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Anterior cruciate ligament injuries (ACLi) impact football players substantially leading to performance 
declines and premature career endings. Emerging evidence suggests that ACLi should be viewed 
not merely as peripheral injuries but as complex conditions with neurophysiological aspects. The 
objective of the present study was to compare kicking performance and associated cortical activity 
between injured and healthy players. Ten reconstructed and 15 healthy players performed a kicking 
task. Kicking biomechanics were recorded using wearable inertial measurement unit sensors. Cortical 
activity was captured with a 64-electrode mobile electroencephalography. Multiscale entropy (MSE) 
analysis of biomechanics revealed increased variability in foot external rotation among injured players. 
Source-derived event-related spectral perturbations indicated significant differences in posterior alpha 
and frontal theta oscillations between the two groups. Furthermore, kick-related complexity of these 
regions as indexed by MSE was reduced in injured players at medium and coarse scales. Our findings 
suggest sensorimotor changes during kicking in injured players, which may necessitate compensatory 
strategies involving augmented attention at the cost of processing visuospatial information. This 
conflict may hinder the integration of task-relevant information across distributed networks. Our study 
provides preliminary insights into the neurophysiological implications of ACLi within football context 
and underscores the potential for prospective research.
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The rupture of the anterior cruciate ligament (ACL) is one of the most common injuries in football, characterized 
by a high incidence rate among players1–3. The successful return-to-play following surgical reconstruction of the 
ACL (ACLR) is influenced by various factors, including the type of sport involved4. The consequences of ACL 
injuries can be particularly severe in football, as studies indicate significant reductions in player performance 
post-ACLR5,6. Following ACL injury, players often experience fewer minutes per game and season, participate in 
fewer games, complete fewer passes, and score fewer goals7,8. Furthermore, Szymski et al.5 highlight that injured 
football players tend to have shorter career lengths due to diminished levels of play.

Understanding the implications of ACL injuries in football necessitates the physiological exploration of 
sport-specific skills in injured players. Kicking is a fundamental movement in football, essential for advancing or 
passing the ball and scoring goals9,10. Besides physical coordination, executing a kick requires the integration of 
visuospatial and proprioceptive information into coordinated motor behavior, placing considerable demands on 
cortical activity11,12. Kicking with precision engages characteristic responses from the posterior and frontal brain 
regions involved in visuospatial and attentional processes, respectively13,14. These processes play a crucial role in 
developing neural strategies that enhance the likelihood of successful kicks on target15,16. However, ACL injuries 
may disrupt kicking accuracy by interfering with these processes. Research indicates that individuals with ACL 
injuries exhibit differences in brain activity compared to healthy controls during both simple motor and postural 
tasks17–22. To compensate for altered afferent input coming from the knee, injured individuals develop cortical 
strategies23. The higher activation and connectivity of posterior and frontal regions while performing a motor 
task introduce the exploitation of visual and attentional resources for proprioceptive compensation17–21. For 
kicking, this may imply an overlap of cortical resources used for task demands and sensory compensation. 
Prioritizing one over another may challenge kicking performance due to insufficient sensory compensation 
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or constrained processing of task-related information24. The findings of Cordeiro et al.25 indicate increased 
biomechanical variability and present preliminary behavioral evidence suggesting changes in performance 
among injured players while kicking. Still, it remains unclear from a neurophysiological perspective if a potential 
interplay between task demands and compensatory strategies deteriorates kicking performance.

With its high temporal resolution and portability, electroencephalography (EEG) has emerged as a widely 
used mobile neurophysiological method for investigating movement-related cortical dynamics26. In the context 
of ACL research, studies utilizing EEG have the potential to uncover differences in brain activity between injured 
and healthy individuals while they perform simple, postural and dynamic tasks17,18,21,27,28. For brief movements 
such as kicking, time-locked analyses facilitate the examination of rapid cortical dynamics that occur before 
and during movement execution. Three recent studies employing event-related spectral perturbation (ERSP) 
analyses have provided important insights into the cortical modulations observed in successive phases of 
kicking12,15,16. Specifically, spectral perturbations observed in posterior alpha and frontal theta activity during 
kicking were associated with improved accuracy15,16. While linear metrics of EEG offer valuable information 
regarding temporal and regional activation related to task-specific cortical activity12,29, non-linear metrics 
such as multiscale entropy (MSE) assess the complexity of the EEG signals, serving as a proxy of the brain’s 
information processing capacity30. By analyzing complexity across various temporal scales using MSE, studies 
have demonstrated that pathologies or increased cortical load can constrain the amount of information processed 
within local and distributed neural networks31–33. The integration of linear and non-linear metrics can offer a 
more nuanced perspective on cortical changes associated with injury, ultimately enhancing the interpretation of 
EEG data with the novel employment of MSE in mobile settings34.

