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Geleitwort

Die empirische Beforschung von Lehr-Lernprozessen von
Mathematikstudierenden hat in den letzten Jahren im Rahmen der gesteigerten
Aufmerksamkeit  gegeniiber  hochschuldidaktischer =~ Forschung  zwar
zugenommen, dennoch sind qualitative Lernprozessstudien mit der
Lernendengruppe der Nebenfach-Studierenden weiterhin noch kaum vertreten. In
seiner Dissertation widmet sich Tim Kolbe daher diesem Desiderat, genauer
beschéftigt er sich mit Lernprozessen bei Hausaufgabenbearbeitungen im
Ingenieurstudium. Mit qualitativen Prozessanalyse bearbeitet Herr Kolbe den
Themenbereich des mathematischen Problemldsens und rekonstruiert durch
Prozessanalysen von Hausaufgabenbearbeitungen zu Inhalten der Analysis das
von Studierenden aktivierte Wissen und Heurismen zur Uberwindung von
Schwierigkeiten und Hiirden in individuellen Problemldsesituationen. Dafiir
integriert er Perspektiven der Problemloseforschung in das Feld der
hochschulmathematikdidaktischen Lernprozessforschung der
Studieneingangsphase im Ingenieurstudium.

Als Ausgangspunkte der Arbeit werden in Kapitel 1 die Spezifititen des
Mathematiklernens in Ingenieurstudiengéngen aufbereitet und mit lehr-lern-
theoretischen ~ Grundlagen des  eigenverantwortlichen Lernens im
Hochschulstudium verzahnt. In diesem Zusammenspiel wird die Relevanz von
Hausaufgabenbearbeitungsprozessen fiir mathematisches Lernen aufgezeigt und
motiviert, warum diese Prozesse mit Theorie und Methoden der (bislang
iiberwiegend schulbezogenen) Problemldseforschung betrachtet werden kdnnen.
Die theoretischen Grundlagen zum Forschungsgegenstand mathematischen
Problemlésens in der Hochschule werden nachfolgend in Kapitel 2 dargestellt.
Ausgehend von der Relevanz mathematischen Problemldsens fiir ein
Ingenieurstudium bereitet der Autor den aktuellen Forschungsstand zum
Problemldsen mit Bezug auf die nationale und internationale Grundlagenliteratur
und strukturiert nach den in Problemldseprozessen beteiligten Konstrukten
Steuerung, Wissen, Heurismen und Beliefs auf.

Die Darlegung der Forschungsfragen erfolgt in Kapitel 3, in dem zunichst vorweg
aufgezeigt wird, warum fiir die Kategorie des ,,Wissens“ eine inhaltliche
Schwerpunktsetzung  notwendig ist. Vor dem Hintergrund dieser
Schwerpunktsetzung auf Inhalte der Differentialrechnung unterscheidet der Autor
die zu bearbeitenden Forschungsfragen in stoffdidaktische und empirische
Fragestellungen. Zur Bearbeitung der stoffdidaktischen Fragestellung dient
Kapitel 4 der Arbeit. Im Anschluss an die Darlegung der Relevanz der
Differentialrechnung fiir ein Ingenieurstudium wird das fiir den Ableitungsbegriff
notwendige Vorwissen spezifiziert: der Funktionsbegriff, der Grenzwertbegriff
und der Stetigkeitsbegriff werden jeweils fachdidaktisch mit Blick auf die
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notwendigen aufzubauenden Vorstellungen, Verfahren, relevanten Darstellungen
und potentiellen typischen Hiirden mit Bezug auf nationale und internationale
Vorarbeiten  diskutiert. AnschlieBend wird die Spezifizierung des
Ableitungsbegriff vorgenommen. Mit der Verschrinkung der Theorie zu
Wissensarten und Wissensfacetten gelingt es dem Autor, den komplexen
Lerngegenstand fiir die Analysen aufzufalten und so den empirischen Teil der
Arbeit stoffdidaktisch vorzubereiten.

Im Methodenkapitel 5 werden Rahmen und Entscheidungen des
Forschungsprojekts dargestellt. Die Darlegung erfolgt bezogen auf die
Fokussierung der Dissertation auf die Prozesse der Hausaufgabenbearbeitungen
in authentischen Lernsituationen mithilfe des lauten Denkens. Die folgenden
Abschnitte dienen der Darstellung des lauten Denkens als Erhebungsmethode
sowie der qualitativen Inhaltsanalyse als gewahlte Auswertungsmethode. Ebenso
werden im Kapitel 5 die Giitekriterien qualitativer Forschung sowie das
Studiendesign beschrieben und bzgl. getroffener Entscheidungen reflektiert. Der
Forschungsteil der Arbeit gliedert sich in Kapitel 6 in vier Unterkapitel
entsprechend der Konstrukte ,,Steuerung®, ,,Wissen®, ,,Heurismen® sowie eine
integrierende Betrachtung der drei genannten Konstrukte zur Rekonstruktion
potentieller Zusammenhinge der Konstrukte. Im Diskussionskapitel der Arbeit
liefert Herr Kolbe prignante Zusammenfassungen zu den Forschungsfragen und
reflektiert das methodische Vorgehen der empirischen Studie mit Blick auf das
laute Denken in Beobachtungssituationen des hochschulmathematischen (Selbst-
)Lernens.

Mit dem gesetzten Schwerpunkt und Thema seiner Arbeit bearbeitet Herr Kolbe
einen Bereich, der in der deutschsprachigen Mathematikdidaktik bislang wenig
empirisch beforscht wurde und mit den verschiedenen, zu beriicksichtigenden
Perspektiven entsprechend komplex auftritt. Die Analyse der Lernprozesse aus
den Perspektiven der gegenstandsspezifischen Verldufe und Schwierigkeiten
sowie Problemldsen bietet einen detailreichen Einblick in die individuellen und
gruppenbezogenen  Hausaufgabenbearbeitungsprozesse. Die  gewonnenen
Ergebnisse  stellen  bedeutsame  Ankniipfungspunkte  fiir = weitere
Forschungsarbeiten dar und sind relevant fiir die mathematische Hochschullehre.
Die Arbeit zeichnet sich damit auch durch eine hohe Praxisrelevanz bei
gleichzeitig theoriegeleitetem Vorgehen aus.

PADERBORN, IM AUGUST 2025

Lena Wessel
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Zusammenfassung

Die vorliegende Arbeit analysiert mathematische Problembearbeitungsprozesse
im Kontext des Ingenieurstudiums, mit besonderem Fokus auf die
Differentialrechnung. Ziel der Arbeit ist es, die Rolle von Steuerung, Wissen und
Heurismen in Problembearbeitungsprozessen zu untersuchen, um deren Einfluss
auf den Lernerfolg zu verstehen. Die theoretische Grundlage bildet die Theorie
des mathematischen Problemlosens nach Schoenfeld, ergédnzt durch eine
strukturierte Betrachtung des Lerngegenstands Differentialrechnung. Methodisch
kombiniert die Studie qualitative Erhebungen, wie ,,Lautes Denken®, mit einer
qualitativen  Inhaltsanalyse. = Im  empirischen = Teil  werden  die
Problembearbeitungsprozesse von Studierenden anhand spezifischer Aufgaben
analysiert. Dabei stehen die Steuerung der Losungsprozesse, die Nutzung von
Wissen und die Anwendung von Heurismen im Mittelpunkt. Zunichst werden die
Kategorien des Problemldsens nach Schoenfeld einzeln herangezogen, um die
Problembearbeitungsprozesse differenziert zu analysieren. Anschliefend werden
diese Kategorien in einer gemeinsamen Betrachtung zusammengefiihrt, um den
gesamten Problemléseprozess ganzheitlich zu untersuchen. Die Ergebnisse
werden abschlieBend reflektiert und in den theoretischen Kontext eingeordnet.
Dariiber hinaus werden praktische Implikationen abgeleitet und Ansétze fiir
zukiinftige Forschungsarbeiten aufgezeigt.

Abstract

This study analyzes mathematical problem-solving processes in the context of
engineering education, with a particular focus on differential calculus. The aim of
the study is to investigate the role of control, knowledge, and heuristics in
problem-solving processes in order to understand their impact on learning
outcomes. The theoretical foundation is based on Schoenfeld's theory of
mathematical problem-solving, supplemented by a structured consideration of the
learning subject of differential calculus. Methodologically, the study combines
qualitative data collection methods, such as "think-aloud protocols", with
qualitative content analysis. In the empirical part, the problem-solving processes
of students are analyzed based on specific tasks. The focus is on the control of the
solution processes, the use of knowledge, and the application of heuristics.
Initially, Schoenfeld’s categories of problem-solving are applied separately to
analyze the problem-solving processes in detail. Subsequently, these categories
are brought together in a comprehensive analysis to examine the entire problem-
solving process holistically. The results are then reflected upon and placed in the
theoretical context. Furthermore, practical implications are derived, and
suggestions for future research are outlined.
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Einleitung

Dieser Abschnitt bietet einen Uberblick iiber die Struktur dieser Arbeit.

Das einleitende Kapitel (Kapitel 1) liefert eine Einflihrung in die Problemlage
der mathematischen Lernprozesse in der Hochschule sowie die Frage nach der
Relevanz fiir die Forschung in diesem Bereich — insbesondere im
ingenieurwissenschaftlichen Kontext. Dabei werden verschiedene Aspekte der
Lehre und des Lernens von Mathematik in einem Ingenieurstudium beleuchtet.
Ein Schwerpunkt liegt dabei auf der Rolle von Hausaufgaben im Lernprozess der
Studierenden. Es wird herausgestellt, dass die wochentliche Bearbeitung von
Hausaufgaben eine besondere Herausforderung darstellt und diese
Bearbeitungsprozesse anhand der Theorie des mathematischen Problemldsens
untersucht werden konnen. AbschlieBend wird die Zielsetzung dieser Arbeit
erléutert.

Kapitel 2 beschéftigt sich mit der theoretischen Auseinandersetzung des
mathematischen Problemlosens. Dabei wird zundchst der Begriff des
mathematischen Problemlosens eingeordnet. AnschlieBend erfolgt eine
Betrachtung der vier Kategorien des mathematischen Problemlésen nach
Schoenfeld (1985). Zuerst werden verschiedene Problemldsemodelle vorgestellt
(Steuerung auf dem allgemeinen Level). Danach wird sich der Kombination von
Wissensarten und Wissensfacetten gewidmet, um die Wissensmatrix zu erhalten
(Wissen). Im Anschluss werden Problemlosestrategien sowie deren
Kategorisierung und Einsatz diskutiert (Heurismen). Es wird ebenfalls kurz auf
Beliefs' eingegangen. AbschlieBend endet das Kapitel, indem andere
Forschungsarbeiten aus dem Kontext des mathematischen Problemlosens
vorgestellt werden.

In Kapitel 3 wird das Forschungsdesign dieser Studie vorgestellt. Dabei werden
sowohl stoffdidaktische als auch empirische Fragestellungen ausgearbeitet. Diese
Forschungsfragen werden in diesem Kapitel erortert.

Mathematisches Problemlosen kann zunidchst unabhdngig eines bestimmten
Inhaltsgebiets untersucht werden. In dieser Arbeit wird sich jedoch auf das
Themengebiet der Differentialrechnung fokussiert. Der Abschnitt (Kapitel 4)
beginnt mit der Entscheidung, warum sich speziell
Problembearbeitungsprozessen der Differentialrechnung gewidmet wird. Dabei
wird auf die Relevanz der Differentialrechnung fiir das Ingenieurstudium
eingegangen. Anschliefend werden die bendtigten mathematischen Grundlagen
dargestellt. Zur Strukturierung des Lerngegenstands Differentialrechnung wird

1 Obwohl Beliefs nicht Gegenstand dieser Arbeit sind, werden sie aus Griinden der
Vollsténdigkeit in einem kurzen Abschnitt vorgestellt.
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der Vier-Ebenen-Ansatz nach Humann & Prediger (2016) vorgestellt und fiir die
eigene Nutzung in dieser Arbeit angepasst. Vorbereitend auf die Daten dieser
Arbeit werden relevante Definitionen, Sdtze und Verfahren dargelegt. Inhaltlich
fallen darunter der Begriff der Differenzierbarkeit, die Ableitungsregeln, die
Regel von L’'Hospital und der Mittelwertsatz der Differentialrechnung.
Abschliefend werden die theoretischen Ausfiihrungen in einer Wissensmatrix
festgehalten.

Mit Kapitel 5 erfolgt eine Verschiebung des Fokus von den theoretischen
Vorarbeiten hin zur empirischen Studie. Dazu werden zunéchst Voriiberlegungen
beziiglich des Forschungsparadigmas und zur Auswahl der Erhebungs- (Lautes
Denken) als auch Auswertungsmethode (qualitative Inhaltsanalyse) angestellt.
Darauthin werden qualitative Giitekriterien fiir die Sicherstellung der Qualitét der
Arbeit diskutiert. AnschlieBend wird das Studiendesign dargestellt. Dabei wird
auf den Kontext der Studie, dic Beschreibung der Studienteilenechmenden und
zuletzt auf das Herstellen einer authentischen Lernsituation eingegangen. Als
Nichstes werden die drei Aufgaben, zu denen die Bearbeitungsprozesse der
Studierenden untersucht werden, einer stoffdidaktischen Analyse unterzogen.
Dafiir werden einige Schritte durchgefiihrt. Als Basis wird eine ausfiihrliche
Musterlosung erstellt, darauthin das bendtigte Wissen in einer Wissensmatrix
veranschaulicht, mogliche Schwierigkeiten bzw. Hiirden skizziert und letztlich
mit einer dhnlichen, zuvor behandelten Aufgabe aus dem Tutorium, verglichen.
Letztlich werden die Auswertungsmethoden dargelegt. Dabei wird zuerst die
Bewertung der Losungsprodukte und anschlieBend die Auswertung zu den
Bearbeitungsprozessen vorgestellt. Diese basieren auf den drei theoretischen
Aspekten des Problemlosens (Wissen, Heurismen, Steuerung). Beziiglich
Steuerung werden die Schoenfeld Episoden, beziiglich Wissens das (Wissens-
)Angebot und die (Wissens-)Nutzung in der Wissensmatrix und beziiglich
Heurismen wird ein bestehender Kategorienkatalog genutzt.

Das Kapitel der Analyse und Ergebnisse (Kapitel 6) beginnt mit einer Ubersicht
zu allen Problembearbeitungsprozessen dieser Arbeit. Im Weiteren werden die
Ergebnisse in vier Abschnitte, passend zu den Kategorien des Problemldsens
(Steuerung, Wissen, Heurismen) sowie der gemeinsamen Betrachtung, gegliedert.
Kapitel 6.1: Zur Betrachtung der Steuerung wird zunichst der
Problembearbeitungsprozess von Alex und Thomas detailliert vorgestellt, wobei
dies auch gleichzeitig die Nachvollziehbarkeit der zuvor vorgestellten Schoenfeld
Episoden erméglicht. Als Verallgemeinerung werden alle Prozesse beziiglich der
Schoenfeld Episoden eingeordnet und die Spezifika zu den Verldufen der
jeweiligen Lerngruppen dargestellt. Im weiteren Verlauf wird auf bestimmte
Merkmale der Problembearbeitungsprozesse eingegangen. Dies sind zum einen
die Episodenwechsel im Prozess und zum anderen der ,,wild goose chase*.
AnschlieBend wird die Kodierung der Schoenfeld Episoden in Zusammenhang
mit Erfolg bzw. Misserfolg gesetzt.
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Kapitel 6.2: Die Betrachtung des Wissens beginnt mit der Darstellung des
Wissensangebotes der Veranstaltung zu den einzelnen Aufgaben. Im Folgenden
wird intensiver die Wissensnutzung der Studierenden betrachtet. Dabei wird ein
Problembearbeitungsprozess genauer betrachtet und in die Wissensmatrix
eingeordnet. AnschlieBend werden alle Prozesse in einem Uberblick
zusammengefasst. AuBlerdem wird der Fokus beziiglich Wissensart und
Wissensfacette der einzelnen Prozesse herausgearbeitet. Des Weiteren erfolgt die
Darstellung besonderer Merkmale iiber verschiedene Prozesse sowie
Schwierigkeiten der Studierenden beziiglich der jeweiligen Aufgabe.
Nachfolgend werden die Erkenntnisse des Angebots und der Nutzung verglichen.
Ferner werden die Erkenntnisse der Wissensnutzung in Zusammenhang mit
Erfolg bzw. Misserfolg gesetzt.

Kapitel 6.3: Die Betrachtung der Heurismen beginnt mit einem Gesamtiiberblick
tiber die Nutzung der verschiedenen Heurismen. Anschlieend wird untersucht,
inwiefern die Verwendung der Heurismen von der Lerngruppe bzw. von einer
Aufgabe abhingig ist. AuBlerdem wird die Nutzung der Heurismen in
Zusammenhang mit Erfolg bzw. Misserfolg gesetzt.

Kapitel 6.4: AbschlieBend werden die drei Kategorien gemeinsam betrachtet.
Dafiir werden zunichst Interaktionen zwischen den Kategorien niher beleuchtet.
AnschlieBend werden spezielle Episodeniibergingen hinsichtlich des
Episodentyps Exploration betrachtet und die Griinde fiir Episodenwechsel
herausgearbeitet. Schlielich wird empirisch entschieden, inwiefern die Prozesse
in der vorliegenden Arbeit als Problembearbeitungsprozesse eingeordnet werden
konnen.

Im abschlieBenden Kapitel wird die Arbeit diskutiert und in den
wissenschaftlichen Kontext eingeordnet (Kapitel 7). Zu Beginn erfolgt eine
kurze Zusammenfassung der empirischen Untersuchung. AnschlieBend werden
die Forschungsfragen anhand der Ergebnisse beantwortet, die Ergebnisse mit
dhnlichen Studien verglichen und theoretische Implikationen abgeleitet. Darauf
aufbauend werden praktische Implikationen aufgezeigt, die sich aus den
Ergebnissen fiir die Praxis ableiten lassen. Die verwendeten Methoden werden
kritisch reflektiert, um deren Eignung und mogliche Schwéchen zu bewerten.
AbschlieBend bietet ein Ausblick auf zukiinftige Forschungsprojekte eine
Skizzierung offener Fragen und weiterfithrender Ansétze.
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1 Mathematisches Lernen im (Ingenieur-)Studium:
Herausforderungen und Forschungsliicken

Ein mathematikhaltiges Studium? kann fiir die Studierenden mit zahlreichen
Herausforderungen verbunden sein. Diese spiegeln sich vor allem sowohl in
lernorganisatorischen als auch fachlichen Aspekten wider, die in der
mathematikdidaktischen Literatur viel diskutiert werden (z. B. Goller, 2020;
Gueudet & Pepin, 2018; Moser-Fendel & Wessel, 2019; di Martino & Gregorio,
2019). Ein Gegenstand dieser Diskussion sind mathematische Lernprozesse der
Studierenden (z. B. Johns, 2020). Diese stellen den Fokus dieser Arbeit dar. Das
Studium eines mathematikhaltigen Studiengangs bietet in der Regel eine grof3e
Vielfalt an Lernmdglichkeiten, die Studierenden eine umfassende
Auseinandersetzung mit mathematischen Konzepten, Zusammenhédngen und
Verfahren ermdglicht. Zu den Lernmdglichkeiten gehdren klassische
Vorlesungen, Ubungen, Zentraliibungen, Hausaufgaben, Tests, Sprechstunden,
Lernzentren, etc. In der Forschung gibt es dazu Uberlegungen sowie
UnterstiitzungsmaBnahmen zur Verbesserung der Lehre, die in der Praxis erprobt
und umgesetzt werden, um die Lernprozesse der Studierenden zu erleichtern.
Darunter zéhlen Vorbereitungs- und Briickenkurse, die Studierende inhaltlich auf
die Hochschule vorbereiten sollen (z. B. Hoppenbrock et al., 2016). Um eine
bessere Zielgruppenorientierung zu erreichen, werden Fachvorlesungen
entwickelt, die auf bestimmte Studierendengruppen zugeschnitten sind (z. B.
Hilgert et al., 2015; Hoffmann, 2022; Kempen, 2019). Auch unabhéngig vom
Inhalt werden Veranderungen an der Struktur der Vorlesung vorgenommen, z. B.
durch den Ansatz flipped classroom (z. B. Lesseig & Krouss, 2017). Damit sollen
Studierende zum aktiveren und selbststédndigen Lernen angeregt werden. Dariiber
hinaus wird zusétzliches Material zum Lernen und Vertiefen der Inhalte
angeboten (Biehler et al., 2017). Es gibt weiterhin Bemiihungen, spezifische
Strategien fiir das Losen von Hausaufgaben in den Ubungen zu besprechen
(Stenzel, 2023b). Des Weiteren soll das Erstellen ausfiihrlicher Musterlésungen
Studierenden dabei helfen, besser mathematische Gedankenginge zu verstehen
und nachzuvollziechen (Ableitinger & Herrmann, 2011). AuBerdem werden
wihrend des Semesters learning support centres (Schiirmann et al., 2021)
geoffnet, um Studierende inhaltlich und lernorganisatorisch zu unterstiitzen.

Es gibt demnach erhebliche Bemiihungen, die Lehre und das Lernen in der
Mathematik zu verbessern, doch bislang ist nur wenig dariiber bekannt, wie die
Lernprozesse der Studierenden im Detail ablaufen. Einen Einblick liefern Studien

2 Zu den mathematikintensiven Studiengingen zdhlen solche, in denen ein erheblicher Anteil
an Mathematik gelehrt und angewandt wird. Beispiele hierfiir sind Mathematik als
Fachstudium, Mathematik flir das Lehramt, Ingenieurwissenschaften,
Wirtschaftswissenschaften, Informatik und &hnliche Studienrichtungen.
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aus dem selbstregulierenten (Mathematik-)Lernen, die hdufig Strategien anhand
von Fragebogen abfragen (z. B. Johns, 2020; Laging & VoBkamp, 2017,
Liebendorfer et al., 2021; Rach & Heinze, 2013). Diese Strategien werden oftmals
in den Zusammenhang mit Erfolg (z. B. Bestehen der abschlieenden Klausur)
gesetzt. Es zeigt sich bei den Forschungsergebnissen zwar eine Tendenz,
allerdings sind die Ergebnisse nicht immer einheitlich. Des Weiteren geben
Interviews (Goller, 2020) und Selbstberichte (Kolbe & Wessel, 2022;
Liebendorfer et al., 2023) weitere Einblicke in studentische Lernprozesse. Trotz
wertvoller Erkenntnisse dieser Studien wird deutlich, dass sie nicht immer den
realen Prozess des mathematischen Arbeitens vollstindig abbilden. Die
Lernprozesse von Studierenden sind insgesamt noch wenig erforscht.
Untersuchungen zu diesem Themengebiet konzentrieren sich in der Regel auf
mathematische Lernprozesse von Fachstudierenden bzw. Studierenden des
Gymnasiallehramts (z. B. zu Beweisprozessen Kirsten, 2020; zu
Problemléseprozessen Stenzel, 2023a), wéhrend andere Fachrichtungen
weitgehend unbeachtet bleiben. Insbesondere die Studiengidnge der
Ingenieurwissenschaften sind in dieser Hinsicht unterreprédsentiert, obwohl
Mathematik eine zentrale Rolle im Ingenieurstudium spielt (Hochmuth &
Schreiber, 2016). Diese Studienginge zeichnen sich zudem oft durch besonders
grofle Studienkohorten aus (Kortemeyer & Friihbis-Kriiger, 2021), was ihre
Notwendigkeit fiir die Forschung zusitzlich unterstreicht. Insgesamt sind
mathematische  Lernprozesse  von  Studierenden, insbesondere  im
ingenieurwissenschaftlichen Studium, eine Forschungsliicke.

Diese Forschungsliicke ist besonders relevant, da in ingenieurwissenschaftlichen
Studiengéngen die Studienabbruchquote auflergewoéhnlich hoch ist. 35 % der
Studierenden brechen ihr universitires Bachelorstudium ab (Heublein et al.,
2022). Dieser Prozentsatz blieb in den Untersuchungen der letzten Jahre
unverdndert (siehe in Studien aus vorherigen Jahren: Heublein et al., 2018;
Neugebauer et al., 2019). Dabei ,,besteht generell Konsens dariiber, dass hohe
Abbruchquoten im Ingenieursstudium nicht zuletzt auf Schwierigkeiten der
Studierenden mit der Mathematik zuriickzufiihren sind“ (Hochmuth & Schreiber,
2016, S. 549f). Mathematik gehort in vielen Veranstaltungen des
Ingenieurstudiums zu den wesentlichen Werkzeugen, stellt aber gleichzeitig die
grofite Hiirde dar. Als Konsequenz miisse sowohl das Lehren als auch Lernen von
Mathematik im Ingenieurstudium verbessert werden (Hochmuth & Schreiber,
2016).

Die Notwendigkeit, sich speziell der Mathematik im Ingenieurstudium zu
widmen, basiert allerdings nicht nur auf hohen Abbruchquoten im Studium,
sondern auch auf dem Ingenieurmangel, der seit Jahren beklagt wird (z. B.
Rauhut, 2024). VDI (Verein Deutscher Ingenieure) berichtet, dass im vierten
Quartal von 2022 170.000 offene Stellen im Ingenieurbereich zu verzeichnen
waren. Wihrenddessen haben 2022 lediglich 125.600 Studierende ein MINT-
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Studium begonnen (Janczura, 2023). Diese Diskrepanz wird durch Auswirkungen
der Corona-Pandemie, der Energiewende und Digitalisierung sowie den
demografischen Wandel zusétzlich verschérft (z. B. Gast, 2024).

Um dazu beizutragen, mathematisch gut ausgebildete Ingenieur:innen fiir den
Arbeitsmarkt zu gewinnen, ist es wichtig, die mathematischen Hiirden im
Studium gezielt anzugehen. Ein erster wesentlicher Schritt in dieser Richtung
wire, die Lernprozesse der Studierenden besser zu verstehen und systematisch zu
erforschen, um daraus gezielte Unterstiitzungsmainahmen abzuleiten, die
langfristig helfen konnen, diese Hiirden zu iiberwinden.

Im Folgenden wird sich daher mit den Spezifititen der Mathematik fiir
Ingenieur:innen (Kapitel 1.1) sowie mit weiteren Ansatzpunkten der Mathematik
im Studium beschiftigt (Kapitel 1.2). AnschlieBend werden die Lernprozesse im
Sinne einer Fokussetzung fiir diese Arbeit verdichtet (Kapitel 1.3). AbschlieBend
wird die Zielsetzung dieser Arbeit dargestellt (Kapitel 1.4).

1.1 Spezifititen der Mathematik fiir Ingenieur:innen

Im Folgenden wird der Fokus auf die Besonderheiten des hochschulischen
Lehrens und Lernens von Mathematik fiir Ingenieur:innen gelegt.

Die mathematikhaltigen Studienbestandteile sind fiir angehende Ingenieur:innen
ab dem ersten Tag an der Universitit mit einer Reihe von Herausforderungen
verbunden. Diese betreffen organisatorische, inhaltliche und didaktische Aspekte,
die sowohl die Lehrenden als auch die Studierenden maf3geblich beeinflussen.
Fir die Lehrenden stellt die groe Anzahl der Studierenden in
ingenieurwissenschaftlichen Studiengéngen eine erhebliche Herausforderung dar.
Sie erschwert die Organisation und Durchfiihrung der Veranstaltungen und fiihrt
zu einer weiteren Einschrinkung der ohnehin begrenzten Moglichkeiten zur
individuellen Betreuung. Dies unterstreicht die Notwendigkeit, alternative Wege
fiir eine effektive Unterstiitzung der Studierenden zu finden, z. B. durch den
verstirkten Einsatz von selbstgesteuertem Lernen.

Fir die Studierenden ergeben sich hingegen mehrere spezifische
Herausforderungen. Zum einen miissen sie damit umgehen, dass verschiedene
mathematikhaltige Veranstaltungen miteinander ,,konkurrieren” (Cramer et al.,
2015). Mathematik wird vom ersten Tag an als Werkzeug in anderen Kernféchern
wie Physik, Mechanik oder Elektrotechnik eingesetzt, was dazu fiihrt, dass sie
unterschiedliche Mathematikkulturen erleben, die sich bspw. in Notationen oder
Konzeptdarstellungen unterscheiden konnen (Redish, 2005). So kann dasselbe
mathematische Konzept in verschiedenen Veranstaltungen unterschiedlich
dargestellt werden. Ein weiterer Aspekt, mit dem die Studierenden konfrontiert
sind, ist der deduktive Aufbau der Mathematik, wéihrend andere Kernfdacher
héufig  direkt mathematische Inhalte verwenden, die in der
Mathematikveranstaltung noch nicht eingefiihrt wurden. Dariiber hinaus spielt die
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Einstellung der Studierenden zur Mathematik eine Rolle: Da sie sich fiir ein
Ingenieurstudium und nicht fiir ein Mathematikstudium entschieden haben, ist
ihre Motivation fiir mathematische Inhalte oft geringer. Die Relevanz der
Mathematik erkennen viele erst dann, wenn diese in Verbindung mit einem
konkreten, bspw. physikalischen, Thema steht (Kortemeyer, 2018, S. 29). Ohne
diesen Praxisbezug bleibt die Bedeutung der Mathematik fiir viele Studierende
zundchst abstrakt und schwer greifbar.

Die Herausforderungen verdeutlichen, wie wichtig es fiir Lehrende ist,
Mathematik nicht nur als isoliertes Fach zu betrachten, sondern sie als integralen
Bestandteil des ingenieurwissenschaftlichen Studiums zu verstehen und
entsprechend zu gestalten. Um dieser Aufgabe gerecht zu werden, bedarf es klarer
Zielsetzungen und didaktischer Ansétze. Hier setzt das Framework von der SEFT
(European Society for Engineering Education) an, das systematisch
mathematische Ziele fiir die Ingenieurstudium auf Grundlage der aktuellen
wissenschaftlichen Erkenntnisse definiert (Alpers et al., 2013). Das Framework
orientiert sich am Kompetenzmodell von Niss (2002) und bietet eine strukturierte
Grundlage fiir die Mathematiklehre in ingenieurwissenschaftlichen
Studiengéngen. Es ist nicht auf eine spezifische Ingenieurdisziplin ausgelegt,
sondern zielt darauf ab, eine allgemeine Orientierung fiir alle Beteiligten der
ingenieurwissenschaftlichen Mathematiklehre zu schaffen. Das Framework
iibernimmt die acht Kompetenzen aus dem KOM-Projekt (Niss, 2002; Niss &
Hojgaard, 2011):

thinking mathematically,

posing and solving problems,

modelling mathematically,

reasoning mathematically,

representing mathematical entities,

handling mathematical symbols and formalism,
communicating in, with and about mathematics,
making use of aids and tools

Des Weiteren ordnen Alpers et al. (2013) diese acht Kompetenzen nach ihrer
Bedeutung anhand des Studiengangs Maschinenbau auf drei Fortschrittsstufen
ein (Abbildung 1). Dabei wird auf die Stufen Reproduction, Connections und
Reflection zuriickgegriffen. Diese Stufen verdeutlichen, wie die Kompetenzen im
Verlauf des Studiums aufgebaut und vertieft werden sollen.
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Abbildung 1: Mathematische Kompetenzen und Level des Fortschritts (Alpers et al., 2013, S. 18)

Das SEFI-Framework ist zwar kompetenzbasiert, beriicksichtigt jedoch ebenso
die Bedeutung des fachspezifischen Wissens. Dazu zédhlen unter anderem
Algebra, Analysis und Calculus, Diskrete Mathematik, Geometrie und
Trigonometrie, Lineare Algebra sowie Statistik und Wahrscheinlichkeit. Ein
beispielhafter Verlaufsplan hinsichtlich der Inhalte im ersten Semester einer
Mathematikveranstaltung fiir Ingenieur:innen befindet sich in Tabelle 1. Der
Fokus des Beispiels ist stark auf Lineare Algebra und Analysis gerichtet.

Die Themengebiete aus dem SEFI-Framework werden auf vier Vertiefungsstufen
beschrieben. Bereits auf der Einstiegsstufe 0 tauchen Anforderungen wie das
Verstidndnis grundlegender mathematischer Konzepte auf, etwa ,,to understand
how the derivative of a function at a point is defined* (Alpers et al., 2013, S. 25).
Dies verdeutlicht, dass bereits auf anfanglichem Niveau von den Studierenden
mehr als lediglich das Auswendiglernen erwartet wird. Sie sollen zugrunde
liegende Konzepte verstehen und anwenden konnen.

Obwohl die mathematischen Konzepte und deren Hintergriinde auch fiir
Ingenieur:innen von grofer Bedeutung sind, liegt der Fokus in der
Mathematiklehre dennoch hdufig auf der Anwendung dieser Konzepte. Das
Lehren und Lernen sind dabei iiberwiegend prozedural ausgerichtet. Dies
bedeutet, dass der Schwerpunkt auf der praktischen Durchfithrung von
Rechenverfahren und weniger auf dem tiefgreifenden Verstindnis der
theoretischen Hintergriinde liegt (Alpers, 2014; Alpers, 2016; Bergqvist, 2007;
Engelbrecht et al., 2012).

Der Fokus auf prozedurales Wissen® zeigt sich bspw. in Priifungsformaten. In
einer Untersuchung von 150 amerikanischen Calculus I-Klausuren stellte sich
heraus, dass 85 % der Aufgaben allein durch prozedurales Wissen geldst werden
konnten (Tallman et al., 2016). Auch im deutschen Kontext enthalten
Mathematikklausuren in ingenieurwissenschaftlichen Studiengéngen je nach
Klausur einen hohen Anteil von 50 % bis 88 % an Aufgaben, die rein prozedurales

3 Auf prozedurales (und konzeptuelles Wissen) wird in Kapitel 2.4.2 niher eingegangen.
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Wissen erfordern (Altieri, 2016, S. 167). Es ist daher wenig iiberraschend, dass
sich Studierende wihrend ihres Lernprozesses ebenfalls auf prozedurales Wissen
konzentrieren. Studien zeigen, dass dies ein starker Prddiktor fiir den
Klausurerfolg ist (z. B. Altieri, 2016, S. 173). Vor allem das gezielte Uben von
Verfahren und Aufgaben wird als effektive Lernstrategie im Kontext der
ingenieurwissenschaftlichen Mathematik beschrieben (Liebendorfer et al., 2022).
Eine weitere Verschiebung zum prozeduralen Wissen zeigt sich in der Darstellung
von mathematischen Inhalten zwischen Lehrbiichern, die fiir Ingenieur:innen (z.
B. Papula, 2018) oder fiir das Fachstudium der Mathematik (z. B. Forster, 2011)
konzipiert sind. Wahrend Lehrbiicher flir das Fachstudium typischerweise eine
mathematische Strenge aufweisen, indem sie Inhalte nach dem Schema
Definition-Satz-Beweis ~ prisentieren,  verzichten  anwendungsorientierte
Lehrbiicher hin und wieder auf ausfiihrliche Beweise. Stattdessen wird der
Schwerpunkt auf die Anwendung von Konzepten und Verfahren gelegt. Auch die
formale Darstellung der Inhalte wird in diesen Werken oft zugunsten einer
zugénglicheren, weniger abstrakten Herangehensweise reduziert.

Thema Woche  Thematische Schwerpunkte
Vektorrechnung in R? und 1 Polarkoordinaten, Vektoren, Dreiecksungleichung
R3 2 Parameterform, Hessesche Normalform,
Determinante
3 Vektorprodukt, Spatprodukt, Geraden und Ebenen
Grundlagen der Analysis 4 Reelle Zahlen, Mengen, Potenz, Wurzel, Betrag
5 Binomische Formel/Lehrsatz, Monotonie,
Injektivitdt & Surjektivitét
6 Folgen, Grenzwerte, Konvergenz,
Haufungspunkte
7 Konvergenzkriterien, Reihen, Absolute
Konvergenz
8 Stetigkeit, Zwischenwertsatz, Maximum und
Minimum
9 Haufungspunkt, Polstellen
Elementare Funktionen 9 Polynome, Trigonometrische Funktionen, e &

log, Horner-Schema

Differentialrechnung 10 Differenzierbarkeit, Kettenregel, Mittelwertsatz
11 L’Hospital, Taylorformel, Extremstellen,
Kurvendiskussion
Integralrechnung 12 Integralrechnung, Mittelwertsatz, Hauptsatz,
Substitution
13 partielle Integration, uneigentliche Integrale,
Rechenregeln

Tabelle 1: Vorldufiger Verlaufsplan einer Mathematikveranstaltung fiir Ingenieur:innen
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1.2 Mathematik im Studium

Die Ausfithrungen aus Kapitel 1.1 konzentrieren sich auf die Spezifika der
Ingenieursmathematik. Wie bereits erwéhnt, ist das Lernen (und das Lehren) von
Mathematik in ingenieurwissenschaftlichen Studiengingen im Vergleich zu
anderen Bereichen, wie bspw. der Mathematiklehramtsausbildung oder dem
Mathematikfachstudium, bislang nur wenig erforscht. Dieses Forschungsdefizit
erschwert es, ein umfassendes Verstindnis fiir die spezifischen
Herausforderungen in diesem Kontext zu entwickeln. Um jedoch einen breiteren
Blick auf das Thema werfen zu konnen, ist der Einbezug von Erkenntnissen
benachbarter Disziplinen oder verwandter Kontexte sinnvoll. Im Folgenden
werden daher empirisch fundierte Fakten und Forschungsergebnisse zu Aspekten
des Lernens und der Lehre der hochschulischen Mathematik aus benachbarten
bzw. eng verwandten Kontexten (vor allem des Fach- bzw. gymnasialen
Lehramtsstudiums) présentiert. Diese konnen moglicherweise auf die
mathematische Lehre und das mathematische Lernen in Ingenieurstudiengéingen
iibertragen werden — oder eben auch nicht, was eine kritische Reflexion erfordert
(Kapitel 1.2.7). Die folgenden Ausfiihrungen betreffen Ziele (Kapitel 1.2.1),
fachlicher Inhalt (Kapitel 1.2.2), Spezifika des mathematischen Lehrens (Kapitel
1.2.3), eigenverantwortliches Lernen (Kapitel 1.2.4) sowie Spezifika des
mathematischen Lernens (1.2.5) und erfolgreiches Lernen (Kapitel 1.2.6).

1.2.1 Ziel des Fachs Mathematik

Das (iibergreifende) Ziel des Fachs Mathematik in der Hochschule besteht darin,
Studierende in die wissenschaftlichen Arbeitsweisen der Mathematik einzufiihren
(Rach et al., 2014; Tall, 1992). Im Mittelpunkt stehen die formale Begriffsbildung
und das deduktive Beweisen, die fiir ein tieferes Verstindnis mathematischer
Zusammenhinge notwendig sind. Im gleichen Zug wird das Konzept des
,advanced mathematical thinking® genutzt, welches Studierende im Laufe des
Studiums entwickeln sollen (Engelbrecht, 2010). Damit ist der Prozess gemeint,
formale, abstrakte und logische Denkweisen zu erlangen, die in der
Hochschulmathematik tiblich sind (Maron, 2016).

Im Vergleich zur Schulmathematik zeichnet sich die Hochschulmathematik durch
eine stirkere Abstraktion und Formalisierung aus. Mathematische Aussagen
werden prézise und eindeutig in einer stark formalisierten Sprache dargestellt
(Engelbrecht, 2010). Besonders im ersten Studienjahr miissen Studierende lernen,
mit komplexen mathematischen Strukturen umzugehen. Beweise spielen dabei
eine zentrale Rolle: Sie sichern die Giiltigkeit mathematischer Aussagen (Heintz,
2000) und erfordern von den Studierenden ein tiefes Verstindnis der Begriffe,
Zusammenhinge und logische-deduktive Argumentationsweisen. Die formale
Sprache der Mathematik verlangt ein Umdenken, da sie neue Strukturen und
Konventionen mit sich bringt (Clark & Lovric, 2009). Mathematisches Wissen
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verbindet zudem konzeptuelle Aspekte iiber Objekte und prozedurales Wissen
tiber Verfahren (Sfard, 1991). Diese enge Verkniipfung verlangt flexibles Denken,
was im Gegensatz zur Schulmathematik oft nicht im Vordergrund steht.
Allerdings existieren unterschiedliche Studiengénge, in denen unterschiedliche
mathematische Veranstaltungen durchgefiihrt werden. Dies hat dementsprechend
Auswirkungen auf die Ziele der mathematischen Lehre, da unterschiedliche
Professionen nach Abschluss des Studiums angestrebt werden (Maron, 2016). So
werden bspw. in einem Lehramtstudium nicht nur fachliche Inhalte, sondern
ebenfalls fachdidaktische Inhalte prisentiert, die fiir den Beruf als Lehrer:in
zugeschnitten werden.

1.2.2 Fachlicher Inhalt der hochschulischen Mathematik

Es gibt viele verschiedene Studienginge, in denen Mathematik gelehrt wird,
wobei sich die Zielsetzungen und somit ebenfalls die Inhalte je nach Fachrichtung
unterscheiden konnen. Aus den verschiedenen Studienprogrammen lésst sich
daher ein gemeinsamer Uberblick nur schwer ableiten, da die Inhalte und
Strukturen stark variieren kénnen. Es zeigen sich jedoch nicht nur Unterschiede
zwischen verschiedenen Studiengéngen, sondern auch innerhalb desselben
Studienfachs. So kann das gleiche Studium an unterschiedlichen Universititen
unterschiedlich aufgebaut sein (Gildehaus et al., 2021). Noch komplexer wird der
Vergleich, wenn verschiedene Lander und deren spezifische Studienstrukturen
einbezogen werden.

In der internationalen Literatur werden héufig eine Reihe von grundlegenden
mathematischen Inhalten genannt, die in vielen Studiengidngen vermittelt werden.
Zu den typischen Féachern gehéren Linear Algebra, Precalculus, Elementary
Statistics und Calculus (z. B. Brunetto et al., 2019; Jaworsky et al., 2009; Lahme
& Shott, 2021; Pyke, 2012). Diese Bereiche bilden die Grundlage, auf der
weiterfiihrende mathematische Konzepte im Studium aufgebaut werden.

In Deutschland kann fiir ein konkretes Studienmodell der Studiengang ,,Lehramt
an Gymnasien“ herangezogen werden. In diesem Studiengang werden zahlreiche
Module aus dem Fachstudium Mathematik und dem gymnasialen
Lehramtsstudium gemeinsam unterrichtet. Zu Beginn des Studiums, dhnlich wie
zu der internationalen Literatur, sind in fast allen Universitdten die Ficher
Analysisund Lineare Algebra zentral (Gildehaus et al., 2021; Goller, 2020, S. 79),
da sie fundamentale mathematische Konzepte vermitteln, die fiir weiterfithrende
Themen erforderlich sind.

Eine weitere Moglichkeit, sich dem fachlichen Inhalt mathematikhaltiger
Studiengénge anzundhern, bicten die Projekte cosh (Diirrschnabel & Waurth,
2015) und MaLeMint (Decken et al., 2020; Neumann et al., 2017; Neumann et
al., 2018). Beide Projekte untersuchen Mindestvoraussetzungen, die fiir ein
erfolgreiches Studium im  MINT-Bereich (Mathematik, Informatik,
Naturwissenschaften, Technik) erforderlich sind. Im cosh-Projekt wurden
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Mathematikdidaktiker und Lehrer:innen aus Baden-Wiirttemberg eingeladen, um
die Mindestanforderungen fiir ein MINT-Studium zu diskutieren. Im MaLeMint-
Projekt wurden Hochschuldozierende deutschlandweit befragt, welche
mathematischen Lernvoraussetzungen Studierende fiir einen erfolgreichen Start
an der Universitit mitbringen sollten. In beiden Projekten wird die Rolle von
Inhalten aus den Fachern Analysis, Lineare Algebra sowie Stochastik deutlich.
Diese drei Bereiche gelten in beiden Projekten als grundlegende Inhalte, die fiir
ein Studium im MINT-Bereich notwendig sind. Dariiber hinaus werden weitere
Inhalte aus den Bereichen Elementare Algebra und Elementare Geometrie
aufgefiihrt.

Insgesamt lésst sich festhalten, dass mathematikhaltige Studiengéinge in der Regel
auf grundlegenden Inhalten wie Analysis (calculus), Linearer Algebra und
Stochastik autbauen.

1.2.3 Spezifika der mathematischen Lehre

Die Struktur der Mathematiklehre an deutschen Universitédten folgt in der Regel
einem traditionellen Modell, das sich aus den Komponenten Vorlesung,
Ubungsblitter, Ubungsgruppen und Klausuren zusammensetzt (Liebendorfer,
2018, S. 20). Vorlesungen, Ubungsblitter und Ubungsgruppen finden in der Regel
in einem wochentlichen Rhythmus im Semester statt, wihrend die Klausur in der
vorlesungsfreien Zeit geschrieben wird. Im Gegensatz zur Schule fordert diese
Struktur von den Studierenden ein hohes Maf3 an Selbststudium.

Vorlesungen bilden eine zentrale Lehrform an Universititen (Korner, 2005). Die
Dozierenden prisentieren den Stoff meist in Form eines abgeschlossenen
Formalismus mittels der Definition-Satz-Beweis-Struktur (Engelbrecht, 2010).
Dabei werden allerdings oftmals die dahinterliegenden Denkprozesse ausgespart,
die zu diesen Kernelementen gefiihrt haben (Rach et al., 2016). Die Rolle der
Studierenden beschrénkt sich dabei grofBitenteils auf das Zuhdren oder
Mitschreiben (Wlassak & Schoneburg-Lehnert, 2022). Um ein tieferes
Verstandnis des Stoffes zu erlangen, ist eine intensive Nachbereitung erforderlich
(Weber, 2012), da neue Inhalte auf fritheren Vorlesungen aufbauen und selten
wiederholt werden (Korner, 2005). Obwohl das klassische Vorlesungsformat
hiufig kritisch diskutiert wird (Pritchard, 2015; Weber, 2004) und alternative
Lehrformen wie z. B. ,,flipped classroom* erprobt werden (z. B. Lo et al., 2017;
Feudel & Fehlinger, 2023), bleibt die Vorlesung sowohl national als auch
international die vorherrschende Form. Um Studierende zu entlasten und ihre
Aufmerksamkeit gezielt zu lenken, kann bspw. die Methode des ,,guided note-
taking* eingesetzt werden (Feudel & Panse, 2022). Dabei erhalten Studierende
vor der Vorlesung ein vorbereitetes Skript, das an bestimmten Stellen Leerstellen
aufweist. Diese gezielten Liicken sollen die Aufmerksamkeit der Studierenden
steuern sowie den Schreibaufwand reduzieren, um mehr Kapazititen fiir das
Verstehen und Mitdenken zu haben.
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Ein weiterer zentraler Bestandteil der Mathematiklehre sind die Ubungsaufgaben
bzw. Hausaufgaben. Diese Aufgaben bestehen aus komplexen Problemstellungen
und Beweisen sowie dem Einiiben von Kalkiilen. In der Regel werden die
Aufgaben so konzipiert, dass sie nicht auf den ersten Blick geldst werden kdnnen
und einen erheblichen Anteil an Zeit in Anspruch nehmen (Liebendoérfer, 2018, S.
22). Haufig ist das erfolgreiche Bearbeiten eines gewissen Prozentsatzes dieser
Ubungsaufgaben eine Voraussetzung fiir die Teilnahme an der Klausur bzw. das
Bestehen des Moduls. Ubungsaufgaben iibernechmen dabei eine wichtige
Funktion beim Erwerb mathematischer Begriffe, Verfahren und Arbeitsweisen
(Weber & Lindmeier, 2020), da sie die in der Vorlesung vermittelten Inhalte und
Methoden vertiefen und praktisch anwenden lassen. Die Bearbeitung dieser
Aufgaben verlangt im Gegensatz zur Vorlesung jedoch einen hohen Grad an
eigenstindigem Lernen. Es zeigt sich jedoch, dass nur etwa ein Sechstel der
Studierenden die Ubungsaufgaben selbst 16sen bzw. in der Lage sind, diese selbst
zu l6sen (Liebendorfer & Goller, 2016; Rach & Heinze, 2013).

Die Art der Aufgaben spielt hierbei eine zentrale Rolle, da verschiedene
Aufgabenarten unterschiedliche Anspriiche an das mathematische Verstdndnis
und die Arbeitsweise der Studierenden stellen. So bestehen die Ubungsaufgaben
aus drei verschiedenen deutschen Mathematikveranstaltungen fiir den 1-Fach
Bachelor bzw. Lehramt fiir das Gymnasium zu 51 % aus Rechenaufgaben (Weber
& Lindmeier, 2020). Weitere 47 % bestehen aus Beweisaufgaben durch Beweise
mittels Definitionen und/oder Sitzen. Ahnliche Ergebnis zeigen sich bei der
Analyse von Ubungsaufgaben an vier verschiedenen deutschen Universititen, wo
ca. 45 % der Ubungsaufgaben prozedurales und ca. 55 % konzeptuelles Wissen
erfordern (Wlassak & Schoneburg-Lehnert, 2022). Dabei bestehen allerdings
zwischen den Universititen teilweise grole Unterschiede. In der wenigen
internationalen Literatur konnen ebenfalls dhnliche Ergebnisse gefunden werden.
Darlington (2014) unterscheidet in drei Aufgabenarten. Gruppe A umfasst
Routineprozesse, Gruppe B die Anwendung mathematischen Wissens in
unbekannten Kontexten und Gruppe C erfordert konzeptuelles Wissen fiir
komplexe Argumentationen. In Darlingtons Studie zu Hochschulaufgaben fallen
auf Gruppe A 31,6 %, auf Gruppe B 14,4 % und auf Gruppe C 54,1 % der
Aufgaben.

Die Ubungsgruppen bzw. Tutorien zu der Veranstaltung finden meist in
Kleingruppen von bis zu 30 Studierenden statt. Sie dienen der weiteren Vertiefung
der Vorlesungsinhalte und zur Besprechung von Ubungsaufgaben. Die Gestaltung
der Ubungsgruppen variiert allerdings zwischen Veranstaltungen, wobei auch
innerhalb einer Veranstaltung ebenfalls qualitative Unterschiede zwischen den
Ubungsgruppen beobachtet werden konnen (Piischl, 2019, S. 9ff). Diese
Variabilitit ergibt sich aus der Tatsache, dass die Gestaltung der Ubungsgruppe
der jeweiligen Lehrperson iiberlassen wird, und aufgrund oftmals hoher Anzahl
von Ubungsgruppen werden verschiedene Lehrpersonen (darunter auch
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studentische Tutoren) eingesetzt, die ihre eigene Ubungsgruppe individuell
gestalten. Traditionell werden Ubungsgruppen oft mit sog. klassischen
,,Vorrecheniibungen® assoziiert (Haak, 2016), bei denen entweder die Lehrperson
oder einzelne Studierende Losungen vorrechnen. In den letzten Jahren sind
jedoch neue Ansitze entstanden, um die Studierenden stirker in den Mittelpunkt
zu stellen und ihre aktive Teilnahme zu fordern (Piischl, 2019, S. 18ff.). Ein
solcher Ansatz wird von Stenzel (2023b) verfolgt, der sich in Ubungen darauf
konzentriert, bestimmte Problemldsestrategien zu vermitteln, um Studierende bei
der weiteren Bearbeitung von Hausaufgaben zu unterstiitzen. Ein weiterer
innovativer Ansatz ist die Vorbereitung von Musterlosungen fiir Studierende
(Ableitinger & Hermann, 2011; Ableitinger, 2012). Diese Musterlosungen sollen
Studierenden den Losungsprozess sichtbar machen, um die Fahigkeit zur
eigenstandigen Durchfithrung solcher Prozesse zu fordern.

Am Ende des Semesters steht in der Regel eine Klausur an, die in den meisten
Fillen iiber den erfolgreichen Modulabschluss und die abschliefende Note
entscheidet. Aus diesem Grund haben Klausuren einen erheblichen Einfluss auf
die Art und Weise, wie Studierende lernen und sich auf Priifungen vorbereiten
(Bergqvist, 2007; Kane et al., 1999). Obwohl das Ziel der hochschulischen
Mathematiklehre die Einfilhrung in die wissenschaftliche Disziplin der
beweisenden Mathematik ist (Tall, 1992; Weber & Lindmeier, 2020), spiegelt sich
dieses Ziel in den Klausuren oft nicht wider. In verschiedenen nationalen und
internationalen Studien wurden Klausuraufgaben in der hochschulischen
Mathematikausbildung untersucht. Die Ergebnisse zeigen, dass der Schwerpunkt
meist auf dem prozeduralen Wissen liegt (z. B. Bergqvist, 2007; Kolbe &
Liebendorfer, 2024). Eine Ausnahme zeigt die Studie von Darlington (2014), in
der 58 % der untersuchten Aufgaben an der Universitdt Oxford in Gruppe C
(erfordert konzeptuelles Wissen fiir komplexe Argumentation) zugeordnet
wurden. Allerdings war auch dort fiir das Bestehen der Klausuren die Anwendung
von Prozeduren ausreichend. Insbesondere im Kontext
ingenieurwissenschaftlicher Mathematikveranstaltungen verschiebt sich der
Fokus in Klausuren noch weiter in Richtung des prozeduralen Wissens (z. B.
Tallman et al., 2016).

1.2.4 Eigenverantwortliches Lernen

Im Kontext des Ubergangs von Schule zur Hochschule wird in der
mathematikdidaktischen Literatur héufig der ,,didaktische Vertrag® (Brousseau,
1984; Gronbaek et al., 2009; Gueudet & Pepin, 2018) thematisiert, dessen
Verdnderungen fiir Studierende einen erheblichen Einfluss haben kénnen. Beim
Ubergang von Schule zur Hochschule verindert sich dieser Vertrag fiir
Studierende erheblich, oft ohne dass ihnen diese neuen impliziten Regeln des
Lehrens und Lernens bewusst sind. Der schulische Mathematikunterricht zielt
stark auf strukturiertes Uben und Auswendiglernen kleinerer und kontrollierter
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Einheiten ab. Dieser Ansatz vermittelt den Schiiler:innen, dass die blof3e
Beteiligung am Unterricht sowie das Befolgen klarer Anweisungen fiir den
Lernerfolg ausreichen (Hourigan & O’Donoghue, 2007; Pritchard, 2015).
Eigenstindiges bzw. eigenverantwortliches Lernen ist dabei meist weniger
gefordert.

Im Mathematikfachstudium wird bspw. erwartet, dass Studierende
eigenverantwortlich fiir ihren Lernerfolg sorgen und dariiber hinaus eigenstindig
Entscheidungen iiber ihren Lernprozess treffen (Goller, 2020). Sie miissen dabei
z. B. ihren Lernstand selbst evaluieren und die passenden Lernhandlungen
wihlen, da die Vorlesungen primér als Impulse und nicht als vollstindige
Erklarungen dienen (Liebenddrfer, 2018, S. 21f.). Die Studierenden erleben aus
diesem Grund Konflikte, weil sie von der Schule gewohnt sind, dass alle
notwendigen Lernschritte klar vorgegeben sind und fiir auftretende
Schwierigkeiten direkt Hilfestellungen zur Verfiigung stehen (Gueudet, 2008). Im
Studium hingegen wird weniger kleinschrittig vorgegangen. Dabei wird von den
Studierenden erwartet, dass sie mit komplexen und weniger vorstrukturiertere
Problemstellungen eigenstéindig umgehen kdnnen.

Das Missverstindnis, die Lehre sei rein vermittelnd, entsteht haufig dadurch, dass
fiir viele Studierende die Vorlesungen und Ubungen die einzigen sichtbaren Orte
des Lernens darstellen (Pritchard, 2015). Dabei bleibt der Wunsch, dass die
Vorlesungen zum einen verstindlich sind und zum anderen einen sofortigen
Lernerfolg ermoglichen (Kalesse, 1998), was jedoch nicht die zentrale
Zielsetzung der universitiren Mathematiklehre darstellt. Diese Diskrepanz zeigt
sich auBerdem in Frustrationen, wenn vorausgesetztes Wissen fehlt oder
Dozierende sich aus Sicht der Studierenden nicht ausreichend in deren
Lernschwierigkeiten einfithlen konnen (de Guzman et al., 1998).

Klagen iiber fehlende Unterstiitzung weisen zudem darauf hin, dass es
unterschiedliche Auffassungen iiber die Verantwortung fiir den Studienerfolg
gibt: Wihrend Studierende hdufig mehr direkte Unterstiitzung erwarten, wird an
der Hochschule die Eigenverantwortung betont. Diese Herausforderungen
machen sich besonders in den ersten Wochen des Studiums bemerkbar (Pritchard,
2015). Diese Phase ist entscheidend dafiir, dass Studierende ihre Rolle im neuen
didaktischen Vertrag erkennen und die notwendige Selbststéindigkeit entwickeln,
um die Anforderungen des Mathematikstudiums zu meistern (di Martino &
Gregorio, 2019).

Zusammengefasst erfordert der Ubergang in das mathematikhaltige Studium eine
deutliche Anpassung an einen neuen didaktischen Vertrag, bei dem
Eigenverantwortung eine wichtige Rolle einnimmt.

1.2.5 Spezifika des mathematischen Lernens

In der Hochschule werden Lernprozesse oft anhand von Lernstrategien iiberpriift,
um Erkenntnisse tiber das Lernverhalten der Studierenden zu gewinnen. In der
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Vergangenheit wurden oftmals allgemeine Fragebdgen (z. B. Pintrich et al., 1991;
Wild & Schiefele, 1994) zu Lernstrategien eingesetzt, um das Lernen sowie die
Nutzung von Lernstrategien der Studierenden zu erfassen. Solche Fragebogen
bieten wertvolle Einblicke, bleiben jedoch allgemein und beriicksichtigen hdufig
nicht die Besonderheiten fachbezogener Lerninhalte. Gerade die
Hochschulmathematik stellt einen spezifischen Lerngegenstand dar, dessen
Anforderungen und kognitiven Prozesse sich von anderen Disziplinen
unterscheiden (Liebenddrfer, 2018, Kapitel 2; Rach, 2014, Kapitel 3). In jiingerer
Zeit wurden aus diesem Grund fachspezifische Lernstrategien konzeptualisiert,
die fiir mathematisches Lernen in der Hochschule angepasst sind (Liebendorfer
et al., 2021). Diese basieren auf der psychologischen Unterscheidung in
ressourcenbezogene, metakognitive und kognitive Lernstrategien (Wild &
Schiefele, 1994).

Ressourcenbezogene Lernstrategien

Ressourcenbezogene Strategien zielen darauf ab, sowohl externe als auch interne
Ressourcen optimal zu nutzen.

Externe Ressourcen umfassen Materialien wie Vorlesungsmitschriften,
Ubungsaufgaben, ergiinzende Literatur und elektronische Ressourcen sowie den
Austausch mit anderen Personen. So ist unter anderem das griindliche
Nacharbeiten von Vorlesungsmitschriften wichtig (Alcock, 2017, S. 135), um das
hohe Tempo in der Vorlesung auszugleichen und komplexe Inhalte
nachzuvollzichen (Haite et al., 2008, S. 150f). Ubungsaufgaben gelten als
wesentliches Mittel, um das Gelernte anzuwenden und zu vertiefen (Alcock,
2017, S. 190ff.; Beutelspacher, 2009). Auch zusitzliche Literatur kann wertvolle
Einblicke bieten und das Verstdndnis erleichtern (Haite et al., 2008, S. 151f.). In
jiungerer Zeit wird auBerdem vermehrt die Nutzung von elektronischen
Informationsquellen aufgefiihrt (Kempen & Liebenddrfer, 2021; Liebendorfer et
al., 2023). Dariiber hinaus wird der Austausch mit Kommiliton:innen, etwa durch
gemeinsames  Bearbeiten der Aufgaben oder Diskussionen  iiber
Vorlesungsinhalte, als hilfreich angesehen (Alcock, 2017, S. 199ff.; Géller, 2020,
S. 198ft.).

Interne Ressourcen betreffen Aspekte wie Zeitmanagement,
Anstrengungsbereitschaft, Konzentration und Motivation. Das Verstehen
komplexer mathematische Inhalte nimmt nicht nur einige Zeit in Anspruch
(Weber, 2012), sondern erfordert zusitzlich eine Menge an Konzentration (Géller,
2020, S. 96). Ein gutes Zeitmanagement ermdglicht es den Studierenden, gewisse
Zeitrdume gezielt fir das Verstehen von Konzepten sowie Bearbeiten von
Ubungsaufgaben zu nutzen, wodurch die Lernzeit effektiver gestaltet werden
kann. Auch Durchhaltevermdgen und Motivation sind fiir das langfristige Lernen
essenziell (Neumann et al., 2017), insbesondere in Phasen, in denen das Lernen
nur langsam Fortschritte zeigt oder bereits viel Zeit investiert wurde. SchlieBlich
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ist der konstruktive Umgang mit negativen Emotionen, vor allem mit Frustration,
ein entscheidender Faktor, um auch in schwierigen Momenten die Motivation und
den Lernfortschritt aufrechtzuerhalten (Goller & Gildehaus, 2021).

Kognitive Lernstrategien

Kognitive Strategien unterstiitzen die aktive Auseinandersetzung mit Inhalten und
umfassen Wiederholungs-, Organisations- und Elaborationsstrategien.
Organisations- und Elaborationsstrategien werden oftmals als Tiefenstrategien
und Wiederholungsstrategien als Oberflachenstrategien verstanden (z. B.
Coertjens et al., 2016; Lahdenpera et al., 2019).

Wiederholungsstrategien beziehen sich auf das wiederholte Lesen, Schreiben
oder laute Wiederholen von Inhalten. Es geht also darum, ob Studierende z. B.
immer wieder ihre Vorlesungsnotizen durchlesen oder wichtige Inhalte
auswendig lernen, um sich an Konzepte, Zusammenhénge oder Verfahren zu
erinnern. Auswendiglernen kann dabei als erster Schritt in Richtung Versténdnis
verstanden werden (Alcock, 2017, S. 135ff.). Z. B. kann das mehrfache Lesen
von Beweisen weitere Feinheiten aufdecken und einen besseren Uberblick
verschaffen (Houston, 2012). Allerdings kann stures Auswendiglernen auch als
Zeitverschwendung angesehen werden (Alcock, 2017, S. 156).

Eine weitere Wiederholungsstrategie ist das Uben. Darunter fillt das wiederholte
Ausfithren von Regeln bzw. Verfahren, die anhand verschiedener Beispiele
eingeiibt werden konnen (Goller, 2020, S. 98; Liebendorfer et al., 2021). Durch
die Entwicklung von Routinen werden gewisse Problemaufgaben zu
Routineaufgaben, da spezifische Losungsverfahren bereits bekannt und eingeiibt
worden sind. Letztlich werden durch Routinen kognitive Ressourcen frei, die fiir
komplexere Inhalte genutzt werden kdnnen.

Elaborationsstrategien fokussieren darauf, Inhalte zu verkniipfen, indem
Studierende neue Informationen in die bereits bestechende Wissensstruktur
integrieren bzw. verbinden. Hinsichtlich mathematischer Definitionen kann es
hilfreich sein, die Definitionen in eigene Worte zu formulieren oder Beispiele zu
konstruieren. Hinsichtlich mathematischer Sétze kann es hilfreich sein, die
Negation oder Kontraposition zu bilden oder den dazugehorigen Beweis
nachzuvollziehen. Dabei kann versucht werden, bspw. die Hauptideen des
Beweises zu identifizieren oder den Beweis auf einen anderen Kontext zu
tibertragen (Vollrath & Roth, 2012 S. 48f.). Weitere Elaborationsstrategien lassen
sich in zusétzlicher Literatur finden (z. B. Alcock, 2017, S. 135ff.; Hilgert et al,
2015; Houston, 2012).

Organisationsstrategien helfen dabei, Informationen in eine strukturierte und
leichter zu verarbeitende Form zu bringen (Wild & Schiefele, 1994). Dies umfasst
unter anderem das Zusammenfassen oder Herausheben wesentlicher
Informationen oder Erkenntnisse (Alcock, 2017, S. 181f.; Houston, 2012), die
Nutzung von Concept-Maps (Evans & Jeong, 2023; Renkl & Niickles, 2006) zur
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Visualisierung von Beziehungen zwischen Begriffen sowie das gezielte
Selektieren von spezifischen Inhalten. Das Selektieren relevanter Inhalte fiihrt
dazu, dass andere Inhalte bewusst ignoriert werden. Oftmals fokussieren sich
Studierende auf Fakten sowie Prozeduren und sparen bspw. Beweise beim Lernen
aus (Goller, 2017).

Metakognitive Lernstrategien

Metakognitive Lernstrategien zielen darauf ab, das eigene Lernen bewusst zu
steuern und zu regulieren. Im Gegensatz zu kognitiven Strategien richten sie sich
nicht direkt auf die Verarbeitung von Inhalten, sondern auf die {ibergeordnete
Kontrolle des gesamten Lernprozesses (Wild & Schiefele, 1994). Die drei
Kernbereiche der metakognitiven Strategien sind Planung, Uberwachung und
Regulation (Wild & Schiefele, 1994). Planung beinhaltet das Festlegen konkreter
Lernziele sowie die Auswahl geeigneter Werkzeuge und Methoden, um diese zu
erreichen. Withrend des Lernens dient die Uberwachung zur Uberpriifung von
Fortschritten, Identifikation von Wissensliicken und zum kritischen Hinterfragen
des eigenen Verstidndnisses. Die Regulation umfasst schlieBlich die Anpassung
des Lernverhaltens, etwa durch den Wechsel der Strategie. In der Mathematik
gewinnen metakognitive Strategien eine besondere Bedeutung, da das
Nachvollziehen und Validieren von Details besonders relevant erscheinen.
Insbesondere hinsichtlich der Uberwachung ist es beim Lesen von
mathematischen Texten wichtig, die Aussagen sowie Argumente permanent
kritisch zu hinterfragen (Mason et al., 2008, S. 102ff.). Insgesamt hat sich gezeigt,
dass Strategien wie das Selbsterklaren, Selbstbefragung und Selbstiiberwachung
im Kontext der Mathematik sowohl die Lernergebnisse als auch die
metakognitiven Fahigkeiten verbessern (Raza et al., 2016).

Abbildung 2 bietet einen theoriebasierten Uberblick iiber Lernstrategien im
Mathematikstudium, der auch auf mathematikhaltige Studiengiinge {ibertragbar
ist. Eine dhnliche Kategorisierung von Lernstrategien wird durch den LimSt
(Fragebogen zur Erhebung von Lernstrategien im mathematikhaltigen Studium)
vorgenommen (Liebendorfer et al., 2021).

Im Kontext von Strategien fiir das Mathematikstudium werden hiufig auch
Problemlésestrategien, sog. Heurismen, thematisiert. Diese sind jedoch nicht mit
den hier vorgestellten Lernstrategien gleichzusetzen, obwohl es zwischen beiden
Konzepten kleinere Uberschneidungen gibt. Eine detaillierte Einfiihrung in
Heurismen erfolgt in Kapitel 2.5, wobei die spezifischen Gemeinsamkeiten und
Unterschiede in Kapitel 2.5.1 néher erldutert werden.
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Abbildung 2: Ubersicht iiber theoriebasierte Kategorien zu Lernstrategien fiir mathematikhaltige
Studiengénge (Ausschnitt aus Goller, 2020, S. 114)

1.2.6 Erfolgreiches Lernen

In den letzten Jahren haben sich zahlreiche Studien mit der Identifikation
erfolgreicher Lernstrategien fiir das Mathematiklernen an der Universitit
beschiftigt. Oftmals wird in diesen Studien der Zusammenhang zwischen
Lernstrategien mit Erfolg in der Klausur untersucht. Die resultierenden
Ergebnisse sind dabei oft nicht eindeutig.

Obwohl mathematische Lernstrategien aus theoretischer Perspektive einen
deutlichen Einfluss auf den Studienerfolg haben sollten, zeigen Studien, dass
dieser Einfluss in der Praxis oft gering ausfillt. Teilweise zeigt sich, dass sogar
kein Zusammenhang zwischen vielen Lernstrategien und Erfolg besteht (z. B.
Johns, 2020). Es gibt jedoch auch positive Befunde. Elaborationsstrategien,
insbesondere wenn diese fachspezifisch erhoben werden, erweisen sich als
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effektive Lernstrategien (z. B. Geisler, 2019, S. 184; Gdoller, 2020, S. 337; Kolter
et al., 2018). Ebenso wird der Zeiteinsatz bzw. die Menge an investiertem
Aufwand héufig als positiver Pradiktor fiir Erfolg identifiziert (Goller, 2020, S.
336; Griese, 2017, S. 187; Liecbendorfer et al., 2022). Dariiber hinaus spielen die
Frustrationstoleranz sowie das Interesse eine bedeutende Rolle fiir den Erfolg.
Studierende, die Riickschldge und ldngere Phasen ohne Fortschritt aushalten
konnen, profitieren langfristig (Kuklinski et al., 2019; Liebendorfer et al., 2022).
Des Weiteren erleichtert das Interesse an Mathematik das Lernen. Hierbei wird
allerdings  zwischen = dem  Interesse an  Schulmathematik  und
Hochschulmathematik unterschieden (Ufer et al., 2017). Ein starkes Interesse an
der Hochschulmathematik trigt ebenfalls dazu bei, auch bei wachsender
Frustration motiviert zu bleiben (Goller & Gildehaus, 2021).
Oberflachenstrategien wie reines Auswendiglernen erweisen sich meist als wenig
effektiv (Goller, 2020; Liebendorfer et al., 2022). Dennoch ist der (Miss-)Erfolg
solcher Strategien stark kontextabhingig. Es gibt Situationen, in denen auch
scheinbar weniger geeignete Strategien hilfreich sein koénnen. Erfolgreiche
Studierende zeichnen sich durch ihre Fahigkeit aus, die richtige Strategie im
richtigen Moment auszuwéhlen (Matcha et al., 2019). Des Weiteren neigen
erfolgreiche Studierende dazu, Misserfolge auf interne Faktoren zuriickzufiihren
(di Martino & Gregorio, 2019).

Neben den spezifischen Strategien wird die Bedeutung der kontinuierlichen
Arbeit wihrend des Semesters betont. Besonders erfolgreich sind Studierende,
die Ubungsblitter selbststindig und regelmiBig bearbeiten (Rach & Heinze,
2013). Dabei werden stindig und kontinuierlich mathematische Begriffe und
Verfahren wiederholt, eingeiibt sowie in spezifischen Situationen eingesetzt.
Neben den Lernstrategien zeigt sich das Vorwissen als ein bedeutsamer Faktor fiir
den Studienerfolg. Studien, die diesen Aspekt untersucht haben, weisen
konsistent darauf hin, dass schulisches Vorwissen einen zuverldssigen sowie den
starksten Préadiktor fiir den Erfolg in der Hochschulmathematik darstellt (Hailikari
et al., 2008; Kosiol et al., 2019; Kuklinski et al., 2019; Liebendorfer et al., 2022;
Rach & Ufer, 2020; de Winter & Dodou, 2011). Grundlegende mathematische
Kenntnisse sind demnach eine wichtige Voraussetzung fiir das Verstindnis der
Inhalte im universitiren Kontext.

1.2.7  Ubertragung  mathematikdidaktischer — Ansitze auf die
Ingenieurmathematik

Die vorangegangenen Ausfithrungen (Kapitel 1.2) beziehen sich allgemein auf
mathematikhaltige Studiengidnge (vor allem auf Fachmathematik und
gymnasiales Lehramtsstudium) und betrachten iibergreifende Aspekte der
mathematischen Lehre und des Lernens an der Hochschule. Es bleibt jedoch die
Frage, inwiefern sich diese ebenfalls auf die Mathematik fiir Ingenieur:innen
iibertragen lassen. Dies wird im Folgenden erdrtert.
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Ein grundlegender Unterschied liegt im Ziel der jeweiligen Lehre zwischen
verschiedenen Studiengéngen (Maron, 2016). Die Fachmathematik strebt eine
Einfiihrung in wissenschaftliches Arbeiten an, bei der die formale Begriffsbildung
sowie das deduktive Beweisen eine zentrale Rolle spielen. In der
Ingenieurmathematik wird die Mathematik primédr als Werkzeug gesehen,
welches fiir andere Disziplinen nutzbar gemacht werden soll. Die ausgearbeiteten
Kompetenzen des SEFI-Frameworks (Alpers et al., 2013, S. 18) zeigen bspw.,
dass reasoning mathematically und symbols and formalism zwar relevant, jedoch
weniger wichtig sind als die anderen sechs aufgelisteten Kompetenzen. Diese
Kompetenzen wiren gerade dann relevant, um mathematische Inhalte tief zu
durchdringen und zu verstehen. Dennoch sollten auch bei Ingenieur:innen
mathematische Hintergriinde nicht vollkommen vernachlissigt werden (z. B.
Alpers etal., 2013, S. 25). Es ist wichtig, dass auch diese Hintergriinde verstanden
werden, da sie unter anderem die Grundlage fiir erfolgreichen Einsatz von
Mathematik in ingenieurwissenschaftlichen Anwendungen bilden.

Hinsichtlich der fachlichen Inhalte scheint eine weitgehende Konsistenz {iber die
verschiedenen Studiengénge hinweg zu bestehen. Insbesondere in den
grundlegenden Bereichen der Mathematik wird im ersten Semester in der Fach-
und gymnasialen Lehramtsmathematik sowie des Ingenieurstudiums ein Fokus
auf Lineare Algebra und Analysis gelegt.

Die organisatorischen Aspekte der Lehre lassen sich weitgehend unveréndert auf
den Ingenieurskontext iibertragen (fiir ein Beispiel zur Organisation einer
Mathematikveranstaltung fiir Ingenieur:innen siche in Kortemeyer & Friihbis-
Kriiger, 2021). Wie gewohnt bestehen die Veranstaltungen aus Vorlesungen,
Ubungsaufgaben, Tutorien und einer Klausur am Ende des Semesters, die im
Groben jeweils die gleiche Funktion erfiillen. Eine Besonderheit ergibt sich
jedoch in Bezug auf die Hausaufgaben. Im Ingenieurstudium sind Hausaufgaben
nicht unbedingt verpflichtend, um eine Studienleistung zu erbringen und sich fiir
die Klausur zu qualifizieren. Es existieren verschiedene Modelle. Z. B. gelten in
manchen die Hausaufgaben lediglich als freiwilliges Lernangebot, wihrend
andere Modelle die Moglichkeit bieten, durch Hausaufgaben Bonuspunkte? fiir
die Klausur zu erwerben.

Dariiber hinaus wird auch von Ingenieurstudierenden erwartet, dass sie
eigenstindig lernen und sich nicht ausschlieflich auf die Priasenztermine an der
Universitét verlassen. Allerdings wird dem Umfang des eigenstéindigen Lernens
weniger Zeit eingerdumt (Liebendorfer et al., 2022), als es bei dem Fach- bzw.
gymnasialen Lehramtsstudium der Fall ist (Géller, 2020, S. 4f.). Dies kann sich
auf die Gestaltung der Ubungsblitter auswirken. Durch den reduzierten
Zeitumfang fiir das eigenstindige Lernen haben Ingenieurstudierende weniger
Zeit fir die Bearbeitung. Die Aufgaben diirften dadurch einfacher und weniger

4 An der Universitdt Paderborn wird das Modell der Bonuspunkte fiir die Klausur sammeln seit
mehreren Jahren angewendet.
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komplex als im Fachstudium sein. Bereits die Klausuraufgaben im
Ingenieurstudium sind oft prozeduraler bzw. anwendungsorientierter gestaltet
(Altieri, 2016, S. 167). Ein Ansatz, der sich moglicherweise auch in den
Ubungsaufgaben widerspiegelt.

Diese Unterschiede werfen die Frage auf, welche Lernstrategien von den
Studierenden angewandt werden. Im Fachstudium, dessen Ziel stark auf dem
deduktiven Beweisen liegt, sind Elaborationsstrategien erforderlich, um die tiefen
Zusammenhinge und komplexen Aufgaben zu verstehen und zu 16sen. Hingegen
konnen anwendungsorientierte Aufgaben im Ingenieurstudium oft mit
Wiederholungsstrategien bearbeitet werden. Es ist daher denkbar, dass
Ingenieurstudierende keine groe Umstellung im Vergleich zur Schule
durchlaufen miissen, da die Strategien des Ubens und Auswendiglernen auch im

Studium haufig zielfiihrend sind (Liebendorfer et al, 2022).

Aspekt Mathematik fiir Mathematik im Fach- bzw.
Ingenieur:innen gymnasialen Lehramtsstudium
Ziel der Lehre Mathematik als Werkzeug zur Einfiihrung in wissenschaftliches

Anwendung in anderen
Disziplinen

Arbeiten mit Fokus auf formale
Begriffsbildung und deduktives
Beweisen

Fachliche Inhalte
(zu Beginn des

Lineare Algebra und Analysis

Lineare Algebra und Analysis

Studiums)

Organisatorische ~ Vorlesungen, Ubungen, Tutorien Vorlesungen, Ubungen, Tutorien

Aspekte und Klausuren und Klausuren

Hausaufgaben Hausaufgaben oft freiwillig oder Hausaufgaben oft verpflichtend,
mit Bonuspunkten fiir Klausur um Studienleistung zu erbringen

Art der Aufgaben  (Klausur-)Aufgaben stark (Klausur-)Aufgaben prozedural
prozedural und konzeptuell gemischt

Eigenstédndiges Mehr als die Hilfte der gesamten ~ Etwa zwei Drittel der gesamten

Lernen Lernzeit (Liebendorfer et al., Lernzeit (Goéller, 2020, S. 5)

2022)

Lernstrategien

Wiederholungsstrategien oft
ausreichend

Elaborationsstrategien sowie
Wiederholungsstrategien
notwendig

Rolle der
Mathematik

Mathematik als ,,Nebenprodukt*

Bewusste Entscheidung fiir
Mathematik

Tabelle 2: Vergleich zwischen Mathematik fiir Ingenieur:innen und Mathematik im Fach bzw.
gymnasialen Lehramtsstudium
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Ein weiterer bedeutender Punkt betrifft die Rolle der Studierenden und ihre
Einstellungen zur Mathematik. Im Fach- oder Lehramtsstudium fand eine
bewusste Entscheidung fiir das Fach Mathematik statt, wihrend
Ingenieurstudierende ihr Studium aufgrund eines allgemeinen Interesses an
ingenieurwissenschaftlichen Anwendungen gewihlt haben. Mathematik stellt
hier cher ein ,Nebenprodukt® dar, das notwendig ist, um die
ingenieurwissenschaftlichen Ziele zu erreichen. Diese unterschiedliche
Ausgangslage kann dazu fithren, dass die Motivation zur Auseinandersetzung mit
mathematischen Inhalten im Ingenieurstudium geringer ist und stirker
pragmatisch geprégt ist. Dariiber hinaus kann die Bewertung mathematischer
Inhalte je nach Studiengang variieren — ein Unterschied, der moglicherweise auch
durch die jeweilige Studienkultur beeinflusst wird.

Tabelle 2 stellt den Vergleich zwischen der Mathematik fiir Ingenieur:innen und
fiir das Fach- bzw. gymnasiales Lehramtsstudium zusammen. Die Tabelle erhebt
dabei keinen Anspruch auf Vollstindigkeit und basiert ausschlieBlich auf den
zuvor genannten Aspekten.

1.3 Die Bedeutung von Hausaufgaben im mathematischen
Lernprozess

Wie bereits erwahnt, sind mathematische Lernprozesse von Studierenden der
Fokus dieser Arbeit. Angesichts der Lernprozesse wird der Bearbeitung der
wochentlichen Hausaufgaben eine besondere Bedeutung beigemessen. Diese sind
als Teil der eigenstdndigen Selbstlernzeit vorgesehen und gelten gleichzeitig als
zentraler Aspekt des mathematischen Lernens von Studierenden (z. B. Goller,
2020, S. 4f.; Liebendorfer et al., 2022). Im ingenieurwissenschaftlichen Studium
spielt die eigenstéindige Lernzeit ebenfalls eine zentrale Rolle und ist unerlésslich
fiir den Lernerfolg. Hausaufgaben sind dabei zwar nicht unbedingt verpflichtend,
stellen fiir Studierende aber ebenfalls eine wesentliche Ressource zum Lernen dar
(Kolbe & Wessel, 2022). Ausgehend von der bedeutenden Rolle, die
Hausaufgaben hinsichtlich des mathematischen Lernens im
ingenieurwissenschaftlichen Studium einnehmen, liegt es nahe, diesen
Lernprozess genauer zu untersuchen. In der vorliegenden Arbeit wird daher ein
Fokus auf die Bearbeitungsprozesse von Hausaufgaben gelegt.

1.3.1 Hausaufgaben als Problem?

Obwohl wochentliche Hausaufgaben das Ziel haben, das Verstindnis und die
Anwendung des gelernten Stoffs zu fordern, stellen sie fiir viele Studierende eine
Herausforderung dar. Wie Studien zeigen, kimpfen Studierende hiufig mit der
Bearbeitung dieser Aufgaben (z. B. Liebendorfer & Goller, 2016). Der damit
verbundene Zeitaufwand, eigenstindig Losungen zu finden, fiihrt regelmiBig zu
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Schwierigkeiten und Uberforderung. Es stellt sich daher die Frage, ob die
Bearbeitung der wochentlichen Hausaufgaben als Problem aufgefasst werden
kann. Um dies zu kldren, lohnt sich ein Blick auf verschiedene Definitionen des
Begriffs Problem.

In der psychologischen Literatur werden Probleme als Situationen beschrieben,
in denen jemand etwas mochte, jedoch nicht sofort weil, welche Handlung er
ausfiihren soll, um sein Ziel zu erreichen. Newell und Simon (1972) formulieren
dies wie folgt:

,»A person is confronted with a problem when he wants something and does not know immediately
what series of action he can perform to get to it.” (Newell & Simon, 1972, S. 72)

In der Definition von Ddrner (1987) wird der strukturelle Aspekt eines Problems
hervorgehoben.

,.Ein Problem ist also gekennzeichnet durch drei Komponenten: 1. Unerwiinschter Anfangszustand s,
2. Erwiinschter Endzustand s, 3. Barriere, die die Transformation von s, in s, im Moment
verhindert*. (Dorner, 1987, S. 10)

Nach den beiden Definitionen kann ein Problem allgemein als Situation
beschrieben werden, bei der ein Anfangszustand (ungeldste Hausaufgabe) durch
Uberwindung von Barrieren in einen Zielzustand (geloste Hausaufgabe)
iiberfiihrt werden soll. Fiir Hausaufgaben bedeutet dies, dass Studierende von der
Aufgabenstellung ausgehend Hindernisse bewiltigen miissen, um eine Losung zu
erreichen.

In der Mathematikdidaktik wird das Konzept des Problems spezifischer
angewendet. Vollrath (1992) bezieht das Wort Problem auf eine Aufgabe:

,,Im folgenden verstehen wir unter einem Problem eine Aufgabe, die dem Bearbeiter beim Losen eine
Barriere entgegenstellt. Ob eine Aufgabe ein Problem darstellt, hingt von den Erfahrungen,
Kenntnissen und Fahigkeiten des Problemldsers ab.“ (Vollrath, 1992, S. 127)

Dabei wird auBBerdem betont, dass es nicht nur auf die Aufgabe selbst, sondern
auch auf die Erfahrungen, Kenntnisse und Fahigkeiten der Person ankommt,
welche die Aufgabe bearbeitet und somit zusitzlich dariiber entscheidet, ob
tatsichlich ein Problem vorliegt. Es muss demnach geklart werden, ob
Studierende bei der Bearbeitung von Hausaufgaben auf Hindernisse stof3en.

Aufgrund der personenabhingigen Natur eines Problems ist es nicht mdglich,
eine generalisierende Aussage dariiber zu treffen, ob eine bestimmte Aufgabe
immer ein Problem darstellt. Vielmehr hidngt dies von den individuellen
Erfahrungen, Kenntnissen und Fahigkeiten der Person ab, die die Aufgabe
bearbeitet  (Vollrath,  1992).  Dennoch  kénnen aus  bisherigen
Forschungsergebnissen Hinweise abgeleitet und Vermutungen aufgestellt
werden, die darauf hinweisen, dass Studierende bei der Bearbeitung von
Hausaufgaben hiufig auf Barrieren stofen. So haben Liebendorfer und Goller
(2016) gezeigt, dass Studierende sowohl aus dem Fachstudium als auch aus dem
gymnasialen Lehramtsstudium (Physik) oft an ihre fachlichen Grenzen geraten,
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wenn sie wochentliche Hausaufgaben bearbeiten. Stenzel (2023a, S. 13f.) geht
sogar so weit, zu behaupten, dass ein Grof3teil der Aufgaben, die Studierende in
der Hochschule bearbeiten, fiir sie Probleme darstellen. Ein wesentlicher Grund
dafiir ist die hohe Frequenz an Wissenskomponenten, die fiir das Versténdnis und
die Bearbeitung erforderlich sind. Dies fiihrt unter anderem auch dazu, dass
vermeintliche Routineoperationen nicht in die kognitiven Strukturen der
Studierenden  internalisiert sind  (dies  wiirde insbesondere  auf
Grenzwertbestimmungen zutreffen). Zusitzlich kann vermutet werden, dass
einige Studierende nicht iiber die notwendigen Strategien verfiigen, um
bestimmte Aufgabenformate erfolgreich zu l6sen (fiir Beweise siche z. B. Weber,
2014). Selbst wenn sowohl Wissen als auch Strategien vorhanden sind, garantiert
dies nicht zwangsldufig einen erfolgreichen FEinsatz. Eine unzureichende
Steuerung des eigenen Bearbeitungsprozesses kann dementsprechend dazu
fithren, dass vorhandene Ressourcen nicht optimal genutzt werden.

Es bleibt die Frage, ob diese Argumente auch auf den
ingenieurwissenschaftlichen Kontext iibertragen werden konnen. Im
Ingenicurbereich sind die mathematischen (Haus-)Aufgaben haufig stirker
verfahrensorientiert und lassen sich durch ihre reine Aufgabenanalyse eher dem
prozeduralen Wissen zuordnen. Es stellt sich daher die Frage, ob solche Aufgaben
als Problem eingeordnet werden konnen. Auch hier gilt, dass dies stark
personenabhéngig ist. Eine verfahrensorientierte Aufgabe kann fiir Studierende
durchaus ein Problem darstellen, insbesondere wenn bestimmte Verfahren noch
nicht automatisiert sind (Stenzel, 2023a, S. 13f.). Selbst wenn ein Verfahren oder
eine Strategie bekannt ist, bedeutet dies nicht zwangslaufig, dass diese korrekt auf
die gegebene Situation angewendet wird. Ein weiterer Punkt ist die
Wahrnehmung der Mathematik selbst. Studierende aus beiden Studiengéngen
wiirden behaupten, dass die Mathematik, die sie bearbeiten miissen, schwierig ist.
Dies zeigt, dass die empfundene Schwierigkeit nicht primar vom Studiengang
oder den Aufgabenstellungen abhédngt, sondern eher von individuellen
Erfahrungen und Fahigkeiten (Vollrath, 1992) sowie dem jeweiligen Kontext, in
dem Mathematik angewandt wird.

Zusammenfassend ldsst sich festhalten, dass das Bearbeiten wochentlicher
Hausaufgaben in dieser Arbeit (vorsichtig) als Problem fiir Studierende aufgefasst
werden kann. Die Frage, inwieweit Hausaufgaben tatséchlich als Probleme
wahrgenommen werden, wird zudem als Forschungsfrage aufgegriffen und im
Kapitel 6.4.3 ausfiihrlich empirisch beantwortet.

1.4 Zielsetzung dieser Arbeit

Die Forschung dieser Arbeit setzt nach Hochmuth und Schreiber (2016) beim
Lernen von Mathematik an. Mit der Auffassung, dass die Bearbeitung von
mathematischen Hausaufgaben fiir Studierende Probleme darstellen (Kapitel
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1.3.1), erscheint es aufgrund des Problemcharakters sinnvoll, die Theorie des
mathematischen Problemldsens fiir die Betrachtung der Bearbeitungsprozesse
mathematischer Hausaufgaben heranzuziehen. Die Theorie des mathematischen
Problemlosens bietet dafiir eine passende Grundlage, da sie Lernen als
Problembearbeitungsprozess betrachtet (Leuders, 2017) und somit direkte
Ankniipfpunkte bietet, um die typischen Denkprozesse der Studierenden beim
Losen mathematischer Aufgaben zu untersuchen. Aufgrund der bislang geringen
Forschungslage zu authentischen Lernsituationen wird in der vorliegenden Arbeit
ein beschreibender Ansatz gewihlt. Ziel ist es, die Lernprozesse im Kontext des
mathematischen Problemlosens umfassend darzulegen und so ein tieferes
Verstdndnis dieser Prozesse zu ermoglichen. Eine solche empirische
Untersuchung ist wichtig, da sie tiefere Einblicke in die Art und Weise geben
kann, wie Studierende mit mathematischen Problemen umgehen und
mathematisch lernen. Die theoretischen Grundlagen fiir das mathematische
Problemlésen werden in Kapitel 2 dargestellt (Abbildung 3).

Mathematisches Lernen im (Ingenieur-)Studium

Verdichtung der Lernprozesse: Bearbeiten von

f.
%,
3
¢
< Hausaufgaben
%
(34
<,
2
©

Hausaufgaben als Problem?!

Kapitel 2 (Theorie) | Mathematisches Problem|&sen

Abbildung 3: Von der Motivation zur Theorie des mathematischen Problemlosens
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2 Mathematisches Problemlosen mit Blick auf die
Hochschule

Dieses Kapitel behandelt die theoretische Beschreibung des mathematischen
Problemlosens. Zunichst folgt eine Auseinandersetzung mit der Relevanz des
(mathematischen) Problemldsens fiir das Ingenieurstudium (Kapitel 2.1). Des
Weiteren folgt eine Begriffsbeschreibung (Kapitel 2.2) zum mathematischen
Problemlosen. Die anschliefenden Ausfithrungen werden anhand der vier
Kategorien des mathematischen Problemlosens nach Schoenfeld (1985)
gegliedert: Steuerung (=Control) (Kapitel 2.3), Wissen (=Resources) (Kapitel
2.4), Heurismen (=Heuristics) (Kapitel 2.5) und Beliefs (Kapitel 2.6). Letztlich
werden vier empirische Studien vorgestellt, die fiir die vorliegende Arbeit
bedeutsam sind (Kapitel 2.7).

2.1 Relevanz des (mathematischen) Problemlosens fiir das
Ingenieurstudium

Mathematisches Problemldsen nimmt nicht nur in der schulischen Ausbildung
und im Mathematikstudium eine zentrale Rolle ein, sondern wird auch als
wesentlicher Bestandteil des Ingenicurstudiums angeschen (Jonassen et al.,
2006). Es wurde festgestellt, dass die Bearbeitung von Lehrbuchaufgaben zu den
hiufigsten und zeitintensivsten Tétigkeiten im Ingenieurstudium gehort (Taraban
et al., 2011). Insbesondere die Bearbeitung von mathematischen Hausaufgaben
spiegelt dies wider. Studierende miissen einen erheblichen Zeitaufwand
investieren, um sich mit solchen Aufgaben auseinanderzusetzen, die hiufig als
Probleme aufgefasst werden kénnen (Kapitel 1.3.1). In diesem Kontext findet das
mathematische Problemlosen vor allem im Rahmen der wdchentlichen
Hausaufgaben statt, die einen wesentlichen Bestandteil des Studiums ausmachen
und oft den grofiten Teil der Lernzeit der Studierenden beanspruchen (Kapitel
1.2.7). Auch die SEFI (European Society for Engineering Education) erkennt die
Bedeutung des mathematischen Problemldsens an und betrachtet es als eine der
Kompetenzerwartungen® fiir das Ingenieurstudium (Alpers et al., 2013):

,»This competency comprises on the one hand the ability to identify and specify mathematical
problems (be they pure or applied, open-ended or close) and on the other hand the ability to solve

mathematical problems (including knowledge of the adequate algorithms)” (Alpers et al., 2013, S.
13).

In den weiteren Ausfithrungen gehen sie auf das Level (Reproduction,
Connection, Reflection) ein, welches von Studierenden beziiglich der
mathematischen Kompetenzen erreicht werden sollte. Dabei wird festgelegt, dass

5 Diese basieren auf dem didnischen KOM-Projekt (Niss, 2002; Niss & Hejgaard, 2011).
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mathematisches Problemlgsen fiir einen praxisorientierten Kurs im Studiengang
Maschinenbau sowohl beziiglich Reproduction als auch Connections als very
important und lediglich beziiglich Reflection als medium important eingestuft
wird. Diese Einstufung basiert darauf, welche typischen mathematischen
Aufgaben Ingenieur:innen zu bewiltigen haben (Alpers et al., 2013, S. 18).
Mathematisches Problemlosen wird daher als ein wichtiger Teil des
Ingenieurstudiums angesehen. Besonders im ersten Semester wird der Grundstein
der mathematischen Fahigkeiten gelegt, die im weiteren Verlauf des Studiums
und im zukiinftigen Beruf notwendig sind.

Trotz einiger Studien, die sich mit Problemlésen im Kontext des
Ingenieurstudiums befassen (Jonassen et al., 2006; Kirn & Benson, 2018;
Lehmann, 2018; Nordstrom & Korpelainen, 2011), fehlt bislang eine detaillierte
Prozessanalyse zum authentischen mathematischen Problemlésen von
Ingenieurstudierenden. Fiir das SchlieBen dieser Forschungsliicke ist es
notwendig, die Prozesse des mathematischen Problemldsens detailliert zu
untersuchen, da bspw. standardisierte Problemldsetests zwar Ergebnisse liefern,
jedoch wenig Einblick in die konkreten Denk- und Losungswege der
Studierenden bieten. Nur durch eine Prozessanalyse lassen sich typische
Strategien, Schwierigkeiten und individuelle Herangehensweisen erfassen, die fiir
gezielte UnterstiitzungsmaB3nahmen entscheidend sind.

2.2 Begriffsklirung zum Problemlosen

In Kapitel 1.3.1 wurden bereits einige Definitionen zur Charakterisierung des
Begriffs ,,Problem® vorgestellt. Ein Problem wird typischerweise durch einen
Anfangs- und Endzustand beschrieben, wobei eine Person beim Ubergang von
Anfangs- zum Endzustand auf eine Barriere stoft (Abbildung 4). Diese Barriere
kennzeichnet das Problem und hebt den Prozesscharakter hervor, da eine ,,series
of action” (Newell & Simon, 1972, S. 72) erforderlich ist, um das Ziel zu
erreichen. Rott (2013, S. 19) bemerkt, dass in der Literatur oft eine saubere
Trennung der Begrifflichkeiten Problem und Problemldseprozess nicht gegeben
ist. Seine eigene Definition verbindet ebenfalls beide Aspekte:

,,Eine Aufgabe ist flir ihren Bearbeiter (genau) dann eine (mathematische) Problemaufgabe, wenn bei

ihrer Bearbeitung ein Prozess des Problemlésens stattfindet (im Gegensatz zu einem Routineprozess)‘
(Rott, 2013, S. 32)

Erginzend wird auch der Begriff des Routineprozesses herangezogen, um eine
Unterscheidung zu ermdglichen. Ein Routineprozess zeichnet sich dadurch aus,
dass wihrend der Bearbeitung keine Barriere existiert. Insgesamt sind demnach
sowohl ein Problem als auch der damit verbundene Problemléseprozess
personenabhingig und werden von den individuellen Erfahrungen und
Féhigkeiten bestimmt.
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Mit dieser Definition verlagert Rott (2013) auflerdem den Schwerpunkt der
Definition des Problems bzw. der Problemaufgabe hin zu einem
Problemléseprozess.

Barriere
Ausgangszustand Strategie Zielzustand
L. A
L

Problemldsen

Abbildung 4: Bestandteile des Problemldsen (Ollinger, 2017)

Anhand eines Problemldseprozesses kann bewertet werden, ob es sich fiir eine
bestimmte Person bei einer Aufgabe um ein Problem handelt (Rott, 2013, S. 32).
Wihrend eines solchen Problemldseprozesses miissen Mittel erst konstruiert oder
passend konstruiert werden. Diese Mittel konnen vielfiltig sein, z. B. Werkzeuge,
Ansitze, Konzepte, Strategien, Ideen, Gestalten, usw. (Holzépfel et al., 2018, S.
16). Schoenfeld (z. B. 1985) beschéftigt sich in seinen vielen Arbeiten ebenfalls
mit dem Problemldsen, liefert allerdings keine klare Definition. Stattdessen stellt
er vier Kategorien heraus, die eine Erklarung des Verhaltens sowie einen Einfluss
hinsichtlich Erfolgs und Misserfolg auf Problemldsesituationen haben:
Resources, Heuristics, Control und Beliefs. Im weiteren Verlauf werden auf
deutsche Begriffe dieser vier Kategorien zuriickgegriffen, wobei der Ausdruck
Beliefs aus dem Englischen iibernommen wird.

Wissen (Resources): Das mathematische Wissen, das die Person besitzt und auf
ein aktuelles Problem angewandt werden kann.

Heurismen (Heuristics): Strategien und Techniken, um Fortschritte bei
unbekannten oder unkonventionellen Problemen zu erzielen, sowie Faustregeln
fiir effektives Problemldsen.

Steuerung (Control): Globale und lokale Entscheidungen hinsichtlich der
Auswahl und Verwendung von Wissen und Heurismen.

Beliefs: Die ,,mathematische Weltsicht™ einer Person, also die Gesamtheit von
(nicht unbedingt bewussten) Einflussfaktoren, die das Verhalten -eines
Individuums bestimmen.
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Wie in den kurzen Beschreibungen bereits deutlich wird, iiberlappen und
interagieren die Kategorien miteinander (Schoenfeld, 1985, S. 44). Es reicht
bspw. nicht aus, lediglich mathematisches Wissen zu haben, dieses muss auch an
den richtigen Stellen beim Problemldsen eingesetzt werden konnen. Anhand
dieser Kategorien erfolgt die Strukturierung der folgenden Kapitel. Obwohl
Schoenfeld in seinen Ausfithrungen die Bedeutung der einzelnen Kategorien nicht
ausdriicklich betont, ldsst die Reihenfolge vermuten, dass dem Wissen die grofite
Bedeutung zugeschrieben wird. Diese implizite Priorisierung (falls diese
existiert) soll in dieser Arbeit auch nicht verdndert werden. Dennoch wird im
Folgenden zunichst auf die Steuerung eingegangen. Dies liegt daran, dass die
Auswertung zur Steuerung in der Ergebnisdarstellung am besten geeignet ist, um
gleichzeitig einen umfassenden Uberblick iiber die Problemldseprozesse der
Studierenden zu gewinnen.

2.3 Steuerung

Im Laufe der Zeit wurden fiir Control viele verschiedene Begriffe, wie z. B.
Monitoring, self-regulation sowie Metakognition, genutzt. Fiir diese Arbeit wird
der Begriff Steuerung verwendet (wie z. B. in Holzépfel et al., S. 87). Vereinfacht
gesagt geht es dabei um die Ressourcenverteilung wahrend kognitiver Aktivititen
und des Problemldsens (Schoenfeld, 2016). Steuerung gliedert sich dabei in zwei
verschiedene Level. Zum einen mittels des praskriptiven Ansatzes, welcher sich
damit beschiftigt, wie Heurismen und Wissen effektiv an spezifischen Stellen
wihrend des Problemldsens eingesetzt werden konnen (lokal). Zum anderen
mittels des allgemeineren Ansatzes, welcher sich dem Prozess des Problemldsens
als Ganzes ndhert und das Verhalten der problemlésenden Person beschreibt
(global). In dieser Arbeit wird sich lediglich auf das allgemeine (globale) Level
von Steuerung fokussiert.

2.3.1 Konzeptualisierung von Steuerung auf dem allgemeinen Level

Steuerung auf dem allgemeinen Level beschreibt, wie verschiedene Arten von
Kontrollverhalten die Problemldseleistung beeinflussen konnen. Im positiven
Sinne besitzt Steuerung einen groBen Einfluss auf den Erfolg von
Problemldseprozessen. Ineffizientes Verhalten, also eine negative Steuerung,
hindert den Erfolg, indem es den Zugriff auf potenziell verfiigbares Wissen oder
niitzliche Heurismen verhindert. Dabei geht es allerdings nicht nur um den
Einsatz des eigenen heuristischen Wissens, sondern um die Art und Weise, wie
das gesamte mathematische Wissen eingesetzt wird (Schoenfeld, 1985, S. 114).
Bei Steuerung handelt es sich demnach um das Verhalten von Personen, die sich
in einem Problemldseprozess befinden.
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Auf dem allgemeinen Level von Steuerung identifiziert Schoenfeld (1985, S.
116ff.) vier Verhaltenstypen bei der Bearbeitung von Problemaufgaben und
beschreibt deren Einfluss auf den Erfolg beim Problemldsen:

Typ A: Steuerung hat einen negativen Einfluss auf die Losung, da schlechte
Entscheidungen Misserfolg garantieren: ,,Wild goose chases® fithren dazu, dass
vorhandenes Wissen nicht effektiv genutzt wird und potenziell niitzliche
Losungsansétze unbeachtet bleiben.

Typ B: Steuerung verhélt sich neutral. ,,Wild goose chases” werden verhindert,
bevor sie als solche ausarten, aber Wissen wird nicht zu seinem vollen Potenzial
ausgenutzt.

Typ C: Steuerung hat einen positiven Einfluss auf die Losung. Wissen wird
bedacht ausgewihlt und aufgrund sorgfiltiger Uberwachung in angemessener
Weise genutzt oder verworfen.

Typ D: Es besteht (fast) kein Bedarf fiir Steuerung. Geeignetes Wissen und
geeignete Verfahren zur Problemlésung werden aus dem Langzeitgedédchtnis
abgerufen.

Diese Typen geben Dbereits eine grobe Vorstellung davon, wie
Problemloseprozesse beziiglich Steuerung auf allgemeinem Level aussehen
konnen. Gerade weil die Steuerung in Problemldseprozessen oft komplex und
vielschichtig ist, erweisen sich Problemlosemodelle als besonders geeignet, um
die Mechanismen und Phasen der Steuerung auf einer iibergeordneten Ebene
systematisch zu beschreiben. Solche Modelle erlauben es, ecinzelne
Steuerungsmerkmale klarer zu erkennen und das (mathematische) Verhalten in
verschiedenen Phasen des Problemlosens prizise zu fassen. Daher wird im
Folgenden eine Auswahl von verschiedenen Problemlésemodelle vorgestellt, die
auf der allgemeinen Ebene das Problemldseverhalten beschreiben. Die
vorgestellten Modelle sind sowohl in der psychologischen als auch in der
mathematikdidaktischen Literatur und Forschung fest verankert.

2.3.2 Problemléosemodelle aus der Psychologie

Bevor sich mit mathematischen Problemldsemodellen beschéftigt wird, werden
zunichst zwei Modelle aus der Psychologie vorgestellt. Diese liefern wertvolle
Ansidtze, die sich auch in den mathematischen Problemlésemodellen
wiederfinden lassen. In der Regel wird der gesamte Problemldseprozesse in

6 ,,Wild goose chase* ist nach Schoenfeld ein spezifisches Problemldseverhalten, bei denen
Problemldsende einen Ansatz verfolgen und ohne Steuerung diesen Ansatz bis zum Ende
der Bearbeitungszeit verfolgen. ,,Wild goose chases” werden in Kapitel 6.1.5 erneut
thematisiert.
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Abschnitte bzw. Phasen unterteilt, in denen bestimmtes (mathematisches)
Verhalten von der problemldsenden Person beobachtet werden kann.

Problemloseprozesse nach Dewey

Die ersten Modelle des Problemldsens stammen aus der Psychologie zu Beginn
des 20. Jahrhunderts. John Dewey war der Erste, der ein Problemldseprozesse in
Stufen unterteilt hat (Neuhaus, 1995). Nach Dewey (2002, S. 56) konnen
Problemldseprozesse in fiinf verschiedene Stufen differenziert werden.

1. Suggestions: In dieser Stufe begegnet einer Person eine schwierige
Situation oder ein Problem. Diese Unsicherheit initiiert einen
Denkprozess.

2. Intellectualization: Das Problem wird klarer definiert. Dabei muss die
Natur der Schwierigkeit aufgedeckt und der besondere Charakter des
Problems herausgestellt werden.

3. The Guiding Idea, Hypothesis: Es werden potenzielle Losungen,
Hypothesen, Ideen und Erklarungsansitze fiir das Problem entwickelt.
Dieser Schritt ist der kreative Teil des Prozesses, bei dem nicht voreilig
der erste Gedankengang verfolgt wird, sondern verschiedene durchdacht
werden.

4. Reasoning (in the Narrower Sense): Jede der aufgestellten Hypothesen
wird griindlich gepriift und hinsichtlich ihrer Umsetzbarkeit sowie
Erfolgschancen bewertet. Diese Hypothesen werden nach Vor- und
Nachteilen abgewogen, auf Erfolgschancen iiberpriift sowie
vermeintlich abwegige Losungen verworfen.

5. Testing the Hypothesis by Action: Die vielversprechendste Losung wird
in die Tat umgesetzt. Im Anschluss wird bewertet, ob das Problem damit
gelost werden konnte. Falls dem nicht so ist, beginnt der Prozess von
vorne.

Problemloseprozesse nach Newell und Simon

In der heutigen Psychologie hat das Modell von Newell und Simon (1972) eine
besondere Bedeutung. Ollinger (2017) beschreibt das Modell von Newell und
Simon (1972) als das wichtigste Paradigma fiir die aktuelle
Problemldseforschung. Der zentrale Begriff fiir das Modell ist der Problemraum.
Dieser umfasst alle moglichen Zustinde, die durch die Anwendung der
verfligbaren Operatoren entstehen konnen. Demnach besteht der Problemraum
aus allen mdglichen Zustdnden, die fiir die Losung eines Problems auftreten
konnen. Der Problemraum wird mittels einer Aufgabenanalyse bzw.
Problemanalyse  festgestellt  (=Problemreprdsentation).  Sobald  diese
Aufgabenanalyse durchgefiihrt wurde, kann jede denkbar mégliche Losung im
Problemraum dargestellt werden (=Suche nach einer Losung). In der Regel kann
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der Mensch nicht alle Moglichkeiten durchdenken, sondern muss gewisse
Heuristiken (z. B. Vermeidung von Schleifen, die Unterschiedsreduktion oder
Ziel-Mittel-Analyse) nutzen, um weniger sinnvolle Ldsungsmoglichkeiten
auszuschlieBen (Ollinger, 2017). Eine mogliche Darstellung des Problemraumes
zeigt Abbildung 5.

Schema aktiviert
Y
reppr;ﬁ:gﬁon Sc harrl:: .:Wen___ jﬁgr Ebnsmhg > f;:rs fl_ut?em: g —® Erfolg
1 T Misserfolg

Abbildung 5: Schematische Darstellung des Problemloseprozesses (Gick, 1986, S. 101)

Arbinger (1997, S. 33) weist darauf hin, dass ein solcher Prozess keinesfalls als
linearer Prozess verstanden werden sollte. In jeder der dargestellten Phasen sind
sowohl Riickspriinge als auch ein erneuter Durchlauf des Prozesses mdglich. In
der heutigen Problemldseforschung der Psychologie findet die zyklische
Auffassung des Problemldseprozesses gegeniiber dem linearen Ansatz den
iiberwiegenden Zuspruch (Ollinger, 2017).

2.3.3 Problemlosemodelle aus der Mathematikdidaktik

Problemloseprozesse nach Polya

George Polya hat mit seinem Buch ,,How to solve it (1945) (oder auf Deutsch:
,»Schule des Denkens”, 1949) auf das mathematische Problemldsen einen
signifikanten Einfluss. Als einer der ersten Autoren beschéftigt er sich mit
didaktischen Fragen, um Lernende beim mathematischen Problemlésen zu
unterstiitzen (Holzdpfel et al.,, 2018, S. 23). In seiner Arbeit beschreibt er
mathematische Problemldseprozesse und teilt diese in vier unterschiedliche
Phasen ein. Diese Phasen werden mit einigen Fragen und Handlungsimpulsen
verbunden, um bei der Bearbeitung eines Problems zu unterstiitzen. Die
Beschreibungen von Polya basieren auf theoretischen Uberlegungen sowie
eigenen Beobachtungen von Studierenden (Polya, 1945). Insgesamt erkennt man
aus den Beschreibungen von Polya einen starken Bezug zu der Einteilung von
Problemloseprozessen nach Dewey (2002). Die vier Phasen umfassen (Polya,
1949, S. 18ff.):
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1. Das Verstehen der Aufgabe (Was ist unbekannt? Was ist gegeben?)

2. Das Ausdenken eines Plans (Kannst du die Aufgabe anders ausdriicken?
Kennst du eine verwandte Aufgabe?)

3. Das Ausfiihren des Plans (Kannst du deutlich sehen, dass jeder Schritt
richtig ist?)

4. Die Riickschau (Kannst du das Resultat kontrollieren? Kannst du es auf
verschiedene Weise ableiten?

In der 1. Phase (Verstehen der Aufgabe) beschiftigt man sich damit, ein tieferes
Verstidndnis der Aufgabe zu entwickeln und damit einen Zugang zu schaffen.
Dafiir ist es wichtig, die Anforderungen der Aufgabe klar zu erfassen. Um dies zu
erreichen, kann es hilfreich sein, die Aufgabe in eigenen Worten wiedergeben zu
konnen, das Gesuchte und das Gegebene voneinander getrennt aufzuschreiben,
geeignete Beschriftungen einzufiihren oder sich den Sachverhalt in einer Skizze
zu verdeutlichen. Solche Reprisentationswechsel erleichtern es, wesentliche
Merkmale der Problemstellung zu erkennen und eine klare Vorstellung fiir den
Losungsweg zu entwickeln. (Pdlya, 1949, S. 19ft.).

