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Summary

The rapid advancement of quantum technologies has driven major progress
in quantum communication. A new frontier in this field is the use of high-
dimensional quantum states (qudits), which unlock capabilities beyond what
is possible with conventional binary systems. In this thesis, we develop and
demonstrate a complete experimental framework for quantum communication
using qudits encoded in the time-frequency domain of photons.

Two main elements form the core of this work: the development of a pro-
grammable source of high-dimensional entangled time-frequency states, and the
realization of a versatile high-dimensional quantum decoder, the multi-output
quantum pulse gate. We implement these devices using integrated nonlinear
optical processes, namely parametric down-conversion for state generation and
sum-frequency generation for state manipulation and detection. We achieve
precise control over these processes by tailoring them via dispersion engineering
of nonlinear waveguides and spectral shaping of pump pulses.

We then showcase the versatility of this framework through a range of applications
in quantum communication and beyond. We realize a complete high-dimensional
quantum key distribution system, introduce improved quantum state character-
ization techniques, and provide new experimental insights into fundamental
aspects of quantum information, such as the connection between uncertainty
relations and the properties of mutually unbiased bases in high dimensions.
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Zusammenfassung

Die rasante Entwicklung der Quantentechnologien hat die Quantenkommunika-
tion maldgeblich vorangetrieben. Eine neue Grenze ist der Einsatz hochdimension-
aler Quantenzustande (Qudits), die Fihigkeiten jenseits konventioneller binarer
Systeme erschliel3en. Diese Arbeit entwickelt und demonstriert ein vollstdndiges
experimentelles Framework fiir die Quantenkommunikation mit Qudits, die in
der Zeit-Frequenz-Doméne von Photonen kodiert sind.

Zwei Hauptelemente bilden den Kern dieser Arbeit: die Entwicklung einer pro-
grammierbaren Quelle hochdimensional verschrankter Zeit-Frequenz-Zustiande
und die Realisierung eines vielseitigen, hochdimensionalen Quantendecoders,
des Multi-Ausgangs-Quantenpulsgatters. Wir implementieren diese Bauteile
mittels integrierter nichtlinearer Prozesse wie parametrischer Fluoreszenz und
Summenfrequenzerzeugung. Prézise Kontrolle wird durch Dispersionsanpassung
in Wellenleitern und spektrale Formung von Pump-Pulsen erreicht.

Anschliefend demonstrieren wir die Vielseitigkeit dieses Frameworks anhand
einer Reihe von Anwendungen in der Quantenkommunikation und dariiber hin-
aus. Wir realisieren ein vollstandiges System zur hochdimensionalen Quanten-
schliisselverteilung, fithren verbesserte Methoden zur Quantenzustandscharak-
terisierung ein und gewinnen neue Einblicke in grundlegende Aspekte der Quan-
teninformation, wie die Verbindung zwischen Unschérferelationen und den
Eigenschaften von wechselseitig unvoreingenommenen Basen in hohen Dimen-
sionen.
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Introduction

Think of a number between zero and five. If you had to communicate this
number using only your hand, the most natural approach would be to raise
the corresponding number of fingers. Simple, direct, and instantly understood.
Now, imagine trying to convey the same number only by blinking: perhaps you
would blink a specific number of times, or use a more complex binary code. This
immediately appears less efficient and more cumbersome than simply raising
fingers. This simple analogy introduces a fundamental concept in information
theory: the dimensionality of an encoding alphabet.

In any communication system, information is first encoded onto an information
carrier by the sender, then transmitted through a channel, and finally detected
and decoded at the receiver’s end. In classical communications, these carriers are
typically electromagnetic fields, such as radio waves or light pulses. The chosen
degree of freedom of the carrier, along with the form in which information is
encoded, defines an encoding alphabet. Classical communication systems often
exploit high-dimensional alphabets, e.g., by using multiple amplitude or phase
levels in wireless transmissions, or by sending many different wavelengths (colors)
of light down a single optical fiber [1]. This enhanced information capacity
per carrier is clearly advantageous, allowing for faster data rates and more
efficient use of the available bandwidth. Nevertheless, despite the effectiveness
of high-dimensional encoding, binary encoding remains the universal standard
in classical information processing: for many classical applications, using a larger
number of binary signals is often easier and more cost-effective than engineering
complex high-dimensional systems.

The quantum world, however, operates under a different set of rules. In quantum
communication, information is ultimately carried by individual photons, that is,
the fundamental particles of light. These particles enable protocols with interest-
ing and useful properties that are impossible to achieve classically—as long as
the information carriers are truly quantum [2, 3]. This typically means that only
a single photon is transmitted in each “shot” of the communication. With this in-
trinsic constraint on the available resources, using a higher-dimensional alphabet
is immediately beneficial: encoding more information per photon allows more
information to be transmitted in each shot. But the benefits of high-dimensional
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Introduction

quantum encodings extend far beyond this. Utilizing a d-level quantum sys-
tem, known as a qudit, instead of binary qubits leads to quantum cryptography
protocols that are inherently more secure against eavesdropping attempts and
more robust to noise [4, 5]. Certain quantum computational tasks might also
find more efficient solutions when leveraging the larger state space offered by
qudits [6]. Furthermore, quantum concepts, such as mutually unbiased bases
and entropic uncertainty relations, reveal richer and more intricate properties in
higher dimensions, providing new directions for fundamental research [7].

Then, if high dimensions are so promising, why are high-dimensional quantum
systems not yet the standard? As is often the case in applying quantum tech-
nologies to reality, the challenge lies in the “how”. Well-established quantum
technology platforms, such as those based on the polarization of photons [8], the
spin of trapped ions [9], or discrete energy levels in quantum dots [10] or super-
conducting circuits [11], were initially developed and optimized for qubits. These
systems have been invaluable for demonstrating fundamental quantum proper-
ties and proof-of-principle quantum computation or communication protocols.
However, these platforms were not designed with dimensional scalability in mind,
and extending them to high dimensions presents both fundamental and techno-
logical limitations, even as research progresses [12, 13]. While photons are the
ideal (in fact, the only) information carriers for quantum communication, their
most utilized degree of freedom, polarization, is intrinsically two-dimensional.
Spatial modes of light offer an infinite-dimensional Hilbert space, which has been
explored for high-dimensional quantum information; however, spatial modes are
notoriously difficult to transmit faithfully over long distances, whether through
optical fibers or even free space [14]. This is a crucial obstacle when aiming
to implement a “quantum internet” for secure communication and distributed
quantum computing [15].

In this thesis, we turn our attention to a more resilient and practical alternative:
the time-frequency degree of freedom of photons. By encoding quantum infor-
mation in so-called temporal modes, which leverage the timing and spectral com-
position (color) of photons, we gain access to an inherently infinite-dimensional
encoding space. Unlike their spatial counterparts, time-frequency encodings
are robust against degradation during transmission and are compatible with
standard single-mode optical fibers, making them exceptionally well-suited for
practical quantum communication [16]. The work presented here analyzes the
key experimental tools and underlying physics necessary to harness these time-
frequency qudits effectively, from generation to detection, leveraging integrated
nonlinear processes. With the development of this framework, we demonstrate a
range of applications that showcase the practical utility of time-frequency qudits
for both quantum communication and fundamental science.

One recurring lesson I have learned throughout my doctoral studies is that
progress in experimental physics, particularly in cutting-edge fields like quantum
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optics, always involves trade-offs. You might gain more dimensions, at the cost
of more errors. More output channels, but less efficiency. You might boost laser
power to enhance efficiency but introduce instabilities in the process, or learn
everything about one physical variable only to be bound by the uncertainty
principle to know absolutely nothing about its conjugate. In this thesis, we will
frequently encounter and juggle these kinds of trade-offs. The challenge, and
indeed the art, lies in understanding them, and in finding the optimal balance
to achieve something genuinely new and useful.

This thesis is structured as follows:

Chapter 1 establishes the foundational concepts necessary for understanding
high-dimensional quantum communication. It begins with classical notions of
information and entropy, then shifts to the quantum domain, defining qubits,
Hilbert spaces, and mutually unbiased bases. These concepts are then general-
ized to qudits. This chapter concludes by discussing the role of qudits in quantum
communication through an example of a high-dimensional quantum key distribu-
tion protocol, focusing on how dimensionality and number of bases can enhance
its security and efficiency.

Chapter 2 transitions to the practical realization of these high-dimensional
concepts using the time-frequency degree of freedom of photons. After formally
defining time-frequency qudits and exploring possible encoding alphabets, we
introduce integrated nonlinear optical processes, particularly parametric down-
conversion and sum-frequency generation in weakly guiding waveguides, which
will be our main tools for generating and manipulating the qudits. We describe
methods for tailoring these nonlinear processes through techniques like dispersion
engineering in waveguides and spectral shaping of pump pulses, providing the
toolkit for the experimental demonstrations that follow.

With this theoretical and practical framework established, the thesis then presents
the experimental implementations of these concepts through original research
contributions.

Chapter 3 focuses on the generation of high-dimensional entangled states. We
describe the design and experimental realization of a programmable source of
time-frequency-entangled qudits through parametric down-conversion, where
the dimensionality of the entanglement can be controlled via pump shaping.

Chapter 4 addresses the task of decoding time-frequency qudits by introducing
the multi-output quantum pulse gate (mQPG), a device based on dispersion-
engineered sum-frequency generation which enables the simultaneous projection
of a high-dimensional input state onto multiple basis states. We analyze its
performance with various types of temporal-mode alphabets through quantum
detector tomography, and study its capabilities and limitations.
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Introduction

Chapter 5 is dedicated to a proof-of-principle demonstration of a complete
high-dimensional quantum key distribution system, showcasing the immediate
application of the mQPG as a high-dimensional quantum decoder.

Chapter 6 presents fundamental explorations enabled by the mQPG, specifically
experimental studies of how the properties of mutually unbiased bases impact
quantum uncertainty relations in high-dimensional systems.

Chapter 7 showcases how multi-output detection not only enables new applica-
tions, but can also improve existing ones. Particularly, we focus on state character-
ization techniques: from self-guided quantum tomography, which allows for the
efficient and high-fidelity estimation of qudits, to a new pulse characterization
method called FIREFLY, which enables the reconstruction of complex phase and
coherence profiles at the single-photon level and can be extended through the
mQPG to simultaneously characterize two unknown pulses.

Finally, Chapter 8 summarizes the main conclusions of this thesis, discusses their
implications for the broader field of quantum information science, and offers an
outlook on future research directions that build upon this work.
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Qudits in quantum communication

Communicating means transmitting information, so it seems straightforward to
say that quantum communication deals with transmitting quantum information.
But what does this really mean? What is quantum information? And what is
information at all?

In this chapter, we start from the definition of information from classical to
quantum following the treatments presented by Barnett in Quantum Informa-
tion [2] and by Nielsen and Chuang in Quantum Computation and Quantum
Information [3], before extending the discussion to high-dimensional quantum
states, or qudits. The final section of this chapter is dedicated to quantum key
distribution, introduced following the comprehensive review by Scarani et al.
[17] and expanding the analysis to high-dimensional alphabets.

Please note that this chapter is not intended to give a complete, formal overview
of quantum information, as such task would be well beyond the scope of this
thesis. Here, we rather wish to build a “survival guide” for experimentalists
dealing with qudits, introducing the fundamental concepts and key properties
that will be referred to throughout this thesis, while highlighting the role of high
dimensions in quantum communication.

1.1 Probability, information and Shannon entropy

Information is a subtle and elusive concept. While we intuitively grasp its mean-
ing, finding a rigorous definition can be challenging. One way to think of
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Chapter 1. Qudits in quantum communication

information is as a measure of “how much we know” about something. But how
can we quantify knowledge? Is it even possible? As it turns out, a simple example
suggests that it is. Imagine you are looking for a particular dog and are given two
pieces of information: “it has a tail” or “it has purple eyes”. Clearly, the second
statement provides significantly more information than the first.

1.1.1 Information from measurement outcomes

To formalize this concept, we can consider a variable X that represents the object
of our knowledge and can have different values {x;}. The amount of knowledge
we can gain from measuring X and observing a specific value x; depends on its
likelihood, that is, on the probability p(x;). The total probability is normalized
to >, p(x;) = 1, because any measurement must yield one of the measurement
outcomes {x;}. Intuitively, if p(x;) ~ 0 (i.e., this outcome is very unlikely), then
observing x; provides significant information. Conversely, if p(x;) ~ 1 (i.e., this
outcome is almost certain), we learn very little.

Now, consider measuring X along with an independent variable Y, obtaining
outcomes x; and y;, respectively. Let us indicate with H(x;,y;) the total
information gained from this joint measurement, which should equal the
sum of the information that we would gain from x; and y; individually:
H(x;,y;) =H(x;) + H(y;). At the same time, this total should depend on their
joint probability p(x;,y;) = p(x;)p(y;). These mathematical requirements
naturally lead to a logarithmic function: the information we obtain from
observing x; is proportional to —log, p(x;), where the negative sign ensures that
this quantity is positive, and the base 2 for the logarithm is a convention. This
way, we obtain H(x;,y;) o< —log, p(x;,y;) = —log, p(x;) —log, p(y;), which
satisfies both requirements.

1.1.2 Shannon entropy

This approach was formalized by Claude Shannon, who arguably introduced
the first rigorous way to quantify information [18]. He defined the amount of
information contained in variable X as the average information that one can
obtain from all possible measurement outcomes:

H(X)=—Zp(xi)log2p(xi). (1.1.1)

This quantity, known as Shannon entropy, depends only on the probability distri-
bution {p(x;)} of the possible outcomes {x;}. Importantly, the averaging ensures
that events with p(x;) ~ 0 (which would contribute almost infinite information)
are effectively negligible due to their low chance of occurring.

Although the Shannon entropy has profound thermodynamic implications (re-
vealing that information is physical, and is converted to heat when erased), it is
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1.2. From classical to quantum communication

commonly used to calculate the number of units of information, or bits, required
to store or transmit the information contained in X. This is the underlying reason
for the base 2 convention for the logarithm.

1.2 From classical to quantum communication

In classical information theory, a bit (short for Blnary digiT) represents the
fundamental unit of information. A bit distinguishes between two mutually
exclusive states, such as “0” or “1”, “yes” or “no”, “on” or “off”, “open” or “closed”.
We can combine multiple bits to encode more complex information: n bits can
represent one of 2" possible combinations of these binary states. For example,
two bits together can represent the four values 00, 01, 10, or 11. Importantly,
a bit always exists in a well-defined state, corresponding to the physical state
of the system, e.g., a charged or uncharged capacitor. Measuring a bit does not

alter its state, but simply reveals its value, which is either O or 1.

1.2.1 Qubits

In contrast, the probabilistic character of measurements is one of the key features
of a qubit, or quantum bit, which is the fundamental unit of quantum information.
Unlike classical bits, qubits can exist not only in one of two distinct states, denoted
by |0) and |1), but also in a superposition of these states. In this context, 0 and 1
are state labels; therefore, being in a superposition of the 0 and 1 states does
not merely mean being in the 0.5 state. Instead, the mathematical expression of
a pure' qubit state is

[Y) =al0)+p11), (1.2.1)

where a and 8 are complex coefficients normalized such that |a|* + |8]* = 1.
Through the Born rule P(x;) = |{x;|3))|* (where (-|-) indicates the scalar product,
or “overlap”), these coefficients encode the probability to find the qubit in |0) or
|1) when measured: P(0) = |a|* and P(1) = |B/>. In this context, |0) or |1) are
said to form the computational basis for the qubit.

This behavior introduces a fundamental difference between classical and quantum
systems: measuring a qubit permanently alters its state. In fact, while classical
bits remain unchanged upon observation, measuring a qubit in the computational
basis forces it to “collapse” into one of the two possible states |0) or |1) in a
probabilistic way. This collapse is not deterministic, meaning that even if we
fully know the state of the qubit before the measurement, in general we cannot
predict the exact outcome, but only the probability of each result. After the
measurement, the superposition is destroyed, and the qubit remains in the
state corresponding to the measurement result. This property of measurement

A qubit can also be in a mixed state, which cannot be expressed as a ket, but instead requires
the density matrix representation. We will not explicitly consider mixed states in this chapter.
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Chapter 1. Qudits in quantum communication

disturbance is a key aspect of quantum mechanics and plays a central role in
quantum communication together with the no-cloning theorem, which states
the impossibility to perfectly clone a quantum state while leaving the original
one unaffected [19]. Consequently, information extraction must often rely on
a single measurement: in quantum communication, we only have one shot at
measuring the qubit and, therefore, we must carefully choose which measurement
to perform.

1.2.2 Hilbert space

What does it mean to choose a measurement? To understand this, we take a step
back and look at the meaning of |0) and |1). In quantum mechanics, |0) and
|1) represent two orthogonal quantum states that form the fundamental basis,
or computational basis, of a vector space called the Hilbert space. This space
contains all possible linear combinations of |0) and |1), that is, all superposition
states |Y) = a|0) + 3 |1). The orthogonality condition (0|1) = 0, which implies
that the overlap between |0) and |1) is zero, is a requirement for these two
states to form a computational basis in quantum information.

The complex nature of a and 8 makes it so that these coefficients also contain a
phase component, which has a very physical meaning in determining the state of
the qubit. For instance, in the case of polarization encoding, the phases indicate
how the horizontal and vertical components combine, resulting in a specific
angle of diagonal or elliptical polarization. This phase, therefore, is necessary to
describe the qubit, and needs to be addressed by the measurement.