Based on this background, our study aims to compare kicking performance and associated cortical 
activity between healthy and injured football players who have undergone an ACLR. We will evaluate kicking 
performance in terms of accuracy and consistency by measuring trial-to-trial non-linear fluctuations in the 
short-distance passing motion through MSE16,35. Further, we will analyze cortical modulations in the posterior 
and frontal regions during kicking using ERSPs12,15,16. In order to investigate the impact of an ACL injury on 
the brain complexity related to kicking, we will also conduct MSE analysis on the activity of these two regions30. 
On the behavioral level, we hypothesize that the results will show reduced accuracy and higher complexity for 
kicking biomechanics in the ACLR group16,35. On a neurophysiological level, we anticipate finding differences in 
the posterior and frontal ERSPs12,16, and in the task-related complexity of these regions33. Identifying kicking-
specific deficits from multifaceted standpoints can motivate trainers and therapists to see an ACL injury not 
only as a peripheral injury, but also as a complex condition with neurophysiological aspects. This knowledge 
can elaborate diagnostics and interventions on a neurophysiological and task-specific basis and improve the 
longevity of athletic performance in football following injury.

Results
Descriptive data and task-related pain
The descriptive data of both groups are presented in Table 1. Analysis of demographic data and Marx Activity 
Scale (MAS) revealed no statistically significant differences between the ACLR group and healthy football 
players in terms of age (z = 1.63, p = 0.10), height (t23 = -1.08, p = 0.29), BMI (t23 = -0.15, p = 0.89), or activity 
level (t23 = -0.41, p = 0.69). Knee Injury and Osteoarthritis Outcome (KOOS) indicated the existence of knee 
symptoms within the ACLR group. Despite this, participants reported no pain during the kicking task as 
measured by Visual Analogue Scale (VAS).

Demographic data
ACLR Group
(n = 10)

Healthy controls
(n = 15)

Mean differences
(p value)

Age
(years, med (IQR)) 25.50 (3) 20.50 (4.50) 0.10

Sex (female / male) 4 / 6 6 / 9 -

Height (cm) 174.20 ± 10.42 177.80 ± 6.25 0.29

Body mass index (BMI, kg/m2) 23.20 ± 2.66 23.34 ± 2.09 0.89

Time post-surgery (months, med(IQR)) 5.05 (3.60) - -

Graft type Semitendinosus (n = 6) Quadriceps (n = 1) Patellar (n = 3) - -

MAS 14 ± 2.11 13.47 ± 3.74 0.69

KOOS

Pain (%) 76.32 ± 8.46 - -

Symptoms (%) 72.23 ± 10.52 - -

Activities of daily living (%) 76.30 ± 15.34 - -

Sport and recreation (%) 77.89 ± 18.07 - -

Quality of life (%) 69.13 ± 5.51 - -

Task-related Pain (VAS) 0 - -

Table 1.  The participants’ demographic data and activity level. Self-reported knee function and task-related 
pain are presented for the ACLR group.
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Accuracy rate
The mean accuracy rates were 80.56 ± 11.22 for the ACLR group and 84.74 ± 8.60 for the healthy controls. No 
statistically significant difference was observed between the two groups (t23 = 1.05, p = 0.30).

Trial-to-trial fluctuations in the kicking motion
There were no statistically significant differences between groups in entropy estimates for hip flexion and knee 
flexion across all temporal scales. However, the ACLR group exhibited significantly higher entropy values for foot 
external rotation across all temporal scales (all p values < 0.005), with differences becoming more pronounced at 
coarser scales. The statistical parametric mapping is presented in Fig. 1.

No significant correlations were observed between pass accuracy and the entropy estimates of hip flexion, 
knee flexion and foot rotation across the analyzed temporal scales.

Kick-related spectral perturbations
Independent components (IC) allocated to the right posterior cluster (N = 24 [nhealthy = 15, ninjured = 9], NIC = 49 
[nhealthy = 33, ninjured = 16]) exhibited an alpha desynchronization following kick onset, which was more 
pronounced in healthy players. In contrast, a more pronounced theta synchronization was observed in the ACLR 
group at kick onset. These patterns resulted in statistically significant differences between the groups in the time 
windows of 1750—2500 and 0—125 ms (Fig. 2).

For the mid-frontal ICs (N = 18 [nhealthy = 12, ninjured = 6], NIC = 30 [nhealthy = 22, ninjured = 8]), a theta 
synchronization was noted, which was more intense in the ACLR group from the onset of the kick. Statistically 
significant differences between groups were observed in the time window of 750—1000 ms corresponding to 
this pattern (Fig. 3).

Brain complexity related to kicking
In the right posterior area, no significant differences were found between groups for the POz electrode (Fig. 4). 
However, in the other channels, the ACLR group demonstrated a tendency for lower entropy at medium and 
coarse scales, with occasional significance in the range of scales 36—56. For the Pz, this trend reversed, showing 
higher entropy at fine scales, with significant differences observed at scale 7. Scales with significant entropy 
differences and the corresponding statistical parametric maps are presented in Fig. 5 and 6.