In der 2. Phase (Ausdenken eines Plans) wird ein Losungsplan erarbeitet, der das
grundlegende Vorgehen im Ldsungsprozess skizziert. Dabei ist es hilfreich,
dhnliche, bereits geloste oder dquivalente, leichter zu l6sende Probleme zu
betrachten. Insbesondere die Untersuchung von Spezialfidllen oder
Verallgemeinerungen kann wertvolle Ansétze liefern. Demnach ist fiir diese
Phase zentral, einen Plan zu entwerfen, der die Verbindung zwischen den
gegebenen Informationen und dem gesuchten Ergebnis herstellt. Der Plan muss
allerdings nicht perfekt ausgearbeitet sein, sondern soll vielmehr eine grobe
Struktur liefern (Pélya, 1949, S. 221f.).

In der 3. Phase (Ausfiihrung des Plans) wird der zuvor liberlegte Plan ausgefiihrt.
Einen Plan umzusetzen ist oft einfacher, als diesen zu entwerfen. Die kreative
Arbeit wurde bereits bei dem Ausdenken eines Plans erledigt. Dennoch ist es
wichtig, geduldig zu bleiben und jeden Schritt sorgfiltig zu kontrollieren. Der
Fokus liegt nun auf der detaillierten Ausarbeitung und dem kritischen Uberpriifen
der einzelnen Losungsschritte (Polya, 1949, S. 26ft.).

Die 4. Phase (Riickschau) dient der erneuten Kontrolle des erzielten Ergebnisses
und des angewandten Losungswegs. Dabei wird einerseits auf Korrektheit sowie
Vollstiandigkeit kontrolliert und andererseits eine Reflexion vorgenommen, bei
der die verwendeten Techniken und Strategien iberpriift sowie alternative
Losungswege diskutiert werden. Durch die Riickschau soll zum einen das Wissen
gefestigt werden, zum anderen das Repertoire fiir weitere Probleme erweitert
werden (Pdlya, 1949, S. 28ff.).

Ein Kritikpunkt beziiglich der Beschreibungen von Polya ist die suggerierte
Linearitdt der Phasen, wie sie z. B. auch bei Dewey (2002) beschrieben sind.
Aufgrund des Aufbaus wird dem ,,Modell“ von Pélya oftmals ein linearer
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Charakter zugeschrieben. Einige Ausfithrungen deuten allerdings an, dass es nicht
unbedingt linear aufgefasst werden sollte.
,Diese Methode [...] ist nicht starr; sie darf es auch nicht sein, denn in diesen Dingen ist irgendein

starres, mechanisches, pedantisches Verfahren notwendig von Nachteil. Unsere Methode 148t eine
gewisse Elastizitdt und Variation zu, sie gestattet verschiedene Wege.* (Pélya, 1949, S. 35)

In der heutigen Zeit scheinen eher Problemldsemodelle gidngiger zu sein, die eine
Linearitit ausschlieBen (Ollinger, 2017). Dennoch nimmt Pélyas Beschreibung
eines Problemldseprozesses in der Mathematikdidaktik eine bedeutsame Rolle
ein. Viele weitere Arbeiten zum mathematischen Problemldsen basieren auf
Polyas Arbeit. Eine davon ist die Beschreibung von Problemldseprozessen nach
Schoenfeld (1985), welche im Folgenden vorgestellt wird.

Problemléseprozesse nach Schoenfeld

Schoenfeld hat mit seinem Buch ,,Mathematical problem solving™ (Schoenfeld,
1985) ebenfalls einen groBen Einfluss auf die Beschreibung von
Problemldseprozessen. Schoenfeld (1985) gab diesen Ablaufplan an Studenten,
um deren Problemldseverhalten zu trainieren. Darin stellt er einen idealen
Problemlosenden vor bzw. das systematischste Vorgehen eines guten
Problemlésenden (Schoenfeld, 1985, S. 107):

Analysis
Design
Exploration
Implementation
Verification

arwbdE

Der Prozess beginnt mit der Analysis der Aufgabe bzw. des Problems. Dies
bedeutet, dass ein Gefiihl fiir die Aufgabe entwickelt werden soll. Im Groben
werden die Fragen geklért: Was ist gegeben? Was genau wird verlangt? Dariiber
hinaus konnen weitere Tatigkeiten durchgefiihrt werden, z. B. in welchen
mathematischen Kontext die Aufgabe passt. Des Weiteren gehdrt das
aufmerksame Lesen der Aufgabenstellung’ sowie das Zeichnen von Diagrammen,
die Betrachtung von Spezialfillen oder die moglichen Vereinfachungen der
Aufgabe dazu (Schoenfeld, 1985, S. 108).

Design® ist zunichst keine eigene ,,Box* bzw. kein eigener Schritt im Prozess,
sondern begleitet den Prozess iiber die Gesamtheit des Prozesses. Die Funktion

7 In den empirischen Betrachtungen von Schoenfeld (1985) werden das Lesen der
Aufgabenstellung (Reading) und die Analysis voneinander getrennt. Dies wird in Kapitel
5.4.1 erneut aufgegriffen.

8 In den empirischen Betrachtungen von Schoenfeld (1985) wird dieser Teil als Planning
verstanden. Allerdings sind Planning und Design nicht gleich. Planning wird in dem
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von Design besteht darin, die problemlosende Person dauerhaft in Aktivititen
einzubinden, die zu einem gewissen Zeitpunkt als positiv fiir den Losungserfolg
angeschen wird. Demnach wird eine globale Perspektive iiber die getétigten
Handlungen eingenommen (Schoenfeld, 1985, S. 108).

Exploration ist das heuristische Herz des Prozesses. In dieser Phase werden die
meisten heuristischen Strategien genutzt. Hier wird nach &hnlichen oder
verwandten Aufgaben gesucht, die Aufgabe modifiziert oder verallgemeinert.
Aufgrund der Gewinnung neuer Erkenntnisse kann erneut zur Analysis oder
Design zuriickgekehrt werden (Schoenfeld, 1985, S. 110).

Implementation sollte (normalerweise) der letzte Schritt auf dem Weg der Losung
sein (Schoenfeld, 1985, S. 111). In dieser Phase wird der vorher aufgestellte Plan
Schritt-fiir-Schritt ausgefiihrt und ,,lokal“ gepriift (Rott, 2013, S. 55).
Verification sollte nach Schoenfeld (1985, S. 111) besonders betont werden. Es
kommt haufig vor, dass die Losung nicht mehr tiberpriift bzw. kontrolliert wird,
was zu negativen Konsequenzen fithren kann. Auf lokalem Level kdnnen z. B.
Fliichtigkeitsfehler entdeckt werden. Auf globalem Level (Kontrolle des
gesamten Prozesses) konnen alternative Losungen gefunden werden,
Verbindungen zu anderen fachlichen Inhalten hergestellt werden oder niitzlicher
Aspekte bewusstwerden. Verification kann somit zu einer verbesserten Fahigkeit
beim Problemldsen verhelfen (Schoenfeld, 1985, S. 111).

Abbildung 6 zeigt den Problemloseprozess nach Schoenfeld (1985) und Poélya
(1945). Darin wird die Ahnlichkeit der beiden Beschreibungen beziiglich der
Phasen deutlich, wobei bei Schoenfeld (1985) der Prozess um die Exploration
erweitert wird. Eine eigenstidndige Explorationsphase lasst sich als Erweiterung
der Phase ,,Ausdenken eines Plans* oder Zwischenschritt zwischen den Phasen
,Verstehen der Aufgabe* und ,,Ausdenken eines Plans“ nach Pdlya (1945)
interpretieren. Dadurch wird vor allem der Problemcharakter einer Aufgabe
betont, da die Exploration unter anderem fiir die Generierung von Ideen fiir das
Uberwinden einer Hiirde genutzt wird.

Obwohl die Modelle zur Beschreibung von Problemldseprozessen Ahnlichkeiten
aufweisen, bricht Schoenfeld (1985) allerdings den linearen Charakter. Damit
wird zusitzlich die Rolle metakognitiver und selbstregulatorischer Prozesse
deutlich. Dieser nicht-lineare Ansatz spiegelt auch eher die Aktivititen eines
natiirlichen Problemldseprozesses wider.

Episodenmodell (Kapitel 5.4.1) nicht mehr als global verstanden. Dies wird in Kapitel 5.4.1
erneut aufgegriffen.
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SCHOENFELD (1985) POLYA (1945)

Glven Problem
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[ Analysis  |e+—— [understanding the Problem |
[Design 1 Planning| 3] Exploration | | Devlsing a Plan |
[ implementation | | carrying out the Plan |
| Verlfication | | Looking Back ]

{

Verifled Solution

Abbildung 6: Der Problemldseprozess nach Schoenfeld (1985) und Polya (1945), iibernommen aus
Rott (2013, S. 62)

Problemloseprozesse nach Rott

Rott (2013) setzt sich in seinen Untersuchungen intensiv mit der Frage
auseinander, ob Problemldseprozesse eher linear verlaufen oder ob sie vielmehr
durch zyklische, nicht-lineare Strukturen geprigt sind. Basierend auf empirischen
Daten, die er in Problemldsesituationen mit Schiiler:innen der fiinften Klasse
erhoben hat, entwickelt er ein detailliertes deskriptives Modell. Dieses Modell
beriicksichtigt sowohl lineare als auch nicht-lineare Verldufe und tragt somit der
Komplexitit realer Problemldseprozesse Rechnung (Rott, 2013, S. 2971f)).
Dieses Modell (Abbildung 7) beinhaltet auBerdem mit Planning und Exploration
(wie bei Schoenfeld, 1985) sowohl strukturiertes als auch unstrukturiertes
Problemléseverhalten. Weiterhin bietet es die Moglichkeit, planendes Verhalten
durch die Verkniipfung von Planning und Implementation implizit, allerdings
auch explizit (Planning und Implementation getrennt) wiederzugeben. Dariiber
hinaus illustrieren die im Modell enthaltenen Pfeilstrukturen den Einfluss
metakognitiver Prozesse und selbstregulatorischer Strategien auf den
Problemloseverlauf. Sie veranschaulichen, inwiefern Lernende ihr eigenes
Vorgehen reflektieren, anpassen und steuern, um zu einer Losung zu gelangen.
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Abbildung 7: Der Problemldseprozess nach Rott (2013, S. 298)

2.3.4 Synthese zur Steuerung

Bei der Wahl -eines geeigneten Modells fiir die Analyse von
Problemloseprozessen wird in dieser Arbeit auf das Modell von Schoenfeld
(1985) zuriickgegriffen. Die aufgefiihrten psychologischen Modelle (Dewey
sowie Newell & Simon) bieten zwar eine gute Grundlage, allerdings ist das
Modell von Schoenfeld (1985) speziell fiir mathematische Kontexte gedacht und
geht somit mehr auf die speziellen Anforderungen und Dynamiken
mathematischen Denkens ein.

Dieses Modell ist besonders geeignet, da es ,,ehrliche” Problemldseprozesse
abbildet. Ein zentrales Merkmal dieses Modells ist die Erkenntnis, dass
Problemlosen nicht zwangsldufig in einer linearen Abfolge von Phasen
stattfindet, wie es in Polyas Modell (1945) suggeriert wird. In empirischen
Untersuchungen zeigen sich jedoch héufig nicht-lineare Verldufe (z. B. in Rott,
2013, S. 298). Problemldsende Personen springen zwischen den Phasen hin und
her, wechseln bspw. nach der Verification erneut in Planning.

Dariiber hinaus kann das Modell von Pélya als normativ angesehen werden. Er
beschreibt eine ideale Vorgehensweise, die in der Praxis jedoch selten identifiziert
werden kann. Dagegen sind die Modelle von Schoenfeld (1985) und Rott (2013)
deskriptiv angelegt. Sie zielen darauf ab, Problemldseprozesse so abzubilden, wie
sie in der Realitdt stattfinden. Fiir die Untersuchung von authentischen
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Problemldseprozessen in der Hochschule bietet ein deskriptives Modell deshalb
eine geeignete Grundlage.

Ein weiterer entscheidender Aspekt, der fiir Schoenfelds Modell (1985) spricht,
ist seine bereits erfolgte Anwendung in der Forschung, insbesondere in der Arbeit
von Stenzel (2023a), die sich mit hochschulischen Problemldseprozessen
beschéftigt. Darin wird gezeigt, dass Schoenfelds Modell (1985) auch in diesem
Kontext fruchtbare Einsichten in mathematischen Problemldseprozesse liefern
kann. Dadurch wird es ebenfalls leichter, die eigenen Forschungsergebnisse an
die bisherigen anzuschlief3en.

Zusétzlich ergidnzt Rott das Modell durch die Unterscheidung zwischen
strukturierten und unstrukturierten Prozessen, was fiir die Beschreibung und
Kategorisierung von Problemldseprozessen relevant ist. Diese Uberlegung wird
in den empirischen Einblicken beriicksichtigt.

Das Modell von Schoenfeld (1985), mit der Ergédnzung von Rott (2013), stellt
somit ein wesentliches Analyseinstrument beziiglich Steuerung auf allgemeinem
Level dar. In Kapitel 5.4.1 werden die vorherigen Uberlegungen aufgegriffen und
eine ausgeschirfte Version der Phasen vorgestellt.

2.4 Wissen

Wissen ist das Fundament, auf dem die Performanz des Problemldsens gebaut ist
(Schoenfeld, 1985, S. 46). Ohne iiber spezielles Wissen zu verfiigen, lassen sich
Probleme nicht 16sen, auch wenn die problemldsende Person in der Regel iiber
eine gute selbstregulatorische Fahigkeit verfiigt. Es geht also darum, welches
Wissen (Resources) beim Individuum wéhrend des Problemldsens zur Verfiigung
steht:

LIt is intended as an inventory of all the facts, procedures, and skills — in short, the mathematical
knowledge — that the individual is capable of bringing to bear on a particular problem. The idea is to
characterize what might be called the problem solver’s ’initial search space’.” (Schoenfeld, 1985, S.
17, eigene Hervorhebung)

2.4.1 Konzeptualisierung mathematischen Wissens nach Schoenfeld

Schoenfeld (1985) gibt in seinem Buch einen Einblick in das weite Spektrum an
Wissen, das beim Problemldsen zur Verfiigung stehen sollte. Dabei unterteilt er
in vier Klassen®: Die erste Klasse beinhaltet ,relevant facts known by the

9 Zu einem spiteren Zeitpunkt in seinem Buch (Schoenfeld, 1985, S. 54f.) erweitert Schoenfeld
auf 6 Arten. Er fligt sowohl ,,informal and intuitive knowledge about the domain“ und
.knowledge about the rules of discourse in the domain” hinzu. Beide Arten beziehen sich
dabei auf einen spezifischen mathematischen Inhaltsbereich, in dem informelles bzw.
intuitives Wissen sowie die eigene Auffassung der Regeln in diesem Inhaltsbereich bei der
Losung von Problemen hilfreich sind. Tiefergehende Beschreibungen sind in Schoenfeld
(S. 55f. und S. 61) zu finden.
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individual“ (Schoenfeld, 1985, S. 17). Diese sind entscheidend dafiir, wie man an
ein Problem herangeht. Ob eine mathematische Information vollstdndig, zu einem
Teil oder gar nicht vorhanden ist, kann erheblichen Einfluss auf die Losungen und
deren Erfolg haben. Dariiber hinaus gehort ebenfalls ,,broad understanding® dazu.
Im Bezug zur Geometrie'® sind dies z. B. das Erkennen von bestimmten
Eigenschaften aus einem Diagramm (z. B. eine Tangente an einem Kreis ist
orthogonal zu dem Radius des Kreises), das Ableiten von weiteren (niitzlichen)
Informationen, das Einzeichnen von Hilfslinien etc. Die zweite Klasse besteht aus
,algorithmic procedures known by the individual® (Schoenfeld, 1985, S.19).
Dabei werden vor allem handwerkliche Schritte, wie das Konstruieren bzw.
Zeichnen einer orthogonalen Geraden oder einer Winkelhalbierenden
beschrieben. Die dritte Klasse beinhaltet ,,routine procedures (Schoenfeld, 1985,
S. 19). Dazu gehéren mathematische Techniken, um ecine Aufgabe bzw. ein
Problem zu bearbeiten. Solche Techniken sind flir das Losen spezifischer
Aufgaben niitzlich. ,,Routine procedures” kdnnen komplex sein, da in einigen
Aufgaben z. B. zundchst gewisse Anforderungen iiberwunden oder weitere
Annahmen getitigt werden miissen, um eine solche ,routine” procedure
anwenden zu konnen. Diese Aktivitdten sind nicht-trivial, fithren zuletzt aber auf
die Anwendung der bestimmten Technik. Die vierte Klasse wird ,relevant
competencies” (Schoenfeld, 1985, S.19f.) genannt. Diese Klasse iiberlappt mit
den ,,routine procedures®, ist allerdings etwas breiter definiert. Zum einen sind
damit aufgabenspezifische Fertigkeiten (z. B. ist eine Person mit der ,routine
procedure® vertraut, Dreiecken die Kongruenz nachzuweisen?) und zum anderen
inhaltsspezifische heuristische Strategien (in der Geometrie z. B. das Zeichnen
einer Hilfslinie) gemeint.

Die Informationen miissen innerhalb dieser vier Klassen nicht unbedingt korrekt
sein und kénnen mit Fehlvorstellungen behaftet sein (Schoenfeld, 1985, S. 20).
Dennoch koénnen sie in dem Moment fiir das Individuum eine wahre Aussage
darstellen, nach der sie handeln. Fehlerhaftes Wissen fiihrt wiederum zu einem
erfolglosen Problemldseverhalten.

Die von Schoenfeld (1985) urspriinglich eingefiihrten vier Klassen weisen eine
Ahnlichkeit mit der heute in der Mathematikdidaktik verbreiteten Unterscheidung
zwischen konzeptuellem und prozeduralem Wissen auf. Wenn Schoenfeld (2016)
in spéteren Arbeiten von Wissen spricht, bezieht er sich ebenfalls auf diese
Unterscheidung von Wissensarten. Die mathematikdidaktische Literatur legt
aullerdem nahe, Wissen nicht nur in verschiedene Arten, sondern auch in
sogenannte Facetten zu unterteilen (z. B. Vollrath & Roth, 2012). Dadurch wird
Wissen in zwei Dimensionen differenziert: Wissensarten (Kapitel 2.4.2) und
Wissensfacetten (Kapitel 2.4.3). Beide Dimensionen finden Beriicksichtigung in
der Wissensmatrix von Prediger et al. (2011), die in dieser Arbeit ein zentrales

10 Schoenfeld hat seine Untersuchungen (1985) zu geometrischen Problemen durchgefiihrt,
weshalb sich viele seiner Beschreibungen auf die Geometrie beziehen.



Seite |41

Analyseinstrument darstellt. Die Wissensmatrix wurde urspriinglich im Rahmen
der Unterrichtsphase Systematisieren und Sichern entwickelt. Das Ziel der
Wissensmatrix besteht vor allem darin, Aufgaben systematisch zu erstellen, die
Lernende dabei unterstiitzen, ihr Wissen aktiv zu strukturieren. Um die
Wissensmatrix umfassend zu verstehen, ist es zundchst wichtig, sowohl die
Wissensarten als auch die Wissensfacetten ndher zu betrachten. In den folgenden
Abschnitten werden daher diese beiden Dimensionen des Wissens genauer
beleuchtet. Im Anschluss wird eine leicht adaptierte Wissensmatrix vorgestellt,
die auf den Kontext der Hochschulmathematik zugeschnitten ist.

2.4.2 Unterscheidung von Wissensarten

Die Bezeichnungen des konzeptuellen und prozeduralen Wissens gehen im
mathematikdidaktischen Kontext auf Hiebert und Lefevre (1986) zuriick und
werden in verschiedenen mathematikdidaktischen Kontexten verwendet bzw.
aufgegriffen.

Konzeptuelles Wissen

Konzeptuelles Wissen kann als ein Netzwerk von Informationen verstanden
werden, in dem einzelne Informationen miteinander verbunden sind.

,,Conceptual knowledge is characterized most clearly as knowledge that is rich in relationships. It can
be thought of as a connected web of knowledge, a network in which the linking relationships are as
prominent as the discrete pieces of information. Relationships pervade the individual facts and
propositions so that all pieces of information are linked to some network. In fact, a unit of conceptual
knowledge cannot be an isolated piece of information; by definition it is a part of conceptual
knowledge only if the holder recognizes its relationship to other pieces of information.” (Hiebert &
Lefevre, 1986, S. 3f.)

Diese Definition von konzeptuellem Wissen stellt heraus, dass den Verbindungen
von Informationen eine wichtige Rolle zugeschrieben wird. Einzelne, isolierte
Informationen gehdren demnach nicht zu einem konzeptuellen Netzwerk. Sobald
eine Verbindung bzw. eine Verkniipfung hergestellt werden kann, gehdren sie zum
Netzwerk. Dies lasst sich besonders gut in der Hochschulmathematik beobachten,
wo Begriffe und Theorien auf bereits erworbenes Wissen aufbauen (Rach &
Heinze, 2013). Unter anderem stellt dies den Unterschied zwischen konzeptuellen
Netzwerken verschiedener Personen dar. Konzeptuelles Wissen kann iiber Zeit
wachsen und selbst das Netzwerk von Experten kann ausgebaut und besser
strukturiert werden (diSessa et al., 2004; Schneider & Stern, 2009). Star (2005)
fasst zusammen:

,,The term conceptual knowledge has come to encompass not only what is known (knowledge of

concepts) but also one way that concepts can be known (e.g. deeply and with rich connections)” (Star,
2005, S. 408).
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In der Hochschulmathematik zeigen sich die reichhaltigen Verbindungen durch
eine tiefe Verkniipfung von Konzepten, wie bspw. die Differenzierbarkeit. In der
Regel wird der Begriff Differenzierbarkeit zunédchst nur eindimensional
eingefiihrt und erst im weiteren Verlauf auf Mehrdimensionalitdt erweitert. Dabei
werden weitere verwandte Begriffe wie partielle und totale Ableitung sowie
Richtungsableitung eingefiihrt, wodurch der Begriff Differenzierbarkeit tiefer
verstanden und stirker vernetzt wird (siehe z. B. in Lankeit & Biehler, 2024).
Letztlich beschreiben Hiebert und Lefevre (1986, S. 8), dass durch Verbindungen
zwischen einzelnen Informationen Bedeutung entwickelt oder geschaffen werden
kann. Dadurch kann konzeptuelles Wissen nur bedeutungsvoll aufgebaut werden,
da dies definitorisch so festgelegt wurde.

Prozedurales Wissen

Prozedurales Wissen steht in einem engen Zusammenhang mit Prozeduren
(Canobi, 2009), die als eine Abfolge von Schritten (= action sequences) definiert
werden, um ein Ziel zu erreichen (Rittle-Johnson & Schneider, 2014). Star et al.
(2015) definieren:

,,Procedural knowledge refers to having the knowledge of action sequences for solving a problem (e.g.
an algorithm for solving linear equations)” (Star et al., 2015, S. 45).

Demnach liefert das prozedurale Wissen einer Person mathematische Verfahren
(fir das Bearbeiten einer Aufgabe). Solche Verfahren haben in der Regel einen
linearen Charakter, in denen die durchzufiihrenden Schritte vorgegeben sind. Der
lineare Charakter wird in der Hochschulmathematik besonders durch
Algorithmen, wie z. B. das Newtonverfahren, allerdings auch durch kleinere
Verfahren, wie z. B. die Regel von L"Hospital, deutlich.

Dariiber hinaus muss angemerkt werden, dass Vorgehensweisen Teilschritte
groBerer Vorgehensweisen sein konnen, wodurch die hierarchische Struktur
prozeduralen Wissens betont wird (Hiebert & Lefevre, 1986, S. 6). Rittle-Johnson
und Schneider (2014) erweitern diese Definition, indem sie ebenfalls die
Féhigkeiten zur Durchfiihrung dieser Schritte in ihrer Definition von
prozeduralem Wissen betonen:

,,The procedures can be algorithms — a predetermined sequence of actions that will lead to the correct
answer when executed correctly” (Rittle-Johnson & Schneider, 2014, S. 1103).

Prozedurales Wissen bedeutet, dass eine Person nicht nur weil3, was sie tun muss,
sondern auch, wie sie es tun muss.

Hiebert und Lefevre (1986, S. 6) inkludieren zum prozeduralen Wissen ebenfalls
die mathematische Sprache und die Bedeutung von mathematischen Symbolen.

LIt includes a familiarity with the symbols used to represent mathematical ideas and an awareness of
the syntactic rules for writing symbols in an acceptable form” (Hiebert & Lefevre, 1986, S. 6).
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Dazu zdhlt auch das Wissen iiber die Gestaltung eines formalen Beweises,
allerdings ohne Beriicksichtigung des Gegenstandes oder der Logik des Beweises
selbst.

Entgegen dem konzeptuellen Wissen muss prozedurales Wissen nicht
bedeutungsbezogen aufgebaut werden. Allerdings werden die Verfahren, die
bedeutungsbezogenen gelernt werden, an konzeptuelles Wissen gekniipft
(Hiebert & Lefevre, 1986, S. 8).

Zusammenspiel konzeptuellen und prozeduralen Wissens

Sowohl konzeptuelles als auch prozedurales Wissen sind wichtiger Bestandteil
mathematischen Wissens. ,,Mathematical knowledge, in its fullest sense, includes
significant, fundamental relationships between conceptual and procedural
knowledge. Students are not fully competent in mathematics if either kind of
knowledge is deficient or if they both have been acquired but remain separate
entities.” (Hiebert & Lefevre, 1986, S. 9)

Konzeptuelles und prozedurales Wissen greifen demnach auch ineinander,
wodurch beim Aufbau sowie der Nutzung gegenseitig voneinander profitieren
werden kann. Dadurch lassen sich die beiden Wissensarten nicht immer
voneinander trennen (Rittle-Johnson & Schneider, 2014), obwohl sie
unterschiedlich konzeptualisiert werden. Besonders im Kontext der
Hochschulmathematik lassen sich viele Aufgaben identifizieren, in denen sowohl
konzeptuelles als auch prozedurales Wissen fiir die Losung notwendig sind
(Kolbe & Liebendorfer, 2024; Weber & Lindmeier, 2020).

2.4.3 Unterscheidung von Wissensfacetten

Einige mathematikdidaktische Arbeiten legen nahe, dass nicht nur eine
Differenzierung verschiedener Wissensarten, sondern auch verschiedener
Wissensfacetten erfolgen sollte.

Arten der Begriffsbestimmung nach Winter

Winter (1983, S. 187) hat in seiner Arbeit verschiedene Arten zu
Begriffsbestimmung herausgearbeitet. Dabei gliedert er die Wissensart der
Begriffe in sechs verschiedene Begriffsbestimmungen.

e Exemplarische Begriffsbestimmung: Winter beschreibt diese
Begriffsbestimmung als unverzichtbar, auch auf Hochschulniveau. Es
geht dabei um die Nutzung von Beispielen und Gegenbeispielen. Haufig
geniigt ein vorldufiges Gebrauchsverstindnis eines Begriffs ohne
weitere Explizierung, um diesen zu nutzen (Winter, 1983, S. 187f.).
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e Konstruktive Begriffsbestimmung: Hiermit sind Tatigkeiten gemeint,
die mittels eines Verfahrens einen Begriff bilden. Dazu gehoren z. B.
Zeichnen, Zahlen, Rechnen, Kombinieren, etc. (Winter, 1983, S. 189).

e  Abstraktive Begriffsbestimmung: Begriffe werden mit
Aquivalenzrelationen bestimmt (Fldcheninhalt ebener Vielecke iiber die
Aquivalenzrelation x ist zerlegungsgleich zu y in der Menge ebener
Vielecke), die abhdngig von Vorwissen sind. Hauptaktivitdten sind dabei
Vergleich- und MaBhandlungen und das daraus resultierende
Klassifizieren von Gegenstianden (Winter, 1983, S. 190f.).

e Ideative Begriffsbildung: Ein Idealisierungsprozess besteht darin, in ein
,,Ding* gewisse Eigenschaften hineinzusehen (die es an sich gar nicht
hat). Winter beschreibt dies bspw. mit einem straffgezogenen Faden, in
den wir die Eigenschaften einer Gerade hineinsehen (Winter, 1983, S.
191ft.).

e  Explizit-definitorische Begriffsbestimmung: Hiermit ist die klassische
Art gemeint, einen Begriff zu bestimmen bzw. etwas zu definieren.
StandardgemdB wird ein Oberbegriff genannt und diesem werden
charakterisierende FEigenschaften zugeschrieben (Winter, 1983, S.
193ft)).

o Implizit-axiomatische Begriffsbestimmung: Winter beschreibt dies als
eine Art Formalisierung hoherer Stufe. Es geht dabei um die maximale
deduktive Gliederung von groferen Theoriekomplexen, damit maximale
Verallgemeinerungen erlangt werden (Winter, 1983, S195f1.).

Erath (2017, S. 48) kommt zu dem Schluss, dass daraus verschiedene
Wissensfacetten  abgeleitet ~werden konnen. Darunter zum  einen
Konkretisierungen in Form von Beispielen und Gegenbeispielen und zum
anderen expliziten Formulierungen von Definitionen.

Wissensfacetten nach Vollrath und Roth (2012) und Prediger et al. (2011)

Vollrath und Roth (2012, S. 48ff.) beschreiben in ihrem Buch mehrere Facetten
von Wissen. Dabei listen sie auf, welche typischen Kenntnisse und Fahigkeiten
zum Verstindnis fiihren. Sie teilen dies fiir das Verstehen eines Begriffs,
Verstehen eines Sachverhalts und Verstehen eines Verfahrens auf.

Die kognitiven Seiten des mathematischen Begriffsverstindnisses bestehen aus
der Bezeichnung des Begriffs, dem Angeben von (Gegen-)Beispielen sowie der
Begriindung, warum es ein (Gegen-)Beispiel ist, dem Kennen charakteristischer
Eigenschaften und inhaltsnaher Begriffe sowie der Arbeit mit dem Begriff beim
Argumentieren und Problemldsen. Das Begriffslernen kann auf der affektiven
Seite durch Emotionen beeinflusst werden, wodurch das Lernen mit angenehmen
Erlebnissen verbunden werden sollte (Vollrath & Roth, 2012, S. 48).
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Zum Verstehen eines mathematischen Sachverhalts gehort es, den Sachverhalt
angemessen zu formulieren, Beispiele fiir den Sachverhalt angeben zu kénnen,
wissen, unter welchen Voraussetzungen der Sachverhalt gilt, den Sachverhalt
begriinden zu kénnen und Konsequenzen des Sachverhalts sowie Anwendungen
des Sachverhalts zu kennen (Vollrath & Roth, 2012, S. 48f.).

Ein mathematisches Verfahren haben Lernende dann verstanden, wenn sie sowohl
die intendierten Ziele des Verfahrens als auch die zugrundeliegenden
mathematischen Schritte kennen. Dariiber hinaus gehort die Anwendung auf
Beispiele. Letztlich tragt das Wissen dariiber, unter welchen Voraussetzungen und
aus welchen Griinden es funktioniert, zum Verstindnis mathematischer Verfahren
bei (Vollrath & Roth, 2012, S. 49f.).

Eine &dhnliche Zusammenstellung von Wissensfacetten liefern Prediger et al.
(2011). Sie teilen in vier verschiedene Wissensfacetten auf: Explizite
Formulierung, Konkretisierung & Abgrenzung, Bedeutung & Vernetzung sowie
Konventionelle Festlegungen.

Die Explizite Formulierung ist fir die Fachwissenschaft Mathematik die
wichtigste Facette. Definitionen (=Konzepte) und Sétze (=Zusammenhénge)
werden im konzeptuellen Wissen und Anleitungen im prozeduralen Wissen
priagnant ausformuliert (Prediger et al., 2011).

Konkretisierung & Abgrenzung wird durch Beispiele und Gegenbeispiele
verdeutlicht. Dabei soll auch begriindet werden, ob diese Beispiele bzw.
Gegenbeispiele (nicht) zu einem Begriff gehoren. Dariiber hinaus soll ein Gespiir
fiir Spezialfille entwickelt werden, um ein Abgrenzungswissen zu schaffen.
Speziell fiir Verfahren und Sédtze werden ebenfalls Bedingungen der
Anwendbarkeit miteingeschlossen (Prediger et al., 2011).

Bedeutung & Vernetzung beschreibt die Bedeutung der jeweiligen Konzepte,
Zusammenhinge und Verfahren. Charakterisierend fiir diese Wissensfacette sind
inhaltliche Vorstellungen und passende Darstellungen (vom Hofe, 1995, z. B. S.
99). Dazu soll der der Begriff der Grundvorstellungen (vom Hofe, 1995, S. 1031f.)
hervorgehoben werden. Grundvorstellungen beschreiben die Verbindung
zwischen mathematischen Inhalt und der individuellen Begriffsbildung. Dabei
sind drei Aspekte zentral: Die Konstitution der Bedeutung auf Riickfithrung
bekannten mathematischen Wissens, die Erzeugung einer mentalen
Représentation des Begriffs sowie die Fiahigkeit, diesen Begriff auf reale
Situationen anzuwenden (vom Hofe & Blum, 2016). Des Weiteren gehdren
Vernetzungen zu anderen Wissenselemente zur Wissensfacette Bedeutung &
Vernetzung dazu, bspw. durch anschauliche Begriindungen von Sitzen oder
Verfahren (Prediger et al., 2011).

Zu den Konventionellen Festlegungen zahlen Konventionen zu den jeweiligen
Wissensarten. Dies sind zum Beispiel die Fachworter zu den Konzepten
,Multiplikation“ und ,,Division®. Es wird betont, dass die alleinige Bezeichnung
nicht fiir eine addquate Vorstellung ausreicht (Prediger et al., 2011).
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Zusammenfiihrung der Wissensfacetten
Winter (1983) Vom Hofe (1995) Vollrath und Roth  Prediger et al.
(2012) (2011)
Exemplarisch Beispiele & Konkretisierung &
Gegenbeispiele Abgrenzung
Explizit- (allg.) Explizite
definitorisch Formulierungen & Formulierung
charakteristische
Eigenschaften
Grundvorstellungen ~ Vernetzungen & Bedeutung &
Begriindungen Vernetzung
Benennungen Konventionelle
Festlegungen
Anwendungs-
moglichkeiten

Tabelle 3: Darstellung verschiedener Unterteilung der Wissensfacetten (teilweise tibernommen aus
Erath, 2017, S. 51)

Tabelle 3 zeigt die Ausarbeitungen der verschiedenen Autoren. Darin sind einige
Ubereinstimmungen zu erkennen, vor allem zwischen den Unterteilungen von
Vollrath und Roth (2012) und Prediger et al. (2011). Obwohl die beiden Arbeiten
diese Facetten im Hinblick auf schulische Uberlegungen entwickelt haben, lassen
sie sich ebenfalls auf die hochschulische Mathematik iibertragen. Im Folgenden
werden die Bezeichnungen der Wissensfacetten von Prediger et al. (2011)
iibernommen.

In der hochschulischen Mathematik verfolgt die formale Fachsprache das Ziel,
die Inhalte moglichst verdichtet darzustellen. Dafiir wird der typisch deduktive
Aufbau mittels Definition-Satz-Beweis-Struktur verwendet (Houston, 2012;
HuBmann, 2017, S. 61; Rach & Heinze, 2013). Beziiglich mathematischer
Verfahren werden Anleitungen in Sitzen oder in folgenden Bemerkungen
aufgefiihrt. Dies spricht die Facette der Expliziten Formulierung an.

Des Weiteren spiclen sowohl Beispiele als auch Gegenbeispiele eine wesentliche
Rolle, um die kompakte Darstellung der mathematischen Inhalte zu verstehen (z.
B. Alcock, 2017; Mejia-Ramos et al., 2012). Eine weitere Besonderheit der
Mathematik liegt in der Bedeutung von Voraussetzungen und Spezialfillen!
(Liebendorfer et al., 2021). Beides adressiert die Facette Konkretisierung &
Abgrenzung.

Weiterhin ist es wichtig, neue Inhalte mit der bestehenden Wissensstruktur zu
vernetzen, welches bspw. mit Diagrammen und Skizzen erreicht werden kann (z.
B. Alcock, 2017; Hilgert et al., 2015; Houston, 2012). Dies gelingt z. B. bei

11 Dies deckt sich vor allem fiir das prozedurale Wissen mit der Beschreibung der Facette
Konkretisierung & Abgrenzung nach Prediger et al. (2011)
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Konzepten mit Grundvorstellungen (vom Hofe, 1995). Dariiber hinaus gehort
ebenfalls der umfangreiche Umgang mit Beweisen dazu (Liebendorfer et al.,
2021). Damit wird auf die Facette Bedeutung & Vernetzung eingegangen.
AuBerdem existieren in der hochschulischen Mathematik genauso Fachworter
und Benennungen wie in der Schule (z. B. Hilgert et al., 2015, S. 11). Dies spricht
die Facette Konventionelle Festlegung an.

Letztlich unterscheidet sich die Aufteilung der Wissensfacetten zwischen Vollrath
und Roth (2012) und Prediger et al. (2011) um die Facette der
Anwendungsmoglichkeiten. Vollrath und Roth (2012, S. 51) betonen
Anwendungsmoglichkeiten fiir Sachverhalte und das Beherrschen fiir Verfahren.
Fiir Begriffe ergéinzt Winter (1983) auf schulischer Ebene den Anwendungsbezug
zu realweltlichen Problemen. Aus den Ausfithrungen von Freudenthal (1983)
kann dies fiir Begriffe allerdings auf innermathematische Phdnomene iibertragen
werden, welche in der hochschulischen Mathematik im Vordergrund stehen.
Insgesamt ist in der hochschulischen Mathematik die Arbeit mit Begriffen und
Zusammenhdngen zentral, allerdings werden auch Verfahren bendétigt
(Liebendorfer et al., 2021). Vor allem in Service-Veranstaltungen der Mathematik
liegt der Fokus eher auf Verfahren (Alpers, 2014; Alpers, 2016). Daher ist es
wichtig, Anwendungskontexte zu kennen und Anwendungen zu beherrschen.
Diese Uberlegungen fiihren dazu, diese Facette ebenfalls zu konzeptualisieren.
Sie wird Implizite Nutzung*? genannt. Weitere Ausfiihrungen zur Impliziten
Nutzung werden in Kapitel 5.4.2 erlautert.

2.4.4 Synthese zum Wissen

Prediger et al. (2011) stellen auf Grundlage ihrer Uberlegungen die Kreuzung der
Wissensarten und Wissensfacetten in einer Matrix dar. In Tabelle 4 ist eine
adaptierte Version der urspriinglichen Wissensmatrix abgebildet.

Aus der urspriinglichen Wissensmatrix (Prediger et al., 2011) wird die feinere
Aufteilung des konzeptuellen Wissens in Konzepte (=Definitionen) und
Zusammenhinge (=Sitze) libernommen. Dies passt zu der Definition-Satz-
Beweis Struktur, die fiir die Hochschulmathematik typisch ist (Engelbrecht, 2010;
Rach & Heinze, 2013). Fir das prozedurale Wissen werden aus der
Wissensmatrix handwerkliche Verfahren ausgeschlossen, da diese in der
hochschulischen Mathematik nicht vorkommen (Stenzel, 2023a, S. 24). Es
bleiben demnach lediglich mathematische Verfahren im prozeduralen Wissen.
Des Weiteren wird das metakognitive Wissen aus der Wissensmatrix
ausgeklammert. Diese Art von Wissen wird hinsichtlich der vier Kategorien des
Problemldsen nach Schoenfeld (1985) eher bei den Heuristics bzw. Control

12 Die Uberlegungen, eine solche Facette (sowie die Bezeichnung Implizite Nutzung) zu
beriicksichtigen, stammt aus der Arbeitsgruppe aus Dortmund. Bis zum jetzigen Zeitpunkt
existiert allerdings noch keine Literatur, die diesbeziiglich zitiert werden kann.
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verortet'®. Es handelt sich daher um Wissen, welches nicht einem speziellen
Fachinhalt zugeschrieben werden kann (z. B. Anderson et al., 2001, S. 55ff.) und
deshalb nicht in der adaptierten Wissensmatrix aufgenommen wird. Die

Wissensfacetten werden hingegen komplett aus der urspriinglichen
Wissensmatrix iibernommen.
Explizite Konkretisie Bedeutung Konventio-
Formulie- -rung & & Vernet- nelle Fest-
rung Abgrenzun zung legungen
g
Konzeptuelles Wissen
Konzepte Ausformu-  Beispiele / Vor- Fachworter,
lierte Gegen- stellungen / Bezeich-
Definition beispiele Dar- nungen
stellungen
Zusammen- Ausformu-  Beispiele / (anschau- Namen,
héinge lierter Satz ~ Gegen- liche) Bezeich-
beispiele Begriindung nungen,
/ Beweis konventio-
nelle Regeln
Prozedurales Wissen
Verfahren Anleitung Bedingung  Vorstellung  Verein-
des der / barungen
Verfahrens ~ Anwend- Begriindung
barkeit,
Beispiele

Tabelle 4: Adaptierte Wissensmatrix nach Prediger et al. (2011)

Die Kreuzung einer Wissensart (z. B. Zusammenhang im konzeptuellen Wissen)
mit einer Wissensfacette (z. B. Explizite Formulierung) ergibt eine Zelle (speziell
fiir diese Kreuzung: Ausformulierter Satz) in der Matrix (Tabelle 4). Im weiteren
Verlauf wird eine solche Zelle als Wissenselement bezeichnet.

Die Wissensmatrix stellt ein wesentliches Analyseinstrument hinsichtlich des
Wissens in dieser Arbeit dar. Mithilfe der Wissensarten lassen sich zundchst
notwendige mathematische Inhalte fiir die stoffdidaktische Analyse der Aufgaben
festlegen (Kapitel 5.3). Ferner konnen mit den Wissenselementen sowohl das

13 Insgesamt lassen sich in der Wissensmatrix die vier Klassen von Schoenfeld wiederfinden.
Die erste Klasse kann mit Konzepten und Zusammenhéngen, die zweite Klasse mit den
(ausgeklammerten) handwerklichen Verfahren, die dritte Klasse mit den Verfahren
gleichgesetzt werden. Nur die vierte Klasse ldsst sich durch die inhaltsspezifischen
Strategien nicht in der Wissensmatrix verorten.
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Wissensangebot der relevanten Veranstaltung als auch die Wissensnutzung der
Studierenden wéhrend der Problemlseprozesse festgestellt werden (Kapitel
5.4.2). AuBerdem werden die Uberlegungen der Wissensmatrix fiir die
Strukturierung genutzt, um das relevante mathematische Wissen zur
Differentialrechnung darzustellen (Kapitel 4.3.1).

2.5 Heurismen

Im Kontext des Problemlosens ist immer wieder von allgemeinen Strategien oder
Methoden die Rede, die Menschen dabei unterstiitzen, sich in komplexen
Situationen zu orientieren. Diese Werkzeuge des Denkens und Handelns werden
héufig als Heurismen bezeichnet.

2.5.1 Konzeptualisierung von Heurismen

Der englische Begriff heuristic'* kann sowohl mit ,,Heurismus* als auch
,.Heuristik” tibersetzt werden. Diese dhnlichen Begrifflichkeiten fithren dazu,
dass begrifflichen Schwierigkeiten unter verschiedenen Namen auftauchen (Rott,
2014). Die Heuristik bezeichnet die Wissenschaft des Problemldsens (Rott,
2018). Pdlya (1949, S.118f.) beschreibt das Ziel der Heuristik, Methoden und
Regeln von Entdeckung und Erfindung zu studieren. Fiir die Mathematik
spezifiziert Polya (1964, S. 5):

,.Die Heuristik beschaftigt sich mit dem Losen von Aufgaben. Zu ihren spezifischen Zielen gehort es,
in allgemeiner Formulierung die Griinde herauszustellen fiir die Auswahl derjenigen Momente bei
einem Problem, deren Untersuchung uns bei der Auffindung der Lésung helfen konnte.* (Pdlya, 1964,
S.5)

Heurismen (Mehrzahl von Heurismus) sind zwar Teil von der Heuristik,
allerdings sind damit einzelne heuristische Aktivititen gemeint (Rott, 2018).
Schoenfeld (1985, S. 23) beschreibt Heurismen als Faustregeln fiir das
erfolgreiche Problemlosen. Sie sind allgemeine Anregungen, die einem
Individuum helfen, ein Problem besser zu verstehen oder in einer Losung einen
Fortschritt zu erzielen. Polya (1945, S. 2) bezeichnet sie als mentale Operationen,
die beim Problemlésen niitzlich sind. Heurismen sind demnach gewisse
mathematische Tétigkeiten, die beim Problemldsen zum Erfolg verhelfen konnen.
Holzdpfel et al. (2018, S. 87) fiigen hinzu, dass Heurismen iibergreifend (nicht
nur auf eine Situation bezogen) sind. Im Gegensatz zu mathematischen Verfahren
und Algorithmen, die eine klare Anleitung liefern und zu einem gewiinschten
Ergebnis fiihren, garantieren Heurismen keinen sicheren Erfolg.

Es gibt noch viele weitere Beschreibungen und Definitionen zu Heurismen, die
auf verschiedene Aspekte eingehen. Dahingehend hat Rott (2014) verschiedene

14 Bei dem Plural heuristics ist die Unterscheidung einfacher, da in diesem Fall von Heurismen
gesprochen wird.
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Definitionen und Beschreibungen zu Heurismen aus der Literatur analysiert. Die
Analyse der verschiedenen Definition ist auch dadurch motiviert, dass keine
einheitliche Begrifflichkeit in der Mathematikdidaktik beziiglich Heurismen
existierte (Rott, 2014). Dabei arbeitet er auf theoretischer Ebene neun
verschiedene Kategorien zur Beschreibung des Begriffs heraus (Beispiele zu den
Kategorien sind in Rott (2014) zu finden):

e Beschreibung: Was ist nach Ansicht der Autor*innen die Natur der
Heurismen? Die Beschreibung bewegt sich zwischen ,,rules of thumb*,
,.kind of information® und ,,cognitive tools*.

o  Effektivitit: Was sagt die Charakterisierung iiber die Effektivitit der
Heurismen aus? Die meisten beschreiben, dass sie keine Garantie fir
eine Losung haben, allerdings hilfreich fiir das Problemldsen sind.

e Analyse: Erwédhnt die Charakterisierung explizit das Verstehen und die
Analyse des Problems?

e  Metakognition: Erwdhnt die Charakterisierung explizit metakognitive
und selbstregulatorische Aktivitdten? Werden diese inkludiert oder
exkludiert in Heurismen?

e Bereich: Erwdhnen die Autoren bestimmte Heurismen? Fiir welche
Probleme sind diese anwendbar? Gibt es verschiedene Arten von
Heurismen (z. B. lokal und globale oder inhaltsspezifische und
allgemeine) mit unterschiedlichen Anwendungsbereichen?

e  Algorithmus: Beinhaltet die Charakterisierung Algorithmen oder andere
Standardverfahren? Werden diese inkludiert oder exkludiert in
Heurismen?

e Bewusstsein bzw. Wahrnehmung: Erwéhnt die Charakterisierung, ob
Problemlgsestrategien bewusst oder ausgefiihrt werden miissen, um als
Heurismen zu gelten? Einige Charakterisierungen benennen
»Systemical“ oder ,methodische Ansdtze”, welche implizite /
unterbewusste / intuitive Nutzungen ausschlieen.

e  Problemraum: Bezieht sich die Charakterisierung auf den Problemraum
(Newell & Simon, 1972)?

e Andere: Gibt es weitere Merkmale, die noch nicht von den Kategorien
abgedeckt worden sind?

In derselben Studie bittet Rott (2014) Expert:innen aus verschiedenen Léndern,
unterschiedliche Charakterisierungen von Heurismen (aus der Literatur) zu
bewerten. 18 Expert:innen haben neun Charakterisierung bewertet und einige von
den Expert:innen haben eine eigene Charakterisierung geliefert. Aus diesen
empirischen Einblicken formuliert er eine (mit Vorbehalten, vorlaufige)
Definition fiir heuristics:
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.Heuristics is a collective term for devices, methods, or (cognitive) tools, often based on experience.
They are used under the assumption of being helpful when solving a problem (but do no guarantee a
solution). There are general (e.g. “working backwards”) as well as domain-specific (e.g., “reduce
fractions first”) heuristics. Heuristics being helpful regards all stages of working on a problem, the
analysis of its initial state, its transformation as well as its evaluation. Heuristics foster problem
solving by reducing effort (e.g., by narrowing the search space), by generating new ideas (e.g., by
changing the problem’s way of representation or by widening the search space), or by structuring (e.g.,
by ordering the search space or by providing strategies for working on or evaluation a problem).
Though their nature is cognitive, the application and evaluation of heuristics is operated by
metacognition.” (Rott, 2014, S. 188f.)

Abgrenzung zu dhnlichen Begriffen

Heurismen werden oftmals synonym als Problemlésestrategien verstanden (z. B.
Leuders, 2010). Durch die namentliche Ahnlichkeit sollten diese allerdings nicht
mit Lernstrategien verwechselt werden, wobei in einem Teilbereich einige
Ahnlichkeiten existieren. Lernen wird als ein Informationsverarbeitungsprozess
verstanden, welcher von Lernenden durch bestimmte Verhaltensweisen und
Gedanken beeinflusst werden kann. Solche Verhaltensweisen und Gedanken, die
Lernende nutzen, um ihren Wissenserwerb zu steuern, werden als Lernstrategien
bezeichnet (Friedrich & Mandl, 2006, S. 1). Heurismen hingegen sind eher
mathematische Tatigkeiten, die beim Losen eines Problems helfen kdnnen
(Holzépfel et al., 2018, S. 87). Typischerweise werden Lernstrategien in
kognitive, metakognitive und ressourcenbezogene Lernstrategien aufgeteilt'®.
Innerhalb der kognitiven Lernstrategien wird dariiber hinaus zwischen Tiefen-
und Oberfléchenstrategien unterschieden. Viele Tiefenstrategien'® stellen sich im
Kontext des Problemldsen als hilfreich heraus und dhneln somit Heurismen.
Diese Ahnlichkeit der kognitiven Prozesse diskutiert Leuders (2010) und
beschreibt, dass jedes Lernen eine Art Problemldseprozess ist. Zwischen dem
Erwarteten (Zielzustand) und der aktuellen Situation (Anfangszustand) liegt eine
Diskrepanz (Hiirde), die es zu iiberwinden gilt. Diese Lernsituation &hnelt
demnach einem Problemldseprozess. Obwohl es diese Uberschneidungen gibt,
sind Heurismen und Lernstrategien voneinander verschieden (siehe in den
Beschreibungen der Begriffe).

Es soll auBerdem eine weitere Abgrenzung zu den Begriffen Intuition bzw.
Kreativitat (Winter, 2016, S. 2201f.) sowie Geistige Beweglichkeit (Bruder, 2000)
in der Mathematikdidaktik vorgenommen werden. Die Intuition gilt als
Entdeckungsapparat und das ,,plotzliche Gewahrwerden* wie z. B. das Erkennen
von Analogien kann nur als ein intuitiver Prozess verstanden werden. Durch

15 Eine ausfiihrliche Beschreibung von Lernstrategien befindet sich in Kapitel 1.2.5 oder Goller
(2020, S. 94t.).

16 Ein Uberblick iiber einige Tiefenstrategien: Multiple Reprisentationen des Lernstoffs
(Darstellungswechsel), mit eigenen Worten umformulieren, Informationen auf das
Wesentliche reduzieren, Beispiele betrachten, etc. (weitere Tiefenstrategien zu finden bei
Goller, 2020; S. 114; Liebendorfer et al., 2021; Stenzel, 2023a, S. 22)
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mathematische Erfahrungen konne diese Intuition verbessert werden, wodurch
ebenfalls das Problemlosen profitiert (Winter, 2016, S. 221). Geistige
Beweglichkeit spielt ebenfalls eine wichtige Rolle beim Problemlésen (Hasdorf,
1976, S. 16). Bruder und Collet (2011, S. 33) teilen fiir den mathematischen
Kontext in fiinf Erscheinungsformen geistiger Beweglichkeit auf. Reduktion
(Fokussieren auf das Wesentliche), Reversiblitdit (Umkehrung von
Gedankengéngen), Aspektbeachtung (gleichzeitiges Beachten mehrerer Aspekte,
die Abhangigkeit von Dingen erkennen und gezielt variieren), Aspektwechsel
(Wechsel von Annahmen oder Kriterien, Umstrukturieren eines Sachverhalts)
sowie Transferierung (Ubertragung von Vorgehen auf einen anderen, dhnlichen
Kontext).

Im Gegensatz zu Heurismen sind Intuition und geistige Beweglichkeit
.Fahigkeiten“, welche unterbewusst und intuitiv angewandt werden. Es gibt
demnach Personen, die ohne Heurismen auskommen, da sie bereits intuitiv
handeln und somit gut Probleme 16sen konnen. Sind diese Féhigkeiten allerdings
nicht vorhanden, so kann das Erlernen von Heurismen hilfreich sein (Konig,
1992).

2.5.2 Kategorisierung von Heurismen

Zum besseren Verstindnis von Heurismen lassen sich diese in verschiedene
Kategorien unterteilen. In der Mathematik und Mathematikdidaktik lassen sich
drei unterschiedliche Gruppierungen von Heurismen identifizieren (Rott, 2018).

1. Niitzlichkeit und Trainierbarkeit: Einige Werke zum Problemldsen
stellen Heurismen vor, die als niitzlich bzw. erfolgreich gelten. Diese
entstehen in Kontexten von mathematischen Wettbewerben und
hinsichtlich der Trainierbarkeit von Problemldsestrategien. Dabei
werden diese oftmals im Zusammenhang mit bestimmten Aufgaben
présentiert (z. B. an mehreren Stellen bei Engel, 1998, z. B. S.7).

2. Inhaltliche Ahnlichkeit: Schreiber (2011, S. 95ff) schligt eine
Kategorisierung nach inhaltlichen Kriterien und gemeinsamen
Merkmalen vor, basierend auf den Ausarbeitungen von Polya. Diese
umfasst vier Kategorien: Heurismen der Induktion (z. B. ,Probiere
systematisch®), Variation (z. B. ,,Variiere das Gegebene*), Interpretation
(z. B. ,,Suche nach Analogien®) sowie Reduktion (z. B. ,,Arbeite
rickwirts®). Eine dhnliche Unterteilung befindet sich in der Systematik
von Schwarz (2006), der in Heurismen der Variation, Induktion und
Reduktion unterteilt.

3. Reichweite in Bezug auf die Gestaltung von Problemldseprozessen:
Tietze (2000, S. 99ff.) unterscheidet zwischen ,,globalen und ,,lokalen
Heurismen.  Globale  Heurismen  betreffen den  gesamten
Problemloseprozess und beinhalten Strategien wie die Planung und
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Organisation des Losungsprozesses in Phasen (z. B. wie die vier Phasen
von Polya, 1949). Lokale Heurismen konzentrieren sich auf spezifische
Schritte in einem Problemldseprozess, z. B. wie das Finden von
Spezialfillen oder das Zerlegen von Problemen in Teilaufgaben.
Insgesamt ist die Aufteilung in ,,lokal” und ,,global“ nur eine grobe
Kategorisierung zur Orientierung (Tietze, 2000, S. 99).

Eine zweite Mdoglichkeit, Heurismen nach der Reichweite einzuteilen,
ist die Aufteilung zwischen Hilfsmittel, Prinzipien und Strategien
(Bruder & Collet, 2011)Y". Heuristische Hilfsmittel verfiigen zuniichst
uiber keinen Verfahrenscharakter, sondern dienen dem Verstehen und der
Strukturierung bzw. Reduktion von Problemen. Beispiel sind Tabellen,
Losungsgraphen oder Skizzen. Heuristische Strategien zielen auf die
Entwicklung eines Losungsplans ab, z. B. wie das Vorwirts- oder
Riickwiértsarbeiten und systematisches Probieren (Bruder, 2000). Sie
beschreiben damit allgemeine  Vorgehensweisen fiir  eine
Problemsituation, ohne algorithmischen Charakter. Damit dhneln sie den
Beschreibungen der ,globalen” Heurismen von Tietze (2000).
Heuristische Prinzipien hingegen &hneln den Beschreibungen von
lokalen* Heurismen. Sie geben konkrete Hilfestellungen, oft problem-
bzw. inhaltsspezifisch, die beim Finden von Losungsideen helfen.
Beispiele sind Analogie-, das Transformations- und das Extremalprinzip
sowie das Arbeiten mit Spezialfillen. Rott (2018) resiimiert, dass
ebenfalls diese Einteilung nicht trennscharf ist. Vorwirts- und
Riickwiértsarbeiten konnen sowohl global als auch sehr lokal eingesetzt
werden. Dennoch geben diese Kategorisierungen einen Uberblick und
liefern praktikable Unterscheidung von Heurismen.

Einordnung in den Problemloseprozess

In den Beschreibungen der verschiedenen Kategorisierungen zu Heurismen wird
bereits angedeutet, dass bestimmte Heurismen an unterschiedlichen Stellen des
Problemloseprozesses genutzt werden. Heuristische Prinzipien, Strategien und
Hilfsmittel beschranken sich nach Miiller (1992) primédr auf die ersten beiden
Phasen des Problemléseprozesses nach Polya (Kapitel 2.3.3). Dabei helfen diese
bei der Orientierungs- sowie Such- und Planungsphase. Konig (1992) bezieht sich
ebenfalls auf die Unterteilung von Phasen nach Pdlya, allerdings schreibt er der
zweiten Phase eine dominierende Rolle fiir heuristische Vorgehensweisen zu. Die
erste und vierte Phase sind dariiber hinaus auch nicht frei von heuristischen
Elementen. In der dritten Phase kommen keine heuristischen Elemente vor, da
diese Schritte im Prinzip von ,jedem Schiiler erlernbar” sind. Zu &hnlichen

17 Einige Beispiele zu dieser Kategorisierung von Heurismen befinden sich in Tabelle 6.
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Erkenntnissen kommt Schoenfeld (1985). Heuristische Elemente tauchen in
seinen empirischen Untersuchungen zu Problemléseprozessen in allen Phasen
seines Modells auf (Kapitel 2.3.3), mit Ausnahme der Implementation. Dabei ist
die Phase der Exploration allerdings das heuristische Herzstiick, in denen die
meisten heuristischen Aktivitaten stattfinden.

Beispiele von Heurismen

In den vorherigen Ausfithrungen wurden bereits an einigen Stellen Beispiele fiir
Heurismen angedeutet. Dabei existiert, wie bei der Kategorisierung, keine
einheitliche und ,,vollstandige™ Liste. Es gibt allerdings einige Arbeiten, auf die
in der Literatur Bezug genommen wird. Eine davon ist die Auflistung nach Pélya
(1945, S. xvii), in der fiir jede Phase passende Fragen und Arbeitsanregungen fiir
Problemlésende aufgelistet sind (Tabelle 5).

Phase Fragen (Auflistung einer Auswahl)
Phase 1: Verstehen der Aufgabe What is the unknown?
What is the condition?
Draw a figure.
Phase 2: Ausdenken eines Plans Have you seen it before? Or in a
slightly different form?
Do you know related problems?
Could you restate the problem?

Phase 3: Ausfiihren eines Plans Can you see clearly that the step is
correct? Can you prove that it is
correct?

Phase 4: Riickschau Can you check the result?

Can you use the result differently?

Tabelle 5: Kleiner Ausschnitt aus Polyas (1945, S. xvii) Problemlosestrategien

2.5.3 Einsatz von Heurismen

Die Beschreibungen von Heurismen geben auf den ersten Blick den Anschein,
dass die Anwendung einer problemldsenden Person hilft, zu einer Losung zu
gelangen. Doch bereits zu Beginn dieses Kapitels wurde die Eigenschaft erwahnt,
dass Heurismen mathematische Aktivititen sind, die beim Problemlésen helfen
konnen, aber keinen sicheren Erfolg garantieren (Holzdpfel et al., 2018, S. 87).
Friither gab es dariiber hinaus wenig Belege, dass Heurismen zu einer hoheren
Problemldsekompetenz fiihren.

, .. the critic of the strategies [...] is that the characterizations of them were descriptive rather than

prescriptive. That is, the characterizations allowed one to recognize the strategies when they were
being used. However, Polya’s characterizations did not provide the amount of detail that would enable
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people who were not already familiar with the strategies to be able to implement them.” (Schoenfeld,

1992, S. 353)

Heurismus

Umschreibung

Heuristisches Hilfsmittel

Skizze / informative Figur

Das Anfertigen einer Skizze oder Zeichnung —
nicht nur bei geometrischen Problemen; eine
informative Figur kann auch die Darstellung
von Zuordnungen mit Pfeildiagrammen oder
von funktionalen Zusammenhidngen (im
Koordinatensystem) sein (Bruder, 2000)

Wissensspeicher

Sammlungen / Regelhefte, in denen Wissen
iiber Zusammenhénge, Verfahren und Begriffe
festgehalten wird (Collet, 2009, S. 58;
Degener et al., 2005, S. 166)

Heuristisches Prinzip

Analogieprinzip Die Suche nach dhnlichen oder vergleichbaren
(Hilfs-)Aufgabe, deren Resultat oder
Losungsweg tibertragen werden kann (Pdlya,
1949, S. 60f.)

Spezialisieren Ubergang zu einer neuen Problemstellung, mit

der urspriinglichen als Verallgemeinerung, z.
B. indem man anstelle von n-Ecken zunéchst
Dreiecke betrachtet (Polya, 1949, S. 209;
Schoenfeld, 1985, S. 761tf.)

Heuristische Strategien

Vorwirtsarbeiten

Man betrachtet den Anfangszustand bzw. das
Gegebene und versucht davon ausgehen, den
Zielzustand bzw. das Gesuchte zu erreichen
(Konig, 1992; Pélya, 1949, S. 200)

Systematisches Probieren

Systematisches Testen von Elementen
(Einsetzen von Werten bzw. Betrachten von
Fillen) mit dem Ziel, sich der Lodsung
anzunghern (Schwarz, 20006, S. 156)

Tabelle 6: Zusammenstellung einiger Heuristischer Hilfsmittel, Prinzipien und Strategien (Beispiele
aus Rott, 2013, S. 76ft.)

Insgesamt eignen sich Heurismen dafiir, Problemldseprozesse im Nachhinein
nachzuvollziehen und zu reflektieren. Im Vorhinein ist nur schwer absehbar,
welche Heurismen einen positiven Einfluss auf die Losung ausiiben. Dies liegt in
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der Natur von Heurismen, da sie im Gegensatz zu spezifischen Algorithmen eher
vage sind (Holzépfel et al., 2018). Allerdings gibt es mittlerweile Hinweise
darauf, dass insbesondere heuristische Hilfsmittel f6rderlich fiir den
Problemléseprozess im Hochschulkontext sein konnen (z. B. Lehmann, 2018, S.
236, S. 252; Stenzel, 2023a, S. 148).

,,Our interpretations of Polya’s heuristics is that the strategies are intended to help problem solvers
think about, reflect on, and interpret problem situations, more than they are intended to help them
decide what to do when ‘stuck’ during a solution attempt.” (Lesh & Zawojewski, 2007, S. 768)

Des Weiteren scheint es so, dass Heurismen oftmals zu allgemein beschrieben
werden (Schoenfeld, 1992, S. 54ff), um Problemlésende tatsdchlich zu
unterstiitzen. Der gleiche Heurismus kann bei unterschiedlichen Aufgaben
ebenfalls unterschiedliche Auspridgungen annehmen (Holzépfel et al., 2018, S.
153; Schoenfeld, 1992, S. 53ff). Dies =zeigt, dass Heurismen ggfs.
inhaltsspezifischer oder sogar noch spezieller formuliert werden sollten.
Insgesamt lésst sich dennoch festhalten, dass Problemlésebemiihungen nur dann
erfolgreich sein kdnnen, wenn Heurismen genutzt werden (Holzédpfel et al., 2018,
S. 152). Dafiir miissen der problemlosenden Personen mehr als nur wenige
Heurismen und somit ein gewisses heuristisches Vokabular zur Verfiigung stehen,
welches in Problemldsesituationen flexibel angewandt werden kann (Koichu et
al., 2007).

2.5.4 Synthese zu Heurismen

Heurismen lassen sich in verschiedene Kategorien einteilen, wobei diese nicht
immer trennscharf voneinander zu unterscheiden sind. Trotzdem wird in dieser
Arbeit auf die Aufteilung (heuristisches Prinzip, heuristisches Hilfsmittel und
heuristische Strategie) von Bruder und Collet (2011) zuriickgegriffen, da diese
einen praktikablen Uberblick iiber Heurismen gibt. Auf diese Aufteilung stiitzt
sich dariiber hinaus auch die weitere Forschung (z. B. Lehmann, 2018; Rott, 2013;
Stenzel, 2023a). Aufgrund der inhaltlichen Spezifik im hochschulischen
Mathematikkontext sollten allerdings geeignete Heurismen gezielt untersucht
werden. Dafiir wird ein Kategoriensystem eingesetzt, das speziell fiir
mathematische Anforderungen auf Hochschulebene angepasst wurde. Dieses
Kategoriensystem wird in Kapitel 5.4.3 weiter ausgeschirft und dient als
Grundlage fiir die Analyse der verwendeten Heurismen.

2.6 Beliefs

Obwohl Beliefs (= Uberzeugungen, Glauben und Vorstellungen) in dieser Arbeit
nicht behandelt werden, gehdren diese dennoch zur Theorie des Problemlosens
nach Schoenfeld (1985). Aus Griinden der Vollstindigkeit wird daher in einem
kleinen Abschnitt das Thema der Beliefs beleuchtet. In den Dissertationen von z.
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B. Goller (2020, S. 691f.) und Geisler (2019, S. 82ff.) wird ein groBerer Uberblick
iber Beliefs gegeben.

Menschen treffen Entscheidungen in ihrem alltdglichen Leben, bei denen sie
relevantes Wissen sowie etablierte Verfahren ignorieren. Dariiber hinaus kdnnen
solche Entscheidungen stark voreingenommen und alles andere als rational sein
(Einhorn & Hogarth, 1981; Kahneman et al., 1982). Schoenfeld (1985, S. 35)
folgert daraus, dass pures kognitives Verhalten'® selten vorkommt. Innerhalb
eines bestimmten Kontextes werden Aufgaben im Rahmen der eigenen
Perspektive ausgefiihrt, die dariiber entscheidet, wie diese Aufgaben verstanden
und angegangen werden. ,,Beliefs systems™ beeinflussen die Kognition, selbst
wenn man sich dieser Uberzeugung nicht bewusst ist (Schoenfeld, 1985, S. 35).
Auch beim Lernen kdnnen Beliefs die Informationsaufnahme beeinflussen,
sodass nur Informationen aufgenommen werden, welche in das eigene System
passen (Blomeke, 2004). Insgesamt werden Beliefs eher als Disposition (trait)
und nicht als situative (state) Zustinde betrachtet, da sie sich {iber einen langeren
Zeitraum hinweg kaum veréndern und stabil bleiben (McLeod, 1992).

In der mathematikdidaktischen Literatur teilen Grigutsch und Torner (1998)
mathematische Beliefs in vier Bereiche auf:

o  Mathematik selbst als Disziplin (Beliefs iiber die Natur der Mathematik)
e Das Lernen von Mathematik
e  Das Lehren von Mathematik

e Die eigene Person als Lernender oder Nutzer der Mathematik (Self-
Beliefs)

Dariiber hinaus stellt sich die Frage, welchen Einfluss Beliefs auf das Treiben von
Mathematik hat. Schoenfeld (1985, S. 43f.) stellt im Kontext der Bearbeitung von
Problemen heraus, dass einige Beliefs zu negativen Effekten fithren kdnnen. So
kann z. B. die Uberzeugung, dass nur Genies imstande sind, Mathematik zu
erkunden und zu schaffen, dazu fiihren, dass Probleme zu friih aufgegeben werden
oder gar nicht erst versucht wird, diese zu 16sen. Allerdings konnen gegenteilige
Beliefs zu positiven Effekten fiihren.

Insgesamt zeigt sich, dass Beliefs einen Einfluss auf das Verhalten haben kann.

,,One’s mathematical world view shapes the way one does mathematics.” (Schoenfeld, 1985, S. 44)

2.7 Neuere Studien zum mathematischen Problemlosen

In diesem Kapitel wird ein Uberblick iiber neuere Studien im Bereich des
mathematischen Problemldsens gegeben. Tiefere Einblicke in &ltere Studien,

18 Pures kognitives Verhalten ist solches, welches nach ihm durch Wissen, Heurismen und
Steuerung charakterisiert ist.
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sogenannte Klassiker des Problemldsens, konnen bspw. in Rott (2013, S. 97ft.)
nachgelesen werden. Die neueren Arbeiten haben einen direkten Einfluss auf die
vorliegende Arbeit genommen und werden aufgrund ihrer Theorien, Methoden
oder Ergebnisse im weiteren Verlauf dieser Arbeit mehrfach zitiert. Aus diesem
Grund werden diese Arbeiten hier vorgestellt. Die Darstellung beschriankt sich
dabei auf wesentliche Aspekte, da eine detaillierte Analyse der einzelnen Studien
nicht erfolgen kann.

Dissertation von Rott (2013)

In seiner explorativen Studie untersucht Rott (2013) mathematisches
Problemlésen im Allgemeinen sowie die spezifischen Problemldseprozesse von
Fiinftkldsslern. Der Fokus liegt dabei auf dem Verlauf der Prozesse, dem Einsatz
von Heurismen und der Rolle von metakognitiven Aktivitidten. Grundlage der
Untersuchung sind Daten aus dem Projekt MALU (Mathe AG an der Leibniz
Universitit), einem Forderprogramm fiir Fiinftklassler:innen. Im Rahmen dieses
Projekts wurden Videoaufnahmen von Schiiler:innen erstellt, die in Partnerarbeit
mathematische Problemaufgaben bearbeiteten. Die Daten wurden mit einem
qualitativ-quantitativen Ansatz analysiert.

Die Untersuchung zeigt, dass die Prozesse der Schiiler:innen in Phasen unterteilt
werden konnen, die mit den Schoenfeld Episoden beschrieben werden. Die
Ergebnisse betonen die Relevanz dieses Modells fiir die Beschreibung und
Analyse von Problemldseprozessen. Auf Basis der empirischen Daten entwickelt
Rott dariiber hinaus das Modell von Schoenfeld weiter, um den zyklischen
Charakter des Problemldsen besser darzustellen. Des Weiteren koénnen einige
Heurismen (z. B. Systematisches Probieren, Riickwirtsarbeiten, Suchen nach
Mustern) in den Prozessen der Schiiler:innen identifiziert werden, die einen
positiven Zusammenhang zwischen deren Einsatz sowie Problemléseerfolg
aufweisen. Einige Prozesse wurden hinsichtlich metakognitiver Aktivititen
gezielt an den Episodenwechseln untersucht. Dabei zeigt sich, dass insbesondere
diese Wechsel oft von metakognitiven Aktivititen geprigt zu sein scheinen.

Die Studie leistet dariiber hinaus methodische Beitrige zur Analyse von
Problemloseprozessen, bspw. durch die Entwicklung von Kodiermanualen zu den
Schoenfeld Episoden sowie Heurismen.

Dissertation von Stenzel (2023a)

Die Zielsetzung der Studie von Stenzel (2023a) ist, mathematisches Problemldsen
von Studienanfinger:innen genauer zu untersuchen und daraus eine
FordermaBnahme fiir deren Problemldsekompetenz zu entwickeln. Die Studie
verwendet einen Mixed-Methods-Ansatz. Es wurde eine Intervention im Sinne
von Design-Based-Research entwickelt und iiber sieben Semester in den
Anfangervorlesungen Lineare Algebra I oder Analysis I an der Universitit
Duisburg-Essen durchgefiihrt. Die Intervention modifizierte die traditionelle
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Gruppeniibung, in der Ubungsaufgaben besprochen wurden. Zur Datenerhebung
wurden aufgabenbasierte Interviews mit Studienanfénger:innen arrangiert, bei
denen authentische Ubungsaufgaben bearbeitet wurden. Die Interviews wurden
videografiert und mit einem Fokus auf den Einsatz von Heurismen,
Metakognition und den Einfluss von Vorwissen qualitativ analysiert. Zusitzlich
wurden quantitative Daten erhoben, um den Einfluss der Intervention auf die
Klausurergebnisse, die Bearbeitung von Hausaufgaben und die Teilnahme an den
Ubungsgruppen zu messen.

Die qualitative Analyse der Interviews zeigt, dass das Vorwissen der Studierenden
den entscheidenden Faktor fiir den Erfolg beim Problemldsen darstellt.
Studierende mit gutem Vorwissen setzen hiufiger heuristische Strategien ein und
zeigen mehr metakognitive Aktivititen. Die Intervention hat zu einer stérkeren
Reflexion des eigenen Problemldsevorgehens gefiihrt und den bewussten Einsatz
von Heurismen gefordert. Die quantitativen Daten zeigen zwar leichte Vorteile
fiir die Interventionsgruppe, diese sind jedoch nicht statistisch signifikant.

Dissertation von Lehmann (2018)

Die Studie von Lehmann (2018) widmet sich der Analyse relevanter
mathematischer Kompetenzen von Ingenieurstudierenden im ersten Studienjahr.
Dabei wird sowohl das Wissen als auch die Féhigkeit zur Anwendung dieses
Wissens im Kontext des Problemldsens betrachtet. Die Untersuchung wurde im
Rahmen des Forschungsprogramms KoKoHs (Kompetenzmodellierung und
Kompetenzerfassung im Hochschulsektor) durchgefiihrt. Die Studie folgt einem
Mixed-Methods-Design.  Quantitative ~ Daten ~ wurden  mithilfe  von
standardisierten Tests erhoben, die schulisches und hochschulisches Wissen im
Bereich Mathematik und Physik umfassen. Qualitative Daten wurden durch
Videografie von Gruppen- und Einzelarbeiten gewonnen, wihrend Studierende
Aufgaben aus den Bereichen Mathematik und Physik bearbeiteten.

Die quantitativen Ergebnisse zeigen deutliche Zusammenhénge zwischen den
mathematischen und physikalischen Kompetenzen der Studierenden. Studierende
mit besseren mathematischen Fahigkeiten zu Studienbeginn erzielen auch am
Ende des ersten Studienjahres hohere Leistungen in Mathematik und Technischer
Mechanik. Qualitative Analysen zeigen, dass eine strukturierte und planvolle
Herangehensweise beim Problemldsen einen entscheidenden Einfluss auf den
Erfolg hat. Insbesondere leistungsstirkere Studierende nutzen bevorzugt
Problemlgsestrategien, die ein tiefes konzeptuelles Verstandnis fordern.

Dissertation von Herold-Blasius (2019)

In der explorativen Studie von Herold-Blasius (2019) wird untersucht, inwiefern
Strategieschliissel den Problemloseprozess von Grundschulkindern der 3. und 4.
Klasse beeinflussen. Ziel der Studie ist es herauszufinden, ob und wie diese
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unterstiitzenden Materialien die Nutzung von Heurismen sowie den Erfolg beim
Losen mathematischer Aufgaben fordern.

Mithilfe eines Mixed-Methods-Ansatzes zeigt sich, dass die Nutzung von
Strategieschliisseln mit dem Einsatz von Heurismen sowie der Héaufigkeit von
Episodenwechseln  im  Problemldseprozess  positiv  zusammenhingen.
Strategieschliissel erweisen sich somit als effektives Werkzeug zur Unterstiitzung
des mathematischen Problemldsens bei Grundschulkindern.



Seite |61

3 Forschungsfragen

Bevor auf das Forschungsdesign und die Forschungsfragen eingegangen wird,
erfolgt ein Kommentar zu Begrifflichkeit: In dieser Arbeit wird der Begriff des
mathematischen Problemlosens in den theoretischen Ausfiihrungen verwendet,
wodurch auch die Bezeichnung Problemléseprozesse gepragt wird. Dieser
Begriff impliziert jedoch, dass ein Problem tatsdchlich gelost wird. Um der
Realitit mathematischer Prozesse gerecht zu werden, wird stattdessen der Begriff
des Problembearbeitungsprozesses eingefiihrt und bevorzugt verwendet (wie in
Rott, 2013, S. 33). Dieser umfasst nicht nur Prozesse, die zu einer Losung fiihren,
sondern schliefit ebenso Bearbeitungsprozesse ein, die ergebnislos bleiben oder
in denen keine vollstindige Losung erreicht wird. Um der theoretischen
Grundlage Rechnung zu tragen, wird jedoch an einigen Stellen weiterhin die
Begriftlichkeit des Problemléseprozesses verwendet. Dies erfolgt mit dem Ziel,
Konsistenz mit der bestehenden theoretischen Terminologie zu wahren, ohne die
umfassendere Perspektive des Problembearbeitungsprozesses aus dem Blick zu
verlieren.

Im Folgenden wird das Forschungsdesign der Studie erdrtert sowie die daraus
resultierenden  Forschungsfragen unter Hinzunahme der theoretischen
Ausarbeitungen abgeleitet. Das Forschungsdesign legt einen starken Fokus auf
die empirische Untersuchung von mathematischen Lernprozessen im Kontext des
mathematischen Problemldsens. Fiir diese Untersuchung ist es unerlédsslich, den
mathematischen Inhalt mit einzubeziehen. Dies begriindet sich unter anderem
damit, dass die Kategorie des Wissens unmittelbar mit dem mathematischen Inhalt
gleichgesetzt werden kann (Schoenfeld, 1985, S. 17). Dementsprechend sollten
mathematische Problembearbeitungsprozesse in einem inhaltlichen Kontext
betrachtet werden, da sie ohne Beriicksichtigung der zugrundeliegenden
mathematischen Strukturen nicht addquat untersucht werden kdnnen. Aus diesem
Grund wird vor der empirischen Betrachtung von Problembearbeitungsprozessen
bereits einer  stoffdidaktischen  Fragestellung nachgegangen. Diese
vorangestellten stoffdidaktischen Uberlegungen dienen somit als unterstiitzendes
Element fiir die nachfolgenden empirischen Analysen.

3.1 Stoffdidaktische Fragestellungen zur Differentialrechnung

Der mathematische Inhalt, auf den sich diese Arbeit fokussiert, ist die
Differentialrechnung. Dies stellt ein zentrales Gebiet der Mathematik dar,
welches durch eine Vielzahl von Definitionen, Sitzen und Verfahren
charakterisiert ist. Vor diesem Hintergrund stellt sich die didaktische Frage, wie
dieser umfangreiche Inhaltsbereich gezielt fiir den ingenieurwissenschaftlichen
Kontext aufbereitet werden kann. Dabei ist zu berilicksichtigen, dass nicht
sdmtliche Aspekte der Differentialrechnung fiir die Untersuchung der
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empirischen Daten von Relevanz sind. Die stoffdidaktische Analyse beschrankt
sich daher auf ausgewdbhlte, relevante Teilbereiche der Differentialrechnung, die
unmittelbar mit den Problembearbeitungsprozessen verkniipft sind.

Aufbauend auf die stoffdidaktische Ausarbeitung werden im weiteren Verlauf die
Anforderungen zu den jeweiligen Aufgaben dieser Studie eingeordnet (Kapitel
5.3). AuBerdem wird die stoffdidaktische Ausarbeitung genutzt, um im
empirischen Teil dieser Arbeit die Analysen zur Kategorie Wissen durchzufiihren
(Kapitel 6.2). Es ergibt sich somit die folgende stoffdidaktische Forschungsfrage,
die in Kapitel 4 beantwortet wird:

(D1) Wie lassen sich ausgewdhlte Teilbereiche der Differentialrechnung
didaktisch aufbereiten, sodass sie fiir die Analyse zur Kategorie des Wissens
beitragen?

3.2 Empirische Fragestellungen zur Untersuchung von
Problembearbeitungsprozessen

Freudenthal (1991, S. 87) macht deutlich, dass sich die Bildungsforschung haufig
auf Produkte konzentriert, da diese leichter zu analysieren sind, wihrend die
Abfolge vor den Produkten, also die Lernprozesse, oft vernachlédssigt werden.
Dabei sind gerade diese Prozesse didaktisch von zentraler Bedeutung, weil sie
zeigen, wie Lernen tatsdchlich geschieht. Wahrend Produkte (wie Testergebnisse
oder abgeschlossene Aufgaben) nur das Endergebnis eines Lernprozesses
darstellen, geben die Prozesse Einblick in die Strategien, Denkweisen und
Herausforderungen, die Lernende durchlaufen. Didaktisch sind Prozesse
entscheidend, weil sie die Grundlage dafiir bilden, das Lehren nicht nur
ergebnisorientiert, sondern auch lernorientiert zu gestalten.

An Universitéten finden solche Lernprozesse in mathematischen Veranstaltungen
regelméBig statt, insbesondere durch die typische, wochentliche Bearbeitung von
Hausaufgaben.  Diese  Prozesse lassen sich als  mathematische
Problembearbeitungsprozesse auffassen (Kapitel 1.3.1). Um realititsnahe
Erkenntnisse iiber solche Lernprozesse zu gewinnen, miissen diese ebenfalls
mdglichst nah an der tatsdchlichen Studienrealitét erhoben und analysiert werden.
Da das authentische Lernen aufgrund begrenzter Forschungsressourcen nicht
tiber das gesamte Semester hinweg verfolgt werden kann, wird entschieden, den
Fokus auf einen spezifischen Inhaltsbereich zu legen. Dafiir wird das Thema der
Differentialrechnung ausgewahlt. Diese Eingrenzung auf einen spezifischen
Inhalt ist auch im Hinblick auf die Kategorie Wissen sinnvoll, da die
Bearbeitungsprozesse zu diesen Aufgaben mithilfe Wissensmatrizen verglichen
werden kdnnen. Aufgaben(bearbeitungen) aus unterschiedlichen Inhaltsbereichen
haben unter Umstdnden unterschiedliche Anforderungen, wodurch die
resultierenden Wissensmatrizen ebenfalls stark unterschiedlich wéren. Letztlich
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ist die Differentialrechnung zwar in jedem mathematikhaltigen Studiengang von
Bedeutung, jedoch profitieren insbesondere Ingenieurstudierende von einem
fundierten Verstdndnis in diesem Bereich, da sie im Anwendungskontext fiir
Ingenieur:innen besonders wichtig ist (Kapitel 4.1). Daher wird der Fokus der
Untersuchung auf diese Zielgruppe gelegt.

Insgesamt ergibt sich demnach das Forschungsinteresse dieser Arbeit (Kapitel
1.4), mathematische Problembearbeitungsprozesse von Ingenieurstudierenden
beziiglich der Differentialrechnung in einem authentischen Setting zu
untersuchen.

Problemlosen ist eine wichtige Kompetenz, die nicht nur im Mathematikstudium,
sondern auch im Studium fiir Ingenieur:innen wichtig ist (Kapitel 2.1). Bisherige
Studien zu Problembearbeitungsprozessen haben bislang vorwiegend das Denken
von Schiiler:innen untersucht (z.B. Herold-Blasius, 2019; Rott, 2013). Auf
Hochschulebene liegen Forschungsergebnisse zu Problembearbeitungsprozessen
bislang nur von Stenzel (2023a) und Lehmann (2018) vor. Insbesondere
authentische mathematische Problembearbeitungsprozesse von
Ingenieurstudierenden wurden bisher jedoch kaum untersucht (Kapitel 2.1). Aus
den theoretischen Ausfiihrungen dieser Arbeit lassen sich Problemldseprozesse
mit den vier Kategorien beschreiben, die ebenfalls einen Einfluss auf den
Problemloseprozess haben konnen: Wissen, Heurismen, Steuerung, Beliefs
(Schoenfeld, 1985). Beliefs werden in der Forschung oft als (relativ) stabile
Konstrukte betrachtet. Fiir ihre Erhebung haben sich Methoden wie Fragebogen
oder Interviews als effektiv erwiesen. Allerdings greifen diese Methoden aktiv in
den Problembearbeitungsprozess ein und storen somit den authentischen Verlauf,
da sie von den Studierenden eine bewusste Reflexion ihrer Beliefs erfordern. Um
den natiirlichen Ablauf der Problemldseprozesse nicht zu unterbrechen, wird in
dieser Arbeit auf die Erhebung von Beliefs verzichtet. Der Fokus liegt stattdessen
auf den dynamischen, unmittelbaren Aspekten der Problemldseprozesse, die
direkt im Prozess selbst sichtbar werden.

Die empirischen Forschungsfragen zum Problembearbeitungsprozess werden
zunichst durch die drei Kategorien Steuerung (Kapitel 3.2.1), Wissen (Kapitel
3.2.2) und Heurismen (Kapitel 3.2.3) gegliedert. AbschlieBend werden die
Kategorien gemeinsam hinsichtlich der Problembearbeitungsprozesse betrachtet
(Kapitel 3.2.4). Zur Motivation der jeweiligen Forschungsfragen werden zunichst
theoretische und empirische Erkenntnisse in einem kurzen Absatz dargestellt. Im
Anschluss an diesen Absatz wird die dazugehorige Forschungsfrage formuliert.

3.2.1 Fragen zur Steuerung

Bisherige Studien beziehen sich vor allem auf die Untersuchung von
Schiiler:innen (Herold-Blasius, 2019; Rott, 2013), wobei Stenzel (2023a) im
hochschulischen Kontext Problembearbeitungsprozesse von Studierenden
analysiert. Fiir die Untersuchung solcher Problembearbeitungsprozesse eignet
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sich das Modell von Schoenfeld, da es die Dynamik der einzelnen
Problemlésephasen erfasst (Kapitel 2.3). Da der Fokus
ingenieurwissenschaftlicher Stundenginge in der Regel auf
anwendungsorientierten Aufgaben liegt, ist eine Untersuchung der in diesem
Kontext ausgeprigten Steuerungsfahigkeit von besonderem Interesse. Daraus
ergibt sich folgende Forschungsfrage:

(S1) Welche Episoden durchlaufen Ingenieurstudierende bei mathematischen
Problembearbeitungsprozessen?

In der Studie von Lehman (2018, S. 252ff.)) wird deutlich, dass die
Bearbeitungsprozesse mathematischer und physikalischer Aufgaben bei
Ingenieurstudierenden iiber verschiedene Messzeitpunkte hinweg meist linear
verlaufen. Ahnliches zeigt sich auch bei der Analyse von Schiiler:innen (Rott,
2013, S. 296ft.). Dies steht jedoch im Kontrast zu Modellen, die betonen, dass
Problemloseprozesse typischerweise nicht-linear verlaufen. Es bleibt zu kldren,
ob in der aktuellen Studie dhnliche lineare Muster vorliegen oder nicht-lineare
Dynamiken zum Tragen kommen.

(S2) Welche Episodenwechsel treten in den Problembearbeitungsprozessen auf?
Verlaufen die Prozesse linear?

Schoenfeld (1985) priagte den Begriff ,,wild goose chases”, um Prozesse zu
beschreiben, bei denen keine Steuerung vorhanden ist. In solchen Fallen
verfolgen die Lernenden einen LoOsungsansatz, ohne weiterhin dariiber
nachzudenken. Sowohl in seinen eigenen Studien mit Studierenden (z. B. 1985)
als auch in Studien mit Schiiler:innen (z. B. Herold-Blasius, 2019; Rott, 2013)
kann dieses Verhalten identifiziert werden. Interessanterweise konnen in
mathematischen Problembearbeitungsprozessen in der Hochschule kein solches
Verhalten nachgewiesen werden (Stenzel, 2023a, S. 122). Dies fiihrt zur Frage,
inwiefern sich dieses Verhalten in Problembearbeitungsprozessen von
Ingenieurstudierenden identifizieren lasst.

(S3) Inwiefern lassen sich ,,wild goose chases  in den
Problembearbeitungsprozessen identifizieren und inwiefern konnen Studierende
dieses Verhalten vermeiden?

Schoenfeld (1985) beschreibt in seinen Untersuchungen, dass vier Kategorien
Einfluss auf Problemldseprozesse nehmen. Fiir die Kategorie Steuerung hebt er
bspw. vier verschiedene Typen von Steuerung und den Einfluss auf Erfolg bzw.
Misserfolg hervor (Schoenfeld, 1985, S. 110). Ein Beispiel ist dafiir das Verhalten
,,wild goose chase®. Dariiber hinaus konnen auch hinsichtlich linearer und nicht-
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linearer Prozesse Aussagen iiber Erfolg bzw. Misserfolg getroffen werden
(Lehmann, 2018, S. 252ff.). Daraus ergibt sich die Forschungsfrage:

(S4) Inwiefern hingen die Schoenfeld Episoden mit dem Erfolg bzw. Misserfolg
eines Problembearbeitungsprozesses zusammen?

3.2.2 Fragen zum Wissen

Das Wissen der Studierenden spielt eine zentrale Rolle im Problemldseprozess.
Dabei ist entscheidend, auf welches Wissen sie wihrend des Ldsens von
Aufgaben zuriickgreifen kdnnen. Zum einen ist dies Wissen, das sie bereits
mitbringen, zum anderen um solches, das sie im Rahmen der Veranstaltung
(Vorlesung, Ubungsgruppen, Hausaufgaben) erwerben. Im Allgemeinen liegt der
Kern der Hochschulmathematik in ihrem Selbstverstindnis als beweisende
Disziplin (Heintz, 2000). Mathematische = Veranstaltungen fiir
Ingenieurstudierende werden dagegen oft als eher verfahrensorientiert und
praxisnah beschrieben (Alpers, 2014; Alpers, 2016). Daher stellt sich die
Forschungsfrage, welches spezifische Wissen in der Veranstaltung vermittelt wird
und Studierenden fiir die Nutzung zur Verfiigung steht.

(W1) Welches Wissen wird von der Veranstaltung angeboten?

Die Wissensmatrix entstammt der Theorie zur Unterrichtsphase ,,Systematisieren
und Sichern® und wurde urspriinglich entwickelt, um Wissen strukturiert zu
erfassen und zu ordnen (Prediger et al., 2011). Erath (2017) hat die Wissensmatrix
fir ihren Forschungskontext adaptiert, um Aussagen von Schiiler:innen im
Klassenraum systematisch einzuordnen. Eine neue Anwendung der
Wissensmatrix besteht nun darin, sie zur Beschreibung der Wissensnutzung bei
Problembearbeitungsprozessen von  Studierenden  heranzuziehen. Die
Untersuchung dieser Anwendung konnte zeigen, ob die Wissensmatrix auch in
einem hochschulischen Kontext niitzlich ist, um aktivierte Wissenselemente zu
rekonstruieren. Daraus ergibt sich die Forschungsfrage:

(W2) Wie ldsst sich die Wissensnutzung in Problembearbeitungsprozessen
mithilfe der Wissensmatrix rekonstruieren?

Im hochschulischen Kontext existiert bislang kaum tiefergehende Forschung, die
sich explizit mit der reinen Beschreibung der mathematischen Wissensnutzung
von Studierenden beschiftigt. In diesem Zusammenhang ermdglicht die
Wissensmatrix eine prézise Darstellung der Wissenselemente, die Studierende im
Problembearbeitungsprozess  nutzen.  Dadurch  ergeben sich  zwei
Forschungsfragen:
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(W3) Welche Wissenselemente werden von den Studierenden hdufig genutzt?
(W4) Auf welche Wissenselemente setzen Studierende einen Fokus wdhrend der
Prozesse?

In Kapitel 3 werden verschiedene, typische Verstindnisschwierigkeiten von
Studierenden im Zusammenhang mit der Differentialrechnung aufgezeigt. Diese
Schwierigkeiten befinden sich in verschiedenen Wissensarten und -facetten.
Allerdings ist bisher nur wenig iiber die spezifischen Barrieren bekannt, die bei
der Bearbeitung von (authentischen) Aufgaben in diesem Bereich auftreten. Im
Kontext von (authentischen) Aufgabenbearbeitungen hat Stenzel (2023a, S. 160)
feststellen konnen, dass sowohl begriffliche als auch prozedurale Schwierigkeiten
entstehen. Aufgrund der unterschiedlichen Anforderungen hinsichtlich der
Aufgaben, stellt sich die Frage, ob dhnliche Ergebnisse auch in dieser Studie
identifiziert werden kdnnen.

(W5) Welche Schwierigkeiten kénnen wdhrend der
Problembearbeitungsprozesse identifiziert werden?

Auf Grundlage der vorherigen Ausfithrungen, die getrennt voneinander das
Angebot und die Nutzung von Wissen beschrieben haben, sollen nun beide
Betrachtungen zusammengefiihrt werden. Diese Zusammenfithrung ermoglicht
es  herauszufinden, inwiefern das angebotene Wissen in den
Problembearbeitungsprozessen tatsachlich genutzt wird. Daher ergibt sich
folgende Forschungsfrage:

(W6) Welches Wissensangebot wird von der Veranstaltung angeboten und
inwiefern wird dies von den Studierenden in ihren Bearbeitungen genutzt?

Schoenfeld (1985) beschreibt Wissen als eine der vier Kategorien, die einen
Einfluss auf den Problemldseprozess und seinen Erfolg nehmen. In diesem
Zusammenhang kann Stenzel (2023a, S. 160) fiir Fachstudierende aufzeigen, dass
insbesondere Wissensliicken auf begrifflicher Ebene sowie prozedurale Méngel
die Problembearbeitungsprozesse erheblich erschweren. Die Wissensmatrix
liefert eine detailliertere Darstellung von Wissen und kann daher besser
beschreiben, inwiefern Wissensarten bzw. -facetten sich als entscheidend fiir den
Fortschritt in einem Problembearbeitungsprozess darstellen. Damit stellt sich die
folgende Forschungsfrage:

(W7) Inwiefern hdingt die Wissensnutzung mit dem Erfolg bzw. Misserfolg eines
Problembearbeitungsprozesses zusammen?
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3.2.3 Fragen zu Heurismen

Zunéchst wird ermittelt, welche Heurismen in den
Problembearbeitungsprozessen von Ingenieurstudierenden zu beobachten sind.
Dabei stellt sich die Frage, welche heuristischen Hilfsmittel, Prinzipen und
Strategien (Bruder & Collet, 2011) (am héaufigsten) auftreten. Diese
Untersuchung bildet die Grundlage fir die Beantwortung der weiteren
Forschungsfragen.

(H1) Welche Heurismen treten in den Problembearbeitungsprozessen auf?

In verschiedenen empirischen Studien wurde bereits die Nutzung
unterschiedlicher Heurismen im hochschulischen Kontext nachgewiesen (z.B.
Hoon et al.,, 2013; Lehmann, 2018; Stenzel, 2023a). Dabei variieren die
spezifischen Kontexte jedoch deutlich, insbesondere hinsichtlich der gestellten
Aufgaben. Die Unterschiede in den Aufgabenstellungen deuten darauf hin, dass
der Einsatz von Heurismen je nach Situation unterschiedlich ausfallen kann. Rott
(2013, S. 136ft.) stellt in seiner Studie theoretischen Annahmen zur Nutzung von
Heurismen auf, die in speziellen Aufgaben als besonders hilfreich gelten. Dies
legt nahe, dass es Heurismen gibt, die eher situationsspezifisch sind und je nach
Aufgabe einen groBeren Nutzen erbringen. Gleichzeitig weist Stenzel (2023a, S.
31) darauf hin, dass einige Problemlésende auch ohne die (bewusste) Anwendung
von Heurismen auskommen. Dies deutet darauf hin, dass die Nutzung von
Heurismen nicht nur aufgabenabhingig sein konnte, sondern ebenfalls von
individuellen Faktoren beeinflusst wird. Insgesamt stellt sich damit die folgende
Forschungsfrage:

(H2) Ist die Nutzung von Heurismen aufgabenabhdngig? Ist die Nutzung von
Heurismen lerngruppenabhdngig?

Schoenfeld (1985) beschreibt Heurismen als Kategorie, die einen Einfluss auf
Erfolg bzw. Misserfolg in Problemldseprozessen hat. Insbesondere die gezielte
Forderung von Heurismen erweist laut Singh et al. (2018) einen positiven Einfluss
auf das mathematische Denken von Ingenieurstudierenden. Die Frage, welche
spezifischen Heurismen diesen positiven Effekt begiinstigen, wird in mehreren
Studien thematisiert. Ubereinstimmende Ergebnisse zeigen sich in den beiden
Studien von Stenzel (2023a) und Lehmann (2019). Der Einsatz heuristischer
Hilfsmittel hat generell einen  forderlichen Einfluss auf den
Problembearbeitungsprozess. In beiden Studien werden dariiber hinaus einzelne
spezifische Heurismen aufgefiihrt, die ebenfalls einen positiven Einfluss
bewirken. Es ergibt sich somit die folgende Forschungsfrage:
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(H3) Inwiefern héngt die Nutzung der Heurismen mit dem Erfolg bzw.
Misserfolg eines Problembearbeitungsprozesses zusammen?

3.2.4 Fragen zur gemeinsamen Betrachtung von Steuerung, Wissen und
Heurismen

In diesem Kapitel werden Forschungsfragen formuliert, welche die
Problembearbeitungsprozesse der Studierenden anhand der drei Kategorien
(Steuerung, Wissen und Heurismen) untersuchen.

Zunichst stellt sich die Frage, inwiefern sich die in der Literatur beschriebenen
Interaktionen der Kategorien (Schoenfeld, 1985, S. 44) in den Daten dieser Arbeit
wiederfinden lassen.

(Z1) Welche Interaktionen lassen sich zwischen Steuerung, Heurismen und
Wissen identifizieren?

Episodenwechsel gelten bei Schoenfeld als kritische Momente, da sie eine
signifikante Verdnderung in der Bearbeitung von Aufgaben darstellen
(Schoenfeld, 1985, S. 292). Besonders im Hinblick auf die Kategorie Transition
betont Schoenfeld (1985, S. 300), dass diese eng mit den Prozessen der
Selbstregulation verkniipft ist. Allerdings ist es durchaus moglich, dass iiber die
Selbstregulation hinaus noch weitere Aspekte ausschlaggebend fiir einen
Episodenwechsel sind. Es stellt sich daher die Frage, ob — nicht nur im Kontext
der Tranmsition, sondern auch weiteren Episoden — (vorhandenes) Wissen sowie
der Einsatz von Heurismen ebenfalls einen Zusammenhang mit Episodenwechsel
aufweist.

| (Z2) Welche Rolle spielen Wissen und Heurismen bei einem Episodenwechsel?

In Kapitel 2.2 wird die Unterscheidung zwischen Routine- und
Problemldseaufgaben diskutiert. Wéhrend theoretisch im Voraus nicht eindeutig
geklart werden kann, ob eine Aufgabe als Problem gilt, konnte dies anhand
empirischer Daten und der Analyse der relevanten Kategorien erschlossen
werden. Diese Kategorien konnten Hinweise darauf geben, ob ein Problem
vorlag. Stenzel (2023a, S. 13) nimmt an, dass die meisten Aufgaben fiir
Studierende in der Eingangsphase Probleme darstellen. Im Ingenieurstudium
hingegen wird Mathematik hiufig anwendungsorientierter bzw. prozeduraler
gelehrt (Alpers, 2014, 2016), wodurch moéglicherweise weniger Probleme
vorliegen, da viele Aufgaben durch Anwendung spezieller Verfahren gelost
werden konnen. Damit stellt sich im Kontext der Ingenieur:innen die folgende
Forschungsfrage:
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(Z3) Kann empirisch entschieden werden, ob die Aufgaben fiir die Studierenden
Probleme darstellen?
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4 Spezifizierung von Grundlagen der Differentialrechnung

Im Rahmen dieser Arbeit wird ein Fokus auf den Inhaltsbereich der
Differentialrechnung in einer Verinderlichen gelegt (im weiteren Verlauf wird auf
den Zusatz ,,in einer Verdnderlichen* zur besseren Lesbarkeit verzichtet). Das
Ziel dieses Kapitels ist es, einen stoffdidaktischen Uberblick zur
Differentialrechnung zu liefern und anschliefend eine Einordnung in die
Wissensmatrix vorzunehmen. Es soll demnach deutlich werden, welche
fachlichen Inhalte zur Differentialrechnung zuzuordnen sind (bezogen auf die
Lehre in einem ingenieurwissenschaftlichen Studium) sowie welche didaktischen
Perspektiven hinter dem mathematischen Inhalt stehen. Dabei wird nur auf
derartige Inhaltsbereiche eingegangen, die fiir die empirischen Fragestellungen
der Arbeit notwendig sind. Die stoffdidaktische Auseinandersetzung mit einem
spezifischen Inhaltsbereich steht dabei in einem engen Zusammenhang mit der
Kategorie Wissen nach Schoenfeld (1985). Bevor das Wissen bzw. die
Wissensnutzung von Studierenden empirisch untersucht wird, ist eine
theoretische Betrachtung notwendig, um die Bearbeitungsprozesse umfassend zu
verstehen. Die Ausfithrungen in diesem Kapitel beantworten somit die
Forschungsfragen:

(D1) Wie lassen sich ausgewdhlte Teilbereiche der Differentialrechnung
didaktisch aufbereiten, sodass sie fiir die Analyse zur Kategorie des Wissens
beitragen?

Das Kapitel 4.1 stellt zunichst die Relevanz der Differentialrechnung fiir
Ingenieur:innen in  den Vordergrund. Um sich inhaltlich mit der
Differentialrechnung auseinandersetzen zu konnen, wird mathematisches
Vorwissen bendtigt, welches in Kapitel 4.2 beschrieben wird. Im Anschluss wird
der Vier-Ebenen-Ansatz nach Hulmann und Prediger (2016) sowie ausgewéhlte
mathematischen Inhalte der Differentialrechnung vorgestellt (Kapitel 4.3).
Schlussendlich werden die vorherigen theoretischen Ausfilhrungen zur
Differentialrechnung in einer Wissensmatrix festgehalten (Kapitel 4.4).

4.1 Relevanz der Differentialrechnung im Kontext des
Ingenieurstudiums
Besonders fiir Ingenieurstudierende nimmt die Differentialrechnung eine

wichtige Rolle ein, da Konzepte und Anwendungen der Differentialrechnung
viele Ankniipfungspunkte in der Technik sowie Naturwissenschaft besitzen.

,,Viele physikalische GesetzméaBigkeiten lassen sich nur iiber die Differenziation einer physikalischen
Grofe beschreiben. Ist beispielsweise bei einem Bewegungsvorgang das Weg-Zeit-Gesetz s(t)
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gegeben, dann ist die Geschwindigkeit v(t) die Ableitung des Weg-Zeit-Gesetzes nach der Zeit t. Die
konkrete Bestimmung der Geschwindigkeit setzt rechentechnisch voraus, dass man die Funktion s(t)
ableiten kann* (Westermann, 2015, S. 243).

Fragestellungen im Zusammenhang mit Geschwindigkeit werden auch héufig als
Motivation der Differentialrechnung genutzt, wobei weitere inner- und
aulBermathematische Anwendungen existieren. Die Differentialrechnung hilft
beim Ldsen von Gleichungen, beim Maximieren und Minimieren sowie bei der
Berechnung von komplizierten Funktionen, Fldchen und Rauminhalten. Dariiber
hinaus findet sie auch bei Phanomenen wie Bewegungen, Kriften, Impulsen,
Energien, dem Zusammenspiel der Gesteine als auch der Elementarteilchen und
bildet somit eine wichtige Grundlage zum Verstehen (Burg et al., 2017).

Im SEFI-Framework (Alpers et al, 2013) ist die Differentialrechnung
hauptséchlich in den Bereichen Core 0 und Core 1 verankert. Sie bildet damit die
Grundlage fiir viele weiterfithrende mathematischen Inhalte. Aus diesem Grund
wird die Differentialrechnung in der Regel in Mathematikveranstaltungen fiir
Ingenieurstudierende in einem der ersten beiden Semester behandelt. Angesichts
der zeitlichen Beschrinkung werden meist lediglich Grundideen der
Differentialrechnung behandelt, die den Studierenden im weiteren Verlauf des
Studiums und im Beruf helfen sollen.

Es gibt daher eine Reihe von Ankniipfungspunkten und Anwendungen der
Differentialrechnung, denen im spéteren Berufsleben der Ingenieur:innen eine
wichtige Bedeutung zukommen koénnen. Dementsprechend erscheint ein
ausgeprigtes und gefestigtes Wissen iiber die Differentialrechnung vor allem fiir
Studierende der Ingenieurwissenschaften essenziell zu sein. Lax und Terrel
(2014, S. 130) heben besonders die Anderungsrate als Teil der Ableitung als
zentralen Aspekt hervor. Zudem geben sie einige Beispiele, in denen die
Anderungsrate in verschiedenen Kontexten bedeutsam ist:

e  Geschwindigkeit: Anderungsrate der Distanz als Funktion der Zeit

e Geschwindigkeit im Sinne einer vektoriellen GroBe: Anderungsrate der
Position als Funktion der Zeit

e Beschleunigung: Anderungsrate der Geschwindigkeit als Funktion der
Zeit

e Dichte: Anderungsrate von Masse als Funktion des Volumens

e Steigung: Anderungsrate der Hohe als Funktion der horizontalen
Distanz

e Strom: Anderungsrate der Menge elektrischer Ladung als Funktion der
Zeit

e  Grenzkosten: Anderungsrate der Produktionskosten als Funktion der
produzierten Stiickzahl
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Lax und Terrel (2014, S. 129) legen auBerdem dar, dass Anderungen von
(Funktions-)GroBen bedeutsamer sein konnen als die (Funktions-)Grofe selbst.
Im mathematikdidaktischen Kontext ldsst sich dies so einordnen, dass die
dynamische Sichtweise der Kovariationsvorstellung von Funktionen wichtiger als
die statische Sichtweise der Zuordnungsvorstellung von Funktionen aufgefasst
wird®®. Fiir eine Funktion bedeutet dies wiederum, dass die Anderung iiber einem
Intervall oder im Anwendungskontext {iber einem Zeitintervall wichtiger ist als
der Funktionswert. Am Borsenmarkt ist es zwar nicht unwichtig zu wissen, zu
welchem Preis eine Aktie am néchsten Tag verkauft wird, allerdings wére es
relevanter zu wissen, ob sie am Tag davor zum gleichen, niedrigeren oder hheren
Preis verkauft wurde. Es geht dabei also um die Anderung einer GroBe. Wie
bereits beschrieben, beziehen sich im Bereich der Ingenieurwissenschaften viele
dieser Anwendungen (Mechanik, Optik, Wirme, Sound, etc.) auf die Anderung
von Groflen. Im weiteren Verlauf des Studiums sowie im spiteren Berufsleben
wird mit Methoden der Differentialrechnung gearbeitet, wodurch sich die
Wichtigkeit herausstellt, gerade die Grundlagen der Differentialrechnung im
ersten Semester zu durchdringen. Eine Anwendung fiir die Methoden der
Differentialrechnung findet sich bei Differentialgleichungen wieder. Eine
Differentialgleichung setzt eine unbekannte Funktion mit einer oder mehrerer
ihrer Ableitungen in Beziehung. Harterich und Rooch (2014) stellen bspw. vier
typische Praxisprobleme (,,Balancieren mit Differentialgleichungen: Der
Segway* — ,,Cool bleiben: Design eines Rippenkiihlers* — , Mit Trigonometrie
schaukelfrei ans Ziel: Kransteuerung® - ,Immer mit der Ruhe:
Schwingungstilgung®) aus verschiedenen Bereichen der Ingenieurwissenschaften
umfinglich vor, die mithilfe von Mathematikkenntnissen zu 16sen sind. Dabei
spielen Differentialgleichungen in jedem dieser vier Projekte eine wichtige Rolle,
um die aufgeworfenen Probleme l6sen zu koénnen. Ein grundsitzliches
Verstindnis der Differentialrechnung und deren Methoden ist daher eine
notwendige Voraussetzung, um Differentialgleichungen 16sen zu kénnen.

4.2 Spezifizierung des Vorwissens fiir die Differentialrechnung

Zu dem mathematischen Vorwissen werden in dieser Arbeit der Funktionsbegriff
(Kapitel 4.2.1), Grenzwertbegriff (Kapitel 4.2.2) sowie Stetigkeitsbegriff (Kapitel
4.2.3) gezahlt. Diese drei Begriffe werden als Grundlagen fiir die Ableitung
verstanden (Rasmussen & Zandieh, 2000) und sowohl aus fachlicher als auch

19 Auf die Kovariations- und Zuordnungsvorstellung wird in Kapitel 4.2.1 erneut eingegangen.

Kovariationsvorstellung: ,,Mit Funktionen wird erfasst, wie sich Anderungen einer Grofe auf
eine zweite GroBe auswirken bzw. wie die zweite GroBe durch die erste beeinflusst wird*
(Greefrath et al., 20164, S. 48).

Zuordnungsvorstellung: Eine Funktion ordnet jedem Wert einer bestimmten Grofe genau einen
Wert einer anderen Grofle zu (Greefrath et al., 2016a, S. 47).
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didaktischer Perspektive eingeordnet. Dabei erfolgt die Darstellung der
Grundlagen der Differentialrechnung hinsichtlich des Detailreichtums in einer
gekiirzten Form.

