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Abstract - English

The increasing proliferation of machine learning (ML) algorithms raises concerns about
their imperfections. Previous behavioral research has primarily focused on a general
human aversion toward imperfect algorithms. In contrast, ML research has discovered
different forms of imperfections, such as performance uncertainty, transparency issues,
and environmental sustainability. This dissertation experimentally explores the impact
of communicating these imperfections to the end-user by providing relevant background
information about the limitations or specific characteristics of ML algorithms. This
dissertation includes ten online experiments across seven papers with a total of 1,428
participants, which yielded three main findings: First, imperfections of algorithms can
reduce algorithm aversion. Secondly, the distribution of advice quality shapes algorithm
aversion. Third, AI literacy can be associated with algorithm aversion in non-linear
ways. These findings are essential for decision-makers, developers, and ML evaluations.
They emphasize the need to incorporate and disclose different algorithmic imperfections,
which enables more nuanced advice-taking strategies, especially for users with varying
degrees of AI literacy.

Keywords: machine learning, algorithm aversion, advice utilization, human-centered
computing, artificial intelligence, human-algorithm interaction



Zusammenfassung - Deutsch

Die zunehmende Verbreitung von Machine-Learning-Algorithmen (ML) wirft Fragen
über deren Unvollkommenheiten auf. Während sich frühere verhaltenswissenschaftliche
Studien vor allem mit einer allgemeinen menschlichen Abneigung gegenüber fehler-
behafteten Algorithmen beschäftigt haben, hat die ML-Forschung verschiedene Arten
solcher Schwächen identifiziert - etwa Unsicherheiten bei der Leistung, mangelnde Trans-
parenz oder ökologische Auswirkungen. Diese Dissertation untersucht experimentell,
wie sich die Kommunikation solcher Schwächen auf Nutzende auswirkt. Dazu wurde den
Teilnehmenden gezielt Hintergrundwissen über Grenzen und besondere Merkmale von
ML-Algorithmen vermittelt. Insgesamt wurden zehn Online-Experimente im Rahmen
von sieben Fachartikeln mit insgesamt 1.428 Personen durchgeführt. Die Ergebnisse
lassen sich in drei zentrale Erkenntnisse zusammenfassen: Erstens kann das Offenlegen
von Schwächen die Ablehnung gegenüber Algorithmen verringern. Zweitens beeinflusst
die Verteilung der algorithmischen Empfehlungsqualität die Nutzerakzeptanz. Drittens
zeigt sich, dass das Wissen über KI in nichtlinearer Weise mit der Akzeptanz von algo-
rithmischen Ratschlägen zusammenhängt. Diese Erkenntnisse sind besonders relevant
für Entscheidungstragende, ML-Entwickelnde und alle, die ML-Systeme bewerten. Sie
verdeutlichen, wie wichtig es ist, algorithmische Schwächen transparent zu machen, um
differenzierte und informierte Entscheidungen bei der Nutzung solcher Systeme zu er-
möglichen – insbesondere bei Nutzenden mit unterschiedlichem Verständnis von KI.

Stichworte: machine learning, Algorithmus-Aversion, Nutzung von Empfehlungen, be-
nutzerzentrierte Informatik, künstliche Intelligenz, Mensch-Algorithmus-Interaktion
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Part I.

Synopsis





1. Introduction

1.1. Motivation

In recent years, the proliferation of Machine Learning (ML) algorithms has accelerated
across research and industry in various domains (Maslej et al., 2025). ML involves
training computers to learn from data and experience, enabling them to improve con-
tinuously without being explicitly programmed for each task (Samuel, 1959). Examples
of application areas where ML algorithms have surpassed human performance are im-
age classification and some areas of natural language processing (He et al., 2015; Devlin
et al., 2019). Currently, models such as GPT-4o and Gemini combine language under-
standing, multimodality and larger natural language contexts (OpenAI, 2024; Gemini
Team, 2024). Generative models, such as DALL-E 3, enable image generation, while Al-
phaFold has transformed biology through accurate protein predictions (OpenAI, 2024;
Jumper et al., 2021). However, ML algorithms have several limitations, including issues
with reliability, generalizability beyond the training data and ethical concerns related to
bias (Maynez et al., 2020; Kapoor and Narayanan, 2022; Heyder et al., 2023). Therefore,
it is crucial to understand end-users reactions to these imperfections.

Although algorithms have outperformed human experts in structured regression and
classification tasks for decades (Grove et al., 2000), recent advances in ML algorithms
are accelerating their growing adoption across various domains (e.g., Surameery and
Shakor, 2023; Dell’Acqua et al., 2023). In 2024, 78% of companies reported using ML
algorithms, which suggests a growing adoption compared to 55% in 2023 (Singla et al.,
2025). ML algorithms enable faster task completion and higher-quality outcomes by
narrowing the skill gap between low- and high-skilled workers (e.g., Cambon et al.,
2023; Dell’Acqua et al., 2023).

In a survey on the perception of ML algorithms, 66% of respondents believed ML al-
gorithms would significantly impact their lives within three to five years (Carmichael,
2024). However, half of the respondents felt uneasy about ML algorithms (Carmichael,
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2024). Despite the continuous improvements of ML algorithms, they are still imper-
fect (e.g., Lebovitz et al., 2021). Although governmental regulations concerning ML
algorithms have risen in recent years, a primary difficulty in ML algorithms lies in the
inherent uncertainty about its correctness (Maslej et al., 2025; Janiesch et al., 2021).
Therefore, it is crucial to understand how individuals react to such imperfections.

From a human perspective, prior research observed algorithm aversion, which describes
a tendency to favor human decision-makers over algorithms (Jussupow et al., 2024).
However, the results are inconclusive as the opposite effect — algorithm appreciation
— was also observed (Logg et al., 2019). As algorithm appreciation describes the inverse
effect of aversion, we will use algorithm aversion to refer to both research streams.

