
Fakultät für Elektrotechnik, Informatik und Mathematik
Institut für Informatik
Arbeitsgruppe Softwaretechnik

Bachelorarbeit
Gerichtet an die Arbeitsgruppe Softwaretechnik

zur Erreichung des Grades

Bachelor of Science

Unparsing von Datenstrukturen zur
Analyse von

C-Präprozessor-Variabilität

von
Eugen Shulimov

Betreut durch:
Paul Maximilian Bittner

Prüfer:
Prof. Dr. Thomas Thüm
Prof. Dr. Stefan Sauer

Paderborn, 6. Januar 2025

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der an-
gegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch
keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung
angenommen worden ist. Alle Ausführungen, die wörtlich oder sinngemäß übernommen worden
sind, sind als solche gekennzeichnet.

Ort, Datum Unterschrift

Zusammenfassung. Es gibt verschiedene Möglichkeiten Variabilität in einem Pro-
jekt umzusetzen. Einer dieser Möglichkeiten ist die Nutzung von C-Präprozessor-
Annotationen. Dies gestattet uns Variabilität umzusetzen. Es gibt eine Reihe an Analy-
sen und Forschungsarbeiten, Entwickler bei der Umsetzung der Variabilität und deren
Analyse zu unterstützen. Dazu werden Tools wie DiffDetective verwendet. Zwar hat
DiffDetective einen Parser, aber keinen Unparser. Variation-Trees und Variation-Diffs
sind zwei zentralen Datenstrukturen in DiffDetective, um Präprozessorvariabilität und
Änderungen daran darzustellen. In dieser Arbeit präsentieren wir einen Unparser für
Variation-Trees und Variation-Diffs. Wir haben diesen Algorithmus in DiffDetective
implementiert und an einem großen Datensatz validiert. Die von uns gewählten Da-
tensätze sind Vim, sylpheed, gcc und berkeley-db-libdb. Für die Validierung wurde
von uns mehrere Korrektheitskriterien für unseren Unparser ausgearbeitet. Damit man
feststellen kann, ob ein Unparser syntaktisch oder semantisch korrekt arbeitet.

Inhaltsverzeichnis

1 Einleitung 1

2 Hintergrundwissen 5
2.1 C-Präprozessor . 5
2.2 Realisierung von Variabilität mit dem C-Präprozessor 6

3 Unparse-Algorithmus 9
3.1 Variation-Tree und Variation-Diff . 9
3.2 Parser . 12
3.3 Verlorengehende Informationen und deren Wiederherstellung 16
3.4 Unparsing . 21
3.5 Komplexitätsanalyse der Laufzeit . 26
3.6 Zusammenfassung . 28

4 Implementierung 31

5 Korrektheit 35
5.1 Korrektheitskriterium . 35
5.2 Auswertung . 42

5.2.1 Aufbau des Experiments . 43
5.2.2 Ergebnisse . 43
5.2.3 Diskussion . 45

5.3 Zusammenfassung . 47

6 Verwandte Arbeiten 49
6.1 Parsen von C-Präprozessor-Annotationen für Variabilitätsanalysen 49
6.2 Dekompilierung von C . 50
6.3 Variabilitätsanalysen . 50

7 Fazit und Zukünftige Arbeiten 53

Bibliography 55

vii

viii

Einleitung
1

Bei der Entwicklung von konfigurierbaren Softwaresystemen, wie zum Beispiel Clone-and-Own,
oder Softwareproduktlinien, gibt es im Laufe des Lebenszyklus immer mehr Features. Es ist
von Vorteil, eine Möglichkeit zu haben, die Features im Code zu unterscheiden und automatisch
zu finden. Einer dieser Vorteile ist, dass einer Produktlinie die Varianten automatisch ableiten
kann. Einige Möglichkeiten dazu sind Präprozessor-Annotationen, oder Build-Systeme [2]. Bei
der Clone-and-Own-Entwicklung wird für jede Variante der Software eine neue Kopie der ge-
samten Software angelegt und parallel entwickelt [3]. Dort müssen Features gefunden werden,
um diese zu aktualisieren [3, 14, 15, 16, 17, 33].

Der C-Präprozessor ist eine Möglichkeit, Variabilität zu erzeugen [2]. Der C-Präprozessor ist
ein Tool, das den Quellcode vor dem Kompilieren manipuliert [2]. Dieses Tool bietet Möglichkei-
ten zur Dateieinbindung, zu lexikalischen Makros, und zur bedingten Kompilierung [2]. Wie ein
mit dem C-Präprozessor annotierter Code aussehen kann, ist in der Abbildung 1.1 Stelle v zu
sehen (Abb. 1.1 St. v). Um die Variabilität mithilfe des C-Präprozessors zu erzeugen, brauchen
wir dessen Möglichkeit zur bedingten Kompilierung [2]. Dabei können beliebige Formeln in Aus-
sagenlogik über Features im Quellcode mit den C-Präprozessor-Anweisungen #if, #ifdef und,
#ifndef abgebildet werden [3] (Abb. 1.1 St. v). Die Anweisung #if ist wie die if-Anweisung
aus gewohnten Programmiersprachen, #ifdef und #ifndef sind ähnlich zu #if aber reagie-
ren auf Definition oder nicht Definition eines oder mehreren Makros. Als Eingabe erhält der
C-Präprozessor einen mit C-Präprozessor-Annotationen annotierten Code. Dieser Eingabe wird
gemäß der C-Präprozessor-Annotationen bearbeitet und als Ausgabe erhält man einen Code,
welche für die Kompilierung bereit ist.

Die Entwickler sind bei der Entwicklung von konfigurierbarer Software daran interessiert,
zu verstehen, wie sich ihre Änderungen auf die Variabilität auswirken und wie die Variabili-
tät von konfigurierbarer Software aussieht [3]. Sonst wenn man das Verständnis über die Aus-
wirkungen der Änderung nicht hat, kann das zu Fehlern und Problemen bei der Entwicklung
führen [3, 13, 21, 22, 25, 29]. Dies stellt einen Aspekt einer größeren Aufgabe dar, der Auf-
rechterhaltung und Weiterentwicklung von Informationen über Variabilität bei Quellcodeände-
rungen [3]. Für die Entwickler stellt diese Aufgabe eine große Herausforderung dar [3, 23, 24, 26].

Zur Unterstützung der Variabilitätsanalyse kann man Tools verwenden [28, 32], wie zum
Beispiel DiffDetective [5]. Der Zweck von DiffDetective ist es, Änderungen im Quellcode und
Änderungen der Variabilität darstellbar und den Zusammenhang zwischen ihnen analysierbar

1

zu machen. DiffDetective stellt einen variabilitätsbezogenen Differencer [3, 5] zur Verfügung, der
sich nur auf Aspekte im Code/Text bezieht, welche die Variabilität berücksichtigen. Diese Biblio-
thek ermöglicht auch die Analyse der Versionshistorie von Softwareproduktlinien [3] und bietet
daher einen flexiblen Rahmen für großangelegte empirische Analysen von Git-Versionsverläufen
statisch konfigurierbarer Software [4, 5].

Zentral für DiffDetective sind zwei formal verifizierte Datenstrukturen für Variabilität und
Änderungen an dieser [3]. Das sind Variation-Trees (Abb. 1.1 St. x) für variabilitätbezoge-
nen Code (Abb.1 St. v) und Variation-Diffs (Abb. 1.1 St. y) für variabilitätsbezogene Diffs
(Abb. 1.1 St. w). Diese Datenstrukturen sind generisch. Das bedeutet, dass die Datenstruktu-
ren möglichst von der Umsetzung der Variabilität im Code abstrahieren. Also kann eine Umset-
zungsmöglichkeit leicht durch eine andere ersetzt werden, zum Beispiel können C-Präprozessor-
Annotationen durch Java-Präprozessor-Annotationen ohne oder geringer Änderungen an den
Datenstrukturen selbst, ersetzt werden. Ein Variation-Tree ist ein Baum, welcher die Verzwei-
gungen/Variationen eines annotierten Codes darstellt [3, 4, 5]. Ein Variation-Diff ist ein Graph,
welcher die Unterschiede zwischen zwei Variation-Trees zeigt [3, 4, 5]. In beiden Fällen werden
die Bedingungsknoten, welche Informationen zu Variabilität erhalten, und die Code-Knoten un-
terschieden. Beim Variation-Diff sind zudem die eingefügten Knoten, die gelöschten Knoten und,
die unveränderten Knoten zu unterscheiden.

Das Parsen führt die Eingabe von der konkreten Syntax in die abstrakte Syntax um. In
unserem Fall parst DiffDetective C-Präprozessor-Annotationen, dieses kann aber auch auf an-
dere Präprozessor-Annotationen erweitert werden. Beim Parsen wird nur der C-Präprozessor-
annotierte Code in seine abstrakte Syntax überführt. Der C- bzw. C++-Code wird als Text
behandelt und wird nicht geparst. Das Parsen in DiffDetective funktioniert für Variation-Trees
und für Variation-Diffs über einen einzigen gemeinsamen Algorithmus. Der Algorithmus ist an
sich für das Parsen von textbasierten Diffs in Variation-Diffs ausgelegt (Abb. 1.1 St. 5). An den
Stellen 1 und 9 wird anders vorgegangen, da wir als Eingabe C-Präprozessor-Code (Abb. 1.1
St. v) haben und als Ausgabe einen Variation-Tree (Abb. 1.1 St. x). Der gegebene Algorithmus
ist für das direkte Parsen von C-Präprozessor-Code nicht ausgelegt. Deshalb wurden dort Um-
wege verwendet, um diesen Algorithmus anwendbar zu machen und die benötigte Ausgabe zu
erzielen. Ein Text kann in ein textbasiertes Diff umgewandelt werden, in dem jede Zeile als unver-
ändert angesehen wird, durch die Bildung eines Diffs mit sich selbst. Dadurch ist es möglich aus
C-Präprozessor-Code (Abb. 1.1 St. v) ein textbasiertes Diff (Abb. 1.1 St. w) zu erzeugen, also
wurden die Stelle 11 oder 12 verwendet. Da jetzt ein textbasiertes Diff vorhanden ist, kann
der Algorithmus darauf angewandt werden (Abb. 1.1 St. 5). Um aus dem erhaltenen Variation-
Diff (Abb. 1.1 St. y) ein Variation-Tree zu bekommen, muss man die Stelle 4 oder 8 aus der
Abbildung 1.1 anwenden. So sieht man, dass die Stelle 1 durch die Stellen 11 , 5 , 4 und die
Stelle 9 durch die Stellen 12 , 5 , 8 ersetzt werden kann.

2

Kapitel 1. Einleitung

#ifdef A
foo();

-#else
- #ifdef B
+ bar();
+#endif
+#if B && !A

baz();
- #endif
#endif

#ifdef A
foo();

#else
#ifdef B
baz();
#endif

#endif

r

A

foo(); else

B

baz();

#ifdef A
foo();
bar();

#endif
#if B && !A

baz();
#endif

r

A

foo();

B ∧ ¬A

baz();

r

A

foo(); #else

B

baz();

bar();

B ∧ ¬A

parse

unparse

parse

unparse

parse

unparse

diff

di
ff

diffproject

diff
pr

oje
ct

1

2
3

4

5

6

7

8
9

10

11

12

v

w
y

x

Abbildung 1.1: Überblick über Variability-Aware Differencing [5]

Eine Möglichkeit zu Analyse von Softwareproduktlinien sind Mutation-Tests. Bei Mutation-
Tests werden Mutation-Operatoren verwendet, welche aber nur auf der abstrakten Ebene, also
auf Variation-Trees, angewandt werden können [1]. Um weiter in der Analyse vorzugehen, muss
man von der abstrakten Ebene zu der konkreten Ebene übergehen und hier wird der Unparser ge-
braucht. Obwohl es einen Parser (Abb. 1.1 St. 1 , 5 , 9) für Variation-Trees und Variation-Diffs
gibt, gibt es keinen Unparser (Abb. 1.1 St. 2 , 6 , 10) für Variation-Trees und Variation-Diffs.
Unser Ziel ist es, das zu ändern. Dazu müssen wir einen Unparser entwickeln, welcher auf di-
rektem oder indirektem Wege, Variation-Trees (Abb. 1.1 St. x) in C-Präprozessor-Annotierten
Code (Abb. 1.1 St. v) und Variation-Diffs (Abb. 1.1 St. y) in textbasierte Diffs (Abb. 1.1 St. w)
überführt. Dabei ist Unparsen eine Überführung aus der abstrakten Syntax in die konkrete Syn-
tax, also ist das Unparsen die Invertierung des Parsens.

Für das Unparsen stellt das Fehlen einiger Informationen, die im annotierten Code vorhan-
den sein müssen, aber in Variation-Trees bzw. Variation-Diffs nicht vorhanden sind, das größte
Problem dar. Diese Informationen sind entweder durch das Parsen verloren gegangen oder waren
von Anfang an nicht vorhanden, zum Beispiel wenn Variation-Trees bzw. Variation-Diffs syn-
thetisch erzeugt wurden. Diese Informationen sind die exakte Formel, die ein Mapping-Knoten
τ(v) = mapping besitzt [3] und die Position von #endif und deren Einrückung. Aus diesem
Grund müssen wir entweder Annahmen treffen, oder DiffDetective so erweitern, dass er diese

3

Information explizit speichert. Eine Annahme könnte sein, dass das #endif genauso eingerückt
ist, wie die Bedingung, zu der es gehört.

In dieser Arbeit werden wir ein Vorgehen zum Unparsen von Variation-Trees und Variation-
Diffs in das ursprüngliche Textformat ausarbeiten, dieses Vorgehen in DiffDetective implemen-
tieren und anhand von uns ausgearbeiteten Korrektheitskriterien in einer Auswertung die Kor-
rektheit unseren Unparsers bestimmen.

Um die Korrektheit des von uns entwickelten und implementierten Unparser zu bestimmen,
kann man wie folgt vorgehen. Zuerst hat man eine Ausgangsdatei. Diese Datei wird gaparst
und wir erhalten das Ergebnis des Parsens. Als Nächstes wird dieses Ergebnis genommen und
ungepasrt. Damit bekommen wir das Ergebnis des Unparses. Zum Schluss wird das Ergebnis
des Unparsesn mit der Ausgangsdatei verglichen und bewertet ob der Unparser korrekt gear-
beitet hat. Zum Vergleichen des Ergebnisses des Unparsers und der Ausgangsdatei haben wir
drei Korrektheitskriterien definiert. Diese Korrektheitskriterien sind syntaktische Korrektheit,
syntaktische Korrektheit ohne Whitespace und semantische Korrektheit. Wir haben mehrere
Korekthietskriterien definiert, da abhängig davon welche, wie viel Information beim Parsen ver-
loren gehen, sind unterschiedlich korrekte Rekonstruktionen möglich. Bei Parsen und Unparsen
gibt es eine gegenseitige Abwägung, je mehr Informationen ausgelassen werden, desto leichter
ist es einen Parser zu bauen aber dann ist es schwieriger zu unparsen. In die andere Richtung
gilt es auch, je mehr sich Informationen gemerkt werden soll, dann ist das Parsen schwieriger
aber dann das Unparsen leichter.

4

Hintergrundwissen
2

In diesem Kapitel stellen wir Hintergrundwissen zur Verfügung, dieses Wissen ist von Bedeu-
tung für das Verständnis dieser Arbeit. Es handelt sich um C-Präprozessor und einer seiner
Einsatzmöglichkeit. In dem Abschnitt 2.1 dieses Kapitels wird der C-Präprozessor vorgestellt.
Seine Möglichkeiten und Anweisungen zusammen mit einem Beispiel. Wie der C-Präprozessor
zur Umsetzung der Variabilität im Code genutzt werden kann und welche Bestandteile von dem
C-Präprozessor dazu nötig sind, wird im Abschnitt 2.2 des Kapitels erläutert.

2.1 C-Präprozessor

Der C-Präprozessor ist ein Tool, das Quellcode vor dem Kompilieren manipuliert [2]. Dieses
Tool bietet Möglichkeiten zur bedingte Kompilierung, zur Dateieinbindung und zur Erstellung
lexikalischer Makros [2]. Eine C-Präprozessor-Direktive beginnt mit # und geht bis zum ersten
Whitespace-Zeichen weiter, optional kann nach der Direktive ein Argument im Rest der Zeile
stehen. Der C-Präprozessor hat solche Anweisungen wie, #include zum Einbinden von Datei-
en, um zum Beispiel Header-Dateien wiederzuverwenden. Wie das Aussehen kann, ist in der
Abbildung 2.1, Zeile 1 zu sehen. Mit den Anweisungen #if (Zeile 6), #else (Zeile 10), #elif
(Zeile 8), #ifdef (Zeile 18), #ifndef (Zeile 3), und #endif (Zeile 5) wird die bedingte Kompi-
lierung erzeugt. Dabei funktionieren #if, #else, #elif, und #endif vergleichbar mit dem, was
man aus Programmiersprachen und Pseudocode gewohnt ist. #ifdef ist ähnlich zu #if, wird
aber nur dann wahr, wenn das darauf folgende Makro definiert ist. #ifndef ist die Negation
von #ifdef. Makros werden durch die Anweisung #define (Zeile 4) erstellt. Der Präprozessor
ersetzt dann während seiner Arbeit, den Makronamen durch seine Definition. Während dieser
Arbeit kann ein Makro definiert, umdefiniert und undefiniert, mit #undef (Zeile 2), werden. Der
C-Präprozessor hat noch weitere Anweisungen, auf die wir nicht weiter eingehen. Auf weitere
Anweisungen wird nicht eingegangen, da diese bezüglich unserer Arbeit nicht relevant sind. Der
C-Präprozessor kann in anderen Programmiersprachen verwendet werden. Beispiel für solchen
Sprachen sind C++, Assemblersprachen, Fortran und Java. Der Grund dafür ist, dass der C-
Präprozessor unabhängig von der zugrundeliegenden Programmiersprache ist.

Der C-Präprozessor-Annotierter Code in der Abbildung 2.1 arbeitet wie folgt. Zuerst in Zeile
1 wird der studio-Header eingebunden um mit dem Input und Output zu arbeiten. Danach in
Zeile 2 wird der Makro N undefiniert. In Zeile 2 wird geprüft ob der Makro N existiert, wenn

5

2.2 Realisierung von Variabilität mit dem C-Präprozessor

nicht, wird der mit dem Wert 10 definiert. Als Nächstes in Zeilen 6 bis 12 wird der Makro A
abhängig von dem Wert von N definiert. Bei N größer 10 enthält A die Zeichenkette O.O bei N
gleich 10 wird A auf ;) gesetzt in restlichen Fällen ist A :(. In Zeile 14 beginnt die main-Funktion.
In Zeile 15 gibt es die Funktion printf, welche Hello world! auf der Konsole ausgibt. Danach in
Zeile 17 wird geprüft, ob N definiert wurde, wenn ja, dann bekommt die main-Funktion eine
for-Schleife. Diese for-Schleife wird N Mal durchlaufen und gibt bei jedem Schleifendurchlauf
auf der Konsole den Makro A aus. In der Zeile 25 gibt es den standardmäßigen return 0.

