance retrieval with respect to
the TBox.

Example 2.23 (Instance Check, Instance Retrieval). We consider the knowledge base
in Example 2.5. Bob is a person according to the ABoz (note the assertion Person(Bob)
in A). Contrarily, A [~ Person(Peter), but K |= Person (Peter) (via Person (Bob),
hasChild(Peter, Bob), and 3 hasChild.Person T Person).

2.4 Refinement Operators

Definition 2.24 (DL Refinement Operator [113, 121, 159]). Given a quasi-ordered
space (S, =), a downward (respectively upward) refinement operator on S is a mapping
p:S — 25 such that for all C € S, C' € p(C) implies C' < C (respectively C < C").
p is called DL refinement operator if S is a set of DL concepts, and < is the concept

subsumption.

Example 2.25 (DL Refinement Operator). Consider the knowledge base K in Exam-
ple2.27. Let S = ({T, L, Person, Penguin, ~CanFly,3 hasChild.Person,
3 hasWing.T},C) and let p : S — 25 be defined by:

SifC=T,
p(C)=90ifC = L,
{C}U{A € SIK = A C C} otherwise.

p is a downward refinement operator.

Refinement operators can have a number of desirable properties: completeness,
properness, idealness, and non-redundancy to mention only a few. We refer the
reader to [120] for a theoretical analysis of refinement operators. Search-based
approaches, e.g., CELOE [122], employ a refinement operator and a heuristic
function to construct and traverse their search space.

2.4 Refinement Operators
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Connection to Our Contributions. Our scientific contributions tackle class expres-
sion learning in description logics, where a learning problem is essentially defined
using a DL knowledge base as background knowledge. To solve a learning problem,
search-based methods (including our approach CLIP) often rely on refinement opera-
tors and heuristic functions to traverse their search space. Moreover, our neural class
expression synthesizers employ a refinement operator to generate their training data
on each input knowledge base. Therefore, our contributions are inherently linked to
the notions of description logic, DL knowledge base, and refinement operator.

Having covered various notions on description logics and knowledge bases, we will
now introduce key learning tasks on those, starting with class expression learning
(also known as concept learning), which is at the core of this thesis, and briefly
touching related tasks such as ontology learning.

2.5 Class Expression Learning

Class expression learning can be regarded as a symbolic machine learning task [191,
241] where the goal is to describe a set of individuals (examples) using description
logic concepts. This is because a class expression is represented as a sequence of
symbols (e.g., atomic concepts, roles, quantifiers) which are human-readable and in-
terpretable [111], as opposed to neural networks which are black-box. Nonetheless,
neural networks are fast-thinkers (i.e., they can yield approximate solutions within a
fraction of a second), robust to noisy/imperfect inputs, and can handle unstructured
data [241]. Our research contributions are neuro-symbolic in the sense that they
combine the strengths of neural networks with the clear semantics of description
logics for scalable class expression learning.

Classical Definition

Below, we give a classical definition of class expression learning in description logics.
Later in Chapter 7, we will propose a modification of this definition to integrate
desired properties in solutions to learning problems.

Definition 2.26 (Classical Learning Problem (CLP) [107, 121]). Given a knowledge
base K, a target concept T, a set of positive examples E* = {e{ e ,...,¢} }, and

a set of negative examples E~ = {e] ,e;,...,e,,}, the learning problem is to find a
class expression C' such that for Ki, = K U {T = C}, we have that K, = C(E™) and

c = C(E7).
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In the above definition, we write i |= C(E) (respectively, (. = C'(E)) to express
that Ve € E, K = C(e) (respectively, Ve € E, K¢ = C(e)). We denote the
classical learning problem defined by K, T', E*, and E~ by CLP(K, T, E*,E™).

Example 2.27 (Class Expression Learning). Consider the knowledge base K = (T, A),
where

T ={Penguin C —CanFly, hasParent = hasChild ,
3 hasChild.Person C Person},

A ={Person(Bobd), CanFly(Eagle 0), Penguin(Peng 0), hasChild(Peter, Bob),
hasWing(Peng 0, Wing 0), hasWing(Eagle 0, Wing 1)}.

Let EY = {Peng_0}, E~ = {Eagle_0, Bob, Peter}, T = Penguin. Then, CLP(K,T,
E*, E™) is a learning problem and each of the following class expressions is a solution

1. —CanFly,
2. =CanFlyl 3 hasWing.T.

Although the first solution may seem unnatural (because humans cannot fly either
and therefore Bob and Peter could be instances of =CanFly), there is no information
in I preventing it from being valid. In comparison, the second solution describes
penguins better; not only they cannot fly but also they have wings.

The terminological box of many knowledge bases, which is essential for class expres-
sion learning, is often constructed by extracting information from one or multiples
data sources, e.g., unstructured text. This process is known as ontology learning,
and formally defined below.

Related Tasks

Ontology learning (OL) is a task closely related to class expression learning. It
is defined as the automatic or semi-automatic creation of ontologies using a pre-
existing source of information such as natural language text [226]. This creation
process involves the extraction of domain-specific terms or concepts and the links
between them. Links between concepts are represented using hierarchical data
structures, e.g., class inclusions (CIs) in description logics. As an example, the
statement “penguins are birds that can swim or animals that have wings and cannot
fly” would be translated into Penguin C (Bird M CanSwim) LI (Animal M HasWings 1
—CanF1ly). As a result, CI learning is a fundamental component in OL. CI learning

2.5 Class Expression Learning
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approaches are tasked to build a hierarchy between concepts in the provided source
of information. A formal definition of class inclusion (basically the same as concept
subsumption) is provided in Definition 2.15. Neural network-based approaches for
CI [135, 165] leverage NLP techniques [29] to translate text into description logic
concept hierarchies, which are essential for DL knowledge base TBoxes. Inductive
logic programming (ILP) approaches [148] learn CIs from positive and negative
examples. These examples are provided by an oracle, e.g., a domain expert or even
a neural network [221]. Association rule mining (ARM) approaches [5, 65, 143]
rely on support and confidence score functions to learn CIs.

Class subsumption axioms learned in OL can be used to enrich the TBox of rele-
vant knowledge bases. Class expression learning also has applications in knowl-
edge base enrichment (specifically, ontology engineering [122]), as new axioms
about the learned class expressions (e.g., France is an instance of the expression
J hasOrganizedOlympics M > 16 hasWon.{GoldMedal}) can be added to the TBox
or ABox of fitting knowledge bases. In this thesis, we focus on class expression learn-
ing from given positive and negative examples. We propose approaches that employ
knowledge graph embedding techniques to obtain continuous vector representations
of input examples, and deep learning techniques to efficiently learn class expressions
from these embeddings. Below, we introduce the notions of “knowledge graph”
and “knowledge graph embedding”, and present some of the existing techniques for
representation learning on knowledge graphs.

2.6 Knowledge Graph Embeddings

A Knowledge graph (KG) is a “graph of data intended to accumulate and con-
vey knowledge of the real world, whose nodes represent entities of interest and
whose edges represent relations between these entities” [86]. They can also be
defined as collections of assertions in the form of triples. In the knowledge graph
in Figure 2.6, an example fact is “Da Vinci painted Mona Lisa” which can be rep-
resented as a triple: (Da Vinci, painted, Mona Lisa). Triples that are present in a
given knowledge graph are often said to be correct, assuming the knowledge graph
contains no false information. In this context, knowledge graphs can be used to
facilitate information retrieval [55, 132, 173], question answering [92, 239], and
even retrieval-augmented generation (RAG) with LLMs [141, 233]. For instance, the
question “Who painted Mona Lisa?” can be efficiently answered using our example
knowledge graph in Figure 2.6, as the relevant fact is present in the graph. For
this question, the answer is “Da Vinci”. To further facilitate applications in other
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Figure 2.6: Example knowledge graph

downstream tasks, KGs are often projected onto continuous vector spaces such as R,
This process is known as knowledge graph embedding (KGE) [41, 49, 215, 230].

Several KGE techniques have been developed ever since the introduction of the
pioneering approaches. Basically, embeddings are computed by learning the vec-
tor representations of nodes and relation types in a way that the relationships
between nodes can be established by using the learned vectors. Knowledge graph
embeddings are useful for downstream tasks such as link prediction [23], knowl-
edge completion [129], recommendation systems [243], and natural language
processing [33]. Some KGE approaches solely use facts observed in the input
knowledge graph [24, 157] while others leverage additional information about
entities and relations, such as textual descriptions [219, 229] or sameAs links to
external sources [110]. Our synthesis-based approaches for class expression learning
(NCES [113], NCES2 [109], and ROCES [111]) use KGEs to compute solutions to
learning problems without a search process. We experimented with several embed-
ding models, including ConEx [45] and TransE [23]. ConEx applies convolutions

2.6 Knowledge Graph Embeddings
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Table 2.2: State-of-the-art KGE models. d denotes the dimension of an embedding space. e
denotes an embedding, and € € C its complex conjugate. *, f,[; ], vec(),vec() ",
and < denote convolution operation, rectified linear unit (ReLU), flattening,
reshaping of a vector into a matrix, and unit vector normalization, respectively.
o, ®, - denote Hadamard, Hamilton, and inner products, respectively. conv(-, -)
denotes a 2D convolution operation followed by affine transformations. For KEcI,
m =d/(1+4 p+ q), and for DECAL, m = d/(1 +p+ q + r) with p,q,r € N\ {0}.

Model Scoring Function Vector Space
RESCAL [156] en - W, e en, e € REW, € Rixd
TransE [23] llen, + e, — e en, e, e € R?
DistMult [235] e, (e, oe) en, e, e € R?
d
ComplEx [207] Re (Z erﬁh%) en, e, e €C?
i=1
ConvE [53] flvec(f([en;er] xw)) - W) - e, en, e, e € R?
HyPER [17] f(vec(ep x vec (e, - H)) - W) - e; ey, e, e, € R?
RotatE [197] len o e, — e en, e, e €C?
QuatE [246] e, el e en, e, e € HY
CONEX [45] Re ({conv(ep, e,), ep, e, €)) e, e, e € C?
KEc1 [46] (enoer) - e e, e, e € Cly, ((R™)
DECAL [100] (enoe,) e en, e, e € Cly o (R™)

on complex-valued vector representations of nodes and relation types to model
interactions, whereas TransE models interactions as translations of head entities
to tail entities via relation type embeddings. In Table 2.2, we present the scoring
technique of some knowledge graph embedding models as well as their embedding
spaces.

All models in Table 2.2 belong to the family of transductive KGE models. They
learn embeddings only for entities and relations present in a given KG, and cannot
handle unseen entities or relations. To overcome these limitations, other types of
embedding approaches (known as inductive approaches) have been proposed. Such
approaches learn embeddings in a way that can be transferred to unseen entities
or relations. Examples include GraphSAGE [78], LAN [214], NodePiece [66],
ULTRA [67], and BytE [51]. Specifically, GraphSAGE learns entity embeddings
by aggregating information from their neighbors. LAN further attaches attention
weights to neighbors to model their importance. NodePiece assumes a predefined
set of anchor nodes, and represents an entity as a hash of its closest anchor nodes
and its immediate outgoing relation types. ULTRA introduces a graph of relations to
learn interactions between relations in the original graph. BytE uses a pretrained
LLM’s tokenizer to transform tranductive KGE models into inductive ones. To this
end, it decomposes every entity and relation into a sequence of subword units
and applies a token level ensembling (e.g., using a linear mapping) to construct
a low-dimensional embedding vector as input to any transductive KGE model. As
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opposed to the aforementioned inductive approaches which require a subgraph
around a given unseen triple, BytE can handle unseen triples without any additional
information.

Connection to Our Contributions. Our approaches leverage knowledge graph em-
beddings to learn mappings between sets of individuals and class expressions or class
expression lengths. Specifically, NCES, NCES2 and ROCES use knowledge graph
embeddings to synthesize class expressions in ALC, and ALCHIDP), respectively.
CLIP takes embeddings of positive and negative examples to predict the lengths of
the corresponding target class expressions.

2.6 Knowledge Graph Embeddings
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Related Work

This chapter is composed of two sections. In the first section, we present some of
the existing works in inductive logic programming (ILP), a research field closely
related to class expression learning in the way its learning problems are formulated.
We also include works that apply ILP techniques to tackle class expression learning,
and discuss their limitations. In the second section, we present state-of-the-art
approaches for class expression learning, and discuss their strengths and limitations,
and how they related to our proposed approaches.

3.1 Inductive Logic Programming

Inductive logic programming [148, 159] is a branch of machine learning that focuses
on building models based on examples and background knowledge. It utilizes logic
programming languages such as Prolog [37, 38], which is a declarative language, to
represent hypotheses (e.g., rules) and data (e.g., existing facts or examples). The
primary goal in ILP is to infer general rules from examples (usually a set of positive
examples and a set of negative examples), enabling systems to learn patterns and
relationships within complex datasets. By leveraging both positive and negative
examples, ILP approaches can generate logic-based theories that can be applied to
various domains, including bioinformatics [162], automated reasoning, and social
network analysis. Several approaches have been proposed for inductive learning
tasks. Each approach is characterized by its unique methodologies and techniques
in addressing specific aspects of a learning problem. Below, we present some of the
most prominent approaches in ILP.

3.1.1 First Order Inductive Learner

FOIL (First Order Inductive Learner) [170, 171] is a flexible system for learning
function-free Horn clause [89] definitions of relations (n-ary predicates) from ex-
amples. An input to FOIL is a relational database K (often given as a set of tuples)
and a target relation R. The target relation R comes with its known tuples (positive
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Algorithm 1 FOIL algorithm [171]
Input: {K,(R,D,Q)}
Output: C* := R(V1,V2,..., V) < L1, Lo,..., Ly
1: Initialize the training set ' = {, ®}
2: Initialize a target clause C* = R(V1,V2,..., V) <
3: while T contains positive tuples do
4:  Find a clause R(V1,V2,...,V,,) < L; that characterizes some part of the
target R
5. Form a local training set 7; = {@;, ®,} were all tuples that satisfy the
right-hand side of the clause are removed
Append L; to the right-hand side of C*
Lj,Lj,,...,Lj; = INNERLOOP(K, T}, R)
Append L, Lj,, ..., L;, to the right-hand side of C*
Remove tuples in Tj that satisfy any of L;,, Lj,, ..., L;,
10:  Reset the training set 7" = T}
11: end while
12: return the clause C* := R(V1,V2,...,V},) < L1, Lo, ..., L,

© e N

tuples €0). Additional information may be given for the target relation such as tuples
known not to belong to it (negative tuples ®)'. Given an input {K, (R, @D, ®)}, the
goal is to find a set of Horn clauses (about the target relation R) that covers all of
the positive tuples €, but none of the negative tuples (. The construction of a
solution by FOIL is described in Algorithms 1 and 2.

In Algorithm 1, FOIL looks for clauses that cover positive tuples. The algorithm
starts by initializing a clause with an empty body, and a training set composed of
@ and Q. At each iteration, it finds a literal to append to the right-hand side of
the running clause. The goal is to ensure that each clause covers as much positive
tuples as possible. Once a clause is chosen, it removes all tuples that are currently
covered, keeps the remaining tuples as local training set, and enters the inner loop
(Algorithm 2). At the conclusion of the inner loop, the search process restarts with a
new training set where all tuples that are covered by any previous literal in C* are
removed.

In the inner loop (Algorithm 2), FOIL seeks clauses that cover local positive tuples
and eliminate negative tuples. The algorithm starts with the local training set
in Step 5 of Algorithm 1, and a close with an empty body. At each iteration, a
literal is chosen and appended to the right-hand side of the running clause. The
construction of a new training set then begins: any tuple from the current training
set whose extension with the bindings of the literal’s new variables satisfies the

'When negative tuples are not available, the closed-world assumption (CWA) may be invoked to
create them.
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Algorithm 2 INNERLOOP [171]
Input: {C, T}, R}
Output: L;,L;,,...,Lj,

1: Initialize a clause R(V1,V2,..., V) <
2: Initialize the training set " = T}
3: while T" contains negative tuples and is not too complex do
4:  Find a literal L;, to add to the right-hand side of the clause
5:  Form a new training set 7" = {}:
6: for any tuple ¢t in 7' do
7: for any binding b of new variables introduced by L;, do
8: if the tuple ¢.b (concatenation of ¢ and b) satisfies L;, then
9: Add ¢.b to T" with the same label as ¢

10: end if

11: end for

12:  end for

13:  Replace the training set 7’ by 77: T = T’

14: end while

15: Prune the clause by removing any unnecessary literals

16: return the literals L;,, Lj,,..., Lj,

literal is extended with those bindings and added to the new training set along with
its label. The execution of the algorithm stops when there are no more negative
tuples, or when the training set is overly complex (e.g., its tuples become too long).
The output of the inner loop is a sequence of literals which are appended to the goal
clause C* in Algorithm 1. The choice of this sequence of literals is carried out by
using a heuristic function based on information gain. We refer the reader to the
original paper [170] for further details.

Despite FOIL’s backup mechanism, and the high-quality heuristics in its exploration
strategy, there are cases in which it is expected to be considerably slow. For example,
Pazzani and Kibler [163] have shown that the number of literals to add to the goal
clause grows exponentially with the arity of predicates and the number of variables.
Moreover, the number of examples in local training sets can get large although this
number is bounded by the power of predicates.? Pazzani and Kibler [163] therefore
proposed to add knowledge into the learning framework of FOIL, resulting in a new
system called FOCL, that we elucidate next.

2The power of a predicate in this sense is the maximum number of possible bindings (i.e., variable
assignments) when one variable is fixed.

3.1 Inductive Logic Programming
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3.1.2 First Order Combined Learner

FOCL (First Order Combined Learner) [163] is an extension of FOIL that adds
domain knowledge into the exploration strategy of the latter. More specifically, FOCL
comes with three main extension options: 1) use constraints to limit the search
space of FOIL, 2) use intensionally defined predicates (also called non-operational
predicates), and 3) accept as input a partial, possibly incorrect rule that approximates
the target predicate. Additionally, FOCL introduces an iterative widening search
strategy to reduce the exponential exploration cost of FOIL. In iterative widening,
the learning process starts with no free variables. If this fails with zero variabilization
gain, then additional free variables can be considered. On the subsequent learning
steps, each failure is granted access to one free variable until the maximum arity
of a predicate is reached. In Algorithms 3, 4, and 5, we summarize the learning
procedure of FOCL.

In Algorithms 3-5, K denotes a relational database together with intensionally
defined predicates and constraints. IR is the initial rule that approximates the target
relation, and €, ® are the sets of positive and negative tuples, respectively. The
main algorithm (3) iteratively calls the clause learning algorithm (4) which in turn
calls the body extension algorithm (5). At every iteration, the goal is to find a clause
body that covers as much positive tuples as possible while discarding many negative
tuples. The convergence speed of the overall algorithm as well as the quality of
the computed clauses depend mainly on the quality of the approximation rule IR,
and that of the constraints (e.g., typing knowledge). High-quality intensionally
defined predicates can also boost the overall performance of the learning algorithm.
However, one should be cautious when adding those predicates as a large number
of them often increases the search space.

Algorithm 3 FOCL algorithm [163]
Input: £, P, K, IR
Output: ClauseBody

1: Initialize empty clause body Clause Body = . ..

2: while @ is not empty do

3:  Body = LEARNCLAUSEBODY(K, @, ®, IR, ClauseBody)
4:  Remove from € and Q) those tuples covered by Body
5 Set Body to empty

6: end while

7: return ClauseBody

Both FOIL and FOCL are very specific when it comes to the definitions they can build
for a given target relation: they are restricted to function-free Horn rules. This limits
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Algorithm 4 LEARNCLAUSEBODY [163]
Input: I, P, R, IR, ClauseBody
Output: Body

1: if any subBody in IR has positive gain then
2:  Choose best subBody
Operationalize and delete superfluous literals from it
Conjoin result with Clause Body
Update @ and ) by removing tuples covered by the best subBody
Body = EXTENDBODY (K, @, &), IR, ClauseBody)
else
Choose best non-operational literal
Operationalize and delete superfluous literals from it
10:  Conjoin result with Clause Body
11:  Update @ and @ by removing tuples covered by best literal
12:  Body = LEARNCLAUSEBODY(IKC, P, ®, IR, Clause Body)
13: end if
14: return Body

R A A S

Algorithm 5 EXTENDBODY [163]
Input: I, P, R, IR, ClauseBody
Output: Body

1: while ) is not empty do

2:  Choose best non-operational literal

3:  Operationalize and delete superfluous literals from it
4:  Conjoin the resulting Body with ClauseBody

5.  Update € and @ by removing tuples covered by Body

6: end while
7: return Body

their applicability to a wide range of related learning tasks. The clausal discovery
algorithm CLAUDIEN, described below, provides a declarative language bias to learn
regularities from Herbrand interpretations.

3.1.3 Clausal Discovery Engine

CLAUDIEN (Clausal Discovery Engine) [43] is an engine that combines inductive
logic programming and descriptive data mining techniques to address characteristic
induction from interpretations. More specifically, it finds logically maximally general
hypotheses (represented as clausal theories) from Herbrand interpretations. A
Herbrand interpretation corresponds to a set of ground truths in first order logic,
or a set of statements (e.g., {Person(Bob), loves(Bob, Music)}) in description
logics.

