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Geleitwort  

 

Die empirische Beforschung von Lehr-Lernprozessen von 

Mathematikstudierenden hat in den letzten Jahren im Rahmen der gesteigerten 

Aufmerksamkeit gegenüber hochschuldidaktischer Forschung zwar 

zugenommen, dennoch sind qualitative Lernprozessstudien mit der 

Lernendengruppe der Nebenfach-Studierenden weiterhin noch kaum vertreten. In 

seiner Dissertation widmet sich Tim Kolbe daher diesem Desiderat, genauer 

beschäftigt er sich mit Lernprozessen bei Hausaufgabenbearbeitungen im 

Ingenieurstudium. Mit qualitativen Prozessanalyse bearbeitet Herr Kolbe den 

Themenbereich des mathematischen Problemlösens und rekonstruiert durch 

Prozessanalysen von Hausaufgabenbearbeitungen zu Inhalten der Analysis das 

von Studierenden aktivierte Wissen und Heurismen zur Überwindung von 

Schwierigkeiten und Hürden in individuellen Problemlösesituationen. Dafür 

integriert er Perspektiven der Problemlöseforschung in das Feld der 

hochschulmathematikdidaktischen Lernprozessforschung der 

Studieneingangsphase im Ingenieurstudium. 

Als Ausgangspunkte der Arbeit werden in Kapitel 1 die Spezifitäten des 

Mathematiklernens in Ingenieurstudiengängen aufbereitet und mit lehr-lern-

theoretischen Grundlagen des eigenverantwortlichen Lernens im 

Hochschulstudium verzahnt. In diesem Zusammenspiel wird die Relevanz von 

Hausaufgabenbearbeitungsprozessen für mathematisches Lernen aufgezeigt und 

motiviert, warum diese Prozesse mit Theorie und Methoden der (bislang 

überwiegend schulbezogenen) Problemlöseforschung betrachtet werden können.  

Die theoretischen Grundlagen zum Forschungsgegenstand mathematischen 

Problemlösens in der Hochschule werden nachfolgend in Kapitel 2 dargestellt. 

Ausgehend von der Relevanz mathematischen Problemlösens für ein 

Ingenieurstudium bereitet der Autor den aktuellen Forschungsstand zum 

Problemlösen mit Bezug auf die nationale und internationale Grundlagenliteratur 

und strukturiert nach den in Problemlöseprozessen beteiligten Konstrukten 

Steuerung, Wissen, Heurismen und Beliefs auf. 

Die Darlegung der Forschungsfragen erfolgt in Kapitel 3, in dem zunächst vorweg 

aufgezeigt wird, warum für die Kategorie des „Wissens“ eine inhaltliche 

Schwerpunktsetzung notwendig ist. Vor dem Hintergrund dieser 

Schwerpunktsetzung auf Inhalte der Differentialrechnung unterscheidet der Autor 

die zu bearbeitenden Forschungsfragen in stoffdidaktische und empirische 

Fragestellungen. Zur Bearbeitung der stoffdidaktischen Fragestellung dient 

Kapitel 4 der Arbeit. Im Anschluss an die Darlegung der Relevanz der 

Differentialrechnung für ein Ingenieurstudium wird das für den Ableitungsbegriff 

notwendige Vorwissen spezifiziert: der Funktionsbegriff, der Grenzwertbegriff 

und der Stetigkeitsbegriff werden jeweils fachdidaktisch mit Blick auf die 
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notwendigen aufzubauenden Vorstellungen, Verfahren, relevanten Darstellungen 

und potentiellen typischen Hürden mit Bezug auf nationale und internationale 

Vorarbeiten diskutiert. Anschließend wird die Spezifizierung des 

Ableitungsbegriff vorgenommen. Mit der Verschränkung der Theorie zu 

Wissensarten und Wissensfacetten gelingt es dem Autor, den komplexen 

Lerngegenstand für die Analysen aufzufalten und so den empirischen Teil der 

Arbeit stoffdidaktisch vorzubereiten.      

Im Methodenkapitel 5 werden Rahmen und Entscheidungen des 

Forschungsprojekts dargestellt. Die Darlegung erfolgt bezogen auf die 

Fokussierung der Dissertation auf die Prozesse der Hausaufgabenbearbeitungen 

in authentischen Lernsituationen mithilfe des lauten Denkens. Die folgenden 

Abschnitte dienen der Darstellung des lauten Denkens als Erhebungsmethode 

sowie der qualitativen Inhaltsanalyse als gewählte Auswertungsmethode. Ebenso 

werden im Kapitel 5 die Gütekriterien qualitativer Forschung sowie das 

Studiendesign beschrieben und bzgl. getroffener Entscheidungen reflektiert. Der 

Forschungsteil der Arbeit gliedert sich in Kapitel 6 in vier Unterkapitel 

entsprechend der Konstrukte „Steuerung“, „Wissen“, „Heurismen“ sowie eine 

integrierende Betrachtung der drei genannten Konstrukte zur Rekonstruktion 

potentieller Zusammenhänge der Konstrukte. Im Diskussionskapitel der Arbeit 

liefert Herr Kolbe prägnante Zusammenfassungen zu den Forschungsfragen und 

reflektiert das methodische Vorgehen der empirischen Studie mit Blick auf das 

laute Denken in Beobachtungssituationen des hochschulmathematischen (Selbst-

)Lernens.  

Mit dem gesetzten Schwerpunkt und Thema seiner Arbeit bearbeitet Herr Kolbe 

einen Bereich, der in der deutschsprachigen Mathematikdidaktik bislang wenig 

empirisch beforscht wurde und mit den verschiedenen, zu berücksichtigenden 

Perspektiven entsprechend komplex auftritt. Die Analyse der Lernprozesse aus 

den Perspektiven der gegenstandsspezifischen Verläufe und Schwierigkeiten 

sowie Problemlösen bietet einen detailreichen Einblick in die individuellen und 

gruppenbezogenen Hausaufgabenbearbeitungsprozesse. Die gewonnenen 

Ergebnisse stellen bedeutsame Anknüpfungspunkte für weitere 

Forschungsarbeiten dar und sind relevant für die mathematische Hochschullehre. 

Die Arbeit zeichnet sich damit auch durch eine hohe Praxisrelevanz bei 

gleichzeitig theoriegeleitetem Vorgehen aus.  

 

PADERBORN, IM AUGUST 2025 

 

 

 

 

Lena Wessel   



V 

 

Vorwort  

In diesem Vorwort möchte ich die Gelegenheit nutzen, all jenen zu danken, die 

mich während der Ausarbeitung meiner Dissertation unterstützt haben. 

Mein besonderer Dank gilt meiner Betreuerin, Prof. Dr. Lena Wessel. Sie hat mir 

den nötigen Freiraum für meine wissenschaftliche Arbeit gelassen und war 

dennoch stets nah am Forschungsprozess beteiligt. Ihre Unterstützung und die 

Möglichkeit, jederzeit auf ihre Hilfe zurückgreifen zu können, waren für mich 

äußerst wertvoll. Ebenso danke ich Prof. Dr. Michael Liebendörfer, der mich 

bereits seit meiner Zeit als Bachelor- und Master-Student begleitet hat. Er stand 

mir stets zur Seite, wenn ich Unterstützung brauchte, und hat mir mit wertvollen 

Impulsen geholfen, meinen Weg in der Forschung zu finden. 

Mein Dank richtet sich außerdem an die gesamte Fachgruppe, mit der ich über 

die Jahre hinweg bereichernde Gespräche führen durfte, sei es auf dem Flur, in 

Pausen oder bei anderen Gelegenheiten. Besonders schätze ich die regelmäßigen 

AG-Sitzungen der AG Wessel sowie das Oberseminar „khdm“ bzw. „Sek 

II/Hochschule“. In diesen Formaten habe ich meine Forschung geteilt, 

konstruktives Feedback erhalten und hilfreiche Diskussionen geführt. 

Ein großer Dank gilt auch einzelnen Personen, die mich während dieser Zeit 

besonders unterstützt haben. Zunächst möchte ich meine Bürokollegin Anna 

Dellori erwähnen, mit der ich die gesamte Zeit das Büro teilen durfte. Wir haben 

zeitgleich begonnen und uns auf unserem Weg durch die Promotion stets 

gegenseitig unterstützt. Ebenfalls bedanken möchte ich mich bei Laura Burr, die 

nicht nur während vieler gemeinsamer Konferenzen, sondern auch im informellen 

Rahmen abseits des Tagungsprogramms zu einer angenehmen Erfahrung 

beigetragen hat und mir darüber hinaus mit wertvollen Hinweisen und neuen 

Perspektiven wichtige Impulse zu meiner Forschung gegeben hat. 

Des Weiteren möchte ich meiner Hilfskraft Albina Klaus danken, die mich fast 

die gesamte Zeit begleitet hat. Sie hat ihre Aufgaben stets zuverlässig und mit 

großem Engagement erledigt, was mir eine enorme Entlastung war. Ein weiterer 

Dank gilt den Studierenden, die an meiner Studie teilgenommen haben – ohne 

ihre Unterstützung hätte ich keine Daten für meine Analysen und Auswertungen 

gehabt. In diesem Zusammenhang möchte ich auch Dr. Tobias Black 

hervorheben, der es mir ermöglicht hat, in seinen Veranstaltungen nach 

Teilnehmenden für meine Studie zu suchen. 

Besonders in der Endphase meiner Arbeit haben mich Dr. Max Hoffmann und Dr. 

Gero Stoffels intensiv unterstützt. Sie haben sich viel Zeit genommen, um meine 

Arbeit zu lesen, zu diskutieren und wertvolle Rückmeldungen zu geben. Ihre 

Investition hat meine Arbeit wesentlich vorangebracht. 

Abschließend möchte ich mich auch für die vielen schönen Momente außerhalb 

der Arbeit bedanken. Dazu zählen die WiMi-Touren, Fachgruppen- und AG-

Treffen sowie andere gemeinsame Aktivitäten, die für eine angenehme Balance 



VI 

 

zwischen Arbeit und Freizeit gesorgt haben. Stellvertretend möchte ich hier 

Markus Leifeld, Olga Lomas, Leonie Ahlemeyer, Birte Reich, Federica Becker, 

Oliver Baumann, Yannik Fleischer und viele weitere nennen. 

Nun wünsche ich viel Freude beim Lesen meiner Arbeit. 

 

  



VII 

 

Inhaltsverzeichnis 
Geleitwort ............................................................................................. III 

Vorwort ................................................................................................... V 

Abbildungsverzeichnis ........................................................................ XI 

Tabellenverzeichnis ........................................................................... XIV 

Einleitung ................................................................................................ 1 

1 Mathematisches Lernen im (Ingenieur-)Studium: 

Herausforderungen und Forschungslücken ......................................... 4 

1.1 Spezifitäten der Mathematik für Ingenieur:innen ....................................... 6 

1.2 Mathematik im Studium ........................................................................... 10 
1.2.1 Ziel des Fachs Mathematik ............................................................................ 10 
1.2.2 Fachlicher Inhalt der hochschulischen Mathematik ....................................... 11 
1.2.3 Spezifika der mathematischen Lehre ............................................................. 12 
1.2.4 Eigenverantwortliches Lernen ....................................................................... 14 
1.2.5 Spezifika des mathematischen Lernens .......................................................... 15 
1.2.6 Erfolgreiches Lernen ...................................................................................... 19 
1.2.7 Übertragung mathematikdidaktischer Ansätze auf die Ingenieurmathematik 20 

1.3 Die Bedeutung von Hausaufgaben im mathematischen Lernprozess ....... 23 
1.3.1 Hausaufgaben als Problem? ........................................................................... 23 

1.4 Zielsetzung dieser Arbeit .......................................................................... 25 

2 Mathematisches Problemlösen mit Blick auf die Hochschule ....... 27 

2.1 Relevanz des (mathematischen) Problemlösens für das Ingenieurstudium

 ........................................................................................................................ 27 
2.2 Begriffsklärung zum Problemlösen .......................................................... 28 
2.3 Steuerung .................................................................................................. 30 

2.3.1 Konzeptualisierung von Steuerung auf dem allgemeinen Level .................... 30 
2.3.2 Problemlösemodelle aus der Psychologie ...................................................... 31 
2.3.3 Problemlösemodelle aus der Mathematikdidaktik ......................................... 33 
2.3.4 Synthese zur Steuerung .................................................................................. 38 

2.4 Wissen ...................................................................................................... 39 
2.4.1 Konzeptualisierung mathematischen Wissens nach Schoenfeld .................... 39 
2.4.2 Unterscheidung von Wissensarten ................................................................. 41 
2.4.3 Unterscheidung von Wissensfacetten ............................................................. 43 
2.4.4 Synthese zum Wissen ..................................................................................... 47 

2.5 Heurismen ................................................................................................ 49 
2.5.1 Konzeptualisierung von Heurismen ............................................................... 49 
2.5.2 Kategorisierung von Heurismen .................................................................... 52 
2.5.3 Einsatz von Heurismen .................................................................................. 54 
2.5.4 Synthese zu Heurismen .................................................................................. 56 



VIII 

 

2.6 Beliefs ...................................................................................................... 56 

2.7 Neuere Studien zum mathematischen Problemlösen ................................ 57 

3 Forschungsfragen .............................................................................. 61 

3.1 Stoffdidaktische Fragestellungen zur Differentialrechnung ..................... 61 
3.2 Empirische Fragestellungen zur Untersuchung von 

Problembearbeitungsprozessen ...................................................................... 62 
3.2.1 Fragen zur Steuerung ..................................................................................... 63 
3.2.2 Fragen zum Wissen ........................................................................................ 65 
3.2.3 Fragen zu Heurismen ..................................................................................... 67 
3.2.4 Fragen zur gemeinsamen Betrachtung von Steuerung, Wissen und Heurismen

 ..................................................................................................................... 68 
4 Spezifizierung von Grundlagen der Differentialrechnung ............. 70 

4.1 Relevanz der Differentialrechnung im Kontext des Ingenieurstudiums ... 70 
4.2 Spezifizierung des Vorwissens für die Differentialrechnung .................... 72 

4.2.1 der Funktionsbegriff ....................................................................................... 73 
4.2.2 Der Grenzwertbegriff ..................................................................................... 78 
4.2.3 Der Stetigkeitsbegriff ..................................................................................... 81 

4.3 Spezifizierung konkreter Inhalte der Differentialrechnung ...................... 82 
4.3.1 Vier-Ebenen-Ansatz nach Hußmann und Prediger (2016) ............................. 83 
4.3.2 Ableitung........................................................................................................ 85 
4.3.3 Die Ableitungsregeln ..................................................................................... 93 
4.3.4 Der Mittelwertsatz ....................................................................................... 101 
4.3.5 Die Regel von L´Hospital ............................................................................ 104 
4.3.6 Bezug der Inhalte im Übergang Schule-Hochschule+ ................................. 106 

4.4 Zusammenfassung und Einordnung in die Wissensmatrix ..................... 107 

5 Methodische Ansätze und Entscheidungen zur Untersuchung der 

Problembearbeitungsprozesse ........................................................... 110 

5.1 Methodische Einordnung und Vorüberlegungen .................................... 110 
5.1.1 Einordnung in das qualitative Forschungsparadigma ................................... 110 
5.1.2 Methodische Überlegungen zur Erhebung von Problembearbeitungsprozessen

 ................................................................................................................... 111 
5.1.3 Lautes Denken als Erhebungsmethode ........................................................ 114 
5.1.4 Qualitative Inhaltsanalyse als Auswertungsmethode ................................... 118 
5.1.5 Berücksichtigung qualitativer Gütekriterien im Rahmen dieser Arbeit ........ 120 

5.2 Studiendesign ......................................................................................... 122 
5.2.1 Kontext der Studie ....................................................................................... 122 
5.2.5 Datenerhebung in authentischen Lernsituationen ........................................ 125 

5.3 Stoffdidaktische Analyse der bearbeiteten Aufgaben ............................. 129 
5.3.1 Aufgabe: Differenzierbarkeit ....................................................................... 131 
5.3.2 Aufgabe: Mittelwertsatz ............................................................................... 136 
5.3.3 Aufgabe: L´Hospital ..................................................................................... 140 



IX 

 

5.3.4 Begründung für die Auswahl der Aufgaben ................................................. 142 
5.4 Auswertungsmethoden zu den Prozessen der Problembearbeitungen .... 143 

5.4.1 Nutzung der Episoden nach Schoenfeld zur Rekonstruktion der Steuerung 143 
5.4.2 Verwendung der Wissensmatrix zur Rekonstruktion von Angebot und Nutzen 

mathematischen Wissens ........................................................................... 152 
5.4.3 Darstellung des Kategoriensystems zur Rekonstruktion von Heurismen ..... 159 

5.5 Auswertungsmethode zu den Produkten der Problembearbeitungen...... 164 

6 Analyse und Ergebnisse ................................................................... 169 

6.1 Rekonstruktion von Steuerung in den Problembearbeitungsprozessen .. 170 
6.1.1 Fallanalyse zur Steuerung mithilfe der Episoden nach Schoenfeld .............. 170 
6.1.2 Überblick zur Steuerung in den Problembearbeitungsprozessen ................. 179 
6.1.3 Darstellung und Gegenüberstellung der Problembearbeitungsprozesse der 

Lerngruppen .............................................................................................. 180 
6.1.4 Episodenwechsel in den Problembearbeitungsprozessen ............................. 189 
6.1.5 Identifikation von „wild goose chases“ ........................................................ 193 
6.1.6 Vergleich von erfolgreicher und nichterfolgreicher Steuerung ..................... 197 
6.1.7 Zusammenfassung der Ergebnisse zur Analyse der Steuerung .................... 203 

6.2 Rekonstruktion von Wissen in den Problembearbeitungsprozessen ....... 204 
6.2.1 Rekonstruktion des Wissensangebots ........................................................... 205 
6.2.2 Fallanalyse zur Wissensnutzung .................................................................. 208 
6.2.3 Überblick über die Wissensnutzung ............................................................. 214 
6.2.4 Wissensfokus der Problembearbeitungsprozesse ......................................... 220 
6.2.5 Auffälligkeiten im Prozess ........................................................................... 226 
6.2.6 Schwierigkeiten im Prozess ......................................................................... 228 
6.2.7 Vergleich zwischen Wissensangebot und -nutzung ...................................... 237 
6.2.8 Vergleich von erfolgreicher und nichterfolgreicher Wissensnutzung ........... 240 
6.2.9 Zusammenfassung der Ergebnisse zur Analyse des Wissens ....................... 243 

6.3 Rekonstruktion von Heurismen in den Problembearbeitungsprozessen . 244 
6.3.1 Überblick über die Nutzung der Heurismen ................................................. 244 
6.3.2 Aufgaben- bzw. lerngruppenabhängige Heurismen...................................... 248 
6.3.3 Vergleich von erfolgreicher und nichterfolgreicher Heurismennutzung ....... 254 
6.3.4 Zusammenfassung der Ergebnisse zur Analyse der Heurismen ................... 257 

6.4 Gemeinsame Analyse der Kategorien zu Problembearbeitungsprozessen

 ...................................................................................................................... 257 
6.4.1 Interaktion der Kategorien des Problemlösens ............................................. 258 
6.4.2 Zusammenhang zwischen Wissen, Heurismen und Episodenwechseln ....... 264 
6.4.3 Empirische Entscheidung zu Problemlöseprozessen .................................... 268 
6.4.4 Zusammenfassung der Ergebnisse zur Analyse der gemeinsamen Betrachtung

 ................................................................................................................... 272 
7 Diskussion ......................................................................................... 273 

7.1 Kurzzusammenfassung der empirischen Studie ..................................... 273 

7.2 Beantwortung der empirischen Forschungsfragen und Einordnung in die 

Theorie ......................................................................................................... 274 



X 

 

7.2.1 Zur Rekonstruktion von Steuerung .............................................................. 274 
7.2.2 Zur Rekonstruktion von Wissen ................................................................... 278 
7.2.3 Zur Rekonstruktion von Heurismen ............................................................. 282 
7.2.4 Zur gemeinsamen Betrachtung von Steuerung, Wissen und Heurismen ...... 285 
7.2.5 Theoretische Einordnung im Kontext mathematischer Lernprozesse .......... 287 

7.3 Praktische Implikationen ........................................................................ 289 
7.4 Reflexion zur methodischen Herangehensweise .................................... 293 

7.4.1 Diskussion zum Lauten Denken und der Beobachtungssituation ................. 293 
7.4.2 Diskussion zu den Auswertungsmethoden der Problembearbeitungsprozesse

 ................................................................................................................... 294 
7.4.3 Diskussion zum Kontext der Studie ............................................................. 297 
7.4.4 Verallgemeinerbarkeit der Ergebnisse .......................................................... 298 

7.5 Ausblick .................................................................................................. 299 

Literaturverzeichnis ........................................................................... 306 

Anhang ................................................................................................. 327 

Erklärung zur Dissertation ................................................................ 334 

 

 

  



XI 

 

Abbildungsverzeichnis  

Abbildung 1: Mathematische Kompetenzen und Level des Fortschritts (Alpers et 

al., 2013, S. 18) ....................................................................................................8 
Abbildung 2: Übersicht über theoriebasierte Kategorien zu Lernstrategien für 

mathematikhaltige Studiengänge (Ausschnitt aus Göller, 2020, S. 114) ............ 19 
Abbildung 3: Von der Motivation zur Theorie des mathematischen Problemlösens

............................................................................................................................ 26 
Abbildung 4: Bestandteile des Problemlösen (Öllinger, 2017) .......................... 29 
Abbildung 5: Schematische Darstellung des Problemlöseprozesses (Gick, 1986, 

S. 101) ................................................................................................................ 33 
Abbildung 6: Der Problemlöseprozess nach Schoenfeld (1985) und Pólya (1945), 

übernommen aus Rott (2013, S. 62) ................................................................... 37 
Abbildung 7: Der Problemlöseprozess nach Rott (2013, S. 298) ....................... 38 
Abbildung 8: Darstellungsformen funktionaler Zusammenhänge und Wege des 

Transfers (Greefrath et al., 2016a, S. 57) ........................................................... 76 
Abbildung 9: Verknüpfung der formalen und semantischen Ebene des Vier-

Ebenen-Ansatzes mit der Wissensmatrix (eigene Darstellung) .......................... 84 
Abbildung 10: Framework zur Ableitung nach Zandieh (übernommen von 

Feudel, 2018, S. 29) ........................................................................................... 86 
Abbildung 11: Aspekte und Grundvorstellungen in der Differentialrechnung 

(Greefrath et al., 2016a, S. 147) ......................................................................... 88 
Abbildung 12: Steigungsdreieck zur Summenregel (Greefrath et al., 2016a, 

S.169) ................................................................................................................. 95 
Abbildung 13: Visuelle Interpretation der Kettenregel ...................................... 99 
Abbildung 14: Geometrische Interpretation zum Mittelwertsatz (Burg et al., 2017, 

S. 222) .............................................................................................................. 101 
Abbildung 15: Zwei Funktion, angenähert durch ihre Tangenten (gestrichelt) 105 
Abbildung 16: Gedächtnismodell (Konrad, 2010, S. 478) ............................... 115 
Abbildung 17: Allgemeines inhaltsanalytisches Ablaufmodell (Mayring, 2022, S. 

61) .................................................................................................................... 119 
Abbildung 18: Struktur der Veranstaltung "Mathematik für Maschinenbauer I"

.......................................................................................................................... 123 
Abbildung 19: Set-up der Lernsituation (im Bild für eine Zweier-Lerngruppe)

.......................................................................................................................... 128 
Abbildung 20: Analogie zwischen Schoenfeld (1985) Episoden und Schritten von 

Pólya (1945) ..................................................................................................... 144 



XII 

 

Abbildung 21: Ausschnitte der Wissensfacetten zum Konzept Differenzierbarkeit 

aus der Veranstaltung „Mathematik 1 für Maschinenbau“ ............................... 154 
Abbildung 22: Ausschnitt aus Davids Aufzeichnungen zur Aufgabenbearbeitung

.......................................................................................................................... 157 
Abbildung 23: David Produkt zur Aufgabe „Differenzierbarkeit prüfen“........ 167 
Abbildung 24: Graph der Funktion f, den Alex und Thomas betrachten ......... 175 
Abbildung 25: Vollständige schriftliche Lösung zur Aufgabe „Differenzierbarkeit 

prüfen“ von Alex .............................................................................................. 178 
Abbildung 26: Darstellung der Problembearbeitungsprozesse von Alex und 

Thomas anhand der Kodierung der Schoenfeld Episoden ................................ 181 
Abbildung 27: Darstellung der Problembearbeitungsprozesse von Lea, Lisa, 

Sarah und Paula anhand der Kodierung der Schoenfeld Episoden ................... 183 
Abbildung 28: Darstellung der Problembearbeitungsprozesse von David anhand 

der Kodierung der Schoenfeld Episoden .......................................................... 185 
Abbildung 29: Darstellung der Problembearbeitungsprozesse von Nick anhand 

der Kodierung der Schoenfeld Episoden .......................................................... 187 
Abbildung 30: Darstellung des Problembearbeitungsprozesses von Lukas anhand 

der Kodierung der Schoenfeld Episoden .......................................................... 188 
Abbildung 31: David Lösungsfortschritt in der Implementation (Aufgabe 

„L´Hospital“) ................................................................................................... 200 
Abbildung 32: Ausschnitt aus Paulas Mitschriften zur Aufgabe „Mittelwertsatz“

.......................................................................................................................... 209 
Abbildung 33: Ausschnitt aus Lisas Mitschriften zur Aufgabe „Mittelwertsatz“

.......................................................................................................................... 210 
Abbildung 34: Ausschnitt aus Leas Mitschriften zur Aufgabe „Mittelwertsatz“

.......................................................................................................................... 211 
Abbildung 35: Ausschnitt aus Sarahs Mitschriften zur Aufgabe „Mittelwertsatz“

.......................................................................................................................... 212 
Abbildung 36: Nicks Umformungen beim Differentialquotienten ................... 230 
Abbildung 37: Davids Überlegungen zur Aufgabe „Mittelwertsatz“ ............... 233 
Abbildung 38: Alex´ Bestimmung des Grenzwerts .......................................... 234 
Abbildung 39: Nicks Lösung zur Aufgabe „L´Hospital“ ................................. 235 
Abbildung 40: Nicks Fallunterscheidung ......................................................... 246 
Abbildung 41: Davids Systematisierungshilfe ................................................. 252 
Abbildung 42: Interaktion zwischen Steuerung und Heurismen (Code-Relations-

Browser aus maxQDA) .................................................................................... 258 

file:///C:/Users/timkolbe/Desktop/Uni%20Paderborn/Dissertation/Texte/DISS%20EIGENE%20FORMATIERUNG.docx%23_Toc206709704
file:///C:/Users/timkolbe/Desktop/Uni%20Paderborn/Dissertation/Texte/DISS%20EIGENE%20FORMATIERUNG.docx%23_Toc206709704


XIII 

 

Abbildung 43: Interaktion zwischen Steuerung und Wissensart (Code-Relations-

Browser aus maxQDA) .................................................................................... 261 
Abbildung 44: Interaktion zwischen Steuerung und Wissensfacette (Code-

Relations-Browser aus maxQDA) .................................................................... 261 
Abbildung 45: Interaktion zwischen Heurismen und Wissensart (Code-Relations-

Browser aus maxQDA) .................................................................................... 263 
Abbildung 46: Interaktion zwischen Heurismen und Wissensfacette (Code-

Relations-Browser aus maxQDA) .................................................................... 263 
Abbildung 47: Fälle von Episodenwechseln .................................................... 265 
 

  



XIV 

 

Tabellenverzeichnis 

Tabelle 1: Vorläufiger Verlaufsplan einer Mathematikveranstaltung für 

Ingenieur:innen ....................................................................................................9 
Tabelle 2: Vergleich zwischen Mathematik für Ingenieur:innen und Mathematik 

im Fach bzw. gymnasialen Lehramtsstudium .................................................... 22 
Tabelle 3: Darstellung verschiedener Unterteilung der Wissensfacetten (teilweise 

übernommen aus Erath, 2017, S. 51) ................................................................. 46 
Tabelle 4: Adaptierte Wissensmatrix nach Prediger et al. (2011) ....................... 48 
Tabelle 5: Kleiner Ausschnitt aus Pólyas (1945, S. xvii) Problemlösestrategien

............................................................................................................................ 54 
Tabelle 6: Zusammenstellung einiger Heuristischer Hilfsmittel, Prinzipien und 

Strategien (Beispiele aus Rott, 2013, S. 76ff.) ................................................... 55 
Tabelle 7: Einordnung der mathematischen Inhalte in die Wissensmatrix ....... 109 
Tabelle 8: Informationen zu den Studienteilnehmenden .................................. 124 
Tabelle 9: Einordnung zur Aufgabe „Differenzierbarkeit prüfen“ in die 

Wissensmatrix (EF = Explizite Formulierung; K&A = Konkretisierung & 

Abgrenzung; B&V = Bedeutung & Vernetzung; KF = Konventionelle 

Festlegungen) ................................................................................................... 134 
Tabelle 10: Einordnung zur Aufgabe „Mittelwertsatz“ in die Wissensmatrix (PW 

= Prozedurales Wissen; EF = Explizite Formulierung; K&A = Konkretisierung & 

Abgrenzung; B&V = Bedeutung & Vernetzung; KF = Konventionelle 

Festlegungen) ................................................................................................... 138 
Tabelle 11: Einordnung zur Aufgabe „L´Hospital“ in die Wissensmatrix (KW = 

Konzeptuelles Wissen; EF = Explizite Formulierung; K&A = Konkretisierung & 

Abgrenzung; B&V = Bedeutung & Vernetzung; KF = Konventionelle 

Festlegungen) ................................................................................................... 141 
Tabelle 12: Angebot der Veranstaltung zur Aufgabe „Differenzierbarkeit prüfen“ 

in die Wissensmatrix (IN = Implizite Nutzung; EF = Explizite Formulierung; 

K&A = Konkretisierung & Abgrenzung; B&V = Bedeutung & Vernetzung; KF = 

Konventionelle Festlegungen) .......................................................................... 153 
Tabelle 13: Das Kodiermanual bezüglich Heurismen dieser Studie ................. 164 
Tabelle 14: Bewertungsschema zum Lösungsprodukt nach Rott (2013, S. 185)

.......................................................................................................................... 166 
Tabelle 15: Übersicht der Problembearbeitungsprozesse ................................. 169 
Tabelle 16: Übersicht über die Kodierungen aller Problembearbeitungsprozesse 

(R = Reading, A = Analysis, E = Exploration, P = Planning, I = Implementation, 



XV 

 

V = Verification, T = Transition, LQ = Lösungsqualität, Diffbar = 

Differenzierbarkeit prüfen, MWS = Mittelwertsatz) ........................................ 179 
Tabelle 17: Häufigkeiten der Episodenwechsel, dargestellt für alle drei Aufgaben

.......................................................................................................................... 190 
Tabelle 18: Lineare bzw. nicht-lineare Prozesse (A=Analysis, E=Exploration, 

P=Planning, I=Implementation, V=Verification, G3 = Alex und Thomas, G4 = 

Lea, Lisa, Sarah und Paula) .............................................................................. 191 
Tabelle 19: Wissensangebot zur Aufgabe „Differenzierbarkeit prüfen“ (EF = 

Explizite Formulierung; K&A = Konkretisierung & Abgrenzung; B&V = 

Bedeutung & Vernetzung; KF = Konventionelle Festlegungen) ...................... 205 
Tabelle 20: Wissensangebot zur Aufgabe „Mittelwertsatz“ (PW = Prozedurales 

Wissen; EF = Explizite Formulierung; K&A = Konkretisierung & Abgrenzung; 

B&V = Bedeutung & Vernetzung; KF = Konventionelle Festlegungen) ......... 206 
Tabelle 21: Wissensangebot zur Aufgabe „L´Hospital“ (KW = Konzeptuelles 

Wissen; EF = Explizite Formulierung; K&A = Konkretisierung & Abgrenzung; 

B&V = Bedeutung & Vernetzung; KF = Konventionelle Festlegungen) ......... 206 
Tabelle 22: Wissensnutzung bzw. -aktivierung von Lea, Lisa, Sarah und Paula zur 

Aufgabe „Mittelwertsatz“ (PW = Prozedurales Wissen; EF = Explizite 

Formulierung; K&A = Konkretisierung & Abgrenzung; B&V = Bedeutung & 

Vernetzung; KF = Konventionelle Festlegungen) ............................................ 213 
Tabelle 23: Häufigkeiten der Nutzung bezüglich Wissensarten bzw. 

Wissensfacetten von allen Problembearbeitungsprozessen .............................. 214 
Tabelle 24: Heat-Map zur Aufgabe „Differenzierbarkeit prüfen“ (EF = Explizite 

Formulierung; K&A = Konkretisierung & Abgrenzung; B&V = Bedeutung & 

Vernetzung; KF = Konventionelle Festlegungen) ............................................ 217 
Tabelle 25: Heat-Map zur Aufgabe „Mittelwertsatz“ (PW = Prozedurales Wissen; 

EF = Explizite Formulierung; K&A = Konkretisierung & Abgrenzung; B&V = 

Bedeutung & Vernetzung; KF = Konventionelle Festlegungen) ...................... 218 
Tabelle 26: Heat-Map zur Aufgabe „L´Hospital“ (EF = Explizite Formulierung; 

K&A = Konkretisierung & Abgrenzung; B&V = Bedeutung & Vernetzung; KF = 

Konventionelle Festlegungen) .......................................................................... 219 
Tabelle 27: Wissensfokus der einzelnen Problembearbeitungsprozesse .......... 220 
Tabelle 28: Prozess mit prozeduralem Fokus von Alex und Thomas (EF = 

Explizite Formulierung; K&A = Konkretisierung & Abgrenzung; B&V = 

Bedeutung & Vernetzung; KF = Konventionelle Festlegungen) ...................... 221 
Tabelle 29: Prozess mit konzeptuellem Fokus von Lea, Lisa, Sarah und Paula (PW 

= Prozedurales Wissen; EF = Explizite Formulierung; K&A = Konkretisierung & 



XVI 

 

Abgrenzung; B&V = Bedeutung & Vernetzung; KF = Konventionelle 

Festlegungen) ................................................................................................... 222 
Tabelle 30: Prozess mit konzeptuellem Fokus von David (EF = Explizite 

Formulierung; K&A = Konkretisierung & Abgrenzung; B&V = Bedeutung & 

Vernetzung; KF = Konventionelle Festlegungen) ............................................ 223 
Tabelle 31: Vergleich Angebot und Nutzung zur Aufgabe „Differenzierbarkeit 

prüfen“ (EF = Explizite Formulierung; K&A = Konkretisierung & Abgrenzung; 

B&V = Bedeutung & Vernetzung; KF = Konventionelle Festlegungen) ......... 238 
Tabelle 32: Vergleich Angebot und Nutzung zur Aufgabe „Mittelwertsatz“ (PW = 

Prozedurales Wissen; EF = Explizite Formulierung; K&A = Konkretisierung & 

Abgrenzung; B&V = Bedeutung & Vernetzung; KF = Konventionelle 

Festlegungen) ................................................................................................... 238 
Tabelle 33: Vergleich Angebot und Nutzung zur Aufgabe „L´Hospital“ (EF = 

Explizite Formulierung; K&A = Konkretisierung & Abgrenzung; B&V = 

Bedeutung & Vernetzung; KF = Konventionelle Festlegungen) ...................... 239 
Tabelle 34: Prozesse mit konzeptuellem Fokus und ihre Lösungsqualität ....... 241 
Tabelle 35: Häufigkeit der Nutzung bezüglich der Heurismen (G3 = Alex und 

Thomas; G4 = Lea, Lisa, Sarah und Paula) ...................................................... 245 
Tabelle 36: Verwendung der Heurismen .......................................................... 249 
Tabelle 37: Verwendung von Heurismen und Wissen bei einem Episodenwechsel 

in Exploration .................................................................................................. 266 
Tabelle 38: Empirische Entscheidung zu Problembearbeitungsprozessen ....... 271 
 

 

  



XVII 

 

Zusammenfassung 
Die vorliegende Arbeit analysiert mathematische Problembearbeitungsprozesse 

im Kontext des Ingenieurstudiums, mit besonderem Fokus auf die 

Differentialrechnung. Ziel der Arbeit ist es, die Rolle von Steuerung, Wissen und 

Heurismen in Problembearbeitungsprozessen zu untersuchen, um deren Einfluss 

auf den Lernerfolg zu verstehen. Die theoretische Grundlage bildet die Theorie 

des mathematischen Problemlösens nach Schoenfeld, ergänzt durch eine 

strukturierte Betrachtung des Lerngegenstands Differentialrechnung. Methodisch 

kombiniert die Studie qualitative Erhebungen, wie „Lautes Denken“, mit einer 

qualitativen Inhaltsanalyse. Im empirischen Teil werden die 

Problembearbeitungsprozesse von Studierenden anhand spezifischer Aufgaben 

analysiert. Dabei stehen die Steuerung der Lösungsprozesse, die Nutzung von 

Wissen und die Anwendung von Heurismen im Mittelpunkt. Zunächst werden die 

Kategorien des Problemlösens nach Schoenfeld einzeln herangezogen, um die 

Problembearbeitungsprozesse differenziert zu analysieren. Anschließend werden 

diese Kategorien in einer gemeinsamen Betrachtung zusammengeführt, um den 

gesamten Problemlöseprozess ganzheitlich zu untersuchen. Die Ergebnisse 

werden abschließend reflektiert und in den theoretischen Kontext eingeordnet. 

Darüber hinaus werden praktische Implikationen abgeleitet und Ansätze für 

zukünftige Forschungsarbeiten aufgezeigt. 

 

Abstract 
This study analyzes mathematical problem-solving processes in the context of 

engineering education, with a particular focus on differential calculus. The aim of 

the study is to investigate the role of control, knowledge, and heuristics in 

problem-solving processes in order to understand their impact on learning 

outcomes. The theoretical foundation is based on Schoenfeld's theory of 

mathematical problem-solving, supplemented by a structured consideration of the 

learning subject of differential calculus. Methodologically, the study combines 

qualitative data collection methods, such as "think-aloud protocols", with 

qualitative content analysis. In the empirical part, the problem-solving processes 

of students are analyzed based on specific tasks. The focus is on the control of the 

solution processes, the use of knowledge, and the application of heuristics. 

Initially, Schoenfeld’s categories of problem-solving are applied separately to 

analyze the problem-solving processes in detail. Subsequently, these categories 

are brought together in a comprehensive analysis to examine the entire problem-

solving process holistically. The results are then reflected upon and placed in the 

theoretical context. Furthermore, practical implications are derived, and 

suggestions for future research are outlined.  
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Einleitung 

Dieser Abschnitt bietet einen Überblick über die Struktur dieser Arbeit.  

Das einleitende Kapitel (Kapitel 1) liefert eine Einführung in die Problemlage 

der mathematischen Lernprozesse in der Hochschule sowie die Frage nach der 

Relevanz für die Forschung in diesem Bereich – insbesondere im 

ingenieurwissenschaftlichen Kontext. Dabei werden verschiedene Aspekte der 

Lehre und des Lernens von Mathematik in einem Ingenieurstudium beleuchtet. 

Ein Schwerpunkt liegt dabei auf der Rolle von Hausaufgaben im Lernprozess der 

Studierenden. Es wird herausgestellt, dass die wöchentliche Bearbeitung von 

Hausaufgaben eine besondere Herausforderung darstellt und diese 

Bearbeitungsprozesse anhand der Theorie des mathematischen Problemlösens 

untersucht werden können. Abschließend wird die Zielsetzung dieser Arbeit 

erläutert. 

Kapitel 2 beschäftigt sich mit der theoretischen Auseinandersetzung des 

mathematischen Problemlösens. Dabei wird zunächst der Begriff des 

mathematischen Problemlösens eingeordnet. Anschließend erfolgt eine 

Betrachtung der vier Kategorien des mathematischen Problemlösen nach 

Schoenfeld (1985). Zuerst werden verschiedene Problemlösemodelle vorgestellt 

(Steuerung auf dem allgemeinen Level). Danach wird sich der Kombination von 

Wissensarten und Wissensfacetten gewidmet, um die Wissensmatrix zu erhalten 

(Wissen). Im Anschluss werden Problemlösestrategien sowie deren 

Kategorisierung und Einsatz diskutiert (Heurismen). Es wird ebenfalls kurz auf 

Beliefs1 eingegangen. Abschließend endet das Kapitel, indem andere 

Forschungsarbeiten aus dem Kontext des mathematischen Problemlösens 

vorgestellt werden. 

In Kapitel 3 wird das Forschungsdesign dieser Studie vorgestellt. Dabei werden 

sowohl stoffdidaktische als auch empirische Fragestellungen ausgearbeitet. Diese 

Forschungsfragen werden in diesem Kapitel erörtert. 

Mathematisches Problemlösen kann zunächst unabhängig eines bestimmten 

Inhaltsgebiets untersucht werden. In dieser Arbeit wird sich jedoch auf das 

Themengebiet der Differentialrechnung fokussiert. Der Abschnitt (Kapitel 4) 

beginnt mit der Entscheidung, warum sich speziell 

Problembearbeitungsprozessen der Differentialrechnung gewidmet wird. Dabei 

wird auf die Relevanz der Differentialrechnung für das Ingenieurstudium 

eingegangen. Anschließend werden die benötigten mathematischen Grundlagen 

dargestellt. Zur Strukturierung des Lerngegenstands Differentialrechnung wird 

 
1 Obwohl Beliefs nicht Gegenstand dieser Arbeit sind, werden sie aus Gründen der 

Vollständigkeit in einem kurzen Abschnitt vorgestellt. 
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der Vier-Ebenen-Ansatz nach Hußmann & Prediger (2016) vorgestellt und für die 

eigene Nutzung in dieser Arbeit angepasst. Vorbereitend auf die Daten dieser 

Arbeit werden relevante Definitionen, Sätze und Verfahren dargelegt. Inhaltlich 

fallen darunter der Begriff der Differenzierbarkeit, die Ableitungsregeln, die 

Regel von L´Hospital und der Mittelwertsatz der Differentialrechnung. 

Abschließend werden die theoretischen Ausführungen in einer Wissensmatrix 

festgehalten.  

Mit Kapitel 5 erfolgt eine Verschiebung des Fokus von den theoretischen 

Vorarbeiten hin zur empirischen Studie. Dazu werden zunächst Vorüberlegungen 

bezüglich des Forschungsparadigmas und zur Auswahl der Erhebungs- (Lautes 

Denken) als auch Auswertungsmethode (qualitative Inhaltsanalyse) angestellt. 

Daraufhin werden qualitative Gütekriterien für die Sicherstellung der Qualität der 

Arbeit diskutiert. Anschließend wird das Studiendesign dargestellt. Dabei wird 

auf den Kontext der Studie, die Beschreibung der Studienteilenehmenden und 

zuletzt auf das Herstellen einer authentischen Lernsituation eingegangen. Als 

Nächstes werden die drei Aufgaben, zu denen die Bearbeitungsprozesse der 

Studierenden untersucht werden, einer stoffdidaktischen Analyse unterzogen. 

Dafür werden einige Schritte durchgeführt. Als Basis wird eine ausführliche 

Musterlösung erstellt, daraufhin das benötigte Wissen in einer Wissensmatrix 

veranschaulicht, mögliche Schwierigkeiten bzw. Hürden skizziert und letztlich 

mit einer ähnlichen, zuvor behandelten Aufgabe aus dem Tutorium, verglichen. 

Letztlich werden die Auswertungsmethoden dargelegt. Dabei wird zuerst die 

Bewertung der Lösungsprodukte und anschließend die Auswertung zu den 

Bearbeitungsprozessen vorgestellt. Diese basieren auf den drei theoretischen 

Aspekten des Problemlösens (Wissen, Heurismen, Steuerung). Bezüglich 

Steuerung werden die Schoenfeld Episoden, bezüglich Wissens das (Wissens-

)Angebot und die (Wissens-)Nutzung in der Wissensmatrix und bezüglich 

Heurismen wird ein bestehender Kategorienkatalog genutzt. 

Das Kapitel der Analyse und Ergebnisse (Kapitel 6) beginnt mit einer Übersicht 

zu allen Problembearbeitungsprozessen dieser Arbeit. Im Weiteren werden die 

Ergebnisse in vier Abschnitte, passend zu den Kategorien des Problemlösens 

(Steuerung, Wissen, Heurismen) sowie der gemeinsamen Betrachtung, gegliedert. 

Kapitel 6.1: Zur Betrachtung der Steuerung wird zunächst der 

Problembearbeitungsprozess von Alex und Thomas detailliert vorgestellt, wobei 

dies auch gleichzeitig die Nachvollziehbarkeit der zuvor vorgestellten Schoenfeld 

Episoden ermöglicht. Als Verallgemeinerung werden alle Prozesse bezüglich der 

Schoenfeld Episoden eingeordnet und die Spezifika zu den Verläufen der 

jeweiligen Lerngruppen dargestellt. Im weiteren Verlauf wird auf bestimmte 

Merkmale der Problembearbeitungsprozesse eingegangen. Dies sind zum einen 

die Episodenwechsel im Prozess und zum anderen der „wild goose chase“. 

Anschließend wird die Kodierung der Schoenfeld Episoden in Zusammenhang 

mit Erfolg bzw. Misserfolg gesetzt. 
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Kapitel 6.2: Die Betrachtung des Wissens beginnt mit der Darstellung des 

Wissensangebotes der Veranstaltung zu den einzelnen Aufgaben. Im Folgenden 

wird intensiver die Wissensnutzung der Studierenden betrachtet. Dabei wird ein 

Problembearbeitungsprozess genauer betrachtet und in die Wissensmatrix 

eingeordnet. Anschließend werden alle Prozesse in einem Überblick 

zusammengefasst. Außerdem wird der Fokus bezüglich Wissensart und 

Wissensfacette der einzelnen Prozesse herausgearbeitet. Des Weiteren erfolgt die 

Darstellung besonderer Merkmale über verschiedene Prozesse sowie 

Schwierigkeiten der Studierenden bezüglich der jeweiligen Aufgabe. 

Nachfolgend werden die Erkenntnisse des Angebots und der Nutzung verglichen. 

Ferner werden die Erkenntnisse der Wissensnutzung in Zusammenhang mit 

Erfolg bzw. Misserfolg gesetzt.  

Kapitel 6.3: Die Betrachtung der Heurismen beginnt mit einem Gesamtüberblick 

über die Nutzung der verschiedenen Heurismen. Anschließend wird untersucht, 

inwiefern die Verwendung der Heurismen von der Lerngruppe bzw. von einer 

Aufgabe abhängig ist. Außerdem wird die Nutzung der Heurismen in 

Zusammenhang mit Erfolg bzw. Misserfolg gesetzt.  

Kapitel 6.4: Abschließend werden die drei Kategorien gemeinsam betrachtet. 

Dafür werden zunächst Interaktionen zwischen den Kategorien näher beleuchtet. 

Anschließend werden spezielle Episodenübergängen hinsichtlich des 

Episodentyps Exploration betrachtet und die Gründe für Episodenwechsel 

herausgearbeitet. Schließlich wird empirisch entschieden, inwiefern die Prozesse 

in der vorliegenden Arbeit als Problembearbeitungsprozesse eingeordnet werden 

können. 

Im abschließenden Kapitel wird die Arbeit diskutiert und in den 

wissenschaftlichen Kontext eingeordnet (Kapitel 7). Zu Beginn erfolgt eine 

kurze Zusammenfassung der empirischen Untersuchung. Anschließend werden 

die Forschungsfragen anhand der Ergebnisse beantwortet, die Ergebnisse mit 

ähnlichen Studien verglichen und theoretische Implikationen abgeleitet. Darauf 

aufbauend werden praktische Implikationen aufgezeigt, die sich aus den 

Ergebnissen für die Praxis ableiten lassen. Die verwendeten Methoden werden 

kritisch reflektiert, um deren Eignung und mögliche Schwächen zu bewerten. 

Abschließend bietet ein Ausblick auf zukünftige Forschungsprojekte eine 

Skizzierung offener Fragen und weiterführender Ansätze. 
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1 Mathematisches Lernen im (Ingenieur-)Studium: 

Herausforderungen und Forschungslücken 

Ein mathematikhaltiges Studium2 kann für die Studierenden mit zahlreichen 

Herausforderungen verbunden sein. Diese spiegeln sich vor allem sowohl in 

lernorganisatorischen als auch fachlichen Aspekten wider, die in der 

mathematikdidaktischen Literatur viel diskutiert werden (z. B. Göller, 2020; 

Gueudet & Pepin, 2018; Moser-Fendel & Wessel, 2019; di Martino & Gregorio, 

2019). Ein Gegenstand dieser Diskussion sind mathematische Lernprozesse der 

Studierenden (z. B. Johns, 2020). Diese stellen den Fokus dieser Arbeit dar. Das 

Studium eines mathematikhaltigen Studiengangs bietet in der Regel eine große 

Vielfalt an Lernmöglichkeiten, die Studierenden eine umfassende 

Auseinandersetzung mit mathematischen Konzepten, Zusammenhängen und 

Verfahren ermöglicht. Zu den Lernmöglichkeiten gehören klassische 

Vorlesungen, Übungen, Zentralübungen, Hausaufgaben, Tests, Sprechstunden, 

Lernzentren, etc. In der Forschung gibt es dazu Überlegungen sowie 

Unterstützungsmaßnahmen zur Verbesserung der Lehre, die in der Praxis erprobt 

und umgesetzt werden, um die Lernprozesse der Studierenden zu erleichtern. 

Darunter zählen Vorbereitungs- und Brückenkurse, die Studierende inhaltlich auf 

die Hochschule vorbereiten sollen (z. B. Hoppenbrock et al., 2016). Um eine 

bessere Zielgruppenorientierung zu erreichen, werden Fachvorlesungen 

entwickelt, die auf bestimmte Studierendengruppen zugeschnitten sind (z. B. 

Hilgert et al., 2015; Hoffmann, 2022; Kempen, 2019). Auch unabhängig vom 

Inhalt werden Veränderungen an der Struktur der Vorlesung vorgenommen, z. B. 

durch den Ansatz flipped classroom (z. B. Lesseig & Krouss, 2017). Damit sollen 

Studierende zum aktiveren und selbstständigen Lernen angeregt werden. Darüber 

hinaus wird zusätzliches Material zum Lernen und Vertiefen der Inhalte 

angeboten (Biehler et al., 2017). Es gibt weiterhin Bemühungen, spezifische 

Strategien für das Lösen von Hausaufgaben in den Übungen zu besprechen 

(Stenzel, 2023b). Des Weiteren soll das Erstellen ausführlicher Musterlösungen 

Studierenden dabei helfen, besser mathematische Gedankengänge zu verstehen 

und nachzuvollziehen (Ableitinger & Herrmann, 2011). Außerdem werden 

während des Semesters learning support centres (Schürmann et al., 2021) 

geöffnet, um Studierende inhaltlich und lernorganisatorisch zu unterstützen. 

Es gibt demnach erhebliche Bemühungen, die Lehre und das Lernen in der 

Mathematik zu verbessern, doch bislang ist nur wenig darüber bekannt, wie die 

Lernprozesse der Studierenden im Detail ablaufen. Einen Einblick liefern Studien 

 
2 Zu den mathematikintensiven Studiengängen zählen solche, in denen ein erheblicher Anteil 

an Mathematik gelehrt und angewandt wird. Beispiele hierfür sind Mathematik als 

Fachstudium, Mathematik für das Lehramt, Ingenieurwissenschaften, 

Wirtschaftswissenschaften, Informatik und ähnliche Studienrichtungen. 
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aus dem selbstregulierenten (Mathematik-)Lernen, die häufig Strategien anhand 

von Fragebögen abfragen (z. B. Johns, 2020; Laging & Voßkamp, 2017; 

Liebendörfer et al., 2021; Rach & Heinze, 2013). Diese Strategien werden oftmals 

in den Zusammenhang mit Erfolg (z. B. Bestehen der abschließenden Klausur) 

gesetzt. Es zeigt sich bei den Forschungsergebnissen zwar eine Tendenz, 

allerdings sind die Ergebnisse nicht immer einheitlich. Des Weiteren geben 

Interviews (Göller, 2020) und Selbstberichte (Kolbe & Wessel, 2022; 

Liebendörfer et al., 2023) weitere Einblicke in studentische Lernprozesse. Trotz 

wertvoller Erkenntnisse dieser Studien wird deutlich, dass sie nicht immer den 

realen Prozess des mathematischen Arbeitens vollständig abbilden. Die 

Lernprozesse von Studierenden sind insgesamt noch wenig erforscht. 

Untersuchungen zu diesem Themengebiet konzentrieren sich in der Regel auf 

mathematische Lernprozesse von Fachstudierenden bzw. Studierenden des 

Gymnasiallehramts (z. B. zu Beweisprozessen Kirsten, 2020; zu 

Problemlöseprozessen Stenzel, 2023a), während andere Fachrichtungen 

weitgehend unbeachtet bleiben. Insbesondere die Studiengänge der 

Ingenieurwissenschaften sind in dieser Hinsicht unterrepräsentiert, obwohl 

Mathematik eine zentrale Rolle im Ingenieurstudium spielt (Hochmuth & 

Schreiber, 2016). Diese Studiengänge zeichnen sich zudem oft durch besonders 

große Studienkohorten aus (Kortemeyer & Frühbis-Krüger, 2021), was ihre 

Notwendigkeit für die Forschung zusätzlich unterstreicht. Insgesamt sind 

mathematische Lernprozesse von Studierenden, insbesondere im 

ingenieurwissenschaftlichen Studium, eine Forschungslücke. 

Diese Forschungslücke ist besonders relevant, da in ingenieurwissenschaftlichen 

Studiengängen die Studienabbruchquote außergewöhnlich hoch ist. 35 % der 

Studierenden brechen ihr universitäres Bachelorstudium ab (Heublein et al., 

2022). Dieser Prozentsatz blieb in den Untersuchungen der letzten Jahre 

unverändert (siehe in Studien aus vorherigen Jahren: Heublein et al., 2018; 

Neugebauer et al., 2019). Dabei „besteht generell Konsens darüber, dass hohe 

Abbruchquoten im Ingenieursstudium nicht zuletzt auf Schwierigkeiten der 

Studierenden mit der Mathematik zurückzuführen sind“ (Hochmuth & Schreiber, 

2016, S. 549f.). Mathematik gehört in vielen Veranstaltungen des 

Ingenieurstudiums zu den wesentlichen Werkzeugen, stellt aber gleichzeitig die 

größte Hürde dar. Als Konsequenz müsse sowohl das Lehren als auch Lernen von 

Mathematik im Ingenieurstudium verbessert werden (Hochmuth & Schreiber, 

2016).  

Die Notwendigkeit, sich speziell der Mathematik im Ingenieurstudium zu 

widmen, basiert allerdings nicht nur auf hohen Abbruchquoten im Studium, 

sondern auch auf dem Ingenieurmangel, der seit Jahren beklagt wird (z. B. 

Rauhut, 2024). VDI (Verein Deutscher Ingenieure) berichtet, dass im vierten 

Quartal von 2022 170.000 offene Stellen im Ingenieurbereich zu verzeichnen 

waren. Währenddessen haben 2022 lediglich 125.600 Studierende ein MINT-
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Studium begonnen (Janczura, 2023). Diese Diskrepanz wird durch Auswirkungen 

der Corona-Pandemie, der Energiewende und Digitalisierung sowie den 

demografischen Wandel zusätzlich verschärft (z. B. Gast, 2024).  

Um dazu beizutragen, mathematisch gut ausgebildete Ingenieur:innen für den 

Arbeitsmarkt zu gewinnen, ist es wichtig, die mathematischen Hürden im 

Studium gezielt anzugehen. Ein erster wesentlicher Schritt in dieser Richtung 

wäre, die Lernprozesse der Studierenden besser zu verstehen und systematisch zu 

erforschen, um daraus gezielte Unterstützungsmaßnahmen abzuleiten, die 

langfristig helfen können, diese Hürden zu überwinden. 

Im Folgenden wird sich daher mit den Spezifitäten der Mathematik für 

Ingenieur:innen (Kapitel 1.1) sowie mit weiteren Ansatzpunkten der Mathematik 

im Studium beschäftigt (Kapitel 1.2). Anschließend werden die Lernprozesse im 

Sinne einer Fokussetzung für diese Arbeit verdichtet (Kapitel 1.3). Abschließend 

wird die Zielsetzung dieser Arbeit dargestellt (Kapitel 1.4). 

1.1 Spezifitäten der Mathematik für Ingenieur:innen 

Im Folgenden wird der Fokus auf die Besonderheiten des hochschulischen 

Lehrens und Lernens von Mathematik für Ingenieur:innen gelegt. 

Die mathematikhaltigen Studienbestandteile sind für angehende Ingenieur:innen 

ab dem ersten Tag an der Universität mit einer Reihe von Herausforderungen 

verbunden. Diese betreffen organisatorische, inhaltliche und didaktische Aspekte, 

die sowohl die Lehrenden als auch die Studierenden maßgeblich beeinflussen. 

Für die Lehrenden stellt die große Anzahl der Studierenden in 

ingenieurwissenschaftlichen Studiengängen eine erhebliche Herausforderung dar. 

Sie erschwert die Organisation und Durchführung der Veranstaltungen und führt 

zu einer weiteren Einschränkung der ohnehin begrenzten Möglichkeiten zur 

individuellen Betreuung. Dies unterstreicht die Notwendigkeit, alternative Wege 

für eine effektive Unterstützung der Studierenden zu finden, z. B. durch den 

verstärkten Einsatz von selbstgesteuertem Lernen. 

Für die Studierenden ergeben sich hingegen mehrere spezifische 

Herausforderungen. Zum einen müssen sie damit umgehen, dass verschiedene 

mathematikhaltige Veranstaltungen miteinander „konkurrieren“ (Cramer et al., 

2015). Mathematik wird vom ersten Tag an als Werkzeug in anderen Kernfächern 

wie Physik, Mechanik oder Elektrotechnik eingesetzt, was dazu führt, dass sie 

unterschiedliche Mathematikkulturen erleben, die sich bspw. in Notationen oder 

Konzeptdarstellungen unterscheiden können (Redish, 2005). So kann dasselbe 

mathematische Konzept in verschiedenen Veranstaltungen unterschiedlich 

dargestellt werden. Ein weiterer Aspekt, mit dem die Studierenden konfrontiert 

sind, ist der deduktive Aufbau der Mathematik, während andere Kernfächer 

häufig direkt mathematische Inhalte verwenden, die in der 

Mathematikveranstaltung noch nicht eingeführt wurden. Darüber hinaus spielt die 
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Einstellung der Studierenden zur Mathematik eine Rolle: Da sie sich für ein 

Ingenieurstudium und nicht für ein Mathematikstudium entschieden haben, ist 

ihre Motivation für mathematische Inhalte oft geringer. Die Relevanz der 

Mathematik erkennen viele erst dann, wenn diese in Verbindung mit einem 

konkreten, bspw. physikalischen, Thema steht (Kortemeyer, 2018, S. 29). Ohne 

diesen Praxisbezug bleibt die Bedeutung der Mathematik für viele Studierende 

zunächst abstrakt und schwer greifbar. 

Die Herausforderungen verdeutlichen, wie wichtig es für Lehrende ist, 

Mathematik nicht nur als isoliertes Fach zu betrachten, sondern sie als integralen 

Bestandteil des ingenieurwissenschaftlichen Studiums zu verstehen und 

entsprechend zu gestalten. Um dieser Aufgabe gerecht zu werden, bedarf es klarer 

Zielsetzungen und didaktischer Ansätze. Hier setzt das Framework von der SEFI 

(European Society for Engineering Education) an, das systematisch 

mathematische Ziele für die Ingenieurstudium auf Grundlage der aktuellen 

wissenschaftlichen Erkenntnisse definiert (Alpers et al., 2013). Das Framework 

orientiert sich am Kompetenzmodell von Niss (2002) und bietet eine strukturierte 

Grundlage für die Mathematiklehre in ingenieurwissenschaftlichen 

Studiengängen. Es ist nicht auf eine spezifische Ingenieurdisziplin ausgelegt, 

sondern zielt darauf ab, eine allgemeine Orientierung für alle Beteiligten der 

ingenieurwissenschaftlichen Mathematiklehre zu schaffen. Das Framework 

übernimmt die acht Kompetenzen aus dem KOM-Projekt (Niss, 2002; Niss & 

Højgaard, 2011):  

 

• thinking mathematically,  

• posing and solving problems, 

• modelling mathematically, 

• reasoning mathematically, 

• representing mathematical entities, 

• handling mathematical symbols and formalism, 

• communicating in, with and about mathematics, 

• making use of aids and tools 

 

Des Weiteren ordnen Alpers et al. (2013) diese acht Kompetenzen nach ihrer 

Bedeutung anhand des Studiengangs Maschinenbau auf drei Fortschrittsstufen 

ein (Abbildung 1). Dabei wird auf die Stufen Reproduction, Connections und 

Reflection zurückgegriffen. Diese Stufen verdeutlichen, wie die Kompetenzen im 

Verlauf des Studiums aufgebaut und vertieft werden sollen. 
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Abbildung 1: Mathematische Kompetenzen und Level des Fortschritts (Alpers et al., 2013, S. 18) 

Das SEFI-Framework ist zwar kompetenzbasiert, berücksichtigt jedoch ebenso 

die Bedeutung des fachspezifischen Wissens. Dazu zählen unter anderem 

Algebra, Analysis und Calculus, Diskrete Mathematik, Geometrie und 

Trigonometrie, Lineare Algebra sowie Statistik und Wahrscheinlichkeit. Ein 

beispielhafter Verlaufsplan hinsichtlich der Inhalte im ersten Semester einer 

Mathematikveranstaltung für Ingenieur:innen befindet sich in Tabelle 1. Der 

Fokus des Beispiels ist stark auf Lineare Algebra und Analysis gerichtet. 

Die Themengebiete aus dem SEFI-Framework werden auf vier Vertiefungsstufen 

beschrieben. Bereits auf der Einstiegsstufe 0 tauchen Anforderungen wie das 

Verständnis grundlegender mathematischer Konzepte auf, etwa „to understand 

how the derivative of a function at a point is defined“ (Alpers et al., 2013, S. 25). 

Dies verdeutlicht, dass bereits auf anfänglichem Niveau von den Studierenden 

mehr als lediglich das Auswendiglernen erwartet wird. Sie sollen zugrunde 

liegende Konzepte verstehen und anwenden können. 

Obwohl die mathematischen Konzepte und deren Hintergründe auch für 

Ingenieur:innen von großer Bedeutung sind, liegt der Fokus in der 

Mathematiklehre dennoch häufig auf der Anwendung dieser Konzepte. Das 

Lehren und Lernen sind dabei überwiegend prozedural ausgerichtet. Dies 

bedeutet, dass der Schwerpunkt auf der praktischen Durchführung von 

Rechenverfahren und weniger auf dem tiefgreifenden Verständnis der 

theoretischen Hintergründe liegt (Alpers, 2014; Alpers, 2016; Bergqvist, 2007; 

Engelbrecht et al., 2012).  

Der Fokus auf prozedurales Wissen3 zeigt sich bspw. in Prüfungsformaten. In 

einer Untersuchung von 150 amerikanischen Calculus 1-Klausuren stellte sich 

heraus, dass 85 % der Aufgaben allein durch prozedurales Wissen gelöst werden 

konnten (Tallman et al., 2016). Auch im deutschen Kontext enthalten 

Mathematikklausuren in ingenieurwissenschaftlichen Studiengängen je nach 

Klausur einen hohen Anteil von 50 % bis 88 % an Aufgaben, die rein prozedurales 

 
3 Auf prozedurales (und konzeptuelles Wissen) wird in Kapitel 2.4.2 näher eingegangen. 
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Wissen erfordern (Altieri, 2016, S. 167). Es ist daher wenig überraschend, dass 

sich Studierende während ihres Lernprozesses ebenfalls auf prozedurales Wissen 

konzentrieren. Studien zeigen, dass dies ein starker Prädiktor für den 

Klausurerfolg ist (z. B. Altieri, 2016, S. 173). Vor allem das gezielte Üben von 

Verfahren und Aufgaben wird als effektive Lernstrategie im Kontext der 

ingenieurwissenschaftlichen Mathematik beschrieben (Liebendörfer et al., 2022). 

Eine weitere Verschiebung zum prozeduralen Wissen zeigt sich in der Darstellung 

von mathematischen Inhalten zwischen Lehrbüchern, die für Ingenieur:innen (z. 

B. Papula, 2018) oder für das Fachstudium der Mathematik (z. B. Forster, 2011) 

konzipiert sind. Während Lehrbücher für das Fachstudium typischerweise eine 

mathematische Strenge aufweisen, indem sie Inhalte nach dem Schema 

Definition-Satz-Beweis präsentieren, verzichten anwendungsorientierte 

Lehrbücher hin und wieder auf ausführliche Beweise. Stattdessen wird der 

Schwerpunkt auf die Anwendung von Konzepten und Verfahren gelegt. Auch die 

formale Darstellung der Inhalte wird in diesen Werken oft zugunsten einer 

zugänglicheren, weniger abstrakten Herangehensweise reduziert. 

 
Thema Woche Thematische Schwerpunkte 

Vektorrechnung in ℝ2 und 

ℝ3 

1 

2 

 

3 

Polarkoordinaten, Vektoren, Dreiecksungleichung 

Parameterform, Hessesche Normalform, 

Determinante 

Vektorprodukt, Spatprodukt, Geraden und Ebenen 

Grundlagen der Analysis 4 

5 

 

6 

 

7 

 

8 

 

9 

Reelle Zahlen, Mengen, Potenz, Wurzel, Betrag  

Binomische Formel/Lehrsatz, Monotonie, 

Injektivität & Surjektivität  

Folgen, Grenzwerte, Konvergenz, 

Häufungspunkte 

Konvergenzkriterien, Reihen, Absolute 

Konvergenz 

Stetigkeit, Zwischenwertsatz, Maximum und 

Minimum 

Häufungspunkt, Polstellen 

Elementare Funktionen 9 Polynome, Trigonometrische Funktionen, e & 

log, Horner-Schema 

Differentialrechnung 10 

11 

Differenzierbarkeit, Kettenregel, Mittelwertsatz 

L´Hospital, Taylorformel, Extremstellen, 

Kurvendiskussion 

Integralrechnung 12 

 

13  

Integralrechnung, Mittelwertsatz, Hauptsatz, 

Substitution 

partielle Integration, uneigentliche Integrale, 

Rechenregeln 

Tabelle 1: Vorläufiger Verlaufsplan einer Mathematikveranstaltung für Ingenieur:innen 
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1.2 Mathematik im Studium 

Die Ausführungen aus Kapitel 1.1 konzentrieren sich auf die Spezifika der 

Ingenieursmathematik. Wie bereits erwähnt, ist das Lernen (und das Lehren) von 

Mathematik in ingenieurwissenschaftlichen Studiengängen im Vergleich zu 

anderen Bereichen, wie bspw. der Mathematiklehramtsausbildung oder dem 

Mathematikfachstudium, bislang nur wenig erforscht. Dieses Forschungsdefizit 

erschwert es, ein umfassendes Verständnis für die spezifischen 

Herausforderungen in diesem Kontext zu entwickeln. Um jedoch einen breiteren 

Blick auf das Thema werfen zu können, ist der Einbezug von Erkenntnissen 

benachbarter Disziplinen oder verwandter Kontexte sinnvoll. Im Folgenden 

werden daher empirisch fundierte Fakten und Forschungsergebnisse zu Aspekten 

des Lernens und der Lehre der hochschulischen Mathematik aus benachbarten 

bzw. eng verwandten Kontexten (vor allem des Fach- bzw. gymnasialen 

Lehramtsstudiums) präsentiert. Diese können möglicherweise auf die 

mathematische Lehre und das mathematische Lernen in Ingenieurstudiengängen 

übertragen werden – oder eben auch nicht, was eine kritische Reflexion erfordert 

(Kapitel 1.2.7). Die folgenden Ausführungen betreffen Ziele (Kapitel 1.2.1), 

fachlicher Inhalt (Kapitel 1.2.2), Spezifika des mathematischen Lehrens (Kapitel 

1.2.3), eigenverantwortliches Lernen (Kapitel 1.2.4) sowie Spezifika des 

mathematischen Lernens (1.2.5) und erfolgreiches Lernen (Kapitel 1.2.6). 

1.2.1 Ziel des Fachs Mathematik 

Das (übergreifende) Ziel des Fachs Mathematik in der Hochschule besteht darin, 

Studierende in die wissenschaftlichen Arbeitsweisen der Mathematik einzuführen 

(Rach et al., 2014; Tall, 1992). Im Mittelpunkt stehen die formale Begriffsbildung 

und das deduktive Beweisen, die für ein tieferes Verständnis mathematischer 

Zusammenhänge notwendig sind. Im gleichen Zug wird das Konzept des 

„advanced mathematical thinking“ genutzt, welches Studierende im Laufe des 

Studiums entwickeln sollen (Engelbrecht, 2010). Damit ist der Prozess gemeint, 

formale, abstrakte und logische Denkweisen zu erlangen, die in der 

Hochschulmathematik üblich sind (Maron, 2016).  

Im Vergleich zur Schulmathematik zeichnet sich die Hochschulmathematik durch 

eine stärkere Abstraktion und Formalisierung aus. Mathematische Aussagen 

werden präzise und eindeutig in einer stark formalisierten Sprache dargestellt 

(Engelbrecht, 2010). Besonders im ersten Studienjahr müssen Studierende lernen, 

mit komplexen mathematischen Strukturen umzugehen. Beweise spielen dabei 

eine zentrale Rolle: Sie sichern die Gültigkeit mathematischer Aussagen (Heintz, 

2000) und erfordern von den Studierenden ein tiefes Verständnis der Begriffe, 

Zusammenhänge und logische-deduktive Argumentationsweisen. Die formale 

Sprache der Mathematik verlangt ein Umdenken, da sie neue Strukturen und 

Konventionen mit sich bringt (Clark & Lovric, 2009). Mathematisches Wissen 
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verbindet zudem konzeptuelle Aspekte über Objekte und prozedurales Wissen 

über Verfahren (Sfard, 1991). Diese enge Verknüpfung verlangt flexibles Denken, 

was im Gegensatz zur Schulmathematik oft nicht im Vordergrund steht. 

Allerdings existieren unterschiedliche Studiengänge, in denen unterschiedliche 

mathematische Veranstaltungen durchgeführt werden. Dies hat dementsprechend 

Auswirkungen auf die Ziele der mathematischen Lehre, da unterschiedliche 

Professionen nach Abschluss des Studiums angestrebt werden (Maron, 2016). So 

werden bspw. in einem Lehramtstudium nicht nur fachliche Inhalte, sondern 

ebenfalls fachdidaktische Inhalte präsentiert, die für den Beruf als Lehrer:in 

zugeschnitten werden.  

1.2.2 Fachlicher Inhalt der hochschulischen Mathematik 

Es gibt viele verschiedene Studiengänge, in denen Mathematik gelehrt wird, 

wobei sich die Zielsetzungen und somit ebenfalls die Inhalte je nach Fachrichtung 

unterscheiden können. Aus den verschiedenen Studienprogrammen lässt sich 

daher ein gemeinsamer Überblick nur schwer ableiten, da die Inhalte und 

Strukturen stark variieren können. Es zeigen sich jedoch nicht nur Unterschiede 

zwischen verschiedenen Studiengängen, sondern auch innerhalb desselben 

Studienfachs. So kann das gleiche Studium an unterschiedlichen Universitäten 

unterschiedlich aufgebaut sein (Gildehaus et al., 2021). Noch komplexer wird der 

Vergleich, wenn verschiedene Länder und deren spezifische Studienstrukturen 

einbezogen werden. 

In der internationalen Literatur werden häufig eine Reihe von grundlegenden 

mathematischen Inhalten genannt, die in vielen Studiengängen vermittelt werden. 

Zu den typischen Fächern gehören Linear Algebra, Precalculus, Elementary 

Statistics und Calculus (z. B. Brunetto et al., 2019; Jaworsky et al., 2009; Lahme 

& Shott, 2021; Pyke, 2012). Diese Bereiche bilden die Grundlage, auf der 

weiterführende mathematische Konzepte im Studium aufgebaut werden. 

In Deutschland kann für ein konkretes Studienmodell der Studiengang „Lehramt 

an Gymnasien“ herangezogen werden. In diesem Studiengang werden zahlreiche 

Module aus dem Fachstudium Mathematik und dem gymnasialen 

Lehramtsstudium gemeinsam unterrichtet. Zu Beginn des Studiums, ähnlich wie 

zu der internationalen Literatur, sind in fast allen Universitäten die Fächer 

Analysis und Lineare Algebra zentral (Gildehaus et al., 2021; Göller, 2020, S. 79), 

da sie fundamentale mathematische Konzepte vermitteln, die für weiterführende 

Themen erforderlich sind. 

Eine weitere Möglichkeit, sich dem fachlichen Inhalt mathematikhaltiger 

Studiengänge anzunähern, bieten die Projekte cosh (Dürrschnabel & Wurth, 

2015) und MaLeMint (Deeken et al., 2020; Neumann et al., 2017; Neumann et 

al., 2018). Beide Projekte untersuchen Mindestvoraussetzungen, die für ein 

erfolgreiches Studium im MINT-Bereich (Mathematik, Informatik, 

Naturwissenschaften, Technik) erforderlich sind. Im cosh-Projekt wurden 
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Mathematikdidaktiker und Lehrer:innen aus Baden-Württemberg eingeladen, um 

die Mindestanforderungen für ein MINT-Studium zu diskutieren. Im MaLeMint-

Projekt wurden Hochschuldozierende deutschlandweit befragt, welche 

mathematischen Lernvoraussetzungen Studierende für einen erfolgreichen Start 

an der Universität mitbringen sollten. In beiden Projekten wird die Rolle von 

Inhalten aus den Fächern Analysis, Lineare Algebra sowie Stochastik deutlich. 

Diese drei Bereiche gelten in beiden Projekten als grundlegende Inhalte, die für 

ein Studium im MINT-Bereich notwendig sind. Darüber hinaus werden weitere 

Inhalte aus den Bereichen Elementare Algebra und Elementare Geometrie 

aufgeführt. 

Insgesamt lässt sich festhalten, dass mathematikhaltige Studiengänge in der Regel 

auf grundlegenden Inhalten wie Analysis (calculus), Linearer Algebra und 

Stochastik aufbauen. 

1.2.3 Spezifika der mathematischen Lehre 

Die Struktur der Mathematiklehre an deutschen Universitäten folgt in der Regel 

einem traditionellen Modell, das sich aus den Komponenten Vorlesung, 

Übungsblätter, Übungsgruppen und Klausuren zusammensetzt (Liebendörfer, 

2018, S. 20). Vorlesungen, Übungsblätter und Übungsgruppen finden in der Regel 

in einem wöchentlichen Rhythmus im Semester statt, während die Klausur in der 

vorlesungsfreien Zeit geschrieben wird. Im Gegensatz zur Schule fordert diese 

Struktur von den Studierenden ein hohes Maß an Selbststudium. 

Vorlesungen bilden eine zentrale Lehrform an Universitäten (Körner, 2005). Die 

Dozierenden präsentieren den Stoff meist in Form eines abgeschlossenen 

Formalismus mittels der Definition-Satz-Beweis-Struktur (Engelbrecht, 2010). 

Dabei werden allerdings oftmals die dahinterliegenden Denkprozesse ausgespart, 

die zu diesen Kernelementen geführt haben (Rach et al., 2016). Die Rolle der 

Studierenden beschränkt sich dabei größtenteils auf das Zuhören oder 

Mitschreiben (Wlassak & Schöneburg-Lehnert, 2022). Um ein tieferes 

Verständnis des Stoffes zu erlangen, ist eine intensive Nachbereitung erforderlich 

(Weber, 2012), da neue Inhalte auf früheren Vorlesungen aufbauen und selten 

wiederholt werden (Körner, 2005). Obwohl das klassische Vorlesungsformat 

häufig kritisch diskutiert wird (Pritchard, 2015; Weber, 2004) und alternative 

Lehrformen wie z. B. „flipped classroom“ erprobt werden (z. B. Lo et al., 2017; 

Feudel & Fehlinger, 2023), bleibt die Vorlesung sowohl national als auch 

international die vorherrschende Form. Um Studierende zu entlasten und ihre 

Aufmerksamkeit gezielt zu lenken, kann bspw. die Methode des „guided note-

taking“ eingesetzt werden (Feudel & Panse, 2022). Dabei erhalten Studierende 

vor der Vorlesung ein vorbereitetes Skript, das an bestimmten Stellen Leerstellen 

aufweist. Diese gezielten Lücken sollen die Aufmerksamkeit der Studierenden 

steuern sowie den Schreibaufwand reduzieren, um mehr Kapazitäten für das 

Verstehen und Mitdenken zu haben. 
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Ein weiterer zentraler Bestandteil der Mathematiklehre sind die Übungsaufgaben 

bzw. Hausaufgaben. Diese Aufgaben bestehen aus komplexen Problemstellungen 

und Beweisen sowie dem Einüben von Kalkülen. In der Regel werden die 

Aufgaben so konzipiert, dass sie nicht auf den ersten Blick gelöst werden können 

und einen erheblichen Anteil an Zeit in Anspruch nehmen (Liebendörfer, 2018, S. 

22). Häufig ist das erfolgreiche Bearbeiten eines gewissen Prozentsatzes dieser 

Übungsaufgaben eine Voraussetzung für die Teilnahme an der Klausur bzw. das 

Bestehen des Moduls. Übungsaufgaben übernehmen dabei eine wichtige 

Funktion beim Erwerb mathematischer Begriffe, Verfahren und Arbeitsweisen 

(Weber & Lindmeier, 2020), da sie die in der Vorlesung vermittelten Inhalte und 

Methoden vertiefen und praktisch anwenden lassen. Die Bearbeitung dieser 

Aufgaben verlangt im Gegensatz zur Vorlesung jedoch einen hohen Grad an 

eigenständigem Lernen. Es zeigt sich jedoch, dass nur etwa ein Sechstel der 

Studierenden die Übungsaufgaben selbst lösen bzw. in der Lage sind, diese selbst 

zu lösen (Liebendörfer & Göller, 2016; Rach & Heinze, 2013). 

Die Art der Aufgaben spielt hierbei eine zentrale Rolle, da verschiedene 

Aufgabenarten unterschiedliche Ansprüche an das mathematische Verständnis 

und die Arbeitsweise der Studierenden stellen. So bestehen die Übungsaufgaben 

aus drei verschiedenen deutschen Mathematikveranstaltungen für den 1-Fach 

Bachelor bzw. Lehramt für das Gymnasium zu 51 % aus Rechenaufgaben (Weber 

& Lindmeier, 2020). Weitere 47 % bestehen aus Beweisaufgaben durch Beweise 

mittels Definitionen und/oder Sätzen. Ähnliche Ergebnis zeigen sich bei der 

Analyse von Übungsaufgaben an vier verschiedenen deutschen Universitäten, wo 

ca. 45 % der Übungsaufgaben prozedurales und ca. 55 % konzeptuelles Wissen 

erfordern (Wlassak & Schöneburg-Lehnert, 2022). Dabei bestehen allerdings 

zwischen den Universitäten teilweise große Unterschiede. In der wenigen 

internationalen Literatur können ebenfalls ähnliche Ergebnisse gefunden werden. 

Darlington (2014) unterscheidet in drei Aufgabenarten. Gruppe A umfasst 

Routineprozesse, Gruppe B die Anwendung mathematischen Wissens in 

unbekannten Kontexten und Gruppe C erfordert konzeptuelles Wissen für 

komplexe Argumentationen. In Darlingtons Studie zu Hochschulaufgaben fallen 

auf Gruppe A 31,6 %, auf Gruppe B 14,4 % und auf Gruppe C 54,1 % der 

Aufgaben. 

Die Übungsgruppen bzw. Tutorien zu der Veranstaltung finden meist in 

Kleingruppen von bis zu 30 Studierenden statt. Sie dienen der weiteren Vertiefung 

der Vorlesungsinhalte und zur Besprechung von Übungsaufgaben. Die Gestaltung 

der Übungsgruppen variiert allerdings zwischen Veranstaltungen, wobei auch 

innerhalb einer Veranstaltung ebenfalls qualitative Unterschiede zwischen den 

Übungsgruppen beobachtet werden können (Püschl, 2019, S. 9ff.). Diese 

Variabilität ergibt sich aus der Tatsache, dass die Gestaltung der Übungsgruppe 

der jeweiligen Lehrperson überlassen wird, und aufgrund oftmals hoher Anzahl 

von Übungsgruppen werden verschiedene Lehrpersonen (darunter auch 
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studentische Tutoren) eingesetzt, die ihre eigene Übungsgruppe individuell 

gestalten. Traditionell werden Übungsgruppen oft mit sog. klassischen 

„Vorrechenübungen“ assoziiert (Haak, 2016), bei denen entweder die Lehrperson 

oder einzelne Studierende Lösungen vorrechnen. In den letzten Jahren sind 

jedoch neue Ansätze entstanden, um die Studierenden stärker in den Mittelpunkt 

zu stellen und ihre aktive Teilnahme zu fördern (Püschl, 2019, S. 18ff.). Ein 

solcher Ansatz wird von Stenzel (2023b) verfolgt, der sich in Übungen darauf 

konzentriert, bestimmte Problemlösestrategien zu vermitteln, um Studierende bei 

der weiteren Bearbeitung von Hausaufgaben zu unterstützen. Ein weiterer 

innovativer Ansatz ist die Vorbereitung von Musterlösungen für Studierende 

(Ableitinger & Hermann, 2011; Ableitinger, 2012). Diese Musterlösungen sollen 

Studierenden den Lösungsprozess sichtbar machen, um die Fähigkeit zur 

eigenständigen Durchführung solcher Prozesse zu fördern.  

Am Ende des Semesters steht in der Regel eine Klausur an, die in den meisten 

Fällen über den erfolgreichen Modulabschluss und die abschließende Note 

entscheidet. Aus diesem Grund haben Klausuren einen erheblichen Einfluss auf 

die Art und Weise, wie Studierende lernen und sich auf Prüfungen vorbereiten 

(Bergqvist, 2007; Kane et al., 1999). Obwohl das Ziel der hochschulischen 

Mathematiklehre die Einführung in die wissenschaftliche Disziplin der 

beweisenden Mathematik ist (Tall, 1992; Weber & Lindmeier, 2020), spiegelt sich 

dieses Ziel in den Klausuren oft nicht wider. In verschiedenen nationalen und 

internationalen Studien wurden Klausuraufgaben in der hochschulischen 

Mathematikausbildung untersucht. Die Ergebnisse zeigen, dass der Schwerpunkt 

meist auf dem prozeduralen Wissen liegt (z. B. Bergqvist, 2007; Kolbe & 

Liebendörfer, 2024). Eine Ausnahme zeigt die Studie von Darlington (2014), in 

der 58 % der untersuchten Aufgaben an der Universität Oxford in Gruppe C 

(erfordert konzeptuelles Wissen für komplexe Argumentation) zugeordnet 

wurden. Allerdings war auch dort für das Bestehen der Klausuren die Anwendung 

von Prozeduren ausreichend. Insbesondere im Kontext 

ingenieurwissenschaftlicher Mathematikveranstaltungen verschiebt sich der 

Fokus in Klausuren noch weiter in Richtung des prozeduralen Wissens (z. B. 

Tallman et al., 2016).  

1.2.4 Eigenverantwortliches Lernen 

Im Kontext des Übergangs von Schule zur Hochschule wird in der 

mathematikdidaktischen Literatur häufig der „didaktische Vertrag“ (Brousseau, 

1984; Gronbaek et al., 2009; Gueudet & Pepin, 2018) thematisiert, dessen 

Veränderungen für Studierende einen erheblichen Einfluss haben können. Beim 

Übergang von Schule zur Hochschule verändert sich dieser Vertrag für 

Studierende erheblich, oft ohne dass ihnen diese neuen impliziten Regeln des 

Lehrens und Lernens bewusst sind. Der schulische Mathematikunterricht zielt 

stark auf strukturiertes Üben und Auswendiglernen kleinerer und kontrollierter 
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Einheiten ab. Dieser Ansatz vermittelt den Schüler:innen, dass die bloße 

Beteiligung am Unterricht sowie das Befolgen klarer Anweisungen für den 

Lernerfolg ausreichen (Hourigan & O´Donoghue, 2007; Pritchard, 2015). 

Eigenständiges bzw. eigenverantwortliches Lernen ist dabei meist weniger 

gefordert. 

Im Mathematikfachstudium wird bspw. erwartet, dass Studierende 

eigenverantwortlich für ihren Lernerfolg sorgen und darüber hinaus eigenständig 

Entscheidungen über ihren Lernprozess treffen (Göller, 2020). Sie müssen dabei 

z. B. ihren Lernstand selbst evaluieren und die passenden Lernhandlungen 

wählen, da die Vorlesungen primär als Impulse und nicht als vollständige 

Erklärungen dienen (Liebendörfer, 2018, S. 21f.). Die Studierenden erleben aus 

diesem Grund Konflikte, weil sie von der Schule gewohnt sind, dass alle 

notwendigen Lernschritte klar vorgegeben sind und für auftretende 

Schwierigkeiten direkt Hilfestellungen zur Verfügung stehen (Gueudet, 2008). Im 

Studium hingegen wird weniger kleinschrittig vorgegangen. Dabei wird von den 

Studierenden erwartet, dass sie mit komplexen und weniger vorstrukturiertere 

Problemstellungen eigenständig umgehen können. 

Das Missverständnis, die Lehre sei rein vermittelnd, entsteht häufig dadurch, dass 

für viele Studierende die Vorlesungen und Übungen die einzigen sichtbaren Orte 

des Lernens darstellen (Pritchard, 2015). Dabei bleibt der Wunsch, dass die 

Vorlesungen zum einen verständlich sind und zum anderen einen sofortigen 

Lernerfolg ermöglichen (Kalesse, 1998), was jedoch nicht die zentrale 

Zielsetzung der universitären Mathematiklehre darstellt. Diese Diskrepanz zeigt 

sich außerdem in Frustrationen, wenn vorausgesetztes Wissen fehlt oder 

Dozierende sich aus Sicht der Studierenden nicht ausreichend in deren 

Lernschwierigkeiten einfühlen können (de Guzman et al., 1998). 

Klagen über fehlende Unterstützung weisen zudem darauf hin, dass es 

unterschiedliche Auffassungen über die Verantwortung für den Studienerfolg 

gibt: Während Studierende häufig mehr direkte Unterstützung erwarten, wird an 

der Hochschule die Eigenverantwortung betont. Diese Herausforderungen 

machen sich besonders in den ersten Wochen des Studiums bemerkbar (Pritchard, 

2015). Diese Phase ist entscheidend dafür, dass Studierende ihre Rolle im neuen 

didaktischen Vertrag erkennen und die notwendige Selbstständigkeit entwickeln, 

um die Anforderungen des Mathematikstudiums zu meistern (di Martino & 

Gregorio, 2019).  

Zusammengefasst erfordert der Übergang in das mathematikhaltige Studium eine 

deutliche Anpassung an einen neuen didaktischen Vertrag, bei dem 

Eigenverantwortung eine wichtige Rolle einnimmt.  

1.2.5 Spezifika des mathematischen Lernens 

In der Hochschule werden Lernprozesse oft anhand von Lernstrategien überprüft, 

um Erkenntnisse über das Lernverhalten der Studierenden zu gewinnen. In der 
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Vergangenheit wurden oftmals allgemeine Fragebögen (z. B. Pintrich et al., 1991; 

Wild & Schiefele, 1994) zu Lernstrategien eingesetzt, um das Lernen sowie die 

Nutzung von Lernstrategien der Studierenden zu erfassen. Solche Fragebögen 

bieten wertvolle Einblicke, bleiben jedoch allgemein und berücksichtigen häufig 

nicht die Besonderheiten fachbezogener Lerninhalte. Gerade die 

Hochschulmathematik stellt einen spezifischen Lerngegenstand dar, dessen 

Anforderungen und kognitiven Prozesse sich von anderen Disziplinen 

unterscheiden (Liebendörfer, 2018, Kapitel 2; Rach, 2014, Kapitel 3). In jüngerer 

Zeit wurden aus diesem Grund fachspezifische Lernstrategien konzeptualisiert, 

die für mathematisches Lernen in der Hochschule angepasst sind (Liebendörfer 

et al., 2021). Diese basieren auf der psychologischen Unterscheidung in 

ressourcenbezogene, metakognitive und kognitive Lernstrategien (Wild & 

Schiefele, 1994). 

Ressourcenbezogene Lernstrategien 

Ressourcenbezogene Strategien zielen darauf ab, sowohl externe als auch interne 

Ressourcen optimal zu nutzen.  

Externe Ressourcen umfassen Materialien wie Vorlesungsmitschriften, 

Übungsaufgaben, ergänzende Literatur und elektronische Ressourcen sowie den 

Austausch mit anderen Personen. So ist unter anderem das gründliche 

Nacharbeiten von Vorlesungsmitschriften wichtig (Alcock, 2017, S. 135), um das 

hohe Tempo in der Vorlesung auszugleichen und komplexe Inhalte 

nachzuvollziehen (Haite et al., 2008, S. 150f.). Übungsaufgaben gelten als 

wesentliches Mittel, um das Gelernte anzuwenden und zu vertiefen (Alcock, 

2017, S. 190ff.; Beutelspacher, 2009). Auch zusätzliche Literatur kann wertvolle 

Einblicke bieten und das Verständnis erleichtern (Haite et al., 2008, S. 151f.). In 

jüngerer Zeit wird außerdem vermehrt die Nutzung von elektronischen 

Informationsquellen aufgeführt (Kempen & Liebendörfer, 2021; Liebendörfer et 

al., 2023). Darüber hinaus wird der Austausch mit Kommiliton:innen, etwa durch 

gemeinsames Bearbeiten der Aufgaben oder Diskussionen über 

Vorlesungsinhalte, als hilfreich angesehen (Alcock, 2017, S. 199ff.; Göller, 2020, 

S. 198ff.). 

Interne Ressourcen betreffen Aspekte wie Zeitmanagement, 

Anstrengungsbereitschaft, Konzentration und Motivation. Das Verstehen 

komplexer mathematische Inhalte nimmt nicht nur einige Zeit in Anspruch 

(Weber, 2012), sondern erfordert zusätzlich eine Menge an Konzentration (Göller, 

2020, S. 96). Ein gutes Zeitmanagement ermöglicht es den Studierenden, gewisse 

Zeiträume gezielt für das Verstehen von Konzepten sowie Bearbeiten von 

Übungsaufgaben zu nutzen, wodurch die Lernzeit effektiver gestaltet werden 

kann. Auch Durchhaltevermögen und Motivation sind für das langfristige Lernen 

essenziell (Neumann et al., 2017), insbesondere in Phasen, in denen das Lernen 

nur langsam Fortschritte zeigt oder bereits viel Zeit investiert wurde. Schließlich 
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ist der konstruktive Umgang mit negativen Emotionen, vor allem mit Frustration, 

ein entscheidender Faktor, um auch in schwierigen Momenten die Motivation und 

den Lernfortschritt aufrechtzuerhalten (Göller & Gildehaus, 2021). 

Kognitive Lernstrategien 

Kognitive Strategien unterstützen die aktive Auseinandersetzung mit Inhalten und 

umfassen Wiederholungs-, Organisations- und Elaborationsstrategien. 

Organisations- und Elaborationsstrategien werden oftmals als Tiefenstrategien 

und Wiederholungsstrategien als Oberflächenstrategien verstanden (z. B. 

Coertjens et al., 2016; Lahdenperä et al., 2019). 

Wiederholungsstrategien beziehen sich auf das wiederholte Lesen, Schreiben 

oder laute Wiederholen von Inhalten. Es geht also darum, ob Studierende z. B. 

immer wieder ihre Vorlesungsnotizen durchlesen oder wichtige Inhalte 

auswendig lernen, um sich an Konzepte, Zusammenhänge oder Verfahren zu 

erinnern. Auswendiglernen kann dabei als erster Schritt in Richtung Verständnis 

verstanden werden (Alcock, 2017, S. 135ff.). Z. B. kann das mehrfache Lesen 

von Beweisen weitere Feinheiten aufdecken und einen besseren Überblick 

verschaffen (Houston, 2012). Allerdings kann stures Auswendiglernen auch als 

Zeitverschwendung angesehen werden (Alcock, 2017, S. 156).  

Eine weitere Wiederholungsstrategie ist das Üben. Darunter fällt das wiederholte 

Ausführen von Regeln bzw. Verfahren, die anhand verschiedener Beispiele 

eingeübt werden können (Göller, 2020, S. 98; Liebendörfer et al., 2021). Durch 

die Entwicklung von Routinen werden gewisse Problemaufgaben zu 

Routineaufgaben, da spezifische Lösungsverfahren bereits bekannt und eingeübt 

worden sind. Letztlich werden durch Routinen kognitive Ressourcen frei, die für 

komplexere Inhalte genutzt werden können. 

Elaborationsstrategien fokussieren darauf, Inhalte zu verknüpfen, indem 

Studierende neue Informationen in die bereits bestehende Wissensstruktur 

integrieren bzw. verbinden. Hinsichtlich mathematischer Definitionen kann es 

hilfreich sein, die Definitionen in eigene Worte zu formulieren oder Beispiele zu 

konstruieren. Hinsichtlich mathematischer Sätze kann es hilfreich sein, die 

Negation oder Kontraposition zu bilden oder den dazugehörigen Beweis 

nachzuvollziehen. Dabei kann versucht werden, bspw. die Hauptideen des 

Beweises zu identifizieren oder den Beweis auf einen anderen Kontext zu 

übertragen (Vollrath & Roth, 2012 S. 48f.). Weitere Elaborationsstrategien lassen 

sich in zusätzlicher Literatur finden (z. B. Alcock, 2017, S. 135ff.; Hilgert et al, 

2015; Houston, 2012). 

Organisationsstrategien helfen dabei, Informationen in eine strukturierte und 

leichter zu verarbeitende Form zu bringen (Wild & Schiefele, 1994). Dies umfasst 

unter anderem das Zusammenfassen oder Herausheben wesentlicher 

Informationen oder Erkenntnisse (Alcock, 2017, S. 181f.; Houston, 2012), die 

Nutzung von Concept-Maps (Evans & Jeong, 2023; Renkl & Nückles, 2006) zur 
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Visualisierung von Beziehungen zwischen Begriffen sowie das gezielte 

Selektieren von spezifischen Inhalten. Das Selektieren relevanter Inhalte führt 

dazu, dass andere Inhalte bewusst ignoriert werden. Oftmals fokussieren sich 

Studierende auf Fakten sowie Prozeduren und sparen bspw. Beweise beim Lernen 

aus (Göller, 2017). 

Metakognitive Lernstrategien 

Metakognitive Lernstrategien zielen darauf ab, das eigene Lernen bewusst zu 

steuern und zu regulieren. Im Gegensatz zu kognitiven Strategien richten sie sich 

nicht direkt auf die Verarbeitung von Inhalten, sondern auf die übergeordnete 

Kontrolle des gesamten Lernprozesses (Wild & Schiefele, 1994). Die drei 

Kernbereiche der metakognitiven Strategien sind Planung, Überwachung und 

Regulation (Wild & Schiefele, 1994). Planung beinhaltet das Festlegen konkreter 

Lernziele sowie die Auswahl geeigneter Werkzeuge und Methoden, um diese zu 

erreichen. Während des Lernens dient die Überwachung zur Überprüfung von 

Fortschritten, Identifikation von Wissenslücken und zum kritischen Hinterfragen 

des eigenen Verständnisses. Die Regulation umfasst schließlich die Anpassung 

des Lernverhaltens, etwa durch den Wechsel der Strategie. In der Mathematik 

gewinnen metakognitive Strategien eine besondere Bedeutung, da das 

Nachvollziehen und Validieren von Details besonders relevant erscheinen. 

Insbesondere hinsichtlich der Überwachung ist es beim Lesen von 

mathematischen Texten wichtig, die Aussagen sowie Argumente permanent 

kritisch zu hinterfragen (Mason et al., 2008, S. 102ff.). Insgesamt hat sich gezeigt, 

dass Strategien wie das Selbsterklären, Selbstbefragung und Selbstüberwachung 

im Kontext der Mathematik sowohl die Lernergebnisse als auch die 

metakognitiven Fähigkeiten verbessern (Raza et al., 2016). 

Abbildung 2 bietet einen theoriebasierten Überblick über Lernstrategien im 

Mathematikstudium, der auch auf mathematikhaltige Studiengänge übertragbar 

ist. Eine ähnliche Kategorisierung von Lernstrategien wird durch den LimSt 

(Fragebogen zur Erhebung von Lernstrategien im mathematikhaltigen Studium) 

vorgenommen (Liebendörfer et al., 2021).  

Im Kontext von Strategien für das Mathematikstudium werden häufig auch 

Problemlösestrategien, sog. Heurismen, thematisiert. Diese sind jedoch nicht mit 

den hier vorgestellten Lernstrategien gleichzusetzen, obwohl es zwischen beiden 

Konzepten kleinere Überschneidungen gibt. Eine detaillierte Einführung in 

Heurismen erfolgt in Kapitel 2.5, wobei die spezifischen Gemeinsamkeiten und 

Unterschiede in Kapitel 2.5.1 näher erläutert werden. 
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Abbildung 2: Übersicht über theoriebasierte Kategorien zu Lernstrategien für mathematikhaltige 

Studiengänge (Ausschnitt aus Göller, 2020, S. 114) 

1.2.6 Erfolgreiches Lernen 

In den letzten Jahren haben sich zahlreiche Studien mit der Identifikation 

erfolgreicher Lernstrategien für das Mathematiklernen an der Universität 

beschäftigt. Oftmals wird in diesen Studien der Zusammenhang zwischen 

Lernstrategien mit Erfolg in der Klausur untersucht. Die resultierenden 

Ergebnisse sind dabei oft nicht eindeutig. 

Obwohl mathematische Lernstrategien aus theoretischer Perspektive einen 

deutlichen Einfluss auf den Studienerfolg haben sollten, zeigen Studien, dass 

dieser Einfluss in der Praxis oft gering ausfällt. Teilweise zeigt sich, dass sogar 

kein Zusammenhang zwischen vielen Lernstrategien und Erfolg besteht (z. B. 

Johns, 2020). Es gibt jedoch auch positive Befunde. Elaborationsstrategien, 

insbesondere wenn diese fachspezifisch erhoben werden, erweisen sich als 
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effektive Lernstrategien (z. B. Geisler, 2019, S. 184; Göller, 2020, S. 337; Kolter 

et al., 2018). Ebenso wird der Zeiteinsatz bzw. die Menge an investiertem 

Aufwand häufig als positiver Prädiktor für Erfolg identifiziert (Göller, 2020, S. 

336; Griese, 2017, S. 187; Liebendörfer et al., 2022). Darüber hinaus spielen die 

Frustrationstoleranz sowie das Interesse eine bedeutende Rolle für den Erfolg. 

Studierende, die Rückschläge und längere Phasen ohne Fortschritt aushalten 

können, profitieren langfristig (Kuklinski et al., 2019; Liebendörfer et al., 2022). 

Des Weiteren erleichtert das Interesse an Mathematik das Lernen. Hierbei wird 

allerdings zwischen dem Interesse an Schulmathematik und 

Hochschulmathematik unterschieden (Ufer et al., 2017). Ein starkes Interesse an 

der Hochschulmathematik trägt ebenfalls dazu bei, auch bei wachsender 

Frustration motiviert zu bleiben (Göller & Gildehaus, 2021). 

Oberflächenstrategien wie reines Auswendiglernen erweisen sich meist als wenig 

effektiv (Göller, 2020; Liebendörfer et al., 2022). Dennoch ist der (Miss-)Erfolg 

solcher Strategien stark kontextabhängig. Es gibt Situationen, in denen auch 

scheinbar weniger geeignete Strategien hilfreich sein können. Erfolgreiche 

Studierende zeichnen sich durch ihre Fähigkeit aus, die richtige Strategie im 

richtigen Moment auszuwählen (Matcha et al., 2019). Des Weiteren neigen 

erfolgreiche Studierende dazu, Misserfolge auf interne Faktoren zurückzuführen 

(di Martino & Gregorio, 2019). 

Neben den spezifischen Strategien wird die Bedeutung der kontinuierlichen 

Arbeit während des Semesters betont. Besonders erfolgreich sind Studierende, 

die Übungsblätter selbstständig und regelmäßig bearbeiten (Rach & Heinze, 

2013). Dabei werden ständig und kontinuierlich mathematische Begriffe und 

Verfahren wiederholt, eingeübt sowie in spezifischen Situationen eingesetzt. 

Neben den Lernstrategien zeigt sich das Vorwissen als ein bedeutsamer Faktor für 

den Studienerfolg. Studien, die diesen Aspekt untersucht haben, weisen 

konsistent darauf hin, dass schulisches Vorwissen einen zuverlässigen sowie den 

stärksten Prädiktor für den Erfolg in der Hochschulmathematik darstellt (Hailikari 

et al., 2008; Kosiol et al., 2019; Kuklinski et al., 2019; Liebendörfer et al., 2022; 

Rach & Ufer, 2020; de Winter & Dodou, 2011). Grundlegende mathematische 

Kenntnisse sind demnach eine wichtige Voraussetzung für das Verständnis der 

Inhalte im universitären Kontext. 

1.2.7 Übertragung mathematikdidaktischer Ansätze auf die 

Ingenieurmathematik 

Die vorangegangenen Ausführungen (Kapitel 1.2) beziehen sich allgemein auf 

mathematikhaltige Studiengänge (vor allem auf Fachmathematik und 

gymnasiales Lehramtsstudium) und betrachten übergreifende Aspekte der 

mathematischen Lehre und des Lernens an der Hochschule. Es bleibt jedoch die 

Frage, inwiefern sich diese ebenfalls auf die Mathematik für Ingenieur:innen 

übertragen lassen. Dies wird im Folgenden erörtert. 
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Ein grundlegender Unterschied liegt im Ziel der jeweiligen Lehre zwischen 

verschiedenen Studiengängen (Maron, 2016). Die Fachmathematik strebt eine 

Einführung in wissenschaftliches Arbeiten an, bei der die formale Begriffsbildung 

sowie das deduktive Beweisen eine zentrale Rolle spielen. In der 

Ingenieurmathematik wird die Mathematik primär als Werkzeug gesehen, 

welches für andere Disziplinen nutzbar gemacht werden soll. Die ausgearbeiteten 

Kompetenzen des SEFI-Frameworks (Alpers et al., 2013, S. 18) zeigen bspw., 

dass reasoning mathematically und symbols and formalism zwar relevant, jedoch 

weniger wichtig sind als die anderen sechs aufgelisteten Kompetenzen. Diese 

Kompetenzen wären gerade dann relevant, um mathematische Inhalte tief zu 

durchdringen und zu verstehen. Dennoch sollten auch bei Ingenieur:innen 

mathematische Hintergründe nicht vollkommen vernachlässigt werden (z. B. 

Alpers et al., 2013, S. 25). Es ist wichtig, dass auch diese Hintergründe verstanden 

werden, da sie unter anderem die Grundlage für erfolgreichen Einsatz von 

Mathematik in ingenieurwissenschaftlichen Anwendungen bilden. 

Hinsichtlich der fachlichen Inhalte scheint eine weitgehende Konsistenz über die 

verschiedenen Studiengänge hinweg zu bestehen. Insbesondere in den 

grundlegenden Bereichen der Mathematik wird im ersten Semester in der Fach- 

und gymnasialen Lehramtsmathematik sowie des Ingenieurstudiums ein Fokus 

auf Lineare Algebra und Analysis gelegt. 

Die organisatorischen Aspekte der Lehre lassen sich weitgehend unverändert auf 

den Ingenieurskontext übertragen (für ein Beispiel zur Organisation einer 

Mathematikveranstaltung für Ingenieur:innen siehe in Kortemeyer & Frühbis-

Krüger, 2021). Wie gewohnt bestehen die Veranstaltungen aus Vorlesungen, 

Übungsaufgaben, Tutorien und einer Klausur am Ende des Semesters, die im 

Groben jeweils die gleiche Funktion erfüllen. Eine Besonderheit ergibt sich 

jedoch in Bezug auf die Hausaufgaben. Im Ingenieurstudium sind Hausaufgaben 

nicht unbedingt verpflichtend, um eine Studienleistung zu erbringen und sich für 

die Klausur zu qualifizieren. Es existieren verschiedene Modelle. Z. B. gelten in 

manchen die Hausaufgaben lediglich als freiwilliges Lernangebot, während 

andere Modelle die Möglichkeit bieten, durch Hausaufgaben Bonuspunkte4 für 

die Klausur zu erwerben.  

Darüber hinaus wird auch von Ingenieurstudierenden erwartet, dass sie 

eigenständig lernen und sich nicht ausschließlich auf die Präsenztermine an der 

Universität verlassen. Allerdings wird dem Umfang des eigenständigen Lernens 

weniger Zeit eingeräumt (Liebendörfer et al., 2022), als es bei dem Fach- bzw. 

gymnasialen Lehramtsstudium der Fall ist (Göller, 2020, S. 4f.). Dies kann sich 

auf die Gestaltung der Übungsblätter auswirken. Durch den reduzierten 

Zeitumfang für das eigenständige Lernen haben Ingenieurstudierende weniger 

Zeit für die Bearbeitung. Die Aufgaben dürften dadurch einfacher und weniger 

 
4 An der Universität Paderborn wird das Modell der Bonuspunkte für die Klausur sammeln seit 

mehreren Jahren angewendet. 
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komplex als im Fachstudium sein. Bereits die Klausuraufgaben im 

Ingenieurstudium sind oft prozeduraler bzw. anwendungsorientierter gestaltet 

(Altieri, 2016, S. 167). Ein Ansatz, der sich möglicherweise auch in den 

Übungsaufgaben widerspiegelt. 

Diese Unterschiede werfen die Frage auf, welche Lernstrategien von den 

Studierenden angewandt werden. Im Fachstudium, dessen Ziel stark auf dem 

deduktiven Beweisen liegt, sind Elaborationsstrategien erforderlich, um die tiefen 

Zusammenhänge und komplexen Aufgaben zu verstehen und zu lösen. Hingegen 

können anwendungsorientierte Aufgaben im Ingenieurstudium oft mit 

Wiederholungsstrategien bearbeitet werden. Es ist daher denkbar, dass 

Ingenieurstudierende keine große Umstellung im Vergleich zur Schule 

durchlaufen müssen, da die Strategien des Übens und Auswendiglernen auch im 

Studium häufig zielführend sind (Liebendörfer et al, 2022). 

 
Aspekt Mathematik für 

Ingenieur:innen 

Mathematik im Fach- bzw. 

gymnasialen Lehramtsstudium 

Ziel der Lehre Mathematik als Werkzeug zur 

Anwendung in anderen 

Disziplinen 

Einführung in wissenschaftliches 

Arbeiten mit Fokus auf formale 

Begriffsbildung und deduktives 

Beweisen 

Fachliche Inhalte 

(zu Beginn des 

Studiums) 

Lineare Algebra und Analysis Lineare Algebra und Analysis 

Organisatorische 

Aspekte 

Vorlesungen, Übungen, Tutorien 

und Klausuren 

  

Vorlesungen, Übungen, Tutorien 

und Klausuren  

  
Hausaufgaben Hausaufgaben oft freiwillig oder 

mit Bonuspunkten für Klausur 

Hausaufgaben oft verpflichtend, 

um Studienleistung zu erbringen 

Art der Aufgaben (Klausur-)Aufgaben stark 

prozedural 

(Klausur-)Aufgaben prozedural 

und konzeptuell gemischt 

Eigenständiges 

Lernen 

Mehr als die Hälfte der gesamten 

Lernzeit (Liebendörfer et al., 

2022) 

Etwa zwei Drittel der gesamten 

Lernzeit (Göller, 2020, S. 5) 

Lernstrategien Wiederholungsstrategien oft 

ausreichend  

Elaborationsstrategien sowie 

Wiederholungsstrategien 

notwendig 

Rolle der 

Mathematik 

Mathematik als „Nebenprodukt“ Bewusste Entscheidung für 

Mathematik 

Tabelle 2: Vergleich zwischen Mathematik für Ingenieur:innen und Mathematik im Fach bzw. 

gymnasialen Lehramtsstudium 
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Ein weiterer bedeutender Punkt betrifft die Rolle der Studierenden und ihre 

Einstellungen zur Mathematik. Im Fach- oder Lehramtsstudium fand eine 

bewusste Entscheidung für das Fach Mathematik statt, während 

Ingenieurstudierende ihr Studium aufgrund eines allgemeinen Interesses an 

ingenieurwissenschaftlichen Anwendungen gewählt haben. Mathematik stellt 

hier eher ein „Nebenprodukt“ dar, das notwendig ist, um die 

ingenieurwissenschaftlichen Ziele zu erreichen. Diese unterschiedliche 

Ausgangslage kann dazu führen, dass die Motivation zur Auseinandersetzung mit 

mathematischen Inhalten im Ingenieurstudium geringer ist und stärker 

pragmatisch geprägt ist. Darüber hinaus kann die Bewertung mathematischer 

Inhalte je nach Studiengang variieren – ein Unterschied, der möglicherweise auch 

durch die jeweilige Studienkultur beeinflusst wird. 

Tabelle 2 stellt den Vergleich zwischen der Mathematik für Ingenieur:innen und 

für das Fach- bzw. gymnasiales Lehramtsstudium zusammen. Die Tabelle erhebt 

dabei keinen Anspruch auf Vollständigkeit und basiert ausschließlich auf den 

zuvor genannten Aspekten. 

1.3 Die Bedeutung von Hausaufgaben im mathematischen 

Lernprozess 

Wie bereits erwähnt, sind mathematische Lernprozesse von Studierenden der 

Fokus dieser Arbeit. Angesichts der Lernprozesse wird der Bearbeitung der 

wöchentlichen Hausaufgaben eine besondere Bedeutung beigemessen. Diese sind 

als Teil der eigenständigen Selbstlernzeit vorgesehen und gelten gleichzeitig als 

zentraler Aspekt des mathematischen Lernens von Studierenden (z. B. Göller, 

2020, S. 4f.; Liebendörfer et al., 2022). Im ingenieurwissenschaftlichen Studium 

spielt die eigenständige Lernzeit ebenfalls eine zentrale Rolle und ist unerlässlich 

für den Lernerfolg. Hausaufgaben sind dabei zwar nicht unbedingt verpflichtend, 

stellen für Studierende aber ebenfalls eine wesentliche Ressource zum Lernen dar 

(Kolbe & Wessel, 2022). Ausgehend von der bedeutenden Rolle, die 

Hausaufgaben hinsichtlich des mathematischen Lernens im 

ingenieurwissenschaftlichen Studium einnehmen, liegt es nahe, diesen 

Lernprozess genauer zu untersuchen. In der vorliegenden Arbeit wird daher ein 

Fokus auf die Bearbeitungsprozesse von Hausaufgaben gelegt. 

1.3.1 Hausaufgaben als Problem? 

Obwohl wöchentliche Hausaufgaben das Ziel haben, das Verständnis und die 

Anwendung des gelernten Stoffs zu fördern, stellen sie für viele Studierende eine 

Herausforderung dar. Wie Studien zeigen, kämpfen Studierende häufig mit der 

Bearbeitung dieser Aufgaben (z. B. Liebendörfer & Göller, 2016). Der damit 

verbundene Zeitaufwand, eigenständig Lösungen zu finden, führt regelmäßig zu 
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Schwierigkeiten und Überforderung. Es stellt sich daher die Frage, ob die 

Bearbeitung der wöchentlichen Hausaufgaben als Problem aufgefasst werden 

kann. Um dies zu klären, lohnt sich ein Blick auf verschiedene Definitionen des 

Begriffs Problem. 

In der psychologischen Literatur werden Probleme als Situationen beschrieben, 

in denen jemand etwas möchte, jedoch nicht sofort weiß, welche Handlung er 

ausführen soll, um sein Ziel zu erreichen. Newell und Simon (1972) formulieren 

dies wie folgt: 

„A person is confronted with a problem when he wants something and does not know immediately 

what series of action he can perform to get to it.” (Newell & Simon, 1972, S. 72) 

In der Definition von Dörner (1987) wird der strukturelle Aspekt eines Problems 

hervorgehoben. 

„Ein Problem ist also gekennzeichnet durch drei Komponenten: 1. Unerwünschter Anfangszustand sα 

2. Erwünschter Endzustand sω 3. Barriere, die die Transformation von sα in sω im Moment 

verhindert“. (Dörner, 1987, S. 10) 

Nach den beiden Definitionen kann ein Problem allgemein als Situation 

beschrieben werden, bei der ein Anfangszustand (ungelöste Hausaufgabe) durch 

Überwindung von Barrieren in einen Zielzustand (gelöste Hausaufgabe) 

überführt werden soll. Für Hausaufgaben bedeutet dies, dass Studierende von der 

Aufgabenstellung ausgehend Hindernisse bewältigen müssen, um eine Lösung zu 

erreichen. 

In der Mathematikdidaktik wird das Konzept des Problems spezifischer 

angewendet. Vollrath (1992) bezieht das Wort Problem auf eine Aufgabe: 

„Im folgenden verstehen wir unter einem Problem eine Aufgabe, die dem Bearbeiter beim Lösen eine 

Barriere entgegenstellt. Ob eine Aufgabe ein Problem darstellt, hängt von den Erfahrungen, 

Kenntnissen und Fähigkeiten des Problemlösers ab.“ (Vollrath, 1992, S. 127) 

Dabei wird außerdem betont, dass es nicht nur auf die Aufgabe selbst, sondern 

auch auf die Erfahrungen, Kenntnisse und Fähigkeiten der Person ankommt, 

welche die Aufgabe bearbeitet und somit zusätzlich darüber entscheidet, ob 

tatsächlich ein Problem vorliegt. Es muss demnach geklärt werden, ob 

Studierende bei der Bearbeitung von Hausaufgaben auf Hindernisse stoßen. 

Aufgrund der personenabhängigen Natur eines Problems ist es nicht möglich, 

eine generalisierende Aussage darüber zu treffen, ob eine bestimmte Aufgabe 

immer ein Problem darstellt. Vielmehr hängt dies von den individuellen 

Erfahrungen, Kenntnissen und Fähigkeiten der Person ab, die die Aufgabe 

bearbeitet (Vollrath, 1992). Dennoch können aus bisherigen 

Forschungsergebnissen Hinweise abgeleitet und Vermutungen aufgestellt 

werden, die darauf hinweisen, dass Studierende bei der Bearbeitung von 

Hausaufgaben häufig auf Barrieren stoßen. So haben Liebendörfer und Göller 

(2016) gezeigt, dass Studierende sowohl aus dem Fachstudium als auch aus dem 

gymnasialen Lehramtsstudium (Physik) oft an ihre fachlichen Grenzen geraten, 
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wenn sie wöchentliche Hausaufgaben bearbeiten. Stenzel (2023a, S. 13f.) geht 

sogar so weit, zu behaupten, dass ein Großteil der Aufgaben, die Studierende in 

der Hochschule bearbeiten, für sie Probleme darstellen. Ein wesentlicher Grund 

dafür ist die hohe Frequenz an Wissenskomponenten, die für das Verständnis und 

die Bearbeitung erforderlich sind. Dies führt unter anderem auch dazu, dass 

vermeintliche Routineoperationen nicht in die kognitiven Strukturen der 

Studierenden internalisiert sind (dies würde insbesondere auf 

Grenzwertbestimmungen zutreffen). Zusätzlich kann vermutet werden, dass 

einige Studierende nicht über die notwendigen Strategien verfügen, um 

bestimmte Aufgabenformate erfolgreich zu lösen (für Beweise siehe z. B. Weber, 

2014). Selbst wenn sowohl Wissen als auch Strategien vorhanden sind, garantiert 

dies nicht zwangsläufig einen erfolgreichen Einsatz. Eine unzureichende 

Steuerung des eigenen Bearbeitungsprozesses kann dementsprechend dazu 

führen, dass vorhandene Ressourcen nicht optimal genutzt werden. 