In the mid-frontal area, entropy estimates for the AF3, AF4, F3 and F1 electrodes did not differ significantly 
between groups (Fig. 4). However, significant differences were found for AFz, Fz, F2 and F4, predominantly at 
medium and coarse scales in the range of 27—56, with the ACLR group showing lower entropy estimates. Scales 
with significant entropy differences and the corresponding statistical parametric maps are presented in Fig. 7.

Discussion
The current study compared kicking performance and the associated cortical activity in the posterior and frontal 
regions between healthy and football players who have undergone an ACLR. Despite the lower trend in the 
ACLR group, the accuracy was not significantly different between the groups. The trial-to-trial complexity of hip 
and knee flexion motions showed no significant differences. However, entropy estimates of foot external rotation 
indicated higher complexity in the ACLR with incremental differences toward coarser scales. Kick-related 
spectral perturbations revealed differences in cortical activity associated with kicking. ACLR revealed a weaker 
posterior alpha desynchronization and a stronger frontal theta synchronization upon kick onset. Furthermore, 
the complexity of these regions was lower at medium and coarse scales, with Pz exceptionally also at fine scales.

Fig. 1.  Entropy estimates of injured and healthy players computed for foot external rotation demonstrating 
statistically significant differences along 20 time scales (left) and the corresponding statistical parametric map 
(SPM, right). In SPM, the solid line displays computed t-values for each time scale, with critical t-values for 
both tails indicated by the dotted line. Areas where the computed t-value exceeds the critical threshold show 
time scales with statistically significant differences.

 

Scientific Reports |         (2025) 15:2208 3| https://doi.org/10.1038/s41598-025-86196-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Kicking performance
Although healthy and injured players demonstrated statistically comparable accuracy in kicking performance, 
the consistency of motor behavior associated with this performance, specifically the trial-to-trial complexity 
of foot external rotation, was significantly higher in the ACLR group. While linear measures of movement 
variability reduce variations observed between trials to randomness and hereby lose the temporal structure of a 
repetitive pattern, MSE quantifies the complexity of this variability as a non-linear measure by assaying temporal 
fluctuations that occur within multiple repetitions of a task across multiple time scales36–38. An optimal level of 
variability in a movement pattern is considered indicative of healthy motor function, while decreased or increased 
variability reflects rigid and noisy movement patterns, respectively, and can be detrimental to performance38. 
Consistent with other studies reporting a loss of optimal variability following injury35, our findings suggest a 
noisier movement for injured players with less consistency from one trial to another39.

The significant difference observed solely in the variability of foot external rotation can be attributed to the 
spatial demands inherent in executing a precise kick towards a target. From the perspective of the kicking leg, 
foot external rotation results from a combination of tibial torsion and hip external rotation in the transverse 
plane40. The alignment of the foot relative to the target is crucial for determining the ball’s trajectory while 
kicking41. Injured individuals present changes in knee rotational angles due to disrupted proprioceptive acuity42, 
which may lead to difficulties in dynamic control and execution of kicks with distorted angles43. Consequently, 
attempts to optimize spatial accuracy through varying rotational angles may increase variability in the transverse 
plane during the kicking motion. From the perspective of the support leg, the torque generated during the 
swing phase facilitates pelvic rotation, thereby promoting accurate external rotation of the kicking leg within the 
proximal-to-distal kinematic chain44. However, when proprioceptive acuity is impaired42, inaccuracies in pelvic 
rotation may indirectly affect the rotational angles of the kicking leg, leading to diminished spatial consistency45.

Analysis of complexity across different time scales revealed increasing group differences in foot external 
rotation particularly at coarser scales. In MSE, the coarse-graining procedure removes local details in a signal 
towards higher time scales and reveals global trends. This suggests higher unpredictability of the broader kicking 
pattern in injured players upon removal of rapid, local movement fluctuations46. In the context of injury, this 

Fig. 2.  Kick-related spectral perturbations in the right posterior cluster showing a stronger alpha 
desynchronization in healthy players (left column, top) compared to injured players (left column middle) 
with significant differences at 1750—2250 ms (left column, bottom). “0” ms indicates kick onset. The right 
column demonstrates the scalp map of the cluster (top) and the locations of allocated independent components 
(bottom).
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could indicate a lack of stable, repeatable strategies or difficulties in achieving consistent coordination across 
trials due to deficiencies of higher-order adaptability35,47. Considering our previous findings that revealed higher 
complexity in novices compared to experienced players performing the same task16, it can be postulated that 
ACL injury may affect the ability to maintain a reinforced spatial kicking pattern.

The lack of significant differences in accuracy despite complexity differences, together with the absence of a 
correlation between the two, underscores the independence of outcome and motor processes. Injured players 
may maintain accuracy through compensatory strategies, with complexity serving as an indicator of altered 
motor control. Furthermore, this decoupling may also highlight task-dependency as low demands may mask 
underlying sensorimotor deficits. The relationship between variability and accuracy may emerge as task difficulty 
increases.