4.2.1 der Funktionsbegriff

Die Differentialrechnung setzt ein Verstandnis von Funktionen voraus (Thomas
et al., 2015). Funktionen werden in der Differentialrechnung auf ihre Eigenschaft
der Differenzierbarkeit gepriift, die spéter als Voraussetzung fiir verschiedene
Anwendungen benutzt wird. Bereits im Mathematikunterricht in der Schule gilt
der Aufbau des Funktionenbegriffs als ein wichtiges Ziel (Ministerium fiir Schule
und Bildung des Landes NRW, 2023). Der Schulunterricht ist damit priagend fiir
das Verstidndnis des Funktionsbegriffs, da in der héheren Mathematik nicht mehr
im Einzelnen auf Funktionen eingegangen, dies sondern als Vorwissen angesehen
wird. Ein sicherer und flexibler Umgang mit Funktionen und deren Vorstellungen
ist allerdings notwendig, um sich mit dem Ableitungsbegriff auseinanderzusetzen
sowie im weiteren Verlauf mit Zusammenhingen und Verfahren der
Differentialrechnung umgehen zu kénnen.

Erfahrungen mit Funktionen machen Lernende bereits sehr frith im alltdglichen
Leben. Funktionales Denken in Form von Abhéngigkeiten passiert oft unbewusst,
aber auf ganz natiirliche Art und Weise. Ein anschauliches Beispiel hierfiir ist: Je
schneller man um den Sportplatz lduft, desto weniger Zeit wurde bendtigt.
Charakteristisch fiir solche Situationen ist, dass eine Variable frei verdnderbar ist,
allerdings die andere Variable abhéngig von der ersten Variable ist (Greefrath et
al., 2016a, S. 38). Historisch haben sich viele Mathematiker bemiiht, diese
Charakterisierung von Denken in Funktionen mathematisch zu prézisieren,
wodurch verschiedene Definitionen entstanden sind. Mittlerweile hat sich
allerdings der Dedekind sche Funktionsbegriff durchgesetzt:

,,Unter einer Abbildung ¢ eines Systems S wird ein Gesetz verstanden, nach welchem zu jedem
bestimmten Element s von S ein bestimmtes Ding gehort, welches das Bild von s heifit und mit ¢(s)
bezeichnet wird“ (Biichter & Henn, 2010, S. 18).

Das Wort ,,Abbildung‘ ist dabei synonym mit dem Wort ,,Funktion zu verstehen
und ,,Gesetz” meint einen konkreten Zusammenhang. Mittlerweile finden sich in
mathematischen Lehrbiichern sprachliche Modernisierungen dieser Definition
wieder, allerdings bleibt die Grundidee bestehen. Zu der modernen, allgemein
anerkannten Definition von Funktionen gehdren mitunter auch unstetige
Funktionen, abschnittsweise definierte Funktionen und Funktionen, die fiir einen
einzelnen Punkt anders als fiir die restlichen Punkte definiert sind sowie
Funktionen, die durch Graphen definiert werden. In der Schule werden allerdings
hauptséchlich Funktionen behandelt, die durch einen Term beschrieben werden
(Vinner & Dreyfus, 1989).
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Vinner und Dreyfus (1989) zeigen, dass etwa ein Drittel von Studierenden in einer
Stichprobe aus dem ersten Semester eine Funktion nicht als solche erkennen
konnen, wenn sie aus mehr als einem Term bestehen. Je komplexer die
Anforderung an eine Funktion ist, desto eher argumentieren Studierende, dass
keine Funktion vorliegt. Dies zeigt sich dadurch, dass die meisten (86 %) der
Studienteilnehmenden noch zustimmen, dass eine Funktion vorliegt, wenn der
Graph aus zwei Halbgeraden und einer Unstetigkeitsstelle besteht. Allerdings
stimmen nur noch wenige (17 %) Studienteilnehmende zu, dass eine Funktion
vorliegt, falls diese Funktion fiir ganze Zahlen nicht-ganzzahlig und fiir andere
Zahlen ganzzahlig ist. Die formale Definition der Funktion scheint Studierende
auch in anderen Studien vor Probleme zu stellen (z. B. Pettersson, 2012; Widada
et al., 2020). Zum einen fillt es Studierenden schwer, eine formale Definition der
Funktion aufzustellen (Beitlich et al., 2015), da sprachliche Mittel und passendes
Vokabular fehlen. Zum anderen ergeben sich Schwierigkeiten beim Finden
mathematisch korrekter Beispiele einer Funktion (Pettersson, 2012; Pettersson et
al. 2013).

Exkurs: Variable

Bevor Funktionen weiter beschrieben werden, wird ein Exkurs zu Variablen
eingeschoben, da Variablen im Funktionenbegriff eine wesentliche Grundlage
bilden. In der mathematischen Literatur konnen verschiedene Definitionen zum
Variablenbegriff gefunden werden. Allerdings beleuchten diese Definition den
Begriff der Variable hdufig nur einseitig, da nicht alle Aspekte thematisiert
werden. Wie einige andere wichtige Begriffe in der Mathematik, 14sst sich der
Variablenbegriff nicht erschopfend in einer Definition erfassen (Malle, 1993, S.
44).

Malle (1993, S. 46) unterscheidet bei Variablen daher in drei Aspekte, die in
gegebenen Situationen flexibel verwendet werden kdnnen.

e  Gegenstandsaspekt: Die Variable wird als eine feste, aber noch nicht
genauer bekannte Zahl betrachtet.

o Einsetzungsaspekt: Die Variable ist eine Leerstelle fiir eine bestimmte
Zahl und wird als Platzhalter angesehen.

e Kalkiilaspekt: Die Variable wird als Symbol aufgefasst, mit dem man
Rechenoperationen durchfiihren kann.

Alle drei Aspekte spielen in der Analysis und spéter bei dem Begriff der Ableitung
eine wichtige Rolle. Der Kalkiilaspekt kommt z. B. besonders bei den
Ableitungsregeln zum Tragen, der Gegenstandsaspekt bei der Bezeichnung der
Ableitung einer bekannten Funktion f mit f* und der Einsetzungsaspekt bei dem
Priifen der Differenzierbarkeit in einem Punkt einer Funktion (Biichter & Henn,
2010, S. 33f.).
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Biichter und Henn (2010, S. 32f.) ibernehmen die Aufteilung von Malle (1993),
benennen die Aspekte allerdings in Grundvorstellungen
(Gegenstandsvorstellung, Einsetzungsvorstellung und Kalkiilvorstellung) um und
teilen anschlieend eigens den Begriff der Variablen in drei Aspekte auf. Sie
begriinden dies damit, dass eine weitere Unterscheidung von Variablenaspekten
sinnvoll fiir Lehrtitigkeiten ist. An dieser Stelle soll kurz der Unterschied
zwischen Aspekten und Grundvorstellungen skizziert werden: Aspekte lassen
sich durch fachwissenschaftliche Analysen identifizieren: ,,Ein Aspekt eines
mathematischen Begriffs ist ein Teilbereich des Begriffs, mit dem dieser fachlich
charakterisiert werden kann“ (Greefrath et al., 2016a, S. 15). Grundvorstellungen
sind fachdidaktischer Art: Eine Grundvorstellung zu einem mathematischen
Begriff ist eine inhaltliche Deutung des Begriffs, die diesem Sinn ergibt“
(Greefrath et al., 20164, S. 15).

e FEinzelzahlaspekt: Die Variable steht fiir eine feste Zahl.

e Simultanaspekt: Die Variable steht gleichzeitig fiir alle Zahlen in einem
Zahlbereich.

e  Verinderlichenaspekt: Die Variable wird als Verdnderliche aufgefasst,
die Zahlen aus einem Bereich repréasentiert und ,,durchlauft.

Wihrend der Einzelzahlaspekt und Simultanaspekt vermehrt in der Algebra zum
Ausdruck kommen, besitzt der Verdnderlichenaspekt besonders in der Analysis
eine wichtige Bedeutung, z. B. beim Arbeiten mit Grenzwerten (Biichter & Henn,
2010, S. 34), welcher auch Teil des Differenzierbarkeitsbegriffs ist.

Grundvorstellungen und Darstellungsformen von Funktionen

Der formalen Definition der Funktion kann durch verschiedene Darstellungen
Bedeutung und Interpretation verliehen werden. Dabei konnen erneut
Grundvorstellungen helfen, einen Zugang zu dem Begriff zu erlangen.

Die folgenden drei Grundvorstellungen Zuordnung, Kovariation und Objekt
basieren auf drei Aspekten, die Vollrath (1989) fiir das funktionale Denken
herausgearbeitet hat und durch vom Hofe adaptiert (1996) wurden.

e Die Zuordnungsvorstellung ist so definiert, dass eine Funktion jedem
Wert einer Grofle genau einen Wert einer zweiten Grofle zuordnet.

o Die Kovariationsvorstellung ist so definiert, dass sie beschreibt, wie sich
Anderungen einer GroBe auf eine zweite GroBe auswirkt bzw. in welcher
Form die zweite Grofle von der ersten abhéngig ist.

e Die Objektvorstellung ist so definiert, dass eine Funktion global und als
einziges Objekt betrachtet wird sowie der Zusammenhang als Ganzes
und die Eigenschaften als Ganzes fokussiert wird.
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Im deutschen Bildungssystem wird im Mathematikunterricht der Sekundarstufe I
héufig zunédchst die Zuordnung und erst im Anschluss die Kovariation als auch
die Funktion als Ganzes thematisiert. Es wird allerdings gefordert, dass die
Kovariation mehr im Fokus und stirker geférdert werden sollte, was sich
international bereits als die géngige Praxis etabliert hat (Zindel, 2018, S. 36). Die
Fokussierung der Kovariationsvorstellung kann Lernenden ermdglichen, das
Funktionenverstindnis von einer Variablen auf zwei zu erweitern und zu
verallgemeinern (Weber & Thompson, 2014). AuBerdem schafft die
Kovariationsvorstellung bessere Voraussetzungen fiir das Erlernen spéterer
Konzepte der Mathematik, bspw. fiir das Arbeiten mit dem Hauptsatz der
Differential- und Integralrechnung (Carlson et al., 2003). Zusitzlich erlaubt die
Kovariationsvorstellung den Lernenden, die Funktion als Prozess aufzufassen,
der wiederum umgekehrt werden kann (Trujillo et al., 2023).

Real-
sitnation

Abbildung 8: Darstellungsformen funktionaler Zusammenhénge und Wege des Transfers (Greefrath
etal.,, 2016a, S. 57)

Neben den Grundvorstellungen gehoren auch verschiedene Darstellungsformen
von Funktionen zum Begriffsverstindnis dazu. Die Transformation und der
flexible Wechsel zwischen den Darstellungen ist eine wichtige Fahigkeit, um
effektiv mit Funktionen in unterschiedlichen Kontexten zu arbeiten. Eine gute
Auswahl der Darstellungsformen ist allerdings notwendig, da verschiedene
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Darstellungen sowohl Vor- als auch Nachteile mit sich bringen (Biichter & Henn,
2010; Ochrtman et al., 2008). Abbildung 8 (Greefrath et al., 2016a, S. 57) zeigt
die verschiedenen Darstellungsformen funktionaler Zusammenhinge und Wege
des Transfers.

Die Darstellung mit Termen wird nahezu tliberall verwendet, wo eine Funktion zu
finden ist. Dabei ldsst sich in Funktionsterm (f(x) = x% — 2),
Funktionsgleichung (y = x2- 2) und Zuordnungsvorschrift (x ~ x2 - 2)
unterscheiden, die jeweils die Zuordnung durch einen algebraischen Term
bestimmt. Sowohl die Zuordnungsvorstellung, worauf die algebraischen Terme
der Funktion basieren, als auch die Objektvorstellung kénnen durch diese
Darstellung in den Fokus gestellt werden. Der Kovariationvorstellung bekommt
erst dann eine wichtigere Bedeutung, wenn Terme von Ableitungsfunktionen
behandelt werden (Greefrath et al., 2016a). Die Termdarstellung von Funktionen
gibt bereits Hinweise auf die Notation, wobei x iiblicherweise als unabhingige
Variable ein Element des Definitionsbereichs und f (x) als abhéingige Variable ein
Element des Wertebereichs ist (Trujillo et al., 2023).

Das kartesische Koordinatensystem wird am héufigsten fiir die grafische
Darstellung von Funktionen benutzt. Grundsitzlich wird die unabhéngige
Variable auf der x-Achse und die abhingige Variable auf der y-Achse abgetragen.
Mit dieser Darstellung einer Funktion als Graph kdnnen punktuelle, lokale und
globale Eigenschaften einer Funktion betrachtet werden, die jeweils erneut auf
die Fokussierung einer Grundvorstellung zuriickzufiihren sind (Greefrath et al.,
20164, S. 53). Zunéchst kann punktuell aus dem Graphen entnommen werden,
welcher y-Wert zu welchem x-Wert zugeordnet wird (Zuordnungsvorstellung).
AuBerdem kann die Anderung der Funktionswerte in Abhéingigkeit der Anderung
der unabhéngigen Variable untersucht werden (Kovariationsvorstellung). Zuletzt
kann der Graph als Ganzes betrachtet und Eigenschaften wie Differenzierbarkeit,
Stetigkeit etc. untersucht werden (Objektvorstellung). Obwohl die grafische
Darstellung einer Funktion unterstiitzend wirken kann, ist die Ubertragung auf
ein reales Problem nicht immer unproblematisch. Es hat sich in den Studien von
O’Shea et al. (2016) und Yusof et al. (2014) herausgestellt, dass Studierende
Schwierigkeiten damit haben, den Funktionsgraphen eines realen Phidnomens
korrekt mathematisch zu interpretieren. Besonders an der Stelle des Modellierens
und der Nutzung von Funktionen in realen Problemen sieht Sierpinska (1992)
allerdings eine Chance, das Konzept der Funktion besser zu verstehen.
Vandebrouck (2011) stellt im Hinblick auf den Funktionsbegriff im Kontext des
Ubergangs von Schule zur Hochschule heraus, dass Lernende Schwierigkeiten
haben, eine lokale Perspektive einzunehmen. Dies kann damit zusammenhéngen,
dass in der Schule weniger die Kovariationsvorstellung im Fokus steht und der
Begriff der Funktion eher durch die Zuordnungsvorstellung motiviert wird
(Zindel, 2018, S. 36). Eine lokale Perspektive einzunehmen wire fiir den
universitdren Kontext hilfreich, da einige Konzepte lokal definiert werden. Laut
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der Studie von Vandebrouck (2011) miisste im Ubergang von der Schule zur
Hochschule der Funktionsbegriff bei den Lernenden so umstrukturiert werden,
dass er sowohl als Prozess als auch als Objekt verstanden wird. Dabei geht es
darum, dass Lernende nicht nur einzelne Schritte bei der Anwendung von
Funktionen nachvollzichen, sondern auch die Funktion als ein
zusammenhdngendes Ganzes begreifen kdnnen. Ein stirkerer Fokus auf die
Kovariationsvorstellung im Unterricht kdnnte dazu beitragen, dass Lernende ein
tieferes Verstindnis fiir den Funktionsbegriff entwickeln und so besser auf die
Anforderungen der Hochschulmathematik vorbereitet werden.

4.2.2 Der Grenzwertbegriff

Das Konzept des Grenzwerts ist ein zentraler Begriff, der iiblicherweise als
Grundlage fiir die Einfiihrung in die Differentialrechnung dient und daher auf
hochschulischem Niveau oft unmittelbar vor diesem Thema behandelt wird. Das
Grenzwertkonzept wird bspw. flir die Einfilhrung des Begriffs der
Differenzierbarkeit sowohl auf formaler als auch auf semantischer Ebene
benotigt.

Der Begriff des Grenzwerts wird in hochschulischen Mathematikveranstaltungen
héufig zunichst in Bezug auf Folgen eingefiihrt. Hinsichtlich Grenzwerte von
Folgen werden in der Literatur verschiedene Vorstellungen beschrieben, die zu
einem Aufbau des Begriffsverstindnisses fiihren konnen. Dazu z&hlt zunichst die
Anndherungsvorstellung, in der sich Folgenglieder einem bestimmten Wert
annihern. Eine weitere Vorstellung ist die Umgebungsvorstellung, in der ab
einem bestimmten Folgenglied eine noch so kleine Umgebung existiert, in der
alle weiteren Folgenglieder liegen. Zuletzt zahlt auch die Objektvorstellung dazu,
in der Grenzwerte als mathematische Objekte, wie z. B. ein fester Wert, gesehen
werden (Greefrath et al., 2016a, S. 105f). Um mit dem Grenzwert im
Zusammenhang des Ableitungsbegriffs arbeiten zu konnen, muss der Grenzwert
auch fiir Funktionen iiber R definiert werden. Anschaulich gesehen verhélt sich
dies dhnlich zum Grenzwert von Folgen, allerdings wird es beim Grenzwert fiir
Funktionen etwas komplexer, da nun zwei Folgen zu betrachten sind (Cottril et
al., 1996). Dabei wird der Ausdruck lim f(x) = b als Schreibweise fiir den

Xx—a
Grenzwert einer Funktion benutzt, der existiert, falls die Folge der x-Werte und
die Folge der y-Werte (y,, := f(x,)) konvergieren (Biichter & Henn, 2010). Die
mittlerweile géngige Definition ist die Epsilon-N-Definition des Grenzwerts. Um
im Zusammenhang mit Funktionen iiber R Grenzwerte untersuchen zu kdnnen



Seite |79

und dort die Existenz von Grenzwerten nachweisen zu konnen, kann auf das
Epsilon-Delta-Kriterium als Definition zuriickgegriffen werden.

Mathematische Bemerkung 1 (Definition): Grenzwert

Fiir eine Funktion f:D — R heiit A € R Grenzwert von f an der Stelle
Xo € R, wenn gilt:
Ve>036>0VxeD:0< |x—x5| <6
=A-f)l<e

Greefrath et al. (2016a, S. 78)

Im Mathematikunterricht bleiben die Betrachtungen von Grenzwerten meist auf
anschaulich-propédeutischer Ebene (Skutella & Weygandt, 2021). Die formale
Einflihrung des Begriffs findet in der Schule nicht statt (fiir NRW?°: Ministerium
fiir Schule und Bildung des Landes NRW, 2023). Der Ubergang zu einem
abstrakt-formalen Begriffsaufbau von Grenzwerten im Studium stellt daher eine
Herausforderung fiir Studierende dar. Beziiglich der Epsilon-Delta-Definition fiir
Grenzwerte zeigen Studien, dass sich Studierende auf bestimmte Stellen der
Definition fokussieren und infolge der Vernachldssigung der logischen
Verkniipfungen die Definition nicht ganzheitlich verstechen konnen
(Bezuidenhout, 2001; Swinyard & Larsen, 2012). Dies fiithrt dazu, dass nicht
korrekte Kombinationen einzelner Teile einer vermeintlichen Definition als
legitim angesehen, wéhrend andere korrekte Definitionen als falsch
wahrgenommen werden (Bressoud et al., 2016). In den entscheidenden Phasen
der Begriffsbildung schldgt Bender (1991, S. 239) anstelle der iiblich formalen
Epsilon-N-Definition eine Definition vor, die sich weniger auf die Quantoren,
Ungleichungen und Betrdge fokussiert. Diese kann den folgenden Wortlaut
haben: ,,... falls das Wesentliche der Folge in jeder, noch so kleinen, Umgebung
von a liegt.” Diese Definition wiirde Lernende weniger abschrecken, obwohl es
im Wesentlich dieselbe Definition sei. Mdglicherweise werden dadurch auch die
Probleme beseitigt, dass Studierende nur bestimmte Stellen der Definition
fokussieren und sich mehr auf das ganzheitliche Verstindnis der Definition
konzentrieren kdnnen.

In einer Studie von Skutella und Weygandt (2021) wurde das fachliche Wissen zu
Grenzwerten von Lehramt Bachelor- sowie Masterstudierenden untersucht. Dabei
wurde deutlich, dass mehr als die Hilfte der Studierenden die Definition der

20 In Niedersachsen und Berlin-Brandenburg bleibt der Grenzwertbegriff ebenfalls auf
anschaulich-propddeutischer Ebene. In Bayern hingegen wird in Jahrgangsstufe 11 von
Schiilerinnen und Schiilern erwartet, dass die Definition des Differentialquotienten erlautert
wird.
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Konvergenz einer Zahlenfolge nicht adidquat grafisch darstellen konnte.
AuBlerdem wurden den Studierenden Aufgaben gestellt, die vier typische
Fehlvorstellungen zur Konvergenz von Folgen adressieren. Beziiglich dieser
Aufgaben konnten lediglich ein Drittel der Studierenden drei oder mehr als solche
identifizieren. Es scheint demnach eine Schwierigkeit flir Studierende
darzustellen, zwischen den (korrekten) Darstellungen und der Definition
wechseln zu kdnnen.

Des Weiteren fassen viele Lernende den Grenzwert als dynamischen Prozess auf,
bei dem sich sowohl die unabhéngige als auch die abhéngige Variable einem Wert
annihert (Cottril et al., 1996). Dies ist allerdings gleichzeitig eine grofle Hiirde
beim Verstindnis des Grenzwertbegriffs und laut Bender (1991)
mitverantwortlich fiir Fehlvorstellungen und -verstindnisse vom Begriff des
Grenzwerts. Tall und Vinner (1981) haben untersucht, wie Lernende die
Zahlenfolge 0.9, 0.99, 0.999, ... als 1 akzeptiert haben, jedoch 0,9 nicht mit 1
gleichsetzen. Dies verdeutlicht die Schwierigkeit, den beschriebenen
,arenzwertprozess® als Zahl aufzufassen.

Zudem stellt die sprachliche Verwendung des Begriffs ,,anndhern” eine
Herausforderung dar, da sie das Verstindnis des Konzepts des Grenzwerts
erschweren kann. Durch das Wort ,annéhern” kann leicht die Vorstellung
ausgebildet werden, dass Monotonie impliziert sowie ein Grenzwert niemals
erreicht wird (Tall & Vinner, 1981). Das Wort ,,anndhern* lasst darauf schliefen,
dass Lernende das Konzept in einer frithen kognitiven Phase behandeln, in der sie
sich noch auf einzelne Schritte konzentrieren, anstatt das Konzept als Ganzes zu
begreifen. Ein tieferes Verstdndnis wiirde vielmehr erfordern, dass sich Lernende
von der Betrachtung einzelner Prozesse 16sen und das Konzept als
zusammenhdngendes Ganzes erfassen. Dies wiirde ihnen ermdéglichen, den
Grenzwert in einer komplexeren und flexibleren Weise zu verstehen und zu
speichern (Dubinsky & McDonald, 2002).

Bereits durch die 0,9 = 1 Problematik angedeutet, entstammt eine weitere
Schwierigkeit fiir das Begriffsverstindnis des Grenzwerts aus dem Umgang mit
der Unendlichkeit (Feudel, 2018, S. 71{f.). Dubinsky et al. (2005) merken an, dass
das SchlieBen von endlichen Prozessen auf unendliche Prozesse zu Problemen
fihren kann. Im Beispiel der Folgen hat jede endliche Folge ein letztes
Folgenglied. Wird dies genauso auf die unendlichen Folgen iibertragen, so konnte
leicht angenommen werden, dass auch unendliche Folgen ein letztes Folgenglied
besitzt. Dies kann laut Mamona-Downs (2001) in Bezug zu Grenzwerten zu der
Annahme fiithren, dass immer ein letztes Folgenglied existiert, welches immer den
Grenzwert annehmen wiirde.

Eine detaillierte Ausarbeitung zu Fehlvorstellungen beziiglich Grenzwerte kann
in der Dissertation von Ostsieker (2020) nachgelesen werden.
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4.2.3 Der Stetigkeitsbegriff

Eine vereinfachte Vorstellung von Stetigkeit bzw. einer stetigen Funktion, die
héufig als erster Zugang zum Begriff dient, ist die Vorstellung, dass der Graph
einer Funktion in einem Zug gezeichnet werden kann, ohne den Stift abzusetzen
(Hilger, 2019, S. 143). Dies geht auch damit einher, dass die Funktion keine
Sprungstellen besitzt. Eine weitere Anschauung zu stetigen Funktionen ist, dass
eine gewisse Vorhersagbarkeit getroffen werden kann, denn kleine Anderungen
der unabhingigen Variable (meistens als x-Wert) ziehen nur kleine Anderungen
der abhdngigen Variable (meistens als y-Wert) nach sich. Obwohl diese
Vorstellungen aus fachwissenschaftlicher Sicht nur begrenzt die Bedeutung von
Stetigkeit widerspiegeln, helfen sie z. B. Eigenschaften einer Funktion zu
verstehen (Greefrath et al., 2016a, S. 141). Die Vorstellungen fiir den Begriff
konnen dann helfen, eine mathematische Formalisierung zu finden?, wobei es
dafiir 4quivalente Definition gibt. Zum einem kann dafiir der Grenzwertbegriff
genutzt werden, in dem gesagt wird, dass sowohl der linksseitige als auch
rechtsseitige Grenzwert in einem Punkt einer Funktion {ibereinstimmen. Falls
dies fiir alle Punkte der Definitionsmenge gilt, so heiflt diese Funktion stetig.
Andererseits kann Stetigkeit an einer Stelle auch mithilfe des Epsilon-Delta-
Kriteriums iiber die Existenz eines einzelnen Grenzwerts ausgedriickt werden.
Die spricht besonders die Vorstellung der Vorhersagbarkeit an, da deutlich wird,
dass sich der y-Wert einer Funktion wenig éndert, wenn zuvor der x-Wert wenig
verdndert wurde.

Mathematische Bemerkung 2 (Definition): Stetigkeit

Die Funktion f: D = R heiflt genau dann stetig in x, € D, wenn gilt:
Ve>036>0:|x—x| <5=|f(x) — fxp)] < e

In Anlehnung an Biichter und Henn (2010, S. 183)

Sowohl der Begriff Stetigkeit als auch Differenzierbarkeit konnen zur
Charakterisierung von Funktionen genutzt werden. Dabei ist die
Differenzierbarkeit der ,stiarkere” Begriff, da Differenzierbarkeit die Stetigkeit
einer Funktion impliziert. Wenn also eine Funktion an einer Stelle differenzierbar
ist, bedeutet dies automatisch, dass sie dort auch stetig ist. Eine Moglichkeit, um
sich diesen Zusammenhang zu erkléren, liefert die geometrische Interpretation
der Ableitung. Die Ableitung einer Funktion an einer bestimmten Stelle gibt die
Steigung der Tangente an dem Graphen der Funktion an. Diese Tangente spiegelt

21 Vorstellungen kdnnen zwar helfen, einen Begriff zu verstehen, allerdings ist es oftmals nicht
moglich, daraus eine formale mathematische Definition abzuleiten. Dennoch kénnen
Vorstellungen eine Hilfe fiir die Formalisierung darstellen.
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den Graphen der Funktion in einer kleinen Umgebung gut wider. Wenn diese
Ableitung dort existiert, dann gibt es dort auch keinen sogenannten Sprung im
Graphen. Daher muss die Funktion dort auch stetig sein.

Andersrum gibt es Funktionen, die zwar stetig, aber nicht differenzierbar sind.
Ein bekanntes Beispiel liefert dabei die Betragsfunktion f(x) = |x|, dessen
Graph an der Stelle x = 0 einen Knick aufweist. An dieser Stelle existiert der
Grenzwert des Differenzenquotienten nicht und infolgedessen auch keine
eindeutige Tangente.

In einer Untersuchung von Skutella und Weygandt (2021) wurde das fachliche
mathematische Wissen zur Stetigkeit von Bachelor- und Masterstudierenden im
Lehramt analysiert. Dabei hat sich herausgestellt, dass etwa die Hélfte von 28
Studierenden (sowohl Bachelor- als auch Masterstudierende) das Epsilon-Delta-
Kriterium der Stetigkeit nicht addquat visuell darstellen konnten. Nur eine
Studentin konnte eine vollstandig und (uneingeschréinkt) addquate Visualisierung
liefern. Des Weiteren stellte die praktische Anwendung der Definition von
Stetigkeit bei linearen oder abschnittsweisen definierten Funktionen fiir die
Studierenden eine erhebliche Hiirde dar. Es hat sich gezeigt, dass lediglich fiinf
von 30 Studierenden in der Lage waren, die Stetigkeit einer linearen Funktion an
einem beliebigen Punkt ihres Definitionsbereichs gemi3 der Definition
nachzuweisen. Nur einem Drittel der Studierenden gelang es, die Unstetigkeit
einer abschnittsweisen konstanten Funktion nachzuweisen.

4.3 Spezifizierung konkreter Inhalte der Differentialrechnung

In dem vorangegangenen Kapitel wurde das benétigte Vorwissen (Funktionen,
Grenzwerte, Stetigkeit) fiir die Differentialrechnung in Kiirze dargestellt. Der
inhaltliche Bereich der Differentialrechnung wird in dieser Arbeit als
mathematischer ~ Gegenstand  detaillierter  dargestellt.  Innerhalb  der
Differentialrechnung befinden sich Konzepte, Zusammenhinge und Verfahren.
Aus fachlicher Perspektive finden sich beziiglich der Strukturierung dieser Inhalte
zum Themengebiet der Differentialrechnung héufig gleiche bzw. &hnliche
Strukturierungen in Lehrblichern zur mathematischen Ausbildung von
zukiinftigen Ingenieur:innen wieder (z. B. Meyberg & Vachenhauer, 2015; Burg
et al.,, 2017; RieBinger, 2013; Papula, 2018; Westermann, 2015). Um den
Gegenstand der Differentialrechnung um die didaktische Perspektive zu
erginzen, wird im Folgenden zunichst der Vier-Ebenen-Ansatz nach HuBmann
und Prediger (2016) herangezogen (Kapitel 4.3.1). AnschlieBend werden die
Inhaltsbereiche der Differentialrechnung basierend auf den Voriiberlegungen des
Vier-Ebenen-Ansatzes dargestellt, die fiir die Losung der Aufgaben (Kapitel 5.3)
relevant sind (Kapitel 4.3.2 bis Kapitel 4.3.5). AbschlieBend wird dargelegt,
welche inhaltlichen Vorkenntnisse zur Differentialrechnung aus der Schule
erwartet werden konnen (Kapitel 4.3.6).
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4.3.1 Vier-Ebenen-Ansatz nach HuBmann und Prediger (2016)

Die Idee hinter dem Vier-Ebenen-Modell ist es, zunédchst genau festlegen zu
konnen, wodurch ein Lerngegenstand charakterisiert wird und welche relevanten
Lernziele identifiziert werden konnen (Spezifizierung). AnschlieBend wird der
Lerngegenstand in ein sinnhaftes Lehr-Lern-Arrangement gebracht, die eine
kohérente und eine intendierte Lernreihenfolge (Strukturierung) vorgibt. In dieser
Arbeit liegt der Fokus jedoch ausschlieflich auf der Spezifizierung; die
Strukturierung wird nicht betrachtet. Die Strukturierung eines Lerngegenstands
wiirde vor allem dann sinnvoll sein, wenn eine Lernumgebung entwickelt werden
soll. In dieser Arbeit wird jedoch kein Lehr-Lern-Arrangement vorgenommen,
sondern lediglich eine Untersuchung von Bearbeitungsprozessen zu Aufgaben
eines bestimmten mathematischen Inhalts.

Die Spezifizierung (und die Strukturierung) eines Inhalts erfolgt dabei auf vier
verschiedenen Ebenen. Diese vier Ebenen sind allerdings nicht als hierarchisches
Modell zu verstehen, sondern vielmehr als Ebenen, die parallel zueinander
bestehen.

e Die formale Ebene: Adressiert mathematische Objekte und Phanomene
in ihrer formalen Représentation und logischen Struktur

e Die semantische Ebene: Adressiert Sinn und Bedeutung (z. B.
Grundvorstellungen und mentale Modelle), die an einem
mathematischen  Objekt gelernt werden sollen sowie die
epistemologischen Aspekte zwischen ihnen

e Die konkrete Ebene: Adressiert die Realisierung von Lehr-Lern-
Arrangements beziliglich Kernideen, Problemen und Situationen, in
denen mathematisches Wissen relevant ist, um es generisch zu
konstruieren

e Die empirische Ebene: Adressiert kognitive und moglicherweise soziale
Aspekte studentischen Denkens, typischer Ressourcen, Lernwege und
Hiirden

In dieser Arbeit wird auf die konkrete Ebene verzichtet, da sie vor allem Aspekte
hervorhebt, die Hinweise fiir ein sinnvolle Realisierung eines Lehr-Lern-
Arrangement liefern. Dennoch ist es nicht auszuschlieBen, dass einige
Ausfithrungen indirekt der konkreten Ebene zugeordnet werden kdnnten, ohne
dass diese explizit thematisiert wird.

Fir die Spezifizierung eines Lerngegenstands auf mathematischem
Hochschulniveau ist besonders die formale als auch die semantische Ebene
relevant. Die Formalitit der Mathematik genieBt in der Hochschule eine
besondere Stellung, wihrend die semantische Ebene helfen kann, die formale
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Mathematik besser zu verstehen. Um die formale und semantische Ebene zur
Differentialrechnung in dieser Arbeit zu beschreiben, wird erneut die
Wissensmatrix herangezogen. Sowohl die formale als auch semantische Ebene
konnen beide in den Wissensfacetten der Wissensmatrix identifiziert werden,
wobei die Wissensfacetten einen mathematischen Inhalt noch etwas detaillierter
beschreiben. Die formale Ebene findet sich besonders in der Wissensfacette der
Expliziten Formulierung und die semantische Ebene in der Wissensfacette der
Bedeutung & Vernetzung wieder (dicke Verbindung in Abbildung 9). Dennoch ist
es nicht auszuschlieflen, dass sowohl die formale als auch die semantische Ebene
in weiteren Wissensfacetten auftauchen koénnen (diinne Verbindungen in
Abbildung 9).

Formale Ebene

Explizite
Formulierung

Konkretisierung
& Abgrenzung

Bedeutung &
Vemnetzung

Konventionelle
Festlegungen

Konzeptuelles Konzepte Ausformulierte Beispiele / Vorstellung / Fachworter
Wissen Definition Gegenbeispiele Darstellung
Zusammen- Ausformulierter Beispiele / (anschauliche) Namen,
hénge Satz Gegenbeispiele Begriindung Bezeichnungen
Prozedurales Verfahren Anleitung des Bedingung der Vorstellung / Nicht
Wissen Verfahrens Anwendbarkeit, Begrindung begrundbare
Spezialfélle Festlegungen

Abbildung 9: Verkniipfung der formalen und semantischen Ebene des Vier-Ebenen-Ansatzes mit der
Wissensmatrix (eigene Darstellung)

Zusitzlich wird die empirische Ebene betrachtet, da in dieser Arbeit Studierende
bei der Bearbeitung von mathematischen Aufgaben untersucht werden. Zu den
ausgewdhlten Inhalten der Differentialrechnung werden demnach auch vorherige
Forschungsergebnisse zu Hiirden, Schwierigkeiten, Ressourcen, typischen
studentisches Denkens beschrieben. So ldsst sich ein Vergleich zwischen
bisherigen Forschungsergebnissen und den empirischen Daten dieser Arbeit
ziehen.

Zusammenfassend bilden die formale und semantische Ebene das zentrale Geriist
fiir die Spezifizierung der Differentialrechnung in dieser Arbeit. Sie lassen sich
anhand der Wissensfacetten der Wissensmatrix beschreiben, wobei die
empirische Ebene eine ergdnzende Perspektive bietet, um studentisches Denken
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und Lernprozesse zu beleuchten. Fiir den Ableitungsbegriff (Kapitel 4.3.2)
werden jedoch alle drei Ebenen gleichzeitig betrachtet, da es umfangreiche
Forschung zu diesem Begriff gibt, die spezifische Aspekte bzw. Facetten
untersucht. Fiir die Kapitel 4.3.3 bis 4.3.5 werden zunidchst nur formale und
semantische Ebene (gleichzeitig) sowie im Anschluss die empirische Ebene
betrachtet, da die Forschung zu diesen Inhaltsbereichen etwas allgemeiner ist.

4.3.2 Ableitung

Der Begriff der Ableitung wurde in der mathematikdidaktischen Forschung
bereits von einigen Forschenden stoffdidaktisch untersucht (z. B. Asiala et al.,
2001; Biichter & Henn, 2010; Greefrath et al., 2016b; Kendal & Stacey, 2003;
Lankeit & Biehler, 2024; Zandieh, 2000).

Zandieh’s (2000, Abbildung 10) Framework zum Verstindnis der Ableitung ist in
der internationalen Literatur weit verbreitet und wird in verschiedenen
Forschungskontexten benutzt (z. B. Feudel & Biehler, 2021). Dabei wird der
Begriff der Ableitung in drei Dimensionen aufgefasst:

e Darstellungsformen:  Die  Ableitung  kann  verschiedene
Repridsentationen einnehmen (grafisch, verbal, physikalisch,
symbolisch). Diese Dimension basiert auf der Idee, dass Lernende
unterschiedliche Darstellungen eines Begriffs entwickeln (Hart,
1991) und der Wechsel zwischen diesen ein vertieftes Verstindnis
fordert (Prinzip der Darstellungswechsel nach Bruner, 1966). Unter
grafischen Reprisentationen versteht Zandieh (2000), dass die
Ableitung als Steigung der Tangente an einem Punkt des Graphen
aufgefasst werden kann oder als Steigung der Geraden, die den
Graphen in einer kleinen Umgebung um einen bestimmten Punkt
moglichst gut approximiert.

e  Ebene ratio, limit, function: Die Ableitung wird als Grenzwert einer
Anderung beschrieben. Die Schritte umfassen die Bildung des
Differenzenquotienten (ratio), den Ubergang zum Grenzwert (limit)
und von der Ableitung an einer Stelle zur Ableitungsfunktion
(function).

e  Prozess-Objekt-Dualitiat: Grundbegriffe der Ableitung konnen als
dynamische Prozesse oder statische Objekte interpretiert werden. So
kann der Grenzwert bspw. als Anndherungsprozess oder iiber die
Epsilon-Delta-Definition gedacht werden.
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Graphisch Verbal Physikalisch Symbolisch

ratio | Sekantensteigung | Mittlere Durchschnitts- Differenzen-
Anderungsrate | geschwindigkeit quotient

limit | Tangenten- Lokale Momentan- Differential-
steigung Anderungsrate | geschwindigkeit quotient

function | Graph der Ablei- | Anderungsrate | Geschwindigkeits- | Ableitungs-
tungsfunktion einer Funktion funktion funktion

Abbildung 10: Framework zur Ableitung nach Zandieh (iibernommen von Feudel, 2018, S. 29)

Eine Facette, die im Modell von Zandieh (2000) nur angedeutet bzw. nicht
explizit ausgearbeitet wird, ist die formale Definition der Ableitung. Gerade im
hochschulischen Kontext ist diese jedoch von zentraler Bedeutung, da sie fiir viele
Mathematiker:innen die grundlegende und bevorzugte Interpretation des Begriffs
Ableitung darstellt (Zandieh, 2000). Das Modell von Greefrath et al. (2016b)
beriicksichtigt die formale Definition der Ableitung explizit und integriert sie in
das Modell der Grundvorstellungen. Dadurch bictet es eine zusétzliche
Perspektive, die insbesondere im Kontext hochschulischer Mathematikdidaktik
relevant ist. Gleichzeitig zeigt sich, dass sich die beiden Modelle in vielen
Aspekten dhneln, bspw. in der Betonung verschiedener Darstellungsformen.
Dennoch bietet das Modell von Greefrath et al. (2016b) durch die Einbindung der
formalen Definition eine Erweiterung, die es fiir die folgenden Ausfiihrungen
besonders geeignet macht.

Greefrath et al. (2016b) gehen zur fachlichen Klarung des Ableitungsbegriffs auf
zwei Aspekte des Begriffs ein: Die Ableitung als Grenzwert des
Differenzenquotienten und als lokale lineare Approximation. Diese Aspekte sind
entweder spezifische Realisierungen einer Definition oder kdénnen in eine
Definition konvertiert werden (Greefrath et al., 2016b). Zunichst wird mit einer
auf einem offenen Intervall definierten reellwertigen Funktion f und einer
Geraden in Punkt P(xo, f (xo)), welche die Funktion (in einer bestimmten
Umgebung) gut widerspiegelt, gestartet — die Tangente zur Funktion f im Punkt
P(xo,f(x0)). Um diese Tangente beschreiben zu konnen, wird der

FO)-f(x

Differenzenquotient o) betrachtet, wobei x, und x aus dem Intervall /

X—Xq
ungleich sind. Anschliefend werden zwei Punkte P(xo, f (xo)) und Q(xy +
h, f(xy) + h) des Graphen betrachtet (h wird hier definiert als h = x — x;). Fiir
kleiner werdendes h streben die Sekanten (Betrachtung verschiedener
Differenzenquotienten) auf die Tangente des Punktes P zu. Dieser Grenzwert der
Sekanten wird als Ableitung bezeichnet, welches bereits zu einer formalen
Definition (mathematische Bemerkung 3) des Ableitungsbegriffs gefiihrt werden
kann.
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Die Definition der Ableitung als Grenzwert des Differenzenquotienten wird
oftmals als Einfiihrung des Ableitungsbegriffs genutzt, da es gleichzeitig eine
gute geometrische Veranschaulichung darstellt. Es gibt allerdings auch weitere
(gleichwertige) Definitionen, wie z. B. die Ableitung als lokale Linearisierung (z.
B. zu finden in Greefrath et al., 2016a, S. 144), die insbesondere darauf anspielt,
dass sich differenzierbare Funktionen lokal besonders gut durch eine Gerade
approximieren lassen. Ein Beispiel fiir eine differenzierbare Funktion findet sich
in der mathematischen Bemerkung 4.

Ankniipfend an die Aspekte und den verbundenen Definitionen der
Differenzierbarkeit liefern Greefrath et al. (2023) vier Grundvorstellungen, die
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beim Verstidndnisaufbau und (Er-)Lernen des Konzepts der Ableitung in einer
Verdnderlichen helfen sollen (Abbildung 11): Lokale Anderungsrate,
Tangentensteigung, Lokale Linearitdt und die Ableitung als Verstirkungsfaktor
kleiner Veranderungen. Diese vier Grundvorstellungen werden im Folgenden auf
Basis der Ausarbeitung von Greefrath et al. (2016a) vorgestellt.

Aspekte Grundvorstellungen

Lokale Anderungsrate

Grenzwert des
Differenzenquotienten

Tangentensteigung

Lokale Linearitdt
Lokale lineare

Approximation

Verstarkungsfaktor

Abbildung 11: Aspekte und Grundvorstellungen in der Differentialrechnung (Greefrath et al., 2016a,
S. 147)

Lokale Anderungsrate

Die Grundvorstellung der lokalen Anderungsrate beruht auf den Begriffen der
absoluten Anderung f(x) — f(x,) und der relativen bzw. mittleren

Anderungsrate W, die bereits in der Schule in verschiedenen Kontexten
A0

eingesetzt werden und aufeinander aufbauen. Die mittlere Anderungsrate bezieht
sich auf ein bestimmtes Intervall und kann durch den Differenzenquotienten
berechnet werden. Im Ubergang zur lokalen Anderungsrate wird dieses Intervall
immer weiter verkleinert, sodass der Funktion an einer Stelle ein lokales
Anderungsverhalten zugeschrieben werden kann. Die lokale Anderungsrate
fordert demnach einen weiteren Schritt, und zwar ist sie im Allgemeinen nicht ein
direkt berechenbarer Quotient, sondern durch Grenzwertbildung des
Differenzenquotienten definiert. Dies wird durch den Grenzwert des
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Differenzenquotienten ausgedriickt. Besonders in physikalischen Kontexten ist
diese Grundvorstellung hilfreich. Die mittlere Anderungsrate kann bspw. als
mittlere Geschwindigkeit in Abhdngigkeit einer Wegstrecke und die lokale
Anderungsrate folglich als Momentangeschwindigkeit konzeptualisiert werden.
Um die Grundvorstellung der lokalen Anderungsrate umfassend zu verstehen,
sollte ~ zundchst die  Vorstellung  iiber die  Existenz  einer
Momentangeschwindigkeit, z. B. bei Bewegungskontexten bestehen, die oftmals
als leichter zuginglich angenommen wird. Die Momentangeschwindigkeit gibt in
Kontexten von Bewegungsvorgéngen an, wie schnell sich ein Objekt zu einem
bestimmten Zeitpunkt bewegt. Es gehort weiterhin die Vorstellung dazu, dass es
eine Steigung in einem Punkt einer Funktion gibt. Sie gibt an, wie stark sich die
Funktion an einer Stelle dndert. Zuletzt gehort ebenfalls die Vorstellung dazu, dass
die Anderung der abhingigen Variablen durch Ay = f‘(x) - Ax gegeben ist.
Aus dieser Formel resultiert aulerdem die Néherung der Ableitung f*(x) durch
den Quotienten von Ay und Ax. Unter Maschinenbaustudierenden scheint die
Grundvorstellung der lokalen Anderungsrate priferiert zu werden (Bingolbali et
al., 2007). Dies kann daran liegen, dass sie eng mit physikalischen Kontexten,
wie z. B. die Bewegungsvorgénge, verbunden ist.

Schon lidnger ist bekannt, dass Lernende Schwierigkeiten damit haben, die
Beziehung zwischen mittlerer Anderungsrate eines Intervalls und der lokalen
Anderungsrate in einem Punkt sowohl bei linearen als auch bei nicht-linearen
Funktionen zu erkennen (Orton, 1983). Im Allgemeinen scheint das Verstehen der
Rate bzw. Anderungsrate schwierig zu sein, da es verschiedene
Betrachtungsweisen erlaubt (z. B. Feudel & Biehler, 2021; Zandieh, 2000).
McDermott et al. (1987) stellen z. B. fest, dass in physikalischen Kontexten
Schwierigkeiten dabei entstehen, Verbindungen zwischen verschiedenen
Anderungsraten und der Steigung eines Graphen herzustellen. Allerdings sind
physikalische Kontexte gerade dann hilfreich, um die Grundvorstellung der
lokalen Anderungsrate besser zu erlernen (Chau et al., 2021). Die Schwierigkeit,
den Quotienten als MaB fiir die relative Anderung zweier GroBen aufzufassen,
kann das Verstindnis fiir die Grundvorstellung der lokalen Anderungsrate
beeintriachtigen (Byerley et al. 2012). Beim Aufbau dieser Grundvorstellung ist
es daher sinnvoll, die Bedeutung der abhéngigen und unabhingigen Variable
hervorzuheben (vom Hofe & Blum, 2016), um die relative Anderung des
Quotienten erkennen zu kdnnen.

Tangentensteigung

Die Grundvorstellung der Tangentensteigung stellt die Ableitung in einem Punkt
als Steigung einer Tangenten in den Fokus. Bei dieser Vorstellung muss eine
konzeptuelle Hiirde zur Erweiterung des Tangentenbegriffs iiberwunden werden.
In der Geometrie werden Tangenten zunichst so definiert, dass sie eine Figur nur
an einer Stelle berithren bzw. genau einen Punkt gemeinsam haben. Dies kann
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nicht problemlos in der Analysis auf Funktionen iibertragen werden, da eine
Tangente zwar lokal den Graphen an einer Stelle beriihrt, aber es durchaus
moglich ist, dass dieselbe Tangente den Graphen global ein weiteres Mal beriihrt
oder schneidet. Um eine solche Begriffserweiterung zu ermdglichen, muss sich
die Tangente lokal in einer kleinen Umgebung vorgestellt werden. Die Tangente
spiegelt den Graphen einer Funktion lokal gut wider (Biza, 2011), wobei sie
global auch noch weitere Punkte mit dem Funktionsgraphen gemeinsam haben
konnen. Die Tangentenvorstellung kann zusétzlich in eine statische und eine
dynamische Sichtweise aufgeteilt werden. Bei der statischen Sichtweise wird eine
beliebig kleine Umgebung dieses Punktes betrachtet. Je kleiner die Umgebung
um einen Punkt gewihlt wird, desto mehr néhert sich optisch die Tangente dem
Graphen an, sodass bei beliebig nahem Zoom kaum noch Unterschiede zwischen
Tangente und Graph sichtbar sind. Elschenbroich und Seebach (2014)
beschreiben dies als ,,Funktionenlupe®. Mit der dynamischen Sichtweise wird
sich entlang des Graphs bewegt, wodurch sich jeweils die resultierende Tangente
verdndert. Somit wird ebenfalls die jeweilige Bewegungsrichtung durch die
Richtung der Tangente angegeben.

Zur umfassenden Vorstellung der Tangentensteigung gehort demnach die
Betrachtung der Tangente als Gerade, die den Graphen der Funktion lokal
widerspiegelt sowie dass die Tangente in einem Punkt mit dem Graphen die
gleiche Steigung besitzt. Dariiber hinaus ist zu beriicksichtigen, dass die Tangente
die lokale Richtung einer Kurve angibt. Diese lokale Sichtweise beziiglich der
Grundvorstellung ist eine zentrale Idee der Analysis, welche fiir Lernende neu ist
(Greefrath et al., 2016b).

Die grofite Hiirde beim Verstindnis und Aufbau der Grundvorstellung der
Tangentensteigung geht mit der Erweiterung des Tangentenbegriffs einher
(Greefrath et al.,, 2023). Das Konzept der Tangente muss aus der
Elementargeometrie auf die Analysis iibertragen und so erweitert werden, dass
sich von der Sichtweise ,ein einzelner Kontaktpunkt™ geldst wird (Tall, 2013).
Stattdessen ist die Tangente so zu verstehen, dass sie sich an den Graphen
anschmiegt und nicht lediglich in genau einen Punkt mit dem Graphen gleich ist,
sondern sogar in mehreren Punkten identisch sein kann (Biza, 2011).

Lokale Linearitdt

Die Grundvorstellung der lokalen Linearitdt kann &hnlich wie bei der
Tangentensteigung mit dem ,,Zoomen‘ beschrieben werden. Kirsch (1979) nimmt
sich dabei das ,,Funktionsmikroskop® zur Hilfe. Die Idee dabei ist, dass je ndher
an den Graphen einer differenzierbaren Funktion herangezoomt wird, desto mehr
sieht der Graph wie eine gerade Linie aus. Dies kann mit spezifischen Softwares
umgesetzt werden und wirkt daher fiir diese Grundvorstellung unterstiitzend. Der
Graph einer differenzierbaren Funktion wird demnach an einer Stelle des Graphen
moglichst gut durch eine lineare Funktion lokal approximiert (Teague, 1996). Die
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Differenzierbarkeit als Approximierbarkeit durch eine lineare Funktion zu
verstehen, stellt Merkl (2017, S. 118) als wichtigste Bedeutung der Ableitung
heraus. So gesehen wird genau die Gerade durch den einen Punkt des Graphen
gesucht, die den Graphen insofern am besten approximiert, als hier der relative
Fehler gegen 0 konvergiert? — und genau dies ist die Steigung f”(x,). Dies kniipft
damit an den Aspekt der lokalen linearen Approximation von Greefrath et al.
(2016b) an. Da die Funktion lokal linear approximierbar ist, folgt zum einen, dass
die Ableitung f* in einer Umgebung von x, nahezu konstant ist und zum anderen
mit welchem Faktor sich kleine Anderungen der unabhingigen Variable auf die
unabhéngige Variable auswirken (Greefrath et al., 2016a, S. 151).

Die Grundvorstellung der lokalen Linearitdt hilft vor allem bei Anwendungen
numerischer Verfahren wie der Taylor-Abschitzung, Fehlerrechnung und
Newton-Verfahren, welche im Ingenieurstudium eine wichtige Rolle spielen.
AuBerdem ist die Grundvorstellung verallgemeinerbar, sodass die gleichen
Vorstellungen auch fiir hohere Dimensionen gelten. Studierende kénnen von
dieser Grundvorstellung auch im zweiten Semester profitieren, indem der Begriff
der Ableitung auf hohere Dimensionen erweitert wird.

Demnach sind die zwei Elemente, die zu einer ausgeprigten Grundvorstellung
der Ableitung iiber die lokale Linearitit dazugehdren, zum einen das ,,Sehen®
einer geraden Linie, wenn stark an den Graphen einer differenzierbaren Funktion
herangezoomt wird. Zum anderen, dass fiir kleine Anderungen der unabhiingigen
Variable die Funktion linear erscheint.

Verstirkungsfaktor

Die Grundvorstellung der Ableitung als Verstirkungsfaktor kleiner Anderungen
ist eng mit dem Aspekt der lokalen Linearisierung verbunden. Im Fokus dieser
Grundvorstellung steht die Anderung der unabhiingigen Variable und wie sich
diese auf die abhingige Variable auswirkt. Wenn die Funktionswerte der
Ableitung nah an der Null sind, besitzt die Funktion eine geringe Anderung, und
wenn die Funktionswerte der Ableitung groB sind, dann ist die Anderung der
Funktion ebenfalls signifikant (Greefrath et al., 2023). Werden z. B.
Extrempunkte einer Funktion betrachtet, dann ldsst sich feststellen, dass in der
Umgebung eines Extrempunkts kleine Verdnderungen wenig Auswirkungen auf
die unabhéngige Variable ausiiben. Greefrath et al. (2016a, S. 152) beschreiben
dies als ,,Anderungsdetektor. Wird allerdings von der Ableitung ausgegangen,
die bspw. grofle Werte an einer Stelle annimmt, dann kann daraus abgeleitet

22 Die Gerade g(x) = t(xy) + (x — x) - m hat im Punkt x, die Differenz zur Funktion f
r(h) = f(xg+ h) — g(xo + h) = f(xo + h) — f(xo) — h - m. Fiir alle m-Werte geht dies
gegen Null, wenn x — x,. Fiir einen spezifischen m-Wert geht auch der relative Fehler

gegen Null: ’llim % = 0 (Greefrath et al., 2016b).
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werden, dass sich kleine Anderungen der unabhingigen Variable stark auf die
abhingige Variable auswirkt.

Die Grundvorstellung der Ableitung als Verstirkungsfaktor kleiner Anderungen
ist sowohl fiir den Differentialquotienten als auch den Differenzenquotienten
nutzbar (Malle, 2003). Damit kann mit dieser Vorstellung eine Moglichkeit
dargestellt werden, wie Studierende Schwierigkeiten beziiglich des Grenzwerts in
der Ableitung und des Ubergangs von Differenzen- zu Differentialquotient
iberwinden konnen. Auflerdem kann sie in Anwendungen, insbesondere
beziiglich der Ingenieurwissenschaften im Bereich der Physik, unterstiitzend
wirken. Ein Beispiel wire eine Schwingungsgleichung, mit der Zeit und Ort eines
bestimmten Objekts beschrieben wird und deren Ableitung, die Geschwindigkeit
in Abhéngigkeit der Zeit darstellt. Ist die Periodendauer der Zeit-Ort Bestimmung
einer Schwingung sehr lang, dann resultiert daraus nur eine kleine Anderung in
der Geschwindigkeit der Schwingung.

Zu einer umfassenden Vorstellung der Grundvorstellung der Ableitung als
Verstarkungsfaktor gehéren demnach die Auffassung, wie sich kleine
Anderungen der unabhiingigen Variablen auf die abhingige Variable auswirken,
sowie hohe Werte der Ableitung starke Anderungen der Funktionswerte bedeuten.
AuBerdem existiert fiir kleine Anderungen ein multiplikativer Zusammenhang
zwischen Anderungen der unabhéngigen und abhiingigen Variablen (Ay ~ Ax -
m).

Mamolo und Zazkis (2012) konnten feststellen, dass Studierende Schwierigkeiten
mit Aufgaben aufweisen, welche die Grundvorstellung ,,Verstarkungsfaktor
benétigen. Dariiber hinaus wurde festgestellt, dass die Grundvorstellung
, Verstarkungsfaktor* bei Studierenden am wenigsten ausgeprégt ist (Greefrath et
al., 2023). Dies konnte daran liegen, dass diese Grundvorstellung nur in
spezifischen Situationen als niitzlich angesehen wird.

Weitere Empirie zum Ableitungsbegriff

Schwierigkeiten beim Verstidndnis des Konzepts der Ableitung lassen sich auf
verschiedenen Ebenen feststellen (Bressoud et al., 2016; Thompson & Harel,
2021). Dies trifft nicht nur auf die Schule, sondern auch auf Studierende in der
Universitdt zu (Fuentealba et al., 2017). H&ufig ldsst sich beobachten, dass
Lernende die verschiedenen Reprisentationen der Ableitung nicht kennen oder
Schwierigkeiten haben, sie untereinander zu verbinden (Héhkiéniemi, 2006; vom
Hofe, 1998). AuBerdem scheint eine weitere Schwierigkeit der Ubergang der
mittleren zur lokalen Anderungsrate zu sein (z. B. vom Hofe, 1998). Dariiber
hinaus ist die Anderungsrate in Kontextanwendungen ebenfalls eine Hiirde fiir
Studierende. Dies duflert sich dadurch, dass Studierende die Verbindung zwischen
der Funktion und ihrer Anderungsrate in einem kinematischen Kontext nicht
herstellen konnten (Beichner, 1994). Des Weiteren gibt es einige Studien, welche
aufzeigen, dass Studierende in der grafischen Darstellung zwischen einem Zeit-
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Distanz-Graph und Zeit-Geschwindigkeit-Graph ~ Ahnlichkeiten vermuten
(Carlsson et al., 2010; Nemirovsky & Rubin, 1992).

4.3.3 Die Ableitungsregeln

Mit der Definition des Begriffs der Ableitung konnen Kalkiile entwickelt werden,
die sich in Problemstellungen der Differentialrechnung als hilfreiche Werkzeuge
herausstellen. Mit algebraischen Umformungen an dem Differentialquotienten
lassen sich Ableitungsregeln herleiten, die auf differenzierbare Funktionen
angewendet werden konnen.

Zuniichst muss allerdings der Ubergang von differenzierbar in einem Punkt einer
Funktion zu differenzierbar in jedem Punkt einer Funktion erfolgen. Die
Definition der Differenzierbarkeit gibt letztendlich eine Aussage {iber
Differenzierbarkeit in einem Punkt einer Funktion. Dabei werden die
Uberlegungen an einer fest gewihlten Stelle durchgefiihrt. Diese fest gewihlte
Stelle wird im néchsten Schritt nicht mehr als fest, sondern als verdnderlich
angeschen.

Mathematische Bemerkung 5 (Definition): Ableitungsfunktion

Sei f eine reelle Funktion. Die Funktion f’, die jedem x-Wert, bei dem f
differenzierbar ist, den Wert f'(x,) zuordnet, heiBt Ableitungsfunktion von

f.

Greefrath et al. (2016a, S. 166)

Die Anderung liegt dabei in der Deutung der Variable x im Differentialquotienten.
Die Variable x ist demnach nicht mit dem Einzelzahlaspekt, wie in der Definition
der Differenzierbarkeit, sondern mit dem Verdnderlichenaspekt zu betrachten.
Deutlich wird dies daran, dass eine feste, aber beliebige Stelle oftmals mit dem
Term x, und im gesamten Funktionsterm frei verdnderlich mit x bezeichnet wird.

Ableitung verkniipfter Funktionen

An dieser Stelle muss erwédhnt werden, dass im Folgenden nicht alle
Ableitungsregeln in ihrer Tiefe aufbereitet werden. Dies liegt daran, dass nur
wenige Ableitungsregeln fiir die erhobenen empirischen Daten dieser Arbeit
bedeutend sind. Aus dem Grund werden die Summenregel, Kettenregel sowie die
Ableitung von Potenzfunktionen dargestellt.

Fiir das Ableiten komplizierterer Funktion gibt es einige Regeln, die den Umgang
mit Ableitungen bzw. Ableitungsfunktionen auf ihrem Definitionsbereich
erleichtern.
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Au+ Av

Abbildung 12: Steigungsdreieck zur Summenregel (Greefrath et al., 2016a, S.169)

Die Abbildung 12 zeigt auf, dass sich die Summenregel mithilfe der
Grundvorstellung der Tangentensteigung nachvollziechen lassen kann. Der Graph
der Summenfunktion (in der Abbildung mit u + v dargestellt) ergibt sich aus den
Graphen der einzelnen Funktionen u und v. Dabei werden ,,punktweise” an jeder
Stelle x die y-Werte von u und v aufaddiert. Gleiches ergibt sich fiir das
Steigungsdreieck des Differenzenquotienten fiir die Summenfunktion u + v mit
der Breite h, welches sich aus den Steigungsdreiecken der einzelnen Funktionen
u und v mit der Breite h zusammensetzt.

Mathematische Bemerkung 8 (Beispiel): Summenregel

Es soll die Ableitung der Funktion f:R — R mit f(x) = 2x?+3x + 1
werden. Dafiir wird die Summenregel benutzt und wir erhalten:

f'(x) =4x*+3

Die weiteren Regeln aus der mathematischen Bemerkung 6 werden in Biichter
und Henn (2010, ab Seite 209) behandelt.
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Kettenregel

Mittels der bisherigen Ableitungsregeln lassen sich einfache Funktionen
differenzieren. Allerdings reichen diese nicht mehr aus, wenn nach der Ableitung
einer ineinander geschachtelten (bzw. verkettete) Funktion gefragt ist. Wird bspw.
die Geschwindigkeit einer harmonisch schwingenden Masse gefordert, muss die
zeitliche Ableitung y(t) der nachfolgenden Funktion y gebildet werden (Papula,
2018).

y=y({t)=A sin(lwt+¢), t=0

Die Funktion y setzt sich dabei aus zwei elementaren Funktionen zusammen.
Zum einen aus der Sinusfunktion u = sin v und zum anderen der linearen
Funktion v = wt + ¢. Der Sinus ist in diesem Beispiel zum einen abhéngig von
der linearen Funktion u und zum anderen von der Zeit t. In solchen Féllen von
ineinander geschachtelten Funktionen kann die Kettenregel® angewendet
werden.

23 Ein intuitives Beispiel kann helfen, diese Form der Kettenregel zu verstehen. In einem
Rennen bewegt sich der Gepard doppelt so schnell wie ein Lowe, welcher sich wiederum
drei Mal so schnell wie eine Katze bewegt. Wie viel schneller bewegt sich also der Gepard
als die Katze?

dGepard dGepard dLowe 9326

dKatze  dLowe dKatze
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Abbildung 13: Visuelle Interpretation der Kettenregel

Eine visuelle Interpretation der Kettenregel kann Abbildung 13 liefern. Wenn das
Argument einer Funktion mit 2 multipliziert wird, verdoppelt sich die Steigung
bei der jeweiligen Stelle der neuen Funktion (siche an den Pfeilen in der
Abbildung 13). Das Einsetzen von x = 2 in f(2x) ergibt den gleichen Wert, wie
das Einsetzen x = 4 in f(x). Obwohl die y-Werte fiir x = 2 in f(2x) und x = 4
in f(x) gleich sind, stimmt dies nicht fiir die Tangenten der Punkte. Stauchen des
Graphen in x-Richtung fiihrt dazu, dass die Steigung steiler wird. Wenn in diesem
Beispiel nun die Ableitung f'(2x) gebildet wird, dann muss diese mit 2 (also
f'(2x) - 2) multipliziert werden (da die Steigung doppelt so hoch ist). Im
Allgemeinen bedeutet dies, dass die Funktion g fiir das schnellere oder
langsamere Durchlaufen einer Funktion f entscheidend ist. Um nun also die
Steigung bzw. die Ableitung von f(g(x)) zu finden, muss zunichst die Steigung
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von f an dem x-Wert g(x) ermittelt werden. AnschlieBend wird mit dem Wert
multipliziert bzw. skaliert und bestimmt wie g das Durchlaufen der y-Werte
schneller oder langsamer macht (stauchen oder strecken in Richtung der x-
Achse). Damit erhélt man die Kettenregel.

Ableitung der Potenzfunktion

Fiir Potenzfunktionen ergibt sich eine weitere Ableitungsregel.

Mathematische Bemerkung 12 (Satz): Ableitung von Potenzfunktionen

Fiir die Ableitung in der in R definierten Potenzfunktion f mit f(x) = x™,
n € Z, aber n # 0, gilt
f'e) =n-x""1

Fir n =0 und x # 0 liegt eine konstante Funktion mit f(x) =1 und
Ableitung f'(x) = 0 vor.

Biichter und Henn (2010, S. 213)

Mathematische Bemerkung 13 (Beispiel): Ableitung der Potenzfunktion

Fiir die Ableitung der Funktion f mit f(x) = x® ergibt sich nach der
Potenzregel:

f'(x) =8-x8"1=8x"

Der Beweis der Potenzregel kann anhand von algebraischen Umformungen am
Differenzenquotienten mithilfe des binomischen Lehrsatzes durchgefiihrt werden
(der Beweis fiir positiv-ganzzahlige Exponenten z. B. zu finden in Papula, 2018,
S. 330).

Empirische Ebene zu den Ableitungsregeln

Clark et al. (1997) haben 41 Studierende an einer amerikanischen Universitit
interviewt, die bereits mindestens zwei Semester ,single variable calculus®
abgeschlossen haben. In dem Interview mussten die Studierenden Fragen
beantworten, die auf ihr Verstindnis der Kettenregel abzielen. Die Autoren der
Studie haben die Antworten der 82 Studierenden auf ihre Richtigkeit kodiert und
festgestellt: Nur eine der vier ausgewerteten Fragen wurde von 75,6 % (62 von
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82) aller Studierenden vollstdndig richtig beantwortet. Die anderen drei Fragen
wurden von allen Studierenden mit 7,3 %, 39 % und 34,1 % richtig beantwortet.
Die Autoren kommen zu dem Schluss, dass die Schwierigkeiten im Umgang mit
der Kettenregel bei den meisten Studierenden ihrer Stichprobe auf Mangel im
Verstandnis von Funktionen zuriickzufiihren sind. Sie fordern daher eine stirkere
Fokussierung, Zusammensetzungen bzw. Verkettungen von Funktionen erkennen
und damit umgehen zu kénnen. Zusétzlich sei es wichtig, diese in Beziehung zu
verschiedenen Problemsituationen zu setzen, fiir deren Losung die Kettenregel
benotigt wird. Cottrill (1999) konnte in seiner Untersuchung ebenfalls Hinweise
dazu finden, dass das Verstehen von zusammengesetzten Funktionen fiir das
Verstindnis der Kettenregel ausschlaggebend ist.

4.3.4 Der Mittelwertsatz

Der Mittelwertsatz der Differentialrechnung ist ein wichtiger Bestandteil des
Theorieaufbaus, aus denen einige Folgerungen abgeleitet werden kénnen (z. B.
die Regel von L"Hospital).

Mathematische Bemerkung 14 (Satz): Mittelwertsatz

Ist die reelle Funktion f stetig auf [a, b] und differenzierbar mindestens auf
(a, b), so gibt es ein x, € (a, b) mit

b) —
Gy = LO S

Burg et al. (2017, S. 223)

Ay Tangente

Sekanta

W=
N =

(=]

e

Abbildung 14: Geometrische Interpretation zum Mittelwertsatz (Burg et al., 2017, S. 222)
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Anschaulich sagt der Mittelwertsatz der Differentialrechnung aus, dass die
Kurventangente fiir mindestens ein xo aus (a, b) parallel zur Sehne AB ist. Dies
lasst sich in Abbildung 14 erkennen. Dabei ist zu beachten, dass es nicht nur eine
Stelle xo geben muss, welche die Aussage erfiillt — mehrere Stellen der Funktion
konnen dafiir in Frage kommen. Man konnte demnach die Sehne AB nehmen und
sie so verschieben (dabei muss die Steigung natiirlich gleich bleiben, um die
Parallelitdt zu erhalten), dass sie zur Tangente des Graphs wird. Alle Punkte der
Funktion, bei der die Sehne AB parallel zur Kurventangente ist, erfiillen den
Mittelwertsatz der Differentialrechnung. Biichter und Henn (2010) bezeichnen
das Verschieben der Sehne AB als Grundvorstellung zum Mittelwertsatz der
Differentialrechnung.

Fiir ein Beispiel der Aussage des Mittelwertsatzes der Differentialrechnung sei f
eine Funktion, welche den zuriickgelegten Weg eines Objekts in Abhdngigkeit der
Zeit beschreibt. Der Mittelwertsatz der Differentialrechnung sagt dann aus, dass
zu mindestens einem Zeitpunkt to in einem Zeitintervall a <t < b die
durchschnittliche Geschwindigkeit des Zeitintervalls tatsdchlich erreicht wird. In
anderen Worten ist zu mindestens einem Zeitpunkt innerhalb eines bestimmten
Zeitintervalls die Momentangeschwindigkeit gleich der durchschnittlichen
Geschwindigkeit. Verallgemeinert bedeutet dies, dass die lokale Anderungsrate
zu mindestens einem Punkt gleich der durchschnittlichen Anderungsrate in einem
Zeitintervall ist.

Der Beweis des Mittelwertsatzes der Differentialrechnung wird oftmals auf den
Satz von Rolle zuriickgefiihrt. Dabei wird eine Hilfsfunktion eingefiihrt, sodass
der Satz von Rolle angewendet werden kann. Der Beweis dazu kann in Burg et
al. (2017, S. 223) nachgelesen werden.

Mathematische Bemerkung 15 (Satz): Satz von Rolle

Ist die reelle Funktion f stetig auf [a, b] und differenzierbar mindestens auf
(a,b), und gilt f(a) = f(b), so existiert ein x, € (a, b) mit f'(x,) = 0.

Burg et al. (2017, S. 223)
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Mathematische Bemerkung 16 (Beweis): Mittelwertsatz

Man subtrahiert von f eine Geradenfunktion g mit der Steigung der Sekante
durch a und b, und zwar g(x) = W. Fiir die Differenz F(x) =

f(x) — g(x) errechnet man F(a) = F(b). Der Satz von Rolle liefert dann
die Existenz eines x, € (a, b) mit

p) —
0= F'(xo) = f'(x0) — g'(x0) = f'(x0) _w

Burg et al. (2017, S. 223)

Empirische Ebene zum Mittelwertsatz der Differentialrechnung

Es gibt bislang keine mir bekannten empirischen Studien zu dem Mittelwertsatz
der Differentialrechnung. Allerdings wurde eine Studie zum Beweisverstindnis
des verallgemeinerten Mittelwertsatzes der Differentialrechnung mit
Studierenden aus dem ersten Semester durchgefiihrt (Kolahdouz et al., 2020). Die
Teilnehmenden der Studie waren an einer Universitdt im Iran fiir das Fach
Mathematik eingeschrieben. In einem Test-Format wurden 35 Studierenden acht
Fragen zu verschiedenen Aspekten des Beweisverstindnisses zum
verallgemeinerten Mittelwertsatz der Differentialrechnung gestellt. Im Fokus der
Studie lag demnach, inwiefern Studierende die mathematische Symbolsprache
verstehen, Zusammenhidnge zwischen Behauptungen, anderen Sitzen und
Schlussfolgerungen erkennen sowie die Giiltigkeit von Aussagen bewerten.
Dabei hat sich herausgestellt, dass etwa die Halfte der Studierenden keine
Probleme mit der mathematischen Symbolsprache haben, allerdings in allen
anderen Bereichen des Beweisverstdndnisses erhebliche Probleme bestehen.
Beziiglich des mathematischen Inhalts konnte festgehalten werden, dass bei
Studierenden Schwierigkeiten aufgetreten sind, wenn die Voraussetzung des
verallgemeinerten Mittelwertsatzes der Differentialrechnung verdndert worden
ist und im Anschluss die Auswirkung auf eine schlussfolgernde Aussage
angepasst werden sollten. Auflerdem konnten nur zwei der 35 teilnehmenden
Studierenden zwei vorgegebene Beispiele korrekt einordnen, ob sie den
Voraussetzungen des verallgemeinerten Mittelwertsatzes der
Differentialrechnung geniigen. Es ist fraglich, inwiefern sich die Ergebnisse
dieser Studie auf den Mittelwertsatz der Differentialrechnung iibertragen lassen.
Zumindest bei dem Uberpriifen der Voraussetzungen an vorgegebenen Beispielen
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kann davon ausgegangen werden, dass dhnliche Ergebnisse zu vermuten sind, da
sich die Voraussetzungen der beiden Sdtze im Vergleich nicht dndern.

4.3.5 Die Regel von L"Hospital

Aus dem Mittelwertsatz der Differentialrechnung kann die Regel von L Hospital
abgeleitet werden, die sich mit der Berechnung bestimmter Grenzwerte befasst.
Es handelt sich dabei um Grenzwerte von Quotienten, deren Funktionen gegen
Null konvergieren oder bestimmt divergieren. Nach der Regel von L Hospital
konnen Grenzwerte dieser Form mithilfe der ersten Ableitung ermittelt werden.

Mathematische Bemerkung 17 (Satz): Regel von L Hospital

Es seien f und g differenzierbare reelle Funktionen auf dem Intervall (a, b),
fiir die

limf(x) =limg(x)=0 oder
x-b x-b
lim f(x) = £oo und lim g(x) = £
x—b x-b
gilt. Es sei ferner g’ (x) # 0 auf (a, b). Damit folgt

B L€ BN i €))
il—rfl; gt fcl—m g' @)

(a<x<b),

sofern der rechtsstehende Grenzwert existiert oder oo ist. (Hierbei ist auch
a = oo oder b = —oo zugelassen.)

Zur Schreibweise: Das Nutzen der Regel von L Hospital wird oftmals mit
dem Ausdruck " % " oder " g " angedeutet.
Burg et al. (2017, S. 235)

Gemil der Regel von L'Hospital ldsst sich an einer fraglichen Stelle jedes
differenzierbares Funktionenpaar fund g durch ihr dortiges Tangentenpaar
anndhern. Auf die Darstellung eines Beweises wird hier verzichtet, da weitere
mathematische Inhalte genutzt werden, die den Rahmen des Kapitels {ibersteigen
wiirden. Ein Beweis ist zu finden in Heuser (2009, S. 287). Fiir Ingeneur:innen
ist vor allem die Anwendung des Satzes relevant (Burg et al., 2016, S. 236).
Visuell (Abbildung 15) ldsst sich erkennen, dass die Tangenten an der fraglichen
Stelle in einer hinreichend kleinen Umgebung um den Beriihrpunkt das
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Anderungsverhalten der Funktionen sehr gut beschreiben. Der Grenzwert des
Quotienten der Funktionswerte kann somit grafisch an der fraglichen Stelle durch
den Quotienten der Tangentensteigung ersetzt werden.

Abbildung 15: Zwei Funktion, angendhert durch ihre Tangenten (gestrichelt)
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Empirische Ebene zur Regel von L Hospital

Ahnlich wie fiir den Mittelwertsatz der Differentialrechnung gibt es fiir die Regel
von L'Hospital ebenfalls keine mir bekannten empirischen Studien. In einer
Studie von Mrdja et al. (2015) wurden allerdings die Bearbeitungen von
Ingenieurstudierenden einer Universitidt in Bosnien und Herzegowina beim
Berechnen eines Grenzwerts untersucht. Fiir die Berechnung des Grenzwerts wird
in dieser Studie unter anderem die Anwendung der Regel von L'Hospital
benotigt. In den Bearbeitungen der Studierenden konnte zum einen festgestellt
werden, dass in 22 von 24 Fillen die Voraussetzungen fiir die Regeln von
L Hospital ignoriert worden sind. Zum anderen wurde die Regel von L Hospital
in 17 von 24 Féllen nicht korrekt angewandt.

4.3.6 Bezug der Inhalte im Ubergang Schule-Hochschule+

Auf Ebene der Schule wird von Lernenden aus der Oberstufe in Nordrhein-
Westfalen verlangt, dass die Ableitung an einer Stelle als lokale Anderungsrate
oder Tangentensteigung sowie =zusdtzlich im Leistungskurs mithilfe der
Approximation durch lineare Funktionen gedeutet werden soll (Ministerium fiir
Schule und Bildung des Landes NRW, 2023). Studierende sollten demnach
insbesondere hinsichtlich der lokalen Anderungsrate oder der Tangentensteigung
iiber Vorwissen verfiigen. Beide Grundvorstellungen kénnen auf die Definition
der Ableitung als Grenzwert des Differenzenquotienten zuriickgefiihrt werden
(Greefrath et al, 2016b). Wird die Ableitung im hochschulischen Kontext
ebenfalls iiber diese Definition eingefithrt, konnen Studierende auf
Vorerfahrungen beziiglich der Grundvorstellungen zuriickgreifen. Lediglich
Lernende aus dem Leistungskurs werden mit der Ableitung als Approximation
durch lineare Funktion konfrontiert (Ministerium fiir Schule und Bildung des
Landes NRW, 2023), wobei es dadurch ungleiche Lernvoraussetzungen geben
kann, wenn die eingefiihrte Definition in der Hochschule stark auf die Vorstellung
der lokalen Linearitdt angelehnt wird.

Die Thematisierung der Ableitungsregeln findet ebenfalls in der Schule statt. Bis
zum Ende der Einfiihrungsphase werden Potenz-, Summen- sowie Faktorregel
und in den Grund- und Leistungskursen sowohl Produkt- als auch Kettenregel
behandelt (Ministerium fiir Schule und Bildung des Landes NRW, 2023).
Studierende sind daher mit den verschiedenen Techniken von Ableitungsregeln
vertraut und konnen sich auf ihre vorherigen Erfahrungen stiitzen.

Der Mittelwertsatz der Differentialrechnung als auch die Regel von L "Hospital
spielen in der Schule weder in Grund- noch Leistungskursen eine Rolle
(Ministerium fiir Schule und Bildung des Landes NRW, 2023). Obwohl auf
notwendige Vorerfahrung mathematischer Inhalte wie Funktionen, Grenzwerte
und Ableitungsregeln zuriickgegriffen werden kann, sind der Mittelwertsatz der
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Differentialrechnung und die Regel von L’'Hospital punktuell Neuheiten fiir
Studierende.

4.4 Zusammenfassung und Einordnung in die Wissensmatrix

Die Differentialrechnung stellt einen wichtigen mathematischen Aspekt im
Ingenieurstudium dar, welcher sich in vielen ingenieurtypischen Anwendungen
wiederfindet (vgl. Kapitel 4.1). Bevor eine Thematisierung der
Differentialrechnung moglich ist, miissen einige innermathematische Grundlagen
gekldrt werden: Darunter fallen Funktionen, Grenzwerte und Stetigkeit (vgl.
Kapitel 4.2). Unter Beriicksichtigung dieser Begriffe wurden mithilfe des Vier-
Ebenen-Ansatzes (HuBmann & Prediger, 2016) ausgewihlte?® Inhalte der
Differentialrechnung dargestellt (Kapitel 4.3). Dabei wurde der umfangreiche
Lerngegenstand der Differentialrechnung mittels der formalen, semantischen und
empirischen Ebene strukturiert (HuBmann & Prediger, 2016). Fiir die formale
Ebene als auch die semantische Ebene kann anhand der Wissensmatrix eine
feinere Aufteilung in die Wissensfacetten vorgenommen werden (Kapitel 4.3.1).
Die theoretischen Inhalte zur Differentialrechnung lassen sich nun mittels der
Wissensmatrix strukturieren. Eine Darstellung, der in Kapitel 4.3 behandelten
mathematischen Inhalte befindet sich in Tabelle 7.

Der Begriff der Differenzierbarkeit einer Funktion wird als Konzept und der
Mittelwertsatz als Zusammenhang dargestellt. Beide mathematischen Inhalte
werden somit dem konzeptuellen Wissen zugeordnet.

Es bleibt zu diskutieren, inwiefern die Ableitungsregeln und die Regel von
L'Hospital im Sinne der Wissensmatrix dem prozeduralen oder konzeptuellen
Wissen zu verorten sind. Die Regel von L’'Hospital wird in vielen
mathematischen Lehrbiichern zunéchst formal als Satz eingefiihrt (z. B. Burg et
al., 2017; Meyberg & Vachenhauer, 2015; Westermann, 2015). Laut der
Wissensmatrix ist ein mathematischer Satz mit dem Zusammenhang
gleichzusetzen. Dies spricht dafiir, dass die Regel von L’'Hospital in der
Wissensmatrix als Zusammenhang eingeordnet wird. Dies hitte wiederum zur
Folge, dass die Regel von L "Hospital dem konzeptuellen Wissen zugeordnet wird.
Aus einigen Lehrbiichern wird allerdings auch deutlich, dass es sich bei der Regel
von L Hospital um ein Werkzeug handelt, welches bei der Berechnung von
Funktionsgrenzwerten niitzlich ist: ,,Wir wenden uns nun wieder dem Berechnen
von Funktionsgrenzwerten zu. [...] Die Regel von L'Hospital liefert eine
Methode auch den Grenzwert zu berechnen, wenn g(x,) = f(x,) = 0
(Westermann, 2015, S. 284). Dies wiirde dafiir sprechen, dass die Regel von

24 Die Auswahl der Inhalte der Differentialrechnung, die in dem Kapitel 4.3 dargestellt wurden,
hingt von den Daten ab, die in dieser Arbeit ausgewertet worden sind. Es wurden daher nur
die notwendigen mathematischen Inhalte dargestellt.
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L'Hospital als Verfahren eingeordnet wird. Letztlich wére die Regel von
L’Hospital demnach Teil des prozeduralen Wissens.

In der mathematikdidaktischen Diskussion zwischen prozeduralem und
konzeptuellem Wissen wird immer wieder auf den Kontext von Situationen
verwiesen (z. B. Rittle-Johnson & Schneider, 2014; Smith et al., 1996).
Mathematische Informationen kdnnen fiir die eine Person neu sein, wihrend sie
fiir die andere Person bereits im Wissensnetzwerk integriert sind und
moglicherweise ein Automatismus beziiglich dieses Wissens vorhanden ist.
Genauso ist es moglich, dass die Regel von L'Hospital bereits in einem
Wissensnetzwerk einer Person integriert ist und diese fiir das Berechnen von
Grenzwerten benutzt wird, wéihrend sich eine andere Person zunichst die Regel
von L"Hospital ,,erarbeitet” und somit das eigene Wissensnetzwerk erweitert. Die
Einordnung der Regel von L"Hospital als konzeptuelles Wissen oder prozedurales
Wissen  ist  demnach  personenabhingig. Im  Kontext  einer
Erstsemesterveranstaltung an der Universitdt kann davon ausgegangen werden,
dass die Regel von L'Hospital fiir Studierende neuartig ist, da sie zum einen in
der Schule nicht im Lehrplan steht (fiir NRW: Ministerium fiir Schule und
Bildung des Landes NRW, 2023) und zum anderen keine vorherigen
Veranstaltungen an der Universitit stattfinden, die diese Regel lehren.

Wird ein Blick auf die Facetten gelegt, lasst sich die Regel von L Hospital sowohl
in das prozedurale als auch das konzeptuelle Wissen einordnen. Die
mathematische Bemerkung 17 (Satz): Regel von L’'Hospital (MB17) kann
beziiglich der Facette Explizite Formulierung sowohl als ausformulierter Satz,
allerdings auch als Anleitung des Verfahrens verstanden werden. Beziiglich der
Facette Konkretisierung & Abgrenzung deckt MB17 auf der prozeduralen Seite
ebenfalls die Bedingung der Anwendbarkeit ab (wobei in dieser Arbeit keine
Spezialfille®® vorgestellt werden), wihrend MBI8 ein Beispiel fiir die
konzeptuelle Seite aufzeigt. Fiir die Facette Bedeutung & Vernetzung kann
Abbildung 15 sowohl als (anschauliche) Begriindung als auch als Vorstellung /
Begriindung aufgefasst werden. Auch der Beweis (z. B. in Heuser, 2009, S. 287)
fiir die Regel von L'Hospital kann in beide Wissenselemente dieser Facette
eingeordnet werden. Die Facette Konventionelle Festlegungen bleibt auf beiden
Wissensseiten leer, da es keine bestimmten Namen bzw. Bezeichnungen oder
nicht begriindbare Festlegungen fiir die Regel von L"Hospital gibt.

Zuletzt wird nochmal die pragmatische Perspektive eingenommen, wie die Regel
von L"Hospital im Kontext des Ingenieurstudiums in der Universitit genutzt wird.
In der Vorlesung wird die Regel von L"Hospital theoretisch eingefiihrt, allerdings
meistens als Werkzeug fiir die Berechnung von bestimmten Grenzwerten. Somit
liegt ein starker Fokus auf den Anwendungskontext, der vor allem in den

25 Spezialfille sind allerdings durchaus vorhanden. Ein moglicher Spezialfall, bei der die Regel
eXte™™
ex_e—x

von L Hospital anwendbar ist, aber versagt, da sich ,,im Kreis gedreht” wird: lim
X—00
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Ubungsblittern bzw. Hausaufgaben deutlich wird. Die Regel von L Hospital stellt
eine klare Anleitung dar, wie bestimmte Grenzwerte zu berechnen sind und
welcher Schritt dafiir unternommen werden muss. Eine solche ,,Schritt-fiir-
Schritt-Anleitung® ist aus theoretischer Perspektive als Prozedur zu verstehen,
welche Teil des prozeduralen Wissens ist (Star, 2005).

Die verschiedenen Perspektiven haben anhand der Regel von L Hospital gezeigt,
dass die FEinordnung von mathematischem Inhalt in die Wissensmatrix
gelegentlich nicht selbsterklérend ist. Es gibt sowohl Griinde, die Regel von
L’'Hospital als Zusammenhang (und somit dem konzeptuellen Wissen
zuzuordnen) oder als Verfahren (und somit dem prozeduralen Wissen
zuzuordnen) aufzufassen. Da in dieser Arbeit Bearbeitungsprozesse von
Studierenden untersucht werden und das Ziel der Aufgaben das Nutzen und Uben
der Regel von L'Hospital ist, wird die Regel von L'Hospital als Verfahren
aufgefasst. Die gleichen Argumente gelten ebenfalls fiir die Ableitungsregeln.
Zuletzt bleibt noch anzumerken, dass die dargestellte Wissensmatrix in Tabelle 7
weder beziiglich der Differentialrechnung noch beziiglich der einzelnen Facetten
der jeweiligen Konzepte, Zusammenhénge und Verfahren vollstdndig ist (z. B.
fehlt die Darstellung von Gegenbeispielen fiir die Differenzierbarkeit). Dariiber
hinaus wurden in dieser Arbeit selbst nicht alle Wissenselemente vollstindig
ausgearbeitet (vor allem fiir die Konventionellen Festlegungen).

Mathematischer Explizite Konkretisie- Bedeutung &  Konventio-
Inhalt Formulie- rung & Vernetzung nelle
rung Abgrenzung Festlegungen
Konzept: MB3 MB4 Grundvorstell ~ MB3
Differenzier- ungen
barkeit
Zusammenhang:  MBI4 Abb. 4.7 und
Mittelwertsatz MB16
Verfahren: MB6 MBS Abb. 4.5 und
Summenregel MB7
Verfahren: MB9 MBI10 MBI11 und MB9
Kettenregel Abb. 4.6
Verfahren: MBI12 MBI3 Papula (2018,
Ableitung der S. 330)
Potenzfunktion
Verfahren: MB17 MBI18 Abb. 4.8 und MB17
L’Hospital Heuser (2009,
S. 287)

Tabelle 7: Einordnung der mathematischen Inhalte in die Wissensmatrix
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5 Methodische Ansitze und Entscheidungen zur
Untersuchung der Problembearbeitungsprozesse

Dieses Kapitel beschiftigt sich mit den methodologischen Ansdtzen zur
Untersuchung von Problembearbeitungsprozessen. Es beginnt mit der
methodischen Einordnung sowie einigen Voriiberlegungen zur Datenerhebung
und -auswertung (Kapitel 5.1). Anschlieend wird im Studiendesign (Kapitel 5.2)
der konkrete Rahmen der Untersuchung vorgestellt. Im weiteren Verlauf folgt
eine stoffdidaktische Analyse der drei Aufgaben (Kapitel 5.3), zu denen in dieser
Untersuchung  die  Problembearbeitungsprozesse  untersucht  werden.
AbschlieBend werden die Auswertungsmethoden fiir die Prozesse (Kapitel 5.4)
sowie die Produkte (Kapitel 5.5) der Problembearbeitungsprozesse erldutert.

5.1 Methodische Einordnung und Voriiberlegungen

Um die Forschungsfragen zu beantworten, bedarf es passender Methoden zur
Datenerhebung und -auswertung. Diesbeziiglich werden Voriiberlegungen
dargestellt, die ebenfalls als Begriindungen fiir das Forschungsvorgehen gelten.
Im Folgenden soll die vorgestellte Studie knapp umrissen werden, um weitere
methodische Entscheidungen treffen zu kdnnen. Das Forschungsinteresse dieser
Arbeit besteht darin, die Problembearbeitungsprozesse von Studierenden in
einem natiirlichen Setting zu untersuchen. Fiir die Studie wurden demnach fiinf
Lerngruppen in einem alltdglichen Setting videographiert: Wahrend der
Bearbeitung von mathematischen Hausaufgaben im Themenbereich der
Differentialrechnung. Die Bearbeitungen der Studierenden wurden nach jeder
Videoaufnahme eingesammelt oder abfotografiert. Anschliefend folgte die
Transkription der Videoaufnahmen. Sowohl die Videoaufnahmen als auch die
Transkripte und Bearbeitungen (der Hausaufgaben) der Studierenden wurden
genutzt, um die Problembearbeitungsprozesse der Studierenden beschreiben zu
konnen. Die Bearbeitungsprozesse wurden aus verschiedenen Blickwinkeln
betrachtet, wobei Steuerung (Kapitel 2.3), Wissen (Kapitel 2.4) und Heurismen
(Kapitel 2.5) im Mittelpunkt stehen. Die grundlegende Forschungsausrichtung
der Studie ist somit qualitativ.

5.1.1 Einordnung in das qualitative Forschungsparadigma

Das qualitative Forschungsparadigma zielt primér darauf ab, innerhalb eines
bestimmten Kontextes Phidnomene verstehend-interpretativ zu rekonstruieren
(Doring & Bortz, 2016). Genau dies beabsichtigt die {ibergeordnete
Forschungsfrage dieser Arbeit: Der zu untersuchende Kontext ist in dieser Studie
die Bearbeitung von Hausaufgaben in einer mathematischen, hochschulischen
Lehrveranstaltung fiir Ingenieur:innen. Das zu untersuchende Phédnomen sind die
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Problembearbeitungsprozesse. Die verstehend-interpretative Rekonstruktion
geschieht durch die Auswertung der erhobenen Daten. Da in der bisherigen
Forschung wenig zum mathematischen Problemlésen im hochschulischen
Kontext geforscht wurde, steckt ebenfalls ein exploratives Ziel in dieser Arbeit.
Es sollen neue Einsichten gewonnen werden, Theorie entwickelt und ggfs.
weiterfiihrende Fragen aufgestellt werden. Die Studie dieser Arbeit erfiillt damit
den Anspruch der qualitativen Forschung, ein besseres Verstindnis der sozialen
Wirklichkeit zu erhalten sowie auf Abldufe, Deutungsmuster und
Strukturmerkmale aufmerksam machen (Flick et al., 2012).

Des Weiteren ist das Problemldsen durch die vier Kategorien (Steuerung, Wissen,
Heurismen, Beliefs) ein facettenreiches Phidnomen. Deshalb wird durch eine
qualitative Forschung der Erhalt von Komplexitit des zu untersuchenden
Forschungsgegenstandes fiir die geplante Analyse garantiert (Mey & Ruppel,
2018). Es stehen ebenfalls detaillierte Einzelfallbetrachtungen im Fokus der
Untersuchung, wodurch ein tieferes Verstindnis iiber das mathematische
Problemldsen erlangt werden soll. Dariiber hinaus ist die Untersuchungssituation
in einem alltdglichen Setting (das Bearbeiten von Hausaufgaben ist in
mathematischen Veranstaltungen eine typische Handlung von Studierenden)
angelegt, welche nicht fiir eine spezifische Fragestellung konstruiert wird. Der
Alltagsbezug bleibt erhalten, weshalb der Untersuchungsgegenstand in seiner
Ganzheitlichkeit untersucht werden kann (Doring & Bortz, 2016, S. 65). Ein
solcher Einblick ldsst sich mit qualitativen Methoden besser untersuchen, da man
dem Phinomen néher ist als mit anderen Forschungsstrategien (Flick et al., 2012).
Aus diesen Griinden wurde filir diese Arbeit keine quantitative Studie angelegt.
Eine Laborsituation oder bspw. standardisierte Fragebdgen bezichen sich auf
vorformulierte Theorien oder auf gezielte Aspekte, wodurch das Problemldsen
nicht in seiner Ganzheitlichkeit untersucht werden konnte. Ebenfalls ist das
Problemlésen stark an das jeweilige Problem gebunden, wodurch vor allem die
Kategorie des Wissens und der Heurismen nur schwach mit standardisiertem
Vorgehen untersucht werden kann. Letztendlich ist das mathematische
Problemlosen zwar auf schulischem Niveau bereits mehr in der
Forschungslandschaft vertreten (z. B. Herold-Blasius, 2019; Rott, 2013),
allerdings miissen auf hochschulischem Niveau zunédchst weitere Einsichten in
das mathematische Problemlosen gefunden werden, um die aufgestellten
Hypothesen und Theorien mit quantitativen Methoden zu testen.

5.1.2 Methodische Uberlegungen zur Erhebung von
Problembearbeitungsprozessen

Bisherige Studien haben unterschiedliche Methoden genutzt, um das
Lernverhalten bzw. Problembearbeitungsprozesse von Lernenden zu
untersuchen. Obwohl die einzelnen Studien unterschiedlichen
Forschungsinteressen nachgegangen sind, konnen die gewonnenen methodischen
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Erkenntnisse dabei helfen, das Forschungsvorgehen der vorliegenden Arbeit zu
diskutieren. Folgende methodische Ansétze wurden gewéhlt: Beobachtungen von
erkennbarem Verhalten, Videoaufnahmen, (aufgabenbasierte) Interviews, lautes
Denken, Fragebdgen, Leistungstests sowie Strategie-Inputs (z. B. Herold-Blasius,
2019; Jacobse & Harskamp, 2012; Kani & Sharill, 2015; Montague et al., 2011;
Rott, 2013; Stenzel, 2023a). Diese Methoden lassen sich allgemein in
Selbstberichts- bzw. Beobachtungsverfahren einordnen. Beide Verfahren liefern
sowohl Vor- als auch Nachteile fiir die Erhebung von Daten beziiglich allgemeiner
Lernprozesse. Besonders in der Literatur fiir das Untersuchen von Lernstrategien
bzw. zum selbstregulierten Lernen wurde bereits vermehrt {iber die
unterschiedlichen Erhebungsmethoden diskutiert (z. B. Sporer & Brunstein,
2006). Obwohl das selbstregulierte Lernen einen etwas allgemeineren
Lernprozess beschreibt, sind Lernstrategien (auf fachlicher Ebene) stark verwandt
mit Heurismen des Problemldsens. Lernstrategien kénnen nah an dem
mathematischen Inhalt aufgefasst werden (wie im LimSt-Fragebogen,
Liebendorfer et al., 2021). Gleiches gilt fiir Heurismen, die bei der Bearbeitung
konkreter mathematischer Aufgaben genutzt werden. Einige Uberlegungen
konnen daher fiir Problembearbeitungsprozesse libernommen werden (Kapitel
2.5.1).

Selbstberichtsverfahren setzen voraus, dass die Befragten sich zum einen bei
ihrem Vorgehen {iber ihre eingesetzten Strategien bewusst sind und zum anderen
in der Lage sind, die eingesetzten Strategien in Worte zu fassen bzw. davon zu
berichten. Dazu kommt, dass die Befragten ihr Vorgehen selbst interpretieren und
daher auch eigenstindig entscheiden, welche Informationen iiberhaupt
berichtenswert sind (z. B. Artelt, 2000). In Fragebdgen ist bspw. bereits
vorgegeben, was aus Sicht der forschenden Person als berichtenswert angesehen
wird. Allerdings miissen die Befragten in der Lage sein, ihr Vorgehen bzw. ihre
genutzten Strategien in den Items des Fragebogens wiederzuerkennen. Dabei ist
weiterhin unklar, wie bestimmte Worte wie ,,0ft“, ,,immer*, ,selten®, ,, meistens®,
,Hhaufig®, etc. einzuordnen sind. Solche Pripositionen weisen stets einen
subjektiven Charakter auf. Eine Verstirkung dieser Probleme tritt dann auf, wenn
die Befragung zeitlich in gewisser Entfernung zur tatséchlichen Handlung liegt.
Die befragten Personen konnen sich moglicherweise nicht mehr an konkrete
Situationen erinnern oder vergessen komplizierte kognitive Gedankengénge, die
Aufschluss iiber eingesetzte Strategien bzw. Wissensnutzung geben konnten.
Goller (2020, S. 228f.) sowie Kolbe und Wessel (2022) vermuten, dass die
geringe Berichterstattung von kognitiven Strategien von Studierenden in
mathematischen Veranstaltungen an der fehlenden Spezifitit einer gewissen
Situation liegen konnte. Mittels des Selbstberichtverfahrens ist es allerdings leicht
zu erfassen, welche generellen Vorgehensweisen Studierende nutzen (Ericsson &
Simon, 1980), wie z. B. die Wahl zusitzlicher Hilfsmittel bei der
Hausaufgabenbearbeitung aus dem letzten Semester geholfen haben.
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Das Beobachtungsverfahren zur Erhebung von Strategien wird oftmals bei jungen
Kindern eingesetzt (Perels et al., 2020), um einigen Problemen des
Selbstberichtsverfahren entgegenzuwirken. Nach Turner (1995) gibt es drei
Vorteile gegeniiber dem Selbstberichtsverfahren. (1) Die Beobachtenden miissen
nicht die Fahigkeit besitzen, ihre Strategien zu formulieren. (2)
Beobachtungsverfahren verbinden das Verhalten einer Person direkt mit den
Gegebenheiten der Situation. (3) Die Korpersprache der beobachteten Person
kann mit einbezogen werden. Der Nachteil an Beobachtungen ist allerdings, dass
bei den untersuchten Lernenden kaum kognitive oder metakognitive Prozesse
abzuleiten sind.

,,Observing students engaged in studying, is really not a very rewarding research method. There is
simply not much to observe. We can measure the time spent on reading the text, we can examine the

underlinings and notes made, but such data do not provide useful information (Marton & Siljo, 2005,
S. 110).”

Nach Marton und Sélj6 (2005) scheint es so, dass durch das reine Beobachten von
Studierenden kaum relevante Informationen zu den tatsdchlichen Prozessen
erlangt werden konnen.

Schlussfolgerungen fiir die Auswahl der Erhebungsmethode

In dieser Studie sollen mathematische Problembearbeitungsprozesse von
Studierenden in alltdglichen Situationen untersucht werden. Daraus ergeben sich
aus den vorherigen Ausfiihrungen folgende Schlussfolgerungen:

Das mathematische Problemldsen ist ein Prozess, der stark von der jeweiligen
Aufgabenbearbeitung abhéngt. Es bietet sich daher an, dass die Untersuchung
ebenfalls moglichst nah an dem Prozess durchgefiihrt wird. Dies bedeutet, dass
der zeitliche Abstand im Fall einer Befragung zum jeweiligen
Problembearbeitungsprozess moglichst klein gehalten werden sollte. Die
zeitliche Néhe erlaubt es den untersuchten Personen, sich an wichtige Details des
Problembearbeitungsprozesses zu erinnern. Vor allem komplexe (meta-)kognitive
Prozesse bleiben unter Umstédnden nur im Kurzzeitgedédchtnis und gehen nicht in
das Langzeitgeddchtnis iiber. Zu einem spéteren Zeitpunkt sind sie damit nicht
mehr abrufbar. Eine FErhebung, welche in zeitlicher Ferne zum
Problembearbeitungsprozess liegt, kommt daher nicht infrage. Um den zeitlichen
Aspekt auszuschlieBen, bietet sich eine Erhebungsmethode an, die unmittelbar
am Problembearbeitungsprozess Dbeteiligt ist: Beobachtung. Das reine
Beobachten von Studierenden wéhrend eines Problembearbeitungsprozesses
scheint aber wenig sinnvoll zu sein, da kaum relevante Informationen sichtbar
werden (Marton & Siljo, 2005). Besonders die (meta-)kognitiven Prozesse sowie
Strategienutzung sind fiir die Analyse der Problembearbeitungsprozesse
interessant. Eine Mdglichkeit, die Problembearbeitungsprozesse zu untersuchen,
sind aufgabenbasierte Interviews (wie z. B. in Stenzel, 2023a), um nach
spezifischen Strategien oder spezifischer Wissensnutzung fragen zu koénnen.
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Allerdings ist dabei zu bedenken, dass die interviewleitende Person mit solchen
Fragen, die mitunter Anlass fiir neue Gedanken oder DenkanstdBe sind, einen
Einfluss (wie z. B. beschrieben in Assad, 2015; Maher & Sigley, 2014) auf den
Problemldseprozess der Studierenden haben kénnte. Dariiber hinaus kann jeder
Eingriff einer aufenstehenden Person auch einen negativen Einfluss auf die
Problembearbeitungsprozesse bewirken. Jede Frage kann eine Ablenkung fiir
Studierende darstellen, da sie den roten Faden ihrer Gedankengénge verlieren
konnten. In Hinblick auf ein natiirliches Setting wire es allerdings sinnvoll den
Einfluss von auflenstehenden Personen weitestgehend zu eliminieren. Um
moglichst wenig Einfluss auf den Problembearbeitungsprozess zu haben und
trotzdem Strategien und Nutzung von Wissen sichtbar zu machen, kann das laute
Denken (Ericsson & Simon, 1980) hilfreich sein. In den aufgabenbasierten
Interviews, die Stenzel (2023a) durchgefiihrt hat, mussten einige
Problembearbeitungsprozesse ausgeschlossen werden, weil fiir eine sinnvolle
Auswertung zu wenig gesprochen wurde. Das laute Denken ,zwingt® die
untersuchten Personen allerdings dazu, ihre Gedanken zu verbalisieren, sodass im
bestmdglichen Szenario keine Gedankengénge verloren gehen und der natiirliche
Problembearbeitungsprozess in seiner Ganzheitlichkeit angemessener als in einer
Interviewsituation abgebildet werden kann.

Fiir die Studie dieser Arbeit scheint demnach die Erhebungsmethode des lauten
Denkens geeignet zu sein. Ahnlich wie bei Géller (2020, S. 121ff.) wird sich
demnach darauf verlassen, dass Studierende in der Lage sind, ihre Gedanken
(zumindest zu einem ausreichenden Grad) zu verbalisieren. Dennoch wird sich
gegen den Einsatz von Interviews entschieden, da diese entweder den
Problembearbeitungsprozess beeinflussen oder zeitlich zu weit von der
eigentlichen Handlung entfernt sind. Der gro3e Vorteil des lauten Denkens ist
seine ausgeprigte Prozessbezogenheit (Konrad, 2010). Fiir die Untersuchung
beim Problemldsen, welches eben ein solcher Prozess ist, wird die Methode des
lauten Denkens ausgenutzt.

5.1.3 Lautes Denken als Erhebungsmethode

Seit Anfang der 1970er-Jahre wéchst die Popularitdt der Methode des lauten
Denkens, vor allem in Studien zur Problemldseforschung bzw. zu Aspekten
kognitiver Prozesse (Konrad, 2010). Lautes Denken (Ericsson & Simon, 1980)
ist mittlerweile ein etablierter methodischer Ansatz, um Gedankenprozesse der
jeweiligen aktuellen Situation aufzudecken. Dabei miissen die geduBerten
Gedanken nicht zwingend logisch oder gut strukturiert sein, allerdings geben sie
die jeweiligen Denkhandlungen wieder. Dadurch lassen sich detaillierte
Erkenntnisse iiber die wéhrend der Handlung stattfindenden Denkprozesse
ableiten (Sandmann, 2014). Die Grundannahme zu dem theoretischen Modell des
lauten Denkens bezieht sich auf die menschliche Informationsverarbeitung. Dabei
wird angenommen, dass spezifische kognitive Strukturen sowie steuerbare
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Prozesse des Individuums zur Informationsaufnahme und -verarbeitung
existieren (Ericsson & Simon, 1980).

—_—r |
Sensorische Arbeits- Langzeit-
Ri " speicher
egister speicher pel
Laut-Denken-
Protokolle

Abbildung 16: Geddchtnismodell (Konrad, 2010, S. 478)

Abbildung 16 liefert fiir die Informationsaufnahme und -speicherung ein Modell,
welches in Sensorisches Register, Arbeitsspeicher (Ultrakurzzeit- und
Kurzzeitgedéchtnis) und Langzeitspeicher (Langzeitgedichtnis) unterscheidet.
Das Modell besagt, dass die Aufnahme von Informationen aus der Umwelt
zunéchst fiir wenige Sekunden im Sensorischen Register gespeichert werden. Ein
kleiner Teil dieser Informationen wird vom Individuum eine gewisse
Aufmerksamkeit zugeschrieben, wodurch sie in das Kurzzeitgedéchtnis gelangen.
Die Informationen im Kurzzeitgeddchtnis werden entweder durch neue
Informationen aus dem sensorischen Register verdrangt oder durch verschiedene
Techniken?® in das Langzeitgedichtnis transferiert (Konrad, 2010). Ericsson und
Simon (1993) unterscheiden im Rahmen dieses Modells zwischen drei Ebenen
der Verbalisierung:

1. Verbalisierungsebene 1 (talk aloud): Auf dieser Verbalisierungsebene
werden Informationen, die dem Individuum bereits in verbal kodierter
Form vorliegen, aus dem Kurzzeitgeddchtnis lediglich laut
ausgesprochen.

2. Verbalisierungsebene 2 (think aloud): Auf dieser Verbalisierungsebene
werden Informationen, die dem Individuum noch nicht in verbal
kodierter Form vorliegen, zunichst in verbaler Form enkodiert. Dieser

26 Informationen gelangen zum Beispiel durch stdndige Wiederholung in das
Langzeitgedéchtnis. Effektivere Techniken fiir den Transfer sind Elaborations- oder
Organisationsstrategien (Konrad, 2010).



Seite |116

Enkodierungsprozess benétigt etwas Zeit, wodurch die primére
Handlung insgesamt etwas langer dauert.

3. Verbalisierungsebene 3 (reflection  prompts): Auf  dieser
Verbalisierungsebene werden untersuchte Personen explizit dazu
aufgefordert, gewissen Gedankengénge zu erkldren, zu interpretieren
oder zu hinterfragen. Dabei handelt es sich, entgegen der intendierten
natiirlichen  Situation der qualitativen Forschung, um eine
Laborsituation.

Verbale Berichte verlangsamen den priméiren Prozess, wobei sich auf den ersten
beiden Verbalisierungsstufen die kognitiven Verfahren als auch die zeitliche
Abfolge derer, nicht dndert (Ericsson & Simon, 1980; Sasaki, 2003). Somit
entsprechen die Verbalisierungen den unmittelbaren Gedanken des
Kurzzeitgeddchtnisses.

Die kognitiven Prozesse der dritten Ebene benétigen hingegen mehr Zeit, da
zusétzliche Aspekte dazukommen. Vielmehr werden die kognitiven Prozesse der
Individuen durch die Aufforderungen und Unterbrechungen des Forschenden bei
der Bearbeitung der Primdraufgabe beeinflusst (Bannert, 2007). Die
gespeicherten Informationen aus dem Kurzzeitgeddchtnis werden sich somit
verandern (Konrad, 2010).

Daraus lésst sich ableiten, dass insbesondere die Verbalisierungsebenen 1 und 2
fiir die Untersuchung dieser Arbeit interessant sind. Beide Ebenen spiegeln dabei
eine natiirliche Situation wider, wihrend die duleren Aspekte der Ebene 3
mathematische Problembearbeitungsprozesse beeinflussen. Kommentare und
Nachfragen von Forschenden haben dabei das Potenzial, die kognitiven Prozesse
der untersuchten Person auf bestimmte Aspekte zu lenken, wodurch kein
natiirlicher ~ Problembearbeitungsprozess  entsteht. Im  Sinne  des
Forschungsinteresses sollen keine mathematischen Problembearbeitungsprozesse
einer Laborsituation untersucht werden. Aus diesem Grund wird davon
abgesehen, wihrend der Bearbeitungen der Studierenden inhaltlich zu
intervenieren, um einen natiirlichen Problembearbeitungsprozess entstehen zu
lassen.

Der Einsatz der Methode des lauten Denkens findet sich in verschiedenen
Forschungsbereichen ~ wieder.  Die  pddagogisch-psychologische  und
naturwissenschaftsdidaktische Lehr-Lernforschung nutzt lautes Denken vor
allem fiir Problemlse- und Lernstrategieforschung (Sandmann, 2014). In der
mathematikdidaktischen ~ Forschung wird lautes Denken hdufig in
Problembearbeitungsprozessen genutzt, um metakognitive und kognitive
Prozesse (z. B. Jacobse & Harskamp, 2012) sowie Strategien, Fehlvorstellungen
und Hiirden (z. B. Montague et al., 2011) zu beobachten. Typischerweise werden
bei diesen Untersuchungen aus theoretischer Perspektive Problemldseaufgaben
gestellt, um die Prozesse der untersuchten Personen zu erforschen bzw.
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analysieren. Dabei wird mit der Prozessbezogenheit genau die Stirke des lauten
Denkens ausgenutzt (Konrad, 2010). Es gibt allerdings auch Nachteile, die durch
das laute Denken auftreten konnen. Es ist nicht klar, ob die untersuchten Personen
tatsdchlich in der Lage sind, all ihre Gedanken zu verbalisieren. Vor allem scheint
es so, dass besonders abstrakte Gedanken nicht gut wiedergegeben werden
konnen, weil sie zunéchst fiir die Sprache simplifiziert werden miissen (Charters,
2003). Dabei ist zum Beispiel ein Prozess gemeint, welcher in der
Verbalisierungsebene 2 stattfindet. Komplexe Sachverhalte miissen manchmal fiir
die Sprache enkodiert werden. Diese Simplifizierung kann die Aufmerksamkeit
der problemlésenden Person von dem eigentlichen Lernprozess ablenken.
Zusétzlich ist es moglich, dass automatisierte geistige Operationen nicht
unbedingt verbalisiert werden, da diesen Prozessen keine Aufmerksamkeit
zugewiesen wird (Waern, 1988). Letztlich stellt sich die Frage, inwiefern das laute
Denken die kognitive Leistung beeinflusst. Die Studienlage scheint dazu keine
Einigkeit zu erreichen. Es existieren Studien, die keine Performanzunterschiede
(z. B. Biggs et al., 1993), positive Effekte (z. B. Franzen & Merz, 1988) oder
negative Effekte (Schooler et al., 1993) fiir die primére Beschéftigung festgestellt
haben.

