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wir uns mit den weiteren Mitarbeiter*innen des DLR, mit denen wir in Kontakt
waren.

Als Leiterin der Nachwuchsforschungsgruppe DART geht mein größter Dank an
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Vorwort

Das Projekt DART - Datengetriebene Methoden in der Regelungstechnik entstand
im Rahmen der Förderung von KI-Nachwuchswissenschaftlerinnen, wozu es im Jahr
2019 einen Aufruf vom Bundesministerium für Bildung und Forschung (BMBF)
gab. Das Ziel dieser Förderlinie war es, die Beteiligung von Frauen in der deutschen
Forschung zur künstlichen Intelligenz zu erhöhen und ihnen außerdem akademische
Führungspositionen zu ermöglichen. Es wurde festgestellt, dass die KI-Forschung
nicht nur kompetente Fachleute in Fachgebieten wie Informatik, Mathematik oder
Kognitionspsychologie, sondern zunehmend auch Fachkompetenzen aus den ver-
schiedensten Anwendungsgebieten benötigt. Um dies zu erreichen, wurden Frauen,
die im Bereich von KI-Fragestellungen forschen, dazu aufgefordert, sich um eine
Nachwuchsgruppe unter der Leitung dieser Frauen, zu bewerben und damit den An-
teil von qualifizierten Frauen in Führungspositionen der deutschen KI-Forschung zu
steigern. Damit war diese Fördermaßnahme ein Teil der Umsetzung der KI-Strategie
der Bundesregierung und der Hightech-Strategie 2025.

DART ist eine Nachwuchsforschungsgruppe, die sich entsprechend der Ausschrei-
bung auf die Anwendung von maschinellem Lernen in einem Anwendungsgebiet,
der Regelungstechnik, spezialisiert hat und die Forschungsarbeiten liefen in der Zeit
von Juli 2020 bis November 2024 an der Universität Paderborn. Auf Grundlage der
klassischen Methoden in der Regelungstechnik ist der Sprung zur Anwendung von
maschinellem Lernen sehr naheliegend. Denn in regelungstechnischen Anwendungen
werden schon immer Daten z.B. in Form von Messungen verwendet, um das Verhal-
ten des Systems zu beeinflussen oder regeln zu können. Der Trend, den man in sehr
vielen Forschungsgemeinschaften sieht, nun vermehrt datenbasierte Lernalgorithmen
zu verwenden, kann daher auch in besonderer Form in regelungstechnischen Metho-
den aufgenommen werden. Beispielsweise arbeiteten Regelungstechniker*innen auch
in der Vergangenheit schon daran, auf Systemveränderungen im Betrieb durch ad-
aptive Methoden zu reagieren. Ähnliche Ziele verfolgen nun auch Lernalgorithmen,
die sich aktiv dem Systemverhalten anpassen und dabei Methoden des maschinellen
Lernens verwenden.

Daher war es das Ziel der Nachwuchsgruppe Datengetriebene Methoden in der
Regelungstechnik, die synergetische Kombination modell- und datengetriebener Ver-
fahren für regelungstechnische Aufgaben zu erforschen. Dazu werden modellbasierte
Verfahren mit maschinellem Lernen kombiniert, um hybride Methoden zu erhalten
und die größtmögliche Performanz beim Regelungsentwurf zu erzielen. Aus der For-
schungsgemeinschaft zu maschinellem Lernen ist der Standardansatz bekannt, Sys-
teme oder Methoden zu verwenden, die ausschließlich auf ML basieren. Hier wird
immer wieder als Vorteil genannt, dass dadurch kein Vorwissen von Expert*innen
für die Anwendung vorhanden sein muss. Daher wird ML als Alternative zu klas-
sischen Methoden vorgeschlagen. Für die Arbeit der Nachwuchsgruppe nehmen wir
aber eine andere Sichtweise an: Das Fachwissen aus dem ingenieurwissenschaftlichen
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Kontext ist für uns sehr wertvoll und es gibt keine schlüssigen Gründe, etablierte Me-
thoden komplett durch datenbasierte Ansätze zu ersetzen. Daher streben wir nach
einer synergetischen, methodischen Kombination modell- und datengetriebener Ver-
fahren für den Regelungs- und Steuerungsentwurf, um größtmöglichen Nutzen aus
beiden Herangehensweisen zu ziehen.
Dieses Buch dient der vollständigen Zusammenfassung der wissenschaftlichen For-

schungsergebnisse, die in der vierjährigen Laufzeit der Nachwuchsforschungsgruppe
DART – Datengetriebene Methoden in der Regelungstechnik erzielt werden konn-
ten. Es beinhaltet die notwendigen Grundlagen aus dem Bereich des maschinellen
Lernens und präsentiert auch die Grundlagen der Regelungstechnik, die als Aus-
gangspunkt für die weiterentwickelten Methoden verwendet werden, ist aber nicht
als grundlegendes Lehrbuch für diese Bereiche zu sehen. Es besteht in der Darstel-
lung somit kein Anspruch auf die Vollständigkeit bei den Grundlagen, sondern es ist
das Ziel, den Lesenden Handlungsempfehlungen für die Anwendung der entwickelten
Methoden zu geben. Somit werden die neuen Methoden ausführlich vorgestellt und
ihr jeweiliges Anwendungsgebiet spezifiziert, so dass der Anwendende entscheiden
kann, welche Methode für sein Problem geeignet ist.
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1 Einleitung

Dieses Buch handelt von der Entwicklung von Schnittstellen zwischen datengetrie-
benen Methoden aus dem Bereich des maschinellen Lernens (ML) und klassischen
regelungstechnischen Ansätzen. Dabei werden viele methodische Grundlagen ver-
wendet, die aus unterschiedlichen Bereichen stammen: Optimierung, Stochastik, li-
neare Algebra, Differentialgleichungen und natürlich die grundlegenden Ideen ma-
schineller Lernmethoden. Dabei hat das Buch nicht den Anspruch, alle Grundlagen
zu erklären, gibt aber Hinweise auf die wichtigsten Referenzen aus diesen Bereichen.
Da in der klassischen Ingenieursausbildung ML eine geringe bis gar keine Rolle
spielt, werden in diesem Bereich mehr grundlegende Methoden erläutert, die dann
im komplexeren Setting der hybriden Methoden verwendet werden. Dazu gehören
beispielsweise die neuronalen Netze als eine der bekanntesten Strukturen aus dem
maschinellen Lernen.

Der Beitrag dieses Buches soll es ermöglichen, Regelungstechnik auch für Syste-
me anwenden zu können, die im Zuge der fortschreitenden Entwicklungen immer
komplexer werden. Dabei ersetzen datengetriebene Methoden nicht die physikalisch
mathematische Herleitung und Beschreibung, sondern erweitern diese für eine auch
zukünftig erfolgreiche Anwendung. Dies ist möglich, da die Entwicklung des letz-
tens Jahrzehnts zeigt, dass datengetriebene Methoden durch günstiger werdende
Sensoren, stärkere Rechenleistung und bessere Speicher- und Transfermöglichkeiten
insgesamt zielgerichteter eingesetzt werden können.

Die Themen dieses Buches orientieren sich am regelungstechnischen Entwurfspro-
zess. Zunächst werden in Kapitel 2 die Grundlagen des maschinellen Lernens im
Kontext der Entwicklung hybrider Methoden in der Regelungstechnik vorgestellt,
um in diesem Bereich noch zusätzliches Grundlagenwissen anbieten zu können. An-
schließend folgen etablierte und neu entwickelte hybride Methoden aus den Bereichen
Modellbildung in Kapitel 3, Steuerungs- und Regelungsentwurf in Kapitel 4 und Be-
obachterentwurf in Kapitel 5. Abschließend werden die zwei großen Demonstratoren
unseres Projektes in Kapitel 6 vorgestellt. Dies sind zum einen der Golfroboter und
zum anderen ein selbstbalancierender Würfel, der im Rahmen des Projektes entwi-
ckelt und aufgebaut wurde, um die Leistungsfähigkeit der entwickelten Methoden zu
untersuchen (siehe Abbildung 1.1). Die Anwendung an realen Demonstratoren war
dabei ein sehr wichtiges Ziel, da es einen großen Unterschied bedeutet, Methoden
nur simulativ oder experimentell in der realen Welt zu testen. Eine Umsetzung im
industriellen Umfeld ist noch nicht umgesetzt worden, aber es wäre ein Wunsch der
Nachwuchsgruppe durch den Beitrag dieses Buchs auch hier Interesse zu wecken.
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1 Einleitung

Abbildung 1.1 Der Golfroboter und der selbstbalancierende Würfel sind zwei wichtige De-
monstratoren, an denen die hybriden Methoden der Nachwuchsgruppe experimentell unter-
sucht wurden.

1.1 Motivation und Ziele

Im Zuge der Digitalisierung erfahren maschinelles Lernen und datengetriebene Me-
thoden aktuell hohe Aufmerksamkeit seitens Wissenschaft und Industrie. Es fehlen
jedoch die Grundlagen und das Verständnis, die datengetriebenen Verfahren der In-
formatik mit bewährten modellbasierten Verfahren der Ingenieurwissenschaften wie
dem modellbasierten Entwurf in der Mechatronik und regelungstechnischen Metho-
den sinnvoll zu kombinieren, um dadurch hybride Modelle zu erhalten. Diese Inge-
nieurverfahren beruhen auf physikalischen Verhaltensmodellen, die eine besonders
kondensierte und interpretierbare Wissensrepräsentation darstellen und insbeson-
dere kausale Zusammenhänge beschreiben. Dabei gibt es für spezifische regelungs-
technische Anwendungen umfangreiches Vorwissen in Form von bekannten Struk-
turen und Informationen, wie beispielsweise (Teil-) Modelle oder Parametersätze,
die auch beim Einsatz von Methoden wie z.B. maschinellem Lernen sinnvollerweise
weiterverwendet werden sollten. Eine solche sinnvolle systematische Kombination
ist wissenschaftlich noch wenig untersucht, erst recht hinsichtlich einer industriellen
Anwendung. Daher war es das Hauptziel der Nachwuchsforschungsgruppe, die syner-
getische Kombination modell- und datengetriebener Verfahren für regelungstechni-
sche Aufgabenstellungen zu erforschen und dies ist auch in unserer Projektübersicht
in Abbildung 1.2 sichtbar. Dabei sollen die Vorteile und Stärken der jeweiligen Ver-
fahren strukturell beibehalten werden: bei den Verfahren mit physikalischen Mo-
dellen deren gute Interpretierbarkeit, tiefere Einsicht in das Systemverhalten und
die Wiedergabe kausaler Zusammenhänge; bei den datengetriebenen Verfahren de-
ren Fähigkeit, physikalisch schwer beschreibbare Zusammenhänge auch ohne tie-
fe spezifische Anwendungskenntnisse abbilden zu können und ihre Erweiterbarkeit
durch die Möglichkeit auch während des Betriebs weiter zu lernen. Der Schwerpunkt
dieses Vorhabens lag somit auf der Entwicklung von hybriden Methoden, die mo-
dellgetriebene Verfahren mit maschinellem Lernen kombinieren, um größtmögliche
Performanz beim Regelungsentwurf zu erzielen.
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1.2 Forschungsumfeld der Nachwuchsgruppe

Synergie aus modellbasierten
und datengetriebenen Methoden

Hybride 
Methoden

 Regelungs-
technische
 Verfahren

Maschinelles 
Lernen

Modelle Daten

Modellierung und 
Parameter-

identifikation

Entwurf eines 
Beobachters

Auslegung eines 
Reglers

Inbetriebnahme der 
Regelung

?

Neuronale Netze

Bayessche 
Optimierung

Black-Box Modell

...

Koopman-Operator

Abbildung 1.2 Projektidee von DART

Das typische Vorgehen beim Regelungsentwurf beinhaltet folgende Teilaufgaben:

1. Modellierung des physikalischen Systemverhaltens mit Dynamikgleichungen,

2. Identifikation der in den Dynamikgleichungen enthaltenen Parameter,

3. Beobachterauslegung zur Schätzung nicht messbarer, aber für die Regelung
benötigter Zustandsgrößen oder Parameter,

4. Entwurf einer Regelung, abhängig von der Art der Dynamikgleichungen zu
wählen,

5. Inbetriebnahme des Reglers am Prüfstand.

Bei unserem Ziel der synergetischen, methodischen Kombination modell- und da-
tengetriebener Verfahren für den Regelungs-/ Steuerungsentwurf werden wir diese
Schritte der Modellierung und Regler-/Beobachterauslegung bis hin zur Inbetrieb-
nahme adressieren und im Folgenden genauer darauf eingehen, mit welchen Metho-
den dies umgesetzt werden soll. Ein weiteres wesentliches Ziel ist die Entwicklung
von Handlungsempfehlungen, die interessierten Leser*innen konkrete Hinweise zur
effektiven Anwendung der entwickelten Methoden geben.

1.2 Forschungsumfeld der Nachwuchsgruppe

An der Universität Paderborn und dem Heinz Nixdorf Institut wird schon seit
längerer Zeit großer Wert auf Forschung im Kontext von intelligenten technischen
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1 Einleitung

Systemen gelegt. Daher muss auch die Entstehung der Forschungsgruppe DART
in diesem Kontext gesehen werden, da sie von den vorangehenden Entwicklungen
beeinflusst wurde und von der kontinuierlichen Unterstützung in diesem Bereich
profitiert hat. Aus diesem Grund werden an dieser Stelle ehemalige und aktuelle
Forschungsprojekte und Institutionen vorgestellt, die vom Team der Nachwuchs-
gruppe als wichtig und einflussreich angesehen werden.

Zuerst ist das Heinz Nixdorf Institut HNI zu nennen, dem die Nachwuchsgruppe
DART angehört. Das Leitbild des HNI beschäftigt sich mit intelligenten technischen
Systemen für die Märkte von morgen. Dabei steht die Symbiose von Informatik und
Ingenieurwissenschaften im Zentrum der Arbeiten. Daraus ergeben sich Impulse für
intelligente technische Systeme und entsprechende Dienstleistungen. Die Forschung
soll dazu beitragen, neue Arbeitsplätze zu schaffen, den Wohlstand zu erhalten und
die nachhaltige Entwicklung zu fördern. Um diese Ziele zu erreichen, besitzt das
HNI verschiedene Forschungskompetenzen und Anwendungsbereiche. Das Projekt
DART findet sich dabei im Bereich der intelligenten technischen Systeme wieder,
welcher sich mit den Themen Lernfähigkeit, Adaptivität und Regelung beschäftigt.
Hier werden Lösungen etabliert, die es ermöglichen, dass technische Systeme selbst in
hochkomplexen, sich dynamisch verändernden Umgebungen funktionieren, vielfach
ohne zentrale Koordination. Ermöglicht wird dies durch die Kombination klassi-
scher Regelungs- und Steuerungstechnik mit modernen Methoden der künstlichen
Intelligenz und des maschinellen Lernens, die solchen Systemen ein hohes Maß an
Autonomie verleihen und mit der Fähigkeit der datengetriebenen Anpassung ih-
res Verhaltens ausstatten. Damit stimmen die Forschungsziele des HNI in diesem
Bereich vollständig mit der Grundidee des Projektes DART überein und die Zusam-
menarbeit und Kooperation im Institut unterstützte den Gesamterfolg der Nach-
wuchsgruppe1.

Auch weitere Forschende der Universität Paderborn beschäftigen sich schon seit
Jahren mit dem Thema der intelligenten technischen Systeme, was in einem eigenen
Profilbereich

”
Intelligente technische Systeme“ zusammengefasst ist, um die For-

schungsideen zu bündeln und zu koordinieren. Hierbei wird betont, dass intelligente
technische Systeme durch das Zusammenspiel von Algorithmen, Informationstech-
nik, Mechanik, Sensorik und Aktorik gekennzeichnet sind. Diese Komponenten bzw.
Teilsysteme sind miteinander vernetzt und können auf verschiedenen räumlichen
und zeitlichen Skalen operieren. Beispiele für intelligente Systeme, die auch an der
Universität Paderborn als Anwendungsfelder bearbeitet werden, sind Smart Grids,
die digitale Fabrik, Erklärbare KI, Smart Cities, autonome Fahrzeuge oder auto-
nome Roboter. Eine Integration dieser Systeme in einen Anwendungskontext be-
deutet hohe Anforderungen im Hinblick auf Sicherheit, Robustheit, Lernfähigkeit,
Ressourceneffizienz, Datenschutz u.a. Aufgrund der Komplexität und Heterogenität
der Systeme sind diese Anforderungen nicht leicht zu erfüllen. Folglich ist ein in-
terdisziplinärer Forschungsansatz unbedingt erforderlich, weil sich das Verhalten
des Gesamtsystems erst aus dem komplexen Zusammenwirken der Komponenten,
der Interaktion mit den Nutzer*innen und den Besonderheiten der Anwendung er-
gibt. Die Forschungsarbeiten im Profilbereich intelligente technische Systeme sind
interdisziplinär aufgestellt und befassen sich mit Analyse und Entwurf (Modell-

1https://www.hni.uni-paderborn.de/nachwuchsgruppe-dart
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1.2 Forschungsumfeld der Nachwuchsgruppe

bildung, Simulation, Verifikation, Methodenentwicklung) von intelligenten techni-
schen Systemen und schließen sozioökonomische und kulturwissenschaftliche Aspek-
te (Geschäftsmodelle, Verhaltensökonomie, Technikethik, Interaktionsdesign) ein.
Durch diese Charakterisierung des Profilbereichs wird deutlich, dass sich auch hier
die Forschungsthemen von DART direkt einbetten lassen und eine solch intensive
Beschäftigung vieler Forschender an der Universität Paderborn als sehr produktiv
angesehen werden kann2.
Eine weitere Institution, das im Rahmen der Forschungsarbeit von DART ge-

nannt werden muss, ist das Fraunhofer Institut für Entwurfstechnik Mechatronik
IEM3. Auch das IEM verschreibt sich u.a. der Erforschung intelligenter technischer
Systeme, wodurch deutlich wird, wie zentral dieses Gebiet am Gesamtstandort Pa-
derborn ist. Das IEM sieht das Fundament erfolgreicher technischer Systeme in ei-
ner ganzheitlichen Entwicklung. Das Institut unterstützt Unternehmen jeder Größe,
fachübergreifendes Engineering in die Praxis zu bringen. Von der maßgeschneiderten
Produktentwicklung, über langfristige Konzepte für ein modellbasiertes und sicheres
Engineering hin zur Umsetzung digitaler Zukunftsvisionen wie Industrie 4.0 basiert
die Arbeit des Fraunhofer IEM auf sechs Kernkompetenzen: Intelligente Techni-
sche Systeme, Digitale Transformation, Systems Engineering, Virtualisierung und
Modellbildung, IT-Security und Software Engineering. Es wird festgestellt, dass in-
telligente technische Systeme eine breite Basis hoch anspruchsvoller Technologien
benötigt: Ob virtuelle Sensorik, selbstoptimierende Regelungen, maschinelles Ler-
nen oder Augmented und Virtual Reality, das Fraunhofer IEM beherrscht den Stand
der Technik und setzt in einzelnen Gebieten Standards. Dabei steht die bedarfsori-
entierte Anwendung der Technologien im Mittelpunkt. Und aus diesem Grund ist
die Kooperation der Nachwuchsgruppe DART mit dem IEM so spannend: Der ge-
genseitige Austausch informiert über die Probleme und Anwendungsfelder, die in
Industrieunternehmen von Interesse sind.
Historisch gesehen konnte sich das Forschungsthema der Nachwuchsgruppe aus

zwei großen Forschungsprojekten, die aufeinander aufbauten, entwickeln: Dem Son-
derforschungsbereich SFB 614 Selbstoptimierende Systeme des Maschinenbaus und
dem darauf zeitlich direkt folgende Spitzenclusterprojekt it’s OWL Intelligente Tech-
nische Systeme OstWestfalenLippe.
Der SFB 614, der von 2002 bis 2013 an der Universität Paderborn lief, war ein

zentrales Element in der Erforschung intelligenter technischer Systeme. In diesem
Großprojekt wurde erkannt, dass sich aus der zunehmenden Durchdringung des Ma-
schinenbaus mit Informationstechnik erhebliche Erfolgspotentiale eröffnen. Der Be-
griff Mechatronik bringt dies zum Ausdruck – gemeint ist damit das enge Zusam-
menwirken von Mechanik, Elektronik, Regelungstechnik und Softwaretechnik. Mo-
derner Maschinenbau ist Mechatronik. Künftige Systeme des Maschinenbaus wer-
den aus Konfigurationen von Systemelementen mit einer inhärenten Teilintelligenz
bestehen. Das Verhalten des Gesamtsystems wird durch die Kommunikation und
Kooperation der intelligenten Systemelemente geprägt sein. Aus informationstech-
nischer Sicht handelt es sich nach dem Verständnis der Forschergruppe des SFB um
verteilte Systeme von miteinander kooperierenden Agenten. Daraus eröffnen sich

2https://www.uni-paderborn.de/forschung/forschung-im-profil/

intelligente-technische-systeme
3https://www.iem.fraunhofer.de
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1 Einleitung

faszinierende Möglichkeiten für die Gestaltung der maschinenbaulichen Erzeugnisse
von morgen. Der Begriff Selbstoptimierung charakterisiert diese Perspektive: Selbst-
optimierung ermöglicht handlungsfähige Systeme mit inhärenter

”
Intelligenz“, die

in der Lage sind, selbstständig und flexibel auf veränderte Umgebungsbedingungen
zu reagieren4.

Die Fortführung der Themen des SFB 614 konnten durch die erfolgreiche Bean-
tragung des Spitzenclusters it’s OWL weitergeführt werden. Inzwischen ist hieraus
ein großes Technologie-Netzwerk mit dem Thema intelligente technische Systeme
entstanden, in dem über 200 Unternehmen, Forschungseinrichtungen und Organi-
sationen Lösungen für intelligente Produkte und Produktionsverfahren entwickeln.
Dabei steht it’s OWL für Innovationsgeist, Technologiekompetenz, Forschungsex-
pertise und gelebten Technologietransfer. Kennzeichen von it’s OWL sind das enge
Zusammenspiel von mittelständischen Technologieführern und anwendungsorientier-
ten Forschungseinrichtungen im produzierenden Gewerbe. Neue Technologien wer-
den gemeinsam erschlossen und in praxisnahen Angeboten für kleine und mittlere
Unternehmen zur Verfügung gestellt. Seit 2022 hat sich it’s OWL zum Ziel gesetzt,
Ostwestfalen Lippe zur Modellregion für nachhaltige Wertschöpfung zu entwickeln5.

Damit sind die Arbeiten und auch die Ergebnisse der Nachwuchsgruppe DART
nicht als alleinstehend zu betrachten, sondern stehen in einer Linie zu vorausgehen-
den und zukünftigen Projekten im Bereich der intelligenten Systeme an der Uni-
versität Paderborn und ihrem Forschungsumfeld in der Region. Der Beitrag der
Nachwuchsgruppe liegt dabei in der Erforschung von grundlegenden Methoden, die
maschinelles Lernen mit regelungstechnischen Ansätzen synergetisch verbinden.

1.3 Motivation für datengetriebene Methoden in der
Regelungstechnik

Der Begriff KI – Künstliche Intelligenz wird mit den immer größer werdenden
Rechenkapazitäten seit einigen Jahren sehr gehypt. Dieses Phänomen ist im All-
tag beispielsweise durch Diskussionen zum Thema

”
Was sind Chancen und Ge-

fahren der KI?“ sichtbar und auch viele Forschungsgruppen beschäftigen sich mit
den Möglichkeiten der KI in ihren vielfältigen Anwendungen. Die Verwendung von
Methoden, die mit Daten arbeiten ist dagegen in der Regelungstechnik schon seit
längerer Zeit etabliert, wobei hier nicht einmal KI oder maschinelles Lernen gemeint
sein muss. Für jede Regelung eines technischen System sind wir darauf angewiesen,
Messdaten zurückzuführen und diese innerhalb des Regelungsansatzes auszuwerten.
Ansonsten wäre es nicht möglich, die Grundidee einer Regelung umzusetzen. Daher
ist es im Kontext der Regelungstechnik nur natürlich darüber nachzudenken, ob
die vorhandenen gemessenen Daten auch zur zusätzlichen Weiterverarbeitung ge-
nutzt werden können, um möglicherweise eine höhere Form des Wissens über das
System zu erhalten. Dies kann auch mit Lernen bezeichnet werden. Ebenso bei der
Modellierung von technischen Systemen wird die klassische Verwendung von Daten
deutlich: Sie kann sowohl durch eine theoretische als auch durch eine experimentelle

4https://www.uni-paderborn.de/projekt/281
5https://www.its-owl.de/home
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Theoretische Modellbildung Experimentelle Modellbildung

(vereinfachende) Annahmen

Physikalische Gesetze
(Struktur, Parameter)

Analytisches Modell
parametrisch

Vereinfachungen

A-Priori-Vorwissen

Struktur bekannt Struktur unbekannt

Experiment

Identifikation

parametrisch nicht-parametrisch

Empirisches Modell

parametrisch nicht-parametrisch

Vereinfachungen

Vergleich & Auswahl

Abbildung 1.3 Gegenüberstellung der unterschiedlichen Vorgehensweisen bei der theoretischen
und experimentellen Modellbildung. In Anlehnung an [1].

Modellbildung erfolgen, außerdem gibt es Mischformen. Diese sind nach [1] in der
Abbildung 1.3 dargestellt und unterscheiden sich darin, ob Vorwissen aus physikali-
schen Gesetzen oder Messdaten aus Experimenten zur Identifikation eines Modells
genutzt werden. Das Vorgehen der beiden Modellierungsstrategien ähnelt sich an ei-
nigen Stellen. Beide entwickeln ausgehen von Vorwissen und Annahmen ein Modell,
welches anschließend ggf. noch vereinfacht wird. Zudem ergänzen sich die Strategien
unter Umständen durch Teilelemente untereinander, z.B. bei der Parameteridentifi-
kation des analytisch entwickelten Modells durch Messdaten.

Daher sind die Grenzen zwischen den Perspektiven der physikalischen und expe-
rimentellen Modellbildung fließend zu sehen und nicht unbedingt streng definiert,
da viele Modelle sowohl mittels physikalischer Gesetzmäßigkeiten als auch durch
Messdaten beschrieben werden können. Diese können daher je nach Art der ver-
wendeten Informationen und Kenntnis der Systemstruktur als White-, Gray-, oder
Black-Box-Modelle charakterisiert werden. In der Abbildung 1.4 ist diese Unter-
teilung dargestellt: Ein White-Box-Modell liegt vor, wenn die Systemstruktur so-
wie Parameter durch physikalische Gesetzmäßigkeiten bekannt sind und damit ein
physikalisch motiviertes Modell aufgestellt werden kann. Black-Box-Modelle stel-
len dagegen das Ein-/Ausgangsverhalten dar und erlauben lediglich Vermutungen
zur Struktur. Ein Beispiel für diese Art von Modellen sind neuronale Netze, die
keinerlei physikalische Interpretation zulassen. Modelle, die sowohl aus der theo-
retischen als auch aus der experimentellen Modellbildung hervorgehen, werden als
Gray-Box-Modelle bezeichnet. Diese Modelle, deren Anteil von theoretischer bzw.
experimenteller Modellbildung variieren kann, werden im weiteren Verlauf auch als
hybrid bezeichnet. Zu ihnen werden häufig auch Modelle gezählt, die ML-Methoden
sinnvoll mit regelungstechnischen Ansätzen verbinden, beispielsweise die Methoden
PGNN in Abschnitt 3.3 oder SINDy in Abschnitt 3.2.

Die Arbeit mit Methoden des maschinellen Lernens, also mit Methoden, die Bei-
spieldaten eines Systems auf ein mathematisches Modell abbilden, kann somit prinzi-
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Theoretische
Modellbildung

Experimentelle
Modellbildung

White-Box-Modell Gray-Box-Modell Black-Box-Modell
NNPG(R)NN SINDyPhys. Modell

Physikalische Gesetze,
Struktur bekannt,

Parameter bekannt

Physikalische Gesetze
oder Regeln,

Struktur un-/bekannt,
Parameter unbekannt,

Messbare Signale

Ein-/Ausgangssignale,
Vermutungen über

Struktur

Abbildung 1.4 Modellkategorien basierend auf dem Grad der verwendeten Messdaten und des
physikalischen Vorwissens, angelehnt an [1].

piell relativ einfach auch für regelungstechnische Systeme durchgeführt werden. Da-
bei haben wir nie den Anspruch Systeme zu erzeugen, die KI besitzen, denn dies wird
im Allgemeinen mit der Nachahmung von menschlichem Verhalten assoziiert. Wir
wollen ML nutzen, um die vorhandenen oder einfach erhaltenen Daten vorteilhaft zu
nutzen und zum Beispiel Modelle oder Regelungsansätze zu verbessern sowie adaptiv
gestalten zu können. Dabei wollen wir aber weiterhin das System sehr gut verste-
hen können, was besonders gut mit einer physikalisch motivierten Beschreibung in
Form von Differentialgleichungen funktioniert. Daher ist eines der Ziele der Nach-
wuchsgruppe DART die Interpretierbarkeit von hybriden Modellen bestehend aus
klassischer Regelungstechnik und datengetriebenen Methoden zu gewährleisten und
die Verwendung von Black-Box-Modellen wie beispielsweise neuronalen Netzen zu
vermeiden. Neben dem Wunsch der Interpretierbarkeit gibt es weitere Aspekte, die
in der hybriden Modellierung von Modellen und Regelungsansätzen berücksichtigt
werden sollen. Hierzu gehören

• ein geringer Modellierungsaufwand,

• ein geringer Rechenaufwand bei der Prädiktion,

• eine hohe Dateneffizienz,

• die physikalische Interpretierbarkeit,

• die Nutzung von physikalischem Vorwissen,

• die Anwendung bestehender Entwurfsverfahren,

• die Adaptionsfähigkeit bei Systemveränderungen,

• gutes Extrapolationsverhalten.

Diese Punkte sind wichtig, damit sich neu entwickelte hybride Ansätze gut in das
Vorgehen in der Regelungstechnik einbinden lassen. Sie werden in Abschnitt Ab-
schnitt 2.3 genauer erläutert und innerhalb dieser Monografie wieder aufgegriffen,
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um die entwickelten Methoden einzuordnen. Abschließend lässt sich sagen, dass es
viele Gründe für die Nutzung von datengetriebenen Ansätzen im Bereich der Rege-
lungstechnik gibt und sich diese sehr gut anhand von mechatronischen Systemen mo-
tivieren lassen. Die Forschungsergebnisse in diesem Beitrag werden zeigen, dass vor
allem Methoden mit ungenauen oder fehlerhaften Modellen und adaptive Ansätze
davon profitieren, dass kontinuierlich Daten von technischen Systemen gesammelt
werden und diese vorteilhaft genutzt werden können. Im Folgenden werden entlang
des regelungstechnischen Entwurfsprozesses die durch die Nachwuchsgruppe DART
entwickelten Methoden vorgestellt und in den Stand der Technik eingebettet.
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2 Grundlagen des maschinellen
Lernens in der Regelungstechnik

Methoden des maschinellen Lernens werden inzwischen in vielen wissenschaftlichen
Fächern verwendet und daraufhin analysiert, ob sie etablierte Verfahren verbessern
können. Die Nachwuchsgruppe DART hat ebendies für die Anwendung auf rege-
lungstechnische Probleme untersucht, daher sollen an dieser Stelle einige Grundlagen
erläutert werden, die für das Verständnis von ML und die Anwendung auf regelungs-
technische Methoden wichtig sind. Dafür motivieren wird in Abschnitt 2.1 zunächst
motiviert, warum ausgewählte ML-Ansätze vorteilhaft in der Regelungstechnik ein-
gesetzt werden können. Anschließend werden in Abschnitt 2.2 grundlegende Begriffe
und Eigenschaften von ML-Ansätzen allgemein erläutert, sodass diese im Verlauf
dieses Beitrages vorausgesetzt werden können. Einzelne grundlegende ML Metho-
den, die im Rahmen unserer Arbeit verwendet oder weiterentwickelt werden, wer-
den zusätzlich an den entsprechenden Stellen in den folgenden Kapiteln eingeführt.
Dazu gehören beispielsweise neuronale Netze (siehe Unterabschnitt 3.3.1) oder die
Methode der Bayesschen Optimierung (siehe Unterabschnitt 4.4.3). Abschließend
für dieses grundlegende Kapitel werden Kriterien und Ziele formuliert, die sich bei
der Entwicklung von regelungstechnisch wertvollen hybriden Methoden als wichtig
herausgestellt haben und in den neu entwickelten Ansätzen der Nachwuchsgruppe
DART Berücksichtigung finden.

2.1 Datengetriebene Methoden

Beim Aufbau von hybriden Methoden stellt sich die Frage, welche Methoden des
maschinellen Lernens sinnvollerweise eingesetzt werden sollten. Dies wird an dieser
Stelle durch zwei Methoden motiviert, die sich in ihrem Lernansatz grundsätzlich
unterscheiden: Einem (flachen) neuronalen Netz (siehe Abschnitt 3.3 ) im Vergleich
zu der physikalisch motivierten Bibliotheksmethode SINDy (siehe Abschnitt 3.2).
Dazu betrachten wir ein nichtlineares Pendel, welches im Gelenk aktuiert ist und in
der Abbildung 2.1(a) dargestellt wird. Der Zustandsvektor lautet x = [x1, x2]

⊤ =
[φ, φ̇]⊤ und die Differentialgleichungen ergeben sich zu

[
ẋ1
ẋ2

]
=

[
x2

−g
l
sin x1 − d

ml2
x2 +

1
ml2

u

]
,

m = 1kg, g = 9, 81
m

s2
, l = 0, 5m, d = 0, 1

kgm2

s
.

(2.1)

Es wird angenommen, dass der Zustandsvektor x vollständig messbar ist. Außer-
dem besitzt das System für u = 0 eine stabile untere Ruhelage in x∗

1 = [2kπ, 0]T und
eine instabile obere Ruhelage in x∗

2 = [(2k + 1)π, 0]T mit k ∈ Z. An diesem Beispiel
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mit einfachem dynamischen Verhalten soll nun gezeigt werden, wie mit relativ we-
nig Vorwissen die Dynamik mittels unterschiedlicher ML Methoden gelernt werden
kann. Das Vorwissen sind hierbei nicht die oben beschriebenen Differentialgleichun-
gen, sondern wir gehen ausschließlich davon aus, dass wir wissen, dass das System
durch zwei Zustände beschrieben werden kann, eine Eingangsgröße im Gelenk be-
sitzt und dass Messgrößen der Zustände und des Eingangs erzeugt werden können.
Hierfür bereiten wir diese Messdaten, die anschließend die Trainingsdaten für die
Lernalgorithmen darstellen, vor, indem 100 Simulationen (jeweils mit einer Dauer
von 3 s und einer Schrittweite von ∆t = 0.01 s) mit zufälligen Anfangsauslenkungen
x0 im Zustandsraum und zufälligen Systemeingängen u durchgeführt werden vgl.
Abbildung 2.1(b). Die Messeinrichtung wurde durch ein additives weißes gaußsches
Rauschen mit einer Standardabweichung von σ = 0.02 modelliert. Die Testtrajek-
torie ist so gewählt, dass das Pendel zunächst autonom aus der Anfangsauslenkung
x0 = [7π

8
, 0]⊤ schwingt und nach 2 s sinusförmig mit ansteigender Schwingungsfre-

quenz angeregt wird. Dadurch erfährt das Pendel einerseits den Einfluss der Stell-
größe und andererseits, aufgrund der hohen Auslenkung, die nichtlinearen Anteile
der Dynamik.

𝑥1

𝑢

(a) Pendel
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(b) Trainingstrajektorien

Abbildung 2.1 Das nichtlineare aktuierte Pendel illustriert als einfaches Beispiel die unter-
schiedlichen Strategien zur Modellbildung in der Regelungstechnik.

Die Dynamik des Pendels lässt sich schon durch ein flaches neuronales Netz ver-
gleichsweise gut approximieren. Dabei ist mit einem flachen neuronalen Netz ein
mehrschichtiges Perzeptron gemeint, das nur eine versteckte Schicht besitzt im Ge-
gensatz zu tiefen neuronalen Netzen, die hunderte versteckte Schichten besitzen
können, siehe [2]. Das Netz bildet dabei die zeitdiskrete Dynamik ab und besitzt da-
her drei Eingänge in = [x1,k, x2,k, uk]

T und zwei Ausgänge out = [x1,k+1, x2,k+1]
T .

Die versteckte Schicht besteht aus 30 Neuronen, die mit einer hyperbolischen Ak-
tivierungsfunktion fact(x) =

2
1+e−2x − 1 basierend auf dem Tangens betrieben wer-

den. Freie Parameter im neuronalen Netz sind die Gewichte auf den Verbindungen
zwischen verschiedenen Neuronen und ein Bias in jedem Neuron, sodass das hier
aufgestellte Netz auf 3 · 30 + 30 = 120 Parameter zwischen der Eingangs- und ver-
steckten Schicht und 30 ·2+2 = 62 Parameter zwischen der versteckten Schicht und
der Ausgangsschicht kommt. Insgesamt ergeben sich 182 freie Parameter, die durch
einen Lernalgorithmus basierend auf Optimierungsmethoden angepasst werden.
Das Ergebnis des Lernens durch ein flaches neuronales Netz mit 30 Neuronen ist

in der Abbildung 2.2 dargestellt. Es wird deutlich, dass das aufgestellte neuronale
Netz in der Lage ist, die Dynamik der Testtrajektorie mit einer hohen Genauig-
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Abbildung 2.2 Vergleich der Approximation der Pendeldynamik mit unterschiedlichen neu-
ronalen Netzen mit 30 bzw. 10 versteckten Neuronen und der bibliotheksbasierten Methode
SINDy mit unterschiedlichen Bibliotheksansätzen (siehe Gleichung (2.2)).

keit abzubilden und dadurch das Lernziel grundsätzlich erfüllt werden konnte. Wei-
terführend muss aber überlegt werden, wie mit dieser Struktur weiter umgegangen
werden kann. Das neuronale Netz ist eine Black-Box Struktur (siehe Abbildung 1.4)
und kann daher ausschließlich das Ein-/ Ausgangsverhalten abbilden. Wenn sich ei-
ner der Systemparameter, beispielsweise der Dämpfungskoeffizient d, ändern würde,
dann müsste der Lernprozess inklusive der Gewinnung der Trainingsdaten kom-
plett von vorne begonnen werden. Außerdem ist das neuronale Netz nicht in der
Lage die zu Grunde liegenden physikalischen Terme zu identifizieren. Somit wird
beispielsweise nicht klar, dass die Dynamik des Pendels durch die Sinusfunktion
schwingungsfähig ist (siehe Gleichung (2.1)). Eine Regelung könnte nur durchgeführt
werden, wenn die Kenntnis des Ein-/Ausgangsverhaltens ausreichend hierfür ist und
Stabilitätsuntersuchungen basierend auf der Analyse von mathematischen Gleichun-
gen können nicht durchgeführt werden. Daher kann festgehalten werden, dass ein
neuronales Netz prinzipiell sehr gut in der Lage ist mit relativ wenig Aufwand die
Dynamik eines technischen Systems zu erlernen, aber je nach geplanter zukünftiger
Anwendung dieses Modells kann es nicht geeignet weiterverwendet werden.

In einem zweiten Schritt ist auch ein neuronales Netz mit 10 Neuronen in der ver-
steckten Schicht trainiert worden. Das Ergebnis ist ebenfalls in der Abbildung 2.2 zu
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2 Grundlagen des maschinellen Lernens in der Regelungstechnik

sehen und zeigt, dass die Komplexität dieses neuronale Netz nicht ausreicht, um die
Dynamik des einfachen Pendels korrekt abzubilden. Schon nach einer kurzen Zeit
von ca. 0, 3 s weicht das approximierte Systemverhalten deutlich vom echten System
ab. Dadurch wird deutlich, dass ein neuronales Netz immer gut auf das vorliegende
System angepasst werden muss. Eine zu hohe oder zu geringe Komplexität des Mo-
dells, hier ausgedrückt durch die Anzahl der versteckten Neuronen und somit der
freien Parameter im System, wirkt sich negativ auf das Lernergebnis aus.

Im Vergleich zu neuronalen Netzen, die ein Black-Box-Modell der Dynamik erzeu-
gen, versucht die Methode SINDy (siehe Abschnitt 3.2) physikalische Terme durch
die Auswahl aus einer Funktionsbibliothek zu identifizieren, die in der Lage sind
die Dynamik zu beschreiben. Damit ist diese Methode den Gray-Box-Methoden
zuzuordnen. SINDy basiert dabei auf der Idee, dass technische Systeme in der Re-
gel durch eine begrenzte Zahl an physikalischen Termen zu beschreiben sind und
beschränkt daher die Auswahl von physikalischen Termen aus der zu Grunde lie-
genden Bibliothek auf eine möglichst kleine Anzahl. Um SINDy anzuwenden, muss
zunächst eine Bibliothek erstellt werden, aus der die Beschreibung extrahiert wer-
den soll. Dabei sollte nach Möglichkeit Wissen über das dynamische Verhalten des
Systems durch die Nutzung in der Bibliothek eingebracht werden. Im vorliegenden
Beispiel werden drei unterschiedliche Bibliotheken auf ihre Eignung zum Erlernen
der Pendeldynamik untersucht:

Ψ1(x, u) =
[
x1 x2 sin x1 u

]T
,

Ψ2(x, u) =
[
x1 x2 sin x1 sin x2 cos x1 cos x2 x21 x22 u

]T
,

Ψ3(x, u) =
[
x1 x2 sign x1 sign x2 x21 x22 u

]T
.

(2.2)

Es wird deutlich, dass die Bibliothek Ψ1 alle Terme enthält, um die Differenti-
algleichungen des Pendels korrekt anzunähern. Bei Ψ2 sind diese Terme ebenfalls
enthalten, aber es werden zusätzlich weitere zur Auswahl angeboten. Die dritte Bi-
bliothek Ψ3 beinhaltet dann nicht mehr den Sinusterm, sondern dynamisch eher
unpassende Anteile wie sign x1. Mit Hilfe der gleichen Trainingsdaten wie im Fall
des neuronalen Netzes bestimmt nun der Algorithmus von SINDy die Parameter,
die für die Systembeschreibung am besten passend sind, so dass sich beispielsweise
eine Systembeschreibung durch

[
ẋ1
ẋ2

]
= θ1 ·Ψ1 =

[
0 1.0000 0 0
0 −0.4000 −19.6203 4.0000

]
·




x1
x2

sin x1
u




=

[
x1

−0.4x2 − 19.6203 sinx1 + 4u

]
(2.3)

bei der Verwendung der Bibliothek Ψ1 ergibt. Die vollständigen Parametermatrizen
lauten

θ1 =

[
0 1.0000 0 0
0 −0.4000 −19.6203 4.0000

]
,
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θ2 =

[
0 1.0000 0 0 0 0 0 0 0
0 −0.4000 −19.6203 0 0 0 0 0 4.0000

]
,

θ3 =

[
0 1.0000 0 0 0 0 0

0.3799 0.0309 −5.3819 0.6962 0.0057 −0.0094 0.9197

]
.

und müssen immer in Kombination mit den jeweiligen Bibliotheken Ψi, i = 1, ..., 3
gesehen werden.

Bei Betrachtung der Parametermatrizen θ1 und θ2 wird deutlich, dass sich durch
die Anwendung von SINDy der korrekte Parametersatz, der aus den DGLn aus Glei-
chung (2.1) bekannt ist, ergibt. Das heißt, dass SINDy in der Lage ist, die Dynamik
des Pendels mit Hilfe der Vorgabe einer passenden physikalisch motivierten Biblio-
thek vollständig abzubilden. Dieses Resultat sieht man auch in Abbildung 2.2, in der
die drei Ergebnisse von SINDy ebenfalls dargestellt werden. Sowohl der Winkel φ
als auch die Winkelgeschwindigkeit φ̇ zeigen das gleiche Verhalten, wie das Original-
system. Der geringe Fehler wird ausschließlich durch die simulierten Rauschprozesse
verursacht. Wenn dagegen die physikalisch eher weniger gut passende Bibliothek θ3

verwendet wird, ergibt sich ein ähnlich schlechtes Ergebnis wie bei dem neuronalen
Netz mit nur 10 versteckten Neuronen und die Prädiktion stimmt nur für einen sehr
kurzen ersten Teil der Trajektorie mit der echten Dynamik des Systems überein.

Diese Analyse zeigt somit, dass bei beiden Ansätze, also dem flachen neuronalen
Netz und auch SINDy sowohl sehr gute als auch schlechte Ergebnisse produzie-
ren können, je nachdem, ob die die Methode beeinflussenden Parameter gut oder
schlecht gewählt worden sind. Diese Aspekte, wie die Anzahl von Neuronen oder die
Auswahl der Bibliothek, werden im Bereich des ML auch als Hyperparameter be-
zeichnet und charakterisieren den Erfolg von Methoden entscheidend. Ein Vorteil der
physikalisch motivierten Methode SINDy ist es, dass die Testung von unterschied-
lichen Bibliotheken vergleichsweise einfach verstanden werden kann. Offensichtlich
spielen viele Terme der Bibliothek θ2 keine Rolle in der Dynamik des Pendels und
bei Betrachtung von θ3 wird deutlich, dass der Algorithmus keine dünnbesetzte
Struktur bestimmen konnte und damit der Schluss nahe liegt, dass die betrachteten
physikalischen Terme nicht für die Beschreibung der Dynamik geeignet sind.

Aus diesem Beispiel ziehen wir einige Konsequenzen für unsere Arbeit mit
Methoden, die aus klassischer Regelungstechnik und Methoden des maschi-
nellen Lernens bestehen und somit hybrid sind. Es ist vorteilhaft, bekanntes
physikalisches Wissen zu verwenden und in die hybride Methode einbrin-
gen zu können, da dadurch auch die Komplexität des ML Modells weniger
gering sein kann. Außerdem streben wir an, dass die Ergebnisse des Algorith-
mus physikalisch interpretierbar sind und somit von der anwendenden
Person im ingenieurwissenschaftlichen Kontext auch gut verstanden werden
können.

Neben diesen zwei Aspekten gibt es im Kontext hybrider regelungstechnischer
Systeme auch weitere Kriterien und Ziele, die bei einer Entwicklung berücksichtigt
werden sollten. Auf diese wird ausführlich in Abschnitt 2.3 eingegangen.
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2.2 Grundlagen des maschinellen Lernens

Je nach Sichtweise existieren zahlreiche Definitionen für den Begriff der künstlichen
Intelligenz (KI), wobei sich die grundlegende Idee folgendermaßen charakterisieren
lässt:

”Künstliche Intelligenz ist die Eigenschaft eines IT-Systems, menschen-
ähnliche, intelligente Verhaltensweisen zu zeigen.”[3]

Die Intelligenz einer KI lässt sich durch die Fähigkeit des Lernens charakterisie-
ren. Lernen meint hier, dass die KI künstliches Wissen aus Erfahrung generieren
kann, d. h. anhand von Beispielen (Lerndaten) werden Muster erkannt und verallge-
meinert mit dem Ziel nach der Lernphase auch bisher unbekannte Daten verarbei-
ten zu können. Im ingenieurwissenschaftlichen Bereich können Algorithmen mit der
Fähigkeit zu Lernen die Automatisierung komplexer Aufgaben erleichtern, indem
gewisse menschliche Wahrnehmungs- und Verstandsleistungen durch maschinelles
Lernen (ML) realisiert werden. Der Begriff des maschinellen Lernens lässt sich fol-
gendermaßen definieren:

”ML bezeichnet Verfahren, bei denen Computer-Algorithmen aus Daten
lernen, beispielsweise Muster zu erkennen oder gewünschte Verhaltens-
weisen zu zeigen, ohne dass jeder Einzelfall explizit programmiert wurde.
[. . . ] Oft wird Maschinelles Lernen mit KI gleichgesetzt. Während in der
KI häufig ML eingesetzt wird, ist ML eine Methode, ein Werkzeug unter
vielen der KI.”[3]

In anderen Quellen wird eine Unterscheidung für starke und schwache KI vorge-
schlagen (siehe zum Beispiel [4]), welche ähnlich unterschieden werden wie die gera-
de betrachteten Klassen KI und ML. Starke KI-Systeme sind Maschinen mit men-
schenähnlicher Intelligenz oder ihnen sogar überlegen und die sich selbst unabhängig
vom Menschen außerhalb ihres ursprünglichen Anwendungszwecks weiterentwickeln.
Bis heute sind keine Ansätze für starke KI bekannt und ob sie in der Zukunft existie-
ren werden, kann aktuell nicht vorhergesagt werden. Dagegen beschreibt die schwa-
che KI Anwendungen, die von Ingenieur*innen speziell auf einen Anwendungszweck
hin entwickelt worden sind. Hierzu gehören beispielsweise die Abbildung von Kenn-
linien durch neuronale Netze oder die Abbildung von Fehlermodellen durch Gauß-
Prozesse.
Wie oben beschrieben ist das Ziel des maschinellen Lernens aus den vorhandenen

Daten brauchbare Informationen zu extrahieren um anschließend Vorhersagen über
unbekannte Eigenschaften und Vorschläge für Entscheidungen treffen zu können
(siehe auch [5]). Dabei ist es erst einmal nicht von Bedeutung, was die betrach-
teten Daten genau beschreiben. ML besteht grundsätzlich aus drei verschiedenen
Komponenten, die in der Lage sind das ”Lernen” abzubilden. Dazu gehören

• ein Datensatz,

• ein mathematisches Modell und

• ein Lernalgorithmus.
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Der Datensatz beinhaltet dabei die Informationen, die das betrachtete System be-
schreiben und muss so bestimmt werden, dass die Lernaufgabe durchführbar ist.
Informationen, die nicht in den Daten vorhanden sind, können durch das Modell
abgebildet werden. Das mathematische Modell soll in einer geeigneten Weise die ge-
lernte Information speichern können und nach dem Lernen für Vorhersagen genutzt
werden können. Ein solches Modell kann beispielsweise ein neuronales Netz oder ein
Entscheidungsbaum sein. Der Lernalgorithmus trainiert das Modell mit Hilfe der Da-
ten, um die Aussagen der Daten verallgemeinern zu können und es dem Modell zu
ermöglichen nach dem Lernen auch Prädiktionen für unbekannte Daten durchführen
zu können. Es ist darauf zu achten, dass diese drei Komponenten aufeinander und
auf die spezifische Lernaufgabe abgestimmt werden.

Abbildung 2.3 Einordnung verschiedener Kategorien des maschinellen Lernens.

Methoden des maschinellen Lernens lassen sich nach ihren Eigenschaften in un-
terschiedliche Kategorien einordnen, siehe auch Abbildung 2.3. Eine Möglichkeit
der Kategorisierung ist die Art von Daten, die zum Lernen zur Verfügung stehen.
So macht es einen Unterschied, ob ein Algorithmus entwickelt wird, der anhand
von vorgegebenen Ein- und Ausgangsdaten weiß, was er abbilden soll oder ob kei-
ne gewünschten Ausgangsdaten vorhanden sind. Diese unterschiedlichen Szenari-
en werden als überwachtes bzw. unüberwachtes Lernen bezeichnet. Methoden des
unüberwachten Lernens versuchen dabei nur anhand der Eingabedaten Muster zu
erkennen und diesen beispielsweise Kategorien zuzuordnen, so dass hier Methoden
vorliegen, die keine Zielwerte der Daten benötigen. Ein Beispiel dieser Art von Me-
thoden ist die Clusteranalyse, bei der es das Ziel ist, Cluster in unstrukturierten
Daten zu finden, die auf Gemeinsamkeiten in den Daten beruhen. Da für die Arbei-
ten der Nachwuchsgruppe DART Algorithmen des überwachten Lernens die größte
Bedeutung haben, soll an dieser Stelle aber hauptsächlich auf diese Art des Lernens
eingegangen werden. Für das überwachte Lernen müssen Daten mit sogenannten
Labeln vorliegen. Das heißt, dass diese Datensätze vorab durch z.B. Expertenwissen
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oder Experimente um die gewünschte Ausgabe, die Label, für eine definierte Eingabe
ergänzt werden, sodass auch die korrekte Ausgabe eines Modells überprüft werden
kann. Dies ist in Abbildung 2.4 auf der linken Seite abgebildet. Der Lernalgorithmus
erhält die Prädiktion der Ausgabe aus dem bisher gelernten Modell und kann sie
mit der Sollausgabe aus den Trainingsdaten vergleichen. Wenn die Werte gut genug
übereinstimmen, kann das Lernen beendet werden. Im anderen Fall macht der Ler-
nalgorithmus einen Änderungsvorschlag für das Modell, welches dementsprechend
aktualisiert wird. Damit ist dann eine Lerniteration abgeschlossen. Nach dem Trai-
ning des Modells kann es im Idealfall für die Prädiktion von unbekannten Daten,
bei denen die Ausgabe nicht bekannt ist, genutzt werden. Dies ist in Abbildung 2.4
rechts dargestellt. Wenn dies gut gelingt, spricht man von einem Modell, das gene-
ralisiert, da es für unbekannte Eingabedaten korrekte Ausgaben erzeugt. Das heißt,
eine hohe Generalisierbarkeit bedeutet, dass das Modell die Fähigkeit besitzt ange-
messen mit neuen bisher unbekannten Daten umzugehen, die aus demselben System
stammen wie die, die zur Erstellung des Systems verwendet wurden.

Trainingsdaten

Modell Lernalgorithmus

Unbekannte Daten

Modell
Prädiktion

Aktualisiere Modell

Prädiktion

Abbildung 2.4 Darstellung des überwachten Lernprozesses: Training des Modells (links); Ver-
wendung des Modells für die Prädiktion bei einem unbekannten Datensatz (rechts), angelehnt
an [5].

Innerhalb des Gebiets des überwachten Lernens gibt es weitere Unterscheidun-
gen der Methoden, abhängig davon wie das Lernergebnis des Modells aussehen soll,
siehe auch Abbildung 2.3. Für die Nachwuchsgruppe DART sind dabei Modelle,
die Regressionsaufgaben lösen, die wichtigste Klasse. Eine Regression liegt dann
vor, wenn das Modell nach dem Lernprozess einen funktionalen Zusammenhang
zwischen Ein- und Ausgangsgrößen beschreibt. Oder auch in einer mehr mathema-
tischen Beschreibung: Die Regression ist ein statistisches Analyseverfahren, welches
Beziehungen zwischen einer abhängigen und einer oder mehrerer unabhängiger Va-
riablen in Form von y = f(x) modelliert [6]. Dies kann beispielsweise eine Kenn-
linie sein, bei der den Eingangsdaten die gewünschten Ausgangsgrößen in einem
passenden mathematischen Zusammenhang zugeordnet werden oder ein neuronales
Netz, das für eine Funktionsapproximation genutzt wird. Eine weitere Kategorie im
überwachten Lernen ist die Klassifikation. Hier wird ein Modell mittels maschinel-
len Lernens so gelernt, dass es Daten in eine planmäßige Sammlung von abstrakten
Klassen, die zur Abgrenzung und Ordnung verwendet werden, sortieren kann [2].
Dabei werden die einzelnen Klassen durch die Einteilung von Objekten anhand be-
stimmter übereinstimmender Merkmale bestimmt. Zentraler Punkt hierbei ist das
Erkennen von Mustern, den Merkmalen, die allen Dingen einer Kategorie gemein-
sam sind und sie vom Inhalt anderer Kategorien unterscheiden. Für eine Klassifi-
kation gibt es viele Beispiele, die auch schon aus dem Alltag bekannt sind. Dazu
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gehören Spracherkennung, Texterkennung oder auch Gesichtserkennung, also Auf-
gaben, die der Mensch standardmäßig erfüllen kann. Im technischen Bereich kann
eine Klassifizierung auch die Fälle ”normaler” bzw. ”fehlerhafter” Betrieb eines Sys-
tems beschreiben und damit sehr hilfreich in der Fehlererkennung sein. Eine weitere
Kategorie des überwachten Lernens ist das Deep Learning (siehe Abbildung 2.3),
was auf der Verwendung von tiefen neuronalen Netzen beruht [7]. Die beim Deep
Learning verwendeten neuronalen Netze besitzen eine große Anzahl von versteckten
Schichten zwischen Eingabe- und Ausgabeschicht und damit eine komplexe innere
Struktur, benötigen aber für das Training dementsprechend eine große Menge an
Daten. Durch ihre sehr hohe Komplexität erlaubt Deep Learning die Verarbeitung
und Analyse von sehr komplexen Datenmustern. Aktuell werden große Modelle wie
Large Language Models betrachtet, die bis zu einer Billion lernbarer Parameter besit-
zen und es ermöglichen sollen eine generelle künstliche Intelligenz wie beispielsweise
ChatGPT [8] zu erzeugen. Viele Wissenschaftler*innen sehen hierin einen großen
technologischen Fortschritt, der auch gesellschaftliche Auswirkungen haben wird.
Eine weitere Form des maschinellen Lernens, welche zwischen dem überwachten

und unüberwachten Ansatz steht, ist das Reinforcement Learning1 (RL) oder auch
bestärkendes Lernen, siehe auch Abbildung 2.3. Die Grundidee des RL basiert dar-
auf, dass ein System sein Verhalten dahingehend anpasst, dass es eine möglichst
große Belohnung in der Interaktion mit seiner Umwelt erhält, siehe hierzu auch [9].
Das heißt, wir gehen davon aus, dass ein Agent erst einmal frei in einer vorgegebenen
Umwelt agieren kann und unterschiedliche Aktionen durchführen kann. Durch die
Interaktion erhält er Informationen darüber, welche Konsequenzen seine Handlun-
gen haben und lernt durch Ausprobieren, was für sein Ziel vorteilhafte oder unvor-
teilhafte Handlungen sind. Dieses Lernen von Interaktionen ist ein sehr natürliches
Verständnis von diesem Vorgang, denn es beschreibt auch die Lernansätze, die der
Mensch verfolgt, nämlich Lernen durch Ausprobieren und Erkunden. Die schwie-
rigsten Aufgaben beim RL liegen dann vor, wenn eine Aktion nicht direkt eine
gute Bewertung erhält, sondern sich erst in der noch unbekannten Zukunft positiv
auswirkt. Das finale Ziel der RL Algorithmen wird aber dadurch beschrieben, dass
der Agent die maximale Gesamtbelohnung erzielen soll und daher sind temporäre
schlechte Handlungen möglicherweise in der Zukunft trotzdem vorteilhaft. Dies führt
zu einem weiteren wichtigen Problem, welches im RL gelöst werden muss, und zwar
einen Kompromiss zwischen Exploitation (Ausnutzen) und Exploration (Erkunden)
zu finden. Im ersten Fall nutzt man die Aktionen, in denen gute Ergebnisse schon
bekannt sind, um eine möglichst hohe Belohnung zu erhalten und im anderen Fall
erkundet man unbekannte Bereiche, in denen möglicherweise noch bessere Ergeb-
nisse zu erzielen sind. Hier wird deutlich, dass dies ein Dilemma ist, welches durch
den jeweiligen Algorithmus adressiert werden muss.
Für das maschinelle Lernen gibt es Empfehlungen, wie der Gesamtdatensatz am

effektivsten für ein möglichst gutes Lernergebnis zu nutzen ist. Mit circa 70% des
Gesamtdatensatzes sollten die Trainingsdaten den größten Teil beinhalten. Die Trai-
ningsdaten werden direkt für das Lernen des gesuchten Zusammenhangs verwendet
und sollten nach Möglichkeit alle Effekte und Einflüsse der Lernaufgabe beinhalten.
Die Testdaten sollten circa 15% des Gesamtdatensatzes beinhalten und dienen dem

1Da der englischsprachige Begriff allgemein üblich für diese Methoden ist, wird er in dieser Arbeit
bevorzugt verwendet.
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abschließenden Test des aufgestellten Modells. Das Testen besteht also daraus, mit
Hilfe von unbekannten Daten die Güte der Vorhersage des Modells überprüfen zu
können. Mit den übrigen 15% wird das Modell während des Lernprozesses validiert.
Abhängig von den Ergebnissen mit diesem Datensatz werden also die Architek-
tur oder andere Hyperparameter des Modells angepasst. Ein Beispiel hierfür bei
neuronalen Netzen ist die Anpassung der Anzahl von Neuronen oder versteckten
Schichten. Damit stehen die Validierungsdaten zwischen Trainings- und Testdaten,
haben aber ebenfalls einen großen Einfluss auf das Lernergebnis. Bevor Messdaten
jedoch als Trainings-, Validierungs- oder Testdaten genutzt werden können, ist u. U.
eine Vorverarbeitung der Daten erforderlich, um die in den Daten enthaltenen In-
formationen nutzen zu können [10], [11]. So erfolgt in der Regel eine Bereinigung
der Rohdaten, indem z. B. Rauschen gefiltert, Ausreißer detektiert und Duplikate
erkannt werden. Liegen unterschiedlich skalierte Datensätze vor, müssen diese nor-
malisiert oder standardisiert werden, um sie verarbeiten zu können. Ebenso kann es
notwendig sein, dass die Rohdaten in ein geeignetes Format übertragen oder auf-
grund verschiedener Datenquellen zu einem Datensatz fusioniert werden müssen.
Ferner kann es sinnvoll sein, bereits in der Datenvorverarbeitung eine Merkmals-
analyse vorzunehmen, um ggf. eine Reduktion auf die wesentlichen Daten zu er-
halten. Die Vorverarbeitung der Daten ist daher ein wichtiges Werkzeug, um eine
hohe Datenqualität und die erfolgreiche Nutzung nachfolgender Anwendungen zu
ermöglichen.