Kick-related spectral perturbations
The comparison of spectral perturbations induced by kick onset in the right posterior and frontal regions 
revealed significant differences between healthy and injured football players. Several neuroimaging studies have 
demonstrated distinct activity patterns in these regions during the execution of simple motor tasks17–19, postural 
tasks21,27,48 and dynamic movements28 following an ACLR. Among EEG studies examining power spectrum 
measures, inconsistent findings regarding increased or decreased posterior alpha and frontal theta activity have 
been reported17,18,27,28,48, potentially due to the task-specific nature of injury-related compensatory strategies.

The posterior cluster was characterized by an alpha desynchronization during kicking. Alpha suppression is 
known to correlate directly with cortical activation levels49,50 and associated with visual processes in posterior 

Fig. 3.  Kick-related spectral perturbations in the frontal cluster showing a more pronounced theta 
synchronization in injured players (left column, middle) compared to healthy players (left column, top) with 
significant differences at 750—1000 ms (left column, bottom). “0” ms indicates kick onset. The right column 
demonstrates the scalp map of the cluster (top) and the locations of allocated independent components 
(bottom).
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regions51–54. Our previous studies utilizing the same task revealed a similar alpha response across comparably 
distributed spatial clusters, underscoring the visuospatial demands inherent in kicking12,16. The rightward 
laterality of the ICs in the current findings aligns with our earlier findings12,16 and may accent the maintenance 
of visual attention to a spatial location predominantly managed by the non-dominant hemisphere55. However, 
in the ACLR group, the alpha desynchronization was diminished with significant differences. Injured 
individuals are known to rely more on visual cues during movement19–21,56. This phenomenon of cross-modal 
compensation57,58 suggests that an injury may lead to increased visual processing, resulting in more pronounced 
posterior activity during motor tasks19,48. Conversely, our findings indicate reduced posterior activity in injured 
individuals, potentially suggesting an attenuated integration of visuospatial information.

The discrepancy of current and former findings may stem from the relatively lower visuospatial demands 
of previously implemented tasks such as knee flexion / extension or single-leg stance. In contrast, kicking 
necessitates interaction with the ball and target, employing concurrent visual and attentional processes12,15,16. 
In injured players, compensatory mechanisms for sensory deficits may restrict available cortical resources and 
lead to conflicts between compensation strategies and task demands24,58. Increased cognitive load through dual 
task paradigms has been shown to diminish performance in either cognitive or motor domains among injured 
individuals, implying a weighted allocation of cortical resources towards either task demands or compensatory 
efforts24,59–62. However, cognitive demands are inherently integrated into kicking as a prerequisite to perform 
effectively63, utilizing visual and attentional resources during execution to accurately perceive the target and 
fine-tune positioning12,16. Considering a potential overlap of cortical regions engaged in compensation and task 
execution, the diminished posterior activation may reflect challenges in maintaining allocated attention on visual 
targets. In addition to differences observed in alpha band activity, the stronger posterior theta synchronization 
noted in injured players shortly after kick onset may also be indicative of increased cortical load, as previous 
research has shown that theta power also tends to increase in posterior cortices when visual and physical 
demands become more challenging in dynamic tasks27,64.

Furthermore, the stronger frontal theta response observed in injured players supports the notion of an 
interplay between sensory compensation and task demands. Midline frontal theta is widely recognized as a marker 
of cognitive processes, particularly attentional engagement65–67. Previous studies have reported increased frontal 
theta activity among injured individuals during simple and dynamic tasks17,18,28, highlighting an augmented 
need for attention during movement. In the present study, while injured football players achieved comparable 
spatial accuracy to their healthy counterparts, they did so by drawing upon greater attentional resources, a 
known strategy employed to facilitate diminished sensorimotor integration68,69. Moreover, the distribution of 
mid-frontal ICs in our findings encompasses premotor cortices70,71, involved in motor planning and online 
movement correction72,73. Given that theta activity within these regions has been shown to increase alongside 
task demands74,75, this response may further suggest a necessity for more intensive planning processes in injured 
players. Integrating our findings on both posterior and frontal spectral dynamics, it can be speculated that 
football players prioritize attentional strategies for sensorimotor compensation during kicking. Consequently, 
this prioritization may constrain available resources necessary for addressing the visuospatial demands inherent 
in this complex motor task following ACLR.

