e — = F —

| R
| | - |

hriftenreihe des Heinz Nixdorf Instit

g, Julia Timmermann (Hrsg.)

stechnik und Mechatronik
: :

Julia Timmermann, Ricarda-Samantha Goétte,
Annika Junker, Michael Hesse, Luis Schwarzer

DART -
Datengetriebene Methoden
in der Regelungstechnik

HEINZ NIXDORF INSTITUT
UNIVERSITAT PADERBORN






Julia Timmermann
Ricarda-Samantha Gétte
Michael Hesse

Annika Junker

Luis Schwarzer

DART — Datengetriebene Methoden in
der Regelungstechnik

DART - Data-driven Methods in Con-
trol



Bibliografische Information Der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen National-
bibliografie; detaillierte bibliografische Daten sind im Internet Gber http://dnb.ddb.de
abrufbar.

Band 430 der Verlagsschriftenreihe des Heinz Nixdorf Instituts

© Heinz Nixdorf Institut, Universitat Paderborn — Paderborn — 2025

ISSN (Online): 2365-4422
ISBN: 978-3-947647-49-1

Das Werk einschlieBlich seiner Teile ist urheberrechtlich geschitzt. Jede Verwertung auler-
halb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung der Herausgeber
und des Verfassers unzuldssig und strafbar. Das gilt insbesondere fiir Vervielfaltigung, Uber-
setzungen, Mikroverfilmungen, sowie die Einspeicherung und Verarbeitung in elektronischen
Systemen.

Als elektronische Version frei verfiigbar tber die Digitalen Sammlungen der Universitatsbibli-
othek Paderborn.

Satz und Gestaltung: Julia Timmermann


http://dnb.ddb.de/

Data without context is just noise.






Danksagung

Wissenschaftliche Forschungsprojekte kénnen nur dann in einem gréferen Umfang
durchgefiihrt werden, wenn ein Fordergeber die Ideen des Projektes positiv bewertet
und damit auch finanziell férdert. Im Rahmen der Foérderung von KI-Nachwuchs-
wissenschaftlerinnen durch das Bundesministerium fiir Bildung und Familie (BMBF)
war es mir als Projektleiterin moglich zusammen mit meinem Team iiber vier Jahre
zu relevanten Themen im Bereich der datengetriebenen Methoden in der Regelungs-
technik zu forschen. Fiir diese Moglichkeit und auch die damit verbundenen Frei-
heiten in der Grundlagenforschung bedanken wir uns ganz herzlich. Die fachliche
Betreuung wurde vom Projekttriger Deutsches Zentrum fiir Luft- und Raumfahrt
(DLR) in Berlin iibernommen. Unser Dank geht daher an Frau Dr. Wunram vom
DLR, die uns in dieser Zeit immer gut beraten hat und unsere Forschungsarbeit
unterstiitzt hat. Auch fiir die organisatorische Hilfe und Unterstiitzung bedanken
wir uns mit den weiteren Mitarbeiter*innen des DLR, mit denen wir in Kontakt
waren.

Als Leiterin der Nachwuchsforschungsgruppe DART geht mein grofiter Dank an
mein Team an wissenschaftlichen Mitarbeiter*innen: Dr.-Ing. Ricarda-Samantha
Gotte, Dr.-Ing. Annika Junker und Dr.-Ing. Michael Hesse waren das feste Team,
das wiahrend der Projektlaufzeit an Inhalten, Veroffentlichungen, Meilensteinen und
allem weiteren im Kontext von DART gearbeitet hat. Auflerdem bedanke ich mich
bei Luis Schwarzer, der das Team im Rahmen des Projektabschlusses unterstiitzt hat
und vor allem die Arbeiten am Demonstrator verantwortet hat. Als Projektleiterin
hatte ich zum einen die Verantwortung der Organisation der Arbeiten im Projekt
und konnte dadurch Einfluss auf Inhalte und den Fortschritt der Forschung nehmen.
Zum anderen war es immer eine tolle Zusammenarbeit auch die Forschungsarbeiten
der einzelnen Mitarbeitenden gut zu betreuen und die selbststédndige wissenschaft-
liche Arbeit bis hin zu Promotion aller drei Doktorand*innen zu férdern. Die guten
Projektergebnisse konnten nur durch die tolle Teamarbeit entstehen und ich bedanke
mich bei allen ganz herzlich dafiir.

Die Nachwuchsgruppe ist natiirlich nicht unabhéngig vom weiteren Institutio-
nen an der Universitdt Paderborn zu sehen. Sie ist aus dem Lehrstuhl fiir Rege-
lungstechnik und Mechatronik (RtM) geleitet von Prof. Ansgar Tréchtler hervor-
gegangen. Daher bedanken wir uns ganz herzlich bei Prof. Tréchtler, dass wir von
ihm geférdert und unterstiitzt wurden. Zunéchst konnten wir im Rahmen unserer
Téatigkeit am RtM die Verwendung von Methoden des maschinellen Lernens in-
nerhalb der Regelungstechnik kennenlernen und den Antrag von DART schreiben.
Aber auch wahrend der Projektlaufzeit hat Prof. Tréchtler uns mit seiner Expertise
und der Teilnahme an Projekt- und Meilensteintreffen unterstiitzt. Die Diskussio-
nen {iber Forschungsideen war dabei immer konstruktiv und fruchtbar. Es haben uns
aber auch weitere Personen des RtM geholfen. Im Labor waren Martin Leibenger
und Jorg Schaffrath immer hilfreiche Ansprechpartner und konnten mit Wissen und



Werkzeug weiterhelfen. Bei einem so grofien Forschungsprojekt mit mehreren Mit-
arbeitenden und Studierenden fallen auch viele organisatorische und Verwaltungs-
aufgaben an. Bei Michaela Wiemers aus dem Sekretariat vom RtM mochten wir uns
daher bedanken, dass sie immer geduldig unsere Fragen zu Dienstreiseabrechnun-
gen und anderer Uni-Biirokratie beantwortet hat. Aulerdem hat Heike Rieger die
Finanzverwaltung von DART iibernommen und war dabei immer eine zuverlissige
Ansprechpartnerin fiir alle finanziellen Aufgaben. Vielen Dank an alle genannten
Personen fiir die groBartige Unterstiitzung in den vier Jahren der Forschungsarbei-
ten im Projekt DART.

Im Rahmen des DART-Projektes haben wir auch an vielen Stellen mit Studieren-
den der Universitdt Paderborn hauptséchlich aus dem Studiengang Maschinenbau
zusammengearbeitet. Insgesamt haben uns zehn Studenten als studentische Hilfs-
kriifte (mit Bachelor) bei den Forschungsarbeiten unterstiitzt. Dabei ging es um die
Implementierung von Algorithmen aber hauptséchlich auch praktische Arbeiten im
Labor. Dies beinhaltete Experimente an Priifstinden bzw. auch die Mitarbeit bei
der Entwicklung und dem Aufbau unseres eigenen Demonstrators. Auflerdem ha-
ben wir 24 studentische Arbeiten mit Themen aus dem DART Kontext betreuen
konnen, in denen die Studierenden unterschiedlichste Aufgaben bearbeitet haben.
Allen Studierenden danken wir fiir ihre motivierte Arbeit und ihr Interesse an un-
seren Forschungsthemen und hoffen, dass sie ihre Erkenntnisse aus dem Projekt
weitertragen kénnen.

Im Namen des gesamten DART-Teams
Dr.-Ing. Julia Timmermann

vi



Vorwort

Das Projekt DART - Datengetriebene Methoden in der Regelungstechnik entstand
im Rahmen der Férderung von KI-Nachwuchswissenschaftlerinnen, wozu es im Jahr
2019 einen Aufruf vom Bundesministerium fiir Bildung und Forschung (BMBF)
gab. Das Ziel dieser Forderlinie war es, die Beteiligung von Frauen in der deutschen
Forschung zur kiinstlichen Intelligenz zu erh6hen und ihnen auflerdem akademische
Fiithrungspositionen zu erméglichen. Es wurde festgestellt, dass die KI-Forschung
nicht nur kompetente Fachleute in Fachgebieten wie Informatik, Mathematik oder
Kognitionspsychologie, sondern zunehmend auch Fachkompetenzen aus den ver-
schiedensten Anwendungsgebieten benétigt. Um dies zu erreichen, wurden Frauen,
die im Bereich von Kl-Fragestellungen forschen, dazu aufgefordert, sich um eine
Nachwuchsgruppe unter der Leitung dieser Frauen, zu bewerben und damit den An-
teil von qualifizierten Frauen in Fiithrungspositionen der deutschen KI-Forschung zu
steigern. Damit war diese Fordermafinahme ein Teil der Umsetzung der KI-Strategie
der Bundesregierung und der Hightech-Strategie 2025.

DART ist eine Nachwuchsforschungsgruppe, die sich entsprechend der Ausschrei-
bung auf die Anwendung von maschinellem Lernen in einem Anwendungsgebiet,
der Regelungstechnik, spezialisiert hat und die Forschungsarbeiten liefen in der Zeit
von Juli 2020 bis November 2024 an der Universitdt Paderborn. Auf Grundlage der
klassischen Methoden in der Regelungstechnik ist der Sprung zur Anwendung von
maschinellem Lernen sehr naheliegend. Denn in regelungstechnischen Anwendungen
werden schon immer Daten z.B. in Form von Messungen verwendet, um das Verhal-
ten des Systems zu beeinflussen oder regeln zu konnen. Der Trend, den man in sehr
vielen Forschungsgemeinschaften sieht, nun vermehrt datenbasierte Lernalgorithmen
zu verwenden, kann daher auch in besonderer Form in regelungstechnischen Metho-
den aufgenommen werden. Beispielsweise arbeiteten Regelungstechniker*innen auch
in der Vergangenheit schon daran, auf Systemverdnderungen im Betrieb durch ad-
aptive Methoden zu reagieren. Ahnliche Ziele verfolgen nun auch Lernalgorithmen,
die sich aktiv dem Systemverhalten anpassen und dabei Methoden des maschinellen
Lernens verwenden.

Daher war es das Ziel der Nachwuchsgruppe Datengetriebene Methoden in der
Regelungstechnik, die synergetische Kombination modell- und datengetriebener Ver-
fahren fiir regelungstechnische Aufgaben zu erforschen. Dazu werden modellbasierte
Verfahren mit maschinellem Lernen kombiniert, um hybride Methoden zu erhalten
und die groBtmogliche Performanz beim Regelungsentwurf zu erzielen. Aus der For-
schungsgemeinschaft zu maschinellem Lernen ist der Standardansatz bekannt, Sys-
teme oder Methoden zu verwenden, die ausschlieSlich auf ML basieren. Hier wird
immer wieder als Vorteil genannt, dass dadurch kein Vorwissen von Expert*innen
fiir die Anwendung vorhanden sein muss. Daher wird ML als Alternative zu klas-
sischen Methoden vorgeschlagen. Fiir die Arbeit der Nachwuchsgruppe nehmen wir
aber eine andere Sichtweise an: Das Fachwissen aus dem ingenieurwissenschaftlichen
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Kontext ist fiir uns sehr wertvoll und es gibt keine schliissigen Griinde, etablierte Me-
thoden komplett durch datenbasierte Ansétze zu ersetzen. Daher streben wir nach
einer synergetischen, methodischen Kombination modell- und datengetriebener Ver-
fahren fiir den Regelungs- und Steuerungsentwurf, um grofitmoglichen Nutzen aus
beiden Herangehensweisen zu ziehen.

Dieses Buch dient der vollstandigen Zusammenfassung der wissenschaftlichen For-
schungsergebnisse, die in der vierjihrigen Laufzeit der Nachwuchsforschungsgruppe
DART — Datengetriebene Methoden in der Regelungstechnik erzielt werden konn-
ten. Es beinhaltet die notwendigen Grundlagen aus dem Bereich des maschinellen
Lernens und présentiert auch die Grundlagen der Regelungstechnik, die als Aus-
gangspunkt fiir die weiterentwickelten Methoden verwendet werden, ist aber nicht
als grundlegendes Lehrbuch fiir diese Bereiche zu sehen. Es besteht in der Darstel-
lung somit kein Anspruch auf die Vollsténdigkeit bei den Grundlagen, sondern es ist
das Ziel, den Lesenden Handlungsempfehlungen fiir die Anwendung der entwickelten
Methoden zu geben. Somit werden die neuen Methoden ausfiihrlich vorgestellt und
ihr jeweiliges Anwendungsgebiet spezifiziert, so dass der Anwendende entscheiden
kann, welche Methode fiir sein Problem geeignet ist.
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1 Einleitung

Dieses Buch handelt von der Entwicklung von Schnittstellen zwischen datengetrie-
benen Methoden aus dem Bereich des maschinellen Lernens (ML) und klassischen
regelungstechnischen Ansétzen. Dabei werden viele methodische Grundlagen ver-
wendet, die aus unterschiedlichen Bereichen stammen: Optimierung, Stochastik, li-
neare Algebra, Differentialgleichungen und natiirlich die grundlegenden Ideen ma-
schineller Lernmethoden. Dabei hat das Buch nicht den Anspruch, alle Grundlagen
zu erkliren, gibt aber Hinweise auf die wichtigsten Referenzen aus diesen Bereichen.
Da in der klassischen Ingenieursausbildung ML eine geringe bis gar keine Rolle
spielt, werden in diesem Bereich mehr grundlegende Methoden erlautert, die dann
im komplexeren Setting der hybriden Methoden verwendet werden. Dazu gehoren
beispielsweise die neuronalen Netze als eine der bekanntesten Strukturen aus dem
maschinellen Lernen.

Der Beitrag dieses Buches soll es ermdéglichen, Regelungstechnik auch fiir Syste-
me anwenden zu konnen, die im Zuge der fortschreitenden Entwicklungen immer
komplexer werden. Dabei ersetzen datengetriebene Methoden nicht die physikalisch
mathematische Herleitung und Beschreibung, sondern erweitern diese fiir eine auch
zukiinftig erfolgreiche Anwendung. Dies ist moglich, da die Entwicklung des letz-
tens Jahrzehnts zeigt, dass datengetriebene Methoden durch giinstiger werdende
Sensoren, stirkere Rechenleistung und bessere Speicher- und Transfermdéglichkeiten
insgesamt zielgerichteter eingesetzt werden konnen.

Die Themen dieses Buches orientieren sich am regelungstechnischen Entwurfspro-
zess. Zunichst werden in die Grundlagen des maschinellen Lernens im
Kontext der Entwicklung hybrider Methoden in der Regelungstechnik vorgestellt,
um in diesem Bereich noch zusétzliches Grundlagenwissen anbieten zu kénnen. An-
schliefend folgen etablierte und neu entwickelte hybride Methoden aus den Bereichen
Modellbildung in [Kapitel 3| Steuerungs- und Regelungsentwurf in und Be-
obachterentwurf in [Kapitel 5| Abschlieend werden die zwei groen Demonstratoren
unseres Projektes in vorgestellt. Dies sind zum einen der Golfroboter und
zum anderen ein selbstbalancierender Wiirfel, der im Rahmen des Projektes entwi-
ckelt und aufgebaut wurde, um die Leistungsfiahigkeit der entwickelten Methoden zu
untersuchen (siehe [Abbildung 1.1)). Die Anwendung an realen Demonstratoren war
dabei ein sehr wichtiges Ziel, da es einen grofien Unterschied bedeutet, Methoden
nur simulativ oder experimentell in der realen Welt zu testen. Eine Umsetzung im
industriellen Umfeld ist noch nicht umgesetzt worden, aber es wire ein Wunsch der
Nachwuchsgruppe durch den Beitrag dieses Buchs auch hier Interesse zu wecken.
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Abbildung 1.1 Der Golfroboter und der selbstbalancierende Wiirfel sind zwei wichtige De-
monstratoren, an denen die hybriden Methoden der Nachwuchsgruppe experimentell unter-
sucht wurden.

1.1 Motivation und Ziele

Im Zuge der Digitalisierung erfahren maschinelles Lernen und datengetriebene Me-
thoden aktuell hohe Aufmerksamkeit seitens Wissenschaft und Industrie. Es fehlen
jedoch die Grundlagen und das Verstdandnis, die datengetriebenen Verfahren der In-
formatik mit bewéhrten modellbasierten Verfahren der Ingenieurwissenschaften wie
dem modellbasierten Entwurf in der Mechatronik und regelungstechnischen Metho-
den sinnvoll zu kombinieren, um dadurch hybride Modelle zu erhalten. Diese Inge-
nieurverfahren beruhen auf physikalischen Verhaltensmodellen, die eine besonders
kondensierte und interpretierbare Wissensreprésentation darstellen und insbeson-
dere kausale Zusammenhénge beschreiben. Dabei gibt es fiir spezifische regelungs-
technische Anwendungen umfangreiches Vorwissen in Form von bekannten Struk-
turen und Informationen, wie beispielsweise (Teil-) Modelle oder Parametersitze,
die auch beim Einsatz von Methoden wie z.B. maschinellem Lernen sinnvollerweise
weiterverwendet werden sollten. Eine solche sinnvolle systematische Kombination
ist wissenschaftlich noch wenig untersucht, erst recht hinsichtlich einer industriellen
Anwendung. Daher war es das Hauptziel der Nachwuchsforschungsgruppe, die syner-
getische Kombination modell- und datengetriebener Verfahren fiir regelungstechni-
sche Aufgabenstellungen zu erforschen und dies ist auch in unserer Projektiibersicht
in [Abbildung 1.2 sichtbar. Dabei sollen die Vorteile und Stérken der jeweiligen Ver-
fahren strukturell beibehalten werden: bei den Verfahren mit physikalischen Mo-
dellen deren gute Interpretierbarkeit, tiefere Einsicht in das Systemverhalten und
die Wiedergabe kausaler Zusammenhénge; bei den datengetriebenen Verfahren de-
ren Féahigkeit, physikalisch schwer beschreibbare Zusammenhénge auch ohne tie-
fe spezifische Anwendungskenntnisse abbilden zu kénnen und ihre Erweiterbarkeit
durch die Moglichkeit auch wiahrend des Betriebs weiter zu lernen. Der Schwerpunkt
dieses Vorhabens lag somit auf der Entwicklung von hybriden Methoden, die mo-
dellgetriebene Verfahren mit maschinellem Lernen kombinieren, um gréfitmogliche
Performanz beim Regelungsentwurf zu erzielen.




1.2 Forschungsumfeld der Nachwuchsgruppe
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Abbildung 1.2 Projektidee von DART

Das typische Vorgehen beim Regelungsentwurf beinhaltet folgende Teilaufgaben:

1. Modellierung des physikalischen Systemverhaltens mit Dynamikgleichungen,

2. Identifikation der in den Dynamikgleichungen enthaltenen Parameter,

3. Beobachterauslegung zur Schéatzung nicht messbarer, aber fiir die Regelung

benétigter Zustandsgrofien oder Parameter,

4. Entwurf einer Regelung, abhéingig von der Art der Dynamikgleichungen zu

wahlen,

5. Inbetriebnahme des Reglers am Priifstand.

Bei unserem Ziel der synergetischen, methodischen Kombination modell- und da-

tengetriebener Verfahren fiir den Regelungs-/ Steuerungsentwurf werden wir diese
Schritte der Modellierung und Regler-/Beobachterauslegung bis hin zur Inbetrieb-

nahme adressieren und im Folgenden genauer darauf eingehen, mit welchen Metho-

den dies umgesetzt werden soll. Ein weiteres wesentliches Ziel ist die Entwicklung
von Handlungsempfehlungen, die interessierten Leser*innen konkrete Hinweise zur
effektiven Anwendung der entwickelten Methoden geben.

1.2 Forschungsumfeld der Nachwuchsgruppe

An der Universitdt Paderborn und dem Heinz Nixdorf Institut wird schon seit
langerer Zeit grofler Wert auf Forschung im Kontext von intelligenten technischen
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Systemen gelegt. Daher muss auch die Entstehung der Forschungsgruppe DART
in diesem Kontext gesehen werden, da sie von den vorangehenden Entwicklungen
beeinflusst wurde und von der kontinuierlichen Unterstiitzung in diesem Bereich
profitiert hat. Aus diesem Grund werden an dieser Stelle ehemalige und aktuelle
Forschungsprojekte und Institutionen vorgestellt, die vom Team der Nachwuchs-
gruppe als wichtig und einflussreich angesehen werden.

Zuerst ist das Heinz Nixdorf Institut HNI zu nennen, dem die Nachwuchsgruppe
DART angehort. Das Leitbild des HNI beschéftigt sich mit intelligenten technischen
Systemen fiir die Mérkte von morgen. Dabei steht die Symbiose von Informatik und
Ingenieurwissenschaften im Zentrum der Arbeiten. Daraus ergeben sich Impulse fiir
intelligente technische Systeme und entsprechende Dienstleistungen. Die Forschung
soll dazu beitragen, neue Arbeitspldatze zu schaffen, den Wohlstand zu erhalten und
die nachhaltige Entwicklung zu férdern. Um diese Ziele zu erreichen, besitzt das
HNT verschiedene Forschungskompetenzen und Anwendungsbereiche. Das Projekt
DART findet sich dabei im Bereich der intelligenten technischen Systeme wieder,
welcher sich mit den Themen Lernfiahigkeit, Adaptivitdt und Regelung beschéftigt.
Hier werden Losungen etabliert, die es ermoglichen, dass technische Systeme selbst in
hochkomplexen, sich dynamisch verdndernden Umgebungen funktionieren, vielfach
ohne zentrale Koordination. Ermoglicht wird dies durch die Kombination klassi-
scher Regelungs- und Steuerungstechnik mit modernen Methoden der kiinstlichen
Intelligenz und des maschinellen Lernens, die solchen Systemen ein hohes Mafl an
Autonomie verleihen und mit der Fahigkeit der datengetriebenen Anpassung ih-
res Verhaltens ausstatten. Damit stimmen die Forschungsziele des HNI in diesem
Bereich vollstandig mit der Grundidee des Projektes DART iiberein und die Zusam-
menarbeit und Kooperation im Institut unterstiitzte den Gesamterfolg der Nach-
WuchsgruppeE].

Auch weitere Forschende der Universitdt Paderborn beschiftigen sich schon seit
Jahren mit dem Thema der intelligenten technischen Systeme, was in einem eigenen
Profilbereich ,Intelligente technische Systeme® zusammengefasst ist, um die For-
schungsideen zu biindeln und zu koordinieren. Hierbei wird betont, dass intelligente
technische Systeme durch das Zusammenspiel von Algorithmen, Informationstech-
nik, Mechanik, Sensorik und Aktorik gekennzeichnet sind. Diese Komponenten bzw.
Teilsysteme sind miteinander vernetzt und kénnen auf verschiedenen rdumlichen
und zeitlichen Skalen operieren. Beispiele fiir intelligente Systeme, die auch an der
Universitit Paderborn als Anwendungsfelder bearbeitet werden, sind Smart Grids,
die digitale Fabrik, Erkldarbare KI, Smart Cities, autonome Fahrzeuge oder auto-
nome Roboter. Eine Integration dieser Systeme in einen Anwendungskontext be-
deutet hohe Anforderungen im Hinblick auf Sicherheit, Robustheit, Lernfahigkeit,
Ressourceneffizienz, Datenschutz u.a. Aufgrund der Komplexitdat und Heterogenitét
der Systeme sind diese Anforderungen nicht leicht zu erfiillen. Folglich ist ein in-
terdisziplindrer Forschungsansatz unbedingt erforderlich, weil sich das Verhalten
des Gesamtsystems erst aus dem komplexen Zusammenwirken der Komponenten,
der Interaktion mit den Nutzer*innen und den Besonderheiten der Anwendung er-
gibt. Die Forschungsarbeiten im Profilbereich intelligente technische Systeme sind
interdisziplindr aufgestellt und befassen sich mit Analyse und Entwurf (Modell-

'https://www.hni.uni-paderborn.de/nachwuchsgruppe-dart
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bildung, Simulation, Verifikation, Methodenentwicklung) von intelligenten techni-
schen Systemen und schlieen soziotkonomische und kulturwissenschaftliche Aspek-
te (Geschiftsmodelle, Verhaltensokonomie, Technikethik, Interaktionsdesign) ein.
Durch diese Charakterisierung des Profilbereichs wird deutlich, dass sich auch hier
die Forschungsthemen von DART direkt einbetten lassen und eine solch intensive
Beschéftigung vieler Forschender an der Universitiat Paderborn als sehr produktiv
angesehen werden kann}

Eine weitere Institution, das im Rahmen der Forschungsarbeit von DART ge-
nannt werden muss, ist das Fraunhofer Institut fiir Entwurfstechnik Mechatronik
IEME]. Auch das IEM verschreibt sich u.a. der Erforschung intelligenter technischer
Systeme, wodurch deutlich wird, wie zentral dieses Gebiet am Gesamtstandort Pa-
derborn ist. Das IEM sieht das Fundament erfolgreicher technischer Systeme in ei-
ner ganzheitlichen Entwicklung. Das Institut unterstiitzt Unternehmen jeder Grofe,
fachiibergreifendes Engineering in die Praxis zu bringen. Von der mafigeschneiderten
Produktentwicklung, iiber langfristige Konzepte fiir ein modellbasiertes und sicheres
Engineering hin zur Umsetzung digitaler Zukunftsvisionen wie Industrie 4.0 basiert
die Arbeit des Fraunhofer IEM auf sechs Kernkompetenzen: Intelligente Techni-
sche Systeme, Digitale Transformation, Systems Engineering, Virtualisierung und
Modellbildung, I'T-Security und Software Engineering. Es wird festgestellt, dass in-
telligente technische Systeme eine breite Basis hoch anspruchsvoller Technologien
benotigt: Ob virtuelle Sensorik, selbstoptimierende Regelungen, maschinelles Ler-
nen oder Augmented und Virtual Reality, das Fraunhofer IEM beherrscht den Stand
der Technik und setzt in einzelnen Gebieten Standards. Dabei steht die bedarfsori-
entierte Anwendung der Technologien im Mittelpunkt. Und aus diesem Grund ist
die Kooperation der Nachwuchsgruppe DART mit dem IEM so spannend: Der ge-
genseitige Austausch informiert iiber die Probleme und Anwendungsfelder, die in
Industrieunternehmen von Interesse sind.

Historisch gesehen konnte sich das Forschungsthema der Nachwuchsgruppe aus
zwei grofien Forschungsprojekten, die aufeinander aufbauten, entwickeln: Dem Son-
derforschungsbereich SFB 614 Selbstoptimierende Systeme des Maschinenbaus und
dem darauf zeitlich direkt folgende Spitzenclusterprojekt it’s OWL Intelligente Tech-
nische Systeme OstWestfalenLippe.

Der SFB 614, der von 2002 bis 2013 an der Universitdt Paderborn lief, war ein
zentrales Element in der Erforschung intelligenter technischer Systeme. In diesem
GroBprojekt wurde erkannt, dass sich aus der zunehmenden Durchdringung des Ma-
schinenbaus mit Informationstechnik erhebliche Erfolgspotentiale eréffnen. Der Be-
griff Mechatronik bringt dies zum Ausdruck — gemeint ist damit das enge Zusam-
menwirken von Mechanik, Elektronik, Regelungstechnik und Softwaretechnik. Mo-
derner Maschinenbau ist Mechatronik. Kiinftige Systeme des Maschinenbaus wer-
den aus Konfigurationen von Systemelementen mit einer inhédrenten Teilintelligenz
bestehen. Das Verhalten des Gesamtsystems wird durch die Kommunikation und
Kooperation der intelligenten Systemelemente geprigt sein. Aus informationstech-
nischer Sicht handelt es sich nach dem Versténdnis der Forschergruppe des SFB um
verteilte Systeme von miteinander kooperierenden Agenten. Daraus eroffnen sich

’https://www.uni-paderborn.de/forschung/forschung-im-profil/
intelligente-technische-systeme
Shttps://www.iem.fraunhofer.de
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faszinierende Moglichkeiten fiir die Gestaltung der maschinenbaulichen Erzeugnisse
von morgen. Der Begriff Selbstoptimierung charakterisiert diese Perspektive: Selbst-
optimierung ermdglicht handlungsfihige Systeme mit inhérenter , Intelligenz“, die
in der Lage sind, selbststindig und flexibel auf veréinderte Umgebungsbedingungen
zu reagieren}

Die Fortfithrung der Themen des SFB 614 konnten durch die erfolgreiche Bean-
tragung des Spitzenclusters it’s OWL weitergefiihrt werden. Inzwischen ist hieraus
ein grofles Technologie-Netzwerk mit dem Thema intelligente technische Systeme
entstanden, in dem iiber 200 Unternehmen, Forschungseinrichtungen und Organi-
sationen Losungen fiir intelligente Produkte und Produktionsverfahren entwickeln.
Dabei steht it’s OWL fiir Innovationsgeist, Technologiekompetenz, Forschungsex-
pertise und gelebten Technologietransfer. Kennzeichen von it’s OWL sind das enge
Zusammenspiel von mittelstdndischen Technologiefithrern und anwendungsorientier-
ten Forschungseinrichtungen im produzierenden Gewerbe. Neue Technologien wer-
den gemeinsam erschlossen und in praxisnahen Angeboten fiir kleine und mittlere
Unternehmen zur Verfiigung gestellt. Seit 2022 hat sich it’s OWL zum Ziel gesetzt,
Ostwestfalen Lippe zur Modellregion fiir nachhaltige Wertschpfung zu entwickeln|

Damit sind die Arbeiten und auch die Ergebnisse der Nachwuchsgruppe DART
nicht als alleinstehend zu betrachten, sondern stehen in einer Linie zu vorausgehen-
den und zukiinftigen Projekten im Bereich der intelligenten Systeme an der Uni-
versitdt Paderborn und ihrem Forschungsumfeld in der Region. Der Beitrag der
Nachwuchsgruppe liegt dabei in der Erforschung von grundlegenden Methoden, die
maschinelles Lernen mit regelungstechnischen Ansétzen synergetisch verbinden.

1.3 Motivation fiir datengetriebene Methoden in der
Regelungstechnik

Der Begriff KI — Kiinstliche Intelligenz wird mit den immer gréfler werdenden
Rechenkapazitédten seit einigen Jahren sehr gehypt. Dieses Phédnomen ist im All-
tag beispielsweise durch Diskussionen zum Thema ,,Was sind Chancen und Ge-
fahren der KI?“ sichtbar und auch viele Forschungsgruppen beschéftigen sich mit
den Moglichkeiten der KI in ihren vielfdltigen Anwendungen. Die Verwendung von
Methoden, die mit Daten arbeiten ist dagegen in der Regelungstechnik schon seit
léngerer Zeit etabliert, wobei hier nicht einmal KI oder maschinelles Lernen gemeint
sein muss. Fiir jede Regelung eines technischen System sind wir darauf angewiesen,
Messdaten zuriickzufithren und diese innerhalb des Regelungsansatzes auszuwerten.
Ansonsten wére es nicht moglich, die Grundidee einer Regelung umzusetzen. Daher
ist es im Kontext der Regelungstechnik nur natiirlich dariiber nachzudenken, ob
die vorhandenen gemessenen Daten auch zur zusétzlichen Weiterverarbeitung ge-
nutzt werden konnen, um moglicherweise eine hohere Form des Wissens iiber das
System zu erhalten. Dies kann auch mit Lernen bezeichnet werden. Ebenso bei der
Modellierung von technischen Systemen wird die klassische Verwendung von Daten
deutlich: Sie kann sowohl durch eine theoretische als auch durch eine experimentelle

“https://www.uni-paderborn.de/projekt/281
Shttps://www.its-owl.de/home
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Abbildung 1.3 Gegeniiberstellung der unterschiedlichen Vorgehensweisen bei der theoretischen
und experimentellen Modellbildung. In Anlehnung an [1].

Modellbildung erfolgen, auflerdem gibt es Mischformen. Diese sind nach |1 in der
[Abbildung 1.3|dargestellt und unterscheiden sich darin, ob Vorwissen aus physikali-
schen Gesetzen oder Messdaten aus Experimenten zur Identifikation eines Modells
genutzt werden. Das Vorgehen der beiden Modellierungsstrategien &hnelt sich an ei-
nigen Stellen. Beide entwickeln ausgehen von Vorwissen und Annahmen ein Modell,
welches anschliefend ggf. noch vereinfacht wird. Zudem ergéinzen sich die Strategien
unter Umsténden durch Teilelemente untereinander, z.B. bei der Parameteridentifi-
kation des analytisch entwickelten Modells durch Messdaten.

Daher sind die Grenzen zwischen den Perspektiven der physikalischen und expe-
rimentellen Modellbildung flieBend zu sehen und nicht unbedingt streng definiert,
da viele Modelle sowohl mittels physikalischer GesetzméfBigkeiten als auch durch
Messdaten beschrieben werden koénnen. Diese konnen daher je nach Art der ver-
wendeten Informationen und Kenntnis der Systemstruktur als White-, Gray-, oder
Black-Box-Modelle charakterisiert werden. In der [Abbildung 1.4] ist diese Unter-
teilung dargestellt: Ein White-Box-Modell liegt vor, wenn die Systemstruktur so-
wie Parameter durch physikalische GesetzméfBigkeiten bekannt sind und damit ein
physikalisch motiviertes Modell aufgestellt werden kann. Black-Box-Modelle stel-
len dagegen das Ein-/Ausgangsverhalten dar und erlauben lediglich Vermutungen
zur Struktur. Ein Beispiel fiir diese Art von Modellen sind neuronale Netze, die
keinerlei physikalische Interpretation zulassen. Modelle, die sowohl aus der theo-
retischen als auch aus der experimentellen Modellbildung hervorgehen, werden als
Gray-Box-Modelle bezeichnet. Diese Modelle, deren Anteil von theoretischer bzw.
experimenteller Modellbildung variieren kann, werden im weiteren Verlauf auch als
hybrid bezeichnet. Zu ihnen werden haufig auch Modelle gezéhlt, die ML-Methoden
sinnvoll mit regelungstechnischen Ansétzen verbinden, beispielsweise die Methoden
PGNN in oder SINDy in [Abschnitt 3.2

Die Arbeit mit Methoden des maschinellen Lernens, also mit Methoden, die Bei-
spieldaten eines Systems auf ein mathematisches Modell abbilden, kann somit prinzi-
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Abbildung 1.4 Modellkategorien basierend auf dem Grad der verwendeten Messdaten und des
physikalischen Vorwissens, angelehnt an [1].

piell relativ einfach auch fiir regelungstechnische Systeme durchgefiihrt werden. Da-
bei haben wir nie den Anspruch Systeme zu erzeugen, die KI besitzen, denn dies wird
im Allgemeinen mit der Nachahmung von menschlichem Verhalten assoziiert. Wir
wollen ML nutzen, um die vorhandenen oder einfach erhaltenen Daten vorteilhaft zu
nutzen und zum Beispiel Modelle oder Regelungsansétze zu verbessern sowie adaptiv
gestalten zu konnen. Dabei wollen wir aber weiterhin das System sehr gut verste-
hen konnen, was besonders gut mit einer physikalisch motivierten Beschreibung in
Form von Differentialgleichungen funktioniert. Daher ist eines der Ziele der Nach-
wuchsgruppe DART die Interpretierbarkeit von hybriden Modellen bestehend aus
klassischer Regelungstechnik und datengetriebenen Methoden zu gewéhrleisten und
die Verwendung von Black-Box-Modellen wie beispielsweise neuronalen Netzen zu
vermeiden. Neben dem Wunsch der Interpretierbarkeit gibt es weitere Aspekte, die
in der hybriden Modellierung von Modellen und Regelungsansétzen beriicksichtigt
werden sollen. Hierzu gehéren

e cin geringer Modellierungsaufwand,

e cin geringer Rechenaufwand bei der Pradiktion,

eine hohe Dateneflizienz,

die physikalische Interpretierbarkeit,

die Nutzung von physikalischem Vorwissen,

die Anwendung bestehender Entwurfsverfahren,
e die Adaptionsfahigkeit bei Systemverdnderungen,
e gutes Extrapolationsverhalten.

Diese Punkte sind wichtig, damit sich neu entwickelte hybride Ansédtze gut in das
Vorgehen in der Regelungstechnik einbinden lassen. Sie werden in Abschnitt [AD-]
schnitt 2.3| genauer erlautert und innerhalb dieser Monografie wieder aufgegriffen,
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um die entwickelten Methoden einzuordnen. Abschliefend lisst sich sagen, dass es
viele Griinde fiir die Nutzung von datengetriebenen Ansétzen im Bereich der Rege-
lungstechnik gibt und sich diese sehr gut anhand von mechatronischen Systemen mo-
tivieren lassen. Die Forschungsergebnisse in diesem Beitrag werden zeigen, dass vor
allem Methoden mit ungenauen oder fehlerhaften Modellen und adaptive Ansétze
davon profitieren, dass kontinuierlich Daten von technischen Systemen gesammelt
werden und diese vorteilhaft genutzt werden kénnen. Im Folgenden werden entlang
des regelungstechnischen Entwurfsprozesses die durch die Nachwuchsgruppe DART
entwickelten Methoden vorgestellt und in den Stand der Technik eingebettet.






2 Grundlagen des maschinellen
Lernens in der Regelungstechnik

Methoden des maschinellen Lernens werden inzwischen in vielen wissenschaftlichen
Féchern verwendet und daraufhin analysiert, ob sie etablierte Verfahren verbessern
konnen. Die Nachwuchsgruppe DART hat ebendies fiir die Anwendung auf rege-
lungstechnische Probleme untersucht, daher sollen an dieser Stelle einige Grundlagen
erlautert werden, die fiir das Verstdndnis von ML und die Anwendung auf regelungs-
technische Methoden wichtig sind. Dafiir motivieren wird in zunéchst
motiviert, warum ausgewéhlte ML-Ansétze vorteilhaft in der Regelungstechnik ein-
gesetzt werden konnen. Anschliefend werden in grundlegende Begriffe
und Eigenschaften von ML-Ansétzen allgemein erldutert, sodass diese im Verlauf
dieses Beitrages vorausgesetzt werden konnen. Einzelne grundlegende ML Metho-
den, die im Rahmen unserer Arbeit verwendet oder weiterentwickelt werden, wer-
den zusétzlich an den entsprechenden Stellen in den folgenden Kapiteln eingefiihrt.
Dazu gehoren beispielsweise neuronale Netze (siehe [Unterabschnitt 3.3.1) oder die
Methode der Bayesschen Optimierung (siehe [Unterabschnitt 4.4.3). Abschliefend
fiir dieses grundlegende Kapitel werden Kriterien und Ziele formuliert, die sich bei
der Entwicklung von regelungstechnisch wertvollen hybriden Methoden als wichtig
herausgestellt haben und in den neu entwickelten Ansétzen der Nachwuchsgruppe
DART Beriicksichtigung finden.

2.1 Datengetriebene Methoden

Beim Aufbau von hybriden Methoden stellt sich die Frage, welche Methoden des
maschinellen Lernens sinnvollerweise eingesetzt werden sollten. Dies wird an dieser
Stelle durch zwei Methoden motiviert, die sich in ihrem Lernansatz grundsétzlich
unterscheiden: Einem (flachen) neuronalen Netz (siehe [Abschnitt 3.3)) im Vergleich
zu der physikalisch motivierten Bibliotheksmethode SINDy (siche [Abschnitt 3.2)).
Dazu betrachten wir ein nichtlineares Pendel, welches im Gelenk aktuiert ist und in
der [Abbildung 2.1(a)| dargestellt wird. Der Zustandsvektor lautet @ = [x1, 25" =
[0, #]" und die Differentialgleichungen ergeben sich zu

-jjl o T2

Ctg —% sinz; — #J}z -+ #u ’ (2 1)
kg m? '
m = 1kg, g = 9,810, 1 =0,5m, d = 0, 1~

S S

Es wird angenommen, dass der Zustandsvektor x vollstdndig messbar ist. Aufler-
dem besitzt das System fiir u = 0 eine stabile untere Ruhelage in &* = [2km,0]" und
eine instabile obere Ruhelage in &% = [(2k + 1)7,0]" mit k € Z. An diesem Beispiel
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mit einfachem dynamischen Verhalten soll nun gezeigt werden, wie mit relativ we-
nig Vorwissen die Dynamik mittels unterschiedlicher ML Methoden gelernt werden
kann. Das Vorwissen sind hierbei nicht die oben beschriebenen Differentialgleichun-
gen, sondern wir gehen ausschlieBlich davon aus, dass wir wissen, dass das System
durch zwei Zustidnde beschrieben werden kann, eine Eingangsgrofie im Gelenk be-
sitzt und dass Messgréflen der Zustédnde und des Eingangs erzeugt werden konnen.
Hierfiir bereiten wir diese Messdaten, die anschlieBend die Trainingsdaten fiir die
Lernalgorithmen darstellen, vor, indem 100 Simulationen (jeweils mit einer Dauer
von 3s und einer Schrittweite von At = 0.01s) mit zufilligen Anfangsauslenkungen
Ty im Zustandsraum und zufilligen Systemeingéngen u durchgefiihrt werden vgl.
IAbbildung 2.1(b)l Die Messeinrichtung wurde durch ein additives weifles gaufisches
Rauschen mit einer Standardabweichung von ¢ = 0.02 modelliert. Die Testtrajek-
torie ist so gewéhlt, dass das Pendel zunéchst autonom aus der Anfangsauslenkung
Ty = [%’r, 0]" schwingt und nach 2s sinusférmig mit ansteigender Schwingungsfre-
quenz angeregt wird. Dadurch erfdhrt das Pendel einerseits den Einfluss der Stell-
groffe und andererseits, aufgrund der hohen Auslenkung, die nichtlinearen Anteile
der Dynamik.

ul R
s
~ —10
= _20 l l l l l l l l l l
Q
/\@ P Y AR MVt
X1 in rad
(a) Pendel (b) Trainingstrajektorien

Abbildung 2.1 Das nichtlineare aktuierte Pendel illustriert als einfaches Beispiel die unter-
schiedlichen Strategien zur Modellbildung in der Regelungstechnik.

Die Dynamik des Pendels ldasst sich schon durch ein flaches neuronales Netz ver-
gleichsweise gut approximieren. Dabei ist mit einem flachen neuronalen Netz ein
mehrschichtiges Perzeptron gemeint, das nur eine versteckte Schicht besitzt im Ge-
gensatz zu tiefen neuronalen Netzen, die hunderte versteckte Schichten besitzen
konnen, siehe [2]. Das Netz bildet dabei die zeitdiskrete Dynamik ab und besitzt da-
her drei Eingéinge in = |11, To g, ux]’ und zwei Ausginge out = [z1 411, To 1] -
Die versteckte Schicht besteht aus 30 Neuronen, die mit einer hyperbolischen Ak-
tivierungsfunktion f,. () = He%% — 1 basierend auf dem Tangens betrieben wer-
den. Freie Parameter im neuronalen Netz sind die Gewichte auf den Verbindungen
zwischen verschiedenen Neuronen und ein Bias in jedem Neuron, sodass das hier
aufgestellte Netz auf 3 - 30 + 30 = 120 Parameter zwischen der Eingangs- und ver-
steckten Schicht und 30-2+2 = 62 Parameter zwischen der versteckten Schicht und
der Ausgangsschicht kommt. Insgesamt ergeben sich 182 freie Parameter, die durch
einen Lernalgorithmus basierend auf Optimierungsmethoden angepasst werden.

Das Ergebnis des Lernens durch ein flaches neuronales Netz mit 30 Neuronen ist
in der [Abbildung 2.2| dargestellt. Es wird deutlich, dass das aufgestellte neuronale
Netz in der Lage ist, die Dynamik der Testtrajektorie mit einer hohen Genauig-
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Abbildung 2.2 Vergleich der Approximation der Pendeldynamik mit unterschiedlichen neu-
ronalen Netzen mit 30 bzw. 10 versteckten Neuronen und der bibliotheksbasierten Methode
SINDy mit unterschiedlichen Bibliotheksansatzen (siehe |Gleichung (2.2))).

keit abzubilden und dadurch das Lernziel grundsétzlich erfiillt werden konnte. Wei-
terfithrend muss aber iiberlegt werden, wie mit dieser Struktur weiter umgegangen
werden kann. Das neuronale Netz ist eine Black-Box Struktur (siehe [Abbildung 1.4))
und kann daher ausschlielich das Ein-/ Ausgangsverhalten abbilden. Wenn sich ei-
ner der Systemparameter, beispielsweise der Démpfungskoeffizient d, &ndern wiirde,
dann miisste der Lernprozess inklusive der Gewinnung der Trainingsdaten kom-
plett von vorne begonnen werden. Auflerdem ist das neuronale Netz nicht in der
Lage die zu Grunde liegenden physikalischen Terme zu identifizieren. Somit wird
beispielsweise nicht klar, dass die Dynamik des Pendels durch die Sinusfunktion
schwingungsfihig ist (siehe|Gleichung (2.1)). Eine Regelung kénnte nur durchgefiihrt
werden, wenn die Kenntnis des Ein-/Ausgangsverhaltens ausreichend hierfiir ist und
Stabilitédtsuntersuchungen basierend auf der Analyse von mathematischen Gleichun-
gen konnen nicht durchgefiithrt werden. Daher kann festgehalten werden, dass ein
neuronales Netz prinzipiell sehr gut in der Lage ist mit relativ wenig Aufwand die
Dynamik eines technischen Systems zu erlernen, aber je nach geplanter zukiinftiger
Anwendung dieses Modells kann es nicht geeignet weiterverwendet werden.

In einem zweiten Schritt ist auch ein neuronales Netz mit 10 Neuronen in der ver-
steckten Schicht trainiert worden. Das Ergebnis ist ebenfalls in der [Abbildung 2.2|zu
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2 Grundlagen des maschinellen Lernens in der Regelungstechnik

sehen und zeigt, dass die Komplexitét dieses neuronale Netz nicht ausreicht, um die
Dynamik des einfachen Pendels korrekt abzubilden. Schon nach einer kurzen Zeit
von ca. 0,3 s weicht das approximierte Systemverhalten deutlich vom echten System
ab. Dadurch wird deutlich, dass ein neuronales Netz immer gut auf das vorliegende
System angepasst werden muss. Eine zu hohe oder zu geringe Komplexitéit des Mo-
dells, hier ausgedriickt durch die Anzahl der versteckten Neuronen und somit der
freien Parameter im System, wirkt sich negativ auf das Lernergebnis aus.

Im Vergleich zu neuronalen Netzen, die ein Black-Box-Modell der Dynamik erzeu-
gen, versucht die Methode SINDy (siehe physikalische Terme durch
die Auswahl aus einer Funktionsbibliothek zu identifizieren, die in der Lage sind
die Dynamik zu beschreiben. Damit ist diese Methode den Gray-Box-Methoden
zuzuordnen. SINDy basiert dabei auf der Idee, dass technische Systeme in der Re-
gel durch eine begrenzte Zahl an physikalischen Termen zu beschreiben sind und
beschrankt daher die Auswahl von physikalischen Termen aus der zu Grunde lie-
genden Bibliothek auf eine moglichst kleine Anzahl. Um SINDy anzuwenden, muss
zundchst eine Bibliothek erstellt werden, aus der die Beschreibung extrahiert wer-
den soll. Dabei sollte nach Moglichkeit Wissen iiber das dynamische Verhalten des
Systems durch die Nutzung in der Bibliothek eingebracht werden. Im vorliegenden
Beispiel werden drei unterschiedliche Bibliotheken auf ihre Eignung zum Erlernen
der Pendeldynamik untersucht:

W (x,u) = [xl Ty sinay u}T,
Uy(x,u) = 11 w2 sinay sinzy coszy cosxzy xf a3 u]T, (2.2)
W (x,u) = [:El Ty signzy signzy, i 23 u}T

Es wird deutlich, dass die Bibliothek W; alle Terme enthélt, um die Differenti-
algleichungen des Pendels korrekt anzundhern. Bei Wy sind diese Terme ebenfalls
enthalten, aber es werden zusétzlich weitere zur Auswahl angeboten. Die dritte Bi-
bliothek W3 beinhaltet dann nicht mehr den Sinusterm, sondern dynamisch eher
unpassende Anteile wie signx;. Mit Hilfe der gleichen Trainingsdaten wie im Fall
des neuronalen Netzes bestimmt nun der Algorithmus von SINDy die Parameter,
die fiir die Systembeschreibung am besten passend sind, so dass sich beispielsweise
eine Systembeschreibung durch

- l'l
i [0 1.0000 0 0 T
=6, 0, = ..
i 0 —0.4000 —19.6203 4.0000 sin a1

- 3 (2.3)

_ 1
N | —0.425 — 19.6203 sin z; + 4u}

bei der Verwendung der Bibliothek ¥, ergibt. Die vollstindigen Parametermatrizen
lauten

0, 0 1.0000 0 0 ]’

0 —0.4000 -19.6203 4.0000
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0. 0 1.0000 0 00 00O 0

2710 —0.4000 —19.6203 0 0 0 0 0 4.0000]"

0. 0 1.0000 0 0 0 0 0
27103799 0.0309 —5.3819 0.6962 0.0057 —0.0094 0.9197|"

und miissen immer in Kombination mit den jeweiligen Bibliotheken ¥, 7 = 1,...,3
gesehen werden.

Bei Betrachtung der Parametermatrizen @, und 05 wird deutlich, dass sich durch
die Anwendung von SINDy der korrekte Parametersatz, der aus den DGLn aus
bekannt ist, ergibt. Das heifit, dass SINDy in der Lage ist, die Dynamik
des Pendels mit Hilfe der Vorgabe einer passenden physikalisch motivierten Biblio-
thek vollstéandig abzubilden. Dieses Resultat sieht man auch in[Abbildung 2.2 in der
die drei Ergebnisse von SINDy ebenfalls dargestellt werden. Sowohl der Winkel ¢
als auch die Winkelgeschwindigkeit ¢ zeigen das gleiche Verhalten, wie das Original-
system. Der geringe Fehler wird ausschliefilich durch die simulierten Rauschprozesse
verursacht. Wenn dagegen die physikalisch eher weniger gut passende Bibliothek 65
verwendet wird, ergibt sich ein dhnlich schlechtes Ergebnis wie bei dem neuronalen
Netz mit nur 10 versteckten Neuronen und die Pradiktion stimmt nur fiir einen sehr
kurzen ersten Teil der Trajektorie mit der echten Dynamik des Systems iiberein.

Diese Analyse zeigt somit, dass bei beiden Ansétze, also dem flachen neuronalen
Netz und auch SINDy sowohl sehr gute als auch schlechte Ergebnisse produzie-
ren konnen, je nachdem, ob die die Methode beeinflussenden Parameter gut oder
schlecht gewéhlt worden sind. Diese Aspekte, wie die Anzahl von Neuronen oder die
Auswahl der Bibliothek, werden im Bereich des ML auch als Hyperparameter be-
zeichnet und charakterisieren den Erfolg von Methoden entscheidend. Ein Vorteil der
physikalisch motivierten Methode SINDy ist es, dass die Testung von unterschied-
lichen Bibliotheken vergleichsweise einfach verstanden werden kann. Offensichtlich
spielen viele Terme der Bibliothek 85 keine Rolle in der Dynamik des Pendels und
bei Betrachtung von 65 wird deutlich, dass der Algorithmus keine diinnbesetzte
Struktur bestimmen konnte und damit der Schluss nahe liegt, dass die betrachteten
physikalischen Terme nicht fiir die Beschreibung der Dynamik geeignet sind.

Aus diesem Beispiel ziehen wir einige Konsequenzen fiir unsere Arbeit mit
Methoden, die aus klassischer Regelungstechnik und Methoden des maschi-
nellen Lernens bestehen und somit hybrid sind. Es ist vorteilhaft, bekanntes
physikalisches Wissen zu verwenden und in die hybride Methode einbrin-
gen zu koénnen, da dadurch auch die Komplexitit des ML Modells weniger
gering sein kann. Auflerdem streben wir an, dass die Ergebnisse des Algorith-
mus physikalisch interpretierbar sind und somit von der anwendenden
Person im ingenieurwissenschaftlichen Kontext auch gut verstanden werden
konnen.

Neben diesen zwei Aspekten gibt es im Kontext hybrider regelungstechnischer
Systeme auch weitere Kriterien und Ziele, die bei einer Entwicklung beriicksichtigt

werden sollten. Auf diese wird ausfiihrlich in [Abschnitt 2.3| eingegangen.
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2.2 Grundlagen des maschinellen Lernens

Je nach Sichtweise existieren zahlreiche Definitionen fiir den Begriff der kiinstlichen
Intelligenz (KI), wobei sich die grundlegende Idee folgendermafien charakterisieren
lasst:

"Kiinstliche Intelligenz ist die Eigenschaft eines I'T-Systems, menschen-
dhnliche, intelligente Verhaltensweisen zu zeigen.” [3]

Die Intelligenz einer KI lédsst sich durch die Fahigkeit des Lernens charakterisie-
ren. Lernen meint hier, dass die KI kiinstliches Wissen aus Erfahrung generieren
kann, d. h. anhand von Beispielen (Lerndaten) werden Muster erkannt und verallge-
meinert mit dem Ziel nach der Lernphase auch bisher unbekannte Daten verarbei-
ten zu konnen. Im ingenieurwissenschaftlichen Bereich kénnen Algorithmen mit der
Féhigkeit zu Lernen die Automatisierung komplexer Aufgaben erleichtern, indem
gewisse menschliche Wahrnehmungs- und Verstandsleistungen durch maschinelles
Lernen (ML) realisiert werden. Der Begriff des maschinellen Lernens lasst sich fol-
gendermaflen definieren:

"ML bezeichnet Verfahren, bei denen Computer-Algorithmen aus Daten
lernen, beispielsweise Muster zu erkennen oder gewiinschte Verhaltens-
weisen zu zeigen, ohne dass jeder Einzelfall explizit programmiert wurde.
[...] Oft wird Maschinelles Lernen mit KI gleichgesetzt. Wéhrend in der
KI haufig ML eingesetzt wird, ist ML eine Methode, ein Werkzeug unter
vielen der KI.”[3]

In anderen Quellen wird eine Unterscheidung fiir starke und schwache KI vorge-
schlagen (siehe zum Beispiel [4]), welche dhnlich unterschieden werden wie die gera-
de betrachteten Klassen KI und ML. Starke KI-Systeme sind Maschinen mit men-
schenéhnlicher Intelligenz oder ihnen sogar iiberlegen und die sich selbst unabhéngig
vom Menschen auflerhalb ihres urspriinglichen Anwendungszwecks weiterentwickeln.
Bis heute sind keine Ansétze fiir starke KI bekannt und ob sie in der Zukunft existie-
ren werden, kann aktuell nicht vorhergesagt werden. Dagegen beschreibt die schwa-
che KI Anwendungen, die von Ingenieur*innen speziell auf einen Anwendungszweck
hin entwickelt worden sind. Hierzu gehoren beispielsweise die Abbildung von Kenn-
linien durch neuronale Netze oder die Abbildung von Fehlermodellen durch Gauf3-
Prozesse.

Wie oben beschrieben ist das Ziel des maschinellen Lernens aus den vorhandenen
Daten brauchbare Informationen zu extrahieren um anschliefend Vorhersagen iiber
unbekannte Eigenschaften und Vorschlidge fiir Entscheidungen treffen zu kénnen
(siche auch [5]). Dabei ist es erst einmal nicht von Bedeutung, was die betrach-
teten Daten genau beschreiben. ML besteht grundsétzlich aus drei verschiedenen
Komponenten, die in der Lage sind das ”Lernen” abzubilden. Dazu gehoren

e cin Datensatz,
e cin mathematisches Modell und

e cin Lernalgorithmus.
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Der Datensatz beinhaltet dabei die Informationen, die das betrachtete System be-
schreiben und muss so bestimmt werden, dass die Lernaufgabe durchfiihrbar ist.
Informationen, die nicht in den Daten vorhanden sind, kénnen durch das Modell
abgebildet werden. Das mathematische Modell soll in einer geeigneten Weise die ge-
lernte Information speichern kénnen und nach dem Lernen fiir Vorhersagen genutzt
werden konnen. Ein solches Modell kann beispielsweise ein neuronales Netz oder ein
Entscheidungsbaum sein. Der Lernalgorithmus trainiert das Modell mit Hilfe der Da-
ten, um die Aussagen der Daten verallgemeinern zu koénnen und es dem Modell zu
ermoglichen nach dem Lernen auch Pradiktionen fiir unbekannte Daten durchfithren
zu konnen. Es ist darauf zu achten, dass diese drei Komponenten aufeinander und
auf die spezifische Lernaufgabe abgestimmt werden.

Uniiberwachtes Uberwachtes
Lernen Lernen

Maschinelles
Lernen

Reinforcement
Learning

Abbildung 2.3 Einordnung verschiedener Kategorien des maschinellen Lernens.

Methoden des maschinellen Lernens lassen sich nach ihren Eigenschaften in un-
terschiedliche Kategorien einordnen, siehe auch [Abbildung 2.3, Eine Moglichkeit
der Kategorisierung ist die Art von Daten, die zum Lernen zur Verfiigung stehen.
So macht es einen Unterschied, ob ein Algorithmus entwickelt wird, der anhand
von vorgegebenen Ein- und Ausgangsdaten weif3, was er abbilden soll oder ob kei-
ne gewiinschten Ausgangsdaten vorhanden sind. Diese unterschiedlichen Szenari-
en werden als tberwachtes bzw. uniiberwachtes Lernen bezeichnet. Methoden des
uniiberwachten Lernens versuchen dabei nur anhand der Eingabedaten Muster zu
erkennen und diesen beispielsweise Kategorien zuzuordnen, so dass hier Methoden
vorliegen, die keine Zielwerte der Daten bendtigen. Ein Beispiel dieser Art von Me-
thoden ist die Clusteranalyse, bei der es das Ziel ist, Cluster in unstrukturierten
Daten zu finden, die auf Gemeinsamkeiten in den Daten beruhen. Da fiir die Arbei-
ten der Nachwuchsgruppe DART Algorithmen des {iberwachten Lernens die grofite
Bedeutung haben, soll an dieser Stelle aber hauptséchlich auf diese Art des Lernens
eingegangen werden. Fiir das iiberwachte Lernen miissen Daten mit sogenannten
Labeln vorliegen. Das heifit, dass diese Datensétze vorab durch z.B. Expertenwissen
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oder Experimente um die gewiinschte Ausgabe, die Label, fiir eine definierte Eingabe
erganzt werden, sodass auch die korrekte Ausgabe eines Modells iiberpriift werden
kann. Dies ist in |[Abbildung 2.4]auf der linken Seite abgebildet. Der Lernalgorithmus
erhélt die Pradiktion der Ausgabe aus dem bisher gelernten Modell und kann sie
mit der Sollausgabe aus den Trainingsdaten vergleichen. Wenn die Werte gut genug
iibereinstimmen, kann das Lernen beendet werden. Im anderen Fall macht der Ler-
nalgorithmus einen Anderungsvorschlag fiir das Modell, welches dementsprechend
aktualisiert wird. Damit ist dann eine Lerniteration abgeschlossen. Nach dem Trai-
ning des Modells kann es im Idealfall fiir die Pradiktion von unbekannten Daten,
bei denen die Ausgabe nicht bekannt ist, genutzt werden. Dies ist in [Abbildung 2.4]
rechts dargestellt. Wenn dies gut gelingt, spricht man von einem Modell, das gene-
ralisiert, da es fiir unbekannte Eingabedaten korrekte Ausgaben erzeugt. Das heifit,
eine hohe Generalisierbarkeit bedeutet, dass das Modell die Féahigkeit besitzt ange-
messen mit neuen bisher unbekannten Daten umzugehen, die aus demselben System
stammen wie die, die zur Erstellung des Systems verwendet wurden.