Es bleibt die Frage, ob diese Argumente auch auf den 

ingenieurwissenschaftlichen Kontext übertragen werden können. Im 

Ingenieurbereich sind die mathematischen (Haus-)Aufgaben häufig stärker 

verfahrensorientiert und lassen sich durch ihre reine Aufgabenanalyse eher dem 

prozeduralen Wissen zuordnen. Es stellt sich daher die Frage, ob solche Aufgaben 

als Problem eingeordnet werden können. Auch hier gilt, dass dies stark 

personenabhängig ist. Eine verfahrensorientierte Aufgabe kann für Studierende 

durchaus ein Problem darstellen, insbesondere wenn bestimmte Verfahren noch 

nicht automatisiert sind (Stenzel, 2023a, S. 13f.). Selbst wenn ein Verfahren oder 

eine Strategie bekannt ist, bedeutet dies nicht zwangsläufig, dass diese korrekt auf 

die gegebene Situation angewendet wird. Ein weiterer Punkt ist die 

Wahrnehmung der Mathematik selbst. Studierende aus beiden Studiengängen 

würden behaupten, dass die Mathematik, die sie bearbeiten müssen, schwierig ist. 

Dies zeigt, dass die empfundene Schwierigkeit nicht primär vom Studiengang 

oder den Aufgabenstellungen abhängt, sondern eher von individuellen 

Erfahrungen und Fähigkeiten (Vollrath, 1992) sowie dem jeweiligen Kontext, in 

dem Mathematik angewandt wird. 

Zusammenfassend lässt sich festhalten, dass das Bearbeiten wöchentlicher 

Hausaufgaben in dieser Arbeit (vorsichtig) als Problem für Studierende aufgefasst 

werden kann. Die Frage, inwieweit Hausaufgaben tatsächlich als Probleme 

wahrgenommen werden, wird zudem als Forschungsfrage aufgegriffen und im 

Kapitel 6.4.3 ausführlich empirisch beantwortet. 

1.4 Zielsetzung dieser Arbeit 

Die Forschung dieser Arbeit setzt nach Hochmuth und Schreiber (2016) beim 

Lernen von Mathematik an. Mit der Auffassung, dass die Bearbeitung von 

mathematischen Hausaufgaben für Studierende Probleme darstellen (Kapitel 
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1.3.1), erscheint es aufgrund des Problemcharakters sinnvoll, die Theorie des 

mathematischen Problemlösens für die Betrachtung der Bearbeitungsprozesse 

mathematischer Hausaufgaben heranzuziehen. Die Theorie des mathematischen 

Problemlösens bietet dafür eine passende Grundlage, da sie Lernen als 

Problembearbeitungsprozess betrachtet (Leuders, 2017) und somit direkte 

Anknüpfpunkte bietet, um die typischen Denkprozesse der Studierenden beim 

Lösen mathematischer Aufgaben zu untersuchen. Aufgrund der bislang geringen 

Forschungslage zu authentischen Lernsituationen wird in der vorliegenden Arbeit 

ein beschreibender Ansatz gewählt. Ziel ist es, die Lernprozesse im Kontext des 

mathematischen Problemlösens umfassend darzulegen und so ein tieferes 

Verständnis dieser Prozesse zu ermöglichen. Eine solche empirische 

Untersuchung ist wichtig, da sie tiefere Einblicke in die Art und Weise geben 

kann, wie Studierende mit mathematischen Problemen umgehen und 

mathematisch lernen. Die theoretischen Grundlagen für das mathematische 

Problemlösen werden in Kapitel 2 dargestellt (Abbildung 3). 

 

 

Abbildung 3: Von der Motivation zur Theorie des mathematischen Problemlösens 
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2 Mathematisches Problemlösen mit Blick auf die 

Hochschule 

Dieses Kapitel behandelt die theoretische Beschreibung des mathematischen 

Problemlösens. Zunächst folgt eine Auseinandersetzung mit der Relevanz des 

(mathematischen) Problemlösens für das Ingenieurstudium (Kapitel 2.1). Des 

Weiteren folgt eine Begriffsbeschreibung (Kapitel 2.2) zum mathematischen 

Problemlösen. Die anschließenden Ausführungen werden anhand der vier 

Kategorien des mathematischen Problemlösens nach Schoenfeld (1985) 

gegliedert: Steuerung (=Control) (Kapitel 2.3), Wissen (=Resources) (Kapitel 

2.4), Heurismen (=Heuristics) (Kapitel 2.5) und Beliefs (Kapitel 2.6). Letztlich 

werden vier empirische Studien vorgestellt, die für die vorliegende Arbeit 

bedeutsam sind (Kapitel 2.7). 

2.1 Relevanz des (mathematischen) Problemlösens für das 

Ingenieurstudium 

Mathematisches Problemlösen nimmt nicht nur in der schulischen Ausbildung 

und im Mathematikstudium eine zentrale Rolle ein, sondern wird auch als 

wesentlicher Bestandteil des Ingenieurstudiums angesehen (Jonassen et al., 

2006). Es wurde festgestellt, dass die Bearbeitung von Lehrbuchaufgaben zu den 

häufigsten und zeitintensivsten Tätigkeiten im Ingenieurstudium gehört (Taraban 

et al., 2011). Insbesondere die Bearbeitung von mathematischen Hausaufgaben 

spiegelt dies wider. Studierende müssen einen erheblichen Zeitaufwand 

investieren, um sich mit solchen Aufgaben auseinanderzusetzen, die häufig als 

Probleme aufgefasst werden können (Kapitel 1.3.1). In diesem Kontext findet das 

mathematische Problemlösen vor allem im Rahmen der wöchentlichen 

Hausaufgaben statt, die einen wesentlichen Bestandteil des Studiums ausmachen 

und oft den größten Teil der Lernzeit der Studierenden beanspruchen (Kapitel 

1.2.7). Auch die SEFI (European Society for Engineering Education) erkennt die 

Bedeutung des mathematischen Problemlösens an und betrachtet es als eine der 

Kompetenzerwartungen5 für das Ingenieurstudium (Alpers et al., 2013): 

„This competency comprises on the one hand the ability to identify and specify mathematical 

problems (be they pure or applied, open-ended or close) and on the other hand the ability to solve 
mathematical problems (including knowledge of the adequate algorithms)” (Alpers et al., 2013, S. 

13). 

In den weiteren Ausführungen gehen sie auf das Level (Reproduction, 

Connection, Reflection) ein, welches von Studierenden bezüglich der 

mathematischen Kompetenzen erreicht werden sollte. Dabei wird festgelegt, dass 

 
5 Diese basieren auf dem dänischen KOM-Projekt (Niss, 2002; Niss & Højgaard, 2011). 
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mathematisches Problemlösen für einen praxisorientierten Kurs im Studiengang 

Maschinenbau sowohl bezüglich Reproduction als auch Connections als very 

important und lediglich bezüglich Reflection als medium important eingestuft 

wird. Diese Einstufung basiert darauf, welche typischen mathematischen 

Aufgaben Ingenieur:innen zu bewältigen haben (Alpers et al., 2013, S. 18).  

Mathematisches Problemlösen wird daher als ein wichtiger Teil des 

Ingenieurstudiums angesehen. Besonders im ersten Semester wird der Grundstein 

der mathematischen Fähigkeiten gelegt, die im weiteren Verlauf des Studiums 

und im zukünftigen Beruf notwendig sind. 

Trotz einiger Studien, die sich mit Problemlösen im Kontext des 

Ingenieurstudiums befassen (Jonassen et al., 2006; Kirn & Benson, 2018; 

Lehmann, 2018; Nordstrom & Korpelainen, 2011), fehlt bislang eine detaillierte 

Prozessanalyse zum authentischen mathematischen Problemlösen von 

Ingenieurstudierenden. Für das Schließen dieser Forschungslücke ist es 

notwendig, die Prozesse des mathematischen Problemlösens detailliert zu 

untersuchen, da bspw. standardisierte Problemlösetests zwar Ergebnisse liefern, 

jedoch wenig Einblick in die konkreten Denk- und Lösungswege der 

Studierenden bieten. Nur durch eine Prozessanalyse lassen sich typische 

Strategien, Schwierigkeiten und individuelle Herangehensweisen erfassen, die für 

gezielte Unterstützungsmaßnahmen entscheidend sind. 

2.2 Begriffsklärung zum Problemlösen 

In Kapitel 1.3.1 wurden bereits einige Definitionen zur Charakterisierung des 

Begriffs „Problem“ vorgestellt. Ein Problem wird typischerweise durch einen 

Anfangs- und Endzustand beschrieben, wobei eine Person beim Übergang von 

Anfangs- zum Endzustand auf eine Barriere stößt (Abbildung 4). Diese Barriere 

kennzeichnet das Problem und hebt den Prozesscharakter hervor, da eine „series 

of action“ (Newell & Simon, 1972, S. 72) erforderlich ist, um das Ziel zu 

erreichen. Rott (2013, S. 19) bemerkt, dass in der Literatur oft eine saubere 

Trennung der Begrifflichkeiten Problem und Problemlöseprozess nicht gegeben 

ist. Seine eigene Definition verbindet ebenfalls beide Aspekte: 

„Eine Aufgabe ist für ihren Bearbeiter (genau) dann eine (mathematische) Problemaufgabe, wenn bei 

ihrer Bearbeitung ein Prozess des Problemlösens stattfindet (im Gegensatz zu einem Routineprozess)“ 

(Rott, 2013, S. 32) 

Ergänzend wird auch der Begriff des Routineprozesses herangezogen, um eine 

Unterscheidung zu ermöglichen. Ein Routineprozess zeichnet sich dadurch aus, 

dass während der Bearbeitung keine Barriere existiert. Insgesamt sind demnach 

sowohl ein Problem als auch der damit verbundene Problemlöseprozess 

personenabhängig und werden von den individuellen Erfahrungen und 

Fähigkeiten bestimmt. 
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Mit dieser Definition verlagert Rott (2013) außerdem den Schwerpunkt der 

Definition des Problems bzw. der Problemaufgabe hin zu einem 

Problemlöseprozess.  

 

 

Abbildung 4: Bestandteile des Problemlösen (Öllinger, 2017) 

Anhand eines Problemlöseprozesses kann bewertet werden, ob es sich für eine 

bestimmte Person bei einer Aufgabe um ein Problem handelt (Rott, 2013, S. 32). 

Während eines solchen Problemlöseprozesses müssen Mittel erst konstruiert oder 

passend konstruiert werden. Diese Mittel können vielfältig sein, z. B. Werkzeuge, 

Ansätze, Konzepte, Strategien, Ideen, Gestalten, usw. (Holzäpfel et al., 2018, S. 

16). Schoenfeld (z. B. 1985) beschäftigt sich in seinen vielen Arbeiten ebenfalls 

mit dem Problemlösen, liefert allerdings keine klare Definition. Stattdessen stellt 

er vier Kategorien heraus, die eine Erklärung des Verhaltens sowie einen Einfluss 

hinsichtlich Erfolgs und Misserfolg auf Problemlösesituationen haben: 

Resources, Heuristics, Control und Beliefs. Im weiteren Verlauf werden auf 

deutsche Begriffe dieser vier Kategorien zurückgegriffen, wobei der Ausdruck 

Beliefs aus dem Englischen übernommen wird. 

 

Wissen (Resources): Das mathematische Wissen, das die Person besitzt und auf 

ein aktuelles Problem angewandt werden kann. 

Heurismen (Heuristics): Strategien und Techniken, um Fortschritte bei 

unbekannten oder unkonventionellen Problemen zu erzielen, sowie Faustregeln 

für effektives Problemlösen. 

Steuerung (Control): Globale und lokale Entscheidungen hinsichtlich der 

Auswahl und Verwendung von Wissen und Heurismen. 

Beliefs: Die „mathematische Weltsicht“ einer Person, also die Gesamtheit von 

(nicht unbedingt bewussten) Einflussfaktoren, die das Verhalten eines 

Individuums bestimmen. 

 



S e i t e  | 30 

 

Wie in den kurzen Beschreibungen bereits deutlich wird, überlappen und 

interagieren die Kategorien miteinander (Schoenfeld, 1985, S. 44). Es reicht 

bspw. nicht aus, lediglich mathematisches Wissen zu haben, dieses muss auch an 

den richtigen Stellen beim Problemlösen eingesetzt werden können. Anhand 

dieser Kategorien erfolgt die Strukturierung der folgenden Kapitel. Obwohl 

Schoenfeld in seinen Ausführungen die Bedeutung der einzelnen Kategorien nicht 

ausdrücklich betont, lässt die Reihenfolge vermuten, dass dem Wissen die größte 

Bedeutung zugeschrieben wird. Diese implizite Priorisierung (falls diese 

existiert) soll in dieser Arbeit auch nicht verändert werden. Dennoch wird im 

Folgenden zunächst auf die Steuerung eingegangen. Dies liegt daran, dass die 

Auswertung zur Steuerung in der Ergebnisdarstellung am besten geeignet ist, um 

gleichzeitig einen umfassenden Überblick über die Problemlöseprozesse der 

Studierenden zu gewinnen. 

2.3 Steuerung 

Im Laufe der Zeit wurden für Control viele verschiedene Begriffe, wie z. B. 

Monitoring, self-regulation sowie Metakognition, genutzt. Für diese Arbeit wird 

der Begriff Steuerung verwendet (wie z. B. in Holzäpfel et al., S. 87). Vereinfacht 

gesagt geht es dabei um die Ressourcenverteilung während kognitiver Aktivitäten 

und des Problemlösens (Schoenfeld, 2016). Steuerung gliedert sich dabei in zwei 

verschiedene Level. Zum einen mittels des präskriptiven Ansatzes, welcher sich 

damit beschäftigt, wie Heurismen und Wissen effektiv an spezifischen Stellen 

während des Problemlösens eingesetzt werden können (lokal). Zum anderen 

mittels des allgemeineren Ansatzes, welcher sich dem Prozess des Problemlösens 

als Ganzes nähert und das Verhalten der problemlösenden Person beschreibt 

(global). In dieser Arbeit wird sich lediglich auf das allgemeine (globale) Level 

von Steuerung fokussiert. 

2.3.1 Konzeptualisierung von Steuerung auf dem allgemeinen Level 

Steuerung auf dem allgemeinen Level beschreibt, wie verschiedene Arten von 

Kontrollverhalten die Problemlöseleistung beeinflussen können. Im positiven 

Sinne besitzt Steuerung einen großen Einfluss auf den Erfolg von 

Problemlöseprozessen. Ineffizientes Verhalten, also eine negative Steuerung, 

hindert den Erfolg, indem es den Zugriff auf potenziell verfügbares Wissen oder 

nützliche Heurismen verhindert. Dabei geht es allerdings nicht nur um den 

Einsatz des eigenen heuristischen Wissens, sondern um die Art und Weise, wie 

das gesamte mathematische Wissen eingesetzt wird (Schoenfeld, 1985, S. 114). 

Bei Steuerung handelt es sich demnach um das Verhalten von Personen, die sich 

in einem Problemlöseprozess befinden. 
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Auf dem allgemeinen Level von Steuerung identifiziert Schoenfeld (1985, S. 

116ff.) vier Verhaltenstypen bei der Bearbeitung von Problemaufgaben und 

beschreibt deren Einfluss auf den Erfolg beim Problemlösen: 

 

Typ A: Steuerung hat einen negativen Einfluss auf die Lösung, da schlechte 

Entscheidungen Misserfolg garantieren: „Wild goose chases6“ führen dazu, dass 

vorhandenes Wissen nicht effektiv genutzt wird und potenziell nützliche 

Lösungsansätze unbeachtet bleiben. 

Typ B: Steuerung verhält sich neutral. „Wild goose chases” werden verhindert, 

bevor sie als solche ausarten, aber Wissen wird nicht zu seinem vollen Potenzial 

ausgenutzt. 

Typ C: Steuerung hat einen positiven Einfluss auf die Lösung. Wissen wird 

bedacht ausgewählt und aufgrund sorgfältiger Überwachung in angemessener 

Weise genutzt oder verworfen. 

Typ D: Es besteht (fast) kein Bedarf für Steuerung. Geeignetes Wissen und 

geeignete Verfahren zur Problemlösung werden aus dem Langzeitgedächtnis 

abgerufen. 

 

Diese Typen geben bereits eine grobe Vorstellung davon, wie 

Problemlöseprozesse bezüglich Steuerung auf allgemeinem Level aussehen 

können. Gerade weil die Steuerung in Problemlöseprozessen oft komplex und 

vielschichtig ist, erweisen sich Problemlösemodelle als besonders geeignet, um 

die Mechanismen und Phasen der Steuerung auf einer übergeordneten Ebene 

systematisch zu beschreiben. Solche Modelle erlauben es, einzelne 

Steuerungsmerkmale klarer zu erkennen und das (mathematische) Verhalten in 

verschiedenen Phasen des Problemlösens präzise zu fassen. Daher wird im 

Folgenden eine Auswahl von verschiedenen Problemlösemodelle vorgestellt, die 

auf der allgemeinen Ebene das Problemlöseverhalten beschreiben. Die 

vorgestellten Modelle sind sowohl in der psychologischen als auch in der 

mathematikdidaktischen Literatur und Forschung fest verankert. 

2.3.2 Problemlösemodelle aus der Psychologie 

Bevor sich mit mathematischen Problemlösemodellen beschäftigt wird, werden 

zunächst zwei Modelle aus der Psychologie vorgestellt. Diese liefern wertvolle 

Ansätze, die sich auch in den mathematischen Problemlösemodellen 

wiederfinden lassen. In der Regel wird der gesamte Problemlöseprozesse in 

 
6 „Wild goose chase“ ist nach Schoenfeld ein spezifisches Problemlöseverhalten, bei denen 

Problemlösende einen Ansatz verfolgen und ohne Steuerung diesen Ansatz bis zum Ende 

der Bearbeitungszeit verfolgen. „Wild goose chases“ werden in Kapitel 6.1.5 erneut 

thematisiert. 
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Abschnitte bzw. Phasen unterteilt, in denen bestimmtes (mathematisches) 

Verhalten von der problemlösenden Person beobachtet werden kann. 

Problemlöseprozesse nach Dewey 

Die ersten Modelle des Problemlösens stammen aus der Psychologie zu Beginn 

des 20. Jahrhunderts. John Dewey war der Erste, der ein Problemlöseprozesse in 

Stufen unterteilt hat (Neuhaus, 1995). Nach Dewey (2002, S. 56) können 

Problemlöseprozesse in fünf verschiedene Stufen differenziert werden. 

 

1. Suggestions: In dieser Stufe begegnet einer Person eine schwierige 

Situation oder ein Problem. Diese Unsicherheit initiiert einen 

Denkprozess. 

2. Intellectualization: Das Problem wird klarer definiert. Dabei muss die 

Natur der Schwierigkeit aufgedeckt und der besondere Charakter des 

Problems herausgestellt werden. 

3. The Guiding Idea, Hypothesis: Es werden potenzielle Lösungen, 

Hypothesen, Ideen und Erklärungsansätze für das Problem entwickelt. 

Dieser Schritt ist der kreative Teil des Prozesses, bei dem nicht voreilig 

der erste Gedankengang verfolgt wird, sondern verschiedene durchdacht 

werden. 

4. Reasoning (in the Narrower Sense): Jede der aufgestellten Hypothesen 

wird gründlich geprüft und hinsichtlich ihrer Umsetzbarkeit sowie 

Erfolgschancen bewertet. Diese Hypothesen werden nach Vor- und 

Nachteilen abgewogen, auf Erfolgschancen überprüft sowie 

vermeintlich abwegige Lösungen verworfen. 

5. Testing the Hypothesis by Action: Die vielversprechendste Lösung wird 

in die Tat umgesetzt. Im Anschluss wird bewertet, ob das Problem damit 

gelöst werden konnte. Falls dem nicht so ist, beginnt der Prozess von 

vorne. 

Problemlöseprozesse nach Newell und Simon 

In der heutigen Psychologie hat das Modell von Newell und Simon (1972) eine 

besondere Bedeutung. Öllinger (2017) beschreibt das Modell von Newell und 

Simon (1972) als das wichtigste Paradigma für die aktuelle 

Problemlöseforschung. Der zentrale Begriff für das Modell ist der Problemraum. 

Dieser umfasst alle möglichen Zustände, die durch die Anwendung der 

verfügbaren Operatoren entstehen können. Demnach besteht der Problemraum 

aus allen möglichen Zuständen, die für die Lösung eines Problems auftreten 

können. Der Problemraum wird mittels einer Aufgabenanalyse bzw. 

Problemanalyse festgestellt (=Problemrepräsentation). Sobald diese 

Aufgabenanalyse durchgeführt wurde, kann jede denkbar mögliche Lösung im 

Problemraum dargestellt werden (=Suche nach einer Lösung). In der Regel kann 
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der Mensch nicht alle Möglichkeiten durchdenken, sondern muss gewisse 

Heuristiken (z. B. Vermeidung von Schleifen, die Unterschiedsreduktion oder 

Ziel-Mittel-Analyse) nutzen, um weniger sinnvolle Lösungsmöglichkeiten 

auszuschließen (Öllinger, 2017). Eine mögliche Darstellung des Problemraumes 

zeigt Abbildung 5.  

 

 

Abbildung 5: Schematische Darstellung des Problemlöseprozesses (Gick, 1986, S. 101) 

Arbinger (1997, S. 33) weist darauf hin, dass ein solcher Prozess keinesfalls als 

linearer Prozess verstanden werden sollte. In jeder der dargestellten Phasen sind 

sowohl Rücksprünge als auch ein erneuter Durchlauf des Prozesses möglich. In 

der heutigen Problemlöseforschung der Psychologie findet die zyklische 

Auffassung des Problemlöseprozesses gegenüber dem linearen Ansatz den 

überwiegenden Zuspruch (Öllinger, 2017).  

2.3.3 Problemlösemodelle aus der Mathematikdidaktik 

Problemlöseprozesse nach Pólya 

George Pólya hat mit seinem Buch „How to solve it“ (1945) (oder auf Deutsch: 

„Schule des Denkens“, 1949) auf das mathematische Problemlösen einen 

signifikanten Einfluss. Als einer der ersten Autoren beschäftigt er sich mit 

didaktischen Fragen, um Lernende beim mathematischen Problemlösen zu 

unterstützen (Holzäpfel et al., 2018, S. 23). In seiner Arbeit beschreibt er 

mathematische Problemlöseprozesse und teilt diese in vier unterschiedliche 

Phasen ein. Diese Phasen werden mit einigen Fragen und Handlungsimpulsen 

verbunden, um bei der Bearbeitung eines Problems zu unterstützen. Die 

Beschreibungen von Pólya basieren auf theoretischen Überlegungen sowie 

eigenen Beobachtungen von Studierenden (Pólya, 1945). Insgesamt erkennt man 

aus den Beschreibungen von Pólya einen starken Bezug zu der Einteilung von 

Problemlöseprozessen nach Dewey (2002). Die vier Phasen umfassen (Pólya, 

1949, S. 18ff.): 
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1. Das Verstehen der Aufgabe (Was ist unbekannt? Was ist gegeben?) 

2. Das Ausdenken eines Plans (Kannst du die Aufgabe anders ausdrücken? 

Kennst du eine verwandte Aufgabe?) 

3. Das Ausführen des Plans (Kannst du deutlich sehen, dass jeder Schritt 

richtig ist?) 

4. Die Rückschau (Kannst du das Resultat kontrollieren? Kannst du es auf 

verschiedene Weise ableiten? 

 

In der 1. Phase (Verstehen der Aufgabe) beschäftigt man sich damit, ein tieferes 

Verständnis der Aufgabe zu entwickeln und damit einen Zugang zu schaffen. 

Dafür ist es wichtig, die Anforderungen der Aufgabe klar zu erfassen. Um dies zu 

erreichen, kann es hilfreich sein, die Aufgabe in eigenen Worten wiedergeben zu 

können, das Gesuchte und das Gegebene voneinander getrennt aufzuschreiben, 

geeignete Beschriftungen einzuführen oder sich den Sachverhalt in einer Skizze 

zu verdeutlichen. Solche Repräsentationswechsel erleichtern es, wesentliche 

Merkmale der Problemstellung zu erkennen und eine klare Vorstellung für den 

Lösungsweg zu entwickeln. (Pólya, 1949, S. 19ff.). 

In der 2. Phase (Ausdenken eines Plans) wird ein Lösungsplan erarbeitet, der das 

grundlegende Vorgehen im Lösungsprozess skizziert. Dabei ist es hilfreich, 

ähnliche, bereits gelöste oder äquivalente, leichter zu lösende Probleme zu 

betrachten. Insbesondere die Untersuchung von Spezialfällen oder 

Verallgemeinerungen kann wertvolle Ansätze liefern. Demnach ist für diese 

Phase zentral, einen Plan zu entwerfen, der die Verbindung zwischen den 

gegebenen Informationen und dem gesuchten Ergebnis herstellt. Der Plan muss 

allerdings nicht perfekt ausgearbeitet sein, sondern soll vielmehr eine grobe 

Struktur liefern (Pólya, 1949, S. 22ff.). 

In der 3. Phase (Ausführung des Plans) wird der zuvor überlegte Plan ausgeführt. 

Einen Plan umzusetzen ist oft einfacher, als diesen zu entwerfen. Die kreative 

Arbeit wurde bereits bei dem Ausdenken eines Plans erledigt. Dennoch ist es 

wichtig, geduldig zu bleiben und jeden Schritt sorgfältig zu kontrollieren. Der 

Fokus liegt nun auf der detaillierten Ausarbeitung und dem kritischen Überprüfen 

der einzelnen Lösungsschritte (Pólya, 1949, S. 26ff.).  

Die 4. Phase (Rückschau) dient der erneuten Kontrolle des erzielten Ergebnisses 

und des angewandten Lösungswegs. Dabei wird einerseits auf Korrektheit sowie 

Vollständigkeit kontrolliert und andererseits eine Reflexion vorgenommen, bei 

der die verwendeten Techniken und Strategien überprüft sowie alternative 

Lösungswege diskutiert werden. Durch die Rückschau soll zum einen das Wissen 

gefestigt werden, zum anderen das Repertoire für weitere Probleme erweitert 

werden (Pólya, 1949, S. 28ff.). 

Ein Kritikpunkt bezüglich der Beschreibungen von Pólya ist die suggerierte 

Linearität der Phasen, wie sie z. B. auch bei Dewey (2002) beschrieben sind. 

Aufgrund des Aufbaus wird dem „Modell“ von Pólya oftmals ein linearer 
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Charakter zugeschrieben. Einige Ausführungen deuten allerdings an, dass es nicht 

unbedingt linear aufgefasst werden sollte.  

„Diese Methode […] ist nicht starr; sie darf es auch nicht sein, denn in diesen Dingen ist irgendein 

starres, mechanisches, pedantisches Verfahren notwendig von Nachteil. Unsere Methode läßt eine 

gewisse Elastizität und Variation zu, sie gestattet verschiedene Wege.“ (Pólya, 1949, S. 35) 

In der heutigen Zeit scheinen eher Problemlösemodelle gängiger zu sein, die eine 

Linearität ausschließen (Öllinger, 2017). Dennoch nimmt Pólyas Beschreibung 

eines Problemlöseprozesses in der Mathematikdidaktik eine bedeutsame Rolle 

ein. Viele weitere Arbeiten zum mathematischen Problemlösen basieren auf 

Pólyas Arbeit. Eine davon ist die Beschreibung von Problemlöseprozessen nach 

Schoenfeld (1985), welche im Folgenden vorgestellt wird. 

Problemlöseprozesse nach Schoenfeld 

Schoenfeld hat mit seinem Buch „Mathematical problem solving“ (Schoenfeld, 

1985) ebenfalls einen großen Einfluss auf die Beschreibung von 

Problemlöseprozessen. Schoenfeld (1985) gab diesen Ablaufplan an Studenten, 

um deren Problemlöseverhalten zu trainieren. Darin stellt er einen idealen 

Problemlösenden vor bzw. das systematischste Vorgehen eines guten 

Problemlösenden (Schoenfeld, 1985, S. 107): 

 

1. Analysis 

2. Design  

3. Exploration 

4. Implementation 

5. Verification 

 

Der Prozess beginnt mit der Analysis der Aufgabe bzw. des Problems. Dies 

bedeutet, dass ein Gefühl für die Aufgabe entwickelt werden soll. Im Groben 

werden die Fragen geklärt: Was ist gegeben? Was genau wird verlangt? Darüber 

hinaus können weitere Tätigkeiten durchgeführt werden, z. B. in welchen 

mathematischen Kontext die Aufgabe passt. Des Weiteren gehört das 

aufmerksame Lesen der Aufgabenstellung7 sowie das Zeichnen von Diagrammen, 

die Betrachtung von Spezialfällen oder die möglichen Vereinfachungen der 

Aufgabe dazu (Schoenfeld, 1985, S. 108). 

Design8 ist zunächst keine eigene „Box“ bzw. kein eigener Schritt im Prozess, 

sondern begleitet den Prozess über die Gesamtheit des Prozesses. Die Funktion 

 
7 In den empirischen Betrachtungen von Schoenfeld (1985) werden das Lesen der 

Aufgabenstellung (Reading) und die Analysis voneinander getrennt. Dies wird in Kapitel 

5.4.1 erneut aufgegriffen. 

8 In den empirischen Betrachtungen von Schoenfeld (1985) wird dieser Teil als Planning 

verstanden. Allerdings sind Planning und Design nicht gleich. Planning wird in dem 
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von Design besteht darin, die problemlösende Person dauerhaft in Aktivitäten 

einzubinden, die zu einem gewissen Zeitpunkt als positiv für den Lösungserfolg 

angesehen wird. Demnach wird eine globale Perspektive über die getätigten 

Handlungen eingenommen (Schoenfeld, 1985, S. 108). 

Exploration ist das heuristische Herz des Prozesses. In dieser Phase werden die 

meisten heuristischen Strategien genutzt. Hier wird nach ähnlichen oder 

verwandten Aufgaben gesucht, die Aufgabe modifiziert oder verallgemeinert. 

Aufgrund der Gewinnung neuer Erkenntnisse kann erneut zur Analysis oder 

Design zurückgekehrt werden (Schoenfeld, 1985, S. 110). 

Implementation sollte (normalerweise) der letzte Schritt auf dem Weg der Lösung 

sein (Schoenfeld, 1985, S. 111). In dieser Phase wird der vorher aufgestellte Plan 

Schritt-für-Schritt ausgeführt und „lokal“ geprüft (Rott, 2013, S. 55). 

Verification sollte nach Schoenfeld (1985, S. 111) besonders betont werden. Es 

kommt häufig vor, dass die Lösung nicht mehr überprüft bzw. kontrolliert wird, 

was zu negativen Konsequenzen führen kann. Auf lokalem Level können z. B. 

Flüchtigkeitsfehler entdeckt werden. Auf globalem Level (Kontrolle des 

gesamten Prozesses) können alternative Lösungen gefunden werden, 

Verbindungen zu anderen fachlichen Inhalten hergestellt werden oder nützlicher 

Aspekte bewusstwerden. Verification kann somit zu einer verbesserten Fähigkeit 

beim Problemlösen verhelfen (Schoenfeld, 1985, S. 111). 

Abbildung 6 zeigt den Problemlöseprozess nach Schoenfeld (1985) und Pólya 

(1945). Darin wird die Ähnlichkeit der beiden Beschreibungen bezüglich der 

Phasen deutlich, wobei bei Schoenfeld (1985) der Prozess um die Exploration 

erweitert wird. Eine eigenständige Explorationsphase lässt sich als Erweiterung 

der Phase „Ausdenken eines Plans“ oder Zwischenschritt zwischen den Phasen 

„Verstehen der Aufgabe“ und „Ausdenken eines Plans“ nach Pólya (1945) 

interpretieren. Dadurch wird vor allem der Problemcharakter einer Aufgabe 

betont, da die Exploration unter anderem für die Generierung von Ideen für das 

Überwinden einer Hürde genutzt wird.  

Obwohl die Modelle zur Beschreibung von Problemlöseprozessen Ähnlichkeiten 

aufweisen, bricht Schoenfeld (1985) allerdings den linearen Charakter. Damit 

wird zusätzlich die Rolle metakognitiver und selbstregulatorischer Prozesse 

deutlich. Dieser nicht-lineare Ansatz spiegelt auch eher die Aktivitäten eines 

natürlichen Problemlöseprozesses wider. 

 
Episodenmodell (Kapitel 5.4.1) nicht mehr als global verstanden. Dies wird in Kapitel 5.4.1 

erneut aufgegriffen. 
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Abbildung 6: Der Problemlöseprozess nach Schoenfeld (1985) und Pólya (1945), übernommen aus 

Rott (2013, S. 62) 

Problemlöseprozesse nach Rott 

Rott (2013) setzt sich in seinen Untersuchungen intensiv mit der Frage 

auseinander, ob Problemlöseprozesse eher linear verlaufen oder ob sie vielmehr 

durch zyklische, nicht-lineare Strukturen geprägt sind. Basierend auf empirischen 

Daten, die er in Problemlösesituationen mit Schüler:innen der fünften Klasse 

erhoben hat, entwickelt er ein detailliertes deskriptives Modell. Dieses Modell 

berücksichtigt sowohl lineare als auch nicht-lineare Verläufe und trägt somit der 

Komplexität realer Problemlöseprozesse Rechnung (Rott, 2013, S. 297ff.).  

Dieses Modell (Abbildung 7) beinhaltet außerdem mit Planning und Exploration 

(wie bei Schoenfeld, 1985) sowohl strukturiertes als auch unstrukturiertes 

Problemlöseverhalten. Weiterhin bietet es die Möglichkeit, planendes Verhalten 

durch die Verknüpfung von Planning und Implementation implizit, allerdings 

auch explizit (Planning und Implementation getrennt) wiederzugeben. Darüber 

hinaus illustrieren die im Modell enthaltenen Pfeilstrukturen den Einfluss 

metakognitiver Prozesse und selbstregulatorischer Strategien auf den 

Problemlöseverlauf. Sie veranschaulichen, inwiefern Lernende ihr eigenes 

Vorgehen reflektieren, anpassen und steuern, um zu einer Lösung zu gelangen.  
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Abbildung 7: Der Problemlöseprozess nach Rott (2013, S. 298) 

2.3.4 Synthese zur Steuerung 

Bei der Wahl eines geeigneten Modells für die Analyse von 

Problemlöseprozessen wird in dieser Arbeit auf das Modell von Schoenfeld 

(1985) zurückgegriffen. Die aufgeführten psychologischen Modelle (Dewey 

sowie Newell & Simon) bieten zwar eine gute Grundlage, allerdings ist das 

Modell von Schoenfeld (1985) speziell für mathematische Kontexte gedacht und 

geht somit mehr auf die speziellen Anforderungen und Dynamiken 

mathematischen Denkens ein.  

Dieses Modell ist besonders geeignet, da es „ehrliche“ Problemlöseprozesse 

abbildet. Ein zentrales Merkmal dieses Modells ist die Erkenntnis, dass 

Problemlösen nicht zwangsläufig in einer linearen Abfolge von Phasen 

stattfindet, wie es in Pólyas Modell (1945) suggeriert wird. In empirischen 

Untersuchungen zeigen sich jedoch häufig nicht-lineare Verläufe (z. B. in Rott, 

2013, S. 298). Problemlösende Personen springen zwischen den Phasen hin und 

her, wechseln bspw. nach der Verification erneut in Planning.  

Darüber hinaus kann das Modell von Pólya als normativ angesehen werden. Er 

beschreibt eine ideale Vorgehensweise, die in der Praxis jedoch selten identifiziert 

werden kann. Dagegen sind die Modelle von Schoenfeld (1985) und Rott (2013) 

deskriptiv angelegt. Sie zielen darauf ab, Problemlöseprozesse so abzubilden, wie 

sie in der Realität stattfinden. Für die Untersuchung von authentischen 
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Problemlöseprozessen in der Hochschule bietet ein deskriptives Modell deshalb 

eine geeignete Grundlage. 

Ein weiterer entscheidender Aspekt, der für Schoenfelds Modell (1985) spricht, 

ist seine bereits erfolgte Anwendung in der Forschung, insbesondere in der Arbeit 

von Stenzel (2023a), die sich mit hochschulischen Problemlöseprozessen 

beschäftigt. Darin wird gezeigt, dass Schoenfelds Modell (1985) auch in diesem 

Kontext fruchtbare Einsichten in mathematischen Problemlöseprozesse liefern 

kann. Dadurch wird es ebenfalls leichter, die eigenen Forschungsergebnisse an 

die bisherigen anzuschließen. 

Zusätzlich ergänzt Rott das Modell durch die Unterscheidung zwischen 

strukturierten und unstrukturierten Prozessen, was für die Beschreibung und 

Kategorisierung von Problemlöseprozessen relevant ist. Diese Überlegung wird 

in den empirischen Einblicken berücksichtigt.  

Das Modell von Schoenfeld (1985), mit der Ergänzung von Rott (2013), stellt 

somit ein wesentliches Analyseinstrument bezüglich Steuerung auf allgemeinem 

Level dar. In Kapitel 5.4.1 werden die vorherigen Überlegungen aufgegriffen und 

eine ausgeschärfte Version der Phasen vorgestellt. 

2.4 Wissen 

Wissen ist das Fundament, auf dem die Performanz des Problemlösens gebaut ist 

(Schoenfeld, 1985, S. 46). Ohne über spezielles Wissen zu verfügen, lassen sich 

Probleme nicht lösen, auch wenn die problemlösende Person in der Regel über 

eine gute selbstregulatorische Fähigkeit verfügt. Es geht also darum, welches 

Wissen (Resources) beim Individuum während des Problemlösens zur Verfügung 

steht:  

„It is intended as an inventory of all the facts, procedures, and skills – in short, the mathematical 

knowledge – that the individual is capable of bringing to bear on a particular problem. The idea is to 

characterize what might be called the problem solver´s ’initial search space’.” (Schoenfeld, 1985, S. 

17, eigene Hervorhebung) 

2.4.1 Konzeptualisierung mathematischen Wissens nach Schoenfeld 

Schoenfeld (1985) gibt in seinem Buch einen Einblick in das weite Spektrum an 

Wissen, das beim Problemlösen zur Verfügung stehen sollte. Dabei unterteilt er 

in vier Klassen9: Die erste Klasse beinhaltet „relevant facts known by the 

 
9 Zu einem späteren Zeitpunkt in seinem Buch (Schoenfeld, 1985, S. 54f.) erweitert Schoenfeld 

auf 6 Arten. Er fügt sowohl „informal and intuitive knowledge about the domain“ und 

„knowledge about the rules of discourse in the domain” hinzu. Beide Arten beziehen sich 

dabei auf einen spezifischen mathematischen Inhaltsbereich, in dem informelles bzw. 

intuitives Wissen sowie die eigene Auffassung der Regeln in diesem Inhaltsbereich bei der 

Lösung von Problemen hilfreich sind. Tiefergehende Beschreibungen sind in Schoenfeld 

(S. 55f. und S. 61) zu finden. 
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individual“ (Schoenfeld, 1985, S. 17). Diese sind entscheidend dafür, wie man an 

ein Problem herangeht. Ob eine mathematische Information vollständig, zu einem 

Teil oder gar nicht vorhanden ist, kann erheblichen Einfluss auf die Lösungen und 

deren Erfolg haben. Darüber hinaus gehört ebenfalls „broad understanding“ dazu. 

Im Bezug zur Geometrie10 sind dies z. B. das Erkennen von bestimmten 

Eigenschaften aus einem Diagramm (z. B. eine Tangente an einem Kreis ist 

orthogonal zu dem Radius des Kreises), das Ableiten von weiteren (nützlichen) 

Informationen, das Einzeichnen von Hilfslinien etc. Die zweite Klasse besteht aus 

„algorithmic procedures known by the individual“ (Schoenfeld, 1985, S.19). 

Dabei werden vor allem handwerkliche Schritte, wie das Konstruieren bzw. 

Zeichnen einer orthogonalen Geraden oder einer Winkelhalbierenden 

beschrieben. Die dritte Klasse beinhaltet „routine procedures“ (Schoenfeld, 1985, 

S. 19). Dazu gehören mathematische Techniken, um eine Aufgabe bzw. ein 

Problem zu bearbeiten. Solche Techniken sind  für das Lösen spezifischer 

Aufgaben nützlich. „Routine procedures“ können komplex sein, da in einigen 

Aufgaben z. B. zunächst gewisse Anforderungen überwunden oder weitere 

Annahmen getätigt werden müssen, um eine solche „routine“ procedure 

anwenden zu können. Diese Aktivitäten sind nicht-trivial, führen zuletzt aber auf 

die Anwendung der bestimmten Technik. Die vierte Klasse wird „relevant 

competencies“ (Schoenfeld, 1985, S.19f.) genannt. Diese Klasse überlappt mit 

den „routine procedures“, ist allerdings etwas breiter definiert. Zum einen sind 

damit aufgabenspezifische Fertigkeiten (z. B. ist eine Person mit der „routine 

procedure“ vertraut, Dreiecken die Kongruenz nachzuweisen?) und zum anderen 

inhaltsspezifische heuristische Strategien (in der Geometrie z. B. das Zeichnen 

einer Hilfslinie) gemeint.  

Die Informationen müssen innerhalb dieser vier Klassen nicht unbedingt korrekt 

sein und können mit Fehlvorstellungen behaftet sein (Schoenfeld, 1985, S. 20). 

Dennoch können sie in dem Moment für das Individuum eine wahre Aussage 

darstellen, nach der sie handeln. Fehlerhaftes Wissen führt wiederum zu einem 

erfolglosen Problemlöseverhalten.  

Die von Schoenfeld (1985) ursprünglich eingeführten vier Klassen weisen eine 

Ähnlichkeit mit der heute in der Mathematikdidaktik verbreiteten Unterscheidung 

zwischen konzeptuellem und prozeduralem Wissen auf. Wenn Schoenfeld (2016) 

in späteren Arbeiten von Wissen spricht, bezieht er sich ebenfalls auf diese 

Unterscheidung von Wissensarten. Die mathematikdidaktische Literatur legt 

außerdem nahe, Wissen nicht nur in verschiedene Arten, sondern auch in 

sogenannte Facetten zu unterteilen (z. B. Vollrath & Roth, 2012). Dadurch wird 

Wissen in zwei Dimensionen differenziert: Wissensarten (Kapitel 2.4.2) und 

Wissensfacetten (Kapitel 2.4.3). Beide Dimensionen finden Berücksichtigung in 

der Wissensmatrix von Prediger et al. (2011), die in dieser Arbeit ein zentrales 

 
10 Schoenfeld hat seine Untersuchungen (1985) zu geometrischen Problemen durchgeführt, 

weshalb sich viele seiner Beschreibungen auf die Geometrie beziehen. 
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Analyseinstrument darstellt. Die Wissensmatrix wurde ursprünglich im Rahmen 

der Unterrichtsphase Systematisieren und Sichern entwickelt. Das Ziel der 

Wissensmatrix besteht vor allem darin, Aufgaben systematisch zu erstellen, die 

Lernende dabei unterstützen, ihr Wissen aktiv zu strukturieren. Um die 

Wissensmatrix umfassend zu verstehen, ist es zunächst wichtig, sowohl die 

Wissensarten als auch die Wissensfacetten näher zu betrachten. In den folgenden 

Abschnitten werden daher diese beiden Dimensionen des Wissens genauer 

beleuchtet. Im Anschluss wird eine leicht adaptierte Wissensmatrix vorgestellt, 

die auf den Kontext der Hochschulmathematik zugeschnitten ist. 

2.4.2 Unterscheidung von Wissensarten 

Die Bezeichnungen des konzeptuellen und prozeduralen Wissens gehen im 

mathematikdidaktischen Kontext auf Hiebert und Lefevre (1986) zurück und 

werden in verschiedenen mathematikdidaktischen Kontexten verwendet bzw. 

aufgegriffen. 

Konzeptuelles Wissen 

Konzeptuelles Wissen kann als ein Netzwerk von Informationen verstanden 

werden, in dem einzelne Informationen miteinander verbunden sind.  

„Conceptual knowledge is characterized most clearly as knowledge that is rich in relationships. It can 
be thought of as a connected web of knowledge, a network in which the linking relationships are as 

prominent as the discrete pieces of information. Relationships pervade the individual facts and 

propositions so that all pieces of information are linked to some network. In fact, a unit of conceptual 
knowledge cannot be an isolated piece of information; by definition it is a part of conceptual 

knowledge only if the holder recognizes its relationship to other pieces of information.” (Hiebert & 

Lefevre, 1986, S. 3f.) 

Diese Definition von konzeptuellem Wissen stellt heraus, dass den Verbindungen 

von Informationen eine wichtige Rolle zugeschrieben wird. Einzelne, isolierte 

Informationen gehören demnach nicht zu einem konzeptuellen Netzwerk. Sobald 

eine Verbindung bzw. eine Verknüpfung hergestellt werden kann, gehören sie zum 

Netzwerk. Dies lässt sich besonders gut in der Hochschulmathematik beobachten, 

wo Begriffe und Theorien auf bereits erworbenes Wissen aufbauen (Rach & 

Heinze, 2013). Unter anderem stellt dies den Unterschied zwischen konzeptuellen 

Netzwerken verschiedener Personen dar. Konzeptuelles Wissen kann über Zeit 

wachsen und selbst das Netzwerk von Experten kann ausgebaut und besser 

strukturiert werden (diSessa et al., 2004; Schneider & Stern, 2009). Star (2005) 

fasst zusammen:  

„The term conceptual knowledge has come to encompass not only what is known (knowledge of 

concepts) but also one way that concepts can be known (e.g. deeply and with rich connections)” (Star, 

2005, S. 408). 
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In der Hochschulmathematik zeigen sich die reichhaltigen Verbindungen durch 

eine tiefe Verknüpfung von Konzepten, wie bspw. die Differenzierbarkeit. In der 

Regel wird der Begriff Differenzierbarkeit zunächst nur eindimensional 

eingeführt und erst im weiteren Verlauf auf Mehrdimensionalität erweitert. Dabei 

werden weitere verwandte Begriffe wie partielle und totale Ableitung sowie 

Richtungsableitung eingeführt, wodurch der Begriff Differenzierbarkeit tiefer 

verstanden und stärker vernetzt wird (siehe z. B. in Lankeit & Biehler, 2024). 

Letztlich beschreiben Hiebert und Lefevre (1986, S. 8), dass durch Verbindungen 

zwischen einzelnen Informationen Bedeutung entwickelt oder geschaffen werden 

kann. Dadurch kann konzeptuelles Wissen nur bedeutungsvoll aufgebaut werden, 

da dies definitorisch so festgelegt wurde. 

Prozedurales Wissen 

Prozedurales Wissen steht in einem engen Zusammenhang mit Prozeduren 

(Canobi, 2009), die als eine Abfolge von Schritten (= action sequences) definiert 

werden, um ein Ziel zu erreichen (Rittle-Johnson & Schneider, 2014). Star et al. 

(2015) definieren:  

„Procedural knowledge refers to having the knowledge of action sequences for solving a problem (e.g. 

an algorithm for solving linear equations)” (Star et al., 2015, S. 45).  

Demnach liefert das prozedurale Wissen einer Person mathematische Verfahren 

(für das Bearbeiten einer Aufgabe). Solche Verfahren haben in der Regel einen 

linearen Charakter, in denen die durchzuführenden Schritte vorgegeben sind. Der 

lineare Charakter wird in der Hochschulmathematik besonders durch 

Algorithmen, wie z. B. das Newtonverfahren, allerdings auch durch kleinere 

Verfahren, wie z. B. die Regel von L´Hospital, deutlich. 

Darüber hinaus muss angemerkt werden, dass Vorgehensweisen Teilschritte 

größerer Vorgehensweisen sein können, wodurch die hierarchische Struktur 

prozeduralen Wissens betont wird (Hiebert & Lefevre, 1986, S. 6). Rittle-Johnson 

und Schneider (2014) erweitern diese Definition, indem sie ebenfalls die 

Fähigkeiten zur Durchführung dieser Schritte in ihrer Definition von 

prozeduralem Wissen betonen:  

„The procedures can be algorithms – a predetermined sequence of actions that will lead to the correct 

answer when executed correctly“ (Rittle-Johnson & Schneider, 2014, S. 1103).  

Prozedurales Wissen bedeutet, dass eine Person nicht nur weiß, was sie tun muss, 

sondern auch, wie sie es tun muss.  

Hiebert und Lefevre (1986, S. 6) inkludieren zum prozeduralen Wissen ebenfalls 

die mathematische Sprache und die Bedeutung von mathematischen Symbolen.  

„It includes a familiarity with the symbols used to represent mathematical ideas and an awareness of 

the syntactic rules for writing symbols in an acceptable form” (Hiebert & Lefevre, 1986, S. 6).  
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Dazu zählt auch das Wissen über die Gestaltung eines formalen Beweises, 

allerdings ohne Berücksichtigung des Gegenstandes oder der Logik des Beweises 

selbst. 

Entgegen dem konzeptuellen Wissen muss prozedurales Wissen nicht 

bedeutungsbezogen aufgebaut werden. Allerdings werden die Verfahren, die 

bedeutungsbezogenen gelernt werden, an konzeptuelles Wissen geknüpft 

(Hiebert & Lefevre, 1986, S. 8). 

Zusammenspiel konzeptuellen und prozeduralen Wissens 

Sowohl konzeptuelles als auch prozedurales Wissen sind wichtiger Bestandteil 

mathematischen Wissens. „Mathematical knowledge, in its fullest sense, includes 

significant, fundamental relationships between conceptual and procedural 

knowledge. Students are not fully competent in mathematics if either kind of 

knowledge is deficient or if they both have been acquired but remain separate 

entities.” (Hiebert & Lefevre, 1986, S. 9) 

Konzeptuelles und prozedurales Wissen greifen demnach auch ineinander, 

wodurch beim Aufbau sowie der Nutzung gegenseitig voneinander profitieren 

werden kann. Dadurch lassen sich die beiden Wissensarten nicht immer 

voneinander trennen (Rittle-Johnson & Schneider, 2014), obwohl sie 

unterschiedlich konzeptualisiert werden. Besonders im Kontext der 

Hochschulmathematik lassen sich viele Aufgaben identifizieren, in denen sowohl 

konzeptuelles als auch prozedurales Wissen für die Lösung notwendig sind 

(Kolbe & Liebendörfer, 2024; Weber & Lindmeier, 2020). 

2.4.3 Unterscheidung von Wissensfacetten 

Einige mathematikdidaktische Arbeiten legen nahe, dass nicht nur eine 

Differenzierung verschiedener Wissensarten, sondern auch verschiedener 

Wissensfacetten erfolgen sollte. 

Arten der Begriffsbestimmung nach Winter 

Winter (1983, S. 187) hat in seiner Arbeit verschiedene Arten zu 

Begriffsbestimmung herausgearbeitet. Dabei gliedert er die Wissensart der 

Begriffe in sechs verschiedene Begriffsbestimmungen. 

 

• Exemplarische Begriffsbestimmung: Winter beschreibt diese 

Begriffsbestimmung als unverzichtbar, auch auf Hochschulniveau. Es 

geht dabei um die Nutzung von Beispielen und Gegenbeispielen. Häufig 

genügt ein vorläufiges Gebrauchsverständnis eines Begriffs ohne 

weitere Explizierung, um diesen zu nutzen (Winter, 1983, S. 187f.). 
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• Konstruktive Begriffsbestimmung: Hiermit sind Tätigkeiten gemeint, 

die mittels eines Verfahrens einen Begriff bilden. Dazu gehören z. B. 

Zeichnen, Zählen, Rechnen, Kombinieren, etc. (Winter, 1983, S. 189). 

• Abstraktive Begriffsbestimmung: Begriffe werden mit 

Äquivalenzrelationen bestimmt (Flächeninhalt ebener Vielecke über die 

Äquivalenzrelation x ist zerlegungsgleich zu y in der Menge ebener 

Vielecke), die abhängig von Vorwissen sind. Hauptaktivitäten sind dabei 

Vergleich- und Maßhandlungen und das daraus resultierende 

Klassifizieren von Gegenständen (Winter, 1983, S. 190f.). 

• Ideative Begriffsbildung: Ein Idealisierungsprozess besteht darin, in ein 

„Ding“ gewisse Eigenschaften hineinzusehen (die es an sich gar nicht 

hat). Winter beschreibt dies bspw. mit einem straffgezogenen Faden, in 

den wir die Eigenschaften einer Gerade hineinsehen (Winter, 1983, S. 

191ff.). 

• Explizit-definitorische Begriffsbestimmung: Hiermit ist die klassische 

Art gemeint, einen Begriff zu bestimmen bzw. etwas zu definieren. 

Standardgemäß wird ein Oberbegriff genannt und diesem werden 

charakterisierende Eigenschaften zugeschrieben (Winter, 1983, S. 

193ff.). 

• Implizit-axiomatische Begriffsbestimmung: Winter beschreibt dies als 

eine Art Formalisierung höherer Stufe. Es geht dabei um die maximale 

deduktive Gliederung von größeren Theoriekomplexen, damit maximale 

Verallgemeinerungen erlangt werden (Winter, 1983, S195f.). 

 

Erath (2017, S. 48) kommt zu dem Schluss, dass daraus verschiedene 

Wissensfacetten abgeleitet werden können. Darunter zum einen 

Konkretisierungen in Form von Beispielen und Gegenbeispielen und zum 

anderen expliziten Formulierungen von Definitionen.  

Wissensfacetten nach Vollrath und Roth (2012) und Prediger et al. (2011) 

Vollrath und Roth (2012, S. 48ff.) beschreiben in ihrem Buch mehrere Facetten 

von Wissen. Dabei listen sie auf, welche typischen Kenntnisse und Fähigkeiten 

zum Verständnis führen. Sie teilen dies für das Verstehen eines Begriffs, 

Verstehen eines Sachverhalts und Verstehen eines Verfahrens auf. 

Die kognitiven Seiten des mathematischen Begriffsverständnisses bestehen aus 

der Bezeichnung des Begriffs, dem Angeben von (Gegen-)Beispielen sowie der 

Begründung, warum es ein (Gegen-)Beispiel ist, dem Kennen charakteristischer 

Eigenschaften und inhaltsnaher Begriffe sowie der Arbeit mit dem Begriff beim 

Argumentieren und Problemlösen. Das Begriffslernen kann auf der affektiven 

Seite durch Emotionen beeinflusst werden, wodurch das Lernen mit angenehmen 

Erlebnissen verbunden werden sollte (Vollrath & Roth, 2012, S. 48). 
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Zum Verstehen eines mathematischen Sachverhalts gehört es, den Sachverhalt 

angemessen zu formulieren, Beispiele für den Sachverhalt angeben zu können, 

wissen, unter welchen Voraussetzungen der Sachverhalt gilt, den Sachverhalt 

begründen zu können und Konsequenzen des Sachverhalts sowie Anwendungen 

des Sachverhalts zu kennen (Vollrath & Roth, 2012, S. 48f.). 

Ein mathematisches Verfahren haben Lernende dann verstanden, wenn sie sowohl 

die intendierten Ziele des Verfahrens als auch die zugrundeliegenden 

mathematischen Schritte kennen. Darüber hinaus gehört die Anwendung auf 

Beispiele. Letztlich trägt das Wissen darüber, unter welchen Voraussetzungen und 

aus welchen Gründen es funktioniert, zum Verständnis mathematischer Verfahren 

bei (Vollrath & Roth, 2012, S. 49f.). 

Eine ähnliche Zusammenstellung von Wissensfacetten liefern Prediger et al. 

(2011). Sie teilen in vier verschiedene Wissensfacetten auf: Explizite 

Formulierung, Konkretisierung & Abgrenzung, Bedeutung & Vernetzung sowie 

Konventionelle Festlegungen.  

Die Explizite Formulierung ist für die Fachwissenschaft Mathematik die 

wichtigste Facette. Definitionen (=Konzepte) und Sätze (=Zusammenhänge) 

werden im konzeptuellen Wissen und Anleitungen im prozeduralen Wissen 

prägnant ausformuliert (Prediger et al., 2011). 

Konkretisierung & Abgrenzung wird durch Beispiele und Gegenbeispiele 

verdeutlicht. Dabei soll auch begründet werden, ob diese Beispiele bzw. 

Gegenbeispiele (nicht) zu einem Begriff gehören. Darüber hinaus soll ein Gespür 

für Spezialfälle entwickelt werden, um ein Abgrenzungswissen zu schaffen. 

Speziell für Verfahren und Sätze werden ebenfalls Bedingungen der 

Anwendbarkeit miteingeschlossen (Prediger et al., 2011). 

Bedeutung & Vernetzung beschreibt die Bedeutung der jeweiligen Konzepte, 

Zusammenhänge und Verfahren. Charakterisierend für diese Wissensfacette sind 

inhaltliche Vorstellungen und passende Darstellungen (vom Hofe, 1995, z. B. S. 

99). Dazu soll der der Begriff der Grundvorstellungen (vom Hofe, 1995, S. 103ff.) 

hervorgehoben werden. Grundvorstellungen beschreiben die Verbindung 

zwischen mathematischen Inhalt und der individuellen Begriffsbildung. Dabei 

sind drei Aspekte zentral: Die Konstitution der Bedeutung auf Rückführung 

bekannten mathematischen Wissens, die Erzeugung einer mentalen 

Repräsentation des Begriffs sowie die Fähigkeit, diesen Begriff auf reale 

Situationen anzuwenden (vom Hofe & Blum, 2016). Des Weiteren gehören 

Vernetzungen zu anderen Wissenselemente zur Wissensfacette Bedeutung & 

Vernetzung dazu, bspw. durch anschauliche Begründungen von Sätzen oder 

Verfahren (Prediger et al., 2011). 

Zu den Konventionellen Festlegungen zählen Konventionen zu den jeweiligen 

Wissensarten. Dies sind zum Beispiel die Fachwörter zu den Konzepten 

„Multiplikation“ und „Division“. Es wird betont, dass die alleinige Bezeichnung 

nicht für eine adäquate Vorstellung ausreicht (Prediger et al., 2011). 
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Zusammenführung der Wissensfacetten 

 
Winter (1983) Vom Hofe (1995) Vollrath und Roth 

(2012) 

Prediger et al. 

(2011) 

Exemplarisch  Beispiele & 

Gegenbeispiele 

Konkretisierung & 

Abgrenzung 

Explizit-

definitorisch 

 (allg.) 

Formulierungen & 

charakteristische 

Eigenschaften 

Explizite 

Formulierung 

 Grundvorstellungen Vernetzungen & 

Begründungen 

Bedeutung & 

Vernetzung 

  Benennungen Konventionelle 

Festlegungen 

  Anwendungs-

möglichkeiten 

 

Tabelle 3: Darstellung verschiedener Unterteilung der Wissensfacetten (teilweise übernommen aus 

Erath, 2017, S. 51) 

Tabelle 3 zeigt die Ausarbeitungen der verschiedenen Autoren. Darin sind einige 

Übereinstimmungen zu erkennen, vor allem zwischen den Unterteilungen von 

Vollrath und Roth (2012) und Prediger et al. (2011). Obwohl die beiden Arbeiten 

diese Facetten im Hinblick auf schulische Überlegungen entwickelt haben, lassen 

sie sich ebenfalls auf die hochschulische Mathematik übertragen. Im Folgenden 

werden die Bezeichnungen der Wissensfacetten von Prediger et al. (2011) 

übernommen. 

In der hochschulischen Mathematik verfolgt die formale Fachsprache das Ziel, 

die Inhalte möglichst verdichtet darzustellen. Dafür wird der typisch deduktive 

Aufbau mittels Definition-Satz-Beweis-Struktur verwendet (Houston, 2012; 

Hußmann, 2017, S. 61; Rach & Heinze, 2013). Bezüglich mathematischer 

Verfahren werden Anleitungen in Sätzen oder in folgenden Bemerkungen 

aufgeführt. Dies spricht die Facette der Expliziten Formulierung an.  

Des Weiteren spielen sowohl Beispiele als auch Gegenbeispiele eine wesentliche 

Rolle, um die kompakte Darstellung der mathematischen Inhalte zu verstehen (z. 

B. Alcock, 2017; Mejia-Ramos et al., 2012). Eine weitere Besonderheit der 

Mathematik liegt in der Bedeutung von Voraussetzungen und Spezialfällen11 

(Liebendörfer et al., 2021). Beides adressiert die Facette Konkretisierung & 

Abgrenzung.  

Weiterhin ist es wichtig, neue Inhalte mit der bestehenden Wissensstruktur zu 

vernetzen, welches bspw. mit Diagrammen und Skizzen erreicht werden kann (z. 

B. Alcock, 2017; Hilgert et al., 2015; Houston, 2012). Dies gelingt z. B. bei 

 
11 Dies deckt sich vor allem für das prozedurale Wissen mit der Beschreibung der Facette 

Konkretisierung & Abgrenzung nach Prediger et al. (2011) 
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Konzepten mit Grundvorstellungen (vom Hofe, 1995). Darüber hinaus gehört 

ebenfalls der umfangreiche Umgang mit Beweisen dazu (Liebendörfer et al., 

2021). Damit wird auf die Facette Bedeutung & Vernetzung eingegangen. 

Außerdem existieren in der hochschulischen Mathematik genauso Fachwörter 

und Benennungen wie in der Schule (z. B. Hilgert et al., 2015, S. 11). Dies spricht 

die Facette Konventionelle Festlegung an. 

Letztlich unterscheidet sich die Aufteilung der Wissensfacetten zwischen Vollrath 

und Roth (2012) und Prediger et al. (2011) um die Facette der 

Anwendungsmöglichkeiten. Vollrath und Roth (2012, S. 51) betonen 

Anwendungsmöglichkeiten für Sachverhalte und das Beherrschen für Verfahren. 

Für Begriffe ergänzt Winter (1983) auf schulischer Ebene den Anwendungsbezug 

zu realweltlichen Problemen. Aus den Ausführungen von Freudenthal (1983) 

kann dies für Begriffe allerdings auf innermathematische Phänomene übertragen 

werden, welche in der hochschulischen Mathematik im Vordergrund stehen. 

Insgesamt ist in der hochschulischen Mathematik die Arbeit mit Begriffen und 

Zusammenhängen zentral, allerdings werden auch Verfahren benötigt 

(Liebendörfer et al., 2021). Vor allem in Service-Veranstaltungen der Mathematik 

liegt der Fokus eher auf Verfahren (Alpers, 2014; Alpers, 2016). Daher ist es 

wichtig, Anwendungskontexte zu kennen und Anwendungen zu beherrschen. 

Diese Überlegungen führen dazu, diese Facette ebenfalls zu konzeptualisieren. 

Sie wird Implizite Nutzung12 genannt. Weitere Ausführungen zur Impliziten 

Nutzung werden in Kapitel 5.4.2 erläutert. 

2.4.4 Synthese zum Wissen 

Prediger et al. (2011) stellen auf Grundlage ihrer Überlegungen die Kreuzung der 

Wissensarten und Wissensfacetten in einer Matrix dar. In Tabelle 4 ist eine 

adaptierte Version der ursprünglichen Wissensmatrix abgebildet.  

Aus der ursprünglichen Wissensmatrix (Prediger et al., 2011) wird die feinere 

Aufteilung des konzeptuellen Wissens in Konzepte (=Definitionen) und 

Zusammenhänge (=Sätze) übernommen. Dies passt zu der Definition-Satz-

Beweis Struktur, die für die Hochschulmathematik typisch ist (Engelbrecht, 2010; 

Rach & Heinze, 2013). Für das prozedurale Wissen werden aus der 

Wissensmatrix handwerkliche Verfahren ausgeschlossen, da diese in der 

hochschulischen Mathematik nicht vorkommen (Stenzel, 2023a, S. 24). Es 

bleiben demnach lediglich mathematische Verfahren im prozeduralen Wissen. 

Des Weiteren wird das metakognitive Wissen aus der Wissensmatrix 

ausgeklammert. Diese Art von Wissen wird hinsichtlich der vier Kategorien des 

Problemlösen nach Schoenfeld (1985) eher bei den Heuristics bzw. Control 

 
12 Die Überlegungen, eine solche Facette (sowie die Bezeichnung Implizite Nutzung) zu 

berücksichtigen, stammt aus der Arbeitsgruppe aus Dortmund. Bis zum jetzigen Zeitpunkt 

existiert allerdings noch keine Literatur, die diesbezüglich zitiert werden kann. 
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verortet13. Es handelt sich daher um Wissen, welches nicht einem speziellen 

Fachinhalt zugeschrieben werden kann (z. B. Anderson et al., 2001, S. 55ff.) und 

deshalb nicht in der adaptierten Wissensmatrix aufgenommen wird. Die 

Wissensfacetten werden hingegen komplett aus der ursprünglichen 

Wissensmatrix übernommen. 

 

 Explizite 

Formulie-

rung 

Konkretisie

-rung & 

Abgrenzun

g 

Bedeutung 

& Vernet-

zung 

Konventio-

nelle Fest-

legungen  

Konzeptuelles Wissen 

Konzepte Ausformu-

lierte 

Definition 

Beispiele / 

Gegen-

beispiele 

Vor-

stellungen / 

Dar-

stellungen 

Fachwörter, 

Bezeich-

nungen 

Zusammen-

hänge 

Ausformu-

lierter Satz 

Beispiele / 

Gegen-

beispiele 

(anschau-

liche) 

Begründung 

/ Beweis 

Namen, 

Bezeich-

nungen, 

konventio-

nelle Regeln 

Prozedurales Wissen 

Verfahren Anleitung 

des 

Verfahrens 

Bedingung 

der 

Anwend-

barkeit, 

Beispiele 

Vorstellung 

/ 

Begründung  

Verein-

barungen 

Tabelle 4: Adaptierte Wissensmatrix nach Prediger et al. (2011) 

Die Kreuzung einer Wissensart (z. B. Zusammenhang im konzeptuellen Wissen) 

mit einer Wissensfacette (z. B. Explizite Formulierung) ergibt eine Zelle (speziell 

für diese Kreuzung: Ausformulierter Satz) in der Matrix (Tabelle 4). Im weiteren 

Verlauf wird eine solche Zelle als Wissenselement bezeichnet. 

Die Wissensmatrix stellt ein wesentliches Analyseinstrument hinsichtlich des 

Wissens in dieser Arbeit dar. Mithilfe der Wissensarten lassen sich zunächst 

notwendige mathematische Inhalte für die stoffdidaktische Analyse der Aufgaben 

festlegen (Kapitel 5.3). Ferner können mit den Wissenselementen sowohl das 

 
13 Insgesamt lassen sich in der Wissensmatrix die vier Klassen von Schoenfeld wiederfinden. 

Die erste Klasse kann mit Konzepten und Zusammenhängen, die zweite Klasse mit den 

(ausgeklammerten) handwerklichen Verfahren, die dritte Klasse mit den Verfahren 

gleichgesetzt werden. Nur die vierte Klasse lässt sich durch die inhaltsspezifischen 

Strategien nicht in der Wissensmatrix verorten. 
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Wissensangebot der relevanten Veranstaltung als auch die Wissensnutzung der 

Studierenden während der Problemlöseprozesse festgestellt werden (Kapitel 

5.4.2). Außerdem werden die Überlegungen der Wissensmatrix für die 

Strukturierung genutzt, um das relevante mathematische Wissen zur 

Differentialrechnung darzustellen (Kapitel 4.3.1). 

2.5 Heurismen 

Im Kontext des Problemlösens ist immer wieder von allgemeinen Strategien oder 

Methoden die Rede, die Menschen dabei unterstützen, sich in komplexen 

Situationen zu orientieren. Diese Werkzeuge des Denkens und Handelns werden 

häufig als Heurismen bezeichnet. 

2.5.1 Konzeptualisierung von Heurismen 

Der englische Begriff heuristic14 kann sowohl mit „Heurismus“ als auch 

„Heuristik“ übersetzt werden. Diese ähnlichen Begrifflichkeiten führen dazu, 

dass begrifflichen Schwierigkeiten unter verschiedenen Namen auftauchen (Rott, 

2014). Die Heuristik bezeichnet die Wissenschaft des Problemlösens (Rott, 

2018). Pólya (1949, S.118f.) beschreibt das Ziel der Heuristik, Methoden und 

Regeln von Entdeckung und Erfindung zu studieren. Für die Mathematik 

spezifiziert Pólya (1964, S. 5):  

„Die Heuristik beschäftigt sich mit dem Lösen von Aufgaben. Zu ihren spezifischen Zielen gehört es, 

in allgemeiner Formulierung die Gründe herauszustellen für die Auswahl derjenigen Momente bei 

einem Problem, deren Untersuchung uns bei der Auffindung der Lösung helfen könnte.“ (Pólya, 1964, 

S. 5) 

Heurismen (Mehrzahl von Heurismus) sind zwar Teil von der Heuristik, 

allerdings sind damit einzelne heuristische Aktivitäten gemeint (Rott, 2018). 

Schoenfeld (1985, S. 23) beschreibt Heurismen als Faustregeln für das 

erfolgreiche Problemlösen. Sie sind allgemeine Anregungen, die einem 

Individuum helfen, ein Problem besser zu verstehen oder in einer Lösung einen 

Fortschritt zu erzielen. Pólya (1945, S. 2) bezeichnet sie als mentale Operationen, 

die beim Problemlösen nützlich sind. Heurismen sind demnach gewisse 

mathematische Tätigkeiten, die beim Problemlösen zum Erfolg verhelfen können. 

Holzäpfel et al. (2018, S. 87) fügen hinzu, dass Heurismen übergreifend (nicht 

nur auf eine Situation bezogen) sind. Im Gegensatz zu mathematischen Verfahren 

und Algorithmen, die eine klare Anleitung liefern und zu einem gewünschten 

Ergebnis führen, garantieren Heurismen keinen sicheren Erfolg. 

Es gibt noch viele weitere Beschreibungen und Definitionen zu Heurismen, die 

auf verschiedene Aspekte eingehen. Dahingehend hat Rott (2014) verschiedene 

 
14 Bei dem Plural heuristics ist die Unterscheidung einfacher, da in diesem Fall von Heurismen 

gesprochen wird.  
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Definitionen und Beschreibungen zu Heurismen aus der Literatur analysiert. Die 

Analyse der verschiedenen Definition ist auch dadurch motiviert, dass keine 

einheitliche Begrifflichkeit in der Mathematikdidaktik bezüglich Heurismen 

existierte (Rott, 2014). Dabei arbeitet er auf theoretischer Ebene neun 

verschiedene Kategorien zur Beschreibung des Begriffs heraus (Beispiele zu den 

Kategorien sind in Rott (2014) zu finden): 

 

• Beschreibung: Was ist nach Ansicht der Autor*innen die Natur der 

Heurismen? Die Beschreibung bewegt sich zwischen „rules of thumb“, 

„kind of information“ und „cognitive tools“. 

• Effektivität: Was sagt die Charakterisierung über die Effektivität der 

Heurismen aus? Die meisten beschreiben, dass sie keine Garantie für 

eine Lösung haben, allerdings hilfreich für das Problemlösen sind.  

• Analyse: Erwähnt die Charakterisierung explizit das Verstehen und die 

Analyse des Problems? 

• Metakognition: Erwähnt die Charakterisierung explizit metakognitive 

und selbstregulatorische Aktivitäten? Werden diese inkludiert oder 

exkludiert in Heurismen? 

• Bereich: Erwähnen die Autoren bestimmte Heurismen? Für welche 

Probleme sind diese anwendbar? Gibt es verschiedene Arten von 

Heurismen (z. B. lokal und globale oder inhaltsspezifische und 

allgemeine) mit unterschiedlichen Anwendungsbereichen? 

• Algorithmus: Beinhaltet die Charakterisierung Algorithmen oder andere 

Standardverfahren? Werden diese inkludiert oder exkludiert in 

Heurismen? 

• Bewusstsein bzw. Wahrnehmung: Erwähnt die Charakterisierung, ob 

Problemlösestrategien bewusst oder ausgeführt werden müssen, um als 

Heurismen zu gelten? Einige Charakterisierungen benennen 

„systemical“ oder „methodische Ansätze“, welche implizite / 

unterbewusste / intuitive Nutzungen ausschließen. 

• Problemraum: Bezieht sich die Charakterisierung auf den Problemraum 

(Newell & Simon, 1972)? 

• Andere: Gibt es weitere Merkmale, die noch nicht von den Kategorien 

abgedeckt worden sind? 

 

In derselben Studie bittet Rott (2014) Expert:innen aus verschiedenen Ländern, 

unterschiedliche Charakterisierungen von Heurismen (aus der Literatur) zu 

bewerten. 18 Expert:innen haben neun Charakterisierung bewertet und einige von 

den Expert:innen haben eine eigene Charakterisierung geliefert. Aus diesen 

empirischen Einblicken formuliert er eine (mit Vorbehalten, vorläufige) 

Definition für heuristics: 
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„Heuristics is a collective term for devices, methods, or (cognitive) tools, often based on experience. 

They are used under the assumption of being helpful when solving a problem (but do no guarantee a 

solution). There are general (e.g. “working backwards”) as well as domain-specific (e.g., “reduce 
fractions first”) heuristics. Heuristics being helpful regards all stages of working on a problem, the 

analysis of its initial state, its transformation as well as its evaluation. Heuristics foster problem 

solving by reducing effort (e.g., by narrowing the search space), by generating new ideas (e.g., by 
changing the problem´s way of representation or by widening the search space), or by structuring (e.g., 

by ordering the search space or by providing strategies for working on or evaluation a problem). 

Though their nature is cognitive, the application and evaluation of heuristics is operated by 
metacognition.” (Rott, 2014, S. 188f.) 

Abgrenzung zu ähnlichen Begriffen 

Heurismen werden oftmals synonym als Problemlösestrategien verstanden (z. B. 

Leuders, 2010). Durch die namentliche Ähnlichkeit sollten diese allerdings nicht 

mit Lernstrategien verwechselt werden, wobei in einem Teilbereich einige 

Ähnlichkeiten existieren. Lernen wird als ein Informationsverarbeitungsprozess 

verstanden, welcher von Lernenden durch bestimmte Verhaltensweisen und 

Gedanken beeinflusst werden kann. Solche Verhaltensweisen und Gedanken, die 

Lernende nutzen, um ihren Wissenserwerb zu steuern, werden als Lernstrategien 

bezeichnet (Friedrich & Mandl, 2006, S. 1). Heurismen hingegen sind eher 

mathematische Tätigkeiten, die beim Lösen eines Problems helfen können 

(Holzäpfel et al., 2018, S. 87). Typischerweise werden Lernstrategien in 

kognitive, metakognitive und ressourcenbezogene Lernstrategien aufgeteilt15. 

Innerhalb der kognitiven Lernstrategien wird darüber hinaus zwischen Tiefen- 

und Oberflächenstrategien unterschieden. Viele Tiefenstrategien16 stellen sich im 

Kontext des Problemlösen als hilfreich heraus und ähneln somit Heurismen. 

Diese Ähnlichkeit der kognitiven Prozesse diskutiert Leuders (2010) und 

beschreibt, dass jedes Lernen eine Art Problemlöseprozess ist. Zwischen dem 

Erwarteten (Zielzustand) und der aktuellen Situation (Anfangszustand) liegt eine 

Diskrepanz (Hürde), die es zu überwinden gilt. Diese Lernsituation ähnelt 

demnach einem Problemlöseprozess. Obwohl es diese Überschneidungen gibt, 

sind Heurismen und Lernstrategien voneinander verschieden (siehe in den 

Beschreibungen der Begriffe). 

Es soll außerdem eine weitere Abgrenzung zu den Begriffen Intuition bzw. 

Kreativität (Winter, 2016, S. 220ff.) sowie Geistige Beweglichkeit (Bruder, 2000) 

in der Mathematikdidaktik vorgenommen werden. Die Intuition gilt als 

Entdeckungsapparat und das „plötzliche Gewahrwerden“ wie z. B. das Erkennen 

von Analogien kann nur als ein intuitiver Prozess verstanden werden. Durch 

 
15 Eine ausführliche Beschreibung von Lernstrategien befindet sich in Kapitel 1.2.5 oder Göller 

(2020, S. 94ff.).  

16 Ein Überblick über einige Tiefenstrategien: Multiple Repräsentationen des Lernstoffs 

(Darstellungswechsel), mit eigenen Worten umformulieren, Informationen auf das 

Wesentliche reduzieren, Beispiele betrachten, etc. (weitere Tiefenstrategien zu finden bei 

Göller, 2020; S. 114; Liebendörfer et al., 2021; Stenzel, 2023a, S. 22) 
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mathematische Erfahrungen könne diese Intuition verbessert werden, wodurch 

ebenfalls das Problemlösen profitiert (Winter, 2016, S. 221). Geistige 

Beweglichkeit spielt ebenfalls eine wichtige Rolle beim Problemlösen (Hasdorf, 

1976, S. 16). Bruder und Collet (2011, S. 33) teilen für den mathematischen 

Kontext in fünf Erscheinungsformen geistiger Beweglichkeit auf. Reduktion 

(Fokussieren auf das Wesentliche), Reversiblität (Umkehrung von 

Gedankengängen), Aspektbeachtung (gleichzeitiges Beachten mehrerer Aspekte, 

die Abhängigkeit von Dingen erkennen und gezielt variieren), Aspektwechsel 

(Wechsel von Annahmen oder Kriterien, Umstrukturieren eines Sachverhalts) 

sowie Transferierung (Übertragung von Vorgehen auf einen anderen, ähnlichen 

Kontext). 

Im Gegensatz zu Heurismen sind Intuition und geistige Beweglichkeit 

„Fähigkeiten“, welche unterbewusst und intuitiv angewandt werden. Es gibt 

demnach Personen, die ohne Heurismen auskommen, da sie bereits intuitiv 

handeln und somit gut Probleme lösen können. Sind diese Fähigkeiten allerdings 

nicht vorhanden, so kann das Erlernen von Heurismen hilfreich sein (König, 

1992). 

2.5.2 Kategorisierung von Heurismen 

Zum besseren Verständnis von Heurismen lassen sich diese in verschiedene 

Kategorien unterteilen. In der Mathematik und Mathematikdidaktik lassen sich 

drei unterschiedliche Gruppierungen von Heurismen identifizieren (Rott, 2018). 

 

1. Nützlichkeit und Trainierbarkeit: Einige Werke zum Problemlösen 

stellen Heurismen vor, die als nützlich bzw. erfolgreich gelten. Diese 

entstehen in Kontexten von mathematischen Wettbewerben und 

hinsichtlich der Trainierbarkeit von Problemlösestrategien. Dabei 

werden diese oftmals im Zusammenhang mit bestimmten Aufgaben 

präsentiert (z. B.  an mehreren Stellen bei Engel, 1998, z. B. S.7). 

2. Inhaltliche Ähnlichkeit: Schreiber (2011, S. 95ff.) schlägt eine 

Kategorisierung nach inhaltlichen Kriterien und gemeinsamen 

Merkmalen vor, basierend auf den Ausarbeitungen von Pólya. Diese 

umfasst vier Kategorien: Heurismen der Induktion (z. B. „Probiere 

systematisch“), Variation (z. B. „Variiere das Gegebene“), Interpretation 

(z. B. „Suche nach Analogien“) sowie Reduktion (z. B. „Arbeite 

rückwärts“). Eine ähnliche Unterteilung befindet sich in der Systematik 

von Schwarz (2006), der in Heurismen der Variation, Induktion und 

Reduktion unterteilt. 

3. Reichweite in Bezug auf die Gestaltung von Problemlöseprozessen: 

Tietze (2000, S. 99ff.) unterscheidet zwischen „globalen“ und „lokalen 

Heurismen. Globale Heurismen betreffen den gesamten 

Problemlöseprozess und beinhalten Strategien wie die Planung und 



S e i t e  | 53 

 

Organisation des Lösungsprozesses in Phasen (z. B. wie die vier Phasen 

von Pólya, 1949). Lokale Heurismen konzentrieren sich auf spezifische 

Schritte in einem Problemlöseprozess, z. B. wie das Finden von 

Spezialfällen oder das Zerlegen von Problemen in Teilaufgaben. 

Insgesamt ist die Aufteilung in „lokal“ und „global“ nur eine grobe 

Kategorisierung zur Orientierung (Tietze, 2000, S. 99). 

Eine zweite Möglichkeit, Heurismen nach der Reichweite einzuteilen, 

ist die Aufteilung zwischen Hilfsmittel, Prinzipien und Strategien 

(Bruder & Collet, 2011)17. Heuristische Hilfsmittel verfügen zunächst 

über keinen Verfahrenscharakter, sondern dienen dem Verstehen und der 

Strukturierung bzw. Reduktion von Problemen. Beispiel sind Tabellen, 

Lösungsgraphen oder Skizzen. Heuristische Strategien zielen auf die 

Entwicklung eines Lösungsplans ab, z. B. wie das Vorwärts- oder 

Rückwärtsarbeiten und systematisches Probieren (Bruder, 2000). Sie 

beschreiben damit allgemeine Vorgehensweisen für eine 

Problemsituation, ohne algorithmischen Charakter. Damit ähneln sie den 

Beschreibungen der „globalen“ Heurismen von Tietze (2000). 

Heuristische Prinzipien hingegen ähneln den Beschreibungen von 

„lokalen“ Heurismen. Sie geben konkrete Hilfestellungen, oft problem- 

bzw. inhaltsspezifisch, die beim Finden von Lösungsideen helfen. 

Beispiele sind Analogie-, das Transformations- und das Extremalprinzip 

sowie das Arbeiten mit Spezialfällen. Rott (2018) resümiert, dass 

ebenfalls diese Einteilung nicht trennscharf ist. Vorwärts- und 

Rückwärtsarbeiten können sowohl global als auch sehr lokal eingesetzt 

werden. Dennoch geben diese Kategorisierungen einen Überblick und 

liefern praktikable Unterscheidung von Heurismen. 

 

Einordnung in den Problemlöseprozess 

In den Beschreibungen der verschiedenen Kategorisierungen zu Heurismen wird 

bereits angedeutet, dass bestimmte Heurismen an unterschiedlichen Stellen des 

Problemlöseprozesses genutzt werden. Heuristische Prinzipien, Strategien und 

Hilfsmittel beschränken sich nach Müller (1992) primär auf die ersten beiden 

Phasen des Problemlöseprozesses nach Pólya (Kapitel 2.3.3). Dabei helfen diese 

bei der Orientierungs- sowie Such- und Planungsphase. König (1992) bezieht sich 

ebenfalls auf die Unterteilung von Phasen nach Pólya, allerdings schreibt er der 

zweiten Phase eine dominierende Rolle für heuristische Vorgehensweisen zu. Die 

erste und vierte Phase sind darüber hinaus auch nicht frei von heuristischen 

Elementen. In der dritten Phase kommen keine heuristischen Elemente vor, da 

diese Schritte im Prinzip von „jedem Schüler erlernbar“ sind. Zu ähnlichen 

 
17 Einige Beispiele zu dieser Kategorisierung von Heurismen befinden sich in Tabelle 6. 
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Erkenntnissen kommt Schoenfeld (1985). Heuristische Elemente tauchen in 

seinen empirischen Untersuchungen zu Problemlöseprozessen in allen Phasen 

seines Modells auf (Kapitel 2.3.3), mit Ausnahme der Implementation. Dabei ist 

die Phase der Exploration allerdings das heuristische Herzstück, in denen die 

meisten heuristischen Aktivitäten stattfinden. 

Beispiele von Heurismen 

In den vorherigen Ausführungen wurden bereits an einigen Stellen Beispiele für 

Heurismen angedeutet. Dabei existiert, wie bei der Kategorisierung, keine 

einheitliche und „vollständige“ Liste. Es gibt allerdings einige Arbeiten, auf die 

in der Literatur Bezug genommen wird. Eine davon ist die Auflistung nach Pólya 

(1945, S. xvii), in der für jede Phase passende Fragen und Arbeitsanregungen für 

Problemlösende aufgelistet sind (Tabelle 5). 

 

Phase Fragen (Auflistung einer Auswahl) 

Phase 1: Verstehen der Aufgabe What is the unknown?  

What is the condition? 

Draw a figure. 

Phase 2: Ausdenken eines Plans Have you seen it before? Or in a 

slightly different form?  

Do you know related problems? 

Could you restate the problem? 

Phase 3: Ausführen eines Plans Can you see clearly that the step is 

correct? Can you prove that it is 

correct? 

Phase 4: Rückschau Can you check the result? 

Can you use the result differently? 

Tabelle 5: Kleiner Ausschnitt aus Pólyas (1945, S. xvii) Problemlösestrategien 

2.5.3 Einsatz von Heurismen 

Die Beschreibungen von Heurismen geben auf den ersten Blick den Anschein, 

dass die Anwendung einer problemlösenden Person hilft, zu einer Lösung zu 

gelangen. Doch bereits zu Beginn dieses Kapitels wurde die Eigenschaft erwähnt, 

dass Heurismen mathematische Aktivitäten sind, die beim Problemlösen helfen 

können, aber keinen sicheren Erfolg garantieren (Holzäpfel et al., 2018, S. 87). 

Früher gab es darüber hinaus wenig Belege, dass Heurismen zu einer höheren 

Problemlösekompetenz führen. 

„ … the critic of the strategies […] is that the characterizations of them were descriptive rather than 

prescriptive. That is, the characterizations allowed one to recognize the strategies when they were 

being used. However, Pólya´s characterizations did not provide the amount of detail that would enable 
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people who were not already familiar with the strategies to be able to implement them.” (Schoenfeld, 

1992, S. 353) 

 

 

Heurismus Umschreibung 

Heuristisches Hilfsmittel 

Skizze / informative Figur Das Anfertigen einer Skizze oder Zeichnung – 

nicht nur bei geometrischen Problemen; eine 

informative Figur kann auch die Darstellung 

von Zuordnungen mit Pfeildiagrammen oder 

von funktionalen Zusammenhängen (im 

Koordinatensystem) sein (Bruder, 2000) 

Wissensspeicher Sammlungen / Regelhefte, in denen Wissen 

über Zusammenhänge, Verfahren und Begriffe 

festgehalten wird (Collet, 2009, S. 58; 

Degener et al., 2005, S. 166) 

Heuristisches Prinzip 

Analogieprinzip Die Suche nach ähnlichen oder vergleichbaren 

(Hilfs-)Aufgabe, deren Resultat oder 

Lösungsweg übertragen werden kann (Pólya, 

1949, S. 60f.) 

Spezialisieren  Übergang zu einer neuen Problemstellung, mit 

der ursprünglichen als Verallgemeinerung, z. 

B. indem man anstelle von n-Ecken zunächst 

Dreiecke betrachtet (Pólya, 1949, S. 209; 

Schoenfeld, 1985, S. 76ff.) 

Heuristische Strategien 

Vorwärtsarbeiten Man betrachtet den Anfangszustand bzw. das 

Gegebene und versucht davon ausgehen, den 

Zielzustand bzw. das Gesuchte zu erreichen 

(König, 1992; Pólya, 1949, S. 200) 

Systematisches Probieren Systematisches Testen von Elementen 

(Einsetzen von Werten bzw. Betrachten von 

Fällen) mit dem Ziel, sich der Lösung 

anzunähern (Schwarz, 2006, S. 156) 

Tabelle 6: Zusammenstellung einiger Heuristischer Hilfsmittel, Prinzipien und Strategien (Beispiele 

aus Rott, 2013, S. 76ff.) 

Insgesamt eignen sich Heurismen dafür, Problemlöseprozesse im Nachhinein 

nachzuvollziehen und zu reflektieren. Im Vorhinein ist nur schwer absehbar, 

welche Heurismen einen positiven Einfluss auf die Lösung ausüben. Dies liegt in 
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der Natur von Heurismen, da sie im Gegensatz zu spezifischen Algorithmen eher 

vage sind (Holzäpfel et al., 2018). Allerdings gibt es mittlerweile Hinweise 

darauf, dass insbesondere heuristische Hilfsmittel förderlich für den 

Problemlöseprozess im Hochschulkontext sein können (z. B. Lehmann, 2018, S. 

236, S. 252; Stenzel, 2023a, S. 148). 

„Our interpretations of Polya´s heuristics is that the strategies are intended to help problem solvers 

think about, reflect on, and interpret problem situations, more than they are intended to help them 

decide what to do when ‘stuck’ during a solution attempt.” (Lesh & Zawojewski, 2007, S. 768) 

Des Weiteren scheint es so, dass Heurismen oftmals zu allgemein beschrieben 

werden (Schoenfeld, 1992, S. 54ff.), um Problemlösende tatsächlich zu 

unterstützen. Der gleiche Heurismus kann bei unterschiedlichen Aufgaben 

ebenfalls unterschiedliche Ausprägungen annehmen (Holzäpfel et al., 2018, S. 

153; Schoenfeld, 1992, S. 53ff.). Dies zeigt, dass Heurismen ggfs. 

inhaltsspezifischer oder sogar noch spezieller formuliert werden sollten. 

Insgesamt lässt sich dennoch festhalten, dass Problemlösebemühungen nur dann 

erfolgreich sein können, wenn Heurismen genutzt werden (Holzäpfel et al., 2018, 

S. 152). Dafür müssen der problemlösenden Personen mehr als nur wenige 

Heurismen und somit ein gewisses heuristisches Vokabular zur Verfügung stehen, 

welches in Problemlösesituationen flexibel angewandt werden kann (Koichu et 

al., 2007). 

2.5.4 Synthese zu Heurismen 

Heurismen lassen sich in verschiedene Kategorien einteilen, wobei diese nicht 

immer trennscharf voneinander zu unterscheiden sind. Trotzdem wird in dieser 

Arbeit auf die Aufteilung (heuristisches Prinzip, heuristisches Hilfsmittel und 

heuristische Strategie) von Bruder und Collet (2011) zurückgegriffen, da diese 

einen praktikablen Überblick über Heurismen gibt. Auf diese Aufteilung stützt 

sich darüber hinaus auch die weitere Forschung (z. B. Lehmann, 2018; Rott, 2013; 

Stenzel, 2023a). Aufgrund der inhaltlichen Spezifik im hochschulischen 

Mathematikkontext sollten allerdings geeignete Heurismen gezielt untersucht 

werden. Dafür wird ein Kategoriensystem eingesetzt, das speziell für 

mathematische Anforderungen auf Hochschulebene angepasst wurde. Dieses 

Kategoriensystem wird in Kapitel 5.4.3 weiter ausgeschärft und dient als 

Grundlage für die Analyse der verwendeten Heurismen. 

2.6 Beliefs 

Obwohl Beliefs (= Überzeugungen, Glauben und Vorstellungen) in dieser Arbeit 

nicht behandelt werden, gehören diese dennoch zur Theorie des Problemlösens 

nach Schoenfeld (1985). Aus Gründen der Vollständigkeit wird daher in einem 

kleinen Abschnitt das Thema der Beliefs beleuchtet. In den Dissertationen von z. 
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B. Göller (2020, S. 69ff.) und Geisler (2019, S. 82ff.) wird ein größerer Überblick 

über Beliefs gegeben.  

Menschen treffen Entscheidungen in ihrem alltäglichen Leben, bei denen sie 

relevantes Wissen sowie etablierte Verfahren ignorieren. Darüber hinaus können 

solche Entscheidungen stark voreingenommen und alles andere als rational sein 

(Einhorn & Hogarth, 1981; Kahneman et al., 1982). Schoenfeld (1985, S. 35) 

folgert daraus, dass pures kognitives Verhalten18 selten vorkommt. Innerhalb 

eines bestimmten Kontextes werden Aufgaben im Rahmen der eigenen 

Perspektive ausgeführt, die darüber entscheidet, wie diese Aufgaben verstanden 

und angegangen werden. „Beliefs systems“ beeinflussen die Kognition, selbst 

wenn man sich dieser Überzeugung nicht bewusst ist (Schoenfeld, 1985, S. 35). 

Auch beim Lernen können Beliefs die Informationsaufnahme beeinflussen, 

sodass nur Informationen aufgenommen werden, welche in das eigene System 

passen (Blömeke, 2004). Insgesamt werden Beliefs eher als Disposition (trait) 

und nicht als situative (state) Zustände betrachtet, da sie sich über einen längeren 

Zeitraum hinweg kaum verändern und stabil bleiben (McLeod, 1992). 

In der mathematikdidaktischen Literatur teilen Grigutsch und Törner (1998) 

mathematische Beliefs in vier Bereiche auf: 

 

• Mathematik selbst als Disziplin (Beliefs über die Natur der Mathematik) 

• Das Lernen von Mathematik 

• Das Lehren von Mathematik 

• Die eigene Person als Lernender oder Nutzer der Mathematik (Self-

Beliefs) 

 

Darüber hinaus stellt sich die Frage, welchen Einfluss Beliefs auf das Treiben von 

Mathematik hat. Schoenfeld (1985, S. 43f.) stellt im Kontext der Bearbeitung von 

Problemen heraus, dass einige Beliefs zu negativen Effekten führen können. So 

kann z. B. die Überzeugung, dass nur Genies imstande sind, Mathematik zu 

erkunden und zu schaffen, dazu führen, dass Probleme zu früh aufgegeben werden 

oder gar nicht erst versucht wird, diese zu lösen. Allerdings können gegenteilige 

Beliefs zu positiven Effekten führen. 

Insgesamt zeigt sich, dass Beliefs einen Einfluss auf das Verhalten haben kann.  

„One´s mathematical world view shapes the way one does mathematics.” (Schoenfeld, 1985, S. 44) 

2.7 Neuere Studien zum mathematischen Problemlösen 

In diesem Kapitel wird ein Überblick über neuere Studien im Bereich des 

mathematischen Problemlösens gegeben. Tiefere Einblicke in ältere Studien, 

 
18 Pures kognitives Verhalten ist solches, welches nach ihm durch Wissen, Heurismen und 

Steuerung charakterisiert ist. 



S e i t e  | 58 

 

sogenannte Klassiker des Problemlösens, können bspw. in Rott (2013, S. 97ff.) 

nachgelesen werden. Die neueren Arbeiten haben einen direkten Einfluss auf die 

vorliegende Arbeit genommen und werden aufgrund ihrer Theorien, Methoden 

oder Ergebnisse im weiteren Verlauf dieser Arbeit mehrfach zitiert. Aus diesem 

Grund werden diese Arbeiten hier vorgestellt. Die Darstellung beschränkt sich 

dabei auf wesentliche Aspekte, da eine detaillierte Analyse der einzelnen Studien 

nicht erfolgen kann. 

Dissertation von Rott (2013) 

In seiner explorativen Studie untersucht Rott (2013) mathematisches 

Problemlösen im Allgemeinen sowie die spezifischen Problemlöseprozesse von 

Fünftklässlern. Der Fokus liegt dabei auf dem Verlauf der Prozesse, dem Einsatz 

von Heurismen und der Rolle von metakognitiven Aktivitäten. Grundlage der 

Untersuchung sind Daten aus dem Projekt MALU (Mathe AG an der Leibniz 

Universität), einem Förderprogramm für Fünftklässler:innen. Im Rahmen dieses 

Projekts wurden Videoaufnahmen von Schüler:innen erstellt, die in Partnerarbeit 

mathematische Problemaufgaben bearbeiteten. Die Daten wurden mit einem 

qualitativ-quantitativen Ansatz analysiert. 

Die Untersuchung zeigt, dass die Prozesse der Schüler:innen in Phasen unterteilt 

werden können, die mit den Schoenfeld Episoden beschrieben werden. Die 

Ergebnisse betonen die Relevanz dieses Modells für die Beschreibung und 

Analyse von Problemlöseprozessen. Auf Basis der empirischen Daten entwickelt 

Rott darüber hinaus das Modell von Schoenfeld weiter, um den zyklischen 

Charakter des Problemlösen besser darzustellen. Des Weiteren können einige 

Heurismen (z. B. Systematisches Probieren, Rückwärtsarbeiten, Suchen nach 

Mustern) in den Prozessen der Schüler:innen identifiziert werden, die einen 

positiven Zusammenhang zwischen deren Einsatz sowie Problemlöseerfolg 

aufweisen. Einige Prozesse wurden hinsichtlich metakognitiver Aktivitäten 

gezielt an den Episodenwechseln untersucht. Dabei zeigt sich, dass insbesondere 

diese Wechsel oft von metakognitiven Aktivitäten geprägt zu sein scheinen. 

Die Studie leistet darüber hinaus methodische Beiträge zur Analyse von 

Problemlöseprozessen, bspw. durch die Entwicklung von Kodiermanualen zu den 

Schoenfeld Episoden sowie Heurismen. 

Dissertation von Stenzel (2023a) 

Die Zielsetzung der Studie von Stenzel (2023a) ist, mathematisches Problemlösen 

von Studienanfänger:innen genauer zu untersuchen und daraus eine 

Fördermaßnahme für deren Problemlösekompetenz zu entwickeln. Die Studie 

verwendet einen Mixed-Methods-Ansatz. Es wurde eine Intervention im Sinne 

von Design-Based-Research entwickelt und über sieben Semester in den 

Anfängervorlesungen Lineare Algebra I oder Analysis I an der Universität 

Duisburg-Essen durchgeführt. Die Intervention modifizierte die traditionelle 
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Gruppenübung, in der Übungsaufgaben besprochen wurden. Zur Datenerhebung 

wurden aufgabenbasierte Interviews mit Studienanfänger:innen arrangiert, bei 

denen authentische Übungsaufgaben bearbeitet wurden. Die Interviews wurden 

videografiert und mit einem Fokus auf den Einsatz von Heurismen, 

Metakognition und den Einfluss von Vorwissen qualitativ analysiert. Zusätzlich 

wurden quantitative Daten erhoben, um den Einfluss der Intervention auf die 

Klausurergebnisse, die Bearbeitung von Hausaufgaben und die Teilnahme an den 

Übungsgruppen zu messen. 

Die qualitative Analyse der Interviews zeigt, dass das Vorwissen der Studierenden 

den entscheidenden Faktor für den Erfolg beim Problemlösen darstellt. 

Studierende mit gutem Vorwissen setzen häufiger heuristische Strategien ein und 

zeigen mehr metakognitive Aktivitäten. Die Intervention hat zu einer stärkeren 

Reflexion des eigenen Problemlösevorgehens geführt und den bewussten Einsatz 

von Heurismen gefördert. Die quantitativen Daten zeigen zwar leichte Vorteile 

für die Interventionsgruppe, diese sind jedoch nicht statistisch signifikant. 

Dissertation von Lehmann (2018) 

Die Studie von Lehmann (2018) widmet sich der Analyse relevanter 

mathematischer Kompetenzen von Ingenieurstudierenden im ersten Studienjahr. 

Dabei wird sowohl das Wissen als auch die Fähigkeit zur Anwendung dieses 

Wissens im Kontext des Problemlösens betrachtet. Die Untersuchung wurde im 

Rahmen des Forschungsprogramms KoKoHs (Kompetenzmodellierung und 

Kompetenzerfassung im Hochschulsektor) durchgeführt. Die Studie folgt einem 

Mixed-Methods-Design. Quantitative Daten wurden mithilfe von 

standardisierten Tests erhoben, die schulisches und hochschulisches Wissen im 

Bereich Mathematik und Physik umfassen. Qualitative Daten wurden durch 

Videografie von Gruppen- und Einzelarbeiten gewonnen, während Studierende 

Aufgaben aus den Bereichen Mathematik und Physik bearbeiteten. 

Die quantitativen Ergebnisse zeigen deutliche Zusammenhänge zwischen den 

mathematischen und physikalischen Kompetenzen der Studierenden. Studierende 

mit besseren mathematischen Fähigkeiten zu Studienbeginn erzielen auch am 

Ende des ersten Studienjahres höhere Leistungen in Mathematik und Technischer 

Mechanik. Qualitative Analysen zeigen, dass eine strukturierte und planvolle 

Herangehensweise beim Problemlösen einen entscheidenden Einfluss auf den 

Erfolg hat. Insbesondere leistungsstärkere Studierende nutzen bevorzugt 

Problemlösestrategien, die ein tiefes konzeptuelles Verständnis fordern. 

Dissertation von Herold-Blasius (2019) 

In der explorativen Studie von Herold-Blasius (2019) wird untersucht, inwiefern 

Strategieschlüssel den Problemlöseprozess von Grundschulkindern der 3. und 4. 

Klasse beeinflussen. Ziel der Studie ist es herauszufinden, ob und wie diese 
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unterstützenden Materialien die Nutzung von Heurismen sowie den Erfolg beim 

Lösen mathematischer Aufgaben fördern.  

Mithilfe eines Mixed-Methods-Ansatzes zeigt sich, dass die Nutzung von 

Strategieschlüsseln mit dem Einsatz von Heurismen sowie der Häufigkeit von 

Episodenwechseln im Problemlöseprozess positiv zusammenhängen. 

Strategieschlüssel erweisen sich somit als effektives Werkzeug zur Unterstützung 

des mathematischen Problemlösens bei Grundschulkindern. 
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3 Forschungsfragen 

Bevor auf das Forschungsdesign und die Forschungsfragen eingegangen wird, 

erfolgt ein Kommentar zu Begrifflichkeit: In dieser Arbeit wird der Begriff des 

mathematischen Problemlösens in den theoretischen Ausführungen verwendet, 

wodurch auch die Bezeichnung Problemlöseprozesse geprägt wird. Dieser 

Begriff impliziert jedoch, dass ein Problem tatsächlich gelöst wird. Um der 

Realität mathematischer Prozesse gerecht zu werden, wird stattdessen der Begriff 

des Problembearbeitungsprozesses eingeführt und bevorzugt verwendet (wie in 

Rott, 2013, S. 33). Dieser umfasst nicht nur Prozesse, die zu einer Lösung führen, 

sondern schließt ebenso Bearbeitungsprozesse ein, die ergebnislos bleiben oder 

in denen keine vollständige Lösung erreicht wird. Um der theoretischen 

Grundlage Rechnung zu tragen, wird jedoch an einigen Stellen weiterhin die 

Begrifflichkeit des Problemlöseprozesses verwendet. Dies erfolgt mit dem Ziel, 

Konsistenz mit der bestehenden theoretischen Terminologie zu wahren, ohne die 

umfassendere Perspektive des Problembearbeitungsprozesses aus dem Blick zu 

verlieren. 

Im Folgenden wird das Forschungsdesign der Studie erörtert sowie die daraus 

resultierenden Forschungsfragen unter Hinzunahme der theoretischen 

Ausarbeitungen abgeleitet. Das Forschungsdesign legt einen starken Fokus auf 

die empirische Untersuchung von mathematischen Lernprozessen im Kontext des 

mathematischen Problemlösens. Für diese Untersuchung ist es unerlässlich, den 

mathematischen Inhalt mit einzubeziehen. Dies begründet sich unter anderem 

damit, dass die Kategorie des Wissens unmittelbar mit dem mathematischen Inhalt 

gleichgesetzt werden kann (Schoenfeld, 1985, S. 17). Dementsprechend sollten 

mathematische Problembearbeitungsprozesse in einem inhaltlichen Kontext 

betrachtet werden, da sie ohne Berücksichtigung der zugrundeliegenden 

mathematischen Strukturen nicht adäquat untersucht werden können. Aus diesem 

Grund wird vor der empirischen Betrachtung von Problembearbeitungsprozessen 

bereits einer stoffdidaktischen Fragestellung nachgegangen. Diese 

vorangestellten stoffdidaktischen Überlegungen dienen somit als unterstützendes 

Element für die nachfolgenden empirischen Analysen. 

3.1 Stoffdidaktische Fragestellungen zur Differentialrechnung 

Der mathematische Inhalt, auf den sich diese Arbeit fokussiert, ist die 

Differentialrechnung. Dies stellt ein zentrales Gebiet der Mathematik dar, 

welches durch eine Vielzahl von Definitionen, Sätzen und Verfahren 

charakterisiert ist. Vor diesem Hintergrund stellt sich die didaktische Frage, wie 

dieser umfangreiche Inhaltsbereich gezielt für den ingenieurwissenschaftlichen 

Kontext aufbereitet werden kann. Dabei ist zu berücksichtigen, dass nicht 

sämtliche Aspekte der Differentialrechnung für die Untersuchung der 
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empirischen Daten von Relevanz sind. Die stoffdidaktische Analyse beschränkt 

sich daher auf ausgewählte, relevante Teilbereiche der Differentialrechnung, die 

unmittelbar mit den Problembearbeitungsprozessen verknüpft sind.  

Aufbauend auf die stoffdidaktische Ausarbeitung werden im weiteren Verlauf die 

Anforderungen zu den jeweiligen Aufgaben dieser Studie eingeordnet (Kapitel 

5.3). Außerdem wird die stoffdidaktische Ausarbeitung genutzt, um im 

empirischen Teil dieser Arbeit die Analysen zur Kategorie Wissen durchzuführen 

(Kapitel 6.2). Es ergibt sich somit die folgende stoffdidaktische Forschungsfrage, 

die in Kapitel 4 beantwortet wird: 

 

(D1) Wie lassen sich ausgewählte Teilbereiche der Differentialrechnung 

didaktisch aufbereiten, sodass sie für die Analyse zur Kategorie des Wissens 

beitragen? 

3.2 Empirische Fragestellungen zur Untersuchung von 

Problembearbeitungsprozessen 

Freudenthal (1991, S. 87) macht deutlich, dass sich die Bildungsforschung häufig 

auf Produkte konzentriert, da diese leichter zu analysieren sind, während die 

Abfolge vor den Produkten, also die Lernprozesse, oft vernachlässigt werden. 

Dabei sind gerade diese Prozesse didaktisch von zentraler Bedeutung, weil sie 

zeigen, wie Lernen tatsächlich geschieht. Während Produkte (wie Testergebnisse 

oder abgeschlossene Aufgaben) nur das Endergebnis eines Lernprozesses 

darstellen, geben die Prozesse Einblick in die Strategien, Denkweisen und 

Herausforderungen, die Lernende durchlaufen. Didaktisch sind Prozesse 

entscheidend, weil sie die Grundlage dafür bilden, das Lehren nicht nur 

ergebnisorientiert, sondern auch lernorientiert zu gestalten.  

An Universitäten finden solche Lernprozesse in mathematischen Veranstaltungen 

regelmäßig statt, insbesondere durch die typische, wöchentliche Bearbeitung von 

Hausaufgaben. Diese Prozesse lassen sich als mathematische 

Problembearbeitungsprozesse auffassen (Kapitel 1.3.1). Um realitätsnahe 

Erkenntnisse über solche Lernprozesse zu gewinnen, müssen diese ebenfalls 

möglichst nah an der tatsächlichen Studienrealität erhoben und analysiert werden. 

Da das authentische Lernen aufgrund begrenzter Forschungsressourcen nicht 

über das gesamte Semester hinweg verfolgt werden kann, wird entschieden, den 

Fokus auf einen spezifischen Inhaltsbereich zu legen. Dafür wird das Thema der 

Differentialrechnung ausgewählt. Diese Eingrenzung auf einen spezifischen 

Inhalt ist auch im Hinblick auf die Kategorie Wissen sinnvoll, da die 

Bearbeitungsprozesse zu diesen Aufgaben mithilfe Wissensmatrizen verglichen 

werden können. Aufgaben(bearbeitungen) aus unterschiedlichen Inhaltsbereichen 

haben unter Umständen unterschiedliche Anforderungen, wodurch die 

resultierenden Wissensmatrizen ebenfalls stark unterschiedlich wären. Letztlich 
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ist die Differentialrechnung zwar in jedem mathematikhaltigen Studiengang von 

Bedeutung, jedoch profitieren insbesondere Ingenieurstudierende von einem 

fundierten Verständnis in diesem Bereich, da sie im Anwendungskontext für 

Ingenieur:innen besonders wichtig ist (Kapitel 4.1). Daher wird der Fokus der 

Untersuchung auf diese Zielgruppe gelegt. 

Insgesamt ergibt sich demnach das Forschungsinteresse dieser Arbeit (Kapitel 

1.4), mathematische Problembearbeitungsprozesse von Ingenieurstudierenden 

bezüglich der Differentialrechnung in einem authentischen Setting zu 

untersuchen.  

Problemlösen ist eine wichtige Kompetenz, die nicht nur im Mathematikstudium, 

sondern auch im Studium für Ingenieur:innen wichtig ist (Kapitel 2.1). Bisherige 

Studien zu Problembearbeitungsprozessen haben bislang vorwiegend das Denken 

von Schüler:innen untersucht (z.B. Herold-Blasius, 2019; Rott, 2013). Auf 

Hochschulebene liegen Forschungsergebnisse zu Problembearbeitungsprozessen 

bislang nur von Stenzel (2023a) und Lehmann (2018) vor. Insbesondere 

authentische mathematische Problembearbeitungsprozesse von 

Ingenieurstudierenden wurden bisher jedoch kaum untersucht (Kapitel 2.1). Aus 

den theoretischen Ausführungen dieser Arbeit lassen sich Problemlöseprozesse 

mit den vier Kategorien beschreiben, die ebenfalls einen Einfluss auf den 

Problemlöseprozess haben können: Wissen, Heurismen, Steuerung, Beliefs 

(Schoenfeld, 1985). Beliefs werden in der Forschung oft als (relativ) stabile 

Konstrukte betrachtet. Für ihre Erhebung haben sich Methoden wie Fragebögen 

oder Interviews als effektiv erwiesen. Allerdings greifen diese Methoden aktiv in 

den Problembearbeitungsprozess ein und stören somit den authentischen Verlauf, 

da sie von den Studierenden eine bewusste Reflexion ihrer Beliefs erfordern. Um 

den natürlichen Ablauf der Problemlöseprozesse nicht zu unterbrechen, wird in 

dieser Arbeit auf die Erhebung von Beliefs verzichtet. Der Fokus liegt stattdessen 

auf den dynamischen, unmittelbaren Aspekten der Problemlöseprozesse, die 

direkt im Prozess selbst sichtbar werden. 

Die empirischen Forschungsfragen zum Problembearbeitungsprozess werden 

zunächst durch die drei Kategorien Steuerung (Kapitel 3.2.1), Wissen (Kapitel 

3.2.2) und Heurismen (Kapitel 3.2.3) gegliedert. Abschließend werden die 

Kategorien gemeinsam hinsichtlich der Problembearbeitungsprozesse betrachtet 

(Kapitel 3.2.4). Zur Motivation der jeweiligen Forschungsfragen werden zunächst 

theoretische und empirische Erkenntnisse in einem kurzen Absatz dargestellt. Im 

Anschluss an diesen Absatz wird die dazugehörige Forschungsfrage formuliert. 

3.2.1 Fragen zur Steuerung 

Bisherige Studien beziehen sich vor allem auf die Untersuchung von 

Schüler:innen (Herold-Blasius, 2019; Rott, 2013), wobei Stenzel (2023a) im 

hochschulischen Kontext Problembearbeitungsprozesse von Studierenden 

analysiert. Für die Untersuchung solcher Problembearbeitungsprozesse eignet 
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sich das Modell von Schoenfeld, da es die Dynamik der einzelnen 

Problemlösephasen erfasst (Kapitel 2.3). Da der Fokus 

ingenieurwissenschaftlicher Stundengänge in der Regel auf 

anwendungsorientierten Aufgaben liegt, ist eine Untersuchung der in diesem 

Kontext ausgeprägten Steuerungsfähigkeit von besonderem Interesse. Daraus 

ergibt sich folgende Forschungsfrage:  

 

(S1) Welche Episoden durchlaufen Ingenieurstudierende bei mathematischen 

Problembearbeitungsprozessen? 

 

In der Studie von Lehman (2018, S. 252ff.) wird deutlich, dass die 

Bearbeitungsprozesse mathematischer und physikalischer Aufgaben bei 

Ingenieurstudierenden über verschiedene Messzeitpunkte hinweg meist linear 

verlaufen. Ähnliches zeigt sich auch bei der Analyse von Schüler:innen (Rott, 

2013, S. 296ff.). Dies steht jedoch im Kontrast zu Modellen, die betonen, dass 

Problemlöseprozesse typischerweise nicht-linear verlaufen. Es bleibt zu klären, 

ob in der aktuellen Studie ähnliche lineare Muster vorliegen oder nicht-lineare 

Dynamiken zum Tragen kommen. 

 

(S2) Welche Episodenwechsel treten in den Problembearbeitungsprozessen auf? 

Verlaufen die Prozesse linear? 

 

Schoenfeld (1985) prägte den Begriff „wild goose chases“, um Prozesse zu 

beschreiben, bei denen keine Steuerung vorhanden ist. In solchen Fällen 

verfolgen die Lernenden einen Lösungsansatz, ohne weiterhin darüber 

nachzudenken. Sowohl in seinen eigenen Studien mit Studierenden (z. B. 1985) 

als auch in Studien mit Schüler:innen (z. B. Herold-Blasius, 2019; Rott, 2013) 

kann dieses Verhalten identifiziert werden. Interessanterweise können in 

mathematischen Problembearbeitungsprozessen in der Hochschule kein solches 

Verhalten nachgewiesen werden (Stenzel, 2023a, S. 122). Dies führt zur Frage, 

inwiefern sich dieses Verhalten in Problembearbeitungsprozessen von 

Ingenieurstudierenden identifizieren lässt. 

 

(S3) Inwiefern lassen sich „wild goose chases“ in den 

Problembearbeitungsprozessen identifizieren und inwiefern können Studierende 

dieses Verhalten vermeiden? 

 

Schoenfeld (1985) beschreibt in seinen Untersuchungen, dass vier Kategorien 

Einfluss auf Problemlöseprozesse nehmen. Für die Kategorie Steuerung hebt er 

bspw. vier verschiedene Typen von Steuerung und den Einfluss auf Erfolg bzw. 

Misserfolg hervor (Schoenfeld, 1985, S. 110). Ein Beispiel ist dafür das Verhalten 

„wild goose chase“. Darüber hinaus können auch hinsichtlich linearer und nicht-
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linearer Prozesse Aussagen über Erfolg bzw. Misserfolg getroffen werden 

(Lehmann, 2018, S. 252ff.). Daraus ergibt sich die Forschungsfrage:  

 

(S4) Inwiefern hängen die Schoenfeld Episoden mit dem Erfolg bzw. Misserfolg 

eines Problembearbeitungsprozesses zusammen? 

3.2.2 Fragen zum Wissen 

Das Wissen der Studierenden spielt eine zentrale Rolle im Problemlöseprozess. 

Dabei ist entscheidend, auf welches Wissen sie während des Lösens von 

Aufgaben zurückgreifen können. Zum einen ist dies Wissen, das sie bereits 

mitbringen, zum anderen um solches, das sie im Rahmen der Veranstaltung 

(Vorlesung, Übungsgruppen, Hausaufgaben) erwerben. Im Allgemeinen liegt der 

Kern der Hochschulmathematik in ihrem Selbstverständnis als beweisende 

Disziplin (Heintz, 2000). Mathematische Veranstaltungen für 

Ingenieurstudierende werden dagegen oft als eher verfahrensorientiert und 

praxisnah beschrieben (Alpers, 2014; Alpers, 2016). Daher stellt sich die 

Forschungsfrage, welches spezifische Wissen in der Veranstaltung vermittelt wird 

und Studierenden für die Nutzung zur Verfügung steht. 

 

(W1) Welches Wissen wird von der Veranstaltung angeboten? 

 

Die Wissensmatrix entstammt der Theorie zur Unterrichtsphase „Systematisieren 

und Sichern“ und wurde ursprünglich entwickelt, um Wissen strukturiert zu 

erfassen und zu ordnen (Prediger et al., 2011). Erath (2017) hat die Wissensmatrix 

für ihren Forschungskontext adaptiert, um Aussagen von Schüler:innen im 

Klassenraum systematisch einzuordnen. Eine neue Anwendung der 

Wissensmatrix besteht nun darin, sie zur Beschreibung der Wissensnutzung bei 

Problembearbeitungsprozessen von Studierenden heranzuziehen. Die 

Untersuchung dieser Anwendung könnte zeigen, ob die Wissensmatrix auch in 

einem hochschulischen Kontext nützlich ist, um aktivierte Wissenselemente zu 

rekonstruieren. Daraus ergibt sich die Forschungsfrage: 

 

(W2) Wie lässt sich die Wissensnutzung in Problembearbeitungsprozessen 

mithilfe der Wissensmatrix rekonstruieren? 