1 # include <stdio.h>
2 #undef N
3 # ifndef N
4 # define N 10
5 #endif
6 #if N > 10
7 # define A "O.O"
8 #elif N == 10
9 # define A ";)"

10 #else
11 # define A ":("
12 #endif
13
14 int main ()
15 {
16 printf ("Hello world!");
17 #ifdef N
18 int i;
19 for (i = 0; i < N; i++)
20 {
21 printf (A);
22 }
23 #endif
24
25 return 0;
26 }

Abbildung 2.1: Beispiel für C Code mit Präprozessor Anweisungen

2.2 Realisierung von Variabilität mit dem C-Präprozessor

Der C-Präprozessor ist eine Möglichkeit, Variabilität zu erzeugen [2]. Um Variabilität mithil-
fe des C-Präprozessor zu erzeugen, brauchen wir dessen Möglichkeit zur bedingten Kompilie-
rung [2]. Dies wird mit den C-Präprozessor-Anweisungen #if (Abb.2.1 Z6), #else (Abb.2.1 Z10),
#elif (Abb.2.1 Z8), #ifdef (Abb.2.1 Z18), #ifndef (Abb.2.1 Z2), und #endif (Abb.2.1 Z4)
bewerkstelligt. Dabei werden Codefragmente von diesen Anweisungen eingeschlossen. Danach,
abhängig davon welche Makros definiert sind und auch wie sie definiert sind, werden bestimmte
Codefragmente entweder behalten oder entfernt. Die Abbildung 2.2 zeigt, ein von uns erstell-
tes Beispiel, wie ein mit C-Präprozessor-Annotierter Code aussehen kann. Das Beispiel zeigt,
dass die Anweisungen von den C-Präprozessor verschachtelt werden können. Bei der Realisie-
rung von Variabilität wird oft mit Features gearbeitet. Ein Feature ist dabei ein Merkmal oder
ein für den Endbenutzer sichtbares Verhalten eines Softwaresystems. Ob eine C-Code Zeile im
endgültigen Programm auftaucht oder nicht wird durch die dazugehörige Bedingung bestimmt.
Diese Bedingungen werden durch C-Präprozessor-Annotation dargestellt. Es ist möglich, mit
den C-Präprozessor Anweisungen eine große Menge an Bedingungen abzubilden [3]. Zur leich-

6

Kapitel 2. Hintergrundwissen

1 #ifdef FEATURE_A && FEATURE_B
2 foo ();
3 bar ();
4 int i = 18
5 #ifdef FEATURE_D
6 # define SIZE 200
7 foom ();
8 #else
9 # define SIZE 175

10 i = 17;
11 #endif
12 too(i);
13 #endif
14 #ifdef FEATURE_C
15 baz ();
16 # ifndef FEATURE_B
17 sho ();
18 # define SIZE 100
19 #endif
20 bazzz ();
21 #else
22 boom ();
23 broo ();
24 #endif
25 #if SIZE > 180
26 long j;
27 #elif SIZE < 111
28 short j;
29 #else
30 int j;
31 #endif

Abbildung 2.2: Beispiel für Umsetzung der
Variabilität mit C-Präprozessor

1 foo ();
2 bar ();
3 int i = 18
4 i = 17
5 too(i);
6 boom ();
7 broo ();
8 int j;

Abbildung 2.3: Ausgabe des
C-Präprozessors wenn Fea-
ture A=1, B=1, C=0, D=0

1 baz ();
2 sho ();
3 bazzz ();
4 short j;

Abbildung 2.4: Ausgabe des
C-Präprozessors wenn Fea-
ture A=0, B=0, C=1, D=0

terer Pflege werden diese Bedingungen oft in eine Folge von mehreren Feature-Annotationen
aufgeteilt. Beispiel dafür ist Zeile 7 zu sehen, wo seine Feature-Annotationen FEATURE_A &&
FEATURE_B und FEATURE_D sind, aber seine Bedingung FEATURE_A && FEATURE_B
&& FEATURE_D. In diesem Code-Beispiel ist auch die Abhängigkeit einiger Features von an-
deren zu erkennen, wie in Zeile 5, wo die Auswahl des Features D nur dann möglich ist, wenn
auch die Features A und B ausgewählt sind. Die Zeile 17 in Abbildung 2.2 hat als Feature-
Annotationen FEATURE_C und !FEATURE_B die Bedingung dabei aber ist FEATURE_C
&& !FEATURE_B. Nicht nur die Definition von Features, sondern auch die Nicht-Definition
kann, einen Einfluss auf das Ergebnis haben, wie in der Zeile 16 zu sehen ist. In dem Beispiel
wird, wie bei der Implementierung von Softwareproduktlinien, ein Name pro Feature reserviert.
Wenn das Feature dann ausgewählt wird, wird dann ein Makro mit Feature-Namen definiert, mit
der Anweisung #define FEATURE_NAME. Die Abbildungen 2.3 und 2.4 stellen 2 mögliche Er-
gebnisse der C-Präprozessor-Ausführung dar. Diese Ergebnisse werden als Varianten bezeichnet.
Dabei werden für die Abbildung 2.3 die Features A und B definiert und für die Abbildung 2.4
nur das Feature C. Eine Konfiguration ist eine Auswahl der Features welche ausgewählt und
nicht ausgewählt werden. Es ist zu sehen, dass der generierter Code nur in dem Bezeichner j
gleich ist und sonst nicht. Das veranschaulicht, wie unterschiedlich das Programm sein kann.

7

2.2 Realisierung von Variabilität mit dem C-Präprozessor

8

Unparse-Algorithmus
3

In diesem Kapitel stellen wir unseren Algorithmus zum Unparsen von Variation-Trees und unsere
Methode für das Unparsen von Variation-Diffs vor. Wir beschreiben den theoretischen Hinter-
grund, welche Bedingungen erfühlt werden müssen, damit der Algorithmus korrekt funktioniert,
und die Arbeitsweise des Algorithmus.

Wir beschäftigen uns mit der Definition von Variation-Tree und Variation-Diff, nehmen neue
Definitionen für Variation-Tree und Variation-Diff aus anderer Arbeit und erweitern diese. Es
werden auf Bedingungen aufgestellt, ohne die der Algorithmus nicht korrekt funktionieren kann.
Der von uns entwickelte Algorithmus basiert auf dem Prinzip der Tiefensuche und kann nur
für das Unparsen von Variation-Trees verwendet werden. Für das Unparsen von Variation-Diffs
reduzieren wir das Problem auf das Unparsen von Variation-Trees indem wir statt Variation-Diff
zu unparsen, den Variation-Diff projizieren, dann zwei Variation-Trees unparsen und schließlich
ein Diff über das Ergebnis bilden.

Wir fangen an mit Definitionen von Variation-Tree und Variation-Diff in Kapitel 3.1. Da-
nach im Kapitel 3.2 sehen wir den Parser, welcher Variation-Trees und Variation-Diffs erstellt.
Im Kapitel 3.3 werden die, während des Parsens, verlorengehende Informationen bestimmt und
Möglichkeiten vorgestellt diese zurückzubekommen. Aufbauend auf den vorherigen wird im Ka-
pitel 3.4 unser Algorithmus zum Unparsen von Variation-Trees vorgestellt. Schlussendlich wird
im Kapitel 3.5 eine Laufzeitanalyse des Algorithmus durchgeführt.

3.1 Variation-Tree und Variation-Diff
Um verstehen zu können, wie wir Variation-Trees und -Diffs unparsen können, müssen wir uns
mit den Einschränkungen und Möglichkeiten des Parsers vertraut machen.

Um Variation-Trees und Variation-Diffs kennenzulernen, betrachten wir zunächst die ur-
sprüngliche Definition der Datenstrukturen [3].

Definition 3.1. Ein Variation-Tree (V, E, r, τ, l) ist ein Baum mit Knoten V , Kanten E ⊆
V ×V und Wurzelknoten r ∈ V . Jede Kante (x, y) ∈ E verbindet einen Kindknoten x mit seinem
Elternknoten y, bezeichnet mit p(x) = y. Der Knotentyp τ(v) ∈ {artifact,mapping,else}
identifiziert einen Knoten v ∈ V entweder als Vertreter eines Implementierungsartefakts, einer
Feature-Annotation oder eines else-Zweigs. Das Label l(v) ist eine aussagenlogische Formel,

9

3.1 Variation-Tree und Variation-Diff

wenn τ(v) = mapping, ein Verweis auf ein Implementierungsartefakt, wenn τ(v) = artifact,
oder leer, wenn τ(v) = else ist. Der Wurzelknoten r hat den Typ τ(r) = mapping und das Label
l(r) = true. Ein Knoten e von Typ τ(e) = else kann nur unterhalb eines Nichtwurzelknotens
v mit dem Typ τ(v) = mapping platziert werden, dabei hat ein Knoten w von Typ τ(w) =
mapping höchstens einen Knoten u vom Typ τ(u) = else.

Definition 3.2. Ein Variation-Diff ist ein gerichteter, zusammenhängender, azyklischer
Graph D = (V, E, r, τ, l, ∆), welcher einen Wurzelknoten hat, mit Knoten V , Kanten E ⊆ V ×V ,
Wurzelknoten r ∈ V , Knotentyp τ , Knotenlabel l und einer Funktion ∆ : V ∪ E →{+,–,◦}, die
definiert, ob ein Knoten oder eine Kante hinzugefügt + wurde, entfernt – wurde oder unverändert
◦ geblieben ist, so das project(D, t) ein Variation-Tree für alle Zeiten t ∈ {a, b} ist.

Definition 3.3. Die Projektion project(D, t) für ein Variation-Diff ist ein Variation-Tree, der
durch das Entfernen von ∆ und den Knoten und Kanten, welche zu der Zeit t nicht vorhanden
sind. project((V, E, r, τ, l, ∆), t) := ({v ∈ V |exists(t, ∆(v))}, {e ∈ E|exists(t, ∆(e))}, r, τ, l)

Ob ein Knoten oder eine Kante zu einer gegebenen Zeit existiert oder nicht, wird durch
exists bestimmt. EXISTS ist hier genauso definiert wie in [3] und [20].

Definition 3.4. Ob ein Knoten oder eine Kante zu einer gegebenen Zeit existiert oder nicht,
stellt exists für x ∈ V ∪ E fest mit exists(t, x) := (t = b ∧∆(x) ̸= +) ∨ (t = a ∧∆(x) ̸= −).

In der Abbildung unten ist ein Beispiel für ein Variation-Diff gegeben. Es hilft auch bei dem
Verständnis von Variation-Trees da diese, ähnlich zu Variation-Diffs sind. Die Abbildung zeigt
wie die unterschiedlichen Komponenten des Variation-Diffs visuell dargestellt werden können.
Diese Darstellung wurde an der Darstellung eines Variation-Diffs aus DiffDetective [5] angelehnt.
In der Abbildung ist ein Variation-Diff und gelbe Kasten mit Pfeilen, welche die Bestandteile
des Variation-Diffs beschreiben. Die Form eines Knotens stellt seinen Knotentyp τ dar, runde
Knoten haben artifact als τ , rechteckige Knoten haben mapping als τ und elliptische Knoten
haben else als τ . Die Farbe eines Knotens stellt sein ∆ dar, wiese Knoten haben ∆ gleich ◦,
grüne Knoten haben ∆ gleich + und rote Knoten haben ∆ gleich−. Der Text in den Knoten stellt

den Label dar.

root

foo() if B

if A∨C

bar() else

baz() ban()

boo()

einige Knoten aus V

einige Kanten aus E

Wurzelknoten r

∆ ist +
Knoten ist grün

τ ist mapping

Label ist A∨C

Label ist bar()

τ ist artifact

∆ ist ◦
Knoten ist weis

τ ist else

∆ ist −
Knoten ist rot

Das ist aber nicht die einzige Möglichkeit Variation-Tree und Variation-Diff zu definieren.
In [20] wurden die Variation-Tree und Variation-Diff etwas anders definiert. Obwohl dort auch
Variation-Tree und Variation-Diff definiert werden, werden wir in dieser Arbeit die neuen Defi-
nitionen als geordneter Variation-Tree und als geordneter Variation-Diff bezeichnen. Diese De-
finitionen haben eine Eigenschaft, welche wir brauchen um das Unparsen zu bewerkstelligen.

10

Kapitel 3. Unparse-Algorithmus

Das ist die Ordnung der Kinderknoten, ohne die wir nicht eindeutig wissen, wie der Inhalt der
Knoten einzuordnen ist. Genauer gehen wir darauf in Unterkapitel 3.3 ein. Die Definitionen von
geordneten Variation-Trees und geordneten Variation-Diff sehen wie folgt aus:
Definition 3.5. Ein geordneter Variation-Tree (V,E,r,τ ,l,O) ist ein geordneter Baum,
bei dem V, E, r, τ und l genauso definiert sind wie in der Definition 3.1 . Dazu hat ein geordneter
Variation-Tree eine injektive Funktion O : V → N, die eine Ordnung für die Kinder eines jeden
Knotens jedes Knotens definiert.
Definition 3.6. Ein geordneter Variation-Diff D = (V, E, r, τ, l, ∆, Obefore, Oafter) ist
ein gerichteter, zusammenhängender, azyklischer Graph, bei dem V, E, r, τ , l, und ∆ genauso
definiert sind wie in der Definition 3.2 . Die Reihenfolge der Kinderknoten vor der Änderung
Obefore und nach der Änderung Oafter sind eine injektive Funktion Obefore, Oafter : V → N. Die
Projektionen projectO(D, t) müssen für alle Zeiten t ∈ {after, before} ein Variation-Tree mit
demselben Wurzelknoten sein.

Aus Gründen der Eindeutigkeit haben wir auch die Projektion umbenannt, da sich die De-
finition von projectO(D, t) von der Definition der Projektion project(D, t) aus der Definition
3.3 unterscheidet, wegen der zusätzlichen Informationen, die gespeichert werden.
Definition 3.7. Die Projektion projectO(D, t) eines geordneten Variation-Diffs
D = (V, E, r, τ, l, ∆, Obefore, Oafter) zum Zeitpunkt t ∈ {after, before} ist definiert als:
projectO(D, t) := (V ′, E′, r, τ, l, Ot), wobei V’ = {v ∈ V | exists(t, ∆(v))},
E’ = {e ∈ E|exists(t, ∆(e))} und die Existenz von d ∈ {+,–,◦}, zu der Zeit t ∈ {after, before}
ist in der Definition 3.4 gegeben.

Die Definitionen von normalen Variation-Tree und Variation-Diff sind sehr ähnlich zu den
Definitionen von geordneten Variation-Tree und Variation-Diff. Es ist so, da geordnete Variation-
Tree bzw. Variation-Diff eine Erweiterung von normale Variation-Tree bzw. Variation-Diff sind.
Aus diesem Grund können wir geordnete Variation-Tree bzw. Variation-Diff in normale Variation-
Tree bzw. Variation-Diff umwandeln.
Definition 3.8. reduceOV T wandelt einen geordneten Variation-Tree (Definition 3.5) in ein
normales Variation-Tree (Definition 3.1)
reduceOV T ((V, E, r, τ, l, O)) := (V, E, r, τ, l).
Definition 3.9. reduceOV D wandelt einen geordneten Variation-Diff (Definition 3.6) in ein
normales Variation-Diff (Definition 3.2)
reduceOV D((V, E, r, τ, l, ∆, Obefore, Oafter)) := (V, E, r, τ, l, ∆).

Es bleibt uns nur noch zu zeigen, dass die Reihenfolge der Anwendung nicht von Bedeutung
ist. Damit wir die Abbildung 3.1 bekommen, welche zeigt wie geordnete Variation-Trees, geord-
nete Variation-Diffs, normale Variation-Trees und normale Variation-Diffs transformiert werden
können.
Lemma 3.10. Für ein geordneten Variation-Diff D und eine Zeit t ∈ {before, after} gilt
reduceOV T (projectO(D, t)) = project(reduceOV D(D), t).
Beweis. reduceOV T (projectO(D, t))
= reduceOV T (projectO((V, E, r, τ, l, ∆, Obefore, Oafter), t))
= reduceOV T (({v ∈ V |exists(t, ∆(v))}, {e ∈ E|exists(t, ∆(e))}, r, τ, l, Ot))
= ({v ∈ V |exists(t, ∆(v))}, {e ∈ E|exists(t, ∆(e))}, r, τ, l)
= project((V, E, r, τ, l, ∆), t)
= project(reduceOV D(V, E, r, τ, l, ∆, Obefore, Oafter), t)
= project(reduceOV D(D), t)

11

3.2 Parser

Jetzt haben wir uns mit dem beschäftigt wie Variation-Tree und Variation-Diff zu verstehen
sind. Dabei haben wir zwei Definitionen von Variation-Tree bzw. Variation-Diff kennengelernt,
die sich sehr ähnlich sind aber auch einen Unterschied haben. Dieser Unterschied ist die Ord-
nung der Kinderknoten, welche die geordneten Variation-Trees und Variation-Diffs haben und
die normalen Variation-Trees und Variation-Diffs nicht. Diese Ordnung ist für das Unparsen not-
wendig. Dazu haben wir gezeigt das es möglich ist, geordnete Variation-Tree bzw. Variation-Diff
in Variation-Tree bzw. Variation-Diff zu überführen. Die notwendige Reduktion und Projekti-
on kann, wie in Abb. 3.1 dargestellt, in beliebiger Reihenfolge angewandt werden. Im späteren
Verlauf können wir bei Bedarf diese Unterschiede für unsere Zwecke verwenden. Nachdem wir
jetzt wissen was Variation-Trees und Variation-Diffs sind, ist es an der Zeit nachzuvollziehen
wie diese gebildet werden.

geordneter
Variation-Diff

geordneter
Variation-Tree

Variation-Diff Variation-Tree

projectO

project

red
u

ce
O

V
D

red
u

ce
O

V
T

Abbildung 3.1: Transformationen von geordneten Variation-Diff , geordneten Variation-Tree,
Variation-Diff und Variation-Tree

3.2 Parser

Jetzt beschäftigen wir uns mit den Parsen, also wie Variation-Trees bzw. Variation-Diffs aus mit
C-Präprozessor-Direktiven annotiertem Code bzw. einem textbasierten Diff von solchem Code
erstellt werden. Das Verständnis des Parsens ist, für das Verständnis des Unparsens von Bedeu-
tung, da das Unparsen das Parsen invertiert. Dazu schauen wir uns den Parser-Algorithmus von
Viegener [31] an, welcher das Parsen von Variation-Diffs aus textbasierten Diffs eingeführt hat.

Der unten stehender Algorithmus überführt einen textbasierten Diff in einen Variation-Diff.
Der Algorithmus wurde, außerdem das wir den ins Deutsche übersetzt haben, so wie er ist von
Viegener [31] übernommen. Der Dabei werden in dem Algorithmus einige Funktionen verwendet,
die nicht so in der Definition vorkamen. Ein dieser Funktionen ist der Code-Typ, welcher die Rolle
einer Zeile im Diff repräsentiert. Es kann die Werte if, elif, else, code, oder endif haben. Bei dem
Wert if ist gegeben, dass die Zeile eine der Präprozessor Anweisungen #if, #ifdef, oder #ifndef
hat. Bei dem Wert else ist in der Zeile die Präprozessor Anweisungen #else, bei Wert elif ist die
Präprozessor Anweisungen #elif und bei Wert endif ist die Präprozessor Anweisungen #endif
gegeben. Wenn der Wert von Code-Typ code ist, dann enthält die Zeile keine Präprozessor
Anweisungen, sondern normalen Code. Da Wert elif als Erweiterung betrachtet werden kann,
wird auf sie nicht weiter in unserer Arbeit eingegangen. Der Code-Typ einer Zeile wird bei der
Erstellung eines neuen Knotens in Knotentyp τ überführt. Der Code-Typ if wird in τ gleich
mapping, der Code-Typ code wird in τ gleich artifact und der Code-Typ else wird in τ
gleich else überführt. Der Code-Typ endif hat keine Überführung in Knotentyp τ , diese Code-
Type wird nur intern von dem Algorithmus verwendet. Eine andere Funktion ist der Diff-Typ,

12

Kapitel 3. Unparse-Algorithmus

welcher für eine Zeile angibt, ob diese Zeile hinzugefügt wurde, entfernt wurde oder unverändert
geblieben ist. Der Diff-Typ + sagt, dass die Zeile hinzugefügt wurde, – sagt, dass die Zeile
entfernt wurde und ◦ sagt, dass die Zeile unverändert geblieben ist. Der Diff-Typ wird, auch wie
der Code-Typ, bei der Erstellung eines neuen Knotens in ∆ überführt. Dabei wird + in +, – in–
und ◦ in ◦ überführt. Der Variation-Diff hat noch einen Knoten welcher keine Widerspiegelung
in dem textbasierten Diff enthält, das ist der Wurzelknoten. Der Wurzelknoten repräsentiert den
ganzen textbasierten Diff. Er hat als einziger Knoten im Variation-Diff keinen Elternknoten.

Algorithmus 1: Erstellung eines Variation-Diffs aus einem Patch
Data: ein textbasierter Diff
Result: ein Variation-Diff

1 erstelle den Wurzelknoten
2 initialisiere ein Stack/Keller before mit dem Wurzelknoten
3 initialisiere ein Stack/Keller after mit dem Wurzelknoten
4
5 foreach Zeile in dem Patch/Diff do
6 δ ← identifiziere Diff-Typ der Zeile
7 γ ← identifiziere Code-Typ der Zeile
8 σ ← identifiziere relevante Stacks mithilfe von δ
9

10 if γ = endif then
11 Entferne, solange Knoten von allen Stacks in σ, bis if-Knoten entfernt wurde
12 else
13 erstelle einen neuen Knoten mit δ, γ und gerichtete Kanten von Elternknoten

aus σ zu dem neu erstellten Knoten
14 if γ ̸= code then
15 füge den neuen Knoten σ hinzu
16 end
17 end
18 end

Der Algorithmus arbeitet wie folgt. Ganz am Anfang wird der Wurzelknoten in Zeile 1
erstellt. Danach werden zwei Stacks erstellt und jeweils mit dem Wurzelknoten initialisiert, was
in Zeilen 2 und 3 des Algorithmus 1 zu sehen ist. Die Stacks speichert dabei die Elternknoten.
Ein Stack speichern die Elternknoten im davor Zustand und der anderer im danach Zustand.
Beide Stacks werden mit Wurzelknoten initialisiert, welcher den ganzen Diff repräsentiert und
deshalb als einziger Knoten in Variation-Diff keinen Elternknoten hat. In Zeile 5 ist eine Schleife
zu sehen, welche über alle Zeilen des textbasierten Diffs geht. Dabei wird für jede Zeile zuerst
der Diff-Typ δ in Zeile 6 und dann der Code-Typ γ in Zeile 7 ermittelt. In Zeile 8 werden die
relevanten Stacks σ anhand von Diff-Typ δ bestimmt, und zwar wie folgt:

σ =


Stack after , δ = add
Stack before , δ = remove
Stacks befor und after , δ = none

Diese Informationen werden zum einen dazu gebraucht für Algorithmus interne Berechnungen
und zum anderen zur Erstellung von Knoten gebraucht. Danach in Zeile 10 kommen wir zu
einer if-Abfrage. Wenn der Code-Typ der bearbeiteten Zeile endif entspricht, dann wird aus den
relevanten Stacks in σ solange Knoten entfernt bis man einen Knoten mit dem Code-Type γ
if entfernt hat. Falls beide Stacks relevant sind, muss der if-Knoten in beiden Stacks gefunden
werden. Dieses Vorgehen ist notwendig, da eine endif-Anweisung auf das Ende des dazugehörigen

13

3.2 Parser

if-Blocks oder if-else-Blocks folgen muss. Das führt mit sich, dass die dazugehörigen if-Knoten
und else-Knoten keine Elternknoten mehr sein können und aus den Stacks entfernt werden müs-
sen. Wenn der Code-Typ nicht endif entspricht, kommen wir in den else-Teil ab Zeile 12 des
Algorithmus 1. Dort wird zuerst ein neuer Knoten erstellt, dazu unter anderem wird Diff-Typ
δ und Code-Typ γ verwendet. Es werden auch Kanten von Elternknoten aus den Stacks von
σ zu diesen neuen Knoten erstellt. Als Nächstes wird in Zeile 14 überprüft, ob der erstellter
Knoten nicht von Code-Typ code ist. Diese Abfrage ist nötig da nur solche Knoten ein Elternk-
noten sein können. Den Code-Typ endif kann dieser Knoten nicht haben, wegen der if-Abfrage
in Zeile 10, welche nicht zulässt, dass ein Knoten mit diesem Typ zu dieser Stelle gelangen
kann. Wenn der Knoten nicht von Code-Typ code ist, dann wird dieser Knoten den relevanten
Stacks aus σ hinzugefügt, sonst wenn der Knoten, den Code-Type code hat, wird nichts gemacht.