Methoden der Datenaufnahme und -dokumentation

Durch das Anwenden der Methode des lauten Denkens geben untersuchte
Personen ihre Gedanken wéhrend einer primidren Handlung preis. Typischerweise
ist wihrend dieser Handlung zumindest eine forschende Person in rdumlicher
Niéhe. Die forschende Person stellt dabei sicher, dass der Forschungsrahmen des
lauten Denkens eingehalten wird. Dies geschieht bspw. durch eine Erinnerung an
das laute Denken, falls die untersuchte Person nach einer gewissen Zeit nicht
mehr spricht. Das Forschungsdesign erhdlt damit automatisch einen
beobachtenden Charakter, indem die forschende Person an der Lebenswelt der
untersuchten Person teilnimmt.

Wihrend einer Beobachtung werden oftmals Feldnotizen erstellt, um sie spiter
auswerten zu konnen. Das Forschungsinteresse dieser Arbeit ist allerdings
komplex sowie vielschichtig und bezieht sich nicht nur auf einzelne Aspekte. Da
die Daten zeitgleich mit der Beobachtung erfasst werden, wiirde die Fiille und
Frequenz an Informationen leicht zu einer Uberforderung bei der forschenden
Person fiihren (Doring & Bortz, 2016). Dabei scheint es unvermeidlich, dass
wichtige Aspekte tibersehen werden und fiir die spatere Auswertung verloren
gehen. Eine Abhilfe schafft dabei das mediale Aufzeichnen (Video- und
Audioaufnahme) der beobachtenden Verhaltensweisen und Aussagen. Durch das
Aufzeichnen sind somit eine zeitversetzte Analyse und Interpretation der
Verhaltensweisen sowie Aussagen der untersuchten Personen moglich (Déring &
Bortz, 2016). Die Aufnahmen dienen demnach als ,,Konservierung® der sozialen
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Wirklichkeit und gestatten Forschenden einen wiederholten Zugriff auf das
Geschehen, so wie es sich original zugetragen hat (Tuma & Schnettler, 2019).

5.1.4 Qualitative Inhaltsanalyse als Auswertungsmethode

Durch die gewidhlte Erhebungsmethode wird in dieser Arbeit eine umfangreiche
Menge an Material gesammelt, die sowohl aus nonverbaler (Handlungen und
Mitschriften der Studierenden) als auch verbaler Kommunikation (Gedanken
mittels des lauten Denkens) besteht. Der methodische Ansatz der qualitativen
Inhaltsanalyse beschiftigt sich mit Materialien, die genau aus dem Bereich der
Kommunikation entstammen.

Es gibt verschiedene Ansdtze und Definitionsversuche zur qualitativen
Inhaltsanalyse. Mayring (2022, S. 12f.) arbeitete diesbeziiglich sechs Punkte
heraus, um die Besonderheiten der Auswertungsmethode darzustellen und von
anderen Auswertungsmethoden abzugrenzen:

1. Die Inhaltsanalyse befasst sich mit der Kommunikation. In den meisten
Féllen bezieht sich dies auf die Sprache, es konnen allerdings auch
andere Arten von Kommunikation (z. B. Musik, Bilder, Videos, etc.)
zum Gegenstand der Inhaltsanalyse gemacht werden.

2. Die Inhaltsanalyse arbeitet mit symbolischen Materialien (Texten,
Bildern, Noten, etc.), welche in einer protokollierten Form vorliegen. Es
handelt sich um eine fixierte Kommunikation.

3. Die Inhaltsanalyse geht systematisch vor. Dies steht im Gegensatz zu
freien Interpretationen oder impressionistischen Ausdeutungen des zu
analysierenden Materials.

4. Das systematische Vorgehen zeichnet sich dadurch aus, dass in der
Analyse regelgeleitet vorgegangen wird. Im Sinne der intersubjektiven
Nachvollziehbarkeit (Kapitel 5.1.5) besteht die Moglichkeit, die
einzelnen Schritte der Analyse zu verstehen, nachzuvollziehen und zu
tiberpriifen.

5. Dassystematische Vorgehen ldsst sich ebenfalls daran erkennen, dass die
Analyse theoriegeleitet vorgeht. Dies bedeutet, dass das Material
beziiglich einer theoretisch ausgewiesenen Fragestellung analysiert
wird. AuBlerdem werden die Ergebnisse beziiglich des theoretischen
Hintergrunds interpretiert.

6. Die Inhaltsanalyse erhebt den Anspruch, das Material als Teil des
Kommunikationsprozesses zu analysieren und ist daher eine
schlussfolgernde Methode. Mit Aussagen des zu analysierenden
Materials werden Riickschliisse auf bestimmte Aspekte der
Kommunikation gezogen.
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Auf die sechs Punkte wird im spéteren Verlauf bei der Darstellung der einzelnen
Erhebungsmethoden zuriickgegriffen.

Die allgemeine Vorgehensweise einer qualitativen Inhaltsanalyse ldsst sich der
Abbildung 17 entnehmen.

‘ Festlegung des Materials ‘

|

‘ Analyse der Entstehungssituation ‘

!

‘ Formale Charakteristika des Materials ‘

!

‘ Richtung der Analyse (Autor, soziokultureller Hintergrund, Wirkung ...7) ‘

!

Theoretische Differenzierung der Fragestellung ‘

l

e Bestimmung der dazu passenden Analysetechnik (Zusammenfassung,
Explikation, Strukturierung?) oder einer Kombination
» Festlegung des konkreten Ablaufmodells
* Festlegung und Definition der Kategorien/des Kategoriensystems

|

Definition der Analyseecinheiten (Kodier-, Kontext-, Auswertungseinheit)

)

* Analyseschritte gem&aB Ablaufmodell mittels Kategoriensystem
¢ Rickiberprifung des Kategoriensystems an Theorie und Material
¢ bei Verdnderungen erneuter Materialdurchlauf

:

Zusammenstellung der Ergebnisse und Interpratation in Bichtung der Fragestallung

!

Anwendung der inhaltsanalytischen Gutekriterien

Abbildung 17: Allgemeines inhaltsanalytisches Ablaufmodell (Mayring, 2022, S. 61)

Zunichst wird der Umfang des zu untersuchenden Materials festgelegt und ggfs.
eine reprasentative Teilmenge des Materials selektiert. Dabei wird beriicksichtigt,
dass relevante Daten ausgesucht werden, die sich auf die Forschungsfrage
beziehen. Fiir die Entstehungssituation ist es wichtig zu kldren, in welchem
Zusammenhang die Materialien produziert wurden (Wer hat teilgenommen?
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Soziale Bedingungen der Teilnehmenden? Atmosphdre der Situation, etc.).
AuBlerdem sollten das zu analysierende Material beziiglich der formalen
Charakteristika genau bestimmt und dokumentiert werden (meistens in
Transkriptionen). Anschlieend wird die Richtung der Analyse festgelegt, indem
entschieden wird, liber welche Aspekte des vorhandenen Materials Aussagen
getroffen werden sollen. Dariiber hinaus sollten aus der bereits bestehenden
Theorie die konkreten Forschungsfragen angebunden werden. Letztlich erfolgt
die Festlegung, welches inhaltsanalytische Verfahren als Analysetechnik
angewandt wird (Zusammenfassung, Explikation, Strukturierung?’). Die
Analyseeinheiten definieren wie minimal oder maximal die Kodiereinheiten sein
sollen. AbschlieBend wird die Materialanalyse anhand der Analysetechnik und -
einheit durchgefiihrt, um die Ergebnisse schlussendlich zusammenzustellen und
in Richtung der Fragestellung zu interpretieren.

Eine detailliertere Beschreibung des Vorgehens befindet sich in Mayring (2022,
S. 53ff).

5.1.5 Beriicksichtigung qualitativer Giitekriterien im Rahmen dieser Arbeit

Fiir Forschungsarbeiten im Rahmen des qualitativen Forschungsparadigmas stellt
sich die Frage, wie die Qualitédt von qualitativer Forschung sichergestellt werden
kann. Dabei gibt es verschiedene Sichtweisen, die diskutiert werden (Steinke,
2017, S. 319ff): Die Ubernahme von quantitativen Kriterien, die Entwicklung
eigener Kriterien oder die Ablehnung jeglicher Kriterien. Steinke (2017, S. 323ff)
legt dabei einige Kernkriterien fest, an denen sich qualitative Forschung
orientieren kann, wobei die Spezifitdt der Untersuchung beriicksichtigt werden
sollte.

Intersubjektive Nachvollziehbarkeit

Im Gegensatz zur quantitativen Forschung kann die qualitative Forschung nicht
intersubjektiv iiberpriift werden. Eine qualitative Forschung ldsst sich kaum
identisch replizieren, weshalb stattdessen die intersubjektive Nachvollziehbarkeit
herangezogen wird. Aus dieser konnen Riickschliisse auf eine Bewertung der
Ergebnisse gezogen werden. Steinke (2017, S. 324) schligt fiir die Sicherung und
Priifung der intersubjektiven Nachvollziehbarkeit drei Wege vor: Dokumentation

27 Zusammenfassung: Ziel der Analyse ist es, das Material so zu reduzieren, dass die
wesentlichen Inhalte erhalten bleiben, durch Abstraktion einen {iberschaubaren Corpus zu
schaffen, der immer noch Abbild des Grundmaterials ist (Mayring, 2022, S. 66).

Explikation: Ziel der Analyse ist es, zu einzelnen fraglichen Textteilen (Begriffen, Sitzen, ...)
zusdtzliches Material heranzutragen, das das Verstidndnis erweitert, das die Textstelle
erldutert, erklart, ausdeutet (Mayring, 2022, S. 66).

Strukturierung: Ziel der Analyse ist es, bestimmte Aspekte aus dem Material herauszufiltern,
unter vorher festgelegten Ordnungskriterien einen Querschnitt durch das Material zu legen
oder das Material aufgrund bestimmter Kriterien einzuschitzen (Mayring, 2022, S. 66).
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des Forschungsprozess, Interpretation in Gruppen sowie Vorgehen nach
kodifizierten Verfahren.

Die Dokumentation des Forschungsprozesses ist eine zentrale Technik. Dies
bedeutet, dass lesenden Personen die Moglichkeit gegeben wird, den
Forschungsprozess Schritt fiir Schritt nachzuvollziehen. Zu der Dokumentation
des Forschungsprozesses gehoren die Dokumentation des Vorverstdndnisses
(Kapitel 1 bis Kapitel 4), die Dokumentation der Erhebungsmethoden (Kapitel
5.1.3) und Erhebungskontext (Kapitel 5.2), die Dokumentation der
Transkriptionsregeln (Anhang), die Dokumentation der Daten (Kapitel 5.2), die
Dokumentation der Auswertungsmethoden (Kapitel 5.4), die prézise
Dokumentation der Informationsquellen (Kapitel 5.2) sowie die Dokumentation
von Entscheidungen und Problemen (z. B. Anderungen der Kategoriensysteme,
Darstellung von Problemen bei der Kodierung). Hinsichtlich der (Material-
)Interpretation in Gruppen wurde ein Teil der Analyse in einem
Doktorandenkolloquium sowie auf verschiedenen Tagungen diskutiert (ICME-
Beitrag, GDM-Poster, GDM-Beitrag). Dies dient zur Herstellung von
Intersubjektivitdt und Nachvollziehbarkeit im Umgang und Interpretation der
Daten. Letztlich wird ebenfalls ein kodifiziertes Verfahren angewandt (Kapitel
5.1.4).

Indikation des Forschungsprozesses

Das Kriterium der Indikation des Forschungsprozesses besagt, inwiefern die
gesamte Forschung als angemessen angesehen werden kann. Steinke (2017, S.
326ff.) legt dafiir einige untergeordnete Aspekte fest.

Zunéchst wurde bereits diskutiert, warum der qualitative Forschungsrahmen
(Kapitel 5.1.1) sowie die Auswahl der Erhebungsmethoden (Kapitel 5.1.3) fiir die
aufgeworfenen Forschungsfragen ausgewihlt wurde. Die Transkription wurde
semantisch-inhaltlich durchgefiihrt und erfolgte durch Riickbezug auf die
Literatur (Dresing & Pehl, 2018). Die expliziten Transkriptionsregeln befinden
sich im Anhang. Beziiglich des Sampling wurde die Rekrutierung der
Teilnehmenden auf freiwillige Basis durchgefiihrt, wodurch keine Auswahl durch
die forschende Person getitigt wurde. Moglicherweise kann dies dazu fiihren,
dass keine echte Teilmenge aller Ingenieurstudierenden betrachtet wird. Dies
kann allerdings auch noch weiter diskutiert werden, denn die Untersuchung hat
nur an der Universitit Paderborn stattgefunden. Es hitten z. B. noch
Ingenieurstudierende aus anderen Universitdten als Informanten aufgenommen
werden konnen. Dies spricht unter anderem auch die Limitationen der
Verallgemeinerbarkeit (Steinke, 2017, S. 329f) der Studie an.
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Empirische Verankerung

Die empirische Verankerung verlangt, dass sowohl Theorien als auch Hypothesen
durch die vorliegenden Daten begriindet werden (Steinke, 2017, S. 328f). Dafiir
wird sichergestellt, dass die Analysen und Interpretationen auf Grundlage der
Videoaufnahmen, Transkripte bzw. Material der Studierenden aufbauen. Dabei
eignen sich die Videoaufnahmen besonders gut, damit der urspriingliche Kontext
erhalten bleibt und wiederholt zur Analyse verwendet werden kann. Dies
ermoglicht zudem die angemessene Verankerung des Materials und wurde daher
vor den Feldnotizen bevorzugt. Letztlich werden mehrere Textbelege (Ausziige
aus den Transkripten bzw. Material der Studierenden) fiir Begriindungen und
Interpretationen dargelegt.

Glaubwiirdigkeit und Validierung

In der qualitativen Forschung gibt es unterschiedliche Maoglichkeiten,
Glaubwiirdigkeit und Validitét sicherzustellen (Elliott et al., 1999, S. 222). In
dieser Arbeit wird der Aspekt vor allem durch das Hinzuziehen anderer Forscher
bedient, womit die Validitit gewihrleistet werden soll (Bortz & Doéring, 2006, S.
328). Damit ist die interpersonale Konsensbildung (konsensuelle Validierung)
gemeint (z. B. fiir die Kodierung zur Wissensmatrix in Kapitel 5.4.2), bei der sich
Forschende auf die Glaubwiirdigkeit und Bedeutungsgehalt des Materials einigen
konnen. Obwohl es fiir qualitative Forschung eher ungewohnlich ist, kann auch
eine Intercoder-Ubereinstimmung bestimmt werden (z. B. fiir die
Episodenkodierung in Kapitel 5.4.1). Die qualitative Inhaltsanalyse muss sich
solchen quantitativen Analyseschritten nicht verschlieBen, sondern kann diese
(wie z. B. die Intercoder-Ubereinstimmung) gut begriindet einbeziehen (Mayring,
2017, S. 471).

5.2 Studiendesign

Eine vorangegangene Pilotierung bildete die Grundlage fiir das Studiendesign der
vorliegenden Arbeit. Ziel dieser Pilotierung war es, die geplanten Verfahren zu
testen und mogliche Optimierungen vorzunehmen. Die Ergebnisse wurden auf
der GDM-Tagung 2022 in Form eines Posters prasentiert und fithrten zur
Entwicklung des endgiiltigen Studiendesigns. Im Folgenden wird zunéchst der
Kontext der Studie (Kapitel 5.2.1) beschrieben, um die thematische Einbettung
zu verdeutlichen. AnschlieBend wird auf authentische Lernsituationen (Kapitel
5.2.2) eingegangen, die einen zentralen Bestandteil der Untersuchung darstellen.

5.2.1 Kontext der Studie

Die Studie wurde in der Veranstaltung ,,Mathematik 1 fiir Maschinenbauer* an
der Universitidt Paderborn durchgefiihrt. In der Regel nehmen Studierende im
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ersten Semester an dieser Veranstaltung teil. Es werden die typischen Termine
einer mathematischen Veranstaltung angeboten (Abbildung 18): Im
wochentlichen Rhythmus gibt es zwei Vorlesungen, eine Zentraliibung sowie
Kleingruppeniibungen/Tutorien?®, In der Vorlesung wurde der mathematische
Inhalt prisentiert, welcher in den Tutorien mittels Ubungsaufgaben gemeinsam
mit den Tutor:innen oder in Einzelarbeit eingeilibt wurde. Aulerdem dienten die
Ubungsaufgaben aus den Tutorien als Vorbereitung fiir die Aufgaben der
Hausiibungen, da sie oftmals ein dhnliches Anforderungsprofil aufzeigten. Die
Hausaufgaben durften von Studierenden freiwillig abgegeben werden und waren
nicht Teil einer Studienleistung. Allerdings konnten die Studierenden mit
erfolgreicher Abgabe der Hausaufgaben maximal 8 % Bonuspunkte fiir die
Klausur sammeln. Die Regelung zum Bonuspunktesystem kommt aber erst dann
zum Einsatz, wenn die Klausur bereits ohne die Bonuspunkte bestanden wurde.
Die abgegebenen Hausaufgaben wurden eine Woche spéter in der Zentraliibung
besprochen.

Vorlesung
Abgabe der 1 1
Hausaufgaben ! Zentraliibung !
Montag Dienstag Mittwoch Donnerstag Freitag

Kleingruppeniibungen/Tutorien

Abbildung 18: Struktur der Veranstaltung "Mathematik fiir Maschinenbauer 1"

Innerhalb der Veranstaltung hat die Datenerhebung mit dem Hausaufgabenblatt
12 begonnen, welches in der ersten Vorlesungswoche nach den Weihnachtsferien
abgegeben werden musste. Das Thema der Differentialrechnung wurde in fiinf
Vorlesungen behandelt, wodurch auf drei Hausiibungsblittern Aufgaben zu dem
Themengebiet gestellt wurden. Die zentralen Inhalte der Vorlesungen waren:
Begriff der Differenzierbarkeit, n-te Ableitung, Differentiationsregeln,
Ableitungsregeln, die Regel von L'Hospital, Taylorsche Formel mit Restglied,
Bestimmung von Extremstellen und Kurvendiskussion. Die Datenerhebung
endete mit der Abgabe von Hausiibungsblatt 14.

Die Teilnahme an der Studie erfolgte freiwillig, wobei jede teilnehmende Person
eine Aufwandsentschidigung von 30 Euro erhalten hat. Insgesamt haben sich

28 im Folgenden nur noch als Tutorium benannt, da Studierende diesen Ausdruck genutzt haben.
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zehn Studierende bereit erklirt, an der Studie teilzunehmen. Darunter zwei
Lerngruppen, die jeweils aus zwei bzw. vier Studierenden bestanden, sowie vier
Studierende, die ohne Lerngruppe teilgenommen haben. Die Vierer-Lerngruppe
bestand aus vier weiblichen Studierenden, die restlichen Teilnehmenden waren
ménnlich. Neun der zehn Studierenden haben an der Veranstaltung zum ersten
Mal teilgenommen, wihrend ein Studierender die Veranstaltung zum zweiten Mal
besucht hat.

Gruppe Name Studiengang Fachsem  Abiturnote Abiturnote
ester allgemein Mathematik
G1 David Maschinenbau 1 k.A. 8 Punkte
G2 Simon W-Ing 3 2,4 8 Punkte
(Maschbau)
G3 Thomas  Maschinenbau 1 2,4 12 Punkte
Alex Maschinenbau 1 2,6 11 Punkte
G4 Sarah W-Ing 1 1,9 10 Punkte
(Maschbau)
Lisa W-Ing 1 1,6 11 Punkte
(Maschbau)
Paula W-Ing 1 2,0 10 Punkte
(Maschbau)
Lea W-Ing 1 1,4 12 Punkte
(Maschbau)
G5 Nick W-Ing 1 2 11 Punkte
(Maschbau)
Go6 Lukas W-Ing 1 2,5 6 Punkte
(Maschbau)

Tabelle 8: Informationen zu den Studienteilnehmenden

Durch die freiwillige Teilnahme an der Studie ist es moglich, dass es sich
beziiglich der Stichprobe um eine Positivauswahl handelt. Studierende, die
besonders motiviert sind oder sich die Bearbeitung der Hausaufgaben in einer
Studiensituation (aus inhaltlicher als auch aus organisatorischer Sicht) zutrauen,
nehmen womdglich am ehesten an einer solchen Studie teil. AuBerdem muss
erwahnt werden, dass eine Voraussetzung fiir die Teilnahme der Studie war, dass
Studierende auBerhalb der Veranstaltungstermine die Hausaufgaben bearbeiten.
Da die Bearbeitung der Hausaufgaben in der Veranstaltung freiwillig abgegeben
werden konnten, haben an der Studie nur Studierende teilgenommen, die ohnehin
eine Hausaufgabenbearbeitung anstrebten bzw. dies geplant hatten. Es kann
gefolgert werden, dass die Arbeitsmotivation der Studierenden vergleichsweise
hoch war.

Aus der Tabelle 8 ldsst sich erkennen, dass sich die Teilnehmenden der Studie
beziiglich der allgemeinen Abiturnote fast alle in einem guten Bereich befinden
(auBer Lea mit Note 1,4 und Alex mit Note 2,6). Beziiglich der Mathematik-
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Abiturnote befinden sich die Teilnehmenden grofitenteils in dem Notenspektrum
zwischen gut und befriedigend (aufler Lukas mit 6 Punkten). In dieser Stichprobe
ist jedoch auffillig, dass vor allem die Studierenden in einer Lerngruppe bessere
Mathematiknoten im Abitur erhalten haben, als Studierende, die sich ohne
Kommiliton:innen mit den Hausaufgaben beschiftigen (auBer Nick mit 11
Punkten).

Obwohl sich die Teilnehmenden der Studie grdBtenteils im ersten Semester
befinden, ldsst sich davon ausgehen, dass viele organisatorische
Herausforderungen des Ubergangs von der Schule zur Hochschule inzwischen
besser bewiltigt werden. Die Studierenden haben sich vermutlich bereits an
Dinge wie das Zurechtfinden im Studium und das Bilden von Lerngruppen
gewohnt. Hinsichtlich der fachlichen Eingewdhnung hingegen kdnnte es sein,
dass die Studierenden noch immer in Anpassungsprozessen stecken, da die
Umstellung auf die neue Art der Wissensvermittlung weiterhin
Herausforderungen mit sich bringen kénnte.

5.2.5 Datenerhebung in authentischen Lernsituationen

Das Ziel der Studie ist es, eine mdglichst natiirliche bzw. authentische
Lernsituation von Studierenden abbilden zu konnen. Innerhalb dieser
Lernsituation ist der Problembearbeitungsprozess eingebettet. Eine authentische
Lernsituation ldsst sich dadurch beschreiben, dass sie der Realitét entspricht und
durch keine anderen Faktoren beeinflusst wird. Um solche Lernsituationen zu
erfassen, die moglichst authentisch sind, wurden mehrere MaBnahmen ergriffen.
Dabei erfolgte ein mdglichst minimaler Eingriff in die Lernsituation der
Studierenden, wédhrend gleichzeitig die notwendigen Aufnahmen zur
Datensammlung erhoben wurden, die fiir eine Auswertung geeignet sind. Die
Balance der Einhaltung von authentischen Lernsituationen und einer sinnvollen
Erhebung von Daten fiir die Studie wird im Folgenden dargestellt.

Bearbeitung von Aufgaben

Zunichst wurde beziiglich der bearbeiteten Aufgaben vor der Durchfithrung der
Studie nicht mit den verantwortlichen Personen der Veranstaltung abgestimmt,
welche Aufgaben von Studierenden zum Thema der Differentialrechnung
bearbeitet werden sollen. Die Aufgaben dieser Studie entstammen demnach aus
dem normalen Semesterbetrieb und wurden von den verantwortlichen Personen
der Veranstaltung festgelegt. Dariiber hinaus wurde den teilnehmenden
Studierenden der Studie vom Studienleiter nicht vorgegeben, welche Aufgaben
der Hausaufgabe bearbeitet werden sollten. Dies haben sich die Studierenden
selbst ausgesucht, wobei nahezu jede Aufgabe von den teilnehmenden
Studierenden bearbeitet wurde.
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Lernort und Lernzeit

Ein weiterer Aspekt des Lernens sind der Lernort und die Lernzeit. Wahrend die
Termine der Veranstaltung an festgelegten Zeitpunkten und Rdumen in der Woche
stattfinden, kdnnen sich Studierende ihren eigenen Lernort sowie ihre Lernzeit
selbstdndig festlegen. Eine Vorgabe beziiglich der Zeit sowie des Orts wiirde
daher ein Eingriff in die natiirliche Lernsituation der Studierenden darstellen. Um
dies zu beachten, wurden die teilnehmenden Studierenden zwei Wochen vor
Beginn der Studie gebeten, einen Selbstbericht zu ihrem typischen Lernverhalten
abzugeben. Im Stil eines Lerntagebuchs (Landmann & Schmitz, 2007) erhielten
die Studierenden vorstrukturierte Fragen, die auf gewisse Routinen in ihrem
mathematischen Lernverhalten abzielen. Dabei hat sich herausgestellt, dass die
Studierenden sowohl zeitlich als auch rdumlich wenig bis keine festgelegten
Routinen besitzen, sodass eine Terminabsprache mit den Studierenden flexibel
abgestimmt werden konnte. Die einzige zeitliche Bedingung war, dass die
Studierenden die Hausaufgaben erst nach dem Besuch des eigenen Tutoriums
bearbeiten wollten. Beziiglich eines Raums haben die Studierenden die
Hausaufgaben vor der Studie meistens in leeren Riumen der Universitit
bearbeitet. Fiir den Zeitraum der Studie wurde den teilnehmenden Studierenden
zugesichert, dass sie einen freien Lernraum der Universitét nutzen kdnnen, in dem
sie ungestort an den Hausaufgaben arbeiten konnen. Dieser Lernraum wurde
wihrend der Studie von allen teilnehmenden Studierenden zu jeder ihrer
Lernsessions in Anspruch genommen. Die Vorbereitung des Raumes durch den
Studienleiter begiinstigte eine zweckdienliche Videografie.

Videografie

Die Videografie der Bearbeitungsprozesse zu den Hausaufgaben stellte den ersten
Eingriff in die authentische Lernsituation dar. Die Dokumentation der
Bearbeitungsprozesse von Studierenden ist allerdings notwendig, um diese
anschlieBend nach wissenschaftlichen Standards auswerten zu konnen. Fiir
Studierende ist es eine ungewohnliche Situation, dass wihrend des Lernens eine
Kamera auf sie gerichtet ist. Im Sinne der sozialen Erwiinschtheit (Paulhus &
Delroy, 2002; Sandmann, 2014) ist es deshalb durchaus denkbar, dass sich die
Studierenden mit ihrem Verhalten der ungewohnten Videosituation anpassen.
Dariiber hinaus konnen Studierende durch den beobachtenden Charakter der
Kameras atypisch zu ihrem gewohnten Verhaltensmuster agieren.

Lautes Denken?29

Zur Zweckdienlichkeit der Datenauswertung wurden die Studierenden gebeten,
dass sie wihrend des Lernens laut denken sollen. Es besteht die Notwendigkeit

29 Theoretische Uberlegungen zum Lauten Denken wurden bereits in Kapitel 5.1.3 vorgestellt.
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verbale Aussagen zu erheben, um in der folgenden Analyse Ergebnisse zum
mathematischen Problembearbeitungsprozess ableiten zu konnen. Aus diesem
Grund ist die Methode des lauten Denkens unabdingbar.

Eine typische Lernsitzung in einem Studiensetting mit lautem Denken verlduft
wie folgt (Sandmann, 2014):

Einfiihrung in die Lernsitzung

Erklarung des Ziels der Lernsitzung und der Lernaufgabe
Instruktion zum lauten Denken

Ubungsaufgaben zum lauten Denken

Bearbeitung des Lernmaterials

Technische Datensicherung

ouprwdE

Dieses Vorgehen wurde in der ersten Lernsitzung mit den teilnehmenden
Studierenden umgesetzt. In anschlieBenden Lernsitzungen wurde nur noch bei
Punkt fiinf gestartet.

Beziiglich des vierten Punktes ist es ratsam, dass problemlésende Personen vor
dem eigentlichen Start der Studie mit der Methode anhand einer Ubungsaufgabe
fiir das laute Denken sensibilisiert werden sollten (Sandmann, 2014). Dabei sollte
beachtet werden, dass Verbalisierungen sich darauf konzentrieren, ,,WAS*
Studierende denken, statt zu thematisieren, ,, WARUM" so gedacht wird (Wolcott
et al., 2021). Damit soll vermieden werden, dass die teilnehmenden Studierenden
nicht in die Verbalisierungsebene 3 (Kapitel 5.1.3) rutschen und versuchen ihre
Gedanken zu erkliren bzw. zu interpretieren. Um den Studierenden ein Beispiel
des lauten Denkens zu geben, wurde demnach vor der ersten Lernsession eine
zufillig ausgewihlte FERMI-Aufgabe vom Studienleiter bearbeitet. Im
Anschluss haben sich die Studierenden selbststdndig mit einer weiteren zufillig
ausgewihlten FERMI-Aufgabe beschiftigt. FERMI-Aufgaben sind offene,
realitidtsnahe Schitzaufgaben, die mit begrenzten Informationen auskommen und
kreatives bzw. problemldsendes Denken fordern, indem gewisse Annahmen
getroffen werden miissen. Typischerweise verlangt das Losen einer FERMI-
Aufgabe demnach kreative Ansitze und wird daher als Uben fiir das laute Denken
als geeignet erachtet. Sowohl der Studienleiter als auch die Studierenden haben
wihrend des Losens der FERMI-Aufgaben laut gedacht.

Studienleiter

Ein weiterer Aspekt ist die Rolle des Studienleiters wéihrend der Lernsituation.
Um sicherzustellen, dass sowohl die technischen Bedingungen (Kamera,
Mikrofone, Akku) als auch die Methode des lauten Denkens von den
Studierenden eingehalten werden, wird der Studienleiter unvermeidlich ebenfalls
Teil der Lernsituation sein. Beziiglich der Methode des lauten Denkens greift der
Studienleiter nur dann in den Prozess ein, wenn ldngere Ruhephasen entstehen



Seite |128

(Wolcott et al., 2021). In solchen Momenten erinnert der Studienleiter die
Studierenden an das laute Denken. Obwohl der Studienleiter nicht mit der
Veranstaltung ,,Mathematik fiir Maschinenbau I“ assoziiert ist, kann dies
trotzdem, erneut im Sinne der sozialen Erwiinschtheit (Paulhus & Delroy, 2002;
Sandmann, 2014), einen Einfluss auf das Verhalten der Studierenden haben.
Dennoch schafft die Nicht-Assoziation des Studienleiters mit der Veranstaltung
eine Moglichkeit, eine lockere Atmosphére fiir die Studierenden zu schaffen. Vor
allem durch den vorhergegangenen Selbstbericht und die flexiblen
Terminabsprachen kann bereits ein freundschaftliches Verhéltnis erzeugt werden,
wodurch Studierenden mogliche Unsicherheiten genommen werden kdnnen.

(Technisches) Setup

Um die Anwesenheit des Studienleiters zu minimieren, wird das Set-Up
(Abbildung 19) der Lernsituationen so aufgebaut, dass sich der Studienleiter
auBerhalb des Sichtfelds der Studierenden befindet. Die Platzierung der Kameras
wurde im Vorhinein abgestimmt (Mondada, 2006). Da nicht zu erwarten ist, dass
Studierende sich von ihrem Sitzplatz bewegen, konnen die Kameras stationér
aufgestellt werden. Dazu werden jeweils zwei Mikrofone und Kameras auf die
Studierenden gerichtet, wobei der Fokus der ersten Kamera auf dem Material der
Studierenden und der Fokus der zweiten Kamera auf den Studierenden selbst
liegt.

Studienteilnehmende

Studienleiter ‘% %

(=)
cSs 4

Abbildung 19: Set-up der Lernsituation (im Bild fiir eine Zweier-Lerngruppe)

Dauer der Lernsessions

Ahnlich wie bei dem Lernort und der Lernzeit kénnen die Studierenden die Dauer
ihrer Lernsessions selbststindig festlegen, was wihrend der Erhebung
beriicksichtigt wird. Die Lange der Lernsessions, mitsamt moglichen
Unterbrechungen, wird daher nicht im Vorhinein (durch den Studienleiter)
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festgelegt. Vor den Lernsessions wird allerdings vom Studienleiter erfragt, mit
welchem zeitlichen Umfang die Studierenden ungefahr planen, um mogliche
Terminkollisionen mit Lernsessions von anderen teilnehmenden Studierenden zu
vermeiden.

FEinsammeln von Materialien

Wenn sich die Studierenden entschlielen, die Lernsituation zu beenden, werden
alle Materialen der Studierenden ,,eingesammelt®. Die schriftlichen Produkte der
Studierenden zu den Hausaufgaben wurden entweder vom Studienleiter
abfotografiert (falls Studierende mit Zettel und Stift gearbeitet haben) oder von
den Studierenden an den Studienleiter geschickt (falls Studierende mit einem iPad
oder Ahnlichem gearbeitet haben).

5.3 Stoffdidaktische Analyse der bearbeiteten Aufgaben

Bevor empirisch auf die Problembearbeitungsprozesse eingegangen wird, erfolgt
an dieser Stelle die Darstellung stoffdidaktischer Uberlegungen beziiglich der drei
Aufgaben (,,Differenzierbarkeit priifen” in Kapitel 5.3.1; ,Mittelwertsatz* in
Kapitel 5.3.2; ,,L"Hospital in Kapitel 5.3.3). ,,Dies dient dem besseren Verstiandnis
der gefilmten Prozesse — denn nur, wenn man eine Aufgabe (selbst) durchdrungen
hat, kann man ihre Bearbeitung durch andere Personen verniinftig
nachvollziehen.” (Rott, 2013, S. 133). Dafiir sollen die Anforderungen der
Aufgabe sowie ein typischer Losungsprozess skizziert werden. Um dies abbilden
zu konnen, wird sich auf die Idee der erweiterten Musterlosungen von Ableitinger
und Hermann (2011) berufen:

,»Wir haben etwa ausfiihrliche Musterlosungen verfasst, die die in den Aufgaben steckenden
Anforderungen explizit machen sollten. Dabei wurden z. B. die Aufgabenstellungen so umformuliert,
dass die ihnen zugrundeliegenden Probleme deutlich sichtbarer werden. Es wurden wichtige Ideen in
den Losungen akzentuiert, Handlungsalternativen aufgezeigt und eventuelle Sichtweisenwechsel
explizit gemacht. Es wurde — um es auf den Punkt zu bringen — versucht, jeden einzelnen
Losungsschritt und die ihn steuernden Begleitiiberlegungen moglichst genau offenzulegen®
(Ableitinger, 2012, S. 91).*

Das schriftlich festgehaltene mathematische Endprodukt einer Aufgabenlésung
spiegelt oftmals nicht den typischen Prozess wider, den problemldsende Personen
durchlaufen. Der Ansatz von ausfiihrlichen Musterldsungen kommt daher einem
mathematischen Losungsprozess ndher als eine mdglichst knapp gehaltene
Losung. Dariiber hinaus kdnnen die steuerlichen Begleitiiberlegungen starker die
Uberlegungen zu den Vorgehensweisen aufzeigen.

Fir die Erstellung der ausfiihrlichen Musterlosungen dienen zunichst die
Losungsvorschliage der Veranstaltung ,,Mathematik fiir Maschinenbau I als
Ausgangspunkt. Die knapp gehaltenen Losungsvorschlidge wurden anschlieBend
im Sinne der ausfiihrlichen Musterlosungen (Ableitinger & Hermann, 2011) mit
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steuerlichen Begleitiiberlegungen erweitert. Damit die angefertigte ausfiihrliche
Musterlosung immer noch die Anforderungen der Aufgaben widerspiegelt, wurde
dem Dozenten ecine erste Version der ausfiihrlichen Musterlosung der
Veranstaltung zugeschickt. Diese wurde auf mathematische Prézision und
sprachliche Korrektheit iiberpriift, sowie um weitere Kommentare bzw.
Uberlegungen ergénzt. Zusitzlich wurden gemeinsam mit dem Dozenten der
Veranstaltung mogliche Schwierigkeiten bzw. Hiirden identifiziert, die wéhrend
der Aufgabenbearbeitung auftreten konnen.

Beziiglich des mathematischen Wissens, welches fiir die Bearbeitung einer
Aufgabe notwendig ist, wird die Wissensmatrix (Kapitel 2.4.4; Prediger et al.,
2011) herangezogen. Sie liefert dabei aus theoretischer Perspektive eine
Moglichkeit, den mathematischen Inhalt einzuordnen. Die zuvor erstellte
ausflihrliche Musterlosung stellt demnach die Basis fiir das Wissen dar, welches
fir die Losung der jeweiligen Aufgabe benétigt wird. Aus der ausfiihrlichen
Musterlosung wird herausgefiltert, welche Definitionen, Sitze und/oder
Verfahren benétigt werden. Das mathematische Wissen wird im Anschluss zum
prozeduralen bzw. konzeptuellen Wissen der Wissensmatrix zugeordnet. Die
Einordnung der mathematischen Inhalte wurde von verschiedenen
Mitarbeiter:innen aus der eigenen Arbeitsgruppe unabhingig durchgefiihrt und
jeweils einzeln mit dem Verfasser der Arbeit besprochen. AnschlieSend wurde die
Einordnung auf Unterschiede und Gemeinsamkeiten untersucht und konsensuell
validiert (Bortz & Doring, 2006, S. 328). Wihrend der Auseinandersetzung mit
der Erstellung der Wissensmatrix fiir die jeweiligen Aufgaben ist dennoch
aufgefallen, dass es unterschiedliche Auffassungen dariiber geben kann, wie diese
gestaltet werden konnen. Ein wichtiger Aspekt ist, in welchem MalBe Inhalte
zusammengefasst werden, wie bspw. Funktionen als Oberkategorie, oder
detaillierter untergliedert, etwa durch Exponentialfunktion als spezifische
Unterkategorie. Ein weiterer Aspekt ist die Einbeziechung mathematischer Inhalte
in ihrem Detailgrad, wie etwa Variablen. Letztlich gab es auch Unstimmigkeiten,
inwieweit spezielle Inhalte eher als konzeptuelles oder prozedurales Wissen
eingeordnet werden (dies wurde bereits in Kapitel 4.4 diskutiert).

Des Weiteren werden mogliche Hiirden bzw. Fehlerquellen beziiglich der
Aufgabe skizziert. Hiirden sind zwar individuell von der bearbeitenden Person
abhingig, allerdings lassen sich einige Stellen der Bearbeitung als besonders
schwierig bzw. problematisch antizipieren. Bei der kurzen Darstellung werden
allerdings nur mogliche Hiirden aufgelistet, die speziell fiir die Aufgaben bzw.
den Aufgabentyp vorkommen konnen. Dabei werden z. B. arithmetische
Grundrechenarten nicht als mogliche Hiirden angesehen, da diese
aufgabenunabhéngig auftreten konnen. Die antizipierten Hiirden wurden auf
Grundlage der Erfahrungen des Dozenten der Veranstaltung gemeinsam mit dem
Verfasser der Arbeit identifiziert und basieren auf den jeweiligen ausfiihrlichen
Losungen der Aufgaben.
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Zuletzt wird ebenfalls die Aufgabe aus dem Tutorium vorgestellt. In dem Kontext
der Veranstaltung besuchen Studierende zunichst ein Tutorium, bevor sie die
Hausaufgaben selbststandig bearbeiten. Die Aufgaben aus dem Tutorium sollen
vorbereitend auf die Hausaufgaben bearbeitet und besprochen werden. Dabei sind
die Aufgaben aus dem Tutorium &hnlich, allerdings nicht unmittelbar im
Vorgehen zu kopieren. Unterschiede und Ahnlichkeiten zu der Aufgabe der
Hausiibung werden skizziert.

Abschliefend folgt in Kapitel 5.3.4 eine Begriindung fiir die Auswahl der drei
Aufgaben.

5.3.1 Aufgabe: Differenzierbarkeit

Zeigen Sie, dass die durch
X

Fx) = [xz cos <F>,x #0
0 ,x=0

gegebene Funktion f: R — R an der Stelle 0 differenzierbar ist, und bestimmen

Sie £'(0).

Ausfiihrliche Losung:

In dieser Aufgabe liegt eine abschnittsweise definierte Funktion vor. Die Aufgabe
verlangt, dass die Differenzierbarkeit in Punkt x, =0 der Funktion f
nachgewiesen werden soll.

Dennoch sollte vorher klar sein, dass die Funktionen x = x?cos (i—z) fiir x+#0 und
x — 0 fiir alle x € R differenzierbar sind. Die Funktion f aus der Aufgabe ist
demnach zunichst iiberall differenzierbar, auBer an der Stelle x, = 0, die es nun
zu untersuchen gilt.

Dafiir wird die Definition der Differenzierbarkeit benotigt.
Essei f:1 = R eine reellwertige Funktion (I ein offenes Intervall). Die Funktion
f ist differenzierbar in x, € I, falls der Grenzwert

. . fo)—f(x0)
limD, (x)= lim ———=
xX—Xg xo( ) x-xy X—Xo

existiert. D, bezeichnet dabei den Differenzenquotienten, wobei x # x, beachtet
werden muss.

Die Funktion f wird in den Differentialquotienten eingesetzt:

lim LT _

x-0 x=0
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In diesem Schritt werden fiir die x, iiberall eine 0 eingesetzt. Dies ist daher klar,
weil die Differenzierbarkeit laut Aufgabenstellung in dem Punkt x5 =0
untersucht werden soll.

= imI9=0 — im @ _ ..
x—0 X—0 x-0 X

Nach Voraussetzung in der Aufgabenstellung ist f(x,) = f(0) = 0. AuBerdem

kann der Ausdruck ,,—0* sowohl im Zahler als auch Nenner gestrichen werden.

Damit bleibt nur noch der Ausdruck % iibrig, mit dem noch nicht

weitergerechnet werden kann.

’ (e")
i x“ cos x_2
.. =lim =
x-0 x

Der Grenzwertbegriff besagt, dass fiir das x niemals die 0 eingesetzt werden kann.
Nach Aufgabenstellung ist die Funktion f fiir genau alle Werte # 0 durch x —

2 e* . . . .
x“cos (x—z) definiert, daher konnte dies fiir f(x) eingesetzt werden.

, e*
.. = limx cos (—2) =
X

x—0

Durch Kiirzen von x im Zéhler und Nenner erhélt man den obigen Ausdruck.

. e* . .
Bei dem Versuch den Grenzwert x — 0 von x cos (x—z) zu bestimmen, wird das

Argument des Kosinus beliebig groB. Aufgrund der Periodizitit der
Kosinusfunktion kann auf diesem direkten Wege kein Grenzwert ermittelt
werden. Es muss als eine andere Moglichkeit gefunden werden, um den
Grenzwert zu bestimmen.

Dafiir wird zunachst die Kosinusfunktion genauer betrachtet.

Aus der Definition der Kosinusfunktion weifl man nédmlich, dass diese auf ganz

R beschrénkt ist und nur Werte zwischen —1 und 1 angenommen werden kdnnen.
—1<cos(0) <1

Fiir die Kosinusfunktion aus der Aufgabe bedeutet dies konkret, dass fiir alle x€
R:

-1 < cos (;—Z) <1
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gilt.

Mit der Information, dass der Kosinus immer nur Werte zwischen —1 und 1
annchmen kann, kann das das Sandwich-Kriterium auf die Grenzwertbestimmung
angewendet werden:

eX
—x < xcos(—z) <x
X
Nach der Multiplikation mit x entspricht dies genau der Funktion, dessen
Grenzwert bestimmt werden soll. Fiir x - 0 sind die Grenzwerte von —x und x
beide jeweils 0.

. e*
0< llmxcos(—z) < 0firx - 0.
x—0 X

Nach dem Sandwich-Kriterium muss der Grenzwert also auch 0 sein. Insgesamt
erhilt man dann
x? cos(;—;)

lim =0firx - 0.
x—0

Da der Grenzwert lim D, (x) = 0 existiert, ist f in x, = 0 differenzierbar mit
x—Xg

der Ableitung f'(0) = 0.

X
Anmerkung: Der Grenzwert lirrol X cos (z—z) konnte auch folgendermafBlen
X
X
aufgefasst werden: li‘n& X - li‘n}) cos (%) Damit kann argumentiert werden, dass
xX— P

der erste Faktor eine Nullfolge ist und sich der zweite Faktor durch die
Beschrinktheit immer zwischen -1 und 1 befindet. Dadurch erhdlt man:

X .
lirr&x cos ()%) = 0. Dies ist allerdings nur eine hilfsweise Uberlegung und
x—

fachlich nicht korrekt, da ein nicht existenter Grenzwert betrachtet wird.
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Theoretische Einordnung des benétigten Wissens

In Tabelle 9 ist die theoretische Einordnung der mathematischen Inhalte auf
Grundlage der ausfiihrlichen Losung zu der Aufgabe ,,Differenzierbarkeit priifen*
in die Wissensmatrix zu erkennen.

Mathematischer Inhalt

Konzept:
Differenzierbarkeit

Konzept: Funktionen

Konzept: Abschnittsweise
definierte Funktionen

Konzeptuelles
Wissen

Verfahren:
Differenzierbarkeit priifen

Verfahren: Grenzwert von
Funktionen berechnen

Prozedurales
Wissen

Verfahren: Sandwich-
Kriterium

Tabelle 9: Einordnung zur Aufgabe ,,Differenzierbarkeit priifen in die Wissensmatrix (EF = Explizite
Formulierung; K&A = Konkretisierung & Abgrenzung; B&V = Bedeutung &
Vernetzung; KF = Konventionelle Festlegungen)

Fiir die Aufgabe ,,Differenzierbarkeit priifen wird nach Einordnung in die
Wissensmatrix sowohl konzeptuelles als auch prozedurales Wissen bendtigt. In
der Aufgabe wird verlangt, eine Funktion auf Differenzierbarkeit zu priifen. Um
die Aufgabe zu 16sen, muss beziiglich des konzeptuellen Wissens der Begriff der
Differenzierbarkeit auf der Ebene des Konzepts bekannt sein, da ansonsten die
Aufgabenstellung nicht verstanden werden kann. Das Konzept der Funktionen
wurde in verschiedene Funktionstypen gegliedert. Die Funktion f ist eine
abschnittsweise definierte Funktion, die fiir x # 0 als Verkettung einer Polynom-
und Kosinusfunktion definiert ist. Das Priifen einer Funktion auf
Differenzierbarkeit ist als prozedurales Wissen eine notwendige
Gelingensbedingung fiir das Losen der Aufgabe. Durch die Anwendung der
Definition der Differenzierbarkeit ist darin das Verfahren der
Grenzwertbestimmung (von Funktionen) inbegriffen. Letztlich kann ebenfalls
das Sandwich-Kriterium angewendet werden, um den Grenzwert zu bestimmen.
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Antizipierte Hiirden

e Verwenden der Definition der Differenzierbarkeit: Die formale
Definition wird in der Schule in der Regel nicht behandelt, wodurch
das Verwenden fiir Studierende eine Neuheit darstellt.

e Einsetzen der Funktion in den Differentialquotienten: Die formale
Schreibweise fiir abschnittsweise Funktionen konnte Studierende
verwirren. Die konnte erschweren, welcher Ausdruck fiir f(x) in den
Differentialquotienten eingesetzt werden muss.

e Berechnen des Grenzwerts: Die Berechnung des Grenzwerts
funktioniert nicht mit ,,einfachen* Methoden. Entweder muss das
Sandwich-Kriterium verwendet oder {iber die Multiplikation der
Nullfolge mit der beschriankten Kosinusfunktion argumentiert werden.

e  Zu starkes Kopieren des Vorgehens aus dem Tutorium: Die
Aufgabe aus dem Tutorium kann als dhnliche Aufgabe genutzt werden
und liefert eine Vorgehensweise, die allerdings nicht génzlich kopiert
werden kann.

Ahnlichkeit zur Aufgabe des Tutoriums

Untersuchen Sie die Funktion
fiR->Rx e f(x) = x|x|

auf Differenzierbarkeit. An welchen Stellen ist die Funktion differenzierbar? Gibt
es Stellen, an denen die Funktion nicht differenzierbar ist?
Bestimmen Sie die Ableitung an den Stellen, an denen f differenzierbar ist.

Der Fokus der Aufgabe aus dem Tutorium liegt darauf, den Studierenden deutlich
zu machen, wie die Differenzierbarkeit einer Funktion nachgewiesen werden
kann. Die Aufgabe beschrinkt sich allerdings nicht nur darauf, einen kritischen
Punkt, sondern die gesamte Funktion zu untersuchen und aulerdem selbststindig
herauszufinden, ob {iberhaupt kritischen Stellen vorhanden sind. Mithilfe der
Produktregel lésst sich die Ableitung fiir alle Stellen x # 0 bestimmen. Fiir die
kritische Stelle x = 0 wird mit dem Differentialquotienten untersucht, ob ein
Grenzwert existiert, sodass die Funktion auch fiir die Stelle 0 eine Ableitung
besitzt.

Sowohl in der Aufgabe des Tutoriums als auch in der Hausaufgabe, muss das
Verfahren angewendet werden, um die Differenzierbarkeit nachzuweisen. Im
Groben kann das Vorgehen aus dem Tutorium demnach fiir die Hausaufgabe
verwendet werden, wobei in der Hausaufgabe bereits der kritische Punkt
vorgegeben ist. Ein weiterer Unterschied liegt darin, dass in der Aufgabe aus dem
Tutorium die Ableitungsfunktion f’ bestimmt werden soll, wihrend in der
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Hausaufgabe lediglich der Wert der Ableitung an der Stelle x = 0 untersucht
wird.

5.3.2 Aufgabe: Mittelwertsatz

Beweisen Sie die folgende Ungleichung mit dem Mittelwertsatz der
Differentialrechnung

[cos(e™) —cos(e™)| < |x —y|fir0 <y < x.
(Anmerkung: Die Ungleichung gilt sogar fiir beliebige nichtnegative x und y.)

Ausfiihrliche Losung:

Es soll die Ungleichung |cos(e™) —cos(e™)| < |x —y| fir 0 < y < x mit
dem Mittelwertsatz der Differentialrechnung bewiesen werden. Zu Beginn wird
der Satz nochmal ins Geddchtnis gerufen. Dieser lautet:

Die Funktion f: [a, b] = R sei stetig und differenzierbar auf (a, b). Dann existiert

¢in xo € (a, b) mit f'(x,) = L2LE,

Zunachst kann festgestellt werden, dass die Ungleichung aus der
Aufgabenstellung nicht von derselben Form wie der Mittelwertsatz ist. Zur
Aufgabenlosung wird daher als Strategie gewihlt, den Mittelwertsatz als
Ausgangspunkt zu wihlen und durch Umformungen zu der Ungleichung aus der
Aufgabenstellung zu gelangen.

Um den Mittelwertsatz der Differentialrechnung anzuwenden, wird eine Funktion
benotigt. Aus der Aufgabenstellung kann abgelesen werden, dass die Funktion
f() = cos(e™") auf dem Intervall [y, x] betrachtet wird. Durch Ausprobieren
findet man die Funktion f(t). Wenn fiir f(t) der Mittelwertsatz angewandt wird,
erhélt man:

cos(e™*)—cos(e™Y)

Es existiert ein t, € (y,x) mit f'(ty) = y

Der Mittelwertsatz der Differentialrechnung kann hier benutzet werden, weil die
Funktion f(t) = cos(e™?) stetig und differenzierbar auf dem Intervall (y, x) ist
und somit die Voraussetzung des Satzes erfiillt.

Durch Umformungen der Gleichung erhélt man

lcos(e™) — cos(e™)| = |x = ylIf"(to)]
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Diese Gleichung ndhert sich der Ungleichung aus der Aufgabenstellung an, wobei
der Ausdruck |f'(ty)| noch ,,zu gro“ ist. Wenn nun durch Abschitzung gezeigt
werden kann, dass |f'(t,)| <1 ist, fihrt es zur behaupteten Aussage, da dann
die rechte Seite der Gleichung als Ganzes kleiner gleich |x — y]| ist.

vt € (y,x) ist nach Kettenregel |f'(t)| = |e "t sin(e™t)| = |e~t||sin(e?)|.

Der Ausdruck |e~f| ist dabei Vt € (y, x) immer kleiner oder gleich 1, weil t nach
Voraussetzung 0 < y < x nur positive Werte annehmen kann und die e-Funktion
mit negativem Exponenten auf dem Intervall (0, o) nur Werte zwischen 1 und 0
annimmt.

Der Ausdruck |sin(e™")| ist ebenfalls Vt € (v, x) kleiner oder gleich 1. Die
Sinusfunktion nimmt per Definition immer nur Werte zwischen —1 und 1 an,
wobei hier zusétzlich der Betrag der Sinusfunktion betrachtet wird und deshalb
nur Werte zwischen 0 und 1 annimmt.

Schlussendlich konnen die Erkenntnisse auf die Gleichung iibertragen werden,
woraus folgende Ungleichung resultiert:

|cos(e™™) — cos(e™)| < |x — y| max|f'(t,)| wobei max|f'(t,)| < 1fiirt, €
v, x).

Eine letzte Umformung ergibt:
[cos(e™) —cos(e™)| < |x—y| fir0 <y < «x.
Damit ist die Behauptung bewiesen.

Die Anmerkung in der Aufgabenstellung gibt an, dass die Ungleichung auch fiir
beliebige nichtnegative x und y gilt. Im Beweis konnten x und y auch vertauscht
werden und alle Argumentationen wiirden weiterhin gelten.

Anmerkung: Im Fall, dass x = y kann direkt aus der Behauptung gefolgert
werden, dass die Ungleichung erfiillt ist, da dies zu 0 < 0 fithren wiirde. Erst fiir
0 <y <x bendtigen wir die Ausfilhrungen mit dem Mittelwertsatz der
Differentialrechnung.
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Theoretische Einordnung des bendtigten Wissens

In Tabelle 10 ist die theoretische Einordnung der mathematischen Inhalte auf
Grundlage der ausfiihrlichen Losung zu der Aufgabe ,Mittelwertsatz™ in die
Wissensmatrix zu erkennen.

Mathematischer Inhalt
Konzept: Stetigkeit einer
Funktion

Konzept: Differenzierbarkeit

Konzept: Funktion

Konzept: Abschétzung

Konzept: Betrag

Konzeptuelles Wissen

Zusammenhang: Mittelwertsatz
der Differentialrechnung

Verfahren: Kettenregel

PW

Tabelle 10: Einordnung zur Aufgabe ,,Mittelwertsatz” in die Wissensmatrix (PW = Prozedurales
Wissen; EF = Explizite Formulierung; K&A = Konkretisierung & Abgrenzung;
B&V = Bedeutung & Vernetzung; KF = Konventionelle Festlegungen)

Fiir die Aufgabe ,,Mittelwertsatz* wird nach Einordnung in die Wissensmatrix
sowohl prozedurales als auch konzeptuelles Wissen benétigt, wobei
konzeptuelles Wissen deutlich iiberwiegt. In der Aufgabe wird verlangt, eine
Ungleichung mithilfe des Mittelwertsatzes der Differentialrechnung zu 16sen.
Beziiglich des konzeptuellen Wissens miissen gleich mehrere Konzepte
(Stetigkeit, Differenzierbarkeit, Funktion) bekannt sein, um nicht nur die Aufgabe
zu verstehen, sondern ebenfalls weitere Uberlegungen anzustellen. Fiir die
Argumentation im Losungsprozess wird ebenfalls das Konzept der Abschétzung
benoétigt, um die Ungleichung zu beweisen. Dariiber hinaus wird bei den
Uberlegungen ebenfalls das Konzept des Betrags benétigt. Die Aufgabenstellung
verlangt nach einer Anwendung des Mittelwertsatzes der Differentialrechnung,
sodass dieser mathematische Zusammenhang obligatorisch ist. Beziiglich des
prozeduralen Wissens wird das Verfahren der Kettenregel verwendet, um die
konkrete Ableitungsfunktion zu finden.



Seite [139

Antizipierte Hiirden

e Verwenden des Mittelwertsatzes: Der formale Satz wird in der Schule
in der Regel nicht behandelt, wodurch das Verwenden fiir Studierende
eine Neuheit darstellt.

¢ Finden der Funktion: Fiir die Anwendung des Mittelwertsatzes wird
eine Funktion verwendet, die nicht explizit aus der Aufgabenstellung
abgelesen werden kann. Das Finden dieser Funktion, die zu der
Ungleichung ,,passt®, kann eine Hiirde darstellen.

e  Verkniipfung Mittelwertsatz mit der Ungleichung: Eine typische
Anwendung des Mittelwertsatzes der Differentialrechnung ist das
Beweisen einer Ungleichung. Die Verbindung zwischen einer
Ungleichung und dem Mittelwertsatz zu erkennen, ist fiir die
Studierenden allerdings nicht trivial. Zudem beschreibt der
Mittelwertsatz der Differentialrechnung eine Gleichung, wihrend in
der Aufgabe eine Ungleichung vorliegt.

e Verwendung der Betragsstriche: Die notwendige Verwendung der
Betragsstriche kann fiir die Studierende eine zusétzliche Hiirde
wihrend der Umformungen sein.

e  Zu starkes Kopieren des Vorgehens aus dem Tutorium: Die
Aufgabe aus dem Tutorium kann als dhnliche Aufgabe genutzt werden
und liefert eine Vorgehensweise. Dennoch kdnnen nicht die exakt
gleichen Schritte unternommen werden, welches an den
unterschiedlichen Eigenschaften der betrachteten Funktionen liegt.

Ahnlichkeit zur Aufgabe des Tutoriums

Zeigen Sie mit Hilfe des Mittelwertsatzes der Differentialrechnung, dass fiir alle
x > 1 die Ungleichung

1+inx)<x
gilt.

In der Aufgabe wird ebenfalls verlangt, dass eine Ungleichung mit dem
Mittelwertsatz der Differentialrechnung bewiesen werden soll. Das Vorgehen zur
Losung der Aufgabe aus dem Tutorium kann dabei fiir die Hausaufgabe
verwendet werden, wobei die Gleichung 1 + In(x) < x aus der Aufgabe des
Tutoriums noch mit der ,,Null*“ durch den Term [n(1) erweitert werden muss, um
die Form des Mittelwertsatzes der Differentialrechnung zu erhalten. Nach der

Anwendung des Mittelwertsatzes auf f(x) = In(x) ist die Ableitung f'(x) = i,

wodurch die Abschétzung schon direkt gegeben ist und lediglich nur noch kleine
Umformungen fiir den Beweis notwendig sind. In der Hausaufgabe miissen
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dagegen noch weitere Uberlegungen mit dem Maximum der Sinusfunktion
angestellt werden. Letztlich befindet sich der Unterschied zwischen den beiden
Aufgaben darin, dass unterschiedliche Funktionen untersucht werden, die
spezielle Anforderungen fiir die Losung der Aufgaben stellen. Die allgemeine
Vorgehensweise bleibt allerdings dieselbe.

5.3.3 Aufgabe: L Hospital

Es sei a > 1. Berechnen Sie

x* —a*
:lcle"c% a*—a“
Ausfiihrliche Losung:
Bei der Aufgabe wird gefordert, den Grenzwert eines Quotienten zu berechnen.
Zunichst wird damit gestartet, den Grenziibergang durchzufithren30.

x%—a* _a%-a% _ 0

chl;{); a*¥—a®  g3-q2 0
Mit dem Ausdruck % kann zunéchst nicht weitergearbeitet werden, allerdings ist

dies ein Indikator fiir die Regel von L'Hospital. Sie kann in dem besonderen Fall
helfen, um einen moglichen Grenzwert zu bestimmen. Die Regel von L"Hospital
lautet:

Es seien f:(a,b) >R und g:(a,b) » R differenzierbar. Weiter gelte

xli%f(x) = xliT«L g(x) =0 oder es geltexlirggrf(x) = xlirggrg(x) = oo,

Analoges gilt, wenn lirgz+ durch lirgz_ ersetzt wird. Weiter sei g'(x) # 0 auf
x— xX—

. B LCO BTN i €))!
(a, b). Dann folgt in jedem Falle il_r)r}; 96 = dm

Anmerkung: Die Aussage gilt, sofern der rechte Grenzwert konvergiert oder
bestimmt divergiert. Bei unbestimmter Divergenz kann man nichts aussagen.

Eine der Voraussetzung fiir die Anwendung der Regel von L'Hospital ist durch
den Grenzwert % gegeben. AuBlerdem sind sowohl die Funktion im Zahler mit
f(x) =x*—a* als auch die Funktion im Nenner mit g(x) = a* —a®
differenzierbare Funktionen. Es gilt noch zu priifen, ob die Ableitung des Nenners

30 In dieser Losung wird der Ausdruck % verwendet. Dies wird lediglich als Schreibweise

genutzt, um die Anwendung der Regel von L"Hospital anzudeuten.
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g'(x) = (e““(“) - a“)’ # 0 fiir x # a ist. Dabei ist nach Kettenregel und
Potenzgesetz

g'(x) = (e’”“(“) - a“)’ = In(a) a*.

Da nach Voraussetzung a > 1 und die Logarithmus-Funktion im Intervall (1, o)
und die Exponentialfunktion mit der Vorschrift a* Vx € R ebenfalls nur positive
Werte annimmt, ist das Produkt der beiden Faktoren positiv. Somit folgt g’ (x) #
0 fur alle xeR.

Fir f'(x) = (x* —a*)’ (verwende fiir den zweiten Summanden erneut
Kettenregel und Potenzgesetz) gilt

f'(x) = ax*! —In(a)a*

Insgesamt ergibt sich dadurch mit der Regel von L'Hospital:

. x%—a* . ax?1-ag*In(a) a%-a%In(a) 1-In(a) 1
lim = lim = = =

x—q a¥—a x-a a*In(a) - a%In(a) - In(a) _ln(a)

Theoretische Einordnung des bendtigten Wissens

In Tabelle 11 ist die theoretische Einordnung der mathematischen Inhalte auf
Grundlage der ausfiihrlichen Losung zu der Aufgabe ,L'Hospital“ in die
Wissensmatrix zu erkennen.

Mathematischer Inhalt

= Konzept: Funktion
-

Verfahren: Regel von
= L Hospital
2
é Verfahren: Grenzwert von
2 Funktionen berechnen
S Verfahren: Kettenregel
=
D
)
& Verfahren: Potenzregel

Tabelle 11: Einordnung zur Aufgabe ,,L."Hospital* in die Wissensmatrix (KW = Konzeptuelles Wissen;
EF = Explizite Formulierung; K&A = Konkretisierung & Abgrenzung; B&V =
Bedeutung & Vernetzung; KF = Konventionelle Festlegungen)
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Fiir die Aufgabe ,,L."Hospital“ wird nach Einordnung in die Wissensmatrix fast
ausschlieBlich prozedurales Wissen bendtigt. Zu einem kleinen Teil ist auch
konzeptuellen Wissens (Konzept Funktion) notwendig, da die Aufgabe darauf
abzielt, den Grenzwert eines Quotienten zu bestimmen. Dies ist eine typische
Aufgabe, auf welche die Regel von L Hospital angewandt werden kann. Nach
den Priifungen der Voraussetzungen werden durch Anwendung von L Hospital
die Zéhler- und Nennerfunktion abgeleitet, die in dieser speziellen Aufgabe
mittels Ketten- als auch Potenzregel ermittelt werden kdnnen.

Antizipierte Hiirden

e  Verwenden der Regel von L Hospital: Der formale Satz wird in der
Schule in der Regel nicht behandelt, wodurch das Verwenden fiir
Studierende eine Neuheit darstellt. Dazu kommt, dass einige
Voraussetzung iiberpriift werden miissen, bevor die Regel angewandt
werden kann.

e Handwerkliche Operationen: Die handwerkliche Arbeit des Ableitens
an sich konnte die Studierenden vor Probleme stellen. Sowohl die
notwendigen Umformungen (Exponential- und Logarithmusfunktion)
als auch das Anwenden der Kettenregel kann Hiirden darstellen.

Ahnlichkeit zur Aufgabe des Tutoriums

Berechnen Sie die folgenden Grenzwerte:

cos(x)+3x-1 2In(x)

a) lim , b) lim
x—0 2x x—-o0o X

In der Aufgabe aus dem Tutorium werden zwei Aufgaben angeboten, die in beiden
Fillen die Anwendung der Regel von L Hospital ermdglichen. Dabei konnen die
Quotienten in beiden Aufgabenteilen ohne jegliche Umformungen abgeleitet
werden. Die Aufgabe aus der Hausaufgabe hat vermeintlich kompliziertere
Umformungen, bevor die Regel von L’Hospital mit den iiblichen
Ableitungsregeln angewandt werden kann. Das Verfahren kann allerdings aus
dem Tutorium iibernommen werden.

5.3.4 Begriindung fiir die Auswahl der Aufgaben

Das Thema der Differentialrechnung wurde in der Veranstaltung ,,Mathematik fiir
Maschinenbau I auf drei Aufgabenbléttern behandelt. Insgesamt kénnen neun
Aufgaben der Hausaufgaben dem Thema der Differentialrechnung zugeordnet
werden. Fiir die detaillierte Auswertung in dieser Arbeit werden allerdings
lediglich die drei vorgestellten Aufgaben herangezogen.
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Die Auswahl der drei Aufgaben wurde im Hinblick auf die Datenauswertung
getdtigt. Das Ziel dieser Arbeit ist es, Bearbeitungsprozesse von Studierenden zu
untersuchen, wobei der Fokus dabei auf Problembearbeitungsprozesse liegt. Ob
wihrend der Bearbeitung einer Aufgabe tatsdchlich ein Problem vorliegt, hingt
von individuellen Voraussetzungen der Studierenden ab. Aus theoretischer
Perspektive ist allerdings bereits anzunehmen, dass es Aufgaben gibt, die
womoglich ein Problem fiir Studierende in einer hochschulischen Veranstaltung
darstellen. Aus diesem Grund wurden fiir die Datenauswertung bereits diejenigen
Aufgaben aussortiert, welche von den Studierenden z. B. lediglich das Ableiten
einer speziellen Funktion® verlangt hat. Die Ableitungsregeln werden bereits in
der Schule behandelt und sollten daher fiir die Studierenden bekannt sein. Daher
kann angenommen werden, dass Aufgaben dieser Art eher keine
Problemaufgaben fiir Studierende sind. Stattdessen wurden Aufgaben fiir die
detaillierte Datenauswertung ausgewahlt, die einen neuen inhaltlichen Input
beziiglich der Differentialrechnung geben und somit eher ein Problem darstellen
konnten. Die Aufgaben sind damit typische Aufgaben, die in einer
mathematischen Erstsemesterveranstaltung behandelt werden (Kapitel 4.3.6).

5.4 Auswertungsmethoden zu den Prozessen der
Problembearbeitungen

Die Bearbeitungsprozesse der Studierenden werden mit verschiedenen Methoden
ausgewertet. Jede Auswertungsmethode setzt dabei einen Fokus beziiglich drei
(Steuerung, Wissen, Heurismen) der vier Kategorien, die einen Einfluss auf das
Problemlosen  nach  Schoenfeld (1985) haben. Die  geplanten
Auswertungsmethoden werden in den folgenden Kapiteln ausfiihrlich
beschrieben und erléutert.

5.4.1 Nutzung der Episoden nach Schoenfeld zur Rekonstruktion der
Steuerung

Sogenannte ,,protocol coding schemes* werden erstellt, um objektive Anzeichen
von offenkundigen Handlungen und Aussagen zu erfassen, die von
problemldsenden Personen wihrend des Bearbeitungsprozesses getétigt werden
(z. B. Schoenfeld, 1985, S. 294ff.). Das Ergebnis der Kodierung eines
Bearbeitungsprozesses wird dabei Protokoll genannt. In der Vergangenheit wurde
diese Art von Kodier-Schema bereits hdufig sowohl in Al (Artificial Intelligence)
als auch der mathematikdidaktischen Forschung eingesetzt. Die Al nutzt die
erstellten  Protokolle, um 2z B. Ahnlichkeiten in verschiedenen
Problembearbeitungsprozessen zu finden, sodass sie anschlieend fiir idealisierte

31 Beispiel: Bestimmen Sie die Ableitung der folgenden Funktion f: R — R:
f(x) = cos(x) - sin(x)
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Prozesse in  Programme  ecingebaut werden  konnen. In  der
mathematikdidaktischen Forschung ist es hdufig das Ziel, qualitative Analysen
von Problembearbeitungsprozessen durchzufithren. Dazu gehoren das Verstehen
von Problembearbeitungsprozessen verschiedener Individuen (sowohl Experten
als auch Novizen), aber auch die Identifikation von erfolgreichen und weniger
erfolgreichen Strategien bzw. Heurismen wihrend
Problembearbeitungsprozessen.

Schoenfeld (1985, Kapitel 9) hat sich als Teil seiner mathematikdidaktischen
Forschung ebenfalls mit solchen ,,protocol coding schemes* auseinandergesetzt.
Dabei hat er Hinweise fiir ein Kodier-Schema erstellt, welches auch in heutiger
mathematikdidaktischer Problemldseforschung aufgegriffen und ausgeweitet
wird (z. B. Rott, 2013; Stenzel, 2023a). In seinen theoretischen Ausarbeitungen
verwendet Schoenfeld (1985) den Begriff Phasen im
Problembearbeitungsprozess, wéhrend fiir die Kodierung der Begriff Episode
genutzt wird. Rott (2013), Herold-Blasius (2019) und Stenzel (2023a) nutzen
ebenfalls in ihren Ausarbeitungen den Begriff Episode anstelle von Phase. Ein
Ziel der Episodenkodierung nach Schoenfeld (2016) ist es, verschiedene
Problembearbeitungsprozesse miteinander vergleichen zu kdnnen. Dafiir stellt
Schoenfeld sieben Episodentypen vor: Reading, Analysis, Exploration, Planning,
Implementation, Verification und Transition. Diese Episodentypen weisen eine
starke Ahnlichkeit zu den Phasen von Polya auf (Kapitel 2.3.3 und Abbildung
20). AuBlerdem ist zu erkennen, dass den theoretischen Ausarbeitungen von
Schoenfeld (1985) die Episode Reading sowie Transition hinzugefiigt wurde.
Beide Episoden haben sich in den empirischen Daten aufgetan und wurden den
theoretisch ausgearbeiteten Episoden ergénzt.

SCHOENFELD (1985) POLYA (1945)
u the Problem
<:> What is the upknawn / condtion?
Analysis Draw a figura
Exploration Devising a Plan
* <:> Do you knaw a related /
an anajogous problem?
Qitein a plan of the solution.
Implementation <:> Carrying out the Plan
Camy out your an.
Check each stap,

k
Verification <> Looking Back

Can you check the result?
Can you derive it diffarertiy?
Can you use the raswl, or
the method. for some ather
problem?

Abbildung 20: Analogie zwischen Schoenfeld (1985) Episoden und Schritten von Pélya (1945)
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Um die Episoden zu beschreiben, wird das Kodiermanual von Stenzel (2023a, S.
93ff.) iibernommen. Stenzel hat dies wiederum aus den Arbeiten von Rott (2013)
und Schoenfeld adaptiert (1985). An einigen Stellen des Kodiermanuals von
Stenzel (2023a, S. 93ff.) wurden allerdings leichte Anpassungen durchgefiihrt,
um eine einheitliche Darstellung der Episoden zu erzeugen. Dabei wurden
zusétzlich einige Beschreibungen der Episoden leicht vergrofert und um weitere
Beschreibungen bzw. Erkldrungen ergédnzt. Des Weiteren zeigten die ersten
Versuche der Kodierung, dass gewisse Zeitabschnitte auf zwei Episoden
gleichzeitig zutreffen konnen. Dies liegt womoglich am Interpretationsspielraum
der unterschiedlichen kodierenden Personen. Infolgedessen wurde eine genauere
Beschreibung der Unterschiede zwischen den Episoden hinzugefiigt, sodass jeder
Zeitabschnitt nur einer Episode zugeordnet werden kann.

Reading: Diese Episode umfasst das Lesen der Aufgabenstellung. Fiir die
Kodierung der Episode Reading ist dabei die Art des Lesens, ob laut oder leise,
unerheblich. Die Kodierung beginnt, sobald die problembearbeitende Person
verbal mit dem Lesen der Aufgabe beginnt oder der Blick fiir langere Zeit auf das
Aufgabenblatt gerichtet wird. Der gesamte Prozess fiangt demnach in der Regel
mit dem Lesen des Aufgabentextes an. Sowohl das Abschreiben als auch das
Zusammenfassen der Aufgabenstellung wird fiir die Kodierung ebenfalls unter
der Episode Reading verstanden. Allerdings ist fiir das Abschreiben der
Aufgabenstellung  wichtig, dass keine Paraphrasierung durch die
problemlosenden  Personen vorgenommen wird. Gleiches gilt fiir
Zusammenfassungen der Aufgabenstellung, wobei darunter auch das
Wiederholen von einzelnen Aspekten der Aufgabenstellung fdllt. Falls das
Notieren der Aufgabenstellung hingegen iiber das Abschreiben oder eine
Zusammenfassung hinausgeht, z. B. durch Umformulierungen, wird dies nicht als
Reading, sondern als Analysis kodiert. Im weiteren Verlauf des
Bearbeitungsprozesses wird die Episode Reading nur dann kodiert, wenn fiir
einen ldngeren Zeitraum gelesen wird. Kurzes Nachschauen einzelner Aspekte
der Aufgabenstellung wird nicht als Reading kodiert.

Analysis: Diese Episode umfasst Aktivititen, die dazu dienen, die Aufgabe
(besser) zu verstehen. Fiir die Kodierung der Episode Analysis zihlen vor allem
Umformulierungen und Darstellungswechsel der Voraussetzung oder der
Behauptung (Kliren von Definitionen, Aquivalente Formulierungen, Skizzen,
Aufstellen von Gleichungen etc.). Aber auch bereits das Paraphrasieren der
Aufgabenstellung gehort dazu. Falls die problembearbeitende Person nach dem
Lesen der Aufgabenstellung keine Idee fiir das weitere Vorgehen besitzt, folgt
zumeist die Episode der Analysis, um die Aufgabe (besser) zu verstehen. Analysis
wird nur dann im Prozess kodiert, wenn es wirklich um das Verstehen der
Aufgabenstellung geht. Aussagen wie ,Ich versuche noch zu verstehen...
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bezogen auf die Aufgabe sind ein Indiz fiir die Episode Analysis, auch wenn
zwischendurch vereinzelt explorative Aussagen getétigt werden. Haufig schlie3t
nach der Episode Analysis die Episode Planning an. Die Episode der Analysis
kann allerdings auch tibersprungen werden, falls die problembearbeitende Person
direkt eine Idee fiir die Losung hat. Dies kann vor allem in kalkiilorientierten
Aufgaben der Fall sein.

Exploration: Diese Episode umfasst Aktivititen, die dazu dienen,
Losungsmdglichkeiten zu suchen. Fiir die Kodierung der Episode Exploration
gehoren jegliche Erkundungen, die weder direkt an der Aufgabenstellung
orientiert sind (Analysis), noch einen gezielten Plan verfolgt (Planning und
Implementation). Oftmals zeichnet sich der Beginn der Episode Exploration
dadurch ab, wenn die Aufgabenstellung noch nicht oder nicht vollstindig
verstanden wurde, die problemldsende Person aber schon eine (vermeintliche)
Idee davon hat, was von ihr verlangt wird und eine grobe Richtung einschldgt. In
dieser Episode werden mitunter viele verschiedene Ansétze ausprobiert, das
Vorgehen an sich ist aber eher unsicher und nicht wirklich zielgeleitet. Auerdem
ist es fiir Episoden der Exploration typisch, dass verschiedene Heurismen (Suche
nach Analogien, Suche nach dhnlichen Aufgaben, etc.) bei Problemldsenden zu
erkennen sind. Folgen in einem Bearbeitungsprozess zwei Episoden der
Exploration aufeinander, z. B. durch Ausprobieren verschiedener Ansétze, dann
werden diese auch als einzelne Episode der Exploration kodiert. Idealerweise hilft
die Episode der Exploration, um an eine Information zu gelangen, die in weiteren
Episoden, z. B. Analysis, Planning oder Implementation genutzt werden kann.

Planning: Diese Episode umfasst die Entwicklung eines Plans, der ein
bestimmtes inhaltliches (Zwischen-)Ziel verfolgt. Fiir die Kodierung der Episode
Planning geniigt es nicht, dass problemlosende Personen lediglich ein Ziel
beschreiben. Es muss zusétzlich deutlich werden, dass die problemldsende Person
eine Idee besitzt, wie dieses Ziel zu erreichen ist. Der Beginn einer Episode
Planning kann demnach dadurch erkannt werden, dass ein Plan und (Zwischen-
)Ziel festgelegt wurden sowie das weitere Vorgehen nicht durch explorative
Aktivitdten voranschreitet. Es ist nicht uniiblich, dass Planning nach Reading und
Analysis auftritt, wobei Planning durchaus auf Exploration folgen kann. Dies ist
vor allem dann der Fall, wenn in der Episode Exploration wichtige Informationen
gefunden wurden. Auf Planning folgt meistens die Episode Implementation. Oft
gehoren Planning und Implementation zusammen, allerdings muss nicht jeder
Plan auch implementiert werden. Wenn Planning und Implementation als
getrennte Episoden zu erkennen sind, sollten sie auch entsprechend kodiert
werden.
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Implementation: Diese Episode umfasst die Umsetzung eines Plans. Fiir die
Kodierung der Episode Implementation muss erkennbar sein, dass den
problemlésenden Personen bereits hier bewusst ist, wie in etwa vorgegangen
werden muss. Dies zeichnet sich vor allem durch einen Plan aus, der vorher
aufgestellt wird. Teilweise wird explizit ein Plan formuliert, teilweise muss auf
die Existenz eines implizit vorhandenen Plans geschlossen werden. Dennoch
muss diese Episode nicht immer geradlinig verlaufen. Sie kann z. B. auch
beinhalten, dass ein Plan verworfen wird. Falls es bei der Durchfithrung noch
Unsicherheiten gibt oder an einigen Stellen das weitere Vorgehen noch nicht klar
ist, wird Exploration kodiert. Kleinere Hindernisse, die sich schnell aus dem Weg
schaffen lassen, gehoren aber zur Implementation. Es kann durchaus vorkommen,
dass ein Plan auch zeitgleich mit der Implementation entwickelt wird, sich die
Planung iiber einen sehr kurzen Zeitraum erstreckt oder nicht expliziert wird. In
diesen Fallen werden Planning und Implementation gleichzeitig kodiert.

Verification: Diese Episode umfasst Aktivititen, die zur Uberpriifung des
Bearbeitungsprozesses beitragen. Fiir die Kodierung der Episode Verification
zihlen die Uberpriifung oder Kontrolle von Ergebnissen oder von
Teilergebnissen. Dazu gehoren insbesondere Kontrollen und Evaluationen der
Argumentation oder des Rechenwegs. Der Beginn von Verification lasst sich
oftmals dadurch erkennen, wenn das Vorgehen zu einem vorher festgelegten Ziel
untersucht wird. Die Episode Verification dient hdufig als Abschluss eines
Bearbeitungsprozesses.

Transition: Diese Episode umfasst Uberginge zwischen zwei Episoden. Fiir die
Kodierung der Episode Transition ist es wichtig, dass die vorhergehende Episode
bereits abgeschlossen ist, die neue aber noch nicht angefangen hat. Viele
Transitions haben keine zeitliche Ausdehnung, werden demnach nicht extra
kodiert. Die Kodierung von Transition beginnt oftmals, wenn problemlésende
Personen metakognitive Aktivititen (Beurteilung des bisherigen Vorgehens,
Entscheidungen iiber das weitere Vorgehen) ausfiihren. Diese signalisieren
bewusste Richtungsentscheidungen. Es konnen auch Transitions zwischen zwei
gleichnamigen Episoden vorkommen (z. B. Exploration — Transition —
Exploration). Hier wird bspw. ein Ansatz verworfen, das weitere Vorgehen
geplant und dann ein neuer Ansatz verfolgt. Zu dieser Episode zihlen allerdings
weder Schweigen (nichts Sichtbares passiert) noch organisatorische Tatigkeiten,
da solchen Aktivititen in Bezug zur vorherigen Episode kodiert werden.

In der Episodenkodierung bei Stenzel (2023a) wurde zusétzlich die Episode
»Sonstiges* hinzugefiigt, um nicht-inhaltliche Aktivitdten zu erfassen. Da nicht-
inhaltliche Aktivitdten in den vorliegenden Daten allerdings kaum bis gar nicht
vorgekommen sind und die Studienteilnehmenden die gesamte Aufnahmezeit die
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vollstandige Aufmerksamkeit auf die Bearbeitungen gerichtet haben, wurde von
der Hinzunahme von ,,Sonstiges* abgesehen. Kurze nicht-inhaltliche Aktivitdten
haben deshalb keinen Einfluss auf die Episode. Stenzel (2023a) berichtet in seiner
Dissertation ebenfalls von selten auftretenden nicht-inhaltlichen Aktivitéten.

Im Verlauf der Datenauswertung wurde mit einer zweiten kodierenden Person
gearbeitet, wodurch es teilweise zu unterschiedlichen Kodierungen kam. Die
Diskussion der Unterschiede zwischen beiden kodierenden Personen hat gezeigt,
dass die Grenzen zwischen den Beschreibungen der Episoden Spielraum fiir
Interpretationen bieten. Anhand der konkreten Situation wurde sich auf Grenzen
der Kategorien geeinigt, mit denen im weiteren Verlauf kodiert werden konnte.
Besonders die Unterschiede zwischen Exploration und Analysis sowie
Exploration und Planning werden im Folgenden dargestellt.

Unterschiede zwischen Episoden

Der Unterschied zwischen den Episoden der Exploration und Analysis: In der
Episode Amnalysis versucht die problemlésende Person speziell die
Aufgabenstellung zu verstehen. Dies ldsst sich an Unternehmungen bzw.
Aussagen feststellen, die mit den Bedingungen der Aufgabe oder dem
unmittelbaren Ziel der Aufgaben zu tun haben. Sobald eine Unternehmung den
Charakter hat, dass eine Losung fiir das Problem erzeugt werden soll bzw. gesucht
wird, wird es der Episode der Exploration zugeschrieben. Die nicht immer leicht
zu identifizierenden Unterschiede zwischen Analysis und Exploration konnen
auch in der Struktur und dem Inhalt erkannt werden. In einer Episode der Analysis
arbeiten die Problemldsenden insbesondere dicht am Aufgabentext und gehen
eher strukturiert vor. In einer Episode der Exploration kann das Vorgehen
unstrukturiert sein und ist meistens weiter von der Aufgabenstellung entfernt. Die
hiufige Verwechslung zwischen den beiden Episoden Analysis und Exploration
ist Schoenfeld (1992b, S. 194) selbst schon aufgefallen.

Der Unterschied zwischen den Episoden der Exploration und Planning: In der
Episode Planning muss deutlich werden, wie die problembearbeitende Person die
Aufgabe 16sen mochte. Meistens zeigt sich dies durch die inhaltliche Natur des
Plans. Charakterisierend sind Aussagen wie: ,,Ich wiirde hier in die Definition
einsetzen, damit dann den Grenzwert bestimmen. Was dann rauskommt, ist ja
dann das Ergebnis“. In der Episode Exploration wird zwar auch eine Richtung
eingeschlagen, allerdings ist der problemlésenden Person zu Beginn nicht klar,
ob dies wirklich zur Losung beitragen konnte. Charakterisierend sind Aussagen
wie: ,.Dann lass uns das doch mal versuchen®, ,lass uns das doch mal
ausprobieren, vielleicht hilft das ja“, ,,wollen wir das dann auch erstmal so
machen wie in der Ubung?*
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Vorgehen beim Kodieren der Episodenkodierung

An dieser Stelle wird auf Beispiele der einzelnen Episoden verzichtet. Dies liegt
unter anderem auch daran, dass die Kodierung anhand von Videomaterial
durchgefiihrt wurde. Stattdessen wird in Kapitel 6.1.1 eine Fallanalyse (Héder,
2019, S. 371ff; Hering & Schmidt, 2014) zur Episodenkodierung einer
Bearbeitung der Aufgabe ,,Differenzierbarkeit priifen‘ (Kapitel 5.3.1) dargestellt.
Wihrend der Bearbeitung durchléuft die Lerngruppe jede Episode mindestens ein
Mal, wodurch der Prozess ein gutes Beispiel darstellt. Die Kodierung von
Prozessen anhand des Videomaterials wurde bereits von Schoenfeld (1985, Kap.
9), Rott (2013) und Stenzel (2023a) verwendet. Es liegt daher nahe, dass die
Kodierung der Episoden in dieser Arbeit ebenfalls anhand des Videomaterials
durchgefiihrt wird.

Die einzelnen Episoden in einem gesamten Prozess miissen dabei keine
einheitliche Zeitldnge besitzen, sondern sind lediglich von der Handlung bzw. den
Aussagen der problemlésenden Personen abhdngig. Der gesamte
Problembearbeitungsprozess kann allerdings zu jedem Zeitpunkt anhand einer
Episode beschrieben werden, wodurch ein liickenloses Protokoll entsteht. Es
handelt sich dabei um ein Event-Sampling Verfahren (Schoenfeld, 1985).
Zwischen zwei Episoden kann Transition kodiert werden, oder es findet ein
direkter Ubergang zu einer weiteren Episode statt. Es wurden im Vorhinein keine
festen Segmente festgelegt, zu denen die Kategorien zugeordnet wurden,
stattdessen wurden die Segmente erst wiahrend des Kodierens bestimmt (Rédiker
& Kuckartz, 2019, S. 295).

Stenzel (2023a, S. 97) setzt eine Mindestlinge von 30 Sekunden fiir einzelne
Episoden fest. Damit riicken auch die bereits angesprochenen
Hauptentscheidungen in den Vordergrund der Kodierung. Zu kurze Episoden
wiirden der Ubersichtlichkeit schaden und den Fokus von den
Hauptentscheidungen verlagern. Allerdings wurden Ausnahmen fiir die Episoden
Reading, Planning und Transition getitigt, da diese Episoden in der Regel sehr
kurz sind. Die Uberlegungen von Stenzel (2023a) werden in dieser Arbeit
ibernommen, allerdings wird die Mindestlinge einzelner Episoden auf 15
Sekunden festgelegt. Dies schadet der Ubersichtlichkeit kaum und es kann vor
allem zu Beginn eines Bearbeitungsprozesses genauer dargestellt werden, in
welcher Phase sich problemlosende Personen befinden. Zusétzlich werden in
dieser Arbeit auch Lerngruppen untersucht, bei denen zeitlich kiirzere Episoden
oftmals durch eine Person angestoflen und recht ziigig durch eine andere Person
der Lerngruppe geschlossen wird. Solche Episodenwechsel, die eher kiirzerer
Natur sind, wiirden durch eine hohe Mindestlange flir Episoden verloren gehen.
Um sich nicht im Detail des Prozesses zu verlieren, erfolgte die Einteilung der
Episoden ebenfalls wie in Stenzel (2023a) und Rott (2013) an dem Videomaterial.
Die Kodierung am Transkript kdnnte einen ganzheitlichen Blick des Prozesses
verstellen.
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In der Studie von Schoenfeld (1985) erhielten die problemldsenden Personen ein
Zeitlimit von 20 Minuten pro Problem. In dieser Arbeit wurde den Studierenden
kein Zeitlimit gesetzt, da es sich um eine moglichst authentische Situation des
typischen Lernprozesses von Studierenden handeln sollte (Kapitel 5.2.2). Die
Studienteilnehmenden haben demnach selbststindig das Ende ihrer
Bearbeitungsprozesse festgelegt.

Die authentischen Lernsituationen haben zur Folge, dass nicht nur
Einzelpersonen beim Losen von Aufgaben beobachtet wurden, sondern zuséitzlich
Lerngruppen aus zwei bis vier Studierenden. Die Beteiligung mehrerer Personen
an einem Prozess kann dazu fiihren, dass zwischen den Episoden héufiger
gesprungen wird. Eine mogliche Ursache ist, dass vor allem mentale Aktivititen
bei den Teilnehmenden wéhrend der Bearbeitung nicht jederzeit synchron
verlaufen miissen. Fiir Uberginge einer Episode sind daher meistens einzelne
Teilnehmende verantwortlich, die einen Impuls anregen und die anderen
Teilnehmenden der Lerngruppe in den Gedankenvorgang einbeziehen. Zu
Problemen beziiglich der Episodenkodierung fiihrt dies erst dann, wenn z. B. eine
Lerngruppe aus mehreren Personen besteht, die verschiedene Aktivitdten
ausflihren. In einer Lerngruppe mit vier Personen kdnnten unter Umstdnden zwei
Zweier-Gruppen entstehen, die sich jeweils in unterschiedlichen Episoden
befinden.

Wie bereits beschrieben, wurde die Kodierung der Daten mit zwei unabhéngigen
Kodierenden durchgefiihrt. Zunédchst wurden in einem Schulungsprozess zwei
Problembearbeitungsprozesse unabhingig voneinander kodiert und direkt im
Anschluss gemeinsam besprochen. Es folgte eine Identifikation von
Gemeinsamkeiten und Unterschiede sowie eine konsensuelle Validierung an nicht
ibereinstimmenden Stellen (Bortz & Doring, 2006, S. 328). Daraufthin wurden
(wie bereits oben beschrieben) kleine Anpassungen an dem Kodiermanual von
Stenzel (2023a) vorgenommen. Mit diesen Anpassungen wurden erneut
unabhéngig voneinander einige Problemldseprozesse kodiert, etwa 33 % der
gesamten Daten. Mit dem Analyse-Tool von maxQDA wurde eine Intercoder-
Ubereinstimmung bestimmt. Dabei wurde eine Codeiiberlappung an Segmenten
von mindestens 95 % festgelegt (Ridiker & Kuckartz, 2019, S. 295). Die Literatur
empfiehlt bei 95 % zu starten: ,,In den meisten Féllen wird man jedoch mit etwa
95 % minimaler Uberlappung testweise starten...* (Ridiker & Kuckartz, 2019, S.
295). Eine Codeiiberlappung von 100 % wird dann empfohlen, wenn bspw. vorher
fest definierte Segmente festgelegt worden sind. Der Grund dafiir ist, dass die
Kodierenden moglicherweise die gleiche Szene kodiert haben, allerdings das
Ende der Szene eine Sekunde spéter angesetzt haben. Solche inhaltlich
unproblematischen Differenzen wiirden durch eine Codeiiberlappung von 100 %
eine Nichtiibereinstimmung liefern. Eine Mindestiibereinstimmung von 95 %
ignoriert solche minimalen Unterschiede, liefert aber dennoch eine ausreichend
hohe Qualitiit {iber die Aussage der Ubereinstimmung. Mit diesem Verfahren
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wurde zwischen den beiden unabhéngigen Kodierenden ein Kappa Score von .89
erreicht®?. Obwohl die Feststellung eines Kappa Scores eher in einem
quantitativen Forschungsdesign als intersubjektive Uberpriifbarkeit genutzt wird,
kann dieser dahingehend interpretiert werden, dass die beiden unabhdngigen
Kodierenden in einer hohen Anzahl von Féllen zu einem gleichen Zeitpunkt die
gleiche Episode kodiert haben®. Die Methode der Intercoder-Ubereinstimmung
wurde fiir die Episodenkodierung gewihlt, da bereits Schoenfeld (1992b, S. 194)
beobachtete, dass die Grenzen zwischen den einzelnen Episoden oftmals nicht
eindeutig sind. Dieses methodische Vorgehen tragt dazu bei, schwierig
voneinander zu trennende Episoden dennoch voneinander abzugrenzen und die
Konsistenz ~ der  Kodierung zu  gewdhrleisten.  Die  restlichen
Problembearbeitungsprozesse wurden anschlieend nur von einer Person kodiert.

Zusammenfassung der Episodenkodierung

Wie bereits erwdhnt wurde, hat die Episodenkodierung nicht das Ziel, jedes
einzelne geduflerte Wort zu analysieren und einer Episode zuzuschreiben.
Vielmehr ist das Ziel der Episodenkodierung, die allgemeine Vorgehensweise
einer problemlosenden Person zu erfassen. Dies bedeutet, dass
Hauptentscheidungen des Bearbeitungsprozesses neue Episoden bzw. Uberginge
von Episoden signalisieren und damit entscheidend fiir die Kodierung sind. Als
Beispiel stellen wir uns eine Person vor, die sich in der Episode Implementation
befindet. Eine problembearbeitende Person fiihrt in der Episode Implementation
eine Rechnung durch und kontrolliert direkt im Anschluss (keine bis kaum
Zeitverzogerung) den getitigten Umformungsschritt: ,, Konnte ich das x da jetzt
wirklich rauskiirzen? ... Hmm ... Ja, doch, das stimmt so. Gut, dann weiter im
Text*. Dies ist zwar eine Aussage, die verifizierenden Charakter hat, allerdings
liegt im Sinne der Episodenkodierung das Hauptaugenmerk auf der
Implementation. Dies wird unter anderem auch dadurch angedeutet, dass die
Person direkt mit der Losung fortfahren mochte. Deshalb wird fiir diese kurze
Aussage nicht die Episode der Verification kodiert. Dagegen kann eine ganz
dhnliche Aussage die Episode der Verification einlduten. Dies kann man bspw.

32 maxQDA nutzt bei der Bestimmung des Kappa Scores den Vorschlag von Brennan und
Prediger (1981), bei der die erwartete Zufallsiibereinstimmung iiber die Anzahl der
Kategorien statt tiber die Randverteilung bestimmt wird (Rédiker & Kuckartz, 2019, S.
2991t.).

33 Die prozentuale Ubereinstimmung (Ridiker & Kuckartz, 2019, S. 297) zwischen den beiden
Kodierenden liegt bei 90,91 %. Die Unterschiede in den Kodierungen in dieser Arbeit liegen
darin, dass zwar die gleiche Episode kodiert wurde, allerdings nicht in einem
Uberlappungsintervall von 95 %. Dies bedeutet, dass der Grund fiir die
Nichtiibereinstimmungen meistens die Lénge der Episoden ist. Gerade bei kiirzeren
Episoden wie Reading und Verification kommt es dadurch leicht zu
Nichtiibereinstimmungen, wenn der Nebensatz davor oder danach noch ,,dazu kodiert* bzw.
nicht ,,dazu kodiert* wird.
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daran erkennen, dass eine problembearbeitende Person den gesamten
Bearbeitungsverlauf oder den gesamten Rechenweg kontrolliert. ,,Ich gucke mir
nochmal die Aufgabe an, ob wir da alles gemacht haben [...]“. Ggfs. liberpriift
die problembearbeitende Person dabei auch ihre methodische Vorgehensweise.
Oftmals lassen sich Episoden der Verification nach dem Erreichen eines
(Zwischen-)Ziels wiederfinden.

In einem idealisierten Problembearbeitungsprozess wiirde man davon ausgehen,
dass zunéchst das Problem gelesen wird. Im Anschluss werden Aktivititen
durchgefiihrt, um die Aufgabe (besser) zu verstehen. Danach wird ein Plan
entworfen und durchgefiihrt. Schlussendlich wird das Vorgehen kontrolliert. Dies
entspricht der Reading-Analysis-Planning-Implementation-Verification-Sequenz.
In einigen Aufgaben kann es sein, dass Phasen iibersprungen werden, wenn z. B.
das Problem direkt verstanden wurde, sodass in diesem Prozess die Episode der
Analysis entfdllt. In weiteren Fillen kann auch zusitzlich die Episode Planning
entfallen und direkt mit der Implementation gestartet werden, falls der
problemldsenden Person bereits klar ist, wie bei der Bearbeitung der Aufgabe
vorgegangen werden muss.

Die beschriecbene Auswertungsmethode ldsst sich somit als qualitative
Inhaltsanalyse (Mayring, 2022, S. 12f.) auffassen.

1. Kommunikation: Es dient der Analyse von Sprache und Bildern (hier:
die Bearbeitungsprozesse der Studierenden)

2. Fixierte Kommunikation: Sprache und Bilder liegen in protokollierter
Form vor (hier: Videos)

3. Systematisch: Die Analyse geht systematisch vor (z. B. keine freien
Interpretationen)

4. Regelgeleitet: Die Analyse geht regelgeleitet vor und ist damit
nachvollziehbar und {berpriifbar (durch die Kategorien und die
Intercoder-Ubereinstimmung)

5. Theoriegeleitet: Es basiert auf dem theoretischen Hintergrund des
mathematischen Problemldsens

6. Riickschliisse: Durch die Analyse konnen Riickschliisse iiber das
analysierte Material gezogen werden

Die Episodenkodierung nach Schoenfeld erfiillt die herausgearbeiteten Spezifika
(Mayring, 2022, S. 12f) einer qualitativen Inhaltsanalyse und grenzt sich dadurch
von anderen Methoden ab.

5.4.2 Verwendung der Wissensmatrix zur Rekonstruktion von Angebot und
Nutzen mathematischen Wissens

Die Wissensmatrix kann fiir verschiedene Zwecke eingesetzt werden. Sie wird in
dieser Arbeit bereits genutzt, um theoretisch einzuordnen, welches Wissen fiir die
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jeweiligen Aufgaben dieser Studie benotigt wird (Kapitel 5.3). Auf Grundlage
dieser vorhergegangen Analyse kann die Wissensmatrix noch weitere Funktionen
ibernehmen. Sie wird zum einen herangezogen, um zu beschreiben, welches
Angebot eine Veranstaltung beziiglich des vorher festgestellten theoretischen
Wissens beziiglich einer Aufgabe bereitstellt. Zum anderen kdnnen mithilfe der
Wissensmatrix die Wissenselemente, die Studierende im Bearbeitungsprozess
nutzen, rekonstruiert werden.

Angebot

Um das Wissensangebot einer Veranstaltung abzubilden, werden die Materialien
der Veranstaltung gesichtet und dargestellt, ob und in welcher Weise
mathematische Inhalte mit ihren verschiedenen Facetten présentiert werden.
Ausgangspunkt ist demnach die Wissensmatrix, in der die mathematischen
Definitionen, Sétze und Verfahren in die Spalte mathematischer Inhalt entweder
dem konzeptuellem oder prozeduralem Wissen zugeordnet wurde. Die Vorlesung
der Veranstaltung ,,Mathematik 1 fiir Maschinenbauer® wird zu diesen
mathematischen Inhalten untersucht und es wird festgehalten, mit welchen
Wissensfacetten das Wissen fiir Studierende présentiert wurde. Um das
Wissensangebot der Veranstaltung zu ermitteln, kann die Wissensmatrix in ihrer
Form genutzt werden, so wie sie urspriinglich zum Systematisieren und Sichern
von mathematischen Inhalten entwickelt wurde (Prediger et al., 2011).

Mathematischer Inhalt
Konzept:
Differenzierbarkeit

Konzept: Funktionen

Konzeptuelles
Wissen

Konzept: Abschnittsweise
definierte Funktionen

Verfahren:
Differenzierbarkeit priifen

Verfahren: Grenzwert von
Funktionen berechnen

Verfahren: Sandwich-
Kriterium

Wissen

Prozedurales

Tabelle 12: Angebot der Veranstaltung zur Aufgabe ,,Differenzierbarkeit priifen in die Wissensmatrix
(IN = Implizite Nutzung; EF = Explizite Formulierung; K&A = Konkretisierung
& Abgrenzung; B&V = Bedeutung & Vernetzung; KF = Konventionelle
Festlegungen)
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Ausschnitt fiir die Facette Explizite Formulierung:

Definition 4.1 Die Funktion f ist differenzierbar in x4 € I, falls der Grenzwert

lim Dyy(z) = lim 18 =7 0)

T T—To I —T
existiert. In diesem Fall wird er mit f’(xy) bezeichnet und heift Ableitung (oder
Differentialquotient) von f in xq.
Ausschnitt fiir die Facette Konkretisierung & Abgrenzung:
(b) f(x) = &2 Dann gilt mit @ = xq + h (Wir setzen also h = — 1), h # 0,

f(x) = f(xo)  flwo+h) = f(xo) (zo+ h)? — a3 _ 2hag + h?

T — g h h h

= 2x9 + h.

Fir « — o (d.h. & — 0) folgt dann

lim M = 219.
z—x0 €T — T

Also ist f'(xg) = 2 fiir jedes xy € R. Mit anderen Worten

d
dz-

Ausschnitt fiir die Facette Bedeutung & Vernetzung:
Y

2= 2,

T & T

Ausschnitt fiir die Facette Konventionelle Festlegung:

existiert. In diesem Fall wird er mit f’(xo) bezeichnet und heift Ableitung (oder
Differentialquotient) von f in wg.

Zur Schreibweise: Statt f’(xg) schreibt man auch %(IO) oder % f(xo).

Abbildung 21: Ausschnitte der Wissensfacetten zum Konzept Differenzierbarkeit aus der
Veranstaltung ,,Mathematik 1 fiir Maschinenbau*
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Tabelle 12 zeigt dabei auf, welche Wissensfacetten der vorher festgelegten
mathematischen Inhalte beziiglich der Aufgabe ,,Differenzierbarkeit priifen®
(Kapitel 5.3.1) in der Veranstaltung zu identifizieren waren. Die dunkel
hinterlegten Zellen zeigen auf, welche Wissensfacetten in der Veranstaltung
identifiziert werden konnten. Beispielhaft fiir die Identifikation der
Wissensfacetten werden Ausschnitte fiir das Konzept Differenzierbarkeit aus der
Veranstaltung dargestellt.

Abbildung 21 zeigt einige Ausschnitte zu den Wissensfacetten, die zum Konzept
Differenzierbarkeit zugeordnet werden konnten. Beziiglich der Expliziten
Formulierung wurde die Ableitung als Grenzwert des Differenzenquotienten
definiert (Abbildung 21), wobei der Differenzenquotient vorweg ebenfalls formal
festgelegt wurde. Fiir die Facette Konkretisierung & Abgrenzung wird in
Abbildung 21 nur ein Beispiel gezeigt, wobei in der Vorlesung mehrere Beispiele
fiir differenzierbare Funktionen mittels der Definition aufgezeigt worden sind.
AuBerdem wurde im weiteren Verlauf der Vorlesung noch das typische
Gegenbeispiel der Betragsfunktion besprochen und welche in x = 0 nicht
differenzierbar ist. Gleiches gilt fiir die Facette Bedeutung & Vernetzung. In der
Vorlesung wurde die Differenzierbarkeit zunédchst iiber den physikalischen
Kontext der ,Momentangeschwindigkeit® motiviert, welches auf der
Grundvorstellung der lokalen Anderungsrate beruht (Kapitel 4.3.2). Nachdem die
Differenzierbarkeit formal eingefiihrt wurde, wurde die Tangentensteigung als
eine geometrische Veranschaulichung (Abbildung 21) der Definition dargestellt.
Letztlich wurde noch ein Hinweis dazu gegeben, wie die Tangenten mithilfe der
Ableitung als Funktion dargestellt werden kann, was wiederum die
Grundvorstellung der lokalen linearen Approximation widerspiegelt. Sowohl die
Facette Konkretisierung & Abgrenzung als auch Bedeutung & Vernetzung wurden
intensiv und umfangreich mittels verschiedener Perspektiven behandelt.
Beziiglich der Facette der Konventionellen Festlegungen wurden sowohl
Schreibweisen als auch Bezeichnungen fir den Umgang mit der
Differenzierbarkeit festgelegt (Abbildung 21). Insgesamt wurde beziiglich der
Facetten der Wissensmatrix das Konzept der Differenzierbarkeit in der
Veranstaltung umfénglich vorgestellt und teilweise wurden verschiedene
Perspektiven in den einzelnen Facetten behandelt.

Nutzung

Letztlich kann die Wissensmatrix beschreiben, welches Wissen Studierende
wihrend Bearbeitungsprozessen Aufgaben im Rahmen eines mathematikhaltigen
Studiums nutzen.

Dazu wird der Bearbeitungsprozess der Studierenden untersucht, um zu
identifizieren, welche mathematischen Inhalte als auch welche Wissensfacetten
genutzt werden. Als Grundlage dient dabei die bereits vorher erstellte
Wissensmatrix zu den theoretischen Uberlegungen, welche mathematische
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Wissen flir eine Aufgabe benétigt wird (Kapitel 5.3), als auch die Untersuchung,
welches Angebot die Veranstaltung beziiglich des Wissens bereitstellt. Fiir die
Nutzung wird allerdings noch eine weitere Wissensfacette zur Wissensmatrix
hinzugefiigt — Implizite Nutzung. Diese wird durch die Ausfiihrungen von Vollrath
und Roth (2012, S. 48ff.) motiviert. Dabei betonen sie beziiglich mathematischer
Verfahren das Beherrschen und beziiglich mathematischer Sachverhalte den
Anwendungskontext. Diese Idee wird fiir die Facette der Impliziten Nutzung
iibernommen. Demnach wird unter der Facette der Impliziten Nutzung beziiglich
des prozeduralen Wissens die korrekte Ausfithrung eines Verfahrens verstanden.
Dies konnte z. B. die korrekte Anwendung der Kettenregel sein. Beziiglich des
konzeptuellen Wissens wird die Implizite Nutzung als Anwendungskontext fiir ein
Konzept bzw. einen Zusammenhang verstanden. Dies konnte fiir das Konzept z.
B. die Anwendung der Definition der Differenzierbarkeit sein, die typischerweise
bei der Uberpriifung von Differenzierbarkeit einer Funktion in einem Punkt
Anwendung findet.

Sobald der Bearbeitungsprozess der Studierenden startet, wird jeweils dann ein
Wissenselement kodiert, wenn Studierende ein Wissenselement adressieren. Die
Kodierung bezieht sich dabei auf bestimmte Impulse, bei denen nicht unbedingt
eine zeitliche Lange festgelegt wird. Aussagen, Handlungen oder schriftliche
Produkte werden nur dann kodiert, wenn der kodierenden Person klar ersichtlich
war, dass sie sich zu einer Wissensfacette zuordnen lassen. Implizite Handlungen,
welche bei Studierenden womdglich automatisiert sind, lassen sich somit kaum
erkennen. Zusétzlich wird die Kodierung in ,,Turns* dargestellt. In jedem ,, Turn*
wird ein Wissenselement kodiert, wobei einige Aussagen bzw. Handlungen eng
miteinander verkniipft sind und dadurch zwei Wissenselemente pro ,,Turn®
kodiert werden (Beispiele werden in dem Kapitel 6.2.5 diskutiert). AuBerdem
wird nur dann kodiert, wenn sich Studierende mit einer Wissensfacette ernsthaft
auseinandergesetzt haben. Damit ist gemeint, dass Handlungen bzw. Aussagen
wie ,,Wir konnen das doch mal visualisieren erst dann kodiert werden, wenn
tatsdchlich eine Visualisierung vorgenommen wird. Der alleinige Vorschlag reicht
in diesem Fall nicht aus. Die Kodierung beziiglich der Wissensmatrix wurde
anhand des Videomaterials, des Transkripts® und der schriftlichen Produkte, die
wihrend der Bearbeitungsprozesses der Studierenden entstanden sind,
durchgefiihrt. Wéhrend des Bearbeitungsprozess kann es durchaus vorkommen,
dass Studierende anderes oder weiteres Wissen nutzen, was nicht unbedingt fiir
die Losung der Aufgabe notwendig gewesen wire. In solchen Féllen wird das
genutzte Wissen der Wissensmatrix hinzugefiigt und ebenfalls die dazugehdrigen
Wissenselemente kodiert.

34 Fiir die Kodierung beziiglich der Wissensmatrix wurde zusétzlich ein Transkript erstellt. Dies
hat den Grund, dass eine Identifikation bzw. Rekonstruktion von aktivierten
Wissenselementen unter Hinzunahme eines Transkripts leichter gefallen ist, als diese
lediglich aus dem Videomaterial zu kodieren.
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Die Kodierung der Wissensnutzung wird umfangreich in Kapitel 6.2.2 mittels
eine Fallanalyse (Héder, 2019, S. 3711f.; Hering & Schmidt, 2014) dargestellt.
Dennoch soll die Kodierung an dieser Stelle beispielhaft an einem kleinen
Ausschnitt von Davids Problembearbeitungsprozess illustriert werden. In der
Anfangsphase seines Prozesses liest sich David die Definition der
Differenzierbarkeit aus der Vorlesung (Abbildung 22) durch und ergénzt sie kurze
Zeit spéter zu seinen Aufzeichnungen der Aufgabe. Er schreibt die Definition
nicht in vollstindiger, sondern verkiirzter Form auf. Auflerdem ersetzt er dabei
schon die Variable x, durch 0, da er die kritische Stelle der Aufgabe bereits als 0
identifiziert hat. An diesen Stellen im Bearbeitungsprozess wurde jeweils die
Facette Explizite Formulierung des Konzepts Differenzierbarkeit als aktiviertes
bzw. genutztes Wissenselement kodiert.