Trainingsdaten Unbekannte Daten
Modell Pradiktion Lernalgorithmus Modell M
I Aktualisiere Modell _‘

Abbildung 2.4 Darstellung des iiberwachten Lernprozesses: Training des Modells (links); Ver-
wendung des Modells fiir die Pradiktion bei einem unbekannten Datensatz (rechts), angelehnt
an [5].

Innerhalb des Gebiets des iiberwachten Lernens gibt es weitere Unterscheidun-
gen der Methoden, abhéngig davon wie das Lernergebnis des Modells aussehen soll,
siehe auch [Abbildung 2.3 Fiir die Nachwuchsgruppe DART sind dabei Modelle,
die Regressionsaufgaben losen, die wichtigste Klasse. Eine Regression liegt dann
vor, wenn das Modell nach dem Lernprozess einen funktionalen Zusammenhang
zwischen Ein- und Ausgangsgréfien beschreibt. Oder auch in einer mehr mathema-
tischen Beschreibung: Die Regression ist ein statistisches Analyseverfahren, welches
Beziehungen zwischen einer abhidngigen und einer oder mehrerer unabhéngiger Va-
riablen in Form von y = f(x) modelliert [6]. Dies kann beispielsweise eine Kenn-
linie sein, bei der den Eingangsdaten die gewiinschten Ausgangsgrofien in einem
passenden mathematischen Zusammenhang zugeordnet werden oder ein neuronales
Netz, das fiir eine Funktionsapproximation genutzt wird. Eine weitere Kategorie im
iiberwachten Lernen ist die Klassifikation. Hier wird ein Modell mittels maschinel-
len Lernens so gelernt, dass es Daten in eine planmiéflige Sammlung von abstrakten
Klassen, die zur Abgrenzung und Ordnung verwendet werden, sortieren kann [2].
Dabei werden die einzelnen Klassen durch die Einteilung von Objekten anhand be-
stimmter {ibereinstimmender Merkmale bestimmt. Zentraler Punkt hierbei ist das
Erkennen von Mustern, den Merkmalen, die allen Dingen einer Kategorie gemein-
sam sind und sie vom Inhalt anderer Kategorien unterscheiden. Fiir eine Klassifi-
kation gibt es viele Beispiele, die auch schon aus dem Alltag bekannt sind. Dazu
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gehoren Spracherkennung, Texterkennung oder auch Gesichtserkennung, also Auf-
gaben, die der Mensch standardméfig erfiillen kann. Im technischen Bereich kann
eine Klassifizierung auch die Fille "normaler” bzw. ”fehlerhafter” Betrieb eines Sys-
tems beschreiben und damit sehr hilfreich in der Fehlererkennung sein. Eine weitere
Kategorie des iiberwachten Lernens ist das Deep Learning (siehe [Abbildung 2.3)),
was auf der Verwendung von tiefen neuronalen Netzen beruht [7]. Die beim Deep
Learning verwendeten neuronalen Netze besitzen eine grole Anzahl von versteckten
Schichten zwischen Eingabe- und Ausgabeschicht und damit eine komplexe innere
Struktur, benétigen aber fiir das Training dementsprechend eine grole Menge an
Daten. Durch ihre sehr hohe Komplexitit erlaubt Deep Learning die Verarbeitung
und Analyse von sehr komplexen Datenmustern. Aktuell werden grofie Modelle wie
Large Language Models betrachtet, die bis zu einer Billion lernbarer Parameter besit-
zen und es ermoglichen sollen eine generelle kiinstliche Intelligenz wie beispielsweise
ChatGPT [8] zu erzeugen. Viele Wissenschaftler*innen sehen hierin einen grofien
technologischen Fortschritt, der auch gesellschaftliche Auswirkungen haben wird.

Eine weitere Form des maschinellen Lernens, welche zwischen dem iiberwachten
und uniiberwachten Ansatz steht, ist das Reinforcement Learningl] (RL) oder auch
bestéirkendes Lernen, siche auch [Abbildung 2.3 Die Grundidee des RL basiert dar-
auf, dass ein System sein Verhalten dahingehend anpasst, dass es eine moglichst
groBe Belohnung in der Interaktion mit seiner Umwelt erhélt, siehe hierzu auch [9).
Das heif3t, wir gehen davon aus, dass ein Agent erst einmal frei in einer vorgegebenen
Umwelt agieren kann und unterschiedliche Aktionen durchfiihren kann. Durch die
Interaktion erhélt er Informationen dariiber, welche Konsequenzen seine Handlun-
gen haben und lernt durch Ausprobieren, was fiir sein Ziel vorteilhafte oder unvor-
teilhafte Handlungen sind. Dieses Lernen von Interaktionen ist ein sehr natiirliches
Versténdnis von diesem Vorgang, denn es beschreibt auch die Lernansétze, die der
Mensch verfolgt, namlich Lernen durch Ausprobieren und Erkunden. Die schwie-
rigsten Aufgaben beim RL liegen dann vor, wenn eine Aktion nicht direkt eine
gute Bewertung erhélt, sondern sich erst in der noch unbekannten Zukunft positiv
auswirkt. Das finale Ziel der RL Algorithmen wird aber dadurch beschrieben, dass
der Agent die maximale Gesamtbelohnung erzielen soll und daher sind temporére
schlechte Handlungen moglicherweise in der Zukunft trotzdem vorteilhaft. Dies fiithrt
zu einem weiteren wichtigen Problem, welches im RL gel6st werden muss, und zwar
einen Kompromiss zwischen Exploitation (Ausnutzen) und Exploration (Erkunden)
zu finden. Im ersten Fall nutzt man die Aktionen, in denen gute Ergebnisse schon
bekannt sind, um eine moglichst hohe Belohnung zu erhalten und im anderen Fall
erkundet man unbekannte Bereiche, in denen moglicherweise noch bessere Ergeb-
nisse zu erzielen sind. Hier wird deutlich, dass dies ein Dilemma ist, welches durch
den jeweiligen Algorithmus adressiert werden muss.

Fiir das maschinelle Lernen gibt es Empfehlungen, wie der Gesamtdatensatz am
effektivsten fiir ein moglichst gutes Lernergebnis zu nutzen ist. Mit circa 70 % des
Gesamtdatensatzes sollten die Trainingsdaten den grofiten Teil beinhalten. Die Trai-
ningsdaten werden direkt fiir das Lernen des gesuchten Zusammenhangs verwendet
und sollten nach Moglichkeit alle Effekte und Einfliisse der Lernaufgabe beinhalten.
Die Testdaten sollten circa 15 % des Gesamtdatensatzes beinhalten und dienen dem

'Da der englischsprachige Begriff allgemein iiblich fiir diese Methoden ist, wird er in dieser Arbeit
bevorzugt verwendet.
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abschlieBenden Test des aufgestellten Modells. Das Testen besteht also daraus, mit
Hilfe von unbekannten Daten die Giite der Vorhersage des Modells iiberpriifen zu
konnen. Mit den iibrigen 15 % wird das Modell wihrend des Lernprozesses validiert.
Abhéngig von den Ergebnissen mit diesem Datensatz werden also die Architek-
tur oder andere Hyperparameter des Modells angepasst. Ein Beispiel hierfiir bei
neuronalen Netzen ist die Anpassung der Anzahl von Neuronen oder versteckten
Schichten. Damit stehen die Validierungsdaten zwischen Trainings- und Testdaten,
haben aber ebenfalls einen grofien Einfluss auf das Lernergebnis. Bevor Messdaten
jedoch als Trainings-, Validierungs- oder Testdaten genutzt werden kénnen, ist u. U.
eine Vorverarbeitung der Daten erforderlich, um die in den Daten enthaltenen In-
formationen nutzen zu kénnen [10], [11]. So erfolgt in der Regel eine Bereinigung
der Rohdaten, indem z. B. Rauschen gefiltert, Ausreifler detektiert und Duplikate
erkannt werden. Liegen unterschiedlich skalierte Datensétze vor, miissen diese nor-
malisiert oder standardisiert werden, um sie verarbeiten zu kénnen. Ebenso kann es
notwendig sein, dass die Rohdaten in ein geeignetes Format iibertragen oder auf-
grund verschiedener Datenquellen zu einem Datensatz fusioniert werden miissen.
Ferner kann es sinnvoll sein, bereits in der Datenvorverarbeitung eine Merkmals-
analyse vorzunehmen, um ggf. eine Reduktion auf die wesentlichen Daten zu er-
halten. Die Vorverarbeitung der Daten ist daher ein wichtiges Werkzeug, um eine
hohe Datenqualitéit und die erfolgreiche Nutzung nachfolgender Anwendungen zu
ermoglichen.

Schon fiir den Begriff der Generalisierbarkeit wurde beschrieben, dass ein zentrales
Ziel beim maschinellen Lernen die Giite der Vorhersagefahigkeit des gelernten Mo-
dells auf unbekannten Daten ist. Dabei ist es aber nicht sinnvoll ein Lernmodell mit
einer moglichst hohen Komplexitit auszuwéhlen, bei dem sehr viele Hyperparameter
bestimmt werden miissen. Denn bei einer zu hohen Modellkomplexitéit im Verhéltnis
zu den vorhandenen Daten besteht die Gefahr, dass sich das Modell zu stark auf
die Trainingsdaten anpasst und auch ungewiinschte Eigenschaften wie zuféllige Be-
sonderheiten und Fehler in den Daten gelernt werden. Dieses Verhalten widerspricht
ciner guten Generalisierung und wird mit Overfitting (oder auch Uberanpassung) be-
zeichnet. Erkennbar ist Overfitting daran, dass das Lernen sehr gute Ergebnisse auf
den Trainigsdaten zeigt, aber ein Test auf den Validierungsdaten schlecht austfllt,
siehe |Abbildung 2.5 rechts der gestrichelten Linie. Die Empfehlung ist dann die Mo-
dellkomplexitdt so zu wéhlen, dass der Fehler auf den Validierungsdaten minimal
ist. Ein dhnlicher Effekt des Overfitting tritt auf, wenn zu viele Trainingsiterationen
durchgefiihrt werden und auch in diesem Fall sollte das Training im Minimum des
Fehlers der Validierungsdaten abgebrochen werden. Weiteres Training fithrt dazu,
dass ungewiinschte Effekte in den Trainingsdaten gelernt werden, dass Modell aber
nicht besser in seiner Generalisierbarkeit wird. Overfitting kann durch eine Kreuz-
validierung vermieden werden. Bei dieser Methode wird das Training des Modells
mehrfach auf einem unterschiedlich aufgeteilten Datensatz durchgefiihrt, so dass am
Ende verschiedene Modelle verglichen werden konnen. Das heifit, es werden n ver-
schiedene Datenséitze aus dem Gesamtdatensatz erzeugt und diese werden immer
wieder unterschiedlich in die drei Klassen Training, Validierung und Test aufgeteilt.
Final werden die Modelle miteinander verglichen und wenn die Modelle vergleich-
bar sind, dann kann angenommen werden, dass der verwendete Algorithmus fiir den
vorliegenden Datensatz generalisierte Modell erzeugt. [12]
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Abbildung 2.5 Typischer Effekt des Overfittings: Der Fehler auf den Trainingsdaten sinkt
bei hoherer Modellkomplexitdt bzw. weiteren Trainingsiterationen immer weiter. Das Ergebnis
auf den Validierungsdaten wird aber ab der gestrichelten Linie wieder schlechter. Hier tritt
Overfitting auf.

Zur Vermeidung von Overfitting sollten die Ergebnisse eines Modells auf
Trainings-, Validierungs- und Testdaten betrachtet werden und auf Overfit-
ting kontrolliert werden. Sind diese vergleichbar und fiir den benétigten An-
wendungsfall ausreichend gut, kann eine belastbare Entscheidung iiber den
Einsatz des Modells getroffen werden. [12]

Die Modelle des ML besitzen im Allgemeinen Parameter, die ihre jeweilige Aus-
priagung beschreiben. Dies kann zum Beispiel die Anzahl der Neuronen und ver-
steckten Schichten in einem neuronalen Netz oder auch die Wahl der Aktivierungs-
funktionen sein. Diese Parameter werden Hyperparameter genannt und da sie groflen
Einfluss auf das Lernergebnis haben, miissen sie sehr sorgfiltig ausgewéhlt werden.
So ist es das Ziel einer Hyperparameteroptimierung die besten Einstellungen fiir die-
se vorab festgelegten Parameter des Modells zu finden. Eine Einstellung durch einen
Menschen ist dabei moglich, aber mit steigender Anzahl der Hyperparameter wird
die Dimension des Parameterraums sehr hoch und es ist nicht mehr méglich die Ein-
fliisse einzelner Parameter korrekt abzuschéitzen. Es wird daher empfohlen, die Hy-
perparameteroptimierung strategisch durch einen Algorithmus durchzufiithren, zum
Beispiel durch Ansétze, die im einfachen Fall auf einer Zufallssuche oder auf sequen-
tiellen Ansdtzen mit Nutzung des Expected Improvement basieren. In Forschungs-
arbeiten konnte gezeigt werden, dass es sehr effektiv ist, in bestehenden Methoden
die Konfigurationen zu optimieren und dadurch verbesserte Ergebnisse zu erhalten.
Daher empfehlen [13], dass die Hyperparameteroptimierung immer als eine formale
auflere Schleife im Lernprozess durchgefiihrt werden sollte.

Um Phénomene wie das Over- oder Underfitting zu beeinflussen, die Anzahl der
Hyperparameter zu reduzieren oder Eigenschaften dieser zu forcieren, werden haufig
Strategien der Regularisierung oder des Feature Engineering genutzt. Grundlegen-
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des, gemeinsames Ziel all jener Techniken ist es, dass das resultierende Modell einem
konkreten Zweck dienen kann, z. B. dass es gut generalisiert, indem Over- und Under-
fitting vermieden werden, oder dass es interpretierbar und iibersichtlich bleibt, indem
wenige Hyperparameter genutzt werden. Eine bekannte Regularisierungsstrategie,
um Overfitting in neuronalen Netzen zu vermeiden, stellt beispielsweise das Dropout
dar, welches wihrend des Trainings (hédufig zufallsbasiert) eine bestimmte Menge an
Neuronen an- und abschaltet [10]. Noch populérer ist die ¢;-Regularisierung, wel-
che in vielfdltigen Methoden angewendet wird. Durch den Einsatz eines ¢;-Terms
in Kombination mit einer quadratischen, meist ¢y-basierten Giitefunktion wird die
Nutzung weniger Hyperparameter und dadurch die Verringerung der Modellkomple-
xitét gefordert [14]. Ein prominentes Beispiel stellt die LASSO-Regularisierung dar,
welche fiir das SINDy-Verfahren verwendet wird (vgl. [Abschnitt 3.2)). Verfahren des
Feature Engineering zielen zumeist auf eine Modellordnungsreduktion ab, um die
Komplexitiat des Modells zu reduzieren und es interpretierbarer zu gestalten. Dazu
wird in der Regel eine Merkmalsanalyse durchgefiihrt, um Charakteristika zu iden-
tifizieren, die die wesentlichen Eigenschaften eines dynamischen Systems beschrei-
ben und folglich im Modellverhalten beibehalten werden, wohingegen weitere ver-
nachléssigt oder zusammengefasst werden kénnen. Eine der populdrsten Methoden
ist die Hauptkomponentenanalyse |15], im Englischen Principal Component Ana-
lysis (PCA), welche basierend auf einer Eigenwertsanalyse relevante Einsichten zur
Verfiigung stellt (vgl. [Unterabschnitt 5.3.2)). Nachdem die grundlegenden Prinzipien
datenbasierter Methoden vorgestellt worden sind, wird im folgenden Abschnitt ge-
nauer beschrieben, wie diese Methoden zielgerichtet im hybriden Regelungsentwurf
eingesetzt werden sollen.

2.3 Zielsetzung beim hybriden Regelungsentwurf

In wurde hervorgehoben, welche Vorteile die Nutzung datengetriebe-
ner Methoden in der Regelungstechnik erzielen konnen. Da bereits im klassischen
Regelungsentwurf Messdaten verwendet werden, um physikalisch motivierte Mo-
delle zu parametrieren oder Systeme zu identifizieren (vgl. [Abbildung 1.3)), ist es
sinnvoll, diese Daten auch in gréflerem Umfang zur hybriden Modellierung zu nut-
zen. Ubergeordnetes Ziel dieses Vorgehens ist es, Modelle und Regelungsansitze zu
verbessern sowie adaptiv gestalten zu kénnen, aber gleichzeitig physikalische Ein-
sicht in das System zu konservieren oder vertiefend zu erhalten. Dies bedeutet ins-
besondere, dass die Entwicklung reiner Black-Box-Modelle vermieden werden soll.
Weil jeder klassische Regelungsentwurf zunéchst mit dem Schritt der Modellbildung
beginnt (vgl. Abbildungen und [2.6), steht im hybriden Regelungsentwurf die
Entwicklung eines hybriden Modells im Fokus. Dieses soll eine regelungstechnisch
verwertbare Form aufweisen (vgl. Dissertation [16]), welche anhand der folgenden
Kriterien charakterisiert wird (vgl. Dissertationen [16], |17], [18]).

Geringer Modellierungsaufwand. Aufgrund verkiirzter Entwicklungszyklen ist
es wichtig, dass die Modellbildung moéglichst ressourceneffizient erfolgt. Ein zu
detailliertes Modell kann im schlechtesten Fall sogar den zeitlichen Vorteil, der
durch den modellbasierten Entwurf erreicht wird, durch den erhéhten Aufwand
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kompensieren [19], [20]. Daher soll der Modellierungsaufwand nur so hoch wie
notig sein.

Geringer Rechenaufwand bei der Pradiktion. Modellpriadiktive Regelungs-
ansétze optimieren anhand des Streckenmodells den Ausgangsgrofenverlauf
mittels des Stellgréenverlaufs. Ebenso nutzen modellbasierte Zustandsbeob-
achter das Streckenmodell, um die Zustédnde des Systems zu prédizieren und
basierend auf Messungen zu korrigieren. Dies sind nur zwei Beispiele, bei de-
nen Echtzeitfahigkeit eine wichtige Rolle spielt. Aus diesem Grund soll das
hybride Modell moglichst kostengiinstig prédiziert werden kénnen [21].

Hohe Dateneffizienz. Das Sammeln von Daten ist an mechatronischen Priifstén-
den aufgrund des hohen Zeitaufwands, des Energiebedarfs und des Ressour-
cenverbrauchs aufwendig. Daher ist es erstrebenswert, dass die datengetriebe-
nen Modellbildungsanséitze auch bei begrenzten Datenmengen eine effiziente
Generalisierungsfiahigkeit zeigen.

Physikalische Interpretierbarkeit. Ein physikalisch interpretierbares Modell
ermoglicht ein tiefes Verstédndnis der zugrunde liegenden Prozesse im gesteuer-
ten System. Dadurch wird eine zuverléssige Vorhersage des Systemverhaltens
erleichtert, was insbesondere in sicherheitskritischen Anwendungen entschei-
dend ist. Folglich soll das datengetriebene Modell eine Form aufweisen, die sich
physikalisch analysieren ldsst, beispielsweise durch Stabilitdtsuntersuchungen.

Nutzung von physikalischem Vorwissen. Zudem wird angenommen, dass die
Person, die das regelungstechnische System entwickelt, {iber Vorwissen beziig-
lich grundlegender physikalischer Zusammenhénge von mechatronischen Sys-
temen verfiigt. Im Kontext der Zielsetzung dieses Forschungsvorhabens soll
dieses physikalisch motivierte Vorwissen in die datengetriebene Modellbildung
integriert werden?] um eine optimale Nutzung der Vorteile und Stiirken beider
Ansétze zu erreichen [22].

Anwendung bestehender Entwurfsverfahren. Bestehende Verfahren fiir den
Regler- und Beobachterentwurf zeichnen sich durch ihre systematische Vorge-
hensweise aus, die auf physikalischen Prinzipien und systemtheoretischen An-
forderungen wie Stabilitét oder Steuerbarkeit basiert [21], [24]. Im Gegensatz
dazu erweisen sich rein datengetriebene Streckenmodelle aufgrund der Black-
Box-Struktur als nicht unmittelbar fiir den Regler- und Beobachterentwurf
nutzbar. Dies fiithrt zu Herausforderungen bei der Erreichung bestimmter Re-
gelungsziele. Demnach ist es erstrebenswert, dass das Modell eine geradlinige
Anwendung bestehender Entwurfsverfahren ermdglicht.

Adaptionsfihigkeit bei Systemverénderungen. Wahrend des Produktlebens-
zyklus eines mechatronischen Systems treten vorhersehbare oder unvorherseh-
bare Verdnderungen der Dynamik auf, z. B. durch den Einbau neuer Bauteile,

2Die Beriicksichtigung von physikalischen Grundgesetzen beim maschinellen Lernen wird auch als
Physics-informed machine learning bezeichnet und erfihrt im wissenschaftlichen Kontext eine
weitreichende Beachtung, vgl. [22], [23].
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Verschleifl oder Temperaturschwankungen. Zusétzlich unterliegt das verwen-
dete Modell in der Regel Unsicherheiten, beispielsweise durch fehlerhafte An-
nahmen. Weil durch die Riickkopplungsstruktur regelungstechnischer Systeme
wihrend des Betriebs ohnehin laufend Messdaten erfasst werden, ist es reiz-
voll, das Streckenmodell online anzupassen. Daher sollten die datengetriebenen
Modelle adaptiv sein.

Gutes Extrapolationsverhalten. Ein Modell mit gutem Extrapolationsverhal-

ten erlaubt zuverldssige Préddiktionen auch in unbekannten, neuen Gebieten
des Phasenraums. Aufgrund der Riickfithrungsstruktur regelungstechnischer
Systeme ist es daher erforderlich, dass ein hybrides Modell in der Lage ist,
neue, bisher ungesehene Datenséitze auflerhalb der Trainingsmenge zu verar-
beiten, und folglich eine gute Generalisierbarkeit aufweist [10], [11].

Diese Ziele stellen die wesentlichen Anforderungen an ein hybrides Modell dar, wel-

ches fiir regelungstechnische Anwendungen genutzt werden soll. Die [Abbildung 2.6]
veranschaulicht das angestrebte hybride Vorgehen als Alternative zum klassischen
modellbasierten Entwurf, dessen aufwendiger, u. U. iterativer Prozess vereinfacht
werden soll. So erlaubt die hybride Modellbildung eine Modellierung in regelungs-
technisch wertvoller Form, welche ebenfalls basierend auf physikalischen Gesetzen
und Messdaten gebildet wird, jedoch ohne mehrteilige Modellierungsschritte aus-
kommt und direkt fiir den Regler- und Beobachterentwurf zugénglich ist. Daher
werden im folgenden Kapitel einige Verfahren zur hybriden Modellierung vorgestellt,
die den zuvor genannten Anforderungen entsprechen.

Klassischer modellbasierter Entwurf

>
Mathematische Parameter- Modell- Regler- und
Modellbildung identifikation anpassung Beobachterentwurf o
} } E
Physikalische =
Grundgesetze Messungen =
+~
A \ f-;
Hybride Modellbildung in Regler- und -
regelungstechnisch verwertbarer Form Beobachterentwurf
>

Hybrider Entwurf mit einem Modell in regelungstechnisch verwertbarer Form

Abbildung 2.6 Der hybride Entwurf mit einem Modell in regelungstechnisch verwertbarer
Form dient als Alternative zum klassischen modellbasierten Regelungsentwurf [16], [25].
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Um ein technisches System zu steuern oder zu regeln, ist grundlegendes Verstand-
nis iiber dieses erforderlich. In der Regelungstechnik wird daher zunéchst ein Mo-
dell der Regelstreckd!| angefertigt, welches die wesentlichen Eigenschaften dieser
abbilden soll. Klassischerweise werden physikalische Grundgesetze verwendet, um
Differentialgleichungen oder Ubertragungsfunktionen herzuleiten. Gleichzeitig die-
nen Messdaten als Ergénzung, um beispielsweise Parameter dieser physikalischen
Modelle zu identifizieren. Neben diesem analytischen Vorgehen kénnen aber auch
ausschlieflich Messdaten verwendet werden, um beispielsweise experimentell eine
Ubertragungsfunktion durch die Analyse der Systemantwort zu bestimmen [1], [21].
In sind diese beiden Perspektiven der Modellbildung bereits thema-
tisiert worden. Sowohl die analytische als auch die experimentelle Modellierung
finden jeweils berechtigte Anwendung in der regelungstechnischen Modellbildung
und weisen verschiedene Stérken auf (vgl. [Abbildung 1.3)), sodass eine Kombinati-
on zu hybriden Modellen besonders vorteilhaft ist. Vor allem in der Situation von
Modellungenauigkeiten, welche wegen getroffener Annahmen und Vereinfachungen
existieren und von Parameterunsicherheiten bis zu fehlenden Modelltermen reichen
kénnen, und Systemverdnderungen, die z. B. in Abhéngigkeit von Verschleif§ oder
Temperaturschwankungen auftreten konnen, leisten hybride Modelle ihren Beitrag
zur préazisen Systembeschreibung. Dabei kennzeichnen der Grad des verwendeten
physikalischen Vorwissens und das Mafi an genutzten Messdaten die Ausprigung
sogenannter White-, Gray- oder Black-Box-Modelle (vgl. |[Abbildung 1.4]), wobei auf-
grund der erforderlichen systemtheoretischen Analyse und Verwendung in bestehen-
den regelungstechnischen Entwurfsverfahren keine Black-Box-Modelle im Rahmen
der Nachwuchsgruppe DART angestrebt wurden (vgl. [Abschnitt 2.3)).

In diesem Kapitel werden folglich hybride Modellierungstechniken thematisiert,
welche sowohl physikalisch motivierte als auch datengetriebene Komponenten ver-
wenden. Dabei werden einerseits Gesamtmodelle vorgestellt, die Komponenten bei-
der Perspektiven aufweisen, und andererseits hybride Fehlermodelle diskutiert, die in
serieller Komplettierung ein datengetriebenes Restmodell zu einem physikalischen
Modell ergénzen. Ausgangspunkt aller dieser hybriden Methoden ist die Bertick-
sichtigung von Vorwissen, welches zumindest die Kenntnis der Systemordnung, der
Zustands-, Ein- und Ausgangsgrofien umfasst, manchmal aber auch ein einfaches
physikalisches Modell beinhalten kann, und die Verfiigharkeit von Messdaten, die in
Form einer Zeitreihe vorliegen und in Matrixform gebracht werden kénnen. Ziel die-
ser Methoden ist es, eine hohe Modellgiite zu erzielen und gleichzeitig eine Form zu
konservieren, die eine systemtheoretische Analyse bzw. physikalische Interpretierbar-
keit erlaubt. Neben einigen grundlegenden datengetriebenen Verfahren in den Ab-
schnitten [3.2] und werden insbesondere die in der Nachwuchsgruppe DART er-

!Das zu regelnde oder zu steuernde System wird als (Regel-)Strecke bezeichnet.
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arbeiteten hybriden Methoden vorgestellt. Diese umfassen Koopman-basierte Tech-
niken, physikalische motivierte neuronale Netze, datengetriebene strukturerhaltende
Verfahren sowie probabilistische hybride Modellierungsstrategien und werden durch
einfache Anwendungsbeispiele illustriert. Dariiber hinaus werden Vor- und Nachtei-
le jener Methoden aufgezeigt und bzgl. ihrer Modellgiite und der in

formulierten Anforderungen analysiert.

3.1 Methoden basierend auf dem Koopman-Operator

B. O. Koopman formulierte 1931 eine operatortheoretische Perspektive zur linearen
Beschreibung der Dynamik nichtlinearer Systeme durch die Beobachtung in einem
im Allgemeinen héherdimensionalen Raum [26]. Diese lineare Systembeschreibung
fithrt zu einer erheblichen Reduktion des Rechenaufwands bei der Préadiktion des
Systemverhaltens und bietet zudem den Vorteil, dass sich bewahrte Entwurfsverfah-
ren aus der linearen Regelungstechnik, z. B. Riccati-Regler, direkt auf nichtlineare
Systeme anwenden lassen. Im folgenden Abschnitt wird die Grundidee des Koopman-
Operators in Anlehnung an [27], [28] eingefiihrt. AnschlieBend werden Ansétze zur
Modellbildung basierend auf dem Koopman-Operator erlautert und anhand von
Beispielen illustriert.

3.1.1 Theoretische Einordnung des Koopman-Operators

Im Folgenden werden zunéchst zeitkontinuierliche autonome dynamische Systeme

&= f(x) (3.1)

betrachtet, wobei & € R" ein n-dimensionaler Zustand und f : R® — R" eine Lip-
schitz-stetige Funktion sind. Fiir eine Zeitspanne t lasst sich der Fluss F; : R® — R"
definieren, der den Zustand x(f;) um einen Zeitschritt vorwérts auf den Zustand
x(to +t) abbildet
to+t
F,(x(ty)) =x (to +1t) = x(to) + f(z(r)dr, (3.2)

to

sodass sich mit k£ € Z das zeitdiskrete dynamische System

1 = Fi(x,) mit xp = @ (KAL) (3.3)

ergibt, vgl. |Abbildung 3.1]

F — F — F F
Iy ! P i > L3 i o i > L

Abbildung 3.1 Der Fluss F'; beschreibt die zeitliche Entwicklung des Zustands x von einem
Zeitschritt in den darauffolgenden Zeitschritt.

Fiir eine beliebige Observabld? g : R* — R ist der lineare Koopman-Operator

2Der Begriff der Observable lisst sich hier als Beobachtung bzw. Messgrofie des Systems verstehen.
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definiert als Komposition mit dem Fluss
Kig:=go Fy. (3.4)
Damit ergibt sich fiir das zeitdiskrete System
Kig(xr) = g (Fi(xr)) = 9(ps1), (3.5)

d. h. der Koopman-Operator iiberfiihrt die Observable g(x;) in den néchsten Zeit-
schritt g(xgy1), vgl. [Abbildung 3.2, Der Koopman-Operator K; ist ein linearer un-
endlichdimensionaler Operator. Fiir hinreichend glatte Systeme ldsst sich ein zeit-
kontinuierliches Analogon

d
Kg= 29, (3.6)

definieren, wobei K der infinitesimale Generator mit

_ F, —
Kg = lim Ko =9 _ lim 2=t 9 (3.7)
t—0 t t—0
ist [28]
K K K — K
g(x1) g(x2) 9(% ’L‘_J =9L(wm>
g(z) g(x) 9(z) 9(z) g9(x)
F F F F
33? ! :r_QZF ! :@? i o) ! :@m

Abbildung 3.2 Veranschaulichung des Koopman-Operators.

Anhand eines Beispielsystems [27] ldsst sich die Idee des Koopman-Operators ver-
anschaulichen. Das betrachtete zeitkontinuierliche nichtlineare dynamische System
wird durch die Differentialgleichungen

i‘g Ty — X7
beschrieben. Es handelt sich um eine Dynamik mit einer langsamen Mannigfaltig-
keit zo = 2%, weil der Zustand x, sich zeitlich schneller entwickelt als der Zustand
x1. Um eine lineare Systemdarstellung mittels des Koopman-Operators zu erhalten,
werden die Observablen geschickt so festgelegt, dass sie den originalen Zustandsvek-
tor & = [xl, IQ]T und zuséatzlich die Nichtlinearitat .CE% enthalte

91(x) T
gx)= |gpx)| = |z . (3.9)
93(x) x?

Beziiglich der Observablen g(x) ldsst sich die Systemdynamik durch die Berechnung

3Dieser Ansatz ist #hnlich zur Carleman-Linearisierung, vel. [29], [30] .
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der zeitlichen Ableitungen unter Beriicksichtung der Kettenregel beschreiben durch

g w 00 g1
G =10 A =A] |g2] - (3.10)
g3 0 0 2u] g3
——
g K g

Die |[Abbildung 3.3| veranschaulicht die Dynamik des eigentlich zweidimensionalen
nichtlinearen Originalsystems im dreidimensionalen Raum der Observablen.

g3

Abbildung 3.3 Visualisierung von Beispieltrajektorien fiir 4= —0,05,\ = —1. Die para-
belfésrmige Fliche ist die Zwangsbedingung gs(x) = 23, auf der alle Trajektorien verlaufen.
In griin ist die attraktive langsame Mannigfaltigkeit des Systems dargestellt, der sich alle Tra-
jektorien zunachst schnell anndhern, bevor sie danach langsam in den Ursprung streben.

Das beschriebene Vorgehen ist bei den meisten auftretenden nichtlinearen dyna-
mischen Systemen nicht ohne Weiteres mdoglich. Dieser Zusammenhang lésst sich
anhand des Beispielsystems

i = a? (3.11)

verdeutlichen, bei dem die alleinige Erweiterung des Originalzustandes um die Nicht-
linearitét zu einer unendlichdimensionalen Systembeschreibung fithren wiirde

9 0100 g1 g1 z
o 0020 9o g2 s
g3 =10 0 0 3 95| mit |g3]| = |2° (3.12)
g4 0000 ga ga ZE4

Eine endlichdimensionale Darstellung in Form von Matrizen ist nur moglich fiir
den Fall, wenn die Observablen einen sogenannten Koopman-invarianten Unter-
raum aufspannen. Seien ag,...,ay, B1,..., 8y € R. Dann ist der Unterraum M =
span {gi, g2, - - ., gn } genau dann invariant gegeniiber dem Koopman-Operator [27],
falls alle Funktionen

g =191 +asgs + -+ angn (3.13)
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auch nach Anwendung des Koopman-Operators in diesem Unterraum liegen, d. h.

Kg = 5ig1+ B2g2 + -+ Bngn. (3.14)

Dieser Abschnitt stellt einen kurzen Einstieg in die theoretischen Grundlagen des
Koopman-Operators dar. Im weiteren Verlauf liegt der Schwerpunkt auf seiner prak-
tischen Anwendung. Fiir eine vertiefte Auseinandersetzung und zusétzliche Informa-
tionen zum Thema sei auf [27], [31] verwiesen.

3.1.2 Systemidentifikation mittels des Koopman-Operators

In Folgenden wird angenommen, dass sich die zu modellierende Dynamik der Stre-
cke mit dem vollsténdig bekannten (=messbaren) Zustandsvektor & € R" und der
Vektorfunktion f : R™ — R” entweder als autonomes System

= f(x) (3.15)
oder als eingangsaffines System
= f(x) + Bu (3.16)

mit der Eingangsgréfie w € RP und der konstanten Eingangsmatrix B € R"*? be-
schreiben ldsst. Die verwendeten (Mess-)Daten diirfen sowohl von Simulationen als
auch von realen Experimenten stammen und sind in Form von Snapshot-Matrizen

X = [:cl, To, ... ,:CM_l] e R (M-1), (3.17a)
U= [’U,l,’l.l,g,...,’l,l,M_l] ERPX(M_D, (317b)
X' = [@y,25,..., 2y € RV (3.17c)

anzuordnen, wobei @, = @ (kAt) bzw. u, = w (kAt) mit k = 1,2,.... X' die aus X
um einen Zeitschritt At in die Zukunft verschobenen Zusténde enthélt. Die Daten
miissen nicht zwingend von einer einzigen Messung oder Simulation stammen, es
geniigen Paare aus zwei aufeinander folgenden Snapshots x; und x;, die spalten-
richtig in X und X’ eingetragen werden.

Im Folgenden werden Verfahren zur Snapshot-basierten Systemidentifikation er-
lautert: Dynamic Mode Decomposition (DMD) und Extended Dynamic Mode De-
composition (EDMD). Beide Verfahren lassen sich als endlichdimensionale Appro-
ximationen des Koopman-Operators interpretieren, weil der Zustandsiibergang von
einem Zeitschritt zum darauf folgenden jeweils durch eine Matrix approximiert wird.

3.1.3 Dynamic Mode Decomposition

Das DMD-Verfahren wurde 2008 von Peter Schmid erstmals im Kontext der Modell-
ordnungsreduktion fiir hochdimensionale fluiddynamische Systeme formuliert [32],
[33]. Der jeweilige Zustandsiibergang von einem Zeitschritt in den folgenden Zeit-
schritt wird iiber die gesamte Datensequenz als lineare Dynamik angenommen.
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Im Vergleich zur Proper Orthogonal Decomposition] die auf einer Sortierung der
Zustande nach rdumlicher Korrelation und Energiegehalt beruht, wird beim DMD-
Verfahren zusétzlich das zeitliche Verhalten der Zustidnde beriicksichtigtﬂ [38]. Das
DMD-Verfahren approximiert eine zeitdiskrete Matrix A;, die den linearen Zusam-
menhang zwischen den Datenmatrizen X und X', d. h. fiir jeden Zustandsiibergang
der Datensequenz

X'~ AX (3.18)
optimal beschreibt. Die kleinste-Quadrate-Losung fiir A, ist gegeben durch
A =X'X" (3.19)

wobei X die Pseudoinverse der Matrix X ist [39]. Damit ldsst sich das appro-
ximierte System linear im Zustandsraum mit der Dynamikmatrix A; beschreiben
bzw. pradizieren, vgl. [Abbildung 3.4}

Si','k_;,_l = At:ck. (320)

Weil A, lediglich eine Approximation der betrachteten im Allgemeinen nichtlinearen
Dynamik ist, handelt es sich bei &1 um eine Schitzung von xj.;. Die Matrix
A; entspricht einer Approximation des Koopman-Operators IC; fiir den Spezialfall,
dass der Zustandsvektor als Observablenvektor aufgefasst wird, d. h. fiir g : R® —
R™, g(x) = «.

A A A
(21) (@ f——{ @ J——CF——(an

Abbildung 3.4 Beim DMD-Verfahren lasst sich die zeitliche Evolution der Zustidnde durch
Multiplikation mit der Matrix A; pradizieren.

Das DMD-Verfahren lisst sich auf eingangsaffine Systeme (3.16)| erweitern und
wird dann auch als DMDc (Dynamic Mode Decomposition with Control) bezeichnet
[40]. Dafiir werden die Zustandstibergénge

X/ ~ AtX + BtU == |:At7Bt:| |:A§‘| (321)

betrachtet, sodass sich die kleinste-Quadrate-Losung

[A;, B =X {U (3.22)
ergibt. Damit léasst sich das approximierte System linear pradizieren:
i%kJrl = Atin + Btuk. (323)

1Die Proper Orthogonal Decomposition (POD) ist eine aus der Fluiddynamik stammende nume-
rische Methode zur Analyse turbulenter Stromungen [34], die eng verwandt mit der Hauptkom-
ponentenanalyse ist [35].

® Auch verwandt mit dem DMD-Verfahren ist der Arnoldi-Algorithmus|36], der Eigenwerte eines
hochdimensionalen dynamischen Systems iiber Krylov-Unterrdume approximiert, vgl. [37].
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3.1 Methoden basierend auf dem Koopman-Operator

Stabile DMD-Modelle Im Bereich der Systemidentifikation existiert der Ansatz,
identifizierte Modelle von eigentlich stabilen Systemen, die z. B. aufgrund von Mess-
fehlern instabil geworden sind, nachtréiglich anzupassen, um ihre Stabilitdt und da-
mit eine fiir die resultierende Dynamik elementare Systemeigenschaft sicherzustel-
lenfl Ausgehend von einer instabilen Matrix A; € R™" wird im Beitrag [42] die im
Sinne der Frobeniusnorm néchste stabile Matrix

L2

_inf  ||A; — Ay
AgeSp F

(3.24)

gesucht, wobei S{*" die Menge aller zeitdiskreten stabilen n x n-Matrizen istﬂ Dafiir
wird eine neuartige Charakterisierung fiir zeitdiskrete Matrizen formuliert: eine Ma-
trix A; ist genau dann stabil, wenn sie sich als

A, =S'oTSs (3.25)

formulieren ldsst, wobei S positiv definit, O orthogonal und T positiv semidefi-
nit mit |7 < 1 sind. Die Matrix liegt dann in der sogenannten SOT-Fornf] vor.
Damit lasst sich das nichtkonvexe Optimierungsproblem in das gleichwertige
Optimierungsproblem

2

A - A = inf A, — s~loTS|; (3.26)

F  §-0,0€0(n),T=0,|T|<1

_inf
Acesyrr

umformulieren, dessen zulédssige Menge konvex ist. Die numerische Losung erfolgt
mittels eines projizierten Gradientenabstiegsverfahrens, vgl. [43]. Beim projizierten
Gradientenabstieg wird versucht, eine gegebene Kostenfunktion unter einer festge-
legten Beschrinkung zu minimieren, indem jede Iteration zuerst einen Schritt in
Richtung des negativen Gradienten und anschliefend eine Projektion der Lésung in
den erlaubten Suchraum berechnet. Die Ansitze aus [42] lassen sich auf datenge-
triebene DMD-Modelle anwenden.

Das DMD-Verfahren lésst sich ohne jegliches Vorwissen iiber die zu modellierende
Dynamik anwenden. Diese Tatsache wird in der Literatur oft als Vorteil angefiihrt
und aufgrund dieser Einfachheit wurde das DMD-Verfahren vielfach praktisch an-
gewendet. Im Kontext hybrider Modelle erweist sich das rein datengetriebene Vor-
gehen jedoch als Nachteil, weil sich fiir die betrachteten mechatronischen Syste-
me meistens physikalisch motivierte Modelle herleiten lassen und dieses Vorwissen
nutzbar gemacht werden soll. Aulerdem adressiert das DMD-Verfahren vorwiegend
fluiddynamische Fragestellungen, bei denen eine Modellordnungsreduktion, d. h.
eine Transformation von einem hochdimensionalen in einen niedrigdimensionalen

SDariiber hinaus gibt es noch weitere strukturelle Anforderungen, die an datengetriebene Modelle
gestellt werden kénnen. Die Autor*innen in [41] beispielsweise verallgemeinern diese Strategie
als Physics-informed DMD fiir unterschiedliche gewiinschte Matrixtypen mit jeweils korrespon-
dierenden physikalischen Eigenschaften.

"Die Matrix Ay ist stabil, wenn fiir alle Eigenwerte A1, ..., A, von A; gilt |\;| < 1 und es sich bei
allen Eigenwerten auf dem Einheitskreis um halbeinfache Eigenwerte handelt [42].

8In der originalen Formulierung von [42] werden die Matrizen als S, U und B und die Schreibweise
als SUB-Form bezeichnet. Dieses Dokument verwendet zur Vermeidung von Verwechslungen mit
anderen Matrizen stattdessen die Bezeichnungen S, O und T.
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Raum mit dem Ziel eines linearen Dynamikmodells, angestrebt wird. Im Gegen-
satz dazu erfordern komplexe mechatronische Fragestellungen aufgrund moglicher
auftretender Nichtlinearitdten in der Regel eine hohere Modellkomplexitit, d. h.
die Transformation von einem typischerweise niedrigdimensionalen Raum in einen
héherdimensionalen Raum mit dem Ziel eines linearen Dynamikmodells.

Das DMD-Verfahren eignet sich sowohl fiir autonome als auch nicht-
autonome Systeme und besitzt aufgrund seiner extremen Einfachheit einen
minimalen Rechenaufwand. Es erfordert Messdaten des vollstédndigen Zu-
standsvektors und lésst sich ohne jegliches Vorwissen iiber die zu model-
lierende Dynamik anwenden. Die resultierende zeitdiskrete lineare Systembe-
schreibung lésst sich geradlinig sowohl fiir die Analyse als auch den Regler-
und Beobachterentwurf einsetzen.

3.1.4 Extended Dynamic Mode Decomposition

Das Verfahren Extended Dynamic Mode Decomposition (EDMD) verallgemeinert
das DMD-Verfahren, weil die Observablen g(x) zusétzlich zu den Zusténden nichtli-
neare Funktionen der Zusténde enthalten. Dadurch entspricht dieses Verfahren einer
endlichdimensionalen Approximation des Koopman-Operators. Im Folgenden wer-
den der Algorithmus und die Pradiktionsvorschrift hergeleitet. AnschlieBend wird
thematisiert, wie die Observablen zu konstruieren sind, wie sich die Koopman-
Eigenzerlegung berechnet und wie sich das Verfahren um einen Systemeingang er-
weitern l&sst.

Algorithmus
Fiir das EDMD-Verfahren werden N Observablen

R - RY, W(z) = [ (x), ¢u(@),..., on(x)] (3.27)

definiert’] wobei in den meisten Fillen N > n gilt. Um moglichst vielfiltige Dy-
namiken zu modellieren, bietet es sich im Allgemeinen an, Polynome, radiale Ba-
sisfunktionen oder trigonometrische Funktionen fiir ¥(x) zu verwenden [44]. Eine
beliebige skalare Funktion 6 : R — R l&sst sich als Linearkombination

N
0=> aphy=a¥, a€R mit aecR>Y (3.28)
k=1

der Funktionen W(x) beschreiben. Fiir die zeitliche Evolution von € gilt mit dem
Koopman-Operator

Die endlichdimensionale Approximation von K; durch K, € RV*¥

aVoF,=aK,W+r = r=a(VoF,— KW) (3.30)

9[44] formuliert () in transponierter Darstellung, d. h. als Zeilenvektor.
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3.1 Methoden basierend auf dem Koopman-Operator

resultiert in einem Fehler 7, der sich durch Anpassung von K; iiber Messdaten des
betrachteten Systems minimieren liasst. Uber alle Messpunkte wird die Kostenfunk-
tion

L= 23 @)= £ Y la (o Fy@,) - K@ )P (331)

definiert. Mit (¥ o F}) (@,,) = ¥(@,+1) folgt

L= e (W) - K. (3:2)

Die Minimierung von |Gleichung (3.32)|entspricht einem kleinste-Quadrate-Problem
[44] mit dem globalen Optimum [45] in

K,=G"A (3.33)
mit
1 M—-1
m=1
1 M-—1
A=+7 U(x,, )P (x,,,) € RV, (3.35)
m=1

Eine alternative Berechnungsvorschrift fiir K, ldsst sich analog zum DMD-Algorith-
mus mittels der erweiterten Snapshotmatrizen formulieren [46]. Dafiir werden die
Observablen fiir X und X' ausgewertet

U(X) = [¥(z1), T(zs),..., ¥(xp_1)] € RVMD, (3.36a)
U(X') = [¥(xs), ¥(x3), ..., (xy)] € RVMD, (3.36b)

sodass sich K, iiber den Zusammenhang
U(X")~ K,¥(X) (3.37)
mittels der Pseudoinversen berechnen lésst
K, =¥ (X")¥T(X). (3.38)

Beide Berechnungsalgorithmen sind dquivalent zueinander, eine Herleitung dazu fin-
det sich in [45]. Die resultierende Systembeschreibung des EDMD-Modells, d. h. die
zeitliche Evolution der Observablen W fiir einen Pradiktionsschritt ist durch

U(z) = K, ¥(xy), (3.39)
gegeben. Die Priadiktion der Originalzusténde erfordert eine Riicktransformation

x = P¥(x), (3.40)
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vgl. [Abbildung 3.5, Falls die Observablen den Zustandsvektor als Identitét an erster
Stelle beinhalten, d. h. () = [@, ¥n41(x), ..., Yn(z)] T, reduziert sich die Losung
auf

P = [I,,0,n_n)] € RNV, (3.41)

wobei I,, die n x n-Einheitsmatrix und 0, (n—_y) die n x (N — n)-Nullmatrix sind.
Andernfalls wird sie numerisch iiber

P=X¥(X) (3.42)

approximiert [47]. Das Vorgehen bei der Priadiktion mittels des EDMD-Verfahrens
ist in der [Abbildung 3.5 dargestellt.

K K K
W(x) LK, U(x) () KW ()
“\Il(a:) \P P \P

&
3

I JAIQ

Abbildung 3.5 Resultierende Systembeschreibung beim EDMD-Verfahren. Die Observablen
W (x) weisen eine hohere Dimension als der Zustand « auf, daher wird ¥ () auch als Lifting-
Operator bezeichnet.

EDMD-Pradiktion mit Korrektur

Fiir die meisten nichtlinearen dynamischen Systeme lassen sich nicht ohne Weiteres
Observablen finden, die einen Koopman-invarianten Unterraum aufspannen. Das be-
deutet, dass sich nicht alle Zustéinde W(x 1) durch Linearkombination aus W(xy)
exakt pradizieren lassen. Dadurch resultiert ein Fehler, der mit jedem Préadiktions-
schritt weiter anwéchst [48]. Dieser Fehler kann signifikant reduziert werden, indem
die Observablen ¥(x) in jedem Prédiktionsschritt nach Extraktion des Zustands-
vektors @ mittels [Gleichung (3.40)| neu ausgewertet werden. Dadurch miissen nicht
mehr alle Observablen durch die Anwendung von K, pradiziert werden, sodass
die Forderung eines Koopman-invarianten Unterraums entfillt. Die resultierende
Pradiktionsvorschrift

&1 = P (x44,) = PK, 9 () (3.43)

wurde erstmalig in [25] als EDMD-Pridiktion mit Korrektur vorgestellf| und ist
in der [Abbildung 3.6 als alternierender Prozess zwischen dem Originalzustand und
den hoherdimensionalen Observablen dargestellt. Die EDMD-Pradiktion mit Kor-
rektur ist keine tatséchlich lineare Systembeschreibung, weil in jedem Berechnungs-
schritt zusétzlich zur Matrix-Vektor-Multiplikation die Auswertung einer nichtli-
nearen Funktion erforderlich ist. Dadurch erhoht sich der Rechenaufwand bei der
Pradiktion im Vergleich zum reinen EDMD-Verfahren.

Ein #hnlicher Ansatz wurde in [49] formalisiert, indem zwischen dem Domain- und Output-
Raum unterschieden wird, wobei der Domain-Raum hier ¥(x) und der Output-Raum hier x
entspricht.
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(o) (K@ Kt (@) @—»Kt
[ () P\ ./ AL P|
(=) T

Abbildung 3.6 Pradiktionsvorschrift bei der EDMD-Pradiktion mit Korrektur. Die Pradiktion

von ¥ mittels K erfolgt im hoherdimensionalen Raum, jedoch wird der Zustand x in jedem
Pradiktionsschritt mittels P extrahiert.

Wahl der Observablen

Die Wahl der Observablen hat einen entscheidenden Einfluss auf die Genauigkeit der
approximierten Systembeschreibung und sollte in Abhéngigkeit der zugrunde liegen-
den Dynamik und den verwendeten Daten erfolgen. Dabei gibt es unterschiedliche
Ansitze. [44] empfehlen beispielsweise die Verwendung von Hermiteschen Polyno-
men oder radialen Basisfunktionen [50]. [51] nutzen den Kernel-TricK™| zur impli-
ziten Berechnung der Observablen fiir den Fall, dass die Anzahl der Messpunk-
te deutlich geringer als die Anzahl der angestrebten Observablen ist. Aufgrund
verfiigbarer Messeinrichtungen ldsst sich dieses Szenario fiir Zeitreihen von rege-
lungstechnischen Priifstdnden ausschliefen. Ein weit verbreiteter Ansatz bestimmt
die Observablen implizit mittels eines (tiefen) neuronalen Netzes. Neben zahlrei-
chen weiteren Veroffentlichungen sei hier vor allem [52] genannt. In dieser Arbeit
wird im Kontext regelungstechnischer Systeme ein gewisses Mafl an physikalischem
Vorwissen iiber die Systemdynamik angenommen. Daher ist es wiinschenswert, die-
ses Vorwissen moglichst sinnvoll beim Design der Observablen zu beriicksichtigen[™]
Eine hierfiir geeignete Strategie fiir die Wahl der Observablen ist motiviert durch die
Taylorreihenentwicklung [54]. Demnach empfiehlt es sich, die (mehrfachen) zeitlichen
Ableitungen der in der betrachteten Dynamik vorkommenden Funktionen in W(x)
zu beriicksichtigen [45], [55]. Fiir den Fall, dass die Dynamik mehrere Nichtlinea-
ritdten enthélt, ist es aufgrund moglicher Parameterunsicherheiten empfehlenswert,
jeden Term einzeln zu beriicksichtigen [56].

Erweiterung um einen Systemeingang

Beim EDMD-Verfahren gibt es unterschiedliche Ansétze fiir die Erweiterung des Mo-
dells um einen Steuereingang. Im Allgemeinen wird der Koopman-Zustandsvektor
um die Eingénge bzw. nichtlineare Funktionen der Eingénge erweitert [45], [49], [55].
Fiir den Fall eingangsaffiner Systeme lasst sich ein dhnlicher Ansatz verfolgen
wie beim DMDc-Verfahren. Dafiir wird der Zusammenhang

(3.44)

U(X') ~ K,9(X) + BU = [K,, B|] [‘I’(X)}

U

HDer Kernel-Trick ist eine etablierte Technik aus dem Bereich der Mustererkennung. Die betrach-
teten Daten werden iiber eine Kernel-Funktion in einen héherdimensionalen Raum transformiert
[10].

12153] beschreibt dieses Konzept als parenting in learning, d. h. dass vorhandenes Expert*in-
nenwissen gezielt dem Lernvorgang vermittelt wird.
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betrachtet, sodass sich die kleinste-Quadrate-Losung

+
[Ki B = ¥(X) {‘Pg )} (3.45)

ergibt. Anschlielend lésst sich das approximierte System
U(xy) = K,¥(x;) + By, (3.46)

préidizieren. Dieses Verfahren wird auch als EDMDc bezeichnet und lésst sich wie
das EDMD-Verfahren um einen Korrekturansatz erweitern, vgl. |Gleichung (3.43)|

&1 = PO (xp,) = P (K, % (x;) + By, . (3.47)

Eine weitere Strategie zur Autonomisierung eines aktuierten Systems wird in [57],
[58], [59], [60], [61], [62] beschrieben. Die moglichen Systemeingénge u € U werden in
endlich viele Werte {u', ..., u™} € U diskretisiert. Dadurch wird das aktuierte Sys-
tem durch endlich viele autonome Systeme mit jeweils konstantem Eingang ersetzt.
Um nicht eingangsaffine Systeme zu lernen, kann der Eingang durch ein neuronales
Netz kodiert werden [63].

Stabile EDMD-Modelle

Ahnlich wie DMD-Modelle lassen auch EDMD-Modelle nachtriiglich so anpassen,
dass sie stabil sind. Die Autor*innen in [48] leiten Fehlerschranken von EDMD-
Modellen her und pladieren dafiir, zur Erhohung der Pridiktionsgiite des reinen
EDMD-Verfahrens in allen Fallenﬁ einen stabilen Koopman-Operator zu verwen-
den. In Anlehnung an stabile DMD-Modelle entspricht die Bestimmung des im Sinne
der Frobeniusnorm niichsten stabilen Koopman-Operators K zu einem anhand von
Messdaten approximierten (moglicherweise instabilen) Koopman-Operator K; dem
Optimierungsproblem

2

nf ||k, - K, |K, - s'OTS|5.  (3.48)

f(tesNxN

= inf
F  S-0,0€0(N),T=0,||T|<1

Alternativ schlagen die Autor*innen in [48|, [64] vor, stattdessen die néchste stabile
Matrix zur Kleinste-Quadrate-Losung [(3.38)| zu betrachten, d. h. die verwendeten
Daten X, X’ (vgl. |Gleichung (3.17)|) mit zu beriicksichtigen

~ 2
inf HlII(X’)—Kt\II(X)
KtESNXN

= inf @ (X") - S'OTS¥(X)|2.

8§-0,0€0(N),T=0,||T| <1

i (3.49)

Diese Formulierung|[(3.49)|fiihrt zu einer anderen Lésung als[Gleichung (3.48)] wobei
eine erhohte Genauigkeit des resultierenden stabilen EDMD-Modells beziiglich der
verwendeten Messdaten erzielt wird. Aulerdem zeichnet sich dieser Ansatz dadurch
aus, dass bereits in der ersten Iteration ein stabiles Modell berechnet wird. Durch

13Sogar fiir den Fall, dass das zugrundeliegende System eine instabile Dynamik aufweist [48)].
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die Verwendung der Daten X, X’ U wird der Abstand zur Kleinste-Quadrate-
Losung mit jeder Iteration reduziert. Diese Eigenschaft ist vorteilhaft fiir
Online-Anwendungen, bei denen das stabile Modell schnell berechnet werden muss.
Die iterative Berechnung von B, erweitert den Suchraum im Vergleich fiir den Fall,
in dem nur K, angepasst wird.

Das EDMD-Verfahren approximiert autonome und nicht-autonome nichtli-
neare Dynamiken anhand von (Mess-)Daten sowie physikalischem Vorwissen
iiber die Form der auftretenden Nichtlinearitédten als lineare zeitdiskre-
te Modelle. Es erfordert Messdaten des vollstindigen Zustandsvektors.
Die reine EDMD-Préadiktion liefert eine hohe Genauigkeit fiir einen kurzen
Horizont, wohingegen die EDMD-Pradiktion mit Korrektur auch iiber einen
langeren Zeithorizont eine sehr hohe Genauigkeit liefert. Hinsichtlich der Sta-
bilitéat sowie der Steuerbarkeit und Beobachtbarkeit 14sst sich anhand von Bei-
spielanwendungen eine Korrespondenz des zugrunde liegenden nichtlinearen
Systems und dem jeweiligen approximierten EDMD-Modell feststellen, vgl.
[25]. Dieses Ergebnis ldsst sich nicht verallgemeinern, sodass die Steuerbar-
keit bzw. Beobachtbarkeit im jeweiligen Einzelfall zu priifen ist, vgl. [16]. Die
[Abbildung 3.7 fasst die Ergebnisse dieses Abschnitts zusammen. Die Analyse
des Rechenaufwands bei der Pradiktion anhand der Betrachtung von Taktzy-
klen[] zeigt, dass die beiden EDMD-Pridiktionsverfahren als datengetriebe-
ne Alternativen zu klassischen numerischen Integrationsmethoden verwendet
werden konnen, vgl. studentische Arbeit [67]. Die reine EDMD-Pridiktion
eignet sich aufgrund ihrer hohen Genauigkeit und einem gleichzeitig geringen
Rechenaufwand bei kurzen Zeitintervallen besonders fiir Anwendungen mit
Echtzeitanforderungen, wie z. B. MPC.