Schon für den Begriff der Generalisierbarkeit wurde beschrieben, dass ein zentrales
Ziel beim maschinellen Lernen die Güte der Vorhersagefähigkeit des gelernten Mo-
dells auf unbekannten Daten ist. Dabei ist es aber nicht sinnvoll ein Lernmodell mit
einer möglichst hohen Komplexität auszuwählen, bei dem sehr viele Hyperparameter
bestimmt werden müssen. Denn bei einer zu hohen Modellkomplexität im Verhältnis
zu den vorhandenen Daten besteht die Gefahr, dass sich das Modell zu stark auf
die Trainingsdaten anpasst und auch ungewünschte Eigenschaften wie zufällige Be-
sonderheiten und Fehler in den Daten gelernt werden. Dieses Verhalten widerspricht
einer guten Generalisierung und wird mit Overfitting (oder auch Überanpassung) be-
zeichnet. Erkennbar ist Overfitting daran, dass das Lernen sehr gute Ergebnisse auf
den Trainigsdaten zeigt, aber ein Test auf den Validierungsdaten schlecht ausfällt,
siehe Abbildung 2.5 rechts der gestrichelten Linie. Die Empfehlung ist dann die Mo-
dellkomplexität so zu wählen, dass der Fehler auf den Validierungsdaten minimal
ist. Ein ähnlicher Effekt des Overfitting tritt auf, wenn zu viele Trainingsiterationen
durchgeführt werden und auch in diesem Fall sollte das Training im Minimum des
Fehlers der Validierungsdaten abgebrochen werden. Weiteres Training führt dazu,
dass ungewünschte Effekte in den Trainingsdaten gelernt werden, dass Modell aber
nicht besser in seiner Generalisierbarkeit wird. Overfitting kann durch eine Kreuz-
validierung vermieden werden. Bei dieser Methode wird das Training des Modells
mehrfach auf einem unterschiedlich aufgeteilten Datensatz durchgeführt, so dass am
Ende verschiedene Modelle verglichen werden können. Das heißt, es werden n ver-
schiedene Datensätze aus dem Gesamtdatensatz erzeugt und diese werden immer
wieder unterschiedlich in die drei Klassen Training, Validierung und Test aufgeteilt.
Final werden die Modelle miteinander verglichen und wenn die Modelle vergleich-
bar sind, dann kann angenommen werden, dass der verwendete Algorithmus für den
vorliegenden Datensatz generalisierte Modell erzeugt. [12]
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Modellfehler

Modellkomplexität/
Iterationszahl

Trainingsdaten

Validierungsdaten

Abbildung 2.5 Typischer Effekt des Overfittings: Der Fehler auf den Trainingsdaten sinkt
bei höherer Modellkomplexität bzw. weiteren Trainingsiterationen immer weiter. Das Ergebnis
auf den Validierungsdaten wird aber ab der gestrichelten Linie wieder schlechter. Hier tritt
Overfitting auf.

Zur Vermeidung von Overfitting sollten die Ergebnisse eines Modells auf
Trainings-, Validierungs- und Testdaten betrachtet werden und auf Overfit-
ting kontrolliert werden. Sind diese vergleichbar und für den benötigten An-
wendungsfall ausreichend gut, kann eine belastbare Entscheidung über den
Einsatz des Modells getroffen werden. [12]

Die Modelle des ML besitzen im Allgemeinen Parameter, die ihre jeweilige Aus-
prägung beschreiben. Dies kann zum Beispiel die Anzahl der Neuronen und ver-
steckten Schichten in einem neuronalen Netz oder auch die Wahl der Aktivierungs-
funktionen sein. Diese Parameter werden Hyperparameter genannt und da sie großen
Einfluss auf das Lernergebnis haben, müssen sie sehr sorgfältig ausgewählt werden.
So ist es das Ziel einer Hyperparameteroptimierung die besten Einstellungen für die-
se vorab festgelegten Parameter des Modells zu finden. Eine Einstellung durch einen
Menschen ist dabei möglich, aber mit steigender Anzahl der Hyperparameter wird
die Dimension des Parameterraums sehr hoch und es ist nicht mehr möglich die Ein-
flüsse einzelner Parameter korrekt abzuschätzen. Es wird daher empfohlen, die Hy-
perparameteroptimierung strategisch durch einen Algorithmus durchzuführen, zum
Beispiel durch Ansätze, die im einfachen Fall auf einer Zufallssuche oder auf sequen-
tiellen Ansätzen mit Nutzung des Expected Improvement basieren. In Forschungs-
arbeiten konnte gezeigt werden, dass es sehr effektiv ist, in bestehenden Methoden
die Konfigurationen zu optimieren und dadurch verbesserte Ergebnisse zu erhalten.
Daher empfehlen [13], dass die Hyperparameteroptimierung immer als eine formale
äußere Schleife im Lernprozess durchgeführt werden sollte.

Um Phänomene wie das Over- oder Underfitting zu beeinflussen, die Anzahl der
Hyperparameter zu reduzieren oder Eigenschaften dieser zu forcieren, werden häufig
Strategien der Regularisierung oder des Feature Engineering genutzt. Grundlegen-
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des, gemeinsames Ziel all jener Techniken ist es, dass das resultierende Modell einem
konkreten Zweck dienen kann, z. B. dass es gut generalisiert, indem Over- und Under-
fitting vermieden werden, oder dass es interpretierbar und übersichtlich bleibt, indem
wenige Hyperparameter genutzt werden. Eine bekannte Regularisierungsstrategie,
um Overfitting in neuronalen Netzen zu vermeiden, stellt beispielsweise das Dropout
dar, welches während des Trainings (häufig zufallsbasiert) eine bestimmte Menge an
Neuronen an- und abschaltet [10]. Noch populärer ist die ℓ1-Regularisierung, wel-
che in vielfältigen Methoden angewendet wird. Durch den Einsatz eines ℓ1-Terms
in Kombination mit einer quadratischen, meist ℓ2-basierten Gütefunktion wird die
Nutzung weniger Hyperparameter und dadurch die Verringerung der Modellkomple-
xität gefördert [14]. Ein prominentes Beispiel stellt die LASSO-Regularisierung dar,
welche für das SINDy-Verfahren verwendet wird (vgl. Abschnitt 3.2). Verfahren des
Feature Engineering zielen zumeist auf eine Modellordnungsreduktion ab, um die
Komplexität des Modells zu reduzieren und es interpretierbarer zu gestalten. Dazu
wird in der Regel eine Merkmalsanalyse durchgeführt, um Charakteristika zu iden-
tifizieren, die die wesentlichen Eigenschaften eines dynamischen Systems beschrei-
ben und folglich im Modellverhalten beibehalten werden, wohingegen weitere ver-
nachlässigt oder zusammengefasst werden können. Eine der populärsten Methoden
ist die Hauptkomponentenanalyse [15], im Englischen Principal Component Ana-
lysis (PCA), welche basierend auf einer Eigenwertsanalyse relevante Einsichten zur
Verfügung stellt (vgl. Unterabschnitt 5.3.2). Nachdem die grundlegenden Prinzipien
datenbasierter Methoden vorgestellt worden sind, wird im folgenden Abschnitt ge-
nauer beschrieben, wie diese Methoden zielgerichtet im hybriden Regelungsentwurf
eingesetzt werden sollen.

2.3 Zielsetzung beim hybriden Regelungsentwurf

In Abschnitt 1.3 wurde hervorgehoben, welche Vorteile die Nutzung datengetriebe-
ner Methoden in der Regelungstechnik erzielen können. Da bereits im klassischen
Regelungsentwurf Messdaten verwendet werden, um physikalisch motivierte Mo-
delle zu parametrieren oder Systeme zu identifizieren (vgl. Abbildung 1.3), ist es
sinnvoll, diese Daten auch in größerem Umfang zur hybriden Modellierung zu nut-
zen. Übergeordnetes Ziel dieses Vorgehens ist es, Modelle und Regelungsansätze zu
verbessern sowie adaptiv gestalten zu können, aber gleichzeitig physikalische Ein-
sicht in das System zu konservieren oder vertiefend zu erhalten. Dies bedeutet ins-
besondere, dass die Entwicklung reiner Black-Box-Modelle vermieden werden soll.
Weil jeder klassische Regelungsentwurf zunächst mit dem Schritt der Modellbildung
beginnt (vgl. Abbildungen 1.2 und 2.6), steht im hybriden Regelungsentwurf die
Entwicklung eines hybriden Modells im Fokus. Dieses soll eine regelungstechnisch
verwertbare Form aufweisen (vgl. Dissertation [16]), welche anhand der folgenden
Kriterien charakterisiert wird (vgl. Dissertationen [16], [17], [18]).

Geringer Modellierungsaufwand. Aufgrund verkürzter Entwicklungszyklen ist
es wichtig, dass die Modellbildung möglichst ressourceneffizient erfolgt. Ein zu
detailliertes Modell kann im schlechtesten Fall sogar den zeitlichen Vorteil, der
durch den modellbasierten Entwurf erreicht wird, durch den erhöhten Aufwand
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kompensieren [19], [20]. Daher soll der Modellierungsaufwand nur so hoch wie
nötig sein.

Geringer Rechenaufwand bei der Prädiktion. Modellprädiktive Regelungs-
ansätze optimieren anhand des Streckenmodells den Ausgangsgrößenverlauf
mittels des Stellgrößenverlaufs. Ebenso nutzen modellbasierte Zustandsbeob-
achter das Streckenmodell, um die Zustände des Systems zu prädizieren und
basierend auf Messungen zu korrigieren. Dies sind nur zwei Beispiele, bei de-
nen Echtzeitfähigkeit eine wichtige Rolle spielt. Aus diesem Grund soll das
hybride Modell möglichst kostengünstig prädiziert werden können [21].

Hohe Dateneffizienz. Das Sammeln von Daten ist an mechatronischen Prüfstän-
den aufgrund des hohen Zeitaufwands, des Energiebedarfs und des Ressour-
cenverbrauchs aufwendig. Daher ist es erstrebenswert, dass die datengetriebe-
nen Modellbildungsansätze auch bei begrenzten Datenmengen eine effiziente
Generalisierungsfähigkeit zeigen.

Physikalische Interpretierbarkeit. Ein physikalisch interpretierbares Modell
ermöglicht ein tiefes Verständnis der zugrunde liegenden Prozesse im gesteuer-
ten System. Dadurch wird eine zuverlässige Vorhersage des Systemverhaltens
erleichtert, was insbesondere in sicherheitskritischen Anwendungen entschei-
dend ist. Folglich soll das datengetriebene Modell eine Form aufweisen, die sich
physikalisch analysieren lässt, beispielsweise durch Stabilitätsuntersuchungen.

Nutzung von physikalischem Vorwissen. Zudem wird angenommen, dass die
Person, die das regelungstechnische System entwickelt, über Vorwissen bezüg-
lich grundlegender physikalischer Zusammenhänge von mechatronischen Sys-
temen verfügt. Im Kontext der Zielsetzung dieses Forschungsvorhabens soll
dieses physikalisch motivierte Vorwissen in die datengetriebene Modellbildung
integriert werden2, um eine optimale Nutzung der Vorteile und Stärken beider
Ansätze zu erreichen [22].

Anwendung bestehender Entwurfsverfahren. Bestehende Verfahren für den
Regler- und Beobachterentwurf zeichnen sich durch ihre systematische Vorge-
hensweise aus, die auf physikalischen Prinzipien und systemtheoretischen An-
forderungen wie Stabilität oder Steuerbarkeit basiert [21], [24]. Im Gegensatz
dazu erweisen sich rein datengetriebene Streckenmodelle aufgrund der Black-
Box-Struktur als nicht unmittelbar für den Regler- und Beobachterentwurf
nutzbar. Dies führt zu Herausforderungen bei der Erreichung bestimmter Re-
gelungsziele. Demnach ist es erstrebenswert, dass das Modell eine geradlinige
Anwendung bestehender Entwurfsverfahren ermöglicht.

Adaptionsfähigkeit bei Systemveränderungen. Während des Produktlebens-
zyklus eines mechatronischen Systems treten vorhersehbare oder unvorherseh-
bare Veränderungen der Dynamik auf, z. B. durch den Einbau neuer Bauteile,

2Die Berücksichtigung von physikalischen Grundgesetzen beim maschinellen Lernen wird auch als
Physics-informed machine learning bezeichnet und erfährt im wissenschaftlichen Kontext eine
weitreichende Beachtung, vgl. [22], [23].
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Verschleiß oder Temperaturschwankungen. Zusätzlich unterliegt das verwen-
dete Modell in der Regel Unsicherheiten, beispielsweise durch fehlerhafte An-
nahmen. Weil durch die Rückkopplungsstruktur regelungstechnischer Systeme
während des Betriebs ohnehin laufend Messdaten erfasst werden, ist es reiz-
voll, das Streckenmodell online anzupassen. Daher sollten die datengetriebenen
Modelle adaptiv sein.

Gutes Extrapolationsverhalten. Ein Modell mit gutem Extrapolationsverhal-
ten erlaubt zuverlässige Prädiktionen auch in unbekannten, neuen Gebieten
des Phasenraums. Aufgrund der Rückführungsstruktur regelungstechnischer
Systeme ist es daher erforderlich, dass ein hybrides Modell in der Lage ist,
neue, bisher ungesehene Datensätze außerhalb der Trainingsmenge zu verar-
beiten, und folglich eine gute Generalisierbarkeit aufweist [10], [11].

Diese Ziele stellen die wesentlichen Anforderungen an ein hybrides Modell dar, wel-
ches für regelungstechnische Anwendungen genutzt werden soll. Die Abbildung 2.6
veranschaulicht das angestrebte hybride Vorgehen als Alternative zum klassischen
modellbasierten Entwurf, dessen aufwendiger, u. U. iterativer Prozess vereinfacht
werden soll. So erlaubt die hybride Modellbildung eine Modellierung in regelungs-
technisch wertvoller Form, welche ebenfalls basierend auf physikalischen Gesetzen
und Messdaten gebildet wird, jedoch ohne mehrteilige Modellierungsschritte aus-
kommt und direkt für den Regler- und Beobachterentwurf zugänglich ist. Daher
werden im folgenden Kapitel einige Verfahren zur hybriden Modellierung vorgestellt,
die den zuvor genannten Anforderungen entsprechen.
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Hybride Modellbildung in
regelungstechnisch verwertbarer Form
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Beobachterentwurf

Klassischer modellbasierter Entwurf

Hybrider Entwurf mit einem Modell in regelungstechnisch verwertbarer Form

Abbildung 2.6 Der hybride Entwurf mit einem Modell in regelungstechnisch verwertbarer
Form dient als Alternative zum klassischen modellbasierten Regelungsentwurf [16], [25].
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Um ein technisches System zu steuern oder zu regeln, ist grundlegendes Verständ-
nis über dieses erforderlich. In der Regelungstechnik wird daher zunächst ein Mo-
dell der Regelstrecke1 angefertigt, welches die wesentlichen Eigenschaften dieser
abbilden soll. Klassischerweise werden physikalische Grundgesetze verwendet, um
Differentialgleichungen oder Übertragungsfunktionen herzuleiten. Gleichzeitig die-
nen Messdaten als Ergänzung, um beispielsweise Parameter dieser physikalischen
Modelle zu identifizieren. Neben diesem analytischen Vorgehen können aber auch
ausschließlich Messdaten verwendet werden, um beispielsweise experimentell eine
Übertragungsfunktion durch die Analyse der Systemantwort zu bestimmen [1], [21].
In Abschnitt 1.3 sind diese beiden Perspektiven der Modellbildung bereits thema-
tisiert worden. Sowohl die analytische als auch die experimentelle Modellierung
finden jeweils berechtigte Anwendung in der regelungstechnischen Modellbildung
und weisen verschiedene Stärken auf (vgl. Abbildung 1.3), sodass eine Kombinati-
on zu hybriden Modellen besonders vorteilhaft ist. Vor allem in der Situation von
Modellungenauigkeiten, welche wegen getroffener Annahmen und Vereinfachungen
existieren und von Parameterunsicherheiten bis zu fehlenden Modelltermen reichen
können, und Systemveränderungen, die z. B. in Abhängigkeit von Verschleiß oder
Temperaturschwankungen auftreten können, leisten hybride Modelle ihren Beitrag
zur präzisen Systembeschreibung. Dabei kennzeichnen der Grad des verwendeten
physikalischen Vorwissens und das Maß an genutzten Messdaten die Ausprägung
sogenannter White-, Gray- oder Black-Box-Modelle (vgl. Abbildung 1.4), wobei auf-
grund der erforderlichen systemtheoretischen Analyse und Verwendung in bestehen-
den regelungstechnischen Entwurfsverfahren keine Black-Box-Modelle im Rahmen
der Nachwuchsgruppe DART angestrebt wurden (vgl. Abschnitt 2.3).

In diesem Kapitel werden folglich hybride Modellierungstechniken thematisiert,
welche sowohl physikalisch motivierte als auch datengetriebene Komponenten ver-
wenden. Dabei werden einerseits Gesamtmodelle vorgestellt, die Komponenten bei-
der Perspektiven aufweisen, und andererseits hybride Fehlermodelle diskutiert, die in
serieller Komplettierung ein datengetriebenes Restmodell zu einem physikalischen
Modell ergänzen. Ausgangspunkt aller dieser hybriden Methoden ist die Berück-
sichtigung von Vorwissen, welches zumindest die Kenntnis der Systemordnung, der
Zustands-, Ein- und Ausgangsgrößen umfasst, manchmal aber auch ein einfaches
physikalisches Modell beinhalten kann, und die Verfügbarkeit von Messdaten, die in
Form einer Zeitreihe vorliegen und in Matrixform gebracht werden können. Ziel die-
ser Methoden ist es, eine hohe Modellgüte zu erzielen und gleichzeitig eine Form zu
konservieren, die eine systemtheoretische Analyse bzw. physikalische Interpretierbar-
keit erlaubt. Neben einigen grundlegenden datengetriebenen Verfahren in den Ab-
schnitten 3.2 und 3.3.1 werden insbesondere die in der Nachwuchsgruppe DART er-

1Das zu regelnde oder zu steuernde System wird als (Regel-)Strecke bezeichnet.
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arbeiteten hybriden Methoden vorgestellt. Diese umfassen Koopman-basierte Tech-
niken, physikalische motivierte neuronale Netze, datengetriebene strukturerhaltende
Verfahren sowie probabilistische hybride Modellierungsstrategien und werden durch
einfache Anwendungsbeispiele illustriert. Darüber hinaus werden Vor- und Nachtei-
le jener Methoden aufgezeigt und bzgl. ihrer Modellgüte und der in Abschnitt 2.3
formulierten Anforderungen analysiert.

3.1 Methoden basierend auf dem Koopman-Operator

B. O. Koopman formulierte 1931 eine operatortheoretische Perspektive zur linearen
Beschreibung der Dynamik nichtlinearer Systeme durch die Beobachtung in einem
im Allgemeinen höherdimensionalen Raum [26]. Diese lineare Systembeschreibung
führt zu einer erheblichen Reduktion des Rechenaufwands bei der Prädiktion des
Systemverhaltens und bietet zudem den Vorteil, dass sich bewährte Entwurfsverfah-
ren aus der linearen Regelungstechnik, z. B. Riccati-Regler, direkt auf nichtlineare
Systeme anwenden lassen. Im folgenden Abschnitt wird die Grundidee des Koopman-
Operators in Anlehnung an [27], [28] eingeführt. Anschließend werden Ansätze zur
Modellbildung basierend auf dem Koopman-Operator erläutert und anhand von
Beispielen illustriert.

3.1.1 Theoretische Einordnung des Koopman-Operators

Im Folgenden werden zunächst zeitkontinuierliche autonome dynamische Systeme

ẋ = f(x) (3.1)

betrachtet, wobei x ∈ Rn ein n-dimensionaler Zustand und f : Rn → Rn eine Lip-
schitz-stetige Funktion sind. Für eine Zeitspanne t lässt sich der Fluss F t : Rn → Rn

definieren, der den Zustand x(t0) um einen Zeitschritt vorwärts auf den Zustand
x(t0 + t) abbildet

F t (x(t0)) = x (t0 + t) = x(t0) +

∫ t0+t

t0

f (x(τ)) d τ , (3.2)

sodass sich mit k ∈ Z das zeitdiskrete dynamische System

xk+1 = F t(xk) mit xk = x (k∆t) (3.3)

ergibt, vgl. Abbildung 3.1.

x1 x2 x3 · · · xm
F t F t F t F t

Abbildung 3.1 Der Fluss F t beschreibt die zeitliche Entwicklung des Zustands x von einem
Zeitschritt in den darauffolgenden Zeitschritt.

Für eine beliebige Observable2 g : Rn → R ist der lineare Koopman-Operator Kt
2Der Begriff der Observable lässt sich hier als Beobachtung bzw. Messgröße des Systems verstehen.
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definiert als Komposition mit dem Fluss

Ktg := g ◦ F t. (3.4)

Damit ergibt sich für das zeitdiskrete System (3.3)

Ktg(xk) = g (F t(xk)) = g(xk+1), (3.5)

d. h. der Koopman-Operator überführt die Observable g(xk) in den nächsten Zeit-
schritt g(xk+1), vgl. Abbildung 3.2. Der Koopman-Operator Kt ist ein linearer un-
endlichdimensionaler Operator. Für hinreichend glatte Systeme lässt sich ein zeit-
kontinuierliches Analogon

Kg = d

d t
g, (3.6)

definieren, wobei K der infinitesimale Generator mit

Kg = lim
t→0

Ktg − g
t

= lim
t→0

g ◦ F t − g
t

(3.7)

ist [28].

x1 x2 x3 · · · xm

g(x1) g(x2) g(x3) · · · g(xm)

g(x) g(x) g(x) g(x) g(x)

F t F t F t F t

Kt Kt Kt Kt

Abbildung 3.2 Veranschaulichung des Koopman-Operators.

Anhand eines Beispielsystems [27] lässt sich die Idee des Koopman-Operators ver-
anschaulichen. Das betrachtete zeitkontinuierliche nichtlineare dynamische System
wird durch die Differentialgleichungen

[
ẋ1
ẋ2

]
=

[
µx1,

λ (x2 − x21)

]
mit λ, µ ∈ R, λ≪ µ < 0 (3.8)

beschrieben. Es handelt sich um eine Dynamik mit einer langsamen Mannigfaltig-
keit x2 = x21, weil der Zustand x2 sich zeitlich schneller entwickelt als der Zustand
x1. Um eine lineare Systemdarstellung mittels des Koopman-Operators zu erhalten,
werden die Observablen geschickt so festgelegt, dass sie den originalen Zustandsvek-

tor x =
[
x1, x2

]⊤
und zusätzlich die Nichtlinearität x21 enthalten3

g(x) =



g1(x)
g2(x)
g3(x)


 =



x1
x2
x21


 . (3.9)

Bezüglich der Observablen g(x) lässt sich die Systemdynamik durch die Berechnung

3Dieser Ansatz ist ähnlich zur Carleman-Linearisierung, vgl. [29], [30] .
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der zeitlichen Ableitungen unter Berücksichtung der Kettenregel beschreiben durch



ġ1
ġ2
ġ3




︸ ︷︷ ︸
ġ

=



µ 0 0
0 λ −λ
0 0 2µ




︸ ︷︷ ︸
K



g1
g2
g3




︸ ︷︷ ︸
g

. (3.10)

Die Abbildung 3.3 veranschaulicht die Dynamik des eigentlich zweidimensionalen
nichtlinearen Originalsystems im dreidimensionalen Raum der Observablen.

−2 −1 0 1 20
2

4

0

1

2

3

4

g1g2

g 3

Abbildung 3.3 Visualisierung von Beispieltrajektorien für µ = −0,05, λ = −1. Die para-
belförmige Fläche ist die Zwangsbedingung g3(x) = x21, auf der alle Trajektorien verlaufen.
In grün ist die attraktive langsame Mannigfaltigkeit des Systems dargestellt, der sich alle Tra-
jektorien zunächst schnell annähern, bevor sie danach langsam in den Ursprung streben.

Das beschriebene Vorgehen ist bei den meisten auftretenden nichtlinearen dyna-
mischen Systemen nicht ohne Weiteres möglich. Dieser Zusammenhang lässt sich
anhand des Beispielsystems

ẋ = x2 (3.11)

verdeutlichen, bei dem die alleinige Erweiterung des Originalzustandes um die Nicht-
linearität zu einer unendlichdimensionalen Systembeschreibung führen würde




ġ1
ġ2
ġ3
ġ4
...



=




0 1 0 0 · · ·
0 0 2 0 · · ·
0 0 0 3 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .







g1
g2
g3
g4
...




mit




g1
g2
g3
g4
...



=




x
x2

x3

x4

...



. (3.12)

Eine endlichdimensionale Darstellung in Form von Matrizen ist nur möglich für
den Fall, wenn die Observablen einen sogenannten Koopman-invarianten Unter-
raum aufspannen. Seien α1, . . . , αN , β1, . . . , βN ∈ R. Dann ist der UnterraumM =
span {g1, g2, . . . , gN} genau dann invariant gegenüber dem Koopman-Operator [27],
falls alle Funktionen

g = α1g1 + α2g2 + · · ·+ αNgN (3.13)
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auch nach Anwendung des Koopman-Operators in diesem Unterraum liegen, d. h.

Kg = β1g1 + β2g2 + · · ·+ βNgN . (3.14)

Dieser Abschnitt stellt einen kurzen Einstieg in die theoretischen Grundlagen des
Koopman-Operators dar. Im weiteren Verlauf liegt der Schwerpunkt auf seiner prak-
tischen Anwendung. Für eine vertiefte Auseinandersetzung und zusätzliche Informa-
tionen zum Thema sei auf [27], [31] verwiesen.

3.1.2 Systemidentifikation mittels des Koopman-Operators

In Folgenden wird angenommen, dass sich die zu modellierende Dynamik der Stre-
cke mit dem vollständig bekannten (=messbaren) Zustandsvektor x ∈ Rn und der
Vektorfunktion f : Rn → Rn entweder als autonomes System

ẋ = f(x) (3.15)

oder als eingangsaffines System

ẋ = f(x) +Bu (3.16)

mit der Eingangsgröße u ∈ Rp und der konstanten Eingangsmatrix B ∈ Rn×p be-
schreiben lässt. Die verwendeten (Mess-)Daten dürfen sowohl von Simulationen als
auch von realen Experimenten stammen und sind in Form von Snapshot-Matrizen

X =
[
x1,x2, . . . ,xM−1

]
∈ Rn×(M−1), (3.17a)

U =
[
u1,u2, . . . ,uM−1

]
∈ Rp×(M−1), (3.17b)

X ′ =
[
x2,x3, . . . ,xM

]
∈ Rn×(M−1) (3.17c)

anzuordnen, wobei xk = x (k∆t) bzw. uk = u (k∆t) mit k = 1, 2, . . . . X ′ die aus X
um einen Zeitschritt ∆t in die Zukunft verschobenen Zustände enthält. Die Daten
müssen nicht zwingend von einer einzigen Messung oder Simulation stammen, es
genügen Paare aus zwei aufeinander folgenden Snapshots xk und xk+1, die spalten-
richtig in X und X ′ eingetragen werden.

Im Folgenden werden Verfahren zur Snapshot-basierten Systemidentifikation er-
läutert: Dynamic Mode Decomposition (DMD) und Extended Dynamic Mode De-
composition (EDMD). Beide Verfahren lassen sich als endlichdimensionale Appro-
ximationen des Koopman-Operators interpretieren, weil der Zustandsübergang von
einem Zeitschritt zum darauf folgenden jeweils durch eine Matrix approximiert wird.

3.1.3 Dynamic Mode Decomposition

Das DMD-Verfahren wurde 2008 von Peter Schmid erstmals im Kontext der Modell-
ordnungsreduktion für hochdimensionale fluiddynamische Systeme formuliert [32],
[33]. Der jeweilige Zustandsübergang von einem Zeitschritt in den folgenden Zeit-
schritt wird über die gesamte Datensequenz als lineare Dynamik angenommen.
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Im Vergleich zur Proper Orthogonal Decomposition4, die auf einer Sortierung der
Zustände nach räumlicher Korrelation und Energiegehalt beruht, wird beim DMD-
Verfahren zusätzlich das zeitliche Verhalten der Zustände berücksichtigt5 [38]. Das
DMD-Verfahren approximiert eine zeitdiskrete Matrix At, die den linearen Zusam-
menhang zwischen den Datenmatrizen X und X ′, d. h. für jeden Zustandsübergang
der Datensequenz

X ′ ≈ AtX (3.18)

optimal beschreibt. Die kleinste-Quadrate-Lösung für At ist gegeben durch

At = X ′X+, (3.19)

wobei X+ die Pseudoinverse der Matrix X ist [39]. Damit lässt sich das appro-
ximierte System linear im Zustandsraum mit der Dynamikmatrix At beschreiben
bzw. prädizieren, vgl. Abbildung 3.4,

x̂k+1 = Atxk. (3.20)

Weil At lediglich eine Approximation der betrachteten im Allgemeinen nichtlinearen
Dynamik ist, handelt es sich bei x̂k+1 um eine Schätzung von xk+1. Die Matrix
At entspricht einer Approximation des Koopman-Operators Kt für den Spezialfall,
dass der Zustandsvektor als Observablenvektor aufgefasst wird, d. h. für g : Rn →
Rn, g(x) = x.

x1 x̂2 x̂3 · · · x̂m
At At At At

Abbildung 3.4 Beim DMD-Verfahren lässt sich die zeitliche Evolution der Zustände durch
Multiplikation mit der Matrix At prädizieren.

Das DMD-Verfahren lässt sich auf eingangsaffine Systeme (3.16) erweitern und
wird dann auch als DMDc (Dynamic Mode Decomposition with Control) bezeichnet
[40]. Dafür werden die Zustandsübergänge

X ′ ≈ AtX +BtU =
[
At,Bt

] [X
U

]
(3.21)

betrachtet, sodass sich die kleinste-Quadrate-Lösung

[
At,Bt

]
= X ′

[
X
U

]+
(3.22)

ergibt. Damit lässt sich das approximierte System linear prädizieren:

x̂k+1 = Atxk +Btuk. (3.23)

4Die Proper Orthogonal Decomposition (POD) ist eine aus der Fluiddynamik stammende nume-
rische Methode zur Analyse turbulenter Strömungen [34], die eng verwandt mit der Hauptkom-
ponentenanalyse ist [35].

5Auch verwandt mit dem DMD-Verfahren ist der Arnoldi-Algorithmus[36], der Eigenwerte eines
hochdimensionalen dynamischen Systems über Krylov-Unterräume approximiert, vgl. [37].
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Stabile DMD-Modelle Im Bereich der Systemidentifikation existiert der Ansatz,
identifizierte Modelle von eigentlich stabilen Systemen, die z. B. aufgrund von Mess-
fehlern instabil geworden sind, nachträglich anzupassen, um ihre Stabilität und da-
mit eine für die resultierende Dynamik elementare Systemeigenschaft sicherzustel-
len6. Ausgehend von einer instabilen Matrix At ∈ Rn×n wird im Beitrag [42] die im
Sinne der Frobeniusnorm nächste stabile Matrix

inf
Ãt∈Sn×n

t

∥∥∥At − Ãt

∥∥∥
2

F
(3.24)

gesucht, wobei Sn×nt die Menge aller zeitdiskreten stabilen n×n-Matrizen ist7. Dafür
wird eine neuartige Charakterisierung für zeitdiskrete Matrizen formuliert: eine Ma-
trix Ãt ist genau dann stabil, wenn sie sich als

Ãt = S−1OTS (3.25)

formulieren lässt, wobei S positiv definit, O orthogonal und T positiv semidefi-
nit mit ∥T ∥ ≤ 1 sind. Die Matrix liegt dann in der sogenannten SOT-Form8 vor.
Damit lässt sich das nichtkonvexe Optimierungsproblem (3.24) in das gleichwertige
Optimierungsproblem

inf
Ãt∈Sn×n

t

∥∥∥At − Ãt

∥∥∥
2

F
= inf

S≻0,O∈O(n),T⪰0,∥T∥≤1

∥∥At − S−1OTS
∥∥2
F

(3.26)

umformulieren, dessen zulässige Menge konvex ist. Die numerische Lösung erfolgt
mittels eines projizierten Gradientenabstiegsverfahrens, vgl. [43]. Beim projizierten
Gradientenabstieg wird versucht, eine gegebene Kostenfunktion unter einer festge-
legten Beschränkung zu minimieren, indem jede Iteration zuerst einen Schritt in
Richtung des negativen Gradienten und anschließend eine Projektion der Lösung in
den erlaubten Suchraum berechnet. Die Ansätze aus [42] lassen sich auf datenge-
triebene DMD-Modelle anwenden.

Das DMD-Verfahren lässt sich ohne jegliches Vorwissen über die zu modellierende
Dynamik anwenden. Diese Tatsache wird in der Literatur oft als Vorteil angeführt
und aufgrund dieser Einfachheit wurde das DMD-Verfahren vielfach praktisch an-
gewendet. Im Kontext hybrider Modelle erweist sich das rein datengetriebene Vor-
gehen jedoch als Nachteil, weil sich für die betrachteten mechatronischen Syste-
me meistens physikalisch motivierte Modelle herleiten lassen und dieses Vorwissen
nutzbar gemacht werden soll. Außerdem adressiert das DMD-Verfahren vorwiegend
fluiddynamische Fragestellungen, bei denen eine Modellordnungsreduktion, d. h.
eine Transformation von einem hochdimensionalen in einen niedrigdimensionalen

6Darüber hinaus gibt es noch weitere strukturelle Anforderungen, die an datengetriebene Modelle
gestellt werden können. Die Autor*innen in [41] beispielsweise verallgemeinern diese Strategie
als Physics-informed DMD für unterschiedliche gewünschte Matrixtypen mit jeweils korrespon-
dierenden physikalischen Eigenschaften.

7Die Matrix At ist stabil, wenn für alle Eigenwerte λ1, . . . , λn von At gilt |λi| ≤ 1 und es sich bei
allen Eigenwerten auf dem Einheitskreis um halbeinfache Eigenwerte handelt [42].

8In der originalen Formulierung von [42] werden die Matrizen als S,U undB und die Schreibweise
als SUB-Form bezeichnet. Dieses Dokument verwendet zur Vermeidung von Verwechslungen mit
anderen Matrizen stattdessen die Bezeichnungen S,O und T .
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Raum mit dem Ziel eines linearen Dynamikmodells, angestrebt wird. Im Gegen-
satz dazu erfordern komplexe mechatronische Fragestellungen aufgrund möglicher
auftretender Nichtlinearitäten in der Regel eine höhere Modellkomplexität, d. h.
die Transformation von einem typischerweise niedrigdimensionalen Raum in einen
höherdimensionalen Raum mit dem Ziel eines linearen Dynamikmodells.

Das DMD-Verfahren eignet sich sowohl für autonome als auch nicht-
autonome Systeme und besitzt aufgrund seiner extremen Einfachheit einen
minimalen Rechenaufwand. Es erfordert Messdaten des vollständigen Zu-
standsvektors und lässt sich ohne jegliches Vorwissen über die zu model-
lierende Dynamik anwenden. Die resultierende zeitdiskrete lineare Systembe-
schreibung lässt sich geradlinig sowohl für die Analyse als auch den Regler-
und Beobachterentwurf einsetzen.

3.1.4 Extended Dynamic Mode Decomposition

Das Verfahren Extended Dynamic Mode Decomposition (EDMD) verallgemeinert
das DMD-Verfahren, weil die Observablen g(x) zusätzlich zu den Zuständen nichtli-
neare Funktionen der Zustände enthalten. Dadurch entspricht dieses Verfahren einer
endlichdimensionalen Approximation des Koopman-Operators. Im Folgenden wer-
den der Algorithmus und die Prädiktionsvorschrift hergeleitet. Anschließend wird
thematisiert, wie die Observablen zu konstruieren sind, wie sich die Koopman-
Eigenzerlegung berechnet und wie sich das Verfahren um einen Systemeingang er-
weitern lässt.

Algorithmus

Für das EDMD-Verfahren werden N Observablen

Ψ : Rn → RN , Ψ(x) =
[
ψ1(x), ψ2(x), . . . , ψN(x)

]⊤
(3.27)

definiert9, wobei in den meisten Fällen N > n gilt. Um möglichst vielfältige Dy-
namiken zu modellieren, bietet es sich im Allgemeinen an, Polynome, radiale Ba-
sisfunktionen oder trigonometrische Funktionen für Ψ(x) zu verwenden [44]. Eine
beliebige skalare Funktion θ : R→ R lässt sich als Linearkombination

θ =
N∑

k=1

akψk = aΨ, ak ∈ R mit a ∈ R1×N (3.28)

der Funktionen Ψ(x) beschreiben. Für die zeitliche Evolution von θ gilt mit dem
Koopman-Operator

Ktθ = Kt(aΨ) = aΨ ◦ F t. (3.29)

Die endlichdimensionale Approximation von Kt durch Kt ∈ RN×N

aΨ ◦ F t = aKtΨ+ r ⇒ r = a (Ψ ◦ F t −KtΨ) (3.30)

9[44] formuliert Ψ(x) in transponierter Darstellung, d. h. als Zeilenvektor.
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3.1 Methoden basierend auf dem Koopman-Operator

resultiert in einem Fehler r, der sich durch Anpassung von Kt über Messdaten des
betrachteten Systems minimieren lässt. Über alle Messpunkte wird die Kostenfunk-
tion

L =
1

2

M−1∑

m=1

∥r(xm)∥2 =
1

2

M−1∑

m=1

∥a ((Ψ ◦ F t)(xm)−KtΨ(xm))∥2 (3.31)

definiert. Mit (Ψ ◦ F t) (xm) = Ψ(xm+1) folgt

L =
1

2

M−1∑

m=1

∥a (Ψ(xm+1)−KtΨ(xm))∥2 . (3.32)

Die Minimierung von Gleichung (3.32) entspricht einem kleinste-Quadrate-Problem
[44] mit dem globalen Optimum [45] in

Kt = G+A (3.33)

mit

G =
1

M

M−1∑

m=1

Ψ(xm)Ψ
⊤(xm) ∈ RN×N , (3.34)

A =
1

M

M−1∑

m=1

Ψ(xm)Ψ
⊤(xm+1) ∈ RN×N . (3.35)

Eine alternative Berechnungsvorschrift für Kt lässt sich analog zum DMD-Algorith-
mus mittels der erweiterten Snapshotmatrizen formulieren [46]. Dafür werden die
Observablen für X und X ′ ausgewertet

Ψ(X) =
[
Ψ(x1),Ψ(x2), . . . ,Ψ(xM−1)

]
∈ RN×(M−1), (3.36a)

Ψ(X ′) =
[
Ψ(x2),Ψ(x3), . . . ,Ψ(xM)

]
∈ RN×(M−1), (3.36b)

sodass sich Kt über den Zusammenhang

Ψ(X ′) ≈KtΨ(X) (3.37)

mittels der Pseudoinversen berechnen lässt

Kt = Ψ(X ′)Ψ+(X). (3.38)

Beide Berechnungsalgorithmen sind äquivalent zueinander, eine Herleitung dazu fin-
det sich in [45]. Die resultierende Systembeschreibung des EDMD-Modells, d. h. die
zeitliche Evolution der Observablen Ψ für einen Prädiktionsschritt ist durch

Ψ̂(xk+1) = KtΨ(xk), (3.39)

gegeben. Die Prädiktion der Originalzustände erfordert eine Rücktransformation

x = PΨ(x), (3.40)
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vgl. Abbildung 3.5. Falls die Observablen den Zustandsvektor als Identität an erster

Stelle beinhalten, d. h. Ψ(x) =
[
x, ψn+1(x), . . . , ψN(x)

]⊤
, reduziert sich die Lösung

auf
P =

[
In,0n×(N−n)

]
∈ Rn×N , (3.41)

wobei In die n × n-Einheitsmatrix und 0n×(N−n) die n × (N − n)-Nullmatrix sind.
Andernfalls wird sie numerisch über

P = XΨ(X ′) (3.42)

approximiert [47]. Das Vorgehen bei der Prädiktion mittels des EDMD-Verfahrens
ist in der Abbildung 3.5 dargestellt.

x1 x̂2 · · · x̂m

Ψ(x1) KtΨ(x1) · · · Km−1
t Ψ(x1)

Ψ(x) P P P

Kt Kt Kt

Abbildung 3.5 Resultierende Systembeschreibung beim EDMD-Verfahren. Die Observablen
Ψ(x) weisen eine höhere Dimension als der Zustand x auf, daher wird Ψ(x) auch als Lifting-
Operator bezeichnet.

EDMD-Prädiktion mit Korrektur

Für die meisten nichtlinearen dynamischen Systeme lassen sich nicht ohne Weiteres
Observablen finden, die einen Koopman-invarianten Unterraum aufspannen. Das be-
deutet, dass sich nicht alle Zustände Ψ(xk+1) durch Linearkombination aus Ψ(xk)
exakt prädizieren lassen. Dadurch resultiert ein Fehler, der mit jedem Prädiktions-
schritt weiter anwächst [48]. Dieser Fehler kann signifikant reduziert werden, indem
die Observablen Ψ(x) in jedem Prädiktionsschritt nach Extraktion des Zustands-
vektors x mittels Gleichung (3.40) neu ausgewertet werden. Dadurch müssen nicht
mehr alle Observablen durch die Anwendung von Kt prädiziert werden, sodass
die Forderung eines Koopman-invarianten Unterraums entfällt. Die resultierende
Prädiktionsvorschrift

x̂k+1 = P Ψ̂(xk+1) = PKtΨ(xk) (3.43)

wurde erstmalig in [25] als EDMD-Prädiktion mit Korrektur vorgestellt10 und ist
in der Abbildung 3.6 als alternierender Prozess zwischen dem Originalzustand und
den höherdimensionalen Observablen dargestellt. Die EDMD-Prädiktion mit Kor-
rektur ist keine tatsächlich lineare Systembeschreibung, weil in jedem Berechnungs-
schritt zusätzlich zur Matrix-Vektor-Multiplikation die Auswertung einer nichtli-
nearen Funktion erforderlich ist. Dadurch erhöht sich der Rechenaufwand bei der
Prädiktion im Vergleich zum reinen EDMD-Verfahren.

10Ein ähnlicher Ansatz wurde in [49] formalisiert, indem zwischen dem Domain- und Output-
Raum unterschieden wird, wobei der Domain-Raum hier Ψ(x) und der Output-Raum hier x
entspricht.
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x1 x̂2 · · · x̂m

Ψ(x1) Ψ(x̂2) · · ·KtΨ(x1) KtΨ(x̂2) KtΨ(x̂m−1)

Ψ(x) Ψ(x) Ψ(x)P P P

Kt Kt Kt

Abbildung 3.6 Prädiktionsvorschrift bei der EDMD-Prädiktion mit Korrektur. Die Prädiktion
von Ψ mittels Kt erfolgt im höherdimensionalen Raum, jedoch wird der Zustand x in jedem
Prädiktionsschritt mittels P extrahiert.

Wahl der Observablen

Die Wahl der Observablen hat einen entscheidenden Einfluss auf die Genauigkeit der
approximierten Systembeschreibung und sollte in Abhängigkeit der zugrunde liegen-
den Dynamik und den verwendeten Daten erfolgen. Dabei gibt es unterschiedliche
Ansätze. [44] empfehlen beispielsweise die Verwendung von Hermiteschen Polyno-
men oder radialen Basisfunktionen [50]. [51] nutzen den Kernel-Trick11 zur impli-
ziten Berechnung der Observablen für den Fall, dass die Anzahl der Messpunk-
te deutlich geringer als die Anzahl der angestrebten Observablen ist. Aufgrund
verfügbarer Messeinrichtungen lässt sich dieses Szenario für Zeitreihen von rege-
lungstechnischen Prüfständen ausschließen. Ein weit verbreiteter Ansatz bestimmt
die Observablen implizit mittels eines (tiefen) neuronalen Netzes. Neben zahlrei-
chen weiteren Veröffentlichungen sei hier vor allem [52] genannt. In dieser Arbeit
wird im Kontext regelungstechnischer Systeme ein gewisses Maß an physikalischem
Vorwissen über die Systemdynamik angenommen. Daher ist es wünschenswert, die-
ses Vorwissen möglichst sinnvoll beim Design der Observablen zu berücksichtigen12.
Eine hierfür geeignete Strategie für die Wahl der Observablen ist motiviert durch die
Taylorreihenentwicklung [54]. Demnach empfiehlt es sich, die (mehrfachen) zeitlichen
Ableitungen der in der betrachteten Dynamik vorkommenden Funktionen in Ψ(x)
zu berücksichtigen [45], [55]. Für den Fall, dass die Dynamik mehrere Nichtlinea-
ritäten enthält, ist es aufgrund möglicher Parameterunsicherheiten empfehlenswert,
jeden Term einzeln zu berücksichtigen [56].

Erweiterung um einen Systemeingang

Beim EDMD-Verfahren gibt es unterschiedliche Ansätze für die Erweiterung des Mo-
dells um einen Steuereingang. Im Allgemeinen wird der Koopman-Zustandsvektor
um die Eingänge bzw. nichtlineare Funktionen der Eingänge erweitert [45], [49], [55].
Für den Fall eingangsaffiner Systeme (3.16) lässt sich ein ähnlicher Ansatz verfolgen
wie beim DMDc-Verfahren. Dafür wird der Zusammenhang

Ψ(X ′) ≈KtΨ(X) +BtU =
[
Kt,Bt

] [Ψ(X)
U

]
(3.44)

11Der Kernel-Trick ist eine etablierte Technik aus dem Bereich der Mustererkennung. Die betrach-
teten Daten werden über eine Kernel-Funktion in einen höherdimensionalen Raum transformiert
[10].

12[53] beschreibt dieses Konzept als parenting in learning, d. h. dass vorhandenes Expert*in-
nenwissen gezielt dem Lernvorgang vermittelt wird.
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betrachtet, sodass sich die kleinste-Quadrate-Lösung

[
Kt,Bt

]
= Ψ(X ′)

[
Ψ(X)
U

]+
(3.45)

ergibt. Anschließend lässt sich das approximierte System

Ψ̂(xk+1) = KtΨ(xk) +Btuk (3.46)

prädizieren. Dieses Verfahren wird auch als EDMDc bezeichnet und lässt sich wie
das EDMD-Verfahren um einen Korrekturansatz erweitern, vgl. Gleichung (3.43)

x̂k+1 = P Ψ̂(xk+1) = P (KtΨ(xk) +Btuk) . (3.47)

Eine weitere Strategie zur Autonomisierung eines aktuierten Systems wird in [57],
[58], [59], [60], [61], [62] beschrieben. Die möglichen Systemeingänge u ∈ U werden in
endlich viele Werte {u1, . . . ,um} ∈ U diskretisiert. Dadurch wird das aktuierte Sys-
tem durch endlich viele autonome Systeme mit jeweils konstantem Eingang ersetzt.
Um nicht eingangsaffine Systeme zu lernen, kann der Eingang durch ein neuronales
Netz kodiert werden [63].

Stabile EDMD-Modelle

Ähnlich wie DMD-Modelle lassen auch EDMD-Modelle nachträglich so anpassen,
dass sie stabil sind. Die Autor*innen in [48] leiten Fehlerschranken von EDMD-
Modellen her und plädieren dafür, zur Erhöhung der Prädiktionsgüte des reinen
EDMD-Verfahrens in allen Fällen13 einen stabilen Koopman-Operator zu verwen-
den. In Anlehnung an stabile DMD-Modelle entspricht die Bestimmung des im Sinne
der Frobeniusnorm nächsten stabilen Koopman-Operators K̃t zu einem anhand von
Messdaten approximierten (möglicherweise instabilen) Koopman-Operator Kt dem
Optimierungsproblem

inf
K̃t∈SN×N

∥∥∥Kt − K̃t

∥∥∥
2

F
= inf

S≻0,O∈O(N),T⪰0,∥T ∥≤1

∥∥Kt − S−1OTS
∥∥2
F
. (3.48)

Alternativ schlagen die Autor*innen in [48], [64] vor, stattdessen die nächste stabile
Matrix zur Kleinste-Quadrate-Lösung (3.38) zu betrachten, d. h. die verwendeten
Daten X,X ′ (vgl. Gleichung (3.17)) mit zu berücksichtigen

inf
K̃t∈SN×N

∥∥∥Ψ(X ′)− K̃tΨ(X)
∥∥∥
2

F

= inf
S≻0,O∈O(N),T⪰0,∥T ∥≤1

∥∥Ψ(X ′)− S−1OTSΨ(X)
∥∥2
F
.

(3.49)

Diese Formulierung (3.49) führt zu einer anderen Lösung als Gleichung (3.48), wobei
eine erhöhte Genauigkeit des resultierenden stabilen EDMD-Modells bezüglich der
verwendeten Messdaten erzielt wird. Außerdem zeichnet sich dieser Ansatz dadurch
aus, dass bereits in der ersten Iteration ein stabiles Modell berechnet wird. Durch

13Sogar für den Fall, dass das zugrundeliegende System eine instabile Dynamik aufweist [48].
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die Verwendung der Daten X,X ′,U wird der Abstand zur Kleinste-Quadrate-
Lösung (3.38) mit jeder Iteration reduziert. Diese Eigenschaft ist vorteilhaft für
Online-Anwendungen, bei denen das stabile Modell schnell berechnet werden muss.
Die iterative Berechnung von Bt erweitert den Suchraum im Vergleich für den Fall,
in dem nur Kt angepasst wird.

Das EDMD-Verfahren approximiert autonome und nicht-autonome nichtli-
neare Dynamiken anhand von (Mess-)Daten sowie physikalischem Vorwissen
über die Form der auftretenden Nichtlinearitäten als lineare zeitdiskre-
te Modelle. Es erfordert Messdaten des vollständigen Zustandsvektors.
Die reine EDMD-Prädiktion liefert eine hohe Genauigkeit für einen kurzen
Horizont, wohingegen die EDMD-Prädiktion mit Korrektur auch über einen
längeren Zeithorizont eine sehr hohe Genauigkeit liefert. Hinsichtlich der Sta-
bilität sowie der Steuerbarkeit und Beobachtbarkeit lässt sich anhand von Bei-
spielanwendungen eine Korrespondenz des zugrunde liegenden nichtlinearen
Systems und dem jeweiligen approximierten EDMD-Modell feststellen, vgl.
[25]. Dieses Ergebnis lässt sich nicht verallgemeinern, sodass die Steuerbar-
keit bzw. Beobachtbarkeit im jeweiligen Einzelfall zu prüfen ist, vgl. [16]. Die
Abbildung 3.7 fasst die Ergebnisse dieses Abschnitts zusammen. Die Analyse
des Rechenaufwands bei der Prädiktion anhand der Betrachtung von Taktzy-
klena zeigt, dass die beiden EDMD-Prädiktionsverfahren als datengetriebe-
ne Alternativen zu klassischen numerischen Integrationsmethoden verwendet
werden können, vgl. studentische Arbeit [67]. Die reine EDMD-Prädiktion
eignet sich aufgrund ihrer hohen Genauigkeit und einem gleichzeitig geringen
Rechenaufwand bei kurzen Zeitintervallen besonders für Anwendungen mit
Echtzeitanforderungenb, wie z. B. MPC.

aEin Taktzyklus ist in der Computertechnik der benötigte Zeitraum für die Ausführung
einer elementaren Rechenoperation auf einem Prozessor [65]. Der Rechenaufwand einer
Gleitkommaoperation lässt sich durch die Anzahl benötigter Taktzyklen angeben. Das
Handbuch [66] bietet eine überaus umfangreiche Auseinandersetzung mit der Bestim-
mung von Taktzyklen für unterschiedliche Gleitkommaoperationen und Prozessorarchi-
tekturen.

bEchtzeitfähige Systeme sind in der Lage, das Ergebnis einer Berechnung innerhalb eines
vorher fest definierten Zeitintervalls garantiert berechnen zu können [68].

Beispielhafte Anwendung

Aufgrund der linearen Systembeschreibung sowie der Möglichkeit, vorhandenes phy-
sikalisches Vorwissen auszunutzen, scheint das EDMD-Verfahren eine vielverspre-
chende Strategie für die Entwicklung regelungstechnisch verwertbarer Streckenmo-
delle zu sein. Daher wird im Folgenden die Anwendbarkeit des EDMD-Verfahrens
beispielhaft hinsichtlich der erreichbaren Prädiktionsgüte demonstriert. Hierfür wird
das numerisch simulierte nichtlineare Verhalten des jeweiligen Originalsystems mit
dem approximierten EDMD-Modell verglichen. Als akademisches Beispiel wird das
im Abschnitt 2.1 eingeführte Einfachpendel betrachtet, das mehrere isolierte Ruhe-
lagen aufweist. Als experimentelles Beispiel wird der Schlagmechanismus des Gol-
froboters betrachtet, dessen Dynamik nichtlineare Reibungseffekte enthält.

37



3 Modellbildung

Prüfstand oder Simulationsmodell Physikalisches Vorwissen

Algorithmus

Ψ(X ′) ≈KtΨ(X) +BtU = [Kt,Bt]

[
Ψ(X)
U

]
⇒ [Kt,Bt] = Ψ(X ′)

[
Ψ(X)
U

]+

EDMD-Modell
Ψ̂(xk+1) = KtΨ(xk) +Btuk

Reine EDMD-Prädiktion

� lineare Systembeschreibung

� lokal hohe Approximationsgenauigkeit

� geringer Rechenaufwand

EDMD-Prädiktion mit Korrektur

� nichtlineare Systembeschreibung

� sehr hohe Approximationsgenauigkeit
über einen längeren Prädiktionshorizont

� robust gegenüber der Auswahl der
Trainingsdaten

Systemtheoretische Eigenschaften werden beibehalten

� Stabilität (Eigenwerte)

� Steuerbarkeit und Beobachtbarkeit

Messdaten X,X ′,U Ψ(x) = [ψ1(x), ψ2(x), . . . )]
⊤

Kt,Bt

Abbildung 3.7 Das EDMD-Verfahren bietet die Möglichkeit anhand von (Mess-) Daten
und physikalischem Vorwissen ein lineares zeitdiskretes Modell zu approximieren, wobei die
Approximationsgenauigkeit von den gewählten Observablen, den Trainingsdaten und dem
Prädiktionsverfahren abhängt. Bezüglich systemtheoretischer Eigenschaften konnte für die un-
tersuchten Beispielsysteme eine Korrespondenz zwischen dem zugrunde liegenden Originalsys-
tem und dem EDMD-approximierten Modell festgestellt werden.

Pendel Die Dynamik des im Gelenk aktuierten nichtlinearen Pendels, vgl. Ab-
schnitt 2.1, wird durch

[
ẋ1
ẋ2

]
=

[
x2

−g
l
sin x1 − d

ml2
x2 +

1
ml2

u

]
, (3.50a)

y = x1 (3.50b)

mit m = 1kg, g = 9,81m s−2, l = 0,5m, d = 0,1 kgm2 s−1 beschrieben. Das Pen-
del weist ein kontinuierliches Spektrum auf, was die Approximation mittels ei-
nes EDMD-Modells erschwert. Im Gegensatz zu der studentischen Arbeit [69], die
zur Abbildung der unterschiedlichen Eigenfrequenzen eine Schar winkelabhängiger
EDMD-Modelle präsentiert, verfolgt der hier präsentierte Ansatz das Ziel, die Pen-
deldynamik mittels eines einzigen Modells zu beschreiben.

Die Prädiktionsgenauigkeit des approximierten EDMD-Modells hängt stark von
der sorgfältigen Auswahl der Observablen und den gewählten Trainingsdaten ab, wie
im Beitrag [25] erläutert ist. Die Observablen werden so gewählt, dass sie den Zu-
standsvektor sowie mehrmalige zeitliche Ableitungen der nichtlinearen Terme des je-
weiligen Originalsystems enthalten. Für das Pendel ergeben sich aufgrund des Terms
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3.1 Methoden basierend auf dem Koopman-Operator

sin x1 unter Berücksichtigung der Kettenregel die Observablen

ΨPendel(x) =
[
x1, x2, sinx1, x2 cos x1, x

2
2 sin x1, sinx1 cos x1, x2 cos

2 x1, . . .

x2 sin
2 x1, x

3
2 cos x1, sin

3 x1, sinx1 cos
2 x1, x

4
2 sin x1, . . .

x22 sin x1 cos x1, x
3
2 sin

2 x1, x
3
2 cos

2 x1, x2 cos
3 x1, x

5
2 cos x1, . . .

x2 sin
2 x1 cos x1, x

6
2 sin x1, x

2
2 sin

3 x1, sin
3 x1 cos x1, . . .

sin x1 cos
3 x1, x

4
2 sin x1 cos x1, x

2
2 sin x1 cos

2 x1, . . .
]⊤
.