Multiple terms have been used in research on algorithmic decision-making to label algo-
rithms (Langer and Landers, 2019). For instance, "Artificial Intelligence (AI)" involves
the development and study of methods and software that enable machines to perceive
their surroundings, employ learning and intelligence and take actions that increase their
probability of fulfilling specified objectives (Russell and Norvig, 2016, pp. 19-44). In
the context of algorithm aversion, these terms are used interchangeably (Burton et al.,
2020). Therefore, we will summarize AI and ML under the term "ML algorithm," which
we specify as a computational procedure making predictions under uncertainty.

From an algorithmic perspective, predictive ML algorithms differ from others due to
their probabilistic nature as they typically involve predictions under uncertainty (Rus-
sell and Norvig, 2016). Contrary to prior technologies, an ML algorithm that perfectly
matches historical data would typically be viewed as overfitting. Overfitting arises when
an ML algorithm adheres too closely to past data, potentially undermining its ability
to generalize to new data (Russell and Norvig, 2016).

Furthermore, errors of ML algorithms can stem from various factors beyond overfitting,
including data drift, insufficient high-quality training data and irreducible randomness
(e.g., Lu et al., 2018; Lebovitz et al., 2021; Russell and Norvig, 2016). As a result,
data scientists use performance metrics to evaluate algorithms relative to each other
on specific tasks, as an absolute evaluation seems impossible (Huyen, 2022). However,
metrics and human judgment are not always aligned (Lebovitz et al., 2021).

6
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1.2. Research Objective and Research Questions

This dissertation addresses the impact of imperfections on advice-taking along three
main research questions. We derive these questions in a combination of the Feature,
Training and Inference (FTI) architecture from computer science and the psychological
role of the Judge-Advice System (JAS) framework, as visualized in Figure 1.1. Visu-
alized by solid lines, the FTI architecture contextualizes the imperfections along the
ML pipeline. We used dashed lines to outline the different instances within the JAS
framework, with each research question (RQ) targeting one instance.

The FTI architecture is a framework that maps the ML pipeline into three stages — fea-
ture extraction, model training, and inference — highlighting how data is transformed
into predictions. However, several imperfections of ML algorithms can affect each stage.
Therefore, developers of ML algorithms have to take these imperfections into account,
for instance, when selecting features and configuring model training (Huyen, 2022).

JudgeAdviceAdvisor

Feature Pipeline
Data

Training Pipeline Inference Pipeline

End user

RQ2 RQ3RQ1

Imperfections: Unobserved variables;
Lack of Sustainability AI washing Forecasting

uncertainty

Figure 1.1.: Overview of the research questions (RQ) along the FTI-JAS framework.

The JAS involves a human judge facing a prediction problem, for which they can
consult an advisor, which can be an algorithm or a human. The judge weighs their
initial prediction and an advisor’s advice. We developed one RQ for each instance
within the JAS. The first RQ focuses on the algorithm as an advisor, the second on
the advice provided by the algorithm and the third on the end user.

Exemplary technical imperfections of ML advisors include unobserved variables, a lack
of environmental sustainability due to high energy consumption, and doing "AI" wash-
ing by referring to statistical models as "AI" (Patterson et al., 2021; Moore, 2017).
Contextualizing these imperfections by highlighting unobserved variables, clarifying

7
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the sustainability-performance trade-off, and using more accurate labels may help users
better utilize algorithmic advice. This motivates the following research question:

RQ1: What is the impact of advisor imperfections on algorithm aversion?

An example of advice-related imperfection from ML algorithms is forecasting uncer-
tainty. This can appear as performance outliers in hindsight or as distributions of pre-
dictive uncertainty in advance (Hyndman and Koehler, 2005; Spiegelhalter et al., 2011).
Contextualizing such imperfections — by embedding outliers in repeated advice-taking
tasks or visualizing uncertainty distributions — may help users make more informed
judgments about algorithmic behavior. This leads to the following research question:

RQ2: What is the impact of advice imperfections on algorithm aversion?

Beyond algorithm-specific factors, evaluating ML algorithms can be particularly dif-
ficult without sufficient understanding of how they function (Lebovitz et al., 2021).
The related concept of AI literacy is therefore essential. It encompasses the ability to
critically evaluate ML algorithms, communicate and collaborate effectively with ML
systems, and apply them across different settings—whether online, at home, or in the
workplace (Long and Magerko, 2020). However, despite the widespread use of ML,
empirical research on the role of AI literacy remains limited. This gives rise to the
following research question:

RQ3: What is the impact of imperfections on algorithm aversion among individuals
with varying levels of AI literacy?

1.3. Thesis Structure

This dissertation consists of two parts. Part I includes Chapters 1 to 6. Chapter
2 provides an overview of algorithm aversion from a contextual and methodological
view. Afterward, it describes imperfections of ML algorithms along the ML pipeline.
Chapter 3 examines the research methodology, while Chapter 4 summarizes the results.
Chapter 5 discusses the findings concerning the research questions and concludes with
their implications. Chapter 6 concludes the dissertation by outlining its limitations and
offering an outlook.

Part II consists of Chapters 7 to 13, each dedicated to a specific publication. Table 1.1
lists these publications. It contains three journal articles and four conference papers.
Five papers are published; one is accepted in-principle via a registered report (currently

8



1.3. Thesis Structure

in Stage 2 review) and one is under review. All papers are ranked in the VHB Rating
2024 (VHB, 2024), with rankings ranging from B to A+. Notably, we are the first to
achieve an in-principal acceptance in the Business & Information Systems Engineering
journal1.

1 https://www.bise-journal.com/?page_id=2258
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No. Authors & Title Sta-
tus

Outlet Type VHB
Rating
2024

1 Leffrang, D., Bösch, K., Müller,
O. (2023). Do People Recover From
Algorithm Aversion? An
Experimental Study of Algorithm
Aversion Over Time.