%Ein Taktzyklus ist in der Computertechnik der benétigte Zeitraum fiir die Ausfithrung
einer elementaren Rechenoperation auf einem Prozessor [65]. Der Rechenaufwand einer
Gleitkommaoperation lasst sich durch die Anzahl benétigter Taktzyklen angeben. Das
Handbuch [66] bietet eine iiberaus umfangreiche Auseinandersetzung mit der Bestim-
mung von Taktzyklen fiir unterschiedliche Gleitkommaoperationen und Prozessorarchi-
tekturen.

bEchtzeitfihige Systeme sind in der Lage, das Ergebnis einer Berechnung innerhalb eines
vorher fest definierten Zeitintervalls garantiert berechnen zu koénnen [68].

Beispielhafte Anwendung

Aufgrund der linearen Systembeschreibung sowie der Méglichkeit, vorhandenes phy-
sikalisches Vorwissen auszunutzen, scheint das EDMD-Verfahren eine vielverspre-
chende Strategie fiir die Entwicklung regelungstechnisch verwertbarer Streckenmo-
delle zu sein. Daher wird im Folgenden die Anwendbarkeit des EDMD-Verfahrens
beispielhaft hinsichtlich der erreichbaren Pradiktionsgiite demonstriert. Hierfiir wird
das numerisch simulierte nichtlineare Verhalten des jeweiligen Originalsystems mit
dem approximierten EDMD-Modell verglichen. Als akademisches Beispiel wird das
im eingefiihrte Einfachpendel betrachtet, das mehrere isolierte Ruhe-
lagen aufweist. Als experimentelles Beispiel wird der Schlagmechanismus des Gol-
froboters betrachtet, dessen Dynamik nichtlineare Reibungseffekte enthélt.
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Priifstand oder Simulationsmodell Physikalisches Vorwissen

lMessdaten X, X'\U ®(x) = [h1(x),a(x), . ..)Fl
Algorithmus

4
U(X') ~ K1¥(X) + BU = [K;, By {‘ng)} = [Ky, By = ¥(X') [\IIEX)]
| K. B,
EDMD-Modell
\il(a:kH) = Kt‘Il(in) = Btuk
N\

Reine EDMD-Pradiktion EDMD-Pradiktion mit Korrektur
e lineare Systembeschreibung e nichtlineare Systembeschreibung
e lokal hohe Approximationsgenauigkeit e sehr hohe Approximationsgenauigkeit

o geringer Rechenaufwand iiber einen langeren Pradiktionshorizont

e robust gegeniiber der Auswahl der
Trainingsdaten

Systemfheoretische Eigenschaften werden beibehalten
e Stabilitat (Eigenwerte)

e Steuerbarkeit und Beobachtbarkeit

Abbildung 3.7 Das EDMD-Verfahren bietet die Méglichkeit anhand von (Mess-) Daten
und physikalischem Vorwissen ein lineares zeitdiskretes Modell zu approximieren, wobei die
Approximationsgenauigkeit von den gewdhlten Observablen, den Trainingsdaten und dem
Pradiktionsverfahren abhdngt. Beziiglich systemtheoretischer Eigenschaften konnte fiir die un-
tersuchten Beispielsysteme eine Korrespondenz zwischen dem zugrunde liegenden Originalsys-
tem und dem EDMD-approximierten Modell festgestellt werden.

Pendel Die Dynamik des im Gelenk aktuierten nichtlinearen Pendels, vgl. [AD]
[schnitt 2.1] wird durch

Fl} = { , 2 , (3.50a)

: 1
ST — —mTo + U

y =1 (3.50b)

mit m = lkg,g = 9,81ms 2,1l = 0,5m,d = 0,1kgm?s~! beschrieben. Das Pen-
del weist ein kontinuierliches Spektrum auf, was die Approximation mittels ei-
nes EDMD-Modells erschwert. Im Gegensatz zu der studentischen Arbeit [69], die
zur Abbildung der unterschiedlichen Eigenfrequenzen eine Schar winkelabhéngiger
EDMD-Modelle préasentiert, verfolgt der hier préasentierte Ansatz das Ziel, die Pen-
deldynamik mittels eines einzigen Modells zu beschreiben.

Die Pradiktionsgenauigkeit des approximierten EDMD-Modells hiangt stark von
der sorgfiltigen Auswahl der Observablen und den gewéhlten Trainingsdaten ab, wie
im Beitrag [25] erldutert ist. Die Observablen werden so gewihlt, dass sie den Zu-
standsvektor sowie mehrmalige zeitliche Ableitungen der nichtlinearen Terme des je-
weiligen Originalsystems enthalten. Fiir das Pendel ergeben sich aufgrund des Terms
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sin 1 unter Beriicksichtigung der Kettenregel die Observablen

. 9 . . 2
Wpendel(T) = [wl, Tg,SIN Tq, Ty COS T1, T5SIN X1, SIN X1 COS T1, Ty COS™ Ty, . ..

T sin’ x1, xg Ccos 1, sin® 1,sin xy cos? 1, x% sinzq,...

:1:3 sin xy cos xq, :c% sin® 24, 3:3 cos® z1, z9 cos® x1, xg CcoS X1, ... (3.51)

3x1,sin3 T1COSTq,...

}T

T sin? 1 cos 1, mg sin 1, xg sin

sin x; cos® T, :17;l sin x1 cos 1, x% sin x; cos® Ty,...

Fiir die Erzeugung der Trainingsdaten werden jeweils 100 simulierte Trajektorien
mit einer Dauer von jeweils 3s, einer Schrittweite von At = 0,01s und zufélligen
Anfangsauslenkungen mit v = 0 verwendet. Fiir das Pendel sollen die Anfangsaus-
lenkungen im Einzugsbereich der unteren Ruhelage [0, O] i liegen.

Die Pradiktionsgenauigkeit der EDMD-Verfahren lésst sich anschliefend anhand
von Testtrajektorien beurteilen. Als Anfangsauslenkung wird xq = [77r/ 8, O]T ge-
wéhlt, um zu validieren, mit welcher Genauigkeit die nichtlinearen Anteile der
Dynamik abgebildet werden. Die |[Abbildung 3.8| zeigt die Pradiktionsgenauigkeit
der EDMD-Prédiktionen in Abhéngigkeit der Anzahl der verwendeten Observa-
blen im Vergleich zur numerischen Simulation des nichtlinearen Original-
systems. Die EDMD-Préadiktion mit Korrektur liefert eine sehr hohe Genauigkeit,
wéhrend die reine EDMD-Prédiktion die Trajektorie lediglich lokal approximiert.
Diese Beobachtung lasst sich dadurch erkléren, dass die festgelegten Observablen kei-
nen Koopman-invarianten Unterraum aufspannen. Daher kénnen nicht alle Zustande
der Observablen durch Linearkombination der vorigen Zustdnde korrekt pradiziert
werden. Durch eine Erhchung der Observablenanzahl weicht die Préadiktion zeitlich
spater ab. Die [Abbildung 3.9 zeigt den kumulierten mittleren quadratischen Fehler

— Originalsystem — Originalsystem
- -- Reine EDMD-Pradiktion, N=6 - -- Reine EDMD-Pradiktion, N=24
- -- Pradiktion mit Korrektur, N=6 - -- Pradiktion mit Korrektur, N=24
g
)

Zeit t in s Zeit t in s

(a) N=6 (b) N =24

Abbildung 3.8 Beispielhafte EDMD-Pradiktion des Pendels fiir eine unterschiedliche Anzahl
an Observablen, vgl. |Gleichung (3.51), Die Zustande x; und z2 beschreiben den Winkel und
die Winkelgeschwindigkeit des Pendels.
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k
1
6(tk:) = Z E ||mOriginalsystem(tm) - wPrﬁdiktion(tm)H2 (352>

m=1

in Abhéngigkeit der Anzahl der Observablen fiir das Pendel. Hierbei fillt
auf, dass eine Erh6hung der Observablenanzahl /N in der hier vorgeschlagenen Form
nicht zwangsldufig zu einer beliebig starken Verringerung des Fehlers fiihrt. Es ist
aulerdem ersichtlich, dass bereits ab N = 4 die EDMD-Préadiktion mit Korrektur
den minimalen Fehler erreicht. Das bedeutet, dass eine Erh6hung der Observablen-
anzahl durch zusétzliche zeitliche Ableitungen keine weiteren Vorteile zeigt. Es ist
wichtig anzumerken, dass der Fehler bereits fiir N > 3 ausgesprochen klein ist und
die logarithmische Darstellung bei der Betrachtung dazu verleitet, den Fehler zu
iiberschétzen.

Reine EDMD-Pradiktion EDMD-Pradiktion mit Korrektur

— N=2 — N=3

© o100 © 100 — N=4 — N=5

£ 2 — N=6 — N=T

© S — N=8 — N=9
L; 104 L; 10~ — N=10 — N=11
*5 ‘g — N=12—N=13
% 10—8 '—; 10—8 — N=14— N=15
§ § — N=16 — N=17
v v — N=18 — N=19
10712 L | | i 10712 | | ] N=20 N=21
0 1 2 3 0 1 2 3 N=922 N=23

Zeit t in s Zeit t in s N=24

Abbildung 3.9 Einfluss der Anzahl der verwendeten Observablen auf die Pradiktions-
genauigkeit am Beispiel des Pendels fiir dieselbe Testtrajektorie wie in der .

Dariiber hinaus hat die Wahl der Trainingsdaten einen Einfluss auf die erreich-
bare Pradiktionsgenauigkeit der Testtrajektorien. Dieser Zusammenhang ist in der
[Abbildung 3.10|am Beispiel des Pendels veranschaulicht. Fiir den Fall, dass die Test-
trajektorien in einem Bereich des Zustandsraums verlaufen, der die Trainingsdaten
umfasst, erhoht sich die Pradiktionsgenauigkeit des reinen EDMD-Verfahrens. Im
Gegensatz dazu liefert das EDMD-Verfahren mit Korrektur eine extrem hohe Genau-
igkeit {iber einen langen Pradiktionshorizont bei gleichzeitiger Robustheit gegeniiber
der Auswahl der Trainingsdaten.

Schlagmechanismus des Golfroboters Der Schlagmechanismus des Golfroboters,
vgl. zeichnet sich durch ein nichtlineares Reibungsmoment aus, sodass
es sich empfiehlt, die EDMD-Variablen im Rahmen der Verwendung von Vorwissen
folgendermaflen zu wéahlen

Weos(x) = [:L’l, T, SIN X1, SEN Ty |mx§a + mg cos 11 H T (3.53)

Fiir die Erzeugung der Trainingsdaten wurde der Schlagmechanismus mit unter-
schiedlichen Verlaufen fiir  (Chirp-, Sinus- und Sprungsignale mit variierender Am-
plitude und Frequenz, vgl. [Abbildung 3.11]) angeregt und der Systemausgang y = x;
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3.1 Methoden basierend auf dem Koopman-Operator

Trainingsdaten --- Reine EDMD-Pradiktion, N=6
— Originalsystem --- EDMD-Préadiktion mit Korrektur, N=6

Abbildung 3.10 Einfluss der Trainingsdaten auf die Pradiktionsgenauigkeit am Beispiel des
Pendels. Von links nach rechts werden unterschiedliche Kombinationen aus Trainingsdaten
und Testtrajektorien im Phasenportrdt betrachtet. Die Anfangspunkte der Testtrajektorien
sind jeweils mit einem schwarzen Kreis gekennzeichnet.

mit einer Abtastrate von 1 kHz gemessen. Der Verlauf fiir 25 wurde anschlieend offli-
ne durch numerische Differentiation einer durch Spline-Kurven interpolierten Appro-
ximation des Verlaufs von x; geschétzt. Zur Beurteilung der Prédiktionsgenauigkeit
wird anschliefend eine Testanregung untersucht, die nicht in den Trainingsdaten
enthalten ist. Die [Abbildung 3.12| zeigt die Pradiktionsgenauigkeit der EDMD-
Verfahren im Vergleich zum nichtlinearen physikalischen Modell . Anhand der
Zeitverldaufe und dem kumulierten mittleren quadratischen Fehler

k
1
e(tr) = ZE T1 Messung (tm) — xl,Prfidiktion(tm))Q (3.54)

m=1

ldsst sich erkennen, dass die reine EDMD-Prédiktion eine geringfiigig schwéchere
Genauigkeit als das nichtlineare physikalische Modell liefert. Im Gegensatz dazu ist
die EDMD-Préadiktion mit Korrektur jedoch in der Lage, die nichtlineare Dampfung
nach ca. 8 s préziser abzubilden, wodurch sich der kumulierte Fehler signifikant ver-
ringert.

Automatische Modellaktualisierung

Eine Herausforderung mechatronischer Systeme liegt in vorhersehbaren oder un-
vorhersehbaren Systemverdnderungen, z. B. die Installation eines neuen Bauteils,
Verschleifl oder Temperaturschwankungen wihrend des Betriebs. Um dennoch eine
gleichbleibend hohe Regelungsgiite gewéhrleisten zu konnen, muss die Informations-
verarbeitung in der Lage sein, diese Anderungen zu erfassen und sich automatisch
anzupassen. Daher wurde in [70] eine Erweiterung um selbstlernende Streckenmodel-
le entwickelt, die sich auf Basis laufend aufgezeichneter Messdaten an verdnderliches
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Abbildung 3.11 Zur Erzeugung der Trainingsdaten wurde der Schlagmechanismus des Gol-
froboters mit unterschiedlichen Verldufen fiir u angeregt und der resultierende Systemausgang
x1 gemessen. Der Verlauf fiir xo wurde offline geschatzt.

Systemverhalten anpassen, vgl. [Abbildung 3.13] Dafiir wurde zunéchst in Anleh-
nung an [71] ein Algorithmus fiir ein adaptives EDMD-Modell mit einem rekur-
siven kleinste-Quadrate-Ansatz realisiert. Durch einen variablen Vergessensfaktor
beriicksichtigt das Modell vergangene Messdaten in Abhéngigkeit der Intensitéat der
auftretenden Systemverdnderungen zu vernachlissigen. Die Begrenzung der Spur der
Kovarianzmatrix verhindert das einhergehende Risiko eines sogenannten Kovarianz-
Windups. Fiir vollstdndige Zustandsregelungen, die messbare oder geschétzte Zu-
standsgroflen erfordern, wurde ein Beobachter integriert, der sich ebenfalls wihrend
des Betriebs anpasst. Am Schlagmechanismus des Golfroboters wurde gezeigt, dass
das adaptive EDMD-Modell die Regelungsgiite auch bei starken Systemverdnderun-
gen deutlich verbessert [70]. Die erfolgreiche Integration der Adaptionsfihigkeit
bestétigt die hohe regelungstechnische Verwertbarkeit der EDMD-Modelle geméafl
der Kriterien, die im formuliert wurden.

3.2 Sparse ldentification of Nonlinear Dynamical
Systems

Motiviert durch Problemstellungen in der Fluiddynamik, entstand in [72] die Me-
thode Sparse Identification of Nonlinear Dynamics (SINDy), welche ein lineares
Regressionsmodell basierend auf Messdaten und unter Zuhilfenahme einer nichtli-
nearen Funktionsbibliothek extrahiert. Damit weist das Verfahren eine nahe Ver-
wandtschaft zu Modellreduktionstechniken wie Proper Orthogonal Decomposition
und zu Koopman-basierten Techniken wie Dynamic Mode Decomposition (vgl.
terabschnitt 3.1.2)) auf. Voraussetzung fiir SINDy ist die Verfiigharkeit von Mess-
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— Messung --- Reine EDMD-Prédiktion (N=4)
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Abbildung 3.12 Pradiktionsgenauigkeit der EDMD-Verfahren im Vergleich zum nichtlinearen
physikalischen Modell am Beispiel des Schlagmechanismus des Golfroboters.

daten des vollstéandigen Zustands € R", wobei die Systemordnung n eine sehr
hohe Dimension widerspiegeln kann. Liegen M Messdaten des Zustands fiir jeden
Zeitschritt £ = 1,..., M vor, so konnen diese zeitversetzt in Matrizen X und X'
nach |Gleichung (3.17)[ angeordnet werden. Um die Evolution des Zustands, wel-
che durch eine autonome Differentialgleichung erfolgt, zu modellieren, wird die
Dynamik f {iber eine Linearkombination approximiert. Dazu wird eine Funktionsbi-
bliothek aus ng (nicht-)linearen Termen () angenommen, welche die anzunidhernde
Dynamik f basierend auf den Messdaten beschreiben kénnen. Mithilfe der Parame-
termatrix @ € R"*" kann anschlielend der folgende Zusammenhang zwischen den
Messdaten ausgedriickt werden:

X' =0¥7(X). (3.55)

Da jedoch die meisten dynamischen Systeme durch einige wenige Funktionen cha-
rakterisiert werden koénnen, wird postuliert, dass die Parametermatrix 6 diinnbe-
setztE| ist, d. h. dass lediglich einige wenige Eintrédge verschieden von Null sind.
Anschlielend lassen sich Algorithmen aus dem Bereich der Sparse Regression an-
wenden. Mittels des populédren Ansatzes LASSOEL welcher auf 73] zuriickgeht und
eine Pareto-optimale Losung bzgl. Modellgiite und Modellkomplexitat liefert, lasst
sich fiir die i-te Zeile von @ mit ¢ = 1,... n die folgende Losung des Optimierungs-
problems formulieren:

0; = argmin || X, — 6,07 (X)||o + \[6:]]:. (3.56)
0;

4im Englischen sparse
15Least Absolute Shrinkage and Selection Operator
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Abbildung 3.13 Der adaptive Entwurf erméglicht ein hybrides Modell in regelungstechnisch
verwertbarer Form, das sich wihrend des Betriebs anpasst. In Anlehnung an [70].

Hierbei stellt X, die i-te Zeile der Datenmatrix X' dar. Das konvexe Optimierungs-
problem ldsst sich ebenso auf den Fall nicht-autonomer Systeme erweitern und
wird dann als SINDYc bezeichnet"®| [74]. Neben der rein datenbasierten Identifikati-
on nur durch Messdaten kann das SINDy-Verfahren auch Vorwissen beriicksichtigen,
z. B. durch eine konkrete Bibliothekswahl, bei der Hypothesen iiber das zu identifi-
zierende System als Kandidatenfunktionen eingehen. Anschlieend liegt ein (in der
Regel nichtlineares) interpretierbares Modell vor. Allerdings besteht ein gravieren-
der Nachteil darin, dass das SINDy-Verfahren Messwerte des vollstdandigen Zustands
benotigt. Dies ist in realen Prozessen selten umsetzbar aufgrund von messtechni-
schen Herausforderungen oder des Kostendrucks bzgl. der Sensorik. Dieser Nachteil
kann nur relativiert werden, wenn alle Zustéinde des Systems einen differentiellen
Zusammenhang aufweisen, sodass die nicht messbaren Zustandsgréfien alternativ
numerisch differenziert oder gefiltert werden kénnen.

Beispielhafte Anwendung

Zur llustration des SINDYc-Verfahrens wird die Dynamik des Golfroboters, welcher
im vorgestellt wird, anhand von Messdaten identifiziert. Da es sich
bei diesem um ein nicht-autonomes System handelt, werden die Stelleingédnge nach
IGleichung (3.17)| ebenfalls in einer Matrix gespeichert und zur Approximation der
Dynamik genutzt. Als Messdaten stehen Trajektorien zur Verfiigung, die aufgrund
einer sinus- (teilweise mit zeitlich variierenden Frequenzen) oder sprungformigen
Anregungen resultieren. Die Aufteilung dieser Messdaten erfolgt dabei wie im [AD
beschrieben in Trainings-, Validierungs- und Testdaten, um ein konsis-
tentes Lernen des SINDYc-Modells zu erlauben. Nachfolgend ist das Ergebnis einer

16Djese Abkiirzung bedeutet SINDy with control (SINDYc). Im weiteren Verlauf wird jedoch der
Begriff SINDy genutzt, da sich die Betrachtung autonomer und nicht-autonomer Systeme aus
dem Zusammenhang ergibt.
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3.3 Physikalisch motivierte neuronale Netze

solchen sinusformigen Testtrajektorie in der [Abbildung 3.14] zu sehen, nachdem das
SINDYc-Modell mit den Bibliotheken

\Ill(wa U) = [17 Ty, T2, x%a x%a U],
Wy(x,u) = [1,x1, 9, cos(z1), cos(zz), ul, (3.57)

Wy(x,u) = [1, 21, T, cos(z1), 23, u]

trainiert worden ist. Anhand der zeitlichen Verldufe im Vergleich zu den Messda-
ten ist erkennbar, dass das SINDYc-Modell fiir jede der verwendeten Bibliotheken
eine sehr hohe Modellgiite aufweist, da kaum ein Unterschied zu den Trajektorien
der Messung zu sehen ist. Insbesondere unterscheiden sich die Ergebnisse der drei
Bibliotheken kaum, da alle einen dhnlich geringen Approximationsfehler liefern und
die folgenden Parametermatrizen identifizieren:

0. — [0 1 0 00 0
"7 |0 —0,0122 0,999 0 0 0,0267]°
[0 1 0 0 0 0
0: = 10,0014 —0,0127 0,999 —0,0012 0 0,02671’ (3.58)
0 o 1 0 0 0 0
°7 10,0014 —0,0127 0,999 —0,0012 0 0,0267]

Das SINDYc-Verfahren ist folglich ein geeignetes Verfahren, um eine physikalisch-
interpretierbare Zustandsraumdarstellung zu erhalten, da es bereits das Einbringen
von Vorwissen in Form von Bibliotheksfunktionen erlaubt. Allerdings ist es nicht
immer gegeben, dass der vollstindige Zustand als Messwert vorliegt, sodass diese
Methode bzgl. ihrer Grundidee im im Rahmen des Beobachterentwurfs

erneut aufgegriffen wird.

Das SINDy-Verfahren eignet sich sowohl fiir autonome als auch nicht-
autonome Systeme und besitzt {iblicherweise einen geringen Rechenaufwand.
Es erfordert Messdaten des vollstindigen Zustands bzw. seines differentiel-
len Zusammenhangs sowie geeignet gewéhlte Bibliotheksterme. Das resultie-
rende, in der Regel nichtlineare Modell ist interpretierbar und im weiteren
Regelungsentwurf flexibel einsetzbar.

3.3 Physikalisch motivierte neuronale Netze

Als globale Funktionsapproximatoren kénnen neuronale Netze einen beliebigen funk-
tionalen Zusammenhang abbilden, wenn die Netzarchitektur sowie Trainingsdaten
entsprechend gewihlt werden [75], [76], [77], [78]. Diese Eigenschaft ist besonders
vorteilhaft, um die in beschriebene Herausforderung der Modell-Realitéts-
Liicke zu adressieren. Stoflen physikalisch motivierte Modelle an ihre Grenzen und
sind gleichzeitig Messdaten verfiigbar, kann ein neuronales Netz in Kombination mit
einem physikalisch motivierten Modell unterstiitzen und die Modell-Realitét-Liicke
Af ggf. verkleinern 22|, [79]. Damit stellen die sogenannten Physics-Guided Neural
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Abbildung 3.14 Modellgiite eines SINDYc-Modells unterschieden in die unterschiedlichen
Bibliotheken Wy, Wy, W3 [17] und basierend auf Code aus [28], vgl. [17]

Networks (PGNNs E einen sehr populédren Ansatz dar, welcher in vielfdltigen Dis-
ziplinen in unterschiedlichen Strukturen eingesetzt wird [79], [80]. Erste Konstrukte
solcher Kombinationen wurden bereits in den 1990er Jahren verwendet, da beispiels-
weise ein neuronales Netz als Fehlermodell hinter ein physikalisches Modell geschal-
tet wurde, um den Modellfehler zu lernen [81]. Im Folgenden werden zunéchst die
Grundlagen neuronaler Netze erlautert, worauthin physikalisch motivierte Netze de-

finiert und vorgestellt werden.

3.3.1 Neuronale Netze

In diesem Abschnitt erfolgt lediglich eine kurze Einfithrung in die Thematik der neu-
ronalen Netze. Diese soll zum Versténdnis der nachfolgenden Methoden beitragen,
sodass als weiterfithrende Literatur [2], [10], [33], [82] empfohlen wird. Die Struktur
neuronaler Netze (NN) ist durch die biologische Informationsverarbeitung inspiriert
und dient zur Approximation eines beliebigen, funktionalen Zusammenhangs

f:X—>Y (3.59)

mit den Eingingen & € X C R” und Ausgingen y € Y C R’. Dieser Zusam-
menhang wird durch ein neuronales Netz als eine Funktion f iiber einen
gerichteten Graphen, bestehend aus Knoten und Kanten, beschrieben. Die Knoten,
nachfolgend als Neuronen bezeichnet, sind als Verarbeitungseinheiten in mehreren
sogenannten versteckten Schichten angeordnet 2], [10], [33], [82]. Die Neuronen sind

"Diese sind z. T. auch unter den Begriffen Physics-Informed Neural Networks (PINNs) oder
Physics-Based Neural Networks (PBNNs) bekannt.
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hierbei durch gerichtete Kanten verbunden, wobei jeder Kante, die ein Neuron ¢ mit
einem Neuron j verbindet, ein Gewicht (;; zugeordnet wird. Somit stellt ein NN mit
¢ € U und g € Y ein nichtlineares Regressionsmodell dar, da es durch

Fan : XxUY, §=fyy(z, ) (3.60)

definiert wird. Die Anordnung der Neuronen und ihr Informationsfluss unterein-
ander, der durch die Kantenrichtungen ausgedriickt wird, wird als Netzarchitektur
bezeichnet. Es lassen sich grundsétzlich vorwérts gerichtete und rekurrente Archi-
tekturen unterscheiden, wobei Letztere einen Informationsfluss der Neuronen durch
verschiedene Formen der Riickkopplung des Informationsflusses ermdoglicht, z. B. in-
dem der Ausgang eines Neurons mit einem Neuron einer vorhergehenden Schicht
verbunden ist. Indem lineare und nichtlineare Aktivierungsfunktionen auf die Neu-
ronen angewendet werden, kann der Zusammenhang |Gleichung (3.59)| allgemeine
nichtlineare Funktionen approximieren. Das Lernen dieses Zusammenhangs erfolgt
iiber das Verfahren Backpropagation, welches den pradizierten Ausgang des Netzes
Y, mit den Trainingsdaten y, fiir ¢ = 1,..., M Messdaten vergleicht [2], [10], [33],
[82]. Mithilfe eines Gradientenabstiegverfahrens wird anschlieflend die Losung des
Optimierungsproblems

M
) 1 .
g min o (. €) = argmin 5 3 19, ) — |1 (3.61)

g=1

ermittelt. In den Anwendungsbeispielen dieses Kapitels wurde das ADAM-Verfahren
genutzt [83]. Durch ihre Struktur stellen NN ein méchtiges Werkzeug in der Funkti-
onsapproximation dar [75], [76], [77], [78] und werden in vielfdltigen Situationen ein-
gesetzt. Insbesondere durch die Nutzung vieler versteckter Schichten und verschiede-
ner nichtlinearer Aktivierungsfunktionen ermoglicht ein NN, komplexe Funktionen
zu approximieren. Diese tiefen neuronalen Netze, welche viele Schichten aufwei-
sen, werden dem Deep Learning zugeordnet, vgl. [Abschnitt 2.2] Allerdings besteht
beim Lernvorgang neuronaler Netze die Gefahr des Over- oder Underfittings, wenn
Einflussgréfen wie Trainingsdaten, Lernrate oder Initialisierung ungiinstig gewéhlt
werden [10].

3.3.2 Physics-Guided Neural Networks

In den meisten Féllen kann mit geringem Modellierungsaufwand und Vorwissen ein
einfaches physikalisches Modell fiir ein betrachtetes mechatronisches System erarbei-
tet werden. Fiir die nachfolgenden Abschnitte wird angenommen, dass ein solches
Modell in parametrischer Form vorliegt. Dieses besteht in der Regelungstechnik
gewohnlich aus der folgenden Differentialgleichung mit dem Zustand x,;, € R" und
den Parametern p € R"»:

djphy = fphy(wphy7 u7p>7

yphy = Lphy-

(3.62)
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Um die infolge der vereinfachten Modellbildung entstandenen Ungenauigkeiten und
Abweichungen des Modells zu kompensieren und eine hohere Modellgiite zu erzie-
len, wird ein neuronales Netz ergéinzt, welches diese approximiert. Voraussetzung
fiir ein iiberwachtes Lernen der realen Systemdynamik f mithilfe neuronaler Net-
ze ist allerdings, dass der vollstdndige Zustand messbar ist, d. h. dass y = x gilt,
oder dieser durch einen differentiellen Zusammenhang ermittelt werden kann (vgl.
[Abschnitt 3.2). Daher gilt diese Annahme ebenfalls fiir das physikalische Simulati-
onsmodell , welches zudem basierend auf einem numerischen Integrationsver-
fahren diskretisiert wird. Mithilfe der zwei Komponenten, einerseits das physikalisch
basierte Simulationsmodell und andererseits ein datengetriebenes neuronales Netz,
konnen je nach Auspriagung der Abweichungen verschiedene Optionen zur Verschal-
tung der Modellkomponenten in Erwéigung gezogen werden [84], beispielsweise eine
serielle oder parallele Anordnung. Im Folgenden wird eine Mischform vorgestellt,
welche auf [79] zuriickgeht. Diese wird als Physics-Guided Neural Network (PGNN)
bezeichnet und ist in der [Abbildung 3.15durch den gestrichelten Kasten angedeutet.
Das PGNN erhilt in dieser Struktur als Eingénge nicht nur den pradizierten Aus-
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Abbildung 3.15 Struktur eines PGNNs wahrend des Trainings [17]: Es umfasst ein diskreti-
siertes, physikalisches Simulationsmodell (griin) und ein vorwérts gerichtetes NN (rot).

gang des Simulationsmodells @,y 141, sondern auch die aktuelle Stellgrofie wy, mit
welcher das System angeregt wird, und den aktuellen Zustand xj, in dem sich das
System befindet. Folglich kann das neuronale Netz nicht nur den temporiaren Mo-
dellfehler lernen, welcher lediglich bei einer Reihenschaltung angenéhert wird, son-
dern auch die vollstdndige Dynamik sowie die Wechselwirkungen zwischen diesen.
Dariiber hinaus erleichtert die Berticksichtigung des prédizierten Ausgangs pny k+1
das Training, da es das Netz in eine physikalisch plausible Richtung lenkt, auch
wenn das Simulationsmodell qualitativ Abweichungen aufweist. Der Zusam-
menhang, den das PGNN beschreibt, kann anschliefend durch

-fPGNN (R™ x R™ x RP x U~ Rn, = fPGNN<w,wphy,u,C) (363)

ausgedriickt werden [84]. Ublicherweise wird die Dynamik hierbei durch den Ver-
gleich des Datenfehlers gelernt. Um allerdings nicht nur ein physikalisch plau-
sibles Modell basierend auf den Trainingsdaten zu entwickeln, sondern auch eine
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physikalisch konsistente Pradiktion auflerhalb der Trainingsdaten zu gewéhrleisten,
schlagen Karpatne et al. in [79] eine Erweiterung der rein Daten auswertenden Kos-
tenfunktion J.,, um einen physikalischen Term Jyp, vor. Dieser beriicksichtigt qua-
litatives Vorwissen, welches zusétzlich zu den Daten verfiigbar ist. Beispiele dafiir
sind physikalische Naturgesetze, Erhaltungsprinzipien, Schranken, Regelgesetze oder
vages Erfahrungswissen [85], [86]. Dieses Wissen lésst sich durch Gleichheits- oder
Ungleichheitsbedingungen G bzw. H ausdriicken, welche anschliefend als weitere
Kostenfunktion Jp, formuliert werden kénnen:

G(x)
H(x) <

— Jpny(®, €) = G ()| %,
— Jpny(x, €) = max (0, H(x)).

0
0 (3.64)
So erortern Karpatne et al. beispielsweise die Problematik, wie die Temperatur in-
nerhalb eines Sees abhéngig von der Tiefe des Gewiéssers modelliert werden kann [79).
Mithilfe eines PGNNs, welches ein physikalisch motiviertes Seemodell enthélt und
die Beziehung zwischen Temperatur, Dichte und Tiefe des Wassers als zusétzliche
Wissenskomponente Jpp, iiber eine Bedingung H im Lernprozess beriicksichtigt,
kann schliefllich ein Modell mit hoher Giite entwickelt werden. Entgegen der Ver-
wendung der physikalischen Kostenfunktion als Regularisierungsterm in [79], wird
in der Dissertation [17] ein Mehrzieloptimierungsproblem formuliert, sodass

¢ = argénin J(z,¢) = argcmin (1= Apny) - Jerr (@, €) + Aphy - Jpny(2, ). (3.65)

gilt. Dieses Mehrzieloptimierungsproblem , welches wahrend des Trainings
gelost werden soll, wird mit einem einfachen Skalarisierungsverfahren umgesetzt [87],
[88]. Die gewichtete Summe legt durch den Skalar 0 < A, < 1 die Priorisierung der
einzelnen Ziele J, fest. Das Auffinden der pareto-optimalen Punkte gestaltet sich in
der Praxis aber herausfordernd. Daher diskutieren die Autoren in [89] verschiede-
ne Einflussfaktoren auf die Konvergenz des Mehrzieloptimierungsproblems [(3.65)]
wenn im Gegensatz zum vorgestellten Konzept die Differentialgleichung des Simu-
lationsmodells [(3.62)| als physikalische Kostenfunktion J,, betrachtet wird, um das
Netz direkt die Systemdynamik lernen zu lassen. Diese populdre Strategie [90], [91],
[92], 193], [94], das physikalische Simulationsmodell statt qualitativem Vorwissen in
den Lernprozess zu integrieren, ist jedoch nur zielfithrend, wenn das Simulations-
modell eine hohe Modellgiite aufweist, da das Netz potentiell irrtiimliche Eigen-
schaften nachbilden kann. Am Ausgangspunkt in diesem Beitrag steht allerdings
ein Simulationsmodell, welches grofiere Abweichungen zur Systemdynamik aufweist,
sodass diese Strategie nicht in Frage kommt (vgl. [Kapitel 1]). Dennoch zeigt [39]
auf, dass insbesondere jene Parameter, welche die Struktur des Netzes bestimmen,
einen starken Einfluss auf die Form der Paretomenge besitzen. Empfehlenswert ist
daher eine sorgsame Wahl dieser mittels der Hyperparameteroptimierung. Dariiber
hinaus steigt die Komplexitit des Optimierungsproblems, wenn eine Anpassung fiir
mehr als zwei Ziele in der Kostenfunktion vorgenommen wird [87], [88]. In
[17] sowie in [84] wurde das Konstrukt des PGNNs erstmals auf ein nicht-autonomes
System aus der Mechatronik angewendet. In dieser Disziplin existiert iiblicherweise
qualitatives Vorwissen, welches in der Kostenfunktion durch einen Mehrzieloptimie-
rungsansatz beriicksichtigt werden kann, z. B. die Energiebilanz eines Systems.
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Beispielhafte Anwendungen

Golfroboter Der Golfroboter, welcher in vorgestellt wird und bereits
in vorangegangenen Abschnitten als Testobjekt genutzt wurde (vgl. @
und [Abschnitt 3.2)), besitzt ein komplexes, nichtlineares Reibmoment My, vgl. @
chung (6.11)} Dieses approximiert die Mischung aus Haft- und Gleitreibung, weist
aber dennoch in manchen Situationen Diskrepanzen zum tatsédchlichen Verhalten
des Golfroboters auf. Daher soll basierend auf dem nichtlinearen Modell
ein PGNN entwickelt werden, dessen Modellgiite nach einem Training mit rein
datenbasierten als auch physikalisch motivierten Modellen verglichen werden soll.
Zusétzliches Wissen wird wéahrend des Trainings durch die Energiebilanz des Gol-
froboters

Tony (8,9, @, u) = AE(9, §, §, )
= Jo@ +mgapsin(@) + dp® + rusign(9)|o%a + mg cos(@)|p — duep
(3.66)

mittels der Gleichheitsnebenbedingung aus |Gleichung (3.64)| beriicksichtigt. An-
schlieBend werden verschiedene Trajektorien infolge unterschiedlicher Anregungen
zum Lernen genutzt, indem diese Daten fiir das Training, die Validierung und zum
Testen aufgeteilt werden [17], [95]. Ferner wird eine Hyperparameteroptimierung
mithilfe einer Bayesschen Optimierung durchgefiihrt (vgl. [Unterabschnitt 4.4.3] um
beispielsweise die Anzahl der Neuronen oder die Gewichtung A, zu bestimmen.
Nachdem das PGNN erfolgreich mit der optimierten Parametrierung Ay, = 0,8175
und einer Anzahl von 27 Neuronen trainiert wurde, wird es mit einer unbekannten
Trajektorie getestet sowie mit weiteren Modellen verglichenﬁ. Schlieflich zeigt
Ergebnisse dieses Vergleichs, indem die Trajektorien der Modelle bzgl.
der schwarz gekennzeichneten Testtrajektorie dargestellt werden. Es ist erkennbar,
dass alle Modelle zunéchst eine zufriedenstellende Modellgiite aufweisen. Werden je-
doch Abschnitte der Abbildung vergréflert, zeigen sich qualitative Unterschiede. So
schwankt das in rot dargestellte PGNN meist zwischen dem Verlauf der Messdaten
und des physikalischen Modells (in griin), kann aber in der Regel eine Verbesserung
der Modellgiite im Vergleich zum physikalischen Modell erzielen, z. B. fiir den Win-
kel. Dagegen weicht das NN (in hellblau) am stérksten vom tatséchlichen Verlauf
des Golfroboters ab. Folglich scheint das PGNN die Vorteile beider Perspektiven
zu vereinen und daraus ein qualitativ hoherwertiges Modell zu erschaffen. Aller-
dings iibertrifft das SINDy-Modell, dessen Trajektorien in lila dargestellt sind, die
Approximationsgiite des PGNN-Modells deutlich.

Servoventil Servoventile bilden als Teil der Aktorik eine zentrale Rolle in vielen
Applikationen. Jedoch ist die Modellierung ihrer Dynamik aufgrund starker Nichtli-
nearitéiten herausfordernd und aufwendig [96]. Haufig wird je nach Einsatzzweck eine
erforderliche Modellierungstiefe gewihlt, um Ressourcen effizient zu nutzen [97]. Im
Kontrast zu einem detaillierten nichtlinearen Modell wie in [96] ist beispielsweise das
folgende Modell, welches eine Verzogerungsdynamik zweiter Ordnung aufweist, in
der Lage, die grundlegende Systemdynamik des Ventils abzubilden und stellt folglich

18Das SINDy-Modell basiert auf der Bibliothek ¥ (z,u) = [x1, z2,sin(x), cos(xa), tan(xa) =1, u]?.
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Abbildung 3.16 Modellgiite eines PGNNs im Vergleich zu anderen datengetriebenen und
physikalisch basierten Modellen anhand des Golfroboters, vgl. [17], [84]

einen Kompromiss bzgl. der Modellierungstiefe und -genauigkeit dar:

& "
= 2D 1 K )
— T %2 — @1+ U (3.67)

Yy =2=a.

Der Systemzustand & = [yy, /]7 beinhaltet die Ventilschieberposition gy sowie des-
sen Geschwindigkeit ¢y, wihrend das Ventil als Eingang die Spannung u erhélt. Die
Parameter des Modells|Gleichung (3.67){lauten p = [K, D, T|" = [0,1, 0,5, 1/350]%.
Aufgrund der Viskositéit des Ols existieren allerdings Beschriankungen der Ventil-
schiebergeschwindigkeit und -beschleunigung, die das Modell nicht wieder-
geben kann. Durch mehrere Versuche konnen diese Beschrankungen experimentell
angendhert und in das Modell integriert werden, welches folglich eine tiefe-
ren Modellierungsgrad erhilt. Im Folgenden wird anhand der [Abbildung 3.17| die
Auswirkung des Modellierungsgrads im Kontext der PGNN deutlich, indem das
Modell jeweils mit und ohne empirische Beschriankungen als physikalisches
Simulationsmodell genutzt wird. Das Training umfasst wie im vorigen Beispiel die
Verwendung einer Energiebilanz als zusétzliches Vorwissen und nutzt Trainingsda-
ten, welche aus verschiedenen Sprunganregungen resultieren (vgl. [17], [84]). Die
Visualisierungen in [Abbildung 3.17| unterscheiden sich somit nur durch die Verldufe
des PGNNs und des physikalischen Simulationsmodells. Beide PGNNs weisen nach
der Hyperparameteroptimierung 11 Neuronen auf, unterscheiden sich jedoch in der
Gewichtung des physikalischen Kostenterms zu Ay, = 0,2527 (Modell ohne Be-
schrinkungen) und A,,, = 0,3206 (Modell mit Beschrénkungen). Erneut wird die
Modellgiite der beiden PGNNs mit anderen Modellen verglichen, u. a. mit der ei-
nes SINDy-Modells, welches aus einem Training basierend auf einer Bibliothek mit
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Zustdnden und Eingéngen resultiert, um die Vergleichbarkeit zum Modell zu
gewdhrleisten. In der oberen Darstellung der |Abbildung 3.17| weist das physikalische
Modell durch die fehlenden Beschrinkungen grofie Abweichungen zu den Messda-
ten auf, welche sich insbesondere in der Geschwindigkeit des Ventilschiebers durch
ein Uberschwingen bemerkbar machen. Trotzdem gelingt es dem PGNN, eine sehr
gute Approximation des Ventils zu erzielen, welche auf dem Niveau des nichtlinea-
ren Ventilmodells liegt. Dies ldsst sich beispielsweise in den beiden Vergroflerungen
rechts von der Abbildung erkennen. Im Kontrast dazu schaffen es weder das NN
noch das SINDy-Modell das Systemverhalten anzunéhern und beide weisen starke
qualitative Abweichungen auf. Dies resultiert aus der einfach gewéhlten Bibliothek
des SINDy-Modells. Erhielte dieses eine Bibliothek mit Elementen des nichtlinearen
Modells, wire eine hohere Modellgiite zu erwarten. Wird fiir das PGNN ein Modell
mit hoherem Detaillierungsgrad verwendet, wie z. B. durch Beriicksichtigung der Be-
schrankungen, verbessert sich die Modellgiite enorm. Die untere Visualisierung der
[Abbildung 3.17| verdeutlicht diese Erkenntnis, da die Vergréf8erungen eine genauere
Approximation als das nichtlineare Modell sowohl fiir die Ventilschieberposition als
auch fiir die -geschwindigkeit zeigen. Dieses Anwendungsbeispiel zeigt folglich auf,
dass die Modellgiite eines PGNNs u. a. explizit von der Qualitdt des verwendeten
physikalischen Simulationsmodells abhéngig ist. Die Nutzung des PGNNs erlaubt
deshalb eine Ersparnis des Modellierungsaufwands, da ein nichtlineares Ventilmodell
aus einer zeitintensiven und personell aufwendigen Entwicklung hervorgeht. Dieser
Entwicklungszyklus kann durch das Training und die Nutzung eines PGNNs bei
Gewdhrleistung einer vergleichbar hohen Modellgiite deutlich reduziert werden.

3.3.3 Physics-Guided Recurrent Neural Networks

Fiir Zeitreihendaten wird in der Regel eine rekurrente Architektur empfohlen, um
den sequentiellen Verlauf und dessen Langzeiteffekte abbilden zu kénnen [2], [77],
[82]. Daher wird das in|Unterabschnitt 3.3.2|entwickelte PGNN durch die Nutzung ei-
nes rekurrenten Netzes angepasst. Diese adaptierte Struktur wird als Physics-Guided
Recurrent Neural Network (PGRNN) bezeichnet und beispielsweise fiir das bereits
erwahnte Beispiel zur Schéitzung von Temperaturen in Fliissen und Gewéssern ein-
gesetzt [98]. Das PGRNN fperyn, welches in der [Abbildung 3.18| dargestellt ist,
weist die gleiche Grundstruktur aus physikalischem Simulationsmodell und daten-
basiertem Anteil wie das PGNN in der [Abbildung 3.15| auf. Es unterscheidet sich
dementsprechend nur durch den zusétzlichen Eingang der Zeit ¢t € R sowie durch
die innere Architektur des neuronalen Netzes. Dieses ist in der [Abbildung 3.18| ver-
groflert dargestellt und besitzt analog zur Modellierung in der Regelungstechnik
einen intrinsischen Zustand, den Hidden State h;, € R? mit Z Neuronen, der zeit-
lich aufeinander folgende Daten durch eine Riickfithrung beriicksichtigt.

Basierend auf bestehenden Formulierungen des PGRNNs (vgl. |98]) wird dieses
Konstrukt in der Dissertation [17] sowie in [95] fiir nicht-autonome, mechatronische
Systeme erweitert. Daher héngt hj; sowohl von dem vorherigen Zustand hj;_; als
auch von den aktuellen Eingéingen ab. Diese umfassen jeweils M vergangene, zeitliche
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Abbildung 3.17 Modellgiite eines PGNNs bestehend aus einem Simulationsmodell mit unter-
schiedlichen Modellierungstiefen im Vergleich zu anderen datengetriebenen und physikalisch
basierten Modellen anhand der Ventildynamik: Simulationsmodell [(3.67)| ohne Beschrénkungen
(oben), Simulationsmodell [(3.67)| mit Beschrankungen (unten), vgl. , [84].
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Abbildung 3.18 Struktur eines PGRNNs wahrend des Trainings [17] (vgl. [95]): Es umfasst
ein physikalisches Simulationsmodell (griin) und ein RNN (rot), welches ein GRU-Layer gefolgt
von einer Ausgabeschicht enthilt.

Verlaufe bis zum aktuellen Zeitpunkt k, sodass Folgendes gilt:

Xk — (m07$17 cee 7mk)7
( 0 k)a (368)
phy, (wphy,b Tphy,2s - - s Tphy k1)
= (to,t1, ..., k).

Die Verarbeitung der sequenziellen Daten kann allerdings zu numerischen Herausfor-
derungen fithren, welche mit der Einfithrung der Long Short-Term Memory (LSTM)-
Zelle [99] und der Weiterentwicklung dieser zur Gated Recurrent Unit (GRU)-Zelle
behoben werden konnten [100]. Deshalb nutzt das PGRNN die GRU-Zelle, welche
die Daten durch Update Gates und Reset Gates verarbeitet. Das Update Gate zj
iibergibt dem Hidden State neue Informationen, wiahrend das Reset Gate rj, sukzes-
siv andere, nicht mehr relevante Informationen l6scht. Es resultieren die folgenden
Gleichungen fiir den Eingang s = [xy, us, a:ph%k]T, welche zur Aktualisierung des
Zustands I}k durch eine Linearkombination des vorherigen Zustands h;_; und des
Zustands hy genutzt werden (vgl. |17], [95]):

zp=0,W_.s,+b.,+ R.hy_4),
iy =04(W,s, + b, + R,hy_1),
hy = 0,(W;s, + b + 1 © (Rihi 1)),
hp = (1 —2;) © hy_y + 2, @ hy,.

(3.69)

Die Gewichte sind nach Eingangsgewichten W, rekurrenten Gewichten R, und ad-
ditiven Gewichten b, aufgeteilt, wohingegen die Aktivierungsfunktion der Gates o,
jeweils durch eine logistische Funktion und die Aktivierungsfunktion des Hidden
States o durch eine Tangens-Hyperbolicus-Funktion abgebildet werden. Anschlie-
Bend folgt wie in der [Abbildung 3.18| zu erkennen eine Ausgabeschicht, welche aus
dem hochdimensionalen Zustand hj den tatséchlichen Systemzustand ., extra-
hiert.

In Analogie zum PGNN wird fiir das PGRNN ebenfalls physikalisch konsisten-
tes Lernen wihrend des Trainings angestrebt. Obwohl die gewichtete Summe
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meist die erste Wahl in vielen Publikationen darstellt [89], weist diese verschiedene
Nachteile auf [87], [88]. Daher wird eine komplexere Strategie zur Losung des Mehr-
zieloptimierungsproblems umgesetzt: Die Giitevektoroptimierung nach Kreiflelmeier
und Steinhauser [24], |[101]. Grundlegende Idee des Verfahrens stellt die Konstruk-
tion von Grenzen fiir jede der einzelnen Kostenfunktionen J; mit ¢ = 1,..., N; dar,
die diese jeweils sukzessiv verkleinern. Zu Beginn jeder Lerniteration i=0,...,0
werden diese Grenzen ¢! mit ¢! > Ji(-) initialisiert, woraufhin das Maximum der N;
genormten Kostenfunktionen gesucht wird:

o, Je (.
J(~):max{Jlg),...,L<)}, mit JO() <2< e << (3.70)

o 7
G CN;

Dadurch koénnen alle Giitemafle J; schrittweise verkleinert werden, wie es exem-
plarisch in der [Abbildung 3.19 fiir N; = 2 Kostenfunktionen und p = 3 Iteratio-
nen dargestellt ist. Dieses Vorgehen wird durchgefiihrt, bis entweder eine maximale
Anzahl an Iterationen erreicht worden ist oder keine Verringerung der Grenze ¢;
mehr erreicht werden kann. Dies geschieht beispielsweise, wenn der Wert einer Kos-
tenfunktion J; bereits sehr niedrig ist oder ein Pareto-optimaler Punkt gefunden
worden ist (vgl. [Abbildung 3.19)). Ein PGRNN, welches mit dieser Mehrzieloptimie-
rungsstrategie wahrend des Trainings betrieben worden ist, wird als Multi-Objective
Physics-Guided Recurrent Neural Network (MOPGRNN) bezeichnet (vgl. [17], [95]).

J>
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Abbildung 3.19 Schematischer Ablauf einer Giitevektoroptimierung fiir zwei konkurrierende
Ziele Jy und Jy und drei Iterationen [17]

Beispielhafte Anwendung

Golfroboter Analog zum Anwendungsbeispiel des PGNNs wird die Modellgiite
eines PGRNNs bzw. MOPGRNNs anhand des Golfroboters analysiert. Hierbei un-
terscheiden sich PGRNN und MOPGRNN lediglich in der gewéhlten Strategie zur
Losung des Mehrzieloptimierungsproblems Es werden weiterhin das physi-
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Abbildung 3.20 Modellgiite eines PGRNNs bzw. MOPGRNNSs im Vergleich zu anderen da-
tengetriebenen und physikalisch basierten Modellen anhand des Golfroboters, vgl. [17], [95]

kalische Simulationsmodell sowie die Energiebilanz verwendet. Ebenso
stehen dieselben Messdaten des Golfroboters bereit, um das PGRNN und das MOP-
GRNN zu trainieren. Allerdings werden die Messdaten in verschiedene Datensétze
mit unterschiedlichem Umfang aufgeteilt, um die Abhéngigkeit der Modellgiite von
der Datenmenge zu untersuchen. Folglich kann ein Training entweder basierend auf
wenigen Datensétzen (drei bis sechs Trainingssamples) oder vielen Datensétzen (12-
15 Trainingssamples) durchgefiihrt werden. Exemplarisch ergibt sich nach der Opti-
mierung der Hyperparameter und einem Training mit sechs Samples das Modellver-
halten, welches in der [Abbildung 3.20|zu sehen ist. Die Modellgiite des PGRNNs und
MOPGRNNSs wird hierbei jeweils mit den Messdaten des Golfroboters, dargestellt
durch die schwarzen Trajektorien, und ihren einzelnen Modellkomponenten, dem
physikalischen Simulationsmodell (in griin) und dem rekurrenten neuronalen Netz
(in blau), verglichen. Im Vergleich aller Modelle ist deutlich erkennbar, dass das re-
kurrente neuronale Netz (RNN) die geringste Modellgiite aufweist, da es qualitativ
das Verhalten des Golfroboters abbilden kann, aber groffie Abweichungen bestehen.
Dies zeigen insbesondere die Vergréflerungen auf der rechten Seite der Abbildung.
Das PGRNN, welches ohne die Giitevektoroptimierung trainiert worden ist, erzielt
meist eine Verbesserung der Modellgiite im Vergleich zum physikalischen Simula-
tionsmodell, beispielsweise in der Approximation der Winkelgeschwindigkeit. Wird
nun eine komplexere Strategie statt eines einfachen Skalarisierungsverfahrens zur
Losung des Mehrzieloptimierungsproblems umgesetzt, verbessert sich die Modellgiite
des PGRNNs erneut: Die Trajektorien des MOPGRNNSs, dargestellt in violett, geben
die Dynamik des Golfroboters am besten wieder.

Wegen des Einflusses der initialisierten Gewichte auf die Performanz eines neu-
ronalen Netzes, wird eine statistische Untersuchung vorgenommen, um die Daten-
abhéngigkeit zu ermitteln. Dazu wird jede der drei Netzarten 16 Mal mit denselben
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Abbildung 3.21 Statistische Auswertung des Simulationsfehlers verschiedener Modellarten
fiir den Golfroboter, unterschieden nach der Anzahl der Trainingssamples und danach, ob die
Trainingsdaten sinusférmige Anregungen enthielten (rechte Grafik) oder nicht (linke Grafik)
[17], [95]

Einstellungen trainiert. Fiir jedes dieser Netze wird darauthin die Modellgiite mittels
derselben Testtrajektorie evaluiert und anhand eines Simulationsfehlers e;,, ausge-
wertet, der die Fldche zwischen der tatsdchlichen und der préadizierten Trajektorie
bestimmt [17], [95]. Aufgrund der statistischen Auswertung der verschiedenen Versu-
che lassen sich der durchschnittliche Fehler 1 und die Standardabweichung o berech-
nen, welche in der [Abbildung 3.21| durch einen Punkt bzw. eine vertikale Linie dar-
gestellt sind. Ferner zeigt die Abbildung die Datenabhéingigkeit, indem die z-Achse
die Anzahl der genutzten Trainingssamples beschreibt [17], [95]. Des Weiteren wird
in ein Training mit (rechte Grafik) und ohne (linke Grafik) sinusformigen Anregun-
gen unterschieden, da der Golfroboter insbesondere bei sinusformigen Anregungen
seine starken nichtlinearen Effekte aufzeigt (vgl. |[Abschnitt 6.1)). Unabhéngig von
den verwendeten Daten und der Anzahl der Trainingssamples ist auffillig, dass das
RNN grundsétzlich den anderen Modellen unterliegt und nicht an die Modellgiite des
physikalischen bzw. hybriden Modells reichen kann. Dagegen zeigt das MOPGRNN
eine Robustheit bzgl. der verwendeten Daten auf, da dessen Modellgiite unabhéngig
von der Datenmenge und der Anzahl der verwendeten Samples gleichbleibend hoch
ist. Diese ist sogar hoher als die Modellgiite des physikalischen Modells, wie der
Simulationsfehler aufzeigt. Folglich verbessert die Mehrzieloptimierung mittels der
Giitevektoroptimierung nicht nur die Modellgiite des MOPGRNNs, sondern erhoht
zudem die Robustheit des Netzes im Vergleich zum PGRNN, welches mittels einer
gewichteten Summe trainiert wird und eine Datenabhéngigkeit aufweist.

Physikalisch motivierte neuronale Netze erfordern ein einfach auszuwertendes,
physikalisches Simulationsmodell sowie ein u. U. aufwendiges, architektur-
abhéangiges Training. Vorteile stellen die Beriicksichtigung von zusétzlichem
physikalischen Vorwissen dar sowie die physikalische Plausibilitéit des re-
sultierenden Modells. Dieses weist in der Regel eine sehr hohe Modellgiite
auf, setzt aber Messdaten des vollstindigen Zustands voraus.
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3 Modellbildung

3.4 Datengetriecbene PCHD-Modelle

Motiviert durch den Begriff der regelungstechnischen Verwertbarkeit von Strecken-
modellen, vgl. [16], und inspiriert durch die herausragenden Vorteile der Passivitéts-
eigenschaft wurde in [102] erstmals eine neue Methode zur datengetriebenen Bestim-
mung von PCHD-Modellen vorgeschlagen. Nach einer kurzen Einfiihrung des Passi-
vitéatskonzepts sowie der PCHD-Modelle wird die Methode vorgestellt und anhand
von Beispielen illustriert.

3.4.1 PCHD-Modelle

Der Begriff der Passivitéit adressiert Dissipationseffekte dynamischer Systeme [103],
[104]. Eng damit verbunden ist der Begriff der Hyperstabilitéit, der sich auf lineare
Systeme mit einer positiv reellen Ubertragungsfunktion bezieht [105], [106], [107],
[108]. Passive Systeme sind immer stabil und das Konzept kann verwendet werden,
um nichtlineare Riickkopplungssysteme durch ein Regelungsgesetz asymptotisch zu
stabilisieren, weshalb eine solche Systembeschreibung duflerst wiinschenswert ist.
Ein System

= f(x,u), (3.71a)
y=c(z,u) (3.71Db)

mit x € R", u,y € R, f: R" x RP — R", ¢: R" x RP — RP ist passiv, falls eine
stetig differenzierbare, positiv semideﬁnite{ig] Energiefunktion V' : R — R mit

Vi(x(t) —V(x(0) < /0 u'ydr (3.72)

fiir alle x, u existiert. Aus|Gleichung (3.72)| folgt die differentielle Passivitédtsunglei-
chung

V() = 0 @ < uly, (3.73)

sodass fiir die Energiebilanz des Systems gilt
gespeicherte Energie < zugefiihrte Energie. (3.74)

Die Eigenschaft der Passivitéit ist von den Schnittstellen zur Umgebung abhéngig,
d. h. von der Wahl des Systemeingangs und -ausgangs [109]. Ein passives System
mit positiv definiter Speicherfunktion V' besitzt in & = 0 eine Ruhelage, die sta-
bil im Sinne von Ljapunov ist. Fiir die Passivitidt verbundener Systeme gilt, dass
die Parallelschaltung und die Riickkopplung (streng) passiver Systeme wiederum
(streng) passiv ist. Diese Figenschaft ist fiir den Regelungsentwurf ein auflerordent-
lich niitzliches Werkzeug [21].