(3.51)

Für die Erzeugung der Trainingsdaten werden jeweils 100 simulierte Trajektorien
mit einer Dauer von jeweils 3 s, einer Schrittweite von ∆t = 0,01 s und zufälligen
Anfangsauslenkungen mit u = 0 verwendet. Für das Pendel sollen die Anfangsaus-

lenkungen im Einzugsbereich der unteren Ruhelage
[
0, 0
]⊤

liegen.

Die Prädiktionsgenauigkeit der EDMD-Verfahren lässt sich anschließend anhand

von Testtrajektorien beurteilen. Als Anfangsauslenkung wird x0 =
[
7π/8, 0

]⊤
ge-

wählt, um zu validieren, mit welcher Genauigkeit die nichtlinearen Anteile der
Dynamik abgebildet werden. Die Abbildung 3.8 zeigt die Prädiktionsgenauigkeit
der EDMD-Prädiktionen in Abhängigkeit der Anzahl der verwendeten Observa-
blen (3.51) im Vergleich zur numerischen Simulation des nichtlinearen Original-
systems. Die EDMD-Prädiktion mit Korrektur liefert eine sehr hohe Genauigkeit,
während die reine EDMD-Prädiktion die Trajektorie lediglich lokal approximiert.
Diese Beobachtung lässt sich dadurch erklären, dass die festgelegten Observablen kei-
nen Koopman-invarianten Unterraum aufspannen. Daher können nicht alle Zustände
der Observablen durch Linearkombination der vorigen Zustände korrekt prädiziert
werden. Durch eine Erhöhung der Observablenanzahl weicht die Prädiktion zeitlich
später ab. Die Abbildung 3.9 zeigt den kumulierten mittleren quadratischen Fehler
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Abbildung 3.8 Beispielhafte EDMD-Prädiktion des Pendels für eine unterschiedliche Anzahl
an Observablen, vgl. Gleichung (3.51). Die Zustände x1 und x2 beschreiben den Winkel und
die Winkelgeschwindigkeit des Pendels.
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e(tk) =
k∑

m=1

1

k
∥xOriginalsystem(tm)− xPrädiktion(tm)∥2 (3.52)

in Abhängigkeit der Anzahl der Observablen (3.51) für das Pendel. Hierbei fällt
auf, dass eine Erhöhung der Observablenanzahl N in der hier vorgeschlagenen Form
nicht zwangsläufig zu einer beliebig starken Verringerung des Fehlers führt. Es ist
außerdem ersichtlich, dass bereits ab N = 4 die EDMD-Prädiktion mit Korrektur
den minimalen Fehler erreicht. Das bedeutet, dass eine Erhöhung der Observablen-
anzahl durch zusätzliche zeitliche Ableitungen keine weiteren Vorteile zeigt. Es ist
wichtig anzumerken, dass der Fehler bereits für N ≥ 3 ausgesprochen klein ist und
die logarithmische Darstellung bei der Betrachtung dazu verleitet, den Fehler zu
überschätzen.
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Abbildung 3.9 Einfluss der Anzahl der verwendeten Observablen auf die Prädiktions-
genauigkeit am Beispiel des Pendels für dieselbe Testtrajektorie wie in der Abbildung 3.8.

Darüber hinaus hat die Wahl der Trainingsdaten einen Einfluss auf die erreich-
bare Prädiktionsgenauigkeit der Testtrajektorien. Dieser Zusammenhang ist in der
Abbildung 3.10 am Beispiel des Pendels veranschaulicht. Für den Fall, dass die Test-
trajektorien in einem Bereich des Zustandsraums verlaufen, der die Trainingsdaten
umfasst, erhöht sich die Prädiktionsgenauigkeit des reinen EDMD-Verfahrens. Im
Gegensatz dazu liefert das EDMD-Verfahren mit Korrektur eine extrem hohe Genau-
igkeit über einen langen Prädiktionshorizont bei gleichzeitiger Robustheit gegenüber
der Auswahl der Trainingsdaten.

Schlagmechanismus des Golfroboters Der Schlagmechanismus des Golfroboters,
vgl. Abschnitt 6.1, zeichnet sich durch ein nichtlineares Reibungsmoment aus, sodass
es sich empfiehlt, die EDMD-Variablen im Rahmen der Verwendung von Vorwissen
folgendermaßen zu wählen

ΨGolfi(x) =
[
x1, x2, sinx1, sgnx2

∣∣mx22a+mg cos x1
∣∣]⊤ . (3.53)

Für die Erzeugung der Trainingsdaten wurde der Schlagmechanismus mit unter-
schiedlichen Verläufen für u (Chirp-, Sinus- und Sprungsignale mit variierender Am-
plitude und Frequenz, vgl. Abbildung 3.11) angeregt und der Systemausgang y = x1
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Originalsystem EDMD-Prädiktion mit Korrektur, N=6

0 5
−10
−5
0

5

x1

x
2

Abbildung 3.10 Einfluss der Trainingsdaten auf die Prädiktionsgenauigkeit am Beispiel des
Pendels. Von links nach rechts werden unterschiedliche Kombinationen aus Trainingsdaten
und Testtrajektorien im Phasenporträt betrachtet. Die Anfangspunkte der Testtrajektorien
sind jeweils mit einem schwarzen Kreis gekennzeichnet.

mit einer Abtastrate von 1 kHz gemessen. Der Verlauf für x2 wurde anschließend offli-
ne durch numerische Differentiation einer durch Spline-Kurven interpolierten Appro-
ximation des Verlaufs von x1 geschätzt. Zur Beurteilung der Prädiktionsgenauigkeit
wird anschließend eine Testanregung untersucht, die nicht in den Trainingsdaten
enthalten ist. Die Abbildung 3.12 zeigt die Prädiktionsgenauigkeit der EDMD-
Verfahren im Vergleich zum nichtlinearen physikalischen Modell (6.11). Anhand der
Zeitverläufe und dem kumulierten mittleren quadratischen Fehler

e(tk) =
k∑

m=1

1

k
(x1,Messung(tm)− x1,Prädiktion(tm))2 (3.54)

lässt sich erkennen, dass die reine EDMD-Prädiktion eine geringfügig schwächere
Genauigkeit als das nichtlineare physikalische Modell liefert. Im Gegensatz dazu ist
die EDMD-Prädiktion mit Korrektur jedoch in der Lage, die nichtlineare Dämpfung
nach ca. 8 s präziser abzubilden, wodurch sich der kumulierte Fehler signifikant ver-
ringert.

Automatische Modellaktualisierung

Eine Herausforderung mechatronischer Systeme liegt in vorhersehbaren oder un-
vorhersehbaren Systemveränderungen, z. B. die Installation eines neuen Bauteils,
Verschleiß oder Temperaturschwankungen während des Betriebs. Um dennoch eine
gleichbleibend hohe Regelungsgüte gewährleisten zu können, muss die Informations-
verarbeitung in der Lage sein, diese Änderungen zu erfassen und sich automatisch
anzupassen. Daher wurde in [70] eine Erweiterung um selbstlernende Streckenmodel-
le entwickelt, die sich auf Basis laufend aufgezeichneter Messdaten an veränderliches
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Abbildung 3.11 Zur Erzeugung der Trainingsdaten wurde der Schlagmechanismus des Gol-
froboters mit unterschiedlichen Verläufen für u angeregt und der resultierende Systemausgang
x1 gemessen. Der Verlauf für x2 wurde offline geschätzt.

Systemverhalten anpassen, vgl. Abbildung 3.13. Dafür wurde zunächst in Anleh-
nung an [71] ein Algorithmus für ein adaptives EDMD-Modell mit einem rekur-
siven kleinste-Quadrate-Ansatz realisiert. Durch einen variablen Vergessensfaktor
berücksichtigt das Modell vergangene Messdaten in Abhängigkeit der Intensität der
auftretenden Systemveränderungen zu vernachlässigen. Die Begrenzung der Spur der
Kovarianzmatrix verhindert das einhergehende Risiko eines sogenannten Kovarianz-
Windups. Für vollständige Zustandsregelungen, die messbare oder geschätzte Zu-
standsgrößen erfordern, wurde ein Beobachter integriert, der sich ebenfalls während
des Betriebs anpasst. Am Schlagmechanismus des Golfroboters wurde gezeigt, dass
das adaptive EDMD-Modell die Regelungsgüte auch bei starken Systemveränderun-
gen deutlich verbessert [70]. Die erfolgreiche Integration der Adaptionsfähigkeit
bestätigt die hohe regelungstechnische Verwertbarkeit der EDMD-Modelle gemäß
der Kriterien, die im Kapitel 2 formuliert wurden.

3.2 Sparse Identification of Nonlinear Dynamical
Systems

Motiviert durch Problemstellungen in der Fluiddynamik, entstand in [72] die Me-
thode Sparse Identification of Nonlinear Dynamics (SINDy), welche ein lineares
Regressionsmodell basierend auf Messdaten und unter Zuhilfenahme einer nichtli-
nearen Funktionsbibliothek extrahiert. Damit weist das Verfahren eine nahe Ver-
wandtschaft zu Modellreduktionstechniken wie Proper Orthogonal Decomposition
und zu Koopman-basierten Techniken wie Dynamic Mode Decomposition (vgl. Un-
terabschnitt 3.1.2) auf. Voraussetzung für SINDy ist die Verfügbarkeit von Mess-
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Abbildung 3.12 Prädiktionsgenauigkeit der EDMD-Verfahren im Vergleich zum nichtlinearen
physikalischen Modell am Beispiel des Schlagmechanismus des Golfroboters.

daten des vollständigen Zustands x ∈ Rn, wobei die Systemordnung n eine sehr
hohe Dimension widerspiegeln kann. Liegen M Messdaten des Zustands für jeden
Zeitschritt k = 1, . . . ,M vor, so können diese zeitversetzt in Matrizen X und X ′

nach Gleichung (3.17) angeordnet werden. Um die Evolution des Zustands, wel-
che durch eine autonome Differentialgleichung (3.1) erfolgt, zu modellieren, wird die
Dynamik f über eine Linearkombination approximiert. Dazu wird eine Funktionsbi-
bliothek aus nθ (nicht-)linearen Termen ψi(·) angenommen, welche die anzunähernde
Dynamik f basierend auf den Messdaten beschreiben können. Mithilfe der Parame-
termatrix θ ∈ Rn×nθ kann anschließend der folgende Zusammenhang zwischen den
Messdaten ausgedrückt werden:

X ′ = θΨT (X). (3.55)

Da jedoch die meisten dynamischen Systeme durch einige wenige Funktionen cha-
rakterisiert werden können, wird postuliert, dass die Parametermatrix θ dünnbe-
setzt14 ist, d. h. dass lediglich einige wenige Einträge verschieden von Null sind.
Anschließend lassen sich Algorithmen aus dem Bereich der Sparse Regression an-
wenden. Mittels des populären Ansatzes LASSO15, welcher auf [73] zurückgeht und
eine Pareto-optimale Lösung bzgl. Modellgüte und Modellkomplexität liefert, lässt
sich für die i-te Zeile von θ mit i = 1, . . . , n die folgende Lösung des Optimierungs-
problems formulieren:

θ∗
i = argmin

θi

||X ′
i − θiΨ

T (X)||2 + λ||θi||1. (3.56)

14im Englischen sparse
15Least Absolute Shrinkage and Selection Operator
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Abbildung 3.13 Der adaptive Entwurf ermöglicht ein hybrides Modell in regelungstechnisch
verwertbarer Form, das sich während des Betriebs anpasst. In Anlehnung an [70].

Hierbei stellt X ′
i die i-te Zeile der Datenmatrix X ′ dar. Das konvexe Optimierungs-

problem (3.56) lässt sich ebenso auf den Fall nicht-autonomer Systeme erweitern und
wird dann als SINDYc bezeichnet16 [74]. Neben der rein datenbasierten Identifikati-
on nur durch Messdaten kann das SINDy-Verfahren auch Vorwissen berücksichtigen,
z. B. durch eine konkrete Bibliothekswahl, bei der Hypothesen über das zu identifi-
zierende System als Kandidatenfunktionen eingehen. Anschließend liegt ein (in der
Regel nichtlineares) interpretierbares Modell vor. Allerdings besteht ein gravieren-
der Nachteil darin, dass das SINDy-Verfahren Messwerte des vollständigen Zustands
benötigt. Dies ist in realen Prozessen selten umsetzbar aufgrund von messtechni-
schen Herausforderungen oder des Kostendrucks bzgl. der Sensorik. Dieser Nachteil
kann nur relativiert werden, wenn alle Zustände des Systems einen differentiellen
Zusammenhang aufweisen, sodass die nicht messbaren Zustandsgrößen alternativ
numerisch differenziert oder gefiltert werden können.

Beispielhafte Anwendung

Zur Illustration des SINDYc-Verfahrens wird die Dynamik des Golfroboters, welcher
im Abschnitt 6.1 vorgestellt wird, anhand von Messdaten identifiziert. Da es sich
bei diesem um ein nicht-autonomes System handelt, werden die Stelleingänge nach
Gleichung (3.17) ebenfalls in einer Matrix gespeichert und zur Approximation der
Dynamik genutzt. Als Messdaten stehen Trajektorien zur Verfügung, die aufgrund
einer sinus- (teilweise mit zeitlich variierenden Frequenzen) oder sprungförmigen
Anregungen resultieren. Die Aufteilung dieser Messdaten erfolgt dabei wie im Ab-
schnitt 2.2 beschrieben in Trainings-, Validierungs- und Testdaten, um ein konsis-
tentes Lernen des SINDYc-Modells zu erlauben. Nachfolgend ist das Ergebnis einer

16Diese Abkürzung bedeutet SINDy with control (SINDYc). Im weiteren Verlauf wird jedoch der
Begriff SINDy genutzt, da sich die Betrachtung autonomer und nicht-autonomer Systeme aus
dem Zusammenhang ergibt.
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solchen sinusförmigen Testtrajektorie in der Abbildung 3.14 zu sehen, nachdem das
SINDYc-Modell mit den Bibliotheken

Ψ1(x, u) = [1, x1, x2, x
2
1, x

2
2, u],

Ψ2(x, u) = [1, x1, x2, cos(x1), cos(x2), u],

Ψ3(x, u) = [1, x1, x2, cos(x1), x
2
2, u]

(3.57)

trainiert worden ist. Anhand der zeitlichen Verläufe im Vergleich zu den Messda-
ten ist erkennbar, dass das SINDYc-Modell für jede der verwendeten Bibliotheken
eine sehr hohe Modellgüte aufweist, da kaum ein Unterschied zu den Trajektorien
der Messung zu sehen ist. Insbesondere unterscheiden sich die Ergebnisse der drei
Bibliotheken kaum, da alle einen ähnlich geringen Approximationsfehler liefern und
die folgenden Parametermatrizen identifizieren:

θ1 =

[
0 1 0 0 0 0
0 −0, 0122 0, 999 0 0 0, 0267

]
,

θ2 =

[
0 1 0 0 0 0

0, 0014 −0, 0127 0, 999 −0, 0012 0 0, 0267

]
,

θ3 =

[
0 1 0 0 0 0

0, 0014 −0, 0127 0, 999 −0, 0012 0 0, 0267

]
.

(3.58)

Das SINDYc-Verfahren ist folglich ein geeignetes Verfahren, um eine physikalisch-
interpretierbare Zustandsraumdarstellung zu erhalten, da es bereits das Einbringen
von Vorwissen in Form von Bibliotheksfunktionen erlaubt. Allerdings ist es nicht
immer gegeben, dass der vollständige Zustand als Messwert vorliegt, sodass diese
Methode bzgl. ihrer Grundidee im Kapitel 5 im Rahmen des Beobachterentwurfs
erneut aufgegriffen wird.

Das SINDy-Verfahren eignet sich sowohl für autonome als auch nicht-
autonome Systeme und besitzt üblicherweise einen geringen Rechenaufwand.
Es erfordert Messdaten des vollständigen Zustands bzw. seines differentiel-
len Zusammenhangs sowie geeignet gewählte Bibliotheksterme. Das resultie-
rende, in der Regel nichtlineare Modell ist interpretierbar und im weiteren
Regelungsentwurf flexibel einsetzbar.

3.3 Physikalisch motivierte neuronale Netze

Als globale Funktionsapproximatoren können neuronale Netze einen beliebigen funk-
tionalen Zusammenhang abbilden, wenn die Netzarchitektur sowie Trainingsdaten
entsprechend gewählt werden [75], [76], [77], [78]. Diese Eigenschaft ist besonders
vorteilhaft, um die in Kapitel 1 beschriebene Herausforderung der Modell-Realitäts-
Lücke zu adressieren. Stoßen physikalisch motivierte Modelle an ihre Grenzen und
sind gleichzeitig Messdaten verfügbar, kann ein neuronales Netz in Kombination mit
einem physikalisch motivierten Modell unterstützen und die Modell-Realität-Lücke
∆f ggf. verkleinern [22], [79]. Damit stellen die sogenannten Physics-Guided Neural
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Abbildung 3.14 Modellgüte eines SINDYc-Modells unterschieden in die unterschiedlichen
Bibliotheken Ψ1,Ψ2,Ψ3 [17] und basierend auf Code aus [28], vgl. [17]

Networks (PGNNs)17 einen sehr populären Ansatz dar, welcher in vielfältigen Dis-
ziplinen in unterschiedlichen Strukturen eingesetzt wird [79], [80]. Erste Konstrukte
solcher Kombinationen wurden bereits in den 1990er Jahren verwendet, da beispiels-
weise ein neuronales Netz als Fehlermodell hinter ein physikalisches Modell geschal-
tet wurde, um den Modellfehler zu lernen [81]. Im Folgenden werden zunächst die
Grundlagen neuronaler Netze erläutert, woraufhin physikalisch motivierte Netze de-
finiert und vorgestellt werden.

3.3.1 Neuronale Netze

In diesem Abschnitt erfolgt lediglich eine kurze Einführung in die Thematik der neu-
ronalen Netze. Diese soll zum Verständnis der nachfolgenden Methoden beitragen,
sodass als weiterführende Literatur [2], [10], [33], [82] empfohlen wird. Die Struktur
neuronaler Netze (NN) ist durch die biologische Informationsverarbeitung inspiriert
und dient zur Approximation eines beliebigen, funktionalen Zusammenhangs

f : X 7→ Y (3.59)

mit den Eingängen x ∈ X ⊆ RD und Ausgängen y ∈ Y ⊆ RL. Dieser Zusam-
menhang (3.59) wird durch ein neuronales Netz als eine Funktion fNN über einen
gerichteten Graphen, bestehend aus Knoten und Kanten, beschrieben. Die Knoten,
nachfolgend als Neuronen bezeichnet, sind als Verarbeitungseinheiten in mehreren
sogenannten versteckten Schichten angeordnet [2], [10], [33], [82]. Die Neuronen sind

17Diese sind z. T. auch unter den Begriffen Physics-Informed Neural Networks (PINNs) oder
Physics-Based Neural Networks (PBNNs) bekannt.
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3.3 Physikalisch motivierte neuronale Netze

hierbei durch gerichtete Kanten verbunden, wobei jeder Kante, die ein Neuron i mit
einem Neuron j verbindet, ein Gewicht ζji zugeordnet wird. Somit stellt ein NN mit
ζ ∈ U und ŷ ∈ Y ein nichtlineares Regressionsmodell dar, da es durch

fNN : X× U 7→ Y, ŷ = fNN(x, ζ) (3.60)

definiert wird. Die Anordnung der Neuronen und ihr Informationsfluss unterein-
ander, der durch die Kantenrichtungen ausgedrückt wird, wird als Netzarchitektur
bezeichnet. Es lassen sich grundsätzlich vorwärts gerichtete und rekurrente Archi-
tekturen unterscheiden, wobei Letztere einen Informationsfluss der Neuronen durch
verschiedene Formen der Rückkopplung des Informationsflusses ermöglicht, z. B. in-
dem der Ausgang eines Neurons mit einem Neuron einer vorhergehenden Schicht
verbunden ist. Indem lineare und nichtlineare Aktivierungsfunktionen auf die Neu-
ronen angewendet werden, kann der Zusammenhang Gleichung (3.59) allgemeine
nichtlineare Funktionen approximieren. Das Lernen dieses Zusammenhangs erfolgt
über das Verfahren Backpropagation, welches den prädizierten Ausgang des Netzes
ŷq mit den Trainingsdaten yq für q = 1, . . . ,M Messdaten vergleicht [2], [10], [33],
[82]. Mithilfe eines Gradientenabstiegverfahrens wird anschließend die Lösung des
Optimierungsproblems

argmin
ζ

Jerr(x, ζ) = argmin
ζ

1

2

M∑

q=1

||ŷ(xq, ζ)− yq||22 (3.61)

ermittelt. In den Anwendungsbeispielen dieses Kapitels wurde das ADAM-Verfahren
genutzt [83]. Durch ihre Struktur stellen NN ein mächtiges Werkzeug in der Funkti-
onsapproximation dar [75], [76], [77], [78] und werden in vielfältigen Situationen ein-
gesetzt. Insbesondere durch die Nutzung vieler versteckter Schichten und verschiede-
ner nichtlinearer Aktivierungsfunktionen ermöglicht ein NN, komplexe Funktionen
zu approximieren. Diese tiefen neuronalen Netze, welche viele Schichten aufwei-
sen, werden dem Deep Learning zugeordnet, vgl. Abschnitt 2.2. Allerdings besteht
beim Lernvorgang neuronaler Netze die Gefahr des Over- oder Underfittings, wenn
Einflussgrößen wie Trainingsdaten, Lernrate oder Initialisierung ungünstig gewählt
werden [10].

3.3.2 Physics-Guided Neural Networks

In den meisten Fällen kann mit geringem Modellierungsaufwand und Vorwissen ein
einfaches physikalisches Modell für ein betrachtetes mechatronisches System erarbei-
tet werden. Für die nachfolgenden Abschnitte wird angenommen, dass ein solches
Modell in parametrischer Form vorliegt. Dieses besteht in der Regelungstechnik
gewöhnlich aus der folgenden Differentialgleichung mit dem Zustand xphy ∈ Rn und
den Parametern p ∈ Rnp :

ẋphy = f phy(xphy,u,p),

yphy = xphy.
(3.62)

47



3 Modellbildung

Um die infolge der vereinfachten Modellbildung entstandenen Ungenauigkeiten und
Abweichungen des Modells zu kompensieren und eine höhere Modellgüte zu erzie-
len, wird ein neuronales Netz ergänzt, welches diese approximiert. Voraussetzung
für ein überwachtes Lernen der realen Systemdynamik f mithilfe neuronaler Net-
ze ist allerdings, dass der vollständige Zustand messbar ist, d. h. dass y = x gilt,
oder dieser durch einen differentiellen Zusammenhang ermittelt werden kann (vgl.
Abschnitt 3.2). Daher gilt diese Annahme ebenfalls für das physikalische Simulati-
onsmodell (3.62), welches zudem basierend auf einem numerischen Integrationsver-
fahren diskretisiert wird. Mithilfe der zwei Komponenten, einerseits das physikalisch
basierte Simulationsmodell und andererseits ein datengetriebenes neuronales Netz,
können je nach Ausprägung der Abweichungen verschiedene Optionen zur Verschal-
tung der Modellkomponenten in Erwägung gezogen werden [84], beispielsweise eine
serielle oder parallele Anordnung. Im Folgenden wird eine Mischform vorgestellt,
welche auf [79] zurückgeht. Diese wird als Physics-Guided Neural Network (PGNN)
bezeichnet und ist in der Abbildung 3.15 durch den gestrichelten Kasten angedeutet.
Das PGNN erhält in dieser Struktur als Eingänge nicht nur den prädizierten Aus-

Prozess

Physikalisches
Simulationsmodell

NN

xk+1uk, xk

x̂k+1

xphy,k+1

−

ek+1

PGNN

Abbildung 3.15 Struktur eines PGNNs während des Trainings [17]: Es umfasst ein diskreti-
siertes, physikalisches Simulationsmodell (grün) und ein vorwärts gerichtetes NN (rot).

gang des Simulationsmodells xphy,k+1, sondern auch die aktuelle Stellgröße uk, mit
welcher das System angeregt wird, und den aktuellen Zustand xk, in dem sich das
System befindet. Folglich kann das neuronale Netz nicht nur den temporären Mo-
dellfehler lernen, welcher lediglich bei einer Reihenschaltung angenähert wird, son-
dern auch die vollständige Dynamik sowie die Wechselwirkungen zwischen diesen.
Darüber hinaus erleichtert die Berücksichtigung des prädizierten Ausgangs xphy,k+1

das Training, da es das Netz in eine physikalisch plausible Richtung lenkt, auch
wenn das Simulationsmodell (3.62) qualitativ Abweichungen aufweist. Der Zusam-
menhang, den das PGNN beschreibt, kann anschließend durch

fPGNN : Rn × Rn × Rp × U 7→ Rn, x̂ = fPGNN(x,xphy,u, ζ) (3.63)

ausgedrückt werden [84]. Üblicherweise wird die Dynamik hierbei durch den Ver-
gleich des Datenfehlers (3.61) gelernt. Um allerdings nicht nur ein physikalisch plau-
sibles Modell basierend auf den Trainingsdaten zu entwickeln, sondern auch eine
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3.3 Physikalisch motivierte neuronale Netze

physikalisch konsistente Prädiktion außerhalb der Trainingsdaten zu gewährleisten,
schlagen Karpatne et al. in [79] eine Erweiterung der rein Daten auswertenden Kos-
tenfunktion Jerr um einen physikalischen Term Jphy vor. Dieser berücksichtigt qua-
litatives Vorwissen, welches zusätzlich zu den Daten verfügbar ist. Beispiele dafür
sind physikalische Naturgesetze, Erhaltungsprinzipien, Schranken, Regelgesetze oder
vages Erfahrungswissen [85], [86]. Dieses Wissen lässt sich durch Gleichheits- oder
Ungleichheitsbedingungen G bzw. H ausdrücken, welche anschließend als weitere
Kostenfunktion Jphy formuliert werden können:

G(x) = 0 → Jphy(x, ζ) = ||G(x)||2,
H(x) ≤ 0 → Jphy(x, ζ) = max(0,H(x)). (3.64)

So erörtern Karpatne et al. beispielsweise die Problematik, wie die Temperatur in-
nerhalb eines Sees abhängig von der Tiefe des Gewässers modelliert werden kann [79].
Mithilfe eines PGNNs, welches ein physikalisch motiviertes Seemodell enthält und
die Beziehung zwischen Temperatur, Dichte und Tiefe des Wassers als zusätzliche
Wissenskomponente Jphy über eine Bedingung H im Lernprozess berücksichtigt,
kann schließlich ein Modell mit hoher Güte entwickelt werden. Entgegen der Ver-
wendung der physikalischen Kostenfunktion als Regularisierungsterm in [79], wird
in der Dissertation [17] ein Mehrzieloptimierungsproblem formuliert, sodass

ζ∗ = argmin
ζ

J(x, ζ) = argmin
ζ

(1− λphy) · Jerr(x, ζ) + λphy · Jphy(x, ζ). (3.65)

gilt. Dieses Mehrzieloptimierungsproblem (3.65), welches während des Trainings
gelöst werden soll, wird mit einem einfachen Skalarisierungsverfahren umgesetzt [87],
[88]. Die gewichtete Summe legt durch den Skalar 0 ≤ λphy ≤ 1 die Priorisierung der
einzelnen Ziele J• fest. Das Auffinden der pareto-optimalen Punkte gestaltet sich in
der Praxis aber herausfordernd. Daher diskutieren die Autoren in [89] verschiede-
ne Einflussfaktoren auf die Konvergenz des Mehrzieloptimierungsproblems (3.65),
wenn im Gegensatz zum vorgestellten Konzept die Differentialgleichung des Simu-
lationsmodells (3.62) als physikalische Kostenfunktion Jphy betrachtet wird, um das
Netz direkt die Systemdynamik lernen zu lassen. Diese populäre Strategie [90], [91],
[92], [93], [94], das physikalische Simulationsmodell statt qualitativem Vorwissen in
den Lernprozess zu integrieren, ist jedoch nur zielführend, wenn das Simulations-
modell eine hohe Modellgüte aufweist, da das Netz potentiell irrtümliche Eigen-
schaften nachbilden kann. Am Ausgangspunkt in diesem Beitrag steht allerdings
ein Simulationsmodell, welches größere Abweichungen zur Systemdynamik aufweist,
sodass diese Strategie nicht in Frage kommt (vgl. Kapitel 1). Dennoch zeigt [89]
auf, dass insbesondere jene Parameter, welche die Struktur des Netzes bestimmen,
einen starken Einfluss auf die Form der Paretomenge besitzen. Empfehlenswert ist
daher eine sorgsame Wahl dieser mittels der Hyperparameteroptimierung. Darüber
hinaus steigt die Komplexität des Optimierungsproblems, wenn eine Anpassung für
mehr als zwei Ziele in der Kostenfunktion (3.65) vorgenommen wird [87], [88]. In
[17] sowie in [84] wurde das Konstrukt des PGNNs erstmals auf ein nicht-autonomes
System aus der Mechatronik angewendet. In dieser Disziplin existiert üblicherweise
qualitatives Vorwissen, welches in der Kostenfunktion durch einen Mehrzieloptimie-
rungsansatz berücksichtigt werden kann, z. B. die Energiebilanz eines Systems.
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Beispielhafte Anwendungen

Golfroboter Der Golfroboter, welcher in Abschnitt 6.1 vorgestellt wird und bereits
in vorangegangenen Abschnitten als Testobjekt genutzt wurde (vgl. Absatz 3.1.4
und Abschnitt 3.2), besitzt ein komplexes, nichtlineares Reibmoment Md, vgl. Glei-
chung (6.11). Dieses approximiert die Mischung aus Haft- und Gleitreibung, weist
aber dennoch in manchen Situationen Diskrepanzen zum tatsächlichen Verhalten
des Golfroboters auf. Daher soll basierend auf dem nichtlinearen Modell (6.11)
ein PGNN entwickelt werden, dessen Modellgüte nach einem Training mit rein
datenbasierten als auch physikalisch motivierten Modellen verglichen werden soll.
Zusätzliches Wissen wird während des Trainings durch die Energiebilanz des Gol-
froboters

Jphy( ¨̂φ, ˙̂φ, φ̂, u) = ∆E( ¨̂φ, ˙̂φ, φ̂, u)

= J ¨̂φ ˙̂φ+mga ˙̂φ sin(φ̂) + d ˙̂φ2 + rµsign( ˙̂φ)| ˙̂φ2a+mg cos(φ̂)| ˙̂φ− 4u ˙̂φ

(3.66)

mittels der Gleichheitsnebenbedingung aus Gleichung (3.64) berücksichtigt. An-
schließend werden verschiedene Trajektorien infolge unterschiedlicher Anregungen
zum Lernen genutzt, indem diese Daten für das Training, die Validierung und zum
Testen aufgeteilt werden [17], [95]. Ferner wird eine Hyperparameteroptimierung
mithilfe einer Bayesschen Optimierung durchgeführt (vgl. Unterabschnitt 4.4.3, um
beispielsweise die Anzahl der Neuronen oder die Gewichtung λphy zu bestimmen.
Nachdem das PGNN erfolgreich mit der optimierten Parametrierung λphy = 0, 8175
und einer Anzahl von 27 Neuronen trainiert wurde, wird es mit einer unbekannten
Trajektorie getestet sowie mit weiteren Modellen verglichen18. Schließlich zeigt Ab-
bildung 3.16 Ergebnisse dieses Vergleichs, indem die Trajektorien der Modelle bzgl.
der schwarz gekennzeichneten Testtrajektorie dargestellt werden. Es ist erkennbar,
dass alle Modelle zunächst eine zufriedenstellende Modellgüte aufweisen. Werden je-
doch Abschnitte der Abbildung vergrößert, zeigen sich qualitative Unterschiede. So
schwankt das in rot dargestellte PGNN meist zwischen dem Verlauf der Messdaten
und des physikalischen Modells (in grün), kann aber in der Regel eine Verbesserung
der Modellgüte im Vergleich zum physikalischen Modell erzielen, z. B. für den Win-
kel. Dagegen weicht das NN (in hellblau) am stärksten vom tatsächlichen Verlauf
des Golfroboters ab. Folglich scheint das PGNN die Vorteile beider Perspektiven
zu vereinen und daraus ein qualitativ höherwertiges Modell zu erschaffen. Aller-
dings übertrifft das SINDy-Modell, dessen Trajektorien in lila dargestellt sind, die
Approximationsgüte des PGNN-Modells deutlich.

Servoventil Servoventile bilden als Teil der Aktorik eine zentrale Rolle in vielen
Applikationen. Jedoch ist die Modellierung ihrer Dynamik aufgrund starker Nichtli-
nearitäten herausfordernd und aufwendig [96]. Häufig wird je nach Einsatzzweck eine
erforderliche Modellierungstiefe gewählt, um Ressourcen effizient zu nutzen [97]. Im
Kontrast zu einem detaillierten nichtlinearen Modell wie in [96] ist beispielsweise das
folgende Modell, welches eine Verzögerungsdynamik zweiter Ordnung aufweist, in
der Lage, die grundlegende Systemdynamik des Ventils abzubilden und stellt folglich

18Das SINDy-Modell basiert auf der Bibliothek Ψ(x, u) = [x1, x2, sin(x1), cos(x2), tan(x2)
−1, u]T .

50



3.3 Physikalisch motivierte neuronale Netze

0 2 4 6 8 10
−1

0
1

φ
[r

ad
]

Messung Phys. Simulationsmodell NN
PGNN SINDy

0 2 4 6 8 10
−2

0
2
4

φ̇
[r

ad
/s

]

0 2 4 6 8 10
−0,4
−0,2

0
0,2

Zeit t [s]

u
[N

m
]

0 2 4 6 8 10
−1

0
1

φ
[r

ad
]

Messung Phys. Simulationsmodell NN
PGNN SINDy

0 2 4 6 8 10
−2

0
2
4

φ̇
[r

ad
/s

]

0 2 4 6 8 10
−0,4
−0,2

0
0,2

Zeit t [s]

u
[N

m
]

0 2 4 6 8 10
−1

0
1

φ
[r

ad
]

Messung Phys. Simulationsmodell NN
PGNN SINDy

0 2 4 6 8 10
−2

0
2
4

φ̇
[r

ad
/s

]

0 2 4 6 8 10
−0,4
−0,2

0
0,2

Zeit t [s]

u
[N

m
]

Abbildung 3.16 Modellgüte eines PGNNs im Vergleich zu anderen datengetriebenen und
physikalisch basierten Modellen anhand des Golfroboters, vgl. [17], [84]

einen Kompromiss bzgl. der Modellierungstiefe und -genauigkeit dar:

ẋ =

[
x2

−2D
T
x2 − 1

T 2x1 +
K
T 2u

]
,

y = x1.

(3.67)

Der Systemzustand x = [yV , ẏV ]
T beinhaltet die Ventilschieberposition yV sowie des-

sen Geschwindigkeit ẏV , während das Ventil als Eingang die Spannung u erhält. Die
Parameter des Modells Gleichung (3.67) lauten p = [K,D, T ]T = [0, 1, 0, 5, 1/350]T .
Aufgrund der Viskosität des Öls existieren allerdings Beschränkungen der Ventil-
schiebergeschwindigkeit und -beschleunigung, die das Modell (3.67) nicht wieder-
geben kann. Durch mehrere Versuche können diese Beschränkungen experimentell
angenähert und in das Modell (3.67) integriert werden, welches folglich eine tiefe-
ren Modellierungsgrad erhält. Im Folgenden wird anhand der Abbildung 3.17 die
Auswirkung des Modellierungsgrads im Kontext der PGNN deutlich, indem das
Modell (3.67) jeweils mit und ohne empirische Beschränkungen als physikalisches
Simulationsmodell genutzt wird. Das Training umfasst wie im vorigen Beispiel die
Verwendung einer Energiebilanz als zusätzliches Vorwissen und nutzt Trainingsda-
ten, welche aus verschiedenen Sprunganregungen resultieren (vgl. [17], [84]). Die
Visualisierungen in Abbildung 3.17 unterscheiden sich somit nur durch die Verläufe
des PGNNs und des physikalischen Simulationsmodells. Beide PGNNs weisen nach
der Hyperparameteroptimierung 11 Neuronen auf, unterscheiden sich jedoch in der
Gewichtung des physikalischen Kostenterms zu λphy = 0, 2527 (Modell ohne Be-
schränkungen) und λphy = 0, 3206 (Modell mit Beschränkungen). Erneut wird die
Modellgüte der beiden PGNNs mit anderen Modellen verglichen, u. a. mit der ei-
nes SINDy-Modells, welches aus einem Training basierend auf einer Bibliothek mit

51



3 Modellbildung

Zuständen und Eingängen resultiert, um die Vergleichbarkeit zum Modell (3.67) zu
gewährleisten. In der oberen Darstellung der Abbildung 3.17 weist das physikalische
Modell durch die fehlenden Beschränkungen große Abweichungen zu den Messda-
ten auf, welche sich insbesondere in der Geschwindigkeit des Ventilschiebers durch
ein Überschwingen bemerkbar machen. Trotzdem gelingt es dem PGNN, eine sehr
gute Approximation des Ventils zu erzielen, welche auf dem Niveau des nichtlinea-
ren Ventilmodells liegt. Dies lässt sich beispielsweise in den beiden Vergrößerungen
rechts von der Abbildung erkennen. Im Kontrast dazu schaffen es weder das NN
noch das SINDy-Modell das Systemverhalten anzunähern und beide weisen starke
qualitative Abweichungen auf. Dies resultiert aus der einfach gewählten Bibliothek
des SINDy-Modells. Erhielte dieses eine Bibliothek mit Elementen des nichtlinearen
Modells, wäre eine höhere Modellgüte zu erwarten. Wird für das PGNN ein Modell
mit höherem Detaillierungsgrad verwendet, wie z. B. durch Berücksichtigung der Be-
schränkungen, verbessert sich die Modellgüte enorm. Die untere Visualisierung der
Abbildung 3.17 verdeutlicht diese Erkenntnis, da die Vergrößerungen eine genauere
Approximation als das nichtlineare Modell sowohl für die Ventilschieberposition als
auch für die -geschwindigkeit zeigen. Dieses Anwendungsbeispiel zeigt folglich auf,
dass die Modellgüte eines PGNNs u. a. explizit von der Qualität des verwendeten
physikalischen Simulationsmodells abhängig ist. Die Nutzung des PGNNs erlaubt
deshalb eine Ersparnis des Modellierungsaufwands, da ein nichtlineares Ventilmodell
aus einer zeitintensiven und personell aufwendigen Entwicklung hervorgeht. Dieser
Entwicklungszyklus kann durch das Training und die Nutzung eines PGNNs bei
Gewährleistung einer vergleichbar hohen Modellgüte deutlich reduziert werden.

3.3.3 Physics-Guided Recurrent Neural Networks

Für Zeitreihendaten wird in der Regel eine rekurrente Architektur empfohlen, um
den sequentiellen Verlauf und dessen Langzeiteffekte abbilden zu können [2], [77],
[82]. Daher wird das in Unterabschnitt 3.3.2 entwickelte PGNN durch die Nutzung ei-
nes rekurrenten Netzes angepasst. Diese adaptierte Struktur wird als Physics-Guided
Recurrent Neural Network (PGRNN) bezeichnet und beispielsweise für das bereits
erwähnte Beispiel zur Schätzung von Temperaturen in Flüssen und Gewässern ein-
gesetzt [98]. Das PGRNN fPGRNN , welches in der Abbildung 3.18 dargestellt ist,
weist die gleiche Grundstruktur aus physikalischem Simulationsmodell und daten-
basiertem Anteil wie das PGNN in der Abbildung 3.15 auf. Es unterscheidet sich
dementsprechend nur durch den zusätzlichen Eingang der Zeit t ∈ R sowie durch
die innere Architektur des neuronalen Netzes. Dieses ist in der Abbildung 3.18 ver-
größert dargestellt und besitzt analog zur Modellierung in der Regelungstechnik
einen intrinsischen Zustand, den Hidden State hk ∈ RZ mit Z Neuronen, der zeit-
lich aufeinander folgende Daten durch eine Rückführung berücksichtigt.

Basierend auf bestehenden Formulierungen des PGRNNs (vgl. [98]) wird dieses
Konstrukt in der Dissertation [17] sowie in [95] für nicht-autonome, mechatronische
Systeme erweitert. Daher hängt hk sowohl von dem vorherigen Zustand hk−1 als
auch von den aktuellen Eingängen ab. Diese umfassen jeweilsM vergangene, zeitliche

52



3.3 Physikalisch motivierte neuronale Netze

0.99 0.995 1 1.005 1.01 1.015
0
1
2
·10−4

y V
[m

]

Messung Nichtlin. Modell Phys. Simulationsmodell
NN PGNN SINDy

0.99 0.995 1 1.005 1.01 1.015
0

0,1
0,2
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Abbildung 3.17 Modellgüte eines PGNNs bestehend aus einem Simulationsmodell mit unter-
schiedlichen Modellierungstiefen im Vergleich zu anderen datengetriebenen und physikalisch
basierten Modellen anhand der Ventildynamik: Simulationsmodell (3.67) ohne Beschränkungen
(oben), Simulationsmodell (3.67) mit Beschränkungen (unten), vgl. [17], [84].
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Abbildung 3.18 Struktur eines PGRNNs während des Trainings [17] (vgl. [95]): Es umfasst
ein physikalisches Simulationsmodell (grün) und ein RNN (rot), welches ein GRU-Layer gefolgt
von einer Ausgabeschicht enthält.

Verläufe bis zum aktuellen Zeitpunkt k, sodass Folgendes gilt:

Xk := (x0,x1, . . . ,xk),

U k := (u0,u1, . . . ,uk),

Xphy,k := (xphy,1, xphy,2, . . . ,xphy,k+1),

T k := (t0, t1, . . . , tk).

(3.68)

Die Verarbeitung der sequenziellen Daten kann allerdings zu numerischen Herausfor-
derungen führen, welche mit der Einführung der Long Short-Term Memory (LSTM)-
Zelle [99] und der Weiterentwicklung dieser zur Gated Recurrent Unit (GRU)-Zelle
behoben werden konnten [100]. Deshalb nutzt das PGRNN die GRU-Zelle, welche
die Daten durch Update Gates und Reset Gates verarbeitet. Das Update Gate zk
übergibt dem Hidden State neue Informationen, während das Reset Gate rk sukzes-
siv andere, nicht mehr relevante Informationen löscht. Es resultieren die folgenden
Gleichungen für den Eingang sk = [xk,uk,xphy,k]

T , welche zur Aktualisierung des
Zustands hk durch eine Linearkombination des vorherigen Zustands hk−1 und des
Zustands h̃k genutzt werden (vgl. [17], [95]):

zk = σg(W zsk + bz +Rzhk−1),

rk = σg(W rsk + br +Rrhk−1),

h̃k = σs(W h̃sk + bh̃ + rk ⊙ (Rh̃hk−1)),

hk = (1− zk)⊙ hk−1 + zk ⊙ h̃k.

(3.69)

Die Gewichte sind nach Eingangsgewichten W •, rekurrenten Gewichten R• und ad-
ditiven Gewichten b• aufgeteilt, wohingegen die Aktivierungsfunktion der Gates σg

jeweils durch eine logistische Funktion und die Aktivierungsfunktion des Hidden
States σs durch eine Tangens-Hyperbolicus-Funktion abgebildet werden. Anschlie-
ßend folgt wie in der Abbildung 3.18 zu erkennen eine Ausgabeschicht, welche aus
dem hochdimensionalen Zustand hk den tatsächlichen Systemzustand x̂k+1 extra-
hiert.

In Analogie zum PGNN wird für das PGRNN ebenfalls physikalisch konsisten-
tes Lernen während des Trainings angestrebt. Obwohl die gewichtete Summe (3.65)
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meist die erste Wahl in vielen Publikationen darstellt [89], weist diese verschiedene
Nachteile auf [87], [88]. Daher wird eine komplexere Strategie zur Lösung des Mehr-
zieloptimierungsproblems umgesetzt: Die Gütevektoroptimierung nach Kreißelmeier
und Steinhauser [24], [101]. Grundlegende Idee des Verfahrens stellt die Konstruk-
tion von Grenzen für jede der einzelnen Kostenfunktionen Ji mit i = 1, . . . , NJ dar,
die diese jeweils sukzessiv verkleinern. Zu Beginn jeder Lerniteration ĩ = 0, . . . , ϱ
werden diese Grenzen cĩi mit cĩi > J ĩi (·) initialisiert, woraufhin das Maximum der NJ

genormten Kostenfunktionen gesucht wird:

J(·) = max

{
Jϱ1 (·)
cϱ1

, . . . ,
JϱNJ

(·)
cϱNJ

}
, mit Jϱi (·) ≤ cϱi ≤ cϱ−1

i ≤ · · · ≤ c0i . (3.70)

Dadurch können alle Gütemaße Ji schrittweise verkleinert werden, wie es exem-
plarisch in der Abbildung 3.19 für NJ = 2 Kostenfunktionen und ϱ = 3 Iteratio-
nen dargestellt ist. Dieses Vorgehen wird durchgeführt, bis entweder eine maximale
Anzahl an Iterationen erreicht worden ist oder keine Verringerung der Grenze ci
mehr erreicht werden kann. Dies geschieht beispielsweise, wenn der Wert einer Kos-
tenfunktion Ji bereits sehr niedrig ist oder ein Pareto-optimaler Punkt gefunden
worden ist (vgl. Abbildung 3.19). Ein PGRNN, welches mit dieser Mehrzieloptimie-
rungsstrategie während des Trainings betrieben worden ist, wird als Multi-Objective
Physics-Guided Recurrent Neural Network (MOPGRNN) bezeichnet (vgl. [17], [95]).

c3
1 c1

1 c0
1

c3
2

c1
2

c0
2

Menge der Pareto optimalen Punkte
J1

J 2

Menge der Pareto optimalen Punkte

Abbildung 3.19 Schematischer Ablauf einer Gütevektoroptimierung für zwei konkurrierende
Ziele J1 und J2 und drei Iterationen [17]

Beispielhafte Anwendung

Golfroboter Analog zum Anwendungsbeispiel des PGNNs wird die Modellgüte
eines PGRNNs bzw. MOPGRNNs anhand des Golfroboters analysiert. Hierbei un-
terscheiden sich PGRNN und MOPGRNN lediglich in der gewählten Strategie zur
Lösung des Mehrzieloptimierungsproblems (3.66). Es werden weiterhin das physi-
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Abbildung 3.20 Modellgüte eines PGRNNs bzw. MOPGRNNs im Vergleich zu anderen da-
tengetriebenen und physikalisch basierten Modellen anhand des Golfroboters, vgl. [17], [95]

kalische Simulationsmodell (6.11) sowie die Energiebilanz (3.66) verwendet. Ebenso
stehen dieselben Messdaten des Golfroboters bereit, um das PGRNN und das MOP-
GRNN zu trainieren. Allerdings werden die Messdaten in verschiedene Datensätze
mit unterschiedlichem Umfang aufgeteilt, um die Abhängigkeit der Modellgüte von
der Datenmenge zu untersuchen. Folglich kann ein Training entweder basierend auf
wenigen Datensätzen (drei bis sechs Trainingssamples) oder vielen Datensätzen (12-
15 Trainingssamples) durchgeführt werden. Exemplarisch ergibt sich nach der Opti-
mierung der Hyperparameter und einem Training mit sechs Samples das Modellver-
halten, welches in der Abbildung 3.20 zu sehen ist. Die Modellgüte des PGRNNs und
MOPGRNNs wird hierbei jeweils mit den Messdaten des Golfroboters, dargestellt
durch die schwarzen Trajektorien, und ihren einzelnen Modellkomponenten, dem
physikalischen Simulationsmodell (in grün) und dem rekurrenten neuronalen Netz
(in blau), verglichen. Im Vergleich aller Modelle ist deutlich erkennbar, dass das re-
kurrente neuronale Netz (RNN) die geringste Modellgüte aufweist, da es qualitativ
das Verhalten des Golfroboters abbilden kann, aber große Abweichungen bestehen.
Dies zeigen insbesondere die Vergrößerungen auf der rechten Seite der Abbildung.
Das PGRNN, welches ohne die Gütevektoroptimierung trainiert worden ist, erzielt
meist eine Verbesserung der Modellgüte im Vergleich zum physikalischen Simula-
tionsmodell, beispielsweise in der Approximation der Winkelgeschwindigkeit. Wird
nun eine komplexere Strategie statt eines einfachen Skalarisierungsverfahrens zur
Lösung des Mehrzieloptimierungsproblems umgesetzt, verbessert sich die Modellgüte
des PGRNNs erneut: Die Trajektorien des MOPGRNNs, dargestellt in violett, geben
die Dynamik des Golfroboters am besten wieder.

Wegen des Einflusses der initialisierten Gewichte auf die Performanz eines neu-
ronalen Netzes, wird eine statistische Untersuchung vorgenommen, um die Daten-
abhängigkeit zu ermitteln. Dazu wird jede der drei Netzarten 16 Mal mit denselben
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Abbildung 3.21 Statistische Auswertung des Simulationsfehlers verschiedener Modellarten
für den Golfroboter, unterschieden nach der Anzahl der Trainingssamples und danach, ob die
Trainingsdaten sinusförmige Anregungen enthielten (rechte Grafik) oder nicht (linke Grafik)
[17], [95]

Einstellungen trainiert. Für jedes dieser Netze wird daraufhin die Modellgüte mittels
derselben Testtrajektorie evaluiert und anhand eines Simulationsfehlers esim ausge-
wertet, der die Fläche zwischen der tatsächlichen und der prädizierten Trajektorie
bestimmt [17], [95]. Aufgrund der statistischen Auswertung der verschiedenen Versu-
che lassen sich der durchschnittliche Fehler µ und die Standardabweichung σ berech-
nen, welche in der Abbildung 3.21 durch einen Punkt bzw. eine vertikale Linie dar-
gestellt sind. Ferner zeigt die Abbildung die Datenabhängigkeit, indem die x-Achse
die Anzahl der genutzten Trainingssamples beschreibt [17], [95]. Des Weiteren wird
in ein Training mit (rechte Grafik) und ohne (linke Grafik) sinusförmigen Anregun-
gen unterschieden, da der Golfroboter insbesondere bei sinusförmigen Anregungen
seine starken nichtlinearen Effekte aufzeigt (vgl. Abschnitt 6.1). Unabhängig von
den verwendeten Daten und der Anzahl der Trainingssamples ist auffällig, dass das
RNN grundsätzlich den anderen Modellen unterliegt und nicht an die Modellgüte des
physikalischen bzw. hybriden Modells reichen kann. Dagegen zeigt das MOPGRNN
eine Robustheit bzgl. der verwendeten Daten auf, da dessen Modellgüte unabhängig
von der Datenmenge und der Anzahl der verwendeten Samples gleichbleibend hoch
ist. Diese ist sogar höher als die Modellgüte des physikalischen Modells, wie der
Simulationsfehler aufzeigt. Folglich verbessert die Mehrzieloptimierung mittels der
Gütevektoroptimierung nicht nur die Modellgüte des MOPGRNNs, sondern erhöht
zudem die Robustheit des Netzes im Vergleich zum PGRNN, welches mittels einer
gewichteten Summe trainiert wird und eine Datenabhängigkeit aufweist.

Physikalisch motivierte neuronale Netze erfordern ein einfach auszuwertendes,
physikalisches Simulationsmodell sowie ein u. U. aufwendiges, architektur-
abhängiges Training. Vorteile stellen die Berücksichtigung von zusätzlichem
physikalischen Vorwissen dar sowie die physikalische Plausibilität des re-
sultierenden Modells. Dieses weist in der Regel eine sehr hohe Modellgüte
auf, setzt aber Messdaten des vollständigen Zustands voraus.
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3.4 Datengetriebene PCHD-Modelle

Motiviert durch den Begriff der regelungstechnischen Verwertbarkeit von Strecken-
modellen, vgl. [16], und inspiriert durch die herausragenden Vorteile der Passivitäts-
eigenschaft wurde in [102] erstmals eine neue Methode zur datengetriebenen Bestim-
mung von PCHD-Modellen vorgeschlagen. Nach einer kurzen Einführung des Passi-
vitätskonzepts sowie der PCHD-Modelle wird die Methode vorgestellt und anhand
von Beispielen illustriert.

3.4.1 PCHD-Modelle

Der Begriff der Passivität adressiert Dissipationseffekte dynamischer Systeme [103],
[104]. Eng damit verbunden ist der Begriff der Hyperstabilität, der sich auf lineare
Systeme mit einer positiv reellen Übertragungsfunktion bezieht [105], [106], [107],
[108]. Passive Systeme sind immer stabil und das Konzept kann verwendet werden,
um nichtlineare Rückkopplungssysteme durch ein Regelungsgesetz asymptotisch zu
stabilisieren, weshalb eine solche Systembeschreibung äußerst wünschenswert ist.
Ein System

ẋ = f(x,u), (3.71a)

y = c(x,u) (3.71b)

mit x ∈ Rn, u,y ∈ Rp, f : Rn × Rp → Rn, c : Rn × Rp → Rp ist passiv, falls eine
stetig differenzierbare, positiv semidefinite19 Energiefunktion V : Rn → R mit

V (x(t))− V (x(0)) ≤
∫ t

0

u⊤y d τ (3.72)

für alle x,u existiert. Aus Gleichung (3.72) folgt die differentielle Passivitätsunglei-
chung

V̇ (x(t)) =
∂V

∂x
ẋ ≤ u⊤y, (3.73)

sodass für die Energiebilanz des Systems gilt

gespeicherte Energie ≤ zugeführte Energie. (3.74)

Die Eigenschaft der Passivität ist von den Schnittstellen zur Umgebung abhängig,
d. h. von der Wahl des Systemeingangs und -ausgangs [109]. Ein passives System
mit positiv definiter Speicherfunktion V besitzt in x = 0 eine Ruhelage, die sta-
bil im Sinne von Ljapunov ist. Für die Passivität verbundener Systeme gilt, dass
die Parallelschaltung und die Rückkopplung (streng) passiver Systeme wiederum
(streng) passiv ist. Diese Eigenschaft ist für den Regelungsentwurf ein außerordent-
lich nützliches Werkzeug [21].

Eine spezielle intrinsische Hamiltonsche Formulierung führt zu sogenannten port-
Hamiltonian bzw. port-controlled Hamiltonian systems (PCH -Systeme) [110], [111],

19Eine Funktion f(x) heißt positiv semidefinit, wenn f(x) ≥ 0 und f(0) = 0 [21].
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[112], [113]. Erweitert um Dissipationseffekte ergeben sich sogenannte port-controlled
Hamiltonian systems with dissipation (PCHD-Systeme) [114]. Die allgemeine Be-
schreibung solcher PCHD-Systeme ist durch

ẋ = (J(x)−D(x))

(
∂V

∂x

)⊤
+B(x)u, (3.75a)

y = B⊤(x)

(
∂V

∂x

)⊤
(3.75b)

gegeben, wobei x ∈ Rn der Zustandsvektor und u,y ∈ Rp die Ein- und Ausgangs-
schnittstellen des Systems sind. V : Rn → R ist eine stetige positiv definite Funk-
tion, die die gespeicherte Energie im System angibt. J(x) ∈ Rn×n ist eine schief-
symmetrische Matrix, d. h. J(x) = −J⊤(x), die die Energieflüsse im Inneren des
Systems definiert und D(x) ∈ Rn×n ist eine positiv definite symmetrische Matrix,
d. h.D(x) = D⊤(x), die das Verhalten der dissipativen Effekte abbildet20.B(x) be-
schreibt den Energieaustausch des Systems mit der Systemumgebung. Die zeitliche
Ableitung der Speicherfunktion ergibt

V̇ (x) =
∂V

∂x
ẋ =

∂V

∂x
J(x)

(
∂V

∂x

)

︸ ︷︷ ︸
=0, weil J(x)=−J⊤(x)

−∂V
∂x

D(x)

(
∂V

∂x

)⊤
+
∂V

∂x
B(x)u (3.76a)

⇒ V̇ (x) = u⊤y − ∂V

∂x
D(x)

(
∂V

∂x

)⊤
≤ u⊤y, (3.76b)

sodass mit Gleichung (3.75a) die Passivitätsungleichung (3.73) erfüllt ist [21]. Dem-
nach sind PCHD-Systeme immer passiv und somit immer stabil.

3.4.2 Algorithmus zur Bestimmung datengetriebener
PCHD-Modelle

Für die datengetriebene Bestimmung solcher PCHD-Modelle unter gezielter Aus-
nutzung von physikalischem Vorwissen, vgl. [102], sind die nachstehenden Voraus-
setzungen zu erfüllen:

• Es werden zeitkontinuierliche eingangsaffine Systeme

ẋ = f (x) +Bu (3.77a)

y = c(x,u) (3.77b)

mit dimu = dimy betrachtet.

• Es sind Daten des Zustands x und des Systemeingangs u verfügbar, die sowohl
aus Messungen als auch aus Simulationen stammen können.

• Grundlegendes physikalisches Vorwissen über die gespeicherte Energie der zu
modellierenden Dynamik ist bekannt.

20Wenn D(x) = 0 ist, dann handelt es sich um ein (verlustfreies) PCH-System.
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Die Matrizen J , D und B, die im Allgemeinen von x abhängig sind, vgl. Glei-
chung (3.75a), werden als konstant angenommen21. Außerdem werden die Matri-
zen J und D zusammengefasst zu K = J −D. Diese Annahme stellt keine Ein-
schränkung dar, weil sich jede quadratische Matrix eindeutig in einen symmetrischen
und einen schiefsymmetrischen Teil zerlegen lässt

J =
K −K⊤

2
, D = −K +K⊤

2
. (3.78)

Die Messdaten sind angeordnet in den Snapshot-Matrizen

X =
[
x1,x2, . . . ,xM

]
∈ Rn×M , (3.79a)

U =
[
u1,u2, . . . ,uM

]
∈ Rp×M , (3.79b)

Ẋ =
[
ẋ1, ẋ2, . . . , ẋM

]
∈ Rn×M . (3.79c)

Physikalisches Vorwissen über die im System gespeicherte Energie

V (x) = Ekinetisch + Epotentiell (3.80)

wird für die Konstruktion der Funktion22

Ψ : Rn → Rn, Ψ(x) =

(
∂V

∂x

)⊤
(3.81)

verwendet. Damit ergibt sich nach der Idee von Gleichung (3.75a) die Systembe-
schreibung

ẋ = KΨ(x) +Bu. (3.82)

Ähnlich wie beim EDMD-Verfahren wird der Zusammenhang über die Messdaten

Ẋ ≈KΨ(X) +BU =
[
K,B

] [Ψ(X)
U

]
(3.83)

betrachtet, sodass sich die Kleinste-Quadrate-Lösung mit

[
K,B

]
= Ẋ

[
Ψ(X)
U

]+
(3.84)

ergibt. Als Nächstes werden die Matrizen J und D mittels Gleichung (3.78) berech-
net. Um eine PCHD-Form zu erreichen, vgl. Gleichung (3.75a), ist es erforderlich,
dass D positiv semidefinit ist. Die symmetrische Matrix D ist genau dann positiv
semidefinit, wenn alle Eigenwerte von D größer oder gleich null sind. Die im Sin-
ne der Frobeniusnorm nächste Projektion der Matrix D in die Menge der positiv

21Diese Annahme beruht darauf, dass sich die Dynamik eines PCHD-Modells näherungsweise durch
konstante Matrizen beschreiben lässt, ähnlich der Vorgehensweise bei der Vereinfachung eines
nichtlinearen Modells durch Linearisierung um einen oder mehrere Arbeitspunkte.