Fig. 4.  Channels indicating significant differences between healthy and injured players (shaded red) in the 
complexity of right posterior (orange-colored) and mid-frontal (yellow-colored) regions.
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Fig. 5.  Entropy estimates of Pz, P2, P4, P6 and P8 along 64 time scales (left column) and the statistical 
parametric mapping (SPM) of significant differences observed between injured and healthy players (right 
column). Injured players demonstrated lower complexity at medium and coarse scales with significant 
differences observed in a range between 40 and 56. For Pz, the lower trend reversed to higher complexity at 
fine scales yielding significant differences at scale 7. In SPM, the solid line displays computed t-values for each 
time scale, with critical t-values for both tails indicated by the dotted line. Areas where the computed t-value 
exceeds the critical threshold show time scales with statistically significant differences.
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Task-related cortical complexity
In addition to differences in linear spectral dynamics, entropy estimates revealed distinct non-linear temporospatial 
characteristics in the right posterior and frontal cortical activity between healthy and injured football players 
while kicking. For both regions, the MSE curves indicate lower cortical complexity in injured players, 
particularly at medium and coarse scales76. Although no prior studies have investigated the neurophysiological 
consequences of musculoskeletal injuries through the lens of complexity theory, a loss of complexity has been 
frequently observed in various pathological conditions such as neurological and cardiac disorders76–80. Higher 

Fig. 6.  Entropy estimates of PO4, PO8, Oz and O2 along 64 time scales (left column) and the statistical 
parametric mapping (SPM) of significant differences observed between injured and healthy players (right 
column). Injured players demonstrated lower complexity at medium and coarse scales with significant 
differences observed in a range between 36 and 46. In SPM, the solid line displays computed t-values for each 
time scale, with critical t-values for both tails indicated by the dotted line. Areas where the computed t-value 
exceeds the critical threshold show time scales with statistically significant differences.
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complexity is considered indicative of greater information-processing capacity81,82 and operates at a critical edge 
between randomness and regularity83. This critical balance is essential for adaptability30,84 and the capacity to 
transition swiftly between states of randomness and regularity, which is vital for optimal cognitive flexibility82,85. 
Hung et al.86 found that the superior performance of expert rifle shooters is associated with lower task-related 
cortical complexity. Their findings suggest that expertise in sports reduces neuromotor noise by optimizing the 
balance between randomness and regularity. In contrast, our findings suggest that in injured football players, 
the cortical complexity in the posterior and frontal regions may remain below this critical threshold during 

Fig. 7.  Entropy estimates of AFz, Fz, F2 and F4 along 64 time scales (left column) and the statistical parametric 
mapping (SPM) of significant differences observed between injured and healthy players (right column). Injured 
players demonstrated lower complexity at medium and coarse scales with significant differences observed in 
a range between 27 and 56. In SPM, the solid line displays computed t-values for each time scale, with critical 
t-values for both tails indicated by the dotted line. Areas where the computed t-value exceeds the critical 
threshold show time scales with statistically significant differences.
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kicking, resulting in a reduced amount of information integrated into neural networks compared to their healthy 
counterparts83.

The reduced complexity observed in injured players is particularly notable at coarser scales. In MSE 
analysis of EEG signals, fine-to-coarse scales characterize the complexity of fast-to-slow neural dynamics34, 
which correspond to the integrated information into local-to-distributed networks, respectively32. This lower 
distributed entropy in injured football players may reflect their attenuated capacity to integrate information 
processed in right posterior and frontal regions into long-range networks during kicking. McIntosh et al.32 have 
discussed a similar shift towards local processing in older adults within a modularity framework87, proposing that 
a decrease in distributed entropy may indicate reduced interdependence among spatially distant brain regions. 
Although the mechanisms underlying this shift remain covert, given that complexity findings are limited to 
only two regions of interest, it is plausible that proprioceptive compensation in injured players might reduce the 
resources available for global integration (decreased modularity), which is accepted as an important catalyzer 
for a complex, adaptive behavior88–90. Given its proximity to the sensorimotor cortex, the higher complexity 
observed at fine scales in the Pz region may imply a more intensive sensorimotor processing in injured players, 
hypothetically interfering with the long-range integration of information. However, the lack of comparable 
entropy findings related to movement limits these interpretations to preliminary assumptions. Nevertheless, 
the observed injury-related loss of complexity in these two regions could be linked to decreased movement 
consistency, as these areas are crucial for superior execution15,16.

The current study presents preliminary evidence suggesting that the neurophysiological consequences of an 
ACL injury, investigated within postural and static motor tasks up to date, may extend to kicking, a fundamental 
movement in a sport significantly affected by this injury1–3. Our results indicate that the allocation of visual and 
attentional strategies differ in injured players during kicking compared to their healthy counterparts, potentially 
impacting the integration of task-related information in posterior and frontal regions. Achieving comparable 
spatial accuracy to their healthy counterparts even in a stable, predictable environment may compel injured 
players to compensate for deficits with augmented attention, possibly at the cost of restricted visual resources 
necessary for effective kicking performance15,16. The resultant decrease in cortical complexity and increase in 
trial-to-trial movement complexity may signal a regression in athletic skills16,86,91,92 and potentially presage 
reduced performance in real-world scenarios with more unpredictable dynamics. Our study provides the first 
insight into how ACL injury might affect kicking performance in football from a neurophysiological perspective 
and highlights the potential for further research in the field of sports-related injuries.