But if measuring the state destroys the superposition, how can we access this
phase information? The trick here is to “rotate” our measurement from the com-
putational basis. We can define superposition bases containing two orthogonal
states |a) and |b) from the Hilbert space defined by |0) and | 1), meaning that |a)
and |b) are two superpositions of the fundamental states. When we measure in
a superposition basis, the qubit will collapse into one of its two basis states with
probability |[(a|y)|* and |(b|p)|?, respectively. If 1) is equal to |a) or |b), we
will always obtain the same measurement outcome, thus gaining full information
on the state, including its phase. However, in a real experimental setting, finding
the precise basis rotation that leads to a deterministic measurement outcome is a
highly nontrivial task. In practice, qubit states are typically estimated using more
sophisticated techniques, grouped under the term quantum state tomography.
While many such methods exist, including the two we demonstrate experimen-
tally in Chapters 4 and 7, they all ultimately rely on the fundamental principle of
rotating the measurement basis to extract information about both the amplitudes
and the relative phases of the quantum state.
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1.2. From classical to quantum communication

1.2.3 Mutually unbiased bases

There exists a special category of superposition bases called mutually unbiased
bases (MUBs). Two MUBs measure complementary properties of a state, meaning
that there is no mutual information between them. If a qubit is completely
determined in one basis, which is the case when [v) is an element of the basis,
then it will be completely undetermined when measured in one of its MUBs,
randomly yielding one of the two possible measurement outcomes with 50%
probability. In other words, having complete information in one basis implies
having no information in all other MUBs. This property is related to the so-called
entropic uncertainty relations, i.e., a formulation of Heisenberg’s uncertainty
principle in terms of Shannon’s entropy, which will be addressed in Chapter 6.

A two-dimensional Hilbert space always contains a set of three MUBs, which can
be represented as

{10),11)},
{I+),1=)} ={l0) +1),10) 1)},
{I+1),1-0)} ={|0) +1]1),]0) —i[1)}.
In the polarization encoding, these correspond to the HV (horizontal-vertical), DA

(diagonal-antidiagonal) and LR (left-hand and right-hand circularly polarized)
bases.

1.2.4 Entanglement

Another substantial difference between bits and qubits lies in the behavior of
correlations. When we have two independent qubits in states |a) and |b), we
can write their joint state as

|¥) = |a) |b) . (1.2.2)
If the two qubits are correlated, their state is more generally written as
) = alao) |bo) + B la;) [by) , (1.2.3)

where {|a,),|a;)} and {|b,), |b,)} are bases for each qubit. If this two-qubit state
cannot be factored into the form (1.2.2), it is called an entangled state: two
entangled qubits cannot be described separately, but only as a joint system.

A direct implication of entanglement is immediate from the expression of (1.2.3):
if we perform a measurement on the first qubit and obtain |a;), then we know
that the second qubit will be in the corresponding state |b;). However, until

we perform this measurement, the joint state will behave as a superposition of
|ao) |bo) and |a,) [b,).

How does entanglement differ from classical correlations? Consider the entan-
gled Bell state [®7) = (]0)|0) +|1)|1))/+/2’, which describes two maximally

5



Chapter 1. Qudits in quantum communication

correlated qubits. When measuring these qubits in the computational basis
{]0),]1)}, the outcomes are perfectly correlated: if the first qubit is |0), the
second is also |0), and if the first is |1), the second is also |1). Crucially, this
correlation persists even when we change the measurement basis. This is a di-
rect consequence of the fixed phase relationship between the |0) |0) and |1) |1)
components of the superposition. For instance, if we rotate to the diagonal
basis {|+),|—)}, the Bell state |®*) can be rewritten as %(H) [+) + =) |-)).
This means that a measurement outcome of |+) on the first qubit guarantees
an outcome of |+) on the second, and similarly for |—). This persistence of
correlations across different measurement bases is a purely quantum property of
entanglement.

Now, let us attempt to describe the correlations using a classical mixture. One
might imagine a scenario where the two-qubit system is in the state |0)|0) with
50% probability, or in the state |1) |1) with 50% probability. If we measured
this classical mixture in the computational basis, we would observe the same cor-
related outcomes as the entangled Bell state. However, the distinction becomes
clear when we rotate the measurement basis: measuring the classical mixture
(10)]0) or |1)|1)) in the diagonal basis {|+),|—)} yields independent random
outcomes for each qubit. For example, if the system was in state |0) |0), measur-
ing the first qubit in the diagonal basis gives |+) or |—) with equal probability,
and this outcome provides no information about the second qubit (which will
also be random). Thus, for the classical mixture, the strong correlations observed
in one basis vanish when the basis is rotated.

Indeed, correlations that resist basis rotation cannot be explained by any classical
theory, and are thus unique to entangled quantum systems. Measuring the state
of one of the entangled qubits instantaneously determines the state of the other,
independently of the distance that separates them (non-locality principle). These
properties lie at the heart of Bell inequalities [20], which are derived under the
assumption of classical correlations and hence must always hold in a classical
framework, but are violated by quantum entanglement.

1.3 Qudits

So far, we have only looked at the binary quantum systems, but quantum states
are not limited to two dimensions. We can add more vectors to our fundamental
basis {|0),|1)}, extending it to the d-dimensional basis {|0),[1),...,|d —1)}.
In order for these states to form a bases, they must be orthonormal:

(ilj) =6y, Vi, jefo,...,d—1}. (1.3.1)
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1.3. Qudits

This new basis defines a d-dimensional Hilbert space that contains all possible
superpositions of the d basis states:

d—1
) =D ali), (1.3.2)
i=0

where a; are complex coefficients satisfying the normalization condition

d—1 . .
Zi=0 la;|* = 1. These states are called qudits, and they are the natural extension
of qubits to a d-dimensional quantum system.

Measuring a qudit in the computational basis collapses its state into one of
the d possible outcomes, [0),]1),...,|d — 1), with probabilities |a;|* for each
state |i). This increased number of outcomes allows each qudit to store more
information than a qubit. How much more exactly? Using the Shannon entropy
(1.1.1), we find that a d-dimensional qudit with equally likely outcomes (each
with probability 1/d) corresponds to log,d qubits. For example, in a four-
dimensional space, a single four-dimensional qudit (a so-called ququart) carries
the equivalent of two qubits of information.

In classical information, analogously, a 4-level system represents two bits of
information. However, if physical resources are not constrained, the complexity or
performance of classical information processing does not fundamentally change
when using a single 4-level system instead of two separate physical bits. In
contrast, in quantum information and communication, physical resources (i.e.,
information carriers such as atoms or photons) are often limited, making the
ability of qudits to store more information per carrier particularly advantageous.
Beyond increased information capacity, employing higher dimensions in quantum
communication protocols implies accessing a larger Hilbert space, which can
lead to additional benefits such as noise resilience and enhanced security [14],
as we will see in the remainder of this chapter.

1.3.1 MUBs in high dimensions

The concept of MUBs extends naturally to qudits. Two bases {|a;)} and {|bj>}
are mutually unbiased if the overlap between any state from one basis and any
state from the other is uniform:

|(ai|bj)|2=%, Vi,je{o,...,d—1}. (1.3.3)

This means that if a system prepared in an eigenstate of the first basis is measured
in the second (mutually unbiased) basis, the outcome is completely random
among the d possible states |bj>, each occurring with probability 1/d.

Nevertheless, the properties of MUBs in high-dimensional Hilbert spaces have
not been completely explored yet. In prime-power dimensions d = p", with p
prime, it is known that a complete set of d + 1 MUBs exists [21-23], where the
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Chapter 1. Qudits in quantum communication

word “complete” indicates the largest possible set of MUBs in that Hilbert space.
In non-prime-power dimensions, however, only a set containing at least three
MUBs has been identified. Even in cases where complete sets are known, many
of their properties are still under active investigation, making this an exciting
frontier in quantum information research [7, 24].

1.3.2 Entangled qudits

Entanglement can also extend to high-dimensional systems. Two entangled
qudits, each from a d-dimensional Hilbert space, are described by a joint state

of the form ;

1
%) = > VA ) e (1.3.4)
i=0
where {|y;)} and {|¢;)} denote the respective d-dimensional bases for each
qudit, which may or may not coincide. Measuring the state of the first qudit and
obtaining |1);) immediately collapses the joint state, determining the state of the
second qudit to be ;).

1.4 Quantum communication with qudits

The quantum properties discussed so far open new avenues in information science.
In quantum communication, we transmit qubits or qudits instead of bits, enabling
protocols that cannot be realized in classical communication. This finds valuable
application in quantum cryptography, where the unique properties of quantum
mechanics are brought to their full potential.

The field of quantum cryptography arguably began in the 1980s with Wies-
ner’s idea of quantum money [25], which proposed exploiting the properties
of quantum particles to create a form of currency that would be impossible to
counterfeit. Over time, the field has evolved to encompass a wide range of ap-
plications of quantum properties related to information security, with quantum
key distribution (QKD) emerging as its showpiece protocol. QKD, proposed by
Bennett and Brassard in 1984 [26] and independently developed by Ekert in
1991 [27], enables secure communication guaranteed by the laws of quantum
mechanics, rather than by the assumed computational difficulty of solving certain
mathematical problems.

While these groundbreaking works established a completely new field of research,
further analysis revealed vulnerabilities in their underlying assumptions. This
motivated the development of a plethora of improved protocols designed to
close these security loopholes, though often at the cost of increased theoretical
complexity and more demanding experimental requirements [28-32]. Among
these, protocols exploiting high-dimensional encoding alphabets have emerged
as more secure options than their binary counterparts [4, 5, 33]. However,
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Figure 1.1: Scheme of the Vernam cypher or one-time pad: Alice encrypts a message
using a modulo-2 sum with each bit of the key and sends the encrypted message to Bob,
who can decode it through another modulo-2 sum with his identical copy of the key.

these high-dimensional quantum key distribution (HD-QKD) protocols were
typically developed as extensions of the more sophisticated binary schemes, not
the simpler original ones. As a result, much of the literature is dedicated to the
rigorous security proofs of these advanced protocols, with less emphasis on a
clear, intuitive introduction built from first principles. An accessible analysis of
how and why higher dimensions fundamentally enhance QKD is needed.

In this section, we seek to build this essential intuition. We deliberately step back
from the complexity of the most advanced protocols and, drawing inspiration
from the comprehensive review of two-dimensional QKD by Scarani et al. [17],
build the high-dimensional case from the ground up. We will construct a simple
HD-QKD model to provide an intuitive understanding of its operation and the
clear advantages of a larger Hilbert space. This model serves as an essential
starting point for understanding the state-of-the-art protocols discussed later,
and for appreciating the challenges of their experimental implementation.

1.4.1 Quantum key distribution protocols

Quantum key distribution is only a particular step in a broader procedure for
secure communication. Consider two parties, historically named Alice and Bob,
who wish to exchange a secret message. To ensure that a potential eavesdropper,
called Eve, gains no useful information during transmission, they encrypt the
message with a secret key. For instance, if the message is represented as a string
of bits, one can mask each bit using a key string of the same length: Alice can
perform a modulo-2 sum on each bit of the message and key, and Bob can decode
the message applying the same operation with his copy of the key (Figure 1.1).
This method, called Vernam cypher [34] or one-time pad, has been proven to be
optimal: no unconditionally secure method requires less key [35]. In fact, with
a truly random key, the encrypted message appears completely random to any
eavesdropper. However, since the key must be discarded after its use, the double
challenge of this protocol lies in sharing a key that is as long as the message, and
to do so securely.
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Figure 1.2: Illustration of one round of a BB84 protocol. Alice chooses an encoding
basis, picks a state from it and sends it to Bob. If he measures the qubit in the same basis
that Alice chose, then he successfully detects Alice’s state and stores the corresponding
bit in the key. If Bob chooses a different basis than Alice’s, he randomly obtains one of
the two possible measurement outcomes, which will be uncorrelated to Alice’s state. For
this reason, later Alice and Bob compare bases, and discard the bits in which they made
a different choice. The remaining bits form the secret key.

Quantum physics offers a solution through QKD, where a quantum channel is
used to distribute the key securely. The security arises from the principle of
measurement disturbance: any attempt by Eve to intercept the key requires
her to measure the quantum states, necessarily altering them. Hence, Alice
and Bob are alerted to her presence and can abort the communication before
disclosing the secret message. Clearly, this would not be possible in classical
communication, where Eve could simply intercept the key by measuring the
transmitted bits without leaving any trace of her presence.

The original protocol by Bennett and Brassard [26], known as BB84, is based
on qubits encoded in the two orthogonal states from each of two MUBs.
Namely, Alice is required to prepare qubits in one of the four possible states
{10),]1),]+),|—)}. In each round of BB84, Alice uses a quantum channel to
send one qubit to Bob, who randomly chooses a measurement basis between the
same two MUBs. When Bob’s basis matches Alice’s, his measurement result is
perfectly correlated with her encoded state; otherwise, he randomly obtains one
of the two possible outcomes, as shown in Figure 1.2. By repeating this process
and discarding rounds with mismatched bases, which they compare through a
classical channel, Alice and Bob generate a shared key string.

Now, consider the action of an eavesdropper Eve. She can attempt an intercept-
resend attack: Eve intercepts Alice’s qubits, measures them in a randomly chosen
basis, and sends a copy of her outcome to Bob. If her basis matches Alice’s, the
qubit is undisturbed; if not, the state is altered, introducing errors in the shared
key, as shown in Figure 1.3. By publicly disclosing a subset of their key, Alice
and Bob can detect these errors which indicate Eve’s presence and, if necessary,
abort the protocol.
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Figure 1.3: Example of eavesdropping attempt: Eve intercepts the qubit from Alice and
performs a measurement to learn its value. If she chooses a different basis than Eve’s,
then she modifies the qubit, possibly causing Bob to obtain a measurement outcome
that does not match Alice’s state. Here, we only considered the case in which Bob chose
the same basis as Alice, because measurements in mismatched bases are discarded.

This formulation is overly optimistic, as any realistic experimental measurement
suffers from noise, which generates errors independently of Eve. This noise cannot
simply be calibrated out: to guarantee unconditional security even against future
technologies, we must assume an all-powerful eavesdropper who might tamper
with the noise calibration. Alice and Bob can quantify the fraction of errors in
their strings, called quantum bit error rate (QBER), to estimate the amount of
information that Eve managed to extract. Based on this estimate, they can apply
error correction and privacy amplification algorithms to reconcile their keys and
reduce Eve’s information, at the cost of discarding key bits and reducing the
overall key length.

From these considerations, we can identify the main research directions in QKD:
on the experimental side, developing techniques to efficiently share a key with
minimal intrinsic errors; on the theoretical side, establishing robust security
proofs and optimizing algorithms to maximize the final key length. For years,
these efforts have advanced largely in parallel, creating a gap that has only
recently begun to close, thanks to modern quantum technologies and security
proofs accounting for experimental imperfections. Even now, four decades after
the formulation of BB84, QKD is still a complex field in continuous evolution.
Countless advanced protocols have been formulated, making the original BB84
appear almost like a toy model in comparison. One emerging direction where
experiment and theory are converging is HD-QKD, which leverages qudits to
enhance both information capacity and security.

Since the focus of this thesis is on qudits, here we will directly introduce the
extended BB84 protocol in d dimensions rather than its binary formulation. This
extension is not unique: for a prime power dimension d, we can choose up to
d + 1 MUBs. Increasing both the number of MUBs and the system dimensionality
offers interesting advantages while also presenting experimental challenges. In
the rest of this chapter, we will introduce the most general formulation of the
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high-dimensional BB84 protocol with m bases in d dimensions, analyze a simple
intercept-resend attack to study how m and d affect the secure key length, and
finally summarize the main results of the latest security proofs for HD-QKD.

1.4.2 General steps of an HD-QKD protocol

An HD-QKD protocol based on the extension of BB84 to m MUBs in d dimen-
sions requires Alice and Bob to be linked by both a quantum channel (for key
distribution) and an authenticated classical channel (for post-processing). The
protocol generally consists in the following steps:

1. Raw key exchange

Over the course of N rounds, Alice transmits N qudits over the quantum
channel, sending one qudit per round. Each qudit is randomly prepared in
one of the m possible bases and in one of the d states within that basis. Bob
measures each qudit in one of the m bases, also chosen randomly, obtaining
one of d possible outcomes. Whenever Bob’s measurement basis matches
the basis in which Alice prepared the qudit, his measurement outcome will
coincide with Alice’s prepared state. At the end of this step, which is the
only one that utilizes the quantum channel, Alice and Bob each hold a raw
key composed of their respective sequences of N preparation choices and
measurement results.

2. Sifting

Alice and Bob communicate over the classical channel to compare their
preparation and measurement bases. They discard rounds where their
bases differ, obtaining a sifted key of approximately n ~ N /m elements.
In the absence of errors, Alice’s and Bob’s sifted keys should be identical;
however, a potential eavesdropper Eve might try and intercept the message
(e.g., via the intercept-resend attack mentioned previously), introducing
errors between the two keys.

3. Parameter estimation
Alice and Bob disclose a subset of the key over the classical channel to
estimate the fraction of errors, or QBER. Every element they share becomes
public, and must therefore be discarded from the key string. The estimated
QBER allows Alice and Bob to gauge the potential information leakage to
Eve.

4. Error correction
If the QBER is above a predetermined threshold (that we will discuss later)
too much information leaked to Eve; consequently, Alice and Bob abort the
communication, and possibly retry the protocol from the first step. Instead,
if the QBER is below the threshold, Alice and Bob apply an algorithm to
correct the errors between their sifted keys. This process generally involves
exchanging partial information on the key, hence sacrificing a part of the
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key bits. At the end of the error correction step, Alice’s and Bob’s keys are
perfectly correlated, although not perfectly secure.

5. Privacy amplification

From the estimated QBER, Alice and Bob determine the maximum infor-
mation that could have been intercepted by Eve. They then apply privacy
amplification algorithms to reduce Eve’s knowledge of the key, ideally to
zero. A simple approach, for instance, is to derive a new key by computing
the parity of groups of t bits from the original key. Increasing t reduces
Eve’s knowledge, but also shortens the final key. In general, stronger privacy
amplification requires discarding more bits to further limit Eve’s informa-
tion. After this final step, Alice and Bob share an identical secure key of
length ¢, which they can use to encrypt their secret message.

