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Cortical changes associated with
an anterior cruciate ligament injury
may retrograde skilled kicking in
football: preliminary EEG findings

Daghan Piskin®*, Gjergji Cobani, Tim Lehmann, Daniel Biichel & Jochen Baumeister

Anterior cruciate ligament injuries (ACLi) impact football players substantially leading to performance
declines and premature career endings. Emerging evidence suggests that ACLi should be viewed

not merely as peripheral injuries but as complex conditions with neurophysiological aspects. The
objective of the present study was to compare kicking performance and associated cortical activity
between injured and healthy players. Ten reconstructed and 15 healthy players performed a kicking
task. Kicking biomechanics were recorded using wearable inertial measurement unit sensors. Cortical
activity was captured with a 64-electrode mobile electroencephalography. Multiscale entropy (MSE)
analysis of biomechanics revealed increased variability in foot external rotation among injured players.
Source-derived event-related spectral perturbations indicated significant differences in posterior alpha
and frontal theta oscillations between the two groups. Furthermore, kick-related complexity of these
regions as indexed by MSE was reduced in injured players at medium and coarse scales. Our findings
suggest sensorimotor changes during kicking in injured players, which may necessitate compensatory
strategies involving augmented attention at the cost of processing visuospatial information. This
conflict may hinder the integration of task-relevant information across distributed networks. Our study
provides preliminary insights into the neurophysiological implications of ACLi within football context
and underscores the potential for prospective research.

Keywords Anterior cruciate ligament injury, Sports injuries, Football, Movement variability,
Electroencephalography, Neurophysiology

The rupture of the anterior cruciate ligament (ACL) is one of the most common injuries in football, characterized
by a high incidence rate among players'-. The successful return-to-play following surgical reconstruction of the
ACL (ACLR) is influenced by various factors, including the type of sport involved*. The consequences of ACL
injuries can be particularly severe in football, as studies indicate significant reductions in player performance
post-ACLR>S. Following ACL injury, players often experience fewer minutes per game and season, participate in
fewer games, complete fewer passes, and score fewer goals”S. Furthermore, Szymski et al.” highlight that injured
football players tend to have shorter career lengths due to diminished levels of play.

Understanding the implications of ACL injuries in football necessitates the physiological exploration of
sport-specific skills in injured players. Kicking is a fundamental movement in football, essential for advancing or
passing the ball and scoring goals®!°. Besides physical coordination, executing a kick requires the integration of
visuospatial and proprioceptive information into coordinated motor behavior, placing considerable demands on
cortical activity'!"!2. Kicking with precision engages characteristic responses from the posterior and frontal brain
regions involved in visuospatial and attentional processes, respectively!>!. These processes play a crucial role in
developing neural strategies that enhance the likelihood of successful kicks on target'>!6. However, ACL injuries
may disrupt kicking accuracy by interfering with these processes. Research indicates that individuals with ACL
injuries exhibit differences in brain activity compared to healthy controls during both simple motor and postural
tasks!’~22. To compensate for altered afferent input coming from the knee, injured individuals develop cortical
strategies®®. The higher activation and connectivity of posterior and frontal regions while performing a motor
task introduce the exploitation of visual and attentional resources for proprioceptive compensation'’~2!. For
kicking, this may imply an overlap of cortical resources used for task demands and sensory compensation.
Prioritizing one over another may challenge kicking performance due to insufficient sensory compensation
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or constrained processing of task-related information?!. The findings of Cordeiro et al.?® indicate increased
biomechanical variability and present preliminary behavioral evidence suggesting changes in performance
among injured players while kicking. Still, it remains unclear from a neurophysiological perspective if a potential
interplay between task demands and compensatory strategies deteriorates kicking performance.

With its high temporal resolution and portability, electroencephalography (EEG) has emerged as a widely
used mobile neurophysiological method for investigating movement-related cortical dynamics?. In the context
of ACL research, studies utilizing EEG have the potential to uncover differences in brain activity between injured
and healthy individuals while they perform simple, postural and dynamic tasks'”1321:27.28_For brief movements
such as kicking, time-locked analyses facilitate the examination of rapid cortical dynamics that occur before
and during movement execution. Three recent studies employing event-related spectral perturbation (ERSP)
analyses have provided important insights into the cortical modulations observed in successive phases of
kicking!2!>16, Specifically, spectral perturbations observed in posterior alpha and frontal theta activity during
kicking were associated with improved accuracy'>!®. While linear metrics of EEG offer valuable information
regarding temporal and regional activation related to task-specific cortical activity'>?’, non-linear metrics
such as multiscale entropy (MSE) assess the complexity of the EEG signals, serving as a proxy of the brains
information processing capacity>’. By analyzing complexity across various temporal scales using MSE, studies
have demonstrated that pathologies or increased cortical load can constrain the amount of information processed
within local and distributed neural networks®~*. The integration of linear and non-linear metrics can offer a
more nuanced perspective on cortical changes associated with injury, ultimately enhancing the interpretation of
EEG data with the novel employment of MSE in mobile settings*.

