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1 Introduction

1.1 Motivation

Let’s face it. Our world moves in sequences, following a natural order where one event
leads to another. We wake up in the morning, follow a routine, make numerous decisions
throughout the day, and react to events as they unfold. Whether commuting to work,
attending a class, or simply having a conversation, our actions are shaped by what came
before and influence what comes next. In short, life itself is structured around time,
where past actions and choices influence current decisions and determine our future.

Like our daily lives, much of the data generated and collected today is sequential in
nature. From financial transactions to online interactions or even passes in a football
match, data is often recorded as a series of chronological observations. Even natural
language follows a sequential order, where the meaning of a word, a sentence, or a
paragraph depends on what came before. As a result, understanding and predicting
sequential patterns is a key challenge in many fields, requiring models that can process
data in a way that reflects its temporal structure. In fact, sequential data provides a
fair representation of how things happen in our world, capturing events and processes
that unfold over time rather than at a fixed moment.

However, while the field of machine learning (ML) has made significant progress in
recent years, handling sequential data still presents unique challenges. In fact, unlike
static data, where each observation is independent, sequential data requires models
that can track patterns over time and understand how past observations influence fu-
ture ones. Yet, existing methods often struggle to capture such dependencies, produce
structured predictions, or maintain performance as conditions evolve.

1.2 Objectives

Building on the challenges outlined above, the primary goal of this thesis is to con-
tribute to the body of work on sequential data modeling by addressing three key as-
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1 Introduction

pects, namely feature encoding, output decoding, and distribution shifts. By addressing
these challenges, this work aims to advance how models represent sequential patterns,
generate structured predictions, and adapt to changing data distributions. In doing so,
it provides a basis for developing ML models that are both reliable and practical across
different domains. Specifically, this thesis focuses on the following objectives:

1. Feature encoding – i.e., to develop strategies that allow models to capture se-
quential dependencies rather than relying on static representations. This includes
developing encoding methods for numerical, textual, spatio-temporal, and event-
based data, ensuring that models retain relationships between observations rather
than treating them as isolated inputs.

2. Output decoding – i.e., to ensure that model predictions align with the structure
and constraints of real-world problems. Instead of generating outputs as inde-
pendent values, this research explores methods that maintain consistency and
reliability across sequential predictions.

3. Distribution shifts – i.e., to develop an evaluation framework to detect, mitigate,
and report issues arising from changes in data distributions over time or across
different entities. This includes identifying risks such as shortcut learning and
proposing solutions that help models generalize beyond their training conditions.

By tackling these challenges, this thesis contributes to both research and practice, pro-
viding methods that enhance the adaptability, robustness, and real-world applicability
of ML models for sequential data.

1.3 List of Publications

To address these challenges, this thesis is composed of eight research articles, which
have been published or submitted to venues in Information Systems (IS), Computer
Science, ML, Operations Research, or Sports Analytics. Table 1.1 provides an overview
of each publication, including type – i.e., journal or conference – ranking or score – i.e.,
VHB-Rating, CORE, and h-5 index – and citation details. Together, these publica-
tions highlight the scope and impact of the research contributions, demonstrating their
alignment with the thesis objectives.
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Table 1.1: List of Publications

Publication Type VHB CORE h-5 index

Paper 1 Caron, M. and Müller, O. (2020). Hardening Soft Infor-
mation: A Transformer-Based Approach to Forecasting
Stock Return Volatility. In Proceedings of the IEEE In-
ternational Conference on Big Data, pages 4383–4391.

Conference – B 54

Paper 2 Müller, O., Caron, M., Döring, M., Heuwinkel, T., and
Baumeister, J. (2021). PIVOT: A Parsimonious End-
to-End Learning Framework for Valuing Player Actions
in Handball using Tracking Data. In Proceedings of
Workshop on Machine Learning and Data Mining for
Sports Analytics (ECML PKDD), pages 116–128.

Conference – – –

Paper 3 Caron, M., Gulenko, M., and Müller, O. (2021). To the
Moon! Analyzing the Community of “Degenerates” En-
gaged in the Surge of the GME Stock. In Proceedings of
the International Conference on Information Systems,
pages 2432–2448.*

Conference A – –

Paper 4 Caron, M., Bartelheimer, C., and Müller, O. (2022).
Towards a Reliable & Transparent Approach to Data-
Driven Brand Valuation. In Proceedings of the Amer-
icas Conference on Information Systems, pages 1353–
1363.

Conference C – –

Paper 5 Caron, M. (2022). Shortcut Learning in Financial Text
Mining: Exposing the Overly Optimistic Performance
Estimates of Text Classification Models under Distri-
bution Shift. In Proceedings of the IEEE International
Conference on Big Data, pages 3486–3495.

Conference – B 54

Paper 6 Dieter, P., Caron, M., and Schryen, G. (2023). Inte-
grating Driver Behavior into Last-Mile Delivery Rout-
ing: Combining Machine Learning and Optimization
in a Hybrid Decision Support Framework. European
Journal of Operational Research, 311(1).

Journal A – 117

Paper 7 Caron, M. and Müller, O. (2023). TacticalGPT: Un-
covering the Potential of LLMs for Predicting Tactical
Decisions in Professional Football. In Proceedings of
the StatsBomb Conference.

Conference – – –

Paper 8 Caron, M., Müller, O., and Kriebel, J. (2025). Detect-
ing and Mitigating Shortcut Learning Bias in Machine
Learning: A Pathway to More Generalizable ML-based
(IS) Research. Working Paper Series, Paderborn Uni-
versity, Faculty of Business Administration and Eco-
nomics, (129).**

Journal ( A+ ) ( – ) ( 60 )

* The paper was nominated for Best Paper at the International Conference on Information Systems (ICIS) 2021.
** The manuscript was submitted for publication at Information Systems Research in February 2025.

An earlier version of this manuscript was also presented at the Workshop
on Information Technologies and Systems (WITS) 2022.
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1 Introduction

1.4 Thesis Structure

This thesis is organized into two main parts – i.e., Part A – Synopsis and Part B –
Research Papers – which provide a structured overview of the research, covering the
methodological contributions and their practical applications.

Part A – Synopsis outlines the research background, key challenges, and the contri-
butions made in this thesis and consists of the following chapters:

• Chapter 1 – Introduction: Introduces the motivation, research objectives, and
structure of the thesis.

• Chapter 2 – Research Background: Reviews relevant literature on sequential data
modeling and the key challenges in feature encoding, output decoding, and dis-
tribution shifts.

• Chapter 3 – Research Contributions: Summarizes the main findings from the
research papers and how they address the identified challenges.

• Chapter 4 – Discussion & Conclusion: Discusses the broader implications of the
research, its limitations, and future directions.

Part B – Research Papers contains the eight research articles that form this thesis.
These papers collectively demonstrate the application of the methodologies discussed
in Part A to real-world problems in domains such as finance, branding, logistics,
and sports analytics. Each paper addresses specific methodological challenges while
contributing to the goal of improving research in the field of sequential data modeling.

6



2 Research Background

2.1 Overview

Understanding sequential data is critical in many ML problems where observations
are not independent but evolve over time. Unlike static datasets, where standard ap-
proaches can be applied without considering order, sequential data requires models that
capture dependencies between past and future observations. As Hausman explains, “the
key difference between sequential and non-sequential decision problems is that future
decisions in sequential problems may be based partially on information known in the
future but unknown at present” (1969, p. B-93), meaning that later decisions may
not only depend on earlier ones but also on information that becomes available as the
sequence unfolds (Hausman, 1969). For example, in weather forecasting, predictions
are continuously updated as new temperature and pressure readings are recorded over
time. Similarly, Wittenbach et al. (2020) argue that temporal data, such as financial
sequences or transactional records, presents unique patterns and dependencies that can-
not be effectively captured using traditional modeling approaches. They also emphasize
the need for specialized methods to handle these time-dependent structures, as static
models often fail to fully leverage the complex relationships within sequential datasets.

Hence, this thesis focuses on sequential data because learning from these structures
introduces fundamental challenges that impact how data is encoded, dependencies are
captured, and outputs are generated reliably. Since these challenges vary depending
on the data type, we first define the most common forms before addressing the key
difficulties in modeling them.

2.2 Sequential Data

2.2.1 Definition

As briefly exposed, sequential data consists of ordered observations where past values
influence future ones. In traditional supervised learning, where the goal is to train a
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2 Research Background

model that maps inputs to outputs based on labeled examples, the standard assump-
tion is that the training data is independent and identically distributed (i.i.d.) – i.e.,
each input-output pair is drawn randomly from a joint distribution (Dietterich, 2002;
Raschka and Mirjalili, 2017). This assumption simplifies modeling by ensuring that
each observation is treated independently, allowing standard ML methods to generalize
well across different scenarios (Dietterich, 2002).

However, as Dietterich (2002) explains, sequential data does not fit this assumption,
as observations exhibit strong dependencies across time. Instead of being randomly
sampled, data points in sequences are linked by patterns that evolve over time, making
traditional learning techniques inadequate. This is especially relevant in applications
where the temporal order is crucial (Dietterich, 2002; Raschka and Mirjalili, 2017). For
example, in stock price forecasting, the value of a share at a given moment is usually
closely related to previous prices. Similarly, in text classification, the meaning of a word
often depends on the words that came before it. In such cases, predictions must consider
how patterns develop over time rather than treating each observation as separate.

As a result, sequential data cannot be modeled in the same way as static data. Instead,
predictions in sequential modeling must be made by considering the dependencies be-
tween observations rather than treating them in isolation (Dietterich, 2002). Such
dependencies can be expressed as a sequence (x1, x2, . . . , xT ), where xt represents an
observation at step t, and T is the total sequence length (Dietterich, 2002). These
dependencies can be short-term – i.e., where only recent observations matter – or long-
term – i.e., where relationships span across distant elements in the sequence.

To better understand these dependencies, the following subsections introduce the most
common types of sequential data and their defining characteristics.

2.2.2 Time Series Data

A time series is a collection of observations recorded in temporal order, where each data
point is indexed according to the sequence in which it occurs (Box et al., 2008; Shumway
and Stoffer, 2025). Therefore, it can be defined as a stochastic process, represented as
a collection of random variables xt indexed by time t (Shumway and Stoffer, 2025, p.
10). Unlike datasets with independent observations, time series data exhibits serial
dependence, meaning that past values influence future ones (Box et al., 2008; Shumway
and Stoffer, 2025). Technically, “[a]nything that is observed sequentially over time is a
time series” (Hyndman and Athanasopoulos, 2018, p. 17), meaning that such data may
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be recorded at fixed (e.g., hourly, daily, or annually) or irregular intervals, depending
on the application (Wittenbach et al., 2020). Since time series analysis typically focuses
on tracking the evolution of a single entity over time, it requires specialized techniques
that account for sequential dependencies. Hence, in time series forecasting, the goal
is to estimate how a sequence will evolve based on past observations, often relying on
patterns in the data rather than external factors (Hyndman and Athanasopoulos, 2018).

The structure of a time series depends on how observations are recorded over time. If
data points are collected at fixed, evenly spaced intervals, the series is referred to as
regular or uniform (Wittenbach et al., 2020). This is the case for hourly stock prices or
daily energy consumption measurements. In contrast, when the timing of observations
varies, the series is considered irregular or non-uniform, where observations are recorded
dynamically based on external events rather than a predefined schedule (Wittenbach
et al., 2020). For example, financial transactions such as credit card payments or player
actions during a football match do not follow a fixed schedule but depend on individual
decisions or game dynamics. While many ML approaches attempt to transform such
data into a uniform format, doing so can result in information loss, as the timing of
events may hold predictive value (Wittenbach et al., 2020). This category of non-
uniform time series, often referred to as event data or non-uniform event streams, has
distinct temporal and structural properties, which will be discussed in a later section.

