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Chapter 1

Synopsis

1.1 Introduction

Economics is a multifaceted science. It looks at the world on different levels—for exam-

ple, examining how consumers respond to marketing strategies when making purchases,

how companies present their profits and losses to gain tax advantages, and how nations

enact laws to steer their economies. Whether it is an individual consumer, a group of

employees within a company, or governments representing a population, they are all

economic agents striving to maximize their utility through optimal choices. What ties

all of this together are human decisions.

In reality, consumers often regret their purchases, companies go bankrupt, and

economies experience crises due to poor decisions. Human involuntary deviation from

utility-maximizing decisions has several reasons: economic agents are, on the one hand,

limited in their ability to identify all relevant information, and on the other hand, con-

strained in their cognitive capacity to process the information available. Another hin-

drance is cognitive biases, which lead to deviation from the optimal beliefs and decisions

assumed in rational-agent models (Gigerenzer, 2020; Kahneman, 2003; Sent, 2018).

There are several options to mitigate informational and cognitive constraints, as well

as errors due to biases. First, humans can apply heuristics, which are processes that omit

certain information to make decisions, leading to an accuracy-effort trade-off (Gigerenzer

and Gaissmaier, 2011). Second, humans do not have to make all decisions on their

own. They can receive advice from other individuals or expert groups that recommend

best practices. Thirdly, over the past decades, more and more digital decision support

systems have been developed that can take on the role of advisors (Liu et al., 2010).

This dissertation focuses on the latter scenario: how humans, as decision-makers

(DMs), interact with decision support systems (DSS). These systems can take various

forms. On one hand, decision rules and models can be manually designed based on

human expertise. On the other hand, and especially when decisions are difficult to

model, machine learning algorithms can generate decision models using data (Herm

et al., 2022; Sprague, 1980). This process of learning models from data and generating

outputs that could be used for predictions, advices or actions is referred to in this thesis

as artificial intelligence (AI) (Kaplan and Haenlein, 2019).

AI-based DSS are increasingly being adopted across a broad range of fields, includ-

ing healthcare and medicine (Rajpurkar et al., 2022), finance (Cao, 2022), consulting

(Dell’Acqua et al., 2023), and software development (Pichai, 2024). This trend raises

a key question: to what extent does human-AI collaboration truly enhance decision-

making? Although AI can outperform humans on a variety of tasks (Mnih et al., 2015;

OpenAI, 2023; Shen et al., 2019), it is still fallible. This imperfection means that one

cannot rely entirely on AI, and therefore it is crucial to maintain the right balance

of trust and reliance for optimal collaboration. Consequently, users’ trust in AI may

1



become miscalibrated, resulting in either overreliance or underreliance and thereby un-

dermining the potential of complementary human-AI team performance (Wischnewski

et al., 2023). Indeed, experimental research suggests that while human-AI teams typi-

cally outperform lone human DMs, they often fail to exceed the performance of either

humans or AI acting independently (Vaccaro et al., 2024).

The overarching goal of this dissertation is to improve human decision-making by

focusing on two central research objectives in the context of human–AI collaboration.

First, the interaction itself can be optimized to make the collaboration with AI more

effective. In this process, maintaining an appropriate level of trust is crucial when

deciding whether to rely on AI-based advice. The second approach involves improving

the AI itself: the better its performance, the less reluctant DMs will be to use it, and

the lower the likelihood that they will base decisions on AI’s advice when it is incorrect.

One key aspect of human-AI interaction that closely linked with both goals is hu-

man integration. In AI development, humans can be involved at various stages. This

dissertation categorizes such integration into two main approaches. First, integrating

the DM. Rather than simply receiving the output of an AI-based DSS, DMs can actively

adjust the system to their needs or their characteristics can be taken into account. This

not only has the potential to increase reliance on the DSS but may also enhance its

performance (Cheng and Chouldechova, 2023; Dietvorst et al., 2018; Kawaguchi, 2021;

Mitsuhara et al., 2019; Muijlwijk et al., 2024; Schütze et al., 2024). Second, involving

other humans, such as domain experts, in the AI development process could similarly

influence the DM’s reliance on the system and contribute to improving the overall qual-

ity of the DSS. (Ashoori and Weisz, 2019; Holzinger, 2016; Jago, 2019; Kerrigan et al.,

2021; Palmeira and Spassova, 2015; Waddell, 2019).

The following sections first present the economic theory of bounded rationality in

the context of human decision-making, which form the theoretical foundation of this

dissertation. Next, a conceptual overview of decision support system and artificial

intelligence—central to this thesis—is provided. These topics are then connected within

the framework of human–AI interaction, highlighting the concept of calibrated trust and

human integration. Subsequently, it is explained how the overarching objectives of the

dissertation lead to the individual research questions. The methodological section then

outlines how these objectives and the corresponding research questions are addressed.

Afterward, the results of the individual research papers, which make up the subsequent

chapters of this cumulative dissertation, are summarized. Finally, a conclusion closes

the synopsis. Each chapter of the dissertation is self-contained and can be read inde-

pendently. A consolidated bibliography of all cited references is included at the end of

the document.
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Chapter 1. Synopsis

1.2 Conceptual Background

1.2.1 Bounded Rationality

The fundamental concept of human behavior in this thesis is based on the idea of

bounded rationality. This concept serves as an alternative to neoclassical economics,

which assumes that economic agents have perfect foresight of future states and conse-

quences (Savage, 1972)—in other words, a complete set of information—and can thereby

maximize their expected utility through rational decision-making (Simon, 1955).

According to Gigerenzer (2020), bounded rationality has evolved into multiple facets

since its inception in Simon’s (1955) work. Simon’s original approach centers on hu-

man decision-making under uncertainty, meaning situations in which neither the conse-

quences nor their probabilities are known. In contrast, in the neoclassical perspective,

uncertainty does not exist; instead, there is only risk, where economic agents are as-

sumed to know both the consequences and their probabilities, which are used to max-

imize expected utility. In the world of bounded rationality, however, economic agents

must search for information and alternative decisions to find a utility-maximizing de-

cision. Yet, according to Simon, due to search costs and cognitive limitations, people

tend to satisfice—they make decisions that meet an aspiration level rather than striv-

ing for an optimal, fully rational utility-maximizing decision. As a result, the outcome

lies somewhere between completely irrational and entirely rational, utility-maximizing

behavior.

The heuristics-and-biases program by Tversky and Kahneman (1974) is one of the

developments of bounded rationality. Cognitive biases, in this context, are patterns that

lead economic agents to deviate from the optimal decisions expected of rational agents.

Heuristics are processes, either conscious or unconscious, that disregard certain pieces of

information to arrive at a decision. They can be unconsciously triggered by biases and

may have negative consequences. However, heuristics are also a means to overcome the

limitations of information and cognitive resources, enabling humans to make decisions.

Simon’s satisficing behavior is an example of such a case.

1.2.2 Decision Support Systems

The bounded rationality idea illustrates that optimal decisions are not the norm. To

move closer to or achieve such decisions, people can not only consult one another but

also seek advice from decision support systems. This thesis follows the definition by

Liu et al. (2010), which describes a DSS as an “interactive computer-based information

system that is designed to support solutions to decision problems.”

Decision problems are understood here as problems or tasks that require resolution

by a human DM. For example, in the medical domain, physicians must often make

final judgments due to legal and ethical considerations (Magrabi et al., 2019). While

clinicians may rely on their expertise, they can also consult DSS to inform their decisions.

Nevertheless, the ultimate responsibility and accountability for these decisions remain

with the physicians.
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One reason why the final decision rests with humans is that DSS are not perfect.

Although simple DSS, such as a pocket calculator, always provide correct results, the

increasing complexity of decision problems makes it impossible to model these problems

accurately through manually designed formulas or rules, thereby preventing exact so-

lutions. This is the primary motivation for attempting to learn models automatically

from data rather than defining them manually.

The idea of using historical information to learn models for decision problems goes

back several decades, when it was recognized that models based on even simple statis-

tical methods could outperform expert DMs (Dawes et al., 1989). What began with

linear models containing only a dozen parameters has evolved—thanks to increases in

available data, computational power, storage capabilities, and new learning methods—

into systems with hundreds of billions of parameters, which are now being deployed in

more and more domains (Brown et al., 2020). While small models are often designed

for very specific applications and large models tend to be more general in nature, they

share the common trait that their accuracy usually is never 100%.

There are several reasons why AI models can be imperfect. For example, incorrect

assumptions in the algorithm itself—such as not accounting for nonlinearity or missing

interactions between pieces of information—can lead to errors. On the other hand,

problems often arise from the nature of the data. Sometimes there simply is not enough

data available for model training. In other cases, the dataset has too many dimensions—

known as the “curse of dimensionality”—making it necessary to carefully filter out

irrelevant information so the model does not become overwhelmed by noise (Bengio

and Bengio, 2000). Even if there is sufficient volume and dimensionality, data quality

may still be lacking (Holzinger, 2016). Bias can creep into the data and result in biased

models, for example when the training sample is not representative or when concept

drifts render the data outdated (Jones et al., 2024; Lu et al., 2019).

1.2.3 Human Reliance on AI

If AI-based DSS were always correct in their respective domains, it would simply be

irrational not to use them when the goal is to make the right decisions. However, just

like human DM, these systems are imperfect when it comes to many decisions. Even

though it is possible to calculate the accuracy of the models employed in DSS and thus

determine the expected utility in the sense of neoclassical economics, decision problems

are highly individual, and their complexity creates ambiguity—leaving potential users

to question how much they should trust and rely on such DSS (Scharowski et al., 2022).

In such cases the interaction between a DM and a DSS is often characterized by two

critical phenomena: underreliance and overreliance (Schemmer et al., 2023). Underre-

liance occurs when individuals place insufficient trust in AI systems, disregarding the

advice and thereby making suboptimal decisions. This lack of trust, often associated

with algorithm aversion, can prevent DMs from benefiting fully from the capabilities of

AI (Dietvorst et al., 2015). In contrast, overreliance emerges when individuals exhibit

excessive trust in AI, accepting advice uncritically. This tendency, related to algorithm
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appreciation and automation bias, leads to flawed decisions as well (Logg et al., 2019).

Both phenomena are central to the study of human-AI interaction, as they represent

deviations from calibrated trust (Wischnewski et al., 2023; Zhang et al., 2020). This

reflects the idea behind the theory of economic agents and their bounded rationality:

DMs require the ideal level of trust, where their reliance on AI aligns with its actual

performance. However, they are biased by various factors toward overreliance and un-

derreliance, leading to suboptimal decisions.

The factors contributing to miscalibrated trust are diverse. Jussupow et al. (2020)

consider human agent characteristics (expertise, social distance) and algorithm charac-

teristics (agency, performance, capabilities, human involvement) as both positive and

negative factors for algorithm aversion. Mahmud et al. (2022) categorize related factors

in their framework into four main groups: individual factors of the decision maker (e.g.,

personal experience, age), task-related factors (e.g., moral implications, decision subjec-

tivity), high-level factors (e.g., sociocultural influences), and algorithmic factors of the

decision support system (e.g., explainability, human involvement, transparency).

The dissertation focuses mostly on the latter: the algorithmic factors that address

the implementation, decision-making, and delivery of the DSS. This primarily refers to

factors that can most easily be adjusted from the perspective of DSS developers. Unlike

algorithmic factors, most individual factors of decision-makers cannot be changed, task

factors depend on the decision problem, and high-level factors, such as social norms,

cannot be shifted easily (Judek, 2024).

1.2.4 Human Integration

The two key issues—users not utilizing AI-based DSS optimally, whether through over-

reliance or underreliance, and AI models typically not being 100% accurate—could be

mitigated through better human integration.

On one hand, this can be achieved by involving the DM as a user and co-developer.

Several studies have shown that integrating DMs can lead to higher reliance, which, in

cases of underreliance, can positively impact decision performance and to better model

performances when user’s knowledge can be integrated. Dietvorst et al. (2018) demon-

strated that even partial modification of algorithmic forecasts can increase acceptance.

Cheng and Chouldechova (2023) replicated these findings, showing additionally that

allowing users to adjust the training algorithm increased acceptance, whereas modify-

ing the input did not. Similarly, studies by Kawaguchi (2021) and Köbis and Mossink

(2021) found that users were more likely to rely on AI-generated advice when their own

predictions were incorporated into it.

Integration of users is also a central theme of Explainable AI (XAI), which aims,

among other things, to explain elements of AI models to users (Lundberg et al., 2020).

The hope was that this would improve usage; however, it often resulted in overreliance

(Chen et al., 2023; Chromik et al., 2021; He et al., 2025; Schemmer et al., 2022). This,

in turn, motivated research efforts to minimize this undesired effect, including through

better user integration (Buçinca et al., 2021; Lai et al., 2023b; Miller, 2023).
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Positive results have also been observed regarding the integration of user knowledge

from the perspective of the models. This approach is often referred to as interactive ma-

chine learning and human-in-the-loop (Holzinger, 2016). Mitsuhara et al. (2019) utilized

visual explanations to incorporate users’ human knowledge, which led to improved clas-

sification performance. Similarly, Yang et al. (2019) found performance improvements

through their interactive method for text classification tasks. Collaris and van Wijk

(2020) employed explanations to allow users to refine model parameters in an insurance

context, while Muijlwijk et al. (2024) demonstrated that domain experts in the sports

sector increased their acceptance of the models through interaction, simultaneously im-

proving model accuracy.

On the other hand, the issue of lack of trust and model imperfections can be ad-

dressed by integrating third parties, such as domain experts, into the development pro-

cess or by increasing users’ awareness of the human role in AI models. This can positively

influence decision-makers’ acceptance while also benefiting model performance. For in-

stance, Jago (2019) demonstrated that involving experts during training can enhance

the perceived authenticity of an algorithm. Additionally, Palmeira and Spassova (2015)

and Waddell (2019) showed that users generally prefer a joint effort between humans

and algorithms. Kerrigan et al. (2021) conducted a review highlighting that domain

knowledge elicitation is applied in various stages of model development. Humans can

be integrated in different ways—–either indirectly, by using domain knowledge from lit-

erature to inform model creation (Nahar et al., 2013; Wang et al., 2018), or directly,

consulting individual experts or aggregating responses from multiple experts (Cheng

et al., 2006). More interactive approaches are also possible, offering varying degrees of

integration (Mosqueira-Rey et al., 2023). For example, in active learning, the system

determines when human input is required, such as in cases of uncertainty in predictions

(Correia and Lecue, 2019; Nguyen et al., 2022). A more interactive method is proposed

by Bianchi et al. (2022), where different models are presented sequentially to elicit ex-

pert preferences that are not captured in the training data in order to make models

more practical.

1.3 Research Objectives

The present dissertation focuses on two central research objectives aimed at improving

human decision making by making human–AI interaction more successful. First, it ex-

amines how the interaction can be improved, by investigating which factors affect human

reliance on AI and contribute to miscalbrated trust. The better it is understood how

trust in human–AI interaction works, the better AI-based DSS can be designed to enable

successful collaboration. Second, it addresses the imperfection of AI—the root cause of

limited reliance—by testing different methods to directly improve AI performance rather

than merely calibrating trust towards the DSS.

The intersection of these two questions is human integration. As described in Section

1.2.4, humans can be integrated into AI-based DSS in various roles—either as decision-

makers or as third parties—and both forms of integration can influence the decision-
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makers’ reliance on the system and the overall system performance.

However, it remains unclear which elements of AI-based DSS benefit most signifi-

cantly from human integration. Although Jago (2019) and Ashoori and Weisz (2019)

found that users appreciated human involvement during training, the exact nature of

the involvement was not precisely defined. Additionally, Arkes et al. (2007) found that

users did not distinguish between decision-making AI affiliated with prestigious insti-

tutions and those without such affiliations. Particularly relevant are findings by Cheng

and Chouldechova (2023), which demonstrate that providing users with control over

the AI model’s process and output can reduce algorithm aversion, whereas control over

input does not have the same effect. Moreover, many open questions remain regard-

ing the impact of human integration on model performance and the best methods for

its implementation. Although experiments show that incorporating expert knowledge

can be beneficial—and that aggregating knowledge from multiple experts can further

enhance outcomes (Cheng et al., 2006; Nahar et al., 2013)—it is still unclear how to

most effectively elicit and aggregate this knowledge. Similar challenges exist in the field

of XAI, where explanations often increase trust but do not consistently lead to better

decision-making (Schemmer et al., 2022). Here, too, an important unanswered question

is how humans should ideally be integrated into the explanation process (Miller, 2023;

Rohlfing et al., 2020).

Chapter 2 – “The Role of Response Time for Algorithm Aversion” discusses an in-

direct form of human integration, specifically examining how human-like characteristics

of AI-based DSS can influence user acceptance. In particular, this chapter explores

the role of DSS response times—the interval between a DM’s request and the system’s

response—and investigates how the relationship between response time and reliance

depends on the type of task.

Research on human-human interactions shows that thinking time can shape how

others perceive a decision or advice (Efendić et al., 2020). For instance, in moral deci-

sions, longer thinking time may signal doubt or conflict (Critcher et al., 2013), while in

tasks requiring cognitive effort it can indicate greater commitment (Jago and Laurin,

2019; Kupor et al., 2014).

Nonetheless, whether these human perceptual patterns extend to AI remains uncer-

tain (Bonnefon and Rahwan, 2020). While slower human responses often indicate accu-

racy, slower algorithmic responses may decrease reliance (Efendić et al., 2020), though

some evidence suggests slower, high-performing algorithms increase trust (Park et al.,

2019).

Building on the framework by Bonnefon and Rahwan (2020), which applies human

dual-process theories of System 1 and System 2 thinking (Kahneman, 2011) to machines,

this study investigates how AI response time influences reliance according to task type.

Task characteristics determine which reasoning system is appropriate; less demanding

tasks correspond with System 1, while complex tasks require System 2. Specifically, we

ask: How does AI response time affect algorithm aversion in System 1 versus System

2 tasks? Answering this question could provide insights into how AI-based DSS should

be designed concerning their response time and whether this should be adapted based
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on the task type, as previous research has shown that task-related factors, such as

objectivity and subjectivity, influence user acceptance (Castelo et al., 2019).

Chapter 3 – “Algorithm, Expert, or Both? Evaluating the Role of Feature Selection

Methods on User Preferences and Reliance” examines the effect of human integration

in AI model design on reliance more directly than Chapter 2 does. Previous studies

addressing the question of human integration—–whether directly involving DMs or third

parties—–indicate that such integration has the potential to increase reliance. However,

these studies do not clearly identify the specific contexts or conditions under which this

integration is most beneficial.

Building on these findings, our study is the first to focus on the process of feature

selection within AI model development in this context. Features are defined as variables

or inputs that represent measurable properties of observed procedures (James et al.,

2013; Mera-Gaona et al., 2021). Especially in the context of tabular data, one must

decide in advance which features from the dataset will be used in the learning process.

This decision significantly influences model performance and interpretability. It can

be made fully automatically in a data-driven manner (Li et al., 2017) or conducted

manually (Nahar et al., 2013). A hybrid approach—combining human and algorithmic

efforts—is also possible (Bianchi et al., 2022; Correia and Lecue, 2019), thus reflecting

the broader AI development process in which humans and machines collaborate.

In this study, we asked which type of feature selection method users in the role of DM

prefer—a purely human-driven process, a purely algorithmic one, or a hybrid—and how

these different methods affect reliance. We also investigated how giving decision-makers

the option to select these methods themselves influences reliance from their perspective.

Explainability of AI is closely related to the factor of human integration and is the

topic of Chapters 4 and 5. The research area of XAI addresses the black box nature of AI

by developing various methods and concepts, including global and local approaches—

aimed at explaining either the AI system as a whole or individual pieces of advice

(Lundberg et al., 2020). While small and interpretable models are characterized by

transparency, increased complexity generally leads to a loss of comprehensibility for

AI developers and DMs. This lack of understanding contributes to miscalbrated trust,

where DMs are unable to recognize the system’s limitations or detect flawed advice

(Adadi and Berrada, 2018; Guidotti et al., 2018). A major strand of literature on

XAI contends that for explanations to be effective, the methods should be tailored to

the user. This raises several questions: How much should users be involved in the

explanation process? What form might these explanation methods take? And how will

human-centered or user-centered XAI impact interaction in terms of understanding an

calibrated trust (Ehsan et al., 2022; Miller, 2019, 2023; Schemmer et al., 2022)?

Chapter 4 – “An Empirical Examination of the Evaluative AI Framework” eval-

uates an XAI framework that proposes a new concept for explainable DSS, building

on previous, less successful attempts to optimize calibrated trust. Miller (2023) ar-

gues that current XAI approaches have not succeeded because they are not sufficiently

aligned with the cognitive processes involved in decision-making. In the Evaluative AI

framework, Miller advocates for a hypothesis-driven approach rather than relying on
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recommendation-driven systems that generate direct advice and then explain it. This

approach involves using the pros and cons of various decision possibilities (i.e., hypothe-

ses) as explanations. The DM retains control over which possibilities to explore and

when, without receiving direct advice. Additionally, the decision space is narrowed by

excluding unlikely scenarios. In this way, the DM is supposed to be more effectively

integrated rather than merely serving as a recipient.

Miller’s framework is based on theories of decision-making and builds on the concept

of abductive reasoning, which describes how decision-makers cognitively consider all

hypotheses, evaluating and discarding them step by step if they appear unlikely (Peirce,

2009). Cresswell et al. (2024) has empirically shown that reducing the number of options

can improve decision performance. Regarding the deliberate avoidance of direct advice

in favor of explanations (even when the explanations pertain only to potential advice),

the results are mixed (Carton et al., 2020; Gajos and Mamykina, 2022; Lai et al., 2020;

Lai and Tan, 2019). To determine whether the Evaluative AI framework could become a

key element in XAI, this study examines how it influences decision quality—measured by

accuracy, cognitive load, and efficiency—as well as how it alters the cognitive processes

behind those decisions. In particular, the examination focuses on the offering of pro and

con evidence for the exploration of the hypotheses.

Chapter 5 – “Towards a Computational Architecture for Co-Constructive Explain-

able Systems” proposes an architecture for intelligent systems—such as AI-based DSS

or robots—that generate explanations through a co-constructive and interactive pro-

cess. This idea goes a step beyond the concept of Evaluative AI, as it not only aligns

explanations with users’ cognitive processes but also integrates them to their specific

needs, recognizing that no single explanation can serve all purposes (Miller, 2019; Sokol

and Flach, 2020).

The proposed architecture builds on the conceptual framework by Rohlfing et al.

(2020), in which the explainer and explainee jointly co-construct an explanation to max-

imize understanding. In this process, the subject of the explanation (the explanandum)

can be dynamic and may emerge through the act of explanation itself. This dynamism

can arise because the need for explanation is sometimes latent—making it difficult to

communicate—and because new knowledge gaps may appear during the explanatory

process. Two mechanisms guide this co-construction: monitoring, which keeps the ex-

plainer informed about the explainee’s level of understanding, and scaffolding, which

provides actions that help the explainee reach deeper comprehension. Building on these

ideas, the proposed architecture illustrates how a system could implement such a co-

constructive approach, offering a more adaptive and iterative strategy for delivering

explanations in line with the framework set out by Rohlfing et al. (2020).

Chapter 6 – “Aggregating Human Domain Knowledge for Feature Ranking” explores

the other side of human integration, namely how incorporating human knowledge affects

the performance of AI models. As in Chapter 3, the focus lies on the feature selection

process. The idea of involving human knowledge in feature selection is not new (Guyon

and Elisseeff, 2003). For instance, Nahar et al. (2013) showed that selecting features

based on literature reviews can significantly improve accuracy. Beyond performance
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requirements, human knowledge can also ensure that models are more practical: algo-

rithms are often unaware of which features are actually available in real-world settings,

which can render models unusable if they are not adapted to reality (Bianchi et al.,

2022).

Our study specifically investigates how to combine multiple sources of feature selec-

tion—in this case, multiple humans. Some prior studies have examined this: Wald et al.

(2012) and Dittman et al. (2013), for example, showed that the mathematical aggrega-

tion of data-driven feature selections can be advantageous, and Moro et al. (2018) and

Cheng et al. (2006) demonstrated with expert-based selections that a union subset could

outperform the complete set. The novelty of our study lies in comparing several methods

of aggregating human inputs. We follow domain knowledge elicitation processes com-

monly applied in point estimation (O’Hagan, 2019; O’Hagan et al., 2006). Our research

question concerns how different forms of elicitation and aggregation—mathematical ap-

proaches (mean and median), behavioral approaches (communicated agreement), and

the Delphi method—affect feature selection performance and how much the aggregated

selections diverge from individual ones.

Chapter 7 – “Comparing Humans and Algorithms in Feature Ranking: A Case-

Study in the Medical Domain” builds upon the findings of Chapter 6. While Chapter

6 explores methods for eliciting and aggregating human knowledge for feature selection

and identifies the most effective approaches, it leaves open the question of whether

human-driven feature selection can outperform data-driven methods, and under which

conditions this might occur.

To address this, we present a medical case study examining whether human-based

feature selection can surpass data-driven approaches. Specifically, we compare feature se-

lections made by individuals without domain knowledge, domain experts, an algorithm-

based method, and a random baseline. Through this investigation, we contribute to the

human-in-the-loop literature, particularly by focusing on a distinctly biased dataset and

identifying the conditions under which human integration might prove most advanta-

geous.

Chapter 8 – “Human-AI Co-Construction of Interpretable Predictive Models: The

Case of Scoring Systems” discusses human integration in AI model development from a

more qualitative perspective and within a practical setting involving professional users.

This study aims to explore how experts can be integrated into a interactive development

process of AI models and how they apply the models they develop. At the center of this

study is a custom-developed web-based tool that enables an interactive co-construction

of an AI-based DSS. The tool uses probabilistic scoring lists (PSLs) as a form of decision

support (Hanselle et al., 2023). PSLs are a class of linear classifiers that belong to the

broader category of scoring systems. The idea behind these systems is to create simple

decision models based on addition. PSLs consist of multiple stages, in which a feature

is checked in a binary manner to determine whether it applies; if so, the score for that

stage is added to the overall sum. Based on this sum, probabilistic decisions can then

be made.

Compared to conventional scoring systems, PSLs have a stage characteristic that
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allows, depending on the decision-maker’s preferences or environmental constraints, cer-

tain stages to be omitted, enabling an accuracy–speed trade-off. This active involvement

of users requires the models to be tailored to them. To achieve this, a tool was devel-

oped that enables users to include any number of features from the full dataset in the

desired model, adjust the order of the stages, and set the stage scores. At any time,

users can also employ the PSL learning algorithm, which automatically selects the best

feature for the next available stage based on the data and determines the optimal score

according to performance. For every change a user makes, they receive feedback in the

form of a performance curve for each stage. In this study it was examined how the

quality of decisions changes when using PSL-based DSS and how users interact with the

co-constructive tool.

1.4 Research Methods

To address the research objectives and answer the research questions, this thesis em-

ployed a range of methods, including behavioral experiments conducted both online and

in a laboratory setting, think-aloud method, qualitative questionnaires, empirical evalu-

ations, and the conceptualization and creation of software artifacts. In several instances,

these methods were also combined.

In Chapters 2, 3, 4, 6, and 8, behavioral experiments were used. The aim of exper-

iments is to isolate the causal effect of interest by randomly assigning participants to

different experimental conditions. At the same time, a controlled environment is cre-

ated that excludes as many confounding factors as possible and if necessary subject’s

preferences can be induced with monetary rewards—for example in order to motivate

subjects in the role of a DM to try to make best possible decisions (Falk and Heckman,

2009; Smith, 1976).

In research on human-AI interaction, experiments are frequently employed to pursue

various research objectives. Lai et al. (2023a) provides an excellent summary of the

empirical landscape in a comprehensive review. In part of the studies presented in this

dissertation, participants take on the role of DMs and are typically tasked with solving

multiple decision problems based on the information provided. These DMs are assigned

to different experimental conditions to address research questions, such as evaluating

various AI elements in relation to key variables like decision quality. The decisions they

make are typically binary or continuous and span multiple decision domains, ensuring

the external validity of the findings.

For instance, in Chapter 2, participants are asked to estimate the weight of football

players, the number of lenses in glasses, and kilometer distances on maps using images

and additional information. In contrast, Chapter 3 involves binary decisions, such as

determining whether a heart disease is present or whether the home team wins a football

match, based on patient and game statistics. Chapter 4 involves probabilistic estimates,

where participants assess the probability that an individual has an income above the

median. The experimental designs vary, and DMs receive support from AI models in

different forms. In Chapter 8, participants make also probabilistic decisions by providing
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percentages regarding the likelihood of a student dropping out of a study program.

Experiments in Chapters 2 and 3 utilize the judge-advisor system (Bonaccio and

Dalal, 2006). In this setup, DMs first make a decision independently, then receive AI

advice, and finally have the opportunity to revise their decision. This approach allows to

examine how specific AI factors influence reliance on AI advice. Conversely, experiments

in Chapters 4 and 8 focus more on decision quality rather than reliance, so they do not

employ the judge-advisor system. In Chapter 4, AI assistance and the DM’s decision

occur simultaneously. Due to a limited number of participants, in Chapter 8 a within-

subjects design is used instead of randomizing participants into different conditions.

This means that each DM makes decisions both independently and with AI assistance.

The dependent variables also differ across experiments. To measure reliance in Chap-

ters 2 and 3, weight of advice and switch to advice metric is used (Bailey et al., 2022;

Schemmer et al., 2023; Zhang et al., 2020). They measure how much a decision changes

based on the AI advice and whether the DM switches to the advice in binary deci-

sion scenarios—specifically, cases where the DM alters their decision to align with the

advice when there is a conflict. For experiments focused on decision quality, Chapter

8 assesses decision correctness and decision speed, while Chapter 4 additionally evalu-

ates cognitive load using a Likert scale (Hart, 2006; Schuff et al., 2011). The study in

Chapter 3 is somewhat distinct; participants aim to create the best possible ranking

of features for developing AI models for five different domains. This study does not

test AI-based DSS factors but instead examines different human-knowledge elicitation

methods for feature selection. Although decisions are involved, this does not fall under

the previously described human-AI collaboration paradigm, as participants receive no

AI assistance.

To ensure the internal validity of the experiments, participants were incentivized ap-

propriately. In addition to a fixed show-up payment, participants received performance-

based bonus payments to motivate them to make the best possible decisions in their role

as DMs. In the experiments from Chapters 2, 3, and 4, bonuses were awarded based on

the correctness of the participants’ decisions. Specifically, in Chapter 6, participants’

feature rankings were evaluated against high-quality rankings produced by an algorithm.

In Chapter 8, no bonus payments were given due to the study’s more qualitative nature.

In addition to behavioral experiments as the core of this dissertation, other methods

were also employed. The empirical evaluation of machine learning models is utilized

in several studies. This primarily involves assessing the accuracy of model predictions

using error metrics such as root mean squared error, balanced accuracy, or Brier score.

Fundamentally, the holdout method is used, where the available data is split into two

parts. Typically, the larger portion is used to train the model, while the remaining part,

which is unknown to the model, is used for testing. Cross-validation methods build

upon this approach by creating multiple such splits to achieve a reliable estimation of

model performance (Raschka, 2020).

In Chapter 6, model evaluation is necessary to compare human knowledge elicitation

methods. In Chapter 7, it is used to compare human-driven feature rankings with data-

driven ones, and in Chapter 8, to compare the decision quality of participants with that
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of a model. In Chapters 3 and 4, evaluation is not directly used to address the research

objectives but rather to assess the performance of the AI in the experiments.

Qualitative methods, such as the think-aloud method and open-ended questions, were

also employed (Charters, 2003; Wolcott and Lobczowski, 2021). In Chapter 4, partic-

ipants were asked to explain how they arrived at their decisions after completing the

decision-making task. This mixed-methods approach helped to understand how differ-

ent forms of AI-based DSS influence the decision-making process, insights that would

not be apparent from quantitative data alone. In the experiment described in Chap-

ter 8, the think-aloud method was used to elicit the thought processes and challenges

participants faced during the development and application of PSL models. Participants

were asked to freely express their thoughts while interacting with the web-based tool

and the completed PSL model.

A crucial methodological decision across all empirical studies was the sampling of

experiment participants and the execution of the experiments themselves. In all experi-

ments except for the one in Chapter 8, laypeople were used, meaning that no professional

decision-makers in the relevant domain were involved. In the experiment from Chapter

2, participants were students, while in the other experiments, crowd workers from the

Prolific platform were employed. The participants in Chapter 8 were experts in their

respective domains.

Recruiting laypeople and professionals each presents its own advantages and dis-

advantages. Quantitative empirical studies, in particular, require a large number of

participants, which is often difficult to achieve with professionals due to organizational

and financial constraints. Conversely, laypeople typically lack experience in potentially

and practically relevant domains. To address this, the decision problems used in the ex-

periments were carefully selected to not require specialized knowledge. However, experts

are still subject to the same biases as laypeople and often do not perform better in their

predictions (Butler et al., 2021; Kynn, 2008). According a meta-analysis on human-AI

experiments, there was no significant effect of professionalism on decision performance

(Vaccaro et al., 2024).

Another important methodological consideration is where the experiments are con-

ducted. For studies involving lay participants, researchers typically choose between

laboratory experiments and online experiments. Both approaches have advantages and

disadvantages, and the decision often depends on the characteristics of the sample. A

laboratory setting offers a highly controlled environment, minimizing the likelihood of

participant dropout. In contrast, online experiments can be run quickly and can attract

larger sample sizes, albeit with less control and potentially higher dropout rates.

Comparative studies have shown that results from laboratory and online settings

are generally consistent, and online experiments are often easier to administer (Buso

et al., 2021; Clifford and Jerit, 2014; Dandurand et al., 2008). Consequently, most of

the experiments in this thesis were conducted online. The exceptions are the experi-

ment in Chapter 2, which was held in the BaER lab at the Paderborn University for

organizational reasons, and the experiment involving professionals in Chapter 8, which

was conducted on-site due to the use of the think-aloud method.
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1.5 Results Overview

Chapter 2 – “The Role of Response Time for Algorithm Aversion” addresses the ques-

tion: Which effect does AI response time have on algorithm aversion in System 1 and

System 2 thinking tasks? We conducted a behavioral experiment in a laboratory setting.

Our hypothesis was that, for tasks reflecting System 1 thinking, slower response times

would increase algorithm aversion, whereas in tasks reflecting System 2 thinking, slower

response times would decrease aversion.

Contrary to our expectations, our findings revealed that slower AI response times

(1 second vs. 10 seconds) consistently reduced algorithm aversion across all conditions,

with no significant differences between System 1 and System 2 tasks—except in one of

the three domains studied.

This experiment highlights the challenges of applying insights from human-human

interactions to human-AI interactions. While these results contradict the observations

of Efendić et al. (2020)—who found that faster responses in human-human contexts led

to greater reliance—they support findings by Park et al. (2019). Moreover, attempt-

ing to apply dual-process theory directly to AI interactions may not fully capture the

complexity of the underlying dynamics. Future research could explore a broader range

of response times, including the streaming of AI responses, which is common in large

language model (LLM) based DSS, as well as investigate more practice-relevant domains.

In Chapter 3 – “Algorithm, Expert, or Both? Evaluating the Role of Feature Se-

lection Methods on User Preferences and Reliance”, we addressed the extent to which

users of AI-based DSS prefer different levels of human integration, how these levels affect

their reliance on advice, and whether giving users the option to choose their preferred

level of integration influences reliance. Three levels of integration were provided: expert,

algorithm, and a combined effort of expert and algorithm. This setup was applied to

the process of feature selection methods.

We hypothesized that the expert method would be preferred over the algorithmic

method, and that the combined method would be the most popular overall. We also

anticipated that these preferences would translate into differences in reliance. Addition-

ally, we hypothesized that providing users with a choice between these methods would

increase reliance.

The experiment’s results partially confirmed our hypotheses. As expected, the com-

bined method was significantly more popular than the expert method, which in turn

was preferred over the algorithmic approach. However, there were domain effects: in the

medical domain, there was no significant difference between the combined and expert

methods, although the algorithmic approach was the least popular. In the football do-

main, the combined method was the most popular, with no significant difference between

the other two methods.

Interestingly, these preferences did not carry over to reliance. We found no significant

differences in reliance based on the method chosen, nor were there domain-specific dif-

ferences in reliance. This suggests an attitude-behavior gap, where participants’ stated

preferences did not align with their actual behavior. Contrary to our expectations, we

14



Chapter 1. Synopsis

also found no effect of allowing participants to choose their own method on reliance.

One possible explanation for the observed gap is that the information regarding

who (or what) was behind the feature selection method may not have been salient

enough to influence behavior. Nevertheless, the preference results indicate that, in

practice, informing potential users that an AI-based DSS involves a combined effort

could increase acceptance. From a research perspective, our findings highlight that

simple self-reports of preferences may not always be informative, and underscore the

importance of experimental investigations.