3.1 Inductive Logic Programming
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Algorithm 6 ClausalDiscovery [43]

Input: O, p

Output: Characteristic hypothesis H
1: H=10

2 Q@ ={0}

3: while Q # () do

4:  Get ¢ from @) and delete ¢ from @
5. if ¢ isvalid on O and not prunel(c) then
6: Addcto H
7: else
8: for ¢/ in p(c) do
9: if not prune2(c’) then

10: Add ¢ to Q

11: end if

12: end for

13:  endif

14: end while

15: reduce H

16: return H

Given a language £ equipped with a declarative language bias Dy 45, a set of closed
observations O (Herbrand interpretations), and the most general hypothesis [J € L,
CLAUDIEN iteratively applies a refinement operator p ® to construct a set of target
hypotheses H. In Algorithm 6, we describe the learning procedure of CLAUDIEN. The
algorithm starts with an empty hypothesis set H and a queue () containing the most
general hypothesis (. It then iteratively calls the functions delete, valid, prunel, and
prune2 on the refinements of (J. Each of these functions plays a crucial role in the
overall behaviour of the algorithm. For example, if the function delete is first-in-first-
out, then the algorithm runs a breadth-first search, when it is first-in-last-out, it runs
a depth-first search, and when it is according to a ranking criterion of the clauses,
the algorithm runs a best-first search. The function valid checks for the validity
of a clause as solution; prunel ensures that the clause is maximally general, and
prune2 enforces the clause’s injectivity, non triviality, and non redundancy. Finally;,
the function reduce enforces the compactness of the set of clauses H by employing
the theorem prover SATCHMO [138].

Many other inductive learning algorithms exist [116, 146, 147, 149, 150, 195], but
they are similar to those presented above in the way they compute solutions. For
instance, Progol [149] employs a covering approach like FOIL, and computes a
solution by progressively generalizing an initial clause which is pre-selected based

3p is a mapping from £ to 2° which refines a given hypothesis into a set of smaller (in the sense of
#-subsumption) hypotheses.
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on seed examples. The popular Aleph [195] system is a successor of Progol whose
main aim is to serve as a prototype for exploring ideas and simulating other ILP
systems’s behaviors. We refer to respective references for more details on each ILP
system, and to List of ILP Systems* for a non-exhaustive list of known ILP systems.

Having reviewed some of the existing works in inductive logic programming, we
can now explore the state-of-the-art approaches for class expression learning in
description logics, which is the main focus of this thesis.

3.2 State of the Art in Class Expression Learning

In class expression learning, two sets of examples (positive and negative examples)
are given, and the goal is to find a description logic expression that describes
positive examples, but none of the negative examples [82, 107, 113, 122]. Class
expression learning has applications in bio-medicine [22, 81, 124, 187], ontology
engineering [122], and Industry 4.0 [50]. Several approaches have been proposed
to tackle class expression learning. Some of these approaches use techniques from
inductive logic programming, e.g., DL-FOIL [62], and DL-FocL [177] are direct
adaptations of FOIL, and FOCL, respectively. Others use evolutionary algorithms, DL
refinement operators, set operations, or deep Q-learning to construct and traverse
their search space. Below, we present some of the most prominent approaches for
class expression learning and discuss their strengths and limitations.

3.2.1 Description Logic First Order Inductive Learner

DL-FoiL (Description Logic First Order Inductive Learner) [62] is an adaptation
of FOIL for class expression learning in description logics. Given sets of positive,
negative, and unlabeled examples, DL-FOIL computes partial generalizations (DL
concepts) which aim to cover as many positive examples as possible, while avoiding
negative examples. Whenever a partial generalization covers negative examples, a
specialization routine is invoked to refine the generalization and discard negative
examples. We provide a pseudo-code of DL-FOIL in Algorithms 7 and 8.

Algorithm 7 starts by initializing a generalization with the bottom concept |, and the
set of positives to cover are the initial positive examples Positives. It then iteratively
constructs partial definitions (in the same way FOIL constructs its clauses) which

“Accessed on January 6th, 2025: http://www-ai.ijs.si/~ilpnet2/systems/
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cover some part of positive examples, and adds them to the initial generalization
via the disjunction operator LI. During the construction of a partial definition, a
specialization function (SPECIALIZE, see Algorithm 8) is called whenever negative
examples are covered. This ensures that the final generalization does not cover any
of (or most of) the negative examples.

Algorithm 7 DL-FoIL [62]
Input: IC, Positives, Negatives, Unlabeled
Output: Generalization: concept definition

: Generalization = L
: PositivesToCover = Positives
while PositivesToCover # () do
PartialDef =T
CoveredNegatives = Negatives
while CoveredNegatives # () do
PartialDe f = SPECIALIZE(K, Partial Def, PositivesToCover,
CoveredNegatives, Unlabeled)
CoveredNegatives = {n € Negatives | K = PartialDef(n)}
9:  end while
10:  CoveredPositives = {p € PositivesToCover | K = PartialDef(p)}
11:  Generalization = Generalization Ll Partial De f
12 PositivesToCover = PositivesToCover \ CoveredPositives
13: end while
14: return Generalization

N hHwdhe

The function SPECIALIZE looks for refinements (specializations or partial defini-
tions) of a given generalization that achieve a minimum gain (M INGAIN). The
gain of a refinement covering p; positive examples and n; negative examples, with
u1 unlabeled examples, is defined as

p1+wiug Po + wolg ) ’ (3.1)

az’n: 10 7—10
g p1< gp1+m+u1 gpo+no+u0

where py and n( represent the number of positive and negative examples covered
by the previous refinement, with 1 unlabeled examples, respectively. The weights
wo and w; are determined by a prior probability distribution of positive examples.
This definition of “gain" encourages refinements to cover many positives and discard

many negatives.

Evaluated on the BiorAX, Semantic Bible (NTN), and FINANCIAL ontologies, DL-FOIL
shows a relatively good predictive performance in a ten-fold-cross-validation setting,
with average F; scores ranging from 59.1% to 69.6%. One limitation of DL-FOIL is
its scalability to large datasets. As pointed out in our work [107], DL-FoIL does
not terminate in a reasonable amount of time on medium to large datasets such
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Algorithm 8 Function SPECIALIZE [62]
Input: KC, Partial Def, PositivesToCover, CoveredN egatives, Unlabeled
Output: Refinement: concept definition
Parameters: MAXNUM, MINGAIN, NUMSPECS
1: bestGain = —MAXNUM
2: while bestGain < MINGAIN do
3: fori=1,2,..., NUMSPECS do
4: specialization = GETRANDOMREFINEMENT(p, Partial Def)
5
6
7

CoveredPositives = {p € PositivesToCover | K |= PartialDef(p)}
Negatives = {n € CoveredNegatives | K |= PartialDef(n)}

thisGain = GAIN (CoveredPositives, Negatives, Unlabeled,
PositivesToCover, CoveredN egatives)

8: if thisGain > bestGain then

9: Refinement = specialization
10: bestGain = thisGain
11: end if

12:  end for
13: end while
14: return Refinement

as Carcinogenesis. Moreover, it may enter infinite loops during the search process:
in [107], it has been reported that DL-FoIL made over five thousand unsuccessful
attempts in the refinement of the concept GeographicLocation with respect to some
input positive and negative examples. The approaches we propose in this thesis,
namely NCES, NCES2, and ROCES, are guaranteed never to enter such infinite loops
as they compute solutions without a search process, but rather via fast matrix and
vector operations.

3.2.2 Description Logic First Order Combined Learner

Just as FOCL is a knowledge-enhanced and faster version of FOIL, DL-FocL (De-
scription Logic First Order Combined Learner) [177] is a better (faster or more
accurate depending on the extension version, see below) alternative to DL-FOIL
which employs meta-heuristics to reduce the search space. DL-FOCL comes with
three versions: DL-FoCL I, DL-FocL II, and DL-FocL III, each with a different focus
in the overall improvement.

DL-FocL I employs a repeated sequential covering strategy to improve the predictive
performance of a generalization. In other terms, after a solution is computed by
DL-FoiL, DL-FocL I checks its predictive performance and, if unsatisfactory (less
than a given threshold), re-runs the DL-FoIL algorithm an additional number of
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times until the desired quality is met. Indeed, DL-FocL I is slower than DL-FOIL,
but is often more accurate. With the so-called lookahead strategy, DL-FocL II
considers refinements at higher levels, i.e., which cannot be reached with a single
refinement step. More specifically, at each step of the search process, DL-FocL II
evaluates direct refinements and their k-th grand children to mitigate myopia in
the search space. This allows DL-FocL II to directly choose future refinements as
candidate solutions, and hence speeds up the search process. DL-FocL III integrates
a local memory (tabu list) to avoid reconsidering choices that lead to dissatisfactory
regions. To this end, at each search step, DL-FocL III initializes an empty tabu
list which is progressively populated with poor refinements. Once a refinement
with an acceptable classification score is found, the tabu list is reinitialized and the
search process continues, starting from the newly validated refinement. In this way,
DL-FocL III is able to prune the search space by exploring only the most promising
regions, which often leads to high-quality solutions within a few exploration steps.

While on average DL-FocL I outperforms DL-FOIL in terms of predictive accuracy,
its overall runtime leaves much to be desired. The runtime of DL-FOCL I is n-times
(n is the number of hill climbing repetitions) higher than that of DL-FoiL. DL-FocL
IT and DL-FocL III are faster than DL-FOIL but often underperform DL-FOIL in
certain situations. For instance, the lookahead strategy in DL-FoOCL II often leads to
overfitting. Our proposed approaches for class expression learning do not employ
the lookahead strategy nor a tabu list. However, they can be set to compute multiple
candidate solutions per learning problem in parallel, which usually leads to improved
predictive performance.

3.2.3 OWL Class Expression Learner

OCEL (OWL Class Expression Learner) [120] (Section 5.1) is an algorithm for class
expression learning which uses a top-down DL refinement operator to construct and
traverse its search space. OCEL navigates its search space by relying on a scoring
function which takes into account the number of uncovered/covered positive/nega-
tive examples as well as the horizontal expansion (i.e., maximum length of child
refinements) of the current node. In its search process, OCEL removes redundant
concepts, i.e., concepts that are equivalent to those previously explored. Therefore,
a node in the search tree is represented as a tuple (C,n,b), where C' is a concept,
n the horizontal expansion of C, and b a Boolean variable indicating whether the
node is redundant or not.
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The scoring function of OCEL is defined as

uncov_pos = |[ET\ R(C)| 4 uncovered positives (3.2)
cov_neg = |R(C)NE™| # covered negatives (3.3)
accuracy(C) =1 — uncov_posE—]— ov_neg 3.4
acc_gain(N) = accuracy(C) — accuracy(C") (3.5)
score(N) = accuracy(C) + o - acc_gain(N) — (- n, (3.6)

where E = E+ U E~ is the set of examples, C’ is the concept in a parent node of N,
R(C) is the set of instances of C, and «, 3 are positive constants. In fact, only nodes
whose numbers of uncovered positives uncov_pos do not reach a certain amount
are considered for further exploration. OCEL therefore utilizes a noise parameter ¢
to discard nodes fulfilling uncov_pos > |e - |E||, where |.| denotes the integer part
function. The redundancy check function check Red also contributes to pruning the
search space.

Algorithm 9 OCEL algorithm [120]

Input: K, E=ETUE " ,p

Output: {Ny, No, ..., N} (best nodes)

Parameters: ¢ € [0, 1] (noise parameter)

: ST ={(T,0, False)}

while ST does not contain a node with quality less than [e - |E|| do
Choose a node N = (C,n,b) with highest score in ST
Add all nodes N' = (C',n + 1, checkRed(ST,C")) to ST, where C’ € p(C)
Evaluate all child-nodes N’

end while

return Top-k nodes in ST

—_

Ny ke

The complete learning algorithm of OCEL is presented in Algorithm 9. The algorithm
shows that OCEL starts its search process with the top concept T, as opposed to
DL-FoIL which starts with the bottom concept. Another difference between OCEL
and other learning systems is the horizontal expansion parameter, which restricts
the maximum length of a node’s children at each step of the search process. Our
approach CLIP employs a similar technique by setting a global threshold on the
length of future refinements. This is achieved by using deep neural networks which
are trained to predict the radius within which a solution can be found.
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3.2.4 EL Tree Learner

ELTL (£L Tree Learner) [120] (Section 5.2) is an algorithm for learning ££ trees
(i.e., £L concepts represented as trees) using an ideal refinement operator (see
Section 4.2 of [120] for details). Because £L does not support disjunctions, the base
ELTL algorithm has been extended to the disjunctive ELTL algorithm whose solutions
are disjunctions of multiple base ELTL-like solutions (computed in the inner loop of
Algorithm 10, lines 4-8). We consider the disjunctive ELTL algorithm in this thesis
and simply call it ELTL.

Algorithm 10 ELTL algorithm [120]
Input: K, E = Et U E—, pided
Output: C (an £L concept)
Parameters: ¢ € [0, 1] (noise parameter), secondsPerT'ree (maximum time to spend
on a tree), minTreeScore € [0, 1] (minimum tree score)
1: Initialize C' = 1 (initial guess) and bestTreeScore = 1
2: while bestTreeScore > minTreeScore do
3: ST ={T, False}
4:  while the runtime spent is less than secondsPerTree and ST does not contain
a solution do

5: Choose a childless node N = (D, b) with highest score in ST
: Add all nodes N’ = (C', checkRed(ST,C")) as children of N, where C’ €
ideal
p' (D)
7: Evaluate all non-redundant child-nodes N’ (i.e., checkRed(ST,C") =
False)

8: end while

9:  Select C' from ST with highest score and assign this score to bestTreeScore
10:  if bestTreeScore > minTreeScore then
11: c=cuc’

12: Et =ET\ R(C') # Ri(-) is an instance retriever in K
13: E- =E~\ R(C)
14:  endif

15: end while
16: return simplify(C)

ELTL can be considered a simplification of OCEL for two main reasons: 1.) a node in
ELTL is represented as (C, b), i.e., the horizontal expansion parameter n is omitted,
and 2.) the formula of the heuristic function (score(-) in Equation 3.6) remains
the same, with the horizontal expansion n replaced by the length of the node. The
construction of a solution by ELTL is described in Algorithm 10. ELTL starts the search
process by initializing its candidate solution as the bottom concept |, and the best
tree score (bestTreeScore) is set to 1. In the outer-most loop, it looks for a sequence
of concepts C1, Cs, ..., Cy with checkRed(ST, C;) = False V i, and the associated
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remaining sets of examples F1, E», ..., E} (after removing those covered by the
Cy’s) such that Ey, C Ey,_1 C ... C E; and score(Cy_1, False) > minTreeScore
and score(Cy, False) < minTreeScore. In the inner-most loop (lines 4-8), ELTL
computes one of the C;’s by iteratively applying the ideal refinement operator p*éc®
on running nodes until timeout (i.e., the secondsPerTree are elapsed) or until a
child node is qualified as solution. The final solution is a simplified disjunction of
concepts L LICy LU Cy U ... U Cy. The simplification function removes redundant
terms (i.e., those whose removal does not change the interpretation of the concept)
from the final expression, e.g., | is always removed.

3.2.5 Class Expression Learner for Ontology Engineering

CELOE (Class Expression Learner for Ontology Engineering) [122] is an extension
of OCEL tailored towards ontology engineering. Its main goal is to learn concept
definitions which can be suggested to a knowledge engineer, e.g., Capital =
City (3 isCapitalOf.Country). Because in ontology creation and maintenance it
is unlikely that extremely long concepts are used, CELOE employs a stronger length
penalty as compared to OCEL, and biases its search towards even shorter concepts.
The scoring function (heuristic) of CELOE is defined as

1, IRNR©) |, [BANRO)
2l G =T < RCA) R(O) ) G
acc_gain(C) = acc(C,t) — acc(C’,t) (3.8)
score(C) = acc(C,t) + a - acc_gain(C) — 5 - |C|, (3.9

where R(-) is the instance retrieval function, A is the class expression to learn
(usually an atomic concept), C' a candidate solution (|C| denotes the length of C as
defined in Definition 2.2), C’ the concept in a parent node of C, and ¢t > 1,a,3 > 0
hyperparameters which control the behavior of the algorithm. For example, 3
is used to penalize the algorithm whenever it generates long concepts as those
are less readable for a knowledge engineer. With its improved scoring function,
CELOE remains one of the most capable class expression learning algorithms in
DL-Learner [27].
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3.2.6 DRILL

DRILL [48] is a class expression learning algorithm that uses deep-Q-learning to
prune the search space of refinement operator-based approaches. Instead of mea-
suring the quality (heuristic score) of a concept based merely on the amount of
covered/uncovered positive/negative examples, DRILL uses a deep-Q-network to
estimate the total discounted future rewards (i.e., heuristic scores) of trajectories
starting from the current concept. To achieve this goal, DRILL represents each node
in CELOE's search tree as a reinforcement learning environment state s. The reward
function of DRILL (for transitioning from a state s to another state s’) is defined as

, mazreward if Fi(s') =1
R(s,s') = (3.10)
score(s’) otherwise,

where mazxreward is the maximum reward the RL agent in DRILL can obtain (e.g.,
1) when it takes an action, score(-) is the scoring function of CELOE as defined in
Equation 3.9, and I3 is defined as

|EY N R(s)]
|EF N R(s)| + 3(IE- N R(s)| + |[E*\ R(s)[)

Fi(s) = (3.11)

The heuristic function of DRILL is defined as
épru([s, s’ ey, e_|;0) = f(vec(f(\IJ([S, s'.e;.e_])xw)) W) -H, (3.12)

where f(-) is the rectified linear unit activation function, * denotes a convolution
operation, and s = E(R(s)) € RIE®I*d and s’ = E(R(s)) € RIEE)IX4 are the
embedding matrices for the states s and s/, respectively. © = [V, w, W, H] are
trainable model parameters, e, € RI¥"1¥4 and e_ € RIF ¥4 are the embeddings

for positive and negative examples, respectively.

To accelerate class expression learning, DRILL is often pretrained in an unsupervised
manner. This involves generating class expressions of various lengths which serve as
learning problems from which DRrILL learns the search space traversal by attempting
to compute their respective solutions (i.e., reach goal states). Algorithm 11 presents
the training procedure of DRILL. The algorithm starts with the top concept T as the
initial state. It then applies the refinement operator p to obtain a set of possible
next states (concepts with a non-empty instance set) from which it either randomly
selects one state s’ if € > 0.1 or selects the best heuristic-based state otherwise. Next,
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the reward of s’ is computed and the history [s,s’, e, ,e_, reward] is appended to
the experience replay dataset D. This process is repeated m times by considering the
most recent states every time, with the model parameters being updated every fifth
iteration using samples from D. Post-training, DRILL converges to goal states (i.e.,
solutions to learning problems) at least 2.7 x faster than state-of-the-art algorithms
such as CELOE.

Algorithm 11 DriLL with deep Q-learning training procedure [48]
1: Require: ET,E~,p,R, R, E, O, M, T
2: form:=1, M do
3: s, su=E(R(T)), T

4. fort:=1,T do

i z:={s' € pls)| |(R(s))] > 0}

6: if ¢ > .1 then

7: Select random s’ € z

8: else

9: Select s’ := argmaxg ¢, ¢prus([S, 8, €4, e_]); O)
10: end if
11: Compute reward reward := R(s,s’)
12: Append [s,s’,e;,e_,reward] to D
13: Sets,s :=s'§
14:  end for

15:  Reduce € with a constant
16: ifm % 5 = 0 then

17: Sample random minibatches from D
18: Compute loss of minibatches w.r.t. ©
19: Update parameters © accordingly
20: end if

21: end for

While DRrILL shows significant improvements in runtime over the previous state of
the art, it still requires to be pretrained on vast amounts of data. Moreover, the use
of a refinement operator during the pretraining and inference phases further limits
the scalability of DRILL. The neural synthesis-based approaches we propose in this
thesis do not use a refinement operator at inference time, and are several orders of
magnitude faster than DRILL.

All approaches described above are refinement operator-based. We will now intro-
duce two other state-of-the-art approaches which do not use a refinement operator,
but employ different techniques to construct and traverse their search space.
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3.2.7 Efficient Concept Induction from Instances

ECII (Efficient Concept Induction from Instances) [185] is a search-based algorithm
that uses disjunctions, conjunctions and negations of pre-selected complex class
expressions to construct and traverse its search space. More specifically, given a
background knowledge K, and sets of positive and negative examples £+ and £,
ECII first computes a set of statements A, = {A(a),r(a,b), B(b)} occurring in K
for every individual « € ET U E~. It then chooses one of the following complex
expressions as candidate solution S and evaluates it:

=1

=1

! m
(2) AN <|_| Ir;. (|_| Bj, M —(Dy I_IDQI_I...I_IDjik))) , (3.14)
j=1

where C; are candidate class expressions constructed with LI, M or -, and A, Bj,, Dj,,
are atomic concepts. Each r; is a role occurring in the statements A, of at least
one example ¢ € ET U E~. If the evaluation of the candidate solution yields
unsatisfactory results (e.g., poor coverage of positive examples), ECII then chooses
another candidate expression S but with the same form as (1) or (2). This process
is repeated until the maximum number of iterations is reached or until a candidate
solution perfectly covers all positive examples while ruling out negative ones, i.e.,
KES@)Vae Etand K (£ S(a)Vae E™.