2.2.3 Panel Data

In contrast to time series data, which focuses on a single entity over time, panel data
consists of repeated observations collected for multiple entities over a given period (Ver-
beek, 2004; Wooldridge, 2013). These entities can be, for instance, individuals, firms, or
even geographic regions, each observed across time (Verbeek, 2004). Structurally, panel
data extends the principles of time series by capturing multiple time series simultane-
ously – i.e., one for each entity in the dataset (Wooldridge, 2013). Unlike a standard
cross-sectional dataset, which captures observations at a single point in time, panel data
incorporates a temporal dimension by tracking multiple entities over time, combining
cross-sectional and time-series properties (Verbeek, 2004). This structure enables the
capture of differences between entities and variations within the same entity over time,
allowing for more detailed analyses (Verbeek, 2004). However, panel data introduces
complexities because, unlike standard datasets, we cannot assume that observations are
independent across time or entities, requiring specialized statistical methods to account
for temporal and entity-level dependencies (Verbeek, 2004; Wooldridge, 2013).
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2 Research Background

Panel data is widely used in empirical research, particularly when analyzing trends at
an individual or organizational level. Since it consists of multiple time series, panel
data is especially useful when comparing patterns across different entities. Typical
applications include financial analyses, where investments and performance indicators
are monitored over time. Similarly, it is applied in sustainability and corporate social
responsibility research, where firms’ environmental and social efforts are systematically
recorded to assess their long-term impact on business and the environment.

2.2.4 Event Data

As explained above, non-uniform time series, also known as event data or event streams,
differ from traditional time series in that observations occur at irregular intervals with-
out a predefined sampling frequency (Wittenbach et al., 2020). While uniform time
series record observations at fixed time steps, event data consists of discrete occur-
rences associated with a timestamp rather than continuous measurements (Wittenbach
et al., 2020). Unlike panel data, where repeated observations are recorded uniformly for
multiple entities over time, event data focuses on the order and timing of specific events
rather than maintaining regular intervals. Still, even though irregular intervals between
events can carry meaningful information, many ML methods attempt to convert event
data into uniform time steps, often losing important details (Wittenbach et al., 2020).

Contrary to time series, where observations follow a fixed schedule, one key charac-
teristic of event data is that the exact timing of events carries important information
(Wittenbach et al., 2020). For example, online purchases, social media posts, or busi-
ness processes, such as order placements or product shipments, are all examples of
event data since these events occur in response to specific situations rather than at
regular intervals. In fact, the field of Business Process Management (BPM) – i.e., a
key area of IS research – relies heavily on event-driven data, where business activities
are recorded as irregular occurrences. Similarly, as exposed earlier, player actions in
football, such as shots, passes, or tackles, also qualify as event data since they happen in
response to game situations rather than a set schedule. As a result, event data is widely
used in football analytics to assess player performance and tactical strategies (Decroos
et al., 2019). For example, Anzer and Bauer (2021) highlight that shot events contain
detailed attributes describing various aspects of the action, such as shot type or defen-
sive pressure, which are crucial for evaluating player actions. Generally speaking, such
contextual factors are essential for analyzing event patterns, identifying trends, and
estimating probabilities, allowing models to extract deeper insights from event data.
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2.2.5 Spatio-Temporal Data

As introduced in the previous sections, datasets with a temporal component can take
different forms depending on how observations are organized across entities and time.
While time series focus on a single entity over time, and panel data track multiple enti-
ties across time, spatio-temporal data, sometimes referred to as tracking data, incorpo-
rates an additional spatial dimension. In other words, spatio-temporal data focuses on
observations “related to each other in the context of space and time” (Atluri et al., 2018,
p. 83:2). This structure enables the study of patterns that evolve across both spatial
and temporal dimensions (Moraga, 2024), such as player movements on a football pitch,
the flow of traffic in a busy city, or the spread of an infectious disease across geographic
regions. Given the increasing availability of large-scale data, spatio-temporal analysis
has become essential in various fields, including climate science, social sciences, neu-
roscience, epidemiology, and transportation, where understanding interactions across
space and time is crucial (Atluri et al., 2018).

Similar to time series data, spatio-temporal data can be collected in different ways,
leading to variations in how the observations are structured. Some datasets are uniform
– i.e., recorded at fixed spatial locations and time intervals – while others are non-
uniform – i.e., recorded at varying locations and time intervals (Atluri et al., 2018;
Moraga, 2024). For instance, weather stations measuring temperature at exact locations
every hour form a uniform spatio-temporal dataset. In contrast, event data with spatial
references, such as shots or passes in football, result in non-uniform spatio-temporal
data, as these actions occur irregularly throughout a match. Hence, tracking both the
timing and location of such events enables analysis of player movement and tactical
positioning (Atluri et al., 2018; Anzer and Bauer, 2021). These differences affect how
spatio-temporal data is analyzed, as uniform datasets support traditional statistical
modeling, whereas non-uniform data often requires interpolation or specialized ML
techniques, highlighting the limitations of i.i.d. assumptions (Atluri et al., 2018).

2.2.6 Textual Data

Lastly, one of the most widely used but perhaps less obvious forms of sequential data is
textual data, also known as natural language. While language is often seen as nothing
more than discrete words or characters, its structure is inherently sequential, where the
meaning of each word, sentence, or paragraph depends on its position within a broader
context. In fact, “[t]he ordering of words becomes important as they convey logical
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relationships and dependencies between the words” (Patil et al., 2023, p. 36124), giving
a document its meaning, as rearranging them would completely change interpretation.

That being said, language is complex to understand and analyze – i.e., even for humans
– as it involves intricate dependencies and ambiguities that shape meaning and context.
From a technical perspective, natural language processing – i.e., “[. . . ] the subfield of
computer science concerned with using computational techniques to learn, understand,
and produce human language content” (Hirschberg and Manning, 2015, p. 261) –
provides the foundation for modeling and analyzing these complexities.

Unlike time series, panel, event, or spatio-temporal data, natural language sequences
are ordered but do not possess a conventional temporal structure. Instead, language
follows a strict sequence where order determines meaning, even though there is no
inherent concept of time between tokens. In NLP, each time step corresponds to a
token (e.g., a character or a word) rather than a measurement at a specific moment.

To process these sequences computationally, tokens are transformed into numerical
representations. A basic approach is one-hot encoding – i.e., assigning each token a
unique binary vector where only one position is active. However, this representation
does not capture relationships between words. In contrast, more recent methods, such as
RNNs or Transformers, process sequences by representing each token as an embedding
at each time step. These embeddings are dense vector representations that capture
semantic relationships between words, allowing models to learn contextual dependencies
and distinguish meanings (Patil et al., 2023). Such techniques have become standard
in modern NLP, driving applications from machine translation to AI assistants.

2.3 Challenges of Modeling Sequential Data

2.3.1 Overview

As established in the previous section, sequential data differs fundamentally from static
datasets, as observations are connected across time and, in some cases, space. Unlike
independently sampled data points, sequential data requires ML models that can recog-
nize and learn from these dependencies, whether they emerge from temporal patterns,
spatial-temporal relationships, or text documents. Additionally, sequential data ex-
hibits varying levels of dependency, ranging from short-term relationships – i.e., where
only recent observations matter – to long-term structures – i.e., where patterns evolve
over extended sequences. These difficulties not only make many traditional modeling
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techniques unsuitable but also introduce challenges in how the data needs to be encoded
– i.e., represented – and decoded. Moreover, sequential data is prone to distribution
shifts over time, as external factors, changing conditions, or evolving situations modify
its statistical properties, making it difficult for models to generalize effectively.

Hence, in this section, we explore three key challenges in modeling sequential data,
namely feature encoding, output decoding, and distribution shifts. Each of these chal-
lenges plays a critical role in determining how models learn from sequences, influencing
both their predictive performance and generalization ability. These challenges are cen-
tral to the research contributions presented in this thesis and directly shape the methods
proposed in the next chapters.

2.3.2 Feature Encoding & Output Decoding

At this point, it should be clear that transforming sequential data into structured rep-
resentations is, even though implicit, a fundamental challenge in machine learning that
should not be overlooked. As a matter of fact, several characteristics of sequential data
make feature encoding and output decoding particularly complex, requiring methods
that can preserve structure, capture dependencies, and ensure reliable model outputs.
These challenges arise from the nature of sequential data itself and can be broken down
into the following key aspects:

• Temporal Dependencies: Unlike static datasets, where each observation is inde-
pendent, sequential data requires encoding methods that preserve relationships
between consecutive observations, such as Recurrent Neural Networks (RNN)
(Sherstinsky, 2020). Yet, the challenge lies in ensuring that short-term fluctu-
ations and long-term trends are accurately captured, which is particularly im-
portant in panel data, time series forecasting, and NLP. Long Short-Term Mem-
ory (LSTM) networks (Sherstinsky, 2020) and, more recently, Transformer-based
models (Vaswani et al., 2017), such as BERT (Devlin et al., 2019), are commonly
used to address this challenge, as they are designed to retain both short-term
dependencies and long-range patterns.

• Structural Complexity and Entity Interactions: In panel data and event data,
relationships exist not just across time but also between different entities (e.g.,
athletes, companies, or geographical regions). Therefore, encoding strategies must
account for hierarchical dependencies, entity-specific variations, and interactions,
which complicate how models learn from such data.
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• Irregular Sampling and Non-Uniformity: As exposed, sequential data can be
recorded at irregular intervals, as seen with event or spatio-temporal data, such
as football match events where player actions occur unpredictably throughout the
game (Decroos et al., 2019). Hence, encoding methods must be able to handle
missing or unevenly spaced observations without distorting the underlying pat-
terns. Standard techniques assuming uniform time steps may fail in these cases,
leading to information loss.

• High Dimensionality and Multi-Modality: Sequential datasets often combine tex-
tual, numerical, and categorical information, creating what is known as multi-
modal data. Encoding such data requires methods that can not only represent
each modality but also capture their dependencies effectively rather than treating
them as independent inputs (Zhao et al., 2017).

• Variable-Length Outputs and Structured Predictions: Many sequential models
generate complex outputs, such as spatio-temporal forecasts, event sequences,
or textual data. A key challenge arises when these outputs cannot be repre-
sented with fixed-dimensional vectors, since “many important problems are best
expressed with sequences whose lengths are not known a-priori ” (Sutskever, 2014,
p. 1). Decoding such outputs requires methods that ensure consistency, preserve
structural dependencies, and adapt to variations in sequential patterns so that
generated sequences remain reliable and aligned with the learning task.

The challenges outlined in this section highlight the difficulties of modeling sequential
data, particularly in how features are encoded and outputs are structured. Effective
solutions must be able to capture evolving dependencies, preserve structure, and handle
variability in sequential patterns. In the next chapters, we introduce the research con-
tributions of this thesis, each addressing one or more of these challenges with methods
designed for the specific properties of the sequential data examined in each paper.

2.3.3 Distribution Shifts in Machine Learning

As discussed earlier, ML models are typically trained under the assumption that train-
ing and test data share the same distribution. However, this assumption of independent
and identically distributed (i.i.d.) data rarely holds in practice and has been referred
to as the “big lie of machine learning” (Varshney, 2022, p. 114). In practice, the dis-
tribution of data a model encounters during deployment often differs from the training
data, a phenomenon known as distribution shift (Varshney, 2022). When this oc-

14



2 Research Background

curs, models that perform well in controlled environments may struggle in real-world or
post-deployment scenarios, leading to unreliable predictions and decreased performance
(Varshney, 2022; Kulinski and Inouye, 2023).

Technically speaking, distribution shifts can be represented as

p
(train)
X,Y (x, y) ̸= p

(deploy)
X,Y (x, y)

where the joint distribution of features and labels differs between training and de-
ployment (Varshney, 2022). This mismatch depends on which part of the distribution
changes and is commonly classified into three main types (Varshney, 2022):

• Label shift, also known as prior probability shift, occurs when the distribution of
labels changes between training and deployment, but the relationship between
features and labels remains the same. In other words, while the probability of
different labels varies, the features associated with each label do not change:

p
(train)
Y (y) ̸= p

(deploy)
Y (y), p

(train)
X|Y (x|y) = p

(deploy)
X|Y (x|y)

• Covariate shift happens when the distribution of features differs between training
and deployment, even though the relationship between inputs and outputs remains
stable. This typically occurs when data is collected under different conditions,
affecting input characteristics while preserving labels:

p
(train)
X (x) ̸= p

(deploy)
X (x), p

(train)
Y |X (y|x) = p

(deploy)
Y |X (y|x)

• Concept drift refers to cases where the relationship between inputs and outputs
itself changes over time, meaning that the same features may correspond to dif-
ferent labels in training and deployment. It can also occur when the way features
relate to labels evolves, even if the label distribution remains unchanged:

p
(train)
Y |X (y|x) ̸= p

(deploy)
Y |X (y|x)

In some cases, concept drift manifests through shifts in the conditional distribu-
tion of features given labels, while the overall label distribution stays the same:

p
(train)
X|Y (x|y) ̸= p

(deploy)
X|Y (x|y), p

(train)
Y (y) = p

(deploy)
Y (y)
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To put this into perspective, consider the following examples. Label shift occurs in loan
approvals if the proportion of borrowers who default and those who do not changes
over time, even though the criteria used to assess risk remain the same. Covariate shift
happens in a housing price prediction model trained on urban homes but later used in
rural areas – i.e., where houses differ in sizes and locations – but the relationship between
features and prices remains unchanged. Concept drift occurs in email spam detection
when the way emails are composed and formatted changes, making the language that
once indicated spam no longer a reliable signal.

