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In this paper, we theoretically study the spectral and temporal properties of pulsed spontaneous parametric
down-conversion (SPDC) generated in lossy waveguides. Our theoretical approach is based on the formalism
of Gaussian states and the Langevin equation, which is elaborated for weak parametric down-conversion and
photon-number-unresolved click detection. Using the example of frequency-degenerate type-II SPDC gener-
ated under the pump-idler group-velocity-matching condition, we show how the joint-spectral intensity, mode
structure, normalized second-order correlation function, and Hong-Ou-Mandel interference pattern depend on
internal losses of the SPDC process. We found that the joint-spectral intensity is almost insensitive to internal
losses, while the second-order correlation function shows a strong dependence on them, being different for the
signal and idler beams in the presence of internal losses. Based on the sensitivity of the normalized second-order
correlation function, we show how its measurement can be used to experimentally determine internal losses.
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I. INTRODUCTION

Currently, for applications in quantum technologies, there
is a huge demand for compact integrated sources of nonclassi-
cal light [1]. One of the flexible frameworks, which allows the
experimental realization of various types of nonclassical field
sources, is based on spontaneous parametric down-conversion
(SPDC). The generation of photon pairs via SPDC requires a
second-order nonlinear susceptibility; therefore, miniaturized
integrated waveguide-based SPDC sources rely on the tech-
nologies for waveguide fabrication of such materials as KTP
[2], LiNbO3 [3], or GaAs [4].

Nonlinear waveguides have significant benefits compared
to nonlinear bulk crystals. The guided modes provide a high
degree of localization of the electromagnetic field [5], ef-
fective coupling between the pump, signal, and idler fields,
and the tunability of their dispersion by the geometry of
the waveguide [6]. However, imperfections during waveguide
fabrication result in differences between the desired ideal and
the fabricated waveguide [7], which may lead to a change
of the properties of the generated states. Importantly for
quantum technological applications is the determination and
characterization of internal waveguide losses during SPDC.
For example, signal and idler photons can be scattered due to
the roughness of the waveguide surface [8]. In turn, AlGaAs
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waveguides, which are also used for SPDC [9,10], have a
strong material absorption in their cores. Therefore, the proper
description of such nonideal lossy SPDC sources is a relevant
task.

SPDC sources may be characterized using one or more of
several experimental techniques. Measurements of the joint
spectral intensity, the normalized second-order correlation
function, and the Hong-Ou-Mandel interference [11] repre-
sent standard tools [12–17]. They are convenient for bulk
crystals and are also widely used for the experimental charac-
terization of lossy waveguide sources. However, the standard
description and interpretation of experimental results do not
take into account the presence of internal losses.

In this paper, we highlight the fundamental difference be-
tween the pulsed SPDC generated in media with and without
internal losses and explore the possibility of extracting inter-
nal losses from measurements of the second-order correlation
function.

The structure of this paper is the following: In Sec. II A,
we present our theoretical approach, which is based on the
framework of Gaussian states and the Langevin equation. The
generated PDC state is described in terms of the second-order
correlation matrices, and in Sec. II B, we present explicit
expressions for the joint spectral intensity and the tempo-
ral profiles of the signal and idler fields. In Sec. II C, we
present the Mercer-Wolf-basis and the number of occupied
modes for type-II SPDC. Sections II D and II E show how the
HOM interference pattern and the normalized second-order
correlation functions can be computed for Gaussian states.
In Sec. II F, we summarize the advantages of our method.
Section III presents and discusses the results of numerical
simulations of frequency-degenerate type-II SPDC generated
under the pump-idler group-velocity-matching condition. The
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obtained results allow us to propose a new approach for the
experimental determination of internal loss coefficients from
the measured normalized second-order correlation functions,
as presented in Sec. III C.

II. THEORETICAL APPROACH

A. Master equation for type-II parametric down-conversion

For the numerical analysis of parametric down-conversion
(PDC) with internal losses, we use the numerical scheme that
was developed in Ref. [18]. The approach is based on the
framework of multimode Gaussian states [19] in a discrete
uniform frequency space (ω0, ω1, . . . , ωN ), which allows
us to write the equations of motion directly in the form
which are used in our numerical calculations. For type-II
PDC, the nonlinear interaction produces two orthogonally
polarized fields: horizontal (here TE) and vertical (TM)
polarized field components. Further in the text, we call
these field components signal and idler, respectively. Signal
and idler fields at position z are given by two vectors of
monochromatic operators: â(z) = (â0(z), â1(z), . . . , âN (z))

T

and b̂(z) = (b̂0(z), b̂1(z), . . . , b̂N (z))
T

, respectively, where
ân(z) ≡ â(z, ωn) and b̂n(z) ≡ b̂(z, ωn). These operators
obey bosonic commutation relations [âi(z), â†

j (z)] =
[b̂i(z), b̂†

j (z)] = δi j and [âi(z), b̂†
j (z)] = 0. In terms of fast

oscillating operators, the electric field operator for the signal
field has the form

Ê+
a (z, t ) =

∑
m

ξa(ωm)âm(z)e−iωmt , (1)

where the amplitude ξa(ωm) =
√

h̄ωm
2ε0cT na(ωm ) , T = 2π

ωm+1−ωm
,

and na(ωm) is the refractive index for the signal field. For the
idler field, the index “a” should be replaced by “b.”

The generator of the spatial evolution [20,21] for type-II
PDC is given by Ĝ(z) = Ĝl (z) + Ĝpdc(z), where the linear
part is given by

Ĝl (z) =
∑

n

h̄ka
n â†

n(z)ân(z) +
∑

n

h̄kb
nb̂†

n(z)b̂n(z) + H.c. (2)

and the nonlinear interaction part is

Ĝpdc(z) = h̄�

2

∑
i, j

Ji j (z)â†
i (z)b̂†

j (z) + H.c. (3)

Here we have assumed the pump wave to be classical, de-
termining the coupling matrix in the form Ji j (z) = S(ωi +
ω j )ei(kp(ωi+ω j )−kQPM )z, where S(ω) is the pump spectrum at

z = 0. The wavevectors k(a,b,p)
n ≡ k(a,b,p)(ωn) = n(a,b,p) (ωn )ωn

c of
the (a) signal, (b) idler, and (p) pump fields are determined
by the corresponding dispersion profiles of a waveguide
n(a,b,p)(ωn). The quasi-phase-matching condition is taken into
account by kQPM = 2π/�, where � is the poling period. The
parameter � is proportional to the effective second-order sus-
ceptibility, the pump electric field amplitude, and the spatial
overlap between the interacting fields.