Chapter 4 – “An Empirical Examination of the Evaluative AI Framework” focuses on

the topic of XAI and empirically examines the Evaluative AI framework. The primary

question is whether an AI-based DSS built on this framework can enhance decision-

makers’ performance compared to previous (X)AI-based DSS implementations. To in-

vestigate this, an online experiment was conducted comparing four types of DSS—an

Evaluative AI DSS, a DSS providing only advice, a DSS directly displaying pro/con

evidence for a hypothesis, a DSS providing pro/con evidence directly plus advice—and

a control group receiving no assistance.

The hypothesis was that the Evaluative AI DSS would lead to the highest decision

accuracy, but also the slowest decision speed due to the more self-directed decision

process. It was further expected that this approach might increase cognitive load, as

users would have to engage more deeply with the information provided. Contrary to

these expectations, there were no significant differences in answer accuracy among the

groups. Decision speed for the Evaluative AI group was not the slowest, although it

was on par with other groups that had access to evidence. By contrast, groups without

any evidence made significantly faster decisions. Cognitive load, measured via a Likert

scale, was similar across all groups.

An open-ended question following the task shed more light on participants’ decision-

making processes. About one-third to one-half of participants explicitly mentioned

the AI, but, more critically, a quantitative analysis of their descriptions indicated that

they relied less on the provided decision-problem information than did DM who had

no AI support—suggesting potential cognitive offloading or overreliance. Furthermore,

participants engaged only superficially with the provided evidence in the Evaluative AI

group, which was also apparent from the limited number of clicks they made in the

interface.

Overall, this study presents a somewhat sobering picture of the Evaluative AI frame-

work. Nevertheless, given the framework’s strong theoretical grounding and positive

findings from other, related investigations, it appears to hold potential. Further empir-

ical studies, building on these results, are warranted to explore the effectiveness of the

Evaluative AI framework.

In Chapter 5 – “Towards a Computational Architecture for Co-Constructive Explain-

able Systems”, a computational architecture is proposed for co-construction explanation

systems, which could, for instance, be applied to XAI-based DSS. This architecture

builds on the conceptual framework by Rohlfing et al. (2020), in which an explainer

and an explainee collaborate actively and iteratively to produce an explanation. In this

15



framework, the explainee provides signals about their conceptualization of the object or

issue being explained, and the explainer must perceive these signals. The interaction

revolves around two key mechanisms: monitoring, which involves gathering signals, and

scaffolding, where the explainer facilitates the explainee’s understanding.

The proposed architecture is based on the MAPE-K reference model, which is used

for similar systems, and it introduces five functions that map onto the conceptual frame-

work (IBM, 2006). The Monitor function gathers data and updates the Knowledge

function that works as a storage for the mental models and the interaction history;

the Analyze function interprets the explainee’s conceptualization based on that knowl-

edge. The Plan function devises a strategy for the explanation process, and the Execute

function carries it out. In essence, the Monitor and Analyze functions relate to the mon-

itoring mechanism in the conceptual framework, while Plan and Execute correspond to

scaffolding, with Knowledge underpinning both processes. By implementing systems

built on this architecture, researchers can conduct empirical evaluations to identify ad-

vantages, drawbacks, and potential improvements.

In Chapter 6 – “Aggregating Human Domain Knowledge for Feature Ranking”, we

explore how human knowledge should be elicited and integrated into AI development.

Specifically, we examine which expert elicitation and aggregation methods are most

suitable for feature ranking. In our study, we compared mean and median aggregation

(mathematical aggregation of individual rankings) with group consensus in behavioral

aggregation, and the Delphi method, which allows individuals to update their rankings.

These aggregation methods were tested in groups of three participants.

The results show that behavioral aggregation produced the greatest change in indi-

vidual rankings, while the Delphi method led to the least change. In terms of the result-

ing models’ performance, both behavioral aggregation and mean aggregation performed

best, although the differences were relatively small compared to individual rankings.

Based on these findings, we recommend relying primarily on mathematical aggregation

techniques. They do not heavily alter individual opinions, maintain solid performance,

and are easier to implement than behavioral aggregation methods.

In Chapter 7 – “Comparing Humans and Algorithms in Feature Ranking: A Case-

Study in the Medical Domain”, we also focused on evaluating feature rankings, com-

paring the effectiveness of laypeople, experts, and algorithms using a relatively biased

COVID-19 dataset. Our findings show that algorithmic approaches can detect patterns

missed by both laypeople and experts, leading to superior performance of models. How-

ever, data-driven approaches risk overfitting; in other words, the learning algorithm may

fail to generalize. When only a small training dataset was available, the expert-driven

method performed better. Overall, our results suggest that both human and algorithmic

methods have strengths and weaknesses, and that a mixed, interactive approach may

capture the best of both worlds.

In the final chapter of the dissertation, Chapter 8 – “Human-AI Co-Construction of

Interpretable Predictive Models: The Case of Scoring Systems” addresses the interactive

construction and application of AI-based DSS in collaboration between experts and

data-driven algorithms. To explore this, we developed a web-based tool allowing users
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to build their own DSS. Expert users could configure their models in various ways,

receive feedback through ongoing evaluations, and access support from a data-driven

algorithm.

To investigate how this co-construction process unfolded and how the resulting mod-

els were used, we conducted a qualitative study with seven participants. The domain

under study was advising potential university dropouts, and the DSS aimed to estimate

the probability that a student would drop out. While our small sample size did not

allow for statistically significant conclusions, we observed that experts’ performance im-

proved when they used their own constructed models. This benefit, however, came at

the cost of slower decision-making. Notably, experts and their models made better joint

decisions than a purely data-driven model.

Using the think-aloud method, we identified several types of co-construction behav-

ior. Some participants updated their own mental models, while others were relatively

averse to the algorithmic support. Many participants experimented with different con-

figurations, and some heavily relied on the algorithmic assistance despite not fully un-

derstanding it—an indication of overreliance. During the application phase, participants

tended to follow their own models but were wary of any model suggestions that diverged

significantly from their expert intuition.

We also noted various minor issues, such as misunderstandings of binary features

and thresholds between different stages. Overall, this study shows that integrating

experts into the development process can be beneficial, but certain hurdles remain,

including miscalibrated trust in both the development tools and the final models, as

well as comprehension problems that AI developers may not immediately recognize.

1.6 Conclusion

The rapid development and widespread adoption of AI in recent years shows no sign of

slowing down. As AI finds its way into more and more areas, and as more people come

into contact with it, research on human–AI interaction becomes increasingly crucial—

particularly in understanding how AI influences our decisions. Much like people learned

to navigate new technologies in the past, they now face the challenge of learning to work

effectively with AI to avoid falling behind.

Because AI systems are not perfect, finding the right balance between trust and

reliance is essential for making optimal decisions. This dissertation aims to improve

human decision-making performance by focusing on two main objectives. First, it ex-

amines the factors that lead to miscalibrated trust in AI-based DSS. Second, it explores

ways to enhance these systems and mitigate imperfections. Special emphasis is placed

on human integration as a factor influencing reliance on DSS and as an element of AI

model development. Seven chapters are devoted to address these goals.

Chapter 2 presents a study that indirectly deals with human integration. It demon-

strates that certain DSS characteristics can indeed have similar effects on advice reliance

as human traits do in human-human interaction. The study contributes to research on

AI response times and explores the idea of transferring human attributes to machines
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(Bonnefon and Rahwan, 2020; Efendić et al., 2020; Park et al., 2019). While the findings

indicate that slower response times can lead to increased reliance, there is no observed

interaction with dual-process thinking. Although it may seem logical in practice to pro-

vide users with responses as quickly as possible, the experiment shows that simulating a

kind of thinking time through delayed responses can be beneficial, potentially increasing

the acceptance of the response. This could be particularly relevant for chat-based DSS

(Gnewuch et al., 2022). In the case of LLM-based chatbots, responses can be streamed

and the thought processes of the model can be displayed to the user (Wei et al., 2022).

How this affects user experience should be investigated in future research. As in our

experiment, interactions with different task types could be examined.

Focusing more directly on the role of human integration, Chapter 3 shows that

users generally prefer human involvement in model development alongside algorithms,

although this may depend on the domain and might not necessarily manifest in actual

behavior. This adds to the discussion of where, from the user’s perspective, human in-

volvement is most preferable (Ashoori and Weisz, 2019; Cheng and Chouldechova, 2023;

Palmeira and Spassova, 2015; Waddell, 2019). As AI-based DSS and AI-enhanced prod-

ucts become increasingly prevalent, their acceptance could be improved if potential users

are made aware that—where applicable—these systems produce hybrid results combin-

ing human input and AI. Researchers should investigate the effects of individual hybrid

elements while also considering the attitude-behavior gap observed in our experiment.

Chapters 4 and 5 address human integration in the context of AI explainability,

contributing to the question of how XAI systems should be designed—especially given

that they still do not fully achieve goals such as improving decision-making performance

(Miller, 2023; Schemmer et al., 2022; Vaccaro et al., 2024). In Chapter 4, an XAI frame-

work was empirically tested. While it promised better decision performance through

greater user involvement compared to previous approaches, this promise was not re-

alized in my experiment—contrary to a prior empirical evaluation. This discrepancy

shows the need for further examination of the framework. While both evaluations used

feature-based explanations, alternative approaches should be explored. In particular,

future studies should consider not only binary decisions but also multi-class problems

and include qualitative research methods to better understand how diffent XAI systems

affect the decision-making processes..

The architecture for explainable systems proposed in Chapter 5—based on an inter-

active concept of monitoring and scaffolding (Rohlfing et al., 2020)—could be valuable

for future XAI frameworks. Building on the conceptual architecture we propose, prac-

titioners and researchers can develop and further explore such systems for practical

applications, particularly by empirically examining how the architecture facilitates ex-

planation processes. A possible approach for implementation could involve LLM-based

autonomous agents responsible for the individual components of the architecture, en-

abling communication both among themselves and with the user (Ma et al., 2024; Wang

et al., 2023).

Chapters 6, 7, 8 examine human integration more from a model-development per-

spective, particularly how it affects performance. Chapter 6 reviews various expert
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knowledge elicitation and aggregation methods to determine the most effective way of

implementing human integration (O’Hagan et al., 2006). In contrast to earlier stud-

ies (Cheng et al., 2006; Nahar et al., 2013; Wald et al., 2012), multiple methods were

compared. While these results can be put into practice, one should keep in mind that

aggregated opinions can differ significantly from individual perspectives. Future research

could investigate under which conditions aggregations are more effective and how they

can be improved to provide a truly significant advantage over individual opinions.

In Chapter 7, it is shown that while human might fail to detect biases in datasets,

their integration can be especially valuable when insufficient data is available for model

training. These findings should serve as a warning to practitioners that even experts can

overlook important biases in datasets. At the same time, experts should be consulted for

their opinions and, where possible, their insights should be compared interactively with

data-driven results. Further investigations in other domains and with different datasets

would also be valuable.

Chapter 8 takes a more practical turn by presenting a web-based tool for interactive

model building. It reveals that real experts can benefit from their own models, yet it

also reflects known issues from previous studies and highlights practical challenges in

using and developing AI-based DSS.

In summary, the present dissertation shows that improving human decision-making

in the context of human-AI collaboration is not straightforward. Predicting how people

interact with AI—and what shapes that interaction—is no simple task and human in-

tegration has its prons and cons. The conducted studies indicate that people value the

inclusion of human knowledge and human-like characteristics in DSS, which could mit-

igate underreliance and improve decision-making. Moreover, such integration can also

enhance AI performance. At the same time, there are numerous ways to incorporate

human input—–each offering its own advantages, disadvantages, and challenges. Many

questions remain, particularly regarding how AI systems should be explained and how

XAI-based DSS should be structured, especially when the key to their success might

lie in the effective integration of it’s users. While this dissertation primarily focused

on classical machine learning approaches, the research ideas can certainly be applied

to modern models such as LLMs. This raises questions about how the present findings

can be transferred and what new research questions may arise. The breadth of these re-

search objectives is reflected in the diverse methods employed across the chapters. Given

the difficulty in predicting how AI-based DSS will evolve and be adopted, a broad and

thoughtfully combined range of approaches is needed in future research to capture the

multifaceted nature of human–AI interaction.
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Chapter 2

The Role of Response Time for
Algorithm Aversion

This paper was authored in collaboration with Anastasia Lebedeva, Olesja Lammert,

and Jörg Papenkordt. It was presented at the 25th International Conference on Human-

Computer Interaction, held in Copenhagen, Denmark, 23-28 July 2023, and published

in the conference proceedings Artificial Intelligence in HCI, edited by H. Degen and S.

Ntoa, Springer Nature Switzerland, pages 131–149. The published version is available

at https://doi.org/10.1007/978-3-031-35891-3_9.

Abstract

Artificial intelligence (AI) outperforms humans in plentiful domains. Despite security

and ethical concerns, AI is expected to provide crucial improvements on both personal

and societal levels. However, algorithm aversion is known to reduce the effectiveness

of human-AI interaction and diminish the potential benefits of AI. In this paper, we

built upon the Dual System Theory and investigate the effect of the AI response time

on algorithm aversion for slow-thinking and fast-thinking tasks. To answer our research

question, we conducted a 2x2 incentivized laboratory experiment with 116 students in

an advice-taking setting. We manipulated the length of the AI response time (short vs.

long) and the task type (fast-thinking vs. slow-thinking). Additional to these treatments,

we varied the domain of the task. Our results demonstrate that long response times

are associated with lower algorithm aversion, both when subjects think fast and slow.

Moreover, when subjects were thinking fast, we found significant differences in algorithm

aversion between the task domains.
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2.1 Introduction

AI is designed to provide crucial improvements to healthcare, mobility, policy-making,

manufacturing, and countless other domains (Makridakis, 2017). A growing number of

political as well as private decisions are being made based on algorithm recommenda-

tions (Araujo et al., 2020; Prahl and Van Swol, 2017). However, prejudice and biased

behavior toward AI often mitigate its potential as extensive research demonstrates (Jus-

supow et al., 2020; Mahmud et al., 2022). The study of biased human behavior towards

algorithms is dominated by two streams of research—algorithm aversion and algorithm

appreciation (Hou and Jung, 2021). Algorithm aversion describes a general rejection

of algorithm advice in favor of human advice (Mahmud et al., 2022). For instance,

even though AI algorithms have been repeatedly proven to be more accurate in their

predictions than human experts (Dietvorst et al., 2015; Jussupow et al., 2020), humans

still exhibit irrational aversion towards AI (Castelo et al., 2019; Yeomans et al., 2019).

When the behavioral bias leans in the opposite direction, researchers speak of algorithm

appreciation, which is the logical counterpart to algorithm aversion (Jussupow et al.,

2020). For instance, it has been demonstrated that people prefer AI recommendation

over human advice in multifaceted situations, such as estimating weights, predicting

music charts, or national security concerns (Hou and Jung, 2021; Logg et al., 2019).

Based on the inverse definitions of the two phenomena, we consider them to represent

“two sides of the same medal” (Jussupow et al., 2020). Therefore, in this paper, we use

only one of the two terms—algorithm aversion—to describe the entire range of human

reactions to AI recommendations. Our study aims to contribute to a deeper under-

standing of the influential factors that may trigger algorithm aversion or appreciation.

So, we build on the theoretical considerations of Bonnefon and Rahwan (2020) and are

the first to experimentally investigate whether the Dual Process Theory can serve as a

tool and as a perspective to study human behavior toward AI.

The remainder of this study is structured as follows: First, we describe the theoretical

approach to adopting the Dual Process Theory in the context of human-AI interaction.

Subsequently, we present our methodology and then outline the results of the data

analysis. In particular, we examine the effects of AI response time on the advice-taking

index for fast- and slow-thinking tasks in three different domains. Lastly, we discuss our

main findings in light of previous literature, point out possible limitations of our study,

and state our contribution to existing research.

2.2 Theoretical Framework

The search for influential factors behind human behavior toward AI has yielded a con-

siderable number of studies and insights (Enholm et al., 2022; Glikson and Woolley,

2020). In their systematic literature review, Mahmud et al. (2022) distinguish between

individual, algorithm, task, and high-level factors. For example, individual character-

istics, like personality traits (McBride et al., 2012; Sharan and Romano, 2020), and

characteristics of the AI agent, such as its performance (Dietvorst et al., 2015) or the
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explainability of the AI recommendation (Abdul et al., 2018; Miller, 2019; Schoonder-

woerd et al., 2021; Wang and Yin, 2021), have been found to affect algorithm aversion.

Also, contextual factors like task type or domain have been identified as factors influenc-

ing the rate of acceptance or rejection of an AI recommendation (De Winter and Dodou,

2014; Gaudiello et al., 2016; Hancock et al., 2011). However, Mahmud et al. (2022) em-

phasize that a unified theoretical framework that would comprehensively explain the

nature of algorithm aversion is still lacking. One interesting approach to shed light on

fundamental principles behind algorithm aversion is provided by the well-known work

“Machine Behavior” by Rahwan et al. (2019). They suggest that concepts, methods,

and frameworks from social and behavioral sciences may be adapted to study machines

and human-machine interactions. The idea of humans transferring human cognition to

machines is not entirely new. In the field of explainable AI, for example, a large number

of researchers argue that explanations for AI recommendations should be formulated

verbally in a human-like manner, enabling users to construct a correct mental model of

the system (De Graaf and Malle, 2017; Miller, 2019). Following Rahwan et al. (2019),

Bonnefon and Rahwan (2020) propose to adopt the widely known Dual Process Theory

(Kahneman, 2011) and its concepts of fast and slow thinking (or System 1 and System

2, respectively) as a framework and a tool to study human-AI interaction. According to

Kahneman (2011), mental life can be characterized as a dynamic between two agents,

System 1 and System 2, which produce fast and slow thinking, respectively. System 1

operates automatically and quickly, with little or no effort, relying on impressions, intu-

itions, intentions, and feelings. System 2, on the other hand, directs attention to effortful

mental activities that require rules and explicit thinking, e.g., complex calculations. Be-

sides the scientific Dual Process Theory, there exists a popular “folk theory” concerning

fast and slow thinking, reflecting people’s beliefs about their own and others’ thinking

processes (Bonnefon and Rahwan, 2020). Humans seem to consciously or unconsciously

apply such “folk theory” of fast and slow thinking to explain human behavior in every-

day life. Some researchers argue that, in human-AI interactions, people might adhere to

similar mechanisms to understand the behavior of an AI agent (Bonnefon and Rahwan,

2020; Booch et al., 2020; Rossi and Loreggia, 2019). In other words, humans are likely

to project their beliefs about fast and slow thinking onto intelligent machines and try to

interpret their actions accordingly. Bonnefon and Rahwan (2020) propose that humans

make inferences about AI if it “thinks” fast or slowly and use these inferences to assess

whether AI “thinking” fits the task at hand. Alternatively stated, if people perceive an

AI agent to “think” slowly, they would rather trust it with tasks that—from a human

perspective—require slow thinking (e.g., logic) than with tasks that require fast thinking

(e.g., intuition) (Bonnefon and Rahwan, 2020).

This proposition is supported by several empirical studies regarding the effects of

task type or task domain on human-AI interaction. However, prior to Bonnefon and

Rahwan (2020), such results have not been explicitly linked to the Dual Process The-

ory. For instance, Lee (2018) states that algorithmic and human decisions are perceived

as equally trustworthy for tasks requiring “mechanical skill” (e.g., work scheduling),

whereas algorithms are perceived as less trustworthy than humans for tasks requiring
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“human skill” (e.g., hiring). The study by Castelo et al. (2019) provides similar results.

The authors focus on the perceived objectivity of a task, describing an objective task

as one based on measurable characteristics and requiring analytical skills (e.g., weather

forecasting), and a subjective task as one that required intuition or a “gut feeling” (e.g.,

predicting the wittiness of jokes). Their results demonstrate once again that people

prefer algorithms for objective tasks and reject them for subjective ones (Castelo et al.,

2019). Generally, it seems that humans are more likely to reject an AI recommenda-

tion in tasks that, in their perception, require intuition and “human skill” even though

research has revealed that even in supposedly more subjective tasks (e.g., suggesting

jokes), an algorithm performs better than humans (Yeomans et al., 2019). The link

between these findings and the Dual Process Theory made by Bonnefon and Rahwan

(2020) offers a new perspective on the question of how people perceive AI in different

situations, i.e., for different tasks at hand. This perspective might offer a further un-

derstanding of how algorithm aversion can be mitigated, especially in the case of tasks

perceived to require intuition. In our study, we adopt the proposition of Bonnefon and

Rahwan (2020) to define different types of tasks. Specifically, we define fast-thinking

and slow-thinking tasks through the approach people selected to solve the task—fast-

or slow-thinking, respectively. While our definition is related to those of Castelo et al.

(2019); Lee (2018), it exists independently from task domain and task objectivity. For

example, in the recruiting domain, if a subject makes her decision based on explicit, rule-

based thinking, we define this as a slow-thinking task. In the same domain, if a subject

decides to rely primarily on her intuition, we define it as a fast-thinking task. Addi-

tionally, we deem it irrelevant for our definition whether an objectively correct answer

to the task (e.g., a calculation result) exists or whether the answer is entirely subjective

(e.g., a job candidate should be declined).In our definition, solely the approach chosen

to solve the task determines if it is a fast-thinking or a slow-thinking task.

Furthermore, Bonnefon and Rahwan (2020) postulate that it is not only relevant to

determine how people themselves approach a task but also how they perceive the algo-

rithm—whether they judge it to be “thinking” fast or slowly. While algorithms “think”

neither fast nor slowly like humans do (Bonnefon and Rahwan, 2020; Booch et al., 2020),

they might transmit signals that enable people to make conscious or unconscious infer-

ences about the algorithm type of “thinking.” The length of the algorithm response

time is one possible signal. Consequently, its manipulation might influence human per-

ception of an algorithm by suggesting fast or slow “thinking” (Bonnefon and Rahwan,

2020; Park et al., 2019). Efendić et al. (2020) demonstrate that, for analytical tasks,

people are more averse to algorithms when response times are longer. This result is con-

trary to inter-human interactions, where longer response times are usually associated

with higher trust—answers following a longer response time are considered well thought-

through. The authors attribute this contrasting effect to the fact that people perceive

analytical tasks to be easy for algorithms and therefore interpret longer response times

as a malfunction (Efendić et al., 2020). The study by Park et al. (2019) examines the

impact of response time on the acceptance of algorithm recommendations, additionally

distinguishing between high- and low-accuracy algorithms. They find that, in the case
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of a high-accuracy algorithm, participants are more likely to follow its recommendations

when response times are long. For a low-accuracy algorithm, participants are slightly

more likely to follow recommendations when response times are short (Park et al., 2019).

An apparent inconclusiveness between the results of Park et al. (2019) and of Efendić

et al. (2020) could be explained by the fact that (Park et al., 2019) use a different task

type than Efendić et al. (2020). While the former applies a setting we define as a fast-

thinking task, the latter selects a task, requiring analytical skills (a slow-thinking task

in our definition). Considering the results of Castelo et al. (2019) and Lee (2018) on the

influence of task type on algorithm aversion, one might suggest that the effect of the

AI response time varies for different types of tasks. Particularly, the result of Efendić

et al. (2020) might hold for analytical tasks (in our definition, for slow-thinking and fast-

thinking tasks, respectively), while the result of Park et al. (2019) might be valid for

fast-thinking tasks. Therefore, studying the influence of AI response time on algorithm

aversion for fast- and slow-thinking tasks might yield a more differentiated view of how

algorithm aversion can be reduced, especially for tasks requiring intuition. In our work,

we relate existing results on task types and response times to Dual Process Theory,

as proposed by Bonnefon and Rahwan (2020), and design a behavioral experiment to

empirically validate possible implications.

2.2.1 Research Question and Primary Hypotheses

So far, we have discussed two factors of interest for our investigation—the task type

(fast-thinking vs. slow-thinking) and the AI response time (short vs. long). From the

perspective of a software designer, the former is rather difficult to influence, whereas

the response time is relatively simple to control. Therefore, we construct our research

question and hypotheses with a primary focus on the AI response time, taking the task

type as a secondary contextual factor. We ground our hypotheses in the Dual Process

Theory and previous work on algorithm aversion.

We hypothesize that for tasks that are approached with logic—slow-thinking tasks—

people expect the AI advisor to have short response times because such tasks are per-

ceived to be easy for algorithms. Consequently, for slow-thinking tasks, we expect the

algorithm aversion to be higher for long response times. This result would be in ac-

cordance with Efendić et al. (2020). Castelo et al. (2019) and Lee (2018) showed that

people perceive algorithms as being unable or less capable of solving tasks that require

human intuition. Consequently, we hypothesize that people would perceive fast-thinking

tasks to be difficult for the AI advisor and to require additional “thinking” on the AI

side. Therefore, we propose that, for fast-thinking tasks, longer response times will be

associated with lower algorithm aversion. This result would be in accordance with Park

et al. (2019).

Explicitly, we pose the following research question:

RQ Which effect does the AI response time have on algorithm aversion for slow-thinking

and fast-thinking tasks?

Our research question results in two main hypotheses:
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H1 For slow-thinking tasks, the algorithm aversion is higher for a longer response time.

H2 For fast-thinking tasks, the algorithm aversion is lower for a longer response time.

2.2.2 Contribution

Our study contributes to the research field of algorithm aversion in multiple ways.

Firstly, we add to the existing empirical results on the influence of AI response time

on algorithm aversion by studying its effects on two different types of tasks. Secondly,

we propose and apply an experimental design to empirically test the application of the

Dual Process Theory to the study of algorithm aversion. Concerning possible practical

applications, the results of our paper shall aid practitioners in gaining a more profound

understanding of the nature of algorithm aversion in the context of different task types.

Moreover, it shall offer additional empirical results on how algorithm aversion may be

reduced by manipulating AI response times.

2.3 Experimental Design

To answer our research question, we conducted a randomized controlled experiment,

utilizing a 2x2 between-subjects design with student participants at the Business and

Economic Research Laboratory at Paderborn University. Experimental sessions took

place in attendance and in a strictly controlled environment to ensure adherence to

the ceteris paribus condition. The experimental design was implemented as a software

program using oTree (Chen et al., 2016). The software was administered via a browser

on personal computers. Each participant was seated individually on a computer and

visually shielded from other participants to ensure decision privacy. Between-subject

communication was prohibited.

Seven experimental sessions took place between October and November 2022. A total

of 119 subjects participated in the study. Two subjects were dropped from the data set

because they answered 50% or more of comprehension questions incorrectly. Another

subject was deleted because the participant was not a student. One task observation

was eliminated due to a typing mistake, and another observation was canceled because

the first estimation was equal to the advice, following the suggestion of Gino and Moore

(2007). Consequently, our final data set comprised a total of 116 participants and

1042 observations. The gender composition is slightly skewed toward female students

(58.62%) compared to males (41.4%). The average age of the subjects is 23.3 years

(SD = 3.6).

The subjects were randomly assigned to one of the four treatment conditions: (1)

Thinking Slow & AI Long, (2) Thinking Slow & AI Short, (3) Thinking Fast & AI

Long, and (4) Thinking Fast & AI Short. Distribution was even across the four treat-

ment groups. The experimental setting was based on the Judge-Advisor-System (JAS)

(Bonaccio and Dalal, 2006) framework and included 9 rounds. In each round, the partic-

ipants had to solve an estimation task, designed to encourage either fast or slow thinking.

During the task, they were advised by an AI with either a short or long response time.
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Thus, to ensure equal and controllable AI performance at all tasks, the AI advisor was

simulated by a simple algorithm, with the AI advice being randomly set at either 90%

or 110% of the true value. Subjects were unaware of the AI accuracy and its simulated

nature to prevent anchoring effects.

Before the experiment started, subjects received instructions that explained the rules

and the setting of the experiment. Instructions were tailored to the treatments, and

subjects’ comprehension was tested with follow-up questions. During the experiment,

at the beginning of each of the nine rounds, subjects were asked to provide their initial

estimate of the solution for the given task. After submitting the initial estimate, subjects

received a recommendation from the AI. Subjects then provided their second estimation.

Both estimations were rewarded monetarily. Subjects were not informed about the

accuracy of their estimates until the end of the experiment to avoid learning effects.

The order of tasks was randomized to minimize any possible sequence effects. At the

end of the experiment, subjects were asked to participate in a survey that included

demographic factors, such as age and gender, and other variables, such as confidence in

their estimates and perceived recommendation quality (Gino et al., 2012).

Within the fast-thinking group, participants were provided with a picture of an

object and asked to estimate some numeric quality of the object shown. Our object

selection ensured that all participants were familiar with them. In the absence of any

additional information, we, therefore, expected subjects to apply their intuition rather

than analytical skills to solve the task. Within the slow-thinking group, subjects received

additional quantitative information about the object in a textual form. We intended this

manipulation to facilitate slow thinking on the subjects’ side. Being given quantitative

hints, we expected subjects to apply analytical skills and logic rather than intuition to

solve the task. It is also worth mentioning that, even with the additional information,

the answer to the task could not be estimated with absolute accuracy and remained

ambiguous.

The AI response time (the time frame between the submission of the subjects’ initial

estimate and the display of the AI advice) was set to two seconds in the “AI Short”

treatments and ten seconds in the “AI Long” treatments. During this time frame, the

task information was not visible to subjects, and a loading bar displayed the simulated

progress of the AI (see Figure 2.1). After the response time had elapsed, the task became

visible once again. Additionally, the AI advice and subjects’ own initial estimate were

displayed. Subjects were then asked to submit their second estimate (see Figure 2.2).

Additionally, the objects, whose numeric qualities subjects were asked to estimate,

originated from three different domains. we chose to not introduce new domains but use

settings that have been previously applied in other studies. In the “Lentils” domain,

subjects were asked to estimate the number of chocolate lentils in a glass based on a

photograph, following Park et al. (2019). In the slow-thinking version of the task, the

glass size and the number of lentils in a reference glass were additionally displayed. In

the “Football” domain, subjects estimated the weight of football players based on a

photograph. Additional textual information in the slow-thinking group included weight

references for other comparable players. A similar design was used by Gino and Moore
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(2007). In the “Route” domain, subjects estimated the length of a car route between

lesser-known German cities based on a map. In the slow-thinking group, reference

distances were displayed additionally to the map. This last domain was designed in ac-

cordance with Hofheinz et al. (2017). Estimation tasks were equally distributed between

all three domains.

Figure 2.1: Screenshot of AI loading bar adjusted to the treatments.

Figure 2.2: Screenshot of task page with AI advice.

Subjects received a fixed amount of e3 for participating in the experiment. Addi-

tionally, they were able to earn a payoff for the accuracy of their estimates. Subjects

had to make a total of 18 estimations during the experiment (2 estimations per round

across 9 experimental rounds). For each estimation, earnings between e0.00 and e0.50
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were possible, resulting in a total maximum reward of e9.00 across all estimations. The

closer the subjects’ estimates were to the true value, the more they earned. In order to

reward the timely completion of tasks, we implemented a time pressure condition. The

payoff per estimation started to gradually decrease after 45 seconds until it reached zero

if participants required more than 5 minutes and 45 seconds for an estimation. Upon

completion of the 9 experimental rounds, subjects were informed about their total pay-

off. In addition to the fixed payment of e3, subjects earned an average additional payoff

of e7.39 (SD = 0.62) based on the accuracy of their estimations.

2.3.1 Measurement of Algorithm Aversion

To assess algorithm aversion, we measured the degree to which subjects followed the

advice of the AI. Specifically, we used the advice-taking index (Hofheinz et al., 2017) as

the dependent variable in our experiment. The index was calculated as follows:

Advice-taking index =
Second Estimation− First Estimation

Advice− First Estimation

The index equals zero when the subject’s first and second estimation are identical.

The more subjects lean toward the AI advice, the closer the index is to 1. Consequently,

at a value of 0.50, the subjects weigh the advice and their first estimation equally. This

index is similar to the commonly used measurement “Weight of Advice” in the advice-

taking literature (Bailey et al., 2022). However, the main difference is that the values

can be negative. This can occur when a subject decreases the second estimation even

though the advice recommends increasing it. Additionally, the index can be above 1 if

the subject overshoots the advice, i.e., if the first estimation is 100, the advice is 200,

and the second estimation is 300. To ensure accurate results, we follow the procedure of

Logg et al. (2019) and winsorize the values below 0 and above 1 to 0 and 1, respectively.

A higher advice-taking index indicates lower algorithm aversion.

2.4 Results

All statistical analyses were conducted using Stata 17.0. The Mann–Whitney U test

was applied to determine statistical significance. Table 2.1 displays detailed the descrip-

tive statistics for the four treatment groups. Between the gender groups (z = −0.61,

p = 0.54), no significant difference in advice-taking index was detected. However, there

was a significant difference (z = −15.08, p = 0.00) in the time needed for the first

estimation between the Fast-Thinking (M = 17.40 sec., SD = 8.05) and the Slow-

Thinking (M = 27.60 sec., SD = 12.42) treatment groups. We can possibly attribute

this to the slow thinking induced by the treatment, as well as to the amount of in-

formation that needed to be processed by subjects. The time difference disappeared

in the second estimation. The Fast- and Slow-Thinking groups also significantly dif-

fered in the accuracy of the first estimate (z = −9.60, p = 0.00), with subjects in

the Fast-Thinking group underestimating the true value by 18.7% (SD = 27.3), while

those in the Slow-Thinking group underestimated by only 3.7% (SD = 26.1) on aver-
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age. A higher average estimation time and accuracy for the first estimation within the

Slow-Thinking groups compared to the Fast-Thinking groups are identified as objective

indicators, which can reasonably suggest that participants in the Slow-Thinking treat-

ment actually were thinking slowly, whereas subjects in the Fast-Thinking treatment

were thinking fast.

Additionally, we control for domain-specific differences in estimation accuracy. In

general, the participants seem to struggle particularly with the estimation of the number

of lentils regardless of the treatment, whereas the deviations from the true value are

lowest for the domain “Football”.

After the descriptive analysis, we now focus on the main part of our analysis. As

described before, we employ the advice-taking index as a proxy for algorithm aversion.

Here, a higher advice-taking index indicates lower algorithm aversion.

Variable Mean SD Min Max

Fast-Thinking AI-Long (N=29)
1st Estimation Time (sec) 16.68 6.87 5.18 36.07
2nd Estimation Time (sec) 13.75 7.44 4.97 44.19
1st Estimation Accuracy -0.18 0.28 -0.77 0.70
2nd Estimation Accuracy -0.11 0.18 -0.73 0.37

Fast-Thinking AI-Short (N=31)
1st Estimation Time (sec) 18.07 8.97 4.76 52.14
2nd Estimation Time (sec) 11.59 6.46 4.26 36.33
1st Estimation Accuracy -0.19 0.28 -0.82 0.73
2nd Estimation Accuracy -0.13 0.20 -0.75 0.38

Slow-Thinking AI-Long (N=29)
1st Estimation Time (sec) 28.41 10.09 5.23 58.77
2nd Estimation Time (sec) 14.57 7.93 4.57 41.18
1st Estimation Accuracy -0.01 0.29 -0.73 1.50
2nd Estimation Accuracy -0.01 0.15 -0.69 1.07

Slow-Thinking AI-Short (N=27)
1st Estimation Time (sec) 26.73 14.47 5.49 166.58
2nd Estimation Time (sec) 11.45 6.94 3.36 40.06
1st Estimation Accuracy -0.07 0.23 -0.80 0.50
2nd Estimation Accuracy -0.04 0.16 -0.70 0.33

Total (N=116)
1st Estimation Time (sec) 22.31 11.57 4.76 166.58
2nd Estimation Time (sec) 12.84 7.32 3.36 44.19
1st Estimation Accuracy -0.11 0.28 -0.82 1.50
2nd Estimation Accuracy -0.07 0.18 -0.75 1.07

Table 2.1: Descriptive statistics of estimation time and accuracy by treatment

We start by calculating the average advice-taking index per treatment. On average,

the advice-taking index was found to be higher in the groups with long AI response

times than in the groups with short AI response times. The highest average advice-

taking index was observed in the treatment group Slow-Thinking & AI-Long (M = 0.54,
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SD = 0.31). The lowest average advice-taking index was achieved in the Fast-Thinking

& AI-Short treatment group (M = 0.45, SD = 0.32).
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Figure 2.3: Mean Advice-taking index by thinking and AI response time with SE Bars

Figure 2.3 presents the graphical comparison within the groups with fast-thinking

and slow-thinking tasks regarding the response time of the AI. To test our hypotheses,

we conducted non-parametric treatment group comparisons using the Mann–Whitney

U test. Since the participants did not receive feedback on their performance after a

task and the task sequence was randomized, in our further analysis, we assume that

the 9 estimates of each participant are independent of each other. Thus, to investi-

gate whether, for slow-thinking tasks, the algorithm aversion was higher for the longer

response time, we compared the advice-taking index of the groups Slow-Thinking & AI-

Long and Slow-Thinking & AI-Short. The Mann-Whitney U test indicated that the two

groups differed significantly from each other. Contrary to our H1 hypothesis, a longer

response time in slow-thinking tasks led to a significantly higher advice-taking index

(z = 1.79, p = 0.07), i.e., to lower algorithm aversion. Similarly, to examine our sec-

ond hypothesis, we compared the groups Fast-Thinking & AI-Long and Fast-Thinking

& AI-Short. We found out that a longer response time led to a significantly higher

advice-taking index in the fast-thinking tasks (z = 2.16, p = 0.03). Therefore, the H2

hypothesis could be confirmed.