In conclusion, distribution shifts can severely impact model performance, causing pre-
dictions to become unreliable and leading to significant degradation in real-world ap-
plications. Therefore, identifying and addressing these shifts is essential for building
reliable ML systems. While detection methods compare distributions between training
and deployment data to identify shifts, mitigation strategies focus on adapting models
to maintain performance under changing conditions (Varshney, 2022). The impact of
these shifts also depends on the type of sequential data. For instance, concept drift is
particularly problematic in financial forecasting, where market dynamics change over
time, while covariate shift is common in spatio-temporal data, such as traffic predic-
tion, where new urban developments alter input distributions. Hence, ensuring model
performance and reliability requires effective identification and mitigation strategies,
which we also address in the next chapters.
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3.1 Overview

As outlined in Table 3.1, the eight research contributions presented in this thesis ad-
dress, as a whole, the main challenges associated with sequential data modeling. They
cover a diverse range of data types – i.e., multimodal, spatio-temporal, textual, event,
and numerical – each posing distinct methodological challenges related to feature en-
coding, output decoding, and distribution shifts. This table provides an overview of
how these contributions relate to key challenges in ML.

A recurring aspect across these studies is the need to capture sequential dependencies
at both the feature level, where relationships exist within the input variables, and the
observation level, where past observations influence future predictions. In contrast,
textual and event data present different challenges, requiring models to account for
sequential order and entity interactions. Distribution shifts further complicate these
tasks, as models often struggle when data distributions change over time or across
entities. Throughout this thesis, we examine these difficulties, introduce structured
encoding strategies, and develop modeling approaches tailored to the complexities of
sequential data. As outlined below, these contributions present frameworks and meth-
ods that improve how models encode, learn from, and generate structured, sequential
outputs while addressing distribution shifts.

Focussing on these challenges, the contributions are structured as follows:

1. Feature Encoding

• Paper 1, Paper 3, and Paper 4 explore how multimodal feature encoding
integrates textual, numerical, and categorical inputs while preserving key
relationships.

• Paper 1, Paper 3, Paper 4, Paper 5, and Paper 8 examine panel data
structures, focusing on how entity-level dependencies change over time and
influence model performance.
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• Paper 2 and Paper 6 focus on spatio-temporal encoding, where movement
patterns and feature relationships change over time. These studies examine
how models can preserve these evolving structures, ensuring that spatial and
temporal dependencies are accurately captured during learning.

• Paper 5 and Paper 7 examine encoding strategies for textual and event-
based data, focusing on preserving sequence structures and capturing interac-
tions between entities. These studies explore methods to ensure that models
retain the order of events and relationships within the data, improving how
sequential patterns are processed and understood.

2. Output Decoding

• Paper 2 and Paper 6 tackle challenges in spatio-temporal predictions, en-
suring that model outputs remain realistic, respect domain constraints, and
accurately reflect movement patterns.

• Paper 7 explores how generative models decode event-based sequences into
structured outputs while preserving consistency and the order of events.

3. Distribution Shifts

• Paper 5 and Paper 8 examine distribution shifts, showing how models
struggle when data distributions change over time or across entities, leading
to overoptimistic predictive performance.

• Paper 8 introduces a framework to detect, mitigate, and report shortcut
learning – i.e., when models rely on spurious associations instead of mean-
ingful patterns – leading to poor generalization under distribution shifts.
This framework helps improve model evaluation by identifying weaknesses
that standard assessments might overlook.

Together, these contributions provide a structured view of sequential data modeling,
addressing challenges associated with feature encoding, output decoding, and distribu-
tion shifts across different learning tasks. Each paper focuses on specific methodological
gaps, demonstrating how various modeling approaches can be applied to structured, un-
structured, spatio-temporal, and event-based data. The following sections summarize
each contribution, highlighting how they tackle key issues such as multimodal integra-
tion, temporal dependencies, model robustness, and structured output generation.
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3.2 Paper 1 – Hardening Soft Information: A Transformer-Based
Approach to Forecasting Stock Return Volatility

Paper 1 investigates the challenges associated with feature encoding in sequential data,
focusing on effectively processing and representing long textual documents for predictive
modeling tasks. Unlike structured numerical data, textual information exhibits complex
dependencies across varying lengths, making encoding difficult without losing essential
context. As with most problems involving sequential data, long-range dependencies are
essential for understanding and processing the connection between events over time,
or in this case, concepts or phrases throughout a document. However, state-of-the-art
approaches, such as Transformer architectures, struggle with feature-level dependencies
since self-attention – i.e., the mechanism these architectures rely on to capture relation-
ships between input features – scales quadratically with sequence length (Devlin et al.,
2019; Beltagy et al., 2020). This computational constraint limits the maximum feasible
document length these models can realistically process, posing a fundamental challenge
for applying them to real-world scenarios where textual documents tend to be lengthy.

Given this background, this study applies modern attention-based sequence-to-sequence
models to the regression learning task of stock return volatility prediction – i.e., a
particularly realistic scenario for assessing the adaptability of Transformer models to the
aforementioned challenge. More specifically, we investigate whether leveraging textual
features extracted from corporate financial reports can improve predictions of stock
return volatility – i.e., a standard measure of risk in finance. Historically, financial
forecasting has predominantly relied on numerical, hard information, such as balance
sheets or stock prices, to support decision-making. However, following advancements
in natural language understanding, integrating soft information, such as textual data
from corporate annual reports, into predictive models has become increasingly common
in finance and IS. Hence, more than a decade after the seminal work by Kogan et al.
(2009), this study revisits this task using a state-of-the-art Transformer-based approach.

Following the approach illustrated in Figure 3.1, this study introduces a feature-based
method for encoding long documents while preserving contextual relationships. The
framework utilizes pre-trained Transformer models, such as BERT (Devlin et al., 2019),
to extract contextual embeddings from corporate annual reports, specifically, the Man-
agement’s Discussion and Analysis (MD&A) section of Form 10-K filings. The process
begins by tokenizing the MD&A text and segmenting it into n overlapping chunks of a
predefined length m. Each chunk is then passed through the Transformer model, and
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the activations from the last four hidden layers are extracted, pooled, and concatenated
to form a single, feature vector representing the entire document. By leveraging mean
pooling across these representations, this approach allows for efficient encoding of ar-
bitrarily long sequences while maintaining key contextual dependencies, ensuring that
essential information is not lost due to sequence length constraints.

Tokenized
document

n chunks of
m tokens

(n, m)

Output:
4xH-dimensional
feature vector 

(4xH, )

Item 7 – Management's Discussion and Analysis of Financial
Condition and Results of Operations [...]

Input:
Form 10-K

Item 7 – MD&A

n 4xH-dimensional 
contextual embeddings 

(n, 4xH)

Tokenize document (e.g., WordPiece)

Segment tokenized document into n chunks of length m* 
(with or without overlap)

Perform mean pooling over chunks

item 7 - management 's discussion and analysis of financial ...condition and [...]

* m is a user-defined hyperparameter

item - management 's discussion [...]

Feed the (encoded) chunks into the pre-trained Transformer model and
concat the last four pooled activation layers of size H 

... ... ...... ... ...

-0.3180 0.5739 ...-0.1192 0.4357 0.1362

-0.4213 0.2072 0.2488 -0.1946 0.3298 ...

Figure 3.1: Feature-Based Approach (Caron and Müller, 2020, p.4385)

This feature-based encoding method offers a scalable solution to handling long finan-
cial texts, overcoming the standard limitations of Transformer architectures with fixed-
length inputs. By preserving essential textual patterns and contextual information, it
enables forecasting models to incorporate soft information alongside traditional numer-
ical indicators. This capability is particularly valuable in real-world financial applica-
tions, where corporate disclosures often exceed standard sequence lengths and contain
critical insights that affect market expectations and risk assessments.

For our empirical evaluation, we used the publicly available FIN10K dataset, which
includes corporate annual reports from 1996 to 2013 (Tsai et al., 2016). Our experi-
ments tested text-only and multimodal configurations, where textual embeddings were
used alone or combined with structured numerical features. As shown in Table 3.2,
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our models outperformed prior benchmarks, demonstrating the effectiveness of incor-
porating textual data into financial forecasting. The text-only model achieved lower
prediction errors than traditional baselines relying solely on numerical information,
confirming the predictive value of soft financial information. However, the best results
were obtained using a combined approach, which integrated both textual and numerical
features, achieving the lowest mean squared error across multiple years. These findings
reinforce the importance of leveraging diverse data sources in sequential financial mod-
eling, showing that financial forecasting models benefit from a richer representation of
firm-specific risk factors when incorporating textual insights alongside structured data.

Table 3.2: Best Models vs. Published Results (Caron and Müller, 2020, p.4389)

Model 2008 2009 2010 2011 2012 2013 AVG

Hist. vol. (baseline) 0.4872 0.2065 0.1858 0.0802 0.1508 0.0796 0.1984

Tsai et al. 2016 (EXP-SYN) 0.6537 0.2387 0.1514 0.1217 0.2290 0.1861 0.2634

Dereli and Saraçlar 2019 (CNN-NTC) 0.4672 0.3169 0.2156 0.1154 0.1944 0.1238 0.2389

Ours (text-only) 0.3241 0.2672 0.1383 0.0964 0.1423 0.1007 0.1782

Ours (combined) 0.3801 0.2170 0.1366 0.0733 0.1302 0.0720 0.1682

* The above performance results are displayed in terms of mean squared error

3.3 Paper 2 – PIVOT: A Parsimonious End-to-End Learning
Framework for Valuing Player Actions in Handball using
Tracking Data

Modeling high-frequency spatio-temporal data presents fundamental challenges when it
comes to data representation and feature encoding, particularly when statistical prop-
erties shift over time and space. Unlike structured datasets with well-defined attributes,
spatio-temporal sequences exhibit heterogeneity and non-stationarity, where the rela-
tionships between observations evolve dynamically. This variability complicates predic-
tive modeling, as traditional approaches often rely on fixed representations that fail to
generalize across changing contexts.

To explore these challenges, Paper 2 proposes an end-to-end learning framework de-
signed for estimating expected possession value (EPV) in professional handball – i.e.,
a predictive modeling task that assesses the impact of in-game actions on scoring like-
lihood. While EPV estimation has been widely studied in sports such as basketball
and football, prior methods often rely on predefined event annotations, making them
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less adaptable to sports or scenarios with continuous, fast-paced play. Instead, this
framework encodes continuous spatio-temporal data without requiring predefined event
labels, allowing for a more flexible and scalable approach that generalizes beyond hand-
ball to other domains characterized by continuous spatio-temporal dynamics.

Figure 3.2: Spatio-Temporal Representation of Game Dynamics (Müller et al., 2021, p.119)

Following this framework, the study represents spatio-temporal game dynamics as struc-
tured input sequences, enabling learning algorithms to extract meaningful patterns di-
rectly from raw tracking data. As shown in Figure 3.2, player and ball positions are en-
coded as a sequence of two-dimensional spatial arrays, capturing movement over a fixed
time window. This approach ensures that models process continuous player trajectories
and positional interactions without relying on labeled events, maintaining adaptability
to different styles of play and game contexts. The learning task is formulated as a
binary classification problem, where the model predicts the probability of the attacking
team scoring within a predefined number of frames, providing an interpretable measure
of how in-game actions influence possession value over time.

To evaluate the framework, we used tracking data from the 2019/20 season of the Liqui
Moly Hanbdall-Bundesliga, ensuring that the dataset was structured into fixed-length
input sequences using a sliding window technique. The evaluation compared multi-
ple deep learning architectures, including Fully Convolutional Networks (FCN), Long
Short-Term Memory (LSTM) networks, and Time Series Transformers (TST). Each
model was trained to predict the scoring likelihood within the next 3 seconds – i.e., 60
frames at 20 frames per second – based on spatial game dynamics alone, allowing for
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a direct assessment of how well different architectures capture spatio-temporal depen-
dencies in high-frequency data. Our results show that the TST model outperformed all
other approaches across all tested window lengths, demonstrating its superior ability to
model complex movement patterns. Notably, the TST model achieved an AUC of 0.909
and a Brier Skill Score of 0.318, highlighting its effectiveness in forecasting possession
outcomes based purely on tracking data.