Der vorgestellte Algorithmus ist für das Parsen von textbasierten Diffs, welche aus mit C-
Präprozessor-Annotierten Code entstanden sind, zu Variation-Diffs ausgelegt aber es ist auch
möglich den Algorithmus zum Parsen von C-Präprozessor-Annotiertem Code zu einem Variation-
Tree zu verwenden. Wir reduzieren das Problem ein Variation-Tree zu parsen auf das Problem
ein Variation-Diff zu parsen. Hierzu müssen wir zwei Sachen beachten. Zuerst wäre da die Anpas-
sung der Eingabe, da wir C-Präprozessor-Annotierten Code haben aber der Algorithmus einen
textbasierten Diff erwartet. Die zweite Sache wäre die Anpassung der Ausgabe, die Ausgabe
des Algorithmus ist ein Variation-Diff, wir brauchen aber einen Variation-Tree. Um die Ein-
gabe gerecht für den Algorithmus zu machen, müssen wir unseren C-Präprozessor-Annotierten
Code in ein textbasiertes Diff verwandeln. Dazu bilden wir ein Diff mit unserem C-Präprozessor-
Annotierten Code als Davor-Zustand und Danach-Zustand. Danach bekommen ein textbasiertes
Diff in dem jede Zeile als unverändert markiert ist. Dabei hat jede Zeile dieses Diffs den Diff-
Typ none. Da jetzt ein Diff gegeben ist, können wir auf den Diff den Algorithmus anwenden.
Die Ausgabe ist dann ein Variation-Diff, welcher in ein Variation-Tree umgewandelt werden
muss. Um dies anzustellen, bilden wir eine Projektion des Variation-Diffs auf den Davor- bzw.
Danach-Zustand und bekommen einen Variation-Tree. Es ist irrelevant welcher von den bei-
den Zuständen genommen wird, da der Davor-Zustand gleich dem Danach-Zustand sein soll.
Mit den gezeigten Zwischenschritten lässt sich dieser Algorithmus auch für das Parsen von C-
Präprozessor-Annotierten Code zu Variation-Trees verwenden.

Wir wollen die Arbeitsweise des Algorithmus veranschaulichen. Dazu wenden wir den Algo-
rithmus, auf das untenstehende, beispielhafte Stück C-Code mit C-Präprozessor-Annotationen
an und veranschaulichen das Vorgehen in der Abbildung 3.3. Diese Abbildung zeigt Kasten und
den Zeitpunkt der dort gezeigten Information. In einem Kasten ist der Variation-Diff und rele-
vanten Stacks für angegebene Zeile aus dem C-Code unten enthalten. Der Zeitpunkt ist nach
Bearbeitung der angegebenen Zeile. Hier ist ein C-Code gegeben. Wir brauchen aber ein textba-
sierten Diff. Der gezeigte C-Code wird wie gerade beschrieben in ein textbasiertes Diff überführt,
somit ist die nötige Eingabe gegeben. Am Anfang des Algorithmus werden die Stacks erstellt
und mit dem Wurzelknoten initialisiert. Wir betrachten jetzt die Schleife, die über alle Zeilen
des obigen Diffs geht. Wir kommen zur Zeile 1 des C-Codes, dort befindet sich eine normale
Codezeile, welche nicht annotiert ist. Es ergibt sich, dass diese Zeile den Code-Typ code und
den Diff-Typ none hat. Alle anderen Zeilen haben auch den Diff-Typ none, aus dem Grund wie
dieser Diff gebildet wurde und deshalb lassen wir die Erwähnung des Diff-Typs für jede Zeile
sein. Dasselbe gilt auch für die relevanten Stacks in σ, da alle Zeilen den Diff-Typ none haben,
gilt für alle Zeilen auch die gleichen relevanten Stacks und das sind beide. Da diese Zeile nicht
Code-Typ endif hat, wird ein Knoten mit Code-Type, Diff-Typ, Elternknoten aus den Stacks
und dem Inhalt der Zeile erstellt und dem Variation-Diff hinzugefügt, wie das aussieht, ist in

14

Kapitel 3. Unparse-Algorithmus

1 f();

2 #if(A)

3 #if(B||C)

4 g();

5 #else

6 z();

7 #endif

8 x();

9 #endif

Abbildung 3.2: Beispiel für mit C-Präprozessor-Annotierten Code

Abbildung 3.3 in dem Kasten „Nach Z.1“ zu sehen. Der erstellter Knoten hat als Elternknoten
den Wurzelknoten, wie es in den Stacks zu sehen ist. In Abbildung 3.1 im Kasten „Nach Z.2“
ist der Variation-Diff und die relevanten Stacks nach der Bearbeitung der Zeile 2 zu sehen. Es
wurde ein neuer Knoten erstellt, welcher eine if-Anweisung enthält und in beide Stacks wurden
dieser Knoten hinzugefügt. Die Schleife wurde fast gleich wie im vorherigen Fall durchgelaufen,
außer an der letzten if-Abfrage. Diese Abfrage war bei der Zeile 1 false dieses Mal, da wir keinen
Code-Typ code haben, wird diese Abfrage ausgeführt und der neu erstellter Knoten den Stacks
hinzugefügt. Der nächste Kasten rechts zeigt den Variation-Diff nach Zeile 3. Der Algorithmus
ist genauso wie im vorherigen Fall vorgegangen. Weiter voran wird dem Variation-Diff im nächs-
ten Schritt ein Code-Knoten hinzugefügt, da für die Erstellung dieses Knotens der Code selbst
irrelevant ist, wurde hier genauso vorgegangen wie bei der Erstellung eines Code-Knotens in
Zeile 1. In der Zeile 5 ist #else als Anweisung gegeben. Diese Zeile hat den Code-Typ else und
somit auch kein endif. Es wird in den else-Zweig der ersten Abfrage gegangen. Dort wird ein
neuer Knoten mit dem Inhalt dieser Zeile erstellt. Der Knoten wird den Stacks hinzugefügt, da
der Knoten else als Code-Typ hat und nicht code, was die innere Abfrage erfüllt (Abbildung 3.3
„Nach Z.5“). In der nächsten Zeile ist wieder eine Codezeile vorhanden und aus der ein Code-
Knoten erstellt wird. Wie es danach aussieht, ist in Abbildung 3.3 „Nach Z.6“ zu sehen. Danach
in der Zeile 7 treffen wir das erste Mal auf die Anweisung #endif, welche den Code-Typ endif
hat. Damit gelangen wir in den if-Teil der ersten Abfrage, welcher sich in der Zeile 11 des Algo-
rithmus 1 befindet. Der Algorithmus entfernt nun von beiden Stacks jeweils so lange Knoten, bis
ein if-Knoten entnommen wurde. Dabei werden aus den Stacks die Knoten mit else und if(B||C)
entnommen und übrig bleiben der if(A) Knoten und der Wurzelknoten. Dieser Schritt verändert
den Variation-Diff nicht. Im nächsten Schritt treffen wir wieder auf eine Codezeile und erstellen
einen Knoten und fügen den dem Variation-Diff hinzu, welcher in Abbildung 3.3 „Nach Z.8“ zu
sehen ist. In der Zeile 9 ist wieder ein #endif und wir müssen wieder Knoten aus den Stacks
entnehmen. Dieses Mal wird der Knoten if(A) entnommen und es bleibt nur der Wurzelknoten
übrig. Damit wäre die Arbeit des Algorithmus zu Ende und wir haben als Rückgabewert einen
Variation-Diff erhalten. Wir brauchen einen Variation-Tree statt des Variation-Diffs welches wir
bekommen haben. Dazu müssen wir eine Projektion auf den Zustand davor oder danach bil-
den. Schlussendlich erhalten wir einen Variation-Tree, welcher genauso aufgebaut ist, wie der
Variation-Diff aus der Abbildung 3.3 Kasten „Nach Z.8“.

15

3.3 Verlorengehende Informationen und deren Wiederherstellung

root

f();

davor

root

danach

root

root

f(); if(A)

davor

if(A)
root

danach

if(A)
root

root

f(); if(A)

if(B∨C)

davor

if(A)
root

danach

if(A)
root

root

f(); if(A)

if(B∨C)

g();

davor

if(B∨C)
if(A)
root

danach

if(B∨C)
if(A)
root

root

f(); if(A)

if(B∨C)

g(); else

davor

else
if(B∨C)

if(A)
root

danach

else
if(B∨C)

if(A)
root

root

f(); if(A)

if(B∨C)

g(); else

z();

davor

else
if(B∨C)

if(A)
root

danach

else
if(B∨C)

if(A)
root

root

f(); if(A)

if(B∨C)

g(); else

z();

x();

davor

if(A)
root

danach

if(A)
root

Nach Z.1
Nach Z.2

Nach Z.3 Nach Z.4

Nach Z.5
Nach Z.6 Nach Z.8

Abbildung 3.3: Beispiel für den Parsen Algorithmus von Viegener

Dieser Algorithmus kann sowohl gewöhnliche Variation-Diffs nach Definition 3.2 als auch
geordneten Variation-Diffs nach Definition 3.5 erstellen. Das ist möglich, da die Reihenfolge der
Kindknoten in Zeile 12 festgelegt wird.

Jetzt wissen wir wie der Parser von Viegener funktioniert und der Parser auch für mehr als
nur eine Definition von Variation-Diff zu gebrauchen ist. Dies können wir uns zunutze machen,
wenn wir eine eigene Definition von Variation-Diff und Variation-Tree ausarbeiten werden. Es
ist nun an der Zeit zu sehen, welche Informationen durch das Parsen und der Definitionen nach
verloren gehen und wie wir diese Informationen zurückbekommen können.

3.3 Verlorengehende Informationen und deren Wiederherstel-
lung

Nachdem wir uns mit dem Beschäftigt haben, was Variation-Trees und Variation-Diffs sind und
wie dieser aus mit C-Präprozessor-Annotierten Code und textbasierten Diffs erzeugt werden,
setzen wir uns damit auseinandersetzen welche Informationen während des Parsens verloren
gehen. Wir beschäftigen uns mit der Frage welche Informationen sind im mit C-Präprozessor-
Annotierten Code bzw. textbasierten Diff erhalten, aber nach dem Parsen nicht in Variation-Tree
bzw. Variation-Diff zu finden sind und wie wir diese Informationen zurückbekommen können,

16

Kapitel 3. Unparse-Algorithmus

um das Unparsen zu bewerkstelligen. Die verlorengehende Informationen sind die Ordnung der
Zeilen, die Position von Zeilen mit einem #endif innerhalb von textbasierten Diff bzw. mit C-
Präprozessor-Annotierten Code und der Inhalt aller Zeilen inklusive der Zeilen mit #endif und
#else.

Der Definition von Variation-Tree bzw. Variation-Diff nach haben die Kinder eines Kno-
tens keine Reihenfolge. Deshalb können wir können wir während des Unparsen nicht ermitteln,
welcher Knoten zuerst kommt und welcher danach. Zum Beispiel ein Variation-Tree kann mehr-
deutig verstanden wäre, was für uns nicht zu gebrauchen ist.

root

foo() bar()

foo()
bar() oder

bar()
foo()

Um das Problem zu umgehen verwenden wir statt der normalen Definition von Variation-Tree
und Variation-Diff die Definition von geordneten Variation-Tree und geordneten Variation-Diff.
Diese Definition hat eine Ordnung bei den Kinderknoten. Deshalb kann sie uns eine eindeutige
Reihenfolge geben, so das keine Mehrdeutigkeiten in Bezug auf das wie die Knoten eingeordnet
sind vorkommt. Das Umsetzen dieser Definition von dem Parser stellt für uns keine Schwierig-
keiten dar. Die Definitionen von normalen Variation-Tree bzw. Variation-Diff unterscheiden sich
von geordneten Variation-Tree bzw. geordneten Variation-Diff nur um die Ordnung O. Dies hat
zur Folge, dass alles andere so wie gewohnt umgesetzt werden kann. Die Ordnung selbst muss
dann gesetzt werde, wenn ein neuer Knoten entsteht und er seine Eltern bekommt. Dies findet
in der Zeile 12 des Algorithmus 1 statt. Dort stehen keine genaueren Angaben zu Erstellung
des Knotens, also kann diese Zeile auch um die Setzung der Ordnung erweitert werden. Damit
haben wir unseren ersten Informationsverlust beseitigt.

Als nächstes beschäftigen wir ums mit dem Verlust der Position von #endif. Es gibt keinen
Knoten innerhalb von Variation-Trees und Variation-Diffs, welcher #endif repräsentiert. Des-
halb wissen wir nicht, wo sich die Zeilen mit #endif befinden müssen wenn wir die Variation-
Trees und Variation-Diffs unparsen. Zu Beschaffung diese Information muss die Position von
#endif aus der gegebener Information rekonstruiert werden. In dieser Beschreibung wird ein-
fachheitshalber so gehandelt, als gäbe es einen Knoten für #endif. Um zu bestimmen, ob das
letzte Kind eines Knotens ein #endif sein muss, müssen wir prüfen ob der Knotentyp τ =
mapping ist. Wenn das zutrifft, wird ein Dummyknoten als neuer letzter Kindknoten zu diesem
Knoten hinzugefügt. Entsprechend wissen wir, dass die Zeile mit dem #endif nach dem Inhalt
allen anderen Kinderknoten und dessen Unterbäumen kommt. Damit haben wir auch eine Mög-
lichkeit diesen Information-Verlust zu beseitigen.

Als letztes müssen wir uns damit beschäftigen wie wir den Inhalt aller Zeilen aus Variation-
Tree oder Variation-Diff bekommen können. Bei Zeilen mit #endif und #else wäre es möglich
auf exakte Gleichheit zum ursprünglichen Text zu verzichten und die entsprechenden Knoten
mit vorher festgelegten Textbausteinen zu ersetzen. Der Grund dafür ist, dass die Einrückung
von #endif und #else im Falle von C-Präprozessor nicht dazu führt das Code fehlerhaft wird.

17

3.3 Verlorengehende Informationen und deren Wiederherstellung

Es wäre möglich eine Heuristik, wie z.B. das #endif und #else so weit eingerückt sind, wie der
dazugehörige if oder das #else und #endif immer am Zeilenanfang sind, zu verwenden. Bei
der Verwendung einer Heuristik, können wir nicht die exakte Gleichheit garantieren, erfordert
aber benötigen auch keinen zusätzlichen Aufwand oder Speicher. Jedoch könnten Kommentare
in diesen Zeilen nicht wiederhergestellt werden. Bei Knoten mit τ gleich artifact, könnte man
so vorgehen, das man in Label die Zeile abspeichert. Der Definition von Label nach werden
dort entweder ein Implementierungsartefakt oder eine aussagenlogische Formel gespeichert. Ein
Implementierungsartefakt kann dabei mehr als nur die Codezeile sein. Ein Implementierungsar-
tefakt ist dabei eine identifizierbare Einheit mit beliebiger Granularität innerhalb eines Softwa-
reprojekts [3]. Unsere Arbeit ist darauf ausgelegt, dass wir einen Unparser bereitstellen, welcher
aus Variation-Trees bzw. Variation-Diffs mit C-Präprozessor-Annotierten Code bzw. textbasier-
tes Diff erstellt. Wir könnten fordern, dass das Label als Implementierungsartefakt die Codezeile
abspeichert. Für Knoten mit τ gleich else oder mapping würde das aber nicht funktionieren.
Für Knoten mit τ gleich else wird der Definition nach überhaupt kein Label gespeichert. Für
Knoten mit τ gleich mapping wird das Label eine aussagenlogische Formel speichern, aber die
Bedingungen in der C-Präprozessor-Annotation sind nicht immer eine aussagenlogische Formel
und muss deshalb durch Boolean-Abstraction [3] in solche umgewandelt werden. Das kann z.B.
so aussehen: #if A(x) > 3 ist gegeben und nach boolean abstraction sieht es dann so aus #if
A__LB__x__RB__GT__3. Dabei ist eine zurück Umwandlung nicht garantiert, da wir nicht sicher
sein können das z.B A__LB__x__RB__GT__3 nicht als ein Variablenname gewählt wurde und da-
mit keine Umwandlung benötigt. Es ergibt sich, dass das Label nur für τ gleich artifact gut
die Zeile speichern kann, bei den anderen Zeilen gibt es Schwierigkeiten. Um diese Informationen
auch im Variation-Tree und Variation-Diff zu haben, müssen wir diese Informationen explizit
speichern. Die Definitionen von Variation-Tree, Variation-Diff, geordneten Variation-Tree und
geordneten Variation-Diff sehen aber dafür nichts vor. Deshalb müssen wir die Definition von
Variation-Diff bzw. geordneten Variation-Tree und Variation-Diff bzw. geordneten Variation-Diff
erweitern. Obwohl wir für τ gleich artifact die Zeile in dem Label speichern können, werden
wir wegen der Einheitlichkeit alle Zeile in der Erweiterung speichern und die nicht unterscheiden.
Wir erweitern die Definitionen wie folgt:

Definition 3.11. Ein speichernder Variation-Tree (V, E, r, τ, l, M) ist für V, E, r, τ und l
so definiert wie in der Definition 3.1 und M : V → (String,String) speichert in der ersten Stelle
des Tupels die Zeile, welche der Knoten darstellt und an der zweiten Stelle wird für Knoten mit
τ gleich mapping die dazugehörige Zeile mit #endif gespeichert, für die restlichen Knoten wird
dort Null gespeichert.

Definition 3.12. Ein speichernder Variation-Diff (V, E, r, τ, l, ∆, M) ist für V, E, r, τ ,
l und ∆ so definiert wie in der Definition 3.2 und M : V → (String,String) speichert in der
ersten Stelle des Tupels die Zeile, welche der Knoten darstellt und an der zweiten Stelle wird für
Knoten mit τ gleich mapping die dazugehörige Zeile mit #endif gespeichert, für die restlichen
Knoten wird dort Null gespeichert.

Definition 3.13. Ein geordneter, speichernder Variation-Tree (V, E, r, τ, l, O, M) ist
für V, E, r, τ , l und O so definiert wie in der Definition 3.5 und M : V → (String,String)
speichert in der ersten Stelle des Tupels die Zeile, welche der Knoten darstellt und an der zweiten
Stelle wird für Knoten mit τ gleich mapping die dazugehörige Zeile mit #endif gespeichert, für
die restlichen Knoten wird dort Null gespeichert.

Definition 3.14. Ein geordneter, speichernder Variation-Diff (V, E, r, τ, l, Obefore, Oafter, M)
ist für V, E, r, τ , l, Obefore und Oafter so definiert wie in der Definition 3.6 und M : V →
(String,String) speichert in der ersten Stelle des Tupels die Zeile, welche der Knoten darstellt

18

Kapitel 3. Unparse-Algorithmus

und an der zweiten Stelle wird für Knoten mit τ gleich mapping die dazugehörige Zeile mit
#endif gespeichert, für die restlichen Knoten wird dort Null gespeichert.

Dazu nachdem wir die neuen Variation-Trees und Variation-Diffs definiert haben, müssen
wir noch entsprechende Projektionen definieren.