To test for consistency in our results, we investigated whether our results concerning

the two hypotheses (H1 and H2) hold within single domains. For this purpose, we

compared the group Slow-Thinking & AI-Long with the group Slow-Thinking & AI-

Short and the group Fast-Thinking & AI-Long with the group Fast-Thinking & AI-Short

within each domain separately (see Table 2.2).

Table 2.2 presents the results of the Mann-Whitney U test of the different treatment

comparisons within the different domains. The tests revealed significant differences only

in the domain “Lentils”. Here, the results of the cross-domain analysis were confirmed.

Again, longer response times led to a significantly higher advice-taking index, both for

Fast- and Slow-Thinking treatment groups.
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Domain Treatment Response Time Mean SD p-value

Football

Fast Long 0.41 0.28
0.63

Short 0.40 0.30
Slow Long 0.51 0.30

0.57
Short 0.48 0.33

Lentils

Fast Long 0.50 0.32
0.02*

Short 0.38 0.29
Slow Long 0.56 0.32

0.04*
Short 0.45 0.33

Route

Fast Long 0.62 0.29
0.45

Short 0.58 0.31
Slow Long 0.54 0.32

0.71
Short 0.52 0.33

†p < 0.1, *p < 0.05, **p < 0.01 ***p < 0.001,

Table 2.2: Advice-taking index by treatment and domain

Subsequently, we investigated the differences in the advice-taking index between

the domains within each treatment group. The graphic vividly illustrates that the

differences are larger among the domains in both Fast-Thinking groups than in the

two Slow-Thinking groups (see Figure 2.4). The Mann-Whitney U tests between the

domains within the Fast-Thinking & AI-Long treatment group confirm that the advice-

taking index within the treatment differs significantly between all three domains. The

same applies to the treatment group Fast-Thinking & AI-Short, except for the fact that

the advice-taking index does not differ significantly between the domains “Football” and

“Lentils”. In contrast, there are no significant domain-specific differences in the average

advice-taking index within the two Slow-Thinking treatment groups. Thus, we conclude

that the domain-specific effects only matter in fast-thinking tasks.

To gain more insight into the underlining mechanisms behind the main treatments,

we followed Gino et al. (2012) and asked participants to rate the perceived quality of the

AI advice and their self-confidence in their estimation. We intended to analyze those

data to determine if subjectively perceived confidence in the first estimate and the per-

ceived quality of the AI recommendation impacted the actual adaptation of the advice.

Group comparisons with the dependent variables perceived quality of AI advice and

perceived confidence in their own estimation per treatment separately for each domain

reveal that these two dependent variables do not differ significantly between the com-

pared treatments. Only the perceived quality of AI advice differs significantly between

the Fast-Thinking & AI-Long and Fast-Thinking & AI-Short groups within the domain

“Football”. Moreover, the quality of the AI advice in the groups with short response

time is perceived to be tendentially higher, independent of the Thinking-Treatment and

the domains. Furthermore, it can be observed that the fast-thinking groups feel more

confident in their estimation than the slow-thinking groups, independent of the time

treatment and the domains. However, none of these effects becomes significant.

We further investigated whether a difference in the confidence in their own estimation
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Figure 2.4: Mean Advice-taking index by treatment and domain with SE bars

(see Figure 2.5) and the perceived quality of AI advice (see Figure 2.6) between the

domains within each treatment group existed. While in the Slow-Thinking & AI-Short

treatment, only the “Route” domain differs significantly from the other two domains in

terms of perceived confidence of own estimation, in the other three treatment groups,

the domain “Lentils” is significantly deviates from the other two. Consequently, within

all treatments, the domains “Lentils” and “Route” always differ significantly from each

other. Thus, the perceived confidence in their own estimation is lowest in each treatment

within the domain “Lentils”.

If we consider the perceived quality of the AI advice using the Mann-Whitney U-

test, it becomes apparent that, within the treatments, the domain “Route” always differs

significantly from the other two and the quality assessed is highest in this domain (see

Figure 2.6). Only in the group Slow-Thinking & AI-Short the domain “Route” is not

significantly different from the domain “Football”. If we relate this to our previous

results, we observe that the advice-taking index for this domain is also significantly

highest within the two Fast-Thinking treatment groups (see Figure 2.4). This tendency

regarding the advice-taking index can also be observed in the Slow-Thinking treatments.

We can attribute the fact that the comparisons of the perceived quality of AI and the

comparisons of self-confidence in their own estimation between the treatments within a

domain do not become significant to the fact that the domains within the treatments

have very similar effects.

2.5 Discussion

As proposed by Bonnefon and Rahwan (2020), we apply an experimental design to

empirically test the application of the Dual Process Theory as a framework to study

algorithm aversion. In the course, we relate existing results on task types and response
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times to Dual Process Theory, derive our hypotheses and test them empirically. Our

results suggest that the application of the Dual Process Theory may indeed deepen the

understanding of algorithm aversion.

According to our results, in slow-thinking tasks, algorithm aversion is lower for longer

AI response time—an effect opposite to our first hypothesis (H1). Moreover, our results

for fast-thinking tasks show that algorithm aversion is lower for longer response times,

as we suggest in our second hypothesis (H2). The former result regarding H1 may also

be seen as contradicting Efendić et al. (2020), who find that, in analytical tasks, long

response time is associated with higher algorithm aversion. The finding concerning H2

is in line with Park et al. (2019), who find that algorithm aversion is lower for longer

response times in a task design that corresponds to a fast-thinking task in our definition.

In our experiment, for both task types, the longer response time is associated with

lower algorithm aversion, although the difference in the advice-taking index is stronger

for fast-thinking tasks. People associate long response times with stronger effort, both

in the case of humans and algorithms (Efendić et al., 2020). Therefore, longer response

times might suggest to human agents that AI is exercising a stronger effort for the task,

enhancing its task capability. Interestingly, in our experiment, this effect seems to hold

for both types of tasks, although previous research demonstrated that people perceive

algorithms to be more capable of tasks that require analytical skill (slow-thinking) and

less capable of tasks that require intuition (fast-thinking) (Castelo et al., 2019; Lee,

2018; Mahmud et al., 2022). One might attribute this result to the fact that additional

quantitative information is insufficient to encourage slow thinking on the participants’

side (i.e., participants apply fast thinking independently of task type), especially con-

sidering that the type of thinking applied is difficult to measure directly. However,

we deem the fact that participants in the slow-thinking group spent significantly more

time on the tasks and performed significantly better an objective indicator of actual

slow-thinking in the slow-thinking group. Further research may investigate other ways

to apply the framework of the Dual Process Theory to task design in the context of

algorithm aversion.

The inconclusiveness between our result concerning slow-thinking tasks and the find-

ings of Efendić et al. (2020) might be attributed to the fact that Efendić et al. (2020) use

verbal constructs to describe the length of algorithm response time (e.g., “after a long

pause” or “after an extended period of time”). In our experiment, we apply real response

times (1 sec. vs. 10 sec.). Thus, a time range could exist within which longer response

times reduce algorithm aversion, as is observed in our study and by Park et al. (2019).

Therefore, we advocate for more empirical research on the role of different response time

ranges on algorithm aversion.

We consider the domain to be essential for the external validity of our results. Re-

search demonstrates that people react differently to algorithmic recommendations in

different domains (Castelo et al., 2019; Dietvorst et al., 2015; Logg et al., 2019). We test

our hypotheses in three different domains to achieve a more differentiated view of the

effects of task type and AI response time on algorithm aversion. We select domains that

are similar concerning complexity, moral impact, and subjectivity since these factors are
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proven to affect algorithm aversion (Castelo et al., 2019; Dietvorst et al., 2015; Mah-

mud et al., 2022). We investigate whether significant differences arise between domains

within each of the main treatments. Results suggest that algorithm aversion varies sig-

nificantly between the domains within each of the two fast-thinking treatments. Within

the slow-thinking groups, the domains seem to not affect algorithm aversion. Notably,

within each of the fast-thinking groups, the highest advice-taking index is observed for

the domain “Route”. In every treatment group, participants rate the AI advice quality

in this domain higher than in the domains “Lentils” and “Football”. Only in the group

Slow-Thinking & AI-Short, the AI advice quality in the domain “Route” is not signifi-

cantly different from the domain “Football”. That the AI advice quality in the domain

“Route” is perceived as higher could be due to the fact that people are largely familiar

with algorithm recommendations in similar tasks, such as determining an optimal route

by using a navigation system. In general, the fact that we find significant differences

between task domains for fast-thinking groups is in line with the findings of previous

research (Castelo et al., 2019; Dietvorst et al., 2015; Logg et al., 2019).

Interestingly, these effects seem to disappear in the advice-taking index for slow-

thinking tasks. We propose the following interpretation for this finding. As long as

participants have only a picture as a single source of information, the depicted object

majorly influences participants’ behavior. On the contrary, as soon as additional quan-

titative information is available to participants, the tasks become more comparable to

each other (a number has to be estimated based on other numbers), and the origin

of the object does not play a significant role anymore. These results are crucial when

researchers want to describe different types of tasks. Our findings demonstrate clearly

that the domain of a task and the way people approach it are not the same and have

different effects on algorithm aversion. Additionally, the fact that we detected said dif-

ference only for fast-thinking tasks but not for slow-thinking tasks indicates that both

groups were indeed thinking differently.

A noteworthy limitation of our results is that our observations are limited to the three

domains “Lentils”, “Football”, and “Route”, which do not differ in terms of complexity,

moral impact, and subjectivity. Further research might investigate whether the same

result holds in other domains. Additionally, our results concerning the negative effect

of long response time on algorithm aversion (i.e., its positive effect on the advice-taking

index) are especially strong in the “Lentils” domain. Interestingly, in all treatment

groups, participants’ confidence in their own estimation is lowest for the “Lentils” do-

main, suggesting that low confidence enhances the effect of longer response time on

algorithm aversion. Mahmud et al. (2022) name self-evaluation factors, like self-efficacy,

among those influencing algorithm aversion. Logg et al. (2019) demonstrate that higher

self-efficacy and self-confidence are associated with higher algorithm aversion, support-

ing our suggestion that low self-confidence could facilitate the effect of response time on

algorithm aversion.
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2.6 Conclusion

Our study yielded several insights that might prove valuable both for further research

and for software developers. Firstly, we demonstrated that longer AI response times, in

particular a response time of 10 seconds, are associated with lower algorithm aversion.

This effect is even stronger for tasks designed to facilitate a fast-thinking, intuitive

approach. Secondly, among all domains, long response time had the strongest positive

effect on the advice-taking index in the domain “Lentils”, in which participants displayed

the lowest confidence in their own estimations. Thirdly, within the fast-thinking groups,

the task domain heavily impacted the advice-taking index, whereas domain differences

were not significant within both slow-thinking groups.

On the one hand, our results contribute to the research about the influence of re-

sponse time on algorithm aversion and suggest that, at least to a certain extent, longer

response times may be used to reduce algorithm aversion. On the other hand, our results

indicate that advice-taking varies depending on people’s approach to the tasks and on

the domain of the task. To the best of our knowledge, empirical results testing these

differences between the way of thinking and the task domain broach an entirely new sub-

ject within the research of algorithm aversion. With our study, we proposed a design

and delivered empirical insights following the proposal of Bonnefon and Rahwan (2020)

to apply Dual Process Theory to studies of human-machine interaction. Therefore, our

study can aid other researchers in better understanding the nature of algorithm aversion

by considering the thinking used while solving the task and not just the perceived task

context.

2.7 Appendix

2.7.1 Instructions in German

Allgemeine Hinweise

• Die Gesamtdauer des Experimentes beträgt ca. 30 Minuten.

• Während der Durchführung ist keine Kommunikation gestattet. Mobiltelefone

müssen während der kompletten Experimentdauer ausgeschaltet sein.

• Sämtliche Aktionen, die Sie im Rahmen dieses Experiments tätigen, erfolgen anonym.

• Personen, die mit der Universität Paderborn in einem Arbeitsverhältnis stehen,

können aus juristischen Gründen für das Experiment nicht entlohnt werden.

• Bitte nutzen Sie die Knöpfe “Weiter” oder “Antwort einreichen”, um

zur nächsten Seite im Experiment zu gelangen. Es ist technisch nicht möglich,

auf eine bereits verlassene Seite zurück zu gelangen. Bitte klicken Sie in Ihrem

Browserfenster niemals auf “zurück” oder auf “neu laden”, sonst wird

der Experimentverlauf gestört und Sie verlieren Ihre Auszahlung.
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Vorbereitung

• Verständnisfragen: Sie erhalten Fragen zum Inhalt der Instruktionen. Sie kom-

men erst weiter, wenn Sie alle Fragen richtig beantwortet haben. Die Antworten

haben keinen Einfluss auf Ihre Auszahlung.

• Aufgabenbeispiel: Sie erhalten ein imaginäres Beispiel für eine Runde des nach-

folgenden Experimentes. Sie haben die Möglichkeit, sich mit dem Aufbau einer

Runde und deren einzelnen Bausteinen vertraut zu machen. Das Beispiel hat

keinen Einfluss auf die Auszahlung.

Experiment

• Das Experiment geht über neun Runden.

• Ihre Aufgabe ist es, anhand von Abbildungen die Eigenschaften verschiedener

Objekte zu schätzen. In jeder Runde muss ein neues Objekt eingeschätzt werden.

Außerdem erhalten Sie zusätzliche Informationen zu den abgebildeten Objekten.

• Eine Runde erhält folgende Aktionen:

– Sie machen Ihre 1. Schätzung des abgebildeten Objektes,

– Die Künstliche Intelligenz (KI) macht eine Schätzung,

– Das Ergebnis derKI-Schätzung wird Ihnen als eine unverbindliche Empfehlung

angezeigt,

– Sie machen Ihre 2. Schätzung des abgebildeten Objektes,

– Bitte geben Sie für Ihre Schätzungen nur positive ganze Zahlen an.

• Ihre Auszahlung setzt sich wie folgt zusammen:

– Sie erhalten eine Show-up Fee in Höhe von 3 Euro.

– Außerdem haben Sie die Möglichkeit, bis zu 9 Euro über die neun Runden

des Experimentes (maximal 1 Euro pro Runde) zu verdienen:

∗ In jeder Runde machen Sie 2 Schätzungen. Für jede Schätzung können

Sie bis zu 0,50 Euro verdienen.

∗ Die Auszahlung pro Schätzung setzt sich wie folgt zusammen:

[ Auszahlung für eine Schätzung ] = [ erspielter Betrag für die

Genauigkeit einer Schätzung ] – [ Kosten für die zusätzliche

Zeit für eine Schätzung ]

– Die Gesamtauszahlung ergibt sich aus der Show-up Fee und den erspielten

Beträgen in den neun Runden, die auf die erste Nachkommastelle gerundet

werden. Die maximale Gesamtauszahlung für dieses Experiment beträgt

12 Euro.
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• Genauigkeit einer Schätzung:

– Für jede Schätzungsaufgabe existiert eine einzige richtige Antwort, einwahrer

Wert, der ausschließlich der Experimentleitung bekannt ist.

– DieGenauigkeit einer Schätzung wird an IhrerAbweichung zum wahren

Wert gemessen. Die Richtung der Abweichung (ob die Schätzung unter oder

über dem wahren Wert liegt) spielt keine Rolle.

– Grundsätzlich gilt: Je geringer die Abweichung zum wahren Wert ist,

desto höher ist Ihre Auszahlung für diese Schätzung. Oder anders

gesagt, je näher Sie mit Ihrer Schätzung am wahren Wert liegen,

desto höher Ihre Auszahlung.

• Die Zeit pro Schätzung:

– Sie haben für Ihre beiden Schätzungen jeweils 45 Sekunden kostenfrei

Zeit. Innerhalb dieser Zeit wird Ihre Auszahlung pro Schätzung lediglich

durch ihre Genauigkeit bestimmt.

– Danach kosten Sie jede zusätzlichen 30 Sekunden 1/10 (ein Zehntel)

Ihrer erspielten Auszahlung für die Genauigkeit der jeweiligen Schätzung.

– Das heißt, wenn Sie 345 Sekunden (entspricht 5 Minuten und 45 Sekunden)

oder länger für eine Schätzung brauchen, wird Ihre Auszahlung für diese

Schätzung Null sein.

– Sie können kein Geld verlieren, d.h., Ihre Auszahlung pro Schätzung

kann nicht unter null gehen, egal, wie lange Sie brauchen.

Nachbereitung

• Fragebogen: Nach dem Experiment erhalten Sie einen Fragebogen. Die vollständige

und ehrliche Beantwortung der Fragen ist sehr wichtig für die anschließende

Auswertung des Experiments. Die Auswertung wird ausschließlich für wissenschaftliche

Zwecke verwendet. Ihre Antworten in diesem Fragebogen haben keinen Einfluss

auf die Auszahlung.

• Ergebnisanzeige: Als letztes wird Ihnen aus Ihren sämtlichen Schätzungen re-

sultierende Gesamtauszahlung angezeigt.

2.7.2 Instructions in English

General Instructions

• The total duration of the experiment is approximately 30 minutes.

• Communication is not allowed during the experiment. Mobile phones must remain

switched off for the entire duration of the experiment.

• All actions you take during this experiment are anonymous.
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• People who are employed by the University of Paderborn cannot be compensated

for this experiment due to legal reasons.

• Please use the buttons ”Next” or ”Submit Answer” to proceed to the next

page of the experiment. It is technically impossible to return to a previously visited

page. Please never click ”back” or ”reload” in your browser window, as

this will disrupt the experiment and you will lose your payment.

Preparation

• Comprehension Questions: You will be asked questions about the instructions.

You can only proceed once all questions are answered correctly. The answers have

no impact on your payment.

• Task Example: You will be provided with an imaginary example of a round from

the upcoming experiment. You will have the opportunity to familiarize yourself

with the structure of a round and its components. The example has no impact on

your payment.

Experiment

• The experiment consists of nine rounds.

• Your task is to estimate the properties of various objects based on images. A

new object must be estimated in each round. Additionally, you will receive extra

information about the depicted objects.

• Each round involves the following actions:

– You make your 1st estimate of the depicted object,

– The Artificial Intelligence (AI) makes an estimate,

– The result of the AI estimate is displayed to you as a non-binding rec-

ommendation,

– You make your 2nd estimate of the depicted object,

– Please provide only positive whole numbers for your estimates.

• Your payment is determined as follows:

– You will receive a show-up fee of 3 Euros.

– Additionally, you can earn up to 9 Euros over the nine rounds of the exper-

iment (a maximum of 1 Euro per round):

∗ In each round, you make 2 estimates. You can earn up to 0.50 Euros

per estimate.
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∗ The payment per estimate is calculated as:

[ Payment for an estimate ] = [ amount earned for estimate

accuracy ] – [ cost for additional time taken for the estimate ]

– The total payment consists of the show-up fee and the amounts earned over

the nine rounds, rounded to the first decimal place. The maximum total

payment for this experiment is 12 Euros.

• Accuracy of an Estimate:

– For each estimation task, there is a single correct answer, a true value,

known only to the experiment organizers.

– The accuracy of an estimate is measured by your deviation from the

true value. The direction of the deviation (whether the estimate is above

or below the true value) does not matter.

– Essentially: The smaller the deviation from the true value, the higher

your payment for that estimate. In other words, the closer your

estimate is to the true value, the higher your payment.

• Time per Estimate:

– You have 45 seconds free of charge for each of your two estimates. Within

this time, your payment for the estimate is determined solely by its accuracy.

– After that, each additional 30 seconds costs 1/10 (one-tenth) of the

amount earned for the accuracy of the respective estimate.

– This means that if you take 345 seconds (equivalent to 5 minutes and 45

seconds) or longer for an estimate, your payment for that estimate will be

zero.

– You cannot lose money, i.e., your payment per estimate cannot go be-

low zero, no matter how long you take.

Follow-up

• Questionnaire: After the experiment, you will receive a questionnaire. Com-

plete and honest answers to the questions are very important for the

subsequent evaluation of the experiment. The evaluation will be used exclusively

for scientific purposes. Your answers in this questionnaire will have no impact on

your payment.

• Results Display: Finally, your total payment, based on all your estimates, will

be displayed.
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Chapter 3

Algorithm, Expert, or Both?
Evaluating the Role of Feature
Selection Methods on User Prefer-
ences and Reliance

This paper was authored in collaboration with Kirsten Thommes. It was published in

PLOS ONE. The published version is available at https://doi.org/10.1371/journal.

pone.0318874.

Abstract

The integration of users and experts in machine learning is a widely studied topic in arti-

ficial intelligence literature. Similarly, human-computer interaction research extensively

explores the factors that influence the acceptance of AI as a decision support system.

In this experimental study, we investigate users’ preferences regarding the integration

of experts in the development of such systems and how this affects their reliance on

these systems. Specifically, we focus on the process of feature selection—an element that

is gaining importance due to the growing demand for transparency in machine learn-

ing models. We differentiate between three feature selection methods: algorithm-based,

expert-based, and a combined approach. In the first treatment, we analyze users’ prefer-

ences for these methods. In the second treatment, we randomly assign users to one of the

three methods and analyze whether the method affects advice reliance. Users prefer the

combined method, followed by the expert-based and algorithm-based methods. However,

the users in the second treatment rely equally on all methods. Thus, we find a re-

markable difference between stated preferences and actual usage, revealing a significant

attitude-behavior gap. Moreover, allowing the users to choose their preferred method

had no effect, and the preferences and the extent of reliance were domain-specific. The

findings underscore the importance of understanding cognitive processes in AI-supported

decisions and the need for behavioral experiments in human-AI interactions.
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3.1 Introduction

As artificial intelligence (AI) becomes increasingly powerful through advances in com-

puting power, improved algorithms, and the availability of more data, its prevalence

expands across a wide array of fields and life situations (Aoki, 2020; Cetinic and She,

2022; Deranty and Corbin, 2022; Hallur et al., 2021; Makridakis, 2017). In response

to this growing ubiquity, recent research efforts have shifted from solely focusing on

improving the accuracy of AI models to addressing the interaction with a more diverse

and heterogeneous user base, exploring the potential consequences of AI adoption and

understanding users’ preferences and concerns Rudin et al. (2021).

One strand of research focuses on the human user and has observed that user re-

liance on algorithmic decision aids is not uniform and is influenced by various factors

(Jussupow et al., 2020; Mahmud et al., 2022) such as the user’s personality, algorithm

design, task factors, and high-level factors as organizational and societal aspects. The

literature surrounding “algorithm aversion” has documented a stated preference among

users for human decision-making over algorithmic advice and has noted that individ-

ual aspects of AI systems can impact trustworthiness and reliance (Ashoori and Weisz,

2019; Castelo et al., 2019; Jussupow et al., 2020; Mahmud et al., 2022). However, these

results encounter resistance, often described as “algorithm appreciation” that observes

the converse—a stated preference in favor of algorithms (Logg et al., 2019; You et al.,

2022).

Another stream of research has concentrated on the system, enhancing transparency

and explainability as methods to make AI more accessible, comprehensible, and reliable

(Barredo Arrieta et al., 2020). Legal institutions also drive this research landscape. The

increasing presence of AI in society has prompted governments to establish requirements

for greater transparency (Albrecht, 2016; MacCarthy, 2019). These regulations have

led to “black box” models becoming more informative to end users, with implications

for AI reliance among all stakeholders. In addition, interdisciplinary efforts between

computer scientists, social scientists, and ethicists are increasingly encouraged to tackle

the complex challenges posed by AI integration in society (Miller, 2019; Rohlfing et al.,

2020).

Instead of explaining the model or the outcome, recent research discusses other means

of quality control during the development of the AI system, e.g., adding human agency.

The basic idea here is that not every user must be able to understand the system, but

that experts, e.g., domain experts, are involved in the process of machine learning (ML)

development, supervise the system, and add human expert knowledge—resulting in a

more trustworthy ML models for every end user (Sundar, 2020; Sundar et al., 2007;

Waddell, 2019).

Previous research has highlighted the significance of human involvement and its ef-

fect on users’ perceptions, preferences, and reliance. It can be categorized in two ways:

involvement in the development and training (typically beyond the scope of the user)

and the degree to which humans can apply AI, giving the user options on how to utilize

recommendations for their decisions (Jussupow et al., 2020). Limited research has been
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directed towards the former. Ashoori and Weisz (2019) and Jago (2019) demonstrated

that users tend to favor models trained by data scientists or experts instead of those

trained autonomously, without explicitly specifying the nature of the involvement. In a

recent study that inspired our work, Cheng and Chouldechova (2023) involved users at

various stages. They discovered that permitting users to select the training algorithm

can mitigate aversion, whereas modifying the inputs does not. While a detailed descrip-

tion of human involvement may not be necessary in many cases, it can be essential in

highly transparent models, where features are readily visible, such as in scoring systems

(Ustun and Rudin, 2016). The literature review by Jussupow et al. (2020) reveals that it

is important to note that human responses differ between the stated preferences and the

chosen behavioral response, i.e. their actual reliance. While many studies find a strong

preference for human oversight, the revealed preferences in terms of actual behavior as

less clear. In our study, we set out to analyze whether stated and revealed preferences

are aligned.

Although there are many areas for human involvement, in this paper we focus on

the role of human involvement within feature selection. Feature selection is a pivotal

step in the machine learning pipeline. It involves identifying the most relevant vari-

ables from the input data, which can significantly impact the predictive performance

and interpretability of the resulting model (Cai et al., 2018; Guyon and Elisseeff, 2003).

Algorithmic feature selection methods are often criticized for lacking theoretical or ex-

pert knowledge. Consequently, many scholars argue for human-based feature selection

methods or a collaboration of algorithms and humans for feature selection and other

machine learning processes (Guyon and Elisseeff, 2003; Holzinger, 2016; Rudin, 2019).

We contribute to answering this call.

In our study, we distinguish three methods of feature selection: algorithm-based

feature selection (Algorithm), expert-based feature selection (Expert), and a combined

approach (Combination). We seek to answer three research questions:

RQ1 What kind of feature selection method do users prefer?

RQ2 Does the feature selection method affect reliance?

RQ3 Does allowing the user to choose their preferred method affect reliance?

Yet, as far as we know, the question of how feature selection modes contribute to AI

reliance has not been systematically analyzed. Nonetheless, feature selection and human

preferences for feature selection mechanisms are crucial to understanding a model. The

novelty of our study lies in addressing the gap in the literature by examining the effects of

different levels of human integration in feature selection on user preferences and reliance.

To answer our questions, we conducted an online study involving 216 participants.

Our results reveal that Combination was the most preferred, followed by Expert and Al-

gorithm. However, these relationships vary depending on the task domain. Interestingly,

stated preferences do not correlate with behavioral reliance, similar to previous studies

(Rabinovitch et al., 2024; Rebitschek et al., 2021). In a second treatment, we randomly

allocate a new group of users to models whose features are either selected by Expert,
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Algorithm, or a Combination. We observe no significant effect of the underlying fea-

ture selection methods on advice reliance. Moreover, the involvement of participants in

choosing their preferred feature selection method does not affect the reliance. Reliance

is also different across domains. We find a significantly higher probability of reliance

in the medical domain compared to a sports-related domain. Concerning individual

differences, we observe that participants displaying higher risk-taking tendencies prefer

Algorithm and Combination over Expert.

Our study underscores the value of behavioral experiments with incentivized tasks in

understanding human-AI collaboration. It points to the importance of further examining

cognitive processes in decision-making with AI assistance and stresses the challenge and

importance of considering domain-specific effects.

3.2 Related Work

3.2.1 Feature Selection

A critical process in developing ML models is feature selection (Studer et al., 2021).

Features, also called predictors, variables, dimensions, or inputs, can be defined as mea-

surable properties or characteristics of observed procedures or entities (James et al.,

2013; Mera-Gaona et al., 2021). Selecting an appropriate subset of features for an

ML model can significantly impact its performance, interpretability, computation time,

and overfitting risk (Chandrashekar and Sahin, 2014). This is especially relevant for

high-dimensional datasets, which may contain irrelevant and redundant features that

negatively affect the quality of the learned models for stakeholders (Liu and Motoda,

2012). Feature selection can be used for simple tabular datasets, but also for image data,

for example, to improve super-resolution algorithms (Yin et al., 2024) or computer-aided

diagnosis for glaucoma identification (Singh et al., 2024) and cancer prediction (Khanna

et al., 2024).

The domain of feature selection is extensively studied, with the development of var-

ious automated algorithms that aim to select relevant feature subsets from datasets (Li

et al., 2017). Feature selection techniques driven by data can be generally divided into

three categories: filter methods that assess features solely based on the data; wrapper

methods that select features through the predictive capability of a machine learning

algorithm; and embedded approaches such as LASSO regression that come with inher-

ent feature selection processes (Cai et al., 2018). There are also hybrid methods that

show great promise, indicating that research in this area continues to grow (Tiwari and

Chaturvedi, 2022).

Equally relevant to our research is incorporating human knowledge in feature selec-

tion, sourced directly from domain specialists or literature. For instance, Nahar et al.

(2013) demonstrated that features based on a literature review significantly improved

the accuracy of a heart disease classifier. Human knowledge-driven feature selection can

involve researching relevant scholarly literature (Corrales et al., 2018; Nahar et al., 2013;

Wang et al., 2018) or consulting domain experts (Cheng et al., 2006; Moro et al., 2018).
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These approaches are particularly important for model explainability, ensuring that the

selected features do not contradict human knowledge (Shin, 2021).

It is also feasible to combine various approaches. Multiple feature sets, potentially

sourced from different origins, can be aggregated into a singular final set (Bolón-Canedo

and Alonso-Betanzos, 2019; Wald et al., 2012). Additionally, there are interactive

methodologies wherein humans and algorithms collaborate iterative (Bianchi et al.,

2022; Correia and Lecue, 2019). Determining the superior approach among data-driven,

knowledge-driven, aggregated, or interactive methods is challenging due to the variety

of data sets and the vast array of potential combinations (Corrales et al., 2018).

3.2.2 Human-AI Collaboration

Human decision-makers receiving advice from algorithmic systems is not new and has

been studied for many decades (Dawes et al., 1989). With AI systems’ increasing power

and practicality, it has found their way into more and more domains, often surpassing

human judgment, even with simple methods (Mnih et al., 2015; Nori et al., 2023). While

they are not infallible, relying solely on them might yield better results when human

decision-making is generally less accurate. Yet, this approach will still fall short of the

optimal scenario where human and AI decision-making are complementary (Schemmer

et al., 2023; Vasconcelos et al., 2023).

Despite the potential benefits of incorporating algorithmic advice in decision-making

processes, many individuals reject such recommendations (Castelo et al., 2019; Dietvorst

et al., 2015), leading to an underreliance on the advice and, therefore, often to a de-

creased decision-making performance (He et al., 2023). The phenomenon of advice aver-

sion has been extensively studied in human-to-human interactions (Gino et al., 2012)

and, more recently, between humans and AI (Jussupow et al., 2020; Mahmud et al.,

2022). Algorithm aversion, as defined by Mahmud et al. (2022), refers to neglecting

algorithmic decisions in favor of one’s own decisions or those of others, consciously or

unconsciously. The antithesis of algorithm aversion is algorithm appreciation and au-

tomation bias (Logg et al., 2019), potentially causing decision-makers to overrely on

algorithmic advice. This divergence between aversion and appreciation could be partly

attributed to the task’s nature. Factors such as whether the task appears more objec-

tive or subjective from a human perspective (Castelo et al., 2019), or if the employ-

ment of algorithms aligns with prevailing social norms (Bogard and Shu, 2022), may

play significant roles. Recent studies have explored methods to mitigate of overreliance

and underreliance, such as employing cognitive-forcing functions (Buçinca et al., 2021)

and providing XAI explanations (Vasconcelos et al., 2023) with mixed results. For

an overview of empirical work on human-AI decision-making, we recommend a recent

review by (Lai et al., 2023a).

In this regard, we adopt the definition of reliance provided by Scharowski et al.

(2022), which describe it as “a user’s behavior that follows from the advice of the system”.

We emphasize that we are not concerned with whether the reliance is appropriate or

not: In contexts where humans receive advice from AI, decision-making performance
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can surpass that of individuals only when the human accurately discerns and adheres

to correct advice while disregarding erroneous suggestions (Schemmer et al., 2023). Our

study’s objective is not to enhance the performance of AI-assisted decision-making by

optimizing or calibrating the decision makers’ reliance or trust (Wischnewski et al.,

2023). Instead, we view feature selection as a potential factor influencing reliance that

could be considered in optimizing advice-giving systems.

To better understand the factors influencing advice-taking interactions between hu-

mans and AI, numerous studies have investigated the effects of different AI aspects and

advice-taker characteristics. Sundar (2020), in his framework for studying human-AI

interactions, argues that AI elements can serve as cues that trigger cognitive heuristics

during an interaction. These heuristics, which he refers to as “machine heuristics,” can

be perceived positively or negatively and depend on individual differences (Molina and

Sundar, 2022). In their review, Mahmud et al. (2022) group influencing factors into

four categories: task factors (e.g., subjectivity and morality), high-level factors (e.g.,

social norms), individual factors (e.g., fear of change, expertise, and demographics),

and algorithmic factors (e.g., explainability, accuracy, and integration). Jussupow et al.

(2020) similarly categorize factors into algorithm characteristics (agency, performance,

capabilities, and human involvement) and human agent characteristics (social distance

and expertise). Our study focuses explicitly on the feature selection method as a fac-

tor. This process is categorized under algorithmic factors and characteristics. It is also

related to the category of human involvement in AI systems. In our case, this involves

integrating humans as experts and decision-makers in the feature selection process and

also the later interaction between decision-maker and AI.

Jussupow et al. (2020) emphasize distinguishing who is involved in the machine learn-

ing pipeline, whether it is the later end-user or a human developer (e.g., a data scientist)

integrated into the development process. Experiments by Jago (2019) demonstrate that

expert involvement in the training process can enhance algorithm authenticity. Interest-

ingly, participants tend to prefer models trained by data scientists over purely automated

methods, as observed by Ashoori and Weisz (2019), and they do not even differentiate

between prestigious and non-prestigious institutional affiliations (Arkes et al., 2007).

Palmeira and Spassova (2015) found that people prefer a combination of expert judg-

ment and decision aid over expert judgment alone. Their results are similar to Waddell

(2019), who investigated the differences in the perception of human and algorithmic

authors of journalistic articles and found that biases are attenuated when humans and

algorithms work in tandem. Lastly, Cheng and Chouldechova (2023) investigate three

ways in which humans can control AI decisions: altering the input, controlling the pro-

cess (e.g., the learning algorithm), and adjusting the output for the final decision (the

most common type of control in the literature). They found that process and output

control reduce algorithm aversion while input modification does not.

Literature exploring algorithm appreciation and aversion suggests that decision-

makers favor human involvement in the machine learning process and that human in-

volvement decreases algorithm aversion. Consequently, we hypothesize that when given

a choice, users of machine learning models are more inclined to prefer an machine learn-
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ing model that uses features selected by experts rather then by an algorithm.

H1a A expert feature selection method is chosen more frequently than a algorithmic

feature selection method.

A machine learning model that uses a combination of an expert and algorithm fea-

ture selection method can be perceived as a “tandem,” similar to what Waddell’s study

showed about the joint effort of algorithms and humans (Waddell, 2019). The involve-

ment of two parties in this process may lead to a cumulative (Sundar et al., 2007) or a

“double-dose” effect (Lee et al., 2015). Echoing Palmeira and Spassova (2015) findings,

which suggest a preference for combined efforts over sole expert judgment, we hypothe-

size that the model utilizing a combined method will be more favored than the expert

method. Furthermore, we believe that its advice will likely garner the highest level of

reliance.

H1b A combination of expert and algorithmic feature selection methods is chosen more

frequently than an expert feature selection method alone.