Eine spezielle intrinsische Hamiltonsche Formulierung fiithrt zu sogenannten port-
Hamiltonian bzw. port-controlled Hamiltonian systems (PCH-Systeme) [110], |[111],

YEine Funktion f(x) heifit positiv semidefinit, wenn f(z) > 0 und £(0) = 0 [21].
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3.4 Datengetriebene PCHD-Modelle

[112], |[113]. Erweitert um Dissipationseffekte ergeben sich sogenannte port-controlled
Hamiltonian systems with dissipation (PCHD-Systeme) [114]. Die allgemeine Be-
schreibung solcher PCHD-Systeme ist durch

& — (J(z) — D(z)) (g—Z)T + B(a)u, (3.75a)
y— B (x) @_‘;)T (3.75b)

gegeben, wobei & € R"™ der Zustandsvektor und u,y € RP die Ein- und Ausgangs-
schnittstellen des Systems sind. V' : R®™ — R ist eine stetige positiv definite Funk-
tion, die die gespeicherte Energie im System angibt. J(x) € R™™ ist eine schief-
symmetrische Matrix, d. h. J(z) = —J ' (), die die Energiefliisse im Inneren des
Systems definiert und D(x) € R™™" ist eine positiv definite symmetrische Matrix,
d.h. D(z) = D" (z), die das Verhalten der dissipativen Effekte abbilde B(x) be-
schreibt den Energieaustausch des Systems mit der Systemumgebung. Die zeitliche
Ableitung der Speicherfunktion ergibt

: v . oV v\ oV v\ oV
V(z) = %w = %J(%‘) (%) ——D(x) (%> + %B(a:)u (3.76a)
=0, weil J?wr):—JT(x)

;
S Viz)=u'y— a—wD(a:) (%) <u'y, (3.76Db)

sodass mit |Gleichung (3.75a)| die Passivitdtsungleichung erfiillt ist [21]. Dem-
nach sind PCHD-Systeme immer passiv und somit immer stabil.

3.4.2 Algorithmus zur Bestimmung datengetriebener
PCHD-Modelle

Fiir die datengetriebene Bestimmung solcher PCHD-Modelle unter gezielter Aus-
nutzung von physikalischem Vorwissen, vgl. |102], sind die nachstehenden Voraus-
setzungen zu erfiillen:

e Es werden zeitkontinuierliche eingangsaffine Systeme

= f(x)+ Bu (3.77a)
y=c(z,u) (3.77b)

mit dim v = dim y betrachtet.

e Essind Daten des Zustands & und des Systemeingangs u verfiighar, die sowohl
aus Messungen als auch aus Simulationen stammen konnen.

e Grundlegendes physikalisches Vorwissen iiber die gespeicherte Energie der zu
modellierenden Dynamik ist bekannt.

20Wenn D(z) = 0 ist, dann handelt es sich um ein (verlustfreies) PCH-System.
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3 Modellbildung

Die Matrizen J, D und B, die im Allgemeinen von @ abhingig sind, vgl.
lchung (3.75a),, werden als konstant angenommenﬂ. AuBlerdem werden die Matri-
zen J und D zusammengefasst zu K = J — D. Diese Annahme stellt keine Ein-
schrankung dar, weil sich jede quadratische Matrix eindeutig in einen symmetrischen
und einen schiefsymmetrischen Teil zerlegen lésst

K-K' K+K'
g_2-% p__gr8 (3.78)
2 2
Die Messdaten sind angeordnet in den Snapshot-Matrizen
X = [ml,mg,...,mM} e RMM, (3.79a)
U = [u,us,...,upy| € R, (3.79b)
X = [&1,&s,..., &y € RN (3.79¢)
Physikalisches Vorwissen iiber die im System gespeicherte Energie
V(.’B) = Ekinetisch + Epotentiell (380)
wird fiir die Konstruktion der Funktion?]
v\
U :R" > R" ¥(r)=|— 3.81
v - (5 (351

verwendet. Damit ergibt sich nach der Idee von |Gleichung (3.75a)| die Systembe-
schreibung

= KV¥(x)+ Bu. (3.82)
Ahnlich wie beim EDMD-Verfahren wird der Zusammenhang iiber die Messdaten

X ~K¥(X)+BU = |[K,B] {\pg()} (3.83)
betrachtet, sodass sich die Kleinste-Quadrate-Lésung mit
- [T
[K.B]=X|" (3.84)

ergibt. Als Néchstes werden die Matrizen J und D mittels |Gleichung (3.78)| berech-
net. Um eine PCHD-Form zu erreichen, vgl. [Gleichung (3.75a)| ist es erforderlich,
dass D positiv semidefinit ist. Die symmetrische Matrix D ist genau dann positiv
semidefinit, wenn alle Eigenwerte von D grofler oder gleich null sind. Die im Sin-
ne der Frobeniusnorm néchste Projektion der Matrix D in die Menge der positiv

21Diese Annahme beruht darauf, dass sich die Dynamik eines PCHD-Modells néherungsweise durch
konstante Matrizen beschreiben lasst, dhnlich der Vorgehensweise bei der Vereinfachung eines
nichtlinearen Modells durch Linearisierung um einen oder mehrere Arbeitspunkte.

22Der Gradient der Energiefunktion V wird hier aufgrund des verwandten Algorithmus in Analogie
zu den Observablen beim EDMD-Verfahren mit ¥(x) bezeichnet.
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3.4 Datengetriebene PCHD-Modelle

semidefiniten Matrizen erfolgt mittels

max (0, A1) 0
Dy = P-(D) = Vmax(0,,,,2)V' =V :
0 max (0, A,)
(3.85)
wobei VIV die orthogonale Eigenzerlegung von D ist. Die resultierende System-
beschreibung liegt in PCHD-Form vor und ist passiv

& = (J — D) ¥(z) + Bu. (3.86)

Der Algorithmus ist in der [Abbildung 3.22| zusammengefasst.

Prifstand oder Simulationsmodell physikalisches Vorwissen
: v\ "
Messdaten X, X, U U(x)=|—
Ox
+
w1
z
= v
= 1 - .
B J=-(K-K'), D=—-(K+K')
2 2
3
< v
D. =P-(D)
Y B \ 4 J 1 Dt

datengetriebenes PCHD-Modell
= (J—Dy)¥(x)+ Bu

Abbildung 3.22 Schematische Ubersicht der Methode zur Bestimmung eines datengetriebenen
PCHD-Modells.

Mittels der beschriebenen Methode lassen sich datengetriebene PCHD-
Modelle von eingangsaffinen Systemen mit konstanter Eingangsmatrix unter
Nutzung von physikalischem Vorwissen {iber die im System gespeicherte Ener-
gie bestimmen. Es werden Messdaten des vollstdndigen Zustandsvektors
und dessen zeitliche Ableitungen benétigt. Die resultierenden zeitkontinu-
ierlichen Modelle weisen eine hohe Modellgenauigkeit auf und sind gleichzei-
tig aufgrund der speziellen Struktur hochgradig physikalisch interpretierbar.

3.4.3 Beispielhafte Anwendung

Im Folgenden wird die Anwendbarkeit der datengetriebenen PCHD-Modelle Verfah-
ren beispielhaft hinsichtlich der erreichbaren Pradiktionsgiite demonstriert. Hierfiir
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3 Modellbildung

wird das numerisch simulierte nichtlineare Verhalten des jeweiligen Originalsystems
mit dem approximierten PCHD-Modell verglichen. Als simulative Beispielsysteme
werden das im eingefiihrte Einfachpendel sowie ein Doppelpendel und
ein vereinfachter Multicopter betrachtet. Als experimentelles Beispielsystem wird
der Schlagmechanismus des institutseigenen Golfroboters betrachtet, dessen Dyna-
mik nichtlineare Reibungseffekte enthélt.

Pendel Das resultierende datengetriebene PCHD-Modell fiir das Pendel SO-
wie eine ausfiihrliche Beschreibung des Systems und der verwendeten Trainingsdaten

wurden bereits im [Abschnitt 2.1] vorab présentiert. Aufgrund der im System gespei-

cherte Energie

1
V(x) = Emlzxg + mgl (1 — cos zy) (3.87)
ergibt sich
av\ ' mgl sin x4
Der Algorithmus in der [Abbildung 3.22] liefert das datengetriebene PCHD-Modell
mit
_ 10 4 ot 100 A7 10
PO A IR ) IO ) R
und damit

[Z] ~(J-D) (g—Z)T +bu
(23 e be-p-

Diese Matrizen korrespondieren exakt mit der analytisch hergeleiteten PCHD-Form
des Originalsystems |(2.1)]

(3.90)

Ty T2
. — g . d 1
) -7 SIxry — m.ﬁlﬁ'g —+ W'LL

. ) (3.91)
0 == 0 0 mgl sin zq 0
—# 0 0 m§l4 leIQ iz
mit
0 i 0 0 0
Jphys - [_L T’82:| 5 -Dphys = |:0 d :| ) bphys - |:L:| . (392)
ml2 ml2[4 ml2

Die Berechnung des Algorithmus liefert unmittelbar D» = D, sodass keine nach-
tragliche Verschiebung der Eigenwerte erforderlich ist.

Zur Untersuchung der Robustheit gegeniiber Modellunsicherheiten bzw. fehler-
haftem physikalischen Vorwissen wurden datengetriebene PCHD-Modelle fiir das
Pendel bestimmt, bei denen fiir die Festlegung von ¥(x) eine Abweichung einzelner
Parameter um £10% vom Originalwert angenommen wurde. Die [Abbildung 3.23]
zeigt die dazugehorigen pridizierten Verlaufe fiir das autonom schwingende Pendel.
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3.4 Datengetriebene PCHD-Modelle

Es ist zu erkennen, dass die Verldufe trotz der Parameterabweichungen von 10 %
nur geringfiigig vom Originalsystem abweichen. Die Abweichungen der Parameter
m und d werden durch den datengetriebenen Algorithmus vollstdndig korrigiert.
Die Ergebnisse fiir die Abweichungen der Parameter g und [ lassen sich hingegen
dadurch erklaren, dass diese Parameter einen erheblichen Einfluss auf die Schwin-
gungsdynamik, d. h. die Eigenfrequenz, haben. Die hier angenommene Abweichung
dient illustrativen Zwecken; bei vorhandener Unsicherheit beziiglich der Systempa-
rameter ist es im Allgemeinen empfehlenswert, diese im Vorfeld zu identifizieren
oder alternativ in Form einer Hyperparameteroptimierung zu iiberlagern.

— Originalsystem - - - d abweichend ----- m abweichend
g abweichend =--- [ abweichend

1 in rad

T in rad/s

Zeit t in s

Abbildung 3.23 Simulative Analyse fehlerhaft gewdahlter physikalischer Parameter anhand
identifizierter PCHD-Modelle mit Parameterabweichungen von £10 %.

Schlagmechanismus des Golfroboters Der Golfroboter, vgl. [Abbildung 6.1}, wird
im ausfiihrlich beschrieben. Die Dynamik des Schlagmechanismus er-
gibt sich durch

T T2
|:£IZ;:| - |:mgasinled(m)+4u ) (393&)

J
My(x) = dxy + rpsgn zy |mx§a + mgcos x|, (3.93b)
Yy =. (3.93¢)

Die im System gespeicherte Energie ist gegeben durch

1
V(x) = §Jx§ +mga (1 — coszq), (3.94)
sodass -
~(OV\ |mgasinx,
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3 Modellbildung

Der Algorithmus in der [Abbildung 3.22| liefert fiir dieselben Trainingsdaten wie in
der [Abbildung 3.11| das datengetriebene PCHD-Modell

0 61844 [0
J = {—6,1844 0 } , b= [22,9965} ) (3.96a)
p_[ 0 076 ..o oo tom Ay = —0.083L, 3y = 6.5195 (3.960)
= 120,736 64364 | W1t den Bigenwerten Ay = —0,0851, A2 =6, :

und der positiv semidefiniten Matrix

0,0820 —0,7267
—0,7267  6,4375

D, = { } mit den Eigenwerten A\; = 0, \y = 6,5195.  (3.97)

Das physikalische PCHD-Modell

0 l} { 0 6 9204} [0 0 }
T = 7| ~ ) . Dps(T) = , (3.98a
phy {_% 0 —6,9204 0 phy () 0 dphyS(w) ( )
0 0
bonys = {%} ~ {27,6817} (3-950)
a4 =
mit dphys (x) = ilz ) o | mdatmacooss 29 =0 (3.98¢)
7zt z3 , 2270

lasst sich analytisch aus dem physikalischen nichtlinearen Modell herleiten.

An dieser Stelle ist anzumerken, dass beim Schlagmechanismus des Golfroboters
D ,ys(x) von o abhéngt. Angesichts der dennoch hohen Modellgiite des datengetrie-
benen PCHD-Modells mit konstanter Matrix D, vgl. [Abbildung 3.24] kann davon
ausgegangen werden, dass die dominanten Nichtlinearitdten bereits in der Energie-
funktion V' (x) beriicksichtigt sind.

Doppelpendel Anhand eines unaktuierten und reibungsfreien Doppelpendels, vgl.
Skizze in der [Abbildung 3.25| werden die Grenzen des vorgestellten Verfahrens zur
datengetriebenen Bestimmung von PCHD-Modellen untersucht. Dieses System zeigt
eine chaotische Dynamik. Das bedeutet, dass selbst minimale Anderungen der An-
fangsbedingungen eines chaotischen Systems zu stark unterschiedlichen Trajektorien
fithren kénnen, vgl. [115]. Im Folgenden wird zunéchst kurz die physikalisch motivier-
te Modellbildung beschrieben. Anschliefend wird die datengetriebene Bestimmung
eines PCHD-Modells diskutiert.

Ein physikalisch motiviertes nichtlineares Modell l&sst sich mittels des Lagrange-
Formalismus herleiten@. Unter der Annahme, dass die Nulllage ¢ = 0 sich in der
unteren Ruhelage befindet und die Pendelarme als Punktmassen mit den in der
angegebenen Parametern modelliert sind, ergeben sich die kinetische
und potentielle Energie des Systems durch

) 1. o
Finetisch = mil? (sof + 5903 + P14p2 cos (1 — 902)) : (3.99a)

23Eine ausfiihrliche Herleitung der Bewegungsdifferentialgleichungen findet sich beispielsweise in
[116].
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— Messung Datengetriebenes PCHD-Modell
- -- Nichtlineares physikalisches Modell
107°
1,2
o] 1k ~ ’
< N =
B SR & W QN
£ M\ 1y
8 _9 | | | | | | o ’_‘.'
0 2 4 6 8 10 12 14 - -t
) | W
. % 0,8 ’
% 4+ = !
=2 ‘ \ € 06
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o -2t | v | | | = N
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Abbildung 3.24 Das datengetriebene PCHD-Modell weist eine hohere Pradiktionsgiite als das
nichtlineare physikalische Modell |(3.93)| auf.

Epotentien = —mlg (2 cos 1 + cos ) . (3.99b)

Tabelle 3.1 Physikalische Parameter

01 = xlé Symbol  Physikalischer Parameter Wert
E m1 = ms = m (Punkt-)Massen der Pendel 1kg
P2 = T3i Iy =1y =1 Lingen der beiden 0,5m
. Pendelarme
Abbildung 3.25 g Gravitationsbeschleunigung 9,81 ms™2

Doppelpendel

Fiir die Lagrange-Funktion gilt damit

L= Ekinetisch - Epotentiell

L 1, (3.100)
— mi? (gpf + 590% + P12 cos (1 — g02)> + mlg (2 cos 1 + cos ),

sodass sich die Bewegungsdifferentialgleichungen formuliert in den Minimalkoordi-
T T . .
naten [ql, qg} = [(pl, gog} mittels des Lagrange-Formalismus

d
oL _ oL _,

G (3.101)
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zu

mi® (21 + Ba cos (o1 — @a) + @3sin (1 — @2)) + 2mlgsinp; = 0, (3.102a)
mi? (gbg + (B1 cos (1 — pa) — P2 sin (¢ — gpg)) + mlgsin gy =0 (3.102Db)

ergeben. Mit [:El, Xo, T3, $4}T = [gpl, D1, P2, cpgf ldsst sich die Dynamik des Doppel-
pendels im Zustandsraum formulieren:

. i)

:?1 9 (sin z3 cos(z1—x3)—2sin z1)—sin(z1—z3) (ziJr:r% cos(z1 71173))

2 = 2-cos?(w1~as) . (3.103)
XT3 Ty

Ty 29 (sin z1 cos(z1—x3)—sin z3)+sin(z1—z3) (2:cg+xi cos(x1 7903))

2—cos?(z1—x3)

Fiir das datengetriebene PCHD-Modell wird physikalisches Vorwissen in Form der
im System gespeicherten Energie

V(CU) = Ekinetisch + Epotentiell

= ml? (x% + %J}Z + woxy cos (x1 — x3)> — mlg (2 cos 1 + cos x3) (3.104)
bendtigt. Der Gradient von V() definiert die Funktion
ST —ml221‘2l§4 sin (xl12— x3) + 2mlgsin x;
¥(e) = (8_51:) - leZIZiz(Z f4$20)s4(—x7;1i1§13;1)9:3 (3.105)

mi?xy + ml*zy cos (11 — x3)

Fiir die Analyse der Modellgenauigkeit des datengetriebenen PCHD-Modells wer-
den unterschiedliche Szenarien betrachtet, bei denen die Trainingsdaten sowie die
Testtrajektorie variiert werden, vgl. [Abbildung 3.26| Fiir jedes Szenario werden 100
Trajektorien mit einer Dauer von jeweils 3s und einem additiven weiflen Rauschen
simulativ generiert. Die betrachteten Anfangsauslenkungen werden vom Szenario in
IAbbildung 3.26(a)| bis zum Szenario in|Abbildung 3.26(d)|schrittweise reduziert, wo-
bei die Zahlenwerte der Matrizen der berechneten datengetriebenen PCHD-Modelle
in der Dissertation [16] dargestellt sind. In der [Abbildung 3.27)ist jeweils der kumu-
lierte Fehler

k
1
e(tk) - Z E ||m0riginalsystem(tm) - wPrﬁdiktion(tm)HQ (3106)

m=1

der unterschiedlichen datengetriebenen PCHD-Modelle dargestellt. Es ist zu erken-
nen, dass alle vier datengetriebenen PCHD-Modelle in der Lage sind, die chaotische
Dynamik des Doppelpendels zumindest fiir 0,4s prézise zu pradizieren. Mit stei-
gender Anfangsauslenkung und fiir einen lingeren Zeithorizont sinkt die Modellge-
nauigkeit jedoch stark. Eine &dhnliche Beobachtung wurde im Beitrag [117] anhand
des EDMD-Verfahrens formuliert, dessen Modellgenauigkeit sich mit steigender im
System gespeicherter Energie reduziert.
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% &

(a) (b) (c) (d)

Abbildung 3.26 Das Doppelpendel dient dazu die Grenzen des vorgestellten Verfahrens zur
datengetriebenen Bestimmung von PCHD-Modellen zu illustrieren. Es werden vier unterschied-
liche Szenarien der Trainings- und Testdaten untersucht. Die Anfangsauslenkungen fiir die
Trainingsdaten sind schematisch in blau und die Anfangsauslenkung fiir die Testtrajektorie in
schwarz dargestellt.

Aus der Betrachtung von |Gleichung (3.103)| und |Gleichung (3.105)|ist ersichtlich,
dass es fiir das Doppelpendel nicht ohne Weiteres gelingt, eine PCHD-Beschreibung
analytisch herzuleiten. Dariiber hinaus wére die Matrix J,nys(€) von @ abhéngig.
Die Approximation der Dynamik des Doppelpendels mittels einer konstanten Ma-
trix J léasst sich hier &hnlich interpretieren wie die Linearisierung der Dynamik
um den Betriebspunkt der unteren Ruhelage. Diese Schlussfolgerung deckt sich mit
der Analyse der Modellgenauigkeit fiir unterschiedliche Anfangsauslenkungen, vgl.
[Abbildung 3.27] Am Beispiel des Doppelpendels erreicht das im be-
schriebene Verfahren zur datengetriebenen Bestimmung von PCHD-Modellen fiir
groflere Anfangsauslenkungen die Grenze der erreichbaren Modellgenauigkeit.

Zweidimensionaler Multicopter Als weiteres Beispiel fiir die Anwendung daten-
getriebener PCHD-Modelle dient ein zweidimensionaler Multicopter. Multicopter
sind Luftfahrzeuge, deren Auftrieb durch mehrerd?’] nach unten wirkende Propel-
ler erzeugt wird, wodurch ein senkrechtes Starten und Landen ermoglicht wird.
Durch die Variation der Propellerdrehzahlen lédsst sich die Orientierung und da-
mit das Flugverhalten gezielt steuern [118]. Aufgrund der Flexibilitit, Effizienz und
Zuverldssigkeit bei gleichzeitig niedrigen Wartungskosten spielen Multicopter eine
herausragende Rolle beispielsweise bei der Paketzustellung |119] oder in der Kata-
strophenhilfe [120].

Der Einfachheit halber wird an dieser Stelle ein Multicopter mit zwei Propellern
in der Ebene betrachtet, vgl. Skizze in der [Abbildung 3.28 In Anlehnung an [121],
[122] ergeben sich die Differentialgleichungen der als linear gedampft angenommenen
Flugbewegung in drei Freiheitsgraden mit den Parametern aus der ALE

mi = —(Fy + Fy)sing — di#, (3.107a)
miy = (Fy + F) cos ¢ — mg — diy, (3.107Db)
Jp = (Fy— F1)l — dup. (3.107¢)

Mit [xl,xg,xg,m,xg,,%f = [x,:ic,y,y', ©, gbf und [ul,ugf = [Fl,Fg}T ldsst sich

24Multicopter mit vier Propellern werden beispielsweise als Quadrocopter, solche mit sechs Pro-
pellern als Hexacopter bezeichnet.
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— Originalsystem
- -- Datengetriebenes PCHD-Modell (a)
- -- Datengetriebenes PCHD-Modell (b)

--= Datengetriebenes PCHD-Modell (c)
Datengetriebenes PCHD-Modell (d)

-
-----

-

________

_____
-

Kumulierter Fehler e

Zeit t in s

1 2 3
Zeit tin s

Abbildung 3.27 Die Pradiktionsgiite des datengetriebenen PCHD-Modells fiir das simulierte
Doppelpendel sinkt bei steigender Anfangsauslenkung stark. Aus Platzgriinden wird auf die
Darstellung der Verlaufe fiir die Zustande x5 und x4 verzichtet.

Tabelle 3.2 Physikalische Parameter.

Symbol Physikalischer Parameter Wert
m  Masse 1kg
J  Rotationstrigheit 0,5 kg m?
l Léange zu den Propellern 0,5m
g  Gravitationsbeschleunigung 9,81 ms—2
d;  translatorische Dampfung  0,1kgs™!
Abbildung 3.28 Multicopter. d. rotatorische Dampfung 0,1kgm?s~!
die Dynamik im Zustandsraum
_jfl_ [ ) i
i’g —%(Ul + UQ) sin Ty — %ZL’Q
Ztg T4
T4 %(ul + ug) coszs — g — %m
j?5 Tg
i) | tta-u)-de |
[ e ] 0 0 i (3.108)
—%xg —niz sin x5 —% sin x5
T4 0 0 Uy
- —q — %ZE;; * % COS Iy % COS Iy U9
T 0 0
] [ o8 4
B(x)
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3.4 Datengetriebene PCHD-Modelle

formulieren. Das System ist eingangsaffin mit einer Eingangsmatrix B(x), die nicht
konstant ist. Die im System gespeicherte Energie betrigt

1 1
V(x) = Euinetisch + Epotentienl = §m(ac§ + 23) + §Jac§ + mgzxs, (3.109)

sodass der Gradient sich zu

v\ " T
e [0, maa, mg, mxy, 0, Jg) (3.110)

berechnet. Die analytisch hergeleitete PCHD-Darstellung ist gegeben durch

Ty 0 % 0 0 0 0 0

T2 —m ey 0 0 0 0 My

3| | O 0 0 % 0 0 mg g

BT lo 0 -1 wog g | || TB@ ]y, G
5 o o o o o ¢ 0

| T6 | | 0 0 0 0 _% _%_ | 6

wobei die Elemente in der ersten und fiinften Spalte der Matrix K aufgrund der
partiellen Ableitungen ¢y (x) = - = 0, ¢5(x) = S = 0 beliebig wiihlbar sind.
Diese Eigenschaft fithrt dazu, dass der Algorithmus nicht in der Lage ist, die Matri-
zen J und D korrekt zu berechnen. Eine nahe liegende Losung fiir dieses Problem
konnte eine Modellordnungsreduktion des Systems auf die fiir die gespeicherte Ener-

gie relevanten Zustidnde
o P A
& = [Ty, T2, T3, 24] = [4,9,9,¢] (3.112)

darstellen. Dieser Ansatz ist bei dem betrachteten Beispiel jedoch nicht anwendbar,
weil die Eingangsmatrix B(x) vom Winkel ¢ abhingig ist und daher die Pradiktion
des Winkels ¢ erforderlich ist.

Automatische Modellaktualisierung

Eine Herausforderung mechatronischer Systeme liegt in vorhersehbaren oder un-
vorhersehbaren Systemverdnderungen, z. B. die Installation eines neuen Bauteils,
Verschleifl oder Temperaturschwankungen wiahrend des Betriebs. Um dennoch eine
gleichbleibend hohe Regelungsgiite gewéhrleisten zu konnen, muss die Informations-
verarbeitung in der Lage sein, diese Anderungen zu erfassen und sich automatisch an-
zupassen. Daher wurde in [123] eine Erweiterung um selbstlernende Streckenmodelle
entwickelt, die sich auf Basis laufend aufgezeichneter Messdaten an verédnderliches
Systemverhalten anpassen, vgl. [Abbildung 3.13| Dafiir wurde zunéchst in Anleh-
nung an [123] ein Algorithmus fiir ein adaptives PCHD-Modell mit einem rekur-
siven kleinste-Quadrate-Ansatz realisiert. Durch einen variablen Vergessensfaktor
beriicksichtigt das Modell vergangene Messdaten in Abhéngigkeit der Intensitat der
auftretenden Systemverdnderungen zu vernachléssigen. Die Begrenzung der Spur der
Kovarianzmatrix verhindert das einhergehende Risiko eines sogenannten Kovarianz-
Windups. Experimentelle Untersuchungen am Schlagmechanismus des Golfroboters
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3 Modellbildung

zeigten eindrucksvoll, dass das adaptive PCHD-Modell die nichtlineare Systemdy-
namik mit sehr hoher Genauigkeit abbilden kann.

Die erfolgreiche Integration der Adaptionsfahigkeit bestétigt die hohe regelungs-
technische Verwertbarkeit der hybriden PCHD-Modelle gemé&f der Kriterien, die im

formuliert wurden.

3.5 Probabilistische hybride Modellierung mittels
GauB-Prozess-Regression

In diesem Abschnitt wird eine hybride Modellierung vorgestellt, welche auf der soge-
nannten Gaufl-Prozess-Regression basiert. Dabei wird der vorhandene Modellfehler
des physikalischen Modells als Zufallsvariable definiert und iiber einen Gau-Prozess
nachgebildet. Auf der Grundlage von Messdaten wird der Fehler somit als normal-
verteilt angenommen und durch einen zustandsabhéngigen Erwartungswert und eine
Varianz dargestellt. Auf diese Weise lasst sich die Unsicherheit iiber den Modellfeh-
ler quantifizieren und insbesondere fiir lernende und sicherheitskritische Systeme
verwenden. In [Unterabschnitt 3.5.1| wird die Entwicklung des datengetriebenen Mo-
dellteils formal beschrieben. Anschliefend erfolgt in [Unterabschnitt 3.5.2] die Ver-
bindung vom physikalischen und datengetriebenen Modellteil iiber die Unscented
Transformation. Hierbei wird der Begriff der Zustandspropagation eingefiihrt, wel-
che eine wahrscheinlichkeitsbasierte Langzeitpriadiktion des hybriden Gesamtmodells
ermoglicht.

3.5.1 Entwicklung des datengetriebenen Modellteils

Zunachst wird eine formale Unterscheidung zwischen den verschiedenen betrachteten
Systemen eingefiihrt. Das reale System, welches beispielsweise als Priifstand oder
Prototyp vorhanden ist, wird mit f bezeichnet. Das unvollstindige Modell, das in
der Regel auf physikalischen Gesetzméfligkeiten beruht, wird entsprechend einer
Zustandsschitzung mit f beschrieben - es handelt sich um eine Annédherung an f.
Des Weiteren erhélt der rein datengetriebene Modellteil, welcher dem Modellfehler
zugeordnet wird, die Bezeichnung Az. Das gesamte hybride Modell wird mit f
angegeben.

Auf dieser Basis ldsst sich das reale diskrete System, unter der herkémmlichen
Annahme einer additiven Struktur, mit

A

Ty = f(@r, up) = fxp, ur) + Axpya (T, up) (3.113)

angeben. Nun ist das Ziel eine Beschreibung der Modellfehler Axy 1 (2, ux) zu fin-
den und ein hybrides Modell aufzustellen, um eine im Vergleich zum physikalischen
Modell bessere Annéherung an das reale System zu erhalten. Ein wesentlicher An-
haltspunkt stellen die aufgenommenen Messdaten vom realen System bereit. Die
zugehorigen Triple (g, Tri1, uy), welche aus dem aktuellen Zustand, dem Folgezu-
stand und der Stellgréfle bestehen, werden zeitlich gesehen in den Datenmatrizen

X, X1 € Rnwxnd, U, € R wX"d (3114)
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3.5 Probabilistische hybride Modellierung mittels Gauf-Prozess-Regression

gesammelt und zusammengefasst. Hierbei bezeichnet n, die Dimension des Zu-
standsvektors und ny die Anzahl von Messpunkten. Anhand des physikalischen Mo-
dells wird der Modellfehler entsprechend zu |Gleichung (3.113)| mit

AXY =X - f(xXPUW), i=1,.. 0, (3.115)
fiir jeden Messpunkt berechnet und in AX ., abgespeichert. Jede Dimension des
Modellfehlers wird als parameterabhéngige Zufallsvariable behandelt und iiber einen
separaten Gauf-Prozess |124]

mit Nullmittelwert- und Kovarianzfunktion k(-, -; m) beschrieben. Hierbei wurde die
abkiirzende Schreibweise ¥ := [z}, u} |7 eingefiihrt. Die Mittelwertfunktion ist null,
da die Modellfehler unbekannt sind und das gesamte Vorwissen iiber die Dynamik
bereits {iber das physikalische Modell erfasst wird. Des Weiteren ist eine geeignete
Kovarianzfunktion k(x, ') fir die vollstdndige Definition des GPs auszuwéhlen. In
diesem Zusammenhang beschreibt die Kovarianzfunktion bzw. der Kernel die Eigen-
schaften der gesuchten Funktion in Bezug auf ihre Glattheit und den Grad ihrer Dif-
ferenzierbarkeit. Aulerdem kann iiber sie eine bestimmte Periodizitit ausgedriickt
werden [124]. Entsprechend lésst sich tiber den Kernel erweitertes Vorwissen im Ver-
gleich zur rudimentéren Mittelwertfunktion einbeziehen und die Wahl des Kernels
ist ein Entwurfsparameter, der auf die jeweilige Aufgabe angepasst werden muss.
Der gingigste Ansatz ist der sogenannte Squared Exponential (SE) Kernel, welcher
hier beispielhaft vorgestellt wird. Der SE-Kernel hat die Form

ksp(a, @)in) = o oxp(—(af — o)W (@} —2}))  (3.117)

mit Gewichtungsmatrix W = diag(13, .. .,2 ), welche als Elemente die sogenannten
Lengthscale-Parameter besitzt, sowie der Signalvarianz 0']% hat. Die parametrische
Abhéngigkeit ist gewollt, um dem GP eine gewisse Flexibilitit einzurdumen und
damit er sich auf unterschiedliche Rahmenbedingungen anpassen kann. Daher wer-
den die folgenden Hyperparameter iiber n := [ly,...,[,,, o] eingefiihrt, die fiir die
vollstdndige Definition des GPs notwendig sind. Die Hyperparameter werden iiber
die Minimierung der negativen logarithmischen Likelihood [124] nach

| T
'r’;f = argnéi‘nAX](jiiK;leX,(jii + log |K,7j| (3.118)
j

bestimmt. Dabei ist AX ,(iri die j-te Zeile von AX,; und K, € R"*" ist die
symmetrische und positiv definite Gram-Matrix mit den Elementen

K = k(xXP", X0 %m), re=1,.n, (3.119)
mit XY = [X1,UL]" und wobei der zusitzliche Index die benutzte Spalte angibt.
Die Optimierung in |Gleichung (3.118)|stellt ein Mehrzielproblem dar, wobei die Pro-

blematik des Over- and Underfitting [10] adressiert wird und die Hyperparameter so
bestimmt werden, dass die Messdaten bei einer moglichst geringen Modellkomple-
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Abbildung 3.29 Eindimensionale Visualisierung der GauB-Prozess-Regression, links Prior- und
rechts Posterior-Wahrscheinlichkeitsdichteverteilung. Die griine Linie zeigt die wahre unbekann-
te Funktion des Modellfehlers (Ground Truth). Die blaue Linie reprasentiert den Mittelwert und
die blaue Flache die zweifache Standardabweichung des GauB-Prozesses. Eine Auswertung die-
ser GroBen findet auszugsweise an den Stellen z}! = 5 und z}} = 12.5 statt (graue Linien).
Wahrend der Prior noch uninformiert ist und damit eine hohe Unsicherheit aufweist, ist der
Posterior an die Messpunkte (schwarze Punkte) angepasst und ist in der Lage den Ground
Truth besser wiederzugeben. AuBerdem erhdlt man iiber das MaB der Standardabweichung
Informationen iiber die Unsicherheiten der betrachteten GroBe.

xitét gut wiedergegeben werden. Die Posterior-Wahrscheinlichkeitsdichteverteilung
bzgl. der j-ten Dimension des Modellfehlervektors lautet dann

p(Azf), | AXP) = N(Ap(y), Ao (),
Apy(a}) = kala) K, IAX T (3.120)

Ao (af) = klaf, afng) — ka () K, kaa))

( (na)

mit ka(xy) = [k(xl, XV D;nj),...,k(m}j,Xg ;1;)]" als Vektor, welcher den
Funktionseingang x} punktweise mit den Messdaten auswertet. Die [Abbildung 3.29|
visualisiert hierzu die grundlegenden Zusammenhénge an einem eindimensionalen
Beispiel. Es ist gut erkennbar, dass sich die Verteilung iiber |Gleichung (3.120)| an
die schwarzen Datenpunkte anpasst und die Unsicherheit in Form der Varianz in
der Nédhe der Datenpunkte im Vergleich zur Prior-Verteilung stark sinkt. Unter Ver-
wendung der Standardannahme, dass die dimensionszugehorigen GPs unabhéingig
von einander sind, lautet das gesamte datengetriebene Modell damit formal

P(ATy | AX i) = N(Ap(xy), AX(z})),

AFL(CBZ) = [Aﬂl(w};)’ AV (mZ)]Ta (3'121)
AX(xy) = diag([Aoi(xy), ..., Aoy, (z})]).

Entsprechend zu [125] wird fiir das aufgestellte GP-Modell eine Kurzschreibweise
durch

Falxe, ug) = [Ap(xg, uy), AX(xg, ug )], (3.122)
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3.5 Probabilistische hybride Modellierung mittels Gauf-Prozess-Regression

mit der Abbildung f, : R"™ x R™ +— R™ x R™*" eingefithrt. Bei der Ver-
nachléssigung der Kovarianzmatrix kann eine sogenannte naive Prédiktion des hy-
briden Modells nur mit Hilfe des Erwartungsvektors durchgefiihrt werden. Die Be-
rechnung des Folgezustands ergibt sich demnach, entsprechend dem Ansatz aus

chung (3.113)] mit

A

1 = f(xr, up) + Ap(xg, uy). (3.123)

Dabei handelt es sich um eine klassische deterministische Pradiktion, welche die
Unsicherheit iiber die Modellfehler durch eine zu geringe Datenlage vernachléssigt.
Ein genaueres Bild des Systemverhaltens folgt aus der Beriicksichtigung der Ko-
varianzmatrix, wobei eine probabilistische Zustandspropagation erforderlich wird.
Eine zugehorige Vorschrift fiir eine Langzeitvorhersage des realen Systems wird im
néachsten Abschnitt entwickelt und erlautert.

3.5.2 Effiziente probabilistische Zustandspropagation mittels
Unscented Transformation

Bis hierin wurde von einem eindeutigen deterministischen Zustandsvektor a; ausge-
gangen. Zudem wurde der Vektor der Modellfehler Ax;, als Zufallsvektor definiert.
Auf der Basis des Zusammenhangs des hybriden Ansatzes geht hervor, dass
es sich bei dem Folgezustand x;,; ebenfalls um einen Zufallsvektor handeln muss,
da dieser direkt von dem Vektor der Modellfehler abhéngt. Die Unsicherheit iiber
die Modellfehler propagiert sich somit bei der Betrachtung mehrerer Zeitschritte
bzw. bei einer Langzeitpradiktion fiir alle Zustandsvektoren fort. Da es sich bei der
Dynamikgleichung im Allgemeinen um einen nichtlinearen Zusammenhang
handelt, sind die Zustandsverteilungen komplex und miissten aufwendig numerisch
berechnet werden. Das erfordert viel Zeit und ist ineffizient.

Eine Moglichkeit fiir eine effiziente Propagation, welche in diesem Abschnitt vor-
gestellt wird, stellt das Moment Matching (MM) [126] in Kombination mit der Un-
scented Transformation (UT) [127] dar. Dabei werden die komplexen wahren Zu-
standsverteilungen mit einer Normalverteilung p(x;) =~ N (my, Sy) approximiert,
wobei der Erwartungsvektor my; und die Kovarianzmatrix S durch die besonders
effiziente UT berechnet werden. Die UT stellt in der Regelungstechnik ein géngiges
Beobachterverfahren zur Zustandsschétzung dar.

Den Ausgangspunkt der Entwicklung stellt ein normalverteilter aktueller Zustand
mit x; ~ N(my, S;) dar. Die Stellgrofe uy bleibt weiterhin eindeutig, d. h. ohne
Unsicherheiten, bekannt, da sie bei der Verwendung eines Steuerungsansatzes vor-
gegeben wird. Im Falle einer Regelung wiirde die Stellgrofle vom Zustand abhéngen,
wodurch, wie bereits oben beschrieben, die Stellgrofie ebenfalls als Zufallsvariable
definiert werden miisste. Dieser Fall soll aber zunédchst nicht betrachtet werden, so-
dass von einer deterministischen Stellgrofle ausgegangen wird. Auf der Basis von
|Gleichung (3.113)| wird zunédchst das Gesetz der totalen Erwartung angewendet

A,

miy1 = By [Eag., [®ri1]] = Eo, [f] + Eg, [Ap], (3.124)

mit dem Erwartungswertoperator E, um den Erwartungsvektor des néchsten Zu-
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stands zu bestimmen. Dieser setzt sich additiv aus der Erwartung des physikali-
schen Modells und des Modellfehlers bzgl. der Unsicherheit des aktuellen Zustands
zusammen. Die Approximation dieser Groflen findet nach der Betrachtung der Zu-
standsvarianz statt. Die Zustandsvarianz wird entsprechend mit dem Gesetz der
totalen Varianz iiber

Sk-f—l = Emk [VAJ%-H [mk-f-l]] + Vévk [EA$k+1 [wk-‘rl]]

= By [AS] + Vo, [f] + Vo, [Ap] + Co [f, Apl + Co, [f, AT, (3.125)

mit Kovarianz- V,, und Kreuzkovarianzoperator C,, , bestimmt und setzt sich damit
aus verschiedenen Summanden zusammen. Die Berechnung der verbliebenen Opera-
toren in [Gleichung (3.124) und |(3.125)| erfolgt durch die Anwendung der numerisch
effizienten UT. Diese sieht zunéchst eine Aufstellung von 2n,+1 sogenannten Sigma-
Punkten vor, welche sich aus der aktuellen Zustandsverteilung x; ~ N (my, S}) mit

wil;c :mk+( (’@‘an)sk)%;,)y t=1,...,ng,

a2l =my — (V(k+1)S)l,, i=n.+1,...,2n,, (3.126)
mfgﬁl) = my,

ergeben. Dabei ist (1/(k 4+ n3)Sk) (i, die i-te Zeile der Matrixwurzel und x € R ein a-
priori festzulegender Entwurfsparameter mit der Bedingung x+mn, # 0. Im néchsten
Schritt werden die beiden Modellteile des hybriden Ansatzes bei den Sigma-Punkten
ausgewertet:

T = Falh w),

(3.127)
ApD ADO] = f,(x Sk,'u,k) i=1,...,2n, + 1.

Anschlieflend werden die transformierten Sigma-Punkte bzw. die Funktionsauswer-
tungen verwendet, um die gesuchten Momente numerisch zu approximieren,

2nz+1
E.,[f] ~ Z w l)ms b1 = M
2nm+l
Vo lfl~ D wi(@lh, —mp)(@l,, —mp)",
i1

=t (3.128)
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Dabei werden die Gewichtungen

1 .
. = =1,...,2n,,
wld = § Bty LT e = (3.129)
ﬁ, Z:2n$+17

benutzt, deren Herleitung eine moglichst hohe Approximationsgiite zum Ziel hat
[127]. Zu beachten ist, dass trotz der diagonalen Struktur der GP-Kovarianzma-
trix bzw. der Unabhéngigkeitsannahme, die Dimensionen des Nachfolgezu-
stands fiir eine unsichere Eingangsverteilung kovariieren kénnen. Die Gleichungen
aus [(3.124)H(3.128)[ werden zusammen als eine mathematische Funktion definiert,
um eine Kurzschreibweise einzufithren. Diese Funktion wird mit

f(mk, Sk, ’U,k) = [mk+1, Sk-i—l} (3130)

beschrieben, wobei die aktuelle Zustandsverteilung zusammen mit der Stellgrofie
auf die néchste Zustandsverteilung abgebildet werden. Eine probabilistische Lang-
zeitpriadiktion ergibt sich fiir eine bekannte Steuerungsabfolge durch eine mehrfache
Ausfithrung dieser Funktion, dhnlich zu einer diskreten Dynamikfunktion im deter-
ministischen Fall.

Fiir einige Systeme ist es nicht notwendig, alle Dynamikgleichungen zu korrigie-
ren. Das Systemverhalten setzt sich bspw. aus verschiedenen physikalischen Effekten
zusammen und unter Umstédnden ist ein Teil dieser Effekte klar und eindeutig be-
stimmbar, sodass die zugehorigen Gleichungen keinen Modellfehler enthalten. Ins-
besondere bei mechanischen Systemen ist hidufig ein Integratorverhalten bekannt,
wobei eine Zustandsgrofe lediglich aufintegriert wird. Auch in diesem Fall ist keine
Korrektur vorzunehmen. Fiir den Rahmen der entwickelten Gleichungen kann dies
iiber den Modellansatz

A~

Tpy1 = f(xp, up) + BAZ (T8, uk) (3.131)

abgebildet werden, wobei eine Kopplungsmatrix B € R"**™ mit n;, < n, verwendet
wird. Die Kopplungsmatrix legt dann entsprechend fest, welche Gleichungen einer
Korrektur bediirfen. In diesem Zusammenhang hat Axy (@, ui) eine niedrigere
Dimension als der Zustandsvektor. Vereinfachend wird jedoch keine neue Grofle
definiert, sondern die bestehende Notation beibehalten. Die Dimension erschliefit
sich dann aus dem Kontext. In diesem Szenario sind lediglich die Gleichungen

und durch
LLLZ S :Eﬂﬁk [f] + BE% [A”’]?
Si11 =BE, [AX]BT +V, [f| + BV, [Au]BT (3.132)
+Cy,,[f, Ap]B" + BC,, [f, Ap)"

anzupassen, welche sich durch eine lineare Transformation einer Normalverteilung
ergeben. Ein weiterer Spezialfall liegt vor, wenn es keinerlei Vorwissen iiber die
Dynamik des betrachteten Systems gibt. Dann gilt f = 0 und der Modellansatz
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vereinfacht sich zu
L1 = A$k+1<$k, uk), (3133)

wobei lediglich der datengetriebene Teil bestehen bleibt. Dementsprechend ergibt
sich fiir die Zustandspropagation

M1 = Ezk [A[,l,],

3.134
Spet = By [AS] + V., [An]. (3134

Die hybride Modellierung fiir partiell bekannte dynamische Systeme mittels
der GaufB-Prozess-Regression fasst den Modellfehler als Zufallsvariable auf
und korrigiert ihn datengetrieben. Eine numerisch effiziente Simulation ist in
Form einer Zustandspropagation durch die Unscented Transformation gege-
ben. Der Rechenaufwand ist dabei im Vergleich zu einer gingigen determinis-
tischen Simulation héher, jedoch kénnen aus der probabilistischen Simulation
zusétzliche Informationen iiber die Unsicherheit des Zustands, welche durch
die unbekannten Modellfehler hervorgerufen wird, gewonnen werden. Auf die-
se Weise lasst sich das zeitliche Verhalten am realen System besser abschétzen
und geeignete Sicherheitsmafinahmen fiir einen sicheren und stabilen Betrieb
ableiten.
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4 Steuerungs- und Regelungsentwurf

Es existieren zwei verschiedene Moglichkeiten, um eine hybride Steuerung oder Re-
gelung zu erhalten. Zum einen kann die Grundlage ein zunéchst mit Hilfe von ML-
Ansétzen entwickeltes Modell des betrachteten Systems sein, wie sie beispielsweise in
vorgestellt werden. Wenn dieses hybride Modell dann fiir den Steuerungs-
oder Regelungsentwurf verwendet wird, miissen zumeist die zusétzlichen neuen Ei-
genschaften aus dem hybriden Ansatz ebenfalls beriicksichtigt werden. Diese Her-
angehensweise wird auch als indirekte Methode [128] bezeichnet und ein Beispiel
hierfiir ist die hybride Optimalsteuerung aus |Unterabschnitt 4.4.1] Hier wird ein
probabilistisches Modell betrachtet, welches Modellfehler in der Inbetriebnahme ler-
nen soll. Dies hat aber auch Konsequenzen fiir die Optimalsteuerung, in der nun
auch der Umgang mit der probabilistischen Sichtweise beriicksichtigt werden muss.
Eine andere Herangehensweise ist es, einen Regelungsentwurf direkt so zu verédndern,
dass er hybrid ist, was auch als direkte Methode bezeichnet wird [128]. Dies geschieht
beispielsweise in der hybriden Zustandslinearisierung in [Unterabschnitt 4.4.2] Hier
werden die Gleichungen der Zustandslinearisierung direkt so beeinflusst, dass sich ei-
ne hybride Methode ergibt, welche die Kompensationsfunktionen anhand von Mess-
daten anpasst. In beiden Féllen muss in den Steuerungs- und Regelungsansitzen
untersucht werden, wie sich die ML-Ansétze auswirken und welche Vor- oder auch
Nachteile sich ergeben. Eine hybride Modellierung und hybrider Steuerungs- bzw.
Regelungsentwurf bedeutet fast immer einen héheren Entwicklungs- oder auch Re-
chenaufwand. Daher sollte vorab immer die Notwendigkeit dieser Ansétze tiberpriift
werden und Kosten gegen Nutzen abgeschétzt werden.

4.1 Riccati-Regelungen mittels des
Koopman-Operators

Der Koopman-Operator bietet das Potenzial, lineare Entwurfsmethoden fiir die
Regelung von nichtlinearen Streckendynamiken zu nutzen. In [27] wird erstmals
der Entwurf eines linearen Riccati-Reglers fiir nichtlineare Dynamiken im hoéherdi-
mensionalen Koopman-Raum présentiert und als Koopman Operator Optimal Con-
trol bezeichnet. Im Folgenden werden die Grundidee anhand eines Einfiihrungs-
beispiels sowie mogliche Erweiterungen vorgestellt. Anschlieend wird der Entwurf
eines Riccati-Reglers beispielhaft am EDMD-Modell des Schlagmechanismus des
Golfroboters demonstriert.

4.1.1 lllustration der Idee

Die Idee eines Koopman-basierten linearen Riccati-Reglers wird anhand des Einfiih-
rungsbeispiels illustriert. Ergéinzt um einen Steuerungseingang und so modifi-
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4 Steuerungs- und Regelungsentwurf

ziert, dass der Zustand w9 sich instabil verhélt, ergibt sich fiir die Differentialglei-
chungen

Ti| U1 . o _
{ 1—[)\(3:2_33%)4_“} mit A=1, p=—-0,05. (4.1)

Ty
Die quadratische Kostenfunktion fiir den Entwurf des Riccati-Reglers wird als

J:/OoowT(t)Qa:(t)+Ru2(t)dt mit Q:Ll) ﬂ R=1  (42)

angenommen. Das fiir die Berechnung des Regelungsgesetzes erforderliche lineare
Streckenmodell wird klassischerweise mittels einer exakten Zustandslinearisierung
oder einer Linearisierung der Dynamik um einen oder mehrere Arbeitspunkte be-
stimmt. Auf der einen Seite wird fiir die Zustandslinearisierung u = v+ Az gewéhlt,
sodass sich das resultierende lineare System

I"l | 0 T 0
-3 B =
mit dem neuen Eingang v und dem nichtlinearen Regelungsgesetz
u=v+Ar}=—k'z+ ] mit k' =][0, 2,414] (4.4)
ergibt. Auf der anderen Seite fithrt eine Linearisierung um die Ruhelage * = 0 zum
linearen Modell
.fkl M 0 T 0
=06 3 )+ B &
mit dem resultierenden linearen Regelungsgesetz
u=—k'z mit k' =0, 2,424]. (4.6)

Im Gegensatz zu den beiden klassischen Ansdtzen ermoglicht die Koopman-Be-
schreibung

g1 p 0 0 |¢n 0
gl =10 X =A| |g| +[1]|u (4.7)
93 0 0 2u] |g3 0

der Originaldynamik, vgl. [Abschnitt 3.1|, eine unmittelbare, d. h. linearisierungsfreie
Anwendung des Riccati-Entwurfs. Die Kostenfunktion

J= /OoogT(:v(t))Qg(az(t)) + Ru*(t)dt mit Q= {g 8} (4.8)

wird identisch zu [Gleichung (4.2)| gewéhltﬂ und liefert das nichtlineare Regelgesetz

u=—k glx)=— (K1, ko) Bl} ~Fye? mit k= [0, 2,414, —1,594], (4.9)
2

IFiir das hier betrachtete Beispiel geniigt es, dass Q positiv semidefinit ist, weil zusétzlich das

betrachtete System iiber die Ausgangsgleichung y = QO:J: mit Q(—)r Qo beobachtbar ist, vgl. |24].
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4.1 Riccati-Regelungen mittels des Koopman-Operators

das eine dhnliche Struktur wie |Gleichung (4.4) aufweist. Bemerkenswert ist, dass
die Reglerparameter [l;;l, 1232] mit k' {ibereinstimmen und der einzige Unterschied
zwischen der Koopman-basierten Regelung und der exakten Zustandslinearisierung
im Faktor —ks # \ besteht.

Die |Abbildung 4.1| zeigt die simulative Untersuchung des Koopman-basierten
Riccati-Reglers. Beziiglich der Minimierung der Kostenfunktion ist die auf dem
Koopman-Modell basierende Zustandsriickfithrung den beiden klassischen Verfahren
iiberlegen. Dass der Zustand z, der auf einer Zustandslinearisierung basierenden
Regelung in der [Abbildung 4.1(a)| schneller abklingt, lasst sich dadurch erkléren,
dass die Kostenfunktion fiir diesen Fall falschlicherweise den neuen Eingang v
anstatt des wahren Eingangs u gewichtet und dadurch den StellgréBenverbrauch un-
terschétzt. In der [Abbildung 4.1(b)[sind die geregelten Trajektorien fiir unterschied-
liche Anfangsauslenkungen dargestellt. Beim Koopman-basierten Ansatz scheint
die charakteristische langsame Mannigfaltigkeit, vgl. [Abbildung 3.3] die Dynamik
des geregelten Systems maflgeblich zu bestimmen, weil sich sdmtliche Trajektorien
zunéchst asymptotisch dieser annihern, bevor sie schliefilich in den Ursprung stre-
ben, vgl.[Abbildung 3.3 Der fiir die Koopman-basierte Regelung erheblich reduzierte
Stellgrofenverbrauch, der in der [Abbildung 4.1(a)|zu erkennen ist, resultiert aus der
geschickten Nutzung dieses Phénomens.

Das betrachtete Einfiithrungsbeispiel stellt aufgrund des Koopman-invarianten Un-
terraums einen Spezialfall dar. Der Beitrag [27] weist darauf hin, dass das Entwurfs-
verfahren an seine Grenzen stofle, sobald einzelne Zustdnde in g nicht steuerbar
seien oder es nicht moglich sei, eine endlichdimensionale Koopman-invariante Sys-
tembeschreibung zu bestimmen. Gleichwohl wurde das Verfahren in nachfolgenden
Arbeiten erfolgreich auch auf numerisch approximierte EDMD-Modelle, vgl.
labschnitt 3.1.4jangewendet. Zahlreiche Veroffentlichungen demonstrieren die Effekti-
vitdt Koopman-basierter Riccati-Regler anhand unterschiedlicher Beispielsystemeﬂ

Der Beitrag |129] présentiert analog zur oben beschriebenen Strategie einen An-
satz zur Regelung mittels Koopman-Eigenfunktionen, wobei die Kostenfunktion

J = /0Oo @ (x(1)Qp(x(t)) + Ru*(t)dt mit Q = {Cg 8] (4.10)

so gewihlt wird, dass ¢! Qe ~ ' Qx. Dieser Ansatz resultiert im nichtlinearen
Regelungsgesetz

u=—k o) (4.11)

Die Regelgiite wird anhand einer Energieregelung fiir Hamiltonsche Systeme de-
monstriert, bei denen die Koopman-Eigenfunktion die im System gespeicherte Ener-
gie mit dem Koopman-Eigenwert A = 0 ist. Dariiber hinaus finden sich in der Li-
teratur weitere Ansétze zur Regelung mittels Koopman-Eigenfunktionen. In [13§]

2In Form von Simulationsstudien wird die Regelung fiir ein Pendel auf dem Wagen [117], den
Duffing-Oszillator und den Van-der-Pol-Oszillator [130], einen Boost-Konverter mit aktiver Last
[131], das FitzHugh-Nagumo-Modell und die Lorenz-Gleichungen [132], die Dynamik starrer
Kérper in Dualquaternionendarstellung [133], einen Spurhalteassistenten [134], einen MEMS-
Drehratensensor [135] und weitere akademische Beispiele [136] beschrieben. In Form von Expe-
rimenten demonstrieren [117] und |137] den Regelungsentwurf fiir Spielzeug- und Industriero-
boter, |45 fiir einen schwimmenden Roboterfisch mit aktuierter Schwanzflosse.
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(b) Vergleich der unterschiedlichen Regelungsgesetze fiir unterschiedliche Anfangsauslenkungen.
Abbildung 4.1 Veranschaulichung der Koopman-basierten Riccati-Regelung im Vergleich zu

einer Zustandslinearisierung bzw. einer Linearisierung um einen Arbeitspunkt.
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4.1 Riccati-Regelungen mittels des Koopman-Operators

wird beispielsweise das Regelungsproblem fiir einen endlichen Zeithorizont formu-
liert. Der Beitrag [139] zeigt die Anwendung eines Riccati-Reglers mit Koopman-
Eigenfunktionen fiir den Duffing- und den Van-der-Pol-Oszillator.

4.1.2 Beispielhafte Anwendung

Das Verfahren wurde beispielhaft anhand der Schlagregelung des Golfroboters, vgl.
[Abbildung 6.1}, simulativ untersucht. Fiir den zeitinvarianten Riccati-Regler wurde
ein zeitkontinuierliches EDMD-Modell mit N =4 Observablenbetrachtet7 das
anhand simulativ erzeugter Messdaten aus dem Modell trainiert wurde. Mit
der Kostenfunktion

J= /Oo U (x(1)QW(x(t)) + Ru*(t)dt (4.12a)
0
mit @ = diag (5,1,1-107'%,1-107"%), R=1, (4.12Db)

die analog zu den Gleichungen [(6.16)H(6.17)| gewiahlt wurde, ergibt sich die Zustands-
riickfithrung

we=Fk (O —®(z) mit k eRXY. (4.13)
Mit den Fiihrungsgrofen w = W(x*) ergeben sich die Sollverldufe

U= Few, u'=f,w (4.14)
mit den Vorsteuerungsmatrizen
Fg=1Iy, f,=-b"K mit f, RV (4.15)

in Anlehnung an die Gleichungen und die studentische Arbeit [140].

Das resultierende Regelgesetz lautet

u=u"+ ue. (4.16)

In der [Abbildung 4.5 ist die resultierende Regelgiite des EDMD-basierten
Riccati-Reglers fiir eine beispielhafte Solltrajektorie mit einem Ausholwinkel von
1 = 120°, einer Ausholdauer von T, = T, = 1s und einer Schlaggeschwindigkeit von
|vs]| = 3ms™? dargestelltﬁ. Es ist zu erkennen, dass die Koopman-basierte linear-
quadratische (LQ-)Regelung eine deutlich hohere Regelgiite als die bisher verwen-
dete rein physikalisch motivierte LQ-Regelung mit Gain-Scheduling aufweist. Die
IAbbildung 4.5(b)| visualisiert die resultierende Regelgiite in Abhéngigkeit der frei
wihlbaren Parameter der Solltrajektorie, vgl. Es ist zu erkennen, dass
die EDMD-basierte LQ-Regelung die Regelungsaufgabe fiir alle wiahlbaren Werte
sehr gut erfiillt, jedoch in besonderem Mafle im Bereich kleiner Schlaggeschwindig-
keiten. Eine mogliche Erklarung hierfiir liegt darin, dass die nichtlinearen (Haft-)
Reibungseffekte sich vor allem bei kleinen Geschwindigkeiten stark auf die Dynamik
auswirken. Neben der hohen Regelgiite ist zusétzlich der stark verringerte Aufwand

3Diese Wahl der Parameter fithrt dazu, dass die nichtlinearen Anteile der Dynamik des Schlag-
mechanismus des Golfroboters hinreichend angeregt werden.
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4 Steuerungs- und Regelungsentwurf

bei der Modellbildung durch das hybride Vorgehen bei diesem Ansatz hervorzuhe-
ben.