Definition 3.15. Die Projektion projectM (D, t) für ein speicherndes Variation-Diff ist das
Entfernen von ∆, M und der Knoten und Kanten, welche zu der Zeit t nicht vorhanden sind.
projectM ((V, E, r, τ, l, ∆, M), t) := ({v ∈ V |exists(t, ∆(v))}, {e ∈ E|exists(t, ∆(e))}, r, τ, l, M)

Definition 3.16. Die Projektion projectOM (D, t) für ein geordnetes, speicherndes Variation-
Diff ist das Entfernen von ∆, M und der Knoten und Kanten, welche zu der Zeit t nicht vor-
handen sind. Dazu wird nur der Zeit entsprechende Ordnung Ot behalten.
projectOM ((V, E, r, τ, l, ∆, Obefore, Oafter, M), t)
:= ({v ∈ V |exists(t, ∆(v))}, {e ∈ E|exists(t, ∆(e))}, r, τ, l, Ot, M)

Da wir die Definitionen erweitert haben, ist es möglich die speichernden Variation-Trees
bzw. Variation-Diffs in normale Variation-Trees bzw. Variation-Diffs und geordnete, speichern-
den Variation-Trees bzw. Variation-Diffs in geordnete Variation-Trees bzw. Variation-Diffs um-
zuwandeln.

Definition 3.17. reduceMV T wandelt einen speichernden Variation-Tree (Definition 3.11) in
einen normale Variation-Tree (Definition 3.1)
reduceMV T ((V, E, r, τ, l, M)) := (V, E, r, τ, l).

Definition 3.18. reduceMV D wandelt einen speichernden Variation-Diff (Definition 3.12) in
einen normalen Variation-Diff (Definition 3.2)
reduceMV D((V, E, r, τ, l, ∆, M)) := (V, E, r, τ, l, ∆)

Definition 3.19. reduceMOV T wandelt einen geordneten, speichernden Variation-Tree (Defini-
tion 3.13) in einen geordneten Variation-Tree (Definition 3.5)
reduceMOV T ((V, E, r, τ, l, O, M)) := (V, E, r, τ, l, O)

Definition 3.20. reduceMOV D wandelt einen geordneten, speichernden Variation-Diff (Defini-
tion 3.14) in einen geordneten Variation-Diff (Definition 3.6)
reduceMOV D((V, E, r, τ, l, ∆, Obefore, Oafter, M)) := (V, E, r, τ, l, ∆, Obefore, Oafter)

Es bleibt uns nur noch zu zeigen das die Reihenfolge der Anwendung von project und reduce
irrelevant ist. Dann zusammen mit den gezeigten aus Kapitel 3.1 ist die Abbildung 3.4 gegeben,
welche eine Erweiterung der Abbildung 3.1 ist. Die Abbildung 3.4 veranschaulicht die Trans-
formationen von geordneten speichernden Variation-Trees, geordneten speichernden Variation-
Diffs, speichernden Variation-Trees, speichernden Variation-Diffs, geordneten Variation-Trees,
geordneten Variation-Diffs, normalen Variation-Trees und normalen Variation-Diffs.

Lemma 3.21. Für einen speichernden Variation-Diff D und eine Zeit t ∈ {before, after} gilt
reduceMV T (projectM (D, t)) = project(reduceMV D(D), t).

Beweis. reduceMV T (projectM (D, t))
= reduceMV T (projectM ((V, E, r, τ, l, ∆, M), t))
= reduceMV T (({v ∈ V |exists(t, ∆(v))}, {e ∈ E|exists(t, ∆(e))}, r, τ, l, M))
= ({v ∈ V |exists(t, ∆(v))}, {e ∈ E|exists(t, ∆(e))}, r, τ, l)
= project((V, E, r, τ, l, ∆), t)
= project(reduceMV D(V, E, r, τ, l, ∆, M), t)
= project(reduceMV D(D), t)

19

3.3 Verlorengehende Informationen und deren Wiederherstellung

Lemma 3.22. Für einen geordneten, speichernden Variation-Diff D und eine Zeit t ∈ {before, after}
gilt reduceMOV T (projectOM (D, t)) = projectO(reduceMOV D(D), t).

Beweis. reduceMOV T (projectOM (D, t))
= reduceMOV T (projectOM ((V, E, r, τ, l, ∆, Obefore, Oafter, M), t))
= reduceMOV T (({v ∈ V |exists(t, ∆(v))}, {e ∈ E|exists(t, ∆(e))}, r, τ, l, Ot))
= ({v ∈ V |exists(t, ∆(v))}, {e ∈ E|exists(t, ∆(e))}, r, τ, l, Ot)
= projectO((V, E, r, τ, l, ∆, Obefore, Oafter), t)
= projectO(reduceMOV D(V, E, r, τ, l, ∆, Obefore, Oafter, M), t)
= projectO(reduceMOV D(D), t)

Nach dem Ganzen ergibt sich, ein folgendes Schaubild:

geordneter
speichernder

Variation-Diff

geordneter
speichernder

Variation-Tree

geordneter
Variation-Diff

geordneter
Variation-Tree

Variation-Diff

Variation-Tree

speichernder
Variation-Diff

speichernder
Variation-Tree

p
rojectO

p
roject

reduceOV D

reduceOV T

p
rojectO

M

reduceMOV D

reduceMOV T

p
rojectM

reduceMV D

reduceMV T

Abbildung 3.4: Transformationen von verschiedenen Variation-Trees und Variation-Diffs

Nachdem wir uns mit den neuen Definitionen beschäftigt haben, müssen wir noch den Parsen
anpassen. Damit der Parser auch diese Definitionen umsetzen kann. Dazu muss man die Zeile 11
des Algorithmus etwas erweitern, damit der Algorithmus sich den if-Knoten merkt. Dazu muss
man noch eine neue Zeile zum Algorithmus zufügen und das ist die Zeile 12 des Algorithmus 2.
Dort wird ein Tupel mit dazugehöriger Zeile des Knotens und der Zeile, mit dem #endif, erstellt.
Dann wird diese Tupel in M für den gemerkten Knoten gespeichert. Alle anderen Zeilen werden
für ihre Knoten jeweils in Zeile 15 des Algorithmus 2 gespeichert. Dort wird ein Tupel mit der
Zeile und Null erstellt und für den neu erstellten Knoten gespeichert. Damit sind wir in der Lage
die neuen Definitionen auch aus mit C-Präprozessor-Annotierten Code und textbasierten Diffs
zu erzeugen.

20

Kapitel 3. Unparse-Algorithmus

Algorithmus 2: Erstellung eines Variation-Diffs, welcher sich #else und #endif
merkt, aus einem Patch

Data: ein textbasierter Diff
Result: ein Variation-Diff

1 erstelle den Wurzelknoten
2 initialisiere ein Stack/Keller before mit dem Wurzelknoten
3 initialisiere ein Stack/Keller after mit dem Wurzelknoten
4
5 foreach Zeile in dem Patch/Diff do
6 δ ← identifiziere Diff-Typ der Zeile
7 γ ← identifiziere Code-Typ der Zeile
8 σ ← identifiziere relevante Stacks mithilfe von δ
9

10 if γ = endif then
11 Entferne, solange Knoten von allen Stacks in σ, bis ein if-Knoten v entfernt

wurde
12 M(v) ← (M(v)[0],Zeile) /* Die erste Stelle von M wird mit dem dort

enthaltenen Wert wiederbesetzt und die zweite Stelle spreichert
die Zeile mit dem endif */

13 else
14 erstelle einen neuen Knoten v mit δ, γ und gerichtete Kanten von Elternknoten

aus σ zu dem neu erstellten Knoten
15 M(v) ← (Zeile,Null) /* Die erste Stelle von M speichert die

bearbeitete Zeile und die zweite Stelle wird mit null beseztz */
16 if γ ̸= code then
17 füge den neuen Knoten σ hinzu
18 end
19 end
20 end

Mit der Erweiterung der Definitionen können wir den Inhalt der Zeile mit #endif oder #else
bekommen und damit ist dieser Informationsverlust auch beseitigt.

Nachdem wir herausgefunden haben, welche für das Unparsen relevante Information verloren
geht und wie man diese Information zurück bekommen kann, sind wir in der Lage das alles zu
nutzen, um einen Algorithmus zum Unparsen zu entwickeln.

3.4 Unparsing

Wir haben festgestellt welche Informationen während des Parsens verloren gehen und wie diese
zurückzubekommen sind. Nach diesem Schritt sind wir in der Lage das Unparsen zu bewerkstel-
ligen. Darüber geht es in diesem Unterkapitel. Wir stellen unseren Algorithmus für das Unparsen
von speichernden, geordneten Variation-Trees und ein Vorgehen zum Unparsen von speichern-
den, geordneten Variation-Diffs.

Unser Algorithmus ist der Algorithmus 3 und ist nur für das Unparsen von speichernden,
geordneten Variation-Tree zu einem mit C-Präprozessor-Annotierten Code bestimmt. Der Algo-
rithmus basiert auf der Tiefensuche. Ein Variation-Tree ist ein Baum, dessen Knoten die Zeilen
des mit C-Präprozessor-Annotierten Codes enthalten. Dabei wenn ein Knoten Kinderknoten

21

3.4 Unparsing

hat, bedeutet es das dieser Knoten τ gleich mapping oder τ gleich else hat. Dazu wissen wir
dadurch, dass die Anweisungen im Kinderknoten von der Anweisung des Elternknotens einge-
schlossen werden. Wegen so einer Anordnung ist die Verwendung von Tiefensuche von Vorteil.
Die Tiefensuche besucht alle Knoten effizient und dazu geht die Tiefensuche zunächst ein Pfad
vollständig in die Tiefe, bevor abzweigende Pfade beschritten werden. Die Auswahl des nächsten
Knotens welcher besucht wird muss etwas geändert werden, damit die Pfade der Reihenfolge
nach beschritten werden. Dazu werden die Kinderknoten eines Knotens den Stack in umge-
drehter Reihenfolge hinzugefügt. Es ergibt sich, dass der letzte Kinderknoten auch als letzter
drankommt und der erster als erster. Das zusammen ergibt, das unser Algorithmus die Knoten
so besucht wie die in den Knoten enthaltene Zeilen angeordnet werden müssen.

Algorithmus 3: Unparsing eines Variation-Tree zu CPP-Annotiertem Code
Data: ein Vatiation-Tree (V,E,r,τ ,l)
Result: mit C-Präprozessor-Annotierten Code

1 initialisiere einen leeren Stack/Keller stack
2 initialisiere einen String ergebnis
3 kinder ← {v ∈ V | (r,v) ∈ E}
4 initialisiere ein Array array der Länge |kinder|
5 for ∀ v ∈ kinder do
6 array[O(v)] ← v
7 end
8 for i = |kinder| → 1 do
9 stack.push(array[i])

10 end
11 while stack nicht leer ist do
12 knoten ← stack.pop()
13 if τ(knoten) = mapping then
14 erstelle einen Dummyknoten welcher M(knoten)[1] beinhaltet
15 stack.push(Dummyknoten)
16 end
17 erweitere ergebnis mit dem String M(knoten)[0]
18 kinder ← {v ∈ V | (knoten,v) ∈ E}
19 initialisiere ein Array array der Länge |kinder|
20 for ∀ v ∈ kinder do
21 array[O(v)] ← v
22 end
23 for i = |kinder| → 1 do
24 stack.push(array[i])
25 end
26 end
27 return ergebniss

Jetzt schauen wir und den Algorithmus an, nachdem wir sein Konzept besprochen haben. In
Zeile 1 des Algorithmus 3 wird ein Stack initialisiert, so wie in der Tiefensuche. Danach in Zeile 2
wird ein String initialisiert, in dem am Ende der gesamte annotierter Code gespeichert wird. Von
Zeile 3 bis Zeile 10 werden die Kinderknoten des Wurzelknotens auf den Stack gelegt. Das muss
extra gemacht werden, da der Wurzelknoten keine Zeile enthält als Label, sondern true. Damit
würde er das Ergebnis verfälschen. Genauer betrachtet wird folgendes gemacht, in der Zeile
3 werden die Kinderknoten des Wurzelknotens bestimmt und als Menge abgespeichert. Dann
wird ein Array erstellt, dessen Länge gleich der Anzahl der Kinderknoten des Wurzelknotens

22

Kapitel 3. Unparse-Algorithmus

ist. Als Nächstes in Zeile 5 wird über alle Kinderknoten iteriert und die Kinderknoten gemäß
ihrer Ordnung im Array abgespeichert. Zum Schluss werden die Kinderknoten in umgekehrter
Reihenfolge den Stack hinzugefügt. In Zeile 11 beginnt eine while-Schleife, welche so lange läuft
bis der Stack leer wird. In der Schleife wird als Erstes der oberste Knoten von Stack genommen
und sich gemerkt, das ist in Zeile 12. Als Nächstes in Zeile 13 wird, geprüft ob τ des Knotens
gleich mapping ist. Wenn das der Fall ist, dann wird zuerst ein Dummyknoten, welcher die
Information zu #endif aus M[1] enthält, erstellt, dann wird dieser Dummyknoten dem Stack
hinzugefügt. Der Dummyknoten hat τ gleich artifact und im M[0] diesen Dummyknotens wird
der Inhalt aus M[1] gespeichert. Da dieser Knoten nur intern im Algorithmus verwendet wird,
kann er solche Werte annehmen, die die Definition nicht vorsieht. Wenn das nicht der Fall ist,
wird nichts gemacht und die Abfrage übersprungen. In Zeile 17 wird der Inhalt von M[0] String
„ergebnis“ hinzugefügt. Ab Zeile 18 bis Zeile 25 werden die Kinderknoten des gerade bearbeiteten
Knotens dem Stack in umgedrehter Reihenfolge hinzugefügt. Dort wird genauso vorgegangen wie
in den Zeilen 3 bis 10. Damit ist der Inhalt der Schleife abgearbeitet und wir kommen zur Zeile
27, welche den String „ergebnis“ zurückgibt in dem der mit C-Präprozessor-Annotierter Code
enthalten ist.

Nachdem ihr mehr über unser Algorithmus erfahren habt, wollen wir seine Arbeitsweise in
der Abbildung 3.5 verdeutlichen. In diesem Beispiel werden wir das erhaltene Variation-Tree
aus der Abbildung 3.3 unparsen. Obwohl dort der Parser ein Variation-Tree erstellt, aber wir
ein speichernden, geordneten Variation-Tree brauchen. Ein speichernder, geordneter Variation-
Tree ist von dem Aussehen identisch, dem Variation-Tree aus Abbildung 3.3, wenn derselbe mit
C-Präprozessor-Annotierter Code mithilfe von Algorithmus 2 geparst wird. Die Abbildung 3.5
zeigt in kleineren Bildern, entweder den Zustand nach Bearbeitung des Wurzelknotens oder eines
Schleifendurchlaufs, und die Reihenfolgen, in der die Bilder betrachtet werden sollen, beginnend
mit dem Bild ganz links oben. Ein Bild enthält das speichernde, geordnete Variation-Tree, den
Stack, die Ausgabe und welcher Knoten des speichernden, geordneten Variation-Trees bearbeitet
wurde. Am Anfang im Bild ganz links oben der Abbildung 3.5 sind wir außerhalb der Schliefe
und es wird der Wurzelknoten abgearbeitet. Die Kinderknoten des Wurzelknotens werden dem
Stack hinzugefügt. Die Ausgabe verändert sich nicht, da der Wurzelknoten keine Zeile enthält.
In nächsten Bild sind wir in der Schleife. Der oberste Knoten wird von Stack genommen, der
roter Pfeil zeigt auf den. Das ist ein Knoten mit τ gleich artifact, also wird die if-Abfrage in
Zeile 13 des Algorithmus 3 mit falsch beantwortet und übersprungen. Danach in Zeile 17 wird
M[0] des Knotens der Ausgabe hinzugefügt, was auch bei der Ausgabe im Bild zu sehen ist.
Der Inhalt des Knotens ist gleich der ersten Zeile der Ausgabe. Der Knoten ist ein Blattknoten
und hat keine Kinderknoten, welche den Stack hinzugefügt werden können. Im Bild danach,
wird wieder der oberste Knoten aus dem Stack genommen, deshalb ist der Knoten auf den
der rote Pfeil zeigt im Stack des vorherigen Bildes vorhanden und nicht in diesem. Für den
betrachteten Knoten gilt τ ist gleich mapping. Aus diesem Grund gehen wir in die if-Abfrage
aus der Zeile 13 des Algorithmus 3. Dort wird ein Dummyknoten mit #endif erstellt und dem
Stack hinzugefügt was wir auch im Bild sehen. Außerhalb der Abfrage wird M[0] des Knotens
wider der Ausgabe hinzugefügt. Die Kinderknoten werden dem Stack hinzugefügt. Im Bild ganz
rechts oben wird wie immer der oberste Knoten aus dem Stack genommen welcher mit dem roten
Pfeil markiert ist. Dieser Knoten hat τ gleich mapping. Es wird gleich wie mit den vorherigen
Knoten vorgegangen. Es wird ein Dummyknoten erstellt und dem Stack hinzugefügt. Außerhalb
der Abfrage wird wie immer der M[0] des Knotens der Ausgabe hinzugefügt. Die Kinderknoten
werden dem Stack hinzugefügt. Jetzt sind wir im Bild ganz links in der Mitte. Dieser Knoten hat
τ gleich artifact, deshalb wird hier genauso wie im oberen, zweiten Bild von links vorgegangen.
Im nächsten Bild wird ein Knoten mit τ gleich else bearbeitet. Dieser Knoten wurde aus dem
Stack genommen. Der Knoten entspricht nicht τ gleich mapping, deshalb wird die if-Abfarge in

23

3.4 Unparsing

Zeile 13 des Algorithmus 3 übersprungen. Danach wird der Inhalt von M[0] für diesen Knoten
der Ausgabe hinzugefügt. Als Nächstes wird der einzige Kinderknoten dem Stack hinzugefügt.
Im nächsten Bild wird wieder ein Knoten mit τ gleich artifact bearbeitet. Diese Knoten wird,
genauso behandelt wie die anderen Knoten mit τ gleich artifact. Wir sind jetzt bei dem Bild
in der Mitte ganz rechts. Dort wird zum erstem Mal ein Dummyknoten mit #endif bearbeitet.
Der Knoten wird von Stack genommen. Es ist ein Dummyknoten und ist deshalb nicht in den
gezeigten speichernde, geordneten Variation-Tree zu finden und es kann kein roter Pfeil auf
den zeigen. Es wird geprüft ob der Dummyknoten τ gleich mapping hat, das ist nicht der
Fall, da dieser Knoten τ gleich artifact hat. Wir überspringen die Abfrage aus Zeile 13 und
gehen zu der Zeile 17 des Algorithmus 3. Dort wird der Inhalt von M[0] für diesen Knoten
der Ausgabe hinzugefügt. Dieser Knoten hat keine Kinderknoten, deshalb wird dem Stack auch
nichts hinzugefügt. In dem Linken unteren Bild der Abbildung 3.5 wird der mit dem roten
Pfeil markierter Knoten bearbeitet. Dieser Knoten hat auch τ gleich artifact und ist kein
Dummyknoten. Deshalb wird dort auch wie in anderen Fällen vorgegangen und wir sehen nichts
Neues. Im letzten Bild wird wieder ein Dummyknoten bearbeitet. Das Vorgehen ist in beiden
Fällen dasselbe. Damit wären wir mit dem Unparsen fertig. Wir haben das Variation-Tree aus
der Abbildung ungeparst und es ist zu sehen, dass die Ausgabe im letzten Bild der Abbildung
3.5 gleich dem mit C-Präprozessor-Annotierten Code ist aus der Abbildung 3.3, die zum Parsen
Variation-Tree genutzt wurde.

24

Kapitel 3. Unparse-Algorithmus

root

f(); if(A)

if(B∨C)

g(); else

z();

x();

f();
if(A)

Ausgabe :

root

f(); if(A)

if(B∨C)

g(); else

z();

x();

if(A)

Ausgabe :
f();

root

f(); if(A)

if(B∨C)

g(); else

z();

x();

if(B∨C)
x();

endif

Ausgabe :
f();
#if(A)

root

f(); if(A)

if(B∨C)

g(); else

z();

x();

g();
else

endif
x();

endif

Ausgabe :
f();
#if(A)

#if(B||C)

root

f(); if(A)

if(B∨C)

g(); else

z();

x();

else
endif
x();

endif

Ausgabe :
f();
#if(A)

#if(B||C)
g();

root

f(); if(A)

if(B∨C)

g(); else

z();

x();

z();
endif
x();

endif

Ausgabe :
f();
#if(A)

#if(B||C)
g();

#else

root

f(); if(A)

if(B∨C)

g(); else

z();

x();

endif
x();

endif

Ausgabe :
f();
#if(A)

#if(B||C)
g();

#else
z();

root

f(); if(A)

if(B∨C)

g(); else

z();

x();

x();
endif

Ausgabe :
f();
#if(A)

#if(B||C)
g();

#else
z();

#endif

root

f(); if(A)

if(B∨C)

g(); else

z();

x();

endif Ausgabe :
f();
#if(A)

#if(B||C)
g();

#else
z();

#endif
x();

root

f(); if(A)

if(B∨C)

g(); else

z();

x();

Ausgabe :
f();
#if(A)

#if(B||C)
g();

#else
z();

#endif
x();

#endif

Abbildung 3.5: Beispiel für das Unparsen mithilfe unseren Algorithmus

Wir haben eine Möglichkeit gefunden speichernde, geordnete Variation-Trees zu unpasren.
Es bleibt uns noch eine Möglichkeit zum Unparsen von Variation-Diffs zu finden. Eine Mög-
lichkeit zum Unparsen von Variation-Diffs bezieht sich auf speichernde, geordnete Variation-
Diffs oder wenn eine Heuristik verwendet wird dann auf geordnete Variation-Diffs. Wir be-
schreiben das Vorgehen für speichernde, geordnete Variation-Diffs für geordnete Variation-Diffs
geht es analog. Zuerst werden zwei Projektionen gebildet, jeweils auf den Zustand-Davor und
den Zustand-Danach. Dadurch werden zwei speichernde, geordnete Variation-Trees erstellt. Auf
diese Variation-Trees wird unser Algorithmus angewandt. Als Ergebnis erhalten wir zwei mit
C-Präprozessor-Annotierte Codes. Zum Schluss wird ein Algorithmus, welcher aus Codes mit
C-Präprozessor-Annotation ein textbasiertes Diff erstellen kann, auf das Ergebnis unseren Algo-
rithmus angewandt. Damit haben wir ein Vorgehen zum Unparsen von speichernden, geordneten
Variation-Diffs.