We also think that these preferences can be transferred to reliance, allowing us to

formulate hypotheses accordingly:

H2a Advice generated using an expert feature selection method exhibits higher reliance

rates than those generated with an algorithmic feature selection method.

H2b Advice generated using a combination of expert and algorithmic feature selection

methods exhibit higher reliance rates than those generated with an expert feature

selection method alone.

We excluded a variety of feature selection methods here, as we are primarily focused

on the different levels of human involvement, and thus concentrate on three distinct

stages.

Permitting user to choose their preferred feature selection method introduces a form

of control akin to the experiments conducted by Cheng and Chouldechova (2023). Al-

though their results suggest that allowing decision-makers to control the process should

increase reliance, feature selection only influences the input, not the processing of in-

formation, which may not affect reliance. Kawaguchi (2021) found that workers were

more receptive to advice when their predictions were considered. An experiment by

Köbis and Mossink (2021) found that when participants’ opinions were incorporated

into the decision-making process, it decreased AI aversion. Burton et al. (2020) posit

that human-in-the-loop decision-making or even an illusion of autonomy can mitigate

algorithm aversion. Other factors may explain why the participant’s choice might influ-

ence reliance positively. For example, the sunk cost fallacy suggests that participants

who have invested time and effort in choosing a feature selection method may be more

inclined to rely on the model’s predictions to justify their initial choice (Arkes and

Blumer, 1985).

H3 Giving the users choice to choose their preferred feature selection method positively

increases the reliance on the machine learning model’s advice.
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3.3 Methods

We employ a behavioral experiment with a between-subject design and two treatments.

Our experimental design draws inspiration from prior research on human-AI decision-

making processes (Lai et al., 2023a). It incorporates two distinct decision-making do-

mains: Cardio, which focuses on medical diagnoses, and Football, which centers around

estimating soccer match outcomes. In the first treatment Choice, we investigate the

decision-maker’s preference for these methods when given a choice. Second, we compare

this group with another treatment group No Choice, which had no option to choose

their preferred method. The No Choice treatment has three sub-treatments: a human

selects features, a data-driven algorithm selects, or feature selection results from a joint

effort. We assess the decision-maker’s reliance on algorithmic advice in all settings. Do

people also prefer ex-ante to what they will rely on ex-post?

Moreover, in an exploratory manner, we examine the correlation between the charac-

teristics of decision-makers and their preferences and reliance on advice. By identifying

personality traits related to preference and reliance, we aim to augment the existing liter-

ature that has predominantly centered on general trust and reliance rather than specific

aspects like feature selection (Kaya et al., 2022; Mahmud et al., 2022; Rebitschek et al.,

2021; Schepman and Rodway, 2023).

3.3.1 Participants and Treatments

Participants. A total of 265 participants were recruited from Prolific.com between

August 2nd and 18th, 2023. The participants were informed about the study and

data protection before the start of the experiments and gave their consent digitally;

otherwise, they could not participate. The Paderborn University Institutional Review

Board approved the study as part of the research project. Each participant provided

voluntary and digital consent before the start of the experiment. Initially, 16 participants

were excluded due to failing an initial comprehension check, while another 29 withdrew.

Additionally, 4 participants were removed after failing attention checks. Consequently,

the final sample comprised 216 participants for analysis. 129 (59.7%) were women, and

the average age was 34.2. Participants required, on average, 27.3 minutes to finish the

study and earned an average payment of £9.63. We exclusively recruited participants

from the United Kingdom to ensure English language proficiency and a higher likelihood

of a basic understanding of football, one of the task domains. Upon completing the study,

participants received a fixed payment of £5. Additionally, participants received bonus

payments contingent upon the accuracy of their decisions.

Treatments. 109 participants were randomly assigned to the Choice treatment.

In this treatment, participants determined who would be responsible for selecting the

features upon which the advising AI is trained for both task domains. The remaining

107 participants were assigned to the No Choice treatment. Unlike the other treatments,

they were not given a choice between methods; instead, they were randomly allocated

to one.

50



Chapter 3. Evaluating the Role of Feature Selection Methods

3.3.2 Experimental Procedure

The experimental software for this study was developed using oTree (Chen et al., 2016)

and was deployed online. Participants were required to access the study through a

desktop client to minimize the risk of distractions and technical issues. The experiment

itself is an incentivized behavioral experiment that adheres to design principles found

in related literature (Hemmer et al., 2023; Lai et al., 2023a; Zhang et al., 2020).

The study began with an explanation of the data protection policy, followed by the

general instructions for the study (see Instructions in Appendix). Participants were

then presented with multiple comprehension questions, with a maximum allowance of

two incorrect responses for each question.

The main component of the study is the experiment, including the classification

tasks and an advice-giving AI. Participants were asked to perform multiple binary clas-

sification tasks, wherein they were provided with information on decision problems and

required to submit answers. Participants were awarded additionally £0.20 for each

correctly solved task. Upon completion, participants completed a survey to collect de-

mographic and personality information.

A Judge-Advisor System (JAS), commonly employed in advice-taking research, was

utilized in the experiment (Gino et al., 2012). Within the JAS, the participant (acting

as the decision-maker) is presented with a decision problem. The participant makes an

initial decision based on the information provided for the problem. After submitting this

initial decision, an advisor (in this case, a machine learning model) offers advice. The

participant then makes a subsequent decision, allowing them to reconsider and possibly

modify their initial decision by incorporating the advice as they see fit. Moreover, for

each initial decision, participants were prompted to rate their confidence on a slider

input ranging from 0 (absolutely not confident) to 100 (very confident), with the default

value set to 0 (Liu and Conrad, 2019). It is central to note that the decision and the

advice are presented on the same scale. Screenshots of the decision pages can be found

in Screenshots in the Appendix.

A subtle but important distinction between our study and many prior studies in

the JAS literature is that advice was provided only when they deviated from the initial

decision. In other JAS experiments, the decision problems often involve regression tasks

with cardinal answers, making it more likely for discrepancies between the participant’s

decision and the advice. However, since our study focuses on binary decisions, offering

advice that aligns with the initial decision seems redundant and offers little to no insight

(Schemmer et al., 2023). In a pre-study involving ten students, we observed that when

their initial decision matched the advice, an alternation of the participants’ decisions

did not happen. This appears quite logical: typically, one would only diverge from

the advice (that mirrors their own belief) if there’s a firm conviction of its inaccuracy.

Omitting advice when the advice would only confirm the respondents’ initial choice was

more efficient. Participants learned they would only revive advice when their initial

choice and that AI recommendations would diverge. Participants were briefed about

this approach in the instructions.
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3.3.3 Classification Domains and Machine Learning Models

Domains and Tasks. To guarantee the generalizability of our study and reduce the

influence of domain-specific effects, we utilized two distinct domains for the decision

problem tasks that participants performed during the experiment. These two problems,

labeled as and are derived from publicly available datasets.

The Cardio problem is a classification task that involves predicting the presence of

cardiovascular disease using patient characteristics and symptoms. The dataset for this

problem consists of 70,000 patients. The second classification problem, Football, focuses

on determining whether the home team in a football match won or not, based on match

statistics. The original dataset contains 4,070 matches.

These datasets were selected carefully to ensure comprehensibility for the experi-

ment’s participants regarding the decision problem and the incorporated features. Fur-

thermore, we sought a diverse set of domains to avoid domain-specific results, as the

domain can influence advice reliance due to different task-related factors. For instance,

humans exhibit higher aversion for tasks perceived as more subjective than objective

(Bonnefon and Rahwan, 2020; Castelo et al., 2019) or when facing morally relevant

decisions, particularly in legal or medical fields (Bigman and Gray, 2018).

We opted for 20 tasks for each domain to allow participants to become more familiar

with the decision problem and experience multiple advice-receiving instances. Previous

studies have observed that algorithm aversion tends to weaken over time (Freisinger

et al., 2022); thus, incorporating multiple tasks should enhance the reliability of our

results. Participants were neither provided with feedback about the correctness of their

decisions between rounds nor the accuracy of the ML models. This was an intentional

choice to focus on the immediate effects of feature selection methods on user preferences

and reliance without introducing additional variables that could influence behavior.

Providing immediate feedback could lead participants to adjust their strategies based

on performance outcomes, potentially introducing noise and confounding the specific

effects we aimed to measure. Instead, they received information about their overall

payment only at the end of the study.

Feature Subsets. To maintain comparability between domains, it was necessary to

standardize the number of features employed in both the tasks and the models across all

three decision problems. Moreover, we needed to provide the models and the participants

with sufficient information to make useful predictions. A vital design aspect of the

experiment was to explain to participants that a selection of features had occurred and

that a selection could impact the quality of the advice. Participants were given 12

features for solving the classification tasks in each decision problem. Still, only 6 of

the 12 features were used for the ML models, which were shown and highlighted to the

participants. We believe using a subset of the features renders the selection process more

intelligible and pertinent. Although supplying participants with more information than

the models might adversely affect advice reliance, we also contend that decision-makers

in many real-life situations possess a different set of information that could contain more

detail.
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During the experiment, to ensure that all treatments were equal in all aspects ex-

cept the feature selection method, it was also vital that the features used for predictions

remained consistent in all selection methods, guaranteeing that the advice was uniform

across all treatments. We carefully selected the final feature sets employed in the task us-

ing multiple feature selection algorithms. For the two domains, we selected the following

features, with the first 6 in the list being used for the machine learning models:

Cardio: Age, Weight in kg, Body Mass Index, Systolic blood pressure, Diastolic

blood pressure, Cholesterol level, Gender, Height in cm, Glucose level, Smoking status,

Alcoholism, Physical activity.

Football: Offsides away team, Passes away team, Passes home team, Possession home

team in %, Shots away team, Shots home team, Corners away team, Corners home team,

Fouls conceded home team, Offsides home team, Yellow cards away team, Yellow cards

home team.

Machine Learning Model. To train the ML models responsible for the advice,

we employed the XGBoost algorithm, a widely used and highly effective algorithm for

classification and regression tasks (Chen and Guestrin, 2016). To ensure the optimal

performance of our models, we performed model tuning using the grid search method in

conjunction with 5-fold cross-validation. We divided each dataset into a training and a

test set. The training set was utilized for hyperparameter tuning and learning, while the

test set was employed for evaluating the model’s performance. We evaluated the final

models using balanced accuracy. The Cardio model scored 0.74, while the Football model

scored 0.64. Although these scores are not exceptionally high and might be considered

insufficient for practical applications, their impact on the experiment is likely minimal,

as the participants were not briefed on the models’ performance. For the tasks, we

selected observations, ensuring that the model’s accuracy for these specific observations

was roughly equivalent to its performance on the test dataset. The sequence of the two

domains and the order of tasks were randomized for each participant.

3.3.4 Evaluation Measures

Advice Reliance Measurement. In our study, we primarily aim to explore partic-

ipants’ preferences for the feature selection method and how these methods influence

their reliance on the advice. Hereto, we adopt the approach used in two recent studies

(Schemmer et al., 2023; Zhang et al., 2020). As the judgments and advice in these tasks

are binary (e.g., no disease/disease, home team won/home team did not win), we are

particularly interested in instances where the participant’s initial decision is unequal to

the model’s advice. Observing how the participant reconciles the conflicting answers is

interesting in such cases. If the participant alters their belief in the subsequent decision

to align with the advice rather than maintaining their initial decision, we consider this

a reliance on advice. Consequently, the dependent variable is referred to as Switch to

Advice.

Explanatory Variables. We draw upon established scales from various social sci-

ence disciplines to measure individual characteristics. The Big Five personality traits
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(Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism) are mea-

sured using ten items on a 5-point Likert scale (Rammstedt et al., 2014). The lottery

choice task by (Gächter et al., 2022) measures loss aversion. For risk-taking, we rely on

the Global Preference Survey (GPS) by Falk et al. (2022), which uses a scale and multi-

ple preference-related questions. We adopt two scales to measure affinity for technology

(ATI) (Franke et al., 2019) and artificial intelligence (GAAIS) (Schepman and Rodway,

2023). ATI consists of 9 items on a 6-point Likert scale. At the same time, GAAIS

is divided into two dimensions—positive affinity, measured with 12 items, and negative

affinity, assessed through 8 items—both using a 5-point Likert scale.

3.4 Results

The analysis is segmented into two main sections. In the first section, we initially

examine the feature selection methods chosen by participants in the Choice treatment.

The primary aim is to test the first two hypotheses: Do individuals prefer Expert over

Algorithm, and is Combination the most favored? Additionally, we seek to determine if

distinctions exist between the two domains. In the explanatory segment of this section,

we delve into the participant characteristics associated with their choices.

In the second section, we address three hypotheses concerning advice reliance—do

individuals’ ex-ante preferences align with what they end up relying on ex-post? The

dependent variable in this section is Switch to Advice, which denotes instances when

participants amend their subsequent decisions to the AI’s prediction when the advice

diverges from their initial decision. We will consider both the participants of the No

Choice and the Choice treatments. This will allow us to determine if choosing the

methods influences advice reliance for the third hypothesis. In the explanatory segment

of this section, we explore the participant characteristics associated with reliance.

3.4.1 Feature Selection Preferences

General Preferences. During the Choice treatment (N = 109 participants with two

decisions resulting in n = 218) the feature selection method Algorithm was chosen 44

times (20.2%), Expert 70 times (32.1%), and Combination 104 times (47.7%). The

chi-squared test indicates that this distribution significantly deviates from what would

be expected in a random sample (χ2 = 24.917, p < 0.001). Pairwise comparisons

reveal significant distinctions among all three methods: Algorithm vs. Combination

(χ2 = 23.324, p < 0.001), Algorithm vs. Expert (χ2 = 5.93, p = 0.015), and Combination

vs. Expert (χ2 = 6.644, p = 0.001). Figure 3.1 illustrates the distribution of the

selections.

Preferences between Domains. Based on these findings, one might accept hy-

potheses 1a and 1b, which posit that Expert is preferred over Algorithm and that Com-

bination is favored over Expert. However, when examining the data segregated by do-

mains, it becomes evident that participants’ preferences are more nuanced and not as

straightforward. In Cardio, Algorithm was chosen 18 times (16.5%), Combination 51
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Figure 3.1: Distribution of the chosen feature selection methods

times (46.8%), and Expert 40 times (36.7%). Once more, we note that the distribution

significantly deviates from that of a random sample (χ2 = 15.541, p < 0.001). Unlike

in the analyses conducted on the entire dataset, the pairwise comparison reveals that

the difference between Combination and Expert is no longer significant (χ2 = 1.33,

p = 0.25). Still, the differences between Algorithm and both Combination (χ2 = 15.783,

p < 0.001) and Expert (χ2 = 8.345, p = 0.004) are statistically significant. In Football,

a distinct pattern is observed: Algorithm was chosen 26 times (23.9%), Combination 53

times (48.6%), and Expert 30 times (27.5%). Once again, the distribution significantly

diverges from that of a random sample (χ2 = 11.688, p = 0.003). Combination was

significantly more favored compared to both Algorithm (χ2 = 9.228, p = 0.002) and

Expert (χ2 = 6.373, p = 0.003), but no significant difference is found between Algorithm

and Expert (χ2 = 0.285, p = 0.593). Figure 3.2 illustrates the selection distributions for

both domains. To determine if participants’ first and second choices were independent,

we examined the distribution of preferences for these choices. Our comparison showed

no significant differences (χ2 = 2.138, p = 0.343). This independence in preferences was

observed irrespective of whether Cardio (χ2 = 4.092, p = 0.129) or Football (χ2 = 1.561,

p = 0.458) was the first domain in the experiment. While the general analysis allows us

to accept both hypotheses H1a and H1b, we point to domain-specific differences that

influence the relationships.

Exploration of Characteristics. Regarding personality characteristics, we found

using two multinomial logistic regression models (Table 3.1) that age is negatively asso-

ciated with a preference for Expert when compared to Algorithm (β = 0.038, SE = 0.02,

p = 0.06) and Combination (β = 0.032, SE = 0.017, p = 0.06). Neuroticism is posi-
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Figure 3.2: Distribution of the chosen feature selection methods by domain

tively associated with an increased preference for Combination when compared to Ex-

pert (β = 0.469, SE = 0.233, p = 0.045) and Combination to Algorithm (β = 0.754,

SE = 0.264, p = 0.004). Risk-taking is positively linked with an augmented preference

for both Algorithm (β = 1.616, SE = 0.687, p = 0.018) and Combination (β = 1.458,

SE = 0.557, p = 0.009) over Expert.

3.4.2 Advice Reliance

Descriptive Statistics. In contrast to the previous section, we now utilize data from

both treatments, so we observe 216 participants from Choice and No Choice together.

The machine learning models outperformed the participants in the classification tasks.

Their predictions were correct in 65% of the Cardio and in 60% in Football tasks.

Participants initially decided correctly in 54.69% of cases (Cardio: 63.40%, Football :

46.37%). The initial decision aligned with the models’s prediction in 69.11% of instances

(Cardio: 73.22%, Football : 65.00%). In scenarios where the initial decision did not align

with the models’s advice, participants were correct 37.69% of the time (Cardio: 47.02%,

Football : 30.55%). Conversely, the models’s advice was accurate 62.31% of the time

in these situations (Cardio: 52.98%, Football : 69.44%). Participants chose to switch

their decisions to follow the models’s advice in 44.77% of these cases (Cardio: 53.93%,

Football : 37.77%). As a result, the overall accuracy rate in advice-receiving situations

amounted to 47.47% (Cardio: 49.96%, Football : 45.57%).

Reliance Between Methods and Treatments. While these results indicate

that participants partially rejected the advice and, therefore, exhibited an aversion, it’s

necessary for our research question to examine how reliance depends on the underlying

feature selection method and the participant’s choice. Figure 3.3 shows the distribution

of Switch to Advice across the three methods, distinguishing between both treatments,

Choice and No Choice. Additionally, Figure 3.4 segregates the data further, delineating

the results for both domains.

56



Chapter 3. Evaluating the Role of Feature Selection Methods

Expert Algorithm Combination
Feature Selection Method

0%

10%

20%

30%

40%

50%

60%

70%
Sh

ar
e 

of
 'S

wi
tc

h 
to

 A
dv

ice
'

Switch to Advice by Feature Selection Method with 95% CI

Treatment
Choice No Choice
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Expert Algorithm Combination
Feature Selection Method

0%

10%

20%

30%

40%

50%

60%

70%

Sh
ar

e 
of

 'S
wi

tc
h 

to
 A

dv
ice

'

Cardio

Expert Algorithm Combination
Feature Selection Method

Football

Treatment
Choice No Choice

Switch to Advice by Feature Selection Method and Domain with 95% CI

Figure 3.4: Switch to Advice by feature selection method and domain with 95% CI

57



Variable Algorithm Combination Combination Expert

Base Category Expert Algorithm
Cardio -0.714† (0.408) -0.358 (0.325) 0.356 (0.378) 0.714† (0.408)
Male -1.051* (0.500) -0.485 (0.396) 0.566 (0.456) 1.051* (0.500)
Age 0.038† (0.020) 0.032† (0.017) -0.006 (0.018) -0.038† (0.020)
Big 5 Extraversion -0.004 (0.245) -0.043 (0.189) -0.038 (0.232) 0.004 (0.245)
Big 5 Agreeableness -0.105 (0.316) -0.221 (0.249) -0.116 (0.279) 0.105 (0.316)
Big 5 Conscientiousness -0.334 (0.293) 0.039 (0.227) 0.373 (0.274) 0.334 (0.293)
Big 5 Neuroticism -0.288 (0.288) 0.466* (0.233) 0.754** (0.264) 0.288 (0.288)
Big 5 Openness 0.032 (0.248) -0.103 (0.199) -0.135 (0.225) -0.032 (0.248)
Loss Aversion -0.137 (0.150) -0.095 (0.124) 0.042 (0.137) 0.137 (0.150)
Risk Taking 1.619* (0.687) 1.458** (0.557) -0.161 (0.620) -1.619* (0.687)
ATI 0.221 (0.267) 0.085 (0.204) -0.137 (0.243) -0.221 (0.267)
GAAIS Positive 0.278 (0.371) 0.357 (0.296) 0.079 (0.353) -0.278 (0.371)
GAAIS Negative 0.391 (0.338) 0.053 (0.264) -0.338 (0.308) -0.391 (0.338)

n (Choices) 218
N (Participants) 109
Pseudo R2 0.0812

The first two models use Expert as their base category, while the third and fourth use
Algorithm. Standard errors in parentheses. † p<0.1, * p<0.05, ** p<0.1, *** p<0.01.

Table 3.1: Multinomial logistic regression for feature selection method preferences

We employ mixed-effects logistic regression models (Table 3.2) to analyze whether

the methods influence reliance. The regressions incorporate a random intercept for each

participant, accounting for the multiple observations per individual. For the pairwise

comparisons, we alternately set Expert and Algorithm as the reference categories. We

include a dummy variable for the Choice treatment and the Cardio domain, the number

of rounds, the self-reported confidence in the initial decision, and variables representing

participant characteristics.

We note 2,669 instances where participants received advice from the AI, as advice

was provided only when they deviated from the initial decision of the participants. Both

models demonstrate that the respective methods do not have a significant effect on

reliance. Furthermore, the option to choose a method also has no influence. Therefore,

we reject the hypotheses H2a, H2b, and H3.

A significant domain effect is evident through a significant positive coefficient for

Cardio (β = 1.008, SE = 0.099, p < 0.001), a pattern also reflected in our descriptive

analysis. This corresponds to a marginal effect of 17.98 percentage points.

Analyis of Covariates. As the coefficient for the number of tasks is also insignif-

icant, we don’t observe any time trends. This was expected as the participants had

no feedback during the task. A notable association exists between participants’ self-

reported confidence in their initial decision and advice reliance (β = −0.028, SE =

0.004, p = 0.000). As confidence in one’s decision diminishes, the reliance on the AI’s

advice grows—for each unit (on a scale from 0 to 100), the likelihood of change in

the subsequent decision falls by 0.49 percentage points. Regarding personality and

demographic attributes, we do not observe any gender-specific effects. However, a sig-
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Variable Switch to Advice

Expert (Base) / 0.236 (0.199)
Algorithm (Base) -0.236 (0.199) /
Combination -0.017 (0.164) 0.220 (0.189)
Choice 0.154 (0.188)
Cardio 1.008*** (0.099)
Round Number -0.003 (0.004)
Own Confidence -0.028*** (0.003)
Male -0.292 (0.222)
Age -0.020* (0.008)
Big 5 Extraversion -0.065 (0.104)
Big 5 Agreeableness 0.174 (0.103)
Big 5 Conscientiousness 0.202† (0.122)
Big 5 Neuroticism -0.028 (0.116)
Big 5 Openness -0.225* (0.107)
Loss Aversion -0.001 (0.070)
Risk Taking 0.203 (0.280)
ATI -0.042 (0.120)
GAAIS Positive 0.232 (0.165)
GAAIS Negative -0.028 (0.143)
Participant Intercept 1.329 (0.208)
Constant 0.626 (1.253) 0.556 (1.253)

Log-likelihood -1565.109
Wald χ2(23) 185.89
Prob > χ2 0.000
LR test vs. logistic model: χ2(01) 270.53
Prob ≥ χ2 0.000
Observations 2,669
Number of Groups 216

The first model uses Expert as the base category, and the second uses Algorithm.
Standard errors in parentheses. † p<0.1, * p<0.05, ** p<0.1, *** p<0.01.

Table 3.2: Mixed-effects logistic regression for Switch to Advice
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nificant negative relationship emerges between age and advice reliance (β = −0.020,

SE = 0.008, p = 0.017). Each year, the likelihood of advice reliance decreases by

0.36 percentage points. Among the Big 5 personality traits, Openness is a negative

association (β = −0.225, SE = 0.107, p = 0.035).

3.5 Discussion

3.5.1 Main Findings

To begin with, we discover that decision-makers in our experiment prefer the Expert

over Algorithm and favor Combination over Expert. Yet, when separating the data

by the two domains, it becomes evident that the specific domains may have affected

participants’ choices. In the domain where participants classified patients based on

symptoms and characteristics into groups with and without cardiovascular disease, we

find no significant difference between the popularity of Combination and Expert. In

contrast, in determining a home team win based on match statistics, Combination is

significantly the most popular, with Algorithm and Expert being equally favored.

In our analysis regarding the classification tasks, we observe, contrary to our expecta-

tions, no significant effect of the underlying feature selection methods on advice reliance

and no effect of the opportunity to choose the method by the participants. Significant

predictors of reliance are the domain (with a higher reliance in the medical domain),

personal confidence in the decision, and age, both showing negative correlations with

reliance. From the Big 5 scale Openness was negatively associated with reliance.

Together, the findings from our analysis of preferences do not align with those con-

cerning reliance. Given the notable differences in popularity between Combination and

both Algorithm and Expert (especially in one domain), one might anticipate greater

advice reliance on Combination during the classification task. Yet, we observe no effect.

While AI users express their preferences regarding AI characteristics, their ultimate be-

haviors remain largely uninfluenced by these stated preferences. This result is similar

to two previous studies: Rabinovitch et al. (2024) found that participants explicitly

preferred a human advisor over an algorithmic one, but the advice was used equally.

Rebitschek et al. (2021) discovered a discrepancy between the acceptable, perceived, and

actual error rates of algorithms. This can be attributed to various cognitive factors. For

instance, according to dual-process theory (Kahneman, 2011), when asked about their

preferences, participants may have engaged in System 2 thinking, carefully evaluating

the perceived benefits of the three options. However, during the actual decision-making

process, they likely reverted to System 1 thinking due to the complexity of the task and

the cognitive load. As a result, they may have paid less attention to the subtle details

of the feature selection methods. Another possible explanation is social desirability bias

(Nederhof, 1985), which could have led participants to perceive the combined feature

selection method as the most advanced, and therefore, the most acceptable option.

In conjunction with the unobserved selection effect, these results resonate with the

findings of Cheng and Chouldechova (2023). Their research suggested that while choos-
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ing the training algorithm can alleviate algorithm aversion, modifications to the informa-

tion utilized by the algorithm do not offer similar mitigation. Our results partly confirm

the framework by Jussupow et al. (2020), as in our study, humans state a preference for

human involvement in AI development by asking humans to (partly) select the features.

However, we find no evidence that this stated preference also unfolds its effects when

humans face AI advice. Gogoll and Uhl (2018) found a comparable trend: while their

participants leaned towards delegating tasks to humans over machines, their trust did

not differ.

3.5.2 Secondary Findings

In addition to the relationships of the treatments analyzed, our results indicate that

other factors, notably the task domain and the users themselves, play a significant role.

Our results indicate caution when analyzing human-AI collaborations, as results may

be artifact-specific. Utilizing a self-reported scale for risk-taking behavior (Falk et al.,

2022), a multinomial model shows that participants displaying higher risk-taking tenden-

cies exhibited a preference for Algorithm and Combination over Expert. This inclination

might be explained by the “Diffusion of Innovations” theory—historically, early adopters

of novel technologies tend to be more risk-prone (Dale et al., 2021; Wejnert, 2002). If

Expert is perceived as more conservative, then a method incorporating or entirely based

on algorithms might be perceived as a more innovative approach.

We observe a significant positive effect of the medical domain on the likelihood of

adjusting the decision toward the AI prediction. Notably, our findings do not entirely

align with previous research on algorithm aversion in medical settings. For instance,

Arkes and Blumer (1985) reported that participants favored physicians who did not

utilize decision aids. Similarly, Longoni et al. (2019) noted a hesitancy towards AI

providers compared to human providers in a medical context. While reliance is typically

linked to perceived risk, and medical decisions usually carry more risk than sports-related

ones, the payoff for both domains is identical, making the risk equivalent. Other factors

contributing to the differences in reliance could include perceived AI competence in each

domain or participants’ own confidence in their classification abilities. However, in this

case, we observed higher confidence among participants in the medical domain.

Our analysis indicates a significant negative correlation between the decision-makers’

confidence and their reliance on AI, consistent with prior experimental findings (Gino

and Moore, 2007; He et al., 2023; Logg et al., 2019). The inverse relationship between a

participant’s age and reliance diverges from findings by Ho et al. (2005), who determined

that older adults exhibited a higher trust in decision aids. Similarly, Logg et al. (2019)

discovered a consistent appreciation for algorithms irrespective of age. Gender was not a

significant predictor, as in the study byLogg et al. (2019). The reported inconsistencies

may be partially attributed to the rapid integration of AI into society. This is because

algorithm aversion and appreciation can be understood through normative processes

(Bogard and Shu, 2022) and long-term learning effects (Freisinger et al., 2022).
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3.5.3 Limitations and Implications

One potential reason for the missing differences in reliance between the methods might

be due to a manipulation that is too subtle. There’s a possibility that the methods’

signals are too faint within the task to detect an effect corresponding to the significant

differences observed in preferences. Despite this, the presentation mirrors real-world sce-

narios where detailed explanations of AI feature selection methods are rarely provided.

Participants were able to review the selected features during the tasks, unlike during the

method selection phase. This visibility allowed them to reasonably assess the selection’s

validity, likely comparing it with their judgment. Consequently, the feature selection

method information likely serves as only a minor indicator of the selection’s validity,

possibly leading to the observed results. Future studies might consider not displaying

the features, although this approach could reduce realism.

Another limitation impacting the generalizability of our findings is the recruitment

of non-professional decision-makers from an online participant pool instead of domain

professionals. While we acknowledge that expertise is crucial in many real-world ap-

plications, using lay participants offers important advantages, especially in the context

of fundamental research like ours. Lay participants provide an opportunity to study

baseline human-AI interactions without the influence of pre-existing domain-specific

knowledge, allowing us to isolate general behavioral patterns related to trust, prefer-

ences, and reliance on AI systems. Future studies could build on this foundation by

replicating the experiment with domain experts to enhance the real-world applicability

of our findings.

Nonetheless, it is plausible that domain experts would not yield substantially differ-

ent outcomes. On the one hand, the literature reveals that the same biases are preva-

lent among both laypeople and experts (Butler et al., 2021; Kynn, 2008). On the other

hand, a meta-analysis shows that in human-AI collaboration experiments, there are no

differences in decision-making performance between professional and non-professional

participants (Vaccaro et al., 2024). We believe that, in addition to expertise in one’s

own domain, experience in machine learning and feature selection is also needed to form

a strong opinion. With only domain experience, we expect similar results as seen with

laymen, both concerning the preference for human oversight and the reliance on AI

advice.

Another way to expand the research in this study would be to shift the focus from

short-term interactions to long-term time horizons, exploring how preferences and re-

liance evolve over time. Long-term research has often been avoided in the human-AI

literature due to its empirical challenges, but previous studies suggest the presence of

temporal effects (Freisinger et al., 2022).

By examining algorithm-based, expert-based, and combined feature selection ap-

proaches, we offer fresh insights into how human involvement shapes user trust, pref-

erences, and reliance on AI-driven decisions. Our findings highlight the nuanced and

complex relationships between human involvement and user behavior, revealing that

the degree of human input can significantly influence perceptions of transparency and
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trustworthiness, yet these perceptions may not always translate into greater reliance on

the system. We reveal a significant attitude-behavior gap, known in many disciplines

and for many instances: While humans reveal strong stated preference for human over-

sight ex ante, individuals are equally likely to rely on AI advice, independent of human

oversight.

Our results have practical implications, especially when transparency is essential in

decision support systems and there is a lack of trust towards them. Those overseeing or

designing AI systems could communicate that the data the AI uses was selected from a

joint effort between human experts and algorithms. However, they also need to consider

individual traits. As AI systems are often developed in this way, making this known

might align with users’ preferences, potentially increasing the likelihood of using these

systems and leading to better decision-making outcomes.

3.6 Conclusion

AI-supported decision-making is becoming increasingly relevant in everyday contexts,

making it essential to understand the factors that influence human-AI interactions.

While researchers advocate for greater transparency and explainability, it raises ques-

tions about how users perceive different elements. In this paper, we focus on two critical

aspects: human involvement and feature selection, both central to many ML models.

Our findings suggest that decision-makers tend to prefer a combination of human and

algorithmic feature selection methods. However, we also discovered that neither the

methods themselves nor the decision-makers’ involvement in choosing these methods

significantly influences reliance. These insights underscore the complexity of human-

AI interactions and highlight the importance of behavioral experiments in this field of

research.

3.7 Appendix

3.7.1 Data and Analysis

Experimental data and analysis scripts can be found at

https://osf.io/z2xpy/?view_only=90607651bed949d29593c4a176d6c96d

Dataset for the Cardio domain:

https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset

Dataset for the Football domain:

https://www.kaggle.com/datasets/pablohfreitas/all-premier-league-matches-20102021

3.7.2 Instructions

“Dear Participant, Thank you for your interest in our study. This page will provide

you with a detailed set of instructions to guide you through our study. Please read this

carefully before starting.
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Study Overview In this study, you aim to make correct decisions in 40 classification

tasks in two domains. In each task, you will be presented with 12 pieces of information

to decide. The more correct decisions you make, the higher your bonus payment will

be.

Artificial Intelligence During this task, you will be supported by an Artificial

Intelligence (AI). The AI has been trained on a large dataset and can make recommen-

dations for your decisions. The AI, like all other AIs, is not perfect, there is no guarantee

that the AI’s recommendations are correct. Note that while you will have access to 12

pieces of information in each round, the AI can only utilize 6.

if Treatment == No Choice:

The 6 pieces of information that the AI utilizes have been pre-selected by

if Method == Algorithm:

an algorithm.

else if Method == Combination:

an algorithm and an expert in the respective domain

else if Method == Expert:

an expert in the respective domain.

end if

else if Treatment == Choice:

How the six pieces of information have been pre-selected depends indirectly on you

for each domain. On the page where the domain details are explained, you can choose

if the information should be pre-selected by an algorithm, an expert in the respective

domain or a combination of both.

end if

If the AI’s recommendation differs from your initial decision, you will have the op-

portunity to reconsider your decision on a new page. Remember, your goal is not to

reach a consensus with the AI but rather to make the most correct decisions.

Payment You will receive a fixed payment of £5 for participating in the study.

There is a performance-based bonus that depends on the correctness of your decisions.

In each round, you can earn an additional £0.20 when your decision is correct. With a

total of 40 rounds, the maximum bonus payment is £8. You will not receive immediate

feedback about the correctness of your decisions. However, at the end of the study, you

will receive an overview of your bonus payments.

Survey Upon completion of all domains and their task rounds, you will be asked

to complete a survey. This survey will include questions about your personality, your

knowledge of the domains, and your experience with AI systems.

Comprehension Check To ensure that you have thoroughly understood these

instructions, you will need to answer a set of comprehension questions. Please be aware

that if you fail to answer one out of these questions correctly after three attempts, you

will be unable to continue with the study.”

3.7.3 Screenshots
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Figure 3.5: Screenshot of the initial decision page

Figure 3.6: Screenshot of the subsequent decision page.
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Chapter 4

An Empirical Examination of the
Evaluative AI Framework

This paper was created in sole authorship. It has been submitted to the International

Journal of Human-Computer Interaction and is currently under review. A preprint

version is available at https://arxiv.org/abs/2411.08583.

Abstract

This study empirically examines the Evaluative AI framework, which aims to enhance

the decision-making process for AI users by transitioning from a recommendation-based

approach to a hypothesis-driven one. Rather than offering direct recommendations, this

framework presents users pro and con evidence for hypotheses to support more informed

decisions. However, findings from the current behavioral experiment reveal no signif-

icant improvement in decision-making performance and limited user engagement with

the evidence provided, resulting in cognitive processes similar to those observed in tra-

ditional AI systems. Despite these results, the framework still holds promise for further

exploration in future research.
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4.1 Introduction

In recent years, AI has gained substantial attention for their increasingly sophisticated

performance in various applications (Cao, 2022; Dell’Acqua et al., 2023; Pichai, 2024;

Rajpurkar et al., 2022). However, their significant limitation compared to simpler meth-

ods is their commonly opaque “black box” nature, making it difficult to understand how

inputs generate outputs (Guidotti et al., 2018). This is particularly problematic in high-

stakes areas like medicine, economics, or law, where understanding the decision-making

process is crucial (Rudin, 2019). As a result, the lack of transparency and compre-

hensibility often leads to distrust and underreliance among potential users, despite the

accuracy of these decision-support systems (Jacovi et al., 2021; Mahmud et al., 2022;

Zhang et al., 2020).

This challenge has spurred the development of several explanatory methods and a

surge in interest in Explainable AI (XAI). Initially, it was hoped that XAI would enhance

understanding and trust in AI models, thereby improving decision-making quality among

users. However, as summarized by recent studies (Bertrand et al., 2023; Lai et al., 2023b;

Rogha, 2023; Schemmer et al., 2022, 2023; Vasconcelos et al., 2023), the results are

mixed. While XAI might indeed improve understanding (Ribeiro et al., 2018), higher

transparency can make models less comprehensible (Poursabzi-Sangdeh et al., 2021).