L) - f(m

X — Xo

04,0 (x) =

doy it Dptrriodoe o dor Wl O, D

lon Do (x) = ’é"’”"‘ ‘ifk) - Ajﬂmj - / %D)

Yoo X =0 -0

Abbildung 22: Ausschnitt aus Davids Aufzeichnungen zur Aufgabenbearbeitung

Um sich die Bedeutung der Definition zu erschlieBen, greift David zunichst auf
die geometrische Veranschaulichung (Abbildung 21) der Differenzierbarkeit aus
der Vorlesung zuriick und studiert diese. Er nutzt demnach die Facette Bedeutung
& Vernetzung des Konzepts Differenzierbarkeit. Des Weiteren geht David die
Beispiele aus der Vorlesung (Abbildung 21) durch und versucht diese
nachzuvollziehen, weshalb die Facette Konkretisierung & Abgrenzung des
Konzepts Differenzierbarkeit kodiert wird.

Da David in seiner Durchfithrung nicht auf die implizite Nutzung der
Differenzierbarkeit zuriickgegriffen hat, wird fiir dieses Beispiel die Bearbeitung
von Thomas und Alex herangezogen. Zu Beginn ihrer Bearbeitung haben sie nach
dem Lesen der Aufgabenstellung ziigig entschieden, die Definition der
Differenzierbarkeit anzuwenden: ,,Ah, jetzt miissen wir quasi den &h, die die
Definition nehmen, ne, mit dem, #hm mit dem Grenzwert quasi direkt“. Sie sind
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sich bewusst, in welchem Kontext die Definition der Differenzierbarkeit
Anwendung findet.

Die Kodierung der Wissensnutzung von Studierenden wurde durch zwei
unabhéngig kodierende Person durchgefiihrt. Dabei wurden die Kodierungen
miteinander verglichen und konsensuell validiert (Bortz & Déring, 2006, S. 328).
Ein ausfiihrliches Beispiel fiir weitere Kodierung zur Nutzung von Wissen wird
in Kapitel 6.2.2 vorgestellt.

Induktive Rekonstruktion von Schwierigkeiten im Problembearbeitungsprozess

Die Analyse der Schwierigkeiten der Studierenden erfolgt durch eine induktive
Herangehensweise. Schwierigkeiten werden hierbei als Hindernisse bzw. Hiirden
definiert, die im fachspezifischen Kontext den Fortschritt oder die korrekte
Bearbeitung der Aufgabe beeintrichtigen.

Die Identifikation der Schwierigkeiten in den Prozessen basiert auf einer
systematischen Analyse der Handlungen und AuBerungen. Dabei wird das
Videomaterial der Bearbeitungssituation, die Transkripte sowie schriftliche
Abgaben der Studierenden herangezogen sowie jede Stelle markiert, die auf eine
Schwierigkeit hinweist.

Im Detail bedeutet dies, dass eine Schwierigkeit dann kodiert wird, wenn
Studierende zum einen explizit dullern, dass sie aktuell Schwierigkeiten haben
oder nicht wissen, wie sie bei der Bearbeitung weiter vorgehen sollen (,,Hm, ja so
richtig verstanden habe ich es auch nicht ...). Zum anderen werden auch
fachliche Fehler in den Bearbeitungen sowie fehlendes fachliches Wissen, das
notwendig fiir die Bearbeitung ist, als Schwierigkeit kodiert (,,was heif3t denn, oh,
tiberhaupt differenzierbar?*). Fachliche Fehler, die rein sprachlicher Natur sind,
wie bspw. Versprecher oder leicht ungenaue Formulierungen mathematischer
Inhalte werden nicht beriicksichtigt. Dies liegt vor allem an der verwendeten
Methode des lauten Denkens. In einem solchen Kontext kann es des Ofteren zu
spontanen, nicht immer perfekten sprachlichen Ausdriicken kommen, die jedoch
nicht notwendigerweise auf fachliche Schwierigkeiten hinweisen. Falls jedoch
bestimmte Konzepte, Zusammenhidnge oder Verfahren wiederholt fehlerhaft
ausgesprochen werden, wird dies als eine tieferliegende Unsicherheit und als
Schwierigkeit aufgefasst.

Nach der Identifikation der Schwierigkeiten erfolgt deren Zuordnung zu
Wissenselementen. Dabei dient die Wissensmatrix als Grundlage, um die
Zuordnung entlang der Dimensionen Wissensart und Wissensfacette
vorzunehmen. Diese Zuordnung kann Aufschluss dariiber geben, welche Arten
bzw. Facetten von Wissen Schwierigkeiten fiir die Studierenden darstellen.

Die Kodierung sowie Zuordnung der Schwierigkeiten wurden von einer
kodierenden Person vorgenommen. Dieser Prozess erfolgte in zwei getrennten
Runden, die mit einem zeitlichen Abstand von zwei Monaten durchgefiihrt
wurden. Mit diesem Verfahren soll die Konsistenz der Kodierung iiberpriift
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werden (Mayring, 2022, S. 115). AnschlieBend wurden die Kodierungen der
beiden Runden miteinander verglichen und an einigen Stellen Anpassungen
vorgenommen.

Zusammenfassung zur Wissensmatrix

In dieser Arbeit wird die Wissensmatrix in verschiedenen Funktionen als
Analysewerkzeug eingesetzt. Dabei baut sich die Wissensmatrix sukzessive auf
den Anforderungen der Aufgaben, die Bereitstellung von mathematischen
Inhalten der Veranstaltung sowie der Nutzung des mathematischen Wissens von
Studierenden bei der Bearbeitung der Aufgaben auf. Aufgrund der theoretischen
Auseinandersetzung mit einer speziellen Aufgabe wird der bendtigte
mathematische Inhalt identifiziert. Darauf basierend wird die Veranstaltung auf
die Wissensfacetten dieser mathematischen Inhalte tiberpriift und festgestellt,
welches Wissen zu den mathematischen Inhalten angeboten wird. Letztendlich
wird die Nutzung der Wissenselemente durch die Studierenden bei der
Bearbeitung der Aufgabe untersucht. Ein Vergleich zwischen dem Angebot
(Welches Wissens stellt die Veranstaltung bereit?) und der Nutzung (Welches
Wissen nutzen die Studierenden?) wird dadurch ermoglicht.

Die beschriebenen Auswertungsmethoden zur Wissensmatrix lassen sich wie die
Episodenkodierung nach Schoenfeld (Kapitel 5.4.1) als qualitative Inhaltsanalyse
(Mayring, 2022, S. 12f.) auffassen.

1. Kommunikation: Es dient der Analyse von Sprache und Bildern (hier:
die Bearbeitungsprozesse der Studierenden)

2. Fixierte Kommunikation: Sprache und Bilder liegen in protokollierter
Form vor (hier: Videos, Transkripte und Material der Studierenden)

3. Systematisch: Die Analyse geht systematisch vor (z. B. keine freien
Interpretationen)

4. Regelgeleitet: Die Analyse geht regelgeleitet vor und ist damit
nachvollziehbar und iiberpriifbar (aufgrund der Kategorien sowie der
teilweisen konsensuellen Validierung)

5. Theoriegeleitet: Es basiert auf dem theoretischen Hintergrund zur
Unterteilung des mathematischen Wissens in Wissensarten und -facetten

6. Riickschliisse: Durch die Analyse konnen Riickschliisse iiber das
analysierte Material gezogen werden

5.4.3 Darstellung des Kategoriensystems zur Rekonstruktion von Heurismen

Fiir die Kodierung der Heurismen wurde auf ein bestehendes Kategoriensystem
zuriickgegriffen. Ahnlich wie bei der Kodierung der Episoden von Schoenfeld
wurde das Kategoriensystem von Stenzel (2023a, S. 100f.) iibernommen, wobei
dies ebenfalls von dem bereits bestechenden Kodiermanual von Rott (2013, S.
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204{f.) adaptiert wurde. Rott (2013) hat das Kodiermanual induktiv entwickelt,
wobei theoretische Uberlegungen sowie stoffdidaktische Analysen fiir die
Validierung von Heurismen und die daraus resultierenden Kodes genutzt worden
sind. Dabei lassen sich die Heurismen zu heuristischen Strategien, Prinzipien und
Hilfsmitteln zuordnen, wobei die Heurismen weiterhin unabhéngig von den
Phasen des Problemldsen sind.

Rott (2013) hat sein Kategoriensystem zu Kodierung von Heurismen im Kontext
von mathematischen Schulaufgaben eingesetzt, weshalb Stenzel (2023a) eine
Anpassung vorgenommen hat, um das Kategoriensystem auf mathematische
Aufgaben auf Hochschulniveau anwenden zu konnen. Dabei wurden einige
Kategorien zusammengefasst (z. B. informative Figur und operative Figur
wurden zu Skizze zusammengefasst), da diese Heurismen eher uniiblich fiir
mathematische Hochschulaufgaben erscheinen. Es wurden allerdings auch
Kategorien induktiv hinzugefiigt, wie zum Beispiel die Nutzung aller
Voraussetzungen. In den Untersuchungen von Kilpatrick (1967) haben
Schiiler:innen kein Verhalten gezeigt, welches auf das Nutzen von grundlegenden
Begriffen der Aufgabenstellung schlieBen ldsst. Im hochschulischen Kontext
scheint das Nutzen von Voraussetzungen allerdings durch die formale
mathematische Schreibweise und Notation wieder an Bedeutung zu gewinnen.
Die Nutzung von Voraussetzungen (,Was ist gegeben?”, ,Was sind die
Voraussetzungen?*) zeigt sich auch als hilfreicher Gedankengang fiir Pélya’s
(1945) erste Phase ,, Verstehen einer Aufgabe® des Problemldsens.

Die Dauer eines Heurismus ist hdufig weder eindeutig messbar noch besonders
aussagekraftig, da solche Aktivititen zeitlich stark variieren kdnnen. Stattdessen
werden Heurismen als Impulse bzw. Ausloser fiir bestimmte Tatigkeiten
verstanden, bei denen nur der Zeitpunkt ihres Auftretens erfasst, jedoch nicht ein
exakter Start- und Endwert festgelegt wird.

Vorgehensweise beim Kodieren

Das bestehenden Kodiermanual von Stenzel (2023a) dient demnach als
Grundlage, um die Heurismen in den Bearbeitungsprozessen der Studierenden zu
identifizieren und zu kodieren. Die Kodierung wurde von zwei Kodierenden
durchgefiihrt. Zunichst wurde ein zufallig gewéhlter kleiner Teil der Daten (ca.
zehn Prozent) unabhingig voneinander kodiert. Unterschiede und (einige)
Gemeinsamkeiten in den vergebenen Kodes wurden besprochen, um mdogliche
Fehlinterpretationen des Kodiermanuals auszuschlieBen. Anschlieend kodierten
beide Kodierenden unabhingig voneinander die restlichen Daten. Diese
Kodierungen wurden erneut iiberpriift und konsensuell validiert (Bortz & Doring,
2000, S. 328).

Nach der Kodierung hat sich herausgestellt, dass einige Kodes von beiden
Kodierenden nicht vergeben worden sind. Aus diesem Grund wurden folgende
Kategorien aus dem urspriinglichen Kodiermanual von Stenzel (2023a)
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gestrichen: Hilfselemente, Tabelle, Gleichung, Symmetrieprinzip. Das Nicht-
Auftreten dieser Kodes kann z. B. durch die spezifischen Aufgabenstellungen
begriindet werden. Fiir die Losung der Aufgaben, die in dieser Arbeit als
Datengrundlage genutzt werden, wiirde aus theoretischer Sicht bspw. eine Tabelle
dem Losungsfortschritt wenig bis gar nicht helfen.

Dariiber hinaus wurden zwei weitere Anderungen vorgenommen. Die Kategorie
Suche nach niitzlichen Ergebnissen wurde leicht verdndert und in Suche nach
niitzlichen Hinweisen umbenannt. Auflerdem wurde die Beschreibung der
Kategorie etwas weiter aufgefasst, da Studierende nicht nur im Skript nach
niitzlichen Hinweisen, sondern auch im Internet oder im restlichen Material der
Veranstaltung gesucht haben. Ferner wurde die beiden Kategorien Ahnliche
Aufgaben und Analogieprinzip zu einer Kategorie zusammengelegt (4dhnliche
Aufgaben). Eine Unterscheidung der beiden Kategorien hat sich in der Kodierung
als schwierig herausgestellt. Dies liegt moglicherweise an dem Kontext der
Studie, da bereits dhnliche Aufgaben in Form des Tutoriums vorlagen. Dies
wissen auch die Studierenden, weshalb aus den Aussagen der Studierenden nicht
ersichtlich wird, ob sie die Aufgabe bewusst heranziehen, weil sie das Verfahren
kopieren mochten oder ob die Aufgabe moglicherweise einen Ansatz auf
abstraktem Niveau liefert.

Zusétzlich wurde die Spalte der Beispiele mit Zitaten aus den eigenen Daten
erginzt. Allgemeinere Handlungsbeschreibungen von Beispielen wurden fiir die
speziellen Aufgaben dieser Untersuchung adaptiert (Tabelle 13).

Die beschriebene Auswertungsmethode ldsst sich ebenfalls wie die
Episodenkodierung nach Schoenfeld (Kapitel 5.4.1) als auch das
Analysevorgehen mit der Wissensmatrix (Kapitel 5.4.2) als qualitative
Inhaltsanalyse (Mayring, 2022, S. 12f.) auffassen.

1. Kommunikation: Es dient der Analyse von Sprache und Bildern (hier:
die Bearbeitungsprozesse der Studierenden)

2. Fixierte Kommunikation: Sprache und Bilder liegen in protokollierter
Form vor (hier: Videos und Transkripte)

3. Systematisch: Die Analyse geht systematisch vor (z. B. keine freien
Interpretationen)

4. Regelgeleitet: Die Analyse geht regelgeleitet vor und ist damit
nachvollziehbar und iiberpriifbar (aufgrund der Kategorien und der
Intercoder-Ubereinstimmung)

5. Theoriegeleitet: Es basiert auf dem theoretischen Hintergrund des
mathematischen Problemldsens (Kapitel 2.5)

6. Riickschliisse: Durch die Analyse konnen Riickschliisse iiber das
analysierte Material gezogen werden
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Kode Beschreibung Beispiele

Begriffe Die Bedeutung von (1) In den Materialien wird nach

kléren (Bkl) Begriffen/Begrifflichkeiten wird einer Definition oder Erklérung
geklart, ohne dass mit den gesucht, ggfs. wird dies auch
Begriffen bereits gearbeitet wird. abgeschrieben.

Das Kléren von Begriffen kannz.  (2) ,,Da ist die Frage, was heif3t

B. mittels Nachschlagens im denn, oh, tiberhaupt differenzierbar?

Skript oder in Kombination mit Das heifit, ich schaue in der

dem Heurismus ,,Skizze* Vorlesung.*

passieren. (3) ,,Warum ist denn das x, da
unten?* — ,,Weil das die, guck dir
mal die Grundform fiir den
Mittelwertsatz an.*

Skizze (Skiz)  Das Anfertigen einer Skizze, (1) Zeichnen eines Graphen oder
eines Diagramms, eines Graphen Eingeben einer Funktion, um den
bzw. das Anfertigen einer Figur Graphen zu visualisieren.
sowie die weitere Arbeit damit. (2) Nutzung einer Zeichnung, um

Argumente fiir die Aufgabe zu
nutzen bzw. zu validieren.

(3) ,,Das ist hier blauer Graph. Das
ist der Kosinus. Sekante,
Schnittpunkt an zwei Punkten im
Intervall. ... Ja, der Betrag der
Steigung, ja zwischen a und b
mindestens eine Stelle gibt, wo die
Kosinusfunktion, also wo die
Steigung der Funktion identisch
ist.

(4) ,,Ich gebe das Ganze mal in
GeoGebra ein, ich will einfach
sehen, wie das aussieht.*

Imaginére Zeichnen einer fiktiven (1) Es wird ein Sachverhalt, z. B.

Figur (imF) Abbildung in der Luft/auf dem die Kosinusfunktion ,,in die Luft
Tisch oder bildliches Vorstellen gemalt®.
eines Sachverhalts. (2) Es wird erwéhnt, dass man sich

bildlich etwas vorstellt.

Spezialfall Betrachten von besonderen (1) Es wird ein Sachverhalt mit

(SpF) Fillen, die angenommen werden einem Beispiel erklart.
konnen, etwa zur Vereinfachung (2) Es werden bestimmte Zahlen
eines Beweises. genutzt, um sich von allgemeinen

Argumenten zu iiberzeugen bzw.
sich selbst verstiandlich zu machen,
z. B. ob ein Grenzwert existiert.

(3) ,,Nehmen wir mal irgendeine
Zahl. Wenn ich das richtig habe und
ich 100 habe und davon den In, ...
ist das was anderes, als ich dachte.*

Falluntersch ~ Hier werden zum Lésen der (1) ,,Hier mache ich auch wieder

eidung (FU)  Aufgabe verschiedene Fille zwei Fallunterscheidungen. Einmal

unterschieden.

fiir den Fall, dass f ungleich, also
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dass x in f ungleich 0. Ahm
einmal, dass x = 0 ist.”

Nutzung Es wird gepriift, ob alle in der (1) ,,Ja, aber wir diirfen nicht
aller Aufgabenstellung gegebenen vergessen, dass a, a wichst nicht. a
Voraussetzun ~ Bedingungen einbezogen worden  ist konstant, ne. a ist eine Konstante
gen (Nvor) sind. grofer 1.
(2) ,,Naja, x — y, wobei y < x ist.
Das ist wichtig, weil sonst wére hier
was Negatives [...]. Das heilit, dass
das Relationszeichen dreht sich
nicht um.*
Systematisiec ~ Das Einfiihren ordnender (1) Es werden Markierungen
rungshilfen Elemente, die bei der Ausfithrung  jeglicher Art genutzt.
(SyH) und Uberwachung einer (2) ,,Ich schreibe es nochmal in den
Tatigkeit/eines Plans helfen. richtigen Farben, dass ich das
besser sehe.*
Metapher In der Aufgabe vorkommende (1) Sinus ,,schwingt“ zwischen
(Met) Aspekte werden mittels Minus Eins und Eins
anschaulicher Metaphern (2) Es ist etwas unendlich klein an
beschrieben. Null dran.
Riickfihrung  Bezugnahme auf bekannte (1) Bezugnahme auf bereits
sprinzip Fakten, Ergebnisse oder erreichte (Zwischen-)Ergebnisse
(RfP) Bezugnahme auf Teilergebnisse (2) Bezugnahme auf bereits
der Aufgabe. Im Gegensatz zu bekannte Fakten, wie z. B.
dhnlichen Aufgaben werden keine  bestimmte Ableitungen.
Verfahren tibertragen. Dieser
Heurismus wird auch dann
kodiert, wenn sich nonverbal z. B.
auf Teilergebnisse der Aufgabe
bezogen wird.
Ahnliche Das Heranziehen bekannter (1) Suche nach moglichen Ansétzen
Aufgabe Verfahren und Methoden durch im Internet oder im
(Ahn) Bezug auf andere, vergleichbare Veranstaltungsmaterial.
Aufgaben, Sitze oder Beweise, (2) Suche nach einer speziellen
die sich auf (vermutlich) dhnliche =~ Aufgabe, die im gegebenen Kontext
Weise 16sen lassen. helfen soll.
(3) ,,Hier hat man es einfach
aufgelost bis man ... eine einfache
Zahl auf einer Seite hatte.*
(4) ,,Ich gucke nochmal in die
Beispielaufgabe.
Suche nach Dieser Heurismus ist eine (1) ,,Ein bisschen googlen, ne, ...
niitzlichen Vorstufe zu ,,RfP, Ahn bzw. Ana®.  was das groBe, weite Internet dazu
Hinweisen Es wird gezielt iiberlegt oder im sagt.*
(niiHi) Veranstaltungsmaterial und/oder (2) ,,Ich schaue jetzt nochmal in der

im Internet geschaut, welche
Elemente einem fiir das zu
l6sende Problem weiterhelfen
konnen.

Vorlesung, ob wir dazu was
aufgeschrieben haben*

(3) ,,dafiir hole ich meine
Karteikarten raus.*
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Riickwirtsar ~ Betrachtung des (1) Ausgehend vom Mittelwertsatz
beiten (RiiA)  Zielzustandes/des Gesuchten. Es Umformungen anstellen, um zur
wird iiberlegt, was man zeigen Formel der Aufgabenstellung zu
muss, damit die Behauptung gelangen.
erfillt ist. Davon ausgehend wird
versucht, zum Anfangszustand zu
gelangen.
Vorwirtsarbe  ,,Drauf los“-Arbeiten vom (1) Eine vorgegebene Gleichung
iten (VWA) Anfangszustand. Das Gegebene wird manipuliert, um zu sehen, ob

man mit dem Ergebnis
weiterkommt.

(2) ,,Ja, das ist, muss man glaube
ich mit L "Hospital machen.“

wird verwendet, um zum
Zielzustand zu gelangen. Bei
Beweisaufgabe wird von den
Voraussetzungen ausgegangen.

Tabelle 13: Das Kodiermanual beziiglich Heurismen dieser Studie

5.5 Auswertungsmethode den  Produkten der

Problembearbeitungen

u

In dieser Arbeit werden Problembearbeitungsprozesse in den Fokus gestellt. Da
die Problembearbeitungsprozesse der Studierenden in dieser Studie in den
normalen Semesterbetrieb eingebettet sind, entsteht aus diesen Prozessen in der
Regel ein resultierendes Produkt. Dieses Produkt sind die Beantwortungen der
Hausaufgaben und werden von den Studierenden abgegeben, um eine
Leistungsbewertung zu erhalten.

Wenn Problembearbeitungsprozesse untersucht werden, sollten sich ebenfalls die
Ergebnisse der Prozesse (=Produkte) angeschaut werden (Rott, 2013, S. 179). Nur
dann lassen sich Aussagen iiber Erfolg und Misserfolg treffen. Somit kann das
Produkt mit dem Prozess (im folgenden Kapitel) in Beziehung gesetzt und das
Finden von Zusammenhingen ermdglicht werden.

Fiir die Bewertung des Produkts kdnnen verschiedene MaBstibe herangezogen
werden. Zunichst stellt sich die Frage, inwiefern die Produktbewertung das
Einbeziehen des Prozesses erlaubt. Sollten Zwischenergebnisse, Weggestrichenes
oder einzelne Gedanken bewertet werden? Es wurde sich dagegen entschieden,
solche Informationen aus dem Prozess mit einzubezichen. Aufgrund der
Anforderungen der Veranstaltung wird von den Studierenden ohnehin erwartet,
dass sie eine umfassende, sorgfiltige und alle notwendigen Informationen
enthaltende Losung vorlegen. Es wird davon ausgegangen, dass die
teilnehmenden Studierenden daher alle ihnen wichtig erscheinenden
Informationen, die im Prozess gewonnen wurden, auf ein Blatt Papier geschrieben
werden. Es bietet sich daher an, dass lediglich die tatsédchliche Abgabe bewertet
wird. Es wurde dabei bedacht, dass die Studierenden nach der Videoaufnahme
weiterhin an ihren Abgaben arbeiten kdnnten und damit letztendlich ihr Produkt
aufbessern, bevor sie es abgeben. Die Materialien bzw. die Mitschriften der
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Studierenden wurde daher direkt nach der Videoaufnahme gesammelt, sodass
nachtrigliche Verbesserungen bzw. Verdnderungen fiir die Analyse der Daten in
dieser Arbeit ausgeschlossen werden konnen.

Weiterhin wiirde es sich anbieten, die Leistungsbewertungen der Veranstaltungen
zu Ubernehmen. Problematisch ist dabei allerdings, dass die teilnehmenden
Studierenden in unterschiedlichen Tutorien angemeldet und daher nicht
zwangsldufig von denselben Korrekteur:innen bewertet worden sind. Eine
einheitliche Bewertung der Produkte wire damit nicht gewéhrleistet. In der
Beweis- als auch Problemloseforschung gibt es aber bereits einige Vorarbeiten,
die dem jeweiligen Produkt eine Leistungsbewertung unterzichen. Die
verschiedenen Ansitze grenzen sich dadurch ab, dass die Bewertung des Produkts
ganzheitlich (z. B. Kempen & Biehler, 2019) oder detailliert, teilweise mittels
verschiedener Merkmalsdimensionen (z. B. Fiillgrabe & Eichler, 2019),
durchgefiihrt wird. Detaillierte bzw. komplexere Ansétze haben dabei den Vorteil,
dass iiber einzelne Ausprigungen® des Produkts Aussagen getroffen und bessere
Schlussfolgerungen iiber das Produkt an sich gezogen werden kénnen. In dieser
Arbeit steht die Untersuchung des Produkts allerdings nicht im Fokus. Vielmehr
soll die Bewertung des Produkts genutzt werden, um den Fortschritt der Losung
festzuhalten, damit Riickschliisse auf erfolgreiche bzw. weniger erfolgreiche
Problembearbeitungsprozesse gezogen werden konnen. In dieser Untersuchung
ist daher ein ganzheitliches als auch eindimensionales Bewertungsschema
passend.

Sowohl das Bewertungsschema von Kirsten (2020) als auch das
Bewertungsschema von Rott (2013) beschreiben den Fortschritt der Losung eines
Beweis- bzw. Problemloseprodukts. Kirsten (2020) hat das Bewertungsschema
von Malone et al. (1980) iibernommen und adaptiert. Rott (2013) hat sein
Bewertungsschema selbst entwickelt, allerdings auf Grundlage bereits
bestehender Schemata (z. B. Zielinski, 1992). In beiden Bewertungsschemata
sind die einzelnen Kategorien als Qualititsabstufungen zu verstehen, wobei
Kirsten (2020, S. 155) dafiir fiinf und Rott (2013, S. 185) vier Kategorien
verwendet. Es handelt sich demnach um einen kriteriumsorientierten Mal3stab,
bei dem die Bewertung nicht nach Punkten, sondern anhand von Kategorien
festgestellt wird. Durch einen solchen Mafistab entsteht das Risiko, dass
(mogliche) unterschiedliche Schwierigkeitsniveaus von Aufgaben untereinander
verglichen werden. Der Vorteil einer solchen Bewertung ist allerdings, dass
Ergebnisse verschiedener Aufgaben leicht miteinander verglichen werden
konnen.

Die Kategorien bei Kirsten (2020) und Rott (2013) haben fast die gleichen
Beschreibungen, wobei durch die zusitzliche Kategorie die Abstufungen bei

35 In der Bewertung von Beweisen sind mogliche Auspriagungen z. B. Vollstindigkeit der
Argumentationskette, seine globale Struktur, Giiltigkeit der Schliisse, etc. (Fiillgrabe &
Eichler, 2019)
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Kirsten etwas detaillierter als bei Rott sind. Fiir die Bewertung des Produkts
wurde sich in dieser Arbeit jedoch dazu entschieden, das vierstufige
Kategoriensystem von Rott (2013, S. 185) zu iibernehmen (Tabelle 14). Dies hat
den einfachen Grund, dass der Wortlaut bereits auf das Problemldsen abgestimmt
ist. AuBBerdem wird davon ausgegangen, dass eine vierstufige Kategorisierung
ausreichend ist, um die Losungsprodukte der Studierenden einzuordnen.

Kategorie Code Beschreibung

Kein Ansatz L1 Die Aufgabe wurde nicht sinnvoll bearbeitet und / oder
es wurde keine Losung abgegeben

Einfacher Ansatz L2 Das Problem wurde zu Teilen korrekt bearbeitet, dabei
zeigen sich aber deutliche Méngel; wenn die Losung
Erklarungen erfordert, fehlen diese.

Erweiterter Ansatz L3 Das Problem wurde zu groBen Teilen korrekt
bearbeitet; wenn die Losungen Erkldrungen erfordert,
sind zumindest Ansdtze dazu vorhanden

Korrekter Ansatz L4 Das Problem wurde korrekt gelost; wenn die Losung
Erklarungen erfordert, sind diese angemessen gegeben.

Tabelle 14: Bewertungsschema zum Losungsprodukt nach Rott (2013, S. 185)

Im Folgenden wird ein Beispiel fiir die Kodierung vorgestellt (Abbildung 23).
Dabei wird absichtlich ein Grenzfall hinsichtlich der Kodierung des Produkts
dargestellt.

In seinem Losungsprodukt schreibt David zunédchst alles detailliert und korrekt
auf, bis zu seiner letzten Umformung des Differentialquotienten. Bei dem
Ausdruck lxllr(l) X - cos (i—z) folgert David, dass dies nicht gehen wiirde und ein
Grenzwert dadurch nicht bestimmt werden kann. Nach dem Kategorienkatalog
(Tabelle 14) kann sowohl fiir L2 als auch L3 pladiert werden. Tatsdchlich wird
das Problem von David zu groBen Teilen (korrekt) bis zum letzten Schritt
bearbeitet, welches auf L3 hindeuten wiirde. Allerdings ist die Bestimmung des
tatsdchlichen Grenzwerts womoglich der wichtigste Schritt in dieser Aufgabe.
Dadurch konnte ebenfalls argumentiert werden, dass das Problem nur zu Teilen
korrekt gelost wurde und somit L2 kodiert werden sollte. Letztendlich wurde sich
fiir die Losungsqualitdt L3 entschieden.
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Abbildung 23: David Produkt zur Aufgabe ,,Differenzierbarkeit priifen*
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Die beschriebene Auswertungsmethode ldsst sich somit als qualitative
Inhaltsanalyse (Mayring, 2022, S. 12f.) auffassen.

1.

2.

Kommunikation: Es dient der Analyse von Sprache und Bildern (hier:
die Bearbeitungsprodukte der Studierenden)

Fixierte Kommunikation: Sprache und Bilder liegen in protokollierter
Form vor (hier: Bilder, Dateien der Studierenden)

Systematisch: Die Analyse geht systematisch vor (z. B. keine freien
Interpretationen)

Regelgeleitet: Die Analyse geht regelgeleitet vor und ist damit
nachvollziehbar und iiberpriifbar (durch die Kategorien)
Theoriegeleitet: Es basiert auf dem theoretischen Uberlegungen zur
Produktbewertung

Riickschliisse: Durch die Analyse konnen Riickschliisse iiber das
analysierte Material gezogen werden
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6 Analyse und Ergebnisse

Im  Rahmen  der empirischen  Studie  werden  mathematische
Problembearbeitungsprozesse von Studierenden untersucht. Die Ergebnisse teilen
sich dabei in vier Kapitel auf: Fokus auf die Steuerung (Kapitel 6.1), das Wissen
(Kapitel 6.2), die Heurismen (Kapitel 6.3) und eine gemeinsame Betrachtung der
Kategorien (Kapitel 6.4). Die gemeinsame Betrachtung der Kategorien baut dabei
auf den Kodierungen der drei vorherigen Kapitel auf.

Ein kurzer Uberblick iiber die analysierten Problembearbeitungsprozesse
verdeutlicht den Rahmen der Untersuchung. Diese wurde wihrend der
Vorlesungszeit durchgefiihrt und konzentrierte sich auf die Bearbeitung von
Hausaufgaben. Dabei wurde besonderer Wert darauf gelegt, die Studiensituation
so authentisch wie mdglich zu gestalten (Kapitel 5.2.2). Den teilnehmenden
Studierenden wurde nicht vorgeschrieben, jede Aufgabe der Hausaufgabe zu
bearbeiten; die Entscheidung, welche Aufgaben bearbeitet wurden, lag
vollstindig bei ihnen. Fiir die Analyse wurden letztendlich drei von neun
Aufgaben ausgewéhlt (Kapitel 5.3), wodurch 13 Problembearbeitungsprozesse in
dieser Arbeit untersucht werden (Tabelle 15).

Gruppe Name Differenzierb  Mittelwertsat L Hospital Gesamt
arkeit priifen  z
Gl1 David 39:48 min 33:05 min 49:33 min 2:02:26 h
G3 Thomas  27:34 min 22:09 min 14:29 min 1:04:12h
Alex
G4 Sarah 06:56 min 23:21 min 27:15 min 0:57:32h
Lisa
Paula
Lea
G5 Nick 11:08 min 15:47 min 08:09 min 0:35:04 h
G6 Lukas 18:13 min - - 0:18:13 h
Gesamtlinge 1:43:39 h 1:34:22 h 1:39:26 h 4:57:27h
Durchschnitt 20:44 min 23:36 min 24:52 min 22:53 min

Tabelle 15: Ubersicht der Problembearbeitungsprozesse

Die Aufgabe ,Differenzierbarkeit priifen (Kapitel 5.3.1) war Teil von
Hausaufgabenblatt 12, wihrend die Aufgaben ,Mittelwertsatz* (Kapitel 5.3.2)
und ,,L"Hospital“ (Kapitel 5.3.3) Teil von Hausaufgabenblatt 13 waren. Lukas hat
die Hausaufgabe 13 nicht bearbeitet, sondern in seiner Lernzeit die Aufgaben aus
dem Tutorium wiederholt. Dadurch fliefit lediglich seine Bearbeitung zu einer
Aufgabe in die Untersuchung ein. Die Bearbeitungen von Simon (G2) wurden
aus der Analyse gestrichen, da er die relevanten Aufgaben entweder nicht
bearbeitet oder nach dem Abschreiben der Aufgabe sofort abgebrochen hat.
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Die Bearbeitungszeit der einzelnen Aufgaben liegt zwischen 06:56 Minuten (Lea,
Lisa, Sarah und Paula, ,,Differenzierbarkeit priifen*) und 49:33 Minuten (David,
,,L."Hospital*). Durchschnittlich betrdgt die Bearbeitungszeit pro Aufgabe etwa
22:53 Minuten. David beschéftigte sich durchschnittlich am langsten mit den
Aufgaben, wihrend Nick durchschnittlich die kiirzeste Bearbeitungszeit aufweist.
Innerhalb der Aufgaben gibt es zeitlich groere Unterschiede in den jeweiligen
Prozessen, allerdings ist die durchschnittliche Bearbeitungszeit zwischen den
Aufgaben iiber die Lerngruppen hinweg sehr dhnlich.

6.1 Rekonstruktion von Steuerung in den
Problembearbeitungsprozessen

Dieses Kapitel beschiftigt sich mit den Problembearbeitungsprozessen der
Studierenden und stellt die Rekonstruktion der Steuerung in den Fokus. Fiir die
Beschreibung der Steuerung wurde sich fiir die Schoenfeld Episoden entschieden
(Kapitel 5.4.1). Die Anwendung der Schoenfeld Episoden wird in Kapitel 6.1.1
durch eine Fallanalyse des Prozesses von Alex und Thomas dargestellt.
AnschlieBend wird iiber die Kodierungen der Schoenfeld Episoden sowohl ein
Gesamtiiberblick (Kapitel 6.1.2) als auch ein Uberblick iiber die Prozesse der
einzelnen Lerngruppen gegeben (Kapitel 6.1.3). Darauthin erfolgt eine Analyse
der Prozesse anhand spezifischer Merkmale. Zundchst erfolgt eine
Rekonstruktion der Reihenfolge von Episoden (Kapitel 6.1.4), gefolgt von der
Untersuchung des Verhaltens ,,wild goose chase* (Kapitel 6.1.5). Zudem wird der
Zusammenhang mit Erfolg bzw. Misserfolg betrachtet (Kapitel 6.1.6).
AbschlieBend lassen sich die zentralen Ergebnisse zur Steuerung festhalten
(Kapitel 6.1.7).

6.1.1 Fallanalyse zur Steuerung mithilfe der Episoden nach Schoenfeld

In diesem Abschnitt werden die verschiedenen Episodentypen nach Schoenfeld
anhand einer Fallanalyse (Héder, 2019, S. 3711f.; Hering & Schmidt, 2014) eines
Problembearbeitungsprozesses vorgestellt. Diese Fallanalyse dient nicht
ausschlieBlich der Beantwortung der Forschungsfragen, sondern ebenfalls zur
detaillierten Darstellung der verschiedenen Episodentypen. Da im methodischen
Teil (Kapitel 5.4.1) dieser Arbeit auf die Darstellung von Beispielen zu den
Episoden verzichtet wurde, veranschaulicht die Fallanalyse zusétzlich, wie die
Durchfiihrung der Kodierung erfolgt. Der detaillierte
Problembearbeitungsprozess von Alex und Thomas beinhaltet jede Episode
mindestens einmal und dient somit als anschauliches Beispiel. Die folgenden
Ausfithrungen adressieren demnach die Forschungsfrage:
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(S1) Welche Episoden durchlaufen Ingenieurstudierende bei mathematischen
Problembearbeitungsprozessen?

Alex und Thomas haben sich in der Regel nach dem Tutorium getroffen, um
gemeinsam an den Aufgaben zu arbeiten. lhre Lernsessions dauerten
typischerweise zwischen 90 und 120 Minuten und sie waren durchgehend auf die
Bearbeitung der Aufgaben fokussiert. Dabei gingen sie meist in der vorgegebenen
Reihenfolge der Aufgaben vor.

Die Bearbeitung der Aufgabe ,,Differenzierbarkeit priifen* (Kapitel 5.3.1) wurde
von der Lerngruppe (Alex und Thomas) nach einem ersten Versuch unterbrochen,
allerdings zu einem spéteren Zeitpunkt in der gleichen Lernsession erneut
aufgenommen und zu Ende gefiihrt. In dem Bearbeitungsprozess wird deutlich,
dass sich die Lerngruppe besonders lange damit beschéftigt, eine Hiirde im
Losungsprozess (in der Ausfiihrung des Verfahrens) zu iiberwinden. Zum Ende
konnen sie diese bewiltigen und kommen zu einer korrekten Losung. Wéhrend
der Bearbeitung der Aufgabe wird wenig auf einem Blatt Papier oder auf einem
Tablet geschrieben, sondern viel miindlich besprochen bzw. Ideen ausgetauscht.
Im Folgenden wird zundchst die kodierte Episode und der zugehdrige
Zeitabschnitt in Klammern angegeben. Im ersten Absatz wird kurz
zusammengefasst, was in der Episode geschieht. Im anschlieBenden Absatz folgt
eine Interpretation (und somit auch gleichzeitig die Erklarung zur Kodierung) zu
den Handlungen oder Aussagen der Studierenden (auBler bei Reading und einer
zeitlich kurzen Transition). Letztlich werden die Kodierungen zusammenfassend
in einer Ubersicht dargestellt.

Reading (00.00 — 00.10): Der Bearbeitungsprozess beginnt mit dem Uberfliegen
der Aufgabenstellung, wobei Alex die Aufgabe teilweise laut vorliest.

Planning (00.11 — 01.21): Alex schligt vor, dass die Aufgabe dadurch geldst
werden kann, indem man die Definition der Differenzierbarkeit nutzt. ,,Ah, jetzt
miissen wir quasi den &h, die die Definition nehmen, ne, mit dem, dhm mit dem
Grenzwert quasi direkt* (00.11). Thomas stimmt zunéchst zu, sagt aber, dass er
sich dies nochmal anschauen miisse. Beide suchen daraufhin in ihren Unterlagen
aus dem Tutorium und verschaffen sich einen kurzen Uberblick dariiber (ab
00.19). Alex beruft sich daraufthin erneut auf seine Idee, den Funktionswert aus
der Aufgabenstellung in die Definition der Differenzierbarkeit einsetzen zu
miissen. Des Weiteren stellt Alex heraus, dass es sich in der Aufgabe um x, = 0
handelt, wobei er dies als Frage an Thomas formuliert (01.04). Thomas schweigt
daraufhin.

Bis zum jetzigen Zeitpunkt bestehen die Aktivitdten von Alex und Thomas darin,
die Bearbeitung der Aufgabe zu planen, wobei Alex ausschlaggebend fiir die
Generierung von Ideen ist. Der vorgeschlagene Ansatz von Alex erweist sich als
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treffend, weil das Verfahren ,Differenzierbarkeit priifen” der typische
Losungsweg fiir diese Aufgabe wire. Durch Nachschlagen in den Unterlagen des
Tutoriums versucht Alex seine Idee abzusichern. Durch mehrmaliges Nachfragen
zeigt sich jedoch, dass Alex Unsicherheiten hinsichtlich des Vorgehens aufweist,
was Anlass fiir die folgende Episode ist.

Analysis (01.22 — 02.07): Alex und Thomas schauen noch einmal eine kurze Zeit
tiber die Aufgabenstellung und diskutieren, was genau f“(0) im Kontext der
Aufgabe bedeutet. Alex erkldrt, dass dies mit der Definition der
Differenzierbarkeit bestimmt werden kann. Um seine Aussagen zu bekréftigen,
deutet er dabei auf die Aufgabe aus dem Tutorium und weist auf die Ahnlichkeit
der Aufgabe hin: ,,Weil das ist ja quasi genau das gleiche®.

Aufgrund der vorhergehenden Episode Planning entscheiden sich Alex und
Thomas, einen Schritt zuriickzugehen und die Aufgabenstellung erneut zu
betrachten. Es werden Aktivititen durchgefiihrt, um die Aufgabe genauer zu
analysieren, da einerseits der Plan von Alex zunéchst unsicher formuliert wurde
und andererseits Thomas nicht vollstindig nachvollziechen konnte, was mit f'(0)
gemeint ist. Nach kurzer Uberlegung und Vergleich mit der Aufgabe aus dem
Tutorium ist sich Alex aber sicher, dass dies durch die Definition der
Differenzierbarkeit bestimmt werden kann. Er bezieht sich bei der Aussage auf
die Aufgabe aus dem Tutorium, wobei Alex die Ahnlichkeit der Aufgabe
herausstellt.

Implementation (02.08 — 02.57): Alex und Thomas schreiben die Definition der
Differenzierbarkeit auf. Alex spricht dabei laut mit und ersetzt sukzessive die
Variablen aus der Definition der Differenzierbarkeit mit den Informationen, die

sie aus der Aufgabenstellung herausgefiltert haben. Schlussendlich gelangen
fx)

beide zu einem Ausdruck lirr(} — bei dem sich die Frage stellt, wie der nichste
x—

Schritt erfolgen kann.

Auf Basis der vorhergegangen Episoden Planning und Analysis kénnen Alex und
Thomas mit der Umsetzung des Plans beginnen. Allerdings stoflen Alex und
Thomas dabei auf das Problem, wie die abschnittsweise definierte Funktion aus
der Aufgabenstellung eingesetzt werden kann. Da dies im Sinne der Kodierung
keine kleine Unsicherheit wihrend der Implementation ist (wie im Folgenden
nachgelesen werden kann), markiert dies den Beginn der nichsten Episode. Im
weiteren Verlauf des Losungsprozess wird sich herausstellen, dass der Schritt des
Einsetzens in die Definition der Differenzierbarkeit eine Hiirde fiir die
Lerngruppe darstellt.

Exploration (02.58 — 04.18): Alex und Thomas schauen beide in Unterlagen aus
dem Tutorium und vergleichen die dort angewandte Vorgehensweise mit der
aktuell vorliegenden Aufgabe. Alex macht dabei seine Irritation deutlich, warum
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das gleiche Vorgehen nicht in der aktuellen Aufgabe funktioniert. Nach kurzer
Zeit fallt Alex auf, worin der Unterschied liegt: ,,Ja, aber die Grundfunktion ist ja
trotzdem ih, also er hat als f(x) das gegeben®®. [...] wir haben halt f(x) die zwei
Bedingungen gegeben [Thomas nickt]“. Fiir Alex ergibt sich dabei aber das
Problem, wie f(x) nun in die Formel ersetzt werden kann.

Der Grund fiir die Kodierung der Exploration ist, dass sie wihrend der
Implementation auf eine groflere Hiirde gestoen sind und nun nach
Moglichkeiten suchen, um diese zu iiberwinden. Dabei ist die erste Anlaufstelle
erneut die Aufgabe aus dem Tutorium, wobei bei dieser Betrachtung ein Vergleich
zwischen den beiden Aufgaben, insbesondere beziiglich der gegebenen
Funktionen, gezogen wird. Ein zielfiihrender Fortschritt fiir den Losungsprozess
konnte dabei allerdings nicht erzielt werden.

Exploration® (04.19 — 04.56): Thomas wirft einen neuen Ansatz in den Raum
und mochte die Ableitung der Funktion bilden. Alex stimmt zunichst zu, zweifelt
nach kurzer Zeit allerdings an dem Vorgehen, weil die Ableitungsregeln fiir
verkettete Funktion in der Vorlesung noch nicht behandelt worden sind.

Thomas sagt zwar, dass er die Ableitung bilden mdchte, allerdings meint er damit
nicht die vermeintlich korrekte Vorgehensweise (Verfahren: Differenzierbarkeit
priifen), um die Aufgabe zu losen. Stattdessen geht er davon aus, dass die
einzelnen Intervalle der Funktion unabhingig voneinander abgeleitet werden
sollen. Die Aussage, dass sie dies einfach mal probieren kdnnen, um zu schauen,
,,0b wir da eine gescheite [Ableitung] kriegen®, zeigt den explorativen Charakter
(Erkundungen im Losungsraum) dieser Episode.

Exploration (04.57 — 05.56): Thomas bringt einen neuen Ansatz ein, indem er
sich an einer weiteren Aufgabe aus dem Tutorium orientiert. Dabei werden kurze
Uberlegungen angestellt, die sie aber schnell verwerfen.

Die Orientierung an einer weiteren Aufgabe aus dem Tutorium ldsst darauf
schlieBen, dass im Ldsungsprozess kaum Fortschritte erzielt wurden. In der
Aufgabe aus dem Tutorium handelt es sich um die Uberpriifung von Stetigkeit
einer Funktion in einem Punkt. Zwar wird dort ebenfalls mit Grenzwerten
argumentiert, jedoch entspricht dies inhaltlich nicht der richtigen
Herangehensweise. Es wird dadurch eher deutlich, dass versucht wird, mit
jeglichen Mitteln an eine Losung bzw. Hilfe zu kommen.

36 Funktionsterm aus der Aufgabe des Tutoriums: f(x) = |x|x

37 An dieser Stelle schlief8t eine Episode Exploration einer weiteren Episode Exploration an.
Die Kodierung wurde so vorgenommen, um zu signalisieren, dass an dieser Stelle ein neuer
Ansatz verfolgt wird. Dennoch bleiben Alex und Thomas grundlegend in der Episode
Exploration. Diese Art von Kodierung taucht in diesem Problembearbeitungsprozess noch
weitere Male auf.
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Transition (05.57 — 06.43): Nach einer kurzen Phase des Schweigens fragt sich
Alex erneut, ob das Einsetzen in die Definition der Differenzierbarkeit der
richtige Ansatz ist. Er will aber weiterhin daran festhalten, weil er glaubt, dass die
Aufgabe damit geldst werden miisse. Im Anschluss folgt wieder eine Phase des
Schweigens.

Alex beweist mit seiner Aussage, dass er die richtige Intuition fiir die Aufgabe
entwickelt hat. Vermutlich erkennt er auch, dass das Problem eher darin liegt, wie
eine abschnittsweise definierte Funktion in die Definition der Differenzierbarkeit
eingesetzt werden kann.

Exploration (06.44 — 08.40): Thomas schlidgt vor, in der Vorlesung nach
Beispielen zu schauen. Beide suchen darauthin in ihren Unterlagen, wobei sich
Thomas erneut auf ein Beispiel konzentriert, bei dem die Stetigkeit einer Funktion
in einem Punkt {iberpriift werden soll (07.26). Thomas bringt daraufhin die Idee
ein, sich von beiden Seiten der Funktion der 0 anzundhern, um die Funktion nach
einem Sprung zu untersuchen. Alex dringt wiederum darauf hin, dass man
einfach mal probieren konnte, die Funktion in die Definition der
Differenzierbarkeit einzusetzen, wobei dies erneut nicht durchgefiihrt wird.
Thomas erkundet weiterhin den Losungsraum, um an Informationen zu gelangen,
die im weiteren Verlauf der Bearbeitung hilfreich sein konnten. Es zeigt sich
allerdings, dass Thomas bereits Schwierigkeiten damit hat, eine geeignete
dhnliche Aufgabe zu finden.

Exploration (08.41 — 11.30): Alex schlédgt vor, sich die Funktion aus der Aufgabe
visualisieren zu lassen (Abbildung 24), wobei dies einige Zeit in Anspruch nimmt.
Alex gibt dabei nur den Teil der Funktion ein, welcher nicht in 0 definiert ist.
Beide schauen sich den Graphen der Funktion genauer an, wobei Alex sagt, dass
der Graph der Funktion ganz komisch aussehen wiirde und die Ableitung nicht
sinnvoll sei (11.17). Fiir seine Vermutung gibt er allerdings keinen Grund an.
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Abbildung 24: Graph der Funktion f, den Alex und Thomas betrachten

Alex entscheidet sich, die Funktion aus der Aufgabe zu visualisieren. Es wird
allerdings nicht deutlich, wieso er erneut nicht seinen eigenen vorgeschlagenen
Ansatz des Einsetzens in die Definition der Differenzierbarkeit verfolgt. Vielmehr
geht er den Ansatz nach, den Thomas vorgeschlagen hat: Untersuchen nach einem
Sprung in der Stelle 0. Dies bringt allerdings auch keinen zielfithrenden
Fortschritt in der Aufgabe.

Exploration (11.31 — 14.17): Alex vermutet, dass die Ableitung der Funktion im
Punkt 0 auch 0 ist, woraufhin Thomas dem zustimmt. Der Grund dafiir wire die
Bedingung aus der Aufgabe. Thomas erklért: ,,Die obere Funktion ist ja gesamt f
[Alex zustimmend] und fiir die, wo sie nicht definiert ist fiir x,, ist 0 als
Ersatzwert. Und wenn du dann die Ableitung fiir f°(0) machst, ist das 0, weil
Ableitung von 0 ist 0° (12.10). Alex hadert mit dieser Aussage und fragt sich
erneut, ob man dann nicht einfach in die Definition der Differenzierbarkeit
einsetzen konne. Thomas entgegnet, dass man dann durch 0 teilt, wenn man den
Differentialquotienten bilden wiirde. Alex stimmt zu. Darauthin wechseln sie
wieder zur visuellen Ansicht des Graphen der Funktion f und versuchen grafisch
die Steigung im Punkt 0 zu bestimmen. Alex merkt an dabei an, dass die Steigung
in 0 auch nach 0 aussieht (12.53). Thomas versucht hingegen nach Nullstellen zu
schauen, wobei Alex entgegnet, dass dies keine gute Idee ist, weil dies ,,ultra
viele® (13.33) sind. Beide einigen sich daraufhin, dass Nullstellen ihnen beim
Losungsprozess nicht helfen.

Alex und Thomas wechseln zum Ende der Episode zwischen verschiedenen
Ansitzen hin und her, allerdings ohne tiefergehend dariiber zu diskutieren. Dabei
gelangen sie zu keinem Hinweis, der fiir die Losung helfen konnte. Sie verwerfen
dabei erneut den vermeintlich richtigen Weg, weil sie davon ausgehen, dass sie
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dann durch 0 teilen wiirden. Dies ist nicht der Fall, da sich zuvor das x im Nenner
mit einem x aus dem Zahler kiirzen lief3e.

Transition (14.18 — 14.32): Alex und Thomas entscheiden sich, zu einem
spéteren Zeitpunkt in der Lernsession nochmal zur Aufgabe zuriickzukehren. In
der Zwischenzeit bearbeiten sie eine andere Aufgabe.

Exploration (14.33 — 17.02): Nach der Riickkehr zur Aufgabe fingt Alex damit
an, den Suchbegriff ,,Differenzierbarkeit priifen” in Google einzugeben. Thomas
entscheidet sich, im Mathebuch® nachzuschauen, welches parallel zur
Veranstaltung empfohlen wird. Nach eingehender Suche bemerkt Alex, dass die
im Internet gefundenen Beispielaufgaben ebenfalls die Definition der
Differenzierbarkeit verwenden (16.33). Diese Methode wiirde in der eigenen
Bearbeitung der Aufgabe allerdings zu Problemen beim Einsetzen der Funktion
in die Definition der Differenzierbarkeit fiihren.

Die Wiederaufnahme der Bearbeitung zu der Aufgabe fangt direkt mit der Suche
nach Losungsmoglichkeiten an, was den explorativen Charakter der Episode
widerspiegelt. Fiir Alex fiihrt dies erneut zu dem Problem, bei dem sie bereits
vorher nicht weitergekommen sind.

Exploration (17.03 — 19.33): Thomas wirft ein Beispiel ein, welches er im Buch
gefunden hat. Dabei handelt es sich ebenfalls um eine abschnittsweise definierte
Funktion, die auf Differenzierbarkeit {iberpriift wird®®. Thomas liest die
Ausfiihrungen aus dem Buch vor und resiimiert, dass man fiir die
unterschiedlichen Intervalle zwei verschiedene Werte erhilt, wodurch ein Sprung
entsteht. Beide stellen fest, dass darin der Unterschied zur eigenen Aufgabe liegt:
In der Beispielaufgabe hat die Funktion einen Knick, die Funktion aus der eigenen
Aufgabe ,,ist halt differenzierbar* (19.06).

Das Beispiel aus dem Buch will den Zusammenhang zwischen Stetigkeit und
Differenzierbarkeit zeigen, bzw. dass es Funktionen gibt, die zwar in einem Punkt
stetig, aber nicht differenzierbar sind. In ihrer Diskussion zur Beispielaufgabe
ignorieren sie den aufgefiihrten Differenzenquotienten und sprechen nur davon,
dass sich die Funktion an der Stelle 0 sowohl von links als auch von rechts der 0
anndhert. Es ldsst sich vermuten, dass die Methode des Priifens von Stetigkeit mit
der Methode des Priifens der Differenzierbarkeit einer Stelle einer Funktion von
Alex und Thomas verwechselt wird. Dies zeigt sich moglicherweise auch in der
Aussage von Alex, der als Fazit abgibt, dass die Funktion aus der Aufgabe
differenzierbar ist, obwohl Alex und Thomas auf der bildlichen Ebene
(Anndherung an einen Punkt der Funktion von links und von rechts) von der
Stetigkeit gesprochen haben.

38 gemeint ist das Buch ,,Hohere Mathematik fiir Ingenieure Band I von Burg et al. (2017)
39 zu finden auf Seite 211f. in Burg et al. (2017)
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Exploration (19.34 — 19.59): Thomas zeigt ein weiteres Beispiel, welches erneut
zum altbekannten Problem fiihrt, dass der Funktionsterm der Aufgabe nicht in die
Definition der Differenzierbarkeit eingesetzt werden kann, weil man durch 0
teilen wiirde.

Thomas findet ein weiteres Beispiel, welches allerdings keinen zielfiihrenden
Fortschritt zur Losung beitragen kann.

Planning (20.00 — 20.22): Alex unterbreitet erneut den Vorschlag, den
Funktionsterm einfach mal in die Definition der Differenzierbarkeit einzusetzen.
Er fiihrt weiter aus: ,,..., weil du kannst ja ein x einfach rauskiirzen. [...] Du
kannst bei Grenzwertbestimmung darfst du ja, das darfst du das ja rauskiirzen®.
Trotz ihrer vorherigen Ansicht, dass das Einsetzen in die Definition der
Differenzierbarkeit aufgrund einer Division durch 0 nicht zielfithrend ist, schldgt
Alex vor, es dennoch zu versuchen. Aufgrund der konkreten Idee, wie sie ihre
Hiirde iiberwinden (ein x aus dem Bruch zu kiirzen), wird somit die Episode
Planning kodiert.

Planning und Implementation (20.23 — 21.22): Alex ersetzt nun die Variablen
aus der Definition der Differenzierbarkeit mit den Voraussetzungen aus der
Aufgabe, kiirzt das x aus dem Bruch und folgert, dass der iibriggebliebene
Ausdruck gegen 0 laufen muss. Beide schlussfolgern aufgrund der Rechnung,
dass die Funktion damit differenzierbar ist.

Zuniachst wird Planning und Implementation zur selben Zeit kodiert, weil Alex
einerseits das Vorgehen plant, dies aber gleichzeitig umsetzt.

Implementation (21.23 — 22.50): Alex und Thomas schreiben nun auf, was sie in
der vorherigen Episode besprochen haben. Alex sagt dabei, dass es ja 0 werden
muss, weil das x in dem Ausdruck immer dominiert. Dabei ist es egal, was mit
dem Kosinus ist, weil dieser Wert ohnehin zwischen 0 und 1 bleibt und damit
beschrénkt ist.

Wihrend der Umsetzung des Plans sto3en Alex und Thomas auf die Hiirde, wie
sie nun den gekiirzten Grenzwert berechnen sollen. Schlielich gelangen sie zum
richtigen Endergebnis.

Verification (22.51 — 24.08): Alex fragt sich, ob mit der Bestimmung des
Grenzwerts gleichzeitig schon f7(0) bestimmt wurde. Thomas stimmt dem zu
und fiigt hinzu, dass es aufgrund der Bedingung aus der Aufgabe ohnehin so sein
miisse: ,,f (x) = 0 fiir x = 0. Damit weil3t du doch schon, was f"(0) ist. Ist schon
direkt mit angegeben (23.19). Alex widerspricht dem und beantwortet damit
seine eingangs gestellt Frage selbst. Er ergédnzt, dass die Funktion nur die
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Steigung 0 hat, weil es mit der Definition der Differenzierbarkeit nachgewiesen
wurde.

Alex mdchte mit seiner Frage zundchst Bestitigung von Thomas erhalten, dass
die Aufgabe nun vollstdndig geldst ist. Die Bestitigung erhélt er, allerdings fiigt
er mit seiner Antwort die Fehlvorstellung hinzu, dass die einzelnen Intervalle der
Funktion unabhéngig voneinander abgeleitet werden. Die gleiche Aussage hat
Thomas bereits vorher im Bearbeitungsverlauf getitigt. Es deutet darauf hin, dass
Thomas mit dem Losen der Aufgabe diese Wissensliicke nicht schlieen konnte.

Verification (24.09 — 25.36): Thomas stellt die Frage, ob sich die Funktion der 0
wie eine Parabel anndhert. Damit erklért er sich, dass in x = 0 der Funktion auch
die Steigung 0 vorhanden ist. Beide diskutieren iiber den Graphen der Funktion,
wobei sie versuchen zu verstehen, wieso die Form einer Parabel entsteht. Alex
wirft ein, dass die Kosinusfunktion der Grund dafiir ist.

Thomas und Alex versuchen anhand des Graphens der Funktion ihr Ergebnis zu
validieren. Dabei diskutieren sie aber primér iiber das Aussehen des Graphens,
anstatt iiber die kritische Stelle bei 0 zu sprechen.

Verification (25.37 — 27.34): Alex und Thomas gehen den eigenen Rechenweg
gemeinsam durch und finden dabei keinen Fehler. Sie sind sich einig, dass sie
alles richtig gemacht haben und entscheiden sich, die Losung weiter
aufzuschreiben. Dabei notiert Alex, dass das x dominiert, weil der Kosinus sich
zwischen —1 und 1 bewegt. Damit ist der Grenzwert des Differenzenquotienten
der Funktion 0.

Am Ende der Bearbeitung kontrollieren Alex und Thomas ihr Vorgehen und sind
sich dabei einig, dass die Aufgabe vollstindig geldst wurde.

\C@] - {@ . \,{T- C OSL—?) . o
Iflﬁ X -0 —}(lllﬂ-__—. = lim .503[-,(; =0
Y0 28 X * =20

X ogib—iw'ew‘l | 0(01 0§ immer 2wisc Le.r., T wndd -7 = ('ra) =0

Abbildung 25: Vollstandige schriftliche Losung zur Aufgabe ,,Differenzierbarkeit priifen” von Alex

Alex und Thomas schaffen es zum Ende ihrer Bearbeitung zu einer Losung zu
gelangen (Abbildung 25). Dabei sind sie gemél der Kodierung jeden Episodentyp
mindestens einmal durchlaufen.
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6.1.2 Uberblick zur Steuerung in den Problembearbeitungsprozessen

R A E P | A\ T LQ
Alex und Thomas
Diffbar 0,6 2,77 574 99 8,9 17,2 33 L3
MWS 0 0 388 2,5 56,1 0 5 L3
L Hospital 4 0 63,4 5,6 288 0 0 L3
Schnitt 1,5 0,9 532 6 31,3 5,7 2,8
Lea, Lisa, Sarah und Paula

Diffbar 0 0 1,5 46 464 346 29 L3/4
MWS 1,4 6,5 36,7 11,5 28,1 16,8 4 L4
L’Hospital 0,4 0 36,3 11,3 504 11,1 1,2 L4
Schnitt 0,6 22 282 91 41,6 208 27

David
Diffbar 1,7 51,5 34,6 0 0 1,6 10,6 L3
MWS 4,8 347 59 0 0 0 1,5 L1
L'Hospital 29 3 68,7 0 17,7 0 7,7 L3
Schnitt 3,1 29,7 54,1 0 5,9 0,5 6,6

Nick

Diffbar 10 0 27,8 7,6 50 0 6 L1
MWS 6,7 27,6 454 0 20,3 0 0 L1
L Hospital 8 0 73,7 0 6,3 43 13,3 L1
Schnitt 8,2 92 48,8 2,5 255 1,4 6,4

Lukas
Diffbar 4,2 0 73,7 49 11,6 0 6,7 L1

Alle Problembearbeitungsprozesse

Schnitt 3,5 84 51,6 45 232 57 5

Tabelle 16: Ubersicht iiber die Kodierungen aller Problembearbeitungsprozesse (R = Reading, A =
Analysis, E = Exploration, P = Planning, I = Implementation, V = Verification, T
= Transition, LQ = Losungsqualitit, Diffbar = Differenzierbarkeit priifen, MWS =
Mittelwertsatz)
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Die vorangegangenen Ausfiihrungen zeigen eine ausfiihrliche Beschreibung des
Problembearbeitungsprozesses von Alex und Thomas zur Aufgabe
,,Differenzierbarkeit priifen. Es geht in dieser Arbeit jedoch weniger darum, die
analysierten Problembearbeitungsprozesse deskriptiv in derselben Detailticfe wie
im Beispiel von Alex und Thomas darzustellen, sondern vielmehr um den
Vergleich verschiedener Prozesse. Ein Abstraktionsschritt ermdglicht es, die
Gesamtheit aller Félle parallel zu betrachten (Tabelle 16). Dabei werden die
Problembearbeitungsprozesse anhand der Schoenfeld Episoden sowie der
Losungsqualitit (LQ) gegeniibergestellt. Hinsichtlich der Schoenfeld Episoden
wird der prozentuale Zeitanteil angegeben, den die Episoden in dem
Problembearbeitungsprozess der Studierenden jeweils pro Aufgabe und iiber alle
Prozesse der Gruppe im Schnitt eingenommen haben. Die Werte sind dabei auf
eine Nachkommastelle gerundet. Auerdem kdnnen aufgrund der Kodierregeln
die Episoden Planning und Implementation zusammenfallen, wodurch in einigen
Prozessen die Addition aller Episoden zu etwas mehr als 100 % fiihrt. In der
letzten Zeile wird ebenfalls der prozentuale Zeitanteil der einzelnen Episoden
iber die Gesamtheit aller Prozesse dargestellt. Zusétzlich wird die Bewertung des
Produkts (Kapitel 5.5) der Studierenden beziiglich der Aufgabe in der rechten
Spalte angegeben. In der Aufgabe ,,Differenzierbarkeit priifen” (Tabelle 16; Lea,
Lisa, Sarah und Paula) stehen zwei Bewertungen, da die Studierenden ihre
Losungen unterschiedlich formuliert haben und diese individuell bewertet
wurden.

Insgesamt lésst sich erkennen, dass der GroBteil der Zeit durchschnittlich in der
Episode Exploration (51,6 %) verbracht wird. Nur Lea, Lisa, Paula und Sarah
stellen eine Ausnahme dar, bei denen sich die meiste Zeit auf die Episode
Implementation verteilt. Implementation stellt ber alle Lerngruppen hinweg
durchschnittlich die zweitgroB3te Episode (23,2 %) dar. Die restlichen Episoden
befinden sich durchschnittlich etwa auf einem dhnlichen Zeitniveau zwischen 3,5
% und 8,4 %.

6.1.3 Darstellung und Gegeniiberstellung der Problembearbeitungsprozesse
der Lerngruppen

Im Folgenden werden die Problembearbeitungsprozesse zu den drei Aufgaben
(Kapitel 5.3) der einzelnen Lerngruppen fokussiert. Dabei werden auf
Unterschiede, Gemeinsamkeiten und mdgliche Interpretationen zu den einzelnen
Prozessen eingegangen. Zur Darstellung der Prozesse wird der
Bearbeitungsverlauf anhand der Schoenfeld Episoden und der zeitlichen
Auspragung dargestellt (wie z. B. Abbildung 26).
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Schoenfeld Episoden in den Problembearbeitungsprozessen von Alex und Thomas

Im Folgenden werden die drei Problembearbeitungsprozesse von Alex und
Thomas dargestellt (Abbildung 26).

Aufgabe: Differenzierbarkeit priifen

Episode

1 Reading
2 Analysis

3 Exploration

4 Planning

5 Implementation

7 Transition I

Zeit in min 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Aufgabe: Mittelwertsatz

Episode
1 Reading

2 Analysis

3 Exploration

4 Planning

5 Implementation

6 Verification

7 Transition

Zeit in min 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Aufgabe: L Hospital

Episade

1 Reading -

2 Analysis

3 Exploration

4 Planning

5 Implementation

6 Verification

7 Transition

Zeit in min 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Abbildung 26: Darstellung der Problembearbeitungsprozesse von Alex und Thomas anhand der
Kodierung der Schoenfeld Episoden

Alex und Thomas starten zu Beginn ihrer drei Problembearbeitungsprozesse
ziigig in die Produktion einer Losung, ohne sich groBartig mit den eigentlichen
Aufgabenstellungen auseinanderzusetzen. Sowohl Reading als auch Analysis
(lediglich in Aufgabe ,,Differenzierbarkeit priifen®) stellen daher einen geringen
Teil ihrer Problembearbeitungsprozesse dar. Stattdessen ist zu erkennen, dass
Alex und Thomas sich in den drei Bearbeitungsprozessen sehr zeitnah nach dem
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Start in die Episode Implementation begeben. Wihrend der Implementation
erzielen Alex und Thomas zwar einen Losungsfortschritt, allerdings wechseln sie
jedes Mal in die Exploration. In diesen Episoden suchen Alex und Thomas nach
niitzlichen Informationen, die ihnen bei der Losung der Aufgaben weiterhelfen.
Letztendlich kehren sie in die Implementation zuriick, womit die
Bearbeitungsprozesse immer enden. In der Aufgabe ,,Differenzierbarkeit priifen*
nehmen sie zusitzlich Zeit in Anspruch, um die eigene Losung zu kontrollieren
(Verification). Wiahrend des gesamten Problembearbeitungsprozesses wird nur
gelegentlich vor der Implementation ein Plan expliziert.

Aus den Bearbeitungsprozessen lassen sich anhand der Episoden ableiten, dass
Alex und Thomas wenig bis gar nicht versuchen, die Aufgabe (besser) zu
verstehen, sondern direkt mit der Bearbeitung beginnen. Dies konnte darauf
hindeuten, dass beide sofort in einen Bearbeitungsversuch starten, ohne viel
dariiber nachzudenken, was sie genau tun. Allerdings ist das Uberspringen von
Reading und Analysis sowie der unmittelbare Ubergang in die Implementation in
dem Fall von Alex und Thomas eher so zu deuten, dass beide bereits ein gutes
Gesplir dafiir haben, was fir die Losung der Aufgabe verlangt ist. Die
Hausaufgaben haben Alex und Thomas immer direkt im Anschluss des Tutoriums
bearbeitet. Da die Aufgaben in dem Tutorium sich den Hausaufgaben dhneln, l4sst
sich auf eine klare Vorstellung von Alex und Thomas schlieen, wie die Aufgaben
formuliert sind und welche Anforderungen diese besitzen. Aus dem gleichen
Grund wird vermutlich teilweise kein Plan expliziert. Des Weiteren kann durch
die langen Episoden Exploration vermutet werden, dass sie sich in einem
Losungsweg verlieren, der zu keinem Ergebnis fiihrt. Allerdings werden die
Episoden der Exploration bei Alex und Thomas dadurch initiiert, dass sie in der
Implementation an bestimmten Stellen auf Hiirden stoBen. Dies veranlasst den
Ubergang in die Exploration, in denen sie nach Informationen suchen, die ihnen
fir das weitere Vorgehen des Bearbeitungsprozessen helfen konnen. Die
ausbleibenden Verifikationsprozesse schlieBen darauf, dass nach einer
gefundenen Losung der Prozess direkt abgebrochen wird. Allerdings finden
bereits  viele  kleinere = Verifikationen = wéihrend des  gesamten
Problembearbeitungsprozess statt, sodass eine abschlieBende Verification als
nicht notwendig empfunden wird.

Schoenfeld Episoden in den Problembearbeitungsprozessen von Lea, Lisa, Sarah
und Paula

Im Folgenden werden die Problembearbeitungsprozesse von Lea, Lisa, Sarah und
Paula dargestellt (Abbildung 27).
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Aufgabe: Differenzierbarkeit priifen

Episode

1 Reading

2 Analysis

3 Exploration

4 Planning

5 Implementation

6 Verification _
7 Transition I

Zeit in min 1 2 3 4 5 6 7

Aufgabe: Mittelwertsatz

Episode

1 Reading .
2 Analysis

3 Exploration

4 Planning

5 Implementation

7 Transition

Zeit in min 123 45 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Aufgabe: L Hospital
Episode

1 Reading I

2 Analysis

3 Exploration

4 Planning

S Implementation

6 Verification - -
-]

7 Transition

Zeit in min 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Abbildung 27: Darstellung der Problembearbeitungsprozesse von Lea, Lisa, Sarah und Paula anhand
der Kodierung der Schoenfeld Episoden

In den drei Problembearbeitungsprozessen von Lea, Lisa, Sarah und Paula wird
ebenfalls deutlich, dass wenig Zeit in den Episoden Reading und Analysis
verbracht wird. Allerdings kann in allen drei Problembearbeitungsprozessen eine
grobe Planning-Implementation-Verification-Sequenz identifiziert werden. Zu
Beginn ihrer Bearbeitung wird ein Plan expliziert, der anschlieBend in ldngeren
Implementationen umgesetzt wird. Durch Unklarheiten bei der Umsetzung des
eigenen Plans kommt es in den Aufgaben zum ,,Mittelwertsatz* und ,,L.'Hospital
zu kleinen Wechseln zwischen Implementation und Exploration. Zuletzt werden
die eigenen Bearbeitungen kontrolliert (Verification).

Aus den Bearbeitungsprozessen lassen sich anhand der Episoden ableiten, dass
Lea, Lisa, Sarah und Paula ebenfalls wenig Zeit fiir die Auseinandersetzung mit
der Aufgabenstellung (Reading und Analysis) verwenden. In der



Seite |184

Aufgabenbearbeitung zu ,Differenzierbarkeit priifen wird sogar gar kein
Reading und Analysis kodiert, da die Aufgabenstellung woméglich schon vor der
Bearbeitung bekannt war. Bevor sie allerdings mit einer Implementation starten,
wird zuvor immer ein Plan formuliert. Dabei legen sie fest, wie und mit welchen
Methoden sie die Aufgabe l6sen wollen. Wahrend Planning nimmt sich die
Lerngruppe viel Zeit, um herauszuarbeiten, was fiir die Losung der Aufgabe
benotigt wird. Teilweise werden dabei bereits einzelne Losungsschritte
besprochen. Es wird zudem deutlich, dass etwa ebenso viel Zeit in die
Besprechung und Kontrolle (Verification) der getitigten Arbeitsschritte
verwendet wird. Zwischen Planning und Verification befindet sich die
Lerngruppe in der Implementation, wobei es an einigen Stellen einen Wechsel in
Exploration gibt, da bei einigen Zwischenschritte Hiirden auftreten. Diese Hiirden
werden entweder in der Exploration aufgekldrt oder in die abschlielende
Verification mitgenommen. Insgesamt weisen die Problembearbeitungsprozesse
in dieser Lerngruppe iiber die verschiedenen Aufgaben hinweg einen &hnlichen
Ablauf (Planning-Implementation/ Exploration-Verification) auf, wobei viel Wert
darauf gelegt wird, dass die Losung der Aufgabe sinnvoll geplant und {iber die
eigenen Gedanken reflektiert wird.

Schoenfeld Episoden in den Problembearbeitungsprozessen von David

Im Folgenden werden die Problembearbeitungsprozesse von David vorgestellt
(Abbildung 28). Die Problembearbeitungsprozesse von David haben die
Besonderheit, dass er in allen drei Prozessen jeweils die Bearbeitung der Aufgabe
abgebrochen und die Bearbeitung an einem anderen Tag erneut aufgenommen
hat. In Abbildung 28 ist dies daran zu erkennen, dass der gesamte
Problembearbeitungsprozess pro Aufgabe in zwei ,,Zeilen” aufgeteilt wurde.
Somit kdnnte im Fall David von sechs unterschiedlichen Prozessen gesprochen
werden.
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6 Verification

7 Transition
Zeit in min 12 3 4 5 6 7 8 % 1011 12 13 14

3 Exploration
4 Planning
5 Implementation

6 Verification .
7 Transition _ | | —I
40

Zeit in min 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Episode
1 Reading
2 Analysis

3 Exploration
4 Planning

5 Implementation

6 Verification
7 Transition 1
Zeit in min 12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17

6 Verification

7 Transition - l .

Zeit in min 22 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

3 Exploration

4 Planning

s
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Abbildung 28: Darstellung der Problembearbeitungsprozesse von David anhand der Kodierung der
Schoenfeld Episoden
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In allen Prozessen startet David mit Reading. Abgesehen von der ersten
Bearbeitung zur ,,L."Hospital“ Aufgabe schlieft David Analysis daran an. In vier
seiner Bearbeitungen folgt auf die Analysis eine Exploration, mit der die
Problembearbeitungsprozesse enden. In einem Prozess (2. Prozess ,,L."Hospital)
befindet sich David nach der Analysis in der Implementation, da er einen Hinweis
anwendet, den er fiir die weitere Bearbeitung der Aufgabe erhalten hat. Allerdings
endet dieser Prozess ebenfalls mit Exploration.

In den Problembearbeitungsprozessen von David ist zunichst zu erkennen, dass
viel Zeit in die Analysis der Aufgabe investiert wird. Dies unterscheidet ihn stark
zu anderen Lerngruppen in dieser Studie. Vor allem in den Aufgaben
,.Differenzierbarkeit priifen” und ,,Mittelwertsatz* versucht David die beiden
Begriffe mithilfe verschiedener Unterlagen fiir sich zu kliren, bevor eine Losung
fiir die Aufgabe angestrebt wird. Das Nachschlagen der Begriffe hilft David zwar
die Aufgaben besser zu verstehen, allerdings weil} er nicht, wie er auf eine Losung
der Aufgabe kommen soll. Dies zeichnet sich durch die Exploration aus, in der er
nach Losungsmdglichkeiten sucht. In den meisten Féllen sucht er so lange nach
Losungsmoglichkeiten, bis er fiir sich selbst entscheidet, dass er an dieser Stelle
nicht weiterkommt und die Bearbeitung der Aufgabe abbricht. Da David sich
durch die Analysis wichtige und fiir ihn notwendige Informationen iiber die
mathematischen Inhalte zusammengesucht hat, hitte Planning womdglich dazu
fihren konnen, die langen Explorationen zu vermeiden. Obwohl in den
Explorationen kurze Transitions zu erkennen sind, in denen David sein Vorgehen
hinterfragt, bleibt er anschlieBend dabei, wie gehabt weiter zu verfahren. Dies
liegt vermutlich daran, dass er keine Alternative hat, die Aufgabe zu l6sen.

Schoenfeld Episoden in den Problembearbeitungsprozessen von Nick

Im Folgenden werden die Problembearbeitungsprozesse von Nick dargestellt
(Abbildung 29).
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Aufgabe: Differenzierbarkeit priifen
Episode

1 Reading -

2 Analysis

3 Exploration

4 Planning

5 Implementation

6 Verification

7 Transition
Zeitin min 1 2 3 4 5 ] 7 - 9 10 1 12

Aufgabe: Mittelwertsatz

Episode

1 Reading - -

2 Analysis

3 Exploration

4 Planning

5 Implementation

6 Verification

7 Transition
Zeitin min 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Aufgabe: L Hospital

Episode

1 Reading -

2 Analysis

3 Exploration

4 Planning

5 Implementation

6 Verification .
7 Transition |
8

Zeit in min 1 2 3 4 5 6 7

Abbildung 29: Darstellung der Problembearbeitungsprozesse von Nick anhand der Kodierung der
Schoenfeld Episoden

Die drei Problembearbeitungsprozesse von Nick starten immer mit Reading.
Dariiber hinaus befinden sich ebenfalls Exploration und Implementationen in
allen Bearbeitungen, allerdings ldsst sich daraus kein allgemeines Muster
erkennen. Nach Reading verlaufen die Bearbeitungsprozesse verschieden: In der
Aufgabe ,Differenzierbarkeit priifen wird mehrfach von Exploration zu
Planning zu Implementation, in der Aufgabe ,Mittelwertsatz* zwischen
Exploration und Analysis gewechselt. Die Bearbeitung endet mit einer
Implementation. Die Aufgabe ,L'Hospital® beginnt mit einer kurzen
Implementation und endet mit Exploration sowie einer kurzen Verification.

Insgesamt ldsst sich aus den Bearbeitungsprozessen erkennen, dass Nick wenig
Zeit fur die Bearbeitung der Aufgaben aufbringt. Dabei geht er direkt nach dem
Lesen der Aufgabe dazu fiiber, eine Losung fiir die Aufgabe zu suchen
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(Exploration)  bzw. zu  produzieren  (Implementation). In  den
Bearbeitungsprozessen wird allerdings deutlich, dass Nick wenig bis keine Zeit
investiert, um die Aufgabenbearbeitung explizit zu planen oder diese zu
tiberpriifen bzw. zu kontrollieren.

Schoenfeld Episoden in den Problembearbeitungsprozessen von Lukas

Im Folgenden wird der Problembearbeitungsprozess von Lukas dargestellt
(Abbildung 30). Fiir Lukas wird nur die Aufgabe , Differenzierbarkeit priifen*
herangezogen, da er die anderen beiden Aufgaben nicht bearbeitet hat.

Aufgabe: Differenzierbarkeit priifen

Episode

1 Reading -

2 Analysis

3 Exploration
4 Planning

5 Implementation

6 Verification

7 Transition
Zeit in min 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Abbildung 30: Darstellung des Problembearbeitungsprozesses von Lukas anhand der Kodierung der
Schoenfeld Episoden

Lukas  beginnt seinen  Problembearbeitungsprozess der  Aufgabe
,.Differenzierbarkeit priifen”, indem er sich an Tipps seines Tutors erinnert
(Transition). Nach Reading der Aufgabenstellung plant er die Tipps anzuwenden
(Implementation), bis er zwar einen weiteren Plan aufstellt, sich aber aufgrund
von Unsicherheiten von dort aus aber auf die Suche nach Losungsmoglichkeiten
begibt (Exploration). Mit der Exploration endet ebenfalls die Bearbeitung. Fiir
die Auswertung dieser Studie ist bei Lukas zwar nur die Aufgabe
,,Differenzierbarkeit priifen” relevant, allerdings sind weitere Aufgaben mit einer
dhnlichen Vorgehensweise bearbeitet worden.

Abschliefsender Vergleich zwischen den Lerngruppen

Die Gruppen von Alex und Thomas sowie Lea, Lisa, Sarah und Paula sind
erfolgreicher’’ in der Bearbeitung, da sie bestehende Hiirden systematisch
angehen. Wihrend Alex und Thomas dies durch flexibles Wechseln zwischen
Implementation und Exploration erreichen, zeichnet sich die zweite Gruppe durch
eine strukturierte Planung und intensive Kontrolle aus. David und Lukas hingegen

40 In Kapitel 6.1.6 werden erfolgreiche bzw. nichterfolgreiche Prozesse detaillierter
besprochen.
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scheitern hdufig an mangelnder Planung, die zu langen und wenig produktiven
Explorationsphasen fiihrt. Nick zeigt ein breites Spektrum an Ansétzen, bleibt
jedoch aufgrund fehlender Konsistenz und Kontrolle weniger effektiv.

6.1.4 Episodenwechsel in den Problembearbeitungsprozessen

Im Folgenden erfolgt eine Betrachtung der Episodenwechsel. Damit ldsst sich
bestimmen, ob die Problembearbeitungsprozesse linear bzw. nicht-linear (Kapitel
2.3.3) verlaufen. Die folgenden Ausfilhrungen adressieren demnach die
Forschungsfrage:

(S2) Welche Episodenwechsel treten in den Problembearbeitungsprozessen auf?
Verlaufen die Prozesse linear?

Bei der Betrachtung der 13 verschiedenen Problembearbeitungsprozesse fallt auf,
dass in jedem Prozess zahlreiche Wechsel zwischen Episoden stattfinden (Tabelle
17). Die Episodenwechsel konnen wertvolle Hinweise auf das
Steuerungsverhalten der Studierenden liefern und werden daher im Detail
untersucht. Ein Episodenwechsel wird demnach dann gezéhlt, wenn Studierende
von einer in die nichste Episode wechseln. Der erste Episodenwechsel findet
dabei zwischen der ersten und zweiten Episode statt. Es muss angemerkt werden,
dass Planning und Implementation zu einem Zeitpunkt gleichzeitig auftreten
konnen. In diesem Fall wird dies wie eine gemeinsame Episode behandelt und
nur ein Episodenwechsel gezéhlt. Dies geschieht in der Form, dass nach einer
gemeinsamen Episode von Planning und Implementation in eine normale
Implementation ohne Planning iibergegangen wird.

Anzahl der Episodenwechsel

Die durchschnittlichen Episodenwechsel pro Aufgabenbearbeitung liegen bei ca.
9,1. Innerhalb der Lerngruppen weist Nick durchschnittlich die wenigstens (7,6)
und David die meisten (11) Episodenwechsel auf. Dieses Ergebnis héngt
womdoglich mit der Bearbeitungszeit zusammen. Nick hat fiir die Bearbeitung
durchschnittlich ebenfalls die wenigste Zeit und David die meiste Zeit bendtigt.

Werden einzelne Problembearbeitungsprozesse betrachtet, zeigen sich allerdings
auch Prozesse, die besonders wenige (Lea, Lisa, Sarah und Paula sowie Nick mit
4 Episodenwechseln) bzw. viele Episodenwechsel (David mit 16
Episodenwechsel) besitzen. In dem Prozess von Lea, Lisa, Sarah und Paula zur
Aufgabe ,Differenzierbarkeit priifen treten vier Episodenwechsel auf:
Transition > Exploration = Planning > Implementation > Verification.
Insgesamt hat dieser Prozess sieben Minuten gedauert. Die Lerngruppe bearbeitet
die Aufgabe zligig und strukturiert. Der Prozess verlduft durchgehend fliissig,
sodass keine zusitzlichen Episodenwechsel erforderlich sind. Demgegeniiber
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treten in dem Prozess von David zur Aufgabe ,,LL"Hospital“ 16 Episodenwechsel
auf. David zeigt durch diese Episodenwechsel selbstregulatorische Ansitze,
allerdings befindet er sich sowohl davor als auch danach in einer Exploration.
Dadurch wird deutlich, dass zwar erkannt wird, dass unstrukturiert vorgegangen,
allerdings kein Weg bzw. kein inhaltlicher Ansatz gefunden wird, in der Losung
zur Aufgabe anders vorzugehen.

Differenzier = Mittelwert L Hospital Summe

barkeit satz

priifen
Alex und 12 6 7 25
Thomas
Lea, Lisa, Sarah 4 12 12 28
und Paula
David 8 9 16 33
Nick 9 10 4 23
Lukas 9 9

Tabelle 17: Haufigkeiten der Episodenwechsel, dargestellt fiir alle drei Aufgaben

In einer Studie von Herold-Blasius (2019) wurden ebenfalls die Episodenwechsel
in Problembearbeitungsprozessen untersucht, allerdings von Kindern im Alter
von 7 und 10 Jahren. Dort wurden durchschnittlich pro Aufgabe etwa drei
Episodenwechsel vollzogen. Im Vergleich liegt der Durchschnitt der
Episodenwechsel in dieser Studie etwas mehr als drei Mal so hoch. Die hohe
Anzahl an Episodenwechsel kann verschiedene Griinde haben. Zum einen sind
die Aufgaben, die in dieser Arbeit bearbeitet wurden, mehrschrittiger als
Aufgaben fiir Grundschulkinder. Komplexere Aufgaben erfordern mehrschrittige
Uberlegungen, wodurch méglicherweise mehr Potenzial fiir Episodenwechsel
vorhanden ist. Dies kann sich beispielsweise durch die Festlegung von
Zwischenzielen, unerwarteten Schwierigkeiten usw. bemerkbar machen. Zum
anderen konnte die langere Bearbeitungszeit Grund fiir die hohe Anzahl der
Episodenwechsel darstellen. Im Vergleich zu den berichteten Werten (13:34
Minuten) von Herold-Blasius (2019) liegt die durchschnittliche Bearbeitungszeit
in dieser Studie (22:53 Minuten) fast doppelt so hoch. Letztlich ldsst sich jedoch
fir jede Aufgabe, unabhidngig von ihrer Komplexitit oder ihrem
Schwierigkeitsgrad, nicht unbedingt festlegen, wie viele Episodenwechsel eine
Person benotigen sollte.
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In den Problembearbeitungsprozessen der Studierenden treten verschiedene
Handlungsweisen auf, zwischen denen hiufig gewechselt wird. Dadurch lassen
sich Riickschliisse auf die selbstregulatorischen Féhigkeiten von Studierenden
schlieBen. Diese werden in den Prozessen deutlich, indem die Studierenden
selbststindig (erkannt und) entschieden haben, einen Richtungswechsel in der
Herangehensweise einzuschlagen.

Lineare und nicht-lineare Problembearbeitungsprozesse

Reihenfolge der Episoden Linear oder nicht-linear

Differenzierbarkeit priifen

G3 PAIEPIV Nicht-linear
G4 EPIV Linear
David AEV Linear
Nick EIEIEIPI Nicht-linear
Lukas IPIPE Nicht-linear
Mittelwertsatz

G3 IPIEI Nicht-linear
G4 AIEIEV Nicht-linear
David AEAEAE Nicht-linear
Nick EAEAEAI Nicht-linear
L Hospital

G3 IETIEPI Nicht-linear
G4 EPIEIEIEVEV Nicht-linear
David EAITEAE Nicht-linear
Nick IEAEV Nicht-linear

Tabelle 18: Lineare bzw. nicht-lineare Prozesse (A=Analysis, E=Exploration, P=Planning,
I=Implementation, V=Verification, G3 = Alex und Thomas, G4 = Lea, Lisa, Sarah
und Paula)

Eine weitere interessante Beobachtung beziiglich der Episodenwechsel ist die
Reihenfolge, in der diese auftreten. Eine Beschreibung und Einordnung kann mit
den Ansétzen verschiedener Problemldsemodelle getitigt werden. Es stellt sich
daher die Frage, ob die Problembearbeitungsprozesse der Studierenden linear (z.
B. wie in Polyas Modell) oder zyklisch bzw. nicht-linear (wie es z. B. in
Schoenfelds Modell bzw. Rotts Modell moglich ist) verlaufen. Um einen (nicht-
)linearen Prozess zu definieren, wird sich auf die Ausfithrungen von Rott (2013,
S. 296ff.) berufen. Ein linearer Prozess besitzt die Reihenfolge der Episoden
Analysis > Exploration > Planning > Implementation > Verification. Ein
Prozess wird dariiber hinaus als linear angesehen, falls einige der Episodentypen



Seite [192

fehlen, wiederholt auftreten oder Planning und Implementation gemeinsam
auftreten. Ein nicht-linearer Prozess hingegen durchbricht die oben angegebene
Reihenfolge, unabhéngig von Auslassungen oder Wiederholungen. Es werden
Reading und Transition ausgeschlossen, wodurch demnach nur die inhaltlichen
Episodentypen betrachtet werden (Rott, 2013, S. 275).

Mithilfe dieser Definition lésst sich ableiten, dass in dieser Studie zwei der 13
Problembearbeitungsprozesse linear und elf Problembearbeitungsprozesse nicht-
linear verlaufen (Tabelle 18). Die beiden linearen Prozesse sind lediglich in der
Aufgabe ,,Differenzierbarkeit priifen” vorgekommen (Lea, Lisa, Sarah und Paula
sowie David). Der Grofiteil der Problembearbeitungsprozesse in dieser Studie
lassen sich demnach als nicht-lineare Prozesse einstufen. Im Vergleich zu der
Studie von Rott (2013) ergibt sich somit ein anderes Bild. In seinen Daten wurden
lediglich etwa ein Drittel der Prozesse (30 von 98 Prozessen) als nicht-linear
eingestuft. Ahnlich wie bereits bei der Feststellung der Anzahl von
Episodenwechseln kann es an der Komplexitit der Aufgabenstellung liegen,
sodass gegebenenfalls im Prozess nochmal zur Aufgabe zuriickgekehrt werden
oder der Plan angepasst werden muss. Aus diesem Grund wird die Art der nicht-
linearen Prozesse untersucht. An welchen Stellen der Bearbeitung gibt es einen
zyklischen Prozess bzw. aus welchen Griinden gelangen Studierende in eine
Schleife? Nach der vorher festgelegten Definition von nicht-linearen Prozessen
gibt es in den Problembearbeitungsprozessen mindestens eine Stelle, in der die
Reihenfolge Analysis > Exploration > Planning > Implementation ->
Verification durchbrochen wird. In den vorliegenden elf nicht-linearen Prozess
gibt es jeweils mindestens zwei Stellen (auBer bei Nick in der Aufgabe
,,L"Hospital“ nur eine Schleife), an denen jeder Prozess zyklisch wird. Insgesamt
ergibt sich, dass

o zwolf Mal von Implementation = Exploration

e sieben Mal von Exploration > Analysis

e vier Mal von Implementation = Planning

e ¢in Mal von Planning = Analysis

e ¢in Mal von Planning = Exploration und

e ¢in Mal von Verification = Exploration

gewechselt wurde. Fiir eine genauere Betrachtung wird auf die drei hdufigsten
Wechsel eingegangen. Die anderen drei Episodenwechsel konnten nur einmal
identifiziert werden.

Der Wechsel von Implementation > Exploration kann in allen Lerngruppen
beobachtet werden. Dieser Wechsel zeichnet sich dadurch aus, dass Studierende
in der Implementation auf eine Hiirde stoflen. In der ankniipfenden Exploration
wird nach Informationen gesucht, die ihnen in der /mplementation helfen kdnnen.
Die Implementation wird demnach durch eine Exploration unterbrochen,
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wodurch sich folgender Zyklus als allgemeines Muster ergibt Implementation =
Exploration (= ggfs. Planning) - Implementation. Dieses Problemloseverhalten
deckt sich ebenfalls mit dem zuvor beschriebenen Vermeiden eines ,,wild goose
chases® (Kapitel 6.1.5). Am deutlichsten ldsst sich dies in den drei Bearbeitungen
von Alex und Thomas erkennen. Es scheint symptomatisch fiir Alex und Thomas
zu sein, dass in der Bearbeitung ziigig mit einer Produktion der Losung gestartet
wird, ohne viel Zeit in das Planning zu investieren. Es kann angenommen werden,
dass dadurch Hiirden wihrend der Implementation auftreten. Allerdings zeigen
die Bearbeitungen von Lea, Lisa, Sarah und Paula, dass auch mit
vorangegangenen und zeitlich ausfiihrlicherem Planning wéhrend der
Bearbeitung auf Hiirden gestoen werden kann, wodurch eine Exploration
ausgelost wird.

Der Wechsel von Exploration ->  Analysis ldsst sich in drei
Problembearbeitungsprozessen (2x David, 1x Nick) wiederfinden. Dieser
Wechsel zeichnet sich dadurch aus, dass eine unstrukturierte Suche nach einer
Losung bzw. Hinweise fiir eine Losung nicht weitergeholfen haben und daher der
Schritt zuriick zur Aufgabenstellung getdtigt wird. AuBerdem ist in den
Problembearbeitungsprozessen zu erkennen, dass in solchen Féllen eine Art
Wechselspiel zwischen den beiden Episodentypen entsteht, wodurch ein
wiederholender Zyklus als allgemeines Muster entsteht: Exploration = Analysis
> Exploration = Analysis usw. Besonders in den Bearbeitungen von Nick und
David zu der Aufgabe , Mittelwertsatz* wird mehrfach zwischen diesen beiden
Episoden gewechselt. David sucht zundchst in seinen Unterlagen nach dem
Mittelwertsatz und unternimmt Aktivitidten, diesen zu verstehen (A4nalysis).
Darauf aufbauend versucht er unstrukturiert eine Ldsung zu generieren
(Exploration). Nachdem er damit scheitert, geht er einen Schritt zuriick und
versucht erneut den Mittelwertsatz (und damit gleichzeitig die Aufgabe) besser
zu verstehen (4Analysis).

Der  Wechsel  Implementation >  Planning  kann  in  vier
Problembearbeitungsprozessen von vier unterschiedlichen Lerngruppen
identifiziert werden. Dieser Wechsel zeichnet sich dadurch aus, dass in der
Implementation bislang Teilschritte der Losung erzielt worden sind und das
Vorgehen weiteres Planning benoétigt. Ein allgemeines Muster lsst sich hier nicht
ableiten. Zu dem Wechsel Implementation = Planning muss erwihnt werden,
dass Studierende bereits in der vorangegangenen Episode einen Plan entwickelt
haben konnten, diesen allerdings nicht explizit verbalisieren.

6.1.5 Identifikation von ,,wild goose chases*

In den bisherigen Darstellungen der Ergebnisse zeigt sich, dass Exploration eine
besondere  Stellung einnimmt. Dieser Episodentyp kann in allen
Problembearbeitungsprozessen identifiziert werden und ist zudem in vielen
Prozessen mit einem erheblichen Anteil der gesamten Bearbeitungszeit vertreten
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(siche Tabelle 16). Exploration konnte ein Hinweis auf ,,wild goose chases* sein
(Schoenfeld, 1992a; Kapitel 2.3.1), bei denen die Studierenden in einem
scheinbar fruchtlosen Losungsversuch steckenbleiben. Die folgenden
Ausfiihrungen adressieren demnach die Forschungsfrage:

(S3) Inwiefern lassen sich ,,wild goose chases* in den
Problembearbeitungsprozessen identifizieren und inwiefern kénnen Studierende
dieses Verhalten vermeiden?

Schoenfeld (1985) beschreibt das Problemldseverhalten ,,wild goose chase®, in
dem es im Wesentlichen darum geht, dass problemldsende Personen einen Ansatz
wihlen und diesen so lange verfolgen bis die Bearbeitungszeit abgelaufen ist
(Schoenfeld, 1992b, S. 190). Wihrend des Prozesses werden demnach keine
selbstregulatorischen = Aktivitdten (=Episodenwechsel) unternommen. Die
Operationalisierung dieses Verhaltens legt Schoenfeld mit den Episoden Reading
- Exploration fest. Ein Problembearbeitungsprozess startet somit mit dem Lesen
der Aufgabenstellung, wechselt anschliefend ziigig in eine langanhaltende
Erkundung des Ergebnisraums, womit der Prozess letztendlich endet.
Grundlegend fiir einen ,,wild goose chase™ ist somit die Episode Exploration,
welche fast ausschlieBlich den gesamten Problemléseverlauf beschreibt. Rott
(2013, S. 302) erweitert die Operationalisierung und erlaubt zwischen dem Lesen
der Aufgabe und dem Verfolgen des Ansatzes noch eine kurze Phase, in der
versucht wird, die Aufgabe zu verstehen*: Mit dieser Auffassung sind alle
Prozesse gemeint, die entweder nur Exploration oder Analysis und Exploration
beinhalten*?. Reading wird als nicht-inhaltlicher Episodentyp in der
Operationalisierung ausgeklammert.

Mit der Anwendung der Operationalisierung von Schoenfeld ldsst sich in den
Problembearbeitungsprozessen dieser Studie kein ,wild goose chase*
identifizieren. Hingegen kann gemifl der Operationalisierung von Rott der
Prozess von David zu der Aufgabe , Mittelwertsatz™ als ,,wild goose chase*
beschrieben werden. Durch die bereits beschriebenen vielen Episodenwechsel
innerhalb der einzelnen Prozesse konnte bereits vermutet werden, dass eine
solche strenge Operationalisierung wenig ,,wild goose chases® ausfindig machen
kann. Sowohl Rott als auch Schoenfeld haben in ihren Kodierungen allerdings in
25 von 32 Prozessen (Rott, 2013, S.302) bzw. ungefahr 60 % von mehr als 100
Prozessen (Schoenfeld, 1992a) ein solches Problemldseverhalten gefunden. In

41 ,Nun ist es auch moglich, dass Problemléser kurz versuchen, die ihnen gestellte Aufgabe zu
verstehen, bevor sie eine Bearbeitungsidee bis zum (erfolglosen) Ende der Bearbeitung
ungepriift verfolgen (Rott, 2013, S. 302)

42 Rott beschreibt zwar die Reihenfolge Reading > Analysis = Exploration, in der Kodierung
ist allerdings nur der Prozesstyp entscheidend. Die Reihenfolge wird demnach
ausgeklammert.




Seite [195

den beiden Studien liegen allerdings andere Rahmenbedingungen vor. Zum einen
ist der Prozess in der vorliegenden Arbeit nicht auf 20 Minuten beschrankt und
zum anderen beinhalten die bearbeitenden Aufgaben ecin anderes
Aufgabenniveau. Dazu muss beachtet werden, dass die Problembearbeitung bei
Rott (2013) von Schiiler:innen durchgefiihrt wurde und in den vorliegenden
Prozessen dagegen Studierende beteiligt sind. Es ldsst sich vermuten, dass
Studierende {iiber eine bessere Selbstregulation verfiigen, woraus héufiger
Episodenwechsel resultieren und somit keinem ,,wild goose chase* verfallen.
Weiterhin sind die Aufgabenbearbeitungen in der vorliegenden Arbeit deutlich
langer als in den Untersuchungen von Rott (2013). Es ist dadurch nicht
auszuschlieflen, dass nach langeren Zeitrdumen automatisch ein Episodenwechsel
stattfindet. In einem &hnlichen Setting wie in dieser Studie konnte Stenzel (2023a,
S. 122) in seinen Daten keinen ,,wild goose chase* identifizieren. Als Begriindung
liefert er, dass die betrachteten Aufgaben cher begrifflich als rechnerisch geprégt
sind. Dadurch wiirde es weniger Mdoglichkeiten geben, sich in irgendwelchen
wenig hilfreichen Berechnungen zu verlieren. In der vorliegenden Arbeit kann
dies nicht vollstindig behauptet werden, da in jeder Aufgabe rechnerische Anteile
vorhanden sind. Ein weiterer Grund konnte ebenfalls der Grad der Offenheit der
Aufgaben sein. Wihrend hochschulische Aufgaben oft klare Anfangs- und
Endzustinde aufweisen, werden typische Problemaufgaben in der
Mathematikdidaktik eher als offene Aufgaben mit unklar definierten
Endzustinden beschrieben (Bruder, 2000). Solche offenen Aufgaben bieten
potenziell mehr Raum fiir explorative oder sogar ineffektive Losungsansitze, was
wiederum die Wahrscheinlichkeit eines ,,wild goose chase erhhen konnte.

Es bleibt bemerkenswert, dass trotz des hohen Anteils von Exploration in vielen
Problembearbeitungsprozessen lediglich ein ,,wild goose chase® identifiziert
werden konnte. Dies wirft die Frage auf, ob sich dennoch Charakteristika finden
lassen, die einen ,wild goose chase beschreiben konnen. Moglicherweise
erfordert dies eine Anpassung der Definition oder der Operationalisierung, um
den beobachteten Umstdnden besser gerecht zu werden. Wird die
Operationalisierung etwas weiter gefasst, finden sich in einigen Prozessen
durchaus Charakteristika eines ,,wild goose chases wieder. Weiter gefasst
bedeutet in diesem Zusammenhang, dass die Prozesse (wie in Rotts
Operationalisierung) {iiberwiegend aus Exploration und Analysis bestehen
konnen, allerdings auch zeitlich kurze Abschnitte des gesamten Prozesses aus
einem anderen Episodentyp hervorgehen kdnnen. Besonders in den Prozessen
von David ldsst sich dies erkennen. Typisch fiir die Prozesse von David sind, dass
viel Zeit in den Episoden Exploration und Analysis verbracht wird. Dabei ist seine
Bearbeitung zum ,,Mittelwertsatz* nach Rotts (2013, S. 302) Operationalisierung
des ,,wild goose chase” ein solches typisches Problemldseverhalten. In der
Bearbeitung wird zunichst die Aufgabe gelesen sowie versucht diese (besser) zu
verstehen. AnschlieBend wird unstrukturiert ein Ansatz verfolgt. In dieser
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Bearbeitung kommt es allerdings immer wieder zu Wechseln zwischen Analysis
und Exploration. Dennoch endet die Bearbeitung mit einer zeitlich langen
Exploration, bevor die Bearbeitung abgebrochen wird*®. Die beiden iibrigen
Problembearbeitungsprozesse spiegeln ein sehr dhnliches Bearbeitungsmuster ab,
wobei in der Aufgabe ,,Differenzierbarkeit priifen abschlieBend das inhaltliche
Vorgehen kurz kontrolliert (Verification) und in der Aufgabe ,,L "Hospital* ein
strukturiertes Vorgehen identifiziert wurde (Implementation).

Weitere Problembearbeitungsprozesse, die Charakteristika eines ,,wild goose
chases aufzeigen, sind Prozesse von Nick zur Aufgabe ,,.L."Hospital* und von
Lukas zur Aufgabe ,,Differenzierbarkeit priifen. Obwohl Lukas zu Beginn einen
Plan verfolgt und diesen anschlieBend umsetzt, verfillt er anschliefend in eine
Exploration, die bis zum Ende des Prozesses anhilt. Er mochte die Ableitung der
Funktion bestimmen und sucht dabei im Internet in Videos nach Hilfe. Letztlich
resultiert die Suche damit, dass er keine fiir ihn niitzliche Informationen finden
konnte und die Bearbeitung der Aufgaben damit beendet wird. Im Prozess von
Nick wird inhaltlich ebenfalls mit einer Implementation gestartet, die nach kurzer
Zeit bereits in eine Exploration tibergeht. Nick versucht in dieser Exploration die
Regeln von L"Hospital anzuwenden, woran er letztlich allerdings scheitert und
die Aufgabe beendet: ,,Nee, das wird nicht gegen Null und Unendlich laufen. Ah,
damit bin ich fertig*.

Vermeidung eines ,,wild goose chases *

Schoenfeld (1985, 1992a) beschreibt ,wild goose chase”, indem sich
problemlésende Personen fast ausschlieBlich in einer Exploration befinden, mit
welcher der Prozess auch endet. Obwohl in dieser Arbeit Exploration zeitlich in
den meisten Problembearbeitungsprozessen dominiert, wurden nur fiinf Prozesse
identifiziert, die Charakteristika eines ,,wild goose chases* aufweisen. Es miissen
daher einige Prozesse dieses spezielle Verhalten erfolgreich vermieden haben.
Solche Prozesse beschreibt Schoenfeld (1985, S. 116) vor allem als Typ B (vgl.
Kapitel 2.3.1), wobei Typ C Prozesse ebenfalls darunter aufgefasst werden
konnen. Im Folgenden wird daher untersucht, wie Studierende (trotz zeitlich
langer Exploration) keinem ,,wild goose chase“ verfallen. Dafiir kommen in
dieser Arbeit einige Prozesse in Frage. Die Problembearbeitungsprozesse, die
einem ,wild goose chase“ vermeiden, enden nicht zwingend mit einer
Exploration, enthalten allerdings einen erheblichen Anteil Exploration im
gesamten Prozess. Folgende Prozesse sind damit gemeint: Alle Prozesse von Alex
und Thomas, ein Prozess von Lea, Lisa, Sarah und Paula (,,Mittelwertsatz*) sowie
zwei Prozesse von Nick (,,Differenzierbarkeit priifen” und ,,Mittelwertsatz*).

43 In den Prozessen von David endet die Bearbeitung immer damit, dass er seine Bearbeitung
selbststéndig abbricht. Dies wird durch die Episode Transition deutlich, in der lediglich zum
Schluss gekommen wurde, dass es jetzt keinen Sinn mehr hat, weiter an der Aufgabe zu
arbeiten.
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In allen dieser Prozesse zeigt sich, dass die Studierenden nach der Exploration
entweder einen expliziten Plan entwickeln oder direkt in eine Implementation
tibergehen. Die Exploration hat damit (neue) Informationen geliefert, welche fiir
die weitere Aufgabenbearbeitung helfen. Dies zeigt sich bspw. bei Alex und
Thomas in der Bearbeitung zur Aufgabe , Mittelwertsatz“. In der Exploration
gelangen sie zu der Information (bzw. Schlussfolgerung), wie sie den Term
(—e™0) . (—sin(e*0)) abschitzen konnen. Diese Information wird in der
anschlieBenden Implementation genutzt. Lediglich Nick stellt im Prozess zur
Aufgabe , Mittelwertsatz* eine kleine Ausnahme dar. Bevor er in seiner letzten
Exploration die notwendigen Informationen erlangt (und mit Implementation
fortfithrt), hat er zuvor drei Mal nach der Episode Exploration in Analysis
gewechselt, da diese Explorationen fruchtlos verliefen. Dennoch hat Nick in
diesen Momenten erkannt, dass mit dem aktuellen Vorgehen kein Fortschritt
erzielt wird, wodurch die Ubergiinge in andere Episoden zustande kommen.
Interessant ist allerdings nicht nur der Ubergang von Exploration zur nichsten
Episode, sondern ebenfalls, wie Studierende in die Exploration gelangen. Hier
zeigt sich ein Unterschied zwischen den Prozessen von Nick zu Alex und Thomas
sowie Lea, Lisa, Sarah und Paula. Sowohl bei Alex und Thomas als auch Lea,
Lisa, Sarah und Paula geht der Exploration eine Implementation voraus. Daraus
wird deutlich, dass zuvor bereits strukturiert vorgegangen wurde. Allerdings
gelangen sie durch Hiirden in der Implementation in eine Exploration. Fiir die
Prozesse von Alex und Thomas sowie von Lea, Lisa, Sarah und Paula befindet
sich die Exploration zwischen zwei Implementationen. Sie weisen damit letztlich
ein strukturiertes Vorgehen auf, welches durch Hiirden unterbrochen wird. Ein
Abweichen in ein ,,wild goose chase® ist damit fiir Prozesse dieser Art eher
unwahrscheinlich. Anders sieht es allerdings bei Nick aus. In seinen Prozessen
startet er, wie von Schoenfeld (1992a) beschrieben, nach Reading mit einer
Exploration. Die Voraussetzung fiir einen ,,wild goose chase wéren damit
vorhanden. Wie bereits beschrieben, wechselt Nick allerdings ebenfalls im Laufe
des Prozesses in ein strukturiertes Vorgehen, weil er in seiner Exploration
hilfreiche Informationen gefunden hat.

6.1.6 Vergleich von erfolgreicher und nichterfolgreicher Steuerung

Da Steuerung einen Einfluss auf den Erfolg des Problemldsens hat (Kapitel 2.2;
Schoenfeld, 1985), wird im Folgenden die erfolgreiche und nicht erfolgreiche
Steuerung der Problembearbeitungsprozesse in Bezug auf die zugehorigen
Losungen untersucht. Dabei erfolgt eine Analyse hinsichtlich der Aspekte
Episodenwechsel, ,,wild goose chases“, strukturierter Losungsansitze sowie
verifizierende Prozesse. Die folgenden Ausfithrungen adressieren demnach die
Forschungsfrage:



Seite | 198

(S4) Inwiefern hingen die Episoden nach Schoenfeld mit dem Erfolg bzw.
Misserfolg eines Problembearbeitungsprozesses zusammen?

Einfluss auf Episodenwechsel

Episodenwechsel wurden als ein Merkmal in den Problembearbeitungsprozessen
untersucht (Kapitel 6.1.4). Wird die Anzahl der Episodenwechsel in einem
Prozess mit dem Losungserfolg in Verbindung gebracht, ldsst sich nur schwierig
ein Zusammenhang feststellen. Sowohl eine hohe sowie eine niedrige Anzahl von
Episodenwechsel (Aufgabe ,,Differenzierbarkeit priifen“: Vier Episodenwechsel
und ,,L "Hospital“: Zwolf Episodenwechsel bei Lea, Lisa, Sarah und Paula) kann
zum Erfolg fiihren. Genauso hat sich gezeigt, dass eine hohe sowie eine niedrige
Anzahl von Episodenwechsel zu Misserfolg filhren kann (Aufgabe
,Mittelwertsatz:  Zehn  Episodenwechsel und ,L’Hospital“:  Vier
Episodenwechsel bei Nick). Auch bei der Betrachtung der beiden
Problembearbeitungsprozesse mit den wenigsten Episodenwechseln (jeweils
vier) zeigt sich ein unterschiedliches Bild. Nick erreicht mit L1 die geringste
Losungsqualitdt, wahrend Lea, Lisa, Sarah und Paula L3/L4 erreichen. Lediglich
in den Problembearbeitungsprozessen, welche die meisten Episodenwechsel**
aufweisen, zeigt sich durchweg mindestens eine Losungsqualitit von L3.
Demnach wird die Aussage unterstiitzt, dass man von einer hohen Anzahl von
Episodenwechsel auf (gute) selbstregulatorischen  Féhigkeiten  der
problemldsenden Personen zuriickschlieen kann. Es ldsst sich diskutieren, ob
einzelne Episoden bzw. einzelne Episodenwechsel innerhalb des Prozesses
notwendig bzw. mitentscheidend fiir den Erfolg gewesen sind, allerdings haben
die Studierenden in diesen Prozessen zufriedenstellende Losungsqualititen
erreicht. Diese vier Prozesse haben zum einen gemeinsam, dass sie zwar (wie
jeder weitere Prozess in diesen Daten) einige Zeit in der Exploration verbringen,
es zum anderen allerdings auch schaffen, aus der Exploration (zumindest
kurzzeitig) in ein strukturiertes Vorgehen iiberzugehen.