 

Im hochschulischen Kontext existiert bislang kaum tiefergehende Forschung, die 

sich explizit mit der reinen Beschreibung der mathematischen Wissensnutzung 

von Studierenden beschäftigt. In diesem Zusammenhang ermöglicht die 

Wissensmatrix eine präzise Darstellung der Wissenselemente, die Studierende im 

Problembearbeitungsprozess nutzen. Dadurch ergeben sich zwei 

Forschungsfragen: 
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(W3) Welche Wissenselemente werden von den Studierenden häufig genutzt?  

(W4) Auf welche Wissenselemente setzen Studierende einen Fokus während der 

Prozesse? 

 

In Kapitel 3 werden verschiedene, typische Verständnisschwierigkeiten von 

Studierenden im Zusammenhang mit der Differentialrechnung aufgezeigt. Diese 

Schwierigkeiten befinden sich in verschiedenen Wissensarten und -facetten. 

Allerdings ist bisher nur wenig über die spezifischen Barrieren bekannt, die bei 

der Bearbeitung von (authentischen) Aufgaben in diesem Bereich auftreten. Im 

Kontext von (authentischen) Aufgabenbearbeitungen hat Stenzel (2023a, S. 160) 

feststellen können, dass sowohl begriffliche als auch prozedurale Schwierigkeiten 

entstehen. Aufgrund der unterschiedlichen Anforderungen hinsichtlich der 

Aufgaben, stellt sich die Frage, ob ähnliche Ergebnisse auch in dieser Studie 

identifiziert werden können. 

 

(W5) Welche Schwierigkeiten können während der 

Problembearbeitungsprozesse identifiziert werden? 

 

Auf Grundlage der vorherigen Ausführungen, die getrennt voneinander das 

Angebot und die Nutzung von Wissen beschrieben haben, sollen nun beide 

Betrachtungen zusammengeführt werden. Diese Zusammenführung ermöglicht 

es herauszufinden, inwiefern das angebotene Wissen in den 

Problembearbeitungsprozessen tatsächlich genutzt wird. Daher ergibt sich 

folgende Forschungsfrage: 

 

(W6) Welches Wissensangebot wird von der Veranstaltung angeboten und 

inwiefern wird dies von den Studierenden in ihren Bearbeitungen genutzt? 

 

Schoenfeld (1985) beschreibt Wissen als eine der vier Kategorien, die einen 

Einfluss auf den Problemlöseprozess und seinen Erfolg nehmen. In diesem 

Zusammenhang kann Stenzel (2023a, S. 160) für Fachstudierende aufzeigen, dass 

insbesondere Wissenslücken auf begrifflicher Ebene sowie prozedurale Mängel 

die Problembearbeitungsprozesse erheblich erschweren. Die Wissensmatrix 

liefert eine detailliertere Darstellung von Wissen und kann daher besser 

beschreiben, inwiefern Wissensarten bzw. -facetten sich als entscheidend für den 

Fortschritt in einem Problembearbeitungsprozess darstellen. Damit stellt sich die 

folgende Forschungsfrage: 

 

(W7) Inwiefern hängt die Wissensnutzung mit dem Erfolg bzw. Misserfolg eines 

Problembearbeitungsprozesses zusammen? 
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3.2.3 Fragen zu Heurismen 

Zunächst wird ermittelt, welche Heurismen in den 

Problembearbeitungsprozessen von Ingenieurstudierenden zu beobachten sind. 

Dabei stellt sich die Frage, welche heuristischen Hilfsmittel, Prinzipen und 

Strategien (Bruder & Collet, 2011) (am häufigsten) auftreten. Diese 

Untersuchung bildet die Grundlage für die Beantwortung der weiteren 

Forschungsfragen. 

 

(H1) Welche Heurismen treten in den Problembearbeitungsprozessen auf? 

 

In verschiedenen empirischen Studien wurde bereits die Nutzung 

unterschiedlicher Heurismen im hochschulischen Kontext nachgewiesen (z.B. 

Hoon et al., 2013; Lehmann, 2018; Stenzel, 2023a). Dabei variieren die 

spezifischen Kontexte jedoch deutlich, insbesondere hinsichtlich der gestellten 

Aufgaben. Die Unterschiede in den Aufgabenstellungen deuten darauf hin, dass 

der Einsatz von Heurismen je nach Situation unterschiedlich ausfallen kann. Rott 

(2013, S. 136ff.) stellt in seiner Studie theoretischen Annahmen zur Nutzung von 

Heurismen auf, die in speziellen Aufgaben als besonders hilfreich gelten. Dies 

legt nahe, dass es Heurismen gibt, die eher situationsspezifisch sind und je nach 

Aufgabe einen größeren Nutzen erbringen. Gleichzeitig weist Stenzel (2023a, S. 

31) darauf hin, dass einige Problemlösende auch ohne die (bewusste) Anwendung 

von Heurismen auskommen. Dies deutet darauf hin, dass die Nutzung von 

Heurismen nicht nur aufgabenabhängig sein könnte, sondern ebenfalls von 

individuellen Faktoren beeinflusst wird. Insgesamt stellt sich damit die folgende 

Forschungsfrage: 

 

(H2) Ist die Nutzung von Heurismen aufgabenabhängig? Ist die Nutzung von 

Heurismen lerngruppenabhängig? 

 

Schoenfeld (1985) beschreibt Heurismen als Kategorie, die einen Einfluss auf 

Erfolg bzw. Misserfolg in Problemlöseprozessen hat. Insbesondere die gezielte 

Förderung von Heurismen erweist laut Singh et al. (2018) einen positiven Einfluss 

auf das mathematische Denken von Ingenieurstudierenden. Die Frage, welche 

spezifischen Heurismen diesen positiven Effekt begünstigen, wird in mehreren 

Studien thematisiert. Übereinstimmende Ergebnisse zeigen sich in den beiden 

Studien von Stenzel (2023a) und Lehmann (2019). Der Einsatz heuristischer 

Hilfsmittel hat generell einen förderlichen Einfluss auf den 

Problembearbeitungsprozess. In beiden Studien werden darüber hinaus einzelne 

spezifische Heurismen aufgeführt, die ebenfalls einen positiven Einfluss 

bewirken. Es ergibt sich somit die folgende Forschungsfrage: 
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(H3) Inwiefern hängt die Nutzung der Heurismen mit dem Erfolg bzw. 

Misserfolg eines Problembearbeitungsprozesses zusammen? 

 3.2.4 Fragen zur gemeinsamen Betrachtung von Steuerung, Wissen und 

Heurismen 

In diesem Kapitel werden Forschungsfragen formuliert, welche die 

Problembearbeitungsprozesse der Studierenden anhand der drei Kategorien 

(Steuerung, Wissen und Heurismen) untersuchen. 

 

Zunächst stellt sich die Frage, inwiefern sich die in der Literatur beschriebenen 

Interaktionen der Kategorien (Schoenfeld, 1985, S. 44) in den Daten dieser Arbeit 

wiederfinden lassen.  

 

(Z1) Welche Interaktionen lassen sich zwischen Steuerung, Heurismen und 

Wissen identifizieren? 

 

Episodenwechsel gelten bei Schoenfeld als kritische Momente, da sie eine 

signifikante Veränderung in der Bearbeitung von Aufgaben darstellen 

(Schoenfeld, 1985, S. 292). Besonders im Hinblick auf die Kategorie Transition 

betont Schoenfeld (1985, S. 300), dass diese eng mit den Prozessen der 

Selbstregulation verknüpft ist. Allerdings ist es durchaus möglich, dass über die 

Selbstregulation hinaus noch weitere Aspekte ausschlaggebend für einen 

Episodenwechsel sind. Es stellt sich daher die Frage, ob – nicht nur im Kontext 

der Transition, sondern auch weiteren Episoden – (vorhandenes) Wissen sowie 

der Einsatz von Heurismen ebenfalls einen Zusammenhang mit Episodenwechsel 

aufweist. 

 

(Z2) Welche Rolle spielen Wissen und Heurismen bei einem Episodenwechsel? 

 

In Kapitel 2.2 wird die Unterscheidung zwischen Routine- und 

Problemlöseaufgaben diskutiert. Während theoretisch im Voraus nicht eindeutig 

geklärt werden kann, ob eine Aufgabe als Problem gilt, könnte dies anhand 

empirischer Daten und der Analyse der relevanten Kategorien erschlossen 

werden. Diese Kategorien könnten Hinweise darauf geben, ob ein Problem 

vorlag. Stenzel (2023a, S. 13) nimmt an, dass die meisten Aufgaben für 

Studierende in der Eingangsphase Probleme darstellen. Im Ingenieurstudium 

hingegen wird Mathematik häufig anwendungsorientierter bzw. prozeduraler 

gelehrt (Alpers, 2014, 2016), wodurch möglicherweise weniger Probleme 

vorliegen, da viele Aufgaben durch Anwendung spezieller Verfahren gelöst 

werden können. Damit stellt sich im Kontext der Ingenieur:innen die folgende 

Forschungsfrage: 
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(Z3) Kann empirisch entschieden werden, ob die Aufgaben für die Studierenden 

Probleme darstellen? 
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4 Spezifizierung von Grundlagen der Differentialrechnung 

Im Rahmen dieser Arbeit wird ein Fokus auf den Inhaltsbereich der 

Differentialrechnung in einer Veränderlichen gelegt (im weiteren Verlauf wird auf 

den Zusatz „in einer Veränderlichen“ zur besseren Lesbarkeit verzichtet). Das 

Ziel dieses Kapitels ist es, einen stoffdidaktischen Überblick zur 

Differentialrechnung zu liefern und anschließend eine Einordnung in die 

Wissensmatrix vorzunehmen. Es soll demnach deutlich werden, welche 

fachlichen Inhalte zur Differentialrechnung zuzuordnen sind (bezogen auf die 

Lehre in einem ingenieurwissenschaftlichen Studium) sowie welche didaktischen 

Perspektiven hinter dem mathematischen Inhalt stehen. Dabei wird nur auf 

derartige Inhaltsbereiche eingegangen, die für die empirischen Fragestellungen 

der Arbeit notwendig sind. Die stoffdidaktische Auseinandersetzung mit einem 

spezifischen Inhaltsbereich steht dabei in einem engen Zusammenhang mit der 

Kategorie Wissen nach Schoenfeld (1985). Bevor das Wissen bzw. die 

Wissensnutzung von Studierenden empirisch untersucht wird, ist eine 

theoretische Betrachtung notwendig, um die Bearbeitungsprozesse umfassend zu 

verstehen. Die Ausführungen in diesem Kapitel beantworten somit die 

Forschungsfragen:  

 

(D1) Wie lassen sich ausgewählte Teilbereiche der Differentialrechnung 

didaktisch aufbereiten, sodass sie für die Analyse zur Kategorie des Wissens 

beitragen? 

 

Das Kapitel 4.1 stellt zunächst die Relevanz der Differentialrechnung für 

Ingenieur:innen in den Vordergrund. Um sich inhaltlich mit der 

Differentialrechnung auseinandersetzen zu können, wird mathematisches 

Vorwissen benötigt, welches in Kapitel 4.2 beschrieben wird. Im Anschluss wird 

der Vier-Ebenen-Ansatz nach Hußmann und Prediger (2016) sowie ausgewählte 

mathematischen Inhalte der Differentialrechnung vorgestellt (Kapitel 4.3). 

Schlussendlich werden die vorherigen theoretischen Ausführungen zur 

Differentialrechnung in einer Wissensmatrix festgehalten (Kapitel 4.4). 

4.1 Relevanz der Differentialrechnung im Kontext des 

Ingenieurstudiums 

Besonders für Ingenieurstudierende nimmt die Differentialrechnung eine 

wichtige Rolle ein, da Konzepte und Anwendungen der Differentialrechnung 

viele Anknüpfungspunkte in der Technik sowie Naturwissenschaft besitzen.  

„Viele physikalische Gesetzmäßigkeiten lassen sich nur über die Differenziation einer physikalischen 

Größe beschreiben. Ist beispielsweise bei einem Bewegungsvorgang das Weg-Zeit-Gesetz s(t) 
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gegeben, dann ist die Geschwindigkeit v(t) die Ableitung des Weg-Zeit-Gesetzes nach der Zeit t. Die 

konkrete Bestimmung der Geschwindigkeit setzt rechentechnisch voraus, dass man die Funktion s(t) 

ableiten kann“ (Westermann, 2015, S. 243). 

Fragestellungen im Zusammenhang mit Geschwindigkeit werden auch häufig als 

Motivation der Differentialrechnung genutzt, wobei weitere inner- und 

außermathematische Anwendungen existieren. Die Differentialrechnung hilft 

beim Lösen von Gleichungen, beim Maximieren und Minimieren sowie bei der 

Berechnung von komplizierten Funktionen, Flächen und Rauminhalten. Darüber 

hinaus findet sie auch bei Phänomenen wie Bewegungen, Kräften, Impulsen, 

Energien, dem Zusammenspiel der Gesteine als auch der Elementarteilchen und 

bildet somit eine wichtige Grundlage zum Verstehen (Burg et al., 2017).  

Im SEFI-Framework (Alpers et al., 2013) ist die Differentialrechnung 

hauptsächlich in den Bereichen Core 0 und Core 1 verankert. Sie bildet damit die 

Grundlage für viele weiterführende mathematischen Inhalte. Aus diesem Grund 

wird die Differentialrechnung in der Regel in Mathematikveranstaltungen für 

Ingenieurstudierende in einem der ersten beiden Semester behandelt. Angesichts 

der zeitlichen Beschränkung werden meist lediglich Grundideen der 

Differentialrechnung behandelt, die den Studierenden im weiteren Verlauf des 

Studiums und im Beruf helfen sollen. 

Es gibt daher eine Reihe von Anknüpfungspunkten und Anwendungen der 

Differentialrechnung, denen im späteren Berufsleben der Ingenieur:innen eine 

wichtige Bedeutung zukommen können. Dementsprechend erscheint ein 

ausgeprägtes und gefestigtes Wissen über die Differentialrechnung vor allem für 

Studierende der Ingenieurwissenschaften essenziell zu sein. Lax und Terrel 

(2014, S. 130) heben besonders die Änderungsrate als Teil der Ableitung als 

zentralen Aspekt hervor. Zudem geben sie einige Beispiele, in denen die 

Änderungsrate in verschiedenen Kontexten bedeutsam ist: 

 

• Geschwindigkeit: Änderungsrate der Distanz als Funktion der Zeit 

• Geschwindigkeit im Sinne einer vektoriellen Größe: Änderungsrate der 

Position als Funktion der Zeit 

• Beschleunigung: Änderungsrate der Geschwindigkeit als Funktion der 

Zeit 

• Dichte: Änderungsrate von Masse als Funktion des Volumens 

• Steigung: Änderungsrate der Höhe als Funktion der horizontalen 

Distanz 

• Strom: Änderungsrate der Menge elektrischer Ladung als Funktion der 

Zeit 

• Grenzkosten: Änderungsrate der Produktionskosten als Funktion der 

produzierten Stückzahl 
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Lax und Terrel (2014, S. 129) legen außerdem dar, dass Änderungen von 

(Funktions-)Größen bedeutsamer sein können als die (Funktions-)Größe selbst. 

Im mathematikdidaktischen Kontext lässt sich dies so einordnen, dass die 

dynamische Sichtweise der Kovariationsvorstellung von Funktionen wichtiger als 

die statische Sichtweise der Zuordnungsvorstellung von Funktionen aufgefasst 

wird19. Für eine Funktion bedeutet dies wiederum, dass die Änderung über einem 

Intervall oder im Anwendungskontext über einem Zeitintervall wichtiger ist als 

der Funktionswert. Am Börsenmarkt ist es zwar nicht unwichtig zu wissen, zu 

welchem Preis eine Aktie am nächsten Tag verkauft wird, allerdings wäre es 

relevanter zu wissen, ob sie am Tag davor zum gleichen, niedrigeren oder höheren 

Preis verkauft wurde. Es geht dabei also um die Änderung einer Größe. Wie 

bereits beschrieben, beziehen sich im Bereich der Ingenieurwissenschaften viele 

dieser Anwendungen (Mechanik, Optik, Wärme, Sound, etc.) auf die Änderung 

von Größen. Im weiteren Verlauf des Studiums sowie im späteren Berufsleben 

wird mit Methoden der Differentialrechnung gearbeitet, wodurch sich die 

Wichtigkeit herausstellt, gerade die Grundlagen der Differentialrechnung im 

ersten Semester zu durchdringen. Eine Anwendung für die Methoden der 

Differentialrechnung findet sich bei Differentialgleichungen wieder. Eine 

Differentialgleichung setzt eine unbekannte Funktion mit einer oder mehrerer 

ihrer Ableitungen in Beziehung. Härterich und Rooch (2014) stellen bspw. vier 

typische Praxisprobleme („Balancieren mit Differentialgleichungen: Der 

Segway“ – „Cool bleiben: Design eines Rippenkühlers“ – „Mit Trigonometrie 

schaukelfrei ans Ziel: Kransteuerung“ – „Immer mit der Ruhe: 

Schwingungstilgung“) aus verschiedenen Bereichen der Ingenieurwissenschaften 

umfänglich vor, die mithilfe von Mathematikkenntnissen zu lösen sind. Dabei 

spielen Differentialgleichungen in jedem dieser vier Projekte eine wichtige Rolle, 

um die aufgeworfenen Probleme lösen zu können. Ein grundsätzliches 

Verständnis der Differentialrechnung und deren Methoden ist daher eine 

notwendige Voraussetzung, um Differentialgleichungen lösen zu können. 

4.2 Spezifizierung des Vorwissens für die Differentialrechnung 

Zu dem mathematischen Vorwissen werden in dieser Arbeit der Funktionsbegriff 

(Kapitel 4.2.1), Grenzwertbegriff (Kapitel 4.2.2) sowie Stetigkeitsbegriff (Kapitel 

4.2.3) gezählt. Diese drei Begriffe werden als Grundlagen für die Ableitung 

verstanden (Rasmussen & Zandieh, 2000) und sowohl aus fachlicher als auch 

 
19 Auf die Kovariations- und Zuordnungsvorstellung wird in Kapitel 4.2.1 erneut eingegangen. 

Kovariationsvorstellung: „Mit Funktionen wird erfasst, wie sich Änderungen einer Größe auf 

eine zweite Größe auswirken bzw. wie die zweite Größe durch die erste beeinflusst wird“ 

(Greefrath et al., 2016a, S. 48).  

Zuordnungsvorstellung: Eine Funktion ordnet jedem Wert einer bestimmten Größe genau einen 

Wert einer anderen Größe zu (Greefrath et al., 2016a, S. 47). 
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didaktischer Perspektive eingeordnet. Dabei erfolgt die Darstellung der 

Grundlagen der Differentialrechnung hinsichtlich des Detailreichtums in einer 

gekürzten Form.  

4.2.1 der Funktionsbegriff 

Die Differentialrechnung setzt ein Verständnis von Funktionen voraus (Thomas 

et al., 2015). Funktionen werden in der Differentialrechnung auf ihre Eigenschaft 

der Differenzierbarkeit geprüft, die später als Voraussetzung für verschiedene 

Anwendungen benutzt wird. Bereits im Mathematikunterricht in der Schule gilt 

der Aufbau des Funktionenbegriffs als ein wichtiges Ziel (Ministerium für Schule 

und Bildung des Landes NRW, 2023). Der Schulunterricht ist damit prägend für 

das Verständnis des Funktionsbegriffs, da in der höheren Mathematik nicht mehr 

im Einzelnen auf Funktionen eingegangen, dies sondern als Vorwissen angesehen 

wird. Ein sicherer und flexibler Umgang mit Funktionen und deren Vorstellungen 

ist allerdings notwendig, um sich mit dem Ableitungsbegriff auseinanderzusetzen 

sowie im weiteren Verlauf mit Zusammenhängen und Verfahren der 

Differentialrechnung umgehen zu können. 

Erfahrungen mit Funktionen machen Lernende bereits sehr früh im alltäglichen 

Leben. Funktionales Denken in Form von Abhängigkeiten passiert oft unbewusst, 

aber auf ganz natürliche Art und Weise. Ein anschauliches Beispiel hierfür ist: Je 

schneller man um den Sportplatz läuft, desto weniger Zeit wurde benötigt. 

Charakteristisch für solche Situationen ist, dass eine Variable frei veränderbar ist, 

allerdings die andere Variable abhängig von der ersten Variable ist (Greefrath et 

al., 2016a, S. 38). Historisch haben sich viele Mathematiker bemüht, diese 

Charakterisierung von Denken in Funktionen mathematisch zu präzisieren, 

wodurch verschiedene Definitionen entstanden sind. Mittlerweile hat sich 

allerdings der Dedekind´sche Funktionsbegriff durchgesetzt:  

„Unter einer Abbildung φ eines Systems S wird ein Gesetz verstanden, nach welchem zu jedem 
bestimmten Element s von S ein bestimmtes Ding gehört, welches das Bild von s heißt und mit φ(s) 

bezeichnet wird“ (Büchter & Henn, 2010, S. 18). 

Das Wort „Abbildung“ ist dabei synonym mit dem Wort „Funktion“ zu verstehen 

und „Gesetz“ meint einen konkreten Zusammenhang. Mittlerweile finden sich in 

mathematischen Lehrbüchern sprachliche Modernisierungen dieser Definition 

wieder, allerdings bleibt die Grundidee bestehen. Zu der modernen, allgemein 

anerkannten Definition von Funktionen gehören mitunter auch unstetige 

Funktionen, abschnittsweise definierte Funktionen und Funktionen, die für einen 

einzelnen Punkt anders als für die restlichen Punkte definiert sind sowie 

Funktionen, die durch Graphen definiert werden. In der Schule werden allerdings 

hauptsächlich Funktionen behandelt, die durch einen Term beschrieben werden 

(Vinner & Dreyfus, 1989).  
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Vinner und Dreyfus (1989) zeigen, dass etwa ein Drittel von Studierenden in einer 

Stichprobe aus dem ersten Semester eine Funktion nicht als solche erkennen 

können, wenn sie aus mehr als einem Term bestehen. Je komplexer die 

Anforderung an eine Funktion ist, desto eher argumentieren Studierende, dass 

keine Funktion vorliegt. Dies zeigt sich dadurch, dass die meisten (86 %) der 

Studienteilnehmenden noch zustimmen, dass eine Funktion vorliegt, wenn der 

Graph aus zwei Halbgeraden und einer Unstetigkeitsstelle besteht. Allerdings 

stimmen nur noch wenige (17 %) Studienteilnehmende zu, dass eine Funktion 

vorliegt, falls diese Funktion für ganze Zahlen nicht-ganzzahlig und für andere 

Zahlen ganzzahlig ist. Die formale Definition der Funktion scheint Studierende 

auch in anderen Studien vor Probleme zu stellen (z. B. Pettersson, 2012; Widada 

et al., 2020). Zum einen fällt es Studierenden schwer, eine formale Definition der 

Funktion aufzustellen (Beitlich et al., 2015), da sprachliche Mittel und passendes 

Vokabular fehlen. Zum anderen ergeben sich Schwierigkeiten beim Finden 

mathematisch korrekter Beispiele einer Funktion (Pettersson, 2012; Pettersson et 

al. 2013). 

Exkurs: Variable 

Bevor Funktionen weiter beschrieben werden, wird ein Exkurs zu Variablen 

eingeschoben, da Variablen im Funktionenbegriff eine wesentliche Grundlage 

bilden. In der mathematischen Literatur können verschiedene Definitionen zum 

Variablenbegriff gefunden werden. Allerdings beleuchten diese Definition den 

Begriff der Variable häufig nur einseitig, da nicht alle Aspekte thematisiert 

werden. Wie einige andere wichtige Begriffe in der Mathematik, lässt sich der 

Variablenbegriff nicht erschöpfend in einer Definition erfassen (Malle, 1993, S. 

44). 

Malle (1993, S. 46) unterscheidet bei Variablen daher in drei Aspekte, die in 

gegebenen Situationen flexibel verwendet werden können. 

 

• Gegenstandsaspekt: Die Variable wird als eine feste, aber noch nicht 

genauer bekannte Zahl betrachtet. 

• Einsetzungsaspekt: Die Variable ist eine Leerstelle für eine bestimmte 

Zahl und wird als Platzhalter angesehen. 

• Kalkülaspekt: Die Variable wird als Symbol aufgefasst, mit dem man 

Rechenoperationen durchführen kann. 

Alle drei Aspekte spielen in der Analysis und später bei dem Begriff der Ableitung 

eine wichtige Rolle. Der Kalkülaspekt kommt z. B. besonders bei den 

Ableitungsregeln zum Tragen, der Gegenstandsaspekt bei der Bezeichnung der 

Ableitung einer bekannten Funktion 𝑓 mit 𝑓‘ und der Einsetzungsaspekt bei dem 

Prüfen der Differenzierbarkeit in einem Punkt einer Funktion (Büchter & Henn, 

2010, S. 33f.). 
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Büchter und Henn (2010, S. 32f.) übernehmen die Aufteilung von Malle (1993), 

benennen die Aspekte allerdings in Grundvorstellungen 

(Gegenstandsvorstellung, Einsetzungsvorstellung und Kalkülvorstellung) um und 

teilen anschließend eigens den Begriff der Variablen in drei Aspekte auf. Sie 

begründen dies damit, dass eine weitere Unterscheidung von Variablenaspekten 

sinnvoll für Lehrtätigkeiten ist. An dieser Stelle soll kurz der Unterschied 

zwischen Aspekten und Grundvorstellungen skizziert werden: Aspekte lassen 

sich durch fachwissenschaftliche Analysen identifizieren: „Ein Aspekt eines 

mathematischen Begriffs ist ein Teilbereich des Begriffs, mit dem dieser fachlich 

charakterisiert werden kann“ (Greefrath et al., 2016a, S. 15). Grundvorstellungen 

sind fachdidaktischer Art: Eine Grundvorstellung zu einem mathematischen 

Begriff ist eine inhaltliche Deutung des Begriffs, die diesem Sinn ergibt“ 

(Greefrath et al., 2016a, S. 15). 

 

• Einzelzahlaspekt: Die Variable steht für eine feste Zahl. 

• Simultanaspekt: Die Variable steht gleichzeitig für alle Zahlen in einem 

Zahlbereich. 

• Veränderlichenaspekt: Die Variable wird als Veränderliche aufgefasst, 

die Zahlen aus einem Bereich repräsentiert und „durchläuft“.  

Während der Einzelzahlaspekt und Simultanaspekt vermehrt in der Algebra zum 

Ausdruck kommen, besitzt der Veränderlichenaspekt besonders in der Analysis 

eine wichtige Bedeutung, z. B. beim Arbeiten mit Grenzwerten (Büchter & Henn, 

2010, S. 34), welcher auch Teil des Differenzierbarkeitsbegriffs ist.  

Grundvorstellungen und Darstellungsformen von Funktionen 

Der formalen Definition der Funktion kann durch verschiedene Darstellungen 

Bedeutung und Interpretation verliehen werden. Dabei können erneut 

Grundvorstellungen helfen, einen Zugang zu dem Begriff zu erlangen.  

Die folgenden drei Grundvorstellungen Zuordnung, Kovariation und Objekt 

basieren auf drei Aspekten, die Vollrath (1989) für das funktionale Denken 

herausgearbeitet hat und durch vom Hofe adaptiert (1996) wurden.  

 

• Die Zuordnungsvorstellung ist so definiert, dass eine Funktion jedem 

Wert einer Größe genau einen Wert einer zweiten Größe zuordnet. 

• Die Kovariationsvorstellung ist so definiert, dass sie beschreibt, wie sich 

Änderungen einer Größe auf eine zweite Größe auswirkt bzw. in welcher 

Form die zweite Größe von der ersten abhängig ist. 

• Die Objektvorstellung ist so definiert, dass eine Funktion global und als 

einziges Objekt betrachtet wird sowie der Zusammenhang als Ganzes 

und die Eigenschaften als Ganzes fokussiert wird. 
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Im deutschen Bildungssystem wird im Mathematikunterricht der Sekundarstufe I 

häufig zunächst die Zuordnung und erst im Anschluss die Kovariation als auch 

die Funktion als Ganzes thematisiert. Es wird allerdings gefordert, dass die 

Kovariation mehr im Fokus und stärker gefördert werden sollte, was sich 

international bereits als die gängige Praxis etabliert hat (Zindel, 2018, S. 36). Die 

Fokussierung der Kovariationsvorstellung kann Lernenden ermöglichen, das 

Funktionenverständnis von einer Variablen auf zwei zu erweitern und zu 

verallgemeinern (Weber & Thompson, 2014). Außerdem schafft die 

Kovariationsvorstellung bessere Voraussetzungen für das Erlernen späterer 

Konzepte der Mathematik, bspw. für das Arbeiten mit dem Hauptsatz der 

Differential- und Integralrechnung (Carlson et al., 2003). Zusätzlich erlaubt die 

Kovariationsvorstellung den Lernenden, die Funktion als Prozess aufzufassen, 

der wiederum umgekehrt werden kann (Trujillo et al., 2023). 

 

 

Abbildung 8: Darstellungsformen funktionaler Zusammenhänge und Wege des Transfers (Greefrath 

et al., 2016a, S. 57) 

Neben den Grundvorstellungen gehören auch verschiedene Darstellungsformen 

von Funktionen zum Begriffsverständnis dazu. Die Transformation und der 

flexible Wechsel zwischen den Darstellungen ist eine wichtige Fähigkeit, um 

effektiv mit Funktionen in unterschiedlichen Kontexten zu arbeiten. Eine gute 

Auswahl der Darstellungsformen ist allerdings notwendig, da verschiedene 
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Darstellungen sowohl Vor- als auch Nachteile mit sich bringen (Büchter & Henn, 

2010; Oehrtman et al., 2008). Abbildung 8 (Greefrath et al., 2016a, S. 57) zeigt 

die verschiedenen Darstellungsformen funktionaler Zusammenhänge und Wege 

des Transfers. 

Die Darstellung mit Termen wird nahezu überall verwendet, wo eine Funktion zu 

finden ist. Dabei lässt sich in Funktionsterm (𝑓(𝑥) = 𝑥2 − 2), 

Funktionsgleichung (𝑦 =  𝑥2 –  2) und Zuordnungsvorschrift (𝑥 ↦  𝑥2 –  2) 

unterscheiden, die jeweils die Zuordnung durch einen algebraischen Term 

bestimmt. Sowohl die Zuordnungsvorstellung, worauf die algebraischen Terme 

der Funktion basieren, als auch die Objektvorstellung können durch diese 

Darstellung in den Fokus gestellt werden. Der Kovariationvorstellung bekommt 

erst dann eine wichtigere Bedeutung, wenn Terme von Ableitungsfunktionen 

behandelt werden (Greefrath et al., 2016a). Die Termdarstellung von Funktionen 

gibt bereits Hinweise auf die Notation, wobei 𝑥 üblicherweise als unabhängige 

Variable ein Element des Definitionsbereichs und 𝑓(𝑥) als abhängige Variable ein 

Element des Wertebereichs ist (Trujillo et al., 2023).  

Das kartesische Koordinatensystem wird am häufigsten für die grafische 

Darstellung von Funktionen benutzt. Grundsätzlich wird die unabhängige 

Variable auf der 𝑥-Achse und die abhängige Variable auf der 𝑦-Achse abgetragen. 

Mit dieser Darstellung einer Funktion als Graph können punktuelle, lokale und 

globale Eigenschaften einer Funktion betrachtet werden, die jeweils erneut auf 

die Fokussierung einer Grundvorstellung zurückzuführen sind (Greefrath et al., 

2016a, S. 53). Zunächst kann punktuell aus dem Graphen entnommen werden, 

welcher 𝑦-Wert zu welchem 𝑥-Wert zugeordnet wird (Zuordnungsvorstellung). 

Außerdem kann die Änderung der Funktionswerte in Abhängigkeit der Änderung 

der unabhängigen Variable untersucht werden (Kovariationsvorstellung). Zuletzt 

kann der Graph als Ganzes betrachtet und Eigenschaften wie Differenzierbarkeit, 

Stetigkeit etc. untersucht werden (Objektvorstellung). Obwohl die grafische 

Darstellung einer Funktion unterstützend wirken kann, ist die Übertragung auf 

ein reales Problem nicht immer unproblematisch. Es hat sich in den Studien von 

O`Shea et al. (2016) und Yusof et al. (2014) herausgestellt, dass Studierende 

Schwierigkeiten damit haben, den Funktionsgraphen eines realen Phänomens 

korrekt mathematisch zu interpretieren. Besonders an der Stelle des Modellierens 

und der Nutzung von Funktionen in realen Problemen sieht Sierpinska (1992) 

allerdings eine Chance, das Konzept der Funktion besser zu verstehen.   

Vandebrouck (2011) stellt im Hinblick auf den Funktionsbegriff im Kontext des 

Übergangs von Schule zur Hochschule heraus, dass Lernende Schwierigkeiten 

haben, eine lokale Perspektive einzunehmen. Dies kann damit zusammenhängen, 

dass in der Schule weniger die Kovariationsvorstellung im Fokus steht und der 

Begriff der Funktion eher durch die Zuordnungsvorstellung motiviert wird 

(Zindel, 2018, S. 36). Eine lokale Perspektive einzunehmen wäre für den 

universitären Kontext hilfreich, da einige Konzepte lokal definiert werden. Laut 
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der Studie von Vandebrouck (2011) müsste im Übergang von der Schule zur 

Hochschule der Funktionsbegriff bei den Lernenden so umstrukturiert werden, 

dass er sowohl als Prozess als auch als Objekt verstanden wird. Dabei geht es 

darum, dass Lernende nicht nur einzelne Schritte bei der Anwendung von 

Funktionen nachvollziehen, sondern auch die Funktion als ein 

zusammenhängendes Ganzes begreifen können. Ein stärkerer Fokus auf die 

Kovariationsvorstellung im Unterricht könnte dazu beitragen, dass Lernende ein 

tieferes Verständnis für den Funktionsbegriff entwickeln und so besser auf die 

Anforderungen der Hochschulmathematik vorbereitet werden. 

4.2.2 Der Grenzwertbegriff 

Das Konzept des Grenzwerts ist ein zentraler Begriff, der üblicherweise als 

Grundlage für die Einführung in die Differentialrechnung dient und daher auf 

hochschulischem Niveau oft unmittelbar vor diesem Thema behandelt wird. Das 

Grenzwertkonzept wird bspw. für die Einführung des Begriffs der 

Differenzierbarkeit sowohl auf formaler als auch auf semantischer Ebene 

benötigt. 

Der Begriff des Grenzwerts wird in hochschulischen Mathematikveranstaltungen 

häufig zunächst in Bezug auf Folgen eingeführt. Hinsichtlich Grenzwerte von 

Folgen werden in der Literatur verschiedene Vorstellungen beschrieben, die zu 

einem Aufbau des Begriffsverständnisses führen können. Dazu zählt zunächst die 

Annäherungsvorstellung, in der sich Folgenglieder einem bestimmten Wert 

annähern. Eine weitere Vorstellung ist die Umgebungsvorstellung, in der ab 

einem bestimmten Folgenglied eine noch so kleine Umgebung existiert, in der 

alle weiteren Folgenglieder liegen. Zuletzt zählt auch die Objektvorstellung dazu, 

in der Grenzwerte als mathematische Objekte, wie z. B. ein fester Wert, gesehen 

werden (Greefrath et al., 2016a, S. 105f). Um mit dem Grenzwert im 

Zusammenhang des Ableitungsbegriffs arbeiten zu können, muss der Grenzwert 

auch für Funktionen über ℝ definiert werden. Anschaulich gesehen verhält sich 

dies ähnlich zum Grenzwert von Folgen, allerdings wird es beim Grenzwert für 

Funktionen etwas komplexer, da nun zwei Folgen zu betrachten sind (Cottril et 

al., 1996). Dabei wird der Ausdruck 𝑙𝑖𝑚
𝑥→𝑎

 𝑓(𝑥) = 𝑏 als Schreibweise für den 

Grenzwert einer Funktion benutzt, der existiert, falls die Folge der 𝑥-Werte und 

die Folge der 𝑦-Werte (𝑦𝑛 ∶= 𝑓(𝑥𝑛)) konvergieren (Büchter & Henn, 2010). Die 

mittlerweile gängige Definition ist die Epsilon-N-Definition des Grenzwerts. Um 

im Zusammenhang mit Funktionen über ℝ Grenzwerte untersuchen zu können 
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und dort die Existenz von Grenzwerten nachweisen zu können, kann auf das 

Epsilon-Delta-Kriterium als Definition zurückgegriffen werden. 

 

Im Mathematikunterricht bleiben die Betrachtungen von Grenzwerten meist auf 

anschaulich-propädeutischer Ebene (Skutella & Weygandt, 2021). Die formale 

Einführung des Begriffs findet in der Schule nicht statt (für NRW20: Ministerium 

für Schule und Bildung des Landes NRW, 2023). Der Übergang zu einem 

abstrakt-formalen Begriffsaufbau von Grenzwerten im Studium stellt daher eine 

Herausforderung für Studierende dar. Bezüglich der Epsilon-Delta-Definition für 

Grenzwerte zeigen Studien, dass sich Studierende auf bestimmte Stellen der 

Definition fokussieren und infolge der Vernachlässigung der logischen 

Verknüpfungen die Definition nicht ganzheitlich verstehen können 

(Bezuidenhout, 2001; Swinyard & Larsen, 2012). Dies führt dazu, dass nicht 

korrekte Kombinationen einzelner Teile einer vermeintlichen Definition als 

legitim angesehen, während andere korrekte Definitionen als falsch 

wahrgenommen werden (Bressoud et al., 2016). In den entscheidenden Phasen 

der Begriffsbildung schlägt Bender (1991, S. 239) anstelle der üblich formalen 

Epsilon-N-Definition eine Definition vor, die sich weniger auf die Quantoren, 

Ungleichungen und Beträge fokussiert. Diese kann den folgenden Wortlaut 

haben: „… falls das Wesentliche der Folge in jeder, noch so kleinen, Umgebung 

von a liegt.“ Diese Definition würde Lernende weniger abschrecken, obwohl es 

im Wesentlich dieselbe Definition sei. Möglicherweise werden dadurch auch die 

Probleme beseitigt, dass Studierende nur bestimmte Stellen der Definition 

fokussieren und sich mehr auf das ganzheitliche Verständnis der Definition 

konzentrieren können. 

In einer Studie von Skutella und Weygandt (2021) wurde das fachliche Wissen zu 

Grenzwerten von Lehramt Bachelor- sowie Masterstudierenden untersucht. Dabei 

wurde deutlich, dass mehr als die Hälfte der Studierenden die Definition der 

 
20 In Niedersachsen und Berlin-Brandenburg bleibt der Grenzwertbegriff ebenfalls auf 

anschaulich-propädeutischer Ebene. In Bayern hingegen wird in Jahrgangsstufe 11 von 

Schülerinnen und Schülern erwartet, dass die Definition des Differentialquotienten erläutert 

wird. 

Mathematische Bemerkung 1 (Definition): Grenzwert 

 

Für eine Funktion 𝑓: 𝐷 ↦ ℝ heißt 𝐴 ∈ ℝ Grenzwert von 𝑓 an der Stelle 

 𝑥0 ∈ ℝ, wenn gilt: 

  ∀𝜀 > 0 ∃𝛿 > 0 ∀𝑥 ∈ 𝐷: 0 < |𝑥 − 𝑥0| < 𝛿 

 ⇒ |𝐴 − 𝑓(𝑥)| < 𝜀 

 

Greefrath et al. (2016a, S. 78) 
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Konvergenz einer Zahlenfolge nicht adäquat grafisch darstellen konnte. 

Außerdem wurden den Studierenden Aufgaben gestellt, die vier typische 

Fehlvorstellungen zur Konvergenz von Folgen adressieren. Bezüglich dieser 

Aufgaben konnten lediglich ein Drittel der Studierenden drei oder mehr als solche 

identifizieren. Es scheint demnach eine Schwierigkeit für Studierende 

darzustellen, zwischen den (korrekten) Darstellungen und der Definition 

wechseln zu können. 

Des Weiteren fassen viele Lernende den Grenzwert als dynamischen Prozess auf, 

bei dem sich sowohl die unabhängige als auch die abhängige Variable einem Wert 

annähert (Cottril et al., 1996). Dies ist allerdings gleichzeitig eine große Hürde 

beim Verständnis des Grenzwertbegriffs und laut Bender (1991) 

mitverantwortlich für Fehlvorstellungen und -verständnisse vom Begriff des 

Grenzwerts. Tall und Vinner (1981) haben untersucht, wie Lernende die 

Zahlenfolge 0.9, 0.99, 0.999, … als 1 akzeptiert haben, jedoch 0, 9 nicht mit 1 

gleichsetzen. Dies verdeutlicht die Schwierigkeit, den beschriebenen 

„Grenzwertprozess“ als Zahl aufzufassen.  

Zudem stellt die sprachliche Verwendung des Begriffs „annähern“ eine 

Herausforderung dar, da sie das Verständnis des Konzepts des Grenzwerts 

erschweren kann. Durch das Wort „annähern“ kann leicht die Vorstellung 

ausgebildet werden, dass Monotonie impliziert sowie ein Grenzwert niemals 

erreicht wird (Tall & Vinner, 1981). Das Wort „annähern“ lässt darauf schließen, 

dass Lernende das Konzept in einer frühen kognitiven Phase behandeln, in der sie 

sich noch auf einzelne Schritte konzentrieren, anstatt das Konzept als Ganzes zu 

begreifen. Ein tieferes Verständnis würde vielmehr erfordern, dass sich Lernende 

von der Betrachtung einzelner Prozesse lösen und das Konzept als 

zusammenhängendes Ganzes erfassen. Dies würde ihnen ermöglichen, den 

Grenzwert in einer komplexeren und flexibleren Weise zu verstehen und zu 

speichern (Dubinsky & McDonald, 2002). 

Bereits durch die  0, 9̅ = 1 Problematik angedeutet, entstammt eine weitere 

Schwierigkeit für das Begriffsverständnis des Grenzwerts aus dem Umgang mit 

der Unendlichkeit (Feudel, 2018, S. 71ff.). Dubinsky et al. (2005) merken an, dass 

das Schließen von endlichen Prozessen auf unendliche Prozesse zu Problemen 

führen kann. Im Beispiel der Folgen hat jede endliche Folge ein letztes 

Folgenglied. Wird dies genauso auf die unendlichen Folgen übertragen, so könnte 

leicht angenommen werden, dass auch unendliche Folgen ein letztes Folgenglied 

besitzt. Dies kann laut Mamona-Downs (2001) in Bezug zu Grenzwerten zu der 

Annahme führen, dass immer ein letztes Folgenglied existiert, welches immer den 

Grenzwert annehmen würde. 

Eine detaillierte Ausarbeitung zu Fehlvorstellungen bezüglich Grenzwerte kann 

in der Dissertation von Ostsieker (2020) nachgelesen werden.  
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4.2.3 Der Stetigkeitsbegriff 

Eine vereinfachte Vorstellung von Stetigkeit bzw. einer stetigen Funktion, die 

häufig als erster Zugang zum Begriff dient, ist die Vorstellung, dass der Graph 

einer Funktion in einem Zug gezeichnet werden kann, ohne den Stift abzusetzen 

(Hilger, 2019, S. 143). Dies geht auch damit einher, dass die Funktion keine 

Sprungstellen besitzt. Eine weitere Anschauung zu stetigen Funktionen ist, dass 

eine gewisse Vorhersagbarkeit getroffen werden kann, denn kleine Änderungen 

der unabhängigen Variable (meistens als 𝑥-Wert) ziehen nur kleine Änderungen 

der abhängigen Variable (meistens als 𝑦-Wert) nach sich. Obwohl diese 

Vorstellungen aus fachwissenschaftlicher Sicht nur begrenzt die Bedeutung von 

Stetigkeit widerspiegeln, helfen sie z. B. Eigenschaften einer Funktion zu 

verstehen (Greefrath et al., 2016a, S. 141). Die Vorstellungen für den Begriff 

können dann helfen, eine mathematische Formalisierung zu finden21, wobei es 

dafür äquivalente Definition gibt. Zum einem kann dafür der Grenzwertbegriff 

genutzt werden, in dem gesagt wird, dass sowohl der linksseitige als auch 

rechtsseitige Grenzwert in einem Punkt einer Funktion übereinstimmen. Falls 

dies für alle Punkte der Definitionsmenge gilt, so heißt diese Funktion stetig. 

Andererseits kann Stetigkeit an einer Stelle auch mithilfe des Epsilon-Delta-

Kriteriums über die Existenz eines einzelnen Grenzwerts ausgedrückt werden. 

Die spricht besonders die Vorstellung der Vorhersagbarkeit an, da deutlich wird, 

dass sich der 𝑦-Wert einer Funktion wenig ändert, wenn zuvor der 𝑥-Wert wenig 

verändert wurde.  

Sowohl der Begriff Stetigkeit als auch Differenzierbarkeit können zur 

Charakterisierung von Funktionen genutzt werden. Dabei ist die 

Differenzierbarkeit der „stärkere“ Begriff, da Differenzierbarkeit die Stetigkeit 

einer Funktion impliziert. Wenn also eine Funktion an einer Stelle differenzierbar 

ist, bedeutet dies automatisch, dass sie dort auch stetig ist. Eine Möglichkeit, um 

sich diesen Zusammenhang zu erklären, liefert die geometrische Interpretation 

der Ableitung. Die Ableitung einer Funktion an einer bestimmten Stelle gibt die 

Steigung der Tangente an dem Graphen der Funktion an. Diese Tangente spiegelt 

 
21 Vorstellungen können zwar helfen, einen Begriff zu verstehen, allerdings ist es oftmals nicht 

möglich, daraus eine formale mathematische Definition abzuleiten. Dennoch können 

Vorstellungen eine Hilfe für die Formalisierung darstellen. 

Mathematische Bemerkung 2 (Definition): Stetigkeit 

 

Die Funktion 𝑓: 𝐷 ↦ ℝ heißt genau dann stetig in 𝑥0 ∈ 𝐷, wenn gilt: 

  ∀𝜀 > 0 ∃𝛿 > 0 : |𝑥 − 𝑥0| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜀 

 

In Anlehnung an Büchter und Henn (2010, S. 183) 
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den Graphen der Funktion in einer kleinen Umgebung gut wider. Wenn diese 

Ableitung dort existiert, dann gibt es dort auch keinen sogenannten Sprung im 

Graphen. Daher muss die Funktion dort auch stetig sein. 

Andersrum gibt es Funktionen, die zwar stetig, aber nicht differenzierbar sind. 

Ein bekanntes Beispiel liefert dabei die Betragsfunktion 𝑓(𝑥) = |𝑥|, dessen 

Graph an der Stelle 𝑥 = 0 einen Knick aufweist. An dieser Stelle existiert der 

Grenzwert des Differenzenquotienten nicht und infolgedessen auch keine 

eindeutige Tangente. 

In einer Untersuchung von Skutella und Weygandt (2021) wurde das fachliche 

mathematische Wissen zur Stetigkeit von Bachelor- und Masterstudierenden im 

Lehramt analysiert. Dabei hat sich herausgestellt, dass etwa die Hälfte von 28 

Studierenden (sowohl Bachelor- als auch Masterstudierende) das Epsilon-Delta-

Kriterium der Stetigkeit nicht adäquat visuell darstellen konnten. Nur eine 

Studentin konnte eine vollständig und (uneingeschränkt) adäquate Visualisierung 

liefern. Des Weiteren stellte die praktische Anwendung der Definition von 

Stetigkeit bei linearen oder abschnittsweisen definierten Funktionen für die 

Studierenden eine erhebliche Hürde dar. Es hat sich gezeigt, dass lediglich fünf 

von 30 Studierenden in der Lage waren, die Stetigkeit einer linearen Funktion an 

einem beliebigen Punkt ihres Definitionsbereichs gemäß der Definition 

nachzuweisen. Nur einem Drittel der Studierenden gelang es, die Unstetigkeit 

einer abschnittsweisen konstanten Funktion nachzuweisen. 

4.3 Spezifizierung konkreter Inhalte der Differentialrechnung 

In dem vorangegangenen Kapitel wurde das benötigte Vorwissen (Funktionen, 

Grenzwerte, Stetigkeit) für die Differentialrechnung in Kürze dargestellt. Der 

inhaltliche Bereich der Differentialrechnung wird in dieser Arbeit als 

mathematischer Gegenstand detaillierter dargestellt. Innerhalb der 

Differentialrechnung befinden sich Konzepte, Zusammenhänge und Verfahren. 

Aus fachlicher Perspektive finden sich bezüglich der Strukturierung dieser Inhalte 

zum Themengebiet der Differentialrechnung häufig gleiche bzw. ähnliche 

Strukturierungen in Lehrbüchern zur mathematischen Ausbildung von 

zukünftigen Ingenieur:innen wieder (z. B. Meyberg & Vachenhauer, 2015; Burg 

et al., 2017; Rießinger, 2013; Papula, 2018; Westermann, 2015). Um den 

Gegenstand der Differentialrechnung um die didaktische Perspektive zu 

ergänzen, wird im Folgenden zunächst der Vier-Ebenen-Ansatz nach Hußmann 

und Prediger (2016) herangezogen (Kapitel 4.3.1). Anschließend werden die 

Inhaltsbereiche der Differentialrechnung basierend auf den Vorüberlegungen des 

Vier-Ebenen-Ansatzes dargestellt, die für die Lösung der Aufgaben (Kapitel 5.3) 

relevant sind (Kapitel 4.3.2 bis Kapitel 4.3.5). Abschließend wird dargelegt, 

welche inhaltlichen Vorkenntnisse zur Differentialrechnung aus der Schule 

erwartet werden können (Kapitel 4.3.6). 
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4.3.1 Vier-Ebenen-Ansatz nach Hußmann und Prediger (2016) 

Die Idee hinter dem Vier-Ebenen-Modell ist es, zunächst genau festlegen zu 

können, wodurch ein Lerngegenstand charakterisiert wird und welche relevanten 

Lernziele identifiziert werden können (Spezifizierung). Anschließend wird der 

Lerngegenstand in ein sinnhaftes Lehr-Lern-Arrangement gebracht, die eine 

kohärente und eine intendierte Lernreihenfolge (Strukturierung) vorgibt. In dieser 

Arbeit liegt der Fokus jedoch ausschließlich auf der Spezifizierung; die 

Strukturierung wird nicht betrachtet. Die Strukturierung eines Lerngegenstands 

würde vor allem dann sinnvoll sein, wenn eine Lernumgebung entwickelt werden 

soll. In dieser Arbeit wird jedoch kein Lehr-Lern-Arrangement vorgenommen, 

sondern lediglich eine Untersuchung von Bearbeitungsprozessen zu Aufgaben 

eines bestimmten mathematischen Inhalts. 

Die Spezifizierung (und die Strukturierung) eines Inhalts erfolgt dabei auf vier 

verschiedenen Ebenen. Diese vier Ebenen sind allerdings nicht als hierarchisches 

Modell zu verstehen, sondern vielmehr als Ebenen, die parallel zueinander 

bestehen. 

 

• Die formale Ebene: Adressiert mathematische Objekte und Phänomene 

in ihrer formalen Repräsentation und logischen Struktur 

• Die semantische Ebene: Adressiert Sinn und Bedeutung (z. B. 

Grundvorstellungen und mentale Modelle), die an einem 

mathematischen Objekt gelernt werden sollen sowie die 

epistemologischen Aspekte zwischen ihnen 

• Die konkrete Ebene: Adressiert die Realisierung von Lehr-Lern-

Arrangements bezüglich Kernideen, Problemen und Situationen, in 

denen mathematisches Wissen relevant ist, um es generisch zu 

konstruieren 

• Die empirische Ebene: Adressiert kognitive und möglicherweise soziale 

Aspekte studentischen Denkens, typischer Ressourcen, Lernwege und 

Hürden 

In dieser Arbeit wird auf die konkrete Ebene verzichtet, da sie vor allem Aspekte 

hervorhebt, die Hinweise für ein sinnvolle Realisierung eines Lehr-Lern-

Arrangement liefern. Dennoch ist es nicht auszuschließen, dass einige 

Ausführungen indirekt der konkreten Ebene zugeordnet werden könnten, ohne 

dass diese explizit thematisiert wird. 

Für die Spezifizierung eines Lerngegenstands auf mathematischem 

Hochschulniveau ist besonders die formale als auch die semantische Ebene 

relevant. Die Formalität der Mathematik genießt in der Hochschule eine 

besondere Stellung, während die semantische Ebene helfen kann, die formale 
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Mathematik besser zu verstehen. Um die formale und semantische Ebene zur 

Differentialrechnung in dieser Arbeit zu beschreiben, wird erneut die 

Wissensmatrix herangezogen. Sowohl die formale als auch semantische Ebene 

können beide in den Wissensfacetten der Wissensmatrix identifiziert werden, 

wobei die Wissensfacetten einen mathematischen Inhalt noch etwas detaillierter 

beschreiben. Die formale Ebene findet sich besonders in der Wissensfacette der 

Expliziten Formulierung und die semantische Ebene in der Wissensfacette der 

Bedeutung & Vernetzung wieder (dicke Verbindung in Abbildung 9). Dennoch ist 

es nicht auszuschließen, dass sowohl die formale als auch die semantische Ebene 

in weiteren Wissensfacetten auftauchen können (dünne Verbindungen in 

Abbildung 9).  

 

 

Abbildung 9: Verknüpfung der formalen und semantischen Ebene des Vier-Ebenen-Ansatzes mit der 

Wissensmatrix (eigene Darstellung) 

Zusätzlich wird die empirische Ebene betrachtet, da in dieser Arbeit Studierende 

bei der Bearbeitung von mathematischen Aufgaben untersucht werden. Zu den 

ausgewählten Inhalten der Differentialrechnung werden demnach auch vorherige 

Forschungsergebnisse zu Hürden, Schwierigkeiten, Ressourcen, typischen 

studentisches Denkens beschrieben. So lässt sich ein Vergleich zwischen 

bisherigen Forschungsergebnissen und den empirischen Daten dieser Arbeit 

ziehen. 

Zusammenfassend bilden die formale und semantische Ebene das zentrale Gerüst 

für die Spezifizierung der Differentialrechnung in dieser Arbeit. Sie lassen sich 

anhand der Wissensfacetten der Wissensmatrix beschreiben, wobei die 

empirische Ebene eine ergänzende Perspektive bietet, um studentisches Denken 
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und Lernprozesse zu beleuchten. Für den Ableitungsbegriff (Kapitel 4.3.2) 

werden jedoch alle drei Ebenen gleichzeitig betrachtet, da es umfangreiche 

Forschung zu diesem Begriff gibt, die spezifische Aspekte bzw. Facetten 

untersucht. Für die Kapitel 4.3.3 bis 4.3.5 werden zunächst nur formale und 

semantische Ebene (gleichzeitig) sowie im Anschluss die empirische Ebene 

betrachtet, da die Forschung zu diesen Inhaltsbereichen etwas allgemeiner ist. 

4.3.2 Ableitung 

Der Begriff der Ableitung wurde in der mathematikdidaktischen Forschung 

bereits von einigen Forschenden stoffdidaktisch untersucht (z. B. Asiala et al., 

2001; Büchter & Henn, 2010; Greefrath et al., 2016b; Kendal & Stacey, 2003; 

Lankeit & Biehler, 2024; Zandieh, 2000).  

Zandieh´s (2000, Abbildung 10) Framework zum Verständnis der Ableitung ist in 

der internationalen Literatur weit verbreitet und wird in verschiedenen 

Forschungskontexten benutzt (z. B. Feudel & Biehler, 2021). Dabei wird der 

Begriff der Ableitung in drei Dimensionen aufgefasst:  

 

• Darstellungsformen: Die Ableitung kann verschiedene 

Repräsentationen einnehmen (grafisch, verbal, physikalisch, 

symbolisch). Diese Dimension basiert auf der Idee, dass Lernende 

unterschiedliche Darstellungen eines Begriffs entwickeln (Hart, 

1991) und der Wechsel zwischen diesen ein vertieftes Verständnis 

fördert (Prinzip der Darstellungswechsel nach Bruner, 1966). Unter 

grafischen Repräsentationen versteht Zandieh (2000), dass die 

Ableitung als Steigung der Tangente an einem Punkt des Graphen 

aufgefasst werden kann oder als Steigung der Geraden, die den 

Graphen in einer kleinen Umgebung um einen bestimmten Punkt 

möglichst gut approximiert.  

• Ebene ratio, limit, function: Die Ableitung wird als Grenzwert einer 

Änderung beschrieben. Die Schritte umfassen die Bildung des 

Differenzenquotienten (ratio), den Übergang zum Grenzwert (limit) 

und von der Ableitung an einer Stelle zur Ableitungsfunktion 

(function).  

• Prozess-Objekt-Dualität: Grundbegriffe der Ableitung können als 

dynamische Prozesse oder statische Objekte interpretiert werden. So 

kann der Grenzwert bspw. als Annäherungsprozess oder über die 

Epsilon-Delta-Definition gedacht werden.  
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Abbildung 10: Framework zur Ableitung nach Zandieh (übernommen von Feudel, 2018, S. 29) 

Eine Facette, die im Modell von Zandieh (2000) nur angedeutet bzw. nicht 

explizit ausgearbeitet wird, ist die formale Definition der Ableitung. Gerade im 

hochschulischen Kontext ist diese jedoch von zentraler Bedeutung, da sie für viele 

Mathematiker:innen die grundlegende und bevorzugte Interpretation des Begriffs 

Ableitung darstellt (Zandieh, 2000). Das Modell von Greefrath et al. (2016b) 

berücksichtigt die formale Definition der Ableitung explizit und integriert sie in 

das Modell der Grundvorstellungen. Dadurch bietet es eine zusätzliche 

Perspektive, die insbesondere im Kontext hochschulischer Mathematikdidaktik 

relevant ist. Gleichzeitig zeigt sich, dass sich die beiden Modelle in vielen 

Aspekten ähneln, bspw. in der Betonung verschiedener Darstellungsformen. 

Dennoch bietet das Modell von Greefrath et al. (2016b) durch die Einbindung der 

formalen Definition eine Erweiterung, die es für die folgenden Ausführungen 

besonders geeignet macht. 

Greefrath et al. (2016b) gehen zur fachlichen Klärung des Ableitungsbegriffs auf 

zwei Aspekte des Begriffs ein: Die Ableitung als Grenzwert des 

Differenzenquotienten und als lokale lineare Approximation. Diese Aspekte sind 

entweder spezifische Realisierungen einer Definition oder können in eine 

Definition konvertiert werden (Greefrath et al., 2016b). Zunächst wird mit einer 

auf einem offenen Intervall definierten reellwertigen Funktion 𝑓 und einer 

Geraden in Punkt 𝑃(𝑥0, 𝑓(𝑥0)), welche die Funktion (in einer bestimmten 

Umgebung) gut widerspiegelt, gestartet – die Tangente zur Funktion 𝑓 im Punkt 

𝑃(𝑥0, 𝑓(𝑥0)). Um diese Tangente beschreiben zu können, wird der 

Differenzenquotient 
𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
 betrachtet, wobei 𝑥0 und 𝑥 aus dem Intervall 𝐼 

ungleich sind. Anschließend werden zwei Punkte 𝑃(𝑥0, 𝑓(𝑥0)) und 𝑄(𝑥0 +

ℎ, 𝑓(𝑥0) + ℎ) des Graphen betrachtet (ℎ wird hier definiert als ℎ = 𝑥 − 𝑥0). Für 

kleiner werdendes ℎ streben die Sekanten (Betrachtung verschiedener 

Differenzenquotienten) auf die Tangente des Punktes 𝑃 zu. Dieser Grenzwert der 

Sekanten wird als Ableitung bezeichnet, welches bereits zu einer formalen 

Definition (mathematische Bemerkung 3) des Ableitungsbegriffs geführt werden 

kann. 
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Die Definition der Ableitung als Grenzwert des Differenzenquotienten wird 

oftmals als Einführung des Ableitungsbegriffs genutzt, da es gleichzeitig eine 

gute geometrische Veranschaulichung darstellt. Es gibt allerdings auch weitere 

(gleichwertige) Definitionen, wie z. B. die Ableitung als lokale Linearisierung (z. 

B. zu finden in Greefrath et al., 2016a, S. 144), die insbesondere darauf anspielt, 

dass sich differenzierbare Funktionen lokal besonders gut durch eine Gerade 

approximieren lassen. Ein Beispiel für eine differenzierbare Funktion findet sich 

in der mathematischen Bemerkung 4. 

 

 
 

Anknüpfend an die Aspekte und den verbundenen Definitionen der 

Differenzierbarkeit liefern Greefrath et al. (2023) vier Grundvorstellungen, die 

Mathematische Bemerkung 3 (Definition): Ableitung als Grenzwert des 

Differenzenquotienten 

 

Es sei 𝑓: 𝐼 ↦ ℝ eine Funktion, deren Definitionsbereich 𝐼 ein ℝ-Intervall 

oder eine Vereinigung aus ℝ-Intervallen ist. Man sagt, 𝑓 ist differenzierbar 

im Punkt 𝑥0 ∈ 𝐼, wenn der Grenzwert 

 

  𝑙𝑖𝑚
𝑥→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
  

 

existiert. Dieser Grenzwert wird mit 𝑓′(𝑥0) bezeichnet und Ableitung oder 

Differentialquotient von 𝑓 in 𝑥0 genannt. 

 

Anstelle von 𝑓′(𝑥0) werden auch die Bezeichnungen 
ⅆ𝑓

ⅆ𝑥
(𝑥0), 

ⅆ

ⅆ𝑥
𝑓(𝑥0) 

verwendet. 

 

Mit 𝐷𝑥0
=

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
 wird der Differenzenquotient bezeichnet. 

 

Burg et al. (2017, S. 204) 

 

Mathematische Bemerkung 4 (Beispiel): Ableitung 

 

Es sei 𝑓(𝑥) = 𝑐 für alle 𝑥 ∈ ℝ und 𝑐 ∈ ℝ konstant. Dann gilt  

 

  𝑙𝑖𝑚
𝑥→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
= 𝑙𝑖𝑚

𝑥→𝑥0

𝑐−𝑐

𝑥−𝑥0
= 0 (𝑥 ≠ 𝑥0). 

 

Damit ist 𝑓′(𝑥0) = 0 für alle 𝑥 ∈ ℝ. 
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beim Verständnisaufbau und (Er-)Lernen des Konzepts der Ableitung in einer 

Veränderlichen helfen sollen (Abbildung 11): Lokale Änderungsrate, 

Tangentensteigung, Lokale Linearität und die Ableitung als Verstärkungsfaktor 

kleiner Veränderungen. Diese vier Grundvorstellungen werden im Folgenden auf 

Basis der Ausarbeitung von Greefrath et al. (2016a) vorgestellt. 

 

 

Abbildung 11: Aspekte und Grundvorstellungen in der Differentialrechnung (Greefrath et al., 2016a, 

S. 147) 

Lokale Änderungsrate 

Die Grundvorstellung der lokalen Änderungsrate beruht auf den Begriffen der 

absoluten Änderung 𝑓(𝑥) − 𝑓(𝑥0) und der relativen bzw. mittleren 

Änderungsrate 
𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
, die bereits in der Schule in verschiedenen Kontexten 

eingesetzt werden und aufeinander aufbauen. Die mittlere Änderungsrate bezieht 

sich auf ein bestimmtes Intervall und kann durch den Differenzenquotienten 

berechnet werden. Im Übergang zur lokalen Änderungsrate wird dieses Intervall 

immer weiter verkleinert, sodass der Funktion an einer Stelle ein lokales 

Änderungsverhalten zugeschrieben werden kann. Die lokale Änderungsrate 

fordert demnach einen weiteren Schritt, und zwar ist sie im Allgemeinen nicht ein 

direkt berechenbarer Quotient, sondern durch Grenzwertbildung des 

Differenzenquotienten definiert. Dies wird durch den Grenzwert des 
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Differenzenquotienten ausgedrückt. Besonders in physikalischen Kontexten ist 

diese Grundvorstellung hilfreich. Die mittlere Änderungsrate kann bspw. als 

mittlere Geschwindigkeit in Abhängigkeit einer Wegstrecke und die lokale 

Änderungsrate folglich als Momentangeschwindigkeit konzeptualisiert werden.  

Um die Grundvorstellung der lokalen Änderungsrate umfassend zu verstehen, 

sollte zunächst die Vorstellung über die Existenz einer 

Momentangeschwindigkeit, z. B. bei Bewegungskontexten bestehen, die oftmals 

als leichter zugänglich angenommen wird. Die Momentangeschwindigkeit gibt in 

Kontexten von Bewegungsvorgängen an, wie schnell sich ein Objekt zu einem 

bestimmten Zeitpunkt bewegt. Es gehört weiterhin die Vorstellung dazu, dass es 

eine Steigung in einem Punkt einer Funktion gibt. Sie gibt an, wie stark sich die 

Funktion an einer Stelle ändert. Zuletzt gehört ebenfalls die Vorstellung dazu, dass 

die Änderung der abhängigen Variablen durch 𝛥𝑦 =  𝑓‘(𝑥)  ·  𝛥𝑥 gegeben ist. 

Aus dieser Formel resultiert außerdem die Näherung der Ableitung 𝑓‘(𝑥) durch 

den Quotienten von 𝛥𝑦 und 𝛥𝑥. Unter Maschinenbaustudierenden scheint die 

Grundvorstellung der lokalen Änderungsrate präferiert zu werden (Bingolbali et 

al., 2007). Dies kann daran liegen, dass sie eng mit physikalischen Kontexten, 

wie z. B. die Bewegungsvorgänge, verbunden ist. 

Schon länger ist bekannt, dass Lernende Schwierigkeiten damit haben, die 

Beziehung zwischen mittlerer Änderungsrate eines Intervalls und der lokalen 

Änderungsrate in einem Punkt sowohl bei linearen als auch bei nicht-linearen 

Funktionen zu erkennen (Orton, 1983). Im Allgemeinen scheint das Verstehen der 

Rate bzw. Änderungsrate schwierig zu sein, da es verschiedene 

Betrachtungsweisen erlaubt (z. B. Feudel & Biehler, 2021; Zandieh, 2000). 

McDermott et al. (1987) stellen z. B. fest, dass in physikalischen Kontexten 

Schwierigkeiten dabei entstehen, Verbindungen zwischen verschiedenen 

Änderungsraten und der Steigung eines Graphen herzustellen. Allerdings sind 

physikalische Kontexte gerade dann hilfreich, um die Grundvorstellung der 

lokalen Änderungsrate besser zu erlernen (Chau et al., 2021). Die Schwierigkeit, 

den Quotienten als Maß für die relative Änderung zweier Größen aufzufassen, 

kann das Verständnis für die Grundvorstellung der lokalen Änderungsrate 

beeinträchtigen (Byerley et al. 2012). Beim Aufbau dieser Grundvorstellung ist 

es daher sinnvoll, die Bedeutung der abhängigen und unabhängigen Variable 

hervorzuheben (vom Hofe & Blum, 2016), um die relative Änderung des 

Quotienten erkennen zu können. 

Tangentensteigung 

Die Grundvorstellung der Tangentensteigung stellt die Ableitung in einem Punkt 

als Steigung einer Tangenten in den Fokus. Bei dieser Vorstellung muss eine 

konzeptuelle Hürde zur Erweiterung des Tangentenbegriffs überwunden werden. 

In der Geometrie werden Tangenten zunächst so definiert, dass sie eine Figur nur 

an einer Stelle berühren bzw. genau einen Punkt gemeinsam haben. Dies kann 
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nicht problemlos in der Analysis auf Funktionen übertragen werden, da eine 

Tangente zwar lokal den Graphen an einer Stelle berührt, aber es durchaus 

möglich ist, dass dieselbe Tangente den Graphen global ein weiteres Mal berührt 

oder schneidet. Um eine solche Begriffserweiterung zu ermöglichen, muss sich 

die Tangente lokal in einer kleinen Umgebung vorgestellt werden. Die Tangente 

spiegelt den Graphen einer Funktion lokal gut wider (Biza, 2011), wobei sie 

global auch noch weitere Punkte mit dem Funktionsgraphen gemeinsam haben 

können. Die Tangentenvorstellung kann zusätzlich in eine statische und eine 

dynamische Sichtweise aufgeteilt werden. Bei der statischen Sichtweise wird eine 

beliebig kleine Umgebung dieses Punktes betrachtet. Je kleiner die Umgebung 

um einen Punkt gewählt wird, desto mehr nähert sich optisch die Tangente dem 

Graphen an, sodass bei beliebig nahem Zoom kaum noch Unterschiede zwischen 

Tangente und Graph sichtbar sind. Elschenbroich und Seebach (2014) 

beschreiben dies als „Funktionenlupe“. Mit der dynamischen Sichtweise wird 

sich entlang des Graphs bewegt, wodurch sich jeweils die resultierende Tangente 

verändert. Somit wird ebenfalls die jeweilige Bewegungsrichtung durch die 

Richtung der Tangente angegeben. 

Zur umfassenden Vorstellung der Tangentensteigung gehört demnach die 

Betrachtung der Tangente als Gerade, die den Graphen der Funktion lokal 

widerspiegelt sowie dass die Tangente in einem Punkt mit dem Graphen die 

gleiche Steigung besitzt. Darüber hinaus ist zu berücksichtigen, dass die Tangente 

die lokale Richtung einer Kurve angibt. Diese lokale Sichtweise bezüglich der 

Grundvorstellung ist eine zentrale Idee der Analysis, welche für Lernende neu ist 

(Greefrath et al., 2016b). 

Die größte Hürde beim Verständnis und Aufbau der Grundvorstellung der 

Tangentensteigung geht mit der Erweiterung des Tangentenbegriffs einher 

(Greefrath et al., 2023). Das Konzept der Tangente muss aus der 

Elementargeometrie auf die Analysis übertragen und so erweitert werden, dass 

sich von der Sichtweise „ein einzelner Kontaktpunkt“ gelöst wird (Tall, 2013). 

Stattdessen ist die Tangente so zu verstehen, dass sie sich an den Graphen 

anschmiegt und nicht lediglich in genau einen Punkt mit dem Graphen gleich ist, 

sondern sogar in mehreren Punkten identisch sein kann (Biza, 2011).   

Lokale Linearität 

Die Grundvorstellung der lokalen Linearität kann ähnlich wie bei der 

Tangentensteigung mit dem „Zoomen“ beschrieben werden. Kirsch (1979) nimmt 

sich dabei das „Funktionsmikroskop“ zur Hilfe. Die Idee dabei ist, dass je näher 

an den Graphen einer differenzierbaren Funktion herangezoomt wird, desto mehr 

sieht der Graph wie eine gerade Linie aus. Dies kann mit spezifischen Softwares 

umgesetzt werden und wirkt daher für diese Grundvorstellung unterstützend. Der 

Graph einer differenzierbaren Funktion wird demnach an einer Stelle des Graphen 

möglichst gut durch eine lineare Funktion lokal approximiert (Teague, 1996). Die 
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Differenzierbarkeit als Approximierbarkeit durch eine lineare Funktion zu 

verstehen, stellt Merkl (2017, S. 118) als wichtigste Bedeutung der Ableitung 

heraus. So gesehen wird genau die Gerade durch den einen Punkt des Graphen 

gesucht, die den Graphen insofern am besten approximiert, als hier der relative 

Fehler gegen 0 konvergiert22 – und genau dies ist die Steigung 𝑓′(𝑥0). Dies knüpft 

damit an den Aspekt der lokalen linearen Approximation von Greefrath et al. 

(2016b) an. Da die Funktion lokal linear approximierbar ist, folgt zum einen, dass 

die Ableitung 𝑓‘ in einer Umgebung von 𝑥0 nahezu konstant ist und zum anderen 

mit welchem Faktor sich kleine Änderungen der unabhängigen Variable auf die 

unabhängige Variable auswirken (Greefrath et al., 2016a, S. 151).  

Die Grundvorstellung der lokalen Linearität hilft vor allem bei Anwendungen 

numerischer Verfahren wie der Taylor-Abschätzung, Fehlerrechnung und 

Newton-Verfahren, welche im Ingenieurstudium eine wichtige Rolle spielen. 

Außerdem ist die Grundvorstellung verallgemeinerbar, sodass die gleichen 

Vorstellungen auch für höhere Dimensionen gelten. Studierende können von 

dieser Grundvorstellung auch im zweiten Semester profitieren, indem der Begriff 

der Ableitung auf höhere Dimensionen erweitert wird. 

Demnach sind die zwei Elemente, die zu einer ausgeprägten Grundvorstellung 

der Ableitung über die lokale Linearität dazugehören, zum einen das „Sehen“ 

einer geraden Linie, wenn stark an den Graphen einer differenzierbaren Funktion 

herangezoomt wird. Zum anderen, dass für kleine Änderungen der unabhängigen 

Variable die Funktion linear erscheint.  

Verstärkungsfaktor 

Die Grundvorstellung der Ableitung als Verstärkungsfaktor kleiner Änderungen 

ist eng mit dem Aspekt der lokalen Linearisierung verbunden. Im Fokus dieser 

Grundvorstellung steht die Änderung der unabhängigen Variable und wie sich 

diese auf die abhängige Variable auswirkt. Wenn die Funktionswerte der 

Ableitung nah an der Null sind, besitzt die Funktion eine geringe Änderung, und 

wenn die Funktionswerte der Ableitung groß sind, dann ist die Änderung der 

Funktion ebenfalls signifikant (Greefrath et al., 2023). Werden z. B. 

Extrempunkte einer Funktion betrachtet, dann lässt sich feststellen, dass in der 

Umgebung eines Extrempunkts kleine Veränderungen wenig Auswirkungen auf 

die unabhängige Variable ausüben. Greefrath et al. (2016a, S. 152) beschreiben 

dies als „Änderungsdetektor“. Wird allerdings von der Ableitung ausgegangen, 

die bspw. große Werte an einer Stelle annimmt, dann kann daraus abgeleitet 

 
22 Die Gerade 𝑔(𝑥) = 𝑡(𝑥0) + (𝑥 − 𝑥0) ⋅ 𝑚 hat im Punkt 𝑥0 die Differenz zur Funktion f 

𝑟(ℎ) = 𝑓(𝑥0 + ℎ) − 𝑔(𝑥0 + ℎ) = 𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) − ℎ ⋅ 𝑚. Für alle 𝑚-Werte geht dies 

gegen Null, wenn 𝑥 → 𝑥0. Für einen spezifischen 𝑚-Wert geht auch der relative Fehler 

gegen Null: 𝑙𝑖𝑚
ℎ→∞

𝑟(ℎ)

ℎ
= 0 (Greefrath et al., 2016b). 
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werden, dass sich kleine Änderungen der unabhängigen Variable stark auf die 

abhängige Variable auswirkt.  

Die Grundvorstellung der Ableitung als Verstärkungsfaktor kleiner Änderungen 

ist sowohl für den Differentialquotienten als auch den Differenzenquotienten 

nutzbar (Malle, 2003). Damit kann mit dieser Vorstellung eine Möglichkeit 

dargestellt werden, wie Studierende Schwierigkeiten bezüglich des Grenzwerts in 

der Ableitung und des Übergangs von Differenzen- zu Differentialquotient 

überwinden können. Außerdem kann sie in Anwendungen, insbesondere 

bezüglich der Ingenieurwissenschaften im Bereich der Physik, unterstützend 

wirken. Ein Beispiel wäre eine Schwingungsgleichung, mit der Zeit und Ort eines 

bestimmten Objekts beschrieben wird und deren Ableitung, die Geschwindigkeit 

in Abhängigkeit der Zeit darstellt. Ist die Periodendauer der Zeit-Ort Bestimmung 

einer Schwingung sehr lang, dann resultiert daraus nur eine kleine Änderung in 

der Geschwindigkeit der Schwingung. 

Zu einer umfassenden Vorstellung der Grundvorstellung der Ableitung als 

Verstärkungsfaktor gehören demnach die Auffassung, wie sich kleine 

Änderungen der unabhängigen Variablen auf die abhängige Variable auswirken, 

sowie hohe Werte der Ableitung starke Änderungen der Funktionswerte bedeuten. 

Außerdem existiert für kleine Änderungen ein multiplikativer Zusammenhang 

zwischen Änderungen der unabhängigen und abhängigen Variablen (∆𝑦 ≈  ∆𝑥 ·
 𝑚). 

Mamolo und Zazkis (2012) konnten feststellen, dass Studierende Schwierigkeiten 

mit Aufgaben aufweisen, welche die Grundvorstellung „Verstärkungsfaktor“ 

benötigen. Darüber hinaus wurde festgestellt, dass die Grundvorstellung 

„Verstärkungsfaktor“ bei Studierenden am wenigsten ausgeprägt ist (Greefrath et 

al., 2023). Dies könnte daran liegen, dass diese Grundvorstellung nur in 

spezifischen Situationen als nützlich angesehen wird.  

Weitere Empirie zum Ableitungsbegriff 

Schwierigkeiten beim Verständnis des Konzepts der Ableitung lassen sich auf 

verschiedenen Ebenen feststellen (Bressoud et al., 2016; Thompson & Harel, 

2021). Dies trifft nicht nur auf die Schule, sondern auch auf Studierende in der 

Universität zu (Fuentealba et al., 2017). Häufig lässt sich beobachten, dass 

Lernende die verschiedenen Repräsentationen der Ableitung nicht kennen oder 

Schwierigkeiten haben, sie untereinander zu verbinden (Hähkiöniemi, 2006; vom 

Hofe, 1998). Außerdem scheint eine weitere Schwierigkeit der Übergang der 

mittleren zur lokalen Änderungsrate zu sein (z. B. vom Hofe, 1998). Darüber 

hinaus ist die Änderungsrate in Kontextanwendungen ebenfalls eine Hürde für 

Studierende. Dies äußert sich dadurch, dass Studierende die Verbindung zwischen 

der Funktion und ihrer Änderungsrate in einem kinematischen Kontext nicht 

herstellen konnten (Beichner, 1994). Des Weiteren gibt es einige Studien, welche 

aufzeigen, dass Studierende in der grafischen Darstellung zwischen einem Zeit-
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Distanz-Graph und Zeit-Geschwindigkeit-Graph Ähnlichkeiten vermuten 

(Carlsson et al., 2010; Nemirovsky & Rubin, 1992). 

4.3.3 Die Ableitungsregeln 

Mit der Definition des Begriffs der Ableitung können Kalküle entwickelt werden, 

die sich in Problemstellungen der Differentialrechnung als hilfreiche Werkzeuge 

herausstellen. Mit algebraischen Umformungen an dem Differentialquotienten 

lassen sich Ableitungsregeln herleiten, die auf differenzierbare Funktionen 

angewendet werden können.  

Zunächst muss allerdings der Übergang von differenzierbar in einem Punkt einer 

Funktion zu differenzierbar in jedem Punkt einer Funktion erfolgen. Die 

Definition der Differenzierbarkeit gibt letztendlich eine Aussage über 

Differenzierbarkeit in einem Punkt einer Funktion. Dabei werden die 

Überlegungen an einer fest gewählten Stelle durchgeführt. Diese fest gewählte 

Stelle wird im nächsten Schritt nicht mehr als fest, sondern als veränderlich 

angesehen. 

 

Die Änderung liegt dabei in der Deutung der Variable 𝑥 im Differentialquotienten. 

Die Variable 𝑥 ist demnach nicht mit dem Einzelzahlaspekt, wie in der Definition 

der Differenzierbarkeit, sondern mit dem Veränderlichenaspekt zu betrachten. 

Deutlich wird dies daran, dass eine feste, aber beliebige Stelle oftmals mit dem 

Term 𝑥0 und im gesamten Funktionsterm frei veränderlich mit 𝑥 bezeichnet wird. 

Ableitung verknüpfter Funktionen 

An dieser Stelle muss erwähnt werden, dass im Folgenden nicht alle 

Ableitungsregeln in ihrer Tiefe aufbereitet werden. Dies liegt daran, dass nur 

wenige Ableitungsregeln für die erhobenen empirischen Daten dieser Arbeit 

bedeutend sind. Aus dem Grund werden die Summenregel, Kettenregel sowie die 

Ableitung von Potenzfunktionen dargestellt. 

Für das Ableiten komplizierterer Funktion gibt es einige Regeln, die den Umgang 

mit Ableitungen bzw. Ableitungsfunktionen auf ihrem Definitionsbereich 

erleichtern.  

Mathematische Bemerkung 5 (Definition): Ableitungsfunktion 

 

Sei 𝑓 eine reelle Funktion. Die Funktion 𝑓′, die jedem 𝑥-Wert, bei dem 𝑓 

differenzierbar ist, den Wert 𝑓′(𝑥0) zuordnet, heißt Ableitungsfunktion von 

𝑓.  

   

Greefrath et al. (2016a, S. 166) 
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Mathematische Bemerkung 6 (Satz): Ableitung verknüpfter Funktionen 

 

Die Funktionen 𝑓  und 𝑔 seien differenzierbare Funktionen. Dann gilt für die 

Ableitungen der verknüpften Funktionen bzw. für die Kehrwertfunktion:  

1. (𝑓(𝑥) ± 𝑔(𝑥))
′

= 𝑓′(𝑥) ± 𝑔′(𝑥) (Summenregel und 

Differenzregel), 

2. (𝑓(𝑥) · 𝑔(𝑥))
′

= 𝑓′(𝑥) · 𝑔(𝑥) + 𝑓(𝑥) · 𝑔′(𝑥) (Produktregel), 

3. (
1

𝑓(𝑥)
)

′

=
−𝑓′(𝑥)

𝑓2(𝑥)
 (Kehrwertregel), 

4. (
𝑓(𝑥)

𝑔(𝑥)
)

′

=
𝑓′(𝑥)⋅𝑔(𝑥)−𝑓(𝑥)⋅𝑔′(𝑥)

𝑔2(𝑥′)
 (Quotientenregel). 

 

Büchter und Henn (2010, S. 209) 

 

Mathematische Bemerkung 7 (Beweis): Summenregel 

 

Wir bilden jeweils den Differenzenquotienten an der Stelle 𝑥 und formen ihn 

so um, dass wir den Grenzwert bilden können und die Ableitung erhalten. 

 
(𝑓 + 𝑔)(𝑥 + 𝛥𝑥) − (𝑓 + 𝑔)(𝑥)

𝛥𝑥
 

=
𝑓(𝑥 + 𝛥𝑥) + 𝑔(𝑥 + 𝛥𝑥) − 𝑓(𝑥) − 𝑔(𝑥)

𝛥𝑥
 

=
𝑓(𝑥 + 𝛥𝑥) − 𝑓(𝑥)

𝛥𝑥
+

𝑔(𝑥 + 𝛥𝑥) − 𝑔(𝑥)

𝛥𝑥
 

 

Der Grenzwert 𝛥𝑥 → 0 führt zu 

 

𝑓′(𝑥) + 𝑔′(𝑥) 

 

 Analog behandelt man die Differenzregel. 

 

Büchter und Henn (2010, S. 209) 
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Abbildung 12: Steigungsdreieck zur Summenregel (Greefrath et al., 2016a, S.169) 

Die Abbildung 12 zeigt auf, dass sich die Summenregel mithilfe der 

Grundvorstellung der Tangentensteigung nachvollziehen lassen kann. Der Graph 

der Summenfunktion (in der Abbildung mit 𝑢 + 𝑣 dargestellt) ergibt sich aus den 

Graphen der einzelnen Funktionen 𝑢 und 𝑣. Dabei werden „punktweise“ an jeder 

Stelle 𝑥 die 𝑦-Werte von 𝑢 und 𝑣 aufaddiert. Gleiches ergibt sich für das 

Steigungsdreieck des Differenzenquotienten für die Summenfunktion 𝑢 + 𝑣 mit 

der Breite ℎ, welches sich aus den Steigungsdreiecken der einzelnen Funktionen 

𝑢 und 𝑣 mit der Breite ℎ zusammensetzt. 

 

Die weiteren Regeln aus der mathematischen Bemerkung 6 werden in Büchter 

und Henn (2010, ab Seite 209) behandelt. 

Mathematische Bemerkung 8 (Beispiel): Summenregel 

 

Es soll die Ableitung der Funktion 𝑓: ℝ → ℝ mit 𝑓(𝑥) = 2𝑥2 + 3𝑥 + 1 

werden. Dafür wird die Summenregel benutzt und wir erhalten: 

 

𝑓′(𝑥) = 4𝑥2 + 3 
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Kettenregel 

Mittels der bisherigen Ableitungsregeln lassen sich einfache Funktionen 

differenzieren. Allerdings reichen diese nicht mehr aus, wenn nach der Ableitung 

einer ineinander geschachtelten (bzw. verkettete) Funktion gefragt ist. Wird bspw. 

die Geschwindigkeit einer harmonisch schwingenden Masse gefordert, muss die 

zeitliche Ableitung 𝑦(𝑡) der nachfolgenden Funktion 𝑦 gebildet werden (Papula, 

2018). 

 

 𝑦 = 𝑦(𝑡) = 𝐴 ⋅ 𝑠𝑖𝑛(𝜔𝑡 + 𝜑),    𝑡 ≥ 0 

 

Die Funktion 𝑦 setzt sich dabei aus zwei elementaren Funktionen zusammen. 

Zum einen aus der Sinusfunktion 𝑢 = 𝑠𝑖𝑛 𝑣 und zum anderen der linearen 

Funktion  𝑣 = 𝜔𝑡 + 𝜑. Der Sinus ist in diesem Beispiel zum einen abhängig von 

der linearen Funktion 𝑢 und zum anderen von der Zeit 𝑡. In solchen Fällen von 

ineinander geschachtelten Funktionen kann die Kettenregel23 angewendet 

werden. 

 
23 Ein intuitives Beispiel kann helfen, diese Form der Kettenregel zu verstehen. In einem 

Rennen bewegt sich der Gepard doppelt so schnell wie ein Löwe, welcher sich wiederum 

drei Mal so schnell wie eine Katze bewegt. Wie viel schneller bewegt sich also der Gepard 

als die Katze?  
𝑑𝐺𝑒𝑝𝑎𝑟𝑑

𝑑𝐾𝑎𝑡𝑧𝑒
=

𝑑𝐺𝑒𝑝𝑎𝑟𝑑

𝑑𝐿ö𝑤𝑒
⋅

𝑑𝐿ö𝑤𝑒

𝑑𝐾𝑎𝑡𝑧𝑒
= 2 ⋅ 3 = 6 
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Mathematische Bemerkung 9 (Satz): Kettenregel 

 

Ist 𝑔: 𝐼0 → 𝐼1 in 𝑥 ∈ 𝐼0 differenzierbar, und ist 𝑓: 𝐼1 → 𝐼2 in 𝑧 = 𝑔(𝑥) 

differenzierbar, so ist die Verkettung 𝑓 ∘ 𝑔: 𝐼0 → 𝐼2 in 𝑥 differenzierbar, und 

es gilt die 

 

Kettenregel: (𝑓 ∘ 𝑔)′(𝑥) = 𝑓′(𝑧)𝑔′(𝑥). 

 

Mit anderen Worten: Zur Bildung der Ableitung zweier verketteter 

Funktionen werden die Ableitungen der beiden Funktionen, genommen an 

entsprechenden Stellen, einfach multipliziert. 

 

Zur Schreibweise: Mit den Leibnizschen Bezeichnungen  

 
ⅆ𝑦

ⅆ𝑧
= 𝑓′(𝑧), 

ⅆ𝑧

ⅆ𝑥
= 𝑔′(𝑥), 

ⅆ𝑦

ⅆ𝑥
(𝑓 ∘ 𝑔)′(𝑥) 

 

erhält man die einprägsame Form 

 

Kettenregel:   
ⅆ𝑦

ⅆ𝑥
=

ⅆ𝑦

ⅆ𝑧
·

ⅆ𝑧

ⅆ𝑥
. 

 

Man nennt 
ⅆ𝑦

ⅆ𝑧
 auch die äußere Ableitung und 

ⅆ𝑧

ⅆ𝑥
 die innere Ableitung. Damit 

erhalten wir zur Durchführung der Kettenregel folgende Merkregel: »Äußere 

und innere Ableitung sind zu multiplizieren.« 

 

Burg et al. (2017, S. 216) 
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Mathematische Bemerkung 10 (Beispiel): Kettenregel 

 

Es soll 

 

 𝑦 = 𝐹(𝑥) = (𝑥2 + 7𝑥 − 1)5  

 

differenziert werden. Mit  

 

𝑧 = 𝑔(𝑥) = 𝑥2 + 7𝑥 − 1 und 𝑦 = 𝑓(𝑧) = 𝑧5  

 

folgt nach der Kettenregel  

 

𝐹′(𝑥) =
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑧
⋅

𝑑𝑧

𝑑𝑥
= 5𝑧2 ⋅ (2𝑥 + 7) = 5(𝑥2 + 7𝑥 − 1)4(2𝑥 + 7) 

   

Burg et al. (2017, S. 217) 

 

Mathematische Bemerkung 11 (Beweis): Kettenregel 

 

Seien f und g differenzierbare Funktionen mit den Voraussetzungen wie in 

MB 9.  

 

ℎ(𝑥) − ℎ(𝑥0)

𝑥 − 𝑥0

=
𝑓(𝑔(𝑥)) − 𝑓(𝑔(𝑥0))

𝑥 − 𝑥0

 

 

=
𝑓(𝑔(𝑥)) − 𝑓(𝑔(𝑥0))

𝑔(𝑥) − 𝑔(𝑥0)
⋅

𝑔(𝑥) − 𝑔(𝑥0)

𝑥 − 𝑥0

 

 

=
𝑓(𝑦) − 𝑓(𝑦0)

𝑦 − 𝑦0

⋅
𝑔(𝑥) − 𝑔(𝑥0)

𝑥 − 𝑥0

 

 

Dabei wurde 𝑦 = 𝑔(𝑥) und 𝑦0 = 𝑔(𝑥0) gesetzt. Insgesamt erhalten wir 

 

𝑙𝑖𝑚
𝑥→𝑥0

ℎ(𝑥) − ℎ(𝑥0)

𝑥 − 𝑥0

= 𝑓′(𝑦0) ⋅ 𝑔′(𝑥0) = 𝑓′(𝑔(𝑥0)) ⋅ 𝑔′(𝑥0) 

   

In Anlehnung an Rießinger (2013, S. 299) 
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Abbildung 13: Visuelle Interpretation der Kettenregel 

Eine visuelle Interpretation der Kettenregel kann Abbildung 13 liefern. Wenn das 

Argument einer Funktion mit 2 multipliziert wird, verdoppelt sich die Steigung 

bei der jeweiligen Stelle der neuen Funktion (siehe an den Pfeilen in der 

Abbildung 13). Das Einsetzen von 𝑥 = 2 in 𝑓(2𝑥) ergibt den gleichen Wert, wie 

das Einsetzen 𝑥 = 4 in 𝑓(𝑥). Obwohl die 𝑦-Werte für 𝑥 = 2 in 𝑓(2𝑥) und 𝑥 = 4 

in 𝑓(𝑥) gleich sind, stimmt dies nicht für die Tangenten der Punkte. Stauchen des 

Graphen in 𝑥-Richtung führt dazu, dass die Steigung steiler wird. Wenn in diesem 

Beispiel nun die Ableitung 𝑓′(2𝑥) gebildet wird, dann muss diese mit 2 (also 

𝑓′(2𝑥) ⋅ 2) multipliziert werden (da die Steigung doppelt so hoch ist). Im 

Allgemeinen bedeutet dies, dass die Funktion 𝑔 für das schnellere oder 

langsamere Durchlaufen einer Funktion 𝑓 entscheidend ist. Um nun also die 

Steigung bzw. die Ableitung von 𝑓(𝑔(𝑥)) zu finden, muss zunächst die Steigung 
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von 𝑓 an dem 𝑥-Wert 𝑔(𝑥) ermittelt werden. Anschließend wird mit dem Wert 

multipliziert bzw. skaliert und bestimmt wie 𝑔 das Durchlaufen der 𝑦-Werte 

schneller oder langsamer macht (stauchen oder strecken in Richtung der 𝑥-

Achse). Damit erhält man die Kettenregel.  

Ableitung der Potenzfunktion 

Für Potenzfunktionen ergibt sich eine weitere Ableitungsregel. 

 

 

Der Beweis der Potenzregel kann anhand von algebraischen Umformungen am 

Differenzenquotienten mithilfe des binomischen Lehrsatzes durchgeführt werden 

(der Beweis für positiv-ganzzahlige Exponenten z. B. zu finden in Papula, 2018, 

S. 330). 

Empirische Ebene zu den Ableitungsregeln 

Clark et al. (1997) haben 41 Studierende an einer amerikanischen Universität 

interviewt, die bereits mindestens zwei Semester „single variable calculus“ 

abgeschlossen haben. In dem Interview mussten die Studierenden Fragen 

beantworten, die auf ihr Verständnis der Kettenregel abzielen. Die Autoren der 

Studie haben die Antworten der 82 Studierenden auf ihre Richtigkeit kodiert und 

festgestellt: Nur eine der vier ausgewerteten Fragen wurde von 75,6 % (62 von 

Mathematische Bemerkung 12 (Satz): Ableitung von Potenzfunktionen 

 

Für die Ableitung in der in ℝ definierten Potenzfunktion 𝑓 mit 𝑓(𝑥) = 𝑥𝑛, 

𝑛 ∈ ℤ, aber 𝑛 ≠ 0, gilt   

𝑓′(𝑥) = 𝑛 ⋅ 𝑥𝑛−1 

 

Für 𝑛 = 0 und 𝑥 ≠ 0 liegt eine konstante Funktion mit 𝑓(𝑥) = 1 und 

Ableitung 𝑓′(𝑥) = 0 vor. 

 

Büchter und Henn (2010, S. 213) 

 

Mathematische Bemerkung 13 (Beispiel): Ableitung der Potenzfunktion 

 

Für die Ableitung der Funktion 𝑓 mit 𝑓(𝑥) = 𝑥8 ergibt sich nach der 

Potenzregel: 

 

𝑓′(𝑥) = 8 ⋅ 𝑥8−1 = 8𝑥7 
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82) aller Studierenden vollständig richtig beantwortet. Die anderen drei Fragen 

wurden von allen Studierenden mit 7,3 %, 39 % und 34,1 % richtig beantwortet. 

Die Autoren kommen zu dem Schluss, dass die Schwierigkeiten im Umgang mit 

der Kettenregel bei den meisten Studierenden ihrer Stichprobe auf Mangel im 

Verständnis von Funktionen zurückzuführen sind. Sie fordern daher eine stärkere 

Fokussierung, Zusammensetzungen bzw. Verkettungen von Funktionen erkennen 

und damit umgehen zu können. Zusätzlich sei es wichtig, diese in Beziehung zu 

verschiedenen Problemsituationen zu setzen, für deren Lösung die Kettenregel 

benötigt wird. Cottrill (1999) konnte in seiner Untersuchung ebenfalls Hinweise 

dazu finden, dass das Verstehen von zusammengesetzten Funktionen für das 

Verständnis der Kettenregel ausschlaggebend ist. 

4.3.4 Der Mittelwertsatz 

Der Mittelwertsatz der Differentialrechnung ist ein wichtiger Bestandteil des 

Theorieaufbaus, aus denen einige Folgerungen abgeleitet werden können (z. B. 

die Regel von L´Hospital). 

 

 

Abbildung 14: Geometrische Interpretation zum Mittelwertsatz (Burg et al., 2017, S. 222) 

Mathematische Bemerkung 14 (Satz): Mittelwertsatz 

 

Ist die reelle Funktion 𝑓 stetig auf  [𝑎, 𝑏] und differenzierbar mindestens auf 
(𝑎, 𝑏), so gibt es ein 𝑥0 ∈ (𝑎, 𝑏) mit  

 

𝑓′(𝑥0) =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
 

 

Burg et al. (2017, S. 223) 
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Anschaulich sagt der Mittelwertsatz der Differentialrechnung aus, dass die 

Kurventangente für mindestens ein x0 aus (𝑎, 𝑏) parallel zur Sehne AB ist. Dies 

lässt sich in Abbildung 14 erkennen. Dabei ist zu beachten, dass es nicht nur eine 

Stelle x0 geben muss, welche die Aussage erfüllt – mehrere Stellen der Funktion 

können dafür in Frage kommen. Man könnte demnach die Sehne AB nehmen und 

sie so verschieben (dabei muss die Steigung natürlich gleich bleiben, um die 

Parallelität zu erhalten), dass sie zur Tangente des Graphs wird. Alle Punkte der 

Funktion, bei der die Sehne AB parallel zur Kurventangente ist, erfüllen den 

Mittelwertsatz der Differentialrechnung. Büchter und Henn (2010) bezeichnen 

das Verschieben der Sehne AB als Grundvorstellung zum Mittelwertsatz der 

Differentialrechnung. 

Für ein Beispiel der Aussage des Mittelwertsatzes der Differentialrechnung sei f 
eine Funktion, welche den zurückgelegten Weg eines Objekts in Abhängigkeit der 

Zeit beschreibt. Der Mittelwertsatz der Differentialrechnung sagt dann aus, dass 

zu mindestens einem Zeitpunkt t0 in einem Zeitintervall 𝑎 ≤ 𝑡 ≤ 𝑏 die 

durchschnittliche Geschwindigkeit des Zeitintervalls tatsächlich erreicht wird. In 

anderen Worten ist zu mindestens einem Zeitpunkt innerhalb eines bestimmten 

Zeitintervalls die Momentangeschwindigkeit gleich der durchschnittlichen 

Geschwindigkeit. Verallgemeinert bedeutet dies, dass die lokale Änderungsrate 

zu mindestens einem Punkt gleich der durchschnittlichen Änderungsrate in einem 

Zeitintervall ist. 

Der Beweis des Mittelwertsatzes der Differentialrechnung wird oftmals auf den 

Satz von Rolle zurückgeführt. Dabei wird eine Hilfsfunktion eingeführt, sodass 

der Satz von Rolle angewendet werden kann. Der Beweis dazu kann in Burg et 

al. (2017, S. 223) nachgelesen werden. 

 

 

Mathematische Bemerkung 15 (Satz): Satz von Rolle 

 

Ist die reelle Funktion 𝑓 stetig auf  [𝑎, 𝑏] und differenzierbar mindestens auf 
(𝑎, 𝑏),  und gilt 𝑓(𝑎) = 𝑓(𝑏), so existiert ein 𝑥0 ∈ (𝑎, 𝑏) mit 𝑓′(𝑥0) = 0. 

 

Burg et al. (2017, S. 223) 
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Empirische Ebene zum Mittelwertsatz der Differentialrechnung 

Es gibt bislang keine mir bekannten empirischen Studien zu dem Mittelwertsatz 

der Differentialrechnung. Allerdings wurde eine Studie zum Beweisverständnis 

des verallgemeinerten Mittelwertsatzes der Differentialrechnung mit 

Studierenden aus dem ersten Semester durchgeführt (Kolahdouz et al., 2020). Die 

Teilnehmenden der Studie waren an einer Universität im Iran für das Fach 

Mathematik eingeschrieben. In einem Test-Format wurden 35 Studierenden acht 

Fragen zu verschiedenen Aspekten des Beweisverständnisses zum 

verallgemeinerten Mittelwertsatz der Differentialrechnung gestellt. Im Fokus der 

Studie lag demnach, inwiefern Studierende die mathematische Symbolsprache 

verstehen, Zusammenhänge zwischen Behauptungen, anderen Sätzen und 

Schlussfolgerungen erkennen sowie die Gültigkeit von Aussagen bewerten. 

Dabei hat sich herausgestellt, dass etwa die Hälfte der Studierenden keine 

Probleme mit der mathematischen Symbolsprache haben, allerdings in allen 

anderen Bereichen des Beweisverständnisses erhebliche Probleme bestehen. 

Bezüglich des mathematischen Inhalts konnte festgehalten werden, dass bei 

Studierenden Schwierigkeiten aufgetreten sind, wenn die Voraussetzung des 

verallgemeinerten Mittelwertsatzes der Differentialrechnung verändert worden 

ist und im Anschluss die Auswirkung auf eine schlussfolgernde Aussage 

angepasst werden sollten. Außerdem konnten nur zwei der 35 teilnehmenden 

Studierenden zwei vorgegebene Beispiele korrekt einordnen, ob sie den 

Voraussetzungen des verallgemeinerten Mittelwertsatzes der 

Differentialrechnung genügen. Es ist fraglich, inwiefern sich die Ergebnisse 

dieser Studie auf den Mittelwertsatz der Differentialrechnung übertragen lassen. 

Zumindest bei dem Überprüfen der Voraussetzungen an vorgegebenen Beispielen 

Mathematische Bemerkung 16 (Beweis): Mittelwertsatz 

 

Man subtrahiert von 𝑓 eine Geradenfunktion 𝑔 mit der Steigung der Sekante 

durch 𝑎 und 𝑏, und zwar 𝑔(𝑥) =
𝑥⋅(𝑓(𝑏)−𝑓(𝑎))

𝑏−𝑎
. Für die Differenz 𝐹(𝑥) =

𝑓(𝑥) − 𝑔(𝑥) errechnet man 𝐹(𝑎) = 𝐹(𝑏). Der Satz von Rolle liefert dann 

die Existenz eines 𝑥0 ∈ (𝑎, 𝑏) mit 

 

0 = 𝐹′(𝑥0) = 𝑓′(𝑥0) − 𝑔′(𝑥0) = 𝑓′(𝑥0) −
𝑓(𝑏) − (𝑎)

𝑏 − 𝑎
 

 

Burg et al. (2017, S. 223) 
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kann davon ausgegangen werden, dass ähnliche Ergebnisse zu vermuten sind, da 

sich die Voraussetzungen der beiden Sätze im Vergleich nicht ändern. 

4.3.5 Die Regel von L´Hospital 

Aus dem Mittelwertsatz der Differentialrechnung kann die Regel von L´Hospital 

abgeleitet werden, die sich mit der Berechnung bestimmter Grenzwerte befasst. 

Es handelt sich dabei um Grenzwerte von Quotienten, deren Funktionen gegen 

Null konvergieren oder bestimmt divergieren. Nach der Regel von L´Hospital 

können Grenzwerte dieser Form mithilfe der ersten Ableitung ermittelt werden. 

 

 

Gemäß der Regel von L´Hospital lässt sich an einer fraglichen Stelle jedes 

differenzierbares Funktionenpaar 𝑓 und 𝑔 durch ihr dortiges Tangentenpaar 

annähern. Auf die Darstellung eines Beweises wird hier verzichtet, da weitere 

mathematische Inhalte genutzt werden, die den Rahmen des Kapitels übersteigen 

würden. Ein Beweis ist zu finden in Heuser (2009, S. 287). Für Ingeneur:innen 

ist vor allem die Anwendung des Satzes relevant (Burg et al., 2016, S. 236). 

Visuell (Abbildung 15) lässt sich erkennen, dass die Tangenten an der fraglichen 

Stelle in einer hinreichend kleinen Umgebung um den Berührpunkt das 

Mathematische Bemerkung 17 (Satz): Regel von L´Hospital 

 

Es seien 𝑓 und 𝑔 differenzierbare reelle Funktionen auf dem Intervall (𝑎, 𝑏), 

für die 

 

𝑙𝑖𝑚
𝑥→𝑏

 𝑓(𝑥) = 𝑙𝑖𝑚
𝑥→𝑏

 𝑔(𝑥) = 0   oder 

 

𝑙𝑖𝑚
𝑥→𝑏

 𝑓(𝑥) = ±∞  und   𝑙𝑖𝑚
𝑥→𝑏

 𝑔(𝑥) = ±∞ 

 

gilt. Es sei ferner 𝑔′(𝑥) ≠ 0 auf (𝑎, 𝑏). Damit folgt  

 

𝑙𝑖𝑚
𝑥→𝑏

 
𝑓(𝑥)

𝑔(𝑥)
= 𝑙𝑖𝑚

𝑥→𝑏

𝑓′(𝑥)

𝑔′(𝑥)
  (𝑎 < 𝑥 < 𝑏), 

 

sofern der rechtsstehende Grenzwert existiert oder ±∞ ist. (Hierbei ist auch 

𝑎 = ∞ oder 𝑏 = −∞ zugelassen.) 

 

Zur Schreibweise: Das Nutzen der Regel von L´Hospital wird oftmals mit 

dem Ausdruck "
0

0
" oder "

∞

∞
" angedeutet. 

Burg et al. (2017, S. 235) 
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Änderungsverhalten der Funktionen sehr gut beschreiben. Der Grenzwert des 

Quotienten der Funktionswerte kann somit grafisch an der fraglichen Stelle durch 

den Quotienten der Tangentensteigung ersetzt werden. 

 

 

 

Abbildung 15: Zwei Funktion, angenähert durch ihre Tangenten (gestrichelt) 

 

Mathematische Bemerkung 18 (Beispiel): Regel von L´Hospital 

 

𝑙𝑖𝑚
𝑥→0

𝑒𝑥 − 1

𝑥
→ "

0

0
" 

 

Wir wenden die Regel von L´Hospital an und erhalten: 

 

𝑙𝑖𝑚
𝑥→0

𝑒𝑥 − 1

𝑥
 𝑙𝑖𝑚

𝑥→0

(𝑒𝑥 − 1)′

(𝑥)′
= 𝑙𝑖𝑚

𝑥→0

𝑒𝑥

1
= 𝑙𝑖𝑚

𝑥→0
 𝑒𝑥 = 𝑒0 = 1 

 

 

Papula (2018, S. 627) 
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Empirische Ebene zur Regel von L´Hospital 

Ähnlich wie für den Mittelwertsatz der Differentialrechnung gibt es für die Regel 

von L`Hospital ebenfalls keine mir bekannten empirischen Studien. In einer 

Studie von Mrdja et al. (2015) wurden allerdings die Bearbeitungen von 

Ingenieurstudierenden einer Universität in Bosnien und Herzegowina beim 

Berechnen eines Grenzwerts untersucht. Für die Berechnung des Grenzwerts wird 

in dieser Studie unter anderem die Anwendung der Regel von L´Hospital 

benötigt. In den Bearbeitungen der Studierenden konnte zum einen festgestellt 

werden, dass in 22 von 24 Fällen die Voraussetzungen für die Regeln von 

L`Hospital ignoriert worden sind. Zum anderen wurde die Regel von L`Hospital 

in 17 von 24 Fällen nicht korrekt angewandt. 

4.3.6 Bezug der Inhalte im Übergang Schule-Hochschule+ 

Auf Ebene der Schule wird von Lernenden aus der Oberstufe in Nordrhein-

Westfalen verlangt, dass die Ableitung an einer Stelle als lokale Änderungsrate 

oder Tangentensteigung sowie zusätzlich im Leistungskurs mithilfe der 

Approximation durch lineare Funktionen gedeutet werden soll (Ministerium für 

Schule und Bildung des Landes NRW, 2023). Studierende sollten demnach 

insbesondere hinsichtlich der lokalen Änderungsrate oder der Tangentensteigung 

über Vorwissen verfügen. Beide Grundvorstellungen können auf die Definition 

der Ableitung als Grenzwert des Differenzenquotienten zurückgeführt werden 

(Greefrath et al, 2016b). Wird die Ableitung im hochschulischen Kontext 

ebenfalls über diese Definition eingeführt, können Studierende auf 

Vorerfahrungen bezüglich der Grundvorstellungen zurückgreifen. Lediglich 

Lernende aus dem Leistungskurs werden mit der Ableitung als Approximation 

durch lineare Funktion konfrontiert (Ministerium für Schule und Bildung des 

Landes NRW, 2023), wobei es dadurch ungleiche Lernvoraussetzungen geben 

kann, wenn die eingeführte Definition in der Hochschule stark auf die Vorstellung 

der lokalen Linearität angelehnt wird. 

Die Thematisierung der Ableitungsregeln findet ebenfalls in der Schule statt. Bis 

zum Ende der Einführungsphase werden Potenz-, Summen- sowie Faktorregel 

und in den Grund- und Leistungskursen sowohl Produkt- als auch Kettenregel 

behandelt (Ministerium für Schule und Bildung des Landes NRW, 2023). 

Studierende sind daher mit den verschiedenen Techniken von Ableitungsregeln 

vertraut und können sich auf ihre vorherigen Erfahrungen stützen. 

Der Mittelwertsatz der Differentialrechnung als auch die Regel von L´Hospital 

spielen in der Schule weder in Grund- noch Leistungskursen eine Rolle 

(Ministerium für Schule und Bildung des Landes NRW, 2023). Obwohl auf 

notwendige Vorerfahrung mathematischer Inhalte wie Funktionen, Grenzwerte 

und Ableitungsregeln zurückgegriffen werden kann, sind der Mittelwertsatz der 
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Differentialrechnung und die Regel von L´Hospital punktuell Neuheiten für 

Studierende. 

4.4 Zusammenfassung und Einordnung in die Wissensmatrix 

Die Differentialrechnung stellt einen wichtigen mathematischen Aspekt im 

Ingenieurstudium dar, welcher sich in vielen ingenieurtypischen Anwendungen 

wiederfindet (vgl. Kapitel 4.1). Bevor eine Thematisierung der 

Differentialrechnung möglich ist, müssen einige innermathematische Grundlagen 

geklärt werden: Darunter fallen Funktionen, Grenzwerte und Stetigkeit (vgl. 

Kapitel 4.2). Unter Berücksichtigung dieser Begriffe wurden mithilfe des Vier-

Ebenen-Ansatzes (Hußmann & Prediger, 2016) ausgewählte24 Inhalte der 

Differentialrechnung dargestellt (Kapitel 4.3). Dabei wurde der umfangreiche 

Lerngegenstand der Differentialrechnung mittels der formalen, semantischen und 

empirischen Ebene strukturiert (Hußmann & Prediger, 2016). Für die formale 

Ebene als auch die semantische Ebene kann anhand der Wissensmatrix eine 

feinere Aufteilung in die Wissensfacetten vorgenommen werden (Kapitel 4.3.1). 

Die theoretischen Inhalte zur Differentialrechnung lassen sich nun mittels der 

Wissensmatrix strukturieren. Eine Darstellung, der in Kapitel 4.3 behandelten 

mathematischen Inhalte befindet sich in Tabelle 7. 

Der Begriff der Differenzierbarkeit einer Funktion wird als Konzept und der 

Mittelwertsatz als Zusammenhang dargestellt. Beide mathematischen Inhalte 

werden somit dem konzeptuellen Wissen zugeordnet. 

Es bleibt zu diskutieren, inwiefern die Ableitungsregeln und die Regel von 

L´Hospital im Sinne der Wissensmatrix dem prozeduralen oder konzeptuellen 

Wissen zu verorten sind. Die Regel von L´Hospital wird in vielen 

mathematischen Lehrbüchern zunächst formal als Satz eingeführt (z. B. Burg et 

al., 2017; Meyberg & Vachenhauer, 2015; Westermann, 2015). Laut der 

Wissensmatrix ist ein mathematischer Satz mit dem Zusammenhang 

gleichzusetzen. Dies spricht dafür, dass die Regel von L´Hospital in der 

Wissensmatrix als Zusammenhang eingeordnet wird. Dies hätte wiederum zur 

Folge, dass die Regel von L´Hospital dem konzeptuellen Wissen zugeordnet wird. 

Aus einigen Lehrbüchern wird allerdings auch deutlich, dass es sich bei der Regel 

von L´Hospital um ein Werkzeug handelt, welches bei der Berechnung von 

Funktionsgrenzwerten nützlich ist: „Wir wenden uns nun wieder dem Berechnen 

von Funktionsgrenzwerten zu. […] Die Regel von L´Hospital liefert eine 

Methode auch den Grenzwert zu berechnen, wenn 𝑔(𝑥0) = 𝑓(𝑥0) = 0“ 

(Westermann, 2015, S. 284). Dies würde dafür sprechen, dass die Regel von 

 
24 Die Auswahl der Inhalte der Differentialrechnung, die in dem Kapitel 4.3 dargestellt wurden, 

hängt von den Daten ab, die in dieser Arbeit ausgewertet worden sind. Es wurden daher nur 

die notwendigen mathematischen Inhalte dargestellt. 
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L´Hospital als Verfahren eingeordnet wird. Letztlich wäre die Regel von 

L´Hospital demnach Teil des prozeduralen Wissens. 

In der mathematikdidaktischen Diskussion zwischen prozeduralem und 

konzeptuellem Wissen wird immer wieder auf den Kontext von Situationen 

verwiesen (z. B. Rittle-Johnson & Schneider, 2014; Smith et al., 1996). 

Mathematische Informationen können für die eine Person neu sein, während sie 

für die andere Person bereits im Wissensnetzwerk integriert sind und 

möglicherweise ein Automatismus bezüglich dieses Wissens vorhanden ist. 

Genauso ist es möglich, dass die Regel von L´Hospital bereits in einem 

Wissensnetzwerk einer Person integriert ist und diese für das Berechnen von 

Grenzwerten benutzt wird, während sich eine andere Person zunächst die Regel 

von L´Hospital „erarbeitet“ und somit das eigene Wissensnetzwerk erweitert. Die 

Einordnung der Regel von L´Hospital als konzeptuelles Wissen oder prozedurales 

Wissen ist demnach personenabhängig. Im Kontext einer 

Erstsemesterveranstaltung an der Universität kann davon ausgegangen werden, 

dass die Regel von L`Hospital für Studierende neuartig ist, da sie zum einen in 

der Schule nicht im Lehrplan steht (für NRW: Ministerium für Schule und 

Bildung des Landes NRW, 2023) und zum anderen keine vorherigen 

Veranstaltungen an der Universität stattfinden, die diese Regel lehren. 

Wird ein Blick auf die Facetten gelegt, lässt sich die Regel von L´Hospital sowohl 

in das prozedurale als auch das konzeptuelle Wissen einordnen. Die 

mathematische Bemerkung 17 (Satz): Regel von L´Hospital (MB17) kann 

bezüglich der Facette Explizite Formulierung sowohl als ausformulierter Satz, 

allerdings auch als Anleitung des Verfahrens verstanden werden. Bezüglich der 

Facette Konkretisierung & Abgrenzung deckt MB17 auf der prozeduralen Seite 

ebenfalls die Bedingung der Anwendbarkeit ab (wobei in dieser Arbeit keine 

Spezialfälle25 vorgestellt werden), während MB18 ein Beispiel für die 

konzeptuelle Seite aufzeigt. Für die Facette Bedeutung & Vernetzung kann 

Abbildung 15 sowohl als (anschauliche) Begründung als auch als Vorstellung / 

Begründung aufgefasst werden. Auch der Beweis (z. B. in Heuser, 2009, S. 287) 

für die Regel von L´Hospital kann in beide Wissenselemente dieser Facette 

eingeordnet werden. Die Facette Konventionelle Festlegungen bleibt auf beiden 

Wissensseiten leer, da es keine bestimmten Namen bzw. Bezeichnungen oder 

nicht begründbare Festlegungen für die Regel von L´Hospital gibt. 

Zuletzt wird nochmal die pragmatische Perspektive eingenommen, wie die Regel 

von L´Hospital im Kontext des Ingenieurstudiums in der Universität genutzt wird. 

In der Vorlesung wird die Regel von L´Hospital theoretisch eingeführt, allerdings 

meistens als Werkzeug für die Berechnung von bestimmten Grenzwerten. Somit 

liegt ein starker Fokus auf den Anwendungskontext, der vor allem in den 

 
25 Spezialfälle sind allerdings durchaus vorhanden. Ein möglicher Spezialfall, bei der die Regel 

von L´Hospital anwendbar ist, aber versagt, da sich „im Kreis gedreht“ wird: 𝑙𝑖𝑚
𝑥→∞

ⅇ𝑥+ⅇ−𝑥

ⅇ𝑥−ⅇ−𝑥  
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Übungsblättern bzw. Hausaufgaben deutlich wird. Die Regel von L´Hospital stellt 

eine klare Anleitung dar, wie bestimmte Grenzwerte zu berechnen sind und 

welcher Schritt dafür unternommen werden muss. Eine solche „Schritt-für-

Schritt-Anleitung“ ist aus theoretischer Perspektive als Prozedur zu verstehen, 

welche Teil des prozeduralen Wissens ist (Star, 2005). 

Die verschiedenen Perspektiven haben anhand der Regel von L´Hospital gezeigt, 

dass die Einordnung von mathematischem Inhalt in die Wissensmatrix 

gelegentlich nicht selbsterklärend ist. Es gibt sowohl Gründe, die Regel von 

L´Hospital als Zusammenhang (und somit dem konzeptuellen Wissen 

zuzuordnen) oder als Verfahren (und somit dem prozeduralen Wissen 

zuzuordnen) aufzufassen. Da in dieser Arbeit Bearbeitungsprozesse von 

Studierenden untersucht werden und das Ziel der Aufgaben das Nutzen und Üben 

der Regel von L´Hospital ist, wird die Regel von L´Hospital als Verfahren 

aufgefasst. Die gleichen Argumente gelten ebenfalls für die Ableitungsregeln. 