Explanations can improve subjective perception (Bertrand et al., 2023), but also might

increase cognitive load (Ghai et al., 2020; Herm, 2023; You et al., 2022) and reduce

efficiency (Lai et al., 2023b). This has led to a situation where users often engage

superficially with explanations and develop an overreliance on AI (Bansal et al., 2021;

Buçinca et al., 2021; Chen et al., 2023; Chromik et al., 2021), shifting from the original

problem of underreliance.

Given that AI is not infallible and often makes better decisions than humans (Mnih

et al., 2015; Nori et al., 2023), a calibrated level of trust is essential for a trade-off that

encourages user to rely more on AI, while avoiding blind trust (Vered et al., 2023; Wis-

chnewski et al., 2023). To address the issue of overreliance, various strategies have been

developed, such as cognitive forcing functions (Buçinca et al., 2021) and user-adapted,

selective explanations (Lai et al., 2023b). This paper discusses another approach to im-

prove human-AI interaction: the Evaluative AI framework proposed by Miller (2023).

Critiquing the limited success of existing XAI methods, Miller argues that these methods

do not align well with the cognitive processes involved in decision-making. He suggests

a paradigm shift from recommender-driven systems to a hypothesis-driven approach,

based on the Data/Frame Theory (Klein et al., 2007) and abductive reasoning (Peirce,

2009), to better support decision-makers in exploring hypotheses rather than receiving

direct recommendation by AI.

This study empirically investigates the effectiveness of the proposed framework in

enhancing decision-making by examining its impact on performance, efficiency, and sub-

jective perception. The focus is on one specific element of the framework: offering

evidence for and against potential option without providing direct recommendations.

Rather than giving a recommendation and explaining it, the framework refrains from
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making any recommendations. Instead, it offers evidence supporting and opposing each

option, which is only displayed if requested by the decision-maker. This studies research

question is:

RQ Can a decision support system that offers evidence for and against potential options,

without providing direct recommendations, improve the decision-making process?

Currently, only three studies directly apply Miller’s framework: Castelnovo et al.

(2023) developed a contrastive explanation technique for ranking classifications, and

Le et al. (2024b) created a tool for image classification, though neither has undergone

empirical testing.

During the development of the present study, an empirical evaluation by Le et al.

(2024a) was conducted, comparing a hypothesis-driven approach with recommendation-

driven and explanation-only methods. They found that the hypothesis-driven approach

improved decision quality without increasing decision time, and participants cognitively

engaged with the evidence, thereby considering the uncertainty of the underlying mod-

els. This current study differs in several respects. Compared to Le et al. (2024a), the

task here is significantly more objective and realistic for participants. While their task

involved classifying a subjective house price into low, medium, or high using six features,

the task in this study is to estimate whether an income is above or below the median

based on 20 features.

This study provides a more detailed picture, as it includes a control group without

any AI assistance and a group that receives both recommendations and evidence. An-

other difference lies in the incentive design; in this study, more incentive per task was

offered to simulate a higher-stakes situation. In a pretest, it was found that evidence

presented in bar chart format (as used in Le et al. (2024a)) was not well understood,

so textual descriptions of the evidence were added here. Lastly, in Le et al. (2024a)

experiment, low-level evidence was shown by default, which could potentially lead to

anchoring effects and influence the decision-making process. In this study, no evidence

is shown by default, allowing decision-makers the freedom to choose and gives further

opportunities for behavioral analysis.

The results of the present study paint a different picture than those of Le et al.

(2024a). Overall, the findings indicate that the Evaluative AI framework in this experi-

ment did not improve decision-making performance. They also reveal that participants

engaged only superficially with the provided pro and con evidence, despite all AI systems

influencing the decision-making processes leading potentially to cognitive offloading.

4.2 Background and Related Work

The concept of developing explainability methods based on decision-making processes

to create more human-centered XAI is not entirely novel. According to Vered et al.

(2023) XAI researchers fail to align explanations with the human reasoning process.

Vasconcelos et al. (2023) analyze the problem of overreliance from a cost-benefit trade-

off perspective. According to their framework, overreliance can result from a strategic
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decision in which users weigh the value of engaging with a recommendation and its ex-

planation against the potential benefits. Miller (2019) advocated for an interdisciplinary

approach by aligning with established knowledge about explanations in disciplines like

philosophy and psychology. He posited that explanations in XAI should be primarily

contrastive, selective, and tailored to fit the social context.

Wang et al. (2019) also developed a XAI framework, drawing on prior research in

human decision-making. A key aspect of their framework is its emphasis on forward

reasoning, as informed by the hypothetico-deductive model, contrasting with backward

reasoning approaches (Croskerry, 2009; Popper, 2014). This methodology suggests that

forming hypotheses based on available information (forward reasoning) is more effective

than initially devising hypotheses and then seeking confirmation within the data (back-

ward reasoning). In this context, recommender-based XAI systems align more closely

with backward-oriented reasoning, as they present recommendations directly to the user

as initial hypotheses. Gouveia and Maĺık (2024) contend that most AI systems currently

lack the ability to provide explanations based on abductive reasoning. However, they

suggest that Large Language Models (LLMs) could become valuable in this regard in

the future.

Miller (2023) aims to initiate a paradigm shift towards hypothesis-driven XAI with

his framework. He believes that recommender-driven XAI is not aligned with cognitive

thinking processes and thus limits agency, which can be crucial in medium/high-stakes

and low-frequency decisions. He is motivated by, in his opinion, the disappointing re-

sults of previous XAI systems on the decision-making process. This may be because

users engage minimally with the explanations. Some researchers have addressed this

issue and proposed several solutions. Notably, the cognitive forcing functions by Gajos

and Mamykina (2022) and Buçinca et al. (2021), which, while increasing cognitive en-

gagement, do not meet Miller (2023) criteria for a good decision support system.

The framework is built on several decision research theories. For instance, Miller

(2023) uses “cardinal decision issues” (Yates and Potworowski, 2012) to define what

a good decision support system should look like. It should help identify options and

narrow the decision space, identify possible outcomes, assess the probabilities and conse-

quences of these outcomes, and assist in finding a trade-off, making this understandable

for the user. These criteria are connected with theories about cognitive processes dur-

ing decision-making, especially focusing on abductive reasoning—the process of forming

hypotheses and assessing their probabilities to explain observations (Peirce, 2009). Fur-

thermore, Miller (2023) connects this with Klein et al. (2007) findings, that decision-

makers initially intuitively narrow the decision space and then go through all remaining

options, seeking pros and cons for the options.

XAI systems built on this framework should not provide recommendations (e.g., the

patient has disease A). Instead, they should highlight the most likely options (referred

to as hypotheses), such as indicating that diseases A and C are the most probable.

Additionally, they should support the decision-maker in exploring these options by pro-

viding for and against evidence (e.g., it could be disease A because..., but against this

is...). Most importantly, the decision-maker should have the autonomy to decide which
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options to investigate and when.

Several studies address these elements. Cresswell et al. (2024) utilized conformal

prediction to identify the most likely options in an image classification problem, demon-

strating that this approach improved decision accuracy. Lai and Tan (2019) showed

that heatmaps as text classification explanations (although they are not, per se, pro

and con arguments according to the framework) slightly improve user performance with

further gains when combined with recommendations, achieving the best results. Simi-

larly, Lai et al. (2020) highlighted the positive impact of explanations alone but found

no additional benefit from integrating recommendations. On the other hand, Carton

et al. (2020), using an AI that performs worse than humans, found no benefits from ex-

planations, recommendations, or their combination. Buçinca et al. (2021) experimented

with a similar approach where decision-makers could receive recommendations alongside

explanations either on demand or after a waiting period. This method decreased over-

reliance but did not improve performance compared to a baseline XAI condition. Gajos

and Mamykina (2022) found that providing an explanation without the recommendation

led to better decisions and learning gains. Ma et al. (2023) showed that presenting rec-

ommendations when the AI is more likely to be correct for a specific observation, while

still providing the explanation, encouraged participants to think more independently,

resulting in lower overreliance. Spatola (2024) on other hand, found that explanatory

guidance by an AI chatbot did not improve outcomes and that users are often focused

on efficiency, but risk over-assimilation, that can lead to lower performance in the long

term. Finally, as described detaily, Le et al. (2024a) demonstrated that presenting ev-

idence for multiple hypotheses while hiding the recommendation can increase decision

accuracy.

4.3 Method

4.3.1 Overview

To answer the research question of whether the framework’s element regarding evi-

dence for and evidence against can improve the decision-making process, an incentivized

between-subjects experiment was conducted online. A mixed methods approach is used

to quantitatively assess the participants’ behavior and qualitatively understand how they

decided. Participants were asked to probabilistically estimate, based on the 20 personal

characteristics of four individuals, whether each of them earned a net income above the

population median. To do this, participants were instructed to estimate the probability

as a percentage of how likely it was that this was the case. The participants received

a fixed payout of £3, along with a performance-based bonus—the more accurate their

estimates, the higher their bonus payout.

Income estimation is a common task in research studies because it is simple for

participants to understand (Ma et al., 2023; Zhang et al., 2020). This task is especially

useful when large sample sizes are needed, as recruiting experts in a specific field can be

challenging. Therefore, laypeople are often recruited instead.
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Since Miller (2023) sees the Evaluative AI framework as applicable in medium/high-

stakes and low-frequency decisions, the number of tasks participants were required to

complete was intentionally set to four. While similar studies use more tasks (such as 12

(Le et al., 2024a) or 14 (Buçinca et al., 2024)), this study aims to create a higher-stakes

situation artificially by offering a relatively high potential bonus payment per task.

A simple logistic regression is used as the AI model. The output of the trained model

is shown as a recommendation. SHAP (SHapley Additive exPlanations) (Lundberg and

Lee, 2017) was used to generate pro and con evidence, classifying individual personal

characteristics into supporting or opposing arguments. For better understanding, SHAP

values were displayed both graphically and as text.

To empirically test whether AI, based on the evaluative AI framework as proposed,

can improve decision quality, participants were randomized into five groups. In the first

group, which served as the control group, participants worked without any assistance,

while in the other four groups, participants received different forms of AI as decision

support.

The specific treatment groups are explained in the section on Experimental Condi-

tions, followed by a description of the hypotheses metrics used for the empirical evalu-

ation in Hypotheses and Dependent Variables. The experiment’s procedure, from the

participant’s perspective, is detailed in Procedure. The sections on Dataset and Re-

gression Model for Income Assessment describe the dataset used for the task and the

AI developed. Finally, the recruitment of participants is discussed in Participants. The

experiment was preregistered before data collection1. The ethics board of the University

of Paderborn approved the research project.

4.3.2 Experimental Conditions

The participants in the experiment were randomly assigned to one of the following

groups:

• In the Control group, participants completed the task alone without any assistance.

• In the Recommendation Only group, participants received only AI recommenda-

tions.

Below the features and the input field for the estimated probability, the AI assis-

tance was displayed: “The AI suggests a probability of x%”.

• In the Evidence Only group, participants received all evidence for and against each

option directly.

Evidence for and against was presented side by side. At the top, a bar chart with

the normalized SHAP values and feature values was displayed, and below that, a

text describing the AI’s evidence was shown.

• In the Recommendation and Evidence group, the AI resembled a classical XAI

system where both the recommendation and the evidence were displayed directly.

1https://osf.io/k2jhf
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In this case, the recommendation is displayed at the top, with the pro and con

evidence shown below it.

• The Evaluative AI group, that represented the framework, is similar to the Evi-

dence Only group, but participants do not receive the evidence directly, but choose

when to view it. Two buttons were displayed, allowing participants to view the

pro and con evidence separately. The possible click times were tracked.

Multiple screenshots of the experimental interface can be found in Screenshots in

the Appendix.

4.3.3 Hypotheses and Dependent Variables

Decisions and decision-making processes can be evaluated in various ways (Lai et al.,

2023a). This study follow previous work and primarily focus on the performance of the

decisions, meaning how good the decisions are, the efficiency, meaning how much time

is required to make the decisions and cognitive load, meaning how much cognitive effort

is required for the decision. Based on the framework, the first hypothesis is:

H1 The best decisions are made in the Evaluative AI group.

The performance of these probabilistic estimations will be evaluated using the Brier

score (Brier, 1950), which considers the estimated probabilities and the actual incomes.

This approach was also used by Le et al. (2024a). Compared to simple binary yes-or-no

decisions, probabilistic responses allow for directly measuring participants’ confidence,

thereby providing a more detailed answer. Let pi be a participant’s estimated probability

that the income of individual i is above the median, and let oi be the actual outcome,

where oi = 1 if the income is above the median and oi = 0 if the income is below the

median. The Brier score is then defined as:

1

N

N∑
i=1

(pi − oi)
2

where N is the total number of individuals in the task. Thus, the better the assess-

ments, the lower the score.

Based on their Brier score, participants receive a bonus payment as a monetary

incentive. With random guessing—always indicating 50%—the Brier score would be

0.25. At this score (and above), the bonus payment is £0. The lower the Brier score,

the higher the payout, up to a Brier score of 0, which corresponds to £6.

H2 The slowest decisions are made in the Evaluative AI group.

It is also plausible to assume that such a AI system will require more time. On

one hand, participants in Evaluative AI might choose to forgo the assistance entirely or

partially, which should lead to a shorter decision time compared to the condition where

the pros and cons are fully visible from the start. On the other hand, in Evaluative

AI , there is an additional decision on whether to view the evidence, which takes time.
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The dependent variable, time, is calculated here as the average time participants need

to complete the tasks.

H3 The highest cognitive load is observed in the Evaluative AI group.

As speculated by Miller (2023), such a decision aid system requires more effort from

the user. Therefore, it can be expected that the cognitive load will increase. This is

similar to the hypothesis regarding time; although there is less information available

at the start, there are more decisions for the participant to make. Cognitive load is

assessed subjectively using the NASA-TLX scale (Hart, 2006; Schuff et al., 2011). This

is done once after the tasks are completed.

4.3.4 Decision-Making Process

To understand how the participants arrived at their decisions within the experimental

task, a qualitative component was added. After completing the task, participants were

asked to describe their decision-making process in words. The exact question was:

“Please describe your decision-making process for the previous estimates. How did you

make your decisions?” This was a mandatory field. For the analysis, qualitative content

analysis was used to classify the responses. This allows us to quantify the statements and

identify further differences between the treatments (Mayring, 2015). The classification

was carried out by the author with the assistance of the LLM GPT-4o (Chew et al.,

2023; Tai et al., 2024).

4.3.5 Procedure

Start. The experiment was conducted online using oTree software (Chen et al., 2016).

Participants were recruited through Prolific and directed to the experiment via the

platform. They were first required to enter their Prolific ID, read the privacy policy,

and then complete a survey on demographic data.

Introduction. The participants were randomly assigned to one of the five treat-

ments. The study began with a general instruction (see subsection 4.8.1). Participants

were then given 5 comprehension questions (4 in control condition), with a maximum

of two incorrect responses allowed per question. If participants incorrectly answered

at least one of these comprehension questions three times, they were disqualified from

continuing the study. In such cases, participants were instructed to return their sub-

missions to the Prolific website, and their data were excluded from subsequent analyses.

The instructions and questions were structured according to the treatment. Next, the

explanation of the personal characteristics of the individuals to be assessed within the

experimental task was provided. In addition to the explanation, the average values of

the features were also displayed. The instructions and the explanation of these charac-

teristics could be accessed during the task.

Experimental Task. Participants were introduced to four individuals one after the

other and, based on their personal characteristics, were asked to estimate the likelihood

(in percentage) that each individual earned a net income above the median. Participants
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adjusted their percentage estimate using a slider, which was initially set to a default value

of 50%. Participants received feedback on their estimates only after the fourth round.

Depending on the treatment, the AI assistance was displayed below if available, the

recommendation was shown first, followed by the pros and cons on the left and right

sides, respectively.

Desicion-Making Process. After completing the tasks, participants were asked to

describe their decision-making process during the task. For this purpose, a mandatory

free-text field without a character minimum or maximum was provided.

NASA-TLX. Finally, participants completed the NASA-TLX questionnaire.

4.3.6 Dataset

While many previous studies that also used income estimates relied on the widely used

adult dataset (Becker and Kohavi, 1996), a new dataset was compiled for this study.

This dataset is more recent and includes additional variables.

The data used comes from the SOEP dataset (Goebel et al., 2019). The sample

for this experiment includes 7,708 individuals, all of whom are neither retired nor un-

employed. The SOEP data can be requested from the German Institute for Economic

Research (DIW), and the code for generating the dataset and model is available in the

public repository.

The dataset was divided into a training sample, which was used to train the AI

(logistic regression), and a test sample, which was used to evaluate the AI. From the

test sample, an experimental sample of 20 individuals was randomly selected (under the

condition that the AI performs similarly on this sample as it does on the entire test

sample and that the sample is sufficiently diverse). From these 20 individuals, 4 were

randomly assigned to participants for the experimental task.

The dataset contains the following variables: Body weight, Body height, Is male, Age,

Has part-time work, Work change last year, Time pressure at work, Sick days last year,

Number of children, Married, Divorced, Smoking, Drinks alcohol, Eats meat, Student or

PhD, Has university degree, Health status, Interested in politics, Health satisfaction, Life

satisfaction.

4.3.7 Regression Model for Income Assessment

For this task, a simple logistic regression model was used as AI (more complex learning

algorithms, such as XGBoost, did not lead to any significant improvement). The trained

model achieved an ROC AUC of 0.85 and a Brier score of 0.155 on a test dataset. In

the experimental sample, a ROC AUC of 0.83 and a Brier score of 0.178 was obtained.

If one were to use a decision threshold of 50%, one would be correct in 15 of 20 cases.

The model’s generated class probabilities for each individual were used as recommen-

dations. For and against evidence is based on SHAP. SHAP can generate feature-based

and local explanations for the output of models. In this case, for each individual being

assessed, it generates a value for each characteristic, indicating the extent to which that

characteristic contributes to the output. Positive contributions are considered positive
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evidence, while negative contributions are considered negative evidence. These contri-

butions are displayed separately in bar charts.

Figure 4.1 shows the average absolute SHAP values of the features across the 20

individuals in the experimental sample.
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Figure 4.1: Mean absolute SHAP values for features across the 20 individuals in the experimental sample

Similar to Buçinca et al. (2024), the SHAP-based pro and con evidence were con-

verted into text form and displayed below the bar charts. The SHAP values and the

actual values were taken into account in this process. Since the dataset was standard-

ized, the features were comparable. The LLM GPT-4o was used to convert the numerical

pro and con evidence into text (the code can also be found in the online appendix).

4.3.8 Participants

The experiment was conducted in October 2024. Participants were recruited from the

platform Prolific. The Paderborn University Institutional Review Board approved the

study.

Before recruiting participants, the required sample size was computed in a power

analysis for a ANOVA using G*Power (Faul et al., 2007). To correct for testing mul-

tiple hypotheses, a Bonferroni correction was applied. The default effect size f = 0.25

(i.e., indicating a medium effect) was specified, with a significance threshold α = 0.005

(i.e., due to testing multiple hypotheses), a statistical power of (1 − β) = 0.9, and the

investigation of 5 different experimental conditions/groups. This resulted in a required

sample size of 375 participants for the study.

Since the SOEP data used in this study comes from the German population, only

participants from Germany were recruited. Additionally, the study was conducted in

German, which meant that only participants who are fluent in German were recruited.

To ensure high-quality participation, only participants with an approval rating of over

95% and who had completed at least 50 studies were selected.
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4.4 Results

The collected experimental data (excluding participants’ personal data) and the analysis

codes are available in the online appendix. The analysis was conducted using Python

with various packages, and the complete list with version numbers is also available in

the online appendix. All p-values reported here were adjusted using the Bonferroni

correction.

For the experiment, a total of 439 participants were initially recruited. Of these,

21 were excluded due to failing the comprehension questions, and 42 others voluntarily

withdrew at various points. One participant was removed because they did not provide

an answer to the question about their decision-making process. This resulted in the

final number of 375 participants, matching the number required according to the power

analysis.

250 (66%) of the participants were male, and the average age was 32.7 years. On

average, participants received a bonus payment of £1.79. The distribution of participants

across the groups was not entirely even: there were 62 participants in Control , 77 in

Recommendation Only , 64 in the Evidence Only , 81 in Recommendation and Evidence,

and 91 in Evaluative AI .

4.4.1 Decision Performance

Brier score is used to determine the decision performance—the better the estimates,

the lower the score. Figure 4.2 illustrates the average Brier scores per treatment with

95% confidence intervals. While random guessing would result in a score of 0.25 and

the logistic regression on the experimental sample achieved a score of 0.178, only the

participants in Recommendation Only performed better on average (M = 0.173, SD =

0.098). The second best was Evidence Only (M = 0.185, SD = 0.09), followed by

Control (M = 0.2, SD = 0.098) and Recommendation and Evidence (M = 0.201,

SD = 0.115), with Evaluative AI being the lowest (M = 0.23, SD = 0.139). The

statistical testing of the differences for the first hypothesis followed the analysis steps

proposed by Sawyer (2009). The Shapiro-Wilk test indicated that the data were not

normally distributed, so the non-parametric Kruskal-Wallis test was used. According to

this test, there is no significant difference between the groups in terms of the Brier score

(p = 0.154), and therefore, H1 is rejected.

4.4.2 Decision Time

Decision time was measured as the average time participants took from the start of a

task to the submission of their estimate. There were no major outliers that needed to

be removed from the data. Figure 4.3 illustrates the average decision times in seconds

per treatment with 95% confidence intervals. Significance bars indicate significant dif-

ferences between the treatments. Participants in Recommendation Only (M = 41.198,

SD = 24.58) and in Control (M = 41.343, SD = 27.458) were the fastest, followed

by Evaluative AI with a larger difference (M = 51.736, SD = 25.915), Evidence
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Figure 4.2: Mean performance (Brier Score) by treatment. Error bars denote the 95% confidence
intervals. Horizontal dashed lines indicate benchmarks for AI Model (red) and Random Guess (green)
performance.

Only (M = 56.406, SD = 26.997), and Recommendation and Evidence (M = 57.185,

SD = 27.599). The tests for significance followed the same steps as for the first hypothe-

sis. Again, the Shapiro-Wilk test indicated that the data were not normally distributed.

The Kruskal-Wallis test showed that significant differences exist between the groups

(p < 0.001). Dunn’s post hoc test indicated significant differences between Control and

Evidence Only (p < 0.01), Recommendation and Evidence (p < 0.001), and Evaluative

AI (p < 0.01), as well as between Recommendation Only and Evidence Only (p < 0.01),

Recommendation and Evidence (p < 0.001), and Evaluative AI (p < 0.01). Although

there are significant differences between the treatments, H2 is also rejected.

4.4.3 Cognitive Load

Cognitive load was assessed subjectively using the NASA-TLX scale, and the average

values with confidence intervals are shown in Figure 4.4. Participants experienced the

lowest average cognitive load in Control (M = 0.264, SD = 0.12), followed by Recom-

mendation and Evidence (M = 0.27, SD = 0.12), Recommendation Only (M = 0.275,

SD = 0.119), Evaluative AI (M = 0.28, SD = 0.125), and Evidence Only (M = 0.292,

SD = 0.126). The Shapiro-Wilk test indicated that the data were not normally dis-

tributed, and the Kruskal-Wallis test showed no significant differences between the treat-

ments. Therefore, H3 is also rejected.

4.4.4 Decision-Making Process

After completing all four tasks, the experiment participants were asked how they arrived

at their decisions. Figure 4.8 shows the percentage of times participants in each treat-

ment group (excluding Control) mentioned the AI in their decision-making process.

Although AI was mentioned the least in Recommendation Only (37.66%) compared
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Figure 4.3: Mean time taken (in seconds) to complete tasks for each treatment. Error bars represent
the 95% confidence intervals. Significant differences between treatments are indicated by p-values above
the bars.

to Evidence Only (50%), Recommendation and Evidence (53.09%), and Evaluative AI

(50.55%), this difference is not statistically significant according to a pairwise chi-squared

tests.

The participants mostly talked about which features they focused on for their as-

sessment, and this differs significantly between Control and the other groups (pairwise

chi-squared test, always p < 0.001). While in Control , 91.93% of the participants

mentioned at least one feature, the percentages were 66.23% in Recommendation Only ,

59.38% in Evidence Only , 50.62% in Recommendation and Evidence, and 54.95% in

Evaluative AI . An analysis of the number of mentioned features shows a similar pat-

tern. On average, participants in Control mentioned 3.08 features, compared to 2.01 in

Recommendation Only , 1.69 in Evidence Only , 1.89 in Recommendation and Evidence,

and 1.59 in Evaluative AI . The differences between the groups with AI and Control are

also significant according to the chi-squared test (with Recommendation Only , p < 0.05;

otherwise, p < 0.001). Figure 4.5 illustrates the average number of features used by

participants for each treatment.

Figure 4.10 shows the frequency of each feature mentioned in the participants’ de-

scriptions. Over 30% of the descriptions included the features Has university degree,

Age, and Has part-time work. The fourth most mentioned feature was Life satisfaction,

at 16.8%, after which the frequency steadily declines. The distribution per treatment

in Figure 4.6 confirms the observation that features were mentioned more frequently in

Control ; however, there are no major differences between the features and the treat-

ments.
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Figure 4.4: Mean cognitive load, as measured by the NASA Task Load Index (TLX), for each treatment.
Error bars show the 95% confidence intervals.

4.4.5 Usage of Evaluative AI

In contrast to Evidence Only , participants in Evaluative AI were not shown the pro and

con evidence directly; instead, they had the freedom to display them at any time using

buttons. The button clicks were tracked to analyze usage behavior.

Of the 91 participants in Evaluative AI , 57 (62.64%) clicked on the evidence in

every round to display it. The remaining participants were relatively evenly distributed

in terms of the number of clicks during the task. Figure 4.11 shows the distribution of

clicks.

An examination of individual participants shows that, in most cases, they clicked on

both pieces of evidence within a few seconds of each other. Figure Figure 4.7 illustrates

the average time in seconds that participants in Evaluative AI took to view the evidence,

broken down by the four tasks and the two types of evidence. It was also observed that

participants took more time to click on the evidence during the first of the four tasks

compared to the remaining tasks (Kruskal-Wallis test, p < 0.001).

4.5 Discussion

The aim of the present study is the empirical evaluation of the Evaluative AI frame-

work proposed by Miller (2023), specifically focusing on the assessment of pro and con

evidence elements, which contrasts with traditional recommender-driven AI systems.

The results of the behavioral experiment differed from the hypotheses: the AI based

on the Evaluative AI framework did not improve participants’ decision-making perfor-

mance compared to treatments without AI assistance or with other types of AI support.

Decision-making speed was also not the slowest, but it was significantly slower than in

the control group and the group that received only AI recommendations. Cognitive load

was not higher; there were no differences between the groups in this respect. The qual-
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Figure 4.5: Mean number of features mentioned by participants during the decision-making process for
each treatment. Error bars show the 95% confidence intervals. Significant differences between treatments
are indicated by p-values above the bars.

itative analysis of decision-making processes shows that the AI was similarly relevant

for participants across the AI groups. Interestingly, participants often focused on the

available features, and it was found that those without AI assistance discussed these

features significantly more than participants in the other groups.

Performance. The most striking results concern performance. The fact that

73.44% of participants performed better than random guessing suggests that they had

some relevant knowledge and made an effort in completing the tasks. Unlike many stud-

ies that demonstrate AI recommendations can improve performance (Hemmer et al.,

2024, 2021; Malone et al., 2023), especially Le et al. (2024a) conducting a similar evalu-

ation, there was no significant improvement compared to the control group without AI

assistance. One possible explanation could be that the AI was not significantly better

than the participants.

The underlying ML model, however, is on par in quality (with an accuracy of 75%)

with models used in similar studies: Buçinca et al. (2021) and Zhang et al. (2020) also

report 75% accuracy, Wang and Yin (2021) 69%, Bansal et al. (2021) 75–87%, Liu

et al. (2021) 56–84%, and Lai and Tan (2019) 87%. In the control group, 43.55% of

participants outperformed the AI, while in the recommendation-only group, 55.84% did

so, suggesting the potential for complementary human-AI teamwork (Hemmer et al.,

2024).

On one hand, a bad performing AI could explain the lack of significant improve-

ment. On the other hand, observations from other studies indicate that even when AI

outperforms the control group by up to 15.5 percentage points, participants with AI

assistance do not necessarily show better results (Goh et al., 2024). This might stem

from algorithmic aversion (Castelo et al., 2019; Mahmud et al., 2022), though this ex-

planation is inconsistent with the qualitative results, as many participants considered

the AI’s input.
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Figure 4.6: Frequency of participants mentioning specific features during the decision-making process
divided by treatments.

Even though it may seem disappointing from the perspective of the Evaluative AI

framework that performance did not improve, this result aligns with the mixed findings

in XAI research. While the framework itself does not directly focus on explanations but

rather on the overall decision-making process, studies show that the effects of explana-

tions are not conclusive. For instance, while Lai and Tan (2019) and Lai et al. (2020)

found that explanations (with and without recommendations) positively impacted per-

formance, there are also opposing findings: Bansal et al. (2021) reported increased per-

formance due to AI recommendations, but no further improvement from explanations,

and Zhang et al. (2020) similarly found no effect from XAI. One reason could be the

SHAP explanations used; Kaur et al. (2020) found that even data scientists struggled

with bar chart-like tools. To counter this, textual explanations were also provided in

the present study.

Decision Time and Cognitive Load. The fact that participants noticed the ex-

planations is evident in the analysis of processing speed: all groups with explanations

were slower than both the control group and the recommendation-only group. Carton

et al. (2020) reported an increased decision time due to recommendations, but a simul-

taneous reduction with an explanation for the recommendation. Cheng et al. (2019)

and Slack et al. (2019) found that increased transparency costs more time.

Despite differences in decision time, however, there were no significant differences

in subjectively measured cognitive load, contradicting findings by Herm (2023), who

observed a linear relationship between task time and cognitive load. One reason for

the differing result in this study could be that, although there were significant time

differences between treatments with and without explanations, the differences were small

(about 17 seconds on average between Control and Recommendation and Evidence).

This may not be sufficient to place a greater cognitive demand on participants, especially

given that there were only four tasks in total, so the overall time difference was minimal.

Decision-Making Process and Engagement. The qualitative analysis of the

decision-making processes reveals that participants engaged cognitively with recommen-
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Figure 4.7: Mean time taken (in seconds) to click on negative evidence (red) or positive evidence (green),
across the four tasks. Error bars show the 95% confidence intervals. Significant differences between tasks
are indicated by p-values above the bars.

dations and weighed pro and con evidence. First, between 37 and 53% of participants

across various treatments mentioned the AI in their descriptions. More importantly,

participants who had AI support relied significantly less on specific features in their

descriptions. This suggests cognitive offloading (Risko and Gilbert, 2016) may have oc-

curred, along with a potential automation bias (Lyell and Coiera, 2017). Automation

bias leads to uncalibrated use of AI, often resulting in overreliance. Reducing overre-

liance is one of the key motivations behind the Evaluative AI framework. Nonetheless,

participants’ cognitive processes in Evaluative AI did not appear markedly different

from those in other treatments.

One reason for this could be that not all users engaged with the pro and con evi-

dence. 62.6% of participants reviewed both sides of the evidence in all rounds. This

pattern of superficial engagement with explanations is not new (Buçinca et al., 2021).

The lack of interest in provided evidence among some participants could be due to a

degree of algorithm aversion. Even though instructions explained the AI’s performance,

participants did not experience it personally and may therefore have lacked trust. Par-

ticipants may also have made a cost-benefit assessment; according to Vasconcelos et al.

(2023), participants evaluate whether engaging with provided evidence is worth their

time. Although this study attempted to create a high-stakes environment with substan-

tial task-based bonuses, these incentives may not have been high enough to motivate

participants toward deeper engagement.

4.6 Limitations and Future Work

Although the Evaluative AI framework is theoretically well-founded, with Le et al.

(2024a) reporting promising results in similar studies, the present study reveals that
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implementing and examining such a framework in practice is challenging. There are

several points future researchers and practitioners should consider.

Contrary to expectations, no performance improvements could be measured using

an AI system based on the framework. One aspect worth discussing is the fundamental

machine learning model used, along with the generated evidence. The model applied

here did not significantly outperform the participants, which may have contributed to

the absence of notable improvements. Nevertheless, it was comparable to models from

related literature. Even though Goh et al. (2024) noted that improvements are not

guaranteed under these circumstances, this comparison may be an essential baseline to

achieve.

The pro and con evidence should be presented in a way that is clear and accessible to

users. This study found that many participants did not make use of them. While XAI

research offers various options for optimally presenting explanations, research specifically

focusing on hypothesis-driven AI could investigate ways to improve the clarity and

usability of these presentations. Mixed-methods approaches should also be applied to

better understand participants’ decision-making processes.

Another relevant point is the importance of testing AI systems across enough do-

mains to ensure external validity. Previous research has shown multiple times that

results can be influenced by the domains in which they are applied (Bogard and Shu,

2022; Kornowicz and Thommes, 2025; Le et al., 2023).

One further limitation is the use of laypeople for empirical evaluation. Miller (2023)

argued that the framework should ideally be applied in medium/high-stakes situations,

which likely require domain-specific knowledge. Lastly, the decision problem could be

expanded from binary to multi-class decisions. For example, Miller (2023) presents a

diagnostic scenario involving multiple diseases, where several hypotheses can be indi-

vidually assessed.

4.7 Conclusion

The present study examines the effectiveness of the Evaluative AI framework, focus-

ing on the provision of pro and con evidence within a hypothesis-driven AI approach.

Results from the behavioral experiment paint a sobering picture: decision-making per-

formance did not improve; instead, all participants who received evidence from the AI

were slower in making decisions, although cognitive load remained unaffected. Qualita-

tive data indicated that all AI systems led to a form of cognitive offloading and potential

automation bias, with a significant portion of participants engaging only superficially

with the evidence presented.

Although the study questions the empirical validity of the proposed framework, there

are limitations that should be addressed in future research. These include developing

appropriate AI systems, investigating the presentation of pro and con evidence, consid-

ering alternative forms of decision-making, involving domain-specific experiments, and

better simulating high-stakes situations. Despite the present findings, the evaluative AI

framework is a well-conceived model with the potential to be a promising direction for
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AI-based decision support.

Data availability statement

The code for the program software, the experiment data, and the analysis code can be

found online at https://osf.io/7pbt2/.
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Figure 4.8: Percentage of participants mentioning AI for each treatment.
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Figure 4.9: Percentage of participants mentioning features for each treatment. Significant differences
between the Control group and other treatments are marked with p-values (p < 0.001).
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Figure 4.10: Frequency of participants mentioning specific features during the decision-making process.
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Figure 4.11: Percentage of participants who clicked on varying numbers of evidence items (ranging from
0 to 8) in Evaluative AI .

4.8.1 Instructions

Dear Participant,

Thank you for your interest in our study. This page provides you with detailed

instructions to guide you through the study. Please read them carefully before you

begin.

Study Overview

This study focuses on income estimation, where you assess whether a person’s net income

is above the median income. The median income is the point at which half of the

employed population earns more and the other half earns less. In this study, ”above the

median” means that the person’s income belongs to the richer half of the population.
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This involves individuals from Germany. The median income is €1615 net per month.

This includes all employed persons over 18 years old who are not receiving a pension.

You will participate in 4 rounds. In each round, you will receive information about

a real person. Your task is to estimate the probability, using percentages, that this

person’s income is above the median.

At the end of the study, your estimates will be compared with the actual data to

determine whether the person’s income is indeed higher than the median. Based on

this comparison, you will receive a bonus payment. The bonus is calculated using the

so-called Brier Score. For example, if you always say the probability is 50%, the Brier

Score is 0.25, and in this case, you will not receive a bonus. The better your probability

estimates, the smaller the Brier Score and the higher your bonus payment. With a Brier

Score of 0, you have estimated perfectly and will receive a bonus of £6. Regardless of

your performance, you will receive a fixed compensation of £3 for participating in the

study.

[ if treatment is not Control ]

Artificial Intelligence (AI) Support

You will receive support from an Artificial Intelligence (AI) for your income estimates.

The AI was trained using data from over 1,500 individuals to estimate as accurately as

possible whether their income is above the median. The AI is not perfect; it is correct

77% of the time.

[ if treatment is Recommendation Only ] The AI will provide you with recommenda-

tions on the probability that each person’s income is above the median. For example,

the AI might say that it believes the probability is 65%. [ endif ]

[ if treatment is Evidence Only or treatment is Evaluative AI ] The AI will provide

you with arguments for (pro) and against (contra) each person’s income potential to

assist you in your estimation.[ if treatment is Evaluative AI ] You can open the arguments

with the respective buttons. [ endif ] [ endif ]

[ if treatment is Recommendation and Evidence ] The AI will provide you with

recommendations on the probability that each person’s income is above the median.