22Der Gradient der Energiefunktion V wird hier aufgrund des verwandten Algorithmus in Analogie
zu den Observablen beim EDMD-Verfahren mit Ψ(x) bezeichnet.
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semidefiniten Matrizen erfolgt mittels

D⪰ = P⪰(D) = V max(0n×n,Σ)V ⊤ := V



max (0, λ1) 0

. . .

0 max (0, λn)


 ,

(3.85)
wobei V ΣV ⊤ die orthogonale Eigenzerlegung von D ist. Die resultierende System-
beschreibung liegt in PCHD-Form vor und ist passiv

ẋ = (J −D⪰)Ψ(x) +Bu. (3.86)

Der Algorithmus ist in der Abbildung 3.22 zusammengefasst.
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Abbildung 3.22 Schematische Übersicht der Methode zur Bestimmung eines datengetriebenen
PCHD-Modells.

Mittels der beschriebenen Methode lassen sich datengetriebene PCHD-
Modelle von eingangsaffinen Systemen mit konstanter Eingangsmatrix unter
Nutzung von physikalischem Vorwissen über die im System gespeicherte Ener-
gie bestimmen. Es werden Messdaten des vollständigen Zustandsvektors
und dessen zeitliche Ableitungen benötigt. Die resultierenden zeitkontinu-
ierlichen Modelle weisen eine hohe Modellgenauigkeit auf und sind gleichzei-
tig aufgrund der speziellen Struktur hochgradig physikalisch interpretierbar.

3.4.3 Beispielhafte Anwendung

Im Folgenden wird die Anwendbarkeit der datengetriebenen PCHD-Modelle Verfah-
ren beispielhaft hinsichtlich der erreichbaren Prädiktionsgüte demonstriert. Hierfür
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wird das numerisch simulierte nichtlineare Verhalten des jeweiligen Originalsystems
mit dem approximierten PCHD-Modell verglichen. Als simulative Beispielsysteme
werden das im Abschnitt 2.1 eingeführte Einfachpendel sowie ein Doppelpendel und
ein vereinfachter Multicopter betrachtet. Als experimentelles Beispielsystem wird
der Schlagmechanismus des institutseigenen Golfroboters betrachtet, dessen Dyna-
mik nichtlineare Reibungseffekte enthält.

Pendel Das resultierende datengetriebene PCHD-Modell für das Pendel (2.1) so-
wie eine ausführliche Beschreibung des Systems und der verwendeten Trainingsdaten
wurden bereits im Abschnitt 2.1 vorab präsentiert. Aufgrund der im System gespei-
cherte Energie

V (x) =
1

2
ml2x22 +mgl (1− cos x1) (3.87)

ergibt sich

Ψ(x) =

(
∂V

∂x

)⊤
=

[
mgl sin x1
ml2x2

]
. (3.88)

Der Algorithmus in der Abbildung 3.22 liefert das datengetriebene PCHD-Modell
mit

J =

[
0 4
−4 0

]
= −J⊤, D =

[
0 0
0 1,6

]
= D⊤ ⪰ 0, b =

[
0
4

]
(3.89)

und damit

[
ẋ1
ẋ2

]
= (J −D)

(
∂V

∂x

)⊤
+ bu

=

([
0 4
−4 0

]
−
[
0 0
0 1,6

])[
mgl sin x1
ml2x2

]
+

[
0
4

]
u.

(3.90)

Diese Matrizen korrespondieren exakt mit der analytisch hergeleiteten PCHD-Form
des Originalsystems (2.1)

[
ẋ1
ẋ2

]
=

[
x2

−g
l
sin x1 − d

ml2
x2 +

1
ml2

u

]

=

([
0 1

ml2

− 1
ml2

0

]
−
[
0 0
0 d

m2l4

])[
mgl sin x1
ml2x2

]
+

[
0
1
ml2

]
u

(3.91)

mit

Jphys =

[
0 1

ml2

− 1
ml2

0

]
, Dphys =

[
0 0
0 d

ml2l4

]
, bphys =

[
0
1
ml2

]
. (3.92)

Die Berechnung des Algorithmus liefert unmittelbar D⪰ = D, sodass keine nach-
trägliche Verschiebung der Eigenwerte erforderlich ist.

Zur Untersuchung der Robustheit gegenüber Modellunsicherheiten bzw. fehler-
haftem physikalischen Vorwissen wurden datengetriebene PCHD-Modelle für das
Pendel bestimmt, bei denen für die Festlegung von Ψ(x) eine Abweichung einzelner
Parameter um ±10% vom Originalwert angenommen wurde. Die Abbildung 3.23
zeigt die dazugehörigen prädizierten Verläufe für das autonom schwingende Pendel.
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3.4 Datengetriebene PCHD-Modelle

Es ist zu erkennen, dass die Verläufe trotz der Parameterabweichungen von ±10%
nur geringfügig vom Originalsystem abweichen. Die Abweichungen der Parameter
m und d werden durch den datengetriebenen Algorithmus vollständig korrigiert.
Die Ergebnisse für die Abweichungen der Parameter g und l lassen sich hingegen
dadurch erklären, dass diese Parameter einen erheblichen Einfluss auf die Schwin-
gungsdynamik, d. h. die Eigenfrequenz, haben. Die hier angenommene Abweichung
dient illustrativen Zwecken; bei vorhandener Unsicherheit bezüglich der Systempa-
rameter ist es im Allgemeinen empfehlenswert, diese im Vorfeld zu identifizieren
oder alternativ in Form einer Hyperparameteroptimierung zu überlagern.
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Abbildung 3.23 Simulative Analyse fehlerhaft gewählter physikalischer Parameter anhand
identifizierter PCHD-Modelle mit Parameterabweichungen von ±10%.

Schlagmechanismus des Golfroboters Der Golfroboter, vgl. Abbildung 6.1, wird
im Abschnitt 6.1 ausführlich beschrieben. Die Dynamik des Schlagmechanismus er-
gibt sich durch

[
ẋ1
ẋ2

]
=

[
x2

−mga sinx1−Md(x)+4u
J

]
, (3.93a)

Md(x) = dx2 + rµ sgn x2
∣∣mx22a+mg cos x1

∣∣ , (3.93b)

y = x1. (3.93c)

Die im System gespeicherte Energie ist gegeben durch

V (x) =
1

2
Jx22 +mga (1− cos x1) , (3.94)

sodass

Ψ(x) =

(
∂V

∂x

)⊤
=

[
mga sin x1

Jx2

]
. (3.95)
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Der Algorithmus in der Abbildung 3.22 liefert für dieselben Trainingsdaten wie in
der Abbildung 3.11 das datengetriebene PCHD-Modell

J =

[
0 6,1844

−6,1844 0

]
, b =

[
0

22,9965

]
, (3.96a)

D =

[
0 −0,736

−0,736 6,4364

]
mit den Eigenwertenλ1 = −0,0831, λ2 = 6,5195 (3.96b)

und der positiv semidefiniten Matrix

D⪰ =

[
0,0820 −0,7267
−0,7267 6,4375

]
mit den Eigenwertenλ1 = 0, λ2 = 6,5195. (3.97)

Das physikalische PCHD-Modell

Jphys =

[
0 1

J

− 1
J

0

]
≈
[

0 6,9204
−6,9204 0

]
, Dphys(x) =

[
0 0
0 dphys(x)

]
, (3.98a)

bphys =

[
0
4
J

]
≈
[

0
27,6817

]
(3.98b)

mit dphys(x) =

{
d
J2 , x2 = 0
d
J2 +

rµ
J2

∣∣∣mx
2
2a+mg cosx1

x2

∣∣∣ , x2 ̸= 0
(3.98c)

lässt sich analytisch aus dem physikalischen nichtlinearen Modell (3.93) herleiten.
An dieser Stelle ist anzumerken, dass beim Schlagmechanismus des Golfroboters

Dphys(x) von x abhängt. Angesichts der dennoch hohen Modellgüte des datengetrie-
benen PCHD-Modells mit konstanter Matrix D, vgl. Abbildung 3.24, kann davon
ausgegangen werden, dass die dominanten Nichtlinearitäten bereits in der Energie-
funktion V (x) berücksichtigt sind.

Doppelpendel Anhand eines unaktuierten und reibungsfreien Doppelpendels, vgl.
Skizze in der Abbildung 3.25, werden die Grenzen des vorgestellten Verfahrens zur
datengetriebenen Bestimmung von PCHD-Modellen untersucht. Dieses System zeigt
eine chaotische Dynamik. Das bedeutet, dass selbst minimale Änderungen der An-
fangsbedingungen eines chaotischen Systems zu stark unterschiedlichen Trajektorien
führen können, vgl. [115]. Im Folgenden wird zunächst kurz die physikalisch motivier-
te Modellbildung beschrieben. Anschließend wird die datengetriebene Bestimmung
eines PCHD-Modells diskutiert.
Ein physikalisch motiviertes nichtlineares Modell lässt sich mittels des Lagrange-

Formalismus herleiten23. Unter der Annahme, dass die Nulllage φ = 0 sich in der
unteren Ruhelage befindet und die Pendelarme als Punktmassen mit den in der
Tabelle 3.1 angegebenen Parametern modelliert sind, ergeben sich die kinetische
und potentielle Energie des Systems durch

Ekinetisch = ml2
(
φ̇2
1 +

1

2
φ̇2
2 + φ̇1φ̇2 cos (φ1 − φ2)

)
, (3.99a)

23Eine ausführliche Herleitung der Bewegungsdifferentialgleichungen findet sich beispielsweise in
[116].
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Abbildung 3.24 Das datengetriebene PCHD-Modell weist eine höhere Prädiktionsgüte als das
nichtlineare physikalische Modell (3.93) auf.

Epotentiell = −mlg (2 cosφ1 + cosφ2) . (3.99b)

φ1 = x1

φ2 = x3

Abbildung 3.25
Doppelpendel

Tabelle 3.1 Physikalische Parameter

Symbol Physikalischer Parameter Wert

m1 = m2 = m (Punkt-)Massen der Pendel 1 kg
l1 = l2 = l Längen der beiden

Pendelarme
0,5m

g Gravitationsbeschleunigung 9,81m s−2

Für die Lagrange-Funktion gilt damit

L = Ekinetisch − Epotentiell

= ml2
(
φ̇2
1 +

1

2
φ̇2
2 + φ̇1φ̇2 cos (φ1 − φ2)

)
+mlg (2 cosφ1 + cosφ2) ,

(3.100)

sodass sich die Bewegungsdifferentialgleichungen formuliert in den Minimalkoordi-

naten
[
q1, q2

]⊤
=
[
φ1, φ2

]⊤
mittels des Lagrange-Formalismus

d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0 (3.101)
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zu

ml2
(
2φ̈1 + φ̈2 cos (φ1 − φ2) + φ̇2

2 sin (φ1 − φ2)
)
+ 2mlg sinφ1 = 0, (3.102a)

ml2
(
φ̈2 + φ̈1 cos (φ1 − φ2)− φ̇2

1 sin (φ1 − φ2)
)
+mlg sinφ2 = 0 (3.102b)

ergeben. Mit
[
x1, x2, x3, x4

]⊤
=
[
φ1, φ̇1, φ2, φ̇2

]⊤
lässt sich die Dynamik des Doppel-

pendels im Zustandsraum formulieren:




ẋ1
ẋ2
ẋ3
ẋ4


 =




x2
g
l
(sinx3 cos(x1−x3)−2 sinx1)−sin(x1−x3)(x24+x22 cos(x1−x3))

2−cos2(x1−x3)
x4

2 g
l
(sinx1 cos(x1−x3)−sinx3)+sin(x1−x3)(2x22+x24 cos(x1−x3))

2−cos2(x1−x3)



. (3.103)

Für das datengetriebene PCHD-Modell wird physikalisches Vorwissen in Form der
im System gespeicherten Energie

V (x) = Ekinetisch + Epotentiell

= ml2
(
x22 +

1

2
x24 + x2x4 cos (x1 − x3)

)
−mlg (2 cos x1 + cos x3)

(3.104)

benötigt. Der Gradient von V (x) definiert die Funktion

Ψ(x) =

(
∂V

∂x

)⊤
=




−ml2x2x4 sin (x1 − x3) + 2mlg sinx1
2ml2x2 +ml2x4 cos (x1 − x3)

ml2x2x4 sin (x1 − x3) +mlg sinx3
ml2x4 +ml2x2 cos (x1 − x3)


 . (3.105)

Für die Analyse der Modellgenauigkeit des datengetriebenen PCHD-Modells wer-
den unterschiedliche Szenarien betrachtet, bei denen die Trainingsdaten sowie die
Testtrajektorie variiert werden, vgl. Abbildung 3.26. Für jedes Szenario werden 100
Trajektorien mit einer Dauer von jeweils 3 s und einem additiven weißen Rauschen
simulativ generiert. Die betrachteten Anfangsauslenkungen werden vom Szenario in
Abbildung 3.26(a) bis zum Szenario in Abbildung 3.26(d) schrittweise reduziert, wo-
bei die Zahlenwerte der Matrizen der berechneten datengetriebenen PCHD-Modelle
in der Dissertation [16] dargestellt sind. In der Abbildung 3.27 ist jeweils der kumu-
lierte Fehler

e(tk) =
k∑

m=1

1

k
∥xOriginalsystem(tm)− xPrädiktion(tm)∥2 (3.106)

der unterschiedlichen datengetriebenen PCHD-Modelle dargestellt. Es ist zu erken-
nen, dass alle vier datengetriebenen PCHD-Modelle in der Lage sind, die chaotische
Dynamik des Doppelpendels zumindest für 0,4 s präzise zu prädizieren. Mit stei-
gender Anfangsauslenkung und für einen längeren Zeithorizont sinkt die Modellge-
nauigkeit jedoch stark. Eine ähnliche Beobachtung wurde im Beitrag [117] anhand
des EDMD-Verfahrens formuliert, dessen Modellgenauigkeit sich mit steigender im
System gespeicherter Energie reduziert.
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(a) (b) (c) (d)

Abbildung 3.26 Das Doppelpendel dient dazu die Grenzen des vorgestellten Verfahrens zur
datengetriebenen Bestimmung von PCHD-Modellen zu illustrieren. Es werden vier unterschied-
liche Szenarien der Trainings- und Testdaten untersucht. Die Anfangsauslenkungen für die
Trainingsdaten sind schematisch in blau und die Anfangsauslenkung für die Testtrajektorie in
schwarz dargestellt.

Aus der Betrachtung von Gleichung (3.103) und Gleichung (3.105) ist ersichtlich,
dass es für das Doppelpendel nicht ohne Weiteres gelingt, eine PCHD-Beschreibung
analytisch herzuleiten. Darüber hinaus wäre die Matrix Jphys(x) von x abhängig.
Die Approximation der Dynamik des Doppelpendels mittels einer konstanten Ma-
trix J lässt sich hier ähnlich interpretieren wie die Linearisierung der Dynamik
um den Betriebspunkt der unteren Ruhelage. Diese Schlussfolgerung deckt sich mit
der Analyse der Modellgenauigkeit für unterschiedliche Anfangsauslenkungen, vgl.
Abbildung 3.27. Am Beispiel des Doppelpendels erreicht das im Abschnitt 3.4 be-
schriebene Verfahren zur datengetriebenen Bestimmung von PCHD-Modellen für
größere Anfangsauslenkungen die Grenze der erreichbaren Modellgenauigkeit.

Zweidimensionaler Multicopter Als weiteres Beispiel für die Anwendung daten-
getriebener PCHD-Modelle dient ein zweidimensionaler Multicopter. Multicopter
sind Luftfahrzeuge, deren Auftrieb durch mehrere24 nach unten wirkende Propel-
ler erzeugt wird, wodurch ein senkrechtes Starten und Landen ermöglicht wird.
Durch die Variation der Propellerdrehzahlen lässt sich die Orientierung und da-
mit das Flugverhalten gezielt steuern [118]. Aufgrund der Flexibilität, Effizienz und
Zuverlässigkeit bei gleichzeitig niedrigen Wartungskosten spielen Multicopter eine
herausragende Rolle beispielsweise bei der Paketzustellung [119] oder in der Kata-
strophenhilfe [120].
Der Einfachheit halber wird an dieser Stelle ein Multicopter mit zwei Propellern

in der Ebene betrachtet, vgl. Skizze in der Abbildung 3.28. In Anlehnung an [121],
[122] ergeben sich die Differentialgleichungen der als linear gedämpft angenommenen
Flugbewegung in drei Freiheitsgraden mit den Parametern aus der Tabelle 3.2 zu:

mẍ = −(F1 + F2) sinφ− dtẋ, (3.107a)

mÿ = (F1 + F2) cosφ−mg − dtẏ, (3.107b)

Jφ̈ = (F2 − F1) l − drφ̇. (3.107c)

Mit
[
x1, x2, x3, x4, x5, x6

]⊤
=
[
x, ẋ, y, ẏ, φ, φ̇

]⊤
und

[
u1, u2

]⊤
=
[
F1, F2

]⊤
lässt sich

24Multicopter mit vier Propellern werden beispielsweise als Quadrocopter, solche mit sechs Pro-
pellern als Hexacopter bezeichnet.
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Abbildung 3.27 Die Prädiktionsgüte des datengetriebenen PCHD-Modells für das simulierte
Doppelpendel sinkt bei steigender Anfangsauslenkung stark. Aus Platzgründen wird auf die
Darstellung der Verläufe für die Zustände x2 und x4 verzichtet.

l

l

F1

F2

g
φ

x

y

m, J

Abbildung 3.28 Multicopter.

Tabelle 3.2 Physikalische Parameter.

Symbol Physikalischer Parameter Wert

m Masse 1 kg
J Rotationsträgheit 0,5 kgm2

l Länge zu den Propellern 0,5m
g Gravitationsbeschleunigung 9,81m s−2

dt translatorische Dämpfung 0,1 kg s−1

dr rotatorische Dämpfung 0,1 kgm2 s−1

die Dynamik im Zustandsraum




ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6



=




x2
− 1
m
(u1 + u2) sinx5 − dt

m
x2

x4
1
m
(u1 + u2) cosx5 − g − dt

m
x4

x6
l
J
(u2 − u1)− dr

J
x6




=




x2
−dt
m
x2

x4
−g − dt

m
x4

x6
−dr

J
x6



+




0 0
− 1
m
sin x5 − 1

m
sin x5

0 0
1
m
cos x5

1
m
cos x5

0 0
− l
J

l
J




︸ ︷︷ ︸
B(x)

[
u1
u2

]
.

(3.108)
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formulieren. Das System ist eingangsaffin mit einer Eingangsmatrix B(x), die nicht
konstant ist. Die im System gespeicherte Energie beträgt

V (x) = Ekinetisch + Epotentiell =
1

2
m(x22 + x24) +

1

2
Jx26 +mgx3, (3.109)

sodass der Gradient sich zu

(
∂V

∂x

)⊤
=
[
0,mx2,mg,mx4, 0, Jx6

]⊤
(3.110)

berechnet. Die analytisch hergeleitete PCHD-Darstellung ist gegeben durch




ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6



=




0 1
m

0 0 0 0
− 1
m
− dt
m2 0 0 0 0

0 0 0 1
m

0 0
0 0 − 1

m
− dt
m2 0 0

0 0 0 0 0 1
J

0 0 0 0 − 1
J
− dr
J2







0
mx2
mg
mx4
0
Jx6



+B(x)

[
u1
u2

]
, (3.111)

wobei die Elemente in der ersten und fünften Spalte der Matrix K aufgrund der
partiellen Ableitungen ψ1(x) = ∂V

∂x1
= 0, ψ5(x) = ∂V

∂x5
= 0 beliebig wählbar sind.

Diese Eigenschaft führt dazu, dass der Algorithmus nicht in der Lage ist, die Matri-
zen J und D korrekt zu berechnen. Eine nahe liegende Lösung für dieses Problem
könnte eine Modellordnungsreduktion des Systems auf die für die gespeicherte Ener-
gie relevanten Zustände

x̃ =
[
x̃1, x̃2, x̃3, x̃4

]⊤
=
[
ẋ, y, ẏ, φ̇

]⊤
(3.112)

darstellen. Dieser Ansatz ist bei dem betrachteten Beispiel jedoch nicht anwendbar,
weil die Eingangsmatrix B(x) vom Winkel φ abhängig ist und daher die Prädiktion
des Winkels φ erforderlich ist.

Automatische Modellaktualisierung

Eine Herausforderung mechatronischer Systeme liegt in vorhersehbaren oder un-
vorhersehbaren Systemveränderungen, z. B. die Installation eines neuen Bauteils,
Verschleiß oder Temperaturschwankungen während des Betriebs. Um dennoch eine
gleichbleibend hohe Regelungsgüte gewährleisten zu können, muss die Informations-
verarbeitung in der Lage sein, diese Änderungen zu erfassen und sich automatisch an-
zupassen. Daher wurde in [123] eine Erweiterung um selbstlernende Streckenmodelle
entwickelt, die sich auf Basis laufend aufgezeichneter Messdaten an veränderliches
Systemverhalten anpassen, vgl. Abbildung 3.13. Dafür wurde zunächst in Anleh-
nung an [123] ein Algorithmus für ein adaptives PCHD-Modell mit einem rekur-
siven kleinste-Quadrate-Ansatz realisiert. Durch einen variablen Vergessensfaktor
berücksichtigt das Modell vergangene Messdaten in Abhängigkeit der Intensität der
auftretenden Systemveränderungen zu vernachlässigen. Die Begrenzung der Spur der
Kovarianzmatrix verhindert das einhergehende Risiko eines sogenannten Kovarianz-
Windups. Experimentelle Untersuchungen am Schlagmechanismus des Golfroboters
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zeigten eindrucksvoll, dass das adaptive PCHD-Modell die nichtlineare Systemdy-
namik mit sehr hoher Genauigkeit abbilden kann.
Die erfolgreiche Integration der Adaptionsfähigkeit bestätigt die hohe regelungs-

technische Verwertbarkeit der hybriden PCHD-Modelle gemäß der Kriterien, die im
Kapitel 2 formuliert wurden.

3.5 Probabilistische hybride Modellierung mittels
Gauß-Prozess-Regression

In diesem Abschnitt wird eine hybride Modellierung vorgestellt, welche auf der soge-
nannten Gauß-Prozess-Regression basiert. Dabei wird der vorhandene Modellfehler
des physikalischen Modells als Zufallsvariable definiert und über einen Gauß-Prozess
nachgebildet. Auf der Grundlage von Messdaten wird der Fehler somit als normal-
verteilt angenommen und durch einen zustandsabhängigen Erwartungswert und eine
Varianz dargestellt. Auf diese Weise lässt sich die Unsicherheit über den Modellfeh-
ler quantifizieren und insbesondere für lernende und sicherheitskritische Systeme
verwenden. In Unterabschnitt 3.5.1 wird die Entwicklung des datengetriebenen Mo-
dellteils formal beschrieben. Anschließend erfolgt in Unterabschnitt 3.5.2 die Ver-
bindung vom physikalischen und datengetriebenen Modellteil über die Unscented
Transformation. Hierbei wird der Begriff der Zustandspropagation eingeführt, wel-
che eine wahrscheinlichkeitsbasierte Langzeitprädiktion des hybriden Gesamtmodells
ermöglicht.

3.5.1 Entwicklung des datengetriebenen Modellteils

Zunächst wird eine formale Unterscheidung zwischen den verschiedenen betrachteten
Systemen eingeführt. Das reale System, welches beispielsweise als Prüfstand oder
Prototyp vorhanden ist, wird mit f bezeichnet. Das unvollständige Modell, das in
der Regel auf physikalischen Gesetzmäßigkeiten beruht, wird entsprechend einer
Zustandsschätzung mit f̂ beschrieben - es handelt sich um eine Annäherung an f .
Des Weiteren erhält der rein datengetriebene Modellteil, welcher dem Modellfehler
zugeordnet wird, die Bezeichnung ∆x. Das gesamte hybride Modell wird mit f̃
angegeben.
Auf dieser Basis lässt sich das reale diskrete System, unter der herkömmlichen

Annahme einer additiven Struktur, mit

xk+1 = f(xk,uk) = f̂(xk,uk) + ∆xk+1(xk,uk) (3.113)

angeben. Nun ist das Ziel eine Beschreibung der Modellfehler ∆xk+1(xk,uk) zu fin-
den und ein hybrides Modell aufzustellen, um eine im Vergleich zum physikalischen
Modell bessere Annäherung an das reale System zu erhalten. Ein wesentlicher An-
haltspunkt stellen die aufgenommenen Messdaten vom realen System bereit. Die
zugehörigen Triple (xk,xk+1,uk), welche aus dem aktuellen Zustand, dem Folgezu-
stand und der Stellgröße bestehen, werden zeitlich gesehen in den Datenmatrizen

Xk,Xk+1 ∈ Rnx×nd ,U k ∈ Rnu×nd (3.114)
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3.5 Probabilistische hybride Modellierung mittels Gauß-Prozess-Regression

gesammelt und zusammengefasst. Hierbei bezeichnet nx die Dimension des Zu-
standsvektors und nd die Anzahl von Messpunkten. Anhand des physikalischen Mo-
dells wird der Modellfehler entsprechend zu Gleichung (3.113) mit

∆X
(i)
k+1 = X

(i)
k+1 − f̂(X

(i)
k ,U

(i)
k ), i = 1, . . . , nd, (3.115)

für jeden Messpunkt berechnet und in ∆Xk+1 abgespeichert. Jede Dimension des
Modellfehlers wird als parameterabhängige Zufallsvariable behandelt und über einen
separaten Gauß-Prozess [124]

∆x
(j)
k+1 ∼ GPj(0, k(xuk ,xuk ′;ηj)), j = 1, . . . , nx, (3.116)

mit Nullmittelwert- und Kovarianzfunktion k(·, ·;η) beschrieben. Hierbei wurde die
abkürzende Schreibweise xuk := [xTk ,u

T
k ]
T eingeführt. Die Mittelwertfunktion ist null,

da die Modellfehler unbekannt sind und das gesamte Vorwissen über die Dynamik
bereits über das physikalische Modell erfasst wird. Des Weiteren ist eine geeignete
Kovarianzfunktion k(x,x′) für die vollständige Definition des GPs auszuwählen. In
diesem Zusammenhang beschreibt die Kovarianzfunktion bzw. der Kernel die Eigen-
schaften der gesuchten Funktion in Bezug auf ihre Glattheit und den Grad ihrer Dif-
ferenzierbarkeit. Außerdem kann über sie eine bestimmte Periodizität ausgedrückt
werden [124]. Entsprechend lässt sich über den Kernel erweitertes Vorwissen im Ver-
gleich zur rudimentären Mittelwertfunktion einbeziehen und die Wahl des Kernels
ist ein Entwurfsparameter, der auf die jeweilige Aufgabe angepasst werden muss.
Der gängigste Ansatz ist der sogenannte Squared Exponential (SE) Kernel, welcher
hier beispielhaft vorgestellt wird. Der SE-Kernel hat die Form

kSE(x
u
k ,x

u
k
′;η) = σ2

f exp(−(xuk − xuk
′)TW−1(xuk − xuk

′)) (3.117)

mit Gewichtungsmatrix W = diag(l21, . . . , l
2
nx
), welche als Elemente die sogenannten

Lengthscale-Parameter besitzt, sowie der Signalvarianz σ2
f hat. Die parametrische

Abhängigkeit ist gewollt, um dem GP eine gewisse Flexibilität einzuräumen und
damit er sich auf unterschiedliche Rahmenbedingungen anpassen kann. Daher wer-
den die folgenden Hyperparameter über η := [l1, . . . , lnx , σf ] eingeführt, die für die
vollständige Definition des GPs notwendig sind. Die Hyperparameter werden über
die Minimierung der negativen logarithmischen Likelihood [124] nach

η∗
j = argmin

ηj
∆X

(j,:)
k+1K

−1
ηj
∆X

(j,:)
k+1

T
+ log |Kηj | (3.118)

bestimmt. Dabei ist ∆X
(j,:)
k+1 die j-te Zeile von ∆Xk+1 und Kηj ∈ Rnd×nd ist die

symmetrische und positiv definite Gram-Matrix mit den Elementen

K(r,c)
ηj

= k(XU
k

(r)
,XU

k

(c)
;ηj), r, c = 1, . . . , nd, (3.119)

mit XU
k := [XT

k ,U
T
k ]
T und wobei der zusätzliche Index die benutzte Spalte angibt.

Die Optimierung in Gleichung (3.118) stellt ein Mehrzielproblem dar, wobei die Pro-
blematik des Over- and Underfitting [10] adressiert wird und die Hyperparameter so
bestimmt werden, dass die Messdaten bei einer möglichst geringen Modellkomple-
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3 Modellbildung

Abbildung 3.29 Eindimensionale Visualisierung der Gauß-Prozess-Regression, links Prior- und
rechts Posterior-Wahrscheinlichkeitsdichteverteilung. Die grüne Linie zeigt die wahre unbekann-
te Funktion des Modellfehlers (Ground Truth). Die blaue Linie repräsentiert den Mittelwert und
die blaue Fläche die zweifache Standardabweichung des Gauß-Prozesses. Eine Auswertung die-
ser Größen findet auszugsweise an den Stellen xuk = 5 und xuk = 12.5 statt (graue Linien).
Während der Prior noch uninformiert ist und damit eine hohe Unsicherheit aufweist, ist der
Posterior an die Messpunkte (schwarze Punkte) angepasst und ist in der Lage den Ground
Truth besser wiederzugeben. Außerdem erhält man über das Maß der Standardabweichung
Informationen über die Unsicherheiten der betrachteten Größe.

xität gut wiedergegeben werden. Die Posterior-Wahrscheinlichkeitsdichteverteilung
bzgl. der j-ten Dimension des Modellfehlervektors lautet dann

p(∆x
(j)
k+1 | ∆X

(j,:)
k+1) = N (∆µj(x

u
k),∆σ

2
j (x

u
k)),

∆µj(x
u
k) = k∆(x

u
k)
TK−1

η∗j
∆X

(j,:)
k+1

T
,

∆σ2
j (x

u
k) = k(xuk ,x

u
k ;η

∗
j)− k∆(x

u
k)
TK−1

η∗j
k∆(x

u
k),

(3.120)

mit k∆(x
u
k) = [k(xuk ,X

U
k

(1)
;η∗

j), . . . , k(x
u
k ,X

U
k

(nd);η∗
j)]

T als Vektor, welcher den
Funktionseingang xuk punktweise mit den Messdaten auswertet. Die Abbildung 3.29
visualisiert hierzu die grundlegenden Zusammenhänge an einem eindimensionalen
Beispiel. Es ist gut erkennbar, dass sich die Verteilung über Gleichung (3.120) an
die schwarzen Datenpunkte anpasst und die Unsicherheit in Form der Varianz in
der Nähe der Datenpunkte im Vergleich zur Prior-Verteilung stark sinkt. Unter Ver-
wendung der Standardannahme, dass die dimensionszugehörigen GPs unabhängig
von einander sind, lautet das gesamte datengetriebene Modell damit formal

p(∆xk+1 | ∆Xk+1) = N (∆µ(xuk),∆Σ(xuk)),

∆µ(xuk) = [∆µ1(x
u
k), . . . ,∆µnx(x

u
k)]

T ,

∆Σ(xuk) = diag([∆σ2
1(x

u
k), . . . ,∆σ

2
nx
(xuk)]).

(3.121)

Entsprechend zu [125] wird für das aufgestellte GP-Modell eine Kurzschreibweise
durch

f∆(xk,uk) := [∆µ(xk,uk),∆Σ(xk,uk)], (3.122)
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3.5 Probabilistische hybride Modellierung mittels Gauß-Prozess-Regression

mit der Abbildung f∆ : Rnx × Rnu 7→ Rnx × Rnx×nx eingeführt. Bei der Ver-
nachlässigung der Kovarianzmatrix kann eine sogenannte naive Prädiktion des hy-
briden Modells nur mit Hilfe des Erwartungsvektors durchgeführt werden. Die Be-
rechnung des Folgezustands ergibt sich demnach, entsprechend dem Ansatz aus Glei-
chung (3.113), mit

xk+1 = f̂(xk,uk) + ∆µ(xk,uk). (3.123)

Dabei handelt es sich um eine klassische deterministische Prädiktion, welche die
Unsicherheit über die Modellfehler durch eine zu geringe Datenlage vernachlässigt.
Ein genaueres Bild des Systemverhaltens folgt aus der Berücksichtigung der Ko-
varianzmatrix, wobei eine probabilistische Zustandspropagation erforderlich wird.
Eine zugehörige Vorschrift für eine Langzeitvorhersage des realen Systems wird im
nächsten Abschnitt entwickelt und erläutert.

3.5.2 Effiziente probabilistische Zustandspropagation mittels
Unscented Transformation

Bis hierin wurde von einem eindeutigen deterministischen Zustandsvektor xk ausge-
gangen. Zudem wurde der Vektor der Modellfehler ∆xk als Zufallsvektor definiert.
Auf der Basis des Zusammenhangs des hybriden Ansatzes (3.113) geht hervor, dass
es sich bei dem Folgezustand xk+1 ebenfalls um einen Zufallsvektor handeln muss,
da dieser direkt von dem Vektor der Modellfehler abhängt. Die Unsicherheit über
die Modellfehler propagiert sich somit bei der Betrachtung mehrerer Zeitschritte
bzw. bei einer Langzeitprädiktion für alle Zustandsvektoren fort. Da es sich bei der
Dynamikgleichung (3.113) im Allgemeinen um einen nichtlinearen Zusammenhang
handelt, sind die Zustandsverteilungen komplex und müssten aufwendig numerisch
berechnet werden. Das erfordert viel Zeit und ist ineffizient.

Eine Möglichkeit für eine effiziente Propagation, welche in diesem Abschnitt vor-
gestellt wird, stellt das Moment Matching (MM) [126] in Kombination mit der Un-
scented Transformation (UT) [127] dar. Dabei werden die komplexen wahren Zu-
standsverteilungen mit einer Normalverteilung p(xk) ≈ N (mk,Sk) approximiert,
wobei der Erwartungsvektor mk und die Kovarianzmatrix Sk durch die besonders
effiziente UT berechnet werden. Die UT stellt in der Regelungstechnik ein gängiges
Beobachterverfahren zur Zustandsschätzung dar.

Den Ausgangspunkt der Entwicklung stellt ein normalverteilter aktueller Zustand
mit xk ∼ N (mk,Sk) dar. Die Stellgröße uk bleibt weiterhin eindeutig, d. h. ohne
Unsicherheiten, bekannt, da sie bei der Verwendung eines Steuerungsansatzes vor-
gegeben wird. Im Falle einer Regelung würde die Stellgröße vom Zustand abhängen,
wodurch, wie bereits oben beschrieben, die Stellgröße ebenfalls als Zufallsvariable
definiert werden müsste. Dieser Fall soll aber zunächst nicht betrachtet werden, so-
dass von einer deterministischen Stellgröße ausgegangen wird. Auf der Basis von
Gleichung (3.113) wird zunächst das Gesetz der totalen Erwartung angewendet

mk+1 = Exk [E∆xk+1
[xk+1]] = Exk [f̂ ] + Exk [∆µ], (3.124)

mit dem Erwartungswertoperator E, um den Erwartungsvektor des nächsten Zu-
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3 Modellbildung

stands zu bestimmen. Dieser setzt sich additiv aus der Erwartung des physikali-
schen Modells und des Modellfehlers bzgl. der Unsicherheit des aktuellen Zustands
zusammen. Die Approximation dieser Größen findet nach der Betrachtung der Zu-
standsvarianz statt. Die Zustandsvarianz wird entsprechend mit dem Gesetz der
totalen Varianz über

Sk+1 = Exk [V∆xk+1
[xk+1]] + Vxk [E∆xk+1

[xk+1]]

= Exk [∆Σ] + Vxk [f̂ ] + Vxk [∆µ] + Cxk [f̂ ,∆µ] + Cxk [f̂ ,∆µ]T ,
(3.125)

mit Kovarianz- Vxk und Kreuzkovarianzoperator Cxk , bestimmt und setzt sich damit
aus verschiedenen Summanden zusammen. Die Berechnung der verbliebenen Opera-
toren in Gleichung (3.124) und (3.125) erfolgt durch die Anwendung der numerisch
effizienten UT. Diese sieht zunächst eine Aufstellung von 2nx+1 sogenannten Sigma-
Punkten vor, welche sich aus der aktuellen Zustandsverteilung xk ∼ N (mk,Sk) mit

x
(i)
s,k = mk + (

√
(κ+ nx)Sk)

T
(i,:), i = 1, . . . , nx,

x
(i)
s,k = mk − (

√
(κ+ nx)Sk)

T
(i,:), i = nx + 1, . . . , 2nx,

x
(2nx+1)
s,k = mk,

(3.126)

ergeben. Dabei ist (
√
(κ+ nx)Sk)(i,:) die i-te Zeile der Matrixwurzel und κ ∈ R ein a-

priori festzulegender Entwurfsparameter mit der Bedingung κ+nx ̸= 0. Im nächsten
Schritt werden die beiden Modellteile des hybriden Ansatzes bei den Sigma-Punkten
ausgewertet:

x
(i)
s,k+1 = f̂(x

(i)
s,k,uk),

[∆µ(i)
s ,∆Σ(i)

s ] = f∆(x
(i)
s,k,uk), i = 1, . . . , 2nx + 1.

(3.127)

Anschließend werden die transformierten Sigma-Punkte bzw. die Funktionsauswer-
tungen verwendet, um die gesuchten Momente numerisch zu approximieren,

Exk [f̂ ] ≈
2nx+1∑

i=1

w(i)
s x

(i)
s,k+1 =: mf̂ ,

Vxk [f̂ ] ≈
2nx+1∑

i=1

w(i)
s (x

(i)
s,k+1 −mf̂ )(x

(i)
s,k+1 −mf̂ )

T ,

Exk [∆µ] ≈
2nx+1∑

i=1

w(i)
s ∆µ(i)

s =: m∆µ,

Exk [∆Σ] ≈
2nx+1∑

i=1

w(i)
s ∆Σ(i)

s ,

Vxk [∆µ] ≈
2nx+1∑

i=1

w(i)
s (∆µ(i)

s −m∆µ)(∆µ(i)
s −m∆µ)

T ,

Cxk [f̂ ,∆µ] ≈
2nx+1∑

i=1

w(i)
s (x

(i)
s,k+1 −mf̂ )(∆µ(i)

s −m∆µ)
T .

(3.128)
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Dabei werden die Gewichtungen

w(i)
s =

{
1

2(nx+κ)
, i = 1, . . . , 2nx,

κ
nx+κ

, i = 2nx + 1,
(3.129)

benutzt, deren Herleitung eine möglichst hohe Approximationsgüte zum Ziel hat
[127]. Zu beachten ist, dass trotz der diagonalen Struktur der GP-Kovarianzma-
trix (3.121) bzw. der Unabhängigkeitsannahme, die Dimensionen des Nachfolgezu-
stands für eine unsichere Eingangsverteilung kovariieren können. Die Gleichungen
aus (3.124)-(3.128) werden zusammen als eine mathematische Funktion definiert,
um eine Kurzschreibweise einzuführen. Diese Funktion wird mit

f̃(mk,Sk,uk) := [mk+1,Sk+1] (3.130)

beschrieben, wobei die aktuelle Zustandsverteilung zusammen mit der Stellgröße
auf die nächste Zustandsverteilung abgebildet werden. Eine probabilistische Lang-
zeitprädiktion ergibt sich für eine bekannte Steuerungsabfolge durch eine mehrfache
Ausführung dieser Funktion, ähnlich zu einer diskreten Dynamikfunktion im deter-
ministischen Fall.

Für einige Systeme ist es nicht notwendig, alle Dynamikgleichungen zu korrigie-
ren. Das Systemverhalten setzt sich bspw. aus verschiedenen physikalischen Effekten
zusammen und unter Umständen ist ein Teil dieser Effekte klar und eindeutig be-
stimmbar, sodass die zugehörigen Gleichungen keinen Modellfehler enthalten. Ins-
besondere bei mechanischen Systemen ist häufig ein Integratorverhalten bekannt,
wobei eine Zustandsgröße lediglich aufintegriert wird. Auch in diesem Fall ist keine
Korrektur vorzunehmen. Für den Rahmen der entwickelten Gleichungen kann dies
über den Modellansatz

xk+1 = f̂(xk,uk) +B∆xk+1(xk,uk) (3.131)

abgebildet werden, wobei eine Kopplungsmatrix B ∈ Rnx×nb mit nb ≤ nx verwendet
wird. Die Kopplungsmatrix legt dann entsprechend fest, welche Gleichungen einer
Korrektur bedürfen. In diesem Zusammenhang hat ∆xk+1(xk,uk) eine niedrigere
Dimension als der Zustandsvektor. Vereinfachend wird jedoch keine neue Größe
definiert, sondern die bestehende Notation beibehalten. Die Dimension erschließt
sich dann aus dem Kontext. In diesem Szenario sind lediglich die Gleichungen (3.124)
und (3.125) durch

mk+1 =Exk [f̂ ] +BExk [∆µ],

Sk+1 =BExk [∆Σ]BT + Vxk [f̂ ] +BVxk [∆µ]BT

+ Cxk [f̂ ,∆µ]BT +BCxk [f̂ ,∆µ]T

(3.132)

anzupassen, welche sich durch eine lineare Transformation einer Normalverteilung
ergeben. Ein weiterer Spezialfall liegt vor, wenn es keinerlei Vorwissen über die
Dynamik des betrachteten Systems gibt. Dann gilt f̂ = 0 und der Modellansatz
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vereinfacht sich zu

xk+1 = ∆xk+1(xk,uk), (3.133)

wobei lediglich der datengetriebene Teil bestehen bleibt. Dementsprechend ergibt
sich für die Zustandspropagation

mk+1 = Exk [∆µ],

Sk+1 = Exk [∆Σ] + Vxk [∆µ].
(3.134)

Die hybride Modellierung für partiell bekannte dynamische Systeme mittels
der Gauß-Prozess-Regression fasst den Modellfehler als Zufallsvariable auf
und korrigiert ihn datengetrieben. Eine numerisch effiziente Simulation ist in
Form einer Zustandspropagation durch die Unscented Transformation gege-
ben. Der Rechenaufwand ist dabei im Vergleich zu einer gängigen determinis-
tischen Simulation höher, jedoch können aus der probabilistischen Simulation
zusätzliche Informationen über die Unsicherheit des Zustands, welche durch
die unbekannten Modellfehler hervorgerufen wird, gewonnen werden. Auf die-
se Weise lässt sich das zeitliche Verhalten am realen System besser abschätzen
und geeignete Sicherheitsmaßnahmen für einen sicheren und stabilen Betrieb
ableiten.
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Es existieren zwei verschiedene Möglichkeiten, um eine hybride Steuerung oder Re-
gelung zu erhalten. Zum einen kann die Grundlage ein zunächst mit Hilfe von ML-
Ansätzen entwickeltes Modell des betrachteten Systems sein, wie sie beispielsweise in
Kapitel 3 vorgestellt werden. Wenn dieses hybride Modell dann für den Steuerungs-
oder Regelungsentwurf verwendet wird, müssen zumeist die zusätzlichen neuen Ei-
genschaften aus dem hybriden Ansatz ebenfalls berücksichtigt werden. Diese Her-
angehensweise wird auch als indirekte Methode [128] bezeichnet und ein Beispiel
hierfür ist die hybride Optimalsteuerung aus Unterabschnitt 4.4.1. Hier wird ein
probabilistisches Modell betrachtet, welches Modellfehler in der Inbetriebnahme ler-
nen soll. Dies hat aber auch Konsequenzen für die Optimalsteuerung, in der nun
auch der Umgang mit der probabilistischen Sichtweise berücksichtigt werden muss.
Eine andere Herangehensweise ist es, einen Regelungsentwurf direkt so zu verändern,
dass er hybrid ist, was auch als direkte Methode bezeichnet wird [128]. Dies geschieht
beispielsweise in der hybriden Zustandslinearisierung in Unterabschnitt 4.4.2. Hier
werden die Gleichungen der Zustandslinearisierung direkt so beeinflusst, dass sich ei-
ne hybride Methode ergibt, welche die Kompensationsfunktionen anhand von Mess-
daten anpasst. In beiden Fällen muss in den Steuerungs- und Regelungsansätzen
untersucht werden, wie sich die ML-Ansätze auswirken und welche Vor- oder auch
Nachteile sich ergeben. Eine hybride Modellierung und hybrider Steuerungs- bzw.
Regelungsentwurf bedeutet fast immer einen höheren Entwicklungs- oder auch Re-
chenaufwand. Daher sollte vorab immer die Notwendigkeit dieser Ansätze überprüft
werden und Kosten gegen Nutzen abgeschätzt werden.

4.1 Riccati-Regelungen mittels des
Koopman-Operators

Der Koopman-Operator bietet das Potenzial, lineare Entwurfsmethoden für die
Regelung von nichtlinearen Streckendynamiken zu nutzen. In [27] wird erstmals
der Entwurf eines linearen Riccati-Reglers für nichtlineare Dynamiken im höherdi-
mensionalen Koopman-Raum präsentiert und als Koopman Operator Optimal Con-
trol bezeichnet. Im Folgenden werden die Grundidee anhand eines Einführungs-
beispiels sowie mögliche Erweiterungen vorgestellt. Anschließend wird der Entwurf
eines Riccati-Reglers beispielhaft am EDMD-Modell des Schlagmechanismus des
Golfroboters demonstriert.

4.1.1 Illustration der Idee

Die Idee eines Koopman-basierten linearen Riccati-Reglers wird anhand des Einfüh-
rungsbeispiels (3.8) illustriert. Ergänzt um einen Steuerungseingang und so modifi-
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ziert, dass der Zustand x2 sich instabil verhält, ergibt sich für die Differentialglei-
chungen

[
ẋ1
ẋ2

]
=

[
µx1

λ(x2 − x21) + u

]
mit λ = 1, µ = −0,05. (4.1)

Die quadratische Kostenfunktion für den Entwurf des Riccati-Reglers wird als

J =

∫ ∞

0

x⊤(t)Qx(t) +Ru2(t) d t mit Q =

[
1 0
0 1

]
, R = 1 (4.2)

angenommen. Das für die Berechnung des Regelungsgesetzes erforderliche lineare
Streckenmodell wird klassischerweise mittels einer exakten Zustandslinearisierung
oder einer Linearisierung der Dynamik um einen oder mehrere Arbeitspunkte be-
stimmt. Auf der einen Seite wird für die Zustandslinearisierung u = v+λx21 gewählt,
sodass sich das resultierende lineare System

[
ẋ1
ẋ2

]
=

[
µ 0
0 λ

] [
x1
x2

]
+

[
0
1

]
v (4.3)

mit dem neuen Eingang v und dem nichtlinearen Regelungsgesetz

u = v + λx21 = −k⊤x+ λx21 mit k⊤ =
[
0, 2,414

]
(4.4)

ergibt. Auf der anderen Seite führt eine Linearisierung um die Ruhelage x∗ = 0 zum
linearen Modell [

ẋ1
ẋ2

]
=

[
µ 0
0 λ

] [
x1
x2

]
+

[
0
1

]
u (4.5)

mit dem resultierenden linearen Regelungsgesetz

u = −k⊤x mit k⊤ =
[
0, 2,424

]
. (4.6)

Im Gegensatz zu den beiden klassischen Ansätzen ermöglicht die Koopman-Be-
schreibung 


ġ1
ġ2
ġ3


 =



µ 0 0
0 λ −λ
0 0 2µ





g1
g2
g3


+



0
1
0


u (4.7)

der Originaldynamik, vgl. Abschnitt 3.1, eine unmittelbare, d. h. linearisierungsfreie
Anwendung des Riccati-Entwurfs. Die Kostenfunktion

J̃ =

∫ ∞

0

g⊤(x(t))Q̃g(x(t)) +Ru2(t) d t mit Q̃ =

[
Q 0
0 0

]
(4.8)

wird identisch zu Gleichung (4.2) gewählt1 und liefert das nichtlineare Regelgesetz

u = −k̃⊤
g(x) = −

[
k̃1, k̃2

] [x1
x2

]
− k̃3x21 mit k̃

⊤
=
[
0, 2,414, −1,594

]
, (4.9)

1Für das hier betrachtete Beispiel genügt es, dass Q̃ positiv semidefinit ist, weil zusätzlich das

betrachtete System über die Ausgangsgleichung y = Q̃0x mit Q̃
⊤
0 Q̃0 beobachtbar ist, vgl. [24].
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das eine ähnliche Struktur wie Gleichung (4.4) aufweist. Bemerkenswert ist, dass
die Reglerparameter

[
k̃1, k̃2

]
mit k⊤ übereinstimmen und der einzige Unterschied

zwischen der Koopman-basierten Regelung und der exakten Zustandslinearisierung
im Faktor −k̃3 ̸= λ besteht.

Die Abbildung 4.1 zeigt die simulative Untersuchung des Koopman-basierten
Riccati-Reglers. Bezüglich der Minimierung der Kostenfunktion (4.2) ist die auf dem
Koopman-Modell basierende Zustandsrückführung den beiden klassischen Verfahren
überlegen. Dass der Zustand x2 der auf einer Zustandslinearisierung basierenden
Regelung in der Abbildung 4.1(a) schneller abklingt, lässt sich dadurch erklären,
dass die Kostenfunktion (4.2) für diesen Fall fälschlicherweise den neuen Eingang v
anstatt des wahren Eingangs u gewichtet und dadurch den Stellgrößenverbrauch un-
terschätzt. In der Abbildung 4.1(b) sind die geregelten Trajektorien für unterschied-
liche Anfangsauslenkungen dargestellt. Beim Koopman-basierten Ansatz scheint
die charakteristische langsame Mannigfaltigkeit, vgl. Abbildung 3.3, die Dynamik
des geregelten Systems maßgeblich zu bestimmen, weil sich sämtliche Trajektorien
zunächst asymptotisch dieser annähern, bevor sie schließlich in den Ursprung stre-
ben, vgl. Abbildung 3.3. Der für die Koopman-basierte Regelung erheblich reduzierte
Stellgrößenverbrauch, der in der Abbildung 4.1(a) zu erkennen ist, resultiert aus der
geschickten Nutzung dieses Phänomens.

Das betrachtete Einführungsbeispiel stellt aufgrund des Koopman-invarianten Un-
terraums einen Spezialfall dar. Der Beitrag [27] weist darauf hin, dass das Entwurfs-
verfahren an seine Grenzen stoße, sobald einzelne Zustände in g nicht steuerbar
seien oder es nicht möglich sei, eine endlichdimensionale Koopman-invariante Sys-
tembeschreibung zu bestimmen. Gleichwohl wurde das Verfahren in nachfolgenden
Arbeiten erfolgreich auch auf numerisch approximierte EDMD-Modelle, vgl. Unter-
abschnitt 3.1.4 angewendet. Zahlreiche Veröffentlichungen demonstrieren die Effekti-
vität Koopman-basierter Riccati-Regler anhand unterschiedlicher Beispielsysteme2.

Der Beitrag [129] präsentiert analog zur oben beschriebenen Strategie einen An-
satz zur Regelung mittels Koopman-Eigenfunktionen, wobei die Kostenfunktion

J̃ =

∫ ∞

0

φ⊤(x(t))Q̃φ(x(t)) +Ru2(t) d t mit Q̃ =

[
Q 0
0 0

]
(4.10)

so gewählt wird, dass φ⊤Q̃φ ≈ x⊤Qx. Dieser Ansatz resultiert im nichtlinearen
Regelungsgesetz

u = −k̃⊤
φ(x). (4.11)

Die Regelgüte wird anhand einer Energieregelung für Hamiltonsche Systeme de-
monstriert, bei denen die Koopman-Eigenfunktion die im System gespeicherte Ener-
gie mit dem Koopman-Eigenwert λ = 0 ist. Darüber hinaus finden sich in der Li-
teratur weitere Ansätze zur Regelung mittels Koopman-Eigenfunktionen. In [138]

2In Form von Simulationsstudien wird die Regelung für ein Pendel auf dem Wagen [117], den
Duffing-Oszillator und den Van-der-Pol-Oszillator [130], einen Boost-Konverter mit aktiver Last
[131], das FitzHugh-Nagumo-Modell und die Lorenz-Gleichungen [132], die Dynamik starrer
Körper in Dualquaternionendarstellung [133], einen Spurhalteassistenten [134], einen MEMS-
Drehratensensor [135] und weitere akademische Beispiele [136] beschrieben. In Form von Expe-
rimenten demonstrieren [117] und [137] den Regelungsentwurf für Spielzeug- und Industriero-
boter, [45] für einen schwimmenden Roboterfisch mit aktuierter Schwanzflosse.
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(a) Beispielhafte simulierte Regelung einer Anfangsauslenkung. Gemäß der Kostenfunktion J , vgl. (4.2),
ist die Zustandsrückführung (4.9), die auf dem Koopman-Modell (4.7) basiert, den Regelungsgeset-
zen (4.4) und (4.6), die auf einer Zustands- bzw. Arbeitspunktlinearisierung basieren, überlegen. In
Anlehnung an [27], [129].
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(b) Vergleich der unterschiedlichen Regelungsgesetze für unterschiedliche Anfangsauslenkungen.

Abbildung 4.1 Veranschaulichung der Koopman-basierten Riccati-Regelung im Vergleich zu
einer Zustandslinearisierung bzw. einer Linearisierung um einen Arbeitspunkt.
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4.1 Riccati-Regelungen mittels des Koopman-Operators

wird beispielsweise das Regelungsproblem für einen endlichen Zeithorizont formu-
liert. Der Beitrag [139] zeigt die Anwendung eines Riccati-Reglers mit Koopman-
Eigenfunktionen für den Duffing- und den Van-der-Pol-Oszillator.

4.1.2 Beispielhafte Anwendung

Das Verfahren wurde beispielhaft anhand der Schlagregelung des Golfroboters, vgl.
Abbildung 6.1, simulativ untersucht. Für den zeitinvarianten Riccati-Regler wurde
ein zeitkontinuierliches EDMD-Modell mitN = 4 Observablen (3.53) betrachtet, das
anhand simulativ erzeugter Messdaten aus dem Modell (6.11) trainiert wurde. Mit
der Kostenfunktion

J̃ =

∫ ∞

0

Ψ⊤(x(t))Q̃Ψ(x(t)) +Ru2(t) d t (4.12a)

mit Q̃ = diag
(
5, 1, 1 · 10−12, 1 · 10−12

)
, R = 1, (4.12b)

die analog zu den Gleichungen (6.16)-(6.17) gewählt wurde, ergibt sich die Zustands-
rückführung

uc = k̃
⊤
(Ψ∗ −Ψ(x)) mit k̃

⊤ ∈ R1×N . (4.13)

Mit den Führungsgrößen w̃ = Ψ(x∗) ergeben sich die Sollverläufe

Ψ∗ = FΨw̃, u∗ = f̃uw̃ (4.14)

mit den Vorsteuerungsmatrizen

FΨ = IN , f̃u = −b+K mit f̃u ∈ R1×N (4.15)

in Anlehnung an die Gleichungen (6.18)-(6.19) und die studentische Arbeit [140].
Das resultierende Regelgesetz lautet

u = u∗ + uc. (4.16)

In der Abbildung 4.5 ist die resultierende Regelgüte (6.16) des EDMD-basierten
Riccati-Reglers für eine beispielhafte Solltrajektorie mit einem Ausholwinkel von
φl = 120◦, einer Ausholdauer von Ta = Tr = 1 s und einer Schlaggeschwindigkeit von
∥vs∥ = 3m s−1 dargestellt3. Es ist zu erkennen, dass die Koopman-basierte linear-
quadratische (LQ-)Regelung eine deutlich höhere Regelgüte als die bisher verwen-
dete rein physikalisch motivierte LQ-Regelung mit Gain-Scheduling aufweist. Die
Abbildung 4.5(b) visualisiert die resultierende Regelgüte in Abhängigkeit der frei
wählbaren Parameter der Solltrajektorie, vgl. Tabelle 6.1. Es ist zu erkennen, dass
die EDMD-basierte LQ-Regelung die Regelungsaufgabe für alle wählbaren Werte
sehr gut erfüllt, jedoch in besonderem Maße im Bereich kleiner Schlaggeschwindig-
keiten. Eine mögliche Erklärung hierfür liegt darin, dass die nichtlinearen (Haft-)
Reibungseffekte sich vor allem bei kleinen Geschwindigkeiten stark auf die Dynamik
auswirken. Neben der hohen Regelgüte ist zusätzlich der stark verringerte Aufwand

3Diese Wahl der Parameter führt dazu, dass die nichtlinearen Anteile der Dynamik des Schlag-
mechanismus des Golfroboters hinreichend angeregt werden.
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4 Steuerungs- und Regelungsentwurf

bei der Modellbildung durch das hybride Vorgehen bei diesem Ansatz hervorzuhe-
ben.

EDMD-Modelle lassen sich geradlinig für den Entwurf von Riccati-Re-
gelungen verwenden. Durch die systematische Ausnutzung der Linea-
ritätseigenschaft können somit stabile nichtlineare Regelungsgesetze
mithilfe eines linearen Entwurfsverfahrens bestimmt werden. Für einen
erfolgreichen Entwurf ist es entscheidend, dass die Kostenfunktion hierbei ge-
schickt gewählt wird.