Based on this background, our study aims to compare kicking performance and associated cortical
activity between healthy and injured football players who have undergone an ACLR. We will evaluate kicking
performance in terms of accuracy and consistency by measuring trial-to-trial non-linear fluctuations in the
short-distance passing motion through MSE!®%. Further, we will analyze cortical modulations in the posterior
and frontal regions during kicking using ERSPs'>1>16, In order to investigate the impact of an ACL injury on
the brain complexity related to kicking, we will also conduct MSE analysis on the activity of these two regions®.
On the behavioral level, we hypothesize that the results will show reduced accuracy and higher complexity for
kicking biomechanics in the ACLR group!®**. On a neurophysiological level, we anticipate finding differences in
the posterior and frontal ERSPs'>'%, and in the task-related complexity of these regions®. Identifying kicking-
specific deficits from multifaceted standpoints can motivate trainers and therapists to see an ACL injury not
only as a peripheral injury, but also as a complex condition with neurophysiological aspects. This knowledge
can elaborate diagnostics and interventions on a neurophysiological and task-specific basis and improve the
longevity of athletic performance in football following injury.

Results

Descriptive data and task-related pain

The descriptive data of both groups are presented in Table 1. Analysis of demographic data and Marx Activity
Scale (MAS) revealed no statistically significant differences between the ACLR group and healthy football
players in terms of age (z=1.63, p=0.10), height (t**=-1.08, p=0.29), BMI (t**=-0.15, p=0.89), or activity
level (t2*=-0.41, p=0.69). Knee Injury and Osteoarthritis Outcome (KOOS) indicated the existence of knee
symptoms within the ACLR group. Despite this, participants reported no pain during the kicking task as
measured by Visual Analogue Scale (VAS).

ACLR Group Healthy controls | Mean differences
Demographic data (n=10) (n=15) (p value)
éfirs) med (IQR)) 25.50 (3) 20.50 (4.50) 0.10
Sex (female / male) 4/6 6/9 -
Height (cm) 174.20+10.42 177.80+6.25 0.29
Body mass index (BMI, kg/m?) 23.20+2.66 23.34+2.09 0.89
Time post-surgery (months, med(IQR)) | 5.05 (3.60) - -
Graft type Semitendinosus (n=6) Quadriceps (n=1) Patellar (n=3) | - -
MAS 14£2.11 13.47+3.74 0.69
KOOS
Pain (%) 76.32+8.46 - -
Symptoms (%) 72.23+10.52 - -
Activities of daily living (%) 76.30+15.34 - -
Sport and recreation (%) 77.89+18.07 - -
Quality of life (%) 69.13+5.51 - -
Task-related Pain (VAS) 0 - -

Table 1. The participants’ demographic data and activity level. Self-reported knee function and task-related
pain are presented for the ACLR group.
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Accuracy rate
The mean accuracy rates were 80.56 +11.22 for the ACLR group and 84.74+8.60 for the healthy controls. No
statistically significant difference was observed between the two groups (t*=1.05, p=0.30).

Trial-to-trial fluctuations in the kicking motion
There were no statistically significant differences between groups in entropy estimates for hip flexion and knee
flexion across all temporal scales. However, the ACLR group exhibited significantly higher entropy values for foot
external rotation across all temporal scales (all p values <0.005), with differences becoming more pronounced at
coarser scales. The statistical parametric mapping is presented in Fig. 1.

No significant correlations were observed between pass accuracy and the entropy estimates of hip flexion,
knee flexion and foot rotation across the analyzed temporal scales.

Kick-related spectral perturbations

Independent components (IC) allocated to the right posterior cluster (N =24 [nhedlth 15, > Miired - ols Njo=49
[nhealth =33, D= =16]) exhibited an alpha desynchronization following kick "onset, which was more
pronounced in healthy players. In contrast, a more pronounced theta synchronization was observed in the ACLR
group at kick onset. These patterns resulted in statistically significant differences between the groups in the time
windows of 1750—2500 and 0—125 ms (Fig. 2).

For the mid-frontal ICs (N=18 [nhealth 12, n,. - .=6], N;.=30 [n, ,4.=22, 0. .=8]), a theta
synchronization was noted, which was more intense in the ACLR group from the onset of the Kick. Statistically
significant differences between groups were observed in the time window of 750—1000 ms corresponding to
this pattern (Fig. 3).

Brain complexity related to kicking

In the right posterior area, no significant differences were found between groups for the POz electrode (Fig. 4).
However, in the other channels, the ACLR group demonstrated a tendency for lower entropy at medium and
coarse scales, with occasional significance in the range of scales 36—56. For the Pz, this trend reversed, showing
higher entropy at fine scales, with significant differences observed at scale 7. Scales with significant entropy
differences and the corresponding statistical parametric maps are presented in Fig. 5 and 6.