Beyond predictive accuracy, the study also explored practical applications of the frame-
work to real-time tactical analysis. As demonstrated in Figure 3.3, the model enables
the development of an Augmented Instant Replay system, which continuously updates
EPV estimates throughout a game, providing a visual representation of how team ac-
tions influence scoring probabilities. This system offers potential applications for the
coaching staff, analysts, and broadcasters, allowing for a real-time data-driven assess-
ment of tactical decisions. For instance, during an attack by SG Flensburg-Handewitt
in a league match, the model captured a steep rise in EPV following a fast break initi-
ated by the goalkeeper, illustrating how possession value fluctuates dynamically based
on game events.

Figure 3.3: EPV Development of an Attack by SGFH (Müller et al., 2021, p.125)

3.4 Paper 3 – To the Moon! Analyzing the Community of
“Degenerates” Engaged in the Surge of the GME Stock

Addressing the question of how multimodal data can improve modeling outcomes, Pa-
per 3 examines the challenges associated with representing complex multimodal panel
feature sets – i.e., feature sets comprised of textual, numerical, and time-series data –
within a modeling approach suited to address common challenges encountered in IS and
finance research. Unlike structured datasets with well-defined attributes, multimodal
data must be carefully encoded to ensure that each data type is effectively integrated,
allowing diverse inputs to contribute meaningfully to predictive performance.
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To give our study a current real-world context, we focused, in Paper 3, on the events
surrounding the dramatic price surge of the GameStop Corp. (GME) stock of 2021,
analyzing the relationship between user activity on the r/wallstreetbets (WSB) subreddit
and the trading volume of the GME stock. This case presents a natural setting for
investigating the challenges of modeling multimodal data, as irregular user activity
patterns and the mix of structured and unstructured inputs make it more difficult to
capture meaningful relationships across different data types.

To recall the events of early 2021, the financial world was taken by storm when, over the
course of just four weeks, the price of the GME stock skyrocketed by an extraordinary
2,442% (see Figure 3.4) – i.e., a rise attributed, in part, to the actions of the now-famous
WSB subreddit group. During this time, retail investors on WSB organized what
became one of the most widely publicized short squeezes in history, drawing attention
not only to GameStop but also to other stocks like AMC Entertainment Holdings, Inc.
(AMC) and BlackBerry Limited (BB), which experienced similar surges. These events
were described as unprecedented cases of predatory trading by retail investors, exposing
the reach and impact of so-called “kitchen table trading” (Hasso et al., 2022).
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Figure 3.4: Daily Closing Price of GameStop Corp. in USD (Caron et al., 2021, p.2)

For the analysis, we constructed a dataset spanning 105 trading days, covering the pe-
riod from August 1, 2020, to March 15, 2021. The dataset included over 169,000 posts,
4.78 million comments, and detailed financial market data, from which we derived
more than 300 predictors capturing various aspects of user activity. To structure this
multimodal data for predictive modeling, we applied a feature encoding process that
transformed textual discussions into numerical representations while ensuring alignment
with time-series financial indicators. To proceed, we first extracted every document’s
sentiment, or polarity, using a pre-trained text classification model based on the ar-
chitecture by Liu et al. (2019). Then, we applied Latent Dirichlet Allocation (LDA)
to extract discussion themes, identifying recurring topics in the documents. These
extracted features were then synchronized with daily trading data, ensuring that the
textual and financial components remained temporally aligned for effective modeling.
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With the feature set constructed, we employed four Bayesian Structural Time Series
(BSTS) models – i.e., models that integrate temporal trends with additional predictors
to estimate trading volume effectively (Scott and Varian, 2014, 2015). Model 1 included
only financial predictors, serving as a baseline. Model 2 incorporated features related to
the quantity and quality of WSB submissions, while Model 3 replaced submissions with
predictors derived from comments. Finally, Model 4 combined both submissions and
comments, allowing us to compare the relative impact of these two discussion formats
on trading volume. This approach enabled a direct evaluation of how multimodal
inputs—structured market data and unstructured social media discussions—interacted
over time, revealing the extent to which online discussions influenced trading behavior.

A key focus of the analysis was assessing whether user submissions or comments pro-
vided stronger predictive signals for trading volume fluctuations. The results indicate
that submissions, which are typically longer and more structured, exhibited a stronger
correlation with trading activity than comments, which are often brief and reactive.
Additionally, topic modeling revealed that themes such as “Short Squeeze” and “Hold
& Fight” were particularly relevant during periods of increased market volatility, align-
ing closely with heightened trading activity. These findings suggest that structured
textual discussions, rather than fragmented interactions, offer more valuable signals
when modeling the link between online discussions and financial markets.
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26



3 Research Contributions

As shown in Figure 3.5, incorporating WSB discussions into our BSTS models sig-
nificantly improved the ability to capture spikes in trading volume. Models that in-
tegrated textual features, particularly those derived from submissions, outperformed
those relying solely on financial predictors, with the greatest improvements observed
during periods of extreme market activity. In particular, Model 2, which incorporated
submission-based predictors, outperformed the baseline financial model, improving R2

(from 0.65 to 0.77) and MAE (from 0.54 to 0.44). These results highlight the impor-
tance of multimodal feature representation in financial modeling, demonstrating that
integrating structured and unstructured data enhances predictive accuracy. At the
same time, these results emphasize the need for specialized preprocessing techniques to
encode heterogeneous data sources while maintaining interpretability effectively.

3.5 Paper 4 – Towards a Reliable & Transparent Approach to
Data-Driven Brand Valuation

Following the investigation on feature representation in multimodal panel modeling in
Paper 3, Paper 4 focuses on addressing similar challenges; however, this time in the
context of brand valuation. Like Paper 3, this study deals with the complexities of
integrating multimodal data – i.e., numerical, categorical, and textual – within a fixed
panel structure. However, unlike Paper 3, which analyzed data with a high degree of
temporal variability, Paper 4 examines the more constant yearly brand valuations of
football clubs in the English Premier League (EPL), providing a structured perspec-
tive on temporal trends. Using data from five consecutive seasons, we model brand
valuation by operationalizing Aaker’s (1991) brand equity framework to capture rele-
vant aspects of brand performance and perception. A key methodological goal of this
study is to explore modern feature encoding techniques to enrich the modeling process,
demonstrating how proprietary brand valuations can largely be explained and predicted
using features from publicly available sources.

To proceed with our analysis, we acquired a dataset spanning five consecutive seasons –
i.e., from 2016/2017 to 2020/2021 – of brand valuations for 24 EPL football clubs from
Brand Finance. Beyond brand values, the dataset included a wide range of features
aligned with Aaker’s (1991) brand equity dimensions, such as historical achievements
(e.g., total FA Cup wins), squad valuations, social media engagement, and media cov-
erage. These predictors were extracted or generated using structured numerical and
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unstructured textual data, capturing the diverse and multimodal nature of brand eq-
uity. For instance, social media data captured aspects of Brand Loyalty, while textual
data from news articles provided insights into Brand Associations. Additionally, as
shown in Table 3.3, we further enriched the dataset with quantitative features and
fan emotions extracted using a Transformer model tailored to Twitter-specific senti-
ment analysis (Devlin et al., 2019; Liu et al., 2019; Barbieri et al., 2020). Finally, the
dataset was structured in a fixed panel format, allowing for a systematic analysis while
preserving the temporal dependencies.

Building on this dataset, we employed a mixed-method modeling approach that in-
tegrated both explanatory and predictive analyses. For the explanatory analysis, we
utilized linear mixed-effects models (also known as hierarchical models) to examine the
relationship between brand value and each dimension of brand equity. By incorporating
random intercepts for clubs and seasons, these models accounted for the hierarchical
structure of the data while capturing sequential dependencies within each club over
time. Among the dimensions of brand equity, the Perceived Quality model emerged as
the most significant, explaining up to 77% of the variation in brand value. Key pre-
dictors within this dimension included squad valuation and historical championships,
emphasizing the role of on-field success and team composition in shaping brand value.
Additionally, while Brand Awareness and Brand Loyalty contributed less to the overall
explanatory power of the model, specific features, such as media coverage and social
media engagement, demonstrated significant associations with a valuation trends.

To provide additional insights and to assess practical applications, we employed a gra-
dient boosting model – i.e., XGBoost (Chen and Guestrin, 2016) – for our predictive
analysis. This approach utilized all features to estimate brand valuations, achieving
robust out-of-sample performance with a mean absolute percentage error (MAPE) of
14%. Interestingly, while the Perceived Quality dimension was the most statistically
significant in the explanatory analysis, the predictive analysis revealed that features
from the Brand Associations category, such as club age and stadium age, provided
meaningful improvements when combined with other predictors. This contrast high-
lights a key finding: variables with weaker explanatory power in statistical modeling
can still contribute substantially to improving forecasting accuracy when incorporated
into predictive frameworks. These results emphasize the importance of considering
interpretability and predictive utility when modeling multimodal panel data.
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3.6 Paper 5 – Shortcut Learning in Financial Text Mining:
Exposing the Overly Optimistic Performance Estimates
of Text Classification Models under Distribution Shift

As can be seen from Table 3.1, all works presented in this thesis are likely to be af-
fected by distribution shifts – i.e., systematic changes in the data distribution between
training and testing that can undermine a model’s generalization capabilities. As ex-
posed in Chapter 2, distribution shifts are particularly concerning in sequential learning
problems, where temporal and entity-level dependencies make models especially vulner-
able to subtle changes in the underlying data. However, while all prior studies have
implicitly faced these issues, they have primarily focused on challenges in feature en-
coding and data representation, leaving the question of how models handle changing
data distributions open.

Hence, in Paper 5, we focus on understanding and mitigating the impact of shortcut
learning – i.e., a phenomenon where models rely on decision rules that “perform well on
[independent and identically distributed (i.i.d.)] test data but fail on [out-of-distribution
(o.o.d.)] tests” (Geirhos et al., 2020, p.667). Shortcut learning is inherently tied to
distribution shifts, as models exploiting such rules often struggle to generalize when
exposed to o.o.d. conditions, revealing the limitations of performance estimates derived
solely from i.i.d. evaluations.

To investigate these issues, we focused on financial data, more precisely textual financial
data, which provides an ideal testbed given its entity-rich and natural vulnerability to
distribution shifts. With dependencies across entities and time being ubiquitous in
finance, concepts such as generalization and shortcut learning are especially relevant
when developing and evaluating text classification and regression models. Nevertheless,
our comprehensive review of ML/NLP-based contributions in financial text mining
revealed that concepts like distribution shifts, leakage, or shortcut learning are rarely,
if ever, mentioned, much less addressed (Xing et al., 2018; Pejić Bach et al., 2019; Gupta
et al., 2020; Mishev et al., 2020). Instead, most studies rely on assumptions of data
stability, which fail to account for real-world challenges.

Previous findings have shown that even slight changes in data distribution can signifi-
cantly degrade model performance, highlighting the critical need for robust evaluation
methodologies (Recht et al., 2019; Bastings et al., 2021; Kapoor and Narayanan, 2023).
Yet, most ML-based science works rely on naive sampling strategies, such as random
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sampling, which draws train and test sets from the same probability distribution (i.i.d.).
While such an approach simplifies evaluation, it fails to account for potential distribu-
tion shifts and masks critical vulnerabilities in model generalization. Hence, with Pa-
per 5, we aim to expose how shortcut learning can undermine the reliability of model
evaluations and propose o.o.d. evaluation methodologies for assessing models trained
on entity-rich data.

To proceed, we collected and annotated our own dataset of financial microblogs from
Twitter, addressing the limitations of publicly available datasets, which were often too
small in size or lacked the necessary information to generate clear distribution shifts
between train and test sets – i.e., a feature defining every document’s target entity,
or company. Our dataset focused on ten U.S.-based Fortune 500 companies from five
distinct sectors, providing a diverse source of textual data.