Methodological considerations and prospect
The current study has several methodological limitations that should be considered when interpreting the 
findings, translating them into practice, and designing future studies that build on this work. Regarding the 
characteristics of the injured cohort, while neurophysiological changes have been reported years after ACL 
rupture19,93,94, the present findings may primarily reflect distinctions observed during the return-to-sports 
phase, which could develop chronically over time95. However, the absence of pre- and post-injury comparisons 
introduces uncertainty about injury-specific nature of the findings96,97. Pre-existing hip abnormalities, which 
have been identified as potential contributors to ACL injury98,99, may offer an alternative explanation for the 
increased variability in external rotation observed in this study.

The described dynamics suggest the existence of behavioral and cortical differences between healthy and 
injured football players while kicking. However, the heterogeneity arising from the concurrence of ACLR in 
kicking- and stance-leg, complicates the clear identification of side-specific deficits. Given the differing demands 
of the legs during a kick (for instance, proprioceptive acuity and stability44,45, injuries to the kicking and stance 
leg may result in distinct cortical strategies detectable particularly in motor cortices. Furthermore, although 
injured individuals did not report any perceived pain during the execution of the task, prolonged pain exposure 
is known to influence cortical activity100,101. Considering KOOS outcomes, this should be acknowledged as a 
potential confounding factor. Future studies should also consider the homogeneity of autografts, as outcomes 
may vary among different types102,103.

The kicking task used in this study was adopted from our previous research12,16 and is intended to simulate 
short-distance passes on the field, where accuracy prevails10,104. However, the predictability of the experimental 
environment may limit the ecological validity of the task and could also explain the insignificant or small 
differences observed. Increasing attentional demands in future studies could exacerbate kicking-specific deficits, 
making them more apparent. Consequently, future studies should design settings with greater unpredictability 
and difficulty to better reflect real-world conditions, such as adaptive environments, variable motor tasks and 
unpredictable sensory cues105.

Conclusions
The current study aimed to investigate the potential impact of ACL injury on kicking performance from a 
neurophysiological standpoint. Despite similar accuracy performance, injured football players demonstrated 
notable behavioral and cortical differences compared to their healthy counterparts during kicking. The higher 
entropy observed in foot external rotation may suggest a loss of optimal variability, likely due to diminished 
proprioceptive acuity. This reduction in proprioceptive function may be compensated for by increased 
attentional demands, which could limit the use of visuospatial resources and hinder the integration of task-
related information into long-range neural networks. Our preliminary findings offer the first insights into how 
the established neurophysiological consequences of ACL injury might affect kicking performance in football 
and open doors for prospective research to further explore this topic, given its practical and academic potential.
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Methods
Participants
The current study investigated 10 football players who had undergone ACLR (nright = 6) and 15 healthy controls. 
The inclusion criteria for the injured players were as follows: (1) aged between 18—35  years; (2) having 
undergone ACLR due to a complete rupture of the ACL, with or without accompanying meniscal injury; (3) 
having played football for at least 10  years prior to injury16; (4) experiencing no pain during the execution 
of the kicking task; (5) being right-dominant in lower extremities; and (6) not having any previous ACL or 
concomitant injuries, neurologic disorders or being on psychotropic medication. For the healthy control group, 
the inclusion criteria included: (1) aged between 18—35 years; (2) playing football for a minimum of 10 years16; 
(3) being right-dominant in the lower extremities; (4) having no orthopedic injuries, neurological disorders, or 
being on psychotropic medication. The activity levels of both groups were assessed and compared using MAS106. 
Lower extremity laterality was determined based on the Lateral Preference Inventory107. KOOS was utilized 
to evaluate self-reported knee function among injured players prior to the experiments108. Given its influence 
on cortical activity100,101, task-related pain levels were assessed using a VAS. All participants had normal or 
corrected vision during the experiments. The Ethics Committee of Paderborn University approved the study’s 
conduction and written consent was obtained from all participants prior to measurements. All methods were 
performed in accordance with the relevant guidelines and regulations.

Experimental procedure
The current study employed a short-distance kicking task, which has been used in our previous research (see 
Supplementary Fig. 1 online)12,16. All participants wore laced sneakers during the experiments and performed 
the task in a standardized area within the laboratory. The objective was to kick a FIFA size five ball with the 
inside of the right foot toward a target, represented by a rectangular wooden block (10 × 15  cm). To ensure 
consistency across trials, the starting position was standardized. Participants placed their left foot next to the 
ball while positioning their right foot externally rotated behind it. The distance between the left foot and the 
ball was established during familiarization trials and marked on the floor to maintain this standardized position 
throughout the experiment. Participants were instructed to kick as accurately as possible, and no interactions 
occurred during trials. A total of six blocks, each consisting of 15 repetitions, were completed. This setup has 
previously demonstrated reliable cortical dynamics in our findings12. During the experiments, the number of 
successful (on-target) kicks and missed attempts were recorded to calculate the accuracy rate.