Because ECII does not employ a refinement operator, and invokes a reasoner only
once for each learning problem, it is often faster than CELOE, but tends to compute
lower quality solutions on average. However, it still remains relatively slow when
compared to our neural synthesis-based approaches, as we will see in Chapters 5
and 6.

3.2.8 Evolutionary Concept Learning

EvoLearner (Evolutionary Concept Learning) [82] is an approach for class expression
learning which employs evolutionary algorithms. Given a background knowledge
base K and a learning problem defined by positive examples £ and negative
examples £, EvoLearner initializes its population (candidate solutions) by random
walks on K, which is viewed as a graph beforehand. It then subsequently applies
mutations, cross-over operations, and a heuristic function to construct the next
generations of the initial population until a solution is found.
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Specifically, EvoLearner starts from a positive example et € E' and performs
a random walk of length &, yielding a sequence of roles r;, 1 < i < m which
are completed with quantifiers (e.g., 3, V) and types (T, L, or atomic concepts).
The result of a random walk is a concept 3 r;.(3 r2.(3...V r,.Cy,)), Which is
represented as a tree. This process is repeated until the maximum population
size n is reached. Then, a series of n tournaments starts, where the best tree is
chosen every time among a randomly and uniformly constructed sub-population
of size k. Simultaneously, crossover and mutation operations are invoked to swap
nodes in two sub-trees, and randomly replace an atomic concept with another
relevant atomic concept (e.g., a second type for the considered example if any),
respectively. At the conclusion of tournaments, the first generation of the population
is obtained. This process is then repeated for future generations until a solution
to the considered learning problem is found, or until the maximum number of
generations is reached.

EvoLearner outperforms many state-of-the-art approaches, including CELOE, SPa-
CEL [206], and Aleph [195] in predictive performance, and runtime. Our approach
CLIP using concept length predictors is comparable to EvoLearner, as they both
lag behind our synthesis-based approaches NCES, NCES2, and ROCES in terms of
runtime.

In this chapter, we have covered several works tackling various problems in inductive
logic programming, including the state of the art for class expression learning in
description logics. We will now present our scientific contributions towards scalable
class expression learning on large knowledge bases.

3.2 State of the Art in Class Expression Learning

61



62 Chapter 3 Related Work



Concept Learner with
Integrated Length Prediction

Preamble. This chapter is based on Kouagou et al. [107] and answers our first
research question (see Section 1.2.1).

4.1 Methodology

In this section, we introduce CLIP, our first approach that leverages concept length
predictors to accelerate class expression learning (CEL). We start by defining the
problem we aim to solve before describing our proposed approach. Afterwards, we
present and discuss experimental results where CLIP is compared against state-of-
the-art approaches.

4.1.1 Learning Problem

Below, we recall the definition of the classical learning problem for CEL in description
logics. This definition is based on previous works [121] with slight modifications in
notations for more clarity.

Definition 4.1 (Classical Learning Problem (CLP)). Given a knowledge base K, a
target concept T, a set of positive examples ET = {ef,e3,... ¢} }, and a set of
negative examples E~ = {ej ,e;,... e }, the learning problem is to find a class

expression C' such that for K, = KU {T = C}, we have that K, = C(E™) and
/ —
c = CET).

We write Kf, |= C(E) (respectively, K = C(E)) to expressthatVe € E, K = C(e)
(respectively, V e € E, K, ~= C(e)). Here, K, = C(e) means e is an instance of C
according to K. Note that in some literature, e.g., [121], an additional constraint
is often imposed on the solution C, i.e., requiring that 7" does not occur in C. In
the scope of this thesis, we ignore this constraint as we do not explicitly provide the
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target concept 7' to a learning approach. Hence, an approach for CEL is tasked to
find a solution with solely the provided positive and negative examples.

Previous works for CEL, e.g., [122, 185] mainly focused on developing search-
based approaches with hard-coded heuristics to solve the classical learning problem
introduced in Definition 4.1. The primary drawbacks of these approaches are long
runtimes especially on large datasets where they often fail to find a reasonable
solution within a set timeout. Our approach CLIP, described below, improves the
runtime of search-based approaches by employing concept length predictors rooted
in deep neural networks.

4.1.2 Overview of the Approach

The intuition behind CLIP is that if we have a reliable concept length predictor,
then our concept learner only needs to test concepts of length up to the predicted
length. Figure 4.1 illustrates CLIP’s search strategy. Refinements that exceed the
predicted length are ignored during search. In the figure, the concept Person 1
(V attendsSome. (Workshop LI Conference)) is of length 7 and is therefore neither
tested nor added to the search tree.

.+ [ Organisation

p(Person)

A\ 4
| p(Person [l (3 attendsSome. T)) | e

[

| p(Person (3 attendsSome.Talk)) | e | Person 1 (V attendsSome){(Workshop LI Conference))

Figure 4.1: Search tree of CLIP when the predicted length is 5. After each refinement, CLIP
discards all concepts whose lengths are larger than the set threshold.

Remark 4.2. For concept length prediction during concept learning, we sample n;
positive examples and no negative examples from the considered learning problem such
that n1 + no = n, as described in Section 4.1.3 (4).
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4.1.3 Concept Length Prediction

In this section, we address the following learning problem: Given a knowledge base
K, a set of positive examples E* and negative examples £, predict the length of
the shortest concept C' that is a solution to the learning problem defined by K, E™,
and E~ according to Definition 4.1. To achieve this goal, we devise a generator that
creates training data for our prediction algorithm based solely on K and a user-given
number of learning problems to use at training time.

Training Data for Length Prediction

Let K be a knowledge base whose sets of individuals, atomic concepts, and roles are
denoted N;, N¢, and Ng, respectively.

Data Generation. Given a knowledge base, the construction of training data (con-
cepts with their positive and negative examples) is carried out as follows:

1. Generate concepts of various lengths using the length-based refinement op-
erator described in Algorithm 12 and 13. In this process, short concepts are
preferred over long concepts, i.e., when two concepts have the same set of
instances, the longest concept is discarded.

2. Compute the sets £} and & for each generated concept C'.

3. Define a hyperparameter n € [1,|N/|] that represents the total number of
positive and negative examples a length predictor can take as input.

4. Sample positive and negative examples as follows:

o If £} > % and || > %, then we randomly sample % individuals from
each of the two sets £/ and &.

e Otherwise, we take all individuals in the minority set and sample the
remaining number of individuals from the other set.

Training Data Features. A knowledge graph is commonly defined as G C £ x R x &,
where € is a set of entities and R is a set of relation types. We convert a given
knowledge base K into a knowledge graph by converting ABoz statements of
the form r(a,b) into (a,r,b). Statements of the form C(a) are converted into
(a,rdf:type, C). In our experimental data, the T'Bozes contained only subsump-
tions C C D between atomic concepts C' and D, which were converted into

&} denotes the set of instances of C, and £, = Ny \ &2

4.1 Methodology
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triples (C, rdfs:subClass0f, D). Hence, in our experiments, £ C N¢o U N; and
R = NrU{rdf:type, rdfs:subClassOf }. The resulting knowledge graph G is then
embedded into a continuous vector space to serve for the prediction of concept
lengths. We use the embedding model ConEx [45] for embedding computation
because of its computational efficiency and high predictive performance. On the
vector representation of entities, we create an extra dimension at the end of the
entries, where we insert +1 for positive examples and —1 for negative examples.
Formally, we define an injective function fo for each target concept C

fo : R — R*H!

(x1,...,2q, 1) ifent(x)eé'gf,

x = (r1,...,2q9) — (4.1)

(x1,...,24,—1) otherwise,

where d is the dimension of the embedding space, and ent(x) is the entity whose
embedding is x. The extra dimension aims to facilitate the distinction between
positive and negative examples for each class expression. Thus, a data point in the
training, validation, and test datasets is a tuple (M¢, length(C)), where M¢ is a
matrix of shape n x (d 4 1) constructed by concatenating the embeddings of positive
examples followed by those of negative examples. Formally, assume 7, and n, are
the numbers of positive and negative examples for C, respectively. Further, assume
that the embedding vectors of positive examples are (), i = 1..., n; and those of
negative examples are 29 i =ny+1,...,n1 +ne = n. Then, the i — th row of M
is given by

Mcli ] = (:Ugi),...,a;g), 1) ifl1<i<n, 4.2)
(azgl),...,xg),—l) ifn+1<i<n;+ny=n.

We view the prediction of concept lengths as a classification problem with classes
1,2,..., L, where L is the length of the longest concept in the training dataset. As
shown in Table 4.1, the concept length distribution can be imbalanced. To prevent
concept length predictors from overfitting on the majority classes, we used the
weighted cross-entropy loss

1 N L ) ‘
L y) = =3 22 2 wel(k,y") log(5}), “3)
i=1k=1

where N is the batch size, g is the batch matrix of predicted probabilities (or scores),
y is the batch vector of targets, w is a weight vector, and 1 is an indicator function
which returns 1 if its inputs are identical, and 0 otherwise. The weight vector wy,
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Algorithm 12 Function REFINEHELPER
Input: Knowledge base K, atomic concept A
Parameters: k, default 5

Output: Initial refinements of A

S < SUBCONCEPTSi(A)  # Subconcepts of A in K
=S + {=C|C € S}
Restrict < {}
if |S| < k then
F <« {T,L,A}  # Set of fillers
else
F «+{T,L, A} URANDSAMPLE(S,n = k) U RANDSAMPLE(—S,n = k)
end if
for C'in F do
for r in Nr do
Restrict < Restrict U {3 r.C}
Restrict < Restrict U {V r.C}
end for
: end for
: return S U ~S U Restrict

ey hwhH

e S S = S
g h o

is defined as: wy = 1/4/[k], where [k] is the number of concepts of length £ in the
training dataset.

4.1.4 Express Refinement

We implemented the intuition behind CLIP by extending CELOE’s refinement opera-
tor. Our refinement operator differs from CELOE’s in how it refines atomic concepts
(see Algorithms 12 and 13). For example, it considers all refinements A’ = A of an
atomic concept A whereas CELOFE’s refinement operator only considers A’ C A such
that there is no A” with A’ — A” C A. Omitting this expensive check allows more
concepts to be tested in the same amount of time. In the following, we describe
our method for refining atomic concepts and refer the reader to [121, 122] for
details on CELOE. In Algorithms 12 and 13, the hyperparameters mazx_length, k,
and sample_frac control the expressivity of the refinement operator: maz_length
specifies how long the refinements can become (Algorithm 13, lines 8, 11, 13);
k controls the number of fillers sampled without replacement for universal and
existential role restrictions (Algorithm 12, line 7); sample_frac € (0, 1] specifies the
fraction of initial refinements to be sampled for further exploration (Algorithm 13,
lines 1-3). Given a knowledge base K, the refinement of an atomic concept A is carried
out as follows: (1) obtain the subconcepts S of A in K; (2) compute the negations —S of all
subconcepts of A; (3) construct existential and universal role restrictions Restrict where the
fillers F are in the set made of T, 1, A, and samples from S and —S; (4) compute the union
of S, =S, and Restrict as output of Algorithm 12, and (5) use Algorithm 13 to compute

4.1 Methodology
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Algorithm 13 Function REFINEATOMICCONGEPT

Input: Knowledge base K, atomic concept A

Parameters: sample_frac € (0, 1], maz_length

Output: {C,...,C),} which are refinements of A

: Init_Ref = REFINEHELPER(KC, A)

m < [ sample_frac x |Init_Ref|)|  # |-| is the integer part function
: Init_Ref < RANDSAMPLE(Init_Ref, n =m) # Sample without replacement
4: S < SUBCONCEPTS)(A) # Subconcepts of Ain K

5: Refinements <— S  # All subconcepts are of length 1

6: for S;in S do

7. for Sy in Init_Ref do

W N =

8: if S1 # S and length(S1 M S2) < max_length then
9: Refinements < Re finements U {S1 M Sa}
10: end if
11: if S; # Sy and Se € S and length(S; LI S2) < mazx_length then
12: Refinements < Refinements U {S1 LI Sa}
13: else if S| # S and length((S1 LU S2) M A) < maz_length then
14: Refinements < Refinements U {(S1 U S2) M A}
15: end if
16:  end for
17: end for

18: return Refinements

and return final refinements as intersections and unions of sub-concepts S and the output
of Algorithm 12, with the generated refinements having length at most maz_length. The
refinement operator is designed to yield numerous meaningful downward refinements from
a single atomic concept.

4.2 Experiments

In this section, we design experiments to evaluate our proposed approach. We start with
experimental settings, where we describe the datasets and evaluation metrics used as well
as hyperparameter configurations. We then present and discuss our experimental results.

4.2.1 Experimental Setup

We conducted two sets of experiments. In the first set of experiments, we assess the ability
of neural networks to effectively predict the length concepts in the description logic ALC
based on positive and negative examples. In the second set of experiments, we evaluate
the effect of concept length prediction on class expression learning in terms of runtime and
quality of the computed solutions.
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Datasets

We ran experiments on four benchmark datasets: Carcinogenesis [224], Mutagenesis [224],
Semantic Bible?, and Vicodi [152]. Carcinogenesis and Mutagenesis are knowledge bases
about chemical compounds and how they relate to each other. The Semantic Bible knowledge
base describes each named object or thing in the New Testament. The Vicodi knowledge
base was developed as part of a funded project and describes the European history.

Training Data Generation

We construct training data for concept length prediction as described in Section 4.1.3. The
generated data is then split into three subsets: training, validation, and test datasets, the
complete statistics of which are reported in Table 4.1. Though the maximum length for the
generation of concepts is fixed to 15, many long concepts were equivalent to shorter ones.
Hence, they were removed from the generated data, and the longest remaining are of length
11 (see Table 4.1).

Table 4.1: Statistics of the generated data on each benchmark dataset

Length Carcinogenesis Mutagenesis Semantic Bible Vicodi

Train Val. Test Train Val. Test Train Val. Test Train Val. Test

3 3,647 405 1,013 1,038 115 288 487 54 135 3,952 439 1,098
5 782 87 217 1,156 129 321 546 61 152 2,498 278 694
6 0 0 0 0 0 0 162 18 45 335 37 93
7 1,143 127 318 1,310 146 364 104 12 29 3,597 400 999
8 0 0 0 0 0 0 0 0 0 747 83 207
9 0 0 0 0 0 0 73 8 21 0 0 0
11 0 0 0 0 0 0 41 5 11 0 0 0

Concept Length Predictors

We consider four neural network architectures: Long Short-Term Memory (LSTM) [85],
Gated Recurrent Unit (GRU) [36], Multi-Layer Perceptron (MLP), and Convolutional Neural
Network (CNN), see Chapter 2 for more details on these architectures. Recurrent neural
networks (LSTM, GRU) take as input a sequence of embeddings of positive and negative
examples (all positive examples followed by all negatives). The CNN model takes the
same input as recurrent networks but it views the input as a gray image (i.e., with a single
channel). The MLP model takes as input the average embeddings of positive and negative
examples. We also consider a random model which predicts the length of a concept based
on the distribution of lengths. It assigns high probabilities to the most represented lengths
in the a given dataset. The motivation behind the random model is to see how it compares
to neural network-based length predictors.

https://www.semanticbible.com/ntn/ntn-overview.html

4.2 Experiments
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Evaluation Metrics

We considered four metrics in our experiments. The first metric is the accuracy which is
used during training to compare predicted concept lengths to actual ones in the training,
validation, and test sets. The second metric is the macro F; score which also compares
the predicted concept lengths to the ground truth, but is more sensitive to errors made on
minority classes. The third and fourth metrics (Acc and Fy) are used to measure the quality
of solutions to learning problems in the second set of experiments, i.e., class expression
learning. Acc and F} are defined as

_lEENE* |+ leg N B

Acc , 4.4
B+ + [E] “4
Precision x Recall
F, =2 .5
! % Precision + Recall’ (4-5)
EXNET
Precision = - | ¢ +| , (4.6)
ELSNET|+ |4 NE]
EXNET
Recall = €6 | 4.7)

£ N BT+ BT\ L

where S&L is the set of instances of the candidate solution C, £, = N; \Sg ,and ET and £~
the sets of positive and negative examples of a learning problem, respectively.

Hyperparameter Optimization and Hardware

In our preliminary experiments, we used a random hyperparameter search method [20]
to select the best values (as summarized in Table 4.3). This method also helped us find
out that two recurrent layers (for LSTM and GRU) followed by two linear layers, batch
normalization, and dropout layers is sufficient to achieve high predictive performance with
low computational costs. Similarly, we chose two convolution, linear, and dropout layers
with one batch normalization for the CNN omodel. The MLP model consists of four linear
layers, one batch normalization and dropout layers. The rectified linear unit (ReLU) is used
in the intermediate layers of all models, whereas the Sigmoid function is used in the output
layers. We ran experiments in a 10-fold cross-validation setting with ten repetitions. Table
4.3 gives an overview of the hyperparameter settings on each of the four knowledge bases
considered. The number of epochs is set based on the training speed and the performance
achieved on validation datasets. For example, on the Carcinogenesis knowledge base, most
length predictors are able to reach 90% accuracy with just 50 epochs, which suggests that
more epochs would probably lead to overfitting. Adam optimizer [104] is used to train the
length predictors. We varied the number of examples n between 200 and 1000, and the

embedding dimension d from 10 to 100, but we finally chose n = min (1000, ”\2’” )and d = 40

for their high predictive accuracy and low computation costs.

We trained all concept length predictors on a single 11GB memory NVIDIA K80 GPU with
4 Intel Xeon E5-2670 CPUs at 2.60GHz, and 24GB RAM. During concept learning with
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Table 4.2: Model size (|Parameters|) and training time (Time)

Carcinogenesis Mutagenesis
| Parameters| Time (sec.) |Parameters| Time (sec.)
LSTM 160,208 188.42 160,208 228.13
GRU 125,708 191.16 125,708 228.68
CNN 838,968 16.77 838,248 44.74
MLP 61,681 10.04 61,681 14.29
Semantic Bible Vicodi
|Parameters| Time (sec.) |Parameters| Time (sec.)
LSTM 161,012 196.20 160,409 362.28
GRU 125,512 197.86 125,909 367.55
CNN 96,684 18.43 839,377 71.95
MLP 61,933 9.56 61,744 24.61

Table 4.3: Hyperparameter setting. Lr is the learning rate during training, d the number of
embedding dimensions (a.k.a. embedding dimension), NV the batch size during
training, and n the total number of examples (both positive and negative ones)
used to predict concept lengths.

Epochs Lr d N n

Carcinogenesis 50 0.003 40 512 1,000
Mutagenesis 100 0.003 40 512 1,000
Semantic Bible 200 0.003 40 256 362
Vicodi 50 0.003 40 512 1,000

CELOE, OCEL, ELTL, and CLIP, we used a CPU only server with 8-core Intel Xeon E5-2695
at 2.30GHz, and 16GB RAM to ensure a fair comparison, since baseline approaches do not
support GPUs.

4 2.2 Results and Discussion

Concept Length Prediction

Table 4.2 shows the number of parameters and training time of LSTM, GRU, CNN, and MLP
architectures on each of the datasets. From the table, we can observe that our concept length
predictors can be trained in less than an hour and be used for efficient concept learning on
corresponding knowledge bases.

In Figures 4.2 and 4.3, we show training curves for each model on all datasets. We can
observe a decreasing loss on all knowledge bases (see Figures 4.2b and 4.3b), which suggest
that models effectively learn from the provided data. Moreover, the Gated Recurrent Unit
(GRU) model outperforms the other models on all datasets, see Figure 4.3a and Table 4.4.
Inputs to the MLP model are average embeddings of positive and negative examples of given
concepts. This may have caused loss of information in the inputs. As shown in Figure 4.2a,
MLP curves tend to saturate in the early stages of training. We also assessed the element-wise
multiplication of the embeddings and obtained similar results. However, as reflected in Table

4.2 Experiments
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Figure 4.2: Training curves. Colored areas represent standard deviations across 10 runs in
a 10-fold cross-validation setting.

4.4, all our proposed architectures outperform a random model that knows the distribution
of the lengths of concepts in the training dataset®. A modified version of MLP where the
embedding of each example is processed independently with a linear map before averaging
is performed (no interaction) also achieved a poor predictive performance. This suggests
that the full interaction between examples, captured by recurrent units, is key to effectively

predicting concept lengths.

Table 4.4 compares our chosen neural network architectures and a random model on the
Carcinogenesis, Vicodi, Mutagenesis, and Semantic Bible knowledge bases. From the table,
it appears that recurrent neural network models (GRU, LSTM) outperform the other two
models (CNN and MLP) on three out of four datasets, with the only exception that the LSTM
model slightly dropped in performance on Vicodi compared to CNN.