Raw key exchange is the only step that requires a quantum channel, making it the
main focus of experimental efforts. All subsequent steps are performed through
the classical channel and are collectively referred to as classical information
processing [17]. In a proof-of-principle demonstration of experimental QKD, the
full classical information processing steps are often skipped, and the protocol
performance is typically assessed by estimating the length of the final secure key.

1.4.3 Secure key rate

The efficiency of a QKD protocol is commonly analyzed in the asymptotic regime,
where an infinite number of rounds N — +00 is considered. In this limit, the
protocol yields a sifted key of n states, from which secret key of length ¢ is
extracted. The secret fraction

r= lim ﬁ, (1.4.1)

N—-+oo n

quantifies the number of secure bits per round in this limit. This value can
be used to describe the efficiency of a protocol under specific noise conditions.
In practical implementations, the secret fraction is typically multiplied by the
repetition rate f to obtain the secret key rate R = r f, which indicates the number
of secure bits generated per second.

Determining r is a challenging theoretical task even in the asymptotic regime,
as it requires bounding Eve’s potential knowledge of the key. This involves
modeling her most effective attack strategies, while simultaneously designing
efficient error correction and privacy amplification algorithms that minimize her
information without excessively shortening the final key. Although a complete
security proof is beyond our scope, in the following we illustrate these concepts
using an intercept-resend attack as an example.
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Figure 1.4: Probabilities associated to the possible outcomes of an intercept-resend
attack, when using an HD-QKD protocol with d dimensions and m bases. For simplicity,
we only consider the remaining measurements after sifting, in which Alice and Bob chose
the same basis. If Eve chooses the right basis, with probability 1/m, she correctly detects
the state encoded by Alice, and sends an identical state to Bob. If she picks the wrong
basis, with probability 1 — 1/m, then she obtains a random measurement outcome and
sends Bob a qudit encoded in a different basis, resulting in an error with probability
1—1/d (Bob will randomly obtain a measurement outcome correlated to Alice’s with
probability 1/d).

Intercept-resend attack

In an intercept-resend attack, Eve intercepts the qudits, measures each in a
randomly chosen basis among the m available, and sends a copy of the resulting
state to Bob. Figure 1.4 illustrates the probabilities associated to the possible
outcomes. With a probability 1 — 1/m, Eve chooses a basis that is mutually
unbiased with respect to Alice’s. If Bob then measures the qudit in Alice’s original
basis, this measurement result enters his sifted key, where it introduces an error
with probability 1—1/d. From the probability tree diagram, we can calculate the
QBER Qi (i.e., the error probability that Eve’s intercept-resend attack introduces
in the sifted key) as

L =mztd=l (1.4.2)

m d

This error rate acts as a direct indicator of potential eavesdropping; the larger Qy,
the more noticeable Eve’s interference becomes. Therefore, while it may seem
counterintuitive, a protocol is more robust if it forces Eve to introduce a large
error when she attempts to gain information. This way;, if Alice and Bob measure
a low QBER, they can be more confident that it derives from experimental noise
rather than from an attack. A high fundamental error rate from eavesdropping
thus translates to a higher tolerance for the intrinsic experimental errors in
a real-world system. In the two-dimensional case (d = 2) with m = 2 bases,
corresponding to the original BB84 protocol, we find Q;z = 25%. As d and m
increase, the QBER approaches 100%, making Eve’s presence easier to detect
(Figure 1.5).
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Figure 1.5: QBER (quantum bit error rate, i.e., fraction of errors) Q introduced by Eve in
a complete intercept-resend attack. As the dimension d and number of bases m increase,
Eve introduces additional errors, making her easier to detect.

What does this imply for Alice and Bob’s mutual information? In the ideal,
error-free scenario, each qudit carries log, d bits of information, thus, the secret
fraction is simply r = log, d, which coincides with the Shannon entropy of Bob’s
qudits H(B) defined in eq. (1.1.1). Information theory states that, from this ideal
value, we have to subtract the loss of information caused by the errors [2]. This
loss is quantified by the conditional entropy H(B|A), which represents Alice’s
and Bob’s mutual uncertainty (“how undetermined is Bob’s qudit, given that we
know Alice’s qudit?”), and vanishes when their key strings are identical. The
mutual information therefore is

I(A: B) = H(B)— H(BJA) = log,d — H;(Q), (1.4.3)
where Q is the QBER and H,(Q) is the d-ary entropy function,
Hy(Q) =—(1—-Q)log,(1—Q) —Qlog,(Q/(d —1)). (1.4.4)

This function, shown in Figure 1.6, indicates the uncertainty that a QBER of Q
introduces between Alice’s and Bob’s key strings, reflecting the d — 1 possible
ways an error can occur. For any dimension d, this quantity is maximized at
H,;(Q) =log,d when Q = 1—1/d, which corresponds to the case of completely
uncorrelated keys where the mutual information vanishes (I(A: B) = 0). Note
that Eve could introduce such a high error only by consistently choosing the
wrong measurement basis.

However, as mentioned earlier, estimating the final key length also requires
accounting for the bits lost to remove Eve’s information. In this specific case, we
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Figure 1.6: d-ary entropy H,(Q) as a function of the QBER Q for 2 to 5 dimensions.
The circles and triangles correspond to the error Qi introduced by Eve in a complete
intercept-resend attack in m = 2 and m = d + 1 MUBs, respectively. A larger H;(Q)
indicates more uncertainty (less correlation) between Alice’s and Bob’s measurements.

can estimate the secret fraction by simply subtracting Eve’s information I from
Alice and Bob’s mutual information [36]:

r =max{I(A:B)—1Ig0}, (1.4.5)

where the lower bound is 0 because a negative secret fraction is not physical.
For a complete intercept-resend attack (in which Eve attempts to measure every
qudit), Iy = log,(d)/m: with probability 1/m, Eve picks the correct basis and
gains log, d bits of information; otherwise, with probability 1 —1/m, she picks
the wrong basis and obtains no information at all.

For the two-dimensional BB84 protocol, Eve’s information becomes I, = 0.5,
while inserting the intercept-resend QBER Q;z = 25% for d = 2 into eq. (1.4.3)
yields I(A : B) ~ 0.19. Substituting these values in eq. (1.4.5) results in r = 0:
Eve’s information is larger than Bob’s! This conclusion holds for all combinations
of d and m: under a complete intercept-resend attack, Alice and Bob cannot
extract a secure key and must abort communication. This is because Eve’s
measurement of every state “breaks” the quantum channel in two, destroying
the quantum correlations between Alice and Bob and essentially leaving them
with the equivalent of classical correlations, from which no secure key can be
extracted [17]. However, this is against Eve’s best interest: her goal is for Alice
and Bob to share the message while she secretly holds a copy of the key. To
achieve her goal, Eve must try to minimize her disturbance, thereby aiming for a
much lower QBER to remain undetected.
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Figure 1.7: Secure key rig , after a probabilistic intercept-resend attack as a function of
the QBER Q for different dimensions d, using m = 2 MUBs (dotted lines) and m=d + 1
MUBs (solid lines). The starting value in absence of errors (Q = 0) is log, d, giving an
advantage for higher dimensions. This advantage also leads to a better tolerance to
errors.

Probabilistic intercept-resend attack

To introduce less noise, Eve may adopt a probabilistic intercept-resend strat-
egy, measuring only with probability p and leaving the qudit untouched with
probability 1 —p. The QBER then becomes

Qurp = me_ldc%1 : (1.4.6)
In exchange for introducing less noise, Eve reduces her information to
IEzpk;izdzlogzd(m_f)c(id_l), (1.4.7)
which, when substituted into eq. (1.4.5), gives the secret fraction
rrp = log,d —Hy (Q)—log,d Qd s (1.4.8
(m—1)(d—1)

where the lower bound at O is implicit, and we used the mutual information
expression in eq. (1.4.3). Figure 1.7 illustrates how the secret key fraction varies
with the observed QBER Q for different dimensions d; Figure 1.8 shows the same
quantity for a varying number of bases m in d = 11.

This expression highlights how larger dimensions d and number of bases m
can enhance the key rate. Higher-dimensional qudits enable transmitting up to
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Figure 1.8: Secure key rg , after a probabilistic intercept-resend attack as a function
of the QBER Q for different numbers of MUBs m in dimension d = 11. Increasing the
number of MUBs from m = 2 to m = 3 significantly improves the tolerance to errors.
This improvement slowly decreases as m grows.

log, d bits per round instead of just 1. This gain always outweighs the increased
QBER introduced by Eve: as d — 00, the secret fraction scales logarithmically as
rirp < log, d, ensuring a continuous advantage at high dimensions.

The number of bases m appears only in the last term, representing Eve’s in-
formation. Increasing m imposes stronger constraints on Eve, forcing her to
introduce more errors with her measurements. However, unlike with higher
dimensionalities, increasing m indefinitely causes this advantage to fade when
m — 090, as the last term (Eve’s information) tends to O.

Collective and coherent attacks

So far, we have analyzed the simplest eavesdropping strategies that Eve might
employ. In more advanced scenarios, she could entangle an ancilla state with
each qudit and store these states in a perfect quantum memory. Later, after the
classical post-processing phase, Eve could exploit the information disclosed by
Alice and Bob to perform optimal joint measurements on the entire set of ancilla
states. Such strategies, known as collective attacks, allow Eve to extract maximum
information while introducing minimal disturbance [17].

The most general eavesdropping strategy involves coherent attacks, which include
any possible strategy that Eve might ever employ. Bounding Eve’s information
under coherent attacks is extremely challenging, because one must assume that
Eve applies the most optimal eavesdropping attack, while Alice and Bob employ
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1.4. Quantum communication with qudits

ideal error correction and privacy amplification algorithms that counteract it
with minimal key loss. This problem is so complicated that a general expression
for the asymptotic key rate in d dimensions and m bases has been derived
only very recently [37]. Due to the complexity of the resulting formula for
the asymptotic secret fraction, which involves a parameter computed through
numerical minimization, we will focus on the two extreme cases, which offer
analytical solutions.

The first case is the two-basis protocol, a direct extension of BB84 in d dimensions
with m = 2. The corresponding secret fraction is given by [33]

rt= =log, d — 2h(Q) — 2Qlog,(d — 1), (1.4.9)

where h(Q) := H,(Q) = —(1 —Q)log,(1 —Q) —Qlog,(Q) is the binary entropy
function.

The second case is the (d +1)-basis protocol, which makes use of the complete
set of MUBs and, thus, can be considered as the d-dimensional extension of the
binary six-state protocol [38, 39]. In this case, the asymptotic secret fraction is
[37]

7 7 log,(d*—1). (1.4.10)

rgg:dﬂ) _ logzd—h(Qd + 1)—Qd +1
These rigorous formulas lead to similar qualitative conclusions as our simpler
intercept-resend analysis. As shown in Figure 1.9, which plots the asymptotic
key rate r, for both cases in up to d = 11 dimensions, a higher dimensionality
consistently improves the key rate, providing a robust advantage against noise. A
second trend, detailed in the literature but not shown here, is that while adding
the first few MUBs offers a significant increase to the key rate, the benefit for
each subsequent basis diminishes. Nevertheless, since the number of available
MUBs grows with the dimension, these small improvements can combine into a
substantial overall advantage when all possible bases are used. Moreover, for a
system with a high intrinsic QBER (due, for instance, to noise or experimental
imperfections) employing more MUBs may be the only possible way to extract a

positive secret key.

A useful way to visualize the advantages of the (d+1)-basis protocol over the
two-basis protocol is through the maximum tolerable error Q, i.e., the value
of Q for which r drops to zero. Indeed, this quantity offers a straightforward
practical interpretation: a secure key can only be extracted if Q < Q, i.e., if the
QBER is below the threshold. Any practical implementation of a QKD protocol,
therefore, cannot work unless its intrinsic noise (independently of Eve) is below
Q. In Figure 1.10, we show the maximum tolerable error calculated for m = 2
and m = d + 1 bases in up to d = 11, which match the values found in [4, 5].
The well-known value for BB84, 11%, is at the bottom of the plot. A two-basis
protocol in d = 5 allows one to double this threshold, and a (d +1)-basis protocol
in d = 8 dimensions can even triple it, enabling much stronger noise robustness.

19



Chapter 1. Qudits in quantum communication

3.5_ ....... d 2
83.0_ ------- d_3
N R, d_4
.525_ ....... d=5
g ------- d=7
A= —

on_ m=d+1 @ ceeee- d=8
S ;- d=9
o or d=11
S

gm—

<2

05}
m=2 A
0.0 | I I ..'I ..... I I I I I
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
OBER Q

Figure 1.9: Asymptotic secure key r, as a function of the QBER Q for the two-basis pro-
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in different dimensions d. Although this rigorous analysis yields a generally lower secret
key fraction than the probabilistic intercept-resend case (notice the different QBER
scale with respect to Figure 1.7), the high-dimensional advantage at low errors remains
unchanged, yielding ro, = log, d for Q = 0. The error tolerance derived from using the
complete set of m = d + 1 bases is greatly reduced in this case, because Eve can perform
optimal measurements to minimize her disadvantage.
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Finite key analysis and experimental considerations

The values of Q, while useful, do not constitute the final results of the security
proof for HD-QKD. In [37], the authors also perform the so-called finite key
analysis, which accounts for the fact that, in any practical QKD implementation,
the number of rounds N must be finite. This implies that, unlike in the asymptotic
regime, only a finite amount of information can be used for parameter estimation,
making the statistical error on estimated parameters (such as the QBER Q) quite
relevant. In turn, this leads to uncertainty in the estimate of Eve’s knowledge;
due to the restraints of secure communication, Alice and Bob must take the
upper bound of this estimate—typically, a pessimistic choice that results in more
discarded key bits.

Another important point, which we have so far overlooked, is that Bob, just like
Eve, is less likely to choose the correct basis as m increases. To mitigate the
resulting factor 1/m in front of the key rate, Alice and Bob can agree to use
the same basis (called key basis) for the majority of the rounds, and use the
remaining m — 1 test bases for parameter estimation. In the asymptotic limit
N — oo, the fraction of key bits lost due to sifting will vanish, as will the number
of bits discarded to estimate the QBER. However, this is no longer true in the
finite-key regime, where the fraction of measurements in the test basis must be
appropriately increased to maintain statistical significance.

The finite number of rounds also affects the error correction and privacy amplifi-
cation algorithms, reducing their efficiency. Overall, these effects will result in a
shorter final key, whose length is quantified by the finite-key analysis. In [40],
one can find a clear and intuitive term-by-term explanation finite-key analysis for
binary QKD, whose meaning can easily be generalized to a larger-dimensional
space.

The considerations made so far are based solely on theoretical models. In an
experimental setting, one must also account for the repetition rate f at which
the protocol rounds are performed. The key fraction r and the repetition rate
combine in the secret key rate R = r - f, which describes the number of secure bits
transmitted per second. In any practical implementation of QKD, increasing the
repetition rate is therefore as critical as improving the key fraction. This implies
that, for experimental designs that present a trade-off between repetition rate
and QBER, these two quantities must be carefully balanced. A typical example is
the application of filtering to improve the QBER, which inevitably discards more
signal and thus reduces the effective repetition rate.

Finally, any practical realization of QKD will come with its own loopholes, which
must be countered and accounted for in the final key rate estimation. One
notorious example is the photon-number-splitting attack: due to easier technical
accessibility, prepare-and-measure protocols typically use attenuated coherent
pulses instead of true single photons. As a result, in some rounds Alice will send
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more than one photon (i.e., at least two identical qudits), giving Eve the chance to
measure only one photon and remain undetected. This attack can be countered
with the decoy states technique, which consists in picking a different predefined
mean-photon-number in each round [41]. In the classical post-processing phase,
these values can be compared to the detection probability to verify whether
a photon-number-splitting attack was carried out—clearly, at the cost of more
discarded key bits.

1.4.4 Entanglement-based HD-QKD

In this section, we have explored a high-dimensional prepare-and-measure pro-
tocol, similar in structure to the original BB84. However, any such protocol
can be mapped to an equivalent entanglement-based scheme, where Alice pre-
pares an entangled state, measures her subsystem in one of the m bases, and
sends the remaining qudit to Bob [17]. Security proofs are typically derived for
entanglement-based schemes and then translated to their prepare-and-measure
equivalent, as this approach often simplifies the analysis.

Despite their equivalence in security proofs, these two types of protocols differ
significantly in practical implementations. For instance, entanglement-based
QKD is inherently resilient to the photon-number-splitting attack: even if two
photons were sent to Bob in the same round, they would not necessarily be
in the same quantum state, therefore Eve would get no useful information by
measuring one of them (although this same effect may slightly increase the
QBER). Moreover, since the security proof of entanglement-based protocols
relies on the violation of Bell inequalities, the entanglement source could even
be directly handed over to Eve without compromising security—hence the term
device-independent QKD used to describe this type of schemes. However, this
robustness comes at a cost: despite these advantages, entanglement-based QKD
is significantly more challenging to implement experimentally. As a result, both
protocols continue to be actively studied and tested still today.

1.5 Chapter conclusion

This concludes the first part of the theoretical introduction to this thesis, which
focused on qudits in quantum communication. In this chapter, we started from
the fundamentals of classical information theory, exploring the meaning of infor-
mation itself and its link to the Shannon entropy, and extended these concepts to
quantum mechanics, where the unique properties of qubits enable new commu-
nication protocols. Then, we expanded our Hilbert space, introducing qudits as
the generalization of qubits to high-dimensional systems, and analyzed how this
led to new interesting properties for quantum information and communication.
Finally, we explored an HD-QKD protocol, from its step-by-step implementa-
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tion to its secret key estimation after eavesdropping attacks, highlighting the
advantages of encoding in high dimensions and more bases.