4.2 Modellprädiktive Regelung mittels des
Koopman-Operators

Modellprädiktive Regelungsansätze (MPC) optimieren online anhand eines inter-
nen Streckenmodells den Ausgangsgrößenverlauf mittels des Stellgrößenverlaufs. Der
optimierte Stellgrößenverlauf wird dann für die Regelung des betrachteten Systems
verwendet. Die grundlegende Idee der MPC ist in der Abbildung 4.2 dargestellt. Aus-
gehend vom Zeitpunkt k − 1 mit bekannter Stellgröße uk−1 variiert die Optimierung
den zukünftigen Stellgrößenverlauf uk+i ab dem Zeitpunkt k für eine endliche Zahl
i = 0, . . . , nc − 1 von Stellgrößenschritten so, dass eine vorgegebene Kostenfunktion,
beispielsweise

J =

np∑

i=1

∥∥Q(yk+i −wk+i)
∥∥2 + r

nc∑

i=1

∥uk+i−1∥2, (4.17)

mit der positiv definiten MatrixQ ∈ Rq×q und dem Faktor r ∈ R über np Zeitschritte
minimal wird. Die Werte np, nc ∈ N mit np ≥ nc werden als Prädiktions- bzw.
Stellhorizont bezeichnet. Für den Zeitbereich i ≥ nc werden alle Stellgrößen auf
uk+nc−1 gehalten, vgl. Abbildung 4.2. Nach der Optimierung wird nur der erste Wert
der Stellgrößenfolge auf die reale Regelstrecke angewendet. Danach wird der Prä-
diktions- und Optimierungsprozess um einen Zeitschritt in die Zukunft verschoben,
was als gleitender Horizont bezeichnet wird [21].
Abhängig vom verwendeten Streckenmodell gibt es unterschiedliche MPC-An-

sätze. Lineare Streckenmodelle erlauben eine einfache Implementierung und Berech-
nung der MPC und ermöglichen – im Vergleich zu zeitinvarianten Regelungsansätzen
– die Berücksichtigung von Stell-, Ausgangs- oder Zustandsgrößenbeschränkungen.
Nichtlineare Streckenmodelle hingegen erschweren die Lösung des Optimierungspro-
blems. Dies resultiert aus der komplizierten Abhängigkeit der Kostenfunktion J von
der Stellgrößenfolge uk+i, was einen erhöhten Rechenaufwand verursacht und dazu
führt, dass die Auswertung der Kostenfunktion nicht konvex ist, vgl. [141]. Daher
werden nichtlineare MPC in der Praxis gewöhnlich für eher langsame Systeme ver-
wendet.4

Für den MPC-Entwurf lassen sich auch datengetriebene Streckenmodelle, bei-
spielsweise DMD-Modelle [143], SINDy-Modelle [144] oder neuronale Netze [145]
verwenden. Außerdem finden sich in der Literatur Ansätze für den direkten datenge-
triebenen Entwurf einer MPC, der unmittelbar auf Messdaten basiert, beispielsweise

4Beispielsweise für die Regelung eines Trinkwasserversorgungssystems [142].
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u, y, w

k k + nc k + np Zeitschritt

Vergangenheit Zukunft

Stellhorizont nc

Prädiktionshorizont np

Referenz wk

Eingang uk

Messung yk

Referenz wk+1

Eingang uk+1

Prädiktion yk+1

Abbildung 4.2 Grundlegende Idee der modellprädiktiven Regelung. In Anlehnung an [21].

in [146].
Die Nutzung von Koopman-Operator-basierten Streckenmodellen für die MPC

erscheint vielversprechend, weil sie die Anwendung der Algorithmen der linearen
MPC für nichtlineare Streckendynamiken ermöglichen. Im Folgenden wird die Be-
rechnung der Koopman-Operator-basierten MPC vorgestellt und die Anwendung
am Schlagmechanismus des Golfroboters demonstriert.

Berechnung der MPC basierend auf EDMD-Modellen

Die Autor*innen in [47] zeigen, dass EDMD-Modelle sich aufgrund der linearen
Struktur geradlinig für den Entwurf linearer modellprädiktiver Regelungen für nicht-
lineare Streckendynamiken nutzen lassen. In Anlehnung an die klassische lineare
MPC, vgl. [21], lässt sich für ein EDMD-Modell

Ψ(xk+1) = KtΨ(xk) +Btuk, (4.18a)

yk = Cxk = CPΨk, (4.18b)

vgl. Abschnitt 3.1, eine Vorschrift für den zeitlichen Verlauf der Observablen

Ψk+1 = KtΨk +Btuk, (4.19a)

Ψk+2 = KtΨk+1 +Btuk+1 = K2
tΨk +KtBtuk +Btuk+1, (4.19b)

...

Ψk+i = KtΨk+i−1 +Btuk+i−1 = Ki
tΨk +

i∑

j=1

Ki−j
t Btuk+j−1 (4.19c)

und des Systemausgangs

yk+1 = Cxk+1 = CPΨk+1 = CPKtΨk +CPBuk, (4.20a)

yk+2 = Cxk+2 = CPΨk+2 = CPK2
txk +CPKtBtuk +CPBtuk+1, (4.20b)
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...

yk+i = Cxk+i = CPΨk+i = CPKi
txk +

i∑

j=1

CPKi−j
t Btuk+j−1 (4.20c)

bestimmen. In Matrix-Vektor-Form mit

ūk =




uk
uk+1
...

uk+nc−1


 ∈ Rp·nc , ȳk+1 =




yk+1

yk+2
...

yk+np


 ∈ Rq·np , (4.21a)

F̃ =




CPKt

CPK2
t

...
CPK

np

t


 ∈ Rq·np×N , (4.21b)

H̃ =




CPBt 0 · · · 0
CPKtBt CPBt · · · 0

...
...

. . .
...

CPKnc−1
t Bt CPKnc−2

t Bt · · · CPBt

CPKt
ncBt CPKnc−1

t Bt · · · CPKtBt
...

...
. . .

...

CPK
np−1
t Bt CPK

np−2
t Bt · · · CPK

np−nc

t Bt




∈ Rq·np×p·nc (4.21c)

ergibt sich
ȳk+1 = F̃Ψk + H̃ūk. (4.22)

Die quadratische Kostenfunktion

J(ūk) =
(
ȳk+1 − w̄k+1

)⊤
Q̄
(
ȳk+1 − w̄k+1

)
+ ū⊤

k R̄ūk (4.23)

lässt sich mit dem Fehlerterm

ek := F̃Ψk − w̄k+1 ⇒ ȳk+1 − w̄k+1 = ek + H̃ūk (4.24)

zu

J(ūk) =
(
ek + H̃ūk

)⊤
Q̄
(
ek + H̃ūk

)
+ ūkR̄ūk

= ū⊤
k

(
H̃

⊤
Q̄H̃ + Q̄

)
ūk + 2ū⊤

k H̃
⊤
Q̄ek + e⊤

k Q̄ek

(4.25)

umformen, wobei die Gewichtungsmatrizen Q ∈ Rq×q und R ∈ Rp×p zu

Q̄ =



Q

. . .

Q


 ∈ Rq·np×q·np , R̄ =



R

. . .

R


 ∈ Rp·nc×p·nc (4.26)

erweitert werden.
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Die Minimierung der Kostenfunktion

∂J(ūk)

ūk
= 2

(
H̃

⊤
Q̄H̃ + R̄

)
ūk + 2H̃

⊤
Q̄ek = 0, (4.27)

ergibt die Lösung

ūk = −
(
H̃

⊤
Q̄H̃ + R̄

)−1

H̃
⊤
Q̄ek. (4.28)

Eventuelle Stellgrößen- und Ausgangsgrößenbeschränkungen

ūmin ≤ ū ≤ ūmax, ȳmin ≤ ȳ ≤ ȳmax (4.29)

können während der numerischen Minimierung der Kostenfunktion (4.27) berück-
sichtigt werden. Für die Regelung wird jeweils nur der erste Wert

uk =
[
Ip,0, . . . ,0

]
ūk (4.30)

als Stellgröße verwendet. In der Abbildung 4.3 wird die Struktur der EDMD-basier-
ten MPC veranschaulicht.

MPC

Optimierung

ūk = −
(
H̃Q̄H̃ + R̄

)−1

H̃⊤Q̄ek

Prädiktionsmodell

ȳk+1 = F̃Ψ(x̂k) + H̃ūk

Strecke

Beobachter

−
wk w̄k+1 ek

ȳk+1

ūk uk

ūk ukx̂kx̂k

yk

yk

Abbildung 4.3 Struktur der EDMD-basierten modellprädiktiven Regelung.

Das zu lösende Optimierungsproblem ist konvex. Durch die Offline-Berechnung
der Matrizen F̃ und H̃ ist der Rechenaufwand für die Stellgrößenfolge bei der
EDMD-basierten MPC vergleichbar mit einer linearen MPC für das entsprechende
klassisch linearisierte Originalsystem [47]. In der Literatur finden sich vielfältige An-
wendungsfälle, beispielsweise die Regelung künstlicher pneumatischer Muskeln [147],
[148], [149], gekoppelter Pendelsysteme [150], Piezo-Aktoren zur Nano-Positionie-
rung [151], [152], [153]. Außerdem wurde die Koopman-basierte MPC zur Stabi-
lisierung von Multicoptern [154], [155], [156] sowie im Bereich der Regelung von
Fahrzeugen [157], Schiffen [158] und Hochgeschwindigkeitszügen [159] demonstriert.
Darüber hinaus finden sich in der Literatur Anwendungen auf ein Viertanksystem
[160], Fracking von Erdöl [161] sowie einen verfahrenstechnischen mikrobiellen Fer-
mentationsprozess [162]. Die Autor*innen in [163] erweitern den Ansatz auf partielle
Differentialgleichungen.

EDMD-Modelle lassen sich geradlinig für den Entwurf von modellprä-
diktiven Regelungen verwenden. Aufgrund der linearen Systemstruktur
von EDMD-Modellen ergibt sich ein konvexes Optimierungsproblem, dessen
Lösung sich einfach implementieren lässt und eine sehr hohe Regelungsgüte
liefert.
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4.3 Passivitätsbasierte Regelung mittels
datengetriebener PCHD-Modelle

Im Folgenden wird zunächst die Idee der passivitätsbasierten Regelung allgemein
beschrieben. Danach wird die Anwendbarkeit der im Abschnitt 3.4 entwickelten hy-
briden PCHD-Modelle für einen solchen Regelungsentwurf vorgestellt und im Rah-
men einer Machbarkeitsstudie beispielhaft am Schlagmechanismus des Golfroboters
demonstriert.

Die passivitätsbasierte Regelung verfolgt das Ziel, die Passivitätseigenschaft einer
Strecke systematisch zu nutzen, um stabile Regelkreise zu erhalten. Das Konzept
wurde erstmalig in [164] eingeführt und folgend weiterentwickelt. Die Regelung mit-
tels IDA (Interconnection and Damping Assignment) [165], [166] verfolgt das Ziel,
für ein möglicherweise, aber nicht zwingend passives System

ẋ = f (x) +B(x)u, (4.31a)

y = c(x) (4.31b)

eine Regelung u(x) zu entwerfen, sodass der geschlossene Regelkreis die Dynamik
eines PCHD-Systems

ẋ = (Jd(x)−Dd(x))

(
∂Vd
∂x

)⊤
+B(x)wPCHD, (4.32a)

yPCHD = B⊤(x)

(
∂Vd
∂x

)⊤
(4.32b)

mit dem kollokierten Ausgangsvektor yPCHD und der FührungsgrößewPCHD aufweist
[21]. Die Matrizen Jd(x) = −J⊤

d (x) und Dd(x) = D⊤
d (x) ⪰ 0 sowie die positiv

semidefinite Funktion Vd : Rn → R, die ein striktes lokales Minimum an der Stelle
der gewünschten Ruhelage x∗ hat, charakterisieren die gewünschte Dynamik des
Regelkreises.

Zur Bestimmung eines Regelgesetzes u(x) für die Regelstrecke (4.31) mit dem
Ziel, dass der Regelkreis die PCHD-Struktur (4.32) aufweist, wird die Stellgröße in
zwei Komponenten aufgeteilt u = u1 + u2, wobei u1 = wPCHD den Einfluss der
Führungsgrößen und u2 den Einfluss des stabilisierenden Reglers repräsentieren.
Das Gleichsetzen der Gleichungen (4.31a) und (4.32a) unter der Berücksichtigung
von u = u1 + u2 ergibt

B(x)u2 = (Jd(x)−Dd(x))

(
∂Vd
∂x

)⊤
− f(x). (4.33)

Zur Bestimmung der Größen Vd(x),Jd,Dd ist die partielle Differentialgleichung5

B⊥(x)

(
(Jd(x)−Dd(x))

(
∂Vd
∂x

)⊤
− f(x)

)
= 0 (4.34)

5Die Matrix B⊥(x) ∈ R(n−p)×n ist eine Matrix mit dem Rang n − p, die für den jeweiligen
Anwendungsfall so konstruiert werden muss, dass B⊥(x)B(x) = 0 gilt [21].
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zu erfüllen. Hierfür gibt es unterschiedliche Ansätze [167]:

• Algebraischer Ansatz. Die Energiefunktion Vd(x) wird explizit vorgege-
ben. Anschließend wird Gleichung (4.34) als algebraische Gleichung in Jd(x),
Dd(x) und B⊥(x) gelöst.

• Nichtparametrischer Ansatz. Jd(x), Dd(x) und B⊥(x) werden explizit
vorgegeben und Vd(x) über die partielle Differentialgleichung (4.34) bestimmt.

• Parametrischer Ansatz. Ähnlich wie beim nichtparametrischen Ansatz wird
Vd(x) über Gleichung (4.34) bestimmt. Allerdings erfolgt dies unter der Be-
schränkung, dass nur eine spezielle Klasse an Funktionen zugelassen ist. Zum
Beispiel kann es bei mechanischen Systemen wünschenswert sein, die Summe
der potentiellen oder kinetischen Energie des betrachteten Systems vorzuge-
ben.

Zur Vereinfachung der Parametrierung wird in [168], [169] eine systematische Vor-
gehensweise durch Zuweisen einer lokal linearen Dynamik vorgeschlagen. Die Au-
tor*innen in [170] beschreiben hingegen, wie die Funktion Vd(x) zur Realisierung
einer gewünschten Dynamik des geschlossenen Regelkreises mittels eines neuronalen
Netzes anstelle der Lösung der partiellen Differentialgleichung approximiert werden
kann.
Nach erfolgter Bestimmung der Größen Vd(x),Jd(x),Dd(x) ist das Regelungsge-

setz gegeben durch [21]

u(x) = wPCHD +
(
B⊤(x)B(x)

)−1
B⊤(x)

(
(Jd(x)−Dd(x))

(
∂Vd
∂x

)⊤
− f(x)

)
.

(4.35)
Das vorgestellte passivitätsbasierte Entwurfsverfahren liefert Regler, die stabil und
robust gegenüber Parameterunsicherheiten sind. In der Abbildung 4.4 ist die grund-
legende Struktur des IDA-Regelungsansatzes dargestellt.

Strecke
ẋ = f(x) +Bu

Regelungsgesetz

u2 =
(
B⊤(x)B(x)

)−1
B⊤(x)

(
(Jd(x)−Dd(x))

(
∂Vd
∂x

)⊤ − f(x)
)

wPCHD = u1 u

u2

x

Abbildung 4.4 Die passivitätsbasierte Regelung mit IDA erzeugt einen passiven Regelkreis mit
guter Dämpfung und einer stabilen Ruhelage.

4.3.1 Beispielhafte Anwendung

Im Folgenden wird demonstriert, wie sich datengetriebene PCHD-Modelle, vgl. Ab-
schnitt 3.4, für den Entwurf passivitätsbasierter Regelungen verwenden lassen. Zur
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Veranschaulichung wird der Entwurf einer IDA-Regelung für den Schlagmechanis-
mus des Golfroboters, vgl. Abbildung 6.1, beschrieben. Als Streckenmodell wird ein
datengetriebenes PCHD-Modell verwendet, das anhand simulativ erzeugter Mess-
daten aus dem Modell (6.11) bestimmt wurde. Mit der Energiefunktion V : Rn → R

V (x) =
1

2
Jx22 +mga (1− cos x1) (4.36)

und dem Gradienten Ψ : Rn → Rn

Ψ(x) =

(
∂V

∂x

)⊤
=

[
mga sin x1

Jx2

]
(4.37)

ergeben sich die Matrizen

J =

[
0 6,935

−6,935 0

]
=:

[
0 j1
−j1 0

]
, b =

[
0

26,534

]
=:

[
0
b2

]
, (4.38a)

D⪰ =

[
4,318 · 10−5 0,014

0,014 4,610

]
=:

[
d1 d2
d2 d3

]
. (4.38b)

Für die Parametrierung des IDA-Reglers wird

Vd(x) = V (x) (4.39)

festgelegt und anschließend der algebraische Ansatz mit den parametrierten Matri-
zen

Jd =

[
0 kj
−kj 0

]
, Dd =

[
kd1 kd2
kd2 kd3

]
, b⊥ =

[
1, 0
]

(4.40)

verfolgt. Damit ergibt sich die Schlüsselgleichung (4.34) zu

b⊥
(
(Jd − J +D −Dd)

(
∂V

∂x

)⊤
)

= 0 (4.41)

bzw. zu

[
1, 0
] [ d1 − kd1 kj − j1 + d2 − kd2
−kj + j1 + d2 − kd2 d3 − kd3

] [
mga sin x1

Jx2

]
= 0 (4.42a)

⇔
[
1, 0
] [ (d1 − kd1)mga sin x1 + (kj − j1 + d2 − kd2)Jx2

(−kj + j1 + d2 − kd2)mga sin x1 + (d3 − kd3)Jx2

]
= 0. (4.42b)

Daraus folgt

kd1 = d1, (4.43a)

kj − j1 + d2 − kd2 = 0 ⇔ kj = j1 − d2 + kd2 . (4.43b)
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Die Parameter kd2 und kd3 können frei gewählt werden. Damit jedoch Dd ⪰ 0 erfüllt
ist, muss

kd3 ≥
k2d2
d1

(4.44)

gelten. Beide Parameter lassen sich mittels der Gleichungen (6.16)-(6.17) numerisch
optimieren zu

kd2 = −0,1747, kd3 = 706,6345. (4.45)

Als stabilisierendes Regelungsgesetz ergibt sich mit Gleichung (4.35)

u2 =
1

b2
(2 (d2 − kd2)mga sin x1 + (d3 − kd3) Jx2) . (4.46)

Für den Systemausgang gilt nach Gleichung (4.32)

yPCHD = b⊤
(
∂V

∂x

)⊤
= b2Jx2 (4.47)

und damit für die neue Führungsgröße

wPCHD = b2Jw2, (4.48)

sodass sich schließlich das resultierende Regelungsgesetz

u = u1 + u2 = b2Jw2 +
1

b2
(2 (d2 − kd2)mga sin x1 + (d3 − kd3) Jx2) (4.49)

ergibt. Die Abbildung 4.5(a) zeigt die simulierte resultierende Regelgüte der pas-
sivitätsbasierten Regelungsansatzes, die mittels Gleichung (6.16)-(6.17) berechnet
wurde, im Vergleich zur bisher verwendeten LQ-Regelung mit Gain-Scheduling. Es
ist zu erkennen, dass der passivitätsbasierte Ansatz mit dem hybriden PCHD-Modell
stark überlegen ist. Darüber hinaus visualisiert die Abbildung 4.5(c) die Regelgüte
in Abhängigkeit der frei wählbaren Parameter der Solltrajektorie, vgl. Tabelle 6.1.
Der passivitätsbasierte Ansatz mit dem hybriden PCHD-Modell erweist sich als
überlegen gegenüber der bisher verwendeten LQ-Regelung mit Gain-Scheduling für
alle wählbaren Werte, wobei der Aufwand bei der Modellbildung stark reduziert ist.
Die Methode, ein PCHD-Modell datengetrieben zu bestimmen und systematisch für
den Entwurf einer passivitätsbasierten Regelung zu verwenden, wurde erstmals in
den Beiträgen [16] und [123] entwickelt und validiert.

Datengetriebene PCHD-Modelle lassen sich systematisch für den passi-
vitätsbasierten Regelungsentwurf nutzen. Basierend auf dem überaus
nützlichen Konzept der Passivität lassen sich robuste global stabile Re-
gelkreise mit gewünschten dynamischen Eigenschaften entwerfen. Die
resultierende Regelungsgüte war für das betrachtete Beispiel zwar geringfügig
schlechter als die der EDMD-basierten Ansätze, das Modell bietet dafür je-
doch eine sehr hohe physikalische Interpretierbarkeit.
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(a) Resultierende simulierte Regelgüte der unterschiedlichen Regelungsansätze.
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(b) Analyse der Koopman-basierten Regelungen.
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(c) Analyse der passivitätsbasierten Regelung.

Abbildung 4.5 Simulationsbasierte Analyse der unterschiedlichen in diesem Kapitel beschrie-
benen Regelungsansätze im Vergleich zur bisher verwendeten Riccati-Regelung mit Gain-
Scheduling. In den Abbildungen 4.5(b) und 4.5(c) ist die mittlere resultierende Regelgüte
J jeweils in Abhängigkeit der frei wählbaren Parameter φa (Ausholwinkel) und ∥vs∥ (Schlag-
geschwindigkeit) dargestellt.
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4.4 Entwurfsmethoden im Kontext der
Gauß-Prozess-Regression

In diesem Abschnitt werden regelungstechnische Entwurfsmethoden im Kontext der
Gauß-Prozess-Regression (siehe auch Abschnitt 3.5) vorgestellt. Ebenso wie bei der
hybriden Modellierung ist hierbei eine wesentliche Charakteristik die Einbindung
der Wahrscheinlichkeitstheorie. Die Vorteile eines probabilistischen Ansatzes für den
Steuerungs- und Regelungsentwurf sind vielfältig. Insbesondere vor dem Hintergrund
der Inbetriebnahme lassen sich zwei wesentliche Vorteile nennen. Zum einen findet
die Inbetriebnahme in Anlehnung an das V-Modell nach [171] iterativ statt und hat
als Ziel, ein sicheres und funktionsfähiges System zu gewährleisten. Diese Iteratio-
nen sind mit einem Lernvorgang beim Reinforcement Learning vergleichbar, wobei
das sogenannte Exploitation-Exploration-Dilemma [9] adressiert werden muss. In
jeder Iteration muss dabei ein Kompromiss gefunden werden, bei welchem bspw.
der Regler erprobt wird, welcher sowohl am erfolgversprechendsten (Exploitation)
ist, als auch neue Erkenntnisse über das Systemverhalten (Exploration) liefert, siehe
auch RL in Abschnitt 2.2. In diesem Sinne ist die Einbringung der Wahrschein-
lichkeitstheorie besonders sinnvoll, da über sie eine zusätzliche Informationsquelle
über die Unsicherheit zugänglich wird, welche zur Adressierung des Exploitation-
Exploration-Dilemma dient. In [126] werden bspw. ein deterministischer und pro-
babilistischer Lernvorgang gegenübergestellt und gezeigt, dass der wahrscheinlich-
keitsbasierte Ansatz essentiell notwendig für die Erfüllung der Aufgabe ist. Ein wei-
terer Vorteil bei der Inbetriebnahme ist, dass qualitativ hochwertigere Aussagen
über das teilweise unbekannte Systemverhalten getroffen werden können. Diese be-
treffen zum einen unerwünschte Systemüberschreitungen, welche durch technische
Beschränkungen vorgegeben werden und zum anderen sicherheitskritische Instabi-
litäten, welche durch einen falsch ausgelegten Regler hervorgerufen werden können.
Vor diesem Hintergrund liefert die Wahrscheinlichkeitstheorie ein qualitatives Maß,
um die Unsicherheit über das reale System bzw. den Prüfstand geeignet zu be-
schreiben. Auf Basis dieser Informationsquelle lässt sich das Systemverhalten besser
einschätzen und somit geeignete Sicherheitsmaßnahmen vornehmen.

4.4.1 Hybride Optimalsteuerung dynamischer Systeme

Auf der Grundlage des hybriden Modells f̃(mk,Sk,uk) := [mk+1,Sk+1] aus Glei-
chung (3.130) wird in diesem Abschnitt ein hybrides Optimalsteuerungsverfahren
entwickelt, welches für die iterative Inbetriebnahme eingesetzt wird. Eine typische
Zielgröße bzw. Gütefunktion, die in der Regelungstechnik und im Zusammenhang
mit einer Optimalsteuerung oft verwendet wird, ist wie folgt definiert

J(θ) = ∆t
H∑

k=0

wt(k)(xk − xG)
TW x(xk − xG) + uTkW uuk. (4.50)

Diese Zielfunktion enthält sowohl einen Term für die Distanz zum jeweiligen Ziel-
zustand (xk − xG) als auch mit uTkW uuk einen Term für den verbrauchten Ener-
gieaufwand. W x ≻ 0 und W u ⪰ 0 sind Gewichtungsmatrizen. wt(k) ∈ [0, 1] steigt
monoton an und gibt somit ein höheres Gewicht für Abweichungen, die in einem
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späteren Verlauf der Trajektorie auftreten. Der Optimierungsvektor θ wird im wei-
teren Verlauf dieses Abschnitts definiert. Da der Zustand des hybriden Modells als
normalverteilt angenommen wird, d. h. xk ∼ N (mk,Sk) gilt, ist der Erwartungs-
wert als tatsächliche Zielgröße zu verwenden. Die analytische Lösung der erwartba-
ren Gütefunktion lautet

Exk [J(θ)] =∆t
H∑

k=0

wt(k)

((
nx∑

i=1

S
(i,i)
k W (i,i)

x

)
+ (mk − xG)

TW x(mk − xG)

)

+ uTkW uuk.
(4.51)

Neben der Gütefunktion gilt es, die technischen Rahmenbedingungen im hybri-
den Optimalsteuerungsproblem zu adressieren. Steuerungsbeschränkungen aufgrund
von limitierter Aktorik können auf herkömmliche Weise durch umin ≤ uk ≤ umax
berücksichtigt werden. Zustandsbeschränkungen können durch den Erwartungswert
eingebunden werden, z. B. über xmin ≤mk ≤ xmax, was jedoch aufgrund der Ver-
nachlässigung der Varianz nicht besonders zuverlässig wäre. Daher wird ein wahr-
scheinlichkeitsbasierter Ansatz verfolgt, der in Hinblick auf die Inbetriebnahme ge-
eigneter ist. Die Wahrscheinlichkeit, die Zustandsbeschränkungen unter der konser-
vativen Annahme, dass die Dimensionen unabhängig sind, zu erfüllen, wird durch

P (xmin ≤ xk ≤ xmax) ≈
nx∏

i=1

P (x
(i)
min ≤ x

(i)
k ≤ x(i)max)

=
nx∏

i=1

Φ

(
x
(i)
max−m(i)

k√
S
(i,i)
k

)
− Φ

(
x
(i)
min−m

(i)
k√

S
(i,i)
k

)
≥ Px

(4.52)

ausgedrückt, wobei Φ(·) die Verteilungsfunktion der Standardnormalverteilung ist
und Px ∈ (0, 1] ein vordefinierter Wahrscheinlichkeitsgrenzwert ist. Die Zustands-
beschränkungen sind in der Regel mit sicherheitskritischen Aspekten verbunden.
Aus diesem Grund sollte der Wert von Px relativ groß gewählt werden, damit die
Zustandsbeschränkungen konservativ eingehalten werden.

An dieser Stelle wird das vollständige hybride Optimalsteuerungsproblem, mit
welchem die Inbetriebnahme durchgeführt wird, definiert

min
θ

Exk [J(θ)] u.B.v. h(θ) = 0, g(θ) ≤ 0,

h(θ) =





[mk+1,Sk+1] = f̃(mk,Sk,uk), k = 0, . . . , H − 1,

m0 −mI , S0 − SI ,

mH − xG,

g(θ) =

{
Px − P (xmin ≤ xk ≤ xmax),

uk − umax, umin − uk, k = 0, . . . , H,

(4.53)

mit einer initialen Zustandsverteilung xI ∼ N (mI ,SI) und H der Gesamtanzahl
der betrachteten diskreten Punkte. Ähnlich dem Ansatz des Multiple Shooting [172]
für deterministische dynamische Modelle erzwingen die Gleichheitsbeschränkungen
h(θ), dass die probabilistischen Dynamikgleichungen des hybriden Modells (3.130)
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Abbildung 4.6 Zwei-Freiheitsgrade Regelungsstruktur

für alle diskreten Zeitschritte erfüllt sind. Dies erfordert, dass die propagierten
Momente fhyb(mk,Sk) bei gegebener Steuerung uk mit den nächsten Momenten
(mk+1,Sk+1) übereinstimmen. Der Optimierungsvektor setzt sich damit aus den
folgenden Größen zusammen:

θ = [mT
0 , L̃

T

0 ,u
T
0 , . . . ,m

T
H , L̃

T

H ,u
T
H ]

T ∈ R
(

1
2
n2
x+

3
2
nx+nu

)(
H+1
)
, (4.54)

wobei die Cholesky-Zerlegung mit

Sk = LkL
T
k , L̃k = nonzeros(Lk), (4.55)

verwendet wird. Die Funktion nonzeros(·) bildet dabei die Elemente der unteren

Dreiecksmatrix von Lk auf einen Spaltenvektor L△,k ∈ R 1
2
(n2

x+nx) ab. Die Formulie-
rung über die Cholesky-Zerlegung erzwingt implizit eine weitere Nebenbedingung,
bei der Symmetrie und positive Definitheit der Matrizen der Zustandsvarianzen er-
zwungen werden. Um das hybride Optimalsteuerungsproblem zu lösen, kann bspw.
das SQP-Verfahren [173] eingesetzt werden. Die Lösung liefert dann eine probabi-
listische (Soll-)Trajektorie {m∗

k,S
∗
k} und den zugehörigen Stellgrößenverlauf {u∗

k}
mit k = 0, . . . , H. Zur Kompensation von etwaigen Störungen wird zusätzlich ei-
ne Regelung benötigt. Hierzu wird die Zwei-Freiheitsgrade Regelungsstruktur [24]
verwendet, welche sich aus einem Steuerungs- und Regelungsanteil zusammensetzt
(siehe Abbildung 4.6). Die Regelung erfolgt auf die Trajektorie, welche am wahr-
scheinlichsten erscheint, also den Verlauf des Zustandserwartungsvektors {m∗

k} mit
k = 0, . . . , H. Der Steuerungsanteil ist u∗

k und der Regelungsanteil uck wird durch
einen zeitvarianten Riccati-Regler [174] realisiert. Die gesamte Stellgröße lautet so-
mit uk = u∗

k + uck und beinhaltet das Regelgesetz

uck(xk) = Kk(m
∗
k − xk), (4.56)

wobei sich die Verstärkungsmatrix Kk für jeden Zeitschritt nach

Kk = (W u +BT
kP kBk)

−1BT
kP kAk, (4.57)

ergibt. Hierin stellt P k ∈ Rnx×nx die Riccati-Matrix dar, welche mittels zeitlicher
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Rückwärtsintegration der riccatischen Differentialgleichung bestimmt wird. In einer
bereits diskretisierten Form lautet der Zusammenhang

P k = W x +AT
kP k+1Ak −AT

kP k+1(Bk(W u +BT
kP k+1Bk)

−1BT
kP k+1)Ak,

(4.58)

k = H − 1, . . . , 0, wobei sich die Anfangs- bzw. Endbedingung PH aus der Lösung
der statischen Riccatigleichung ergibt. Des Weiteren sind Ak ∈ Rnx×nx und Bk ∈
Rnx×nu die Dynamik- und Eingangsmatrix, welche sich aus einer Linearisierung des
hybriden Modells ergeben. Aufgrund der gewählten additiven Zusammensetzung des
hybriden Modells (3.130) lassen sich die entsprechen Ableitungen des physikalischen
und datengetriebenen Modellteils separat voneinander bilden über

Ak =
∂f̂

∂xk

∣∣∣∣xk=m∗
k,

uk=u∗
k

+
∂∆µ

∂xk

∣∣∣∣xk=m∗
k,

uk=u∗
k

, Bk =
∂f̂

∂uk

∣∣∣∣xk=m∗
k,

uk=u∗
k

+
∂∆µ

∂uk

∣∣∣∣xk=m∗
k,

uk=u∗
k

. (4.59)

Da die Stellgröße nun über das Regelgesetz direkt von der Zustandsgröße abhängt,
muss diese ebenso als Zufallsvariable aufgefasst werden. Da es sich bei dem Regelge-
setz um eine lineare Beziehung handelt, kann die Wahrscheinlichkeitsverteilung der
Stellgröße direkt über den Zusammenhang

uk ∼ N (muk ,Suk),

muk = u∗
k +Kk(m

∗
k −mxk),

Suk = KkSxkK
T
k ,

(4.60)

angegeben werden. Die probabilistische Stellgröße wirkt sich über die Systemdy-
namik auf den probabilistischen Zustandsgrößenverlauf aus, welcher mit Hilfe der
besprochenen UT (siehe Unterabschnitt 3.5.2) berechnet werden kann. Vor diesem
Hintergrund ist es sinnvoll den offenen und geschlossenen Regelkreis formal zu kenn-
zeichnen. Die Prädiktion des offenen Regelkreises ergibt sich aus der Lösung des hy-
briden Optimalsteuerungsproblems und lautet {m∗

k,S
∗
k} für {u∗

k} mit k = 0, . . . , H.
Die Prädiktion des geschlossenen Regelkreises lautet {mg,k,Sg,k} für uk = u∗

k +
Kk(m

∗
k − xk).

Der Algorithmus der hybriden Optimalsteuerung, welcher zur Inbetriebnahme bei
partieller Systemkenntnis eingesetzt wird, ist im Algorithmus 1 zusammengefasst.
Aus einer übergeordneten Perspektive verwendet die Methodik einen konventionellen
Trial-and-Error-Ansatz. Der Prozess beginnt mit der Lösung des Optimalsteuerungs-
problems, das ausschließlich auf dem etablierten physikalischen Modell basiert. An-
schließend wird die aktuelle optimale Steuersequenz auf das reale System angewendet
und dabei Zustandsdaten aufgezeichnet und gesammelt (Zeile 1). Nachfolgend wird
eine Zwei-Schritt-Schleife ausgeführt (Zeilen 2-10 und 4-6). Die äußere Schleife be-
ginnt mit dem Erlernen der Modellfehler im Zusammenhang mit dem physikalischen
Modellteil unter Verwendung der Gauß-Prozess-Regression und aller verfügbaren
Daten (Zeile 3). Danach wird die innere Schleife ausgelöst und das hybride Opti-
malsteuerungsproblem basierend auf dem hybriden Modell bis zur Konvergenz gelöst
(Zeilen 4-6). Dies beinhaltet die wiederholte Berechnung der Ableitungen, wofür die
automatische Differenzierung genutzt werden kann, sowie die Aktualisierung der
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Algorithmus 1 Hybride Optimalsteuerung

1: Initialisierung: Berechne Optimalsteuerung {u∗
k}Hk=0 auf Basis des physika-

lischen Modells f̂ und teste sie am realen System, wobei initiale Messdaten
gesammelt werden.

2: Wiederhole bis ein Konvergenzkriterium oder ein Iterationsbudget erreicht ist:
3: Lerne Modellfehler über GPs (3.116) auf Basis der vorhandenen Daten (3.114).
4: Wiederhole die nachfolgenden Schritte im Rahmen einer SQP-Optimierung
5: Berechne den Gradienten ∇E[J(θ)] und die Jacobimatrizen der

Nebenbedingungen ∇h(θ),∇g(θ) ▷ Automatische Differenzierung
6: Aktualisiere den Optimierungsvektor θ und die zugehörigen

Lagrange-Multiplikatoren (λ,µ).
7: Erhalte Optimalsteuerung und Prädiktion (offener Regelkreis)

{m∗
k,S

∗
k,u

∗
k}Hk=0.

8: Berechne zeitvarianten Riccati-Regler {Kk}Hk=0 nach Gleichung (4.57), (4.58)
und
Prädiktion für den geschlossenen Regelkreis {mg,k,Sg,k}Hk=0.

9: Falls S
(i,i)
g,k ≤ S

(i,i)
max, k = 0, . . . , H, i = 1, . . . , nx dann ▷ Überprüfe Stabilität

setze uk ← u∗
k +Kk(m

∗
k − xk),

sonst
setze uk ← u∗

k.
10: Erprobe uk am realen System und nehme weitere Messdaten auf, die den

bestehenden Daten hinzugefügt werden.

Optimierungsvariablen und vorhandener Lagrange-Multiplikatoren. In den Zeilen
7 und 8 wird der offene und geschlossene Regelkreis mittel UT berechnet, wobei
der zeitvariante Riccati-Regler durch die angesprochene Linearisierung des hybriden
Modells aufgestellt wird. Anschließend erfolgt eine Überprüfung der Stabilität, wo-
bei die Zustandsvarianz Sg,k mit einem vordefinierten Grenzwert Smax verglichen
wird. Ist die Stabilität des geschlossenen Regelkreises dadurch gewährleistet, wird
der Regler am realen System eingesetzt. Ist sie nicht gegeben, wird lediglich die Op-
timalsteuerung verwendet. Bei der Erprobung (Zeile 10) werden weitere Messdaten
gesammelt und in jeder Iteration den bestehenden Messdaten hinzugefügt. Der sich
abwechselnde Lern-, Verbesserungs- und Interaktionszyklus wird wiederholt, bis die
Inbetriebnahme erfolgreich abgeschlossen ist.

Anwendung auf ein reales Doppelpendel auf einem Wagen Weiterführend wird
nun Algorithmus 1 für ein Doppelpendel auf einem Wagen beispielhaft eingesetzt.
Abbildung 4.7 zeigt hierzu den Prüfstand und die zugehörige Prinzipskizze auf deren
Basis eine physikalische Modellbildung durchgeführt wird. Die vollständigen Bewe-
gungsgleichungen in einer partiell zustandslinearisierten Form [116], welche durch
den Lagrange-Formalismus aufgestellt werden können, lauten

M1(φ)φ̈ = F (φ̇)− C(φ, φ̇)− G(φ)−M2(φ)u,

s̈ = u,
(4.61)
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4 Steuerungs- und Regelungsentwurf

Abbildung 4.7 Doppelpendel auf einemWagen: Prüfstand (links) und zugehörige Prinzipskizze
(rechts) mit relevanten Zustandsgrößen und mechanischen Parametern.

mit Winkelvektor φ = [φ1, φ2]
T und den klassischen mechanischen Systemmatrizen

M1 =

[
J1 + a21m1 + l21m2 a2l1m2 cos (φ1 − φ2)
a2l1m2 cos (φ1 − φ2) J2 + a22m2

]
,

M2 =

[
(l1m2 + a1m1) cos(φ1)

a2m2 cos(φ2)

]
,

F =

[
d2(φ̇2 − φ̇1)− d1φ̇1

d2(φ̇1 − φ̇2)

]
,

C =

[
a2l1m2 sin (φ1 − φ2)φ̇2

2

a2l1m2 sin(φ1 − φ2)φ̇1
2

]
,

G =

[
−g(a1m1 + l1m2) sin(φ1)
−ga2m2 sin(φ2)

]
.

(4.62)

Für das betrachtete Lernszenario wird das nichtlineare Zustandsraummodell

f̂(xk, uk) = xk +∆t




φ̇k

ṡk
M1(φk)

−1(F(φ̇k)− G(φk)−M2(φk)uk)
uk


 , (4.63)

mit x = [φ1, φ2, s, φ̇1, φ̇2, ṡ]
T als Zustandsvektor, als bekannt vorausgesetzt. Beim

Vergleich mit Gleichung (4.62) fällt auf, dass die relevanten Zentrifugalkräfte fehlen,
womit diese als unbekannte Modellfehler über

∆xk+1(φk, φ̇k) =




0
−∆tM1(φk)

−1C(φk, φ̇k)φ̇k

0


, (4.64)

definiert werden. Die Aufgabe besteht darin, die Pendelarme aus der unteren in die
obere Position durch eine geeignete Bewegung des Wagens zu bringen. Ohne die
Kenntnis der Zentrifugalkräfte ist die Inbetriebnahme und die Lösung der Aufgabe
nicht möglich, wodurch der Einsatz der hybriden Optimalsteuerung motiviert wird.
Da in Gleichung (4.64) einige Elemente 0 entsprechen, ist eine Korrektur durch den
datengetriebenen GP-Teil nicht notwendig. Entsprechend der Überlegungen in Un-
terabschnitt 3.5.2 wird eine KopplungsmatrixB = [0(2×3), I(2×2),0(2×1)]T eingeführt,
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Abbildung 4.8 Ergebnisse der 3. Lerniteration der hybriden Optimalsteuerung am Doppel-
pendel auf einem Wagen. Die Prädiktion (µ ± 2σ) des offenen Regelkreises ist in Blau, die
des geschlossenen in Türkis und die Messung in Rot dargestellt. Die graue Fläche stellt die
Prädiktion des Modellfehlers für die aktuelle Messung dar.

welche dafür sorgt, dass nur ein Teil der Zustandsraumgleichungen korrigiert werden
muss. Der hybride Modellansatz lautet somit

xk+1 = f̂(xk, uk) +B∆φ̇k+1(φk, φ̇k). (4.65)

Das betrachtete Szenario beinhaltet eine zeitliche Diskretisierung von ∆t = 0.01 s
mit einer fest vorgegebenen Aufschwungzeit von T = 2 s. Das System startet aus dem
Anfangszustand mI = [−π,−π,0]T ,SI = 10−3I6 und soll zum Zielzustand xG = 0
überführt werden. Um die technischen Rahmenbedingungen mit einem ausreichend
großen Sicherheitsabstand zu adressieren, werden die Nebenbedingungen mit

|s| ≤ 0.5 m, |ṡ| ≤ 3
m

s
, |u| = |s̈| ≤ 50

m

s2
, und Px = 95% (4.66)

berücksichtigt. Die Gewichtungen des Optimalsteuerungsproblems (4.53) haben die
Werte

W x = diag(100, 100, 250,0), Wu = 1, wt(k) =
e25∆tk − 1

e25Hk − 1
. (4.67)

Abbildung 4.8 zeigt die zeitlichen Verläufe der 3. Lerniteration am Doppelpendel-
prüfstand. Die Unsicherheit über das Systemverhalten bei Verwendung der opti-
malen Steuerung (blau) steigt erwartungsgemäß mit zunehmender Zeit an. Gut er-
kennbar ist, dass die Hinzunahme des Reglers (türkis) zu einem instabilen Verhalten
führt. Die Instabilität tritt bei etwa 1.6 s auf, wobei an dieser Stelle die Winkelge-
schwindigkeiten ihren maximalen Wert annehmen und sich die fehlenden Zentrifugal-
kräfte besonders stark bemerkbar machen. Aus dieser Perspektive betrachtet, ist die
Instabilität daher nachvollziehbar und plausibel. Hier sei darauf hingewiesen, dass
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4 Steuerungs- und Regelungsentwurf

Abbildung 4.9 Ergebnisse der 5. bzw. letzten Lerniteration der hybriden Optimalsteuerung
am Doppelpendel auf einem Wagen. Die Prädiktion (µ ± 2σ) des offenen Regelkreises ist in
Blau, die des geschlossenen in Türkis und die Messung in Rot dargestellt. Die graue Fläche
stellt die Prädiktion des Modellfehlers für die aktuelle Messung dar.

der Riccati-Regler aufgrund seiner Herleitung bzgl. des hybriden Modells entlang
der Trajektorie theoretisch stabil sein sollte. Bei einem herkömmlichen deterministi-
schen Entwurf würde der/die Regelungstechniker*in also fälschlicherweise von einem
stabilen Systemverhalten ausgehen. Die probabilistische berechnete Instabilität kann
daher nur das Resultat eines nicht vollständig bekannten realen Systems sein und
ist für den/die Entwurfsingenieur*in ein wichtiges Hilfsmittel, um das Verhalten
am Prüfstand vor dem Experiment besser einschätzen zu können. Entsprechend der
Stabilitätsprüfung in Algorithmus 1 wird am Prüfstand lediglich die Steuerung ver-
wendet und der rote Verlauf gemessen. Anhand der Diagramme zum Modellfehler
wird ersichtlich, dass der datengetriebene GP-Modellteil noch nicht in der Lage ist
eine vollständige Korrektur vorzunehmen. Weitere Messdaten sind notwendig, um
die hohe Unsicherheit weiter zu verringern, sodass eine weitere Iteration gestartet
wird. Zwei weitere Iterationen sind erforderlich, bevor der Aufschwung der Pendel-
arme und die Stabilisierung am Prüfstand realisiert werden können. Abbildung 4.9
zeigt das finale Ergebnis: Die Prädiktion des geschlossenen Regelkreises weist nur
eine sehr geringe Unsicherheit auf, welche insbesondere für die Winkelverläufe nicht
sichtbar ist. Der/Die Regelungstechniker*in kann somit gewährleisten, dass die Re-
gelung am Prüfstand stabil funktionieren wird und sich das System entsprechend der
Vorhersage verhalten wird. Die Messungen bestätigen dieses Verhalten, wobei die ge-
forderten Rahmenbedingungen (schwarze gestrichelte Linien) für die Stellgröße und
die Zustandsgrößen bzgl. des Wagens eingehalten werden. Anhand der Diagramme
der Modellfehler wird zudem ersichtlich, dass das GP-Modell die vorab unbekannten
Zentrifugalkräfte mit einer hohen Güte wiedergeben kann und die Korrektur somit
zuverlässig funktioniert. Eine ausführliche Darstellung dieser Arbeiten kann in [18],
[175], [176] gefunden werden.
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Die hybride Optimalsteuerung bietet ein vielversprechendes Verfahren für
die Trajektorien-Planung und -Realisierung von Systemen, die nur teilweise
in Form von unvollständigen Modellen bekannt sind und damit Fehler
enthalten. Ein wesentlicher Vorteil dieses Ansatzes besteht darin, dass Unsi-
cherheiten über die vorhandenen Systemfehler explizit in die Planungsphase
einbezogen werden. Dadurch wird nicht nur die Genauigkeit der Steuerung
erhöht, sondern auch die Sicherheit bei der praktischen Erprobung des Ge-
samtsystems verbessert. Trotz dieser Vorteile ist jedoch zu beachten, dass die
hybride Optimalsteuerung insgesamt mit einem höheren Rechenaufwand
verbunden ist. Die umfassende Berücksichtigung der Unsicherheiten sowie die
komplexen Berechnungen erfordern mehr Rechenressourcen und Zeit im Ver-
gleich zu einfacheren Steuerungsverfahren.

4.4.2 Hybride Zustandslinearisierung für eingangs-affine Systeme

Der Regelungsentwurf nach dem Verfahren der Zustandslinearisierung ist ein gängi-
ger regelungstechnischer Ansatz, welcher nur unter besonderen Voraussetzungen an-
gewendet werden kann [21]. Die Methode zielt darauf ab, ein nichtlineares System
durch eine geeignete Wahl der Stellgröße als ein lineares System zu behandeln. Hier-
bei werden die vorhandenen Nichtlinearitäten im Idealfall vollständig kompensiert.
Eine Linearisierung durch eine Taylorreihenentwicklung findet dabei nicht statt,
sodass das System im gesamten Zustandsraum als linear betrachtet werden darf.
Dies hat den großen Vorteil, dass die Methoden der linearen Regelungstechnik zum
Entwurf und zur Analyse angewendet werden dürfen und entsprechend ein linearer
Zustandsregler zur Stabilisierung und Sollwertfolge ausreichend ist und vergleichs-
weise einfach bestimmt werden kann. Damit die Methodik anwendbar ist, muss die
Voraussetzung gelten, dass es sich um ein eingangsaffines System handelt, d. h. es
gilt

ẋ = α(x) + β(x)u. (4.68)

Um die Kompensation der Nichtlinearitäten zu erreichen, ist die passende Wahl
der Stellgröße am realen System erforderlich. Die Stellgröße hängt hierbei von be-
stimmten Modelltermen ab, welche die Nichtlinearitäten des realen Systems genau
genug wiedergeben müssen. Entsprechend der Grundidee, werden die Terme über
die Stellgröße dem realen System so aufgeschaltet, sodass sie invers zur realen Sys-
temdynamik wirken und sich bei einer gesamtheitlichen Betrachtung möglichst ideal
kompensieren. Ein möglicher Regelungsansatz lautet dann

uc(x) = β̂(x)−1(−α̂(x) +K(w − x)), (4.69)

wobei α̂ und β̂ die modellbasierten Schätzungen der Nichtlinearitäten sind und ein
Ansatz für einen P-Regler verwendet wird. Weist das Modell dahingehend Unge-
nauigkeiten auf, so wirken sich diese über das aufgestellte Regelgesetz direkt auf die
Regelgüte aus. Unter Umständen werden durch das ungenaue Modell zusätzliche un-
erwünschte Nichtlinearitäten eingebracht, welche negative Effekte, wie Grenzzyklen
oder Instabilitäten, nach sich ziehen können. Das Ziel des hier vorgestellten Ansat-
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zes ist, eine hybride Zustandslinearisierung zu entwickeln, welche die angesproche-
nen Ungenauigkeiten auf der Basis von Messdaten und der Gauß-Prozess-Regression
korrigiert. In diesem Szenario ist ein teilweise unvollständiges physikalisches Modell
zulässig, auf dessen Grundlage eine ideale Kompensation der Zustandslinearisierung
nicht funktioniert.

Um das Grundprinzip nachvollziehen zu können, ist die Betrachtung einer Dif-
ferentialgleichung i ∈ {1, . . . , nx} des Gesamtsystems aus Gleichung (4.68) ausrei-
chend:

ẋ = β1(x)u1 + . . .+ βnu(x)unu + α(x). (4.70)

Zur besseren Übersicht wurde dabei der Index i weggelassen. Den Ausgangspunkt
des Verfahrens bilden die nd aufgenommenen Datenpaare (ẋ,x,u), welche mit dem
standardmäßigen Ansatz für das Messrauschen ϵn ∼ N (0, σ2

n) additiv verfälscht sind
und in den nachfolgenden Matrizen und dem Ausgangsdatenvektor zusammengefasst
werden:

X = [x(1), . . . ,x(nd)] ∈ Rnx×nd ,

U j = diag(u
(1)
j , . . . , u

(nd)
j ) ∈ Rnd×nd , j = 1, . . . , nu,

Ẋ = [ẋ(1), . . . , ẋ(nd)]T ∈ Rnx×nd .

(4.71)

Die gesuchten Funktionen werden als Zufallsvariablen, die jeweils von einem GP
stammen, definiert

α(x) ∼ GP(mα(x), kα(x,x
′)),

βj(x) ∼ GP(mβj(x), kβj(x,x
′)), j = 1, . . . , nu,

(4.72)

Ein möglicherweise vorhandenes Vorwissen kann hierbei über die Mittelwertfunk-
tionen mα(x) und mβj(x) berücksichtigt werden. Für die Kovarianzfunktionen wird
standardmäßig der SE-Kernel angesetzt. Es wird nun ein Zustand x∗ eingeführt,
an welchem die Funktionen ausgewertet werden sollen. Zusammen mit den Aus-
gangsdaten, lässt sich durch die Definition als GPs für die Prior-Verteilung folgern,
dass



α(x∗)
β1(x

∗)
...

βnu(x
∗)

Ẋ



∼ N







mα(x
∗)

mβ1(x
∗)

...
mβnu

(x∗)
mẊ



,




k∗α 0 0 · · · kTα
0 k∗β1 0 · · · kTβ1U

T
1

...
...

. . . · · · ...
0 0 · · · k∗βnu

kTβnu
UT
nu

kα U 1kβ1 · · · Unukβnu
KẊ







(4.73)

gilt, mit k∗(·)(x
∗) = k(·)(x∗,x∗),k(·)(x∗) = [k(·)(x∗,x(1)), . . . , k(·)(x∗,x(nd))]T ∈ Rnd

und wobei die grundlegenden Regeln zur Addition und Produktbildung von GPs
angewendet wurden [177]. Dadurch ergeben sich insbesondere für die Ausgangsdaten
der Erwartungsvektor und die Kovarianzmatrix zu

mẊ = mα(X) +U 1mβ1(X) + . . .+Unumβnu
(X), und

KẊ = Kα +UT
1Kβ1U 1 + . . .+UT

nu
Kβ2Unu + σ2

nInd
,

(4.74)
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mit m(·)(X) = [m(·)(x(1)), . . . ,m(·)(x(nd))]T ∈ Rnd und K(·) ∈ Rnd×nd mit den

Elementen K
(i,j)
(·) = k(·)(x(i),x(j)), i, j = 1, . . . , nd. Auf der Grundlage der Prior-

Verteilung werden die bedingten bzw. Posterior-Verteilungen nach

α(x∗) | Ẋ ∼ N (µα(x
∗), σ2

α(x
∗)),

µα(x
∗) = mα(x

∗) + kTα(x
∗)K−1

Ẋ
(Ẋ −mẊ),

σ2
α(x

∗) = k∗α(x
∗)− kTα(x

∗)K−1

Ẋ
kα(x

∗),

βj(x
∗) | Ẋ ∼ N (µβj(x

∗), σ2
βj
(x∗)), j = 1, . . . , nu,

µβj(x
∗) = mβj(x

∗) + kTβj(x
∗)UT

j K
−1

Ẋ
(Ẋ −mẊ),

σ2
βj
(x∗) = k∗βj(x

∗)− kTβj(x
∗)UT

j K
−1

Ẋ
U jkβj(x

∗)

(4.75)

bestimmt. Es liegt somit eine probabilistische Schätzung in Form einer eindimensio-
nalen Normalverteilung für jede der gesuchten Funktionen der Zustandslinearisie-
rung vor, wobei die angesetzten Prior-Mittelwertfunktionen mit einbezogen werden
und geeignet korrigiert werden. Die beschriebene Methode wird für alle nx Differen-
tialgleichungen (4.68) gleichermaßen durchgeführt, sodass eine Zusammenführung
aller Posterior-Mittelwerte kurz über

µα(x) =



µα1(x)

...
µαnx

(x)


 ∈ Rnx , µβ(x) =



µβ1,1(x) · · · µβ1,nu

(x)
...

. . .
...

µβnx,1(x) · · · µβnx,nu
(x)


 ∈ Rnx×nu

(4.76)

beschrieben wird. Diese Größen stellen auf der Basis des Vorwissens und der Da-
tenlage die beste Schätzung für die gesuchten Funktionen dar. Aus diesem Grund
wird hinsichtlich der Anwendung am realen System das Regelungsgesetz über diese
Schätzungen mit

uc(x) = µβ(x)
−1(−µα(x) +K(w − x)) (4.77)

definiert, sodass zu jedem Zeitpunkt eine eindeutige Stellgröße bekannt ist.

Als Nächstes wird das beschriebene Entwurfsverfahren an dem bereits eingeführ-
ten Doppelpendel auf einem Wagen (siehe Abbildung 4.7) illustriert. Diesmal wird
nicht der Aufschwung der Pendelarme als Entwurfsziel definiert, sondern die genaue
Einhaltung einer vorgegebenen Soll-Geschwindigkeit des Wagens. Für dieses Szena-
rio wird die Stellgröße u = us̈ nicht mehr als ideale Vorgabe der Wagenbeschleuni-
gung angesehen (vgl. Gleichung (4.61)). Der neue Eingang uF in das System ist die
Kraft, welche auf den Wagen wirkt. Diese ergibt sich als Folge des Zusammenhangs

us̈ =
1

m1 +m2 +m0

(
(a1m1 + l1m2) cos(φ1)φ̈1 + a2m2 cos(φ2)φ̈2

− (a1m1 + l1m2) sin(φ1)φ̇
2
1 + a2m2 sin(φ2)φ̇

2
2 + uF

)
,

(4.78)

welcher für das betrachtete Szenario in Gleichung (4.61) eingesetzt wird. Das Ziel der
Regelung ist, die Wagenkraft so vorzugeben, dass die vorgegebene Soll-Geschwindig-
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Abbildung 4.10 Beispielhafte Anwendung der hybriden Zustandslinearisierung für eine Ge-
schwindigkeitsregelung an einem Doppelpendel auf einem Wagen.

keit erreicht wird und sich die Bewegungen der Pendelarme nicht negativ auf das
Ergebnis auswirken. Die Pendelarme fungieren somit als Störung, welche durch ein
genaues Modell bzw. eine partielle Zustandslinearisierung kompensiert werden kann.

Abbildung 4.10 stellt verschiedene Regelungsansätze für das beschriebene Szena-
rio gegenüber. Das mittlere Diagramm zeigt die zeitliche Entwicklung der Wagenge-
schwindigkeit, wobei der Sollwert ṡSoll(t) in grün dargestellt ist und sich sprungför-
mig verändert. Ein herkömmlicher P-Regler (roter Verlauf) mit dem Stellgrößen-
ansatz uc(ṡ) = K(ṡSoll(t)− ṡ(t)) ist nur bedingt in der Lage, die induzierte Störung
der Pendelarme zu kompensieren und zeigt deutliche Abweichungen zum Sollwert
auf. Herausfordernd ist hierbei, dass die Pendelarme in der oberen instabilen Ru-
helage starten und sich damit eine sehr hohe Anfangsenergie im System befindet.
Weiterführend werden die Daten, welche beim Versuch mit dem P-Regler aufge-
nommen wurden, nicht verworfen, sondern dienen als Grundlage für die hybride
Zustandslinearisierung (vgl. Gleichung (4.71)). Die Anwendung des Verfahrens er-
gibt das zugehörige Regelungsgesetz (4.77), welches ein Modell der Pendelbewegung
enthält und adäquat auf sie reagieren kann. Die orangefarbenen Verläufe verdeut-
lichen die Verbesserung zum einfachen P-Regler ohne Zustandslinearisierung. Zu
beachten ist, dass der gleiche Verstärkungsfaktor K verwendet wurde. Als Referenz
ist zudem das Ergebnis einer bestmöglichen Zustandslinearisierung gezeigt (Ground
Truth, blau), welche auf einem exakten Modell basiert. Die gewählte Stellgröße in
jedem Zeitschritt unterscheidet sich dabei kaum von der der gelernten GP-Regelung.
Die hybride Zustandslinearisierung wurde auch an anderen Anwendungsbeispielen
erfolgreich getestet und weiterführende Informationen dazu sind in [18] zu finden.
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Die hybride Zustandslinearisierung wird für eingangs-affine Systeme mit
separierten Nichtlinearitäten eingesetzt. A-Priori Schätzungen der Nichtli-
nearitäten werden auf der Basis von Zustandsmessungen und der Gauß-
Prozess-Regression verbessert, um das zugrundeliegende Regelungsgesetz
zu korrigieren und eine höhere Regelgüte zu erzielen. Zusätzlich kann über die
Posterior-Varianzangabe zu den einzelnen Nichtlinearitäten dazu genutzt wer-
den, um die Qualität der Korrektur abzuschätzen und Gebiete im Zustands-
raum zu identifizieren, in denen noch wenig oder keine Zustandsmessungen
vorliegen. In diesen Gebieten können entsprechend weitere Messungen vorge-
nommen werden, um die Qualität der Regelung weiter zu erhöhen. Da das
Regelgesetz nur vom Erwartungsvektor und nicht von der Kovarianz abhängt,
ist der Berechnungsaufwand im Vergleich zur hybriden Optimalsteuerung ge-
ringer.

4.4.3 Interaktiver Entwurf mit Bayesscher Optimierung

In den vorangegangenen Abschnitten 4.4.1 und 4.4.2 wurde indirekt davon ausge-
gangen, dass der Zustand des betrachteten System vollständig gemessen werden
kann. Auf der Grundlage dieser Messdaten wurde anschließend eine Korrektur auf
Modellebene vorgenommen, welche die Genauigkeit steigerte und einen verbesserten
Steuerungs- und Regelungsentwurf ermöglichte. Insbesondere für mechanische Syste-
me, deren Zustandsgrößen sich maßgeblich durch einfach zu messende Positions- und
Geschwindigkeitsgrößen zusammensetzen, ist die Voraussetzung eines vollständig be-
kannten Zustandsvektors in der Regel erfüllbar. Für bestimmte dynamsiche Systeme
ist der Zustandsvektor jedoch nicht messbar, da es keine technisch realisierbare Sen-
sorik gibt oder eine entsprechende Messeinrichtung zu aufwendig zu realisieren ist.
In einigen Fällen ist überdies unklar welche Größen im Zustandsvektor enthalten
sind, womit dieser undefiniert ist.