Figure 3.6: Overview of the Sampling Strategies (Caron, 2022, p.3490)

Building on this dataset, we proposed and tested three sampling strategies to eval-
uate the impact of distribution shifts on model performance, as illustrated in Fig-
ure 3.6. These strategies included random sampling, where train and test sets were
drawn randomly from the same distribution; entity-based sampling, which ensures that
all documents about a specific company appeared exclusively in either the training or
test set, thus highlighting entity-level distribution shifts; and sector-based sampling,
which groups companies into industry sectors and ensures that sectors appearing in the
training set are distinct from those in the test set. By systematically applying these
approaches, we aimed to analyze how different types of distribution shifts affect the
generalization capabilities of the various models.

As exemplified in Figure 3.7, the data sampled using the sector-based strategy ex-
hibits clear clustering patterns highlighting substantial differences between subsets.
Specifically, the data grouped by sector forms distinct clusters, indicating that posts
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related to companies within the same industry share unique linguistic or contextual
features. These patterns confirm that the dataset is inherently non-homogeneous, with
sector-level factors contributing to its complexity. Such distributional variations visu-
ally demonstrate the challenges models face when trained under i.i.d. assumptions and
tested on o.o.d. data.

Figure 3.7: t-SNE Visualization of our Out-of-Distribution Tests (o.o.d.) sampled
using the Sector-Based Strategy (Caron, 2022, p.3490)

To proceed with our experiments, we applied three distinct preprocessing steps to reduce
the likelihood of shortcut learning and provide a more reliable evaluation of model
performance under distribution shifts, namely:

• basic preprocessing, which involved removing URLs, unwanted characters, and
converting emojis into text to standardize inputs across all models;

• entity removal, where named entities, mentions, and hashtags, such as “Apple” or
“Tesla”, were excluded to assess the models’ reliance on entity-specific cues; and

• vocabulary filtering, using a TF-IDF-like approach to eliminate terms strongly
associated with specific entities, thereby reducing the influence of entity-specific
language patterns.

These preprocessing steps were designed to progressively mitigate shortcut learning and
allow for a more thorough assessment of the models’ generalization capabilities.
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Finally, to evaluate the impact of the proposed preprocessing techniques and sampling
strategies, we fine-tuned four state-of-the-art transformer models – i.e., BERT (Devlin
et al., 2019), DistilBERT (Sanh et al., 2019), RoBERTa (Liu et al., 2019), and BART
(Lewis et al., 2020). These models were trained with robust optimization techniques,
including adaptive learning rates, weight decay regularization, and early stopping, to
ensure stability and prevent overfitting. The results revealed a pronounced discrepancy
between i.i.d. and o.o.d. performance, with error rates increasing by up to 29.7% under
entity-based sampling and 27.2% under sector-based sampling, highlighting the chal-
lenges posed by distribution shifts. Preprocessing techniques, such as entity removal
and vocabulary filtering, demonstrated their effectiveness in mitigating these effects.
Notably, these methods reduced the impact of shortcut learning by as much as 52%
and 59% for entity-based and sector-based sampling, respectively. This reduction sig-
nificantly narrowed the performance gap, providing a more accurate evaluation of the
models’ true generalization capabilities.

3.7 Paper 6 – Integrating Driver Behavior into Last-Mile Delivery
Routing: Combining Machine Learning and Optimization in a
Hybrid Decision Support Framework

As outlined in Table 3.1, Paper 6 explores the challenge of modeling sequential depen-
dencies in spatio-temporal data, where past decisions influence future choices. Captur-
ing these dependencies requires feature encoding techniques that effectively represent
evolving decision patterns while preserving the relationships between successive obser-
vations. At the same time, output decoding remains a key challenge, as structured
predictions need to align with real-world constraints. Hence, this study addresses these
complexities by integrating ML-based predictions with optimization-driven prescrip-
tions, demonstrating how sequential patterns can improve structured decision-making.

To investigate these challenges, we developed a hybrid framework that integrates be-
havioral modeling with decision-support systems, demonstrating how learned sequen-
tial patterns can enhance recommendations. Unlike traditional methods that assume
decision-makers follow predefined rules, this approach learns from historical sequences,
identifying patterns in past choices before generating prescriptions. This is particularly
relevant in settings where decision-makers interact repeatedly with an environment,
adjusting their behavior based on real-world constraints. For this study, we leveraged
the data from the Amazon Last-Mile Routing Research Challenge (ALMRRC) (Mer-
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chan et al., 2022) – i.e., a large-scale dataset capturing real-world last-mile delivery
operations. The dataset provides detailed GPS traces of delivery drivers, allowing us to
analyze routing behavior, deviations from optimized paths, and the impact of external
constraints such as traffic and parking availability. Rather than assuming full compli-
ance with optimized routes, the framework first predicts the sequence of delivery stops
a driver is most likely to follow, then integrates this prediction into an optimization
model that refines route recommendations while ensuring behavioral realism.

Figure 3.8: Decision Support Framework for Integrating Prediction and Prescription
(Dieter et al., 2023, p.288)

Following the framework presented in Figure 3.8, the route prediction step employs ML
to forecast the sequence of delivery stops based on historical decision patterns. Each
sequence is represented as a series of location pairs enriched with additional contextual
features such as travel times, spatial constraints, and individual behavioral tendencies.
The prediction model is implemented as a feedforward neural network and trained to
rank potential next steps based on learned behavioral patterns. This process is struc-
tured in two phases: first, clustering delivery locations into logical service zones, and
second, predicting the sequence within each cluster. This hierarchical approach en-
ables the model to generalize across diverse decision-making behaviors while preserving
individual routing preferences.
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Once the sequence of likely delivery stops is predicted, the optimization step refines
these recommendations to balance efficiency with real-world adherence. The predicted
sequence is incorporated into a modified Travelling Salesman Problem with Time Win-
dows (TSPTW) model with deviation constraints (Gendreau et al., 1998; Ohlmann
and Thomas, 2007; Baldacci et al., 2012) – i.e., TSPTW-Dev. This ensures that the
suggested sequence remains close to the expected pattern, minimizing the likelihood of
non-compliance while optimizing overall efficiency. Deviation constraints, as exempli-
fied in Figure 3.9, are essential to prevent impractical route modifications that could
compromise usability, ensuring that suggested solutions remain realistic. To achieve
this, Jaro distance and Longest Common Subsequence (LCSS) distance are used as
similarity metrics, measuring how closely the optimized solution follows the predicted
sequence. The optimization uses a Variable Neighborhood Search (VNS) (Wei et al.,
2015) heuristic, which iteratively refines suggestions while enforcing constraints on per-
mitted deviations from the expected behavior.

Figure 3.9: Illustrative Example of the Tour Deviation Constraint (Dieter et al., 2023, p.287)

The results in Table 3.4 show that the neural network approach achieves higher accu-
racy in predicting driver routes than the nearest neighbor baseline. However, finding
the right balance in the optimization step is crucial, as allowing more flexibility in route
deviations improves efficiency but reduces adherence to expected driver behavior. Our
sensitivity analysis on the ALMRRC dataset indicates that even slight deviations from
predicted routes can significantly improve travel efficiency. These findings suggest that
strict adherence to historical behavior is not always necessary for effective decision-
making, aligning with real-world observations where drivers dynamically adjust to traf-

35



3 Research Contributions

fic, parking constraints, and personal preferences. The study further demonstrates that
integrating ML-based route predictions into an optimization framework enhances both
predictive accuracy and the quality of suggested routes, reinforcing the value of hybrid
decision-support systems in last-mile delivery.

Table 3.4: Tour Prediction Results (Dieter et al., 2023, p.291)

(a) Predicted Tours

Mean Median Std

Jaro 0.306 0.274 0.151

LCSS 0.703 0.716 0.144

(b) Nearest Neighbor Tours

Mean Median Std

Jaro 0.317 0.312 0.126

LCSS 0.729 0.741 0.119

3.8 Paper 7 – TacticalGPT: Uncovering the Potential of LLMs for
Predicting Tactical Decisions in Professional Football

As outlined in Table 3.1, Paper 7 is the only contribution in this thesis that focuses
on event-based data – i.e., a format that has become increasingly common in ML for
analyzing discrete occurrences over time. Unlike continuous time-series data, where ob-
servations follow a fixed temporal structure, event-based sequences unfold dynamically,
as discussed in Chapter 2, with irregular spacing and varying levels of contextual impor-
tance. This variability presents key challenges in feature encoding, as event logs often
lack a standard representation suitable for ML models. Moreover, effectively capturing
sequential dependencies is essential, as each event may influence subsequent actions.

To address these issues, this study focuses on how event-based sequences can be struc-
tured for machine learning models, particularly in scenarios where multiple actions and
outcomes must be predicted from past observations. Football provides an ideal setting
for this investigation, as matches unfold through a series of discrete events (e.g., passes,
shots, tackles), each carrying implicit dependencies that shape subsequent actions. Con-
sequently, we introduce TacticalGPT – i.e., a fine-tuned Large Language Model (LLM)
designed to predict tactical decisions in professional football. By converting structured
event data into text-based prompts, we examine how generative approaches can model
tactical reasoning through What-, Who-, and Where- type questions, capturing player
intent, spatial positioning, and action sequences in a human-interpretable format. At
the same time, the model must learn to decode multiple interdependent predictions
into structured outputs – i.e., mapping n → m relationships – ensuring that responses
remain factually consistent and meaningful.
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Figure 3.10: TacticalGPT Pipeline (Caron and Müller, 2023, p.4)

Following the pipeline presented in Figure 3.10, the dataset used to fine-tune Tactical-
GPT was acquired from StatsBomb, covering 580 Premier League matches from the
2021/2022 and 2022/2023 seasons. Each event, such as passes, shots, or tackles, was
enriched with metadata, including player identity, event location, and match phase, en-
suring that sequential dependencies were preserved. To transform this structured data
into a format compatible with natural language models, we used a rule-based system
to generate text-based templates that described each event in plain language. These
templates incorporated contextual elements, specifying what action was performed, who
was involved, and where it occurred on the pitch. The final stage involved sequence
generation, where predefined templates were applied to match data to create coherent
event sequences. As shown in Figure 3.11, this step ensured that the dataset captured
the flow of play while preserving the relationships between successive actions, forming
the basis for training TacticalGPT to generate meaningful tactical insights.
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Figure 3.11: Dataset Generation Pipeline for TacticalGPT (Caron and Müller, 2023, p.5)

Moving on to the training process, the model was initialized with the GPT-NeoX-20B
foundation model (Black et al., 2022) and fine-tuned using low-rank adapters (QLoRA)
– i.e., an efficient fine-tuning method that reduces memory consumption while pre-
serving 16-bit precision for adaptation to specific tasks (Dettmers et al., 2024). To
improve the model’s understanding of football-specific interactions, information such
as team lineups was embedded into prompts, helping TacticalGPT associate players
with their teams and actions. The training followed a next-token prediction objective,
enabling the model to generate fluent and tactically coherent responses from event-
based sequences. To enhance robustness, TacticalGPT was fine-tuned on 100,000 ar-
tificial event sequences, incorporating synthetic variations to align its predictions with
real-world football decision-making. Finally, adaptive learning rates and early stopping
were applied to optimize performance and prevent overfitting, ensuring that the model
generalizes well to unseen match scenarios.

With the supervised training complete, the final stage of the pipeline turns to refining
TacticalGPT’s ability to generate high-quality, contextually accurate outputs. Phase
3, centered on output decoding, introduces reinforcement learning as a critical step
for aligning the model’s predictions with real-world scenarios. While this phase rep-
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resents future work, it aims to incorporate expert-labeled responses to train a reward
model, enabling TacticalGPT to produce more precise and reliable outputs. This step
addresses challenges like spatial predictions, where accuracy and contextual alignment
are essential for actionable insights.

TacticalGPT demonstrates strong performance in generating responses for What- and
Who-type questions, with a high rate of factually correct and factually plausible an-
swers. Specifically, for What-type questions, 50% of responses were factually correct –
i.e., fully matching the ground truth – while 46% were factually plausible, meaning they
differed slightly but remained reasonable within the context. Similarly, for Who-type
questions, 32% were factually correct, and 62% were factually plausible. However, a
small portion of responses – i.e., 4% for What and 6% for Who – were factually im-
probable, significantly diverging from the ground truth in ways that were unlikely to be
true. However, Where-type questions proved more challenging, as the model struggled
with precise spatial predictions. While it effectively captured player actions and tactical
decisions, it had difficulties determining exact event locations. These results highlight
the model’s ability to process sequential data while revealing challenges in encoding
and decoding positional information.