Neben der Anzahl der Episodenwechsel wurde auch die Reihenfolge der
durchlaufenden Episoden betrachtet. Dabei wurde zwischen linearen und nicht-
linearen  Problembearbeitungsprozessen unterschieden. Allgemeingiiltige
Aussagen im Zusammenhang mit dem Erfolg abzuleiten, sind in diesen Daten
allerdings kaum moglich, da lediglich zwei lineare Prozesse vorhanden sind.
Allerdings sind beide Prozesse*® mindestens mit einer Lsungsqualitét von L3
kodiert. Beziiglich der nicht-linearen Prozesse gibt es sowohl Prozesse, die

44 Die Problembearbeitungsprozesse mit den meisten Episodenwechseln sind bei David
(Aufgabe ,,.L"Hospital“ mit 16 Episodenwechsel), Lea, Lisa, Sarah und Paula (Aufgabe
~Mittelwertsatz* und ,,L"Hospital“ mit 12 Episodenwechsel) sowie Alex und Thomas
(Aufgabe ,,Differenzierbarkeit priifen mit 12 Episodenwechsel).

45 Beide linearen Prozesse sind zu der Aufgabe ,,Differenzierbarkeit priifen” bei David und Lea,
Lisa, Paula und Sarah entstanden.
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erfolgreich als auch nicht-erfolgreich geendet sind. Zu erwéhnen ist allerdings,
dass die nicht-linearen Prozesse sich mit den Prozessen des Vermeidens eines
,.wild goose chase decken. Dies wird im Folgenden erneut aufgegriffen.

Wild goose chases

In den Beschreibungen von Schoenfeld lésst sich vermuten, dass ,,wild goose
chases* negativ mit dem Erfolg zusammenhéngen:

.While pursuing wild geese they failed to examine and exploit potentially useful ideas that arose
periodically during their solution attempt. These absences of executive behavior guaranteed that they
would be unsuccessful” (Schoenfeld, 1985, S. 316).

In einem weiteren Ausschnitt kontrastiert Schoenfeld (1992b, S. 195) ,,wild goose
chases* sogar mit erfolgreichen Bearbeitungen. Es bleibt zu zeigen, ob sich diese
Aussagen in dem Kontext dieser Studie bestitigen lassen.

Zuvor wurden alle Prozesse von David als auch jeweils ein Prozess von Nick und
von Lukas mit Charakteristika eines ,,wild goose chases“ identifiziert (Kapitel
6.1.5). In drei Prozessen (jeweils eine Bearbeitung von Lukas, Nick und David)
lasst sich der vermutete Zusammenhang bestitigen. In allen drei Produkten wurde
kein sinnvoller Ansatz gefunden (L1), der fiir eine gute LOsung ausreicht.
Demnach entschied man sich flir den Ansatz, welcher bis zum Misserfolg bzw.
Abbruch verfolgt wurde. Eine andere Tendenz ldsst sich allerdings in den beiden
iibrigen Prozessen von David beobachten. Die beiden Losungen wurden als
Erweiterter Ansatz (L3) gewertet. Obwohl von einem &hnlichen
Problembearbeitungsprozess gesprochen werden kann, unterscheiden sich die
Produkte in ihrer Losungsqualitit stark voneinander. Auf den ersten Blick ldsst
sich feststellen, dass David in seinen Bearbeitungen neben der Exploration
ebenfalls viel Zeit in der Analysis verbringt, was in den Prozessen bei Nick bzw.
Lukas nicht der Fall ist. Bevor David einen Ansatz verfolgt, verbringt er in der
Bearbeitung zur Aufgabe ,,Differenzierbarkeit priifen” zunichst viel Zeit damit,
die Aufgabe (besser) zu verstehen. Dabei setzt er sich tiefgriindig mit dem Begriff
Differenzierbarkeit auseinander. Letztendlich konnte vermutet werden, dass nach
langerer Auseinandersetzung mit der Aufgabenstellung und dem Kliren
verschiedener Begriffe ein expliziter Plan entwickelt und dieser anschlieBend
ausgefiihrt (Implementation) werden kann. In seinem Prozess verlisst David die
Analysis allerdings immer noch mit einigen Unklarheiten, ist jedoch der Meinung,
dass es nun an der Zeit wire, eine Losung aufzuschreiben, bzw. mit der
Produktion einer Losung zu beginnen. Daraus resultiert ein unstrukturiertes
Vorgehen (Exploration), in welchem er gleichzeitig Fortschritte zur Losung der
Aufgabe erzielt. In der Bearbeitung zur Aufgabe ,,L."Hospital“ fangt David zwar
sehr schnell mit einem unstrukturierten Losungsversuch (Exploration) an, in
einem zweiten Anlauf ist es aber erneut die Analysis, die zunidchst zu einem
strukturierten Vorgehen (Implementation) fiihrt. In dieser Phase entsteht
zeitgleich der meiste Losungsfortschritt (Abbildung 31), wihrend in dem
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restlichen Bearbeitungsprozess die Losung nur durch Kleinigkeiten ergénzt
werden konnte.
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Abbildung 31: David Losungsfortschritt in der Implementation (Aufgabe ,,L."Hospital*)

In beiden erfolgreichen Prozessen (L3) von David, die Charakteristika eines ,,wild
goose chases” aufweisen, sind Hinweise zu erkennen, dass abseits der
Exploration Losungsfortschritte erzielt worden sind. Sowohl die Analysis als
auch die Implementation scheinen dabei wichtige Rollen einzunehmen. Die
Exploration hat dabei nur teilweise (in der Bearbeitung zur Aufgabe
,,Differenzierbarkeit priifen” bei David) zum Erfolg beigetragen.

Die Problembearbeitungsprozesse, die ein ,,wild goose chase” vermeiden
konnten, zeigen in Bezug auf Erfolg kein einheitliches Bild. Es lassen sich
allerdings die theoretischen Typen B und C von Schoenfeld (1985, S. 116)
identifizieren. Paula, Lea, Lisa und Sarah haben in ihrem Prozess zur Aufgabe
,Mittelwertsatz eine vollstindig korrekte Losung (L4) erreicht. Damit fallen sie
unter den Typ C, da ihre Steuerung zum einen den ,,wild goose chase abwendet
und dariiber hinaus Heurismen sowie Wissen fiir die vollstindige Ldsung
anwenden. Typ B ist hingegen im Prozess von Nick zu erkennen (L1). Nick
vermeidet zwar einen ,,wild goose chase®, indem er in ein strukturiertes Vorgehen
iibergeht, allerdings entwickelt er einen nicht-zielfiihrenden Plan (in Aufgabe
,Differenzierbarkeit priifen), bzw. verfolgt einen falschen Ansatz



Seite |201

(Implementation in Aufgabe , Mittelwertsatz*). Er setzt sein Wissen und die
Heurismen daher nicht angemessen ein. Daraus lésst sich schlussfolgern, dass es
nicht ausreichend ist, lediglich einen ,,wild goose chase* zu vermeiden, um eine
erfolgreiche Losung zu produzieren. Dariiber hinaus ist es von zentraler
Bedeutung, dass das strukturierende Vorgehen zielfithrend fiir die Losung der
Aufgabe ist.

Strukturierte Problembearbeitungsprozesse

Aus den fiinf Problembearbeitungsprozessen, die Charakteristika eines ,,wild
goose chases™ aufweisen, ldsst sich festhalten, dass unstrukturiertes Vorgehen
(Exploration) wenig zum Erfolg bzw. erfolgreichen Losungsfortschritt einer
Aufgabe beitragt. Dagegen gehen erfolgreiche Problemldsende ,,systematischer
vor als weniger erfolgreiche Problemléser” (Zimmermann, 1982, S. 193). Es stellt
sich daher die Frage, inwiefern strukturierte Prozesse Einfluss auf den Erfolg
nehmen.

Als ein strukturierter Problembearbeitungsprozess wird ein Prozess angesehen,
welcher Planning enthilt. Dies bedeutet, dass in der Bearbeitung ein inhaltliches
Ziel festgelegt sowie der Weg zum Erreichen des Ziels expliziert wird. Das
strukturierte Vorgehen wird durch das Ausfithren des Plans vervollstandigt. Es
werden demnach Prozesse betrachtet, in denen Planning und Implementation
vorkommen. Auf den ersten Blick der Ubersicht (Tabelle 16) kann ein positiver
Zusammenhang vermutet werden. Sowohl Alex und Thomas sowie Lea, Lisa,
Sarah und Paula beinhalten in jedem Problembearbeitungsprozess sowohl
Planning als auch Implementation und erreichen mindestens L3. Allerdings
weisen Nick und Lukas ebenfalls sowohl Planning und Implementation in jeweils
einem Prozess auf. Beide Prozesse wurden mit L1 bewertet. Demnach muss es
einen weiteren Grund dafiir geben.

Bevor Nick in seinem Bearbeitungsprozess zur Aufgabe ,Differenzierbarkeit
priifen* einen Plan entwickelt, sucht er zundchst in seinen Unterlagen nach
moglichen Losungsansitzen. Er beschéftigt sich dabei mit der Losung einer
dhnlichen Aufgabe aus dem Tutorium, bis er zu dem Entschluss kommt, dieses
Vorgehen zu iibernehmen. ,,Hier ist bisschen anders. Hier konnte ich dann auch
wieder in drei Fille unterscheiden. Das werde ich auch machen® (Planning:
03:37). Das Vorgehen aus der Aufgabe des Tutoriums kann zwar teilweise
ibertragen werden, allerdings ist eine Fallunterscheidung in der eigentlichen
Aufgabe nicht zielfiihrend. In der vorangegangenen Exploration hat Nick erkannt,
dass sich die Funktionen der beiden Aufgaben unterscheiden: ,,Ja, also dort war
die Funktion nicht aufgeteilt, nicht so wie hier, einmal ungleich Null, gleich Null
ist die Funktion jeweils anders* (Exploration: 02.14). Dennoch plant er, die
gleichen Schritte zu unternehmen. Im weiteren Bearbeitungsverlauf stellt Nick
erneut einen Plan auf: ,,Gut, dh ich sollte iberpriifen, ob die Funktion
differenzierbar ist. Also wiirde ich erstmal [in die Definition der
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Differenzierbarkeit] einsetzen™ (Planning: 6:47). Der aufgestellt Plan ist dabei
zielfiihrend, allerdings unterlaufen ihm sowohl bei dem Einsetzen als auch in den
folgenden Rechenschritten (Implementation) einige Fehler. Zum Ende seines
Bearbeitungsprozesses entscheidet sich Nick dazu, f* zu bilden: ,,Ja, bestimmen
Sie f'(0) [19 Sek.] Okay. Dafiir soll ich erstmal f” bilden [...]. Hier mache ich
wieder zwei Fallunterscheidungen. Einmal fiir den Fall, dass f ungleich, also dass
x in f ungleich Null ist“ (Planning, 09:15). In der folgenden Implementation wird
deutlich, dass er dafiir die Ableitungsregeln nutzen mdchte. Dieser Plan ist
ebenfalls nicht zielfiihrend, erst recht, da Nick durch seinen vorherigen Plan
bereits f(0) bestimmt hat. In diesem Prozess wire fiir Nick entscheidend
gewesen, sich nicht nur mit der Losung der Tutoriumsaufgabe zu beschéftigen,
sondern ebenfalls mit der Aufgabenstellung. Beide Aufgaben unterscheiden sich
in ihren Anforderungen, wodurch moglicherweise aufgefallen wére, dass sowohl
eine Fallunterscheidung als auch das ,,nochmalige” Bestimmen von f in der
eigentlichen Aufgabe nicht zielfiihrend ist. Fiir den aufgestellten Plan, der
zielfithrend fiir die Losung der Aufgabe ist, wurden die Erfolgschancen durch die
vielen Fehler zunichte gemacht.

In der Bearbeitung von Lukas zeigt sich ein &hnliches Bild. Obwohl er die
Aufgabenstellung nochmal vorliest, wendet er sich davor und danach nur dem
Tipp zu, den er von einem Tutor erhalten hat. Diesen Tipp libernimmt er und
formuliert damit seinen Plan, wobei ihm in der Implementation Fehler
unterlaufen. Lukas méchte anschlieBend, ebenfalls wie in der Bearbeitung von
Nick, die Ableitung von f bilden, da in der Aufgabe die Bestimmung von f"(0)
verlangt ist. Um die Ableitung zu bestimmen, sucht Lukas im Internet nach
niitzlichen Ableitungsregeln, die ihm weiterhelfen konnen. Da seine Suche nicht
erfolgreich war, bricht er die Aufgabe an dieser Stelle ab.

In der Bearbeitung von Lea, Lisa, Sarah und Paula zur Aufgabe ,,L."Hospital* wird
schon zu Beginn der Aufgabe von Sarah vermutet, dass die Regeln von L"Hospital
zur Losung fithren konnen. Dabei iiberlegt die Lerngruppe zunichst, wie die
Regeln von L'Hospital anzuwenden sind, indem sie beispielhaft Werte fiir a
einsetzen. Paula versucht dies dann allgemeiner aufzufassen, wodurch Sarah die
Vorgehensweise beschreibt: ,,Aber guck mal, da steht doch Limes x gegen a. Das
muss man auch einsetzen. [...] Dann hast du da stehen, dann hast du da ja stehen,
a hoch a minus a hoch a und das ist Null“ (Planning + Implementation, 01:11).
AnschlieBend entscheiden sie sich, die Ableitung der Zdhler- und Nennerfunktion
zu bilden, da sie den Fall Null durch Null erhalten und somit die Regeln von
L’Hospital anwenden konnen. In der folgenden Implementation kommt es
zwischendurch zu kleinen Hiirden, allerdings werden diese gemeinsam in der
Gruppe aufgelost, wodurch sie letztendlich zu einem korrekten Ergebnis
gelangen. Einen positiven Einfluss auf die Losung hat dabei der zielfithrende Plan
eingenommen. Dieser konnte dadurch formuliert werden, dass zuvor die Aufgabe
verstanden wurde.
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Verifizierende Problembearbeitungsprozesse

Bisherige Studien zeigen, dass in Problembearbeitungsprozessen in seltenen
Fillen eine Riickschau auftritt (z. B. Pugalee, 2004). In den vorliegenden Daten
lassen sich allerdings in knapp der Hilfte (sechs von 13) der Prozesse eine
Verification identifizieren (Kapitel 6.1.3). Dabei fillt auf, dass in jedem
Bearbeitungsprozess von Lea, Lisa, Sarah und Paula eine Verification vorhanden
ist. Hinsichtlich ihrer Losungen wurde mindestens L3 kodiert. Weiterhin wurde
Verification in einem Prozess von Alex und Thomas sowie von David identifiziert,
dessen Produkte ebenfalls mit L3 bewertet sind. Lediglich das Produkt von Nick
wurde mit L1 bewertet, obwohl der Prozess eine Verification beinhaltet. Auf den
ersten Blick konnte daher vermutet werden, dass ein positiver Zusammenhang
zwischen Verification und einer erfolgreichen Losung besteht.

Es stellt sich die Frage, welche Aktivitdten in Verification durchgefiihrt wurden.
In den jeweiligen Episoden iiberpriifen die Studierenden jeweils ihre Losung bzw.
ihr Vorgehen. Die Verification der Gruppen (Alex und Thomas sowie Lea, Lisa,
Sarah und Paula) nehmen dabei einen zeitlich hoheren Anteil des Prozesses ein,
weil dariiber hinaus inhaltlich iiber die eigene Losung diskutiert wurde. Zum
Beispiel ordnen Alex und Thomas ihr Ergebnis, dass die Funktion in 0
differenzierbar ist, grafisch ein, indem sie sich die Funktion visualisieren.
Insgesamt hat der Episodentyp Verification allerdings wenig Einfluss auf den
gesamten Bearbeitungsverlauf, da sie am Ende der Bearbeitung auftreten. In allen
Prozessen tritt Verification als Letztes im Prozess auf. Nur bei der Aufgabe
,,L'Hospital“ von Lea, Lisa, Sarah und Paula wird Verification durch eine kurze
Exploration unterbrochen. Inhaltlich verdndern die Studierenden in keinem der
Prozesse etwas an ihrer Losung.

6.1.7 Zusammenfassung der Ergebnisse zur Analyse der Steuerung

AbschlieBend werden fiir das Kapitel 6.1 die zentralen Ergebnisse der Analyse
hinsichtlich Steuerung zusammengefasst:
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e Die untersuchten Studierende verbringen durchschnittlich am meisten
Zeit in der Exploration (51 % der Zeit). Die zweitmeiste Zeit nimmt
Implementation ein (23 %) (Kapitel 6.1.2).

e Die Problembearbeitungsprozesse von derselben Lerngruppe verlaufen
zu verschiedenen Aufgaben dhnlich. Eine Ausnahme zeigen die Prozesse
von Nick (Kapitel 6.1.3).

e Die Problembearbeitungsprozesse verlaufen eher zyklisch als linear (11
vs. 2) (Kapitel 6.1.4).

e Die Problembearbeitungsprozesse enthalten durchschnittlich 9,1
Episodenwechsel pro Prozess (Kapitel 6.1.4).

e Die Problembearbeitungsprozesse weisen keine typischen ,,wild goose
chase® (Schoenfeld, 1985) auf, allerdings lassen sich in flinf Prozessen
Charakteristika eines ,,wild goose chases® identifizieren (Kapitel 6.1.5).

e  (Zielfiihrendes) strukturiertes Vorgehen scheint erfolgreich zu sein.
Prozesse mit Charakteristika eines ,,wild goose chases” sind weniger
erfolgreich. Es konnte kein Zusammenhang zwischen Episodenwechsel
und Erfolg identifiziert werden (Kapitel 6.1.6).

6.2 Rekonstruktion von Wissen in den
Problembearbeitungsprozessen

Dieses Kapitel beschiftigt sich mit dem Wissensangebot der Veranstaltung und
der Wissensnutzung von Studierenden wihrend der
Problembearbeitungsprozesse.

Fir die Rekonstruktion von Wissen wird die Wissensmatrix herangezogen
(Kapitel 2.4.4). Dabei ermdglichen die Wissensarten und -facetten die
Darstellung des Wissensangebots der Veranstaltung sowie die Wissensnutzung
durch die Studierenden. Die Rekonstruktion mit Hilfe der Kategorien der
Wissensmatrix auf das Angebot der Veranstaltung wird in Kapitel 6.2.1
vorgestellt. Die Rekonstruktion mit Hilfe der Kategorien der Wissensmatrix
beziiglich der Wissensnutzung von Studierenden wird anhand eines gesamten
Problembearbeitungsprozesses in Kapitel 6.2.2 dargestellt. Anschlieend wird in
Kapitel 6.2.3 ein Uberblick iiber die rekonstruierten Wissenselemente aller
Prozesse gegeben. In Kapitel 6.2.4 wird der Fokus der Prozesse beziiglich der
Wissensarten und Wissensfacetten aufgeteilt. Die einzelnen Prozesse liefern
Gemeinsamkeiten und Besonderheiten, welche in Kapitel 6.2.5 diskutiert werden.
Darauf folgt eine Darstellung inhaltlicher Schwierigkeiten in Kapitel 6.2.6, denen
die Studierenden wihrend der Bearbeitung begegnen. Die Ausfithrungen
hinsichtlich des Angebots und der Nutzung werden in einem zusammenfassenden
Rahmen in Kapitel 6.2.7 verglichen. Dartiber hinaus erfolgt eine Untersuchung
der Prozesse auf Erfolg und Misserfolg beziiglich der Wissensnutzung in Kapitel
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6.2.8. AbschlieBend werden die zentralen Ergebnisse zum Wissen festgehalten
(Kapitel 6.2.9).

6.2.1 Rekonstruktion des Wissensangebots

Im Folgenden wird das Wissensangebot der Veranstaltung rekonstruiert. Die
theoretische Einordnung des benétigten mathematischen Wissens erfolgte bereits
in Kapitel 5.3. Aufbauend darauf wurde in Kapitel 5.4.2 das Wissensangebot am
Beispiel der Aufgabe ,,Differenzierbarkeit priifen® dargestellt, wobei das Konzept
der Differenzierbarkeit in all seinen Facetten detailliert prasentiert wurde. In den
folgenden Ausfiihrungen wird das Wissensangebot fiir die drei Aufgaben
rekonstruiert, jedoch ohne die ausfiihrliche, detaillierte Einordnung (mit
Ausschnitten aus der Veranstaltung fiir jede Facette), wie sie in Kapitel 5.4.2 fiir
das Konzept der Differenzierbarkeit vorgenommen wurde. Sofern ein
Wissenselement in der Veranstaltung angeboten wird, wird dies in den folgenden
Tabellen grau markiert. Die folgenden Ausfithrungen adressieren somit die
Forschungsfrage:

(W1) Welches Wissen wird von der Veranstaltung angeboten?

Mathematischer Inhalt
Konzept: Differenzierbarkeit

Konzept: Funktionen

Konzeptuelles
Wissen

Konzept: Abschnittsweise
definierte Funktionen

Verfahren: Differenzierbarkeit
priifen

Verfahren: Grenzwert von
Funktionen berechnen

Wissen

Prozedurales

Verfahren: Sandwich-Kriterium

Tabelle 19: Wissensangebot zur Aufgabe ,,Differenzierbarkeit priifen” (EF = Explizite Formulierung;
K&A = Konkretisierung & Abgrenzung; B&V = Bedeutung & Vernetzung; KF =
Konventionelle Festlegungen)

Das theoretische Wissen, das fiir die Bearbeitung der Aufgabe
"Differenzierbarkeit priifen" benétigt wird (Kapitel 5.3.1), wird im Rahmen der
Veranstaltung angeboten. Dabei werden 20 von insgesamt 24 moglichen
Wissensfacetten abgedeckt (Tabelle 19).
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Mathematischer Inhalt
Konzept: Stetigkeit einer
Funktion

Konzept: Differenzierbarkeit

Konzept: Funktion

Konzept: Abschitzung
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Konzept: Betrag

Zusammenhang: Mittelwertsatz
der Differentialrechnung

Verfahren: Kettenregel

Tabelle 20: Wissensangebot zur Aufgabe ,,Mittelwertsatz (PW = Prozedurales Wissen; EF = Explizite
Formulierung; K&A = Konkretisierung & Abgrenzung; B&V = Bedeutung &
Vernetzung; KF = Konventionelle Festlegungen)

Das theoretische Wissen, das fiir die Bearbeitung der Aufgabe "Mittelwertsatz"
bendtigt wird (Kapitel 5.3.2), wird im Rahmen der Veranstaltung angeboten.
Dabei werden 24 von insgesamt 28 moglichen Wissensfacetten abgedeckt
(Tabelle 20).

Mathematischer Inhalt
Konzept: Funktion

KW

Verfahren: Regel von
L’Hospital

Verfahren: Grenzwert von
Funktionen berechnen

Verfahren: Kettenregel
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Verfahren: Potenzregel

Tabelle 21: Wissensangebot zur Aufgabe ,,.L."Hospital“ (KW = Konzeptuelles Wissen; EF = Explizite
Formulierung; K&A = Konkretisierung & Abgrenzung; B&V = Bedeutung &
Vernetzung; KF = Konventionelle Festlegungen)
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Das theoretische Wissen, das fiir die Bearbeitung der Aufgabe "L’Hospital”
bendtigt wird (Kapitel 5.3.3), wird im Rahmen der Veranstaltung angeboten.
Dabei werden 15 von insgesamt 20 moglichen Wissensfacetten abgedeckt
(Tabelle 21).

Insgesamt lédsst sich erkennen, dass das theoretisch benétigte mathematische
Wissen beziiglich aller Aufgaben in der Vorlesung angeboten wird. Sowohl
konzeptuelles als auch prozedurales Wissen wird behandelt. Dabei existiert ein
vielfiltiges Angebot beziiglich der Wissensfacetten. Einige mathematische
Inhalte treten in mehr als nur einer Aufgabe auf. Sofern diese Dopplungen
unberiicksichtigt bleiben, werden insgesamt 41 von 52 moglichen
Wissenselementen in der Vorlesung vermittelt*s. Lediglich zwei mathematische
Inhalte werden mit nur zwei von vier mdglichen Wissenselementen dargestellt.
Dazu zéhlt das Sandwich-Kriterium (Aufgabe ,,Differenzierbarkeit priifen®)
sowie die Regeln von L Hospital (Aufgabe ,,.L."Hospital®).

Am héufigsten (6-mal) fehlt in dem Angebot das Wissenselement beziiglich der
Konventionellen Festlegungen. Allerdings liegt dies daran, dass es nicht zu jedem
mathematischen Inhalt spezielle Fachworter, Namen, Bezeichnungen und/oder
nicht begriindbare Festlegungen existieren (miissen). Andernfalls gibt es einige
Konventionelle Festlegungen, die bereits aus der Schule bekannt sein sollten und
daher nicht erneut in der Vorlesung erneut aufgegriffen bzw. festgelegt werden.
4-mal werden Wissenselemente beziiglich der Facette Bedeutung & Vernetzung
im Angebot ausgelassen. Mdglicherweise werden diese ausgelassen, da sie als
weniger relevant empfunden werden. Bspw. geht es bei dem Sandwich-Kriterium
vor allem um die Anwendung und weniger um die Entwicklung einer
(anschauliche) Vorstellung / Begriindung. Zusétzlich ist das Sandwich-Kriterium
ebenfalls ,,nur eine Technik, die unter das Bestimmen eines Grenzwerts fallt.
Letztlich wird die Facette Explizite Formulierung (Grenzwert von Funktion
berechnen) 1-mal nicht angeboten, wohingegen Konkretisierung & Abgrenzung
in jedem Fall bereitgestellt wird. Beide Facetten scheinen demnach eine wichtige
Rolle einzunehmen. Beziiglich der Expliziten Formulierung deckt sich dies mit
der besonderen Rolle, die der formalen Mathematik in der Hochschule
zugeschrieben wird. Ebenso spielen Beispiele bzw. Gegenbeispiele
(Konkretisierung & Abgrenzung) eine wichtige Rolle. Diese konnen helfen,
dhnliche Probleme in unterschiedlichen Kontexten zu 16sen, was unter die
Kompetenz des Problemldsen fiir Ingenieur:innen fallt (Alpers et al., 2013). Im
expliziten Fall dieser Studie lassen sich zukiinftige Hausaufgaben durch &hnliche
Beispiele aus der Vorlesung einfacher 16sen.

46 Die Auflistung fiir die einzelnen Aufgaben. Hier wird die Dopplung nicht betrachtet. Aufgabe
,Differenzierbarkeit priifen”: 20 von 24 moglichen Wissenselementen, Aufgabe
,Mittelwertsatz“: 23 von 28 moglichen Wissenselementen, Aufgabe ,,.L."Hospital*: 15 von
20 moglichen Wissenselementen.
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6.2.2 Fallanalyse zur Wissensnutzung

In diesem Abschnitt wird die Wissensnutzung mittels einer Fallanalyse (Hader,
2019, S. 371ff.; Hering & Schmidt, 2014) eines Problembearbeitungsprozesses
dargestellt. Diese Fallanalyse dient nicht nur zur Beantwortung der
Forschungsfrage, sondern auch =zur Présentation eines vollstindigen
Bearbeitungsverlaufs. Im methodischen Teil (Kapitel 5.4.2) wurde die Kodierung
bereits anhand von Beispielen erldutert, jedoch wird hier durch die Fallanalyse
ein zusammenhédngender Problembearbeitungsprozess gezeigt, der die
Wissensnutzung in ihrer Gesamtheit veranschaulicht. Der detaillierte
Problembearbeitungsprozess von Lea, Lisa, Sarah und Paula enthélt viele Aspekte
der Wissensnutzung und dient somit als umfassendes Beispiel. Damit fokussiert
dieses Kapitel die folgende Forschungsfrage:

(W2) Wie lisst sich die Wissensnutzung in Problembearbeitungsprozessen
mithilfe der Wissensmatrix rekonstruieren?

Im Folgenden wird der Problembearbeitungsprozess chronologisch dargestellt.
Dabei werden sogenannte ,,Turns® genutzt, die jeweils ein aktiviertes bzw.
genutztes Wissenselement adressieren. Diese werden in der Reihenfolge, wie sie
im Prozess aufgetreten sind, dargelegt.

Wiéhrend der Prozesse beziiglich der Aufgabe ,Mittelwertsatz® haben die
Studierenden héufig die Sinusfunktion und die Exponentialfunktion genutzt.
Daher wurde das Konzept Funktion um die beiden weiteren Konzepte
Sinusfunktion und Exponentialfunktion erginzt (siche Tabelle 22). AnschlieBend
erfolgt eine Darstellung des Nutzungsverlaufs in der Wissensmatrix.

Problembearbeitungsprozess von Lea, Lisa, Paula und Sarah zur Aufgabe
Mittelwertsatz

Der Problembearbeitungsprozess von Lea, Lisa, Sarah und Paula zur Aufgabe
,Mittelwertsatz* besitzt eine durchschnittliche Lange (23:21 Minuten; Kapitel 6).
Der Prozess wurde daher gewdhlt, weil in ihm viele verschiedene
Wissenselemente aktiviert werden. Die Darstellung dieses Prozesses zeigt zum
einen, wie die Wissensnutzung mit der Wissensmatrix rekonstruiert werden kann,
und liefert zum anderen eine Ergénzung zur Kodierung, die bereits beispielhaft in
Kapitel 5.4.2 aufgezeigt wurde. Die Lerngruppe verbringt im Prozess viel Zeit
damit, sich mit den mathematischen Inhalten der Abschitzung und des Betrags zu
beschéftigen. Sie gehen dabei hdufig auf die Exponential- und Sinusfunktion ein.
Zum Ende erreichen sie eine vollstindig korrekte Losung.

Turn 1: Mittelwertsatz der Differentialrechnung — Implizite Nutzung
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Die Aufgabenstellung verlangt, dass die Ungleichung mit dem Mittelwertsatz der
Differentialrechnung bewiesen werden soll. Dies wird von der Lerngruppe ziigig

aufgegriffen, indem sie die Ungleichung umformen, um sie der Aussage aus dem
Mittelwertsatz der Differentialrechnung anzupassen (Abbildung 32).

|cos ()~ cosfe=)| £ | x—+)

Cos fef i']“ccb(eqh! L4
X =Y

Abbildung 32: Ausschnitt aus Paulas Mitschriften zur Aufgabe ,,Mittelwertsatz

Turn 2: Betrag — Implizite Nutzung

Wiéhrend der Umformungen iiberlegen sie, welche Rolle die Betragsstriche
spielen, da sie in der Ungleichung der Aufgabe vorkommen. Dabei werden
verschiedene Aussagen zum Betrag getétigt. Zum einen wie damit umgegangen
werden soll: ,,Macht es vielleicht Sinn, wenn wir die Betragsstriche wegmachen?“
(Lisa), ,,ich wiirde die Betragsstriche einfach stehen lassen® (Sarah). Zum anderen
wofiir die Betragsstriche in der Aufgabe {iberhaupt da sind: ,,Wieso sind dann
iiberhaupt die Betragsstriche? (Lea). Diese Uberlegungen werden durch die
Voraussetzung und Anmerkung? in der Aufgabenstellung angeregt.
Schlussendlich heift es beziiglich der Betragsstriche: ,,Wir lassen die einfach*
(Sarah).

Turn 3: Mittelwertsatz der Differentialrechnung — Implizite Nutzung

»30, jetzt haben wir den Mittelwertsatz. Und wie missen wir dann
weitermachen?* (Sarah). Lisa st63t daraufthin an, dass sie die Ableitung an der
Stelle x, betrachten miissen. Dafiir definieren sie eine Funktion, um damit
weiterarbeiten zu konnen.

Turn 4: Mittelwertsatz der Differentialrechnung — Konventionelle Festlegung
Wihrend die Lerngruppe die Funktion definiert, wird die Frage gestellt, wie
genau diese aufgeschrieben werden muss. In der Aussage aus dem Skript wiirde
Xo benutzt werden. Da sowohl x und y in der Aufgabenstellung bereits verwendet
werden, entscheiden sie sich den Buchstaben a zu nehmen (Abbildung 33).

47 Voraussetzung: 0 <y < x, Anmerkung: Die Ungleichung gilt sogar flir beliebige
nichtnegative x und y.
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Abbildung 33: Ausschnitt aus Lisas Mitschriften zur Aufgabe ,Mittelwertsatz*

Turn 5: Kettenregel — Implizite Nutzung

Nach dem Definieren der Funktion soll diese abgeleitet werden, um den
Mittelwertsatz der Differentialrechnung anwenden zu konnen. Dabei wird die
Kettenregel verwendet. Die Berechnung nimmt einige Zeit in Anspruch, da die
Funktion von jeder Lernenden selbst abgeleitet wird. Dabei kommt es zu
verschiedenen Zwischenfragen und Validierungen untereinander: ,,Weil innere
Ableitung ist ja —e™*, oder nicht? (Paula).

Turn 6: Stetigkeit einer Funktion — Implizite Nutzung
Wihrend die Lerngruppe die Ableitung bestimmt, fragt sich Lea, ob noch die
Stetigkeit der Funktion gekléart werden muss.

Turn 7: Differenzierbarkeit — Implizite Nutzung
Nach kurzer Diskussion wirft Paula ebenfalls ein, ob man Gleiches auch mit
Differenzierbarkeit machen miisse.

Turn 8: Mittelwertsatz der Differentialrechnung — Bedeutung & Vernetzung
Nach kurzer Zeit kldren Sarah und Lea auf: ,, Aber das muss man mit dem
Mittelwertsatz nicht schreiben ..., weil es geht ja hier um den Mittelwertsatz der
Differentialrechnung. Davon gehen wir schon aus. Passt schon.* Sie gehen dabei
nicht auf die Explizite Formulierung ein, sondern greifen auf ihre Vorstellung zum
Mittelwertsatz der Differentialrechnung zuriick.

Turn 9: Kettenregel — Implizite Nutzung

Nach dieser Diskussion konzentriert sich die Lerngruppe erneut auf das Ableiten
mithilfe der Kettenregel. SchlieBlich gelangen sie zu der korrekten Ableitung der
Funktion.

Turn 10: Abschitzung — Implizite Nutzung sowie Exponential- und Sinusfunktion
— Bedeutung & Vernetzung®

48 Obwohl die Lerngruppe zuerst die Abschitzung erwédhnt und im Anschluss iiber die
Wertebereiche der speziellen Exponential- und Sinusfunktion gesprochen hat, wurde dies
dennoch zum gleichen Turn kodiert. Dies liegt daran, dass die Uberlegungen zu den
speziellen Funktionen immer im Zusammenhang mit der Abschitzung durchgefiihrt worden
sind.



Seite |211

AnschlieBend konzentriert sich die Lerngruppe auf die Abschétzung, die < 1 sein
soll. Um eine sinnvolle Abschitzung zu finden, liberlegen sie sich, welche Werte
sowohl die Exponential- als auch Sinusfunktion annehmen konnen. sin sei
beschriankt und e wiirde niemals negativ werden, was sie durch eine Zeichnung
untermalen. Zusétzlich lassen sie sich auf dem Tablet e ™ zeichnen. Zuletzt lassen
sie sich ebenfalls die Ableitungsfunktion e ™ - sin(e™*) auf dem Tablet anzeigen
und erkennen, dass diese immer Werte unter 1 annimmt. ,,Aber wie kénnen wir
das beweisen?* (Paula).

Turn 11: Betrag — Implizite Nutzung sowie Exponential- und Sinusfunktion —
Bedeutung & Vernetzung

Wihrend die Lerngruppe geeignete Umformungen fiir die Abschétzung sucht
(Abbildung 34), wird liberlegt, inwiefern die Betragsstriche dabei helfen konnen.
Sie iiberlegen, wie sich die Betragsstriche auf ihre Umformungen auswirken
wiirde. Dabei entsteht beziiglich der Sinusfunktion Verwirrung, da diese auch
negative Werte annehmen kann. Dies stellt fiir die Lerngruppe zunichst eine
Hiirde dar, mit der sie nicht weiterarbeiten konnen: ,,Weil} halt nicht, wie man mit
dem sin umgeht* (Lisa).

Qe 3}““ oudn

™" s (E_“)

A ~ (_L)
== = T sin |\ T

Abbildung 34: Ausschnitt aus Leas Mitschriften zur Aufgabe ,,Mittelwertsatz*

Turn 12: Sinusfunktion — Bedeutung & Vernetzung
Um die Verwirrung aufzulosen, wird iiber den Wertebereich der Sinusfunktion
1
x
eigenen dhnelt. Dies stellen sie anschlieBend auch mittels der Visualisierung fest.
Dennoch erzielt die Lerngruppe mit dieser Information keinen weiteren
Fortschritt in ihrer Losung.

diskutiert. Dariiber hinaus visualisieren sie sich sin( ), da diese Funktion der

Turn 13: Mittelwertsatz der Differentialrechnung — Konkretisierung &
Abgrenzung
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Da sie zu dem Zeitpunkt nicht wissen, wie sie weiter verfahren sollen, schlagt Lea
vor, in den Mitschriften des Tutoriums nachzuschauen. Dabei stellen sie einen
Vergleich zwischen den beiden verschiedenen Aufgaben an.

Turn 14: Abschétzung — Implizite Nutzung sowie Exponential- und Sinusfunktion
— Bedeutung & Vernetzung

Die Lerngruppe diskutiert im Zusammenhang der Abschitzung erneut iiber den
Wertebereich der Sinusfunktion. Dabei gelingt der Lerngruppe der Durchbruch.

Lea: ,,Wir fragen uns nur, warum es nicht unter Null geht?
Lisa: ,,Aber ist das nicht egal?*

Paula: ,,Aber wir miissen einfach nur beweisen, dass das Maxima Eins gilt.*

Sarah: ,,Ja, weil das wird nie groBer als Eins [zeigt auf sin(e™)] und das hier wird nie groBer als

Eins [zeigt auf e~ *]. Dann wird das insgesamt nie gréBer als Eins.“

Paula fasst mit ihrer Aussage die Kenntnisse der Lerngruppe zusammen.

Da Eiﬂk‘é‘ﬁ)nla&é{buﬁ ud 5 audh vie qERe A gyt e Brussagy.

. p Ay A g R : .
lgn(es) 28| £4  Somit iskdie Undeicdnung ‘cewsiesen.
Abbildung 35: Ausschnitt aus Sarahs Mitschriften zur Aufgabe ,Mittelwertsatz"

Turn 15: Betrag — Implizite Nutzung

Beim Aufschreiben der Erkenntnisse (Abbildung 35) wird erneut {iber die Rolle
der Betragsstriche diskutiert. Die Lerngruppe ist sich nicht sicher, ob man die
Betragsstriche einfach um die Funktion bzw. die einzelnen Produkte der
Funktionen setzen darf. Es wird auBerdem hinterfragt, ob das Setzen der
Betragsstriche iiberhaupt einen Unterschied fiir die Ungleichung bedeuten wiirde.
Sie versuchen zusitzlich, den Sinn der Betragsstriche in einen Zusammenhang
mit der Anmerkung zu bringen. Letztendlich einigen sie sich darauf, dass die
Betragsstriche um die Funktion geschrieben werden kann, dies aber keinen
groBen Unterschied bewirken wiirde.

Turn 16: Exponential- und Sinusfunktion — Bedeutung & Vernetzung

Zum Ende des Prozesses wird erneut auf die Skizzen Riickbezug genommen. Dort
wird nochmal der Graph der Funktion e ™ - sin(e™) angeschaut und die eigene
Bearbeitung validiert. Damit endet der Prozess.



Seite 213

Die vorhergegangenen Ausfiihrungen zeigen eine ausfiihrliche Beschreibung der
genutzten bzw. aktivierten Wissenselemente wiahrend des
Problembearbeitungsverlaufs von Lea, Lisa, Sarah und Paula zur Aufgabe
,Mittelwertsatz®. Um den Prozess kompakter darlegen zu konnen, wird eine
andere Darstellungsform bendtigt. Dafiir wird erneut die Wissensmatrix
verwendet (Tabelle 22).

Die Zahlen in der Wissensmatrix markieren die Turns der genutzten bzw.
aktivierten Wissenselemente. Z. B. wurde in dem Prozess der Zusammenhang
Mittelwertsatz der Differentialrechnung als erstes (Turn 1) und die Konzepte
Exponential- und Sinusfunktion als letztes (Turn 16) aktiviert bzw. genutzt.

Mathematischer Inhalt
Konzept: Stetigkeit einer
Funktion

Konzept: Differenzierbarkeit

Konzept: Funktion

Konzept: Exponentialfunktion

Konzept: Sinusfunktion

Konzept: Abschitzung
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Konzept: Betrag

Zusammenhang: Mittelwertsatz
der Differentialrechnung

Verfahren: Kettenregel

Tabelle 22: Wissensnutzung bzw. -aktivierung von Lea, Lisa, Sarah und Paula zur Aufgabe
Mittelwertsatz“ (PW = Prozedurales Wissen; EF = Explizite Formulierung; K&A
= Konkretisierung & Abgrenzung; B&V = Bedeutung & Vernetzung; KF =
Konventionelle Festlegungen)
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Die vorhergegangenen Ausfithrungen zeigen eine ausfiihrliche Beschreibung des
Problembearbeitungsprozesses von Lea, Lisa, Sarah und Paula zur Aufgabe
,Mittelwertsatz. Da der Fokus dieser Arbeit weniger darauf liegt, alle
analysierten Prozesse deskriptiv in gleicher Detailtiefe darzustellen, sondern
vielmehr darin besteht, verschiedene Prozesse miteinander zu vergleichen,
ermoglicht ein Abstraktionsschritt, die Gesamtheit aller Fille (parallel) zu
betrachten. Um einen ersten Einblick in die Wissensnutzung bzw. -aktivierung in
dieser Arbeit zu gewinnen, wird eine Darstellung mit Haufigkeiten gewéhlt. Diese
erste  Uberblicksdarstellung ist allerdings komprimiert, da nur auf die
Wissensarten (konzeptuell und prozedural) und Wissensfacetten (Implizite
Nutzung, Explizite Formulierung, Konkretisierung & Abgrenzung, Bedeutung &
Vernetzung, Konventionelle Festlegung) eingegangen wird. AnschlieBend wird
ebenfalls ein Uberblick iiber die Wissensnutzung der jeweiligen Aufgaben
gegeben. Die folgenden Ausfithrungen adressieren demnach die Forschungsfrage:

|

(W3) Welche Wissenselemente werden von den Studierenden héufig genutzt?

Wissensart Anzahl

Konzeptuelles 93

Wissen

Prozedurales 84

Wissen

Wissensfacette Davon Davon
konzeptuell prozedural

Implizite 63 21 42

Nutzung

Explizite 18 13 5

Formulierung

Konkretisierung 52 23 29

&Abgrenzung

Bedeutung & 30 29 1

Vernetzung

Konventionelle 14 7 7

Festlegungen

Tabelle 23: Hiufigkeiten der Nutzung beziiglich Wissensarten bzw. Wissensfacetten von allen

Problembearbeitungsprozessen

Tabelle 23 zeigt die Haufigkeiten zum einen beziiglich der Wissensarten und zum
anderen beziiglich der Wissensfacetten iiber alle Problembearbeitungsprozesse.
Fiir die Wissensfacetten wird zusétzlich die Wissensart in Betracht gezogen. Auf
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den ersten Blick zeigt sich, dass prozedurales (84-mal) und konzeptuelles (93-
mal) Wissen nahezu gleich oft aktiviert bzw. genutzt worden sind. Hinsichtlich
der Wissensfacetten zeigt sich eine unterschiedliche Verteilung. Am haufigsten
treten Implizite Nutzung (63-mal) als auch Konkretisierung & Abgrenzung (52-
mal) auf. Am wenigsten wird auf Konventionelle Festlegungen (14-mal)
eingegangen. Dazwischen liegen Bedeutung & Vernetzung (30-mal) sowie
Explizite Formulierung (18-mal).

Bei genauerer Betrachtung der Facetten zeigt sich, dass einige eher im
prozeduralen bzw. konzeptuellen Wissen angesteuert werden. Am deutlichsten ist
dies bei Bedeutung & Vernetzung zu erkennen. Fast ausschlielich geschieht das
nur im konzeptuellen Wissen (29-mal). Die Begriindung bzw. die Vorstellung
eines Verfahrens wird nur 1-mal genutzt bzw. aktiviert. Eine mogliche Erklérung
liegt dabei in der Auslegung der Wissensmatrix. Eine Vorstellung bzw.
Begriindung iiber das Verfahren Differenzierbarkeit priifen wird z. B. iiber alle
Wissensfacetten des Konzepts Differenzierbarkeit moglich gemacht. Prediger et
al. (2011) sehen dieses Wissenselement auch als Verkniipfung zu konzeptuellen
Gehalten*. Aus diesem Grund kann dies auch einen Einfluss auf die Kodierung
haben.

Weiterhin weist die Facette Explizite Formulierung eine stirkere Tendenz zum
konzeptuellen (13-mal) als zum prozeduralen (5-mal) Wissen auf. Dies konnte
auf der einen Seite darauf hindeuten, dass die ausformulierten Definitionen bzw.
Sitze eine wichtigere Rolle in den Problembearbeitungsprozessen einnehmen als
die Anleitung eines Verfahrens. Auf der anderen Seite konnte es bedeuten, dass
Studierende die Anleitung der notwendigen Verfahren bereits internalisiert®
haben und vielmehr die formalen Definitionen bzw. Sitze aktivieren bzw. in
Erinnerung rufen miissen.

Zwei Facetten werden dagegen eher im prozeduralen Wissen angesteuert.
Darunter zeigt sich beziiglich Konkretisierung & Abgrenzung, dass primér
(Gegen-)Beispiele von Verfahren (29-mal) als von Konzepten bzw.
Zusammenhingen (23-mal) genutzt werden. Die hohe Anzahl beziiglich des
prozeduralen Wissens ist nicht verwunderlich, da die Aufgabe aus dem Tutorium
bereits ein Beispiel fiir einen dhnlichen Aufgabentyp liefert. Das Zuriickgreifen
auf einen dhnlichen Aufgabentyp zeigt somit ein Beispiel fiir die Anwendung
eines Verfahrens auf kann daher dariiber hinaus eine sinnvolle Strategie sein
(Pdlya, 1949, S.60). Allerdings werden (Gegen-)Beispiele von Konzepten und
Zusammenhingen ebenfalls genutzt, um sich diese verstandlicher zu machen und
die Anwendung vorzubereiten.

49 Es kann auch diskutiert werden, dass dadurch jedem Verfahren zusétzlich eine eigene Zeile
im konzeptuellen Wissen in der Wissensmatrix zugeordnet werden sollte.

50 Falls Studierende ein Verfahren bereits internalisiert haben, kann dies in dieser Arbeit nicht
festgestellt werden.
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Die Facette Implizite Nutzung tendiert etwas deutlicher zum prozeduralen Wissen
(42-mal). Da in den Prozessen bestimmte Verfahren angewendet werden miissen,
ist das hiufige Zuriickgreifen keine Uberraschung. Allerdings zeigt sich auch fiir
das konzeptuelle Wissen (21-mal), dass Konzepte und Zusammenhinge
systematisch in Verbindung mit dem Anwendungskontext gesetzt werden.
Insgesamt iiberrascht es nicht, dass die Implizite Nutzung am haufigsten
angesteuert wird, da die Studierenden in einem Kontext sind, bei dem sie aktiv
mathematischen Wissen in einer Aufgabe anwenden miissen.

Letztlich ist die Aufteilung beziiglich der Facette Konventionelle Festlegungen
ausgeglichen. Sie wurde sowohl im konzeptuellem als auch prozeduralem Wissen
jeweils 7-mal angesteuert.

Tabelle 23 zeigt einen Uberblick iiber alle Aufgaben und integriert dabei ebenfalls
die Lerngruppen. Da die Aufgaben unterschiedliche mathematische Inhalte
verlangen sowie unterschiedliche mathematische Inhalte von den Studierenden
genutzt werden, wird im Folgenden jeweils eine Haufigkeitstabelle pro Aufgabe
gewdhlt. In dieser Darstellung wird der spezielle mathematische Inhalt
hinzugefiigt. Aulerdem wird die Wissensart mit der Wissensfacette gekreuzt,
wodurch die Haufigkeit eines Wissenselements gezahlt wird. Dabei werden die
einzelnen Wissenselemente mit der Anzahl der Nutzung bzw. Aktivierung
versehen, sowie aus den resultierenden Zahlen eine Heat-Map erstellt. In der
Heat-Map sind die Problembearbeitungsprozesse der verschiedenen Lerngruppen
zu einer Aufgabe zusammengefasst.
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Mathematischer Inhalt IN EF K&A B&V KF
= Konzept: Differenzierbarkeit
2 3 6 3 1 4
z Konzept: Funktionen
S 0 0 0 3 0
E Konzept: Abschnittsweise
g definierte Funktion 2 0 0 0 0
s Sonstige Konzepte und
< Zusammenhiinge®! 1 0 0 1 0
Verfahren: Differenzierbarkeit
R Prifen 11 0 9 1 4
é Verfahren: Grenzwert von
F Funktionen berechnen 6 1 ) 0 0
s Verfahren: Sandwich-Kriterium
=
3 0 0 0 0 0
E Sonstige Verfahren
&~ 1 1 4 0 0

Tabelle 24: Heat-Map zur Aufgabe ,,Differenzierbarkeit priifen” (EF = Explizite Formulierung; K&A
= Konkretisierung & Abgrenzung; B&V = Bedeutung & Vernetzung; KF =
Konventionelle Festlegungen)

In den fiinf Problembearbeitungsprozessen zu der Aufgabe ,,Differenzierbarkeit
priiffen (Tabelle 24) wird insgesamt 64-mal (24-mal konzeptuell, 40-mal
prozedural) ein spezifisches Wissenselement genutzt bzw. aktiviert. Dabei féllt
auf, dass Differenzierbarkeit als Konzept, aber auch als Verfahren am héufigsten
angesteuert wird. Es spiegelt sich in jedem Prozess wider, dass Studierende
sowohl auf das konzeptuelle als auch das prozedurale Wissen beziiglich der
Differenzierbarkeit zuriickgreifen. Das prozedurale Wissen wird allerdings
héufiger beansprucht. Besonders stechen dabei die Facetten Implizite Nutzung
sowie Konkretisierung & Abgrenzung heraus, die hiufig in einem Wechselspiel
zueinander genutzt bzw. aktiviert werden. Es fillt ebenso auf, dass kaum Wissen
zu den beiden Konzepten beziiglich Funktionen von den Studierenden
angesprochen wird. Dariliber hinaus findet das Sandwich-Kriterium bei der
Bestimmung des Grenzwerts in keinem der Losungsversuche Anwendung.

51 Sonstige Konzepte und Zusammenhénge (sowie Verfahren weiter unten in der Tabelle) sind
alle Konzepte bzw. Zusammenhénge, die Studierende angewendet haben, allerdings nicht
notwendig fiir die Aufgabe waren. Fiir die Einfachheit der Darstellung werden diese in
Tabelle 24 zusammengefasst. In den Losungsversuchen werden bei dieser Aufgabe das
Verfahren Stetigkeit priifen (Alex und Thomas), die Produktregel (Nick), die Kettenregel
und das Konzept Polarkoordinaten (beide Lukas) genutzt.
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Mathematischer Inhalt IN EF K&A B&V KF
Konzept: Stetigkeit einer
Funktion 1 0 0 0 0
Konzept: Differenzierbarkeit
1 0 0 0 0
£ Konzept: Funktion
2 0 0 0 1 0
= Konzept: Exponentialfunktion
S 0 0 2 6 0
E Konzept: Sinusfunktion
g 0 0 2 6 0
E Konzept: Abschétzung
4 0 0 1 0
Konzept: Betrag
4 0 0 0 0
Zusammenhang: Mittelwertsatz
der Differentialrechnung 5 6 5 6 3
Verfahren: Kettenregel
3 3 0 0 0 0
A Sonstige Verfahren®?
1 0 1 0 0

Tabelle 25: Heat-Map zur Aufgabe ,,Mittelwertsatz* (PW = Prozedurales Wissen; EF = Explizite
Formulierung; K&A = Konkretisierung & Abgrenzung; B&V = Bedeutung &
Vernetzung; KF = Konventionelle Festlegungen)

In den vier Problembearbeitungsprozessen zu der Aufgabe , Mittelwertsatz*
(Tabelle 25) wird insgesamt 58-mal (53-mal konzeptuell, 5-mal prozedural) ein
spezifisches Wissenselement genutzt bzw. aktiviert. Dabei féllt auf, dass dies fast
ausschlieBlich konzeptuelles Wissen der Fall ist. Es muss allerdings bedacht
werden, dass eine Vielzahl verschiedener mathematische Inhalte des
konzeptuellen Wissens und nur ein Verfahren beziiglich des prozeduralen Wissens
fir die Losung der Aufgabe benotigt werden. Der Mittelwertsatz der
Differentialrechnung wird am haufigsten herangezogen, wobei alle seine Facetten
beriicksichtigt werden. Beziiglich der Konzepte werden Betrag, Abschitzung und
die Exponential- als auch Sinusfunktion hiufig verwendet, dabei oftmals im
direkten Zusammenhang oder im Wechselspiel. Die Konzepte Stetigkeit und
Differenzierbarkeit werden nur in einem Prozess aktiviert bzw. genutzt. In Bezug

52 In den Losungsversuchen werden bei dieser Aufgabe das Verfahren Vollstindige Induktion
(David) und Produktregel (Nick) genutzt.
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auf das prozedurale Wissen wird lediglich die Kettenregel®® hinsichtlich der
Facette Implizite Nutzung aktiviert.

Mathematischer Inhalt IN EF K&A B&YV KF

Konzept: Funktion 0 0 0 0 0

Konzept: Exponentialfunktion | 0 1 7 1 0

Konzeptuelles
Wissen

Konzept: Logarithmusfunktion | 0 0 4 3 0

Verfahren: Regel von
L Hospital 4 0 5 0 0

Verfahren: Grenzwert von
Funktionen berechnen 9 2 7 0 3

Verfahren: Kettenregel 3 1 1 0 0
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Verfahren: Potenzregel 4 0 0 0 0

Tabelle 26: Heat-Map zur Aufgabe ,L'Hospital® (EF = Explizite Formulierung; K&A =
Konkretisierung & Abgrenzung; B&V = Bedeutung & Vernetzung, KF =
Konventionelle Festlegungen)

In den vier Problembearbeitungsprozessen fiir die Aufgabe ,,L."Hospital“ (Tabelle
26) wird insgesamt 55-mal (16-mal konzeptuell, 39-mal prozedural) ein
spezifisches Wissenselement genutzt bzw. aktiviert. Dabei fillt auf, dass fiir die
Aufgabe sowohl auf konzeptuelles als auch prozedurales Wissen zuriickgegriffen
wird. Das prozedurale Wissen iiberwiegt dabei, wobei das Verfahren der
Grenzwertbestimmung am haufigsten aktiviert bzw. genutzt wurde. Insgesamt
sticht die Implizite Nutzung besonders im prozeduralen Wissen hervor. Das
konzeptuelle Wissen wird beziiglich der Exponential- und Logarithmusfunktion
verwendet. Dabei zeigt sich, dass vor allem die Facetten Konkretisierung &
Abgrenzung hiufig angesteuert wird. Betrachtet man die gesamte Aufgabe,
scheinen vor allem Implizite Nutzung sowie Konkretisierung & Abgrenzung im
Vordergrund zu stehen.

Die Darstellung der Hiufigkeiten bietet eine gute Mdglichkeit, einen Uberblick
hinsichtlich der Wissensnutzung von  Studierenden wihrend  der
Problembearbeitungsprozesse zu erhalten. Allerdings geht damit ein Verlust an

53 Beziiglich des prozeduralen Wissens nutzt David in seinem Problembearbeitungsprozess die
vollstandige Induktion und Nick die Produktregel. Diese werden in dieser
Uberblicksdarstellung unter Sonstige Verfahren zusammengefasst.
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Detailinformationen einher. Einige Merkmale kdnnen nur bei Betrachtung
einzelner Prozesse herausgearbeitet werden. Aus diesem Grund werden sich die
weiteren Ausfithrungen detaillierter mit der Wissensnutzung einzelner Prozesse
widmen.

6.2.4 Wissensfokus der Problembearbeitungsprozesse

Als néchstes wird der Blick auf den Fokus der einzelnen Prozesse gerichtet. Dabei
wird untersucht, welche Wissensarten und Wissensfacetten die Studierenden in
ihren Prozessen besonders hiufig ansteuern. Die folgenden Ausfiihrungen
adressieren demnach die Forschungsfrage:

(W4) Auf welche Wissenselemente setzen Studierende einen Fokus wéihrend der

Prozesse?
Lerngruppe Aufgabe Wissensart  Wissensfacetten
Alex und  Differenzierbarkeit priifen  Prozedural IN, K&A
Thomas Mittelwertsatz Konzeptuell IN, B&V
L’Hospital Prozedural IN, K&A
Lea, Lisa, Differenzierbarkeit priifen = Prozedural IN, K&A
Sarahund  Mittelwertsatz Konzeptuell IN, B&V
Paula L Hospital Prozedural  IN, K&A
Differenzierbarkeit priifen = Konzeptuell K&A, EF, IN
David Mittelwertsatz Konzeptuell EF, K&A, B&V
L Hospital Prozedural K&A, IN
Differenzierbarkeit priifen  Prozedural IN
Nick Mittelwertsatz Konzeptuell K&A, EF, B&V
L Hospital Prozedural IN, K&A

Lukas Differenzierbarkeit priifen  Prozedural IN, K&A

Tabelle 27: Wissensfokus der einzelnen Problembearbeitungsprozesse

Tabelle 27 stellt den Fokus des genutzten bzw. aktivierten Wissens der einzelnen
Prozesse dar. Ein Prozess hat den Fokus prozedural, wenn mehr Wissenselemente
beziiglich des prozeduralen Wissens genutzt bzw. aktiviert werden (oder
umgekehrt fiir konzeptuelles Wissen). Hinsichtlich der Wissensfacetten ist der
Fokus auf die zwei am haufigsten angesteuerten Wissenselemente gerichtet. Die
erstgenannte Wissensfacette wird am hédufigsten und die zweitgenannte
Wissensfacette am zweithdufigsten angesteuert. Einige Prozesse haben mehr als
zweil Wissensfacetten als Fokus. Dies liegt daran, dass zwei Facetten gleich héaufig
angesteuert werden. Im Prozess von Nick zur Aufgabe ,Differenzierbarkeit
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priifen” konzentriert sich Nick hauptsachlich auf die Implizite Nutzung, wéhrend
drei weitere Facetten mit gleicher Haufigkeit als zweithdufigste angesteuert
werden. Da diese Facetten allerdings nur jeweils 1-mal genutzt werden, kann in
diesem Prozess wenig mit einem echten Fokus argumentiert werden. Daher ist fiir
diesen Prozess lediglich die Implizite Nutzung als Fokus festgelegt worden.

Prozess mit prozeduralem Fokus

Es ist auffdllig, dass die prozeduralen Problembearbeitungsprozesse beziiglich
der Wissensfacetten fast alle einen gleichen Fokus setzen. Prozedurale Prozesse
befinden sich vor allem im Bereich der Impliziten Nutzung sowie Konkretisierung
& Abgrenzung. Als Beispiel wird auf die relevanten Stellen des Prozesses von
Alex und Thomas zur Aufgabe ,,L"Hospital“ eingegangen (Tabelle 28).

Mathematischer
Inhalt IN EF K&A B&V KF

Konzept: Funktion 0 0 0 0 0

Konzept:
Exponentialfunktion 0 0 1 0 0

Konz. Wissen

Konzept:
Logarithmusfunktion |0 0 0 1 0

Verfahren: Regel von
L Hospital 1 0 1 0 0

Verfahren: Grenzwert
von Fkt. berechnen 2 0 1 0 0

Verfahren:
Kettenregel 1 0 1 0 0

Verfahren:
Potenzregel 1 0 0 0 0
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Tabelle 28: Prozess mit prozeduralem Fokus von Alex und Thomas (EF = Explizite Formulierung;
K&A = Konkretisierung & Abgrenzung; B&V = Bedeutung & Vernetzung; KF =
Konventionelle Festlegungen)

In dem Prozess von Alex und Thomas zeigt sich, dass fast ausschlieBlich Implizite
Nutzung sowie Konkretisierung & Abgrenzung genutzt bzw. aktiviert wurde.
Lediglich 1-mal haben sie auf die Facette Bedeutung & Vernetzung
zuriickgegriffen, da sie sich zum Ende des Prozesses den Graphen der natiirlichen
Logarithmusfunktion visualisiert haben. Der Prozess von Alex und Thomas
beschreibt beziiglich des Fokus ein nahezu perfektes Beispiel fiir die
Verallgemeinerung eines prozeduralen Prozesses.

In dem restlichen Prozess haben sie sich entweder Beispiele von Verfahren
angeschaut (Regel von L'Hospital und Kettenregel), sich ein Beispiel selbst
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erstellt (Grenzwert berechnen), sowie diese Verfahren ebenfalls angewendet
(zuziiglich der Potenzregel). Das Beispiel zur Kettenregel wurde speziell
beziiglich der Exponentialfunktion ausgewihlt, wodurch ebenfalls die
Konkretisierung & Abgrenzung im konzeptuellen Wissen angesteuert wurde.

Prozess mit konzeptuellem Fokus

Fiir die konzeptuellen Prozesse konnen zwei verschiedene Fokusse identifiziert
werden. Die erste Art von konzeptuellen Prozessen befindet sich vor allem in der
Impliziten Nutzung sowie Bedeutung & Vernetzung. Als Beispiel wird der Prozess
von Lea, Lisa, Sarah und Paula zur Aufgabe ,Mittelwertsatz* herangezogen
(Tabelle 29).

Mathematischer Inhalt IN EF K&A B&V KF
Konzept: Stetigkeit einer Funktion | 1 0 0 0 0
Konzept: Differenzierbarkeit 1 0 0 0 0
g
Al Konzept: Funktion 0 0 0 0 0
=
R Konzept: Exponentialfunktion 0 0 0 4 0
2
4:: Konzept: Sinusfunktion 0 0 0 5 0
Konzept: Abschétzung 2 0 0 0 0
Konzept: Betrag 3 0 0 0 0
Zusammenhang: MWS 2 0 1 1 1
g
Verfahren: Kettenregel 2 0 0 0 0

Tabelle 29: Prozess mit konzeptuellem Fokus von Lea, Lisa, Sarah und Paula (PW = Prozedurales
Wissen; EF = Explizite Formulierung; K&A = Konkretisierung & Abgrenzung;
B&V = Bedeutung & Vernetzung; KF = Konventionelle Festlegungen)

Lea, Lisa, Sarah und Paula nutzen bzw. aktivieren in ihrem Prozess fast
ausschlieBlich die Wissensfacetten [mplizite Nutzung und Bedeutung &
Vernetzung. Lediglich beziiglich des Mittelwertsatzes der Differentialrechnung
werden die beiden Facetten Konkretisierung & Abgrenzung und Konventionelle
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Festlegung genutzt>. Dabei wurde zum einen auf die Aufgabe des Tutoriums
zurtickgegriffen und zum anderen iiber die Rolle von x, in der Gleichung des
Mittelwertsatzes diskutiert.

In dem restlichen Prozess diskutiert die Lerngruppe liber den Anwendungskontext
(Stetigkeit und Differenzierbarkeit, Mittelwertsatz der Differentialrechnung) und
wendet Konzepte (Abschéitzung, Betrag) sowie Verfahren an (Kettenregel).
Hinsichtlich der Bedeutung & Vernetzung beschiftigt sich die Lerngruppe vor
allem mit der Exponential- als auch Sinusfunktion. Dabei werden die Graphen
verschiedener Exponential- und Sinusfunktionen visualisiert sowie iiber die
verschiedene Wertebereiche dieser diskutiert. Motiviert wird dies an einigen
Stellen auch im Zusammenhang mit der Abschitzung (Was hat das einen Einfluss
auf die Abschétzung?) und dem Betrag (Was verdndert sich fiir diese Funktionen,
wenn wir einen Betrag drum setzen?).

Die zweite Art von konzeptuellen Prozessen befindet sich vor allem in der
Konkretisierung & Abgrenzung sowie Expliziten Formulierung. Als Beispiel wird
der Prozess von David zur Aufgabe ,,Differenzierbarkeit priifen” herangezogen
(Tabelle 30).

Mathematischer Inhalt IN EF K&A B&V KF
é Konzept: Differenzierbarkeit 0 4 3 1 3
D
g Konzept: Funktion 0 0 0 1 0
E Konzept: Abschnittsweise

definierte Funktion 1 0 0 0

Verfahren: Differenzierbarkeit

8 priifen 2 0 1 0 0
E Verfahren: Grenzwert von

51 Funktionen berechnen 1 0 2 0 0
S

A~ Verfahren: Sandwich-Kriterium 0 0 0 0 0

Tabelle 30: Prozess mit konzeptuellem Fokus von David (EF = Explizite Formulierung; K&A =
Konkretisierung & Abgrenzung; B&V = Bedeutung & Vernetzung; KF =
Konventionelle Festlegungen)

54 Es mag leicht verwunderlich sein, dass die Facette Explizite Formulierung in dem Prozess
nicht aktiviert bzw. genutzt wird. Dies liegt allerdings daran, dass sie lediglich mit dem
fb)—f(a)
b-a
Satz bezogen haben. Woher sie diesen Ausdruck entnommen haben, ist mittels
Videomaterial und Transkript unklar geblieben. Eine Vermutung ist: Aus den Unterlagen
des Tutoriums.

mathematischen Ausdruck f'(x,) = gearbeitet haben und sich nie explizit auf den
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David nutzt bzw. aktiviert in seinem Prozess alle Wissensfacetten. Am héaufigsten
befindet er sich in der Konkretisierung & Abgrenzung, anschlieend die Explizite
Formulierung sowie die Implizite Nutzung. Hinsichtlich des konzeptuellen
Wissens sticht die Explizite Formulierung fir die Differenzierbarkeit besonders
hervor. 4-mal bezieht sich David in seinem Prozess auf die ausformulierte
Definition und anschlieBend auf spezielle Schreibweisen (Konventionelle
Festlegung). Dartiber hinaus versucht er mittels Beispiele (Konkretisierung &
Abgrenzung) dem Begriff ndher zu kommen. Beziiglich des prozeduralen Wissens
kommt noch der weitere Fokus der Impliziten Nutzung hinzu, welcher durch die
Anwendung der verschiedenen Verfahren entsteht. AuBerdem greift er auf
Beispiele von Verfahren zuriick (Konkretisierung & Abgrenzung).

Zusammenfassung und Fazit zu Problembearbeitungsprozessen mit Wissensfokus

Beziiglich des Fokus lassen sich demnach drei verschiedene Arten identifizieren.
Der prozedurale Prozess befindet sich vor allem in der Impliziten Nutzung und
Konkretisierung & Abgrenzung. Dieser Fokus scheint fiir prozedurale Prozesse
wenig verwunderlich zu sein. Es geht bei den Aufgaben darum, Verfahren
anzuwenden (Implizite Nutzung). Dariiber hinaus konnen Beispiele
(Konkretisierung & Abgrenzung) dabei helfen, das Vorgehen zu erschlieBen.
Besonders die vorherige Aufgabe aus dem Tutorium bietet eine gute Vorlage.
Unabhéngig davon greifen Studierende auch auf Beispiele zuriick, wenn das
Tutorium keine dhnliche Aufgabe liefert. Eine oft genutzte Ressource fiir das
Suchen von Beispielen ist z. B. das Internet (Kempen & Liebendorfer, 2021;
Kolbe & Wessel, 2022). Prozedurale Prozesse kommen dabei wenig mit
Expliziten Formulierungen aus. Diese werden allerdings teilweise implizit in den
Beispielen mitgeliefert, weshalb bspw. auf die Anleitung des Verfahrens nicht
explizit zuriickgegriffen wird. AuBBerdem wird wenig Bedeutung & Vernetzung
angesteuert. Dies kann daran liegen, dass Verfahren ohne eine
Bedeutungsbezogenheit auskommen (Hiebert & Lefevre, 1986, S. 8).
Ingenieur:innen sind moglicherweise nicht daran interessiert, warum ein
Verfahren funktioniert, sondern wie es funktioniert. Dies kann allerdings nicht
aus den vorliegenden Ergebnissen geschlussfolgert werden.

Fiir den konzeptuellen Prozess gibt es zwei Unterarten. Zum einen mit dem Fokus
auf Implizite Nutzung und Bedeutung & Vernetzung und zum anderen mit dem
Fokus auf Konkretisierung & Abgrenzung und Explizite Formulierung. Obwohl
die beiden Fokusse unterschiedlich sind, haben die konzeptuellen Prozesse
dennoch die Gemeinsamkeit, dass die Bedeutung der relevanten Konzepte und
Zusammenhinge hinsichtlich der Aufgabe noch nicht verstanden wurden. Der
Unterschied im Umgang wird in Bezug auf die Wissensfacetten deutlich. In der
ersten Unterart zeigt sich dies durch die Implizite Nutzung der Konzepte und
Zusammenhinge. Dabei wird versucht diese mit weiteren Konzepten mittels der
Facette Bedeutung & Vernetzung zu verbinden. Dieses Vernetzen von
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Wissenselementen spiegelt den Anspruch konzeptuellen Wissens wider (Hiebert
& Lefevre, 1986, S. 3f). Die weiteren Wissensfacetten werden in der ersten
Unterart kaum genutzt bzw. aktiviert. In der zweiten Unterart zeigt sich dies durch
das haufige Bezugnehmen auf die Explizite Formulierung (vor allem fiir den
Zusammenhang Mittelwertsatz). Dariiber hinaus wird zusitzlich versucht, in
irgendeiner Form Beispiele (Konkretisierung & Abgrenzung) zu finden, die
weiterhelfen konnen. Die Facetten werden von den Studierenden nicht
verkniipfend betrachtet, wodurch ebenfalls keine Verbindungen zwischen
Wissensfacetten explizit werden. In der zweiten Unterart von konzeptuellen
Prozessen liegt der Fokus zwar auf der Expliziten Formulierung und
Konkretisierung & Abgrenzung, allerdings werden auch weitere Wissensfacetten
genutzt. Dies ist ein Unterschied zu den anderen Arten, in denen fast
ausschlieBlich Wissen aus dem spezifischen Fokus genutzt bzw. aktiviert wird.
Erath (2017, S. 209f) hat in ihrer Dissertation Unterrichtsbeitrige von
Schiiler:innen einer kognitiven Qualitit zugeordnet. Dabei hat sie den
Wissenselementen einer gewissen kognitiven Qualitét in Form von anspruchsvoll
oder weniger anspruchsvoll zugewiesen. Kurz gefasst sind die Facetten Explizite
Formulierung sowie Bedeutung & Vernetzung eher kognitiv anspruchsvoll und
Konventionelle Festlegung eher weniger kognitiv anspruchsvoll. Fiir die Facette
Konkretisierung & Abgrenzung wird fiir konzeptuelles (kognitiv anspruchsvoll)
und prozedurales Wissen (weniger kognitiv anspruchsvoll) unterschieden.
Implizite Nutzung wird bei der Operationalisierung ausgelassen, da Erath diese
nicht als Wissensfacette aufgenommen hat. Wird die Operationalisierung von
Erath hinsichtlich der kognitiven Qualitdt {ibernommen, zeigt sich fiir den Fokus
der Prozesse dieser Arbeit, dass die konzeptuellen Prozesse beider Unterarten
kognitiv anspruchsvoll, wéhrend sechs von acht der prozeduralen Prozesse eher
weniger kognitiv anspruchsvoll sind. Die beiden restlichen prozeduralen Prozesse
konnen als kognitiv anspruchsvoll eingestuft werden, da ein Verfahren verstanden
wird, wenn verschiedene Ebenen (hier: Facetten) angesteuert werden.

Aus Tabelle 27 ist ebenfalls zu erkennen, dass die prozeduralen Prozesse
ausschlieBlich in den Aufgaben ,,Differenzierbarkeit priifen* und ,,L"Hospital
auftreten. Die konzeptuellen Prozesse kommen in der Aufgabe ,,Mittelwertsatz*
vor. Der einzige Prozess, welcher nicht dieser Zuteilung entspricht, ist der Prozess
von David zur Aufgabe ,Differenzierbarkeit priifen” (weiter oben als Beispiel
beschrieben). Der Prozess von David ist ein konzeptueller, weil er zunéchst
versucht, den Begriff Differenzierbarkeit zu verstehen. Dabei greift er auf viele
verschiedene Wissenselemente beziiglich des Begriffs Differenzierbarkeit
zuriick. Nachdem David den ,,Verstehens-Teil* abgeschlossen hat, dhnelt sein
Prozess wieder dem typischen prozeduralen (mit einem Fokus auf Implizite
Nutzung und Konkretisierung & Abgrenzung).

Insgesamt lésst sich daraus vermuten, dass der Fokus der Wissensnutzung mit
einer spezifischen Aufgabe zusammenhingt. Werden die Anforderungen
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herangezogen (vgl. Kapitel 5.3), bestitigt sich, dass in der Aufgabe ,,L."Hospital*“
vor allem prozedurales Wissen und in der Aufgabe ,Mittelwertsatz* vor allem
konzeptuelles Wissen gefordert wird. Dies deckt sich mit dem Fokus der
Wissensnutzung. Lediglich fiir die Aufgabe Differenzierbarkeit sind die
Anforderungen der Aufgabe ausgeglichen, wihrend der Fokus der
Wissensnutzung prozedural ist. Als Anmerkung soll erwihnt werden, dass fiir die
Aufgabe ,,Differenzierbarkeit priifen” sowohl das Konzept Funktion als auch das
Konzept abschnittsweise definierte Funktion aufgenommen wurden. Fasst man
diese beiden Konzepte zu einem zusammen, wiirden die Anforderungen dieser
Aufgabe eher auf dem prozeduralen Wissen liegen.

6.2.5 Auffilligkeiten im Prozess

Einige Gemeinsamkeiten und Unterschiede beziiglich der verschiedenen
Problembearbeitungsprozesse konnten bereits durch die Héufigkeiten (Kapitel
6.2.3) und dem Fokus (Kapitel 6.2.4) dargestellt werden. Diese Analysen haben
sich auf den gesamten Prozess bezogen. Im Folgenden werden einzelne
Abschnitte der Prozesse ndher beleuchtet, da in bestimmten Bereichen zwei
auffallige Merkmale zu beobachten sind.

Die Reihenfolge K&A 2 IN

Es zeichnet sich eine Gemeinsamkeit ab, die in fast jedem Prozess auftritt. Die
Gemeinsamkeit besteht darin, dass im direkten Anschluss der Wissensfacette
Konkretisierung & Abgrenzung in den meisten Féllen die Implizite Nutzung folgt.
Diese Reihenfolge ldsst sich in zwdlf von 13 Prozessen mindestens 1-mal
wiederfinden. Der Wechsel (K&A —> IN) wird anhand von relevanten Beispielen
des Prozesses von Alex und Thomas zur Aufgabe Differenzierbarkeit dargestellt.
Der Prozess von Alex und Thomas zur Aufgabe Differenzierbarkeit wurde bereits
in Kapitel 6.1.1 ausfiihrlich prisentiert.

Alex und Thomas aktivieren bereits friih in ihrem Prozess die Facette
Konkretisierung & Abgrenzung (Turn 2), in der sie sich ihre Aufzeichnungen aus
dem Tutorium anschauen. Dabei wollen sie ermitteln, wie die Aufgabe aus dem
Tutorium geldst wurde, da sie eine dhnliche Vorgehensweise fiir die eigentliche
Aufgabe vermuten. Sie nutzen demnach ein Beispiel, um das Vorgehen
(Differenzierbarkeit priifen) iibertragen zu konnen. Genau dies wird im Anschluss
auch umgesetzt, sie versuchen das gleiche Vorgehen auf ihre eigentliche Aufgabe
anzuwenden (Implizite Nutzung, Turn 3). Nach kurzer Unterbrechung im Bereich
der Konventionellen Festlegung findet sich ein weiteres Mal das gleiche Muster
(K&A - IN) in dem Prozess wieder. Alex und Thomas schauen sich erneut die
Mitschriften aus dem Tutorium an (Turn 5) und versuchen dieses Verfahren auf
die eigene Aufgabe anzuwenden (Turn 6).
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Da Alex und Thomas die Aufgabe in ihrem ersten Versuch nicht 16sen konnten,
setzten sie sich zu einem spiteren Zeitpunkt noch einmal mit der Aufgabe
auseinander. Dennoch kann erneut die gleiche Reihenfolge der Wissensfacetten
Konkretisierung & Abgrenzung > Implizite Nutzung (Turn 14 zu Turn 15; Turn
18 zu Turn 19) beziiglich des Verfahrens Differenzierbarkeit priifen identifiziert
werden.

An einigen Stellen findet der Ubergang von Konkretisierung & Abgrenzung zur
Impliziten Nutzung zwischen unterschiedlichen mathematischen Inhalten statt.
Ein Beispiel dafiir kann in dem Prozess von Lea, Lisa, Sarah und Paula zur
Aufgabe , Mittelwertsatz* gefunden werden. Zunéchst wollen sie auf ein Beispiel
fir den Mittelwertsatz der Differentialrechnung zuriickgreifen (Turn 13).
Anschlieend werden diese Informationen genutzt, um dies mit der Abschétzung
zu verbinden (Turn 14), die in der Aufgabe zu beweisen ist.

Der Ubergang (K&A4 > IN) beschreibt ein typisches Muster in den
Problembearbeitungsprozessen. Besonders fiir bestimmte Vorgehensweisen
scheint dies ein sinnvolles Muster zu sein, da Beispiele als Vorlage fiir eigenes
Verhalten genutzt werden konnen. Dieses Verhalten dhnelt stark den
Uberlegungen des Lernens am Modell (Bandura, 1977). Dabei lernen Menschen
genau dann, wenn sie Handlungen anderer beobachten, um es in eigenes Handeln
umzusetzen. Durch die Ausarbeitungen des Tutoriums liegt ein Modell vor, aus
dem Studierende kopieren kdnnen.

Verkniipfung von Wissenselemente

Eine weitere Auffilligkeit zeichnet sich durch die zeitgleiche® Verwendung (und
somit gleichzeitig Verkniipfung) von Wissensfacetten eines unterschiedlichen
mathematischen Inhalts ab. Diese konnen vor allem in den Prozessen zum
Mittelwertsatz identifiziert werden.

Die Verkniipfung von verschiedenen Wissensfacetten bezieht sich auf die
Implizite Nutzung mit der Bedeutung & Vernetzung. Insbesondere betrifft dies das
konzeptuelle Wissen. Sowohl das Konzept der Abschitzung als auch der Betrag
wird mit den speziellen Funktionen (Exponential- und Sinusfunktion) bei der
Aufgabe ,Mittelwertsatz verkniipft. Die Studierenden mochten eine
Abschétzung finden, allerdings miissen sie dies mit den gegebenen Funktionen
verbinden.

Paula: ,,Aber wir miissen einfach nur beweisen, dass das Maxima Eins gilt.*

Sarah: ,,Leute, Sinus wird doch eh nie groBer als Eins. Deswegen ist es ja egal.

55 ,,Wenn wir das mit dem Kosinus abschitzen ...“. In diesem Beispiel wird zwar zuerst der
Kosinus erwihnt, allerdings im Zusammenhang mit der Abschétzung. In diesem Fall wird
von zeitgleich (gleicher Turn in der Kodierung) gesprochen.
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Sarah: ,,Ja, weil das wird nie groBer als Eins [zeigt auf sin(e~*)] und das hier wird nie groBer als Eins
[zeigt auf e ~¢]. Dann wird das insgesamt nie groBer als Eins.*

Dabei diskutieren sie sowohl {iber die Wertebereiche der allgemeinen als auch der
(in der Aufgabe vorgegebenen) speziellen Exponential- und Sinusfunktion.
AuBerdem visualisieren sie diese Funktionen und legen dariiber hinaus
beispielhaft Werte fest, um Verdnderungen wahrzunehmen und festzustellen.

Im Gegensatz dazu finden Verkniipfungen von Facetten beziliglich des
prozeduralen Wissens fast gar nicht statt. David verkniipft auf prozeduraler Ebene
bspw. das Verfahren zum Grenzwert berechnen mit einigen speziellen Beispiel-
Funktionen. Dabei versucht er den Grenzwert fiir bestimmte Werte zu berechnen,
um sich verstandlicher zu machen, was der echte Grenzwert®® sein konnte.

David: ,,So, ich setze mal fiir x 199 ein und fiir a einmal 200. Jetzt haben wir 200%°°, geteilt durch
199290 [...] Zu hohe Zahlen. Alles &ndern auf 20 und 19 [4ndert Zahlen im Taschenrechner]. Kommt
daraus —0.324, okay. [...] Und wenn ich daraus jetzt 19,9 mache, [dndert Zahlen im Taschenrechner],
dann —0,63 [wird notiert]. Wenn ich Komma Neun Neun mache, ... 0,66. [...] wahrscheinlich
—0,667 ... lauft das Ganze gegen.*

Insgesamt spiegelt dies die Ausfithrungen von Hiebert und Lefevre (1986, S. 3f.)
wider. Konzeptuelles Wissen zeichnet sich durch Verbindungen zwischen
Informationen aus. Diese Verbindungen zwischen Wissenselementen kdnnen vor
allem in den (konzeptuellen) Prozessen zur Aufgabe ,,Mittelwertsatz* identifiziert
werden. Hingegen konnen in den anderen beiden Aufgaben fast keine solche
Verbindungen zwischen Wissenselementen gefunden werden. Im (prozeduralen)
Prozess von David (siehe Transkriptausschnitt) bleibt die Verkniipfung zwischen
dem Verfahren und den speziellen Funktionen auf Ebene der Konkretisierung &
Abgrenzung. Obwohl an dieser Verbindung zwischen der Impliziten Nutzung und
Konkretisierung & Abgrenzung geschaffen werden, bleibt diese Verkniipfung auf
einer weniger anspruchsvollen Qualitdt (Erath, 2017, S. 209f.). Dies deutet darauf
hin, dass konzeptuelle Prozesse eher bedeutungsbezogen sind und sich durch eine
stirkere Verkniipfung von Wissenselementen auszeichnen.

6.2.6 Schwierigkeiten im Prozess

Alex: ,,Hm, ja so richtig verstanden habe ich es auch nicht ...*

Die Aussage hat Alex in dem Problembearbeitungsprozess zur Aufgabe
,Mittelwertsatz* getétigt. Diese Art von Aussage ist jedoch auch in weiteren
Prozessen (explizit und implizit) aufgetreten. Herausforderungen mit
mathematischen Inhalten werden in vielen Studien berichtet (Kapitel 4.2 und 4.4),
jedoch fanden kaum Untersuchungen von authentischen Lernsituationen statt,

x%—a*

56 David versucht den Grenzwert aus der Aufgabe ,,L."Hospital zu bestimmen: lim ——=
x—-a -
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insbesondere zum Mittelwertsatz und zur Regel von L Hospital. Daher werden
im Folgenden die Schwierigkeiten (Hindernisse, Hiirden; Kapitel 5.4.2) beziiglich
der jeweiligen Aufgaben dargestellt, die in den Prozessen aufgetreten sind. Die
folgenden Ausfiihrungen adressieren demnach die Forschungsfrage:

(W5) Welche Schwierigkeiten kénnen wéhrend der
Problembearbeitungsprozesse identifiziert werden?

Schwierigkeiten in den Prozessen zur Aufgabe ,, Differenzierbarkeit priifen

Viele Schwierigkeiten sind beziiglich der einzelnen Prozesse individuell.
Allerdings lésst sich eine Gemeinsamkeit finden, die in vier von fiinf Prozessen
als Schwierigkeit identifiziert werden kann. Es handelt sich dabei um die
Kenntnis des Verfahrens Differenzierbarkeit priifen.

Paula: ,,Warte. Und dann miissen wir doch den Grenzwert ausrechnen. ... Weil das hat er doch hier
auch gemacht.

Zu dem Zeitpunkt der Aussage haben Lea, Lisa, Sarah und Paula die Aufgabe
bereits vollstindig (und korrekt) geldst. Paula zeigt mit der Aussage allerdings,
dass sie das Verfahren noch nicht tiefgehend verstanden hat. Die restliche
Lerngruppe klért in der anschlieBenden Diskussion auf, dass keine weiteren
Schritte mehr unternommen werden miissen. Beziiglich der Wissensfacetten lésst
sich hier eine Schwierigkeit in der Expliziten Formulierung zuordnen, da die
Anleitung der Schritte nicht klar ist. Dariiber hinaus verweist Paula zusitzlich auf
eine Beispielbearbeitung einer dhnlichen Aufgabe. Dies bedeutet, dass die
Schwierigkeit ebenfalls der Wissensfacette Konkretisierung & Abgrenzung
zugeordnet werden kann, da sie das Verfahren nicht aus dem Beispiel extrahieren
kann. Es ldsst sich weiter diskutieren, ob die Schwierigkeiten ebenfalls der
Bedeutung & Vernetzung zugeordnet werden kann. Vollrath und Roth (2011, S.
50) betonen, dass das Wissen, warum ein Verfahren funktioniert zum Verstidndnis
dazugehort. Fiir die Aussage scheinen allerdings die anderen beiden genannten
Wissensfacetten schliissiger.

Ahnliche Schwierigkeiten bei der Kenntnis des Verfahrens (Explizite
Formulierung) zeigen sich in den Bearbeitungen von Nick und Lukas. In beiden
Bearbeitungen verwenden sie zwar das korrekte Verfahren, wollen im Anschluss
aber noch f'(0) bestimmen. Bei der Anwendung kommt es allerdings auch zu
Schwierigkeiten und das Verfahren wird fehlerhaft durchgefiihrt. Dies zeigt fiir
beide, dass sie die Anleitung des Verfahrens noch nicht verstanden haben und
dartiber hinaus, was mit dem Verfahren iiberhaupt erreicht wird. Sie planen beide,
dass die Funktion f mit den Ableitungsregeln abzuleiten und anschliefend an der
Stelle 0 auszuwerten. Beide stoflen dabei auf Schwierigkeiten bei der Anwendung
der Ableitungsregeln.
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Thomas begegnet dem Hindernis, dass noch nicht verstanden wurde, was mit dem
Verfahren Differenzierbarkeit priifen erreicht wird. Er argumentiert auch mithilfe
der Ableitungsregeln.

Alex: ,,Jch tippe aber irgendwie, dass die Funktion &h, also dass die, dass f ' (0) = 0ist.«
Thomas: ,,Ja muss es ja. [...] Weil das die Bedingung sagt [zeigt auf die Funktion].

Thomas: ,,Die obere Funktion ist ja gesamt f und fiir die, wo sie nicht definiert ist fiir x, ist 0 als

Ersatzwert. [...] Und wenn du da die Ableitung fiir fI(O) machst, ist das 0, weil Ableitung von 0 ist
0.«

In dem Prozess von Alex und Thomas stockt die Bearbeitung ebenfalls aufgrund
des Verfahrens, allerdings liegt die Schwierigkeit nicht in der Kenntnis des
Verfahrens, sondern bei der Ausfithrung (Implizite Nutzung). Dabei ist ihnen
bewusst, was sie tun sollen, allerdings nicht wie. Das Einsetzen der Funktion f in
die Definition der Differenzierbarkeit stellt sich fiir beide als Schwierigkeit
heraus, da die Funktion abschnittsweise definiert ist. Dartiber hinaus stolpern sie
dariiber, dass durch das Einsetzen der Werte im Nenner eine Null stehen wiirde.
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Abbildung 36: Nicks Umformungen beim Differentialquotienten

Des Weiteren zeigen sich bei der Anwendung des Verfahrens allerdings auch
Schwierigkeiten bei vermeintlich leichten Umformungen (bei Nick siehe in
Abbildung 36). Allerdings kann daraus abgeleitet werden, dass Nick nicht weil3,
wie der Grenzwert berechnet wird (Explizite Formulierung).
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David zeigt in seinem Problembearbeitungsprozess zusitzlich Schwierigkeiten
auf der Begriffsebene beziiglich der Differenzierbarkeit.

David: ,... ich soll beweisen oder dhm ja oder zeigen, dass die Funktion an der Stelle 0 differenzierbar
ist. Da ist die Frage, was heifit denn, oh, iiberhaupt differenzierbar? Das heifit, ich schaue in die
Vorlesung.*

Daraus kann interpretiert werden, dass David mit dem Begriff Differenzierbarkeit
nicht vertraut ist. In seinem Prozess verbringt er viel Zeit damit, den Begriff bzw.
das Konzept zu verstehen und steuert bis auf Implizite Nutzung jede
Wissensfacette (mindestens 1-mal) an, bevor er damit beginnt, eine Losung fiir
die Aufgabe zu produzieren.

Schwierigkeiten in den Prozessen zur Aufgabe ,, Mittelwertsatz *

In den Problembearbeitungsprozessen zur Aufgabe ,,Mittelwertsatz zeigt sich in
allen Prozessen, dass die Studierenden mit dem Mittelwertsatz der
Differentialrechnung Schwierigkeiten haben. An vielen Stellen der Bearbeitung
wird sich auf den ausformulierten Satz bezogen (Explizite Formulierung) und
versucht Beispiele (Konkretisierung & Abgrenzung) sowie anschauliche
Begriindungen bzw. Visualisierungen (Bedeutung & Vernetzung) heranzuziehen.
Durch das Nutzen der verschiedenen Facetten zum Mittelwertsatz der
Differentialrechnung scheint sich im Verlaufe des Prozesses das Verstdndnis zu
verbessern, wobei die Visualisierung am meisten weiterhilft. Nick fasst in dieser
Aussage eine Visualisierung des Mittelwertsatzes der Differentialrechnung in
eigenen Worten zusammen.

Nick®: ,,... zwischen a und b mindestens eine Stelle gibt, wo die Steigung der Kosinusfunktion, ...
also wo die Steigung der Funktion identisch ist ... zur Steigung der Geraden.*

Allerdings bleibt die Schwierigkeit hinsichtlich des Anwendungskontextes
(Implizite Nutzung). Die Studierenden wissen nicht, wie sie den Mittelwertsatz
auf die Ungleichung anwenden sollen.

David®®: ,,Wir sollen das beweisen iiber, aber iiber den Mittelwertsatz. Aber wie beweise ich das mit
dem Mittelwertsatz? ... Jetzt habe ich so eine Formel stehen. ... Aber was bringt mir das?*

Die Lerngruppe mit Lea, Lisa, Sarah und Paula schaffen es, diesen Schritt zu
iberwinden, stoBen aber wéhrend der Anwendung auf zwei weitere
Schwierigkeiten. Die erste Schwierigkeit ist die Abschétzung (Implizite Nutzung)

57 Nick fasst in dieser Aussage eine Visualisierung des Mittelwertsatzes der
Differentialrechnung in eigene Worte zusammen.

58 David tétigt diese Aussage, nachdem er sich bereits 30 Minuten mit der Aufgabe und dem
Mittelwertsatz der Differentialrechnung auseinandergesetzt hat.
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beziiglich der Sekante und der Steigung der Ableitung in einem Punkt. Es soll
gezeigt werden, dass die Ableitung e - sin(e™*) < 1 ist. Fiir die Lerngruppe
stellt dies eine Schwierigkeit dar, da sie nicht wissen, welche Werte die beiden
Funktionen im Einzelnen, annehmen konnen. Dies wird zwar fiir beide
Funktionen im Folgenden mehrfach korrekt herausgearbeitet, allerdings ist das
Ergebnis der Verkettung beider Funktionen ein Problem:

Lisa: ,,Ja. Aber wie kommt man dann /. Dann muss man das, ... multipliziert man das ja nochmal.*
Paula: ,,Ja.”
Lisa: ,,Warum ist es dann trotzdem < 1?*

Die zweite Schwierigkeit wird durch die Betragsstriche (Implizite Nutzung)
ausgelost, die zundchst ignoriert werden. Die Lerngruppe iiberlegt, inwiefern sie
den Betrag noch in die (Un-)Gleichung unterbringen und ob ihnen das
moglicherweise hilft zu zeigen, dass die Ableitung der Funktion < 1 ist.

Lisa: ,,Oder wir machen weiter und kommen am Ende dabei raus, dass das vielleicht auch ...
Negatives sein kann und dann sagen wir dann, weil da oben Betrag ist.

Lea: ,,Oder fiir, ah wir machen die Betragsstriche dadurch, dass 0 immer, dh y und x immer grof3er
als 0 sein miissen.*

Beide Schwierigkeiten 16sen sich erst dann auf] als die Lerngruppe erkennt, dass
die Ungleichung e @ -sin(e™@) <1 auch noch dann gilt, wenn die
Sinusfunktion unter 0 fllt>. Dabei wiirde der Betrag sogar noch helfen, da der
Sinus nun nur noch Werte zwischen 0 und 1 annehmen kann.

Alex und Thomas stoflen in ihrer Bearbeitung ebenfalls auf Schwierigkeiten mit
dem Betrag und der Abschitzung. Obwohl Aussagen® von beiden getitigt
werden, dass sie nicht wissen, wie sie weiter machen sollen, konnen sie die
Schwierigkeiten ziigig iiberwinden. Insgesamt zeigt sich, dass in beiden
Lerngruppen die Verkniipfung zweier mathematischer Inhalte (Abschéitzung und
Betrag mit den beiden speziellen Exponential- und Sinusfunktion) eine
Schwierigkeit darstellt.

Auch wenn die Lerngruppen von Lisa, Lea, Paula und Sarah sowie Alex und
Thomas die Schwierigkeiten in ihrem Prozess iiberwinden und zu einer
akzeptablen Losung gelangen, bleibt trotzdem ersichtlich, dass fiir alle
Studierenden die Beweismethode eine Schwierigkeit ist.

David: ,,Wie beweise ich das jetzt? [...] Was waren denn nochmal dies Beweismethoden?

59 Ein Transkriptausschnitt der relevanten Stelle wurde bereits in Kapitel 6.2.5 gezeigt.
60 Alex: ,,Und jetzt sind wir gerade an einem Punkt, wo wir das abschitzen miissen. Aber ich
weil} nicht, wie wir das abschétzen sollen.
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Die Beweismethode an sich ldsst sich keinem bestimmten Inhalt zuordnen. Es
lasst sich jedoch vermuten, dass ein besseres Verstdndnis iiber den Mittelwertsatz
zu weniger Schwierigkeiten fithren konnte. Daraus wird deutlicher, dass es
zunéchst darum geht, den Term |cos(e ™) — cos(e™)| < |x — y| in die Form
des Mittelwertsatzes umzuformen (Explizite Formulierung) und diesen mit der
Ableitung f'(x,) zu ersetzen, welche anschlieffend abgeschitzt werden soll.
David kommt in seiner Bearbeitung zu einer nicht zielfiihrenden Umformung
(Abbildung 37), die durch ein solches Verstindnis moglicherweise nicht
entstanden wire.
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Abbildung 37: Davids Uberlegungen zur Aufgabe ,,Mittelwertsatz*

Schwierigkeiten inden Prozessen zur Aufgabe ,, L Hospital

Eine gemeinsame Schwierigkeit, welche sich iiber alle
Problembearbeitungsprozesse zeigt, bezieht sich auf die Bestimmung des
Grenzwerts. Dies duBert sich vor allem beziiglich der Impliziten Nutzung als auch
der Expliziten Formulierung.

In der Lerngruppe von Lea, Lisa, Sarah und Paula wird dies zu Beginn der
Bearbeitung deutlich, da sie versuchen, bestimmte Werte fiir a einzusetzen.

Lea: ,,Ja, aber dafiir miisst ihr was einsetzen. Setzt ihr jetzt 1 ein? Weil es ist ja eigentlich a > 1.“
Sarah: ,,Du weilt ja, dass [...] a > 1 ist. Da musst du jetzt gucken, was dann da rauskommt, wenn
a > 1ist.

Lea: ,,Ach so. Also erstmal 1 einsetzen. Doch, das kann sein.*

Lisa: ,,Ne, > 1

Sarah: ,Ne, du setzt nicht 1 ein. Du nimmst einfach an ...«

Lisa: ,,2 oder was? Ja, man konnte ja mal 2 einsetzen [...].

Lea: ,,Konnte man machen, ja.“
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Diese Vorgehensweise zeigt sich ebenfalls bei David. Er setzt allerdings nicht nur
Werte fiir a ein, sondern zusétzlich fiir x. Er schaut sich demnach den Grenzwert
fiir viele verschiedene Félle an und versucht diesen so auszurechen. Fiir a einen
bestimmten Wert (> 1) einzusetzen und ein Beispiel zu betrachten, kann zunéchst
hilfreich sein. Allerdings ist es nicht im Sinne des Grenzwerts, ebenfalls fiir x
einen Wert einzusetzen und den Quotienten zu bestimmen. Die beschriebene
Schwierigkeit lasst sich zur Expliziten Formulierung zuordnen, da deutlich wird,
dass die Anleitung des Verfahrens nicht vollstdndig vorhanden ist.

Alex und Thomas stoflen ebenfalls auf Schwierigkeiten bei der Bestimmung des
Grenzwerts, nachdem sie die Regel von L "Hospital angewandt haben (Abbildung
38). Sie kommen zu dem Ergebnis, dass der Nenner schneller als der Zahler
wichst, wodurch der Grenzwert —1 sein muss. Diese Schwierigkeit zu einer
Facette zuzuordnen ist dabei nicht offensichtlich. Zum einen unterlduft in der
Anwendung des Verfahrens (Implizite Nutzung) ein Fehler. Es wird auch die
Anleitung des Verfahrens (Explizite Formulierung) zur Bestimmung des
Grenzwerts nicht beachtet, da fiir das ,,x nicht a eingesetzt™ wird. Bei Alex und
Thomas war die Anleitung allerdings zuvor bei der Anwendung der Regel von
L'Hospital korrekt vorhanden. Dies liefert auch einen Hinweis, dass die
Anleitung des Verfahrens noch nicht komplett verstanden wurde. Dariiber hinaus
zeigt sich, dass der Vergleich der beiden Funktionen nicht korrekt durchgefiihrt
wurde. Im Kontext der Aufgabe ist sowohl ax®™! = a% als auch a* = a%, wenn
der Grenzwert x — a angewendet wird. Alex und Thomas kommen jedoch zu
dem Entschluss, dass a® schneller wichst als x%~! und ignorieren damit den
Faktor a im Zahler (Implizite Nutzung).
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Abbildung 38: Alex” Bestimmung des Grenzwerts

Nick erkennt in seiner Bearbeitung (Abbildung 39), dass die Aufgabe womdglich
mit der Regel von L Hospital bearbeitet werden soll. In seinen Berechnungen
kommt er dennoch zu dem Schluss, dass die Voraussetzungen fiir die Anwendung
der Regel von L Hospital nicht gegeben sind. Die Grenzwerte der Zahler- und
Nennerfunktion sind nicht beide gleich 0 oder co. Damit zeigt sich bei Nick
ebenfalls eine Schwierigkeit in der Anwendung beziiglich der Bestimmung des
Grenzwerts (Implizite Nutzung).
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Abbildung 39: Nicks Losung zur Aufgabe ,,L. "Hospital

Eine letzte kleinere Schwierigkeit liegt bei der Ableitung von a*, wenn nach x
abgeleitet werden soll. In keinem Prozess konnte diese Ableitung sofort bestimmt
werden (Explizite Formulierung). Diese Schwierigkeit wurde allerdings ziigig
tiberwunden, indem die Studierenden im Internet oder alten Unterlagen nach der
Ableitung und den dazugehorigen Umformungen recherchiert haben.

Fazit und Zusammenfassung zu Schwierigkeiten im Prozess

In den Aufgaben zeigen sich bei den Studierenden verschiedene Schwierigkeiten.
Fiir die Aufgabe ,,Differenzierbarkeit priifen” ist vor allem das Verfahren zur
Bestimmung der Differenzierbarkeit eine Schwierigkeit. Fiir die Aufgabe
,Mittelwertsatz® treten mehrere Schwierigkeiten auf. Zunichst ist es das
Verstandnis des Mittelwertsatzes der Differentialrechnung. Dariiber hinaus
zeigen sich insbesondere in der Anwendung bei der Abschitzung der
Ungleichung sowie der Anwendung des Betrags Schwierigkeiten. Letztlich ist die
allgemeine Vorgehensweise hinsichtlich der Beweisfiihrung eine Schwierigkeit.
Fiir die Aufgabe ,,L"Hospital zeigen sich die Schwierigkeiten vor allem im
Bereich der Bestimmung des Grenzwerts. Insgesamt treten in den beiden
Aufgaben ,Differenzierbarkeit priifen und ,L"Hospital® Schwierigkeiten
iberwiegend auf prozeduraler Ebene auf, wihrend sie bei der Aufgabe
,Mittelwertsatz* eher konzeptueller Natur sind.

Da jede Aufgabe unterschiedliche Anforderungen stellt, ist es nicht
verwunderlich, dass sich die Schwierigkeiten der Aufgaben im Vergleich
zueinander unterscheiden. Es fdllt allerdings auf, dass die Bestimmung des
Grenzwerts sowohl in der Aufgabe ,Differenzierbarkeit priifen* als auch
,.L"Hospital* vorkommt. Bei der Uberpriifung der Differenzierbarkeit lieB sich
bei der Grenzwertbestimmung beziiglich der Expliziten Formulierung keine
Schwierigkeit (auler bei Nick) feststellen, wihrend die Grenzwertbestimmung in
der Aufgabe ,,L'Hospital“ zu Schwierigkeiten in jedem Prozess fiihrt. Woran
konnte dies liegen? Eine mogliche Erkldrung wire, dass in der Aufgabe
,,L"Hospital“ eine weitere Variable (a) hinzukommt. Im Prozess von David wird
besonders deutlich, dass die zusétzliche Variable zu Unsicherheiten fithrt und er
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nicht weill, wie er damit umgehen soll. Eine zusédtzliche Variable ist
moglicherweise eine Schwierigkeit, die Auswirkung auf das Verstdndnis der
Anleitung des Verfahrens Grenzwert hat.

An dieser Stelle soll erwdhnt werden, dass Schwierigkeiten nicht mit Fehlern
gleichzusetzen sind. In einigen Prozessen sind Schwierigkeiten zu erkennen, die
aber im Laufe des Prozesses aufgelost werden. Dies ldsst sich auch in der
Losungsqualitidt der einzelnen Abgaben feststellen. Obwohl in jedem Prozess
(kleinere bzw. groBlere) Schwierigkeiten identifiziert werden konnten, gibt es
einige Abgaben, die mit mindestens L3 eingestuft werden (vgl. Tabelle 16).
Einige Schwierigkeiten bleiben allerdings auch bis zum Ende der Bearbeitung,
wodurch erst dann ein Fehler entsteht.

Besonders in den Prozessen von Lea, Lisa, Sarah und Paula ist zu erkennen, dass
einzelne Teilnehmerinnen der Lerngruppe eine Schwierigkeit haben, die im
Folgenden durch eine andere Teilnehmerin beseitigt wird. Dies besteht meistens
aus einer kurzen Frage-Antwort-Interaktion. Ahnlich ist es auch in den Prozessen
von Alex und Thomas. Durch das Gesprich lassen sich die inhaltlichen
Schwierigkeiten ziigig besprechen und beseitigen. Dadurch werden im Verlauf
der Prozesse einige Fehler vermieden, da sich die Studierenden untereinander
helfen konnen. Falls die Lerngruppe aus nur einer Person besteht, lassen sich
solche Schwierigkeiten nicht so zeiteffizient beseitigen.

Werden in den einzelnen Prozessen die Schwierigkeiten und der Fokus (Kapitel
6.2.4) verglichen, so ldsst sich ein Zusammenhang vermuten. In Davids Prozess
zur Aufgabe ,, Differenzierbarkeit priifen konnten Schwierigkeiten beziiglich des
Konzepts Differenzierbarkeit als auch im Bereich der Grenzwertbestimmung
festgestellt werden. Dies ist genau der Bereich, den David beziiglich der
Wissenselemente héufig aktiviert bzw. nutzt (siche Tabelle 30). Diese
Gemeinsamkeit zeigt sich jedoch nicht ausschlieBflich in Davids Prozess.
Gleichzeitig ist anzumerken, dass in den Prozessen auch Schwierigkeiten bei den
Wissensfacetten festgestellt wurden, die nur selten oder kaum angesteuert
wurden. Demnach weist die Haufigkeit des Ansteuerns einer Wissensfacette mit
Schwierigkeiten eher keinen Zusammenhang auf. Moglicherweise sind den
Studierenden diejenigen Schwierigkeiten bewusst, bei denen héufig eine
Wissensfacetten angesteuert wird, wihrend Schwierigkeiten, bei denen keine
Wissensfacette angesteuert wird, unbewusst sind.

Letztlich ist anzumerken, dass die Zuordnung der Schwierigkeiten zu den
mathematischen Inhalten einfacher ist als die Zuordnung zu den Wissensfacetten.
Es ist eindeutig zu identifizieren, wenn z. B. eine prozedurale Schwierigkeit in
der Anwendung (Implizite Nutzung) und auch in der Anleitung des Verfahrens
(Explizite Formulierung) unterlduft. Deutlich schwieriger ist dies bei den
restlichen Facetten. Dies liegt moglicherweise auch daran, dass zum einen die
formale Fachsprache (also FExplizite Formulierung) bedeutend fiir die
hochschulische Mathematik ist und zum anderen die Bearbeitungen in einem
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Anwendungskontext (als /mplizite Nutzung) stattfinden. Besonders Vorstellungen
und Begriindungen (Bedeutung & Vernetzung) sind oft nicht notwendig, um eine
Aufgabe bearbeiten zu konnen. Mdoglicherweise werden Schwierigkeiten der
restlichen Facetten in anderen Kontexten (wie z. B. Laborsituationen, in denen
bestimmtes Verstandnis abgefragt wird) eher ersichtlich.

6.2.7 Vergleich zwischen Wissensangebot und -nutzung

In den vorherigen Ausfilhrungen wurde sowohl das Wissensangebot der
Veranstaltung (vgl. Kapitel 6.2.1) als auch die Wissensnutzung der Studierenden
zu unterschiedlichen Aspekten (vgl. Kapitel 6.2.2 bis 6.2.6) rekonstruiert. Der
Vergleich zwischen Angebot und Nutzung bildet dabei den iibergreifenden
Rahmen. Dieses Kapitel bietet somit eine zusammenfassende Ubersicht iiber das
Wissensangebot und die Wissensnutzung. Detaillierte Beschreibungen sind in den
jeweiligen Kapiteln zu finden. Die folgenden Ausfithrungen adressieren demnach
die Forschungsfrage:

(W6) Welches Wissensangebot wird von der Veranstaltung angeboten und
inwiefern wird dies von den Studierenden in ihren Bearbeitungen genutzt?

Fiir eine geeignete Darstellung werden die Wissensmatrizen aus dem Kapitel
6.2.1 und Kapitel 6.2.3 kombiniert. Die Darstellung des Angebots liefert eine
Ubersicht, welche Wissenselemente durch die Veranstaltung angeboten (in grau
hinterlegt) und nicht angeboten (in weifl hinterlegt) werden. Aufgrund der
Nutzung von Studierenden wurde fiir das Angebot in dieser Darstellung das
Konzept Funktion weiter aufgeteilt. Fiir einen Vergleich zwischen Angebot und
Nutzung sollte auf der Seite der Nutzung ebenfalls festgestellt werden, ob ein
spezifisches Wissenselement genutzt wurde. In der Darstellung werden die
Wissenselemente mit einer Zahl beziiglich Haufigkeit der Nutzung versehen.
AuBerdem werden die vergleichenden Darstellungen aufgabenweise abgebildet.
Zunichst wurde das Wissensangebot beziiglich der Impliziten Nutzung nicht
untersucht. Dies liegt daran, dass im Skript-Tutorium-Format eine Abgrenzung
zwischen Impliziter Nutzung und Konkretisierung & Abgrenzung schwierig
festzulegen ist. Fiir das Konzept Differenzierbarkeit kann ein Beispiel fiir
Differenzierbarkeit in einem Punkt gleichzeitig als Anwendungskontext bzw.
Anwendung aufgefasst werden. Gleiches gilt fiir Verfahren. Ein Beispiel fiir die
Regel von L Hospital ist gleichzeitig die Anwendung des Verfahrens. Fiir diese
Wissensnutzung féllt die Trennung leichter, da auf Beispiele zuriickgegriffen
(Konkretisierung & Abgrenzung) werden kann und die eigene Anwendung bzw.
der eigene Anwendungskontext (Implizite Nutzung) im Fokus steht.
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Mathematischer Inhalt
Konzept:
Differenzierbarkeit

Konzept: Funktionen

Konzept: Abschnittsweise
definierte Funktionen

Verfahren:
Differenzierbarkeit priifen

»
]
=]
]
=
p=1
[=9
Y
N
=
2

Verfahren: Grenzwert von
Funktionen berechnen

Prozedurales
Wissen

Verfahren: Sandwich-
Kriterium

Tabelle 31: Vergleich Angebot und Nutzung zur Aufgabe ,,Differenzierbarkeit priifen (EF = Explizite
Formulierung; K&A = Konkretisierung & Abgrenzung; B&V = Bedeutung &
Vernetzung; KF = Konventionelle Festlegungen)

Mathematischer Inhalt
Konzept: Stetigkeit einer
Funktion

Konzept:
Differenzierbarkeit

Konzept: Funktion

Konzept:
Exponentialfunktion

Konzept: Sinusfunktion

Konzept: Abschitzung

Konzeptuelles Wissen

Konzept: Betrag

Zusammenhang:
Mittelwertsatz der
Differentialrechnung
Verfahren: Kettenregel

Tabelle 32: Vergleich Angebot und Nutzung zur Aufgabe ,Mittelwertsatz (PW = Prozedurales
Wissen; EF = Explizite Formulierung; K&A = Konkretisierung & Abgrenzung;
B&V = Bedeutung & Vernetzung; KF = Konventionelle Festlegungen)

Hinsichtlich der Aufgabe "Differenzierbarkeit priifen" wird das vielféltige
Angebot fiir das gleichnamige Konzept und Verfahren von den Studierenden
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umfassend genutzt. Die weiteren angebotenen Wissenselemente (obwohl
angeboten) finden hingegen nur geringe Anwendung (Tabelle 31).