Ein mechatronisches Beispielsystem hierfür ist der Ultraschalldrahtbondprozess
[178], wobei eine mechanische Schwingung im Ultraschallbereich, induziert durch
eine Piezoaktorik, eingesetzt wird, um zwei metallische Partner miteinander zu ver-
binden. Der Prozess läuft auf atomarer Ebene ab und ist daher physikalisch schwer
zu modellieren. Ebenso schwer gestaltet sich die Messung von bestimmten Größen,
die sich während des Prozesses kontinuierlich verändern. Eine Ausnahme bildet das
Prozessende, an dem die, für die Qualität wesentliche, Festigkeit der Verbindung
durch eine zerstörende Messung identifiziert werden kann. In diesem Szenario kann
zwar nicht der Zustandsvektor gemessen, dafür jedoch die Gütefunktion am Ende
der Trajektorie ausgewertet werden. Außerdem liegt ein gewisses Expertenwissen
in Form einer parametrisierten Steuerung vor, welche sich für das Erreichen eines
möglichst hohen Gütefunktionswertes eignet. In diesem Szenario, welches auch für
andere komplexe mechatronische Systeme vorliegen kann, bietet sich der Einsatz der
Bayesschen Optimierung [179] für einen zielgerichteten Entwurf an. Dabei werden
interaktiv Experimente direkt am realen System durchgeführt und anhand der er-
haltenen Messdaten eine Korrektur auf der gedanklichen Ebene der Gütefunktion
durch die Gauß-Prozess-Regression vorgenommen. Der Entwurf mit der Bayesschen
Optimierung sucht auf diese Weise iterativ nach einer optimalen Parametrisierung
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für den gewählten Steuerungsansatz. Da lediglich eine Auswertung der Gütefunktion
notwendig ist, muss bei diesem Verfahren im Vergleich zur hybriden Optimalsteue-
rung oder Zustandslinearisierung keine Korrektur der Dynamikgleichungen vorge-
nommen werden. Dies stellt den wesentlichen Vorteil des Verfahrens dar. Eine vorab
bekannte Schätzung der Gütefunktion kann jedoch neben der parametrisierten An-
satzfunktion als Vorwissen zur Effizienzsteigerung verwendet werden.
Das Verfahren geht formal von einer parametrisierten Steuerung mit

u = s(t;θ) (4.79)

aus. Dabei ist wiederum u ∈ Rnu die Stellgröße, t die Zeit und θ ∈ Rnθ der Para-
metervektor. Zudem stellt s den gewählten Ansatz dar. Das übergeordnete Ziel ist
eine vorgegebene Gütefunktion J zu optimieren, woraus sich die optimale Parame-
trisierung

θ∗ = argmin
θ
J(θ) (4.80)

ergibt. Der Grundgedanke der Bayesschen Optimierung ist, die Gütefunktion als
parameterabhängige Zufallsvariable über einen Gauß-Prozess

J(θ) ∼ GP(m(θ), k(θ,θ′)), (4.81)

zu definieren, wobei dieser auf eine wählbare Mittelwert- und Kovarianzfunktion
m(θ) bzw. k(θ,θ′) zurückgeführt wird. Für die Mittelwertfunktion bietet es sich
an, eine Schätzung der Gütefunktion vorzusehen, wobei bspw. ein vorhandenes phy-
sikalisches Modell entsprechend der parametrisierten Steuerung ausgewertet wird.
Durch die Messung der Gütefunktion stehen (Ein-/Ausgangs-)Daten der Form

Dθ = [θ1, . . . , θnd
] ∈ Rnθ×nd , DJ = [J1, . . . , Jnd

]T ∈ Rnd (4.82)

zur Verfügung. Basierend auf den Daten ergibt sich die Posterior-Gleichung der
Gütefunktion zu

p(J(θ) | DJ) = N (µ(θ), σ2(θ)),

µ(θ) = m(θ) + kTD(θ)K
−1(DJ −mD),

σ2(θ) = k(θ,θ)− kTD(θ)K
−1kD(θ),

(4.83)

mit kD(θ) = [k(θ,θ1), . . . , k(θ,θnd
)]T , mD = [m(θ1), . . . ,m(θnd

)]T und symme-
trischer, positiv definiter Gram-Matrix K ∈ Rnd×nd mit den Elementen Ki,j =
k(θi,θj), i, j = 1, . . . , nd. Das iterative Vorgehen der BO ergibt sich danach durch
eine kontinuierliche Erweiterung des Datensatzes

Dθ ← {Dθ,θnd+1}, DJ ← {DJ , Jnd+1}, (4.84)

wodurch die Schätzung in jeder Iteration weiter verbessert wird.
Bisher unklar ist, wie anhand des GPs die nächste Parametrisierung θnd+1 be-

stimmt bzw. nach welchem Kriterium das nächste Experiment am realen System
festgelegt wird. Hierfür wird im Rahmen der BO eine sogenannte Akquisitionsfunk-
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Abbildung 4.11 Ein im Drehgelenk aktuiertes Pendel (links) und zugehörige parametrisierte
Bang-Bang-Steuerung (rechts).

tion α(θ) : Rnθ 7→ R, welche von der aktuellen Schätzung bzgl. der Gütefunktion
des GP abhängig ist, benutzt und ein unterlagertes Optimierungsproblem

θnd+1 = argmax
θ

α(µ(θ), σ2(θ)) (4.85)

automatisiert gelöst. Mittlerweile gibt es ein breites Spektrum von möglichen Funk-
tionen, die je nach Anwendungsfall besser oder schlechter geeignet sind. Das bekann-
teste Kriterium lautet Expected Improvement (EI) [179] und folgt der Grundidee,
die Größe der möglichen Verbesserung zu quantifizieren. Hierfür wird der Erwar-
tungswert im Bezug auf die Dichte, die unter dem Grenzwert ξJ liegt, mit

αEI(θ) = E[max(0, ξJ − J(θ))]
= σ(θ)(γ(θ)Φ(γ(θ))) + ϕ(γ(θ)),

γ(θ) = (ξJ − µ(θ))/σ(θ)
(4.86)

ausgewertet. Hierin ist ϕ(·) die Dichtefunktion und Φ(·) die Verteilungsfunktion
einer Standardnormalverteilung. Zusammenfassend iteriert die Bayessche Optimie-
rung zwischen dem Update des Posteriors (4.83) und der Durchführung des nächsten
Experiments mit der optimierten Parametrisierung (4.85).

Abbildung 4.11 zeigt einen zu Anschauungszwecken konstruierten Anwendungsfall
der Bayesschen Optimierung. Dabei soll ein Einfachpendel aus seiner unteren Ruhe-
lage (φ(t = 0) = −π, φ̇(t = 0) = 0) aufgeschwungen werden und nach T = 3.1 s den
Zielwinkel φ(t = T ) = 0 rad erreichen. Da die Stellgröße mit umax = 0.3 Nm auf
einen vergleichsweise geringen Wert begrenzt ist, muss das Vorzeichen der Steuerung
mehrfach wechseln, damit sich das Pendel (ähnlich zu einer Schaukel) aufschwingen
kann. Die Pendeldynamik wird über

φ̈ =
g

l
sin(φ) +

1

m2l
u (4.87)

beschrieben, wobei das Ground Truth System die Parameter: l = 0.3 m, m = 0.5 kg
und g = 9.81 m

s2
besitzt. Für die Steuerung wird ein sogenannter Bang-Bang-Ansatz
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Abbildung 4.12 Anwendung der Bayesschen Optimierung zur Bestimmung einer optimalen
Parametrisierung zum Aufschwung eines Einfachpendels. Dargestellt ist die Entwicklung der
Gütefunktionswerte für verschiedene Priorfunktionen (Rot: Konstant Null, Blau: Abschätzung
der Gütefunktion auf Basis eines Pendelmodells mit stark geänderter Länge, Grün: Identisch
zu Blau, jedoch mit geringfügig geänderter Pendellänge). Die durchgezogenen Linien zeigen
die mittlere Entwicklung und die schraffierten Flächen visualisieren die zweifache Standardab-
weichung.

[21] gewählt

u(t;θ) = umax

(
1 +

nθ∑

i=1

2

(1 + e(100(
∑i

j=1 θj−t)))
(−1)i

)
, (4.88)

wobei die Stellgröße zwischen den maximalen Werten hin und her wechselt (vgl.
Abbildung 4.11 rechts). Der Parametervektor θ hat dabei die Dimension nθ = 4
und definiert die Umschaltzeitpunkte der Steuerung. Für die Gütefunktion wird die
quadratische Abweichung zum Zielzustand

J(θ) = φ(t = T )2 (4.89)

nach der Zeit T verwendet. Zusätzlich wird der Suchraum eingeschränkt durch 0 s ≤
θi ≤ 1 s, i = 1, . . . , nθ.

Abbildung 4.12 zeigt die Ergebnisse der Bayesschen Optimierung für den Steue-
rungsentwurf. Auf der horizontalen Achse ist die Anzahl der Iterationen abgebildet
und auf der Hochachse der Gütefunktionswert. Für einen Vergleich sind drei ver-
schiedene Durchläufe mit unterschiedlichen Mittelwertfunktionen m(θ) gezeigt. Bei
den roten Durchläufen wurdem(θ) = 7 für eine sogenannte pessimistische Schätzung
verwendet. Bei den blauen und grünen Verläufen wurde die Gütefunktion mittels
eines veränderten Pendelmodells (4.87) abgeschätzt und als Mittelwertfunktion ver-
wendet. Gut zu erkennen ist, dass eine geringe Abweichung zwischen dem Modell
für die Gütefunktionsschätzung und dem Ground Truth System einen positiven Ef-
fekt auf die Konvergenz und die Identifikation der optimalen Parametrisierung hat.
Nach ungefähr 20 Iterationen wird der optimale Wert von 0 zuverlässig und robust
erreicht, was sich durch den stetig abfallenden Mittelwert und die verschwindende
Varianz, welche durch 25 separate Durchläufe identifiziert worden ist, zeigt. Ohne
die Einbringung von Vorwissen ist die Konvergenzgeschwindigkeit reduziert und die
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optimale Lösung wird im Durchschnitt erst nach 50 Iterationen erreicht. Die Ein-
bringung von Vorwissen kann unter Umständen jedoch auch einen negativen Effekt
auf die Suche haben (blauer Verlauf). Dabei weicht das zugrundeliegende Modell
zu stark von der Realität ab, sodass die Bayessche Optimierung ungeeignete Orte
im Suchraum der Parameter auswertet, um den Fehler auf Ebene der Gütefunktion
zu korrigieren. Dies geht mit einer deutlich reduzierten Konvergenzgeschwindigkeit
einher und führt auf einen ineffizienten Steuerungsentwurf [180].

Die Bayessche Optimierung stellt ein globales Optimierungsverfahren
dar. Sie zeichnet sich durch ihre Flexibilität aus und ist eine hervorragende
Wahl, wenn die Zustände eines Systems entweder unbekannt, undefiniert
oder aufgrund aufwendiger Messungen bzw. nicht realisierbarer Messtech-
nik nicht direkt messbar sind. In solchen Szenarien wird die Korrektur nicht
auf der Ebene der Systemzustände selbst vorgenommen, sondern durch eine
Anpassung der Gütefunktion. Dadurch ist lediglich eine Auswertung der
Gütefunktion notwendig, was den Optimierungsprozess erheblich verein-
facht. Es wird eine parametrisierte Steuerung benötigt, welche auf der
Basis von Expertenwissen ausgewählt werden sollte. Die Anzahl der zu op-
timierenden Parameter sollte dabei im Bereich von weniger als 20 liegen,
damit die Komplexität des Suchraums in einem überschaubaren Rahmen ge-
halten wird und gleichzeitig eine effiziente Optimierung vorgenommen werden
kann. Durch den Einsatz der Bayesschen Optimierung kann die Inbetriebnah-
me technischer Systeme mit schwieriger Modellbildung unterstüzt werden.
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5 Beobachterentwurf

Sind nicht alle Zustandsgrößen messbar, auf deren Kenntnis die Regelung basiert,
ist der Entwurf eines Beobachters erforderlich. Dieser schätzt die nicht messbaren
Zustände üblicherweise modellbasiert. Aufgrund von Vereinfachungen in der Mo-
dellbildung und nicht modellierten Phänomenen (vgl. Kapitel 3) kann das genutzte
Modell jedoch größere Abweichungen zur zu schätzenden Strecke aufweisen, sodass
fehlerhafte oder unzureichend genaue Schätzwerte zu erwarten sind. Abbildung 5.1
illustriert diese Herausforderung durch einen Zustandsbeobachter, der die Winkel-
geschwindigkeit eines Massenschwingers φ̇L aufgrund einer nicht modellierten si-
nusförmigen Kraft inkorrekt schätzt. Die sogenannte Modell-Realitäts-Lücke, welche
durch solche Modellungenauigkeiten, aber auch externe Störungen ausgelöst wird,
kann sogar Instabilität oder Divergenz eines Beobachters verursachen und folglich
zu schwerwiegenden Auswirkungen auf die Zustandsregelung führen. Dieses Kapi-
tel adressiert diesen Umstand, indem Methoden zur gleichzeitigen Schätzung von
Zuständen und Modellungenauigkeiten in Abschnitt 5.2 sowie Koopman-basierte
Techniken in Abschnitt 5.4 vorgestellt werden. Ferner werden Maßnahmen zur lang-
fristigen Adaption des Modells in Abschnitt 5.3 präsentiert, welche innerhalb eines
Zustandsbeobachters genutzt werden können und so ebenfalls zu einer Verminderung
der Modell-Realitäts-Lücke beitragen.
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Abbildung 5.1 Modellungenauigkeiten führen im modellbasierten Beobachterentwurf zu un-
genauen Schätzungen, am Beispiel des Massenschwingers

5.1 Grundlagen zum Beobachterentwurf

Nicht messbare Größen, wie Parameter oder Systemzustände, können mithilfe eines
Beobachters rekonstruiert werden, wenn bestimmte Voraussetzungen erfüllt sind.
Weist ein lineares, zeitinvariantes System die Eigenschaft Beobachtbarkeit auf, so
ist es möglich, einen beliebigen Anfangszustand x0 ∈ Rn in endlicher Zeit aus der
Kenntnis der Ein- und Ausgangsgrößen u ∈ Rp bzw. y ∈ Rm zu schätzen. Die-
se Eigenschaft kann beispielsweise mit dem Kriterium nach Kalman oder Hautus
überprüft werden [24]. Für nichtlineare Systeme ist diese Eigenschaft schwieriger
zu definieren, daher wird häufig stattdessen die schwache Beobachtbarkeit genutzt,
indem innerhalb einer Umgebung U = {x0| ∥x0 − xp∥} < δ eines Punktes xp
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überprüft wird, ob der Anfangszustand x0 aus der Kenntnis von Eingang u und
Ausgang y eindeutig in endlicher Zeit rekonstruiert werden kann [21]. Ist dies für
beliebige Punkte xp erfüllt, so heißt das nichtlineare System schwach beobacht-
bar. Um die Qualität eines Zustandsbeobachters zu beurteilen, wird zudem ein
Schätzfehler e = x̂ − x definiert, der die Abweichung des geschätzten Zustands
x̂ vom tatsächlichen Zustand x bestimmt. Strebt dieser Fehler in überschaubarer
Zeit gegen Null, ist eine hohe Schätzgüte gegeben [21], [24]. Für die Anwendung der
Methoden dieses Kapitels wird daher vorausgesetzt, dass die betrachteten Systeme
beobachtbar sind. Bevor ein Verfahren zur gleichzeitigen Schätzung von Zuständen
und Modellungenauigkeiten vorgestellt wird, werden zunächst einige bekannte Zu-
standsbeobachter wiederholt und bzgl. ihres Einsatzes eingeordnet.

Luenberger-Beobachter Der Luenberger-Beobachter ist ein deterministischer Zu-
standsbeobachter für lineare Systeme [181]. Aufgrund seiner Struktur kann dieser
Beobachter Anfangsstörungen x̂0 ̸= x0 kompensieren, nicht jedoch beliebig auftre-
tende Ungenauigkeiten [24]. Dennoch ist der Luenberger-Beobachter populär, da er
bei Kenntnis eines genauen Streckenmodells mit wenig Aufwand über eine Polvor-
gabe auszulegen ist. So wird er beispielsweise für den Betrieb des Golfroboters mit-
hilfe einer Gain-Scheduling-Strategie genutzt (vgl. Abschnitt 6.1), um die Zustände
trotz nichtlinearer Systemdynamik schätzen zu können. Existieren unbekannte, aber
isolierte Nichtlinearitäten in der Systemdynamik, ermöglicht der hybride Ansatz
des lernfähigen Beobachters [182] eine Zustandsschätzung, da die Nichtlinearitäten
durch ein neuronales Netz approximiert werden, während die bekannte lineare Dy-
namikstruktur weiterhin durch die traditionelle Beobachterstruktur adressiert wird.
Eine Stabilitätsanalyse und die Abschätzung von Fehlerschranken gewährleisten da-
bei die Konvergenz des Netzes und folglich die Funktionsweise dieses Beobachters.
Der lernfähige Beobachter kann in vielen Situationen eine sehr hilfreiche Maßnahme
sein, wie die Abbildung 5.2 zeigt. Diese stellt anhand des zu Beginn eingeführten
Beispiels des Massenschwingers die erfolgreiche Schätzung der Geschwindigkeit φ̇Schr
durch den Beobachter nach Schröder dar, obwohl die Modellungenauigkeit weiterhin
existiert. Allerdings weist die Nutzung eines neuronalen Netzes innerhalb eines Beob-
achters Nachteile wie z. B. die mangelnde physikalische Interpretierbarkeit aufgrund
der Black-Box-Struktur auf, die bereits im Unterabschnitt 3.3.1 dargelegt worden
sind.

Kalman-Filter Das Kalman-Filter unterscheidet sich zum Luenberger-Beobachter
durch eine stochastische Perspektive [24], [183]. Es modelliert den zu schätzenden
Systemzustand als Erwartungswert einer zugrunde liegenden Gauß-Verteilung und
berücksichtigt mögliche Unsicherheiten wie beispielsweise Messrauschen durch Ko-
varianzen (vgl. [183]). Erweiterungen des Kalman-Filters zur Schätzung nichtlinea-
rer Systemdynamiken bilden das Extended-Kalman-Filter (EKF), welches anhand
von Jacobimatrizen eine linearisierte Version des Kalman-Filters formuliert, und das
Unscented-Kalman-Filter (UKF), das Erwartungswert und Kovarianz der zugrunde
liegenden Wahrscheinlichkeitsverteilung approximiert [184]. Durch ihre stochasti-
sche Perspektive werden diese Filter häufig als Zustandsbeobachter eingesetzt, um
kleinere Modellungenauigkeiten durch die Kovarianzen zu kompensieren und eine
zufriedenstellende Schätzung zu ermöglichen. Bestehen allerdings größere Modellab-
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weichungen, ist dies nur noch eingeschränkt sichergestellt. Hybride Ansätze adres-
sieren diesen Umstand, indem z. B. die Kovarianzen mittels Bayesscher Optimierung
geschickt initialisiert werden [185], [186] oder ein EKF die Modellungenauigkeiten
basierend auf einer Linearkombination aus radialen Basisfunktionen mit kompakten
Träger schätzt [187]. Jene Methoden bieten u. U. eine temporäre Abhilfe, geben
jedoch keine physikalisch wertvolle parametrische Darstellung der Ungenauigkeiten
und adaptieren das Modell nicht langfristig. Dies ist jedoch wünschenswert, um eine
sich sukzessiv verbessernde Modellgüte zu erhalten, welche für einen modellbasierten
Beobachter erforderlich ist.

Sliding-Mode-Beobachter Der Sliding-Mode-Beobachter (SMO) stellt einen Ver-
treter der robusten Zustandsbeobachter dar. Im Kontrast zu den vorherigen Beob-
achtertypen erlaubt dieser eine dynamische Schätzung von Modellungenauigkeiten
zur Laufzeit. Dies gelingt durch die Verwendung von unstetigen Schaltfunktionen,
z. B. νi(ey) = pi · sign(ey), welche vom Vorzeichen des Ausgangsfehlers ey und dem
Parameter pi mit i = 1, . . . , n beeinflusst werden [188], [189], [190]. Aufgrund der
Beobachterstruktur entspricht die n-te Schaltfunktion νn(ey) dem Modellfehler. We-
gen dieser Eigenschaft wird der SMO besonders als Störbeobachter bzw. in der
Störidentifikation eingesetzt, indem diese Schaltfunktion mittels eines Tiefpassfil-
ters identifiziert wird [188], [189], [190]. Zudem erlaubt er eine robuste Schätzung
mit asymptotischer Konvergenz, sobald er gut parametriert ist. Allerdings erfordert
eine gute Parametrierung die Kenntnis einer oberen Schranke der Modellungenauig-
keiten bzw. Störungen, welche mitunter nicht einfach zu bestimmen ist [188], [189],
[190].
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Abbildung 5.2 Korrekte Schätzung mittels des lernfähigen Beobachters nach [182] am Beispiel
des Massenschwingers

5.2 Joint Estimation

Zu Beginn dieses Kapitels ist bereits die Herausforderung von Modellungenauig-
keiten im Kontext modellbasierter Beobachter thematisiert worden. Bei größeren
Modellabweichungen besteht aufgrund dieser das Risiko einer unzuverlässigen Zu-
standsschätzung. Diese resultiert u. U. in einer verringerten Regelgüte oder wirkt
sich auf die Stabilität des Beobachters aus. Klassischerweise werden solche Unsicher-
heiten in der Regelungstechnik durch robuste Beobachter, wie den Sliding-Mode-
Beobachter, oder stochastisch basierte Filter adressiert. Letztere berücksichtigen
beispielsweise ein gewisses Maß an Unsicherheit durch die Modellierung des Zu-
stands mithilfe von Kovarianzen. Im Kontrast zu diesen Vorgehen der Kompensa-
tion von Modellungenauigkeiten erlaubt die nachfolgend vorgestellte Methode des
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augmentierten Beobachters eine simultane Schätzung und Identifikation der Modell-
ungenauigkeiten mit den Zuständen.
Aus der Zustands- und Parameterschätzung ist die gleichzeitige Schätzung meh-

rerer unbekannter, u. U. dynamischer Größen bereits bekannt. Der Begriff Joint
Estimation1 bezeichnet hierbei eine simultane Schätzung von Systemzuständen und
physikalischen Parametern mittels eines augmentierten Zustands [191], [192], [193],
[194]. Dieser erweiterte Zustandsvektor2 ˆ̃x ∈ Rn+nθ definiert sich durch die System-
zustände x̂ ∈ Rn und die Parameter des Systems θ̂ ∈ Rnθ . Seine Dynamik wird über
das folgende Modell abgebildet:

˙̃̂x =

[
˙̂x
˙̂
θ

]
=

[
f(ˆ̃x,u,θ)

0

]
,

ŷ = h(x̂,u).

(5.1)

In der ersten Zeile des Zustandsraummodells (5.1) ist die Dynamik f des betrach-
teten Systems vertreten, während für die Parameter θ̂ ein zeitinvariantes Verhalten
angenommen wird. Die Ausgangsgleichung h wird weiterhin am nicht erweiterten
Systemzustand x̂ ausgewertet, da die physikalischen Parameter in der Regel nicht
zu messen sind.
Soll dieses Konzept auf die Schätzung von Modellungenauigkeiten übertragen wer-
den, ist eine Anpassung notwendig. Eine populäre Strategie aus der linearen Regres-
sion besteht darin, Linearkombination aus geeigneten Ansatzfunktionen zur Appro-
ximation von nichtlinearen Zusammenhängen zu nutzen (vgl. das Verfahren SINDy
im Abschnitt 3.2 und [10], [11]). Daher wird eine Modellungenauigkeit g ∈ R als
Linearkombination aus den Funktionen ψi : Rn × Rp 7→ R mit i = 1, . . . , nθ durch

g(x,u) ≈
nθ∑

i=1

θi · ψi(x,u) = θTΨ(x,u) (5.2)

angenähert. Im Verlauf des weiteren Kapitels werden ausschließlich eingangsaffine
Systeme mit relativem Grad δ = n betrachtet, die folglich beobachtbar sind [21]. Des
Weiteren wird angenommen, dass das jeweilige betrachtete System in nichtlinearer
Regelungsnormalform vorliegt und die Wirkung der Modellungenauigkeit additiv
erfolgt. Ist demnach das folgende System

ẋ =




ẋ1
ẋ2
...
ẋn


 =




x2
x3
...

a(x) + b(x,u) + g(x,u)




︸ ︷︷ ︸
=: f(x,u)

y = x1.

(5.3)

mit der Modellungenauigkeit g gegeben, so lässt sich unter der Annahme in Gl. (5.2)

1Dieser Begriff lässt sich ins Deutsche mit gemeinsamer oder gleichzeitiger Schätzung übersetzen.
Im Folgenden wird jedoch auch weiterhin der englische Fachbegriff genutzt.

2Der Index •̂ stellt eine geschätzte Größe dar.
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das augmentierte Modell zur Approximation der Ungenauigkeit durch

˙̃x =




ẋ1
ẋ2
...
ẋn
θ̇



≈




x2
x3
...

a(x) + b(x,u) + θTΨ(x,u)
0




︸ ︷︷ ︸
=: f̃(x̃,u)

,

y = x1

(5.4)

formulieren [17]. Hierbei beschreibt x̃ wiederum den augmentierten Zustand, der
sowohl den Systemzustand x als auch die Parameter θ der Linearkombination (5.2)
umfasst. Die eingangsaffine Dynamik wird durch a(x) und b(x,u) dargestellt, wäh-
rend für die Approximation der Modellungenauigkeit g erneut eine zeitinvariante
Parameterdynamik vorausgesetzt wird. Ferner muss eine Bibliothek Ψ ∈ Rnθ fest-
gelegt werden. Da grundlegendes Wissen über die Systemordnung sowie die System-
zustände wegen des bestehenden Teilmodells vorhanden ist, lautet eine Minimalan-
forderung an die Bibliothek folgendermaßen:

Ψ0(x,u) = [1, x1, . . . , xn, u1, . . . , up]
T . (5.5)

In der Dissertation [17] wurde experimentell gezeigt, dass eine sinnvoll gewählte
Bibliothek mindestens die Zustände, die Eingänge sowie Konstanten enthalten soll-
te. In der Regel existiert jedoch Vorwissen bzw. Erfahrungswissen bzgl. der beob-
achteten Modellungenauigkeit, welches als Hypothesen in Form von physikalisch
motivierten Funktionen ψi in der Bibliothek berücksichtigt werden kann. Beispiels-
weise handelt es sich bei der Ungenauigkeit um unerwünschte Vibrationen oder os-
zillierendes Verhalten, sodass trigonometrische Funktionen eine sinnvolle Wahl für
Bibliotheksfunktionen darstellen. Um zusätzlich eine physikalisch-technische Inter-
pretierbarkeit3 zu gewährleisten, ist eine gewisse Überschaubarkeit der Funktionen
zur Charakterisierung der Modellungenauigkeit im Kontrast zur Superposition vie-
ler Terme vorzuziehen. Im Sinne des Prinzips Occam’s Razor 4 reichen daher eine
geringe Menge von Funktionen aus, um eine interpretierbare und verlässliche Iden-
tifikation der Modellungenauigkeit zu erhalten [28]. Diese Begrenzung lässt sich mit
dem Konzept Sparsity adressieren, welches bereits im Verfahren SINDy im Ab-
schnitt 3.2 angesprochen worden ist. So wird die Anforderung, dass nur eine wenige
Bibliotheksterme benötigt werden, durch die Dünnbesetztheit des Parametervek-
tors ausgedrückt. Dessen Anzahl der Nichtnullelemente kann mittels der ℓ0-Norm

5

3Dies meint eine konkrete Zuordnung von parametrischen Termen zu physikalischen Wirkprinzi-
pien, vgl. die Definition in der Dissertation [17].

4Dieses geht auf den Philosophen Wilhelm von Ockham (1288-1347) zurück, welches postuliert,
dass aus vielen Möglichkeiten meist die einfachste Lösung (oder Erklärung) mit hoher Wahr-
scheinlichkeit die beste Option darstellt. Dieses heuristische Prinzip wird vielfach in der Mo-
dellbildung verschiedener Disziplinen und im ML-Kontext zur Modellauswahl berücksichtigt
[28].

5Diese ist im mathematischen Sinne keine Norm, sondern eine Halb- oder Pseudonorm.
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5 Beobachterentwurf

definiert werden [195]:

||θ||0 = #{i|θi ̸= 0} ≤ nθ,act ≪ nθ. (5.6)

In Gl. (5.6) wird die Anzahl der Nichtnullelemente auf maximal nθ,act festgelegt,
welche wesentlich kleiner als die Dimension des Parametervektors nθ sein soll. Nun
kann das augmentierte Modell (5.4) in einen Zustandsbeobachter eingesetzt werden,
beispielsweise in ein UKF. Allerdings ist die Anforderung in Gl. (5.6) bisher noch
nicht umgesetzt. Der nachfolgende Abschnitt erläutert daher, wie diese im Prädiktor-
Korrektor-Schema eines UKFs integriert werden kann.

5.2.1 Augmentierter Beobachterentwurf

Durch das zuvor vorgestellte Konzept der Joint Estimation ist es möglich, einen Zu-
standsbeobachter so zu augmentieren, dass er mithilfe der dünnbesetzten Parame-
ter einer Linearkombination die Modellungenauigkeiten parallel zu den Zuständen
schätzt. Aufbauend auf Vorarbeiten [194] wird der Entwurf anhand eines UKFs
durchgeführt. Konkret wird die numerisch stabilere Variante des Square-Root-Un-
scented-Kalman-Filters (SRUKFs) gewählt, welche auf [192] zurückgeht. Die grund-
legenden Eigenschaften des Filters, d. h. seine stochastische Struktur sowie sein
Prädiktor-Korrektor-Schema, sollen jedoch erhalten bleiben. Ausgehend von der Mi-
nimierung des Schätzfehlers (vgl. [127], [196]) wird daher das Konzept der Dünn-
besetztheit mittels zwei verschiedener Umsetzungen in diese Filterstruktur einge-
bunden und berücksichtigt, welche erstmals in der Dissertation [17] sowie in den
Veröffentlichungen [197], [198] vorgestellt worden sind.

Dünnbesetztheit mittels fester Schranke Die erste Umsetzung basiert auf Me-
thoden des Compressed Sensing [199], [200], [201]. Diese Disziplin befasst sich mit
hoch dimensionalen Signalen s ∈ Rn, welche durch eine geeignete Basiswahl Ψ ∈
Rn×n mittels einiger weniger Basisfunktionen ψi mit i = 1, . . . , n komprimiert dar-
gestellt werden können:

s = Ψθ =
∑

i

θiψi. (5.7)

Die Approximation kann dabei durch die Wahl von orthonormalen Basisfunktionen
gewährleistet werden [195]. Da orthonormale Basen eine limitierte Wahl für die
Erfassung von Signalen darstellen und das Signal zunächst aufwendig gemessen und
anschließend komprimiert werden muss, adressieren die Methoden im Compressed
Sensing diese Nachteile, indem beliebige Projektionen betrachtet werden und die
Extraktion des Signals direkt aus der Messung y ∈ Rm erfolgt [199], [200]. Daher
gilt für ein komprimiertes Signal Folgendes:

y = HΨθ = Hs. (5.8)

Das komprimierte Signal lässt sich dabei durch die Messmatrix 6 H ∈ Rm×n messen,
da y = HΨθ gilt. Obwohl das Gleichungssystem y = Hs aufgrund von m < n

6In der Regelungstechnik ist damit die AusgangsmatrixC bzw. die Jacobimatrix der Messfunktion
h gemeint.
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5.2 Joint Estimation

in der Regel unterbestimmt ist, kann durch die Kenntnis der Basis Ψ sowie des
Wissens, dass der Vektor θ dünnbesetzt ist, das Signal s dennoch rekonstruiert
werden. Durch Umformulierung des Signals in den Gleichungen (5.7) und (5.8) lässt
sich die Rekonstruktion in das folgende ℓ0-Problem übersetzen:

θ̂ = argmin
θ

||θ||0, sodass y = HΨθ. (5.9)

Allerdings ist das Optimierungsproblem (5.9) nicht konvex und nur durch Kombina-
torik bzw. eine Brute-Force-Suche zu lösen7. Diese Eigenschaft der Nicht-Konvexität
wird für eine zweidimensionale Variable anhand der Abbildung 5.3 illustriert, welche
die durch verschiedene p-Normen resultierenden Regionen darstellt und für p < 1
nicht konvexe Gebiete aufzeigt. Liegen genügend Messungen vor und ist die Mess-
matrix H annähernd inkohärent zur Basis Ψ, d. h. die Zeilen der Messmatrix sind
unabhängig von den Spalten der Basis, kann das Problem (5.9) jedoch äquivalent in
der ℓ1-Norm formuliert werden [14], [28], [195], [199], [200], sodass eine vorteilhafte,
konvexe Gestalt entsteht:

θ̂ = argmin
θ

||θ||1, sodass y = HΨθ. (5.10)

Sind die Messungen rauschbehaftet, was in der Praxis meistens der Fall ist, lässt
sich das obige Problem mit 0 < ϵ≪ 1 abmildern zu:

θ̂ = argmin
θ

||θ||1, sodass ||HΨθ − y||2 ≤ ϵ. (5.11)

Aufgrund der Optimierungstheorie kann das Problem (5.11) zudem nicht nur als
Kostenfunktion mit Regularisierungsterm formuliert werden, wie es z. B. im LASSO-
Verfahren der Fall ist (vgl. Abschnitt 3.2), sondern auch als duales Problem über
die Herleitung mithilfe von Lagrange-Multiplikatoren mit einer angepassten Neben-
bedingung H(x̃) ≤ 0 durch

θ̂ = argmin
θ
||HΨθ − y||2, sodass ||θ||1 ≤ ϵ′, (5.12)

aufgefasst werden [201], [202]. Innerhalb einer iterativen, auf der Lösung einer ℓ2-
Kostenfunktion basierenden Filterstruktur stört jedoch eine Nebenbedingung H.
Diese kann daher als eine Projektion auf den Lösungsraum interpretiert werden
[201], [202]. Dazu wird die Ungleichheitsbedingung durch eine zusätzliche, fiktive
Messung mit ϵ′ > 0 und

0 = ||θ||1 − ϵ′ (5.13)

innerhalb des Filters umgesetzt, die schließlich durch die vorhandenen Strukturen
im Filter ausgewertet werden kann. Der Vorteil des ℓ1-basierten Optimierungspro-
blems in den Gleichungen (5.10) und (5.11) sowie des ℓ1-restringierten Problems
in Gleichung (5.12) besteht in der Garantie der Konvexität, während gleichzeitig
eine dünnbesetzte Lösung gefördert wird. In der Abbildung 5.3 wird der Zusam-
menhang zwischen den Eigenschaften Konvexität und Sparsity illustriert, indem für

7Die Gleichung (5.9) ist ein nicht-polynomiales, hartes (NP-hard) Problem [14], [28].
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einen zweidimensionalen Parameter die durch die jeweilige ℓp-Norm induzierte Re-
gion dargestellt ist. Je kleiner das p der Norm gewählt ist, desto mehr werden das
Konzept der Sparsity berücksichtigt und dünnbesetzte Parameter gefördert. Aller-
dings ist die induzierte Region lediglich für die ℓ2- und ℓ1-Norm konvex, während
dies für die Regionen mit p < 1 nicht mehr gilt. Die ℓ1-Norm stellt demnach den bes-
ten Kompromiss zwischen Konvexität und Sparsity dar. Die Umstände, welche eine
äquivalente Rekonstruktion des Signals durch die Nutzung der ℓ1-Norm erlauben,
sind daher geometrischer Natur und sollen annähernd einer unitären Transformation
entsprechen [14], [28], [195], [199], [200].

ℓ2 ℓ1 ℓ0,5 ℓ0,1

θ2

θ1

θ2

θ1

θ2

θ1

θ2

θ1

Abbildung 5.3 Zusammenhang zwischen der ℓp-Norm und den Eigenschaften Konvexität sowie
Sparsity: Je kleiner p ist, desto mehr nähern sich die Parameter der Eigenschaft Sparsity an.
Gilt jedoch p < 1, ist keine Konvexität mehr gegeben (vgl. [14], [17]).

Um ein Optimierungsproblem in der Art von Gleichung (5.12) in der klassi-
schen Korrektor- und Prädiktorstruktur eines SRUKFs zu formulieren, wird das
Modell (5.1) zunächst mit einer Schrittweite von ∆t > 0 diskretisiert und hinsicht-
lich des SRUKFs angepasst, indem noch Prozess- und Messrauschen in der Formu-
lierung der Dynamiken f bzw. f̃ berücksichtigt werden:

xk+1 = xk +∆t · (f(xk,uk) +wx
k) ⇒ x̃k+1 ≈ x̃k +∆t ·

(
f̃(x̃k,uk) +

[
wx
k

wθ
k

])
,

yk = h(xk,uk) + vk.

(5.14)

Dabei gilt für das Prozessrauschenwx
k ∈ Rn ∼ N (0,Qx),w

θ
k ∈ Rnθ ∼ N (0,Qθ) und

für das Messrauschen vk ∼ N (0,R). Somit kann die Prozesskovarianzmatrix für den
erweiterten Zustand vereinfachend als Blockmatrix der beiden Einzelkovarianzen
durch Q̃ = blkdiag(Qx,Qθ) mit den restlichen Einträgen als Null angenommen wer-
den. Zur Übersichtlichkeit werden jedoch in den beiden folgenden Gleichungen die
Zeitindizes k vernachlässigt. Ausgehend von der Minimierung des Schätzfehlers so-
wie den Überlegungen im vorigen Abschnitt, vgl. Gl. (5.12), kann das Schätzproblem
mit gleichzeitiger Dünnbesetztheit der Parameter durch

ˆ̃x∗ = argmin
ˆ̃x

1

2
E[(ˆ̃x− x̃)T (ˆ̃x− x̃)], sodass ||Ĩ ˆ̃x||1 ≤ ϵ, (5.15)

definiert werden. Dabei stellt 0 < ϵ≪ 1 eine Schranke bzgl. des Messrauschens dar,
während Ĩ = blkdiag(0n, Inθ

) eine Blockmatrix aus Nullen und Einsen beschreibt
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und somit die Dünnbesetztheit der Parameter θ kodiert. Allerdings ist die Einbet-
tung und Lösung des Optimierungsproblems (5.15) innerhalb der iterativen Struktur
des Filters wie bereits im vorigen Abschnitt angesprochen nicht einfach. Daher wird
auf die zusätzliche, fiktive Messung des vorigen Abschnitts (5.13) zurückgegriffen,
welche als Projektion aufgefasst werden kann [198], [201], [202]. Diese wird als Pseu-
domessung ypm mit der angepassten, stetigen Ausgangsgleichung hpm durch

ypm = hpm(x̃) = max(||Ĩ ˆ̃x||1 − ϵ, 0) (5.16)

definiert. Die Größe ϵ ∼ N (0, Rpm) repräsentiert dabei das fiktionale Messrauschen,
welches durch das Optimierungsproblem die Nebenbedingung steuert. Hierbei stellt
Rpm die Kovarianz des fiktionalen Messrauschens dar. Da das SRUKF auf der Un-
scented Transformation basiert (vgl. Unterabschnitt 3.5.2), kann die nichtlineare,
fiktionale Ausgangsgleichung (5.16) direkt innerhalb des Filters eingesetzt werden,
ohne dass weitere Anpassungen erforderlich sind. Dies steht im Kontrast zum EKF,
vgl. [187], [202]. Da es sich um eine zusätzliche Messung handelt, ist keine er-
neute Auswertung des Dynamikschritts erforderlich, sodass stattdessen die Iden-
titätsabbildung f Id für diesen Schritt im SRUKF genutzt wird. Bei Bedarf kann die
Projektion mittels der Pseudomessung mehrfach erfolgen, um die Genauigkeit der
Nebenbedingung H zu erhöhen [201], [202]. Ist dies gewünscht, muss die maximale
Iteration Niter ̸= 1 gewählt werden. Das entwickelte Vorgehen des Joint Estimation
SRUKFs (JE-SRUKFs) ist im Algorithmus 2 zusammengefasst und wird nachfol-
gend kurz erläutert (vgl. [17], [198]).

Aufgrund der harten Grenze λ̃, welche beschreibt, ab wann ein Element θ̂i als
Nichtnullelement bewertet wird, resultiert erfolgreich der dünnbesetzte Parameter-
vektor θ̂. Diese Grenze wird ähnlich zum Parameter im LASSO-Verfahren je nach
Anwendungsziel bzw. Skalierung der Parameter festgelegt und befindet sich nahe
Null. Um jedoch harte Sprünge in den Werten von einem zum nächsten Zeitschritt
zu vermeiden, besteht die Option, mittels des Parameters γ ∈ [0, 1] eine Gewichtung
aus dem vorherigen und neuen Wert des Parametervektors θ̂k bzw. θ̂pm,j vorzuneh-
men (vgl. Zeile 10). Im Algorithmus wird dies durch die Indizes (n + 1) : ñ darge-
stellt, wobei ñ als Gesamtsystemordnung durch ñ := n+ nθ definiert ist. Daraufhin
setzt sich der finale, augmentierte Zustand ˆ̃xk,final durch den zuvor im klassischen

Vorgehen berechneten Zustand x̂k und den ggf. gewichteten Parametervektor θ̂k zu-
sammen (vgl. Zeilen 9 und 10). Anschließend wird zunächst wiederum der klassische
Algorithmus des SRUKFs durchlaufen, der in jedem Zeitschritt k einmalig erfolgt.
Dies wird durch die letzten Rechenoperationen in den Zeilen 1 und 2 angedeutet,
bevor der Pseudocode des Teils folgt, der das Konzept der Sparsity umsetzt (vgl.
[17], [198]).

Dünnbesetztheit mittels stochastischer Modellierung Eine Alternative zur Mo-
dellierung der Dünnbesetztheit besteht in der Ausnutzung der Filterstruktur. Das
SRUKF ist stochastisch motiviert und nimmt an, dass die Zufallsvariablen, somit
auch der erweiterte Zustand x̃, Gauß-verteilt sind [184], [192]. Das Vorwissen, dass
die Parameter der Linearkombination dünnbesetzt sein sollen, lässt sich allerdings
nicht nur deterministisch, sondern auch probabilistisch ausdrücken. Mithilfe einer
geeigneten Wahrscheinlichkeitsverteilung kann diese Eigenschaft direkt als A-Priori-
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Algorithmus 2 JE-SRUKF mit Schranke zur Umsetzung der Dünnbesetztheit

...
1: ˆ̃xk = ˆ̃x−

k +Kk

(
yk − ŷ−

k

)

2: Sk = cholupdate(S−
k ,U ,−1)

% Sparsity-Überprüfung und ggf. Aktualisierung:
3: Initialisiere: hpm, Niter, nθ,act, γ, j = 1,Spm,0 = Sk, ˆ̃xpm,0 = ˆ̃xk
4: while #{θj|θj > λ̃} > nθ,act and j < Niter

% Schätzung mit Sparsity-Bedingung
5: ˆ̃xpm,j,Spm,j ← SRUKF mit (ˆ̃xpm,j−1,Spm,j−1,f Id, hpm, Q̃, Rpm)
6: j = j + 1
7: end

% Bestimmung des finalen Zustands und dessen Kovarianz
8: Sk,final = Spm,j

9: [ˆ̃xk,final](1:n) = [ˆ̃xk](1:n),

10: [ˆ̃xk,final](n+1:ñ) = (1− γ)[ˆ̃xpm,j](n+1:ñ) + γ[ˆ̃xk](n+1:ñ)

11: end

Verteilung dem Filter übergeben werden. Als Beispiel gilt die Laplace-Verteilung,
welche sich für einen Parameter θi durch

p(θi|µ, b̃) =
1

2b̃
e−

|θi−µ|
b̃ (5.17)

mit µ ∈ R, b̃ ∈ R+ charakterisiert [14]. Allerdings sprechen zwei Nachteile gegen die
explizite Verwendung dieser Verteilung, da einerseits Gauß-Verteilungen im SRUKF
zugrunde gelegt werden und andererseits die A-Posteriori-Verteilung bei der gewähl-
ten A-Priori-Verteilung nicht die typische Form der Laplace-Verteilung konserviert
[14], [203]. Diese Herausforderung wird in der Dissertation [17] ausführlicher thema-
tisiert. Daher wird eine Gauß-Verteilung zur Modellierung der Parameter genutzt,
welche die Eigenschaften der Laplace-Verteilung imitiert. Die Idee dieses Vorgehens
ist in der Abbildung 5.4 illustriert. Eine beliebte Wahl ist die Regularized-Horseshoe-
Verteilung (RHS-Verteilung), deren Gauß-Verteilung aus unterlagerten Distributio-
nen besteht und folgendermaßen definiert ist [203], [204], [205]:

θi|λ̌i, τ, c ∼ N (0, λ̌2i τ
2),

λi ∼ C+(0, 1),
τ ∼ C+(0, τ0),
c2 ∼ InvΓ(a, b),

λ̌i =
cλi√

c2 + τ 2λ2i
.

(5.18)
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Hierbei stellen die Parameter τ0, a, b Einflussmöglichkeiten dar, um den Grad der
Dünnbesetztheit und der Regularisierung von Maximalwerten einzustellen [204].
In der Regel wird beispielsweise τ0 ≪ 1 gewählt, da dieser Parameter auf die
Dünnbesetztheit der gesamten Verteilung wirkt, während λi einige Ausnahmen von
dieser Dünnbesetztheit erlaubt. Die inverse Gamma-Verteilung InvΓ dient vor allem
der Regularisierung von Maximalwerten. Den Einfluss der einzelnen, unterlagerten
Distributionen auf die RHS-Verteilung in Abhängigkeit ihrer Parametrierung zeigen
Abbildungen in der Dissertation [17].

−3 −2 −1 0 1 2 3

0

0,2

0,4

0,6

Parameter θi

p(
θ i

)

σ = 1 σ = 0, 9 σ = 0, 8
σ = 0, 7 σ = 0, 6 b̃ = 0, 7

Abbildung 5.4 Laplace-Verteilung (visualisiert in rot) im Vergleich zu verschiedenen Gauß-
Verteilungen (dargestellt durch Graustufen): Für alle abgebildeten Verteilungen gilt µ = 0, vgl.
[17], [197].

Wird die stochastische Modellierung des Parametervektors angestrebt, kann ana-
log zum vorherigen Abschnitt weiterhin das augmentierte Modell (5.14) innerhalb
des SRUKFs genutzt werden. Zudem bestehen dieselben Annahmen und Defini-
tionen bzgl. der Kovarianzen und der Pseudomessung (5.16). Ebenso findet wie im
Algorithmus 2 zunächst ein Durchlauf des Standard-SRUKFs statt. Allerdings unter-
scheidet sich der Beobachterentwurf nun in der Art und Weise, wie die Dünnbesetzt-
heit für die Parameter umgesetzt wird. Durch die stochastische Modellierung der
Parameter θ wird in jedem Zeitschritt eine Varianz σ2

⋆ mithilfe der RHS-Verteilung
bestimmt, um die Laplace-Verteilung zu imitieren. Anschließend werden die Gewich-
te der UT angepasst und ein erneuter Durchlauf des SRUKFs mit der Identität f Id
als Dynamikvorschrift und mit der Pseudomessung hpm als Messmodell vollzogen.
Die Anpassung der Gewichte ist erforderlich, da im SRUKF eine Standardnormal-
verteilung angenommen ist, sodass κ(1) = 3 − ñ optimal gewählt wird [194], [196].
Ist dies wie bei der stochastischen Modellierung der Parameter θ nicht der Fall,
gilt für diese Situation κ(2) = 3σ4 − ñ, wobei σ zu σ⋆ aufgrund der RHS-Verteilung
bestimmt wird [197]. Anschließend wird eine erneute Schätzung durchgeführt, wo-
raufhin sich der Zustand x̃−

k+1|k aus den n Einträgen der ersten Schätzung und aus

den nθ Einträgen der zweiten Schätzung ergibt (vgl. Zeilen 9 bis 10). Gleiches gilt für
die Kovarianz in den Zeilen 7 und 8. Dieses wird jeweils durch die eckigen Klammern
und mithilfe der programmiertechnischen Darstellung des Doppelpunkts dargestellt.
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Daher resultiert der folgende Algorithmus, welcher sich in jedem Zeitschritt k dem
Durchlauf des Algorithmus eines klassischen SRUKFs anschließt:

Algorithmus 3 JE-SRUKF mit stochastischer Umsetzung der Sparsity

...
1: ˆ̃xk = ˆ̃x−

k +Kk

(
yk − ŷ−

k

)

2: Sk = cholupdate(S−
k ,U ,−1)

3: Initialisiere: Rpm, τ0, a, b

% Bestimmung der Varianz bzw. der neuen Gewichte
4: σ2

⋆ = E[σ2] ← Bestimme mit Gl. (5.18)mit τ0, a, b
5: W (2)

m ,W (2)
c ← α, β, κ(2) = 3σ4

⋆ − ñ

% Schätzung mit Sparsity-Modellierung
6: ˆ̃xpm,Spm ← SRUKF mit (ˆ̃xk,Sk,f Id, hpm, Q̃, Rpm)

% Bestimmung des finalen Zustands und dessen Kovarianz
7: Sk,final = Sk

8: [Sk,final](n+1:ñ,n+1:ñ) = Spm

9: ˆ̃xk,final = ˆ̃xk,
10: [ˆ̃xk,final](n+1:ñ) = [ˆ̃xpm](n+1:ñ)

11: end

5.2.2 Beispielhafte Anwendungen

Das zuvor erläuterte Konzept des augmentierten Beobachters inklusive seiner zwei
Möglichkeiten, die Dünnbesetztheit der Parameter θ umzusetzen, wird nachfolgend
durch zwei Anwendungsbeispiele illustriert. Dabei wird die Schätzgüte sowie der
Einfluss der Bibliothek Ψ auf das Schätzverhalten deutlich. Die dargestellten Bei-
spiele dienen allerdings nur zur Veranschaulichung, sodass für weitere Details und
Anwendungen auf die Dissertation [17] verwiesen wird.

Duffing-Oszillator Um die Wirkungsweise des augmentierten Beobachters zu ver-
anschaulichen, wird nachfolgend der Duffing-Oszillator eingeführt, welcher üblicher-
weise als Stellvertreter vieler dynamischer Systeme untersucht wird [17], [28]. Es
handelt sich um ein System zweiter Ordnung, welches beispielsweise den Einfluss
einer Kraft auf einen Körper beschreibt:

ẋ =

[
x2

−θ3x2 − θ1x1 − θ2x31 + u

]
,

y = x1.

(5.19)
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Abbildung 5.5 Qualität der Zustandsschätzung im Vergleich zu verschiedenen Bibliotheken
und einem klassischen SRUKF, das ohne die Modellungenauigkeit g schätzt, wenn die Umset-
zung der Dünnbesetztheit mittels einer Schranke gewählt worden ist, vgl. [17], [198]

Hierbei können die Zustände x = [x1, x2]
T ∈ R2 exemplarisch Winkel und Winkel-

geschwindigkeit sowie der Eingang u ∈ R eine Kraft darstellen. Die physikalischen
Parameter werden für alle folgenden Untersuchungen zu θ = [1,−3, 0, 1]T gewählt.
Ferner werden der kubische Term als Modellungenauigkeit g(x, u) = −θ2x31 = −3x31
angenommen und für die Identifikation dieser Ungenauigkeit drei sich nur leicht
unterscheidende Bibliotheken festgelegt:

Ψ1(x, u) = [1, x1, x2, x
2
2, sin(x2), x1 · x2, cos(x1), u, x31]T , (5.20)

Ψ2(x, u) = [1, x1, x2, x
2
2, sin(x2), x1 · x2, cos(x1), u, x21]T , (5.21)

Ψ3(x, u) = [1, x1, x2, x
2
2, sin(x2), x1 · x2, cos(x1), u]T . (5.22)

Hierbei weist lediglich die erste Bibliothek den gesuchten kubischen Term auf, wäh-
rend die anderen beiden jeweils den quadratischen bzw. linearen Term als Funktions-
kandidaten ansetzen. In den Abbildungen 5.5 und 5.6 sind die geschätzten Zustände
im Vergleich zu den simulierten Zuständen bei einer sinusförmigen Anregung in
Abhängigkeit der verschiedenen Bibliotheken dargestellt. Das Szenario, welches in
den beiden Abbildungen zu sehen ist, unterscheidet sich lediglich durch die gewählte
Strategie zur Umsetzung der Dünnbesetztheit der Parameter. In beiden Abbildungen
ist zu erkennen, dass ein klassisches SRUKF (blau) ohne Kenntnis der Modellun-
genauigkeit nicht in der Lage ist, korrekte Schätzwerte zu liefern. Im Gegensatz
dazu ermöglicht der augmentierte Beobachter in beiden Fällen eine hohe Schätzgüte
durch die Approximation mittels Linearkombinationen. Die Schätzgüte nimmt dabei
geringfügig je nach gewählter Bibliothek und/oder Umsetzung der Dünnbesetztheit
ab, ist aber besonders hoch, wenn die Bibliothek den tatsächlichen, kubischen Term
aufweist und die stochastische Strategie zur Dünnbesetztheit gewählt wird.

Neben dem primären Ziel, eine hohe Schätzgüte zu erzielen, ist es ebenso auf-
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Abbildung 5.6 Qualität der Zustandsschätzung im Vergleich zu verschiedenen Bibliotheken
und einem klassischen SRUKF, das ohne die Modellungenauigkeit g schätzt, wenn die stochas-
tische Umsetzung der Dünnbesetztheit gewählt worden ist, vgl. [17], [197]

schlussreich, woher die Modellungenauigkeit resultiert. Um einen Einblick in den
Charakter der Modellungenauigkeit zu gewinnen, kann der Verlauf der Parameter-
elemente θi mit i = 1, . . . , nθ analysiert werden (vgl. dazu auch Abschnitt 5.3).
Für beide Umsetzungen ist dies jeweils in den Abbildungen 5.7 und 5.8 durch-
geführt worden. Auffällig ist hierbei auf den ersten Blick, dass beide Umsetzungen
ähnliche Erkenntnisse liefern, aber die Verläufe der stochastischen Umsetzung we-
sentlich glatter sind, da die Dünnbesetztheit in diesem Fall global innerhalb der
Filterstruktur angestrebt wird. Beide Strategien führen jedoch auf dieselben Terme,
die als diejenigen Bibliotheksfunktionen identifiziert werden, welche die Modellun-
genauigkeit am besten charakterisieren. Dabei findet der augmentierte Beobachter
erwartungsgemäß den kubischen Term, sofern dieser in der Bibliothek enthalten ist.
Bemerkenswerterweise werden jedoch auch Alternativen gefunden, falls dieser Term
nicht verfügbar ist. Dabei wird insbesondere bei Nutzung des quadratischen Terms
das Vorzeichen des kubischen Terms durch einen ständigen Vorzeichenwechsel des
Parameters kompensiert (vgl. zweite Zeile der Abbildungen). Da in den dargestell-
ten Algorithmen 2 und 3 nur die jeweilige letzte Messung als Information genutzt
wird, ist es zudem empfehlenswert, im Sinne der rekursiven Least-Squares-Methode
mehrere zurück liegenden Messungen zu verwenden, um eine eindeutige Konvergenz
zu einem Parameterwert zu erhalten.

Da es sich bei dem Duffing-Oszillator um ein bekanntes System handelt und die
Modellungenauigkeit g durch den kubischen Term nur zur Visualisierung angenom-
men worden ist, kann anschließend die Qualität der Approximation überprüft wer-
den. Qualitativ ist dies beispielsweise durch den zeitlichen Vergleich der Modellun-
genauigkeit g und der jeweiligen Approximation ĝi mit i = 1, 2, 3 möglich. In der
Abbildung 5.9 ist dieser Vergleich anhand der unterschiedlichen Umsetzungsstrate-
gien dargestellt. Die Approximationen erfassen allesamt qualitativ den zu identifizie-
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Abbildung 5.7 Zeitlicher Verlauf des Parametervektors θ̂ im Vergleich verschiedener Biblio-
theken, wenn die Umsetzung der Dünnbesetztheit mittels einer Schranke gewählt worden ist,
vgl. [17], [198], und die jeweils daraus zugeordneten dominanten Bibliotheksterme (dargestellt
anhand der Pfeile)

renden charakteristischen Verlauf der Modellungenauigkeit, wobei sich weiterhin die
zuvor beobachteten Phänomene, die die Modellgüte beeinflussen, in Abhängigkeit
der Bibliotheken und der Umsetzungsstrategie zeigen.

Golfroboter Der Golfroboter, welcher im Abschnitt 6.1 vorgestellt wird, kenn-
zeichnet sich durch eine nichtlineare Reibung, den sogenannten Stick-Slip-Effekt. Da
dieser aufwendig zu modellieren ist, wird im Folgenden angenommen, dass die Rei-
bung vollständig durch den augmentierten Beobachter geschätzt werden soll. Als Zu-
standsbeobachter in der Abbildung 6.7 wird daher statt des Luenberger-Beobachters
nun der augmentierte Beobachter mit fester Schranke gewählt. Für die Bibliothek
empfiehlt sich auf Erfahrungswissen zurückzugreifen und etwaige Hypothesen bzgl.
einer Approximation der Reibung als Kandidatenfunktionen hinzuzufügen. Daher
kann beispielsweise die folgende Bibliothek genutzt werden, welche eine Mischung
aus Polynomen und trigonometrischen Termen aufweist, um die Haft- und Gleitrei-
bung zu erfassen:

Ψ(x, u) = [1, x1, x2, x
2
1, x

2
2, x1x2, cos(x1), cos(x2), tanh(x1), tanh(x2), u]

T . (5.23)

Der Vorteil des augmentierten Beobachters zeigt sich insbesondere in Situationen
der Systemveränderungen. Ist die Masse des Golfschlägers exemplarisch verdoppelt
worden, ohne dass das Modell des Golfroboter angepasst wurde (vgl. [70]), so zeigt
sich die Auswirkung dieser Systemveränderung auf die Schätz- und Regelgüte in der
Abbildung 5.10.