As we are interested in internal PDC losses, i.e., losses
during the PDC generation, we need to describe the dynamics
in terms of an open quantum system [22]. For simplicity,

FIG. 1. (a) The PDC generation scheme in lossy media; (b) the
Hong-Ou-Mandel interference scheme; and (c) scheme for measur-
ing the normalized second-order correlation function for the signal
field g(2)

s .

we introduce two separate, noninteracting, spatially delta-
correlated Markovian environments for the signal and idler
modes, which allow us to introduce two sets of Langevin
noise operators f̂ a

n (z) ≡ f̂ a(z, ωn) and f̂ b
n (z) ≡ f̂ b(z, ωn) and

two frequency-dependent loss-coefficients αa
n ≡ αa(ωn) and

αb
n ≡ αb(ωn) [see Fig. 1(a)]. The spatial Langevin equation for

the operators â has the form [18]

dân(z)

dz
= iκa

n ân(z) + i�
∑

m

Jnm(z)b̂†
m(z) + √

αa
n f̂ a

n (z), (4)

where κa
n = ka

n + iαa
n/2. The Langevin equation for operators

b̂ is similar. In turn, the pump losses can easily be included
in the model by changing the coupling matrix Jnm(z). In-
deed, as long as the pump field is classical, we can consider
the classical solution for wave propagation in an absorbing
medium. In this case, replacing the real wavevector kp(ω) with
the complex one κ p(ω) = kp(ω) + iαp(ω)/2 will give us a
decaying profile of the pump field. In the absence of all losses,
the Langevin equation corresponds to the spatial Heisenberg
equation [21].

In contrast to the lossless PDC case, where the solution to
the Heisenberg equation has the form of a Bogoliubov trans-
formation [23,24], the solution to the multimode Langevin
equation [Eq. (4)] does not have such a simple form. How-
ever, in this paper, we consider the case where the initial
state and environment are given by vacuum states, which
leads to the generation of an undisplaced Gaussian state via
the PDC process. Therefore, the spatial evolution of PDC
light is described by a master equation for the second-order
correlation functions [18]. In a discrete frequency space, the
master equation constitutes a system of differential equations.
To write this system in a compact matrix form, we introduce
the second-order correlation matrices D(z) and C(z) as

D(z) =
(〈â†â〉z 〈â†b̂〉z

〈b̂†â〉z 〈b̂†b̂〉z

)
, C(z) =

(〈ââ〉z 〈âb̂〉z

〈b̂â〉z 〈b̂b̂〉z

)
.

(5)
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The expressions in the form 〈â†b̂〉z and 〈âb̂〉z denote
the N × N matrices with matrix elements 〈â†

i (z)b̂ j (z)〉 and
〈âi(z)b̂ j (z)〉, respectively. The resulting master equation in a
matrix form reads [18]

dD(z)

dz
= i(D(z)K − K∗D(z)) + i�(C∗(z)MT (z)

− M∗(z)C(z)), (6)

dC(z)

dz
= i(C(z)K + KC(z)) + i�((M(z)D(z) + M(z))T

+ M(z)D(z)), (7)

where the superscript [·]∗ denotes the complex conjugation of
a matrix. The matrix K is a diagonal matrix with elements
diag(κa

0 , . . . κa
N , κb

0 , . . . , κb
N ), while the z-dependent coupling

matrix M(z) is given by

M(z) =
(

0N J (z)
JT (z) 0N

)
. (8)

The initial condition (vacuum state |0〉) reads D(0) = C(0) =
02N and, together with the coupling matrix in the form of
Eq. (8), determines the structure of the solution: i.e., for
any z, the following equalities are fulfilled 〈â†b̂〉z = 〈b̂†â〉z =
〈ââ〉z = 〈b̂b̂〉z = 0N . Therefore, the correlation matrices for
type-II PDC have the form

D(z) =
(〈â†â〉z 0N

0N 〈b̂†b̂〉z

)
, C(z) =

(
0N 〈âb̂〉z

〈b̂â〉z 0N

)
.

(9)

By solving the master equations [Eqs. (6) and (7)] from
z = 0 till z = L, where L is the length of the nonlinear waveg-
uide, the output second-order correlation matrices D(L) and
C(L) are evaluated. These matrices contain all information
about the quantum state.

In the next section, we show how these matrices can be
used to compute spectral and temporal profiles of the signal
and idler fields, the joint spectral intensity, and the effective
number of occupied modes. In Secs. II D and II E the cor-
relation matrices are used to calculate the Hong-Ou-Mandel
interference and the normalized second-order correlation
functions.

B. Spectral and temporal properties of PDC

The spectral photon-number distribution for the signal field
is obtained from the diagonal elements of the matrix 〈â†â〉L as

〈n̂a(ωm)〉 ≡ 〈â†
m(L)âm(L)〉 (10)

and defines the total number of photons in the signal
subsystem Na = ∑

m 〈n̂a(ωm)〉. In addition to the spectral dis-
tribution, the temporal profile of the signal field at z = L can
be found as

Ia(t ) = 〈Ê−
a (L, t )Ê+

a (L, t )〉
=

∑
nm

ξa(ωn)ξb(ωm) 〈â†
n(L)âm(L)〉 ei(ωn−ωm )t . (11)

For the idler field, the spectral and temporal intensity profile
can be found similarly by changing a to b.