25

3.5 Komplexitätsanalyse der Laufzeit

Jetzt wissen wir wie man speichernde, geordnete bzw. geordnete Variation -Trees und spei-
chernde, geordnete bzw. geordnete Variation-Trees unparsen kann. Als Nächstes wollen wir eine
Komplexitätsanalyse der Laufzeit für unseren Algorithmus durchführen.

3.5 Komplexitätsanalyse der Laufzeit

In diesen Teil des Kapitels wollen wir eine Komplexitätsanalyse der Laufzeit für unseren Algo-
rithmus durchführen. Damit wir eine obere Schranke für seine Effizienz in Abhängigkeit von der
Knotenmenge setzen können.

Bei unserer Komplexitätsanalyse der Laufzeit gehen wir von folgenden Laufzeiten für einige
Anweisungen aus. Die Zeitkomplexität von Operationen mit dem Stack ist konstant. Das Zugrei-
fen oder Setzen von Inhalten des speichernden, geordneten Variation-Trees wird als Konstanten
Zeitaufwand betrachtet, da man τ, l, O, M auch als Variablen eines Knotens sehen kann und der
Zugriff oder Setzung von diesen einen konstanten Aufwand hat. Die Konstante Zeitkomplexität
hat auch die Verbindung von zwei Strings. Das Erstellen eines Dummyknotens wird auch als
konstanten Zeitaufwand betrachtet, da ein Dummyknoten nur als Platzhalter im Stack für die
#endif Zeile dient und nur M[0] und τ sich merkt. Das Setzen dieser Information ist wie schon
angegeben in konstanter Zeit möglich. Wir gehen davon aus, da wir keine komplexen Daten-
strukturen haben, dass die Initialisierung in konstanter Zeit möglich ist. In Zeilen 3 und 18 des
Algorithmus 4 werden die Kinderknoten bestimmt. Der dazugehörige Zeitaufwand hängt davon
ab, wie die Speicherung, der Kinderknoten realisiert ist. Wir gehen davon aus das die Spei-
cherung von Kinderknoten in Form von Adjazenzliste erfolgt. Diese Annahme ergibt, dass das
Erhalten der Kinderknoten eines Knotens eine konstante Zeitkomplexität hat. In Algorithmus 4
ist die Zeitkomplexität, in der O-Notation, für die einzelnen Anweisungen unseren Algorithmus
zu sehen.

26

Kapitel 3. Unparse-Algorithmus

Algorithmus 4: Komplexitätsanalyse der Laufzeit für Algorithmus 3
Data: ein Vatiation-Tree (V,E,r,τ ,l)
Result: mit C-Präprozessor-Annotierten Code

1 initialisiere einen leeren Stack/Keller stack O(1)
2 initialisiere einen String ergebnis O(1)
3 kinder ← {v ∈ V | (r,v) ∈ E} O(1)
4 initialisiere ein Array array der Länge |kinder| O(1)
5 for ∀ v ∈ kinder do
6 array[O(v)] ← v O(1)
7 end
8 for i = |kinder| → 1 do
9 stack.push(array[i]) O(1)

10 end
11 while stack nicht leer ist do
12 knoten ← stack.pop() O(1)
13 if τ(knoten) = mapping then
14 erstelle einen Dummyknoten welcher M(knoten)[1] beinhaltet O(1)
15 stack.push(Dummyknoten) O(1)
16 end
17 erweitere ergebnis mit dem String M(knoten)[0] O(1)
18 kinder ← {v ∈ V | (knoten,v) ∈ E} O(1)
19 initialisiere ein Array array der Länge |kinder| O(1)
20 for ∀ v ∈ kinder do
21 array[O(v)] ← v O(1)
22 end
23 for i = |kinder| → 1 do
24 stack.push(array[i]) O(1)
25 end
26 end
27 return ergebniss O(1)

Es ist zu sehen, dass alle einzelnen Anweisungen in unserem Algorithmus eine Laufzeit von
O(1) haben. Es bleib uns nur noch zu bestimmen wie viel man die Schleifen durchgelaufen wer-
den. Es ist zu sehen, dass die Schleife in Zeilen 5 bis 7 und die Schleife in Zeilen 8 bis 10 dieselbe
Laufzeit haben. n ist die Anzahl aller Knoten. Die Schleife in Zeilen 5 bis 7, wird so viel mal
durchgelaufen wie der Wurzelknoten Kinderknoten hat, das bezeichnen wir mit w. Dabei gilt
w < n oder noch genauer w ≤ n-1, da alle Knoten an dem Wurzelknoten hängen könne und
dabei können es alles Blattknoten sein. Deshalb können wir die Laufzeit der Schleife wie folgt
angeben O(1) * w = O(1 * w) = O(w) = O(n-1) = O(n). Dasselbe gilt auch für die Schleife
in Zeilen 8 bis 10. Damit ist die Laufzeit der Schleifen zusammen O(n) + O(n) = O(n + n)
= O(2n) = O(n). In Zeilen 20 bis 22 haben wir eine Schleife, die über die Kinderknoten des
Knotens v geht. Die Schleife wird kv mal durchlaufen und kv gibt die Anzahl der Kinderknoten
des Knotens v. Unser Algorithmus geht über alle Knoten des Baumes also werden von jedem
Knoten die Kinderknoten ermittelt, dessen Anzahl kv für Knoten v angibt. Bei einem Baum hat
ein Knoten nur einen einzigen Elternknoten und wird deshalb auch nur ein mal durchlaufen, weil
es auch nur ein einziges Mal den Stack hinzugefügt wird. Es ergibt sich das w +

∑v∈V kv = n-1
gilt. Es gilt, da ein Knoten v kv Kinderknoten hat, dabei ist w die Anzahl der Kinderknoten des
Wurzelknotens. Der Baum ist zusammenhängend also haben alle Knoten außer den Wurzelkno-
ten einen Elternknoten und sind damit auch die Kinderknoten eines anderen Knotens. Deshalb

27

3.6 Zusammenfassung

muss die Aufsummierung alle Kinderknoten die Anzahl alle Knoten außer den Wurzelknoten
ergeben, was auch n-1 ist. Damit ergibt es sich das die Schleife in Zeilen 20 bis 22 genau n-1-w
mal insgesamt durchlaufen wird unabhängig davon wie viel mal die äußere Schleife in Zeile 11
durchgelaufen wird. Dasselbe gilt auch für die Schleifen in Zeilen 23 bis 25. Es ergibt sich das
die Laufzeit einer Schleife O(1) * n-1-w = O(1 * (n-1-w)) = O(n-1-w) = O(n). Beide Schleifen
zusammen haben eine Laufzeit von O(n) + O(n) = O(n + n) = O(2n) = O(n). Diese Laufzeit
gilt nicht für einen Durchlauf der äußeren Schleife, sondern für die Arbeitszeit des gesamten
Algorithmus. Es bleibt uns nur noch zu schauen wie viel mal die Schleife von Zeile 11 bis Zeile
26 durchlaufen wird. Diese Schleife wird so lange durchlaufen bis der Stack leer wird, dabei wird
bei jedem Schleifendurchlauf ein Element aus dem Stack genommen. Wir müssen herausfinden
wie viel Elemente insgesamt den Stack hinzugefügt werden. Wir wissen das jeder Kinderknoten
des Baumes den Stack hinzugefügt wird, das sind schon n-1 Elemente. Es gibt aber noch eine
Stelle im Algorithmus, welche Knoten den Stack zufügt und das ist die Zeile 15 des Algorith-
mus 4. Damit man herausfinden kann wie viel Knoten durch diese Stelle hinzugefügt werden,
müssen wir herausfinden wie oft maximal kann die Bedingung in Zeile 13 wahr sein. Das gilt so,
da es für jeden Knoten mit τ gleich mapping ein Dummyknoten erstellt wird und dem Stack
hinzugefügt wird. Wir müssen herausfinden wie viel der n-1 Knoten τ gleich mapping haben
können. Es kann vorkommen das alle n-1 Kinderknoten τ gleich mapping haben, welches er-
gibt, dass auch n-1 Dummyknoten erstellt und den Stack hinzugefügt werden. In diesem Fall
wurden den Stack insgesamt 2(n-1) Elemente hinzugefügt und die äußere Schleife wird auch
2(n-1) Mal durchlaufen. Die inneren Schleifen werden wie schon ober erwähnt unabhängig von
der äußeren Schleife durchlaufen. Deshalb hat auch deren Zeitkomplexität keinen Einfluss auf
die Zeitkomplexität der äußeren Schleife. Die if-Anweisung aus Zeilen 13 bis 16 hat eine Laufzeit
von max(O(1)+O(1),0) + O(1) = max(O(1)),0) + O(1) = O(1) + O(1) = O(1). Alle anderen
Anweisungen haben auch eine Laufzeit von O(1). Es folgt (O(1)+O(1)+O(1)+O(1)+O(1))*2(n-
1) = O(1)* 2(n-1) = O(1*2(n-1)) = O(2(n-1)) = O(n-1) = O(n). Eine Laufzeit von O(n) haben
alle Schleifen und sind dabei voneinander unabhängig. Eine Laufzeit von O(1) haben die Zeilen
1 bis 4. Diese Zeilen wurden nicht in Schleifen oder anderswo berücksichtigt. Die gesamte Lauf-
zeit unseren Algorithmus ist folgende O(1) + O(1) + O(1) + O(1) + O(n) + O(n) + O(n) =
O(1+1+1+1+n+n+n) = O(3n+4) = O(n). Damit konnten wir zeigen, dass die asymptotische
Laufzeit unseren Algorithmus bei O(n) liegt.

Die Komplexitätsanalyse der Laufzeit für das Unparsen von speichernden, geordneten
Variation-Diffs so wie es gezeigt wurde, muss über drei Algorithmen geschehen. Wir müssen eine
Komplexitätsanalyse der Laufzeit für die Projektion durchführen, eine für unseren Algorithmus,
was wir auch in oberen Abschnitt gemacht haben, und eine für den Diff-Algorithmus. Die Pro-
jektion ist eine Tiefensuche über den Variation-Diff was auch zu einer asymptotischen Laufzeit
von O(n) führt. Der Teil, welcher uns Schwierigkeiten bereitet ist, die Komplexitätsanalyse der
Laufzeit von dem Diff-Algorithmus. Es können unterschiedliche Algorithmen verwendet, wer-
den, welche zu unterschiedlichen Laufzeiten führen. Aus diesem Grund haben wir keine Kom-
plexitätsanalyse der Laufzeit für das Unparsen von speichernden, geordneten Variation-Diffs
durchgeführt.

3.6 Zusammenfassung

In diesem Kapitel haben wir uns zuerst mit den Definitionen von Variation-Tree und
Variation-Diff beschäftigt. Als Nächstes haben wir uns die Arbeitsweise des Parsers angeschaut.
Danach auf der Basis der vorherigen Information haben herausgefunden, welche Informationen
während des Parsens verloren gehen und von uns wiederhergestellt werden müssen. Dazu haben

28

Kapitel 3. Unparse-Algorithmus

wir die Definitionen von Variation-Tree und Variation-Diff für unsere Zwecke erweitert. Dabei
haben wir auch den Parser-Algorithmus so erweitert, dass er von uns definierte speichernde
Variation-Trees bzw. geordnete, speichernde Variation-Trees und speichernde Variation-Diffs
bzw. geordnete, speichernde Variation-Diffs erstellen kann. Als Nächstes wurde von uns unser
Unparse Algorithmus für das Unparsen von Variation-Tree und ein Vorgehen zum Unparsen
von Variation-Diffs vorgestellt. Zum Schluss haben wir eine Komplexitätsanalyse der Laufzeit für
unsren Algorithmus durchgeführt. Die Komplexitätsanalyse der Laufzeit für unsren Algorithmus
hat ergeben, dass der Algorithmus eine asymptotische Laufzeit von O(n) hat.

29

3.6 Zusammenfassung

30

Implementierung
4

In diesem Kapitel stellen wir eine mögliche Implementierung unseres Algorithmus vor. Unser
Algorithmus wird in das Tool DiffDetective eingebaut und erweitert damit seine Möglichkei-
ten, da DiffDetective keinen Unparser für Variation-Trees oder Variation-Diffs hat. DiffDetec-
tive ist in Java programmiert, deshalb nutzen wir die gleiche Programmiersprache für unseren
Unparser. Wir werden unseren Algorithmus in je einer Methode für VariationTree<T> und
VariationDiff<T> implementieren.

Die konkrete Implementierung von Variation-Trees und Variation-Diffs in DiffDetective weicht
von deren theoretischen Ausarbeitung ab. Für uns wichtig ist, dass der Knotentyp τ nicht eine
Funktion ist welche auf Knoten angewandt wird, sondern ein Attribut eines Knotens ist. Dazu
werden mehr Fälle als bei dem Knotentyp τ unterscheiden. Jeder Knoten speichert die Kinder-
knoten in einer Liste und gibt damit auch ihre Reihenfolge an. Variation-Trees und Variation-
Diffs in DiffDetective sind generische Datenstrukturen. Der generische Teil ist für das Label
zuständig. Die für das Label gewählte Klasse muss das Interface Label implementieren.

Jedes Label, welches von VariationTree und VariationDiff werdet wird, muss das Inter-
face Label implementieren. Das Wissen darüber können wir uns zunutze machen. Eine Klasse,
welche das Interface Label implementiert, muss die Zeilen als Liste von Strings darstellen kön-
nen. In der Umsetzung unseres Algorithmus nutzen wir diese Funktion des Interfaces. Das Label
speichert die Zeilen. Deshalb müssen wir das M, aus den Definitionen von geordneten, spei-
chernden Variation-Trees und Variation-Diffs, nicht in vollen Umfang realisieren, sondern nur
das Speichern der Zeile mit endif.

An einigen Stellen muss der Code von DiffDetective geändert werden, damit alle für das
Unparsen relevante Informationen gespeichert werden. Wir müssen die Klassen DiffNode und
VariationTreeNode um das Attribut endIf erweitern, welches die Zeile mit dem endif speichert.
Der Parser muss so geändert werden, dass er die Zeile mit dem endif im richtigen Attribut
speichert. Die Projektion muss dieses Attribut ebenfalls behandeln, da bei der Projektion die
Knoten ihre Klasse wechseln.

In Abbildung 4.1 sehen wir, wie wir unseren Algorithmus umgesetzt haben. Die Funktion
variationTreeUnparser und variationDiffUnparser sind generisch. Der generische Typ T
muss das Interface Label implementieren. Der Input der Funktion variationTreeUnparser ist
ein VariationTree mit Typ T und ein Objekt der Klasse Function auch mit dem Typ T über-

31

1 public static <T extends Label> String variationTreeUnparser(VariationTree<T> tree, Function<
List<String>,T> linesToLabel){

2 if(!tree.root().getChildren().isEmpty()) {
3 StringBuilder result = new StringBuilder();
4 Stack<VariationTreeNode<T>> stack = new Stack<>();
5 for (int i = tree.root().getChildren().size() - 1; i >= 0; i--) {
6 stack.push(tree.root().getChildren().get(i));
7 }
8 while (!stack.empty()) {
9 VariationTreeNode<T> node = stack.pop();

10 if (node.isIf()) {
11 stack.push(new VariationTreeNode<>(NodeType.ARTIFACT, null,null,

linesToLabel.apply(node.getEndIf())));
12 }
13 for (String line : node.getLabel().getLines()) {
14 result.append(line);
15 result.append("\n");
16 }
17 for (int i = node.getChildren().size() - 1; i >= 0; i--) {
18 stack.push(node.getChildren().get(i));
19 }
20 }
21 return result.substring(0, result.length() - 1);
22 }else{
23 return "";
24 }
25 }

Abbildung 4.1: Unparser für VariationTree<T>

geben. Wir haben unsere Funktion generisch gemacht, damit sie für alle Variation-Trees funk-
tioniert. Von dem VariationTree werden die Kindknoten des Wurzelknotens bekommen und
damit auch alle anderen Knoten bekommen und auch für in einer für uns nutzbaren Reihenfolge.
Der zweite Parameter, der Objekt der Klasse Funktion, wird für die Erstellung des Dummykno-
tens verwendet. Die Funktion linesToLabel erhält die Zeilen mit #endif als List<String> und
gibt eine List<String> mit den #endif Zeilen zurück und hat dabei die generische Klasse T.
Der Output unserer Funktion variationTreeUnparser ist ein String. Dieser String enthält mit
C-Präprozessor-Annotierten Code, welcher aus dem gegebenen VariationTree erstellt wurde.
Am Anfang wird geprüft, ob der Wurzelknoten Kinderknoten hat. Wenn nicht, wird ein leerer
String ausgegeben. Sonst wird der Algorithmus ausgeführt. Die Umsetzung ähnelt dem Algo-
rithmus, abgesehen von den Java- und Implementierung-Spezifischen Ausdrucksweise. In der
Funktion werden zuerst StringBuilder zur Speicherung des Ergebnisses und der Stack initiali-
siert. Danach werden die Kinderknoten des Wurzelknotens in umgekehrter Reihenfolge auf den
Stack gelegt. Als Nächstes beginnt die Schleife, welche so lange durchlaufen wird, bis der Stack
leer ist. In der Schleife wird ein Knoten vom Stack genommen. Als Nächstes wird geprüft, ob der
Knoten ein If-Knoten ist, in unserem Algorithmus wurde geschaut, ob der τ des Knotens gleich
mapping ist. Wenn ja, wird ein Dummyknoten erstellt und dem Stack hinzugefügt. Wenn nein,
wird nichts gemacht. Danach so wie in dem Algorithmus 3 werden die Zeilen dieses Knotens dem
Ergebnis hinzugefügt. Am Ende des Schleifendurchlaufs werden die Kinderknoten des Knotens
in umgekehrter Reihenfolge dem Stack hinzugefügt. Nach der Schliefe wird das Ergebnis als
String zurückgegeben.

In der Abbildung 4.2 ist zu sehen, wie wir das Unparsen von Variation-Diffs umgesetzt

32

Kapitel 4. Implementierung

1 public static <T extends Label> String variationDiffUnparser(VariationDiff<T> diff,Function<List
<String>,T> linesToLabel) throws IOException {

2 String tree1 = variationTreeUnparser(diff.project(Time.BEFORE),linesToLabel);
3 String tree2 = variationTreeUnparser(diff.project(Time.AFTER),linesToLabel);
4 return JGitDiff.textDiff(tree1,tree2, SupportedAlgorithm.MYERS);
5 }

Abbildung 4.2: Unparser für VariationDiff<T>

haben. Dabei sind wir wie in dem Kapitel 3 gesagt worden vorgegangen. Wir haben das Pro-
blem von Unparsen eines Variation-Diffs auf das Unparsen von Variatio-Trees reduziert. So ma-
chen wir die Implementierung des Unparsers für Variation-Diff: Wir projizieren das übergebene
VariationDiff auf den Zustand-Davor und unparsen dann das erhaltene VariationTree mit
der vorher gezeigten Funktion. Das Gleiche machen wir auch für den Zustand-Danach. Zuletzt
bilden wir, mit einer von DiffDetectiv zur Verfügung gestellten Funktion, einen textbasierten
Diff und geben ihn als String zurück.

Wir haben eine mögliche Implementierung für unseren Algorithmus in DiffDetective vorge-
stellt. So haben wir DiffDetective verbessert und den Benutzern mehr Funktionen zur Verfügung
gestellt. Wir müssen noch festlegen, wie wir die Korrektheit unseres Algorithmus überprüfen und
eine Auswertung für unsere Funktionen machen.

33

34

Korrektheit
5

In diesem Kapitel stellen wir die Korrektheitskriterien vor, mit deren Hilfe die Korrektheit eines
Unparsers bewerten werden kann. In einer empirischen Studie testen wir dann, ob und welche
Korrektheitskriterien von unserer Implementierung erfüllt werden.

Es werden jeweils Korrektheitskriterien für textbasierte Diffs und C-Präprozessor-Annotierten
Code definiert. Diese sind syntaktische Gleichheit, syntaktische Gleichheit ohne Whitespace und
semantische Gleichheit. Die semantische Gleichheit wurde nur für textbasierte Diffs definiert
und nicht für C-Präprozessor-Annotierten Code. Es gibt Zusammenhänge zwischen den Kor-
rektheitskriterien: Syntaktische Gleichheit ohne Whitespace wird von der syntaktischen Gleich-
heit impliziert und aus syntaktischer Gleichheit ohne Whitespace folgt semantische Gleichheit.
Bei der Auswertung werden Aufbau und Ergebnisse beschrieben. Basierend darauf werden die
Forschungsfragen und Ergebnisse diskutiert. Dabei wird während der Auswertung unsere Imple-
mentierung auf die Korrektheitskriterien anhand der Commit-Historien von drei Open-Source
Repositories überprüft.