Zuletzt bleibt noch anzumerken, dass die dargestellte Wissensmatrix in Tabelle 7 

weder bezüglich der Differentialrechnung noch bezüglich der einzelnen Facetten 

der jeweiligen Konzepte, Zusammenhänge und Verfahren vollständig ist (z. B. 

fehlt die Darstellung von Gegenbeispielen für die Differenzierbarkeit). Darüber 

hinaus wurden in dieser Arbeit selbst nicht alle Wissenselemente vollständig 

ausgearbeitet (vor allem für die Konventionellen Festlegungen). 

 
Mathematischer 

Inhalt 

Explizite 

Formulie-

rung 

Konkretisie-

rung & 

Abgrenzung 

Bedeutung & 

Vernetzung 

Konventio-

nelle 

Festlegungen 

Konzept: 

Differenzier-

barkeit 

MB3 MB4 Grundvorstell

ungen 

MB3 

Zusammenhang: 

Mittelwertsatz 

MB14  Abb. 4.7 und 

MB16 

 

Verfahren: 

Summenregel 

MB6 MB8 Abb. 4.5 und 

MB7 

 

Verfahren: 

Kettenregel 

MB9 MB10 MB11 und 

Abb. 4.6 

MB9 

Verfahren: 

Ableitung der 

Potenzfunktion 

MB12 MB13 Papula (2018, 

S. 330) 

 

Verfahren: 

L´Hospital 

MB17 MB18 Abb. 4.8 und 

Heuser (2009, 

S. 287) 

MB17 

Tabelle 7: Einordnung der mathematischen Inhalte in die Wissensmatrix 
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5 Methodische Ansätze und Entscheidungen zur 

Untersuchung der Problembearbeitungsprozesse 

Dieses Kapitel beschäftigt sich mit den methodologischen Ansätzen zur 

Untersuchung von Problembearbeitungsprozessen. Es beginnt mit der 

methodischen Einordnung sowie einigen Vorüberlegungen zur Datenerhebung 

und -auswertung (Kapitel 5.1). Anschließend wird im Studiendesign (Kapitel 5.2) 

der konkrete Rahmen der Untersuchung vorgestellt. Im weiteren Verlauf folgt 

eine stoffdidaktische Analyse der drei Aufgaben (Kapitel 5.3), zu denen in dieser 

Untersuchung die Problembearbeitungsprozesse untersucht werden. 

Abschließend werden die Auswertungsmethoden für die Prozesse (Kapitel 5.4) 

sowie die Produkte (Kapitel 5.5) der Problembearbeitungsprozesse erläutert. 

5.1 Methodische Einordnung und Vorüberlegungen 

Um die Forschungsfragen zu beantworten, bedarf es passender Methoden zur 

Datenerhebung und -auswertung. Diesbezüglich werden Vorüberlegungen 

dargestellt, die ebenfalls als Begründungen für das Forschungsvorgehen gelten. 

Im Folgenden soll die vorgestellte Studie knapp umrissen werden, um weitere 

methodische Entscheidungen treffen zu können. Das Forschungsinteresse dieser 

Arbeit besteht darin, die Problembearbeitungsprozesse von Studierenden in 

einem natürlichen Setting zu untersuchen. Für die Studie wurden demnach fünf 

Lerngruppen in einem alltäglichen Setting videographiert: Während der 

Bearbeitung von mathematischen Hausaufgaben im Themenbereich der 

Differentialrechnung. Die Bearbeitungen der Studierenden wurden nach jeder 

Videoaufnahme eingesammelt oder abfotografiert. Anschließend folgte die 

Transkription der Videoaufnahmen. Sowohl die Videoaufnahmen als auch die 

Transkripte und Bearbeitungen (der Hausaufgaben) der Studierenden wurden 

genutzt, um die Problembearbeitungsprozesse der Studierenden beschreiben zu 

können. Die Bearbeitungsprozesse wurden aus verschiedenen Blickwinkeln 

betrachtet, wobei Steuerung (Kapitel 2.3), Wissen (Kapitel 2.4) und Heurismen 

(Kapitel 2.5) im Mittelpunkt stehen. Die grundlegende Forschungsausrichtung 

der Studie ist somit qualitativ. 

5.1.1 Einordnung in das qualitative Forschungsparadigma 

Das qualitative Forschungsparadigma zielt primär darauf ab, innerhalb eines 

bestimmten Kontextes Phänomene verstehend-interpretativ zu rekonstruieren 

(Döring & Bortz, 2016). Genau dies beabsichtigt die übergeordnete 

Forschungsfrage dieser Arbeit: Der zu untersuchende Kontext ist in dieser Studie 

die Bearbeitung von Hausaufgaben in einer mathematischen, hochschulischen 

Lehrveranstaltung für Ingenieur:innen. Das zu untersuchende Phänomen sind die 
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Problembearbeitungsprozesse. Die verstehend-interpretative Rekonstruktion 

geschieht durch die Auswertung der erhobenen Daten. Da in der bisherigen 

Forschung wenig zum mathematischen Problemlösen im hochschulischen 

Kontext geforscht wurde, steckt ebenfalls ein exploratives Ziel in dieser Arbeit. 

Es sollen neue Einsichten gewonnen werden, Theorie entwickelt und ggfs. 

weiterführende Fragen aufgestellt werden. Die Studie dieser Arbeit erfüllt damit 

den Anspruch der qualitativen Forschung, ein besseres Verständnis der sozialen 

Wirklichkeit zu erhalten sowie auf Abläufe, Deutungsmuster und 

Strukturmerkmale aufmerksam machen (Flick et al., 2012). 

Des Weiteren ist das Problemlösen durch die vier Kategorien (Steuerung, Wissen, 

Heurismen, Beliefs) ein facettenreiches Phänomen. Deshalb wird durch eine 

qualitative Forschung der Erhalt von Komplexität des zu untersuchenden 

Forschungsgegenstandes für die geplante Analyse garantiert (Mey & Ruppel, 

2018). Es stehen ebenfalls detaillierte Einzelfallbetrachtungen im Fokus der 

Untersuchung, wodurch ein tieferes Verständnis über das mathematische 

Problemlösen erlangt werden soll. Darüber hinaus ist die Untersuchungssituation 

in einem alltäglichen Setting (das Bearbeiten von Hausaufgaben ist in 

mathematischen Veranstaltungen eine typische Handlung von Studierenden) 

angelegt, welche nicht für eine spezifische Fragestellung konstruiert wird. Der 

Alltagsbezug bleibt erhalten, weshalb der Untersuchungsgegenstand in seiner 

Ganzheitlichkeit untersucht werden kann (Döring & Bortz, 2016, S. 65). Ein 

solcher Einblick lässt sich mit qualitativen Methoden besser untersuchen, da man 

dem Phänomen näher ist als mit anderen Forschungsstrategien (Flick et al., 2012). 

Aus diesen Gründen wurde für diese Arbeit keine quantitative Studie angelegt. 

Eine Laborsituation oder bspw. standardisierte Fragebögen beziehen sich auf 

vorformulierte Theorien oder auf gezielte Aspekte, wodurch das Problemlösen 

nicht in seiner Ganzheitlichkeit untersucht werden könnte. Ebenfalls ist das 

Problemlösen stark an das jeweilige Problem gebunden, wodurch vor allem die 

Kategorie des Wissens und der Heurismen nur schwach mit standardisiertem 

Vorgehen untersucht werden kann. Letztendlich ist das mathematische 

Problemlösen zwar auf schulischem Niveau bereits mehr in der 

Forschungslandschaft vertreten (z. B. Herold-Blasius, 2019; Rott, 2013), 

allerdings müssen auf hochschulischem Niveau zunächst weitere Einsichten in 

das mathematische Problemlösen gefunden werden, um die aufgestellten 

Hypothesen und Theorien mit quantitativen Methoden zu testen. 

5.1.2 Methodische Überlegungen zur Erhebung von 

Problembearbeitungsprozessen 

Bisherige Studien haben unterschiedliche Methoden genutzt, um das 

Lernverhalten bzw. Problembearbeitungsprozesse von Lernenden zu 

untersuchen. Obwohl die einzelnen Studien unterschiedlichen 

Forschungsinteressen nachgegangen sind, können die gewonnenen methodischen 
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Erkenntnisse dabei helfen, das Forschungsvorgehen der vorliegenden Arbeit zu 

diskutieren. Folgende methodische Ansätze wurden gewählt: Beobachtungen von 

erkennbarem Verhalten, Videoaufnahmen, (aufgabenbasierte) Interviews, lautes 

Denken, Fragebögen, Leistungstests sowie Strategie-Inputs (z. B. Herold-Blasius, 

2019; Jacobse & Harskamp, 2012; Kani & Sharill, 2015; Montague et al., 2011; 

Rott, 2013; Stenzel, 2023a). Diese Methoden lassen sich allgemein in 

Selbstberichts- bzw. Beobachtungsverfahren einordnen. Beide Verfahren liefern 

sowohl Vor- als auch Nachteile für die Erhebung von Daten bezüglich allgemeiner 

Lernprozesse. Besonders in der Literatur für das Untersuchen von Lernstrategien 

bzw. zum selbstregulierten Lernen wurde bereits vermehrt über die 

unterschiedlichen Erhebungsmethoden diskutiert (z. B. Spörer & Brunstein, 

2006). Obwohl das selbstregulierte Lernen einen etwas allgemeineren 

Lernprozess beschreibt, sind Lernstrategien (auf fachlicher Ebene) stark verwandt 

mit Heurismen des Problemlösens. Lernstrategien können nah an dem 

mathematischen Inhalt aufgefasst werden (wie im LimSt-Fragebogen, 

Liebendörfer et al., 2021). Gleiches gilt für Heurismen, die bei der Bearbeitung 

konkreter mathematischer Aufgaben genutzt werden. Einige Überlegungen 

können daher für Problembearbeitungsprozesse übernommen werden (Kapitel 

2.5.1). 

Selbstberichtsverfahren setzen voraus, dass die Befragten sich zum einen bei 

ihrem Vorgehen über ihre eingesetzten Strategien bewusst sind und zum anderen 

in der Lage sind, die eingesetzten Strategien in Worte zu fassen bzw. davon zu 

berichten. Dazu kommt, dass die Befragten ihr Vorgehen selbst interpretieren und 

daher auch eigenständig entscheiden, welche Informationen überhaupt 

berichtenswert sind (z. B. Artelt, 2000). In Fragebögen ist bspw. bereits 

vorgegeben, was aus Sicht der forschenden Person als berichtenswert angesehen 

wird. Allerdings müssen die Befragten in der Lage sein, ihr Vorgehen bzw. ihre 

genutzten Strategien in den Items des Fragebogens wiederzuerkennen. Dabei ist 

weiterhin unklar, wie bestimmte Worte wie „oft“, „immer“, „selten“, „meistens“, 

„häufig“, etc. einzuordnen sind. Solche Präpositionen weisen stets einen 

subjektiven Charakter auf. Eine Verstärkung dieser Probleme tritt dann auf, wenn 

die Befragung zeitlich in gewisser Entfernung zur tatsächlichen Handlung liegt. 

Die befragten Personen können sich möglicherweise nicht mehr an konkrete 

Situationen erinnern oder vergessen komplizierte kognitive Gedankengänge, die 

Aufschluss über eingesetzte Strategien bzw. Wissensnutzung geben könnten. 

Göller (2020, S. 228f.) sowie Kolbe und Wessel (2022) vermuten, dass die 

geringe Berichterstattung von kognitiven Strategien von Studierenden in 

mathematischen Veranstaltungen an der fehlenden Spezifität einer gewissen 

Situation liegen könnte. Mittels des Selbstberichtverfahrens ist es allerdings leicht 

zu erfassen, welche generellen Vorgehensweisen Studierende nutzen (Ericsson & 

Simon, 1980), wie z. B. die Wahl zusätzlicher Hilfsmittel bei der 

Hausaufgabenbearbeitung aus dem letzten Semester geholfen haben. 
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Das Beobachtungsverfahren zur Erhebung von Strategien wird oftmals bei jungen 

Kindern eingesetzt (Perels et al., 2020), um einigen Problemen des 

Selbstberichtsverfahren entgegenzuwirken. Nach Turner (1995) gibt es drei 

Vorteile gegenüber dem Selbstberichtsverfahren. (1) Die Beobachtenden müssen 

nicht die Fähigkeit besitzen, ihre Strategien zu formulieren. (2) 

Beobachtungsverfahren verbinden das Verhalten einer Person direkt mit den 

Gegebenheiten der Situation. (3) Die Körpersprache der beobachteten Person 

kann mit einbezogen werden. Der Nachteil an Beobachtungen ist allerdings, dass 

bei den untersuchten Lernenden kaum kognitive oder metakognitive Prozesse 

abzuleiten sind. 

„Observing students engaged in studying, is really not a very rewarding research method. There is 
simply not much to observe. We can measure the time spent on reading the text, we can examine the 

underlinings and notes made, but such data do not provide useful information (Marton & Säljö, 2005, 

S. 110).” 

Nach Marton und Säljö (2005) scheint es so, dass durch das reine Beobachten von 

Studierenden kaum relevante Informationen zu den tatsächlichen Prozessen 

erlangt werden können. 

Schlussfolgerungen für die Auswahl der Erhebungsmethode 

In dieser Studie sollen mathematische Problembearbeitungsprozesse von 

Studierenden in alltäglichen Situationen untersucht werden. Daraus ergeben sich 

aus den vorherigen Ausführungen folgende Schlussfolgerungen:  

Das mathematische Problemlösen ist ein Prozess, der stark von der jeweiligen 

Aufgabenbearbeitung abhängt. Es bietet sich daher an, dass die Untersuchung 

ebenfalls möglichst nah an dem Prozess durchgeführt wird. Dies bedeutet, dass 

der zeitliche Abstand im Fall einer Befragung zum jeweiligen 

Problembearbeitungsprozess möglichst klein gehalten werden sollte. Die 

zeitliche Nähe erlaubt es den untersuchten Personen, sich an wichtige Details des 

Problembearbeitungsprozesses zu erinnern. Vor allem komplexe (meta-)kognitive 

Prozesse bleiben unter Umständen nur im Kurzzeitgedächtnis und gehen nicht in 

das Langzeitgedächtnis über. Zu einem späteren Zeitpunkt sind sie damit nicht 

mehr abrufbar. Eine Erhebung, welche in zeitlicher Ferne zum 

Problembearbeitungsprozess liegt, kommt daher nicht infrage. Um den zeitlichen 

Aspekt auszuschließen, bietet sich eine Erhebungsmethode an, die unmittelbar 

am Problembearbeitungsprozess beteiligt ist: Beobachtung. Das reine 

Beobachten von Studierenden während eines Problembearbeitungsprozesses 

scheint aber wenig sinnvoll zu sein, da kaum relevante Informationen sichtbar 

werden (Marton & Säljö, 2005). Besonders die (meta-)kognitiven Prozesse sowie 

Strategienutzung sind für die Analyse der Problembearbeitungsprozesse 

interessant. Eine Möglichkeit, die Problembearbeitungsprozesse zu untersuchen, 

sind aufgabenbasierte Interviews (wie z. B. in Stenzel, 2023a), um nach 

spezifischen Strategien oder spezifischer Wissensnutzung fragen zu können. 
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Allerdings ist dabei zu bedenken, dass die interviewleitende Person mit solchen 

Fragen, die mitunter Anlass für neue Gedanken oder Denkanstöße sind, einen 

Einfluss (wie z. B. beschrieben in Assad, 2015; Maher & Sigley, 2014) auf den 

Problemlöseprozess der Studierenden haben könnte. Darüber hinaus kann jeder 

Eingriff einer außenstehenden Person auch einen negativen Einfluss auf die 

Problembearbeitungsprozesse bewirken. Jede Frage kann eine Ablenkung für 

Studierende darstellen, da sie den roten Faden ihrer Gedankengänge verlieren 

könnten. In Hinblick auf ein natürliches Setting wäre es allerdings sinnvoll den 

Einfluss von außenstehenden Personen weitestgehend zu eliminieren. Um 

möglichst wenig Einfluss auf den Problembearbeitungsprozess zu haben und 

trotzdem Strategien und Nutzung von Wissen sichtbar zu machen, kann das laute 

Denken (Ericsson & Simon, 1980) hilfreich sein. In den aufgabenbasierten 

Interviews, die Stenzel (2023a) durchgeführt hat, mussten einige 

Problembearbeitungsprozesse ausgeschlossen werden, weil für eine sinnvolle 

Auswertung zu wenig gesprochen wurde. Das laute Denken „zwingt“ die 

untersuchten Personen allerdings dazu, ihre Gedanken zu verbalisieren, sodass im 

bestmöglichen Szenario keine Gedankengänge verloren gehen und der natürliche 

Problembearbeitungsprozess in seiner Ganzheitlichkeit angemessener als in einer 

Interviewsituation abgebildet werden kann. 

Für die Studie dieser Arbeit scheint demnach die Erhebungsmethode des lauten 

Denkens geeignet zu sein. Ähnlich wie bei Göller (2020, S. 121ff.) wird sich 

demnach darauf verlassen, dass Studierende in der Lage sind, ihre Gedanken 

(zumindest zu einem ausreichenden Grad) zu verbalisieren. Dennoch wird sich 

gegen den Einsatz von Interviews entschieden, da diese entweder den 

Problembearbeitungsprozess beeinflussen oder zeitlich zu weit von der 

eigentlichen Handlung entfernt sind. Der große Vorteil des lauten Denkens ist 

seine ausgeprägte Prozessbezogenheit (Konrad, 2010). Für die Untersuchung 

beim Problemlösen, welches eben ein solcher Prozess ist, wird die Methode des 

lauten Denkens ausgenutzt. 

5.1.3 Lautes Denken als Erhebungsmethode 

Seit Anfang der 1970er-Jahre wächst die Popularität der Methode des lauten 

Denkens, vor allem in Studien zur Problemlöseforschung bzw. zu Aspekten 

kognitiver Prozesse (Konrad, 2010). Lautes Denken (Ericsson & Simon, 1980) 

ist mittlerweile ein etablierter methodischer Ansatz, um Gedankenprozesse der 

jeweiligen aktuellen Situation aufzudecken. Dabei müssen die geäußerten 

Gedanken nicht zwingend logisch oder gut strukturiert sein, allerdings geben sie 

die jeweiligen Denkhandlungen wieder. Dadurch lassen sich detaillierte 

Erkenntnisse über die während der Handlung stattfindenden Denkprozesse 

ableiten (Sandmann, 2014). Die Grundannahme zu dem theoretischen Modell des 

lauten Denkens bezieht sich auf die menschliche Informationsverarbeitung. Dabei 

wird angenommen, dass spezifische kognitive Strukturen sowie steuerbare 
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Prozesse des Individuums zur Informationsaufnahme und -verarbeitung 

existieren (Ericsson & Simon, 1980). 

 

Abbildung 16: Gedächtnismodell (Konrad, 2010, S. 478) 

Abbildung 16 liefert für die Informationsaufnahme und -speicherung ein Modell, 

welches in Sensorisches Register, Arbeitsspeicher (Ultrakurzzeit- und 

Kurzzeitgedächtnis) und Langzeitspeicher (Langzeitgedächtnis) unterscheidet. 

Das Modell besagt, dass die Aufnahme von Informationen aus der Umwelt 

zunächst für wenige Sekunden im Sensorischen Register gespeichert werden. Ein 

kleiner Teil dieser Informationen wird vom Individuum eine gewisse 

Aufmerksamkeit zugeschrieben, wodurch sie in das Kurzzeitgedächtnis gelangen. 

Die Informationen im Kurzzeitgedächtnis werden entweder durch neue 

Informationen aus dem sensorischen Register verdrängt oder durch verschiedene 

Techniken26 in das Langzeitgedächtnis transferiert (Konrad, 2010). Ericsson und 

Simon (1993) unterscheiden im Rahmen dieses Modells zwischen drei Ebenen 

der Verbalisierung: 

 

1. Verbalisierungsebene 1 (talk aloud): Auf dieser Verbalisierungsebene 

werden Informationen, die dem Individuum bereits in verbal kodierter 

Form vorliegen, aus dem Kurzzeitgedächtnis lediglich laut 

ausgesprochen. 

2. Verbalisierungsebene 2 (think aloud): Auf dieser Verbalisierungsebene 

werden Informationen, die dem Individuum noch nicht in verbal 

kodierter Form vorliegen, zunächst in verbaler Form enkodiert. Dieser 

 
26 Informationen gelangen zum Beispiel durch ständige Wiederholung in das 

Langzeitgedächtnis. Effektivere Techniken für den Transfer sind Elaborations- oder 

Organisationsstrategien (Konrad, 2010). 
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Enkodierungsprozess benötigt etwas Zeit, wodurch die primäre 

Handlung insgesamt etwas länger dauert.   

3. Verbalisierungsebene 3 (reflection prompts): Auf dieser 

Verbalisierungsebene werden untersuchte Personen explizit dazu 

aufgefordert, gewissen Gedankengänge zu erklären, zu interpretieren 

oder zu hinterfragen. Dabei handelt es sich, entgegen der intendierten 

natürlichen Situation der qualitativen Forschung, um eine 

Laborsituation. 

 

Verbale Berichte verlangsamen den primären Prozess, wobei sich auf den ersten 

beiden Verbalisierungsstufen die kognitiven Verfahren als auch die zeitliche 

Abfolge derer, nicht ändert (Ericsson & Simon, 1980; Sasaki, 2003). Somit 

entsprechen die Verbalisierungen den unmittelbaren Gedanken des 

Kurzzeitgedächtnisses.  

Die kognitiven Prozesse der dritten Ebene benötigen hingegen mehr Zeit, da 

zusätzliche Aspekte dazukommen. Vielmehr werden die kognitiven Prozesse der 

Individuen durch die Aufforderungen und Unterbrechungen des Forschenden bei 

der Bearbeitung der Primäraufgabe beeinflusst (Bannert, 2007). Die 

gespeicherten Informationen aus dem Kurzzeitgedächtnis werden sich somit 

verändern (Konrad, 2010).  

Daraus lässt sich ableiten, dass insbesondere die Verbalisierungsebenen 1 und 2 

für die Untersuchung dieser Arbeit interessant sind. Beide Ebenen spiegeln dabei 

eine natürliche Situation wider, während die äußeren Aspekte der Ebene 3 

mathematische Problembearbeitungsprozesse beeinflussen. Kommentare und 

Nachfragen von Forschenden haben dabei das Potenzial, die kognitiven Prozesse 

der untersuchten Person auf bestimmte Aspekte zu lenken, wodurch kein 

natürlicher Problembearbeitungsprozess entsteht. Im Sinne des 

Forschungsinteresses sollen keine mathematischen Problembearbeitungsprozesse 

einer Laborsituation untersucht werden. Aus diesem Grund wird davon 

abgesehen, während der Bearbeitungen der Studierenden inhaltlich zu 

intervenieren, um einen natürlichen Problembearbeitungsprozess entstehen zu 

lassen. 

Der Einsatz der Methode des lauten Denkens findet sich in verschiedenen 

Forschungsbereichen wieder. Die pädagogisch-psychologische und 

naturwissenschaftsdidaktische Lehr-Lernforschung nutzt lautes Denken vor 

allem für Problemlöse- und Lernstrategieforschung (Sandmann, 2014). In der 

mathematikdidaktischen Forschung wird lautes Denken häufig in 

Problembearbeitungsprozessen genutzt, um metakognitive und kognitive 

Prozesse (z. B. Jacobse & Harskamp, 2012) sowie Strategien, Fehlvorstellungen 

und Hürden (z. B. Montague et al., 2011) zu beobachten. Typischerweise werden 

bei diesen Untersuchungen aus theoretischer Perspektive Problemlöseaufgaben 

gestellt, um die Prozesse der untersuchten Personen zu erforschen bzw. 
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analysieren. Dabei wird mit der Prozessbezogenheit genau die Stärke des lauten 

Denkens ausgenutzt (Konrad, 2010). Es gibt allerdings auch Nachteile, die durch 

das laute Denken auftreten können. Es ist nicht klar, ob die untersuchten Personen 

tatsächlich in der Lage sind, all ihre Gedanken zu verbalisieren. Vor allem scheint 

es so, dass besonders abstrakte Gedanken nicht gut wiedergegeben werden 

können, weil sie zunächst für die Sprache simplifiziert werden müssen (Charters, 

2003). Dabei ist zum Beispiel ein Prozess gemeint, welcher in der 

Verbalisierungsebene 2 stattfindet. Komplexe Sachverhalte müssen manchmal für 

die Sprache enkodiert werden. Diese Simplifizierung kann die Aufmerksamkeit 

der problemlösenden Person von dem eigentlichen Lernprozess ablenken. 

Zusätzlich ist es möglich, dass automatisierte geistige Operationen nicht 

unbedingt verbalisiert werden, da diesen Prozessen keine Aufmerksamkeit 

zugewiesen wird (Waern, 1988). Letztlich stellt sich die Frage, inwiefern das laute 

Denken die kognitive Leistung beeinflusst. Die Studienlage scheint dazu keine 

Einigkeit zu erreichen. Es existieren Studien, die keine Performanzunterschiede 

(z. B. Biggs et al., 1993), positive Effekte (z. B. Franzen & Merz, 1988) oder 

negative Effekte (Schooler et al., 1993) für die primäre Beschäftigung festgestellt 

haben. 

Methoden der Datenaufnahme und -dokumentation 

Durch das Anwenden der Methode des lauten Denkens geben untersuchte 

Personen ihre Gedanken während einer primären Handlung preis. Typischerweise 

ist während dieser Handlung zumindest eine forschende Person in räumlicher 

Nähe. Die forschende Person stellt dabei sicher, dass der Forschungsrahmen des 

lauten Denkens eingehalten wird. Dies geschieht bspw. durch eine Erinnerung an 

das laute Denken, falls die untersuchte Person nach einer gewissen Zeit nicht 

mehr spricht. Das Forschungsdesign erhält damit automatisch einen 

beobachtenden Charakter, indem die forschende Person an der Lebenswelt der 

untersuchten Person teilnimmt. 

Während einer Beobachtung werden oftmals Feldnotizen erstellt, um sie später 

auswerten zu können. Das Forschungsinteresse dieser Arbeit ist allerdings 

komplex sowie vielschichtig und bezieht sich nicht nur auf einzelne Aspekte. Da 

die Daten zeitgleich mit der Beobachtung erfasst werden, würde die Fülle und 

Frequenz an Informationen leicht zu einer Überforderung bei der forschenden 

Person führen (Döring & Bortz, 2016). Dabei scheint es unvermeidlich, dass 

wichtige Aspekte übersehen werden und für die spätere Auswertung verloren 

gehen. Eine Abhilfe schafft dabei das mediale Aufzeichnen (Video- und 

Audioaufnahme) der beobachtenden Verhaltensweisen und Aussagen. Durch das 

Aufzeichnen sind somit eine zeitversetzte Analyse und Interpretation der 

Verhaltensweisen sowie Aussagen der untersuchten Personen möglich (Döring & 

Bortz, 2016). Die Aufnahmen dienen demnach als „Konservierung“ der sozialen 
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Wirklichkeit und gestatten Forschenden einen wiederholten Zugriff auf das 

Geschehen, so wie es sich original zugetragen hat (Tuma & Schnettler, 2019). 

5.1.4 Qualitative Inhaltsanalyse als Auswertungsmethode 

Durch die gewählte Erhebungsmethode wird in dieser Arbeit eine umfangreiche 

Menge an Material gesammelt, die sowohl aus nonverbaler (Handlungen und 

Mitschriften der Studierenden) als auch verbaler Kommunikation (Gedanken 

mittels des lauten Denkens) besteht. Der methodische Ansatz der qualitativen 

Inhaltsanalyse beschäftigt sich mit Materialien, die genau aus dem Bereich der 

Kommunikation entstammen.  

Es gibt verschiedene Ansätze und Definitionsversuche zur qualitativen 

Inhaltsanalyse. Mayring (2022, S. 12f.) arbeitete diesbezüglich sechs Punkte 

heraus, um die Besonderheiten der Auswertungsmethode darzustellen und von 

anderen Auswertungsmethoden abzugrenzen: 

 

1. Die Inhaltsanalyse befasst sich mit der Kommunikation. In den meisten 

Fällen bezieht sich dies auf die Sprache, es können allerdings auch 

andere Arten von Kommunikation (z. B. Musik, Bilder, Videos, etc.) 

zum Gegenstand der Inhaltsanalyse gemacht werden. 

2. Die Inhaltsanalyse arbeitet mit symbolischen Materialien (Texten, 

Bildern, Noten, etc.), welche in einer protokollierten Form vorliegen. Es 

handelt sich um eine fixierte Kommunikation. 

3. Die Inhaltsanalyse geht systematisch vor. Dies steht im Gegensatz zu 

freien Interpretationen oder impressionistischen Ausdeutungen des zu 

analysierenden Materials. 

4. Das systematische Vorgehen zeichnet sich dadurch aus, dass in der 

Analyse regelgeleitet vorgegangen wird. Im Sinne der intersubjektiven 

Nachvollziehbarkeit (Kapitel 5.1.5) besteht die Möglichkeit, die 

einzelnen Schritte der Analyse zu verstehen, nachzuvollziehen und zu 

überprüfen. 

5. Das systematische Vorgehen lässt sich ebenfalls daran erkennen, dass die 

Analyse theoriegeleitet vorgeht. Dies bedeutet, dass das Material 

bezüglich einer theoretisch ausgewiesenen Fragestellung analysiert 

wird. Außerdem werden die Ergebnisse bezüglich des theoretischen 

Hintergrunds interpretiert. 

6. Die Inhaltsanalyse erhebt den Anspruch, das Material als Teil des 

Kommunikationsprozesses zu analysieren und ist daher eine 

schlussfolgernde Methode. Mit Aussagen des zu analysierenden 

Materials werden Rückschlüsse auf bestimmte Aspekte der 

Kommunikation gezogen.  
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Auf die sechs Punkte wird im späteren Verlauf bei der Darstellung der einzelnen 

Erhebungsmethoden zurückgegriffen.  

Die allgemeine Vorgehensweise einer qualitativen Inhaltsanalyse lässt sich der 

Abbildung 17 entnehmen. 

 

Abbildung 17: Allgemeines inhaltsanalytisches Ablaufmodell (Mayring, 2022, S. 61) 

Zunächst wird der Umfang des zu untersuchenden Materials festgelegt und ggfs. 

eine repräsentative Teilmenge des Materials selektiert. Dabei wird berücksichtigt, 

dass relevante Daten ausgesucht werden, die sich auf die Forschungsfrage 

beziehen. Für die Entstehungssituation ist es wichtig zu klären, in welchem 

Zusammenhang die Materialien produziert wurden (Wer hat teilgenommen? 
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Soziale Bedingungen der Teilnehmenden? Atmosphäre der Situation, etc.). 

Außerdem sollten das zu analysierende Material bezüglich der formalen 

Charakteristika genau bestimmt und dokumentiert werden (meistens in 

Transkriptionen). Anschließend wird die Richtung der Analyse festgelegt, indem 

entschieden wird, über welche Aspekte des vorhandenen Materials Aussagen 

getroffen werden sollen. Darüber hinaus sollten aus der bereits bestehenden 

Theorie die konkreten Forschungsfragen angebunden werden. Letztlich erfolgt 

die Festlegung, welches inhaltsanalytische Verfahren als Analysetechnik 

angewandt wird (Zusammenfassung, Explikation, Strukturierung27). Die 

Analyseeinheiten definieren wie minimal oder maximal die Kodiereinheiten sein 

sollen. Abschließend wird die Materialanalyse anhand der Analysetechnik und -

einheit durchgeführt, um die Ergebnisse schlussendlich zusammenzustellen und 

in Richtung der Fragestellung zu interpretieren. 

Eine detailliertere Beschreibung des Vorgehens befindet sich in Mayring (2022, 

S. 53ff). 

5.1.5 Berücksichtigung qualitativer Gütekriterien im Rahmen dieser Arbeit 

Für Forschungsarbeiten im Rahmen des qualitativen Forschungsparadigmas stellt 

sich die Frage, wie die Qualität von qualitativer Forschung sichergestellt werden 

kann. Dabei gibt es verschiedene Sichtweisen, die diskutiert werden (Steinke, 

2017, S. 319ff): Die Übernahme von quantitativen Kriterien, die Entwicklung 

eigener Kriterien oder die Ablehnung jeglicher Kriterien. Steinke (2017, S. 323ff) 

legt dabei einige Kernkriterien fest, an denen sich qualitative Forschung 

orientieren kann, wobei die Spezifität der Untersuchung berücksichtigt werden 

sollte. 

Intersubjektive Nachvollziehbarkeit 

Im Gegensatz zur quantitativen Forschung kann die qualitative Forschung nicht 

intersubjektiv überprüft werden. Eine qualitative Forschung lässt sich kaum 

identisch replizieren, weshalb stattdessen die intersubjektive Nachvollziehbarkeit 

herangezogen wird. Aus dieser können Rückschlüsse auf eine Bewertung der 

Ergebnisse gezogen werden. Steinke (2017, S. 324) schlägt für die Sicherung und 

Prüfung der intersubjektiven Nachvollziehbarkeit drei Wege vor: Dokumentation 

 
27 Zusammenfassung: Ziel der Analyse ist es, das Material so zu reduzieren, dass die 

wesentlichen Inhalte erhalten bleiben, durch Abstraktion einen überschaubaren Corpus zu 

schaffen, der immer noch Abbild des Grundmaterials ist (Mayring, 2022, S. 66).  

Explikation: Ziel der Analyse ist es, zu einzelnen fraglichen Textteilen (Begriffen, Sätzen, …) 

zusätzliches Material heranzutragen, das das Verständnis erweitert, das die Textstelle 

erläutert, erklärt, ausdeutet (Mayring, 2022, S. 66). 

Strukturierung: Ziel der Analyse ist es, bestimmte Aspekte aus dem Material herauszufiltern, 

unter vorher festgelegten Ordnungskriterien einen Querschnitt durch das Material zu legen 

oder das Material aufgrund bestimmter Kriterien einzuschätzen (Mayring, 2022, S. 66). 
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des Forschungsprozess, Interpretation in Gruppen sowie Vorgehen nach 

kodifizierten Verfahren.  

Die Dokumentation des Forschungsprozesses ist eine zentrale Technik. Dies 

bedeutet, dass lesenden Personen die Möglichkeit gegeben wird, den 

Forschungsprozess Schritt für Schritt nachzuvollziehen. Zu der Dokumentation 

des Forschungsprozesses gehören die Dokumentation des Vorverständnisses 

(Kapitel 1 bis Kapitel 4), die Dokumentation der Erhebungsmethoden (Kapitel 

5.1.3) und Erhebungskontext (Kapitel 5.2), die Dokumentation der 

Transkriptionsregeln (Anhang), die Dokumentation der Daten (Kapitel 5.2), die 

Dokumentation der Auswertungsmethoden (Kapitel 5.4), die präzise 

Dokumentation der Informationsquellen (Kapitel 5.2) sowie die Dokumentation 

von Entscheidungen und Problemen (z. B. Änderungen der Kategoriensysteme, 

Darstellung von Problemen bei der Kodierung). Hinsichtlich der (Material-

)Interpretation in Gruppen wurde ein Teil der Analyse in einem 

Doktorandenkolloquium sowie auf verschiedenen Tagungen diskutiert (ICME-

Beitrag, GDM-Poster, GDM-Beitrag). Dies dient zur Herstellung von 

Intersubjektivität und Nachvollziehbarkeit im Umgang und Interpretation der 

Daten. Letztlich wird ebenfalls ein kodifiziertes Verfahren angewandt (Kapitel 

5.1.4). 

Indikation des Forschungsprozesses 

Das Kriterium der Indikation des Forschungsprozesses besagt, inwiefern die 

gesamte Forschung als angemessen angesehen werden kann. Steinke (2017, S. 

326ff.) legt dafür einige untergeordnete Aspekte fest.  

Zunächst wurde bereits diskutiert, warum der qualitative Forschungsrahmen 

(Kapitel 5.1.1) sowie die Auswahl der Erhebungsmethoden (Kapitel 5.1.3) für die 

aufgeworfenen Forschungsfragen ausgewählt wurde. Die Transkription wurde 

semantisch-inhaltlich durchgeführt und erfolgte durch Rückbezug auf die 

Literatur (Dresing & Pehl, 2018). Die expliziten Transkriptionsregeln befinden 

sich im Anhang. Bezüglich des Sampling wurde die Rekrutierung der 

Teilnehmenden auf freiwillige Basis durchgeführt, wodurch keine Auswahl durch 

die forschende Person getätigt wurde. Möglicherweise kann dies dazu führen, 

dass keine echte Teilmenge aller Ingenieurstudierenden betrachtet wird. Dies 

kann allerdings auch noch weiter diskutiert werden, denn die Untersuchung hat 

nur an der Universität Paderborn stattgefunden. Es hätten z. B. noch 

Ingenieurstudierende aus anderen Universitäten als Informanten aufgenommen 

werden können. Dies spricht unter anderem auch die Limitationen der 

Verallgemeinerbarkeit (Steinke, 2017, S. 329f) der Studie an.  
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Empirische Verankerung 

Die empirische Verankerung verlangt, dass sowohl Theorien als auch Hypothesen 

durch die vorliegenden Daten begründet werden (Steinke, 2017, S. 328f). Dafür 

wird sichergestellt, dass die Analysen und Interpretationen auf Grundlage der 

Videoaufnahmen, Transkripte bzw. Material der Studierenden aufbauen. Dabei 

eignen sich die Videoaufnahmen besonders gut, damit der ursprüngliche Kontext 

erhalten bleibt und wiederholt zur Analyse verwendet werden kann. Dies 

ermöglicht zudem die angemessene Verankerung des Materials und wurde daher 

vor den Feldnotizen bevorzugt. Letztlich werden mehrere Textbelege (Auszüge 

aus den Transkripten bzw. Material der Studierenden) für Begründungen und 

Interpretationen dargelegt. 

Glaubwürdigkeit und Validierung 

In der qualitativen Forschung gibt es unterschiedliche Möglichkeiten, 

Glaubwürdigkeit und Validität sicherzustellen (Elliott et al., 1999, S. 222). In 

dieser Arbeit wird der Aspekt vor allem durch das Hinzuziehen anderer Forscher 

bedient, womit die Validität gewährleistet werden soll (Bortz & Döring, 2006, S. 

328). Damit ist die interpersonale Konsensbildung (konsensuelle Validierung) 

gemeint (z. B. für die Kodierung zur Wissensmatrix in Kapitel 5.4.2), bei der sich 

Forschende auf die Glaubwürdigkeit und Bedeutungsgehalt des Materials einigen 

können. Obwohl es für qualitative Forschung eher ungewöhnlich ist, kann auch 

eine Intercoder-Übereinstimmung bestimmt werden (z. B. für die 

Episodenkodierung in Kapitel 5.4.1). Die qualitative Inhaltsanalyse muss sich 

solchen quantitativen Analyseschritten nicht verschließen, sondern kann diese 

(wie z. B. die Intercoder-Übereinstimmung) gut begründet einbeziehen (Mayring, 

2017, S. 471). 

5.2 Studiendesign 

Eine vorangegangene Pilotierung bildete die Grundlage für das Studiendesign der 

vorliegenden Arbeit. Ziel dieser Pilotierung war es, die geplanten Verfahren zu 

testen und mögliche Optimierungen vorzunehmen. Die Ergebnisse wurden auf 

der GDM-Tagung 2022 in Form eines Posters präsentiert und führten zur 

Entwicklung des endgültigen Studiendesigns. Im Folgenden wird zunächst der 

Kontext der Studie (Kapitel 5.2.1) beschrieben, um die thematische Einbettung 

zu verdeutlichen. Anschließend wird auf authentische Lernsituationen (Kapitel 

5.2.2) eingegangen, die einen zentralen Bestandteil der Untersuchung darstellen. 

5.2.1 Kontext der Studie 

Die Studie wurde in der Veranstaltung „Mathematik 1 für Maschinenbauer“ an 

der Universität Paderborn durchgeführt. In der Regel nehmen Studierende im 
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ersten Semester an dieser Veranstaltung teil. Es werden die typischen Termine 

einer mathematischen Veranstaltung angeboten (Abbildung 18): Im 

wöchentlichen Rhythmus gibt es zwei Vorlesungen, eine Zentralübung sowie 

Kleingruppenübungen/Tutorien28. In der Vorlesung wurde der mathematische 

Inhalt präsentiert, welcher in den Tutorien mittels Übungsaufgaben gemeinsam 

mit den Tutor:innen oder in Einzelarbeit eingeübt wurde. Außerdem dienten die 

Übungsaufgaben aus den Tutorien als Vorbereitung für die Aufgaben der 

Hausübungen, da sie oftmals ein ähnliches Anforderungsprofil aufzeigten. Die 

Hausaufgaben durften von Studierenden freiwillig abgegeben werden und waren 

nicht Teil einer Studienleistung. Allerdings konnten die Studierenden mit 

erfolgreicher Abgabe der Hausaufgaben maximal 8 % Bonuspunkte für die 

Klausur sammeln. Die Regelung zum Bonuspunktesystem kommt aber erst dann 

zum Einsatz, wenn die Klausur bereits ohne die Bonuspunkte bestanden wurde. 

Die abgegebenen Hausaufgaben wurden eine Woche später in der Zentralübung 

besprochen. 

 

 

Abbildung 18: Struktur der Veranstaltung "Mathematik für Maschinenbauer I" 

Innerhalb der Veranstaltung hat die Datenerhebung mit dem Hausaufgabenblatt 

12 begonnen, welches in der ersten Vorlesungswoche nach den Weihnachtsferien 

abgegeben werden musste. Das Thema der Differentialrechnung wurde in fünf 

Vorlesungen behandelt, wodurch auf drei Hausübungsblättern Aufgaben zu dem 

Themengebiet gestellt wurden. Die zentralen Inhalte der Vorlesungen waren: 

Begriff der Differenzierbarkeit, n-te Ableitung, Differentiationsregeln, 

Ableitungsregeln, die Regel von L`Hospital, Taylorsche Formel mit Restglied, 

Bestimmung von Extremstellen und Kurvendiskussion. Die Datenerhebung 

endete mit der Abgabe von Hausübungsblatt 14. 

Die Teilnahme an der Studie erfolgte freiwillig, wobei jede teilnehmende Person 

eine Aufwandsentschädigung von 30 Euro erhalten hat. Insgesamt haben sich 

 
28 im Folgenden nur noch als Tutorium benannt, da Studierende diesen Ausdruck genutzt haben. 
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zehn Studierende bereit erklärt, an der Studie teilzunehmen. Darunter zwei 

Lerngruppen, die jeweils aus zwei bzw. vier Studierenden bestanden, sowie vier 

Studierende, die ohne Lerngruppe teilgenommen haben. Die Vierer-Lerngruppe 

bestand aus vier weiblichen Studierenden, die restlichen Teilnehmenden waren 

männlich. Neun der zehn Studierenden haben an der Veranstaltung zum ersten 

Mal teilgenommen, während ein Studierender die Veranstaltung zum zweiten Mal 

besucht hat.  

 
Gruppe Name Studiengang Fachsem

ester 

Abiturnote 

allgemein 

Abiturnote 

Mathematik 

G1 David Maschinenbau 1 k.A. 8 Punkte 

G2 Simon W-Ing 

(Maschbau) 

3 2,4 8 Punkte 

G3 Thomas Maschinenbau 1 2,4 12 Punkte 

Alex Maschinenbau 1 2,6 11 Punkte 

G4 Sarah W-Ing 

(Maschbau) 

1 1,9 10 Punkte 

Lisa W-Ing 

(Maschbau) 

1 1,6 11 Punkte 

Paula W-Ing 

(Maschbau) 

1 2,0 10 Punkte 

Lea W-Ing 

(Maschbau) 

1 1,4 12 Punkte 

G5 Nick W-Ing 

(Maschbau) 

1 2 11 Punkte 

G6 Lukas W-Ing 

(Maschbau) 

1 2,5 6 Punkte 

Tabelle 8: Informationen zu den Studienteilnehmenden 

Durch die freiwillige Teilnahme an der Studie ist es möglich, dass es sich 

bezüglich der Stichprobe um eine Positivauswahl handelt. Studierende, die 

besonders motiviert sind oder sich die Bearbeitung der Hausaufgaben in einer 

Studiensituation (aus inhaltlicher als auch aus organisatorischer Sicht) zutrauen, 

nehmen womöglich am ehesten an einer solchen Studie teil. Außerdem muss 

erwähnt werden, dass eine Voraussetzung für die Teilnahme der Studie war, dass 

Studierende außerhalb der Veranstaltungstermine die Hausaufgaben bearbeiten. 

Da die Bearbeitung der Hausaufgaben in der Veranstaltung freiwillig abgegeben 

werden konnten, haben an der Studie nur Studierende teilgenommen, die ohnehin 

eine Hausaufgabenbearbeitung anstrebten bzw. dies geplant hatten. Es kann 

gefolgert werden, dass die Arbeitsmotivation der Studierenden vergleichsweise 

hoch war. 

Aus der Tabelle 8 lässt sich erkennen, dass sich die Teilnehmenden der Studie 

bezüglich der allgemeinen Abiturnote fast alle in einem guten Bereich befinden 

(außer Lea mit Note 1,4 und Alex mit Note 2,6). Bezüglich der Mathematik-
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Abiturnote befinden sich die Teilnehmenden größtenteils in dem Notenspektrum 

zwischen gut und befriedigend (außer Lukas mit 6 Punkten). In dieser Stichprobe 

ist jedoch auffällig, dass vor allem die Studierenden in einer Lerngruppe bessere 

Mathematiknoten im Abitur erhalten haben, als Studierende, die sich ohne 

Kommiliton:innen mit den Hausaufgaben beschäftigen (außer Nick mit 11 

Punkten). 

Obwohl sich die Teilnehmenden der Studie größtenteils im ersten Semester 

befinden, lässt sich davon ausgehen, dass viele organisatorische 

Herausforderungen des Übergangs von der Schule zur Hochschule inzwischen 

besser bewältigt werden. Die Studierenden haben sich vermutlich bereits an 

Dinge wie das Zurechtfinden im Studium und das Bilden von Lerngruppen 

gewöhnt. Hinsichtlich der fachlichen Eingewöhnung hingegen könnte es sein, 

dass die Studierenden noch immer in Anpassungsprozessen stecken, da die 

Umstellung auf die neue Art der Wissensvermittlung weiterhin 

Herausforderungen mit sich bringen könnte.  

5.2.5 Datenerhebung in authentischen Lernsituationen 

Das Ziel der Studie ist es, eine möglichst natürliche bzw. authentische 

Lernsituation von Studierenden abbilden zu können. Innerhalb dieser 

Lernsituation ist der Problembearbeitungsprozess eingebettet. Eine authentische 

Lernsituation lässt sich dadurch beschreiben, dass sie der Realität entspricht und 

durch keine anderen Faktoren beeinflusst wird. Um solche Lernsituationen zu 

erfassen, die möglichst authentisch sind, wurden mehrere Maßnahmen ergriffen. 

Dabei erfolgte ein möglichst minimaler Eingriff in die Lernsituation der 

Studierenden, während gleichzeitig die notwendigen Aufnahmen zur 

Datensammlung erhoben wurden, die für eine Auswertung geeignet sind. Die 

Balance der Einhaltung von authentischen Lernsituationen und einer sinnvollen 

Erhebung von Daten für die Studie wird im Folgenden dargestellt.  

Bearbeitung von Aufgaben 

Zunächst wurde bezüglich der bearbeiteten Aufgaben vor der Durchführung der 

Studie nicht mit den verantwortlichen Personen der Veranstaltung abgestimmt, 

welche Aufgaben von Studierenden zum Thema der Differentialrechnung 

bearbeitet werden sollen. Die Aufgaben dieser Studie entstammen demnach aus 

dem normalen Semesterbetrieb und wurden von den verantwortlichen Personen 

der Veranstaltung festgelegt. Darüber hinaus wurde den teilnehmenden 

Studierenden der Studie vom Studienleiter nicht vorgegeben, welche Aufgaben 

der Hausaufgabe bearbeitet werden sollten. Dies haben sich die Studierenden 

selbst ausgesucht, wobei nahezu jede Aufgabe von den teilnehmenden 

Studierenden bearbeitet wurde.  
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Lernort und Lernzeit 

Ein weiterer Aspekt des Lernens sind der Lernort und die Lernzeit. Während die 

Termine der Veranstaltung an festgelegten Zeitpunkten und Räumen in der Woche 

stattfinden, können sich Studierende ihren eigenen Lernort sowie ihre Lernzeit 

selbständig festlegen. Eine Vorgabe bezüglich der Zeit sowie des Orts würde 

daher ein Eingriff in die natürliche Lernsituation der Studierenden darstellen. Um 

dies zu beachten, wurden die teilnehmenden Studierenden zwei Wochen vor 

Beginn der Studie gebeten, einen Selbstbericht zu ihrem typischen Lernverhalten 

abzugeben. Im Stil eines Lerntagebuchs (Landmann & Schmitz, 2007) erhielten 

die Studierenden vorstrukturierte Fragen, die auf gewisse Routinen in ihrem 

mathematischen Lernverhalten abzielen. Dabei hat sich herausgestellt, dass die 

Studierenden sowohl zeitlich als auch räumlich wenig bis keine festgelegten 

Routinen besitzen, sodass eine Terminabsprache mit den Studierenden flexibel 

abgestimmt werden konnte. Die einzige zeitliche Bedingung war, dass die 

Studierenden die Hausaufgaben erst nach dem Besuch des eigenen Tutoriums 

bearbeiten wollten. Bezüglich eines Raums haben die Studierenden die 

Hausaufgaben vor der Studie meistens in leeren Räumen der Universität 

bearbeitet. Für den Zeitraum der Studie wurde den teilnehmenden Studierenden 

zugesichert, dass sie einen freien Lernraum der Universität nutzen können, in dem 

sie ungestört an den Hausaufgaben arbeiten können. Dieser Lernraum wurde 

während der Studie von allen teilnehmenden Studierenden zu jeder ihrer 

Lernsessions in Anspruch genommen. Die Vorbereitung des Raumes durch den 

Studienleiter begünstigte eine zweckdienliche Videografie. 

Videografie 

Die Videografie der Bearbeitungsprozesse zu den Hausaufgaben stellte den ersten 

Eingriff in die authentische Lernsituation dar. Die Dokumentation der 

Bearbeitungsprozesse von Studierenden ist allerdings notwendig, um diese 

anschließend nach wissenschaftlichen Standards auswerten zu können. Für 

Studierende ist es eine ungewöhnliche Situation, dass während des Lernens eine 

Kamera auf sie gerichtet ist. Im Sinne der sozialen Erwünschtheit (Paulhus & 

Delroy, 2002; Sandmann, 2014) ist es deshalb durchaus denkbar, dass sich die 

Studierenden mit ihrem Verhalten der ungewohnten Videosituation anpassen. 

Darüber hinaus können Studierende durch den beobachtenden Charakter der 

Kameras atypisch zu ihrem gewohnten Verhaltensmuster agieren. 

Lautes Denken29 

Zur Zweckdienlichkeit der Datenauswertung wurden die Studierenden gebeten, 

dass sie während des Lernens laut denken sollen. Es besteht die Notwendigkeit 

 
29 Theoretische Überlegungen zum Lauten Denken wurden bereits in Kapitel 5.1.3 vorgestellt. 
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verbale Aussagen zu erheben, um in der folgenden Analyse Ergebnisse zum 

mathematischen Problembearbeitungsprozess ableiten zu können. Aus diesem 

Grund ist die Methode des lauten Denkens unabdingbar. 

Eine typische Lernsitzung in einem Studiensetting mit lautem Denken verläuft 

wie folgt (Sandmann, 2014): 

 

1. Einführung in die Lernsitzung 

2. Erklärung des Ziels der Lernsitzung und der Lernaufgabe 

3. Instruktion zum lauten Denken 

4. Übungsaufgaben zum lauten Denken 

5. Bearbeitung des Lernmaterials 

6. Technische Datensicherung 

 

Dieses Vorgehen wurde in der ersten Lernsitzung mit den teilnehmenden 

Studierenden umgesetzt. In anschließenden Lernsitzungen wurde nur noch bei 

Punkt fünf gestartet. 

Bezüglich des vierten Punktes ist es ratsam, dass problemlösende Personen vor 

dem eigentlichen Start der Studie mit der Methode anhand einer Übungsaufgabe 

für das laute Denken sensibilisiert werden sollten (Sandmann, 2014). Dabei sollte 

beachtet werden, dass Verbalisierungen sich darauf konzentrieren, „WAS“ 

Studierende denken, statt zu thematisieren, „WARUM“ so gedacht wird (Wolcott 

et al., 2021). Damit soll vermieden werden, dass die teilnehmenden Studierenden 

nicht in die Verbalisierungsebene 3 (Kapitel 5.1.3) rutschen und versuchen ihre 

Gedanken zu erklären bzw. zu interpretieren. Um den Studierenden ein Beispiel 

des lauten Denkens zu geben, wurde demnach vor der ersten Lernsession eine 

zufällig ausgewählte FERMI-Aufgabe vom Studienleiter bearbeitet. Im 

Anschluss haben sich die Studierenden selbstständig mit einer weiteren zufällig 

ausgewählten FERMI-Aufgabe beschäftigt. FERMI-Aufgaben sind offene, 

realitätsnahe Schätzaufgaben, die mit begrenzten Informationen auskommen und 

kreatives bzw. problemlösendes Denken fördern, indem gewisse Annahmen 

getroffen werden müssen. Typischerweise verlangt das Lösen einer FERMI-

Aufgabe demnach kreative Ansätze und wird daher als Üben für das laute Denken 

als geeignet erachtet. Sowohl der Studienleiter als auch die Studierenden haben 

während des Lösens der FERMI-Aufgaben laut gedacht. 

Studienleiter 

Ein weiterer Aspekt ist die Rolle des Studienleiters während der Lernsituation. 

Um sicherzustellen, dass sowohl die technischen Bedingungen (Kamera, 

Mikrofone, Akku) als auch die Methode des lauten Denkens von den 

Studierenden eingehalten werden, wird der Studienleiter unvermeidlich ebenfalls 

Teil der Lernsituation sein. Bezüglich der Methode des lauten Denkens greift der 

Studienleiter nur dann in den Prozess ein, wenn längere Ruhephasen entstehen 
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(Wolcott et al., 2021). In solchen Momenten erinnert der Studienleiter die 

Studierenden an das laute Denken. Obwohl der Studienleiter nicht mit der 

Veranstaltung „Mathematik für Maschinenbau I“ assoziiert ist, kann dies 

trotzdem, erneut im Sinne der sozialen Erwünschtheit (Paulhus & Delroy, 2002; 

Sandmann, 2014), einen Einfluss auf das Verhalten der Studierenden haben. 

Dennoch schafft die Nicht-Assoziation des Studienleiters mit der Veranstaltung 

eine Möglichkeit, eine lockere Atmosphäre für die Studierenden zu schaffen. Vor 

allem durch den vorhergegangenen Selbstbericht und die flexiblen 

Terminabsprachen kann bereits ein freundschaftliches Verhältnis erzeugt werden, 

wodurch Studierenden mögliche Unsicherheiten genommen werden können. 

(Technisches) Setup 

Um die Anwesenheit des Studienleiters zu minimieren, wird das Set-Up 

(Abbildung 19) der Lernsituationen so aufgebaut, dass sich der Studienleiter 

außerhalb des Sichtfelds der Studierenden befindet. Die Platzierung der Kameras 

wurde im Vorhinein abgestimmt (Mondada, 2006). Da nicht zu erwarten ist, dass 

Studierende sich von ihrem Sitzplatz bewegen, können die Kameras stationär 

aufgestellt werden. Dazu werden jeweils zwei Mikrofone und Kameras auf die 

Studierenden gerichtet, wobei der Fokus der ersten Kamera auf dem Material der 

Studierenden und der Fokus der zweiten Kamera auf den Studierenden selbst 

liegt. 

 

 

Abbildung 19: Set-up der Lernsituation (im Bild für eine Zweier-Lerngruppe) 

Dauer der Lernsessions 

Ähnlich wie bei dem Lernort und der Lernzeit können die Studierenden die Dauer 

ihrer Lernsessions selbstständig festlegen, was während der Erhebung 

berücksichtigt wird. Die Länge der Lernsessions, mitsamt möglichen 

Unterbrechungen, wird daher nicht im Vorhinein (durch den Studienleiter) 
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festgelegt. Vor den Lernsessions wird allerdings vom Studienleiter erfragt, mit 

welchem zeitlichen Umfang die Studierenden ungefähr planen, um mögliche 

Terminkollisionen mit Lernsessions von anderen teilnehmenden Studierenden zu 

vermeiden. 

Einsammeln von Materialien 

Wenn sich die Studierenden entschließen, die Lernsituation zu beenden, werden 

alle Materialen der Studierenden „eingesammelt“. Die schriftlichen Produkte der 

Studierenden zu den Hausaufgaben wurden entweder vom Studienleiter 

abfotografiert (falls Studierende mit Zettel und Stift gearbeitet haben) oder von 

den Studierenden an den Studienleiter geschickt (falls Studierende mit einem iPad 

oder Ähnlichem gearbeitet haben).  

5.3 Stoffdidaktische Analyse der bearbeiteten Aufgaben 

Bevor empirisch auf die Problembearbeitungsprozesse eingegangen wird, erfolgt 

an dieser Stelle die Darstellung stoffdidaktischer Überlegungen bezüglich der drei 

Aufgaben („Differenzierbarkeit prüfen“ in Kapitel 5.3.1; „Mittelwertsatz“ in 

Kapitel 5.3.2; „L´Hospital in Kapitel 5.3.3). „Dies dient dem besseren Verständnis 

der gefilmten Prozesse – denn nur, wenn man eine Aufgabe (selbst) durchdrungen 

hat, kann man ihre Bearbeitung durch andere Personen vernünftig 

nachvollziehen.“ (Rott, 2013, S. 133). Dafür sollen die Anforderungen der 

Aufgabe sowie ein typischer Lösungsprozess skizziert werden. Um dies abbilden 

zu können, wird sich auf die Idee der erweiterten Musterlösungen von Ableitinger 

und Hermann (2011) berufen:  

„Wir haben etwa ausführliche Musterlösungen verfasst, die die in den Aufgaben steckenden 

Anforderungen explizit machen sollten. Dabei wurden z. B. die Aufgabenstellungen so umformuliert, 
dass die ihnen zugrundeliegenden Probleme deutlich sichtbarer werden. Es wurden wichtige Ideen in 

den Lösungen akzentuiert, Handlungsalternativen aufgezeigt und eventuelle Sichtweisenwechsel 

explizit gemacht. Es wurde – um es auf den Punkt zu bringen – versucht, jeden einzelnen 
Lösungsschritt und die ihn steuernden Begleitüberlegungen möglichst genau offenzulegen“ 

(Ableitinger, 2012, S. 91).“ 

Das schriftlich festgehaltene mathematische Endprodukt einer Aufgabenlösung 

spiegelt oftmals nicht den typischen Prozess wider, den problemlösende Personen 

durchlaufen. Der Ansatz von ausführlichen Musterlösungen kommt daher einem 

mathematischen Lösungsprozess näher als eine möglichst knapp gehaltene 

Lösung. Darüber hinaus können die steuerlichen Begleitüberlegungen stärker die 

Überlegungen zu den Vorgehensweisen aufzeigen. 

Für die Erstellung der ausführlichen Musterlösungen dienen zunächst die 

Lösungsvorschläge der Veranstaltung „Mathematik für Maschinenbau I“ als 

Ausgangspunkt. Die knapp gehaltenen Lösungsvorschläge wurden anschließend 

im Sinne der ausführlichen Musterlösungen (Ableitinger & Hermann, 2011) mit 
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steuerlichen Begleitüberlegungen erweitert. Damit die angefertigte ausführliche 

Musterlösung immer noch die Anforderungen der Aufgaben widerspiegelt, wurde 

dem Dozenten eine erste Version der ausführlichen Musterlösung der 

Veranstaltung zugeschickt. Diese wurde auf mathematische Präzision und 

sprachliche Korrektheit überprüft, sowie um weitere Kommentare bzw. 

Überlegungen ergänzt. Zusätzlich wurden gemeinsam mit dem Dozenten der 

Veranstaltung mögliche Schwierigkeiten bzw. Hürden identifiziert, die während 

der Aufgabenbearbeitung auftreten können. 

Bezüglich des mathematischen Wissens, welches für die Bearbeitung einer 

Aufgabe notwendig ist, wird die Wissensmatrix (Kapitel 2.4.4; Prediger et al., 

2011) herangezogen. Sie liefert dabei aus theoretischer Perspektive eine 

Möglichkeit, den mathematischen Inhalt einzuordnen. Die zuvor erstellte 

ausführliche Musterlösung stellt demnach die Basis für das Wissen dar, welches 

für die Lösung der jeweiligen Aufgabe benötigt wird. Aus der ausführlichen 

Musterlösung wird herausgefiltert, welche Definitionen, Sätze und/oder 

Verfahren benötigt werden. Das mathematische Wissen wird im Anschluss zum 

prozeduralen bzw. konzeptuellen Wissen der Wissensmatrix zugeordnet. Die 

Einordnung der mathematischen Inhalte wurde von verschiedenen 

Mitarbeiter:innen aus der eigenen Arbeitsgruppe unabhängig durchgeführt und 

jeweils einzeln mit dem Verfasser der Arbeit besprochen. Anschließend wurde die 

Einordnung auf Unterschiede und Gemeinsamkeiten untersucht und konsensuell 

validiert (Bortz & Döring, 2006, S. 328). Während der Auseinandersetzung mit 

der Erstellung der Wissensmatrix für die jeweiligen Aufgaben ist dennoch 

aufgefallen, dass es unterschiedliche Auffassungen darüber geben kann, wie diese 

gestaltet werden können. Ein wichtiger Aspekt ist, in welchem Maße Inhalte 

zusammengefasst werden, wie bspw. Funktionen als Oberkategorie, oder 

detaillierter untergliedert, etwa durch Exponentialfunktion als spezifische 

Unterkategorie. Ein weiterer Aspekt ist die Einbeziehung mathematischer Inhalte 

in ihrem Detailgrad, wie etwa Variablen. Letztlich gab es auch Unstimmigkeiten, 

inwieweit spezielle Inhalte eher als konzeptuelles oder prozedurales Wissen 

eingeordnet werden (dies wurde bereits in Kapitel 4.4 diskutiert). 

Des Weiteren werden mögliche Hürden bzw. Fehlerquellen bezüglich der 

Aufgabe skizziert. Hürden sind zwar individuell von der bearbeitenden Person 

abhängig, allerdings lassen sich einige Stellen der Bearbeitung als besonders 

schwierig bzw. problematisch antizipieren. Bei der kurzen Darstellung werden 

allerdings nur mögliche Hürden aufgelistet, die speziell für die Aufgaben bzw. 

den Aufgabentyp vorkommen können. Dabei werden z. B. arithmetische 

Grundrechenarten nicht als mögliche Hürden angesehen, da diese 

aufgabenunabhängig auftreten können. Die antizipierten Hürden wurden auf 

Grundlage der Erfahrungen des Dozenten der Veranstaltung gemeinsam mit dem 

Verfasser der Arbeit identifiziert und basieren auf den jeweiligen ausführlichen 

Lösungen der Aufgaben. 
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Zuletzt wird ebenfalls die Aufgabe aus dem Tutorium vorgestellt. In dem Kontext 

der Veranstaltung besuchen Studierende zunächst ein Tutorium, bevor sie die 

Hausaufgaben selbstständig bearbeiten. Die Aufgaben aus dem Tutorium sollen 

vorbereitend auf die Hausaufgaben bearbeitet und besprochen werden. Dabei sind 

die Aufgaben aus dem Tutorium ähnlich, allerdings nicht unmittelbar im 

Vorgehen zu kopieren. Unterschiede und Ähnlichkeiten zu der Aufgabe der 

Hausübung werden skizziert. 

Abschließend folgt in Kapitel 5.3.4 eine Begründung für die Auswahl der drei 

Aufgaben.  

5.3.1 Aufgabe: Differenzierbarkeit 

Zeigen Sie, dass die durch  

𝑓(𝑥) = {𝑥2 𝑐𝑜𝑠 (
𝑒𝑥

𝑥2
) , 𝑥 ≠ 0

0                    , 𝑥 = 0
 

 

gegebene Funktion 𝑓: ℝ → ℝ an der Stelle 0 differenzierbar ist, und bestimmen 

Sie 𝑓′(0). 

 

Ausführliche Lösung: 

In dieser Aufgabe liegt eine abschnittsweise definierte Funktion vor. Die Aufgabe 

verlangt, dass die Differenzierbarkeit in Punkt 𝑥0 = 0 der Funktion 𝑓 

nachgewiesen werden soll.  

Dennoch sollte vorher klar sein, dass die Funktionen 𝑥 ↦ 𝑥2cos (
ⅇx

x2) für x≠0 und 

𝑥 ↦ 0 für alle 𝑥 ∈ ℝ differenzierbar sind. Die Funktion 𝑓 aus der Aufgabe ist 

demnach zunächst überall differenzierbar, außer an der Stelle 𝑥0 = 0, die es nun 

zu untersuchen gilt. 

 

Dafür wird die Definition der Differenzierbarkeit benötigt.  

Es sei 𝑓: 𝐼 → ℝ eine reellwertige Funktion (𝐼 ein offenes Intervall). Die Funktion 

𝑓 ist differenzierbar in 𝑥0 ∈ 𝐼, falls der Grenzwert 

 

𝑙𝑖𝑚
𝑥→𝑥0

𝐷𝑥0
(𝑥) = 𝑙𝑖𝑚

𝑥→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
   

 

existiert. 𝐷𝑥0
 bezeichnet dabei den Differenzenquotienten, wobei 𝑥 ≠ 𝑥0 beachtet 

werden muss. 

 

Die Funktion 𝑓 wird in den Differentialquotienten eingesetzt:  

 

𝑙𝑖𝑚
𝑥→0

𝑓(𝑥)−𝑓(0)

𝑥−0
= ⋯   
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In diesem Schritt werden für die 𝑥0 überall eine 0 eingesetzt. Dies ist daher klar, 

weil die Differenzierbarkeit laut Aufgabenstellung in dem Punkt 𝑥0 = 0 

untersucht werden soll. 

 

… =  𝑙𝑖𝑚
𝑥→0

𝑓(𝑥)−0

𝑥−0
=  𝑙𝑖𝑚

𝑥→0

𝑓(𝑥)

𝑥
= ⋯   

 

Nach Voraussetzung in der Aufgabenstellung ist 𝑓(𝑥0) = 𝑓(0) = 0. Außerdem 

kann der Ausdruck „−0“ sowohl im Zähler als auch Nenner gestrichen werden.  

Damit bleibt nur noch der Ausdruck 
𝑓(𝑥)

𝑥
 übrig, mit dem noch nicht 

weitergerechnet werden kann. 

 

… = 𝑙𝑖𝑚
𝑥→0

𝑥2 𝑐𝑜𝑠(
𝑒𝑥

𝑥2)

𝑥
= ⋯   

 

Der Grenzwertbegriff besagt, dass für das 𝑥 niemals die 0 eingesetzt werden kann. 

Nach Aufgabenstellung ist die Funktion 𝑓 für genau alle Werte ≠ 0 durch 𝑥 ↦

𝑥2cos (
ⅇ𝑥

𝑥2) definiert, daher konnte dies für 𝑓(𝑥) eingesetzt werden.  

 

… = 𝑙𝑖𝑚
𝑥→0

𝑥 𝑐𝑜𝑠 (
ⅇ𝑥

𝑥2) = ⋯    

 

Durch Kürzen von 𝑥 im Zähler und Nenner erhält man den obigen Ausdruck. 

 

Bei dem Versuch den Grenzwert 𝑥 → 0 von 𝑥 𝑐𝑜𝑠 (
ⅇ𝑥

𝑥2) zu bestimmen, wird das 

Argument des Kosinus beliebig groß. Aufgrund der Periodizität der 

Kosinusfunktion kann auf diesem direkten Wege kein Grenzwert ermittelt 

werden. Es muss als eine andere Möglichkeit gefunden werden, um den 

Grenzwert zu bestimmen.  

 

Dafür wird zunächst die Kosinusfunktion genauer betrachtet.  

Aus der Definition der Kosinusfunktion weiß man nämlich, dass diese auf ganz 

ℝ  beschränkt ist und nur Werte zwischen −1 und 1 angenommen werden können. 

−1 ≤ 𝑐𝑜𝑠(𝜃) ≤ 1  

 

Für die Kosinusfunktion aus der Aufgabe bedeutet dies konkret, dass für alle x∈
ℝ: 

−1 ≤ 𝑐𝑜𝑠 (
ⅇ𝑥

𝑥2) ≤ 1  
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gilt.  

 

Mit der Information, dass der Kosinus immer nur Werte zwischen −1 und 1 

annehmen kann, kann das das Sandwich-Kriterium auf die Grenzwertbestimmung 

angewendet werden: 

 

−𝑥 ≤ 𝑥 𝑐𝑜𝑠 (
ⅇ𝑥

𝑥2) ≤ 𝑥  

 

Nach der Multiplikation mit 𝑥 entspricht dies genau der Funktion, dessen 

Grenzwert bestimmt werden soll. Für 𝑥 →  0 sind die Grenzwerte von −𝑥 und 𝑥 

beide jeweils 0. 

0 ≤ 𝑙𝑖𝑚
𝑥→0

 𝑥 𝑐𝑜𝑠 (
ⅇ𝑥

𝑥2) ≤ 0 für 𝑥 → 0. 

 

Nach dem Sandwich-Kriterium muss der Grenzwert also auch 0 sein. Insgesamt 

erhält man dann 

𝑙𝑖𝑚
𝑥→0

𝑥2 𝑐𝑜𝑠(
𝑒𝑥

𝑥2)

𝑥
= 0 für 𝑥 → 0. 

 

Da der Grenzwert 𝑙𝑖𝑚
𝑥→𝑥0

𝐷𝑥0
(𝑥) = 0 existiert, ist 𝑓 in 𝑥0 = 0 differenzierbar mit 

der Ableitung 𝑓′(0) = 0. 

 

Anmerkung: Der Grenzwert 𝑙𝑖𝑚
𝑥→0

𝑥 𝑐𝑜𝑠 (
ⅇ𝑥

𝑥2) könnte auch folgendermaßen 

aufgefasst werden: 𝑙𝑖𝑚
𝑥→0

𝑥 ·  𝑙𝑖𝑚 
𝑥→0

𝑐𝑜𝑠 (
ⅇ𝑥

𝑥2). Damit kann argumentiert werden, dass 

der erste Faktor eine Nullfolge ist und sich der zweite Faktor durch die 

Beschränktheit immer zwischen -1 und 1 befindet. Dadurch erhält man: 

𝑙𝑖𝑚
𝑥→0

𝑥 𝑐𝑜𝑠 (
ⅇ𝑥

𝑥2) = 0. Dies ist allerdings nur eine hilfsweise Überlegung und 

fachlich nicht korrekt, da ein nicht existenter Grenzwert betrachtet wird. 
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Theoretische Einordnung des benötigten Wissens 

In Tabelle 9 ist die theoretische Einordnung der mathematischen Inhalte auf 

Grundlage der ausführlichen Lösung zu der Aufgabe „Differenzierbarkeit prüfen“ 

in die Wissensmatrix zu erkennen. 

 

 
 Mathematischer Inhalt EF K&A B&V KF 

K
o

n
z
e
p

tu
el

le
s 

W
is

se
n

 

Konzept: 

Differenzierbarkeit 

    

Konzept: Funktionen     

Konzept: Abschnittsweise 

definierte Funktionen 

    

P
ro

z
e
d

u
ra

le
s 

W
is

se
n

 

Verfahren: 

Differenzierbarkeit prüfen 

    

Verfahren: Grenzwert von 

Funktionen berechnen 

    

Verfahren: Sandwich-

Kriterium 

    

Tabelle 9: Einordnung zur Aufgabe „Differenzierbarkeit prüfen“ in die Wissensmatrix (EF = Explizite 

Formulierung; K&A = Konkretisierung & Abgrenzung; B&V = Bedeutung & 

Vernetzung; KF = Konventionelle Festlegungen) 

Für die Aufgabe „Differenzierbarkeit prüfen“ wird nach Einordnung in die 

Wissensmatrix sowohl konzeptuelles als auch prozedurales Wissen benötigt. In 

der Aufgabe wird verlangt, eine Funktion auf Differenzierbarkeit zu prüfen. Um 

die Aufgabe zu lösen, muss bezüglich des konzeptuellen Wissens der Begriff der 

Differenzierbarkeit auf der Ebene des Konzepts bekannt sein, da ansonsten die 

Aufgabenstellung nicht verstanden werden kann. Das Konzept der Funktionen 

wurde in verschiedene Funktionstypen gegliedert. Die Funktion 𝑓 ist eine 

abschnittsweise definierte Funktion, die für 𝑥 ≠ 0 als Verkettung einer Polynom- 

und Kosinusfunktion definiert ist. Das Prüfen einer Funktion auf 

Differenzierbarkeit ist als prozedurales Wissen eine notwendige 

Gelingensbedingung für das Lösen der Aufgabe. Durch die Anwendung der 

Definition der Differenzierbarkeit ist darin das Verfahren der 

Grenzwertbestimmung (von Funktionen) inbegriffen. Letztlich kann ebenfalls 

das Sandwich-Kriterium angewendet werden, um den Grenzwert zu bestimmen. 
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Antizipierte Hürden 

• Verwenden der Definition der Differenzierbarkeit: Die formale 

Definition wird in der Schule in der Regel nicht behandelt, wodurch 

das Verwenden für Studierende eine Neuheit darstellt.  

• Einsetzen der Funktion in den Differentialquotienten: Die formale 

Schreibweise für abschnittsweise Funktionen könnte Studierende 

verwirren. Die könnte erschweren, welcher Ausdruck für 𝑓(𝑥) in den 

Differentialquotienten eingesetzt werden muss. 

• Berechnen des Grenzwerts: Die Berechnung des Grenzwerts 

funktioniert nicht mit „einfachen“ Methoden. Entweder muss das 

Sandwich-Kriterium verwendet oder über die Multiplikation der 

Nullfolge mit der beschränkten Kosinusfunktion argumentiert werden. 

• Zu starkes Kopieren des Vorgehens aus dem Tutorium: Die 

Aufgabe aus dem Tutorium kann als ähnliche Aufgabe genutzt werden 

und liefert eine Vorgehensweise, die allerdings nicht gänzlich kopiert 

werden kann. 

Ähnlichkeit zur Aufgabe des Tutoriums 

Untersuchen Sie die Funktion  

 

𝑓: ℝ → ℝ, 𝑥 ↦ 𝑓(𝑥) ≔ 𝑥|𝑥| 
 

auf Differenzierbarkeit. An welchen Stellen ist die Funktion differenzierbar? Gibt 

es Stellen, an denen die Funktion nicht differenzierbar ist?  

Bestimmen Sie die Ableitung an den Stellen, an denen 𝑓 differenzierbar ist. 

 

Der Fokus der Aufgabe aus dem Tutorium liegt darauf, den Studierenden deutlich 

zu machen, wie die Differenzierbarkeit einer Funktion nachgewiesen werden 

kann. Die Aufgabe beschränkt sich allerdings nicht nur darauf, einen kritischen 

Punkt, sondern die gesamte Funktion zu untersuchen und außerdem selbstständig 

herauszufinden, ob überhaupt kritischen Stellen vorhanden sind. Mithilfe der 

Produktregel lässt sich die Ableitung für alle Stellen 𝑥 ≠ 0 bestimmen. Für die 

kritische Stelle 𝑥 = 0 wird mit dem Differentialquotienten untersucht, ob ein 

Grenzwert existiert, sodass die Funktion auch für die Stelle 0 eine Ableitung 

besitzt. 

Sowohl in der Aufgabe des Tutoriums als auch in der Hausaufgabe, muss das 

Verfahren angewendet werden, um die Differenzierbarkeit nachzuweisen. Im 

Groben kann das Vorgehen aus dem Tutorium demnach für die Hausaufgabe 

verwendet werden, wobei in der Hausaufgabe bereits der kritische Punkt 

vorgegeben ist. Ein weiterer Unterschied liegt darin, dass in der Aufgabe aus dem 

Tutorium die Ableitungsfunktion 𝑓′ bestimmt werden soll, während in der 



S e i t e  | 136 

 

Hausaufgabe lediglich der Wert der Ableitung an der Stelle 𝑥 = 0 untersucht 

wird. 

5.3.2 Aufgabe: Mittelwertsatz 

Beweisen Sie die folgende Ungleichung mit dem Mittelwertsatz der 

Differentialrechnung 

 
|𝑐𝑜𝑠(𝑒−𝑥) − 𝑐𝑜𝑠(𝑒−𝑦)| ≤ |𝑥 − 𝑦| für 0 ≤ 𝑦 ≤ 𝑥. 

 

(Anmerkung: Die Ungleichung gilt sogar für beliebige nichtnegative 𝑥 und 𝑦.) 

 

Ausführliche Lösung: 

Es soll die Ungleichung |𝑐𝑜𝑠(𝑒−𝑥) − 𝑐𝑜𝑠(𝑒−𝑦)| ≤ |𝑥 − 𝑦| für 0 ≤ 𝑦 ≤ 𝑥 mit 

dem Mittelwertsatz der Differentialrechnung bewiesen werden. Zu Beginn wird 

der Satz nochmal ins Gedächtnis gerufen. Dieser lautet: 

 

Die Funktion 𝑓: [𝑎, 𝑏] → ℝ sei stetig und differenzierbar auf (𝑎, 𝑏). Dann existiert 

ein 𝑥0 ∈ (𝑎, 𝑏) mit 𝑓′(𝑥0) =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
. 

 

Zunächst kann festgestellt werden, dass die Ungleichung aus der 

Aufgabenstellung nicht von derselben Form wie der Mittelwertsatz ist. Zur 

Aufgabenlösung wird daher als Strategie gewählt, den Mittelwertsatz als 

Ausgangspunkt zu wählen und durch Umformungen zu der Ungleichung aus der 

Aufgabenstellung zu gelangen. 

 

Um den Mittelwertsatz der Differentialrechnung anzuwenden, wird eine Funktion 

benötigt. Aus der Aufgabenstellung kann abgelesen werden, dass die Funktion 

𝑓(𝑡) = 𝑐𝑜𝑠(𝑒−𝑡) auf dem Intervall [𝑦, 𝑥] betrachtet wird. Durch Ausprobieren 

findet man die Funktion 𝑓(𝑡). Wenn für 𝑓(𝑡) der Mittelwertsatz angewandt wird, 

erhält man:  

 

Es existiert ein 𝑡0 ∈ (𝑦, 𝑥) mit 𝑓′(𝑡0) =
𝑐𝑜𝑠(ⅇ−𝑥)−𝑐𝑜𝑠(ⅇ−𝑦)

𝑥−𝑦
.  

 

Der Mittelwertsatz der Differentialrechnung kann hier benutzet werden, weil die 

Funktion 𝑓(𝑡) = 𝑐𝑜𝑠(𝑒−𝑡) stetig und differenzierbar auf dem Intervall (𝑦, 𝑥) ist 

und somit die Voraussetzung des Satzes erfüllt. 

 

Durch Umformungen der Gleichung erhält man 

 
|𝑐𝑜𝑠(𝑒−𝑥) − 𝑐𝑜𝑠(𝑒−𝑦)| = |𝑥 − 𝑦||𝑓′(𝑡0)| 
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Diese Gleichung nähert sich der Ungleichung aus der Aufgabenstellung an, wobei 

der Ausdruck |𝑓′(𝑡0)| noch „zu groß“ ist. Wenn nun durch Abschätzung gezeigt 

werden kann, dass |𝑓′(𝑡0)| ≤ 1  ist, führt es zur behaupteten Aussage, da dann 

die rechte Seite der Gleichung als Ganzes kleiner gleich |𝑥 − 𝑦| ist.  

 

∀𝑡 ∈ (𝑦, 𝑥) ist nach Kettenregel |𝑓′(𝑡)| = |𝑒−𝑡 𝑠𝑖𝑛(𝑒−𝑡)| = |𝑒−𝑡||𝑠𝑖𝑛(𝑒−𝑡)|. 
 

Der Ausdruck |𝑒−𝑡| ist dabei ∀𝑡 ∈ (𝑦, 𝑥) immer kleiner oder gleich 1, weil 𝑡 nach 

Voraussetzung 0 ≤ 𝑦 ≤ 𝑥 nur positive Werte annehmen kann und die 𝑒-Funktion 

mit negativem Exponenten auf dem Intervall (0, ∞) nur Werte zwischen 1 und 0 

annimmt. 

 

Der Ausdruck |𝑠𝑖𝑛(𝑒−𝑡)| ist ebenfalls ∀𝑡 ∈ (𝑦, 𝑥) kleiner oder gleich 1. Die 

Sinusfunktion nimmt per Definition immer nur Werte zwischen −1 und 1 an, 

wobei hier zusätzlich der Betrag der Sinusfunktion betrachtet wird und deshalb 

nur Werte zwischen 0 und 1 annimmt. 

 

Schlussendlich können die Erkenntnisse auf die Gleichung übertragen werden, 

woraus folgende Ungleichung resultiert: 

 
|𝑐𝑜𝑠(𝑒−𝑥) − 𝑐𝑜𝑠(𝑒−𝑦)| ≤ |𝑥 − 𝑦| 𝑚𝑎𝑥|𝑓′(𝑡0)| wobei 𝑚𝑎𝑥|𝑓′(𝑡0)| ≤ 1 für 𝑡0 ∈
(𝑦, 𝑥).  

 

Eine letzte Umformung ergibt: 

 
|𝑐𝑜𝑠(𝑒−𝑥) − 𝑐𝑜𝑠(𝑒−𝑦)| ≤ |𝑥 − 𝑦|  für 0 ≤ 𝑦 ≤ 𝑥. 

 

Damit ist die Behauptung bewiesen. 

 

Die Anmerkung in der Aufgabenstellung gibt an, dass die Ungleichung auch für 

beliebige nichtnegative 𝑥 und 𝑦 gilt. Im Beweis könnten 𝑥 und 𝑦 auch vertauscht 

werden und alle Argumentationen würden weiterhin gelten. 

Anmerkung: Im Fall, dass 𝑥 = 𝑦 kann direkt aus der Behauptung gefolgert 

werden, dass die Ungleichung erfüllt ist, da dies zu 0 ≤ 0 führen würde. Erst für 

0 ≤ 𝑦 < 𝑥 benötigen wir die Ausführungen mit dem Mittelwertsatz der 

Differentialrechnung. 
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Theoretische Einordnung des benötigten Wissens 

In Tabelle 10 ist die theoretische Einordnung der mathematischen Inhalte auf 

Grundlage der ausführlichen Lösung zu der Aufgabe „Mittelwertsatz“ in die 

Wissensmatrix zu erkennen. 

 
 Mathematischer Inhalt EF K&A B&V KF 

K
o

n
z
e
p

tu
el

le
s 

W
is

se
n

 

Konzept: Stetigkeit einer 

Funktion 

    

Konzept: Differenzierbarkeit     

Konzept: Funktion     

Konzept: Abschätzung     

Konzept: Betrag     

Zusammenhang: Mittelwertsatz 

der Differentialrechnung 

    

P
W

 Verfahren: Kettenregel     

Tabelle 10: Einordnung zur Aufgabe „Mittelwertsatz“ in die Wissensmatrix (PW = Prozedurales 

Wissen; EF = Explizite Formulierung; K&A = Konkretisierung & Abgrenzung; 

B&V = Bedeutung & Vernetzung; KF = Konventionelle Festlegungen) 

Für die Aufgabe „Mittelwertsatz“ wird nach Einordnung in die Wissensmatrix 

sowohl prozedurales als auch konzeptuelles Wissen benötigt, wobei 

konzeptuelles Wissen deutlich überwiegt. In der Aufgabe wird verlangt, eine 

Ungleichung mithilfe des Mittelwertsatzes der Differentialrechnung zu lösen. 

Bezüglich des konzeptuellen Wissens müssen gleich mehrere Konzepte 

(Stetigkeit, Differenzierbarkeit, Funktion) bekannt sein, um nicht nur die Aufgabe 

zu verstehen, sondern ebenfalls weitere Überlegungen anzustellen. Für die 

Argumentation im Lösungsprozess wird ebenfalls das Konzept der Abschätzung 

benötigt, um die Ungleichung zu beweisen. Darüber hinaus wird bei den 

Überlegungen ebenfalls das Konzept des Betrags benötigt. Die Aufgabenstellung 

verlangt nach einer Anwendung des Mittelwertsatzes der Differentialrechnung, 

sodass dieser mathematische Zusammenhang obligatorisch ist. Bezüglich des 

prozeduralen Wissens wird das Verfahren der Kettenregel verwendet, um die 

konkrete Ableitungsfunktion zu finden.  
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Antizipierte Hürden 

• Verwenden des Mittelwertsatzes: Der formale Satz wird in der Schule 

in der Regel nicht behandelt, wodurch das Verwenden für Studierende 

eine Neuheit darstellt.  

• Finden der Funktion: Für die Anwendung des Mittelwertsatzes wird 

eine Funktion verwendet, die nicht explizit aus der Aufgabenstellung 

abgelesen werden kann. Das Finden dieser Funktion, die zu der 

Ungleichung „passt“, kann eine Hürde darstellen. 

• Verknüpfung Mittelwertsatz mit der Ungleichung: Eine typische 

Anwendung des Mittelwertsatzes der Differentialrechnung ist das 

Beweisen einer Ungleichung. Die Verbindung zwischen einer 

Ungleichung und dem Mittelwertsatz zu erkennen, ist für die 

Studierenden allerdings nicht trivial. Zudem beschreibt der 

Mittelwertsatz der Differentialrechnung eine Gleichung, während in 

der Aufgabe eine Ungleichung vorliegt. 

• Verwendung der Betragsstriche: Die notwendige Verwendung der 

Betragsstriche kann für die Studierende eine zusätzliche Hürde 

während der Umformungen sein. 

• Zu starkes Kopieren des Vorgehens aus dem Tutorium: Die 

Aufgabe aus dem Tutorium kann als ähnliche Aufgabe genutzt werden 

und liefert eine Vorgehensweise. Dennoch können nicht die exakt 

gleichen Schritte unternommen werden, welches an den 

unterschiedlichen Eigenschaften der betrachteten Funktionen liegt. 

Ähnlichkeit zur Aufgabe des Tutoriums 

Zeigen Sie mit Hilfe des Mittelwertsatzes der Differentialrechnung, dass für alle 

𝑥 > 1 die Ungleichung 

 

1 + 𝑙𝑛(𝑥) ≤ 𝑥 

 

gilt.  

 

In der Aufgabe wird ebenfalls verlangt, dass eine Ungleichung mit dem 

Mittelwertsatz der Differentialrechnung bewiesen werden soll. Das Vorgehen zur 

Lösung der Aufgabe aus dem Tutorium kann dabei für die Hausaufgabe 

verwendet werden, wobei die Gleichung 1 + 𝑙𝑛(𝑥) ≤ 𝑥 aus der Aufgabe des 

Tutoriums noch mit der „Null“ durch den Term 𝑙𝑛(1) erweitert werden muss, um 

die Form des Mittelwertsatzes der Differentialrechnung zu erhalten. Nach der 

Anwendung des Mittelwertsatzes auf 𝑓(𝑥) = 𝑙𝑛(𝑥) ist die Ableitung 𝑓′(𝑥) =
1

𝑥
, 

wodurch die Abschätzung schon direkt gegeben ist und lediglich nur noch kleine 

Umformungen für den Beweis notwendig sind. In der Hausaufgabe müssen 
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dagegen noch weitere Überlegungen mit dem Maximum der Sinusfunktion 

angestellt werden. Letztlich befindet sich der Unterschied zwischen den beiden 

Aufgaben darin, dass unterschiedliche Funktionen untersucht werden, die 

spezielle Anforderungen für die Lösung der Aufgaben stellen. Die allgemeine 

Vorgehensweise bleibt allerdings dieselbe. 

5.3.3 Aufgabe: L´Hospital 

Es sei 𝑎 > 1. Berechnen Sie  

 

𝑙𝑖𝑚
𝑥→𝑎

𝑥𝑎 − 𝑎𝑥

𝑎𝑥 − 𝑎𝑎
 

 

Ausführliche Lösung: 

Bei der Aufgabe wird gefordert, den Grenzwert eines Quotienten zu berechnen. 

Zunächst wird damit gestartet, den Grenzübergang durchzuführen30. 

 

𝑙𝑖𝑚
𝑥→𝑎

𝑥𝑎−𝑎𝑥

𝑎𝑥−𝑎𝑎 =
𝑎𝑎−𝑎𝑎

𝑎𝑎−𝑎𝑎 =
0

0
  

 

Mit dem Ausdruck 
0

0
 kann zunächst nicht weitergearbeitet werden, allerdings ist 

dies ein Indikator für die Regel von L'Hospital. Sie kann in dem besonderen Fall 

helfen, um einen möglichen Grenzwert zu bestimmen. Die Regel von L´Hospital 

lautet: 

 

Es seien 𝑓: (𝑎, 𝑏) → ℝ und 𝑔: (𝑎, 𝑏) → ℝ differenzierbar. Weiter gelte 

𝑙𝑖𝑚
𝑥→𝑏+

𝑓(𝑥) = 𝑙𝑖𝑚
𝑥→𝑏+

 𝑔(𝑥) = 0 oder es gelte 𝑙𝑖𝑚
𝑥→𝑏+

𝑓(𝑥) = 𝑙𝑖𝑚
𝑥→𝑏+

𝑔(𝑥) = ±∞. 

Analoges gilt, wenn 𝑙𝑖𝑚
𝑥→𝑏+

 durch 𝑙𝑖𝑚
𝑥→𝑏−

 ersetzt wird. Weiter sei 𝑔′(𝑥) ≠ 0 auf 

(𝑎, 𝑏). Dann folgt in jedem Falle 𝑙𝑖𝑚
𝑥→𝑏

𝑓(𝑥)

𝑔(𝑥)
= 𝑙𝑖𝑚

𝑥→𝑏

𝑓′(𝑥)

𝑔′(𝑥)
.  

 

Anmerkung: Die Aussage gilt, sofern der rechte Grenzwert konvergiert oder 

bestimmt divergiert. Bei unbestimmter Divergenz kann man nichts aussagen.  

 

Eine der Voraussetzung für die Anwendung der Regel von L'Hospital ist durch 

den Grenzwert 
0

0
 gegeben. Außerdem sind sowohl die Funktion im Zähler mit 

𝑓(𝑥) = 𝑥𝑎 − 𝑎𝑥 als auch die Funktion im Nenner mit 𝑔(𝑥) = 𝑎𝑥 − 𝑎𝑎 

differenzierbare Funktionen. Es gilt noch zu prüfen, ob die Ableitung des Nenners 

 

30 In dieser Lösung wird der Ausdruck 
0

0
 verwendet. Dies wird lediglich als Schreibweise 

genutzt, um die Anwendung der Regel von L´Hospital anzudeuten. 
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𝑔′(𝑥) = (𝑒𝑥 ln(𝑎) − 𝑎𝑎)
′

≠ 0 für 𝑥 ≠ 𝑎 ist. Dabei ist nach Kettenregel und 

Potenzgesetz 

 

𝑔′(𝑥) = (𝑒𝑥 ln(𝑎) − 𝑎𝑎)
′

= ln(𝑎) 𝑎𝑥 .   

 

Da nach Voraussetzung 𝑎 > 1 und die Logarithmus-Funktion im Intervall (1, ∞) 

und die Exponentialfunktion mit der Vorschrift 𝑎𝑥 ∀𝑥 ∈ ℝ ebenfalls nur positive 

Werte annimmt, ist das Produkt der beiden Faktoren positiv. Somit folgt 𝑔′(𝑥) ≠
0 𝑓ü𝑟 𝑎𝑙𝑙𝑒 𝑥𝜖ℝ. 

 

Für 𝑓′(𝑥) = (𝑥𝑎 − 𝑎𝑥)′  (verwende für den zweiten Summanden erneut 

Kettenregel und Potenzgesetz) gilt 

 

𝑓′(𝑥) = 𝑎𝑥𝑎−1 − ln(𝑎)𝑎𝑥  

 

Insgesamt ergibt sich dadurch mit der Regel von L'Hospital:  

 

𝑙𝑖𝑚
𝑥→𝑎

𝑥𝑎−𝑎𝑥

𝑎𝑥−𝑎𝑎 = 𝑙𝑖𝑚
𝑥→𝑎

𝑎𝑥𝑎−1−𝑎𝑥 ln(𝑎)

𝑎𝑥 ln(𝑎)
=

𝑎𝑎−𝑎𝑎 ln(𝑎)

𝑎𝑎 ln(𝑎)
=

1−ln(𝑎)

ln(𝑎)
=

1

ln(𝑎)
− 1.  

Theoretische Einordnung des benötigten Wissens 

In Tabelle 11 ist die theoretische Einordnung der mathematischen Inhalte auf 

Grundlage der ausführlichen Lösung zu der Aufgabe „L´Hospital“ in die 

Wissensmatrix zu erkennen. 

 
 Mathematischer Inhalt EF K&A B&V KF 

K
W

  Konzept: Funktion     

P
ro

z
e
d

u
ra

le
s 

W
is

se
n

 

Verfahren: Regel von 

L´Hospital 

    

Verfahren: Grenzwert von 

Funktionen berechnen 

    

Verfahren: Kettenregel     

Verfahren: Potenzregel     

Tabelle 11: Einordnung zur Aufgabe „L´Hospital“ in die Wissensmatrix (KW = Konzeptuelles Wissen; 

EF = Explizite Formulierung; K&A = Konkretisierung & Abgrenzung; B&V = 

Bedeutung & Vernetzung; KF = Konventionelle Festlegungen) 
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Für die Aufgabe „L´Hospital“ wird nach Einordnung in die Wissensmatrix fast 

ausschließlich prozedurales Wissen benötigt. Zu einem kleinen Teil ist auch 

konzeptuellen Wissens (Konzept Funktion) notwendig, da die Aufgabe darauf 

abzielt, den Grenzwert eines Quotienten zu bestimmen. Dies ist eine typische 

Aufgabe, auf welche die Regel von L´Hospital angewandt werden kann. Nach 

den Prüfungen der Voraussetzungen werden durch Anwendung von L´Hospital 

die Zähler- und Nennerfunktion abgeleitet, die in dieser speziellen Aufgabe 

mittels Ketten- als auch Potenzregel ermittelt werden können. 

Antizipierte Hürden 

• Verwenden der Regel von L´Hospital: Der formale Satz wird in der 

Schule in der Regel nicht behandelt, wodurch das Verwenden für 

Studierende eine Neuheit darstellt. Dazu kommt, dass einige 

Voraussetzung überprüft werden müssen, bevor die Regel angewandt 

werden kann.  

• Handwerkliche Operationen: Die handwerkliche Arbeit des Ableitens 

an sich könnte die Studierenden vor Probleme stellen. Sowohl die 

notwendigen Umformungen (Exponential- und Logarithmusfunktion) 

als auch das Anwenden der Kettenregel kann Hürden darstellen. 

Ähnlichkeit zur Aufgabe des Tutoriums 

Berechnen Sie die folgenden Grenzwerte: 

 

a) 𝑙𝑖𝑚
𝑥→0

𝑐𝑜𝑠(𝑥)+3𝑥−1

2𝑥
,      b) 𝑙𝑖𝑚

𝑥→∞

2 𝑙𝑛(𝑥)

𝑥2  

 

In der Aufgabe aus dem Tutorium werden zwei Aufgaben angeboten, die in beiden 

Fällen die Anwendung der Regel von L´Hospital ermöglichen. Dabei können die 

Quotienten in beiden Aufgabenteilen ohne jegliche Umformungen abgeleitet 

werden. Die Aufgabe aus der Hausaufgabe hat vermeintlich kompliziertere 

Umformungen, bevor die Regel von L´Hospital mit den üblichen 

Ableitungsregeln angewandt werden kann. Das Verfahren kann allerdings aus 

dem Tutorium übernommen werden. 

5.3.4 Begründung für die Auswahl der Aufgaben 

Das Thema der Differentialrechnung wurde in der Veranstaltung „Mathematik für 

Maschinenbau I“ auf drei Aufgabenblättern behandelt. Insgesamt können neun 

Aufgaben der Hausaufgaben dem Thema der Differentialrechnung zugeordnet 

werden. Für die detaillierte Auswertung in dieser Arbeit werden allerdings 

lediglich die drei vorgestellten Aufgaben herangezogen. 
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Die Auswahl der drei Aufgaben wurde im Hinblick auf die Datenauswertung 

getätigt. Das Ziel dieser Arbeit ist es, Bearbeitungsprozesse von Studierenden zu 

untersuchen, wobei der Fokus dabei auf Problembearbeitungsprozesse liegt. Ob 

während der Bearbeitung einer Aufgabe tatsächlich ein Problem vorliegt, hängt 

von individuellen Voraussetzungen der Studierenden ab. Aus theoretischer 

Perspektive ist allerdings bereits anzunehmen, dass es Aufgaben gibt, die 

womöglich ein Problem für Studierende in einer hochschulischen Veranstaltung 

darstellen. Aus diesem Grund wurden für die Datenauswertung bereits diejenigen 

Aufgaben aussortiert, welche von den Studierenden z. B. lediglich das Ableiten 

einer speziellen Funktion31 verlangt hat. Die Ableitungsregeln werden bereits in 

der Schule behandelt und sollten daher für die Studierenden bekannt sein. Daher 

kann angenommen werden, dass Aufgaben dieser Art eher keine 

Problemaufgaben für Studierende sind. Stattdessen wurden Aufgaben für die 

detaillierte Datenauswertung ausgewählt, die einen neuen inhaltlichen Input 

bezüglich der Differentialrechnung geben und somit eher ein Problem darstellen 

könnten. Die Aufgaben sind damit typische Aufgaben, die in einer 

mathematischen Erstsemesterveranstaltung behandelt werden (Kapitel 4.3.6). 

5.4 Auswertungsmethoden zu den Prozessen der 

Problembearbeitungen 

Die Bearbeitungsprozesse der Studierenden werden mit verschiedenen Methoden 

ausgewertet. Jede Auswertungsmethode setzt dabei einen Fokus bezüglich drei 

(Steuerung, Wissen, Heurismen) der vier Kategorien, die einen Einfluss auf das 

Problemlösen nach Schoenfeld (1985) haben. Die geplanten 

Auswertungsmethoden werden in den folgenden Kapiteln ausführlich 

beschrieben und erläutert.  

5.4.1 Nutzung der Episoden nach Schoenfeld zur Rekonstruktion der 

Steuerung 

Sogenannte „protocol coding schemes“ werden erstellt, um objektive Anzeichen 

von offenkundigen Handlungen und Aussagen zu erfassen, die von 

problemlösenden Personen während des Bearbeitungsprozesses getätigt werden 

(z. B. Schoenfeld, 1985, S. 294ff.). Das Ergebnis der Kodierung eines 

Bearbeitungsprozesses wird dabei Protokoll genannt. In der Vergangenheit wurde 

diese Art von Kodier-Schema bereits häufig sowohl in AI (Artificial Intelligence) 

als auch der mathematikdidaktischen Forschung eingesetzt. Die AI nutzt die 

erstellten Protokolle, um z. B. Ähnlichkeiten in verschiedenen 

Problembearbeitungsprozessen zu finden, sodass sie anschließend für idealisierte 

 
31 Beispiel: Bestimmen Sie die Ableitung der folgenden Funktion 𝑓: ℝ → ℝ:   

𝑓(𝑥) = 𝑐𝑜𝑠(𝑥) ⋅ 𝑠𝑖𝑛(𝑥) 
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Prozesse in Programme eingebaut werden können. In der 

mathematikdidaktischen Forschung ist es häufig das Ziel, qualitative Analysen 

von Problembearbeitungsprozessen durchzuführen. Dazu gehören das Verstehen 

von Problembearbeitungsprozessen verschiedener Individuen (sowohl Experten 

als auch Novizen), aber auch die Identifikation von erfolgreichen und weniger 

erfolgreichen Strategien bzw. Heurismen während 

Problembearbeitungsprozessen. 

Schoenfeld (1985, Kapitel 9) hat sich als Teil seiner mathematikdidaktischen 

Forschung ebenfalls mit solchen „protocol coding schemes“ auseinandergesetzt. 

Dabei hat er Hinweise für ein Kodier-Schema erstellt, welches auch in heutiger 

mathematikdidaktischer Problemlöseforschung aufgegriffen und ausgeweitet 

wird (z. B. Rott, 2013; Stenzel, 2023a). In seinen theoretischen Ausarbeitungen 

verwendet Schoenfeld (1985) den Begriff Phasen im 

Problembearbeitungsprozess, während für die Kodierung der Begriff Episode 

genutzt wird. Rott (2013), Herold-Blasius (2019) und Stenzel (2023a) nutzen 

ebenfalls in ihren Ausarbeitungen den Begriff Episode anstelle von Phase. Ein 

Ziel der Episodenkodierung nach Schoenfeld (2016) ist es, verschiedene 

Problembearbeitungsprozesse miteinander vergleichen zu können. Dafür stellt 

Schoenfeld sieben Episodentypen vor: Reading, Analysis, Exploration, Planning, 

Implementation, Verification und Transition. Diese Episodentypen weisen eine 

starke Ähnlichkeit zu den Phasen von Polya auf (Kapitel 2.3.3 und Abbildung 

20). Außerdem ist zu erkennen, dass den theoretischen Ausarbeitungen von 

Schoenfeld (1985) die Episode Reading sowie Transition hinzugefügt wurde. 

Beide Episoden haben sich in den empirischen Daten aufgetan und wurden den 

theoretisch ausgearbeiteten Episoden ergänzt. 

 

 

Abbildung 20: Analogie zwischen Schoenfeld (1985) Episoden und Schritten von Pólya (1945) 
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Um die Episoden zu beschreiben, wird das Kodiermanual von Stenzel (2023a, S. 

93ff.) übernommen. Stenzel hat dies wiederum aus den Arbeiten von Rott (2013) 

und Schoenfeld adaptiert (1985). An einigen Stellen des Kodiermanuals von 

Stenzel (2023a, S. 93ff.) wurden allerdings leichte Anpassungen durchgeführt, 

um eine einheitliche Darstellung der Episoden zu erzeugen. Dabei wurden 

zusätzlich einige Beschreibungen der Episoden leicht vergrößert und um weitere 

Beschreibungen bzw. Erklärungen ergänzt. Des Weiteren zeigten die ersten 

Versuche der Kodierung, dass gewisse Zeitabschnitte auf zwei Episoden 

gleichzeitig zutreffen können. Dies liegt womöglich am Interpretationsspielraum 

der unterschiedlichen kodierenden Personen. Infolgedessen wurde eine genauere 

Beschreibung der Unterschiede zwischen den Episoden hinzugefügt, sodass jeder 

Zeitabschnitt nur einer Episode zugeordnet werden kann. 

 

Reading: Diese Episode umfasst das Lesen der Aufgabenstellung. Für die 

Kodierung der Episode Reading ist dabei die Art des Lesens, ob laut oder leise, 

unerheblich. Die Kodierung beginnt, sobald die problembearbeitende Person 

verbal mit dem Lesen der Aufgabe beginnt oder der Blick für längere Zeit auf das 

Aufgabenblatt gerichtet wird. Der gesamte Prozess fängt demnach in der Regel 

mit dem Lesen des Aufgabentextes an. Sowohl das Abschreiben als auch das 

Zusammenfassen der Aufgabenstellung wird für die Kodierung ebenfalls unter 

der Episode Reading verstanden. Allerdings ist für das Abschreiben der 

Aufgabenstellung wichtig, dass keine Paraphrasierung durch die 

problemlösenden Personen vorgenommen wird. Gleiches gilt für 

Zusammenfassungen der Aufgabenstellung, wobei darunter auch das 

Wiederholen von einzelnen Aspekten der Aufgabenstellung fällt. Falls das 

Notieren der Aufgabenstellung hingegen über das Abschreiben oder eine 

Zusammenfassung hinausgeht, z. B. durch Umformulierungen, wird dies nicht als 

Reading, sondern als Analysis kodiert. Im weiteren Verlauf des 

Bearbeitungsprozesses wird die Episode Reading nur dann kodiert, wenn für 

einen längeren Zeitraum gelesen wird. Kurzes Nachschauen einzelner Aspekte 

der Aufgabenstellung wird nicht als Reading kodiert.  

 

Analysis: Diese Episode umfasst Aktivitäten, die dazu dienen, die Aufgabe 

(besser) zu verstehen. Für die Kodierung der Episode Analysis zählen vor allem 

Umformulierungen und Darstellungswechsel der Voraussetzung oder der 

Behauptung (Klären von Definitionen, Äquivalente Formulierungen, Skizzen, 

Aufstellen von Gleichungen etc.). Aber auch bereits das Paraphrasieren der 

Aufgabenstellung gehört dazu. Falls die problembearbeitende Person nach dem 

Lesen der Aufgabenstellung keine Idee für das weitere Vorgehen besitzt, folgt 

zumeist die Episode der Analysis, um die Aufgabe (besser) zu verstehen. Analysis 

wird nur dann im Prozess kodiert, wenn es wirklich um das Verstehen der 

Aufgabenstellung geht. Aussagen wie „Ich versuche noch zu verstehen...“ 
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bezogen auf die Aufgabe sind ein Indiz für die Episode Analysis, auch wenn 

zwischendurch vereinzelt explorative Aussagen getätigt werden. Häufig schließt 

nach der Episode Analysis die Episode Planning an. Die Episode der Analysis 

kann allerdings auch übersprungen werden, falls die problembearbeitende Person 

direkt eine Idee für die Lösung hat. Dies kann vor allem in kalkülorientierten 

Aufgaben der Fall sein.  

 

Exploration: Diese Episode umfasst Aktivitäten, die dazu dienen, 

Lösungsmöglichkeiten zu suchen. Für die Kodierung der Episode Exploration 

gehören jegliche Erkundungen, die weder direkt an der Aufgabenstellung 

orientiert sind (Analysis), noch einen gezielten Plan verfolgt (Planning und 

Implementation). Oftmals zeichnet sich der Beginn der Episode Exploration 

dadurch ab, wenn die Aufgabenstellung noch nicht oder nicht vollständig 

verstanden wurde, die problemlösende Person aber schon eine (vermeintliche) 

Idee davon hat, was von ihr verlangt wird und eine grobe Richtung einschlägt. In 

dieser Episode werden mitunter viele verschiedene Ansätze ausprobiert, das 

Vorgehen an sich ist aber eher unsicher und nicht wirklich zielgeleitet. Außerdem 

ist es für Episoden der Exploration typisch, dass verschiedene Heurismen (Suche 

nach Analogien, Suche nach ähnlichen Aufgaben, etc.) bei Problemlösenden zu 

erkennen sind. Folgen in einem Bearbeitungsprozess zwei Episoden der 

Exploration aufeinander, z. B. durch Ausprobieren verschiedener Ansätze, dann 

werden diese auch als einzelne Episode der Exploration kodiert. Idealerweise hilft 

die Episode der Exploration, um an eine Information zu gelangen, die in weiteren 

Episoden, z. B. Analysis, Planning oder Implementation genutzt werden kann. 

 

Planning: Diese Episode umfasst die Entwicklung eines Plans, der ein 

bestimmtes inhaltliches (Zwischen-)Ziel verfolgt. Für die Kodierung der Episode 

Planning genügt es nicht, dass problemlösende Personen lediglich ein Ziel 

beschreiben. Es muss zusätzlich deutlich werden, dass die problemlösende Person 

eine Idee besitzt, wie dieses Ziel zu erreichen ist. Der Beginn einer Episode 

Planning kann demnach dadurch erkannt werden, dass ein Plan und (Zwischen-

)Ziel festgelegt wurden sowie das weitere Vorgehen nicht durch explorative 

Aktivitäten voranschreitet. Es ist nicht unüblich, dass Planning nach Reading und 

Analysis auftritt, wobei Planning durchaus auf Exploration folgen kann. Dies ist 

vor allem dann der Fall, wenn in der Episode Exploration wichtige Informationen 

gefunden wurden. Auf Planning folgt meistens die Episode Implementation. Oft 

gehören Planning und Implementation zusammen, allerdings muss nicht jeder 

Plan auch implementiert werden. Wenn Planning und Implementation als 

getrennte Episoden zu erkennen sind, sollten sie auch entsprechend kodiert 

werden. 
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Implementation: Diese Episode umfasst die Umsetzung eines Plans. Für die 

Kodierung der Episode Implementation muss erkennbar sein, dass den 

problemlösenden Personen bereits hier bewusst ist, wie in etwa vorgegangen 

werden muss. Dies zeichnet sich vor allem durch einen Plan aus, der vorher 

aufgestellt wird. Teilweise wird explizit ein Plan formuliert, teilweise muss auf 

die Existenz eines implizit vorhandenen Plans geschlossen werden. Dennoch 

muss diese Episode nicht immer geradlinig verlaufen. Sie kann z. B. auch 

beinhalten, dass ein Plan verworfen wird. Falls es bei der Durchführung noch 

Unsicherheiten gibt oder an einigen Stellen das weitere Vorgehen noch nicht klar 

ist, wird Exploration kodiert. Kleinere Hindernisse, die sich schnell aus dem Weg 

schaffen lassen, gehören aber zur Implementation. Es kann durchaus vorkommen, 

dass ein Plan auch zeitgleich mit der Implementation entwickelt wird, sich die 

Planung über einen sehr kurzen Zeitraum erstreckt oder nicht expliziert wird. In 

diesen Fällen werden Planning und Implementation gleichzeitig kodiert.  

 

Verification: Diese Episode umfasst Aktivitäten, die zur Überprüfung des 

Bearbeitungsprozesses beitragen. Für die Kodierung der Episode Verification 

zählen die Überprüfung oder Kontrolle von Ergebnissen oder von 

Teilergebnissen. Dazu gehören insbesondere Kontrollen und Evaluationen der 

Argumentation oder des Rechenwegs. Der Beginn von Verification lässt sich 

oftmals dadurch erkennen, wenn das Vorgehen zu einem vorher festgelegten Ziel 

untersucht wird. Die Episode Verification dient häufig als Abschluss eines 

Bearbeitungsprozesses. 

 

Transition: Diese Episode umfasst Übergänge zwischen zwei Episoden. Für die 

Kodierung der Episode Transition ist es wichtig, dass die vorhergehende Episode 

bereits abgeschlossen ist, die neue aber noch nicht angefangen hat. Viele 

Transitions haben keine zeitliche Ausdehnung, werden demnach nicht extra 

kodiert. Die Kodierung von Transition beginnt oftmals, wenn problemlösende 

Personen metakognitive Aktivitäten (Beurteilung des bisherigen Vorgehens, 

Entscheidungen über das weitere Vorgehen) ausführen. Diese signalisieren 

bewusste Richtungsentscheidungen. Es können auch Transitions zwischen zwei 

gleichnamigen Episoden vorkommen (z. B. Exploration – Transition – 

Exploration). Hier wird bspw. ein Ansatz verworfen, das weitere Vorgehen 

geplant und dann ein neuer Ansatz verfolgt. Zu dieser Episode zählen allerdings 

weder Schweigen (nichts Sichtbares passiert) noch organisatorische Tätigkeiten, 

da solchen Aktivitäten in Bezug zur vorherigen Episode kodiert werden.  

 

In der Episodenkodierung bei Stenzel (2023a) wurde zusätzlich die Episode 

„Sonstiges“ hinzugefügt, um nicht-inhaltliche Aktivitäten zu erfassen. Da nicht-

inhaltliche Aktivitäten in den vorliegenden Daten allerdings kaum bis gar nicht 

vorgekommen sind und die Studienteilnehmenden die gesamte Aufnahmezeit die 
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vollständige Aufmerksamkeit auf die Bearbeitungen gerichtet haben, wurde von 

der Hinzunahme von „Sonstiges“ abgesehen. Kurze nicht-inhaltliche Aktivitäten 

haben deshalb keinen Einfluss auf die Episode. Stenzel (2023a) berichtet in seiner 

Dissertation ebenfalls von selten auftretenden nicht-inhaltlichen Aktivitäten. 

Im Verlauf der Datenauswertung wurde mit einer zweiten kodierenden Person 

gearbeitet, wodurch es teilweise zu unterschiedlichen Kodierungen kam. Die 

Diskussion der Unterschiede zwischen beiden kodierenden Personen hat gezeigt, 

dass die Grenzen zwischen den Beschreibungen der Episoden Spielraum für 

Interpretationen bieten. Anhand der konkreten Situation wurde sich auf Grenzen 

der Kategorien geeinigt, mit denen im weiteren Verlauf kodiert werden konnte. 

Besonders die Unterschiede zwischen Exploration und Analysis sowie 

Exploration und Planning werden im Folgenden dargestellt. 

Unterschiede zwischen Episoden 

Der Unterschied zwischen den Episoden der Exploration und Analysis: In der 

Episode Analysis versucht die problemlösende Person speziell die 

Aufgabenstellung zu verstehen. Dies lässt sich an Unternehmungen bzw. 

Aussagen feststellen, die mit den Bedingungen der Aufgabe oder dem 

unmittelbaren Ziel der Aufgaben zu tun haben. Sobald eine Unternehmung den 

Charakter hat, dass eine Lösung für das Problem erzeugt werden soll bzw. gesucht 

wird, wird es der Episode der Exploration zugeschrieben. Die nicht immer leicht 

zu identifizierenden Unterschiede zwischen Analysis und Exploration können 

auch in der Struktur und dem Inhalt erkannt werden. In einer Episode der Analysis 

arbeiten die Problemlösenden insbesondere dicht am Aufgabentext und gehen 

eher strukturiert vor. In einer Episode der Exploration kann das Vorgehen 

unstrukturiert sein und ist meistens weiter von der Aufgabenstellung entfernt. Die 

häufige Verwechslung zwischen den beiden Episoden Analysis und Exploration 

ist Schoenfeld (1992b, S. 194) selbst schon aufgefallen. 

Der Unterschied zwischen den Episoden der Exploration und Planning: In der 

Episode Planning muss deutlich werden, wie die problembearbeitende Person die 

Aufgabe lösen möchte. Meistens zeigt sich dies durch die inhaltliche Natur des 

Plans. Charakterisierend sind Aussagen wie: „Ich würde hier in die Definition 

einsetzen, damit dann den Grenzwert bestimmen. Was dann rauskommt, ist ja 

dann das Ergebnis“. In der Episode Exploration wird zwar auch eine Richtung 

eingeschlagen, allerdings ist der problemlösenden Person zu Beginn nicht klar, 

ob dies wirklich zur Lösung beitragen könnte. Charakterisierend sind Aussagen 

wie: „Dann lass uns das doch mal versuchen“, „lass uns das doch mal 

ausprobieren, vielleicht hilft das ja“, „wollen wir das dann auch erstmal so 

machen wie in der Übung?“ 
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Vorgehen beim Kodieren der Episodenkodierung 

An dieser Stelle wird auf Beispiele der einzelnen Episoden verzichtet. Dies liegt 

unter anderem auch daran, dass die Kodierung anhand von Videomaterial 

durchgeführt wurde. Stattdessen wird in Kapitel 6.1.1 eine Fallanalyse (Häder, 

2019, S. 371ff.; Hering & Schmidt, 2014) zur Episodenkodierung einer 

Bearbeitung der Aufgabe „Differenzierbarkeit prüfen“ (Kapitel 5.3.1) dargestellt. 

Während der Bearbeitung durchläuft die Lerngruppe jede Episode mindestens ein 

Mal, wodurch der Prozess ein gutes Beispiel darstellt. Die Kodierung von 

Prozessen anhand des Videomaterials wurde bereits von Schoenfeld (1985, Kap. 