It is a little more difficult to express the fourth-order mo-
ments in terms of the second-order matrices. In particular, one
can define the joint spectral intensity (JSI) as

JSI(ωn, ωm) = 〈n̂a(ωn)n̂b(ωm)〉 . (12)

In order to express the JSI(ωn, ωm) in terms of second-order
correlations, the result derived in Ref. [25] is used and reads

JSI(ωn, ωm) = 〈â†
nb̂†

m〉 〈ânb̂m〉 + 〈â†
nân〉 〈b̂†

mb̂m〉
+ 〈â†

nb̂m〉 〈b̂†
mân〉 . (13)

C. Mode structure of PDC

In order to study the mode structure of the resulting fields,
we use the broadband Mercer-Wolf modes [26,27]. These
modes are nothing more than a diagonalization of the matrix
D with the use of a unitary matrix V [18]. As long as the ma-
trix D has a block-diagonal form [see Eq. (9)], V = Va ⊕ Vb

holds, where Va and Vb are also unitary matrices. Therefore,
for type-II PDC, the Mercer-Wolf expansion diagonalizes the
signal and idler subsystems independently, allowing us to in-
troduce broadband modes for the signal and idler subsystems
separately, namely, Â = V T

a â and B̂ = V T
b b̂, respectively. As

a result, the correlation matrix DMW in the broadband Mercer-
Wolf mode basis has the form

DMW = V †DV =
(〈Â†Â〉 0N

0N 〈B̂†B̂〉
)

, (14)

where both the matrices 〈Â†Â〉 and 〈B̂†B̂〉 are diagonal.
For an arbitrary correlation matrix D, the number of occu-

pied modes is defined as [28]

μ(D) =
(∑

i

[ni(D)]2

)−1

, (15)

where ni(D) = Dii/(
∑

i Dii ).
The total effective number of Mercer-Wolf PDC modes for

the joint signal-idler system is given by

μab ≡ μ(DMW). (16)

Note that the matrix DMW being diagonal implies that the
above expression gives the minimal number of occupied
modes compared to any other broadband basis [18]. The num-
ber μab is the total effective number of modes and, therefore,
is different to the Schmidt number (the effective number of
spectral modes), which is commonly defined via the Schmidt
decomposition of the two-photon amplitude [29,30].

In addition, asthe Mercer-Wolf expansion diagonalizes the
signal and idler subsystems independently, an effective num-
ber of occupied Mercer-Wolf modes can be defined separately
for the signal and idler subsystems as

μa ≡ μ(〈Â†Â〉) and μb ≡ μ(〈B̂†B̂〉), (17)

respectively.
Note that the Mercer-Wolf expansion for lossless type-II

PDC gives the equal number of modes for the signal and idler
subsystems μa = μb and μab = μa + μb. In the presence of
losses, the number of modes in the signal and idler subsystems
can differ (μa �= μb). In this case, the function μ(·) is not
additive, i.e., μab �= μa + μb. Therefore, to fully characterize
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a lossy PDC system, all three numbers of modes, μab, μa, and
μb, are required.

The Mercer-Wolf basis provides the matrices 〈Â†Â〉 and
〈B̂†B̂〉 in diagonal form. However, the correlation matrix
〈ÂB̂〉 = V T

a 〈âb̂〉Vb is not necessarily diagonal: it can contain
non-diagonal terms, indicating the presence of field correla-
tions between Mercer-Wolf modes with different indexes.

D. The Hong-Ou-Mandel interferometer

HOM interference is typically considered under two ap-
proximations: First, the low-gain regime of PDC generation
is used, where all the photon number components beyond
two are neglected. The second approximation is the lossless
PDC assumption, which leads to pure state generation. Under
these approximation, the PDC is characterized by the two-
photon amplitude (TPA), which determines the coincidence
probability in the HOM experiment [31,32]. However, for the
pulsed low-gain PDC with losses, the correct description of
the quantum state in terms of the TPA is quite complicated.
The existing approaches are developed either for PDC with a
monochromatic pump [33–35], which can not describe pulsed
PDC, or with the use of scattering theory [36–38], whose
application is challenging for single-pass PDC generated in
long waveguides.

In this section, we show how the framework of Gaussian
states can be applied for the study of the HOM interference
for the lossy PDC. Our approach allows us to go beyond
the aforementioned approximations, and provides an accurate
description of experimental scenarios. We consider two steps:
(1) a linear transformation of the PDC field and (2) a detection
via photon-click (on-off) detectors.

a. Linear transformation for HOM. The scheme of the
HOM interferometer is shown in Figs. 1(a) and 1(b). At
the output of the waveguide, the signal and idler fields have
orthogonal polarizations [Fig. 1(a)]. Thus, a polarizing beam-
splitter is used for the spatial separation of the signal and idler
beams. To let the fields interfere at a beamsplitter, a half-wave-
plate in the idler channel is used to match the polarizations of
the signal and idler fields. Note that these two optical elements
keep the matrices D and C unchanged.

Varying the distinguishability in HOM interference is usu-
ally achieved by adjusting the time delay between the signal
and idler fields interfering on a 50:50 beamsplitter [Fig. 1(b)].
Both these elements are described by unitary transformations
of annihilation operators. The time delay τ is introduced for
the idler field via the diagonal unitary transformation b̂n →
b̂neiωnτ . The transformation for 50:50 beamsplitter is given by
ĉn = 1√

2
(ân + b̂n), d̂n = 1√

2
(ân − b̂n), where ĉn and d̂n are the

output annihilation operators [see Fig. 1(b)]. In matrix form,
such input-output relation reads(

ĉ
d̂

)
= U (τ )

(
â
b̂

)
, (18)

where

U (τ ) = 1√
2

(
1N 1N

1N −1N

)(
1N 0
0 V (τ )

)
, (19)

1N is the identity matrix and V (τ ) = diag(eiω1τ , . . . , eiωN τ ) is
the diagonal matrix.

Having the unitary transformation U (τ ) for operators, the
second-order correlation matrices D and C are transformed
as [18]

F = U∗(τ ) D UT (τ ), E = U (τ ) C UT (τ ), (20)

where resulting correlation matrices are

F (z) =
(〈ĉ†ĉ〉z 〈ĉ†d̂〉z

〈d̂†ĉ〉z 〈d̂†d̂〉z

)
, E (z) =

(〈ĉĉ〉z 〈ĉd̂〉z

〈d̂ĉ〉z 〈d̂d̂〉z

)
.

(21)

b. Photon-click detectors. For the HOM interferometer,
we use two frequency-non-resolving photon-click detectors
(on-off detectors), placed in both the signal and idler channels
[Fig. 1(b)]. This type of detector does not distinguish the num-
ber of detected photons and their frequencies and is commonly
used in HOM experiments [39].