3.9 Paper 8 – Detecting and Mitigating Shortcut Learning Bias in
Machine Learning: A Pathway to More Generalizable
ML-based (IS) Research

As introduced in Paper 5, shortcut learning and distribution shifts represent funda-
mental challenges in machine learning, often remaining undetected and affecting models
across all domains. These issues are not only problematic in laboratory conditions but
also lead to failures in real-world deployments. While modern ML models frequently
achieve high accuracy on benchmark datasets, they tend to exploit spurious correla-
tions rather than learning true causal relationships, resulting in significant performance
degradation under changing conditions. As outlined in Table 3.1, these challenges are
present across multiple contributions in this thesis, as well as in broader machine learn-
ing research. For instance, panel data settings in Paper 1, Paper 3, and Paper 4 may
expose models to the risk of overfitting entity-specific patterns or temporal dependen-
cies, limiting their generalization across unseen instances. Similarly, Paper 5, which
focuses exclusively on textual data, illustrates how transformer-based models trained on
entity-rich financial text often rely on superficial cues rather than meaningful semantic
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patterns, leading to misleadingly high accuracy under standard evaluations. Paper 8
extends these discussions by introducing a systematic framework to detect and mitigate
shortcut learning in tabular data, a setting that has received far less attention despite
being a common ML application in fields such as finance, healthcare, and IS.

To address these challenges, we developed, in this study, a two-phase framework that
helps detect (Phase 1) and mitigate (Phase 2) shortcut learning in machine learning
models. Unlike prior work focusing on computer vision and NLP, this framework is
designed explicitly for tabular data, which remains one of the most widely used data
types in applied machine learning. As shown in Figure 3.12, Phase 1 systematically
evaluates model performance under different distributional settings – i.e., i.i.d., time-
based, entity-based, and combined time/entity-based sampling – to assess the extent of
shortcut dependency. This phase also emphasizes transparent reporting, ensuring that
model evaluations expose shortcut dependencies rather than concealing them under
standard overoptimistic i.i.d. assumptions. Phase 2, which is optional and iterative, in-
troduces a viable feature exclusion strategy as a demonstration, leveraging the Classifier
Two-Sample Test (C2ST) to identify and remove shortcut-prone features. Since miti-
gation can be repeated multiple times, the framework allows for flexibility in adjusting
feature representations while maintaining proper reporting at every stage, regardless of
whether mitigation is applied.

Figure 3.12: A Structured Approach to Detecting, Mitigating, and Reporting Shortcut
Learning in ML-Based Research (Caron et al., 2025, p.7)

In addition to testing the proposed framework on simulated data, we applied it to
the real-world classification task of corporate credit risk prediction – i.e., a prob-
lem widely studied in the IS, operations research (OR), and finance literature. Our
dataset consisted of 12,533 observations from 1,702 unique firms spanning over 16 years
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(2000–2016), helping us capture firm-level financial indicators commonly used in credit
evaluations. Five widely used machine learning models, namely Logistic Regression,
Random Forest, XGBoost, TabNet, and AutoML, were used to analyze how different
models respond to shortcut learning.

To systematically identify shortcut dependencies, the framework employs a structured
evaluation process based on advanced sampling strategies (as shown in Figure 3.13).
Following a five-fold cross-validation approach, the dataset was segmented into differ-
ent training and test splits – i.e., i.i.d., o.o.d. (time-based), o.o.d. (entity-based), and
o.o.d. (time/entity-based) – to examine how predictive performance varies under distri-
butional shifts. To ensure fair comparisons across these sampling strategies, Gaussian-
based Bayesian optimization is used to tune model hyperparameters separately for each
fold. By systematically assessing model performance across these different conditions,
this phase exposes how much models rely on spurious associations, uncovering shortcut
dependencies that would otherwise remain hidden under conventional i.i.d. evaluations.

Figure 3.13: Advanced Sampling Strategies (Caron et al., 2025, p.9)

As an optional next step, Phase 2 (Mitigation) focuses on a feature exclusion approach
to reduce shortcut dependencies. This process demonstrates one possible mitigation
strategy but is not a definitive solution, as different applications may require alternative
approaches. The Classifier Two-Sample Test (C2ST), initially designed for evaluating
Generative Adversarial Networks (GANs), is used to detect features exhibiting signif-
icant distribution shifts between i.i.d. and o.o.d. datasets. Once identified, shortcut-
prone features can be removed, allowing models to learn more generalizable patterns
rather than relying on dataset artifacts. Since mitigation can be repeated iteratively,
it offers flexibility in refining model robustness, ensuring that improvements in gener-
alization do not come at the cost of excessive information loss. Regardless of whether
mitigation is applied, the framework mandates transparent reporting across all sampling
strategies, preventing inflated performance estimates from i.i.d.-biased evaluations.
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Table 3.5: Predictive performance of different models on the corporate credit rating data for
various i.i.d. and o.o.d. test sets (Caron et al., 2025, p.18)

Sampling strategy Predictive performance Relative change vs. i.i.d. (test)

Errorbal. F 1macro G-Meanmacro Errorbal. F 1macro G-Meanmacro

Lo
gi

st
ic

R
eg

re
ss

io
n i.i.d. (test) 0.3999 0.4509 0.7305 — — —

o.o.d. (time) 0.4379 0.4202 0.6971 -9.07% -7.04% -4.68%

o.o.d. (entity) 0.5115 0.3691 0.647 -24.49% -19.95% -12.12%

o.o.d. (time/entity) 0.5489 0.3159 0.6017 -31.41% -35.21% -19.34%

R
an

do
m

Fo
re

st i.i.d. (test) 0.3545 0.5574 0.7549 — — —

o.o.d. (time) 0.3719 0.5061 0.7424 -4.79% -9.65% -1.67%

o.o.d. (entity) 0.4424 0.4588 0.6979 -22.06% -19.41% -7.85%

o.o.d. (time/entity) 0.5073 0.4186 0.6494 -35.46% -28.44% -15.03%

X
G

B
oo

st

i.i.d. (test) 0.3131 0.6396 0.7849 — — —

o.o.d. (time) 0.3358 0.6113 0.7691 -7.00% -4.52% -2.03%

o.o.d. (entity) 0.5078 0.4531 0.6635 -47.44% -34.14% -16.76%

o.o.d. (time/entity) 0.5579 0.4192 0.6244 -56.21% -41.63% -22.78%

Ta
bN

et

i.i.d. (test) 0.3640 0.5916 0.7590 — — —

o.o.d. (time) 0.3655 0.5773 0.7562 -0.41% -2.45% -0.37%

o.o.d. (entity) 0.5624 0.3994 0.6153 -42.83% -38.79% -20.91%

o.o.d. (time/entity) 0.5757 0.3711 0.6046 -45.06% -45.81% -22.65%

A
ut

oM
L

i.i.d. (test) 0.2899 0.7142 0.8217 — — —

o.o.d. (time) 0.3563 0.6487 0.7785 -20.55% -9.61% -5.4%

o.o.d. (entity) 0.5933 0.4034 0.5998 -68.7% -55.62% -31.22%

o.o.d. (time/entity) 0.5971 0.3932 0.5897 -69.27% -57.97% -32.88%

As shown in Table 3.5, performance degradation varied significantly across different
models and sampling strategies. For instance, under i.i.d. evaluation, models such as
AutoML and XGBoost exhibited strong predictive performance, with F1-macro scores
of 0.713 and 0.639, respectively. However, when tested using o.o.d. (time/entity) sam-
ples, performance dropped by as much as 57.97% for AutoML and 41.63% for XGBoost,
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illustrating their reliance on spurious correlations. This pattern was consistent across
all evaluated models, confirming that shortcut learning leads to severe generalization
failures when the data distribution changes. Interestingly, time-based distribution shifts
alone had a relatively moderate impact, with models such as Random Forest and TabNet
experiencing performance declines of less than 10%. In contrast, entity-based and com-
bined time/entity-based shifts caused significantly more significant degradation. These
findings underscore the necessity of evaluating models under diverse distributional con-
ditions, as conventional i.i.d. assessments may mask vulnerabilities that become evident
only in o.o.d. scenarios.
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4.1 Implications for Research & Practice

From a methodological perspective, this thesis contributes to sequential data modeling
by tackling key challenges related to feature encoding, output decoding, and distribution
shifts. As exposed in the previous chapters, our results show that how models process
sequential data plays a key role in improving predictive accuracy and adaptability across
different applications. In practice, ensuring that machine learning models remain effec-
tive outside controlled settings requires methods that process data efficiently, produce
structured predictions, and account for changes in data over time.

Consequently, an important part of this research is the study of feature encoding –
i.e., how models represent input data. Our results show that encoding decisions im-
pact performance, as models make better predictions when they preserve relationships
between observations instead of using fixed data representations. Hence, this thesis ex-
amined how encoding methods can be adapted to different data types, such as long-text
documents or spatio-temporal sequences. For instance, Paper 1 demonstrates how in-
tegrating textual information into financial models improves predictive accuracy, while
Paper 2 highlights the benefits of learning movement patterns directly from tracking
data rather than relying on predefined event labels. These findings show that selecting
an encoding approach that matches the structure of the data helps models learn from
sequential information and capture dependencies between observations more effectively.
For practitioners, this means that encoding choices should be carefully considered when
integrating diverse data sources in real-world applications.

Moreover, this thesis also contributes to the understanding of output decoding – i.e.,
how models produce predictions that follow the structure and constraints of the prob-
lem. Many tasks, such as spatio-temporal forecasting or event sequence modeling,
require structured outputs. This research shows that decoding methods influence how
well models generate predictions that align with real-world patterns. For example, Pa-
per 7 examines how event-based models transform irregular sequences into structured
outputs, demonstrating how decoding strategies affect how models capture event and
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temporal dependencies. By comparing different approaches, this work helps identify
strategies to improve model reliability and effectiveness for sequential data. In practi-
cal applications, ensuring that models generate meaningful and interpretable outputs
is critical, particularly in domains where predictions directly impact decision-making.

Lastly, this thesis also examines the challenge of distribution shifts – i.e., where models
trained on one dataset struggle when the data distribution changes over time or across
entities. As discussed, most standard evaluation methods assume that training and test
data follow the same distribution, which, as shown earlier, can lead to overly optimistic
performance estimates. This research shows how predictive accuracy can drop in o.o.d.
settings due to temporal or entity shifts in the data, as demonstrated in Paper 5
and Paper 8. To address this, we proposed a framework for detecting, mitigating,
and reporting shortcut learning, ensuring that models are evaluated under conditions
that reveal their strengths and weaknesses rather than relying on artificially inflated
results. This structured approach is equally relevant to researchers and practitioners
since failing to account for distribution shifts when deploying machine learning models
in dynamic environments, such as finance, healthcare, or logistics, can lead to costly
or life-threatening errors. By making these risks explicit and providing a structured
approach to handling them, this work contributes to more reliable and responsible
model deployment in real-world applications.

Together, these contributions add to the literature on sequential data modeling by
showing that encoding choices affect what a model learns, decoding methods impact
how well predictions fit real-world requirements, and model evaluation must account
for distribution shifts to avoid misleading results. Addressing these challenges helps
build reliable models beyond controlled experiments and ensures that machine learning
systems can be trusted in practical applications where accuracy and robustness matter.

4.2 Limitations

While this thesis advances sequential data modeling across multiple domains, some
limitations remain. First, although the research covers a range of data types, it does
not address all challenges in sequential learning. Certain aspects, such as long-term
dependencies in highly irregular sequences, require further investigation.

Second, while this thesis introduces effective feature encoding strategies and evaluation
methodologies, it is based on specific datasets and modeling assumptions. For instance,
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the proposed framework and empirical findings depend on the characteristics of the
employed datasets, which may not fully generalize to other applications. For example,
the event-based modeling approach in Paper 7 shows strong results in football analytics
but may need adjustments for other sports or domains with different event structures.

Finally, the research on distribution shifts – i.e., Paper 5 and Paper 8 – mainly
focuses on tabular and textual data, providing fewer insights into how these challenges
affect spatio-temporal and event data. While the evaluation framework can help detect
and mitigate shortcut learning, it does not offer a universal solution. Other techniques
could, in fact, further improve model robustness.

4.3 Future Directions & Outlook

Although this thesis addresses key challenges in sequential data modeling, two main ar-
eas require further exploration. The first is improving feature encoding strategies, par-
ticularly for highly irregular sequences and multimodal dependencies. While this work
provides practical solutions for different types of sequential data, handling more com-
plex relationships, such as hierarchical structures or graph-based dependencies, remains
an open challenge. Hence, developing encoding methods to capture such relationships
better could enhance model performance across various applications.