Da die Vorsteuerung und der Regler weiterhin mit dem unveränderten, nichtlinea-
ren Modell (6.11) berechnet werden, ist aufgrund der Systemveränderung eine Ab-
weichung von den Solltrajektorien und ein verändertes Motormoment zu erkennen.
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Abbildung 5.8 Zeitlicher Verlauf des Parametervektors θ̂ im Vergleich verschiedener Biblio-
theken, wenn die stochastische Umsetzung der Dünnbesetztheit gewählt worden ist, vgl. [17],
[197], und die jeweils daraus zugeordneten dominanten Bibliotheksterme (dargestellt anhand
der Pfeile)

Allerdings gelingt es dem JE-SRUKF mit der BibliothekΨ, die Ist-Trajektorien sehr
genau zu schätzen. Im Gegensatz dazu ist es dem Luenberger-Beobachter aufgrund
seiner nicht-adaptiven Struktur nicht möglich, die Geschwindigkeit des Schlags kor-
rekt zu erfassen, was der kumulierte quadratische Fehler in der rechten Visuali-
sierung bestätigt. Stattdessen müssten die linearisierten Modelle des Luenberger-
Beobachters rekursiv angepasst werden, um ebenso geeignet auf Systemveränderun-
gen reagieren zu können (vgl. [1], [70]). Somit zeigt dieses Experiment den Vorteil
der Nutzung des JE-SRUKFs auf: Potentielle Systemveränderungen stellen bei ge-
eignet gewählter Bibliothek keine Herausforderung dar, sodass eine hohe Schätzgüte
gewährleistet werden kann. Abschnitt 5.3 zeigt ferner auf, wie eine Modelladaption
basierend auf den Daten des augmentierten Beobachters durchgeführt werden kann,
welche im Fall einer Systemveränderung zur Robustheit des Beobachters beiträgt
und für Vorsteuerung und Regler vorteilhaft sein kann. Die Anwendung am Golfro-
boter belegt daher zuverlässige Schätzungen in der Prüfstands- und Echtzeitanwen-
dung im geschlossenen Regelkreis. Allerdings ist bei jedem Anwendungsbeispiel der
Einfluss der Bibliothek entscheidend für die Stabilität und Schätzgüte des Beobach-
ters, da bei einer zu einseitigen oder klein gewählten Bibliothek ein divergierendes
Verhalten auftreten kann (vgl. Untersuchungen in der Dissertation [17]). Folglich
sollte die Bibliothek sorgfältig festgelegt werden.

Windenergieanlage Die bisherigen Anwendungsbeispiele kennzeichnen sich durch
rein additive Modellungenauigkeiten, welche z. B. aufgrund von Dämpfung oder
Reibung resultieren. In der Modellierung von Windenergieanlagen spielt jedoch der
Einfluss des Windes eine große Rolle, dessen Geschwindigkeit als Störgröße und
daher als Modellungenauigkeit modelliert wird. Als Exempel dient ein zweidimen-
sionales Modell einer Windenergieanlage aus der Dissertation [207] bzw. der dazu-
gehörigen Publikation [208], auf deren Grundlage das Referenzmodell simuliert und
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Abbildung 5.9 Approximation der Modellungenauigkeit g(x, u) = −3x31 im Vergleich ver-
schiedener Bibliotheken und der unterschiedlichen Umsetzung bzgl. der Dünnbesetztheit, vgl.
[17], [197]: Dünnbesetztheit mittels Schranke (links) und Dünnbesetztheit mittels stochasti-
scher Formulierung (rechts)
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Abbildung 5.10 Qualität der Zustandsschätzung im Vergleich zum Luenberger-Beobachter
im geschlossenen Regelkreis bei Systemveränderungen und Verwendung der Bibliothek Ψ am
Prüfstand, wenn die Umsetzung der Dünnbesetztheit mittels Schranke gewählt worden ist, vgl.
[17], [206]

reale Winddaten genutzt werden können. Eine Zeichnung des Systems mit den re-
levanten physikalischen Größen ist in der Abbildung 5.11 abgebildet. Der Zustand
der Windenergieanlage besteht dabei aus dem Rotorwinkel φT und der Position
der Gondel xT sowie deren Geschwindigkeiten, sodass x = [φT , φ̇T , xT , ẋT ]

T gilt.
Daneben wird die Windgeschwindigkeit in x-Richtung als Störgröße z modelliert.
Somit kann das Modell der zweidimensionalen Windenergieanlage nach [207], [208]
abstrahiert und definiert werden durch

ẋ =




x2
p1 · CM(x2, x4, z) · (z − x4)2 − p2u

x4
p3 · CT (x2, x4, z) · (z − x4)2 − p4x4 − p5x3


 ,

y =
[
p6x2, p3 · CT (x2, x4, z) · (z − x4)2 − p4x4 − p5x3

]

=
[
ng, ẋ4

]
.

(5.24)

Die aerodynamischen Eigenschaften des Rotors werden dabei durch die Koeffizien-
ten der Momente und des Schubs CM(x2, x4, z) bzw. CT (x2, x4, z) dargestellt, welche
aus einer geschwindigkeits- und drehzahlbasierten Relation resultieren. Kurzdetails
zu diesen Zusammenhängen sowie die Parameterwerte p1, . . . , p6 finden sich in der
Dissertation [17]. Für ausführliche Informationen wird auf [207], [208] verwiesen. Die
Geschwindigkeit des Generators ng sowie die Beschleunigung der Gondel ẍT stellen
die Messgrößen dar. Als Eingang dient das Moment u des elektrischen Generators
(vgl. [208]). Ziel ist es, die Windgeschwindigkeit, welche in der Abbildung 5.12 dar-
gestellt ist, sowie die Position des Turmkopfes, dessen Geschwindigkeit und die Win-
kelgeschwindigkeit des Rotorwinkels zu schätzen, um die Windenergieanlage sicher
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Abbildung 5.12 Beispielhafter Verlauf von Realdaten der Windgeschwindigkeit z in x-Richtung
mit Mittelwert in rot und freundlicher Genehmigung von B. Ritter [207].

betreiben zu können. Obwohl die Windenergieanlage ein eingangsaffines System ist
und in die Form (5.4) transformiert werden kann, stellt es aufgrund der multipli-
kativen Ungenauigkeit, die durch den Term (z − x4)2 entsteht, ein komplexes und
herausforderndes Exempel im Vergleich zu den vorigen Applikationen dar. Um die-
se Komplexität zu reduzieren, ist es im Beobachterentwurf üblich, ein Störmodell
für eine Störung anzunehmen [24]. Dieses zusätzliche Vorwissen kann anschließend
in das augmentierte Modell (5.4) eingebracht werden. Aufgrund der Struktur der
Winddaten, welche in der Abbildung 5.12 abgebildet sind und um einen Mittelwert
von etwa 8, 5m/s variieren, ist es ratsam, ein konstantes Störmodell anzunehmen, so-
dass ż = 0 gilt. Wird die Windgeschwindigkeit wiederum als Linearkombination aus
geeigneten Bibliotheksfunktionen angenähert (vgl. Gleichung (5.2)), so ergibt sich
folgender Zusammenhang, wobei aufgrund der Übersichtlichkeit die Abhängigkeiten
der Bibliothek Ψ(x, u) vernachlässigt werden:
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ż = 0 (5.25)

⇔ ∂

∂t

(
θTΨ

)
= 0 (5.26)

⇔ θ̇
T
Ψ+ θT Ψ̇ = 0 (5.27)

⇔ θ̇
T
Ψ = −θT Ψ̇ (5.28)

⇔ ΨT θ̇ = −Ψ̇T
θ (5.29)

⇔
(
ΨT
)+

ΨT θ̇ = −
(
ΨT
)+

Ψ̇
T
θ (5.30)

⇔ θ̇ = −
(
ΨT
)+

Ψ̇
T
θ. (5.31)

Anschließend wird die BibliothekΨ(x, u, t) = [1, cos(20·t), 0,001·t, x1, x3]T gewählt,
welche neben den üblichen Konstanten und Zuständen auch Zusammenhänge zur
Zeit aufweist, da z. B. Korrelationen zwischen der Biegung des Turms, entspre-
chend x3, und der Windgeschwindigkeit zu vermuten sind. Hierbei ist anzumer-
ken, dass diese Bibliothek entgegen der Formulierung (5.5) zur Vereinfachung und
Übersichtlichkeit nur einen Teil der Zustände enthält, da die Bibliothek Ψ aufgrund
der Berücksichtigung des zusätzlichen Vorwissen nach Gleichung (5.25) differenziert
werden muss. Kommen die Zustände x2 und x4 hinzu, ergibt sich ein sehr ähnliches
Resultat. In der Dissertation [17] wird die Schätzgüte anhand der Zustandsverläufe
analysiert, welche ausreichend genau trotz der Störung z ist, jedoch aufgrund der
multiplikativen Struktur Beeinträchtigungen aufweist. Erkennbar sind diese Limi-
tationen ebenfalls an der Approximationsgenauigkeit der Windgeschwindigkeit z.
Wird die Linearkombination, welche ẑ nach Glättung des Signals darstellt, nun mit
der Windgeschwindigkeit z verglichen, zeigt die obere Grafik in Abbildung 5.13,
dass die Approximation qualitativ gelingt, da sich nach etwa 50 Sekunden eine Kon-
vergenz zum Mittelwert der Windgeschwindigkeit z einstellt. Allerdings zeigt die
untere Grafik in der Vergrößerung, dass der qualitative Verlauf mit einzelnen Schwin-
gungen gut abgebildet wird, aber phasenverzögert erfolgt. Dies erlaubt daher keine
exakte Approximation der Windgeschwindigkeit. Das Verfahren des augmentierten
Beobachters weist folglich Grenzen bzgl. multiplikativer, rauschbehafteter Modell-
ungenauigkeiten auf, da keine Verbesserung im Vergleich zu bestehenden Verfahren
erreicht werden konnte [207], [208]. Dennoch zeigt der Ansatz des JE-SRUKFs für
eine solche Ungenauigkeit das vielversprechende Potential für weitere Anwendun-
gen auf, sofern die Formulierung des Beobachters auf allgemeinere Systemklassen
erweitert wird.

Der augmentierte Beobachter ist für eingangsaffine Systeme anwendbar,
welche additive Modellungenauigkeiten aufweisen. Es gibt zwei unterschied-
liche Umsetzungen, um dünnbesetzte Parameter zu erhalten. Bei geeig-
net gewählter Bibliothek und sichtbarer Ungenauigkeit können eine ho-
he Schätzgüte sowie eine physikalisch interpretierbare, parametrische
Darstellung der Ungenauigkeit erzielt werden. Besonders vorteilhaft ist der
Einsatz bei Systemveränderungen, andernfalls ist der Aufwand dem Nut-
zen im Vergleich zu herkömmlichen Beobachtertypen abzuwägen.
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ẑ[

m
/s

]

Abbildung 5.13 Approximation ẑ im Vergleich zur gemessenen Windgeschwindigkeit z (oben),
Vergrößerung (unten), vgl. [17]

5.2.3 Augmentierter Sliding-Mode-Beobachter

Im ersten Abschnitt dieses Kapitels wurde bereits der Sliding-Mode-Beobachter vor-
gestellt, welcher aufgrund seiner Robustheit häufig in der Situation von Modellunge-
nauigkeiten eingesetzt wird. Daher bietet es sich an, die grundlegende Idee der Joint
Estimation auf diesen Beobachtertyp zu übertragen. Seine grundlegende Struktur
kennzeichnet sich durch




˙̂x1
˙̂x2
...
˙̂xn


 =




x̂2 + ν1(ey)
x̂3 + ν2(ey)

...

f̂(x̂1, x̂2, . . . , x̂n−1, y) + νn(ey)


 ,

ŷ = x̂1,

ey = ŷ − y,

(5.32)

wobei ey den Ausgangsfehler bezeichnet. Mithilfe der Darstellung (5.32) lässt sich
die Fehlerdynamik des SMOs ermitteln. Der Modellfehler ∆f , der aus Anfangsfeh-
lern, Störungen oder Modellungenauigkeiten resultieren kann, ist dabei als Differenz
zwischen Modell f̂ und realem System f durch

∆f = f̂(x̂1, x̂2, . . . , x̂n−1, y)− f(x1, x2, . . . , xn−1, y) (5.33)

definiert [188], [189], [190]. Um nicht nur eine dynamische Approximation der Un-
genauigkeiten mittels eines Tiefpassfilters, sondern auch eine parametrische, phy-
sikalisch nachvollziehbare Identifikation zu erzielen, kann die Grundidee der Aug-
mentation auf diesen Typ Zustandsbeobachter übertragen und um eine automatisch
gewählte Bibliothek ergänzt werden. Im Fall eines SMOs kann die Modellungenau-
igkeit ∆f oder Störung durch die Struktur des Beobachters und der daraus resul-
tierenden Schätzfehlerdynamik direkt in Abhängigkeit der n-ten Schaltfunktion νn
formuliert werden:

∆f = −νn(ey). (5.34)
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Üblicherweise wird diese Ungenauigkeit in Gleichung (5.34) mithilfe eines Tiefpass-
filters approximiert. Infolge der vorangegangenen Abschnitte lässt sich diese jedoch
auch folgendermaßen definieren:

∆f = −νn(ey) = θTΨ(x,u), (5.35)

indem erneut eine Linearkombination aus einer geeignet gewählten Bibliothek Ψ
gewählt wird. Um optimale Parameterwerte zu finden, wird der Fehler

eθ = −νn(ey)− θTΨ(x,u) (5.36)

minimiert, dessen Lösung durch

θ̂ =

(
−
∫ t

0

νn(ey)Ψ(x̂,u)T dτ

)[∫ t

0

Ψ(x̂,u)Ψ(x̂,u)Tdτ

]−1

(5.37)

bestimmt werden kann. Diese Lösung wird unter der Annahme, dass der SMO
gut parametriert ist und konvergiert, über einen rekursiven Least-Squares-Ansatz
mithilfe einer dynamischen Berechnung der Inversen ermittelt [188]. Neben der
Berücksichtigung von Vorwissen in Form von Hypothesen oder der Nutzung der
minimalen Bibliothek (5.5) kann jedoch zunächst eine Datenakquise erfolgen, auf
deren Grundlage die Charakteristika der Störung analysiert werden [209]. So kann
z. B. bei oszillierenden Störungen eine Fouriertransformation genutzt werden, um
auftretende Frequenzen aus Verläufen von νn(ey) zu identifizieren. Die Fouriertrans-
formation bietet zudem den Vorteil, dass es sich um eine orthonormale Basistrans-
formation handelt (vgl. Abschnitt 5.2). Dazu werden für einen bestimmten Zeitho-
rizont die Daten der Schaltfunktion aufgenommen, während sich der SMO in der
Sliding-Phase befindet. Diese Informationen können anschließend verwendet wer-
den, um mittels der Fouriertransformation Frequenzen des vergangenen Zeitraums
in Ansatzfunktionen ψi zu platzieren [209]. Somit enthält die Bibliothek Terme,
die höchstwahrscheinlich der Identifikation der Störung bzw. Modelldiskrepanz ∆f
dienen.

Einfachpendel auf einem Wagen Das Einfachpendel auf einem Wagen ist ein
klassisches, nichtlineares Anwendungsbeispiel in der Regelungstechnik [21], [24]. Im
Folgenden wird allerdings angenommen, dass sich eine Störung ρ auf den Wagen-
eingang u auswirkt, welche unbekannter Art ist. Der modifizierte SMO soll diese
identifizieren, indem das Hilfsmittel der Fourieranalyse genutzt wird. Dazu werden
für die Anregung und die Störung

u(t) = sin
(
π · t+ π

2

)
,

ρ(t) = 4 · sin
(
3π · t+ π

2

)
.

(5.38)

angenommen. Indem die Messdaten des Einfachpendels genutzt und einer Fourier-
analyse zugeführt werden, ergibt sich die Abbildung 5.14, welche das durch die Fou-
riertransformation detektierte Frequenzspektrum anhand der relativen Häufigkeit
in den Daten kennzeichnet. Durch die Abbildung 5.14 ist erkennbar, dass die Fou-
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5.2 Joint Estimation

riertransformation die Frequenz der Störung ωρ = 3π in den Daten als wichtigste
Frequenz erkennt, aber darüber hinaus jene der Anregung ωu = π als weitere Größe
detektiert. Wird dieses Vorgehen mit der Approximation über Gleichung (5.37)
gekoppelt, entsteht eine automatische Formulierung der Bibliothek Ψ, welche zur
Schätzung der Ungenauigkeit ∆f geschickt beiträgt.
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Abbildung 5.14 Die durch die Fouriertransformation identifizierten Frequenzen zur automa-
tisierten Bildung von Bibliothekstermen ψi weisen die höchsten Prozentsätze auf, vgl. [17],
[209].

Exemplarisch ist dieses Verfahren in der Abbildung 5.15 dargestellt, bei dem die
Schätzung der Ungenauigkeit mit einer nicht automatisch bestimmten Bibliothek
verglichen wird. Es lässt sich anhand des Einfachpendels erkennen, dass zunächst
eine Datenakquise stattfinden muss, bevor die Fouriertransformation durchgeführt
werden kann. Daraufhin pendelt sich der Fehler ν2 in derselben Größenordnung ein.
Gleiches lässt sich im Auszug aus der Schätzung der Parameter erkennen, welche zum
gleichen Wert konvergieren, nachdem die automatisch gewählte Bibliothek in Betrieb
ist. Ausführliche Details, auch zur Bibliothek, sind in der Dissertation [17] zu fin-
den. Mittels dieser Ergänzung kann eine höhere Regelgüte erzielt werden, indem im
geschlossenen Regelkreis eine aktive Störkompensation, bei der Informationen auf
Basis der Approximation ρ̂ ins Modell zurückgeführt werden, durchgeführt wird.
Die Erweiterung einer automatisierten Bibliothekswahl ist somit eine Ergänzung
des augmentierten Beobachters und stellt eine hilfreiche Maßnahme dar, welche als
Werkzeug in der intelligenten Fehlererkennung und Störkompensation gewinnbrin-
gend eingesetzt werden kann. Diese Grundidee einer automatisierten Gestaltung der
Bibliothek basierend auf erhobenen Daten wird daher im folgenden Abschnitt 5.3
für die Modelladaption aufgegriffen.

Das Konzept des augmentierten Beobachters ist übertragbar auf andere
Beobachtertypen, sofern die Voraussetzungen erfüllt sind. In der Kombi-
nation mit robusten Sliding-Mode-Beobachtern kann eine Bibliothek durch
Fourieranalyse automatisch bestimmt werden und Vorteile im Bereich
Störidentifikation und -kompensation bieten.
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Abbildung 5.15 Verlauf der Schaltfunktion ν2, welche die Modelldiskrepanz ∆f widerspiegelt,
und Auszug aus den Parameterverläufen θ̂, vgl. [17], [209]

5.3 Automatische Modellaktualisierung

Um die Informationen, die durch den augmentierten Beobachter gewonnen werden,
auch langfristig nutzen zu können, beispielsweise um die Modellgüte zu verbessern,
ist eine sukzessive Modellaktualisierung wünschenswert. Durch eine Modelladaption
wird die Modellgüte in der Regel erhöht, sodass eine Verwendung des verbesserten
Modells auch für weitere Entwurfsschritte wie die Auslegung eines Reglers vorteil-
haft ist. Eine automatische Modellaktualisierung erfordert jedoch zunächst eine sta-
tistisch basierte Merkmalsanalyse und -extraktion, welche im folgenden Abschnitt
thematisiert werden. Anschließend kann auf Basis der extrahierten Merkmale eine
Modellaktualisierung erfolgen. Zudem wird ein Konzept zur fortwährenden Model-
ladaption vorgestellt, welches besonders gewinnbringend im Fall auftretender Sys-
temveränderungen oder sich schnell verändernder Systeme ist, vgl. [17].

5.3.1 Merkmalsextraktion

Grundlage der Modellaktualisierung bildet die Hauptkomponentenanalyse (PCA)8,
welche auf der Singulärwertzerlegung basiert und auf die Arbeiten von [210], [211]
zurückgeht. Da durch den augmentierten Beobachter Schätzwerte des Parameter-
vektors θk für vergangene Zeitschritte k = 1, . . . , N vorliegen, können diese in einer
Zeitreihenmatrix Θ ∈ Rnθ×N gesammelt werden. Ziel der PCA ist eine Koordinaten-
transformation der vorliegenden Daten Θ in ein Koordinatensystem, welches diese
besser als das vorherige, meist kartesische Koordinatensystem darstellen kann. Diese
Grundidee ist in der Abbildung 5.16 beispielhaft für zwei Dimensionen visualisiert.

8Im Englischen ist diese als Principal Component Analysis (PCA) bekannt. Die Abkürzung PCA
wird zunehmend auch im Deutschen verwendet, sodass diese im Folgenden genutzt wird.
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5.3 Automatische Modellaktualisierung

Da sich die Daten, illustriert durch die Punkte, anhand ihrer Varianz charakterisie-
ren lassen, befindet sich in der Abbildung 5.16 die durch die PCA transformierte
erste Achse entlang der größten Varianz der Daten, während die zweite Achse or-
thogonal zu dieser steht und die zweitgrößte Varianz in den Daten beschreibt.
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Abbildung 5.16 Koordinatentransformation durch die PCA anhand eines zweidimensionalen
Beispiels: Die roten Ellipsen stellen jeweils die einfache, doppelte und dreifache Standardabwei-
chung dar, die blauen Achsen beschreiben das durch die PCA gefundene Koordinatensystem,
vgl. [17], [28].

Die Datenmatrix Θ besteht jedoch nicht nur aus zwei, sondern aus nθ verschiede-
nen Merkmalen, die in N Beobachtungen, z. B. durch Experimente, erfasst worden
sind. Wenn die Daten eine unterschiedliche Skalierung aufweisen, ist eine Vorverar-
beitung dieser unerlässlich, vgl. Abschnitt 2.2. Erfolgt diese nicht, verzerrt die PCA
die tatsächlich zugrunde liegenden Informationen (vgl. [15, Abbildungen 2.1 und
2.2]). Aufgrund der Sensitivität der PCA werden die Daten zunächst standardisiert,
woraufhin die standardisierte Datenmatrix ΘS in einer Kovarianzmatrix

PΘ = ΘSΘ
T
S (5.39)

angeordnet wird. Anschließend werden deren Eigenwerte λi
9 und Eigenvektoren υi

mit i = 1, . . . , nθ bestimmt. Da die Eigenwerte von PΘ eine enge Verwandtschaft zu
den Singulärwerten von Θ aufweisen, können diese mithilfe der Singulärwertzerle-
gung effizient berechnet werden (vgl. [15], [28]). Die dazugehörigen Eigenvektoren υi
sind dabei orthonormal zueinander. In der Regel wird die PCA nicht nur zur Analyse
der Daten genutzt, sondern auch zur Dimensionsreduktion. Dies gelingt unter der
Prämisse, dass manche der Achsen mit geringer Varianz lediglich Rauschen enthal-
ten, woraufhin die darin enthaltenen Informationen vernachlässigt werden können.
Zum Zweck der Modellaktualisierung muss daher entschieden werden, welche der
nθ Eigenwerte beibehalten oder für die Darstellung der gesammelten Daten ver-
nachlässigt werden können. Da die Daten bereits vorverarbeitet worden sind, ist
der Anteil eines Eigenwerts, die gesammelten Daten gut darstellen zu können, umso

9Im Kontrast zu vorigen Kapiteln bezeichnet das Symbol λ einen Eigenwert in diesem Abschnitt.
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höher, je größer dieser ist. Die PCA liefert genau eine solche Sortierung der Eigen-
werte λ1 ≥ λ2 ≥ · · · ≥ λnθ

und ihrer Eigenvektoren υ1, . . . ,υnθ
. Zur Bestimmung,

ab welchem Eigenwert λi∗ mit 1 ≤ i∗ ≤ nθ eine Modellreduktion auf die ersten ein
bis i∗ Eigenwerte stattfindet, existieren überwiegend einfache, empirische Kriterien,
beispielsweise die Kaiser-Methode, der Scree-Test oder das Verfahren der kumulati-
ven Varianz [15], [212]. Letzteres wird im Folgenden genutzt und kennzeichnet sich
durch eine Abschätzung basierend auf der Varianz der Daten Q:

Q =

∑i∗

l1=1 λl1∑nθ

l2=1 λl2
· 100. (5.40)

Um die Fähigkeit, die gesammelten Daten adäquat zu repräsentieren, quantitativ
zu bewerten, wird in der Gleichung (5.40) zunächst ein Quotient bestehend aus der
Summe der ersten i∗ Eigenwerte bezogen auf die Summe aller Eigenwerte gebildet.
Dieser Quotient wird daraufhin prozentual ausgewertet und stellt somit die prozen-
tuale Varianz der Daten dar [15], [212]. Indem ein Prozentsatz vorgegeben wird, den
das reduzierte Modell bezogen auf die Daten in jedem Fall darstellen können muss,
wird die kumulative Varianz Q mit diesem Wert verglichen. Schließlich werden die
i∗ Eigenwerte behalten, die mit ihrer kumulativen Varianz Q genau die vorgegebene
Grenze überschreiten. In der Regel wird ein Prozentsatz zwischen 70% und 90%
gewählt [15].

Nachdem die relevanten Eigenwerte bestimmt worden sind, können anschließend
die dazugehörigen Eigenvektoren genutzt werden, um auf die einzelnen Terme ψi
zu schließen. Dazu kann geometrisch argumentiert werden: Für jeden Eigenwert
zeigt der betragsmäßig größte Eintrag des Eigenvektors in genau die Richtung des
Elements, der den Eigenwert am meisten dominiert. In der Abbildung 5.17 sind zur
Illustration des Vorgehens die Elemente der Eigenvektoren υ1, υ2 der beiden größten
Eigenwerte λ1, λ2 in der x- bzw. y-Achse dargestellt. Die Elemente der Eigenvek-
toren υ1,i bzw. υ2,i sind in der Abbildung durch den Index des Bibliotheksterms
ψi dargestellt, sodass z. B. die Position von ψ9 in der Abbildung durch das neunte
Element von υ1 und das neunte Element von υ2 bestimmt wird. Somit visualisiert
die Abbildung 5.17 die Beiträge der einzelnen Bibliotheksterme zum jeweiligen Ei-
genwert. Für den größten Eigenwert λ1, der in diesem Beispiel 81, 69% Anteil an der
Varianz besitzt, weist ψ9 den stärksten Beitrag auf, da das neunte Element von υ1

betragsmäßig am größten ist. Dies ist in der Abbildung daran zu erkennen, dass alle
anderen Terme bzgl. der x-Achse nahe Null positioniert sind. Für den zweitgrößten
Eigenwert, der 12, 2% Anteil an der Varianz besitzt, kann anhand der y-Achse ab-
gelesen werden, dass sowohl das erste als auch das zweite Element des Eigenvektors
υ2 einen Einfluss besitzen. Da das erste Element, erkennbar an der Position des
Terms ψ1, jedoch einen betragsmäßig größeren Einfluss aufweist, wird dieses als do-
minant bestimmt und deshalb auf den Term ψ1 zurückgeführt. Alle weiteren Terme
besitzen keinen Einfluss auf diesen Eigenwert, da deren Beträge nahe Null sind, was
durch die Überlagerung der Terme um Null dargestellt ist. Folglich wird zu jedem
der dominanten Eigenwerte λi der Eigenvektor υi bzgl. seines betragsmäßig größten
Elements ausgewertet. Dieses Element υl∗ mit 1 ≤ l∗ ≤ nθ ist dann die Referenz für
den Bibliotheksterm ψl∗ , der den stärksten Einfluss auf den Eigenwert λi aufweist.

Exemplarisch wird diese Merkmalsanalyse auf das Beispiel des Duffing-Oszillators

134



5.3 Automatische Modellaktualisierung

−0,2 0 0,2 0,4 0,6 0,8 1

0

0,2

0,4

0,6

0,8

1
ψ1

ψ2

ψ9

ψ3 bisψ8

Eigenvektor υ1 zum Eigenwert λ1

E
ig

en
ve

kt
or
υ

2
zu

m
E

ig
en

w
er

tλ
2

Abbildung 5.17 Die ersten beiden Eigenwerte λ1, λ2 decken zusammen mehr als 93% der
Varianz ab. Die Elemente der dazugehörigen Eigenvektoren υ1 und υ2 sind in dieser Visuali-
sierung in Abhängigkeit voneinander als Kreise dargestellt. Die Zahlen i stellen das jeweilige
Element des Eigenvektors υ1 bzw. υ2 dar und können infolgedessen auf die Bibliotheksterme
ψi zurückgeführt werden, vgl. [17].

mit der Bibliothek Ψ1 angewendet, dessen Daten aus den Abbildungen 5.5 und 5.7
verwendet werden. Werden schließlich die beiden wichtigsten, dominanten Terme
ψ9 und ψ1 genutzt, um die Modellungenauigkeit zu approximieren, kann diese re-
duzierte Identifikation ĝ1,red zur vollständigen Linearkombination ĝ1 und zur Mo-
dellungenauigkeit g verglichen werden. In der Abbildung 5.18 ist dieser Vergleich
dargestellt, welcher aufzeigt, dass aufgrund der Modellreduktion zwar geringfügig
Informationen verloren gehen, die ĝ1 aufweist und welche sich daher als Abweichung
bei ĝ1,red bemerkbar machen, im Allgemeinen aber die Genauigkeit weiterhin hoch
ist. Somit liefert die Modellreduktion durch die PCA die Identifikation relevanter
Terme, die eine physikalisch-technische Interpretierbarkeit der Modellungenauigkeit
ermöglichen.

5.3.2 Modellaktualisierung

Auf Basis der PCA stehen die relevanten, dominanten Bibliotheksterme ψi fest,
welche die Modellungenauigkeiten g im vergangenen betrachteten Zeitraum am bes-
ten charakterisieren. Allerdings ist für die Aktualisierung des Modells die Kenntnis
des jeweiligen dazugehörigen physikalischen Parameters erforderlich. Dieser kann
u. U. zeitinvariant, aber auch zeitvariant vorliegen und muss durch eine nachfol-
gende Parameteridentifikation bestimmt werden. Anschließend kann das Modell um
die identifizierte, parametrische Darstellung für die Modellungenauigkeit ergänzt
werden. Allerdings ist es in manchen Situation erforderlich und vorteilhaft, dass
eine fortwährende Identifikation und Modellaktualisierung durchgeführt wird. Die
Abbildung 5.19 zeigt ein Flussdiagramm, welches den Ablauf einer solchen dauerhaf-
ten Modelladaption darstellt. Das Konzept besteht aus zwei Phasen, die abhängig
von Kriterien durchlaufen werden. Die erste Phase umfasst die Datenakquise und
die Überprüfung mithilfe verschiedener Kriterien, ob eine Aktualisierung notwendig
ist. Diese Kriterien umfassen den Zeitpunkt T0, welcher bei einem erstmaligen Be-
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Abbildung 5.18 Approximation der Modellungenauigkeit g durch die vollständige Linearkom-
bination ĝ1 und durch die von der PCA reduzierte Linearkombination ĝ1,red, vgl. [17], [197]

trieb des Systems das Ende der Einschwingphase bzw. des transienten Verhaltens
markiert, sowie die Anzahl der gesammelten Parametersätze, da genügend aussage-
kräftige Zeitreihendaten gesammelt werden müssen, um eine Analyse durchführen
zu können. Entscheidend ist zudem, ob eine Aktualisierung des Modells erforderlich
ist. Dieses Merkmal stellt häufig der Modellfehler ∆f dar, welcher beispielsweise
anhand des Ausgangsfehlers evaluiert werden kann. Überschreitet dieser eine defi-
nierte Grenze δf , beginnt die zweite Phase, welche in der Abbildung 5.19 dargestellt
ist. Mithilfe der PCA und einer festgelegten kumulierten Varianz Q werden die
dominanten Bibliotheksfunktion ψi des vergangenen, analysierten Zeitraums extra-
hiert, woraufhin die restlichen Einträge in der Bibliothek entfernt werden. Um eine
weiterhin sich sukzessiv verbessernde Modellgüte zu ermöglichen, werden neue Bi-
bliotheksterme basierend auf vorgefertigten Bibliotheken Ψ∗

i gebildet. Diese Biblio-
theken können beispielsweise thematisch geordnet sein und je nach Anwendungsfall
trigonometrische Funktionen oder typische Reibelemente enthalten. Die Auswahl
neuer Bibliotheksterme ψj,new erfolgt dabei randomisiert oder infolge einer weiterge-
henden Analyse. Letztere ist sinnvoll, wenn viele Eigenwerte gleich starke Beiträge
zur Varianz liefern, sodass möglicherweise nicht alle dominanten Bibliotheksterme
identifiziert wurden. Anwendungsbeispiele dieses Vorgehens sind in der Dissertation
[17] zu finden.

Bei Systemveränderungen oder sich schnell verändernden Systemen ist ei-
ne automatische Modelladaption durch den augmentierten Beoabch-
ter mittels der Hauptkomponentenanalyse möglich. Dadurch ist eine
fortwährende Option zur sukzessiven Modellverbesserung gegeben. Vor-
aussetzungen sind weiterhin eine geeignet gewählte Bibliothek sowie ausrei-
chend große Datenmengen und Analysezeiträume.
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Abbildung 5.19 Konzept zur simultanen Schätzung und Modellaktualisierung, vgl. [17]

5.4 Koopman-basierter Beobachter mit Verwendung
von EDMD

In [213] wird erstmals der modellbasierte Beobachterentwurf für ein Koopman-
basiertes Streckenmodell in Anlehnung an lineare Luenberger-Beobachter beschrie-
ben. Es wird angenommen, dass sich die Dynamik eines zugrunde liegenden auto-

nomen Systems mittels N Koopman-Eigenfunktionen Φ(x) =
[
φ1(x), . . . , φN(x)

]⊤
und den dazugehörigen Koopman-Eigenwerten λ1, . . . , λN durch

Φ̇(x) = KΦ(x) = ΛΦ(x) (5.41)

und der n-dimensionale Systemzustand

x =
N∑

j=1

φj(x)v
x
j = V xΦ(x) mit vx

j ∈ Rn,V x =
[
vx
1 , . . . ,v

x
N

]
∈ Rn×N (5.42)
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sowie der q-dimensionale Systemausgang

y =
N∑

j=1

φj(x)v
y
j = V yΦ(x) mit vy

j ∈ Rq,V y =
[
vy
1 , . . . ,v

y
N

]
∈ Rq×N (5.43)

als Linearkombinationen formulieren lassen10. Dann ergibt sich daraus die Koop-
man-Beobachternormalform

Φ(xk) = ΛΦ(xk−1), (5.44a)

yk = V yΦ(xk), (5.44b)

xk = V xΦ(xk), (5.44c)

mit der ein Luenberger-Beobachter [24], [181]

Φ̂(xk) = ΛΦ̂(xk−1) +L(yk − ŷk), (5.45a)

ŷ = V yΦ̂(xk), (5.45b)

xk = V xΦ̂(xk) (5.45c)

entworfen werden kann. Wenn das Paar (Λ,V y) beobachtbar ist, kann eine Rück-
führmatrix L bestimmt werden, sodass der Beobachter (5.45) konvergiert. Falls die
Koopman-Eigenzerlegung (5.41)-(5.43) darüber hinaus endlich dimensional und ex-
akt ist, ist die Koopman-Beobachternormalform (5.44) global gültig und damit der
Beobachter (5.45) global konvergent. In [213] wird simulativ demonstriert, dass die
resultierende Schätzgüte eines Koopman-basierten Kalman-Filters sowohl anhand
eines einschlägigen Einführungsbeispiels, vgl. Gleichung (3.8), als auch am Van-der-
Pol-Oszillator einem EKF überlegen ist. [214] erweitert den beschriebenen Ansatz
auf eingangsaffine und bilineare Systeme und [215] erweitert den Ansatz auf Systeme
mit Zustandsbeschränkungen.
In [216] wird die simulative Entwicklung eines Kalman-Filters unter Verwen-

dung eines DMD-Modells zur Modellordnungsreduktion für Windturbinen beschrie-
ben. Der Beitrag [217] beschreibt in Anlehnung an [213], [214] die Entwicklung
eines robusten Koopman-basierten Kalman-Filters mit einem Maximum-Likelihood-
Ansatz11 für ein elektrisches Energiesystem und demonstrieren eine höhere Schätz-
güte als bei der Verwendung eines EKFs. Der Beitrag [219] beschreibt einen neuar-
tigen Ansatz für die Fehlererkennung bei supraleitenden Hochfrequenzkavitäten in
einem Teilchenbeschleuniger mittels eines Koopman-basierten Kalman-Filters. Im
Vergleich zu einem UKF ermöglicht der Koopman-basierte Kalman-Filter bei dieser
Anwendung eine hohe Schätzgüte bei einer stark verringerten Rechenzeit. Der Bei-
trag [220] beschreibt den Entwurf eines Koopman-basierten EKFs für die Kraft- und
Drehmomentschätzung eines weichen Medizinroboters. Hierfür wurde das EDMD-

10Hier wird der Einfachheit halber ausschließlich der Fall für reale Eigenwerte beschrieben; eine
Erweiterung um komplex-konjugierte Eigenwerte findet sich in [213].

11Die Maximum-Likelihood-Methode [218] stammt aus der Statistik und konstruiert eine Schätz-
funktion derart, dass für den unbekannten Parameter unter der Grundgesamtheit aller denkba-
ren Schätzwerte genau derjenige ausgewählt wird, bei dem die gezogene Stichprobe die maxi-
male Eintrittswahrscheinlichkeit besitzt. Eine umfassende Beschreibung dieser Methode findet
sich beispielsweise in [10].
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5.4 Koopman-basierter Beobachter mit Verwendung von EDMD

Prädiktionsverfahren mit Korrektur, vgl. Unterabschnitt 3.1.2, aufgegriffen, um die
Schätzgüte zu erhöhen.

Beispielhafte Anwendung am Schlagmechanismus des Golfroboters Bei dem
Schlagmechanismus des Golfroboters lässt sich der Zustand x1 (der Winkel der Ab-
triebswelle) messen, sodass für die Ausgangsgleichung gilt, vgl. Gleichung (6.11),

y = c⊤x mit c⊤ =
[
1, 0
]
. (5.46)

Daher ist es erforderlich, dass der Zustand x2 mittels eines Beobachters geschätzt
wird. Basierend auf dem EDMD-Modell der Dynamik lässt sich ein Luenberger-
Beobachter [24], [181] für den Schlagmechanismus entwerfen, der sich durch

˙̂
Ψ(x) =

(
K − l̃c̃⊤

)
Ψ̂(x) + bu+ l̃y (5.47)

beschreiben lässt. Hierbei ist der EDMD-Ausgangsvektor durch

c̃ =
[
1, 0, 0, 0

]
(5.48)

gegeben und die Eigenwerte des Beobachters, d. h. der Matrix K − l̃c̃⊤, werden
doppelt so groß wie die Eigenwerte des geschlossenen Regelkreises gewählt [221].
In der Abbildung 5.20 wird beispielhaft die resultierende Regelgüte (6.16)-(6.17)

des EDMD-basierten Beobachters mit einem EDMD-basierten LQ-Regler der des
physikalisch motivierten Entwurfs, vgl. Beginn dieses Kapitels, gegenübergestellt.
Bei letzterem werden der Regler und Beobachter durch einen Gain-Scheduling-
Ansatz bestimmt. Für die Solltrajektorie mit einem Ausholwinkel von 120◦ erreicht
der Koopman-Ansatz eine deutlich höhere Regelgüte. Diese Erkenntnis ist nach um-
fassenden Analysen der vorherigen Kapitel erwartungsgemäß und lässt sich darauf
zurückführen, dass das EDMD-Modell eine höhere Modellgenauigkeit aufweist, vgl.
Unterabschnitt 3.1.2, und somit auch eine überlegene Regelgüte, vgl. Abschnitt 4.1,
als der Gain-Scheduling-Ansatz bietet, der auf einer Linearisierung des nichtlinearen
physikalischen Modells basiert. Aufgrund der hohen Schätzgüte und der geradlinigen
Anwendbarkeit lässt sich die Aussage treffen, dass das EDMD-Modell eine hohe rege-
lungstechnische Verwertbarkeit auch hinsichtlich des Beobachterentwurfs aufweist.

EDMD-Modelle lassen sich aufgrund der linearen Systemstruktur geradli-
nig für den Entwurf eines Luenberger-Beobachters nutzen. Am Beispiel des
Schlagmechanismus des Golfroboters wurde mittels numerischer Simulationen
die Erkenntnis gewonnen, dass der EDMD-basierte Entwurfsansatz bezüglich
der resultierenden Regelgüte einem physikalisch motivierten Ansatz mit klas-
sischer Linearisierung überlegen sind.

139



5 Beobachterentwurf
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Abbildung 5.20 Resultierende simulierte Regelgüte unter Einsatz von Beobachtern.
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6 Demonstratoren

Ein wichtiges Projektziel von DART war es, die entwickelten hybriden Methoden
nicht nur an akademischen und simulativen Beispielen zu testen, sondern auch an
realen regelungstechnischen Prüfständen. Die Erfahrung zeigt, dass es einen großen
Unterschied macht, Methoden auch real zu testen, denn viele Störeffekte der rea-
len Welt wie Rauschen und Verzögerungen werden in Simulationen häufig nicht
berücksichtigt bzw. können vorab nicht abgeschätzt werden. Im Rahmen des Pro-
jekts wurde der Golfroboter zum einen selbst weiterentwickelt und zum anderen
der Schlagmechanismus für viele regelungstechnische Experimente verwendet. Die
Funktionsweise des Golfroboters wird in Abschnitt 6.1 vorgestellt, sodass neben den
einzelnen Experimenten zu den hybriden Methoden auch der Gesamtentwurf des
automatisierten Golfspielens erläutert wird. Der selbstbalancierende Würfel ist ein
während der Projektlaufzeit entwickelter regelungstechnischer Prüfstand, der ge-
nutzt wird, um ebenfalls für Experimente der hybriden Methoden zur Verfügung
zu stehen. Der Würfel ist in der Lage sich mit Hilfe der Beschleunigung und an-
schließendem abruptem Abbremsen von Schwungrädern auf eine Kante oder Ecke
aufzustellen und kann dort stabilisiert werden. Als sehr anschaulicher regelungstech-
nischer Demonstrator wird der Würfel auch über die Projektlaufzeit hinaus genutzt
werden. In Abschnitt 6.2 wird der Aufbau und die Funktionsweise erläutert und es
werden einige Experimente im Rahmen der Tests der entwickelten hybriden Metho-
den beschrieben.

6.1 Golfroboter

Der Golfroboter ist ein selbstlernendes mechatronisches System, welches datenge-
triebene und physikalische Methoden kombiniert, um das Putten eines Golfballes
von einem beliebigen Punkt des Greens autonom zu lernen. Hierfür wird ein Ka-
merasystem mit Bilderkennung verwendet und außerdem ein künstliches neuronales
Netz gelernt, welches den Geschwindigkeitsvektor des Schlages vorhersagen kann,
um ein erfolgreiches Einlochen sicher zu stellen. Um die Anzahl der zeitaufwändigen
Interaktionen mit dem realen System zu minimieren, wird das neuronale Netz vor-
trainiert. Hierfür wird ein physikalisches Modell ausgewertet, das die Dynamik des
Golfballs auf dem Green nachbildet. Die Approximation des Greens erfolgt ebenfalls
datengetrieben. Dieses mechatronische Anwendungsbeispiel ist somit in der Lage die
synergetische Kombination von datengetriebenen und physikalisch basierten Metho-
den zu demonstrieren.

Autonome Roboter werden voraussichtlich schon in naher Zukunft viele Men-
schen in alltäglichen Tätigkeiten unterstützen können, zum Beispiel in der Versor-
gung von alten oder körperlich eingeschränkten Personen, die gehoben oder bewegt
werden müssen. Hierfür ist ein umsichtiges Handeln des autonomen Roboters un-
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6 Demonstratoren

Abbildung 6.1 Golfi ist ein selbstlernender Golfroboter, der in der Lage ist autonom zu put-
ten. Golfi dient als Demonstrator für die Anwendung von datengetriebenen Methoden in der
Regelungstechnik.

erlässlich. Diese und andere Aspekte von autonomen Robotern behandeln wir in
unserer Forschungsarbeit und wollen sie am Beispiel des autonomen Golfroboters
weiterentwickeln. Das Szenario, in dem sich der Golfroboter bewegt ist es, im Be-
reich des Greens den Golfball in das Loch zu putten. Um diese Herausforderung zu
bewältigen, benötigt ein System, welches autonom arbeiten soll, eine genaue Um-
gebungserkennung und eine präzise Ansteuerung, denn selbst für geübte Golfspieler
ist das Putten anspruchsvoll und nicht immer erfolgreich. Um diesen Anforderungen
gerecht zu werden, kombinieren wir leistungsfähige datengetriebene Methoden mit
etablierten physikalischen Methoden aus der Regelungstechnik. Ein hybrider Ansatz
erscheint hier äußerst vorteilhaft, um die Vorteile aus beiden Bereichen optimal zu
nutzen.

Im Golfsport gibt es einige Roboter, die eine Vielzahl unterschiedlicher Aufga-
ben übernehmen. Ein Bereich ist die Unterstützung der Spieler bei der korrekten
Ausführung der Schläge. Beispielsweise optimiert der Roboter in [222] den Schwung
der Golf spielenden Person, indem er ihren Arm direkt führt. Eine weitere verbrei-
tete Anwendung von Golfrobotern ist das Testen des Zubehörs. Beispiele aus [223],
[224], [225], [226], [227], [228], [229] zeigen Roboter, die Golfschläger und Golfbälle
mit vielen verschiedenen Schlägen testen, wobei die Grundkonstruktion meist aus
einem rotierenden Roboterarm besteht. Der dritte Anwendungsbereich besteht in
der Imitation von menschlichen Schlägen. Der Roboter ROB-OT [230] ist in der
Lage ein komplettes Golfspiel zu spielen und dient daher als ein Demonstrations-
objekt für Golfer, aber auch Unterhaltungszwecken. Obwohl dieser Roboter in der
Lage ist, sich auf dem gesamten Green zu bewegen, wird ein*e Golfexpert*in für die
Bedienung während des gesamten Spiels benötigt.

Unser Golfroboter, wie er in der Abbildung 6.1 zu sehen ist, hat das Ziel vollständig
autonom zu putten. Das bedeutet, dass er den Ball von einer beliebigen Position
auf einem unbekannten Green mit einem einzigen Schlag einlochen soll, wobei der
Ball nicht durch die Luft fliegen soll. Um dies zu erreichen wird eine Kombination
aus klassischer Regelungstechnik und datengetriebenen Techniken, also maschinel-
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Abbildung 6.2 Systemarchitektur des Golfroboters: Das Gesamtproblem ist in Teilaufgaben
unterteilt, wobei unterschiedliche Ansätze verfolgt werden: datengetrieben, physikalisch basiert
oder auch hybrid. Der Startpunkt im Prozess ist eine gegebene Situation in einem Golfspiel.

lem Lernen, verwendet. Die Positionierungs- und Schlageinheit können recht einfach
physikalisch modelliert werden, sodass sich hierfür klassische Optimierungsmetho-
den nutzen lassen. Im Gegensatz dazu sind die Analyse der Spielsituation und die
Bestimmung einer optimalen Schlagrichtung und Schlaggeschwindigkeit herausfor-
dernde Probleme, die nicht einfach mit Hilfe von physikalischen Gesetzen gelöst
werden können. Daher strukturieren wir die Gesamtaufgabe des autonomen Golf-
spielens in unterschiedliche Teilaufgaben, wie es in der Abbildung 6.2 aufgezeigt
wird. Die Komplexität nimmt dabei von unten nach oben zu und damit auch der
Anteil der verwendeten datengetriebenen Ansätze. Ganz unten wird das mecha-
tronische Grundsystem des Golfroboters beschrieben, welches dafür zuständig ist,
den Roboter auf dem Green zu bewegen und den Schlag mit einer vorgegebenen
Richtung und Schlaggeschwindigkeit ausführt. Die aktuelle Situation des Golfspiels
wird definiert durch die Positionen von Golfi, dem Ball, dem Loch und auch der
Beschaffenheit und Größe des Greens und diese Gegebenheiten werden durch eine
3D-Kamera aufgenommen. Auf der obersten Ebene werden zum einen datengetrie-
bene Methoden des maschinellen Lernens verwendet, um Objekte zu detektieren und
zum anderen eine synergetische Kombination von datengetriebenen und physikba-
sierten Methoden, um den Geschwindigkeitsvektor für das Einlochen des Balles zu
berechnen. Mit diesem Vorgehen ist es möglich zunächst ein künstliches neuronales
Netz vorzutrainieren, indem simulativ erzeugte Trainingsschläge verwendet werden,
die ein physikalisches Modell der Balldynamik auf einem vorgegebenen Green nut-
zen. Anschließend wird dieses neuronale Netz mittels Trainingsschlägen des realen
Golfroboters nachtrainiert. Dieses Vorgehen reduziert die Anzahl der zeitaufwendi-
gen Interaktionen mit dem realen System signifikant und erzeugt daher ein besseres
Ergebnis durch eine zielgerichtete und sinnvolle Kombination von datengetriebenen
und physik-basierten Methoden.

6.1.1 Mechatronischer Entwurf des Golfroboters

Das mechatronische System des Golfroboters muss einen vorgegebenen Schlagge-
schwindigkeitsvektor realisieren, d. h. den Ball in eine bestimmte Richtung mit ei-
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6 Demonstratoren

ner spezifischen Geschwindigkeit schlagen. Diese Aufgabe wird in zwei Teilaufgaben
unterteilt.

1. Die Positionierungseinheit muss den Golfroboter so auf dem Green platzie-
ren, dass der Schläger sich direkt neben dem Ball befindet und dabei in eine
bestimmte Richtung zeigt und

2. der Schlagmechanismus muss den Ball so treffen, dass er mit einer spezifischen
Anfangsgeschwindigkeit zu rollen beginnt.

Im Folgenden werden diese Aufgaben detailliert beschrieben.

Positionierungseinheit

Die Positionierungseinheit des Golfroboters besteht aus einer Fahreinheit und ei-
ner zusätzlichen Feinpositioniereinheit, wie in der Abbildung 6.3 schematisch dar-
gestellt ist. Da der Golfplatz durch die an der Decke montierte Kamera aus der
Vogelperspektive betrachtet wird, vereinfacht sich die Positionierungsaufgabe zu ei-
nem ebenen Problem, bei dem die x-Achse, die y-Achse und die Rotation Ψ in der
Ebene ausreichen, um die Positionierung vollständig zu beschreiben. Das Inertialko-
ordinatensystem I, das dem Kamerakoordinatensystem entspricht, liegt ungefähr im
Mittelpunkt des Greens. Das körperfeste Koordinatensystem G liegt zwischen den
beiden hinteren Rädern und ist so ausgerichtet, dass die Gx-Achse in Fahrtrichtung
und die Gy-Achse nach links zeigt.
Die Fahreinheit, die ein Chassis mit zwei angetriebenen JMC-Servomotoren um-

fasst, die durch eine Arduino-Plattform angesteuert werden, sowie zwei frei dreh-
bar gelagerten Rädern, realisiert eine Translation entlang der Gx-Achse und eine
Drehung um den Winkel GΨ. Obwohl der Golfroboter theoretisch durch diese bei-
den Freiheitsgrade jede beliebige Pose einnehmen kann, ist die Translation entlang
der Gy-Achse schwierig zu realisieren. Daher wird zusätzlich eine Feinpositionier-
einheit verwendet, die durch das Koordinatensystem F beschrieben wird. Dieses
befindet sich zwischen dem Chassis und dem Schlaggerät und basiert auf zwei Spin-
deln, die von Joy-IT-Schrittmotoren mit Leadshine DM 542-Treibern angetrieben
werden. Die Feinpositioniereinheit ermöglicht eine kleine, aber weitaus präzisere
Bewegung des Roboters, weil hier der Einfluss der Traktion auf dem Boden eli-
miniert wird. Bezüglich des Koordinatensystems F ist eine translatorische Bewe-
gung entlang der Fy-Achse und eine Rotation um den Winkel FΨ im Bereich von
±18◦ möglich. Die Räder und Spindeln können direkte translatorische Verfahrbe-
fehle erhalten, wobei angenommen wird, dass die Verfahrbefehle aufgrund der Ei-
genschaft der Schrittmotoren ideal realisiert werden. Außerdem wird das Koordi-
natensystem C eingeführt, das sich im Zentrum des Schlägers befindet, sowie das
Ball-Koordinatensystem B, das sich im Zentrum des Balls befindet und die gleiche
Ausrichtung wie I hat. Das Ziel der Positionierung besteht darin, die Cx-Achse mit
der Richtung des gewünschten Schlaggeschwindigkeitsvektors Ivs auzurichten und
den Ursprung des Koordinatensystems C mit einem Offset von 3 cm in negativer

Ivs-Richtung ab dem Ursprung von B zu platzieren. In den bisherigen Tests wurde
der Einfachheit halber nur die Fahreinheit und noch nicht die Feinpositioniereinheit
verwendet, wodurch dennoch ausreichende Ergebnisse erzielt werden konnten.
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Abbildung 6.3 Die Positionierungseinheit, hier in Draufsicht, besteht aus einer Fahreinheit
und einer zusätzlichen Feinpositioniereinheit. Die Fahreinheit umfasst zwei hintere Räder, die
einzeln angetrieben werden (in blau) mit den Drehmomenten θ1 und θ2, wobei das Gewicht
des Roboters von den beiden frei drehbar gelagerten Rädern vorne mit getragen wird. Die An-
triebseinheit ermöglicht es dem Roboter, sich um den Winkel GΨ zu drehen und Bewegungen
entlang der Gx-Achse auszuführen. Die Feinpositioniereinheit, die auf zwei einzeln angetriebe-
nen Spindeln (in grün) basiert, verfügt über ein Langloch auf dem rechten Wagen, das es dem
Roboter ermöglicht, sich um kleine Winkel FΨ zu drehen, indem die Drehmomente θ3 und θ4
in entgegengesetzte Richtungen angetrieben werden, sowie Bewegungen entlang der Fy-Achse.

Die Pose des Golfschlägers wird durch

IgC =
[
IxC,I yC,I zC

]⊤
(6.1)

bezeichnet. Das Ziel der Ansteuerung ist es, dass die tatsächliche Endpose des Golf-
schlägers IgC,e der gewünschten Endpose des Golfschlägers IgC,d entspricht, die von
der Ballposition und dem Schlaggeschwindigkeitsvektor abhängt. Eine Trajektorie
zwischen einem Start- und einem Zielpunkt unter Berücksichtigung von Hindernissen
zu ermitteln ist in der Literatur ein bekanntes Problem, für welches unterschiedliche
Ansätze bestehen. Am Golfroboter wird die Fahrtrajektorie über ein Optimierungs-
problem ermittelt. Der Ansatz bietet die Möglichkeit das Verhalten des Roboters zu
bestrafen, wodurch sich u. A. die Kollision mit dem Ball und bestehenden Hügeln
vermeiden lässt. Die Ansteuerung für die Schrittmotoren wird daher durch die Mi-
nimierung der Kostenfunktion

Jp(Θ) = ϕZ(IgC,e) + ϕS(Θ) + ϕG(IgC) + ϕB(IgC) + ϕH(IgC) (6.2)

berechnet, wobei

Θ =
[
Θ(1), · · · ,Θ(N)

]
mit Θ(i) =

[
θ1(i)
θ2(i)

]
∀ i = 1, ..., N (6.3)
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6 Demonstratoren

die Ansteuerungssequenz durch die Stellgrößen θ1 und θ2 wiedergeben. θ1 und θ2
entsprichen dabei den Drehgeschwindigkeiten beider Räder, die für ein Manöver
i konstant gewählt werden. Die gesamte Fahrtrajektorie setzt sich aus N Dreh-
und Fahrmanövern zusammen, wobei die Annahme, dass es sich bei i = 1 um
eine Drehung handelt, die benötigte Anzahl an Manövern N in den meisten Fällen
verringert. In Abbildung 6.4 ist eine beispielhafte valide Trajektorie aus N = 6
Manövern dargestellt. Die Kostenfunktion enthält mehrere Strafterme, worüber sich
das Verhalten des Roboters beeinflussen lässt. Der Term

ϕZ(IgC,e) =
(
IgC,d −I gC,e

)⊤
Qp

(
IgC,d −I gC,e

)
(6.4)

sorgt für das korrekte Erreichen der Zielposition. Ferner fließt ein hoher Verbrauch
der Stellgrößenenergie über

ϕS(Θ) =
N∑

i=1

Θ⊤(i)RpΘ(i) (6.5)

in die Kostenberechnung ein, wodurch unnötige Fahrwege reduziert werden. Beide
Strafterme ϕZ(IgC,e) und ϕS(Θ) lassen sich über die Gewichtungsmatrizen Qp und
Rp in Relation zueinander setzen. Die weiteren Terme

ϕG(IgC) =

{
0, für

∑N
i=1

IgC,i ∈ BG,∑N
i=1 SG, für

∑N
i=1

IgC,i /∈ BG

, (6.6a)

ϕB(IgC) =

{
0, für

∑N
i=1

IgC,i /∈ BB,∑N
i=1 SB, für

∑N
i=1

IgC,i ∈ BB

, (6.6b)

ϕH(IgC) =

{
0, für

∑N
i=1

IgC,i /∈ BH,∑N
i=1 SH, für

∑N
i=1

IgC,i ∈ BH

(6.6c)

lassen sich das Verlassen des Greens (ϕG) und eine Kollision mit dem Ball (ϕB)
oder einem Hügel (ϕH) an jeder Position gC eines potentiellen Fahrwegs vermeiden.
Sowohl das Verlassen des Greens als auch die Kollisionsvermeidung werden durch
eine Abfrage über Beinhaltung der aktuellen Position des Roboters IgC,i in der zu-
gehörigen Menge aller validen Zustände für das Green BG, Ball BB und Hügel BH

realisiert. Im Fall einer Kollision oder beim Verlassen des Greens erhöht sich die
Summe in Gleichung (6.2) um einen konstanten Wert SG, SB oder SH. Da eine Tra-
jektorie mit auftretender Kollision bzw. Verlassen des zulässigen Bewegungsraums
ausgeschlossen werden soll, empfiehlt es sich die Strafterme ausreichend hoch zu
wählen in Relation zu den Strafen für weite Fahrmanöver ϕZ(IgC,e) oder ungenaue
Positionierung ϕS(Θ). Für das Lösen des Optimierungsproblems wird ein Parti-
kelschwarmalgorithmus verwendet, wofür die Anzahl der Dreh- und Fahrmanöver
N vorgegeben werden muss. Bei steigendem N wird der Suchraum für valide Tra-
jektorien exponentiell größer, wodurch sich die Rechendauer für den Algrithmus
erhöht. Das Ziel ist es somit N hinreichend niedrig zu wählen. Um diesen Para-
meter passend abzuschätzen werden alternative Fahrtrajektorien verwendet, die je-
doch nicht die gleichen Eigenschaften wie im vorgestellten Optimierungsproblem
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Abbildung 6.4 Der Roboter in der Draufsicht an mehreren Positionen auf einem beispielhaf-
ten Green ohne Hügel abgebildet. Damit der Roboter bei der Positionierung den Ball nicht
verschiebt, fährt er ihn von hinten mit einer finalen translatorischen Bewegung an. Bei diesem
letzten Fahrmanöver ist der Roboter bereits korrekt ausgerichtet. In dem Beispiel werden je
drei Dreh- und Fahrmanöver (N = 6) durchgeführt, wobei an den Drehpunkten die Positionen
vor und nach der Drehung durch eine transparente Draufsicht des Roboters gekennzeichnet
sind.

berücksichtigen. Unter der Verwendung des Rapidly Exploring Random Tree* Al-
gorithmus (RRT*)[231], [232] wird ein solcher alternativer Weg für den Roboter
für die Parameterschätzung geplant. Hierfür wird der gefundene Weg über einen
zusätzlichen Algorithmus gekürzt, sodass unter Vermeidung der Hügel, die Anzahl
der Dreh- und Fahrmanöver minimiert wird. In der Anwendung am Golfroboter
resultiert dieses Vorgehen meist in je zwei bis vier notwendigen Dreh- und transla-
torischen Fahrmanövern.