Consider a state ρ̂, which consists of two subsystems c and
d . The detection operator for the subsystem i reads


̂i = Î − |0〉 〈0|i , (22)

where i ∈ [c, d] and |0〉i = ⊗
n |0〉i is a vacuum state for the

i-th subsystem and Î is the identity operator. Then the proba-
bility of click detection in channel c is

Pc = Tr(
̂c ⊗ Îd ρ̂ ) = 1 − qc, (23)

where

qc = Tr(|0〉 〈0|c ⊗ Îd ρ̂) = 〈0|ρ̂c|0〉c (24)

and the matrix ρ̂c = Trd (ρ̂ ) is the density matrix for subsys-
tem c. The expression for the click-detection probability in
channel d is similar to channel c.

The coincidence probability of photon-click detection in
both channels reads

Pcd = Tr(
̂c ⊗ 
̂d ρ̂ ) = 1 + qcd − qc − qd , (25)

where

qcd = Tr(|0〉 〈0|c ⊗ |0〉 〈0|d ρ̂ ) = 〈0| ρ̂ |0〉 (26)

is a probability of simultaneous detection of vacuum in both
channels; |0〉 = |0〉c ⊗ |0〉d .

The Eqs. (24) and (26) are nothing more than the fidelity
between the states ρ̂c (and ρ̂) with the vacuum states |0〉c (and
|0〉). For multimode Gaussian states, these fidelities can be
expressed in terms of the covariance matrix (h̄ = 2) [40,41]

qc = F (σc), qcd = F (σcd ). (27)

where

F (σ ) = 2M

√
det(σ + 12M )

, (28)

2M is the dimension of the covariance matrix σ , and 12M is
a 2M × 2M identity matrix. In Appendix A, the equations for
the covariance matrix are given explicitly. Similar results for
probabilities can be obtained via the Torontonian function,
which was used in Gaussian boson-sampling with threshold
detectors [42].
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E. Normalized second-order correlation function

The normalized second-order correlation function g(2) re-
veals additional temporal properties of the generated state.
By definition [43], the normalized second-order correlation
function reads

g(2)(t1, t2, t3, t4) =
〈 ∏2

i=1 Ê (−)(ti )
∏4

j=3 Ê (+)(t j )
〉

∏4
i=1

√
G(1)(ti )

, (29)

where G(1)(ti ) = 〈Ê (−)(ti )Ê (+)(ti )〉 is the first-order correla-
tion function.

For pulsed multimode optical fields, the measurement of
the normalized second-order correlation function in the form
of Eq. (29) is quite challenging. Indeed, for short pulses,
electric field fluctuations inside the pulse are present, which
requires the use of nonlinear optical effects for a complete
g(2) measurement, e.g., two-photon absorption or second har-
monic generation [44,45], which is problematic for weak
optical fields. Usually, such weak fields are measured via de-
tectors, whose detection times are much larger than the pulse
duration. Such detectors cannot resolve the fast field fluctua-
tions, however, the averaged g(2) value is usually used for an
estimation of the number of PDC spectral modes [13,46]. In
this case, the averaged g(2)

s value and the number of modes μa

for the signal field are related as

g(2)
s = 1 + 1/μa. (30)

For μa � 1, g(2)
s � 2, while the equality holds for the spec-

trally single-mode regime. The g(2)
i for the idler field is

calculated in a similar manner as for the signal field.
In experiments with low-gain PDC, the second-order corre-

lation function is usually measured via a coincidence scheme
with frequency-unresolved click detectors; the scheme is
depicted in Fig. 1(c). Then, the measurement-based normal-
ized second-order correlation function for the signal field is
given by

g̃(2)
s = Ps

cd

Ps
c Ps

d

, (31)

where Ps
cd is the coincidence probability and Ps

c and Ps
d are the

detection probabilities in the channels “c” and “d ,” respec-
tively. To compute probabilities Ps

cd , Ps
c and Ps

d for the signal
field with Eqs. (23) and (25), we block the generated idler
field [channel “b” in Fig. 1(c)] and insert a new vacuum field
instead. Then, the state before the beamsplitter is given by the
correlation matrices

D(z) =
(〈â†â〉z 0N

0N 0N

)
, C(z) =

(〈ââ〉z 0N

0N 0N

)
. (32)

The state after the beamsplitter is given by the transformation
Eq. (20) with U (τ = 0). From Eq. (23), the probabilities Ps

c
and Ps

d are calculated and from Eq. (25) — the coincidence
probability Ps

cd .

F. Summary

Before presenting the numerical results, we emphasize the
advantages of our description. First, our approach is based on
the framework of Gaussian states. The spatial Langevin and
master equations obey causality (spatial ordering), i.e., the

time-ordering effects are taken into account for the generated
PDC field in the presence of internal losses. Particularly im-
portant is the validity of these equations for highly-dispersive
media, where the high-order dispersion terms play a sig-
nificant role. For example, the presence of group-velocity
dispersion causes the spectral chirp, which is significant for
the PDC generation with the use of ultrashort pulses. Second,
the correlation matrices D and C contain all the informa-
tion about the generated mixed state. This means that higher
Fock-state contributions are taken into account, thereby mov-
ing beyond the usual spontaneous PDC (or low-gain PDC)
approximation. The presented approach leads to the correct
determination of the resulting g(2) values for the signal and
idler fields in the presence of losses and at strong pumping.

The presented model eliminates the commonly used low-
gain and lossless assumptions and is valid for spatially
single-mode PDC and where higher-order nonlinear effects
can be neglected. However, our model can be simply extended
to the multimode waveguides and waveguide arrays: The pres-
ence of additional spatial modes increases the dimensionality,
but the generated state remains to be Gaussian. Incorporating
additional nonlinear optical processes is more challenging.
For example, the cascaded up-conversion [47] is described
by a Gaussian framework and therefore can be considered in
terms of Gaussian master equations. However, the effects of
pump-depletion [48,49] or self- and cross-phase modulation
of the pump [50] produce non-Gaussian states, for which the
solution in terms of the correlation matrices D and C is not
sufficient.

III. NUMERICAL RESULTS AND DISCUSSION

To generate frequency-degenerate type-II PDC, we con-
sider a L = 1 cm-long waveguide with manually defined
dispersion and losses. As a pump, we use a Gaussian pulse
with a full width at half maximum of �τ = 0.5 ps and a
central wavelength of λp = 755 nm.