P Hawaii
International
Conference
on System
Sciences

C B

2 Leffrang, D. (2023). The Broken
Leg of Algorithm Appreciation: An
Experimental Study on the Effect
of Unobserved Variables on Advice
Utilization.

P Wirtschafts-
informatik
Conference

C B

3 Leffrang, D., Müller, O. (2023).
AI Washing: The Framing Effect of
Labels on Algorithmic Advice
Utilization.

P International
Conference
on
Information
Systems

C A

4 Leffrang, D., Müller, O. (2024).
Algorithmic Advice-Taking Beyond
MAE: The Role of Negative
Prediction Outliers and Statistical
Literacy in Algorithmic
Advice-Taking.

P European
Conference
on
Information
Systems

C A

5 Leffrang, D., Müller, O. (2024).
Visualizing Uncertainty in Time
Series Forecasts: The Impact of
Uncertainty Visualization on Users’
Confidence, Algorithmic Advice
Utilization and Forecasting
Performance.

P Journal of
Forecasting

J B

6 Leffrang, D., Passlack, N., Müller,
O., Posegga, O. (2025). Beneficial
Mistrust in Generative AI? The
Role of AI Literacy in Handling
Bad Advice.

IPA;
U

Business &
Information
Systems
Engineering

J B

7 Leffrang, D., Müller, O. (2025).
The Sustainability-Performance
Trade-Off in AI: The Role of
Sustainability Information and
Unmet Performance Goals in
Sustainable AI Decisions.

U Information
Systems
Research

J A+

Status: IPA: In-principal acceptance; P: Published; U: Under review
Type: C: Conference; J: Journal

Table 1.1.: Publications included in this dissertation.
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2. Background

This dissertation builds on several key concepts. First, we examine research on algo-
rithm aversion from a contextual point of view. Next, we analyze the inherent imper-
fections of ML algorithms throughout the ML pipeline.

2.1. Algorithm Aversion From a Contextual View

In which situations people reject or appreciate algorithms remains an ongoing discus-
sion (Jussupow et al., 2024). Algorithm aversion refers to "a behavior of discounting
algorithmic decisions concerning one’s own decisions or other’s decisions, either con-
sciously or unconsciously" (Mahmud et al., 2022). Such an aversion appeared to be
especially prevalent after an error, according to a study in a medical context (Prahl
and Van Swol, 2017).

Although the term algorithm aversion was established in the last decade, the phe-
nomenon dates back several decades to a discussion of clinical (human) versus statistical
(algorithmic) decision-making. For instance, according to a meta-analysis conducted in
1954, some clinicians prefer human diagnoses over algorithmic diagnoses despite their
superiority on average. Clinicians attributed humans with superior perceptive capabil-
ities, experience and attention to improbable events (Meehl, 1954).

However, other studies observed the opposite phenomenon, namely algorithm appre-
ciation. Algorithm appreciation describes a preference for algorithmic over human
predictions (Logg et al., 2019). Such an appreciation appears reasonable, with algo-
rithms performing as well as or better than humans in approximately 94% of cases in a
literature review of 136 studies (Grove et al., 2000). For instance, individuals put more
weight on algorithmic predictions than human predictions when predicting romantic
attraction or the popularity of songs (Logg et al., 2019).

Similar to the phenomenon of algorithm aversion, research on algorithm appreciation
also dates back several decades. For instance, clinicians associated algorithms with
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objectivity, precision and verifiability (Meehl, 1954). Additionally, when tasked with
judging the suitability of solutions across various domains such as education, healthcare
and civil law, participants viewed algorithms as more objective and rational than the
human advisor (Dijkstra et al., 1998).

Other studies suggest a mixture of algorithm aversion and appreciation. Although indi-
viduals initially showed aversion toward algorithms, their aversion decreased after using
algorithmic advice for weight estimation tasks (Turel and Kalhan, 2023). Similarly, in a
call center scenario, participants unfamiliar with the advisor’s quality initially exhibited
algorithm aversion. However, those who observed the advisor’s consistent improvement
developed algorithm appreciation (Berger et al., 2021).

Multiple reviews of the existing literature note that the results remain inconclusive and
scattered among disciplines (e.g., Jussupow et al., 2020; Burton et al., 2020; Mahmud
et al., 2022; Jussupow et al., 2024). As visualized in Figure 2.1, algorithm aversion
can vary based on multiple factors such as algorithmic, high-level, individual, and task
factors according to the framework of Mahmud et al. (2022).

Algorithm factors include design, decision and delivery aspects. Design factors refer to
how algorithms are developed and structured, including complexity, feedback availabil-
ity, accessibility, human integration, explainability, understandability, feedback calibra-
tion, response speed, learning capabilities and interface anthropomorphism (Mahmud
et al., 2022). For example, features such as anthropomorphic design or demonstrating
an algorithm’s learning ability have been associated with reduced algorithm aversion
in classification and resource allocation tasks (Madhavan and Wiegmann, 2007; Berger
et al., 2021). While explainability through Explainable Artificial Intelligence (XAI) can
influence users’ decision-making, it is possible to evaluate algorithm behavior without
fully opening the black box of a ML model (Wachter et al., 2018). Therefore, this dis-
sertation focuses on decisions made along the ML pipeline without centering on XAI.

Decision factors focus on the nature of the decision itself, including its accuracy, cost,
future implications and role within the broader decision-making process (Mahmud et al.,
2022). For instance, aversion to imperfect advice in a human resource setting falls under
this category (see Dietvorst et al., 2015). Another example is the relationship between
algorithmic and human decisions, which can shape algorithm aversion (Jussupow et al.,
2024).

12



2.1. Algorithm Aversion From a Contextual View

High-level Factors

Algorithm
Aversion

Algorithm Factors

Delivery

Decision

Design

Individual Factors

Personality

Psychological Factors

Familiarity

Demography

Task Factors

Complexity

Subjective/moral evaluation

Cultural

Societal

Organizational

Environmental

Figure 2.1.: Factors influencing algorithm aversion (adapted from Mahmud et al., 2022).