9), Rott (2013) und Stenzel (2023a) verwendet. Es liegt daher nahe, dass die 

Kodierung der Episoden in dieser Arbeit ebenfalls anhand des Videomaterials 

durchgeführt wird. 

Die einzelnen Episoden in einem gesamten Prozess müssen dabei keine 

einheitliche Zeitlänge besitzen, sondern sind lediglich von der Handlung bzw. den 

Aussagen der problemlösenden Personen abhängig. Der gesamte 

Problembearbeitungsprozess kann allerdings zu jedem Zeitpunkt anhand einer 

Episode beschrieben werden, wodurch ein lückenloses Protokoll entsteht. Es 

handelt sich dabei um ein Event-Sampling Verfahren (Schoenfeld, 1985). 

Zwischen zwei Episoden kann Transition kodiert werden, oder es findet ein 

direkter Übergang zu einer weiteren Episode statt. Es wurden im Vorhinein keine 

festen Segmente festgelegt, zu denen die Kategorien zugeordnet wurden, 

stattdessen wurden die Segmente erst während des Kodierens bestimmt (Rädiker 

& Kuckartz, 2019, S. 295). 

Stenzel (2023a, S. 97) setzt eine Mindestlänge von 30 Sekunden für einzelne 

Episoden fest. Damit rücken auch die bereits angesprochenen 

Hauptentscheidungen in den Vordergrund der Kodierung. Zu kurze Episoden 

würden der Übersichtlichkeit schaden und den Fokus von den 

Hauptentscheidungen verlagern. Allerdings wurden Ausnahmen für die Episoden 

Reading, Planning und Transition getätigt, da diese Episoden in der Regel sehr 

kurz sind. Die Überlegungen von Stenzel (2023a) werden in dieser Arbeit 

übernommen, allerdings wird die Mindestlänge einzelner Episoden auf 15 

Sekunden festgelegt. Dies schadet der Übersichtlichkeit kaum und es kann vor 

allem zu Beginn eines Bearbeitungsprozesses genauer dargestellt werden, in 

welcher Phase sich problemlösende Personen befinden. Zusätzlich werden in 

dieser Arbeit auch Lerngruppen untersucht, bei denen zeitlich kürzere Episoden 

oftmals durch eine Person angestoßen und recht zügig durch eine andere Person 

der Lerngruppe geschlossen wird. Solche Episodenwechsel, die eher kürzerer 

Natur sind, würden durch eine hohe Mindestlänge für Episoden verloren gehen. 

Um sich nicht im Detail des Prozesses zu verlieren, erfolgte die Einteilung der 

Episoden ebenfalls wie in Stenzel (2023a) und Rott (2013) an dem Videomaterial. 

Die Kodierung am Transkript könnte einen ganzheitlichen Blick des Prozesses 

verstellen. 
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In der Studie von Schoenfeld (1985) erhielten die problemlösenden Personen ein 

Zeitlimit von 20 Minuten pro Problem. In dieser Arbeit wurde den Studierenden 

kein Zeitlimit gesetzt, da es sich um eine möglichst authentische Situation des 

typischen Lernprozesses von Studierenden handeln sollte (Kapitel 5.2.2). Die 

Studienteilnehmenden haben demnach selbstständig das Ende ihrer 

Bearbeitungsprozesse festgelegt.  

Die authentischen Lernsituationen haben zur Folge, dass nicht nur 

Einzelpersonen beim Lösen von Aufgaben beobachtet wurden, sondern zusätzlich 

Lerngruppen aus zwei bis vier Studierenden. Die Beteiligung mehrerer Personen 

an einem Prozess kann dazu führen, dass zwischen den Episoden häufiger 

gesprungen wird. Eine mögliche Ursache ist, dass vor allem mentale Aktivitäten 

bei den Teilnehmenden während der Bearbeitung nicht jederzeit synchron 

verlaufen müssen. Für Übergänge einer Episode sind daher meistens einzelne 

Teilnehmende verantwortlich, die einen Impuls anregen und die anderen 

Teilnehmenden der Lerngruppe in den Gedankenvorgang einbeziehen. Zu 

Problemen bezüglich der Episodenkodierung führt dies erst dann, wenn z. B. eine 

Lerngruppe aus mehreren Personen besteht, die verschiedene Aktivitäten 

ausführen. In einer Lerngruppe mit vier Personen könnten unter Umständen zwei 

Zweier-Gruppen entstehen, die sich jeweils in unterschiedlichen Episoden 

befinden.  

Wie bereits beschrieben, wurde die Kodierung der Daten mit zwei unabhängigen 

Kodierenden durchgeführt. Zunächst wurden in einem Schulungsprozess zwei 

Problembearbeitungsprozesse unabhängig voneinander kodiert und direkt im 

Anschluss gemeinsam besprochen. Es folgte eine Identifikation von 

Gemeinsamkeiten und Unterschiede sowie eine konsensuelle Validierung an nicht 

übereinstimmenden Stellen (Bortz & Döring, 2006, S. 328). Daraufhin wurden 

(wie bereits oben beschrieben) kleine Anpassungen an dem Kodiermanual von 

Stenzel (2023a) vorgenommen. Mit diesen Anpassungen wurden erneut 

unabhängig voneinander einige Problemlöseprozesse kodiert, etwa 33 % der 

gesamten Daten. Mit dem Analyse-Tool von maxQDA wurde eine Intercoder-

Übereinstimmung bestimmt. Dabei wurde eine Codeüberlappung an Segmenten 

von mindestens 95 % festgelegt (Rädiker & Kuckartz, 2019, S. 295). Die Literatur 

empfiehlt bei 95 % zu starten: „In den meisten Fällen wird man jedoch mit etwa 

95 % minimaler Überlappung testweise starten…“ (Rädiker & Kuckartz, 2019, S. 

295). Eine Codeüberlappung von 100 % wird dann empfohlen, wenn bspw. vorher 

fest definierte Segmente festgelegt worden sind. Der Grund dafür ist, dass die 

Kodierenden möglicherweise die gleiche Szene kodiert haben, allerdings das 

Ende der Szene eine Sekunde später angesetzt haben. Solche inhaltlich 

unproblematischen Differenzen würden durch eine Codeüberlappung von 100 % 

eine Nichtübereinstimmung liefern. Eine Mindestübereinstimmung von 95 % 

ignoriert solche minimalen Unterschiede, liefert aber dennoch eine ausreichend 

hohe Qualität über die Aussage der Übereinstimmung. Mit diesem Verfahren 
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wurde zwischen den beiden unabhängigen Kodierenden ein Kappa Score von .89 

erreicht32. Obwohl die Feststellung eines Kappa Scores eher in einem 

quantitativen Forschungsdesign als intersubjektive Überprüfbarkeit genutzt wird, 

kann dieser dahingehend interpretiert werden, dass die beiden unabhängigen 

Kodierenden in einer hohen Anzahl von Fällen zu einem gleichen Zeitpunkt die 

gleiche Episode kodiert haben33. Die Methode der Intercoder-Übereinstimmung 

wurde für die Episodenkodierung gewählt, da bereits Schoenfeld (1992b, S. 194) 

beobachtete, dass die Grenzen zwischen den einzelnen Episoden oftmals nicht 

eindeutig sind. Dieses methodische Vorgehen trägt dazu bei, schwierig 

voneinander zu trennende Episoden dennoch voneinander abzugrenzen und die 

Konsistenz der Kodierung zu gewährleisten. Die restlichen 

Problembearbeitungsprozesse wurden anschließend nur von einer Person kodiert. 

Zusammenfassung der Episodenkodierung 

Wie bereits erwähnt wurde, hat die Episodenkodierung nicht das Ziel, jedes 

einzelne geäußerte Wort zu analysieren und einer Episode zuzuschreiben. 

Vielmehr ist das Ziel der Episodenkodierung, die allgemeine Vorgehensweise 

einer problemlösenden Person zu erfassen. Dies bedeutet, dass 

Hauptentscheidungen des Bearbeitungsprozesses neue Episoden bzw. Übergänge 

von Episoden signalisieren und damit entscheidend für die Kodierung sind. Als 

Beispiel stellen wir uns eine Person vor, die sich in der Episode Implementation 

befindet. Eine problembearbeitende Person führt in der Episode Implementation 

eine Rechnung durch und kontrolliert direkt im Anschluss (keine bis kaum 

Zeitverzögerung) den getätigten Umformungsschritt: „Konnte ich das 𝑥 da jetzt 

wirklich rauskürzen? … Hmm … Ja, doch, das stimmt so. Gut, dann weiter im 

Text“. Dies ist zwar eine Aussage, die verifizierenden Charakter hat, allerdings 

liegt im Sinne der Episodenkodierung das Hauptaugenmerk auf der 

Implementation. Dies wird unter anderem auch dadurch angedeutet, dass die 

Person direkt mit der Lösung fortfahren möchte. Deshalb wird für diese kurze 

Aussage nicht die Episode der Verification kodiert. Dagegen kann eine ganz 

ähnliche Aussage die Episode der Verification einläuten. Dies kann man bspw. 

 
32 maxQDA nutzt bei der Bestimmung des Kappa Scores den Vorschlag von Brennan und 

Prediger (1981), bei der die erwartete Zufallsübereinstimmung über die Anzahl der 

Kategorien statt über die Randverteilung bestimmt wird (Rädiker & Kuckartz, 2019, S. 

299ff.). 

33 Die prozentuale Übereinstimmung (Rädiker & Kuckartz, 2019, S. 297) zwischen den beiden 

Kodierenden liegt bei 90,91 %. Die Unterschiede in den Kodierungen in dieser Arbeit liegen 

darin, dass zwar die gleiche Episode kodiert wurde, allerdings nicht in einem 

Überlappungsintervall von 95 %. Dies bedeutet, dass der Grund für die 

Nichtübereinstimmungen meistens die Länge der Episoden ist. Gerade bei kürzeren 

Episoden wie Reading und Verification kommt es dadurch leicht zu 

Nichtübereinstimmungen, wenn der Nebensatz davor oder danach noch „dazu kodiert“ bzw. 

nicht „dazu kodiert“ wird.  
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daran erkennen, dass eine problembearbeitende Person den gesamten 

Bearbeitungsverlauf oder den gesamten Rechenweg kontrolliert. „Ich gucke mir 

nochmal die Aufgabe an, ob wir da alles gemacht haben […]“. Ggfs. überprüft 

die problembearbeitende Person dabei auch ihre methodische Vorgehensweise. 

Oftmals lassen sich Episoden der Verification nach dem Erreichen eines 

(Zwischen-)Ziels wiederfinden. 

In einem idealisierten Problembearbeitungsprozess würde man davon ausgehen, 

dass zunächst das Problem gelesen wird. Im Anschluss werden Aktivitäten 

durchgeführt, um die Aufgabe (besser) zu verstehen. Danach wird ein Plan 

entworfen und durchgeführt. Schlussendlich wird das Vorgehen kontrolliert. Dies 

entspricht der Reading-Analysis-Planning-Implementation-Verification-Sequenz. 

In einigen Aufgaben kann es sein, dass Phasen übersprungen werden, wenn z. B. 

das Problem direkt verstanden wurde, sodass in diesem Prozess die Episode der 

Analysis entfällt. In weiteren Fällen kann auch zusätzlich die Episode Planning 

entfallen und direkt mit der Implementation gestartet werden, falls der 

problemlösenden Person bereits klar ist, wie bei der Bearbeitung der Aufgabe 

vorgegangen werden muss.  

Die beschriebene Auswertungsmethode lässt sich somit als qualitative 

Inhaltsanalyse (Mayring, 2022, S. 12f.) auffassen.  

 

1. Kommunikation: Es dient der Analyse von Sprache und Bildern (hier: 

die Bearbeitungsprozesse der Studierenden) 

2. Fixierte Kommunikation: Sprache und Bilder liegen in protokollierter 

Form vor (hier: Videos) 

3. Systematisch: Die Analyse geht systematisch vor (z. B. keine freien 

Interpretationen) 

4. Regelgeleitet: Die Analyse geht regelgeleitet vor und ist damit 

nachvollziehbar und überprüfbar (durch die Kategorien und die 

Intercoder-Übereinstimmung) 

5. Theoriegeleitet: Es basiert auf dem theoretischen Hintergrund des 

mathematischen Problemlösens 

6. Rückschlüsse: Durch die Analyse können Rückschlüsse über das 

analysierte Material gezogen werden 

 

Die Episodenkodierung nach Schoenfeld erfüllt die herausgearbeiteten Spezifika 

(Mayring, 2022, S. 12f) einer qualitativen Inhaltsanalyse und grenzt sich dadurch 

von anderen Methoden ab. 

5.4.2 Verwendung der Wissensmatrix zur Rekonstruktion von Angebot und 

Nutzen mathematischen Wissens 

Die Wissensmatrix kann für verschiedene Zwecke eingesetzt werden. Sie wird in 

dieser Arbeit bereits genutzt, um theoretisch einzuordnen, welches Wissen für die 



S e i t e  | 153 

 

jeweiligen Aufgaben dieser Studie benötigt wird (Kapitel 5.3). Auf Grundlage 

dieser vorhergegangen Analyse kann die Wissensmatrix noch weitere Funktionen 

übernehmen. Sie wird zum einen herangezogen, um zu beschreiben, welches 

Angebot eine Veranstaltung bezüglich des vorher festgestellten theoretischen 

Wissens bezüglich einer Aufgabe bereitstellt. Zum anderen können mithilfe der 

Wissensmatrix die Wissenselemente, die Studierende im Bearbeitungsprozess 

nutzen, rekonstruiert werden.  

Angebot 

Um das Wissensangebot einer Veranstaltung abzubilden, werden die Materialien 

der Veranstaltung gesichtet und dargestellt, ob und in welcher Weise 

mathematische Inhalte mit ihren verschiedenen Facetten präsentiert werden. 

Ausgangspunkt ist demnach die Wissensmatrix, in der die mathematischen 

Definitionen, Sätze und Verfahren in die Spalte mathematischer Inhalt entweder 

dem konzeptuellem oder prozeduralem Wissen zugeordnet wurde. Die Vorlesung 

der Veranstaltung „Mathematik 1 für Maschinenbauer“ wird zu diesen 

mathematischen Inhalten untersucht und es wird festgehalten, mit welchen 

Wissensfacetten das Wissen für Studierende präsentiert wurde. Um das 

Wissensangebot der Veranstaltung zu ermitteln, kann die Wissensmatrix in ihrer 

Form genutzt werden, so wie sie ursprünglich zum Systematisieren und Sichern 

von mathematischen Inhalten entwickelt wurde (Prediger et al., 2011). 

 
 Mathematischer Inhalt EF K&A B&V KF 

K
o

n
z
e
p

tu
el

le
s 

W
is

se
n

 

Konzept: 

Differenzierbarkeit 

    

Konzept: Funktionen     

Konzept: Abschnittsweise 

definierte Funktionen 

    

P
ro

z
e
d

u
ra

le
s 

W
is

se
n

 

Verfahren: 

Differenzierbarkeit prüfen 

    

Verfahren: Grenzwert von 

Funktionen berechnen 

    

Verfahren: Sandwich-

Kriterium 

    

Tabelle 12: Angebot der Veranstaltung zur Aufgabe „Differenzierbarkeit prüfen“ in die Wissensmatrix 
(IN = Implizite Nutzung; EF = Explizite Formulierung; K&A = Konkretisierung 

& Abgrenzung; B&V = Bedeutung & Vernetzung; KF = Konventionelle 

Festlegungen) 
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Ausschnitt für die Facette Explizite Formulierung: 

 
Ausschnitt für die Facette Konkretisierung & Abgrenzung: 

 
Ausschnitt für die Facette Bedeutung & Vernetzung: 

 
Ausschnitt für die Facette Konventionelle Festlegung: 

 

Abbildung 21: Ausschnitte der Wissensfacetten zum Konzept Differenzierbarkeit aus der 

Veranstaltung „Mathematik 1 für Maschinenbau“ 
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Tabelle 12 zeigt dabei auf, welche Wissensfacetten der vorher festgelegten 

mathematischen Inhalte bezüglich der Aufgabe „Differenzierbarkeit prüfen“ 

(Kapitel 5.3.1) in der Veranstaltung zu identifizieren waren. Die dunkel 

hinterlegten Zellen zeigen auf, welche Wissensfacetten in der Veranstaltung 

identifiziert werden konnten. Beispielhaft für die Identifikation der 

Wissensfacetten werden Ausschnitte für das Konzept Differenzierbarkeit aus der 

Veranstaltung dargestellt. 

Abbildung 21 zeigt einige Ausschnitte zu den Wissensfacetten, die zum Konzept 

Differenzierbarkeit zugeordnet werden konnten. Bezüglich der Expliziten 

Formulierung wurde die Ableitung als Grenzwert des Differenzenquotienten 

definiert (Abbildung 21), wobei der Differenzenquotient vorweg ebenfalls formal 

festgelegt wurde. Für die Facette Konkretisierung & Abgrenzung wird in 

Abbildung 21 nur ein Beispiel gezeigt, wobei in der Vorlesung mehrere Beispiele 

für differenzierbare Funktionen mittels der Definition aufgezeigt worden sind. 

Außerdem wurde im weiteren Verlauf der Vorlesung noch das typische 

Gegenbeispiel der Betragsfunktion besprochen und welche in 𝑥 = 0 nicht 

differenzierbar ist. Gleiches gilt für die Facette Bedeutung & Vernetzung. In der 

Vorlesung wurde die Differenzierbarkeit zunächst über den physikalischen 

Kontext der „Momentangeschwindigkeit“ motiviert, welches auf der 

Grundvorstellung der lokalen Änderungsrate beruht (Kapitel 4.3.2). Nachdem die 

Differenzierbarkeit formal eingeführt wurde, wurde die Tangentensteigung als 

eine geometrische Veranschaulichung (Abbildung 21) der Definition dargestellt. 

Letztlich wurde noch ein Hinweis dazu gegeben, wie die Tangenten mithilfe der 

Ableitung als Funktion dargestellt werden kann, was wiederum die 

Grundvorstellung der lokalen linearen Approximation widerspiegelt. Sowohl die 

Facette Konkretisierung & Abgrenzung als auch Bedeutung & Vernetzung wurden 

intensiv und umfangreich mittels verschiedener Perspektiven behandelt. 

Bezüglich der Facette der Konventionellen Festlegungen wurden sowohl 

Schreibweisen als auch Bezeichnungen für den Umgang mit der 

Differenzierbarkeit festgelegt (Abbildung 21). Insgesamt wurde bezüglich der 

Facetten der Wissensmatrix das Konzept der Differenzierbarkeit in der 

Veranstaltung umfänglich vorgestellt und teilweise wurden verschiedene 

Perspektiven in den einzelnen Facetten behandelt. 

Nutzung 

Letztlich kann die Wissensmatrix beschreiben, welches Wissen Studierende 

während Bearbeitungsprozessen Aufgaben im Rahmen eines mathematikhaltigen 

Studiums nutzen. 

Dazu wird der Bearbeitungsprozess der Studierenden untersucht, um zu 

identifizieren, welche mathematischen Inhalte als auch welche Wissensfacetten 

genutzt werden. Als Grundlage dient dabei die bereits vorher erstellte 

Wissensmatrix zu den theoretischen Überlegungen, welche mathematische 
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Wissen für eine Aufgabe benötigt wird (Kapitel 5.3), als auch die Untersuchung, 

welches Angebot die Veranstaltung bezüglich des Wissens bereitstellt. Für die 

Nutzung wird allerdings noch eine weitere Wissensfacette zur Wissensmatrix 

hinzugefügt – Implizite Nutzung. Diese wird durch die Ausführungen von Vollrath 

und Roth (2012, S. 48ff.) motiviert. Dabei betonen sie bezüglich mathematischer 

Verfahren das Beherrschen und bezüglich mathematischer Sachverhalte den 

Anwendungskontext. Diese Idee wird für die Facette der Impliziten Nutzung 

übernommen. Demnach wird unter der Facette der Impliziten Nutzung bezüglich 

des prozeduralen Wissens die korrekte Ausführung eines Verfahrens verstanden. 

Dies könnte z. B. die korrekte Anwendung der Kettenregel sein. Bezüglich des 

konzeptuellen Wissens wird die Implizite Nutzung als Anwendungskontext für ein 

Konzept bzw. einen Zusammenhang verstanden. Dies könnte für das Konzept z. 

B. die Anwendung der Definition der Differenzierbarkeit sein, die typischerweise 

bei der Überprüfung von Differenzierbarkeit einer Funktion in einem Punkt 

Anwendung findet.  

Sobald der Bearbeitungsprozess der Studierenden startet, wird jeweils dann ein 

Wissenselement kodiert, wenn Studierende ein Wissenselement adressieren. Die 

Kodierung bezieht sich dabei auf bestimmte Impulse, bei denen nicht unbedingt 

eine zeitliche Länge festgelegt wird. Aussagen, Handlungen oder schriftliche 

Produkte werden nur dann kodiert, wenn der kodierenden Person klar ersichtlich 

war, dass sie sich zu einer Wissensfacette zuordnen lassen. Implizite Handlungen, 

welche bei Studierenden womöglich automatisiert sind, lassen sich somit kaum 

erkennen. Zusätzlich wird die Kodierung in „Turns“ dargestellt. In jedem „Turn“ 

wird ein Wissenselement kodiert, wobei einige Aussagen bzw. Handlungen eng 

miteinander verknüpft sind und dadurch zwei Wissenselemente pro „Turn“ 

kodiert werden (Beispiele werden in dem Kapitel 6.2.5 diskutiert). Außerdem 

wird nur dann kodiert, wenn sich Studierende mit einer Wissensfacette ernsthaft 

auseinandergesetzt haben. Damit ist gemeint, dass Handlungen bzw. Aussagen 

wie „Wir können das doch mal visualisieren“ erst dann kodiert werden, wenn 

tatsächlich eine Visualisierung vorgenommen wird. Der alleinige Vorschlag reicht 

in diesem Fall nicht aus. Die Kodierung bezüglich der Wissensmatrix wurde 

anhand des Videomaterials, des Transkripts34 und der schriftlichen Produkte, die 

während der Bearbeitungsprozesses der Studierenden entstanden sind, 

durchgeführt. Während des Bearbeitungsprozess kann es durchaus vorkommen, 

dass Studierende anderes oder weiteres Wissen nutzen, was nicht unbedingt für 

die Lösung der Aufgabe notwendig gewesen wäre. In solchen Fällen wird das 

genutzte Wissen der Wissensmatrix hinzugefügt und ebenfalls die dazugehörigen 

Wissenselemente kodiert. 

 
34 Für die Kodierung bezüglich der Wissensmatrix wurde zusätzlich ein Transkript erstellt. Dies 

hat den Grund, dass eine Identifikation bzw. Rekonstruktion von aktivierten 

Wissenselementen unter Hinzunahme eines Transkripts leichter gefallen ist, als diese 

lediglich aus dem Videomaterial zu kodieren. 
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Die Kodierung der Wissensnutzung wird umfangreich in Kapitel 6.2.2 mittels 

eine Fallanalyse (Häder, 2019, S. 371ff.; Hering & Schmidt, 2014) dargestellt. 

Dennoch soll die Kodierung an dieser Stelle beispielhaft an einem kleinen 

Ausschnitt von Davids Problembearbeitungsprozess illustriert werden. In der 

Anfangsphase seines Prozesses liest sich David die Definition der 

Differenzierbarkeit aus der Vorlesung (Abbildung 22) durch und ergänzt sie kurze 

Zeit später zu seinen Aufzeichnungen der Aufgabe. Er schreibt die Definition 

nicht in vollständiger, sondern verkürzter Form auf. Außerdem ersetzt er dabei 

schon die Variable 𝑥0 durch 0, da er die kritische Stelle der Aufgabe bereits als 0 

identifiziert hat. An diesen Stellen im Bearbeitungsprozess wurde jeweils die 

Facette Explizite Formulierung des Konzepts Differenzierbarkeit als aktiviertes 

bzw. genutztes Wissenselement kodiert.  

 

 

Abbildung 22: Ausschnitt aus Davids Aufzeichnungen zur Aufgabenbearbeitung 

Um sich die Bedeutung der Definition zu erschließen, greift David zunächst auf 

die geometrische Veranschaulichung (Abbildung 21) der Differenzierbarkeit aus 

der Vorlesung zurück und studiert diese. Er nutzt demnach die Facette Bedeutung 

& Vernetzung des Konzepts Differenzierbarkeit. Des Weiteren geht David die 

Beispiele aus der Vorlesung (Abbildung 21) durch und versucht diese 

nachzuvollziehen, weshalb die Facette Konkretisierung & Abgrenzung des 

Konzepts Differenzierbarkeit kodiert wird. 

Da David in seiner Durchführung nicht auf die implizite Nutzung der 

Differenzierbarkeit zurückgegriffen hat, wird für dieses Beispiel die Bearbeitung 

von Thomas und Alex herangezogen. Zu Beginn ihrer Bearbeitung haben sie nach 

dem Lesen der Aufgabenstellung zügig entschieden, die Definition der 

Differenzierbarkeit anzuwenden: „Ah, jetzt müssen wir quasi den äh, die die 

Definition nehmen, ne, mit dem, ähm mit dem Grenzwert quasi direkt“. Sie sind 
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sich bewusst, in welchem Kontext die Definition der Differenzierbarkeit 

Anwendung findet. 

Die Kodierung der Wissensnutzung von Studierenden wurde durch zwei 

unabhängig kodierende Person durchgeführt. Dabei wurden die Kodierungen 

miteinander verglichen und konsensuell validiert (Bortz & Döring, 2006, S. 328). 

Ein ausführliches Beispiel für weitere Kodierung zur Nutzung von Wissen wird 

in Kapitel 6.2.2 vorgestellt.  

Induktive Rekonstruktion von Schwierigkeiten im Problembearbeitungsprozess 

Die Analyse der Schwierigkeiten der Studierenden erfolgt durch eine induktive 

Herangehensweise. Schwierigkeiten werden hierbei als Hindernisse bzw. Hürden 

definiert, die im fachspezifischen Kontext den Fortschritt oder die korrekte 

Bearbeitung der Aufgabe beeinträchtigen.  

Die Identifikation der Schwierigkeiten in den Prozessen basiert auf einer 

systematischen Analyse der Handlungen und Äußerungen. Dabei wird das 

Videomaterial der Bearbeitungssituation, die Transkripte sowie schriftliche 

Abgaben der Studierenden herangezogen sowie jede Stelle markiert, die auf eine 

Schwierigkeit hinweist. 

Im Detail bedeutet dies, dass eine Schwierigkeit dann kodiert wird, wenn 

Studierende zum einen explizit äußern, dass sie aktuell Schwierigkeiten haben 

oder nicht wissen, wie sie bei der Bearbeitung weiter vorgehen sollen („Hm, ja so 

richtig verstanden habe ich es auch nicht …“).  Zum anderen werden auch 

fachliche Fehler in den Bearbeitungen sowie fehlendes fachliches Wissen, das 

notwendig für die Bearbeitung ist, als Schwierigkeit kodiert („was heißt denn, oh, 

überhaupt differenzierbar?“). Fachliche Fehler, die rein sprachlicher Natur sind, 

wie bspw. Versprecher oder leicht ungenaue Formulierungen mathematischer 

Inhalte werden nicht berücksichtigt. Dies liegt vor allem an der verwendeten 

Methode des lauten Denkens. In einem solchen Kontext kann es des Öfteren zu 

spontanen, nicht immer perfekten sprachlichen Ausdrücken kommen, die jedoch 

nicht notwendigerweise auf fachliche Schwierigkeiten hinweisen. Falls jedoch 

bestimmte Konzepte, Zusammenhänge oder Verfahren wiederholt fehlerhaft 

ausgesprochen werden, wird dies als eine tieferliegende Unsicherheit und als 

Schwierigkeit aufgefasst. 

Nach der Identifikation der Schwierigkeiten erfolgt deren Zuordnung zu 

Wissenselementen. Dabei dient die Wissensmatrix als Grundlage, um die 

Zuordnung entlang der Dimensionen Wissensart und Wissensfacette 

vorzunehmen. Diese Zuordnung kann Aufschluss darüber geben, welche Arten 

bzw. Facetten von Wissen Schwierigkeiten für die Studierenden darstellen. 

Die Kodierung sowie Zuordnung der Schwierigkeiten wurden von einer 

kodierenden Person vorgenommen. Dieser Prozess erfolgte in zwei getrennten 

Runden, die mit einem zeitlichen Abstand von zwei Monaten durchgeführt 

wurden. Mit diesem Verfahren soll die Konsistenz der Kodierung überprüft 
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werden (Mayring, 2022, S. 115). Anschließend wurden die Kodierungen der 

beiden Runden miteinander verglichen und an einigen Stellen Anpassungen 

vorgenommen. 

Zusammenfassung zur Wissensmatrix 

In dieser Arbeit wird die Wissensmatrix in verschiedenen Funktionen als 

Analysewerkzeug eingesetzt. Dabei baut sich die Wissensmatrix sukzessive auf 

den Anforderungen der Aufgaben, die Bereitstellung von mathematischen 

Inhalten der Veranstaltung sowie der Nutzung des mathematischen Wissens von 

Studierenden bei der Bearbeitung der Aufgaben auf. Aufgrund der theoretischen 

Auseinandersetzung mit einer speziellen Aufgabe wird der benötigte 

mathematische Inhalt identifiziert. Darauf basierend wird die Veranstaltung auf 

die Wissensfacetten dieser mathematischen Inhalte überprüft und festgestellt, 

welches Wissen zu den mathematischen Inhalten angeboten wird. Letztendlich 

wird die Nutzung der Wissenselemente durch die Studierenden bei der 

Bearbeitung der Aufgabe untersucht. Ein Vergleich zwischen dem Angebot 

(Welches Wissens stellt die Veranstaltung bereit?) und der Nutzung (Welches 

Wissen nutzen die Studierenden?) wird dadurch ermöglicht. 

Die beschriebenen Auswertungsmethoden zur Wissensmatrix lassen sich wie die 

Episodenkodierung nach Schoenfeld (Kapitel 5.4.1) als qualitative Inhaltsanalyse 

(Mayring, 2022, S. 12f.) auffassen.  

 

1. Kommunikation: Es dient der Analyse von Sprache und Bildern (hier: 

die Bearbeitungsprozesse der Studierenden) 

2. Fixierte Kommunikation: Sprache und Bilder liegen in protokollierter 

Form vor (hier: Videos, Transkripte und Material der Studierenden) 

3. Systematisch: Die Analyse geht systematisch vor (z. B. keine freien 

Interpretationen) 

4. Regelgeleitet: Die Analyse geht regelgeleitet vor und ist damit 

nachvollziehbar und überprüfbar (aufgrund der Kategorien sowie der 

teilweisen konsensuellen Validierung) 

5. Theoriegeleitet: Es basiert auf dem theoretischen Hintergrund zur 

Unterteilung des mathematischen Wissens in Wissensarten und -facetten  

6. Rückschlüsse: Durch die Analyse können Rückschlüsse über das 

analysierte Material gezogen werden 

5.4.3 Darstellung des Kategoriensystems zur Rekonstruktion von Heurismen 

Für die Kodierung der Heurismen wurde auf ein bestehendes Kategoriensystem 

zurückgegriffen. Ähnlich wie bei der Kodierung der Episoden von Schoenfeld 

wurde das Kategoriensystem von Stenzel (2023a, S. 100f.) übernommen, wobei 

dies ebenfalls von dem bereits bestehenden Kodiermanual von Rott (2013, S. 
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204ff.) adaptiert wurde. Rott (2013) hat das Kodiermanual induktiv entwickelt, 

wobei theoretische Überlegungen sowie stoffdidaktische Analysen für die 

Validierung von Heurismen und die daraus resultierenden Kodes genutzt worden 

sind. Dabei lassen sich die Heurismen zu heuristischen Strategien, Prinzipien und 

Hilfsmitteln zuordnen, wobei die Heurismen weiterhin unabhängig von den 

Phasen des Problemlösen sind. 

Rott (2013) hat sein Kategoriensystem zu Kodierung von Heurismen im Kontext 

von mathematischen Schulaufgaben eingesetzt, weshalb Stenzel (2023a) eine 

Anpassung vorgenommen hat, um das Kategoriensystem auf mathematische 

Aufgaben auf Hochschulniveau anwenden zu können. Dabei wurden einige 

Kategorien zusammengefasst (z. B. informative Figur und operative Figur 

wurden zu Skizze zusammengefasst), da diese Heurismen eher unüblich für 

mathematische Hochschulaufgaben erscheinen. Es wurden allerdings auch 

Kategorien induktiv hinzugefügt, wie zum Beispiel die Nutzung aller 

Voraussetzungen. In den Untersuchungen von Kilpatrick (1967) haben 

Schüler:innen kein Verhalten gezeigt, welches auf das Nutzen von grundlegenden 

Begriffen der Aufgabenstellung schließen lässt. Im hochschulischen Kontext 

scheint das Nutzen von Voraussetzungen allerdings durch die formale 

mathematische Schreibweise und Notation wieder an Bedeutung zu gewinnen. 

Die Nutzung von Voraussetzungen („Was ist gegeben?“, „Was sind die 

Voraussetzungen?“) zeigt sich auch als hilfreicher Gedankengang für Pólya´s 

(1945) erste Phase „Verstehen einer Aufgabe“ des Problemlösens.  

Die Dauer eines Heurismus ist häufig weder eindeutig messbar noch besonders 

aussagekräftig, da solche Aktivitäten zeitlich stark variieren können. Stattdessen 

werden Heurismen als Impulse bzw. Auslöser für bestimmte Tätigkeiten 

verstanden, bei denen nur der Zeitpunkt ihres Auftretens erfasst, jedoch nicht ein 

exakter Start- und Endwert festgelegt wird.  

Vorgehensweise beim Kodieren 

Das bestehenden Kodiermanual von Stenzel (2023a) dient demnach als 

Grundlage, um die Heurismen in den Bearbeitungsprozessen der Studierenden zu 

identifizieren und zu kodieren. Die Kodierung wurde von zwei Kodierenden 

durchgeführt. Zunächst wurde ein zufällig gewählter kleiner Teil der Daten (ca. 

zehn Prozent) unabhängig voneinander kodiert. Unterschiede und (einige) 

Gemeinsamkeiten in den vergebenen Kodes wurden besprochen, um mögliche 

Fehlinterpretationen des Kodiermanuals auszuschließen. Anschließend kodierten 

beide Kodierenden unabhängig voneinander die restlichen Daten. Diese 

Kodierungen wurden erneut überprüft und konsensuell validiert (Bortz & Döring, 

2006, S. 328). 

Nach der Kodierung hat sich herausgestellt, dass einige Kodes von beiden 

Kodierenden nicht vergeben worden sind. Aus diesem Grund wurden folgende 

Kategorien aus dem ursprünglichen Kodiermanual von Stenzel (2023a) 
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gestrichen: Hilfselemente, Tabelle, Gleichung, Symmetrieprinzip. Das Nicht-

Auftreten dieser Kodes kann z. B. durch die spezifischen Aufgabenstellungen 

begründet werden. Für die Lösung der Aufgaben, die in dieser Arbeit als 

Datengrundlage genutzt werden, würde aus theoretischer Sicht bspw. eine Tabelle 

dem Lösungsfortschritt wenig bis gar nicht helfen. 

Darüber hinaus wurden zwei weitere Änderungen vorgenommen. Die Kategorie 

Suche nach nützlichen Ergebnissen wurde leicht verändert und in Suche nach 

nützlichen Hinweisen umbenannt. Außerdem wurde die Beschreibung der 

Kategorie etwas weiter aufgefasst, da Studierende nicht nur im Skript nach 

nützlichen Hinweisen, sondern auch im Internet oder im restlichen Material der 

Veranstaltung gesucht haben. Ferner wurde die beiden Kategorien Ähnliche 

Aufgaben und Analogieprinzip zu einer Kategorie zusammengelegt (Ähnliche 

Aufgaben). Eine Unterscheidung der beiden Kategorien hat sich in der Kodierung 

als schwierig herausgestellt. Dies liegt möglicherweise an dem Kontext der 

Studie, da bereits ähnliche Aufgaben in Form des Tutoriums vorlagen. Dies 

wissen auch die Studierenden, weshalb aus den Aussagen der Studierenden nicht 

ersichtlich wird, ob sie die Aufgabe bewusst heranziehen, weil sie das Verfahren 

kopieren möchten oder ob die Aufgabe möglicherweise einen Ansatz auf 

abstraktem Niveau liefert. 

Zusätzlich wurde die Spalte der Beispiele mit Zitaten aus den eigenen Daten 

ergänzt. Allgemeinere Handlungsbeschreibungen von Beispielen wurden für die 

speziellen Aufgaben dieser Untersuchung adaptiert (Tabelle 13).   

Die beschriebene Auswertungsmethode lässt sich ebenfalls wie die 

Episodenkodierung nach Schoenfeld (Kapitel 5.4.1) als auch das 

Analysevorgehen mit der Wissensmatrix (Kapitel 5.4.2) als qualitative 

Inhaltsanalyse (Mayring, 2022, S. 12f.) auffassen.  

 

1. Kommunikation: Es dient der Analyse von Sprache und Bildern (hier: 

die Bearbeitungsprozesse der Studierenden) 

2. Fixierte Kommunikation: Sprache und Bilder liegen in protokollierter 

Form vor (hier: Videos und Transkripte) 

3. Systematisch: Die Analyse geht systematisch vor (z. B. keine freien 

Interpretationen) 

4. Regelgeleitet: Die Analyse geht regelgeleitet vor und ist damit 

nachvollziehbar und überprüfbar (aufgrund der Kategorien und der 

Intercoder-Übereinstimmung) 

5. Theoriegeleitet: Es basiert auf dem theoretischen Hintergrund des 

mathematischen Problemlösens (Kapitel 2.5) 

6. Rückschlüsse: Durch die Analyse können Rückschlüsse über das 

analysierte Material gezogen werden 
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Kode Beschreibung Beispiele 

Begriffe 

klären (Bkl) 

Die Bedeutung von 

Begriffen/Begrifflichkeiten wird 

geklärt, ohne dass mit den 

Begriffen bereits gearbeitet wird. 

Das Klären von Begriffen kann z. 

B. mittels Nachschlagens im 

Skript oder in Kombination mit 

dem Heurismus „Skizze“ 

passieren. 

(1) In den Materialien wird nach 

einer Definition oder Erklärung 

gesucht, ggfs. wird dies auch 

abgeschrieben. 

(2) „Da ist die Frage, was heißt 

denn, oh, überhaupt differenzierbar? 

Das heißt, ich schaue in der 

Vorlesung.“ 

(3) „Warum ist denn das 𝑥0 da 

unten?“ – „Weil das die, guck dir 

mal die Grundform für den 

Mittelwertsatz an.“ 

Skizze (Skiz) Das Anfertigen einer Skizze, 

eines Diagramms, eines Graphen 

bzw. das Anfertigen einer Figur 

sowie die weitere Arbeit damit. 

(1) Zeichnen eines Graphen oder 

Eingeben einer Funktion, um den 

Graphen zu visualisieren. 

(2) Nutzung einer Zeichnung, um 

Argumente für die Aufgabe zu 

nutzen bzw. zu validieren. 

(3) „Das ist hier blauer Graph. Das 

ist der Kosinus. Sekante, 

Schnittpunkt an zwei Punkten im 

Intervall. … Ja, der Betrag der 

Steigung, ja zwischen 𝑎 und 𝑏 

mindestens eine Stelle gibt, wo die 

Kosinusfunktion, also wo die 

Steigung der Funktion identisch 

ist.“ 

(4) „Ich gebe das Ganze mal in 

GeoGebra ein, ich will einfach 

sehen, wie das aussieht.“ 

Imaginäre 

Figur (imF) 

Zeichnen einer fiktiven 

Abbildung in der Luft/auf dem 

Tisch oder bildliches Vorstellen 

eines Sachverhalts. 

(1) Es wird ein Sachverhalt, z. B. 

die Kosinusfunktion „in die Luft 

gemalt“. 

(2) Es wird erwähnt, dass man sich 

bildlich etwas vorstellt. 

Spezialfall 

(SpF) 

Betrachten von besonderen 

Fällen, die angenommen werden 

können, etwa zur Vereinfachung 

eines Beweises. 

(1) Es wird ein Sachverhalt mit 

einem Beispiel erklärt. 

(2) Es werden bestimmte Zahlen 

genutzt, um sich von allgemeinen 

Argumenten zu überzeugen bzw. 

sich selbst verständlich zu machen, 

z. B. ob ein Grenzwert existiert. 

(3) „Nehmen wir mal irgendeine 

Zahl. Wenn ich das richtig habe und 

ich 100 habe und davon den 𝑙𝑛, … 

ist das was anderes, als ich dachte.“ 

Falluntersch

eidung (FU) 

Hier werden zum Lösen der 

Aufgabe verschiedene Fälle 

unterschieden. 

(1) „Hier mache ich auch wieder 

zwei Fallunterscheidungen. Einmal 

für den Fall, dass 𝑓 ungleich, also 
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dass 𝑥 in 𝑓 ungleich 0. Ähm 

einmal, dass 𝑥 = 0 ist.“ 

Nutzung 

aller 

Voraussetzun

gen (Nvor) 

Es wird geprüft, ob alle in der 

Aufgabenstellung gegebenen 

Bedingungen einbezogen worden 

sind. 

(1) „Ja, aber wir dürfen nicht 

vergessen, dass 𝑎, 𝑎 wächst nicht. 𝑎 

ist konstant, ne. 𝑎 ist eine Konstante 

größer 1.“ 

(2) „Naja, 𝑥 − 𝑦, wobei 𝑦 < 𝑥 ist. 

Das ist wichtig, weil sonst wäre hier 

was Negatives […]. Das heißt, dass 

das Relationszeichen dreht sich 

nicht um.“ 

Systematisie

rungshilfen 

(SyH) 

Das Einführen ordnender 

Elemente, die bei der Ausführung 

und Überwachung einer 

Tätigkeit/eines Plans helfen. 

(1) Es werden Markierungen 

jeglicher Art genutzt.  

(2) „Ich schreibe es nochmal in den 

richtigen Farben, dass ich das 

besser sehe.“ 

Metapher 

(Met) 

In der Aufgabe vorkommende 

Aspekte werden mittels 

anschaulicher Metaphern 

beschrieben. 

(1) Sinus „schwingt“ zwischen 

Minus Eins und Eins 

(2) Es ist etwas unendlich klein an 

Null dran. 

Rückführung

sprinzip 

(RfP) 

Bezugnahme auf bekannte 

Fakten, Ergebnisse oder 

Bezugnahme auf Teilergebnisse 

der Aufgabe. Im Gegensatz zu 

ähnlichen Aufgaben werden keine 

Verfahren übertragen. Dieser 

Heurismus wird auch dann 

kodiert, wenn sich nonverbal z. B. 

auf Teilergebnisse der Aufgabe 

bezogen wird. 

(1) Bezugnahme auf bereits 

erreichte (Zwischen-)Ergebnisse 

(2) Bezugnahme auf bereits 

bekannte Fakten, wie z. B. 

bestimmte Ableitungen. 

Ähnliche 

Aufgabe 

(Ähn) 

Das Heranziehen bekannter 

Verfahren und Methoden durch 

Bezug auf andere, vergleichbare 

Aufgaben, Sätze oder Beweise, 

die sich auf (vermutlich) ähnliche 

Weise lösen lassen.  

 

(1) Suche nach möglichen Ansätzen 

im Internet oder im 

Veranstaltungsmaterial. 

(2) Suche nach einer speziellen 

Aufgabe, die im gegebenen Kontext 

helfen soll. 

(3) „Hier hat man es einfach 

aufgelöst bis man … eine einfache 

Zahl auf einer Seite hatte.“  

(4) „Ich gucke nochmal in die 

Beispielaufgabe“. 

Suche nach 

nützlichen 

Hinweisen 

(nüHi) 

Dieser Heurismus ist eine 

Vorstufe zu „RfP, Ähn bzw. Ana“. 

Es wird gezielt überlegt oder im 

Veranstaltungsmaterial und/oder 

im Internet geschaut, welche 

Elemente einem für das zu 

lösende Problem weiterhelfen 

können. 

(1) „Ein bisschen googlen, ne, … 

was das große, weite Internet dazu 

sagt.“ 

(2) „Ich schaue jetzt nochmal in der 

Vorlesung, ob wir dazu was 

aufgeschrieben haben“ 

(3) „dafür hole ich meine 

Karteikarten raus.“ 
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Rückwärtsar

beiten (RüA) 

Betrachtung des 

Zielzustandes/des Gesuchten. Es 

wird überlegt, was man zeigen 

muss, damit die Behauptung 

erfüllt ist. Davon ausgehend wird 

versucht, zum Anfangszustand zu 

gelangen. 

(1) Ausgehend vom Mittelwertsatz 

Umformungen anstellen, um zur 

Formel der Aufgabenstellung zu 

gelangen. 

Vorwärtsarbe

iten (VwA) 

„Drauf los“-Arbeiten vom 

Anfangszustand. Das Gegebene 

wird verwendet, um zum 

Zielzustand zu gelangen. Bei 

Beweisaufgabe wird von den 

Voraussetzungen ausgegangen. 

(1) Eine vorgegebene Gleichung 

wird manipuliert, um zu sehen, ob 

man mit dem Ergebnis 

weiterkommt. 

(2) „Ja, das ist, muss man glaube 

ich mit L´Hospital machen.“ 

Tabelle 13: Das Kodiermanual bezüglich Heurismen dieser Studie 

5.5 Auswertungsmethode zu den Produkten der 

Problembearbeitungen 

In dieser Arbeit werden Problembearbeitungsprozesse in den Fokus gestellt. Da 

die Problembearbeitungsprozesse der Studierenden in dieser Studie in den 

normalen Semesterbetrieb eingebettet sind, entsteht aus diesen Prozessen in der 

Regel ein resultierendes Produkt. Dieses Produkt sind die Beantwortungen der 

Hausaufgaben und werden von den Studierenden abgegeben, um eine 

Leistungsbewertung zu erhalten. 

Wenn Problembearbeitungsprozesse untersucht werden, sollten sich ebenfalls die 

Ergebnisse der Prozesse (=Produkte) angeschaut werden (Rott, 2013, S. 179). Nur 

dann lassen sich Aussagen über Erfolg und Misserfolg treffen. Somit kann das 

Produkt mit dem Prozess (im folgenden Kapitel) in Beziehung gesetzt und das 

Finden von Zusammenhängen ermöglicht werden. 

Für die Bewertung des Produkts können verschiedene Maßstäbe herangezogen 

werden. Zunächst stellt sich die Frage, inwiefern die Produktbewertung das 

Einbeziehen des Prozesses erlaubt. Sollten Zwischenergebnisse, Weggestrichenes 

oder einzelne Gedanken bewertet werden? Es wurde sich dagegen entschieden, 

solche Informationen aus dem Prozess mit einzubeziehen. Aufgrund der 

Anforderungen der Veranstaltung wird von den Studierenden ohnehin erwartet, 

dass sie eine umfassende, sorgfältige und alle notwendigen Informationen 

enthaltende Lösung vorlegen. Es wird davon ausgegangen, dass die 

teilnehmenden Studierenden daher alle ihnen wichtig erscheinenden 

Informationen, die im Prozess gewonnen wurden, auf ein Blatt Papier geschrieben 

werden. Es bietet sich daher an, dass lediglich die tatsächliche Abgabe bewertet 

wird. Es wurde dabei bedacht, dass die Studierenden nach der Videoaufnahme 

weiterhin an ihren Abgaben arbeiten könnten und damit letztendlich ihr Produkt 

aufbessern, bevor sie es abgeben. Die Materialien bzw. die Mitschriften der 
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Studierenden wurde daher direkt nach der Videoaufnahme gesammelt, sodass 

nachträgliche Verbesserungen bzw. Veränderungen für die Analyse der Daten in 

dieser Arbeit ausgeschlossen werden können.  

Weiterhin würde es sich anbieten, die Leistungsbewertungen der Veranstaltungen 

zu übernehmen. Problematisch ist dabei allerdings, dass die teilnehmenden 

Studierenden in unterschiedlichen Tutorien angemeldet und daher nicht 

zwangsläufig von denselben Korrekteur:innen bewertet worden sind. Eine 

einheitliche Bewertung der Produkte wäre damit nicht gewährleistet. In der 

Beweis- als auch Problemlöseforschung gibt es aber bereits einige Vorarbeiten, 

die dem jeweiligen Produkt eine Leistungsbewertung unterziehen. Die 

verschiedenen Ansätze grenzen sich dadurch ab, dass die Bewertung des Produkts 

ganzheitlich (z. B. Kempen & Biehler, 2019) oder detailliert, teilweise mittels 

verschiedener Merkmalsdimensionen (z. B. Füllgrabe & Eichler, 2019), 

durchgeführt wird. Detaillierte bzw. komplexere Ansätze haben dabei den Vorteil, 

dass über einzelne Ausprägungen35 des Produkts Aussagen getroffen und bessere 

Schlussfolgerungen über das Produkt an sich gezogen werden können. In dieser 

Arbeit steht die Untersuchung des Produkts allerdings nicht im Fokus. Vielmehr 

soll die Bewertung des Produkts genutzt werden, um den Fortschritt der Lösung 

festzuhalten, damit Rückschlüsse auf erfolgreiche bzw. weniger erfolgreiche 

Problembearbeitungsprozesse gezogen werden können. In dieser Untersuchung 

ist daher ein ganzheitliches als auch eindimensionales Bewertungsschema 

passend.  

Sowohl das Bewertungsschema von Kirsten (2020) als auch das 

Bewertungsschema von Rott (2013) beschreiben den Fortschritt der Lösung eines 

Beweis- bzw. Problemlöseprodukts. Kirsten (2020) hat das Bewertungsschema 

von Malone et al. (1980) übernommen und adaptiert. Rott (2013) hat sein 

Bewertungsschema selbst entwickelt, allerdings auf Grundlage bereits 

bestehender Schemata (z. B. Zielinski, 1992). In beiden Bewertungsschemata 

sind die einzelnen Kategorien als Qualitätsabstufungen zu verstehen, wobei 

Kirsten (2020, S. 155) dafür fünf und Rott (2013, S. 185) vier Kategorien 

verwendet. Es handelt sich demnach um einen kriteriumsorientierten Maßstab, 

bei dem die Bewertung nicht nach Punkten, sondern anhand von Kategorien 

festgestellt wird. Durch einen solchen Maßstab entsteht das Risiko, dass 

(mögliche) unterschiedliche Schwierigkeitsniveaus von Aufgaben untereinander 

verglichen werden. Der Vorteil einer solchen Bewertung ist allerdings, dass 

Ergebnisse verschiedener Aufgaben leicht miteinander verglichen werden 

können.  

Die Kategorien bei Kirsten (2020) und Rott (2013) haben fast die gleichen 

Beschreibungen, wobei durch die zusätzliche Kategorie die Abstufungen bei 

 
35 In der Bewertung von Beweisen sind mögliche Ausprägungen z. B. Vollständigkeit der 

Argumentationskette, seine globale Struktur, Gültigkeit der Schlüsse, etc.  (Füllgrabe & 

Eichler, 2019) 
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Kirsten etwas detaillierter als bei Rott sind. Für die Bewertung des Produkts 

wurde sich in dieser Arbeit jedoch dazu entschieden, das vierstufige 

Kategoriensystem von Rott (2013, S. 185) zu übernehmen (Tabelle 14). Dies hat 

den einfachen Grund, dass der Wortlaut bereits auf das Problemlösen abgestimmt 

ist. Außerdem wird davon ausgegangen, dass eine vierstufige Kategorisierung 

ausreichend ist, um die Lösungsprodukte der Studierenden einzuordnen. 

 
Kategorie Code Beschreibung 

Kein Ansatz  L1 Die Aufgabe wurde nicht sinnvoll bearbeitet und / oder 

es wurde keine Lösung abgegeben 

Einfacher Ansatz L2 Das Problem wurde zu Teilen korrekt bearbeitet, dabei 

zeigen sich aber deutliche Mängel; wenn die Lösung 

Erklärungen erfordert, fehlen diese. 

Erweiterter Ansatz L3 Das Problem wurde zu großen Teilen korrekt 

bearbeitet; wenn die Lösungen Erklärungen erfordert, 

sind zumindest Ansätze dazu vorhanden 

Korrekter Ansatz L4 Das Problem wurde korrekt gelöst; wenn die Lösung 

Erklärungen erfordert, sind diese angemessen gegeben. 

Tabelle 14: Bewertungsschema zum Lösungsprodukt nach Rott (2013, S. 185) 

Im Folgenden wird ein Beispiel für die Kodierung vorgestellt (Abbildung 23). 

Dabei wird absichtlich ein Grenzfall hinsichtlich der Kodierung des Produkts 

dargestellt.  

In seinem Lösungsprodukt schreibt David zunächst alles detailliert und korrekt 

auf, bis zu seiner letzten Umformung des Differentialquotienten. Bei dem 

Ausdruck 𝑙𝑖𝑚 
𝑥→0

𝑥 ⋅ 𝑐𝑜𝑠 (
ⅇ𝑥

𝑥2) folgert David, dass dies nicht gehen würde und ein 

Grenzwert dadurch nicht bestimmt werden kann. Nach dem Kategorienkatalog 

(Tabelle 14) kann sowohl für L2 als auch L3 plädiert werden. Tatsächlich wird 

das Problem von David zu großen Teilen (korrekt) bis zum letzten Schritt 

bearbeitet, welches auf L3 hindeuten würde. Allerdings ist die Bestimmung des 

tatsächlichen Grenzwerts womöglich der wichtigste Schritt in dieser Aufgabe. 

Dadurch könnte ebenfalls argumentiert werden, dass das Problem nur zu Teilen 

korrekt gelöst wurde und somit L2 kodiert werden sollte. Letztendlich wurde sich 

für die Lösungsqualität L3 entschieden. 
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Abbildung 23: David Produkt zur Aufgabe „Differenzierbarkeit prüfen“ 
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Die beschriebene Auswertungsmethode lässt sich somit als qualitative 

Inhaltsanalyse (Mayring, 2022, S. 12f.) auffassen.  

 

1. Kommunikation: Es dient der Analyse von Sprache und Bildern (hier: 

die Bearbeitungsprodukte der Studierenden) 

2. Fixierte Kommunikation: Sprache und Bilder liegen in protokollierter 

Form vor (hier: Bilder, Dateien der Studierenden) 

3. Systematisch: Die Analyse geht systematisch vor (z. B. keine freien 

Interpretationen) 

4. Regelgeleitet: Die Analyse geht regelgeleitet vor und ist damit 

nachvollziehbar und überprüfbar (durch die Kategorien) 

5. Theoriegeleitet: Es basiert auf dem theoretischen Überlegungen zur 

Produktbewertung 

6. Rückschlüsse: Durch die Analyse können Rückschlüsse über das 

analysierte Material gezogen werden 
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6 Analyse und Ergebnisse 

Im Rahmen der empirischen Studie werden mathematische 

Problembearbeitungsprozesse von Studierenden untersucht. Die Ergebnisse teilen 

sich dabei in vier Kapitel auf: Fokus auf die Steuerung (Kapitel 6.1), das Wissen 

(Kapitel 6.2), die Heurismen (Kapitel 6.3) und eine gemeinsame Betrachtung der 

Kategorien (Kapitel 6.4). Die gemeinsame Betrachtung der Kategorien baut dabei 

auf den Kodierungen der drei vorherigen Kapitel auf. 

Ein kurzer Überblick über die analysierten Problembearbeitungsprozesse 

verdeutlicht den Rahmen der Untersuchung. Diese wurde während der 

Vorlesungszeit durchgeführt und konzentrierte sich auf die Bearbeitung von 

Hausaufgaben. Dabei wurde besonderer Wert darauf gelegt, die Studiensituation 

so authentisch wie möglich zu gestalten (Kapitel 5.2.2). Den teilnehmenden 

Studierenden wurde nicht vorgeschrieben, jede Aufgabe der Hausaufgabe zu 

bearbeiten; die Entscheidung, welche Aufgaben bearbeitet wurden, lag 

vollständig bei ihnen. Für die Analyse wurden letztendlich drei von neun 

Aufgaben ausgewählt (Kapitel 5.3), wodurch 13 Problembearbeitungsprozesse in 

dieser Arbeit untersucht werden (Tabelle 15). 

 
Gruppe Name Differenzierb

arkeit prüfen 

Mittelwertsat

z 

L´Hospital Gesamt 

G1 David 39:48 min 33:05 min 49:33 min 2:02:26 h 

G3 Thomas 27:34 min 22:09 min 14:29 min 1:04:12 h 

Alex 

G4 Sarah 06:56 min 23:21 min 27:15 min 0:57:32 h 

Lisa 

Paula 

Lea 

G5 Nick 11:08 min 15:47 min 08:09 min 0:35:04 h 

G6 Lukas 18:13 min - - 0:18:13 h 

Gesamtlänge 1:43:39 h 1:34:22 h 1:39:26 h 4:57:27 h 

Durchschnitt 20:44 min 23:36 min 24:52 min 22:53 min 

Tabelle 15: Übersicht der Problembearbeitungsprozesse 

Die Aufgabe „Differenzierbarkeit prüfen“ (Kapitel 5.3.1) war Teil von 

Hausaufgabenblatt 12, während die Aufgaben „Mittelwertsatz“ (Kapitel 5.3.2) 

und „L´Hospital“ (Kapitel 5.3.3) Teil von Hausaufgabenblatt 13 waren. Lukas hat 

die Hausaufgabe 13 nicht bearbeitet, sondern in seiner Lernzeit die Aufgaben aus 

dem Tutorium wiederholt. Dadurch fließt lediglich seine Bearbeitung zu einer 

Aufgabe in die Untersuchung ein. Die Bearbeitungen von Simon (G2) wurden 

aus der Analyse gestrichen, da er die relevanten Aufgaben entweder nicht 

bearbeitet oder nach dem Abschreiben der Aufgabe sofort abgebrochen hat.  
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Die Bearbeitungszeit der einzelnen Aufgaben liegt zwischen 06:56 Minuten (Lea, 

Lisa, Sarah und Paula, „Differenzierbarkeit prüfen“) und 49:33 Minuten (David, 

„L´Hospital“). Durchschnittlich beträgt die Bearbeitungszeit pro Aufgabe etwa 

22:53 Minuten. David beschäftigte sich durchschnittlich am längsten mit den 

Aufgaben, während Nick durchschnittlich die kürzeste Bearbeitungszeit aufweist. 

Innerhalb der Aufgaben gibt es zeitlich größere Unterschiede in den jeweiligen 

Prozessen, allerdings ist die durchschnittliche Bearbeitungszeit zwischen den 

Aufgaben über die Lerngruppen hinweg sehr ähnlich.  

6.1 Rekonstruktion von Steuerung in den 

Problembearbeitungsprozessen 

Dieses Kapitel beschäftigt sich mit den Problembearbeitungsprozessen der 

Studierenden und stellt die Rekonstruktion der Steuerung in den Fokus. Für die 

Beschreibung der Steuerung wurde sich für die Schoenfeld Episoden entschieden 

(Kapitel 5.4.1). Die Anwendung der Schoenfeld Episoden wird in Kapitel 6.1.1 

durch eine Fallanalyse des Prozesses von Alex und Thomas dargestellt. 

Anschließend wird über die Kodierungen der Schoenfeld Episoden sowohl ein 

Gesamtüberblick (Kapitel 6.1.2) als auch ein Überblick über die Prozesse der 

einzelnen Lerngruppen gegeben (Kapitel 6.1.3). Daraufhin erfolgt eine Analyse 

der Prozesse anhand spezifischer Merkmale. Zunächst erfolgt eine 

Rekonstruktion der Reihenfolge von Episoden (Kapitel 6.1.4), gefolgt von der 

Untersuchung des Verhaltens „wild goose chase“ (Kapitel 6.1.5). Zudem wird der 

Zusammenhang mit Erfolg bzw. Misserfolg betrachtet (Kapitel 6.1.6). 

Abschließend lassen sich die zentralen Ergebnisse zur Steuerung festhalten 

(Kapitel 6.1.7). 

6.1.1 Fallanalyse zur Steuerung mithilfe der Episoden nach Schoenfeld 

In diesem Abschnitt werden die verschiedenen Episodentypen nach Schoenfeld 

anhand einer Fallanalyse (Häder, 2019, S. 371ff.; Hering & Schmidt, 2014) eines 

Problembearbeitungsprozesses vorgestellt. Diese Fallanalyse dient nicht 

ausschließlich der Beantwortung der Forschungsfragen, sondern ebenfalls zur 

detaillierten Darstellung der verschiedenen Episodentypen. Da im methodischen 

Teil (Kapitel 5.4.1) dieser Arbeit auf die Darstellung von Beispielen zu den 

Episoden verzichtet wurde, veranschaulicht die Fallanalyse zusätzlich, wie die 

Durchführung der Kodierung erfolgt. Der detaillierte 

Problembearbeitungsprozess von Alex und Thomas beinhaltet jede Episode 

mindestens einmal und dient somit als anschauliches Beispiel.  Die folgenden 

Ausführungen adressieren demnach die Forschungsfrage:  
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(S1) Welche Episoden durchlaufen Ingenieurstudierende bei mathematischen 

Problembearbeitungsprozessen? 

 

Alex und Thomas haben sich in der Regel nach dem Tutorium getroffen, um 

gemeinsam an den Aufgaben zu arbeiten. Ihre Lernsessions dauerten 

typischerweise zwischen 90 und 120 Minuten und sie waren durchgehend auf die 

Bearbeitung der Aufgaben fokussiert. Dabei gingen sie meist in der vorgegebenen 

Reihenfolge der Aufgaben vor. 

Die Bearbeitung der Aufgabe „Differenzierbarkeit prüfen“ (Kapitel 5.3.1) wurde 

von der Lerngruppe (Alex und Thomas) nach einem ersten Versuch unterbrochen, 

allerdings zu einem späteren Zeitpunkt in der gleichen Lernsession erneut 

aufgenommen und zu Ende geführt. In dem Bearbeitungsprozess wird deutlich, 

dass sich die Lerngruppe besonders lange damit beschäftigt, eine Hürde im 

Lösungsprozess (in der Ausführung des Verfahrens) zu überwinden. Zum Ende 

können sie diese bewältigen und kommen zu einer korrekten Lösung. Während 

der Bearbeitung der Aufgabe wird wenig auf einem Blatt Papier oder auf einem 

Tablet geschrieben, sondern viel mündlich besprochen bzw. Ideen ausgetauscht.  

Im Folgenden wird zunächst die kodierte Episode und der zugehörige 

Zeitabschnitt in Klammern angegeben. Im ersten Absatz wird kurz 

zusammengefasst, was in der Episode geschieht. Im anschließenden Absatz folgt 

eine Interpretation (und somit auch gleichzeitig die Erklärung zur Kodierung) zu 

den Handlungen oder Aussagen der Studierenden (außer bei Reading und einer 

zeitlich kurzen Transition). Letztlich werden die Kodierungen zusammenfassend 

in einer Übersicht dargestellt. 

 

Reading (00.00 – 00.10): Der Bearbeitungsprozess beginnt mit dem Überfliegen 

der Aufgabenstellung, wobei Alex die Aufgabe teilweise laut vorliest. 

 

Planning (00.11 – 01.21): Alex schlägt vor, dass die Aufgabe dadurch gelöst 

werden kann, indem man die Definition der Differenzierbarkeit nutzt. „Ah, jetzt 

müssen wir quasi den äh, die die Definition nehmen, ne, mit dem, ähm mit dem 

Grenzwert quasi direkt“ (00.11). Thomas stimmt zunächst zu, sagt aber, dass er 

sich dies nochmal anschauen müsse. Beide suchen daraufhin in ihren Unterlagen 

aus dem Tutorium und verschaffen sich einen kurzen Überblick darüber (ab 

00.19). Alex beruft sich daraufhin erneut auf seine Idee, den Funktionswert aus 

der Aufgabenstellung in die Definition der Differenzierbarkeit einsetzen zu 

müssen. Des Weiteren stellt Alex heraus, dass es sich in der Aufgabe um 𝑥0 = 0 

handelt, wobei er dies als Frage an Thomas formuliert (01.04). Thomas schweigt 

daraufhin. 

Bis zum jetzigen Zeitpunkt bestehen die Aktivitäten von Alex und Thomas darin, 

die Bearbeitung der Aufgabe zu planen, wobei Alex ausschlaggebend für die 

Generierung von Ideen ist. Der vorgeschlagene Ansatz von Alex erweist sich als 
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treffend, weil das Verfahren „Differenzierbarkeit prüfen“ der typische 

Lösungsweg für diese Aufgabe wäre. Durch Nachschlagen in den Unterlagen des 

Tutoriums versucht Alex seine Idee abzusichern. Durch mehrmaliges Nachfragen 

zeigt sich jedoch, dass Alex Unsicherheiten hinsichtlich des Vorgehens aufweist, 

was Anlass für die folgende Episode ist. 

 

Analysis (01.22 – 02.07): Alex und Thomas schauen noch einmal eine kurze Zeit 

über die Aufgabenstellung und diskutieren, was genau 𝑓´(0) im Kontext der 

Aufgabe bedeutet. Alex erklärt, dass dies mit der Definition der 

Differenzierbarkeit bestimmt werden kann. Um seine Aussagen zu bekräftigen, 

deutet er dabei auf die Aufgabe aus dem Tutorium und weist auf die Ähnlichkeit 

der Aufgabe hin: „Weil das ist ja quasi genau das gleiche“.  

Aufgrund der vorhergehenden Episode Planning entscheiden sich Alex und 

Thomas, einen Schritt zurückzugehen und die Aufgabenstellung erneut zu 

betrachten. Es werden Aktivitäten durchgeführt, um die Aufgabe genauer zu 

analysieren, da einerseits der Plan von Alex zunächst unsicher formuliert wurde 

und andererseits Thomas nicht vollständig nachvollziehen konnte, was mit 𝑓´(0) 

gemeint ist. Nach kurzer Überlegung und Vergleich mit der Aufgabe aus dem 

Tutorium ist sich Alex aber sicher, dass dies durch die Definition der 

Differenzierbarkeit bestimmt werden kann. Er bezieht sich bei der Aussage auf 

die Aufgabe aus dem Tutorium, wobei Alex die Ähnlichkeit der Aufgabe 

herausstellt. 

 

Implementation (02.08 – 02.57): Alex und Thomas schreiben die Definition der 

Differenzierbarkeit auf. Alex spricht dabei laut mit und ersetzt sukzessive die 

Variablen aus der Definition der Differenzierbarkeit mit den Informationen, die 

sie aus der Aufgabenstellung herausgefiltert haben. Schlussendlich gelangen 

beide zu einem Ausdruck 𝑙𝑖𝑚
𝑥→0

𝑓(𝑥)

𝑥
, bei dem sich die Frage stellt, wie der nächste 

Schritt erfolgen kann.  

Auf Basis der vorhergegangen Episoden Planning und Analysis können Alex und 

Thomas mit der Umsetzung des Plans beginnen. Allerdings stoßen Alex und 

Thomas dabei auf das Problem, wie die abschnittsweise definierte Funktion aus 

der Aufgabenstellung eingesetzt werden kann. Da dies im Sinne der Kodierung 

keine kleine Unsicherheit während der Implementation ist (wie im Folgenden 

nachgelesen werden kann), markiert dies den Beginn der nächsten Episode. Im 

weiteren Verlauf des Lösungsprozess wird sich herausstellen, dass der Schritt des 

Einsetzens in die Definition der Differenzierbarkeit eine Hürde für die 

Lerngruppe darstellt.  

 

Exploration (02.58 – 04.18): Alex und Thomas schauen beide in Unterlagen aus 

dem Tutorium und vergleichen die dort angewandte Vorgehensweise mit der 

aktuell vorliegenden Aufgabe. Alex macht dabei seine Irritation deutlich, warum 
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das gleiche Vorgehen nicht in der aktuellen Aufgabe funktioniert. Nach kurzer 

Zeit fällt Alex auf, worin der Unterschied liegt: „Ja, aber die Grundfunktion ist ja 

trotzdem äh, also er hat als 𝑓(𝑥) das gegeben36. […] wir haben halt 𝑓(𝑥) die zwei 

Bedingungen gegeben [Thomas nickt]“. Für Alex ergibt sich dabei aber das 

Problem, wie 𝑓(𝑥) nun in die Formel ersetzt werden kann. 

Der Grund für die Kodierung der Exploration ist, dass sie während der 

Implementation auf eine größere Hürde gestoßen sind und nun nach 

Möglichkeiten suchen, um diese zu überwinden. Dabei ist die erste Anlaufstelle 

erneut die Aufgabe aus dem Tutorium, wobei bei dieser Betrachtung ein Vergleich 

zwischen den beiden Aufgaben, insbesondere bezüglich der gegebenen 

Funktionen, gezogen wird. Ein zielführender Fortschritt für den Lösungsprozess 

konnte dabei allerdings nicht erzielt werden. 

 

Exploration37 (04.19 – 04.56): Thomas wirft einen neuen Ansatz in den Raum 

und möchte die Ableitung der Funktion bilden. Alex stimmt zunächst zu, zweifelt 

nach kurzer Zeit allerdings an dem Vorgehen, weil die Ableitungsregeln für 

verkettete Funktion in der Vorlesung noch nicht behandelt worden sind. 

Thomas sagt zwar, dass er die Ableitung bilden möchte, allerdings meint er damit 

nicht die vermeintlich korrekte Vorgehensweise (Verfahren: Differenzierbarkeit 

prüfen), um die Aufgabe zu lösen. Stattdessen geht er davon aus, dass die 

einzelnen Intervalle der Funktion unabhängig voneinander abgeleitet werden 

sollen. Die Aussage, dass sie dies einfach mal probieren können, um zu schauen, 

„ob wir da eine gescheite [Ableitung] kriegen“, zeigt den explorativen Charakter 

(Erkundungen im Lösungsraum) dieser Episode. 

 

Exploration (04.57 – 05.56): Thomas bringt einen neuen Ansatz ein, indem er 

sich an einer weiteren Aufgabe aus dem Tutorium orientiert. Dabei werden kurze 

Überlegungen angestellt, die sie aber schnell verwerfen. 

Die Orientierung an einer weiteren Aufgabe aus dem Tutorium lässt darauf 

schließen, dass im Lösungsprozess kaum Fortschritte erzielt wurden. In der 

Aufgabe aus dem Tutorium handelt es sich um die Überprüfung von Stetigkeit 

einer Funktion in einem Punkt. Zwar wird dort ebenfalls mit Grenzwerten 

argumentiert, jedoch entspricht dies inhaltlich nicht der richtigen 

Herangehensweise. Es wird dadurch eher deutlich, dass versucht wird, mit 

jeglichen Mitteln an eine Lösung bzw. Hilfe zu kommen. 

 

 
36 Funktionsterm aus der Aufgabe des Tutoriums: 𝑓(𝑥) = |𝑥|𝑥 

37 An dieser Stelle schließt eine Episode Exploration einer weiteren Episode Exploration an. 

Die Kodierung wurde so vorgenommen, um zu signalisieren, dass an dieser Stelle ein neuer 

Ansatz verfolgt wird. Dennoch bleiben Alex und Thomas grundlegend in der Episode 

Exploration. Diese Art von Kodierung taucht in diesem Problembearbeitungsprozess noch 

weitere Male auf. 
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Transition (05.57 – 06.43): Nach einer kurzen Phase des Schweigens fragt sich 

Alex erneut, ob das Einsetzen in die Definition der Differenzierbarkeit der 

richtige Ansatz ist. Er will aber weiterhin daran festhalten, weil er glaubt, dass die 

Aufgabe damit gelöst werden müsse. Im Anschluss folgt wieder eine Phase des 

Schweigens. 

Alex beweist mit seiner Aussage, dass er die richtige Intuition für die Aufgabe 

entwickelt hat. Vermutlich erkennt er auch, dass das Problem eher darin liegt, wie 

eine abschnittsweise definierte Funktion in die Definition der Differenzierbarkeit 

eingesetzt werden kann. 

 

Exploration (06.44 – 08.40): Thomas schlägt vor, in der Vorlesung nach 

Beispielen zu schauen. Beide suchen daraufhin in ihren Unterlagen, wobei sich 

Thomas erneut auf ein Beispiel konzentriert, bei dem die Stetigkeit einer Funktion 

in einem Punkt überprüft werden soll (07.26). Thomas bringt daraufhin die Idee 

ein, sich von beiden Seiten der Funktion der 0 anzunähern, um die Funktion nach 

einem Sprung zu untersuchen. Alex drängt wiederum darauf hin, dass man 

einfach mal probieren könnte, die Funktion in die Definition der 

Differenzierbarkeit einzusetzen, wobei dies erneut nicht durchgeführt wird. 

Thomas erkundet weiterhin den Lösungsraum, um an Informationen zu gelangen, 

die im weiteren Verlauf der Bearbeitung hilfreich sein könnten. Es zeigt sich 

allerdings, dass Thomas bereits Schwierigkeiten damit hat, eine geeignete 

ähnliche Aufgabe zu finden.  

 

Exploration (08.41 – 11.30): Alex schlägt vor, sich die Funktion aus der Aufgabe 

visualisieren zu lassen (Abbildung 24), wobei dies einige Zeit in Anspruch nimmt. 

Alex gibt dabei nur den Teil der Funktion ein, welcher nicht in 0 definiert ist. 

Beide schauen sich den Graphen der Funktion genauer an, wobei Alex sagt, dass 

der Graph der Funktion ganz komisch aussehen würde und die Ableitung nicht 

sinnvoll sei (11.17). Für seine Vermutung gibt er allerdings keinen Grund an. 
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Abbildung 24: Graph der Funktion f, den Alex und Thomas betrachten 

Alex entscheidet sich, die Funktion aus der Aufgabe zu visualisieren. Es wird 

allerdings nicht deutlich, wieso er erneut nicht seinen eigenen vorgeschlagenen 

Ansatz des Einsetzens in die Definition der Differenzierbarkeit verfolgt. Vielmehr 

geht er den Ansatz nach, den Thomas vorgeschlagen hat: Untersuchen nach einem 

Sprung in der Stelle 0. Dies bringt allerdings auch keinen zielführenden 

Fortschritt in der Aufgabe. 

 

Exploration (11.31 – 14.17): Alex vermutet, dass die Ableitung der Funktion im 

Punkt 0 auch 0 ist, woraufhin Thomas dem zustimmt. Der Grund dafür wäre die 

Bedingung aus der Aufgabe. Thomas erklärt: „Die obere Funktion ist ja gesamt 𝑓 

[Alex zustimmend] und für die, wo sie nicht definiert ist für 𝑥0, ist 0 als 

Ersatzwert. Und wenn du dann die Ableitung für 𝑓´(0) machst, ist das 0, weil 

Ableitung von 0 ist 0“ (12.10). Alex hadert mit dieser Aussage und fragt sich 

erneut, ob man dann nicht einfach in die Definition der Differenzierbarkeit 

einsetzen könne. Thomas entgegnet, dass man dann durch 0 teilt, wenn man den 

Differentialquotienten bilden würde. Alex stimmt zu. Daraufhin wechseln sie 

wieder zur visuellen Ansicht des Graphen der Funktion 𝑓 und versuchen grafisch 

die Steigung im Punkt 0 zu bestimmen. Alex merkt an dabei an, dass die Steigung 

in 0 auch nach 0 aussieht (12.53). Thomas versucht hingegen nach Nullstellen zu 

schauen, wobei Alex entgegnet, dass dies keine gute Idee ist, weil dies „ultra 

viele“ (13.33) sind. Beide einigen sich daraufhin, dass Nullstellen ihnen beim 

Lösungsprozess nicht helfen. 

Alex und Thomas wechseln zum Ende der Episode zwischen verschiedenen 

Ansätzen hin und her, allerdings ohne tiefergehend darüber zu diskutieren. Dabei 

gelangen sie zu keinem Hinweis, der für die Lösung helfen könnte. Sie verwerfen 

dabei erneut den vermeintlich richtigen Weg, weil sie davon ausgehen, dass sie 



S e i t e  | 176 

 

dann durch 0 teilen würden. Dies ist nicht der Fall, da sich zuvor das 𝑥 im Nenner 

mit einem 𝑥 aus dem Zähler kürzen ließe. 

 

Transition (14.18 – 14.32): Alex und Thomas entscheiden sich, zu einem 

späteren Zeitpunkt in der Lernsession nochmal zur Aufgabe zurückzukehren. In 

der Zwischenzeit bearbeiten sie eine andere Aufgabe. 

 

Exploration (14.33 – 17.02): Nach der Rückkehr zur Aufgabe fängt Alex damit 

an, den Suchbegriff „Differenzierbarkeit prüfen“ in Google einzugeben. Thomas 

entscheidet sich, im Mathebuch38 nachzuschauen, welches parallel zur 

Veranstaltung empfohlen wird. Nach eingehender Suche bemerkt Alex, dass die 

im Internet gefundenen Beispielaufgaben ebenfalls die Definition der 

Differenzierbarkeit verwenden (16.33). Diese Methode würde in der eigenen 

Bearbeitung der Aufgabe allerdings zu Problemen beim Einsetzen der Funktion 

in die Definition der Differenzierbarkeit führen. 

Die Wiederaufnahme der Bearbeitung zu der Aufgabe fängt direkt mit der Suche 

nach Lösungsmöglichkeiten an, was den explorativen Charakter der Episode 

widerspiegelt. Für Alex führt dies erneut zu dem Problem, bei dem sie bereits 

vorher nicht weitergekommen sind. 

 

Exploration (17.03 – 19.33): Thomas wirft ein Beispiel ein, welches er im Buch 

gefunden hat. Dabei handelt es sich ebenfalls um eine abschnittsweise definierte 

Funktion, die auf Differenzierbarkeit überprüft wird39. Thomas liest die 

Ausführungen aus dem Buch vor und resümiert, dass man für die 

unterschiedlichen Intervalle zwei verschiedene Werte erhält, wodurch ein Sprung 

entsteht. Beide stellen fest, dass darin der Unterschied zur eigenen Aufgabe liegt: 

In der Beispielaufgabe hat die Funktion einen Knick, die Funktion aus der eigenen 

Aufgabe „ist halt differenzierbar“ (19.06). 

Das Beispiel aus dem Buch will den Zusammenhang zwischen Stetigkeit und 

Differenzierbarkeit zeigen, bzw. dass es Funktionen gibt, die zwar in einem Punkt 

stetig, aber nicht differenzierbar sind. In ihrer Diskussion zur Beispielaufgabe 

ignorieren sie den aufgeführten Differenzenquotienten und sprechen nur davon, 

dass sich die Funktion an der Stelle 0 sowohl von links als auch von rechts der 0 

annähert. Es lässt sich vermuten, dass die Methode des Prüfens von Stetigkeit mit 

der Methode des Prüfens der Differenzierbarkeit einer Stelle einer Funktion von 

Alex und Thomas verwechselt wird. Dies zeigt sich möglicherweise auch in der 

Aussage von Alex, der als Fazit abgibt, dass die Funktion aus der Aufgabe 

differenzierbar ist, obwohl Alex und Thomas auf der bildlichen Ebene 

(Annäherung an einen Punkt der Funktion von links und von rechts) von der 

Stetigkeit gesprochen haben. 

 
38 gemeint ist das Buch „Höhere Mathematik für Ingenieure Band I“ von Burg et al. (2017) 

39 zu finden auf Seite 211f. in Burg et al. (2017) 
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Exploration (19.34 – 19.59): Thomas zeigt ein weiteres Beispiel, welches erneut 

zum altbekannten Problem führt, dass der Funktionsterm der Aufgabe nicht in die 

Definition der Differenzierbarkeit eingesetzt werden kann, weil man durch 0 

teilen würde. 

Thomas findet ein weiteres Beispiel, welches allerdings keinen zielführenden 

Fortschritt zur Lösung beitragen kann. 

 

Planning (20.00 – 20.22): Alex unterbreitet erneut den Vorschlag, den 

Funktionsterm einfach mal in die Definition der Differenzierbarkeit einzusetzen. 

Er führt weiter aus: „…, weil du kannst ja ein 𝑥 einfach rauskürzen. […] Du 

kannst bei Grenzwertbestimmung darfst du ja, das darfst du das ja rauskürzen“. 

Trotz ihrer vorherigen Ansicht, dass das Einsetzen in die Definition der 

Differenzierbarkeit aufgrund einer Division durch 0 nicht zielführend ist, schlägt 

Alex vor, es dennoch zu versuchen. Aufgrund der konkreten Idee, wie sie ihre 

Hürde überwinden (ein 𝑥 aus dem Bruch zu kürzen), wird somit die Episode 

Planning kodiert. 

 

Planning und Implementation (20.23 – 21.22): Alex ersetzt nun die Variablen 

aus der Definition der Differenzierbarkeit mit den Voraussetzungen aus der 

Aufgabe, kürzt das x aus dem Bruch und folgert, dass der übriggebliebene 

Ausdruck gegen 0 laufen muss. Beide schlussfolgern aufgrund der Rechnung, 

dass die Funktion damit differenzierbar ist. 

Zunächst wird Planning und Implementation zur selben Zeit kodiert, weil Alex 

einerseits das Vorgehen plant, dies aber gleichzeitig umsetzt. 

 

Implementation (21.23 – 22.50): Alex und Thomas schreiben nun auf, was sie in 

der vorherigen Episode besprochen haben. Alex sagt dabei, dass es ja 0 werden 

muss, weil das 𝑥 in dem Ausdruck immer dominiert. Dabei ist es egal, was mit 

dem Kosinus ist, weil dieser Wert ohnehin zwischen 0 und 1 bleibt und damit 

beschränkt ist. 

Während der Umsetzung des Plans stoßen Alex und Thomas auf die Hürde, wie 

sie nun den gekürzten Grenzwert berechnen sollen. Schließlich gelangen sie zum 

richtigen Endergebnis. 

 

Verification (22.51 – 24.08): Alex fragt sich, ob mit der Bestimmung des 

Grenzwerts gleichzeitig schon 𝑓´(0) bestimmt wurde. Thomas stimmt dem zu 

und fügt hinzu, dass es aufgrund der Bedingung aus der Aufgabe ohnehin so sein 

müsse: „𝑓(𝑥) = 0 für 𝑥 = 0. Damit weißt du doch schon, was 𝑓´(0) ist. Ist schon 

direkt mit angegeben“ (23.19). Alex widerspricht dem und beantwortet damit 

seine eingangs gestellt Frage selbst. Er ergänzt, dass die Funktion nur die 
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Steigung 0 hat, weil es mit der Definition der Differenzierbarkeit nachgewiesen 

wurde. 

Alex möchte mit seiner Frage zunächst Bestätigung von Thomas erhalten, dass 

die Aufgabe nun vollständig gelöst ist. Die Bestätigung erhält er, allerdings fügt 

er mit seiner Antwort die Fehlvorstellung hinzu, dass die einzelnen Intervalle der 

Funktion unabhängig voneinander abgeleitet werden. Die gleiche Aussage hat 

Thomas bereits vorher im Bearbeitungsverlauf getätigt. Es deutet darauf hin, dass 

Thomas mit dem Lösen der Aufgabe diese Wissenslücke nicht schließen konnte. 

 

Verification (24.09 – 25.36): Thomas stellt die Frage, ob sich die Funktion der 0 

wie eine Parabel annähert. Damit erklärt er sich, dass in 𝑥 = 0 der Funktion auch 

die Steigung 0 vorhanden ist. Beide diskutieren über den Graphen der Funktion, 

wobei sie versuchen zu verstehen, wieso die Form einer Parabel entsteht. Alex 

wirft ein, dass die Kosinusfunktion der Grund dafür ist. 

Thomas und Alex versuchen anhand des Graphens der Funktion ihr Ergebnis zu 

validieren. Dabei diskutieren sie aber primär über das Aussehen des Graphens, 

anstatt über die kritische Stelle bei 0 zu sprechen.  

 

Verification (25.37 – 27.34): Alex und Thomas gehen den eigenen Rechenweg 

gemeinsam durch und finden dabei keinen Fehler. Sie sind sich einig, dass sie 

alles richtig gemacht haben und entscheiden sich, die Lösung weiter 

aufzuschreiben. Dabei notiert Alex, dass das 𝑥 dominiert, weil der Kosinus sich 

zwischen −1 und 1 bewegt. Damit ist der Grenzwert des Differenzenquotienten 

der Funktion 0. 

Am Ende der Bearbeitung kontrollieren Alex und Thomas ihr Vorgehen und sind 

sich dabei einig, dass die Aufgabe vollständig gelöst wurde.  

 

 

Abbildung 25: Vollständige schriftliche Lösung zur Aufgabe „Differenzierbarkeit prüfen“ von Alex 

Alex und Thomas schaffen es zum Ende ihrer Bearbeitung zu einer Lösung zu 

gelangen (Abbildung 25). Dabei sind sie gemäß der Kodierung jeden Episodentyp 

mindestens einmal durchlaufen.  
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6.1.2 Überblick zur Steuerung in den Problembearbeitungsprozessen 

 

 R A E P I V T LQ 

Alex und Thomas  

Diffbar 0,6 2,7 57,4 9,9 8,9 17,2 3,3 L3 

MWS 0 0 38,8 2,5 56,1 0 5 L3 

L´Hospital 4 0 63,4 5,6 28,8 0 0 L3 

Schnitt 1,5 0,9 53,2 6 31,3 5,7 2,8  

Lea, Lisa, Sarah und Paula 

Diffbar 0 0 11,5 4,6 46,4 34,6 2,9 L3/4 

MWS 1,4 6,5 36,7 11,5 28,1 16,8 4 L4 

L´Hospital 0,4 0 36,3 11,3 50,4 11,1 1,2 L4 

Schnitt 0,6 2,2 28,2 9,1 41,6 20,8 2,7  

David 

Diffbar 1,7 51,5 34,6 0 0 1,6 10,6 L3 

MWS 4,8 34,7 59 0 0 0 1,5 L1 

L´Hospital 2,9 3 68,7 0 17,7 0 7,7 L3 

Schnitt 3,1 29,7 54,1 0 5,9 0,5 6,6  

Nick 

Diffbar 10 0 27,8 7,6 50 0 6 L1 

MWS 6,7 27,6 45,4 0 20,3 0 0 L1 

L´Hospital 8 0 73,7 0 6,3 4,3 13,3 L1 

Schnitt 8,2 9,2 48,8 2,5 25,5 1,4 6,4  

Lukas 

Diffbar 4,2 0 73,7 4,9 11,6 0 6,7 L1 

Alle Problembearbeitungsprozesse 

Schnitt 3,5 8,4 51,6 4,5 23,2 5,7 5  

Tabelle 16: Übersicht über die Kodierungen aller Problembearbeitungsprozesse (R = Reading, A = 

Analysis, E = Exploration, P = Planning, I = Implementation, V = Verification, T 

= Transition, LQ = Lösungsqualität, Diffbar = Differenzierbarkeit prüfen, MWS = 

Mittelwertsatz) 
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Die vorangegangenen Ausführungen zeigen eine ausführliche Beschreibung des 

Problembearbeitungsprozesses von Alex und Thomas zur Aufgabe 

„Differenzierbarkeit prüfen“. Es geht in dieser Arbeit jedoch weniger darum, die 

analysierten Problembearbeitungsprozesse deskriptiv in derselben Detailtiefe wie 

im Beispiel von Alex und Thomas darzustellen, sondern vielmehr um den 

Vergleich verschiedener Prozesse. Ein Abstraktionsschritt ermöglicht es, die 

Gesamtheit aller Fälle parallel zu betrachten (Tabelle 16). Dabei werden die 

Problembearbeitungsprozesse anhand der Schoenfeld Episoden sowie der 

Lösungsqualität (LQ) gegenübergestellt. Hinsichtlich der Schoenfeld Episoden 

wird der prozentuale Zeitanteil angegeben, den die Episoden in dem 

Problembearbeitungsprozess der Studierenden jeweils pro Aufgabe und über alle 

Prozesse der Gruppe im Schnitt eingenommen haben. Die Werte sind dabei auf 

eine Nachkommastelle gerundet. Außerdem können aufgrund der Kodierregeln 

die Episoden Planning und Implementation zusammenfallen, wodurch in einigen 

Prozessen die Addition aller Episoden zu etwas mehr als 100 % führt. In der 

letzten Zeile wird ebenfalls der prozentuale Zeitanteil der einzelnen Episoden 

über die Gesamtheit aller Prozesse dargestellt. Zusätzlich wird die Bewertung des 

Produkts (Kapitel 5.5) der Studierenden bezüglich der Aufgabe in der rechten 

Spalte angegeben. In der Aufgabe „Differenzierbarkeit prüfen“ (Tabelle 16; Lea, 

Lisa, Sarah und Paula) stehen zwei Bewertungen, da die Studierenden ihre 

Lösungen unterschiedlich formuliert haben und diese individuell bewertet 

wurden.  

Insgesamt lässt sich erkennen, dass der Großteil der Zeit durchschnittlich in der 

Episode Exploration (51,6 %) verbracht wird. Nur Lea, Lisa, Paula und Sarah 

stellen eine Ausnahme dar, bei denen sich die meiste Zeit auf die Episode 

Implementation verteilt. Implementation stellt über alle Lerngruppen hinweg 

durchschnittlich die zweitgrößte Episode (23,2 %) dar. Die restlichen Episoden 

befinden sich durchschnittlich etwa auf einem ähnlichen Zeitniveau zwischen 3,5 

% und 8,4 %. 

6.1.3 Darstellung und Gegenüberstellung der Problembearbeitungsprozesse 

der Lerngruppen 

Im Folgenden werden die Problembearbeitungsprozesse zu den drei Aufgaben 

(Kapitel 5.3) der einzelnen Lerngruppen fokussiert. Dabei werden auf 

Unterschiede, Gemeinsamkeiten und mögliche Interpretationen zu den einzelnen 

Prozessen eingegangen. Zur Darstellung der Prozesse wird der 

Bearbeitungsverlauf anhand der Schoenfeld Episoden und der zeitlichen 

Ausprägung dargestellt (wie z. B. Abbildung 26).  
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Schoenfeld Episoden in den Problembearbeitungsprozessen von Alex und Thomas 

Im Folgenden werden die drei Problembearbeitungsprozesse von Alex und 

Thomas dargestellt (Abbildung 26). 

 

 

Abbildung 26: Darstellung der Problembearbeitungsprozesse von Alex und Thomas anhand der 

Kodierung der Schoenfeld Episoden 

Alex und Thomas starten zu Beginn ihrer drei Problembearbeitungsprozesse 

zügig in die Produktion einer Lösung, ohne sich großartig mit den eigentlichen 

Aufgabenstellungen auseinanderzusetzen. Sowohl Reading als auch Analysis 

(lediglich in Aufgabe „Differenzierbarkeit prüfen“) stellen daher einen geringen 

Teil ihrer Problembearbeitungsprozesse dar. Stattdessen ist zu erkennen, dass 

Alex und Thomas sich in den drei Bearbeitungsprozessen sehr zeitnah nach dem 

Aufgabe: Differenzierbarkeit prüfen 

 
 

Aufgabe: Mittelwertsatz 

 
 

Aufgabe: L´Hospital 

 



S e i t e  | 182 

 

Start in die Episode Implementation begeben. Während der Implementation 

erzielen Alex und Thomas zwar einen Lösungsfortschritt, allerdings wechseln sie 

jedes Mal in die Exploration. In diesen Episoden suchen Alex und Thomas nach 

nützlichen Informationen, die ihnen bei der Lösung der Aufgaben weiterhelfen.  

Letztendlich kehren sie in die Implementation zurück, womit die 

Bearbeitungsprozesse immer enden. In der Aufgabe „Differenzierbarkeit prüfen“ 

nehmen sie zusätzlich Zeit in Anspruch, um die eigene Lösung zu kontrollieren 

(Verification). Während des gesamten Problembearbeitungsprozesses wird nur 

gelegentlich vor der Implementation ein Plan expliziert.  

Aus den Bearbeitungsprozessen lassen sich anhand der Episoden ableiten, dass 

Alex und Thomas wenig bis gar nicht versuchen, die Aufgabe (besser) zu 

verstehen, sondern direkt mit der Bearbeitung beginnen. Dies könnte darauf 

hindeuten, dass beide sofort in einen Bearbeitungsversuch starten, ohne viel 

darüber nachzudenken, was sie genau tun. Allerdings ist das Überspringen von 

Reading und Analysis sowie der unmittelbare Übergang in die Implementation in 

dem Fall von Alex und Thomas eher so zu deuten, dass beide bereits ein gutes 

Gespür dafür haben, was für die Lösung der Aufgabe verlangt ist. Die 

Hausaufgaben haben Alex und Thomas immer direkt im Anschluss des Tutoriums 

bearbeitet. Da die Aufgaben in dem Tutorium sich den Hausaufgaben ähneln, lässt 

sich auf eine klare Vorstellung von Alex und Thomas schließen, wie die Aufgaben 

formuliert sind und welche Anforderungen diese besitzen. Aus dem gleichen 

Grund wird vermutlich teilweise kein Plan expliziert. Des Weiteren kann durch 

die langen Episoden Exploration vermutet werden, dass sie sich in einem 

Lösungsweg verlieren, der zu keinem Ergebnis führt. Allerdings werden die 

Episoden der Exploration bei Alex und Thomas dadurch initiiert, dass sie in der 

Implementation an bestimmten Stellen auf Hürden stoßen. Dies veranlasst den 

Übergang in die Exploration, in denen sie nach Informationen suchen, die ihnen 

für das weitere Vorgehen des Bearbeitungsprozessen helfen können. Die 

ausbleibenden Verifikationsprozesse schließen darauf, dass nach einer 

gefundenen Lösung der Prozess direkt abgebrochen wird. Allerdings finden 

bereits viele kleinere Verifikationen während des gesamten 

Problembearbeitungsprozess statt, sodass eine abschließende Verification als 

nicht notwendig empfunden wird. 

Schoenfeld Episoden in den Problembearbeitungsprozessen von Lea, Lisa, Sarah 

und Paula 

Im Folgenden werden die Problembearbeitungsprozesse von Lea, Lisa, Sarah und 

Paula dargestellt (Abbildung 27). 
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Abbildung 27: Darstellung der Problembearbeitungsprozesse von Lea, Lisa, Sarah und Paula anhand 

der Kodierung der Schoenfeld Episoden 

In den drei Problembearbeitungsprozessen von Lea, Lisa, Sarah und Paula wird 

ebenfalls deutlich, dass wenig Zeit in den Episoden Reading und Analysis 

verbracht wird. Allerdings kann in allen drei Problembearbeitungsprozessen eine 

grobe Planning-Implementation-Verification-Sequenz identifiziert werden. Zu 

Beginn ihrer Bearbeitung wird ein Plan expliziert, der anschließend in längeren 

Implementationen umgesetzt wird. Durch Unklarheiten bei der Umsetzung des 

eigenen Plans kommt es in den Aufgaben zum „Mittelwertsatz“ und „L'Hospital“ 

zu kleinen Wechseln zwischen Implementation und Exploration. Zuletzt werden 

die eigenen Bearbeitungen kontrolliert (Verification). 

Aus den Bearbeitungsprozessen lassen sich anhand der Episoden ableiten, dass 

Lea, Lisa, Sarah und Paula ebenfalls wenig Zeit für die Auseinandersetzung mit 

der Aufgabenstellung (Reading und Analysis) verwenden. In der 

Aufgabe: Differenzierbarkeit prüfen 
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Aufgabenbearbeitung zu „Differenzierbarkeit prüfen“ wird sogar gar kein 

Reading und Analysis kodiert, da die Aufgabenstellung womöglich schon vor der 

Bearbeitung bekannt war. Bevor sie allerdings mit einer Implementation starten, 

wird zuvor immer ein Plan formuliert. Dabei legen sie fest, wie und mit welchen 

Methoden sie die Aufgabe lösen wollen. Während Planning nimmt sich die 

Lerngruppe viel Zeit, um herauszuarbeiten, was für die Lösung der Aufgabe 

benötigt wird. Teilweise werden dabei bereits einzelne Lösungsschritte 

besprochen. Es wird zudem deutlich, dass etwa ebenso viel Zeit in die 

Besprechung und Kontrolle (Verification) der getätigten Arbeitsschritte 

verwendet wird. Zwischen Planning und Verification befindet sich die 

Lerngruppe in der Implementation, wobei es an einigen Stellen einen Wechsel in 

Exploration gibt, da bei einigen Zwischenschritte Hürden auftreten. Diese Hürden 

werden entweder in der Exploration aufgeklärt oder in die abschließende 

Verification mitgenommen. Insgesamt weisen die Problembearbeitungsprozesse 

in dieser Lerngruppe über die verschiedenen Aufgaben hinweg einen ähnlichen 

Ablauf (Planning-Implementation/Exploration-Verification) auf, wobei viel Wert 

darauf gelegt wird, dass die Lösung der Aufgabe sinnvoll geplant und über die 

eigenen Gedanken reflektiert wird. 

Schoenfeld Episoden in den Problembearbeitungsprozessen von David 

Im Folgenden werden die Problembearbeitungsprozesse von David vorgestellt 

(Abbildung 28). Die Problembearbeitungsprozesse von David haben die 

Besonderheit, dass er in allen drei Prozessen jeweils die Bearbeitung der Aufgabe 

abgebrochen und die Bearbeitung an einem anderen Tag erneut aufgenommen 

hat. In Abbildung 28 ist dies daran zu erkennen, dass der gesamte 

Problembearbeitungsprozess pro Aufgabe in zwei „Zeilen“ aufgeteilt wurde. 

Somit könnte im Fall David von sechs unterschiedlichen Prozessen gesprochen 

werden. 
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Abbildung 28: Darstellung der Problembearbeitungsprozesse von David anhand der Kodierung der 

Schoenfeld Episoden 

Aufgabe: Differenzierbarkeit prüfen 
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In allen Prozessen startet David mit Reading. Abgesehen von der ersten 

Bearbeitung zur „L´Hospital“ Aufgabe schließt David Analysis daran an. In vier 

seiner Bearbeitungen folgt auf die Analysis eine Exploration, mit der die 

Problembearbeitungsprozesse enden. In einem Prozess (2. Prozess „L´Hospital“) 

befindet sich David nach der Analysis in der Implementation, da er einen Hinweis 

anwendet, den er für die weitere Bearbeitung der Aufgabe erhalten hat. Allerdings 

endet dieser Prozess ebenfalls mit Exploration.  

In den Problembearbeitungsprozessen von David ist zunächst zu erkennen, dass 

viel Zeit in die Analysis der Aufgabe investiert wird. Dies unterscheidet ihn stark 

zu anderen Lerngruppen in dieser Studie. Vor allem in den Aufgaben 

„Differenzierbarkeit prüfen“ und „Mittelwertsatz“ versucht David die beiden 

Begriffe mithilfe verschiedener Unterlagen für sich zu klären, bevor eine Lösung 

für die Aufgabe angestrebt wird. Das Nachschlagen der Begriffe hilft David zwar 

die Aufgaben besser zu verstehen, allerdings weiß er nicht, wie er auf eine Lösung 

der Aufgabe kommen soll. Dies zeichnet sich durch die Exploration aus, in der er 

nach Lösungsmöglichkeiten sucht. In den meisten Fällen sucht er so lange nach 

Lösungsmöglichkeiten, bis er für sich selbst entscheidet, dass er an dieser Stelle 

nicht weiterkommt und die Bearbeitung der Aufgabe abbricht. Da David sich 

durch die Analysis wichtige und für ihn notwendige Informationen über die 

mathematischen Inhalte zusammengesucht hat, hätte Planning womöglich dazu 

führen können, die langen Explorationen zu vermeiden. Obwohl in den 

Explorationen kurze Transitions zu erkennen sind, in denen David sein Vorgehen 

hinterfragt, bleibt er anschließend dabei, wie gehabt weiter zu verfahren. Dies 

liegt vermutlich daran, dass er keine Alternative hat, die Aufgabe zu lösen. 

Schoenfeld Episoden in den Problembearbeitungsprozessen von Nick 

Im Folgenden werden die Problembearbeitungsprozesse von Nick dargestellt 

(Abbildung 29). 
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Abbildung 29: Darstellung der Problembearbeitungsprozesse von Nick anhand der Kodierung der 

Schoenfeld Episoden 

Die drei Problembearbeitungsprozesse von Nick starten immer mit Reading. 

Darüber hinaus befinden sich ebenfalls Exploration und Implementationen in 

allen Bearbeitungen, allerdings lässt sich daraus kein allgemeines Muster 

erkennen. Nach Reading verlaufen die Bearbeitungsprozesse verschieden: In der 

Aufgabe „Differenzierbarkeit prüfen“ wird mehrfach von Exploration zu 

Planning zu Implementation, in der Aufgabe „Mittelwertsatz“ zwischen 

Exploration und Analysis gewechselt. Die Bearbeitung endet mit einer 

Implementation. Die Aufgabe „L´Hospital“ beginnt mit einer kurzen 

Implementation und endet mit Exploration sowie einer kurzen Verification. 

Insgesamt lässt sich aus den Bearbeitungsprozessen erkennen, dass Nick wenig 

Zeit für die Bearbeitung der Aufgaben aufbringt. Dabei geht er direkt nach dem 

Lesen der Aufgabe dazu über, eine Lösung für die Aufgabe zu suchen 
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(Exploration) bzw. zu produzieren (Implementation). In den 

Bearbeitungsprozessen wird allerdings deutlich, dass Nick wenig bis keine Zeit 

investiert, um die Aufgabenbearbeitung explizit zu planen oder diese zu 

überprüfen bzw. zu kontrollieren.  

Schoenfeld Episoden in den Problembearbeitungsprozessen von Lukas 

Im Folgenden wird der Problembearbeitungsprozess von Lukas dargestellt 

(Abbildung 30). Für Lukas wird nur die Aufgabe „Differenzierbarkeit prüfen“ 

herangezogen, da er die anderen beiden Aufgaben nicht bearbeitet hat. 

 

 

Abbildung 30: Darstellung des Problembearbeitungsprozesses von Lukas anhand der Kodierung der 

Schoenfeld Episoden 

Lukas beginnt seinen Problembearbeitungsprozess der Aufgabe 

„Differenzierbarkeit prüfen“, indem er sich an Tipps seines Tutors erinnert 

(Transition). Nach Reading der Aufgabenstellung plant er die Tipps anzuwenden 

(Implementation), bis er zwar einen weiteren Plan aufstellt, sich aber aufgrund 

von Unsicherheiten von dort aus aber auf die Suche nach Lösungsmöglichkeiten 

begibt (Exploration). Mit der Exploration endet ebenfalls die Bearbeitung. Für 

die Auswertung dieser Studie ist bei Lukas zwar nur die Aufgabe 

„Differenzierbarkeit prüfen“ relevant, allerdings sind weitere Aufgaben mit einer 

ähnlichen Vorgehensweise bearbeitet worden. 

Abschließender Vergleich zwischen den Lerngruppen 

Die Gruppen von Alex und Thomas sowie Lea, Lisa, Sarah und Paula sind 

erfolgreicher40 in der Bearbeitung, da sie bestehende Hürden systematisch 

angehen. Während Alex und Thomas dies durch flexibles Wechseln zwischen 

Implementation und Exploration erreichen, zeichnet sich die zweite Gruppe durch 

eine strukturierte Planung und intensive Kontrolle aus. David und Lukas hingegen 

 
40 In Kapitel 6.1.6 werden erfolgreiche bzw. nichterfolgreiche Prozesse detaillierter 

besprochen. 
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scheitern häufig an mangelnder Planung, die zu langen und wenig produktiven 

Explorationsphasen führt. Nick zeigt ein breites Spektrum an Ansätzen, bleibt 

jedoch aufgrund fehlender Konsistenz und Kontrolle weniger effektiv. 

6.1.4 Episodenwechsel in den Problembearbeitungsprozessen 

Im Folgenden erfolgt eine Betrachtung der Episodenwechsel. Damit lässt sich 

bestimmen, ob die Problembearbeitungsprozesse linear bzw. nicht-linear (Kapitel 

2.3.3) verlaufen. Die folgenden Ausführungen adressieren demnach die 

Forschungsfrage: 

 

(S2) Welche Episodenwechsel treten in den Problembearbeitungsprozessen auf? 

Verlaufen die Prozesse linear? 

 

Bei der Betrachtung der 13 verschiedenen Problembearbeitungsprozesse fällt auf, 

dass in jedem Prozess zahlreiche Wechsel zwischen Episoden stattfinden (Tabelle 

17). Die Episodenwechsel können wertvolle Hinweise auf das 

Steuerungsverhalten der Studierenden liefern und werden daher im Detail 

untersucht. Ein Episodenwechsel wird demnach dann gezählt, wenn Studierende 

von einer in die nächste Episode wechseln. Der erste Episodenwechsel findet 

dabei zwischen der ersten und zweiten Episode statt. Es muss angemerkt werden, 

dass Planning und Implementation zu einem Zeitpunkt gleichzeitig auftreten 

können. In diesem Fall wird dies wie eine gemeinsame Episode behandelt und 

nur ein Episodenwechsel gezählt. Dies geschieht in der Form, dass nach einer 

gemeinsamen Episode von Planning und Implementation in eine normale 

Implementation ohne Planning übergegangen wird. 

Anzahl der Episodenwechsel 

Die durchschnittlichen Episodenwechsel pro Aufgabenbearbeitung liegen bei ca. 

9,1. Innerhalb der Lerngruppen weist Nick durchschnittlich die wenigstens (7,6) 

und David die meisten (11) Episodenwechsel auf. Dieses Ergebnis hängt 

womöglich mit der Bearbeitungszeit zusammen. Nick hat für die Bearbeitung 

durchschnittlich ebenfalls die wenigste Zeit und David die meiste Zeit benötigt. 

Werden einzelne Problembearbeitungsprozesse betrachtet, zeigen sich allerdings 

auch Prozesse, die besonders wenige (Lea, Lisa, Sarah und Paula sowie Nick mit 

4 Episodenwechseln) bzw. viele Episodenwechsel (David mit 16 

Episodenwechsel) besitzen. In dem Prozess von Lea, Lisa, Sarah und Paula zur 

Aufgabe „Differenzierbarkeit prüfen“ treten vier Episodenwechsel auf: 

Transition → Exploration → Planning → Implementation → Verification. 

Insgesamt hat dieser Prozess sieben Minuten gedauert. Die Lerngruppe bearbeitet 

die Aufgabe zügig und strukturiert. Der Prozess verläuft durchgehend flüssig, 

sodass keine zusätzlichen Episodenwechsel erforderlich sind. Demgegenüber 
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treten in dem Prozess von David zur Aufgabe „L´Hospital“ 16 Episodenwechsel 

auf. David zeigt durch diese Episodenwechsel selbstregulatorische Ansätze, 

allerdings befindet er sich sowohl davor als auch danach in einer Exploration. 

Dadurch wird deutlich, dass zwar erkannt wird, dass unstrukturiert vorgegangen, 

allerdings kein Weg bzw. kein inhaltlicher Ansatz gefunden wird, in der Lösung 

zur Aufgabe anders vorzugehen.  

 

 Differenzier

barkeit 

prüfen 

Mittelwert

satz 

L´Hospital Summe 

Alex und 

Thomas 

12 6 7 25 

Lea, Lisa, Sarah 

und Paula 

4 12 12 28 

David 8 9 16 33 

Nick 9 10 4 23 

Lukas 9   9 

Tabelle 17: Häufigkeiten der Episodenwechsel, dargestellt für alle drei Aufgaben 

In einer Studie von Herold-Blasius (2019) wurden ebenfalls die Episodenwechsel 

in Problembearbeitungsprozessen untersucht, allerdings von Kindern im Alter 

von 7 und 10 Jahren. Dort wurden durchschnittlich pro Aufgabe etwa drei 

Episodenwechsel vollzogen. Im Vergleich liegt der Durchschnitt der 

Episodenwechsel in dieser Studie etwas mehr als drei Mal so hoch. Die hohe 

Anzahl an Episodenwechsel kann verschiedene Gründe haben. Zum einen sind 

die Aufgaben, die in dieser Arbeit bearbeitet wurden, mehrschrittiger als 

Aufgaben für Grundschulkinder. Komplexere Aufgaben erfordern mehrschrittige 

Überlegungen, wodurch möglicherweise mehr Potenzial für Episodenwechsel 

vorhanden ist. Dies kann sich beispielsweise durch die Festlegung von 

Zwischenzielen, unerwarteten Schwierigkeiten usw. bemerkbar machen. Zum 

anderen könnte die längere Bearbeitungszeit Grund für die hohe Anzahl der 

Episodenwechsel darstellen. Im Vergleich zu den berichteten Werten (13:34 

Minuten) von Herold-Blasius (2019) liegt die durchschnittliche Bearbeitungszeit 

in dieser Studie (22:53 Minuten) fast doppelt so hoch. Letztlich lässt sich jedoch 

für jede Aufgabe, unabhängig von ihrer Komplexität oder ihrem 

Schwierigkeitsgrad, nicht unbedingt festlegen, wie viele Episodenwechsel eine 

Person benötigen sollte. 
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In den Problembearbeitungsprozessen der Studierenden treten verschiedene 

Handlungsweisen auf, zwischen denen häufig gewechselt wird. Dadurch lassen 

sich Rückschlüsse auf die selbstregulatorischen Fähigkeiten von Studierenden 

schließen. Diese werden in den Prozessen deutlich, indem die Studierenden 

selbstständig (erkannt und) entschieden haben, einen Richtungswechsel in der 

Herangehensweise einzuschlagen. 

Lineare und nicht-lineare Problembearbeitungsprozesse 

 

 Reihenfolge der Episoden Linear oder nicht-linear 

Differenzierbarkeit prüfen 

G3 P A I E P I V Nicht-linear 

G4 E P I V Linear 

David A E V Linear 

Nick E I E I E I P I Nicht-linear 

Lukas I P I P E Nicht-linear 

Mittelwertsatz 

G3 I P I E I Nicht-linear 

G4 A I E I E V Nicht-linear 

David A E A E A E Nicht-linear 

Nick E A E A E A I Nicht-linear 

L´Hospital 

G3 I E I E P I  Nicht-linear 

G4 E P I E I E I E V E V Nicht-linear 

David E A I E A E  Nicht-linear 

Nick I E A E V Nicht-linear 

Tabelle 18: Lineare bzw. nicht-lineare Prozesse (A=Analysis, E=Exploration, P=Planning, 
I=Implementation, V=Verification, G3 = Alex und Thomas, G4 = Lea, Lisa, Sarah 

und Paula) 

Eine weitere interessante Beobachtung bezüglich der Episodenwechsel ist die 

Reihenfolge, in der diese auftreten. Eine Beschreibung und Einordnung kann mit 

den Ansätzen verschiedener Problemlösemodelle getätigt werden. Es stellt sich 

daher die Frage, ob die Problembearbeitungsprozesse der Studierenden linear (z. 

B. wie in Polyas Modell) oder zyklisch bzw. nicht-linear (wie es z. B. in 

Schoenfelds Modell bzw. Rotts Modell möglich ist) verlaufen. Um einen (nicht-

)linearen Prozess zu definieren, wird sich auf die Ausführungen von Rott (2013, 

S. 296ff.) berufen. Ein linearer Prozess besitzt die Reihenfolge der Episoden 

Analysis → Exploration → Planning → Implementation → Verification. Ein 

Prozess wird darüber hinaus als linear angesehen, falls einige der Episodentypen 
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fehlen, wiederholt auftreten oder Planning und Implementation gemeinsam 

auftreten. Ein nicht-linearer Prozess hingegen durchbricht die oben angegebene 

Reihenfolge, unabhängig von Auslassungen oder Wiederholungen. Es werden 

Reading und Transition ausgeschlossen, wodurch demnach nur die inhaltlichen 

Episodentypen betrachtet werden (Rott, 2013, S. 275).  

Mithilfe dieser Definition lässt sich ableiten, dass in dieser Studie zwei der 13 

Problembearbeitungsprozesse linear und elf Problembearbeitungsprozesse nicht-

linear verlaufen (Tabelle 18). Die beiden linearen Prozesse sind lediglich in der 

Aufgabe „Differenzierbarkeit prüfen“ vorgekommen (Lea, Lisa, Sarah und Paula 

sowie David). Der Großteil der Problembearbeitungsprozesse in dieser Studie 

lassen sich demnach als nicht-lineare Prozesse einstufen. Im Vergleich zu der 

Studie von Rott (2013) ergibt sich somit ein anderes Bild. In seinen Daten wurden 

lediglich etwa ein Drittel der Prozesse (30 von 98 Prozessen) als nicht-linear 

eingestuft. Ähnlich wie bereits bei der Feststellung der Anzahl von 

Episodenwechseln kann es an der Komplexität der Aufgabenstellung liegen, 

sodass gegebenenfalls im Prozess nochmal zur Aufgabe zurückgekehrt werden 

oder der Plan angepasst werden muss. Aus diesem Grund wird die Art der nicht-

linearen Prozesse untersucht. An welchen Stellen der Bearbeitung gibt es einen 

zyklischen Prozess bzw. aus welchen Gründen gelangen Studierende in eine 

Schleife? Nach der vorher festgelegten Definition von nicht-linearen Prozessen 

gibt es in den Problembearbeitungsprozessen mindestens eine Stelle, in der die 

Reihenfolge Analysis → Exploration → Planning → Implementation → 

Verification durchbrochen wird. In den vorliegenden elf nicht-linearen Prozess 

gibt es jeweils mindestens zwei Stellen (außer bei Nick in der Aufgabe 

„L´Hospital“ nur eine Schleife), an denen jeder Prozess zyklisch wird. Insgesamt 

ergibt sich, dass  

 

• zwölf Mal von Implementation → Exploration  

• sieben Mal von Exploration → Analysis 

• vier Mal von Implementation → Planning 

• ein Mal von Planning → Analysis 

• ein Mal von Planning → Exploration und  

• ein Mal von Verification → Exploration 

 

gewechselt wurde. Für eine genauere Betrachtung wird auf die drei häufigsten 

Wechsel eingegangen. Die anderen drei Episodenwechsel konnten nur einmal 

identifiziert werden. 

Der Wechsel von Implementation → Exploration kann in allen Lerngruppen 

beobachtet werden. Dieser Wechsel zeichnet sich dadurch aus, dass Studierende 

in der Implementation auf eine Hürde stoßen. In der anknüpfenden Exploration 

wird nach Informationen gesucht, die ihnen in der Implementation helfen können. 

Die Implementation wird demnach durch eine Exploration unterbrochen, 
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wodurch sich folgender Zyklus als allgemeines Muster ergibt Implementation → 

Exploration (→ ggfs. Planning) → Implementation. Dieses Problemlöseverhalten 

deckt sich ebenfalls mit dem zuvor beschriebenen Vermeiden eines „wild goose 

chases“ (Kapitel 6.1.5). Am deutlichsten lässt sich dies in den drei Bearbeitungen 

von Alex und Thomas erkennen. Es scheint symptomatisch für Alex und Thomas 

zu sein, dass in der Bearbeitung zügig mit einer Produktion der Lösung gestartet 

wird, ohne viel Zeit in das Planning zu investieren. Es kann angenommen werden, 

dass dadurch Hürden während der Implementation auftreten. Allerdings zeigen 

die Bearbeitungen von Lea, Lisa, Sarah und Paula, dass auch mit 

vorangegangenen und zeitlich ausführlicherem Planning während der 

Bearbeitung auf Hürden gestoßen werden kann, wodurch eine Exploration 

ausgelöst wird. 

Der Wechsel von Exploration → Analysis lässt sich in drei 

Problembearbeitungsprozessen (2x David, 1x Nick) wiederfinden. Dieser 

Wechsel zeichnet sich dadurch aus, dass eine unstrukturierte Suche nach einer 

Lösung bzw. Hinweise für eine Lösung nicht weitergeholfen haben und daher der 

Schritt zurück zur Aufgabenstellung getätigt wird. Außerdem ist in den 

Problembearbeitungsprozessen zu erkennen, dass in solchen Fällen eine Art 

Wechselspiel zwischen den beiden Episodentypen entsteht, wodurch ein 

wiederholender Zyklus als allgemeines Muster entsteht: Exploration → Analysis 

→ Exploration → Analysis usw. Besonders in den Bearbeitungen von Nick und 

David zu der Aufgabe „Mittelwertsatz“ wird mehrfach zwischen diesen beiden 

Episoden gewechselt. David sucht zunächst in seinen Unterlagen nach dem 

Mittelwertsatz und unternimmt Aktivitäten, diesen zu verstehen (Analysis). 