The major challenge of HD-QKD is arguably its experimental realization. To
move from theory to practice, we need three key components: a robust high-
dimensional alphabet to encode the qudits, a high-dimensional entanglement
source capable of generating the required quantum states, and, most critically,
a versatile high-dimensional decoder. Such a decoder must be able to perform
simultaneous, high-fidelity single-shot projective measurements onto all elements
of an arbitrary d-dimensional basis, a capability that represents a significant
experimental bottleneck. The remainder of this thesis is therefore dedicated to
the design, implementation, and characterization of the devices that solve these
challenges, thereby translating the theoretical advantages discussed here into
practical, real-world applications.
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Time-frequency qudits and
integrated nonlinear processes

In the previous chapter, we established the significant theoretical advantages
of high-dimensional quantum states for communication. The time-frequency
domain of photons offers a particularly robust and scalable platform for such
encodings. Realizing this potential, however, requires experimental tools capable
of generating and decoding qudits with high fidelity, versatility, and scalability.
While specialized devices have been developed in both state generation [42-47]
and detection [48-52], the field has lacked a flexible framework adaptable to
different dimensionalities, bases, encoding schemes, and applications.

This thesis develops and demonstrates such a versatile framework based on
time-frequency qudits, which for the first time enables precise, programmable
control over their generation and decoding. At the core of this framework are the
two key components that were previously missing: a programmable source of
high-dimensional entanglement and a reconfigurable high-dimensional decoder
for time-frequency qudits. We realized these devices through the careful engi-
neering of integrated nonlinear processes, which required a deep understanding
of their underlying physical principles. Before presenting the experimental imple-
mentation of our system, it is therefore essential to establish these fundamentals,
as they provide the necessary foundation to understand not only the operation
of our devices but also the specific choices made to optimize their performance.
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In this chapter, we build this essential toolkit for the experimental work central
to this thesis. We begin by identifying the time-frequency degree of freedom
of photons as the ideal information encoding platform for high-dimensional
quantum communication, and we explore possible high-dimensional alphabets
in this domain. Then, we focus on nonlinear integrated processes, namely
parametric down-conversion and sum-frequency generation, as the means to
generate and detect time-frequency qudits. Finally, we investigate techniques
to tailor these processes through dispersion engineering and spectral shaping,
essential to adapt these methods to a wide range of applications, while also
providing a foundation that enables future expansions of this framework.

2.1 Time-frequency qudits

In any physical implementation of a qudit, the basis states |0),...,|d —1) rep-
resent mutually exclusive properties of the quantum particle that encodes the
information. Common examples for qubit encoding are the spin state of an
electron, the energy of a two-level atomic system or the polarization of a photon.
However, for qudits we need a high-dimensional encoding alphabet. This can
be realized in a quantum system with many possible states, such as multiple
energy levels of an atom, the spatial distribution of a photon, or the discretized
time or frequency regions it can occupy. In order to build a quantum information
framework from these systems, and thus implement high-dimensional quantum
communication, we need tools to prepare, manipulate, and measure the quantum
states that encode information [16].

For quantum communication, photons are the natural choice of information
carriers: they travel at the speed of light and do not interact with other radiation,
which helps preserve quantum states over long distances. Transmitting informa-
tion over long distances is crucial for communication, but is often challenging
due to optical loss. In practice, photons are typically distributed through free
space or low-loss optical fibers, depending on the environment; therefore, our
choice of encoding alphabet must be compatible with these infrastructures and
resilient in transmission.

2.1.1 Photonic degrees of freedom

In order to encode quantum information into photons, we first need to identify
the physical properties that we can use to build an encoding alphabet. To
understand this, we start by describing the quantum electric field. The field
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2.1. Time-frequency qudits

operator at position r and time t can be written as a sum of its positive- and
negative-frequency’ components [53]:

E(r,t)=E'(r,t)+E (1, 1), (2.1.1)

where f‘.+(r, t) is the annihilation operator of the electric field, and
E(r,t) = (E'(r,t))' is the creation operator. In a limited volume V,
such as in a cavity, photons can only exist in specific modes (or superpositions
of modes) corresponding to the standing-wave solutions of the field equation,
defined by discrete frequencies w; and wavevectors k;.

The expression for E'(r, t) in free space can be derived from the quantization of
the classical complex field and expressed as the sum of monochromatic plane
wave modes [54]:

~ . h
E+(l', t) = E Elalelel(kzr—wzt) , 81 = 2:0‘1/ . (2.1.2)
1 0

Here, &, is the single-photon electric field, a; is the annihilation operator for
plane-wave mode [, and ¢, is the polarization vector.

The different eigenmodes derived from the same field equation are orthogonal?,
therefore, we could build an encoding basis from monochromatic plane wave
modes. However, this is not the most practical alphabet to operate with, for
two fundamental reasons. Spatially, plane waves are infinitely large and thus
cannot be confined to a practical transmission medium like an optical fiber. More
critically, monochromatic waves have an infinite time duration, which makes
them unsuitable for any communication protocol that relies on sending distinct
symbols over time.

In order to identify other possible encoding alphabets for photons, it is con-
venient to reformulate expression (2.1.2) to separate the different degrees of
freedom. This can be done by making some reasonable approximations focused
on quantum communication applications, i.e., on the goal of transmitting quan-
tum information. First, we assume a fixed propagation direction along the z-axis,
which defines the direction along which we transmit the photons. Under this
assumption, the field becomes approximately collinear (paraxial approximation,
|k;| ~ k, ;) and the polarization direction is transverse, confined to the xy-plane.

Then, under the assumption of long-distance propagation, we extend the cavity
along the z-direction indefinitely. Mathematically, this is done by factorizing the
system volume into V = AL, and extending its length L — +00 while keeping

'We follow the convention in [53, 54] and label “positive” (“negative”) the part of the electric
field associated to the clockwise (counterclockwise) rotation of the field in the complex plane as
t increases. The opposite notation is also commonly used.

2Note that any solution of the field equation is still a mode; this includes superpositions of the
eigenmodes, which are not orthogonal to the eigenmodes themselves.
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the area A in the xy-plane limited. This extension to an infinitely long cavity
reduces the separation between the discrete parameters w; and k, ;, converting
them into the continuous variables w and k,(w) ~ w/c, respectively. The (small)
transverse components of the wavevector k,, k, < k, remain quantized due to
the constrained area A.

Due to w becoming continuous, the sum over all possible values of w; becomes an
integral over all positive frequencies. Since real-world communication is typically
limited to a finite bandwidth Aw < w, around a central frequency w,, we can
safely extend the integral range to infinity without expecting divergence. Under
all these assumptions, we can finally rewrite the electric field as [53]

hw,
4meycA

(2.1.3)

E+(r’ t) — 18 Z ejei(kl’xx+kz,y)’) de a]"l(w)ei(kZ(w)Z_wt) , 8 —
7l

This expression explicitly reveals the different degrees of freedom of photons:
polarization, determined by the vector €;, space, given by the combination of
wavevectors and coordinates in the xy-plane, and frequency, described by the
terms in the dw frequency integral. These degrees of freedom are associated to
their respective modes, which identify possible encoding alphabets for quantum
information. In this thesis, we will refer to the modes in the temporal degree of
freedom as “time-frequency” modes, as we will consider both their spectral and
temporal properties.

While the polarization degree of freedom is the most common platform for
quantum communication, it is not suitable for qudits as it is intrinsically limited
to two dimensions. In contrast, both the spatial and time-frequency degrees of
freedom can provide high-dimensional bases, and both have been used for various
quantum communication demonstrations [14, 49, 51, 55-59]. However, the latter
arguably offers the most advantages for qudit-based communication, as time-
frequency modes are compatible with the existing spatially single-mode optical
fiber infrastructure and are resilient in transmission, because they maintain
orthogonality even through slowly-varying perturbations (e.g., linear dispersion)
[16]. For this reason, this thesis will focus on the time-frequency degree of
freedom of photons as an encoding platform for high-dimensional quantum
communication.

2.1.2 Temporal modes

Let us consider the quantum electric field in eq. (2.1.3) to be in a single spatial
and polarization mode. This leaves the field to be characterized only by the
frequency integral, which contains all possible monochromatic modes. However,
in quantum communication, it is common to use light pulses, because they
allow information to be transmitted in discrete shots. Describing them using
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f(w) Frequency f (t) Time

Monochromatic
mode

f(w) f(0)

Temporal
mode

Figure 2.1: Illustration of the envelope function of a monochromatic mode (top) and
Gaussian-shaped temporal mode (bottom) in frequency and time, where the two de-
scriptions are linked by a Fourier transform. The oscillations in time derive from the
carrier frequency wy.

monochromatic modes is inconvenient, as pulses inherently contain infinitely
many frequency components.

To address this, we define a temporal mode (TM) f(w) as a wavepacket mode
that can be expressed as a coherent superposition of monochromatic modes [16,
59]. While the mode itself is a classical function which describes the complex
spectral amplitude profile of the pulse as a function of frequency, it can be used
to define a creation operator A" which, when applied to the vacuum state |vac),
generates a single-photon state in this specific TM:

|A) = A" |vac) := f‘zl—: f(w)a'(w) [vac) , (2.1.4)

where d'(w) is the monochromatic creation operator at frequency w. The term
“coherent” is crucial, as it implies that there is a fixed phase relationship between
the different frequency components.

Throughout this thesis, we will mainly consider single-photon states. For the
sake of simplicity, we will therefore often refer to the single-photon state |A) and
its underlying TM f (w) interchangeably, and we will typically indicate the mode
simply as A. However, it is important to remember this shorthand is not valid for
multi-photon states, where the distinction between mode and state is essential.
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Labeling these states “temporal” modes while describing them in terms of fre-
quency might appear counterintuitive. However, time and frequency are inher-
ently related by the nature of a monochromatic wave, which oscillates in time at
a certain frequency. As a consequence, these two variables are Fourier conjugates,
and the time and frequency descriptions of temporal modes are equivalent (see
Figure 2.1).

We can use a Fourier transform to reformulate (2.1.4) in terms of time. Following
standard convention, we indicate with F the Fourier transform and with 7 its
inverse, which differs only by a sign and normalization factor. We can calculate
the time-dependent envelope function f(t) and the creation operator &'(t) which
creates a photon at time t:

FO=F(f(0) = Ji—j_j e“f(w) & flw)=F{f()}= Jdt Fle)ye et

(2.1.5)

dw .

d'(t) =Fla(w)} = fﬁ e adl(w) & a'(w)=7{a(t)} = Jdt et a'(t).

(2.1.6)

Substituting these terms into eq. (2.1.4) gives

r AW
)= 22 () () vac) = J o fdtf(t)e—““ () vac)

(-

- dow .. . P
= | dt f(t) J% a'(w)e ™" | |vac) =Jdt f(t)a'(t) |vac) . (2.1.7)

(-

This expression explicitly tells us how we can equivalently describe the single-
photon TM |A) either in terms of time or frequency, while indicating the same
exact state.’

2.1.3 A temporal mode basis

Each TM represents a quantum state that photons can occupy. In the case of
single photons, we can identify the TM envelope function f;(w) with the single-

3Technically, in this passage we switched between the notations generally associated with first
quantization (|A)) and second quantization (using operators like a'(w) applied to the vacuum
state |vac)). The notation of the first quantization typically describes which mode a particle is in,
which is useful when dealing with a small fixed number of particles, whereas the notation of the
second quantization focuses on how many particles are in each mode, which is more helpful for
many identical particles and for processes like creating or destroying particles. Although they
derive from two different concepts (quantizing particles versus quantizing fields), here we use
them as equivalent ways to describe the same physics, changing notation for convenience in
different contexts.
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photon state |A;). We can use these states to define the fundamental basis of a
high-dimensional Hilbert space. To form a basis for quantum information, the
quantum states must be orthonormal, that is, they must be normalized and their
overlap (scalar product) must be zero. The overlap between two TMs |A;) and
|A;) is

(aila;) = (vac chl—:ﬁ*(w)&(w) f‘;‘;'fj(w’)a*(w’) vac)

d 4o e
- fﬁfﬁ(a)) J 2 Fi(@)8(, o)

dw .,
:Jﬁfi (w)fj(w). (2.1.8)
The orthonormality condition is then
do .,
(Alaj) =8y = f (@) (@) = 5y (2.1.9)

meaning that the complex spectral overlap of the envelopes of two orthogonal
TMs is zero.

Constructing a d-dimensional TM basis thus requires choosing a proper set of
ways to define such a’b’asis, the most common choices are frequency bins, time bins
and pulse modes. While historically treated as distinct encodings, in this thesis
we group these in the family of temporal modes, as they are all fundamentally
described by complex functions of time and frequency [60]. Since the envelopes
of these modes are generally complex, they cannot be fully represented in the real
plane as the particular examples in Figure 2.1, but instead require the explicit
representation of their amplitude and phase shown in Figure 2.2. In Appendix B.2,
we explicitly report the expression for the complex spectral envelope of the main
encodings used throughout this thesis.

The fundamental basis of pulsed frequency bins consists in a set of finite en-
velope functions, generally Gaussian-shaped, centered at different frequencies
and sufficiently separated to be effectively intensity-orthogonal according to
eq. (2.1.9). In the time description, Gaussian frequency bins are mapped to
Gaussian functions that overlap in time, but have different linear phases. MUBs
in this encoding are constructed as superpositions of bins from the fundamental
basis with appropriate phases, given by the MUB coefficients. In the time domain,
these superpositions give rise to oscillations.

Analogously, the fundamental basis of time bins contains a set of finite envelope
functions with different delays, with a separation larger than their time duration.
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Figure 2.2: Spectral amplitude (filled area) and phase (gray line) of the fundamental
basis (top) and one MUB (bottom) of different TM encoding alphabets in dimension
d = 3: (a) time bins, (b) Hermite-Gaussian modes, and (c) frequency bins.
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2.2. Integrated nonlinear processes

In frequency space, different time bins are described by the same envelope func-
tion with different linear spectral phases. Similarly to the previous case, MUBs
are formed as a superposition of time bins with appropriate phase coefficients,
which correspond to oscillations in frequency.

In contrast, the intensity profile of pulse modes overlaps in both time and fre-
quency. Different pulse modes are field-orthogonal (hence satisfy eq. (2.1.9))
due to the phase relations of their respective envelope functions, which have
zero overlap with each other. Hermite-Gaussian (HG) modes are a common
example of this type of encoding alphabet; due to the properties of HG functions
in Fourier transforms, these modes retain the same envelope shape in time and
frequency. MUBs are formed by superimposing the fundamental HG modes with
phases given by MUB coefficients, which results in different envelope shapes.

2.2 Integrated nonlinear processes

After constructing a high-dimensional Hilbert space based on TMs, we need to
implement operations such as the generation of entangled qudits or projective
measurements, which form the building blocks of quantum communication
protocols. However, we are faced with a challenge: photons do not directly
interact with each other! In fact, their bosonic nature allows them to overlap
in space and time without influencing one another—an advantage for low-loss
communication, but a problem when we want to induce interactions between
quantum states. To overcome this, we can exploit light-matter interactions:
different electric fields can interact with the same dielectric material, directly
influencing each other in the process.

2.2.1 Three-wave mixing in waveguides

Dielectric materials respond to an applied electric field by becoming polarized.
This response can be described quantum mechanically* by expanding the induced
polarization operator as

P=P, +Py =¢,(yVE+yPEE+ y®EEE+...), (2.2.1)

which we have separated into its linear 13L = €, x(l)ﬁ and nonlinear
Py, = €0 (xPEE + y®EEE + ... ) terms. Here, E is the quantized electric field in
(2.1.1), and @ are the ith-order susceptibility tensors. The linear term accounts
for effects such as refraction, dispersion, and absorption. To enable photon-
photon interaction, we rely on the nonlinear term, particularly on the second-
order nonlinearity y®. This coefficient is nonzero only in non-centrosymmetric

“Three-wave mixing is typically introduced in the framework of classical nonlinear optics [48,
61, 62], and only then extended to the quantum domain. For conciseness, and in line with the
focus of this thesis, here we present the quantum picture directly.
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Chapter 2. Time-frequency qudits and integrated nonlinear processes

materials like lithium niobate (LiNbO;) or potassium titanyl phosphate (KTP),
where y @ processes are dominant compared to third-order effects. Therefore,
we approximate the nonlinear polarization as

Py ~ e,y PEE. (2.2.2)

This term gives rise to a process known as three-wave mixing, where two electric
fields induce a polarization that, in turn, radiates a third electric field.

To enhance nonlinear interactions, we typically work in an integrated platform
using waveguides. Waveguides offer two main advantages: they confine the light
to a small cross-sectional area, thereby improving the spatial overlap between
interacting fields, and maintain this strong overlap over longer interaction lengths
than bulk crystals, where beam spreading reduces the interaction efficiency. In
this thesis, we focus on weakly guiding waveguides, characterized by a low
refractive index contrast between the core and substrate. This is the case, for
example, in titanium in-diffused LiNbO,; waveguides or rubidium-exchanged KTP
waveguides. The description of three-wave mixing in weakly guiding waveguides
has been derived rigorously in Engineering ultrafast quantum frequency conversion
by B. Brecht [63]. In this section, we will summarize the key concepts of this
derivation.