In the mid-frontal area, entropy estimates for the AF3, AF4, F3 and F1 electrodes did not differ significantly
between groups (Fig. 4). However, significant differences were found for AFz, Fz, F2 and F4, predominantly at
medium and coarse scales in the range of 27—56, with the ACLR group showing lower entropy estimates. Scales
with significant entropy differences and the corresponding statistical parametric maps are presented in Fig. 7.

Discussion

The current study compared kicking performance and the associated cortical activity in the posterior and frontal
regions between healthy and football players who have undergone an ACLR. Despite the lower trend in the
ACLR group, the accuracy was not significantly different between the groups. The trial-to-trial complexity of hip
and knee flexion motions showed no significant differences. However, entropy estimates of foot external rotation
indicated higher complexity in the ACLR with incremental differences toward coarser scales. Kick-related
spectral perturbations revealed differences in cortical activity associated with kicking. ACLR revealed a weaker
posterior alpha desynchronization and a stronger frontal theta synchronization upon kick onset. Furthermore,
the complexity of these regions was lower at medium and coarse scales, with Pz exceptionally also at fine scales.
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Fig. 1. Entropy estimates of injured and healthy players computed for foot external rotation demonstrating
statistically significant differences along 20 time scales (left) and the corresponding statistical parametric map
(SPM, right). In SPM, the solid line displays computed ¢-values for each time scale, with critical ¢-values for
both tails indicated by the dotted line. Areas where the computed ¢-value exceeds the critical threshold show
time scales with statistically significant differences.
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Fig. 2. Kick-related spectral perturbations in the right posterior cluster showing a stronger alpha
desynchronization in healthy players (left column, top) compared to injured players (left column middle)

with significant differences at 1750—2250 ms (left column, bottom). “0” ms indicates kick onset. The right
column demonstrates the scalp map of the cluster (top) and the locations of allocated independent components
(bottom).

Kicking performance

Although healthy and injured players demonstrated statistically comparable accuracy in kicking performance,
the consistency of motor behavior associated with this performance, specifically the trial-to-trial complexity
of foot external rotation, was significantly higher in the ACLR group. While linear measures of movement
variability reduce variations observed between trials to randomness and hereby lose the temporal structure of a
repetitive pattern, MSE quantifies the complexity of this variability as a non-linear measure by assaying temporal
fluctuations that occur within multiple repetitions of a task across multiple time scales**~3. An optimal level of
variability in a movement pattern is considered indicative of healthy motor function, while decreased or increased
variability reflects rigid and noisy movement patterns, respectively, and can be detrimental to performance®.
Consistent with other studies reporting a loss of optimal variability following injury®’, our findings suggest a
noisier movement for injured players with less consistency from one trial to another®.

The significant difference observed solely in the variability of foot external rotation can be attributed to the
spatial demands inherent in executing a precise kick towards a target. From the perspective of the kicking leg,
foot external rotation results from a combination of tibial torsion and hip external rotation in the transverse
plane®’. The alignment of the foot relative to the target is crucial for determining the ball’s trajectory while
kicking!. Injured individuals present changes in knee rotational angles due to disrupted proprioceptive acuity*?,
which may lead to difficulties in dynamic control and execution of kicks with distorted angles**. Consequently,
attempts to optimize spatial accuracy through varying rotational angles may increase variability in the transverse
plane during the kicking motion. From the perspective of the support leg, the torque generated during the
swing phase facilitates pelvic rotation, thereby promoting accurate external rotation of the kicking leg within the
proximal-to-distal kinematic chain*%. However, when proprioceptive acuity is impaired*, inaccuracies in pelvic
rotation may indirectly affect the rotational angles of the kicking leg, leading to diminished spatial consistency*’.

Analysis of complexity across different time scales revealed increasing group differences in foot external
rotation particularly at coarser scales. In MSE, the coarse-graining procedure removes local details in a signal
towards higher time scales and reveals global trends. This suggests higher unpredictability of the broader kicking
pattern in injured players upon removal of rapid, local movement fluctuations?. In the context of injury, this
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Fig. 3. Kick-related spectral perturbations in the frontal cluster showing a more pronounced theta
synchronization in injured players (left column, middle) compared to healthy players (left column, top) with
significant differences at 750—1000 ms (left column, bottom). “0” ms indicates kick onset. The right column
demonstrates the scalp map of the cluster (top) and the locations of allocated independent components
(bottom).

could indicate a lack of stable, repeatable strategies or difficulties in achieving consistent coordination across
trials due to deficiencies of higher-order adaptability*>*”. Considering our previous findings that revealed higher
complexity in novices compared to experienced players performing the same task'®, it can be postulated that
ACL injury may affect the ability to maintain a reinforced spatial kicking pattern.