EDMD-Modelle lassen sich geradlinig fiir den Entwurf von Riccati-Re-
gelungen verwenden. Durch die systematische Ausnutzung der Linea-
ritdtseigenschaft konnen somit stabile nichtlineare Regelungsgesetze
mithilfe eines linearen Entwurfsverfahrens bestimmt werden. Fiir einen
erfolgreichen Entwurf ist es entscheidend, dass die Kostenfunktion hierbei ge-
schickt gewahlt wird.

4.2 Modellpradiktive Regelung mittels des
Koopman-Operators

Modellpradiktive Regelungsansidtze (MPC) optimieren online anhand eines inter-
nen Streckenmodells den Ausgangsgroflenverlauf mittels des Stellgroflenverlaufs. Der
optimierte StellgroBenverlauf wird dann fiir die Regelung des betrachteten Systems
verwendet. Die grundlegende Idee der MPC ist in der[Abbildung 4.2|dargestellt. Aus-
gehend vom Zeitpunkt £ — 1 mit bekannter Stellgrofle w;_; variiert die Optimierung
den zukiinftigen Stellgroflenverlauf ws,; ab dem Zeitpunkt £ fiir eine endliche Zahl

1 =20,...,n. — 1 von Stellgroflenschritten so, dass eine vorgegebene Kostenfunktion,
beispielsweise
P 9 Nc )
J = Z HQ(yk+i - wk+i)” + TZ | wrri1ll, (4.17)
i=1 i=1

mit der positiv definiten Matrix @ € R?*? und dem Faktor r € R iiber n,, Zeitschritte
minimal wird. Die Werte n,,n, € N mit n, > n. werden als Prédiktions- bzw.
Stellhorizont bezeichnet. Fiir den Zeitbereich ¢ > n. werden alle Stellgrofien auf
Ukn.—1 gehalten, vgl. |[Abbildung 4.2l Nach der Optimierung wird nur der erste Wert
der StellgroBenfolge auf die reale Regelstrecke angewendet. Danach wird der Pra-
diktions- und Optimierungsprozess um einen Zeitschritt in die Zukunft verschoben,
was als gleitender Horizont bezeichnet wird [21].

Abhéngig vom verwendeten Streckenmodell gibt es unterschiedliche MPC-An-
sdtze. Lineare Streckenmodelle erlauben eine einfache Implementierung und Berech-
nung der MPC und ermdglichen — im Vergleich zu zeitinvarianten Regelungsanséatzen
— die Beriicksichtigung von Stell-, Ausgangs- oder Zustandsgréffenbeschrinkungen.
Nichtlineare Streckenmodelle hingegen erschweren die Losung des Optimierungspro-
blems. Dies resultiert aus der komplizierten Abhéngigkeit der Kostenfunktion J von
der Stellgrofenfolge uy;, was einen erhohten Rechenaufwand verursacht und dazu
fiihrt, dass die Auswertung der Kostenfunktion nicht konvex ist, vgl. [141]. Daher
werden nichtlineare MPC in der Praxis gewohnlich fiir eher langsame Systeme ver-
wendet [

Fir den MPC-Entwurf lassen sich auch datengetriebene Streckenmodelle, bei-
spielsweise DMD-Modelle [143], SINDy-Modelle |144] oder neuronale Netze [145]
verwenden. Auflerdem finden sich in der Literatur Ansétze fiir den direkten datenge-
triebenen Entwurf einer MPC, der unmittelbar auf Messdaten basiert, beispielsweise

4Beispielsweise fiir die Regelung eines Trinkwasserversorgungssystems [142].
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A
u7 y? w
Referenz wyyq

Vergangenheit «—— Zukunft

Pradiktion y11

Eingang w1

Eingang uy,
—_1 1 |

Messun Pradiktionshorizont n,
_W‘ Stellhorizont n. R

k k+ne k + ny Zeitschritt

Abbildung 4.2 Grundlegende Idee der modellpradiktiven Regelung. In Anlehnung an [21].

in [146].

Die Nutzung von Koopman-Operator-basierten Streckenmodellen fiir die MPC
erscheint vielversprechend, weil sie die Anwendung der Algorithmen der linearen
MPC fiir nichtlineare Streckendynamiken erméglichen. Im Folgenden wird die Be-
rechnung der Koopman-Operator-basierten MPC vorgestellt und die Anwendung
am Schlagmechanismus des Golfroboters demonstriert.

Berechnung der MPC basierend auf EDMD-Modellen

Die Autor*innen in [47] zeigen, dass EDMD-Modelle sich aufgrund der linearen
Struktur geradlinig fiir den Entwurf linearer modellpradiktiver Regelungen fiir nicht-
lineare Streckendynamiken nutzen lassen. In Anlehnung an die klassische lineare
MPC, vgl. [21], ldsst sich fur ein EDMD-Modell

\Il(a:kH) = Kt\Il(ka> + Bt’ulk, (418&)
y, = Czp = CPYy, (4.18b)

vgl. [Abschnitt 3.1} eine Vorschrift fiir den zeitlichen Verlauf der Observablen

V1 = KWy + Biug, (4.19a)

U, 0 =KW, + Bu,, = K9, + K,Bu;, + By, (4.19b)

Wi = K Wi+ By = KjW, + > K 7B (4.19¢)
j=1

und des Systemausgangs

Y1 = kaJrl = CP\IIk+1 = CPKt\I’k + CPBuk, (4.20&)
Yirs = Cpps = CPWy,, = CPK2x, + CPK By, + CPByug,,, (4.20b)
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Yy = Cxpsy = CPY; = CPKwy + Y  CPK| /By

bestimmen. In Matrix-Vektor-Form mit

=Sk
I

T
I

Cw
Up41 - _
. S RP C7 yk+1 -
_uk+nc—1
| CPK,
2
C-P‘Kt E Rq.npr’
CPK}"

[ CPB, 0
CPKtBt CPBt
CPK'B, CPK<’B,
CPK,/*B, CPK} 'B,
CPK*'B, CPK"’B,

ergibt sich

Yi+1
Yit2

yk+np

J=1

c RI™,

0
0

CPB;
CPK,B,

CPK* ™ B,]

Y1 = FO, + Huy,.

Die quadratische Kostenfunktion

c R‘T”p XPnc

J<ﬂk) = ('gk+1 - 'wk+1)T Q (@k+1 - 'wk-H) + ’U/;—Rﬂk

lasst sich mit dem Fehlerterm

zu

ep = FWy — W1 = Yy — Wri1 = € + Huy,

J(wy) = (ek + IEI'u,,g)T Q (ek + ﬁﬂk) + ay, R,

—u/ (H QH +Q)w. +2u[H Qey+e] Qe

umformen, wobei die Gewichtungsmatrizen Q € R?*? und R € RP*P zu

Q

Q

_ . q-npXqn
= . c R9"r P

Q

erweitert werden.
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Die Minimierung der Kostenfunktion

9J (uy)

Uy,

_9 (H QH + R) ay, + 2H Qe = 0, (4.27)

ergibt die Losung

w =~ (H' QH+R) H' Qe (4.28)
Eventuelle Stellgroffen- und Ausgangsgréfienbeschrankungen

amin <u S ﬂ'maxy Igmin S :I_J S Qmax (429>

konnen wihrend der numerischen Minimierung der Kostenfunktion beriick-
sichtigt werden. Fiir die Regelung wird jeweils nur der erste Wert

uy, = [1,,0,...,0] u (4.30)

als Stellgrofie verwendet. In der [Abbildung 4.3| wird die Struktur der EDMD-basier-
ten MPC veranschaulicht.

Optimierung ay, Yi

Wy Wit __ €
—, D > »  Strecke — 9>

- _ o~ N1 a
g ’El,k:—(HQH_'_R) HTQek
Yr+1
11 . | - g
Priidikt dell . i,
y ri lﬁ \Illo(?izsr?j- eﬁ[ﬁ — M Beobachter il
MPC Y1 = k B

Abbildung 4.3 Struktur der EDMD-basierten modellpradiktiven Regelung.

Das zu l6sende Optimierungsproblem ist konvex. Durch die Offline-Berechnung
der Matrizen F' und H ist der Rechenaufwand fiir die StellgréBenfolge bei der
EDMD-basierten MPC vergleichbar mit einer linearen MPC fiir das entsprechende
klassisch linearisierte Originalsystem [47]. In der Literatur finden sich vielféltige An-
wendungsfiille, beispielsweise die Regelung kiinstlicher pneumatischer Muskeln [147],
[148], [149], gekoppelter Pendelsysteme [150], Piezo-Aktoren zur Nano-Positionie-
rung [151], [152], [153]. AuBerdem wurde die Koopman-basierte MPC zur Stabi-
lisierung von Multicoptern [154], [155], [156] sowie im Bereich der Regelung von
Fahrzeugen [157], Schiffen [158] und Hochgeschwindigkeitsziigen [159] demonstriert.
Dariiber hinaus finden sich in der Literatur Anwendungen auf ein Viertanksystem
[160], Fracking von Erdol [161] sowie einen verfahrenstechnischen mikrobiellen Fer-
mentationsprozess [162]. Die Autor*innen in [163] erweitern den Ansatz auf partielle
Differentialgleichungen.

EDMD-Modelle lassen sich geradlinig fiir den Entwurf von modellpra-
diktiven Regelungen verwenden. Aufgrund der linearen Systemstruktur
von EDMD-Modellen ergibt sich ein konvexes Optimierungsproblem, dessen
Losung sich einfach implementieren ldsst und eine sehr hohe Regelungsgiite
liefert.
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4.3 Passivitatsbasierte Regelung mittels
datengetriebener PCHD-Modelle

Im Folgenden wird zunéchst die Idee der passivitdtsbasierten Regelung allgemein
beschrieben. Danach wird die Anwendbarkeit der im entwickelten hy-
briden PCHD-Modelle fiir einen solchen Regelungsentwurf vorgestellt und im Rah-
men einer Machbarkeitsstudie beispielhaft am Schlagmechanismus des Golfroboters
demonstriert.

Die passivitétsbasierte Regelung verfolgt das Ziel, die Passivitétseigenschaft einer
Strecke systematisch zu nutzen, um stabile Regelkreise zu erhalten. Das Konzept
wurde erstmalig in [164] eingefiithrt und folgend weiterentwickelt. Die Regelung mit-
tels IDA (Interconnection and Damping Assignment) [165], [166] verfolgt das Ziel,
fiir ein moglicherweise, aber nicht zwingend passives System

z = f(x)+ B(x)u, (4.31a)
y =c(x) (4.31b)

eine Regelung u(x) zu entwerfen, sodass der geschlossene Regelkreis die Dynamik
eines PCHD-Systems

i = (Ju(z) — Du(a)) (al) + Bz)wrcm. (4.320)

ox
an)T

Ypcup = B (2) (% (4.32b)

mit dem kollokierten Ausgangsvektor ypcpp und der Fiithrungsgrofie wpcnp aufweist
[21]. Die Matrizen J4(z) = —J](x) und D4(z) = Dj(x) = 0 sowie die positiv
semidefinite Funktion V3 : R® — R, die ein striktes lokales Minimum an der Stelle
der gewiinschten Ruhelage x* hat, charakterisieren die gewiinschte Dynamik des
Regelkreises.

Zur Bestimmung eines Regelgesetzes u(x) fir die Regelstrecke mit dem
Ziel, dass der Regelkreis die PCHD-Struktur aufweist, wird die Stellgrofle in
zwei Komponenten aufgeteilt w = u; + uo, wobei u; = wpcyp den Einfluss der
Fithrungsgréfien und wy, den Einfluss des stabilisierenden Reglers représentieren.
Das Gleichsetzen der Gleichungen [(4.31a)| und |(4.32a)| unter der Beriicksichtigung
von u = u, + us ergibt

B(a)us — (Ja(z) — Da(x)) (‘Z—Z) @), (4.33)

Zur Bestimmung der GroBen Vy(x), Jq, Dq ist die partielle Differentialgleichungﬂ

B (x) ((Jd<w> — Dy(x)) (%—Z) - f(w)> 0 (4.34)

®Die Matrix BJ‘(w) € R(=P)X7 igt eine Matrix mit dem Rang n — p, die fiir den jeweiligen
Anwendungsfall so konstruiert werden muss, dass B (x)B(z) = 0 gilt [21].
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4.3 Passivitdtsbasierte Regelung mittels datengetriebener PCHD-Modelle

zu erfiillen. Hierfiir gibt es unterschiedliche Ansétze [167]:

e Algebraischer Ansatz. Die Energiefunktion Vy(x) wird explizit vorgege-
ben. Anschliefiend wird |Gleichung (4.34)| als algebraische Gleichung in Jg4(x),
Dy(x) und B*(x) gelost.

e Nichtparametrischer Ansatz. J(x), D4(x) und B*(x) werden explizit
vorgegeben und Vg(x) iiber die partielle Differentialgleichung bestimmt.

e Parametrischer Ansatz. Ahnlich wie beim nichtparametrischen Ansatz wird
Va(z) tiber |Gleichung (4.34)| bestimmt. Allerdings erfolgt dies unter der Be-
schrankung, dass nur eine spezielle Klasse an Funktionen zugelassen ist. Zum
Beispiel kann es bei mechanischen Systemen wiinschenswert sein, die Summe
der potentiellen oder kinetischen Energie des betrachteten Systems vorzuge-
ben.

Zur Vereinfachung der Parametrierung wird in [168], [169] eine systematische Vor-
gehensweise durch Zuweisen einer lokal linearen Dynamik vorgeschlagen. Die Au-
tor*innen in [170] beschreiben hingegen, wie die Funktion Vg(x) zur Realisierung
einer gewiinschten Dynamik des geschlossenen Regelkreises mittels eines neuronalen
Netzes anstelle der Losung der partiellen Differentialgleichung approximiert werden
kann.

Nach erfolgter Bestimmung der Groflen Vy(x), Ja(x), Da(x) ist das Regelungsge-
setz gegeben durch [21]

w() = wpenp + (BT (2)B(z)) " B (z) <<Jd<a:> ~ Dy(e)) (Wd) ~ f(a)

ox
(4.35)
Das vorgestellte passivititsbasierte Entwurfsverfahren liefert Regler, die stabil und
robust gegeniiber Parameterunsicherheiten sind. In der [Abbildung 4.4]ist die grund-
legende Struktur des IDA-Regelungsansatzes dargestellt.

WpCHD = U1 U Strecke T
z = f(x) + Bu
U2
Regelungsgesetz

u; = (B (@)B(=)) " B'(2) ((Ja(@) - Da(@)) (32)" - f(=))

Abbildung 4.4 Die passivitatsbasierte Regelung mit IDA erzeugt einen passiven Regelkreis mit
guter Dampfung und einer stabilen Ruhelage.

4.3.1 Beispielhafte Anwendung

Im Folgenden wird demonstriert, wie sich datengetriebene PCHD-Modelle, vgl. [Ab
schnitt 3.4} fiir den Entwurf passivitéitsbasierter Regelungen verwenden lassen. Zur
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4 Steuerungs- und Regelungsentwurf

Veranschaulichung wird der Entwurf einer IDA-Regelung fiir den Schlagmechanis-
mus des Golfroboters, vgl. [Abbildung 6.1} beschrieben. Als Streckenmodell wird ein
datengetriebenes PCHD-Modell verwendet, das anhand simulativ erzeugter Mess-
daten aus dem Modell bestimmt wurde. Mit der Energiefunktion V' : R* — R

1
V(x) = §Jx§ + mga (1 — cos )

und dem Gradienten ¥ : R® — R"

ov\ " mga sin xy
v = (5) =

ergeben sich die Matrizen

g_[ 0o e _[o il ,_[ 0o ]_To
T 16935 0 | |—ji 0] 77T (26534 bl

D _ 4,318-10"° 0,014] _ [dy dy
== 0,014 4,610~ |dy ds|”

Fiir die Parametrierung des IDA-Reglers wird

(4.36)

(4.37)

(4.38a)

(4.38b)

(4.39)

festgelegt und anschlieflend der algebraische Ansatz mit den parametrierten Matri-

zen

0 k; ky k:d] N
Jy = i, Dg= |7 M pt=11,0
d [—kj o} d [kdz, ks [1.0]

verfolgt. Damit ergibt sich die Schliisselgleichung |(4.34) zu

b ((Jd—J+D—Dd) (g—Z)T> =0

bzw. zu
[1 O] [ dy — kg, ki —j1+dy — k:dQ} {mga sin xl] _ 0
’ —k‘j + 71 +dy — kdg ds — kd3 Jxo
N [1 0} (dy — kg, )mgasinzy + (kj — j1 + do — kay)J 2o _ 0
’ (—k’j —|-j1 + dg — k:dQ)mgasinml + (dg — kd3)J$2 e

Daraus folgt

kdlzdla
kj—j1+d2—kd2:0 = kj:jl—dg—i—de.
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4.3 Passivitdtsbasierte Regelung mittels datengetriebener PCHD-Modelle

Die Parameter k4, und kg4, konnen frei gewéhlt werden. Damit jedoch Dy > 0 erfiillt
ist, muss
k2
kg, > —22 (4.44)
dy
gelten. Beide Parameter lassen sich mittels der Gleichungen (6.17)| numerisch

optimieren zu

kg, = —0,1747,  kq, = 706,6345. (4.45)
Als stabilisierendes Regelungsgesetz ergibt sich mit [Gleichung (4.35)|
1
up = 3 (2 (dg — kq,) mgasinxy + (ds — kay) Jx2) . (4.46)
2

Fiir den Systemausgang gilt nach |Gleichung (4.32)|

v\ "'
YPCHD — bT (%) = bQJ{L‘Q (447)
und damit fiir die neue Fiithrungsgrofie
WpCHD — bgng, (448)

sodass sich schliellich das resultierende Regelungsgesetz

1
U =uy + uy = by Jwy + o (2 (dy — ka,) mgasinzy + (ds — kgy) Jxa) (4.49)
2

ergibt. Die [Abbildung 4.5(a)| zeigt die simulierte resultierende Regelgiite der pas-
sivitidtsbasierten Regelungsansatzes, die mittels |Gleichung (6.16)R(6.17)| berechnet
wurde, im Vergleich zur bisher verwendeten LQ-Regelung mit Gain-Scheduling. Es
ist zu erkennen, dass der passivitidtsbasierte Ansatz mit dem hybriden PCHD-Modell
stark iiberlegen ist. Dariiber hinaus visualisiert die [Abbildung 4.5(c)| die Regelgiite
in Abhéngigkeit der frei wihlbaren Parameter der Solltrajektorie, vgl. [Tabelle 6.1}
Der passivitdatsbasierte Ansatz mit dem hybriden PCHD-Modell erweist sich als
iiberlegen gegeniiber der bisher verwendeten LQ-Regelung mit Gain-Scheduling fiir
alle wahlbaren Werte, wobei der Aufwand bei der Modellbildung stark reduziert ist.
Die Methode, ein PCHD-Modell datengetrieben zu bestimmen und systematisch fiir
den Entwurf einer passivitiatsbasierten Regelung zu verwenden, wurde erstmals in
den Beitrédgen [16] und [123] entwickelt und validiert.

Datengetriebene PCHD-Modelle lassen sich systematisch fiir den passi-
vitdtsbasierten Regelungsentwurf nutzen. Basierend auf dem iiberaus
niitzlichen Konzept der Passivitit lassen sich robuste global stabile Re-
gelkreise mit gewiinschten dynamischen Eigenschaften entwerfen. Die
resultierende Regelungsgiite war fiir das betrachtete Beispiel zwar geringfiigig
schlechter als die der EDMD-basierten Ansétze, das Modell bietet dafiir je-
doch eine sehr hohe physikalische Interpretierbarkeit.
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— Sollverlauf  --- LQR mit Gain-Scheduling - - - Koopman-LQR
--= Lineare MPC - - - Koopman-MPC

- - - Passivitatsbasierte Regelung
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(a) Resultierende simulierte Regelgiite der unterschiedlichen Regelungsansitze.
’Lineare MPC
‘Koopman—LQR ’LQR mit Gain-Scheduling
Koopman—MPC ® Passivitatsbasierte Regelung
2 —
~1- ~1
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(b) Analyse der Koopman-basierten Regelungen. (c) Analyse der passivititsbasierten Regelung.
Abbildung 4.5 Simulationsbasierte Analyse der unterschiedlichen in diesem Kapitel beschrie-
benen Regelungsansdtze im Vergleich zur bisher verwendeten Riccati-Regelung mit Gain-
Scheduling. In den Abbildungen {4.5(b) und [4.5(c)| ist die mittlere resultierende Regelgiite

J jeweils in Abhdngigkeit der frei wihlbaren Parameter ¢, (Ausholwinkel) und ||vg|| (Schlag-

geschwindigkeit) dargestellt.
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4.4 Entwurfsmethoden im Kontext der
GauB-Prozess-Regression

In diesem Abschnitt werden regelungstechnische Entwurfsmethoden im Kontext der
GauB-Prozess-Regression (siehe auch vorgestellt. Ebenso wie bei der
hybriden Modellierung ist hierbei eine wesentliche Charakteristik die Einbindung
der Wahrscheinlichkeitstheorie. Die Vorteile eines probabilistischen Ansatzes fiir den
Steuerungs- und Regelungsentwurf sind vielfiltig. Insbesondere vor dem Hintergrund
der Inbetriebnahme lassen sich zwei wesentliche Vorteile nennen. Zum einen findet
die Inbetriebnahme in Anlehnung an das V-Modell nach [171] iterativ statt und hat
als Ziel, ein sicheres und funktionsfiahiges System zu gewéhrleisten. Diese Iteratio-
nen sind mit einem Lernvorgang beim Reinforcement Learning vergleichbar, wobei
das sogenannte Exploitation-Exploration-Dilemma [9] adressiert werden muss. In
jeder Iteration muss dabei ein Kompromiss gefunden werden, bei welchem bspw.
der Regler erprobt wird, welcher sowohl am erfolgversprechendsten (Exploitation)
ist, als auch neue Erkenntnisse iiber das Systemverhalten (Exploration) liefert, siche
auch RL in [Abschnitt 2.2 In diesem Sinne ist die Einbringung der Wahrschein-
lichkeitstheorie besonders sinnvoll, da iiber sie eine zuséatzliche Informationsquelle
iiber die Unsicherheit zugénglich wird, welche zur Adressierung des Exploitation-
Exploration-Dilemma dient. In [126] werden bspw. ein deterministischer und pro-
babilistischer Lernvorgang gegeniibergestellt und gezeigt, dass der wahrscheinlich-
keitsbasierte Ansatz essentiell notwendig fiir die Erfiillung der Aufgabe ist. Ein wei-
terer Vorteil bei der Inbetriebnahme ist, dass qualitativ hochwertigere Aussagen
iiber das teilweise unbekannte Systemverhalten getroffen werden kénnen. Diese be-
treffen zum einen unerwiinschte Systemiiberschreitungen, welche durch technische
Beschrinkungen vorgegeben werden und zum anderen sicherheitskritische Instabi-
litdten, welche durch einen falsch ausgelegten Regler hervorgerufen werden koénnen.
Vor diesem Hintergrund liefert die Wahrscheinlichkeitstheorie ein qualitatives Maf,
um die Unsicherheit {iber das reale System bzw. den Priifstand geeignet zu be-
schreiben. Auf Basis dieser Informationsquelle ldsst sich das Systemverhalten besser
einschitzen und somit geeignete Sicherheitsmafinahmen vornehmen.

4.4.1 Hybride Optimalsteuerung dynamischer Systeme

Auf der Grundlage des hybriden Modells f(mk, Sk, ug) = [Myi1, Ski1] aus
ichung (3.130)| wird in diesem Abschnitt ein hybrides Optimalsteuerungsverfahren
entwickelt, welches fiir die iterative Inbetriebnahme eingesetzt wird. Eine typische
Zielgrofle bzw. Giitefunktion, die in der Regelungstechnik und im Zusammenhang
mit einer Optimalsteuerung oft verwendet wird, ist wie folgt definiert

J(0) = At " wy(k) (), — za) Wa(m, — 26) + uf W (4.50)
k=0

Diese Zielfunktion enthélt sowohl einen Term fiir die Distanz zum jeweiligen Ziel-
zustand (x, — xg) als auch mit u;fWuuk einen Term fiir den verbrauchten Ener-
gieaufwand. W, > 0 und W, = 0 sind Gewichtungsmatrizen. w(k) € [0, 1] steigt
monoton an und gibt somit ein hoheres Gewicht fiir Abweichungen, die in einem
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spateren Verlauf der Trajektorie auftreten. Der Optimierungsvektor 8 wird im wei-
teren Verlauf dieses Abschnitts definiert. Da der Zustand des hybriden Modells als
normalverteilt angenommen wird, d. h. @ ~ N(my, Si) gilt, ist der Erwartungs-
wert als tatsédchliche Zielgrofle zu verwenden. Die analytische Losung der erwartba-
ren Giitefunktion lautet

E,, [J(0)] =At Y wi(k) ((Z SS“’W&“) + (my, — 26) W (my — )
k=0 =1

Neben der Giitefunktion gilt es, die technischen Rahmenbedingungen im hybri-
den Optimalsteuerungsproblem zu adressieren. Steuerungsbeschréankungen aufgrund
von limitierter Aktorik koénnen auf herkommliche Weise durch v, < Ui < U
beriicksichtigt werden. Zustandsbeschrankungen kénnen durch den Erwartungswert
eingebunden werden, z. B. iber x,,;, < my < ez, Was jedoch aufgrund der Ver-
nachlédssigung der Varianz nicht besonders zuverlissig wére. Daher wird ein wahr-
scheinlichkeitsbasierter Ansatz verfolgt, der in Hinblick auf die Inbetriebnahme ge-
eigneter ist. Die Wahrscheinlichkeit, die Zustandsbeschriankungen unter der konser-
vativen Annahme, dass die Dimensionen unabhéngig sind, zu erfiillen, wird durch

max

(%) (%) (%) (%)
— P Tmaz —My —® Lrin My > P
II /(i) [g(0:0) -
i=1 Sk Sk

ausgedriickt, wobei ®(-) die Verteilungsfunktion der Standardnormalverteilung ist
und P, € (0, 1] ein vordefinierter Wahrscheinlichkeitsgrenzwert ist. Die Zustands-
beschrinkungen sind in der Regel mit sicherheitskritischen Aspekten verbunden.
Aus diesem Grund sollte der Wert von P, relativ grof§ gew#hlt werden, damit die
Zustandsbeschrinkungen konservativ eingehalten werden.

P(.’,Cmm <z < wmm) ~ H P(xg)m < l’](;) < I(Z) )
- (4.52)

An dieser Stelle wird das vollstdndige hybride Optimalsteuerungsproblem, mit
welchem die Inbetriebnahme durchgefiihrt wird, definiert

minE,,[/(0)] uBy. h(6)=0, g(6)<0,

[karlaSkJrl]:f(mk?Skvuk)? kIOw"aH_la
h’(e): my —my, SO_SD

(4.53)
mpg — g,
Pz_PwminkaSwmaxa
g(0) = ( )
U — Umaz; Umin — Uk, k:Ow'wHa

mit einer initialen Zustandsverteilung x; ~ N (my, S;) und H der Gesamtanzahl
der betrachteten diskreten Punkte. Ahnlich dem Ansatz des Multiple Shooting [172]
fiir deterministische dynamische Modelle erzwingen die Gleichheitsbeschrénkungen
h(0), dass die probabilistischen Dynamikgleichungen des hybriden Modells |(3.130)
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uz U
Vorsteuerung O Systemdynamik
uj,
Regler
mk —_ I
Soll-Trajektorie é

Soll-Ist-Vergleich

Abbildung 4.6 Zwei-Freiheitsgrade Regelungsstruktur

fiir alle diskreten Zeitschritte erfiillt sind. Dies erfordert, dass die propagierten
Momente f,,(my, Si) bei gegebener Steuerung u; mit den néchsten Momenten
(Myy1, Sky1) ibereinstimmen. Der Optimierungsvektor setzt sich damit aus den
folgenden Groflen zusammen:

0 = m, iép, ul, ... ,mk, iz, ul]’ € R(%"%%"”"“) (H+1), (4.54)
wobei die Cholesky-Zerlegung mit
S, = L,L}, L, = nonzeros(Ly), (4.55)

verwendet wird. Die Funktion nonzeros(-) bildet dabei die Elemente der unteren
Dreiecksmatrix von Ly auf einen Spaltenvektor L j € R3("2+72) ab. Die Formulie-
rung iiber die Cholesky-Zerlegung erzwingt implizit eine weitere Nebenbedingung,
bei der Symmetrie und positive Definitheit der Matrizen der Zustandsvarianzen er-
zwungen werden. Um das hybride Optimalsteuerungsproblem zu lésen, kann bspw.
das SQP-Verfahren |173| eingesetzt werden. Die Losung liefert dann eine probabi-
listische (Soll-)Trajektorie {mj, S} } und den zugehorigen Stellgrofenverlauf {w}}
mit £k = 0,..., H. Zur Kompensation von etwaigen Storungen wird zusatzlich ei-
ne Regelung benotigt. Hierzu wird die Zwei-Freiheitsgrade Regelungsstruktur [24]
verwendet, welche sich aus einem Steuerungs- und Regelungsanteil zusammensetzt
(siehe [Abbildung 4.6|). Die Regelung erfolgt auf die Trajektorie, welche am wahr-
scheinlichsten erscheint, also den Verlauf des Zustandserwartungsvektors {m;} mit
k= 0,...,H. Der Steuerungsanteil ist u; und der Regelungsanteil uj, wird durch
einen zeitvarianten Riccati-Regler [174] realisiert. Die gesamte Stellgrofie lautet so-
mit w, = uj, + uj und beinhaltet das Regelgesetz

uj () = Ki(mj — xy), (4.56)
wobei sich die Verstarkungsmatrix K fiir jeden Zeitschritt nach
K, = (W,+ B, P,B,) 'B] P, Ay, (4.57)

ergibt. Hierin stellt Pj, € R"**™ die Riccati-Matrix dar, welche mittels zeitlicher
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Riickwértsintegration der riccatischen Differentialgleichung bestimmt wird. In einer
bereits diskretisierten Form lautet der Zusammenhang

Py =W,+ A Py Ay, — AL Py (B(W, + B P;11By;) ' B, Pj11) A,
(4.58)

k=H—1,...,0, wobei sich die Anfangs- bzw. Endbedingung Py aus der Losung
der statischen Riccatigleichung ergibt. Des Weiteren sind A, € R"™*™ und B, €
R"=*™ die Dynamik- und Eingangsmatrix, welche sich aus einer Linearisierung des
hybriden Modells ergeben. Aufgrund der gewéhlten additiven Zusammensetzung des
hybriden Modells lassen sich die entsprechen Ableitungen des physikalischen

und datengetriebenen Modellteils separat voneinander bilden iiber

_of| osm o onm

- . B, = .
&ck mk:mz, 8wk azk:m,’;, auk ﬂik:m27 auk $k=m27
Up=uj, up=u;, up=uj, up=uj,

Ay

(4.59)

Da die Stellgrofle nun iiber das Regelgesetz direkt von der Zustandsgrofle abhéngt,
muss diese ebenso als Zufallsvariable aufgefasst werden. Da es sich bei dem Regelge-
setz um eine lineare Beziehung handelt, kann die Wahrscheinlichkeitsverteilung der
Stellgrofle direkt iiber den Zusammenhang

Uy, ~ N(muka Suk>7
m,, =uj + Ki(m; —m,,), (4.60)
S.. = K;.S, K},

angegeben werden. Die probabilistische Stellgrofle wirkt sich iiber die Systemdy-
namik auf den probabilistischen ZustandsgrofSenverlauf aus, welcher mit Hilfe der
besprochenen UT (siehe [Unterabschnitt 3.5.2) berechnet werden kann. Vor diesem
Hintergrund ist es sinnvoll den offenen und geschlossenen Regelkreis formal zu kenn-
zeichnen. Die Pradiktion des offenen Regelkreises ergibt sich aus der Losung des hy-
briden Optimalsteuerungsproblems und lautet {m;, S;} fiir {u;} mit k =0,..., H.
Die Pradiktion des geschlossenen Regelkreises lautet {my, Syx} fiir u, = uj +

Der Algorithmus der hybriden Optimalsteuerung, welcher zur Inbetriebnahme bei
partieller Systemkenntnis eingesetzt wird, ist im [Algorithmus 1| zusammengefasst.
Aus einer iibergeordneten Perspektive verwendet die Methodik einen konventionellen
Trial-and-Error-Ansatz. Der Prozess beginnt mit der Losung des Optimalsteuerungs-
problems, das ausschliefSlich auf dem etablierten physikalischen Modell basiert. An-
schliefend wird die aktuelle optimale Steuersequenz auf das reale System angewendet
und dabei Zustandsdaten aufgezeichnet und gesammelt (Zeile 1). Nachfolgend wird
eine Zwei-Schritt-Schleife ausgefiihrt (Zeilen 2-10 und 4-6). Die duflere Schleife be-
ginnt mit dem Erlernen der Modellfehler im Zusammenhang mit dem physikalischen
Modellteil unter Verwendung der Gauf-Prozess-Regression und aller verfiigharen
Daten (Zeile 3). Danach wird die innere Schleife ausgelost und das hybride Opti-
malsteuerungsproblem basierend auf dem hybriden Modell bis zur Konvergenz gelost
(Zeilen 4-6). Dies beinhaltet die wiederholte Berechnung der Ableitungen, wofiir die
automatische Differenzierung genutzt werden kann, sowie die Aktualisierung der
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Algorithmus 1 Hybride Optimalsteuerung

1: Initialisierung: Berechne Optimalsteuerung {u}}# , auf Basis des physika-
lischen Modells f und teste sie am realen System, wobei initiale Messdaten
gesammelt werden.

2: Wiederhole bis ein Konvergenzkriterium oder ein Iterationsbudget erreicht ist:

3:  Lerne Modellfehler iiber GPs auf Basis der vorhandenen Daten|(3.114)|

4:  Wiederhole die nachfolgenden Schritte im Rahmen einer SQP-Optimierung

5 Berechne den Gradienten VE[J(0)] und die Jacobimatrizen der

Nebenbedingungen Vh(0), Vg(0) > Automatische Differenzierung

Aktualisiere den Optimierungsvektor 8 und die zugehorigen

Lagrange-Multiplikatoren (X, w).

7. Erhalte Optimalsteuerung und Pradiktion (offener Regelkreis)

{ml:’ Z’ uz}kH:O'
8:  Berechne zeitvarianten Riccati-Regler { K}, nach [Gleichung (4.57)] [(4.58)]
und
Pridiktion fiir den geschlossenen Regelkreis {my x, S, L.
9: Falls S\ <SGk k=0,...,Hi=1,...,n, dann > Uberpriife Stabilitit
setze uy, + uj + Ki(mj — xy),
sonst
setze uy < uj.

10:  Erprobe uj am realen System und nehme weitere Messdaten auf, die den

bestehenden Daten hinzugefiigt werden.

2

Optimierungsvariablen und vorhandener Lagrange-Multiplikatoren. In den Zeilen
7 und 8 wird der offene und geschlossene Regelkreis mittel UT berechnet, wobei
der zeitvariante Riccati-Regler durch die angesprochene Linearisierung des hybriden
Modells aufgestellt wird. AnschlieBend erfolgt eine Uberpriifung der Stabilitéit, wo-
bei die Zustandsvarianz S, mit einem vordefinierten Grenzwert S,,,, verglichen
wird. Ist die Stabilitdt des geschlossenen Regelkreises dadurch gewihrleistet, wird
der Regler am realen System eingesetzt. Ist sie nicht gegeben, wird lediglich die Op-
timalsteuerung verwendet. Bei der Erprobung (Zeile 10) werden weitere Messdaten
gesammelt und in jeder Iteration den bestehenden Messdaten hinzugefiigt. Der sich
abwechselnde Lern-, Verbesserungs- und Interaktionszyklus wird wiederholt, bis die
Inbetriebnahme erfolgreich abgeschlossen ist.

Anwendung auf ein reales Doppelpendel auf einem Wagen Weiterfithrend wird
nun |[Algorithmus 1] fiir ein Doppelpendel auf einem Wagen beispielhaft eingesetzt.
IAbbildung 4.7 zeigt hierzu den Priifstand und die zugehorige Prinzipskizze auf deren
Basis eine physikalische Modellbildung durchgefiihrt wird. Die vollstédndigen Bewe-
gungsgleichungen in einer partiell zustandslinearisierten Form [116], welche durch
den Lagrange-Formalismus aufgestellt werden kénnen, lauten

Mi(p)p = F (¢) = Clp, ¢) — G(p) — Ma(p)u,

§=u,

(4.61)
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Abbildung 4.7 Doppelpendel auf einem Wagen: Priifstand (links) und zugehérige Prinzipskizze
(rechts) mit relevanten ZustandsgroBen und mechanischen Parametern.

mit Winkelvektor ¢ = [p1, ¢2]7 und den klassischen mechanischen Systemmatrizen

M [ J1+a?my + BPmy aglyma cos (o1 — @)
! | azlimg cos (p1 — @2) Jo + azmy ’

M, = (lymg + aymy) cos(gpl)] ’
asms cos(ps)

da(po — 1) — di1pr
F — ' ] , 4.62
do (1 — ¥2) (4.62)
C— _a2l1m2 sin (S01 - 902)9‘522
| aslimy sin(p; — w2)p12 |’
G— [—g(aimy + lymy) sin(epy)
I —gasmea sin(ys) ’
Fiir das betrachtete Lernszenario wird das nichtlineare Zustandsraummodell
Pr
. Sk
Ty, up) = xp + At _ ) , 4.63
f@n ) =@+ A |\ (o) N F (@) - Glpr) - Malpou) | 0
Ug

mit & = [p1, P2, 8, 91, P2, )7 als Zustandsvektor, als bekannt vorausgesetzt. Beim
Vergleich mit (Gleichung (4.62)|f&llt auf, dass die relevanten Zentrifugalkréfte fehlen,
womit diese als unbekannte Modellfehler iiber

0

Azp1 (P ) = | —AtMi () T Clpr, P1) P | (4.64)
0

definiert werden. Die Aufgabe besteht darin, die Pendelarme aus der unteren in die
obere Position durch eine geeignete Bewegung des Wagens zu bringen. Ohne die
Kenntnis der Zentrifugalkrifte ist die Inbetriebnahme und die Losung der Aufgabe
nicht moéglich, wodurch der Einsatz der hybriden Optimalsteuerung motiviert wird.
Da in |Gleichung (4.64)| einige Elemente 0 entsprechen, ist eine Korrektur durch den
datengetriebenen GP-Teil nicht notwendig. Entsprechend der Uberlegungen in
lterabschnitt 3.5.2{wird eine Kopplungsmatrix B = [02*3) 12*?) 02*D]T eingefiihrt,
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Zeit t [s] Zeit t [s] Zeit t [s]

Abbildung 4.8 Ergebnisse der 3. Lerniteration der hybriden Optimalsteuerung am Doppel-
pendel auf einem Wagen. Die Pradiktion (u + 20) des offenen Regelkreises ist in Blau, die
des geschlossenen in Tiirkis und die Messung in Rot dargestellt. Die graue Flache stellt die
Pradiktion des Modellfehlers fiir die aktuelle Messung dar.

welche dafiir sorgt, dass nur ein Teil der Zustandsraumgleichungen korrigiert werden
muss. Der hybride Modellansatz lautet somit

A

i1 = flxp, ug) + BA‘P}:H(S%; Pr)- (4.65)

Das betrachtete Szenario beinhaltet eine zeitliche Diskretisierung von At = 0.01 s
mit einer fest vorgegebenen Aufschwungzeit von T' = 2 s. Das System startet aus dem
Anfangszustand m; = [—m, —7,0]7, S; = 10731 und soll zum Zielzustand zg = 0
iiberfithrt werden. Um die technischen Rahmenbedingungen mit einem ausreichend
groflen Sicherheitsabstand zu adressieren, werden die Nebenbedingungen mit
m
2

s/ <05m, |3|<3 ? lu| = |3 < 50 und P, = 95% (4.66)

beriicksichtigt. Die Gewichtungen des Optimalsteuerungsproblems |(4.53)| haben die
Werte

625Atk’ -1

W, = diag(100,100,250,0), W, =1, w(k)= (4.67)

e25HE _ '

[Abbildung 4.8| zeigt die zeitlichen Verldufe der 3. Lerniteration am Doppelpendel-
priifstand. Die Unsicherheit iiber das Systemverhalten bei Verwendung der opti-
malen Steuerung (blau) steigt erwartungsgemafl mit zunehmender Zeit an. Gut er-
kennbar ist, dass die Hinzunahme des Reglers (tiirkis) zu einem instabilen Verhalten
fithrt. Die Instabilitét tritt bei etwa 1.6s auf, wobei an dieser Stelle die Winkelge-
schwindigkeiten ihren maximalen Wert annehmen und sich die fehlenden Zentrifugal-
kréfte besonders stark bemerkbar machen. Aus dieser Perspektive betrachtet, ist die
Instabilitit daher nachvollziehbar und plausibel. Hier sei darauf hingewiesen, dass
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Abbildung 4.9 Ergebnisse der 5. bzw. letzten Lerniteration der hybriden Optimalsteuerung
am Doppelpendel auf einem Wagen. Die Pradiktion (i + 20) des offenen Regelkreises ist in
Blau, die des geschlossenen in Tiirkis und die Messung in Rot dargestellt. Die graue Flache
stellt die Pradiktion des Modellfehlers fiir die aktuelle Messung dar.

der Riccati-Regler aufgrund seiner Herleitung bzgl. des hybriden Modells entlang
der Trajektorie theoretisch stabil sein sollte. Bei einem herkémmlichen deterministi-
schen Entwurf wiirde der/die Regelungstechniker*in also félschlicherweise von einem
stabilen Systemverhalten ausgehen. Die probabilistische berechnete Instabilitét kann
daher nur das Resultat eines nicht vollstdndig bekannten realen Systems sein und
ist fir den/die Entwurfsingenieur*in ein wichtiges Hilfsmittel, um das Verhalten
am Priifstand vor dem Experiment besser einschéitzen zu kénnen. Entsprechend der
Stabilitatspriifung in [Algorithmus 1| wird am Priifstand lediglich die Steuerung ver-
wendet und der rote Verlauf gemessen. Anhand der Diagramme zum Modellfehler
wird ersichtlich, dass der datengetriebene GP-Modellteil noch nicht in der Lage ist
eine vollstdndige Korrektur vorzunehmen. Weitere Messdaten sind notwendig, um
die hohe Unsicherheit weiter zu verringern, sodass eine weitere Iteration gestartet
wird. Zwei weitere Iterationen sind erforderlich, bevor der Aufschwung der Pendel-
arme und die Stabilisierung am Priifstand realisiert werden koénnen. [Abbildung 4.9
zeigt das finale Ergebnis: Die Préadiktion des geschlossenen Regelkreises weist nur
eine sehr geringe Unsicherheit auf, welche insbesondere fiir die Winkelverldufe nicht
sichtbar ist. Der/Die Regelungstechniker*in kann somit gewéhrleisten, dass die Re-
gelung am Priifstand stabil funktionieren wird und sich das System entsprechend der
Vorhersage verhalten wird. Die Messungen bestétigen dieses Verhalten, wobei die ge-
forderten Rahmenbedingungen (schwarze gestrichelte Linien) fiir die Stellgrofie und
die Zustandsgroflen bzgl. des Wagens eingehalten werden. Anhand der Diagramme
der Modellfehler wird zudem ersichtlich, dass das GP-Modell die vorab unbekannten
Zentrifugalkréafte mit einer hohen Giite wiedergeben kann und die Korrektur somit
zuverlissig funktioniert. Eine ausfiihrliche Darstellung dieser Arbeiten kann in [1§],

[175], [176] gefunden werden.
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Die hybride Optimalsteuerung bietet ein vielversprechendes Verfahren fiir
die Trajektorien-Planung und -Realisierung von Systemen, die nur teilweise
in Form von unvollstindigen Modellen bekannt sind und damit Fehler
enthalten. Ein wesentlicher Vorteil dieses Ansatzes besteht darin, dass Unsi-
cherheiten iiber die vorhandenen Systemfehler explizit in die Planungsphase
einbezogen werden. Dadurch wird nicht nur die Genauigkeit der Steuerung
erhoht, sondern auch die Sicherheit bei der praktischen Erprobung des Ge-
samtsystems verbessert. Trotz dieser Vorteile ist jedoch zu beachten, dass die
hybride Optimalsteuerung insgesamt mit einem héheren Rechenaufwand
verbunden ist. Die umfassende Beriicksichtigung der Unsicherheiten sowie die
komplexen Berechnungen erfordern mehr Rechenressourcen und Zeit im Ver-
gleich zu einfacheren Steuerungsverfahren.

4.4.2 Hybride Zustandslinearisierung fiir eingangs-affine Systeme

Der Regelungsentwurf nach dem Verfahren der Zustandslinearisierung ist ein géangi-
ger regelungstechnischer Ansatz, welcher nur unter besonderen Voraussetzungen an-
gewendet werden kann [21]. Die Methode zielt darauf ab, ein nichtlineares System
durch eine geeignete Wahl der Stellgrofie als ein lineares System zu behandeln. Hier-
bei werden die vorhandenen Nichtlinearitdten im Idealfall vollstdndig kompensiert.
Eine Linearisierung durch eine Taylorreihenentwicklung findet dabei nicht statt,
sodass das System im gesamten Zustandsraum als linear betrachtet werden darf.
Dies hat den groflen Vorteil, dass die Methoden der linearen Regelungstechnik zum
Entwurf und zur Analyse angewendet werden diirfen und entsprechend ein linearer
Zustandsregler zur Stabilisierung und Sollwertfolge ausreichend ist und vergleichs-
weise einfach bestimmt werden kann. Damit die Methodik anwendbar ist, muss die
Voraussetzung gelten, dass es sich um ein eingangsaffines System handelt, d.h. es
gilt

z = a(x) + B(x)u. (4.68)

Um die Kompensation der Nichtlinearitdten zu erreichen, ist die passende Wahl
der Stellgrofle am realen System erforderlich. Die Stellgrofle héngt hierbei von be-
stimmten Modelltermen ab, welche die Nichtlinearitdten des realen Systems genau
genug wiedergeben miissen. Entsprechend der Grundidee, werden die Terme iiber
die Stellgrofle dem realen System so aufgeschaltet, sodass sie invers zur realen Sys-
temdynamik wirken und sich bei einer gesamtheitlichen Betrachtung mdéglichst ideal
kompensieren. Ein mdoglicher Regelungsansatz lautet dann

A

u.(z) = B(z) H(—&(z) + K(w — x)), (4.69)

wobei & und 3 die modellbasierten Schétzungen der Nichtlinearitdten sind und ein
Ansatz fiir einen P-Regler verwendet wird. Weist das Modell dahingehend Unge-
nauigkeiten auf, so wirken sich diese iiber das aufgestellte Regelgesetz direkt auf die
Regelgiite aus. Unter Umstédnden werden durch das ungenaue Modell zusétzliche un-
erwiinschte Nichtlinearitéiten eingebracht, welche negative Effekte, wie Grenzzyklen
oder Instabilitdten, nach sich ziehen kénnen. Das Ziel des hier vorgestellten Ansat-

99



4 Steuerungs- und Regelungsentwurf

zes ist, eine hybride Zustandslinearisierung zu entwickeln, welche die angesproche-
nen Ungenauigkeiten auf der Basis von Messdaten und der Gau-Prozess-Regression
korrigiert. In diesem Szenario ist ein teilweise unvollstédndiges physikalisches Modell
zuldssig, auf dessen Grundlage eine ideale Kompensation der Zustandslinearisierung
nicht funktioniert.

Um das Grundprinzip nachvollziehen zu konnen, ist die Betrachtung einer Dif-
ferentialgleichung ¢ € {1,...,n,} des Gesamtsystems aus |Gleichung (4.68)| ausrei-
chend:

& = By(x)ur + ... + Bu, (T)Un, + ). (4.70)

Zur besseren Ubersicht wurde dabei der Index i weggelassen. Den Ausgangspunkt
des Verfahrens bilden die ng aufgenommenen Datenpaare (&, x, u), welche mit dem
standardméBigen Ansatz fiir das Messrauschen €, ~ N (0, 02) additiv verfilscht sind
und in den nachfolgenden Matrizen und dem Ausgangsdatenvektor zusammengefasst
werden:

X = [m(l)’ L. ’m(nd)] € anxnd7
U] = diag(u§1)7 ttt 7u§nd)) E Rndxnd’ j = 17 tet ’nu7 (4'71)
X =gV, grd]’ e R,

Die gesuchten Funktionen werden als Zufallsvariablen, die jeweils von einem GP
stammen, definiert

a(x) ~ GP(mo(), ka(z, '),

Bj(x) ~ gp(mgj(m), kﬂj (x,2)), j=1,...,n,, (4.72)

Ein moglicherweise vorhandenes Vorwissen kann hierbei iiber die Mittelwertfunk-
tionen mq () und mg, () beriicksichtigt werden. Fiir die Kovarianzfunktionen wird
standardmifig der SE-Kernel angesetzt. Es wird nun ein Zustand x* eingefiihrt,
an welchem die Funktionen ausgewertet werden sollen. Zusammen mit den Aus-
gangsdaten, léasst sich durch die Definition als GPs fiir die Prior-Verteilung folgern,
dass

- Oz(CL‘*) . B ma(m*) T -k; 0 0 kg -
Bi(x*) mg, (x*) 0 kp 0 e k, U
: ~ N : | : : (4.73)
Bn () mg, ()| |0 0 - k5o kg UL
X | mx | ko Uikg -+ Uyks, Ky |

gﬂt, mit kzk) (CII*) = /{Z(.)(ZB*, a:*), k:(.)(a:*) = [/{Z(.)(ZB*, sc(l)), ey k(.)(w*, a:(”d))]T € R™
und wobei die grundlegenden Regeln zur Addition und Produktbildung von GPs
angewendet wurden [177]. Dadurch ergeben sich insbesondere fiir die Ausgangsdaten
der Erwartungsvektor und die Kovarianzmatrix zu

my =my(X)+Umg (X)+...+U,mg, (X), und

- . . , (4.74)
Ki=K,+U'KyU, +.. +U" KyU,, +3°1,,
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mit m(.)(X) = [m(.)(:c(l)),...,m(.)(a:(”d))]T € R™ und K(.) € R™>™ mit den
Elementen K((.i)’j) = k(xW,x9),i,j = 1,...,n4. Auf der Grundlage der Prior-
Verteilung werden die bedingten bzw. Posterior-Verteilungen nach
(@) | X ~ N(pala"),0h(z")),
fa(@") = ma(@") + kg (") K (X —my),
oa(@") = ki(a) — kg (") K ko),

(4.75)
Bi(a") | X ~ N(ug, ("), 05, (x), j=1,...,n,
pg, (&) = mg, (@) + kf (@)U K X —my),
o5, (") = ki, (x") — kg (") U] K ['U kg, (x*)

bestimmt. Es liegt somit eine probabilistische Schiatzung in Form einer eindimensio-
nalen Normalverteilung fiir jede der gesuchten Funktionen der Zustandslinearisie-
rung vor, wobei die angesetzten Prior-Mittelwertfunktionen mit einbezogen werden
und geeignet korrigiert werden. Die beschriebene Methode wird fiir alle n, Differen-
tialgleichungen gleichermaflen durchgefiihrt, sodass eine Zusammenfiithrung
aller Posterior-Mittelwerte kurz iiber

Hay (m> :uﬁl,l(m) o HB1 o, (CIZ)
w@ = | o | eRe p@=| i o | ereen

e () o (@) o g (@) (4.76)

beschrieben wird. Diese Grofien stellen auf der Basis des Vorwissens und der Da-
tenlage die beste Schéitzung fiir die gesuchten Funktionen dar. Aus diesem Grund
wird hinsichtlich der Anwendung am realen System das Regelungsgesetz iiber diese
Schétzungen mit

uc(@) = ps(x) " (—po () + K(w — 2)) (4.77)
definiert, sodass zu jedem Zeitpunkt eine eindeutige Stellgrofie bekannt ist.

Als Néchstes wird das beschriebene Entwurfsverfahren an dem bereits eingefiihr-
ten Doppelpendel auf einem Wagen (siehe |[Abbildung 4.7) illustriert. Diesmal wird
nicht der Aufschwung der Pendelarme als Entwurfsziel definiert, sondern die genaue
Einhaltung einer vorgegebenen Soll-Geschwindigkeit des Wagens. Fiir dieses Szena-
rio wird die StellgroBe u = uz nicht mehr als ideale Vorgabe der Wagenbeschleuni-
gung angesehen (vgl. [Gleichung (4.61))). Der neue Eingang up in das System ist die
Kraft, welche auf den Wagen wirkt. Diese ergibt sich als Folge des Zusammenhangs

Uz aymy + bim COS( Y1 )@ + asm COS( @2 )p
mi -+ Mo + My H e et 2 2re

— (aymy + lims) sin(p1) 9T + agma sin(ps) @3 + ur),

(4.78)

welcher fiir das betrachtete Szenario in|Gleichung (4.61)|eingesetzt wird. Das Ziel der
Regelung ist, die Wagenkraft so vorzugeben, dass die vorgegebene Soll-Geschwindig-
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Abbildung 4.10 Beispielhafte Anwendung der hybriden Zustandslinearisierung fiir eine Ge-
schwindigkeitsregelung an einem Doppelpendel auf einem Wagen.

keit erreicht wird und sich die Bewegungen der Pendelarme nicht negativ auf das
Ergebnis auswirken. Die Pendelarme fungieren somit als Storung, welche durch ein
genaues Modell bzw. eine partielle Zustandslinearisierung kompensiert werden kann.

[Abbildung 4.10| stellt verschiedene Regelungsansétze fiir das beschriebene Szena-
rio gegeniiber. Das mittlere Diagramm zeigt die zeitliche Entwicklung der Wagenge-
schwindigkeit, wobei der Sollwert $g,;(f) in griin dargestellt ist und sich sprungfor-
mig verdndert. Ein herkémmlicher P-Regler (roter Verlauf) mit dem Stellgrofien-
ansatz u.($) = K($sou(t) — s(t)) ist nur bedingt in der Lage, die induzierte Stérung
der Pendelarme zu kompensieren und zeigt deutliche Abweichungen zum Sollwert
auf. Herausfordernd ist hierbei, dass die Pendelarme in der oberen instabilen Ru-
helage starten und sich damit eine sehr hohe Anfangsenergie im System befindet.
Weiterfithrend werden die Daten, welche beim Versuch mit dem P-Regler aufge-
nommen wurden, nicht verworfen, sondern dienen als Grundlage fiir die hybride
Zustandslinearisierung (vgl. [Gleichung (4.71)). Die Anwendung des Verfahrens er-
gibt das zugehorige Regelungsgesetz |(4.77) welches ein Modell der Pendelbewegung
enthélt und adaquat auf sie reagieren kann. Die orangefarbenen Verldufe verdeut-
lichen die Verbesserung zum einfachen P-Regler ohne Zustandslinearisierung. Zu
beachten ist, dass der gleiche Verstarkungsfaktor K verwendet wurde. Als Referenz
ist zudem das Ergebnis einer bestmoglichen Zustandslinearisierung gezeigt (Ground
Truth, blau), welche auf einem exakten Modell basiert. Die gewéhlte Stellgrofie in
jedem Zeitschritt unterscheidet sich dabei kaum von der der gelernten GP-Regelung.
Die hybride Zustandslinearisierung wurde auch an anderen Anwendungsbeispielen
erfolgreich getestet und weiterfithrende Informationen dazu sind in [18] zu finden.
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Die hybride Zustandslinearisierung wird fiir eingangs-affine Systeme mit
separierten Nichtlinearitdten eingesetzt. A-Priori Schétzungen der Nichtli-
nearitdten werden auf der Basis von Zustandsmessungen und der Gauf3-
Prozess-Regression verbessert, um das zugrundeliegende Regelungsgesetz
zu korrigieren und eine hohere Regelgiite zu erzielen. Zusétzlich kann iiber die
Posterior-Varianzangabe zu den einzelnen Nichtlinearitdten dazu genutzt wer-
den, um die Qualitdt der Korrektur abzuschétzen und Gebiete im Zustands-
raum zu identifizieren, in denen noch wenig oder keine Zustandsmessungen
vorliegen. In diesen Gebieten kénnen entsprechend weitere Messungen vorge-
nommen werden, um die Qualitdt der Regelung weiter zu erhéhen. Da das
Regelgesetz nur vom Erwartungsvektor und nicht von der Kovarianz abhéngt,
ist der Berechnungsaufwand im Vergleich zur hybriden Optimalsteuerung ge-
ringer.

4.4.3 Interaktiver Entwurf mit Bayesscher Optimierung

In den vorangegangenen Abschnitten 4.4.1] und |4.4.2] wurde indirekt davon ausge-
gangen, dass der Zustand des betrachteten System vollstdndig gemessen werden
kann. Auf der Grundlage dieser Messdaten wurde anschlieBend eine Korrektur auf
Modellebene vorgenommen, welche die Genauigkeit steigerte und einen verbesserten
Steuerungs- und Regelungsentwurf erméglichte. Insbesondere fiir mechanische Syste-
me, deren Zustandsgréfen sich mafigeblich durch einfach zu messende Positions- und
Geschwindigkeitsgrofien zusammensetzen, ist die Voraussetzung eines vollstandig be-
kannten Zustandsvektors in der Regel erfiillbar. Fiir bestimmte dynamsiche Systeme
ist der Zustandsvektor jedoch nicht messbar, da es keine technisch realisierbare Sen-
sorik gibt oder eine entsprechende Messeinrichtung zu aufwendig zu realisieren ist.
In einigen Fillen ist iiberdies unklar welche Groflen im Zustandsvektor enthalten
sind, womit dieser undefiniert ist.