Factors associated with decision delivery relate to the method and style in which deci-
sions are presented (Mahmud et al., 2022). For example, while humans typically offer
the option of oral communication, algorithms generally communicate in written form
unless specifically designed otherwise (Önkal et al., 2009). Additionally, human in-
volvement in human-algorithm collaboration affected users’ perceived understanding of
an algorithm’s functionality in a machine maintenance setting (Lebedeva et al., 2024).
Consequently, we concentrate on advisors providing written advice without further in-
teraction.

High-level factors include organizational, societal, cultural and environmental influences

13
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(Mahmud et al., 2022). To minimize heterogeneity, this dissertation focuses on incen-
tivized contexts within European and American societies represented by crowdworkers
and students. Although incentives do not universally enhance performance across all
experimental contexts, research suggests they effectively improve effort-sensitive tasks,
such as predictions (Camerer and Hogarth, 1999).

Individual factors cover familiarity, psychological characteristics, personality traits and
demographic variables (Mahmud et al., 2022). Familiarity factors capture individuals’
prior experiences with algorithms, specific tasks and human advisors. For example,
negative experiences with algorithms may lead to increased algorithm aversion toward
a forecasting algorithm in a healthcare setting (Prahl and Van Swol, 2017).

Psychological factors refer to reasoning, logic, thinking and emotion related to algorith-
mic decisions. These factors refer to a general aversion toward algorithms (Mahmud
et al., 2022). For instance, individuals’ perceived expectations of algorithms influenced
their likelihood of algorithm aversion toward a forecasting algorithm in a human re-
source setting (Dietvorst et al., 2015).

Personality trait factors include self-evaluation and the Big Five personality dimensions
(Mahmud et al., 2022). For example, egocentric advice discounting refers to favoring
one’s own decisions over external advice (Yaniv and Kleinberger, 2000). Thus, high
self-esteem can reinforce egocentric bias, increasing resistance to algorithmic recom-
mendations (see Logg et al., 2019).

Demographic factors address how characteristics such as gender, age, and education
level affect algorithm aversion (Mahmud et al., 2022). However, findings on variables
like age are mixed (e.g., Logg et al., 2019). Nevertheless, we controlled for demographic
variables in this research.

Task factors concern the contextual nature of the ML problem, including whether tasks
require subjective evaluation, involve moral judgment, or vary in complexity—all of
which can influence attitudes toward algorithm acceptance (Mahmud et al., 2022).
Research suggests that algorithm aversion is typically lower for more objective tasks
(Castelo et al., 2019). Additionally, individuals tend to value actions benefiting others
more highly for personal growth than those driven solely by financial motives, often pri-
oritizing empathy and autonomy when decisions impact others (Heßler et al., 2022). To
minimize bias and heterogeneity from task factors, this dissertation focuses on objective
tasks.

14
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2.2. Imperfections of ML Algorithms Along the ML Pipeline

Figure 2.2 visualizes the FTI architecture, which provides a framework for structuring
the ML pipeline (Dowling, 2023). The framework consists of three pipelines. The arrows
highlight the primary and most common interconnections among the pipelines.

Feature Pipeline
Data

Training Pipeline Inference Pipeline

End user

Figure 2.2.: Extended Feature, Training and Inference (FTI) architecture (adapted from
Dowling, 2023).

A feature pipeline receives raw data as input, converts it into features and eventually
labels (Dowling, 2023). A feature represents a single quantifiable attribute or charac-
teristic within a dataset used as input to ML models to solve the ML problem (Bishop,
2006). At this stage, the data scientist cleans and transforms the data, selecting and
engineering relevant features. The extracted features and labels serve as training data
(Dowling, 2023).

A training pipeline retrieves the training data, trains the model and stores the trained
model. Typically, the data scientist splits the data and chooses multiple algorithms.
Afterward, the model learns patterns by minimizing the prediction error. The data
scientist can influence the learning process by tuning hyperparameters. The output of
this stage is a trained model, which serves as advisor (Dowling, 2023).

An inference pipeline retrieves the trained model, obtains new feature data and
generates predictions that the end user can utilize through the ML-enabled product.
The model receives raw data through the feature pipeline. Based on the resulting
features, the model outputs predictions, which serve as advice (Dowling, 2023).

An end user is not part of the original FTI architecture, which presents the ML-
enabled product as the final stage (Dowling, 2023). However, end users frequently use
ML algorithms as advisors (Golinelli et al., 2020). The end user serves as a judge who
weighs their prediction based on the advice provided by the advisor.

15





3. Methodology

This dissertation employed online user experiments as the primary research model
to investigate human advice-taking behavior in response to algorithmic imperfections.
Online experiments offer a controlled yet scalable environment, enabling the system-
atic manipulation of key independent variables while maintaining ecological validity
(Shadish et al., 2003). We designed most experiments using the JAS framework, a well-
established paradigm for measuring advice utilization, particularly relevant in contexts
of algorithmic advice utilization (Logg et al., 2019). It evaluates how much individuals
integrate external advice into their decision-making processes. Figure 3.1 visualizes the
three steps of the JAS (Bonaccio and Dalal, 2006):

1. Initially, the judge — who can be a participant in an experiment or a general
decision-maker — makes an initial decision under uncertainty (e.g., a regression
or programming task).

2. Subsequently, an advisor — a ML algorithm or a person — provides advice.

3. The judge then combines their initial prediction with the advice from the advisor,
applying a weighted approach, to arrive at a final decision.