The lack of significant differences in accuracy despite complexity differences, together with the absence of a
correlation between the two, underscores the independence of outcome and motor processes. Injured players
may maintain accuracy through compensatory strategies, with complexity serving as an indicator of altered
motor control. Furthermore, this decoupling may also highlight task-dependency as low demands may mask
underlying sensorimotor deficits. The relationship between variability and accuracy may emerge as task difficulty
increases.

Kick-related spectral perturbations
The comparison of spectral perturbations induced by kick onset in the right posterior and frontal regions
revealed significant differences between healthy and injured football players. Several neuroimaging studies have
demonstrated distinct activity patterns in these regions during the execution of simple motor tasks!”~!, postural
tasks??”48 and dynamic movements®® following an ACLR. Among EEG studies examining power spectrum
measures, inconsistent findings regarding increased or decreased posterior alpha and frontal theta activity have
been reported!”18:27:2848 potentially due to the task-specific nature of injury-related compensatory strategies.
The posterior cluster was characterized by an alpha desynchronization during kicking. Alpha suppression is
known to correlate directly with cortical activation levels*>*® and associated with visual processes in posterior
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Fig. 4. Channels indicating significant differences between healthy and injured players (shaded red) in the
complexity of right posterior (orange-colored) and mid-frontal (yellow-colored) regions.

regions®'~>*. Our previous studies utilizing the same task revealed a similar alpha response across comparably
distributed spatial clusters, underscoring the visuospatial demands inherent in kicking!>!®. The rightward
laterality of the ICs in the current findings aligns with our earlier findings'>!® and may accent the maintenance
of visual attention to a spatial location predominantly managed by the non-dominant hemisphere®. However,
in the ACLR group, the alpha desynchronization was diminished with significant differences. Injured
individuals are known to rely more on visual cues during movement!®-21-%, This phenomenon of cross-modal
compensation®”*® suggests that an injury may lead to increased visual processing, resulting in more pronounced
posterior activity during motor tasks'**3. Conversely, our findings indicate reduced posterior activity in injured
individuals, potentially suggesting an attenuated integration of visuospatial information.

The discrepancy of current and former findings may stem from the relatively lower visuospatial demands
of previously implemented tasks such as knee flexion / extension or single-leg stance. In contrast, kicking
necessitates interaction with the ball and target, employing concurrent visual and attentional processes!>1>16,
In injured players, compensatory mechanisms for sensory deficits may restrict available cortical resources and
lead to conflicts between compensation strategies and task demands?**%. Increased cognitive load through dual
task paradigms has been shown to diminish performance in either cognitive or motor domains among injured
individuals, implying a weighted allocation of cortical resources towards either task demands or compensatory
efforts?#>-62, However, cognitive demands are inherently integrated into kicking as a prerequisite to perform
effectively®, utilizing visual and attentional resources during execution to accurately perceive the target and
fine-tune positioning'>!®. Considering a potential overlap of cortical regions engaged in compensation and task
execution, the diminished posterior activation may reflect challenges in maintaining allocated attention on visual
targets. In addition to differences observed in alpha band activity, the stronger posterior theta synchronization
noted in injured players shortly after kick onset may also be indicative of increased cortical load, as previous
research has shown that theta power also tends to increase in posterior cortices when visual and physical
demands become more challenging in dynamic tasks®”%%.

Furthermore, the stronger frontal theta response observed in injured players supports the notion of an
interplay between sensory compensation and task demands. Midline frontal theta is widely recognized as a marker
of cognitive processes, particularly attentional engagement® 7. Previous studies have reported increased frontal
theta activity among injured individuals during simple and dynamic tasks!”'828, highlighting an augmented
need for attention during movement. In the present study, while injured football players achieved comparable
spatial accuracy to their healthy counterparts, they did so by drawing upon greater attentional resources, a
known strategy employed to facilitate diminished sensorimotor integration®®". Moreover, the distribution of
mid-frontal ICs in our findings encompasses premotor cortices’®’!, involved in motor planning and online
movement correction’?”3. Given that theta activity within these regions has been shown to increase alongside
task demands”*”>, this response may further suggest a necessity for more intensive planning processes in injured
players. Integrating our findings on both posterior and frontal spectral dynamics, it can be speculated that
football players prioritize attentional strategies for sensorimotor compensation during kicking. Consequently,
this prioritization may constrain available resources necessary for addressing the visuospatial demands inherent
in this complex motor task following ACLR.
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Fig. 5. Entropy estimates of Pz, P2, P4, P6 and P8 along 64 time scales (left column) and the statistical
parametric mapping (SPM) of significant differences observed between injured and healthy players (right
column). Injured players demonstrated lower complexity at medium and coarse scales with significant
differences observed in a range between 40 and 56. For Pz, the lower trend reversed to higher complexity at
fine scales yielding significant differences at scale 7. In SPM, the solid line displays computed ¢-values for each
time scale, with critical t-values for both tails indicated by the dotted line. Areas where the computed t-value
exceeds the critical threshold show time scales with statistically significant differences.
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Fig. 6. Entropy estimates of PO4, PO8, Oz and O2 along 64 time scales (left column) and the statistical
parametric mapping (SPM) of significant differences observed between injured and healthy players (right
column). Injured players demonstrated lower complexity at medium and coarse scales with significant
differences observed in a range between 36 and 46. In SPM, the solid line displays computed t-values for each
time scale, with critical t-values for both tails indicated by the dotted line. Areas where the computed ¢-value
exceeds the critical threshold show time scales with statistically significant differences.