Ein mechatronisches Beispielsystem hierfiir ist der Ultraschalldrahtbondprozess
[178], wobei eine mechanische Schwingung im Ultraschallbereich, induziert durch
eine Piezoaktorik, eingesetzt wird, um zwei metallische Partner miteinander zu ver-
binden. Der Prozess lduft auf atomarer Ebene ab und ist daher physikalisch schwer
zu modellieren. Ebenso schwer gestaltet sich die Messung von bestimmten Grofien,
die sich wahrend des Prozesses kontinuierlich verdndern. Eine Ausnahme bildet das
Prozessende, an dem die, fiir die Qualitit wesentliche, Festigkeit der Verbindung
durch eine zerstorende Messung identifiziert werden kann. In diesem Szenario kann
zwar nicht der Zustandsvektor gemessen, dafiir jedoch die Giitefunktion am Ende
der Trajektorie ausgewertet werden. Auflerdem liegt ein gewisses Expertenwissen
in Form einer parametrisierten Steuerung vor, welche sich fiir das Erreichen eines
moglichst hohen Giitefunktionswertes eignet. In diesem Szenario, welches auch fiir
andere komplexe mechatronische Systeme vorliegen kann, bietet sich der Einsatz der
Bayesschen Optimierung [179] fiir einen zielgerichteten Entwurf an. Dabei werden
interaktiv Experimente direkt am realen System durchgefithrt und anhand der er-
haltenen Messdaten eine Korrektur auf der gedanklichen Ebene der Giitefunktion
durch die Gauf}-Prozess-Regression vorgenommen. Der Entwurf mit der Bayesschen
Optimierung sucht auf diese Weise iterativ nach einer optimalen Parametrisierung
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fiir den gewahlten Steuerungsansatz. Da lediglich eine Auswertung der Giitefunktion
notwendig ist, muss bei diesem Verfahren im Vergleich zur hybriden Optimalsteue-
rung oder Zustandslinearisierung keine Korrektur der Dynamikgleichungen vorge-
nommen werden. Dies stellt den wesentlichen Vorteil des Verfahrens dar. Eine vorab
bekannte Schitzung der Giitefunktion kann jedoch neben der parametrisierten An-
satzfunktion als Vorwissen zur Effizienzsteigerung verwendet werden.

Das Verfahren geht formal von einer parametrisierten Steuerung mit

u = s(t;0) (4.79)

aus. Dabei ist wiederum u € R™ die Stellgréfe, ¢ die Zeit und 8 € R™ der Para-
metervektor. Zudem stellt s den gewéahlten Ansatz dar. Das iibergeordnete Ziel ist
eine vorgegebene Giitefunktion J zu optimieren, woraus sich die optimale Parame-
trisierung

0, = arg min J(0) (4.80)

ergibt. Der Grundgedanke der Bayesschen Optimierung ist, die Giitefunktion als
parameterabhingige Zufallsvariable {iber einen Gauf3-Prozess

7(8) ~ GP(m(8), k(6. 8)), (4.81)

zu definieren, wobei dieser auf eine wahlbare Mittelwert- und Kovarianzfunktion
m(0) bzw. k(0,0') zuriickgefithrt wird. Fiir die Mittelwertfunktion bietet es sich
an, eine Schitzung der Giitefunktion vorzusehen, wobei bspw. ein vorhandenes phy-
sikalisches Modell entsprechend der parametrisierten Steuerung ausgewertet wird.
Durch die Messung der Giitefunktion stehen (Ein-/Ausgangs-)Daten der Form

Dy =[0,...,0,,] €R™*™  D;=1[J,...,J,,] € R™ (4.82)

zur Verfiigung. Basierend auf den Daten ergibt sich die Posterior-Gleichung der
Giitefunktion zu

p(J() | Dy) = N(u(8),0°(8)),
w(0) =m(0) +kL(0)K (D; —mp), (4.83)
0*(0) = k(0,0) — kp(6)K 'kp(0),

mit kp(0) = [k(0,0,),...,k(0,0,,)]", mp = [m(6,),...,m(0,,)]" und symme-
trischer, positiv definiter Gram-Matrix K € R">*™ mit den Elementen K;; =
k(6;,0,), 1,5 = 1,...,n4. Das iterative Vorgehen der BO ergibt sich danach durch
eine kontinuierliche Erweiterung des Datensatzes

Dy {D070nd+1}7 Dj; + {DJ, Jnd+1}7 (484)

wodurch die Schétzung in jeder Iteration weiter verbessert wird.

Bisher unklar ist, wie anhand des GPs die néchste Parametrisierung 8,,,.1 be-
stimmt bzw. nach welchem Kriterium das néchste Experiment am realen System
festgelegt wird. Hierfiir wird im Rahmen der BO eine sogenannte Akquisitionsfunk-
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Abbildung 4.11 Ein im Drehgelenk aktuiertes Pendel (links) und zugehdrige parametrisierte
Bang-Bang-Steuerung (rechts).

tion a(@) : R™ — R, welche von der aktuellen Schétzung bzgl. der Giitefunktion
des GP abhéngig ist, benutzt und ein unterlagertes Optimierungsproblem

On,41 = argmax a(u(0),0%(0)) (4.85)

automatisiert gelost. Mittlerweile gibt es ein breites Spektrum von méglichen Funk-
tionen, die je nach Anwendungsfall besser oder schlechter geeignet sind. Das bekann-
teste Kriterium lautet Expected Improvement (EI) [179] und folgt der Grundidee,
die Grofle der moglichen Verbesserung zu quantifizieren. Hierfiir wird der Erwar-
tungswert im Bezug auf die Dichte, die unter dem Grenzwert &; liegt, mit

apr(8) = Elmax(0,&; — J(0))]
= 0(0)(7(6)2(~(9))) + &(7(8)), (4.86)
1(0) = (&5 — 1(0))/0(8)

ausgewertet. Hierin ist ¢(-) die Dichtefunktion und ®(-) die Verteilungsfunktion
einer Standardnormalverteilung. Zusammenfassend iteriert die Bayessche Optimie-
rung zwischen dem Update des Posteriors und der Durchfithrung des ndchsten
Experiments mit der optimierten Parametrisierung .

[Abbildung 4.11]zeigt einen zu Anschauungszwecken konstruierten Anwendungsfall
der Bayesschen Optimierung. Dabei soll ein Einfachpendel aus seiner unteren Ruhe-
lage (p(t = 0) = —m, (t = 0) = 0) aufgeschwungen werden und nach 7' = 3.1 s den
Zielwinkel p(t = T') = 0 rad erreichen. Da die Stellgrofie mit ., = 0.3 Nm auf
einen vergleichsweise geringen Wert begrenzt ist, muss das Vorzeichen der Steuerung
mehrfach wechseln, damit sich das Pendel (dhnlich zu einer Schaukel) aufschwingen
kann. Die Pendeldynamik wird iiber

1
@ZZ%QDWO+;Eﬁu (4.87)

beschrieben, wobei das Ground Truth System die Parameter: [ = 0.3 m, m = 0.5 kg
und g = 9.81 3 besitzt. Fiir die Steuerung wird ein sogenannter Bang-Bang-Ansatz
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Abbildung 4.12 Anwendung der Bayesschen Optimierung zur Bestimmung einer optimalen
Parametrisierung zum Aufschwung eines Einfachpendels. Dargestellt ist die Entwicklung der
Gitefunktionswerte fiir verschiedene Priorfunktionen (Rot: Konstant Null, Blau: Abschatzung
der Giitefunktion auf Basis eines Pendelmodells mit stark gednderter Lange, Griin: ldentisch
zu Blau, jedoch mit geringfiigig gednderter Pendellange). Die durchgezogenen Linien zeigen
die mittlere Entwicklung und die schraffierten Flachen visualisieren die zweifache Standardab-
weichung.

gewihlt

u(t; 0) = Umaa (1 + Z (1+ (100(3 0j—t))) (_1)i>’ (4.88)

wobei die StellgroBe zwischen den maximalen Werten hin und her wechselt (vgl.
[Abbildung 4.11] rechts). Der Parametervektor 8 hat dabei die Dimension ny = 4
und definiert die Umschaltzeitpunkte der Steuerung. Fiir die Giitefunktion wird die
quadratische Abweichung zum Zielzustand

J(@) =o(t=T)>* (4.89)

nach der Zeit T verwendet. Zusétzlich wird der Suchraum eingeschrénkt durch 0s <
913 1S,i:1,...,n9

[Abbildung 4.12| zeigt die Ergebnisse der Bayesschen Optimierung fiir den Steue-
rungsentwurf. Auf der horizontalen Achse ist die Anzahl der Iterationen abgebildet
und auf der Hochachse der Giitefunktionswert. Fiir einen Vergleich sind drei ver-
schiedene Durchldufe mit unterschiedlichen Mittelwertfunktionen m(0) gezeigt. Bei
den roten Durchlédufen wurde m(8@) = 7 fiir eine sogenannte pessimistische Schiatzung
verwendet. Bei den blauen und griinen Verlaufen wurde die Giitefunktion mittels
eines verdnderten Pendelmodells abgeschitzt und als Mittelwertfunktion ver-
wendet. Gut zu erkennen ist, dass eine geringe Abweichung zwischen dem Modell
fiir die Giitefunktionsschiatzung und dem Ground Truth System einen positiven Ef-
fekt auf die Konvergenz und die Identifikation der optimalen Parametrisierung hat.
Nach ungefdhr 20 Iterationen wird der optimale Wert von 0 zuverldssig und robust
erreicht, was sich durch den stetig abfallenden Mittelwert und die verschwindende
Varianz, welche durch 25 separate Durchldufe identifiziert worden ist, zeigt. Ohne
die Einbringung von Vorwissen ist die Konvergenzgeschwindigkeit reduziert und die
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optimale Losung wird im Durchschnitt erst nach 50 Iterationen erreicht. Die Ein-
bringung von Vorwissen kann unter Umstédnden jedoch auch einen negativen Effekt
auf die Suche haben (blauer Verlauf). Dabei weicht das zugrundeliegende Modell
zu stark von der Realitédt ab, sodass die Bayessche Optimierung ungeeignete Orte
im Suchraum der Parameter auswertet, um den Fehler auf Ebene der Giitefunktion
zu korrigieren. Dies geht mit einer deutlich reduzierten Konvergenzgeschwindigkeit
einher und fithrt auf einen ineffizienten Steuerungsentwurf [180].

Die Bayessche Optimierung stellt ein globales Optimierungsverfahren
dar. Sie zeichnet sich durch ihre Flexibilitdt aus und ist eine hervorragende
Wahl, wenn die Zusténde eines Systems entweder unbekannt, undefiniert
oder aufgrund aufwendiger Messungen bzw. nicht realisierbarer Messtech-
nik nicht direkt messbar sind. In solchen Szenarien wird die Korrektur nicht
auf der Ebene der Systemzustédnde selbst vorgenommen, sondern durch eine
Anpassung der Giitefunktion. Dadurch ist lediglich eine Auswertung der
Giitefunktion notwendig, was den Optimierungsprozess erheblich verein-
facht. Es wird eine parametrisierte Steuerung benoétigt, welche auf der
Basis von Expertenwissen ausgewéahlt werden sollte. Die Anzahl der zu op-
timierenden Parameter sollte dabei im Bereich von weniger als 20 liegen,
damit die Komplexitéit des Suchraums in einem iiberschaubaren Rahmen ge-
halten wird und gleichzeitig eine effiziente Optimierung vorgenommen werden
kann. Durch den Einsatz der Bayesschen Optimierung kann die Inbetriebnah-
me technischer Systeme mit schwieriger Modellbildung unterstiizt werden.
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5 Beobachterentwurf

Sind nicht alle Zustandsgréfien messbar, auf deren Kenntnis die Regelung basiert,
ist der Entwurf eines Beobachters erforderlich. Dieser schétzt die nicht messbaren
Zusténde iiblicherweise modellbasiert. Aufgrund von Vereinfachungen in der Mo-
dellbildung und nicht modellierten Phanomenen (vgl. kann das genutzte
Modell jedoch grofiere Abweichungen zur zu schitzenden Strecke aufweisen, sodass
fehlerhafte oder unzureichend genaue Schétzwerte zu erwarten sind. [Abbildung 5.1|
illustriert diese Herausforderung durch einen Zustandsbeobachter, der die Winkel-
geschwindigkeit eines Massenschwingers ¢ aufgrund einer nicht modellierten si-
nusformigen Kraft inkorrekt schétzt. Die sogenannte Modell-Realitéts-Liicke, welche
durch solche Modellungenauigkeiten, aber auch externe Stérungen ausgelost wird,
kann sogar Instabilitdt oder Divergenz eines Beobachters verursachen und folglich
zu schwerwiegenden Auswirkungen auf die Zustandsregelung fithren. Dieses Kapi-
tel adressiert diesen Umstand, indem Methoden zur gleichzeitigen Schéatzung von
Zustéanden und Modellungenauigkeiten in [Abschnitt 5.2/ sowie Koopman-basierte
Techniken in vorgestellt werden. Ferner werden Mafinahmen zur lang-
fristigen Adaption des Modells in prisentiert, welche innerhalb eines
Zustandsbeobachters genutzt werden konnen und so ebenfalls zu einer Verminderung
der Modell-Realitéts-Liicke beitragen.

¢ [rad/s]

— Q- @, | Zeitt[s]

Abbildung 5.1 Modellungenauigkeiten fiihren im modellbasierten Beobachterentwurf zu un-
genauen Schitzungen, am Beispiel des Massenschwingers

5.1 Grundlagen zum Beobachterentwurf

Nicht messbare Groflen, wie Parameter oder Systemzustéinde, konnen mithilfe eines
Beobachters rekonstruiert werden, wenn bestimmte Voraussetzungen erfiillt sind.
Weist ein lineares, zeitinvariantes System die Eigenschaft Beobachtbarkeit auf, so
ist es moglich, einen beliebigen Anfangszustand @y, € R" in endlicher Zeit aus der
Kenntnis der Ein- und Ausgangsgréfien w € RP bzw. y € R™ zu schétzen. Die-
se Eigenschaft kann beispielsweise mit dem Kriterium nach Kalman oder Hautus
tiberpriift werden [24]. Fiir nichtlineare Systeme ist diese Eigenschaft schwieriger
zu definieren, daher wird héufig stattdessen die schwache Beobachtbarkeit genutzt,
indem innerhalb einer Umgebung U = {zo| ||xo — x,||} < ¢ eines Punktes x,
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iiberpriift wird, ob der Anfangszustand x, aus der Kenntnis von Eingang w und
Ausgang y eindeutig in endlicher Zeit rekonstruiert werden kann [21]. Ist dies fiir
beliebige Punkte x, erfiillt, so heifit das nichtlineare System schwach beobacht-
bar. Um die Qualitdt eines Zustandsbeobachters zu beurteilen, wird zudem ein
Schétzfehler e = & — x definiert, der die Abweichung des geschétzten Zustands
x vom tatsédchlichen Zustand @ bestimmt. Strebt dieser Fehler in iiberschaubarer
Zeit gegen Null, ist eine hohe Schdtzgiite gegeben [21], [24]. Fiir die Anwendung der
Methoden dieses Kapitels wird daher vorausgesetzt, dass die betrachteten Systeme
beobachtbar sind. Bevor ein Verfahren zur gleichzeitigen Schéitzung von Zustdnden
und Modellungenauigkeiten vorgestellt wird, werden zunéchst einige bekannte Zu-
standsbeobachter wiederholt und bzgl. ihres Einsatzes eingeordnet.

Luenberger-Beobachter Der Luenberger-Beobachter ist ein deterministischer Zu-
standsbeobachter fiir lineare Systeme [181]. Aufgrund seiner Struktur kann dieser
Beobachter Anfangsstorungen &g # @y kompensieren, nicht jedoch beliebig auftre-
tende Ungenauigkeiten [24]. Dennoch ist der Luenberger-Beobachter populér, da er
bei Kenntnis eines genauen Streckenmodells mit wenig Aufwand iiber eine Polvor-
gabe auszulegen ist. So wird er beispielsweise fiir den Betrieb des Golfroboters mit-
hilfe einer Gain-Scheduling-Strategie genutzt (vgl. [Abschnitt 6.1)), um die Zusténde
trotz nichtlinearer Systemdynamik schétzen zu konnen. Existieren unbekannte, aber
isolierte Nichtlinearitdten in der Systemdynamik, ermoglicht der hybride Ansatz
des lernfihigen Beobachters [182] eine Zustandsschitzung, da die Nichtlinearitdten
durch ein neuronales Netz approximiert werden, wéhrend die bekannte lineare Dy-
namikstruktur weiterhin durch die traditionelle Beobachterstruktur adressiert wird.
Eine Stabilitdtsanalyse und die Abschétzung von Fehlerschranken gewéhrleisten da-
bei die Konvergenz des Netzes und folglich die Funktionsweise dieses Beobachters.
Der lernfahige Beobachter kann in vielen Situationen eine sehr hilfreiche Mafinahme
sein, wie die [Abbildung 5.2| zeigt. Diese stellt anhand des zu Beginn eingefiihrten
Beispiels des Massenschwingers die erfolgreiche Schitzung der Geschwindigkeit g,
durch den Beobachter nach Schroder dar, obwohl die Modellungenauigkeit weiterhin
existiert. Allerdings weist die Nutzung eines neuronalen Netzes innerhalb eines Beob-
achters Nachteile wie z. B. die mangelnde physikalische Interpretierbarkeit aufgrund
der Black-Box-Struktur auf, die bereits im |Unterabschnitt 3.3.1| dargelegt worden
sind.

Kalman-Filter Das Kalman-Filter unterscheidet sich zum Luenberger-Beobachter
durch eine stochastische Perspektive [24], [183]. Es modelliert den zu schétzenden
Systemzustand als Erwartungswert einer zugrunde liegenden GauB3-Verteilung und
beriicksichtigt mogliche Unsicherheiten wie beispielsweise Messrauschen durch Ko-
varianzen (vgl. |[183]). Erweiterungen des Kalman-Filters zur Schitzung nichtlinea-
rer Systemdynamiken bilden das Extended-Kalman-Filter (EKF), welches anhand
von Jacobimatrizen eine linearisierte Version des Kalman-Filters formuliert, und das
Unscented-Kalman-Filter (UKF), das Erwartungswert und Kovarianz der zugrunde
liegenden Wahrscheinlichkeitsverteilung approximiert [184]. Durch ihre stochasti-
sche Perspektive werden diese Filter haufig als Zustandsbeobachter eingesetzt, um
kleinere Modellungenauigkeiten durch die Kovarianzen zu kompensieren und eine
zufriedenstellende Schitzung zu ermoglichen. Bestehen allerdings gréfiere Modellab-
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weichungen, ist dies nur noch eingeschrankt sichergestellt. Hybride Ansétze adres-
sieren diesen Umstand, indem z. B. die Kovarianzen mittels Bayesscher Optimierung
geschickt initialisiert werden [185], [186] oder ein EKF die Modellungenauigkeiten
basierend auf einer Linearkombination aus radialen Basisfunktionen mit kompakten
Trager schétzt [187]. Jene Methoden bieten u. U. eine tempordre Abhilfe, geben
jedoch keine physikalisch wertvolle parametrische Darstellung der Ungenauigkeiten
und adaptieren das Modell nicht langfristig. Dies ist jedoch wiinschenswert, um eine
sich sukzessiv verbessernde Modellgiite zu erhalten, welche fiir einen modellbasierten
Beobachter erforderlich ist.

Sliding-Mode-Beobachter Der Sliding-Mode-Beobachter (SMO) stellt einen Ver-
treter der robusten Zustandsbeobachter dar. Im Kontrast zu den vorherigen Beob-
achtertypen erlaubt dieser eine dynamische Schétzung von Modellungenauigkeiten
zur Laufzeit. Dies gelingt durch die Verwendung von unstetigen Schaltfunktionen,
z. B. v;(e,) = p; - sign(e,), welche vom Vorzeichen des Ausgangsfehlers e, und dem
Parameter p; mit ¢ = 1,...,n beeinflusst werden [18§], [189], [190]. Aufgrund der
Beobachterstruktur entspricht die n-te Schaltfunktion v, (e, ) dem Modellfehler. We-
gen dieser Figenschaft wird der SMO besonders als Stérbeobachter bzw. in der
Storidentifikation eingesetzt, indem diese Schaltfunktion mittels eines Tiefpassfil-
ters identifiziert wird [188], [189], [190]. Zudem erlaubt er eine robuste Schétzung
mit asymptotischer Konvergenz, sobald er gut parametriert ist. Allerdings erfordert
eine gute Parametrierung die Kenntnis einer oberen Schranke der Modellungenauig-
keiten bzw. Storungen, welche mitunter nicht einfach zu bestimmen ist [188], [189),
[190].
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Abbildung 5.2 Korrekte Schitzung mittels des lernfahigen Beobachters nach [182] am Beispiel
des Massenschwingers

5.2 Joint Estimation

Zu Beginn dieses Kapitels ist bereits die Herausforderung von Modellungenauig-
keiten im Kontext modellbasierter Beobachter thematisiert worden. Bei grofieren
Modellabweichungen besteht aufgrund dieser das Risiko einer unzuverliassigen Zu-
standsschétzung. Diese resultiert u. U. in einer verringerten Regelgiite oder wirkt
sich auf die Stabilitdt des Beobachters aus. Klassischerweise werden solche Unsicher-
heiten in der Regelungstechnik durch robuste Beobachter, wie den Sliding-Mode-
Beobachter, oder stochastisch basierte Filter adressiert. Letztere beriicksichtigen
beispielsweise ein gewisses Mafl an Unsicherheit durch die Modellierung des Zu-
stands mithilfe von Kovarianzen. Im Kontrast zu diesen Vorgehen der Kompensa-
tion von Modellungenauigkeiten erlaubt die nachfolgend vorgestellte Methode des
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augmentierten Beobachters eine simultane Schatzung und Identifikation der Modell-
ungenauigkeiten mit den Zusténden.

Aus der Zustands- und Parameterschétzung ist die gleichzeitige Schitzung meh-
rerer unbekannter, u. U. dynamischer Groflen bereits bekannt. Der Begriff Joint
Estimation][| bezeichnet hierbei eine simultane Schiitzung von Systemzustéinden und
physikalischen Parametern mittels eines augmentierten Zustands [191], [192], [193],
[194]. Dieser erweiterte Zustandsvekto & € R definiert sich durch die System-
zustinde & € R™ und die Parameter des Systems 6 € R™. Seine Dynamik wird iiber
das folgende Modell abgebildet:

_ {f(?v, u, 9)]
0 ’ (5.1)
u)

:
y=~h
In der ersten Zeile des Zustandsraummodells [(5.1)|ist die Dynamik f des betrach-
teten Systems vertreten, wiahrend fiir die Parameter 0 ein zeitinvariantes Verhalten
angenommen wird. Die Ausgangsgleichung h wird weiterhin am nicht erweiterten
Systemzustand & ausgewertet, da die physikalischen Parameter in der Regel nicht
zu messen sind.
Soll dieses Konzept auf die Schitzung von Modellungenauigkeiten iibertragen wer-
den, ist eine Anpassung notwendig. Eine populére Strategie aus der linearen Regres-
sion besteht darin, Linearkombination aus geeigneten Ansatzfunktionen zur Appro-
ximation von nichtlinearen Zusammenhéingen zu nutzen (vgl. das Verfahren SINDy

im [Abschnitt 3.2/ und [10], |[11]). Daher wird eine Modellungenauigkeit ¢ € R als

8
Il
P |

®

Linearkombination aus den Funktionen v; : R® x R +— R mit ¢ = 1,...,ng durch
ng
g(x,u) ~ ZHZ- iz, u) = 07T (x,u) (5.2)
i=1

angendhert. Im Verlauf des weiteren Kapitels werden ausschliellich eingangsaffine
Systeme mit relativem Grad § = n betrachtet, die folglich beobachtbar sind [21]. Des
Weiteren wird angenommen, dass das jeweilige betrachtete System in nichtlinearer
Regelungsnormalform vorliegt und die Wirkung der Modellungenauigkeit additiv
erfolgt. Ist demnach das folgende System

Zt'l T2
, To x3
€XTr = =
T, a(x) + b(x,u) + g(x, u) (5.3)
= f(x,u)
Yy =2a.

mit der Modellungenauigkeit g gegeben, so ldsst sich unter der Annahme in G1.|(5.2)

!Dieser Begriff ldsst sich ins Deutsche mit gemeinsamer oder gleichzeitiger Schiitzung iibersetzen.
Im Folgenden wird jedoch auch weiterhin der englische Fachbegriff genutzt.
2Der Index e stellt eine geschiitzte Grofie dar.
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das augmentierte Modell zur Approximation der Ungenauigkeit durch

_.fi'l_ i ) |
ij T3
i — : ~ N ?
En a(@) + bz, u) + 07U (z, u) (5.4)
0] | 0 i
= f(a,u)
Y=

formulieren [17]. Hierbei beschreibt & wiederum den augmentierten Zustand, der
sowohl den Systemzustand @ als auch die Parameter @ der Linearkombination
umfasst. Die eingangsaffine Dynamik wird durch a(x) und b(x, u) dargestellt, wih-
rend fiir die Approximation der Modellungenauigkeit g erneut eine zeitinvariante
Parameterdynamik vorausgesetzt wird. Ferner muss eine Bibliothek ¥ € R" fest-
gelegt werden. Da grundlegendes Wissen iiber die Systemordnung sowie die System-
zustinde wegen des bestehenden Teilmodells vorhanden ist, lautet eine Minimalan-
forderung an die Bibliothek folgendermaflen:

Wo(x,u) = [1,21,. .., Tn, U1, ..., u)" . (5.5)

In der Dissertation [17] wurde experimentell gezeigt, dass eine sinnvoll gewihlte
Bibliothek mindestens die Zustédnde, die Eingénge sowie Konstanten enthalten soll-
te. In der Regel existiert jedoch Vorwissen bzw. Erfahrungswissen bzgl. der beob-
achteten Modellungenauigkeit, welches als Hypothesen in Form von physikalisch
motivierten Funktionen 1); in der Bibliothek beriicksichtigt werden kann. Beispiels-
weise handelt es sich bei der Ungenauigkeit um unerwiinschte Vibrationen oder os-
zillierendes Verhalten, sodass trigonometrische Funktionen eine sinnvolle Wahl fiir
Bibliotheksfunktionen darstellen. Um zusétzlich eine physikalisch-technische Inter-
pretierbarkei zu gewihrleisten, ist eine gewisse Uberschaubarkeit der Funktionen
zur Charakterisierung der Modellungenauigkeit im Kontrast zur Superposition vie-
ler Terme vorzuziehen. Im Sinne des Prinzips Occam’s Razmﬂ reichen daher eine
geringe Menge von Funktionen aus, um eine interpretierbare und verlassliche Iden-
tifikation der Modellungenauigkeit zu erhalten [28]. Diese Begrenzung ldsst sich mit
dem Konzept Sparsity adressieren, welches bereits im Verfahren SINDy im [Ab-]
angesprochen worden ist. So wird die Anforderung, dass nur eine wenige
Bibliotheksterme benotigt werden, durch die Diinnbesetztheit des Parametervek-
tors ausgedriickt. Dessen Anzahl der Nichtnullelemente kann mittels der £o-Norm[]

3Dies meint eine konkrete Zuordnung von parametrischen Termen zu physikalischen Wirkprinzi-
pien, vgl. die Definition in der Dissertation [17].

4Dieses geht auf den Philosophen Wilhelm von Ockham (1288-1347) zuriick, welches postuliert,
dass aus vielen Moglichkeiten meist die einfachste Losung (oder Erkldrung) mit hoher Wahr-
scheinlichkeit die beste Option darstellt. Dieses heuristische Prinzip wird vielfach in der Mo-
dellbildung verschiedener Disziplinen und im ML-Kontext zur Modellauswahl beriicksichtigt
[28].

5Diese ist im mathematischen Sinne keine Norm, sondern eine Halb- oder Pseudonorm.
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definiert werden [195]:

16110 = #{il6; # 0} < ngact < p. (5.6)

In GL wird die Anzahl der Nichtnullelemente auf maximal ng .. festgelegt,
welche wesentlich kleiner als die Dimension des Parametervektors ng sein soll. Nun
kann das augmentierte Modell in einen Zustandsbeobachter eingesetzt werden,
beispielsweise in ein UKF. Allerdings ist die Anforderung in Gl. bisher noch
nicht umgesetzt. Der nachfolgende Abschnitt erldutert daher, wie diese im Pradiktor-
Korrektor-Schema eines UKF's integriert werden kann.

5.2.1 Augmentierter Beobachterentwurf

Durch das zuvor vorgestellte Konzept der Joint Estimation ist es moglich, einen Zu-
standsbeobachter so zu augmentieren, dass er mithilfe der diinnbesetzten Parame-
ter einer Linearkombination die Modellungenauigkeiten parallel zu den Zustédnden
schétzt. Aufbauend auf Vorarbeiten [194] wird der Entwurf anhand eines UKFs
durchgefiihrt. Konkret wird die numerisch stabilere Variante des Square-Root-Un-
scented-Kalman-Filters (SRUKFs) gew&hlt, welche auf [192] zuriickgeht. Die grund-
legenden Figenschaften des Filters, d. h. seine stochastische Struktur sowie sein
Préadiktor-Korrektor-Schema, sollen jedoch erhalten bleiben. Ausgehend von der Mi-
nimierung des Schétzfehlers (vgl. [127], [196]) wird daher das Konzept der Diinn-
besetztheit mittels zwei verschiedener Umsetzungen in diese Filterstruktur einge-
bunden und beriicksichtigt, welche erstmals in der Dissertation [17] sowie in den
Veroffentlichungen [197], [198] vorgestellt worden sind.

Diinnbesetztheit mittels fester Schranke Die erste Umsetzung basiert auf Me-
thoden des Compressed Sensing [199], [200], [201]. Diese Disziplin befasst sich mit
hoch dimensionalen Signalen s € R", welche durch eine geeignete Basiswahl ¥ €
R™™ mittels einiger weniger Basisfunktionen v; mit ¢ = 1,...,n komprimiert dar-
gestellt werden kénnen:

s=W0=> 6. (5.7)

Die Approximation kann dabei durch die Wahl von orthonormalen Basisfunktionen
gewéhrleistet werden [195]. Da orthonormale Basen eine limitierte Wahl fiir die
Erfassung von Signalen darstellen und das Signal zunéichst aufwendig gemessen und
anschliefend komprimiert werden muss, adressieren die Methoden im Compressed
Sensing diese Nachteile, indem beliebige Projektionen betrachtet werden und die
Extraktion des Signals direkt aus der Messung y € R™ erfolgt [199], [200]. Daher
gilt fiir ein komprimiertes Signal Folgendes:

y=HY0 = Hs. (5.8)

Das komprimierte Signal lisst sich dabei durch die Messmatriaff| H € R™ ™ messen,
da y = HWPO gilt. Obwohl das Gleichungssystem y = Hs aufgrund von m < n

6In der Regelungstechnik ist damit die Ausgangsmatrix C bzw. die Jacobimatrix der Messfunktion
h gemeint.
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5.2 Joint Estimation

in der Regel unterbestimmt ist, kann durch die Kenntnis der Basis ¥ sowie des
Wissens, dass der Vektor @ diinnbesetzt ist, das Signal s dennoch rekonstruiert
werden. Durch Umformulierung des Signals in den Gleichungen |(5.7)|und |(5.8)| lasst
sich die Rekonstruktion in das folgende ¢yp-Problem iibersetzen:

6 = argmin |||y, sodass y= HPO. (5.9)
[

Allerdings ist das Optimierungsproblem |(5.9)|nicht konvex und nur durch Kombina-
torik bzw. eine Brute-Force-Suche zu l6sen’| Diese Eigenschaft der Nicht-Konvexitéit
wird fiir eine zweidimensionale Variable anhand der [Abbildung 5.3|illustriert, welche
die durch verschiedene p-Normen resultierenden Regionen darstellt und fiir p < 1
nicht konvexe Gebiete aufzeigt. Liegen geniigend Messungen vor und ist die Mess-
matrix H anndhernd inkohédrent zur Basis W, d. h. die Zeilen der Messmatrix sind
unabhéngig von den Spalten der Basis, kann das Problem jedoch dquivalent in
der ¢;-Norm formuliert werden [14], [28], |195], [199], [200], sodass eine vorteilhafte,
konvexe Gestalt entsteht:

0 = argmin ||0||;, sodass y= HPO. (5.10)
0

Sind die Messungen rauschbehaftet, was in der Praxis meistens der Fall ist, lasst
sich das obige Problem mit 0 < ¢ < 1 abmildern zu:

6 = argmin ||0||;, sodass |[H®O —y]|; <e. (5.11)
0

Aufgrund der Optimierungstheorie kann das Problem zudem nicht nur als
Kostenfunktion mit Regularisierungsterm formuliert werden, wie es z. B. im LASSO-
Verfahren der Fall ist (vgl. [Abschnitt 3.2), sondern auch als duales Problem iiber
die Herleitung mithilfe von Lagrange-Multiplikatoren mit einer angepassten Neben-
bedingung H (&) < 0 durch

A

0 = argmin ||[HWPO — y||,, sodass |[|0]|; <€, (5.12)
0

aufgefasst werden [201], [202]. Innerhalb einer iterativen, auf der Losung einer /o-
Kostenfunktion basierenden Filterstruktur stort jedoch eine Nebenbedingung H.
Diese kann daher als eine Projektion auf den Losungsraum interpretiert werden
[201], |202]. Dazu wird die Ungleichheitsbedingung durch eine zusitzliche, fiktive
Messung mit € > 0 und

0=6]; — ¢ (5.13)

innerhalb des Filters umgesetzt, die schlieflich durch die vorhandenen Strukturen
im Filter ausgewertet werden kann. Der Vorteil des ¢;-basierten Optimierungspro-
blems in den Gleichungen |(5.10) und |(5.11) sowie des ¢;-restringierten Problems
in Gleichung besteht in der Garantie der Konvexitit, wiahrend gleichzeitig
eine diinnbesetzte Losung gefordert wird. In der [Abbildung 5.3 wird der Zusam-
menhang zwischen den Eigenschaften Konvexitéat und Sparsity illustriert, indem fiir

"Die Gleichung [(5.9)]ist ein nicht-polynomiales, hartes (NP-hard) Problem [14], |28].
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5 Beobachterentwurf

einen zweidimensionalen Parameter die durch die jeweilige ¢,-Norm induzierte Re-
gion dargestellt ist. Je kleiner das p der Norm gewéhlt ist, desto mehr werden das
Konzept der Sparsity beriicksichtigt und diinnbesetzte Parameter gefordert. Aller-
dings ist die induzierte Region lediglich fiir die ¢5- und ¢;-Norm konvex, wahrend
dies fiir die Regionen mit p < 1 nicht mehr gilt. Die ¢;-Norm stellt demnach den bes-
ten Kompromiss zwischen Konvexitiat und Sparsity dar. Die Umsténde, welche eine
dquivalente Rekonstruktion des Signals durch die Nutzung der ¢;-Norm erlauben,
sind daher geometrischer Natur und sollen annédhernd einer unitdren Transformation

entsprechen [14], [28], [195], [199], [200].

92 62 92 92
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Abbildung 5.3 Zusammenhang zwischen der £,-Norm und den Eigenschaften Konvexitat sowie
Sparsity: Je kleiner p ist, desto mehr ndhern sich die Parameter der Eigenschaft Sparsity an.
Gilt jedoch p < 1, ist keine Konvexitat mehr gegeben (vgl. [14], [17]).

Um ein Optimierungsproblem in der Art von Gleichung in der klassi-
schen Korrektor- und Préadiktorstruktur eines SRUKFs zu formulieren, wird das
Modell zunéchst mit einer Schrittweite von At > 0 diskretisiert und hinsicht-
lich des SRUKFs angepasst, indem noch Prozess- und Messrauschen in der Formu-
lierung der Dynamiken f bzw. f beriicksichtigt werden:

T ~ ~ g wy
Ty = T + At - (f(zp, ur) +wy) = T = Xy + AL (f(iﬂka uy) + [wg]) ;
k

Y = h(wk,uk) + vg.
(5.14)

Dabei gilt fiir das Prozessrauschen w?® € R" ~ N (0, Q,), w? € R™ ~ N(0,Q,) und
fiir das Messrauschen vy, ~ AN (0, R). Somit kann die Prozesskovarianzmatrix fiir den
erweiterten Zustand vereinfachend als Blockmatrix der beiden Einzelkovarianzen
durch Q = blkdiag(Q,,, Q,) mit den restlichen Eintrigen als Null angenommen wer-
den. Zur Ubersichtlichkeit werden jedoch in den beiden folgenden Gleichungen die
Zeitindizes k vernachlédssigt. Ausgehend von der Minimierung des Schétzfehlers so-
wie den Uberlegungen im vorigen Abschnitt, vgl. GL. , kann das Schéatzproblem
mit gleichzeitiger Diinnbesetztheit der Parameter durch

A 1 A A ~ A
" = argmin §E[(53 —2)"(z —2)], sodass |[|[Iz||; <e, (5.15)

xr

definiert werden. Dabei stellt 0 < ¢ < 1 eine Schranke bzgl. des Messrauschens dar,
wihrend I = blkdiag(0,, I,,) eine Blockmatrix aus Nullen und Einsen beschreibt
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5.2 Joint Estimation

und somit die Diinnbesetztheit der Parameter @ kodiert. Allerdings ist die Einbet-
tung und Losung des Optimierungsproblems innerhalb der iterativen Struktur
des Filters wie bereits im vorigen Abschnitt angesprochen nicht einfach. Daher wird
auf die zusétzliche, fiktive Messung des vorigen Abschnitts zuriickgegriffen,
welche als Projektion aufgefasst werden kann [198], [201], [202]. Diese wird als Pseu-
domessung Y, mit der angepassten, stetigen Ausgangsgleichung h,,,,, durch

Ypm = N (T) = max(||j:§3||1 —€,0) (5.16)

definiert. Die Grofe € ~ N (0, Ry, représentiert dabei das fiktionale Messrauschen,
welches durch das Optimierungsproblem die Nebenbedingung steuert. Hierbei stellt
R, die Kovarianz des fiktionalen Messrauschens dar. Da das SRUKF auf der Un-
scented Transformation basiert (vgl. [Unterabschnitt 3.5.2), kann die nichtlineare,
fiktionale Ausgangsgleichung direkt innerhalb des Filters eingesetzt werden,
ohne dass weitere Anpassungen erforderlich sind. Dies steht im Kontrast zum EKF,
vgl. [187], [202]. Da es sich um eine zusétzliche Messung handelt, ist keine er-
neute Auswertung des Dynamikschritts erforderlich, sodass stattdessen die Iden-
titdtsabbildung f;, fiir diesen Schritt im SRUKF genutzt wird. Bei Bedarf kann die
Projektion mittels der Pseudomessung mehrfach erfolgen, um die Genauigkeit der
Nebenbedingung #H zu erhshen [201], [202]. Ist dies gewiinscht, muss die maximale
Iteration Ny, # 1 gewidhlt werden. Das entwickelte Vorgehen des Joint Estimation
SRUKFs (JE-SRUKFSs) ist im |[Algorithmus 2| zusammengefasst und wird nachfol-
gend kurz erlautert (vgl. |[17], [198]).

Aufgrund der harten Grenze A, welche beschreibt, ab wann ein Element é, als
Nichtnullelement bewertet wird, resultiert erfolgreich der diinnbesetzte Parameter-
vektor 6. Diese Grenze wird &hnlich zum Parameter im LASSO-Verfahren je nach
Anwendungsziel bzw. Skalierung der Parameter festgelegt und befindet sich nahe
Null. Um jedoch harte Spriinge in den Werten von einem zum néchsten Zeitschritt
zu vermeiden, besteht die Option, mittels des Parameters v € [0, 1] eine Gewichtung
aus dem vorherigen und neuen Wert des Parametervektors 0, bzw. épmjj vorzuneh-
men (vgl. Zeile 10). Im Algorithmus wird dies durch die Indizes (n + 1) : 7 darge-
stellt, wobei n als Gesamtsystemordnung durch n := n + ng definiert ist. Daraufhin
setzt sich der finale, augmentierte Zustand ﬁzh final durch den zuvor im klassischen

Vorgehen berechneten Zustand &, und den ggf. gewichteten Parametervektor 0, zu-
sammen (vgl. Zeilen 9 und 10). AnschlieBend wird zunéchst wiederum der klassische
Algorithmus des SRUKFs durchlaufen, der in jedem Zeitschritt k einmalig erfolgt.
Dies wird durch die letzten Rechenoperationen in den Zeilen 1 und 2 angedeutet,
bevor der Pseudocode des Teils folgt, der das Konzept der Sparsity umsetzt (vgl.
[17], [198]).

Diinnbesetztheit mittels stochastischer Modellierung FEine Alternative zur Mo-
dellierung der Diinnbesetztheit besteht in der Ausnutzung der Filterstruktur. Das
SRUKF ist stochastisch motiviert und nimmt an, dass die Zufallsvariablen, somit
auch der erweiterte Zustand &, Gauf-verteilt sind |184], |[192]. Das Vorwissen, dass
die Parameter der Linearkombination diinnbesetzt sein sollen, ldsst sich allerdings
nicht nur deterministisch, sondern auch probabilistisch ausdriicken. Mithilfe einer
geeigneten Wahrscheinlichkeitsverteilung kann diese Eigenschaft direkt als A-Priori-
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5 Beobachterentwurf

Algorithmus 2 JE-SRUKF mit Schranke zur Umsetzung der Diinnbesetztheit

@ =2+ K (Y — )
2. Sj = cholupdate(S,,U, —1)
% Sparsity-Uberpriifung und ggf. Aktualisierung:
3:  Initialisiere: hp,,, Niter, No.act, ¥, J = 1, Spmo = Sk, Tpmo = Tk

4: while #{6,/0; > \} > nga and j < N,

% Schitzung mit Sparsity-Bedingung

5: Ty Spm.j — SRUKF mit (Zpm 1, Spmi—1, f 1> homy Q) Rpm)
6: j=j+1
7: end

% Bestimmung des finalen Zustands und dessen Kovarianz
St.final = Spm.j
[i::k,final](lzn) = [jk](l:n)a R R

10: [Tk finatl (n1m) = (1= 7) [ Zpmjl(nri:m) + YTk nr1:m)

11: end

Verteilung dem Filter {ibergeben werden. Als Beispiel gilt die Laplace-Verteilung,
welche sich fiir einen Parameter 6; durch

_|9ijﬂ|

-1
0;110,0) = —e~ 7 5.17
POl b) = (517)

mit ;1 € R, b € Rt charakterisiert [14]. Allerdings sprechen zwei Nachteile gegen die
explizite Verwendung dieser Verteilung, da einerseits Gauf-Verteilungen im SRUKF
zugrunde gelegt werden und andererseits die A-Posteriori-Verteilung bei der gewéhl-
ten A-Priori-Verteilung nicht die typische Form der Laplace-Verteilung konserviert
[14], [203]. Diese Herausforderung wird in der Dissertation [17] ausfiihrlicher thema-
tisiert. Daher wird eine Gauf3-Verteilung zur Modellierung der Parameter genutzt,
welche die Eigenschaften der Laplace-Verteilung imitiert. Die Idee dieses Vorgehens
ist in der|Abbildung 5.4|illustriert. Eine beliebte Wahl ist die Regularized-Horseshoe-
Verteilung (RHS-Verteilung), deren Gauf-Verteilung aus unterlagerten Distributio-
nen besteht und folgendermafien definiert ist [203], [204], [205]:

0: | \i, T, ¢ ~ N(0, \272),
i ~CT(0,1),
7~ C*(0,7),
¢® ~ Invl(a,b),
cA;

(5.18)

5\1':
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5.2 Joint Estimation

Hierbei stellen die Parameter 7, a,b Einflussmoglichkeiten dar, um den Grad der
Diinnbesetztheit und der Regularisierung von Maximalwerten einzustellen [204].
In der Regel wird beispielsweise 79 < 1 gewéhlt, da dieser Parameter auf die
Diinnbesetztheit der gesamten Verteilung wirkt, wihrend \; einige Ausnahmen von
dieser Diinnbesetztheit erlaubt. Die inverse Gamma-Verteilung Invl' dient vor allem
der Regularisierung von Maximalwerten. Den Einfluss der einzelnen, unterlagerten
Distributionen auf die RHS-Verteilung in Abhéngigkeit ihrer Parametrierung zeigen
Abbildungen in der Dissertation [17].

p6)

-3 -2 -1 0 1 2 3
Parameter 6;

—O’:l 0'20,9 0'20,8
c=0,7 0=0,6m=p=0,7

Abbildung 5.4 Laplace-Verteilung (visualisiert in rot) im Vergleich zu verschiedenen GauB-
Verteilungen (dargestellt durch Graustufen): Fiir alle abgebildeten Verteilungen gilt © = 0, vgl.
[17], [197].

Wird die stochastische Modellierung des Parametervektors angestrebt, kann ana-
log zum vorherigen Abschnitt weiterhin das augmentierte Modell innerhalb
des SRUKFs genutzt werden. Zudem bestehen dieselben Annahmen und Defini-
tionen bzgl. der Kovarianzen und der Pseudomessung . Ebenso findet wie im
|Algorithmus 2{zunéchst ein Durchlauf des Standard-SRUKFs statt. Allerdings unter-
scheidet sich der Beobachterentwurf nun in der Art und Weise, wie die Diinnbesetzt-
heit fiir die Parameter umgesetzt wird. Durch die stochastische Modellierung der
Parameter 0 wird in jedem Zeitschritt eine Varianz o2 mithilfe der RHS-Verteilung
bestimmt, um die Laplace-Verteilung zu imitieren. Anschliefend werden die Gewich-
te der UT angepasst und ein erneuter Durchlauf des SRUKFs mit der Identitédt £,
als Dynamikvorschrift und mit der Pseudomessung h,,, als Messmodell vollzogen.
Die Anpassung der Gewichte ist erforderlich, da im SRUKF eine Standardnormal-
verteilung angenommen ist, sodass ) = 3 — 7 optimal gew#hlt wird [194], [196].
Ist dies wie bei der stochastischen Modellierung der Parameter 6 nicht der Fall,
gilt fiir diese Situation k® = 30* — 71, wobei ¢ zu o, aufgrund der RHS-Verteilung
bestimmt wird [197]. AnschlieBend wird eine erneute Schétzung durchgefiihrt, wo-
raufthin sich der Zustand 571;+1\ . aus den n Eintrégen der ersten Schétzung und aus
den ng Eintragen der zweiten Schétzung ergibt (vgl. Zeilen 9 bis 10). Gleiches gilt fiir
die Kovarianz in den Zeilen 7 und 8. Dieses wird jeweils durch die eckigen Klammern
und mithilfe der programmiertechnischen Darstellung des Doppelpunkts dargestellt.
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5 Beobachterentwurf

Daher resultiert der folgende Algorithmus, welcher sich in jedem Zeitschritt & dem
Durchlauf des Algorithmus eines klassischen SRUKF's anschlief3t:

Algorithmus 3 JE-SRUKF mit stochastischer Umsetzung der Sparsity

o x = + Ky (y - 9
2. Sj = cholupdate(S,,U, —1)

3:  Initialisiere: R,,,, 7, a,b
% Bestimmung der Varianz bzw. der neuen Gewichte
02 = E[0?] < Bestimme mit Gl [(5.18)|mit 7o, a,b

5 Wﬁi), WEZ) —a,B,k? =30 -0

% Schétzung mit Sparsity-Modellierung

6:  ZTpm,Spm < SRUKF mit (&, Sk, £145 htpm, Q, Rpm)

% Bestimmung des finalen Zustands und dessen Kovarianz
7 Sk fina = Sk
8: [Sk,final](n+1:ﬁ,n+1:ﬁ) = Spm

9: '%Ak,final = ?Uk, X
10: [Tk, pinat) (nr1:7) = [Zpm] (ns 1)

11: end

5.2.2 Beispielhafte Anwendungen

Das zuvor erldauterte Konzept des augmentierten Beobachters inklusive seiner zwei
Moglichkeiten, die Diinnbesetztheit der Parameter 8 umzusetzen, wird nachfolgend
durch zwei Anwendungsbeispiele illustriert. Dabei wird die Schétzgiite sowie der
Einfluss der Bibliothek W auf das Schétzverhalten deutlich. Die dargestellten Bei-
spiele dienen allerdings nur zur Veranschaulichung, sodass fiir weitere Details und
Anwendungen auf die Dissertation [17] verwiesen wird.

Duffing-Oszillator Um die Wirkungsweise des augmentierten Beobachters zu ver-
anschaulichen, wird nachfolgend der Duffing-Oszillator eingefiihrt, welcher iiblicher-
weise als Stellvertreter vieler dynamischer Systeme untersucht wird [17], [28]. Es
handelt sich um ein System zweiter Ordnung, welches beispielsweise den Einfluss
einer Kraft auf einen Korper beschreibt:

X2

T = ,
—0319 — O171 — 0973 + (5.19)

Yy =2a.
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Abbildung 5.5 Qualitdt der Zustandsschatzung im Vergleich zu verschiedenen Bibliotheken
und einem klassischen SRUKF, das ohne die Modellungenauigkeit g schatzt, wenn die Umset-
zung der Diinnbesetztheit mittels einer Schranke gewahlt worden ist, vgl. [17], [198]

Hierbei kénnen die Zustinde & = [z, 75]7 € R? exemplarisch Winkel und Winkel-
geschwindigkeit sowie der Eingang u € R eine Kraft darstellen. Die physikalischen
Parameter werden fiir alle folgenden Untersuchungen zu 6 = [1,—3, 0, 1] gewiihlt.
Ferner werden der kubische Term als Modellungenauigkeit g(x,u) = —fy23 = —323
angenommen und fiir die Identifikation dieser Ungenauigkeit drei sich nur leicht
unterscheidende Bibliotheken festgelegt:

U (x,u) = [1, 21,29, 23, sin(22), 21 - To, cos(x1), u, 23] 7, (5.20)

Wy (x,u) = [1, 21, 2o, 25, sin(22), 71 - To, cos(x1), u, 23], (5.21)

Ws(x,u) = [1, 21, 79, 75, sin(23), 71 - 9, cos(x1), u)” . (5.22)

Hierbei weist lediglich die erste Bibliothek den gesuchten kubischen Term auf, wih-
rend die anderen beiden jeweils den quadratischen bzw. linearen Term als Funktions-
kandidaten ansetzen. In den Abbildungen 5.5/ und [5.6|sind die geschétzten Zusténde
im Vergleich zu den simulierten Zustdnden bei einer sinusférmigen Anregung in
Abhéngigkeit der verschiedenen Bibliotheken dargestellt. Das Szenario, welches in
den beiden Abbildungen zu sehen ist, unterscheidet sich lediglich durch die gewéhlte
Strategie zur Umsetzung der Diinnbesetztheit der Parameter. In beiden Abbildungen
ist zu erkennen, dass ein klassisches SRUKF (blau) ohne Kenntnis der Modellun-
genauigkeit nicht in der Lage ist, korrekte Schitzwerte zu liefern. Im Gegensatz
dazu ermoglicht der augmentierte Beobachter in beiden Féllen eine hohe Schétzgiite
durch die Approximation mittels Linearkombinationen. Die Schétzgiite nimmt dabei
geringfiigig je nach gewihlter Bibliothek und/oder Umsetzung der Diinnbesetztheit
ab, ist aber besonders hoch, wenn die Bibliothek den tatsédchlichen, kubischen Term
aufweist und die stochastische Strategie zur Diinnbesetztheit gewéahlt wird.

Neben dem priméren Ziel, eine hohe Schétzgiite zu erzielen, ist es ebenso auf-
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Abbildung 5.6 Qualitdt der Zustandsschatzung im Vergleich zu verschiedenen Bibliotheken
und einem klassischen SRUKF, das ohne die Modellungenauigkeit g schitzt, wenn die stochas-
tische Umsetzung der Diinnbesetztheit gewahlt worden ist, vgl. [17], [197]

schlussreich, woher die Modellungenauigkeit resultiert. Um einen Einblick in den
Charakter der Modellungenauigkeit zu gewinnen, kann der Verlauf der Parameter-
elemente ¢; mit i = 1,...,ng analysiert werden (vgl. dazu auch [Abschnitt 5.3]).
Fiir beide Umsetzungen ist dies jeweils in den Abbildungen und durch-
gefithrt worden. Auffallig ist hierbei auf den ersten Blick, dass beide Umsetzungen
dhnliche Erkenntnisse liefern, aber die Verldufe der stochastischen Umsetzung we-
sentlich glatter sind, da die Diinnbesetztheit in diesem Fall global innerhalb der
Filterstruktur angestrebt wird. Beide Strategien fithren jedoch auf dieselben Terme,
die als diejenigen Bibliotheksfunktionen identifiziert werden, welche die Modellun-
genauigkeit am besten charakterisieren. Dabei findet der augmentierte Beobachter
erwartungsgemafl den kubischen Term, sofern dieser in der Bibliothek enthalten ist.
Bemerkenswerterweise werden jedoch auch Alternativen gefunden, falls dieser Term
nicht verfiighar ist. Dabei wird insbesondere bei Nutzung des quadratischen Terms
das Vorzeichen des kubischen Terms durch einen sténdigen Vorzeichenwechsel des
Parameters kompensiert (vgl. zweite Zeile der Abbildungen). Da in den dargestell-
ten Algorithmen [2| und [3] nur die jeweilige letzte Messung als Information genutzt
wird, ist es zudem empfehlenswert, im Sinne der rekursiven Least-Squares-Methode
mehrere zuriick liegenden Messungen zu verwenden, um eine eindeutige Konvergenz
zu einem Parameterwert zu erhalten.

Da es sich bei dem Duffing-Oszillator um ein bekanntes System handelt und die
Modellungenauigkeit g durch den kubischen Term nur zur Visualisierung angenom-
men worden ist, kann anschliefend die Qualitéit der Approximation iiberpriift wer-
den. Qualitativ ist dies beispielsweise durch den zeitlichen Vergleich der Modellun-
genauigkeit g und der jeweiligen Approximation ¢; mit ¢ = 1,2,3 moglich. In der
IAbbildung 5.9 ist dieser Vergleich anhand der unterschiedlichen Umsetzungsstrate-
gien dargestellt. Die Approximationen erfassen allesamt qualitativ den zu identifizie-
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Abbildung 5.7 Zeitlicher Verlauf des Parametervektors 0 im Vergleich verschiedener Biblio-
theken, wenn die Umsetzung der Diinnbesetztheit mittels einer Schranke gewahlt worden ist,
vgl. [17], [198], und die jeweils daraus zugeordneten dominanten Bibliotheksterme (dargestellt
anhand der Pfeile)

renden charakteristischen Verlauf der Modellungenauigkeit, wobei sich weiterhin die
zuvor beobachteten Phédnomene, die die Modellgiite beeinflussen, in Abhéngigkeit
der Bibliotheken und der Umsetzungsstrategie zeigen.

Golfroboter Der Golfroboter, welcher im [Abschnitt 6.1] vorgestellt wird, kenn-
zeichnet sich durch eine nichtlineare Reibung, den sogenannten Stick-Slip-Effekt. Da
dieser aufwendig zu modellieren ist, wird im Folgenden angenommen, dass die Rei-
bung vollstdndig durch den augmentierten Beobachter geschétzt werden soll. Als Zu-
standsbeobachter in der [Abbildung 6.7 wird daher statt des Luenberger-Beobachters
nun der augmentierte Beobachter mit fester Schranke gewéhlt. Fiir die Bibliothek
empfiehlt sich auf Erfahrungswissen zuriickzugreifen und etwaige Hypothesen bzgl.
einer Approximation der Reibung als Kandidatenfunktionen hinzuzufiigen. Daher
kann beispielsweise die folgende Bibliothek genutzt werden, welche eine Mischung
aus Polynomen und trigonometrischen Termen aufweist, um die Haft- und Gleitrei-
bung zu erfassen:

U (x,u) = [1,21, T, 23, 23, 129, cos(x1), cos(xz), tanh(x ), tanh(z,), u]”.  (5.23)

Der Vorteil des augmentierten Beobachters zeigt sich insbesondere in Situationen
der Systemverdnderungen. Ist die Masse des Golfschligers exemplarisch verdoppelt
worden, ohne dass das Modell des Golfroboter angepasst wurde (vgl. |[70]), so zeigt
sich die Auswirkung dieser Systemveranderung auf die Schétz- und Regelgiite in der
|IAbbildung 5.10}

Da die Vorsteuerung und der Regler weiterhin mit dem unverédnderten, nichtlinea-
ren Modell berechnet werden, ist aufgrund der Systemverdnderung eine Ab-
weichung von den Solltrajektorien und ein verédndertes Motormoment zu erkennen.
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Abbildung 5.8 Zeitlicher Verlauf des Parametervektors 6 im Vergleich verschiedener Biblio-
theken, wenn die stochastische Umsetzung der Diinnbesetztheit gew&hlt worden ist, vgl. [17],
[197], und die jeweils daraus zugeordneten dominanten Bibliotheksterme (dargestellt anhand
der Pfeile)

Allerdings gelingt es dem JE-SRUKF mit der Bibliothek ¥, die Ist-Trajektorien sehr
genau zu schétzen. Im Gegensatz dazu ist es dem Luenberger-Beobachter aufgrund
seiner nicht-adaptiven Struktur nicht moglich, die Geschwindigkeit des Schlags kor-
rekt zu erfassen, was der kumulierte quadratische Fehler in der rechten Visuali-
sierung bestétigt. Stattdessen miissten die linearisierten Modelle des Luenberger-
Beobachters rekursiv angepasst werden, um ebenso geeignet auf Systemverdnderun-
gen reagieren zu konnen (vgl. [1], [70]). Somit zeigt dieses Experiment den Vorteil
der Nutzung des JE-SRUKF's auf: Potentielle Systemverdanderungen stellen bei ge-
eignet gewdhlter Bibliothek keine Herausforderung dar, sodass eine hohe Schétzgiite
gewihrleistet werden kann. zeigt ferner auf, wie eine Modelladaption
basierend auf den Daten des augmentierten Beobachters durchgefiihrt werden kann,
welche im Fall einer Systemverinderung zur Robustheit des Beobachters beitragt
und fiir Vorsteuerung und Regler vorteilhaft sein kann. Die Anwendung am Golfro-
boter belegt daher zuverldssige Schatzungen in der Priifstands- und Echtzeitanwen-
dung im geschlossenen Regelkreis. Allerdings ist bei jedem Anwendungsbeispiel der
Einfluss der Bibliothek entscheidend fiir die Stabilitdt und Schétzgiite des Beobach-
ters, da bei einer zu einseitigen oder klein gewéhlten Bibliothek ein divergierendes
Verhalten auftreten kann (vgl. Untersuchungen in der Dissertation [17]). Folglich
sollte die Bibliothek sorgfiltig festgelegt werden.