Hinsichtlich der Aufgabe "Mittelwertsatz" wird das vielféltige Angebot flir den
zugehdrigen Zusammenhang von den Studierenden breit genutzt. AuBerdem
greifen Studierende im Bereich der Funktionen (Exponential- und Sinusfunktion)
ebenfalls auf das Angebot zuriick, wihrend die restlichen angebotenen
Wissenselemente gar nicht aufgegriffen werden (Tabelle 32).

Mathematischer Inhalt
Konzept: Funktion

Konzept:
Exponentialfunktion

Konzept:
Logarithmusfunktion
Verfahren: Regel von
L’Hospital

Verfahren: Grenzwert von
Funktionen berechnen

Konzeptuelles
Wissen

Verfahren: Kettenregel

Verfahren: Potenzregel

=
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Tabelle 33: Vergleich Angebot und Nutzung zur Aufgabe ,,.L"Hospital“ (EF = Explizite Formulierung;
K&A = Konkretisierung & Abgrenzung; B&V = Bedeutung & Vernetzung; KF =
Konventionelle Festlegungen)

Hinsichtlich der Aufgabe "L’Hospital" wird das begrenzte Angebot zur Regel von
L’Hospital nur in geringem MaBe genutzt (ausschlieBlich zur Konkretisierung &
Abgrenzung). Dennoch wird das {ibrige theoretisch notwendige Wissen fiir die
Bearbeitung der Aufgabe umfassend angewendet (Tabelle 33).

Abgesehen von der Impliziten Nutzung stellt die Veranstaltung ein vielfiltiges
Angebot der relevanten Inhalte zu Verfligung. Viele der angebotenen
Wissenselemente werden von den Studierenden genutzt bzw. aktiviert. Im
Vergleich zwischen Wissensangebot und Wissensnutzung fallt auf, dass
Studierende zwei Wissenselemente nutzen, welche nicht in der Veranstaltung
angeboten worden sind. Die Explizite Formulierung fir das Verfahren zur
Berechnung von Grenzwerten (von Funktionen) wird von der Veranstaltung nicht
bereitgestellt, allerdings wird dies in zwei von drei Aufgabe genutzt bzw.
aktiviert. Zuvor wurde in der Vorlesung bereits die Grenzwertbestimmung von
Folgen thematisiert, wodurch es womdglich keine Spezifizierung fiir die
Anleitung beziiglich Funktionen gegeben hat. Letztlich haben Studierende
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allerdings nach einer Anleitung fiir die Grenzwertbestimmung von Funktionen
gesucht und sind in anderen Materialien (Internet und ein weiteres Skript aus
einem Vorkurs) fiindig geworden. Die Konventionelle Festlegung fiir den
Mittelwertsatz der Differentialrechnung wird von der Veranstaltung nicht speziell
thematisiert, allerdings haben die Studierenden in zwei Prozessen die
Bezeichnungen des Mittelwertsatzes der Differenzialrechnung (und deren
Bedeutung im Kontext ihrer Bearbeitung) diskutiert.

Wird die Implizite Nutzung ausgeschlossen, nutzen die Studierenden alle
angebotenen mathematischen Inhalte bis auf das Konzept abschnittsweise
definierte Funktion und das Verfahren Sandwich-Kriterium (beide in der Aufgabe
,.Differenzierbarkeit priifen®)®’. Insgesamt greifen die Studierenden auf 23 von
53 angebotenen Wissenselementen zuriick®?.

Zuletzt soll angemerkt werden, dass sich das Wissensangebot der Veranstaltung
durch weitere Analysen sicherlich detaillierter untersuchen liee (z. B. Qualitit,
Umfang, etc.). Eine solche vertiefte Analyse wiirde jedoch den Rahmen dieser
Arbeit liberschreiten.

6.2.8 Vergleich von erfolgreicher und nichterfolgreicher Wissensnutzung

Nach Schoenfeld (1985, Kapitel 2.2) ist Wissen ein entscheidender Faktor fiir den
Verlauf und Erfolg von Problembearbeitungsprozessen. Im Folgenden werden die
Prozesse daher beziiglich des Zusammenhangs zwischen der Wissensnutzung und
Erfolg bzw. Misserfolg betrachtet. Die folgenden Ausfithrungen adressieren
demnach die Forschungsfrage:

(W7) Inwiefern héingt die Wissensnutzung mit dem Erfolg bzw. Misserfolg eines
Problembearbeitungsprozesses zusammen?

Zunichst bietet es sich an, den Fokus der Problembearbeitungsprozesse zu
betrachten. In dieser Arbeit haben sich Prozesse mit prozeduralem und
konzeptuellem Fokus herauskristallisiert, wobei die Prozesse mit konzeptuellem
Fokus in zwei Unterarten aufgeteilt werden (vgl. Kapitel 6.2.4).

Vergleicht man die prozeduralen Prozesse mit den Losungsqualititen, dann
zeichnet sich kein einheitliches Bild ab. Die Prozesse von Alex und Thomas, die
Prozesse von Lea, Lisa, Sarah und Paula und der Prozess von David werden
mindestens mit einer Losungsqualitit von L3 eingestuft. Die Prozesse von Nick

61 In der Aufgabe ,,L"Hospital* wird ebenfalls das Konzept Funktion nicht genutzt, allerdings
werden die ,,Unterkonzepte® Exponentialfunktion und Logarithmusfunktion genutzt.

62 Anmerkung: Die Gesamtmenge 53 iibersteigt die Menge aller Wissenselemente (52) aus
Kapitel 6.2.1, weil hier dem Konzept Funktion weitere Unterkonzepte hinzugefiigt worden
sind. Dopplungen von mathematischen Inhalten werden in dieser Zéhlweise nicht doppelt
gezihlt.
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und der Prozess von Lukas werden mit einer Losungsqualitdt von L1 eingestuft.
Ferner liefert die Betrachtung der Héufigkeiten beziiglich der Wissensnutzung
keine weiteren Zusammenhinge fiir Erfolg. Werden dariiber hinaus allerdings die
Schwierigkeiten hinzugezogen, gibt es einen wenig tiberraschenden Unterschied
innerhalb der prozeduralen Prozesse. In allen Prozessen konnten an
verschiedenen Stellen Schwierigkeiten identifiziert werden. In den Prozessen mit
einer hohen Losungsqualitidt (L3 und L4) werden diesen Schwierigkeiten im
Prozess beseitigt, wihrend sie in Prozessen mit niedriger Losungsqualitét (L1 und
L2) nicht {iberwunden werden. Besonders entscheidend stellt sich dabei fiir die
Aufgabe , Differenzierbarkeit priifen* das gleichnamige Verfahren in der Facette
Explizite Formulierung und der Aufgabe ,L"Hospital“ das Verfahren der
Grenzwertbestimmung ebenfalls in der Facette Explizite Formulierung heraus.
Die Facette Explizite Formulierung erweist sich somit in prozeduralen Prozessen
als bedeutend. Dieses Ergebnis ist ebenfalls wenig liberraschend. In Aufgaben,
welche die Anwendung eines Verfahrens verlangen, sollte die Anleitung des
genutzten Verfahrens verstanden sein. Obwohl viele Studierende auf die Aufgabe
des Tutoriums zuriickgegriffen haben, zeigt sich somit auch, das bloBes Kopieren
aus einem dhnlichen Beispiel (Konkretisierung & Abgrenzung) nicht ausreicht,
wenn zusétzlich die Anleitung des Verfahrens nicht nachvollzogen wird.
Vergleicht man die konzeptuellen Prozesse mit den Losungsqualitdten, dann lasst
sich zwischen den beiden Untergruppen eine Tendenz ableiten (Tabelle 34).

Lerngruppe Aufgabe Fokus Wissens- Losungs-
facetten qualitit

Thomas, Alex Mittelwertsatz Konzeptuell IN, B&V L3

Lea, Lisa, Mittelwertsatz Konzeptuell IN, B&V L4

Sarah, Paula

David Differenzierbarkeit ~ Konzeptuell K&A, EF, IN L3

priifen

David Mittelwertsatz Konzeptuell  EF, K&A, L1
B&V

Nick Mittelwertsatz Konzeptuell K&A, EF, L1
B&V

Tabelle 34: Prozesse mit konzeptuellem Fokus und ihre Losungsqualitét

Fiir die erste Untergruppe, bei denen der Fokus auf der Impliziten Nutzung und
Bedeutung & Vernetzung liegt, wird die Losungsqualitdt mit mindestens L3
eingestuft. Fiir die zweite Untergruppe, bei denen der Fokus auf der Expliziten
Formulierung und Konkretisierung & Abgrenzung liegt, wird 2-mal die
Losungsqualitdt L1 und 1-mal die Losungsqualitdt L3 eingestuft. Es scheint
demnach so, dass die erste Untergruppe eher erfolgreich ist, wihrend in der
zweiten Untergruppe gemischte Ergebnisse erzielt werden. Warum erreichen die
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Prozesse der ersten Untergruppe gute Ergebnisse? Dies liegt womdglich daran,
dass sie versuchen, Zusammenhidnge und Konzepte anzuwenden (/mplizite
Nutzung). Diese werden dariiber hinaus mit weiteren Konzepten beziiglich der
Facette Bedeutung & Vernetzung verkniipft (Kapitel 6.2.5). Diese Verkniipfung
von Wissenselementen ist elementar fiir das konzeptuelle Wissen (Hiebert &
Lefevre, 1986, S. 3f.). Moglicherweise werden durch diese Stiarkung bzw.
Erschaffung von Verkniipfungen ebenfalls die Schwierigkeiten, auf welche die
Studierenden zuvor gestoBen sind, iiberwunden. Daraus resultieren die héheren
Losungsqualititen.

Fiir die zweite Untergruppe wird zunéchst auf die beiden Prozesse von David und
Nick zur Aufgabe ,,Mittelwertsatz* eingegangen. Beide Studierenden fokussieren
sich auf den ausformulierten Mittelwertsatz (Explizite Formulierung) und
dazugehérige Beispiele (Konkretisierung & Abgrenzung). Warum erreichen diese
Prozesse keine guten Ergebnisse? Zunéchst versuchen sie den Mittelwertsatz zu
verstehen, weshalb sie zusdtzlich auf die Visualisierung (Bedeutung &
Vernetzung) eingehen. Zwischen diesen Facetten wird hin- und hergewechselt,
wobei dariiber hinaus kaum ein weiterer mathematischer Inhalt angesteuert wird.
Hier fehlt womdglich die Verkniipfung von verschiedenen Wissenselementen
iiber verschiedene mathematische Inhalte, um in der Losung voranzuschreiten.
Des Weiteren gehen diese Bearbeitungen nicht in die Anwendung bzw. in den
Anwendungskontext (Implizite Nutzung) iiber. Letztendlich kdnnen David sowie
Nick in ihren Bearbeitungen ihre Schwierigkeiten nicht iiberwinden, wodurch
ihre Losungen mit L1 eingestuft worden sind. Ein Unterschied zeigt sich dagegen
in der Bearbeitung von David zur Aufgabe Differenzierbarkeit. Er nutzt bzw.
aktiviert zwar ebenfalls verschiedene Facetten beziiglich des Konzepts
Differenzierbarkeit, allerdings wechselt er anschlieBend in den
Anwendungskontext. Dies liegt womdglich daran, dass er den Begriff der
Differenzierbarkeit besser verstanden, somit gleichzeitig seine Schwierigkeiten
mit der Aufgabe tiberwunden und aus diesem Grund eine Losungsmoglichkeit
generiert hat. In dem speziellen Fall von David wird ersichtlich, dass ihm vor
allem das Untersuchen von Beispielen bzw. dhnlichen Aufgaben (Konkretisierung
& Abgrenzung) geholfen hat. Daraus konnte er das Verfahren extrahieren und auf
die aktuelle Aufgabe anwenden (Implizite Nutzung)®®. Nach dem Wechsel in den
Anwendungskontext iibernimmt dieser Prozess von David die Eigenschaften
eines prozeduralen Prozesses mit dem Fokus auf Implizite Nutzung und
Konkretisierung & Abgrenzung.

Des Weiteren zeigt sich ein Unterschied in den konzeptuellen Prozessen zwischen
der Losungsqualitit und der Haufigkeit hinsichtlich der Nutzung von
Wissenselementen. In den erfolgreichen Prozessen werden deutlich mehr und
verschiedene Wissenselemente angesteuert als in den nicht erfolgreichen

63 Inwiefern er das Verfahren beziiglich der anderen Facetten verstanden hat, kann aus den
Daten nicht abgeleitet werden.
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Prozessen. Dies kniipft erneut an den vorherigen Ausfithrungen an, dass fiir das
konzeptuelle Wissen verschieden Facetten sowie die Verkniipfungen von
Informationen bzw. Facetten entscheidend sind (Hiebert & Lefevre, 1986, S. 3f.).
Da fiir die Aufgabe ,Mittelwertsatz“ vor allem konzeptuelles Wissen fiir die
Losung der Aufgabe bendtigt wird (Kapitel 5.3.2), ist das hiufige Nutzen und
Verkniipfen von Wissenselementen ebenfalls fordernd fiir die Losungsqualitét.

6.2.9 Zusammenfassung der Ergebnisse zur Analyse des Wissens

AbschlieBend werden fiir das Kapitel 6.2 die zentralen Ergebnisse der Analyse
hinsichtlich des Wissens zusammengefasst:

e Die Veranstaltung bietet ein umfangreiches Wissensangebot zu den
jeweiligen Aufgaben (Kapitel 6.2.1).

e Die Wissensmatrix kann zur Darstellung des Wissensangebots als auch
fiir die Darstellung der Wissensnutzung der Studierenden genutzt
werden (Kapitel 6.2.1 und 6.2.2).

e Die Wissensnutzung hinsichtlich der Wissensarten héngt von den
Anforderungen der Aufgabe ab (Kapitel 6.2.3).

e Es wurde drei Arten von Prozessen identifiziert: (1) Die prozeduralen
Prozesse haben einen Fokus auf Implizite Nutzung sowie
Konkretisierung & Abgrenzung. Die konzeptuellen Prozesse haben einen
Fokus auf (2a) Implizite Nutzung sowie Bedeutung & Vernetzung oder
(2b) Explizite Formulierung und Konkretisierung & Abgrenzung
(Kapitel 6.2.4).

e Schwierigkeiten sind aufgabenabhingig. In den prozeduralen Inhalten
lassen sich diese vor allem in der Impliziten Nutzung und Expliziten
Formulierung identifizieren. In den konzeptuellen Inhalten lassen sich
diese in allen Facetten feststellen (Kapitel 6.2.6).

e Die Studierenden nutzen in ihren Bearbeitungen etwa knapp die Hélfte
der angebotenen Wissenselemente (Kapitel 6.2.7).

e Erfolgreiche prozedurale Prozesse zeichnen sich dadurch aus, dass
Schwierigkeiten hinsichtlich der Facette Explizite Formulierung
beseitigt werden. Erfolgreiche konzeptuelle Prozesse nutzen vor allem
die Facette Implizite Nutzung und Bedeutung & Vernetzung. Weniger
erfolgreiche Prozesse fokussieren stark auf Explizite Formulierung und
Konkretisierung &  Abgrenzung  (einzelner Konzepte bzw.
Zusammenhinge) (Kapitel 6.2.8).
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6.3 Rekonstruktion von Heurismen in den
Problembearbeitungsprozessen

Dieses Kapitel beschiftigt sich mit der Nutzung von Heurismen in den
Problembearbeitungsprozessen der Studierenden.

Entgegen der Betrachtung von Steuerung (Kapitel 6.1) und Wissen (Kapitel 6.2)
wird dieses Kapitel nicht mit einer beispielhaften Bearbeitung beginnen, da in
Kapitel 5.4.3 bereits einige Beispicle der jeweiligen Heurismen aufgefiihrt
worden sind. In Kapitel 6.3.1 wird mit einer Ubersicht zur Nutzung der
Heurismen begonnen. Dabei werden héufige und selten genutzte Heurismen
diskutiert. In Kapitel 6.3.2 wird ein besonderer Fokus auf die Abhéngigkeit der
Heurismennutzungen von den jeweiligen Aufgaben bzw. Lerngruppen gelegt.
AnschlieBend wird in Kapitel 6.3.3 die Heurismennutzung mit dem Erfolg bzw.
Misserfolg in Zusammenhang gesetzt. AbschlieBend werden die zentralen
Ergebnisse zu den Heurismen festgehalten (Kapitel 6.3.4).

6.3.1 Uberblick iiber die Nutzung der Heurismen

In diesem Abschnitt wird die Nutzung der Heurismen dargestellt. Damit
fokussiert dieses Kapitel die folgende Forschungsfrage:

|

(H1) Welche Heurismen treten in den Problembearbeitungsprozessen auf?

Fiir einen ersten Uberblick iiber die Nutzung der Heurismen werden die
Haufigkeiten in der Tabelle 35 zusammengestellt.

Zunichst werden einige Beobachtungen aus Tabelle 35 abgeleitet. Insgesamt
konnten 167 Nutzungen von Heurismen rekonstruiert werden. Dabei zeigen sich
groBBere Unterschiede zwischen den unterschiedlichen Lernenden bzw.
Lerngruppen. Z. B. verwendet David in seinen Problembearbeitungsprozessen
63-mal einen speziellen Heurismus, wihrend Nick lediglich 18 Heurismen nutzt.
Dies scheint vorerst einen erheblichen Unterschied darzustellen. Die Héufigkeit
der Heurismennutzung steht jedoch in direktem Zusammenhang mit der
Bearbeitungszeit. David wendet mit 63 die meisten Heurismen an und bendtigt
auch die meiste Zeit fiir die drei Aufgaben (siche Tabelle 16). Im Gegensatz dazu
verwendet Lukas lediglich drei Heurismen, beschéftigt sich jedoch nur mit einer
Aufgabe und hat dementsprechend auch die kiirzeste Bearbeitungszeit. Nick nutzt
18 Heurismen, was nach Lukas die zweitniedrigste Anzahl darstellt, und hat
ebenfalls die zweitkiirzeste Bearbeitungszeit. Lediglich bei den beiden
Lerngruppen von Alex und Thomas sowie Lea, Lisa, Sarah und Paula kehrt sich
dieses Muster um. Insgesamt ldsst sich dennoch ableiten, dass eine lidngere
Bearbeitungszeit tendenziell mit einer héheren Heurismennutzung einhergeht.
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Heurismus David G3 G4 Nick Lukas Gesamt
Begriffe kldren 8 2 2 4 0 16
Skizze 4 5 7 1 0 17
Imagindre Figur 7 1 4 0 0 12
Spezialfall 11 2 1 0 0 14
Fallunterscheidung 0 0 0 2 0 2
Nutzung aller 3 4 8 0 0 15
Voraussetzungen

Systematisierungshilfen 10 0 0 0 0 10
Metapher 3 2 4 0 0 9
Riickfiihrungsprinzip 1 0 5 0 0 6
Ahnliche Aufgabe 7 9 10 9 0 35
Suche nach neuen 5 4 1 1 2 13
Hinweisen

Riickwiirtsarbeiten 0 0 1 0 0 1
Vorwdrtsarbeiten 5 5 5 1 1 17
Gesamt 63 34 48 18 3 167

Tabelle 35: Haufigkeit der Nutzung beziiglich der Heurismen (G3 = Alex und Thomas; G4 = Lea,
Lisa, Sarah und Paula)

Geringe Nutzung von Heurismen

In der Gesamtbetrachtung (Tabelle 35) treten insbesondere die am seltensten
sowie am héufigsten angewandten Heurismen deutlich hervor. Am wenigsten
konnte der Heurismus Riickwdrtsarbeiten (1-mal) identifiziert werden. ,,Die
Frage ist, worauf wollen wir jetzt hinaus? Und das habe ich mich jetzt schon in
der Ubung gefragt“ (Lea, Aufgabe ,Mittelwertsatz**). Lea dreht mit dieser
Aussage den Kontext und fragt sich, was liberhaupt das Ziel ist und was dafiir im
Vorhinein verlangt wird. Damit initiiert Lea in ihrer Lerngruppe einen Impuls und
leitet eine kurze Diskussion ein, um auf Basis der Ungleichung aus der
Aufgabenstellung Umformungen vorzunehmen, die mithilfe des Mittelwertsatzes
der Differentialrechnung durchgefiihrt werden koénnen. Es muss allerdings
erwahnt werden, dass nach dieser kurzen Diskussion die generell, globale
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Vorgehensweise des Riickwirtsarbeiten nicht weiter ersichtlich und es bei dem
einzelnen Impuls geblieben ist.

Ebenfalls kann der Heurismus Fallunterscheidung (2-mal) selten identifiziert
werden. Dies kann daran liegen, dass eine Fallunterscheidung aus theoretischer
Perspektive wenig sinnvoll bei der Bearbeitung der Aufgaben erscheint.
Allerdings wird eine Fallunterscheidung bei der Losung einer dhnlichen Aufgabe
des Tutoriums genutzt. Dies ist gleichzeitig der Grund, weshalb Nick in seiner
Bearbeitung zur Aufgabe ,Differenzierbarkeit priifen ebenfalls an zwei
verschiedenen Stellen eine Fallunterscheidung durchfiihrt (Abbildung 40). ,,Hier
konnte ich auch wieder in drei Fille unterscheiden sowie ,,hier mache ich auch
wieder zwei Fallunterscheidungen®.

Abbildung 40: Nicks Fallunterscheidung

Hdufige Nutzung von Heurismen

Als nidchstes wird auf drei Heurismen eingegangen, die in fast jedem
Problembearbeitungsprozess identifiziert werden konnen. Bei dem ersten
Heurismus handelt es sich dabei um Ahnliche Aufgabe, welcher auch gleichzeitig
(mit Abstand) am haufigsten (35-mal) genutzt wird. Die Nutzung zeigt sich vor
allem dadurch, dass auf die Aufgabe aus dem Tutorium (vgl. Kapitel 5.3)
zurlickgegriffen wird. Sie hilft dabei, eine Idee zu generieren, was iiberhaupt
gemacht werden soll oder wahrend der Bearbeitung nachgeschaut wird, ob man
auf dem richtigen Weg ist und die eigene Vorgehensweise absichern mochte. In
einigen Fillen werden im Skript oder Internet nach Ahnlichen Aufgaben gesucht.
Das Suchen bzw. Nutzen von Ahnlichen Aufgaben aus dem Internet ist fiir die
Studierenden in dieser Stichprobe, auBler Lukas, allerdings erst die letzte Option.
Obwohl dieser Heurismus in fast jedem Prozess vorkommt, wird in der Aufgabe
,Mittelwertsatz und ,,Differenzierbarkeit priifen vermehrt auf Ahnliche
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Aufgaben zuriickgegriffen, wihrend dieser in der Aufgabe ,,L"Hospital“ kaum,
aber mindestens 1-mal genutzt wird. Letztendlich ist die hohe Nutzung dieses
Heurismus keine Uberraschung, da der Kontext der Veranstaltung eine
vorbereitende Ubungsaufgabe zu Verfiigung stellt. Dieser Ablauf wurde das
gesamte Semester durchgefiihrt, wodurch den Studierenden bewusst ist, dass die
Aufgaben aus dem Tutorium in gewisser Weise ecine Hilfe fiir die
Hausaufgabenbearbeitungen darstellen.

Der zweite Heurismus, welcher in fast jedem Problembearbeitungsprozess
identifiziert werden konnte, wird nicht sofort aus der Gesamtiibersicht (Tabelle
35) deutlich, da dieser nur 16-mal genutzt wurde. Es handelt sich dabei um den
Heurismus Begriffe kliren. Ein Unterschied zur Ahnlichen Aufgabe liegt darin,
dass dieser Heurismus in den Prozessen meistens nur 1-mal pro Prozess genutzt
wird. In den jeweiligen Aufgaben werden die Begriffe Differenzierbarkeit,
Mittelwertsatz und L Hospital nachgeschaut. Dabei signalisiert David, dass er
sich mit dem gesamten Begriff vertraut machen mochte. Dies zeigt sich auch in
Davids Nutzung von Wissen (beziiglich der Begriffe nutzt bzw. aktiviert David
verschiedene Wissensfacetten). Aus diesem Grund schldgt er die Begriffe im
Skript nach und versucht die Ausfiihrungen nachzuvollziechen. In den anderen
Lerngruppen werden eher Teile des Begriffs herangezogen. Alex und Thomas
beziehen sich z. B. auf die Bedeutung einzelner Symbole und deren Schreibweise:
,»,Warum ist denn das x, da unten* (Mittelwertsatz priifen)? Nick bezieht sich auf
die Voraussetzungen fiir die Anwendung der Regel von L Hospital: ,,Also, wenn

einer dieser beiden Fille auftritt, % oder 2 [und] der Zéhler und Nenner jeweils

differenzierbar sind, [dann] kann man den Zihler und Nenner einfach so
ableiten.*

Der dritte Heurismus ist das Vorwdrtsarbeiten. Im Gegensatz zum
Riickwdrtsarbeiten wirkt das ,,Drauf-los““-Arbeiten vom Anfangszustand als das
bevorzugte Vorgehen. In den Aufgaben scheint den Studierenden der
Anfangszustand, sowie in einigen Fillen der Endzustand klar zu sein.
Riickwdrtsarbeiten besitzt an dieser Stelle das Potenzial, eine Ldsung zu
ermitteln. Insbesondere in der Aufgabe ,,Differenzierbarkeit priifen”, da die
Aufgabenstellung schon das Endergebnis suggeriert. Ohne weiter {iber den
Endzustand zu reflektieren, bleibt oftmals lediglich das Vorwirtsarbeiten, also
beginnend von den Bedingungen und Voraussetzungen, {ibrig. Insbesondere in
der Aufgabe ,,L."Hospital* wird dies deutlich. Die Aufgabenstellung verlangt die
Berechnung eines Grenzwerts, wobei der Endzustand nicht komplett unklar, aber
auch nicht vollstindig klar ist. Es ist nicht ersichtlich, ob Divergenz, Konvergenz,
unbestimmte Divergenz oder ein bestimmter Grenzwert nachgewiesen werden
soll. Es bleibt fiir die Studierenden demnach nichts anderes iibrig, als Schritt-fiir-
Schritt vom Startpunkt auszugehen. In der Aufgabe ,,Differenzierbarkeit priifen*
zeigt sich das Vorwdrtsarbeiten durch das Einsetzen in die Definition der
Differenzierbarkeit sowie anschlieBender Grenzwertbestimmung und in der
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Aufgabe , Mittelwertsatz“ durch die Versuche des Umformens beziiglich der
Ungleichung.

6.3.2 Aufgaben- bzw. lerngruppenabhiingige Heurismen

Laut der Theorie kdnnen Heurismen entweder aufgabenspezifisch (Rott, 2013, S.
136ff.) oder lerngruppenabhingig (Stenzel, 2023a, S. 31) sein. Durch den
Gesamtiiberblick und die vorherigen Ausfithrungen konnte bereits festgestellt
werden, dass es Heurismen gibt, die kaum oder in fast jeder Bearbeitung genutzt
werden (vgl. auch Tabelle 35). In beiden Fillen lésst sich daher nicht von einer
Aufgaben- bzw. Lerngruppenabhéngigkeit sprechen. Die beiden gering genutzten
Heurismen (Riickwdrtsarbeiten und Spezialfall) scheinen Einzelfille zu sein. Die
hiufig genutzten Heurismen (dhnliche Aufgabe, Begriffe kidren und
Vorwdrtsarbeiten) werden zwar in fast jedem Prozess genutzt, wirken daher
jedoch nicht speziell, sondern eher allgemein anwendbar®. Die
Aufgabenabhingigkeit bzw. Lerngruppenabhingigkeit wird im Folgenden
tiefergehend analysiert. Damit wird folgende Forschungsfrage adressiert:

(H2) Ist die Nutzung von Heurismen aufgabenabhdngig? Ist die Nutzung von
Heurismen lerngruppenabhdngig?

Zunéchst soll darauf hingedeutet werden, dass im Kontext der kleinen Stichprobe
in dieser Arbeit kaum von einer Abhédngigkeit bzw. eines typischen Verhaltens
beziiglich der Nutzung Heurismen gesprochen werden kann. Die folgenden
Ausfiihrungen sind demnach lediglich Tendenzen, die auf eine Abhéngigkeit bzw.
typisches Nutzungsverhalten hindeuten. Diese Tendenzen werden ebenfalls in der
Tabelle 36 dargestellt. In dieser Tabelle beschreibt das X, ob in einem Prozess ein
spezifischer Heurismus (mindestens 1-mal) verwendet wird.

64 Dies ldsst sich allerdings auch anders deuten. Da die Heurismen in fast jedem
Bearbeitungsprozess benutzt werden, konnen diese auch als typische Heurismen fiir die
Bearbeitung dieser Aufgaben aufgefasst werden.
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Heurismus: Skizze

Skizze ist einer der hiufiger genutzten Heurismen (17-mal). Bei der Nutzung von
David und Nick wird die Skizze im Zusammenhang mit dem Heurismus Begriffe
kldren genutzt, indem sie versuchen, die relevanten Begriffe nachzuvollziehen.
Dabei bezichen sie sich auf die Visualisierungen der Begriffe aus dem Skript. Die
restliche Nutzung des Heurismus Skizze beschrinkt sich ausschlieBlich auf das
Visualisieren von spezifischen Funktionsgraphen.

e Alex und Thomas visualisieren sich den Graphen der Funktion
X
x% cos (z—z), um grafisch zu iiberlegen, ob die Funktion differenzierbar

sein kann.

e In der Aufgabe ,L’'Hospital“ wird der Graph der natiirlichen
Logarithmusfunktion visualisiert, um zu tiberpriifen, welche Werte
dieser annehmen kann.

e In der Aufgabe , Mittelwertsatz* werden sowohl die speziellen als auch
allgemeinen Graphen der Exponential- und Sinusfunktion einzeln und
als Verkettung visualisiert, um zu untersuchen, welche Werte sie
annehmen konnen.

Der Heurismus Skizze kann in den Prozessen zu jeder Aufgabe identifiziert
werden (Tabelle 36). Dariiber hinaus zeigt sich, dass die Skizze in jedem Prozess
zur Aufgabe ,,Mittelwertsatz* genutzt wird. Demnach kann die Tendenz vermutet
werden, dass der Einsatz des Heurismus Skizze typisch fiir die Aufgabe
,Mittelwertsatz* ist. Bei dieser Formulierung muss bedacht werden, dass der
Heurismus mit zwei verschiedenen Verwendungen in der Aufgabe eingesetzt
wird. Zum einen im Zusammenhang mit der Begriffsklarung des Mittelwertsatzes
und zum anderen fiir die Visualisierung von Funktionen. Hinsichtlich der
Lerngruppenabhingigkeit kann zwar geschlossen werden, dass der Heurismus
Skizze populér ist, aber lediglich Alex und Thomas in jedem Prozess darauf
zuriickgreifen.

Heurismus: Spezialfall

Spezialfille (14-mal, vgl. Tabelle 35) konnen lediglich in den
Problembearbeitungsprozessen der beiden Aufgaben ,Mittelwertsatz“ und
,,L"Hospital“ identifiziert werden (Tabelle 36). David nutzt besonders héufig
Spezialfille, um sich verschiedene Beispiel-Grenzwerte in der Aufgabe
,,L."Hospital“ anzuschauen und bestimmt diese anschlieBend. Durch das Einsetzen
von Zahlen versucht er, sich dem allgemeinen Ergebnis anzundhern. Auch die
Lerngruppe Alex und Thomas sowie Lea, Lisa, Sarah und Paula wenden diese
Strategie in der Aufgabe ,,L "Hospital* an. In der Aufgabe ,,Mittelwertsatz* sind
es erneut Alex und Thomas sowie David, welche Spezialfille nutzen. Aufgrund
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der Voraussetzung 0 < y < x setzen sie Zahlen fiir y und x in die vorgegebene
Ungleichung der Aufgabe sowie Gleichung des Mittelwertsatzes ein. Zum einen
versuchen sie, damit den Sinn dieser Voraussetzung herausfinden und zum
anderen mdgliche Auswirkungen auf die (Un-)Gleichung festzustellen.

Auf den ersten Blick ldsst sich die Tendenz ableiten, dass fiir die
Grenzwertbestimmung mit L Hospital die Nutzung von Spezialfillen typisch
scheint. Allerdings liegt dies eher an der Funktion, die Teil der Aufgabe ist. In der
Aufgabe , Differenzierbarkeit priifen* muss ebenfalls ein Grenzwert bestimmt
werden, wobei in den Prozessen zu dieser Aufgabe keine Spezialfille genutzt
werden®. Méglicherweise ist die Exponentialfunktion mit zwei Unbekannten fiir
die Studierenden schwierig zu begreifen, wodurch durch das Einsetzen von
Zahlen ein besseres Verstindnis fiir die Aufgabe entwickelt werden kann.
Beziiglich der Lerngruppenabhingigkeit ldsst sich schwierig von einer Tendenz
sprechen, obwohl Alex und Thomas sowie David diesen Heurismus in zwei von
drei Prozessen nutzen. Allerdings ist es nur David, der diesen Heurismus in
besonders umfangreichem Malie anwendet (11-mal).

Heurismus: Suche nach Hinweisen

Die Suche nach Hinweisen (im Veranstaltungsmaterial oder externen Materialien)
wird dann von Studierenden genutzt, wenn sie Probleme damit haben, ein
Vorgehen fiir die Losung einer Aufgabe zu finden oder wenn sie auf
Schwierigkeiten im Losungsprozess stolen. Die inhaltlichen Griinde in den
Problembearbeitungsprozessen sind dabei vielfaltig. David sucht z. B. nach einer
passenden Beweismethode im Skript, Thomas sucht im ,,Mathe-Buch“ nach
weiteren Hilfen zur Differenzierbarkeit, Lukas versucht aus YouTube-Videos
Ableitungen fiir den Kosinus zu finden und die Lerngruppe um Lea, Lisa, Sarah
und Paula suchen nach konkreten Ableitungsregeln in verschiedenen Materialien.
Lediglich David nutzt diesen Heurismus in jedem seiner Prozesse (Tabelle 36).
Dabei ist auffillig, dass die Suche nach neuen Hinweisen erst spit in seinen
Prozessen identifiziert werden kann. Dies deutet darauf hin, dass dies eine
Problemlosestrategie ist, welche erst zum Einsatz kommt, wenn andere
Heurismen nicht zu einer zufriedenstellenden Losung gefithrt haben. In den
Prozessen der anderen Studierenden zeigt sich die Anwendung dieses Heurismus
ebenfalls erst ab etwa der Mitte des Prozesses.

Beziiglich der Aufgabenabhingigkeit kann keine Tendenz festgestellt werden.

Heurismus: Nutzung aller Voraussetzungen

Der Heurismus Nutzung aller Voraussetzungen kann zwar in Prozessen zu allen
Aufgaben identifiziert werden (Tabelle 36), allerdings zeigt sich die hiufige

65 Fast die identische Uberlegung kann auch fiir den Heurismus Riickfiihrungsprinzip (siehe
weiter unten) festgestellt werden.
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Anwendung vor allem in den beiden Aufgaben ,Mittelwertsatz und
,»L'Hospital“. In der Aufgabe ,Mittelwertsatz wird insbesondere auf die
Voraussetzung 0 < y < x und die Betragsstriche in der Ungleichung Bezug
genommen. Dabei iiberlegen sich die Studierenden, inwiefern diese beiden
Voraussetzungen zusammenpassen bzw. voneinander abhéngig sind. Lisa: ,,Aber
vielleicht ist das auch mit den Betragsstrichen einfach nur mit diesen, mit dieser
Anmerkung. Wenn man jetzt nimlich zum Beispiel nicht die Definition hétte, dass
y < x.*“ Die Aussage zeigt, dass die Voraussetzungen die Studierenden etwas
verunsichern und sie nicht genau wissen, was es damit genau auf sich hat.

In der Aufgabe ,,.L."Hospital“ wird sich auf die (einzige) Voraussetzung a > 1
bezogen. Sowohl Alex: Ja, aber wir diirfen nicht vergessen, dass a, a wéchst
nicht. [...] a ist eine Konstante > 1* und Paula: ,,Ah, deswegen darf das auch
niemals 1 sein, weil das In(a) ist ja immer 0 und du darfst ja nicht durch 0 teilen
fassen die Erkenntnisse gut zusammen.

Obwohl die beiden Lerngruppen Alex und Thomas sowie Lea, Lisa, Sarah und
Paula als auch David diesen Heurismus in ihrer Bearbeitung nutzen, kann
dennoch nicht von einer Lerngruppenabhingigkeit ausgegangen werden.
Beziiglich der Aufgabenabhingigkeit ldsst sich ebenfalls keine Tendenz
erkennen.

Heurismus: Systematisierungshilfen

Systematisierungshilfen werden in den Problembearbeitungsprozessen lediglich
von David genutzt (Tabelle 36). David ordnet sein Vorgehen, indem er wichtige
Formeln farbig markiert, mathematische Aussagen markiert oder unterstreicht
sowie Spezialfille mit verschiedenen Farben darstellt (z. B. in Abbildung 41).

Lo £09 = fe) 7;”@

X U X =0

Abbildung 41: Davids Systematisierungshilfe

Wihrend der Prozesse sind die Systematisierungshilfen fir David keinesfalls
einmalige Nutzungen, sie stellen eher ein stdndiges heuristisches Mittel fiir ihn
dar, auf welches in jeder Aufgabe zuriickgegriffen wird. Daraus ldsst sich
ableiten, dass der Heurismus Systematisierungshilfen typisch fiir David ist.
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Heurismus: Metapher und imagindre Figur

Die beiden Heurismen imagindre Figur und Metapher werden an dieser Stelle
zusammengelegt. Beide Heurismen sind theoretisch eng miteinander verwandt
und auch in dieser Studie weisen sie eine starke Naher zueinander auf. Dariiber
hinaus konnten in den Problembearbeitungsprozessen mit einer Ausnahme®®
entweder keiner oder jeweils beide Heurismen identifiziert werden (Tabelle 36).
Generell zeigt sich, dass die Studierenden in den Aufgaben die beiden Heurismen
nutzen, wenn sie liber spezielle Funktionsgraphen sprechen. Vor allem das ,,Hin-
und Herspringen bzw. das ,,Schwingen® der ,,Wellenfunktionen* Kosinus und
Sinus wird am meisten diskutiert. Dariiber hinaus nutzt David diese Heurismen,
um iber die Anndherung beim Grenzwertiibergang zu sprechen. FEine
Besonderheit stellt David in seiner Bearbeitung zur Aufgabe ,,.L."Hospital“ dar.
Seine Nutzung der imagindren Figur wird ,,innerhalb® des Heurismus Spezialfall
identifiziert. Dabei stellt er sich bildlich vor, was mit den beispiclhaft eingesetzten
Zahlen beim Grenzwertiibergang passiert.

Letztendlich kann keine Tendenz beziiglich der Aufgabenabhéngigkeit erkannt
werden, allerdings nutzt David in allen seinen Bearbeitungen diese beiden
Heurismen.

Heurismus: Riickfiihrungsprinzip

Das Riickfiihrungsprinzip wird in den Daten dieser Arbeit kaum von den
Studierenden genutzt (6-mal, vgl. Tabelle 35). Zunédchst klingt dies iiberraschend,
da der Kontext der Veranstaltung durch die Aufgabe aus dem Tutorium bereits
mogliche Hinweise anbietet. Allerdings liefern diese Aufgaben keine Fakten oder
Aussagen, welche bei der Bearbeitung der Hausaufgaben helfen, sondern
Verfahren, die iibertragen werden kénnen. Aus diesem Grund wird bei diesem
Verhalten eher der Heurismus Ahnliche Aufgabe kodiert. Letztlich iiberwiegt das
Riickfiihrungsprinzip bei der Bearbeitung der Aufgabe ,L"Hospital®, bei der
David und die Lerngruppe um Lea, Lisa, Sarah und Paula jeweils die Ableitung
fir a* aus Karteikarten, Mitschriften aus der Schulzeit und dem Internet
heraussuchen. Dartiber hinaus lasst sich Sarah mithilfe eines Rechners im Internet
den Grenzwert bestimmen. Bei der Aufgabe ,Mittelwertsatz nutzt die
Lerngruppe um Lea, Lisa, Sarah und Paula das Riickfiihrungsprinzip, um
Unklarheiten zu den  Voraussetzungen des  Mittelwertsatzes  der
Differentialrechnung zu diskutieren.

Insgesamt zeigt sich, dass das Riickfiihrungsprinzip cher in der Aufgabe
,,L."Hospital*“ genutzt wird. Allerdings liegt das an der speziellen Funktion, die
abgeleitet werden muss. Miisste bei der Nutzung der Regel von L"Hospital bspw.
sin(x) abgeleitet werden, wire das Riickfiihrungsprinzip moglicherweise nicht
identifizierbar gewesen. Eine Tendenz zur Aufgabenabhéngigkeit ldsst sich daher

66 Im Prozess zum Mittelwertsatz nutzt David eine imagindre Figur, aber keine Metapher-.
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nicht erkennen, da es eher auf die spezielle Ableitung ankommt. Gleiches gilt fiir
die Lerngruppenabhéngigkeit.

6.3.3 Vergleich von erfolgreicher und nichterfolgreicher Heurismennutzung

Nach Schoenfeld (1985; Kapitel 2.2) sind Heurismen ein entscheidender Faktor
fiir den Verlauf und Erfolg von Problembearbeitungsprozessen. Im Folgenden
werden die Problembearbeitungsprozesse beziiglich des Zusammenhangs
zwischen der Heurismennutzung und Erfolg bzw. Misserfolg der zugehorigen
Losungen betrachtet. Die folgenden Ausfiihrungen adressieren demnach die
Forschungsfrage:

(H3) Inwiefern héngt die Nutzung der Heurismen mit dem Erfolg bzw.
Misserfolg eines Problembearbeitungsprozesses zusammen?

Zunichst werden Zusammenhinge zwischen (Miss-)Erfolg des Losungsprodukts
und Heurismennutzung beziiglich der Haufigkeit bzw. des Vorhandenseins einer
speziellen Heurismusnutzung in einem Prozess untersucht. Wird die Haufigkeit
der genutzten Heurismen (wie in Tabelle 35) mit den Ldsungsprodukten der
Studierenden verglichen, dann zeigt sich kein einheitliches Ergebnis. Als Beispiel
werden die Problembearbeitungsprozesse von Lea, Lisa, Sarah und Paula
herangezogen. In allen Prozessen erreichen sie eine Losungsqualitit von
entweder L3 oder L4. Die Haufigkeit der Heurismennutzung unterscheidet sich
in ihren drei Prozessen allerdings stark. In der Aufgabe Differenzierbarkeit
konnten lediglich sechs Stellen identifiziert werden, an denen Heurismen
verwendet werden, wihrend fiir die Aufgabe ,Mittelwertsatz* 27 und fiir die
Aufgabe ,.I"Hospital“ 15 entsprechende Stellen festgestellt werden konnten.
Ahnliche Unterschiede zeigen sich auch in den weniger erfolgreichen Prozessen.
Es gibt wenig erfolgreiche Prozesse, in denen nur an drei Stellen Heurismen (z.
B. Lukas ,Differenzierbarkeit priifen”) und denen an 18 Stellen Heurismen
verwendet werden (z. B. David ,,Mittelwertsatz*).

Wird die Haufigkeit des Auftretens verschiedener Heurismen (wie in Tabelle 36)
in Betracht gezogen, ldsst sich allerdings eine Tendenz erkennen.
Problembearbeitungsprozesse in denen wenig verschiedene Heurismen
verwendet werden, erreichen auch eher eine schlechtere Losungsqualitat.
Andersrum haben die Prozesse, in denen viele verschiedene Heurismen
verwendet werden, eher eine hohe Losungsqualitit. Es muss bedacht werden, dass
die Héaufigkeit des Auftretens verschiedener Heurismen in einem Prozess
durchaus abhingig von der Lerngruppe bzw. eines Studierenden abhingig sein
kann. David nutzt z. B. in jedem Prozess die meisten verschiedenen Heurismen
(acht, neun und zehn), wobei zwei Losungsprodukte mit L3 und ein
Losungsprodukt mit L1 eingeschétzt werden. Dariiber hinaus muss auch gesagt
werden, dass Studierende in allen Prozessen auf Schwierigkeiten gestofen sind
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und die Anwendung von Heurismen fiir die Uberwindung dieser notwendig sind.
In dem kurzen Prozess von Lea, Lisa, Sarah und Paula (,,Differenzierbarkeit
priifen”), in dem nur kleine Schwierigkeiten aufgekommen sind, mussten auch
kaum Heurismen (vier verschiedene) verwendet werden.

Im néchsten Schritt werden einzelne Heurismen untersucht, indem erfolgreiche
Prozesse betrachtet werden, um herauszufinden, welche spezifischen Heurismen
diese Prozesse charakterisieren. Dabei zeigt sich, dass erfolgreiche Prozesse
nahezu immer die folgenden Heurismen enthalten: Begriffe kldren, Skizze,
Nutzung aller Voraussetzungen, Ahnliche Aufgaben, Vorwirtsarbeiten.

Diese Heurismen lassen sich allerdings auch in den weniger erfolgreichen
Prozessen identifizieren, wobei das Nutzen aller Voraussetzungen nur in einem
der weniger erfolgreichen Prozesse vorkommt. Es bleibt die Frage, welchen
Einfluss dieser Heurismus auf einen positiven Losungsverlauf hat. Zunéchst
deutet die Beschreibung dieses Heurismus darauf hin, dass ein (Zwischen-
)Ergebnis kontrolliert wird®. Dies zeigt sich bspw. in der Bearbeitung von Lea,
Lisa, Sarah und Paula. Sarah mochte nochmal in die Aufgabenstellung gucken
und schauen, ob sie die Aufgabe vollstindig bearbeitet haben: ,,Ich gucke mir
nochmal die Aufgabe, ob wir alles gemacht [haben].” In diesem Moment werden
zwar Unklarheiten in der Lerngruppe diskutiert (siche Kapitel 6.2.6), diese haben
aber keine Auswirkung mehr auf die bereits vorhandene (vollstindig korrekte)
Losung. Dennoch kann vermutet werden, dass dadurch das Verstéindnis bei Sarah
hinsichtlich der Aufgabe bzw. der Verwendung des Wissens fiir diese Aufgabe
verbessert wurde. Weitere Verwendungen des Heurismus Nutzung aller
Voraussetzungen deuten ebenfalls darauf hin, dass kein groBer, direkter Einfluss
auf das Fortschreiten der Losung, sondern vielmehr auf das Verstindnis der
Studierenden genommen wird. In den Prozessen zum ,,Mittelwertsatz* liefern vor
allem die Aussagen und Diskussionen iiber die Voraussetzung 0 <y < x
Aufschluss tiber die Rolle der Betragsstriche. Noch deutlicher wird dies in den
Prozessen zur Aufgabe ,,L."Hospital“. Durch Aussagen und Diskussion iiber die
Voraussetzung a > 1 wird den Studierenden klar, warum diese Bedingung fiir die
Aufgabenstellung notwendig ist. Paula: ,,Ah, deswegen darf das auch niemals 1
sein, weil das [n(a) ist ja immer 0 und du darfst ja nicht durch 0 teilen.*
Insgesamt scheint der Heurismus Nutzung aller Voraussetzungen keinen groflen
Einfluss auf das Fortschreiten der Losung zu haben.

Ein weiterer Heurismus, welcher zwar nicht alle erfolgreichen Prozesse
charakterisiert, aber ausschlieBlich in solchen vorkommt, ist das
Riickfiihrungsprinzip. In der Aufgabe ,,L "Hospital* haben sich die Studierenden
die Ableitung von a* aus verschiedenen Materialien herausgesucht und sich einen

67 Die Beschreibung des Heurismus Nutzung aller Voraussetzungen: ,,Es wird gepriift, ob alle
in der Aufgabenstellung gegebenen Bedingungen einbezogen worden sind.“ Dabei wird
deutlich, dass die Bearbeitung (bzw. die Uberlegungen) bereits in eine gewisse Richtung
vorangeschritten sein muss.
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speziellen Grenzwert anzeigen lassen. Die Ableitung ist essenziell fiir die
Anwendung der Regel von L’'Hospital, um zu einer korrekten Losung der
Aufgabe zu gelangen. Das Anzeigen des Grenzwerts wurde genutzt, um die
eigene Losung zu vergleichen. Damit wird die eigene Losung zwar nicht effektiv
vorangetrieben, allerdings abgesichert. Dies kann auch als Fortschreiten der
Losung aufgefasst werden. In der Aufgabe ,,Mittelwertsatz* wurde der Heurismus
verwendet, um Unklarheiten hinsichtlich des Mittelwertsatzes der
Differentialrechnung zu beseitigen. Damit wurde moglicherweise ein nicht
zielfithrendes Verhalten abgewendet. Insgesamt zeigt sich daher die Tendenz, dass
die Verwendung dieses Heurismus einen positiven Einfluss auf das Fortschreiten
der Losung haben kann. Dennoch muss erwéhnt bleiben, dass dieser Heurismus
nicht allein fiir eine korrekt Losung verantwortlich ist, sondern in manchen Fillen
dazu beitragen kann. Es liegen dariiber hinaus weitere Prozesse vor, die
erfolgreich enden, ohne das Riickfiihrungsprinzip anzuwenden.

SchlieBlich werden gezielt einzelne Stellen (,,Barrierestellen™) der jeweiligen
Prozesse betrachtet, in denen die Verwendung von Heurismen zu einem
Fortschritt im Losungsprozess beitragen. Dabei ist insbesondere der Heurismus
Skizze hervorzuheben. In den Prozessen zu allen drei Aufgaben ldsst sich
beobachten, dass Visualisierungen von Funktionen einen wesentlichen Fortschritt
im Losungsweg der Studierenden bewirken. Diese Visualisierungen helfen den
Studierenden Vermutungen aufzustellen (Ist eine Funktion differenzierbar?),
Wertebereiche festzulegen und zu iberpriifen (von speziellen Funktionen),
Vermutungen zu bestétigen (hinsichtlich Abschitzungen) sowie das Verstindnis
zu erweitern (z. B. Grenzwertverhalten von In sowie Begriffsbildung). Ahnlich
wie beim Heurismus Skizze helfen den Studierenden Metaphern und imagindre
Figuren tber den Sachverhalt von Funktionen zu sprechen und damit ihre
Argumentationen voranzutreiben.

Weitere Verwendungen eines Heurismus, der an mehreren Stellen zum
Losungsfortschritt beitrigt, ist Ahnliche Aufgabe. Dieser Heurismus hilft bei der
Planung und Ideengenerierung fiir das eigene Vorgehen. Dariiber hinaus werden
Ahnliche Aufgaben genutzt, um das Vorgehen in der eigenen Losung abzusichern
bzw. zu vergleichen. Dabei zeigt sich, dass die vorbereitende Aufgabe aus dem
Tutorium fiir die Studierenden eine wertvolle Quelle ist. Das Ubertragen aus der
Aufgabe des Tutoriums erweist sich jedoch nicht in jedem Fall als erfolgreich. So
sind auch viele Anwendungen des Heurismus erfolglos oder fithren Studierende
sogar in eine falsche Richtung und behindern damit den Ldsungsprozess. Die
Griinde dafiir sind unter anderem fehlendes Wissen, um das Vorgehen fiir die
eigene Aufgabe zu abstrahieren, sowie fehlendes Kontrollverhalten, um Wissen
korrekt einzusetzen.

Es werden noch zwei Heurismen erwéhnt, die teilweise sogar einen negativen
Einfluss auf den gesamten Losungsprozess ausiiben. Zum einen ist dies die Suche
nach neuen Hinweisen. Bei der Verwendung dieses Heurismus haben Studierende
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keine wertvollen Informationen gefunden, die fiir die Aufgabenlésung hilfreich
sein kdnnten. Dabei hatte diese Suche sogar noch Potenzial, die Losung in eine
falsche Richtung zu lenken (z. B. statt der Differenzierbarkeit, die Stetigkeit einer
Funktion in einem Punkt zeigen). Gleiches gilt fiir die Verwendung des
Heurismus Spezialfille. Zunéchst kdonnen Spezialfille hilfreiche Elemente sein,
um bspw. ein Gefiihl fiir die Grenzwertbestimmung oder den Wertebereich einer
Funktion zu bekommen. Dies muss allerdings auf den allgemeinen Fall
iibertragen werden, sodass nicht nur auf der Ebene des Beispiels geblieben wird
(siehe in Davids Bearbeitungen).

6.3.4 Zusammenfassung der Ergebnisse zur Analyse der Heurismen

AbschlieBend werden fiir das Kapitel 6.3 die zentralen Ergebnisse der Analyse
hinsichtlich Heurismen zusammengefasst:

e Der Heurismus Ahnliche Aufgabe wird am meisten genutzt (35-mal)
(Kapitel 6.3.1).

e Die Nutzung von verschiedenen Heurismen liegt pro
Problembearbeitungsprozess zwischen 2-10 (Tabelle 36 in Kapitel
6.3.2).

e Wenig Hinweis sowohl auf eine aufgabenabhingige noch
lerngruppenabhingige Nutzung von Heurismen. Eine (kleine)
Ausnahme hinsichtlich lerngruppenabhingiger Nutzung von Heurismen
zeigen Davids Prozesse (Kapitel 6.3.2).

e Die Anzahl genutzter Heurismen deuten keine Auswirkung auf Erfolg
hin. Die Vielfalt verschieden genutzter Heurismen deutet darauf hin,
dass eine hohere Anzahl vorteilhaft ist (Kapitel 6.3.3).

e Riickfiihrungsprinzip, Ahnliche Aufgabe und Skizze zeigen Hinweise auf
einen positiven Einfluss auf den Prozess (Kapitel 6.3.3).

o Suche nach niitzlichen Hinweisen und Spezialfille weisen negatives
Potenzial fiir den Prozess auf (Kapitel 6.3.3).

6.4 Gemeinsame Analyse der Kategorien zu
Problembearbeitungsprozessen

In den vorherigen Ausfilhrungen wurden die Problembearbeitungsprozesse
anhand der Kategorien nach Schoenfeld (1985) strukturiert und voneinander
getrennt betrachtet. Da es einige Wechselwirkungen zwischen den Kategorien
gibt (Schoenfeld, 1985, S. 44), werden diese in den folgenden Ausfithrungen
zusammen betrachtet.

Um sich dem Zusammenspiel zwischen den Kategorien zu nahern, werden im
Folgenden zundchst die Interaktionen der jeweiligen Kategorien betrachtet
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(Kapitel 6.4.1). Anschlieend wird der Frage nachgegangen, welche Aspekte fiir
die Episodenwechsel in einem Problembearbeitungsprozess ausschlaggebend
sind (Kapitel 6.4.2). AuBBerdem werden die bisherigen Analysen herangezogen,
um festzustellen, ob die Aufgaben tatséchlich Probleme fiir die Studierenden
darstellen (Kapitel 6.4.3). AbschlieBend werden die zentralen Ergebnisse zu den
gemeinsamen Betrachtungen festgehalten (Kapitel 6.4.4).

6.4.1 Interaktion der Kategorien des Problemldsens

Im Folgenden werden die Interaktionen zwischen den einzelnen Kategorien
betrachtet. Dabei werden jeweils zwei Kategorien miteinander verglichen. Die
folgenden Ausfiihrungen adressieren demnach die Forschungsfrage:

(Z1) Welche Interaktionen lassen sich zwischen Steuerung, Heurismen und
Wissen identifizieren?

Interaktion zwischen Steuerung und Heurismen

Zu Beginn der Analyse wird die Interaktion von Steuerung und Heurismen
betrachtet. In allen von Schoenfeld beschrieben Episoden lésst sich die Nutzung
von Heurismen klar identifizieren (Abbildung 42).

Codesystem Readi... Analysis Explor.. Planni.. | Imple.. Verific.. Transi...
(=4 Begriffe kldren (BkI)
55 Skizze (Skiz)
=g Imaginare Figur (imF)
(=4 Spezialfall (SpF)
(=4 Fallunterscheidung (FU)
(=g Nutzung aller Vieraussetzungen (MNVor)
(&g Systematisierungshilfen (SyH)
=g Metapher (Met)
&) Rickfihrungsprinzip (RfP)
@ 1 Ahnliche Aufgaben (Ahn)
=g Suche nach nitzlichen Hinweisen (ndHi)
& Riickwirtsarbeiten (RiA)
= 1 Worwirtsarbeiten (VivA)

2
2
2
2
2
1
1
1
8

Abbildung 42: Interaktion zwischen Steuerung und Heurismen (Code-Relations-Browser aus
maxQDA)

Abbildung 42 zeigt die Haufigkeit der Interaktionen bestimmter Heurismen und
Episoden aller Problembearbeitungsprozesse. Dabei sind bestimmte
Interaktionen  zwischen Heurismen wund verschiedener Phasen im
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Problembearbeitungsprozess charakteristisch. Die Episoden Reading (finf
Interaktionen zwischen Heurismen und Episoden nach Schoenfeld) und
Transition (acht Interaktionen) werden an dieser Stelle nicht weiter betrachtet, da
in den jeweiligen Episoden zu wenig Heurismen auftauchen.

Analysis (28 Interaktionen): In der Episode Analysis zeigt sich, dass der Fokus
auf der Kldrung von Begriffen sowie das Heranziehen von Ahnlichen Aufgaben
liegt. Es geht den Studierenden darum, das jeweilige Konzept
(Differenzierbarkeit), den Zusammenhang (Mittelwertsatz) und das Verfahren
(L"Hospital) zu verstehen sowie den Anwendungskontext der Inhalte anhand
dhnlicher Aufgaben zu analysieren.

Exploration (92 Interaktionen): In der Episode Exploration wird ein breites
Spektrum verschiedener Heurismen genutzt. Die drei haufigsten Heurismen sind
Ahnliche Aufgabe, Suche nach neuen Hinweisen und der Riickgriff auf einen
Spezialfall.

Planning und Implementation (15 und 30 Interaktionen): Wéhrend Planning
dominieren vor allem die Heurismen Vorwdrtsarbeiten und Ahnliche Aufgaben.
Beide Heurismen bleiben auch in der Implementation von zentraler Bedeutung.
In diesen beiden Episoden wird der Fokus auf das schrittweise Voranschreiten in
Richtung einer Losung sowie der Riickgriff auf die Tutoriumsaufgabe gelegt.
Verification (16 Interaktionen): In der Verification werden ebenfalls eine Vielzahl
von verschiedenen Heurismen genutzt. Allerdings lésst sich hierbei kein klarer
Schwerpunkt auf spezifische oder typische Heurismen erkennen.

Die gleichen Tendenzen (wie oben aufgefiihrt) sind auch dann erkennbar, wenn
die Heurismen hinsichtlich der Episoden aufgabenweise untersucht werden (siche
Anhang). Es existieren aufgrund der kleinen Stichprobe jedoch Einzelfille, die
herausstechen, wie zum Beispiel die hdufige Nutzung des Spezialfalls in der
Aufgabe ,,L"Hospital“, insbesondere durch den Prozess von David, der diesen
Heurismus intensiv und an mehreren Stellen seines Prozesses verwendet hat.

Insgesamt ist die Menge und Vielfalt der angewandten Heurismen wéhrend der
Exploration am grofiten. Dies bestitigt die Aussage von Schoenfeld, dass die
Exploration das Herzstiick des Problemldsens bildet (Schoenfeld, 1985, S. 110).
Es ist jedoch erwdhnenswert, dass verschiedene Heurismen auch in jeder weiteren
Episode vorkommen, darunter insbesondere die Implementation (bzw. die dritte
Phase in Polyas Modell), auch wenn dies seltener geschieht. Diese Beobachtung
wird durch die Ergebnisse von Rott (2013, S. 355) gestiitzt, der ebenfalls
Heurismen in allen Episoden identifizieren konnte. Damit widerspricht dies
zunéchst den bestehenden Modellen zum Einsatz von Heurismen in bestimmten
Phasen des Problembearbeitungsprozesses (vgl. Kapitel 2.5.2). Allerdings zeigt
sich, dass die Héufigkeit der Verwendung spezifischer Heurismen durchaus dem
theoretischen Modell von Bruder und Collet (2011) entspricht. Heuristische
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Prinzipien (fiir das Finden von Ldsungsideen), lassen sich vor allem in der
Exploration wiederfinden. Wéhrend heuristische Hilfsmittel vor allem in der
Analysis erwartet werden (und dies auch tun) sind sie ebenfalls stark in der
Exploration vertreten. Dies konnte allerdings damit zusammenhdngen, dass
Exploration generell in den Problembearbeitungsprozessen dieser Arbeit einen
groflen Anteil einnimmt. Dariiber hinaus zeigt sich, dass heuristische Strategien
in allen Episoden des Problemldseprozesses eine Rolle spielen, was ihren
globalen Charakter verdeutlicht. Thr Einfluss zeigt sich besonders in Planning und
Implementation. Dies deutet ebenfalls auf einen lokalen Charakter einiger
Heurismen der heuristischen Strategien hin, der bereits von Rott (2018) diskutiert
wurde.

Der Heurismus Ahnliche Aufgabe spielt eine zentrale Rolle im gesamten
Problembearbeitungsprozess und wird in jeder Episode des Prozesses genutzt.
Dies liegt nahe, dass dieser Heurismus nicht auf eine spezifische Episode
beschrénkt ist, sondern vielmehr als allgemeiner Losungsansatz in den meisten
Problembearbeitungsprozessen benutzt wird. Im Kontext dieser Stichprobe
konnte damit argumentiert werden, das Ahnliche Aufgabe primir einen
algorithmischen Charakter besitzt und somit weniger als klassischer Heurismus
verstanden werden kann. Insbesondere in der Episode Exploration kommt dieser
Heurismus verstirkt zum Einsatz, wobei Ahnliche Aufgaben auch in den weiteren
Episoden im Vergleich zu anderen Heurismen hiufig genutzt werden.

An dieser Stelle soll die Interaktion der Kodiersysteme zwischen Heurismen und
Steuerung nadher betrachtet werden. Heurismen wurden so operationalisiert
(Kapitel 5.4.3), dass sie theoretisch nicht strikt einer Phase bzw. Episode des
Problemldseprozesses (Kapitel 5.4.1) zugeordnet werden konnen. Dennoch zeigt
sich, dass einige Heurismen eher fiir spezifische Phasen bzw. Episoden
préadestiniert zu sein scheinen, was durch ihre hdufige Nutzung in diesen Phasen
bzw. Episoden bestitigt wird (Abbildung 42). Zwei dieser Heurismen werden im
Folgenden beispielhaft kurz diskutiert. Zum einen ist dies Begriffe kldren in der
Analysis. Begriffe kidren kann theoretisch und empirisch in anderen Phasen bzw.
Episoden auftreten, allerdings scheint es insbesondere in der Analysis wichtig zu
sein, diesen Heurismus anzuwenden, um weiterhin sinnvolle Phasen bzw.
Episoden daran anzuschlieBen. Wiirde bereits an der Losung gearbeitet werden,
ohne zuvor alle Begriffe geklirt zu haben, wiren diese zwangslaufig explorativer,
da die Aufgabe noch nicht vollstindig verstanden ware. Zum anderen ist dies die
Suche nach niitzlichen Hinweisen, welcher insbesondere in die Exploration passt.
Gerade dann, wenn Studierende nach irgendwelchen Hinweisen suchen, bewegen
sie sich im Losungsraum und suchen nach Informationen, die sie in irgendeiner
Weise weiterbringen konnen. Dies zeigt sich ebenfalls darin, dass dieser
Heurismus fast ausschlieBlich in der Exploration identifiziert werden kann.
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Interaktion zwischen Steuerung und Wissen

Im Folgenden wird die Interaktion von Steuerung und Wissen aller
Problembearbeitungsprozesse betrachtet. Das Wissen wird dabei jeweils
hinsichtlich der Wissensarten (Abbildung 43) und der Wissensfacetten
(Abbildung 44) unterschieden.

Codesystem Readi... Analysis Explor... | Planni.. | Imple... | Verific.. Transi...

=g/ Konzeptuelles Wissen

=g Prozedurales Wissen

Abbildung 43: Interaktion zwischen Steuerung und Wissensart (Code-Relations-Browser aus
maxQDA)

Codesystem Readi... Analysis Explor..  Planni.. Imple.. Verific... Transi...
(=g Implizite Nutzung
(= g Explizite Formulierung
=g Konkretisierung & Abgrenzung
(=g Bedeutung & Vernetzung

(=4 Konventionelle Festlegungen

Abbildung 44: Interaktion zwischen Steuerung und Wissensfacette (Code-Relations-Browser aus
maxQDA)

In allen analysierten Episoden lassen sich jeweils konzeptuelles als auch
prozedurales Wissen identifizieren (Abbildung 43). Ebenso konnen die meisten
Wissensfacetten in nahezu allen Episoden beobachtet werden (Abbildung 44).
Insgesamt sind bestimmte Zusammenspiele zwischen Wissen und verschiedener
Episoden bzw. Phasen im Problemldseprozess charakteristisch. Die Episoden
Reading (sechs Interaktionen zwischen Wissen und Episoden nach Schoenfeld)
und Verification (sieben Interaktionen) werden an dieser Stelle nicht weiter
betrachtet, da in den jeweiligen Episoden zu wenig Wissen genutzt wird.

Analysis (27 Interaktionen): In dieser Episode steht vor allem konzeptuelles
Wissen im Vordergrund. Beziiglich der Wissensfacetten kommen alle Facetten
zum Einsatz, jedoch dominieren hier die Explizite Formulierung sowie
Konkretisierung & Abgrenzung.

Exploration (70 Interaktionen): Diese Episode zeichnet sich durch einen hohen
Anteil sowohl an konzeptuellem als auch prozeduralem Wissen aus. Alle Facetten
werden verwendet, jedoch sind die Konkretisierung & Abrenzung sowie die
Implizite Nutzung besonders stark ausgeprégt.
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Planning und Implementation (18 und 35 Interaktionen): Sowohl in Planning
als auch in Implementation wird eher prozedurales als konzeptuelles Wissen
genutzt. Hinsichtlich der Facetten zeigt sich ebenfalls ein dhnliches Muster. In
beiden Episoden dominiert die Implizite Nutzung, wobei die Explizite
Formulierung in Planning gar nicht auftaucht. Insgesamt zeigen beide Episoden
eine sehr dhnliche Struktur beziiglich Wissensarten und Wissensfacetten.
Transition (14 Interaktionen): In dieser Episode sind konzeptuelles und
prozedurales Wissen ausgewogen vertreten. Bei den Facetten stehen Implizite
Nutzung sowie Konkretisierung & Abgrenzung im Vordergrund.

Die meisten Interaktionen von Steuerung und Wissen (Abbildung 43 und 44)
lassen sich grundsitzlich auf die verschiedenen Aufgaben iibertragen, wobei es
jedoch einige Unterschiede gibt (siche Anhang). In der Exploration wird in den
Aufgaben , Differenzierbarkeit priifen und , L Hospital“ hauptsichlich
prozedurales Wissen genutzt, wihrend in der Aufgabe ,Mittelwertsatz
tiberwiegend konzeptuelles Wissen zum Einsatz kommt. Dieser Unterschied zeigt
sich ebenfalls in der Implementation. Dieser Befund ist auf Grundlage der
spezifischen Anforderungen der jeweiligen Aufgabe wenig iiberraschend, da
somit die kognitiven Anforderungen der Aufgaben in der Wissensanwendung
angemessen widergespiegelt werden. Ein weiterer Unterschied liegt im Einsatz
von konzeptuellem Wissen in der Analysis. In den Aufgaben ,,Differenzierbarkeit
prifen und ,Mittelwertsatz* wird konzeptuelles Wissen jeweils 11-mal
verwendet, wihrend dies in der Aufgabe ,,L."Hospital* nur 1-mal der Fall ist.
Bemerkenswerterweise zeigt sich bei den Wissensfacetten eine nahezu identische
Verteilung tiber die Aufgaben hinweg, was angesichts der inhaltlichen
Unterschiede der Aufgaben aulergewdhnlich konstant ist. Allerdings lasst sich
ein Unterschied feststellen. In den Aufgaben ,,Differenzierbarkeit priifen” und
L 'Hospital“ wird bei Planning und Implementation verstarkt die Facette
Konkretisierung & Abgrenzung genutzt, wihrend in der Aufgabe ,,Mittelwertsatz
die Facette Bedeutung & Vernetzung in diesen Episoden im Vordergrund steht.
Insgesamt liefert die Ubereinstimmung einen Hinweis, dass die Wissensfacetten
unabhéngig von den spezifischen Anforderungen der einzelnen Aufgaben in
dhnlicher Weise aktiviert werden.

Die Kodiersysteme der Wissensarten und der Wissensfacetten (Kapitel 5.4.2) ist
generell ~ unabhingig  von  den  verschiedenen  Episoden  des
Problembearbeitungsprozesses (Kapitel 5.4.1). Allerdings zeigen sich auch hier
in den empirischen Daten bestimmte Muster, die darauf hindeuten, dass
Wissensarten und einige Wissensfacetten eher fiir spezifische Episoden
pradestiniert sind, wie dies in Abbildung 43 und 44 deutlich wird. Diese
Interaktionen werden im Folgenden beispielhaft kurz diskutiert.
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Fiir die Wissensart wird dies an der Interaktion von konzeptuellem Wissen und
Analysis deutlich. In den Problembearbeitungsprozessen dieser Arbeit versuchen
Studierende, Konzepte und Zusammenhdnge zu verstehen. Dies ist ein direkter
Ausdruck von konzeptuellem Wissen, da es darauf ankommt, diese abstrakten
Ideen korrekt zu verstehen und anzuwenden. Dariiber hinaus gibt es weitere
Aktivitdten in der Analysis (z. B. Paraphrasieren oder Darstellungswechsel), die
ebenfalls Charakteristika von konzeptuellem Wissen sind.

Fiir die Wissensfacetten wird dies beispielhaft an zwei Interaktionen verdeutlicht.
Das vermehrte Anwenden von Impliziter Nutzung ist in Planning und
Implementation wenig iiberraschend, da es in dieser Episode die Anwendung von
Wissen im Vordergrund steht. Im Vergleich dazu werden in der Implementation
nur wenig andere Wissensfacetten herangezogen, was die Fokussierung auf die
praktische Umsetzung unterstreicht. Bei Planning ist Implizite Nutzung eher ein
Hinweis darauf, dass wihrend der Planungsprozesse die Losung beriicksichtigt
wird. Im Gegensatz dazu zeigt sich in der Exploration eine deutlich hohere
Nutzung der Wissensfacette Konkretisierung & Abgrenzung. Dies hingt damit
zusammen, dass in dieser Episode noch kein klarer Plan entwickelt wurde und
Beispiele, wie in der Tutoriumsaufgabe, dabei helfen, sich im Lésungsraum zu
orientieren und verschiedene Ansitze zu explorieren. Die Verwendung von
Beispielen unterstiitzt dabei den Prozess, eine passende Losungsstrategie zu
finden, bevor z. B. ein detailliertes Planning erfolgen kann.

Interaktion zwischen Heurismen und Wissen

Im Folgenden wird die Interaktion von Heurismen und Wissen betrachtet. Das
Wissen wird dabei nach Wissensarten und Wissensfacetten unterschieden.

Codesystem Begrif... Skizze.. Imagi. Spezi.. Fallun.. Nutzu.. Syste.. | Meta.. Rickf.. Ahnlic.. Suche.. Rick.. Vorwi.
&g Konzeptuelles Wissen 21 16 9 9 7 2 4 1 1 2 4
(& Prozedurales Wissen 3 1 1 12 5 2 1 3 24 11 7

Abbildung 45: Interaktion zwischen Heurismen und Wissensart (Code-Relations-Browser aus
maxQDA)

Codesystem Begrif.. Skizze.. Imagi. Spezi.. Fallun.. Nutzu.. Syste.. | Meta.. Rickf.. Ahnlic.. Suche.. Rick. Vorwi.

= o

Abbildung 46: Interaktion zwischen Heurismen und Wissensfacette (Code-Relations-Browser aus
maxQDA)

g Implizite Nutzung

g Explizite Formulierung
g Konkretisierung & Abgrenzung
(&g Bedeutung & Vemetzung

gl Konventionelle Festlegungen
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Der Zusammenhang zwischen Wissen und Heurismen zeigt, dass sich diese
Kategorien in bestimmten Bereichen interagieren (Abbildung 45 und 46).
Besonders auffillig ist jedoch, dass diese Interaktionen stark von den spezifischen
Anforderungen der jeweiligen Aufgabe abhingen (siche Anhang). Beziiglich der
Wissensarten ist lediglich die Interaktion des Heurismus Skizze mit dem
konzeptuellen Wissen konstant iiber jede Aufgabe zu identifizieren. Im Hinblick
auf die Wissensfacetten sind die Interaktionen mit Heurismen ebenfalls sehr
vielféltig und aufgabenspezifisch. Es lassen sich dennoch Gemeinsamkeiten fiir
alle Aufgaben feststellen, die ebenfalls in Abbildung 46 zu erkennen sind. So lasst
sich etwa der Heurismus Ahnliche Aufgabe stets mit der Impliziten Nutzung sowie
der Konkretisierung & Abgrenzung in Verbindung setzen. Der Heurismus Skizze
zeigt stets eine Interaktion mit Bedeutung & Vernetzung und der Heurismus
Vorwdrtsarbeiten immer mit der Impliziten Nutzung. Diese Beobachtungen
verdeutlichen, dass bestimmte Heurismen mit bestimmtem Wissen verkniipft
sind.

Heurismen und Wissen konnen grundsétzlich unabhéngig voneinander kodiert
werden. Dennoch zeigen sich empirisch einige Interaktionen, die auch theoretisch
sinnvoll scheinen. Ein gutes Beispiel ist der Heurismus Begriffe kidren. Dieser
Heurismus ist eng mit konzeptuellem Wissen verbunden, da das Kldren von
Begriffen und deren Bedeutung eine tiefere Auseinandersetzung mit Definitionen
und mathematischen Konzepten erfordert. Beim Kléren von Begriffen geht es
nicht nur darum, eine Definition zu finden, sondern auch darum, den Begriff im
Kontext zu verstehen. Dieses Vorgehen ist daher stark auf das konzeptuelle
Wissen angewiesen.

Auch die sogenannten ,,visuellen” Heurismen (Skizze, Imagindre Figur und
Metapher) zeigen eine starke Verbindung zum konzeptuellen Wissen. Bei diesen
Heurismen werden visuelle Darstellungen von mathematischen Konzepten oder
Zusammenhidngen genutzt, um das Verstidndnis zu erleichtern. Diese Hilfsmittel
erfordern ein grundlegendes Verstindnis der Konzepte und Zusammenhinge, die
sie darstellen, und sind daher eng mit dem konzeptuellen Wissen verkniipft. Bei
spezifischen mathematischen Verfahren (prozedurales Wissen), die weniger
anschaulich oder visuell zugénglich sind, ist diese Art von Heurismus allerdings
weniger hilfreich.

6.4.2 Zusammenhang zwischen Wissen, Heurismen und Episodenwechseln

Im Folgenden werden die Episodenwechsel (Kapitel 6.1.4) erneut betrachtet,
diesmal unter Einbezug der Kategorien Heurismen und Wissen. Episodenwechsel
stellen kritische Momente in einem Problemldseprozess dar (Schoenfeld, 1985,
S. 292; Kapitel 5.4.1), weshalb es wichtig ist, genau zu untersuchen, was in diesen
Ubergéngen passiert. Dabei wird aufgezeigt, inwiefern Heurismen und Wissen
eine Rolle beim Wechsel von Episoden spielen. Die Analyse dieser beiden
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Kategorien hilft dabei besser zu verstehen, wie diese Wechsel den Verlauf des
Problemldsens beeinflussen. Die folgenden Ausfithrungen adressieren demnach
die Forschungsfrage:

| (Z2) Welche Rolle spielen Wissen und Heurismen bei einem Episodenwechsel?

Zu Beginn wird festgelegt, dass diese Frage nicht hinsichtlich aller
Episodenwechsel untersucht wird. Stattdessen wird ein Fokus auf
Episodenwechsel gelegt, die in eine Exploration miinden. Die Auswahl der
Exploration als Schwerpunkt ist aus mehreren empirischen als auch theoretischen
Griinden gerechtfertigt. Erstens zeigen die bereits vorliegenden Daten, dass
Studierende empirisch betrachtet in der Exploration die meiste Zeit verbringen
(Kapitel 6.1.2) und sie damit eine besondere Episode darstellt. Zweitens birgt die
Episode nachweislich das Potenzial, in einem ,,wild goose chase® zu miinden
(Kapitel 6.1.5). Dies kann laut Schoenfeld (1985, S. 116) und den eigenen Daten
einen Einfluss auf den Erfolg ausiiben (Kapitel 6.1.6). Drittens stellt die
Exploration das Herzstiick des Problemldsen dar (Schoenfeld, 1985, S. 110). Aus
diesem Grund werden viele Heurismen und die Nutzung von Wissen erwartet.
Sowohl die Interaktionen zwischen Exploration und Heurismen als auch Wissen
bestdtigen dies bereits (Kapitel 6.4.1). Es bleibt lediglich zu zeigen, inwiefern
Wissen und Heurismen den Episodenwechsel beeinflussen.

Bei der Betrachtung der Episodenwechsel lassen sich drei wesentliche Fille
identifizieren, die den Zusammenhang zwischen einem Episodenwechsel und
einer Kategorie charakterisieren (Abbildung 47). Dies wird beispielhaft mit der
Kategorie Heurismus dargestellt.

Fall A: Ein Heurismus wird bereits in der ,,alten” Episode angewendet und bleibt
auch nach dem Wechsel in die neue Episode (Exploration) weiterhin bestehen.
Fall B: Der Einsatz eines Heurismus beginnt genau mit dem Episodenwechsel
zur Exploration. Entscheidend ist nicht die Dauer der Identifikation, sondern nur
der gleiche Startpunkt mit der Episode.

Fall C: Ein Heurismus kommt erst nach dem Episodenwechsel zur Anwendung,
d. h., er wird erst in der Exploration selbst genutzt. Auch hier kommt es nicht auf
die Lidnge des Heurismus an, sondern dass der Startpunkt nach dem
Episodenwechsel stattfindet.

Fall A Fall B Fall C

|7 Alte Episode Exploration Heurismus

Abbildung 47: Félle von Episodenwechseln



Seite |266

Fiir die Félle A und B wird definiert, dass der betreffende Heurismus einen
Einfluss auf den Wechsel in die Exploration hat, indem dieser den Ubergang
mitgestaltet oder unterstiitzt. Im Gegensatz dazu wird im Fall C festgelegt, dass
der Heurismus den Episodenwechsel selbst nicht beeinflusst, sondern lediglich in
der neuen Episode eine Rolle spielt. Moglicherweise hat im Fall C sogar die
Episode einen Einfluss auf den Heurismus.

Anhand dieser beschriebenen drei Fille wird untersucht, inwiefern Wissen oder
bzw. und Heurismen den Episodenwechsel zur Exploration beeinflussen.
Insgesamt wurden den Daten dieser Arbeit in 33 Episodenwechsel in die
Exploration identifiziert. Tabelle 37 fasst zusammen, welche Falltypen bei den
Episodenwechseln aufgetreten sind und verdeutlicht, ob der Wechsel zur
Exploration durch die Verwendung eines Heurismus, den Einsatz von Wissen,
eine Kombination aus beidem oder keines von beiden ausgeldst wird.

Episodenwechsel wird beeinflusst durch ... Anzahl
Nur Wissen 5

Nur Heurismen 7
Kombination aus Wissen und Heurismen 10
Weder Wissen noch Heurismen 11

Tabelle 37: Verwendung von Heurismen und Wissen bei einem Episodenwechsel in Exploration

In Tabelle 37 wird deutlich, dass in etwa zwei Drittel der Episodenwechsel
entweder Heurismen, Wissen oder beides einen Einfluss auf den Wechsel zur
Exploration haben. Diese Fille werden kurz anhand eines Beispiels beschrieben.

Nur Wissen: Der Wechsel in die Exploration wird bei Lea, Lisa, Sarah und Paula
in der Aufgabe ,Mittelwertsatz“ dadurch ausgelost, dass sie beginnen, sich
intensiv tiber die Betragsstriche auszutauschen. Ein Heurismus wird dabei jedoch
nicht verwendet.

Nur Heurismus: Der Wechsel in die Exploration wird bei Alex und Thomas in
der Aufgabe ,,Differenzierbarkeit priifen* dadurch ausgeldst, indem sie die Suche
nach niitzlichen Hinweisen initiieren. Dariliber hinaus nutzen sie kein spezifisches
Wissen.

Kombination aus Wissen und Heurismen: Der Wechsel in die Exploration bei
Nick erfolgt, indem er eine Ahnliche Aufgabe hinzuzieht. Dabei aktiviert er
gleichzeitig die Facette Konkretisierung & Abgrenzung des prozeduralen
Wissens, sodass sowohl Wissen als auch Heurismen eine Rolle beim
Episodenwechsel spielen.

Letztlich stellt sich die Frage, ob bestimmtes Wissen oder spezifische Heurismen
maligeblich fiir Episodenwechsel hin zu Exploration verantwortlich sind.
Besonders die haufigen Interaktionen zwischen diesen Kategorien (Kapitel 6.4.1)
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konnten dabei eine Rolle spielen. Betrachtet man die Heurismen, zeigt sich, dass
in siecben von 18 Fillen der Heurismus Ahnliche Aufgabe an einem
Episodenwechsel zur Exploration beteiligt ist. In den iibrigen Fillen kommen
andere Heurismen zum Einsatz, allerdings mit deutlich geringerer Haufigkeit.
Hinsichtlich des Wissens féllt auf, dass in elf von 16 Fillen die Wissensfacette
Konkretisierung & Abgrenzung eine Rolle spielt, wihrend in vier weiteren Fillen
Implizite Nutzung den Ubergang beeinflusst. Zusammengefasst zeigt sich, dass
die festgestellten, hiufigen Interaktionen zwischen spezifischem Wissen und
Heurismen mit der Exploration primir fiir die Uberginge zu dieser Episode
verantwortlich sind.

Weder Wissen noch Heurismen: In einem Drittel der Episodenwechsel erfolgt
der Ubergang zur Exploration allerdings komplett unabhingig von Wissen oder
Heurismen. Diese Fille werfen die Frage auf, wie ein Wechsel zur Exploration
ohne diese beiden Kategorien zustande kommt und was letztendlich den
Ausschlag fiir einen Episodenwechsel gibt.

In diesen Fillen scheint die Metakognition bzw. selbstregulatorische Aspekte®®
eine entscheidende Rolle zu spielen, was im Folgenden an Beispielen verdeutlicht
wird. So initiiert David etwa den Wechsel in die Exploration, indem er sein
aktuelles Vorgehen hinterfragt (,,Ist das richtig?*) und sich anschlieBend in seinen
zugehorigen Materialien verliert. Ein weiteres Beispiel zeigt sich darin, dass
David mit den aktuell vorhandenen Informationen einen Versuch wagen mdchte
(;,Ich schreibe einfach mal auf). Eine weitere Auffalligkeit ist der Wechsel von
Implementation zu Exploration, der bereits in Kapitel 6.1.4 thematisiert wurde.
Hier zeigt sich erneut, dass das Erkennen eigener Herausforderungen diesen
Episodenwechsel einleitet, was wiederum auch auf lokaler Ebene auf
selbstregulative Prozesse hinweist.

Ob ein Episodenwechsel durch Wissen, Heurismen, einer Kombination von
beidem oder durch keines von beidem beeinflusst wird, hat letztendlich keinen
erkennbaren Einfluss darauf, ob die folgende Episode in einem ,,wild goose
chase* endet. Insgesamt lésst sich allerdings festhalten, dass Wissen, Heurismen
und Steuerung (auf lokaler Ebene) einen Episodenwechsel zur Exploration
bewirken konnen. Dariiber hinaus sind allerdings weitere Episodenwechsel
interessant zu untersuchen. Neben der Exploration erscheint als bedeutsames
Gegenstiick das strukturierte Vorgehen (Planning + Implementation). Die
Abgrenzung zwischen diesen beiden Verhaltensansitzen konnte aufschlussreich
sein, welche Aspekte zum Wechsel in einen explorativen bzw. strukturierten
Vorgehen fithren. Zudem kann es auch relevant sein, wie der Wechsel aus einer
spezifischen Episode heraus erfolgt. Ein Beispiel hierfiir ist das Vermeiden eines
»wild goose chases. Solche Situationen werfen die Frage auf, welche

68 Damit ist das praskriptive (lokale) Level von Steuerung gemeint (Kapitel 2.3).
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Mechanismen und kognitiven Prozesse einer problemldsenden Person helfen,
eine festgefahrene oder ineffiziente Episode zu erkennen und zu verlassen. Bei
der Rolle von Steuerung auf lokaler Ebene wéren allerdings noch weitere
Untersuchungen sinnvoll, um diesen Zusammenhang besser zu verstehen. Dies
konnte beispielweise durch zusdtzliche Kodiersysteme erfolgen, so wie Rott
(2013, S. 375ff.) bereits einige Episodenwechsel kodiert hat.

6.4.3 Empirische Entscheidung zu Problemloseprozessen

Im Folgenden wird die Diskussion beziiglich Routine- und Problemaufgaben
aufgegriffen (Kapitel 2.2). Es stellt sich die Frage, ob die Prozesse der
Studierenden empirisch anhand der Auswertung zu den Kategorien als
Problemloseprozesse (und demnach als Probleme) aufgefasst werden konnen. Die
folgenden Ausfiihrungen adressieren demnach die Forschungsfrage:

(Z3) Kann empirisch entschieden werden, ob die Aufgaben fiir die Studierenden
Probleme darstellen?

Zunichst folgt eine kurze Betrachtung der Aufgaben, bevor auf die Nutzung der
drei Kategorien des Problemldsens durch die Studierenden eingegangen wird.

Eine dichotome Einteilung von Aufgaben in Routine und Nicht-Routine (bzw.
Probleme) erweist sich in verschiedenen Kontexten als problematisch (z. B. Berry
et al., 1999). Auch in dieser Arbeit gestaltet sich die eindeutige Zuordnung der
drei Aufgaben als schwierig. Fiir die Aufgabe ,,Mittelwertsatz* (Tabelle 10) wird
tiberwiegend konzeptuelles Wissen (ca. 86 %) gefordert, wéahrend fiir die Aufgabe
,,L."Hospital* (Tabelle 11) tiberwiegend prozedurales Wissen (ca. 80 %) benotigt
wird. In beiden Aufgaben wird lediglich ein mathematischer Inhalt (Konzept,
Zusammenhang oder Verfahren) der jeweils anderen Wissensart erfordert. Fiir
beide Aufgaben kdnnte man daher nach dem Ausschlussprinzip folgern, dass sie
zur Routine- bzw. Problemaufgabe zugeordnet werden. Die Aufgabe
,Mittelwertsatz ist nahezu vollstédndig ohne ein Verfahren zu l6sen, wihrend die
Aufgabe ,,[’Hospital” fast ausschlieBlich durch die Anwendung von Verfahren
bewiltigt wird. Deutlich schwieriger wird die Zuordnung fiir die Aufgabe
,Differenzierbarkeit priifen (Tabelle 9), da die Anforderungen der Aufgabe zur
Halfte aus dem konzeptuellen und prozeduralen Wissen bestehen. Muss an dieser
Stelle demnach von einem Aufgabentyp gesprochen werden, welcher dazwischen
liegt (Rott, 2013, S. 26)? Besonders hinsichtlich des konzeptuellen und
prozeduralen Wissens ist eine solche Einteilung von Aufgaben nicht leicht
voneinander zu trennen (Rittle-Johnson & Schneider, 2014). Vielmehr existieren
auch solche Aufgaben, die nicht einer Wissensart zugeordnet werden kdnnen,
sondern in denen sich Wissensarten gegenseitig ergidnzen bzw. unterstiitzen
(Kolbe & Liebendorfer, 2024). Anhand der (theoretischen) Einordnung beziiglich
der Aufgaben bestitigt sich zumindest fiir die Aufgabe ,Differenzierbarkeit
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priifen, dass eine Einteilung in Routine- bzw. Problemaufgabe nicht ausreichend
1st.

Im Folgenden werden die Auswertungen zu den Kategorien von Schoenfeld
(1985) herangezogen, um Hinweise dafiir zu identifizieren, ob es sich bei den
Aufgaben um Probleme handelt.

Die Analyse der Kodierung der Schoenfeld Episoden liefert einige
aufschlussreiche Hinweise zur Art des Prozesses der Studierenden. Zunéchst zeigt
sich, dass die Episode Exploration den grofiten Teil der Bearbeitungszeit in
Anspruch nimmt und in jedem Prozess vorkommt (Kapitel 6.1.2 und 6.1.3). Dies
ist bedeutsam, da Exploration laut Schoenfeld (1985, S. 110) das Herzstiick des
Problemlésens darstellt und daher ein Indiz dafiir sein konnte, dass die
Studierenden tatsdchlich vor einem Problem standen, das mehr als eine
routineméfige Losung erfordert. Dariiber hinaus treten Charakteristika eines
,.wild goose chases auf (Kapitel 6.1.5), die auf typisches Problemlseverhalten
hindeuten. Die Studierenden verfolgen dabei keinen klar strukturierten
Losungsweg, was auf eine fehlende Routine in der Herangehensweise hindeutet.
Des Weiteren lassen die vielen Wechsel zwischen den Episoden (Kapitel 6.1.4)
auf den ersten Blick auf eine gute Selbstregulation schlieBen. Allerdings sollte
bemerkt werden, dass bei Routineaufgaben weniger selbstregulative Aspekte zu
erwarten sind, da diese Aufgaben meistens eine festgelegte Abfolge von Schritten
voraussetzen. Zyklische Prozesse deuten dabei auf einen typischen
Problembearbeitungsverlauf hin (Kapitel 2.3.3). Viele Episodenwechsel im
Prozess weisen moglicherweise eher auf kleine Barrieren in der Bearbeitung hin,
die durch einen Verhaltenswechsel umgangen werden.

Hinsichtlich der Kodierung des Wissens konnen ebenfalls einige Hinweise
diskutiert werden, die auf Existenz eines Problembearbeitungsprozesses
hindeuten. Obwohl im Gesamtiiberblick (Tabelle 23) konzeptuelles und
prozedurales Wissen ausgeglichen benutzt bzw. aktiviert worden sind, erkennt
man aus der aufgabenweisen Betrachtung, dass dies nicht fiir jede Aufgabe
gleichermafen gilt. In den beiden Aufgaben ,,Differenzierbarkeit priifen* (ca. 63
% der genutzten Wissenselemente) und ,,L."Hospital* (ca. 70 %) tiberwiegt die
Nutzung des prozeduralen Wissens mit kleineren Anteilen des konzeptuellen
Wissens, wéhrend fiir die Aufgabe ,,Mittelwertsatz* (ca. 91 %) die Nutzung des
konzeptuellen Wissens deutlich iiberwiegt. Diese Héufigkeitsverteilung dhnelt
den unterschiedlichen Anforderungen der Aufgaben, die bereits in Kapitel 5.3
festgestellt worden sind. Es ist schwierig aus dem Nutzungsverhalten der
Studierenden eine eindeutige Aussage dariiber abzuleiten, ob eine Aufgabe als
Routine- oder Problemldseaufgabe eingestuft werden kann. Prozedurale
Aufgaben erfordern naturgemidl mehr prozedurales Wissen, wihrend
konzeptuelle Aufgaben eher konzeptuelles Wissen verlangen (Kapitel 6.2.3). Aus
der Wissensnutzung der Studierenden auf die Art der Aufgabe zu schlieflen, fiihrt
jedoch zu einem Zirkelschluss. Prozedurale Aufgaben werden im Vorhinein
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aufgrund des algorithmischen Vorgehens héufig als Routineaufgaben betrachtet,
und eine Analyse, die diese Annahme auf Basis der Wissensnutzung bestdtigt,
wire daher unlogisch und zirkuldr. Die Analyse der Schwierigkeiten hat dariiber
hinaus gezeigt, dass in jeder Aufgabe inhaltliche Schwierigkeiten auftreten
(Kapitel 6.2.6), was auf Barrieren in der Bearbeitung hindeutet (Heinrich et al.,
2015). Obwohl die Schwierigkeiten vielseitig sind, hat sich herausgestellt, dass
in den Aufgaben ,Differenzierbarkeit priifen und ,,L Hospital“ vor allem
prozedurale Schwierigkeiten und in der Aufgabe ,Mittelwertsatz* vor allem
konzeptuelle Schwierigkeiten auftreten.

Die Analyse zur Kodierung der eingesetzten Heurismen liefert ebenfalls wertvolle
Hinweise zur Art des Prozesses. In jedem Prozess ist die Nutzung von Heurismen
nachweisbar, wobei deren Hiufigkeit variiert. Wéhrend einige Prozesse eine
geringe Nutzung von Heurismen aufweisen, zeigen andere eine deutlich
intensivere Anwendung. Die Priasenz von Heurismen deutet allerdings darauf hin,
dass ein Problembearbeitungsprozess vorliegt (Kapitel 2.5.1). Allerdings lésst
sich der am haufigste angewandte Heurismus Ahnliche Aufgabe durchaus
diskutieren. Im Kontext der Veranstaltung deutet es potenziell eher auf ein
algorithmisches Vorgehen hin, da der Heurismus héufig und in jeder Episode des
Prozesses eingesetzt wird. Algorithmisches Vorgehen grenzt sich eher von einem
Heurismus ab und ist damit auch kein Teil des Problemldsen.

Aus den bisherigen Ausfiihrungen lassen sich verschiedene Indikatoren
identifizieren, die auf einen Problembearbeitungsprozess hinweisen kdnnen.
Diese Indikatoren werden nun herangezogen und im Folgenden operationalisiert.
Hinsichtlich der Steuerung werden drei Indikatoren operationalisiert.

1. Im Prozess wird mindestens 33 % der Zeit in der Episode Exploration
verbracht (33 %).

2. Im Prozess sind Charakteristika eines ,,wild goose chases* zu erkennen
(WGC).

3. Der Prozess weist entweder eine zyklische Struktur oder mindestens acht
Episodenwechsel auf (ZYK).

Hinsichtlich des Wissens wird ein Indikator operationalisiert.
4. Im Prozess treten Schwierigkeiten auf (SCH).
Hinsichtlich der Heurismen wird ein Indikator operationalisiert.

5. Im Prozess werden an acht verschiedenen Stellen Heurismen
identifiziert oder insgesamt vier verschiedene Heurismen (HEU).
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Die Untergrenzen hinsichtlich der Nutzung von Heurismen werden festgelegt, um
den zufilligen Einsatz von Heurismen sowie eine systematische (algorithmische)
Anwendung spezifischer Heurismen ausschlielen zu kénnen.

Zusitzlich gibt es eine ergdnzende allgemeine Kategorie, die ebenfalls Hinweise
auf einen Problembearbeitungsprozess liefert. Dabei werden zwei Indikatoren
operationalisiert.

6. Der Prozess wurde eigens abgebrochen, da keine zufriedenstellende
Losung erzielt wird (ABB). Zu einem spiteren Zeitpunkt kann der
Losungsprozess wieder aufgenommen werden.

7. Im gesamten Prozess wurde lediglich ein falscher bzw. nicht
zielfithrender Losungsweg verfolgt (FLW).

33 % WGC ZYK SCH HEU ABB FLW pX
Differenzierbarkeit priifen
G3 X X X X X 5
G4 X X 2
David X X X X X 5
Nick X X X 3
Lukas X X X X X X 6
MWS
G3 X X X X 4
G4 X X X X 4
David X X X X X X 6
Nick X X X X 4
L Hospital
G3 X X X X 4
G4 X X X X 4
David X X X X X X 6
Nick X X X X X 4

33 % =33 % Exploration; WGC = wild goose chase; ZYK = zyklisch; SCH =
Schwierigkeiten; HEU = Heurismen; ABB = Abbruch; FLW = Falscher Losungsweg

Tabelle 38: Empirische Entscheidung zu Problembearbeitungsprozessen

In Tabelle 38 wird deutlich, dass in allen Prozessen Hinweise darauf vorliegen,
dass sie Problembearbeitungen enthalten. Besonders féllt die Lerngruppe,
bestehend aus Lea, Lisa, Sarah und Paula auf, die nur zwei Indikatoren fiir einen
Problembearbeitungsprozess erfiillt und damit die wenigsten Anzeichen fiir ein
Problem zeigt. Dieser Prozess verlduft zudem zeitlich sehr kurz und zeichnet sich
dadurch aus, dass Schwierigkeiten zwar auftreten, aber schnell iiberwunden
werden. Trotz der kurzen Dauer werden in diesem Prozess vier verschiedene
Heurismen eingesetzt. Letztlich hat die Lerngruppe die Aufgabe vollstindig
korrekt gelost. Im Gegensatz dazu gibt es drei Prozesse, in denen sechs von sieben
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moglichen Indikatoren eines Problembearbeitungsprozesses erfiillt werden. In
dieser Arbeit wird ein Prozess dann als Problembearbeitungsprozesses gewertet,
wenn mindestens vier Indikatoren identifiziert werden kdnnen. Vier Indikatoren
erscheinen eine angemessene Zahl zu sein, um sicherzustellen, dass ein Prozess
nur dann als Problemldseprozess eingestuft wird, wenn Indikatoren aus
mindestens zwei der vier Kategorien identifiziert werden kdnnen. Ausgehend von
dieser Definition zeigen elf von 13 untersuchten Prozessen Merkmale eines
Problembearbeitungsprozesses, wihrend nur zwei Prozesse nicht als solche
klassifiziert werden.

Bezogen auf die zugrunde liegenden Aufgaben lésst sich durch die Analyse der
vorliegenden Daten feststellen, dass die Aufgaben zum ,Mittelwertsatz* und
L 'Hospital“ in diesem Kontext als Problemaufgaben fiir die Studierenden
einzustufen sind, wihrend die Aufgabe zur Uberpriifung der Differenzierbarkeit
gemischte Merkmale aufweist.

6.4.4 Zusammenfassung der Ergebnisse zur Analyse der gemeinsamen
Betrachtung

AbschlieBend werden fiir das Kapitel 6.4 die zentralen Ergebnisse der Analyse
hinsichtlich der gemeinsamen Betrachtung zusammengefasst:

o Die Episode Analysis interagiert vor allem mit dem Kldren von Begriffen
und konzeptuelles Wissen mit den Facetten Explizite Formulierung
sowie Konkretisierung & Abgrenzung (Kapitel 6.4.1).

e Die Episode Exploration interagiert vor allem mit Suche nach
Hinweisen, Spezialfall und den Facetten Konkretisierung & Abgrenzung
sowie Implizite Nutzung (Kapitel 6.4.1).

o Die Episoden Planning + Implementation interagieren vor allem mit
Vorwdrtsarbeiten und den Facetten Implizite Nutzung und Explizite
Formulierung (Kapitel 6.4.1).

o Visuelle Heurismen (Skizze, imagindre Figur und Metapher) und
Begriffe kidren interagieren haufig mit konzeptuellem Wissen.

e  Wissen und Heurismen kénnen (alleine oder gemeinsam) einen Einfluss
auf Episodenwechsel haben. Es gibt auch Episodenwechsel unabhangig
von Wissen und Heurismen (Kapitel 6.4.2).

e Die Bearbeitungsprozesse stellen sich empirisch als
Problembearbeitungen heraus. Die Aufgaben stellen damit Probleme fiir
Ingenieurstudierende dar (Kapitel 6.4.3).
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7 Diskussion

In diesem Kapitel wird die vorliegende Studie diskutiert und in den
wissenschaftlichen Kontext eingeordnet. Zunidchst erfolgt eine kurze
Zusammenfassung der empirischen Studie (Kapitel 7.1). AnschlieBend werden
die Ergebnisse weiterverarbeitet und reflektiert. Dabei werden die
Forschungsfragen zusammenfassend beantwortet, die Ergebnisse mit dhnlichen
Studien (falls vorhanden) verglichen und theoretischen Implikationen abgeleitet
(Kapitel 7.2). Darauf aufbauend werden praktische Implikationen aufgezeigt, die
sich aus den Ergebnissen fiir die Anwendung in der Praxis ableiten lassen (Kapitel
7.3). Die eingesetzten Methoden werden kritisch diskutiert, um deren Eignung
und potenzielle Schwichen zu beleuchten (Kapitel 7.4). Ein Ausblick auf
zukiinftige Forschungsvorhaben rundet das Kapitel ab, wobei offene Fragen und
weiterfilhrende Forschungsansétze skizziert werden (Kapitel 7.5).

7.1 Kurzzusammenfassung der empirischen Studie

Die empirische Studie untersucht mathematische Problembearbeitungsprozesse
von Ingenieurstudierenden in einem authentischen Setting (Kapitel 5.2.2) an der
Universitit Paderborn. Dabei wurden Studierende (teilweise) in Lerngruppen bei
der Bearbeitung von Hausaufgaben zur Differentialrechnung beobachtet. Die
teilnehmenden Studierenden wurden gebeten, ihre Gedanken wihrend der
Bearbeitungsprozesse zu verbalisieren (,,Lautes Denken®). Die Studie analysiert
13 Prozesse von fiinf Lerngruppen zu drei Aufgaben: ,Differenzierbarkeit
priifen, ,,Mittelwertsatz* und ,,L."Hospital* (Kapitel 5.3).

Fiir die Analyse dieser Studie wurden die vier Kategorien des mathematischen
Problemlésens nach Schoenfeld (1985) herangezogen, wobei der Fokus dieser
Studie auf den drei Kategorien Steuerung, Wissen und Heurismen lag. Zur
Feststellung der Kategorie Steuerung wurden die Schoenfeld Episoden
verwendet, um die verschiedenen Phasen des Problemldsens zu identifizieren
(Kapitel 5.4.1). Zur Erfassung des Wissensangebots und der Wissensnutzung
wurde die Wissensmatrix (Prediger et al., 2011) herangezogen (Kapitel 5.4.2).
AuBerdem wurde ein bestehendes Kategoriensystem fiir Heurismen (Rott, 2013;
Stenzel, 2023a) iibernommen und leicht adaptiert, um spezifische
Problemlosestrategien zu erfassen (Kapitel 5.4.3). AbschlieBend wurden die drei
Kategorien unter Beriicksichtigung der vorherigen Analysen gemeinsam
betrachtet.

Die Ergebnisse der Auswertung befinden sich in detaillierter Form in den
jeweiligen Kapiteln der Kategorien (fiir Steuerung in Kapitel 6.1; fiir Wissen in
Kapitel 6.2; fiir Heurismen in Kapitel 6.3; fiir gemeinsame Betrachtung in Kapitel
6.4). Diese Ergebnisse werden nun genutzt, um die Forschungsfragen zu
beantworten.
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7.2 Beantwortung der empirischen Forschungsfragen und
Einordnung in die Theorie

In diesem Kapitel wird die Struktur aus dem vorangegangenen Abschnitt
iibernommen, um die gewonnenen Erkenntnisse weiter zu verarbeiten. Dabei
werden die Ergebnisse herangezogen, um die Forschungsfragen zu beantworten
und in den theoretischen Kontext einzuordnen. Der Fokus liegt dabei auf den
Kategorien der Steuerung (Kapitel 7.2.1), des Wissens (Kapitel 7.2.2), der
Heurismen (Kapitel 7.2.3) und der gemeinsamen Betrachtung (Kapitel 7.2.4).
AbschlieBend erfolgt eine Einbettung der Ergebnisse in den Kontext
mathematischer Lernprozesse (Kapitel 7.2.5).

7.2.1 Zur Rekonstruktion von Steuerung

(S1) Welche Episoden durchlaufen Ingenieurstudierende bei mathematischen
Problembearbeitungsprozessen

Jeder Problembearbeitungsprozess ist individuell. In der ausfiihrlich dargestellten
Fallanalyse von Alex und Thomas (Kapitel 6.1.1) wird deutlich, wie ein solcher
Prozess aussehen kann. Alex und Thomas beginnen mit einem strukturierten
Vorgehen, stoen auf Schwierigkeiten, die sie iiberwinden und gelangen zu einem
Ergebnis, welches sie verifizieren. Die Schoenfeld Episoden helfen dabei, den
Prozess zu abstrahieren und darzustellen. Mittels eines Gesamtiiberblicks
(Kapitel 6.1.2) lasst sich feststellen, dass Studierende durchschnittlich am meisten
Zeit in der Exploration (51,6 %) verbringen. Obwohl in anderen Studien nicht
immer ein spezifischer Durchschnittswert fiir die Dauer der einzelnen
Episodentypen angegeben wird, lasst sich dennoch aus den Ergebnissen ableiten,
dass die problemldsenden Personen den grofiten Teil ihrer Zeit in der Exploration
verbracht haben (z. B. Herold-Blasius, 2019, S. 214; Stenzel, 2023a). Besonders
deutlich wird dies in der Untersuchung von Schoenfeld (1992b), in der iiber 60 %
der beobachteten Prozesse fast ausschlieBlich aus explorativen Aktivitdten
bestehen. In dieser Studie nimmt /mplementation (23,2 %) etwa ein Viertel der
Zeit ein. Dies scheint im Vergleich zu anderen Studien eher ungewdhnlich hoch
zu sein (z. B. Herold-Blasius, 2019, S. 214). In den restlichen Episoden befinden
sich Studierende durchschnittlich nur zu einem geringen Teil (3,5 % — 8,4 %).

Die durchschnittlichen Werte geben einen groben Rahmen vor. Zwischen den
Lerngruppen in dieser Studie gibt es allerdings Unterschiede, wobei sich die
Verlaufe innerhalb einer Lerngruppe liber verschiedene Aufgaben dhneln (Kapitel
6.1.3). Z. B. ist es fiir die Prozessverldufe von Alex und Thomas aufféllig, dass
sie zligig in eine Bearbeitung starten, dabei allerdings auf Schwierigkeiten treffen
(Implementation > Exploration). Lea, Lisa, Sarah und Paula hingegen planen ihr
Vorgehen, bevor sie dieses umsetzen (Planning/Implementation > Exploration
> Implementation -> Verification). David setzt sich intensiv mit der
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Aufgabenstellung auseinander, um anschlieBend nach Losungsmoglichkeiten zu
suchen (4nalysis = Exploration). Lukas®® plant sein Vorgehen oftmals mit den
Tipps, welche er aus dem Tutorium erhalten hat, gelangt anschlieBend allerdings
immer in Schwierigkeiten und sucht nach Losungsmdglichkeiten
(Planning/Implementation = Exploration). Nur Nick zeigt in den drei Aufgaben
jeweils ein unterschiedliches Verhalten. Das Problemldseverhalten kdnnte daher
(in vier von fiinf Féllen) lerngruppenabhingig verlaufen. Die unterschiedlichen
Aufgaben scheinen dabei nur einen Einfluss auf das Verhalten von Nick zu haben.
Insgesamt legen die Ergebnisse nahe, dass die Problembearbeitungsprozesse
hinsichtlich der Steuerung in stirkerem MafBle von der Lerngruppe als der
spezifischen Aufgabe abhéngen.

(S2) Welche Episodenwechsel treten in den Problembearbeitungsprozessen auf?
Verlaufen die Prozesse linear?

In der Stichprobe dieser Studie gibt es durchschnittlich 9,1 Episodenwechsel pro
Problembearbeitungsprozess (Kapitel 6.1.4). Im Vergleich zu Prozessen von
Schiiler:innen (2,78 Episodenwechsel) ist dies deutlich hoher (Herold-Blasius,
2019, S. 218ff). Mdogliche Griinde konnen zum einen der Unterschied zwischen
der Komplexitit der Aufgaben sein und zum anderen eine im Vergleich zu
Kindern erhdhte selbstregulatorische Kompetenz von Studierenden.

Die Prozesse lassen sich weiterhin in lineare (zwei von 13) und nicht-lineare
Prozesse (elf von 13) einteilen. Problembearbeitungsprozesse von Schiiler:innen
hingegen sind zum groBen Teil (68 von 98) linear (Rott, 2013, S. 298). Die hohe
Anzahl von linearen Prozessen bei Schiiler:innen passt ebenfalls mit der geringen
Anzahl von Episodenwechseln (in Herold-Blasius, 2019, S. 218ff.) zusammen.
Insgesamt zeigt sich in den Prozessen, dass die vorliegenden hochschulischen
Problembearbeitungsprozesse nicht-linear verlaufen. Damit bestétigen sich die
theoretischen Annahmen (z. B. Newell & Simon, 1972; Schoenfeld, 1985; Rott,
2013), dass Problembearbeitungsprozesse nicht immer linear verlaufen.
Hinsichtlich der nicht-linearen Prozesse lassen sich in der vorliegenden Studie
vor allem drei nicht-lineare Episodenwechsel herausstellen: Implementation -
Exploration (12-mal), Exploration > Analysis (7-mal), Implementation ->
Planning (4-Mal).