So far as we consider long pulses with narrow spectra, we
can limit ourselves to the first-order refractive index expansion
for the pump, signal, and idler waves, i.e., we do not consider
group-velocity dispersion or chirp in the waveguide. In this
case, the refractive index for each field is taken to be

n(ω) = n(ω0) + ω − ω0

ω0

[
c

vg(ω0)
− n(ω0)

]
, (33)

where c is the speed of light and vg is the group velocity.
In order to model a waveguide, we choose the following
parameters: the pump refractive index np = n(ωp) = 1.9 and
group velocity v

p
g = 0.9c/np, the signal refractive index ns =

n(ωp/2) = 1.9 and group velocity vs
g = 0.95v

p
g , the idler re-

fractive index ni = n(ωp/2) = 1.8 and group velocity vi
g =

v
p
g . Note that here we study the regime of group-velocity-

matching between the pump and idler waves. Experimentally,
such type of phase-matching was studied in, e.g., Ref. [16].
The quasi-phase-matching is obtained with kQPM = ωp

2c (2np −
ns − ni ). The initial state and the state of the environment are
taken to be vacuum. The pump is assumed to be nonscattered
(αp = 0). Below we study the case of spontaneous PDC with
�L � 1 and 〈n̂〉 � 1. The numerical dataset is published in
Ref. [51].

033122-5



DENIS A. KOPYLOV et al. PHYSICAL REVIEW RESEARCH 7, 033122 (2025)

FIG. 2. (a) Total number of photons for the signal and idler fields as a function of the loss coefficient α; (b) number of occupied Mercer-Wolf
modes μab, μa and μb for the joint system, signal and idler subsystems, respectively; (c) the measurement-based second-order correlation
function g(2)

j for the signal and idler fields as a function of α; (d) normalized signal and idler spectra for the lossless PDC α = 0 dB/cm and
lossy PDC with α = 5 dB/cm and α = 30 dB/cm; (e)–(h) JSI for the lossless PDC with α = 0 dB/cm and lossy PDC with α = 5 dB/cm,
α = 10 dB/cm and α = 30 dB/cm, respectively. The white regions correspond to the values of the JSI below 0.4% of its maximal value. In
(d)–(h), δν is the detuning from the central frequency of PDC νp/2.

As we will show below, the considered parameters provide
the PDC generation with the spectral bandwidth of ≈5 nm
around 1550 nm. The variation of the loss coefficient in such
a small spectral range is usually small enough [8] to assume
the losses to be frequency-independent.

A. Waveguide with equal losses

In the first subsection, we present the numerical results for
a waveguide with frequency-independent and equal losses for
the signal and idler fields αa(ωn) = αb(ωn) ≡ α.

1. Spectral properties

In Fig. 2, the numerical results for the considered waveg-
uide are presented. The number of photons for the signal and
idler fields as a function of the loss parameter α is shown
in Fig. 2(a). For lossless PDC, the average number of PDC
photons per pulse reads N = Na + Nb = 2.1 × 10−4, which
corresponds to the spontaneous regime of PDC. As expected,
the number of photons decreases with the increasing loss
coefficient. So far as we consider equal losses for the signal
and idler fields, the dependencies for the signal and idler fields
coincide.

In contrast to the number of photons, the effective number
of occupied PDC modes increases with the loss coefficient
[see Fig. 2(b)]. For lossless PDC μab = 2.2, while its change
for α < 0.5 dB/cm is less than 2%. Starting from α ≈ 1
dB/cm, the number of modes increases significantly.

In addition, the dependencies of the effective number of
occupied modes for the signal (μa) and idler (μb) subsystems
are shown in Fig. 2(b) and illustrate the same tendency of

increasing numbers of modes with the loss coefficient. How-
ever, despite considering equal losses in both channels, these
dependencies are different, which indicates different spectral
and temporal structures of the signal and idler subsystems.
The modification of the mode structure of PDC is also illus-
trated in Fig. 2(c), where the g(2)

s,i and g̃(2)
s,i for the signal and

idler fields are presented [Eqs. (31) and (30)]. These depende-
ncies coincide g(2)

s,i = g̃(2)
s,i ; therefore, the coincidence scheme

with the click detectors can be used for the experimental
determination of the number of modes μa and μb also for the
mixed PDC state.

In order to study the influence of losses on the spectral
properties of PDC, the spectra of signal and idler fields are
shown in Fig. 2(d) for different amounts of losses: loss-
less PDC with α = 0 dB/cm, α = 5 dB/cm and α = 30
dB/cm. Despite the noticeable amount of losses of α = 5
dB/cm, the spectra do not differ significantly from the lossless
PDC: only the visibility of oscillations in the signal spec-
trum decreases, while the spectral width remains almost the
same.

For large losses, the difference in the spectrum becomes
more prominent: The oscillations in the signal spectrum disap-
pear and the spectrum broadens in comparison to the lossless
case. Qualitatively, one can understand this as an effective
reduction of the length of the nonlinear medium. This makes
sense as high losses mean that photons, generated at the
beginning of the waveguide, are most likely to be scattered.
Therefore, photons exiting the system are significantly more
likely to have been generated at the end of the medium. These
effects are also revealed in the JSI. In Figs. 2(e)–2(h), the JSI
for different losses is shown.
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FIG. 3. (a), (b) The absolute and normalized HOM interference
patterns; (c) temporal profiles of the signal and idler fields; (d) signal
and idler temporal profiles normalized to the maximal value of the
idler field. Different colors correspond to different values of α; dif-
ferent line-styles in (c), (d) correspond to signal and idler field. The
filled area represents the temporal profile of the pump field. In (d),
the temporal profiles of idler fields coincide. The overlap integrals
for signal and idler temporal profiles χ si = 1

C

∫
dtIs(t )Ii(t ), where

C =
√∫

dtI2
s (t )

√∫
dtI2

i (t ) are presented in (d) for different values
of α by different color.

2. Temporal properties

In Figs. 3(a) and 3(b), the HOM patterns are presented.
First, in Fig. 3(a), the absolute values of coincidence probabil-
ities between detectors are given for lossless PDC and lossy
PDC. The increase in α leads to a decrease in the maximal
coincidence probability. In addition, the shape of the interfer-
ence pattern is changed, which is explicitly demonstrated for
the normalized coincidence probabilities in Fig. 3(b). As the
losses increase, one can notice that the visibility of the HOM
interference increases while the temporal width of the HOM
dip decreases.