Darauf aufbauend versucht er unstrukturiert eine Lösung zu generieren 

(Exploration). Nachdem er damit scheitert, geht er einen Schritt zurück und 

versucht erneut den Mittelwertsatz (und damit gleichzeitig die Aufgabe) besser 

zu verstehen (Analysis). 

Der Wechsel Implementation → Planning kann in vier 

Problembearbeitungsprozessen von vier unterschiedlichen Lerngruppen 

identifiziert werden. Dieser Wechsel zeichnet sich dadurch aus, dass in der 

Implementation bislang Teilschritte der Lösung erzielt worden sind und das 

Vorgehen weiteres Planning benötigt. Ein allgemeines Muster lässt sich hier nicht 

ableiten. Zu dem Wechsel Implementation → Planning muss erwähnt werden, 

dass Studierende bereits in der vorangegangenen Episode einen Plan entwickelt 

haben könnten, diesen allerdings nicht explizit verbalisieren.  

6.1.5 Identifikation von „wild goose chases“ 

In den bisherigen Darstellungen der Ergebnisse zeigt sich, dass Exploration eine 

besondere Stellung einnimmt. Dieser Episodentyp kann in allen 

Problembearbeitungsprozessen identifiziert werden und ist zudem in vielen 

Prozessen mit einem erheblichen Anteil der gesamten Bearbeitungszeit vertreten 
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(siehe Tabelle 16). Exploration könnte ein Hinweis auf „wild goose chases“ sein 

(Schoenfeld, 1992a; Kapitel 2.3.1), bei denen die Studierenden in einem 

scheinbar fruchtlosen Lösungsversuch steckenbleiben. Die folgenden 

Ausführungen adressieren demnach die Forschungsfrage: 

 

(S3) Inwiefern lassen sich „wild goose chases“ in den 

Problembearbeitungsprozessen identifizieren und inwiefern können Studierende 

dieses Verhalten vermeiden? 

 

Schoenfeld (1985) beschreibt das Problemlöseverhalten „wild goose chase“, in 

dem es im Wesentlichen darum geht, dass problemlösende Personen einen Ansatz 

wählen und diesen so lange verfolgen bis die Bearbeitungszeit abgelaufen ist 

(Schoenfeld, 1992b, S. 190). Während des Prozesses werden demnach keine 

selbstregulatorischen Aktivitäten (=Episodenwechsel) unternommen. Die 

Operationalisierung dieses Verhaltens legt Schoenfeld mit den Episoden Reading 

→ Exploration fest. Ein Problembearbeitungsprozess startet somit mit dem Lesen 

der Aufgabenstellung, wechselt anschließend zügig in eine langanhaltende 

Erkundung des Ergebnisraums, womit der Prozess letztendlich endet. 

Grundlegend für einen „wild goose chase“ ist somit die Episode Exploration, 

welche fast ausschließlich den gesamten Problemlöseverlauf beschreibt. Rott 

(2013, S. 302) erweitert die Operationalisierung und erlaubt zwischen dem Lesen 

der Aufgabe und dem Verfolgen des Ansatzes noch eine kurze Phase, in der 

versucht wird, die Aufgabe zu verstehen41: Mit dieser Auffassung sind alle 

Prozesse gemeint, die entweder nur Exploration oder Analysis und Exploration 

beinhalten42. Reading wird als nicht-inhaltlicher Episodentyp in der 

Operationalisierung ausgeklammert. 

Mit der Anwendung der Operationalisierung von Schoenfeld lässt sich in den 

Problembearbeitungsprozessen dieser Studie kein „wild goose chase“ 

identifizieren. Hingegen kann gemäß der Operationalisierung von Rott der 

Prozess von David zu der Aufgabe „Mittelwertsatz“ als „wild goose chase“ 

beschrieben werden. Durch die bereits beschriebenen vielen Episodenwechsel 

innerhalb der einzelnen Prozesse konnte bereits vermutet werden, dass eine 

solche strenge Operationalisierung wenig „wild goose chases“ ausfindig machen 

kann. Sowohl Rott als auch Schoenfeld haben in ihren Kodierungen allerdings in 

25 von 32 Prozessen (Rott, 2013, S.302) bzw. ungefähr 60 % von mehr als 100 

Prozessen (Schoenfeld, 1992a) ein solches Problemlöseverhalten gefunden. In 

 
41 „Nun ist es auch möglich, dass Problemlöser kurz versuchen, die ihnen gestellte Aufgabe zu 

verstehen, bevor sie eine Bearbeitungsidee bis zum (erfolglosen) Ende der Bearbeitung 

ungeprüft verfolgen“ (Rott, 2013, S. 302) 

42 Rott beschreibt zwar die Reihenfolge Reading → Analysis → Exploration, in der Kodierung 

ist allerdings nur der Prozesstyp entscheidend. Die Reihenfolge wird demnach 

ausgeklammert. 
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den beiden Studien liegen allerdings andere Rahmenbedingungen vor. Zum einen 

ist der Prozess in der vorliegenden Arbeit nicht auf 20 Minuten beschränkt und 

zum anderen beinhalten die bearbeitenden Aufgaben ein anderes 

Aufgabenniveau. Dazu muss beachtet werden, dass die Problembearbeitung bei 

Rott (2013) von Schüler:innen durchgeführt wurde und in den vorliegenden 

Prozessen dagegen Studierende beteiligt sind. Es lässt sich vermuten, dass 

Studierende über eine bessere Selbstregulation verfügen, woraus häufiger 

Episodenwechsel resultieren und somit keinem „wild goose chase“ verfallen. 

Weiterhin sind die Aufgabenbearbeitungen in der vorliegenden Arbeit deutlich 

länger als in den Untersuchungen von Rott (2013). Es ist dadurch nicht 

auszuschließen, dass nach längeren Zeiträumen automatisch ein Episodenwechsel 

stattfindet. In einem ähnlichen Setting wie in dieser Studie konnte Stenzel (2023a, 

S. 122) in seinen Daten keinen „wild goose chase“ identifizieren. Als Begründung 

liefert er, dass die betrachteten Aufgaben eher begrifflich als rechnerisch geprägt 

sind. Dadurch würde es weniger Möglichkeiten geben, sich in irgendwelchen 

wenig hilfreichen Berechnungen zu verlieren. In der vorliegenden Arbeit kann 

dies nicht vollständig behauptet werden, da in jeder Aufgabe rechnerische Anteile 

vorhanden sind. Ein weiterer Grund könnte ebenfalls der Grad der Offenheit der 

Aufgaben sein. Während hochschulische Aufgaben oft klare Anfangs- und 

Endzustände aufweisen, werden typische Problemaufgaben in der 

Mathematikdidaktik eher als offene Aufgaben mit unklar definierten 

Endzuständen beschrieben (Bruder, 2000). Solche offenen Aufgaben bieten 

potenziell mehr Raum für explorative oder sogar ineffektive Lösungsansätze, was 

wiederum die Wahrscheinlichkeit eines „wild goose chase“ erhöhen könnte. 

Es bleibt bemerkenswert, dass trotz des hohen Anteils von Exploration in vielen 

Problembearbeitungsprozessen lediglich ein „wild goose chase“ identifiziert 

werden konnte. Dies wirft die Frage auf, ob sich dennoch Charakteristika finden 

lassen, die einen „wild goose chase“ beschreiben können. Möglicherweise 

erfordert dies eine Anpassung der Definition oder der Operationalisierung, um 

den beobachteten Umständen besser gerecht zu werden. Wird die 

Operationalisierung etwas weiter gefasst, finden sich in einigen Prozessen 

durchaus Charakteristika eines „wild goose chases“ wieder. Weiter gefasst 

bedeutet in diesem Zusammenhang, dass die Prozesse (wie in Rotts 

Operationalisierung) überwiegend aus Exploration und Analysis bestehen 

können, allerdings auch zeitlich kurze Abschnitte des gesamten Prozesses aus 

einem anderen Episodentyp hervorgehen können. Besonders in den Prozessen 

von David lässt sich dies erkennen. Typisch für die Prozesse von David sind, dass 

viel Zeit in den Episoden Exploration und Analysis verbracht wird. Dabei ist seine 

Bearbeitung zum „Mittelwertsatz“ nach Rotts (2013, S. 302) Operationalisierung 

des „wild goose chase“ ein solches typisches Problemlöseverhalten. In der 

Bearbeitung wird zunächst die Aufgabe gelesen sowie versucht diese (besser) zu 

verstehen. Anschließend wird unstrukturiert ein Ansatz verfolgt. In dieser 
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Bearbeitung kommt es allerdings immer wieder zu Wechseln zwischen Analysis 

und Exploration. Dennoch endet die Bearbeitung mit einer zeitlich langen 

Exploration, bevor die Bearbeitung abgebrochen wird43. Die beiden übrigen 

Problembearbeitungsprozesse spiegeln ein sehr ähnliches Bearbeitungsmuster ab, 

wobei in der Aufgabe „Differenzierbarkeit prüfen“ abschließend das inhaltliche 

Vorgehen kurz kontrolliert (Verification) und in der Aufgabe „L´Hospital“ ein 

strukturiertes Vorgehen identifiziert wurde (Implementation).  

Weitere Problembearbeitungsprozesse, die Charakteristika eines „wild goose 

chases“ aufzeigen, sind Prozesse von Nick zur Aufgabe „L´Hospital“ und von 

Lukas zur Aufgabe „Differenzierbarkeit prüfen“. Obwohl Lukas zu Beginn einen 

Plan verfolgt und diesen anschließend umsetzt, verfällt er anschließend in eine 

Exploration, die bis zum Ende des Prozesses anhält. Er möchte die Ableitung der 

Funktion bestimmen und sucht dabei im Internet in Videos nach Hilfe. Letztlich 

resultiert die Suche damit, dass er keine für ihn nützliche Informationen finden 

konnte und die Bearbeitung der Aufgaben damit beendet wird. Im Prozess von 

Nick wird inhaltlich ebenfalls mit einer Implementation gestartet, die nach kurzer 

Zeit bereits in eine Exploration übergeht. Nick versucht in dieser Exploration die 

Regeln von L´Hospital anzuwenden, woran er letztlich allerdings scheitert und 

die Aufgabe beendet: „Nee, das wird nicht gegen Null und Unendlich laufen. Äh, 

damit bin ich fertig“.  

Vermeidung eines „wild goose chases“ 

Schoenfeld (1985, 1992a) beschreibt „wild goose chase“, indem sich 

problemlösende Personen fast ausschließlich in einer Exploration befinden, mit 

welcher der Prozess auch endet. Obwohl in dieser Arbeit Exploration zeitlich in 

den meisten Problembearbeitungsprozessen dominiert, wurden nur fünf Prozesse 

identifiziert, die Charakteristika eines „wild goose chases“ aufweisen. Es müssen 

daher einige Prozesse dieses spezielle Verhalten erfolgreich vermieden haben. 

Solche Prozesse beschreibt Schoenfeld (1985, S. 116) vor allem als Typ B (vgl. 

Kapitel 2.3.1), wobei Typ C Prozesse ebenfalls darunter aufgefasst werden 

können. Im Folgenden wird daher untersucht, wie Studierende (trotz zeitlich 

langer Exploration) keinem „wild goose chase“ verfallen. Dafür kommen in 

dieser Arbeit einige Prozesse in Frage. Die Problembearbeitungsprozesse, die 

einem „wild goose chase“ vermeiden, enden nicht zwingend mit einer 

Exploration, enthalten allerdings einen erheblichen Anteil Exploration im 

gesamten Prozess. Folgende Prozesse sind damit gemeint: Alle Prozesse von Alex 

und Thomas, ein Prozess von Lea, Lisa, Sarah und Paula („Mittelwertsatz“) sowie 

zwei Prozesse von Nick („Differenzierbarkeit prüfen“ und „Mittelwertsatz“). 

 
43 In den Prozessen von David endet die Bearbeitung immer damit, dass er seine Bearbeitung 

selbstständig abbricht. Dies wird durch die Episode Transition deutlich, in der lediglich zum 

Schluss gekommen wurde, dass es jetzt keinen Sinn mehr hat, weiter an der Aufgabe zu 

arbeiten. 
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In allen dieser Prozesse zeigt sich, dass die Studierenden nach der Exploration 

entweder einen expliziten Plan entwickeln oder direkt in eine Implementation 

übergehen. Die Exploration hat damit (neue) Informationen geliefert, welche für 

die weitere Aufgabenbearbeitung helfen. Dies zeigt sich bspw. bei Alex und 

Thomas in der Bearbeitung zur Aufgabe „Mittelwertsatz“. In der Exploration 

gelangen sie zu der Information (bzw. Schlussfolgerung), wie sie den Term 
(−𝑒−𝑥0) ⋅ (− 𝑠𝑖𝑛(𝑒−𝑥0)) abschätzen können. Diese Information wird in der 

anschließenden Implementation genutzt. Lediglich Nick stellt im Prozess zur 

Aufgabe „Mittelwertsatz“ eine kleine Ausnahme dar. Bevor er in seiner letzten 

Exploration die notwendigen Informationen erlangt (und mit Implementation 

fortführt), hat er zuvor drei Mal nach der Episode Exploration in Analysis 

gewechselt, da diese Explorationen fruchtlos verliefen. Dennoch hat Nick in 

diesen Momenten erkannt, dass mit dem aktuellen Vorgehen kein Fortschritt 

erzielt wird, wodurch die Übergänge in andere Episoden zustande kommen. 

Interessant ist allerdings nicht nur der Übergang von Exploration zur nächsten 

Episode, sondern ebenfalls, wie Studierende in die Exploration gelangen. Hier 

zeigt sich ein Unterschied zwischen den Prozessen von Nick zu Alex und Thomas 

sowie Lea, Lisa, Sarah und Paula. Sowohl bei Alex und Thomas als auch Lea, 

Lisa, Sarah und Paula geht der Exploration eine Implementation voraus. Daraus 

wird deutlich, dass zuvor bereits strukturiert vorgegangen wurde. Allerdings 

gelangen sie durch Hürden in der Implementation in eine Exploration. Für die 

Prozesse von Alex und Thomas sowie von Lea, Lisa, Sarah und Paula befindet 

sich die Exploration zwischen zwei Implementationen. Sie weisen damit letztlich 

ein strukturiertes Vorgehen auf, welches durch Hürden unterbrochen wird. Ein 

Abweichen in ein „wild goose chase“ ist damit für Prozesse dieser Art eher 

unwahrscheinlich. Anders sieht es allerdings bei Nick aus. In seinen Prozessen 

startet er, wie von Schoenfeld (1992a) beschrieben, nach Reading mit einer 

Exploration. Die Voraussetzung für einen „wild goose chase“ wären damit 

vorhanden. Wie bereits beschrieben, wechselt Nick allerdings ebenfalls im Laufe 

des Prozesses in ein strukturiertes Vorgehen, weil er in seiner Exploration 

hilfreiche Informationen gefunden hat. 

6.1.6 Vergleich von erfolgreicher und nichterfolgreicher Steuerung 

Da Steuerung einen Einfluss auf den Erfolg des Problemlösens hat (Kapitel 2.2; 

Schoenfeld, 1985), wird im Folgenden die erfolgreiche und nicht erfolgreiche 

Steuerung der Problembearbeitungsprozesse in Bezug auf die zugehörigen 

Lösungen untersucht. Dabei erfolgt eine Analyse hinsichtlich der Aspekte 

Episodenwechsel, „wild goose chases“, strukturierter Lösungsansätze sowie 

verifizierende Prozesse. Die folgenden Ausführungen adressieren demnach die 

Forschungsfrage:  
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(S4) Inwiefern hängen die Episoden nach Schoenfeld mit dem Erfolg bzw. 

Misserfolg eines Problembearbeitungsprozesses zusammen? 

Einfluss auf Episodenwechsel 

Episodenwechsel wurden als ein Merkmal in den Problembearbeitungsprozessen 

untersucht (Kapitel 6.1.4). Wird die Anzahl der Episodenwechsel in einem 

Prozess mit dem Lösungserfolg in Verbindung gebracht, lässt sich nur schwierig 

ein Zusammenhang feststellen. Sowohl eine hohe sowie eine niedrige Anzahl von 

Episodenwechsel (Aufgabe „Differenzierbarkeit prüfen“: Vier Episodenwechsel 

und „L´Hospital“: Zwölf Episodenwechsel bei Lea, Lisa, Sarah und Paula) kann 

zum Erfolg führen. Genauso hat sich gezeigt, dass eine hohe sowie eine niedrige 

Anzahl von Episodenwechsel zu Misserfolg führen kann (Aufgabe 

„Mittelwertsatz“: Zehn Episodenwechsel und „L´Hospital“: Vier 

Episodenwechsel bei Nick). Auch bei der Betrachtung der beiden 

Problembearbeitungsprozesse mit den wenigsten Episodenwechseln (jeweils 

vier) zeigt sich ein unterschiedliches Bild. Nick erreicht mit L1 die geringste 

Lösungsqualität, während Lea, Lisa, Sarah und Paula L3/L4 erreichen. Lediglich 

in den Problembearbeitungsprozessen, welche die meisten Episodenwechsel44 

aufweisen, zeigt sich durchweg mindestens eine Lösungsqualität von L3. 

Demnach wird die Aussage unterstützt, dass man von einer hohen Anzahl von 

Episodenwechsel auf (gute) selbstregulatorischen Fähigkeiten der 

problemlösenden Personen zurückschließen kann. Es lässt sich diskutieren, ob 

einzelne Episoden bzw. einzelne Episodenwechsel innerhalb des Prozesses 

notwendig bzw. mitentscheidend für den Erfolg gewesen sind, allerdings haben 

die Studierenden in diesen Prozessen zufriedenstellende Lösungsqualitäten 

erreicht. Diese vier Prozesse haben zum einen gemeinsam, dass sie zwar (wie 

jeder weitere Prozess in diesen Daten) einige Zeit in der Exploration verbringen, 

es zum anderen allerdings auch schaffen, aus der Exploration (zumindest 

kurzzeitig) in ein strukturiertes Vorgehen überzugehen. 

Neben der Anzahl der Episodenwechsel wurde auch die Reihenfolge der 

durchlaufenden Episoden betrachtet. Dabei wurde zwischen linearen und nicht-

linearen Problembearbeitungsprozessen unterschieden. Allgemeingültige 

Aussagen im Zusammenhang mit dem Erfolg abzuleiten, sind in diesen Daten 

allerdings kaum möglich, da lediglich zwei lineare Prozesse vorhanden sind. 

Allerdings sind beide Prozesse45 mindestens mit einer Lösungsqualität von L3 

kodiert. Bezüglich der nicht-linearen Prozesse gibt es sowohl Prozesse, die 

 
44 Die Problembearbeitungsprozesse mit den meisten Episodenwechseln sind bei David 

(Aufgabe „L´Hospital“ mit 16 Episodenwechsel), Lea, Lisa, Sarah und Paula (Aufgabe 

„Mittelwertsatz“ und „L´Hospital“ mit 12 Episodenwechsel) sowie Alex und Thomas 

(Aufgabe „Differenzierbarkeit prüfen“ mit 12 Episodenwechsel). 

45 Beide linearen Prozesse sind zu der Aufgabe „Differenzierbarkeit prüfen“ bei David und Lea, 

Lisa, Paula und Sarah entstanden. 
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erfolgreich als auch nicht-erfolgreich geendet sind. Zu erwähnen ist allerdings, 

dass die nicht-linearen Prozesse sich mit den Prozessen des Vermeidens eines 

„wild goose chase“ decken. Dies wird im Folgenden erneut aufgegriffen.  

Wild goose chases 

In den Beschreibungen von Schoenfeld lässt sich vermuten, dass „wild goose 

chases“ negativ mit dem Erfolg zusammenhängen:  

„While pursuing wild geese they failed to examine and exploit potentially useful ideas that arose 

periodically during their solution attempt. These absences of executive behavior guaranteed that they 

would be unsuccessful” (Schoenfeld, 1985, S. 316). 

In einem weiteren Ausschnitt kontrastiert Schoenfeld (1992b, S. 195) „wild goose 

chases“ sogar mit erfolgreichen Bearbeitungen. Es bleibt zu zeigen, ob sich diese 

Aussagen in dem Kontext dieser Studie bestätigen lassen. 

Zuvor wurden alle Prozesse von David als auch jeweils ein Prozess von Nick und 

von Lukas mit Charakteristika eines „wild goose chases“ identifiziert (Kapitel 

6.1.5). In drei Prozessen (jeweils eine Bearbeitung von Lukas, Nick und David) 

lässt sich der vermutete Zusammenhang bestätigen. In allen drei Produkten wurde 

kein sinnvoller Ansatz gefunden (L1), der für eine gute Lösung ausreicht. 

Demnach entschied man sich für den Ansatz, welcher bis zum Misserfolg bzw. 

Abbruch verfolgt wurde. Eine andere Tendenz lässt sich allerdings in den beiden 

übrigen Prozessen von David beobachten. Die beiden Lösungen wurden als 

Erweiterter Ansatz (L3) gewertet. Obwohl von einem ähnlichen 

Problembearbeitungsprozess gesprochen werden kann, unterscheiden sich die 

Produkte in ihrer Lösungsqualität stark voneinander. Auf den ersten Blick lässt 

sich feststellen, dass David in seinen Bearbeitungen neben der Exploration 

ebenfalls viel Zeit in der Analysis verbringt, was in den Prozessen bei Nick bzw. 

Lukas nicht der Fall ist. Bevor David einen Ansatz verfolgt, verbringt er in der 

Bearbeitung zur Aufgabe „Differenzierbarkeit prüfen“ zunächst viel Zeit damit, 

die Aufgabe (besser) zu verstehen. Dabei setzt er sich tiefgründig mit dem Begriff 

Differenzierbarkeit auseinander. Letztendlich könnte vermutet werden, dass nach 

längerer Auseinandersetzung mit der Aufgabenstellung und dem Klären 

verschiedener Begriffe ein expliziter Plan entwickelt und dieser anschließend 

ausgeführt (Implementation) werden kann. In seinem Prozess verlässt David die 

Analysis allerdings immer noch mit einigen Unklarheiten, ist jedoch der Meinung, 

dass es nun an der Zeit wäre, eine Lösung aufzuschreiben, bzw. mit der 

Produktion einer Lösung zu beginnen. Daraus resultiert ein unstrukturiertes 

Vorgehen (Exploration), in welchem er gleichzeitig Fortschritte zur Lösung der 

Aufgabe erzielt. In der Bearbeitung zur Aufgabe „L´Hospital“ fängt David zwar 

sehr schnell mit einem unstrukturierten Lösungsversuch (Exploration) an, in 

einem zweiten Anlauf ist es aber erneut die Analysis, die zunächst zu einem 

strukturierten Vorgehen (Implementation) führt. In dieser Phase entsteht 

zeitgleich der meiste Lösungsfortschritt (Abbildung 31), während in dem 
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restlichen Bearbeitungsprozess die Lösung nur durch Kleinigkeiten ergänzt 

werden konnte. 

 

 

Abbildung 31: David Lösungsfortschritt in der Implementation (Aufgabe „L´Hospital“) 

In beiden erfolgreichen Prozessen (L3) von David, die Charakteristika eines „wild 

goose chases“ aufweisen, sind Hinweise zu erkennen, dass abseits der 

Exploration Lösungsfortschritte erzielt worden sind. Sowohl die Analysis als 

auch die Implementation scheinen dabei wichtige Rollen einzunehmen. Die 

Exploration hat dabei nur teilweise (in der Bearbeitung zur Aufgabe 

„Differenzierbarkeit prüfen“ bei David) zum Erfolg beigetragen.  

Die Problembearbeitungsprozesse, die ein „wild goose chase“ vermeiden 

konnten, zeigen in Bezug auf Erfolg kein einheitliches Bild. Es lassen sich 

allerdings die theoretischen Typen B und C von Schoenfeld (1985, S. 116) 

identifizieren. Paula, Lea, Lisa und Sarah haben in ihrem Prozess zur Aufgabe 

„Mittelwertsatz“ eine vollständig korrekte Lösung (L4) erreicht. Damit fallen sie 

unter den Typ C, da ihre Steuerung zum einen den „wild goose chase“ abwendet 

und darüber hinaus Heurismen sowie Wissen für die vollständige Lösung 

anwenden. Typ B ist hingegen im Prozess von Nick zu erkennen (L1). Nick 

vermeidet zwar einen „wild goose chase“, indem er in ein strukturiertes Vorgehen 

übergeht, allerdings entwickelt er einen nicht-zielführenden Plan (in Aufgabe 

„Differenzierbarkeit prüfen“), bzw. verfolgt einen falschen Ansatz 



S e i t e  | 201 

 

(Implementation in Aufgabe „Mittelwertsatz“). Er setzt sein Wissen und die 

Heurismen daher nicht angemessen ein. Daraus lässt sich schlussfolgern, dass es 

nicht ausreichend ist, lediglich einen „wild goose chase“ zu vermeiden, um eine 

erfolgreiche Lösung zu produzieren. Darüber hinaus ist es von zentraler 

Bedeutung, dass das strukturierende Vorgehen zielführend für die Lösung der 

Aufgabe ist.  

Strukturierte Problembearbeitungsprozesse 

Aus den fünf Problembearbeitungsprozessen, die Charakteristika eines „wild 

goose chases“ aufweisen, lässt sich festhalten, dass unstrukturiertes Vorgehen 

(Exploration) wenig zum Erfolg bzw. erfolgreichen Lösungsfortschritt einer 

Aufgabe beiträgt. Dagegen gehen erfolgreiche Problemlösende „systematischer 

vor als weniger erfolgreiche Problemlöser“ (Zimmermann, 1982, S. 193). Es stellt 

sich daher die Frage, inwiefern strukturierte Prozesse Einfluss auf den Erfolg 

nehmen.  

Als ein strukturierter Problembearbeitungsprozess wird ein Prozess angesehen, 

welcher Planning enthält. Dies bedeutet, dass in der Bearbeitung ein inhaltliches 

Ziel festgelegt sowie der Weg zum Erreichen des Ziels expliziert wird. Das 

strukturierte Vorgehen wird durch das Ausführen des Plans vervollständigt. Es 

werden demnach Prozesse betrachtet, in denen Planning und Implementation 

vorkommen. Auf den ersten Blick der Übersicht (Tabelle 16) kann ein positiver 

Zusammenhang vermutet werden. Sowohl Alex und Thomas sowie Lea, Lisa, 

Sarah und Paula beinhalten in jedem Problembearbeitungsprozess sowohl 

Planning als auch Implementation und erreichen mindestens L3. Allerdings 

weisen Nick und Lukas ebenfalls sowohl Planning und Implementation in jeweils 

einem Prozess auf. Beide Prozesse wurden mit L1 bewertet. Demnach muss es 

einen weiteren Grund dafür geben. 

Bevor Nick in seinem Bearbeitungsprozess zur Aufgabe „Differenzierbarkeit 

prüfen“ einen Plan entwickelt, sucht er zunächst in seinen Unterlagen nach 

möglichen Lösungsansätzen. Er beschäftigt sich dabei mit der Lösung einer 

ähnlichen Aufgabe aus dem Tutorium, bis er zu dem Entschluss kommt, dieses 

Vorgehen zu übernehmen. „Hier ist bisschen anders. Hier könnte ich dann auch 

wieder in drei Fälle unterscheiden. Das werde ich auch machen“ (Planning: 

03:37). Das Vorgehen aus der Aufgabe des Tutoriums kann zwar teilweise 

übertragen werden, allerdings ist eine Fallunterscheidung in der eigentlichen 

Aufgabe nicht zielführend. In der vorangegangenen Exploration hat Nick erkannt, 

dass sich die Funktionen der beiden Aufgaben unterscheiden: „Ja, also dort war 

die Funktion nicht aufgeteilt, nicht so wie hier, einmal ungleich Null, gleich Null 

ist die Funktion jeweils anders“ (Exploration: 02.14). Dennoch plant er, die 

gleichen Schritte zu unternehmen. Im weiteren Bearbeitungsverlauf stellt Nick 

erneut einen Plan auf: „Gut, äh ich sollte überprüfen, ob die Funktion 

differenzierbar ist. Also würde ich erstmal [in die Definition der 
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Differenzierbarkeit] einsetzen“ (Planning: 6:47). Der aufgestellt Plan ist dabei 

zielführend, allerdings unterlaufen ihm sowohl bei dem Einsetzen als auch in den 

folgenden Rechenschritten (Implementation) einige Fehler. Zum Ende seines 

Bearbeitungsprozesses entscheidet sich Nick dazu, 𝑓´ zu bilden: „Ja, bestimmen 

Sie 𝑓′(0) [19 Sek.] Okay. Dafür soll ich erstmal 𝑓´ bilden […]. Hier mache ich 

wieder zwei Fallunterscheidungen. Einmal für den Fall, dass 𝑓 ungleich, also dass 

𝑥 in 𝑓 ungleich Null ist“ (Planning, 09:15). In der folgenden Implementation wird 

deutlich, dass er dafür die Ableitungsregeln nutzen möchte. Dieser Plan ist 

ebenfalls nicht zielführend, erst recht, da Nick durch seinen vorherigen Plan 

bereits 𝑓´(0) bestimmt hat. In diesem Prozess wäre für Nick entscheidend 

gewesen, sich nicht nur mit der Lösung der Tutoriumsaufgabe zu beschäftigen, 

sondern ebenfalls mit der Aufgabenstellung. Beide Aufgaben unterscheiden sich 

in ihren Anforderungen, wodurch möglicherweise aufgefallen wäre, dass sowohl 

eine Fallunterscheidung als auch das „nochmalige“ Bestimmen von 𝑓´ in der 

eigentlichen Aufgabe nicht zielführend ist. Für den aufgestellten Plan, der 

zielführend für die Lösung der Aufgabe ist, wurden die Erfolgschancen durch die 

vielen Fehler zunichte gemacht. 

In der Bearbeitung von Lukas zeigt sich ein ähnliches Bild. Obwohl er die 

Aufgabenstellung nochmal vorliest, wendet er sich davor und danach nur dem 

Tipp zu, den er von einem Tutor erhalten hat. Diesen Tipp übernimmt er und 

formuliert damit seinen Plan, wobei ihm in der Implementation Fehler 

unterlaufen. Lukas möchte anschließend, ebenfalls wie in der Bearbeitung von 

Nick, die Ableitung von 𝑓 bilden, da in der Aufgabe die Bestimmung von 𝑓´(0)  

verlangt ist. Um die Ableitung zu bestimmen, sucht Lukas im Internet nach 

nützlichen Ableitungsregeln, die ihm weiterhelfen können. Da seine Suche nicht 

erfolgreich war, bricht er die Aufgabe an dieser Stelle ab.  

In der Bearbeitung von Lea, Lisa, Sarah und Paula zur Aufgabe „L´Hospital“ wird 

schon zu Beginn der Aufgabe von Sarah vermutet, dass die Regeln von L´Hospital 

zur Lösung führen können. Dabei überlegt die Lerngruppe zunächst, wie die 

Regeln von L´Hospital anzuwenden sind, indem sie beispielhaft Werte für 𝑎 

einsetzen. Paula versucht dies dann allgemeiner aufzufassen, wodurch Sarah die 

Vorgehensweise beschreibt: „Aber guck mal, da steht doch Limes 𝑥 gegen 𝑎. Das 

muss man auch einsetzen. […] Dann hast du da stehen, dann hast du da ja stehen, 

𝑎 hoch 𝑎 minus 𝑎 hoch 𝑎 und das ist Null“ (Planning + Implementation, 01:11). 

Anschließend entscheiden sie sich, die Ableitung der Zähler- und Nennerfunktion 

zu bilden, da sie den Fall Null durch Null erhalten und somit die Regeln von 

L´Hospital anwenden können. In der folgenden Implementation kommt es 

zwischendurch zu kleinen Hürden, allerdings werden diese gemeinsam in der 

Gruppe aufgelöst, wodurch sie letztendlich zu einem korrekten Ergebnis 

gelangen. Einen positiven Einfluss auf die Lösung hat dabei der zielführende Plan 

eingenommen. Dieser konnte dadurch formuliert werden, dass zuvor die Aufgabe 

verstanden wurde.  
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Verifizierende Problembearbeitungsprozesse 

Bisherige Studien zeigen, dass in Problembearbeitungsprozessen in seltenen 

Fällen eine Rückschau auftritt (z. B. Pugalee, 2004). In den vorliegenden Daten 

lassen sich allerdings in knapp der Hälfte (sechs von 13) der Prozesse eine 

Verification identifizieren (Kapitel 6.1.3). Dabei fällt auf, dass in jedem 

Bearbeitungsprozess von Lea, Lisa, Sarah und Paula eine Verification vorhanden 

ist. Hinsichtlich ihrer Lösungen wurde mindestens L3 kodiert. Weiterhin wurde 

Verification in einem Prozess von Alex und Thomas sowie von David identifiziert, 

dessen Produkte ebenfalls mit L3 bewertet sind. Lediglich das Produkt von Nick 

wurde mit L1 bewertet, obwohl der Prozess eine Verification beinhaltet. Auf den 

ersten Blick könnte daher vermutet werden, dass ein positiver Zusammenhang 

zwischen Verification und einer erfolgreichen Lösung besteht.  

Es stellt sich die Frage, welche Aktivitäten in Verification durchgeführt wurden. 

In den jeweiligen Episoden überprüfen die Studierenden jeweils ihre Lösung bzw. 

ihr Vorgehen. Die Verification der Gruppen (Alex und Thomas sowie Lea, Lisa, 

Sarah und Paula) nehmen dabei einen zeitlich höheren Anteil des Prozesses ein, 

weil darüber hinaus inhaltlich über die eigene Lösung diskutiert wurde. Zum 

Beispiel ordnen Alex und Thomas ihr Ergebnis, dass die Funktion in 0 

differenzierbar ist, grafisch ein, indem sie sich die Funktion visualisieren. 

Insgesamt hat der Episodentyp Verification allerdings wenig Einfluss auf den 

gesamten Bearbeitungsverlauf, da sie am Ende der Bearbeitung auftreten. In allen 

Prozessen tritt Verification als Letztes im Prozess auf. Nur bei der Aufgabe 

„L´Hospital“ von Lea, Lisa, Sarah und Paula wird Verification durch eine kurze 

Exploration unterbrochen. Inhaltlich verändern die Studierenden in keinem der 

Prozesse etwas an ihrer Lösung.  

6.1.7 Zusammenfassung der Ergebnisse zur Analyse der Steuerung 

Abschließend werden für das Kapitel 6.1 die zentralen Ergebnisse der Analyse 

hinsichtlich Steuerung zusammengefasst: 
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• Die untersuchten Studierende verbringen durchschnittlich am meisten 

Zeit in der Exploration (51 % der Zeit). Die zweitmeiste Zeit nimmt 

Implementation ein (23 %) (Kapitel 6.1.2). 

• Die Problembearbeitungsprozesse von derselben Lerngruppe verlaufen 

zu verschiedenen Aufgaben ähnlich. Eine Ausnahme zeigen die Prozesse 

von Nick (Kapitel 6.1.3). 

• Die Problembearbeitungsprozesse verlaufen eher zyklisch als linear (11 

vs. 2) (Kapitel 6.1.4). 

• Die Problembearbeitungsprozesse enthalten durchschnittlich 9,1 

Episodenwechsel pro Prozess (Kapitel 6.1.4). 

• Die Problembearbeitungsprozesse weisen keine typischen „wild goose 

chase“ (Schoenfeld, 1985) auf, allerdings lassen sich in fünf Prozessen 

Charakteristika eines „wild goose chases“ identifizieren (Kapitel 6.1.5). 

• (Zielführendes) strukturiertes Vorgehen scheint erfolgreich zu sein. 

Prozesse mit Charakteristika eines „wild goose chases“ sind weniger 

erfolgreich. Es konnte kein Zusammenhang zwischen Episodenwechsel 

und Erfolg identifiziert werden (Kapitel 6.1.6). 

6.2 Rekonstruktion von Wissen in den 

Problembearbeitungsprozessen 

Dieses Kapitel beschäftigt sich mit dem Wissensangebot der Veranstaltung und 

der Wissensnutzung von Studierenden während der 

Problembearbeitungsprozesse.  

Für die Rekonstruktion von Wissen wird die Wissensmatrix herangezogen 

(Kapitel 2.4.4). Dabei ermöglichen die Wissensarten und -facetten die 

Darstellung des Wissensangebots der Veranstaltung sowie die Wissensnutzung 

durch die Studierenden. Die Rekonstruktion mit Hilfe der Kategorien der 

Wissensmatrix auf das Angebot der Veranstaltung wird in Kapitel 6.2.1 

vorgestellt. Die Rekonstruktion mit Hilfe der Kategorien der Wissensmatrix 

bezüglich der Wissensnutzung von Studierenden wird anhand eines gesamten 

Problembearbeitungsprozesses in Kapitel 6.2.2 dargestellt. Anschließend wird in 

Kapitel 6.2.3 ein Überblick über die rekonstruierten Wissenselemente aller 

Prozesse gegeben. In Kapitel 6.2.4 wird der Fokus der Prozesse bezüglich der 

Wissensarten und Wissensfacetten aufgeteilt. Die einzelnen Prozesse liefern 

Gemeinsamkeiten und Besonderheiten, welche in Kapitel 6.2.5 diskutiert werden. 

Darauf folgt eine Darstellung inhaltlicher Schwierigkeiten in Kapitel 6.2.6, denen 

die Studierenden während der Bearbeitung begegnen. Die Ausführungen 

hinsichtlich des Angebots und der Nutzung werden in einem zusammenfassenden 

Rahmen in Kapitel 6.2.7 verglichen. Darüber hinaus erfolgt eine Untersuchung 

der Prozesse auf Erfolg und Misserfolg bezüglich der Wissensnutzung in Kapitel 
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6.2.8. Abschließend werden die zentralen Ergebnisse zum Wissen festgehalten 

(Kapitel 6.2.9). 

6.2.1 Rekonstruktion des Wissensangebots 

Im Folgenden wird das Wissensangebot der Veranstaltung rekonstruiert. Die 

theoretische Einordnung des benötigten mathematischen Wissens erfolgte bereits 

in Kapitel 5.3. Aufbauend darauf wurde in Kapitel 5.4.2 das Wissensangebot am 

Beispiel der Aufgabe „Differenzierbarkeit prüfen“ dargestellt, wobei das Konzept 

der Differenzierbarkeit in all seinen Facetten detailliert präsentiert wurde. In den 

folgenden Ausführungen wird das Wissensangebot für die drei Aufgaben 

rekonstruiert, jedoch ohne die ausführliche, detaillierte Einordnung (mit 

Ausschnitten aus der Veranstaltung für jede Facette), wie sie in Kapitel 5.4.2 für 

das Konzept der Differenzierbarkeit vorgenommen wurde. Sofern ein 

Wissenselement in der Veranstaltung angeboten wird, wird dies in den folgenden 

Tabellen grau markiert. Die folgenden Ausführungen adressieren somit die 

Forschungsfrage:  

 

(W1) Welches Wissen wird von der Veranstaltung angeboten? 

 
 Mathematischer Inhalt EF K&A B&V KF 

K
o

n
z
e
p

tu
el

le
s 

W
is

se
n

 

Konzept: Differenzierbarkeit     

Konzept: Funktionen     

Konzept: Abschnittsweise 

definierte Funktionen 

    

P
ro

z
e
d

u
ra

le
s 

W
is

se
n

 

Verfahren: Differenzierbarkeit 

prüfen 

    

Verfahren: Grenzwert von 

Funktionen berechnen 

    

Verfahren: Sandwich-Kriterium     

Tabelle 19: Wissensangebot zur Aufgabe „Differenzierbarkeit prüfen“ (EF = Explizite Formulierung; 

K&A = Konkretisierung & Abgrenzung; B&V = Bedeutung & Vernetzung; KF = 

Konventionelle Festlegungen) 

Das theoretische Wissen, das für die Bearbeitung der Aufgabe 

"Differenzierbarkeit prüfen" benötigt wird (Kapitel 5.3.1), wird im Rahmen der 

Veranstaltung angeboten. Dabei werden 20 von insgesamt 24 möglichen 

Wissensfacetten abgedeckt (Tabelle 19). 
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 Mathematischer Inhalt EF K&A B&V KF 

K
o

n
z
e
p

tu
el

le
s 

W
is

se
n

 

Konzept: Stetigkeit einer 

Funktion 

    

Konzept: Differenzierbarkeit     

Konzept: Funktion     

Konzept: Abschätzung     

Konzept: Betrag     

Zusammenhang: Mittelwertsatz 

der Differentialrechnung 

    

P
W

 Verfahren: Kettenregel     

Tabelle 20: Wissensangebot zur Aufgabe „Mittelwertsatz“ (PW = Prozedurales Wissen; EF = Explizite 
Formulierung; K&A = Konkretisierung & Abgrenzung; B&V = Bedeutung & 

Vernetzung; KF = Konventionelle Festlegungen) 

Das theoretische Wissen, das für die Bearbeitung der Aufgabe "Mittelwertsatz" 

benötigt wird (Kapitel 5.3.2), wird im Rahmen der Veranstaltung angeboten. 

Dabei werden 24 von insgesamt 28 möglichen Wissensfacetten abgedeckt 

(Tabelle 20). 

 
 Mathematischer Inhalt EF K&A B&V KF 

K
W

 Konzept: Funktion     

P
ro

z
e
d

u
ra

le
s 

W
is

se
n

 Verfahren: Regel von 

L´Hospital 

    

Verfahren: Grenzwert von 

Funktionen berechnen 

    

Verfahren: Kettenregel     

Verfahren: Potenzregel     

Tabelle 21: Wissensangebot zur Aufgabe „L´Hospital“ (KW = Konzeptuelles Wissen; EF = Explizite 

Formulierung; K&A = Konkretisierung & Abgrenzung; B&V = Bedeutung & 

Vernetzung; KF = Konventionelle Festlegungen) 
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Das theoretische Wissen, das für die Bearbeitung der Aufgabe "L’Hospital" 

benötigt wird (Kapitel 5.3.3), wird im Rahmen der Veranstaltung angeboten. 

Dabei werden 15 von insgesamt 20 möglichen Wissensfacetten abgedeckt 

(Tabelle 21). 

Insgesamt lässt sich erkennen, dass das theoretisch benötigte mathematische 

Wissen bezüglich aller Aufgaben in der Vorlesung angeboten wird. Sowohl 

konzeptuelles als auch prozedurales Wissen wird behandelt. Dabei existiert ein 

vielfältiges Angebot bezüglich der Wissensfacetten. Einige mathematische 

Inhalte treten in mehr als nur einer Aufgabe auf. Sofern diese Dopplungen 

unberücksichtigt bleiben, werden insgesamt 41 von 52 möglichen 

Wissenselementen in der Vorlesung vermittelt46. Lediglich zwei mathematische 

Inhalte werden mit nur zwei von vier möglichen Wissenselementen dargestellt. 

Dazu zählt das Sandwich-Kriterium (Aufgabe „Differenzierbarkeit prüfen“) 

sowie die Regeln von L´Hospital (Aufgabe „L´Hospital“). 

Am häufigsten (6-mal) fehlt in dem Angebot das Wissenselement bezüglich der 

Konventionellen Festlegungen. Allerdings liegt dies daran, dass es nicht zu jedem 

mathematischen Inhalt spezielle Fachwörter, Namen, Bezeichnungen und/oder 

nicht begründbare Festlegungen existieren (müssen). Andernfalls gibt es einige 

Konventionelle Festlegungen, die bereits aus der Schule bekannt sein sollten und 

daher nicht erneut in der Vorlesung erneut aufgegriffen bzw. festgelegt werden. 

4-mal werden Wissenselemente bezüglich der Facette Bedeutung & Vernetzung 

im Angebot ausgelassen. Möglicherweise werden diese ausgelassen, da sie als 

weniger relevant empfunden werden. Bspw. geht es bei dem Sandwich-Kriterium 

vor allem um die Anwendung und weniger um die Entwicklung einer 

(anschauliche) Vorstellung / Begründung. Zusätzlich ist das Sandwich-Kriterium 

ebenfalls „nur“ eine Technik, die unter das Bestimmen eines Grenzwerts fällt. 

Letztlich wird die Facette Explizite Formulierung (Grenzwert von Funktion 

berechnen) 1-mal nicht angeboten, wohingegen Konkretisierung & Abgrenzung 

in jedem Fall bereitgestellt wird. Beide Facetten scheinen demnach eine wichtige 

Rolle einzunehmen. Bezüglich der Expliziten Formulierung deckt sich dies mit 

der besonderen Rolle, die der formalen Mathematik in der Hochschule 

zugeschrieben wird. Ebenso spielen Beispiele bzw. Gegenbeispiele 

(Konkretisierung & Abgrenzung) eine wichtige Rolle. Diese können helfen, 

ähnliche Probleme in unterschiedlichen Kontexten zu lösen, was unter die 

Kompetenz des Problemlösen für Ingenieur:innen fällt (Alpers et al., 2013). Im 

expliziten Fall dieser Studie lassen sich zukünftige Hausaufgaben durch ähnliche 

Beispiele aus der Vorlesung einfacher lösen.  

 
46 Die Auflistung für die einzelnen Aufgaben. Hier wird die Dopplung nicht betrachtet. Aufgabe 

„Differenzierbarkeit prüfen“: 20 von 24 möglichen Wissenselementen, Aufgabe 

„Mittelwertsatz“: 23 von 28 möglichen Wissenselementen, Aufgabe „L´Hospital“: 15 von 

20 möglichen Wissenselementen. 
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6.2.2 Fallanalyse zur Wissensnutzung 

In diesem Abschnitt wird die Wissensnutzung mittels einer Fallanalyse (Häder, 

2019, S. 371ff.; Hering & Schmidt, 2014) eines Problembearbeitungsprozesses 

dargestellt. Diese Fallanalyse dient nicht nur zur Beantwortung der 

Forschungsfrage, sondern auch zur Präsentation eines vollständigen 

Bearbeitungsverlaufs. Im methodischen Teil (Kapitel 5.4.2) wurde die Kodierung 

bereits anhand von Beispielen erläutert, jedoch wird hier durch die Fallanalyse 

ein zusammenhängender Problembearbeitungsprozess gezeigt, der die 

Wissensnutzung in ihrer Gesamtheit veranschaulicht. Der detaillierte 

Problembearbeitungsprozess von Lea, Lisa, Sarah und Paula enthält viele Aspekte 

der Wissensnutzung und dient somit als umfassendes Beispiel. Damit fokussiert 

dieses Kapitel die folgende Forschungsfrage:  

 

(W2) Wie lässt sich die Wissensnutzung in Problembearbeitungsprozessen 

mithilfe der Wissensmatrix rekonstruieren? 

 

Im Folgenden wird der Problembearbeitungsprozess chronologisch dargestellt. 

Dabei werden sogenannte „Turns“ genutzt, die jeweils ein aktiviertes bzw. 

genutztes Wissenselement adressieren. Diese werden in der Reihenfolge, wie sie 

im Prozess aufgetreten sind, dargelegt. 

Während der Prozesse bezüglich der Aufgabe „Mittelwertsatz“ haben die 

Studierenden häufig die Sinusfunktion und die Exponentialfunktion genutzt. 

Daher wurde das Konzept Funktion um die beiden weiteren Konzepte 

Sinusfunktion und Exponentialfunktion ergänzt (siehe Tabelle 22). Anschließend 

erfolgt eine Darstellung des Nutzungsverlaufs in der Wissensmatrix.  

Problembearbeitungsprozess von Lea, Lisa, Paula und Sarah zur Aufgabe 

Mittelwertsatz 

Der Problembearbeitungsprozess von Lea, Lisa, Sarah und Paula zur Aufgabe 

„Mittelwertsatz“ besitzt eine durchschnittliche Länge (23:21 Minuten; Kapitel 6). 

Der Prozess wurde daher gewählt, weil in ihm viele verschiedene 

Wissenselemente aktiviert werden. Die Darstellung dieses Prozesses zeigt zum 

einen, wie die Wissensnutzung mit der Wissensmatrix rekonstruiert werden kann, 

und liefert zum anderen eine Ergänzung zur Kodierung, die bereits beispielhaft in 

Kapitel 5.4.2 aufgezeigt wurde. Die Lerngruppe verbringt im Prozess viel Zeit 

damit, sich mit den mathematischen Inhalten der Abschätzung und des Betrags zu 

beschäftigen. Sie gehen dabei häufig auf die Exponential- und Sinusfunktion ein. 

Zum Ende erreichen sie eine vollständig korrekte Lösung. 

 

Turn 1: Mittelwertsatz der Differentialrechnung – Implizite Nutzung 
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Die Aufgabenstellung verlangt, dass die Ungleichung mit dem Mittelwertsatz der 

Differentialrechnung bewiesen werden soll. Dies wird von der Lerngruppe zügig 

aufgegriffen, indem sie die Ungleichung umformen, um sie der Aussage aus dem 

Mittelwertsatz der Differentialrechnung anzupassen (Abbildung 32).  

 

 

Abbildung 32: Ausschnitt aus Paulas Mitschriften zur Aufgabe „Mittelwertsatz“ 

Turn 2: Betrag – Implizite Nutzung 

Während der Umformungen überlegen sie, welche Rolle die Betragsstriche 

spielen, da sie in der Ungleichung der Aufgabe vorkommen. Dabei werden 

verschiedene Aussagen zum Betrag getätigt. Zum einen wie damit umgegangen 

werden soll: „Macht es vielleicht Sinn, wenn wir die Betragsstriche wegmachen?“ 

(Lisa), „ich würde die Betragsstriche einfach stehen lassen“ (Sarah). Zum anderen 

wofür die Betragsstriche in der Aufgabe überhaupt da sind: „Wieso sind dann 

überhaupt die Betragsstriche?“ (Lea). Diese Überlegungen werden durch die 

Voraussetzung und Anmerkung47 in der Aufgabenstellung angeregt. 

Schlussendlich heißt es bezüglich der Betragsstriche: „Wir lassen die einfach“ 

(Sarah). 

 

Turn 3: Mittelwertsatz der Differentialrechnung – Implizite Nutzung 

„So, jetzt haben wir den Mittelwertsatz. Und wie müssen wir dann 

weitermachen?“ (Sarah). Lisa stößt daraufhin an, dass sie die Ableitung an der 

Stelle 𝑥0 betrachten müssen. Dafür definieren sie eine Funktion, um damit 

weiterarbeiten zu können. 

 

Turn 4: Mittelwertsatz der Differentialrechnung – Konventionelle Festlegung 

Während die Lerngruppe die Funktion definiert, wird die Frage gestellt, wie 

genau diese aufgeschrieben werden muss. In der Aussage aus dem Skript würde 

𝑥0 benutzt werden. Da sowohl 𝑥 und 𝑦 in der Aufgabenstellung bereits verwendet 

werden, entscheiden sie sich den Buchstaben 𝑎 zu nehmen (Abbildung 33). 

 
47 Voraussetzung: 0 ≤ 𝑦 ≤ 𝑥, Anmerkung: Die Ungleichung gilt sogar für beliebige 

nichtnegative 𝑥 und 𝑦.  
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Abbildung 33: Ausschnitt aus Lisas Mitschriften zur Aufgabe „Mittelwertsatz“ 

Turn 5: Kettenregel – Implizite Nutzung 

Nach dem Definieren der Funktion soll diese abgeleitet werden, um den 

Mittelwertsatz der Differentialrechnung anwenden zu können. Dabei wird die 

Kettenregel verwendet. Die Berechnung nimmt einige Zeit in Anspruch, da die 

Funktion von jeder Lernenden selbst abgeleitet wird. Dabei kommt es zu 

verschiedenen Zwischenfragen und Validierungen untereinander: „Weil innere 

Ableitung ist ja −𝑒−𝑥, oder nicht?“ (Paula).  

 

Turn 6: Stetigkeit einer Funktion – Implizite Nutzung 

Während die Lerngruppe die Ableitung bestimmt, fragt sich Lea, ob noch die 

Stetigkeit der Funktion geklärt werden muss. 

 

Turn 7: Differenzierbarkeit – Implizite Nutzung 

Nach kurzer Diskussion wirft Paula ebenfalls ein, ob man Gleiches auch mit 

Differenzierbarkeit machen müsse. 

 

Turn 8: Mittelwertsatz der Differentialrechnung – Bedeutung & Vernetzung 

Nach kurzer Zeit klären Sarah und Lea auf: „Aber das muss man mit dem 

Mittelwertsatz nicht schreiben …, weil es geht ja hier um den Mittelwertsatz der 

Differentialrechnung. Davon gehen wir schon aus. Passt schon.“ Sie gehen dabei 

nicht auf die Explizite Formulierung ein, sondern greifen auf ihre Vorstellung zum 

Mittelwertsatz der Differentialrechnung zurück. 

 

Turn 9: Kettenregel – Implizite Nutzung  

Nach dieser Diskussion konzentriert sich die Lerngruppe erneut auf das Ableiten 

mithilfe der Kettenregel. Schließlich gelangen sie zu der korrekten Ableitung der 

Funktion. 

 

Turn 10: Abschätzung – Implizite Nutzung sowie Exponential- und Sinusfunktion 

– Bedeutung & Vernetzung48 

 
48 Obwohl die Lerngruppe zuerst die Abschätzung erwähnt und im Anschluss über die 

Wertebereiche der speziellen Exponential- und Sinusfunktion gesprochen hat, wurde dies 

dennoch zum gleichen Turn kodiert. Dies liegt daran, dass die Überlegungen zu den 

speziellen Funktionen immer im Zusammenhang mit der Abschätzung durchgeführt worden 

sind. 
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Anschließend konzentriert sich die Lerngruppe auf die Abschätzung, die ≤ 1 sein 

soll. Um eine sinnvolle Abschätzung zu finden, überlegen sie sich, welche Werte 

sowohl die Exponential- als auch Sinusfunktion annehmen können. 𝑠𝑖𝑛 sei 

beschränkt und 𝑒 würde niemals negativ werden, was sie durch eine Zeichnung 

untermalen. Zusätzlich lassen sie sich auf dem Tablet 𝑒−𝑥 zeichnen. Zuletzt lassen 

sie sich ebenfalls die Ableitungsfunktion 𝑒−𝑥 ⋅ 𝑠𝑖𝑛(𝑒−𝑥) auf dem Tablet anzeigen 

und erkennen, dass diese immer Werte unter 1 annimmt. „Aber wie können wir 

das beweisen?“ (Paula). 

 

Turn 11: Betrag – Implizite Nutzung sowie Exponential- und Sinusfunktion – 

Bedeutung & Vernetzung  

Während die Lerngruppe geeignete Umformungen für die Abschätzung sucht 

(Abbildung 34), wird überlegt, inwiefern die Betragsstriche dabei helfen können. 

Sie überlegen, wie sich die Betragsstriche auf ihre Umformungen auswirken 

würde. Dabei entsteht bezüglich der Sinusfunktion Verwirrung, da diese auch 

negative Werte annehmen kann. Dies stellt für die Lerngruppe zunächst eine 

Hürde dar, mit der sie nicht weiterarbeiten können: „Weiß halt nicht, wie man mit 

dem 𝑠𝑖𝑛 umgeht“ (Lisa). 

 

 

Abbildung 34: Ausschnitt aus Leas Mitschriften zur Aufgabe „Mittelwertsatz“ 

Turn 12: Sinusfunktion – Bedeutung & Vernetzung 

Um die Verwirrung aufzulösen, wird über den Wertebereich der Sinusfunktion 

diskutiert. Darüber hinaus visualisieren sie sich 𝑠𝑖𝑛 (
1

𝑥
), da diese Funktion der 

eigenen ähnelt. Dies stellen sie anschließend auch mittels der Visualisierung fest. 

Dennoch erzielt die Lerngruppe mit dieser Information keinen weiteren 

Fortschritt in ihrer Lösung. 

 

Turn 13: Mittelwertsatz der Differentialrechnung – Konkretisierung & 

Abgrenzung 



S e i t e  | 212 

 

Da sie zu dem Zeitpunkt nicht wissen, wie sie weiter verfahren sollen, schlägt Lea 

vor, in den Mitschriften des Tutoriums nachzuschauen. Dabei stellen sie einen 

Vergleich zwischen den beiden verschiedenen Aufgaben an. 

 

Turn 14: Abschätzung – Implizite Nutzung sowie Exponential- und Sinusfunktion 

– Bedeutung & Vernetzung 

Die Lerngruppe diskutiert im Zusammenhang der Abschätzung erneut über den 

Wertebereich der Sinusfunktion. Dabei gelingt der Lerngruppe der Durchbruch. 

 
Lea: „Wir fragen uns nur, warum es nicht unter Null geht?“  
Lisa: „Aber ist das nicht egal?“  

… 

Paula: „Aber wir müssen einfach nur beweisen, dass das Maxima Eins gilt.“ 
... 

Sarah: „Ja, weil das wird nie größer als Eins [zeigt auf 𝑠𝑖𝑛(𝑒−𝑎)] und das hier wird nie größer als 

Eins [zeigt auf 𝑒−𝑎
]. Dann wird das insgesamt nie größer als Eins.“  

 

Paula fasst mit ihrer Aussage die Kenntnisse der Lerngruppe zusammen. 

 

 

Abbildung 35: Ausschnitt aus Sarahs Mitschriften zur Aufgabe „Mittelwertsatz“ 

Turn 15: Betrag – Implizite Nutzung 

Beim Aufschreiben der Erkenntnisse (Abbildung 35) wird erneut über die Rolle 

der Betragsstriche diskutiert. Die Lerngruppe ist sich nicht sicher, ob man die 

Betragsstriche einfach um die Funktion bzw. die einzelnen Produkte der 

Funktionen setzen darf. Es wird außerdem hinterfragt, ob das Setzen der 

Betragsstriche überhaupt einen Unterschied für die Ungleichung bedeuten würde. 

Sie versuchen zusätzlich, den Sinn der Betragsstriche in einen Zusammenhang 

mit der Anmerkung zu bringen. Letztendlich einigen sie sich darauf, dass die 

Betragsstriche um die Funktion geschrieben werden kann, dies aber keinen 

großen Unterschied bewirken würde. 

 

Turn 16: Exponential- und Sinusfunktion – Bedeutung & Vernetzung 

Zum Ende des Prozesses wird erneut auf die Skizzen Rückbezug genommen. Dort 

wird nochmal der Graph der Funktion 𝑒−𝑥 ⋅ 𝑠𝑖𝑛(𝑒−𝑥) angeschaut und die eigene 

Bearbeitung validiert. Damit endet der Prozess. 
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Die vorhergegangenen Ausführungen zeigen eine ausführliche Beschreibung der 

genutzten bzw. aktivierten Wissenselemente während des 

Problembearbeitungsverlaufs von Lea, Lisa, Sarah und Paula zur Aufgabe 

„Mittelwertsatz“. Um den Prozess kompakter darlegen zu können, wird eine 

andere Darstellungsform benötigt. Dafür wird erneut die Wissensmatrix 

verwendet (Tabelle 22). 

Die Zahlen in der Wissensmatrix markieren die Turns der genutzten bzw. 

aktivierten Wissenselemente. Z. B. wurde in dem Prozess der Zusammenhang 

Mittelwertsatz der Differentialrechnung als erstes (Turn 1) und die Konzepte 

Exponential- und Sinusfunktion als letztes (Turn 16) aktiviert bzw. genutzt. 

 
 Mathematischer Inhalt IN EF K&A B&V KF 

K
o

n
z
e
p

tu
el

le
s 

W
is

se
n

 

Konzept: Stetigkeit einer 

Funktion 

6     

Konzept: Differenzierbarkeit 7     

Konzept: Funktion      

Konzept: Exponentialfunktion    10, 11, 

14, 16 

 

Konzept: Sinusfunktion    10, 11, 

12, 14, 

16 

 

Konzept: Abschätzung 10, 14     

Konzept: Betrag 2, 11, 

15 

    

Zusammenhang: Mittelwertsatz 

der Differentialrechnung 

1, 3  13 8 4 

P
W

 Verfahren: Kettenregel 5, 9     

Tabelle 22: Wissensnutzung bzw. -aktivierung von Lea, Lisa, Sarah und Paula zur Aufgabe 

„Mittelwertsatz“ (PW = Prozedurales Wissen; EF = Explizite Formulierung; K&A 

= Konkretisierung & Abgrenzung; B&V = Bedeutung & Vernetzung; KF = 

Konventionelle Festlegungen) 
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6.2.3 Überblick über die Wissensnutzung 

Die vorhergegangenen Ausführungen zeigen eine ausführliche Beschreibung des 

Problembearbeitungsprozesses von Lea, Lisa, Sarah und Paula zur Aufgabe 

„Mittelwertsatz“. Da der Fokus dieser Arbeit weniger darauf liegt, alle 

analysierten Prozesse deskriptiv in gleicher Detailtiefe darzustellen, sondern 

vielmehr darin besteht, verschiedene Prozesse miteinander zu vergleichen, 

ermöglicht ein Abstraktionsschritt, die Gesamtheit aller Fälle (parallel) zu 

betrachten. Um einen ersten Einblick in die Wissensnutzung bzw. -aktivierung in 

dieser Arbeit zu gewinnen, wird eine Darstellung mit Häufigkeiten gewählt. Diese 

erste Überblicksdarstellung ist allerdings komprimiert, da nur auf die 

Wissensarten (konzeptuell und prozedural) und Wissensfacetten (Implizite 

Nutzung, Explizite Formulierung, Konkretisierung & Abgrenzung, Bedeutung & 

Vernetzung, Konventionelle Festlegung) eingegangen wird. Anschließend wird 

ebenfalls ein Überblick über die Wissensnutzung der jeweiligen Aufgaben 

gegeben. Die folgenden Ausführungen adressieren demnach die Forschungsfrage:  

 

(W3) Welche Wissenselemente werden von den Studierenden häufig genutzt? 

 

 
Wissensart Anzahl   

Konzeptuelles 

Wissen 

93   

Prozedurales 

Wissen 

84   

Wissensfacette  Davon 

konzeptuell 

Davon 

prozedural 

Implizite  

Nutzung 

63 21 42 

Explizite 

Formulierung 

18 13 5 

Konkretisierung 

&Abgrenzung 

52 23 29 

Bedeutung & 

Vernetzung 

30 29 1 

Konventionelle 

Festlegungen 

14 7 7 

Tabelle 23: Häufigkeiten der Nutzung bezüglich Wissensarten bzw. Wissensfacetten von allen 

Problembearbeitungsprozessen 

Tabelle 23 zeigt die Häufigkeiten zum einen bezüglich der Wissensarten und zum 

anderen bezüglich der Wissensfacetten über alle Problembearbeitungsprozesse. 

Für die Wissensfacetten wird zusätzlich die Wissensart in Betracht gezogen. Auf 



S e i t e  | 215 

 

den ersten Blick zeigt sich, dass prozedurales (84-mal) und konzeptuelles (93-

mal) Wissen nahezu gleich oft aktiviert bzw. genutzt worden sind. Hinsichtlich 

der Wissensfacetten zeigt sich eine unterschiedliche Verteilung. Am häufigsten 

treten Implizite Nutzung (63-mal) als auch Konkretisierung & Abgrenzung (52-

mal) auf. Am wenigsten wird auf Konventionelle Festlegungen (14-mal) 

eingegangen. Dazwischen liegen Bedeutung & Vernetzung (30-mal) sowie 

Explizite Formulierung (18-mal). 

Bei genauerer Betrachtung der Facetten zeigt sich, dass einige eher im 

prozeduralen bzw. konzeptuellen Wissen angesteuert werden. Am deutlichsten ist 

dies bei Bedeutung & Vernetzung zu erkennen. Fast ausschließlich geschieht das 

nur im konzeptuellen Wissen (29-mal). Die Begründung bzw. die Vorstellung 

eines Verfahrens wird nur 1-mal genutzt bzw. aktiviert. Eine mögliche Erklärung 

liegt dabei in der Auslegung der Wissensmatrix. Eine Vorstellung bzw. 

Begründung über das Verfahren Differenzierbarkeit prüfen wird z. B. über alle 

Wissensfacetten des Konzepts Differenzierbarkeit möglich gemacht. Prediger et 

al. (2011) sehen dieses Wissenselement auch als Verknüpfung zu konzeptuellen 

Gehalten49. Aus diesem Grund kann dies auch einen Einfluss auf die Kodierung 

haben. 

Weiterhin weist die Facette Explizite Formulierung eine stärkere Tendenz zum 

konzeptuellen (13-mal) als zum prozeduralen (5-mal) Wissen auf. Dies könnte 

auf der einen Seite darauf hindeuten, dass die ausformulierten Definitionen bzw. 

Sätze eine wichtigere Rolle in den Problembearbeitungsprozessen einnehmen als 

die Anleitung eines Verfahrens. Auf der anderen Seite könnte es bedeuten, dass 

Studierende die Anleitung der notwendigen Verfahren bereits internalisiert50 

haben und vielmehr die formalen Definitionen bzw. Sätze aktivieren bzw. in 

Erinnerung rufen müssen.  

Zwei Facetten werden dagegen eher im prozeduralen Wissen angesteuert. 

Darunter zeigt sich bezüglich Konkretisierung & Abgrenzung, dass primär 

(Gegen-)Beispiele von Verfahren (29-mal) als von Konzepten bzw. 

Zusammenhängen (23-mal) genutzt werden. Die hohe Anzahl bezüglich des 

prozeduralen Wissens ist nicht verwunderlich, da die Aufgabe aus dem Tutorium 

bereits ein Beispiel für einen ähnlichen Aufgabentyp liefert. Das Zurückgreifen 

auf einen ähnlichen Aufgabentyp zeigt somit ein Beispiel für die Anwendung 

eines Verfahrens auf kann daher darüber hinaus eine sinnvolle Strategie sein 

(Pólya, 1949, S.60). Allerdings werden (Gegen-)Beispiele von Konzepten und 

Zusammenhängen ebenfalls genutzt, um sich diese verständlicher zu machen und 

die Anwendung vorzubereiten. 

 
49 Es kann auch diskutiert werden, dass dadurch jedem Verfahren zusätzlich eine eigene Zeile 

im konzeptuellen Wissen in der Wissensmatrix zugeordnet werden sollte. 

50 Falls Studierende ein Verfahren bereits internalisiert haben, kann dies in dieser Arbeit nicht 

festgestellt werden. 
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Die Facette Implizite Nutzung tendiert etwas deutlicher zum prozeduralen Wissen 

(42-mal). Da in den Prozessen bestimmte Verfahren angewendet werden müssen, 

ist das häufige Zurückgreifen keine Überraschung. Allerdings zeigt sich auch für 

das konzeptuelle Wissen (21-mal), dass Konzepte und Zusammenhänge 

systematisch in Verbindung mit dem Anwendungskontext gesetzt werden. 

Insgesamt überrascht es nicht, dass die Implizite Nutzung am häufigsten 

angesteuert wird, da die Studierenden in einem Kontext sind, bei dem sie aktiv 

mathematischen Wissen in einer Aufgabe anwenden müssen. 

Letztlich ist die Aufteilung bezüglich der Facette Konventionelle Festlegungen 

ausgeglichen. Sie wurde sowohl im konzeptuellem als auch prozeduralem Wissen 

jeweils 7-mal angesteuert. 

Tabelle 23 zeigt einen Überblick über alle Aufgaben und integriert dabei ebenfalls 

die Lerngruppen. Da die Aufgaben unterschiedliche mathematische Inhalte 

verlangen sowie unterschiedliche mathematische Inhalte von den Studierenden 

genutzt werden, wird im Folgenden jeweils eine Häufigkeitstabelle pro Aufgabe 

gewählt. In dieser Darstellung wird der spezielle mathematische Inhalt 

hinzugefügt. Außerdem wird die Wissensart mit der Wissensfacette gekreuzt, 

wodurch die Häufigkeit eines Wissenselements gezählt wird. Dabei werden die 

einzelnen Wissenselemente mit der Anzahl der Nutzung bzw. Aktivierung 

versehen, sowie aus den resultierenden Zahlen eine Heat-Map erstellt. In der 

Heat-Map sind die Problembearbeitungsprozesse der verschiedenen Lerngruppen 

zu einer Aufgabe zusammengefasst. 
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 Mathematischer Inhalt IN EF K&A B&V KF 

K
o

n
z
e
p

tu
el

le
s 

W
is

se
n

 Konzept: Differenzierbarkeit 

3 6 3 1 4 

Konzept: Funktionen 

0 0 0 3 0 

Konzept: Abschnittsweise 

definierte Funktion 2 0 0 0 0 

Sonstige Konzepte und 

Zusammenhänge51 1 0 0 1 0 

P
ro

z
e
d

u
ra

le
s 

W
is

se
n

 Verfahren: Differenzierbarkeit 

prüfen 11 0 9 1 4 

Verfahren: Grenzwert von 

Funktionen berechnen 6 1 2 0 0 

Verfahren: Sandwich-Kriterium 

0 0 0 0 0 

Sonstige Verfahren 

1 1 4 0 0 

Tabelle 24: Heat-Map zur Aufgabe „Differenzierbarkeit prüfen“ (EF = Explizite Formulierung; K&A 
= Konkretisierung & Abgrenzung; B&V = Bedeutung & Vernetzung; KF = 

Konventionelle Festlegungen) 

In den fünf Problembearbeitungsprozessen zu der Aufgabe „Differenzierbarkeit 

prüfen“ (Tabelle 24) wird insgesamt 64-mal (24-mal konzeptuell, 40-mal 

prozedural) ein spezifisches Wissenselement genutzt bzw. aktiviert. Dabei fällt 

auf, dass Differenzierbarkeit als Konzept, aber auch als Verfahren am häufigsten 

angesteuert wird. Es spiegelt sich in jedem Prozess wider, dass Studierende 

sowohl auf das konzeptuelle als auch das prozedurale Wissen bezüglich der 

Differenzierbarkeit zurückgreifen. Das prozedurale Wissen wird allerdings 

häufiger beansprucht. Besonders stechen dabei die Facetten Implizite Nutzung 

sowie Konkretisierung & Abgrenzung heraus, die häufig in einem Wechselspiel 

zueinander genutzt bzw. aktiviert werden. Es fällt ebenso auf, dass kaum Wissen 

zu den beiden Konzepten bezüglich Funktionen von den Studierenden 

angesprochen wird. Darüber hinaus findet das Sandwich-Kriterium bei der 

Bestimmung des Grenzwerts in keinem der Lösungsversuche Anwendung. 

 

 
51 Sonstige Konzepte und Zusammenhänge (sowie Verfahren weiter unten in der Tabelle) sind 

alle Konzepte bzw. Zusammenhänge, die Studierende angewendet haben, allerdings nicht 

notwendig für die Aufgabe waren. Für die Einfachheit der Darstellung werden diese in 

Tabelle 24 zusammengefasst. In den Lösungsversuchen werden bei dieser Aufgabe das 

Verfahren Stetigkeit prüfen (Alex und Thomas), die Produktregel (Nick), die Kettenregel 

und das Konzept Polarkoordinaten (beide Lukas) genutzt. 
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 Mathematischer Inhalt IN EF K&A B&V KF 

K
o

n
z
e
p

tu
el

le
s 

W
is

se
n

 

Konzept: Stetigkeit einer 

Funktion 1 0 0 0 0 

Konzept: Differenzierbarkeit 

1 0 0 0 0 

Konzept: Funktion 

0 0 0 1 0 

Konzept: Exponentialfunktion 

0 0 2 6 0 

Konzept: Sinusfunktion 

0 0 2 6 0 

Konzept: Abschätzung 

4 0 0 1 0 

Konzept: Betrag 

4 0 0 0 0 

Zusammenhang: Mittelwertsatz 

der Differentialrechnung 5 6 5 6 3 

P
W

 

Verfahren: Kettenregel 

3 0 0 0 0 

Sonstige Verfahren52 

1 0 1 0 0 

Tabelle 25: Heat-Map zur Aufgabe „Mittelwertsatz“ (PW = Prozedurales Wissen; EF = Explizite 

Formulierung; K&A = Konkretisierung & Abgrenzung; B&V = Bedeutung & 

Vernetzung; KF = Konventionelle Festlegungen) 

In den vier Problembearbeitungsprozessen zu der Aufgabe „Mittelwertsatz“ 

(Tabelle 25) wird insgesamt 58-mal (53-mal konzeptuell, 5-mal prozedural) ein 

spezifisches Wissenselement genutzt bzw. aktiviert. Dabei fällt auf, dass dies fast 

ausschließlich konzeptuelles Wissen der Fall ist. Es muss allerdings bedacht 

werden, dass eine Vielzahl verschiedener mathematische Inhalte des 

konzeptuellen Wissens und nur ein Verfahren bezüglich des prozeduralen Wissens 

für die Lösung der Aufgabe benötigt werden. Der Mittelwertsatz der 

Differentialrechnung wird am häufigsten herangezogen, wobei alle seine Facetten 

berücksichtigt werden. Bezüglich der Konzepte werden Betrag, Abschätzung und 

die Exponential- als auch Sinusfunktion häufig verwendet, dabei oftmals im 

direkten Zusammenhang oder im Wechselspiel. Die Konzepte Stetigkeit und 

Differenzierbarkeit werden nur in einem Prozess aktiviert bzw. genutzt. In Bezug 

 
52 In den Lösungsversuchen werden bei dieser Aufgabe das Verfahren Vollständige Induktion 

(David) und Produktregel (Nick) genutzt. 
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auf das prozedurale Wissen wird lediglich die Kettenregel53 hinsichtlich der 

Facette Implizite Nutzung aktiviert. 

 
 Mathematischer Inhalt IN EF K&A B&V KF 

K
o

n
z
e
p

tu
el

le
s 

W
is

se
n

 Konzept: Funktion 0 0 0 0 0 

Konzept: Exponentialfunktion 0 1 7 1 0 

Konzept: Logarithmusfunktion 0 0 4 3 0 

P
ro

z
e
d

u
ra

le
s 

W
is

se
n

 Verfahren: Regel von 

L´Hospital 4 0 5 0 0 

Verfahren: Grenzwert von 

Funktionen berechnen 9 2 7 0 3 

Verfahren: Kettenregel 3 1 1 0 0 

Verfahren: Potenzregel 4 0 0 0 0 

Tabelle 26: Heat-Map zur Aufgabe „L´Hospital“ (EF = Explizite Formulierung; K&A = 

Konkretisierung & Abgrenzung; B&V = Bedeutung & Vernetzung; KF = 

Konventionelle Festlegungen) 

In den vier Problembearbeitungsprozessen für die Aufgabe „L´Hospital“ (Tabelle 

26) wird insgesamt 55-mal (16-mal konzeptuell, 39-mal prozedural) ein 

spezifisches Wissenselement genutzt bzw. aktiviert. Dabei fällt auf, dass für die 

Aufgabe sowohl auf konzeptuelles als auch prozedurales Wissen zurückgegriffen 

wird. Das prozedurale Wissen überwiegt dabei, wobei das Verfahren der 

Grenzwertbestimmung am häufigsten aktiviert bzw. genutzt wurde. Insgesamt 

sticht die Implizite Nutzung besonders im prozeduralen Wissen hervor. Das 

konzeptuelle Wissen wird bezüglich der Exponential- und Logarithmusfunktion 

verwendet. Dabei zeigt sich, dass vor allem die Facetten Konkretisierung & 

Abgrenzung häufig angesteuert wird. Betrachtet man die gesamte Aufgabe, 

scheinen vor allem Implizite Nutzung sowie Konkretisierung & Abgrenzung im 

Vordergrund zu stehen.  

Die Darstellung der Häufigkeiten bietet eine gute Möglichkeit, einen Überblick 

hinsichtlich der Wissensnutzung von Studierenden während der 

Problembearbeitungsprozesse zu erhalten. Allerdings geht damit ein Verlust an 

 
53 Bezüglich des prozeduralen Wissens nutzt David in seinem Problembearbeitungsprozess die 

vollständige Induktion und Nick die Produktregel. Diese werden in dieser 

Überblicksdarstellung unter Sonstige Verfahren zusammengefasst. 
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Detailinformationen einher. Einige Merkmale können nur bei Betrachtung 

einzelner Prozesse herausgearbeitet werden. Aus diesem Grund werden sich die 

weiteren Ausführungen detaillierter mit der Wissensnutzung einzelner Prozesse 

widmen. 

6.2.4 Wissensfokus der Problembearbeitungsprozesse 

Als nächstes wird der Blick auf den Fokus der einzelnen Prozesse gerichtet. Dabei 

wird untersucht, welche Wissensarten und Wissensfacetten die Studierenden in 

ihren Prozessen besonders häufig ansteuern. Die folgenden Ausführungen 

adressieren demnach die Forschungsfrage: 

 

(W4) Auf welche Wissenselemente setzen Studierende einen Fokus während der 

Prozesse? 

 

 

Lerngruppe Aufgabe Wissensart Wissensfacetten 

Alex und 

Thomas 

Differenzierbarkeit prüfen Prozedural IN, K&A 

Mittelwertsatz Konzeptuell IN, B&V 

L´Hospital Prozedural IN, K&A 

Lea, Lisa, 

Sarah und 

Paula  

Differenzierbarkeit prüfen Prozedural IN, K&A 

Mittelwertsatz Konzeptuell IN, B&V 

L´Hospital Prozedural IN, K&A 

 

David 

Differenzierbarkeit prüfen Konzeptuell K&A, EF, IN 

Mittelwertsatz Konzeptuell EF, K&A, B&V 

L´Hospital Prozedural K&A, IN 

 

Nick 

Differenzierbarkeit prüfen Prozedural IN 

Mittelwertsatz Konzeptuell K&A, EF, B&V 

L´Hospital Prozedural IN, K&A 

Lukas Differenzierbarkeit prüfen Prozedural IN, K&A 

Tabelle 27: Wissensfokus der einzelnen Problembearbeitungsprozesse 

Tabelle 27 stellt den Fokus des genutzten bzw. aktivierten Wissens der einzelnen 

Prozesse dar. Ein Prozess hat den Fokus prozedural, wenn mehr Wissenselemente 

bezüglich des prozeduralen Wissens genutzt bzw. aktiviert werden (oder 

umgekehrt für konzeptuelles Wissen). Hinsichtlich der Wissensfacetten ist der 

Fokus auf die zwei am häufigsten angesteuerten Wissenselemente gerichtet. Die 

erstgenannte Wissensfacette wird am häufigsten und die zweitgenannte 

Wissensfacette am zweithäufigsten angesteuert. Einige Prozesse haben mehr als 

zwei Wissensfacetten als Fokus. Dies liegt daran, dass zwei Facetten gleich häufig 

angesteuert werden. Im Prozess von Nick zur Aufgabe „Differenzierbarkeit 
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prüfen“ konzentriert sich Nick hauptsächlich auf die Implizite Nutzung, während 

drei weitere Facetten mit gleicher Häufigkeit als zweithäufigste angesteuert 

werden. Da diese Facetten allerdings nur jeweils 1-mal genutzt werden, kann in 

diesem Prozess wenig mit einem echten Fokus argumentiert werden. Daher ist für 

diesen Prozess lediglich die Implizite Nutzung als Fokus festgelegt worden.  

Prozess mit prozeduralem Fokus  

Es ist auffällig, dass die prozeduralen Problembearbeitungsprozesse bezüglich 

der Wissensfacetten fast alle einen gleichen Fokus setzen. Prozedurale Prozesse 

befinden sich vor allem im Bereich der Impliziten Nutzung sowie Konkretisierung 

& Abgrenzung. Als Beispiel wird auf die relevanten Stellen des Prozesses von 

Alex und Thomas zur Aufgabe „L´Hospital“ eingegangen (Tabelle 28). 

 
 Mathematischer 

Inhalt IN EF K&A B&V KF 
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Konzept: Funktion 0 0 0 0 0 

Konzept: 

Exponentialfunktion 0 0 1 0 0 

Konzept: 

Logarithmusfunktion 0 0 0 1 0 
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 Verfahren: Regel von 

L´Hospital 1 0 1 0 0 

Verfahren: Grenzwert 

von Fkt. berechnen 2 0 1 0 0 

Verfahren:  

Kettenregel 1 0 1 0 0 

Verfahren: 

Potenzregel 1 0 0 0 0 

Tabelle 28: Prozess mit prozeduralem Fokus von Alex und Thomas (EF = Explizite Formulierung; 

K&A = Konkretisierung & Abgrenzung; B&V = Bedeutung & Vernetzung; KF = 

Konventionelle Festlegungen) 

In dem Prozess von Alex und Thomas zeigt sich, dass fast ausschließlich Implizite 

Nutzung sowie Konkretisierung & Abgrenzung genutzt bzw. aktiviert wurde. 

Lediglich 1-mal haben sie auf die Facette Bedeutung & Vernetzung 

zurückgegriffen, da sie sich zum Ende des Prozesses den Graphen der natürlichen 

Logarithmusfunktion visualisiert haben. Der Prozess von Alex und Thomas 

beschreibt bezüglich des Fokus ein nahezu perfektes Beispiel für die 

Verallgemeinerung eines prozeduralen Prozesses.  

In dem restlichen Prozess haben sie sich entweder Beispiele von Verfahren 

angeschaut (Regel von L´Hospital und Kettenregel), sich ein Beispiel selbst 
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erstellt (Grenzwert berechnen), sowie diese Verfahren ebenfalls angewendet 

(zuzüglich der Potenzregel). Das Beispiel zur Kettenregel wurde speziell 

bezüglich der Exponentialfunktion ausgewählt, wodurch ebenfalls die 

Konkretisierung & Abgrenzung im konzeptuellen Wissen angesteuert wurde. 

Prozess mit konzeptuellem Fokus 

Für die konzeptuellen Prozesse können zwei verschiedene Fokusse identifiziert 

werden. Die erste Art von konzeptuellen Prozessen befindet sich vor allem in der 

Impliziten Nutzung sowie Bedeutung & Vernetzung. Als Beispiel wird der Prozess 

von Lea, Lisa, Sarah und Paula zur Aufgabe „Mittelwertsatz“ herangezogen 

(Tabelle 29). 

 
 

Mathematischer Inhalt IN EF K&A B&V KF 
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Konzept: Stetigkeit einer Funktion 1 0 0 0 0 

Konzept: Differenzierbarkeit 1 0 0 0 0 

Konzept: Funktion 0 0 0 0 0 

Konzept: Exponentialfunktion 0 0 0 4 0 

Konzept: Sinusfunktion 0 0 0 5 0 

Konzept: Abschätzung 2 0 0 0 0 

Konzept: Betrag 3 0 0 0 0 

Zusammenhang: MWS 2 0 1 1 1 

P
W

 

Verfahren: Kettenregel 2  0 0   0 0 

Tabelle 29: Prozess mit konzeptuellem Fokus von Lea, Lisa, Sarah und Paula (PW = Prozedurales 

Wissen; EF = Explizite Formulierung; K&A = Konkretisierung & Abgrenzung; 

B&V = Bedeutung & Vernetzung; KF = Konventionelle Festlegungen) 

Lea, Lisa, Sarah und Paula nutzen bzw. aktivieren in ihrem Prozess fast 

ausschließlich die Wissensfacetten Implizite Nutzung und Bedeutung & 

Vernetzung. Lediglich bezüglich des Mittelwertsatzes der Differentialrechnung 

werden die beiden Facetten Konkretisierung & Abgrenzung und Konventionelle 
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Festlegung genutzt54. Dabei wurde zum einen auf die Aufgabe des Tutoriums 

zurückgegriffen und zum anderen über die Rolle von 𝑥0 in der Gleichung des 

Mittelwertsatzes diskutiert. 

In dem restlichen Prozess diskutiert die Lerngruppe über den Anwendungskontext 

(Stetigkeit und Differenzierbarkeit, Mittelwertsatz der Differentialrechnung) und 

wendet Konzepte (Abschätzung, Betrag) sowie Verfahren an (Kettenregel). 

Hinsichtlich der Bedeutung & Vernetzung beschäftigt sich die Lerngruppe vor 

allem mit der Exponential- als auch Sinusfunktion. Dabei werden die Graphen 

verschiedener Exponential- und Sinusfunktionen visualisiert sowie über die 

verschiedene Wertebereiche dieser diskutiert. Motiviert wird dies an einigen 

Stellen auch im Zusammenhang mit der Abschätzung (Was hat das einen Einfluss 

auf die Abschätzung?) und dem Betrag (Was verändert sich für diese Funktionen, 

wenn wir einen Betrag drum setzen?). 

Die zweite Art von konzeptuellen Prozessen befindet sich vor allem in der 

Konkretisierung & Abgrenzung sowie Expliziten Formulierung. Als Beispiel wird 

der Prozess von David zur Aufgabe „Differenzierbarkeit prüfen“ herangezogen 

(Tabelle 30). 

 
 

Mathematischer Inhalt IN EF K&A B&V KF 
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Konzept: Differenzierbarkeit 0 4 3 1 3 

Konzept: Funktion 0 0 0 1 0 

Konzept: Abschnittsweise 

definierte Funktion 1 0  0 0 
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Verfahren: Differenzierbarkeit 

prüfen 2 0 1 0 0 

Verfahren: Grenzwert von 

Funktionen berechnen 1 0 2 0 0 

Verfahren: Sandwich-Kriterium  0  0  0  0 0 

Tabelle 30: Prozess mit konzeptuellem Fokus von David (EF = Explizite Formulierung; K&A = 

Konkretisierung & Abgrenzung; B&V = Bedeutung & Vernetzung; KF = 

Konventionelle Festlegungen) 

 
54 Es mag leicht verwunderlich sein, dass die Facette Explizite Formulierung in dem Prozess 

nicht aktiviert bzw. genutzt wird. Dies liegt allerdings daran, dass sie lediglich mit dem 

mathematischen Ausdruck 𝑓′(𝑥0) =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
 gearbeitet haben und sich nie explizit auf den 

Satz bezogen haben. Woher sie diesen Ausdruck entnommen haben, ist mittels 

Videomaterial und Transkript unklar geblieben. Eine Vermutung ist: Aus den Unterlagen 

des Tutoriums. 
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David nutzt bzw. aktiviert in seinem Prozess alle Wissensfacetten. Am häufigsten 

befindet er sich in der Konkretisierung & Abgrenzung, anschließend die Explizite 

Formulierung sowie die Implizite Nutzung. Hinsichtlich des konzeptuellen 

Wissens sticht die Explizite Formulierung für die Differenzierbarkeit besonders 

hervor. 4-mal bezieht sich David in seinem Prozess auf die ausformulierte 

Definition und anschließend auf spezielle Schreibweisen (Konventionelle 

Festlegung). Darüber hinaus versucht er mittels Beispiele (Konkretisierung & 

Abgrenzung) dem Begriff näher zu kommen. Bezüglich des prozeduralen Wissens 

kommt noch der weitere Fokus der Impliziten Nutzung hinzu, welcher durch die 

Anwendung der verschiedenen Verfahren entsteht. Außerdem greift er auf 

Beispiele von Verfahren zurück (Konkretisierung & Abgrenzung). 

Zusammenfassung und Fazit zu Problembearbeitungsprozessen mit Wissensfokus 

Bezüglich des Fokus lassen sich demnach drei verschiedene Arten identifizieren. 

Der prozedurale Prozess befindet sich vor allem in der Impliziten Nutzung und 

Konkretisierung & Abgrenzung. Dieser Fokus scheint für prozedurale Prozesse 

wenig verwunderlich zu sein. Es geht bei den Aufgaben darum, Verfahren 

anzuwenden (Implizite Nutzung). Darüber hinaus können Beispiele 

(Konkretisierung & Abgrenzung) dabei helfen, das Vorgehen zu erschließen. 

Besonders die vorherige Aufgabe aus dem Tutorium bietet eine gute Vorlage. 

Unabhängig davon greifen Studierende auch auf Beispiele zurück, wenn das 

Tutorium keine ähnliche Aufgabe liefert. Eine oft genutzte Ressource für das 

Suchen von Beispielen ist z. B. das Internet (Kempen & Liebendörfer, 2021; 

Kolbe & Wessel, 2022). Prozedurale Prozesse kommen dabei wenig mit 

Expliziten Formulierungen aus. Diese werden allerdings teilweise implizit in den 

Beispielen mitgeliefert, weshalb bspw. auf die Anleitung des Verfahrens nicht 

explizit zurückgegriffen wird. Außerdem wird wenig Bedeutung & Vernetzung 

angesteuert. Dies kann daran liegen, dass Verfahren ohne eine 

Bedeutungsbezogenheit auskommen (Hiebert & Lefevre, 1986, S. 8). 

Ingenieur:innen sind möglicherweise nicht daran interessiert, warum ein 

Verfahren funktioniert, sondern wie es funktioniert. Dies kann allerdings nicht 

aus den vorliegenden Ergebnissen geschlussfolgert werden. 

Für den konzeptuellen Prozess gibt es zwei Unterarten. Zum einen mit dem Fokus 

auf Implizite Nutzung und Bedeutung & Vernetzung und zum anderen mit dem 

Fokus auf Konkretisierung & Abgrenzung und Explizite Formulierung. Obwohl 

die beiden Fokusse unterschiedlich sind, haben die konzeptuellen Prozesse 

dennoch die Gemeinsamkeit, dass die Bedeutung der relevanten Konzepte und 

Zusammenhänge hinsichtlich der Aufgabe noch nicht verstanden wurden. Der 

Unterschied im Umgang wird in Bezug auf die Wissensfacetten deutlich. In der 

ersten Unterart zeigt sich dies durch die Implizite Nutzung der Konzepte und 

Zusammenhänge. Dabei wird versucht diese mit weiteren Konzepten mittels der 

Facette Bedeutung & Vernetzung zu verbinden. Dieses Vernetzen von 
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Wissenselementen spiegelt den Anspruch konzeptuellen Wissens wider (Hiebert 

& Lefevre, 1986, S. 3f.). Die weiteren Wissensfacetten werden in der ersten 

Unterart kaum genutzt bzw. aktiviert. In der zweiten Unterart zeigt sich dies durch 

das häufige Bezugnehmen auf die Explizite Formulierung (vor allem für den 

Zusammenhang Mittelwertsatz). Darüber hinaus wird zusätzlich versucht, in 

irgendeiner Form Beispiele (Konkretisierung & Abgrenzung) zu finden, die 

weiterhelfen können. Die Facetten werden von den Studierenden nicht 

verknüpfend betrachtet, wodurch ebenfalls keine Verbindungen zwischen 

Wissensfacetten explizit werden. In der zweiten Unterart von konzeptuellen 

Prozessen liegt der Fokus zwar auf der Expliziten Formulierung und 

Konkretisierung & Abgrenzung, allerdings werden auch weitere Wissensfacetten 

genutzt. Dies ist ein Unterschied zu den anderen Arten, in denen fast 

ausschließlich Wissen aus dem spezifischen Fokus genutzt bzw. aktiviert wird. 

Erath (2017, S. 209f.) hat in ihrer Dissertation Unterrichtsbeiträge von 

Schüler:innen einer kognitiven Qualität zugeordnet. Dabei hat sie den 

Wissenselementen einer gewissen kognitiven Qualität in Form von anspruchsvoll 

oder weniger anspruchsvoll zugewiesen. Kurz gefasst sind die Facetten Explizite 

Formulierung sowie Bedeutung & Vernetzung eher kognitiv anspruchsvoll und 

Konventionelle Festlegung eher weniger kognitiv anspruchsvoll. Für die Facette 

Konkretisierung & Abgrenzung wird für konzeptuelles (kognitiv anspruchsvoll) 

und prozedurales Wissen (weniger kognitiv anspruchsvoll) unterschieden. 

Implizite Nutzung wird bei der Operationalisierung ausgelassen, da Erath diese 

nicht als Wissensfacette aufgenommen hat. Wird die Operationalisierung von 

Erath hinsichtlich der kognitiven Qualität übernommen, zeigt sich für den Fokus 

der Prozesse dieser Arbeit, dass die konzeptuellen Prozesse beider Unterarten 

kognitiv anspruchsvoll, während sechs von acht der prozeduralen Prozesse eher 

weniger kognitiv anspruchsvoll sind. Die beiden restlichen prozeduralen Prozesse 

können als kognitiv anspruchsvoll eingestuft werden, da ein Verfahren verstanden 

wird, wenn verschiedene Ebenen (hier: Facetten) angesteuert werden. 

Aus Tabelle 27 ist ebenfalls zu erkennen, dass die prozeduralen Prozesse 

ausschließlich in den Aufgaben „Differenzierbarkeit prüfen“ und „L´Hospital“ 

auftreten. Die konzeptuellen Prozesse kommen in der Aufgabe „Mittelwertsatz“ 

vor. Der einzige Prozess, welcher nicht dieser Zuteilung entspricht, ist der Prozess 

von David zur Aufgabe „Differenzierbarkeit prüfen“ (weiter oben als Beispiel 

beschrieben). Der Prozess von David ist ein konzeptueller, weil er zunächst 

versucht, den Begriff Differenzierbarkeit zu verstehen. Dabei greift er auf viele 

verschiedene Wissenselemente bezüglich des Begriffs Differenzierbarkeit 

zurück. Nachdem David den „Verstehens-Teil“ abgeschlossen hat, ähnelt sein 

Prozess wieder dem typischen prozeduralen (mit einem Fokus auf Implizite 

Nutzung und Konkretisierung & Abgrenzung). 

Insgesamt lässt sich daraus vermuten, dass der Fokus der Wissensnutzung mit 

einer spezifischen Aufgabe zusammenhängt. Werden die Anforderungen 
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herangezogen (vgl. Kapitel 5.3), bestätigt sich, dass in der Aufgabe „L´Hospital“ 

vor allem prozedurales Wissen und in der Aufgabe „Mittelwertsatz“ vor allem 

konzeptuelles Wissen gefordert wird. Dies deckt sich mit dem Fokus der 

Wissensnutzung. Lediglich für die Aufgabe Differenzierbarkeit sind die 

Anforderungen der Aufgabe ausgeglichen, während der Fokus der 

Wissensnutzung prozedural ist. Als Anmerkung soll erwähnt werden, dass für die 

Aufgabe „Differenzierbarkeit prüfen“ sowohl das Konzept Funktion als auch das 

Konzept abschnittsweise definierte Funktion aufgenommen wurden. Fasst man 

diese beiden Konzepte zu einem zusammen, würden die Anforderungen dieser 

Aufgabe eher auf dem prozeduralen Wissen liegen. 

6.2.5 Auffälligkeiten im Prozess 

Einige Gemeinsamkeiten und Unterschiede bezüglich der verschiedenen 

Problembearbeitungsprozesse konnten bereits durch die Häufigkeiten (Kapitel 

6.2.3) und dem Fokus (Kapitel 6.2.4) dargestellt werden. Diese Analysen haben 

sich auf den gesamten Prozess bezogen. Im Folgenden werden einzelne 

Abschnitte der Prozesse näher beleuchtet, da in bestimmten Bereichen zwei 

auffällige Merkmale zu beobachten sind.  

Die Reihenfolge K&A → IN 

Es zeichnet sich eine Gemeinsamkeit ab, die in fast jedem Prozess auftritt. Die 

Gemeinsamkeit besteht darin, dass im direkten Anschluss der Wissensfacette 

Konkretisierung & Abgrenzung in den meisten Fällen die Implizite Nutzung folgt. 

Diese Reihenfolge lässt sich in zwölf von 13 Prozessen mindestens 1-mal 

wiederfinden. Der Wechsel (K&A → IN) wird anhand von relevanten Beispielen 

des Prozesses von Alex und Thomas zur Aufgabe Differenzierbarkeit dargestellt. 

Der Prozess von Alex und Thomas zur Aufgabe Differenzierbarkeit wurde bereits 

in Kapitel 6.1.1 ausführlich präsentiert. 

Alex und Thomas aktivieren bereits früh in ihrem Prozess die Facette 

Konkretisierung & Abgrenzung (Turn 2), in der sie sich ihre Aufzeichnungen aus 

dem Tutorium anschauen. Dabei wollen sie ermitteln, wie die Aufgabe aus dem 

Tutorium gelöst wurde, da sie eine ähnliche Vorgehensweise für die eigentliche 

Aufgabe vermuten. Sie nutzen demnach ein Beispiel, um das Vorgehen 

(Differenzierbarkeit prüfen) übertragen zu können. Genau dies wird im Anschluss 

auch umgesetzt, sie versuchen das gleiche Vorgehen auf ihre eigentliche Aufgabe 

anzuwenden (Implizite Nutzung, Turn 3). Nach kurzer Unterbrechung im Bereich 

der Konventionellen Festlegung findet sich ein weiteres Mal das gleiche Muster 

(K&A → IN) in dem Prozess wieder. Alex und Thomas schauen sich erneut die 

Mitschriften aus dem Tutorium an (Turn 5) und versuchen dieses Verfahren auf 

die eigene Aufgabe anzuwenden (Turn 6).  
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Da Alex und Thomas die Aufgabe in ihrem ersten Versuch nicht lösen konnten, 

setzten sie sich zu einem späteren Zeitpunkt noch einmal mit der Aufgabe 

auseinander. Dennoch kann erneut die gleiche Reihenfolge der Wissensfacetten 

Konkretisierung & Abgrenzung → Implizite Nutzung (Turn 14 zu Turn 15; Turn 

18 zu Turn 19) bezüglich des Verfahrens Differenzierbarkeit prüfen identifiziert 

werden. 

An einigen Stellen findet der Übergang von Konkretisierung & Abgrenzung zur 

Impliziten Nutzung zwischen unterschiedlichen mathematischen Inhalten statt. 

Ein Beispiel dafür kann in dem Prozess von Lea, Lisa, Sarah und Paula zur 

Aufgabe „Mittelwertsatz“ gefunden werden. Zunächst wollen sie auf ein Beispiel 

für den Mittelwertsatz der Differentialrechnung zurückgreifen (Turn 13). 

Anschließend werden diese Informationen genutzt, um dies mit der Abschätzung 

zu verbinden (Turn 14), die in der Aufgabe zu beweisen ist.  

Der Übergang (K&A → IN) beschreibt ein typisches Muster in den 

Problembearbeitungsprozessen. Besonders für bestimmte Vorgehensweisen 

scheint dies ein sinnvolles Muster zu sein, da Beispiele als Vorlage für eigenes 

Verhalten genutzt werden können. Dieses Verhalten ähnelt stark den 

Überlegungen des Lernens am Modell (Bandura, 1977). Dabei lernen Menschen 

genau dann, wenn sie Handlungen anderer beobachten, um es in eigenes Handeln 

umzusetzen. Durch die Ausarbeitungen des Tutoriums liegt ein Modell vor, aus 

dem Studierende kopieren können. 

Verknüpfung von Wissenselemente 

Eine weitere Auffälligkeit zeichnet sich durch die zeitgleiche55 Verwendung (und 

somit gleichzeitig Verknüpfung) von Wissensfacetten eines unterschiedlichen 

mathematischen Inhalts ab. Diese können vor allem in den Prozessen zum 

Mittelwertsatz identifiziert werden.  

Die Verknüpfung von verschiedenen Wissensfacetten bezieht sich auf die 

Implizite Nutzung mit der Bedeutung & Vernetzung. Insbesondere betrifft dies das 

konzeptuelle Wissen. Sowohl das Konzept der Abschätzung als auch der Betrag 

wird mit den speziellen Funktionen (Exponential- und Sinusfunktion) bei der 

Aufgabe „Mittelwertsatz“ verknüpft. Die Studierenden möchten eine 

Abschätzung finden, allerdings müssen sie dies mit den gegebenen Funktionen 

verbinden. 

 
Paula: „Aber wir müssen einfach nur beweisen, dass das Maxima Eins gilt.“ 
... 

Sarah: „Leute, Sinus wird doch eh nie größer als Eins. Deswegen ist es ja egal. 

… 

 
55 „Wenn wir das mit dem Kosinus abschätzen …“. In diesem Beispiel wird zwar zuerst der 

Kosinus erwähnt, allerdings im Zusammenhang mit der Abschätzung. In diesem Fall wird 

von zeitgleich (gleicher Turn in der Kodierung) gesprochen. 
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Sarah: „Ja, weil das wird nie größer als Eins [zeigt auf 𝑠𝑖𝑛(𝑒−𝑎)] und das hier wird nie größer als Eins 

[zeigt auf 𝑒−𝑎]. Dann wird das insgesamt nie größer als Eins.“  

 

Dabei diskutieren sie sowohl über die Wertebereiche der allgemeinen als auch der 

(in der Aufgabe vorgegebenen) speziellen Exponential- und Sinusfunktion. 

Außerdem visualisieren sie diese Funktionen und legen darüber hinaus 

beispielhaft Werte fest, um Veränderungen wahrzunehmen und festzustellen. 

Im Gegensatz dazu finden Verknüpfungen von Facetten bezüglich des 

prozeduralen Wissens fast gar nicht statt. David verknüpft auf prozeduraler Ebene 

bspw. das Verfahren zum Grenzwert berechnen mit einigen speziellen Beispiel-

Funktionen. Dabei versucht er den Grenzwert für bestimmte Werte zu berechnen, 

um sich verständlicher zu machen, was der echte Grenzwert56 sein könnte.  

 
David: „So, ich setze mal für 𝑥 199 ein und für 𝑎 einmal 200. Jetzt haben wir 200199, geteilt durch 

199200. […] Zu hohe Zahlen. Alles ändern auf 20 und 19 [ändert Zahlen im Taschenrechner]. Kommt 

da raus −0.324, okay. […] Und wenn ich daraus jetzt 19,9 mache, [ändert Zahlen im Taschenrechner], 

dann −0,63 [wird notiert]. Wenn ich Komma Neun Neun mache, … 0,66. […] wahrscheinlich 

−0,667 … läuft das Ganze gegen.“ 

 

Insgesamt spiegelt dies die Ausführungen von Hiebert und Lefevre (1986, S. 3f.) 

wider. Konzeptuelles Wissen zeichnet sich durch Verbindungen zwischen 

Informationen aus. Diese Verbindungen zwischen Wissenselementen können vor 

allem in den (konzeptuellen) Prozessen zur Aufgabe „Mittelwertsatz“ identifiziert 

werden. Hingegen können in den anderen beiden Aufgaben fast keine solche 

Verbindungen zwischen Wissenselementen gefunden werden. Im (prozeduralen) 

Prozess von David (siehe Transkriptausschnitt) bleibt die Verknüpfung zwischen 

dem Verfahren und den speziellen Funktionen auf Ebene der Konkretisierung & 

Abgrenzung. Obwohl an dieser Verbindung zwischen der Impliziten Nutzung und 

Konkretisierung & Abgrenzung geschaffen werden, bleibt diese Verknüpfung auf 

einer weniger anspruchsvollen Qualität (Erath, 2017, S. 209f.). Dies deutet darauf 

hin, dass konzeptuelle Prozesse eher bedeutungsbezogen sind und sich durch eine 

stärkere Verknüpfung von Wissenselementen auszeichnen. 

6.2.6 Schwierigkeiten im Prozess 

Alex: „Hm, ja so richtig verstanden habe ich es auch nicht …“ 

 

Die Aussage hat Alex in dem Problembearbeitungsprozess zur Aufgabe 

„Mittelwertsatz“ getätigt. Diese Art von Aussage ist jedoch auch in weiteren 

Prozessen (explizit und implizit) aufgetreten. Herausforderungen mit 

mathematischen Inhalten werden in vielen Studien berichtet (Kapitel 4.2 und 4.4), 

jedoch fanden kaum Untersuchungen von authentischen Lernsituationen statt, 

 

56 David versucht den Grenzwert aus der Aufgabe „L´Hospital“ zu bestimmen: 𝑙𝑖𝑚
𝑥→𝑎

𝑥𝑎−𝑎𝑥

𝑎𝑥−𝑥𝑎 
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insbesondere zum Mittelwertsatz und zur Regel von L´Hospital. Daher werden 

im Folgenden die Schwierigkeiten (Hindernisse, Hürden; Kapitel 5.4.2) bezüglich 

der jeweiligen Aufgaben dargestellt, die in den Prozessen aufgetreten sind. Die 

folgenden Ausführungen adressieren demnach die Forschungsfrage:  

 

(W5) Welche Schwierigkeiten können während der 

Problembearbeitungsprozesse identifiziert werden? 

Schwierigkeiten in den Prozessen zur Aufgabe „Differenzierbarkeit prüfen“ 

Viele Schwierigkeiten sind bezüglich der einzelnen Prozesse individuell. 

Allerdings lässt sich eine Gemeinsamkeit finden, die in vier von fünf Prozessen 

als Schwierigkeit identifiziert werden kann. Es handelt sich dabei um die 

Kenntnis des Verfahrens Differenzierbarkeit prüfen.  

 
Paula: „Warte. Und dann müssen wir doch den Grenzwert ausrechnen. … Weil das hat er doch hier 

auch gemacht.“ 

 

Zu dem Zeitpunkt der Aussage haben Lea, Lisa, Sarah und Paula die Aufgabe 

bereits vollständig (und korrekt) gelöst. Paula zeigt mit der Aussage allerdings, 

dass sie das Verfahren noch nicht tiefgehend verstanden hat. Die restliche 

Lerngruppe klärt in der anschließenden Diskussion auf, dass keine weiteren 

Schritte mehr unternommen werden müssen. Bezüglich der Wissensfacetten lässt 

sich hier eine Schwierigkeit in der Expliziten Formulierung zuordnen, da die 

Anleitung der Schritte nicht klar ist. Darüber hinaus verweist Paula zusätzlich auf 

eine Beispielbearbeitung einer ähnlichen Aufgabe. Dies bedeutet, dass die 

Schwierigkeit ebenfalls der Wissensfacette Konkretisierung & Abgrenzung 

zugeordnet werden kann, da sie das Verfahren nicht aus dem Beispiel extrahieren 

kann. Es lässt sich weiter diskutieren, ob die Schwierigkeiten ebenfalls der 

Bedeutung & Vernetzung zugeordnet werden kann. Vollrath und Roth (2011, S. 

50) betonen, dass das Wissen, warum ein Verfahren funktioniert zum Verständnis 

dazugehört. Für die Aussage scheinen allerdings die anderen beiden genannten 

Wissensfacetten schlüssiger. 

Ähnliche Schwierigkeiten bei der Kenntnis des Verfahrens (Explizite 

Formulierung) zeigen sich in den Bearbeitungen von Nick und Lukas. In beiden 

Bearbeitungen verwenden sie zwar das korrekte Verfahren, wollen im Anschluss 

aber noch 𝑓′(0) bestimmen. Bei der Anwendung kommt es allerdings auch zu 

Schwierigkeiten und das Verfahren wird fehlerhaft durchgeführt. Dies zeigt für 

beide, dass sie die Anleitung des Verfahrens noch nicht verstanden haben und 

darüber hinaus, was mit dem Verfahren überhaupt erreicht wird. Sie planen beide, 

dass die Funktion 𝑓 mit den Ableitungsregeln abzuleiten und anschließend an der 

Stelle 0 auszuwerten. Beide stoßen dabei auf Schwierigkeiten bei der Anwendung 

der Ableitungsregeln.  
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Thomas begegnet dem Hindernis, dass noch nicht verstanden wurde, was mit dem 

Verfahren Differenzierbarkeit prüfen erreicht wird. Er argumentiert auch mithilfe 

der Ableitungsregeln.  

 

Alex: „Ich tippe aber irgendwie, dass die Funktion äh, also dass die, dass 𝑓′(0) = 0 ist.“ 

Thomas: „Ja muss es ja. […] Weil das die Bedingung sagt [zeigt auf die Funktion].  

… 

Thomas: „Die obere Funktion ist ja gesamt 𝑓 und für die, wo sie nicht definiert ist für 𝑥0, ist 0 als 

Ersatzwert. […] Und wenn du da die Ableitung für 𝑓′(0) machst, ist das 0, weil Ableitung von 0 ist 

0.“ 

 

In dem Prozess von Alex und Thomas stockt die Bearbeitung ebenfalls aufgrund 

des Verfahrens, allerdings liegt die Schwierigkeit nicht in der Kenntnis des 

Verfahrens, sondern bei der Ausführung (Implizite Nutzung). Dabei ist ihnen 

bewusst, was sie tun sollen, allerdings nicht wie. Das Einsetzen der Funktion 𝑓 in 

die Definition der Differenzierbarkeit stellt sich für beide als Schwierigkeit 

heraus, da die Funktion abschnittsweise definiert ist. Darüber hinaus stolpern sie 

darüber, dass durch das Einsetzen der Werte im Nenner eine Null stehen würde.  

 

 

Abbildung 36: Nicks Umformungen beim Differentialquotienten 

Des Weiteren zeigen sich bei der Anwendung des Verfahrens allerdings auch 

Schwierigkeiten bei vermeintlich leichten Umformungen (bei Nick siehe in 

Abbildung 36). Allerdings kann daraus abgeleitet werden, dass Nick nicht weiß, 

wie der Grenzwert berechnet wird (Explizite Formulierung). 



S e i t e  | 231 

 

David zeigt in seinem Problembearbeitungsprozess zusätzlich Schwierigkeiten 

auf der Begriffsebene bezüglich der Differenzierbarkeit.  

 
David: „… ich soll beweisen oder ähm ja oder zeigen, dass die Funktion an der Stelle 0 differenzierbar 

ist. Da ist die Frage, was heißt denn, oh, überhaupt differenzierbar? Das heißt, ich schaue in die 

Vorlesung.“ 

 

Daraus kann interpretiert werden, dass David mit dem Begriff Differenzierbarkeit 

nicht vertraut ist. In seinem Prozess verbringt er viel Zeit damit, den Begriff bzw. 

das Konzept zu verstehen und steuert bis auf Implizite Nutzung jede 

Wissensfacette (mindestens 1-mal) an, bevor er damit beginnt, eine Lösung für 

die Aufgabe zu produzieren. 

Schwierigkeiten in den Prozessen zur Aufgabe „Mittelwertsatz“ 

In den Problembearbeitungsprozessen zur Aufgabe „Mittelwertsatz“ zeigt sich in 

allen Prozessen, dass die Studierenden mit dem Mittelwertsatz der 

Differentialrechnung Schwierigkeiten haben. An vielen Stellen der Bearbeitung 

wird sich auf den ausformulierten Satz bezogen (Explizite Formulierung) und 

versucht Beispiele (Konkretisierung & Abgrenzung) sowie anschauliche 

Begründungen bzw. Visualisierungen (Bedeutung & Vernetzung) heranzuziehen. 

Durch das Nutzen der verschiedenen Facetten zum Mittelwertsatz der 

Differentialrechnung scheint sich im Verlaufe des Prozesses das Verständnis zu 

verbessern, wobei die Visualisierung am meisten weiterhilft. Nick fasst in dieser 

Aussage eine Visualisierung des Mittelwertsatzes der Differentialrechnung in 

eigenen Worten zusammen. 

 
Nick57: „… zwischen a und b mindestens eine Stelle gibt, wo die Steigung der Kosinusfunktion, ... 

also wo die Steigung der Funktion identisch ist … zur Steigung der Geraden.“ 

 

Allerdings bleibt die Schwierigkeit hinsichtlich des Anwendungskontextes 

(Implizite Nutzung). Die Studierenden wissen nicht, wie sie den Mittelwertsatz 

auf die Ungleichung anwenden sollen. 

 
David58: „Wir sollen das beweisen über, aber über den Mittelwertsatz. Aber wie beweise ich das mit 
dem Mittelwertsatz? … Jetzt habe ich so eine Formel stehen. … Aber was bringt mir das?“ 

 

Die Lerngruppe mit Lea, Lisa, Sarah und Paula schaffen es, diesen Schritt zu 

überwinden, stoßen aber während der Anwendung auf zwei weitere 

Schwierigkeiten. Die erste Schwierigkeit ist die Abschätzung (Implizite Nutzung) 

 
57 Nick fasst in dieser Aussage eine Visualisierung des Mittelwertsatzes der 

Differentialrechnung in eigene Worte zusammen. 

58 David tätigt diese Aussage, nachdem er sich bereits 30 Minuten mit der Aufgabe und dem 

Mittelwertsatz der Differentialrechnung auseinandergesetzt hat. 
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bezüglich der Sekante und der Steigung der Ableitung in einem Punkt. Es soll 

gezeigt werden, dass die Ableitung 𝑒−𝑎 ⋅ 𝑠𝑖𝑛(𝑒−𝑎) ≤ 1 ist. Für die Lerngruppe 

stellt dies eine Schwierigkeit dar, da sie nicht wissen, welche Werte die beiden 

Funktionen im Einzelnen, annehmen können. Dies wird zwar für beide 

Funktionen im Folgenden mehrfach korrekt herausgearbeitet, allerdings ist das 

Ergebnis der Verkettung beider Funktionen ein Problem: 

 
Lisa: „Ja. Aber wie kommt man dann /. Dann muss man das, … multipliziert man das ja nochmal.“ 

Paula: „Ja.“ 

Lisa: „Warum ist es dann trotzdem ≤ 1?“ 

 

Die zweite Schwierigkeit wird durch die Betragsstriche (Implizite Nutzung) 

ausgelöst, die zunächst ignoriert werden. Die Lerngruppe überlegt, inwiefern sie 

den Betrag noch in die (Un-)Gleichung unterbringen und ob ihnen das 

möglicherweise hilft zu zeigen, dass die Ableitung der Funktion ≤ 1 ist. 

 
Lisa: „Oder wir machen weiter und kommen am Ende dabei raus, dass das vielleicht auch … 

Negatives sein kann und dann sagen wir dann, weil da oben Betrag ist.“ 

… 

Lea: „Oder für, äh wir machen die Betragsstriche dadurch, dass 0 immer, äh 𝑦 und 𝑥 immer größer 

als 0 sein müssen.“ 

 

Beide Schwierigkeiten lösen sich erst dann auf, als die Lerngruppe erkennt, dass 

die Ungleichung 𝑒−𝑎 ⋅ 𝑠𝑖𝑛(𝑒−𝑎) ≤ 1 auch noch dann gilt, wenn die 

Sinusfunktion unter 0 fällt59. Dabei würde der Betrag sogar noch helfen, da der 

Sinus nun nur noch Werte zwischen 0 und 1 annehmen kann. 

Alex und Thomas stoßen in ihrer Bearbeitung ebenfalls auf Schwierigkeiten mit 

dem Betrag und der Abschätzung. Obwohl Aussagen60 von beiden getätigt 

werden, dass sie nicht wissen, wie sie weiter machen sollen, können sie die 

Schwierigkeiten zügig überwinden. Insgesamt zeigt sich, dass in beiden 

Lerngruppen die Verknüpfung zweier mathematischer Inhalte (Abschätzung und 

Betrag mit den beiden speziellen Exponential- und Sinusfunktion) eine 

Schwierigkeit darstellt. 

Auch wenn die Lerngruppen von Lisa, Lea, Paula und Sarah sowie Alex und 

Thomas die Schwierigkeiten in ihrem Prozess überwinden und zu einer 

akzeptablen Lösung gelangen, bleibt trotzdem ersichtlich, dass für alle 

Studierenden die Beweismethode eine Schwierigkeit ist.  

 
David: „Wie beweise ich das jetzt? […] Was waren denn nochmal dies Beweismethoden?“ 

 

 
59 Ein Transkriptausschnitt der relevanten Stelle wurde bereits in Kapitel 6.2.5 gezeigt. 

60 Alex: „Und jetzt sind wir gerade an einem Punkt, wo wir das abschätzen müssen. Aber ich 

weiß nicht, wie wir das abschätzen sollen.“ 
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Die Beweismethode an sich lässt sich keinem bestimmten Inhalt zuordnen. Es 

lässt sich jedoch vermuten, dass ein besseres Verständnis über den Mittelwertsatz 

zu weniger Schwierigkeiten führen könnte. Daraus wird deutlicher, dass es 

zunächst darum geht, den Term |𝑐𝑜𝑠(𝑒−𝑥) − 𝑐𝑜𝑠(𝑒−𝑦)| ≤ |𝑥 − 𝑦| in die Form 

des Mittelwertsatzes umzuformen (Explizite Formulierung) und diesen mit der 

Ableitung 𝑓′(𝑥0) zu ersetzen, welche anschließend abgeschätzt werden soll. 