The recording and multiscale entropy analysis of behavioral data
Seven wearable inertial measurement unit sensors (myoMOTION, Noraxon, USA) were utilized to capture 
the three-dimensional biomechanics of the lower extremities at a sampling rate of 200 Hz. These sensors were 
bilaterally attached to the dorsal surfaces of the feet, the tibial faces of the shanks, the lateral lower quadrants of 
the upper thighs, and the sacral surface of the lumbar area109. The recorded signals for hip flexion, knee flexion, 
foot external rotation, and acceleration were digitized using myoRESEARCH (version 3.14, Noraxon, USA) and 
processed for complexity analysis in Matlab (version R2020b, The Math Works, USA).

As a non-linear measure, MSE assesses the complexity of temporal variations in a time series by identifying 
repeating patterns across multiple temporal resolutions36,38. In a time series where each repeating pattern 
corresponds to fluctuations within an individual trial, MSE evaluates the regularity of these patterns, and 
hereby the regularity of trials. Lower entropy values indicate high predictability and consistent patterns, while 
higher entropy values reflect irregularity or inconsistency from trial to trial. The coarse-graining procedure 
removes local trends by smoothing the series at larger time scales and facilitates the understanding of trial-
to-trial changes also in global movement46. Based on these assumptions, the current study assessed kicking 
consistency across the trials using MSE. The continuous data were processed into sparse segments based on 
kick onsets to remove intervals unrelated to kicks and to normalize drifts caused by variations in the starting 
position16. Kick onsets were identified by minimizing a cost function over possible linear change points in the 
x-axis of the acceleration data44,110. The signal was rectified and smoothed using a Gaussian-weighted moving 
average filter with a window length of 200 data points111. Abrupt changes in the mean acceleration signal were 
detected as kick onsets using ischange function in Matlab. The signals for hip flexion, knee flexion, and foot 
rotation were segmented into intervals of 500 data points (2500 ms) based on kick onsets with each segment 
representing a trial16. The segments were then concatenated and the baseline of the resulting signal was shifted to 
a constant value of zero112 to increase the stationarity of the data without altering its structure and eliminate the 
confounding effect of starting position variations across trials on entropy estimates113. Spline interpolation was 
applied to transition points to avoid artificial fluctuations caused by abrupt changes and smooth the adjunction. 
To avoid the manipulation of small fluctuations, data was not filtered113,114. The processing steps are presented 
with an example dataset in Supplementary Fig. 2 online.

Custom scripts were used to perform MSE analysis in two steps predicated on methodologies established by 
Costa et al.36. Firstly, time series were derived across 20 time scales through a coarse-graining procedure defined 
as:
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where T represents the time scale, yj is the constructed time series after coarse-graining, xi is a data point within 
that series, and N denotes the length of the original time series. Next, sample entropy for each generated time 
series was estimated as:

with the parameters m = embedding dimension, N = the total number of data points, r = similarity criterion and 
n = the number of vectors close to a template vector i with a dimension of m. An embedding dimension of m = 2 
was selected, with the similarity criterion defined as 0.50 × SD of the time series. The selection of m should 
consider the structure of the fluctuations and its functional meaning in the series, as patterns at a length of m and 
m + 1 are searched in the algorithm113. In the current study, m = 2 was selected to capture motion fluctuations 
characterized by this length at fine and coarse scales (see Supplementary Fig. 2 online). For the highest scale 
analyzed, a minimum length range of 14 m – 23 m (196 – 529 for m = 2) are recommended115, which was fulfilled 
for all datasets at scale 20. In the traditional MSE algorithm, r remains constant across time scales; however, this 
can inflate entropy values for shorter time scales due to reduced SD following coarse-graining procedures116. To 
address this issue in the current study, we recalculated r for each time scale117.

EEG recording and preprocessing
Cortical activity was continuously recorded using 65 active Ag/AgCl electrodes (actiCap, Brain Products, 
Germany) positioned according to the international 10–20 system, with AFz and FCz serving as the ground 
and reference electrodes, respectively118. The signal was transmitted and digitized at a sampling rate of 500 Hz 
using BrainVision Recorder (Brain Products, Germany) and a wireless amplifier (LiveAmp, Brain Products, 
Germany). Additionally, a 3D accelerometer (Brain Products. Germany) was affixed posterior to the lateral 
malleolus to capture the acceleration of the kicking synchronously.

Data preprocessing was performed offline in Matlab (version R2020b, The Math Works, USA) using the 
EEGLAB toolbox (version 14.1.2b)119. Sinusoidal line noise was removed via the Cleanline plugin120, followed 
by filtering the signal with a basic finite impulse response filter with cut-off frequencies set at 3 and 30 Hz. 
Automatic detection and rejection of noisy channels were conducted based on kurtosis, probability, and signal 
spectrum, with a z-score threshold = 5121. Subsequently, the data were re-referenced to a common average and 
downsampled to 256 Hz.

The preprocessed data were then segmented into epochs based on kick onset detection, which was performed 
using principles of linear computational cost110. The acceleration data of the kicking foot along the x-axis was 
rectified and smoothed using a Gaussian-weighted moving average filter with a window length of 1000 data 
points. Kick onsets were identified as abrupt changes in the signal mean using the ischange function, and the data 
were epoched from -3000 to 3000 ms, with baseline correction applied from -2500 to -500 ms12,16. Noisy epochs 
were visually inspected and removed from the data.