While the CNN model tends to overfit on all knowledge bases, the MLP model is unable
to extract meaningful information from the average embeddings. On the Semantic Bible
knowledge base, which appears to be the smallest dataset, all our proposed networks
performed less well than expected. This suggests that our learning approach is more suitable
for large knowledge bases. Nonetheless, all our proposed models are clearly better than a

3The random model predicts the length of a concept by sampling from a distribution that assigns
high probability values to the most represented concept lengths in the training set.
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Figure 4.3: Validation curves. Colored areas represent standard deviations across 10 runs

distribution-aware random model with a minimum performance difference (macro F} score)

in a 10-fold cross-validation setting.

on average between 21.25% (MLP) and 41% (GRU).

Class Expression Learning

The maximum runtime is set to 2 minutes per learning problem.* For all knowledge bases,
we generate 100 random learning problems by (1) creating random ALC concepts C' of
maximum length 15, (2) computing the sets of instances £/; and £, (3) providing £/ and
&. to each of the approaches, and (4) measuring the accuracy, the F-measure, the runtime,
and the length of the best solution generated within the set timeout. We ran all approaches
on the same hardware (see Section 4.2.1). CLIP is configured to use our best concept length
predictor (GRU). Note that a predictor is trained for each dataset (see Table 4.1). Also
note that we add the ELTL algorithm—a concept learner for the description logic ££—to
investigate whether our randomly generated concepts is equivalent to concepts in a simpler

description logic.

“The implementations of OCEL and ELTL in the DL-Learner framework, which we used for our
experiments, fail to consider the set threshold accurately. Hence, Table 4.5 contains values larger

than 2 minutes for these two algorithms.

4.2 Experiments
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Table 4.4: Effectiveness of concept length prediction. RM is a random model that makes
predictions according to the length distribution in the training dataset, and F; is
the macro F-measure.

Carcinogenesis Mutagenesis
LSTM GRU CNN MLP RM LSTM GRU CNN MLP RM

Train. acc. 0.89 096 0.97 0.80 0.48 0.83 097 098 0.68 0.33
Val. acc. 0.76 093 0.82 0.77 048 0.70 0.82 0.71 0.65 0.35

Test acc. 092 095 0.84 0.80 0.49 0.78 0.85 0.70 0.68 0.33
Test Fy 0.88 0.92 0.71 0.59 0.33 0.76 0.85 0.70 0.67 0.32
Semantic Bible Vicodi

LSTM GRU CNN MLP RM LSTM GRU CNN MLP RM

Train. acc.  0.85 0.93 0.99 0.68 0.33 0.73 0.81 0.83 0.66 0.28
Val. acc. 049 0.58 044 0.46 0.26 0.55 0.77 0.70 0.64 0.30
Test acc. 0.52 0.53 0.37 0.40 0.25 0.66 0.80 0.69 0.66 0.29
Test Fy 0.27 038 0.20 0.22 0.16 045 050 045 0.38 0.20

Table 4.5 presents a comparison of the results achieved by CLIP, CELOE, OCEL, and
ELTL; results are formatted mean + standard deviation. Note that the table does not
contain DL-FOIL because it could not solve the learning problems that we considered.
For instance, the first learning problem on the Semantic Bible knowledge base targets
Son0fGod LI (3 locationOf.StateOrProvince). Here, DL-FOIL freezes on the refinement
of GeographicLocation with over 5 x 10 unsuccessful trials. Similar observations were
made on other datasets. We also tried running DL-FocL, but it was not possible using
the documentation provided. Our results suggest that CLIP outperforms the other three
algorithms in F; and in runtime on most datasets. The ELTL algorithm appears to be faster
than CELOE and OCEL but slower than CLIP. However, its short runtime stems from the fact
that it computes its solutions in the description logic ££, and returns the top concept most of
the time; this is reflected in the average length of the solutions it computes. Moreover, some
of our learning problems can only be solved in ALC or a more expressive description logic,
which explains the poor performance of ELTL in terms of F-measure across all datasets.

We used a Wilcoxon Rank test to check whether the difference in performance between
CLIP, CELOE, and OCEL is significant. Significant differences are marked with an asterisk
(*). The null hypothesis for our test was that “the two distributions that we compare are the
same”. The significance level is « = 0.05. The performance differences in F; between CLIP
and the other algorithms are significant on 3 out of 4 datasets.” With respect to runtimes,
we significantly outperform all other algorithms on all datasets. Large time differences
correspond to scenarios where CLIP detects short solution concepts while other algorithms
explore longer concepts. Low time differences correspond to either simple learning problems,
where all algorithms find a solution in a short period of time, or complex learning problems
where CLIP explores long concepts as other algorithms.

The average runtimes of CELOE, OCEL, and CLIP across all datasets are 0.85, 8.08, and 0.1
minutes, respectively. Given that the average training time of the length predictor GRU

>Note that we ran OCEL with its default settings and F) scores are not available.
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Table 4.5: Performance of CLIP compared with CELOE, OCEL, and ELTL on 100 learning
problems per knowledge base. The presence of an asterisk (x) indicates that
the performance difference between CLIP and the other algorithms is significant
(p-value < 0.05). The upward arrow (1) indicates that the higher is better,
whereas the downward arrow (|) indicates the opposite. All results are average
results per knowledge base. The average time is in minutes due to the long
runtime of some baselines.

Carcinogenesis

CELOE OCEL ELTL CLIP
Acc. 1 0.78 £ 0.27 0.89 +0.31 0.58 £0.46 0.99 + 0.00
I3 0.62 £+ 0.46 - 0.51+0.47 0.96%+ 0.10
Runtime |  0.93 + 0.94 3.01 £0.72 0.75 £ 0.07 0.10%+ 0.09
Length | 1.69 £+ 0.89 7.81 £6.88 1.04x+0.39 2.00+1.28

Mutagenesis

CELOE OCEL ELTL CLIP
Acc. 1 0.99 £0.00 0.71+0.45 0.37+ 043 0.99 + 0.00
Fi 1 0.81 £ 0.35 - 0.29+£0.40 0.93%+ 0.18
Runtime |  0.70 £ 0.77 2.39 £ 0.18 0.29 £0.16 0.07x+ 0.05
Length | 279 +1.17 1263 +£7.03 1.10«+0.81 2.20+1.16

Semantic Bible

CELOE OCEL ELTL CLIP
Acc. 1 0.99 + 0.02 0.66 + 0.47 0.59 £0.37 0.99 + 0.00
Bt 0.97 £ 0.10 - 0.57 £0.38 0.98 + 0.05
Runtime ] 0.47 £0.80 22.15+96.55 0.09 £0.07 0.06+=* 0.05
Length | 3.85+2.44 9.54 £5.73 1.38%x+ 1.76 2.52 £ 1.26

Vicodi

CELOE OCEL ELTL CLIP
Acc. 1 0.29 + 0.44 0.25 + 0.43 0.28 £0.44 0.99x+ 0.00
I3 0.25 + 0.44 - 0.25+0.44 0.97++ 0.09
Runtime | 1.30 £ 0.71 4.78 £ 1.12 1.81 +£0.46 0.16x+ 0.12
Length |  10.79 £6.30 11.54 +6.00 11.14+6.11 1.68++ 0.98

is 4.10 minutes, we can conjecture the following: (1) the expected number of learning
problems from which CLIP should be preferred over CELOE is 5, and (2) CLIP should be
preferred over OCEL for any number of learning problems.

4.2.3 Real-world Problems

We applied CLIP to a set of real-world learning problems from different datasets. We
considered three datasets: Carcinogenesis (1 learning problem), Mutagenesis (1 learning
problem), Family (7 learning problems). On Carcinogenesis and Mutagenesis, the goal is
to describe chemical compounds that cause cancer and those that cause gene mutation,
respectively. On the Family dataset, we aim to learn the concepts Uncle, Aunt, Cousin,
Great-grandfather, Great-grandmother, Great-granddaughter, and Great-grandson. Note that
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each of the concepts corresponding to solutions of the given learning problems does not
appear in the background knowledge nor in the training datasets.

Table 4.6: 10-fold cross-validation results on real-world problems. “~” denotes unknown
learning problems.

Train-F; Test-F|, Runtime (sec.)

Family

Aunt 0.92 0.86 14.06
Cousin 0.80 0.78 9.05
Great-granddaughter 1.00 1.00 0.64
Great-grandfather 1.00 1.00 0.75
Great-grandmother 1.00 1.00 0.82
Great-grandson 1.00 1.00 0.94
Uncle 0.94 0.93 17.68
Carcinogenesis

- 0.74 0.70 48.48
Mutagenesis

- 0.92 0.92 26.31

In Table 4.6, we report the results obtained on the above learning problems. We conducted
experiments in a 10-fold cross-validation setting. Each of the ten folds contains some part
of the positive and negative examples. For each run, CLIP solves a learning problem using
9 folds and is evaluated on the 10-th fold. We report average results across the 10 folds.
From the results, we can observe that CLIP maintains a high predictive accuracy while being
relatively fast.

4.3 Conclusion

We investigated the prediction of concept lengths in the description logic ALC, to speed up
the concept learning process using refinement operators. To this end, four neural network
architectures were evaluated on four benchmark knowledge bases. The evaluation results
suggest that all of our proposed models are superior to a random model, with recurrent
neural networks performing best at this task. We showed that integrating our concept length
predictors into a concept learner can reduce the search space and improve the runtime and
the quality (F-measure) of solution concepts. While our proposed approach is effective on
benchmark datasets, it may still not be scalable enough on very large knowledge bases where
multiple learning problems are to be solved. We hence propose in the next chapter a novel
family of approaches (dubbed synthesis-based approaches) that do not require a search
process to compute the solution to a learning problem. This novel family of approaches
can solve multiple learning problems in parallel and have shown to be several orders of
magnitude faster than the state of the art.
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Neural Class Expression
Synthesis

Preamble. This chapter is based on Kouagou et al. [113] and tackles our second research
question (see Section 1.2.2).

5.1 Methodology

In this section, we present our proposed family of synthesis-based approaches for class
expression learning from examples. We begin with preliminaries, then formally define the
problem we aim to solve, and finally present our approach in detail.

5.1.1 Preliminaries

DNN stands for deep neural network. Unless otherwise specified, X = (TBox, ABox) is a
knowledge base, N; and Np, its sets of individuals and roles, respectively. The ABox consists
of statements of the form C'(a) and r(a, b), whereas the TBox contains statements of the form
C C D, where C, D are concepts, r is a role, and a, b are individuals in K. As in Chapter 4,
we use the representation of knowledge bases as sets of triples to compute embeddings for
individuals, atomic concepts and roles, which are essential to our proposed approach (see
Figure 5.1). The function |.| returns the cardinality of a set. 1 denotes the indicator function,
i.e., a function that takes two inputs and returns 1 if they are equal, and 0 otherwise. Let a
matrix M and integers i, j be given. M. ;, M, ., and M,; represent the j-th column, the i-th
row, and the entry at the i-th row and j-th column, respectively. Similar notations are used
for higher-dimensional tensors.

We define the vocabulary V of a given knowledge base K to be the list of all atomic concepts
and roles in K, together with the following constructs in any fixed ordering: “” (white
space), “.” (dot), “L1”, “T1”, “3", “¥”, “=”, “(”, ©)”, and “PAD”, which are all referred to as
tokens. V[i] is the token at position ¢ in V. These constructs are used by NCES to synthesize
class expressions in ALC (see Section 5.1.3 for details). For any class expression C, C' and
C are the list (in the order they appear in C) and the set of tokens in C, respectively.
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5.1.2 Learning Problem

We adapt the classical definition of a learning problem (see Definition 4.1) to our setting of
class expression synthesis (Definition 5.1).

Definition 5.1. Given a knowledge base K, a set of positive examples ET = {e{ e, ... e} },
and a set of negative examples E~ = {e} ,e; ,...,e,,}, the learning problem is to synthesize

a class expression C' in ALC using tokens (classes and roles) in K that (ideally) accurately
classifies the provided examples.

In theory, there can be multiple solutions to a learning problem under both Definition 4.1
and Definition 5.1; our NCES generate only one, though we can also, in principle, generate
multiple solutions, e.g., by randomly removing some of the input examples and computing a
new solution every time. Moreover, the solution computed by a concept learner might be an
approximation, e.g., there might be some false positives and false negatives. NCES aim to
synthesize class expressions with low numbers of false positives and false negatives.

5.1.3 Neural Class Expression Synthesizers

The fundamental hypothesis behind neural class expression synthesizers (NCES) is that one
should be able to extract enough semantics from latent representations (embeddings) of
examples to directly synthesize class expressions. This approach, analogous to machine trans-
lation, eliminates the necessity for computationally expensive explorations as currently done
in search-based approaches. Our hypothesis is supported by the significant improvement
in the performance of machine translation approaches brought about by neural machine
translation (NMT) [35, 228]. NMT approaches translate from a source language to a target
language by exploiting an intermediary representation of a text’s semantics. NCES behave
similarly but translate from the “language” of sets of positive/negative examples to the
“language” of class expressions (e.g., description logics).

We propose the following recipe to implement the idea behind NCES. First, given a knowledge
base K, generate numerous class expressions of various lengths together with their sets
of positive (actual instances) and negative examples, as done in the previous chapter,
Section 4.1.3. Construct set of negative examples for each class expression by using the
closed world assumption. Second, extract assertions and axioms of the form C(a) =
(a,rdf :type, C), r(a,b) = (a,r,b), and C C D = (C,rdfs:subClass0f, D) to form a set of
triples, i.e., a knowledge graph. Then, embed said knowledge graph into a continuous vector
space using any state-of-the-art embedding model in the literature. In our experiments, we
used two embedding models with different expressive power: ConEx [45] which applies
convolutions on complex-valued vectors, and TransE [23] which projects entities (individuals
in K) and relations (roles in ) onto a Euclidean space and uses the Euclidean distance
to model interactions. The computed embeddings are then used as features for an NCES
instance, i.e., a model able to take a set of embeddings as input and encode a sequence of
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tokens as output (see Figure 5.1). Again, any embedding model can be used; we chose ConEx
because of its computational efficiency and expressive power. We employ the embedding
model TransE to demonstrate that NCES can perform relatively well even with embeddings
computed by simple models. Finally, train NCES instances on the generated data to obtain
fast concept learners.

Back
Propagation

Loss(Scores,
D. Trump Target)

Xi Jinping

F. Steinmeier

E. Macron
5 Map to
,,,,,,,,,, = Vocabulary
| 0. Scholz |
! Bill Gates | g
© Moon Embedding DNN g
Earth

Human M (3 presidentOf.Country)

Figure 5.1: NCES architecture. DNN is a deep neural network that produces a sequence
of tokens in the vocabulary (e.g., a sequence-to-sequence or a set-to-sequence
model). The input consists of positive examples (upper left, dotted green box)
and negative examples (bottom left, dotted red box). Positive examples are
presidents of countries while negative examples are not. For these specific
inputs, NCES is trained to output an expression describing positive examples,
e.g., Human M (3 president0f . Country).

Neural Network Architectures

We conducted our experiments using the following network architectures: Long Short-Term
Memory (LSTM) [85], Gated Recurrent Unit (GRU) [36], and Set-Transformer [118]. The
latter is known to be permutation equivariant while the two others are not. Nonetheless,
LSTM and GRU can handle set inputs as long as an ordering is defined since they deal well
with sequential data [247, 250]. In this work, we use the default ordering (the order in
which we received the data) of the elements in each set during the data generation process
(see Section 5.2.1).

Recurrent Networks (LSTM and GRU). We use two recurrent layers followed by three
linear layers with the relu activation function and a batch normalization layer. A recurrent
neural network produces a sequence of n hidden states h; (i=1,...,n) for each input
sequence of length n. In this work, we are concerned with a sequence of n; positive
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examples and a sequence of n, negative examples which are processed separately with the
same network:

hEO% . WP = RNN (2p0s); D10, ... W% = RNN (2,) (5.1)

where z,,,s and z,.4 are the sequences of embeddings of positive and negative examples,
respectively. RNN is a two-layer LSTM or GRU network. The hidden state vectors of the
two sets of examples are summed separately, then concatenated and fed to a sequence of 3
linear layers:

T1 T2

hpos = Z hY% Bypeg = Z hi“?; h := Concat(hpos, fneg); (5.2)
t=1 t=1

s = Wg(bﬂ(WQf(Wlh + bl) =+ bg)) + bs3. (5.3)

Here, f is the relu activation function, bn is a batch normalization layer, and W7, by, Ws, ba,
W3, by are trainable weights.

Set-Transformer. This architecture (see more details in Chapter 2, Section 2.1.3) com-
prises an encoder Enc and a decoder Dec. The encoder is a stack of two ISAB layers with
4 attention heads, m = 32 inducing points. The decoder operates with 4 attention heads,
one PMA layer with a single seed vector (k = 1), and one linear layer. As in the previous
paragraph, the sets of positive and negative examples for a given class expression are first
encoded separately using the encoder. The outputs are then concatenated row-wise and fed
to the decoder:

Spos = Enc(Tpos), Sneg = ENc(Tneq); (5.4)

s = Dec(Concat(Spos; Sneg))- (5.5)

Although the encoder captures interactions intra-positive and intra-negative examples sepa-
rately, the decoder further captures interactions across the two sets of examples from the
concatenated features through self-attention. This demonstrates the representational power
of the Set-Transformer model for our set-structured inputs for class expression synthesis.

The output s from 5.3 and 5.5 is reshaped into a |V| x L matrix, where L is the length of
the longest class expression that NCES instances can generate. These scores allow us to
compute the loss (see Equation 5.6) and update model weights through gradient descent
during training.
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Loss Function

We train our NCES instances using the multi-dimensional cross-entropy' loss function £
defined by

REIELE of oY (. G 66
1Y) =5 DD log 5 : :
i=1j=1

c=1 eXp(xi,CJ)

where N is the size of the minibatch, C is the number of classes, z € R¥*¢*L is the
minibatch of predicted class scores for each position in the target sequence of tokens (i.e.,
the output scores s from Equations 5.5 and 5.3), and y € [1,2,...,C]V*! is the minibatch of
actual class indices. Minimizing £ constrains the model to assign a high score to the entries
corresponding to the correct tokens (exp(w;,,; ;) ~ 1) while keeping the remaining scores
relatively low (ZS:LC Fuis exp(z; ¢ ;) ~ 0). In this work, C' = |V|. Note that V contains the
special token “PAD” that we use to pad all class expressions to the same length. Contrarily to
some works that omit this special token when computing the loss, we use it as an ordinary
token during training. In this way, we can generate class expressions more efficiently at test
time with a single forward pass in the model, then strip off the generated tokens after the
special token. To avoid exploding gradients and accelerate convergence during training, we

adopt the gradient clipping technique [244].

Metrics for Training

Apart from the loss function above, we introduce two accuracy measures to quantify how
well neural networks learn during training: soft accuracy and hard accuracy. The former
only accounts for the correct selection of the tokens in the target expression, while the latter
additionally measures the correct ordering of the selected tokens. Formally, let 7" and P
be the target and predicted class expressions, respectively. Recall the notation C' and C
introduced in Section 5.1.1 for any class expression C. The soft (Acc;) accuracy and hard
accuracy (Accp,) are defined as follows:

somin(t) (7], Pli))
maX(ll, lg)

TnpP
‘Am A‘; Acep (T, P) =
|T' U P|

Aces(T, P) = , (5.7

where [; and I, are the lengths of T and P, respectively.

'Here, multi-dimensional refers to the fact that at each position along the output sequence dimension,
we compute the cross-entropy as defined in Chapter 2
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Class Expression Synthesis and Model Ensembling

We synthesize class expressions by mapping the output scores s (see Equations 5.3 and 5.5)
to the vocabulary. More specifically, we select the highest-scoring tokens in the vocabulary
for each position along the sequence dimension:

id; = argmax s.jforj=1,...,L, (5.8)
ced{l1,...,C}
synthesized_token; = V[id;]. (5.9

Ensemble learning has proven to be one of the most robust approaches for tasks involving
complex noisy data [56, 183]. In this work, we combine class expression synthesizers’
predictions post training by averaging the predicted scores. Specifically, given the reshaped?
output scores s; € RE*L (i = 1,2,3) as defined in 5.3 and 5.5 for the three models LSTM,
GRU, and Set-Transformer, we consider four different ensemble models: three pairwise
ensemble models, and one global ensemble model (LSTM, GRU, and Set-Transformer are
combined). Formally, the ensemble scores are computed as:

5= Zéff with Z € 2823} and |Z] > 2. (5.10)
Then, the synthesized expression is constructed following Equations 5.8 and 5.9 using the
average Scores s.

5.2 Experiments

In this section, we conduct experiments to evaluate neural class expression synthesizers.
We first describe our dataset construction method before presenting hyperparameter con-
figurations and the hardware used in our experiments. Finally, we present and discuss our
experimental results.

5.2.1 Experimental Setup

Datasets

We evaluated our proposed approach on the Carcinogenesis [224], Mutagenesis [224],
Semantic Bible®, and the Vicodi [152] knowledge bases. Carcinogenesis and Mutagenesis
are knowledge bases about chemical compounds and how they relate to each other. The

“Direct outputs from neural networks are vectors of size C' * L which we reshape into matrices of
size C' x L.
*https://www.semanticbible.com/ntn/ntn-overview.html
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Semantic Bible knowledge base describes each named object or thing in the New Testament,
categorized according to its class, including God, groups of people, and locations. The Vicodi
knowledge base was developed as part of a funded project and describes European history.
The statistics of each of the knowledge bases are given in Table 5.1.