The experimental manipulation varied the nature of the advisor (e.g., human vs. al-
gorithm), advice quality (e.g., error distributions, outliers), advice presentation (e.g.,
uncertainty visualizations), and contextual information (e.g., sustainability information,
AI framing). Additionally, we examined individuals’ level of AI literacy. The primary
dependent variable in such studies was the Weight of Advice (Weight of Advice (WOA)),
defined as the proportional adjustment toward the advisor’s recommendation relative
to the initial prediction:

WOA = |final prediction − initial prediction |
| advisor’s prediction − initial prediction| (3.1)

WOA captures the extent to which individuals incorporate external advice into their
decision-making processes. A value of zero indicates complete rejection of the advice,
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Step 2Step 1

Judge Advisor

40

Initial
prediction

50

Advice

Step 3

Judge

42

Final
prediction

Figure 3.1.: Judge incorporating their initial prediction and the advice in the Judge-
Advisor System (JAS).

while higher WOA values reflect greater incorporation of the advice. In line with prior
research, WOA is winsorized to values of 1 if there is overshooting (e.g., Logg et al.,
2019). The independent variables included the experimental manipulations, their inter-
action and several control variables such as age and gender. We recruited participants
from online platforms (such as Prolific) and university pools to ensure diverse, English-
speaking samples that were homogeneous with respect to the pre-defined selection cri-
teria. Participation was incentivized financially or with bonus points to foster serious
engagement with the tasks.

The primary statistical analyses involved linear mixed-effects models, linear regressions,
logistic regressions and structural equation modeling to account for the variations of the
experimental design. All analyses were pre-registered or conducted following established
methodological standards to minimize researcher degrees of freedom. Moreover, we
consistently applied robustness checks to ensure validity.

18



The need for high experimental control, random assignment, and access to a diverse par-
ticipant pool guided the choice of online experiments over alternative research designs
such as observational or field studies. Given the focus on algorithmic advice-taking —
a phenomenon frequently encountered in online decision environments — the setting
aligned well with the contextual demands of the research questions. Furthermore, the
online format allowed for the efficient replication of decision tasks at scale, supporting
the robustness and generalizability of the findings.

19





4. Results

This thesis includes seven research papers—five published, one accepted in principle
via a registered report (currently in Stage 2 review) and one under review. Figure 4.1
provides an overview of the FTI-JAS framework developed in this thesis, combining
the JAS framework from psychological research and FTI architecture from computer
science. For clarity, the figure classifies the primary focus of each research paper along
the framework.

AI literacy is related to
algorithm aversion in

non-linear ways

Imperfections in algorithms can decrease
algorithm aversion

JudgeAdviceAdvisor

Feature Pipeline
Data

Training Pipeline Inference Pipeline

End user

Advice quality
distribution shapes
algorithm aversion

Paper 1:
Do People Recover from

Algorithm Aversion?

Paper 5:
Visualizing Uncertainty in

Time Series Forecasts

Paper 3:
AI-Washing

Paper 2:
The Broken Leg of
Algorithm Aversion

Paper 7:
The Sustainability-

Perfomance Trade-Off in AI

Paper 4:
Algorithm Aversion beyond

MAE

Paper 6:
Beneficial Mistrust in

Generative AI

Figure 4.1.: Overview of the primary contributions along the FTI-JAS framework.

Papers 2, 3 and 7 address RQ1: What is the impact of advisor imperfections on
algorithm aversion?
Papers 1 and 5 explore RQ2: What is the impact of advice imperfections on algorithm
aversion?
Finally, papers 4 and 6 examine RQ3: What is the impact of imperfections on algorithm
aversion among individuals with varying levels of AI literacy?
We explicitly incorporated a human baseline in the first three papers. In the subsequent
studies, we focused on algorithm-only configuration to explore more nuanced forms of
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human-algorithm interaction. The following section summarizes the findings of all seven
research papers.

Paper 1: Do People Recover From Algorithm Aversion? (Leffrang et al., 2023)
Although algorithmic predictions are, on average, more accurate than human predic-
tions, prior research observed algorithm aversion after bad advice. However, prior re-
search focused on a one-off decision after receiving bad advice. Drawing on expectation-
confirmation theory, this paper examines the occurrence of bad advice on advice-taking
over time. We conducted an online between-subjects experiment involving 87 partici-
pants completing repeated time-series forecasting tasks. Our results show no evidence of
immediate algorithm aversion after bad advice. Instead, participants developed a grow-
ing appreciation for algorithms over time. This study highlights that the distribution
of advice quality (good vs. bad advice) over time can shape algorithm aversion.

Paper 2: The Broken Leg of Algorithm Appreciation (Leffrang, 2023)
Despite the capabilities of ML algorithms, individuals showed algorithm aversion when
algorithms neglected their unique characteristics. However, the effect of such unob-
served variables on algorithm aversion is not yet fully understood, as humans can
also suffer from unobserved variables like missing information about events. Based on
Meehl’s broken leg scenario, this paper examines the impact of an unobserved variable
and the advisor’s type (algorithm vs. human) on algorithm aversion. We conducted an
online within-subjects experiment with 94 participants focused on repeated regression
tasks. Our results suggest that an unobserved variable did not reduce advice-taking. In-
stead, participants showed greater algorithm appreciation, compensating for perceived
imperfections. This study contributes to the idea that the imperfection of an unobserved
variable can decrease algorithm aversion.

Paper 3: AI Washing (Leffrang and Müller, 2023)
Researchers and practitioners often regard ML algorithms as a game changer compared
to traditional statistical models. However, some software providers use "AI washing" by
rebranding basic statistical solutions as AI systems. Based on attribute framing, this
paper examines the impact of framing the advisor’s expertise and type on algorithm
aversion. We conducted two online within-subjects experiments with 120 participants
focused on repeated regression tasks. Our results provide evidence that participants
took more advice from human advisors with higher expertise, whereas algorithmic la-
bels did not significantly affect advice-taking. This paper contributes to the idea that
presenting imperfections through framing can decrease algorithm aversion.