To explain all observed effects, the temporal profiles of the
signal and idler fields are shown in Figs. 3(c) and 3(d). Since
the group velocity of the pump field equals the group velocity
of the idler field, the temporal profiles of the pump and idler
fields coincide. In turn, the signal field is slower. During the
pump propagation along the waveguide, the generated signal
photons are delayed with respect to the pump pulse, which
results in a temporal profile of the signal field that has a
large plateau. The earlier the signal photons are generated, the
more delayed they are with respect to the pump. This effect is
known as a temporal walk-off [5].

In the presence of losses, the photons are scattered, reduc-
ing the intensity of the PDC fields for both the signal and the
idler fields. The idler pulse profile does not change signifi-
cantly, while the signal pulse shape reveals a skew. This skew

FIG. 4. The correlation matrices 〈Â†Â〉, 〈B̂†B̂〉 and 〈ÂB̂〉 in the
Mercer-Wolf basis for the waveguides with (a), (b) α = 0 dB/cm
and (c), (d) α = 10 dB/cm. In (a), (c) the distributions of the number
of photons over the mode number are given for the signal 〈N̂m〉 =
〈Â†

mÂm〉 and idler 〈N̂m〉 = 〈B̂†
mB̂m〉 subsystems, respectively. Note that

the off-diagonal elements for these matrices are absent in the Mercer-
Wolf basis: 〈Â†

nÂm〉 = 〈B̂†
nB̂m〉 = 0, if n �= m. In (b), (d), the absolute

values of elements of the correlation matrix 〈ÂB̂〉 are shown.

can be interpreted in the following manner: The amount of
lost photons is proportional to the traveled distance inside the
scattering medium. The photons generated at the beginning
of the waveguide are more likely to be scattered, compared
to the photons generated in the middle and in the end of the
waveguide. Due to the temporal walk-off, we observe this
effect as a skew in the temporal profile of the signal field. On
the opposite, the idler temporal profile completely coincides
with the pump, and its shape does not change with losses.
Nevertheless, for αs = αi, it reveals the same amount of losses
as the signal field, which can be noticed in Fig. 2(a), showing
the total number of photons in each subsystem.

Despite such a destructive behavior of losses, they increase
the overlap between the resulting signal and idler fields [see
Fig. 3(d)]. The increased similarity between the temporal pro-
files of the signal and idler photons leads to an increasing
visibility of the HOM dip. Higher visibility is usually inter-
preted as better biphoton indistinguishability, so high internal
losses can reduce the difference in temporal profiles of signal
and idler fields and make them more indistinguishable.

3. Mode structure

The dependence of the spectral and temporal profiles of
PDC on the internal losses demonstrates that the mode struc-
ture of the generated light changes with losses. However, it
may seem surprising that the case of equal internal losses
leads to a different number of signal μa and idler μb modes
[see Fig. 2(b)]. To explain this in more detail, we plot in
Fig. 4 the correlation matrices 〈Â†Â〉, 〈B̂†B̂〉 and 〈ÂB̂〉 in the
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Mercer-Wolf basis for both the lossless and lossy waveguides.
Regardless of the waveguide losses, the matrices 〈Â†Â〉 and
〈B̂†B̂〉 are diagonal; their diagonal elements give the number
of photons per mode for the signal and idler subsystems,
respectively. For the lossless waveguide, the number of pho-
tons per mode for the signal and idler subsystems coincide
[Fig. 4(a)]; therefore, μa = μb. In turn, the matrix 〈ÂB̂〉 is di-
agonal, i.e., the signal and idler modes are pairwise correlated
[Fig. 4(b)], which means that we have perfectly correlated
pairs of photons.

In the lossy waveguide, the behavior of correlation matri-
ces differs compared to the lossless case. First, we note that
the total number of photons in each channel is the same, while
the photon number distribution over the modes is different
[Fig. 4(c)]. This results in a different number of modes in
the signal and idler beams; namely, μa �= μb. Second, non-
diagonal elements appear in the matrix 〈ÂB̂〉 [Fig. 4(d)].
These nondiagonal matrix elements 〈ÂnB̂m〉 with n �= m in-
dicate the presence of cross-correlation between modes with
different indices. From the point of view of photon correla-
tions, it means that the pairs of photons generated in the PDC
process can belong to different modes.

There is a physical interpretation of how these cross-
correlations appear: In the presence of internal losses, the
PDC photons are generated not only from the initial vacuum
fluctuations (at the input of the waveguide), but also from
the additional vacuum noise that enters the waveguide. At
each coordinate z′, this uncorrelated vacuum noise from the
environment can contribute to different broadband modes.
This contribution causes the presence of cross-correlations
between different broadband modes in the PDC process gen-
erated at z > z′.

For the studied case, the phase-matching condition is not
symmetrical with respect to the signal and idler subsystems:
the signal field is slower compared to the pump and idler
waves. In the presence of internal losses, this asymmetry
between the signal and idler fields provides an asymmetric
interaction with the environment, which is noticeable e.g. in
the temporal profiles in Fig. 3. In other words, the asymmetric
phase-matching conditions define how the vacuum modes of
the environment contribute to the generated broadband modes,
leading to asymmetry in the matrix 〈ÂB̂〉. During the PDC
generation, at each coordinate z′, the matrix 〈âb̂〉 —in other
words the asymmetric matrix 〈ÂB̂〉— is coupled with the
matrices 〈â†â〉 and 〈b̂†b̂〉 according to Eqs. (6) and (7). For
the PDC generated at z > z′, this coupling causes a different
photon-number distribution for the signal and idler beams, see
Fig. 4(c) that provides a different number of modes μa �= μb

and, consequently, different values of the second-order corre-
lation function g(2)

s �= g(2)
i .

Note that we study the PDC under the pump-idler
group-velocity-matching condition. Different types of
phase-matching conditions (e.g., symmetric group-velocity-
matching) need additional studies, and we leave these cases
out of the scope of this paper.