In Kapitel 5.1 werden die Korrektheitskriterien definiert, näher beschrieben und die Zusam-
menhänge zwischen diesen dargestellt. Die Auswertung, einschließlich des Aufbau des Experi-
ments, der Ergebnisse und der Diskussion, ist in Kapitel 5.2 zu finden.

5.1 Korrektheitskriterium

Nachdem wir unseren Algorithmus in DiffDetective implementiert haben, müssen wir noch fest-
stellen, wie korrekt unsere Implementierung ist. Dazu müssen wir zuerst definieren, wie wir die
Korrektheit unserer Implementierung verstehen. Deshalb haben wir Korrektheitskriterien für
textbasierte Diffs und C-Präprozessor-Annotierten Code aufgestellt, um die es in diesem Ab-
schnitt geht.

Die Bewertung der Korrektheit unseres Unparser erfolgt wie folgt: Es wird ein C-Präprozessor-
Annotierter Code oder textbasierter Diff genommen. Dieser C-Präprozessor-Annotierter Code
oder textbasierter Diff wird geparst und wir erhalten einen Variation-Tree oder ein Variation-
Diff. Der Variation-Tree oder Variation-Diff wird im nächsten Schritt ungeparst und wir erhalten
wieder einen C-Präprozessor-Annotierten Code oder einen textbasierten Diff. Zum Schluss wird
der Ausgangs-Code mit dem ungeparsten Code beziehungsweise das Ausgangs-Diff mit dem

35

5.1 Korrektheitskriterium

ungeparsten Diff anhand der von uns definierten Korrektheitskriterien verglichen, um zu ent-
scheiden, ob korrekt ungeparst wurde oder nicht.

Die von uns definierten Korrektheitskriterien sind syntaktische Gleichheit, syntaktische Gleich-
heit ohne Whitespace und semantische Gleichheit. Es gibt mehrere Korrektheitskriterien, da es
zwei Anwendungen gibt, die zusammenarbeiten müssen. Der Parser kann die benötigten Informa-
tionen unterschiedlich gut speichern und der Unparser kann an gewissen Stellen mit Heuristiken
arbeiten. Dies kann zusammen die Korrektheit des Ergebnisses beeinträchtigen. Die syntaktische
Gleichheit haben wir gewählt, da dies der Idealzustand ist, der erreicht werden kann. Die syntak-
tische Gleichheit ohne Whitespace haben wir gewählt, da man nicht für jeden Anwendungszweck
unbedingt einen perfekten Unparser braucht. Dazu können während des Parsens Informationen
über Whitespace-Zeichen verloren gehen, welche keinen Einfluss auf das Verständnis des Inhalts
haben, aber trotzdem eine perfekte Rekonstruktion verhindern. Die semantische Gleichheit gilt
nur für textbasierte Diffs und wurde von uns ausgewählt, da es zurzeit keinen Algorithmus gibt,
der aus einem Variation-Diff einen textbasierten Diff erstellt. Es gibt nur das von uns entwi-
ckelte Vorgehen, aber bei diesem Vorgehen wird aus zwei C-Präprozessor-Annotierten Codes
ein textbasierter Diff erstellt. Der so erhaltene textbasierte Diff kann abhängig davon, welcher
Algorithmus zu diesem Zweck verwendet wurde, unterschiedlich aussehen, obwohl die gleichen C-
Präprozessor-Annotierten Codes verwendet wurden. Damit wir auch so was überprüfen können,
haben wir die semantische Gleichheit eingeführt. In der Tabelle 5.1 sind die formalen Definitio-
nen dieser Korrektheitskriterien zu sehen. id, welche in der Tabelle 5.1 verwendet wird, stellt
die Identitätsfunktion dar. Die Signaturen anderer in der Tabelle 5.1 verwendeter Funktionen
sind folgende: Sei C die Menge aller C-Präprozessor-Annotierten Codes, D die Menge aller text-
basierten Diffs, V T die Menge aller Variation-Trees, V D die Menge aller Variation-Diffs und
Z={a, b} die Menge mit den Zeiten Davor und Danach. Dann sind die Funktionen wie folgt
definiert: parset : C → V T , unparset : V T → C, deleteWhitespacet : C → C,
parsed : D → V D, unparsed : V D → D, textProject : D×Z → C. Die Formeln in der Tabelle
5.1 zeigen funktional die Definitionen der Korrektheitskriterien. Eine solche Darstellung eignet
sich gut für die Definition, da wir in unserem Fall den Parser und Unparser als Funktionen
darstellen können und deren Zusammenarbeit als Verkettung. Dazu lassen sich alle anderen Ma-
nipulationen als Funktionen darstellen, wie zum Beispiel das Entfernen von Whitespace und die
Projektion von textbasierten Diffs. Wir können auch den Zugriff auf einzelne Elemente darstel-
len, so wie bei der semantischen Gleichheit.

36

Kapitel 5. Korrektheit

C-Präprozessor-
Annotierter Code textbasierter Diff

Syntaktische Gleichheit unparset ◦ parset = id unparsed ◦ parsed = id

Syntaktische Gleichheit
ohne Whitespace

deleteWhitespacet ◦ unparset ◦
parset = deleteWhitespacet ◦
id

deleteWhitespaced ◦ unparsed

◦ parsed = deleteWhitespaced

◦ id

Semantische Gleichheit

Out of Scope
unentscheidbar für C,
exponentielles Wachs-
tum für C-Präprozessor

Für ∀t ∈ {a, b} und ∀d ∈ D
x := unparsed ◦ parsed(d)
textProject(x,t) =
textProject(id(d),t)
∨ deleteWhitespacet

◦ textProject(x,t) =
deleteWhitespacet ◦
textProject(id(d),t)

Tabelle 5.1: Korrektheitskriterien

In diesem Abschnitt sprechen wir über die syntaktische Gleichheit, die in der zweiten Zeile aus
der Tabelle 5.1 zu finden ist. Syntaktische Gleichheit bedeutet, dass der zu vergleichende Text in
jedem Zeichen identisch ist. Der Vergleich auf syntaktische Gleichheit sieht für C-Präprozessor-
Annotierten Code und textbasierte Diffs gleich aus, was in der Abbildung 5.1 zu sehen ist.
Hierfür muss der Ausgangs-Code bzw. der textbasierte Diff mit dem Ergebnis nach dem Parsen
und Unparsen in jedem Zeichen übereinstimmen. Wie in der Abbildung 5.1 gezeigt, wird ein
C-Präprozessor-Annotierter Code bzw. der textbasierte Diff genommen, dann darauf Parser
und Unparser angewendet. Das Ergebnis und der C-Präprozessor-Annotierter Code bzw. der
textbasierte Diff werden dann jeweils in einen String umgewandelt und diese dann auf Gleichheit
geprüft. So wird die syntaktische Gleichheit des C-Präprozessor-Annotierten Code bzw. den
textbasierten Diff und des Ergebnisses von Parser und Unparser überprüft.

37

5.1 Korrektheitskriterium

#ifdef A
foo()

#endif
#ifdef A

+boo()
-foo()

#endif

S1 =’#ifdef A\n foo()\n#endif’
S3 =’#ifdef A\n +boo()\n -foo()\n#endif’

toS
trin

g

#ifdef A
foo()

#endif
#ifdef A

+boo()
-foo()

#endif

S2 =’#ifdef A\n foo()\n#endif’
S4 =’#ifdef A\n +boo()\n -foo()\n#endif’

toS
trin

g

equals(S1,S2) == True
equals(S3,S4) == True

unparset ◦ parset

unparsed ◦ parsed

Abbildung 5.1: Beispiel für Syntaktische Gleichheit

Der syntaktischen Korrektheit ohne Whitespace aus der dritten Zeile der Tabelle 5.1 widmen
wir uns in diesem Abschnitt. Analog zur syntaktischer Gleichheit ist syntaktische Gleichheit ohne
Whitespace für den C-Präprozessor-Annotierten Code und textbasierte Diffs gleich zu verste-
hen, wie in Abbildung 5.2 zu sehen ist. Bei dieser Art von Korrektheit muss, wie im vorherigen
Fall, der Ausgangs-Code mit C-Präprozessor-Annotationen bzw. der textbasierte Diff mit dem
Ergebnis nach dem Parsen und Unparsen in jedem Zeichen übereinstimmen, bis auf bestimmten
Whitespace. Damit die zu vergleichenden Texte gleich werden, werden einige Schritte unter-
nommen. Diese Schritte sind: das Entfernen aller Whitespace-Zeichen von Anfang einer Zeile bis
zu dem ersten Nicht-Whitespace-Zeichen. Danach das Entfernen aller Whitespace-Zeichen nach
dem letzten Nicht-Whitespace-Zeichen einer Zeile bis zu dem Zeilenumbruch, der Zeilenumbruch
wird nicht entfernt, und das Entfernen aller leeren Zeilen. Im Falle, dass diese Manipulationen
mit einem textbasierten Diff durchgeführt werden, wird das Leerzeichen vor dem ersten Nicht-
Whitespace-Zeichen nicht entfernt, wenn dieses erste Nicht-Whitespace-Zeichen kein + oder -
ist. Diese Ausnahme ist notwendig, damit die Struktur eines textbasierten Diffs beibehalten
wird. Für ein besseres Verständnis ist unsere Implementierung in Java in der Abbildung 5.3 zu
sehen. Es werden nicht, wie die Bezeichnung vermuten lässt, alle Whitespace-Zeichen entfernt.
Der Grund dafür ist folgender: Wenn alle Whitespace-Zeichen entfernt werden, ist es nicht mög-
lich, festzustellen, ob es Probleme mit den Whitespace-Zeichen gibt, welche für das Verständnis
relevant sind. Also zum Beispiel zwischen #if und der Bedingung kein Leerzeichen gibt oder
die Zeilenumbrüche fehlen, wodurch der Code oder der textbasierte Diff zu einer einzelnen Zeile
wird. Solche Fälle werden dann auch als korrekt angesehen, wenn wir alle Whitespace-Zeichen
entfernen würden, was wir aber nicht wollen. Die Whitespace-Zeichen, welche innerhalb des
Abschnitts vom ersten Nicht-Whitespace-Zeichen bis zu dem letzten Nicht-Whitespace-Zeichen,
werden nicht entfernt oder manipuliert. Dazu wird auch der Zeilenumbruch am Ende der nicht
leeren Zeilen beibehalten. Die Abbildung 5.2 veranschaulicht dies. Dort sind der Ausgangs-Code

38

Kapitel 5. Korrektheit

bzw. der textbasierte Diff gegeben. Rechts von dem ist das Ergebnis von Parse und Unparse ge-
geben. Danach werden diese alle in Strings umgewandelt. Als Nächstes werden die Whitespace-
Zeichen, wie oben beschrieben, aus den Strings entfernt und anschließend die auf Äquivalenz
geprüft. So wird der C-Präprozessor-Annotierter Code bzw. der textbasierte Diff und das Er-
gebnis von Parse und Unparse auf syntaktische Gleichheit ohne Whitespace überprüft.

#ifdef A
foo()

#endif
#ifdef A

+boo()
-foo()

#endif

S1 =’#ifdef A\n foo()\n#endif’
S3 =’#ifdef A\n +boo()\n -foo()\n\n#endif’

toS
trin

g

S1 =’#ifdef A\nfoo()\n#endif’
S3 =’#ifdef A\n+boo()\n-foo()\n#endif’

#ifdef A
foo()

#endif
#ifdef A

+boo()
-foo()

#endif

S2 =’#ifdef A\n foo()\n\n#endif’
S4 =’#ifdef A\n +boo()\n -foo()\n#endif’

toS
trin

g

S2 =’#ifdef A\nfoo()\n#endif’
S4 =’#ifdef A\n+boo()\n-foo()\n#endif’

equals(S1,S2) == True
equals(S3,S4) == True

unparset ◦ parset

unparsed ◦ parsed

deleteWhitespace deleteWhitespace

Abbildung 5.2: Beispiel für Syntaktische Gleichheit ohne Whitespace

39

5.1 Korrektheitskriterium

1 public static String deleteWhitespace(String string,boolean diff){
2 if(string.isEmpty()){
3 return "";
4 }
5 else {
6 StringBuilder result = new StringBuilder();
7 try {
8 BufferedReader in = new BufferedReader(new StringReader(

string));
9 String line = "";

10 while ((line = in.readLine()) != null) {
11 if (!line.replaceAll("\\s+","").isEmpty()) {
12 String temp = line.trim();
13 if(diff && !(temp.charAt(0) == '+' || temp.

charAt(0) == '-')){
14 temp = " " + temp;
15 }
16 result.append(temp);
17 result.append("\n");
18 }
19 }
20 }catch (Exception e){
21 e.printStackTrace();
22 }
23 return result.toString();
24 }
25 }

Abbildung 5.3: Implementierung von deleteWhitespace

Die semantische Gleichheit von C-Präprozessor-Annotierten Code werden wir nicht betrach-
ten, da wir dafür entscheiden müssen, ob zwei Programme äquivalent sind. Das geht über den
Rand unserer Möglichkeiten, da diese Fragestellung unentscheidbar ist und als das Äquiva-
lenzproblem bekannt [8] ist. Mit den C-Präprozessor-Annotationen geht es auch über den Rand
unserer Möglichkeiten, da C-Präprozessor-Annotationen hier für Erzeugung der Variabilität ver-
wendet werden. Dabei hat so eine Softwareproduktlinie n Features und im Worst-Case müssen
2n Varianten der Software betrachtet werden[2], was eine exponentielle Laufzeit bedeutet und
somit über den Rand unserer Möglichkeiten geht.

Um die semantische Gleichheit für textbasierte Diffs geht es in diesem Abschnitt. Wie die
semantische Gleichheit für textbasierte Diffs zu verstehen ist, ist nicht eindeutig festgelegt. Un-
sere Interpretation der semantischen Gleichheit für textbasierte Diffs ist an der Gleichheit für
Variation-Diffs [4] orientiert. Wir verstehen die semantische Gleichheit wie folgt: Zwei textba-
sierte Diffs sind semantisch gleich, wenn ihre Projektionen auf den Davor-Zustand bzw. Danach-
Zustand syntaktisch gleich oder syntaktisch gleich ohne Whitespace sind. In der Abbildung 5.4
ist dies dargestellt. Dabei ist die Projektion für textbasierte Diffs wie folgt zu verstehen: Ein
textbasierter Diff hat Zeilen von drei Typen: unverändert gebliebene Zeilen, gelöschte Zeilen und
eingefügte Zeilen. Bei der Projektion werden einige dieser Typen der Zeilen entfernt, einige bei-
behalten, und so entsteht eine Projektion von textbasierten Diffs auf einen mit C-Präprozessor-
Annotierten Code. Dabei wird für die Projektion auf den Zustand-Davor die unveränderten und
gelöschten Zeilen beibehalten, während die eingefügten entfernt werden. Für die Projektion auf
den Zustand-Danach, die unveränderten und eingefügten Zeilen beibehalten, während die ge-
löschten Zeilen entfernt werden. Dies verläuft analog zu der Projektion von Variation-Diff zu
Variation-Tree.

40

Kapitel 5. Korrektheit

#ifdef A
+boo()
-foo()

#endif

#ifdef A
-foo()
+boo()

#endif

#ifdef A
foo()

#endif

#ifdef A
boo()

#endif

Syntaktische Gleichheit == True
∨

Syntaktische Gleichheit ohne Whitespace == True

Syntaktische Gleichheit == True
∨

Syntaktische Gleichheit ohne Whitespace == True

projec
tB

efore

projectAfter

projectBefore

projec
tAfter

unparsed ◦ parsed

Abbildung 5.4: Beispiel für Semantische Gleichheit

Im Weiteren wollen wir veranschaulichen, wie die Korrektheitskriterien zusammenhängen.
Bevor wir aber dazu kommen, müssen wir Hilfsaussagen erläutern. Bei syntaktischer Gleichheit
und syntaktischer Gleichheit ohne Whitespace für C-Präprozessor annotiertem Code und textba-
sierten Diffs werden im Grunde genommen nur Texte verglichen. Aus diesem Grund wird für die
Beschreibung der Zusammenhänge zwischen syntaktischer Gleichheit und syntaktischen Gleich-
heit ohne Whitespace nur auf Text eingegangen und nicht zwischen C-Präprozessor-Annotierten
Code und textbasierten Diffs unterschieden.

Der Zusammenhang zwischen syntaktischer Gleichheit und syntaktischer Gleichheit ohne
Whitespace ist folgender: Die syntaktische Gleichheit impliziert syntaktische Gleichheit ohne
Whitespace. Formal mithilfe von Definition aus der Tabelle 5.1 ist es in dem Beweis unten ge-
zeigt. Diese Aussage stimmt, da syntaktische Gleichheit bedeutet, dass die zwei zu vergleichende
Texte in jedem Zeichen und der Position dieser Zeichen identisch sind. Wenn aus den syntak-
tisch gleichen Texten die Whitespace-Zeichen, wie wir beschrieben haben, entfernt werden, sind
diese Texte trotzdem syntaktisch gleich. Der Grund dafür ist, dass bei zwei syntaktisch gleichen
Texten alle Whitespace Zeichen an denselben Stellen sind. Das führt mit sich, dass nach deren
Entfernung alle anderen Zeichen, welche in beiden Texten gleich sind, auch in beiden Texten
identisch verschoben werden und damit auch syntaktische Gleichheit ohne Whitespace besitzen.
Damit gilt die Aussage.

Beweis. Da ◦ assoziativ ist gilt:
deleteWhitespacet ◦ unparset ◦ parset = deleteWhitespacet ◦ (unparset ◦ parset)
deleteWhitespaced ◦ unparsed ◦ parsed = deleteWhitespaced ◦ (unparsed ◦ parsed)

41

5.2 Auswertung

Wenn syntaktische Gleichheit gilt, ist gegeben:
unparset ◦ parset = id
unparsed ◦ parsed = id
Zu zeigen syntaktische Gleichheit ohne Whitespace ist gegeben:
deleteWhitespacet ◦ unparset ◦ parset

= deleteWhitespacet ◦ (unparset ◦ parset)
= deleteWhitespacet ◦ (id)
= deleteWhitespacet ◦ id
deleteWhitespaced ◦ unparsed ◦ parsed

= deleteWhitespaced ◦ (unparsed ◦ parsed)
= deleteWhitespaced ◦ (id)
= deleteWhitespaced ◦ id

Der Zusammenhang zwischen syntaktischer Gleichheit ohne Whitespace und semantischer
Gleichheit ist folgender und gilt in unserem Fall nur für textbasierte Diffs. Der Grund dafür ist,
dass wir die semantische Gleichheit für C-Präprozessor-Annotierten Code nicht definiert haben
und deshalb auch keine Aussagen darüber treffen können. Die syntaktische Gleichheit ohne Whi-
tespace impliziert semantische Gleichheit. Diese Aussage stimmt, da syntaktische Gleichheit ohne
Whitespace bedeutet, dass zwei zu vergleichende textbasierte Diffs, nachdem die Whitespace-
Zeichen, wie wir es vorschreiben, entfernt wurden, in jedem Zeichen identisch sind. Das Entfernen
der Whitespace-Zeichen, wie wir es vorschreiben, ändert nicht, dass ein textbasierter Diff ein
textbasierter Diff ist. Das bedeutet, dass wir dieses textbasierte Diff, bei dem die Whitespace-
Zeichen entfernt wurden, projizieren können. Die textbasierten Diffs sind nach dem Entfernen
der Whitespace-Zeichen in jedem Zeichen identisch und da diese projiziert werden können, sind
auch die Projektionen identisch, was dazu führt, dass die semantische Gleichheit erfüllt wird
und damit die Aussage gezeigt ist.

5.2 Auswertung

Im folgenden Abschnitt wollen wir eine Auswertung unserer Implementierung anhand der vor-
her eingeführten Korrektheitskriterien durchführen. Bei dieser Auswertung wollen wir die drei
folgenden Forschungsfragen beantworten.

RQ1 : Erfüllt unser Unparser mindestens ein Korrektheitskriterium für jeden untersuchten Fall?

RQ2 : Wie oft wird welches Korrektheitskriterium von unserem Parser für Variation-Trees einge-
halten?

RQ3 : Wie oft wird welches Korrektheitskriterium von unserem Parser für Variation-Diffs einge-
halten?

Durch Beantwortung dieser Fragen, wollen wir zu dem Entschluss kommen, ob unser Unpar-
ser korrekt ist.

Zuerst im Abschnitt 5.2.1 wird der Aufbau des Experiments vorgestellt. Danach sind die
Ergebnisse der Auswertung in Abschnitt 5.2.2 zu sehen. Zum Schluss im Abschnitt 5.2.3 werden
die Ergebnisse der Auswertung interpretiert und diskutiert.