22



Paper 4: Algorithmic Advice-Taking Beyond Mean Absolute Error (MAE) (Leffrang
and Mueller, 2024)
The numerical performance metrics of ML algorithms do not always align with human
judgment. However, most prior studies have either concentrated on the statistical eval-
uation of established metrics or examined how changes in these metrics influence human
behavior. Based on the salience bias, this paper examines the impact of individuals’
statistical literacy levels and the distribution of the advice quality on advice-taking over
time. We conducted an online between-subjects experiment with 115 participants fo-
cused on repeated regression tasks. Our results indicate that negative outliers increased
advice-taking and statistical literacy had a U-shaped effect on algorithm aversion. Both
individuals with low and high levels of statistical literacy were associated with higher
advice utilization. This paper contributes to the distribution of advice quality (outlier
vs. no outlier) affecting algorithm aversion. It provides evidence for a positive correla-
tion between AI literacy and non-linear relationships between algorithm aversion and
individuals’ literacy level.

Paper 5: Visualizing Uncertainty in Time Series Forecasts (Leffrang and Müller, 2024)
Time series forecasts inherently involve uncertainty. However, experimental research
communicating this uncertainty to end users has yielded mixed and inconclusive re-
sults. Based on probabilistic and frequency framing, this paper examines the impact
of prediction interval (Prediction Interval (PI)) and ensemble plots against a point es-
timate control on advice-taking. We conducted an online between-subjects experiment
with 239 participants focused on a time series forecasting task. Our results indicate a
U-shaped relationship between uncertainty visualization and forecasting performance,
moderated by confidence, graph literacy and domain knowledge. Both hiding uncer-
tainty and making it overly salient reduced confidence in the forecasting algorithm, led
to lower advice utilization and resulted in higher forecasting errors. This paper con-
tributes to the idea that the presentation of advice quality distribution in the form of
different uncertainty visualizations influences algorithm aversion.

Paper 6: Beneficial Mistrust in Generative AI (Leffrang et al., 2025)
Although generative ML algorithms continue to improve, they can present inaccurate or
misleading information as fact — a phenomenon known as "hallucinations." However,
with generative ML algorithms becoming increasingly accessible to the public, it is
essential to understand how AI literacy affects individuals’ responses to bad advice
from these systems. Drawing on correspondence bias, this paper examines the impact of
individuals with varying levels of AI literacy and the presence of bad advice on advice-
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taking. We conducted an online between-subjects experiment with 542 participants
focused on a programming task. Our results indicate that high-AI-literacy individuals
were less likely to follow advice, especially bad advice. This suggests a form of beneficial
mistrust in the case of bad advice but potentially disadvantageous consequences in the
case of good advice. This paper supports a positive correlation between AI literacy
and algorithm aversion depending on the distribution of advice quality (good vs. bad
advice).

Paper 7: The Sustainability-Performance Trade-Off in AI (Leffrang and Müller, 2025)
Despite the remarkable advancements of ML algorithms, growing concerns persist re-
garding its environmental footprint. Yet, organizations seldom adopt sustainable ML
practices and previous research has primarily concentrated on promoting sustainability
for non-ML products or investigating technical solutions within ML applications. Draw-
ing on goal-setting theory, this paper examines the impact of sustainability information
(energy consumption) and an unmet performance goal on retraining decisions for ML
algorithms. We conducted three online experiments with 343 participants focused on
a time series forecasting task. Our results indicate that providing sustainability in-
formation increases the likelihood of choosing sustainable ML. However, presenting
an unmet performance goal decreases the likelihood and offsets the beneficial impact
of sustainability information. This paper provides evidence that the imperfection of
sustainability-performance trade-off in ML can influence algorithm aversion.
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5. Discussion

5.1. Addressing the Research Questions

In recent years, the use of ML algorithms has expanded rapidly across research and
industry in a wide range of fields (Maslej et al., 2025). However, there are mixed find-
ings on whether individuals utilize these algorithms (Mahmud et al., 2022). While prior
studies have examined a general aversion to imperfect algorithms (e.g., Dietvorst et al.,
2015), the advice-taking may vary depending on the type of imperfection along the ML
pipeline. By using seven studies, this study examines the impact of advisor imperfec-
tions, advice imperfections and the varying reactions of individuals with different levels
of AI literacy:

The first research question examines the impact of advisor imperfections on algorithm
aversion. Papers 2, 3 and 7 provide evidence that imperfections can decrease algorithm
aversion. Paper 2 demonstrates that revealing an omitted variable bias can increase
advice-taking. Paper 3 reveals that framing influences perceptions of algorithms, with
algorithm appreciation observed when algorithms were compared to students but not
when compared to experts. Additionally, paper 7 indicates that while providing sus-
tainability information increases the likelihood of choosing sustainable ML, presenting
an unmet performance goal decreases the likelihood and offsets the beneficial impact of
sustainability information.

The second research question investigates the impact of advice imperfections on al-
gorithm aversion. Papers 1, 4 and 5 suggest that advice quality distribution shapes
algorithm aversion. In paper 1, the results indicate that algorithm appreciation in-
creases over time after a one-time error. Paper 4 finds that a one-time outlier leads
to more advice-taking over time compared to the repeated occurrence of small errors.
In paper 5, disclosing predictive uncertainty resulted in a U-shaped relationship with
moderate uncertainty boosting confidence, advice-taking and performance but excessive
uncertainty diminishing these coefficients.
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Finally, the third research question explores the effects of imperfections on algorithm
aversion among individuals with different levels of AI literacy. Papers 4 and 6 reveal
situations in which AI literacy can be associated with algorithm aversion. Although
paper 4 did not confirm a positive impact of statistical literacy, the results suggest that
statistical literacy follows a U-shaped pattern concerning advice-taking. In paper 6,
more AI-literate individuals exhibited less advice-taking from ML algorithms, which is
beneficial in case of bad advice but potentially harmful in case of good advice.