The second area concerns model generalization under distribution shifts, which, as ex-
posed earlier, remains a crucial issue in ML. While this thesis introduces an evaluation
framework to detect and mitigate shortcut learning, further research is needed to refine
these approaches and extend them to additional data types. In particular, understand-
ing how distribution shifts affect spatio-temporal and event data is critical, as patterns
may evolve differently compared to tabular or textual data. A broader analysis of
these shifts could help improve evaluation practices and model reliability in dynamic
environments where data distributions constantly change.

To conclude, we firmly believe that advancing these areas will further strengthen sequen-
tial data modeling, ensuring that ML models remain effective in research and practical
applications. The ability to process sequential data accurately, generate structured pre-
dictions, and adapt to changing conditions is essential for reliable performance across
different use cases. By building on the contributions of this thesis, future research
can continue refining these methods, making ML models more adaptable, reliable, and
better suited for complex real-world scenarios.
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Hardening Soft Information: A Transformer-Based
Approach to Forecasting Stock Return Volatility

Matthew Caron Oliver Müller
Paderborn University Paderborn University

Abstract—Historically, the field of financial forecasting almost exclusively relied on so-called
hard information – i.e., numerical data with well-defined and unambiguous meaning. Over
the last few decades, however, researchers and practitioners alike have, following the advances
in natural language understanding, started recognizing the benefits of integrating soft infor-
mation into financial modelling. In line with the above, this paper examines whether con-
temporary attention-based sequence-to-sequence models, known as Transformers, can help
improve stock return volatility prediction when applied to corporate annual reports. Using a
publicly available benchmark dataset, we show, in an empirical analysis, that out-of-the-box
Transformer models have the ability to outmatch current state-of-the-art results and, more
importantly, that our proposed feature-based Transformer approach can outperform a robust
numerical baseline. To the best of our knowledge, this is the first empirical study focusing on
stock return volatility prediction (1) to ever experiment with state-of-the-art Transformer ar-
chitectures and (2) to demonstrate that a model based solely on soft information can surpass
its numerical counterpart. Furthermore, we show that by including an additional numerical
feature into our best text-only model, we can push the performance of our model even further,
suggesting that soft and hard information contain different predictive signals.

Full Citation: Caron, M. and Müller, O.(2020). Hardening Soft Information: A Transformer-
Based Approach to Forecasting Stock Return Volatility. In Proceedings of the IEEE Interna-
tional Conference on Big Data, pages 4383–4391.
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PIVOT: A Parsimonious End-to-End Learning
Framework for Valuing Player Actions in

Handball using Tracking Data

Matthew Caron Oliver Müller Michael Döring
Paderborn University Paderborn University SG Flensburg-Handewitt

Tim Heuwinkel Jochen Baumeister
Paderborn University Paderborn University

Abstract—Over the last years, several approaches for the data-driven estimation of expected
possession value (EPV) in basketball and association football (soccer) have been proposed.
In this paper, we develop and evaluate PIVOT: the first such framework for team handball.
Accounting for the fast-paced, dynamic nature and relative data scarcity of handball, we
propose a parsimonious end-to-end deep learning architecture that relies solely on tracking
data. This efficient approach is capable of predicting the probability that a team will score
within the near future given the fine-grained spatio-temporal distribution of all players and
the ball over the last seconds of the game. Our experiments indicate that PIVOT is able
to produce accurate and calibrated probability estimates, even when trained on a relatively
small dataset. We also showcase two interactive applications of PIVOT for valuing actual and
counterfactual player decisions and actions in real-time.

Full Citation: Müller, O., Caron, M., Döring, M., Heuwinkel, T., and Baumeister, J.
(2021). PIVOT: A Parsimonious End-to-End Learning Framework for Valuing Player Actions
in Handball using Tracking Data. In Proceedings of Workshop on Machine Learning and Data
Mining for Sports Analytics (ECML PKDD), pages 116–128.
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To the Moon! Analyzing the Community
of “Degenerates” Engaged in the Surge

of the GME Stock

Matthew Caron Maryna Gulenko Oliver Müller
Paderborn University Paderborn University Paderborn University

Abstract—In early 2021, the finance world was taken by storm by the dramatic price surge
of the GameStop Corp. stock. This rise is being, at least in part, attributed to a group of
Redditors belonging to the now-famous r/wallstreetbets (WSB) subreddit group. In this work,
we set out to address if user activity on the WSB subreddit is associated with the trading
volume of the GME stock. Leveraging a unique dataset containing more than 4.9 million WSB
posts and comments, we assert that user activity is associated with the trading volume of the
GameStop stock. We further show that posts have a higher predictive power than comments
and are especially helpful for predicting unusually high trading volume. Lastly, as recent
events have shown, we believe that these findings have implications for retail and institutional
investors, trading platforms, and policymakers, as these can have disruptive potential.

Full Citation: Caron, M., Gulenko, M., and Müller, O. (2021). To the Moon! Analyzing
the Community of “Degenerates” Engaged in the Surge of the GME Stock. In Proceedings of
the International Conference on Information Systems, pages 2432–2448.
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Towards a Reliable & Transparent Approach
to Data-Driven Brand Valuation

Matthew Caron Christian Bartelheimer Oliver Müller
Paderborn University Paderborn University Paderborn University

Abstract—Now accounting for more than 80% of a firm’s worth, brands have become es-
sential assets for modern organizations. However, methods and techniques for the monetary
valuation of brands are still under-researched. Hence, the objective of this study is to evaluate
the utility of explanatory statistical models and machine learning approaches for explaining
and predicting brand value. Drawing upon the case of the most valuable English football
brands during the 2016/17 to 2020/21 seasons, we demonstrate how to operationalize Aaker’s
(1991) theoretical brand equity framework to collect meaningful qualitative and quantitative
feature sets. Our explanatory models can explain up to 77% of the variation in brand valu-
ations across all clubs and seasons, while our predictive approach can predict out-of-sample
observations with a mean absolute percentage error (MAPE) of 14%. Future research can
build upon our results to develop domain-specific brand valuation methods while enabling
managers to make better-informed investment decisions.

Full Citation: Caron, M., Bartelheimer, C., and Müller, O. (2022). Towards a Reliable
& Transparent Approach to Data-Driven Brand Valuation. In Proceedings of the Americas
Conference on Information Systems, pages 1353–1363.
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Shortcut Learning in Financial Text Mining:
Exposing the Overly Optimistic Performance

Estimates of Text Classification Models
under Distribution Shift

Matthew Caron
Paderborn University

Abstract—In recent years, many cases of deep neural networks failing dramatically when
faced with adversarial or real-world examples have been reported. Such failures, which are
quite hard to detect, are often related to a generalization problem known as shortcut learning.
Yet, with state-of-the-art transformer models now being ubiquitous in financial text mining,
one cannot help but wonder how reliable the results conveyed in the ever-growing literature
genuinely are. Against this background, we expose, in this work, how vulnerable contemporary
financial text mining approaches are to shortcut learning. Focussing on the common learning
task of financial sentiment classification, we assess, using two entity-based sampling strategies
and our publicly-available dataset, the discrepancies between i.i.d. and o.o.d. performance
estimates of four transformer models. Our results reveal that o.o.d. performance estimates
are consistently weaker than those of their i.i.d. counterparts, with the error rate increasing
by as much as 29.7%, thus, demonstrating how this issue can, when overlooked, lead to
misleading evaluations. Moreover, we show how additional preprocessing steps, such as entity
removal and vocabulary filtering, can help reduce the effects of shortcut learning by filtering
out entity-related linguistic cues.

Full Citation: Caron, M. (2022). Shortcut Learning in Financial Text Mining: Exposing
the Overly Optimistic Performance Estimates of Text Classification Models under Distribution
Shift. In Proceedings of the IEEE International Conference on Big Data, pages 3486–3495.
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Integrating Driver Behavior into Last-Mile Delivery Routing:
Combining Machine Learning and Optimization in a Hybrid

Decision Support Framework

Peter Dieter Matthew Caron Guido Schryen
Paderborn University Paderborn University Paderborn University

Abstract—The overall quality of last-mile delivery in terms of operational costs and cus-
tomer satisfaction is primarily affected by traditional logistics planning and the consideration
and integration of driver knowledge and behavior. However, this integration has yet to be
exploited. This phenomenon is mirrored in two largely separated research bodies on logistics
planning and driver behavior. Bridging this gap by using and integrating historical data from
actually driven tours into last-mile delivery planning is promising for research and practice.
Still, it also leads to complex and large-scale routing problems, which require the development
of an overall methodology that goes beyond classical optimization approaches as the needed
approach requires a multi-stakeholder perspective, calls for a hybrid-analytical approach by in-
corporating tour prediction and prescription, and requires both data science and optimization
methods. Accounting for these challenges, we suggest a hybrid decision support framework
for the traveling salesman problem with time windows that combines machine learning tech-
niques and conventional optimization methods and considers the deviation between suggested
and predicted tours. We demonstrate the applicability of our framework in a case study that
draws on real-world logistics data. Relying on a sensitivity analysis, we investigate and illus-
trate the trade-off between the level of deviation between predicted and suggested tours and
tour costs. Our case study draws general managerial implications and recommendations that
guide decision makers in building their decision support systems for last-mile delivery routing
by instantiating our generic framework.

Full Citation: Dieter, P., Caron, M., and Schryen, G. (2023). Integrating Driver Behavior
into Last-Mile Delivery Routing: Combining Machine Learning and Optimization in a Hybrid
Decision Support Framework. European Journal of Operational Research, 311(1).
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TacticalGPT: Uncovering the Potential of LLMs
for Predicting Tactical Decisions

in Professional Football

Matthew Caron Oliver Müller
Paderborn University Paderborn University

Abstract—N/A

Full Citation: Caron, M. and Müller, O. (2023). TacticalGPT: Uncovering the Potential
of LLMs for Predicting Tactical Decisions in Professional Football. In Proceedings of the
StatsBomb Conference.
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Detecting and Mitigating Shortcut Learning
Bias in Machine Learning: A Pathway to More

Generalizable ML-based (IS) Research

Matthew Caron Oliver Müller Johannes Kriebel
Paderborn University Paderborn University University of Hamburg

Abstract—Shortcut learning is a critical challenge in machine learning (ML) that arises
when models rely on spurious patterns or superficial associations rather than meaningful
relationships in the data. While this issue has been widely studied in computer vision and
natural language processing, its impact on tabular and categorical data – i.e., data common
in ML-based research within Information Systems (IS) – remains underexplored. To address
this challenge, we propose a two-phase framework: detecting shortcut learning biases through
advanced sampling strategies and mitigating these biases using methods like feature exclusion.
Additionally, we emphasize the importance of transparent reporting to enhance reproducibility
and provide insights into a model’s generalization capabilities. Using simulated and real-
world data, we demonstrate the harmful effects of shortcut learning in tabular data. The
results highlight how distribution shifts expose shortcut dependencies, a key focus of the
detection phase in our framework. These shifts reveal how models relying on shortcuts fail to
generalize beyond training data. While our mitigation strategy is exploratory, it demonstrates
that addressing shortcut learning is feasible and underscores the need for further research
into model-agnostic solutions. By encouraging comprehensive evaluations and transparent
reporting, this work aims to advance the generalizability, reproducibility, and reliability of
ML-based research in IS.

Full Citation: Caron, M., Müller, O., and Kriebel, J. (2025). Detecting and Mitigating
Shortcut Learning Bias in Machine Learning: A Pathway to More Generalizable ML-based (IS
Research. Working Paper Series, Paderborn University, Faculty of Business Administration
and Economics, (129).

65





Bibliography

Aaker, D. A. (1991). Managing Brand Equity. Free Press.

Anzer, G. and Bauer, P. (2021). A goal scoring probability model for shots based on
synchronized positional and event data in football (soccer). Frontiers in Sports and
Active Living, 3:624475.

Atluri, G., Karpatne, A., and Kumar, V. (2018). Spatio-Temporal Data Mining: A
Survey of Problems and Methods. ACM Computing Surveys (CSUR), 51(4):1–41.

Baldacci, R., Mingozzi, A., and Roberti, R. (2012). New State-Space Relaxations for
Solving the Traveling Salesman Problem with Time Windows. INFORMS Journal
on Computing, 24(3):356–371.

Barbieri, F., Camacho-Collados, J., Neves, L., and Espinosa-Anke, L. (2020). TweetE-
val: Unified Benchmark and Comparative Evaluation for Tweet Classification. arXiv
preprint arXiv:2010.12421.