For example, the AI might say that it believes the probability is 65%. Additionally, it

will provide you with arguments for (pro) and against (contra) the income potential to

assist you in your estimation. [ endif ]

[ if treatment is not Recommendation Only ] The AI bases its arguments on its learned

knowledge and the characteristics of the evaluated individuals. For each characteristic,

the AI indicates whether it is more likely to lead to an income above the median (positive

arguments) or more likely to lead to an income below the median (negative arguments).

Each characteristic of the individuals is rated with a number. The more positive the

number, the more the AI views the characteristic as conducive to an income above

the median. Conversely, the more negative the number, the more the AI views the

characteristic as conducive to an income below the median. These numbers are displayed

separately in bar charts. Additionally, below each chart, there is a text that briefly

explains the arguments. [ endif ] [ endif ]

Survey After completing all task rounds, you will be asked to fill out a survey.
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4.8.2 Screenshots

Figure 4.12: Translated interface in Control : The features with their values are listed at the top, followed
by the input field for the participant below.
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Figure 4.13: Translated interface in Recommendation Only : The features with their values are listed at
the top, followed by the input field for the participant, and below that, the AI recommendation.

Figure 4.14: Translated interface in Evidence Only : Due to space constraints in the screenshot, the
features and input field were not included, only the presentation of the pro and con evidence.
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Figure 4.15: Translated interface in Recommendation and Evidence: Due to space constraints in the
screenshot, the features and input field were not included, only the recommendation and the presentation
of the pro and con evidence.
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Figure 4.16: Translated interface in Evaluative AI : Due to space constraints in the screenshot, the
features and input field were not included, only the button for the con evidence and the already displayed
pro evidence.
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Chapter 5

Towards a Computational
Architecture for Co-Constructive
Explainable Systems

This paper was authored in collaboration with Meisam Booshehri, Hendrik Buschmeier,

Philipp Cimiano, Stefan Kopp, Olesja Lammert, Marco Matarese, Dimitry Mindlin,

Amelie Sophie Robrecht, Anna-Lisa Vollmer, Petra Wagner, and Britta Wrede. It was

presented at the International Conference on Software Engineering at the Workshop on

Explainability Engineering, held in Lisbon, Portugal, April 20th, 2024, and published in

the Proceedings of the 2024 Workshop on Explainability Engineering, pages 20–25. The

published version is available at https://doi.org/10.1145/3648505.3648509.

Abstract

In this paper we consider the interactive processes by which an explainer and an explainee

cooperate to produce an explanation, which we refer to as co-construction. Explainable

Artificial Intelligence (XAI) is concerned with the development of intelligent systems and

robots that can explain and justify their actions, decisions, recommendations, and so on.

However, the cooperative construction of explanations remains a key but under-explored

issue. This short paper proposes an architecture for intelligent systems that promotes

a co-constructive and interactive approach to explanation generation. By outlining its

basic components and their specific roles, we aim to contribute to the advancement of

XAI computational frameworks that actively engage users in the explanation process.
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5.1 Introduction

Recently, it has been argued that no explanation is fit for all purposes, and that expla-

nations in AI systems therefore need to be adapted to the needs of a given explainee

(Sokol and Flach, 2020). Rather than considering an explainee as a mere passive recipi-

ent of an (adapted) explanation, previous research has proposed that explainees should

have a more active role, being able to actively co-shape the explanation in an interac-

tive process (Miller, 2019). A process in which both the explainer and the explainee

interact closely and contingently to jointly negotiate the subject of the explanation, the

explanandum, and what the explanation will look like has been called co-construction

(Jacoby and Ochs, 1995).

While the paradigm of co-construction acknowledges that there is an epistemic asym-

metry between explainers and explainees (i.e., the explainer knows something that the

explainee does not), it postulates an interactional symmetry according to which both

parties enter into a level playing field and collaborate in determining what is to be

explained and how. Co-construction refers to the joint creation, adaptation, and negoti-

ation of individual (but aligned) mental representations, roles, and courses of interaction,

and is a concept rooted in the humanities and social sciences (Jacoby and Ochs, 1995).

In the conceptual framework proposed by Rohlfing et al. (2020), adaptation of an

explanation by the explainer goes beyond personalization for the explainee. In a co-

constructive explanation process, both partners, explainer and explainee, are regarded

as social agents who not only have individual goals, intentions, and expectations but also

construct these and agree on them jointly within the process. The construction allows

the partners to engage actively, intertwining the process of explaining with the process

of understanding. The authors have argued that understanding is a central concept to

explanation as the degree to which an explainee signals understanding should be a central

guide to the explainer in terms of what should be the next move in the explanation

process to maximize understanding of the subject of explanation, i.e., the so called

explanandum. The explanandum is conceptualized as a moving target in the sense that it

is co-constructed as the actual information needs of an explainee might be incrementally

revealed as a product of the interaction rather than being fixed prior to the interaction.

Although co-constructive agents are desired and demanded (Anjomshoae et al., 2019),

there are few recent implementations (Axelsson and Skantze, 2023; Robrecht and Kopp,

2023). In the field of Explainable AI (XAI), self-explaining systems are a common

approach to increase trust and transparency, but they still focus on unpacking the

black box rather than co-constructing the explanation. In contrast to self-explaining

cyberphysical systems (Blumreiter et al., 2019; Fey et al., 2022; Michael et al., 2024),

our approach is not limited to the internal workings of the system, but can also handle

external domains such as explaining board games (Robrecht and Kopp, 2023).

Given the central role of understanding in a co-constructive explanation setting,

the framework proposed by Rohlfing et al. (2020) hinges on two central mechanisms:

monitoring and scaffolding, both known from and studied in developmental settings.

Monitoring and scaffolding are closely linked in a reciprocal loop (Pitsch et al., 2014).

94



Chapter 5. Computational Architecture for Co-Constructive Explainable Systems

Scaffolding performs explanatory actions that are supposed to facilitate understanding.

These explanatory actions are accompanied by expectations regarding their epistemic

impact on the understanding of the explainee, which should be verified by monitor-

ing processes. Monitoring, in turn, provides the basis for understanding the epistemic

gap and planning appropriate explanatory actions to reduce or close it. In the co-

construction process, as articulated by Rohlfing et al. (2020), both parties are assumed

to scaffold each other in order to establish the explanandum and achieve the explanation

goal.

In this short paper, we build on the conceptual framework of co-construction pro-

posed by Rohlfing et al. (2020) and propose a preliminary computational architec-

ture that can provide the basis for implementing co-constructive explanatory processes,

grounded in social science and systems theory. In particular, we focus on specifying the

functions that can be used to implement the mechanisms of monitoring and scaffold-

ing computationally, and provide a mapping to the MAPE-K framework (IBM, 2006).

The work is preliminary and merely represents a hypothesis at this point as no full-

fledged implementations of this architecture exist currently. Future work will thus be

concerned with implementing this proposed architecture and experimentally studying

the properties of co-constructive systems that follow the proposed architecture.

5.2 Conceptual Framework

The core of the conceptual framework proposed by Rohlfing et al. (2020) is the concep-

tualization of explanation as a process that does not involve a unidirectional transfer

of information from the explainer (ER) to the explainee (EE), but as a bidirectional

and iterative process in which both implicitly or explicitly negotiate and construct the

explanandum. Both take an active role and work together to maximize the EE’s un-

derstanding of the dynamically negotiated explanandum. The EE is expected to signal

information needs and the extent to which these needs have been met. The ER, in turn,

must interpret these signals through monitoring to infer the EE’s level of understanding,

the desired or necessary understanding, and the epistemic gap between them.

Monitoring is a mechanism by which the ER collects evidence of the EE’s level

of understanding by observing and interpreting the EE’s verbal and nonverbal signals

online at any given moment of the interaction, thus building a model of what the EE

knows, has understood, or has not understood, in order to plan the next steps in facili-

tating understanding. Several approaches, such as Rational Speech Act Theory (Degen,

2023; Frank and Goodman, 2012) or Theory of Mind (Anjomshoae et al., 2019; So-

dian, 2011; Stacy et al., 2023), which model the user and their expectations, have been

proposed before. Moreover, a monitoring-like strategy has been formalized as a consis-

tency check between the partner model of explainable systems and the beliefs (Fey et al.,

2022), without explicitly stating the mechanism by which the checks are performed. The

mechanisms of monitoring are thus essential for incrementally adapting an explanation

to the needs of the EE (e.g., scaffolding).

Scaffolding refers to the actions the ER takes to facilitate the EE’s understand-
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ing. The ER does this by recognizing the epistemic gap between what ER wants EE

to understand or know and what EE actually has understood or knows. Scaffolding

specifically targets what is known in cognitive psychology as the “zone of proximal de-

velopment” (Wertsch, 1984), which represents those tasks or skills that a learner cannot

yet accomplish on their own but with the help of some environmental support. Scaf-

folding recognizes this zone of proximal development and provides temporary support

that adapts and gradually disappears with development. In the case of explanations,

scaffolding provides temporary support for understanding by closing the epistemic gap

between what the EE knows and what they are expected to know given the current

explanandum.

The conceptual framework formalizes this as follows. The EE has a certain under-

standing or conceptualization of the explanandum at any moment t during the interac-

tion. We refer to this (latent) time-indexed conceptualization as CEEt . The ER also has

a conceptualization of the explanandum, CERt . The explanandum itself can evolve over

time, as well as the ER’s and the EE’s conceptualizations of it. Both parties negotiate—

implicitly or explicitly—the explanandum: this mechanism can be intertwined with the

explanation actions, or can happen before the explanation actions in a sequential fashion.

If such negotiation fails, ER will not be able to correctly identify the EE’s knowledge gap

to be filled with the explanations (Slugoski et al., 1993; Todorov et al., 2000). For exam-

ple, the ER infers the explanandum from the EE’s questions at first. Subsequently, the

ER monitors the partner’s understanding, partial understanding, non-understanding, or

misunderstanding and, through scaffolding, adjusts their explanations (also by changing

the explanandum at hand) (Rohlfing et al., 2020).

The ER needs to monitor the level of understanding of the EE by comparing CEEt

to CERt . As CEEt is not directly observable, the ER has to model what they believe

the EE knows, given the signals that the EE sends. We call these inferred beliefs of

the ER about the EE’s conceptualization BeliefER(CEEt), which can be seen as part of

the ER’s partner model of the EE. In addition, the ER has a model of how the EE’s

conceptualization of the explanandum should ideally change, IntentER(CEEt). Finally,

we denote the model of the expected impact of an explanation action on the EE’s

conceptualization of explanandum as ExpectER(CEEt).

The difference between ExpectER(CEEt) and BeliefER(CEEt) illustrates the ER’s an-

ticipated gap in the EE’s understanding, known as the zone of proximal development.

Using an analogy from mathematics, we can see such a gap as the distance between two

vectors in a vector space, and refer to it as the explanation gradient. Then, the ER’s ob-

jective is to recognize the explanatory move that would move the EE’s conceptualization

along the explanatory gradient best. The ER’s objective is not only to convey informa-

tion to the EE. Notwithstanding that they could share a common ground of information

(Brown-Schmidt et al., 2015), their different social roles imply a knowledge asymmetry.

To consider an explanatory dialogue a success, they need to align their conceptualization

of the explanandum and the level of the EE’s understanding of it (e.g., the magnitude

of the explanation gradient). Our framework proposes an alignment characterized by

two operations: (1) the prediction of the partner’s behavior, and (2) the definition of
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the explanans, which forms the ER’s explanation actions.

The dynamicity of our framework is captured by both of these two mechanisms. On

the one hand, the ER and the EE negotiate the explanandum, where the ER and the EE

agree on the topics of the explanation. On the other hand, we have the changes in the

difference between BeliefER(CEEt) and ExpectER(CEEt). Since the explanation gradient

exists only in the ER’s mental models, it can either increase or decrease. For example,

it may decrease due to a successful explanation and increase when the EE points out

that the ER has not considered an important precondition for the current explanandum.

The the ER’s final objective is to make BeliefER(CEEt) and IntentER(CEEt) collapse.

In the field of human-robot interaction, it has been emphasized that humans con-

struct mental models to decipher robots’ intentions, beliefs, and perceptions about their

environment (Thellman and Ziemke, 2021), as they do with other humans (Malle, 2006).

Inspired by this, BeliefEEt(CERt) serves as the counterpart to BeliefER(CEEt), driven

by ER cues. Here, Thellman and Ziemke (2021) have proposed the distinction between

endogenous and exogenous signals, where the former refers to observable cues that EE

can monitor, and the latter refers to explicit information that ER can signal about its

capabilities.

Our framework aligns with model reconciliation (Sreedharan et al., 2021), defining

explanations as bridging the gap between the EE’s mental model and the ER’s ap-

proximation of it. It shares starting points with the co-construction framework Rohlfing

et al. (2020), where the EE lacks information on the ER’s behavior, and the ER provides

explanations to update the EE’s model.

5.3 Towards a Computational Architecture

We envision the architecture of a system capable of co-constructing explanations to be

centered around models of what the explainer believes the explanandum to be, and

what the explainee already knows or has understood about the explanandum so far.

The processes of monitoring and scaffolding are based on this knowledge. We observe

an affinity between the requirements of our conceptual framework and the MAPE-K

reference model (IBM, 2006; Kephart and Chess, 2003), which was originally developed

for the design of self-managing autonomic systems, but has recently been proposed for

self-explaining systems (Blumreiter et al., 2019; Michael et al., 2024). While it has

emerged in the context of autonomic computing to address the problem of increasingly

complex systems and has focused on self-management rather than interaction, its value

for human-agent interaction (specifically human-robot interaction) has been recognized

over the last years in diverse cognitive architecture approaches (Jamshidi et al., 2019) as

well as for the design and implementation of self-adaptive solutions in various domains

including cloud environments (Oh et al., 2022), unmanned aerial vehicles (Cleland-

Huang et al., 2023), autonomous driving, and traffic management (Gerostathopoulos

and Pournaras, 2019). MAPE-K implements an intelligent control loop that consists

of four primary functions (Kephart and Chess, 2003), which in the initial terminology

are called monitor, analyze, plan and execute, and share common knowledge.
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Figure 5.1: Mapping of the conceptual framework for co-constructive XAI to the MAPE-K functions.

The monitor function collects data from the context and updates the knowledge

component accordingly. Next, the analyze function utilizes the latest knowledge to see

whether an adaptation is necessary. If an adaptation is necessary, the plan function

formulates a plan comprising of one or more adaptation actions. Finally, the execute

function performs the actions based on the adaptation plan.

The four functions are well aligned with our concepts of Monitoring and Scaffolding.

Note that the monitor function is different from our concept of Monitoring in that

it does not include the process of analyzing the perceived interaction elements and

possibly updating the system’s partner or domain knowledge (for details, see below).

Thus, the functions monitor and analyze together realize what in our concept of co-

construction is referred to as Monitoring. Similarly, the functions plan and execute

realize our complex concept of Scaffolding.

Note that this approach is related to previous research where the MAPE-K archi-

tecture has been adapted for self-explaining systems (Blumreiter et al., 2019) that can

answer questions about their past, current, and future behavior at runtime. However,

our concept, and by extension the proposed mapping to the MAPE-K architecture, fo-

cuses on the interactional dynamics between the explainer and the explainee, where the

explainee is actively contributing to the explaining process. This will naturally influence

the necessary design decisions and explanation strategies employed in the proposed ar-

chitecture for the explainer, and the tasks assigned to each component of MAPE-K. A

distinctive aspect of our approach is its emphasis on scaffolding mechanisms—an aspect

that has been under-explored in the field of XAI. In line with this, Vollmer et al. (2023)

have analyzed the scaffolding strategies of humans and discuss how they can be applied

in the field of XAI.

Figure 5.1 shows a mapping of the concepts and mechanisms introduced in our

conceptual framework to the MAPE-K elements. In the rest of this section, we will

elaborate on the responsibilities we assume for each of the MAPE-K functions in relation

to our approach to co-constructive XAI systems. We will employ the running example

of explaining a diagnostic decision made by a medical decision-support system.
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5.3.1 Knowledge

The architecture needs to comprise and structure relevant domain knowledge, knowledge

about the user, and episodic knowledge including interaction history and explanandum

trajectory.

System’s mental models. To act as a co-constructive explainer (ER), the system

needs internal models of the following:

• Knowledge about the explanandum, CERt . In the case of our example this would

be a specific diagnostic decision and the corresponding medical subdomain.

• Belief about what the user knows about the explanandum, BeliefER(CEEt). This

would be the user’s understanding of the diagnosis and what it could potentially be

based on.

• Expectations of what the user knows about the explanandum as a particular ex-

planans is being produced by the system, ExpectER(CEEt). This would be the sys-

tem’s expectation about the user’s understanding of the specific diagnosis, along

with the relevance of the features just offered as a local explanation for it. This

will be closely connected to the user’s previous knowledge. In case the user is a

medical expert, this influences the explanation, as more abstract features can be

used for the explanation.

• Expectations of what the system intends the user to know about the explanandum,

IntentER(CEEt). This would be the system’s view of what the user should know

in order to understand the diagnostic decision. This is an expectation as the

explanandum may also be subject to negotiation.

User properties. In addition to the evolving beliefs about the user’s knowledge (see

above), the system will also need to have information about relevant, more persistent

properties of the user. In our example this would contain global variables, such as the

prior medical knowledge or emotional investment.

Interaction history. The system constantly needs to keep track of the interaction,

e.g., particular explanation moves or feedback signals that were used. The interac-

tion history can simply be a record containing each move with timestamps, possibly

abstracted to only necessary information in case of a more complex or long-term inter-

action. In our example, the information about the steps towards the diagnosis, as well

as the gestures and the user utterances and decisions would be logged to the interaction

history.

5.3.2 Monitoring

The process of monitoring explainees spans the two MAPE-K functions monitor and

analyze.

MAPE-K monitor. MAPE-K’s monitor function collects and interprets data

from ‘sensors’ and context and updates the knowledge accordingly. Specifically, it
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focuses on the more low-level aspects of monitoring explainees’ understanding of the

ongoing explanation, such as interpreting their linguistic or multimodal feedback acts

(Axelsson et al., 2022) or various manifestations of “repair” (Dingemanse and Enfield,

2023) that are often ignored or even discarded in interactive systems. The monitor

function may also scan signals about the user’s cognitive state, e.g., their present level

of attention/distraction, emotional state, etc.

In our example, the user signals uncertainty through a facial gesture (Swerts et al.,

2003) in response to the ongoing system explanation. The monitor function detects

and classifies this cue as ‘user uncertain at time t’, updating the knowledge corre-

spondingly.

MAPE-K analyze. The analyze function uses information about the explainee’s

signaling of (non-)understanding, uncertainty, general cognitive state, etc. collected in

monitoring and reflected in knowledge. It interprets this information in the context

of the ongoing explanation to see if it corresponds to the system’s expectations. The

system’s assumptions in its user model are then updated to what the user has (not)

understood. This may be based on verbal, non-verbal, and/or multimodal information,

and should include forms of partial understanding. The responsibility for verifying the

expected understanding, derived from the expectations generated in the plan function,

is thus delegated to the analyze function.

To continue our example, analyze relates the user’s multimodal cue of confusion

from monitor to the currently discussed information and detects a mismatch with the

system’s expectation.

5.3.3 Scaffolding

The scaffolding mechanism can be realized through the MAPE-K functions plan and

execute. In explanations, scaffolding relates to adapting the explanandum (content

to be explained) as well as the explanans (ways to formulate the explanation) to the

partner’s displays of expectations, beliefs, needs, or epistemic state.

MAPE-K plan. MAPE-K’s plan function generates plans comprising adaptation

actions (Weyns, 2019). It is based on models of what aspects of an explanandum a

user has not understood, does not know yet, or is confused about. It can choose an

appropriate explanation strategy, develop a plan for realizing it through explanatory

moves, and generate verbal or multimodal actions that address the user’s information

needs at different levels: the system can scaffold the user’s attention by eliciting feedback

when the user is distracted or it can scaffold the user’s understanding by repeating

or deepening information that the user indicates difficulty in understanding. Other

examples of adapting the explanation would be reformulating an utterance, adjusting

the modality, using emotional cues, etc. Rohlfing et al. (2020). In addition, the plan

function may choose to use the screening mechanism based on the up-to-date knowledge

acquired after the analyzing step. This mechanism tries to elicit certain reactions from

the user in order to ‘test’ what the user has understood.

In our example, once the analysis of the user confusion is written to knowledge, the
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plan function must adapt the explanation. It would, for example, change the explanation

strategy to explain the confusing information and select visualization as the new strategy.

This strategy would be attached to the information and an image with the information

would be generated.

MAPE-K execute. The task of execute is to perform the actions sketched in

the adaptation plan created by the plan function.

In our example, the execute function would take the visualization from knowl-

edge and generate it for the user.

5.4 Conclusion and Future Work

We have devised a preliminary architecture based on the well-known MAPE-K architec-

ture for autonomous adaptive systems, to support the development of co-constructive

explainable systems along the lines proposed by Rohlfing et al. (2020). The two central

processes of monitoring and scaffolding included in the conceptual framework are real-

ized in this architecture by the monitor/analyze functions and the plan/execute

functions, respectively. Importantly, we have laid out the knowledge structures that a

co-constructive artificial explainer needs to maintain. Future work will address the im-

plementation of the architecture in different use cases and domains. We anticipate that

additional mechanisms might be needed to better synchronize the four functions, allow

them to process data and input incrementally, and coordinate their behaviour more

tightly. Despite the preliminary nature of our work, we hope that our line of thinking

will inspire other researchers to pursue more interactive XAI architectures.
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Chapter 6

Aggregating Human Domain
Knowledge for Feature Ranking

This paper was authored in collaboration with Kirsten Thommes. It was presented

at the 25th International Conference on Human-Computer Interaction, held in Copen-

hagen, Denmark, 23-28 July 2023, and published in the conference conference proceed-

ings Artificial Intelligence in HCI, edited by H. Degen and S. Ntoa, Springer Nature

Switzerland, pages 98–114. The published version is available at https://doi.org/10.

1007/978-3-031-35891-3_7.

Abstract

Human integration in machine learning can take place in various forms and stages. The

current study examines the process of feature selection, with a specific focus on eliciting

and aggregating feature rankings by human subjects. The elicitation is guided by the

principles of expert judgment elicitation, a field of study that has investigated the aggre-

gation of multiple opinions for the purpose of mitigating biases and enhancing accuracy.

An online experiment was conducted with 234 participants to evaluate the impact of dif-

ferent elicitation and aggregation methods, namely behavioral aggregation, mathematical

aggregation, and the Delphi method, compared to individual expert opinions, on feature

ranking accuracy. The results indicate that the aggregation method significantly affects

the rankings, with behavioral aggregation having a more significant impact than mean

and median aggregation. On the other hand, the Delphi method had minimal impact on

the rankings compared to individual rankings.
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6.1 Introduction

In machine learning (ML), ensuring the quality of applications often requires careful

consideration of data representation, particularly in supervised learning. A crucial step

in this process is feature selection, widely recognized as an established element of the

development process (Studer et al., 2021). In this context, a feature can be understood as

a measurable property or characteristic of a procedure or entity that is being observed

(Mera-Gaona et al., 2021). These features may also be called predictors, variables,

dimensions, or inputs (James et al., 2013).

The selection of features aims to improve the predictive accuracy, reduce the learning

speed and costs, and enhance the understanding of the problem (Guyon and Elisseeff,

2003). This is especially relevant for high-dimensional data sets, which may contain ir-

relevant and redundant features that negatively impact the quality of the learned models

for stakeholders (Liu and Motoda, 2012). As the number of dimensions increases, the

number of observations required for a reliable model grows exponentially, a phenomenon

which is known as the “curse of dimensionality” which, for example, contributes to the

gap between the advances in artificial intelligence research and the slower progress in

medical practice (Berisha et al., 2021).

While most feature selection methods are data-driven, meaning they automatically

select or rank features based on a training data set, our research focuses on knowledge-

driven feature selection, specifically, the expert judgment approach (Cheng et al., 2006).

Integrating human expert knowledge in feature selection processes may be relevant in

many instances: Most frequently, the problem is discussed if humans need to understand

the feature ranks for explainability of the model and features ranked to be necessary

should not contradict human knowledge (Shin, 2021). Guyon and Elisseeff (2003) rec-

ommend incorporating domain knowledge to “construct a better set of ad hoc features”.

Human integration may also be needed if humans have superior domain knowledge. For

instance, Nahar et al. (2013) have demonstrated that features based on a literature

review significantly improve the accuracy of a heart disease classifier. Finally, human

involvement in the feature selection process may be necessary if the trained machine

learning model is sensitive to missing values and the likelihood of missing values is not

uniform across all features. For instance, if human experts know that a crucial fea-

ture is frequently missing in a healthcare setting, excluding it from the training may

be advantageous. Missing data may constitute a problem if a model should give ad-

vice, especially when the costs of revealing one feature for a case are not equal and

time corroborates feature elicitation. Still, some features require more resources for col-

lecting relevant information than others, so the likelihood of missing data is not equal.

Knowledge about suitable features can be elicited directly from domain experts. Cheng

et al. (2006) asked three cardiologists to select a subset of available features, compared

their selections individually, aggregated the subsets, and compared the aggregations to

data-driven approaches. However, some previous studies only compare a few judgment

elicitation methods, while others lack a ground truth for ranking quality.

Integrating human knowledge into the ML pipeline is not a new concept. While
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research has shown that the incorporation of expert knowledge can improve the perfor-

mance of ML models and reduce algorithmic aversion (Burton et al., 2020), the devel-

opment, comparability, and reproducibility of these approaches are complex and costly

(Holzinger, 2016). Additionally, there are no standards for querying and integrating this

knowledge.

Asking experts to provide their judgment on a specific topic is not easy, and the liter-

ature around “expert judgment elicitation” highlights the importance of understanding

belief elicitation, probability, and judgment separately and jointly to effectively uti-

lize expert judgments for modeling purposes (O’Hagan, 2019). While this literature

mainly focused on elicitation and aggregation of point estimations, we apply the devel-

oped methods to feature ranking. We examine how different aggregation methods affect

rankings and their quality for ML models.

Our study contributes to interactive ML by being the first to use different methods,

from expert judgment elicitation, specifically behavioral aggregation, and the Delphi

method, for feature ranking. Previous studies in this area have primarily relied on

mathematical aggregation techniques, but our study utilizes a higher sample size and is

the first to do so. This allows for more robust and accurate results, as a larger sample

size can better capture the range of opinions and experiences.

6.2 Related Work

6.2.1 Feature Ranking and Selection

The selection of an appropriate subset of features for an ML model can significantly im-

pact the performance and interpretability of the model. Studies have demonstrated that

by reducing the number of features utilized in a model, the computation time required

to learn the model can be decreased, the risk of overfitting can be mitigated, and the

model can be more easily understood and applied in practical settings (Chandrashekar

and Sahin, 2014). The field of feature selection has been heavily researched, focusing

on developing automated algorithms for selecting a relevant subset of features from a

given dataset. Many of these algorithms are ranking methods that assign a score to

each feature based on a specific metric, such as the correlation between the feature and

the dependent variable or its contribution to the model performance (Li et al., 2017).

These rankings can then be used to select the final subset of features for the model.

Data-driven feature selection methods can be broadly categorized into three types: fil-

ter methods, which rank features based solely on the dataset; wrapper methods, which

evaluate features based on the predictive performance of an ML algorithm; and embed-

ded methods, such as the LASSO regression, which have integrated feature selection

mechanisms (Cai et al., 2018).

In addition to data-driven feature selection methods, utilizing human knowledge for

feature selection can also be done in various ways. Like the different categories of data-

driven methods, features can be filtered by researching relevant literature (Corrales

et al., 2018; Nahar et al., 2013; Wang et al., 2018) or by consulting domain experts
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(Cheng et al., 2006; Moro et al., 2018). Additionally, humans can be actively integrated

into the machine-learning pipeline. For example, in Correia and Lecue (2019), experts

were presented with a few records from the data set and were asked to highlight essential

features, and this feedback was used to weigh features in the learning process. Bianchi

et al. (2022) developed an algorithm that allows humans to vote for different models,

and these elicited preferences were also used for selecting a feature subset.

Another approach to feature selection is to use multiple selection or ranking methods

and aggregate them into a single selection (Bolón-Canedo and Alonso-Betanzos, 2019;

Dittman et al., 2013; Wald et al., 2012). This can be achieved by combining feature

rankings through mathematical operations, such as taking the mean or median, or by

creating a feature subset through the union or intersection of individual subsets. This

approach has been applied in studies where multiple responses from domain experts are

obtained. For instance, Cheng et al. (2006) utilized the responses of three cardiologists

and computed the union and intersection of their selections. In contrast, Moro et al.

(2018) employed an averaging approach for the rankings of three domain experts.

6.2.2 Expert Judgement Elicitation

Integrating one expert in feature selection would be sufficient and most efficient if a

single expert was fully knowledgeable. However, individuals can be missing information

or evaluate information highly biased, leading to non-rational decisions. Using multiple

experts instead of relying on a single expert is justifiable because individuals’ judgments

can be influenced by heuristics and biases such as anchoring, availability of information,

or overconfidence (O’Hagan, 2019). Much past research shows that groups outperform

experts in decision-making because they cancel out biases and individuals can contribute

complementary information (Kugler et al., 2012). Also, utilizing multiple experts and

aggregating their opinions for forecasting purposes has been extensively studied within

the domain of expert judgment elicitation (O’Hagan et al., 2006). As demonstrated

by Wittmann et al. (2014), experts were utilized to examine the ecological impact of

Asian carps on the Great Lakes for policy making, while O’Hagan (2019) solicited expert

opinions on the demand for health services in the UK in 2035. Additional case studies

can be found in a comprehensive review by McAndrew et al. (2021).

By utilizing a group of experts, the potential for these biases can be mitigated, thus

improving the accuracy of forecasts. As in decision-making and policy creation, a single

forecast or a distribution of forecasts is typically required, and the collective opinions

of experts must be aggregated. O’Hagan (2019) identified two distinct approaches for

aggregation: behavioral aggregation and mathematical aggregation. In behavioral ag-

gregation, experts engage in discussion regarding their knowledge and forecasts. In

contrast, in mathematical aggregation, there is no interaction between the experts, and

their forecasts are pooled together through mathematical formulas. Past research finds

ambiguous results in behavioral aggregations: In some instances, a group discussion did

not significantly improve decision quality, e.g., (Kee et al., 2004).

Moreover, decision quality depends on interaction quality, e.g., equal power and
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dissent (Schulz-Hardt et al., 2006). Researchers have developed various protocols to

elicit and aggregate expert judgments to ensure forecasting is as scientifically rigorous

as possible. The Cooke protocol (Cooke et al., 1991) is an example of mathematical

aggregation, in which the experts’ knowledge, measured during the elicitation process, is

considered for the aggregation. A long-standing debate in expert elicitation method, for

instance, also deals with whether incorporating correlations in seemingly independent

judgments improves forecast performance (Bolger and Rowe, 2015; Wilson, 2017) or

whether a simple mean outperforms other measures in most of the times (Genre et al.,

2013). Another process that can enhance forecasts is the Delphi method, employed in

the IDEA protocol (Hanea et al., 2018). With the Delphi method, experts first work

on their forecasts and then receive the forecasts of other experts and can update their

initial responses, which also has some weaknesses, among others, no robustness against

biases (Fink-Hafner et al., 2019).

While there is ample evidence that groups outperform individuals in point estima-

tions, the question remains whether these results are also transferable to feature selection

as the question to be asked is even more complex: Instead of asking “How likely is a

specific event in the future?” or “What is the most likely event in the future?”, the

question to be asked is “What information should be used to predict the future?”.

6.2.3 Combining Feature Ranking with Expert Judgement Elicitation

While traditional methods of expert elicitation focus on point estimations and proba-

bilistic distributions, feature selection deals with other data structures, such as sets and

rankings. One commonality between these two areas is that the answers are typically

ensemble or aggregated to a single final solution in cases involving multiple experts or

algorithms. Mathematical aggregation is an established procedure for data-driven fea-

ture ranking, as demonstrated by studies conducted by Wald et al. (2012) and Dittman

et al. (2013), where both showed that aggregation techniques perform comparably well.

However, only a limited number of studies have applied this method to rankings based

on human knowledge, as such rankings are often derived from literature or single ex-

perts. One notable exception is the study conducted by Moro et al. (2018), in which

three experts were selected to minimize bias. Their rankings were averaged, similar to

the approach adopted by Cheng et al. (2006), where the union subset of expert judg-

ments performed better than the whole set of features. Behavioral aggregation plays a

relatively minor role in designing ML models. In the study by Seymoens et al. (2019),

potential decision support system users were interviewed in a manner akin to behavioral

aggregation.

As the number of human-in-the-loop approaches in ML increases (Chen et al., 2022;

Kerrigan et al., 2021), eliciting and aggregating domain knowledge efficiently can be

beneficial in creating unbiased, more performant, and more relevant decision models.

Our study investigates different elicitation and aggregation methods for feature ranking

with a larger sample of human participants in various domains. The results of our

research can be particularly valuable for developing human-in-the-loop, interactive ML
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approaches.

6.3 Materials and Methods

6.3.1 Online Experiment

To answer our research question, an incentivized behavioral experiment was conducted

in November and December of 2022 on the recruiting platform Prolific1. The study,

“Ranking Information,” was programmed using oTree (Chen et al., 2016) and deployed

online. It was conducted in English and targeted participants in the USA and UK.

In total, 234 participants successfully participated in our study. The average age

of the participants was 37.1 (SD = 13.0), with 118 (50.4%) identifying as male and

199 identifying their ethnicity as white. Although the study was limited to participants

living in the UK and USA, a majority of 214 stated their nationality as UK, only eight

as US, and 12 had other nationalities.

The instructions for the Prolific study were designed to be as accessible as possible for

non-technical individuals. The instructions explained that computers utilize information

to generate recommendations for decision-makers and that it is beneficial for computers

when features are ranked according to their importance. Participants were asked to

rank the five domains’ most important to least important features. The corresponding

ML problem was succinctly explained for each domain by identifying the decision and

the available information used to make it.

The experiment had three treatments: (1) Individual ratings (for comparison and

also for the mathematical aggregation methods), (2) behavioral aggregation with a chat

function, and (3) group rankings via the Delphi method. Treatments (1) and (2) were

conducted in the same web version, where participants individually ranked the features.

Afterward, some participants were randomly selected to rank in groups while chatting

about the best ranking with two other experimental participants. Participants could

modify their rankings using a drag-and-drop function, making the changes visible to all

group members. They could proceed if all group members reached a consensus on the

rankings. The Delphi method (3) followed a similar structure: Participants first ranked

the features individually and then received rankings from two other participants who

had participated in the two previous treatments of the experiment. For each subject in

this treatment, two random participants were allocated and remained consistent across

all domains.

In our experiment, thus a total of 234 participants were recruited. Of these, 114

participants underwent only individual ranking of features, while 90 were subjected to a

second treatment, following individual ranking. The second treatment formed 30 groups

of three participants, which were utilized for behavioral and mathematical aggregations.

The 114 participants from the first treatment were randomly assigned to groups of

three for mathematical aggregation to ensure parity in group size with the behavioral

aggregation groups. Additionally, 30 participants completed a Delphi version treatment,

1https://www.prolific.com/
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in which they underwent individual ranking followed by a subsequent ranking, where

they could see rankings of two participants from the other treatments.

We used the two simple operations for mathematical aggregation, mean and median,

but other functions are possible (Dittman et al., 2013; Wald et al., 2012). The average

feature ranking inside a group was computed in the mean aggregation. For median

aggregation, we computed the median value of the feature rankings within a group. The

aggregated rankings were then sorted according to these values. In cases of ties, the

features were sorted alphabetically based on their abbreviations used in the dataset.

To ensure reproducibility and guard against potential p-hacking, the random seed of

Python’s random module was set to 42 for all computations. This approach ensures

that random variations do not influence the results in allocating participants to groups.

6.3.2 Incentivation

As compensation for completing the study, participants received a fixed and a bonus

payment based on the “quality” of their rankings. Since there is no objective ground

truth for feature ranking, a proxy ranking was used for incentivization. This process

entailed running simple linear and logistic regressions with all domain features, sorting

the regressions’ normalized coefficients as rankings and using these rankings as ground

truth for comparison with the participants’ rankings using Spearman’s foot rule (Dia-

conis and Graham, 1977). The smaller the distance between the participant’s rankings

and the regression rankings, the higher the bonus payment received by the participant.