5.2. Research Implications

Each paper contributes to the overarching goal of improving knowledge about imper-
fections influencing human advice-taking behavior. For the systematic classification of
the dissertation, we utilize the contextual classification based on Mahmud et al. (2022),
who model algorithm aversion as the result of algorithmic, individual, high-level and
task factors. Figure 5.1 illustrates the contextual classification of the papers, introduced
in Section 2.1.

RQ1 examines the impact of advisor imperfections. From a contextual perspective,
we focused on factors related to the design of the algorithm. In paper 2, we used
a regression task based on tabular data. The design factor involved an unobserved
variable and a variation in advisor type. In paper 3, we used a similar setup and the
design factor was the framing of the advisor. Paper 7 we provided participants with
graphical data on binary retraining decisions. The design factor in this study was the
sustainability-performance trade-off.

We contribute that imperfections of algorithms can decrease algorithm aver-
sion. The discussion on algorithm aversion started with the claim of a general aversion
toward imperfect algorithms (Dietvorst et al., 2015; Logg et al., 2019). Therefore,
prior research on design factors has focused on mitigating advisor imperfections using
an anthropomorphic design or demonstrating an algorithm’s learning (Madhavan and
Wiegmann, 2007; Berger et al., 2021). However, there remain mixed findings on algo-
rithm aversion and appreciation (see Jussupow et al., 2020; Burton et al., 2020; Mahmud
et al., 2022; Jussupow et al., 2024, for reviews). Moreover, imperfections in ML algo-
rithms extend beyond prediction accuracy. For instance, the environmental costs of
ML algorithms, such as rising energy consumption due to large-scale model training
on exponentially growing datasets, are becoming increasingly relevant (Crawford, 2024;
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High-level Factors

Algorithm
Aversion

Task Factors

Individual Factors

Familiarity

Paper 4:
Algorithm Aversion beyond MAE

Demography

Paper 6:
Beneficial Mistrust in Generative AI

Psychological Factors

RQ3

Personality

Algorithm Factors

Design

Paper 2:
The Broken Leg of
Algorithm Aversion

Delivery

Paper 3:
AI-Washing

Paper 7:
The Sustainability-Performance

Trade-Off in AI

RQ1

Decision

Paper 1:
Do People Recover from

Algorithm Aversion?

Paper 5:
Visualizing Uncertainty in

Time Series Forecasts

RQ2

Figure 5.1.: Contextual classification of the papers included in this dissertation
(adapted from Mahmud et al., 2022). The dark gray factors lie outside
the scope of this dissertation.

Wu et al., 2022). We particularly extend research on algorithmic design-related algo-
rithm aversion and human-algorithm interaction by providing empirical evidence that
imperfections linked to the ML pipeline can decrease algorithm aversion as individuals
draw conclusions based on the provided design factors.

RQ2 focuses on the impact of advice imperfections in the form of forecasting uncertainty.
Here, we shifted the contextual focus to factors related to decisions with the algorithm.
In paper 1, we used a regression task visualized by time series graphs depicting river
water levels. the decision factor was the presence of bad advice and the recovery process
in advice-taking over time. In paper 5, time series graphs illustrated a regression task
using COVID-19 hospitalization data in the paper. The decision factor was the type of
uncertainty visualization.

We find that the qualitative distribution of advice shapes algorithm aversion.
While prior research on algorithm aversion has examined algorithmic performance as
one key factor influencing advice-taking (see Mahmud et al., 2022, for a review), this

27



5. Discussion

work has primarily examined one-off decisions and focused on reactions to single errors
(e.g., Dietvorst et al., 2015; Prahl and Van Swol, 2017). However, such decision-making
scenarios involve uncertainty, which can alternate future advice-taking (Spiegelhalter
et al., 2011). Additionally, individuals can change their advice-taking behavior depend-
ing on the advice quality (Yaniv and Kleinberger, 2000). This is in contrast to ML
research, which typically uses averaging metrics to evaluate the quality of an advisor
(e.g., Hyndman and Koehler, 2005, pp. 77-87). We particularly extend research on
algorithm aversion with respect to decision factors and ML by highlighting the role of
advice quality distributions instead of focusing on one-time algorithm decision-making
scenarios or aggregated measures.

RQ3 explores the impact of imperfections among individuals with varying levels of AI
literacy. From a contextual perspective, we concentrated on the individual’s familiarity
factors. In paper 4, we used tabular data for a regression task on the market values of
soccer players. Statistical literacy was the key familiarity factor in this study. Paper
6 involved a programming task with the help of a generative ML algorithm. The
familiarity factor in this study was individuals’ AI literacy.

Our results indicate that AI literacy can be associated with algorithm aversion.
Most prior work on algorithm aversion has focused on psychological factors such as per-
sonality, familiarity and demography (Mahmud et al., 2022). While conceptual work
has emphasized the importance of AI literacy—including subliteracies such as statisti-
cal literacy—as essential for engaging with ML algorithms (e.g., Gal, 2002; Long and
Magerko, 2020), empirical research could not confirm a generally positive effect of liter-
acy on advice-taking. Specifically, individuals with lower AI literacy relied more heavily
on algorithmic advice due to a lack of understanding or overtrust in the system (Ehsan
et al., 2021; Jacobs et al., 2021). This has prompted calls for companies to market ML
algorithms solutions specifically for individuals with low AI literacy (Dell’Acqua et al.,
2023; Tully et al., 2025). We particularly extend prior research on familiarity factors in
algorithm aversion and AI literacy by warning about nonlinear relationships between
AI literacy and advice-taking.

5.3. Practical Implications

Our study provides several practical implications for decision-makers, developers and
test managers in algorithmic decision-making:
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5.3. Practical Implications

First, decision-makers should incorporate different types of algorithmic im-
perfections into their decision-making process. This dissertation offers insights
that enable managers to develop effective strategies for incorporating algorithms into
their decision-making processes. Recognizing and devising ways to overcome algorithms’
imperfections is essential for successful human-algorithm cooperation. By identifying
the sources of potential imperfections and disclosing end-users’ responses to them, this
dissertation provides managers with practical tools for successful algorithmic integra-
tion:

1. Persist with algorithmic approaches, even if your initial attempt encounters chal-
lenges. Predictive algorithms are always associated with uncertainty. These im-
perfections may lead to initial algorithm aversion (Dietvorst et al., 2015; Turel and
Kalhan, 2023). However, good performance in repeated decision-making scenarios
can offset the initial uncertainty (paper 1, 4).