An adaptive mixture independent component analysis was performed to further analyze the data, decomposing 
the epoched data into maximally independent components (IC)122. Source localization of ICs was estimated 
using the DIPFIT plugin123 with a standardized four-shell spherical head model (BESA, Germany). Robust brain 
components were retained based on their source location, residual variance (< 15%) and classification as brain 
components by the ICLabel Plugin124, with a minimum 90% as confidence threshold. All non-brain ICs were 
subsequently removed from the dataset.

Computation of event-related spectral perturbations in the clusters of interest
The retained brain components were clustered using the k-means algorithm. To avoid circular inference in 
subsequent statistical analyses, dipole locations were used to construct the global distance matrix125. The optimal 
number of clusters was determined through the application of three distinct optimization algorithms126–128. 
Guided by our previous research12,16, the right posterior and frontal clusters were identified as clusters of interest 
for further analysis.

ERSP matrices for these two clusters were computed in line with the methodology outlined by Makeig129. 
The analysis focused on a frequency range of 3 to 20 Hz and a time window extending from 0 to 2500 ms12,16, 
utilizing the integrated STD_ERSP function in the EEGLAB toolbox. A 3-cycle wavelet was employed for the 
lowest frequency, with a linear increase of 0.5 cycles as the frequency rose.

Multiscale entropy analysis in the regions of interest
A modified MSE analysis was performed on the preprocessed EEG data using a custom algorithm, based on 
the methodology established by Grandy et al.130. MSE analysis of EEG data requires tailored preprocessing 
protocols, given that factors like sampling rate, band-pass filter parameters, and artifact rejection techniques 
can significantly impact entropy estimates131,132. In mobile EEG studies, movement artifacts are of particular 
concern requiring special preprocessing considerations133,134. Due to the absence of standardized preprocessing 
pipelines for MSE analysis in mobile settings, the current study adopted procedures from our previous work, 
producing reliable results for ERSPs12.

Channels removed during preprocessing were subsequently interpolated135. To ensure consistency across 
participants, 80 epochs—the minimum number of clean epochs retained among datasets following the rejection 
of noisy epochs—were randomly selected using the POP_SELECT function. This step was critical to compute 
entropy estimates with an equal number of channels and data points per channel, ensuring reliable results130. 
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The selected epochs were concatenated, and entropy estimates were calculated for 64 scales (with the equations 
provided in the above section) on the residuals of the EEG signal, following subtraction of the intra-individual 
average across trials. This approach is known to yield reliable outcomes for discontinuous data130,132.

The analysis was conducted over the 0—2500 ms epoch window to focus on the complexity of task-related 
activity as outlined in Piskin et al.12. An embedding dimension of m = 2 was used, with the similarity criterion 
recalculated for each scale as r = 0.50 × SD, to avoid bias toward lower entropy values at coarser scales131,132. Two 
regions of interest were defined based on our previous findings12,16 to assess the complexity in the mid-frontal 
(AF3, AFz, AF4, F3, F1, Fz, F2, F4) and right posterior areas (Pz, P2, P4, P6, P8, POz, PO4, PO8, Oz, O2). Finally, 
entropy values were extracted from the specified channels for statistical analysis.

Statistical analyses
An a priori sample-size estimation was performed using G*Power136, based on the behavioral findings by 
Cordeiro et al.25. The observed difference in knee extension variability during kicking with a large effect size 
(d = 1.215) indicated that a minimum number of 11 in the healthy and 9 participants in the ACLR group would 
be required to achieve a power of 0.80 at an alpha level of 0.05.

Statistical analyses were performed using Matlab (version R2020b, The Math Works, USA). The normality 
of descriptive data was assessed using the Shapiro–Wilk-Test137. Variables following a normal distribution 
were reported as mean ± SD and were compared using an independent t-test. For skewed data, median and 
interquartile ranges (IQR) were presented, and group comparisons were made using the Wilcoxon rank-sum 
test.

The ERSP matrices were compared on a pixel-wise basis using integrated permutation-based t-tests in 
EEGLAB, with false discovery rate correction to map p-values and identify group differences with temporal and 
frequency specificity16. Entropy estimates of the behavioral and EEG data were compared across scales using 
independent t-tests138, with statistical parametric maps (SPM) generated to display significant group differences 
at fine (1—21), medium (22—42), and coarse (42—64) scales139. A false discovery rate correction was applied 
following the Benjamini and Hochberg method140 to account for simultaneous statistical inferences. In order 
to examine the influence of trial-to-trial complexity on kicking accuracy, Pearson’s correlation coefficients were 
computed for accuracy rate and entropy estimates across analyzed time scales. All analyses were conducted with 
a significance level set at 0.05.

Data availability
The datasets collected and analyzed for the present work are available from the corresponding author on rea-
sonable request.
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