Table 5.1: Detailed information about the datasets used for evaluation. |N;|, |[N¢|, and
|Ng| are the numbers of individuals, atomic concepts, and abstract roles in the
knowledge base, respectively. |Train|, |LPs|, and |V| are the training set size,
test set size, and number of tokens in the vocabulary, respectively.

| Ny [Nc| |N%| |TBox| |ABox| [Train| |LPs| |V|

Carcinogenesis 22,372 142 4 144 74,223 10,982 111 157
Mutagenesis 14,145 86 5 82 47,722 5,333 54 102
Semantic Bible 724 48 29 56 3,106 3,896 40 88
Vicodi 33,238 194 10 204 116,181 18,243 175 215

Training and Test Data Construction

We generated class expressions of different forms from the input knowledge base using
the recent refinement operator by Kouagou et al. [107] that was developed to efficiently
generate numerous class expressions to serve as training data for concept length prediction
in ALC. The data that we generate is passed to a filtering process, which discards any class
expression C such that an equivalent but shorter class expression D was not discarded. Note
that each class expression comes with its set of instances, which are computed using the
fast closed-world reasoner based on set operations described in [82]. These instances are
considered positive examples for the corresponding class expression; negative examples are
the rest of the individuals in the knowledge base. Next, the resulting data is randomly split
into training and test sets; we used the discrete uniform distribution for this purpose. To en-
sure that our approach is scalable to large knowledge bases, we introduce a hyperparameter
n = n1 + ny that represents the total number of positive and negative examples we sample
for each class expression to be learned by NCES. Note that n is fixed for each knowledge
base, and it depends on the total number of individuals.

Hyperparameter Optimization

We employed random search on the hyperparameter space since it often yields good results
while being computationally more efficient than grid search [20]; the selected values—those
with the best results—are reported in Table 5.2. In the table, it can be seen that most
knowledge bases share the same optimal values of hyperparameters: the minibatch size N
(a.k.a. batch size), the number of training epochs Epochs, the optimizer Opt., the learning
rate Lr, the maximum output sequence length L, the number of embedding dimensions
d, the number of inducing points m, and the gradient clipping value gc. Although we may

increase n for very large knowledge bases, n = min(%, 1000) appears to work well with
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our evaluation datasets. This suggests that one can effortlessly find fitting hyperparameters
for new datasets.

Table 5.2: Hyperparameter settings per dataset. Recall that m is the number of inducing
points in the Set-Transformer model, and n is the number of examples.

FEpochs  Opt. Lr d N L n m  gc

Carcinogenesis 300 Adam 0.001 40 256 48 1,000 32 5
Mutagenesis 300 Adam 0.001 40 256 48 1,000 32 5
Semantic Bible 300 Adam 0.001 40 256 48 362 32 5
Vicodi 300 Adam 0.001 40 256 48 1,000 32 5

At inference time, we measure the quality of a predicted class expression in terms of accuracy
and F-measure with respect to the positive/negative examples. Note that we cannot expect
to exactly predict the target class expression in the test data since there can be multiple
equivalent class expressions.

Hardware and Training Time

We trained our chosen NCES instances on a server with 1TB of RAM and an NVIDIA RTX
A5000 GPU with 24 GB of RAM. Note that during training, approximately 8GB of the 1TB
RAM is currently used by NCES. As search-based approaches do not require a GPU for class
expression learning, we used a 16-core Intel Xeon E5-2695 with 2.30GHz and 16GB RAM
to run all approaches (including NCES post training) for class expression learning on the
test set. The number of parameters and training time of each NCES instance are reported
in Table 5.3. From the table, we can observe that NCES instances are lightweight and can
be trained within a few hours on medium-size knowledge bases. Note that training is only
required once per knowledge base.

Table 5.3: Model size and training time. The training time is in minutes.

Carcinogenesis Mutagenesis Semantic Bible Vicodi

|Params.| Time |Params.| Time |Params.| Time |Params.| Time

NCESrsrn 1,247,136 31.50 906,576 16.94 819,888  6.65 1,606,272 50.82
NCESgry 1,192,352 21.61 851,792 12.28 765,104  5.39 1,551,488 34.15
NCESgr 1,283,104 40.82 942,544 21.36 855,856  7.98 1,642,240 66.19

5.2.2 Results and Discussion

Syntactic Accuracy

Our neural class expression synthesizers are trained for 300 epochs on each knowledge base.
In Figures 5.2, 5.3 and 5.4, we show the training curves of NCES on all benchmark datasets.
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These curves suggest that NCES instances train fast with an exponential growth (decrease)
in accuracy (in loss) within the first 10 epochs. All models achieve over 95% syntactic
accuracy on large knowledge bases (Carcinogenesis, Mutagenesis, and Vicodi). On the
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Figure 5.2: Soft accuracy curves on the training set

smallest knowledge base, Semantic Bible, we observe that NCESg7 drops in performance as
it achieves only 88% accuracy during training. On the other side, NCESg gy and NCES s
tend to overfit the training data. This suggests that NCES instances are well suited for large
datasets. We validate this hypothesis through the quality of the synthesized solutions on
the test set (see Table 5.4), where NCES instances significantly outperform search-based
approaches, including CELOE, on large datasets.

Comparison to the State of the Art

We compare our approach against EvoLearner, CELOE, ECII, ELTL. The maximum execution
time for CELOE and EvoLearner is set to 300 seconds per learning problem while ECII and
ELTL are executed with their default settings, as they do not have the maximum execution
time parameter in their original implementation. From Table 5.4, we can observe that
our approach (with ensemble prediction) significantly outperforms all other approaches in
runtime on all datasets, and in F-measure on Carcinogenesis and Vicodi. Table 5.5 shows
that NCES performs slightly better with ConEx embeddings than TransE embeddings except
on the Carcinogenesis dataset. The standard deviation of NCES’s prediction time is 0 because
it performs batch predictions, i.e., it predicts solutions for all learning problems at the same
time. The prediction time is averaged across learning problems and is therefore the same
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Figure 5.3: Hard accuracy curves on the training set

for each learning problem. We used the Wilcoxon Rank Sum test with a significance level
of 5% and the null hypothesis that the compared quantities per dataset are from the same
distribution. The best search-based approaches (CELOE and EvoLearner) only outperform
NCES instances (including ensemble models) on the smallest datasets (Semantic Bible and
Mutagenesis). The reason for this is that deep learning models are data-hungry and often fail
to generalize well on small datasets. Our approach is hence well suited for large knowledge
bases where search-based approaches are prohibitively slow.

Discussion

The hypothesis behind this work was that high-quality class expressions can be synthesized
directly out of training data, i.e., without the need for an extensive search. Our results
clearly undergird our hypothesis. While NCES instances are outperformed by CELOE and
EvoLearner on small datasets, it achieves the best performance on Carcinogenesis with
over 5% absolute improvement in F-measure. This large difference is due to the fact that
most search-based approaches fail to find any suitable solution for some learning prob-
lems. For example, the first learning problem on the Vicodi knowledge base is (Disaster
LI Military-Organisation) M (—Engineer). The solutions computed by each of the ap-
proaches are as follows: CELOE: Flavour N (—Battle) M (—Person) [F;: 0.02], ELTL:
Flavour MM (d related. (3 related.Role)) [Fj: 0.00], ECII: Organisation LI =VicodiOI
[Fi: 0.13], EvoLearner: Military-Organisation M Military-Organisation [Fj: 0.73],
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Figure 5.4: Loss curves on the training set

and NCESST+GRU4: (Disaster LI Military-Organisation) M (—Engineer) [F3: 1.00].
Here, our ensemble model NCESgs7, ¢ ry synthesized the exact solution, which does not
appear in the training data of NCES, while the best search-based approach, EvoLearner,
could only compute an approximate solution with an F-measure of 0.73. On the other hand,
CELOE, ECII, and ELTL failed to find any suitable solutions within the set timeout.

The scalability of the synthesis step of our approaches makes them particularly suitable
for situations where many class expressions are to be computed for the same knowledge
base. For example, taking into account the average training and inference time of the
Set-Transformer architecture, one can conjecture that the minimum number of learning
problems from which the cost of deep learning becomes worthwhile is: 11 for NCES vs.
CELOE, 25 for NCES vs. EvoLearner, 24 for NCES vs. ELTL, and 96 for NCES vs. ECII.
These values are calculated by solving for n in n X Tha140_1earn > Ttrain + Tinference, Where
Ta1go_1earn> Ttrain, aNd Tingerence are the average learning time of a search-based approach,
the training time, and the inference time of NCES, respectively.

5.2.3 Real-world Problems

We applied ROCES to a set of real-world learning problems from different datasets. We
considered three datasets: Carcinogenesis (1 learning problem), Mutagenesis (1 learning

“Here, NCES uses ConEx embeddings
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Table 5.4: Evaluation results per approach and dataset. NCES uses ConEx embeddings.
The star (*) indicates statistically significant differences between the best search-
based and the best synthesis-based approaches. 1 indicates that higher is better,
and | indicates the opposite. Bold values correspond to the best performance.
Underlined values are the second best.

1
Carcinogenesis Mutagenesis Semantic Bible Vicodi
CELOE 0.384+0.44 0.83+0.33 0.93+0.18x 0.36+0.42
ELTL 0.13+0.26 0.29+0.34 0.43+0.38 0.17+0.33
ECII 0.16+0.28 0.27+0.32 0.34+0.38 0.44+0.36
EvoLearner 0.91+0.14 0.93+0.13 0.9240.10 0.93+0.10
NCESsTm 0.824+0.29 0.81+0.28 0.72+0.34 0.724+0.35
NCESGru 0.90+0.25 0.784+0.31 0.524+0.40 0.87+0.27
NCESgr 0.90+0.25 0.81+0.34 0.73+0.39 0.78+0.37
NCESs7+Gru 0.974£0.13  0.90+£0.26  0.8440.27 0.9320.20
NCESs74LsTM 0.974+0.13 0.89+0.26 0.81+0.28 0.91+0.22
NCESGRrU+LSTM 0.95+0.15 0.81+0.31 0.76+0.32 0.88+0.24
NCESsriGru+rsTm  0.97+0.13%x  0.91£0.23  0.874+0.24  0.96:0.12x
Accuracy 1
Carcinogenesis Mutagenesis Semantic Bible Vicodi
CELOE 0.67+0.25 0.94+0.12 0.98+0.05 0.85+0.18
ELTL 0.25+0.33 0.38+0.39 0.47+0.38 0.33+0.42
ECII 0.26+0.36 0.32+0.38 0.30+0.38 0.77+0.35
EvoLearner 0.9940.01 0.99+0.02 0.994+0.03x 0.99+0.05
NCESsTm 0.98+0.11 0.98+0.07 0.90+0.24 0.944+0.21
NCESgru 0.994+0.04 0.98+0.04 0.81+0.31 0.984+0.11
NCESgsr 0.974+0.14 0.91+0.25 0.84+0.33 0.90+0.28
NCESsr+cRU 0.9940.09  0.97+0.12  0.924+0.21 0.9740.13
NCESs7+LSTM 0.9940.06 0.97+0.12 0.90+0.22 0.96+0.16
NCESGRrU+LSTM 1.00+0.00 0.98+0.05 0.87+0.27 0.97+0.15

NCESsricru+LsTm  0.99£0.09 0.98+0.06 0.95+0.18 0.97+0.12

Runtime (sec.) |

Carcinogenesis Mutagenesis Semantic Bible Vicodi

CELOE 239.584+132.59 92.46+125.69 135.30+139.95 289.95+103.63
ELTL 23.81+1.47 15.194£12.50 4.124+0.11 299.144+202.21
ECII 22.93+£2.63  18.11+4.93 6.45+1.42 37.94+28.25
EvoLearner 54.73+25.86 48.00+31.38 17.16+9.20 213.78+81.03
NCESrsrum 0.16+0.00 0.19+0.00 0.08+0.00 0.13+0.00
NCESgru 0.1540.00 0.18+0.00 0.08+0.00 0.06+0.00
NCESgsr 0.08+0.00+ 0.11+£0.00%x  0.074+0.00%  0.04+0.00:x
NCESsr+GRrU 0.16+0.00 0.254+0.00 0.11+0.00 0.094+0.00
NCESs1+LsTM 0.234+0.00 0.23+0.00 0.114+0.00 0.11+0.00
NCESGRru+LSTM 0.2440.00 0.32+0.00 0.13+0.00 0.17+0.00

NCESsr+cru+LsTm  0.27£0.00 0.314+0.00 0.15+0.00 0.15+0.00

problem), Family (7 learning problems). On Carcinogenesis and Mutagenesis, the goal is
to describe chemical compounds that cause cancer and those that cause gene mutation,
respectively. On the Family dataset, we aim to learn the concepts Uncle, Aunt, Cousin,
Great-grandfather, Great-grandmother, Great-granddaughter, and Great-grandson. Note that
each of the concepts corresponding to solutions of the given learning problems does not
appear in the background knowledge nor in the training datasets.
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Table 5.5: Evaluation results using TransE embeddings. The star (x) indicates statistically
significant differences between the best search-based and the best synthesis-
based approaches. 1 indicates that the higher the better, and | indicates the
opposite. Bold values correspond to the best performance. Underlined values
are the second best.

Bt
Carcinogenesis Mutagenesis Semantic Bible Vicodi
CELOE 0.38+0.44 0.831+0.33 0.93+0.18« 0.36+0.42
ELTL 0.13+0.26 0.294+0.34 0.43+0.38 0.17+0.33
ECII 0.16+0.28 0.27+0.32 0.34+0.38 0.44+0.36
EvoLearner 0.91+0.14 0.93+0.13 0.9240.10 0.93+0.10
NCESsTam 0.84+0.27 0.76+0.34 0.60+0.35 0.79+£0.30
NCESGrv 0.87+0.27 0.78+0.36 0.66+0.33 0.80+0.33
NCESgr 0.87+0.30 0.79+0.34 0.68+0.37 0.78+0.36
NCESsT+GRU 0.97+0.10 0.91+0.21 0.754+0.33 0.89+0.25
NCESs71LsTM 0.93+0.22 0.90+0.20 0.76+0.34 0.89+0.25
NCESGRrU+LSTM 0.924+0.21 0.81+0.33 0.76+0.32 0.88+0.25
NCESsricru+rsry  0.98+0.12%  0.91+0.21 0.86+0.25 0.90:0.24
Accuracy 1
Carcinogenesis Mutagenesis Semantic Bible Vicodi
CELOE 0.67+0.25 0.94+0.12 0.98+0.05 0.85+0.18
ELTL 0.25+0.33 0.384+0.39 0.47+0.38 0.33+0.42
ECII 0.26+0.36 0.32+0.38 0.30+0.38 0.77£0.35
EvoLearner 1.00+0.01 0.99+0.02 0.99+0.03x 0.99+0.05
NCESrsTm 0.97+0.14 0.97+0.11 0.84+0.25 0.97+0.12
NCESgru 0.984+0.13 0.95+0.15 0.83+0.29 0.96+0.16
NCESsr 0.944+0.23 0.93£0.21 0.824+0.33 0.924+0.25
NCESsr+aru 0.9940.06  0.99+0.03  0.86+0.28 0.960.15
NCESsr+LsTM 0.98+0.11 0.99+0.03 0.89+0.24 0.95+0.18
NCESGRru+LSTM 0.994+0.09 0.96+0.14 0.89+0.25 0.97+0.13

NCESsr+gru+Lstm 0.99+0.09 0.99+0.05 0.93+0.18 0.95+0.19
Runtime (sec.) |

Carcinogenesis Mutagenesis Semantic Bible Vicodi

CELOE 239.58+132.59 92.46+125.69 135.30+139.95 289.95+103.63
ELTL 23.81+1.47 15.19+£12.50 4.12+0.11  299.144202.21
ECII 22.93+2.63  18.11+4.93 6.45+1.42 37.94+28.25
EvoLearner 54.73+£25.86 48.00+31.38 17.16+£9.20 213.78+81.03
NCESLsTam 0.09+0.00 0.14+0.00 0.064+0.00 0.12+0.00
NCEScru 0.05+0.00 0.15+0.00 0.06+0.00 0.13+0.00
NCESgr 0.04+0.00+x  0.09+0.00%x  0.05+0.00x* 0.05+0.00x*
NCESs7+GRU 0.08+0.00 0.18+0.00 0.08+0.00 0.11+0.00
NCESs7+15TM 0.09+0.00 0.16+0.00 0.08+0.00 0.11+0.00
NCESGRU+LsTM 0.1540.00  0.2240.00  0.1040.00 0.1540.00

NCESsr+gru+rsTm  0.1440.00 0.22+0.00 0.114+0.00 0.14+0.00

In Table 5.6, we report the results obtained on the above learning problems. We conducted
experiments in a 10-fold cross-validation setting. Each of the ten folds contains some part
of the positive and negative examples. For each run, NCES solves a learning problem (100
predictions per problem) using 9 folds and is evaluated on the 10-th fold. We report average
results across the 10 folds. From the results, we can observe that NCES maintains a high
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Table 5.6: 10-fold cross-validation results on real-world problems. “~” denotes unknown
learning problems.

Train-F; Test-F, Runtime (sec.)

Family

Aunt 0.76 0.81 0.63
Cousin 0.68 0.61 0.63
Great-granddaughter 1.00 1.00 0.51
Great-grandfather 0.91 0.93 0.51
Great-grandmother 0.92 0.95 0.63
Great-grandson 0.91 0.91 0.60
Uncle 0.82 0.85 0.54
Carcinogenesis

- 0.71 0.71 1.72
Mutagenesis

- 0.70 0.70 1.61

predictive accuracy while being scalable®. The carcinogenesis and mutagenesis problems are
known to be challenging (see, e.g., [27], where a search-based approach achieves only 72%
accuracy on Carcinogenesis) which also explains the relatively low performance achieved by
NCES on these problems.

5.3 Conclusion

In this chapter, we presented a novel family of approaches for class expression learning,
which we dub neural class expression synthesizers (NCES). NCES use neural networks to
directly synthesize class expressions from input examples without requiring an expensive
search over all possible class expressions. Given a set timeout per learning problem, we
showed that our approach outperforms all state-of-the-art search-based approaches on large
knowledge bases. Taking training time into account, our approach is suitable for application
scenarios where many concepts are to be learned for the same knowledge base. In the next
chapter, we will show how NCES approaches can be extended to more expressive description
logics, e.g., ALCHZQ™). We will also investigate ways to reduce the dependence of NCES
on pretrained knowledge base embeddings.

>For each run, we perform 100 predictions per problem and select the class expression with the
highest F score. Hence, the runtime per prediction is ~0.006 second on Family and 0.01 second
on Mutagenesis and Carcinogenesis.
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Neural Class Expression
Synthesis in ALCHZQP)

Preamble. This chapter is based on Kouagou et al. [109] and answers the third and fourth
research questions (see Section 1.2.3).

6.1 Methodology

In this section, we present NCES2, a new instance of our family of neural class expression
synthesizers (NCES) which supports the description logic ALCHZQ'P) and does not require
pretrained embeddings of input knowledge bases.

6.1.1 Preliminaries

A knowledge base is denoted X = (TBox, ABox), and N;, N¢, and Np represent its sets of
individuals, atomic concepts, and roles, respectively. Vi (or simply V when there is no
ambiguity) is a vocabulary of tokens consisting of all atomic concept and role names in
K, together with the following atoms which are necessary for our target description logic
ALCHTQDP): «T” (top concept), “L” (bottom concept), “False”, “True” (Boolean values),
“=” (for inverse properties), “:”, “xsd”, “double”, “integer”, “date” (for time data values), “<”,
“>” “” (white space), “.” (dot), “U”, “T1”, “3”, “v”, “=”, “[”, “1”, “{”, “}”, “(”, and “)”. We also
add numeric data values to the vocabulary. These values are obtained by creating evenly
spaced bins ranging from the lowest to the highest value observed in the knowledge base,
following the information gain approach in [82]. As in the previous chapter, we include the
special token “PAD” to pad all class expressions in a batch of training examples to the same,
predefined maximum length. The token also serves as the end token at inference time when
parsing the output of NCES2.

We choose a fixed ordering for the elements of the vocabulary V and use them to synthesize
class expressions (more details in Section 6.1.3). In fact, class expressions in ALCHZ QP
are written using tokens in V as can be seen in the learning problems below, which are ex-
tracted from test datasets: LP; = Man I (V knows. (=Son0fGod)) M (< 2 visitedPlace.T)
(Semantic Bible), LP, = Fluorine-92 Ll Sulfur-74 U (3 drosophila_rt.{False}) (Car-
cinogenesis), LP; = (Atom M (Tin U (—~Carbon-25))) LI (3 inBond. (—Carbon-10)) (Muta-
genesis), and L P, = Measurable-Trend LI (3 related. (Idea LI Uprising)) (Vicodi). We
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discuss the solutions computed by different class expression learning approaches for each of
these learning problems in Section 6.2.