In weakly guiding waveguides, the confinement in the transverse xy-plane leads
to discrete spatial modes denoted by ;. (x, y). Each spatial mode, combined with
the field’s polarization, has an effective refractive index n,(cw) which typically
differs slightly from the bulk value, leading to an effective wavevector f; of
magnitude

B = nk(co)%, (2.2.3)

also called the propagation constant. The positive-frequency component of the
electric field becomes

. h . ;
E'(r,t) = iZnZ €. (x,y) | dw e a; (w)elPul@z=e) (9 9 4)
P 4regcn,(w)

2.2.2 Nonlinear interaction Hamiltonian

To understand how this field is affected by the polarizability, we start by con-
sidering the general time evolution of a quantum state | (t)) from t = 0 to
t="T:

T

[(T)) = exp —%fﬁ(t)dt 1(0)) , (2.2.5)

0
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2.2. Integrated nonlinear processes

where we neglected the time-ordering operator’. The Hamiltonian f}AC(t) is
related to the energy of the quantum system, and for three-wave mixing it is

7 o f B Edv = f LOREEQV | 2.2.6)
\%4 \%4

where the integral is taken over the total interaction volume. We use the pro-
portionality symbol (o<) to emphasize that, in the context of this thesis, we are
mainly interested in how the nonlinear Hamiltonian depends on the relevant
physical quantities—such as the electric field amplitudes, the nonlinear suscepti-
bility, and the spatial mode overlap—rather than in its exact numerical value.
Determining the absolute prefactor is nontrivial: different derivations [63, 65]
yield slightly different coefficients, which are difficult to verify experimentally.
Therefore, we will focus on the functional dependencies that govern the nonlinear
interaction, while absorbing all constant factors into a global parameter that
characterizes its overall gain.

Let us consider an electric field E that contains three components, each in a
particular polarization and spatial mode (that is, k € {1,2,3} in eq. (2.2.4)):

E=E, +E,+E,. (2.2.7)

By separating each field into its positive and negative frequency parts, we can
expand the triple product in eq. (2.2.6) into the sum of all possible combinations
of the three fields:

1,7,k
i,j,k

3 oc Zfl(z) ‘Afﬁjiﬁf dV+he., i,j,ke{l,2,3} (2.2.8)
14

where the three indexes i, j, k can also be degenerate.

Since the only time-dependent part of the electric field is in its exponent e'“*,
taking the time integral in eq. (2.2.5) leads to a term in the form

Jei(*wf*wfiwk)f dt =8(tw; *w;+ ), i,j,ke€{1,2,3}, (2.2.9)

>The rigorous expression for the time evolution of a quantum state is
[Y(T)) = T exp{—%_ fOTﬂA-C(t) dt} [ (0)), where T is the time-ordering operator, which re-
arranges time-dependent operators according to the time instant on which they act. This is
mathematically required because the Hamiltonian does not commute at different points in time.
Essentially, the time-ordering operator ensures that the interactions are accounted for in the
correct sequence. In this context, it means that the electric fields are modified as they propagate
through the waveguide, affecting the nonlinear interactions at subsequent times. A detailed
analysis of time-ordering effects in some nonlinear processes was performed by Christ et al. [64],
showing that its effects become more visible in the high-gain regime, i.e., for high interaction
strengths. In this thesis, however, we will consider the low-gain regime, in which time-ordering
effects are negligible.
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Chapter 2. Time-frequency qudits and integrated nonlinear processes

which contains all possible combinations of signs. This expression assumes
non-zero values only when

Tw; T w;tw, =0, (2.2.10)

which defines the energy conservation condition of three-wave mixing, excluding
unphysical processes such as the simultaneous creation or annihilation of three
photons.

Many sets of frequencies satisfy this condition, leading to all possible three-wave
mixing processes [63]. Here, we will focus on a set of frequencies related by

Wy =W+ w,y, (2.2.11)

which lead to the simplified Hamiltonian

17273 17273

7t oc f JORE R4V + f JOREE v (2.2.12)
\% \%4

In this expression, the first term describes the annihilation of two photons at
frequencies w; and w, and the creation of a higher-energy photon at frequency
w3, while the second term describes the annihilation of a photon at frequency
w4 and the creation of two lower-energy photons at frequencies w; and w,.

In the quantum regime, these processes have exceedingly low probability unless
one of the fields is replaced by a strong (classical) pump field. By doing so, the
pump function a(w,), which describes the complex spectral amplitude of the
pump, imposes energy conservation by linking the other two frequencies: the
nonlinear process can only happen where the pump spectrum “activates” it. If
the pump replaces one of the low-energy fields E, or E,, then we obtain sum-
frequency generation (SFG), a process in which two photons are annihilated to
create a photon with the sum of their frequencies. On the other hand, if the pump
replaces the higher-energy field EB, then we have parametric down-conversion
(PDC), a purely quantum process in which a photon in a nonlinear medium
decays into two lower-energy photons. We can rewrite the pump wavelength in
terms of the other two wavelengths, which we relabel input and output for SFG
(wp, = Wey — Wiy), and signal and idler for PDC (w, = w + w;).

The next step to study this process is to perform the volume integral in
eq. (2.2.12), which can be split into a transverse integral in the xy-plane and
a longitudinal integral along the propagation direction z. The transverse inte-
gration yields an overlap factor between the spatial modes, which influences
the strength of the conversion process. The longitudinal integration along the
waveguide length L results in the phase-matching function:

L
) ABL ABL
d(AB) = Jemﬁz dz=1 sinc( g )e’ 2 (2.2.13)

0
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2.2. Integrated nonlinear processes

where we have defined the phase mismatch
AB(wy, Wy, w3) = P (wq) + fy(w,) F By(ws), (2.2.14)

with the signs chosen according to whether we are taking the positive- or negative-
frequency component in eq. (2.2.12). The phase-matching function defines the
momentum conservation condition of the nonlinear process, and is maximized
when AB(w;, w,, ws) = 0; the frequencies that satisfy this condition are said to
be phase-matched. Through eq. (2.2.14), we can express the phase-matching
function explicitly in terms of frequencies: ®(w;, w,, w3) = (AL (w1, Wy, w3)),
so that ¢ will be maximized when w,, w,, w5 are phase-matched. We note that,
if working with monochromatic light, one could directly choose to use a set of
perfectly phase-matched frequencies; however, with broadband pulses, we must
take into account how the phase mismatch changes for their different frequency
components.

We can substitute the complete expression of the fields in eq. (2.2.12) and
separate the time-integrated Hamiltonians for the two processes [63]. We make
use of the energy conservation condition to implicitly rewrite the pump frequency
as a function of the other two, in order to express the phase-matching function
and the pump function only in terms of two variables. For SFG, we find

Jj_\CSFG(t) dt o< JJ dwin C1(“‘)out q)(win) wout) a(wout - win) a(win) E:\T((‘)out) + h.c.

= JJ dw;, dw,y G(wi,, Wey) A(w;,) C (wyy) + h.c., (2.2.15)

where we defined the transfer function
G(win: wout) = q’(wini Cl)out) : a(wout — Wip)J - (2216)

For PDC instead we have

f Fopc()dt o< H dow, dw; ®(w,, w;) a(w, + w)d (w,) b (w;) +h.c.

= fJ dw, dw, F(w,, w;)a'(w,)b'(w;) +h.c., (2.2.17)

where the joint spectral amplitude (JSA) is defined as
F(wg, w;) :=P(wg, w;) - alw, + w;). (2.2.18)

The JSA and the transfer function share a similar mathematical structure, deriving
from the product of the pump and phase-matching functions: in order for a
process to happen, it needs to simultaneously satisfy the energy and momentum
conservation conditions. However, these two functions have a deeply different
meaning: the transfer function describes a process in which a quantum input
state is converted to an output state, whereas the JSA describes the spectral
structure of a (typically entangled) quantum state.
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Chapter 2. Time-frequency qudits and integrated nonlinear processes

2.2.3 Frequency-space picture and Schmidt decomposition

The frequency-space representation fully describes the three-wave mixing process
in the time-frequency degree of freedom. For PDC (Figure 2.3), the JSA correlates
the possible frequencies of signal and idler phiotons both in amplitude and
in phase. In SFG (Figure 2.4), the transfer function maps input frequency
components to output frequencies. The immediate noticeable difference between
these two processes is the direction of the pump function, which is angled
at 45° for SFG and —45° for PDC because of the different form of the energy
conservation condition. Beyond this, the underlying mathematical structure of
the two processes is analogous, making it possible to apply the same analysis
method and process engineering to both functions.

CI)(O)S, wi) a(a)s, wi) F(O)s, wi)
§ 5 -3 »
Wy Wy Wg

Figure 2.3: Representation of a PDC process in frequency space, as a function of the
signal and idler frequencies, w, and w;. The product of the phase-matching function
®(ws, w;) and pump function a(ws, w;) yields the JSA F(ws, w;), which describes the
correlations between signal and idler frequencies. Only the amplitude of these two-
dimensional functions is represented.

q)(win’ wout) a(win: 6‘)out) G(a)in: Cl)out)
El E = B
3 / 3 3 -
Win Wi Win

Figure 2.4: Representation of an SFG process in frequency space, as a function of the
input and output frequencies, w;, and w,,;. The product of the phase-matching function
D (Wi, Weyur) and pump function a(w;,, W) yields the transfer function G(wy,, wqyt),
which maps input frequency components to output frequencies. Only the amplitude of
these two-dimensional functions is represented.

38



2.2. Integrated nonlinear processes

Il
—
+
—
"
"
+
—
1l
.
"
+

—_— —a_ A
Wy Wy W
Ws <] g 5
T asis asnue
—_——— - .-
D e e L ALALL
—_— Y W N A A_A
Wy Wg W

Figure 2.5: Illustration of the Schmidt decomposition for a PDC process in eq. (2.2.19).
The JSA F(ws, w;), shown on the left, can be decomposed into pairwise correlated
Schmidt modes f;(w,) (orange) and g(w;) (purple), representing the correlated TM
envelopes of signal and idler, respectively. The blue bar next to each component represents
the corresponding Schmidt coefficient /2, .

In particular, to better analyze both PDC and SFG in terms of TMs rather than
just frequencies, we can perform a Schmidt decomposition [66-68]. This method
rewrites a two-dimensional function (such as the JSA or the transfer function)
as a sum of pair-wise products of functions from two basis sets, each depending
on only one variable.

For PDC, the Schmidt decomposition reads:

Flw, @)= D v/ A file)gdw), (2.2.19)
k

where /A, are the Schmidt coefficients, and {f,} and {g, } are orthonormal sets of
functions, called Schmidt modes, describing the spectral profiles of correlated sig-
nal and idler TMs [69]. If the JSA is normalized, i.e., ff IF(w,, w)|* dw,dw, =1,
then the Schmidt coefficients satisfy the normalization condition >, A, = 1. In
the remainder of this thesis, we assume a normalized JSA and absorb any scaling
factor into the process gain.

We define the creation operators corresponding to the Schmidt modes as
Al= desfk(ws)a"“(ws), By = f de; g ()b "(wy), (2.2.20)

neglecting the 1/27 factor from eq. (2.1.4). Substituting this decomposition
into the PDC Hamiltonian (2.2.17) leads to

ff dw,dw; F(w,, w)d (w,)b'(w;) = Z Akﬁ;ﬁi . (2.2.21)
k
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Chapter 2. Time-frequency qudits and integrated nonlinear processes

The time evolution in eq. (2.2.5), then, gives the PDC state

) ppc = l_[exp{Bkﬁlzlg’,t + h.c.} lvac) , (2.2.22)
k

where the coupling constant B, incorporates the Schmidt coefficient and all
the conversion efficiency factors. In the low-gain regime, where the coupling
constant is small, we can approximate the PDC state as

[Phopc ~ D BLABL vac) & > By |A,) IBy), (2.2.23)
k k

where we neglected the vacuum term in the final expression because in experi-
ments we will typically post-select on “clicks”, i.e., we will only consider measure-
ments in which we detected at least one photon. Eq. (2.2.23) expresses the PDC
state as a superposition of bi-photon temporal modes—the high-dimensional
entangled state introduced in Chapter 1. This process is the foundation for the
source of high-dimensional entangled states that we demonstrate in Chapter 3,
which we realize by tailoring the spectral properties of the entanglement to
achieve a controlled modal structure.

Figure 2.5 illustrates an example of Schmidt decomposition of a JSA generated by
the product of a Gaussian-shaped pump and a Gaussian-shaped phase-matching
function, for simplicity. In this example, the Schmidt decomposition yields an
infinite number of Schmidt modes, with exponentially lower coefficients. The
TMs associated with signal and idler in this case take the form of HG functions.
In principle, the TMs resulting from the Schmidt decomposition can take any
form, depending on the shape of the JSA. While all functions shown in this
example are real (allowing us to represent them simply by showing their positive
and negative parts), in general they could have any arbitrary phase profile.

For SFG, we can perform an analogous Schmidt decomposition to rewrite the
transfer function as a set of independent, single-mode conversion processes:

(@i Dou) = D, V Ak £ (03) 8(@ou), (2.2.24)
k

where {f;(w;,)} and {g;(w,,)} are sets of orthonormal functions describing the
complex envelope of the input and output TMs, respectively. For the input enve-
lope, we consider the complex conjugate as we associate it with the annihilation
operator

AAk = fdwin fk*(win)a(win): (2225)

whereas the creation operator associated to the output is

Ci= deout Gi(@44) €T (o) - (2.2.26)

40



Wout

2.3. Tailoring nonlinear processes

5 5 5
o =] =]
3 3 3
- - -
- - -
- +H - - * - +
—_— —_— —_—
Wip Wip Wip
5 5 5
@in 3 3 3
v 21 1 _
==== + | =z2=z= +
——t—— —rT
A A A L A A B
| -— —
—_—_— —_— —_—
Win Wip Wip

Figure 2.6: Illustration of the Schmidt decomposition for an SFG process in eq. (2.2.24).
The transfer function G(wj,, wy,:), shown on the left, can be decomposed into pairwise
correlated basis functions f;*(w;,) (orange) and gi(wqy,) (green). Each pairwise product
of Schmidt modes represents a quantum beam splitter in which an input TM with
envelope fi(w;,) is converted into an output TM with envelope gi(wqy,)- The blue bar
next to each component represents the corresponding Schmidt coefficient /A .

Using these definitions, the time-integrated SFG Hamiltonian can be rewritten as
Jf dw;, dw,yy, G(wi,, Wey) A(w;,) T (wey) +h.c. = Z Gkﬁké}z +h.c.. (2.2.27)
k

This expression indicates that the frequency conversion process can be under-
stood as a set of parallel, independent single-mode conversion processes, each
with a coupling constant C;, which incorporates the corresponding Schmidt
coefficient. Each term of this Hamiltonian is mathematically equivalent to a
beamsplitter operation between the input TM associated to A, and the output
TM associated with CA’;{, with a splitting ratio determined by C,. Therefore, the
Schmidt decomposition lets us study the SFG process as a tensor product of inde-
pendent beamsplitters for TMs. This beamsplitter model forms the conceptual
basis for our high-dimensional TM decoder; in the next section, we introduce
the techniques required to build and tailor this process to design the device we
demonstrate in Chapter 4.

2.3 Tailoring nonlinear processes

In the previous section, we introduced the two nonlinear processes that are central
to our work with time-frequency qudits: PDC for generating entangled TM states,
and SFG as a TM beamsplitter for detection. For the quantum communication
protocols that we will demonstrate in this thesis, however, it is not enough to
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Chapter 2. Time-frequency qudits and integrated nonlinear processes

simply use this processes as they are; we must be able to precisely control and
engineer them to meet our specific objectives.

For PDC, our primary goal is to gain full control over the modal structure of the
generated entanglement. This involves shaping the JSA to precisely define the
number of entangled modes and their relative weights, which are governed by the
Schmidt coefficients 4/, . Specifically, we aim to generate so-called maximally
entangled states, which are characterized by a set of equally weighted Schmidt
coefficients. Furthermore, we seek to programmatically control the number of
these modes to define the dimensionality of the entanglement.

For SFG, our objective is to build a high-dimensional state decoder. While a
standard SFG process (such as the one shown in figure 2.6) is typically multi-
mode, it maps a basis of overlapping input TMs to a set of output modes that
still overlap both in time and frequency, which does not solve the fundamental
detection challenge. A practical decoder must instead demultiplex these modes
by mapping each orthogonal input to an unambiguously distinguishable output.
An effective method to achieve this is to convert each input mode to a distinct,
non-overlapping output frequency. This requires engineering a transfer function
with multiple, independent conversion processes, each centered at a different
output frequency. This multi-channel operation is the working principle of the
high-dimensional decoder detailed in Chapter 4, and the key to its realization is
a phase-matching function with multiple, well-separated peaks.

We achieve the control required for both of these objectives by tailoring their char-
acteristic two-dimensional spectral functions: the JSA and the transfer function.
As their structure in egs. (2.2.18) and (2.2.16) reveals, this can be accomplished
in two ways: by engineering the phase-matching function to control momentum
conservation, and by shaping the pump spectrum to control energy conserva-
tion. In the this section, we provide an overview of methods for both dispersion
engineering and pump shaping, focusing particularly on the periodic poling
modulation and 4-f waveshapers central to our experiments. Given the relevance
of these methods for our work, this section will present a more technical and
detailed discussion than those preceding it.

2.3.1 Dispersion engineering

To understand how we can tailor nonlinear processes, we must first analyze the
behavior of the phase-matching function ®(Af3) in frequency space. Since the
frequency dependence of this function is determined by the phase mismatch
AB(wq, w,, ws) through ®(w;, w,, w3) := P(AB(w;, w,, w3)), we have two dis-
tinct approaches to control this function: either by changing how ¢ depends on
AP, or by modifying how Af depends on the interacting frequencies themselves.
We begin with this latter approach, which is known as dispersion engineering.
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We begin by analyzing the origin of the frequency dependence of the phase
mismatch. From the definition of the propagation constant in eq. (2.2.3),
Br = n(w) w/c, we see that this dependence is both direct through the w factor
and indirect through the effective refractive index n;(w;). The refractive index
is, in turn, determined by the waveguide material and geometry, as well as the
spatial and polarization modes of each field k [70, 71].