David kommt in seiner Bearbeitung zu einer nicht zielführenden Umformung 

(Abbildung 37), die durch ein solches Verständnis möglicherweise nicht 

entstanden wäre. 

 

 

Abbildung 37: Davids Überlegungen zur Aufgabe „Mittelwertsatz“ 

Schwierigkeiten inden Prozessen zur Aufgabe „L´Hospital“ 

Eine gemeinsame Schwierigkeit, welche sich über alle 

Problembearbeitungsprozesse zeigt, bezieht sich auf die Bestimmung des 

Grenzwerts. Dies äußert sich vor allem bezüglich der Impliziten Nutzung als auch 

der Expliziten Formulierung.  

In der Lerngruppe von Lea, Lisa, Sarah und Paula wird dies zu Beginn der 

Bearbeitung deutlich, da sie versuchen, bestimmte Werte für 𝑎 einzusetzen. 

 
Lea: „Ja, aber dafür müsst ihr was einsetzen. Setzt ihr jetzt 1 ein? Weil es ist ja eigentlich 𝑎 > 1.“ 

Sarah: „Du weißt ja, dass […] 𝑎 > 1 ist. Da musst du jetzt gucken, was dann da rauskommt, wenn 

𝑎 > 1 ist. 

Lea: „Ach so. Also erstmal 1 einsetzen. Doch, das kann sein.“ 

Lisa: „Ne, > 1“ 

Sarah: „Ne, du setzt nicht 1 ein. Du nimmst einfach an …“ 

Lisa: „2 oder was? Ja, man könnte ja mal 2 einsetzen […]. 

Lea: „Könnte man machen, ja.“ 
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Diese Vorgehensweise zeigt sich ebenfalls bei David. Er setzt allerdings nicht nur 

Werte für 𝑎 ein, sondern zusätzlich für 𝑥. Er schaut sich demnach den Grenzwert 

für viele verschiedene Fälle an und versucht diesen so auszurechen. Für 𝑎 einen 

bestimmten Wert (> 1) einzusetzen und ein Beispiel zu betrachten, kann zunächst 

hilfreich sein. Allerdings ist es nicht im Sinne des Grenzwerts, ebenfalls für 𝑥 

einen Wert einzusetzen und den Quotienten zu bestimmen. Die beschriebene 

Schwierigkeit lässt sich zur Expliziten Formulierung zuordnen, da deutlich wird, 

dass die Anleitung des Verfahrens nicht vollständig vorhanden ist. 

Alex und Thomas stoßen ebenfalls auf Schwierigkeiten bei der Bestimmung des 

Grenzwerts, nachdem sie die Regel von L´Hospital angewandt haben (Abbildung 

38). Sie kommen zu dem Ergebnis, dass der Nenner schneller als der Zähler 

wächst, wodurch der Grenzwert −1 sein muss. Diese Schwierigkeit zu einer 

Facette zuzuordnen ist dabei nicht offensichtlich. Zum einen unterläuft in der 

Anwendung des Verfahrens (Implizite Nutzung) ein Fehler. Es wird auch die 

Anleitung des Verfahrens (Explizite Formulierung) zur Bestimmung des 

Grenzwerts nicht beachtet, da für das „𝑥 nicht 𝑎 eingesetzt“ wird. Bei Alex und 

Thomas war die Anleitung allerdings zuvor bei der Anwendung der Regel von 

L´Hospital korrekt vorhanden. Dies liefert auch einen Hinweis, dass die 

Anleitung des Verfahrens noch nicht komplett verstanden wurde. Darüber hinaus 

zeigt sich, dass der Vergleich der beiden Funktionen nicht korrekt durchgeführt 

wurde. Im Kontext der Aufgabe ist sowohl 𝑎𝑥𝑎−1 = 𝑎𝑎 als auch 𝑎𝑥 = 𝑎𝑎, wenn 

der Grenzwert 𝑥 → 𝑎 angewendet wird. Alex und Thomas kommen jedoch zu 

dem Entschluss, dass 𝑎𝑥 schneller wächst als 𝑥𝑎−1 und ignorieren damit den 

Faktor 𝑎 im Zähler (Implizite Nutzung). 

 

 

Abbildung 38: Alex´ Bestimmung des Grenzwerts 

Nick erkennt in seiner Bearbeitung (Abbildung 39), dass die Aufgabe womöglich 

mit der Regel von L´Hospital bearbeitet werden soll. In seinen Berechnungen 

kommt er dennoch zu dem Schluss, dass die Voraussetzungen für die Anwendung 

der Regel von L´Hospital nicht gegeben sind. Die Grenzwerte der Zähler- und 

Nennerfunktion sind nicht beide gleich 0 oder ∞. Damit zeigt sich bei Nick 

ebenfalls eine Schwierigkeit in der Anwendung bezüglich der Bestimmung des 

Grenzwerts (Implizite Nutzung). 
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Abbildung 39: Nicks Lösung zur Aufgabe „L´Hospital“ 

Eine letzte kleinere Schwierigkeit liegt bei der Ableitung von 𝑎𝑥, wenn nach 𝑥 

abgeleitet werden soll. In keinem Prozess konnte diese Ableitung sofort bestimmt 

werden (Explizite Formulierung). Diese Schwierigkeit wurde allerdings zügig 

überwunden, indem die Studierenden im Internet oder alten Unterlagen nach der 

Ableitung und den dazugehörigen Umformungen recherchiert haben. 

Fazit und Zusammenfassung zu Schwierigkeiten im Prozess 

In den Aufgaben zeigen sich bei den Studierenden verschiedene Schwierigkeiten. 

Für die Aufgabe „Differenzierbarkeit prüfen“ ist vor allem das Verfahren zur 

Bestimmung der Differenzierbarkeit eine Schwierigkeit. Für die Aufgabe 

„Mittelwertsatz“ treten mehrere Schwierigkeiten auf. Zunächst ist es das 

Verständnis des Mittelwertsatzes der Differentialrechnung. Darüber hinaus 

zeigen sich insbesondere in der Anwendung bei der Abschätzung der 

Ungleichung sowie der Anwendung des Betrags Schwierigkeiten. Letztlich ist die 

allgemeine Vorgehensweise hinsichtlich der Beweisführung eine Schwierigkeit. 

Für die Aufgabe „L´Hospital“ zeigen sich die Schwierigkeiten vor allem im 

Bereich der Bestimmung des Grenzwerts. Insgesamt treten in den beiden 

Aufgaben „Differenzierbarkeit prüfen“ und „L´Hospital“ Schwierigkeiten 

überwiegend auf prozeduraler Ebene auf, während sie bei der Aufgabe 

„Mittelwertsatz“ eher konzeptueller Natur sind. 

Da jede Aufgabe unterschiedliche Anforderungen stellt, ist es nicht 

verwunderlich, dass sich die Schwierigkeiten der Aufgaben im Vergleich 

zueinander unterscheiden. Es fällt allerdings auf, dass die Bestimmung des 

Grenzwerts sowohl in der Aufgabe „Differenzierbarkeit prüfen“ als auch 

„L´Hospital“ vorkommt. Bei der Überprüfung der Differenzierbarkeit ließ sich 

bei der Grenzwertbestimmung bezüglich der Expliziten Formulierung keine 

Schwierigkeit (außer bei Nick) feststellen, während die Grenzwertbestimmung in 

der Aufgabe „L´Hospital“ zu Schwierigkeiten in jedem Prozess führt. Woran 

könnte dies liegen? Eine mögliche Erklärung wäre, dass in der Aufgabe 

„L´Hospital“ eine weitere Variable (𝑎) hinzukommt. Im Prozess von David wird 

besonders deutlich, dass die zusätzliche Variable zu Unsicherheiten führt und er 
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nicht weiß, wie er damit umgehen soll. Eine zusätzliche Variable ist 

möglicherweise eine Schwierigkeit, die Auswirkung auf das Verständnis der 

Anleitung des Verfahrens Grenzwert hat. 

An dieser Stelle soll erwähnt werden, dass Schwierigkeiten nicht mit Fehlern 

gleichzusetzen sind. In einigen Prozessen sind Schwierigkeiten zu erkennen, die 

aber im Laufe des Prozesses aufgelöst werden. Dies lässt sich auch in der 

Lösungsqualität der einzelnen Abgaben feststellen. Obwohl in jedem Prozess 

(kleinere bzw. größere) Schwierigkeiten identifiziert werden konnten, gibt es 

einige Abgaben, die mit mindestens L3 eingestuft werden (vgl. Tabelle 16). 

Einige Schwierigkeiten bleiben allerdings auch bis zum Ende der Bearbeitung, 

wodurch erst dann ein Fehler entsteht.  

Besonders in den Prozessen von Lea, Lisa, Sarah und Paula ist zu erkennen, dass 

einzelne Teilnehmerinnen der Lerngruppe eine Schwierigkeit haben, die im 

Folgenden durch eine andere Teilnehmerin beseitigt wird. Dies besteht meistens 

aus einer kurzen Frage-Antwort-Interaktion. Ähnlich ist es auch in den Prozessen 

von Alex und Thomas. Durch das Gespräch lassen sich die inhaltlichen 

Schwierigkeiten zügig besprechen und beseitigen. Dadurch werden im Verlauf 

der Prozesse einige Fehler vermieden, da sich die Studierenden untereinander 

helfen können. Falls die Lerngruppe aus nur einer Person besteht, lassen sich 

solche Schwierigkeiten nicht so zeiteffizient beseitigen.  

Werden in den einzelnen Prozessen die Schwierigkeiten und der Fokus (Kapitel 

6.2.4) verglichen, so lässt sich ein Zusammenhang vermuten. In Davids Prozess 

zur Aufgabe „Differenzierbarkeit prüfen“ konnten Schwierigkeiten bezüglich des 

Konzepts Differenzierbarkeit als auch im Bereich der Grenzwertbestimmung 

festgestellt werden. Dies ist genau der Bereich, den David bezüglich der 

Wissenselemente häufig aktiviert bzw. nutzt (siehe Tabelle 30). Diese 

Gemeinsamkeit zeigt sich jedoch nicht ausschließlich in Davids Prozess. 

Gleichzeitig ist anzumerken, dass in den Prozessen auch Schwierigkeiten bei den 

Wissensfacetten festgestellt wurden, die nur selten oder kaum angesteuert 

wurden. Demnach weist die Häufigkeit des Ansteuerns einer Wissensfacette mit 

Schwierigkeiten eher keinen Zusammenhang auf. Möglicherweise sind den 

Studierenden diejenigen Schwierigkeiten bewusst, bei denen häufig eine 

Wissensfacetten angesteuert wird, während Schwierigkeiten, bei denen keine 

Wissensfacette angesteuert wird, unbewusst sind. 

Letztlich ist anzumerken, dass die Zuordnung der Schwierigkeiten zu den 

mathematischen Inhalten einfacher ist als die Zuordnung zu den Wissensfacetten. 

Es ist eindeutig zu identifizieren, wenn z. B. eine prozedurale Schwierigkeit in 

der Anwendung (Implizite Nutzung) und auch in der Anleitung des Verfahrens 

(Explizite Formulierung) unterläuft. Deutlich schwieriger ist dies bei den 

restlichen Facetten. Dies liegt möglicherweise auch daran, dass zum einen die 

formale Fachsprache (also Explizite Formulierung) bedeutend für die 

hochschulische Mathematik ist und zum anderen die Bearbeitungen in einem 
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Anwendungskontext (als Implizite Nutzung) stattfinden. Besonders Vorstellungen 

und Begründungen (Bedeutung & Vernetzung) sind oft nicht notwendig, um eine 

Aufgabe bearbeiten zu können. Möglicherweise werden Schwierigkeiten der 

restlichen Facetten in anderen Kontexten (wie z. B. Laborsituationen, in denen 

bestimmtes Verständnis abgefragt wird) eher ersichtlich.  

6.2.7 Vergleich zwischen Wissensangebot und -nutzung 

In den vorherigen Ausführungen wurde sowohl das Wissensangebot der 

Veranstaltung (vgl. Kapitel 6.2.1) als auch die Wissensnutzung der Studierenden 

zu unterschiedlichen Aspekten (vgl. Kapitel 6.2.2 bis 6.2.6) rekonstruiert. Der 

Vergleich zwischen Angebot und Nutzung bildet dabei den übergreifenden 

Rahmen. Dieses Kapitel bietet somit eine zusammenfassende Übersicht über das 

Wissensangebot und die Wissensnutzung. Detaillierte Beschreibungen sind in den 

jeweiligen Kapiteln zu finden. Die folgenden Ausführungen adressieren demnach 

die Forschungsfrage:  

 

(W6) Welches Wissensangebot wird von der Veranstaltung angeboten und 

inwiefern wird dies von den Studierenden in ihren Bearbeitungen genutzt? 

 

Für eine geeignete Darstellung werden die Wissensmatrizen aus dem Kapitel 

6.2.1 und Kapitel 6.2.3 kombiniert. Die Darstellung des Angebots liefert eine 

Übersicht, welche Wissenselemente durch die Veranstaltung angeboten (in grau 

hinterlegt) und nicht angeboten (in weiß hinterlegt) werden. Aufgrund der 

Nutzung von Studierenden wurde für das Angebot in dieser Darstellung das 

Konzept Funktion weiter aufgeteilt. Für einen Vergleich zwischen Angebot und 

Nutzung sollte auf der Seite der Nutzung ebenfalls festgestellt werden, ob ein 

spezifisches Wissenselement genutzt wurde. In der Darstellung werden die 

Wissenselemente mit einer Zahl bezüglich Häufigkeit der Nutzung versehen. 

Außerdem werden die vergleichenden Darstellungen aufgabenweise abgebildet. 

Zunächst wurde das Wissensangebot bezüglich der Impliziten Nutzung nicht 

untersucht. Dies liegt daran, dass im Skript-Tutorium-Format eine Abgrenzung 

zwischen Impliziter Nutzung und Konkretisierung & Abgrenzung schwierig 

festzulegen ist. Für das Konzept Differenzierbarkeit kann ein Beispiel für 

Differenzierbarkeit in einem Punkt gleichzeitig als Anwendungskontext bzw. 

Anwendung aufgefasst werden. Gleiches gilt für Verfahren. Ein Beispiel für die 

Regel von L´Hospital ist gleichzeitig die Anwendung des Verfahrens. Für diese 

Wissensnutzung fällt die Trennung leichter, da auf Beispiele zurückgegriffen 

(Konkretisierung & Abgrenzung) werden kann und die eigene Anwendung bzw. 

der eigene Anwendungskontext (Implizite Nutzung) im Fokus steht. 
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 Mathematischer Inhalt IN EF K&A B&V KF 

K
o

n
z
e
p

tu
el

le
s 

W
is

se
n

 

Konzept: 

Differenzierbarkeit 

3 3 6 3 4 

Konzept: Funktionen    3  

Konzept: Abschnittsweise 

definierte Funktionen 

2     

P
ro

z
e
d

u
ra

le
s 

W
is

se
n

 

Verfahren: 

Differenzierbarkeit prüfen 

11  9 1 4 

Verfahren: Grenzwert von 

Funktionen berechnen 

6 1 2   

Verfahren: Sandwich-

Kriterium 

     

Tabelle 31: Vergleich Angebot und Nutzung zur Aufgabe „Differenzierbarkeit prüfen“ (EF = Explizite 

Formulierung; K&A = Konkretisierung & Abgrenzung; B&V = Bedeutung & 

Vernetzung; KF = Konventionelle Festlegungen) 

 Mathematischer Inhalt IN EF K&A B&V KF 

K
o

n
z
e
p

tu
el

le
s 

W
is

se
n

 

Konzept: Stetigkeit einer 

Funktion 

1     

Konzept: 

Differenzierbarkeit 

1     

Konzept: Funktion    1  

Konzept: 

Exponentialfunktion 

  2 6  

Konzept: Sinusfunktion   2 6  

Konzept: Abschätzung 4     

Konzept: Betrag 4     

Zusammenhang: 

Mittelwertsatz der 

Differentialrechnung 

5 6 5 6 3 

P
W

 Verfahren: Kettenregel 3     

Tabelle 32: Vergleich Angebot und Nutzung zur Aufgabe „Mittelwertsatz“ (PW = Prozedurales 

Wissen; EF = Explizite Formulierung; K&A = Konkretisierung & Abgrenzung; 

B&V = Bedeutung & Vernetzung; KF = Konventionelle Festlegungen) 

Hinsichtlich der Aufgabe "Differenzierbarkeit prüfen" wird das vielfältige 

Angebot für das gleichnamige Konzept und Verfahren von den Studierenden 
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umfassend genutzt. Die weiteren angebotenen Wissenselemente (obwohl 

angeboten) finden hingegen nur geringe Anwendung (Tabelle 31). 

Hinsichtlich der Aufgabe "Mittelwertsatz" wird das vielfältige Angebot für den 

zugehörigen Zusammenhang von den Studierenden breit genutzt. Außerdem 

greifen Studierende im Bereich der Funktionen (Exponential- und Sinusfunktion) 

ebenfalls auf das Angebot zurück, während die restlichen angebotenen 

Wissenselemente gar nicht aufgegriffen werden (Tabelle 32). 

 
 Mathematischer Inhalt IN EF K&A B&V KF 

K
o

n
z
e
p

tu
el

le
s 

W
is

se
n

 

Konzept: Funktion      

Konzept: 

Exponentialfunktion 

 1 7 1  

Konzept: 

Logarithmusfunktion 

  4 3  

P
ro

z
e
d

u
ra

le
s 

W
is

se
n

 Verfahren: Regel von 

L´Hospital 

4  5   

Verfahren: Grenzwert von 

Funktionen berechnen 

9 2 7  3 

Verfahren: Kettenregel 3 1 1   

Verfahren: Potenzregel 4     

Tabelle 33: Vergleich Angebot und Nutzung zur Aufgabe „L´Hospital“ (EF = Explizite Formulierung; 

K&A = Konkretisierung & Abgrenzung; B&V = Bedeutung & Vernetzung; KF = 

Konventionelle Festlegungen) 

Hinsichtlich der Aufgabe "L’Hospital" wird das begrenzte Angebot zur Regel von 

L’Hospital nur in geringem Maße genutzt (ausschließlich zur Konkretisierung & 

Abgrenzung). Dennoch wird das übrige theoretisch notwendige Wissen für die 

Bearbeitung der Aufgabe umfassend angewendet (Tabelle 33). 

Abgesehen von der Impliziten Nutzung stellt die Veranstaltung ein vielfältiges 

Angebot der relevanten Inhalte zu Verfügung. Viele der angebotenen 

Wissenselemente werden von den Studierenden genutzt bzw. aktiviert. Im 

Vergleich zwischen Wissensangebot und Wissensnutzung fällt auf, dass 

Studierende zwei Wissenselemente nutzen, welche nicht in der Veranstaltung 

angeboten worden sind. Die Explizite Formulierung für das Verfahren zur 

Berechnung von Grenzwerten (von Funktionen) wird von der Veranstaltung nicht 

bereitgestellt, allerdings wird dies in zwei von drei Aufgabe genutzt bzw. 

aktiviert. Zuvor wurde in der Vorlesung bereits die Grenzwertbestimmung von 

Folgen thematisiert, wodurch es womöglich keine Spezifizierung für die 

Anleitung bezüglich Funktionen gegeben hat. Letztlich haben Studierende 
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allerdings nach einer Anleitung für die Grenzwertbestimmung von Funktionen 

gesucht und sind in anderen Materialien (Internet und ein weiteres Skript aus 

einem Vorkurs) fündig geworden. Die Konventionelle Festlegung für den 

Mittelwertsatz der Differentialrechnung wird von der Veranstaltung nicht speziell 

thematisiert, allerdings haben die Studierenden in zwei Prozessen die 

Bezeichnungen des Mittelwertsatzes der Differenzialrechnung (und deren 

Bedeutung im Kontext ihrer Bearbeitung) diskutiert. 

Wird die Implizite Nutzung ausgeschlossen, nutzen die Studierenden alle 

angebotenen mathematischen Inhalte bis auf das Konzept abschnittsweise 

definierte Funktion und das Verfahren Sandwich-Kriterium (beide in der Aufgabe 

„Differenzierbarkeit prüfen“)61. Insgesamt greifen die Studierenden auf 23 von 

53 angebotenen Wissenselementen zurück62. 

Zuletzt soll angemerkt werden, dass sich das Wissensangebot der Veranstaltung 

durch weitere Analysen sicherlich detaillierter untersuchen ließe (z. B. Qualität, 

Umfang, etc.). Eine solche vertiefte Analyse würde jedoch den Rahmen dieser 

Arbeit überschreiten.  

6.2.8 Vergleich von erfolgreicher und nichterfolgreicher Wissensnutzung 

Nach Schoenfeld (1985, Kapitel 2.2) ist Wissen ein entscheidender Faktor für den 

Verlauf und Erfolg von Problembearbeitungsprozessen. Im Folgenden werden die 

Prozesse daher bezüglich des Zusammenhangs zwischen der Wissensnutzung und 

Erfolg bzw. Misserfolg betrachtet. Die folgenden Ausführungen adressieren 

demnach die Forschungsfrage: 

 

(W7) Inwiefern hängt die Wissensnutzung mit dem Erfolg bzw. Misserfolg eines 

Problembearbeitungsprozesses zusammen? 

 

Zunächst bietet es sich an, den Fokus der Problembearbeitungsprozesse zu 

betrachten. In dieser Arbeit haben sich Prozesse mit prozeduralem und 

konzeptuellem Fokus herauskristallisiert, wobei die Prozesse mit konzeptuellem 

Fokus in zwei Unterarten aufgeteilt werden (vgl. Kapitel 6.2.4).  

Vergleicht man die prozeduralen Prozesse mit den Lösungsqualitäten, dann 

zeichnet sich kein einheitliches Bild ab. Die Prozesse von Alex und Thomas, die 

Prozesse von Lea, Lisa, Sarah und Paula und der Prozess von David werden 

mindestens mit einer Lösungsqualität von L3 eingestuft. Die Prozesse von Nick 

 
61 In der Aufgabe „L´Hospital“ wird ebenfalls das Konzept Funktion nicht genutzt, allerdings 

werden die „Unterkonzepte“ Exponentialfunktion und Logarithmusfunktion genutzt. 

62 Anmerkung: Die Gesamtmenge 53 übersteigt die Menge aller Wissenselemente (52) aus 

Kapitel 6.2.1, weil hier dem Konzept Funktion weitere Unterkonzepte hinzugefügt worden 

sind. Dopplungen von mathematischen Inhalten werden in dieser Zählweise nicht doppelt 

gezählt. 
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und der Prozess von Lukas werden mit einer Lösungsqualität von L1 eingestuft. 

Ferner liefert die Betrachtung der Häufigkeiten bezüglich der Wissensnutzung 

keine weiteren Zusammenhänge für Erfolg. Werden darüber hinaus allerdings die 

Schwierigkeiten hinzugezogen, gibt es einen wenig überraschenden Unterschied 

innerhalb der prozeduralen Prozesse. In allen Prozessen konnten an 

verschiedenen Stellen Schwierigkeiten identifiziert werden. In den Prozessen mit 

einer hohen Lösungsqualität (L3 und L4) werden diesen Schwierigkeiten im 

Prozess beseitigt, während sie in Prozessen mit niedriger Lösungsqualität (L1 und 

L2) nicht überwunden werden. Besonders entscheidend stellt sich dabei für die 

Aufgabe „Differenzierbarkeit prüfen“ das gleichnamige Verfahren in der Facette 

Explizite Formulierung und der Aufgabe „L´Hospital“ das Verfahren der 

Grenzwertbestimmung ebenfalls in der Facette Explizite Formulierung heraus. 

Die Facette Explizite Formulierung erweist sich somit in prozeduralen Prozessen 

als bedeutend. Dieses Ergebnis ist ebenfalls wenig überraschend. In Aufgaben, 

welche die Anwendung eines Verfahrens verlangen, sollte die Anleitung des 

genutzten Verfahrens verstanden sein. Obwohl viele Studierende auf die Aufgabe 

des Tutoriums zurückgegriffen haben, zeigt sich somit auch, das bloßes Kopieren 

aus einem ähnlichen Beispiel (Konkretisierung & Abgrenzung) nicht ausreicht, 

wenn zusätzlich die Anleitung des Verfahrens nicht nachvollzogen wird. 

Vergleicht man die konzeptuellen Prozesse mit den Lösungsqualitäten, dann lässt 

sich zwischen den beiden Untergruppen eine Tendenz ableiten (Tabelle 34).  

 
Lerngruppe Aufgabe Fokus Wissens-

facetten 

Lösungs-

qualität 

Thomas, Alex 

 

Mittelwertsatz Konzeptuell IN, B&V L3 

Lea, Lisa, 

Sarah, Paula 

Mittelwertsatz Konzeptuell IN, B&V L4 

David Differenzierbarkeit 

prüfen 

Konzeptuell K&A, EF, IN L3 

David Mittelwertsatz Konzeptuell EF, K&A, 

B&V 

L1 

Nick Mittelwertsatz Konzeptuell K&A, EF, 

B&V 

L1 

Tabelle 34: Prozesse mit konzeptuellem Fokus und ihre Lösungsqualität 

Für die erste Untergruppe, bei denen der Fokus auf der Impliziten Nutzung und 

Bedeutung & Vernetzung liegt, wird die Lösungsqualität mit mindestens L3 

eingestuft. Für die zweite Untergruppe, bei denen der Fokus auf der Expliziten 

Formulierung und Konkretisierung & Abgrenzung liegt, wird 2-mal die 

Lösungsqualität L1 und 1-mal die Lösungsqualität L3 eingestuft.  Es scheint 

demnach so, dass die erste Untergruppe eher erfolgreich ist, während in der 

zweiten Untergruppe gemischte Ergebnisse erzielt werden. Warum erreichen die 
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Prozesse der ersten Untergruppe gute Ergebnisse? Dies liegt womöglich daran, 

dass sie versuchen, Zusammenhänge und Konzepte anzuwenden (Implizite 

Nutzung). Diese werden darüber hinaus mit weiteren Konzepten bezüglich der 

Facette Bedeutung & Vernetzung verknüpft (Kapitel 6.2.5). Diese Verknüpfung 

von Wissenselementen ist elementar für das konzeptuelle Wissen (Hiebert & 

Lefevre, 1986, S. 3f.). Möglicherweise werden durch diese Stärkung bzw. 

Erschaffung von Verknüpfungen ebenfalls die Schwierigkeiten, auf welche die 

Studierenden zuvor gestoßen sind, überwunden. Daraus resultieren die höheren 

Lösungsqualitäten. 

Für die zweite Untergruppe wird zunächst auf die beiden Prozesse von David und 

Nick zur Aufgabe „Mittelwertsatz“ eingegangen. Beide Studierenden fokussieren 

sich auf den ausformulierten Mittelwertsatz (Explizite Formulierung) und 

dazugehörige Beispiele (Konkretisierung & Abgrenzung). Warum erreichen diese 

Prozesse keine guten Ergebnisse? Zunächst versuchen sie den Mittelwertsatz zu 

verstehen, weshalb sie zusätzlich auf die Visualisierung (Bedeutung & 

Vernetzung) eingehen. Zwischen diesen Facetten wird hin- und hergewechselt, 

wobei darüber hinaus kaum ein weiterer mathematischer Inhalt angesteuert wird. 

Hier fehlt womöglich die Verknüpfung von verschiedenen Wissenselementen 

über verschiedene mathematische Inhalte, um in der Lösung voranzuschreiten. 

Des Weiteren gehen diese Bearbeitungen nicht in die Anwendung bzw. in den 

Anwendungskontext (Implizite Nutzung) über. Letztendlich können David sowie 

Nick in ihren Bearbeitungen ihre Schwierigkeiten nicht überwinden, wodurch 

ihre Lösungen mit L1 eingestuft worden sind. Ein Unterschied zeigt sich dagegen 

in der Bearbeitung von David zur Aufgabe Differenzierbarkeit. Er nutzt bzw. 

aktiviert zwar ebenfalls verschiedene Facetten bezüglich des Konzepts 

Differenzierbarkeit, allerdings wechselt er anschließend in den 

Anwendungskontext. Dies liegt womöglich daran, dass er den Begriff der 

Differenzierbarkeit besser verstanden, somit gleichzeitig seine Schwierigkeiten 

mit der Aufgabe überwunden und aus diesem Grund eine Lösungsmöglichkeit 

generiert hat. In dem speziellen Fall von David wird ersichtlich, dass ihm vor 

allem das Untersuchen von Beispielen bzw. ähnlichen Aufgaben (Konkretisierung 

& Abgrenzung) geholfen hat. Daraus konnte er das Verfahren extrahieren und auf 

die aktuelle Aufgabe anwenden (Implizite Nutzung)63. Nach dem Wechsel in den 

Anwendungskontext übernimmt dieser Prozess von David die Eigenschaften 

eines prozeduralen Prozesses mit dem Fokus auf Implizite Nutzung und 

Konkretisierung & Abgrenzung. 

Des Weiteren zeigt sich ein Unterschied in den konzeptuellen Prozessen zwischen 

der Lösungsqualität und der Häufigkeit hinsichtlich der Nutzung von 

Wissenselementen. In den erfolgreichen Prozessen werden deutlich mehr und 

verschiedene Wissenselemente angesteuert als in den nicht erfolgreichen 

 
63 Inwiefern er das Verfahren bezüglich der anderen Facetten verstanden hat, kann aus den 

Daten nicht abgeleitet werden. 
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Prozessen. Dies knüpft erneut an den vorherigen Ausführungen an, dass für das 

konzeptuelle Wissen verschieden Facetten sowie die Verknüpfungen von 

Informationen bzw. Facetten entscheidend sind (Hiebert & Lefevre, 1986, S. 3f.). 

Da für die Aufgabe „Mittelwertsatz“ vor allem konzeptuelles Wissen für die 

Lösung der Aufgabe benötigt wird (Kapitel 5.3.2), ist das häufige Nutzen und 

Verknüpfen von Wissenselementen ebenfalls fördernd für die Lösungsqualität.  

6.2.9 Zusammenfassung der Ergebnisse zur Analyse des Wissens 

Abschließend werden für das Kapitel 6.2 die zentralen Ergebnisse der Analyse 

hinsichtlich des Wissens zusammengefasst: 

 

• Die Veranstaltung bietet ein umfangreiches Wissensangebot zu den 

jeweiligen Aufgaben (Kapitel 6.2.1). 

• Die Wissensmatrix kann zur Darstellung des Wissensangebots als auch 

für die Darstellung der Wissensnutzung der Studierenden genutzt 

werden (Kapitel 6.2.1 und 6.2.2). 

• Die Wissensnutzung hinsichtlich der Wissensarten hängt von den 

Anforderungen der Aufgabe ab (Kapitel 6.2.3).  

• Es wurde drei Arten von Prozessen identifiziert: (1) Die prozeduralen 

Prozesse haben einen Fokus auf Implizite Nutzung sowie 

Konkretisierung & Abgrenzung. Die konzeptuellen Prozesse haben einen 

Fokus auf (2a) Implizite Nutzung sowie Bedeutung & Vernetzung oder 

(2b) Explizite Formulierung und Konkretisierung & Abgrenzung 

(Kapitel 6.2.4). 

• Schwierigkeiten sind aufgabenabhängig. In den prozeduralen Inhalten 

lassen sich diese vor allem in der Impliziten Nutzung und Expliziten 

Formulierung identifizieren. In den konzeptuellen Inhalten lassen sich 

diese in allen Facetten feststellen (Kapitel 6.2.6). 

• Die Studierenden nutzen in ihren Bearbeitungen etwa knapp die Hälfte 

der angebotenen Wissenselemente (Kapitel 6.2.7). 

• Erfolgreiche prozedurale Prozesse zeichnen sich dadurch aus, dass 

Schwierigkeiten hinsichtlich der Facette Explizite Formulierung 

beseitigt werden. Erfolgreiche konzeptuelle Prozesse nutzen vor allem 

die Facette Implizite Nutzung und Bedeutung & Vernetzung. Weniger 

erfolgreiche Prozesse fokussieren stark auf Explizite Formulierung und 

Konkretisierung & Abgrenzung (einzelner Konzepte bzw. 

Zusammenhänge) (Kapitel 6.2.8). 
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6.3 Rekonstruktion von Heurismen in den 

Problembearbeitungsprozessen 

Dieses Kapitel beschäftigt sich mit der Nutzung von Heurismen in den 

Problembearbeitungsprozessen der Studierenden.  

Entgegen der Betrachtung von Steuerung (Kapitel 6.1) und Wissen (Kapitel 6.2) 

wird dieses Kapitel nicht mit einer beispielhaften Bearbeitung beginnen, da in 

Kapitel 5.4.3 bereits einige Beispiele der jeweiligen Heurismen aufgeführt 

worden sind. In Kapitel 6.3.1 wird mit einer Übersicht zur Nutzung der 

Heurismen begonnen. Dabei werden häufige und selten genutzte Heurismen 

diskutiert. In Kapitel 6.3.2 wird ein besonderer Fokus auf die Abhängigkeit der 

Heurismennutzungen von den jeweiligen Aufgaben bzw. Lerngruppen gelegt. 

Anschließend wird in Kapitel 6.3.3 die Heurismennutzung mit dem Erfolg bzw. 

Misserfolg in Zusammenhang gesetzt. Abschließend werden die zentralen 

Ergebnisse zu den Heurismen festgehalten (Kapitel 6.3.4). 

6.3.1 Überblick über die Nutzung der Heurismen 

In diesem Abschnitt wird die Nutzung der Heurismen dargestellt. Damit 

fokussiert dieses Kapitel die folgende Forschungsfrage: 

 

(H1) Welche Heurismen treten in den Problembearbeitungsprozessen auf? 

 

Für einen ersten Überblick über die Nutzung der Heurismen werden die 

Häufigkeiten in der Tabelle 35 zusammengestellt.  

Zunächst werden einige Beobachtungen aus Tabelle 35 abgeleitet. Insgesamt 

konnten 167 Nutzungen von Heurismen rekonstruiert werden. Dabei zeigen sich 

größere Unterschiede zwischen den unterschiedlichen Lernenden bzw. 

Lerngruppen. Z. B. verwendet David in seinen Problembearbeitungsprozessen 

63-mal einen speziellen Heurismus, während Nick lediglich 18 Heurismen nutzt. 

Dies scheint vorerst einen erheblichen Unterschied darzustellen. Die Häufigkeit 

der Heurismennutzung steht jedoch in direktem Zusammenhang mit der 

Bearbeitungszeit. David wendet mit 63 die meisten Heurismen an und benötigt 

auch die meiste Zeit für die drei Aufgaben (siehe Tabelle 16). Im Gegensatz dazu 

verwendet Lukas lediglich drei Heurismen, beschäftigt sich jedoch nur mit einer 

Aufgabe und hat dementsprechend auch die kürzeste Bearbeitungszeit. Nick nutzt 

18 Heurismen, was nach Lukas die zweitniedrigste Anzahl darstellt, und hat 

ebenfalls die zweitkürzeste Bearbeitungszeit. Lediglich bei den beiden 

Lerngruppen von Alex und Thomas sowie Lea, Lisa, Sarah und Paula kehrt sich 

dieses Muster um. Insgesamt lässt sich dennoch ableiten, dass eine längere 

Bearbeitungszeit tendenziell mit einer höheren Heurismennutzung einhergeht. 
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Heurismus David G3 G4 Nick Lukas Gesamt 

Begriffe klären 8 2 2 4 0 16 

Skizze 4 5 7 1 0 17 

Imaginäre Figur 7 1 4 0 0 12 

Spezialfall 11 2 1 0 0 14 

Fallunterscheidung 0 0 0 2 0 2 

Nutzung aller 

Voraussetzungen 

3 4 8 0 0 15 

Systematisierungshilfen 10 0 0 0 0 10 

Metapher 3 2 4 0 0 9 

Rückführungsprinzip 1 0 5 0 0 6 

Ähnliche Aufgabe 7 9 10 9 0 35 

Suche nach neuen 

Hinweisen 

5 4 1 1 2 13 

Rückwärtsarbeiten 0 0 1 0 0 1 

Vorwärtsarbeiten 5 5 5 1 1 17 

Gesamt 63 34 48 18 3 167 

Tabelle 35: Häufigkeit der Nutzung bezüglich der Heurismen (G3 = Alex und Thomas; G4 = Lea, 

Lisa, Sarah und Paula) 

Geringe Nutzung von Heurismen 

In der Gesamtbetrachtung (Tabelle 35) treten insbesondere die am seltensten 

sowie am häufigsten angewandten Heurismen deutlich hervor. Am wenigsten 

konnte der Heurismus Rückwärtsarbeiten (1-mal) identifiziert werden. „Die 

Frage ist, worauf wollen wir jetzt hinaus? Und das habe ich mich jetzt schon in 

der Übung gefragt“ (Lea, Aufgabe „Mittelwertsatz“). Lea dreht mit dieser 

Aussage den Kontext und fragt sich, was überhaupt das Ziel ist und was dafür im 

Vorhinein verlangt wird. Damit initiiert Lea in ihrer Lerngruppe einen Impuls und 

leitet eine kurze Diskussion ein, um auf Basis der Ungleichung aus der 

Aufgabenstellung Umformungen vorzunehmen, die mithilfe des Mittelwertsatzes 

der Differentialrechnung durchgeführt werden können. Es muss allerdings 

erwähnt werden, dass nach dieser kurzen Diskussion die generell, globale 
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Vorgehensweise des Rückwärtsarbeiten nicht weiter ersichtlich und es bei dem 

einzelnen Impuls geblieben ist.  

Ebenfalls kann der Heurismus Fallunterscheidung (2-mal) selten identifiziert 

werden. Dies kann daran liegen, dass eine Fallunterscheidung aus theoretischer 

Perspektive wenig sinnvoll bei der Bearbeitung der Aufgaben erscheint. 

Allerdings wird eine Fallunterscheidung bei der Lösung einer ähnlichen Aufgabe 

des Tutoriums genutzt. Dies ist gleichzeitig der Grund, weshalb Nick in seiner 

Bearbeitung zur Aufgabe „Differenzierbarkeit prüfen“ ebenfalls an zwei 

verschiedenen Stellen eine Fallunterscheidung durchführt (Abbildung 40). „Hier 

könnte ich auch wieder in drei Fälle unterscheiden“ sowie „hier mache ich auch 

wieder zwei Fallunterscheidungen“.  

 

 

Abbildung 40: Nicks Fallunterscheidung 

Häufige Nutzung von Heurismen 

Als nächstes wird auf drei Heurismen eingegangen, die in fast jedem 

Problembearbeitungsprozess identifiziert werden können. Bei dem ersten 

Heurismus handelt es sich dabei um Ähnliche Aufgabe, welcher auch gleichzeitig 

(mit Abstand) am häufigsten (35-mal) genutzt wird. Die Nutzung zeigt sich vor 

allem dadurch, dass auf die Aufgabe aus dem Tutorium (vgl. Kapitel 5.3) 

zurückgegriffen wird. Sie hilft dabei, eine Idee zu generieren, was überhaupt 

gemacht werden soll oder während der Bearbeitung nachgeschaut wird, ob man 

auf dem richtigen Weg ist und die eigene Vorgehensweise absichern möchte. In 

einigen Fällen werden im Skript oder Internet nach Ähnlichen Aufgaben gesucht. 

Das Suchen bzw. Nutzen von Ähnlichen Aufgaben aus dem Internet ist für die 

Studierenden in dieser Stichprobe, außer Lukas, allerdings erst die letzte Option. 

Obwohl dieser Heurismus in fast jedem Prozess vorkommt, wird in der Aufgabe 

„Mittelwertsatz“ und „Differenzierbarkeit prüfen“ vermehrt auf Ähnliche 
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Aufgaben zurückgegriffen, während dieser in der Aufgabe „L´Hospital“ kaum, 

aber mindestens 1-mal genutzt wird. Letztendlich ist die hohe Nutzung dieses 

Heurismus keine Überraschung, da der Kontext der Veranstaltung eine 

vorbereitende Übungsaufgabe zu Verfügung stellt. Dieser Ablauf wurde das 

gesamte Semester durchgeführt, wodurch den Studierenden bewusst ist, dass die 

Aufgaben aus dem Tutorium in gewisser Weise eine Hilfe für die 

Hausaufgabenbearbeitungen darstellen.  

Der zweite Heurismus, welcher in fast jedem Problembearbeitungsprozess 

identifiziert werden konnte, wird nicht sofort aus der Gesamtübersicht (Tabelle 

35) deutlich, da dieser nur 16-mal genutzt wurde. Es handelt sich dabei um den 

Heurismus Begriffe klären. Ein Unterschied zur Ähnlichen Aufgabe liegt darin, 

dass dieser Heurismus in den Prozessen meistens nur 1-mal pro Prozess genutzt 

wird. In den jeweiligen Aufgaben werden die Begriffe Differenzierbarkeit, 

Mittelwertsatz und L´Hospital nachgeschaut. Dabei signalisiert David, dass er 

sich mit dem gesamten Begriff vertraut machen möchte. Dies zeigt sich auch in 

Davids Nutzung von Wissen (bezüglich der Begriffe nutzt bzw. aktiviert David 

verschiedene Wissensfacetten). Aus diesem Grund schlägt er die Begriffe im 

Skript nach und versucht die Ausführungen nachzuvollziehen. In den anderen 

Lerngruppen werden eher Teile des Begriffs herangezogen. Alex und Thomas 

beziehen sich z. B. auf die Bedeutung einzelner Symbole und deren Schreibweise: 

„Warum ist denn das 𝑥0 da unten“ (Mittelwertsatz prüfen)? Nick bezieht sich auf 

die Voraussetzungen für die Anwendung der Regel von L´Hospital: „Also, wenn 

einer dieser beiden Fälle auftritt, 
0

0
 oder 

∞

∞
 [und] der Zähler und Nenner jeweils 

differenzierbar sind, [dann] kann man den Zähler und Nenner einfach so 

ableiten.“ 

Der dritte Heurismus ist das Vorwärtsarbeiten. Im Gegensatz zum 

Rückwärtsarbeiten wirkt das „Drauf-los“-Arbeiten vom Anfangszustand als das 

bevorzugte Vorgehen. In den Aufgaben scheint den Studierenden der 

Anfangszustand, sowie in einigen Fällen der Endzustand klar zu sein. 

Rückwärtsarbeiten besitzt an dieser Stelle das Potenzial, eine Lösung zu 

ermitteln. Insbesondere in der Aufgabe „Differenzierbarkeit prüfen“, da die 

Aufgabenstellung schon das Endergebnis suggeriert. Ohne weiter über den 

Endzustand zu reflektieren, bleibt oftmals lediglich das Vorwärtsarbeiten, also 

beginnend von den Bedingungen und Voraussetzungen, übrig. Insbesondere in 

der Aufgabe „L´Hospital“ wird dies deutlich. Die Aufgabenstellung verlangt die 

Berechnung eines Grenzwerts, wobei der Endzustand nicht komplett unklar, aber 

auch nicht vollständig klar ist. Es ist nicht ersichtlich, ob Divergenz, Konvergenz, 

unbestimmte Divergenz oder ein bestimmter Grenzwert nachgewiesen werden 

soll. Es bleibt für die Studierenden demnach nichts anderes übrig, als Schritt-für-

Schritt vom Startpunkt auszugehen. In der Aufgabe „Differenzierbarkeit prüfen“ 

zeigt sich das Vorwärtsarbeiten durch das Einsetzen in die Definition der 

Differenzierbarkeit sowie anschließender Grenzwertbestimmung und in der 
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Aufgabe „Mittelwertsatz“ durch die Versuche des Umformens bezüglich der 

Ungleichung. 

6.3.2 Aufgaben- bzw. lerngruppenabhängige Heurismen 

Laut der Theorie können Heurismen entweder aufgabenspezifisch (Rott, 2013, S. 

136ff.) oder lerngruppenabhängig (Stenzel, 2023a, S. 31) sein. Durch den 

Gesamtüberblick und die vorherigen Ausführungen konnte bereits festgestellt 

werden, dass es Heurismen gibt, die kaum oder in fast jeder Bearbeitung genutzt 

werden (vgl. auch Tabelle 35). In beiden Fällen lässt sich daher nicht von einer 

Aufgaben- bzw. Lerngruppenabhängigkeit sprechen. Die beiden gering genutzten 

Heurismen (Rückwärtsarbeiten und Spezialfall) scheinen Einzelfälle zu sein. Die 

häufig genutzten Heurismen (Ähnliche Aufgabe, Begriffe klären und 

Vorwärtsarbeiten) werden zwar in fast jedem Prozess genutzt, wirken daher 

jedoch nicht speziell, sondern eher allgemein anwendbar64. Die 

Aufgabenabhängigkeit bzw. Lerngruppenabhängigkeit wird im Folgenden 

tiefergehend analysiert. Damit wird folgende Forschungsfrage adressiert:  

 

(H2) Ist die Nutzung von Heurismen aufgabenabhängig? Ist die Nutzung von 

Heurismen lerngruppenabhängig? 

 

Zunächst soll darauf hingedeutet werden, dass im Kontext der kleinen Stichprobe 

in dieser Arbeit kaum von einer Abhängigkeit bzw. eines typischen Verhaltens 

bezüglich der Nutzung Heurismen gesprochen werden kann. Die folgenden 

Ausführungen sind demnach lediglich Tendenzen, die auf eine Abhängigkeit bzw. 

typisches Nutzungsverhalten hindeuten. Diese Tendenzen werden ebenfalls in der 

Tabelle 36 dargestellt. In dieser Tabelle beschreibt das X, ob in einem Prozess ein 

spezifischer Heurismus (mindestens 1-mal) verwendet wird. 

 

 

 

 

 

 

 

 

 

 
64 Dies lässt sich allerdings auch anders deuten. Da die Heurismen in fast jedem 

Bearbeitungsprozess benutzt werden, können diese auch als typische Heurismen für die 

Bearbeitung dieser Aufgaben aufgefasst werden. 
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Tabelle 36: Verwendung der Heurismen 
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Heurismus: Skizze 

Skizze ist einer der häufiger genutzten Heurismen (17-mal). Bei der Nutzung von 

David und Nick wird die Skizze im Zusammenhang mit dem Heurismus Begriffe 

klären genutzt, indem sie versuchen, die relevanten Begriffe nachzuvollziehen. 

Dabei beziehen sie sich auf die Visualisierungen der Begriffe aus dem Skript. Die 

restliche Nutzung des Heurismus Skizze beschränkt sich ausschließlich auf das 

Visualisieren von spezifischen Funktionsgraphen.  

 

• Alex und Thomas visualisieren sich den Graphen der Funktion 

𝑥2 𝑐𝑜𝑠 (
ⅇ𝑥

𝑥2), um grafisch zu überlegen, ob die Funktion differenzierbar 

sein kann.  

• In der Aufgabe „L´Hospital“ wird der Graph der natürlichen 

Logarithmusfunktion visualisiert, um zu überprüfen, welche Werte 

dieser annehmen kann. 

• In der Aufgabe „Mittelwertsatz“ werden sowohl die speziellen als auch 

allgemeinen Graphen der Exponential- und Sinusfunktion einzeln und 

als Verkettung visualisiert, um zu untersuchen, welche Werte sie 

annehmen können. 

 

Der Heurismus Skizze kann in den Prozessen zu jeder Aufgabe identifiziert 

werden (Tabelle 36). Darüber hinaus zeigt sich, dass die Skizze in jedem Prozess 

zur Aufgabe „Mittelwertsatz“ genutzt wird. Demnach kann die Tendenz vermutet 

werden, dass der Einsatz des Heurismus Skizze typisch für die Aufgabe 

„Mittelwertsatz“ ist. Bei dieser Formulierung muss bedacht werden, dass der 

Heurismus mit zwei verschiedenen Verwendungen in der Aufgabe eingesetzt 

wird. Zum einen im Zusammenhang mit der Begriffsklärung des Mittelwertsatzes 

und zum anderen für die Visualisierung von Funktionen. Hinsichtlich der 

Lerngruppenabhängigkeit kann zwar geschlossen werden, dass der Heurismus 

Skizze populär ist, aber lediglich Alex und Thomas in jedem Prozess darauf 

zurückgreifen. 

Heurismus: Spezialfall 

Spezialfälle (14-mal, vgl. Tabelle 35) können lediglich in den 

Problembearbeitungsprozessen der beiden Aufgaben „Mittelwertsatz“ und 

„L´Hospital“ identifiziert werden (Tabelle 36). David nutzt besonders häufig 

Spezialfälle, um sich verschiedene Beispiel-Grenzwerte in der Aufgabe 

„L´Hospital“ anzuschauen und bestimmt diese anschließend. Durch das Einsetzen 

von Zahlen versucht er, sich dem allgemeinen Ergebnis anzunähern. Auch die 

Lerngruppe Alex und Thomas sowie Lea, Lisa, Sarah und Paula wenden diese 

Strategie in der Aufgabe „L´Hospital“ an. In der Aufgabe „Mittelwertsatz“ sind 

es erneut Alex und Thomas sowie David, welche Spezialfälle nutzen. Aufgrund 
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der Voraussetzung 0 ≤ 𝑦 ≤ 𝑥 setzen sie Zahlen für 𝑦 und 𝑥 in die vorgegebene 

Ungleichung der Aufgabe sowie Gleichung des Mittelwertsatzes ein. Zum einen 

versuchen sie, damit den Sinn dieser Voraussetzung herausfinden und zum 

anderen mögliche Auswirkungen auf die (Un-)Gleichung festzustellen. 

Auf den ersten Blick lässt sich die Tendenz ableiten, dass für die 

Grenzwertbestimmung mit L´Hospital die Nutzung von Spezialfällen typisch 

scheint. Allerdings liegt dies eher an der Funktion, die Teil der Aufgabe ist. In der 

Aufgabe „Differenzierbarkeit prüfen“ muss ebenfalls ein Grenzwert bestimmt 

werden, wobei in den Prozessen zu dieser Aufgabe keine Spezialfälle genutzt 

werden65. Möglicherweise ist die Exponentialfunktion mit zwei Unbekannten für 

die Studierenden schwierig zu begreifen, wodurch durch das Einsetzen von 

Zahlen ein besseres Verständnis für die Aufgabe entwickelt werden kann. 

Bezüglich der Lerngruppenabhängigkeit lässt sich schwierig von einer Tendenz 

sprechen, obwohl Alex und Thomas sowie David diesen Heurismus in zwei von 

drei Prozessen nutzen. Allerdings ist es nur David, der diesen Heurismus in 

besonders umfangreichem Maße anwendet (11-mal).  

Heurismus: Suche nach Hinweisen 

Die Suche nach Hinweisen (im Veranstaltungsmaterial oder externen Materialien) 

wird dann von Studierenden genutzt, wenn sie Probleme damit haben, ein 

Vorgehen für die Lösung einer Aufgabe zu finden oder wenn sie auf 

Schwierigkeiten im Lösungsprozess stoßen. Die inhaltlichen Gründe in den 

Problembearbeitungsprozessen sind dabei vielfältig. David sucht z. B. nach einer 

passenden Beweismethode im Skript, Thomas sucht im „Mathe-Buch“ nach 

weiteren Hilfen zur Differenzierbarkeit, Lukas versucht aus YouTube-Videos 

Ableitungen für den Kosinus zu finden und die Lerngruppe um Lea, Lisa, Sarah 

und Paula suchen nach konkreten Ableitungsregeln in verschiedenen Materialien.  

Lediglich David nutzt diesen Heurismus in jedem seiner Prozesse (Tabelle 36). 

Dabei ist auffällig, dass die Suche nach neuen Hinweisen erst spät in seinen 

Prozessen identifiziert werden kann. Dies deutet darauf hin, dass dies eine 

Problemlösestrategie ist, welche erst zum Einsatz kommt, wenn andere 

Heurismen nicht zu einer zufriedenstellenden Lösung geführt haben. In den 

Prozessen der anderen Studierenden zeigt sich die Anwendung dieses Heurismus 

ebenfalls erst ab etwa der Mitte des Prozesses. 

Bezüglich der Aufgabenabhängigkeit kann keine Tendenz festgestellt werden. 

Heurismus: Nutzung aller Voraussetzungen 

Der Heurismus Nutzung aller Voraussetzungen kann zwar in Prozessen zu allen 

Aufgaben identifiziert werden (Tabelle 36), allerdings zeigt sich die häufige 

 
65 Fast die identische Überlegung kann auch für den Heurismus Rückführungsprinzip (siehe 

weiter unten) festgestellt werden. 
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Anwendung vor allem in den beiden Aufgaben „Mittelwertsatz“ und 

„L´Hospital“. In der Aufgabe „Mittelwertsatz“ wird insbesondere auf die 

Voraussetzung 0 ≤ 𝑦 ≤ 𝑥 und die Betragsstriche in der Ungleichung Bezug 

genommen. Dabei überlegen sich die Studierenden, inwiefern diese beiden 

Voraussetzungen zusammenpassen bzw. voneinander abhängig sind. Lisa: „Aber 

vielleicht ist das auch mit den Betragsstrichen einfach nur mit diesen, mit dieser 

Anmerkung. Wenn man jetzt nämlich zum Beispiel nicht die Definition hätte, dass 

𝑦 ≤ 𝑥.“ Die Aussage zeigt, dass die Voraussetzungen die Studierenden etwas 

verunsichern und sie nicht genau wissen, was es damit genau auf sich hat. 

In der Aufgabe „L´Hospital“ wird sich auf die (einzige) Voraussetzung 𝑎 > 1 

bezogen. Sowohl Alex: Ja, aber wir dürfen nicht vergessen, dass 𝑎, 𝑎 wächst 

nicht. […] 𝑎 ist eine Konstante > 1“ und Paula: „Ah, deswegen darf das auch 

niemals 1 sein, weil das 𝑙𝑛(𝑎) ist ja immer 0 und du darfst ja nicht durch 0 teilen“ 

fassen die Erkenntnisse gut zusammen. 

Obwohl die beiden Lerngruppen Alex und Thomas sowie Lea, Lisa, Sarah und 

Paula als auch David diesen Heurismus in ihrer Bearbeitung nutzen, kann 

dennoch nicht von einer Lerngruppenabhängigkeit ausgegangen werden. 

Bezüglich der Aufgabenabhängigkeit lässt sich ebenfalls keine Tendenz 

erkennen. 

Heurismus: Systematisierungshilfen 

Systematisierungshilfen werden in den Problembearbeitungsprozessen lediglich 

von David genutzt (Tabelle 36). David ordnet sein Vorgehen, indem er wichtige 

Formeln farbig markiert, mathematische Aussagen markiert oder unterstreicht 

sowie Spezialfälle mit verschiedenen Farben darstellt (z. B. in Abbildung 41).  

 

 

Abbildung 41: Davids Systematisierungshilfe 

Während der Prozesse sind die Systematisierungshilfen für David keinesfalls 

einmalige Nutzungen, sie stellen eher ein ständiges heuristisches Mittel für ihn 

dar, auf welches in jeder Aufgabe zurückgegriffen wird. Daraus lässt sich 

ableiten, dass der Heurismus Systematisierungshilfen typisch für David ist. 
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Heurismus: Metapher und imaginäre Figur 

Die beiden Heurismen imaginäre Figur und Metapher werden an dieser Stelle 

zusammengelegt. Beide Heurismen sind theoretisch eng miteinander verwandt 

und auch in dieser Studie weisen sie eine starke Näher zueinander auf. Darüber 

hinaus konnten in den Problembearbeitungsprozessen mit einer Ausnahme66 

entweder keiner oder jeweils beide Heurismen identifiziert werden (Tabelle 36). 

Generell zeigt sich, dass die Studierenden in den Aufgaben die beiden Heurismen 

nutzen, wenn sie über spezielle Funktionsgraphen sprechen. Vor allem das „Hin- 

und Herspringen“ bzw. das „Schwingen“ der „Wellenfunktionen“ Kosinus und 

Sinus wird am meisten diskutiert. Darüber hinaus nutzt David diese Heurismen, 

um über die Annäherung beim Grenzwertübergang zu sprechen. Eine 

Besonderheit stellt David in seiner Bearbeitung zur Aufgabe „L´Hospital“ dar. 

Seine Nutzung der imaginären Figur wird „innerhalb“ des Heurismus Spezialfall 

identifiziert. Dabei stellt er sich bildlich vor, was mit den beispielhaft eingesetzten 

Zahlen beim Grenzwertübergang passiert. 

Letztendlich kann keine Tendenz bezüglich der Aufgabenabhängigkeit erkannt 

werden, allerdings nutzt David in allen seinen Bearbeitungen diese beiden 

Heurismen. 

Heurismus: Rückführungsprinzip 

Das Rückführungsprinzip wird in den Daten dieser Arbeit kaum von den 

Studierenden genutzt (6-mal, vgl. Tabelle 35). Zunächst klingt dies überraschend, 

da der Kontext der Veranstaltung durch die Aufgabe aus dem Tutorium bereits 

mögliche Hinweise anbietet. Allerdings liefern diese Aufgaben keine Fakten oder 

Aussagen, welche bei der Bearbeitung der Hausaufgaben helfen, sondern 

Verfahren, die übertragen werden können. Aus diesem Grund wird bei diesem 

Verhalten eher der Heurismus Ähnliche Aufgabe kodiert. Letztlich überwiegt das 

Rückführungsprinzip bei der Bearbeitung der Aufgabe „L´Hospital“, bei der 

David und die Lerngruppe um Lea, Lisa, Sarah und Paula jeweils die Ableitung 

für 𝑎𝑥 aus Karteikarten, Mitschriften aus der Schulzeit und dem Internet 

heraussuchen. Darüber hinaus lässt sich Sarah mithilfe eines Rechners im Internet 

den Grenzwert bestimmen. Bei der Aufgabe „Mittelwertsatz“ nutzt die 

Lerngruppe um Lea, Lisa, Sarah und Paula das Rückführungsprinzip, um 

Unklarheiten zu den Voraussetzungen des Mittelwertsatzes der 

Differentialrechnung zu diskutieren. 

Insgesamt zeigt sich, dass das Rückführungsprinzip eher in der Aufgabe 

„L´Hospital“ genutzt wird. Allerdings liegt das an der speziellen Funktion, die 

abgeleitet werden muss. Müsste bei der Nutzung der Regel von L`Hospital bspw. 

𝑠𝑖𝑛(𝑥) abgeleitet werden, wäre das Rückführungsprinzip möglicherweise nicht 

identifizierbar gewesen. Eine Tendenz zur Aufgabenabhängigkeit lässt sich daher 

 
66 Im Prozess zum Mittelwertsatz nutzt David eine imaginäre Figur, aber keine Metapher. 
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nicht erkennen, da es eher auf die spezielle Ableitung ankommt. Gleiches gilt für 

die Lerngruppenabhängigkeit. 

6.3.3 Vergleich von erfolgreicher und nichterfolgreicher Heurismennutzung 

Nach Schoenfeld (1985; Kapitel 2.2) sind Heurismen ein entscheidender Faktor 

für den Verlauf und Erfolg von Problembearbeitungsprozessen. Im Folgenden 

werden die Problembearbeitungsprozesse bezüglich des Zusammenhangs 

zwischen der Heurismennutzung und Erfolg bzw. Misserfolg der zugehörigen 

Lösungen betrachtet. Die folgenden Ausführungen adressieren demnach die 

Forschungsfrage: 

 

(H3) Inwiefern hängt die Nutzung der Heurismen mit dem Erfolg bzw. 

Misserfolg eines Problembearbeitungsprozesses zusammen? 

 

Zunächst werden Zusammenhänge zwischen (Miss-)Erfolg des Lösungsprodukts 

und Heurismennutzung bezüglich der Häufigkeit bzw. des Vorhandenseins einer 

speziellen Heurismusnutzung in einem Prozess untersucht. Wird die Häufigkeit 

der genutzten Heurismen (wie in Tabelle 35) mit den Lösungsprodukten der 

Studierenden verglichen, dann zeigt sich kein einheitliches Ergebnis. Als Beispiel 

werden die Problembearbeitungsprozesse von Lea, Lisa, Sarah und Paula 

herangezogen. In allen Prozessen erreichen sie eine Lösungsqualität von 

entweder L3 oder L4. Die Häufigkeit der Heurismennutzung unterscheidet sich 

in ihren drei Prozessen allerdings stark. In der Aufgabe Differenzierbarkeit 

konnten lediglich sechs Stellen identifiziert werden, an denen Heurismen 

verwendet werden, während für die Aufgabe „Mittelwertsatz“ 27 und für die 

Aufgabe „L´Hospital“ 15 entsprechende Stellen festgestellt werden konnten. 

Ähnliche Unterschiede zeigen sich auch in den weniger erfolgreichen Prozessen. 

Es gibt wenig erfolgreiche Prozesse, in denen nur an drei Stellen Heurismen (z. 

B. Lukas „Differenzierbarkeit prüfen“) und denen an 18 Stellen Heurismen 

verwendet werden (z. B. David „Mittelwertsatz“).  

Wird die Häufigkeit des Auftretens verschiedener Heurismen (wie in Tabelle 36) 

in Betracht gezogen, lässt sich allerdings eine Tendenz erkennen. 

Problembearbeitungsprozesse in denen wenig verschiedene Heurismen 

verwendet werden, erreichen auch eher eine schlechtere Lösungsqualität. 

Andersrum haben die Prozesse, in denen viele verschiedene Heurismen 

verwendet werden, eher eine hohe Lösungsqualität. Es muss bedacht werden, dass 

die Häufigkeit des Auftretens verschiedener Heurismen in einem Prozess 

durchaus abhängig von der Lerngruppe bzw. eines Studierenden abhängig sein 

kann. David nutzt z. B. in jedem Prozess die meisten verschiedenen Heurismen 

(acht, neun und zehn), wobei zwei Lösungsprodukte mit L3 und ein 

Lösungsprodukt mit L1 eingeschätzt werden. Darüber hinaus muss auch gesagt 

werden, dass Studierende in allen Prozessen auf Schwierigkeiten gestoßen sind 
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und die Anwendung von Heurismen für die Überwindung dieser notwendig sind. 

In dem kurzen Prozess von Lea, Lisa, Sarah und Paula („Differenzierbarkeit 

prüfen“), in dem nur kleine Schwierigkeiten aufgekommen sind, mussten auch 

kaum Heurismen (vier verschiedene) verwendet werden. 

Im nächsten Schritt werden einzelne Heurismen untersucht, indem erfolgreiche 

Prozesse betrachtet werden, um herauszufinden, welche spezifischen Heurismen 

diese Prozesse charakterisieren. Dabei zeigt sich, dass erfolgreiche Prozesse 

nahezu immer die folgenden Heurismen enthalten: Begriffe klären, Skizze, 

Nutzung aller Voraussetzungen, Ähnliche Aufgaben, Vorwärtsarbeiten.  

Diese Heurismen lassen sich allerdings auch in den weniger erfolgreichen 

Prozessen identifizieren, wobei das Nutzen aller Voraussetzungen nur in einem 

der weniger erfolgreichen Prozesse vorkommt. Es bleibt die Frage, welchen 

Einfluss dieser Heurismus auf einen positiven Lösungsverlauf hat. Zunächst 

deutet die Beschreibung dieses Heurismus darauf hin, dass ein (Zwischen-

)Ergebnis kontrolliert wird67. Dies zeigt sich bspw. in der Bearbeitung von Lea, 

Lisa, Sarah und Paula. Sarah möchte nochmal in die Aufgabenstellung gucken 

und schauen, ob sie die Aufgabe vollständig bearbeitet haben: „Ich gucke mir 

nochmal die Aufgabe, ob wir alles gemacht [haben].“ In diesem Moment werden 

zwar Unklarheiten in der Lerngruppe diskutiert (siehe Kapitel 6.2.6), diese haben 

aber keine Auswirkung mehr auf die bereits vorhandene (vollständig korrekte) 

Lösung. Dennoch kann vermutet werden, dass dadurch das Verständnis bei Sarah 

hinsichtlich der Aufgabe bzw. der Verwendung des Wissens für diese Aufgabe 

verbessert wurde. Weitere Verwendungen des Heurismus Nutzung aller 

Voraussetzungen deuten ebenfalls darauf hin, dass kein großer, direkter Einfluss 

auf das Fortschreiten der Lösung, sondern vielmehr auf das Verständnis der 

Studierenden genommen wird. In den Prozessen zum „Mittelwertsatz“ liefern vor 

allem die Aussagen und Diskussionen über die Voraussetzung 0 ≤ 𝑦 ≤ 𝑥 

Aufschluss über die Rolle der Betragsstriche. Noch deutlicher wird dies in den 

Prozessen zur Aufgabe „L´Hospital“. Durch Aussagen und Diskussion über die 

Voraussetzung 𝑎 > 1 wird den Studierenden klar, warum diese Bedingung für die 

Aufgabenstellung notwendig ist. Paula: „Ah, deswegen darf das auch niemals 1 

sein, weil das 𝑙𝑛(𝑎) ist ja immer 0 und du darfst ja nicht durch 0 teilen.“ 

Insgesamt scheint der Heurismus Nutzung aller Voraussetzungen keinen großen 

Einfluss auf das Fortschreiten der Lösung zu haben. 

Ein weiterer Heurismus, welcher zwar nicht alle erfolgreichen Prozesse 

charakterisiert, aber ausschließlich in solchen vorkommt, ist das 

Rückführungsprinzip. In der Aufgabe „L´Hospital“ haben sich die Studierenden 

die Ableitung von 𝑎𝑥 aus verschiedenen Materialien herausgesucht und sich einen 

 
67 Die Beschreibung des Heurismus Nutzung aller Voraussetzungen: „Es wird geprüft, ob alle 

in der Aufgabenstellung gegebenen Bedingungen einbezogen worden sind.“ Dabei wird 

deutlich, dass die Bearbeitung (bzw. die Überlegungen) bereits in eine gewisse Richtung 

vorangeschritten sein muss. 
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speziellen Grenzwert anzeigen lassen. Die Ableitung ist essenziell für die 

Anwendung der Regel von L´Hospital, um zu einer korrekten Lösung der 

Aufgabe zu gelangen. Das Anzeigen des Grenzwerts wurde genutzt, um die 

eigene Lösung zu vergleichen. Damit wird die eigene Lösung zwar nicht effektiv 

vorangetrieben, allerdings abgesichert. Dies kann auch als Fortschreiten der 

Lösung aufgefasst werden. In der Aufgabe „Mittelwertsatz“ wurde der Heurismus 

verwendet, um Unklarheiten hinsichtlich des Mittelwertsatzes der 

Differentialrechnung zu beseitigen. Damit wurde möglicherweise ein nicht 

zielführendes Verhalten abgewendet. Insgesamt zeigt sich daher die Tendenz, dass 

die Verwendung dieses Heurismus einen positiven Einfluss auf das Fortschreiten 

der Lösung haben kann. Dennoch muss erwähnt bleiben, dass dieser Heurismus 

nicht allein für eine korrekt Lösung verantwortlich ist, sondern in manchen Fällen 

dazu beitragen kann. Es liegen darüber hinaus weitere Prozesse vor, die 

erfolgreich enden, ohne das Rückführungsprinzip anzuwenden.  

Schließlich werden gezielt einzelne Stellen („Barrierestellen“) der jeweiligen 

Prozesse betrachtet, in denen die Verwendung von Heurismen zu einem 

Fortschritt im Lösungsprozess beitragen. Dabei ist insbesondere der Heurismus 

Skizze hervorzuheben. In den Prozessen zu allen drei Aufgaben lässt sich 

beobachten, dass Visualisierungen von Funktionen einen wesentlichen Fortschritt 

im Lösungsweg der Studierenden bewirken. Diese Visualisierungen helfen den 

Studierenden Vermutungen aufzustellen (Ist eine Funktion differenzierbar?), 

Wertebereiche festzulegen und zu überprüfen (von speziellen Funktionen), 

Vermutungen zu bestätigen (hinsichtlich Abschätzungen) sowie das Verständnis 

zu erweitern (z. B. Grenzwertverhalten von 𝑙𝑛 sowie Begriffsbildung). Ähnlich 

wie beim Heurismus Skizze helfen den Studierenden Metaphern und imaginäre 

Figuren über den Sachverhalt von Funktionen zu sprechen und damit ihre 

Argumentationen voranzutreiben. 

Weitere Verwendungen eines Heurismus, der an mehreren Stellen zum 

Lösungsfortschritt beiträgt, ist Ähnliche Aufgabe. Dieser Heurismus hilft bei der 

Planung und Ideengenerierung für das eigene Vorgehen. Darüber hinaus werden 

Ähnliche Aufgaben genutzt, um das Vorgehen in der eigenen Lösung abzusichern 

bzw. zu vergleichen. Dabei zeigt sich, dass die vorbereitende Aufgabe aus dem 

Tutorium für die Studierenden eine wertvolle Quelle ist. Das Übertragen aus der 

Aufgabe des Tutoriums erweist sich jedoch nicht in jedem Fall als erfolgreich. So 

sind auch viele Anwendungen des Heurismus erfolglos oder führen Studierende 

sogar in eine falsche Richtung und behindern damit den Lösungsprozess. Die 

Gründe dafür sind unter anderem fehlendes Wissen, um das Vorgehen für die 

eigene Aufgabe zu abstrahieren, sowie fehlendes Kontrollverhalten, um Wissen 

korrekt einzusetzen.  

Es werden noch zwei Heurismen erwähnt, die teilweise sogar einen negativen 

Einfluss auf den gesamten Lösungsprozess ausüben. Zum einen ist dies die Suche 

nach neuen Hinweisen. Bei der Verwendung dieses Heurismus haben Studierende 
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keine wertvollen Informationen gefunden, die für die Aufgabenlösung hilfreich 

sein könnten. Dabei hatte diese Suche sogar noch Potenzial, die Lösung in eine 

falsche Richtung zu lenken (z. B. statt der Differenzierbarkeit, die Stetigkeit einer 

Funktion in einem Punkt zeigen). Gleiches gilt für die Verwendung des 

Heurismus Spezialfälle. Zunächst können Spezialfälle hilfreiche Elemente sein, 

um bspw. ein Gefühl für die Grenzwertbestimmung oder den Wertebereich einer 

Funktion zu bekommen. Dies muss allerdings auf den allgemeinen Fall 

übertragen werden, sodass nicht nur auf der Ebene des Beispiels geblieben wird 

(siehe in Davids Bearbeitungen). 

6.3.4 Zusammenfassung der Ergebnisse zur Analyse der Heurismen 

Abschließend werden für das Kapitel 6.3 die zentralen Ergebnisse der Analyse 

hinsichtlich Heurismen zusammengefasst: 

 

• Der Heurismus Ähnliche Aufgabe wird am meisten genutzt (35-mal) 

(Kapitel 6.3.1). 

• Die Nutzung von verschiedenen Heurismen liegt pro 

Problembearbeitungsprozess zwischen 2-10 (Tabelle 36 in Kapitel 

6.3.2). 

• Wenig Hinweis sowohl auf eine aufgabenabhängige noch 

lerngruppenabhängige Nutzung von Heurismen. Eine (kleine) 

Ausnahme hinsichtlich lerngruppenabhängiger Nutzung von Heurismen 

zeigen Davids Prozesse (Kapitel 6.3.2). 

• Die Anzahl genutzter Heurismen deuten keine Auswirkung auf Erfolg 

hin. Die Vielfalt verschieden genutzter Heurismen deutet darauf hin, 

dass eine höhere Anzahl vorteilhaft ist (Kapitel 6.3.3). 

• Rückführungsprinzip, Ähnliche Aufgabe und Skizze zeigen Hinweise auf 

einen positiven Einfluss auf den Prozess (Kapitel 6.3.3). 

• Suche nach nützlichen Hinweisen und Spezialfälle weisen negatives 

Potenzial für den Prozess auf (Kapitel 6.3.3). 

6.4 Gemeinsame Analyse der Kategorien zu 

Problembearbeitungsprozessen 

In den vorherigen Ausführungen wurden die Problembearbeitungsprozesse 

anhand der Kategorien nach Schoenfeld (1985) strukturiert und voneinander 

getrennt betrachtet. Da es einige Wechselwirkungen zwischen den Kategorien 

gibt (Schoenfeld, 1985, S. 44), werden diese in den folgenden Ausführungen 

zusammen betrachtet. 

Um sich dem Zusammenspiel zwischen den Kategorien zu nähern, werden im 

Folgenden zunächst die Interaktionen der jeweiligen Kategorien betrachtet 
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(Kapitel 6.4.1). Anschließend wird der Frage nachgegangen, welche Aspekte für 

die Episodenwechsel in einem Problembearbeitungsprozess ausschlaggebend 

sind (Kapitel 6.4.2). Außerdem werden die bisherigen Analysen herangezogen, 

um festzustellen, ob die Aufgaben tatsächlich Probleme für die Studierenden 

darstellen (Kapitel 6.4.3). Abschließend werden die zentralen Ergebnisse zu den 

gemeinsamen Betrachtungen festgehalten (Kapitel 6.4.4). 

6.4.1 Interaktion der Kategorien des Problemlösens 

Im Folgenden werden die Interaktionen zwischen den einzelnen Kategorien 

betrachtet. Dabei werden jeweils zwei Kategorien miteinander verglichen. Die 

folgenden Ausführungen adressieren demnach die Forschungsfrage: 

 

(Z1) Welche Interaktionen lassen sich zwischen Steuerung, Heurismen und 

Wissen identifizieren? 

Interaktion zwischen Steuerung und Heurismen 

Zu Beginn der Analyse wird die Interaktion von Steuerung und Heurismen 

betrachtet. In allen von Schoenfeld beschrieben Episoden lässt sich die Nutzung 

von Heurismen klar identifizieren (Abbildung 42).  

 

 

Abbildung 42: Interaktion zwischen Steuerung und Heurismen (Code-Relations-Browser aus 

maxQDA) 

Abbildung 42 zeigt die Häufigkeit der Interaktionen bestimmter Heurismen und 

Episoden aller Problembearbeitungsprozesse. Dabei sind bestimmte 

Interaktionen zwischen Heurismen und verschiedener Phasen im 
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Problembearbeitungsprozess charakteristisch. Die Episoden Reading (fünf 

Interaktionen zwischen Heurismen und Episoden nach Schoenfeld) und 

Transition (acht Interaktionen) werden an dieser Stelle nicht weiter betrachtet, da 

in den jeweiligen Episoden zu wenig Heurismen auftauchen. 

 

Analysis (28 Interaktionen): In der Episode Analysis zeigt sich, dass der Fokus 

auf der Klärung von Begriffen sowie das Heranziehen von Ähnlichen Aufgaben 

liegt. Es geht den Studierenden darum, das jeweilige Konzept 

(Differenzierbarkeit), den Zusammenhang (Mittelwertsatz) und das Verfahren 

(L´Hospital) zu verstehen sowie den Anwendungskontext der Inhalte anhand 

ähnlicher Aufgaben zu analysieren. 

Exploration (92 Interaktionen): In der Episode Exploration wird ein breites 

Spektrum verschiedener Heurismen genutzt. Die drei häufigsten Heurismen sind 

Ähnliche Aufgabe, Suche nach neuen Hinweisen und der Rückgriff auf einen 

Spezialfall. 

Planning und Implementation (15 und 30 Interaktionen): Während Planning 

dominieren vor allem die Heurismen Vorwärtsarbeiten und Ähnliche Aufgaben. 

Beide Heurismen bleiben auch in der Implementation von zentraler Bedeutung. 

In diesen beiden Episoden wird der Fokus auf das schrittweise Voranschreiten in 

Richtung einer Lösung sowie der Rückgriff auf die Tutoriumsaufgabe gelegt. 

Verification (16 Interaktionen): In der Verification werden ebenfalls eine Vielzahl 

von verschiedenen Heurismen genutzt. Allerdings lässt sich hierbei kein klarer 

Schwerpunkt auf spezifische oder typische Heurismen erkennen. 

 

Die gleichen Tendenzen (wie oben aufgeführt) sind auch dann erkennbar, wenn 

die Heurismen hinsichtlich der Episoden aufgabenweise untersucht werden (siehe 

Anhang). Es existieren aufgrund der kleinen Stichprobe jedoch Einzelfälle, die 

herausstechen, wie zum Beispiel die häufige Nutzung des Spezialfalls in der 

Aufgabe „L´Hospital“, insbesondere durch den Prozess von David, der diesen 

Heurismus intensiv und an mehreren Stellen seines Prozesses verwendet hat. 

Insgesamt ist die Menge und Vielfalt der angewandten Heurismen während der 

Exploration am größten. Dies bestätigt die Aussage von Schoenfeld, dass die 

Exploration das Herzstück des Problemlösens bildet (Schoenfeld, 1985, S. 110). 

Es ist jedoch erwähnenswert, dass verschiedene Heurismen auch in jeder weiteren 

Episode vorkommen, darunter insbesondere die Implementation (bzw. die dritte 

Phase in Pólyas Modell), auch wenn dies seltener geschieht. Diese Beobachtung 

wird durch die Ergebnisse von Rott (2013, S. 355) gestützt, der ebenfalls 

Heurismen in allen Episoden identifizieren konnte. Damit widerspricht dies 

zunächst den bestehenden Modellen zum Einsatz von Heurismen in bestimmten 

Phasen des Problembearbeitungsprozesses (vgl. Kapitel 2.5.2). Allerdings zeigt 

sich, dass die Häufigkeit der Verwendung spezifischer Heurismen durchaus dem 

theoretischen Modell von Bruder und Collet (2011) entspricht. Heuristische 
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Prinzipien (für das Finden von Lösungsideen), lassen sich vor allem in der 

Exploration wiederfinden. Während heuristische Hilfsmittel vor allem in der 

Analysis erwartet werden (und dies auch tun) sind sie ebenfalls stark in der 

Exploration vertreten. Dies könnte allerdings damit zusammenhängen, dass 

Exploration generell in den Problembearbeitungsprozessen dieser Arbeit einen 

großen Anteil einnimmt. Darüber hinaus zeigt sich, dass heuristische Strategien 

in allen Episoden des Problemlöseprozesses eine Rolle spielen, was ihren 

globalen Charakter verdeutlicht. Ihr Einfluss zeigt sich besonders in Planning und 

Implementation. Dies deutet ebenfalls auf einen lokalen Charakter einiger 

Heurismen der heuristischen Strategien hin, der bereits von Rott (2018) diskutiert 

wurde. 

Der Heurismus Ähnliche Aufgabe spielt eine zentrale Rolle im gesamten 

Problembearbeitungsprozess und wird in jeder Episode des Prozesses genutzt. 

Dies liegt nahe, dass dieser Heurismus nicht auf eine spezifische Episode 

beschränkt ist, sondern vielmehr als allgemeiner Lösungsansatz in den meisten 

Problembearbeitungsprozessen benutzt wird. Im Kontext dieser Stichprobe 

könnte damit argumentiert werden, das Ähnliche Aufgabe primär einen 

algorithmischen Charakter besitzt und somit weniger als klassischer Heurismus 

verstanden werden kann. Insbesondere in der Episode Exploration kommt dieser 

Heurismus verstärkt zum Einsatz, wobei Ähnliche Aufgaben auch in den weiteren 

Episoden im Vergleich zu anderen Heurismen häufig genutzt werden.  

 

An dieser Stelle soll die Interaktion der Kodiersysteme zwischen Heurismen und 

Steuerung näher betrachtet werden. Heurismen wurden so operationalisiert 

(Kapitel 5.4.3), dass sie theoretisch nicht strikt einer Phase bzw. Episode des 

Problemlöseprozesses (Kapitel 5.4.1) zugeordnet werden können. Dennoch zeigt 

sich, dass einige Heurismen eher für spezifische Phasen bzw. Episoden 

prädestiniert zu sein scheinen, was durch ihre häufige Nutzung in diesen Phasen 

bzw. Episoden bestätigt wird (Abbildung 42). Zwei dieser Heurismen werden im 

Folgenden beispielhaft kurz diskutiert. Zum einen ist dies Begriffe klären in der 

Analysis. Begriffe klären kann theoretisch und empirisch in anderen Phasen bzw. 

Episoden auftreten, allerdings scheint es insbesondere in der Analysis wichtig zu 

sein, diesen Heurismus anzuwenden, um weiterhin sinnvolle Phasen bzw. 

Episoden daran anzuschließen. Würde bereits an der Lösung gearbeitet werden, 

ohne zuvor alle Begriffe geklärt zu haben, wären diese zwangsläufig explorativer, 

da die Aufgabe noch nicht vollständig verstanden wäre. Zum anderen ist dies die 

Suche nach nützlichen Hinweisen, welcher insbesondere in die Exploration passt. 

Gerade dann, wenn Studierende nach irgendwelchen Hinweisen suchen, bewegen 

sie sich im Lösungsraum und suchen nach Informationen, die sie in irgendeiner 

Weise weiterbringen können. Dies zeigt sich ebenfalls darin, dass dieser 

Heurismus fast ausschließlich in der Exploration identifiziert werden kann. 



S e i t e  | 261 

 

Interaktion zwischen Steuerung und Wissen 

Im Folgenden wird die Interaktion von Steuerung und Wissen aller 

Problembearbeitungsprozesse betrachtet. Das Wissen wird dabei jeweils 

hinsichtlich der Wissensarten (Abbildung 43) und der Wissensfacetten 

(Abbildung 44) unterschieden. 

 

 

Abbildung 43: Interaktion zwischen Steuerung und Wissensart (Code-Relations-Browser aus 

maxQDA) 

 

Abbildung 44: Interaktion zwischen Steuerung und Wissensfacette (Code-Relations-Browser aus 

maxQDA) 

In allen analysierten Episoden lassen sich jeweils konzeptuelles als auch 

prozedurales Wissen identifizieren (Abbildung 43). Ebenso können die meisten 

Wissensfacetten in nahezu allen Episoden beobachtet werden (Abbildung 44). 

Insgesamt sind bestimmte Zusammenspiele zwischen Wissen und verschiedener 

Episoden bzw. Phasen im Problemlöseprozess charakteristisch. Die Episoden 

Reading (sechs Interaktionen zwischen Wissen und Episoden nach Schoenfeld) 

und Verification (sieben Interaktionen) werden an dieser Stelle nicht weiter 

betrachtet, da in den jeweiligen Episoden zu wenig Wissen genutzt wird. 

 

Analysis (27 Interaktionen): In dieser Episode steht vor allem konzeptuelles 

Wissen im Vordergrund. Bezüglich der Wissensfacetten kommen alle Facetten 

zum Einsatz, jedoch dominieren hier die Explizite Formulierung sowie 

Konkretisierung & Abgrenzung. 

Exploration (70 Interaktionen): Diese Episode zeichnet sich durch einen hohen 

Anteil sowohl an konzeptuellem als auch prozeduralem Wissen aus. Alle Facetten 

werden verwendet, jedoch sind die Konkretisierung & Abrenzung sowie die 

Implizite Nutzung besonders stark ausgeprägt. 
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Planning und Implementation (18 und 35 Interaktionen): Sowohl in Planning 

als auch in Implementation wird eher prozedurales als konzeptuelles Wissen 

genutzt. Hinsichtlich der Facetten zeigt sich ebenfalls ein ähnliches Muster. In 

beiden Episoden dominiert die Implizite Nutzung, wobei die Explizite 

Formulierung in Planning gar nicht auftaucht. Insgesamt zeigen beide Episoden 

eine sehr ähnliche Struktur bezüglich Wissensarten und Wissensfacetten. 

Transition (14 Interaktionen): In dieser Episode sind konzeptuelles und 

prozedurales Wissen ausgewogen vertreten. Bei den Facetten stehen Implizite 

Nutzung sowie Konkretisierung & Abgrenzung im Vordergrund. 

 

Die meisten Interaktionen von Steuerung und Wissen (Abbildung 43 und 44) 

lassen sich grundsätzlich auf die verschiedenen Aufgaben übertragen, wobei es 

jedoch einige Unterschiede gibt (siehe Anhang). In der Exploration wird in den 

Aufgaben „Differenzierbarkeit prüfen“ und „L´Hospital“ hauptsächlich 

prozedurales Wissen genutzt, während in der Aufgabe „Mittelwertsatz“ 

überwiegend konzeptuelles Wissen zum Einsatz kommt. Dieser Unterschied zeigt 

sich ebenfalls in der Implementation. Dieser Befund ist auf Grundlage der 

spezifischen Anforderungen der jeweiligen Aufgabe wenig überraschend, da 

somit die kognitiven Anforderungen der Aufgaben in der Wissensanwendung 

angemessen widergespiegelt werden. Ein weiterer Unterschied liegt im Einsatz 

von konzeptuellem Wissen in der Analysis. In den Aufgaben „Differenzierbarkeit 

prüfen“ und „Mittelwertsatz“ wird konzeptuelles Wissen jeweils 11-mal 

verwendet, während dies in der Aufgabe „L`Hospital“ nur 1-mal der Fall ist.   

Bemerkenswerterweise zeigt sich bei den Wissensfacetten eine nahezu identische 

Verteilung über die Aufgaben hinweg, was angesichts der inhaltlichen 

Unterschiede der Aufgaben außergewöhnlich konstant ist. Allerdings lässt sich 

ein Unterschied feststellen. In den Aufgaben „Differenzierbarkeit prüfen“ und 

„L´Hospital“ wird bei Planning und Implementation verstärkt die Facette 

Konkretisierung & Abgrenzung genutzt, während in der Aufgabe „Mittelwertsatz“ 

die Facette Bedeutung & Vernetzung in diesen Episoden im Vordergrund steht. 

Insgesamt liefert die Übereinstimmung einen Hinweis, dass die Wissensfacetten 

unabhängig von den spezifischen Anforderungen der einzelnen Aufgaben in 

ähnlicher Weise aktiviert werden. 

 

Die Kodiersysteme der Wissensarten und der Wissensfacetten (Kapitel 5.4.2) ist 

generell unabhängig von den verschiedenen Episoden des 

Problembearbeitungsprozesses (Kapitel 5.4.1). Allerdings zeigen sich auch hier 

in den empirischen Daten bestimmte Muster, die darauf hindeuten, dass 

Wissensarten und einige Wissensfacetten eher für spezifische Episoden 

prädestiniert sind, wie dies in Abbildung 43 und 44 deutlich wird. Diese 

Interaktionen werden im Folgenden beispielhaft kurz diskutiert. 
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Für die Wissensart wird dies an der Interaktion von konzeptuellem Wissen und 

Analysis deutlich. In den Problembearbeitungsprozessen dieser Arbeit versuchen 

Studierende, Konzepte und Zusammenhänge zu verstehen. Dies ist ein direkter 

Ausdruck von konzeptuellem Wissen, da es darauf ankommt, diese abstrakten 

Ideen korrekt zu verstehen und anzuwenden. Darüber hinaus gibt es weitere 

Aktivitäten in der Analysis (z. B. Paraphrasieren oder Darstellungswechsel), die 

ebenfalls Charakteristika von konzeptuellem Wissen sind.  

Für die Wissensfacetten wird dies beispielhaft an zwei Interaktionen verdeutlicht. 

Das vermehrte Anwenden von Impliziter Nutzung ist in Planning und 

Implementation wenig überraschend, da es in dieser Episode die Anwendung von 

Wissen im Vordergrund steht. Im Vergleich dazu werden in der Implementation 

nur wenig andere Wissensfacetten herangezogen, was die Fokussierung auf die 

praktische Umsetzung unterstreicht. Bei Planning ist Implizite Nutzung eher ein 

Hinweis darauf, dass während der Planungsprozesse die Lösung berücksichtigt 

wird. Im Gegensatz dazu zeigt sich in der Exploration eine deutlich höhere 

Nutzung der Wissensfacette Konkretisierung & Abgrenzung. Dies hängt damit 

zusammen, dass in dieser Episode noch kein klarer Plan entwickelt wurde und 

Beispiele, wie in der Tutoriumsaufgabe, dabei helfen, sich im Lösungsraum zu 

orientieren und verschiedene Ansätze zu explorieren. Die Verwendung von 

Beispielen unterstützt dabei den Prozess, eine passende Lösungsstrategie zu 

finden, bevor z. B. ein detailliertes Planning erfolgen kann. 

Interaktion zwischen Heurismen und Wissen 

Im Folgenden wird die Interaktion von Heurismen und Wissen betrachtet. Das 

Wissen wird dabei nach Wissensarten und Wissensfacetten unterschieden. 

 

 

Abbildung 45: Interaktion zwischen Heurismen und Wissensart (Code-Relations-Browser aus 

maxQDA) 

 

Abbildung 46: Interaktion zwischen Heurismen und Wissensfacette (Code-Relations-Browser aus 

maxQDA) 
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Der Zusammenhang zwischen Wissen und Heurismen zeigt, dass sich diese 

Kategorien in bestimmten Bereichen interagieren (Abbildung 45 und 46). 

Besonders auffällig ist jedoch, dass diese Interaktionen stark von den spezifischen 

Anforderungen der jeweiligen Aufgabe abhängen (siehe Anhang). Bezüglich der 

Wissensarten ist lediglich die Interaktion des Heurismus Skizze mit dem 

konzeptuellen Wissen konstant über jede Aufgabe zu identifizieren. Im Hinblick 

auf die Wissensfacetten sind die Interaktionen mit Heurismen ebenfalls sehr 

vielfältig und aufgabenspezifisch. Es lassen sich dennoch Gemeinsamkeiten für 

alle Aufgaben feststellen, die ebenfalls in Abbildung 46 zu erkennen sind. So lässt 

sich etwa der Heurismus Ähnliche Aufgabe stets mit der Impliziten Nutzung sowie 

der Konkretisierung & Abgrenzung in Verbindung setzen. Der Heurismus Skizze 

zeigt stets eine Interaktion mit Bedeutung & Vernetzung und der Heurismus 

Vorwärtsarbeiten immer mit der Impliziten Nutzung. Diese Beobachtungen 

verdeutlichen, dass bestimmte Heurismen mit bestimmtem Wissen verknüpft 

sind. 

 

Heurismen und Wissen können grundsätzlich unabhängig voneinander kodiert 

werden. Dennoch zeigen sich empirisch einige Interaktionen, die auch theoretisch 

sinnvoll scheinen. Ein gutes Beispiel ist der Heurismus Begriffe klären. Dieser 

Heurismus ist eng mit konzeptuellem Wissen verbunden, da das Klären von 

Begriffen und deren Bedeutung eine tiefere Auseinandersetzung mit Definitionen 

und mathematischen Konzepten erfordert. Beim Klären von Begriffen geht es 

nicht nur darum, eine Definition zu finden, sondern auch darum, den Begriff im 

Kontext zu verstehen. Dieses Vorgehen ist daher stark auf das konzeptuelle 

Wissen angewiesen. 

Auch die sogenannten „visuellen“ Heurismen (Skizze, Imaginäre Figur und 

Metapher) zeigen eine starke Verbindung zum konzeptuellen Wissen. Bei diesen 

Heurismen werden visuelle Darstellungen von mathematischen Konzepten oder 

Zusammenhängen genutzt, um das Verständnis zu erleichtern. Diese Hilfsmittel 

erfordern ein grundlegendes Verständnis der Konzepte und Zusammenhänge, die 

sie darstellen, und sind daher eng mit dem konzeptuellen Wissen verknüpft. Bei 

spezifischen mathematischen Verfahren (prozedurales Wissen), die weniger 

anschaulich oder visuell zugänglich sind, ist diese Art von Heurismus allerdings 

weniger hilfreich. 

6.4.2 Zusammenhang zwischen Wissen, Heurismen und Episodenwechseln 

Im Folgenden werden die Episodenwechsel (Kapitel 6.1.4) erneut betrachtet, 

diesmal unter Einbezug der Kategorien Heurismen und Wissen. Episodenwechsel 

stellen kritische Momente in einem Problemlöseprozess dar (Schoenfeld, 1985, 

S. 292; Kapitel 5.4.1), weshalb es wichtig ist, genau zu untersuchen, was in diesen 

Übergängen passiert. Dabei wird aufgezeigt, inwiefern Heurismen und Wissen 

eine Rolle beim Wechsel von Episoden spielen. Die Analyse dieser beiden 
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Kategorien hilft dabei besser zu verstehen, wie diese Wechsel den Verlauf des 

Problemlösens beeinflussen. Die folgenden Ausführungen adressieren demnach 

die Forschungsfrage: 

 

(Z2) Welche Rolle spielen Wissen und Heurismen bei einem Episodenwechsel? 

 

Zu Beginn wird festgelegt, dass diese Frage nicht hinsichtlich aller 

Episodenwechsel untersucht wird. Stattdessen wird ein Fokus auf 

Episodenwechsel gelegt, die in eine Exploration münden. Die Auswahl der 

Exploration als Schwerpunkt ist aus mehreren empirischen als auch theoretischen 

Gründen gerechtfertigt. Erstens zeigen die bereits vorliegenden Daten, dass 

Studierende empirisch betrachtet in der Exploration die meiste Zeit verbringen 

(Kapitel 6.1.2) und sie damit eine besondere Episode darstellt. Zweitens birgt die 

Episode nachweislich das Potenzial, in einem „wild goose chase“ zu münden 

(Kapitel 6.1.5). Dies kann laut Schoenfeld (1985, S. 116) und den eigenen Daten 

einen Einfluss auf den Erfolg ausüben (Kapitel 6.1.6). Drittens stellt die 

Exploration das Herzstück des Problemlösen dar (Schoenfeld, 1985, S. 110). Aus 

diesem Grund werden viele Heurismen und die Nutzung von Wissen erwartet. 

Sowohl die Interaktionen zwischen Exploration und Heurismen als auch Wissen 

bestätigen dies bereits (Kapitel 6.4.1). Es bleibt lediglich zu zeigen, inwiefern 

Wissen und Heurismen den Episodenwechsel beeinflussen. 

Bei der Betrachtung der Episodenwechsel lassen sich drei wesentliche Fälle 

identifizieren, die den Zusammenhang zwischen einem Episodenwechsel und 

einer Kategorie charakterisieren (Abbildung 47). Dies wird beispielhaft mit der 

Kategorie Heurismus dargestellt. 

Fall A: Ein Heurismus wird bereits in der „alten“ Episode angewendet und bleibt 

auch nach dem Wechsel in die neue Episode (Exploration) weiterhin bestehen. 

Fall B: Der Einsatz eines Heurismus beginnt genau mit dem Episodenwechsel 

zur Exploration. Entscheidend ist nicht die Dauer der Identifikation, sondern nur 

der gleiche Startpunkt mit der Episode. 

Fall C: Ein Heurismus kommt erst nach dem Episodenwechsel zur Anwendung, 

d. h., er wird erst in der Exploration selbst genutzt. Auch hier kommt es nicht auf 

die Länge des Heurismus an, sondern dass der Startpunkt nach dem 

Episodenwechsel stattfindet. 

 

 

Abbildung 47: Fälle von Episodenwechseln 
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Für die Fälle A und B wird definiert, dass der betreffende Heurismus einen 

Einfluss auf den Wechsel in die Exploration hat, indem dieser den Übergang 

mitgestaltet oder unterstützt. Im Gegensatz dazu wird im Fall C festgelegt, dass 

der Heurismus den Episodenwechsel selbst nicht beeinflusst, sondern lediglich in 

der neuen Episode eine Rolle spielt. Möglicherweise hat im Fall C sogar die 

Episode einen Einfluss auf den Heurismus. 

Anhand dieser beschriebenen drei Fälle wird untersucht, inwiefern Wissen oder 

bzw. und Heurismen den Episodenwechsel zur Exploration beeinflussen. 

Insgesamt wurden den Daten dieser Arbeit in 33 Episodenwechsel in die 

Exploration identifiziert. Tabelle 37 fasst zusammen, welche Falltypen bei den 

Episodenwechseln aufgetreten sind und verdeutlicht, ob der Wechsel zur 

Exploration durch die Verwendung eines Heurismus, den Einsatz von Wissen, 

eine Kombination aus beidem oder keines von beiden ausgelöst wird. 

 

Episodenwechsel wird beeinflusst durch … Anzahl 

Nur Wissen 5 

Nur Heurismen 7 

Kombination aus Wissen und Heurismen 10 

Weder Wissen noch Heurismen 11 

Tabelle 37: Verwendung von Heurismen und Wissen bei einem Episodenwechsel in Exploration 

In Tabelle 37 wird deutlich, dass in etwa zwei Drittel der Episodenwechsel 

entweder Heurismen, Wissen oder beides einen Einfluss auf den Wechsel zur 

Exploration haben. Diese Fälle werden kurz anhand eines Beispiels beschrieben. 

 

Nur Wissen: Der Wechsel in die Exploration wird bei Lea, Lisa, Sarah und Paula 

in der Aufgabe „Mittelwertsatz“ dadurch ausgelöst, dass sie beginnen, sich 

intensiv über die Betragsstriche auszutauschen. Ein Heurismus wird dabei jedoch 

nicht verwendet. 

Nur Heurismus: Der Wechsel in die Exploration wird bei Alex und Thomas in 

der Aufgabe „Differenzierbarkeit prüfen“ dadurch ausgelöst, indem sie die Suche 

nach nützlichen Hinweisen initiieren. Darüber hinaus nutzen sie kein spezifisches 

Wissen. 

Kombination aus Wissen und Heurismen: Der Wechsel in die Exploration bei 

Nick erfolgt, indem er eine Ähnliche Aufgabe hinzuzieht. Dabei aktiviert er 

gleichzeitig die Facette Konkretisierung & Abgrenzung des prozeduralen 

Wissens, sodass sowohl Wissen als auch Heurismen eine Rolle beim 

Episodenwechsel spielen. 

 

Letztlich stellt sich die Frage, ob bestimmtes Wissen oder spezifische Heurismen 

maßgeblich für Episodenwechsel hin zu Exploration verantwortlich sind. 

Besonders die häufigen Interaktionen zwischen diesen Kategorien (Kapitel 6.4.1) 
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könnten dabei eine Rolle spielen. Betrachtet man die Heurismen, zeigt sich, dass 

in sieben von 18 Fällen der Heurismus Ähnliche Aufgabe an einem 

Episodenwechsel zur Exploration beteiligt ist. In den übrigen Fällen kommen 

andere Heurismen zum Einsatz, allerdings mit deutlich geringerer Häufigkeit. 

Hinsichtlich des Wissens fällt auf, dass in elf von 16 Fällen die Wissensfacette 

Konkretisierung & Abgrenzung eine Rolle spielt, während in vier weiteren Fällen 

Implizite Nutzung den Übergang beeinflusst. Zusammengefasst zeigt sich, dass 

die festgestellten, häufigen Interaktionen zwischen spezifischem Wissen und 

Heurismen mit der Exploration primär für die Übergänge zu dieser Episode 

verantwortlich sind. 

 

Weder Wissen noch Heurismen: In einem Drittel der Episodenwechsel erfolgt 

der Übergang zur Exploration allerdings komplett unabhängig von Wissen oder 

Heurismen. Diese Fälle werfen die Frage auf, wie ein Wechsel zur Exploration 

ohne diese beiden Kategorien zustande kommt und was letztendlich den 

Ausschlag für einen Episodenwechsel gibt.  

In diesen Fällen scheint die Metakognition bzw. selbstregulatorische Aspekte68 

eine entscheidende Rolle zu spielen, was im Folgenden an Beispielen verdeutlicht 

wird. So initiiert David etwa den Wechsel in die Exploration, indem er sein 

aktuelles Vorgehen hinterfragt („Ist das richtig?“) und sich anschließend in seinen 

zugehörigen Materialien verliert. Ein weiteres Beispiel zeigt sich darin, dass 

David mit den aktuell vorhandenen Informationen einen Versuch wagen möchte 

(„Ich schreibe einfach mal auf“). Eine weitere Auffälligkeit ist der Wechsel von 

Implementation zu Exploration, der bereits in Kapitel 6.1.4 thematisiert wurde. 

Hier zeigt sich erneut, dass das Erkennen eigener Herausforderungen diesen 

Episodenwechsel einleitet, was wiederum auch auf lokaler Ebene auf 

selbstregulative Prozesse hinweist.  

 

Ob ein Episodenwechsel durch Wissen, Heurismen, einer Kombination von 

beidem oder durch keines von beidem beeinflusst wird, hat letztendlich keinen 

erkennbaren Einfluss darauf, ob die folgende Episode in einem „wild goose 

chase“ endet. Insgesamt lässt sich allerdings festhalten, dass Wissen, Heurismen 

und Steuerung (auf lokaler Ebene) einen Episodenwechsel zur Exploration 

bewirken können. Darüber hinaus sind allerdings weitere Episodenwechsel 

interessant zu untersuchen. Neben der Exploration erscheint als bedeutsames 

Gegenstück das strukturierte Vorgehen (Planning + Implementation). Die 

Abgrenzung zwischen diesen beiden Verhaltensansätzen könnte aufschlussreich 

sein, welche Aspekte zum Wechsel in einen explorativen bzw. strukturierten 

Vorgehen führen. Zudem kann es auch relevant sein, wie der Wechsel aus einer 

spezifischen Episode heraus erfolgt. Ein Beispiel hierfür ist das Vermeiden eines 

„wild goose chases“. Solche Situationen werfen die Frage auf, welche 

 
68 Damit ist das präskriptive (lokale) Level von Steuerung gemeint (Kapitel 2.3). 
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Mechanismen und kognitiven Prozesse einer problemlösenden Person helfen, 

eine festgefahrene oder ineffiziente Episode zu erkennen und zu verlassen. Bei 

der Rolle von Steuerung auf lokaler Ebene wären allerdings noch weitere 

Untersuchungen sinnvoll, um diesen Zusammenhang besser zu verstehen. Dies 

könnte beispielweise durch zusätzliche Kodiersysteme erfolgen, so wie Rott 

(2013, S. 375ff.) bereits einige Episodenwechsel kodiert hat.  

6.4.3 Empirische Entscheidung zu Problemlöseprozessen 

Im Folgenden wird die Diskussion bezüglich Routine- und Problemaufgaben 

aufgegriffen (Kapitel 2.2). Es stellt sich die Frage, ob die Prozesse der 

Studierenden empirisch anhand der Auswertung zu den Kategorien als 

Problemlöseprozesse (und demnach als Probleme) aufgefasst werden können. Die 

folgenden Ausführungen adressieren demnach die Forschungsfrage: 

 

(Z3) Kann empirisch entschieden werden, ob die Aufgaben für die Studierenden 

Probleme darstellen? 

 

Zunächst folgt eine kurze Betrachtung der Aufgaben, bevor auf die Nutzung der 

drei Kategorien des Problemlösens durch die Studierenden eingegangen wird. 

Eine dichotome Einteilung von Aufgaben in Routine und Nicht-Routine (bzw. 

Probleme) erweist sich in verschiedenen Kontexten als problematisch (z. B. Berry 

et al., 1999). Auch in dieser Arbeit gestaltet sich die eindeutige Zuordnung der 

drei Aufgaben als schwierig. Für die Aufgabe „Mittelwertsatz“ (Tabelle 10) wird 

überwiegend konzeptuelles Wissen (ca. 86 %) gefordert, während für die Aufgabe 

„L´Hospital“ (Tabelle 11) überwiegend prozedurales Wissen (ca. 80 %) benötigt 

wird. In beiden Aufgaben wird lediglich ein mathematischer Inhalt (Konzept, 

Zusammenhang oder Verfahren) der jeweils anderen Wissensart erfordert. Für 

beide Aufgaben könnte man daher nach dem Ausschlussprinzip folgern, dass sie 

zur Routine- bzw. Problemaufgabe zugeordnet werden. Die Aufgabe 

„Mittelwertsatz“ ist nahezu vollständig ohne ein Verfahren zu lösen, während die 

Aufgabe „L’Hospital“ fast ausschließlich durch die Anwendung von Verfahren 

bewältigt wird. Deutlich schwieriger wird die Zuordnung für die Aufgabe 

„Differenzierbarkeit prüfen“ (Tabelle 9), da die Anforderungen der Aufgabe zur 

Hälfte aus dem konzeptuellen und prozeduralen Wissen bestehen. Muss an dieser 

Stelle demnach von einem Aufgabentyp gesprochen werden, welcher dazwischen 

liegt (Rott, 2013, S. 26)? Besonders hinsichtlich des konzeptuellen und 

prozeduralen Wissens ist eine solche Einteilung von Aufgaben nicht leicht 

voneinander zu trennen (Rittle-Johnson & Schneider, 2014). Vielmehr existieren 

auch solche Aufgaben, die nicht einer Wissensart zugeordnet werden können, 

sondern in denen sich Wissensarten gegenseitig ergänzen bzw. unterstützen 

(Kolbe & Liebendörfer, 2024). Anhand der (theoretischen) Einordnung bezüglich 

der Aufgaben bestätigt sich zumindest für die Aufgabe „Differenzierbarkeit 
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prüfen“, dass eine Einteilung in Routine- bzw. Problemaufgabe nicht ausreichend 

ist.  

Im Folgenden werden die Auswertungen zu den Kategorien von Schoenfeld 

(1985) herangezogen, um Hinweise dafür zu identifizieren, ob es sich bei den 

Aufgaben um Probleme handelt.  

Die Analyse der Kodierung der Schoenfeld Episoden liefert einige 

aufschlussreiche Hinweise zur Art des Prozesses der Studierenden. Zunächst zeigt 

sich, dass die Episode Exploration den größten Teil der Bearbeitungszeit in 

Anspruch nimmt und in jedem Prozess vorkommt (Kapitel 6.1.2 und 6.1.3). Dies 

ist bedeutsam, da Exploration laut Schoenfeld (1985, S. 110) das Herzstück des 

Problemlösens darstellt und daher ein Indiz dafür sein könnte, dass die 

Studierenden tatsächlich vor einem Problem standen, das mehr als eine 

routinemäßige Lösung erfordert. Darüber hinaus treten Charakteristika eines 

„wild goose chases“ auf (Kapitel 6.1.5), die auf typisches Problemlöseverhalten 

hindeuten. Die Studierenden verfolgen dabei keinen klar strukturierten 

Lösungsweg, was auf eine fehlende Routine in der Herangehensweise hindeutet. 

Des Weiteren lassen die vielen Wechsel zwischen den Episoden (Kapitel 6.1.4) 

auf den ersten Blick auf eine gute Selbstregulation schließen. Allerdings sollte 

bemerkt werden, dass bei Routineaufgaben weniger selbstregulative Aspekte zu 

erwarten sind, da diese Aufgaben meistens eine festgelegte Abfolge von Schritten 

voraussetzen. Zyklische Prozesse deuten dabei auf einen typischen 

Problembearbeitungsverlauf hin (Kapitel 2.3.3). Viele Episodenwechsel im 

Prozess weisen möglicherweise eher auf kleine Barrieren in der Bearbeitung hin, 

die durch einen Verhaltenswechsel umgangen werden.  

Hinsichtlich der Kodierung des Wissens können ebenfalls einige Hinweise 

diskutiert werden, die auf Existenz eines Problembearbeitungsprozesses 

hindeuten. Obwohl im Gesamtüberblick (Tabelle 23) konzeptuelles und 

prozedurales Wissen ausgeglichen benutzt bzw. aktiviert worden sind, erkennt 

man aus der aufgabenweisen Betrachtung, dass dies nicht für jede Aufgabe 

gleichermaßen gilt. In den beiden Aufgaben „Differenzierbarkeit prüfen“ (ca. 63 

% der genutzten Wissenselemente) und „L´Hospital“ (ca. 70 %) überwiegt die 

Nutzung des prozeduralen Wissens mit kleineren Anteilen des konzeptuellen 

Wissens, während für die Aufgabe „Mittelwertsatz“ (ca. 91 %) die Nutzung des 

konzeptuellen Wissens deutlich überwiegt. Diese Häufigkeitsverteilung ähnelt 

den unterschiedlichen Anforderungen der Aufgaben, die bereits in Kapitel 5.3 

festgestellt worden sind. Es ist schwierig aus dem Nutzungsverhalten der 

Studierenden eine eindeutige Aussage darüber abzuleiten, ob eine Aufgabe als 

Routine- oder Problemlöseaufgabe eingestuft werden kann. Prozedurale 

Aufgaben erfordern naturgemäß mehr prozedurales Wissen, während 

konzeptuelle Aufgaben eher konzeptuelles Wissen verlangen (Kapitel 6.2.3). Aus 

der Wissensnutzung der Studierenden auf die Art der Aufgabe zu schließen, führt 

jedoch zu einem Zirkelschluss. Prozedurale Aufgaben werden im Vorhinein 
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aufgrund des algorithmischen Vorgehens häufig als Routineaufgaben betrachtet, 

und eine Analyse, die diese Annahme auf Basis der Wissensnutzung bestätigt, 

wäre daher unlogisch und zirkulär. Die Analyse der Schwierigkeiten hat darüber 

hinaus gezeigt, dass in jeder Aufgabe inhaltliche Schwierigkeiten auftreten 

(Kapitel 6.2.6), was auf Barrieren in der Bearbeitung hindeutet (Heinrich et al., 

2015). Obwohl die Schwierigkeiten vielseitig sind, hat sich herausgestellt, dass 

in den Aufgaben „Differenzierbarkeit prüfen“ und „L´Hospital“ vor allem 

prozedurale Schwierigkeiten und in der Aufgabe „Mittelwertsatz“ vor allem 

konzeptuelle Schwierigkeiten auftreten.  

Die Analyse zur Kodierung der eingesetzten Heurismen liefert ebenfalls wertvolle 

Hinweise zur Art des Prozesses. In jedem Prozess ist die Nutzung von Heurismen 

nachweisbar, wobei deren Häufigkeit variiert. Während einige Prozesse eine 

geringe Nutzung von Heurismen aufweisen, zeigen andere eine deutlich 

intensivere Anwendung. Die Präsenz von Heurismen deutet allerdings darauf hin, 

dass ein Problembearbeitungsprozess vorliegt (Kapitel 2.5.1). Allerdings lässt 

sich der am häufigste angewandte Heurismus Ähnliche Aufgabe durchaus 

diskutieren. Im Kontext der Veranstaltung deutet es potenziell eher auf ein 

algorithmisches Vorgehen hin, da der Heurismus häufig und in jeder Episode des 

Prozesses eingesetzt wird. Algorithmisches Vorgehen grenzt sich eher von einem 

Heurismus ab und ist damit auch kein Teil des Problemlösen.  

Aus den bisherigen Ausführungen lassen sich verschiedene Indikatoren 

identifizieren, die auf einen Problembearbeitungsprozess hinweisen können. 

Diese Indikatoren werden nun herangezogen und im Folgenden operationalisiert. 

Hinsichtlich der Steuerung werden drei Indikatoren operationalisiert. 

 

1. Im Prozess wird mindestens 33 % der Zeit in der Episode Exploration 

verbracht (33 %). 

2. Im Prozess sind Charakteristika eines „wild goose chases“ zu erkennen 

(WGC). 

3. Der Prozess weist entweder eine zyklische Struktur oder mindestens acht 

Episodenwechsel auf (ZYK). 

 

Hinsichtlich des Wissens wird ein Indikator operationalisiert. 

 

4. Im Prozess treten Schwierigkeiten auf (SCH). 

 

Hinsichtlich der Heurismen wird ein Indikator operationalisiert. 

 

5. Im Prozess werden an acht verschiedenen Stellen Heurismen 

identifiziert oder insgesamt vier verschiedene Heurismen (HEU). 
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Die Untergrenzen hinsichtlich der Nutzung von Heurismen werden festgelegt, um 

den zufälligen Einsatz von Heurismen sowie eine systematische (algorithmische) 

Anwendung spezifischer Heurismen ausschließen zu können. 

Zusätzlich gibt es eine ergänzende allgemeine Kategorie, die ebenfalls Hinweise 

auf einen Problembearbeitungsprozess liefert. Dabei werden zwei Indikatoren 

operationalisiert. 

 

6. Der Prozess wurde eigens abgebrochen, da keine zufriedenstellende 

Lösung erzielt wird (ABB). Zu einem späteren Zeitpunkt kann der 

Lösungsprozess wieder aufgenommen werden. 

7. Im gesamten Prozess wurde lediglich ein falscher bzw. nicht 

zielführender Lösungsweg verfolgt (FLW).  

 

 
 33 %  WGC ZYK SCH HEU ABB FLW 𝜮 

Differenzierbarkeit prüfen 

G3 X  X X X X  5 

G4    X X   2 

David X X  X X X  5 

Nick   X X   X 3 

Lukas X X X X  X X 6 

MWS 

G3 X  X X X   4 

G4 X  X X X   4 

David X X X X X X  6 

Nick X  X X X   4 

L´Hospital 

G3 X  X X X   4 

G4 X  X X X   4 

David X X X X X X  6 

Nick X X X X X   4 

33 % = 33 % Exploration; WGC = wild goose chase; ZYK = zyklisch; SCH = 

Schwierigkeiten; HEU = Heurismen; ABB = Abbruch; FLW = Falscher Lösungsweg 

Tabelle 38: Empirische Entscheidung zu Problembearbeitungsprozessen 

In Tabelle 38 wird deutlich, dass in allen Prozessen Hinweise darauf vorliegen, 

dass sie Problembearbeitungen enthalten. Besonders fällt die Lerngruppe, 

bestehend aus Lea, Lisa, Sarah und Paula auf, die nur zwei Indikatoren für einen 

Problembearbeitungsprozess erfüllt und damit die wenigsten Anzeichen für ein 

Problem zeigt. Dieser Prozess verläuft zudem zeitlich sehr kurz und zeichnet sich 

dadurch aus, dass Schwierigkeiten zwar auftreten, aber schnell überwunden 

werden. Trotz der kurzen Dauer werden in diesem Prozess vier verschiedene 

Heurismen eingesetzt. Letztlich hat die Lerngruppe die Aufgabe vollständig 

korrekt gelöst. Im Gegensatz dazu gibt es drei Prozesse, in denen sechs von sieben 
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möglichen Indikatoren eines Problembearbeitungsprozesses erfüllt werden. In 

dieser Arbeit wird ein Prozess dann als Problembearbeitungsprozesses gewertet, 

wenn mindestens vier Indikatoren identifiziert werden können. Vier Indikatoren 

erscheinen eine angemessene Zahl zu sein, um sicherzustellen, dass ein Prozess 

nur dann als Problemlöseprozess eingestuft wird, wenn Indikatoren aus 

mindestens zwei der vier Kategorien identifiziert werden können. Ausgehend von 

dieser Definition zeigen elf von 13 untersuchten Prozessen Merkmale eines 

Problembearbeitungsprozesses, während nur zwei Prozesse nicht als solche 

klassifiziert werden. 

Bezogen auf die zugrunde liegenden Aufgaben lässt sich durch die Analyse der 

vorliegenden Daten feststellen, dass die Aufgaben zum „Mittelwertsatz“ und 

„L´Hospital“ in diesem Kontext als Problemaufgaben für die Studierenden 

einzustufen sind, während die Aufgabe zur Überprüfung der Differenzierbarkeit 

gemischte Merkmale aufweist. 

6.4.4 Zusammenfassung der Ergebnisse zur Analyse der gemeinsamen 

Betrachtung 

Abschließend werden für das Kapitel 6.4 die zentralen Ergebnisse der Analyse 

hinsichtlich der gemeinsamen Betrachtung zusammengefasst: 

 

• Die Episode Analysis interagiert vor allem mit dem Klären von Begriffen 

und konzeptuelles Wissen mit den Facetten Explizite Formulierung 

sowie Konkretisierung & Abgrenzung (Kapitel 6.4.1). 

• Die Episode Exploration interagiert vor allem mit Suche nach 

Hinweisen, Spezialfall und den Facetten Konkretisierung & Abgrenzung 

sowie Implizite Nutzung (Kapitel 6.4.1). 

• Die Episoden Planning + Implementation interagieren vor allem mit 

Vorwärtsarbeiten und den Facetten Implizite Nutzung und Explizite 

Formulierung (Kapitel 6.4.1). 

• Visuelle Heurismen (Skizze, imaginäre Figur und Metapher) und 

Begriffe klären interagieren häufig mit konzeptuellem Wissen. 

• Wissen und Heurismen können (alleine oder gemeinsam) einen Einfluss 

auf Episodenwechsel haben. Es gibt auch Episodenwechsel unabhängig 

von Wissen und Heurismen (Kapitel 6.4.2).  