6.1.2 Learning Problem

Definition 6.1 (Solution by NCES2). Given a knowledge base K and sets of positive/negative

examples E* = {ef,ed,...;ef } and E= = {e],e5,...,¢

e }, the learning problem is to

na
compute a class expression C in ALCHIQP) (using tokens in the vocabulary V) that maximizes
the F-measure and Accuracy defined by

Precision x Recall

Fy =2 6.1
! % Precision + Recall’ 6.1)
EXNET
Precision = - | c +| , (6.2)
|ES NEF| +|EL NE~|
EXNET
Recall = £¢ | (6.3)

€& NEH[+|EH\ LI
|ELENET|+ |65 NE|

, 6.4
B+ ] ©4

Accuracy =

where £/, is the set of instances of C, and £, = Ny \ &f,.

The metrics Accuracy and F are used to compare different approaches on class expression
learning problems—see Table 5.4. One difference between Definition 4.1 and Definition 6.1
is for example that the latter targets a specific description logic (in this case ALCHZQOP))
while the former is general, i.e., applicable to any description logic. Moreover, Definition 6.1
allows for approximate solutions to be returned when the exact solution is not found, while
Definition 4.1 does not.

6.1.3 Proposed Approach

We now present the main components of NCES2. The first component is the embedding
model which is integrated into the training and inference pipelines. This component,
represented by the three yellow bars in Figure 6.1, takes input examples and converts them
into vectors in R%. The second component, also involved in both training and inference
phases, is a deep neural network able to take a set of vectors and return a sequence of
tokens (see for example the output Human 1 > 2 hasWon.NobelPrize in Figure 6.1). The two
components interact during training and inference (class expression learning) as elucidated
below.
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Figure 6.1: Architecture of NCES2

Encoding Positive and Negative Examples

We use Set-Transformer [118] which is an encoder-decoder architecture with attention
mechanism (see Chapter 2, Section 2.1.3 for more details). The encoder Enc consists of
two ISAB layers. The decoder Dec is composed of one PMA layer (with £ = 1), and a
linear layer which helps us obtain the desired output shape. During training, the embedding
model component provides embeddings for positive examples z,,,s and negative examples
Zneg- These two embedding matrices are fed to the encoder independently. The outputs are
then concatenated row-wise and fed to the decoder which produces the final scores s for all
tokens in the vocabulary V:

Opos = Enc(xpos), Oneg = Enc(Tneq), (6.5)
s = Dec(Concat(Opos, Oneg))- (6.6)

The outputs from the decoder are used in the loss function (see Equation 6.8) to train the
neural synthesizer. They also serve as the basis to select the correct tokens in the output
sequence at inference time (see Equation 6.10).

Loss Function

Our approach is trained by minimizing two joint loss functions: (1) The loss £; from the
embedding model, and (2) the loss £- from the class expression synthesizer. Formally, let
G C &€ x R x & be the knowledge graph representation of the input knowledge base (see
Section 5.1.3 for how the conversion is carried out), and let h € £,r € R be a head entity
and a relation. We define £; to be the binary cross-entropy loss (assuming a KvsAll training
technique [53]):

1 2

Lily™, 9" = T >y log(@) + (1 yi) log(1 — §1"). (6.7)
=1

6.1 Methodology
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Here, y"" € {0,1}/¢l is the binary representation of {(h,r,t)|t € £} in G, i.e., y""[id(t)] = 1
if (h,r,t) € G, and y""[id(t)] = 0 otherwise. Accordingly, "" € [0, 1]!¢! is the vector of scores
predicted by the embedding model for all candidate tail entities. On the other hand, £, is
defined by

P b exp(st,.:)
2(s,t) = I Zlog , (6.8)
=1

v
S expse,)

where L is the maximum length of class expressions our approach can generate, |V| the
total number of tokens in the vocabulary, s € RIVI*” the matrix of predicted scores for each
position in the target sequence of tokens, and ¢ € {1,2,..., |V|}¥ the vector of target token
indices in the input class expression.

Our total loss £ is defined as the average of £; and £,, computed on the inputs (y"", ")
and (s, t):
El (yh/'ﬁ gh'r') + £2<s> t)

L@, 9"5t) = 5 : 6.9)

During training, we alternatively sample a minibatch of N; training datapoints for the
embedding model, and a minibatch of N, training datapoints for the neural synthesizer
to compute £; and Lo, respectively. We then compute the gradient of £ w.r.t. both the
parameters of the embedding model and those of the synthesizer. To prevent gradient
explosion and to reduce overfitting, we use gradient clipping [244], and dropout [196].
Both parameter sets are updated using the Adam [104] optimization algorithm. Note that
the embeddings of positive and negative examples used by the synthesizer—see Section
6.1.3—come from the embedding model and are hence dynamically updated during training.
In this way, we are able to learn embeddings that are not only finetuned for class expression
learning, but also faithful to the input background knowledge.

Class Expression Synthesis

We synthesize class expressions by mapping the output scores s (see Equation 6.6) to the
vocabulary. Specifically, we select the highest-scoring token in the vocabulary for each
position ¢ along the sequence dimension:

id; = argmax s, (6.10)
cef{l,...,|V[}
synthesized_token, = V[id;]. (6.11)

The predicted tokens are concatenated to construct a class expression. Note that we ignore
all tokens appearing after the special token “PAD”.
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6.1.4 Model Ensembling

Several works have highlighted that combining different neural models trained even on
the same dataset usually performs better than each individual model [56, 183]. This
technique is known as model ensembling. In this work, we trained three instances of
our approach, NCES2, which all use the Set-Transformer architecture but with different
numbers of inducing points: m = 32, m = 64, and m = 128. We compute ensemble
predictions by averaging the predicted scores for each token post training. Overall, we
consider four ensemble models: NCES2,,,_r32 64}, NCES2,,,—(32 128}, NCES2,,,_ 164,128}, and
NCES2,,,_(32,64,128}- A class expression is then synthesized as described in Section 6.1.3
using the average scores.

6.2 Experiments

In this section, we conduct experiments to evaluate our proposed approach. We start with
experimental settings and then present and discuss results.

6.2.1 Experimental Setup

Datasets

We used four benchmark datasets in our experiments: Vicodi [152], Carcinogenesis [224],
Mutagenesis [224], and Semantic Bible!. The Carcinogenesis and Mutagenesis knowledge
bases describe chemical compounds and how they relate to each other. The Semantic Bible
knowledge base describes the New Testament, and the Vicodi knowledge base describes the
European history. We summarize the statistics of each dataset in Table 6.1.

Training Data Generation

Training NCES2 requires numerous class expressions with their sets of positive and negative
examples?. To this end, we extend the refinement operator we developed in Chapter 4 to
the description logic ACLCHZQP) so that we can generate all forms of class expressions
supported by NCES2 (see Table 2.1 for syntax and semantics of ACCHZQP)). Moreover,
we improve upon the training data generation method used in [113]. Since most knowledge
bases contain thousands to millions of individuals, previous NCES approaches subsample

the initial sets of positive/negative examples for each learning problem in the training set.

This technique is inefficient because only a few examples are seen during training which

"https://www.semanticbible.com/ntn/ntn-overview.html
Zpositive examples are instances of a class expression while negative examples are the rest of the
individuals in N;.

6.2 Experiments
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Table 6.1: Statistics of benchmark datasets. In the table, we use the following notations
and abbreviations: Set of individuals (/V;), set of atomic concepts (N¢), set of
abstract roles (Obj. Pr.), set of concrete roles (D. Pr.), vocabulary (V), and
learning problems in the test set (LPs).

N7l |N¢| |Obj. Pr.| |D. Pr.| |TBoz| |ABoz| |V| |Train| |LPs|

Carcinogenesis 22,372 142 4 15 144 74,223 198 19,635 100
Mutagenesis 14,145 86 5 6 82 47,722 133 9,705 100
Semantic Bible 724 48 29 9 56 3,106 125 11,069 100
Vicodi 33,238 194 10 2 204 116,181 242 46,094 100

results in poor performance on learning problems where, e.g., a different random seed is
used to construct the sets of examples. To alleviate this issue, we construct multiple copies
(2 copies in our experiments) of a given learning problem and assign different subsets of
examples to each copy. The clear advantage of this new sampling technique is that it allows
each learning problem to be seen from different perspectives and hence better understood.
Note that this sampling technique is only applied to the training set. The statistics of the
generated data are given in Table 6.1.

Measuring Performance during Training

In Chapter 5 (Section 5.1.3), we introduced two metrics to quantify the performance of
neural synthesizers during training®>. We use the same metrics in this chapter. The first
metric is called “Soft Accuracy” and is equivalent to the Jaccard index between the set of
predicted tokens and the set of true tokens in the input expression. The second metric is
called “Hard Accuracy”, and compares the tokens in the prediction and target expressions
position-wise, i.e., taking into account their order of appearance.

Hyperparameter Search

Following [113], we employ a random search [20] to find the best hyperparameter values for
NCES2. Specifically, we find the best values on one dataset (we used Carcinogenesis for this
purpose) and use them on the rest of the datasets. Note that the total number of examples n
is an exception as it depends on the size of Ny, i.e., the total number of individuals in the
given knowledge base. Nonetheless, we used the same formula to compute the optimal
“\Q' ,1000 ). The selected values for hyperparameters are presented in
Table 6.2. From the table, we can observe that optimal values are mostly the same across all

datasets, suggesting that our approach NCES2 does not require an expensive search over the

value for n : min (

hyperparameter space.

3These metrics are used only during training. When comparing NCES2 to state-of-the-art approaches
on class expression learning on the test sets, we use metrics based on the number of covered/ruled-
out positive/negative examples for all approaches.
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Table 6.2: Hyperparameter settings per dataset. L is the maximum length of expressions
synthesized by NCES2, Lr the learning rate, N; the minibatch size for the
embedding model, N, the minibatch size for the synthesizer, n the number
of (positive and negative) examples, d the embedding dimension, and gc the
gradient clipping value.

Dataset Epochs Optimizer  Lr d Ny Ny L n gc
Carcinogenesis 200 Adam 0.001 50 1,024 512 48 1,000 5
Mutagenesis 200 Adam 0.001 50 1,024 512 48 1,000 5
Semantic Bible 200 Adam 0.001 50 1,024 512 48 362 5
Vicodi 200 Adam 0.001 50 1,024 512 48 1,000 5

Hardware, Model Size and Training Time

We trained NCES2 using 24GB RAM, 16 AMD EPYC 7713 CPUs @3.10GHz, and a single
NVIDIA RTX A5000 GPU with 24GB memory. Because search-based approaches do not
support GPU computation, we conduct experiments on class expression learning on the test
sets (see Table 6.4) using a server with 16 Intel Xeon E5-2695 CPUs @2.30GHz and 128GB
RAM.

We report the runtime and model size in Table 6.3.

Table 6.3: Model size and training time. The runtime is in hours (h).

Carcinogenesis Mutagenesis Semantic Bible Vicodi

|Params| Time (h) |Params| Time (h) |Params| Time (h) |Params| Time (h)

NCES2,,-3» 2,747,376 1.61 1,974,682 0.84 1,233,552 0.39 3,610,516 3.79
NCES2,,-¢4 2,755,568 1.86 1,982,874 0.94 1,241,744 0.45 3,618,708 4.38
NCES2,,-128 2,771,952 2.40 1,999,258 1.20 1,258,128 0.55 3,635,092 5.61

6.2.2 Results and Discussion

Training Curves

NCES2 is trained for 200 epochs on each dataset. Training curves are shown in Figures 6.3,
6.2, and 6.4. From these figures, we can observe that NCES2 is able to accurately map
instance data (positive/negative examples) to the corresponding class expressions on the
training set. This is witnessed by a performance of over 95% in the two metrics Soft Accuracy
and Hard Accuracy (recall the definition in Section 6.2.1), and a decreasing loss which
approaches zero on all datasets. In addition, the convergence rates are higher on the largest
datasets (Carcinogenesis and Vicodi), which suggests that NCES2 learns faster on large
datasets.

6.2 Experiments
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Figure 6.2: Training soft accuracy (in %) curves. m is the number of inducing points.
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Figure 6.3: Training accuracy (in %) curves using the ConEx embedding model. m is the
number of inducing points.
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Figure 6.4: Loss curves. m is the number of inducing points.

Comparison to the State of the Art

Search-based Approaches. We ran extensive experiments comparing NCES2 to the
search-based approaches EvoLearner, CELOE, ELTL, and ECII. The results are presented in
Table 6.4. As done in [82, 113], we employ a timeout of 5 minutes per approach on each
learning problem. ECII and ELTL do not support a timeout configuration and were therefore
executed with their default settings. On the one side, the results in Table 6.4 suggest that
NCES?2 significantly outperforms search-based approaches in runtime on all datasets as it
synthesizes a solution in less than a second on average. The standard deviation of NCES2’s
prediction runtime is zero because it computes solutions for all learning problems at the same
time as a single forward pass of a batch of inputs. This leads to the same prediction time for
all learning problems and therefore a zero standard deviation. We employed the Wilcoxon
Rank Sum Test to check for performance difference significance. The significance level is 5%
and the null hypothesis that the compared quantities share the same distribution. We also
achieve better performance in terms of F-measure on large datasets (Carcinogenesis and
Vicodi) while remaining the second best on the Mutagenesis dataset with NCES2,,— (32 125}
behind EvoLearner. Meanwhile, we observe a poor performance on the Semantic Bible

dataset with an average F-measure of 0.79 (NCES2,,,_(35 ¢4}) compared to 0.89 for CELOE.

We attribute this to the data hunger of deep learning models since Semantic Bible is the
smallest dataset with only 724 individuals and 48 atomic classes (cf. Table 6.1).

6.2 Experiments
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Table 6.4: Evaluation results per dataset. The star () indicates statistically significant dif-
ferences between the best search-based and the best synthesis-based approaches.
Underlined values are the second best. 1 indicates that the higher the better, and
J indicates the opposite. Here, NCES2 uses the embedding model ConEx.

Fr 7

Carcinogenesis ~ Mutagenesis  Semantic Bible Vicodi
CELOE 0.29+0.39 0.744+0.38 0.89+0.20+ 0.23+0.35
EvoLearner 0.89+0.16 0.95+0.08 0.88+0.13 0.77+0.26
ELTL 0.14+0.28 0.364+0.35 0.35+0.32 0.094+0.23
ECII 0.19+0.31 0.34+0.32 0.33+0.32 0.29+0.31
NCES2,,-32 0.844+0.33 0.77+0.39 0.71+0.34 0.82+0.32
NCES2,,-¢4 0.84+0.33 0.78+0.37 0.72+0.34 0.83+0.31
NCES2,,-128 0.86+0.33 0.73£0.38 0.70+0.36 0.834+0.31
NCES2,,— 32,64} 0.92:+0.25 0.83+0.34 0.79+0.32 0.91+0.24
NCES2,,— (32,128) 0.91+0.27 0.86::0.32 0.78+0.35 0.88+0.26
NCES2,,— (64,128) 0.9340.24+ 0.84:£0.32 0.79+0.33 0.86+0.29
NCES2,,_(s264,125)  0.91%0.25 0.85+0.32 0.77+0.35 0.91-+£0.24%

Accuracy T

Carcinogenesis ~ Mutagenesis ~ Semantic Bible Vicodi
CELOE 0.63+0.23 0.87£0.18 0.96+ 0.09 0.79+0.16
EvoLearner 1.00+ 0.01x  1.00+ 0.02x 0.97+ 0.05 0.98+ 0.07x
ELTL 0.19£0.32 0.41+0.35 0.39+0.30 0.42+0.44
ECII 0.27+0.38 0.33+£0.33 0.2940.33 0.71£0.39
NCES2,,-32 0.94+0.20 0.89+0.25 0.88+0.20 0.9440.21
NCES2,,_¢4 0.95+0.17 0.89-0.26 0.86-0.24 0.95+0.18
NCES2,,-128 0.93+0.22 0.89+0.24 0.89+0.21 0.96+0.16
NCES2,,— (32,64} 0.96+0.18 0.91+0.25 0.88+0.25 0.96+0.17
NCES2,,—(32,128) 0.95+0.17 0.92:+0.23 0.91:0.20 0.96+0.17
NCES2,,—(64,128) 0.96:0.17 0.91+0.24 0.90+0.22 0.960.19
NCES2,,_(s264125)  0.95%0.18 0.91+0.24 0.89+0.24 0.960.17

Runtime (sec.) |

Carcinogenesis ~ Mutagenesis  Semantic Bible Vicodi
CELOE 268.90+116.04 165.27+145.11 172.04+£140.27 334.99+43.87
EvoLearner 62.21+26.11 70.77£47.53 18.44+5.53 236.92+80.90
ELTL 26.15+2.11 15.83+16.56 4.73+0.98 335.90+205.39
ECII 25.6246.11 20.40+4.00 6.73+1.67 37.12+£25.12
NCES2,,-32 0.02+0.00x 0.02+0.00% 0.01+0.00+ 0.03+0.00x
NCES2,,-64 0.03+0.00 0.03+0.00 0.01+0.00 0.03£0.00
NCES2,,-128 0.03+0.00 0.03+0.00 0.024+0.00 0.04+0.00
NCES2,,— (32,64} 0.05+0.00 0.05-20.00 0.03+0.00 0.06-+0.00
NCES2,,—(32,128) 0.06+0.00 0.060.00 0.03+0.00 0.06+0.00
NCES2,,—(64,128) 0.06:0.00 0.06:0.00 0.03+0.00 0.07+0.00
NCES2,,_(32,64,128y  0.09+0.00 0.09+0.00 0.050.00 0.10+0.00

NCES. To quantify the main differences between NCES2 and previous NCES approaches,
we compare them on the test sets (the 100 unseen learning problems on each knowledge
base). Some of these learning problems have solutions in .ALC while others can only
be solved in ALCHZQO™®). NCES2¥ and NCES24C are ablations of NCES2. The first
ablation corresponds to NCES2 without the improved data generator. The second ablation
corresponds to NCES2 trained on the same data as NCES, i.e., data in ALC on which we
apply the improved data generator. Both approaches use the ConEx embedding model, and
the Set-Transformer architecture with 32 inducing points as the synthesizer. The results
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Table 6.5: Comparison of NCES2 and NCES on test datasets

Fy
NCES2 NCES2*  NCES24£C NCES
Carcinogenesis 0.84 + 0.33x 0.79 £ 0.37 0.71 +0.38 0.68 £ 0.41
Mutagenesis  0.77 + 0.39x 0.53 + 0.44 0.53 + 0.44 0.68 + 0.42

Semantic Bible 0.71 4+ 0.34x 0.66 + 0.37 0.64 + 0.37 0.64 + 0.36
Vicodi 0.82 £+ 0.32+« 0.76 £ 0.35 0.53 £ 0.41 0.50 £ 0.44

given by the two approaches are reported in Table 6.5. From the table, we can observe
that NCES2 significantly outperforms NCES on all datasets with an absolute difference of
up to 0.32 F-measure on the Vicodi dataset. These large differences in performance show
the superiority of NCES2 over NCES; in particular, they reveal the impact of the improved
training data generator and the expressiveness of ALCHZ QP as an ablation of any of these
leads to a decrease in performance, see the results achieved by NCES2* and NCES2A~¢
in Table 6.5. Nevertheless, the two approaches have comparable prediction time. NCES2
should therefore be preferred over NCES on most class expression learning tasks.

Table 6.6 presents the predictive performance of the three best approaches NCES2, Ev-
oLearner, and CELOE on the learning problems introduced in Section 6.1.1. NCES2 out-
performs its competitors in F-measure on LP, and LP, as it computes exact solutions
for these learning problems. CELOE fails to find suitable solutions and achieves 0.01 F-
measure on both LP, and LP,. EvoLearner computes approximate solutions with 0.83 and
0.93 F-measure for LP, and LP,, respectively. All three approaches achieve comparable
performance on LP; and LP;.

The effectiveness of NCES2 is demonstrated by its ability to compute (i.e. synthesize)
expressions it has never seen during training, e.g., LP, and LP;. We hence believe that
NCES2 should serve as a robust alternative to search-based approaches such as CELOE on
especially large knowledge bases where the latter are prohibitively slow.

6.2.3 Real-world Problems

We applied NCES2 to real-world learning problems from 3 different datasets: Carcinogenesis
(1 learning problem), Mutagenesis (1 learning problem), Family (7 learning problems).
Learning problems on Carcinogenesis and Mutagenesis concern the description of chemical
compounds that cause cancer and gene mutation, respectively. On the Family dataset,
we aim to learn the concepts Uncle, Aunt, Cousin, Great-grandfather, Great-grandmother,
Great-granddaughter, and Great-grandson from examples. Solutions to the given learning
problems do not appear in the background knowledge nor in the training datasets.

In Table 6.7, we report the results obtained on the above learning problems. We conducted
experiments in a 10-fold cross-validation setting. Each of the ten folds contains some part
of the positive and negative examples. For each run, NCES2 solves a learning problem

6.2 Experiments
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Table 6.6: Solution per approach for learning problems LP;, LP,, LPs, and LP, presented
in Section 6.1.1. We consider the three best approaches NCES2, CELOE, and

EvoLearner.
Prediction P
CELOE
LP; Man 0.99
LP, —Bond 0.01
LPs Bond U (Atom M (—Carbon-25)) 0.99
LPy Flavour U (—War) 0.01
EvoLearner
LP; Man 0.99
LP, Sulfur-74 Ul (4 drosophila_slrl.{True}) 83.33
LPs Atom LI (4 inBond.Atom) 0.99
LPy Intellectual-Construct 0.93
NCES2
LP1 Man 0.99
LP, Fluorine-92 Ul Sulfur-74 U (3 drosophila_rt.{False}) 1.00
LP; (Atom M (Oxygen-45 U (—0xygen))) U (3 inBond. (—Carbon-10))  0.97
LPy Measurable-Trend Ll (d related. (Idea U Uprising)) 1.00
Table 6.7: 10-fold cross-validation results on real-world problems. “~” denotes unknown

learning problems.