Windenergieanlage Die bisherigen Anwendungsbeispiele kennzeichnen sich durch
rein additive Modellungenauigkeiten, welche z. B. aufgrund von Dampfung oder
Reibung resultieren. In der Modellierung von Windenergieanlagen spielt jedoch der
Einfluss des Windes eine grofie Rolle, dessen Geschwindigkeit als Storgréfie und
daher als Modellungenauigkeit modelliert wird. Als Exempel dient ein zweidimen-
sionales Modell einer Windenergieanlage aus der Dissertation [207] bzw. der dazu-
gehorigen Publikation [208], auf deren Grundlage das Referenzmodell simuliert und
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Abbildung 5.9 Approximation der Modellungenauigkeit g(x,u) = —3x3 im Vergleich ver-
schiedener Bibliotheken und der unterschiedlichen Umsetzung bzgl. der Diinnbesetztheit, vgl.

[17], [197]: Diinnbesetztheit mittels Schranke (links) und Diinnbesetztheit mittels stochasti-
scher Formulierung (rechts)
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Abbildung 5.10 Qualitdt der Zustandsschatzung im Vergleich zum Luenberger-Beobachter
im geschlossenen Regelkreis bei Systemveranderungen und Verwendung der Bibliothek ¥ am
Priifstand, wenn die Umsetzung der Diinnbesetztheit mittels Schranke gewahlt worden ist, vgl.
[17], [206]

reale Winddaten genutzt werden konnen. Eine Zeichnung des Systems mit den re-
levanten physikalischen Grofien ist in der [Abbildung 5.11| abgebildet. Der Zustand
der Windenergieanlage besteht dabei aus dem Rotorwinkel ¢ und der Position
der Gondel zp sowie deren Geschwindigkeiten, sodass ® = [p7, o7, 7, or]T gilt.
Daneben wird die Windgeschwindigkeit in z-Richtung als Storgréfie z modelliert.
Somit kann das Modell der zweidimensionalen Windenergieanlage nach [207], [208]
abstrahiert und definiert werden durch

T2

p1 - (@2, 24, 2) - (2 = 24)* = pou
Ty

p3 - Cr(xa, 24, 2) - (2 — 24)* — paa — P53
Y= [pﬁx% p3 - Op(x, 24, 2) - (2 — $4)2 — D4y — p5$3}

= [ng, x'4] .

(5.24)

Die aerodynamischen Eigenschaften des Rotors werden dabei durch die Koeffizien-
ten der Momente und des Schubs Cy (s, x4, 2) bzw. Cp(z2, x4, 2) dargestellt, welche
aus einer geschwindigkeits- und drehzahlbasierten Relation resultieren. Kurzdetails
zu diesen Zusammenhéngen sowie die Parameterwerte pq,...,pg finden sich in der
Dissertation [17]. Fiir ausfithrliche Informationen wird auf [207], [208] verwiesen. Die
Geschwindigkeit des Generators n, sowie die Beschleunigung der Gondel 21 stellen
die Messgroflen dar. Als Eingang dient das Moment u des elektrischen Generators
(vgl. [208]). Ziel ist es, die Windgeschwindigkeit, welche in der [Abbildung 5.12| dar-
gestellt ist, sowie die Position des Turmkopfes, dessen Geschwindigkeit und die Win-
kelgeschwindigkeit des Rotorwinkels zu schitzen, um die Windenergieanlage sicher
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Abbildung 5.11 Seitenansicht einer Windenergieanlage, mit freundlicher Genehmigung von
B. Ritter [207]
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Abbildung 5.12 Beispielhafter Verlauf von Realdaten der Windgeschwindigkeit z in z-Richtung
mit Mittelwert in rot und freundlicher Genehmigung von B. Ritter [207].

betreiben zu kénnen. Obwohl die Windenergieanlage ein eingangsaffines System ist
und in die Form transformiert werden kann, stellt es aufgrund der multipli-
kativen Ungenauigkeit, die durch den Term (z — x4)? entsteht, ein komplexes und
herausforderndes Exempel im Vergleich zu den vorigen Applikationen dar. Um die-
se Komplexitiat zu reduzieren, ist es im Beobachterentwurf iiblich, ein Stormodell
fiir eine Storung anzunehmen [24]. Dieses zusétzliche Vorwissen kann anschlieffend
in das augmentierte Modell eingebracht werden. Aufgrund der Struktur der
Winddaten, welche in der [Abbildung 5.12| abgebildet sind und um einen Mittelwert
von etwa 8, 5 m /s variieren, ist es ratsam, ein konstantes Stérmodell anzunehmen, so-
dass Z = 0 gilt. Wird die Windgeschwindigkeit wiederum als Linearkombination aus
geeigneten Bibliotheksfunktionen angenéhert (vgl. |Gleichung (5.2)), so ergibt sich
folgender Zusammenhang, wobei aufgrund der Ubersichtlichkeit die Abhéingigkeiten
der Bibliothek ¥(x,u) vernachlissigt werden:
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3 —0 (5.25)
& % (0"®) =0 (5.26)
s 0v+0TY =0 (5.27)
s 0w i (5.28)
& UTh _— (5.29)
o (¥ o= —(vT) e (5.30)
. — — (@) e, (5.31)

Anschlieflend wird die Bibliothek W (, u,t) = [1, cos(20-t), 0,001-t, z1, z3]7 gewiihlt,
welche neben den iiblichen Konstanten und Zustédnden auch Zusammenhéinge zur
Zeit aufweist, da z. B. Korrelationen zwischen der Biegung des Turms, entspre-
chend z3, und der Windgeschwindigkeit zu vermuten sind. Hierbei ist anzumer-
ken, dass diese Bibliothek entgegen der Formulierung zur Vereinfachung und
Ubersichtlichkeit nur einen Teil der Zustéinde enthilt, da die Bibliothek ¥ aufgrund
der Beriicksichtigung des zusétzlichen Vorwissen nach |Gleichung (5.25)| differenziert
werden muss. Kommen die Zusténde x5 und 4 hinzu, ergibt sich ein sehr dhnliches
Resultat. In der Dissertation [17] wird die Schétzgiite anhand der Zustandsverldufe
analysiert, welche ausreichend genau trotz der Storung z ist, jedoch aufgrund der
multiplikativen Struktur Beeintréachtigungen aufweist. Erkennbar sind diese Limi-
tationen ebenfalls an der Approximationsgenauigkeit der Windgeschwindigkeit z.
Wird die Linearkombination, welche Z nach Gléattung des Signals darstellt, nun mit
der Windgeschwindigkeit z verglichen, zeigt die obere Grafik in [Abbildung 5.13|
dass die Approximation qualitativ gelingt, da sich nach etwa 50 Sekunden eine Kon-
vergenz zum Mittelwert der Windgeschwindigkeit z einstellt. Allerdings zeigt die
untere Grafik in der Vergroflerung, dass der qualitative Verlauf mit einzelnen Schwin-
gungen gut abgebildet wird, aber phasenverzogert erfolgt. Dies erlaubt daher keine
exakte Approximation der Windgeschwindigkeit. Das Verfahren des augmentierten
Beobachters weist folglich Grenzen bzgl. multiplikativer, rauschbehafteter Modell-
ungenauigkeiten auf, da keine Verbesserung im Vergleich zu bestehenden Verfahren
erreicht werden konnte [207], [208]. Dennoch zeigt der Ansatz des JE-SRUKF's fiir
eine solche Ungenauigkeit das vielversprechende Potential fiir weitere Anwendun-
gen auf, sofern die Formulierung des Beobachters auf allgemeinere Systemklassen
erweitert wird.

Der augmentierte Beobachter ist fiir eingangsaffine Systeme anwendbar,
welche additive Modellungenauigkeiten aufweisen. Es gibt zwei unterschied-
liche Umsetzungen, um diinnbesetzte Parameter zu erhalten. Bei geeig-
net gewiahlter Bibliothek und sichtbarer Ungenauigkeit kénnen eine ho-
he Schitzgiite sowie eine physikalisch interpretierbare, parametrische
Darstellung der Ungenauigkeit erzielt werden. Besonders vorteilhaft ist der
Einsatz bei Systemverdnderungen, andernfalls ist der Aufwand dem Nut-
zen im Vergleich zu herkémmlichen Beobachtertypen abzuwégen.
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Abbildung 5.13 Approximation Z im Vergleich zur gemessenen Windgeschwindigkeit z (oben),
VergroBerung (unten), vgl. [17]

5.2.3 Augmentierter Sliding-Mode-Beobachter

Im ersten Abschnitt dieses Kapitels wurde bereits der Sliding-Mode-Beobachter vor-
gestellt, welcher aufgrund seiner Robustheit haufig in der Situation von Modellunge-
nauigkeiten eingesetzt wird. Daher bietet es sich an, die grundlegende Idee der Joint
Estimation auf diesen Beobachtertyp zu iibertragen. Seine grundlegende Struktur
kennzeichnet sich durch

3?1 i‘Z + I/l(ey)
T ‘%3 + V2(ey)
. o ) 5.32
Tn f(xlax%"'axn*l?y)+Vn(ey> ( )
,7; = jjl?
€y = Z) - Y,

wobei e, den Ausgangsfehler bezeichnet. Mithilfe der Darstellung lasst sich
die Fehlerdynamik des SMOs ermitteln. Der Modellfehler A f, der aus Anfangsfeh-
lern, Storungen oder Modellungenauigkeiten resultieren kann, ist dabei als Differenz
zwischen Modell f und realem System f durch

Af = f(i17j2a s 7'%71—17?/) - f(ﬂfl,l'g, s 7$n—17y) (533)

definiert [188], [189], [190]. Um nicht nur eine dynamische Approximation der Un-
genauigkeiten mittels eines Tiefpassfilters, sondern auch eine parametrische, phy-
sikalisch nachvollziehbare Identifikation zu erzielen, kann die Grundidee der Aug-
mentation auf diesen Typ Zustandsbeobachter iibertragen und um eine automatisch
gewéhlte Bibliothek ergénzt werden. Im Fall eines SMOs kann die Modellungenau-
igkeit Af oder Stérung durch die Struktur des Beobachters und der daraus resul-
tierenden Schétzfehlerdynamik direkt in Abhéngigkeit der n-ten Schaltfunktion v,
formuliert werden:

Af = —vy(ey). (5.34)
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Ublicherweise wird diese Ungenauigkeit in [Gleichung (5.34)| mithilfe eines Tiefpass-
filters approximiert. Infolge der vorangegangenen Abschnitte ldsst sich diese jedoch
auch folgendermaflen definieren:

Af =—v,(e,) =0"¥(x,u), (5.35)

indem erneut eine Linearkombination aus einer geeignet gewéhlten Bibliothek W
gewihlt wird. Um optimale Parameterwerte zu finden, wird der Fehler

eo = —vn(e,) — 07U (x,u) (5.36)

minimiert, dessen Losung durch

-1

6= (— /Ot Vn(ey)\p(:;;,u)TdT) [/Ot@(:;;,u)\p(:z,u)Tdr (5.37)

bestimmt werden kann. Diese Losung wird unter der Annahme, dass der SMO
gut parametriert ist und konvergiert, iiber einen rekursiven Least-Squares-Ansatz
mithilfe einer dynamischen Berechnung der Inversen ermittelt [188]. Neben der
Beriicksichtigung von Vorwissen in Form von Hypothesen oder der Nutzung der
minimalen Bibliothek kann jedoch zunéchst eine Datenakquise erfolgen, auf
deren Grundlage die Charakteristika der Storung analysiert werden [209]. So kann
z. B. bei oszillierenden Stérungen eine Fouriertransformation genutzt werden, um
auftretende Frequenzen aus Verldufen von v, (e,) zu identifizieren. Die Fouriertrans-
formation bietet zudem den Vorteil, dass es sich um eine orthonormale Basistrans-
formation handelt (vgl. . Dazu werden fiir einen bestimmten Zeitho-
rizont die Daten der Schaltfunktion aufgenommen, wéhrend sich der SMO in der
Sliding-Phase befindet. Diese Informationen kénnen anschlieend verwendet wer-
den, um mittels der Fouriertransformation Frequenzen des vergangenen Zeitraums
in Ansatzfunktionen v; zu platzieren [209]. Somit enthilt die Bibliothek Terme,
die hochstwahrscheinlich der Identifikation der Storung bzw. Modelldiskrepanz A f
dienen.

Einfachpendel auf einem Wagen Das Einfachpendel auf einem Wagen ist ein
klassisches, nichtlineares Anwendungsbeispiel in der Regelungstechnik [21], [24]. Im
Folgenden wird allerdings angenommen, dass sich eine Storung p auf den Wagen-
eingang u auswirkt, welche unbekannter Art ist. Der modifizierte SMO soll diese
identifizieren, indem das Hilfsmittel der Fourieranalyse genutzt wird. Dazu werden
fiir die Anregung und die Stérung

u(t):sin(ﬂ-t—l—g),

p(t):4-sin<37r-t+g>.

(5.38)

angenommen. Indem die Messdaten des Einfachpendels genutzt und einer Fourier-
analyse zugefiihrt werden, ergibt sich die [Abbildung 5.14] welche das durch die Fou-
riertransformation detektierte Frequenzspektrum anhand der relativen Héufigkeit
in den Daten kennzeichnet. Durch die [Abbildung 5.14]ist erkennbar, dass die Fou-
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riertransformation die Frequenz der Stérung w, = 37 in den Daten als wichtigste
Frequenz erkennt, aber dariiber hinaus jene der Anregung w, = 7 als weitere Grofle
detektiert. Wird dieses Vorgehen mit der Approximation iiber |Gleichung (5.37))
gekoppelt, entsteht eine automatische Formulierung der Bibliothek W, welche zur
Schétzung der Ungenauigkeit A f geschickt beitragt.

Prozentsatz der Frequenz [%]

Frequenzen w [Hz]

Abbildung 5.14 Die durch die Fouriertransformation identifizierten Frequenzen zur automa-
tisierten Bildung von Bibliothekstermen 1); weisen die héchsten Prozentsitze auf, vgl. [17],
[209].

Exemplarisch ist dieses Verfahren in der |[Abbildung 5.15| dargestellt, bei dem die
Schétzung der Ungenauigkeit mit einer nicht automatisch bestimmten Bibliothek
verglichen wird. Es lasst sich anhand des Einfachpendels erkennen, dass zunéchst
eine Datenakquise stattfinden muss, bevor die Fouriertransformation durchgefiihrt
werden kann. Daraufhin pendelt sich der Fehler 15 in derselben Groflenordnung ein.
Gleiches lésst sich im Auszug aus der Schétzung der Parameter erkennen, welche zum
gleichen Wert konvergieren, nachdem die automatisch gewéhlte Bibliothek in Betrieb
ist. Ausfiihrliche Details, auch zur Bibliothek, sind in der Dissertation [17] zu fin-
den. Mittels dieser Ergdnzung kann eine héhere Regelgiite erzielt werden, indem im
geschlossenen Regelkreis eine aktive Storkompensation, bei der Informationen auf
Basis der Approximation p ins Modell zuriickgefithrt werden, durchgefiihrt wird.
Die Erweiterung einer automatisierten Bibliothekswahl ist somit eine Ergéinzung
des augmentierten Beobachters und stellt eine hilfreiche Mafinahme dar, welche als
Werkzeug in der intelligenten Fehlererkennung und Storkompensation gewinnbrin-
gend eingesetzt werden kann. Diese Grundidee einer automatisierten Gestaltung der
Bibliothek basierend auf erhobenen Daten wird daher im folgenden
fiir die Modelladaption aufgegriffen.

Das Konzept des augmentierten Beobachters ist iibertragbar auf andere
Beobachtertypen, sofern die Voraussetzungen erfiillt sind. In der Kombi-
nation mit robusten Sliding-Mode-Beobachtern kann eine Bibliothek durch
Fourieranalyse automatisch bestimmt werden und Vorteile im Bereich
Storidentifikation und -kompensation bieten.
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Abbildung 5.15 Verlauf der Schaltfunktion v, welche die Modelldiskrepanz A f widerspiegelt,
und Auszug aus den Parameterverlaufen 0, vgl. [17], [209]

5.3 Automatische Modellaktualisierung

Um die Informationen, die durch den augmentierten Beobachter gewonnen werden,
auch langfristig nutzen zu kénnen, beispielsweise um die Modellgiite zu verbessern,
ist eine sukzessive Modellaktualisierung wiinschenswert. Durch eine Modelladaption
wird die Modellgiite in der Regel erhoht, sodass eine Verwendung des verbesserten
Modells auch fiir weitere Entwurfsschritte wie die Auslegung eines Reglers vorteil-
haft ist. Eine automatische Modellaktualisierung erfordert jedoch zunéchst eine sta-
tistisch basierte Merkmalsanalyse und -extraktion, welche im folgenden Abschnitt
thematisiert werden. AnschlieBend kann auf Basis der extrahierten Merkmale eine
Modellaktualisierung erfolgen. Zudem wird ein Konzept zur fortwahrenden Model-
ladaption vorgestellt, welches besonders gewinnbringend im Fall auftretender Sys-
temverénderungen oder sich schnell verdndernder Systeme ist, vgl. [17].

5.3.1 Merkmalsextraktion

Grundlage der Modellaktualisierung bildet die Hauptkomponentenanalyse (PCA E,
welche auf der Singulérwertzerlegung basiert und auf die Arbeiten von [210], [211]
zuriickgeht. Da durch den augmentierten Beobachter Schitzwerte des Parameter-
vektors 0, fiir vergangene Zeitschritte k = 1,..., N vorliegen, konnen diese in einer
Zeitreihenmatrix @ € R™*Y gesammelt werden. Ziel der PCA ist eine Koordinaten-
transformation der vorliegenden Daten ©® in ein Koordinatensystem, welches diese
besser als das vorherige, meist kartesische Koordinatensystem darstellen kann. Diese
Grundidee ist in der [Abbildung 5.16| beispielhaft fiir zwei Dimensionen visualisiert.

8Im Englischen ist diese als Principal Component Analysis (PCA) bekannt. Die Abkiirzung PCA
wird zunehmend auch im Deutschen verwendet, sodass diese im Folgenden genutzt wird.
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Da sich die Daten, illustriert durch die Punkte, anhand ihrer Varianz charakterisie-
ren lassen, befindet sich in der [Abbildung 5.16| die durch die PCA transformierte
erste Achse entlang der grofiten Varianz der Daten, wihrend die zweite Achse or-
thogonal zu dieser steht und die zweitgroBte Varianz in den Daten beschreibt.

X1

Abbildung 5.16 Koordinatentransformation durch die PCA anhand eines zweidimensionalen
Beispiels: Die roten Ellipsen stellen jeweils die einfache, doppelte und dreifache Standardabwei-
chung dar, die blauen Achsen beschreiben das durch die PCA gefundene Koordinatensystem,
vgl. [17], [28].

Die Datenmatrix © besteht jedoch nicht nur aus zwei, sondern aus ng verschiede-
nen Merkmalen, die in N Beobachtungen, z. B. durch Experimente, erfasst worden
sind. Wenn die Daten eine unterschiedliche Skalierung aufweisen, ist eine Vorverar-
beitung dieser unerlésslich, vgl. [Abschnitt 2.2] Erfolgt diese nicht, verzerrt die PCA
die tatsédchlich zugrunde liegenden Informationen (vgl. [15, Abbildungen 2.1 und
2.2]). Aufgrund der Sensitivitéit der PCA werden die Daten zunéchst standardisiert,
woraufhin die standardisierte Datenmatrix ®g in einer Kovarianzmatrix

Po = 0405 (5.39)

angeordnet wird. Anschliefend werden deren Eigenwerte )\ﬂ und Eigenvektoren v;
mit i = 1,...,ng bestimmt. Da die Eigenwerte von Pg eine enge Verwandtschaft zu
den Singuldrwerten von ® aufweisen, kénnen diese mithilfe der Singularwertzerle-
gung effizient berechnet werden (vgl. [15], [28]). Die dazugehorigen Eigenvektoren v,
sind dabei orthonormal zueinander. In der Regel wird die PCA nicht nur zur Analyse
der Daten genutzt, sondern auch zur Dimensionsreduktion. Dies gelingt unter der
Pramisse, dass manche der Achsen mit geringer Varianz lediglich Rauschen enthal-
ten, woraufthin die darin enthaltenen Informationen vernachléssigt werden kénnen.
Zum Zweck der Modellaktualisierung muss daher entschieden werden, welche der
ng Eigenwerte beibehalten oder fiir die Darstellung der gesammelten Daten ver-
nachléssigt werden kénnen. Da die Daten bereits vorverarbeitet worden sind, ist
der Anteil eines Eigenwerts, die gesammelten Daten gut darstellen zu kénnen, umso

9Tm Kontrast zu vorigen Kapiteln bezeichnet das Symbol A einen Eigenwert in diesem Abschnitt.
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5 Beobachterentwurf

hoher, je grofler dieser ist. Die PCA liefert genau eine solche Sortierung der Eigen-
werte A\; > Ay > --- > )\, und ihrer Eigenvektoren vy, ..., v,,. Zur Bestimmung,
ab welchem Eigenwert \;+ mit 1 < ¢* < ng eine Modellreduktion auf die ersten ein
bis i* Eigenwerte stattfindet, existieren iiberwiegend einfache, empirische Kriterien,
beispielsweise die Kaiser-Methode, der Scree-Test oder das Verfahren der kumulati-
ven Varianz [15], [212]. Letzteres wird im Folgenden genutzt und kennzeichnet sich
durch eine Abschéitzung basierend auf der Varianz der Daten O:

i*
Z—)‘
I1=1"h

- 100. (5.40)
lo=1 )\12

Um die Fahigkeit, die gesammelten Daten addquat zu reprisentieren, quantitativ
zu bewerten, wird in der (Gleichung (5.40)| zunéchst ein Quotient bestehend aus der
Summe der ersten ¢* Figenwerte bezogen auf die Summe aller Eigenwerte gebildet.
Dieser Quotient wird darauthin prozentual ausgewertet und stellt somit die prozen-
tuale Varianz der Daten dar [15], [212]. Indem ein Prozentsatz vorgegeben wird, den
das reduzierte Modell bezogen auf die Daten in jedem Fall darstellen kénnen muss,
wird die kumulative Varianz Q mit diesem Wert verglichen. SchliefSlich werden die
1* Figenwerte behalten, die mit ihrer kumulativen Varianz O genau die vorgegebene
Grenze iiberschreiten. In der Regel wird ein Prozentsatz zwischen 70% und 90%
gewahlt [15].

Nachdem die relevanten Eigenwerte bestimmt worden sind, konnen anschlieend
die dazugehorigen Eigenvektoren genutzt werden, um auf die einzelnen Terme 1);
zu schliefen. Dazu kann geometrisch argumentiert werden: Fiir jeden Eigenwert
zeigt der betragsméflig grofite Eintrag des Eigenvektors in genau die Richtung des
Elements, der den Eigenwert am meisten dominiert. In der [Abbildung 5.17 sind zur
[lustration des Vorgehens die Elemente der Eigenvektoren v, vy der beiden grofiten
Eigenwerte \;, Ao in der x- bzw. y-Achse dargestellt. Die Elemente der Eigenvek-
toren vy, bzw. vg; sind in der Abbildung durch den Index des Bibliotheksterms
1; dargestellt, sodass z. B. die Position von 19 in der Abbildung durch das neunte
Element von v; und das neunte Element von vy bestimmt wird. Somit visualisiert
die [Abbildung 5.17| die Beitrdge der einzelnen Bibliotheksterme zum jeweiligen Ei-
genwert. Fiir den groBiten Eigenwert A, der in diesem Beispiel 81,69% Anteil an der
Varianz besitzt, weist 19 den stéarksten Beitrag auf, da das neunte Element von v
betragsméfig am grofiten ist. Dies ist in der Abbildung daran zu erkennen, dass alle
anderen Terme bzgl. der z-Achse nahe Null positioniert sind. Fiir den zweitgréfiten
Eigenwert, der 12,2% Anteil an der Varianz besitzt, kann anhand der y-Achse ab-
gelesen werden, dass sowohl das erste als auch das zweite Element des FEigenvektors
vy einen Einfluss besitzen. Da das erste Element, erkennbar an der Position des
Terms 11, jedoch einen betragsméaflig grofleren Einfluss aufweist, wird dieses als do-
minant bestimmt und deshalb auf den Term 1y zuriickgefiihrt. Alle weiteren Terme
besitzen keinen Einfluss auf diesen Eigenwert, da deren Betridge nahe Null sind, was
durch die Uberlagerung der Terme um Null dargestellt ist. Folglich wird zu jedem
der dominanten Eigenwerte \; der Eigenvektor v; bzgl. seines betragsméaflig grofiten
Elements ausgewertet. Dieses Element vy« mit 1 < [* < ng ist dann die Referenz fiir
den Bibliotheksterm 1)+, der den starksten Einfluss auf den Eigenwert \; aufweist.

Exemplarisch wird diese Merkmalsanalyse auf das Beispiel des Duffing-Oszillators
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5.3 Automatische Modellaktualisierung
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Abbildung 5.17 Die ersten beiden Eigenwerte A1, Ao decken zusammen mehr als 93% der
Varianz ab. Die Elemente der dazugehdrigen Eigenvektoren v; und vs sind in dieser Visuali-
sierung in Abhangigkeit voneinander als Kreise dargestellt. Die Zahlen i stellen das jeweilige
Element des Eigenvektors v bzw. vy dar und kdnnen infolgedessen auf die Bibliotheksterme
; zuriickgefiihrt werden, vgl. [17].

mit der Bibliothek ¥; angewendet, dessen Daten aus den Abbildungen [5.5] und
verwendet werden. Werden schliefllich die beiden wichtigsten, dominanten Terme
19 und 1y genutzt, um die Modellungenauigkeit zu approximieren, kann diese re-
duzierte Identifikation ¢ ,eq zur vollsténdigen Linearkombination ¢; und zur Mo-
dellungenauigkeit g verglichen werden. In der [Abbildung 5.18| ist dieser Vergleich
dargestellt, welcher aufzeigt, dass aufgrund der Modellreduktion zwar geringfiigig
Informationen verloren gehen, die §; aufweist und welche sich daher als Abweichung
bei §1 eq bemerkbar machen, im Allgemeinen aber die Genauigkeit weiterhin hoch
ist. Somit liefert die Modellreduktion durch die PCA die Identifikation relevanter
Terme, die eine physikalisch-technische Interpretierbarkeit der Modellungenauigkeit
ermoglichen.

5.3.2 Modellaktualisierung

Auf Basis der PCA stehen die relevanten, dominanten Bibliotheksterme 1; fest,
welche die Modellungenauigkeiten g im vergangenen betrachteten Zeitraum am bes-
ten charakterisieren. Allerdings ist fiir die Aktualisierung des Modells die Kenntnis
des jeweiligen dazugehorigen physikalischen Parameters erforderlich. Dieser kann
u. U. zeitinvariant, aber auch zeitvariant vorliegen und muss durch eine nachfol-
gende Parameteridentifikation bestimmt werden. AnschlieBend kann das Modell um
die identifizierte, parametrische Darstellung fiir die Modellungenauigkeit erginzt
werden. Allerdings ist es in manchen Situation erforderlich und vorteilhaft, dass
eine fortwéihrende Identifikation und Modellaktualisierung durchgefiihrt wird. Die
[Abbildung 5.19|zeigt ein Flussdiagramm, welches den Ablauf einer solchen dauerhaf-
ten Modelladaption darstellt. Das Konzept besteht aus zwei Phasen, die abhingig
von Kriterien durchlaufen werden. Die erste Phase umfasst die Datenakquise und
die Uberpriifung mithilfe verschiedener Kriterien, ob eine Aktualisierung notwendig
ist. Diese Kriterien umfassen den Zeitpunkt Tj, welcher bei einem erstmaligen Be-
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Abbildung 5.18 Approximation der Modellungenauigkeit g durch die vollstandige Linearkom-
bination g1 und durch die von der PCA reduzierte Linearkombination §i ,eq, vgl. [17], [197]

trieb des Systems das Ende der Einschwingphase bzw. des transienten Verhaltens
markiert, sowie die Anzahl der gesammelten Parameterséitze, da geniigend aussage-
kriftige Zeitreihendaten gesammelt werden miissen, um eine Analyse durchfiihren
zu konnen. Entscheidend ist zudem, ob eine Aktualisierung des Modells erforderlich
ist. Dieses Merkmal stellt hédufig der Modellfehler Af dar, welcher beispielsweise
anhand des Ausgangsfehlers evaluiert werden kann. Uberschreitet dieser eine defi-
nierte Grenze df, beginnt die zweite Phase, welche in der [Abbildung 5.19| dargestellt
ist. Mithilfe der PCA und einer festgelegten kumulierten Varianz Q werden die
dominanten Bibliotheksfunktion v; des vergangenen, analysierten Zeitraums extra-
hiert, woraufthin die restlichen Eintrége in der Bibliothek entfernt werden. Um eine
weiterhin sich sukzessiv verbessernde Modellgiite zu ermdoglichen, werden neue Bi-
bliotheksterme basierend auf vorgefertigten Bibliotheken W7 gebildet. Diese Biblio-
theken kénnen beispielsweise thematisch geordnet sein und je nach Anwendungsfall
trigonometrische Funktionen oder typische Reibelemente enthalten. Die Auswahl
neuer Bibliotheksterme 1); ., erfolgt dabei randomisiert oder infolge einer weiterge-
henden Analyse. Letztere ist sinnvoll, wenn viele Eigenwerte gleich starke Beitrige
zur Varianz liefern, sodass moglicherweise nicht alle dominanten Bibliotheksterme
identifiziert wurden. Anwendungsbeispiele dieses Vorgehens sind in der Dissertation
[17] zu finden.

Bei Systemverdnderungen oder sich schnell verdndernden Systemen ist ei-
ne automatische Modelladaption durch den augmentierten Beoabch-
ter mittels der Hauptkomponentenanalyse moglich. Dadurch ist eine
fortwihrende Option zur sukzessiven Modellverbesserung gegeben. Vor-
aussetzungen sind weiterhin eine geeignet gewéhlte Bibliothek sowie ausrei-
chend grofle Datenmengen und Analysezeitraume.
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5.4 Koopman-basierter Beobachter mit Verwendung von EDMD
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Abbildung 5.19 Konzept zur simultanen Schitzung und Modellaktualisierung, vgl. [17]

5.4 Koopman-basierter Beobachter mit Verwendung
von EDMD

In [213] wird erstmals der modellbasierte Beobachterentwurf fiir ein Koopman-
basiertes Streckenmodell in Anlehnung an lineare Luenberger-Beobachter beschrie-
ben. Es wird angenommen, dass sich die Dynamik eines zugrunde liegenden auto-
nomen Systems mittels N Koopman-Eigenfunktionen ®(x) = [¢1(x), ..., on(z)] !
und den dazugehorigen Koopman-Eigenwerten Ay, ..., Ay durch

$(z) = KB(z) = Ad(z) (5.41)

und der n-dimensionale Systemzustand

N
x = Z pj(x)v? = V*®(x) mit vf e R",V* = [vf,... v%] e RN (5.42)

J
j=1
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sowie der g-dimensionale Systemausgang

N
y=> @i@v!=V®(x) mit v R, VY= [of, .. v%] eR"Y (5.43)
j=1
als Linearkombinationen formulieren lassenm. Dann ergibt sich daraus die Koop-
man-Beobachternormalform

®(xr) = AP(xp-1), (5.44a)
Y, = VV®(xy), (5.44b)
x, = VP (xy), (5.44c¢)

mit der ein Luenberger-Beobachter [24], [181]

A A

®(x)) = A®(x)-1) + L(y), — Yy, (5.45a)
y=Vi®(x,), (5.45b)
xy) (5.45¢)

entworfen werden kann. Wenn das Paar (A, V) beobachtbar ist, kann eine Riick-
fithrmatrix L bestimmt werden, sodass der Beobachter konvergiert. Falls die
Koopman-Eigenzerlegung |(5.41)H(5.43)| dariiber hinaus endlich dimensional und ex-
akt ist, ist die Koopman-Beobachternormalform global giiltig und damit der
Beobachter global konvergent. In [213] wird simulativ demonstriert, dass die
resultierende Schiitzgiite eines Koopman-basierten Kalman-Filters sowohl anhand
eines einschligigen Einfithrungsbeispiels, vgl. |Gleichung (3.8)} als auch am Van-der-
Pol-Osrzillator einem EKF iiberlegen ist. [214] erweitert den beschriebenen Ansatz
auf eingangsaffine und bilineare Systeme und [215] erweitert den Ansatz auf Systeme
mit Zustandsbeschrankungen.

In [216] wird die simulative Entwicklung eines Kalman-Filters unter Verwen-
dung eines DMD-Modells zur Modellordnungsreduktion fiir Windturbinen beschrie-
ben. Der Beitrag [217] beschreibt in Anlehnung an [213], [214] die Entwicklung
eines robusten Koopman-basierten Kalman-Filters mit einem Maximum-Likelihood-
Ansatzlﬂ fiir ein elektrisches Energiesystem und demonstrieren eine hohere Schétz-
giite als bei der Verwendung eines EKFs. Der Beitrag [219] beschreibt einen neuar-
tigen Ansatz fiir die Fehlererkennung bei supraleitenden Hochfrequenzkavitédten in
einem Teilchenbeschleuniger mittels eines Koopman-basierten Kalman-Filters. Im
Vergleich zu einem UKF ermoglicht der Koopman-basierte Kalman-Filter bei dieser
Anwendung eine hohe Schiitzgiite bei einer stark verringerten Rechenzeit. Der Bei-
trag [220] beschreibt den Entwurf eines Koopman-basierten EKFs fiir die Kraft- und
Drehmomentschétzung eines weichen Medizinroboters. Hierfiir wurde das EDMD-

OHijer wird der Einfachheit halber ausschlieBlich der Fall fiir reale Eigenwerte beschrieben; eine
Erweiterung um komplex-konjugierte Eigenwerte findet sich in [213].

"Die Maximum-Likelihood-Methode [218] stammt aus der Statistik und konstruiert eine Schétz-
funktion derart, dass fiir den unbekannten Parameter unter der Grundgesamtheit aller denkba-
ren Schétzwerte genau derjenige ausgewéhlt wird, bei dem die gezogene Stichprobe die maxi-
male Eintrittswahrscheinlichkeit besitzt. Eine umfassende Beschreibung dieser Methode findet
sich beispielsweise in [10].
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5.4 Koopman-basierter Beobachter mit Verwendung von EDMD

Pradiktionsverfahren mit Korrektur, vgl. [Unterabschnitt 3.1.2] aufgegriffen, um die
Schétzgiite zu erhéhen.

Beispielhafte Anwendung am Schlagmechanismus des Golfroboters Bei dem
Schlagmechanismus des Golfroboters ldsst sich der Zustand z; (der Winkel der Ab-
triebswelle) messen, sodass fiir die Ausgangsgleichung gilt, vgl. |Gleichung (6.11)],

y=c'z mit ¢’ =[1,0]. (5.46)

Daher ist es erforderlich, dass der Zustand xo mittels eines Beobachters geschétzt
wird. Basierend auf dem EDMD-Modell der Dynamik lésst sich ein Luenberger-
Beobachter [24], [181] fiir den Schlagmechanismus entwerfen, der sich durch

lil(m) = (K - Z6T> () + bu +ly (5.47)
beschreiben ldsst. Hierbei ist der EDMD-Ausgangsvektor durch
¢=[1,0,0,0] (5.48)

gegeben und die Eigenwerte des Beobachters, d. h. der Matrix K — lé', werden
doppelt so grofl wie die Eigenwerte des geschlossenen Regelkreises gewihlt [221].
In der [Abbildung 5.20| wird beispielhaft die resultierende Regelgiite |(6.16)H(6.17)|
des EDMD-basierten Beobachters mit einem EDMD-basierten LQ-Regler der des
physikalisch motivierten Entwurfs, vgl. Beginn dieses Kapitels, gegeniibergestellt.
Bei letzterem werden der Regler und Beobachter durch einen Gain-Scheduling-
Ansatz bestimmt. Fiir die Solltrajektorie mit einem Ausholwinkel von 120° erreicht
der Koopman-Ansatz eine deutlich hohere Regelgiite. Diese Erkenntnis ist nach um-
fassenden Analysen der vorherigen Kapitel erwartungsgeméaf und lésst sich darauf
zuriickfithren, dass das EDMD-Modell eine hohere Modellgenauigkeit aufweist, vgl.
[Unterabschnitt 3.1.2] und somit auch eine iiberlegene Regelgiite, vgl. [Abschnitt 4.1,
als der Gain-Scheduling-Ansatz bietet, der auf einer Linearisierung des nichtlinearen
physikalischen Modells basiert. Aufgrund der hohen Schétzgiite und der geradlinigen
Anwendbarkeit lasst sich die Aussage treffen, dass das EDMD-Modell eine hohe rege-
lungstechnische Verwertbarkeit auch hinsichtlich des Beobachterentwurfs aufweist.

EDMD-Modelle lassen sich aufgrund der linearen Systemstruktur geradli-
nig fiir den Entwurf eines Luenberger-Beobachters nutzen. Am Beispiel des
Schlagmechanismus des Golfroboters wurde mittels numerischer Simulationen
die Erkenntnis gewonnen, dass der EDMD-basierte Entwurfsansatz beziiglich
der resultierenden Regelgiite einem physikalisch motivierten Ansatz mit klas-
sischer Linearisierung iiberlegen sind.
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Abbildung 5.20 Resultierende simulierte Regelgiite unter Einsatz von Beobachtern
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6 Demonstratoren

Ein wichtiges Projektziel von DART war es, die entwickelten hybriden Methoden
nicht nur an akademischen und simulativen Beispielen zu testen, sondern auch an
realen regelungstechnischen Priifstinden. Die Erfahrung zeigt, dass es einen groflen
Unterschied macht, Methoden auch real zu testen, denn viele Storeffekte der rea-
len Welt wie Rauschen und Verzogerungen werden in Simulationen héufig nicht
beriicksichtigt bzw. kénnen vorab nicht abgeschétzt werden. Im Rahmen des Pro-
jekts wurde der Golfroboter zum einen selbst weiterentwickelt und zum anderen
der Schlagmechanismus fiir viele regelungstechnische Experimente verwendet. Die
Funktionsweise des Golfroboters wird in vorgestellt, sodass neben den
einzelnen Experimenten zu den hybriden Methoden auch der Gesamtentwurf des
automatisierten Golfspielens erldutert wird. Der selbstbalancierende Wiirfel ist ein
wihrend der Projektlaufzeit entwickelter regelungstechnischer Priifstand, der ge-
nutzt wird, um ebenfalls fiir Experimente der hybriden Methoden zur Verfiigung
zu stehen. Der Wiirfel ist in der Lage sich mit Hilfe der Beschleunigung und an-
schlieBendem abruptem Abbremsen von Schwungridern auf eine Kante oder Ecke
aufzustellen und kann dort stabilisiert werden. Als sehr anschaulicher regelungstech-
nischer Demonstrator wird der Wiirfel auch iiber die Projektlaufzeit hinaus genutzt
werden. In wird der Aufbau und die Funktionsweise erldutert und es
werden einige Experimente im Rahmen der Tests der entwickelten hybriden Metho-
den beschrieben.

6.1 Golfroboter

Der Golfroboter ist ein selbstlernendes mechatronisches System, welches datenge-
triebene und physikalische Methoden kombiniert, um das Putten eines Golfballes
von einem beliebigen Punkt des Greens autonom zu lernen. Hierfiir wird ein Ka-
merasystem mit Bilderkennung verwendet und aulerdem ein kiinstliches neuronales
Netz gelernt, welches den Geschwindigkeitsvektor des Schlages vorhersagen kann,
um ein erfolgreiches Einlochen sicher zu stellen. Um die Anzahl der zeitaufwéndigen
Interaktionen mit dem realen System zu minimieren, wird das neuronale Netz vor-
trainiert. Hierfiir wird ein physikalisches Modell ausgewertet, das die Dynamik des
Golfballs auf dem Green nachbildet. Die Approximation des Greens erfolgt ebenfalls
datengetrieben. Dieses mechatronische Anwendungsbeispiel ist somit in der Lage die
synergetische Kombination von datengetriebenen und physikalisch basierten Metho-
den zu demonstrieren.

Autonome Roboter werden voraussichtlich schon in naher Zukunft viele Men-
schen in alltdglichen Téatigkeiten unterstiitzen konnen, zum Beispiel in der Versor-
gung von alten oder korperlich eingeschrinkten Personen, die gehoben oder bewegt
werden miissen. Hierfiir ist ein umsichtiges Handeln des autonomen Roboters un-
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6 Demonstratoren

Abbildung 6.1 Golfi ist ein selbstlernender Golfroboter, der in der Lage ist autonom zu put-
ten. Golfi dient als Demonstrator fiir die Anwendung von datengetriebenen Methoden in der
Regelungstechnik.

erlédsslich. Diese und andere Aspekte von autonomen Robotern behandeln wir in
unserer Forschungsarbeit und wollen sie am Beispiel des autonomen Golfroboters
weiterentwickeln. Das Szenario, in dem sich der Golfroboter bewegt ist es, im Be-
reich des Greens den Golfball in das Loch zu putten. Um diese Herausforderung zu
bewiltigen, benotigt ein System, welches autonom arbeiten soll, eine genaue Um-
gebungserkennung und eine prazise Ansteuerung, denn selbst fiir geiibte Golfspieler
ist das Putten anspruchsvoll und nicht immer erfolgreich. Um diesen Anforderungen
gerecht zu werden, kombinieren wir leistungsfdhige datengetriebene Methoden mit
etablierten physikalischen Methoden aus der Regelungstechnik. Ein hybrider Ansatz
erscheint hier duflerst vorteilhaft, um die Vorteile aus beiden Bereichen optimal zu
nutzen.

Im Golfsport gibt es einige Roboter, die eine Vielzahl unterschiedlicher Aufga-
ben iibernehmen. Ein Bereich ist die Unterstiitzung der Spieler bei der korrekten
Ausfithrung der Schldge. Beispielsweise optimiert der Roboter in den Schwung
der Golf spielenden Person, indem er ihren Arm direkt fithrt. Eine weitere verbrei-
tete Anwendung von Golfrobotern ist das Testen des Zubehors. Beispiele aus ,
[224], [225], [226], [227], [228], [229] zeigen Roboter, die Golfschlager und Golfbille
mit vielen verschiedenen Schlégen testen, wobei die Grundkonstruktion meist aus
einem rotierenden Roboterarm besteht. Der dritte Anwendungsbereich besteht in
der Imitation von menschlichen Schldgen. Der Roboter ROB-OT ist in der
Lage ein komplettes Golfspiel zu spielen und dient daher als ein Demonstrations-
objekt fiir Golfer, aber auch Unterhaltungszwecken. Obwohl dieser Roboter in der
Lage ist, sich auf dem gesamten Green zu bewegen, wird ein*e Golfexpert*in fiir die
Bedienung wéhrend des gesamten Spiels benotigt.

Unser Golfroboter, wie er in der[Abbildung 6.1{zu sehen ist, hat das Ziel vollstéandig
autonom zu putten. Das bedeutet, dass er den Ball von einer beliebigen Position
auf einem unbekannten Green mit einem einzigen Schlag einlochen soll, wobei der
Ball nicht durch die Luft fliegen soll. Um dies zu erreichen wird eine Kombination
aus klassischer Regelungstechnik und datengetriebenen Techniken, also maschinel-
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Abbildung 6.2 Systemarchitektur des Golfroboters: Das Gesamtproblem ist in Teilaufgaben
unterteilt, wobei unterschiedliche Ansitze verfolgt werden: datengetrieben, physikalisch basiert
oder auch hybrid. Der Startpunkt im Prozess ist eine gegebene Situation in einem Golfspiel.

lem Lernen, verwendet. Die Positionierungs- und Schlageinheit kénnen recht einfach
physikalisch modelliert werden, sodass sich hierfiir klassische Optimierungsmetho-
den nutzen lassen. Im Gegensatz dazu sind die Analyse der Spielsituation und die
Bestimmung einer optimalen Schlagrichtung und Schlaggeschwindigkeit herausfor-
dernde Probleme, die nicht einfach mit Hilfe von physikalischen Gesetzen gelost
werden konnen. Daher strukturieren wir die Gesamtaufgabe des autonomen Golf-
spielens in unterschiedliche Teilaufgaben, wie es in der [Abbildung 6.2 aufgezeigt
wird. Die Komplexitdt nimmt dabei von unten nach oben zu und damit auch der
Anteil der verwendeten datengetriebenen Ansédtze. Ganz unten wird das mecha-
tronische Grundsystem des Golfroboters beschrieben, welches dafiir zustédndig ist,
den Roboter auf dem Green zu bewegen und den Schlag mit einer vorgegebenen
Richtung und Schlaggeschwindigkeit ausfiihrt. Die aktuelle Situation des Golfspiels
wird definiert durch die Positionen von Golfi, dem Ball, dem Loch und auch der
Beschaffenheit und Grofle des Greens und diese Gegebenheiten werden durch eine
3D-Kamera aufgenommen. Auf der obersten Ebene werden zum einen datengetrie-
bene Methoden des maschinellen Lernens verwendet, um Objekte zu detektieren und
zum anderen eine synergetische Kombination von datengetriebenen und physikba-
sierten Methoden, um den Geschwindigkeitsvektor fiir das Einlochen des Balles zu
berechnen. Mit diesem Vorgehen ist es moglich zunéchst ein kiinstliches neuronales
Netz vorzutrainieren, indem simulativ erzeugte Trainingsschlidge verwendet werden,
die ein physikalisches Modell der Balldynamik auf einem vorgegebenen Green nut-
zen. Anschliefend wird dieses neuronale Netz mittels Trainingsschldgen des realen
Golfroboters nachtrainiert. Dieses Vorgehen reduziert die Anzahl der zeitaufwendi-
gen Interaktionen mit dem realen System signifikant und erzeugt daher ein besseres
Ergebnis durch eine zielgerichtete und sinnvolle Kombination von datengetriebenen
und physik-basierten Methoden.

6.1.1 Mechatronischer Entwurf des Golfroboters

Das mechatronische System des Golfroboters muss einen vorgegebenen Schlagge-
schwindigkeitsvektor realisieren, d. h. den Ball in eine bestimmte Richtung mit ei-
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ner spezifischen Geschwindigkeit schlagen. Diese Aufgabe wird in zwei Teilaufgaben
unterteilt.

1. Die Positionierungseinheit muss den Golfroboter so auf dem Green platzie-
ren, dass der Schldger sich direkt neben dem Ball befindet und dabei in eine
bestimmte Richtung zeigt und

2. der Schlagmechanismus muss den Ball so treffen, dass er mit einer spezifischen
Anfangsgeschwindigkeit zu rollen beginnt.

Im Folgenden werden diese Aufgaben detailliert beschrieben.

Positionierungseinheit

Die Positionierungseinheit des Golfroboters besteht aus einer Fahreinheit und ei-
ner zusétzlichen Feinpositioniereinheit, wie in der [Abbildung 6.3 schematisch dar-
gestellt ist. Da der Golfplatz durch die an der Decke montierte Kamera aus der
Vogelperspektive betrachtet wird, vereinfacht sich die Positionierungsaufgabe zu ei-
nem ebenen Problem, bei dem die xz-Achse, die y-Achse und die Rotation ¥ in der
Ebene ausreichen, um die Positionierung vollstdndig zu beschreiben. Das Inertialko-
ordinatensystem I, das dem Kamerakoordinatensystem entspricht, liegt ungefdhr im
Mittelpunkt des Greens. Das korperfeste Koordinatensystem G liegt zwischen den
beiden hinteren Rédern und ist so ausgerichtet, dass die gx-Achse in Fahrtrichtung
und die gy-Achse nach links zeigt.

Die Fahreinheit, die ein Chassis mit zwei angetriebenen JMC-Servomotoren um-
fasst, die durch eine Arduino-Plattform angesteuert werden, sowie zwei frei dreh-
bar gelagerten Réddern, realisiert eine Translation entlang der ga-Achse und eine
Drehung um den Winkel ¢W. Obwohl der Golfroboter theoretisch durch diese bei-
den Freiheitsgrade jede beliebige Pose einnehmen kann, ist die Translation entlang
der gy-Achse schwierig zu realisieren. Daher wird zusétzlich eine Feinpositionier-
einheit verwendet, die durch das Koordinatensystem F beschrieben wird. Dieses
befindet sich zwischen dem Chassis und dem Schlaggerét und basiert auf zwei Spin-
deln, die von Joy-IT-Schrittmotoren mit Leadshine DM 542-Treibern angetrieben
werden. Die Feinpositioniereinheit ermoglicht eine kleine, aber weitaus prézisere
Bewegung des Roboters, weil hier der Einfluss der Traktion auf dem Boden eli-
miniert wird. Beziiglich des Koordinatensystems F ist eine translatorische Bewe-
gung entlang der py-Achse und eine Rotation um den Winkel g¥ im Bereich von
+18° moglich. Die Rédder und Spindeln kénnen direkte translatorische Verfahrbe-
fehle erhalten, wobei angenommen wird, dass die Verfahrbefehle aufgrund der Ei-
genschaft der Schrittmotoren ideal realisiert werden. Auflerdem wird das Koordi-
natensystem C eingefiihrt, das sich im Zentrum des Schlédgers befindet, sowie das
Ball-Koordinatensystem B, das sich im Zentrum des Balls befindet und die gleiche
Ausrichtung wie I hat. Das Ziel der Positionierung besteht darin, die cx-Achse mit
der Richtung des gewiinschten Schlaggeschwindigkeitsvektors jvs auzurichten und
den Ursprung des Koordinatensystems C mit einem Offset von 3cm in negativer
1vs-Richtung ab dem Ursprung von B zu platzieren. In den bisherigen Tests wurde
der Einfachheit halber nur die Fahreinheit und noch nicht die Feinpositioniereinheit
verwendet, wodurch dennoch ausreichende Ergebnisse erzielt werden konnten.
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Abbildung 6.3 Die Positionierungseinheit, hier in Draufsicht, besteht aus einer Fahreinheit
und einer zusatzlichen Feinpositioniereinheit. Die Fahreinheit umfasst zwei hintere Rader, die
einzeln angetrieben werden (in blau) mit den Drehmomenten 6; und 65, wobei das Gewicht
des Roboters von den beiden frei drehbar gelagerten Radern vorne mit getragen wird. Die An-
triebseinheit ermdglicht es dem Roboter, sich um den Winkel ¢¥ zu drehen und Bewegungen
entlang der gz-Achse auszufiihren. Die Feinpositioniereinheit, die auf zwei einzeln angetriebe-
nen Spindeln (in griin) basiert, verfiigt iiber ein Langloch auf dem rechten Wagen, das es dem
Roboter ermdglicht, sich um kleine Winkel g W zu drehen, indem die Drehmomente 63 und 64
in entgegengesetzte Richtungen angetrieben werden, sowie Bewegungen entlang der py-Achse.

Die Pose des Golfschlidgers wird durch

19¢ = [1%cy1 Yo 2] ! (6.1)

bezeichnet. Das Ziel der Ansteuerung ist es, dass die tatsdchliche Endpose des Golf-
schlégers 1g¢ . der gewiinschten Endpose des Golfschlégers 1g¢ 4 entspricht, die von
der Ballposition und dem Schlaggeschwindigkeitsvektor abhéngt. Eine Trajektorie
zwischen einem Start- und einem Zielpunkt unter Beriicksichtigung von Hindernissen
zu ermitteln ist in der Literatur ein bekanntes Problem, fiir welches unterschiedliche
Ansiitze bestehen. Am Golfroboter wird die Fahrtrajektorie {iber ein Optimierungs-
problem ermittelt. Der Ansatz bietet die Moglichkeit das Verhalten des Roboters zu
bestrafen, wodurch sich u. A. die Kollision mit dem Ball und bestehenden Hiigeln
vermeiden lédsst. Die Ansteuerung fiir die Schrittmotoren wird daher durch die Mi-
nimierung der Kostenfunktion

Jp(©) = dz(19c.) + ¢s(O) + da(1g9c) + ¢B(gc) + Punigc) (6.2)

berechnet, wobei
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die Ansteuerungssequenz durch die Stellgréffen 6; und 65 wiedergeben. 6; und 6,
entsprichen dabei den Drehgeschwindigkeiten beider Réder, die fiir ein Manover
t konstant gewdhlt werden. Die gesamte Fahrtrajektorie setzt sich aus N Dreh-
und Fahrmanovern zusammen, wobei die Annahme, dass es sich bei ¢ = 1 um
eine Drehung handelt, die benttigte Anzahl an Manévern N in den meisten Fallen
verringert. In [Abbildung 6.4] ist eine beispielhafte valide Trajektorie aus N = 6
Manovern dargestellt. Die Kostenfunktion enthélt mehrere Strafterme, woriiber sich
das Verhalten des Roboters beeinflussen léasst. Der Term

¢Z(Igc,e) = (Igc,d —I gc,e)T Qp (IgC,d —I gc,e) (6.4)

sorgt fiir das korrekte Erreichen der Zielposition. Ferner flieit ein hoher Verbrauch
der Stellgroflenenergie iiber

N

$s(@) =) OT(i)R,O(i) (6.5)

i=1

in die Kostenberechnung ein, wodurch unnétige Fahrwege reduziert werden. Beide
Strafterme ¢z(19¢,) und ¢s(®) lassen sich iiber die Gewichtungsmatrizen @, und
R, in Relation zueinander setzen. Die weiteren Terme

0, fiir ZAL 'gc; € Bg,
ba(19c) = =T : (6.6a)
¢ Zf:l Sg, fir sz\il IgC,z‘ ¢ Bg
0, fiir z]\il Igc. ¢ Bg,
= = ’ , 6.6b
0, fiir S2N g, ¢ B,
= i ’ 6.6¢
#u(1g9c) {va_1 Sy, fiir ZZ]\;l Igc,i € By ( )

lassen sich das Verlassen des Greens (¢g) und eine Kollision mit dem Ball (¢p)
oder einem Hiigel (¢y) an jeder Position g eines potentiellen Fahrwegs vermeiden.
Sowohl das Verlassen des Greens als auch die Kollisionsvermeidung werden durch
eine Abfrage iiber Beinhaltung der aktuellen Position des Roboters 1g; in der zu-
gehorigen Menge aller validen Zustédnde fiir das Green Bg, Ball Bg und Hiigel By
realisiert. Im Fall einer Kollision oder beim Verlassen des Greens erhoht sich die
Summe in [Gleichung (6.2)| um einen konstanten Wert S, Sg oder Sy. Da eine Tra-
jektorie mit auftretender Kollision bzw. Verlassen des zulédssigen Bewegungsraums
ausgeschlossen werden soll, empfiehlt es sich die Strafterme ausreichend hoch zu
wihlen in Relation zu den Strafen fiir weite Fahrmanover ¢z(1g¢,) oder ungenaue
Positionierung ¢s(®). Fiir das Losen des Optimierungsproblems wird ein Parti-
kelschwarmalgorithmus verwendet, wofiir die Anzahl der Dreh- und Fahrmanover
N vorgegeben werden muss. Bei steigendem N wird der Suchraum fiir valide Tra-
jektorien exponentiell grofler, wodurch sich die Rechendauer fiir den Algrithmus
erhoht. Das Ziel ist es somit N hinreichend niedrig zu wéhlen. Um diesen Para-
meter passend abzuschitzen werden alternative Fahrtrajektorien verwendet, die je-
doch nicht die gleichen Eigenschaften wie im vorgestellten Optimierungsproblem
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Abbildung 6.4 Der Roboter in der Draufsicht an mehreren Positionen auf einem beispielhaf-
ten Green ohne Hiigel abgebildet. Damit der Roboter bei der Positionierung den Ball nicht
verschiebt, fahrt er ihn von hinten mit einer finalen translatorischen Bewegung an. Bei diesem
letzten Fahrmanover ist der Roboter bereits korrekt ausgerichtet. In dem Beispiel werden je
drei Dreh- und Fahrmandver (N = 6) durchgefiihrt, wobei an den Drehpunkten die Positionen
vor und nach der Drehung durch eine transparente Draufsicht des Roboters gekennzeichnet
sind.

beriicksichtigen. Unter der Verwendung des Rapidly Exploring Random Tree* Al-
gorithmus (RRT*)[231], wird ein solcher alternativer Weg fiir den Roboter
fiir die Parameterschéitzung geplant. Hierfiir wird der gefundene Weg iiber einen
zusétzlichen Algorithmus gekiirzt, sodass unter Vermeidung der Hiigel, die Anzahl
der Dreh- und Fahrmanover minimiert wird. In der Anwendung am Golfroboter
resultiert dieses Vorgehen meist in je zwei bis vier notwendigen Dreh- und transla-
torischen Fahrmand&vern.

Im Anschluss an die Bewegungsplanung erfolgt das Abfahren der Fahrtrajektorie,
die durch das Losen des Optimierungsproblems automatisiert ermittelt wurde. Ana-
log zum Regelungsentwurf fiir einen kontrollierten Schlag in [Abschnitt 6.1.1] — ohne
Verwendung eines Beobachters — wurde dieser Ansatz ebenfalls fiir kontrolliertes
Fahren verwendet. Der Roboter wurde in dem Zuge auf seine Hinterachse reduziert,
woraus sich die Bewegungsgleichungen

T'Rad T'Rad

1905 = 5 (01 + 02) cos(IgCﬂ/)) =3 (u1 + ug) cos(zs), (6.7a)
. TRa . T'Ra .
19cy = lzd (01 + 02) sin(1g¢c,y) = P;d (uy + ug) sin(z3), (6.7b)
ey = o (02 — 61) = Fiad (ug —up) (6.7¢)
’ lAchse lAchse

fiir das kinematische Modell ergeben, wobei die folgenden Ersatzgrofen fiir Zustands-
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und Eingangsvektoren zur Vereinfachung gewahlt werden

. IQC’X o 91 U1
ge= | 9cy | =] 22|, O= 0, | = | uy | (6.8)
Ig'c,w T3

In diesen Bewegungsgleichungen entspricht rg.q dem Radius der baugleichen Hin-
terrdder und [acnse der Liange der Hinterachse, die beide Rader miteinander verbin-
det. In Gleichung (6.7) wird die gemittelte Drehgeschwindigkeit v = 24 (6, + 0,)
in x- und y-Richtung aufgeteilt. Die Ausrichtung x3 dndert sich dabei nach
ebenfalls abhéngig der Drehgeschwindigkeiten. Fiir das Beispiel u; =
—uy > 0 wiirde der Roboter, dargestellt in |[Abbildung 6.3| sich im Uhrzeigersinn
um den Punkt ;g drehen. Die Gleichungen |Gleichung (6.7)| konnen zusammenge-
fassten werden durch die Beschreibung 1. = Apg + Bp®. Auf Grundlage eines
linearisierten Modells, wofiir der Gain-Scheduling-Ansatz verwendet wird, lasst sich
der Entwurf eines Riccati-Reglers durchfithren. Der Zustand g wird iiber die Aus-

wertung des Kamerasignals gemessen, wie es in [Unterabschnitt 6.1.2| erlautert ist.