Parametric down-conversion
Let us study the PDC process first. For this process, the phase mismatch is

AﬁPDC(wpa W, wi) = ﬁp(wp) - ﬁs(a)s) - ﬂi(wi) . (2.3.1)

Generally, we will focus on a particular region of interest around the phase-
matched central frequencies (&g, @;, @,), with &, = @&, + &;. Defining the
frequency detunings as

Awg=w;— &y, Aw;=w;—o;, Aw,=Aw;+Aw;, (2.3.2)
we can perform a Taylor expansion of Af, around the central frequencies:
APppc(Awg, Aw;) ~ B (&,) — By(&,) — Bi(é;)

+| BU@) — BUE,) | Aw, + | B(@,) - B(3) ] Aw,

]‘ ¢ — ¢ — ( — " — "( —
+5L (B(@,) =B (@) Ac? + (B (@)~ B'(@)) Aw? +26; (@) Aw,Ac
+0(Aw?), (2.3.3)

where we have defined the first and second derivatives of the propagation constant
as

' d 1
Bi(@) = P — (2.3.49)
dwk Wp=Wy vg,k(wk)
e d? d 1 _
k a)k:(;k k g!k k wkza_)k

Here, v,,(w,) denotes the group velocity and GVD,(w;) the group-velocity
dispersion for each field.

Substituting the expansion in eq. (2.3.3) into the phase-matching function ®(Af)
reveals its explicit dependence on w, and w;. For instance, let us consider the
sinc-shaped phase-matching peak in eq. (2.2.13). This function is maximized
when Af = 0; this will always happen at (&, &;), because the first line in
eq. (2.3.3) vanishes if the central frequencies are perfectly phase-matched. For
small frequency detunings, i.e., in the linear regime, the phase-matching function
is maximized when

[ B1(@,) — BU@) | Aw, + [ B(&,)— B/(&) ]| Aw, =0. (2.3.6)
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|q)(ws: w1)|

Figure 2.7: Illustration of the phase-
matching amplitude |®(wy, w;)| for PDC
in frequency space. Uppc is the
phase-matching angle from eq. (2.3.7),
whereas Awpy, and Awpy; repre-
sent the horizontal and vertical phase-
matching widths in eq. (2.3.8).

This condition defines a straight line in the signal-idler frequency plane, whose
slope is determined by the inverse group velocities of the three fields:

(2.3.7)

. t (/s;,(cap) - /55’((55))

e = T Bo(@p) — Bl(@) )
This phase-matching angle defines all lines of constant A3 (and hence constant
®) in the signal-idler frequency plane. The name derives from the fact that,
in the linear regime, the phase-matching function looks like a line that passes
through (é,, &,) at an angle ¥, with respect to the horizontal axis (Figure 2.7).
In this regime, the phase-matching function also preserves its sinc-function
shape in frequency space, as shown in Figure 2.8. When extending the analysis
to a broader frequency range, the quadratic terms in eq. (2.3.3) introduce a
curvature to the constant-Af lines, hence the phase-matching function will curve
in frequency space, as shown in Figure 2.9.

Defining a phase-matching width in frequency space is trickier. In terms of Af,
we can define the width of ®(Af) as the distance 47/L between the zeroes®
of the sinc function in eq. (2.2.13). In the linear regime, any cut of the phase-
matching function in the signal-idler frequency plane (provided it is not angled at
Uppc) Will appear as a sinc function; however, the width of this sinc will depend
on the angle of the cut, and the units of this width will only be well-defined
along the horizontal or vertical direction. For this reason, the most meaningful
definition of phase-matching width in frequency space is obtained by cutting the

6A definition based on full width at half maximum (FWHM) is equally valid and corresponds
to approximately 44% of the zero-to-zero distance. Here, we prefer the zero-to-zero definition
because it remains consistent whether considering the phase-matching amplitude or intensity.
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plane parallel to the signal or idler axis, and calculating the distance between
the zeroes of the sinc as a function of w, or w;. This results in

2 -1
Ao, == BU@) ~ BB (2.3.8)
27| ., PN
Awpy; = T ﬂp(wp)_ﬂi(wi) > (2.3.9)

along the signal and idler axes, respectively. These quantities are illustrated in
Figure 2.7.

Sum-frequency generation

For SFG, the phase mismatch is

Aﬂ SFG(wpﬁ Wip, wout) = ﬂout(wout) - ﬂin(win) - ﬂp(wp) . (2310)

We can perform a similar expansion as above around the phase-matched frequen-
cies (@i, Doy, By = Doy — Oyy), but with two main differences. First, the energy
conservation condition changes sign because the pump now replaces one of the
lower-energy fields, so that Aw, = Aw,, — Aw;,. Second, the frequency repre-
sentation for SFG uses the input-output plane, expressing the explicit dependence
on the highest-energy field.

As a consequence, the phase-matching angle with respect to the horizontal (input)
axis is expressed by

ﬁp(a_)p)_ﬂin(a_)in) ) ' (2311)

Pere = arctan
(ﬁ;(ap)—ﬁgm(%)

The different role of the high- and low-frequency components in SFG and PDC
leads to a different phase-matching angle for identical fields. For instance, a
phase-matching angle of ¥z; = 0° in SFG corresponds to an angle of ¥, = —45°
in PDC for the same set of fields.

Similarly to the previous case, for SFG we can define the phase-matching width
in frequency space as

-1

; (2.3.12)

-1

, (2.3.13)

ﬂ;(c‘_)p) - ﬂi/n(a_)in)
ﬂ;(a_)p) - ﬂ;ut(a_)out)

obtained by cutting ®(w;,, w,,.) horizontally and vertically, respectively.

From the analysis in this subsection, we see that dispersion engineering provides
a powerful means to control the phase-matching shape in frequency space. This
can range from straightforward approaches, such as choosing a set of wavelengths
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Figure 2.8: Illustration of how the phase mismatch Af determines the phase-matching
function ® in frequency space for SFG in the linear regime. In all three examples, the
nonlinear waveguide has the same length L, resulting in the same width of ®(Af) (green
line; see eq. (2.2.13)). The phase-matching function ®(Af) is mapped to ®(w;y, Wout)
through the 3D plane representing AB(wj,, Woy)- In the linear regime, this plane is
flat, so the phase-matching function retains its sinc shape when it is projected onto the
input-output frequency plane. The linear dependence of A on w;, and w,,, determines
the orientation of the Af plane, and thus directly affects both the width and the angle
of the phase-matching function in frequency space.
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Figure 2.9: Tllustration of how the phase mismatch Af determines the phase-matching
function ¢ in frequency space for SFG beyond the linear regime. The represented
quantities are the same as in Figure 2.8, but here we are considering a wider frequency
range Aw, in which the linear approximation is no longer valid and AB(w;,, Weut)
becomes a curved surface. In these conditions, the sinc-shaped ®(Af) is mapped to
®(wjy,, weue) Which can be curved or distorted, depending on the shape of the Af surface.
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with specific dispersion properties, to more complex methods like using nanos-
tructures [72, 73] or modifying the geometry of strongly confining waveguides,
such as in thin-film lithium niobate platforms [74].

For the weakly guiding waveguides considered in this thesis, however, the waveg-
uide geometry does not significantly affect the dispersion properties. Further-
more, we will operate in a frequency range narrow enough to remain in the
linear regime of AB. Our use of dispersion engineering will therefore consist
primarily of selecting the appropriate material, frequencies, and polarizations
to achieve a desired phase-matching angle, as detailed in Chapters 3 and 4.
Nevertheless, one could in principle develop tailored processes by exploiting
the behavior of the phase mismatch beyond the linear approximation to realize
unique phase-matching profiles [75].

Now that we have studied how the phase-matching function depends on frequency
through Af, we will proceed to examine methods for modulating ¢ (AB) directly.
The following analysis will be general, applicable to both PDC and SFG, and its
conclusions can be mapped to frequency space using the relations introduced
here.

2.3.2 Quasi-phase-matching and poling modulation

To tailor the phase-matching function ®(Af3), and thus control which frequencies
efficiently interact, we can engineer the spatial dependence of the nonlinear
coupling coefficient along the waveguide. In fact, when we defined the phase-
matching function in eq. (2.2.13), we implicitly assumed a homogeneous non-
linear susceptibility along the z axis. Relaxing this assumption yields a more
general definition:

L

d(AB) = f d(z)e!?P* dz, (2.3.14)

0

where d(z) o< y@(z) describes the spatial dependence of the nonlinear coupling
coefficient [61]. This expression resembles a Fourier transform of d(z) from the
variable z to Af, except for the finite integration range corresponding to the
finite length of the waveguide. We can express this integration range through
the rectangle function I1, defined as

1, 0<x<1,
(x) = , (2.3.15)
0, otherwise.
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Figure 2.10: (a) Uniform nonlinearity profile d(z) = 1 over the waveguide length L for
birefringent phase-matching. (b) Corresponding phase-matching intensity |®(AB)|?,
normalized to its peak value, showing the characteristic width determined by the waveg-
uide length L.

This allows us to extend the integration range to infinity and obtain the Fourier
transform:

B(AB) = fn (%) d(2) e dz

-s{n(2)ac)

=1 [sinc(A—ﬂL)eiAgL]* iff{d(z)} , (2.3.16)
2 2T

where we have used the convolution theorem (A.1.3) together with the property
that the Fourier transform of a rectangle is a sinc function.

This relationship is the key to engineering the phase-matching function. By
designing different nonlinearity profiles d(z), we can directly shape its Fourier
transform and thus control ®(AfB). We will exploit this principle through a novel
technique introduced in this work, super-poling, which generates the multi-
peak phase-matching structure that enables our high-dimensional TM decoder
discussed in Chapter 4. To build a thorough understanding of this method and
its advantages, we will proceed step by step. We begin with the simplest case of
a uniform medium (birefringent phase-matching) and then introduce periodic
poling (quasi phase-matching) and its phase-reversal modulation. These steps
are necessary to fully appreciate the design and advantages of the super-poling
method compared to other techniques.

Birefringent phase-matching

If d(z) = 1 along the entire length L of the waveguide. the integration in
eq. (2.3.16) yields the familiar sinc profile centered at A = 0, as given in
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Figure 2.11: Phasor representation of
the birefringent phase-matching func-
tion ®(AB) as a function of propaga-
tion distance z, for a fixed nonzero
phase mismatch Af (i.e., for a non-
phase-matched set of frequencies). As
we move through the nonlinear waveg-
uide, that is, as z increases, the phase-
matching function generated in each
step (orange arrows) gradually accu-
mulates, moving along a circular tra-
jectory. The blue radial arrows indicate
the instantaneous amplitude and phase
of ®(AB) at discrete positions z [62].

3n/2

eqg. (2.2.13) and shown in Figure 2.10. We can gain further insight by analyzing
®(AB) through its phasor representation, which shows how the amplitude and
phase of the phase-matching function evolve along the nonlinear waveguide.
This type of analysis was presented in [62], focusing on the generated field; here,
however, we study ®(Af) directly to provide a more general perspective, equally
applicable to both SFG and PDC processes.

Figure 2.11 illustrates how such a plot is constructed for a fixed AB # 0 (i.e., for
a non-phase-matched set of frequencies). The phase-matching function starts at
position z = 0 with zero amplitude, in the center of the polar plot. As the position
z increases along the waveguide, local contributions to ®(Af) (orange arrows)
are generated with varying phases. These gradually accumulate, resulting in
a curved trajectory of the total phase-matching function ®(Af) (blue radial
arrows), which evolves in both amplitude and phase until it reaches its final
value at z = L. Varying Af leads to different phasor trajectories, ultimately
determining the overall profile of the phase-matching function.

Figure 2.17 shows phasor plots and the corresponding phase-matching profiles at
different points z along the waveguide, which extends from O to L. The perfectly
phase-matched case, corresponding to AB = 0, follows a straight line in the
phasor diagram, with each local contribution constructively adding in phase.
As a result, ®(AfB = 0) increases linearly in amplitude with z. For all other
nonzero Af, as z increases, ®(AB) moves along a circle of radius proportional to
(AB)7L, determined by the integral of the exponential e*“?*. Once the trajectory
completes a full loop and returns to the zero-amplitude origin, it continues
along the same circular path, leading to oscillations in the amplitude of ®(Af).
What this means for the nonlinear process is that as the waveguide length L
increases, the conversion efficiency for the perfectly phase-matched frequencies
grows quadratically, while the efficiency for neighboring, non-phase-matched
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frequencies oscillates. This behavior results in the familiar sinc-shaped profile,
which becomes progressively taller and narrower for longer interaction lengths.

Our primary method of dispersion engineering in weakly guiding waveguides, as
discussed, consists of selecting a material and a set of operating frequencies and
polarizations to achieve a desired phase-matching angle. This approach, however,
faces a fundamental constraint: in weakly guiding waveguides, the set of frequen-
cies that satisfy the birefringent phase-matching condition Af = 0 is essentially
determined by the material properties, with little influence from the waveguide
geometry. It is highly unlikely that these natural phase-matching frequencies will
coincide with the predetermined set we chose for our application. This practical
limitation motivates the technique we discuss next, quasi-phase-matching, which
provides the flexibility to achieve efficient momentum conservation at arbitrary
frequencies.

Quasi-phase-matching

By modifying the nonlinearity profile d(z), it is possible to allow nonlinear
interactions for frequency sets that do not naturally satisfy A = 0 in the selected
material. A widely employed technique is quasi-phase-matching (QPM), which
consists in periodically poling the material by inverting the orientation of a
crystal axis with a period A along the propagation direction [61]. This process
creates a structure where the sign of the nonlinear coefficient d(z) alternates
between +1 (in the natural orientation) and —1 (in the inverted regions) at
regular intervals, as shown in Figure 2.12(a). In weakly guiding waveguides and
bulk crystals, where dispersion is dominated by material properties, this spatial
modulation of the nonlinearity is the most powerful tool available for engineering
the phase-matching condition, aside from changing the material itself [76].

Periodic poling shapes d(z) into a square wave s(z/A), alternating between 1
and —1, which can be expanded as a Fourier series (see Appendix A.1):

Z 2 .2n
d(z) = (_): 2 eanE 2.3.1
(z)=s A Z iTcne ( 7)
nodd
with Fourier transform
2 2
FldE)} =21 Y ,—5(A/3——“n). (2.3.18)
~linn A
Substituting this into eq. (2.3.16), we obtain
2 2 LY ifap-2En)k
B(AB)=L » | — sinc((A[a’ - —”n) —) o (9= %n)3 , (2.3.19)
~inn A 2

which describes a “splitting” of the phase-matching peak into many sinc functions
centered at A = 2mn/A, as shown in Figure 2.12(b-c). The intensity of each
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Figure 2.12: (a) Periodic nonlinearity profile d(z) for quasi-phase-matching (QPM)
with poling period A. (b) Phase-matching intensity |®#(AB)|%, showing multiple peaks
corresponding to different QPM orders. (c) Zoomed-in view of the first-order peak
(n =1). The intensity is normalized to the peak of a birefringent process of the same
length.
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peak is a fraction (%) of the birefringent phase-matching function; therefore,
the peaks at n = +1 are dominant. The intensities of all peaks sum up to the
intensity of the birefringent phase-matching function.

The poling period A can be chosen to shift one of these phase-matching peaks to
our predefined central frequencies. Typically, one chooses n = %1 to obtain the
most efficient phase-matching peaks, although this still results in an intensity
lower by a factor 4/ 7 ~ 0.4 with respect to the original birefringent process. For
simplicity, we consider n = 1 and, if A is sufficiently small so that the separation
between sinc functions is large, we can assume the frequency range of interest
contains only one such peak. Defining a shifted phase mismatch

AR = AR — 2% (2.3.20)

so that AB'(&,, @,, @, + @,) = 0, the quasi-phase-matching function can then
be approximated by

2 AB'LY AL
(AR )~ L — sinc( P )e’ 2. (2.3.21)
i 2
This is simply the birefringent phase-matching function in eq. (2.2.13) shifted

to the desired central frequencies, with an overall lower efficiency indicated by
the pre-factor.
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Figure 2.18 shows the amplitude and phase of this function for different AB’ at
various points z along a periodically poled waveguide. The periodic poling inverts
the sign of the nonlinearity every time the line at AR’ =0 (i.e., AB = 271/A)
would go out of phase, resulting in a series of semi-circles that follow a straight
line. The ratio between the effective distance traveled at each semi-circle (i.e.,
its diameter) and the length of each semicircle is 27t, which corresponds exactly
to the amplitude loss experienced with respect to the birefringent process. The
overall behavior of the phasor lines at different A’ mimics the birefringent
case, with the only difference of this semi-circular micro-structure: the phase-
matching amplitude at AB’ = 0 constantly increases with z, whereas all other
non-quasi-phase-matched trajectories follow a circular orbit that passes through
the origin.

By modulating the periodic poling pattern, one can further tailor the phase-
matching function beyond just shifting it to different frequencies. This is par-
ticularly valuable in weakly guiding waveguides, where, in contrast to strongly
confining platforms like thin-film lithium niobate, the waveguide geometry has
a negligible effect on dispersion. Since the control is limited to arranging a
binary pattern of poled (+1) and unpoled (—1) domains, sophisticated tailoring
of ®(Ap) is achieved through more complex modulations of this pattern. For a
broad overview of such techniques, we refer to [77, 78]. In the following, we
will present two methods that enable the generation of multiple phase-matching
peaks. We will first review the established technique of phase reversal, which is
primarily used to generate a small number of equal-height peaks. We then intro-
duce the more versatile method of super-poling, which provides an adaptable
platform to generate an arbitrary number of peaks and is therefore central to
the design of our high-dimensional decoder discussed in Chapter 4.

Poling with phase reversal

One possible method for generating multiple phase-matching peaks is phase-
reversal poling [79]. This technique consists of modulating the standard QPM
poling pattern by superimposing a second, slower square wave s, with period
I' and duty cycle D € [0, 1], which defines the fraction of the period where the
modulation is +1. This results in the combined nonlinear profile d(z) shown in
Figure 2.13(a).