Bastings, J., Ebert, S., Zablotskaia, P., Sandholm, A., and Filippova, K. (2021). Will
You Find These Shortcuts? A Protocol for Evaluating the Faithfulness of Input
Salience Methods for Text Classification. arXiv preprint arXiv:2111.07367.

Beltagy, I., Peters, M. E., and Cohan, A. (2020). Longformer: The Long-Document
Transformer. arXiv preprint arXiv:2004.05150.

Black, S., Biderman, S., Hallahan, E., Anthony, Q., Gao, L., Golding, L., He, H., Leahy,
C., McDonell, K., Phang, J., Pieler, M., Prashanth, U. S., Purohit, S., Reynolds, L.,
Tow, J., Wang, B., and Weinbach, S. (2022). GPT-NeoX-20B: An Open-Source
Autoregressive Language Model. In Fan, A., Ilic, S., Wolf, T., and Gallé, M., ed-
itors, Proceedings of the Workshop on Challenges & Perspectives in Creating Large
Language Models, pages 95–136.

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (2008). Time Series Analysis. John
Wiley & Sons, Ltd.

67



Bibliography

Caron, M. (2022). Shortcut Learning in Financial Text Mining: Exposing the Overly
Optimistic Performance Estimates of Text Classification Models under Distribution
Shift. In Proceedings of the IEEE International Conference on Big Data, pages 3486–
3495.

Caron, M., Bartelheimer, C., and Müller, O. (2022). Towards a Reliable & Trans-
parent Approach to Data-Driven Brand Valuation. In Proceedings of the Americas
Conference on Information Systems, pages 1353–1363.

Caron, M., Gulenko, M., and Müller, O. (2021). To the Moon! Analyzing the Commu-
nity of “Degenerates” Engaged in the Surge of the GME Stock. In Proceedings of the
International Conference on Information Systems, pages 2432–2448.

Caron, M. and Müller, O. (2020). Hardening Soft Information: A Transformer-Based
Approach to Forecasting Stock Return Volatility. In Proceedings of the IEEE Inter-
national Conference on Big Data, pages 4383–4391.

Caron, M. and Müller, O. (2023). TacticalGPT: Uncovering the Potential of LLMs for
Predicting Tactical Decisions in Professional Football. In Proceedings of the Stats-
Bomb Conference.

Caron, M., Müller, O., and Kriebel, J. (2025). Detecting and Mitigating Shortcut
Learning Bias in Machine Learning: A Pathway to More Generalizable ML-based
(IS) Research. Working Paper Series, Paderborn University, Faculty of Business
Administration and Economics, (129).

Chen, T. and Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 785–794.

Decroos, T., Bransen, L., Haaren, J. V., and Davis, J. (2019). Actions Speak Louder
than Goals. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1851–1861.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L. (2024). QLoRA: Effi-
cient Finetuning of Quantized LLMs. In Proceedings of the Conference on Neural
Information Processing Systems.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. In Proceedings of

68



Bibliography

the Conference of the North American Chapter of the Association for Computational
Linguistics, pages 4171–4186.

Dieter, P., Caron, M., and Schryen, G. (2023). Integrating Driver Behavior into Last-
Mile Delivery Routing: Combining Machine Learning and Optimization in a Hybrid
Decision Support Framework. European Journal of Operational Research, 311(1).

Dietterich, T. G. (2002). Machine Learning for Sequential Data: A Review. In Struc-
tural, Syntactic, and Statistical Pattern Recognition, pages 15–30. Springer.

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., and
Wichmann, F. A. (2020). Shortcut Learning in Deep Neural Networks. Nature
Machine Intelligence, 2(11):665–673.

Gendreau, M., Hertz, A., Laporte, G., and Stan, M. (1998). A Generalized Inser-
tion Heuristic for the Traveling Salesman Problem with Time Windows. Operations
Research, 46(3):330–335.

Gupta, A., Dengre, V., Kheruwala, H. A., and Shah, M. (2020). Comprehensive Review
of Text-Mining Applications in Finance. Financial Innovation, 6(1):1–25.

Hasso, T., Müller, D., Pelster, M., and Warkulat, S. (2022). Who Participated in the
GameStop Frenzy? Evidence from Brokerage Accounts. Finance Research Letters,
45:102140.

Hausman, W. H. (1969). Sequential Decision Problems: A Model to Exploit Existing
Forecasters. Management Science, 16(2):B–93.

Hirschberg, J. and Manning, C. D. (2015). Advances in Natural Language Processing.
Science, 349(6245):261–266.

Hyndman, R. and Athanasopoulos, G. (2018). Forecasting: Principles and Practice.
OTexts, 2nd edition.

Kapoor, S. and Narayanan, A. (2023). Leakage and the Reproducibility Crisis in
Machine-Learning-Based Science. Patterns, 4(9).

Kogan, S., Levin, D., Routledge, B. R., Sagi, J. S., and Smith, N. A. (2009). Predicting
Risk from Financial Reports with Regression. In Proceedings of the Annual Confer-
ence of the North American Chapter of the Association for Computational Linguistics,
pages 272–280.

69



Bibliography

Kulinski, S. and Inouye, D. I. (2023). Towards Explaining Distribution Shifts. In Pro-
ceedings of the International Conference on Machine Learning, pages 17931–17952.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov,
V., and Zettlemoyer, L. (2020). BART: Denoising Sequence-to-Sequence Pre-training
for Natural Language Generation, Translation, and Comprehension. In Proceedings
of the Annual Meeting of the Association for Computational Linguistics, pages 7871–
7880.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettle-
moyer, L., and Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pre-
training Approach. arXiv preprint arXiv:1907.11692.

Merchan, D., Arora, J., Pachon, J., Konduri, K., Winkenbach, M., Parks, S., and
Noszek, J. (2022). 2021 Amazon Last-Mile Routing Research Challenge: Data set.
Transportation Science.

Mishev, K., Gjorgjevikj, A., Vodenska, I., Chitkushev, L. T., and Trajanov, D. (2020).
Evaluation of Sentiment Analysis in Finance: from Lexicons to Transformers. IEEE
Access, 8:131662–131682.

Moraga, P. (2024). Spatial Statistics for Data Science: Theory and Practice with R.
CRC Press.

Müller, O., Caron, M., Döring, M., Heuwinkel, T., and Baumeister, J. (2021). PIVOT:
A Parsimonious End-to-End Learning Framework for Valuing Player Actions in Hand-
ball using Tracking Data. In Proceedings of the Workshop on Machine Learning and
Data Mining for Sports Analytics (ECML PKDD), pages 116–128.

Ohlmann, J. and Thomas, B. (2007). A Compressed-Annealing Heuristic for the Trav-
eling Salesman Problem with Time Windows. INFORMS Journal on Computing,
19:80–90.

Patil, R., Boit, S., Gudivada, V., and Nandigam, J. (2023). A survey of text represen-
tation and embedding techniques in nlp. IEEE Access, 11:36120–36146.

Pejić Bach, M., Krstić, Ž., Seljan, S., and Turulja, L. (2019). Text Mining for Big Data
Analysis in Financial Sector: A Literature Review. Sustainability, 11(5):1277.

Raschka, S. and Mirjalili, V. (2017). Python Machine Learning, 2nd Ed. Packt Pub-
lishing, Birmingham, UK.

70



Bibliography

Recht, B., Roelofs, R., Schmidt, L., and Shankar, V. (2019). Do ImageNet Classifiers
Generalize to ImageNet? In Proceedings of the International Conference on Machine
Learning, pages 5389–5400.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019). DistilBERT, a Dis-
tilled Version of BERT: Smaller, Faster, Cheaper and Lighter. arXiv preprint
arXiv:1910.01108.

Scott, S. L. and Varian, H. R. (2014). Predicting the Present with Bayesian Struc-
tural Time Series. International Journal of Mathematical Modelling and Numerical
Optimisation, 5(1-2):4–23.

Scott, S. L. and Varian, H. R. (2015). Bayesian Variable Selection for Nowcasting
Economic Time Series. Economics of Digitization, pages 119–136.

Sherstinsky, A. (2020). Fundamentals of Recurrent Neural Network (RNN) and
Long Short-Term Memory (LSTM) Network. Physica D: Nonlinear Phenomena,
404:132306.

Shumway, R. H. and Stoffer, D. S. (2025). Time Series Analysis and its Applications.
Springer Texts in Statistics, 5th edition.

Sutskever, I. (2014). Sequence to Sequence Learning with Neural Networks. arXiv
preprint arXiv:1409.3215.

Tsai, M.-F., Wang, C.-J., and Chien, P.-C. (2016). Discovering Finance Keywords via
Continuous-Space Language Models. ACM Transactions on Management Informa-
tion Systems, 7(3):1–17.

Varshney, K. R. (2022). Trustworthy Machine Learning. Independently Published.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., and Polosukhin, I. (2017). Attention is All you Need. In Proceedings of the
Conference on Neural Information Processing Systems, pages 5998–6008.

Verbeek, M. (2004). A Guide to Modern Econometrics. John Wiley & Sons, Ltd, 2nd
edition.

Wei, L., Zhang, Z., Zhang, D., and Lim, A. (2015). A Variable Neighborhood Search
for the Capacitated Vehicle Routing Problem with Two-Dimensional Loading Con-
straints. European Journal of Operational Research, 243(3):798–814.

71



Bibliography

Wittenbach, J., d’Alessandro, B., and Bruss, C. B. (2020). Machine Learning
for Temporal Data in Finance: Challenges and Opportunities. arXiv preprint
arXiv:2009.05636.

Wooldridge, J. M. (2013). Introductory Econometrics: A Modern Approach. South-
Western, Cengage Learning, 5th edition.

Xing, F. Z., Cambria, E., and Welsch, R. E. (2018). Natural Language Based Financial
Forecasting: A Survey. Artificial Intelligence Review, 50(1):49–73.

Zhao, J., Xie, X., Xu, X., and Sun, S. (2017). Multi-View Learning Overview: Recent
Progress and New Challenges. Information Fusion, 38:43–54.

72


	List of Figures
	List of Tables
	Part A: Synopsis
	Introduction
	Motivation
	Objectives
	List of Publications
	Thesis Structure

	Research Background
	Overview
	Sequential Data
	Definition
	Time Series Data
	Panel Data
	Event Data
	Spatio-Temporal Data
	Textual Data

	Challenges of Modeling Sequential Data
	Overview
	Feature Encoding & Output Decoding
	Distribution Shifts in Machine Learning


	Research Contributions
	Overview
	Paper 1 – Hardening Soft Information
	Paper 2 – PIVOT: A Framework for Valuing Actions in Handball
	Paper 3 – To the Moon! Analyzing the Community of "Degenerates"
	Paper 4 – Towards Transparent Data-Driven Brand Valuation
	Paper 5 – Shortcut Learning in Financial Text Mining
	Paper 6 – Integrating Driver Behavior into Last-Mile Delivery Routing
	Paper 7 – TacticalGPT: LLMs for Tactical Decisions in Football
	Paper 8 – Detecting and Mitigating Shortcut Learning Bias in IS Research

	Discussion & Conclusion
	Implications for Research & Practice
	Limitations
	Future Directions & Outlook


	Part B: Research Papers
	Hardening Soft Information: A Transformer-Based Approach toForecasting Stock Return Volatility (Caron and Müller, 2020)
	PIVOT: A Parsimonious End-to-End Learning Framework for Valuing Player Actions in Handball using Tracking Data (Müller et al., 2021)
	To the Moon! Analyzing the Community of "Degenerates" Engagedin the Surge of the GME Stock (Caron et al., 2021)
	Towards a Reliable & Transparent Approach to Data-DrivenBrand Valuation (Caron et al., 2022)
	Shortcut Learning in Financial Text Mining: Exposing the OverlyOptimistic Performance Estimates of Text Classification Modelsunder Distribution Shift (Caron, 2022)
	Integrating Driver Behavior into Last-Mile Delivery Routing:Combining Machine Learning and Optimization in a HybridDecision Support Framework (Dieter et al., 2023)
	TacticalGPT: Uncovering the Potential of LLMs for PredictingTactical Decisions in Professional Football (Caron and Müller, 2023)
	Detecting and Mitigating Shortcut Learning Bias in Machine Learning: A Pathway to More Generalizable ML-based (IS) Research(Caron et al., 2025)

	Bibliography