Schlagmechanismus

Die Regelungsaufgabe des Schlagmechanismus besteht darin, dass der Schldger den
Ball mit einer prézise geregelten translatorischen Geschwindigkeit ||v|| schlagt. Dies
entspricht einer rotatorischen Geschwindigkeit von ¢, = @, wobei h der Abstand
von der Rotationsachse der Abtriebswelle zum Schlagpunkt des Schligers ist, vgl.
Tabelle 6.1} Die Schlaggeschwindigkeit ¢4 soll genau dann erreicht werden, wenn
der Schldger senkrecht nach unten steht, d. h. einen Winkel von ¢ = Orad auf-
weist. Basierend auf diesen Anforderungen wurde eine Schar von Solltrajektorien
w = [go,gb}T in Abhéngigkeit der gewiinschten Schlaggeschwindigkeit ¢, hergelei-
tet. In Anlehnung an eine authentische Golfschwungbewegung bestehen diese jeweils
aus den drei Phasen Ausholen, Schlagen, Riickholen, vgl. |[Abbildung 6.5 wobei die
frei wahlbaren Parameter ¢; und 7; den Winkel und die Dauer des Aushol- und
Riickholvorgangs charakterisieren, vgl. [Tabelle 6.1] Die abschnittsweise definierten

Funktionen ¢, ¢ : R — R ergeben sich durch

(fi(t), 0<t<T,

ft), Ti<t< (Tl+u)

[[os I

p(t) = 6.9a
[EA [EA
kO, sonst,
(1), 0<t<T,
(), T<t<(T+ %5
sty =3 (i 53) (6.9b)

fe(t), (Tl + W—”) <t< (2Tl + W—”)

flvsl

0, sonst
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Abbildung 6.5 Die Solltrajektorien fiir den Winkel ¢ und die Winkelgeschwindigkeit ¢ bestehen
aus den drei Phasen Ausholen, Schlagen, Riickholen und werden durch stiickweise definierte
Funktionen beschrieben, vgl. |Gleichung (6.9)l Die gewiinschte Schlaggeschwindigkeit ¢ wird
erreicht, wenn der Winkel ¢ = 0 aufweist, hier eingezeichnet als griiner Kreis.

Tabelle 6.1 Parameter zur Beschreibung der Regelungsaufgabe des Golfroboters.

Physikalischer Parameter

Ausholdauer bzw. Riickholdauer
Ausholwinkel bzw. Riickholwinkel

Abstand von der Rotationsachse der
Abtriebswelle zum Schlagpunkt des Schléagers

Die untere Welle wird durch einen drehmomentgeregelten Elektromotoﬂ angetrie-
ben und an der oberen Welle ist der Golfschldger mit einem Putting-Schlagerkopf
montiert, vgl. [Abbildung 6.1, Um die Sicherheit zu gewéhrleisten, darf der Schldger

!Beckhoff AM8042 [233].
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keine Uberschlige ausfithren. Unter der Annahme, dass beide Getriebewellen zu
einem starren Korper zusammengefasst sin ergibt sich durch physikalische Uber-
legungen ein vereinfachtes dynamisches Zustandsraummodell des Schlagmechanis-
mus

.I"l X2
|:.’IJ2:| = |:—mgasinx1J—Md(ac)+4u ) (611&)
Yy = x1, (6.11b)
mit  My(x) = dog + rusgn xy |ma:§a + mg cos £U1’ ) (6.11c)

Der Zustandsvektor = [gp, gbrenth'alt den Winkel ¢ und die Winkelgeschwin-
digkeit ¢ der (oberen) Abtriebswelle. Die untere stabile Ruhelage des Schligers
entspricht der Nulllage ¢ = 0. Das nichtlineare Démpfungsmoment My : R? — R
bildet die statische und die dynamische Reibung der Drehgelenke ab, vgl.

dung 6.6. Die physikalischen Parameter finden sich in der [Tabelle 6.2 und in der
Abbildung 6.6(b)}

meta

myg

(a) Schlagmechanismus (b) Ersatzbild (c) Freischnitt

Abbildung 6.6 Physikalisch motivierte Modellbildung des Schlagmechanismus. Es wird ver-
einfachend angenommen, dass beide Getriebewellen zu einem starren Kérper zusammengefasst
sind und daher nur die obere Zahnriemenscheibe betrachtet. In Anlehnung an die wahrend des
Projekts bearbeitete studentische Arbeit .

Die Regelungsstrategie des Schlagmechanismus basiert auf einer linearen Zwei-
Freiheitsgrade-Struktur [24] unter Verwendung eines Gain-Scheduling-Ansatzes [21],
wie in der [Abbildung 6.7| dargestellt ist. Das bedeutet, dass die Regelstrecke |(6.11)|
fiir verschiedene Arbeitspunkte ¢g, € [—m, 7 | mit einem Inkrement von 0,01 rad
linearisiert wird. Dadurch entsteht eine Reihe von linearen Teilmodellen

& = Ag,x + bu, (6.12a)
y=c'x (6.12Db)

’Die Getriebeiibersetzung ist in der Bewegungsdifferentialgleichung [(6.11)| durch den Vorfaktor 4
beim Steuereingang beriicksichtigt.
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Tabelle 6.2 Physikalische Parameter des Schlagmechanismus des Golfroboters.

Symbol  Physikalischer Parameter Wert
m Masse des Golfschligers 0,5241 kg
J Rotationstréigheit des Golfschlagers 0,1445 kg /m?
g Gravitationsbeschleunigung 9,81 m/s?
a Abstand von der Rotationsachse der Abtriebswelle 0,4702 m
zum Massenschwerpunkt des Golfschléigers
d Dynamischer Reibungskoeffizient 0,0132kgm? /s
r Radius von der Rotationsachse der Abtriebswelle 0,0245m
zum Reibungspunkt
1 Statischer Reibungskoeffizient 1,5136
mit
0 1 0
Ar. = | mva ., b= ., ¢ =1[1,0]. 6.13
ol R F R LOR G

Wihrend des Betriebs wird der Regler verwendet, dessen zugehoriges Streckenmodell
am besten mit der aktuellen Situation iibereinstimmt, d. h.

. (6.14)

i = argmin |z — ¢,
(2

Die Gain-Scheduling-Variable ¢ bestimmt sowohl die Vorsteuerung und den Regler
als auch den fiir die Zustandsregelung erforderlichen Beobachter.

u* o~ | U s )
Uc | Strecke aﬁé_
W, Vorsteuerung Regler %
x* X
=éjt Beobachter -
T [ i LG -
+— Gain-Scheduling «

Abbildung 6.7 Am Priifstand wird eine lineare Zwei-Freiheitsgrade-Regelungsstruktur mit
einem Gain-Scheduling-Ansatz verwendet. In Anlehnung an [235].

Die linearen Zustandsriickfiihrungen

u. = ky (x* — &) (6.15)

7

werden als zeitinvariante Riccati-Regler entworfen. Hierfiir wird die quadratische

Kostenfunktion )

=3 /O T 2T (H)Qu(t) + Ru2(t)d1 (6.16)
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mit - 0
Q:[o J, R=1 (6.17)

minimiert, die die simultane Beriicksichtigung des zeitlichen Verlaufs der Zustands-
grofen und der aufgebrachten Steuerenergie ermoglichtf]
Die Vorsteuerungsmatrizen, die zur Berechnung der Sollverldufe

- =F,w, u'=Ff, w (6.18)

erforderlich sind, ergeben sich durch die Betrachtung des eingeschwungenen Zu-
stands [24] zu

10
F, = {o J s Fup = b Ar,. (6.19)

Das resultierende Regelgesetz lautet
u=u"+ U, (6.20)

wobei aufgrund von StellgroBenbeschrankungen zu beachten ist, dass die Stellgrofie
u einer Séttigung unterliegt, vel. [Abbildung 6.7]

Fiir jedes linearisierte System wird ein Luenberger-Beobachter [24], [181] entwor-
fen, dessen Dynamik durch

&= (Ag, —lg,c") &+ bu+lpy (6.21)

beschrieben wird. Dabei werden die Eigenwerte des Beobachters, d. h. der Matrix
Agr, — Ilg,c' so gewihlt, dass sie doppelt so groff sind wie die Eigenwerte des ge-
schlossenen Regelkreises [221].

6.1.2 Bildverarbeitung

Fiir ein erfolgreiches Putten muss die Informationsverarbeitung mittels geeigneter
Sensorik alle erforderlichen Informationen iiber die Spielsituation erfassen. Dazu ist
an der Decke des Labors eine Stereokameralﬂ befestigt, die die Spielfliche aus der Vo-
gelperspektive aufnimmt. Das Farbbild wird fiir die Detektion der Spielobjekte ver-
wendet. Im Gegensatz dazu liefert das Tiefenbild die absoluten Positionen der detek-
tierten Spielobjekte und dient dariiber hinaus zur Approximation des Héhenprofils
der Spielfliche. Im Folgenden werden die Elemente der Bildverarbeitung detailliert
erklart.

Die Grole und Position der Spielfliche sowie die Position des Lochs werden als
konstante Werte festgelegt, weil die Kameraposition nicht verédndert wird. Zur ein-
fachen Detektion der Position und Orientierung des Golfroboters besitzt dieser zwei
farbige Kreise auf der Oberseite, vgl. [Abbildung 6.13] deren Positionen sich an-
hand des gewiinschten RGB-Farbcodes bestimmen lassen. Es ist wichtig, dass die
Farben einen moglichst hohen Kontrast zueinander aufweisen, damit sie gut unter-
schieden werden konnen. Durch eine Minimierung der gemittelten Abweichung des

3Eine ausfiihrliche Beschreibung dieses Ansatzes findet sich in [24].
4Bei der Kamera handelt es sich um eine Kinect fiir Windows v2.
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RGB-Werts eines Pixels zum gewiinschten RGB-Wert, lassen sich eine Vielzahl an
Pixeln im Farbbild bestimmen, woriiber die Mittelpunkte der farbigen Kreise defi-
niert werden. Fiir eine schnellere Datenverarbeitung kann das untersuchte Farbbild
zuerst in Graustufen tranformiert und von einem statischen Graustufenbild ohne
Roboter und Ball, subtrahiert werden. Es bleiben nur die Pixel iibrig, auf denen
eine Farbverdnderung erkannt werden kann, die zur Definition von Bereichen im
Bild verwendet werden konnen. Innerhalb dieser Bereiche erfolgt nun eine schnellere
Objekterkennung. Unter der Annahme, den Ball als homogenen weiflen Punkt zu be-
trachten lasst sich die Ballposition ebenfalls iiber dieses Verfahren bestimmen. Auf-
grund dieser Annahme ist das Verfahren jedoch weniger robust, weshalb alternativ
ein vortrainiertes Faltungsnetzﬂ in Matlab genutzt werden kann. Auf Grundlage von
50 zuvor aufgenommenen Trainingsbildern erkennt das Netz den Ball zuverlissig.
Dieses Verfahren ist rechenintensiver jedoch robuster, weshalb es sich fiir eine offli-
ne Detektierung eignet. Wenn der Ball bei einem geregelten Fahrmanover ebenfalls
erkannt werden soll (vgl. [Abschnitt 6.1.1)), wird eine schnelle Objekterkennung prio-
risiert. Das Tiefenbild liefert schliefllich die absoluten Positionen der Spielobjekte
im Inertialkoordinatensystem I.

Das Hohenprofil der Spielfliche wird anhand eines Tiefenbilds (das im Vorhin-
ein ohne vorhandene Spielobjekte aufgenommen wird) durch eine zweidimensio-
nale Spline-Funktion in Matlab approximiert. Hierfiir werden zuerst mithilfe eines
Hampel-Filters potentielle Ausreifier entfernt. Im Anschluss werden fehlende Daten
extrapoliert und der gesamte Datensatz geglattet, sodass eine in z- und yy-Richtung
differenzierbare Funktion entsteht, in welcher das ortsabhéngige Gefille bestimmt
werden kann. Dieses Gefille ist entscheidend fiir die Berechnung der Hangabtriebs-
kraft des Balls und somit fiir die Rolldynamik des Balls, vgl. [Unterabschnitt 6.1.3]

6.1.3 Bestimmung eines optimalen Schlages

Das Kernelement bei der Bestimmung eines optimalen Schlags bildet ein neuronales
Netz, das die Rolldynamik des Balls reprisentiert. Ubergeordnet wird zur Bestim-
mung eines optimalen Schlags fiir ein erfolgreiches Putten die folgende Strategie
verfolgt, vgl. [Abbildung 6.8}

1. Vortrainieren des neuronalen Netzes fiir ein gegebenes Hohenprofil der Spiel-
flache anhand simulativ erzeugter Trainingsschlédge, vgl. [Abschnitt 6.1.3]

2. Bestimmung des optimalen Schlags anhand des neuronalen Netzes, vgl. [ADb]

schnitt 6.1.31

3. Ausfithrung des Schlags auf der realen Spielfliche. Fiir den Fall, dass der Ball
nicht unmittelbar in das Loch rollt, kann ausgehend von dieser Situation erneut
eine Objektdetektion mit anschlieBender Berechnung und Ausfithrung eines
optimalen Schlags durchgefiihrt werden.

4. Nachtrainieren des neuronalen Netzes. Dieser Schritt wurde bisher noch nicht
am Golfroboter realisiert. Es ist jedoch denkbar, einen gescheiterten Schlag als

°Im Detail handelt es sich um ein sogenanntes Faster R-CNN [236].
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weiteren Trainingsdatenpunkt zuriickzufithren und somit die Genauigkeit des
neuronalen Netzes zu erhohen.

[ Modellbasiertes Vortraining des neuronalen Netzes ]
v

[ Bestimmung des optimalen Schlags ]4—
v

[ Ausfithrung des Schlags ]

v

Ball im Loch?

tgjja

Abbildung 6.8 Ubergeordnete Strategie zur Bestimmung eines optimalen Schlags.

[ Nachtraining }

Im Folgenden werden die simulative Erzeugung der Trainingsdaten basierend auf ei-
nem Modell der Rolldynamik des Balles und die Bestimmung des optimalen Schlages
mittels des neuronalen Netzes beschrieben.

Erzeugung der simulativen Trainingsdaten

Die Erzeugung der Trainingsdaten erfolgt durch numerische Simulation eines phy-
sikalischen Modells der Rolldynamik des Balls. Diese wird mafigeblich durch die in-
itiale Rollgeschwindigkeit, das Hohenprofil der Spielfldche sowie den Rollwiderstand
des Balls auf der Spielfliche bestimmt.

Die Berechnung der Hangabtriebskréfte in z- und y-Richtung erfolgt mittels der
lokalen Winkel

a, = arctan (%) : (6.22a)
afgreen

= arct .22b

o, = arctan ( 9y ) (6.22b)

der Oberflache fyreen(,y) der Spielfliche, vgl. |[Abbildung 6.9(a)l Die Rollwider-
standskraft

F, = mpgpu, cos o cos ay, (6.23)

wird als konstant angenommen [237] und wirkt stets parallel zur Oberflache in ent-
gegengesetzter Richtung

B = arctan <%> (6.24)

der Rollrichtung, vgl. [Abbildung 6.9(b). Die resultierenden Bewegungsdifferential-
gleichungen sind gegeben durch

mp1¥& = —mpg sin o, — F,| cos flsgn(1d), (6.25a)

mp 1y = —mpgsin o, — F|sin Blsgn(1y), (6.25b)
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sodass sich die korrespondierende Zustandsraumdarstellung mit dem Zustandsvektor
.7
19 = [1%1 Y121 y] ergibt.

"t fareen(@) L

) . Y Vg e
Ic ,

Mpg SIN Qg %A

T fgreen(ma y)
g cos a, T~

(a) Schiefe Ebene, hier schematisch in (b) Rollrichtung und -widerstand des
1z-Richtung dargestellt. Balls

Abbildung 6.9 Das physikalische Modell der Rolldynamik des Balls basiert auf der Betrachtung
mittels schiefer Ebenen.

Fiir das Vortraining werden zufillige Schldge (mit unterschiedlichen Startposi-
tionen und -geschwindigkeiten) anhand des physikalischen Modells mit den
Parametern aus simuliert’] Die Start- und Endpositionen des Balls sind
durch 1q, = [1960,1 Y01 Lo, g)o} bzw. 1q, = [Ime,l Ye, 0, O} gegeben.

Tabelle 6.3 Physikalische Parameter der Balldynamik.

Symbol Physikalischer Parameter Wert
my Masse des Golfballs 0,046 kg
g Gravitationskonstante 9,81 m/s?

I Rollreibungskoeffizient des Balls 0,15
auf dem Rasen

Bestimmung eines optimalen Schlags

Ein Schlaggeschwindigkeitsvektor [1:1':]3,0,1 yB,O} ! ist beziiglich einer Startposition des
Balls [Ipr,I yB70]T genau dann optimal, wenn der Ball so geschlagen wird, dass er
im Loch [ﬂH,I xH}T liegen bleibt, d. h.

1TBe| _ |17H 7 15.63,.3 _ If'H _ 10 . (6.26)

1YB.e 1YH 1YB.e 1YH 0
Die Bestimmung dieses optimalen Schlaggeschwindigkeitsvektors basiert auf ei-
nem neuronalen Netz. Der erste Ansatz verwendet ein flaches neuronales Netz aus
2 Schichten mit jeweils 30 versteckten Neuronen, das die Rolldynamik des Balls

pradiziert, vgl.|Abbildung 6.10(a)|, und anschlieend die erforderliche Schlaggeschwin-
digkeit durch eine tiberlagerte Optimierung berechnet, vgl. |Abbildung 6.10(b). Die

6Die numerische Integration erfolgt mittels des RK4-Solvers.
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Optimierungsfunktion ist hierbei gegeben durch
H(1E501980) = (4. —145) W(dp,. —14x) (6.27)
mit 1qy = [IxH,IyH, 0, O}T,W = diag (1,1,1,1). Der Ausgang aus dem neuronalen

Netz ist 15 . Das Optimierungsproblem wird mittels einer Partikelschwarmoptimie-
rung in Matlab gel6st.

[IL"B,O, ?JB,O]T [$B7ea yB,e]T
—» —»
Neuronales

. . T . . T
(5,0, UB,0] Netz [©B.e,UB.e]
— »

(a) Training des neuronalen Netzes

[ﬂfB,o, ZJB,O]T [HUB@ ?JB,@]T
- >
Neuronales
. . T . . T
80980l | Netz |[FBer¥Bel .
> PN (%50, UB,0]
[zh yH]T Optimierung >

\4

[f'H,?)H]T = [an]T

A4

(b) Nutzung des neuronalen Netzes mittels einer Optimierung

Abbildung 6.10 Der erste Ansatz nutzt ein neuronales Netz zur Vorwértspradiktion der Roll-
dynamik des Balls und ermittelt die Schlaggeschwindigkeit mittels einer iiberlagerten Optimie-
rung. Alle GréBen werden beziiglich des Inertialkoordinatensystems | angegeben.

Ein alternativer neuartiger Ansatz besteht darin, die Netzwerkarchitektur aus
der [Abbildung 6.10(a)| durch geschicktes Vertauschen der Ein- und Ausgénge so zu
verandern, vgl. [Abbildung 6.11(a)| dass ein in Bezug auf die Schlagaufgabe inverses
neuronales Netz entsteht, das unmittelbar der optimale Schlaggeschwindigkeitsvek-
tor berechnet, vgl. [Abbildung 6.11(b)| Dadurch wird die aufwindige Losung des
Optimierungsproblems |(6.27)| obsolet. Dies fiihrt zu einer verkiirzten Rechenzeit
bei einer vergleichbar hohen Vorhersagegenauigkeit wie beim ersten Ansatz. Die
IAbbildung 6.12| zeigt exemplarisch, dass die mittels des inversen neuronalen Net-
zes bestimmten Schlaggeschwindigkeiten simulativ in der Lage sind, den Ball so zu
schlagen, dass er tatséichlich von unterschiedlichen Startpositionen aus zuverldssig in
das Loch rollt. Dieses Ergebnis bestétigt die Machbarkeit des vorgestellten Ansatzes.

6.1.4 Ergebnisse

Im Folgenden wird der Ablauf eines autonomen Golfspiels beschrieben und der Er-
folg der beschriebenen Methode evaluiert. Dies sind die Ergebnisse einer studenti-
schen Arbeit, in der die Funktionsweise des Golfroboters auf Szenarien mit Hiigeln
erweitert wurde und diese auch ausfiihrlich getestet worden sind [23§].
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»

(b) Nutzung des inversen neuronalen Netzes

Abbildung 6.11 Der zweite Ansatz nutzt ein inverses neuronales Netz, das unmittelbar die
Schlaggeschwindigkeit fiir eine gegebene Spielsituation ermittelt. Alle Gr6Ben werden beziiglich
des Inertialkoordinatensystems | angegeben.

0.2
0.1

g

k= 0

>
—-0.1

| \ —0.2
-1 0 1
xin m

Abbildung 6.12 Simulativ bestimmte Balltrajektorien (weiBe Kreise) fiir optimale Schlag-
geschwindigkeiten (Pfeile in dunkelblau) fiir unterschiedliche Startpositionen des Balls unter
Nutzung des inversen neuronalen Netzes. Das Loch wird im Ursprung des Koordinatensystems
| angenommen und das Hohenprofil ist durch die Skala definiert.

Zunachst werden sdmtliche Spielobjekte von der Spielfliche entfernt und ein Tie-
fenbild zur Hohenprofilbestimmung aufgenommen und als Spline-Funktion appro-
ximiert. Auf dieser Basis werden zuféllige Trainingsschlage simulativ erzeugt und
fiir das Training des neuronalen Netzes genutzt. AnschlieSfend werden die Spielob-
jekte (Golfi, Ball) beliebig auf der Spielfliche platziert. Diese Ausgangssituation ist
in der [Abbildung 6.13(a)| dargestellt. Von hier ausgehend werden die Algorithmen
fiir das autonome Golfspiel (Objektdetektion, Bestimmung des optimalen Schlags,
Berechnung der Fahrstrategie) in Matlab ausgefiihrt und Zwischenergebnisse visua-
lisiert. Nachdem der Golfroboter sich geeignet neben dem Ball platziert hat, vgl.
IAbbildung 6.13(b) wird der Schlag ausgefiihrt, vgl. [Abbildung 6.13(c)!
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(a) Startposition (b) Vor dem Schlag (c) Nach dem Schlag

Abbildung 6.13 Beispielhafte Situation und Ablauf eines Golfspiels des Roboters.

Dieses Beispielszenario demonstriert qualitativ das erfolgreiche Putten ohne hii-
gelige Spielflaiche. Um das Koénnen des Roboters quantitativ zu bestimmen, wur-
den mehrere Versuchsreihen aus unterschiedlich schwierigen Spielsituationen durch-
gefiihrt [238]. Als einfachste Schwierigkeitsstufe wurde das Putten ohne notwendige
Positionierung und ohne Beriicksichtigung einer hiigeligen Spielflache festgelegt. In
der zweiten Schwierigkeitsstufen wird der Roboter nicht perfekt ausgerichtet po-
sitioniert, sodass ein Fahrmandver notwendig ist. Im dritten Fall beeinflusst eine
hiigelige Spielfliche die Berechnung des Schlagvektors (vgl. [Unterabschnitt 6.1.3))
und erst in der vierten Schwierigkeitsstufe wird zusétzlich angenommen, dass beim
Fahren besonders hohe Hiigel umfahren werden miissen.

Im Rahmen der Versuchsreihen wurden verschiedene Spielsituationen erstellt,
die in diese vier Schwierigkeitsstufen eingeteilt werden konnen. Die Grafik
zeigt bspw. eine Situation der Schwierigkeitstufe 2. Um die Schwierigkeit
detaillierter zu beschreiben, wurden jeder Schwierigkeitsstufe eine Punktzahl zuge-
wiesen, die auf der Anzahl der benotigten Fiahigkeiten basiert, die der Roboter fiir
das Losen einer Spielsituation benotigt. Ein Beispiel fiir eine solche Féhigkeit ist das
Erkennen des Hohenprofils, welches fiir Spielsituationen der Schwierigkeitsstufen 1
und 2 nicht notwendig ist. Zusétzlich zur Punktzahl der benétigten Fahigkeiten
geht die Distanz zwischen Ball und Loch als Faktor in den finalen Schwierigkeits-
wert ein. Aufgrund inhomogener Oberflichenbeschaffenheit wird angenommen, dass
es schwieriger ist einen Ball iiber eine groflere Distanz prézise zu putten, wie es auch
bei einem realen Golfspiel der Fall ist. Diese Annahmen bilden die Grundlage eines
situationsabhéngigen Schwierigkeitswerts.

Fiir die Durchfithrung der Versuchsreihen in denen jeweils eine Spielsituation zehn
Mal gelost wurde, wurden Spielregeln festgelegt. Trifft der Golfroboter beim ersten
Versuch das Loch nicht, darf die neu entstandene Spielsituation gelost werden, sofern
sie 16sbar ist. Es entstehen Erfolgsquoten fiir den ersten und fiir den zweiten Versuch.
Ein dritter Versuch wird nicht durchgefithrt. Wie auch im realen Golfspiel werden
mehr benotigte Versuche schlechter bewertet, weshalb der zweite Versuch beim Mit-
teln beider Erfolgsquoten niedriger gewichtet wird. Mit dieser Auswertungsregel und
quantifizierbaren Spielsituationen wurde das Konnen des Roboters differenziert er-
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mittelt. Anhand von sechs Versuchsreihen konnte gezeigt werden, dass Situationen,
die als schwerer eingestuft werden, auch weniger erfolgreich gelost werden koénnen.
Zwischen Situationen mit knapp 100 %iger Erfolgsquote, bis zu Spielsituationen bei
denen immer zwei Versuche benotigt wurden, konnte ein nahezu linearer Zusammen-
hang festgestellt werden. Dies spricht dafiir, dass die beschriebene Auswertungsme-
thodik auch in Zukunft fiir die Validierung des Roboters genutzt werden kann und
potentiell auch bei anderen Golfrobotern anwendbar ist.

Spielsituationen der Schwierigkeitsstufe 3 erfordern &hnliches Konnen wie beim
menschlichen Putten. Mit einer relativ einfachen Positionierung ohne Hiigel umfah-
ren zu miissen, diese jedoch beim Schlag zu beriicksichten, sind diese Situationen
vergleichbar mit den Féhigkeiten, die ein Mensch benotigt um solche Spielsituatio-
nen zu losen. Fiir eine Distanz von 1,5m zwischen Ball und Loch konnte mit nur
einem Versuch eine Erfolgsquote von 60 % erreicht werden, was vergleichbar ist mit
fortgeschrittenen Golfspieler*innen [239).

6.2 Selbstbalancierender Wirfel

In diesem Abschnitt wird der Entwurf und Aufbau eines Demonstrators fiir das Pro-
jekt DART beschrieben. Es handelt sich um einen selbstbalancierenden Wiirfel, der
in der Projektlaufzeit als regelungstechnisches Testsystem entwickelt wurde, siehe
auch [Abbildung 6.14] Ebenso wie der Golfroboter dient er als reales System zur
Testung der in DART entwickelten Methoden. In [Unterabschnitt 6.2.1] werden der
mechatronische Aufbau, die Manéver und die Entwicklung des Wiirfels beschrieben.
Danach folgt der modellbasierte Regelungsentwurf in [Unterabschnitt 6.2.2] Zum
Schluss werden in [Abschnitt 6.2.2| die Ergebnisse der klassischen Regelung mittels
LQ-Regler und einige der Ergebnisse der neu entwickelten hybriden Methoden dar-
gestellt.

6.2.1 Mechatronischer Entwurf des Wiirfels

Das Regelungsziel des balancierenden Wiirfels ist die automatisierte Stabilisierung
auf einer seiner Kanten oder Ecken. Darauf ist der mechatronische Entwurf mit Sen-
sorik, Aktorik und Informationsverarbeitung ausgelegt, sodass er aus einer beliebigen
Orientierung von allein auf eine seiner Kanten oder Ecken aufschwingen kann und
sich dort stabilisiert. Als Aktoren werden Schwungriader verwendet, ein bekannter
Aktor in mechanischen System. Ein Anwendungsbeispiel sind Satelliten, die durch
die Geschwindigkeitsidnderung von Schwungridern eine Drehmoment erfahren und
somit ihre Orientierung dndern kénnen. Als kleines, einfach zu handhabendes und
aus Standardteilen entwickeltes System kann der Wiirfel von anderen nachgebaut
werden und einfach in der Lehre und Forschung verwendet werden. Urspriinglich
wurde er u. a. von dem Institut ”Institute for Dynamic Systems and Control“ der
ETH Ziirich entwickelt [240]. Der Wiirfel des DART-Projekts wurde selbst konstru-
iert und entwickelt, sodass sich der mechatronische Aufbau unterscheidet, jedoch
funktioniert er nach dem selben Prinzip.
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Abbildung 6.14 Der selbstbalancierende Wiirfel als mechatronisches System zum Testen der
entwickelten hybriden Methoden. Der Wiirfel hat eine Kantenldnge von 15 cm.

Mechatronischer Aufbau

In|[Abbildung 6.15( wird der mechatronische Aufbau des Wiirfels veranschaulicht. Er
beinhaltet die mechanische Grundstruktur, Sensoren, Informationsverarbeitung und
Aktoren. Die mechanische Grundstruktur besteht im Wesentlichen aus dem Rahmen
und den inneren Verbindungselementen. Der Rahmen des Wiirfels wird durch sechs
additiv gefertigte Kunststoffplatten gebildet, die an den Ecken miteinander ver-
schraubt sind. Die restlichen Komponenten sind an dem Rahmen im Inneren des
Wiirfels angebracht. Ein Kabelstrang verlauft aus dem Wiirfel zur Verbindung zum
Echtzeitsystem und zur Stromversorgung. Dabei muss beachtet werden, dass der Ka-
belstrang nicht die Bewegung des Wiirfels beeinflusst. Ein zukiinftiges Ziel kénnte
sein, den Wiirfel vollstédndig autonom zu gestalten, so dass die Stromversorgung etc.
im Inneren integriert werden miisste. Die wesentlichen mechanischen Komponenten
sind die drei Schwungréder (im Folgenden als Riader bezeichnet) und die drei Schei-
benbremsen. Jedes Rad wird durch einen Elektromotor angetrieben und kann durch
eine Scheibenbremse abrupt gebremst werden, die durch jeweils einen Servomotor
aktiviert wird.

Fiir die Erkennung der Bewegung des Wiirfels werden als Sensoren drei IMUIZ]
und drei kontaktlose, magnetische Sensorerﬂ fiir die Elektromotoren, im Folgenden
als Motorsensoren bezeichnet. Der IMU misst die drei translatorischen Beschleu-
nigungen und drei rotatorischen Geschwindigkeiten. Durch ein Filter kénnen aus
den gemessenen Signalen dieser Sensoren die drei Winkel 0, 6, und 6, des Wiirfels
im Raum bezogen auf das Inertialsystem bestimmt werden, siehe [Abbildung 6.18]
fiir eine Visualisierung der Winkel. Der Motorsensor liefert die Position ; und Ge-
schwindigkeit 1/11 eines Rades. Zur Informationsverarbeitung wird Matlab/Simulink

7 Adafruit 2472 BNOO055 Inertia Measurement Unit
8 AS5045B von ams OSRAM
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Signalverarbeitung
dSPACE Soft- und Hardware:
* ConfigurationDesk

| * ControlDesk I

Echtzeitsystem

Sensoren Aktoren
e 3xInertia Measurement e 3x Motoren fir die
Unit (IMU) Rader
e 3x Motorsensor e 3xServomotoren flr die
Mechanische Grundstruktur Bremsen

L S

Abbildung 6.15 Struktur des Wiirfels als mechatronisches System

und ein Scalexio Echtzeitsystem mit entsprechender Software von dSPACE verwen-
det. In Matlab/Simulink ist das Modell des Systems und der Regelkreis implemen-
tiert. Die Signaliibertragung zwischen dem Modell und dem Wiirfel wird iiber das
Echtzeitsystem und die Software ConfigurationDesk und ControlDesk realisiert. Die
Aktoren sind drei biirstenlose 80-Watt Elektromotorenf’] und drei Servomotoren™]

Beschreibung des Manovers

Das betrachtete Mandéver des Wiirfels beginnt auf einer seiner Flichen, es folgt der
Aufschwung und die Stabilisierung auf eine Kante und endet mit dem Aufschwung
und der Stabilisierung auf eine Ecke, was in [Abbildung 6.16| visualisiert ist. Die Re-
gelung wird aktiv, sobald sich der Wiirfel durch den Aufschwung im Einzugsbereich
der oberen Ruhelage befindet.

@ o

Abbildung 6.16 Veranschaulichung des Mandvers: a) von der Flache auf die Kante und b)
von der Kante auf die Ecke. Die Abbildung wurde aus [241] iibernommen.

Beim Aufschwung werden je nach Mandover ein oder mehrere Schwungrader auf ei-
ne bestimmte Drehgeschwindigkeit beschleunigt, damit ausreichend kinetische Ener-
gie vorhanden ist. Fiir den Aufschwung von der Fliche auf die Kante ist nur ein
Rad notwendig, das sich um die Achse der Kante dreht, iiber die aufgeschwungen
wird. Fiir den Aufschwung von der Kante auf die Ecke sind zusétzlich die anderen

945-flat der Maxon Motor AG
10Hjitec Servo D-89 MW
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(a) Der Prototyp wihrend des Balancierens.  (b) Kinematische GroBen des Prototypens. Abbil-

dung aus

Abbildung 6.17 Der Prototyp als Vorstufe des Wiirfels zum Testen des mechatronischen
Aufbaus.

zwei Réader notwendig. Die Rdder werden durch die Scheibenbremse abrupt bis zum
Stillstand abgebremst, sodass die kinetische Energie der Rader aufgrund der Ener-
gieerhaltung auf den Rahmen des Wiirfels in Form eines Momentes iibertragen wird.
Der Wiirfel erfahrt eine rotatorische Beschleunigung und schwingt iiber eine Kante
oder Ecke hoch in den Einzugsbereich des Reglers der instabilen Ruhelage. Experi-
mente haben gezeigt, dass der Einzugsbereich der Regelung innerhalb von circa 15°
um die Ruhelage liegt. Durch die Regelung wird das Rad durch den Elektromotor in
die passende Richtung beschleunigt, sodass es dem Umfallen des Wiirfels entgegen-
wirkt und ihn wieder in die instabile Ruhelage zuriickfithrt. Aufgrund des dritten
Newtonschen Axioms, auch das Prinzip von Aktion und Reaktion genannt, wirkt
ein entgegengesetztes, gleichgrofles Moment auf den Wiirfel, wenn sich das Rad in
eine Richtung dreht. Der Wiirfel erfahrt durch das Rad eine Beschleunigung und
wird zuriick in die Richtung der instabilen Ruhelage bewegt.

Entwicklung des Demonstrators

Um das grundsatzliche Wirkprinzip des Demonstrators kennenzulernen, wurde im
Rahmen des Projekt zunéchst ein vereinfachter Prototyp aufgebaut. Der Prototyp
in [Abbildung 6.17(a)| besteht nur aus einer Flache des gesamten Wiirfels, mit einem
Rad, einer Bremse und einem IMU. Er ist an einer Ecke der Flédche drehbar gelagert
und hat einen rotatorischen Freiheitsgrad. Mit dem Prototyp kann der Aufschwung
und die Stabilisierung des Wiirfels auf der Kante getestet werden. Er erlaubt das
Testen des mechatronischen Aufbaus in einer geringeren Komplexitét als der gesamte
Wiirfel und die Ergebnisse sind auf den Wiirfel iibertragbar.

Als néchstes wird auf einige Aspekte bei der Konstruktion des Wiirfels eingegan-
gen, die zu beachten sind, damit der Aufschwung und die Stabilisierung moglich
werden bzw. besser funktionieren. Um eine moglichst geringe Masse bewegen zu
miissen, wurde der Rahmen des Wiirfels aus Kunststoff additiv gefertigt. Die in-
neren, selbst konstruierten Teile sind aus Aluminium. Die Schwungréider sind aus
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6.2 Selbstbalancierender Wiirfel

Stahl, um méoglichst viel Drehmoment fiir den Aufschwung zu erhalten. Fiir den Auf-
schwung ist ein kleines Massentréigheitsmoment des Wiirfels vorteilhaft, weil dann
weniger Energie benotigt wird. Deswegen sollte der Wiirfel so konstruiert werden,
dass die gesamte Masse gering ist, die Lange der Hebel moglichst klein ist und der
Massenmittelpunkt nah an den Drehachsen liegt. Dabei muss beachtet werden, dass
fiir alle Komponenten im Inneren des Wiirfels genug Raum ist.

Bei der Konstruktion des Rades gibt es gegensétzliche Anforderungen. Zum einen
wird fiir den Aufschwung des Wiirfels Energie benétigt, die das Rad liefern soll.
Dafiir ist ein Rad mit ausreichend groflem Massentragheitsmoment notwendig, so-
dass das Rad genug kinetische Energie fiir den Aufschwung des Wiirfels liefert. Bei
der Stabilisierung des Wiirfels muss zum anderen das Rad schnell beschleunigt wer-
den. Dafiir ist ein Rad mit geringem Massentrigheitsmoment vorteilhaft. Um diesen
Zielkonflikt zu 16sen, muss ein Rad mit passendem Massentréagheitsmoment gefunden
werden.

6.2.2 Modellbasierter Regelungsentwurf des Wiirfels

Die Modellbildung des Wiirfels wird mit Hilfe der Bewegungsgleichungen aus dem
Prinzip von Jourdain hergeleitet. Es wird die allgemeine Gleichung eines mechani-
schen Mehrkorpersystems

Mi+Cq+G = {03”} u, (6.28)
I3><3

mit den generalisierten Koordinaten

q = [01762703a¢x7¢y7¢2:|7—’ € R6X1 (629)

verwendet. Dabei beziehen sich die drei rdumlichen Winkel #; auf das Inertialsys-
tem des Wiirfelkérpers und die Winkel v); auf das jeweilige Rad, das sich um die
W€ wy€a, 0der v, e,-Achse dreht. Die zeitlichen Ableitungen der generalisierten
Koordinaten ergibt sich als

q= [91,92,93,7%71%,1%} € RGXI (63())
und die Eingéinge des Systems
u = [ul, U2, Ug}T € R3*! (631)

sind die Strome u; an dem jeweiligen Motor des i-ten Rades, ¢ = 1,2, 3. Das Motor-
drehmoment 7,,,; = K,,u; des i-ten Rades berechnet sich aus der Motorkonstante
K, und der Eingangsspannung u;. 0343 und I35 stellen die Null- bzw. Einheitsma-
trix dar. Die Massenmatrix

ng

i=1
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Abbildung 6.18 Schematische Darstellung des Wiirfels auf der Ecke mit den Koordinaten-
systemen: Intertialsystem I, korperfestes System K des Wiirfels und korperfeste Systeme W;
des -, y- und 2-Rades. Der Ubersichtlichkeit halber ist das T,-System in der e2- e3-Ebene
nicht dargestellt.

setzt sich unter anderem zusammen aus der Jakobimatrix der Translation

87.‘01'

Jri = T € R3%6, (6.33)
der Jakobimatrix der Rotation
Ow;
J i = a:-',JT R3X6. (6.34)

der Geschwindigkeit 7 des Schwerpunkts der Masse m;, der Winkelgeschwindigkeit
w; und des Massentrigheitsmoments ©; € R3*? des i-ten Kérpers um seinen Schwer-
punkt. Der Index ¢ = 1,...,ny lauft iiber alle Kérper der Anzahl n; = 4 (Wiirfel
und 3 Scheiben). In dieser Darstellung sind die translatorischen Groflen beziiglich
des Inertialsystems und die rotatorischen Groflen beziiglich des korperfesten Sys-
tems angegeben. Die Matrix C = 5.1, Ci(q,q) € R%*6 beinhaltet die Zentrifugal-
und Corioliskréfte, wobei n, = 6 die Anzahl der generalisierten Koordinaten q ist.
Die Elemente der Matrizen C;(q, q) der einzelnen Korper werden beschrieben durch

o . . n =1,...,6
Cinm = Z Ci nmkqy fiir m = 1’ o ,6 (635)
k=1
mit dem sogenannten Christoffelsymbol der ersten Art
1 (OM;n OM;p OM,;,
Cimmk = = mn Ttk 2k ) (6.36)
’ 2\ Jqy dq, 9q,,
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6.2 Selbstbalancierender Wiirfel

Die Matrix

G = (_8%;q))T e RO (6.37)

bringt die Gravitationskréfte in die Bewegungsgleichung ein. Dabei ist

ng

=1

die potenzielle Energie des Systems. Sie setzt sich zusammen aus einer Summe der
Massen m; und deren Ortsvektoren r¢; im Inertialsystem und dem Gravitationsvek-
tor

9k = Rkogq (6.39)

im korperfesten Koordinatensystem. g, wird durch eine Koordinatentransformation
des Gravitationsvektors

9o = [07 07 _g}T (640)
im Inertialsystem durch die Rotationsmatrix
Rio = R.(a)Ry(B)R.(7)
1 0 0 ] c(B) 0 s(B)| [ely) —s(7) 0]
=10 cla) —s(a) 0 10 s(y) c(y) O
10 s(a) cla) —s(B) 0 ¢(B) 0 0 1 (6.41)
[ c(B)e(7)  cla)s(y) +c(r)s(@)s(B)  s(a)s(v) — cla)e(v)s(B)
= |—c(B)s(7) cla)e(y) —s(a)s(B)s(v)  c(v)s(a) + c(a)s(B)s(7)
s(B) —c(B)s(a) c(a)e(B)

der zyz-Kardanwinkel erhalten. Die Rotationsmatrix Ry setzt sich zusammen aus
den drei aufeinanderfolgenden Rotationen um die z-, y- und z-Achse. In der Rotati-
onsmatrix Ry ist s(-) == sin(-) und ¢(-) = cos(+). Fiir die Reglerauslegung in einer
instabilen Ruhelage wird die nichtlineare Dynamikgleichung in eine lineare
Zustandsraumbeschreibung

= Ax + Bu (6.42)

iiberfithrt, wobei der Zustandsvektor

T = [917627937917927é37¢x7¢y7¢2j|T (643)

eingefiihrt wird. Es ergibt sich die Gesamtsystembeschreibung

b= flo.w) = f(z) + glayu (6.44)
0
91 033 Uy
= 02 e Bsx:%} ug | (6.45)
3x3 U3

M~ (-G -Cq)
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Die Systemmatrix A und die Eingangsmatrix B der Zustandsdifferentialgleichungen
werden durch einen Linearisierungsansatz erhalten

of (xz,u)

~ Of(x,u)
R (6.47)

Mit dem linearisierten System wird ein LQ-Regler [174] entworfen. Die Zielfunktion
ist
te
J=(z, —z(t.))" S(x, — x(t.)) + / ' Qz +u' Rudt, (6.48)
0

mit dem Zielzustand x 4, der den Zustand des Systems auf der Kante oder Ecke
beschreibt, der Endzeit t. und den Gewichtungsmatrizen S, @, und R.

Ergebnisse

Nach der Systembeschreibung des selbstbalancierenden Wiirfels werden in diesem
Abschnitt Ergebnisse verschiedener Experimente vorgestellt. Zunéchst wird der Wiir-
fel mittels klassischer Entwurfsverfahren der Regelungstechnik in Betrieb genommen
und anschliefSend die PCHD-Modelle aus und die Optimalsteuerung
aus [Unterabschnitt 4.4.1] als hybride Methoden getestet.

Klassische Entwurfsverfahren

Beim klassischen Entwurf mittels LQ-Regelung wird der Aufschwung und die Sta-
bilisierung des Wiirfels von der Flidche auf die Kante untersucht und die Ergebnisse
sind in [Abbildung 6.19 zu sehen. Fiir dieses Manover sind die relevanten Zustédnde
der Wiirfelwinkel 6, dessen Winkelgeschwindigkeit 6;, die Winkelgeschindigkeit v,
des Rades und der Eingang u, als Motorstrom. Der Wiirfel beginnt auf der Fléiche
bei 6; = 45° und schwingt iiber die Kante in die obere instabile Ruhelage bei 8, = 0°.

Der Bremsvorgang mit dem abrupten Abbremsen des Schwungrades wird von
uns in der Modellierung als ideal angenommen. Da ein sofortiges Abbremsen in
der Realitéit nicht umsetzbar ist, wird eine vollstindige Ubereinstimmung von Mo-
dell und realem Verlauf des Experiments nicht erwartet. Der Nachweis der Funkti-
onsfiahigkeit des Wiirfels wird daher durch den funktionierenden Aufschwung und
die Stabilisierung beurteilt. In [Abbildung 6.19] wird deutlich, dass in der Simula-
tion der Aufschwung schneller als im Experiment ist. Das liegt an der getroffenen
Annahme des idealen Bremsens in der Modellierung des komplexen Bremsvorgangs.
Auflerdem ist in der Simulation eine StellgroBenbeschrankung des Eingangs u; von
0,17 A implementiert, die ungefihr dem realen Verhalten der Bremse entspricht.
Durch den langsameren Aufschwung im Experiment beginnt die Regelung spéter,
was am Verlauf von u; erkennbar ist. Die Regelung oszilliert geringfiigig, was bei
einem realen Stabilisierungsvorgang zu erwarten ist. Das Experiment zeigt, dass der
Wiirfel mittels klassischer Entwurfsverfahren erfolgreich auf der Kante stabilisiert
werden kann.
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Abbildung 6.19 Aufschwung und Stabilisierung des Wiirfels von der Flache auf die Kante mit
den klassischen Entwurfsverfahren. Die Regelung wird hier durch einen LQ-Regler umgesetzt.

Hybride Methoden

Beispielhaft werden im Folgenden zwei Entwurfsschritte adressiert und durch hy-
bride Methoden ersetzt. Dies sind einerseits die datengetriebene Formulierung des
Wiirfelmodells als PCHD-Modell basierend auf den Methoden aus [Abschnitt 3.4]
und andererseits die Anwendung der hybriden Optimalsteuerung nach
auf den Wiirfel, um den Aufschwung auf die Kante zu realisieren.

Datengetriebene Modellbildung mit PCHD-Modellen Zur vereinfachten Veran-
schaulichung soll die Bewegung von der Kante auf die Ecke des eindimensionalen
Prototypens betrachtet werden, dessen Bewegungsgleichungen durch

(maly + myl)gsing — T, — Cpp + Cuih

o= Sy , (6.49)
b= (O + Ouw +mul®) (T — Cut))  (mply + myl)gsing — Cyp (6.50)
Ou(Op + mul?) (B + ml?) '

beschrieben werden und dessen Parameter in der [Tabelle 6.4] zu finden sind. Dabei
berechnet sich das Motordrehmoment 7,,, = K,,u aus der Motorkonstanten kK, und
dem Eingangsstrom u. Ausgehend von der Energiefunktion

1 1
V(z) = 5(0u + a)ry + 5 Ouwwaws + by cos(x1), (6.51)
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mit a = O, + myl%, b = myply + my,l und dem Zustand & = [cp, gb,w]T kann die
Bibliothek ¥ nach |Gleichung (3.75a)| durch den Gradienten der Energiefunktion

gebildet werden:
av\"
W pu— —_— puy
@ = (%)

Das analytisch bestimmte PCHD-Modell kann nach |Gleichung (3.75a)| daraufhin
durch die Matrizen J, D und den Vektor b definiert werden, die folgendermaflen
lauten:

—bgsin(xy)
(O + )Ty + O3
@wxg, + @wa‘Q

(6.52)

o 1 1 0 0 0 0
J=|L 0 0, D=0 G G0, -3 p- | -
200 0 —Sutac, -G e, LG outa
(6.53)

Das datengetriebene PCHD-Modell kann mithilfe gesammelter Messdaten des Wiir-
fels durch den Algorithmus, der in [Abbildung 3.22| dargestellt ist und detailliert in
|[Unterabschnitt 3.4.2| beschrieben wird, bestimmt werden. Dieses stimmt genau mit
dem analytisch bestimmten PCHD-Modell iiberein (vgl. (Gleichung (6.53))). Mithilfe
dieses datengetriebenen PCHD-Modells ldsst sich anschlieend eine passivitiatsba-

sierte Regelung entwerfen (vgl. [Abschnitt 4.3)).

Physikalischer Parameter

Symbol Wert

Abstand Drehpunkt und Motorachse [ 0,08945 m
Abstand Drehpunkt und Massenmittelpunkt 1, 0,077 86 m

Masse des Korpers ohne Rad mp 0,573 kg

Masse des Rades My 0,195 kg
Gravitationsbeschleunigung g 9,81 ms—2
Motorkonstante K, 40,4-1073 Nm A~!
Gleitreibungskoeffizient des Korpers Cy 0,7-1073 kgm?s!
Gleitreibungskoeffizient des Rades Chy 0,05-1073 kgm?s~!
Trigheitsmoment des Kérpers um den Dreh- ©, 1,584 - 1072 kg m?
punkt P

Trigheitsmoment des Rades um die Motor- ©,, 0,5375 - 1073 kg m?

achse M

Tabelle 6.4 Parameter des Prototypens in |GIeichung (6.49)|

Hybride Optimalsteuerung Ziel der hybriden Optimalsteuerung am Wiirfel ist
es, den Aufschwung des Korpers auf die Kante zu bestimmen. Die Stabilisierung
durch die Regelung wird hier nicht behandelt. Basierend auf den Methoden aus
|Unterabschnitt 4.4.1] wird ein hybrides Modell entwickelt, welches fiir die hybride
Optimalsteuerung genutzt werden soll. Mithilfe von Experimenten am Priifstand
wurden anschlieflend die prédizierten Verldaufe mit denen der aufgenommenen Mes-
sungen verglichen. Die Ergebnisse sind in den Abbildungen [6.20] sowie darge-
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stellt. Beide Abbildungen zeigen einen Aufschwungversuch auf die Kante anhand
der Trajektorien der Zustdnde. Erkennbar ist, dass das Modellverhalten trotz glei-
cher Anfangsbedingungen sehr unterschiedlich ist. In der [Abbildung 6.21| entspricht
das Modell der Realitdt und pridiziert den Aufschwung des Wiirfels korrekt. Im
Gegensatz dazu bestehen in der [Abbildung 6.20] groe Abweichungen zwischen dem
tatsdchlich gemessenen und vom Modell berechneten Korperwinkel ;. Gleiches gilt
fiir die Geschwindigkeit dieses Winkels. AusschlieBlich die Winkelgeschwindigkeit
des Rades stimmt {iberein. Folgende Punkte miissen im Rahmen der Ursachenfor-
schung und Verbesserung der Qualitédt weitergehend untersucht werden:

e Der Bremsvorgang zum abrupten Abbremsen des Rades fiir den Aufschwung
wurde ideal modelliert. Aufgrund der Wirkung hoher Krifte in kurzer Zeit
ist das Bremsen nicht reproduzierbar, sondern zeitvariant zu verstehen. Der
Bremsvorgang wird u. a. beeinflusst durch eine Abnutzung des Bremsbelags,
unterschiedliche Oberflachenbeschaffenheiten entlang der Radoberfliche und
einer geringen Unwucht des Rades.

e Da der Wiirfel aus der oberen Ruhelage sowohl nach links als auch nach rechts
fallen kann, wirkt dies bei sehr kleiner Geschwindigkeit wie eine Singularitét,
weil der Wiirfel vermeintlich willkiirlich zu einer Seite féllt. Die Fallrichtung
ist dabei nicht einfach vorherzusagen bzw. zu lernen.

e Moglicherweise ist die angenommene Kovarianzfunktion, welche die Gauf3-
Prozess-Regression nutzt, nicht geeignet fiir diese Art von Daten, vgl.
terabschnitt 3.5.1] und [Unterabschnitt 4.4.1l Daher konnten andere Kernel-

funktionen zu einer Verbesserung der hybriden Optimalsteuerung fiihren.

Die Anwendung der hybriden Optimalsteuerung auf den Wiirfel zeigt die prinzipielle
Funktionsfihigkeit der Methode, aber auch wie stark die Wahl geeigneter Messdaten
und sinnvoller Hyperparameter den Lernerfolg beeinflusst.

e 1+ 4
« /’
g o T —— - P «
-~
s O 5 L I I I = T - — = \’ I ]
0 0.05 0.1 0.15 0.2 025 03 035 04 045
% 10 F '
L d
s 5 =
-
'Q‘;‘ | | g - - - —\ | | | |
0 0.05 0.1 0.15 0.2 025 03 035 04 045
{ O r _ e e e e e -— e
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k= -200+ s Experiment
. 300 - — = Simulation
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Abbildung 6.20 Akzeptable Modellgenauigkeit beim Aufschwung durch hybride Optimalsteue-
rung
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Abbildung 6.21 Hohe Modellgenauigkeit beim Aufschwung durch hybride Optimalsteuerung
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Stichwortverzeichnis

Anwendungen, [141

Doppelpendel, 07}
Doppelpendel auf einem Wagen,

[IaTl
Duffing-Oszillator, [120]
Einfachpendel,
Einfachpendel auf einem Wagen, [130
Golfroboter, [44] [123],
Servoventil,
Windenergieanlage,
Wiirfel,

Beobachtbarkeit,

Bibliothek,
Observable,

Carleman-Linearisierung,

DMD, [IZ]
Diinnbesetztheit, [113]

Echtzeitfahigkeit,
EDMD,
Eigenvektor, [133]
Eigenwert, [I33]

Erwartungswert, [70], [L00]
Exploration-Exploitation-Dilemma,

901
Extrapolation,

Fehler
Schétzfehler,
Fouriertransformation, [130)

GauB-Prozess,
Generalisierbarkeit,
Giite
Modellgiite, [45]
Schétzgiite, [121

Hyperparameter, [21] [71]
Hyperparameteroptimierung, [21]

Identifikation
Parameteridentifikation, [135
Inbetriebnahme, [94] [107]

Interpretierbarkeit, [15]

Joint Estimation,
Augmentiertes Modell, [T12]

K1, [T
Klassifikation,
Konvexitét,
Koopman-Operator,
Kovarianz, [I00] [I10]
Kovarianzfunktion, [71]
SE-Kernel, [7]]

LASSO-Verfahren,
Least-Squares-Methode, [122]
Linearkombination,

Mittelwertfunktion,

ML,

Modell
Augmentiertes Modell, [112]
Black-Box-Modell, [7]
Gray-Box-Modell,
hybrides Modell, [7] [11]
Modell-Realitéts-Liicke,
Modelladaption,
Modellaktualisierung, {132
Modellgiite, 5] [50],
Modellungenauigkeit, [109]
regelungstechnisch verwertbares Mo-

dell,

Stérmodell,
White-Box-Modell, [7]

Modellierung, [6]
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Stichwortverzeichnis

Modellierungsaufwand, Vorwissen, [23] [44] [49] [106],
MPC, B2 (13} [127]
Neuronale Netze, 0} 52 [56], Zustandsbeobachter, [T09]

MOPGRNN, Kalman-Filter, [I10]

PGNN, [47] lernfahiger Beobachter, [T10

PGRNN, [52] [56] [57] Luenberger-Beobachter,
Normalverteilung, [75],[02] siehe GauB- Sliding-Mode-Beobachter,

Verteilung Unscented-Kalman-Filter, [T10]
SRUKF, [TT4,

Optimierung, Zustandslinearisiﬁug

BayE,;EEhe Optimierung, [50] Zwei-Freiheitsgrade Regelungsstruktur,

90!

Hyperparameteroptimierung, [49]

Mehrzieloptimierung, [49]
gewichtete Summe,
Giitevektoroptimierung,

Optimalsteuerung, [01], [02], 053]
09} 168

Regularisierung,
Over-/Underfitting,

Passivitét, [58]

PCA, 22, 132

Regelungsentwurf,
Regression,
GauB-Prozess-Regression,
100}, [103]

Regularisierung,
Reinforcement Learning,

Schatzgiite, [110

SINDy, @7 @7 F)_UI? 7 @

System
cingangsaffn, 5, 0% 103 T3
PCHD-System,
Systemverinderung,

Unscented Transformation,

Varianz, [70]

Verteilung
GauB-Verteilung,
Laplace-Verteilung, [L18
Posterior-Verteilungen, {101
Prior-Verteilung, [L00
RHS-Verteilung, [11§

Vorverarbeitung, [20]
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Im Zuge der Digitalisierung erfahren maschinelles Lernen und datengetrie-
bene Methoden derzeit eine grofRe Aufmerksamkeit in Wissenschaft und
Industrie. Es fehlt jedoch an Grundlagenwissen und Verstandnis, wie die
datengetriebenen Methoden der Informatik mit bewdhrten modellbasier-
ten Ingenieursmethoden wie dem modellbasierten Entwurf in der Mecha-
tronik und Methoden der Regelungstechnik sinnvoll kombiniert werden
kénnen, um hybride Modelle zu erhalten. Diese ingenieurwissenschaft-
lichen Methoden basieren auf physikalischen Verhaltensmodellen, die
eine besonders verdichtete und interpretierbare Darstellung von Wissen
darstellen und insbesondere kausale Zusammenhdnge beschreiben. Fiir
spezifische regelungstechnische Anwendungen gibt es umfangreiches
Vorwissen in Form von bekannten Strukturen und Informationen, wie z.B.
(Teil-)Modelle oder Parametersétze, die auch bei der Anwendung von Me-
thoden wie dem maschinellen Lernen genutzt werden sollten. Eine solche
sinnvolle systematische Verkniipfung ist wissenschaftlich, insbesondere
im Hinblick auf die industrielle Anwendung, noch nicht ausreichend unter-
sucht worden und sehr vielversprechend. In diesem Beitrag werden die
Ergebnisse der Nachwuchsforschungsgruppe DART — Datengetriebene
Methoden in der Regelungstechnik vorgestellt. Das Hauptziel war es, die
synergetische Kombination von modell- und datengetriebenen Methoden
fiir regelungstechnische Aufgaben zu erforschen und es werden alle wich-
tigen Forschungsergebnisse aber auch die verwendeten Grundprinzipien
des maschinellen Lernens in diesem Beitrag dargestellt.
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