For each domain ranking, participants could earn £0.50.

Besides the bonus payment, participants were compensated with a fixed payoff con-

tingent upon the treatment received. The fixed amount was established to ensure that

the participants received a payoff following the minimum compensation standards set by

Prolific. Participants in the first or second treatment received a fixed payment of £2.50
for their contributions. Participants who completed the ranking task in the group for

the behavioral aggregation received an additional fixed payment of £6.50. Participants
subjected to the Delphi method received a fixed payment of £5.00. It is worth noting

that Prolific members were only permitted to participate in the study once.

6.3.3 Experimental Task

To ensure the generalizability of our study and minimize the impact of domain-specific

knowledge, the aggregation methods were evaluated using five different decision-making

problems based on variant datasets. The selection of these datasets was done with

utmost care to ensure they were easily comprehensible for the participants of the Prolific

study in terms of the decision problem and the features incorporated. The datasets

were also chosen to possess an appropriate number of features to enable variation in the

ranking task while ensuring that the task was not excessively prolonged or challenging

in the group-based component of the study. The rankings for the different domains were

completed in the following order: housing, cardio, football, covid, cars.
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The first decision-making problem, housing2, is a regression problem to predict the

prices of houses in USA by utilizing various characteristics of the house. The dataset

includes 1460 observations and 80 features, from which 16 were selected for the ranking

task. This dataset has been subject to numerous studies, with a notable example being

the use of feature importance algorithms in Greenwell et al. (2018). We selected the

following features for the study: Above ground living area size, Basement size, Car

capacity in the garage, Central air conditioning available, Condition of the basement,

First-floor size, Lot size, Number of bathrooms above ground, Number of bedrooms above

ground, Number of fireplaces, Number of kitchens above ground, Pool area, Quality of

kitchen, Second-floor size, Total rooms above ground, Year built.

The second decision-making problem, cardio3, is a classification problem to predict

cardiovascular disease by utilizing patient characteristics and symptoms. The dataset

includes 70,000 observations and 12 features, with all features selected for the ranking

task. Various feature selection algorithms on this dataset have been comparatively

analyzed in Hasan and Bao (2021). We selected the following features for the study:

Age, Alcohol intake status, Body Mass Index, Cholesterol level, Diastolic blood pressure,

Gender, Glucose level, Height, Physical activity, Smoking status, Systolic blood pressure,

Weight.

The third decision-making problem, football4, includes 4070 observations and 114

features and is used for the classification of whether the home team in a football/soccer

match wins based on match characteristics. We selected the following 17 features for

the study: Corners away team, Corners home team, Fouls conceded away team, Fouls

conceded home team, Offsides away team, Offsides home team, Passes away team, Passes

home team, Possession home team, Red cards away team, Red cards home team, Shots

away team, Shots home team, Tackles away team, Tackles home team, Yellow cards

away team, Yellow cards home team.

The fourth decision-making problem, covid. includes 696 observations and 11 fea-

tures and is about the classification of Covid-19 disease based on patient symptoms.

This dataset is not publicly available. We selected the following features for the study:

Contact with an infected person, Cough, Digestive problems, Fatigue, Fever, Headache,

Limb pain, Loss of smell, Respiratory symptoms, Sniffles, Sore throat.

Lastly, the cars decision-making problem includes 1218 observations and eight fea-

tures. It is about predicting the prices of used German cars. The dataset was obtained

by scraping a German car-selling platform. We selected the following features for the

study: Carbon emission, Fuel consumption, Fuel type, Horsepower, Mileage, Number of

previous owners, Transmission type, Year of first registration.

2https://www.kaggle.com/c/house-prices-advanced-regression-techniques
3https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset
4https://www.kaggle.com/datasets/pablohfreitas/all-premier-league-matches-20102021
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6.4 Results

The evaluation and ranking of models is a complex task that various goals and objec-

tives can influence. While the primary objective of developing new ML algorithms is

to improve model performance, there are instances where other factors, such as inter-

pretability, are also considered. This is particularly relevant when humans are involved

in learning or when models are used in human decision-making processes. In such sce-

narios, the interpretability, practical feasibility of the models, and individual preferences

become critical factors in their use and deployment. Consequently, it is not only neces-

sary to evaluate the performance of models based on rankings generated through differ-

ent aggregation methods but also to assess the degree to which these rankings vary from

individual opinions. To this end, we propose to analyze the rankings generated by ML

models in three ways. Firstly, we will evaluate how rankings change through different

aggregation methods and compare the resulting aggregated rankings. Secondly, we will

analyze the accuracy of the models resulting from the ranking of different groups and

aggregation methods. Finally, we will combine these two approaches by using feature

importance methods to generate importance rankings and compare them to rankings

based on human input.

6.4.1 Differences Between Rankings

We first examined the influence of aggregation on rankings and the differences in rankings

between aggregation methods. To descriptively measure the distances between rankings,

we utilized Spearman’s foot rule (Diaconis and Graham, 1977). There are other methods

for comparing rankings (Ekstrøm et al., 2015; Kumar and Vassilvitskii, 2010) however,

we found that Spearman’s foot rule provided a clear and concise measure of distance. To

make it possible to summarize the distance across domains that had different numbers

of features, we normalized the distance between 0 and 1 by dividing the values by the

maximum possible distance in the respective domain.

Table 6.1 shows the computed differences. We observed that both the behavioral

and mathematical aggregations impacted the rankings. The average distance from the

individual rankings to the behavioral aggregation was 0.32 (SD = 0.19), which was

nearly the same to the distances for the mean aggregation (M = 0.30, SD = 0.11) and

median aggregation (M = 0.28, SD = 0.14). We used the Mann–Whitney U test to

determine if the differences in the ranking change between the aggregation methods are

significant. Behavioral aggregation produced a significantly greater change in rankings

compared to the mean (z = 1.76, p = 0.04) and median aggregations (z = 4.42, p < 0.01).

Additionally, mean aggregation resulted in a significantly greater change in rankings

than median aggregation (p = 5.31, p < 0.01). The Delphi process only slightly changed

the rankings with an average distance of 0.09 (SD = 0.14).

Although the distances between the initial rankings and the aggregated rankings

were similar, the direction of the aggregations could still vary, leading to different

rankings between the aggregations. We tested the significance of these differences
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Group Total Housing Cardio Football Covid Cars

Behavioral 0.32 0.29 0.37 0.37 0.27 0.31
Aggregation (0.19) (0.16) (0.19) (0.12) (0.15) (0.18)

Mean 0.30 0.28 0.34 0.34 0.26 0.29
Aggregation (0.11) (0.09) (0.12) (0.11) (0.10) (0.13)

Median 0.28 0.25 0.32 0.31 0.24 0.27
Aggregation (0.14) (0.11) (0.14) (0.13) (0.12) (0.16)

Delphi 0.09 0.09 0.07 0.13 0.06 0.09
Update (0.14) (0.13) (0.11) (0.21) (0.11) (0.12)

Table 6.1: Mean distance and standard deviation (in parentheses) between aggregation method and
individual rankings by domain

using the Wilcoxon signed-rank test. The average distances between behavioral and

mean aggregation (M = 0.23, SD = 0.11), behavioral and median aggregation (4)

(M = 0.22, SD = 0.13), and mean and median aggregation (M = 0.14, SD = 0.07)

were all statistically greater than zero (p < 0.01).

6.4.2 Performances

The performance of rankings generated by different aggregation methods was evaluated

by training ML models and comparing their prediction accuracy. The ML algorithm

computations were performed using the scikit-learn library (Pedregosa et al., 2011). To

account for individual rankings of features, which most supervised learning algorithms

do not consider, we trained models on different sizes of feature subsets. For each do-

main, three different subset sizes were used to represent approximately 25%, 50%, and

75% quantiles of the number of available features (Effrosynidis and Arampatzis, 2021).

For example, in domain housing, which had 16 features, we used subsets of the sizes 4,

8, and 12. Following the method proposed by Hasan and Bao (2021), all feature values

were first normalized to the range between 0 and 1. Three different classes of algorithms

were selected for the learning process: Regressions, Decision Trees (Breiman, 2017), and

XGBoost (Chen and Guestrin, 2016). Given the presence of three classifications and

two regression problems, the appropriate version of each algorithm was used, such as

LinearRegression for regression problems and LogisticRegression for classification prob-

lems. All algorithms used, except LinearRegression, have hyperparameters, so tuning

was performed using a grid search method with 5-fold cross-validation. Each dataset

was split into a training and a test set, with the training set used for hyperparameter

tuning and learning and the test set used for evaluating the model performance. For

regression problems, the metric root mean squared error was used, and for classification

problems, balanced accuracy was employed.

After training the models, the XGBoost algorithms demonstrated the best perfor-

mance across all domains, leading to the selection of these models for further analysis,

thus simplifying the analysis. To validate the training approach, the models of the do-

main cardio were compared to the results of Hasan and Bao (2021), who conducted
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similar research on the same dataset and showed very similar performance. Table 6.2

presents the average test score and standard deviation for each aggregation method and

domain. We employed the Mann-Whitney U-test to test for differences in test scores

between the different aggregation methods. The results showed that the differences

were only significant in a few cases. In the cardio domain, the accuracy of individ-

ual rankings was significantly lower than that of the behavioral (z = −1.29, p = 0.09),

mean (z = −2.24, p = 0.01), and median (z = −1.40, p = 0.08) aggregations. Mean

aggregation resulted in the highest prediction accuracy (M = 0.712, SD = 0.043),

but besides the individual rankings, the performance is only significantly better than

the Delphi method (z = 1.31, p = 0.09). Similarly, in the football domain, indi-

vidual rankings resulted in a significantly lower balanced accuracy compared to be-

havioral (z = −2.01, p = 0.02), mean (z = −1.93, p = 0.03), median aggregations

(z = −2.20, p = 0.01). Still, there was also no statistical difference between the aggre-

gation methods regarding performance.

Group Housing Cardio Football Covid Cars

All 41,087 0.702 0.627 0.537 25,388
Individuals (7,459) (0.05) (0.027) (0.044) (2,621)

Behavioral 41,549 0.708 0.633 0.534 25,349
Aggregation (7,579) (0.045) (0.022) (0.041) (2,720)

Mean 40,749 0.712 0.631 0.536 25,734
Aggregation (7,129) (0.043) (0.025) (0.043) (2,433)

Median 41,013 0.708 0.631 0.537 25,700
Aggregation (7,148) (0.045) (0.025) (0.043) (2,486)

Delphi 41,714 0.706 0.631 0.539 25,475
Update (7,649) (0.046) (0.025) (0.043) (2,658)

Table 6.2: Mean and standard deviation (in parentheses) of root means squared error and balanced
accuracy for XGBoost models of aggregation methods by domain. Numbers in bold indicate best
performance in the domain.

6.4.3 Similarity with Feature Importance Algorithms

Lastly, we compared the similarity between the rankings of the participants and the fea-

ture importance rankings of XGBoost models. We utilized three different methods for

computing the global feature importance of the models: the inbuilt feature_importance

function, Permutation Importance (Fisher et al., 2019), and Shapley Additive exPlana-

tions (SHAP) (Lundberg and Lee, 2017). The computed importances were then nor-

malized, and an average rank was calculated for each feature across the three methods.

The participants’ rankings by groups and their aggregation methods and by domain

was compared using Spearman’s Footrule. Table 6.3 presents the average distances

between the rankings of the participants and the feature importance rankings. Our

results indicate that all rankings differ significantly from the feature importance rankings

(p < 0.01).
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Group Total Housing Cardio Football Covid Cars

All 0.55 0.67 0.48 0.52 0.50 0.58
Individuals (0.14) (0.08) (0.15) (0.13) (0.1) (0.13)

Behavioral 0.51 0.68 0.41 0.46 0.46 0.54
Aggregation (0.14) (0.06) (0.13) (0.11) (0.07) (0.13)

Mean 0.51 0.66 0.41 0.48 0.45 0.57
Aggregation (0.13) (0.06) (0.12) (0.1) (0.08) (0.12)

Median 0.52 0.67 0.42 0.48 0.45 0.58
Aggregation (0.14) (0.06) (0.13) (0.11) (0.08) (0.13)

Delphi 0.54 0.67 0.45 0.50 0.49 0.56
Update (0.14) (0.09) (0.13) (0.14) (0.11) (0.14)

Table 6.3: Mean distance and standard deviation (in parentheses) between rankings and computed
feature importances of aggregation method by domain.

We then compared the distances between the groups. Individual rankings were sig-

nificantly further away from feature importance rankings than behavioral (z = 2.92, p <

0.01), mean (z = 3.96, p < 0.01), and median aggregations (z = 3.43, p < 0.01), the

difference was not significant to the Delphi method (z = 1.14, p = 0.13). The distances

of the aggregations’ methods were only weakly significant from each other. Behavioral

(z = −1.32, p = 0.09) and mean (z = −1.39, p = 0.08) aggregations had a significantly

smaller distance than the Delphi method.

Examination of the five domains revealed that the results are consistent with the

second part of the analysis, where only a limited number of groups showed significant

differences. In domain cardio, the distance of the feature importance rankings to the

individual rankings was significantly greater than to the behavioral (z = 2.34, p = 0.01),

mean (z = 3.14, p < 0.01) and median (z = 2.78, p < 0.01) aggregations. We found this

pattern also in the domains football and covid. In football, the difference in individual

rankings was significantly greater than that of the behavioral (z = 2.14, p = 0.01),

mean (z = 2.21, p = 0.01), and median aggregations (z = 2.61, p < 0.01). In domain

covid, the behavioral (z = 2.14, p = 0.02), mean (z = 4.0, p < 0.01), and median

(z = 3.70, p < 0.01) aggregations had a significantly smaller distance than the original

individual ranking. Our findings indicate that, in certain instances, aggregating data

can enhance individual rankings. Still, we failed to observe a statistically significant

difference between the aggregation types, except for comparing the Delphi method and

other methods. In the cardio domain, our results showed that the Delphi method had

a weakly significant greater distance than the behavioral (z = 1.35, p = 0.09) and

mean (z = 1.37, p = 0.09) aggregation. In the covid domain, the Delphi method had

a significantly greater distance than the mean (z = 2.06, p = 0.02) and median (z =

1.78, p = 0.04) aggregation.
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6.5 Discussion

In this study, we conducted an online experiment to evaluate various aggregation meth-

ods to ensemble individual feature rankings generated by human participants. Our

methods were based on point estimation techniques from the literature. We investi-

gated the effect of the methods on the rankings, the performance of machine learning

models, and the proximity of the rankings to computed feature importance rankings.

First, we analyzed the impact of each aggregation method on the individual rankings

of the participants in our study. We found that behavioral aggregation had the most

significant impact on the rankings, followed by mean aggregation and median aggre-

gation. Additionally, we discovered that the rankings produced by each method were

significantly different from each other in terms of distance. The Delphi method did not

lead to a meaningful change in the rankings.

Based on the feature rankings generated by each aggregation method, we trained

machine learning models and evaluated their predictive performances. The analysis

indicated that aggregation significantly affected performance in two domains, but the

magnitude of improvement was modest and not meaningful. There were no discernible

differences in performance between the aggregation methods, except for the Delphi

method, which performed worse. Our results are consistent with some previous re-

search on data-driven feature selection methods. While Saeys et al. (2008) found that

ensemble selection techniques’ performances were comparable to single selector methods

in their experiments, Chen et al. (2020) found that combining filter and wrapper tech-

niques with the union method produced higher classification accuracy. Dittman et al.

(2013), similarly to our work, discovered that rank aggregation techniques produced

similar performance results with little variance.

Thirdly, we computed feature importance rankings using XGBoost models and com-

pared the individual and aggregated rankings with the calculated ranking. We found

that aggregation methods significantly decrease the distance to the feature importance

rankings and that the effect is not observable in all domains. Although the differences

are statistically significant, it is noteworthy to mention that they were minimal.

Our study has a strength in its relatively high number of participants and multiple

domains. Despite this strength, the findings of our study are limited by the fact that

the participants were not professional individuals within the domains of real estate,

automotive sales, or medical services. To mitigate this limitation, we focused on decision

problems designed to be accessible to individuals without specialized domain knowledge.

In future studies, researchers may consider recruiting professional participants within

specific domains. Additionally, conducting the study in a real-world setting rather than

online may enhance the elicitation and aggregation of behavioral data and provide a

more comprehensive assessment of domain experts’ knowledge to consider individual

differences within the groups. Researchers focusing more on mathematical aggregation

can try alternative operations to mean, and median (Dittman et al., 2013; Wald et al.,

2012) and vary the group sizes, which should be also possible in behavioral aggregation.

Furthermore, we believe that with higher-dimensional decision problems, the results in
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terms of performance differences between aggregation methods could vary. With an

increase in the number of features, the aggregated models may become more diverse,

potentially leading to significant differences in results.

6.6 Conclusion

As the role of human input in machine learning becomes increasingly important, it

is crucial to investigate how knowledge can be elicitated and aggregated effectively.

This study examined three approaches to aggregating feature rankings based on human

knowledge: behavioral aggregation, mathematical aggregation, and the Delphi method.

These methods have been widely used in the literature on expert judgment elicitation.

Our study produced multiple results. They indicate that aggregation methods have

a significant impact on individual rankings. Specifically, we found that behavioral aggre-

gation has the most substantial influence on the rankings, whereas the Delphi method

only slightly affects them. Furthermore, our findings reveal that different methods re-

sult in various rankings. However, despite these differences, there seems to be little to

no improvement in terms of performance. Finally, we found that aggregated rankings

were more similar to feature importance rankings than individual rankings, although

the differences were minor.

Practitioners in the field should be mindful of these findings and be aware that how

human input is aggregated can lead to varying models. Although the impact on model

performance may not be significant, aggregated models can deviate significantly from

individual preferences. Future studies should explore efficient methods for eliciting and

aggregating domain knowledge to improve performance and practicality and reduce bi-

ases. Our research suggests that the field of expert judgment elicitation has ample scope

for improvement and holds the potential to enhance human-in-the-loop approaches.

6.7 Appendix

6.7.1 Instructions for Individual Part

Welcome to the Study

Part 1

This study is about machine learning. In machine learning, a machine (e.g., a com-

puter) assists people in their decision-making. In other words, the computer provides

people with advice.

In order for the computer to be able to do this, it needs to be supplied with human

input first. For example, if a computer is supposed to help estimate the credit score

of a customer, it needs information about the customer, such as the customer’s job,

or the customer’s age.
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Specifically, this study is about how people (in this case, you) can support the

computer so it can provide the best possible advice.

Coming up, you will be presented with five different scenarios. Each scenario will

explain a problem and give specific components of information that a computer can use

to generate its advice.

Your task then is to rank these components from most important to least im-

portant. Put the information you consider the most important for solving the decision

problem on top. Continue this way until you reach the bottom. The number of com-

ponents of information to sort may vary for each decision problem. For example, if you

think that information about a person’s job is more important than age in determining

a person’s credit score, you will rank ”job” higher than ”age”.

The first part takes about 10 minutes, and you receive a fixed reward of £2.50. In

addition, you can receive a bonus depending on how you do in your ranking of the

information. The better your ranking, the higher your bonus. For each ranking,

you can get up to £0.50 extra. That means the maximum bonus for this part is £2.50.
You will find out how much your bonus is at the end of the study.

After that, part 2 of the study will be explained to you.

If it takes an unusually long time for you to complete the task or if you leave or close

the window, you will not receive any bonus for the decision problem.

To get started with the first part, confirm that you understand this part and click

on next.

6.7.2 Instructions for Group Part

Part 2

In the second part, you work in a group of 3 people. In this part, you will face

the same 5 decision problems as in the first part. However, now you must decide on a

joint ranking within your group. In addition to your own ranking, you will see the

rankings of the other participants. If the other participants change something in their

own ranking, the changes will also be visible on your page. Agreement is reached

when the rankings of the three participants in the group are identical. To

come to an agreement, you can use the text-based chat. The participants in this study

are from the USA and UK and can speak English.

117



If it happens that during your working time there are not enough participants to

form a group, this part will be skipped for you and you will proceed to the end of the

study to complete it. The waiting time for group formation is 5 minutes.

If you complete the second part within a group, you will receive a bonus of £4.
Additionally, there is another bonus that depends on your group’s ranking, which also

amounts to £2.50.
If the group composition does not work out, or the other participants do not actively

participate, you can quit the second part of the study and proceed to the end of the

study by using a button on the task pages.

If it takes an unusually long time for you to complete the task or if you leave or close

the window, you will not receive any bonus for the decision problem.

To get started with the second part, confirm that you understand this part and click

on next.

6.7.3 Instructions for Delphi Part

Part 2

In the second part of the study, you will be confronted with the same 5 decision-

making problems as before. This time, however, you will receive the rankings of

two other participants to help you. These participants took part in the study at

an earlier stage and also had to rank the information as accurately as possible.

In this part, too, your task is to rank the information according to importance. Your

previous ranking from the first part is displayed, and you can use it and/or change it.

This part also takes about 10 minutes. Here, too, there is an additional bonus that

depends on the quality of your ranking, which amounts to £2.50.
If it takes an unusually long time for you to complete the task or if you leave or close

the window, you will not receive any bonus for the decision problem.

To get started with the second part, confirm that you understand this part and click

on next.

6.7.4 Screenshots
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Figure 6.1: Interface in the individual part of the experiment. Unsorted features can be dragged and
dropped for the final feature ranking. Participants can continue when all features are ranked.
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Figure 6.2: Interface in the group part of the experiment. Own individual rankings from the previous
part can be re-ranked. The rankings of the other group members are visible and updated live when they
are changed. Participants can communicate via text chat and can continue when their rankings are the
same.
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Chapter 7

Comparing Humans and Algorithms
in Feature Ranking: A Case-Study
in the Medical Domain

This paper was authored in collaboration with Jonas Hanselle, Stefan Heid, Kirsten

Thommes, and Eyke Hüllermeier. It was presented at the Lernen, Wissen, Daten,

Analysen (LWDA) Conference, held in Marburg, Germany, October 9-11, 2023, and

published in the conference proceedings, pages 430–441. The published version is avail-

able at https://ceur-ws.org/Vol-3630/LWDA2023-paper38.pdf.

Abstract

The selection of useful, informative, and meaningful features is a key prerequisite for the

successful application of machine learning in practice, especially in knowledge-intense

domains like decision support. Here, the task of feature selection, or ranking features

by importance, can, in principle, be solved automatically in a data-driven way but also

supported by expert knowledge. Besides, one may of course, conceive a combined ap-

proach, in which a learning algorithm closely interacts with a human expert. In any

case, finding an optimal approach requires a basic understanding of human capabilities

in judging the importance of features compared to those of a learning algorithm. Hereto,

we conducted a case study in the medical domain, comparing feature rankings based on

human judgment to rankings automatically derived from data. The quality of a rank-

ing is determined by the performance of a decision list processing features in the order

specified by the ranking, more specifically by so-called probabilistic scoring systems.
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7.1 Introduction

With the increasing access to technology, computational resources, and massive amounts

of data, the idea of taking advantage of machine learning (ML) methodology to optimize

decision support is becoming more and more feasible. Automated or partially automated

decision-making with data-driven models is appealing for various reasons, especially as

it is potentially more rational, objective, and accurate than decision-making by humans

alone, which may be subjective or error-prone. For example, think of decisions in the

context of employee recruitment, such as hiring or placement decisions (Pessach et al.,

2020), or the construction of individualized treatment rules in personalized medicine

(Zhao et al., 2012).

That said, decision models constructed in a data-driven way will not be accepted by

human experts (Ashoori and Weisz, 2019)—and hence not be used in practice—unless

these models are comprehensible, meaningful, and interpretable. In this regard, the

selection and prioritization of decision criteria, or features in machine learning jargon,

appears to be of major importance: The features on which a decision is based need to

be semantically meaningful; features deemed relevant by the expert should be included

in the model, while irrelevant features should be omitted.

Needless to say, these properties are not necessarily guaranteed when selecting fea-

tures in a purely data-driven way. As another extreme, one may think of letting the

human expert preselect the features by hand. For various reasons, however, this might

be suboptimal either, for example, because the expert might be subjectively biased, or

her knowledge might not be perfect. Presumably, the best approach is somewhere in-

between, namely, hybrid in the sense that the human expert and the machine learning

algorithm select features jointly in the course of an interactive process. Either way, these

considerations beg an essential question: How capable are human experts in selecting

the most important features or in ranking features in descending order of importance,

and how do human experts compare to ML algorithms selecting features in a data-driven

manner (Cheng et al., 2006; Filippova et al., 2019; Li et al., 2017)?

This is the question addressed by the current paper. We conducted a case study in

the medical domain, comparing feature (importance) rankings based on human judgment

to feature rankings derived from data. The quality of a ranking is determined by the

performance of a decision list processing features in the order specified by the ranking.

In a decision list, features are considered incrementally, one by one. In each stage of

the process, there are two options: either a final decision is made based on the feature

values seen so far, or the process is continued by observing the next feature. Features

should be ranked in decreasing order of importance to make well-informed decisions

as quickly as possible. We implement this approach with so-called scoring systems,

specifically appealing from an interpretability perspective and commonly used in the

medical domain (Rapsang and Shyam, 2014; Ustun and Rudin, 2016).

Previous research suggests that data-driven methods generally surpass knowledge-

driven methods in performance, though these findings are not entirely unambiguous.

Our study contributes to resolving this continuing debate and extends the current liter-
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ature by assessing these methods within the context of interpretable machine learning

models. In high-stakes environments such as in the medical domain, the constructor

of the decision model can be a significant factor for decision-makers, influencing their

trust and reliance on the system. Consequently, evaluating the quality of various feature

selection methods on such models is vital.

Our study shows that while data-driven feature ranking exhibits superior perfor-

mance in identifying patterns unseen by human actors, the risk of overfitting, especially

in small or biased datasets, necessitates the incorporation of human judgment for op-

timal results. We suggest an interactive, co-constructive approach, merging human

expertise with algorithmic analytics, as a potential solution to offset overfitting effects

while enhancing user acceptance of decision models. We encourage future research to

leverage our findings, specifically targeting the inclusion of more domain professionals

in the dataset, to further enrich and generalize these insights across various fields.

7.2 Data- and Knowledge-Driven Feature Selection

In the realm of supervised machine learning, most algorithms assume a representation

of data objects (instances) in terms of feature vectors, which means that each object is

specified by its values on a predefined number of features, also known as independent

variables, dimensions, or inputs. The latter are supposed to carry important information

for predicting the outcome or target variable (James et al., 2013). Careful feature

selection is a crucial step in the modeling process and a key prerequisite for learning

accurate predictors (Studer et al., 2021). Selecting a manageable number of meaningful

features also facilitates interpretability and explainability (Li et al., 2017).

Feature selection has been researched intensively in the past, with a specific focus

on data-driven approaches. Here, an algorithm autonomously ranks or selects features

based on the properties of the data. In contrast, knowledge-driven approaches determine

a feature subset through literature review (Corrales et al., 2018; Nahar et al., 2013; Wang

et al., 2018) or by consulting domain experts (Cheng et al., 2006; Moro et al., 2018). In-

teractive machine learning fosters a combination of these approaches (Holzinger, 2016).

For instance, experts might underscore highly relevant observations and features that a

data-driven algorithm can subsequently focus on (Correia and Lecue, 2019). Alterna-

tively, experts might vote on different feature subsets, indirectly revealing their subjec-

tive preferences (Bianchi et al., 2022). It is also possible to aggregate multiple selection

and ranking methods into a single approach (Bolón-Canedo and Alonso-Betanzos, 2019;

Cheng et al., 2006; Dittman et al., 2013; Wald et al., 2012).

Choosing the optimal method for a specific dataset and problem domain is inherently

challenging. Guyon and Elisseeff (2003) and Li et al. (2017) advocate for including do-

main knowledge in the selection process. Conversely, Filippova et al. (2019) find human

intervention to be less beneficial than expected, while McKay (2019) demonstrate that,

for the same classification problem, a model with merely four features based on social

science knowledge can rival models involving 10,000 features. On the other side, Cheng

et al. (2006) find that the features chosen by individual cardiologists, or an aggregation
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Stage Feature Score T=-1 T=0 T=1 T=2 T=3 T=4 T=5 T=6

0 - - - 0.1 - - - - - -
1 Fatigue +2 - 0.1 - 0.3 - - - -
2 Fever +1 - 0.0 0.1 0.2 0.4 - - -
3 Cough +2 - 0.0 0.1 0.1 0.2 0.2 0.5 -
4 Loss of smell +1 - 0.0 0.1 0.1 0.2 0.2 0.4 1.0
5 Contact w/ inf. person -1 0.0 0.0 0.1 0.1 0.2 0.4 0.4 1.0

Table 7.1: Example of a PSL for the COVID-19 use case

of their selections, can enhance accuracy compared to a baseline of all features, although

they are still outperformed by data-driven methods. In their experimental study, Cor-

rales et al. (2018) observe that, in certain combinations of datasets and learning al-

gorithms, expert knowledge can outperform data-driven methods. They conclude that

expert knowledge can be especially beneficial under limited computational resources, for

example, when working with high-dimensional datasets.

7.3 Probabilistic Scoring Lists

A so-called scoring system is a simple decision model that checks a set of features, adds

(or subtracts) a certain number of points to a total score for each feature that is satisfied,

and finally makes a decision by comparing the total score to a threshold. Scoring systems

have a long history of active use in safety-critical domains such as healthcare (Six et al.,

2008) and justice (Wang et al., 2022), where they provide guidance for making objective

and accurate decisions.

Hanselle et al. (2023) propose an extension of scoring systems, called probabilistic

scoring lists (PSL). First, to increase uncertainty-awareness, a probabilistic scoring list

produces predictions in the form of probability distributions (instead of making de-

terministic decisions). Second, to increase cost-efficiency, a probabilistic scoring list is

conceptualized as a decision list : At prediction time, features are being evaluated one

by one. The procedure may be stopped as soon as the practitioner decides that the

confidence in the predictions is high enough for the application context at hand. In the

example in Table 7.1, the relevant information for an evaluation at stage 3 is highlighted

in boldface. All features with their accompanying scores up to that stage need to be

evaluated. The probabilities for the positive class are obtained by looking up the value

corresponding to the total sum of the selected scores T . Here, the task is to diagnose

a patient as COVID-19 positive or negative, given information about various features.

In the concrete case, “Fatigue” would be determined as a first feature, and if present,

contributes a score of 2. Fever would then be determined as the next feature, contribut-

ing a score of 1 if present, and this process continues with the remaining features. At

stage 2, the probability of the positive class is predicted as 0 if the total score is 0, 0.1

if the total score is 1, etc. Note that adding a feature with a corresponding score of

0 is practically equivalent to ignoring said feature. Thus, we only consider score sets

excluding 0.
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The learning algorithm introduced in Hanselle et al. (2023) constructs probabilistic

scoring lists incrementally in a greedy manner. Starting with the empty list, one ad-

ditional feature with a corresponding score (taken from a predefined set of scores) is

added to the list in each stage. To this end, each feature/score pair is tentatively added

as a candidate, and the resulting model is evaluated in terms of the expected entropy as

a performance measure:

E =
∑
T∈Σ

NT

N
·H

(
q̂(T )

)
, (7.1)

where Σ is the set of total scores that can be produced by the decision list, N = |D| is
the total number of training examples, and NT the number of training examples with

total score T . Moreover, q̂(T ) is the estimated probability of the positive class given

total score T , and H is the Shannon entropy:

H(q) = −q · log(q)− (1− q) log(1− q) .

The feature/score combination leading to the highest performance is eventually added to

the list, and the algorithm proceeds to the next stage (unless all features are used or the

gain in terms of expected entropy is negative). The probabilities q̂(T ) are estimated in

terms of relative frequencies, rectified by isotonic regression to guarantee monotonicity

(the probability of the positive class increases with an increasing total score).

Note that the expected entropy (7.1) is a meaningful measure of informedness at

every stage of the decision process: The information provided by the prediction of a

probability distribution q̂ is quantified in terms of Shannon entropy, which is an estab-

lished measure of information, and weighted by the (estimated) probability that this

prediction is delivered.

The PSL produced by the above algorithm also suggests a ranking of features in the

sense that features appearing earlier in the list seem to be more important in terms of

performance than features queried only later on (or possibly not at all, if a decision is

made before). With a straightforward modification, the algorithm can also be used to

learn scoring systems for a predefined ranking of features: In each stage, it then adopts

the corresponding feature and only optimizes over the set of possible scores, instead of

optimizing over all features/score pairs.

7.4 Evaluation

In the following, we compare PSL constructed solely in a data-driven fashion to PSL

in which the evaluated features are ordered according to human choices.

7.4.1 COVID-19 Dataset

We employed a non-public medical dataset, based on the work of Hüfner et al. (2020).

A minor deviation from the original dataset in our study pertains to the exclusion of a

single observation that contained a missing value. Consequently, our dataset has a total

of 696 patient observations.
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According to the medical tests conducted in the original study, 633 patients (90.95%)

tested negative for COVID-19. This dataset is comprised of 11 binary features, which,

apart from information regarding patient contact with an infected individual, include

all patient symptoms. Figure 7.1 shows all features, their respective distributions across

the entire dataset, and the distributions for both positive and negative cases. While

our dataset does not include additional demographic information, Hüfner et al. (2020)

state in their study that 51.1% of the patients were female and the average age was 55.2

years.
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Figure 7.1: Prevalence of COVID-19 symptoms overall and by positive and negative class

Figure 7.2 shows the correlation between all features. Quite remarkably, the fea-

ture “Contact with an infected person” is negatively correlated to the target variable.

Intuitively, contact with an infected person and the associated risk of exposure to the

virus should have a positive correlation with an infection. One possible explanation

for this peculiarity might be that people who know that they had contact with an in-

fected person may have higher awareness and hence be tempted to ask for a medical

examination more quickly, even when showing no clear symptoms. This trend is further

observable in the first column of the heatmap, where the correlations with symptoms

such as respiratory issues and fever also exhibit a negative association.

7.4.2 Experimental Setup

In our experimental evaluation, we use PSL constructed in five different manners. First,

we consider PSL derived from training data using the algorithm described in Section

7.3. These are called PSL.

Second, we compare them against PSL built from expert input, specifically the

original Covid Score system proposed by Hüfner et al. (2020) (Expert-PSL). The Covid

Score was compiled as a consensus of medical experts. It was evaluated on the proposed

dataset; however, it has not been used in the process of deriving the score. Note that
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Figure 7.2: Heatmap of Pearson correlations. The last row shows the correlation with the target variable.

Approach
Feature sequence

chosen algorithmically
Scores chosen
algorithmically

PSL + +
Expert-PSL - -
Subject-PSL - +
SubjectBA-PSL - +
Random-PSL - +

Table 7.2: All considered PSL variants in the experimental evaluation

Expert-PSL is a PSL and thus conceptually different from the original scoring system,

which always evaluates the entire feature set and uses a constant threshold of 5 as a

decision rule.

Two further approaches are derived based on a recent incentivized behavioral ex-

periment conducted by Kornowicz and Thommes (2023). In this study, 234 subjects,

recruited from the Prolific.co platform, were requested to rank features based on their

perceived importance for the classification task. Despite these subjects lacking specific

medical field expertise, it remains plausible that the aggregate of their rankings might

approximate the quality of expert opinions, as suggested by research in the field of ex-

pert elicitation (Nofer, 2015; Onkal et al., 2003; Vul and Pashler, 2008). We primarily

utilized the rankings generated individually by subjects (Subject-PSL), along with a

method of consensus ranking referred to as Behavioral Aggregation (SubjectBA-PSL).

For this method, 90 subjects were grouped into sets of three to agree upon a collective

ranking. As there are no specified scores attached to the latter, we chose the scores as-

sociated with the features in the same greedy, data-driven manner as the first approach

to allow for a fair comparison.

Lastly, as a baseline, we consider PSL constructed from random feature permuta-

tions, for which the scores have been chosen in the same manner (Random-PSL). We

chose S = {±1,±2,±3} as the set of possible scores for all methods except the expert

method. The expert method’s scores are taken from the scoring system by Hüfner et al.

(2020) and hence constrained to S = {+1,+2,+3}. An overview of the considered

constructions is depicted in Table 7.2.
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We evaluated the individual PSL in terms of a Monte Carlo cross-validation (MCCV)

with 10 repetitions. In each repetition, we use a fraction of two-thirds of the available

data as training data and one-third as test data. We report the expected entropy as

a neutral measure of informativeness at each stage of the decision model in order to

compare the approaches. Additionally, we evaluate the decision models in terms of

expected loss minimization.

7.4.3 Results

In the following, we compare the five different PSL constructions against each other.