69 In dieser Untersuchung wurde nur eine Aufgabe von Lukas ausfiihrlich analysiert. Weitere
Aufgabenbearbeitungen, die nicht fiir diese Arbeit analysiert werden, verlaufen allerdings
dhnlich.
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(S3)  Inwiefern  lassen  sich  ,wild  goose  chases” in  den
Problembearbeitungsprozessen identifizieren und inwiefern kénnen Studierende
dieses Verhalten vermeiden?

Das Problemldseverhalten ,,wild goose chase® wird in einigen Studien zum
Problemlésen untersucht (z. B. Herold-Blasius, 2019; Rott, 2013; Schoenfeld,
1985; Stenzel, 2023a). Die meisten Prozesse in diesen Studien weisen eine hohe
Anzahl dieses Verhaltens auf. Lediglich in der Studie von Stenzel (2023a) wurde
kein solches Verhalten ausfindig gemacht. Geméf der strengen
Operationalisierung von Schoenfeld (der Prozess umfasst nur Exploration und
gef. vorausgehendes Reading) zeigt sich in dieser Studie ebenfalls kein ,,wild
goose chase®. Dieser Unterschied kann auf verschiedene Griinde zuriickgefiihrt
werden:

e  Merkmale der Aufgabe: In der Studie von Stenzel (2023a) und in dieser
Studie werden Aufgaben aus dem hochschulischen Lehrkontext genutzt,
wihrend in Rott (2013) und Herold-Blasius (2019) Schulaufgaben als
Basis dienen.

o Kontext der Situation: In der Studie von Stenzel (2023a) und in dieser
Studie werden authentische Problembearbeitungsprozesse genutzt,
wihrend die anderen Studien in einer Laborsituation durchgefiihrt
worden sind. Motivationale Aspekte, insbesondere extrinsische
Faktoren, konnten in dieser Studie eine zusétzliche Rolle spielen, da eine
Aussicht auf Bonuspunkte fiir die Klausur besteht. Dadurch werden
gefs. mehr Ansitze (besser) durchdacht und nicht so leicht aufgegeben.

e  Zeitlimit: In Schoenfelds Studien (z. B. 1985) wurde die Bearbeitung auf
20 Minuten festgelegt. Dies beeinflusst die Steuerung, indem diese von
extrinsischen Faktoren (zum Ende der 20 Minuten) ibernommen wird.
Die Studierenden in dieser Studie konnen die Bearbeitungszeit selbst
festlegen und steuern ihren Prozess somit komplett selbststandig.

Erst wenn die Operationalisierung unter Beriicksichtigung der oben genannten
Griinde angepasst wird, lassen sich in fiinf Problembearbeitungsprozessen
Charakteristika eines ,,wild goose chase® erkennen (Kapitel 6.1.5). Nach der
neuen Operationalisierung zeichnet sich ein solcher Prozess dadurch aus, dass der
GroBteil der Zeit vor allem in den Episoden Exploration und Analysis verbracht
wird, wihrend auch kurze Episoden anderer Typen zugelassen sind.

Studierende vermeiden einen ,,wild goose chase“, indem sie die Exploration
entweder durch einen expliziten Plan verlassen oder direkt in die /mplementation
tibergehen, wie bei Alex, Thomas sowie Lea, Lisa, Sarah und Paula zu beobachten
ist. Zudem hilft es, ineffektive Explorationen rechtzeitig zu erkennen und die
Strategie anzupassen, wie Nick es in seinen Prozessen zeigt.



Seite |277

(S4) Inwiefern hingen die Schoenfeld Episoden mit dem Erfolg bzw. Misserfolg
eines Problembearbeitungsprozesses zusammen?

Beziiglich der Episodenwechsel sowie der Reihenfolge der Episoden konnte kein
Zusammenhang zu Erfolg bzw. Misserfolg hergestellt werden (Kapitel 6.1.6). Es
gibt allerdings Hinweise, dass eine hohe Anzahl von Episodenwechseln zu einer
erfolgreichen Losung fithren kann. Der Grund dafiir kdnnte in einer guten
selbstregulatorischen Fahigkeit der problemldsenden Personen liegen (Herold-
Blasius, 2019, S. 218), die durch verschiedene Richtungsénderungen wahrend des
Prozesses zu einer erfolgreichen Losung gelangen.

Unter der erweiterten Operationalisierung des ,,wild goose chases* sind nur zwei
von fiinf Prozessen teilweise erfolgreich (Kapitel 6.1.6). In diesen zwei Prozessen
sind allerdings die zeitlich kurzen Episoden Analysis bzw. Implementation fiir das
Fortschreiten der Losung mitverantwortlich. Insgesamt lésst sich festhalten, dass
,.wild goose chases® in den Problembearbeitungsprozessen dieser Arbeit ebenfalls
als nicht erfolgreiche Prozesse eingestuft werden konnen. Dies deckt sich mit den
Aussagen (Prozesstyp A) von Schoenfeld (1985, S. 116) und Ergebnissen von
Rott (2013, S. 307). Langere Explorationen, die besonders am Ende eines
Problembearbeitungsprozesses auftreten, stellen sich dabei als Indikator fiir einen
ausbleibenden Losungserfolg. Allerdings sind die Prozesse, die einem ,wild
goose chase* entkommen, damit nicht automatisch erfolgreich, auch hier gibt es
durchaus nicht erfolgreiche Prozesse. In den Prozessen dieser Arbeit lassen sich
sowohl Prozesse des Typs B (Steuerung nimmt neutralen Einfluss auf Prozess)
und Typs C (Steuerung nimmt positiven Einfluss auf Prozess) nach Schoenfeld
(1985, S. 116) identifizieren.

Beziiglich strukturierten Vorgehens ist sowohl bei Nick als auch bei Lukas zu
erkennen, dass die Aufgabe nicht vollstandig verstanden wurde. Es haben zwar
beide einen Plan aufgestellt und diesen verfolgt, allerdings ist dies kein Vorgehen,
welches die Aufgabe 16st. Bei beiden hitte es moglicherweise geholfen, wenn sie
sich vorher nochmal mit der Aufgabe auseinandergesetzt hdtten, um einen Plan
zu entwickeln, der zur Aufgabenstellung passt. Demgegeniiber ist eine
Auseinandersetzung mit der Aufgabenstellung aber nicht immer unbedingt
notwendig, da Alex und Thomas in jeder Aufgabe einen Plan erstellen, welcher
mit korrekter Ausfilhrung zu einer korrekten Losung fithren kann. Durch den
zielfilhrenden Plan kénnte man allerdings vermuten, dass die Aufgabenstellung
bereits verstanden wurde. Dies konnte damit zusammenhingen, dass Alex und
Thomas bereits im Tutorium den Aufgabentypen besser nachvollzogen haben.
Maoglicherweise hat daher bereits auerhalb der Videoaufnahme automatisch eine
erste Analysis der Aufgabe stattgefunden. Allerdings scheitert es bei Alex und
Thomas eher an der Implementation. Ahnliches gilt fiir die Prozesse von Lea,
Lisa, Sarah und Paula, die den Eindruck vermitteln, dass bereits zu Beginn klar
ist, was die Aufgabe verlangt. Das strukturierte Vorgehen scheint daher nur dann
zu helfen, wenn man mit der Aufgabenstellung vertraut ist (Kapitel 6.1.6). Dies
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bekriftigt Schoenfelds (2016) Aussage, dass nicht nur strukturiertes Vorgehen ein
wichtiger Aspekt fiir den Prozess ist, sondern (hier: in einigen Féllen) auch die
Aufgabenanalyse. Dies begiinstigt die Entwicklung eines zielfiihrenden
strukturierten Vorgehens.

Obwohl die Prozesse mit Verification eher erfolgreich sind (vier von fiinf), kann
trotzdem kein Schluss iiber den Zusammenhang zwischen dem Episodentyp und
Erfolg gezogen werden (Kapitel 6.1.6). Dies liegt daran, dass Verification am
Ende aller Prozesse auftritt und in den vorliegenden Daten keine inhaltlichen
Fortschritte an der Losung unternommen wurden. Die Losungen werden lediglich
kontrolliert bzw. die Schritte validiert.

7.2.2 Zur Rekonstruktion von Wissen

(W1) Welches Wissen wird von der Veranstaltung angeboten?

Die Analyse der Veranstaltung (Vorlesung und Tutorien) mithilfe der
Wissensmatrix (Kapitel 5.4.2) hat zunichst ergeben, dass die theoretisch
benotigten mathematischen Inhalte fiir alle Aufgaben angeboten werden (Kapitel
6.2.1). Dabei zeigt sich, dass fiir alle mathematischen Inhalte mindestens drei von
vier verschiedenen Wissensfacetten (auler fiir das Sandwich-Kriterium und die
Regel von L Hospital jeweils nur zwei) bereitgestellt werden. Insgesamt werden
durch das Kreuzen der Wissensarten mit den Wissensfacetten 41 von 52
moglichen Wissenselementen in der Veranstaltung angeboten, auf die Studierende
zuriickgreifen konnen’™. Erwihnenswert ist, dass Konventionelle Festlegungen
(6-mal) am héufigsten und Konkretisierung & Abgrenzung kein einziges Mal
fehlt. In Summe bietet die Veranstaltung ein umfangreiches Wissensangebot,
sowohl fiir das konzeptuelle als auch prozedurale Wissen. Das grofe Angebot
hinsichtlich der Wissensarten als auch der verschiedenen Facetten bietet die
Moglichkeit, die mathematischen Inhalte umfassend zu durchdringen und zu
verstehen (Prediger et al., 2011; Vollrath & Roth, 2011; Winter, 1983).

(W2) Wie ldsst sich die Wissensnutzung in Problembearbeitungsprozessen
mithilfe der Wissensmatrix rekonstruieren?

Die Kodierung mit der Wissensmatrix erfolgt, indem Wissenselemente erfasst
werden, wenn Studierende diese adressieren. Dabei werden Aussagen,
Handlungen oder Produkte einer spezifischen Wissensfacette zugeordnet. Kodiert
wird nur, wenn eine ernsthafte Auseinandersetzung mit der Wissensfacette
stattfindet (Kapitel 5.4.2). Das ausfiihrlich beschriebene Beispiel von Lea, Lisa,
Sarah und Paula zeigt einen Problembearbeitungsprozess sowie die Zuordnung
des Wissens in die adaptierte Wissensmatrix (Kapitel 6.2.2). Im Prozess steuert

70 Die Beantwortung der Forschungsfrage W6 zielt darauf ab, zu untersuchen, inwiefern
Studierende dieses angebotene Wissen nutzen.
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die Lerngruppe verschiedene Wissenselemente an, die durch die Wissensmatrix
dargestellt werden konnen (siehe Tabelle 22). Die Lerngruppe beginnt, die
Ungleichung mithilfe des Mittelwertsatzes umzuformen (Turn 1) und diskutiert
die Rolle der Betragsstriche (Turn 2). Sie definieren die Funktion, leiten diese mit
der Kettenregel (Turn 5, 9) ab und iiberlegen, inwieweit sie die Stetigkeit und
Differenzierbarkeit miteinbeziehen miissen (Turn 6, 7). Sie nutzen dafiir ihre
Vorstellung zum Mittelwertsatz der Differentialrechnung (Turn 8). Bei der
Abschitzung (Turn 10, 14) untersuchen sie die Exponential- und Sinusfunktion
(Turn 10, 12, 14), greifen auf die Aufgabe aus dem Tutorium zuriick (Turn 13)
und kldren schlieBlich, dass das Maximum der Ungleichung 1 ist (Turn 14).
Abschlielend validieren sie ihre Erkenntnisse mit Skizzen und priifen erneut die
Bedeutung der Betragsstriche (Turn 15, 16). Letztlich ist es mdglich, die
Wissensmatrix (Prediger et al., 2011) fiir einen anderen Zweck als das
Systematisieren und Sichern zu verwenden (z. B. wie in Erath, 2017 im Kontext
von Beitrdgen im Unterricht) und die Nutzung von Wissen wéhrend
Problembearbeitungsprozessen dazustellen. Durch die Kreuzung von Wissensart
und -facette ermdglicht die Wissensmatrix eine detaillierte Darstellung der
Wissensnutzung von Studierenden.

(W3) Welche Wissenselemente werden von den Studierenden hdufig genutzt?

Insgesamt lédsst sich feststellen, dass die Studierenden die verschiedenen
Wissensarten in etwa gleicher Haufigkeit nutzen. In den gesamten Prozessen
konnte 93-mal das Nutzen von konzeptuellem und 84-mal das Nutzen von
prozeduralem Wissen identifiziert werden (Kapitel 6.2.3). Hinsichtlich der
Wissensfacetten wird Implizite Nutzung (63-mal) und Konkretisierung &
Abgrenzung (52-mal) am hiufigsten verwendet. Am wenigsten werden
Konventionelle Festlegungen (14-mal) und Explizite Formulierungen (18-mal)
verwendet. Bedeutung & Vernetzung wird 30-mal genutzt.

Es wurde auBlerdem eine Aufteilung vorgenommen. Dabei ergibt sich, dass die
Nutzung des prozeduralen Wissens fiir die Aufgaben ,,Differenzierbarkeit priifen‘
(ca. 63 % der genutzten Wissenselemente) und ,,.L"Hospital“ (ca. 70 %)
tiberwiegt, wihrend dies fiir die Aufgabe ,,Mittelwertsatz* bei der Nutzung des
konzeptuellen Wissens (ca. 91 %) der Fall ist. Werden die theoretisch
herausgearbeiteten relevanten mathematischen Inhalte der jeweiligen Aufgaben
herangezogen (Kapitel 5.3), stellen diese einen dhnlichen Anteil der Wissensarten
wie das Nutzungsverhalten der Studierenden dar: ,,Differenzierbarkeit priifen*
(50 % prozeduralen Wissen), ,,L"Hospital“ (80 % prozedurales Wissen) und
~Mittelwertsatz“ (86 % konzeptuelles Wissen). Die Analyse zeigt, dass die von
den Studierenden genutzten und fiir die Bearbeitung erforderlichen Wissensarten
eine gute Passung aufweisen.
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(W4) Auf welche Wissenselemente setzen Studierende einen Fokus wdihrend der
Prozesse?

Ankniipfend an die Haufigkeit beziiglich der Nutzung von Wissenselementen
wird der Fokus™ der Prozesse herausgestellt (Kapitel 6.2.4). Dabei wird zwischen
prozeduralen und konzeptuellen Prozessen unterschieden. Die prozeduralen
Prozesse setzen alle einen Fokus auf die Implizite Nutzung und Konkretisierung
& Abgrenzung. Fiir die konzeptuellen Prozesse wird in zwei Unterarten aufgeteilt.
Zum einen wird ein Fokus auf Implizite Nutzung und Bedeutung & Vernetzung
und zum anderen ein Fokus auf Explizite Formulierung und Konkretisierung &
Abgrenzung gelegt.

Es ldsst sich vermuten, dass der Fokus der Wissensnutzung stark auf die
jeweiligen Anforderungen der Aufgabe abgestimmt ist. Sowohl fiir die Aufgabe
,L 'Hospital“ als auch ,Mittelwertsatz“ ldsst sich ein prozeduraler bzw.
konzeptueller Fokus erkennen. Nur fiir die Aufgabe ,,Differenzierbarkeit priifen*
sind die Anforderungen eher ausgeglichen, wobei der Fokus eher prozedural ist.

(W5) Welche Schwierigkeiten konnen wihrend der Problembearbeitungsprozesse
identifiziert werden?

Schwierigkeiten wurden als Hindernisse bzw. Hiirden definiert, die im
fachspezifischen Kontext den Fortschritt oder die korrekte Bearbeitung der
Aufgabe beeintrichtigen (Kapitel 5.4.2). Beziiglich der drei Aufgaben konnten
verschiedene Schwierigkeiten festgestellt werden (Kapitel 6.2.6). Hinsichtlich
der Aufgabe ,Differenzierbarkeit priifen” ergeben sich bei den Studierenden
hauptsidchlich Schwierigkeiten mit dem gleichnamigen Verfahren. Diese treten
vor allem bei der Expliziten Formulierung auf und sind teilweise bei der
Impliziten Nutzung zu beobachten. Der Ableitungsbegriff wurde in der Forschung
bereits intensiv untersucht (Kapitel 4.3.2), wobei auf verschiedenen
Wissensebenen Schwierigkeiten identifiziert wurden. Auch in dieser Studie
konnen mit Schwierigkeiten beziiglich zwei Facetten an der bestehenden
Forschung angekniipft werden. In den Prozessen zur Aufgabe ,,Mittelwertsatz*
haben die Studierenden ebenfalls Schwierigkeiten mit dem gleichnamigen
Zusammenhang. Diese verteilen sich iiber alle Wissensfacetten. In einem
vergleichbaren Kontext beobachten Kolahdouz et al. (2020) gleichfalls
Schwierigkeiten in verschiedenen Wissensfacetten zum (Beweis-) Verstandnis des
verallgemeinerten Mittelwertsatz. Der Mittelwertsatz der Differentialrechnung
scheint demnach eine Herausforderung fiir Studierende dazustellen. Dariiber
hinaus stellen die Abschitzung sowie die Rolle der Betragsstriche die
Studierenden vor eine Herausforderung. Letztlich stellt die Beweismethode bzw.
der Ansatz fir den Beweis ecbenfalls eine Schwierigkeit dar, wobei

71 Damit ist gemeint, welche Wissensarten und -facetten Studierende in ihren Prozessen haufig
ansteuern.
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Beweiskonstruktionen allgemein fiir Studierende herausfordernd sind (Weber,
2001). Beziiglich der Aufgabe ,,L."Hospital“ befinden sich die Schwierigkeiten im
Bereich der Grenzwertbestimmung (Implizite Nutzung und Explizite
Formulierung). Im Gegensatz zu den Ergebnissen von Mrdja et al. (2015) haben
die Studierenden weniger ein Problem mit der Regel von L'Hospital an sich,
sondern insbesondere mit der integrierten Grenzwertbestimmung.

Insgesamt lassen sich fiir die Aufgabe ,Mittelwertsatz“ konzeptuelle
Schwierigkeiten und in den beiden Aufgaben ,,Differenzierbarkeit priifen* und
,,L."Hospital“ primér prozedurale Schwierigkeiten feststellen. Damit entsprechen
die  Schwierigkeiten = weitgehend den ausgearbeiteten theoretischen
Anforderungen der jeweiligen Aufgabe hinsichtlich der Wissensarten (Kapitel
5.3).

Interessanterweise treten Schwierigkeiten sowohl bei hdufig genutzten als auch
selten genutzten Wissenselementen auf. Dies deutet darauf hin, dass die
Haufigkeit der Nutzung kein verlésslicher Indikator fiir die Schwierigkeit eines
Wissenselements ist. Haufig genutzte Wissenselemente kdnnten Schwierigkeiten
verursachen, weil sie komplex oder anspruchsvoll sind, wahrend bei selten
genutzten Elementen der Mangel an Vertrautheit oder Ubung eine Rolle spielen
konnte.

(W6) Welches Wissensangebot wird von der Veranstaltung angeboten und
inwiefern wird dies von den Studierenden in ihren Bearbeitungen genutzt?

In dem Vergleich zwischen Wissensangebot der Veranstaltung und
Wissensnutzung der Studierenden wird die Implizite Nutzung ausgeschlossen.
Insgesamt zeigt sich ein vielféltiges Angebot, welches von den Studierenden
genutzt werden kann (Kapitel 6.2.7). Von den Studierenden wird jedoch nur auf
knapp die Hélfte (23 von 53) der angebotenen Wissenselemente zuriickgegriffen.
Wird ein Wissenselement nicht angeboten, aber trotzdem genutzt bzw. aktiviert,
werden weitere Materialien wie das Internet herangezogen.

(W7) Inwiefern héingt die Wissensnutzung mit dem Erfolg bzw. Misserfolg eines
Problembearbeitungsprozesses zusammen?

Fiir die Untersuchung von Erfolg bzw. Misserfolg wird erneut auf den Fokus der
Problembearbeitungsprozesse zuriickgegriffen (Kapitel 6.2.8). Bei prozeduralen
Prozessen wird deutlich, dass eine hohe Losungsqualitit (L3, L4) oft mit der
erfolgreichen Beseitigung von Schwierigkeiten verbunden ist, wihrend dies bei
niedriger Losungsqualitdt nicht gelingt. Die Beseitigung der Schwierigkeiten
beziiglich der Facette Explizite Formulierung stellt sich dabei als besonders
wichtig heraus. Fiir konzeptuelle Prozesse werden zwei Untergruppen betrachtet.
Die erste, mit Fokus auf Implizite Nutzung und Bedeutung & Vernetzung, erreicht
durchgingig hohe Losungsqualititen (mindestens L3). Die zweite, mit Fokus auf
Explizite Formulierung und Konkretisierung & Abgrenzung, zeigt gemischte
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Ergebnisse. Erfolgreiche konzeptuelle Prozesse zeichnen sich durch die
Verkniipfung verschiedener Wissenselemente und deren Anwendung aus.
Studierende, die auf solche Verkniipfungen sowie die Anwendung von Konzepten
und Zusammenhédngen setzen, erzielen bessere Ergebnisse, da sie ihre
Schwierigkeiten iiberwinden und (gleichzeitig moglicherweise) konzeptuelles
Wissen aufbauen kénnen. Dies wiirde den Zusammenhang zwischen Lernen und
Problemlosen bestétigen (Leuders, 2017; Stenzel, 2023a, S. 31f.). Durch die
Ahnlichkeit dieser beiden Prozesse wird nicht nur ein Problem geldst, sondern
dartiber hinaus ein Lerneffekt erzielt und konzeptuelles Wissen aufgebaut. Im
Gegensatz dazu scheitern Studierende, die sich stark auf FExplizite
Formulierungen und Konkretisierungen & Abgrenzungen einzelner Konzepte und
Zusammenhinge beschrinken. Zusitzlich ist bei dieser Studierendengruppe
keine Verkniipfung von Wissenselementen zu beobachten.

7.2.3 Zur Rekonstruktion von Heurismen

(H1) Welche Heurismen treten in den Problembearbeitungsprozessen auf?

Insgesamt kdnnen in den Problembearbeitungsprozessen 167 Anwendungen von
Heurismen identifiziert werden (Kapitel 6.3.1). Der am héufigsten eingesetzte
Heurismus ist Ahnliche Aufgabe, der 35-mal verwendet wird. Ein wesentlicher
Faktor ist dabei der Kontext der Veranstaltung, der durch vorbereitende
Tutoriumsaufgaben die Bearbeitung der Hausaufgaben unterstiitzt. Aufgrund der
hiufigen Nutzung von Ahnlichen Aufgaben weist dieser Heurismus nahezu einen
algorithmischen Charakter auf. Die beiden Heurismen Riickwdrtsarbeiten (1-mal)
und Fallunterscheidung (2-mal) kommen am seltensten vor. Die restlichen
Heurismen werden zwischen sechs- und 17-mal herangezogen (vgl. Tabelle 35).
In dieser Studie haben Studierende zwischen 2-10 verschiedene Heurismen pro
Aufgabe genutzt (Tabelle 36), wihrend die Anzahl in einer Studie mit
Schiiler:innen lediglich bei 1,5-6 liegt (Herold-Blasius, 2019, S. 240). Dieser
leichte Unterschied des Maximus ldsst vermuten, dass die Aufgaben in dieser
Studie fiir die problemldsenden Personen komplexer sind und daher eine
vielfaltigere Herangehensweise bzw. mehr Flexibilitit und Kreativitit beim
Problemlosen erfordern. Moglicherweise bieten die Aufgaben ein hoheres
Potenzial, das den Einsatz unterschiedlicher Losungsstrategien fordert. Dies
spiegelt auch den generellen Anwendungscharakter hochschulischer Aufgaben zu
schulischen Aufgaben wider. Dabei darf allerdings nicht vergessen werden, dass
die durchschnittliche Bearbeitungszeit in dieser Studie hoher (als bei Herold-
Blasius) und dadurch mehr Raum fiir die Nutzung verschiedener Heurismen
gegeben ist. AbschlieBend ist beziiglich der Einteilung von Bruder und Collet
(2011) auffdllig, dass hinsichtlich heuristischer Strategien fast ausschlieBlich
Vorwdrtsarbeiten genutzt wird. Dies deckt sich mit den Untersuchungen von
Lehmann (2018), in der Vorwdrtsarbeiten ebenfalls die am hdufigsten verwendete
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Strategie ist. Beziiglich der Kategorien heuristische Hilfsmittel und Prinzipien
(Bruder & Collet, 2011) werden die jeweiligen Heurismen ausgeglichen genutzt.

(H2) Ist die Nutzung von Heurismen aufgabenabhdngig? Ist die Nutzung von
Heurismen lerngruppenabhdngig?

Die Beantwortung dieser Frage gestaltet sich aufgrund der kleinen Stichprobe
schwierig. Es konnen allerdings Tendenzen festgestellt werden (Kapitel 6.3.2).
Zuniichst ldsst sich die Verwendung der drei Heurismen Ahnliche Aufgabe,
Begriffe kldren sowie Vorwdrtsarbeiten in fast allen
Problembearbeitungsprozessen identifizieren. Fiir diese Heurismen lasst sich
daher keine Abhéngigkeit feststellen. Gleiches gilt fiir die beiden Heurismen
Riickwdrtsarbeiten und Fallunterscheidung, die nur in Einzelféllen auftreten.
Hinsichtlich der restlichen Heurismen wird sowohl die Haufigkeit der Nutzung
als auch die Frage, ob ein bestimmter Heurismus verwendet wird, beriicksichtigt.
Dabei stellen sich folgende Tendenzen heraus.

o  Skizze wird in jedem Prozess zur Aufgabe ,,Mittelwertsatz* verwendet,
aber sonst auch vereinzelt in Prozessen der anderen Aufgaben.

o Spezialfall wird eher in Prozessen zur Aufgabe ,,L."Hospital“ verwendet,
wobei der Ursache fiir die Verwendung eher in der speziellen Funktion
innerhalb der Aufgabe liegt.

o Nutzung aller Voraussetzungen ist eher lerngruppenabhingig (David,
Alex und Thomas; Lea, Lisa, Sarah und Paula).

e Metapher und imagindre Figur ist echer lerngruppenabhéngig (David).

o Systematisierungshilfen sind eher lerngruppenabhingig (David).

o Suche nach neuen Hinweisen ist eher lerngruppenabhingig (David).

Insgesamt lassen sich somit fiir wenige Heurismen Tendenzen hinsichtlich der
Aufgaben- bzw. Lerngruppenabhingigkeit feststellen. Den Ausfiihrungen von
Stenzel (2023a, S. 140) zufolge ist der Einsatz bestimmter Heurismen
aufgabenabhingig. In dieser Arbeit kann die Frage jedoch nicht in dieser
Deutlichkeit  beantwortet werden. Tatsdchlich konnte kaum eine
Aufgabenabhingigkeit identifiziert werden. Ein méglicher Grund dafiir ist, dass
die Aufgaben in den beiden Studien (ohne einen umfangreichen Vergleich
zwischen den Aufgaben) unterschiedlicher Art sind. In Stenzel (2023a) haben die
Aufgaben einen stirker beweisenden Charakter. Zudem gehdren alle Aufgaben in
dieser Arbeit zum Inhaltsgebiet der Differentialrechnung, was zu inhaltlichen
Uberschneidungen fiihrt (Kapitel 6.2.1). Dies zeigt sich beispielsweise darin, dass
in der Aufgabe ,,.L'Hospital” zwar Spezialfille verwendet werden, diese jedoch
durch die spezielle Funktion bedingt sind, die auch in anderen Aufgaben hétte
vorkommen koénnen. Hinsichtlich der Lerngruppenabhingigkeit konnen zwar
einige Heurismen als solche identifiziert werden, allerdings liegt dies vor allem



Seite |284

an David, welcher somit einen Einzelfall darstellt. An dieser Stelle wiirde (wie in
Stenzel, 2023a, S. 142) eine Analyse weiterer Lerngruppen zu
aufschlussreicheren Ergebnissen hinsichtlich der Lerngruppenabhingigkeit
fithren.

(H3) Inwiefern hingt die Nutzung der Heurismen mit dem Erfolg bzw. Misserfolg
eines Problembearbeitungsprozesses zusammen?

Die Frage kann aus verschiedenen Perspektiven beantwortet werden (Kapitel
6.3.3). Zunichst kann festgestellt werden, dass die Haufigkeit der angewandten
Heurismen bei der Bearbeitung von Aufgaben kein konsistentes Muster in Bezug
auf Erfolg oder Misserfolg zeigt. Dabei sollte ohnehin bedacht werden, dass sich
Aufgaben, die eine problemldsende Person iiberfordern, auch nicht mit einer
zahlreichen Nutzung von Heurismen I6sen ldsst (Rott, 2013, S. 120). Bei
Betrachtung der Anzahl verschieden verwendeter Heurismen zeigt sich jedoch,
dass eine geringe Vielfalt an genutzten Heurismen eher mit einer niedrigen
Losungsqualitdt einhergeht, wihrend eine grofere Vielfalt an genutzten
Heurismen tendenziell zu einer besseren Losungsqualitét fiihrt. Ein Heurismus,
der in nahezu allen Prozessen mit hoher Losungsqualitit und nur in einem Prozess
mit niedriger Losungsqualitit angewendet wird, ist das Nutzen aller
Voraussetzungen. Bei genauerer Betrachtung dieser Stellen im Prozess lésst sich
allerdings schlieen, dass dieser Heurismus keinen positiven Einfluss auf den
Prozess nimmt. Anders ist dies fiir den Heurismus Riickfiihrungsprinzip. Dieser
taucht zwar nur in einigen, aber ausschlieBlich in Prozessen mit positiver
Losungsqualitét auf. An den Stellen im Prozess zeigt sich ein positiver Einfluss
auf den Losungsverlauf.

AbschlieBend werden weitere Stellen im Problembearbeitungsprozess untersucht,
die einen positiven Einfluss auf den Prozessverlauf ausiiben. Dabei stellen sich
vor allem die beiden Heurismen Ahnliche Aufgaben als auch Skizze heraus.
Demgegeniiber weisen die beiden Heurismen Suche nach neuen Hinweisen und
Spezialfille das Potenzial auf, den Prozessverlauf negativ zu beeinflussen.
Stenzel (2023a, S. 148) stellt in seiner Arbeit fest, dass Heurismen wie Nutzen
aller Voraussetzungen, Riickfiihrungsprinzip sowie heuristische Hilfsmittel
(Tabelle, Skizze, Spezialfall, etc.) in Kombination der Analysis-Phase hilfreich
sind, um neue Ideen im Problembearbeitungsprozess zu generieren. Obwohl sich
die Art der Aufgaben zwischen beiden Studien unterscheiden, werden mit
Ausnahme von Spezialfall (und Tabelle’), bei dem sogar das Potenzial fiir eine
negative Auswirkung festgestellt werden kann, diese Heurismen auch in dieser
Arbeit im Zusammenhang mit erfolgreichen Problembearbeitungsprozessen
diskutiert. Dariiber hinaus zeigt sich in der Studie von Lehmann (2018, S. 236

72 Der Heurismus Tabelle konnte in den Problembearbeitungsprozesse dieser Arbeit kein Mal
identifiziert werden.
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und S. 252), dass heuristische Hilfsmittel einen positiven Einfluss auf die Losung
besitzen. Allerdings wird dort festgestellt, dass das Vorwdrtsarbeiten fir den
Ldsungsprozess von Bedeutung ist, wobei es sich sowohl in dieser Studie als auch
in der Studie von Stenzel (2023a) nicht als besonders erfolgreich herausstellt. Hier
sollten weitere Aufgaben (mit unterschiedlichen Inhalten) untersucht werden, ob
auch fiir weitere hochschulische Mathematikaufgaben &hnliche Ergebnisse
gewonnen werden konnen. Letztlich ist das Verwenden von Ahnlichen Aufgaben
auf den Kontext der Veranstaltung zuriickzufiihren, da die Tutoriumsaufgaben
einen hilfreichen Ausgangspunkt fiir die Bearbeitung der eigentlichen Aufgabe
liefern.

Demgegeniiber stehen die Ergebnisse von Rott (2013, S. 390), der in den
Problembearbeitungsprozessen von Schiiler:innen die Suche nach Mustern und
das Riickwdrtsarbeiten als wichtige Strategien herausstellen kann. Die
unterschiedlichen Ergebnisse zwischen Schule und Hochschule lassen vermuten,
dass der Erfolg von Heurismen vom Kontext, Niveau der jeweiligen
Aufgabenstellung und moglicherweise auch von der Offenheit der Aufgabe
(Bruder, 2000) abhéngt.

7.2.4 Zur gemeinsamen Betrachtung von Steuerung, Wissen und Heurismen

(Z1) Welche Interaktionen lassen sich zwischen Steuerung, Heurismen und
Wissen identifizieren?

Zwischen den einzelnen Kategorien ldsst sich ein interaktives Auftreten
beobachten (Kapitel 6.4.1), was die Ausfithrungen von Schoenfeld (1985, S. 44)
empirisch stiitzt, wonach die Kategorien nicht strikt voneinander abgegrenzt sind.
Besonders auffdllig ist, dass Studierende in jeder Episode des
Problembearbeitungsprozesses Heurismen einsetzen, was den theoretischen
Annahmen widerspricht (z. B. Konig, 1992). Gleichzeitig zeigt sich jedoch, dass
in der Exploration die meisten Heurismen angewandt werden, was die
bestehenden Theorien unterstiitzt (Schoenfeld, 1985, S. 298). Die Ergebnisse
zeigen zudem, dass die Kategorisierung von Heurismen nach Bruder und Collet
(2011) in heuristische Hilfsmittel, Prinzipien und Strategien hilfreich ist, um ihre
Rolle in unterschiedlichen Phasen zu verstehen. Heuristische Prinzipien finden
sich vor allem in der Exploration, wahrend heuristische Hilfsmittel sowohl in der
Analysis als auch stark in der Exploration auftreten. Dariiber hinaus sind
spezifische Heurismen bestimmten Phasen zuzuordnen, etwa Begriffe kliren in
der Analysis, Suche nach Hinweisen und Spezialfall in der Exploration sowie
Vorwiirtsarbeiten in Planning und Implementation. Zudem lassen sich
spezifische Wissensarten oder Wissensfacetten eher bestimmten Episoden bzw.
Heurismen zuordnen. In der Analysis dominiert konzeptuelles Wissen mit Fokus
auf Explizite Formulierung und Konkretisierung & Abgrenzung, wéhrend in der
Exploration Konkretisierung & Abgrenzung und Implizite Nutzung im
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Vordergrund stehen. In Planning und Implementation sind prozedurales Wissen
und Implizite Nutzung pragend. Bei den jeweiligen Interaktionen mit den
Wissenskategorien muss allerdings angemerkt werden, dass diese durch die
spezifische Aufgabe unterschiedlich sind. So ist in der Aufgabe ,,Mittelwertsatz*
die Interaktion mit Planning und Implementation eher konzeptuell, wahrend sie
in den anderen beiden Aufgaben eher prozedural ist. Dies ist jedoch zu erwarten,
da es den Anforderungen der Aufgabe entspricht (Kapitel 5.3).

(Z2) Welche Rolle spielen Wissen und Heurismen bei einem Episodenwechsel?

Fir die Beantwortung dieser Forschungsfrage werden nur Episodenwechsel
betrachtet, die in eine Exploration miinden (Kapitel 6.4.2). Dabei stellt sich
heraus, dass diese Episodenwechsel in zwei Drittel (22 von 33) der Fille durch
Wissen und Heurismen oder einer Kombination aus beiden beeinflusst werden.
Insbesondere der Heurismus Ahnliche Aufgabe und die Facette Konkretisierung
& Abgrenzung, die ohnehin haufig Interaktionen aufweisen, scheinen dabei starke
Ausloser fiir den Episodenwechsel zu sein. Dies ist wenig iiberraschend, da die
Exploration per Definition durch ein unstrukturiertes Vorgehen gekennzeichnet
ist. Das Heranziehen von Beispielen oder Beispielaufgaben dient hierbei als ein
Mittel, eine grobe Orientierung zu entwickeln und erste Ansétze zu finden. Die
spezifische Nutzung dieser Beispiele kann jedoch maBigeblich beeinflussen, ob
das unstrukturierte Vorgehen in ein strukturiertes iibergeht. Je nach Verwendung
der Beispiele konnen sie dazu beitragen, die Exploration in eine zielgerichtete
und strukturierte Herangehensweise zu transformieren. Im Fall dieser Arbeit wére
es wichtig gewesen, die Tutoriumsaufgabe auf das eigene Beispiel zu
abstrahieren, um potenzielle Unterschiede zu identifizieren und darauf aufbauend
das eigene Vorgehen zu strukturieren.

In nur einem Dirittel (elf von 33) erfolgt der Episodenwechsel unabhingig von
Wissen oder Heurismen. Eine genauere Betrachtung dieser Félle deutet darauf
hin, dass selbstregulatorische Aktivitidten verantwortlich fiir Episodenwechsel
sind. Allerdings wurden im Rahmen dieser Arbeit selbstregulatorische Aktivitdten
auf dem lokalen Level nicht explizit untersucht. Die vorliegenden Ergebnisse
bieten, dhnlich wie bei Rott (2013, S. 375ft.), lediglich einen ersten Ansatz zur
Betrachtung der Rolle selbstregulatorischer Aktivititen bei Episodenwechseln.
In dieser Arbeit wurden nur Episodenwechsel am Startpunkt der Exploration
beleuchtet. Zukiinftig wére es jedoch interessant, auch andere Wechsel zu
untersuchen, etwa das Austreten aus einer Exploration (,,wild goose chase*) oder
den Ubergang zu strukturierten Phasen wie Planning, um ein umfassenderes
Verstandnis von Problembearbeitungsprozessen zu gewinnen.
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(Z3) Kann empirisch entschieden werden, ob die Aufgaben fiir die Studierenden
Probleme darstellen?

Zur Beantwortung dieser Forschungsfrage wurden zunichst Indikatoren fiir
Problembearbeitungsprozesse  operationalisiert. ~Dabei  konnten  sieben
Indikatoren  herausgearbeitet =~ werden. Die  Entscheidung, ob ein
Problembearbeitungsprozess vorliegt, basiert auf der Erfiillung von vier’® der
sieben Indikatoren. Insgesamt zeigen elf von 13 untersuchten Prozessen
mindestens vier Indizien, was die definitorische Schwelle fiir einen
Problembearbeitungsprozess tibertrifft (Kapitel 6.4.3).

Wenn die Ergebnisse der empirischen Analyse auf die einzelnen Aufgaben
iibertragen werden, zeigt sich, dass alle Prozesse der Aufgaben ,,L.'Hospital* und
LMittelwertsatz mehr als vier der definierten Indikatoren fiir einen
Problembearbeitungsprozess erfiillen. Dies deutet darauf hin, dass diese
Aufgaben fiir die Studierenden der vorliegenden Stichprobe ein Problem
darstellen. Im Gegensatz dazu erfiillt die Aufgabe ,,Differenzierbarkeit priifen‘
nur in drei von fiinf untersuchten Prozessen mindestens vier Indikatoren, was
darauf hinweist, dass diese Aufgabe mnicht einheitlich als Problem
wahrgenommen wird. Daher ldsst sich zusammenfassen, dass die Aufgaben zum
,.Mittelwertsatz und ,,.L'Hospital“ empirisch als Problemaufgaben fiir die
Studierenden gelten, wihrend die Aufgabe zur Differenzierbarkeit eine gemischte
Wahrnehmung aufweist und nicht in jedem Fall als Problem identifiziert werden
kann. Die Annahme von Stenzel (2023a, S. 13), dass viele Aufgaben von
Studierenden als problematisch wahrgenommen werden, findet in dieser Studie
durch zusédtzliche Hinweise Bestitigung.

Es ist jedoch wichtig zu beachten, dass es noch weitere Aufgaben gibt, wie bspw.
das Ableiten von Funktionen, die ebenfalls typische Aufgaben in der
Ingenieurmathematik sind, diese jedoch bislang noch nicht untersucht worden
sind. Diese Aufgaben sind stirker aus der Schule bekannt und kénnten einen
anderen ,,Problemgrad* aufweisen.

7.2.5 Theoretische Einordnung im Kontext mathematischer Lernprozesse

Die vorherigen Ausfithrungen konzentrierten sich explizit auf die Beantwortung
der Forschungsfragen, die stark auf das mathematische Problemldsen ausgerichtet
waren. Im Weiteren werden diese Ergebnisse auf allgemeine mathematische
Lernprozesse iibertragen.

Die vorliegende empirische Studie bietet einen umfassenden Einblick in
authentische mathematische Lernprozesse von Ingenieur:innen wihrend ihres

73 Vier Indikatoren erscheinen eine angemessene Zahl zu sein, um sicherzustellen, dass ein
Prozess nur dann als Problemldseprozess eingestuft wird, wenn Indikatoren aus mindestens
zwei der vier Kategorien (Steuerung, Wissen, Heurismen, allgemeine Kategorie)
identifiziert werden konnen.
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Studiums. Obwohl solche Prozesse, wie bspw. die Bearbeitung von
Hausaufgaben, eine zentrale Rolle im Studium spielen, ist die Forschung hierzu
bislang begrenzt (Kapitel 1).

In der durchgefilhrten Studie wurden Aufgaben mit unterschiedlichen
Anforderungen hinsichtlich prozeduralen und konzeptuellen Wissens untersucht
(Kapitel 5.3). Ein interessantes Ergebnis zeigt sich bei der Analyse der Aufgabe
"L’Hospital", die tiberwiegend als prozedurale Aufgabe eingeordnet wird und
daher typischerweise ein (routineméfiges) Verfahren zur Losung verlangt. Trotz
dieser Klassifikation stellte sich heraus, dass die Aufgabe fiir die Studierenden ein
Problem darstellt (Kapitel 6.4.3). Dieses Ergebnis verdeutlicht, dass eine reine
Klassifikation von Aufgaben in prozedural und konzeptuell nicht ausreicht, um
zu bestimmen, ob es sich tatsdchlich um ein Problem fiir die Lernenden handelt.
Dariiber hinaus =zeigt es, dass auch prozedurale Aufgaben durchaus
Schwierigkeiten bereiten konnen und nicht ausschlieflich Beweisaufgaben
Probleme darstellen. Besonders im Kontext von Ingenieur:innen, die
moglicherweise eine andere Einstellung gegeniiber der Mathematik aufweisen als
Studierende aus rein mathematischen Fachstudiengédngen, wird dies relevant. Fiir
diese Zielgruppe konnen auch prozedurale Aufgaben Herausforderungen mit sich
bringen, die Problemlésekompetenzen férdern und erfordern. Somit kénnte auch
in Aufgaben, die vordergriindig prozedural erscheinen, ein bedeutendes Potenzial
zur Entwicklung von Problemldsefahigkeiten liegen.

Der Fokus dieser Untersuchung lag auf dem Themengebiet der
Differentialrechnung. Abgesehen vom Begriff der Differenzierbarkeit bzw. dem
Ableitungsbegriff existieren wenig Studien, die sich mit dem Mittelwertsatz
(siche Kapitel 4.3.4) und der Regel von L'Hospital (siche Kapitel 4.3.5)
beschiftigen — insbesondere hinsichtlich der Anwendung in (authentischen)
Lernsituationen. Besonders die Aufgabe ,Mittelwertsatz®, die einen stark
beweisenden Charakter hat, zeigt, dass Studierende konzeptuelle Schwierigkeiten
in allen Facetten dieses Zusammenhangs aufweisen. Dabei bestdtigt sich
auflerdem, dass Studierende allgemeine Schwierigkeiten mit dem Beweisen
haben, insbesondere bei der Entwicklung einer Beweisidee oder -strategie
(Weber, 2001). Letztendlich wurden jedoch auch prozedurale Schwierigkeiten
identifiziert, insbesondere bei der Anwendung (/mpliziten Nutzung) und
Anleitung (Expliziten Formulierung) von Verfahren.

Dariiber hinaus ldsst sich auch ein Lerneffekt durch das Bearbeiten
mathematischer Probleme beobachten. Wie in Kapitel 6.4.3 erldutert, stellen die
Problembearbeitungsprozesse  fir die  Studierenden  einerseits eine
Herausforderung dar, bicten andererseits aber auch die Moglichkeit,
mathematische Inhalte weiter einzuiilben. Obwohl in dieser Arbeit kein
Wissensstand vor und nach der Bearbeitung erhoben wurde, konnte festgestellt
werden, dass wahrend der Prozesse Lernfortschritte erzielt wurden. In allen
Problembearbeitungsprozessen stolen die Studierenden auf Schwierigkeiten
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(Kapitel 6.4.3), die oftmals wihrend der Prozesse gelost und somit als
tiberwundene Hiirde betrachtet werden kdnnen. Zum einen versteht z. B. David
in seinem Prozess zur Aufgabe ,,Differenzierbarkeit priifen* den gleichnamigen
Begriff besser und kann damit im Anwendungskontext arbeiten. Zum anderen
werden Wissensliicken, wie die Rolle der Betragsstriche bei Lea, Lisa, Sarah und
Paula zur Aufgabe ,,Mittelwertsatz®, ausgeglichen. Diese Ergebnisse legen nahe,
dass das Bearbeiten von Problemen nicht nur zum Problemldsen selbst beitrégt,
sondern auch Lernfortschritte begiinstigt (und diese wiederum die
Problemlosefahigkeit verbessern). In diesen Situationen ist das propagierte
Lernen durch Problemlosen (Holzdpfel et al., 2018, S. 169; Leuders, 2017)
beobachtbar. Diese Lernprozesse konnen dann erfolgreich sein, wenn die drei
Kategorien (Steuerung, Wissen und Heurismen) in den Prozess integriert und
miteinander verkniipft werden, sodass sie sich gegenseitig unterstiitzen und den
Lernprozess fordern. Es hat sich gezeigt, dass ein Prozess allein aufgrund einer
bestimmten Kategorie, wie bspw. einer zeitlich langen Exploration, nicht
grundlegend als erfolgreich oder weniger erfolgreich bewertet werden kann.
Ebenso verhilt es sich mit den anderen Kategorien, wie Wissen und Heurismen.
Jede dieser Kategorien trdgt auf ihre Weise zum Lernprozess bei, und ihr
Zusammenspiel ist entscheidend. Erst wenn alle Kategorien in einem
Wechselspiel agieren, wird das Lernen effektiv gefordert und die
Problemlosungsfahigkeit der Lernenden optimiert.

In diesem Kontext kann erneut die Verbindung zwischen verschiedenen
Heurismen und Lernstrategien thematisiert werden. Insbesondere im Hinblick auf
das Uberwinden von Schwierigkeiten bzw. das SchlieBen von Wissensliicken
bieten sich vielversprechende Ansdtze, die durch gezielte Heurismen oder
Lernstrategien unterstiitzt werden konnen. Insbesondere Lernstrategien, welche
die Explizite Formulierung mathematischer Inhalte unterstiitzen, konnten in
diesem Zusammenhang besonders wertvoll sein. Die Uberwindung von
Schwierigkeiten in dieser Facette hat bereits zu Losungsfortschritten beigetragen
(Kapitel 6.2.8), was diese Strategien vielversprechend fiir den Lernprozess macht.

7.3 Praktische Implikationen

Wie Neumann et al. (2015) bereits herausstellten, ist ein gezieltes Training von
Problemlosefdhigkeiten essenziell fiir die Verbesserung der Leistung von
Studierenden. Dies umfasst neben der Vermittlung von mathematischen Inhalten
(Wissen) insbesondere die Vermittlung von Heurismen und Strategien zur
Steuerung des Losungsprozesses. Die Bedeutung mathematischen Problemldsens
wird auch im SEFI-Katalog fiir das Ingenieurstudium (Kapitel 1.1) deutlich
hervorgehoben: Problemldsen gilt als eine der zentralen Schliisselkompetenzen
fiir Ingenieur:innen. Dabei reicht es nicht aus, ausschlieBlich Fachwissen in der
Mathematik zu vermitteln. Ingenieur:innen sollen zwar mathematikhaltige
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Probleme 16sen kénnen, doch dies erfordert dariiber hinaus den gezielten Einsatz
von Heurismen sowie eine bewusste Steuerung der Losungsprozesse. Diese
Féhigkeiten miissen anschliefend nicht nur auf mathematische Fragestellungen
beschrinkt sein, sondern lassen sich moglicherweise auch auf andere
Problembereiche {ibertragen, was ihre Relevanz fiir die berufliche Praxis
erheblich steigert. Die Forschungsergebnisse dieser Arbeit zeigen zudem, dass
das Zusammenspiel mehrerer Kategorien beim Problemldsen von entscheidender
Bedeutung fiir gelungene Problembearbeitungsprozesse ist. Daher sollte ein
Training bzw. eine Unterstiitzungsmalnahme kategorieniibergreifend und
umfassend gestaltet sein, um alle Kategorien ausreichend abzudecken. Dabei
kann es ebenfalls sinnvoll sein, Beliefs mit einzubeziehen, die in dieser Arbeit
jedoch nicht behandelt worden sind.

Betrachtet man mathematische Ubungszettel an Hochschulen, fillt auf, dass viele
Aufgaben nahezu ausschlielich einen inhaltlichen Fokus besitzen, was das
Potenzial zur Forderung von Problemlosekompetenzen moglicherweise
einschrinkt. In den Aufgaben konnte expliziter auf Kompetenzen eingegangen
werden, insbesondere auf Problemldsefdhigkeiten, da diese eine wichtige
Kompetenz fiir Ingenieurstudierende darstellen (Alpers et al., 2013). Derzeit wird
jedoch héaufig stillschweigend davon ausgegangen, dass die Studierenden diese
Féhigkeiten nebenbei erlernen und entwickeln. Ein Potenzial, um die
Problemlosekompetenz bei der Aufgabenstellung in den Fokus zu riicken, liegt
bspw. darin, in Aufgabenstellungen Hinweise zu integrieren, die auf den Einsatz
von gewissen Heurismen hinweisen. Dabei kann es sich um einfache
Formulierungen handeln, wie z. B. das Erstellen von Tabellen oder das Suchen
und Erkennen von Mustern. Da die Aufgabenstellung zur Aufgabe
,,Differenzierbarkeit priifen bereits das Ergebnis suggeriert, konnten Studierende
dazu angeregt werden, ,,riickwérts zu arbeiten. In der untersuchten Veranstaltung
bietet sich der Heurismus Ahnliche Aufgabe als ein gezielter Ansatzpunkt an, um
die Problemlosekompetenzen der Studierenden zu stirken. Da die gestellten
Aufgaben zwischen Tutorium und Hausaufgaben hiufig dhnlich aufgebaut sind
(Kapitel 5.3), konnten die Studierenden dazu angeleitet werden, die Unterschiede
zwischen den Aufgaben systematisch zu analysieren. Ein Schwerpunkt kénnte
hierbei auf die Aufgabenanalyse gelegt werden, um die potenziellen
Auswirkungen auf die Bearbeitung der neuen Aufgabe herauszuarbeiten. Dies
wiirde den Studierenden ermoglichen, nicht nur die Gemeinsamkeiten der
Aufgaben zu erkennen, sondern auch kritisch zu reflektieren, wie die
Unterschiede die Losungsstrategien beeinflussen konnen. Insbesondere in
Tutorien konnte dieses Verfahren implementiert werden. Dort bietet sich die
Gelegenheit, mit anderen Studierenden und Tutor:innen gemeinsam zu
diskutieren. Ggfs. konnen in den Tutorien auch einfachere Einstiegsaufgaben
erarbeitet und besprochen werden (Stenzel, 2023a, S. 211), die eine gewisse
Ubertragbarkeit auf die Hausaufgaben erméglichen.
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Ein weiterer Ansatz besteht in der Bereitstellung ausfiihrlicher Musterldsungen,
wie sie von Ableitinger und Herrmann (2011) und Ableitinger (2012) beschrieben
werden (Kapitel 5.3). Solche Losungen konnten die in den jeweiligen Aufgaben
genutzte Heurismen sowie metakognitiven Aktivititen explizit hervorheben und
deren Nutzen verdeutlichen. Diese praxisorientierten Losungen wiirden nicht nur
den Lernprozess unterstiitzen, sondern auch eine Briicke zwischen der
theoretischen Vermittlung und der praktischen Anwendung schlagen.

Sofern Heurismen expliziter Teil der Lehre werden, sollte darauf aufmerksam
gemacht werden, dass es keinen ,,one-size-fits-all“-Heurismus gibt, der in jeder
Situation hilfreich ist. Stattdessen ist es entscheidend, ein breites Repertoire an
Heurismen aufzubauen, die flexibel und situationsgerecht eingesetzt werden
konnen, da sich dies als erfolgsversprechend herausgestellt hat (Kapitel 6.3.3).
Dies setzt allerdings voraus, dass Heurismen in der Veranstaltung (sowohl
Vorlesung als auch Ubungsaufgaben) vielfiltig angeregt werden. Ein groBes
Repertoire an Heurismen ermdglicht es den Studierenden, auf unterschiedliche
Herausforderungen angemessen zu reagieren und je nach Kontext die passende
Strategie auszuwihlen. Aus bisherigen UnterstiitzungsmaBnahmen ist jedoch
bekannt, dass Studierende nicht mit einer Liste von verschiedenen Heurismen
iiberfrachtet werden sollten (Stenzel, 2023a, S. 186). Stattdessen wire ein
gezielter Fokus hilfreich. In den Ergebnissen hat sich gezeigt, dass strukturierte
Vorgehensweisen, insbesondere mit einer griindlichen Aufgabenanalyse, zum
Erfolg fithren (Kapitel 6.1.6). Auf Basis der Ergebnisse zu hdufigen Interaktionen
in der Analysis (Kapitel 6.4.1) wire es daher sinnvoll, den Heurismus Begriffe
kldren vorrangig mit den Studierenden zu besprechen. Dieser Ansatz deckt sich
mit den Uberlegungen, die Stenzel (2023a, S. 187) nach der Evaluation seiner
TrainingsmaBnahme formuliert hat. Zusétzlich wire eine Entscheidung, ob eine
Skizze fir die Aufgabenanalyse hilfreich sei, ebenfalls schnell entschieden. Auf
der Wissensebene konnte dieser Fokus auf die Aufgabenanalyse erweitert werden,
indem die Studierenden sich gezielt mit Begriffen und Zusammenhidngen
beschéftigen. Aufgrund der Interaktionen  zeigt sich, dass in
Unterstiitzungsvorhaben vor allem die Facetten Explizite Formulierung und
Konkretisierung & Abgrenzung hervorgehoben werden sollten.

Die Ergebnisse stellen heraus, dass Studierende bei der Bearbeitung von
Aufgaben vor allem auf die Beispiel-Aufgaben aus dem Tutorium zuriickgreifen.
Dies wird sowohl durch die Konkretisierung & Abgrenzung als auch die
Verwendung des Heurismus Ahnliche Aufgabe deutlich. Obwohl dies
vermeintlich auf die Organisation der Veranstaltung zuriickzufiihren ist, bestatigt
eine Vorstudie ein vergleichbares Verhalten: Studierende berichten héufig, dass
sie gezielt nach Beispielen im Internet suchen, um sich bei der
Aufgabenbearbeitung an diesen zu orientieren (Kolbe & Wessel, 2022). Dariiber
hinaus konnte beobachtet werden, dass Studierende sich nicht nur auf Beispiele
stiitzen, sondern hiufig versuchen, die Vorgehensweise direkt zu kopieren. Diese
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Tendenz verdeutlicht die Notwendigkeit, Lehrveranstaltungen entsprechend
darauf vorzubereiten. Wenn Studierende ohnehin nach Beispielen (z.B. im
Internet) suchen, ist es von Vorteil, gezielt Beispiele bereitzustellen, welche die
inhaltlichen Aspekte der Aufgaben kliren und besser auf die eigenen
Hausaufgaben vorbereiten.

Beispiele bzw. Beispielaufgaben bieten im Ingenieurstudium ein zusitzliches
Potenzial, indem sie eine Briicke zwischen mathematischen Verfahren und deren
Anwendung im Ingenieurkontext schlagen. Dieser Ansatz kann nicht nur das
Verstédndnis der Studierenden vertiefen, sondern auch ihre Motivation steigern.
Wolf (2017) hat in diesem Zusammenhang Anwendungsaufgaben entwickelt, die
speziell auf die Verbindung von Mathematik und Maschinenbau ausgerichtet sind.
Auf diesen Fundus konnte zuriickgegriffen werden, um erste MaBnahmen in der
Lehre zu ergreifen und Studierenden einen praxisnahen Zugang zu
mathematischen Inhalten zu bieten.

Die Ergebnisse zeigen, dass Studierende einen erheblichen Teil ihrer Zeit in der
Phase der Exploration verbringen (Kapitel 6.1.2). Obwohl die Exploration
oftmals mit dem ,,wild goose chase* und seinen negativen Einfluss auf die
Problemldseprozesse assoziiert werden, ist dies erstmal nichts Negatives.
Insbesondere die Exploration ist ein Indikator eines Problemldseprozesses
(Kapitel 6.4.3). Dennoch sollten Studierende dazu angeleitet werden, ihren
Problemlosungsprozess regelmiBig zu reflektieren und zu iiberpriifen, ob ihr
derzeitiges Vorgehen tatséchlich zielfilhrend ist. Dabei spielen metakognitive
Fahigkeiten eine entscheidende Rolle, da sie den Studierenden helfen, ineffektive
Explorationen zu erkennen und einem ,,wild goose chase” zu entkommen bzw.
gezielt in eine andere Problemldsungsepisode iiberzugehen. Um diesen Prozess
zu unterstiitzen, sollten Lehrende den Studierenden konkrete Strategien
(,,Inwiefern bringt uns das weiter? Brauchen wir noch mehr Informationen?
Stimmt es wirklich, was wir da gemacht haben?) vermitteln, mit denen sie ihre
Explorationen systematischer gestalten konnen.

Die Ergebnisse heben aulerdem hervor, dass sowohl konzeptuelles Wissen als
auch die Fahigkeit, Verkniipfungen zwischen unterschiedlichen Inhalten
herzustellen, von zentraler Bedeutung sind (Kapitel 6.2.5). Diese Aspekte sind
essenziell, um mathematische Beziehungen zu verstehen und Konzepte,
Zusammenhidnge sowie Verfahren in verschiedenen Anwendungskontexten
erfolgreich nutzen zu konnen. Die Wissensmatrix kann hierbei eine
unterstiitzende Rolle spielen. Sie bietet die Moglichkeit, spezifische Facetten des
Wissens explizit zu vermitteln und gleichzeitig Verkniipfungen zwischen
verschiedenen Inhalten fiir die Studierenden sichtbar zu machen. Auf diese Weise
wird es den Studierenden erleichtert, die Struktur und den Zusammenhang
mathematischer Inhalte zu erkennen sowie ihr Verstindnis nachhaltig zu
vertiefen.
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7.4 Reflexion zur methodischen Herangehensweise

Im Folgenden wird die methodische Herangehensweise der Studie (Kapitel 5)
diskutiert. Zunéchst wird auf die Erhebungsmethode des Lautens Denkens sowie
die damit einhergehende Beobachtungssituation eingegangen (Kapitel 7.4.1).
AnschlieBend erfolgt eine Reflexion der drei Auswertungsmethoden in Bezug auf
die Kategorien Steuerung, Wissen und Heurismen im Kontext der
Problembearbeitungsprozesse (Kapitel 7.4.2). AbschlieBend wird sich mit dem
Einfluss des Kontextes auf die Ergebnisse auseinandergesetzt (Kapitel 7.4.3) und
die Verallgemeinerbarkeit der Studienergebnisse hinterfragt (Kapitel 7.4.4).

7.4.1 Diskussion zum Lauten Denken und der Beobachtungssituation

Bei der Anwendung der Methode des Lauten Denkens zeigen sich in dieser Studie
einige Limitationen, welchem die Validitdt und Aussagekraft der erhobenen
Daten beeinflussen kdnnen.

Ein zentraler Punkt betrifft die Gruppengréfe und deren Einfluss auf die
Authentizitit der Situation. Konrad (2010) beschreibt, dass die Art des Lauten
Denkens durch die soziale Dynamik innerhalb der Gruppe beeinflusst werden
kann (z.B. bei Lea, Lisa, Sarah und Paula). Insbesondere groflere Gruppen kdnnen
dazu fiihren, dass die Teilnehmenden ihre Gedanken weniger frei dullern, was die
Authentizitit und Spontanitét der Verbalisierungen beeintrachtigen konnte. Eine
weitere Schwiche der Methode liegt in der potenziellen Nicht-Verbalisierung
automatisierter bzw. prozeduraler Prozesse (Sandmann, 2014, S. 188). Konrad
(2010) hebt hervor, dass Teilnehmende dazu neigen, vor allem bewusste und
reflektierte Gedankengéinge zu &duflern, wihrend routinemifiige Abldufe oft
unkommentiert bleiben. Dies stellt eine Herausforderung dar, da gerade diese
nicht-verbalisierten Aspekte fiir ein umfassendes Verstindnis der Denkprozesse
relevant sein kdnnen. In der vorliegenden Studie zeigt sich, dass diese Schwéche
insbesondere Auswirkungen auf das prozedurale Wissen in der Kodierung
ausiiben kann. Die Nutzung bzw. Aktivierung dieses Wissens wird aus diesem
Grund vermutlich unterschétzt, da entsprechende kognitive Abldufe nicht explizit
verbalisiert und dementsprechend fiir eine Analyse nicht zugénglich sind. Obwohl
in der Studie auch Videos flir die Auswertung herangezogen wurden, die es
ermdglichen, Handlungen zu erkennen, ist es dennoch nicht immer moglich, jede
Prozedur vollstindig zu rekonstruieren.

Hinzu kommt die Problematik der Beobachtungssituation, vor allem das
Dabeisein der forschenden Person wihrend der Durchfiihrung. Mondana (2006,
S. 52) weist darauf hin, dass die Prisenz einer beobachtenden Person die
Teilnehmenden in ihrem Verhalten beeinflussen kann. Diese sogenannten
Beobachtungseffekte konnen dazu fiihren, dass die Teilnehmenden ihre
Denkprozesse unnatiirlich anpassen oder sich weniger offen &uflern. Dariiber
hinaus betrifft die besondere Beobachtungsituation auch die ,,Echtheit der
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Ergebnisse. Am Beispiel von Nicks Bearbeitungsprozessen konnte beobachtet
werden, dass er nervds wirkte und sich nur darauf konzentrierte, die Aufgaben
moglichst schnell abzuschlieBen. Dabei konnen selbstregulatorische
Entscheidungen, die den Fortschritt bei der Losungsfindung gefordert hétten, von
Nick ausgespart worden sein.

Trotz dieser Einschrankungen wird die Gesamtwirkung dieser Limitationen auf
die Studie als gering eingeschitzt. Dies liegt daran, dass wihrend der
Durchfithrung eine freundschaftliche Atmosphire zwischen Studienleiter und
Teilnehmenden gepflegt wurde. Vor oder nach der Lernsituation wurden bspw.
Gespriche iiber nicht-mathematische Themen gefiihrt, was (vor allem in der
ersten Sitzung) deutlich zur Entspannung der Teilnehmenden beigetragen hat.
Dariiber hinaus wurden wihrend der Studie auch positive Effekte rund um die
Situation des lauten Denkens beobachtet. Erstens haben die Teilnehmenden
keinerlei Anzeichen von Ablenkung gezeigt, sondern waren durchgehend auf die
Aufgaben konzentriert. Zweitens spiegelt sich dies in einer Bearbeitung von
David wider, der ohne die besondere Situation die Bearbeitung der Aufgaben
bereits vorzeitig abgebrochen hétte und nun einen Motivationsschub bekommen
hat: ,,Also ich bin relativ ehrlich. Ich glaube, normalerweise wiirde ich diese
Aufgabe jetzt aufgeben, [...], aber ich versuche es mal weiter.” Dies wirft die
Frage auf, ob das laute Denken nicht nur eine Beobachtungsmethode war, sondern
auch aktiv das Bearbeitungsverhalten verdndert hat. Diese mogliche
Wechselwirkung sollte bei der Interpretation der Ergebnisse beriicksichtigt
werden.

Insgesamt verdeutlichen die Ergebnisse dieser Studie, dass das mathematische
Problemlésen nur mit einer Methode, die nah am Prozess ansetzt, umfassend
untersucht werden kann. Dabei wurden verschiedene Maflnahmen ergriffen, um
die Authentizitdt der Lernsituation so weit wie moglich zu erhalten (Kapitel
5.2.2). Nur eine solche detaillierte und prozessnahe Analyse ermdglicht es, die
,ehrlichen® (meta-)kognitiven Prozesse der Teilnehmenden sichtbar zu machen,
natiirliche (mathematische) Lernprozesse zu erfassen und ein tiefergehendes
Versténdnis fiir deren Denk- und Losungsstrategien zu gewinnen. Dabei lag in
dieser Untersuchung ein Fokus auf Steuerung, Wissen und Heurismen. Die
Erhebungsmethoden, mit denen diese Kategorien untersucht wurden, werden im
Folgenden detaillierter diskutiert.

7.4.2 Diskussion zu den Auswertungsmethoden der
Problembearbeitungsprozesse

Schoenfeld Episoden

Die Anwendung des Episodenmodells von Schoenfeld (1985) zur Analyse von
Problembearbeitungsprozessen birgt ebenfalls mehrere Limitationen. Ein
wesentlicher Kritikpunkt betrifft das Definitionsproblem der Episoden (Rott,
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2013, S. 192). Dabei wird hervorgehoben, dass die Definitionen der Episoden
oftmals vage bleiben. Schoenfeld (1992b) selbst gibt zu, dass die Abgrenzung
zwischen den Episoden Exploration und Analysis nicht ganz eindeutig ist und es
zu Verwechslungen kommen kann (Kapitel 5.4.1). Die Kategorien geben
demnach einen gewissen Interpretationsspielraum, was zu Uneinigkeiten bei der
Kodierung fiihren kann. Es ist sogar moglich, dass gleiche Handlungen, wie das
Nachschlagen im Skript, je nach Kontext unterschiedlichen Episoden zugeordnet
werden kann. Entscheidend ist, warum die Handlung erfolgt (ergibt sich z. B.
durch vorherige Handlungen), da der Kontext die zugrunde liegende Episode
klart. Zudem sollte die Verbindung zwischen Erfolg und den einzelnen Episoden
mit Vorsicht betrachtet werden. Die Definitionen der Kategorien implizieren
teilweise bereits eine Bewertung, was insbesondere bei Exploration und Planning
(+Implementation) zu einer voreingenommenen Interpretation filhren kann. So
konnen Problembearbeitungsprozesse mit einem zielfiihrenden Vorgehen eher in
Planning (+Implementation) und weniger zielfiihrendes Vorgehen in Exploration
eingeordnet werden.

Des Weiteren ist die Episodenkodierung von Schoenfeld vielmehr fiir einen
ganzheitlichen  Blick  (=globales @ Level der  Steuerung)  des
Problembearbeitungsprozess geeignet. Dabei spielt ebenfalls das Zeitlimit der
kodierenden Episoden eine Rolle, die dazu fiihren, dass kiirzere metakognitive
Aussagen bzw. Handlungen (=lokales Level der Steuerung) nicht unbedingt in der
Kodierung beriicksichtigt werden konnten. In Kapitel 5.4.1 wird ebenfalls
angedeutet, dass bspw. kiirzere Verifications bzw. reflektive Aktivititen in
gewissen Episoden eingebettet sind.

Die Lerngruppengrof3e stellt eine weitere Limitation dar, die insbesondere bei der
Analyse von Lea, Lisa, Sarah und Paula deutlich wird. In solcher Konstellation
entsteht haufig eine Vielfalt von Einflussfaktoren, die den stdndigen Wechsel
zwischen Episoden begiinstigen. Die Analyse solcher Prozesse gestaltet sich
besonders herausfordernd, da die einzelnen Beitrdge der verschiedenen Personen
schwer eindeutig einer Episode zugeordnet werden konnen. In der Bearbeitung
von Lea, Lisa, Sarah und Paula ist es bspw. vorgekommen, dass zwei Studierende
die Aufgabe bereits als vollstindig bearbeitet angesehen haben, wéhrend die
anderen beiden Studierenden noch in der Episode der Verification vertieft waren.

Wissensmatrix

In dieser Studie wurde die Wissensmatrix (Prediger et al., 2011) fiir verschiedene
Aspekte eingesetzt.

Die Wissensmatrix bietet vielfaltige Moglichkeiten, mathematische Inhalte als
prozedurales bzw. konzeptuelles Wissen einzuordnen (sieche z. B. Kapitel 4.4).
Diese Moglichkeiten sind jedoch im Hinblick auf die Auswertung und die
theoretische Einordnung in die Anforderungen der Aufgaben kritisch zu
betrachten. Um eine fundierte theoretische Einordnung zu gewéhrleisten, wurden
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Diskussionen mit mehreren Mitarbeiter:innen der Mathematikdidaktik gefiihrt
(siche Kapitel 5.3). Durch konsensuelle Validierung konnte ein gemeinsamer
Nenner gefunden werden, jedoch wurde in den Diskussionen auch deutlich, dass
alternative Einordnungen ebenfalls sinnvoll erscheinen. Eine unterschiedliche
Einordnung der mathematischen Inhalte wiirde ebenfalls einen Einfluss auf die
Auswertung ausiiben. Ein Beispiel dafiir ist die Einordnung der Regel von
L Hospital (eine Diskussion dazu in Kapitel 4.4): Wenn diese als konzeptuelles
und nicht als prozedurales Wissen aufgefasst wird, verschiebt sich die
Wissensnutzung der Studierenden ebenfalls starker in Richtung des konzeptuellen
Wissens.

Ein weiterer Aspekt betrifft die Mdglichkeit, das Angebot mit der Wissensmatrix
noch préziser zu untersuchen. Hierzu konnte eine Analyse der
Veranstaltungsmaterialien hinsichtlich der Quantitdt (Wie oft bzw. intensiv wird
die Facette behandelt?) und Qualitit (Wird die Facette vollumfénglich
dargestellt?) der dargestellten mathematischen Inhalte beitragen. Eine solche
Analyse wiirde es ermdglichen, detailliertere Aussagen iiber den Vergleich
zwischen Angebot und Nutzung zu treffen, anstatt lediglich festzustellen, ob ein
Angebot genutzt wurde.

Die Integration der Wissensfacette Implizite Nutzung hat sich im Kontext von
Bearbeitungsprozessen als besonders niitzlich erwiesen, da sie sich als
meistgenutzte Wissensfacette herausstellte. Dies ist nachvollziehbar da es bei
Hausaufgaben oft um die Anwendung bzw. den Anwendungskontext von
Konzepten, Zusammenhéngen und Verfahren geht. Zusammen mit der Expliziten
Formulierung spiegelt die Implizite Nutzung die definitorischen Ansitze des
prozeduralen Wissens gut wider (Kapitel 2.4.2). Daher konnten fiir diese beiden
Facetten Schwierigkeiten in den Bearbeitungen der Studierenden leicht
zugeordnet werden. Im Gegensatz dazu erwies sich die Interpretation anderer
Facetten, insbesondere von Bedeutung & Vernetzung, als weniger eindeutig und
war mit groerem Interpretationsspielraum  verbunden. Dies héngt
moglicherweise damit zusammen, dass die Facette Bedeutung & Vernetzung in
der urspriinglichen Wissensmatrix einen starken Bezug zum konzeptuellen
Wissen aufweist.

Es zeigt sich genauso wie bei den Schoenfeld Episoden, dass die Kodierung in
einem Gruppensetting herausfordernd ist. In kurzen Zeitspannen werden oft
verschiedene Wissenselemente angedeutet, was es schwierig macht, alle Aspekte
mit der Wissensmatrix abzubilden. Hier sto3t die Wissensmatrix an ihre Grenzen,
insbesondere wenn es darum geht, dynamische und komplexere Interaktionen zu
erfassen.

Letztendlich hat der Einsatz der Wissensmatrix auch forschungspraktische
Implikationen. Zum einen bietet die Wissensmatrix die Maoglichkeit,
mathematische Inhalte auf hochschulischer Ebene zu systematisieren und zu
strukturieren, was ihrem urspriinglichen Zweck fiir schulische Inhalte entspricht.
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Mit der Anpassung und Weiterentwicklung der Wissensmatrix fiir die
Hochschulforschung wurde sie jedoch auch in einer Weise verwendet, die iiber
ihren urspriinglichen Entwurf hinausgeht. Sie wurde zweckentfremdet, um die
Nutzung von Wissen in Problembearbeitungsprozessen darzustellen. In diesem
neuen Kontext bietet sie wertvolle Einsichten in die Art und Weise, wie
Studierende Wissen anwenden und zwischen verschiedenen Wissensarten
differenzieren. Dabei ermdglicht die Wissensmatrix nicht nur eine differenzierte
Analyse der Wissensnutzung, sondern auch eine tiefere Untersuchung der
Lernprozesse und ihrer Dynamik.

Heurismen

Fir diese Studie wurde fir die Kodierung von Heurismen auf ein bereits
bestehendes Kategoriensystem von Stenzel (2023a) zuriickgegriffen. Dieses
Kategoriensystem ist auf einige Aufgaben fiir den hochschulischen
Mathematikkontext angepasst. Obwohl die Aufgaben in der Studie
unterschiedlich waren, hat sich dennoch gezeigt, dass der bestehende
Kategorienkatalog (mit kleinen Anpassungen) auch fiir diese Untersuchung
geeignet ist. Eine Erginzung des Heurismus ,,systematisches Probieren™ hitte
jedoch vorgenommen werden kdnnen, da es insbesondere bei der Anwendung von
Spezialfillen Hinweise darauf gab, wie etwa bei David zur Aufgabe ,,L."Hospital®.
Hier wurden durch das Einsetzen verschiedener Werte Spezialfiille betrachtet, was
bei mehrfachem Einsetzen als systematisches Probieren interpretiert werden
konnte. In weiteren Studien im hochschulischen Kontext miissen ggfs. weitere
Anpassungen bzw. Erginzungen an dem Kategorienkatalog vorgenommen
werden.

7.4.3 Diskussion zum Kontext der Studie

Im Rahmen der Studie wurde festgestellt, dass Studierende typischerweise erst
eine Lernsession zur Bearbeitung der Hausaufgaben mit dem Studienleiter
vereinbart haben, nachdem sie in derselben Woche zuvor das Tutorium besucht
hatten. Es ist moglich, dass diese (auch von der Veranstaltung intendierte)
Reihenfolge die untersuchten Problembearbeitungsprozesse beeinflusst haben.

Die Struktur der Veranstaltung konnte insbesondere die frithen Phasen des
Problemléseprozesses, wie Reading oder Analysis, pragen. Da die Aufgaben im
Tutorium und in den Hausaufgaben eine starke Ahnlichkeit aufweisen (siche
Kapitel 5.3) und dazu in derselben PDF-Datei bereitgestellt werden, ist denkbar,
dass Studierende durch die Arbeit im Tutorium bereits erste Analysen oder
Ansitze entwickeln. Es ist auch nicht auszuschlie3en, dass Tutoren im Tutorium
in Nebensétzen auf die Hausaufgaben eingehen oder eine kurze Aufgabenanalyse
vorwegnehmen. Dieses Verhalten konnte erkldren, warum manche Studierende,
wie Alex und Thomas, direkt nach dem Tutorium mit der Bearbeitung der
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Hausaufgaben beginnen und schnell einen Plan entwickeln. Solche Bedingungen
konnten sich zudem auf die Wahl und Nutzung von Heurismen sowie Wissen
auswirken. Besonders der Heurismus Ahnliche Aufgabe scheint in diesem
Kontext eine bedeutende Rolle einzunehmen, da die Aufgabenformate ebenfalls
eng verwandt sind. Gleiches gilt fiir die Facette Konkretisierung & Abgrenzung.
Dariiber hinaus wirft die Authentizitdt der Bearbeitungssituation interessante
Fragen auf. Ein Vergleich mit der Studie von Schoenfeld (z.B. 1985) legt nahe,
dass die Struktur eines festgelegten Zeitrahmens andere Problemldseprozesse
hervorbringen konnte als freiere, alltdgliche Kontexte (siche z. B. an dem
Verhalten "wild goose chase"). Gleichzeitig konnten die zusétzlichen Anreize,
wie Bonuspunkte fiir die Klausur, eine besondere Motivation geschaffen haben,
die Problembearbeitung mit einem pragmatischen Ziel zu verbinden. Dies konnte
die Dynamik der Prozesse ebenfalls beeinflusst haben.

Es ist davon auszugehen, dass fiir die (Erstsemester-)Studierenden zum Zeitpunkt
der Studie die organisatorischen Herausforderungen des Ubergangs von der
Schule zur Hochschule weitgehend bewdéltigt waren. Die Abldufe des Semesters
und die Bedeutung regelmiBiger Aufgabenbearbeitungen sollten zu diesem
Zeitpunkt etabliert sein. Allerdings konnte die fachliche Eingewdhnung nach wie
vor Anpassungsprozesse erfordern, da die spezifische Herangehensweise und
Wissensvermittlung der Mathematik in diesem Studiengang weiterhin
Herausforderungen mit sich bringen konnten (Stoffels, 2020, S. xii). Diese
Uberlegungen deuten darauf hin, dass die Ergebnisse durch die fortlaufende
Eingewohnung in die fachlichen Anforderungen, jedoch nicht durch
organisatorische Unsicherheiten beeinflusst wurden.

AbschlieBend ldasst sich festhalten, dass mathematisches Problemldsen
idealerweise als dynamischer Prozess untersucht werden sollte. Ohne diesen
Fokus wiren viele Beobachtungen, wie etwa die Nutzung spezifischer
Heurismen, Wissenselemente und die spezifischen Verldufe der einzelnen
Prozesse, unerkannt geblieben.

7.4.4 Verallgemeinerbarkeit der Ergebnisse

Obwohl die Verallgemeinerbarkeit der Ergebnisse in qualitativen Studien in der
Regel eher eine untergeordnete Rolle spielt, soll dieser Aspekt dennoch beleuchtet
werden.

Gegen die Verallgemeinerbarkeit der Ergebnisse dieser Studie spricht, dass sie
ausschlieBlich mit Studierenden an einer einzelnen Universitit durchgefiihrt
wurde und auf einen spezifischen Kurs beschrankt ist. Dadurch ist die Anzahl an
teilnehmenden Studierenden begrenzt. Eine solche Fokussierung auf einen
kleinen Rahmen reduziert die Mboglichkeit, die Ergebnisse auf andere
Universititen bzw. Studiengidnge zu iibertragen. Dariiber hinaus war die
Teilnahme an der Studie freiwillig, was eine Positivauswahl der Studierenden
begiinstigt. Es ist daher davon auszugehen, dass primér motivierte Studierende an
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der Studie teilgenommen haben, die ohnehin die eigene Motivation aufbringen,
die wochentlichen Hausaufgaben zu bearbeiten. Die Stichprobe der vorliegenden
Arbeit reprisentiert daher moglicherweise nicht die gesamte Spannbreite an
Motivation und Engagement innerhalb der Zielgruppe. Zusitzlich deuten die
Abiturnoten der Studierenden darauf hin, dass es sich vorwiegend um
Teilnehmende mit guten bis befriedigenden schulischen Leistungen (mit der
Ausnahme von Lukas) und somit ausreichendem Vorwissen handelt. Dieser
Umstand schlieBt moglicherweise jene Studierende aus, die eher
unterdurchschnittliche Leistung erbringen, wodurch ein verzerrtes Bild der
Zielgruppe entsteht. Es kann in dem Fall dadurch nicht von einem geséttigten
Sampling im Sinne der Grounded Theory gesprochen werden (Strauss & Corbin,
1996). Die wenigen untersuchten Prozesse (N=13) waren zudem nicht einheitlich,
da sie sowohl individuelle als auch Gruppenprozesse beinhalteten. Da
kollaboratives Lernen nachweislich Einfluss auf den Problemlésungsprozess hat
(Dahl et al., 2018; Pijls et al., 2007), sind diese Prozesse untereinander nicht direkt
vergleichbar. Dies erschwert die Ableitung verlésslicher Schlussfolgerungen und
reduziert die Aussagekraft der Ergebnisse in Bezug auf ihre
Verallgemeinerbarkeit.

Die verwendeten Aufgaben in dieser Studie konnten jedoch Hinweise auf eine
Ubertragbarkeit in andere Studiengiinge liefern, insbesondere etwa fiir das Fach-
bzw. gymnasiale Lehramtstudium. Die Art der Aufgaben kdnnten ebenfalls in
solchen Studiengéngen eingesetzt werden. Allerdings wire zu iiberlegen, ob diese
Studierendengruppe die Aufgaben dhnlich bearbeiten. Es ist denkbar, dass die
Bearbeitungsprozesse aufgrund anderer Vorkenntnisse oder Féhigkeiten im
Umgang mit mathematischen Inhalten deutlich variieren wiirden. Wahrend die
Aufgaben im Kontext eines ingenieurwissenschaftlichen Kontextes als Probleme
eingestuft werden konnen (Kapitel 6.4.3), konnen dieselben Aufgaben fiir
Studierende der Fach- bzw. Lehramtsmathematik als eher ,,einfache* Aufgaben
wahrgenommen werden. Es ist dennoch naheliegend zu vermuten, dass auch
Aufgaben mit Beweischarakter, wie etwa die Aufgabe zum ,Mittelwertsatz*,
dhnliche Probleme hervorrufen koénnten.

7.5 Ausblick

In den vorherigen Kapiteln der Diskussion wurden an mehreren Stellen bereits
mogliche Richtungen fiir zukiinftige Forschungen angedeutet. Aufbauend auf den
bisherigen Ausfiihrungen werden im Folgenden diese und weitere Uberlegungen
explizit ausgefiihrt. Dabei werden verschiedene Themen aufgegriffen und
mogliche Ansétze fiir zukiinftige Forschungsarbeiten skizziert.

Verallgemeinerbarkeit Die Verallgemeinerbarkeit der Ergebnisse dieser
Untersuchung ist in gewisser Weise limitiert, wie bereits in Kapitel 7.4.4
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angesprochen. Da die Untersuchung in einem sehr spezifischen Rahmen
stattgefunden hat, ist es von Interesse, wie sich die Ergebnisse in anderen
Kontexten darstellen wiirden. Beispielsweise hat Stenzel (2023a, S. 891f.) bereits
einige Aufgaben aus dem ersten Semester von Fachstudierenden sowie
gymnasialen Lehramtsstudierenden untersucht. Eine spannende anschlieende
Fragestellung wire, wie mathematische Problembearbeitungsprozesse in hheren
Fachsemestern ablaufen, in denen die fachmathematischen Inhalte komplexer
werden, aber die Studierenden auch iiber mehr Erfahrung und Vorwissen
verfiigen. Ein weiterer interessanter Ansatzpunkt wére die Analyse der
mathematischen Problembearbeitungsprozesse von Studierenden anderer
Fachrichtungen, etwa von Wirtschaftswissenschaftsstudierenden. Diese Gruppe
weist aufgrund ihrer eher anwendungsorientierten Ausrichtung gewisse
Parallelen zur Ingenieursmathematik auf und kdnnte zusétzliche Perspektiven auf
die Problemldsestrategien bieten. Aber auch Untersuchungen in einem sehr
dhnlichen Kontext konnten wertvolle Erkenntnisse liefern. Beispielsweise wire
es relevant zu priifen, ob sich die Ergebnisse dieser Studic mit
Ingenieurstudierenden an einer anderen Hochschule replizieren lassen. Dies
wiirde weitere Aufschliisse hinsichtlich der Verallgemeinerbarkeit liefern und zur
Sattigung des Samplings beitragen (Strauss & Corbin, 1996).

Problemlésen in Gruppen oder als Individuum Ein weiterer Aspekt betrifft das
Problemlésen in Gruppen (Liljedahl & Cai, 2021) im Vergleich zum individuellen
Arbeiten. Kollaboratives Lernen zeigt, dass Lernende von ihren
Gruppenmitgliedern profitieren konnen, indem sie bspw. neue Perspektiven
einbringen oder die eigenen Ideen gemeinsam besprechen (Dahl et al., 2018; Pijls
et al,, 2007). Auch in der vorliegenden Studie lieB sich beobachten, wie
Gruppenmitglieder voneinander profitieren: Zum einen wurden in den
untersuchten Lerngruppen zahlreiche metakognitive Kommentare geduBert, wie
etwa ,,Das miissen wir jetzt so machen, oder? oder ,,Hast du das auch so?*.
Solche Beitrdge, obwohl oft nur kurze ,Einzeiler, erméglichten es den
Teilnehmenden, sich schnell gegenseitig abzusichern oder gemeinsam Ideen fiir
den weiteren Losungsweg zu prifen. Dadurch konnten sie den
Problembearbeitungsprozess effektiv vorantreiben, was auf die potenzielle
Bedeutung solcher kurzen Kommentare fiir den Gesamtprozess hinweist. Zum
anderen wurde deutlich, dass Gruppenmitglieder in der Lage sind, andere
Teilnehmende gezielt in eine bestimmte Richtung zu lenken. Bspw. zeigte sich in
den Prozessen der Gruppe um Lea, Lisa, Sarah und Paula, dass durch das
Eingreifen eines Gruppenmitglieds der Losungsprozess von der Exploration auf
einen produktiven Weg zuriickgefiihrt wurde. Solche metakognitiven Einwénde,
die in Einzelsettings haufig fehlen, haben in einem Gruppensetting grof3es
Potenzial, da sie nicht nur den Problembearbeitungsprozess strukturieren,
sondern auch den Austausch von Wissen und Strategien férdern kénnen. Dariiber
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hinaus ldsst sich vermuten, dass Gruppenarbeitsprozesse eine wichtige Rolle
beim Schlieen von Wissensliicken spielen. Wahrend der Diskussion oder durch
direkte Riickmeldungen zwischen den Gruppenmitgliedern konnte bisher
inaktives Wissen aktiviert oder fehlendes Wissen ergénzt werden, was die
Qualitdt und Tiefe der Problembearbeitung steigert (Pijls et al., 2007). Diese
Aspekte wurden in der vorliegenden Arbeit lediglich angedeutet, konnten jedoch
in einem anderen Forschungssetting, das den Vergleich zwischen Gruppen- und
Einzelarbeit gezielt in den Fokus riickt, genauer untersucht werden.

Lernen durch Problemlésen Ein weiterer Aspekt, der vertieft untersucht werden
konnte, ist das Lernen durch Problemldsen. Obwohl dieser Aspekt in der
vorliegenden Untersuchung nicht explizit im Fokus stand, deutet sich an
verschiedenen Stellen an, dass das Bearbeiten von Problemen einen positiven
Einfluss auf das Verstdndnis mathematischer Konzepte, Zusammenhéinge und
Verfahren haben kann. Selbst in Féllen, in denen der Bearbeitungsprozess nicht
zu einer erfolgreichen Losung fiihrte, lieBen sich dennoch Verbesserungen im
mathematischen Verstdndnis beobachten (z. B. in Davids Prozess zur Aufgabe
,Mittelwertsatz*). In diesem Zusammenhang stellt sich die grundlegende Frage,
wann notwendiges Wissen fiir die Problemldsung aufgebaut werden sollte — vor
Beginn des Prozesses oder erst wihrenddessen? (Stenzel, 2023a, S. 209).
Zukiinftige Forschung konnte untersuchen, welche spezifischen Aspekte
tatsichlich durch Problemldsen gelernt werden konnen und welche
Mindestvoraussetzungen erfiillt sein miissen, damit ein Lernzuwachs moglich ist.
Es stellt sich die Frage, welche Wissensliicken wihrend des Prozesses noch
ausgeglichen werden konnen und ab wann solche Liicken den
Problembearbeitungsprozess uniiberwindbar erschweren. Insbesondere das
Uberwinden von Schwierigkeiten innerhalb der Facette Explizite Formulierung
hat sich als férdernd fiir den Problembearbeitungsprozess erwiesen. Eine vertiefte
Untersuchung, wie genau diese Herausforderungen bewiltigt werden, konnte
wertvolle Einblicke liefern. Eine weitere Frage wire, welche Formen von
Metakognition notwendig sind, um Problemldsestrategien effektiv anzuwenden.
Welche Strategien helfen, die explizite Formulierung einer Aufgabe besser zu
verstehen und in eine zielfiihrende Bearbeitung zu iiberfiihren?

Ein weiterer Aspekt, der im Kontext des Lernens durch Problemldsen vertieft
betrachtet werden konnte, betrifft die Unterscheidung zwischen Heurismen
und Lernstrategien. Heurismen wie Ahnliche Aufgabe sind eine oft genutzte
Methode, die Studierende anwenden, um ihre eigenen Losungen voranzutreiben.
Diese Art von Heurismus fordert den Fortschritt im Losungsprozess, und fillt
gleichzeitig eher unter einer Wiederholungsstrategie (=Oberflachenstrategie).
Interessanterweise  zeigt sich, dass diese scheinbar oberflichliche
Herangehensweise  hdufig  eine  positive  Auswirkung auf den
Problembearbeitungsprozess und damit auf den Lernprozess insgesamt hat.
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Goller (2020, S. 214) hat ebenfalls schon beschrieben, dass Studierende unter
anderem auch Wiederholungsstrategien nutzen, um Aufgaben besser zu
verstehen und ihr Wissen zu vertiefen. Inwieweit solche ,,algorithmischen®
Heurismen als Teil des ,,guten® Problemldsens angesehen werden sollten, ist eine
relevante Frage.

Rolle von Metakognition (bei Episodeniibergingen) Die Kategorie Steuerung
wurde in der vorliegenden Arbeit primér auf globaler Ebene untersucht. Dabei
wurden vor allem die Hauptentscheidungen beriicksichtigt, wie sie durch die
Episoden in Schoenfelds Modell beschrieben werden. Fiir zukiinftige Forschung
bietet es sich jedoch an, die Steuerung auch auf lokaler Ebene niher zu betrachten
(z. B. mit dem Kategoriensystem von Cohors-Fresenborg & Kaune, 2007). Ein
solcher Ansatz wiirde nicht nur die Hauptentscheidungen sichtbar machen,
sondern auch die metakognitiven Aktivititen innerhalb der einzelnen Episoden
beleuchten. Besonders interessant wire in diesem Zusammenhang der Fokus auf
die Ubergiinge zwischen den Episoden, wie bereits in Rott (2013, S. 375ff)
thematisiert und in Kapitel 6.4.2 anhand der Uberginge aus der Exploration
angedeutet. Es zeigt sich, dass bestimmte Episoden stirker mit einem
erfolgreichen Problembearbeitungsprozess assoziiert sind. Daraus ergibt sich die
spannende Frage, welche spezifischen Aktivitdten oder Strategien dazu beitragen,
dass Lernende aus weniger produktiven Episoden herausfinden und erfolgreich
in andere, zielfiihrendere Episoden eintreten konnen. Eine vertiefte Untersuchung
der metakognitiven Aktivitdten auf lokaler Ebene konnte somit wertvolle
Erkenntnisse dariiber liefern, wie Steuerungsprozesse auf Mikroebene das
Gesamtergebnis des Problemldsens beeinflussen und welche Faktoren gezielt
gefordert werden konnen, um den Erfolg von Problembearbeitungsprozessen zu
steigern.

Zusammenhinge und Einfluss zwischen den Kategorien In der vorliegenden
Untersuchung wurde bereits thematisiert, dass es Interaktionen zwischen
verschiedenen Kategorien (Steuerung, Wissen und Heurismen) gibt (Kapitel
6.4.1), die scheinbar typisch fiir Problembearbeitungsprozesse sind. Diese
Interaktionen erdffnen eine spannende Richtung fiir zukiinftige Forschung: Es
konnte genauer untersucht werden, inwiefern einzelne Kategorien sich
gegenseitig beeinflussen. Zum Beispiel wire es interessant herauszufinden,
welche Heurismen bevorzugt in bestimmte Episoden fiithren oder durch welche
Wissenselemente ein spezifischer Heurismus begiinstigt wird. Solche Analysen
konnten dazu beitragen, die Wechselwirkungen zwischen Wissen, Heurismen und
Steuerung besser zu verstehen und so ein umfassenderes Bild der zugrunde
liegenden Mechanismen zu zeichnen.
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Einbezug von Beliefs Um das Modell von Schoenfeld weiter zu
vervollstindigen, kann auch die Betrachtung von Beliefs (Uberzeugungen)
einbezogen werden. Diese spielen ebenfalls eine bedeutende Rolle in der Art und
Weise, wie Studierende mathematische Probleme angehen und 16sen (Pekrun,
2006; Schoenfeld, 1985). Uberzeugungen beeinflussen sowohl die Wahrnehmung
von Aufgaben als auch die Wahl der Strategien, die wahrend des Problemldsens
angewendet werden. Es konnte daher sinnvoll sein, Methoden miteinander zu
verkniipfen, um die Rolle der Beliefs besser zu erfassen. Eine Kombination aus
Interviews, Lautem Denken und ,,Stimulated Recall* wiirde es ermdglichen,
sowohl die expliziten AuBerungen der Studierenden als auch ihre inneren
Uberzeugungen und mentalen Prozesse zu untersuchen. Diese Methoden bieten
unterschiedliche Zugénge, die zusammen ein umfassenderes Bild von den Beliefs
der Studierenden und deren Einfluss auf den Problembearbeitungsprozess
verschaffen konnten. Der Einfluss der Beliefs bietet eine Grundlage, um
unterschiedliche Herangehensweisen besser zu verstehen sowie deren Rolle beim
Lernen und Problemldsen in der Mathematik zu analysieren. Eine solche
Untersuchung konnte wertvolle Erkenntnisse fiir die zielgerichtete Gestaltung
von Lernumgebungen liefern.

Mathematisches Problemlésen und allgemeines Problemlésen Die
vorliegende Studie hat lediglich innermathematische Probleme untersucht.
Allerdings bieten insbesondere die Anwendungsficher der Mathematik, wie die
Ingenieurstudiengéinge, eine Gelegenheit, mathematikhaltige Probleme aus
realistischen Anwendungskontexten zu betrachten. Solche Aufgaben, wie sie
bspw. von Lehmann (2018, S. 138) genutzt werden, konnten den
Problembearbeitungsprozessen von Studierenden ndher an den tatséchlichen
Herausforderungen eines Ingenieursberufs sein. Dies ist besonders interessant, da
Problemldsen sowohl aus mathematischer Sicht als auch aus der allgemeinen
Ingenieursperspektive aufgefasst werden kann (Neumann et al.,, 2015). Die
Betrachtung solcher Aufgaben konnte die Unterschiede und Gemeinsamkeiten
zwischen diesen beiden Auffassungen herausarbeiten. Dies kdnnte wertvolle
Einblicke in die Entwicklung und den Transfer von Problemldsekompetenzen
bieten. Ubertréigt sich bspw. die mathematische Problemldsekompetenz auf
allgemeine Ingenieurprobleme?

Einbezug der Problemschwierigkeit In zukiinftigen Untersuchungen zum
mathematischen  Problemldsen  konnte  die  Beriicksichtigung  der
Problemschwierigkeit eine wertvolle Erweiterung darstellen (vgl. Stiller et al.,
2021, S. 4f). Aspekte wie die Komplexitdt, Vernetztheit, etc. kdnnten
systematisch in die Aufgaben- und Prozessanalysen integriert werden. Diese
Faktoren, die zur Kategorie der Problemschwierigkeit gehoren, haben das
Potenzial, den Verlauf und die Gestaltung der Problembearbeitungsprozesse
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maBgeblich zu beeinflussen. Eine detaillierte Analyse konnte aufzeigen, wie
unterschiedliche Schwierigkeitsgrade die Wahl von Heurismen, den Einsatz von
Wissen oder die Dynamik von Episodenwechseln beeinflussen und welche
Anpassungen im Vorgehen der Lernenden erforderlich sind, um solche
Herausforderungen zu bewaltigen. Dariiber hinaus bieten diese Aspekte ecine
zusétzliche Perspektive, die iiber die ilibliche Einordnung in prozedurales und
konzeptuelles Wissen hinausgeht. Wahrend diese Einteilung oft den Schwerpunkt
auf die Art des Wissens legt, konnten Probleme unterschiedlicher Schwierigkeit
zeigen, wie sich verschiedene Arten von Wissen und Fahigkeiten dynamisch
erganzen.

Wissensmatrix als Instrument Die Wissensmatrix spielte in dieser Arbeit eine
zentrale Rolle und wurde vielféltig eingesetzt. Sie diente zur Einordnung
mathematischer Inhalte (Kapitel 4), zur theoretischen Analyse der Aufgaben
(Kapitel 5.3) sowie zur Rekonstruktion des Wissensangebots (Kapitel 6.2.1) und
der Wissensnutzung (Kapitel 6.2.2). Damit zeigt die Wissensmatrix ihr Potenzial
und trug mafgeblich zur Durchfithrung und Auswertung dieser Arbeit bei.
Allerdings wurde die Wissensmatrix in der Hochschulforschung in einem
erweiterten, urspriinglich nicht vorgesehenen Kontext genutzt. Daher wére es eine
weitere Aufgabe, die Wissensmatrix weiter auszuschirfen und an spezifische
Anforderungen anzupassen, um ihre Einsatzmoglichkeiten zu erweitern.
Besonders im Bereich der Untersuchung von Wissensangeboten in
Lehrveranstaltungen besteht weiteres Potenzial, die Wissensmatrix gezielt
einzusetzen (Kapitel 7.4.2). Dabei stellt sich bspw. die Frage, wie Konzepte,
Zusammenhinge und Verfahren aus anderen Inhaltsbereichen, wie etwa der
Linearen Algebra, mithilfe der Wissensfacetten eingeordnet werden konnen.
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Anhang
Transkriptionsregeln

1. Das Transkript beginnt ab dem Zeitpunkt, wo die Personen (-gruppe)
mit der Aufgabenbearbeitung begonnen hat.

2. Die beobachtende Person wird durch ein ,I:* gekennzeichnet. Die
Interviewten/Studierenden erhalten einen anonymisierten Namen. Dieser
wird im Transkript angegeben und ausgeschrieben.

3. Es wird wortlich transkribiert, also nicht lautsprachlich oder
zusammenfassend. Vorhandene Dialekte werden mdglichst wortgenau ins
Hochdeutsche (ibersetzt. Wenn keine eindeutige Ubersetzung moglich ist,
wird der Dialekt beibehalten, zum Beispiel: Ich gehe heuer auf das
Oktoberfest.

4. Wortverschleifungen werden nicht transkribiert, sondern an das
Schriftdeutsch angenahert. Beispielsweise ,,Er hatte noch so‘n Buch
genannt® wird zu ,,Er hatte noch so ein Buch genannt und ,,hamma* wird
zu ,haben wir“. Die Satzform wird beibehalten, auch wenn sie
syntaktische Fehler beinhaltet, beispielsweise: ,,bin ich nach Kaufhaus
gegangen®.

5. Wort- und Satzabbriiche, Stottern, Wortdopplungen etc. werden nicht
geglattet, sondern so gut wie mdoglich im Transkript wiedergegeben.
,,Ganze“ Halbsitze, denen nur die Vollendung fehlt, werden mit dem
Abbruchzeichen / gekennzeichnet.

6. Sprechertiberlappungen werden mit // gekennzeichnet. Bei Beginn des
Einwurfes folgt ein //. Der Text, der gleichzeitig gesprochen wird, liegt
dann innerhalb dieser // und der Einwurf der anderen Person steht in einer
separaten Zeile und ist ebenfalls mit // gekennzeichnet. Die Zeitmarke der
anderen Person bzw. des neuen Absatzes beginnt dementsprechend ab
dem Zeitpunkt, wo gleichzeitig und nicht alleine gesprochen wird.
AnschlieBende AuBerungen werden direkt dahinter transkribiert.

7. Interpunktion wird zu Gunsten der Lesbarkeit geglattet, das heif3t bei
kurzem Senken der Stimme oder uneindeutiger Betonung wird eher ein
Punkt als ein Komma gesetzt. Dabei sollen Sinneinheiten beibehalten
werden.

8. Eine Pause von zwei Sekunden wird mit ,,..“ markiert, eine Pause von
drei Sekunden mit ,,...*“ und eine Pause von mehr als drei Sekunden wird
in eckigen Klammern gekennzeichnet (z.B. [5 Sek.].

9. Umplanungen der letzten Satzkonstruktion werden mit einem Komma
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gekennzeichnet. (z.B. ,, Wenn ich, also naja, wenn ich, ich denke also dass,
es istja..*)

10. Verstandnissignale des gerade nicht Sprechenden wie ,,mhm, aha, ja,
genau, dhm* etc. werden ebenfalls transkribiert.

mhm Partikel, zustimmend / bejahend

hmm Partikel, zweifelnd (Personenabhéngig!)

Mm / eheh Verneinend / ablehnend (Stimme geht nach unten)
Ne Bedeutet ,,Ja, stimme ich zu*, z.B. ,,Ist doch so, ne?*

Nee Bedeutet ,,Nein®, z.B. , Nee, seh ich nicht so.“

11. Jeder Sprecherbeitrag erhalt eigene Absdtze. Auch kurze Einwirfe
werden in einem separaten Absatz transkribiert. Mindestens am Ende
eines Absatzes werden Zeitmarken eingeftigt.

12. In Situationen, wo nur eine Person entweder die gesamte Zeit oder
tiber einen langeren Zeitraum spricht, wird nach ca. ein oder zwei Minuten
ein Absatz hinzugefiigt, sobald der gesprochene Satz beendet wurde. Bei
einem hoheren Sprechtempo wird dieser nach einer Minute und bei einem
langsameren nach zwei Minuten angesetzt. Dies wird innerhalb eines
Transkripts einheitlich gestaltet, kann sich jedoch bei verschiedenen
Transkripten unterscheiden.

13. Unverstandliche Worter werden mit (unv.) gekennzeichnet. Langere
unverstandliche Passagen sollen méglichst mit der Ursache versehen
werden (unv., Handystorgerdusch) oder (unv., Mikrofon rauscht).
Vermutet man einen Wortlaut, ist sich aber nicht sicher, wird das Wort
bzw. der Satzteil mit einem Fragezeichen in Klammern gesetzt. Zum
Beispiel: (Xylomethanolin?). Auch Teilsatze, bei denen man sich nicht
sicher ist, werden in einer Klammer mit einem Fragezeichen
gekennzeichnet.

14. Ist man sich bei einer Personengruppe nicht sicher, wer gerade spricht
(falls dies bspw. in einem Video nicht erkennbar sein sollte), wird der
Name, welcher vermutet wird, in Klammern geschrieben und mit einem
Fragezeichen versehen (z.B. (Lisa?): ...)

15. Handlungen, Interaktionen und nonverbale AuRerungen der
Interviewpartner werden protokolliert, indem z.B. in eckigen Klammern
notiert wird, worauf die Person gerade zeigt oder welche
Handbewegungen sie macht (sofern diese fiir das Verstandnis wichtig
sind).
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16. Wenn einer der Interviewten dem anderen im Gespréch zustimmt,
wéhrend die andere Person aber noch spricht, wird dies im Transkript
deutlich gemacht: [Emily zustimmend]. Spricht das Gegeniiber gerade
nicht mehr bzw. hat seinen Absatz bereits vollendet, dann wird die
Zustimmung wortwortlich in das Transkript Gbernommen.

17. Werden Formen, Zahlen, Gleichungen etc. vorgelesen, werden diese
wadrtlich ausgeschrieben.
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Weitere Abbildungen

Interaktionen zwischen Steuerung und Heurismen hinsichtlich der
Aufgaben

Aufgabe ,,Differenzierbarkeit priifen‘

Codesystem Readi..  Analysis Explor.. Planni. Imple.. Verific.. | Transi..
(=g Begriffe kldren (Bk) 2
(=g Skizze (Skiz) 1

(=4 Imaginre Figur (imF) 1

(=4 Spezialfall (SpF)

(=4 Fallunterscheidung (FU)

(=g MNutzung aller Voraussetzungen (NVor)
(=4 Systematisierungshilfen (SyH)

(=g Metapher (Met)

= Rickfihrungsprinzip (RFP)

@1 Ahnliche Aufgaben (Ahn)

(=g Suche nach nitzlichen Hinweisen (niH

(=4 Rilckwirtsarbeiten (RiA)

@1 Vorwirtsarbeiten (V)

Aufgabe , Mittelwertsatz*

Codesystem Readi... Analysis Explor.. Planni.. | Imple.. Verific.. Transi..
(=g Begriffe kldren (Bkl)
5 Skizze (Skiz)
=4 Imagindre Figur (imF)
(=4 Spezialfall (SpF)
(=g Fallunterscheidung (FU)
(=g Nutzung aller Voraussetzungen (NVor)
(=g Systematisierungshilfen (SyH)
(=g Metapher (Met)
& Rickfihrungsprinzip (RfP)
@1 Ahnliche Aufgaben (Ahn)
&4 Suche nach nitzlichen Hinweisen (naH
(=g Riickwértsarbeiten (ROA)
& W Worwidrtsarbeiten (V)




Aufgabe ,,L"Hospital“:

Codesystem
(=g Begriffe klren (BkI)
(=g Skizze (Skiz)
(=4 Imaginare Figur (imF)
(=4 Spezialfall (SpF)
(=g Fallunterscheidung (FU)

(=g Mutzung aller Voraussetzungen (NVor)
(=4 Systematisierungshilfen (SyH)

(=g Metapher (Met)
@] Riickfihrungsprinzip (RfP)
@1 Ahnliche Aufgaben (Ahn)

(=g Suche nach nitzlichen Hinweisen (nidH

(=g Rickwartsarbeiten (ROA)
= 'Vorwirtsarbeiten (V)
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Readi..  Analysis | Explor.. Planni.. Imple.. Verific..  Transi..

1 1 1 1 ] 1

Interaktionen zwischen Steuerung und Wissen hinsichtlich der Aufgaben

Aufgabe ,,Differenzierbarkeit priifen‘:

Codesystem

{2¢ Konzeptuelles Wissen

(@4 Prozedurales Wissen
. SUMME

Codesystem
oy
(=g Explizite Formulierung
(&g Konkretisierung & Abgrenzung
(&g Bedeutung & Vernetzung
(=g Konventionelle Festlegungen
Z SUMME

Readi... Analysis Explor.. Planni.. | Imple.. Verific.. Transi.. SUMME
: 2
40

0 13 21 9 9 4 & 62

Readi... Analysis Explor.. Planni.. Imple.. Verific.. Transi.. SUMME

i

n

&
20
8
0 13 23 9 9 4 ] 64
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Aufgabe , Mittelwertsatz™:

SUMME

Transi...

Readi...  Analysis | Explor... Planni.. Imple.. Werific..

Codesystem

(=g Prozedurales Wissen &

2 SUMME 4 11 11 1 4 56
Codesysten Read..| Analysis | Explor.._ Planni.._imple.. | Verfic..| Transi.. SUMME
(=gl Implizite Nutzung 2 26
(=g Explizite Formulierung &
(=gl Konkretisierung & Abgrenzung 14
(gl Bedeutung & Vernetzung 17
(=gl Konventionelle Festlegungen 3
T SUMME 4 12 24 7 14 1 4 66

Aufgabe: ,,L "Hospital
Codesystem Readi... Analysis Explor..  Planni.. Imple.. Verific.. Transi.. SUMME
12

C.‘ Prozedurales Wissen
7 SUMME 2 3 30 3 15 2 4

L
[¥=)

e Analysis Explor... Planni... Imple..  Verific.. Transi.. SUMME
@.‘ Implizite Nutzung 23
4

(&g Explizite Formulierung
(=g Konkretisierung & Abgrenzung

I
=5

(=g Bedeutung & Vernetzung 3
(@4 Konventionelle Festlegungen 3
T SUMME 2 2 25 3 15 2 2 51
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Interaktionen zwischen Heurismen und Wissen hinsichtlich der Aufgaben

Aufgabe ,,Differenzierbarkeit priifen‘
Codesystem Begrif... Skizze.. Imagi.. Spezi.. Fallun..
@g Konzeptuelles Wissen
@y Prozedurales Wissen

Codesystem Begrif.. | Skizze.. Imagi. Spezi. | Fallun,
(@4 Implizite Nutzung
g Explizite Formulierung [ 1]
3 Konkretisierung & Abgrenzung
& Bedeutung & Vemetzung
&4 Kenventionelle Festlegungen

Aufgabe , Mittelwertsatz*

Codesystem Begrif... Skizze... Imagi.. Spezi.. Fallun..
(@4 Konzeptuelles Wissen 9 10 5 2
(g Prozedurales Wissen

Codesystem Begrif... Skizze.. Imagi. Spezi. | Fallun...
(24 Implizite Nutzung
4 Explizite Formulierung
(&4 Konkretisierung & Abgrenzung
(&4 Bedeutung & Vernetzung
(T4 Kenventionelle Festlegungen

Aufgabe ,,L "Hospital“:

Codesystem Begrif... Skizze... Imagi.. | Spezi.. Fallun..
(&g Konzeptuelles Wissen
(&g Prozedurales Wissen

Codesystem Begrif... Skizze.. Imagi. Spezi.. Fallun..
(g Implizite Nutzung 4
(=g Explizite Formulierung

g Konkretisierung & Abgrenzung
(g Bedeutung & Vemetzung
g Konventionelle Festlegungen

Mutzu... | Syste.. | Meta
1

L i

ROCKF... | Ahnlic.. Suche...| ROCK.

Hutzt Riickf... Ahnlic.. Suche.. Riick.

1

Mutzu... Syste.. Meta.. Rickf.. Ahnlic.. Suche.. Rick..

Hutz! Riickf... Ahnlic.. Suche.. Riick..

e

Syste.. Met

r

Mutzu... Syste.. | Meta.. Rickf.. Ahnlic.. Suche.. | Rick..
1 1

Mutzu... Syste.. Meta.. Ruckf.. Ahnlic.. Suche.. Ruck..

]

VOrwa...

Vorwa,

Vorwd

Vorwa...

Vorwa...

Vorwa.

IH
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