Train-Fy Test-Fy Runtime (sec.)

Family

Aunt 0.80 0.81 1.14
Cousin 0.70 0.68 1.18
Great-granddaughter 1.00 1.00 0.96
Great-grandfather 0.94 0.95 0.94
Great-grandmother 0.94 0.93 1.32
Great-grandson 0.92 0.93 1.17
Uncle 0.89 0.89 0.95
Carcinogenesis

- 0.71 0.70 1.91
Mutagenesis

- 0.70 0.70 1.84

(100 predictions per problem) using 9 folds. The 10-th fold is used for evaluation. We
report average results across the 10 folds. From the results, we can observe that NCES2
maintains a high predictive accuracy while being scalable* (~1 second per problem on
average). Learning problems on Carcinogenesis and Mutagenesis appear to be harder than
those on Family. This explains the relatively low performance achieved by NCES2 on these
problems.

*Note that for each run, we perform 100 predictions per problem and select the class expression with
the highest F} score. Hence, the runtime per prediction is ~0.01 second on average.
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6.3 Conclusion

In this chapter, we presented NCES2, a new instance of synthesis-based approaches for class
expression learning that operates within the description logic ALCHZQ™P). NCES2 also
features a novel data generation technique which constructs multiple sets of examples per
learning problem in the training set, enhancing generalization to unseen learning problems
at inference time. Moreover, it integrates an embedding model which is trained end-to-end
with the neural synthesizer to alleviate dependence on pretrained embeddings for input
examples. Experimental results suggest that both the new data generation technique and the
increased expressiveness of the underlying description logic (ALCHZQ™P)) contribute the
most to NCES2’s superiority over earlier NCES instances. In the next chapter, we present our
latest research contribution which introduces a reformulation of the classical class expression
learning problem to make learning systems more robust to changes in input examples.

6.3 Conclusion

103



104 Chapter 6 Neural Class Expression Synthesis in ALCHZ O™



Robust Class Expression
Synthesis via lterative
Sampling

Preamble. This chapter is based on Kouagou et al. [111] and addresses the fifth research
question (see Section 1.2.4).

7.1 Methodology

We first give a modification of Definition 4.1 that encourages learning systems to compute
solutions without using all the provided examples but rather the most informative ones.
Second, we establish the connections between classical solutions and those from our new
formulation. Finally, we describe our learning algorithm in detail and discuss potential
limitations.

7.1.1 Generalized Learning Problem

Our proposed definition below is motivated by the fact that in real-world applications of CEL,
one deals with small sets of examples (see an example in the introduction). In this context, a
good learning system should be able to compute a solution that is as specific as possible but
general enough to cover other relevant examples that are not given. In the next paragraphs,
we denote the set of all solutions to the classical learning problem CLP(K, T, EY, E~) by
chp(lc, T, E+, Ef).

Definition 7.1 (Generalized Learning Problem (GLP)). Given a knowledge base K, a tar-
get concept T, and sets of positive/negative examples E* = {e] e, ..., ef }and E- =

{eT,es,...,e;,,}, the learning problem is to find non-empty subsets ET C E™, £~ subseteq 2~
with the following properties

1. Seep(K,T,E,67) #0

2. Serp(C,T,E,67) C Seep(K, T, E¥,E7)

3. There do not exist non-empty subsets £'" subseteqEY, &'~ C E~ such that |E'T |+~ | <
|5+‘ +1|&7 | and O # Serp(K, T, 5/"'_,5/_) C Serep(K,T, E+,E_),
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where |.| denotes the cardinality of a set. Properties 1. and 2. in the above definition require
that the set of all solutions (class expressions) to the learning problem CLP (K, T,ET,E7) is
non-empty and each of its elements is a solution to CLP(K, T, ET, E~). Property 3. further
ensures that such subsets £, £1 are minimal in size. We say that a solution (€1,£7) to
GLP isideal if €+ # Et or £~ # E~. In such a case, £t and £~ are called core example
sets.

Theorem 7.2. GLP has a solution if and only if CLP has one.

To prove Theorem 7.2, we define T'(E™,E~, £+, ™) to be the following logical expression
which we call the T" condition:

[(EFT+IET < |EF[+ €7 1A
[SC,C'P(IC7T7 5l+a£/7) 7é @]/\
I:SC,C,'P(ICaTa gH_vg/_) - SCL:P(IC7T7 E+aE_)

for any non-empty sets £, £, &', and £'~. Here, A is the “logical and” operator.

Proof. First, assume that GLP has a solution. Then (by definition), there exist non-empty
subsets £ C ET, &~ C E~ such that Seop(K,T,E1,E7) # 0 and Seep (K, T,ET,E7) C
Sccp(K,T,ET,E~). Let C be an arbitrary element in Sc.p(K,T,ET,E7). Then, C €
Scep(K, T, ET, E7) and therefore C is a solution to CLP.

It remains to prove that if CLP has a solution, then GLP also has one. Assume that Cj
is a solution to CLP, and let §§ = E* and & = E~. Then, Cy € Sccp(K,T,5, &)
and Scop(K,T,&F,Ey) € Secp(K, T, ET, E™) (i.e., properties 1. and 2. are satisfied by
(EF,E5 ). If there do not exist subsets &, & such that ) # & C E*, 0 # & C E-,
and T'(&, &, &, &) holds (property 3.), then (£;,&;) is a solution to GLP. If such
&, &l exist, define S, = (£F,€,) and %, = || + |€;| for any integer n > 1 such that
D(EF & 1, E7) holds. Let S = {S,},>1 and £ = {,},>1. Then, S and ¥ are non-
empty sets since (;7,&;) € S and || + || € ¥. The mapping f: S — £ : S, — %, is
clearly a bijection (see proof of Lemma). Moreover, ¥,, is a strictly decreasing sequence of
integer values due to the fact that for any integers n; > ny > 1 such that S,,, and S,,, exist,
we have |E] |+ &, | < |EL |+ 1€y, | Gee., 5, < X,,) through the I condition. Given that
subsets £ and &, are required not to be empty, we also have 3, > 2 for all n > 1 (at least
one positive example and one negative example). The set ¥ is therefore finite and admits a
minimum ¥,,-. Hence, f~1(3,,-) € S is a solution to GLP as it satisfies all the properties in
Definition 7.1; this completes the proof. O

Lemma 7.3. The mapping f : S — X : S, — X, defined in the proof of Theorem 7.2 is a
bijection.
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Proof. We first prove that f is a surjective function. Let ¢ € X.. Then, there exists n > 1 such
that ¥,, = e (by definition of ). Consequently, S,, € S (note the same subscript n as X.,,)
and we have f(S,,) = X,,. Hence, f is surjective.

We now prove that f is one to one. Let s1, so € S such that s; # s5. By definition of S, there
exist ny > 1 and ne > 1 such that s; = S,,, and sy = S,,,. Without loss of generality we can
assume that n; > no. Then, |E] |+ |E,, | < || +|&,,| following the I' condition. In other
words, ¥, < 3,, and hence %,,, # ¥,,,. f is therefore one to one. O

Theorem 7.2 provides sufficient and necessary conditions for our formulated learning
problem (GLP) to have a solution. In particular, we have shown (see proof of the theorem)
how ideal solutions to GLP, i.e., f~1(3,~) with n > 0, can be sought starting from an
arbitrary solution to CLP. Given the sequential nature and complexity of this search
process—see for example the use of existential quantifiers which often require search
over the complete space—more efficient search strategies are necessary. In the following
subsection, we propose an iterative stochastic search method coupled with gradient-based
optimization to construct an approach that approximates solutions to GLP.

7.1.2 Learning Algorithm

Our approach uses the ConEx embedding model [45] to obtain embeddings for input
examples, and the Set-Transformer architecture [118] to synthesize class expressions from
embeddings. The choice of the ConEx embedding model is motivated by the fact that 1.) it
can model both symmetric and anti-symmetric relations which are likely to be encountered
on heterogeneous knowledge graphs, and 2.) it employs convolution operations for efficient
embedding computation. The embedding model and the Set-Transformer instance are fused
into a learner fg and trained jointly. Figure 7.1 depicts the training procedure of the learner
fo. At each iteration, our approach ROCES subsamples positive and negative examples for a
given learning problem as inputs to the learner f, which then aims to predict the target class
expression. For example, at the first iteration, “Peng_0" is selected as positive example, while
“Eagle_0” and “Bob” are selected as negative examples. At the second iteration, different
subsets' of examples are selected. The selection of specific positive or negative examples is
based on a probability distribution which is skewed towards small subsets of examples; refer
to Algorithm 14 for further details.

Description of Algorithm 14. In lines 1 and 2, we construct possible sizes S* and S~
for the subsets £ and £~ (see Definition 7.1), respectively. Next, we define discrete
probability functions? p* and p~ over St and S~ (lines 3 and 4). In lines 5-8, we sample

!Positive and negative example sets may not be of equal size in a given iteration.

2The density functions p* and p~ are defined in such a way that higher probabilities are given to
smaller values. In this way, we encourage the learner feg to learn target expressions with small
sets of examples. Of course, the search for the most suitable probability functions remains an
interesting topic which we leave for future work.

7.1 Methodology
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Iteration 1

Iteration 2

Training

Figure 7.1: Overview of our proposed approach ROCES

candidate example set sizes k™ and k~ following p™ and p~, and construct candidate subsets
of examples £ and £~ by uniformly sampling kT positive and k~ negative examples,
respectively. Finally, the parameterized learner fo synthesizes an expression C' which we
compare to the target C, compute the loss and back-propagate to update the parameters ©
(lines 9-11). Note that Algorithm 14 describes a single learning step with one training data
point for the sake of simplicity. In practice (e.g. in our experiments), a batch of training data
points is given and parameter updates are performed based on the input batch. Once the
learner fg is trained using Algorithm 14, it can be employed to solve learning problems with
arbitrary example set sizes; we provide more details in Section 7.2. In the rest of the paper,
we refer to the parameterized learner fg trained using Algorithm 14 as our approach ROCES.
While ROCES performs well on learning problems with arbitrary numbers of examples (as
we will see in Section 7.2), some limitations regarding theoretical guaranties are worth
noting.

Limitations of Algorithm 14. As mentioned earlier, our learning algorithm computes
approximate solutions to GLP. The search for the exact solution can require up to 2171 x
2/E"1 checks (for |[ET| = |E~| = 100, this is approximately 10°° checks). Hence, the optimal
subsets of examples (£7,£~) computed in Algorithm 14 might fail to satisfy property 3.
(minimality) in Definition 7.1 but they remain, in most cases, strictly smaller than the initial
sets ET and E~ as suggested by the results in Table 7.3
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Algorithm 14 Learning Step
Input: (C,ET,E™), fo
hyperparameters: k, Opt (optimization algorithm)
Output: fo
1: ST« [min(k,|ET]), 2k, 3k,...,|ET|]
2: ST « [min(k, |E7|), 2k, 3k,...,|E"|]
# Define probability functions over St and S~

o Ve S pt(e) = s
| T s
#Vwe ST p(n) = =T

Draw k* from ST following p*

Draw £~ from S~ following p~

ET « U(ET,kT) # Uniform sampling
E«—UE k)

C = fo(ET,E7)  # Synthesize a class expression
10: £ =Loss(C,C) # Compute the loss

11: © + Opt(©,VeL) # Update the parameters ©
12: return fg

Y ®e N U

7.2 Experiments

In this section, we evaluate our proposed approach. We start with experimental settings
before presenting and discussing the obtained results.

7.2.1 Experimental Setup

Datasets

We used four benchmark datasets in our experiments: Semantic Bible®, Vicodi [152], Car-
cinogenesis [224], and Mutagenesis [224]. Vicodi describes the European history, and
Semantic Bible, the New Testament. Carcinogenesis and Mutagenesis describe chemical com-
pounds and how they relate to each other. On the last two datasets, CEL can provide insights
into hidden properties shared by different compounds and facilitate further investigations by
domain experts. For instance, a class expression learner in [27] found that a chemical com-
pound is carcinogenic if it can be described by the expression: —(3 hasAtom.(Nitrogen-35
LI Phosphorus-60 LI Phosphorus-61 LI Titanium-134)) M (>3 hasStructure.(Halide M
—Halide10) LI 3 amesTestPositive.{True} M >5 hasBond.(—Bond-7)). In natural lan-
guage, this would translate into: «A chemical compound is carcinogenic if and only if it does
not contain a Nitrogen-35, Phosphorus-60, Phosphorus-61, or Titanium-134 atom and it has
at least three Halide—excluding Halide10—structures or the ames test of the compound

*https://www.semanticbible.com/ntn/ntn-overview.html
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is positive and there are at least five atom bonds which are not of bond type 7» (cf. [27],
Section 6.1).

In our experiments, we use the training and test data constructed in NCES2 [109]. Conse-
quently, there are 100 learning problems on the test set of each benchmark dataset; we refer
to Table 6.1 for complete statistics.

Hyperparameter Configuration

Because of its efficiency, we used the random search approach [20] to find the best hyperpa-
rameter values for our approach, namely the learning rate, the training batch size N, the
embedding dimension d for the embedding model ConEx, and the number of inducing points
in the Set-Transformer model. As in Chapter 6, it is sufficient to search hyperparameter
values on one dataset, e.g. Carcinogenesis, and use the same values on the rest of the
datasets; we adopt the same approach in this work. We report hyperparameter settings in
Table 7.1.

Table 7.1: Hyperparameter settings per dataset. Lr is the learning rate, d the embedding
dimension in the embedding model, N the batch size, L the maximum length of
expressions synthesized by ROCES, and gc is the gradient norm clipping value.

Carcinogenesis Mutagenesis Semantic Bible Vicodi

FEpochs 400 400 400 400

Lr 0.001 0.001 0.001 0.001

d 50 50 50 50

N 512 512 512 512

L 48 48 48 48

gc 5 5 5 5
Hardware

We trained the learner fg using Algorithm 14 (that is, ROCES) on a virtual machine equipped
with 64 AMD EPYC 9334 32-Core Processors @3.91GHz, and a NVIDIA A100 80GB GPU. Post
training, we used a server with 16 Intel Xeon E5-2695 CPUs @2.30GHz and 128GB RAM to
conduct experiments on CEL where we compared our approach against CELOE, EvoLearner,
and NCES2. This is because CELOE and EvoLearner do not support GPU computations, and
we needed to ensure a fair comparison regarding runtimes.
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7.2.2 Results and Discussion

Training Curves

ROCES was trained for 400 epochs on each dataset. The evaluation metrics used during
training are the “hard accuracy” and the “soft accuracy” as defined in [113]. The hard
accuracy measures how a predicted expression is similar to a target class expression in the
training set in terms of their string representation. The soft accuracy is the Jaccard index
between the set of the predicted tokens and the set of the target tokens; it does not take
the order of the tokens into account. The hard accuracy is hence the most suited metric
to train ROCES. We refer to [113] for more details about these metrics. In Figures 7.2,

Carcinogenesis Mutagenesis

AEES =SS

Semantic Bible Vicodi

e =

80

Hard Accuracy
N w S wv [} ~
© © o o o o

[e2]
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~
o

()}
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0 100 200 300 400 O 100 200 300 400
Epochs Epochs
== ROCES;, -3, ROCES; =64 = ROCEszlng

Figure 7.2: Hard accuracy curves of our proposed approach ROCES during training. The
probability functions p™, p~ defined in Algorithm 14 are used.

7.3, and 7.4 we show the training curves of ROCES. We can observe a rapid increase (in
accuracy), decrease (in loss) in the early epochs and fast convergence on Carcinogenesis
and Vicodi, which are the largest datasets. This observation aligns with the results presented
in Table 7.2. This suggests that on large datasets, ROCES learns better mappings between
sets of examples and class expressions that describe them.

Class Expression Learning on Test Datasets

ROCES remains the only approach to achieve both speed and high predictive performance
on learning problems with various input example set sizes. Its superiority on large datasets

7.2 Experiments
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Figure 7.3: Soft accuracy curves during training

can be attributed to the fact that its deep neural network-based synthesizer performs better
when it has enough training data to learn from. Meanwhile, search-based methods struggle
to navigate the vast search space induced by large datasets. They perform better on small
datasets (as seen in the case of Mutagenesis and Semantic Bible), where ROCES does not
generalize well with the available training data. In Table 7.3, we report the frequency at
which ROCES outperforms the best baseline (EvoLearner) without using the complete sets
of examples. More precisely, we let ROCES explore 50 random pairs (€1, £7) of subsets of
examples and compute a solution for each. The results in the table suggest that with just
50 trials, ROCES outperforms EvoLearner on at least 63% (the highest being 91%) of the
learning problems. The average Fj score of the computed solutions is 90% and above on
three datasets; the lowest performance being 81% and observed on Semantic Bible—see the
row Max. Nonetheless, ROCES found the exact solution for 34% of the learning problems
on this dataset. For example, it found the exact solution Mountain LI (LandArea N (City U
(3 subregion0£f.T))), while EvoLearner computed an approximate solution. We list below
the solutions computed by all approaches.

1. ROCES: Mountain LI (LandArea N (City U (3 subregion0£.T))); Fy: 100%

2. ROCESy: Mountain U (GeopoliticalArea M (City U (3 subregion0£f.T))); Fi:
100%

3. EvoLearner: City LJ (3 location.T) U (Mountain M GeographicArea) U (3 sub-
regionOf.(d subregion0f.GeographicArea)); Fy: 97.59%

4. CELOE: Mountain LI (GeopoliticalArea N LandArea); F}: 92.24%

5. NCES2: Mountain LI (GeopoliticalArea M (City LI (3 subregion0£.T))); Fy: 100%.
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Figure 7.4: Loss (cross entropy) during training
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Figure 7.5: Average F; score of the computed solutions for different values of the input
examples’ set sizes
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Table 7.2: Comparison of different approaches on learning problems with various input
example set sizes (k). ROCES; is ROCES with uniform distributions p* and p~.
Bold (resp., underlined) values represent the best (resp., second best).

Carcinogenesis Mutagenesis
k 16 64 Full 16 64 Full
Fi7
CELOE 0.37 0.33 0.29 0.79 0.78 0.74
CLIP 0.70 0.84 0.97+  0.89x 0.92  0.96«
EvoLearner 0.72 0.83 0.89 0.88 0.92x 0.95
NCES2 0.15 0.37 0.91 0.28 0.22 0.85

ROCES (ours) 0.92x 0.93 0.94 0.63 0.79 0.90
ROCESy (ours) 0.80  0.94x 0.94 0.51 0.79 0.92

Runtime (sec.) |

CELOE 217.08 240.93 268.90 67.45 124.69 165.27
CLIP 201.32 200.29 33.00 197.93 205.42 107.19
EvoLearner 40.96 49.42 89.34 27.65 48.51 70.77
NCES2 0.01 0.01 0.09 0.01 0.01 0.09
ROCES (ours) 0.01 0.01 0.07 0.01 0.01 0.06
ROCESy (ours) 0.01 0.01 0.07 0.01 0.01 0.05
Semantic Bible Vicodi
k 16 64 Full 16 64 Full
Fi 1
CELOE 0.76 0.85 0.89 0.27 0.27 0.23
CLIP 0.81x 0.88x 0.92x 0.49 0.53 0.69
EvoLearner 0.78 0.82 0.88 0.60 0.57 0.77
NCES2 0.23 0.33 0.77 0.19 0.43 0.91x
ROCES (ours) 0.67 0.77 0.75 0.70%  0.85x% 0.84

ROCESy (ours) 0.69 0.76 0.76 0.65 0.81 0.88

Runtime (sec.) |

CELOE 95.38 163.80 172.04 233.18 300.01 300.01
CLIP 188.58 186.06 188.22 300.01 249.64 151.14
EvoLearner 1236 1793 18.44 170.78 248.55 236.92
NCES2 0.01 0.01 0.05 0.01 0.01 0.10
ROCES (ours) 0.01 0.01 0.03 0.01 0.01 0.10

ROCES;; (ours) 0.01 0.01 0.03 0.01 0.01 0.10

Although NCES2 computed an exact solution with 100% F score, it uses all available exam-
ples for this purpose, and achieves a lower performance when presented with incomplete
examples. This suggests that ROCES is competitive in performance even when it does not
use all available examples.
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Figure 7.6: Average runtime per approach for different values of the input examples’ set
sizes

Few-shot Learning

Here, we let ROCES perform 50 attempts on each learning problem using only a subset
of the provided examples. For each attempt, ROCES constructs a pair of example sets
following Algorithm 14 (lines 1-8) and synthesizes a solution (see line 9 of Algorithm 14).