42

Kapitel 5. Korrektheit

5.2.1 Aufbau des Experiments

Bei der Auswertung wird DiffDetective verwendet. Der Aufbau unserer Auswertung ist in der
Abbildung 5.5 skizziert und ist folgend aufgebaut: Es werden automatisch die Patches aus
dem Git Repositorie extrahiert. Wir arbeiten nur mit Patches, welche geparst werden können.
Die Patches bei denen es nicht gilt, ignorieren wir, da diese für unsere Fragestellung unbe-
deutend sind. Wir wollen die Korrektheit des Unparsers prüfen, also die Fälle wo wir keinen
Variation-Tree oder Variation-Diff bekommen können, müssen wir nicht betrachten. Von Re-
positories bekommen wir Patches, welche textbasierte Diffs sind, wir haben aber noch keine
C-Präprozessor-Annotierte Codes. Damit wir diese bekommen können, müssen wir den textba-
sierten Diff, welchen wir haben auf den Davor-Zustand und Danach-Zustand projizieren. Damit
erhalten wir dann zwei C-Präprozessor-Annotierte Codes. Dadurch wird bei der Auswertung
doppelt so viele C-Präprozessor-Annotierte Codes untersucht als textbasierte Diffs. Als Nächs-
tes wird sowohl der textbasierte Diff als auch C-Präprozessor-Annotierte Code geparst. Der
Parser in DiffDetective hat zwei unabhängige Optionen, das sind Collapse-Multiple-Code-Lines
und Ignore-Empty-Lines. Bei Collapse-Multiple-Code-Lines werden mehrere hintereinander lau-
fende Zeilen von Code, die keine Annotationen enthalten, in einem Knoten zusammengefasst.
Bei Ignore-Empty-Lines werden die leeren Zeilen nicht vom Parser in das Ergebnis aufgenommen
und gehen somit verloren. Es gibt vier Möglichkeiten, wie die Optionen für den Parser gesetzt
werden können. Für alle diese Möglichkeiten wollen wir betrachten, wie die Korrektheitskriterien
eingehalten werden. Deshalb wird des Parsen mit jeder Option-Kombination durchgeführt. Da-
durch erhalten wir für ein textbasierten Diff vier Variation-Diffs. Aus einem Patch bekommen
wir aber zwei C-Präprozessor-Annotierte Codes, diese werden jeweils unter Verwendung aller
Parser-Option-Kombination geparst, sodass wir schließlich acht Variation-Trees haben. Danach
werden diese vier Variation-Diffs und acht Variation-Trees ungepasrt und wir erhalten danach
vier textbasierte Diffs und auch C-Präprozessor-Annotierte Codes. Diese textbasierten Diffs und
C-Präprozessor-Annotierte Codes werden dann auf die Gleichheit mit den textbasierten Diff und
C-Präprozessor-Annotierte Codes, welche für das Parsen verwendet wurden, anhand der von uns
definierten Korrektheitskriterien verglichen. Die Ergebnisse nach der Untersuchung aller für uns
geltenden Patches werden zusammengetragen.

Als Datenquelle werden von uns die Git-Historien folgender drei Software-Produkt-Linie-
Projekte benutzt. Die verwendeten Open-Source-Projekte sind Vim, sylpheed und
berkeley-db-libdb. Vim ist ein konfigurierbarer Texteditor, welcher auch in den meisten Unix-
Systemen und in Apple OS X enthalten ist. sylpheed ist ein leichtgewichtiger E-Mail-Client,
welcher auf vielen Systemen wie Windows, Linux, BSD, Mac OS X und anderen Unix-ähnlichen
Systemen läuft. berkeley-db-libdb ist eine eingebettete Key-Value-Datenbankbibliothek. Aus
diesen Projekten haben wir nur Dateien den Endungen .c und .cpp untersucht. Insgesamt haben
wir 49401 Patches aus den erwähnten Open-Source-Projekte untersucht.

5.2.2 Ergebnisse

In diesem Abschnitt wollen wir über die Ergebnisse der Auswertung berichten. Während der
Auswertung wurden Exceptions ausgelöst. Diese Exceptions wurden dadurch ausgelöst, dass
das, was dem Parser übergeben wurde, nicht geparst werden konnte. Wenn etwas nicht geparst
werden kann, ist es auch nicht für unsere Auswertung relevant und wird von uns ignoriert. Wir
können nicht garantieren, dass die Exception nur dadurch ausgelöst wurden, aber keiner der
Exceptions hat die Auswertung abgebrochen.

In der Tabelle 5.2 sind die Ergebnisse der Auswertung für C-Präprozessor-Annotierten Code

43

5.2 Auswertung

Repositories extrahiere Patches Patch/textbasierter Diff

bekomme annotierten Code

C-Präprozessor-Annotierter
Code

parse alle Kombinationen
von Optionen

unparse Variation-Diffs

prüfe auf alle
Korrektheitskriterien

parse alle Kombinationen
von Optionen

unparse Variation-Trees

prüfe auf alle
Korrektheitskriterien

Ergebnisse

Abbildung 5.5: Aufbau der Auswertung

zu sehen. Die Tabelle zeigt ganz oben die Anzahl der untersuchten C-Präprozessor-Annotierten
Codes, das sind 98802. Danach sind auf der linken Seite der Tabelle die Optionen für den Parser
zu sehen und ob diese ausgewählt wurden oder nicht. Auf der rechten Seite der Tabelle ist zu
sehen, wie oft ein bestimmtes Korrektheitskriterium für die Kombination von Optionen erfühlt
wurden. Die Spalte mit dem Fehler zeigt an, wie oft für eine Kombination von Parser-Optionen
keiner der von uns definierten Korrektheitskriterien erfüllt wurde.

Anzahl ungeparster C-Präprozessor-Annotierter Codes 98802
Parser-Optionen Ergebnisse der Auswertung für

Collapse-Multiple-
Code-Lines

Ignore-Empty-Lines syntaktische Gleichheit syntaktische Gleichheit
ohne Whitespace Fehler

False False 0 98802 0
True False 0 98802 0
False True 0 98624 178
True True 0 98624 178

Tabelle 5.2: Ergebnisse der Auswertung für das Unparsen von C-Präprozessor-Annotierten Code

Die Ergebnisse der Auswertung für textbasierte Diffs sind in der Tabelle 5.3 zu sehen. Die
Tabelle ist analog zu der Tabelle 5.2 aufgebaut. Oben in der Tabelle ist die Anzahl der unter-
suchten, textbasierten Diffs zu sehen. Die Anzahl beträgt 49401. Die Anzahl der untersuchten
C-Präprozessor-Annotierten Codes aus der Tabelle 5.2 ist doppelt so groß wie die Anzahl der
untersuchten textbasierten Diffs. Das liegt daran, dass in unserem Fall jeder C-Präprozessor-
Annotierter Code aus textbasierten Diff bekommen wurde. Ein textbasierter Diff besteht aus
zwei C-Präprozessor-Annotierten Codes. Wie in der Tabelle 5.2 sind auch in der Tabelle 5.3 die
Parser-Optionen und die ausgewählten Kombinationen angegeben. Rechts in der Tabelle sind die
Korrektheitskriterien mit dem Fehlerfall zu sehen. In der Tabelle 5.3 ist ein zu untersuchendes
Korrektheitskriterium mehr gegeben als in der Tabelle 5.2.

44

Kapitel 5. Korrektheit

Anzahl ungeparster textbasierter Diffs 49401
Parser-Optionen Ergebnisse der Auswertung für

Collapse-Multiple-
Code-Lines

Ignore-Empty-
Lines

syntaktische
Gleichheit

syntaktische Gleichheit
ohne Whitespace

semantische
Gleichheit

Fehler

False False 0 46514 49390 11
True False 0 46514 49390 11
False True 0 36778 49300 101
True True 0 36778 49300 101

Tabelle 5.3: Ergebnisse der Auswertung für das Unparsen von textbasierten Diffs

Es wurden 11 textbasierte Diffs als nicht unparsbar vermerkt. So ein Fall tritt auf, wenn
für einen textbasierten Diff keiner der Korrektheitskriterien für keine Kombination der Parse-
Optionen erfüllt wurde. Wir haben alle diese nicht unparsbarer textbasierten Diffs näher betrach-
tet. Es hat sich herausgestellt, dass in all diesen Fällen es Probleme mit #endif-Annotation gab.
Dabei war in jedem dieser Fehlerfälle zu jeder #if-Annotation eine #endif-Annotation vorhan-
den.

5.2.3 Diskussion

Nachdem wir die Ergebnisse der Auswertung vorgestellt haben, sind wir in der Lage, die For-
schungsfragen zu beantworten. Unsere Forschungsfragen sind folgende: RQ1: Erfüllt unser Un-
parser mindestens ein Korrektheitskriterium für jeden untersuchten Fall? RQ2: Wie oft wird
welches Korrektheitskriterium von unserem Parser für Variation-Trees eingehalten? RQ3: Wie
oft wird welches Korrektheitskriterium von unserem Parser für Variation-Diffs eingehalten?

Damit wir diese Fragen RQ1 und RQ2 für das Unparsen von C-Präprozessor-Annotierten
Code beantworten können, müssen wir die Tabelle 5.2 betrachten. Für die Beantwortung der
Frage RQ1 sind jedoch nur die Zeilen mit den Kombinationen von Parser-Optionen relevant,
bei denen Collapse-Multiple-Code-Lines auf False gesetzt ist und Ignore-Empty-Lines auf False
sowie Collapse-Multiple-Code-Lines auf True gesetzt ist und Ignore-Empty-Lines auf False. Es
sind nur diese beiden Zeilen von Bedeutung, da unsere Unparser darauf ausgerichtet ist, nur mit
der Parser-Option Collapse-Multiple-Code-Lines korrekt zu funktionieren. In diesem Fall gehen
keine zusätzlichen Informationen verloren, sondern es wird lediglich etwas anders dargestellt, was
unseren Unparser nicht stört. Bei der Parser-Option Ignore-Empty-Lines kommt es zu einem zu-
sätzlichen Informationsverlust und um den wiederherzustellen, müssen wir diese Informationen
speichern, was dem Sinn dieser Parser-Option widerspricht. Aus diesem Grund ist unser Unpar-
ser nicht dafür ausgelegt, beim Setzen der Option Ignore-Empty-Lines zu funktionieren, aber wir
wollten trotzdem sehen, wie korrekt er auch bei der Auswahl einer nicht vorgesehenen Option
funktioniert. Wenn wir jetzt die ersten beiden Parser-Kombinationen in der Tabelle 5.2 betrach-
ten, stellen wir fest, dass die Werte der beiden Zeilen für das jeweilige Korrektheitskriterium
gleich sind. Dabei sehen wir, dass die syntaktische Gleichheit kein einziges Mal erfüllt wurde.
Es gibt jedoch auch keinen einzigen Fall, dass der Unparser nicht funktioniert hat. Jedes Mal
in der Auswertung konnte unser Unparser die syntaktische Gleichheit ohne Whitespace garan-
tieren. Dies lässt uns zu dem Entschluss kommen, dass unser Unparser für das Unparsen von
C-Präprozessor-Annotierten Code korrekt funktioniert. Diese Entscheidung basiert auf der Tat-
sache, dass bei der Entfernung von Whitespace nicht alle Whitespace-Zeichen entfernt werden,
sondern nur bestimmte. Nach dieser Manipulation erhalten wir weiterhin einen C-Präprozessor-
Annotierten Code. Wir vermuten, dass der Grund, warum die syntaktische Korrektheit kein ein-
ziges Mal erfüllt wurde, darin liegt, dass der Parser, auch wenn die Option Ignore-Empty-Lines

45

5.2 Auswertung

nicht ausgewählt wurde, die letzten Zeilen, wenn sie leer sind, nicht speichert. Dieses Vorgehen
des Parsers haben wir bemerkt, als wir unseren Unparser getestet haben. Unser Unparser kann
das nicht syntaktisch korrekt wiederherstellen, da diese Informationen nicht in den Variation-
Tees bzw. Variation-Diffs vorhanden sind. Aus der Tabelle 5.2 können wir auch entnehmen,
wie korrekt unser Unparser bei der ausgewählten Parser-Option Ignore-Empty-Lines arbeitet.
Dabei sehen wir, dass auch hier kein einziges Mal die syntaktische Gleichheit erreicht wurde,
aber im Gegensatz zu vorherigen Fall gibt es hier Fälle, bei denen unser Unparser nicht korrekt
unparsen konnte. Das sind 178 Fälle, welches 0,2% aller untersuchten Fälle darstellt. Für uns ist
das Grund genug zu sagen, dass auch bei dieser Option unser Unparser in der überwiegenden
Mehrheit der Fälle funktioniert. Bei der Kombination der Parser-Optionen, wo beide Optionen
ausgewählt sind, ist zu erkennen, dass die Werte zu der vorherigen Kombination gleich sind. Es
sind wieder 178 Fälle gegeben, welche nicht ungeparst werden können. Es lässt sich vermuten,
dass es sich um dieselben Fälle, wie im vorherigen Fall handelt. Zu diesem Entschluss kann man
kommen, da, wenn nur die Parser-Option Collapse-Multiple-Code-Lines ausgewählt wurde, es
keine unparsbaren Fälle gab. Wenn die Parser-Option Ignore-Empty-Lines ausgewählt wurde,
hatten wir 178 unparsbare Fälle und bei der Auswahl beider Parser-Optionen gab es wider 178
unparsbare Fälle. Das lässt vermuten, dass diese anparsbaren Fälle durch die Parser-Option
Ignore-Empty-Lines verursacht wurden. Damit lässt sich sagen, dass unser Unparser korrekt für
die vorgesehenen Kombinationen von Parser-Optionen funktioniert, aber dass der auch in der
überwiegenden Mehrheit der Fälle für nicht vorgesehene Kombinationen von Parser-Optionen
arbeitet.

Nachdem wir die Forschungsfrage RQ1 und RQ2 für das Unparsen von C-Präprozessor-
Annotierten Code beantwortet haben, müssen wir nun noch die Forschungsfragen RQ1 und
RQ3 für das Parsen von textbasierten Diffs beantworten. Dazu gehen wir analog zu dem vorhe-
rigen Mal vor und schauen uns die Tabelle 5.3 an. In dieser Tabelle sind für die Beantwortung
der Frage RQ1 nur die ersten beiden Kombinationen von Parser-Optionen relevant, aus dem-
selben Grund wie zuvor. Es hat damit zu tun, dass der Unparser für Variation-Diffs intern
den Unparser für Variation-Trees verwendet. Es ist zu sehen, dass kein einziges Mal die syn-
taktische Gleichheit erfüllt wurde. Der Grund dafür könnte derselbe wie für das Unparsen von
C-Präprozessor-Annotierten Code sein, da der Parser von C-Präprozessor-Annotierten Code in-
tern einen Parser für textbasierten Diffs verwendet. In beiden Fällen ignoriert der Parser die
letzte leere Zeile, auch wenn die Parser-Option Ignore-Empty-Lines nicht ausgewählt wurde.
Dabei haben wir jedoch Fälle, die nicht ungeparst werden konnten. Wir haben uns diese Fälle
angeschaut und herausgefunden, dass die Probleme bei #endif auftreten. Dieses Problem tritt
innerhalb eines textbasierten Diffs anhand dieser Fehlerfälle nur maximal zweimal auf. Die be-
trachteten Probleme beinhalten falsche Einrückung, falsche Positionierung, falsche oder fehlende
Kommentare und abweichende Darstellung von #endif. Alle Arten von Problemen wurden den
textbasierten Diffs entnommen, welche nicht mit den vorgesehenen Parser-Optionen ungeparst
werden konnten und aus diesem Grund von uns gespeichert wurden. Es lässt sich vermuten, dass
Teile dieser Probleme damit zusammenhängen, dass wir ein textbasiertes Diff nicht selbst unpar-
sen, sondern diese Aufgabe auf das Unparsen von C-Präprozessor-Annotiertem Code reduzieren
und mit diesem einen textbasierten Diff bilden. Abhängig davon, welcher Diffing-Algorithmus
verwendet wurde, können unterschiedliche textbasierte Diffs herauskommen. Ein weiterer Grund
für einige der Probleme könnte sein, dass wir bei der Erweiterung der Parser-Implementierung
nicht alles beachtet haben und in bestimmten Fällen, welche wir anhand der Fehlerfälle nicht
erkennen konnten, die Information von #endif nicht korrekt gespeichert wird. Aus dem Grund,
dass die Fehlerfälle weniger als 0,03% aller untersuchten textbasierten Diffs darstellen, können
wir sagen, dass in der überwiegenden Mehrheit der Fälle unser Unparser funktioniert. In den

46

Kapitel 5. Korrektheit

ersten beiden Kombinationen von Parser-Optionen sind noch syntaktische Gleichheit ohne Whi-
tespace und semantische Gleichheit zu sehen; für beide Kombinationen sind die Werte gleich.
Dabei sehen wir, dass die Anzahl der Fälle für syntaktische Gleichheit ohne Whitespace nicht
gleich der Anzahl der Fälle für semantischen Gleichheit ist. Der Grund dafür könnte der von uns
für das Unparsen von textbasierten Diffs verwendete Diffing-Algorithmus sein. Unterschiedliche
Diffing-Algorithmen können aus derselben Eingabe unterschiedliche textbasierte Diffs konstru-
ieren. Dies kommt dadurch zustande, dass textbasierte Diffs Zeilen enthalten können, welche
vertauscht wenden können, ohne dass sich der Sinn des textbasierten Diffs ändert. Dadurch be-
kommen wir semantische Gleichheit, aber keine syntaktische Gleichheit ohne Whietespace bei
der Überprüfung. Für die Kombination von Parser-Optionen, wo Ignore-Empty-Lines verwendet
wird, lässt sich sehen, dass unser Unparser es auch hier schafft, größtenteils korrekt unzuparsen
und dass nur ungefähr 0,2% aller betrachteten textbasierten Diffs nicht geschafft wurden korrekt
unzuparsen. Aus der gegebenen Information lässt sich von uns ein Schluss ziehen, dass unser
Unparser trotz der Fehler sich in der überwiegenden Mehrheit der Fälle für das Unparsen von
textbasierten Diffs geeignet ist.

5.3 Zusammenfassung
In diesem Kapitel haben wir unsere Definition von Korrektheitskriterien für den Unparser vor-
gestellt. Die Korrektheitskriterien sind syntaktische Gleichheit, syntaktische Gleichheit ohne
Whitespace und semantische Gleichheit. Es wurde auch gezeigt, wie diese Korrektheitskriterien
zusammenhängen. Dazu haben wir eine empirische Auswertung durchgeführt, um anhand der
Korrektheitsriterien zu prüfen, ob unser Unparser korrekt funktioniert. Das Ergebnis der Aus-
wertung ist, dass für den Fall, dass keine Parser-Optionen oder nur Collapse-Multiple-Code-Lines
verwendet wird, der Unparser in allen betrachteten Fällen mindestens ein Korrektheitskriteri-
um für das Unparsen von C-Präprozessor-Annotierten Code erfüllt. Wenn beim Unparsen von
Variation-Trees, bei deren Erstellung die Parser-Option Ignore-Empty-Lines verwendet wurde,
dann beträgt die Korrektheit nur 99,8% aller untersuchten Fälle. Das Ergebnis für das Un-
parsen von Variation-Diffs sieht folgendermaßen aus: Wenn keine oder nur die Parser-Option
Collapse-Multiple-Code-Lines für die Erstellung der Variation-Diffs verwendet wurde, beträgt
die Korrektheit mehr als 99,97% aller untersuchten textbasierten Diffs. Wenn die Parser-Option
Ignore-Empty-Lines verwendet wurde, dann beträgt die Korrektheit 99,8% aller untersuchten
textbasierten Diffs.

47

5.3 Zusammenfassung

48

Verwandte Arbeiten
6

6.1 Parsen von C-Präprozessor-Annotationen für Variabilitäts-
analysen

DiffDetective ist ein Tool, welches hilft, Änderungen in Quellcode und Änderungen der Varia-
bilität darzustellen und den Zusammenhang zwischen ihnen analysierbar zu machen [3, 5]. Um
diesen Zweck zu erfüllen hat DiffDetective verschiedene Features. Mit dieser Arbeit haben wir
die Anzahl der Features von DiffDetective erweitert und damit auch seine Einsatzmöglichkeiten
vergrößert. DiffDetective überführt C-Präprozessor-Annotierten Code oder textbasierten Diff
aus C-Präprozessor-Annotierten Code in einen Variation-Tree oder Variation-Diff [5]. Unpar-
sen ist die Umkehrung von Parsen. Zusammen ermöglichen die Features in beide Richtungen
umzuwandeln, von C-Präprozessor-Annotierten Code bzw. textbasierten Diff zu Variation-Tree
bzw. Variation-Diff und umgekehrt von Variation-Tree bzw. Variation-Diff zu C-Präprozessor-
Annotierten Code bzw. textbasierten Diff. Diese Funktionen müssen aber zur korrekten Arbeit
aufeinander abgestimmt werden, wie es unsere Arbeit zeigt.