Task-related cortical complexity

Inadditiontodifferencesinlinear spectral dynamics, entropy estimates revealed distinct non-linear temporospatial
characteristics in the right posterior and frontal cortical activity between healthy and injured football players
while kicking. For both regions, the MSE curves indicate lower cortical complexity in injured players,
particularly at medium and coarse scales’®. Although no prior studies have investigated the neurophysiological
consequences of musculoskeletal injuries through the lens of complexity theory, a loss of complexity has been
frequently observed in various pathological conditions such as neurological and cardiac disorders’®-80. Higher
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Fig. 7. Entropy estimates of AFz, Fz, F2 and F4 along 64 time scales (left column) and the statistical parametric
mapping (SPM) of significant differences observed between injured and healthy players (right column). Injured
players demonstrated lower complexity at medium and coarse scales with significant differences observed in

a range between 27 and 56. In SPM, the solid line displays computed ¢-values for each time scale, with critical
t-values for both tails indicated by the dotted line. Areas where the computed ¢-value exceeds the critical
threshold show time scales with statistically significant differences.

complexity is considered indicative of greater information-processing capacity®":82 and operates at a critical edge
between randomness and regularity®®. This critical balance is essential for adaptability>*® and the capacity to
transition swiftly between states of randomness and regularity, which is vital for optimal cognitive flexibility®>%°.
Hung et al.3¢ found that the superior performance of expert rifle shooters is associated with lower task-related
cortical complexity. Their findings suggest that expertise in sports reduces neuromotor noise by optimizing the
balance between randomness and regularity. In contrast, our findings suggest that in injured football players,
the cortical complexity in the posterior and frontal regions may remain below this critical threshold during

Scientific Reports |

(2025) 15:2208

| https://doi.org/10.1038/s41598-025-86196-4 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

kicking, resulting in a reduced amount of information integrated into neural networks compared to their healthy
counterparts®,

The reduced complexity observed in injured players is particularly notable at coarser scales. In MSE
analysis of EEG signals, fine-to-coarse scales characterize the complexity of fast-to-slow neural dynamics*,
which correspond to the integrated information into local-to-distributed networks, respectively®2. This lower
distributed entropy in injured football players may reflect their attenuated capacity to integrate information
processed in right posterior and frontal regions into long-range networks during kicking. McIntosh et al.>> have
discussed a similar shift towards local processing in older adults within a modularity framework®, proposing that
a decrease in distributed entropy may indicate reduced interdependence among spatially distant brain regions.
Although the mechanisms underlying this shift remain covert, given that complexity findings are limited to
only two regions of interest, it is plausible that proprioceptive compensation in injured players might reduce the
resources available for global integration (decreased modularity), which is accepted as an important catalyzer
for a complex, adaptive behavior®®-*°. Given its proximity to the sensorimotor cortex, the higher complexity
observed at fine scales in the Pz region may imply a more intensive sensorimotor processing in injured players,
hypothetically interfering with the long-range integration of information. However, the lack of comparable
entropy findings related to movement limits these interpretations to preliminary assumptions. Nevertheless,
the observed injury-related loss of complexity in these two regions could be linked to decreased movement
consistency, as these areas are crucial for superior execution!>.

The current study presents preliminary evidence suggesting that the neurophysiological consequences of an
ACL injury, investigated within postural and static motor tasks up to date, may extend to kicking, a fundamental
movement in a sport significantly affected by this injury'~>. Our results indicate that the allocation of visual and
attentional strategies differ in injured players during kicking compared to their healthy counterparts, potentially
impacting the integration of task-related information in posterior and frontal regions. Achieving comparable
spatial accuracy to their healthy counterparts even in a stable, predictable environment may compel injured
players to compensate for deficits with augmented attention, possibly at the cost of restricted visual resources
necessary for effective kicking performance!>!°. The resultant decrease in cortical complexity and increase in
trial-to-trial movement complexity may signal a regression in athletic skills'®#¢°12 and potentially presage
reduced performance in real-world scenarios with more unpredictable dynamics. Our study provides the first
insight into how ACL injury might affect kicking performance in football from a neurophysiological perspective
and highlights the potential for further research in the field of sports-related injuries.

Methodological considerations and prospect

The current study has several methodological limitations that should be considered when interpreting the
findings, translating them into practice, and designing future studies that build on this work. Regarding the
characteristics of the injured cohort, while neurophysiological changes have been reported years after ACL
rupture!®>%*, the present findings may primarily reflect distinctions observed during the return-to-sports
phase, which could develop chronically over time®. However, the absence of pre- and post-injury comparisons
introduces uncertainty about injury-specific nature of the findings®®®’. Pre-existing hip abnormalities, which
have been identified as potential contributors to ACL injury’®*?, may offer an alternative explanation for the
increased variability in external rotation observed in this study.