From Figures 7.7 and 7.8, we can observe that most of the solutions computed by ROCES
have an F-measure close to 100% (see the large area around 100). This is more noticeable
when considering the best performance across the 50 trials (see the distribution for the
Max aggregation). Again, the highest performance is observed on the largest datasets
Carcinogenesis and Vicodi, but also on Mutagenesis (when ROCES is allowed multiple trials).
On Semantic Bible, we observe lower F} scores especially on the Min aggregation (see the

Table 7.3: Frequency (Freq. in %) at which ROCES—with limited input exam-
ples—outperforms EvoLearner, and average quality (F7) of the solutions com-
puted by ROCES. Min, Max, and Avg. are aggregations accross the 50 trials.

Carcinogenesis Mutagenesis Semantic Bible Vicodi
Freq. (%) F| Freq. (%) F| Freq. (%) F| Freq. (%) F

Min 80 0.90 42 0.72 44 0.63 73 0.78
Max 91 0.95 81 0.93 63 0.81 85 0.90
Avg. 82 0.94 56 0.88 47 0.75 79 0.85
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Figure 7.7: Distribution of the F-measure on Carcinogenesis and Mutagenesis. The aggrega-
tions (Min, Avg., Max) are computed across 50 trials.

large area around O for the blue violin plot). This is again due to the fact that deep learning
models perform better when there is enough high-quality training data, which is not the
case for Semantic Bible (refer to Table 6.1 for dataset statistics). Nonetheless, when ROCES
is allowed multiple trials, its performance significantly improves on this dataset.

Active Learning

In this evaluation setting, we measure how fast ROCES is able to retrieve a solution (or
converge to its best possible prediction) when receiving feedback from an oracle. Given
a learning problem whose example sets are unknown to ROCES, an oracle (in this case a
description logic reasoner which knows the target class expression and its set of instances)
provides the first sets of positive and negative examples. ROCES then makes an initial guess
and sends its synthesized expression to the oracle which in turn evaluates the expression and
provides at most k£ new positive and k& new negative examples that are correctly classified
by the predicted expression. The newly labelled examples are then added to the previous

Chapter 7 Robust Class Expression Synthesis via Iterative Sampling



Semantic Bible

100
80
60
i
40
20
0 ‘
Min Avg. Max
Vicodi
80
60
i
40
20
0 |
Min Avg. Max

Figure 7.8: Distribution of the F-measure on Semantic Bible and Vicodi. The aggregations
(Min, Avg., Max) are computed across 50 trials.

sets of examples for subsequent predictions. This process continues until a solution is found
or until the maximum number of iterations is reached. To validate the effectiveness of
ROCES, we conducted several experiments on the test sets. Here, the quality of a solution is
computed in terms of the number of positive/negative examples covered/ruled out (given by
the F} score in Table 7.2). First, we compare ROCES against the state-of-the-art on learning
problems involving small sets of examples: we varied the number of examples between 4
and 264 using powers of 4 (cf. Figures 7.5, 7.6, and Table 7.2). In the second experiment,
we compare all approaches on learning problems with full sets of examples (see columns
named “Full” in Table 7.2). Finally, we measure how many times our approach ROCES
outperforms the best baseline without using all the provided examples.

In Table 7.2, we used the Wilcoxon Signed-Rank test to compare our approach against
other state-of-the-art methods; the asterisk (x) indicates whether differences are significant.
From the Table, we can observe that ROCES significantly outperforms the state-of-the-art
(up to +10% F; score) on the largest datasets Carcinogenesis and Vicodi when only 16
or 64 input examples are used. Moreover, ROCES remains the most accurate approach on
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Figure 7.9: Distribution of the F-measure on Carcinogenesis in the active learning setting
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Figure 7.10: Distribution of the F-measure on Mutagenesis in the active learning setting

Carcinogenesis when the complete sets of examples are used, and ranks second on Vicodi
behind NCES2.

On learning problems with limited input examples, NCES2 lags behind; it ranks last in 6 out
of 8 cases when 16 or 64 examples are used. The same can be observed on Figure 7.5 where
we plot the quality of the computed solutions for various input example set sizes. This is
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Figure 7.11: Distribution of the F-measure on Semantic Bible in the active learning setting

because NCES2 applies the naive approach of training on static input example sets predefined
by the data generator. Search-based approaches (CELOE and EvoLearner) show a more stable
performance across different input example set sizes as they use classification metrics at each
step of the search process. However, they fall short when it comes to runtimes especially on
large datasets, see e.g. Figure 7.6 and the lower part of Table 7.2. On average, they are over
1000x slower than ROCES and NCES2. Moreover, their prediction time increases with the
number of examples used in a learning problem while deep learning-based approaches such
as ROCES maintain a nearly constant prediction time (see Figure 7.6).

In Figures 7.9-7.12, we report experimental results for different values of k. In our experi-
ments, the maximum number of iterations is set to 20, and initial sets of examples are of
size at most 16. Results per learning problem are averaged across iterations. Following the
steps described above, ROCES repeatedly interacts with an oracle to eventually improve the
quality of its synthesized solutions. From the distribution of the F-measure in Figures 7.9,
7.10, 7.11, and 7.12, we can observe that ROCES is able to compute high-quality solutions
even with small values of k. In fact, providing feedback with more than 7 newly labelled
examples seems to have no positive impact on the quality of the computed solutions. This
is probably due to the fact that ROCES is trained to perform well with small numbers of
examples, see Algorithm 14.

7.2.3 Real-world Problems

We applied ROCES to a set of real-world learning problems from different datasets. We
considered three datasets: Carcinogenesis (1 learning problem), Mutagenesis (1 learning
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Figure 7.12: Distribution of the F-measure on Vicodi in the active learning setting

problem), and Family (7 learning problems). On Carcinogenesis and Mutagenesis, the goal
is to describe chemical compounds that cause cancer and those that cause gene mutation,
respectively. On the Family dataset, we aim to learn the concepts Uncle, Aunt, Cousin,
Great-grandfather, Great-grandmother, Great-granddaughter, and Great-grandson. Note that
each of the concepts corresponding to solutions of the given learning problems does not
appear in the background knowledge nor in the training datasets.

Table 7.4: 10-fold cross-validation results on real-world problems. “~” denotes unknown
learning problems.

Train-F, Test-I'y Runtime (sec.)

Family

Aunt 0.80 0.81 1.12
Cousin 0.73 0.70 1.09
Great-granddaughter 1.00 1.00 0.92
Great-grandfather 0.94 0.93 0.92
Great-grandmother 0.94 0.95 1.31
Great-grandson 0.92 0.93 1.15
Uncle 0.88 0.89 0.91
Carcinogenesis

- 0.71 0.70 1.77
Mutagenesis

- 0.70 0.70 1.71

In Table 7.4, we report the results obtained on the above learning problems. We conducted
experiments in a 10-fold cross-validation setting. Each of the ten folds contains some part
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of the positive and negative examples. For each run, ROCES solves a learning problem
(100 predictions per problem) using 9 folds. The 10-th fold is used for evaluation (see
the column named T'est-F; in Table 7.4). We report average results across the 10 folds.
From the results, we can observe that ROCES maintains a high predictive accuracy while
being scalable* (=1 second per problem). The carcinogenesis and mutagenesis problems
are known to be challenging (in [27], a search-based approach achieves only 72% accuracy
on Carcinogenesis), which also explains the relatively low performance achieved by ROCES
on these problems.

7.3 Conclusion

In this chapter, we proposed a generalization of the traditional class expression learning prob-
lem and established the connections between the solutions of the classical and generalized
problem. Our new reformulation forces learning algorithms to solve a given problem using
cardinality-minimal sets of examples, thereby enhancing their ability to effectively tackle
learning problems with arbitrary numbers of examples. We also proposed ROCES, a new
learning algorithm for synthesis-based approaches to solve the generalized learning problem.
Experimental results suggest that ROCES consistently outperforms previous synthesis-based
approaches on learning problems with limited input examples while remaining highly
scalable and competitive on full-size learning problems.

“Note that for each run, we perform 100 predictions per problem and select the class expression with
the highest F score. Hence, the runtime per prediction is ~0.01 second on average.
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Conclusion and Future Work

This chapter summarizes our research contributions, key findings, and future work directions.
We start with search-based approaches for class expression learning before discussing our
proposed family of neural class expression synthesizers. Finally, we conclude with potential
future work directions and the broader impact of our research.

8.1 Summary

In this thesis, we focused on the development of class expression learning approaches at
scale. A class expression is human-readable and interpretable, hence a white-box model.
Most previous works for class expression learning investigated the use of description logic-
specific refinement operators to construct and traverse partially ordered conceptual spaces
in search of solutions to learning problems [62, 120, 122, 123, 177]. While the approaches
developed in the aforementioned works are highly accurate on small datasets, they often
require impractical runtimes on large-scale datasets due to the infinite and myopic nature
of their search space, as illustrated in Figure 1.1. Moreover, approaches that do not
use refinement operators and instead apply other search strategies—such as crossover
and mutation operations [82], direct application of negation, disjunction and conjunction
operators to preselected concepts [185]—also suffer similar scalability issues as suggested
by our experiments.

8.1.1 Concept Learner with Integrated Length Prediction

Our first research contribution concerns the integration of concept length predictors into
refinement operator-based approaches for class expression learning (see Chapter 4). The
proposed approach CLIP [107] relies on the intuition that if we have an accurate concept
length predictor; then it can be used to approximate the length of solutions to learning problems.
To this end, we use neural networks, namely recurrent neural networks, convolutional
neural networks, and multi-layer perceptrons, and develop an approach to automatically
generate training data for them. The training data essentially consists of class expressions,
their syntactic lengths as defined in Definition 2.2, and their respective sets of positive and
negative examples. Hence, our overall pipeline for concept length prediction is trained in
an unsupervised manner, i.e., our approach automatically creates data and labels it before
training. Post-training, our concept length predictors not only significantly (p-value < 0.05
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with the Wilcoxon Signed Rank test) outperform a random model, but their integration
into the state of the art CELOE [122] also leads to improved runtimes and better solutions
on large datasets. CLIP effectively narrows its search space by considering only concepts
up to the predicted length, thereby avoiding large areas of the search space characterized
by long concepts which are not necessarily candidate solutions to a learning problem and
are hard to interpret. Nonetheless, as the size of the background knowledge base increases
(e.g., when more atomic concepts are added), the search space of refinement operator-based
approaches, including CLIP, grows considerably in size, resulting in long runtimes. This
is due to the large number of refinements computed for each root node. Consequently,
the pruning strategy of CLIP might not be sufficient on large datasets, especially if many
learning problems are to be solved. We therefore propose a novel family of parallelizable,
highly optimized algorithms for class expression learning on large datasets, see Section 8.1.2
below.

Key Findings. Concept lengths in ALC can be learned from the sets of instances described
by those concepts. Moreover, incorporating reliable concept length predictors into search-
based approaches for class expression learning often leads to improved runtimes and better
quality solutions. However, as the size of the background knowledge base increases, the
benefits of using concept length predictors to accelerate class expression learning diminish.

8.1.2 Neural Class Expression Synthesis

To address the scalability limitations inherent in search-based approaches for class expres-
sion learning, we developed a novel family of synthesis-based approaches targeting the
description logic ALC—neural class expression synthesizers (NCES) [113]—which directly
translate input examples to class expressions without the need for an expensive search. Our
work draws inspiration from the success of neural machine translation [35, 228], with large
language models (LLMs), e.g., GPT-4 [1] achieving impressive results [105, 237, 248]. NCES
use neural network architectures, e.g., Set-Transformer [118] and a vocabulary of tokens,
constructed automatically from each input knowledge base, to synthesize class expressions.
The vocabulary contains atomic concept and role names as well as description logic-specific
tokens, e.g., V, L, —. As in the case of LLMs, NCES require pretraining to learn how to align
tokens in a meaningful manner. To this end, we design a training data generation method
akin to the one in our approach CLIP, but where actual class expressions are stored instead
of their lengths. Moreover, we develop a tokenization technique to decompose each class
expression into a sequence of tokens present in the predefined vocabulary. NCES are then
trained to map the embeddings of positive and negative examples to a sequence of tokens
representing a target class expression.

At inference time on unseen learning problems, NCES leverage the learned patterns to
synthesize new class expressions based on input examples. One advantage of NCES is that
they are not bound to a predefined set of class expressions as in the case of NERO [47];
they automatically adapt to new learning problems by selecting appropriate tokens and
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their ordering to maximize the classification accuracy of input examples. Most importantly,
NCES can solve multiple learning problems in parallel via batch processing, thanks to the
parallelizable nature of deep neural networks and the availability of accelerated computing
hardware such as GPUs. Our experimental results suggest that even on CPUs, NCES
significantly (p-value < 0.05 with the Wilcoxon Signed Rank test) outperform search-
based approaches for class expression learning while being highly competitive in predictive
performance.

Despite their time efficiency and excellent predictive performance in the description logic
ALC, NCES naturally inherit certain vulnerabilities of neural networks, particularly con-
cerning sensitivity to small changes in inputs: NCES do not perform consistently well when
sets of positive and negative examples for a given learning problem are replaced by other
relevant sets. For example, one might want to keep the set of positive examples unchanged
but slightly modify the set of negative examples such that the original solution to the
learning problem still holds. In such scenarios, NCES mostly fail to synthesize the desired
solutions. Additionally, the dependence of NCES on pretrained embeddings of examples,
and the limitation of their expressive power to the description logic ALC can also be seen as
another hindrance. We address some of these limitations by proposing a new instance of
synthesis-based approaches, with the main contributions summarized in Section 8.1.3.

Key Findings. Class expressions in .ALC can be synthesized directly from sets of examples
by using neural networks, e.g., LSTM, GRU, or Set-Transformer. Our proposed synthesis-
based approaches for class expression learning (NCES) are several orders of magnitude
faster than search-based approaches while being highly competitive in terms of quality of
computed solutions. Nonetheless, NCES instances often struggle with generalization when
input examples are swapped with other valid alternatives.

8.1.3 Neural Class Expression Synthesis in ALCHZQP)

We proposed NCES2 [109] as an extension of NCES to the description logic ALCHT o®)
which also comes with several improvements. Similarly to initial NCES instances, NCES2
relies on deep neural networks and a vocabulary of tokens to synthesis class expressions
without a search process. Note that new special tokens are added to the vocabulary to
support the expressive description logic ALCHT o), e.g., “>” and “<” for cardinality and
number restrictions, and “~” for inverse roles. Another addition is the integration of an
embedding model into the learning process to alleviate the dependence on pre-existing
embeddings for input examples. During training, the embedding model gets a batch of
triples' as input and updates its trainable parameters such that its loss function (typically
defined for link prediction on knowledge graphs [180, 207]) is minimized on the input
batch. Simultaneously, the neural synthesizer (e.g., Set-Transformer) receives a batch of

IA triple represents a fact in the input knowledge base, e.g., the relationship between two individuals
(which serve as examples in learning problems), or a class membership assertion.

8.1 Summary
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class expressions and their corresponding sets of positive and negative examples (whose
vector representations are provided by the embedding model) and updates its parameters by
minimizing a token-level loss function, e.g., cross-entropy. Hence, the neural synthesizer
and the embedding model are trained jointly to further improve the predictive performance
of synthesis-based approaches for class expression learning.

NCES2 also employs a training data augmentation technique, where multiple sets of input
examples are constructed for each learning problem in the training set. Because NCES
assume that the maximum length of inputs is fixed, the sets of examples for some learning
problems are downsampled during the data generation process. However, these omitted
examples are also valid ones, which is not taken into account by early NCES instances. This
causes NCES instances to perform poorly when such valid examples are used in a given
learning problem at inference time. By constructing multiple samples per learning problem,
NCES2 effectively improves the generalization capability of synthesis-based approaches. In
Section 8.1.4 below, we summarize our last research contribution which further enhances
the robustness of neural class expression synthesizers.

Key Findings. Class expressions in expressive description logics, e.g., ACCHZQ®) can
also be synthesized directly from sets of examples by using neural networks. Moreover, an
embedding model can be coupled with a neural synthesizer to enable end-to-end training
and inference, thereby eliminating the requirement for pretrained embeddings of back-
ground knowledge bases. By constructing multiple sets of examples per learning problem
during training, the predictive performance and generalization capability of synthesis-based
approaches can further be improved.

8.1.4 Robust Class Expression Synthesis

Here, we proposed a generalization of the classical class expression learning problem and
established connections between solutions of the new formulation and classical ones [111].
For example, we showed how solutions to the generalized learning problem (GLP) can be
sought starting from an arbitrary solution of the classical problem. The generalized learning
problem forces learning systems to compute a solution to the classical problem by using
the smallest possible subsets of examples, thereby improving their ability to solve learning
problems with arbitrary numbers of examples. This reformulation is motivated by the fact
that in real-world applications of class expression learning, e.g., ontology engineering [122],
there can be as few as two examples in a learning problem (e.g., a knowledge engineer
identifies few individuals that do not have enough type information and wants to enrich
them with fitting class expressions) or several hundreds of examples (e.g., a knowledge
engineer has identified a repeated pattern on many individuals and seeks clarification).

We also develop a learning algorithm for synthesis-based approaches to solve the generalized
learning problem. In the training phase, our algorithm iteratively constructs subsets of
input examples whose sizes are drawn from predefined probability distributions skewed
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towards small values, and aims to synthesize correct solutions from those examples by
minimizing the running loss using gradient-based optimization methods. The overall learning
approach is referred to as ROCES. In our experiments, ROCES consistently outperforms
previous synthesis-based approaches on learning problems with limited input examples
while remaining highly scalable and competitive on full-size learning problems.

Key Findings. Using iterative sampling to construct sets of examples with various sizes
during training improves the robustness of synthesis-based approaches to changes in the
number of provided examples at inference time.

8.2 Future Work

In the near future, we aim to first improve the training data generation method of neural
class expression synthesizers. As described in Chapters 4 and 5, we generate training data
for neural class expression synthesis using a length-based refinement operator (see Algo-
rithms 12 and 13 for details). Moreover, instance retrieval for each expression generated by
this operator is managed by OWL reasoners [71, 193], which are not natively parallelizable.
Consequently, generating sufficient training data via the above approach is computationally
expensive and inefficient, especially on large datasets. Our experiments throughout this
thesis suggest that the lack of sufficient training data often leads to poorly trained neural syn-
thesizers which then underperform search-based methods. This demonstrates the need for a
more efficient approach for training data generation or augmentation. Recently, there has
been progress towards using SPARQL to answer queries corresponding to instance retrieval
in description logics [101, 155]. By using this new approach, multiple queries can be sent to
a SPARQL query endpoint, which allows to retrieve instances for multiple class expressions
in parallel, thereby accelerating the training data generation process. Additionally, it could
be interesting to investigate new ways to synthesize class expressions, e.g., using the next
token prediction paradigm as currently done in large language models (LLMs), to further
improve the predictive performance of our neural class expression synthesizers.

Second, we will explore potential use cases of neural class expression synthesizers beyond
benchmark datasets. One direction could be a deployment on the web, where NCES
instances can provide real-time answers to users’ queries. For instance, users can ask for
descriptions of collections of items, which can be easily translated into class expression
learning problems: positive examples are items to be described, and negative examples
can be any subset of the remaining items. For each query, our neural class expression
synthesizers compute a class expression which can be verbalized into natural language text
thanks to the verbalization module of Ontolearn?—a library for structured machine learning
in Python in which NCES are already implemented. This item description setting is also
valid for augmenting recommendation systems with class expression learners: sellers may

https://github.com/dice-group/Ontolearn
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be interested in knowing their costumers preferences, in which case they can provide a set
of items bought in the past, i.e., positive examples. In this way, user preferences can be
represented with learned class expressions, and both sellers and buyers get to know why a
given item is recommended. A clear advantage of our neural synthesizers over traditional
approaches for class expression learning is that the former support sophisticated computing
hardware such as GPUs and can process multiple queries in parallel, which is essential for
web-scale applications and for improving user experience.

Finally, the integration of neural class expression synthesizers into deep learning architec-
tures to make the latter gray-box and enable explainable predictions is another promising
research direction. Most of the existing deep learning architectures are black-box [74, 164,
176], which means it is extremely hard or impossible to explain how their outputs are
derived. Current research in explainable AI has mainly focused on using decision trees, rules,
and Bayesian networks to explain already existing black-box models [64, 74, 94, 249]. Other
works exploit gradient-based and perturbation-based methods to explain the predictions of
black-box models [30, 31, 189, 190, 232]. Simple white-box models such as decision trees
often underperform deep neural networks [161, 184], and gradient- and perturbation-based
methods for explaining black-box models are mostly post-hoc [4, 97, 190]. We will develop
techniques to integrate neural class expression synthesizers into deep neural networks to
enable ante-hoc explainability. To this end, we could first investigate ways to automatically
annotate input data to obtain description logic knowledge bases (see [61] for a related
work), which are required by NCES instances. As an example, in a dataset containing images
of cats and dogs, the following assertions could be part of the constructed knowledge base:
< Tcm hasEarLength(Animal_0), 3 hasEarShape.Pointy(Animal_1). Moreover, NCES
instances should be able to use features from the deep learning model to be explained, e.g.,
outputs from the last hidden layer, to synthesize class expressions which faithfully describe
the input data and the black-box model’s understanding of it.
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