Es gibt aber auch andere Parser für C-Präprozessor-Annotierten Code. Ein solcher Parser
arbeitet statt mit dem C-Präprozessor-Annotierten Code, mit dem Token-Stream und gene-
riert einen abstrakten Syntaxbaum [9, 12]. Der Token-Stream, mit welchen der Parser arbeitet,
wird aus dem C-Präprozessor-Annotierten Code generiert, von einem Lexer [9, 12]. Dieser Le-
xer löst Makros auf und fügt Dateien ein. Das führt mit sich, dass der Parser nicht nur mit
C-Präprozessor-Annotationen arbeitet, sondern mit dem ganzen C-Präprozessor-Annotierten
Code [9, 12]. Aus diesem Grund ist es nicht möglich unseren Unparser hier zu verwenden, da
unser Parser nur C-Präprozessor-Annotationen als Kontrollstrukturen wahrnimmt und den C-
Code nur als reinen Text betrachtet, was für diesen Parser nicht der Fall ist.

Es ist auch möglich den C-Präprozessor-Annotierten Code zu den Formeln zu parsen [27].
Dort werden die Bedingungen aller Stellen mit bedingten Kompilierung zusammen verknüpft.
Dieses Vorgehen ist in Front-End und Back-End aufgeteilt [27]. In Front-End wird der C-
Präprozessor-Annotierte Code analysiert und die C-Präprozessor-Annotationen extrahiert [27].
Danach werden im Back-End auf dieser Grundlage die Formeln erstellt [27]. Die Formeln aus
C-Präprozessor-Annotation werden bearbeitet und zusammen verknüpft. Das Ergebnis, dieses
Vorgangs sind Formeln, was uns eindeutig mitteilt, dass unserer Unparser hier nicht einsetz-
bar ist. Obwohl es auch in DiffDetective unser Unparser mit Formeln arbeiten muss, sind die

49

6.2 Dekompilierung von C

Formeln für den Unparser so umgesetzt, wie sie in C-Präprozessor-Annotationen sind. Unser
Uparser kann deshalb sie auch wie ein Text behandeln und muss nicht die extra bearbeiten.

An diesen Möglichkeiten für das Parsen sehen wir, wie unterschiedlich die Ergebnisse des
Parsens sein können, welches mit sich bringt, dass das Einsetzen unseres Unparsers nicht ohne
weiteres für andere Parser möglich ist.

6.2 Dekompilierung von C
Dekompilierung ist die Umkehrung der Kompilierung, sowie Unparsen die Umkehrung des Par-
sens ist. Unparser und die Dekompilierung generieren beide aus ihrer Eingabe einen Text bzw.
Code. Die Dekompilierung ist in Front-End, Mid-End und Back-End aufgeteilt [6, 7, 19]. Das
Front-End hat als Eingabe den Binärcode und verarbeitet diesen zu einer Zwischendarstellung
des Programms [7, 19]. Im Mid-End wird aus der Zwischendarstellung des Programms, die In-
formation zum Kontrollfluss entnommen und eine Kontrollflussgraph erstellt. Zum Schluss im
Back-End wird aus der Zwischendarstellung des Programms und dem Kontrollflussgraphen der
Code erstellt [7, 19]. Im Back-End wird, ebenso wie bei uns, ein Graph erstellt, und die Zwi-
schendarstellung des Programms wird in Code umgewandelt [7, 19]. Trotzdem, dass in beiden
Fällen Graphen verwendet werden, können wir nicht den Ansatz der Dekompilierung verwenden,
da bei der Dekompilierung mit dem Binärcode, den Zwischenergebnissen und konkretem C-Code
gearbeitet wird [6, 7, 19]. In unseren Fall wird jedoch nur mit den C-Präprozessor-Annotationen
interagiert und nicht mit dem C-Code oder dem Binärcode. In unserem Fall ist es sogar nicht der
C-Code, da wir den C-Code nur als Text betrachten und mit dem Code nicht explizit arbeiten. In
dieser Hinsicht ist unser Unparser generell, solange die C-Präprozessor-Annotationen verwendet
werden, kann der restliche Inhalt ein beliebiger Text sein. Bei dem Decompiler ist es anders, da
ein Dekompiler speziell für eine Programmiersprache entwickelt wird. Der C-Dekompiler wird für
den C-Code entwickelt, der Java-Dekompilr für den Java-Code und so weiter. Der Dekompiler
interagiert nicht mit den C-Präprozessor-Annotationen. Unseren Unparser und den Dekompiler
kann man als parallele Prozesse betrachten, da diese an verschiedenen Stellen ansetzen.

6.3 Variabilitätsanalysen
Bei Analysen oder Verarbeitungsschritten kann es vorkommen, dass der Code auf abstrakter
Ebene verändert wird. Danach muss man Unparsen, um einen Code wieder zubekommen. Ein
Beispiel für so etwas sind die Mutation-Tests [1, 18], welche eine der vielversprechendsten Tech-
niken zur Bewertung der Effektivität von Testfällen sind. Die Mutation-Tests lassen sich auch
zur Analyse der Testfälle, welche die Variabilität sichern sollten, verwenden [1, 18]. Allgemein
bei den Mutation-Tests wird der Code verändert. Diese Veränderungen sind nicht willkürlich,
sondern haben gewisse Eigenschaften [1, 18]. Nach diesen Veränderungen erhält man neue, leicht
modifizierte Kopien des Ausgangscodes. Auf diese Kopien werden dann die Testfälle für den Aus-
gangscode verwendet und geschaut, ob die modifizierte Version des Codes einen Fehler erzeugt
oder nicht [1, 18]. Dadurch lässt sich Feststellen, wie gut die Testfälle ausgewählt wurden. Dieses
Vorgehen lässt sich auch im Kontext der Variabilität verwenden. Dabei werden die Veränderung
nur an den Stellen erzeugt, welche für die Variabilität zuständig sind [1, 18]. Im Falle, dass für
die Erzeugung der Variabilität der C-Präprozessor verwendet wird, sind das die C-Präprozessor-
Annotationen. In Bezug auf unsere Arbeit ist nur dieser Fall für uns von Bedeutung. Dabei wird
am Anfang der Code zu einem Variation-Tree geparst. Danach werden die Veränderungen an-
gewandt. An dieser Stelle wird unser Unparser angewendet und überführt das Variation-Tree in
ausführbaren Code, auf den die Tests angewandt werden können und die Mutation-Tests werden

50

Kapitel 6. Verwandte Arbeiten

durchgeführt.

Ein weiteres Beispiel ist die Analyse, welche Codeblöcke finden soll, die in keiner Variante
auftauchen [30]. Bei dieser Analyse werden zwei Datenbanken erstellt. Die erste Datenbank ent-
hält das Variabilität-Model, welches zeigt in welchen Kombinationen die Features ausgewählt
werden dürfen [30]. Die zweite Datenbank enthält den Variabilität, welche tatsächlich in Code
umgesetzt wurde [30]. Damit dieser erhalten wird, muss man den Code Parsen. Danach ist es
möglich für beide Datenbanken jeweils die Feature-Abhängigkeiten in ein binäres Entscheidungs-
diagramm umzuwandeln. Anhand dessen man die Erfüllbarkeit überprüfen kann [30]. Es liegt
nahe, danach die niemals erfüllbaren Codeblöcke zu entfernen und die restlichen unzuparsen,
um einen neuen Code zu bekommen.

Bei Variabilitätsanalysen ist es auch möglich zu prüfen, ob alle Varianten syntaktisch korrekt
sind. Dabei muss zuerst der Präprozessor-Annotierter Code zu einem abstrakten Syntaxbaum
geparst werden [11]. Danach wird dieser abstrakter Syntaxbaum von dem Tool CIDE eingelesen.
CIDE ist ein Tool, welches erlaubt verschiedene Features verschiedenfarbig einzufärben [11]. Im
Zusammenhang mit der Analyse der syntaktischen Korrektheit aller Varianten ist von Bedeutung
das CIDE nur das Einfärben der Codefragmente, welche optional für diejenige Programmierspra-
che sind [11]. Also, sodass bei Entfernen der eingefärbten Codefragmente die Syntax trotzdem
gültig bleibt.

Noch eine weitere Variabilitätsanalyse ist die Prüfung der Typkorrektheit für alle Varianten.
Vor der Analyse muss der Parser den Präprozessor-Annotierten Code in einen bestimmten Kalkül
überführen [10]. Danach wird anhand der Vorschriften des Kalküls geprüft, um Stellen zu finden,
wo der Typ nicht eingehalten wurde und dieses beheben [10]. Schließlich kann man den Kalkül
zu einem Präprozessor-Annotierten Code unparsen und den weiter bearbeiten.

51

6.3 Variabilitätsanalysen

52

Fazit und Zukünftige Arbeiten
7

Wir entwickelten einen Algorithmus zum Unparsen von Variation-Trees und ein Vorgehen zum
Unparsen von Variation-Diffs. Variation-Trees und Variation-Diffs sind Datenstrukturen zur
Abbildung präprozessor-orientierte Variabilität und der Änderungen daran. Um das zu bewerk-
stelligen haben wir uns mit Definitionen von Variation-Trees und Variation-Diffs beschäftigt,
sowie die gegebenen Definitionen für unsere Zwecke erweitern. Damit wir den Definitionen ge-
recht werden, haben wir uns mit dem Parser beschäftigt, um den zu erweitern. Den ausgear-
beiteten Algorithmus zum Unparsen von Variation-Trees und das Vorgehen zum Unparsen von
Variation-Diffs haben wir vorgestellt und in DiffDetective implementiert. Um die Korrektheit
unseres Unparsers nachzuweisen, haben wir Korrektheitskriterien entwickelt und unseren Un-
parser in einer empirischen Auswertung anhand dieser Kriterien getestet. Die ausgearbeiteten
Korrektheitskriterien sind syntaktische Gleichheit, syntaktische Gleichheit ohne Whitespace und
semantische Gleichheit.

Anhand der durchgeführten Auswertung auf den Datensätzen Vim, sylpheed und
berkeley-db-libdb haben wir erkenntlich gemacht für welche Parser-Optionen, wie korrekt un-
ser Unparser funktioniert. Die Auswertung der Korrektheit des Unparsers wurde auf den von uns
definierten Korrektheitskriterien durchgeführt. Für die Parser-Optionen, für die unser Unparser
für das Unparsen von Variation-Trees entwickelt wurde, funktioniert der korrekt. Dies haben
wir an 98802 Testfällen gesehen. Der Unparser für das Unparsen von Variation-Diffs funktio-
niert leider nicht so gut, 11 der 49401 Testfälle konnten nicht ungeparst werden, welches weniger
als 0,03% aller Testfälle darstellt.

Dank dem von uns ausgearbeiteten Unparsers ist es möglich geworden Verfahren durchzu-
führen, welche zuerst einen Variation-Tree bzw. Variation-Diff erstellen, den bearbeiten und
dann dies als C-Präprozessor-Annotierten Code bzw. textbasierten Diff brauchen für weitere
Bearbeitungen. Zu solchen Verfahren gehört Mutation-Tests für Variabilität. Damit sind die
Möglichkeiten für Analysen der Variabilität, für welche die Entwickler DiffDetective verwenden
können, größer geworden.

Wir sehen zwei mögliche Punkte für weitere Forschung. Der erste wäre die Ausarbeitung
und Implementierung eines Algorithmus zum Unparsen von Variation-Diffs. Unser Algorithmus
ist nur für das Unparsen von Variation-Trees ausgelegt und nicht Variation-Diffs. Damit auch
Variation-Diffs ungeparst werden können, reduzieren wir das Problem auf das Unparsen von
Variation-Trees. Zwar funktioniert unser Vorgehen, aber wie die Auswertung zeigt, funktioniert

53

unser Vorgehen nicht immer. Ein eigener Algorithmus zum Unparsen von Variation-Diffs könnte
das vielleicht beseitigen. Dazu könnten wir damit die Abhängigkeit von dem Differ-Algorithmus
loswerden und die Korrektheit steigern. Als ein wichtiges Problem zum Entwickeln eines Algo-
rithmus zum Unparsen von Variation-Diffs finden wir es, dem Variation-Diff, welcher ein azykli-
scher Graph ist, zu entnehmen in welcher Reihenfolge die Knoten des Graphen besucht werden
sollen. Der zweite Punkt für mögliche zukünftige Arbeiten wäre, dass man sowohl Parser als
auch den Unparser auf die Arbeit mit anderen Präprozessoren erweitert. Zurzeit können sowohl
Parser als auch der Unparser nur mit dem C-Präprozessor arbeiten. Ein möglicher Kandidat
wäre der Java-Präprozessor, bei denen die Anweisungen an den C-Präprozessor angelehnt sind.

54

Literaturverzeichnis

[1] M. Al-Hajjaji, F. Benduhn, T. Thüm, T. Leich, and G. Saake. Mutation Operators
for Preprocessor-Based Variability. In Proc. Int’l Workshop on Variability Modelling of
Software-Intensive Systems (VaMoS), pages 81–88. ACM, 2016.

[2] S. Apel, D. Batory, C. Kästner, and G. Saake. Feature-Oriented Software Product Lines.
Springer, 2013.

[3] P. M. Bittner, C. Tinnes, A. Schultheiß, S. Viegener, T. Kehrer, and T. Thüm. Clas-
sifying Edits to Variability in Source Code. In Proc. Europ. Software Engineering
Conf./Foundations of Software Engineering (ESEC/FSE), pages 196–208. ACM, 2022.

[4] P. M. Bittner, A. Schultheiß, S. Greiner, B. Moosherr, S. Krieter, C. Tinnes, T. Kehrer,
and T. Thüm. Views on Edits to Variational Software. In Proc. Int’l Systems and Software
Product Line Conf. (SPLC), pages 141–152. ACM, 2023.

[5] P. M. Bittner, A. Schultheiß, B. Moosherr, T. Kehrer, and T. Thüm. Variability-Aware
Differencing with DiffDetective. In Companion Proc. Int’l Conference on the Foundations
of Software Engineering (FSE Companion), pages 632–636. ACM, 2024.

[6] Y. Cao, R. Zhang, R. Liang, and K. Chen. Evaluating the effectiveness of decompilers. In
Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2024, page 491–502, New York, NY, USA, 2024. Association for Computing
Machinery. ISBN 9798400706127. doi: 10.1145/3650212.3652144.

[7] C. G. Cifuentes and K. J. Gough. A methodology for decompilation. 1993. URL https:
//api.semanticscholar.org/CorpusID:11292649.

[8] M. J. Fischer. Efficiency of Equivalence Algorithms, pages 153–167. Springer US, Boston,
MA, 1972. ISBN 978-1-4684-2001-2. doi: 10.1007/978-1-4684-2001-2_14.

[9] P. Gazzillo and R. Grimm. SuperC: Parsing All of C by Taming the Preprocessor. In Proc.
ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI),
pages 323–334. ACM, 2012.

[10] C. Kästner and S. Apel. Type-Checking Software Product Lines—A Formal Approach. In
Proc. Int’l Conf. on Automated Software Engineering (ASE), pages 258–267. IEEE, 2008.

[11] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in Software Product Lines. In Proc.
Int’l Conf. on Software Engineering (ICSE), pages 311–320. ACM, 2008.

55

https://api.semanticscholar.org/CorpusID:11292649
https://api.semanticscholar.org/CorpusID:11292649

[12] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and T. Berger.
Variability-Aware Parsing in the Presence of Lexical Macros and Conditional Compilati-
on. In Proc. Conf. on Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA), pages 805–824. ACM, 2011.

[13] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type Checking Annotation-Based Product
Lines. Trans. on Software Engineering and Methodology (TOSEM), 21(3):14:1–14:39, 2012.

[14] T. Kehrer, T. Thüm, A. Schultheiß, and P. M. Bittner. Bridging the Gap Between Clone-
and-Own and Software Product Lines. In Proc. Int’l Conf. on Software Engineering (ICSE),
pages 21–25. IEEE, 2021.

[15] J. Krüger and T. Berger. An Empirical Analysis of the Costs of Clone- and Platform-
Oriented Software Reuse. In Proc. Europ. Software Engineering Conf./Foundations of
Software Engineering (ESEC/FSE), pages 432–444. ACM, 2020.

[16] J. Krüger and T. Berger. Activities and Costs of Re-Engineering Cloned Variants Into an
Integrated Platform. In Proc. Int’l Working Conf. on Variability Modelling of Software-
Intensive Systems (VaMoS). ACM, 2020.

[17] E. Kuiter, J. Krüger, S. Krieter, T. Leich, and G. Saake. Getting Rid of Clone-and-Own:
Moving to a Software Product Line for Temperature Monitoring. In Proc. Int’l Systems
and Software Product Line Conf. (SPLC), pages 179–189. ACM, 2018.

[18] H. Lackner and M. Schmidt. Towards the Assessment of Software Product Line Tests:
A Mutation System for Variable Systems. In Proc. Workshop on Software Product Line
Analysis Tools (SPLat), pages 62–69. ACM, 2014.

[19] Z. Liu and S. Wang. How far we have come: testing decompilation correctness of c decom-
pilers. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2020, page 475–487, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450380089. doi: 10.1145/3395363.3397370.

[20] B. Moosherr. Constructing Variation Diffs Using Tree Diffing Algorithms. Bachelor’s thesis,
University of Ulm, 2023.

[21] L. Neves, P. Borba, V. Alves, L. Turnes, L. Teixeira, D. Sena, and U. Kulesza. Safe Evolution
Templates for Software Product Lines. J. Systems and Software (JSS), 106:42–58, 2015.

[22] M. Nieke, G. Sampaio, T. Thüm, C. Seidl, L. Teixeira, and I. Schaefer. Guiding the Evolu-
tion of Product-Line Configurations. Software and Systems Modeling (SoSyM), 21:225–247,
2022.

[23] L. Passos, K. Czarnecki, S. Apel, A. Wąsowski, C. Kästner, and J. Guo. Feature-Oriented
Software Evolution. In Proc. Int’l Workshop on Variability Modelling of Software-Intensive
Systems (VaMoS), pages 1–8. ACM, 2013.

[24] L. Passos, L. Teixeira, N. Dintzner, S. Apel, A. Wąsowski, K. Czarnecki, P. Borba, and
J. Guo. Coevolution of Variability Models and Related Software Artifacts. Empirical
Software Engineering (EMSE), 21(4), 2016.

[25] G. Sampaio, P. Borba, and L. Teixeira. Partially Safe Evolution of Software Product Lines.
J. Systems and Software (JSS), 155:17–42, 2019.

56

Kapitel 7. Fazit und Zukünftige Arbeiten

[26] C. Seidl, F. Heidenreich, and U. Aßmann. Co-Evolution of Models and Feature Mapping in
Software Product Lines. In Proc. Int’l Systems and Software Product Line Conf. (SPLC),
pages 76–85. ACM, 2012.

[27] J. Sincero, R. Tartler, D. Lohmann, and W. Schröder-Preikschat. Efficient Extraction and
Analysis of Preprocessor-Based Variability. In Proc. Int’l Conf. on Generative Programming
and Component Engineering (GPCE), pages 33–42. ACM, 2010.

[28] J. Sprey, C. Sundermann, S. Krieter, M. Nieke, J. Mauro, T. Thüm, and I. Schaefer. SMT-
Based Variability Analyses in FeatureIDE. In Proc. Int’l Working Conf. on Variability
Modelling of Software-Intensive Systems (VaMoS). ACM, 2020.

[29] C. Sundermann, M. Nieke, P. M. Bittner, T. Heß, T. Thüm, and I. Schaefer. Applications
of #SAT Solvers on Feature Models. In Proc. Int’l Working Conf. on Variability Modelling
of Software-Intensive Systems (VaMoS). ACM, 2021.

[30] R. Tartler, J. Sincero, W. Schröder-Preikschat, and D. Lohmann. Dead or Alive: Finding
Zombie Features in the Linux Kernel. In Proc. Int’l Workshop on Feature-Oriented Software
Development (FOSD), pages 81–86. ACM, 2009.

[31] S. Viegener. Empirical Evaluation of Feature Trace Recording on the Edit History of Marlin.
Bachelor’s thesis, University of Ulm, 2021.

[32] B. Zhang and M. Becker. Variability code analysis using the vital tool. In Proceedings
of the 6th International Workshop on Feature-Oriented Software Development, FOSD ’14,
page 17–22, New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450329804. doi: 10.1145/2660190.2662113.

[33] S. Zhou, Ş. Stănciulescu, O. Leßenich, Y. Xiong, A. Wąsowski, and C. Kästner. Identifying
Features in Forks. In Proc. Int’l Conf. on Software Engineering (ICSE), pages 105–116.
ACM, 2018.

57

	Einleitung
	Hintergrundwissen
	C-Präprozessor
	Realisierung von Variabilität mit dem C-Präprozessor

	Unparse-Algorithmus
	Variation-Tree und Variation-Diff
	Parser
	Verlorengehende Informationen und deren Wiederherstellung
	Unparsing
	Komplexitätsanalyse der Laufzeit
	Zusammenfassung

	Implementierung
	Korrektheit
	Korrektheitskriterium
	Auswertung
	Aufbau des Experiments
	Ergebnisse
	Diskussion

	Zusammenfassung

	Verwandte Arbeiten
	Parsen von C-Präprozessor-Annotationen für Variabilitätsanalysen
	Dekompilierung von C
	Variabilitätsanalysen

	Fazit und Zukünftige Arbeiten
	Bibliography