Im Anschluss an die Bewegungsplanung erfolgt das Abfahren der Fahrtrajektorie,
die durch das Lösen des Optimierungsproblems automatisiert ermittelt wurde. Ana-
log zum Regelungsentwurf für einen kontrollierten Schlag in Abschnitt 6.1.1 – ohne
Verwendung eines Beobachters – wurde dieser Ansatz ebenfalls für kontrolliertes
Fahren verwendet. Der Roboter wurde in dem Zuge auf seine Hinterachse reduziert,
woraus sich die Bewegungsgleichungen

IġC,x =
rRad

2
(θ1 + θ2) cos(IgC,ψ) =

rRad

2
(u1 + u2) cos(x3), (6.7a)

IġC,y =
rRad

2
(θ1 + θ2) sin(IgC,ψ) =

rRad

2
(u1 + u2) sin(x3), (6.7b)

IġC,ψ =
rRad

lAchse

(θ2 − θ1) =
rRad

lAchse

(u2 − u1) (6.7c)

für das kinematische Modell ergeben, wobei die folgenden Ersatzgrößen für Zustands-

147



6 Demonstratoren

und Eingangsvektoren zur Vereinfachung gewählt werden

IġC =




IġC,x

IġC,y

IġC,ψ


 =



x1
x2
x3


 , Θ =

[
θ1
θ2

]
=

[
u1
u2

]
. (6.8)

In diesen Bewegungsgleichungen entspricht rRad dem Radius der baugleichen Hin-
terräder und lAchse der Länge der Hinterachse, die beide Räder miteinander verbin-
det. In Gleichung (6.7) wird die gemittelte Drehgeschwindigkeit v = rRad

2
(θ1 + θ2)

in x- und y-Richtung aufgeteilt. Die Ausrichtung x3 ändert sich dabei nach Glei-
chung (6.7c) ebenfalls abhängig der Drehgeschwindigkeiten. Für das Beispiel u1 =
−u2 > 0 würde der Roboter, dargestellt in Abbildung 6.3, sich im Uhrzeigersinn
um den Punkt IgC drehen. Die Gleichungen Gleichung (6.7) können zusammenge-
fassten werden durch die Beschreibung IġC = APgC +BPΘ. Auf Grundlage eines
linearisierten Modells, wofür der Gain-Scheduling-Ansatz verwendet wird, lässt sich
der Entwurf eines Riccati-Reglers durchführen. Der Zustand IġC wird über die Aus-
wertung des Kamerasignals gemessen, wie es in Unterabschnitt 6.1.2 erläutert ist.

Schlagmechanismus

Die Regelungsaufgabe des Schlagmechanismus besteht darin, dass der Schläger den
Ball mit einer präzise geregelten translatorischen Geschwindigkeit ∥vs∥ schlägt. Dies
entspricht einer rotatorischen Geschwindigkeit von φ̇s =

∥vs∥
h

, wobei h der Abstand
von der Rotationsachse der Abtriebswelle zum Schlagpunkt des Schlägers ist, vgl.
Tabelle 6.1. Die Schlaggeschwindigkeit φ̇s soll genau dann erreicht werden, wenn
der Schläger senkrecht nach unten steht, d. h. einen Winkel von φ = 0 rad auf-
weist. Basierend auf diesen Anforderungen wurde eine Schar von Solltrajektorien

w =
[
φ, φ̇

]⊤
in Abhängigkeit der gewünschten Schlaggeschwindigkeit φ̇s hergelei-

tet. In Anlehnung an eine authentische Golfschwungbewegung bestehen diese jeweils
aus den drei Phasen Ausholen, Schlagen, Rückholen, vgl. Abbildung 6.5, wobei die
frei wählbaren Parameter φl und Tl den Winkel und die Dauer des Aushol- und
Rückholvorgangs charakterisieren, vgl. Tabelle 6.1. Die abschnittsweise definierten
Funktionen φ, φ̇ : R→ R ergeben sich durch

φ(t) =





f1(t), 0 < t ≤ Tl

f2(t), Tl < t ≤
(
Tl +

φlπh
∥vs∥

)

f3(t),
(
Tl +

φlπh
∥vs∥

)
< t ≤

(
2Tl +

φlπh
∥vs∥

)

0, sonst,

(6.9a)

φ̇(t) =





f4(t), 0 < t ≤ Tl

f5(t), Tl < t ≤
(
Tl +

φlπh
∥vs∥

)

f6(t),
(
Tl +

φlπh
∥vs∥

)
< t ≤

(
2Tl +

φlπh
∥vs∥

)

0, sonst

(6.9b)
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mit

f1(t) =
φl
2

(
cos
(
π
Tl
t
)
− 1
)
, (6.10a)

f2(t) = −φl cos
(

∥vs∥
φlh

(t− Tl)
)
, (6.10b)

f3(t) =
φl

2

(
cos
(
π
Tl

(
t− Tl − φlπh

∥vs∥

))
+ 1
)
, (6.10c)

f4(t) = −φlπ
2Tl

sin
(
π
Tl
t
)
, (6.10d)

f5(t) =
∥vs∥
h

sin
(

∥vs∥
φlh

(t− Tl)
)
, (6.10e)

f6(t) = −φlπ
2Tl

sin
(
π
Tl

(
t− Tl − φlπh

∥vs∥

))
. (6.10f)

Ta Ta +
φaπ
φ̇s

2Ta +
φaπ
φ̇s

t

φ(t)

φa

φr

t

φ̇(t)

φ̇s

Ausholen Schlagen Rückholen

◦
◦

Abbildung 6.5 Die Solltrajektorien für den Winkel φ und die Winkelgeschwindigkeit φ̇ bestehen
aus den drei Phasen Ausholen, Schlagen, Rückholen und werden durch stückweise definierte
Funktionen beschrieben, vgl. Gleichung (6.9). Die gewünschte Schlaggeschwindigkeit φ̇s wird
erreicht, wenn der Winkel φ = 0 aufweist, hier eingezeichnet als grüner Kreis.

Tabelle 6.1 Parameter zur Beschreibung der Regelungsaufgabe des Golfroboters.

Symbol Physikalischer Parameter

Tl = Tr Ausholdauer bzw. Rückholdauer
φl = −φr Ausholwinkel bzw. Rückholwinkel

h Abstand von der Rotationsachse der
Abtriebswelle zum Schlagpunkt des Schlägers

Die untere Welle wird durch einen drehmomentgeregelten Elektromotor1 angetrie-
ben und an der oberen Welle ist der Golfschläger mit einem Putting-Schlägerkopf
montiert, vgl. Abbildung 6.1. Um die Sicherheit zu gewährleisten, darf der Schläger

1Beckhoff AM8042 [233].
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keine Überschläge ausführen. Unter der Annahme, dass beide Getriebewellen zu
einem starren Körper zusammengefasst sind2, ergibt sich durch physikalische Über-
legungen ein vereinfachtes dynamisches Zustandsraummodell des Schlagmechanis-
mus

[
ẋ1
ẋ2

]
=

[
x2

−mga sinx1−Md(x)+4u
J

]
, (6.11a)

y = x1, (6.11b)

mit Md(x) = dx2 + rµ sgn x2
∣∣mx22a+mg cos x1

∣∣ . (6.11c)

Der Zustandsvektor x =
[
φ, φ̇

]⊤
enthält den Winkel φ und die Winkelgeschwin-

digkeit φ̇ der (oberen) Abtriebswelle. Die untere stabile Ruhelage des Schlägers
entspricht der Nulllage φ = 0. Das nichtlineare Dämpfungsmoment Md : R2 → R
bildet die statische und die dynamische Reibung der Drehgelenke ab, vgl. Abbil-
dung 6.6(c). Die physikalischen Parameter finden sich in der Tabelle 6.2 und in der
Abbildung 6.6(b).

(a) Schlagmechanismus

φ

a

r

d,µ g

(b) Ersatzbild

φ

u

FN

FR

mφ̇2a
mg

(c) Freischnitt

Abbildung 6.6 Physikalisch motivierte Modellbildung des Schlagmechanismus. Es wird ver-
einfachend angenommen, dass beide Getriebewellen zu einem starren Körper zusammengefasst
sind und daher nur die obere Zahnriemenscheibe betrachtet. In Anlehnung an die während des
Projekts bearbeitete studentische Arbeit [234].

Die Regelungsstrategie des Schlagmechanismus basiert auf einer linearen Zwei-
Freiheitsgrade-Struktur [24] unter Verwendung eines Gain-Scheduling-Ansatzes [21],
wie in der Abbildung 6.7 dargestellt ist. Das bedeutet, dass die Regelstrecke (6.11)
für verschiedene Arbeitspunkte φRi

∈ [−π, π ] mit einem Inkrement von 0,01 rad
linearisiert wird. Dadurch entsteht eine Reihe von linearen Teilmodellen

ẋ = ARi
x+ bu, (6.12a)

y = c⊤x (6.12b)

2Die Getriebeübersetzung ist in der Bewegungsdifferentialgleichung (6.11) durch den Vorfaktor 4
beim Steuereingang berücksichtigt.
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Tabelle 6.2 Physikalische Parameter des Schlagmechanismus des Golfroboters.

Symbol Physikalischer Parameter Wert

m Masse des Golfschlägers 0,5241 kg
J Rotationsträgheit des Golfschlägers 0,1445 kg/m2

g Gravitationsbeschleunigung 9,81m/s2

a Abstand von der Rotationsachse der Abtriebswelle
zum Massenschwerpunkt des Golfschlägers

0,4702m

d Dynamischer Reibungskoeffizient 0,0132 kgm2/s
r Radius von der Rotationsachse der Abtriebswelle

zum Reibungspunkt
0,0245m

µ Statischer Reibungskoeffizient 1,5136

mit

ARi
=

[
0 1

−mcga
J

cos(φRi
) − d

J

]
, b =

[
0
4
J

]
, c⊤ =

[
1, 0
]
. (6.13)

Während des Betriebs wird der Regler verwendet, dessen zugehöriges Streckenmodell
am besten mit der aktuellen Situation übereinstimmt, d. h.

i = argmin
i
|x1 − φRi

| . (6.14)

Die Gain-Scheduling-Variable i bestimmt sowohl die Vorsteuerung und den Regler
als auch den für die Zustandsregelung erforderlichen Beobachter.

Vorsteuerung Regler

Beobachter

Gain-Scheduling

Strecke
w

u∗ u y

x∗ x̂

uc

−
i

Abbildung 6.7 Am Prüfstand wird eine lineare Zwei-Freiheitsgrade-Regelungsstruktur mit
einem Gain-Scheduling-Ansatz verwendet. In Anlehnung an [235].

Die linearen Zustandsrückführungen

uc = k⊤
Ri
(x∗ − x̂) (6.15)

werden als zeitinvariante Riccati-Regler entworfen. Hierfür wird die quadratische
Kostenfunktion

J =
1

2

∫ ∞

0

x⊤(t)Qx(t) +Ru2(t) d t (6.16)
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mit

Q =

[
5 0
0 1

]
, R = 1 (6.17)

minimiert, die die simultane Berücksichtigung des zeitlichen Verlaufs der Zustands-
größen und der aufgebrachten Steuerenergie ermöglicht3.
Die Vorsteuerungsmatrizen, die zur Berechnung der Sollverläufe

x∗ = F xw, u∗ = f⊤
uRi

w (6.18)

erforderlich sind, ergeben sich durch die Betrachtung des eingeschwungenen Zu-
stands [24] zu

F x =

[
1 0
0 1

]
, f⊤

uRi
= −b+ARi

. (6.19)

Das resultierende Regelgesetz lautet

u = u∗ + uc, (6.20)

wobei aufgrund von Stellgrößenbeschränkungen zu beachten ist, dass die Stellgröße
u einer Sättigung unterliegt, vgl. Abbildung 6.7.
Für jedes linearisierte System wird ein Luenberger-Beobachter [24], [181] entwor-

fen, dessen Dynamik durch

˙̂x =
(
ARi
− lRi

c⊤
)
x̂+ bu+ lRi

y (6.21)

beschrieben wird. Dabei werden die Eigenwerte des Beobachters, d. h. der Matrix
ARi
− lRi

c⊤ so gewählt, dass sie doppelt so groß sind wie die Eigenwerte des ge-
schlossenen Regelkreises [221].

6.1.2 Bildverarbeitung

Für ein erfolgreiches Putten muss die Informationsverarbeitung mittels geeigneter
Sensorik alle erforderlichen Informationen über die Spielsituation erfassen. Dazu ist
an der Decke des Labors eine Stereokamera4 befestigt, die die Spielfläche aus der Vo-
gelperspektive aufnimmt. Das Farbbild wird für die Detektion der Spielobjekte ver-
wendet. Im Gegensatz dazu liefert das Tiefenbild die absoluten Positionen der detek-
tierten Spielobjekte und dient darüber hinaus zur Approximation des Höhenprofils
der Spielfläche. Im Folgenden werden die Elemente der Bildverarbeitung detailliert
erklärt.
Die Größe und Position der Spielfläche sowie die Position des Lochs werden als

konstante Werte festgelegt, weil die Kameraposition nicht verändert wird. Zur ein-
fachen Detektion der Position und Orientierung des Golfroboters besitzt dieser zwei
farbige Kreise auf der Oberseite, vgl. Abbildung 6.13, deren Positionen sich an-
hand des gewünschten RGB-Farbcodes bestimmen lassen. Es ist wichtig, dass die
Farben einen möglichst hohen Kontrast zueinander aufweisen, damit sie gut unter-
schieden werden können. Durch eine Minimierung der gemittelten Abweichung des

3Eine ausführliche Beschreibung dieses Ansatzes findet sich in [24].
4Bei der Kamera handelt es sich um eine Kinect für Windows v2.
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RGB-Werts eines Pixels zum gewünschten RGB-Wert, lassen sich eine Vielzahl an
Pixeln im Farbbild bestimmen, worüber die Mittelpunkte der farbigen Kreise defi-
niert werden. Für eine schnellere Datenverarbeitung kann das untersuchte Farbbild
zuerst in Graustufen tranformiert und von einem statischen Graustufenbild ohne
Roboter und Ball, subtrahiert werden. Es bleiben nur die Pixel übrig, auf denen
eine Farbveränderung erkannt werden kann, die zur Definition von Bereichen im
Bild verwendet werden können. Innerhalb dieser Bereiche erfolgt nun eine schnellere
Objekterkennung. Unter der Annahme, den Ball als homogenen weißen Punkt zu be-
trachten lässt sich die Ballposition ebenfalls über dieses Verfahren bestimmen. Auf-
grund dieser Annahme ist das Verfahren jedoch weniger robust, weshalb alternativ
ein vortrainiertes Faltungsnetz5 in Matlab genutzt werden kann. Auf Grundlage von
50 zuvor aufgenommenen Trainingsbildern erkennt das Netz den Ball zuverlässig.
Dieses Verfahren ist rechenintensiver jedoch robuster, weshalb es sich für eine offli-
ne Detektierung eignet. Wenn der Ball bei einem geregelten Fahrmanöver ebenfalls
erkannt werden soll (vgl. Abschnitt 6.1.1), wird eine schnelle Objekterkennung prio-
risiert. Das Tiefenbild liefert schließlich die absoluten Positionen der Spielobjekte
im Inertialkoordinatensystem I.
Das Höhenprofil der Spielfläche wird anhand eines Tiefenbilds (das im Vorhin-

ein ohne vorhandene Spielobjekte aufgenommen wird) durch eine zweidimensio-
nale Spline-Funktion in Matlab approximiert. Hierfür werden zuerst mithilfe eines
Hampel-Filters potentielle Ausreißer entfernt. Im Anschluss werden fehlende Daten
extrapoliert und der gesamte Datensatz geglättet, sodass eine in Ix- und Iy-Richtung
differenzierbare Funktion entsteht, in welcher das ortsabhängige Gefälle bestimmt
werden kann. Dieses Gefälle ist entscheidend für die Berechnung der Hangabtriebs-
kraft des Balls und somit für die Rolldynamik des Balls, vgl. Unterabschnitt 6.1.3.

6.1.3 Bestimmung eines optimalen Schlages

Das Kernelement bei der Bestimmung eines optimalen Schlags bildet ein neuronales
Netz, das die Rolldynamik des Balls repräsentiert. Übergeordnet wird zur Bestim-
mung eines optimalen Schlags für ein erfolgreiches Putten die folgende Strategie
verfolgt, vgl. Abbildung 6.8:

1. Vortrainieren des neuronalen Netzes für ein gegebenes Höhenprofil der Spiel-
fläche anhand simulativ erzeugter Trainingsschläge, vgl. Abschnitt 6.1.3.

2. Bestimmung des optimalen Schlags anhand des neuronalen Netzes, vgl. Ab-
schnitt 6.1.3.

3. Ausführung des Schlags auf der realen Spielfläche. Für den Fall, dass der Ball
nicht unmittelbar in das Loch rollt, kann ausgehend von dieser Situation erneut
eine Objektdetektion mit anschließender Berechnung und Ausführung eines
optimalen Schlags durchgeführt werden.

4. Nachtrainieren des neuronalen Netzes. Dieser Schritt wurde bisher noch nicht
am Golfroboter realisiert. Es ist jedoch denkbar, einen gescheiterten Schlag als

5Im Detail handelt es sich um ein sogenanntes Faster R-CNN [236].
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weiteren Trainingsdatenpunkt zurückzuführen und somit die Genauigkeit des
neuronalen Netzes zu erhöhen.

Modellbasiertes Vortraining des neuronalen Netzes

Bestimmung des optimalen Schlags

Ausführung des Schlags

Ball im Loch? Nachtraining
nein

ja

Abbildung 6.8 Übergeordnete Strategie zur Bestimmung eines optimalen Schlags.

Im Folgenden werden die simulative Erzeugung der Trainingsdaten basierend auf ei-
nem Modell der Rolldynamik des Balles und die Bestimmung des optimalen Schlages
mittels des neuronalen Netzes beschrieben.

Erzeugung der simulativen Trainingsdaten

Die Erzeugung der Trainingsdaten erfolgt durch numerische Simulation eines phy-
sikalischen Modells der Rolldynamik des Balls. Diese wird maßgeblich durch die in-
itiale Rollgeschwindigkeit, das Höhenprofil der Spielfläche sowie den Rollwiderstand
des Balls auf der Spielfläche bestimmt.
Die Berechnung der Hangabtriebskräfte in x- und y-Richtung erfolgt mittels der

lokalen Winkel

αx = arctan

(
∂fgreen
∂x

)
, (6.22a)

αy = arctan

(
∂fgreen
∂y

)
(6.22b)

der Oberfläche fgreen(x, y) der Spielfläche, vgl. Abbildung 6.9(a). Die Rollwider-
standskraft

Fr = mbgµb cosαx cosαy (6.23)

wird als konstant angenommen [237] und wirkt stets parallel zur Oberfläche in ent-
gegengesetzter Richtung

β = arctan

(
ẏ

ẋ

)
(6.24)

der Rollrichtung, vgl. Abbildung 6.9(b). Die resultierenden Bewegungsdifferential-
gleichungen sind gegeben durch

mb Iẍ = −mbg sinαx − Fr| cos β|sgn(Iẋ), (6.25a)

mb Iÿ = −mbg sinαy − Fr| sin β|sgn(Iẏ), (6.25b)
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sodass sich die korrespondierende Zustandsraumdarstellung mit dem Zustandsvektor

Iq =
[
Ix,I y,I ẋ,I ẏ

]⊤
ergibt.

fgreen(x)

αx
mbg cosαx

mbg sinαx

Iz

Ix

(a) Schiefe Ebene, hier schematisch in

Ix-Richtung dargestellt.

fgreen(x, y)

y

x

vs

β

Fr

(b) Rollrichtung und -widerstand des
Balls

Abbildung 6.9 Das physikalische Modell der Rolldynamik des Balls basiert auf der Betrachtung
mittels schiefer Ebenen.

Für das Vortraining werden zufällige Schläge (mit unterschiedlichen Startposi-
tionen und -geschwindigkeiten) anhand des physikalischen Modells (6.25) mit den
Parametern aus Tabelle 6.3 simuliert6. Die Start- und Endpositionen des Balls sind
durch Iq0 =

[
Ix0,I y0,I ẋ0,I ẏ0

]
bzw. Iqe =

[
Ixe,I ye, 0, 0

]
gegeben.

Tabelle 6.3 Physikalische Parameter der Balldynamik.

Symbol Physikalischer Parameter Wert
mb Masse des Golfballs 0,046 kg
g Gravitationskonstante 9,81m/s2

µb Rollreibungskoeffizient des Balls
auf dem Rasen

0, 15

Bestimmung eines optimalen Schlags

Ein Schlaggeschwindigkeitsvektor
[
IẋB,0,I ẏB,0

]⊤
ist bezüglich einer Startposition des

Balls
[
IxB,0,I yB,0

]⊤
genau dann optimal, wenn der Ball so geschlagen wird, dass er

im Loch
[
IxH,I xH

]⊤
liegen bleibt, d. h.

[
IxB,e
IyB,e

]
=

[
IxH
IyH

]
,

[
IẋB,e
IẏB,e

]
=

[
IẋH
IẏH

]
=

[
0
0

]
. (6.26)

Die Bestimmung dieses optimalen Schlaggeschwindigkeitsvektors basiert auf ei-
nem neuronalen Netz. Der erste Ansatz verwendet ein flaches neuronales Netz aus
2 Schichten mit jeweils 30 versteckten Neuronen, das die Rolldynamik des Balls
prädiziert, vgl. Abbildung 6.10(a), und anschließend die erforderliche Schlaggeschwin-
digkeit durch eine überlagerte Optimierung berechnet, vgl. Abbildung 6.10(b). Die

6Die numerische Integration erfolgt mittels des RK4-Solvers.
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Optimierungsfunktion ist hierbei gegeben durch

Jb(IẋB,0,I ẏB,0) = (IqB,e −I qH)
⊤W (IqB,e −I qH) (6.27)

mit IqH =
[
IxH , IyH , 0, 0

]⊤
,W = diag (1, 1, 1, 1). Der Ausgang aus dem neuronalen

Netz ist IqB,e Das Optimierungsproblem wird mittels einer Partikelschwarmoptimie-
rung in Matlab gelöst.

Neuronales
Netz

[xB,0, yB,0]
⊤

[ẋB,0, ẏB,0]
⊤

[xB,e, yB,e]
⊤

[ẋB,e, ẏB,e]
⊤

(a) Training des neuronalen Netzes

Neuronales
Netz

Optimierung

[xB,0, yB,0]
⊤

[ẋB,0, ẏB,0]
⊤

[xB,e, yB,e]
⊤

[ẋB,e, ẏB,e]
⊤

[xH , yH ]
⊤

[ẋH , ẏH ]
⊤ = [0, 0]⊤

[ẋB,0, ẏB,0]
⊤

(b) Nutzung des neuronalen Netzes mittels einer Optimierung

Abbildung 6.10 Der erste Ansatz nutzt ein neuronales Netz zur Vorwärtsprädiktion der Roll-
dynamik des Balls und ermittelt die Schlaggeschwindigkeit mittels einer überlagerten Optimie-
rung. Alle Größen werden bezüglich des Inertialkoordinatensystems I angegeben.

Ein alternativer neuartiger Ansatz besteht darin, die Netzwerkarchitektur aus
der Abbildung 6.10(a) durch geschicktes Vertauschen der Ein- und Ausgänge so zu
verändern, vgl. Abbildung 6.11(a), dass ein in Bezug auf die Schlagaufgabe inverses
neuronales Netz entsteht, das unmittelbar der optimale Schlaggeschwindigkeitsvek-
tor berechnet, vgl. Abbildung 6.11(b). Dadurch wird die aufwändige Lösung des
Optimierungsproblems (6.27) obsolet. Dies führt zu einer verkürzten Rechenzeit
bei einer vergleichbar hohen Vorhersagegenauigkeit wie beim ersten Ansatz. Die
Abbildung 6.12 zeigt exemplarisch, dass die mittels des inversen neuronalen Net-
zes bestimmten Schlaggeschwindigkeiten simulativ in der Lage sind, den Ball so zu
schlagen, dass er tatsächlich von unterschiedlichen Startpositionen aus zuverlässig in
das Loch rollt. Dieses Ergebnis bestätigt die Machbarkeit des vorgestellten Ansatzes.

6.1.4 Ergebnisse

Im Folgenden wird der Ablauf eines autonomen Golfspiels beschrieben und der Er-
folg der beschriebenen Methode evaluiert. Dies sind die Ergebnisse einer studenti-
schen Arbeit, in der die Funktionsweise des Golfroboters auf Szenarien mit Hügeln
erweitert wurde und diese auch ausführlich getestet worden sind [238].
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Inverses
neuronales

Netz

[xB,0, yB,0]
⊤

[xB,e, yB,e]
⊤

[ẋB,e, ẏB,e]
⊤

[ẋB,0, ẏB,0]
⊤

(a) Training des inversen neuronalen Netzes

Inverses
neuronales

Netz

[xB,0, yB,0]
⊤

[xB,e, yB,e] = [xH , yH ]
⊤

[ẋB,e, ẏB,e]
⊤ = [ẋH , ẏH ]

⊤ = [0, 0]⊤

[ẋB,0, ẏB,0]
⊤

(b) Nutzung des inversen neuronalen Netzes

Abbildung 6.11 Der zweite Ansatz nutzt ein inverses neuronales Netz, das unmittelbar die
Schlaggeschwindigkeit für eine gegebene Spielsituation ermittelt. Alle Größen werden bezüglich
des Inertialkoordinatensystems I angegeben.
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Abbildung 6.12 Simulativ bestimmte Balltrajektorien (weiße Kreise) für optimale Schlag-
geschwindigkeiten (Pfeile in dunkelblau) für unterschiedliche Startpositionen des Balls unter
Nutzung des inversen neuronalen Netzes. Das Loch wird im Ursprung des Koordinatensystems
I angenommen und das Höhenprofil ist durch die Skala definiert.

Zunächst werden sämtliche Spielobjekte von der Spielfläche entfernt und ein Tie-
fenbild zur Höhenprofilbestimmung aufgenommen und als Spline-Funktion appro-
ximiert. Auf dieser Basis werden zufällige Trainingsschläge simulativ erzeugt und
für das Training des neuronalen Netzes genutzt. Anschließend werden die Spielob-
jekte (Golfi, Ball) beliebig auf der Spielfläche platziert. Diese Ausgangssituation ist
in der Abbildung 6.13(a) dargestellt. Von hier ausgehend werden die Algorithmen
für das autonome Golfspiel (Objektdetektion, Bestimmung des optimalen Schlags,
Berechnung der Fahrstrategie) in Matlab ausgeführt und Zwischenergebnisse visua-
lisiert. Nachdem der Golfroboter sich geeignet neben dem Ball platziert hat, vgl.
Abbildung 6.13(b), wird der Schlag ausgeführt, vgl. Abbildung 6.13(c).
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(a) Startposition (b) Vor dem Schlag (c) Nach dem Schlag

Abbildung 6.13 Beispielhafte Situation und Ablauf eines Golfspiels des Roboters.

Dieses Beispielszenario demonstriert qualitativ das erfolgreiche Putten ohne hü-
gelige Spielfläche. Um das Können des Roboters quantitativ zu bestimmen, wur-
den mehrere Versuchsreihen aus unterschiedlich schwierigen Spielsituationen durch-
geführt [238]. Als einfachste Schwierigkeitsstufe wurde das Putten ohne notwendige
Positionierung und ohne Berücksichtigung einer hügeligen Spielflache festgelegt. In
der zweiten Schwierigkeitsstufen wird der Roboter nicht perfekt ausgerichtet po-
sitioniert, sodass ein Fahrmanöver notwendig ist. Im dritten Fall beeinflusst eine
hügelige Spielfläche die Berechnung des Schlagvektors (vgl. Unterabschnitt 6.1.3)
und erst in der vierten Schwierigkeitsstufe wird zusätzlich angenommen, dass beim
Fahren besonders hohe Hügel umfahren werden müssen.

Im Rahmen der Versuchsreihen wurden verschiedene Spielsituationen erstellt,
die in diese vier Schwierigkeitsstufen eingeteilt werden können. Die Grafik Abbil-
dung 6.13 zeigt bspw. eine Situation der Schwierigkeitstufe 2. Um die Schwierigkeit
detaillierter zu beschreiben, wurden jeder Schwierigkeitsstufe eine Punktzahl zuge-
wiesen, die auf der Anzahl der benötigten Fähigkeiten basiert, die der Roboter für
das Lösen einer Spielsituation benötigt. Ein Beispiel für eine solche Fähigkeit ist das
Erkennen des Höhenprofils, welches für Spielsituationen der Schwierigkeitsstufen 1
und 2 nicht notwendig ist. Zusätzlich zur Punktzahl der benötigten Fähigkeiten
geht die Distanz zwischen Ball und Loch als Faktor in den finalen Schwierigkeits-
wert ein. Aufgrund inhomogener Oberflächenbeschaffenheit wird angenommen, dass
es schwieriger ist einen Ball über eine größere Distanz präzise zu putten, wie es auch
bei einem realen Golfspiel der Fall ist. Diese Annahmen bilden die Grundlage eines
situationsabhängigen Schwierigkeitswerts.

Für die Durchführung der Versuchsreihen in denen jeweils eine Spielsituation zehn
Mal gelöst wurde, wurden Spielregeln festgelegt. Trifft der Golfroboter beim ersten
Versuch das Loch nicht, darf die neu entstandene Spielsituation gelöst werden, sofern
sie lösbar ist. Es entstehen Erfolgsquoten für den ersten und für den zweiten Versuch.
Ein dritter Versuch wird nicht durchgeführt. Wie auch im realen Golfspiel werden
mehr benötigte Versuche schlechter bewertet, weshalb der zweite Versuch beim Mit-
teln beider Erfolgsquoten niedriger gewichtet wird. Mit dieser Auswertungsregel und
quantifizierbaren Spielsituationen wurde das Können des Roboters differenziert er-
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mittelt. Anhand von sechs Versuchsreihen konnte gezeigt werden, dass Situationen,
die als schwerer eingestuft werden, auch weniger erfolgreich gelöst werden können.
Zwischen Situationen mit knapp 100%iger Erfolgsquote, bis zu Spielsituationen bei
denen immer zwei Versuche benötigt wurden, konnte ein nahezu linearer Zusammen-
hang festgestellt werden. Dies spricht dafür, dass die beschriebene Auswertungsme-
thodik auch in Zukunft für die Validierung des Roboters genutzt werden kann und
potentiell auch bei anderen Golfrobotern anwendbar ist.

Spielsituationen der Schwierigkeitsstufe 3 erfordern ähnliches Können wie beim
menschlichen Putten. Mit einer relativ einfachen Positionierung ohne Hügel umfah-
ren zu müssen, diese jedoch beim Schlag zu berücksichten, sind diese Situationen
vergleichbar mit den Fähigkeiten, die ein Mensch benötigt um solche Spielsituatio-
nen zu lösen. Für eine Distanz von 1,5m zwischen Ball und Loch konnte mit nur
einem Versuch eine Erfolgsquote von 60% erreicht werden, was vergleichbar ist mit
fortgeschrittenen Golfspieler*innen [239].

6.2 Selbstbalancierender Würfel

In diesem Abschnitt wird der Entwurf und Aufbau eines Demonstrators für das Pro-
jekt DART beschrieben. Es handelt sich um einen selbstbalancierenden Würfel, der
in der Projektlaufzeit als regelungstechnisches Testsystem entwickelt wurde, siehe
auch Abbildung 6.14. Ebenso wie der Golfroboter dient er als reales System zur
Testung der in DART entwickelten Methoden. In Unterabschnitt 6.2.1 werden der
mechatronische Aufbau, die Manöver und die Entwicklung des Würfels beschrieben.
Danach folgt der modellbasierte Regelungsentwurf in Unterabschnitt 6.2.2. Zum
Schluss werden in Abschnitt 6.2.2 die Ergebnisse der klassischen Regelung mittels
LQ-Regler und einige der Ergebnisse der neu entwickelten hybriden Methoden dar-
gestellt.

6.2.1 Mechatronischer Entwurf des Würfels

Das Regelungsziel des balancierenden Würfels ist die automatisierte Stabilisierung
auf einer seiner Kanten oder Ecken. Darauf ist der mechatronische Entwurf mit Sen-
sorik, Aktorik und Informationsverarbeitung ausgelegt, sodass er aus einer beliebigen
Orientierung von allein auf eine seiner Kanten oder Ecken aufschwingen kann und
sich dort stabilisiert. Als Aktoren werden Schwungräder verwendet, ein bekannter
Aktor in mechanischen System. Ein Anwendungsbeispiel sind Satelliten, die durch
die Geschwindigkeitsänderung von Schwungrädern eine Drehmoment erfahren und
somit ihre Orientierung ändern können. Als kleines, einfach zu handhabendes und
aus Standardteilen entwickeltes System kann der Würfel von anderen nachgebaut
werden und einfach in der Lehre und Forschung verwendet werden. Ursprünglich
wurde er u. a. von dem Institut ”Institute for Dynamic Systems and Control“ der
ETH Zürich entwickelt [240]. Der Würfel des DART-Projekts wurde selbst konstru-
iert und entwickelt, sodass sich der mechatronische Aufbau unterscheidet, jedoch
funktioniert er nach dem selben Prinzip.
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Abbildung 6.14 Der selbstbalancierende Würfel als mechatronisches System zum Testen der
entwickelten hybriden Methoden. Der Würfel hat eine Kantenlänge von 15 cm.

Mechatronischer Aufbau

In Abbildung 6.15 wird der mechatronische Aufbau des Würfels veranschaulicht. Er
beinhaltet die mechanische Grundstruktur, Sensoren, Informationsverarbeitung und
Aktoren. Die mechanische Grundstruktur besteht im Wesentlichen aus dem Rahmen
und den inneren Verbindungselementen. Der Rahmen des Würfels wird durch sechs
additiv gefertigte Kunststoffplatten gebildet, die an den Ecken miteinander ver-
schraubt sind. Die restlichen Komponenten sind an dem Rahmen im Inneren des
Würfels angebracht. Ein Kabelstrang verläuft aus dem Würfel zur Verbindung zum
Echtzeitsystem und zur Stromversorgung. Dabei muss beachtet werden, dass der Ka-
belstrang nicht die Bewegung des Würfels beeinflusst. Ein zukünftiges Ziel könnte
sein, den Würfel vollständig autonom zu gestalten, so dass die Stromversorgung etc.
im Inneren integriert werden müsste. Die wesentlichen mechanischen Komponenten
sind die drei Schwungräder (im Folgenden als Räder bezeichnet) und die drei Schei-
benbremsen. Jedes Rad wird durch einen Elektromotor angetrieben und kann durch
eine Scheibenbremse abrupt gebremst werden, die durch jeweils einen Servomotor
aktiviert wird.
Für die Erkennung der Bewegung des Würfels werden als Sensoren drei IMU7

und drei kontaktlose, magnetische Sensoren8 für die Elektromotoren, im Folgenden
als Motorsensoren bezeichnet. Der IMU misst die drei translatorischen Beschleu-
nigungen und drei rotatorischen Geschwindigkeiten. Durch ein Filter können aus
den gemessenen Signalen dieser Sensoren die drei Winkel θx, θy und θz des Würfels
im Raum bezogen auf das Inertialsystem bestimmt werden, siehe Abbildung 6.18
für eine Visualisierung der Winkel. Der Motorsensor liefert die Position ψi und Ge-
schwindigkeit ψ̇i eines Rades. Zur Informationsverarbeitung wird Matlab/Simulink

7Adafruit 2472 BNO055 Inertia Measurement Unit
8AS5045B von ams OSRAM
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Abbildung 6.15 Struktur des Würfels als mechatronisches System

und ein Scalexio Echtzeitsystem mit entsprechender Software von dSPACE verwen-
det. In Matlab/Simulink ist das Modell des Systems und der Regelkreis implemen-
tiert. Die Signalübertragung zwischen dem Modell und dem Würfel wird über das
Echtzeitsystem und die Software ConfigurationDesk und ControlDesk realisiert. Die
Aktoren sind drei bürstenlose 80-Watt Elektromotoren9 und drei Servomotoren10.

Beschreibung des Manövers

Das betrachtete Manöver des Würfels beginnt auf einer seiner Flächen, es folgt der
Aufschwung und die Stabilisierung auf eine Kante und endet mit dem Aufschwung
und der Stabilisierung auf eine Ecke, was in Abbildung 6.16 visualisiert ist. Die Re-
gelung wird aktiv, sobald sich der Würfel durch den Aufschwung im Einzugsbereich
der oberen Ruhelage befindet.

Abbildung 6.16 Veranschaulichung des Manövers: a) von der Fläche auf die Kante und b)
von der Kante auf die Ecke. Die Abbildung wurde aus [241] übernommen.

Beim Aufschwung werden je nach Manöver ein oder mehrere Schwungräder auf ei-
ne bestimmte Drehgeschwindigkeit beschleunigt, damit ausreichend kinetische Ener-
gie vorhanden ist. Für den Aufschwung von der Fläche auf die Kante ist nur ein
Rad notwendig, das sich um die Achse der Kante dreht, über die aufgeschwungen
wird. Für den Aufschwung von der Kante auf die Ecke sind zusätzlich die anderen

945-flat der Maxon Motor AG
10Hitec Servo D-89 MW
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(a) Der Prototyp während des Balancierens. (b) Kinematische Größen des Prototypens. Abbil-
dung aus [241]

Abbildung 6.17 Der Prototyp als Vorstufe des Würfels zum Testen des mechatronischen
Aufbaus.

zwei Räder notwendig. Die Räder werden durch die Scheibenbremse abrupt bis zum
Stillstand abgebremst, sodass die kinetische Energie der Räder aufgrund der Ener-
gieerhaltung auf den Rahmen des Würfels in Form eines Momentes übertragen wird.
Der Würfel erfährt eine rotatorische Beschleunigung und schwingt über eine Kante
oder Ecke hoch in den Einzugsbereich des Reglers der instabilen Ruhelage. Experi-
mente haben gezeigt, dass der Einzugsbereich der Regelung innerhalb von circa 15◦

um die Ruhelage liegt. Durch die Regelung wird das Rad durch den Elektromotor in
die passende Richtung beschleunigt, sodass es dem Umfallen des Würfels entgegen-
wirkt und ihn wieder in die instabile Ruhelage zurückführt. Aufgrund des dritten
Newtonschen Axioms, auch das Prinzip von Aktion und Reaktion genannt, wirkt
ein entgegengesetztes, gleichgroßes Moment auf den Würfel, wenn sich das Rad in
eine Richtung dreht. Der Würfel erfährt durch das Rad eine Beschleunigung und
wird zurück in die Richtung der instabilen Ruhelage bewegt.

Entwicklung des Demonstrators

Um das grundsätzliche Wirkprinzip des Demonstrators kennenzulernen, wurde im
Rahmen des Projekt zunächst ein vereinfachter Prototyp aufgebaut. Der Prototyp
in Abbildung 6.17(a) besteht nur aus einer Fläche des gesamten Würfels, mit einem
Rad, einer Bremse und einem IMU. Er ist an einer Ecke der Fläche drehbar gelagert
und hat einen rotatorischen Freiheitsgrad. Mit dem Prototyp kann der Aufschwung
und die Stabilisierung des Würfels auf der Kante getestet werden. Er erlaubt das
Testen des mechatronischen Aufbaus in einer geringeren Komplexität als der gesamte
Würfel und die Ergebnisse sind auf den Würfel übertragbar.

Als nächstes wird auf einige Aspekte bei der Konstruktion des Würfels eingegan-
gen, die zu beachten sind, damit der Aufschwung und die Stabilisierung möglich
werden bzw. besser funktionieren. Um eine möglichst geringe Masse bewegen zu
müssen, wurde der Rahmen des Würfels aus Kunststoff additiv gefertigt. Die in-
neren, selbst konstruierten Teile sind aus Aluminium. Die Schwungräder sind aus
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Stahl, um möglichst viel Drehmoment für den Aufschwung zu erhalten. Für den Auf-
schwung ist ein kleines Massenträgheitsmoment des Würfels vorteilhaft, weil dann
weniger Energie benötigt wird. Deswegen sollte der Würfel so konstruiert werden,
dass die gesamte Masse gering ist, die Länge der Hebel möglichst klein ist und der
Massenmittelpunkt nah an den Drehachsen liegt. Dabei muss beachtet werden, dass
für alle Komponenten im Inneren des Würfels genug Raum ist.

Bei der Konstruktion des Rades gibt es gegensätzliche Anforderungen. Zum einen
wird für den Aufschwung des Würfels Energie benötigt, die das Rad liefern soll.
Dafür ist ein Rad mit ausreichend großem Massenträgheitsmoment notwendig, so-
dass das Rad genug kinetische Energie für den Aufschwung des Würfels liefert. Bei
der Stabilisierung des Würfels muss zum anderen das Rad schnell beschleunigt wer-
den. Dafür ist ein Rad mit geringem Massenträgheitsmoment vorteilhaft. Um diesen
Zielkonflikt zu lösen, muss ein Rad mit passendemMassenträgheitsmoment gefunden
werden.

6.2.2 Modellbasierter Regelungsentwurf des Würfels

Die Modellbildung des Würfels wird mit Hilfe der Bewegungsgleichungen aus dem
Prinzip von Jourdain hergeleitet. Es wird die allgemeine Gleichung eines mechani-
schen Mehrkörpersystems

Mq̈ +Cq̇ +G =

[
03×3

I3×3

]
u, (6.28)

mit den generalisierten Koordinaten

q =
[
θ1, θ2, θ3, ψx, ψy, ψz

]T ∈ R6×1 (6.29)

verwendet. Dabei beziehen sich die drei räumlichen Winkel θi auf das Inertialsys-
tem des Würfelkörpers und die Winkel ψi auf das jeweilige Rad, das sich um die

Wxex-, Wyex-, oder Wzex-Achse dreht. Die zeitlichen Ableitungen der generalisierten
Koordinaten ergibt sich als

q̇ =
[
θ̇1, θ̇2, θ̇3, ψ̇x, ψ̇y, ψ̇z

]T ∈ R6×1 (6.30)

und die Eingänge des Systems

u =
[
u1, u2, u3

]T ∈ R3×1 (6.31)

sind die Ströme ui an dem jeweiligen Motor des i-ten Rades, i = 1, 2, 3. Das Motor-
drehmoment Tm,i = Kmui des i-ten Rades berechnet sich aus der Motorkonstante
Km und der Eingangsspannung ui. 03×3 und I3×3 stellen die Null- bzw. Einheitsma-
trix dar. Die Massenmatrix

M =

nk∑

i=1

(miJ
T
T iJT i + JT

RiΘiJRi) ∈ R6×6 (6.32)
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Abbildung 6.18 Schematische Darstellung des Würfels auf der Ecke mit den Koordinaten-
systemen: Intertialsystem I, körperfestes System K des Würfels und körperfeste Systeme Wi

des x-, y- und z-Rades. Der Übersichtlichkeit halber ist das Wx-System in der Ke2-Ke3-Ebene
nicht dargestellt.

setzt sich unter anderem zusammen aus der Jakobimatrix der Translation

JT i =
∂ṙ0i

∂q̇T
∈ R3×6, (6.33)

der Jakobimatrix der Rotation

JRi =
∂ωi

∂q̇T
∈ R3×6, (6.34)

der Geschwindigkeit ṙ des Schwerpunkts der Masse mi, der Winkelgeschwindigkeit
ωi und des MassenträgheitsmomentsΘi ∈ R3×3 des i-ten Körpers um seinen Schwer-
punkt. Der Index i = 1, . . . , nk läuft über alle Körper der Anzahl nk = 4 (Würfel
und 3 Scheiben). In dieser Darstellung sind die translatorischen Größen bezüglich
des Inertialsystems und die rotatorischen Größen bezüglich des körperfesten Sys-
tems angegeben. Die Matrix C =

∑nq

i=1Ci(q, q̇) ∈ R6×6 beinhaltet die Zentrifugal-
und Corioliskräfte, wobei nq = 6 die Anzahl der generalisierten Koordinaten q ist.
Die Elemente der Matrizen Ci(q, q̇) der einzelnen Körper werden beschrieben durch

ci,nm =

nq∑

k=1

ci,nmkq̇k für
n = 1, . . . , 6
m = 1, . . . , 6

(6.35)

mit dem sogenannten Christoffelsymbol der ersten Art

ci,nmk =
1

2

(
∂M i,mn

∂qk
+
∂M i,mk

∂qn
− ∂M i,nk

∂qm

)
. (6.36)
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Die Matrix

G =

(
−∂U(q)

∂q

)T
∈ R6×1 (6.37)

bringt die Gravitationskräfte in die Bewegungsgleichung ein. Dabei ist

U = gTK

nk∑

i=1

mir0i (6.38)

die potenzielle Energie des Systems. Sie setzt sich zusammen aus einer Summe der
Massen mi und deren Ortsvektoren r0i im Inertialsystem und dem Gravitationsvek-
tor

gK = RK0g0 (6.39)

im körperfesten Koordinatensystem. gK wird durch eine Koordinatentransformation
des Gravitationsvektors

g0 =
[
0, 0,−g

]T
(6.40)

im Inertialsystem durch die Rotationsmatrix

RK0 = Rx(α)Ry(β)Rz(γ)

=



1 0 0
0 c(α) −s(α)
0 s(α) c(α)





c(β) 0 s(β)
0 1 0

−s(β) 0 c(β)





c(γ) −s(γ) 0
s(γ) c(γ) 0
0 0 1




=



c(β)c(γ) c(α)s(γ) + c(γ)s(α)s(β) s(α)s(γ)− c(α)c(γ)s(β)
−c(β)s(γ) c(α)c(γ)− s(α)s(β)s(γ) c(γ)s(α) + c(α)s(β)s(γ)
s(β) −c(β)s(α) c(α)c(β)




(6.41)

der xyz-Kardanwinkel erhalten. Die Rotationsmatrix RK0 setzt sich zusammen aus
den drei aufeinanderfolgenden Rotationen um die x-, y- und z-Achse. In der Rotati-
onsmatrix RK0 ist s(·) := sin(·) und c(·) := cos(·). Für die Reglerauslegung in einer
instabilen Ruhelage wird die nichtlineare Dynamikgleichung (6.28) in eine lineare
Zustandsraumbeschreibung

ẋ = Ax+Bu (6.42)

überführt, wobei der Zustandsvektor

x =
[
θ1, θ2, θ3, θ̇1, θ̇2, θ̇3, ψ̇x, ψ̇y, ψ̇z

]T
(6.43)

eingeführt wird. Es ergibt sich die Gesamtsystembeschreibung

ẋ = f(x,u) = f(x) + g(x)u (6.44)

=




θ̇1

θ̇2

θ̇3

M−1 (−G−Cq̇)


+




03×3

M−1

[
03×3

I3×3

]




u1
u2
u3


 . (6.45)
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Die Systemmatrix A und die Eingangsmatrix B der Zustandsdifferentialgleichungen
werden durch einen Linearisierungsansatz erhalten

A =
∂f(x,u)

∂x
, (6.46)

B =
∂f(x,u)

∂u
. (6.47)

Mit dem linearisierten System wird ein LQ-Regler [174] entworfen. Die Zielfunktion
ist

J = (xg − x(te))
TS(xg − x(te)) +

∫ te

0

xTQx+ uTRu dt, (6.48)

mit dem Zielzustand xg, der den Zustand des Systems auf der Kante oder Ecke
beschreibt, der Endzeit te und den Gewichtungsmatrizen S, Q, und R.

Ergebnisse

Nach der Systembeschreibung des selbstbalancierenden Würfels werden in diesem
Abschnitt Ergebnisse verschiedener Experimente vorgestellt. Zunächst wird der Wür-
fel mittels klassischer Entwurfsverfahren der Regelungstechnik in Betrieb genommen
und anschließend die PCHD-Modelle aus Abschnitt 3.4 und die Optimalsteuerung
aus Unterabschnitt 4.4.1 als hybride Methoden getestet.

Klassische Entwurfsverfahren

Beim klassischen Entwurf mittels LQ-Regelung wird der Aufschwung und die Sta-
bilisierung des Würfels von der Fläche auf die Kante untersucht und die Ergebnisse
sind in Abbildung 6.19 zu sehen. Für dieses Manöver sind die relevanten Zustände
der Würfelwinkel θ1, dessen Winkelgeschwindigkeit θ̇1, die Winkelgeschindigkeit ψ̇x
des Rades und der Eingang u1 als Motorstrom. Der Würfel beginnt auf der Fläche
bei θ1 = 45◦ und schwingt über die Kante in die obere instabile Ruhelage bei θ1 = 0◦.

Der Bremsvorgang mit dem abrupten Abbremsen des Schwungrades wird von
uns in der Modellierung als ideal angenommen. Da ein sofortiges Abbremsen in
der Realität nicht umsetzbar ist, wird eine vollständige Übereinstimmung von Mo-
dell und realem Verlauf des Experiments nicht erwartet. Der Nachweis der Funkti-
onsfähigkeit des Würfels wird daher durch den funktionierenden Aufschwung und
die Stabilisierung beurteilt. In Abbildung 6.19 wird deutlich, dass in der Simula-
tion der Aufschwung schneller als im Experiment ist. Das liegt an der getroffenen
Annahme des idealen Bremsens in der Modellierung des komplexen Bremsvorgangs.
Außerdem ist in der Simulation eine Stellgrößenbeschränkung des Eingangs u1 von
0,17A implementiert, die ungefähr dem realen Verhalten der Bremse entspricht.
Durch den langsameren Aufschwung im Experiment beginnt die Regelung später,
was am Verlauf von u1 erkennbar ist. Die Regelung oszilliert geringfügig, was bei
einem realen Stabilisierungsvorgang zu erwarten ist. Das Experiment zeigt, dass der
Würfel mittels klassischer Entwurfsverfahren erfolgreich auf der Kante stabilisiert
werden kann.
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Abbildung 6.19 Aufschwung und Stabilisierung des Würfels von der Fläche auf die Kante mit
den klassischen Entwurfsverfahren. Die Regelung wird hier durch einen LQ-Regler umgesetzt.

Hybride Methoden

Beispielhaft werden im Folgenden zwei Entwurfsschritte adressiert und durch hy-
bride Methoden ersetzt. Dies sind einerseits die datengetriebene Formulierung des
Würfelmodells als PCHD-Modell basierend auf den Methoden aus Abschnitt 3.4
und andererseits die Anwendung der hybriden Optimalsteuerung nach Unterab-
schnitt 4.4.1 auf den Würfel, um den Aufschwung auf die Kante zu realisieren.

Datengetriebene Modellbildung mit PCHD-Modellen Zur vereinfachten Veran-
schaulichung soll die Bewegung von der Kante auf die Ecke des eindimensionalen
Prototypens betrachtet werden, dessen Bewegungsgleichungen durch

φ̈ =
(mblb +mwl)g sinφ− Tm − Cbφ̇+ Cwψ̇

Θb +mwl2
, (6.49)

ψ̈ =
(Θb +Θw +mwl

2)(Tm − Cwψ̇)
Θw(Θb +mwl2)

− (mblb +mwl)g sinφ− Cbφ̇
(Θb +mwl2)

(6.50)

beschrieben werden und dessen Parameter in der Tabelle 6.4 zu finden sind. Dabei
berechnet sich das Motordrehmoment Tm = Kmu aus der Motorkonstanten Km und
dem Eingangsstrom u. Ausgehend von der Energiefunktion

V (x) =
1

2
(Θw + a)x22 +

1

2
Θwx2x3 + bg cos(x1), (6.51)
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mit a = Θb + mwl
2, b = mblb + mwl und dem Zustand x =

[
φ, φ̇, ψ

]T
kann die

Bibliothek Ψ nach Gleichung (3.75a) durch den Gradienten der Energiefunktion
gebildet werden:

Ψ(x) =

(
∂V

∂x

)T
=




−bg sin(x1)
(Θw + a)x2 +Θwx3

Θwx3 +Θwx2


 . (6.52)

Das analytisch bestimmte PCHD-Modell kann nach Gleichung (3.75a) daraufhin
durch die Matrizen J ,D und den Vektor b definiert werden, die folgendermaßen
lauten:

J =



0 1

a
1
a

1
a

0 0
1
a

0 0


 ,D =



0 0 0
0 Cb+Cw

a2
−Θw+a

Θwa2
Cw − Cb

a2

0 −Θw+a
Θwa2

Cw − Cb

a2
(Θw+a)2

(Θwa)2
Cw + Cb

a2


 , b =




0
− 1
a

Θw+a
Θwa


 .

(6.53)
Das datengetriebene PCHD-Modell kann mithilfe gesammelter Messdaten des Wür-
fels durch den Algorithmus, der in Abbildung 3.22 dargestellt ist und detailliert in
Unterabschnitt 3.4.2 beschrieben wird, bestimmt werden. Dieses stimmt genau mit
dem analytisch bestimmten PCHD-Modell überein (vgl. Gleichung (6.53)). Mithilfe
dieses datengetriebenen PCHD-Modells lässt sich anschließend eine passivitätsba-
sierte Regelung entwerfen (vgl. Abschnitt 4.3).

Physikalischer Parameter Symbol Wert

Abstand Drehpunkt und Motorachse l 0,089 45 m
Abstand Drehpunkt und Massenmittelpunkt lb 0,077 86 m
Masse des Körpers ohne Rad mb 0,573 kg
Masse des Rades mw 0,195 kg
Gravitationsbeschleunigung g 9,81 m s−2

Motorkonstante Km 40,4 · 10−3 Nm A−1

Gleitreibungskoeffizient des Körpers Cb 0,7 · 10−3 kgm2 s−1

Gleitreibungskoeffizient des Rades Cw 0,05 · 10−3 kgm2 s−1

Trägheitsmoment des Körpers um den Dreh-
punkt P

Θb 1,584 · 10−3 kgm2

Trägheitsmoment des Rades um die Motor-
achse M

Θw 0,5375 · 10−3 kgm2

Tabelle 6.4 Parameter des Prototypens in Gleichung (6.49)

Hybride Optimalsteuerung Ziel der hybriden Optimalsteuerung am Würfel ist
es, den Aufschwung des Körpers auf die Kante zu bestimmen. Die Stabilisierung
durch die Regelung wird hier nicht behandelt. Basierend auf den Methoden aus
Unterabschnitt 4.4.1 wird ein hybrides Modell entwickelt, welches für die hybride
Optimalsteuerung genutzt werden soll. Mithilfe von Experimenten am Prüfstand
wurden anschließend die prädizierten Verläufe mit denen der aufgenommenen Mes-
sungen verglichen. Die Ergebnisse sind in den Abbildungen 6.20 sowie 6.21 darge-
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stellt. Beide Abbildungen zeigen einen Aufschwungversuch auf die Kante anhand
der Trajektorien der Zustände. Erkennbar ist, dass das Modellverhalten trotz glei-
cher Anfangsbedingungen sehr unterschiedlich ist. In der Abbildung 6.21 entspricht
das Modell der Realität und prädiziert den Aufschwung des Würfels korrekt. Im
Gegensatz dazu bestehen in der Abbildung 6.20 große Abweichungen zwischen dem
tatsächlich gemessenen und vom Modell berechneten Körperwinkel θ1. Gleiches gilt
für die Geschwindigkeit dieses Winkels. Ausschließlich die Winkelgeschwindigkeit ψ̇1

des Rades stimmt überein. Folgende Punkte müssen im Rahmen der Ursachenfor-
schung und Verbesserung der Qualität weitergehend untersucht werden:

• Der Bremsvorgang zum abrupten Abbremsen des Rades für den Aufschwung
wurde ideal modelliert. Aufgrund der Wirkung hoher Kräfte in kurzer Zeit
ist das Bremsen nicht reproduzierbar, sondern zeitvariant zu verstehen. Der
Bremsvorgang wird u. a. beeinflusst durch eine Abnutzung des Bremsbelags,
unterschiedliche Oberflächenbeschaffenheiten entlang der Radoberfläche und
einer geringen Unwucht des Rades.

• Da der Würfel aus der oberen Ruhelage sowohl nach links als auch nach rechts
fallen kann, wirkt dies bei sehr kleiner Geschwindigkeit wie eine Singularität,
weil der Würfel vermeintlich willkürlich zu einer Seite fällt. Die Fallrichtung
ist dabei nicht einfach vorherzusagen bzw. zu lernen.

• Möglicherweise ist die angenommene Kovarianzfunktion, welche die Gauß-
Prozess-Regression nutzt, nicht geeignet für diese Art von Daten, vgl. Un-
terabschnitt 3.5.1 und Unterabschnitt 4.4.1. Daher könnten andere Kernel-
funktionen zu einer Verbesserung der hybriden Optimalsteuerung führen.

Die Anwendung der hybriden Optimalsteuerung auf den Würfel zeigt die prinzipielle
Funktionsfähigkeit der Methode, aber auch wie stark die Wahl geeigneter Messdaten
und sinnvoller Hyperparameter den Lernerfolg beeinflusst.
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Abbildung 6.20 Akzeptable Modellgenauigkeit beim Aufschwung durch hybride Optimalsteue-
rung
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Abbildung 6.21 Hohe Modellgenauigkeit beim Aufschwung durch hybride Optimalsteuerung
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Im Zuge der Digitalisierung erfahren maschinelles Lernen und datengetrie-
bene Methoden derzeit eine große Aufmerksamkeit in Wissenschaft und 
Industrie. Es fehlt jedoch an Grundlagenwissen und Verständnis, wie die 
datengetriebenen Methoden der Informatik mit bewährten modellbasier-
ten Ingenieursmethoden wie dem modellbasierten Entwurf in der Mecha-
tronik und Methoden der Regelungstechnik sinnvoll kombiniert werden 
können, um hybride Modelle zu erhalten. Diese ingenieurwissenschaft-
lichen Methoden basieren auf physikalischen Verhaltensmodellen, die 
eine besonders verdichtete und interpretierbare Darstellung von Wissen 
darstellen und insbesondere kausale Zusammenhänge beschreiben. Für 

Vorwissen in Form von bekannten Strukturen und Informationen, wie z.B. 
(Teil-)Modelle oder Parametersätze, die auch bei der Anwendung von Me-
thoden wie dem maschinellen Lernen genutzt werden sollten. Eine solche 
sinnvolle systematische Verknüpfung ist wissenschaftlich, insbesondere 
im Hinblick auf die industrielle Anwendung, noch nicht ausreichend unter-
sucht worden und sehr vielversprechend. In diesem Beitrag werden die 
Ergebnisse der Nachwuchsforschungsgruppe DART – Datengetriebene 
Methoden in der Regelungstechnik vorgestellt. Das Hauptziel war es, die 
synergetische Kombination von modell- und datengetriebenen Methoden 
für regelungstechnische Aufgaben zu erforschen und es werden alle wich-
tigen Forschungsergebnisse aber auch die verwendeten Grundprinzipien 
des maschinellen Lernens in diesem Beitrag dargestellt.
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