The described dynamics suggest the existence of behavioral and cortical differences between healthy and
injured football players while kicking. However, the heterogeneity arising from the concurrence of ACLR in
kicking- and stance-leg, complicates the clear identification of side-specific deficits. Given the differing demands
of the legs during a kick (for instance, proprioceptive acuity and stability***, injuries to the kicking and stance
leg may result in distinct cortical strategies detectable particularly in motor cortices. Furthermore, although
injured individuals did not report any perceived pain during the execution of the task, prolonged pain exposure
is known to influence cortical activity!°*1°!. Considering KOOS outcomes, this should be acknowledged as a
potential confounding factor. Future studies should also consider the homogeneity of autografts, as outcomes
may vary among different types!?>1%%,

The kicking task used in this study was adopted from our previous research!>!® and is intended to simulate
short-distance passes on the field, where accuracy prevails'®'%*. However, the predictability of the experimental
environment may limit the ecological validity of the task and could also explain the insignificant or small
differences observed. Increasing attentional demands in future studies could exacerbate kicking-specific deficits,
making them more apparent. Consequently, future studies should design settings with greater unpredictability
and difficulty to better reflect real-world conditions, such as adaptive environments, variable motor tasks and
unpredictable sensory cues'®.

Conclusions

The current study aimed to investigate the potential impact of ACL injury on kicking performance from a
neurophysiological standpoint. Despite similar accuracy performance, injured football players demonstrated
notable behavioral and cortical differences compared to their healthy counterparts during kicking. The higher
entropy observed in foot external rotation may suggest a loss of optimal variability, likely due to diminished
proprioceptive acuity. This reduction in proprioceptive function may be compensated for by increased
attentional demands, which could limit the use of visuospatial resources and hinder the integration of task-
related information into long-range neural networks. Our preliminary findings offer the first insights into how
the established neurophysiological consequences of ACL injury might affect kicking performance in football
and open doors for prospective research to further explore this topic, given its practical and academic potential.
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Methods

Participants

The current study investigated 10 football players who had undergone ACLR (n,, , = 6) and 15 healthy controls.
The inclusion criteria for the injured players were as follows: (1) aged between 18—35 years; (2) having
undergone ACLR due to a complete rupture of the ACL, with or without accompanying meniscal injury; (3)
having played football for at least 10 years prior to injury'®; (4) experiencing no pain during the execution
of the kicking task; (5) being right-dominant in lower extremities; and (6) not having any previous ACL or
concomitant injuries, neurologic disorders or being on psychotropic medication. For the healthy control group,
the inclusion criteria included: (1) aged between 18—35 years; (2) playing football for a minimum of 10 years'®;
(3) being right-dominant in the lower extremities; (4) having no orthopedic injuries, neurological disorders, or
being on psychotropic medication. The activity levels of both groups were assessed and compared using MAS!%.
Lower extremity laterality was determined based on the Lateral Preference Inventory'??. KOOS was utilized
to evaluate self-reported knee function among injured players prior to the experiments!'®. Given its influence
on cortical activity'®1%!, task-related pain levels were assessed using a VAS. All participants had normal or
corrected vision during the experiments. The Ethics Committee of Paderborn University approved the study’s
conduction and written consent was obtained from all participants prior to measurements. All methods were
performed in accordance with the relevant guidelines and regulations.

Experimental procedure

The current study employed a short-distance kicking task, which has been used in our previous research (see
Supplementary Fig. 1 online)!¢, All participants wore laced sneakers during the experiments and performed
the task in a standardized area within the laboratory. The objective was to kick a FIFA size five ball with the
inside of the right foot toward a target, represented by a rectangular wooden block (10x 15 cm). To ensure
consistency across trials, the starting position was standardized. Participants placed their left foot next to the
ball while positioning their right foot externally rotated behind it. The distance between the left foot and the
ball was established during familiarization trials and marked on the floor to maintain this standardized position
throughout the experiment. Participants were instructed to kick as accurately as possible, and no interactions
occurred during trials. A total of six blocks, each consisting of 15 repetitions, were completed. This setup has
previously demonstrated reliable cortical dynamics in our findings'?. During the experiments, the number of
successful (on-target) kicks and missed attempts were recorded to calculate the accuracy rate.

The recording and multiscale entropy analysis of behavioral data

Seven wearable inertial measurement unit sensors (myoMOTION, Noraxon, USA) were utilized to capture
the three-dimensional biomechanics of the lower extremities at a sampling rate of 200 Hz. These sensors were
bilaterally attached to the dorsal surfaces of the feet, the tibial faces of the shanks, the lateral lower quadrants of
the upper thighs, and the sacral surface of the lumbar area!®. The recorded signals for hip flexion, knee flexion,
foot external rotation, and acceleration were digitized using myoRESEARCH (version 3.14, Noraxon, USA) and
processed for complexity analysis in Matlab (version R2020b, The Math Works, USA).