The resulting phase-matching function is calculated using the Fourier transform
method from Section 2.3.2, which involves calculating the Fourier transform of
d(z) and substituting it into eq. (2.3.16). The detailed, step-by-step derivation
of this process is presented in Appendix A.2. With the same approximations as
in the standard QPM case, we obtain the final phase-matching function

N 2 . ,_2m \ LY i(ap-Fm)3
d(AB) ~L — Zcm(D) smc((Aﬁ T m) 2)6 ,  (2.3.22)

m
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Figure 2.13: (a) Modulated nonlinearity profile d(z) for phase-reversal poling with
period I' and duty cycle D = 0.5. (b) Corresponding phase-matching intensity |®(Af)|2.
(c) Zoomed-in view of the first-order QPM peak, which is now split into two dominant
side peaks separated by a distance determined by I'. The intensity is normalized to the
peak of a standard QPM process of the same length.

illustrated in Figure 2.13(b-c). This expression describes a train of sinc-shaped
peaks, each identical to a standard QPM peak, but separated in phase mismatch
by integer multiples of 27t /T'. The relative amplitude and phase of each peak are
determined by a set of complex coefficients c,,(D), given by

2D—1, m=0,
cu(D) =1 1—ei2mmD 40 (2.3.23)
—_ m .
imm

As shown in Figure 2.14, the duty cycle D controls the relative heights of the peaks.
For instance, a symmetric modulation with D = 0.5 suppresses the central peak
(m = 0) and creates the two-peak structure shown in Figure 2.14(a). Another
noteworthy case is D ~ 0.265, which results in three dominant peaks of equal
height, as shown in Figure 2.14(b).

The phasor plot in Figure 2.19 for the D = 0.5 case provides further insight. The
periodic phase reversal forces the phasor for the central peak (AB’ = 0) to travel
back and forth, preventing any net accumulation. Simultaneously, it corrects the
phase evolution for the two main side peaks (AB’ = £27/T) just as they would
naturally dephase, ensuring they grow constructively along the entire waveguide
length.
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Figure 2.14: Left: illustration showing the stacked heights |cm(D)|2 of the phase-
matching peaks from phase-reversal poling as a function of the duty cycle D, see
eq. (2.3.23). For any duty cycle D, the sum of these coefficients for all orders m is
always 1, indicating that the total phase-matching efficiency of a nonlinear waveguide
with a phase-reversal poled structure is the same as a standard periodically poled waveg-
uide. (@) The height of the central peak (gray) vanishes for D = 0.5, giving rise to a
two-peak phase-matching structure (studied in more details in Figure 2.19). (b) For
D ~ 0.265 we find |c_;|* = |co|* = |¢;|?, giving rise to a three-peak phase-matching
structure. At the edges, where D =0 or D = 1, we recover a single QPM peak.

However, extending this approach to generate a custom number of identical peaks
is nontrivial. While three- and four-peak structures have been demonstrated
experimentally [79, 80], creating more sophisticated patterns generally requires
numerical optimization of the domain direction [81] or the domain phase [82].
Such methods are more complex and are not guaranteed to converge to the exact
desired solution.

Super-poling

To achieve more intuitive and scalable control over the multi-peak structure, we
developed a method called super-poling. This technique consists in creating a
periodic superstructure of poled and unpoled regions, as shown in Figure 2.15(a),
in direct analogy to an optical diffraction grating. Each poled segment of length
[ acts as a “slit”, and the interference between segments separated by the super-
poling period T creates the desired multi-peak structure.

The full mathematical derivation, which follows the Fourier transform method,
is presented in Appendix A.3. Conceptually, the Fourier transform of the super-
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Figure 2.15: (a) Super-poled nonlinearity profile d(z), highlighting the unit active
length [ and the super-poling period T'. (b) Corresponding phase-matching intensity
|®(AB)I2. (¢) Zoomed-in view of the first-order QPM peak, now split into a comb of
peaks with a separation determined by I'. The red dashed line shows the modulating
sinc-squared envelope, whose width is determined by .

poling nonlinearity profile d(z) contains three components. The first is a peak
at AB =0, corresponding to the underlying birefringent phase-matching. The
second is a Dirac comb of centered at A = 0 that arises from the periodic repe-
tition of the unpoled regions. The final and most important term is another Dirac
comb, centered around the original QPM peak (A’ = 0), which is generated
by the interference of the poled regions and gives rise to the desired multi-peak
structure.

The resulting phase-matching function in the region near the first-order QPM
peak is

B(ap)~L 2 >en (%) sinc((Aﬁ’ _ 2?“,,1) E) (w2

2

2i 1 AB'LY A8 2 LY i(ap—2Em)s
~L 2L " sinc b el 2 Zsinc((Aﬁ’——nm) —)e(Aﬁ r )2,
n 2 r 2

" (2.3.24)

where, in the last step, we assumed a slowly-varying envelope (I < L). As
illustrated in Figure 2.15(b-c), this expression describes a comb of sinc-shaped
peaks of identical width 27t /L, separated by 27t /T'. The heights of these peaks
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are modulated by a broader sinc envelope of width 27t/I. The relative amplitudes
of the peaks are given by the coefficients

2mm 1
Cm (L) = Asinc(znmi)el T 2, (2.3.25)
r r r 2

The phasor plot in Figure 2.20 provides further physical insight into this pro-
cess. Within the poled regions, the phase-matching function evolves as in the
standard QPM case. In the unpoled regions, however, the evolution is governed
by birefringent phase-matching, causing the phasors to trace small circles and
thereby accumulate phase without a significant change in amplitude. This peri-
odic “pausing” of the QPM evolution leads to the interference that generates the
multiple phase-matching peaks.

This structure provides a highly intuitive design principle, as illustrated in Fig-
ure 2.16. The number of significant phase-matching peaks is controlled directly
by the poled fraction [/T’; a smaller fraction creates a wider sinc envelope that
encompasses more peaks. For example, a poled fraction of [ /T = 0.5 results in
three dominant peaks, whereas a smaller fraction of [ /T = 0.2 creates a wider
envelope that encompasses five significant peaks, as shown in Figures 2.16(a)
and (b), respectively. This direct, predictable control makes super-poling a
straightforward and powerful technique for engineering multi-channel devices.

Gaussian phase-matching profile

A final note is that, although the sinc function is the natural outcome of a
rectangular spatial function, it is sometimes desirable to achieve a Gaussian
profile [83]. This can be realized by “softening” the rectangular function, for
example, by reducing the efficiency near the edges through adjustments of poling
periods [81], duty cycles [84], or domain orientation [85, 86]. In practice, since
these profiles may be technically challenging to fabricate, spectral filtering is
also often used to suppress sinc side lobes, effectively limiting their effects and
bringing the nonlinear process closer to what one would obtain using a Gaussian
phase-matching profile. In the experimental demonstrations discussed in the
next chapters, we will often make use of the latter approach.
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Figure 2.16: Left: illustration showing the stacked heights |c,,(I/T)|* of the phase-
matching peaks from super-poling as a function of the total poled fraction [/T, see
eq. (2.3.25). For a fixed poled fraction [ /T, the total phase-matching efficiency (summed
over all peaks) is a fraction [ /T of that of a fully periodically poled waveguide. The
remaining efficiency (cross-hatched area) is “lost” to the birefringent phase-matching due
to the unpoled regions. The central peak at m = 0 (light gray) is always dominant since
it is centered on the sinc envelope. As the poled fraction decreases, the sinc envelope
becomes larger and incorporates more peaks: (a) for [ /T = 0.5, we have dominant peaks
at m = 0,=%1, whereas (b) for /T = 0.2 we find 5 peaks within the FWHM of the sinc
envelope. For the edge cases where the poled fraction is O or 1, we recover respectively
the birefringent phase-matching or QPM.
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Figure 2.17: Top: Nonlinearity profile d(z) of birefringent phase-matching, with a
constant value of 1. (a-d): Evolution of the phase-matching function ®(Af) at different
positions z along the waveguide (see eq. (2.2.13)). In each subfigure, the top panel
shows a phasor plot representing the amplitude and phase of ®(Af) for five different
values of A3, while the bottom panel shows the amplitude of ®(Af) over a continuous
range of Af (in units of 27t/L). The vertical axis in the lower plot corresponds to the

radial coordinate in the phasor plot.
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Figure 2.18: Top: Nonlinearity profile d(z) of quasi-phase-matching (QPM). (a-d):
Evolution of the phase-matching function ®(AfB’) at different positions z along the
waveguide (see eq. (2.3.19)). In each subfigure, the top panel shows a phasor plot
representing the amplitude and phase of ®(AB’) for five different values of AB’, while
the bottom panel displays the amplitude of ®(AB’) over a continuous range of AB’ (in
units of 27t/L). Note that the y-axis in the bottom plot corresponds to the radial axis of
the scalar plot. The vertical axis in the lower plot corresponds to the radial coordinate
in the phasor plot. 59
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Figure 2.19: Top: Nonlinearity profile d(z) of QPM with a phase-reversal wave of period
I and duty cycle D = 0.5. (a—d): Evolution of the phase-matching function ®(Af’) at
different positions z along the waveguide (see eq. (2.3.22)). In each subfigure, the
top panel shows a phasor plot representing the amplitude and phase of ®(AB") for
five different values of AB’, while the bottom panel displays the amplitude of ®(AfB’)
over a continuous range of Af’ (in units of 27t/L). The vertical axis in the lower plot
corresponds to the radial coordinate in the phasor plot.
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Figure 2.20: Top: Nonlinearity profile d(z) of QPM with super-poling modulation.
(a-d): Evolution of the phase-matching function ®(Ap’) at different positions z along
the waveguide (see eq. (2.3.24)). In each subfigure, the top panel shows a phasor plot
representing the amplitude and phase of ®(AB’) for five different values of AB’, while
the bottom panel displays the amplitude of ®(AB’) over a continuous range of AB’ (in
units of 27t/L). The vertical axis in the lower plot corresponds to the radial coordinate

in the phasor plot.
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Chapter 2. Time-frequency qudits and integrated nonlinear processes

2.3.3 Spectral shaping of the pump

Shaping the pump spectrum means controlling its frequency-dependent ampli-
tude and phase—that is, its complex spectral profile—thereby modifying the
energy conservation condition in the nonlinear process. At first, pump shaping
may appear less powerful than dispersion engineering, as the angle of the pump
function a in frequency space is fixed by the sign of the energy conservation
(Figure 2.21). However, dispersion engineering properties are fixed once the
waveguide is fabricated; in contrast, the pump spectrum can be adjusted dynam-
ically, allowing one to modify the generated PDC state or the TM beamsplitter
characteristics in real time. Spectral shaping can be implemented via differ-
ent methods, depending on the pump pulse duration and on the application
requirements.

Amplitude-only modulation is typically simpler and can be achieved through
spectral filtering. For instance, applying a narrowband tunable filter to a broad-
band pump spectrum allows one to select specific spectral regions in which the
PDC state can be generated (Figure 2.22(a-b)). As a further example, using
a bandpass filter to modify the pump bandwidth alters the modal structure of
the generated PDC state (Figure 2.22(c)). Some laser sources allow one to
achieve these same effects by tuning the pump wavelength or adjusting the pulse
duration, which changes the spectral width.

Full spectral shaping, including phase modulation, enables higher levels of control
over the nonlinear process. For instance, when combined with a diagonal phase-
matching function, the pump shape can directly select the dimensionality of the
entangled PDC state (Figure 2.22(d)). This capability will be explored in detail
in Chapter 3, where we use it to generate high-dimensional TM-entangled states
with arbitrary dimensions. However, this increased flexibility comes with added
experimental complexity, requiring more sophisticated setups than those needed
for simple filtering.

In the narrowband pulsed regime (nanosecond-scale durations), pump shaping
is typically implemented using electro-optic modulators [87, 88]. These devices
apply a time-dependent modulation which, through a Fourier transform, maps
to amplitude and phase shaping in the frequency domain.

For ultrafast pulses, a diffraction grating combined with a spatial light modu-
lator (SLM) is more appropriate. This type of waveshaper was employed in all
experimental demonstrations in the following chapters, using pulse durations as
short as 150 fs. We describe its operation in detail below.

SLM-based 4-f waveshaper

A detailed overview of 4-f pulse shapers can be found in [89, 90]. Here, we focus
on first-order shaping using a 2D liquid crystal SLM, as detailed in [91, 92].
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Figure 2.21: Illustration of a Gaussian-shaped pump function for PDC (left) and SFG
(right). The angle is fixed by the energy conservation condition of the process.

The linear 4-f waveshaper consists of a diffraction grating, a cylindrical lens, a
transmissive SLM, and the same mirrored elements for recombination, with all
components spaced by the lens focal length f. We use a folded configuration
(shown in Figure 2.23) which replaces the lens with a cylindrical mirror and the
transmissive SLM with a reflective one. Light is reflected back from the SLM,
retracing its path through the mirror and grating. This setup reduces the number
of components while maintaining the 4-f geometry.

The basic operating principle of this waveshaper is the following:

1. The diffraction grating spatially separates frequency components of the
input pulse by angle:

d (sin6; +sin 0] (w)) = mA = 2mme , (2.3.26)
w

where d is the grating spacing, 6, the incidence angle, m the diffraction
order, and c the speed of light. We use a blazed grating optimized for first-
order diffraction (m = 1), neglecting higher orders. Thus, each frequency
w is deflected at an angle:

0,;(w) = arcsin(% —sin 91). (2.3.27)
wd

2. The cylindrical mirror, placed at a distance f from the grating, performs a
Fourier transform along the horizontal axis. It maps angles to positions in
the Fourier plane, at distance f:

2
x(w)~ f -sinOy(w) = f - 225 (2.3.28)
wd
so that frequency components at distance 6w are separated by
2mc _ 2mc
5x(w)%—fw6w:—K6w, K= i (2.3.29)
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Figure 2.22: Examples of pump spectral shaping combined with a Gaussian-shaped
phase-matching function at 45°. The effects of pump shaping on the JSA are shown
through a Schmidt decomposition. (a-b) Tuning the pump central frequency shifts the
signal and idler spectra. (¢) Changing the pump bandwidth affects the modal structure
of the PDC state, e.g., generating single-mode PDC state. (d) Shaping the pump as a
first-order HG function generates a two-dimensional TM-entangled PDC state.
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Figure 2.23: Left: 4-f waveshaper in a folded geometry. Right: two examples of ampli-
tude and phase modulation, and corresponding SLM phase mask below (see eq. (2.3.36)).
The first example shows how the 7 phase jump between the two lobes of a first-order
HG function is realized by vertically shifting the two parts of the mask relative to each
other. The second examples shows a quadratic spectral phase (chirp), applied by grad-
ually shifting the vertical alignment of the phase mask. In both cases, the amplitude
modulation vanishes at the edges, where the grating lines are no longer visible.

Simultaneously, the cylindrical mirror also performs a Fourier transform
on the spatial distribution of each frequency component. If the input beam
has a Gaussian spatial profile with FWHM Ax;,, related to the waist w,
by Ax;, = v2In2w,,, the horizontal spot size (FWHM) of each frequency

component in the Fourier plane is

cos 6, 2¢cf
cos 0,(w) wAX;,

Axy=2In2 (2.3.30)

For narrow spectral ranges, we can approximate w ~ w, and treat Ax, as
constant.

3. The SLM, placed in the Fourier plane of the mirror, displays a phase-only
mask ¢(x,y) that modifies the spatial shape of the beam. Due to the
frequency-to-space mapping by the 4-f geometry, this also modifies the
spectrum. The beam then travels back through the folded setup, where
the lens applies an inverse Fourier transform, recombining the different
frequency components in the original spatial distribution.

We use a reflective 2D liquid crystal SLM composed of a two-dimensional pixel
array. Each pixel acts as an independent waveplate controlled by a voltage which
orients the transparent liquid crystal molecules, changing the local refractive
index. A reflective coating behind the liquid crystal sends the pulse back through
the liquid crystal and out of the SLM. By loading a mask of tailored voltages
across the pixel array, the SLM imprints an arbitrary phase shift in each pixel.
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Unlike the linear SLMs in [89, 90], a 2D SLM enables amplitude and phase
shaping through phase-only spatial modulation. For pulse shaping, we use a
phase mask which corresponds to a blazed grating with horizontal lines:

pl,y)=n+2ma(x)Sp(y + b(x)P), (2.3.31)

where S; is a sawtooth function that increases from —1/2 to 1/2 with period
P, a(x) € [0,1] is the blazing angle coefficient, and b(x) € [0, 1) is a phase shift
applied to Sp.

Each column of pixels acts as an independent diffraction grating with a con-
stant diffraction angle determined by the period P. We focus on the first-order
diffraction, which is modulated in amplitude and phase by the coefficient [91]

H(x)=sinc[7 (1 —a(x))]e 127 (2.3.32)

Since frequency w maps to position x(w), the modulation applied to the field
becomes:

A(w)=|H(x(w))| €[0,1], (2.3.33)
¢(w)=argH(x(w)) €[0,27), (2.3.34)

yielding an output field:
E(w) = Ey(w) - A(w)e!?), (2.3.35)

We can invert eq. (2.3.32) to compute the phase mask (2.3.31) required for a
desired amplitude A(w) and phase ¢ (w) modulation:

e(y,w)=mn+2n (1—M) Sp (y—qb(co)i) . (2.3.36)
T 2r

From this expression, we can see that the amplitude A(w) is directly mapped
to the efficiency of the blazed grating. If A(w) = 1, then the grating phase will
change by exactly 27t every period, optimizing the blazed grating for the first
diffraction order. Contrarily, if A(w) =0, the phase will be uniform and the
SLM will act as a mirror, so that the amplitude of the first diffraction order will
vanish. The phase ¢ (w) is instead directly mapped to a phase shift of the vertical
grating. Additionally, having defined the sawtooth function centered around a
mean value of 0 prevents an additional amplitude-dependent phase shift, which
would otherwise have to be corrected.

Spectral resolution and limitations

The spectral resolution Aw,,, of the SLM-based waveshaper determines the
narrowest spectral feature that can be independently shaped. This resolution
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is limited by the smallest spatial feature which can be addressed in the Fourier
plane: either the spot size Ax, of each frequency component, or the SLM pixel
width Ax,.