2. Embrace genuine ML instead of superficial AI washing. Even though expectations
for ML algorithms can be high during development — with developers believing
that ML algorithms hold greater potential than traditional statistical models —
our results suggest that users are unlikely to use the advice of ML algorithms
until its performance outshines other options (paper 3).

3. Incorporate imperfections of ML algorithms beyond established metrics as users
think about them. Even when performance remains unchanged, an unobserved
variable can boost advice-taking. This insight can help practitioners understand
unintended human behavior (paper 2). Decision-makers should not rely solely
on performance metrics when evaluating algorithms; they must also consider
the impact of other factors such as performance distributions, the sustainability-
performance trade-off and the AI literacy of the end users (papers 4, 5, 6, 7).

Second, developers should disclose imperfections along the ML pipeline. This
dissertation presents a comprehensive overview of various factors along the ML pipeline
that can influence algorithm-based decision-making. This work synthesizes findings
from previous studies on information systems, information technology, behavioral eco-
nomics and psychology to provide developers with a knowledge base for algorithm de-
sign. This foundational understanding can enable the creation of more transparent
algorithms, ultimately boosting users’ advice-taking and performance:
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1. Enable end-users to correct for algorithmic imperfections. For instance, they may
correct for an omitted variable or outlier (papers 2, 4).

2. Communicate the uncertainty associated with algorithms. Although there seems
to be a U-shaped relation between uncertainty and advice-taking, communicating
uncertainty through a prediction interval (PI) appears to be an appropriate trade-
off (paper 5).

3. Communicate the trade-offs of algorithms through transparency. Developers should
also disclose the trade-offs to end users, such as the sustainability-performance
trade-off, to democratize design decisions concerning ethics (paper 7).

Third, test managers should incorporate end-users’ AI literacy levels and al-
ternative goals into ML evaluations. This dissertation offers insights that empower
test managers to develop a robust AI evaluation strategy for incorporating algorithms
into end users’ decision-making processes. It emphasizes that understanding both the
challenges and benefits of AI literacy is essential for effective human-algorithm collab-
oration:

1. Respect individuals with higher AI literacy levels for their mistrust in ML algo-
rithms. While mistrust can be harmful in the case of good advice, it is beneficial
in the case of bad advice (papers 4, 6).

2. Differentiate between the conjoint performance of human-algorithm collaboration
and naive advice-taking from algorithms. Naive and nuanced advice-taking strate-
gies might lead to similar results in some situations (paper 6).

3. Ensure that metrics are aligned with conflicting goals. Selected measures may not
lead to the desired goal, for instance, because of communicating omitted variables,
outliers or adverse side effects such as higher energy consumption (papers 2, 4,
7).
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6. Closure

Given the accelerating proliferation of ML algorithms, exploring the impact of imper-
fections throughout the ML pipeline offers a promising direction for future research.
Future research should further explore the interactions between algorithmic, individual
and other factors, such as high-level and task-related factors. For instance, future work
could further explore the interaction of uncertainty-related insights with models that
predict and communicate their uncertainty, offering users dynamic confidence measures
alongside advice.

We focused on arguably objective application tasks. Although we observed consis-
tent phenomena like algorithm appreciation across multiple studies, future work should
examine how different application scenarios may influence these findings (see Castelo
et al., 2019). Additionally, exploring alternative dependent variables can offer valuable
insights. For instance, although WOA is a common dependent variable in the algorithm
appreciation literature (e.g., Logg et al., 2019), it has certain limitations (Bonaccio and
Dalal, 2006). It is important to note that our work primarily focused on the effects of
individual variables rather than modeling comprehensive user behavior. Future work
could aim to develop integrative models that better capture the multifaceted nature of
advice-taking.

Due to the varying application contexts, we used different framing, which future work
can examine further. While studies frequently assess advice-taking among students
and crowdworkers using experiments (e.g., Fügener et al., 2022), laboratory experiments
tend to offer low external validity, as artificial environments can distort natural behavior
(Shadish et al., 2003). In addition, participants can unconsciously adapt their behavior
due to observation effects such as social desirability (Shadish et al., 2003). Therefore,
future work might adopt alternative research designs, such as qualitative designs with
data scientists or examining long-term learning effects in human-algorithm collaboration
using field experiments with more specific populations. Additionally, participants who
completed the task independently before receiving ML advice might respond differently
than those who receive advice immediately (Buçinca et al., 2021).
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Given the sample size constraints typical of laboratory experiments, future research
should prioritize replicating our findings with larger and more diverse populations.
Additionally, the user interfaces in our studies included supplementary task-related in-
formation — such as MAE values or historical time series data — which may have
influenced participants’ responses, potentially mediating or moderating the observed
effects. In real-world settings, the contextual information provided by algorithms and
human advisors often differs; for example, human advisors typically do not present sta-
tistical metrics but may allow for interactive follow-up questions (Önkal et al., 2009).

While this dissertation examined several algorithmic imperfections, future studies should
investigate additional forms and their effects on human advice-taking behavior. Future
work can apply the FTI-JAS framework developed in this dissertation to facilitate
cross-disciplinary communication by integrating technical knowledge of ML algorithm
imperfections from computer science with behavioral insights from psychology. Al-
though this work enhances our understanding of individuals’ responses to algorithmic
advice, the broader challenge of successfully integrating AI into organizational contexts
remains critical. Ensuring user acceptance and fostering effective human–algorithm
collaboration will be key to unlocking the full economic potential of AI systems.
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