B. Waveguide with non-equal losses

Usually, the TE- and TM-modes of a waveguide reveal
different scattering losses [7,8], therefore in this section, we

FIG. 5. (a)–(c) The dependencies of g(2)
s , g(2)

i and RN on ᾱ and
r, respectively. The waveguide dispersion and the pump profile are
the same as in Sec. III. (d) The black dots indicate the intersection
of two isolines, g(2)

s (red, solid) and g(2)
i (blue, dash-dotted), that

correspond to the “measured” g(2) values. The black dotted curves
depict the isolines of RN . (point s1) g(2)

s = 1.6 and g(2)
i = 1.86, which

gives the estimated values ᾱ1 = 4.0 dB/cm and r1 = −0.57, (point
s2) g(2)

s = 1.85 and g(2)
i = 1.86, which gives the estimated values

ᾱ2 = 1.9 dB/cm and r2 = 0.65, (point s3) g(2)
s = 1.6 and g(2)

i = 1.7,
which gives the estimated values ᾱ3 = 14 dB/cm and r3 = 0.49.

present numerical results for the type-II PDC generated in a
lossy waveguide with non-equal losses for the signal and idler
fields.

As in the previous section, we consider the case of
frequency-independent losses for both the signal (TE-mode)
αa(ωn) ≡ αs and idler (TM-mode) αb(ωn) ≡ αi subsystems.
In this case, we can parametrize the losses as

ᾱ = αs + αi

2
, r = αs − αi

αs + αi
, (34)

where ᾱ can be interpreted as an average loss, and r is a loss
ratio. The case r �= 0 corresponds to the non-equal losses for
the signal and idler subsystems.

For numerical simulations, we use the same waveguide
dispersion and pump profile defined at the beginning of the
Sec. III. The case of r = 0 and ᾱ = α corresponds to the
waveguide studied in Sec. III A.

In Figs. 5(a)–5(c), the dependencies of g(2)
s , g(2)

i and the
relative number of photons

RN = Ni − Ns

Ns + Ni
(35)

are presented as a function of the internal waveguide losses
ᾱ and r. A non-zero value of r leads to different numbers of
photons in the signal and idler subsystems. In addition, the
g(2)

s (ᾱ, r) and g(2)
i (ᾱ, r) depend on r, indicating an additional
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redistribution of the number of photons over the modes in the
case of non-equal losses.

C. Toward a loss determination scheme

The results of the previous subsection demonstrate that the
values of g(2) for the signal and idler modes depend differently
on the internal losses ᾱ and r. Since external frequency-
independent losses (transmission losses) do not change the
value of the normalized second-order correlation function (see
Appendix B), the difference in g(2) between the signal and
idler fields can be used as an indicator of the internal waveg-
uide losses. In this section, we discuss how the measured
values of g(2) might be applied to experimentally determine
the internal losses of a waveguide.

Let us assume a waveguide with the known dispersion
and a general case of non-equal frequency-independent loss
coefficients for the signal and idler beams αs �= αi, which are
unknown and should be determined in the experiment. Let
us assume that the theoretical values of g(2)

s (ᾱ, r), g(2)
i (ᾱ, r)

and the relative number of photons at the waveguide output
are also known. If the behavior of the fixed isolines g(2)

s , g(2)
i ,

and RN are different in the parameter space, their intersection
allows us to estimate the values of ᾱ and r. Summing up, for
a known waveguide, the internal losses can be experimentally
determined from the measured values of g(2)

s , g(2)
i and RN .

As an example, let us consider the waveguide from the
previous section, for which the dependencies of g(2)

s , g(2)
i , and

RN are shown in Figs. 5(a)–5(c). Let us consider that we have
“measured” in an experiment some values of g(2)

s and g(2)
i . In

Fig. 5(d), we present three examples “s1,” “s2,” mand “s3.”
For each fixed “measured” values of g(2)

s and g(2)
i , there are

two theoretically calculated isolines (red, solid) and (blue,
dash-dotted), respectively. Such isolines have an intersection
point (black circles) that defines the amount of internal losses.

In Fig. 5(d), we also present two isolines for a relative num-
ber of photons RN (black, dotted). The value RN can verify
that the theoretical model is consistent with measurements.
For our example “s1,” if the external losses are correctly
accounted and the “measured” values of correlation functions
read g(2)

s = 1.6 and g(2)
i = 1.86, one should experimentally

obtain RN = −0.225. If for the given values of g(2)
s and g(2)

i
and correctly accounted external losses we measure another
value of RN (for example RN = −0.4), then this indicates that
our prior knowledge about the waveguide dispersion is not
correct.

The obtained results can be used as a starting point for
developing an experimental method to determine internal
losses. The main advantage of the proposed scheme is that
the second-order correlation function is insensitive to the
frequency-independent external losses (transmission and de-
tection) and therefore the values of g(2)

s and g(2)
i can be

measured with high accuracy. However, obtaining theoretical
values of g(2)

s and g(2)
i requires knowledge of the waveguide

dispersion, and, consequently, the numerical solution of the
master equations. For each SPDC configuration with the fixed
phase-matching condition, the dependence of g(2)

s and g(2)
i on

the parameters ᾱ and r should be investigated individually and
more thoroughly. In addition, the presence of higher spatial
modes, frequency-dependent losses, or additional waveguide

imperfections can significantly change the properties of the
generated SPDC field and g(2) behavior. At the same time,
the development of an accurate experimental method is quite
challenging: issues such as sensitivity analysis, validity, and
impact of the waveguide model simplifications must be taken
into account. In our work, we have shown the basic principle
of this method and leave more in-depth research as a follow-
up work.

IV. CONCLUSIONS

In this work, we examine theoretically the spectral and
temporal properties of low-gain broadband PDC generated in
a lossy waveguide. Our theoretical approach is based on the
formalism of Gaussian states and the Langevin equation and
is adjusted for the weak parametric down-conversion process
and photon-number unresolved detection.

Using the example of frequency-degenerate type-II PDC
generated under the pump-idler group-velocity-matching con-
dition, we show how internal losses of nonlinear waveguides
change the properties of the generated light. We demonstrate
that the influence of internal losses on the spectral profiles of
the generated field is weak. However, the Hong-Ou-Mandel
interference strongly depends on losses: the Hong-Ou-Mandel
dip may increase with losses, while the correlation time de-
creases, which is explained in terms of the temporal profiles
of the signal and idler fields.