As a non-linear measure, MSE assesses the complexity of temporal variations in a time series by identifying
repeating patterns across multiple temporal resolutions***. In a time series where each repeating pattern
corresponds to fluctuations within an individual trial, MSE evaluates the regularity of these patterns, and
hereby the regularity of trials. Lower entropy values indicate high predictability and consistent patterns, while
higher entropy values reflect irregularity or inconsistency from trial to trial. The coarse-graining procedure
removes local trends by smoothing the series at larger time scales and facilitates the understanding of trial-
to-trial changes also in global movement®. Based on these assumptions, the current study assessed kicking
consistency across the trials using MSE. The continuous data were processed into sparse segments based on
kick onsets to remove intervals unrelated to kicks and to normalize drifts caused by variations in the starting
position®. Kick onsets were identified by minimizing a cost function over possible linear change points in the
x-axis of the acceleration data**!1%. The signal was rectified and smoothed using a Gaussian-weighted moving
average filter with a window length of 200 data points'!!. Abrupt changes in the mean acceleration signal were
detected as kick onsets using ischange function in Matlab. The signals for hip flexion, knee flexion, and foot
rotation were segmented into intervals of 500 data points (2500 ms) based on kick onsets with each segment
representing a trial'®. The segments were then concatenated and the baseline of the resulting signal was shifted to
a constant value of zero!'? to increase the stationarity of the data without altering its structure and eliminate the
confounding effect of starting position variations across trials on entropy estimates!!®. Spline interpolation was
applied to transition points to avoid artificial fluctuations caused by abrupt changes and smooth the adjunction.
To avoid the manipulation of small fluctuations, data was not filtered!!*!, The processing steps are presented
with an example dataset in Supplementary Fig. 2 online.

Custom scripts were used to perform MSE analysis in two steps predicated on methodologies established by
Costa et al.*. Firstly, time series were derived across 20 time scales through a coarse-graining procedure defined
as:

jT
T _ 1 E N
i=(-1)T+1
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where T represents the time scale, y. is the constructed time series after coarse-graining, x; is a data point within
that series, and N denotes the length of the original time series. Next, sample entropy for each generated time
series was estimated as:

N-m._m
Zi=1 M

A
Sg(m,N,r) = lnE =Ingy= =
i=1 M

with the parameters m = embedding dimension, N=the total number of data points, r=similarity criterion and
n=the number of vectors close to a template vector i with a dimension of m. An embedding dimension of m =2
was selected, with the similarity criterion defined as 0.50 x SD of the time series. The selection of m should
consider the structure of the fluctuations and its functional meaning in the series, as patterns at a length of m and
m+1 are searched in the algorithm'!®. In the current study, m=2 was selected to capture motion fluctuations
characterized by this length at fine and coarse scales (see Supplementary Fig. 2 online). For the highest scale
analyzed, a minimum length range of 14™ - 23™ (196 - 529 for m = 2) are recommended'!’, which was fulfilled
for all datasets at scale 20. In the traditional MSE algorithm, r remains constant across time scales; however, this
can inflate entropy values for shorter time scales due to reduced SD following coarse-graining procedures!'®. To
address this issue in the current study, we recalculated r for each time scale!l”.

EEG recording and preprocessing

Cortical activity was continuously recorded using 65 active Ag/AgCl electrodes (actiCap, Brain Products,
Germany) positioned according to the international 10-20 system, with AFz and FCz serving as the ground
and reference electrodes, respectively!'®. The signal was transmitted and digitized at a sampling rate of 500 Hz
using BrainVision Recorder (Brain Products, Germany) and a wireless amplifier (LiveAmp, Brain Products,
Germany). Additionally, a 3D accelerometer (Brain Products. Germany) was affixed posterior to the lateral
malleolus to capture the acceleration of the kicking synchronously.

Data preprocessing was performed offline in Matlab (version R2020b, The Math Works, USA) using the
EEGLAB toolbox (version 14.1.2b)!'°. Sinusoidal line noise was removed via the Cleanline plugin'?’, followed
by filtering the signal with a basic finite impulse response filter with cut-off frequencies set at 3 and 30 Hz.
Automatic detection and rejection of noisy channels were conducted based on kurtosis, probability, and signal
spectrum, with a z-score threshold = 5'?!. Subsequently, the data were re-referenced to a common average and
downsampled to 256 Hz.

The preprocessed data were then segmented into epochs based on kick onset detection, which was performed
using principles of linear computational cost!'!?. The acceleration data of the kicking foot along the x-axis was
rectified and smoothed using a Gaussian-weighted moving average filter with a window length of 1000 data
points. Kick onsets were identified as abrupt changes in the signal mean using the ischange function, and the data
were epoched from -3000 to 3000 ms, with baseline correction applied from -2500 to -500 ms'>!°. Noisy epochs
were visually inspected and removed from the data.