Figure 7.3 shows the mean expected entropy and expected loss of the PSL for each

stage, i.e., after evaluating the stated number of features.
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Figure 7.3: Mean expected entropy and expected loss of all considered PSL variants trained on the full
training data. Error bands indicate the 95% confidence interval.

We observe that PSL achieves the best mean expected entropy throughout all stages.

The Subject-PSL and SubjectBA-PSL constructions perform very similarly. Up un-

til stage 3, they exhibit a higher mean expected entropy than the Random-PSL baseline

before consistently outperforming it as of stage 5. The Expert-PSL construction also

performs worse than the random baseline within the first stages, even deteriorating when

evaluating the first two features, both in terms of expected entropy as well as expected

loss. This is due to the fact that the first two features selected by Expert-PSL are

“Contact w/ inf. person” and “Respiratory symptom.” As discussed in Section 7.4.1,

“Contact w/ inf. person” is negatively correlated with the target “SARS-CoV-2 pos-

itive,” and “Respiratory symptom” is only weakly positively correlated to it. These

two features both receive a score of +3 in the Expert-PSL construction, yielding poor

performances early on and even deteriorating over the performance at stage 0, in which

no feature is considered.

The data-driven approach PSL takes advantage of having access to training data,

placing features like “Contact w/ inf. person” at a much lower rank (on average at rank

9).

Figure 7.4 shows an overview of the average ranks and scores of all features across the

considered methods. For many features, the average ranks of the different approaches

are quite similar, with exceptions like “Fatigue” and “Contact w/ inf. person.” Since the
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Figure 7.4: Mean rank and score of each feature across the methods.

scores are optimized to the data in all approaches except for Expert-PSL, the scores

are very similar regardless of the average rank of the feature. Note that the expert scores

are selected according to Hüfner et al. (2020), constraining them to only positive scores.

7.4.4 Reducing Available Training Data

As discussed in the previous section, the data-driven approach PSL manages to un-

cover specifics from the data that remain hidden to human actors. However, this relies

on having sufficient training data available. To investigate how much the data-driven

approaches depend on the amount of data, we restricted them to 20% of the original

training data by drawing subsamples from the original data without replacement and re-

peated the experiments 10 times. Figure 7.5 shows the expected entropy of the different

PSL when training them on these reduced datasets.
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Figure 7.5: Mean expected entropy and expected loss of all considered PSL variants trained on a reduced
set of 20% of the original training data. Error bands indicate the 95% confidence interval. Scales match
those in Figure 7.3.

129



We observe that PSL is outperformed from stage 7 onward by the Expert-PSL

and also by the Subject-PSL and SubjectBA-PSL as of stage 9 in terms of expected

entropy. In terms of expected loss, PSL is already beaten by Expert-PSL at stage 3

and by Subject-PSL and SubjectBA-PSL at stage 7. In the end, even the Random-

PSL baseline exhibits a slightly lower mean expected error than PSL. This indicates

that data-driven approaches become less reliable when access to training data is limited,

whereas human expertise and common sense achieve better results in such cases.

7.5 Conclusion

This paper has explored the comparative effectiveness of humans and algorithms in fea-

ture ranking for decision support. A case study in the medical domain was conducted,

comparing feature rankings based on human judgment to rankings automatically de-

rived from data. It was observed that the data-driven approach can identify patterns

and specifics that remain hidden from human actors, leading to better performance in

our experimental evaluation. On the other hand, feature rankings solely derived algo-

rithmically bear the risk of overfitting to the available training data, resulting in poor

generalization performance. This risk becomes especially prominent in small or signifi-

cantly biased datasets, where human knowledge and common sense may compensate for

such limitations.

An interactive feature ranking procedure that combines the strengths of human and

data-driven approaches constitutes an interesting direction for future work. Harnessing

the benefits of human expertise and computational analytics in a co-constructive ap-

proach could potentially lead to more accurate decision models while mitigating the risk

of overfitting. Additionally, including humans in the learning process may increase prac-

titioner trust and acceptance of decision models, addressing the often-observed distrust

of purely algorithmically constructed systems (Mahmud et al., 2022).

Future research could extend these findings by employing different datasets and

generalizing to other domains. Although our study includes a large volume of human

rankings, the subjects lacked significant domain expertise, with the exception of the

Covid Score system by Hüfner et al. (2020). Recruiting more domain professionals

would be challenging but could yield richer insights in future research.
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Chapter 8

Human-AI Co-Construction of In-
terpretable Predictive Models: The
Case of Scoring Systems

This paper was authored in collaboration with Jonas Hanselle, Stefan Heid, Kirsten

Thommes, and Eyke Hüllermeier. It was presented at the 34th Workshop on Compu-

tational Intelligence, held in Berlin, Germany, November 21-22, 2024, and published in

the workshop proceedings, edited by H. Schulte, F. Hoffmann, and R. Mikut, KIT

Scientific Publishing, pages 233–252. The published version is available at https:

//doi.org/10.5445/KSP/1000174544.

Abstract

This study explores the co-construction of probabilistic scoring systems. Using a self-

developed web-based tool, called PSLvis, participants were able to create their own decision-

support models through an interactive interface. Seven academic advising experts partic-

ipated, assessing the probability of student success both with and without the assistance

of a PSL. The results indicate that while the co-constructed models slightly improved

the experts’ accuracy, they also increased decision time. Experts interacted with PSLvis

and PSL in diverse ways, displaying different levels of algorithmic aversion and appre-

ciation. This study underscores the potential of decision-support systems that integrate

data-driven algorithms with human expertise, while also revealing the wide range of

challenges that need to be addressed for successful co-construction and practical imple-

mentation.
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8.1 Introduction

With the increasing access to technology and computational resources, the idea of tak-

ing advantage of machine learning (ML) methodology for decision support is becoming

more and more feasible. Automated or partially automated decision-making with data-

driven models is appealing as it can lead to more objective and accurate decisions than

human decision-making alone. For example, think of decisions in the context of em-

ployee recruitment, such as hiring or placement decisions (Pessach et al., 2020) in which

humans alone may suffer from several biases such as “similar-to-me”-decision biases, or

the data-driven construction of individualized treatment rules in personalized medicine

(Zhao et al., 2012).

ML models may increase the quality of decisions, but bear the problem of user

acceptance: How to motivate a human decision maker to apply automated decision sup-

port systems and how to create trust and reliance in such systems (Lammert et al.,

2024; Papenkordt et al., 2023; Peters and Visser, 2023)? An important prerequisite in

this regard is the transparency and interpretability of the models (Cheng and Choulde-

chova, 2023; Dietvorst et al., 2018). Moreover, one may expect that participation,

i.e., the involvement of the human expert in the process of model construction, has

a positive influence, not only on acceptance (Kornowicz and Thommes, 2025). Inte-

grating humans in the process of model construction may also further improve model

quality and performance—especially in cases where data is too sparse to reliably learn

well-generalizing models. Hence, we introduce a co-constructive approach combining

data-driven model induction with expert oversight.

As an underlying model class, we use so-called scoring systems. Roughly speaking, a

scoring system proceeds from a set of (binary) features characterizing a decision context.

The presence of a feature contributes a specific score (a small integer value), and a posi-

tive decision is made if the cumulative score exceeds a threshold. Models of that kind are

especially comprehensible and used in many applications and fields of applied research,

such as medical decision-making (Six et al., 2008). More specifically, we make use of

PSL, an incremental and probabilistic extension of scoring systems recently developed

in Hanselle et al. (2024).

As a first step toward the involvement of the human expert and co-construction of a

PSL, we introduce the graphical interface PSLvis, which allows for adding, removing,

and reordering features of the model as well as changing the scores. The interface

also supports the optimal (data-driven) calculation of scores and features based on the

training data, thereby helping the expert to align the data with their domain knowledge.

The mapping from scores to probabilities of outcomes is calculated automatically and

cannot be modified. Finally, the performance of the system is visualized in the top right

corner to give the user life feedback.

Building on the user interface to facilitate model co-construction, we seek to evaluate

the effect of the co-constructive process on performance and reliance. More concretely,

we seek to answer the following research questions:
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RQ1 How does PSL influence decision-making quality compared to humans decisions

without computational support?

RQ2 How do users interact with PSLvis and navigate through the model space?

RQ3 What are the thought processes and challenges users face while using PSLvis and

applying PSLvis?

8.2 Scoring Systems and Extensions

Scoring systems are simple linear classifiers where small integer scores are assigned to

each binary feature. The sum of all scores of positive features is compared against a

threshold to form a decision. PSL as introduced in Hanselle et al. (2024) is an extension

that produces probabilistic (instead of deterministic) predictions. Moreover, it organizes

the features in the form of a decision list, so that a prediction can be made at every

stage. The scores of positive features are again accumulated and then mapped to a

probability estimate. An example of such a stagewise model is depicted in the bottom

right of Figure 8.1.

Scores, feature ordering, and the probability function are learned from training data.

This can be achieved by starting with an empty PSL and iteratively expanding it with

the most promising feature-score-pair in a greedy fashion, similar to learning decision

trees. As larger total scores should yield larger probabilities, isotonic regression is em-

ployed to obtain probability estimates that are monotonically increasing in the total

score. For a detailed description of the learning algorithm, we refer to Hanselle et al.

(2024).

At prediction time, features are evaluated one after another, updating the total score

for each of them by adding up the scores of positive features. At each of these stages, the

probability estimate can be looked up. If the estimate is not sufficiently informative to

make a confident decision, additional features can be evaluated to refining the estimate

and reduce uncertainty.

8.3 Co-constructive Framework: PSLvis

As a first step toward co-constructive learning of a PSL, we introduce the web interface

PSLis instead of a purely data-driven induction. The UI allows adding, removing, and

reordering features of the model as well as changing the scores via drag-and-drop and

button presses. Additionally, there are buttons to reset the model, i.e., to remove all

selected features and also to add one feature optimally based on the training data.

The interface also supports the optimal calculation of scores and features, allowing the

experts to complement (or even replace) their expertise by a data-driven approach. The

mapping from scores to probabilities is calculated automatically and cannot be modified.

Finally, the performance of the entire decision list is visualized in the top right corner

to give the user life feedback. A screenshot of the main view of PSLvis is shown in

Figure 8.1.
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Figure 8.1: User interface PSLvis, which allows adding, removing and reordering features of the PSL
via drag and drop.

Significant emphasis was placed on usability during the development of the web-based

UI. The UI provides an interactive experience without requiring page reloads, and any

changes to features or scores result in instant model updates and performance chart ad-

justments. Probabilities are visually highlighted using color gradients for better clarity.

The application’s data model is organized into experiments, which can be configured

independently (modifications in the user interface, different datasets, . . . ). Participants

are assigned to these experiments, and all user data is stored in an anonymized for-

mat. All UI interactions are logged in the database, enabling a detailed analysis of the

co-construction process. The implementation is publicly available1.

8.4 Method

8.4.1 Study Dataset

The study topic chosen was student counseling, specifically focusing on assessing whether

a student can successfully complete their university studies. Employees from various

student counseling departments were recruited as experts for the study. The basis for

the study comes from the German National Educational Panel Study (Blossfeld et al.,

2011), in which pupils and students are surveyed over a longer period. This dataset is

available for research purposes. We built our dataset based on Fouarge and Heß (2023),

where we also define dropout as whether students discontinue their initial studies at

their initial institution.

In our dataset, there are a total of 1,804 students, and the success rate is 65.2%.

For the study, we divided the dataset according to the participants’ fields of study and

only used the data relevant to the areas the participants are involved with in their work.

For example, participant P1 received an engineering sample, while P4 received a sample

with students from law, economics, and social sciences. The dropout rate varied slightly,

and the instructions within the study explained the sample.

1https://github.com/TRR318/pslvis
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8.4.2 Think-Aloud Method

To explore how participants interact with the co-constructive tool PSLvis and the re-

sulting PSL, and to identify challenges encountered during their application, we employ

the think-aloud method. This qualitative research method is used to elicit cognitive pro-

cesses by requiring participants to verbalize their thoughts while performing tasks, with

these verbalizations recorded for subsequent analysis (Charters, 2003; Wolcott and Lobc-

zowski, 2021). The think-aloud method serves multiple purposes, including documenting

decision-making processes (Solomon, 1995; Whalley et al., 2023) and assessing the us-

ability and perception of products such as software (Alhadreti and Mayhew, 2018; Fan

et al., 2022; Van Gemert et al., 2023; Zhang and Simeone, 2022). It is also increasingly

utilized in human-computer interaction research (Chromik et al., 2021; Prabhudesai

et al., 2023; Stromer et al., 2024; Tegenaw et al., 2023).

8.4.3 Procedure

Expert Participants. We contacted university staff with experience in academic ad-

vising and recruited seven participants. The study took place individually and in person,

with participation conducted on a computer. Experimenters were present in the room,

briefly explained the procedure before the start of the study, and answered any questions

for clarification. All participants signed a privacy consent form before the study began.

Detailed information about the participants can be found in Table 8.1.

Profession Major Age Sex Sample

P1 Study Advisor, Eng. Sci. Education 34 M Engineering
P2 Study Advisor, Eng. Sci. Mech. Eng. 34 M Engineering
P3 Study Advisor, Eng. Sci. Ind. Eng. 30 M Engineering
P4 Head of Teaching/Study Center Political Sci. 42 M Law/Eco./Social
P5 Study Advisor, Eng. Sci. Mech. Eng. 32 M Engineering
P6 General Study Advisor Education 35 F All
P7 Study Advisor, Comp. Sci. Comp. Sci. 31 F Math/Nat. Sci.

Table 8.1: Information about the participants: “Major” indicates the participants’ university degree,
while “Sample” refers to the dataset used by the participants in the experiment.

A) Elicitation of Mental Models. The participants’ mental models regarding

the decision problem are elicited. Participants rated each feature based on how they

perceived the relationship between the feature and student dropout or success. They

provided a numerical rating on a scale from −100 (indicating dropout) to +100 (indi-

cating success) to represent the perceived correlation.

B) Probability Assessment I. Each participant assessed the likelihood of success

for 10 students. To do this, they were shown the students’ features and provided a

percentage-based evaluation. The 10 students were randomly selected from the eligible

sample, and the order in which they were presented to each participant was randomized.

No feedback was given during this stage.

C) Co-Construction with PSLvis. Participants then moved into a phase where
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they engaged with PSLvis to co-construct PSL models. Their goal was to develop

models that perform optimally within a constraint—the models could only expand up

to five stages. This phase did not have a time limit, allowing participants to work

through the process at their own pace. During this time, all interactions with the

tool were logged, and participants were encouraged to verbalize their thought processes

through the think-aloud method. Before the participants proceeded, the experimenters

asked two questions: first, whether the participants were able to represent and encode

their views in the model, and second, what the participants had focused on.

D) Probability Assessment II. In the final phase of the study, participants were

asked to reassess the success probabilities of students using the PSL models they devel-

oped. This phase mirrors the initial classification task, but with the significant difference

that participants could now apply their own co-constructed models. Throughout this

process, the think-aloud method was employed to capture detailed insights into how

participants utilize their PSL models in practice. As soon as the participants finished

their second set of estimates, the experimenters asked two final questions. First, whether

they had made use of the PSL levels and whether they had used all the features, and

second, to what extent the PSL had influenced their decisions.

8.5 Results

8.5.1 Participants’ Assessments

Table 8.2 presents the average times all participants took to make their assessments

and their accuracy, measured by the Brier score (lower is better) (Brier, 1950). The

results are divided between the two assessment rounds. A purely data-driven PSL

model, evaluated using individual samples for each participant, serves as the reference

for accuracy.

Although a precise statistical evaluation is not possible due to the small sample size,

the descriptive analysis shows that experts took longer to make their assessments in the

second round. This is likely because they were also interested in reviewing their own

PSL models, though there is considerable variance in this aspect. In terms of accuracy,

experts generally performed slightly better with the PSL model than without, though

this was not true for everyone. The reference values indicate that, on average, the

experts outperformed the purely data-driven model in the second round.

8.5.2 Co-construction as Navigation in the Model Space

In phase A) of Section 4.3 the participants were asked to express their mental model

by providing weights for each feature in the dataset to elicit positive or negative cor-

relation with the target class “study success”. Figure 8.2 shows the features and the

accompanying assigned scores. The features are sorted by the mean absolute score of the

participant’s mental model assessments, shown as blue bars. The participants assume

that neuroticism is the strongest indicator for study dropout, while life satisfaction,

consciousness, and openness are the three strongest indicators for study success.
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Average Time (sec) Brier Score
Participant I II I II PSL

P1 110.8 70.8 0.29 0.28 0.26
P2 62.6 58.6 0.32 0.23 0.26
P3 75.4 94.1 0.24 0.24 0.26
P4 54.3 75.4 0.29 0.24 0.27
P5 45.2 31.6 0.33 0.26 0.26
P6 42.1 36.9 0.14 0.20 0.29
P7 19.2 104.9 0.26 0.25 0.25

Average (ø) 58.51 67.46 0.27 0.24 0.26

Table 8.2: Average duration for student assessments (in seconds) and Brier scores (lower is better) for
the first (I) and second (II) assessments. The PSL column serves as a reference for a purely data-driven
model. The bottom row shows the averages.

The orange bars show the average scores of a fully data-driven PSL trained, each

on the same dataset as the participant. For easier comparability, the scores from

{−3, . . . ,+3} have been rescaled to [−100, 100]. All dataset samples have been pooled

in that figure, as the number of participants is so small. The participant’s assessment

of feature importance strongly disagrees with the purely data-driven feature importance

as calculated from the PSL scores. In the reference model, poor final school grades, dis-

tance learning, and high age at the start of study are the strongest indicators of study

dropout, while studying part-time and having high life satisfaction are the strongest

indicators of success. Since the participant’s goal was to have a high predictive perfor-

mance on data points from this dataset, it is important to lower the model gap between

the mental model and the data distribution in the domain.

During the co-construction process, features and scores can be changed. Each of

these changes can be interpreted as an action that navigates from one model h to

another model h′ with edited features and scores. Hence, the co-constructive process

can be seen as a navigation in the space of PSL models. We define the following distance

function between PSL models h and h′ in order to analyze how human co-constructors

navigate through this space as follows:

d(h, h′) = Kendall
(
F (h), F (h′)

)
+

∥∥∥∥S(h)− S(h′)

|S|

∥∥∥∥ ,

which is the sum of the Kendall τ distance of the feature rankings and the L2-norm of

the normalized score difference (S is the set of possible scores). F (h) denotes the feature

ranking2 and S(h) the score assignments3 of h .

Model changes during co-construction. The model changes during co-construc-

tion can be analyzed by comparing the current model, created by the participant, to

other models. To this end, the distance between the mental model and the purely data-

driven model was observed. As the mental model of part A) of the study is only observed

through the feature importance scores from [−100,+100], a PSL can be constructed as

2Features not present in h are assigned the maximum rank |F|, with F being the set of all features.
3The score of absent features is set to 0.
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Figure 8.2: The blue bars show the mean feature importance assessment from phase A of the study; the
orange bars show the mean score for that features when PSL is fitted on the respective data sample,
normalized to the same domain [−100, 100]. The error bars show the 95% confidence interval of the
mean.

follows: First, the features are sorted with regard to the absolute importance score

in descending order. Ties of feature importance assessments are broken arbitrarily.

Second, the scores can be computed by mapping the [−100,+100] interval to the score

set {−3, . . . ,+3} by rescaling linearly and rounding.

Figure 8.3 shows the relative distance of the co-constructed model towards the mental

model and the data-driven reference model over the time of the co-constructive process.

All participants except P1 and P6 have an overall trend towards the data-driven model,

starting with a model that is closer to their initial belief. For participants P2, P3,

and P5, the final model is especially close to the data-driven model at the end of the

co-construction phase. The large steps towards the data-driven model in P2 through

P5 are caused by the participants’ use of the reset and automatic feature addition

buttons. However, P7 also co-constructed the model closer to the data-driven model

only by manually adding features and modifying scores. When ignoring changes induced

by the automatic feature addition, we can see that most participants seem to end up

with models that have similar distances to their initial mental model and the data-

driven reference. This is particularly illustrated with P4, where the changes from the

automatic feature addition after around 90% of the co-construction time are mostly

reverted manually. Similarly, P5 also modifies the model after feature addition to move

closer toward their mental modal after using automatic feature addition (60%, 90%

time). As Figure 8.3 only visualizes the relative distance to two anchor points, it still

seems that most participants do not fully explore the space of models, as the relative

distance changes are relatively small. Note that all co-constructive models consist of at

most 5 features, while the two reference models consist of all features.
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Figure 8.3: The relative distance between the co-constructed model for each participant towards two
reference models is shown on the y-axis: one model created from the feature importance assessment
(y = 0) and one model trained purely data-driven (y = 1). The x-axis shows the relative time over the
course of the co-constructive process.

8.5.3 PSLvis User Actions

Figure 8.4 illustrates how the participants interacted with PSLvis during the co-con-

struction process. This is shown through a timeline for each participant, revealing several

key insights: the duration of the co-construction process varied significantly. While two

experts (P2, P6) spent less than 5 minutes on this part, two others (P4, P7) took more

than 13 minutes.
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Adding Features

Removing Features
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Figure 8.4: Action timelines for each participant, showing the time elapsed since the first recorded
action. Each marker represents the subject’s specific action.

All participants started by independently adding features to the model. Three of

them simultaneously adjusted the scores (P3, P4, P7), while the others first focused

on filling in the model. Participant P6 did not remove any features and stayed with
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the initially selected ones. Four participants (P2, P3, P4, P5) used the reset function,

all directly related to the automatic addition of features. Of these, one participant

(P3) accepted the features without adjusting the scores, two (P2, P4) only modified the

scores, and one (P5) both changed the features and adjusted the scores. One expert

(P7) used the automatic addition function without resetting.

8.5.4 Think-Aloud Results

The audio data was first transcribed and then inductively coded after multiple readings.

First, the data was categorized into statements about PSLvis and/or PSL, and second,

into statements about thought processes and/or challenges.

8.5.5 Co-Construction with PLSvis

Thought Processes. Participants in the co-construction process with PSLvis engage

in various strategies as they explore and modify the model. They add features they be-

lieve are important, sometimes based on their intuition or domain knowledge. However,

they also experiment with different feature combinations and observe how these changes

impact the model’s performance: “I’ll throw in what I think might be important. Maybe

I can also just throw in a lot and delete it afterward.” (P1). Performance is constantly

evaluated, and features are removed if they do not contribute positively to the results.

In some cases, participants experiment with features even if they do not fully under-

stand them (e.g., the “Life Satisfaction” feature) just to observe how the performance

changes.

Additionally, scores are tested to understand their influence on the performance: “I

can still tweak the scores a bit, but no matter what changes I make, the model perfor-

mance always gets worse.” (P2)

The tool’s ability to automatically suggest features is also tested, and while these

suggestions may not always align with the participant’s intuition, they may still be

retained: “I wanted something to be added automatically, and then it gave me ’Agree-

ableness’. That’s a trait I haven’t thought much about, but it can certainly make sense.“

(P7). Throughout the process, participants remain mindful of the five-feature limit,

which shapes their decisions about feature inclusion and removal: “I would have liked

to add more than five traits, but I’m not sure if that had made it more accurate.” (P7).

Challenges. Several challenges emerged during the co-construction process. An

expert encountered features that are rare in practice, such as “Part-Time Studies While

Working,” which created confusion about their relevance: “I actually noticed during the

modeling process that I disagreed with at least one selection of traits, because it was about

a part-time study program. If I remember correctly, none of the students were actually

studying part-time. That was a trait I only included because it significantly improved

the model’s performance. In hindsight, I think I would choose against it. This means I

definitely didn’t blindly follow the model, because I noticed this issue while working with

it.” (P7).
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Additionally, problems arose when thresholds led to scores that appeared counter-

intuitive, causing frustration as the participants struggled to understand why a certain

threshold resulted in an “unnatural” decision boundary.

One expert expressed a desire to revise their models during the second estimation

phase: “You can’t go back. Damn! I should have. . .Ugh, crap. I should have actu-

ally given a minus point for ’Migrant’.” (P1). There were also concerns about model

performance, with some participants perceiving the performance as suboptimal. Many

felt that the limit of five features was too restrictive for building effective models: “It’s

incredibly difficult now with these five things I’ve chosen. I do believe that they are all

relevant, but so is the rest. At least in part.” (P4).

For an expert, it is not clear how high or low the scores can be set (presumably due

to the previous example explanation, where the scores only went up to +2): “I’ll play

around a bit with the scores. I can do them too. I somehow thought I could only make it

up to plus and −2, but I can make them up to seven. That’s relevant, of course.” (P7).

Some experts noted discrepancies between the data provided and their real-world

experiences, further diminishing confidence in the tool: “Uh, difficult. I generally found

it challenging to align my experience from my specialized counseling sessions with the

traits you have. So, the selection of traits wasn’t really good. I would rarely classify my

counseling sessions based on what you have.” (P5). Challenges also arose with binary

features; for example, when a student was female, participants found it unclear how to

use the feature ’Male’. Finally, the direction of certain features, such as ’Final school

grade,’ created confusion, as the relationship between the feature and the score did not

always align with the participant’s expectations.

8.5.6 Decision-Making with PSL

Thought Processes. When using PSL, experts tend to go through the process me-

thodically, often calculating probabilities all the way to the end. They adjust the output

on occasion, but not always; in some cases, they accept the PSL-generated probability

as is. One reason for adjusting the output was that the expert had a different weight-

ing of features in mind compared to the system: “Okay, I tried it with the model, and

it would be 62%. When I think about it now: 18 years old, relatively young, 2.5 final

grade—let’s say an average school diploma. Male. Not a migrant, took advanced math

courses in school. (. . . ) Yeah, I can see again in my own evaluation that, as I said, I

tend to rate all these soft skills or personality traits lower than I probably should.” (P3).

PSL influenced the estimation behavior of the participants. One expert noted that

they felt motivated to deviate more from the average value when they saw the PSL

probabilities, suggesting that the tool impacted their decision-making strategy: “And

if the model now gives me 86%, I’m actually more motivated, let’s say, to deviate a bit

more from this average score than before. So, I’ll go with 75%.” (P3).

Some participants were not concerned about small differences in probabilities; minor

variations did not affect their overall judgment: “In the end, it doesn’t really matter

whether someone has a 75% or 85% probability of success. But it definitely makes a
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difference whether they have 40% or 75%.” (P4)

Challenges. One notable challenge with PSL was the inability to modify the model

during the second estimation phase. Another challenge arose from the fact that a 0%

probability is practically impossible in real-world scenarios. For one expert, receiving

such a result led to significant aversion: “The probability of successfully completing an

engineering degree will never be 0%, because, well, if you have enough people, someone

will always manage to do it. So, in this case, I would deviate significantly from the

model and estimate it around 60%.” (P3).

8.6 Discussion

In this study, we focused on the interactive co-construction of interpretable predictive

models, specifically through the lens of probabilistic scoring systems. To this end, we

developed a web-based user interface that allows experts to construct their own PSL

models and co-construct them with the PSL model. In a study involving 7 experts, we

investigated how PSL influences the decision-making quality of users, how the experts

co-construct their models, and how the interaction unfolds, identifying where challenges

arise.

First, the results show that co-construction can slightly improve experts’ performance

in terms of accuracy, although at the cost of longer decision times. Notably, the co-

constructed models also outperformed purely data-driven models. While we expected

performance improvements due to co-construction and anticipated longer decision times

due to the interpretability and computational complexity of PSL, the slightly better

performance compared to the data-driven model can be explained by the complexity of

the decision problem and the limited dataset. This also highlights that co-construction

can offer an advantage, though this was not the case for all participants.

It is also important to note that there were different forms of co-construction. Some

participants shifted from their own mental models towards the data-driven model, while

others were resistant to the automated assistance (Dietvorst et al., 2018). This was

evident in the think-aloud results: experts initially relied on their own opinions but

experimented with different combinations of features and scores, occasionally guided by

the automated function, even if they did not fully understand it. This corresponds to

the issue of over-reliance or automation bias, often observed in human-AI interactions

(Schemmer et al., 2023). Participants partially relied on the PSL, not blindly, but

taking it as advice that influenced their own judgment. However, there was aversion

when the advice deviated too much or seemed unrealistic.

Our study also highlights challenges that can arise in human-AI interaction research,

which may not be immediately apparent to researchers during development. For exam-

ple, difficulties in understanding feature thresholds or the binary nature of features,

especially when the data in experiments does not match real-world practice.
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8.7 Limitations and Future Research

A key limitation is the small number of participants, preventing statistical analysis of

how PSL impacted expert decisions. This is common in human-computer interaction

research with experts. Future studies might consider using laypeople via platforms like

Prolific, requiring familiar datasets and problems. Although not experts, a larger sample

would be more cost-effective.

Another issue is the dataset used. Estimating academic success and dropout rates

is complex, and the available data was limited, resulting in low model accuracy and

minimal expert improvement. Future studies could benefit from better data to enhance

model performance and highlight interaction effects.

Additionally, this study did not explore how participants handle missing information

during decision-making, a key focus of PSL. We kept all information available to simplify

the decision problem. Future research could examine how participants manage missing

data or time pressure, where they have all the information but limited time to assess

everything, possibly requiring more experience with PSL.

This study highlights both the potential advantages and the challenges of co-construc-

ted and interpretable machine learning models in decision support. While the results

suggest that models created by experts can slightly improve the accuracy of their deci-

sions, they also require significantly more time for decision-making. The co-constructive

interaction with the web-based tool we developed was highly varied in terms of how the

functionalities were used and experimented with, as well as in the adoption of algorith-

mic suggestions and the adaptation of models to individual mental models. However,

some issues should be addressed in future research.

8.8 Appendix

8.8.1 Instructions in German

Herzlich willkommen und vielen Dank, dass Sie an unserer Studie teil-

nehmen.

Das Thema dieser Studie ist die Vorhersage von Studienerfolg Studierender. Die

Studie ist in mehrere Teile gegliedert, die im Folgenden detailliert beschrieben werden:

if Studiengang != ’ALLE’ Der Fokus dieser Studie liegt auf Studierenden aus Stu-

diengang. endif

Teil 1: Bewertung studentischer Merkmale

Zunächst werden Sie gebeten, zu bewerten, wie unterschiedliche Merkmale von Studieren-

den mit ihrem Studienerfolg bzw. ihrem Studienabbruch zusammenhängen. Eine Bew-

ertung von -100 bedeutet, dass das Merkmal stark mit Studienabbruch zusammenhängt,

während eine Bewertung von +100 darauf hinweist, dass das Merkmal stark mit Studi-

enerfolg zusammenhängt. Ein Studienabbruch ist definiert als der tatsächliche Abbruch

des Studiums oder ein Studiengangwechsel.

Teil 2: Einschätzung der Erfolgswahrscheinlichkeit

143



In diesem Abschnitt ist es Ihre Aufgabe, die Wahrscheinlichkeit eines Studienerfolges

für mehrere Studierende anhand ihrer Merkmale einzuschätzen. Dabei werden Ihnen die

Merkmale von einzelnen Studierenden angezeigt. Ihr Ziel ist es, die Wahrscheinlichkeit

eines Studienerfolges möglichst genau zu bestimmen. Zur Information: Etwa 65% aller

Studierenden schließen ihr Studium erfolgreich ab. if Studiengang != ’ALLE’ In program

liegt die Erfolgsquote bei Studiengang Erfolgsquote%.endif

Teil 3: Konstruktion eines Entscheidungsunterstützungsmodells

Als Nächstes werden Sie ein Entscheidungsunterstützungsmodell konstruieren. Dieses

Modell basiert auf maschinellem Lernen und verwendet historische Daten von Studieren-

den, um zu lernen, wie verschiedene Merkmale mit dem Studienerfolg zusammenhängen.

In diesem Teil arbeiten Sie mit einem Tool, das Ihnen bei der Konstruktion des Mod-

ells hilft. Ihr Ziel ist es, ein Modell zu konstruieren, das die Erfolgswahrscheinlichkeit

möglichst genau einschätzt und dabei nicht zu komplex ist.

Teil 4: Erneute Einschätzung der Erfolgswahrscheinlichkeit

Im letzten Schritt ist es erneut Ihre Aufgabe, die Erfolgswahrscheinlichkeit für mehrere

Studierende einzuschätzen. Im Gegensatz zu Teil 2 können Sie hier das von Ihnen kon-

struierte Entscheidungsunterstützungsmodell verwenden. Auch hier ist es Ihr Ziel, die

Erfolgswahrscheinlichkeit möglichst genau einzuschätzen.

Think-Aloud Methode

Ab dem dritten Teil der Studie wird die
”
Think Aloud“-Methode angewendet. Das

bedeutet, dass Sie während der Bearbeitung der Studie Ihre Gedanken und Denkprozesse

frei äußern sollen. Dies wird mit einem Diktiergerät aufgenommen. Weitere Informa-

tionen zu diesem Teil erhalten Sie später.

Sie müssen sich diese Instruktionen nicht genau merken, da bei den jeweiligen Teilen

die Aufgaben erneut und detailliert erklärt werden.

Verständnisprüfung

Um zu überprüfen, ob Sie die Einleitung verstanden haben, bitten wir Sie, die fol-

genden Fragen zu beantworten. Falls Ihre Antworten falsch sind, können Sie die Fragen

mehrfach neu beantworten.

8.8.2 Instructions in English

Welcome and thank you for participating in our study.

The topic of this study is predicting the academic success of students. The study is

divided into several parts, which are described in detail below:

if program != ’ALL’ The focus of this study is on students from program. endif

Part 1: Evaluation of Student Characteristics

First, you will be asked to evaluate how different characteristics of students are re-

lated to their academic success or dropout. A rating of -100 means that the characteristic

is strongly related to dropout, while a rating of +100 indicates that the characteristic

is strongly related to academic success. A dropout is defined as the actual termination

of studies or a change of program.

Part 2: Estimation of Success Probability
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In this section, your task is to estimate the probability of academic success for

several students based on their characteristics. You will be shown the characteristics

of individual students. Your goal is to determine the probability of academic success

as accurately as possible. For your information: Approximately 65% of all students

successfully complete their studies. if program != ’ALL’ In program, the success rate is

program success rate%.endif

Part 3: Construction of a Decision Support Model

Next, you will construct a decision support model. This model is based on machine

learning and uses historical data from students to learn how various characteristics are

related to academic success. In this part, you will work with a tool that helps you

construct the model. Your goal is to create a model that estimates the probability of

success as accurately as possible while keeping it simple.

Part 4: Reassessment of Success Probability

In the final step, your task will again be to estimate the probability of academic

success for several students. Unlike Part 2, you can now use the decision support model

you constructed. Once again, your goal is to estimate the probability of success as

accurately as possible.

Think-Aloud Method

Starting from the third part of the study, the “Think Aloud” method will be applied.

This means that during the study, you are expected to freely verbalize your thoughts and

reasoning processes. This will be recorded with a dictation device. Further information

on this part will be provided later.

You do not need to memorize these instructions, as the tasks will be explained again

in detail during each part.

Understanding Check

To ensure that you have understood the introduction, we ask you to answer the

following questions. If your answers are incorrect, you can retry the questions multiple

times.
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E., Kern, F., Kopp, S., Thommes, K., Ngomo, A.-C. N., Schulte, C., Wachsmuth,

H., Wagner, P., and Wrede, B. (2020). Explanation as a social practice: Toward

a conceptual framework for the social design of ai systems. IEEE Transactions on

Cognitive and Developmental Systems, page 1–1.

Rossi, F. and Loreggia, A. (2019). Preferences and ethical priorities: Thinking fast

and slow in ai. In Proceedings of the 18th International Conference on Autonomous

Agents and MultiAgent Systems, AAMAS ’19, page 3–4, Richland, SC. International

Foundation for Autonomous Agents and Multiagent Systems.

Rudin, C. (2019). Stop explaining black box machine learning models for high

stakes decisions and use interpretable models instead. Nature Machine Intelligence,

1(5):206–215.

Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L., and Zhong, C. (2021).

Interpretable machine learning: Fundamental principles and 10 grand challenges.

arXiv:2103.11251 [cs, stat]. arXiv: 2103.11251.

Saeys, Y., Abeel, T., and Van de Peer, Y. (2008). Robust feature selection using ensemble

feature selection techniques. In Daelemans, W., Goethals, B., and Morik, K., editors,

Machine Learning and Knowledge Discovery in Databases, Lecture Notes in Computer

Science, page 313–325, Berlin, Heidelberg. Springer.

Savage, L. J. (1972). The Foundations of Statistics. Courier Corporation. Google-Books-

ID: zSv6dBWneMEC.

Sawyer, S. F. (2009). Analysis of variance: The fundamental concepts. Journal of

Manual & Manipulative Therapy.

Scharowski, N., Perrig, S. A., von Felten, N., and Brühlmann, F. (2022). Trust and
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