One of the most important results is the dissimilar depen-
dence of the number of modes of the signal and idler field on
the internal losses (even when losses are equal). Such behavior
becomes apparent in the second-order correlation functions
of the signal and idler fields, which can be easily detected
in experiments: Different values of second-order correlation
functions indicate the presence of internal waveguide losses.
Based on this effect, we show that the second-order correla-
tion functions can, in principle, be used for the determination
of internal losses in nonlinear waveguides. We believe that
the results obtained in our work can be directly applied to
experiments and will strongly improve the characterization of
nonlinear waveguides.
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APPENDIX A: COVARIANCE MATRIX

A covariance matrix is a real positive-definite symmetric
matrix of the second-order moments of quadrature operators
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[19]. In this paper, we define the quadrature operators
(h̄ = 2) as q̂i = ĉ†

i + ĉi and p̂i = i(ĉ†
i − ĉi ) with the commu-

tation relations [q̂n, p̂m] = 2iδnm.
For non-displaced quantum states with 〈ĉi〉 = 0 and 〈x̂i〉 =

0, the elements of the covariance matrix σ are given by

σi j = 〈x̂ix̂ j + x̂ j x̂i〉
2

, (A1)

where x̂i are the elements of the vector x̂ =
(q̂1, q̂2, . . . , q̂2N , p̂1, p̂2, . . . , p̂2N )T . Having the second-order
correlators 〈ĉ†

i ĉ j〉 and 〈ĉiĉ j〉, the elements of the matrix σ are
given by

〈q̂iq̂ j〉 = δi j + 2(Re[〈ĉ†
i ĉ j〉] + Re[〈ĉiĉ j〉]), (A2)

〈p̂i p̂ j〉 = δi j + 2(Re[〈ĉ†
i ĉ j〉] − Re[〈ĉiĉ j〉]), (A3)

〈p̂iq̂ j + q̂ j p̂i〉
2

= 2(Im[〈ĉiĉ j〉] − Im[〈ĉ†
i ĉ j〉]). (A4)

To build the covariance matrix of the joint signal-idler
system σ ab, the 〈ĉ†ĉ〉 = D and 〈ĉĉ〉 = C from the main text.
In turn, a covariance matrix σ a for the signal subsystem is
defined by the matrices 〈ĉ†ĉ〉 = 〈â†â〉 and 〈ĉĉ〉 = 〈ââ〉.

APPENDIX B: SECOND-ORDER CORRELATION
FUNCTION AND EXTERNAL LOSSES

The normalized second-order correlation function is insen-
sitive to external frequency-independent losses. Indeed, for
the field Ê (+)(t ), the losses can be introduced via a virtual
beamsplitter with transmission coefficient T . If the losses
are the same for all frequencies, the field transformation has
the form Ê (+)(t ) → √

T Ê (+)(t ). By substitution of the trans-
formed field into Eq. (29), the factors

√
T cancel out, what

keeps the function g(2)(t1, t2, t3, t4) unchanged.
As a result, the values g(2)

s and g(2)
i remain unchanged in

the presence of frequency-independent external losses (trans-
mission and detection losses). As long as for lossless PDC
g(2)

s = g(2)
i , a difference g(2)

s − g(2)
i can indicate the presence

of internal losses during the PDC process.

[1] E. Pelucchi, G. Fagas, I. Aharonovich, D. Englund, E. Figueroa,
Q. Gong, H. Hannes, J. Liu, C.-Y. Lu, N. Matsuda, J.-W. Pan,
F. Schreck, F. Sciarrino, C. Silberhorn, J. Wang, and K. D. Jöns,
The potential and global outlook of integrated photonics for
quantum technologies, Nat. Rev. Phys. 4, 194 (2022).

[2] M. N. Satyanarayan, A. Deepthy, and H. L. Bhat, Potassium
titanyl phosphate and its isomorphs: Growth, properties, and
applications, Crit. Rev. Solid State Mater. Sci. 24, 103 (1999).

[3] G. Poberaj, H. Hu, W. Sohler, and P. Günter, Lithium niobate
on insulator (LNOI) for micro-photonic devices, Laser Photon.
Rev. 6, 488 (2012).

[4] E. J. Stanton, J. Chiles, N. Nader, G. Moody, N. Volet,
L. Chang, J. E. Bowers, S. Woo Nam, and R. P. Mirin,
Efficient second harmonic generation in nanophotonic GaAs-
on-insulator waveguides, Opt. Express 28, 9521 (2020).

[5] G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Elsevier, Aca-
demic Press, Oxford, UK, 2013).

[6] J. Mishra, M. Jankowski, A. Y. Hwang, H. S. Stokowski, T. P.
McKenna, C. Langrock, E. Ng, D. Heydari, H. Mabuchi, A. H.
Safavi-Naeini, and M. M. Fejer, Ultra-broadband mid-infrared
generation in dispersion-engineered thin-film lithium niobate,
Opt. Express 30, 32752 (2022).

[7] D. Melati, A. Melloni, and F. Morichetti, Real photonic waveg-
uides: Guiding light through imperfections, Adv. Opt. Photon.
6, 156 (2014).

[8] M. Hammer, S. Babel, H. Farheen, L. Padberg, J. C. Scheytt,
C. Silberhorn, and J. Förstner, Estimation of losses caused by
sidewall roughness in thin-film lithium niobate rib and strip
waveguides, Opt. Express 32, 22878 (2024).

[9] M. Placke, J. Schlegel, F. Mann, P. Della Casa, A. Thies, M.
Weyers, G. Tränkle, and S. Ramelow, Telecom-band spon-
taneous parametric down-conversion in AlGaAs-on-insulator
waveguides, Laser Photon. Rev. 18, 2301293 (2024).

[10] J. Schuhmann, L. Lazzari, M. Morassi, A. Lemaître, I. Sagnes,
G. Beaudoin, M. Amanti, F. Boeuf, F. Raineri, F. Baboux,
and S. Ducci, Hybrid III-V/silicon quantum photonic device

generating broadband entangled photon pairs, PRX Quantum
5, 040321 (2024).

[11] C. K. Hong, Z. Y. Ou, and L. Mandel, Measurement of subpi-
cosecond time intervals between two photons by interference,
Phys. Rev. Lett. 59, 2044 (1987).

[12] M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn,
Fiber-assisted single-photon spectrograph, Opt. Lett. 34, 2873
(2009).

[13] A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and
C. Silberhorn, Probing multimode squeezing with correlation
functions, New J. Phys. 13, 033027 (2011).

[14] K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-
Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren,
and P. G. Kwiat, Joint spectral characterization of photon-pair
sources, J. Mod. Opt. 65, 1141 (2018).

[15] F. Graffitti, J. Kelly-Massicotte, A. Fedrizzi, and A. M.
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