• Die Bearbeitungsprozesse stellen sich empirisch als 

Problembearbeitungen heraus. Die Aufgaben stellen damit Probleme für 

Ingenieurstudierende dar (Kapitel 6.4.3). 
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7 Diskussion 

In diesem Kapitel wird die vorliegende Studie diskutiert und in den 

wissenschaftlichen Kontext eingeordnet. Zunächst erfolgt eine kurze 

Zusammenfassung der empirischen Studie (Kapitel 7.1). Anschließend werden 

die Ergebnisse weiterverarbeitet und reflektiert. Dabei werden die 

Forschungsfragen zusammenfassend beantwortet, die Ergebnisse mit ähnlichen 

Studien (falls vorhanden) verglichen und theoretischen Implikationen abgeleitet 

(Kapitel 7.2). Darauf aufbauend werden praktische Implikationen aufgezeigt, die 

sich aus den Ergebnissen für die Anwendung in der Praxis ableiten lassen (Kapitel 

7.3). Die eingesetzten Methoden werden kritisch diskutiert, um deren Eignung 

und potenzielle Schwächen zu beleuchten (Kapitel 7.4). Ein Ausblick auf 

zukünftige Forschungsvorhaben rundet das Kapitel ab, wobei offene Fragen und 

weiterführende Forschungsansätze skizziert werden (Kapitel 7.5). 

7.1 Kurzzusammenfassung der empirischen Studie 

Die empirische Studie untersucht mathematische Problembearbeitungsprozesse 

von Ingenieurstudierenden in einem authentischen Setting (Kapitel 5.2.2) an der 

Universität Paderborn. Dabei wurden Studierende (teilweise) in Lerngruppen bei 

der Bearbeitung von Hausaufgaben zur Differentialrechnung beobachtet. Die 

teilnehmenden Studierenden wurden gebeten, ihre Gedanken während der 

Bearbeitungsprozesse zu verbalisieren („Lautes Denken“). Die Studie analysiert 

13 Prozesse von fünf Lerngruppen zu drei Aufgaben: „Differenzierbarkeit 

prüfen“, „Mittelwertsatz“ und „L´Hospital“ (Kapitel 5.3). 

Für die Analyse dieser Studie wurden die vier Kategorien des mathematischen 

Problemlösens nach Schoenfeld (1985) herangezogen, wobei der Fokus dieser 

Studie auf den drei Kategorien Steuerung, Wissen und Heurismen lag. Zur 

Feststellung der Kategorie Steuerung wurden die Schoenfeld Episoden 

verwendet, um die verschiedenen Phasen des Problemlösens zu identifizieren 

(Kapitel 5.4.1). Zur Erfassung des Wissensangebots und der Wissensnutzung 

wurde die Wissensmatrix (Prediger et al., 2011) herangezogen (Kapitel 5.4.2). 

Außerdem wurde ein bestehendes Kategoriensystem für Heurismen (Rott, 2013; 

Stenzel, 2023a) übernommen und leicht adaptiert, um spezifische 

Problemlösestrategien zu erfassen (Kapitel 5.4.3). Abschließend wurden die drei 

Kategorien unter Berücksichtigung der vorherigen Analysen gemeinsam 

betrachtet.  

Die Ergebnisse der Auswertung befinden sich in detaillierter Form in den 

jeweiligen Kapiteln der Kategorien (für Steuerung in Kapitel 6.1; für Wissen in 

Kapitel 6.2; für Heurismen in Kapitel 6.3; für gemeinsame Betrachtung in Kapitel 

6.4). Diese Ergebnisse werden nun genutzt, um die Forschungsfragen zu 

beantworten. 
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7.2 Beantwortung der empirischen Forschungsfragen und 

Einordnung in die Theorie 

In diesem Kapitel wird die Struktur aus dem vorangegangenen Abschnitt 

übernommen, um die gewonnenen Erkenntnisse weiter zu verarbeiten. Dabei 

werden die Ergebnisse herangezogen, um die Forschungsfragen zu beantworten 

und in den theoretischen Kontext einzuordnen. Der Fokus liegt dabei auf den 

Kategorien der Steuerung (Kapitel 7.2.1), des Wissens (Kapitel 7.2.2), der 

Heurismen (Kapitel 7.2.3) und der gemeinsamen Betrachtung (Kapitel 7.2.4). 

Abschließend erfolgt eine Einbettung der Ergebnisse in den Kontext 

mathematischer Lernprozesse (Kapitel 7.2.5). 

7.2.1 Zur Rekonstruktion von Steuerung 

(S1) Welche Episoden durchlaufen Ingenieurstudierende bei mathematischen 

Problembearbeitungsprozessen 

Jeder Problembearbeitungsprozess ist individuell. In der ausführlich dargestellten 

Fallanalyse von Alex und Thomas (Kapitel 6.1.1) wird deutlich, wie ein solcher 

Prozess aussehen kann. Alex und Thomas beginnen mit einem strukturierten 

Vorgehen, stoßen auf Schwierigkeiten, die sie überwinden und gelangen zu einem 

Ergebnis, welches sie verifizieren. Die Schoenfeld Episoden helfen dabei, den 

Prozess zu abstrahieren und darzustellen. Mittels eines Gesamtüberblicks 

(Kapitel 6.1.2) lässt sich feststellen, dass Studierende durchschnittlich am meisten 

Zeit in der Exploration (51,6 %) verbringen. Obwohl in anderen Studien nicht 

immer ein spezifischer Durchschnittswert für die Dauer der einzelnen 

Episodentypen angegeben wird, lässt sich dennoch aus den Ergebnissen ableiten, 

dass die problemlösenden Personen den größten Teil ihrer Zeit in der Exploration 

verbracht haben (z. B. Herold-Blasius, 2019, S. 214; Stenzel, 2023a). Besonders 

deutlich wird dies in der Untersuchung von Schoenfeld (1992b), in der über 60 % 

der beobachteten Prozesse fast ausschließlich aus explorativen Aktivitäten 

bestehen. In dieser Studie nimmt Implementation (23,2 %) etwa ein Viertel der 

Zeit ein. Dies scheint im Vergleich zu anderen Studien eher ungewöhnlich hoch 

zu sein (z. B. Herold-Blasius, 2019, S. 214). In den restlichen Episoden befinden 

sich Studierende durchschnittlich nur zu einem geringen Teil (3,5 % – 8,4 %).  

Die durchschnittlichen Werte geben einen groben Rahmen vor. Zwischen den 

Lerngruppen in dieser Studie gibt es allerdings Unterschiede, wobei sich die 

Verläufe innerhalb einer Lerngruppe über verschiedene Aufgaben ähneln (Kapitel 

6.1.3). Z. B. ist es für die Prozessverläufe von Alex und Thomas auffällig, dass 

sie zügig in eine Bearbeitung starten, dabei allerdings auf Schwierigkeiten treffen 

(Implementation → Exploration). Lea, Lisa, Sarah und Paula hingegen planen ihr 

Vorgehen, bevor sie dieses umsetzen (Planning/Implementation → Exploration 

→ Implementation → Verification). David setzt sich intensiv mit der 
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Aufgabenstellung auseinander, um anschließend nach Lösungsmöglichkeiten zu 

suchen (Analysis → Exploration). Lukas69 plant sein Vorgehen oftmals mit den 

Tipps, welche er aus dem Tutorium erhalten hat, gelangt anschließend allerdings 

immer in Schwierigkeiten und sucht nach Lösungsmöglichkeiten 

(Planning/Implementation → Exploration). Nur Nick zeigt in den drei Aufgaben 

jeweils ein unterschiedliches Verhalten. Das Problemlöseverhalten könnte daher 

(in vier von fünf Fällen) lerngruppenabhängig verlaufen. Die unterschiedlichen 

Aufgaben scheinen dabei nur einen Einfluss auf das Verhalten von Nick zu haben. 

Insgesamt legen die Ergebnisse nahe, dass die Problembearbeitungsprozesse 

hinsichtlich der Steuerung in stärkerem Maße von der Lerngruppe als der 

spezifischen Aufgabe abhängen. 

(S2) Welche Episodenwechsel treten in den Problembearbeitungsprozessen auf? 

Verlaufen die Prozesse linear? 

In der Stichprobe dieser Studie gibt es durchschnittlich 9,1 Episodenwechsel pro 

Problembearbeitungsprozess (Kapitel 6.1.4). Im Vergleich zu Prozessen von 

Schüler:innen (2,78 Episodenwechsel) ist dies deutlich höher (Herold-Blasius, 

2019, S. 218ff). Mögliche Gründe können zum einen der Unterschied zwischen 

der Komplexität der Aufgaben sein und zum anderen eine im Vergleich zu 

Kindern erhöhte selbstregulatorische Kompetenz von Studierenden. 

Die Prozesse lassen sich weiterhin in lineare (zwei von 13) und nicht-lineare 

Prozesse (elf von 13) einteilen. Problembearbeitungsprozesse von Schüler:innen 

hingegen sind zum großen Teil (68 von 98) linear (Rott, 2013, S. 298). Die hohe 

Anzahl von linearen Prozessen bei Schüler:innen passt ebenfalls mit der geringen 

Anzahl von Episodenwechseln (in Herold-Blasius, 2019, S. 218ff.) zusammen. 

Insgesamt zeigt sich in den Prozessen, dass die vorliegenden hochschulischen 

Problembearbeitungsprozesse nicht-linear verlaufen. Damit bestätigen sich die 

theoretischen Annahmen (z. B. Newell & Simon, 1972; Schoenfeld, 1985; Rott, 

2013), dass Problembearbeitungsprozesse nicht immer linear verlaufen.  

Hinsichtlich der nicht-linearen Prozesse lassen sich in der vorliegenden Studie 

vor allem drei nicht-lineare Episodenwechsel herausstellen: Implementation → 

Exploration (12-mal), Exploration → Analysis (7-mal), Implementation → 

Planning (4-Mal). 

 
69 In dieser Untersuchung wurde nur eine Aufgabe von Lukas ausführlich analysiert. Weitere 

Aufgabenbearbeitungen, die nicht für diese Arbeit analysiert werden, verlaufen allerdings 

ähnlich.  
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(S3) Inwiefern lassen sich „wild goose chases“ in den 

Problembearbeitungsprozessen identifizieren und inwiefern können Studierende 

dieses Verhalten vermeiden? 

Das Problemlöseverhalten „wild goose chase“ wird in einigen Studien zum 

Problemlösen untersucht (z. B. Herold-Blasius, 2019; Rott, 2013; Schoenfeld, 

1985; Stenzel, 2023a). Die meisten Prozesse in diesen Studien weisen eine hohe 

Anzahl dieses Verhaltens auf. Lediglich in der Studie von Stenzel (2023a) wurde 

kein solches Verhalten ausfindig gemacht. Gemäß der strengen 

Operationalisierung von Schoenfeld (der Prozess umfasst nur Exploration und 

ggf. vorausgehendes Reading) zeigt sich in dieser Studie ebenfalls kein „wild 

goose chase“. Dieser Unterschied kann auf verschiedene Gründe zurückgeführt 

werden: 

 

• Merkmale der Aufgabe: In der Studie von Stenzel (2023a) und in dieser 

Studie werden Aufgaben aus dem hochschulischen Lehrkontext genutzt, 

während in Rott (2013) und Herold-Blasius (2019) Schulaufgaben als 

Basis dienen. 

• Kontext der Situation: In der Studie von Stenzel (2023a) und in dieser 

Studie werden authentische Problembearbeitungsprozesse genutzt, 

während die anderen Studien in einer Laborsituation durchgeführt 

worden sind. Motivationale Aspekte, insbesondere extrinsische 

Faktoren, könnten in dieser Studie eine zusätzliche Rolle spielen, da eine 

Aussicht auf Bonuspunkte für die Klausur besteht. Dadurch werden 

ggfs. mehr Ansätze (besser) durchdacht und nicht so leicht aufgegeben. 

• Zeitlimit: In Schoenfelds Studien (z. B. 1985) wurde die Bearbeitung auf 

20 Minuten festgelegt. Dies beeinflusst die Steuerung, indem diese von 

extrinsischen Faktoren (zum Ende der 20 Minuten) übernommen wird. 

Die Studierenden in dieser Studie können die Bearbeitungszeit selbst 

festlegen und steuern ihren Prozess somit komplett selbstständig.  

 

Erst wenn die Operationalisierung unter Berücksichtigung der oben genannten 

Gründe angepasst wird, lassen sich in fünf Problembearbeitungsprozessen 

Charakteristika eines „wild goose chase“ erkennen (Kapitel 6.1.5). Nach der 

neuen Operationalisierung zeichnet sich ein solcher Prozess dadurch aus, dass der 

Großteil der Zeit vor allem in den Episoden Exploration und Analysis verbracht 

wird, während auch kurze Episoden anderer Typen zugelassen sind. 

Studierende vermeiden einen „wild goose chase“, indem sie die Exploration 

entweder durch einen expliziten Plan verlassen oder direkt in die Implementation 

übergehen, wie bei Alex, Thomas sowie Lea, Lisa, Sarah und Paula zu beobachten 

ist. Zudem hilft es, ineffektive Explorationen rechtzeitig zu erkennen und die 

Strategie anzupassen, wie Nick es in seinen Prozessen zeigt. 
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(S4) Inwiefern hängen die Schoenfeld Episoden mit dem Erfolg bzw. Misserfolg 

eines Problembearbeitungsprozesses zusammen? 

Bezüglich der Episodenwechsel sowie der Reihenfolge der Episoden konnte kein 

Zusammenhang zu Erfolg bzw. Misserfolg hergestellt werden (Kapitel 6.1.6). Es 

gibt allerdings Hinweise, dass eine hohe Anzahl von Episodenwechseln zu einer 

erfolgreichen Lösung führen kann. Der Grund dafür könnte in einer guten 

selbstregulatorischen Fähigkeit der problemlösenden Personen liegen (Herold-

Blasius, 2019, S. 218), die durch verschiedene Richtungsänderungen während des 

Prozesses zu einer erfolgreichen Lösung gelangen.  

Unter der erweiterten Operationalisierung des „wild goose chases“ sind nur zwei 

von fünf Prozessen teilweise erfolgreich (Kapitel 6.1.6). In diesen zwei Prozessen 

sind allerdings die zeitlich kurzen Episoden Analysis bzw. Implementation für das 

Fortschreiten der Lösung mitverantwortlich. Insgesamt lässt sich festhalten, dass 

„wild goose chases“ in den Problembearbeitungsprozessen dieser Arbeit ebenfalls 

als nicht erfolgreiche Prozesse eingestuft werden können. Dies deckt sich mit den 

Aussagen (Prozesstyp A) von Schoenfeld (1985, S. 116) und Ergebnissen von 

Rott (2013, S. 307). Längere Explorationen, die besonders am Ende eines 

Problembearbeitungsprozesses auftreten, stellen sich dabei als Indikator für einen 

ausbleibenden Lösungserfolg. Allerdings sind die Prozesse, die einem „wild 

goose chase“ entkommen, damit nicht automatisch erfolgreich, auch hier gibt es 

durchaus nicht erfolgreiche Prozesse. In den Prozessen dieser Arbeit lassen sich 

sowohl Prozesse des Typs B (Steuerung nimmt neutralen Einfluss auf Prozess) 

und Typs C (Steuerung nimmt positiven Einfluss auf Prozess) nach Schoenfeld 

(1985, S. 116) identifizieren. 

Bezüglich strukturierten Vorgehens ist sowohl bei Nick als auch bei Lukas zu 

erkennen, dass die Aufgabe nicht vollständig verstanden wurde. Es haben zwar 

beide einen Plan aufgestellt und diesen verfolgt, allerdings ist dies kein Vorgehen, 

welches die Aufgabe löst. Bei beiden hätte es möglicherweise geholfen, wenn sie 

sich vorher nochmal mit der Aufgabe auseinandergesetzt hätten, um einen Plan 

zu entwickeln, der zur Aufgabenstellung passt. Demgegenüber ist eine 

Auseinandersetzung mit der Aufgabenstellung aber nicht immer unbedingt 

notwendig, da Alex und Thomas in jeder Aufgabe einen Plan erstellen, welcher 

mit korrekter Ausführung zu einer korrekten Lösung führen kann. Durch den 

zielführenden Plan könnte man allerdings vermuten, dass die Aufgabenstellung 

bereits verstanden wurde. Dies könnte damit zusammenhängen, dass Alex und 

Thomas bereits im Tutorium den Aufgabentypen besser nachvollzogen haben. 

Möglicherweise hat daher bereits außerhalb der Videoaufnahme automatisch eine 

erste Analysis der Aufgabe stattgefunden. Allerdings scheitert es bei Alex und 

Thomas eher an der Implementation. Ähnliches gilt für die Prozesse von Lea, 

Lisa, Sarah und Paula, die den Eindruck vermitteln, dass bereits zu Beginn klar 

ist, was die Aufgabe verlangt. Das strukturierte Vorgehen scheint daher nur dann 

zu helfen, wenn man mit der Aufgabenstellung vertraut ist (Kapitel 6.1.6). Dies 
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bekräftigt Schoenfelds (2016) Aussage, dass nicht nur strukturiertes Vorgehen ein 

wichtiger Aspekt für den Prozess ist, sondern (hier: in einigen Fällen) auch die 

Aufgabenanalyse. Dies begünstigt die Entwicklung eines zielführenden 

strukturierten Vorgehens. 

Obwohl die Prozesse mit Verification eher erfolgreich sind (vier von fünf), kann 

trotzdem kein Schluss über den Zusammenhang zwischen dem Episodentyp und 

Erfolg gezogen werden (Kapitel 6.1.6). Dies liegt daran, dass Verification am 

Ende aller Prozesse auftritt und in den vorliegenden Daten keine inhaltlichen 

Fortschritte an der Lösung unternommen wurden. Die Lösungen werden lediglich 

kontrolliert bzw. die Schritte validiert. 

7.2.2 Zur Rekonstruktion von Wissen 

(W1) Welches Wissen wird von der Veranstaltung angeboten? 

Die Analyse der Veranstaltung (Vorlesung und Tutorien) mithilfe der 

Wissensmatrix (Kapitel 5.4.2) hat zunächst ergeben, dass die theoretisch 

benötigten mathematischen Inhalte für alle Aufgaben angeboten werden (Kapitel 

6.2.1). Dabei zeigt sich, dass für alle mathematischen Inhalte mindestens drei von 

vier verschiedenen Wissensfacetten (außer für das Sandwich-Kriterium und die 

Regel von L´Hospital jeweils nur zwei) bereitgestellt werden. Insgesamt werden 

durch das Kreuzen der Wissensarten mit den Wissensfacetten 41 von 52 

möglichen Wissenselementen in der Veranstaltung angeboten, auf die Studierende 

zurückgreifen können70. Erwähnenswert ist, dass Konventionelle Festlegungen 

(6-mal) am häufigsten und Konkretisierung & Abgrenzung kein einziges Mal 

fehlt. In Summe bietet die Veranstaltung ein umfangreiches Wissensangebot, 

sowohl für das konzeptuelle als auch prozedurale Wissen. Das große Angebot 

hinsichtlich der Wissensarten als auch der verschiedenen Facetten bietet die 

Möglichkeit, die mathematischen Inhalte umfassend zu durchdringen und zu 

verstehen (Prediger et al., 2011; Vollrath & Roth, 2011; Winter, 1983). 

(W2) Wie lässt sich die Wissensnutzung in Problembearbeitungsprozessen 

mithilfe der Wissensmatrix rekonstruieren? 

Die Kodierung mit der Wissensmatrix erfolgt, indem Wissenselemente erfasst 

werden, wenn Studierende diese adressieren. Dabei werden Aussagen, 

Handlungen oder Produkte einer spezifischen Wissensfacette zugeordnet. Kodiert 

wird nur, wenn eine ernsthafte Auseinandersetzung mit der Wissensfacette 

stattfindet (Kapitel 5.4.2). Das ausführlich beschriebene Beispiel von Lea, Lisa, 

Sarah und Paula zeigt einen Problembearbeitungsprozess sowie die Zuordnung 

des Wissens in die adaptierte Wissensmatrix (Kapitel 6.2.2). Im Prozess steuert 

 
70 Die Beantwortung der Forschungsfrage W6 zielt darauf ab, zu untersuchen, inwiefern 

Studierende dieses angebotene Wissen nutzen. 
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die Lerngruppe verschiedene Wissenselemente an, die durch die Wissensmatrix 

dargestellt werden können (siehe Tabelle 22). Die Lerngruppe beginnt, die 

Ungleichung mithilfe des Mittelwertsatzes umzuformen (Turn 1) und diskutiert 

die Rolle der Betragsstriche (Turn 2). Sie definieren die Funktion, leiten diese mit 

der Kettenregel (Turn 5, 9) ab und überlegen, inwieweit sie die Stetigkeit und 

Differenzierbarkeit miteinbeziehen müssen (Turn 6, 7). Sie nutzen dafür ihre 

Vorstellung zum Mittelwertsatz der Differentialrechnung (Turn 8). Bei der 

Abschätzung (Turn 10, 14) untersuchen sie die Exponential- und Sinusfunktion 

(Turn 10, 12, 14), greifen auf die Aufgabe aus dem Tutorium zurück (Turn 13) 

und klären schließlich, dass das Maximum der Ungleichung 1 ist (Turn 14). 

Abschließend validieren sie ihre Erkenntnisse mit Skizzen und prüfen erneut die 

Bedeutung der Betragsstriche (Turn 15, 16). Letztlich ist es möglich, die 

Wissensmatrix (Prediger et al., 2011) für einen anderen Zweck als das 

Systematisieren und Sichern zu verwenden (z. B. wie in Erath, 2017 im Kontext 

von Beiträgen im Unterricht) und die Nutzung von Wissen während 

Problembearbeitungsprozessen dazustellen. Durch die Kreuzung von Wissensart 

und -facette ermöglicht die Wissensmatrix eine detaillierte Darstellung der 

Wissensnutzung von Studierenden. 

(W3) Welche Wissenselemente werden von den Studierenden häufig genutzt? 

Insgesamt lässt sich feststellen, dass die Studierenden die verschiedenen 

Wissensarten in etwa gleicher Häufigkeit nutzen. In den gesamten Prozessen 

konnte 93-mal das Nutzen von konzeptuellem und 84-mal das Nutzen von 

prozeduralem Wissen identifiziert werden (Kapitel 6.2.3). Hinsichtlich der 

Wissensfacetten wird Implizite Nutzung (63-mal) und Konkretisierung & 

Abgrenzung (52-mal) am häufigsten verwendet. Am wenigsten werden 

Konventionelle Festlegungen (14-mal) und Explizite Formulierungen (18-mal) 

verwendet. Bedeutung & Vernetzung wird 30-mal genutzt. 

Es wurde außerdem eine Aufteilung vorgenommen. Dabei ergibt sich, dass die 

Nutzung des prozeduralen Wissens für die Aufgaben „Differenzierbarkeit prüfen“ 

(ca. 63 % der genutzten Wissenselemente) und „L´Hospital“ (ca. 70 %) 

überwiegt, während dies für die Aufgabe „Mittelwertsatz“ bei der Nutzung des 

konzeptuellen Wissens (ca. 91 %) der Fall ist. Werden die theoretisch 

herausgearbeiteten relevanten mathematischen Inhalte der jeweiligen Aufgaben 

herangezogen (Kapitel 5.3), stellen diese einen ähnlichen Anteil der Wissensarten 

wie das Nutzungsverhalten der Studierenden dar: „Differenzierbarkeit prüfen“ 

(50 % prozeduralen Wissen), „L´Hospital“ (80 % prozedurales Wissen) und 

„Mittelwertsatz“ (86 % konzeptuelles Wissen). Die Analyse zeigt, dass die von 

den Studierenden genutzten und für die Bearbeitung erforderlichen Wissensarten 

eine gute Passung aufweisen. 
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(W4) Auf welche Wissenselemente setzen Studierende einen Fokus während der 

Prozesse? 

Anknüpfend an die Häufigkeit bezüglich der Nutzung von Wissenselementen 

wird der Fokus71 der Prozesse herausgestellt (Kapitel 6.2.4). Dabei wird zwischen 

prozeduralen und konzeptuellen Prozessen unterschieden. Die prozeduralen 

Prozesse setzen alle einen Fokus auf die Implizite Nutzung und Konkretisierung 

& Abgrenzung. Für die konzeptuellen Prozesse wird in zwei Unterarten aufgeteilt. 

Zum einen wird ein Fokus auf Implizite Nutzung und Bedeutung & Vernetzung 

und zum anderen ein Fokus auf Explizite Formulierung und Konkretisierung & 

Abgrenzung gelegt. 

Es lässt sich vermuten, dass der Fokus der Wissensnutzung stark auf die 

jeweiligen Anforderungen der Aufgabe abgestimmt ist. Sowohl für die Aufgabe 

„L´Hospital“ als auch „Mittelwertsatz“ lässt sich ein prozeduraler bzw. 

konzeptueller Fokus erkennen. Nur für die Aufgabe „Differenzierbarkeit prüfen“ 

sind die Anforderungen eher ausgeglichen, wobei der Fokus eher prozedural ist. 

(W5) Welche Schwierigkeiten können während der Problembearbeitungsprozesse 

identifiziert werden? 

Schwierigkeiten wurden als Hindernisse bzw. Hürden definiert, die im 

fachspezifischen Kontext den Fortschritt oder die korrekte Bearbeitung der 

Aufgabe beeinträchtigen (Kapitel 5.4.2). Bezüglich der drei Aufgaben konnten 

verschiedene Schwierigkeiten festgestellt werden (Kapitel 6.2.6). Hinsichtlich 

der Aufgabe „Differenzierbarkeit prüfen“ ergeben sich bei den Studierenden 

hauptsächlich Schwierigkeiten mit dem gleichnamigen Verfahren. Diese treten 

vor allem bei der Expliziten Formulierung auf und sind teilweise bei der 

Impliziten Nutzung zu beobachten. Der Ableitungsbegriff wurde in der Forschung 

bereits intensiv untersucht (Kapitel 4.3.2), wobei auf verschiedenen 

Wissensebenen Schwierigkeiten identifiziert wurden. Auch in dieser Studie 

können mit Schwierigkeiten bezüglich zwei Facetten an der bestehenden 

Forschung angeknüpft werden. In den Prozessen zur Aufgabe „Mittelwertsatz“ 

haben die Studierenden ebenfalls Schwierigkeiten mit dem gleichnamigen 

Zusammenhang. Diese verteilen sich über alle Wissensfacetten. In einem 

vergleichbaren Kontext beobachten Kolahdouz et al. (2020) gleichfalls 

Schwierigkeiten in verschiedenen Wissensfacetten zum (Beweis-)Verständnis des 

verallgemeinerten Mittelwertsatz. Der Mittelwertsatz der Differentialrechnung 

scheint demnach eine Herausforderung für Studierende dazustellen. Darüber 

hinaus stellen die Abschätzung sowie die Rolle der Betragsstriche die 

Studierenden vor eine Herausforderung. Letztlich stellt die Beweismethode bzw. 

der Ansatz für den Beweis ebenfalls eine Schwierigkeit dar, wobei 

 
71 Damit ist gemeint, welche Wissensarten und -facetten Studierende in ihren Prozessen häufig 

ansteuern. 
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Beweiskonstruktionen allgemein für Studierende herausfordernd sind (Weber, 

2001). Bezüglich der Aufgabe „L´Hospital“ befinden sich die Schwierigkeiten im 

Bereich der Grenzwertbestimmung (Implizite Nutzung und Explizite 

Formulierung). Im Gegensatz zu den Ergebnissen von Mrdja et al. (2015) haben 

die Studierenden weniger ein Problem mit der Regel von L´Hospital an sich, 

sondern insbesondere mit der integrierten Grenzwertbestimmung.  

Insgesamt lassen sich für die Aufgabe „Mittelwertsatz“ konzeptuelle 

Schwierigkeiten und in den beiden Aufgaben „Differenzierbarkeit prüfen“ und 

„L´Hospital“ primär prozedurale Schwierigkeiten feststellen. Damit entsprechen 

die Schwierigkeiten weitgehend den ausgearbeiteten theoretischen 

Anforderungen der jeweiligen Aufgabe hinsichtlich der Wissensarten (Kapitel 

5.3). 

Interessanterweise treten Schwierigkeiten sowohl bei häufig genutzten als auch 

selten genutzten Wissenselementen auf. Dies deutet darauf hin, dass die 

Häufigkeit der Nutzung kein verlässlicher Indikator für die Schwierigkeit eines 

Wissenselements ist. Häufig genutzte Wissenselemente könnten Schwierigkeiten 

verursachen, weil sie komplex oder anspruchsvoll sind, während bei selten 

genutzten Elementen der Mangel an Vertrautheit oder Übung eine Rolle spielen 

könnte. 

(W6) Welches Wissensangebot wird von der Veranstaltung angeboten und 

inwiefern wird dies von den Studierenden in ihren Bearbeitungen genutzt? 

In dem Vergleich zwischen Wissensangebot der Veranstaltung und 

Wissensnutzung der Studierenden wird die Implizite Nutzung ausgeschlossen. 

Insgesamt zeigt sich ein vielfältiges Angebot, welches von den Studierenden 

genutzt werden kann (Kapitel 6.2.7). Von den Studierenden wird jedoch nur auf 

knapp die Hälfte (23 von 53) der angebotenen Wissenselemente zurückgegriffen. 

Wird ein Wissenselement nicht angeboten, aber trotzdem genutzt bzw. aktiviert, 

werden weitere Materialien wie das Internet herangezogen.  

(W7) Inwiefern hängt die Wissensnutzung mit dem Erfolg bzw. Misserfolg eines 

Problembearbeitungsprozesses zusammen? 

Für die Untersuchung von Erfolg bzw. Misserfolg wird erneut auf den Fokus der 

Problembearbeitungsprozesse zurückgegriffen (Kapitel 6.2.8). Bei prozeduralen 

Prozessen wird deutlich, dass eine hohe Lösungsqualität (L3, L4) oft mit der 

erfolgreichen Beseitigung von Schwierigkeiten verbunden ist, während dies bei 

niedriger Lösungsqualität nicht gelingt. Die Beseitigung der Schwierigkeiten 

bezüglich der Facette Explizite Formulierung stellt sich dabei als besonders 

wichtig heraus. Für konzeptuelle Prozesse werden zwei Untergruppen betrachtet. 

Die erste, mit Fokus auf Implizite Nutzung und Bedeutung & Vernetzung, erreicht 

durchgängig hohe Lösungsqualitäten (mindestens L3). Die zweite, mit Fokus auf 

Explizite Formulierung und Konkretisierung & Abgrenzung, zeigt gemischte 
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Ergebnisse. Erfolgreiche konzeptuelle Prozesse zeichnen sich durch die 

Verknüpfung verschiedener Wissenselemente und deren Anwendung aus. 

Studierende, die auf solche Verknüpfungen sowie die Anwendung von Konzepten 

und Zusammenhängen setzen, erzielen bessere Ergebnisse, da sie ihre 

Schwierigkeiten überwinden und (gleichzeitig möglicherweise) konzeptuelles 

Wissen aufbauen können. Dies würde den Zusammenhang zwischen Lernen und 

Problemlösen bestätigen (Leuders, 2017; Stenzel, 2023a, S. 31f.). Durch die 

Ähnlichkeit dieser beiden Prozesse wird nicht nur ein Problem gelöst, sondern 

darüber hinaus ein Lerneffekt erzielt und konzeptuelles Wissen aufgebaut. Im 

Gegensatz dazu scheitern Studierende, die sich stark auf Explizite 

Formulierungen und Konkretisierungen & Abgrenzungen einzelner Konzepte und 

Zusammenhänge beschränken. Zusätzlich ist bei dieser Studierendengruppe 

keine Verknüpfung von Wissenselementen zu beobachten. 

7.2.3 Zur Rekonstruktion von Heurismen 

(H1) Welche Heurismen treten in den Problembearbeitungsprozessen auf? 

Insgesamt können in den Problembearbeitungsprozessen 167 Anwendungen von 

Heurismen identifiziert werden (Kapitel 6.3.1). Der am häufigsten eingesetzte 

Heurismus ist Ähnliche Aufgabe, der 35-mal verwendet wird. Ein wesentlicher 

Faktor ist dabei der Kontext der Veranstaltung, der durch vorbereitende 

Tutoriumsaufgaben die Bearbeitung der Hausaufgaben unterstützt. Aufgrund der 

häufigen Nutzung von Ähnlichen Aufgaben weist dieser Heurismus nahezu einen 

algorithmischen Charakter auf. Die beiden Heurismen Rückwärtsarbeiten (1-mal) 

und Fallunterscheidung (2-mal) kommen am seltensten vor. Die restlichen 

Heurismen werden zwischen sechs- und 17-mal herangezogen (vgl. Tabelle 35). 

In dieser Studie haben Studierende zwischen 2-10 verschiedene Heurismen pro 

Aufgabe genutzt (Tabelle 36), während die Anzahl in einer Studie mit 

Schüler:innen lediglich bei 1,5-6 liegt (Herold-Blasius, 2019, S. 240). Dieser 

leichte Unterschied des Maximus lässt vermuten, dass die Aufgaben in dieser 

Studie für die problemlösenden Personen komplexer sind und daher eine 

vielfältigere Herangehensweise bzw. mehr Flexibilität und Kreativität beim 

Problemlösen erfordern. Möglicherweise bieten die Aufgaben ein höheres 

Potenzial, das den Einsatz unterschiedlicher Lösungsstrategien fördert. Dies 

spiegelt auch den generellen Anwendungscharakter hochschulischer Aufgaben zu 

schulischen Aufgaben wider. Dabei darf allerdings nicht vergessen werden, dass 

die durchschnittliche Bearbeitungszeit in dieser Studie höher (als bei Herold-

Blasius) und dadurch mehr Raum für die Nutzung verschiedener Heurismen 

gegeben ist. Abschließend ist bezüglich der Einteilung von Bruder und Collet 

(2011) auffällig, dass hinsichtlich heuristischer Strategien fast ausschließlich 

Vorwärtsarbeiten genutzt wird. Dies deckt sich mit den Untersuchungen von 

Lehmann (2018), in der Vorwärtsarbeiten ebenfalls die am häufigsten verwendete 
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Strategie ist. Bezüglich der Kategorien heuristische Hilfsmittel und Prinzipien 

(Bruder & Collet, 2011) werden die jeweiligen Heurismen ausgeglichen genutzt. 

(H2) Ist die Nutzung von Heurismen aufgabenabhängig? Ist die Nutzung von 

Heurismen lerngruppenabhängig? 

Die Beantwortung dieser Frage gestaltet sich aufgrund der kleinen Stichprobe 

schwierig. Es können allerdings Tendenzen festgestellt werden (Kapitel 6.3.2). 

Zunächst lässt sich die Verwendung der drei Heurismen Ähnliche Aufgabe, 

Begriffe klären sowie Vorwärtsarbeiten in fast allen 

Problembearbeitungsprozessen identifizieren. Für diese Heurismen lässt sich 

daher keine Abhängigkeit feststellen. Gleiches gilt für die beiden Heurismen 

Rückwärtsarbeiten und Fallunterscheidung, die nur in Einzelfällen auftreten. 

Hinsichtlich der restlichen Heurismen wird sowohl die Häufigkeit der Nutzung 

als auch die Frage, ob ein bestimmter Heurismus verwendet wird, berücksichtigt. 

Dabei stellen sich folgende Tendenzen heraus. 

 

• Skizze wird in jedem Prozess zur Aufgabe „Mittelwertsatz“ verwendet, 

aber sonst auch vereinzelt in Prozessen der anderen Aufgaben. 

• Spezialfall wird eher in Prozessen zur Aufgabe „L´Hospital“ verwendet, 

wobei der Ursache für die Verwendung eher in der speziellen Funktion 

innerhalb der Aufgabe liegt. 

• Nutzung aller Voraussetzungen ist eher lerngruppenabhängig (David; 

Alex und Thomas; Lea, Lisa, Sarah und Paula). 

• Metapher und imaginäre Figur ist eher lerngruppenabhängig (David). 

• Systematisierungshilfen sind eher lerngruppenabhängig (David). 

• Suche nach neuen Hinweisen ist eher lerngruppenabhängig (David). 

 

Insgesamt lassen sich somit für wenige Heurismen Tendenzen hinsichtlich der 

Aufgaben- bzw. Lerngruppenabhängigkeit feststellen. Den Ausführungen von 

Stenzel (2023a, S. 140) zufolge ist der Einsatz bestimmter Heurismen 

aufgabenabhängig.  In dieser Arbeit kann die Frage jedoch nicht in dieser 

Deutlichkeit beantwortet werden. Tatsächlich konnte kaum eine 

Aufgabenabhängigkeit identifiziert werden. Ein möglicher Grund dafür ist, dass 

die Aufgaben in den beiden Studien (ohne einen umfangreichen Vergleich 

zwischen den Aufgaben) unterschiedlicher Art sind. In Stenzel (2023a) haben die 

Aufgaben einen stärker beweisenden Charakter. Zudem gehören alle Aufgaben in 

dieser Arbeit zum Inhaltsgebiet der Differentialrechnung, was zu inhaltlichen 

Überschneidungen führt (Kapitel 6.2.1). Dies zeigt sich beispielsweise darin, dass 

in der Aufgabe „L'Hospital“ zwar Spezialfälle verwendet werden, diese jedoch 

durch die spezielle Funktion bedingt sind, die auch in anderen Aufgaben hätte 

vorkommen können. Hinsichtlich der Lerngruppenabhängigkeit können zwar 

einige Heurismen als solche identifiziert werden, allerdings liegt dies vor allem 
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an David, welcher somit einen Einzelfall darstellt. An dieser Stelle würde (wie in 

Stenzel, 2023a, S. 142) eine Analyse weiterer Lerngruppen zu 

aufschlussreicheren Ergebnissen hinsichtlich der Lerngruppenabhängigkeit 

führen. 

(H3) Inwiefern hängt die Nutzung der Heurismen mit dem Erfolg bzw. Misserfolg 

eines Problembearbeitungsprozesses zusammen? 

Die Frage kann aus verschiedenen Perspektiven beantwortet werden (Kapitel 

6.3.3). Zunächst kann festgestellt werden, dass die Häufigkeit der angewandten 

Heurismen bei der Bearbeitung von Aufgaben kein konsistentes Muster in Bezug 

auf Erfolg oder Misserfolg zeigt. Dabei sollte ohnehin bedacht werden, dass sich 

Aufgaben, die eine problemlösende Person überfordern, auch nicht mit einer 

zahlreichen Nutzung von Heurismen lösen lässt (Rott, 2013, S. 120). Bei 

Betrachtung der Anzahl verschieden verwendeter Heurismen zeigt sich jedoch, 

dass eine geringe Vielfalt an genutzten Heurismen eher mit einer niedrigen 

Lösungsqualität einhergeht, während eine größere Vielfalt an genutzten 

Heurismen tendenziell zu einer besseren Lösungsqualität führt. Ein Heurismus, 

der in nahezu allen Prozessen mit hoher Lösungsqualität und nur in einem Prozess 

mit niedriger Lösungsqualität angewendet wird, ist das Nutzen aller 

Voraussetzungen. Bei genauerer Betrachtung dieser Stellen im Prozess lässt sich 

allerdings schließen, dass dieser Heurismus keinen positiven Einfluss auf den 

Prozess nimmt. Anders ist dies für den Heurismus Rückführungsprinzip. Dieser 

taucht zwar nur in einigen, aber ausschließlich in Prozessen mit positiver 

Lösungsqualität auf. An den Stellen im Prozess zeigt sich ein positiver Einfluss 

auf den Lösungsverlauf. 

Abschließend werden weitere Stellen im Problembearbeitungsprozess untersucht, 

die einen positiven Einfluss auf den Prozessverlauf ausüben. Dabei stellen sich 

vor allem die beiden Heurismen Ähnliche Aufgaben als auch Skizze heraus. 

Demgegenüber weisen die beiden Heurismen Suche nach neuen Hinweisen und 

Spezialfälle das Potenzial auf, den Prozessverlauf negativ zu beeinflussen. 

Stenzel (2023a, S. 148) stellt in seiner Arbeit fest, dass Heurismen wie Nutzen 

aller Voraussetzungen, Rückführungsprinzip sowie heuristische Hilfsmittel 

(Tabelle, Skizze, Spezialfall, etc.) in Kombination der Analysis-Phase hilfreich 

sind, um neue Ideen im Problembearbeitungsprozess zu generieren. Obwohl sich 

die Art der Aufgaben zwischen beiden Studien unterscheiden, werden mit 

Ausnahme von Spezialfall (und Tabelle72), bei dem sogar das Potenzial für eine 

negative Auswirkung festgestellt werden kann, diese Heurismen auch in dieser 

Arbeit im Zusammenhang mit erfolgreichen Problembearbeitungsprozessen 

diskutiert. Darüber hinaus zeigt sich in der Studie von Lehmann (2018, S. 236 

 
72 Der Heurismus Tabelle konnte in den Problembearbeitungsprozesse dieser Arbeit kein Mal 

identifiziert werden. 
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und S. 252), dass heuristische Hilfsmittel einen positiven Einfluss auf die Lösung 

besitzen. Allerdings wird dort festgestellt, dass das Vorwärtsarbeiten für den 

Lösungsprozess von Bedeutung ist, wobei es sich sowohl in dieser Studie als auch 

in der Studie von Stenzel (2023a) nicht als besonders erfolgreich herausstellt. Hier 

sollten weitere Aufgaben (mit unterschiedlichen Inhalten) untersucht werden, ob 

auch für weitere hochschulische Mathematikaufgaben ähnliche Ergebnisse 

gewonnen werden können. Letztlich ist das Verwenden von Ähnlichen Aufgaben 

auf den Kontext der Veranstaltung zurückzuführen, da die Tutoriumsaufgaben 

einen hilfreichen Ausgangspunkt für die Bearbeitung der eigentlichen Aufgabe 

liefern. 

Demgegenüber stehen die Ergebnisse von Rott (2013, S. 390), der in den 

Problembearbeitungsprozessen von Schüler:innen die Suche nach Mustern und 

das Rückwärtsarbeiten als wichtige Strategien herausstellen kann. Die 

unterschiedlichen Ergebnisse zwischen Schule und Hochschule lassen vermuten, 

dass der Erfolg von Heurismen vom Kontext, Niveau der jeweiligen 

Aufgabenstellung und möglicherweise auch von der Offenheit der Aufgabe 

(Bruder, 2000) abhängt.  

7.2.4 Zur gemeinsamen Betrachtung von Steuerung, Wissen und Heurismen 

(Z1) Welche Interaktionen lassen sich zwischen Steuerung, Heurismen und 

Wissen identifizieren? 

Zwischen den einzelnen Kategorien lässt sich ein interaktives Auftreten 

beobachten (Kapitel 6.4.1), was die Ausführungen von Schoenfeld (1985, S. 44) 

empirisch stützt, wonach die Kategorien nicht strikt voneinander abgegrenzt sind. 

Besonders auffällig ist, dass Studierende in jeder Episode des 

Problembearbeitungsprozesses Heurismen einsetzen, was den theoretischen 

Annahmen widerspricht (z. B. König, 1992). Gleichzeitig zeigt sich jedoch, dass 

in der Exploration die meisten Heurismen angewandt werden, was die 

bestehenden Theorien unterstützt (Schoenfeld, 1985, S. 298). Die Ergebnisse 

zeigen zudem, dass die Kategorisierung von Heurismen nach Bruder und Collet 

(2011) in heuristische Hilfsmittel, Prinzipien und Strategien hilfreich ist, um ihre 

Rolle in unterschiedlichen Phasen zu verstehen. Heuristische Prinzipien finden 

sich vor allem in der Exploration, während heuristische Hilfsmittel sowohl in der 

Analysis als auch stark in der Exploration auftreten. Darüber hinaus sind 

spezifische Heurismen bestimmten Phasen zuzuordnen, etwa Begriffe klären in 

der Analysis, Suche nach Hinweisen und Spezialfall in der Exploration sowie 

Vorwärtsarbeiten in Planning und Implementation. Zudem lassen sich 

spezifische Wissensarten oder Wissensfacetten eher bestimmten Episoden bzw. 

Heurismen zuordnen. In der Analysis dominiert konzeptuelles Wissen mit Fokus 

auf Explizite Formulierung und Konkretisierung & Abgrenzung, während in der 

Exploration Konkretisierung & Abgrenzung und Implizite Nutzung im 
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Vordergrund stehen. In Planning und Implementation sind prozedurales Wissen 

und Implizite Nutzung prägend. Bei den jeweiligen Interaktionen mit den 

Wissenskategorien muss allerdings angemerkt werden, dass diese durch die 

spezifische Aufgabe unterschiedlich sind. So ist in der Aufgabe „Mittelwertsatz“ 

die Interaktion mit Planning und Implementation eher konzeptuell, während sie 

in den anderen beiden Aufgaben eher prozedural ist. Dies ist jedoch zu erwarten, 

da es den Anforderungen der Aufgabe entspricht (Kapitel 5.3). 

(Z2) Welche Rolle spielen Wissen und Heurismen bei einem Episodenwechsel? 

Für die Beantwortung dieser Forschungsfrage werden nur Episodenwechsel 

betrachtet, die in eine Exploration münden (Kapitel 6.4.2). Dabei stellt sich 

heraus, dass diese Episodenwechsel in zwei Drittel (22 von 33) der Fälle durch 

Wissen und Heurismen oder einer Kombination aus beiden beeinflusst werden. 

Insbesondere der Heurismus Ähnliche Aufgabe und die Facette Konkretisierung 

& Abgrenzung, die ohnehin häufig Interaktionen aufweisen, scheinen dabei starke 

Auslöser für den Episodenwechsel zu sein. Dies ist wenig überraschend, da die 

Exploration per Definition durch ein unstrukturiertes Vorgehen gekennzeichnet 

ist. Das Heranziehen von Beispielen oder Beispielaufgaben dient hierbei als ein 

Mittel, eine grobe Orientierung zu entwickeln und erste Ansätze zu finden. Die 

spezifische Nutzung dieser Beispiele kann jedoch maßgeblich beeinflussen, ob 

das unstrukturierte Vorgehen in ein strukturiertes übergeht. Je nach Verwendung 

der Beispiele können sie dazu beitragen, die Exploration in eine zielgerichtete 

und strukturierte Herangehensweise zu transformieren. Im Fall dieser Arbeit wäre 

es wichtig gewesen, die Tutoriumsaufgabe auf das eigene Beispiel zu 

abstrahieren, um potenzielle Unterschiede zu identifizieren und darauf aufbauend 

das eigene Vorgehen zu strukturieren. 

In nur einem Drittel (elf von 33) erfolgt der Episodenwechsel unabhängig von 

Wissen oder Heurismen. Eine genauere Betrachtung dieser Fälle deutet darauf 

hin, dass selbstregulatorische Aktivitäten verantwortlich für Episodenwechsel 

sind. Allerdings wurden im Rahmen dieser Arbeit selbstregulatorische Aktivitäten 

auf dem lokalen Level nicht explizit untersucht. Die vorliegenden Ergebnisse 

bieten, ähnlich wie bei Rott (2013, S. 375ff.), lediglich einen ersten Ansatz zur 

Betrachtung der Rolle selbstregulatorischer Aktivitäten bei Episodenwechseln. 

In dieser Arbeit wurden nur Episodenwechsel am Startpunkt der Exploration 

beleuchtet. Zukünftig wäre es jedoch interessant, auch andere Wechsel zu 

untersuchen, etwa das Austreten aus einer Exploration („wild goose chase“) oder 

den Übergang zu strukturierten Phasen wie Planning, um ein umfassenderes 

Verständnis von Problembearbeitungsprozessen zu gewinnen. 
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(Z3) Kann empirisch entschieden werden, ob die Aufgaben für die Studierenden 

Probleme darstellen? 

Zur Beantwortung dieser Forschungsfrage wurden zunächst Indikatoren für 

Problembearbeitungsprozesse operationalisiert. Dabei konnten sieben 

Indikatoren herausgearbeitet werden. Die Entscheidung, ob ein 

Problembearbeitungsprozess vorliegt, basiert auf der Erfüllung von vier73 der 

sieben Indikatoren. Insgesamt zeigen elf von 13 untersuchten Prozessen 

mindestens vier Indizien, was die definitorische Schwelle für einen 

Problembearbeitungsprozess übertrifft (Kapitel 6.4.3).  

Wenn die Ergebnisse der empirischen Analyse auf die einzelnen Aufgaben 

übertragen werden, zeigt sich, dass alle Prozesse der Aufgaben „L'Hospital“ und 

„Mittelwertsatz“ mehr als vier der definierten Indikatoren für einen 

Problembearbeitungsprozess erfüllen. Dies deutet darauf hin, dass diese 

Aufgaben für die Studierenden der vorliegenden Stichprobe ein Problem 

darstellen. Im Gegensatz dazu erfüllt die Aufgabe „Differenzierbarkeit prüfen“ 

nur in drei von fünf untersuchten Prozessen mindestens vier Indikatoren, was 

darauf hinweist, dass diese Aufgabe nicht einheitlich als Problem 

wahrgenommen wird. Daher lässt sich zusammenfassen, dass die Aufgaben zum 

„Mittelwertsatz“ und „L'Hospital“ empirisch als Problemaufgaben für die 

Studierenden gelten, während die Aufgabe zur Differenzierbarkeit eine gemischte 

Wahrnehmung aufweist und nicht in jedem Fall als Problem identifiziert werden 

kann. Die Annahme von Stenzel (2023a, S. 13), dass viele Aufgaben von 

Studierenden als problematisch wahrgenommen werden, findet in dieser Studie 

durch zusätzliche Hinweise Bestätigung.  

Es ist jedoch wichtig zu beachten, dass es noch weitere Aufgaben gibt, wie bspw. 

das Ableiten von Funktionen, die ebenfalls typische Aufgaben in der 

Ingenieurmathematik sind, diese jedoch bislang noch nicht untersucht worden 

sind. Diese Aufgaben sind stärker aus der Schule bekannt und könnten einen 

anderen „Problemgrad“ aufweisen. 

7.2.5 Theoretische Einordnung im Kontext mathematischer Lernprozesse 

Die vorherigen Ausführungen konzentrierten sich explizit auf die Beantwortung 

der Forschungsfragen, die stark auf das mathematische Problemlösen ausgerichtet 

waren. Im Weiteren werden diese Ergebnisse auf allgemeine mathematische 

Lernprozesse übertragen. 

Die vorliegende empirische Studie bietet einen umfassenden Einblick in 

authentische mathematische Lernprozesse von Ingenieur:innen während ihres 

 
73 Vier Indikatoren erscheinen eine angemessene Zahl zu sein, um sicherzustellen, dass ein 

Prozess nur dann als Problemlöseprozess eingestuft wird, wenn Indikatoren aus mindestens 

zwei der vier Kategorien (Steuerung, Wissen, Heurismen, allgemeine Kategorie) 

identifiziert werden können. 
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Studiums. Obwohl solche Prozesse, wie bspw. die Bearbeitung von 

Hausaufgaben, eine zentrale Rolle im Studium spielen, ist die Forschung hierzu 

bislang begrenzt (Kapitel 1). 

In der durchgeführten Studie wurden Aufgaben mit unterschiedlichen 

Anforderungen hinsichtlich prozeduralen und konzeptuellen Wissens untersucht 

(Kapitel 5.3). Ein interessantes Ergebnis zeigt sich bei der Analyse der Aufgabe 

"L’Hospital", die überwiegend als prozedurale Aufgabe eingeordnet wird und 

daher typischerweise ein (routinemäßiges) Verfahren zur Lösung verlangt. Trotz 

dieser Klassifikation stellte sich heraus, dass die Aufgabe für die Studierenden ein 

Problem darstellt (Kapitel 6.4.3). Dieses Ergebnis verdeutlicht, dass eine reine 

Klassifikation von Aufgaben in prozedural und konzeptuell nicht ausreicht, um 

zu bestimmen, ob es sich tatsächlich um ein Problem für die Lernenden handelt. 

Darüber hinaus zeigt es, dass auch prozedurale Aufgaben durchaus 

Schwierigkeiten bereiten können und nicht ausschließlich Beweisaufgaben 

Probleme darstellen. Besonders im Kontext von Ingenieur:innen, die 

möglicherweise eine andere Einstellung gegenüber der Mathematik aufweisen als 

Studierende aus rein mathematischen Fachstudiengängen, wird dies relevant. Für 

diese Zielgruppe können auch prozedurale Aufgaben Herausforderungen mit sich 

bringen, die Problemlösekompetenzen fördern und erfordern. Somit könnte auch 

in Aufgaben, die vordergründig prozedural erscheinen, ein bedeutendes Potenzial 

zur Entwicklung von Problemlösefähigkeiten liegen. 

Der Fokus dieser Untersuchung lag auf dem Themengebiet der 

Differentialrechnung. Abgesehen vom Begriff der Differenzierbarkeit bzw. dem 

Ableitungsbegriff existieren wenig Studien, die sich mit dem Mittelwertsatz 

(siehe Kapitel 4.3.4) und der Regel von L´Hospital (siehe Kapitel 4.3.5) 

beschäftigen – insbesondere hinsichtlich der Anwendung in (authentischen) 

Lernsituationen. Besonders die Aufgabe „Mittelwertsatz“, die einen stark 

beweisenden Charakter hat, zeigt, dass Studierende konzeptuelle Schwierigkeiten 

in allen Facetten dieses Zusammenhangs aufweisen. Dabei bestätigt sich 

außerdem, dass Studierende allgemeine Schwierigkeiten mit dem Beweisen 

haben, insbesondere bei der Entwicklung einer Beweisidee oder -strategie 

(Weber, 2001). Letztendlich wurden jedoch auch prozedurale Schwierigkeiten 

identifiziert, insbesondere bei der Anwendung (Impliziten Nutzung) und 

Anleitung (Expliziten Formulierung) von Verfahren. 

Darüber hinaus lässt sich auch ein Lerneffekt durch das Bearbeiten 

mathematischer Probleme beobachten. Wie in Kapitel 6.4.3 erläutert, stellen die 

Problembearbeitungsprozesse für die Studierenden einerseits eine 

Herausforderung dar, bieten andererseits aber auch die Möglichkeit, 

mathematische Inhalte weiter einzuüben. Obwohl in dieser Arbeit kein 

Wissensstand vor und nach der Bearbeitung erhoben wurde, konnte festgestellt 

werden, dass während der Prozesse Lernfortschritte erzielt wurden. In allen 

Problembearbeitungsprozessen stoßen die Studierenden auf Schwierigkeiten 
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(Kapitel 6.4.3), die oftmals während der Prozesse gelöst und somit als 

überwundene Hürde betrachtet werden können. Zum einen versteht z. B. David 

in seinem Prozess zur Aufgabe „Differenzierbarkeit prüfen“ den gleichnamigen 

Begriff besser und kann damit im Anwendungskontext arbeiten. Zum anderen 

werden Wissenslücken, wie die Rolle der Betragsstriche bei Lea, Lisa, Sarah und 

Paula zur Aufgabe „Mittelwertsatz“, ausgeglichen. Diese Ergebnisse legen nahe, 

dass das Bearbeiten von Problemen nicht nur zum Problemlösen selbst beiträgt, 

sondern auch Lernfortschritte begünstigt (und diese wiederum die 

Problemlösefähigkeit verbessern). In diesen Situationen ist das propagierte 

Lernen durch Problemlösen (Holzäpfel et al., 2018, S. 169; Leuders, 2017) 

beobachtbar. Diese Lernprozesse können dann erfolgreich sein, wenn die drei 

Kategorien (Steuerung, Wissen und Heurismen) in den Prozess integriert und 

miteinander verknüpft werden, sodass sie sich gegenseitig unterstützen und den 

Lernprozess fördern. Es hat sich gezeigt, dass ein Prozess allein aufgrund einer 

bestimmten Kategorie, wie bspw. einer zeitlich langen Exploration, nicht 

grundlegend als erfolgreich oder weniger erfolgreich bewertet werden kann. 

Ebenso verhält es sich mit den anderen Kategorien, wie Wissen und Heurismen. 

Jede dieser Kategorien trägt auf ihre Weise zum Lernprozess bei, und ihr 

Zusammenspiel ist entscheidend. Erst wenn alle Kategorien in einem 

Wechselspiel agieren, wird das Lernen effektiv gefördert und die 

Problemlösungsfähigkeit der Lernenden optimiert. 

In diesem Kontext kann erneut die Verbindung zwischen verschiedenen 

Heurismen und Lernstrategien thematisiert werden. Insbesondere im Hinblick auf 

das Überwinden von Schwierigkeiten bzw. das Schließen von Wissenslücken 

bieten sich vielversprechende Ansätze, die durch gezielte Heurismen oder 

Lernstrategien unterstützt werden können. Insbesondere Lernstrategien, welche 

die Explizite Formulierung mathematischer Inhalte unterstützen, könnten in 

diesem Zusammenhang besonders wertvoll sein. Die Überwindung von 

Schwierigkeiten in dieser Facette hat bereits zu Lösungsfortschritten beigetragen 

(Kapitel 6.2.8), was diese Strategien vielversprechend für den Lernprozess macht. 

7.3 Praktische Implikationen 

Wie Neumann et al. (2015) bereits herausstellten, ist ein gezieltes Training von 

Problemlösefähigkeiten essenziell für die Verbesserung der Leistung von 

Studierenden. Dies umfasst neben der Vermittlung von mathematischen Inhalten 

(Wissen) insbesondere die Vermittlung von Heurismen und Strategien zur 

Steuerung des Lösungsprozesses. Die Bedeutung mathematischen Problemlösens 

wird auch im SEFI-Katalog für das Ingenieurstudium (Kapitel 1.1) deutlich 

hervorgehoben: Problemlösen gilt als eine der zentralen Schlüsselkompetenzen 

für Ingenieur:innen. Dabei reicht es nicht aus, ausschließlich Fachwissen in der 

Mathematik zu vermitteln. Ingenieur:innen sollen zwar mathematikhaltige 
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Probleme lösen können, doch dies erfordert darüber hinaus den gezielten Einsatz 

von Heurismen sowie eine bewusste Steuerung der Lösungsprozesse. Diese 

Fähigkeiten müssen anschließend nicht nur auf mathematische Fragestellungen 

beschränkt sein, sondern lassen sich möglicherweise auch auf andere 

Problembereiche übertragen, was ihre Relevanz für die berufliche Praxis 

erheblich steigert. Die Forschungsergebnisse dieser Arbeit zeigen zudem, dass 

das Zusammenspiel mehrerer Kategorien beim Problemlösen von entscheidender 

Bedeutung für gelungene Problembearbeitungsprozesse ist. Daher sollte ein 

Training bzw. eine Unterstützungsmaßnahme kategorienübergreifend und 

umfassend gestaltet sein, um alle Kategorien ausreichend abzudecken. Dabei 

kann es ebenfalls sinnvoll sein, Beliefs mit einzubeziehen, die in dieser Arbeit 

jedoch nicht behandelt worden sind. 

Betrachtet man mathematische Übungszettel an Hochschulen, fällt auf, dass viele 

Aufgaben nahezu ausschließlich einen inhaltlichen Fokus besitzen, was das 

Potenzial zur Förderung von Problemlösekompetenzen möglicherweise 

einschränkt. In den Aufgaben könnte expliziter auf Kompetenzen eingegangen 

werden, insbesondere auf Problemlösefähigkeiten, da diese eine wichtige 

Kompetenz für Ingenieurstudierende darstellen (Alpers et al., 2013). Derzeit wird 

jedoch häufig stillschweigend davon ausgegangen, dass die Studierenden diese 

Fähigkeiten nebenbei erlernen und entwickeln. Ein Potenzial, um die 

Problemlösekompetenz bei der Aufgabenstellung in den Fokus zu rücken, liegt 

bspw. darin, in Aufgabenstellungen Hinweise zu integrieren, die auf den Einsatz 

von gewissen Heurismen hinweisen. Dabei kann es sich um einfache 

Formulierungen handeln, wie z. B. das Erstellen von Tabellen oder das Suchen 

und Erkennen von Mustern. Da die Aufgabenstellung zur Aufgabe 

„Differenzierbarkeit prüfen“ bereits das Ergebnis suggeriert, könnten Studierende 

dazu angeregt werden, „rückwärts zu arbeiten“. In der untersuchten Veranstaltung 

bietet sich der Heurismus Ähnliche Aufgabe als ein gezielter Ansatzpunkt an, um 

die Problemlösekompetenzen der Studierenden zu stärken. Da die gestellten 

Aufgaben zwischen Tutorium und Hausaufgaben häufig ähnlich aufgebaut sind 

(Kapitel 5.3), könnten die Studierenden dazu angeleitet werden, die Unterschiede 

zwischen den Aufgaben systematisch zu analysieren. Ein Schwerpunkt könnte 

hierbei auf die Aufgabenanalyse gelegt werden, um die potenziellen 

Auswirkungen auf die Bearbeitung der neuen Aufgabe herauszuarbeiten. Dies 

würde den Studierenden ermöglichen, nicht nur die Gemeinsamkeiten der 

Aufgaben zu erkennen, sondern auch kritisch zu reflektieren, wie die 

Unterschiede die Lösungsstrategien beeinflussen können. Insbesondere in 

Tutorien könnte dieses Verfahren implementiert werden. Dort bietet sich die 

Gelegenheit, mit anderen Studierenden und Tutor:innen gemeinsam zu 

diskutieren. Ggfs. können in den Tutorien auch einfachere Einstiegsaufgaben 

erarbeitet und besprochen werden (Stenzel, 2023a, S. 211), die eine gewisse 

Übertragbarkeit auf die Hausaufgaben ermöglichen. 
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Ein weiterer Ansatz besteht in der Bereitstellung ausführlicher Musterlösungen, 

wie sie von Ableitinger und Herrmann (2011) und Ableitinger (2012) beschrieben 

werden (Kapitel 5.3). Solche Lösungen könnten die in den jeweiligen Aufgaben 

genutzte Heurismen sowie metakognitiven Aktivitäten explizit hervorheben und 

deren Nutzen verdeutlichen. Diese praxisorientierten Lösungen würden nicht nur 

den Lernprozess unterstützen, sondern auch eine Brücke zwischen der 

theoretischen Vermittlung und der praktischen Anwendung schlagen.  

Sofern Heurismen expliziter Teil der Lehre werden, sollte darauf aufmerksam 

gemacht werden, dass es keinen „one-size-fits-all“-Heurismus gibt, der in jeder 

Situation hilfreich ist. Stattdessen ist es entscheidend, ein breites Repertoire an 

Heurismen aufzubauen, die flexibel und situationsgerecht eingesetzt werden 

können, da sich dies als erfolgsversprechend herausgestellt hat (Kapitel 6.3.3). 

Dies setzt allerdings voraus, dass Heurismen in der Veranstaltung (sowohl 

Vorlesung als auch Übungsaufgaben) vielfältig angeregt werden. Ein großes 

Repertoire an Heurismen ermöglicht es den Studierenden, auf unterschiedliche 

Herausforderungen angemessen zu reagieren und je nach Kontext die passende 

Strategie auszuwählen. Aus bisherigen Unterstützungsmaßnahmen ist jedoch 

bekannt, dass Studierende nicht mit einer Liste von verschiedenen Heurismen 

überfrachtet werden sollten (Stenzel, 2023a, S. 186). Stattdessen wäre ein 

gezielter Fokus hilfreich. In den Ergebnissen hat sich gezeigt, dass strukturierte 

Vorgehensweisen, insbesondere mit einer gründlichen Aufgabenanalyse, zum 

Erfolg führen (Kapitel 6.1.6). Auf Basis der Ergebnisse zu häufigen Interaktionen 

in der Analysis (Kapitel 6.4.1) wäre es daher sinnvoll, den Heurismus Begriffe 

klären vorrangig mit den Studierenden zu besprechen. Dieser Ansatz deckt sich 

mit den Überlegungen, die Stenzel (2023a, S. 187) nach der Evaluation seiner 

Trainingsmaßnahme formuliert hat. Zusätzlich wäre eine Entscheidung, ob eine 

Skizze für die Aufgabenanalyse hilfreich sei, ebenfalls schnell entschieden. Auf 

der Wissensebene könnte dieser Fokus auf die Aufgabenanalyse erweitert werden, 

indem die Studierenden sich gezielt mit Begriffen und Zusammenhängen 

beschäftigen. Aufgrund der Interaktionen zeigt sich, dass in 

Unterstützungsvorhaben vor allem die Facetten Explizite Formulierung und 

Konkretisierung & Abgrenzung hervorgehoben werden sollten. 

Die Ergebnisse stellen heraus, dass Studierende bei der Bearbeitung von 

Aufgaben vor allem auf die Beispiel-Aufgaben aus dem Tutorium zurückgreifen. 

Dies wird sowohl durch die Konkretisierung & Abgrenzung als auch die 

Verwendung des Heurismus Ähnliche Aufgabe deutlich. Obwohl dies 

vermeintlich auf die Organisation der Veranstaltung zurückzuführen ist, bestätigt 

eine Vorstudie ein vergleichbares Verhalten: Studierende berichten häufig, dass 

sie gezielt nach Beispielen im Internet suchen, um sich bei der 

Aufgabenbearbeitung an diesen zu orientieren (Kolbe & Wessel, 2022). Darüber 

hinaus konnte beobachtet werden, dass Studierende sich nicht nur auf Beispiele 

stützen, sondern häufig versuchen, die Vorgehensweise direkt zu kopieren. Diese 
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Tendenz verdeutlicht die Notwendigkeit, Lehrveranstaltungen entsprechend 

darauf vorzubereiten. Wenn Studierende ohnehin nach Beispielen (z.B. im 

Internet) suchen, ist es von Vorteil, gezielt Beispiele bereitzustellen, welche die 

inhaltlichen Aspekte der Aufgaben klären und besser auf die eigenen 

Hausaufgaben vorbereiten. 

Beispiele bzw. Beispielaufgaben bieten im Ingenieurstudium ein zusätzliches 

Potenzial, indem sie eine Brücke zwischen mathematischen Verfahren und deren 

Anwendung im Ingenieurkontext schlagen. Dieser Ansatz kann nicht nur das 

Verständnis der Studierenden vertiefen, sondern auch ihre Motivation steigern. 

Wolf (2017) hat in diesem Zusammenhang Anwendungsaufgaben entwickelt, die 

speziell auf die Verbindung von Mathematik und Maschinenbau ausgerichtet sind. 

Auf diesen Fundus könnte zurückgegriffen werden, um erste Maßnahmen in der 

Lehre zu ergreifen und Studierenden einen praxisnahen Zugang zu 

mathematischen Inhalten zu bieten. 

Die Ergebnisse zeigen, dass Studierende einen erheblichen Teil ihrer Zeit in der 

Phase der Exploration verbringen (Kapitel 6.1.2). Obwohl die Exploration 

oftmals mit dem „wild goose chase“ und seinen negativen Einfluss auf die 

Problemlöseprozesse assoziiert werden, ist dies erstmal nichts Negatives. 

Insbesondere die Exploration ist ein Indikator eines Problemlöseprozesses 

(Kapitel 6.4.3). Dennoch sollten Studierende dazu angeleitet werden, ihren 

Problemlösungsprozess regelmäßig zu reflektieren und zu überprüfen, ob ihr 

derzeitiges Vorgehen tatsächlich zielführend ist. Dabei spielen metakognitive 

Fähigkeiten eine entscheidende Rolle, da sie den Studierenden helfen, ineffektive 

Explorationen zu erkennen und einem „wild goose chase“ zu entkommen bzw. 

gezielt in eine andere Problemlösungsepisode überzugehen. Um diesen Prozess 

zu unterstützen, sollten Lehrende den Studierenden konkrete Strategien 

(„Inwiefern bringt uns das weiter? Brauchen wir noch mehr Informationen? 

Stimmt es wirklich, was wir da gemacht haben?“) vermitteln, mit denen sie ihre 

Explorationen systematischer gestalten können. 

Die Ergebnisse heben außerdem hervor, dass sowohl konzeptuelles Wissen als 

auch die Fähigkeit, Verknüpfungen zwischen unterschiedlichen Inhalten 

herzustellen, von zentraler Bedeutung sind (Kapitel 6.2.5). Diese Aspekte sind 

essenziell, um mathematische Beziehungen zu verstehen und Konzepte, 

Zusammenhänge sowie Verfahren in verschiedenen Anwendungskontexten 

erfolgreich nutzen zu können. Die Wissensmatrix kann hierbei eine 

unterstützende Rolle spielen. Sie bietet die Möglichkeit, spezifische Facetten des 

Wissens explizit zu vermitteln und gleichzeitig Verknüpfungen zwischen 

verschiedenen Inhalten für die Studierenden sichtbar zu machen. Auf diese Weise 

wird es den Studierenden erleichtert, die Struktur und den Zusammenhang 

mathematischer Inhalte zu erkennen sowie ihr Verständnis nachhaltig zu 

vertiefen. 
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7.4 Reflexion zur methodischen Herangehensweise 

Im Folgenden wird die methodische Herangehensweise der Studie (Kapitel 5) 

diskutiert. Zunächst wird auf die Erhebungsmethode des Lautens Denkens sowie 

die damit einhergehende Beobachtungssituation eingegangen (Kapitel 7.4.1). 

Anschließend erfolgt eine Reflexion der drei Auswertungsmethoden in Bezug auf 

die Kategorien Steuerung, Wissen und Heurismen im Kontext der 

Problembearbeitungsprozesse (Kapitel 7.4.2). Abschließend wird sich mit dem 

Einfluss des Kontextes auf die Ergebnisse auseinandergesetzt (Kapitel 7.4.3) und 

die Verallgemeinerbarkeit der Studienergebnisse hinterfragt (Kapitel 7.4.4). 

7.4.1 Diskussion zum Lauten Denken und der Beobachtungssituation 

Bei der Anwendung der Methode des Lauten Denkens zeigen sich in dieser Studie 

einige Limitationen, welchem die Validität und Aussagekraft der erhobenen 

Daten beeinflussen können.  

Ein zentraler Punkt betrifft die Gruppengröße und deren Einfluss auf die 

Authentizität der Situation. Konrad (2010) beschreibt, dass die Art des Lauten 

Denkens durch die soziale Dynamik innerhalb der Gruppe beeinflusst werden 

kann (z.B. bei Lea, Lisa, Sarah und Paula). Insbesondere größere Gruppen können 

dazu führen, dass die Teilnehmenden ihre Gedanken weniger frei äußern, was die 

Authentizität und Spontanität der Verbalisierungen beeinträchtigen könnte. Eine 

weitere Schwäche der Methode liegt in der potenziellen Nicht-Verbalisierung 

automatisierter bzw. prozeduraler Prozesse (Sandmann, 2014, S. 188). Konrad 

(2010) hebt hervor, dass Teilnehmende dazu neigen, vor allem bewusste und 

reflektierte Gedankengänge zu äußern, während routinemäßige Abläufe oft 

unkommentiert bleiben. Dies stellt eine Herausforderung dar, da gerade diese 

nicht-verbalisierten Aspekte für ein umfassendes Verständnis der Denkprozesse 

relevant sein können. In der vorliegenden Studie zeigt sich, dass diese Schwäche 

insbesondere Auswirkungen auf das prozedurale Wissen in der Kodierung 

ausüben kann. Die Nutzung bzw. Aktivierung dieses Wissens wird aus diesem 

Grund vermutlich unterschätzt, da entsprechende kognitive Abläufe nicht explizit 

verbalisiert und dementsprechend für eine Analyse nicht zugänglich sind. Obwohl 

in der Studie auch Videos für die Auswertung herangezogen wurden, die es 

ermöglichen, Handlungen zu erkennen, ist es dennoch nicht immer möglich, jede 

Prozedur vollständig zu rekonstruieren. 

Hinzu kommt die Problematik der Beobachtungssituation, vor allem das 

Dabeisein der forschenden Person während der Durchführung. Mondana (2006, 

S. 52) weist darauf hin, dass die Präsenz einer beobachtenden Person die 

Teilnehmenden in ihrem Verhalten beeinflussen kann. Diese sogenannten 

Beobachtungseffekte können dazu führen, dass die Teilnehmenden ihre 

Denkprozesse unnatürlich anpassen oder sich weniger offen äußern. Darüber 

hinaus betrifft die besondere Beobachtungsituation auch die „Echtheit“ der 
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Ergebnisse. Am Beispiel von Nicks Bearbeitungsprozessen konnte beobachtet 

werden, dass er nervös wirkte und sich nur darauf konzentrierte, die Aufgaben 

möglichst schnell abzuschließen. Dabei können selbstregulatorische 

Entscheidungen, die den Fortschritt bei der Lösungsfindung gefördert hätten, von 

Nick ausgespart worden sein. 

Trotz dieser Einschränkungen wird die Gesamtwirkung dieser Limitationen auf 

die Studie als gering eingeschätzt. Dies liegt daran, dass während der 

Durchführung eine freundschaftliche Atmosphäre zwischen Studienleiter und 

Teilnehmenden gepflegt wurde. Vor oder nach der Lernsituation wurden bspw. 

Gespräche über nicht-mathematische Themen geführt, was (vor allem in der 

ersten Sitzung) deutlich zur Entspannung der Teilnehmenden beigetragen hat. 

Darüber hinaus wurden während der Studie auch positive Effekte rund um die 

Situation des lauten Denkens beobachtet. Erstens haben die Teilnehmenden 

keinerlei Anzeichen von Ablenkung gezeigt, sondern waren durchgehend auf die 

Aufgaben konzentriert. Zweitens spiegelt sich dies in einer Bearbeitung von 

David wider, der ohne die besondere Situation die Bearbeitung der Aufgaben 

bereits vorzeitig abgebrochen hätte und nun einen Motivationsschub bekommen 

hat: „Also ich bin relativ ehrlich. Ich glaube, normalerweise würde ich diese 

Aufgabe jetzt aufgeben, […], aber ich versuche es mal weiter.“ Dies wirft die 

Frage auf, ob das laute Denken nicht nur eine Beobachtungsmethode war, sondern 

auch aktiv das Bearbeitungsverhalten verändert hat. Diese mögliche 

Wechselwirkung sollte bei der Interpretation der Ergebnisse berücksichtigt 

werden. 

Insgesamt verdeutlichen die Ergebnisse dieser Studie, dass das mathematische 

Problemlösen nur mit einer Methode, die nah am Prozess ansetzt, umfassend 

untersucht werden kann. Dabei wurden verschiedene Maßnahmen ergriffen, um 

die Authentizität der Lernsituation so weit wie möglich zu erhalten (Kapitel 

5.2.2).  Nur eine solche detaillierte und prozessnahe Analyse ermöglicht es, die 

„ehrlichen“ (meta-)kognitiven Prozesse der Teilnehmenden sichtbar zu machen, 

natürliche (mathematische) Lernprozesse zu erfassen und ein tiefergehendes 

Verständnis für deren Denk- und Lösungsstrategien zu gewinnen. Dabei lag in 

dieser Untersuchung ein Fokus auf Steuerung, Wissen und Heurismen. Die 

Erhebungsmethoden, mit denen diese Kategorien untersucht wurden, werden im 

Folgenden detaillierter diskutiert. 

7.4.2 Diskussion zu den Auswertungsmethoden der 

Problembearbeitungsprozesse 

Schoenfeld Episoden 

Die Anwendung des Episodenmodells von Schoenfeld (1985) zur Analyse von 

Problembearbeitungsprozessen birgt ebenfalls mehrere Limitationen. Ein 

wesentlicher Kritikpunkt betrifft das Definitionsproblem der Episoden (Rott, 
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2013, S. 192). Dabei wird hervorgehoben, dass die Definitionen der Episoden 

oftmals vage bleiben. Schoenfeld (1992b) selbst gibt zu, dass die Abgrenzung 

zwischen den Episoden Exploration und Analysis nicht ganz eindeutig ist und es 

zu Verwechslungen kommen kann (Kapitel 5.4.1). Die Kategorien geben 

demnach einen gewissen Interpretationsspielraum, was zu Uneinigkeiten bei der 

Kodierung führen kann. Es ist sogar möglich, dass gleiche Handlungen, wie das 

Nachschlagen im Skript, je nach Kontext unterschiedlichen Episoden zugeordnet 

werden kann. Entscheidend ist, warum die Handlung erfolgt (ergibt sich z. B. 

durch vorherige Handlungen), da der Kontext die zugrunde liegende Episode 

klärt. Zudem sollte die Verbindung zwischen Erfolg und den einzelnen Episoden 

mit Vorsicht betrachtet werden. Die Definitionen der Kategorien implizieren 

teilweise bereits eine Bewertung, was insbesondere bei Exploration und Planning 

(+Implementation) zu einer voreingenommenen Interpretation führen kann. So 

können Problembearbeitungsprozesse mit einem zielführenden Vorgehen eher in 

Planning (+Implementation) und weniger zielführendes Vorgehen in Exploration 

eingeordnet werden.  

Des Weiteren ist die Episodenkodierung von Schoenfeld vielmehr für einen 

ganzheitlichen Blick (=globales Level der Steuerung) des 

Problembearbeitungsprozess geeignet. Dabei spielt ebenfalls das Zeitlimit der 

kodierenden Episoden eine Rolle, die dazu führen, dass kürzere metakognitive 

Aussagen bzw. Handlungen (=lokales Level der Steuerung) nicht unbedingt in der 

Kodierung berücksichtigt werden konnten. In Kapitel 5.4.1 wird ebenfalls 

angedeutet, dass bspw. kürzere Verifications bzw. reflektive Aktivitäten in 

gewissen Episoden eingebettet sind. 

Die Lerngruppengröße stellt eine weitere Limitation dar, die insbesondere bei der 

Analyse von Lea, Lisa, Sarah und Paula deutlich wird. In solcher Konstellation 

entsteht häufig eine Vielfalt von Einflussfaktoren, die den ständigen Wechsel 

zwischen Episoden begünstigen. Die Analyse solcher Prozesse gestaltet sich 

besonders herausfordernd, da die einzelnen Beiträge der verschiedenen Personen 

schwer eindeutig einer Episode zugeordnet werden können. In der Bearbeitung 

von Lea, Lisa, Sarah und Paula ist es bspw. vorgekommen, dass zwei Studierende 

die Aufgabe bereits als vollständig bearbeitet angesehen haben, während die 

anderen beiden Studierenden noch in der Episode der Verification vertieft waren.  

Wissensmatrix 

In dieser Studie wurde die Wissensmatrix (Prediger et al., 2011) für verschiedene 

Aspekte eingesetzt.  

Die Wissensmatrix bietet vielfältige Möglichkeiten, mathematische Inhalte als 

prozedurales bzw. konzeptuelles Wissen einzuordnen (siehe z. B. Kapitel 4.4). 

Diese Möglichkeiten sind jedoch im Hinblick auf die Auswertung und die 

theoretische Einordnung in die Anforderungen der Aufgaben kritisch zu 

betrachten. Um eine fundierte theoretische Einordnung zu gewährleisten, wurden 
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Diskussionen mit mehreren Mitarbeiter:innen der Mathematikdidaktik geführt 

(siehe Kapitel 5.3). Durch konsensuelle Validierung konnte ein gemeinsamer 

Nenner gefunden werden, jedoch wurde in den Diskussionen auch deutlich, dass 

alternative Einordnungen ebenfalls sinnvoll erscheinen. Eine unterschiedliche 

Einordnung der mathematischen Inhalte würde ebenfalls einen Einfluss auf die 

Auswertung ausüben. Ein Beispiel dafür ist die Einordnung der Regel von 

L´Hospital (eine Diskussion dazu in Kapitel 4.4): Wenn diese als konzeptuelles 

und nicht als prozedurales Wissen aufgefasst wird, verschiebt sich die 

Wissensnutzung der Studierenden ebenfalls stärker in Richtung des konzeptuellen 

Wissens. 

Ein weiterer Aspekt betrifft die Möglichkeit, das Angebot mit der Wissensmatrix 

noch präziser zu untersuchen. Hierzu könnte eine Analyse der 

Veranstaltungsmaterialien hinsichtlich der Quantität (Wie oft bzw. intensiv wird 

die Facette behandelt?) und Qualität (Wird die Facette vollumfänglich 

dargestellt?) der dargestellten mathematischen Inhalte beitragen. Eine solche 

Analyse würde es ermöglichen, detailliertere Aussagen über den Vergleich 

zwischen Angebot und Nutzung zu treffen, anstatt lediglich festzustellen, ob ein 

Angebot genutzt wurde.  

Die Integration der Wissensfacette Implizite Nutzung hat sich im Kontext von 

Bearbeitungsprozessen als besonders nützlich erwiesen, da sie sich als 

meistgenutzte Wissensfacette herausstellte. Dies ist nachvollziehbar da es bei 

Hausaufgaben oft um die Anwendung bzw. den Anwendungskontext von 

Konzepten, Zusammenhängen und Verfahren geht. Zusammen mit der Expliziten 

Formulierung spiegelt die Implizite Nutzung die definitorischen Ansätze des 

prozeduralen Wissens gut wider (Kapitel 2.4.2). Daher konnten für diese beiden 

Facetten Schwierigkeiten in den Bearbeitungen der Studierenden leicht 

zugeordnet werden. Im Gegensatz dazu erwies sich die Interpretation anderer 

Facetten, insbesondere von Bedeutung & Vernetzung, als weniger eindeutig und 

war mit größerem Interpretationsspielraum verbunden. Dies hängt 

möglicherweise damit zusammen, dass die Facette Bedeutung & Vernetzung in 

der ursprünglichen Wissensmatrix einen starken Bezug zum konzeptuellen 

Wissen aufweist. 

Es zeigt sich genauso wie bei den Schoenfeld Episoden, dass die Kodierung in 

einem Gruppensetting herausfordernd ist. In kurzen Zeitspannen werden oft 

verschiedene Wissenselemente angedeutet, was es schwierig macht, alle Aspekte 

mit der Wissensmatrix abzubilden. Hier stößt die Wissensmatrix an ihre Grenzen, 

insbesondere wenn es darum geht, dynamische und komplexere Interaktionen zu 

erfassen. 

Letztendlich hat der Einsatz der Wissensmatrix auch forschungspraktische 

Implikationen. Zum einen bietet die Wissensmatrix die Möglichkeit, 

mathematische Inhalte auf hochschulischer Ebene zu systematisieren und zu 

strukturieren, was ihrem ursprünglichen Zweck für schulische Inhalte entspricht. 
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Mit der Anpassung und Weiterentwicklung der Wissensmatrix für die 

Hochschulforschung wurde sie jedoch auch in einer Weise verwendet, die über 

ihren ursprünglichen Entwurf hinausgeht. Sie wurde zweckentfremdet, um die 

Nutzung von Wissen in Problembearbeitungsprozessen darzustellen. In diesem 

neuen Kontext bietet sie wertvolle Einsichten in die Art und Weise, wie 

Studierende Wissen anwenden und zwischen verschiedenen Wissensarten 

differenzieren. Dabei ermöglicht die Wissensmatrix nicht nur eine differenzierte 

Analyse der Wissensnutzung, sondern auch eine tiefere Untersuchung der 

Lernprozesse und ihrer Dynamik. 

Heurismen 

Für diese Studie wurde für die Kodierung von Heurismen auf ein bereits 

bestehendes Kategoriensystem von Stenzel (2023a) zurückgegriffen. Dieses 

Kategoriensystem ist auf einige Aufgaben für den hochschulischen 

Mathematikkontext angepasst. Obwohl die Aufgaben in der Studie 

unterschiedlich waren, hat sich dennoch gezeigt, dass der bestehende 

Kategorienkatalog (mit kleinen Anpassungen) auch für diese Untersuchung 

geeignet ist. Eine Ergänzung des Heurismus „systematisches Probieren“ hätte 

jedoch vorgenommen werden können, da es insbesondere bei der Anwendung von 

Spezialfällen Hinweise darauf gab, wie etwa bei David zur Aufgabe „L´Hospital“. 

Hier wurden durch das Einsetzen verschiedener Werte Spezialfälle betrachtet, was 

bei mehrfachem Einsetzen als systematisches Probieren interpretiert werden 

könnte. In weiteren Studien im hochschulischen Kontext müssen ggfs. weitere 

Anpassungen bzw. Ergänzungen an dem Kategorienkatalog vorgenommen 

werden. 

7.4.3 Diskussion zum Kontext der Studie 

Im Rahmen der Studie wurde festgestellt, dass Studierende typischerweise erst 

eine Lernsession zur Bearbeitung der Hausaufgaben mit dem Studienleiter 

vereinbart haben, nachdem sie in derselben Woche zuvor das Tutorium besucht 

hatten. Es ist möglich, dass diese (auch von der Veranstaltung intendierte) 

Reihenfolge die untersuchten Problembearbeitungsprozesse beeinflusst haben. 

Die Struktur der Veranstaltung könnte insbesondere die frühen Phasen des 

Problemlöseprozesses, wie Reading oder Analysis, prägen. Da die Aufgaben im 

Tutorium und in den Hausaufgaben eine starke Ähnlichkeit aufweisen (siehe 

Kapitel 5.3) und dazu in derselben PDF-Datei bereitgestellt werden, ist denkbar, 

dass Studierende durch die Arbeit im Tutorium bereits erste Analysen oder 

Ansätze entwickeln. Es ist auch nicht auszuschließen, dass Tutoren im Tutorium 

in Nebensätzen auf die Hausaufgaben eingehen oder eine kurze Aufgabenanalyse 

vorwegnehmen. Dieses Verhalten könnte erklären, warum manche Studierende, 

wie Alex und Thomas, direkt nach dem Tutorium mit der Bearbeitung der 
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Hausaufgaben beginnen und schnell einen Plan entwickeln. Solche Bedingungen 

könnten sich zudem auf die Wahl und Nutzung von Heurismen sowie Wissen 

auswirken. Besonders der Heurismus Ähnliche Aufgabe scheint in diesem 

Kontext eine bedeutende Rolle einzunehmen, da die Aufgabenformate ebenfalls 

eng verwandt sind. Gleiches gilt für die Facette Konkretisierung & Abgrenzung.  

Darüber hinaus wirft die Authentizität der Bearbeitungssituation interessante 

Fragen auf. Ein Vergleich mit der Studie von Schoenfeld (z.B. 1985) legt nahe, 

dass die Struktur eines festgelegten Zeitrahmens andere Problemlöseprozesse 

hervorbringen könnte als freiere, alltägliche Kontexte (siehe z. B. an dem 

Verhalten "wild goose chase"). Gleichzeitig könnten die zusätzlichen Anreize, 

wie Bonuspunkte für die Klausur, eine besondere Motivation geschaffen haben, 

die Problembearbeitung mit einem pragmatischen Ziel zu verbinden. Dies könnte 

die Dynamik der Prozesse ebenfalls beeinflusst haben. 

Es ist davon auszugehen, dass für die (Erstsemester-)Studierenden zum Zeitpunkt 

der Studie die organisatorischen Herausforderungen des Übergangs von der 

Schule zur Hochschule weitgehend bewältigt waren. Die Abläufe des Semesters 

und die Bedeutung regelmäßiger Aufgabenbearbeitungen sollten zu diesem 

Zeitpunkt etabliert sein. Allerdings könnte die fachliche Eingewöhnung nach wie 

vor Anpassungsprozesse erfordern, da die spezifische Herangehensweise und 

Wissensvermittlung der Mathematik in diesem Studiengang weiterhin 

Herausforderungen mit sich bringen könnten (Stoffels, 2020, S. xii). Diese 

Überlegungen deuten darauf hin, dass die Ergebnisse durch die fortlaufende 

Eingewöhnung in die fachlichen Anforderungen, jedoch nicht durch 

organisatorische Unsicherheiten beeinflusst wurden. 

Abschließend lässt sich festhalten, dass mathematisches Problemlösen 

idealerweise als dynamischer Prozess untersucht werden sollte. Ohne diesen 

Fokus wären viele Beobachtungen, wie etwa die Nutzung spezifischer 

Heurismen, Wissenselemente und die spezifischen Verläufe der einzelnen 

Prozesse, unerkannt geblieben.  

7.4.4 Verallgemeinerbarkeit der Ergebnisse 

Obwohl die Verallgemeinerbarkeit der Ergebnisse in qualitativen Studien in der 

Regel eher eine untergeordnete Rolle spielt, soll dieser Aspekt dennoch beleuchtet 

werden. 

Gegen die Verallgemeinerbarkeit der Ergebnisse dieser Studie spricht, dass sie 

ausschließlich mit Studierenden an einer einzelnen Universität durchgeführt 

wurde und auf einen spezifischen Kurs beschränkt ist. Dadurch ist die Anzahl an 

teilnehmenden Studierenden begrenzt. Eine solche Fokussierung auf einen 

kleinen Rahmen reduziert die Möglichkeit, die Ergebnisse auf andere 

Universitäten bzw. Studiengänge zu übertragen. Darüber hinaus war die 

Teilnahme an der Studie freiwillig, was eine Positivauswahl der Studierenden 

begünstigt. Es ist daher davon auszugehen, dass primär motivierte Studierende an 
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der Studie teilgenommen haben, die ohnehin die eigene Motivation aufbringen, 

die wöchentlichen Hausaufgaben zu bearbeiten. Die Stichprobe der vorliegenden 

Arbeit repräsentiert daher möglicherweise nicht die gesamte Spannbreite an 

Motivation und Engagement innerhalb der Zielgruppe. Zusätzlich deuten die 

Abiturnoten der Studierenden darauf hin, dass es sich vorwiegend um 

Teilnehmende mit guten bis befriedigenden schulischen Leistungen (mit der 

Ausnahme von Lukas) und somit ausreichendem Vorwissen handelt. Dieser 

Umstand schließt möglicherweise jene Studierende aus, die eher 

unterdurchschnittliche Leistung erbringen, wodurch ein verzerrtes Bild der 

Zielgruppe entsteht. Es kann in dem Fall dadurch nicht von einem gesättigten 

Sampling im Sinne der Grounded Theory gesprochen werden (Strauss & Corbin, 

1996). Die wenigen untersuchten Prozesse (N=13) waren zudem nicht einheitlich, 

da sie sowohl individuelle als auch Gruppenprozesse beinhalteten. Da 

kollaboratives Lernen nachweislich Einfluss auf den Problemlösungsprozess hat 

(Dahl et al., 2018; Pijls et al., 2007), sind diese Prozesse untereinander nicht direkt 

vergleichbar. Dies erschwert die Ableitung verlässlicher Schlussfolgerungen und 

reduziert die Aussagekraft der Ergebnisse in Bezug auf ihre 

Verallgemeinerbarkeit. 

Die verwendeten Aufgaben in dieser Studie könnten jedoch Hinweise auf eine 

Übertragbarkeit in andere Studiengänge liefern, insbesondere etwa für das Fach- 

bzw. gymnasiale Lehramtstudium. Die Art der Aufgaben könnten ebenfalls in 

solchen Studiengängen eingesetzt werden. Allerdings wäre zu überlegen, ob diese 

Studierendengruppe die Aufgaben ähnlich bearbeiten. Es ist denkbar, dass die 

Bearbeitungsprozesse aufgrund anderer Vorkenntnisse oder Fähigkeiten im 

Umgang mit mathematischen Inhalten deutlich variieren würden. Während die 

Aufgaben im Kontext eines ingenieurwissenschaftlichen Kontextes als Probleme 

eingestuft werden können (Kapitel 6.4.3), können dieselben Aufgaben für 

Studierende der Fach- bzw. Lehramtsmathematik als eher „einfache“ Aufgaben 

wahrgenommen werden. Es ist dennoch naheliegend zu vermuten, dass auch 

Aufgaben mit Beweischarakter, wie etwa die Aufgabe zum „Mittelwertsatz“, 

ähnliche Probleme hervorrufen könnten. 

7.5 Ausblick 

In den vorherigen Kapiteln der Diskussion wurden an mehreren Stellen bereits 

mögliche Richtungen für zukünftige Forschungen angedeutet. Aufbauend auf den 

bisherigen Ausführungen werden im Folgenden diese und weitere Überlegungen 

explizit ausgeführt. Dabei werden verschiedene Themen aufgegriffen und 

mögliche Ansätze für zukünftige Forschungsarbeiten skizziert.  

 

Verallgemeinerbarkeit Die Verallgemeinerbarkeit der Ergebnisse dieser 

Untersuchung ist in gewisser Weise limitiert, wie bereits in Kapitel 7.4.4 
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angesprochen. Da die Untersuchung in einem sehr spezifischen Rahmen 

stattgefunden hat, ist es von Interesse, wie sich die Ergebnisse in anderen 

Kontexten darstellen würden. Beispielsweise hat Stenzel (2023a, S. 89ff.) bereits 

einige Aufgaben aus dem ersten Semester von Fachstudierenden sowie 

gymnasialen Lehramtsstudierenden untersucht. Eine spannende anschließende 

Fragestellung wäre, wie mathematische Problembearbeitungsprozesse in höheren 

Fachsemestern ablaufen, in denen die fachmathematischen Inhalte komplexer 

werden, aber die Studierenden auch über mehr Erfahrung und Vorwissen 

verfügen. Ein weiterer interessanter Ansatzpunkt wäre die Analyse der 

mathematischen Problembearbeitungsprozesse von Studierenden anderer 

Fachrichtungen, etwa von Wirtschaftswissenschaftsstudierenden. Diese Gruppe 

weist aufgrund ihrer eher anwendungsorientierten Ausrichtung gewisse 

Parallelen zur Ingenieursmathematik auf und könnte zusätzliche Perspektiven auf 

die Problemlösestrategien bieten. Aber auch Untersuchungen in einem sehr 

ähnlichen Kontext könnten wertvolle Erkenntnisse liefern. Beispielsweise wäre 

es relevant zu prüfen, ob sich die Ergebnisse dieser Studie mit 

Ingenieurstudierenden an einer anderen Hochschule replizieren lassen. Dies 

würde weitere Aufschlüsse hinsichtlich der Verallgemeinerbarkeit liefern und zur 

Sättigung des Samplings beitragen (Strauss & Corbin, 1996). 

 

Problemlösen in Gruppen oder als Individuum Ein weiterer Aspekt betrifft das 

Problemlösen in Gruppen (Liljedahl & Cai, 2021) im Vergleich zum individuellen 

Arbeiten. Kollaboratives Lernen zeigt, dass Lernende von ihren 

Gruppenmitgliedern profitieren können, indem sie bspw. neue Perspektiven 

einbringen oder die eigenen Ideen gemeinsam besprechen (Dahl et al., 2018; Pijls 

et al., 2007). Auch in der vorliegenden Studie ließ sich beobachten, wie 

Gruppenmitglieder voneinander profitieren: Zum einen wurden in den 

untersuchten Lerngruppen zahlreiche metakognitive Kommentare geäußert, wie 

etwa „Das müssen wir jetzt so machen, oder?“ oder „Hast du das auch so?“. 

Solche Beiträge, obwohl oft nur kurze „Einzeiler“, ermöglichten es den 

Teilnehmenden, sich schnell gegenseitig abzusichern oder gemeinsam Ideen für 

den weiteren Lösungsweg zu prüfen. Dadurch konnten sie den 

Problembearbeitungsprozess effektiv vorantreiben, was auf die potenzielle 

Bedeutung solcher kurzen Kommentare für den Gesamtprozess hinweist. Zum 

anderen wurde deutlich, dass Gruppenmitglieder in der Lage sind, andere 

Teilnehmende gezielt in eine bestimmte Richtung zu lenken. Bspw. zeigte sich in 

den Prozessen der Gruppe um Lea, Lisa, Sarah und Paula, dass durch das 

Eingreifen eines Gruppenmitglieds der Lösungsprozess von der Exploration auf 

einen produktiven Weg zurückgeführt wurde. Solche metakognitiven Einwände, 

die in Einzelsettings häufig fehlen, haben in einem Gruppensetting großes 

Potenzial, da sie nicht nur den Problembearbeitungsprozess strukturieren, 

sondern auch den Austausch von Wissen und Strategien fördern können. Darüber 
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hinaus lässt sich vermuten, dass Gruppenarbeitsprozesse eine wichtige Rolle 

beim Schließen von Wissenslücken spielen. Während der Diskussion oder durch 

direkte Rückmeldungen zwischen den Gruppenmitgliedern könnte bisher 

inaktives Wissen aktiviert oder fehlendes Wissen ergänzt werden, was die 

Qualität und Tiefe der Problembearbeitung steigert (Pijls et al., 2007). Diese 

Aspekte wurden in der vorliegenden Arbeit lediglich angedeutet, könnten jedoch 

in einem anderen Forschungssetting, das den Vergleich zwischen Gruppen- und 

Einzelarbeit gezielt in den Fokus rückt, genauer untersucht werden. 

 

Lernen durch Problemlösen Ein weiterer Aspekt, der vertieft untersucht werden 

könnte, ist das Lernen durch Problemlösen. Obwohl dieser Aspekt in der 

vorliegenden Untersuchung nicht explizit im Fokus stand, deutet sich an 

verschiedenen Stellen an, dass das Bearbeiten von Problemen einen positiven 

Einfluss auf das Verständnis mathematischer Konzepte, Zusammenhänge und 

Verfahren haben kann. Selbst in Fällen, in denen der Bearbeitungsprozess nicht 

zu einer erfolgreichen Lösung führte, ließen sich dennoch Verbesserungen im 

mathematischen Verständnis beobachten (z. B. in Davids Prozess zur Aufgabe 

„Mittelwertsatz“). In diesem Zusammenhang stellt sich die grundlegende Frage, 

wann notwendiges Wissen für die Problemlösung aufgebaut werden sollte – vor 

Beginn des Prozesses oder erst währenddessen? (Stenzel, 2023a, S. 209). 

Zukünftige Forschung könnte untersuchen, welche spezifischen Aspekte 

tatsächlich durch Problemlösen gelernt werden können und welche 

Mindestvoraussetzungen erfüllt sein müssen, damit ein Lernzuwachs möglich ist. 

Es stellt sich die Frage, welche Wissenslücken während des Prozesses noch 

ausgeglichen werden können und ab wann solche Lücken den 

Problembearbeitungsprozess unüberwindbar erschweren. Insbesondere das 

Überwinden von Schwierigkeiten innerhalb der Facette Explizite Formulierung 

hat sich als fördernd für den Problembearbeitungsprozess erwiesen. Eine vertiefte 

Untersuchung, wie genau diese Herausforderungen bewältigt werden, könnte 

wertvolle Einblicke liefern. Eine weitere Frage wäre, welche Formen von 

Metakognition notwendig sind, um Problemlösestrategien effektiv anzuwenden. 

Welche Strategien helfen, die explizite Formulierung einer Aufgabe besser zu 

verstehen und in eine zielführende Bearbeitung zu überführen? 

Ein weiterer Aspekt, der im Kontext des Lernens durch Problemlösen vertieft 

betrachtet werden könnte, betrifft die Unterscheidung zwischen Heurismen 

und Lernstrategien. Heurismen wie Ähnliche Aufgabe sind eine oft genutzte 

Methode, die Studierende anwenden, um ihre eigenen Lösungen voranzutreiben. 

Diese Art von Heurismus fördert den Fortschritt im Lösungsprozess, und fällt 

gleichzeitig eher unter einer Wiederholungsstrategie (=Oberflächenstrategie). 

Interessanterweise zeigt sich, dass diese scheinbar oberflächliche 

Herangehensweise häufig eine positive Auswirkung auf den 

Problembearbeitungsprozess und damit auf den Lernprozess insgesamt hat. 
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Göller (2020, S. 214) hat ebenfalls schon beschrieben, dass Studierende unter 

anderem auch Wiederholungsstrategien nutzen, um Aufgaben besser zu 

verstehen und ihr Wissen zu vertiefen. Inwieweit solche „algorithmischen“ 

Heurismen als Teil des „guten“ Problemlösens angesehen werden sollten, ist eine 

relevante Frage. 

 

Rolle von Metakognition (bei Episodenübergängen) Die Kategorie Steuerung 

wurde in der vorliegenden Arbeit primär auf globaler Ebene untersucht. Dabei 

wurden vor allem die Hauptentscheidungen berücksichtigt, wie sie durch die 

Episoden in Schoenfelds Modell beschrieben werden. Für zukünftige Forschung 

bietet es sich jedoch an, die Steuerung auch auf lokaler Ebene näher zu betrachten 

(z. B. mit dem Kategoriensystem von Cohors-Fresenborg & Kaune, 2007). Ein 

solcher Ansatz würde nicht nur die Hauptentscheidungen sichtbar machen, 

sondern auch die metakognitiven Aktivitäten innerhalb der einzelnen Episoden 

beleuchten. Besonders interessant wäre in diesem Zusammenhang der Fokus auf 

die Übergänge zwischen den Episoden, wie bereits in Rott (2013, S. 375ff.) 

thematisiert und in Kapitel 6.4.2 anhand der Übergänge aus der Exploration 

angedeutet. Es zeigt sich, dass bestimmte Episoden stärker mit einem 

erfolgreichen Problembearbeitungsprozess assoziiert sind. Daraus ergibt sich die 

spannende Frage, welche spezifischen Aktivitäten oder Strategien dazu beitragen, 

dass Lernende aus weniger produktiven Episoden herausfinden und erfolgreich 

in andere, zielführendere Episoden eintreten können. Eine vertiefte Untersuchung 

der metakognitiven Aktivitäten auf lokaler Ebene könnte somit wertvolle 

Erkenntnisse darüber liefern, wie Steuerungsprozesse auf Mikroebene das 

Gesamtergebnis des Problemlösens beeinflussen und welche Faktoren gezielt 

gefördert werden können, um den Erfolg von Problembearbeitungsprozessen zu 

steigern.  

 

Zusammenhänge und Einfluss zwischen den Kategorien In der vorliegenden 

Untersuchung wurde bereits thematisiert, dass es Interaktionen zwischen 

verschiedenen Kategorien (Steuerung, Wissen und Heurismen) gibt (Kapitel 

6.4.1), die scheinbar typisch für Problembearbeitungsprozesse sind. Diese 

Interaktionen eröffnen eine spannende Richtung für zukünftige Forschung: Es 

könnte genauer untersucht werden, inwiefern einzelne Kategorien sich 

gegenseitig beeinflussen. Zum Beispiel wäre es interessant herauszufinden, 

welche Heurismen bevorzugt in bestimmte Episoden führen oder durch welche 

Wissenselemente ein spezifischer Heurismus begünstigt wird. Solche Analysen 

könnten dazu beitragen, die Wechselwirkungen zwischen Wissen, Heurismen und 

Steuerung besser zu verstehen und so ein umfassenderes Bild der zugrunde 

liegenden Mechanismen zu zeichnen. 
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Einbezug von Beliefs Um das Modell von Schoenfeld weiter zu 

vervollständigen, kann auch die Betrachtung von Beliefs (Überzeugungen) 

einbezogen werden. Diese spielen ebenfalls eine bedeutende Rolle in der Art und 

Weise, wie Studierende mathematische Probleme angehen und lösen (Pekrun, 

2006; Schoenfeld, 1985). Überzeugungen beeinflussen sowohl die Wahrnehmung 

von Aufgaben als auch die Wahl der Strategien, die während des Problemlösens 

angewendet werden. Es könnte daher sinnvoll sein, Methoden miteinander zu 

verknüpfen, um die Rolle der Beliefs besser zu erfassen. Eine Kombination aus 

Interviews, Lautem Denken und „Stimulated Recall“ würde es ermöglichen, 

sowohl die expliziten Äußerungen der Studierenden als auch ihre inneren 

Überzeugungen und mentalen Prozesse zu untersuchen. Diese Methoden bieten 

unterschiedliche Zugänge, die zusammen ein umfassenderes Bild von den Beliefs 

der Studierenden und deren Einfluss auf den Problembearbeitungsprozess 

verschaffen könnten. Der Einfluss der Beliefs bietet eine Grundlage, um 

unterschiedliche Herangehensweisen besser zu verstehen sowie deren Rolle beim 

Lernen und Problemlösen in der Mathematik zu analysieren. Eine solche 

Untersuchung könnte wertvolle Erkenntnisse für die zielgerichtete Gestaltung 

von Lernumgebungen liefern. 

 

Mathematisches Problemlösen und allgemeines Problemlösen Die 

vorliegende Studie hat lediglich innermathematische Probleme untersucht. 

Allerdings bieten insbesondere die Anwendungsfächer der Mathematik, wie die 

Ingenieurstudiengänge, eine Gelegenheit, mathematikhaltige Probleme aus 

realistischen Anwendungskontexten zu betrachten. Solche Aufgaben, wie sie 

bspw. von Lehmann (2018, S. 138) genutzt werden, könnten den 

Problembearbeitungsprozessen von Studierenden näher an den tatsächlichen 

Herausforderungen eines Ingenieursberufs sein. Dies ist besonders interessant, da 

Problemlösen sowohl aus mathematischer Sicht als auch aus der allgemeinen 

Ingenieursperspektive aufgefasst werden kann (Neumann et al., 2015). Die 

Betrachtung solcher Aufgaben könnte die Unterschiede und Gemeinsamkeiten 

zwischen diesen beiden Auffassungen herausarbeiten. Dies könnte wertvolle 

Einblicke in die Entwicklung und den Transfer von Problemlösekompetenzen 

bieten. Überträgt sich bspw. die mathematische Problemlösekompetenz auf 

allgemeine Ingenieurprobleme? 

 

Einbezug der Problemschwierigkeit In zukünftigen Untersuchungen zum 

mathematischen Problemlösen könnte die Berücksichtigung der 

Problemschwierigkeit eine wertvolle Erweiterung darstellen (vgl. Stiller et al., 

2021, S. 4f.). Aspekte wie die Komplexität, Vernetztheit, etc. könnten 

systematisch in die Aufgaben- und Prozessanalysen integriert werden. Diese 

Faktoren, die zur Kategorie der Problemschwierigkeit gehören, haben das 

Potenzial, den Verlauf und die Gestaltung der Problembearbeitungsprozesse 
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maßgeblich zu beeinflussen. Eine detaillierte Analyse könnte aufzeigen, wie 

unterschiedliche Schwierigkeitsgrade die Wahl von Heurismen, den Einsatz von 

Wissen oder die Dynamik von Episodenwechseln beeinflussen und welche 

Anpassungen im Vorgehen der Lernenden erforderlich sind, um solche 

Herausforderungen zu bewältigen. Darüber hinaus bieten diese Aspekte eine 

zusätzliche Perspektive, die über die übliche Einordnung in prozedurales und 

konzeptuelles Wissen hinausgeht. Während diese Einteilung oft den Schwerpunkt 

auf die Art des Wissens legt, könnten Probleme unterschiedlicher Schwierigkeit 

zeigen, wie sich verschiedene Arten von Wissen und Fähigkeiten dynamisch 

ergänzen. 

 

Wissensmatrix als Instrument Die Wissensmatrix spielte in dieser Arbeit eine 

zentrale Rolle und wurde vielfältig eingesetzt. Sie diente zur Einordnung 

mathematischer Inhalte (Kapitel 4), zur theoretischen Analyse der Aufgaben 

(Kapitel 5.3) sowie zur Rekonstruktion des Wissensangebots (Kapitel 6.2.1) und 

der Wissensnutzung (Kapitel 6.2.2). Damit zeigt die Wissensmatrix ihr Potenzial 

und trug maßgeblich zur Durchführung und Auswertung dieser Arbeit bei. 

Allerdings wurde die Wissensmatrix in der Hochschulforschung in einem 

erweiterten, ursprünglich nicht vorgesehenen Kontext genutzt. Daher wäre es eine 

weitere Aufgabe, die Wissensmatrix weiter auszuschärfen und an spezifische 

Anforderungen anzupassen, um ihre Einsatzmöglichkeiten zu erweitern. 

Besonders im Bereich der Untersuchung von Wissensangeboten in 

Lehrveranstaltungen besteht weiteres Potenzial, die Wissensmatrix gezielt 

einzusetzen (Kapitel 7.4.2). Dabei stellt sich bspw. die Frage, wie Konzepte, 

Zusammenhänge und Verfahren aus anderen Inhaltsbereichen, wie etwa der 

Linearen Algebra, mithilfe der Wissensfacetten eingeordnet werden können. 
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Anhang 

Transkriptionsregeln 

 

1. Das Transkript beginnt ab dem Zeitpunkt, wo die Personen (-gruppe) 

mit der Aufgabenbearbeitung begonnen hat. 

2. Die beobachtende Person wird durch ein „I:“ gekennzeichnet. Die 

Interviewten/Studierenden erhalten einen anonymisierten Namen. Dieser 

wird im Transkript angegeben und ausgeschrieben. 

3. Es wird wörtlich transkribiert, also nicht lautsprachlich oder 

zusammenfassend. Vorhandene Dialekte werden möglichst wortgenau ins 

Hochdeutsche übersetzt. Wenn keine eindeutige Übersetzung möglich ist, 

wird der Dialekt beibehalten, zum Beispiel: Ich gehe heuer auf das 

Oktoberfest. 

4. Wortverschleifungen werden nicht transkribiert, sondern an das 

Schriftdeutsch angenähert. Beispielsweise „Er hatte noch so‘n Buch 

genannt“ wird zu „Er hatte noch so ein Buch genannt“ und „hamma“ wird 

zu „haben wir“. Die Satzform wird beibehalten, auch wenn sie 

syntaktische Fehler beinhaltet, beispielsweise: „bin ich nach Kaufhaus 

gegangen“. 

5. Wort- und Satzabbrüche, Stottern, Wortdopplungen etc. werden nicht 

geglättet, sondern so gut wie möglich im Transkript wiedergegeben. 

„Ganze“ Halbsätze, denen nur die Vollendung fehlt, werden mit dem 

Abbruchzeichen / gekennzeichnet. 

6. Sprecherüberlappungen werden mit // gekennzeichnet. Bei Beginn des 

Einwurfes folgt ein //. Der Text, der gleichzeitig gesprochen wird, liegt 

dann innerhalb dieser // und der Einwurf der anderen Person steht in einer 

separaten Zeile und ist ebenfalls mit // gekennzeichnet. Die Zeitmarke der 

anderen Person bzw. des neuen Absatzes beginnt dementsprechend ab 

dem Zeitpunkt, wo gleichzeitig und nicht alleine gesprochen wird. 

Anschließende Äußerungen werden direkt dahinter transkribiert. 

7. Interpunktion wird zu Gunsten der Lesbarkeit geglättet, das heißt bei 

kurzem Senken der Stimme oder uneindeutiger Betonung wird eher ein 

Punkt als ein Komma gesetzt. Dabei sollen Sinneinheiten beibehalten 

werden. 

8. Eine Pause von zwei Sekunden wird mit „..“ markiert, eine Pause von 

drei Sekunden mit „…“ und eine Pause von mehr als drei Sekunden wird 

in eckigen Klammern gekennzeichnet (z.B. [5 Sek.]. 

9. Umplanungen der letzten Satzkonstruktion werden mit einem Komma 
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gekennzeichnet. (z.B. „Wenn ich, also naja, wenn ich, ich denke also dass, 

es ist ja..“) 

10. Verständnissignale des gerade nicht Sprechenden wie „mhm, aha, ja, 

genau, ähm“ etc. werden ebenfalls transkribiert.  
 

• mhm Partikel, zustimmend / bejahend  

• hmm Partikel, zweifelnd (Personenabhängig!)  

• Mm / eheh Verneinend / ablehnend (Stimme geht nach unten)  

• Ne Bedeutet „Ja, stimme ich zu“, z.B. „Ist doch so, ne?“ 

• Nee Bedeutet „Nein“, z.B. „Nee, seh ich nicht so.“ 
 

11. Jeder Sprecherbeitrag erhält eigene Absätze. Auch kurze Einwürfe 

werden in einem separaten Absatz transkribiert. Mindestens am Ende 

eines Absatzes werden Zeitmarken eingefügt. 

12. In Situationen, wo nur eine Person entweder die gesamte Zeit oder 

über einen längeren Zeitraum spricht, wird nach ca. ein oder zwei Minuten 

ein Absatz hinzugefügt, sobald der gesprochene Satz beendet wurde. Bei 

einem höheren Sprechtempo wird dieser nach einer Minute und bei einem 

langsameren nach zwei Minuten angesetzt. Dies wird innerhalb eines 

Transkripts einheitlich gestaltet, kann sich jedoch bei verschiedenen 

Transkripten unterscheiden. 

13. Unverständliche Wörter werden mit (unv.) gekennzeichnet. Längere 

unverständliche Passagen sollen möglichst mit der Ursache versehen 

werden (unv., Handystörgeräusch) oder (unv., Mikrofon rauscht). 

Vermutet man einen Wortlaut, ist sich aber nicht sicher, wird das Wort 

bzw. der Satzteil mit einem Fragezeichen in Klammern gesetzt. Zum 

Beispiel: (Xylomethanolin?). Auch Teilsätze, bei denen man sich nicht 

sicher ist, werden in einer Klammer mit einem Fragezeichen 

gekennzeichnet. 

14. Ist man sich bei einer Personengruppe nicht sicher, wer gerade spricht 

(falls dies bspw. in einem Video nicht erkennbar sein sollte), wird der 

Name, welcher vermutet wird, in Klammern geschrieben und mit einem 

Fragezeichen versehen (z.B. (Lisa?): …) 

15. Handlungen, Interaktionen und nonverbale Äußerungen der 

Interviewpartner werden protokolliert, indem z.B. in eckigen Klammern 

notiert wird, worauf die Person gerade zeigt oder welche 

Handbewegungen sie macht (sofern diese für das Verständnis wichtig 

sind). 
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16. Wenn einer der Interviewten dem anderen im Gespräch zustimmt, 

während die andere Person aber noch spricht, wird dies im Transkript 

deutlich gemacht: [Emily zustimmend]. Spricht das Gegenüber gerade 

nicht mehr bzw. hat seinen Absatz bereits vollendet, dann wird die 

Zustimmung wortwörtlich in das Transkript übernommen. 

17. Werden Formen, Zahlen, Gleichungen etc. vorgelesen, werden diese 

wörtlich ausgeschrieben. 
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Weitere Abbildungen 
 

Interaktionen zwischen Steuerung und Heurismen hinsichtlich der 

Aufgaben 

 

Aufgabe „Differenzierbarkeit prüfen“ 

 

 
 

Aufgabe „Mittelwertsatz“ 
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Aufgabe „L´Hospital“: 

 

 
 

 

Interaktionen zwischen Steuerung und Wissen hinsichtlich der Aufgaben 

 

Aufgabe „Differenzierbarkeit prüfen“: 
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Aufgabe „Mittelwertsatz“: 

 

 
 

 
 

 

Aufgabe: „L´Hospital“ 
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Interaktionen zwischen Heurismen und Wissen hinsichtlich der Aufgaben 

 

Aufgabe „Differenzierbarkeit prüfen“ 

 
 

 
 

Aufgabe „Mittelwertsatz“ 

 
 

 
 

Aufgabe „L´Hospital“: 

 
 

 
 

  



S e i t e  | 334 

 

Erklärung zur Dissertation 

Hiermit erkläre ich, Tim Kolbe, Folgendes in Bezug auf meine Dissertation mit 

dem Titel „Mathematisches Problemlösen im Ingenieurstudium: Eine qualitative 

Prozessanalyse“: 

1. Kenntnis der Promotionsordnung 

Ich bestätige, dass mir die gültige Promotionsordnung der Fakultät für 

Elektrotechnik, Informatik und Mathematik der Universität Paderborn 

bekannt ist und ich die darin festgelegten Bestimmungen einhalte. 

2. Betreuung der Dissertation 

Die Dissertation wurde unter der Betreuung von Prof. Dr. Lena Wessel 

an der Universität Paderborn, Fakultät für Elektrotechnik, Informatik 

und Mathematik am Institut für Mathematik erarbeitet. 

3. Selbständige Anfertigung 

Ich erkläre, dass ich die Dissertation eigenständig verfasst habe. Alle 

verwendeten Hilfsmittel, Quellen und fremden Inhalte, die in meiner 

Arbeit verarbeitet wurden, sind vollständig und ordnungsgemäß 

angegeben. 

4. Kein Einsatz von Vermittlern 

Ich versichere, dass ich zum Zweck der Promotionsvermittlung keinen 

Vermittler gegen Entgelt in Anspruch genommen habe. 

5. Keine vorherige Einreichung der Dissertation 

Die vorliegende Dissertation wurde in dieser oder einer ähnlichen 

Form bisher weder an anderer Stelle im Rahmen eines 

Promotionsverfahrens noch in einem anderen Prüfungsverfahren 

eingereicht. 

6. Angaben zu früheren Promotionsversuchen 

Ich erkläre, dass ich keine früheren Promotionsversuche unternommen 

habe. 

Mit meiner Unterschrift bestätige ich die Richtigkeit und Vollständigkeit dieser 

Angaben. 

Paderborn, Februar 2025 

 

Tim Kolbe 

 