An adaptive mixture independent component analysis was performed to further analyze the data, decomposing
the epoched data into maximally independent components (IC)'?2. Source localization of ICs was estimated
using the DIPFIT plugin'?? with a standardized four-shell spherical head model (BESA, Germany). Robust brain
components were retained based on their source location, residual variance (< 15%) and classification as brain
components by the ICLabel Plugin'?, with a minimum 90% as confidence threshold. All non-brain ICs were
subsequently removed from the dataset.

Computation of event-related spectral perturbations in the clusters of interest

The retained brain components were clustered using the k-means algorithm. To avoid circular inference in
subsequent statistical analyses, dipole locations were used to construct the global distance matrix!?>. The optimal
number of clusters was determined through the application of three distinct optimization algorithms!26-128,
Guided by our previous research!21%, the right posterior and frontal clusters were identified as clusters of interest
for further analysis.

ERSP matrices for these two clusters were computed in line with the methodology outlined by Makeig!%.
The analysis focused on a frequency range of 3 to 20 Hz and a time window extending from 0 to 2500 ms'>16,
utilizing the integrated STD_ERSP function in the EEGLAB toolbox. A 3-cycle wavelet was employed for the
lowest frequency, with a linear increase of 0.5 cycles as the frequency rose.

Multiscale entropy analysis in the regions of interest
A modified MSE analysis was performed on the preprocessed EEG data using a custom algorithm, based on
the methodology established by Grandy et al.!**. MSE analysis of EEG data requires tailored preprocessing
protocols, given that factors like sampling rate, band-pass filter parameters, and artifact rejection techniques
can significantly impact entropy estimates'*""!*2. In mobile EEG studies, movement artifacts are of particular
concern requiring special preprocessing considerations'**!34. Due to the absence of standardized preprocessing
pipelines for MSE analysis in mobile settings, the current study adopted procedures from our previous work,
producing reliable results for ERSPs!2,

Channels removed during preprocessing were subsequently interpolated!*. To ensure consistency across
participants, 80 epochs—the minimum number of clean epochs retained among datasets following the rejection
of noisy epochs—were randomly selected using the POP_SELECT function. This step was critical to compute

entropy estimates with an equal number of channels and data points per channel, ensuring reliable results'*.
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The selected epochs were concatenated, and entropy estimates were calculated for 64 scales (with the equations
provided in the above section) on the residuals of the EEG signal, following subtraction of the intra-individual
average across trials. This approach is known to yield reliable outcomes for discontinuous data'"132,

The analysis was conducted over the 0—2500 ms epoch window to focus on the complexity of task-related
activity as outlined in Piskin et al.'>. An embedding dimension of m =2 was used, with the similarity criterion
recalculated for each scale as r=0.50 x SD, to avoid bias toward lower entropy values at coarser scales!*1132 Two
regions of interest were defined based on our previous findings'?!° to assess the complexity in the mid-frontal
(AF3, AFz, AF4, F3, F1, Fz, F2, F4) and right posterior areas (Pz, P2, P4, P6, P8, POz, PO4, PO8, Oz, O2). Finally,
entropy values were extracted from the specified channels for statistical analysis.

Statistical analyses

An a priori sample-size estimation was performed using G*Power!*, based on the behavioral findings by
Cordeiro et al.?>. The observed difference in knee extension variability during kicking with a large effect size
(d=1.215) indicated that a minimum number of 11 in the healthy and 9 participants in the ACLR group would
be required to achieve a power of 0.80 at an alpha level of 0.05.

Statistical analyses were performed using Matlab (version R2020b, The Math Works, USA). The normality
of descriptive data was assessed using the Shapiro-Wilk-Test'?”. Variables following a normal distribution
were reported as mean+SD and were compared using an independent ¢-test. For skewed data, median and
interquartile ranges (IQR) were presented, and group comparisons were made using the Wilcoxon rank-sum
test.

The ERSP matrices were compared on a pixel-wise basis using integrated permutation-based f-tests in
EEGLAB, with false discovery rate correction to map p-values and identify group differences with temporal and
frequency specificity'®. Entropy estimates of the behavioral and EEG data were compared across scales using
independent ¢-tests'*, with statistical parametric maps (SPM) generated to display significant group differences
at fine (1—21), medium (22—42), and coarse (42—64) scales'**. A false discovery rate correction was applied
following the Benjamini and Hochberg method!*” to account for simultaneous statistical inferences. In order
to examine the influence of trial-to-trial complexity on kicking accuracy, Pearson’s correlation coefficients were
computed for accuracy rate and entropy estimates across analyzed time scales. All analyses were conducted with
a significance level set at 0.05.

Data availability
The datasets collected and analyzed for the present work are available from the corresponding author on rea-
sonable request.
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