As shown in Eq. (2.3.28), the spatial position x in the Fourier plane is a function
of frequency w. The relationship between a spatial separation 6x and the
corresponding frequency separation 6w is given by the inverse of the spatial
dispersion K from Eq. (2.3.29): 6w = 6x/K. Using this, we can define the
spectral limits imposed by the optical spot size and the pixel size:

Axo 2In2  cosf  dw,

Aw, = R , 2.3.37

0 K T cosB;(wy) Axy, ( )

A Ax,, — Ax,wid (23.38)
Wpy =~ = onef 3.

The effective spectral resolution Aw, is then limited by the larger of these two
values:
AW, = max{AwO, Aa)px} . (2.3.39)

The optimal working regime is achieved when Ax, < Ax,,, meaning the spot size
of each frequency component in the Fourier plane is comparable to or slightly
smaller than the SLM pixel size. If the optical spot size Ax, is significantly
larger than the pixel size Ax,, (Ax,> Ax,,), the mask applied by individual
pixels cannot be fully resolved, and the effective resolution is limited by the
larger spot size. Conversely, if the spot size is much smaller than the pixel size
(Axy < Axpy), the spectrum is undersampled by the SLM pixels, which can lead
to the generation of replica waveforms in the time domain at delays £27/Aw,,
[93].

It is also important to consider the total addressable bandwidth Aw,,. This is
limited by the physical width of the SLM display, Axg y:

AXx AX o w2 d
Awy = KSLM = ;;MC fo : (2.3.40)

The fact that both the total range Aw,,, and the pixel resolution Aw,, scale
with the same parameters introduces a trade-off between these two quantities.
For a given SLM with a fixed number of pixels N,,, = Axgy/ Axpx7, parameters
(like focal length f or grating spacing d) adjusted to improve (decrease) Aw,,
will simultaneously decrease the bandwidth Aw,,, (since Aw,,; = Ny - Awy).
This means one often chooses between resolving very fine spectral details over a
narrower range, or shaping coarser features over a broader spectral range. These
spectral characteristics directly impact temporal shaping: the smallest temporal
feature is T,;, ~ 27/ Aw,,, while the maximum temporal shaping window is

min
Tmax R 27-E/Aa)res'

"Here and in the rest of this section, we neglect the empty space between the SLM pixels.
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Table 2.1: Impact of 4-f line parameters on spectral resolution and range.

Parameter Effects Limitations Optimal strategy
Limited b .

. tite@ by @o, Smallest practical
Grating Awy T angles, d (maximize
spacing d dT= Awy T manufacturing, lines/mm)

Awy T efficiency. '
Input beam Maximize Ax;,
wiI::'lth Ax, Ax, T= Awy Must fit optics. within practical

limits (~cm).

Largest practical

;ocal length f1o Aw,y | :g;i:lze o< f; f considering
Aw | ¥ Aa)px VS AW,y
Diffraction Optimize for
Grating c0s6; efficiency (blaze); efficiency;
angle 6, sstutar) | > A0 T beam clipping; minimize
10;(wy)] <90°. cos 6;/ cos 0;(w,).
SLM pixel SLM technology;  Smaller Ax,
width Axpy Axp T= Acop f cost. (and more pixels).
SLM display SLM technology;  Larger Axg,, for
width Axgy, Axsi 1= Acror 1 cost. wider bandwidth.

The effect of these and more design parameters on the spectral resolution and
range are summarized in Table 2.1. A smaller grating spacing d (more lines
per mm) generally improves spectral separation by increasing the dispersion K
in eq. (2.3.29), but its minimum value is limited (at a fixed w,) because the
diffraction angle 6,;(w) in eq. (2.3.27) cannot be above 90°. A larger input beam
width Ax;, reduces the spot size Ax,, thus improving Aw,; however, the input
beam size is practically limited by the size of the optical components, particularly
the height of the SLM and the width of the grating, which is generally strongly
tilted. In fact, a larger incidence angle 6., can provide an additional benefit to
Aw, through the cosine ratio term cos 6,/ cos 6,(w,), effectively magnifying the
beam horizontally before the Fourier transform if cos 6; > cos 6,;(w,). A larger
focal length f significantly improves the pixelation limit Aw,, by spreading the
spectrum over more pixels, but it also decreases the total addressable bandwidth
Aw,,, and requires a longer physical setup, which leads to decreased stability.

Amplitude and phase compensation

Even with ideal resolution, achieving the desired spectral shape requires account-
ing for the initial spectral characteristics of the input pulse: if the input pulse has a
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Figure 2.24: Example of amplitude shaping by directly applying the desired amplitude
profile (left) and by pre-compensating for the original spectral shape (right).

non-uniform intrinsic spectral amplitude and phase profile Eq(w) = Ay(c)e!?o(«),
this must be compensated for with the shaping mask.

The initial spectrum A,(w) can be easily measured with a spectrometer and
compensated for by applying amplitude shaping as A(w) o< Agger(@w)/Ag(w)
(Figure 2.24). Since the SLM can only attenuate the field, not amplify it, for
each frequency we are limited to A(w) < 1 < Ape(w) < Ag(w). This means
that we must choose the proportionality constant appropriately, because the
stronger parts of the field will generally be attenuated to match the weaker parts.
In practice, to avoid excessively attenuating the field, it can be useful to define
a cutoff amplitude below which the input amplitude will not be compensated
for. This type of correction can then be tailored on a case-by-case basis, e.g., by
renormalizing the applied modulation.

Similarly, after characterizing the initial phase ¢,(w), the desired shap-
ing phase ¢(w) would be obtained by applying a shaping phase
() = Prarger(@w) — Po(w). However, phase characterization can be significantly
more challenging than amplitude measurements, often requiring sophisticated
devices (see Chapter 7). For this reason, depending on the application, it is often
more practical to assume a polynomial spectral phase (up to the second or third
order) and attempt to compensate for it by iteratively changing the applied phase
coefficients and observing their effects. Indeed, a linear or quadratic spectral
phase often has a predictable impact on the experiment: the Fourier relation
between time and frequency implies that a linear spectral phase ¢ (w) = aw
corresponds to a simple time shift of the pulse by a, whereas a quadratic spectral
phase ¢ (w) = w? corresponds to a temporal chirp, where different frequency
components arrive at different times, stretching or compressing the pulse. Higher-
order phase terms lead to more complex temporal effects along the same lines.
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Ultimately, achieving both high shaping resolution and a wide frequency band-
width demands a well-designed 4-f waveshaper with state-of-the art components.
This typically involves a high-definition SLM and an optical setup with long focal
lengths to spread the spectrum effectively. The practical implementation of such
a system requires precise optical alignment and robust stability of all components.
Consequently, the pulse shaping system is often one of the most complex and
critical elements to optimize and maintain in ultrafast quantum experiments.

2.4 Chapter conclusion

This chapter has provided an overview of some techniques for the practical im-
plementation of high-dimensional quantum communication protocols, encoding
information in the time-frequency domain of photons. We have discussed high-
dimensional TM bases, and we have explored integrated nonlinear processes,
SFG and PDC, that serve as the key building blocks for a quantum information
framework built on time-frequency qudits. We have studied how dispersion engi-
neering and pump spectral shaping allow for precise control of these nonlinear
interactions, enabling the generation of tailored high-dimensional entangled
states and the implementation of specific operations. In the remainder of the
thesis, we will make use of the principles and tools detailed in this chapter to
design, implement, and demonstrate devices for the generation and detection of
TM qudits.
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Entanglement is a uniquely quantum phenomenon, creating correlations between
systems stronger than any classical equivalent. For quantum communication and
information processing, sources of entangled photons are indispensable. The
previous chapter established the techniques needed to control nonlinear optical
processes. We now apply those principles to address the first major experimental
component of our framework: the development of a source that, for the first time,
can generate high-dimensional entangled states with programmable control over
the modal structure of their entanglement in the time-frequency domain. In this
chapter, we present the realization of such a source, which is a critical step in
building a versatile framework for time-frequency qudits.

The experimental results and methodologies presented in this chapter are based on
the following publication:

[Optica Quantum 2(5), 339-345 (2024)] L. Serino’, W. Ridder", A. Bhattacharjee,
J. Gil-Lopez, B. Brecht, and C. Silberhorn, “Orchestrating time and color: a
programmable source of high-dimensional entanglement”, Optica Quantum 2(5),
339-345 (2024). DOI: 10.1364/0pticaq.532334

T These authors contributed equally to the work.
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Chapter 3. Generating time-frequency qudits

3.1 High-dimensional entanglement with temporal
modes

As we have established in previous chapters, the practical implementation of a
quantum communication framework based on TMs requires tools to generate,
manipulate, and detect high-dimensional TM states [16]. While significant
progress has been made in manipulating and detecting single-photon TMs [48,
50, 94-97], the realization of an optimal source of high-dimensional entangled
states has remained an open challenge.

An ideal source must satisfy two main criteria: it must generate bi-photon states
with a well-defined dimensionality, and it must allow this dimensionality to be
programmatically reconfigured [16]. The first ensures that the states live in a
finite Hilbert space, while the second provides the flexibility to adapt to different
protocols and receivers, such as in high-dimensional device-independent quantum
key distribution [5]. However, previous implementations of high-dimensional TM
sources typically met only one of these requirements. For instance, sources based
on dispersion-engineered PDC could produce high-dimensional entangled states,
but their modal structure was permanently fixed during fabrication [45, 98,
99]. While some tunable sources using materials like gas-filled photonic crystal
fibers offered dimensionality control, they lacked the precision to guarantee
a well-defined modal structure [100]. Other reconfigurable schemes based on
post-generation spectral filtering of broadband entanglement using pulse shapers
[44, 101], Hong-Ou-Mandel interference [46], or Fabry-Pérot cavities [42, 43,
47, 102] could be scaled to higher dimensions, but the resulting states were often
not maximally entangled due to residual frequency correlations or uneven mode
populations [103]. Furthermore, this filtering approach would significantly limit
the heralding efficiency, which is critical for many practical applications [104,
105].

The work presented in this chapter overcomes these trade-offs by demonstrating a
programmable source of high-dimensional, maximally entangled TM states. Our
approach uses a spectrally shaped pump pulse to drive an initially decorrelated
PDC process. We show that this method allows us to programmatically select
the dimensionality of the generated state, from a fully decorrelated state up to
a 20-dimensional entangled state, while maintaining maximal entanglement.
This source represents the first cornerstone of our work, providing an essential
resource for a high-dimensional quantum communication framework based on
time-frequency qudits.

3.1.1 Process engineering

In the experiment presented here, we generate entangled photon pairs via PDC,
tailored using the dispersion engineering and pump shaping techniques described
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in the previous chapter. Specifically, we use a type-II PDC process, in which
the signal and idler photons are generated with orthogonal polarizations, in a
periodically poled KTP (ppKTP) waveguide. We choose this material because it
offers symmetric group-velocity matching at telecom wavelengths, meaning that
the group velocities of signal and idler are symmetrically displaced around the
pump velocity, leading to a phase-matching angle Uy = 45° from eq. (2.3.7).
We choose a poled length that yields a phase-matching function slightly narrower
than the total pump bandwidth. The pump width can then be fine-tuned to exactly
match the phase-matching width. This is the starting point of the experiment:
if the pump is Gaussian-shaped and we filter out the side lobes of the phase-
matching function, we obtain a decorrelated JSA corresponding to d = 1.

The key to achieving programmable entanglement lies in controlling the spectral
shape of the pump pulse using an SLM-based 4-f pulse shaper, which we have
addressed in Section 2.3.3. The SLM display can be updated in approximately
200 ms, allowing one to change the JSA “on the fly” and arbitrarily. By preparing
the pump spectrum in specific shapes, the so-called cosine-kernel (CK) functions,
we can selectively populate and control the weight of different Schmidt modes in
the two-photon JSA, thereby dictating the dimensionality of the entanglement.

CK functions are Gaussian spectra modulated by a sum of cosine functions,
which in the time domain corresponds to a sequence of ultrafast, equally-spaced
Gaussian time bins. By shaping the pump into an nth-order CK function, we
generate a bi-photon PDC state entangled in n + 1 of these time bins. However,
since the bins are separated by only picoseconds, they are indistinguishable in
time by conventional single-photon detectors. A significant advantage of this
method is that higher-order CK modes are contained within the same spectral
bandwidth, meaning the dimensionality can be increased without requiring a
broader pump spectrum. However, higher-order modes exhibit progressively
finer spectral features, which require higher resolution from the pulse shaper.
This shaping resolution is ultimately the main experimental limitation on the
maximum achievable dimensionality of the entangled state.

3.1.2 Quantifying entanglement dimensionality

Creating high-dimensional entangled states is only one part of the task; verifying
and quantifying the dimensionality of this entanglement is equally crucial. This
ensures that our source performs as intended and that the generated states are
suitable for their targeted applications. To confirm that our source produces
entanglement of the intended dimensionality, we employ two primary character-
ization methods.
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Schmidt decomposition

As we have seen in section 2.2.3, the modal structure of the two-photon state
generated by PDC can be studied by performing a Schmidt decomposition on its
JSA F(wy, w;) [69]. This decomposition expresses the JSA in the form

Flw, @) =D v file)gde),
k

as seen in eq. (2.2.19). Here, the Schmidt coefficients 4/A; determine the
weight A, of each Schmidt mode, which is formed by the pairwise product of the
orthonormal signal and idler basis functions {f,(w,)} and {g;(w;)}, respectively.

A straightforward approach to quantifying the dimensionality of this entangled
state might be to simply “count” modes through the number of non-zero Schmidt
coefficients, also known as the Schmidt rank. However, for typical PDC processes,
the Schmidt coefficient distribution exhibits an infinite tail of very small, yet
non-zero, A, values (see, e.g., Figure 2.5). In such cases, the Schmidt rank is
infinite, making it neither a practical nor insightful measure of entanglement.

A more informative metric for the dimensionality of an entangled state is the

Schmidt number K, given by
1

2 A

which measures the effective number of modes that contribute to the entanglement.
The minimum possible Schmidt number is K = 1, which indicates a decorrelated
two-photon state. If the Schmidt coefficient distribution is uniform (i.e., a finite
number of A, are equal, and all others are zero), then K equals the Schmidt rank,
and the state is considered maximally entangled in that dimension. In particular,
an infinite number of equally weighted coefficients will lead to K — co.

K (3.1.1)

Beyond dimensionality, the full Schmidt decomposition reveals the entire modal
structure of the entanglement, including the spectral shapes f,(w,) and g;(w;).
However, experimentally obtaining this complete information is challenging as it
requires reconstructing the full complex JSA, including its spectral phase, which
can be significantly resource-demanding.

In Optica Quantum 2(5), 339-345 (2024), we adopted a practical approach
to gain insight into the modal structure without a direct phase measurement
of the two-photon state itself. We measured the joint spectral intensity (JSI),
|F(w,, w;)|?, using time-of-flight spectrographs. To reconstruct an effective JSA,
we made the assumption that the spectral phase of the pump field, as programmed
by the pulse shaper, is coherently transferred to the JSA via energy conservation
(w, = w; + w,;). Therefore, in post-processing, we combined the square root of
the measured JSI with the programmed pump phase to approximate the complex
JSA, which we then used for the Schmidt decomposition. While this method offers
an accessible way to verify the programmability of our source, it is not rigorous
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Figure 3.1: Photon number distributions p(n, u) from eq. (3.1.4) for a mean photon
number y = 10 (left) and u = 0.1 (right). As the Schmidt number K increases, the
distribution shifts from thermal (K = 1) to Poissonian (K — o0). At low mean photon
numbers, this shift results in a slight change of the heights of p(1) and p(2).

because it neglects potential phase distortions, hence it must be complemented
with a more direct quantification of the entanglement dimensionality.

Second-order correlation function g measurements

Another method to probe the dimensionality of our PDC source involves mea-
suring the second-order correlation function, g?(0). For ultrafast pulsed PDC
sources, where the pulse duration is much shorter than the detection window,
the g®(0) measurement effectively integrates over the entire pulse. In this case,
its interpretation gives us insight on the modal structure of the PDC state by
sampling its photon number statistics.

In the low-gain regime, each Schmidt mode acts as an independent thermal
emitter. For a single-mode PDC process (K = 1) with mean photon number u,
the probability p(n, u) of generating n photon pairs in a pulse is described by a
thermal distribution

U

1 n
w)=—(-L . 3.1.2
pthermal(n nu) ‘LL+ 1 (‘U,+ 1) ( )

In a multi-mode PDC process, the overall photon number distribution is given by

the convolution of the distributions from each mode. In particular, according to

the central limit theorem, an infinite number of equally weighted modes leads

to a Poissonian distribution

u'e™
n!

pPoisson(n: M) = (313)

Between these two extremes, with a finite number of modes or unequal Schmidt
weights, computing the convolution can be difficult. This computation can be
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made easier by probability generating functions (PGFs) [106, 107]: the values of
p(n) are the power-series coefficients of the PGF G(s) = Z:io p(n)s™; therefore,
knowing the PFG, they can be calculated as p(n) = % %G(s)L:O. The PGF of a
thermal distribution is Gye;ma(s) = [1+ u(1—s)]~!, whereas that of a Poissonian
is Gpyisson(s) = e 17, The convolution of different distributions can then be
derived from the product of their PGFs as p(n) = % % I'L Gk(s)L:O.

For instance, for K equally weighted modes, each associated to a thermal distri-
bution with mean photon number u/K, we obtain

_(n+K-1\( K \( pu Y
pK(n,u)—( o )(K+u) (KHJ. (3.1.4)

This distribution correctly reduces to eq. (3.1.2) for K =1 and to eq. (3.1.3) for
K — oo (see Figure 3.1). Thus, the Schmidt number K, and in general the full
modal structure, is strictly linked to the photon number statistics.

In particular, if u < 1, generating three or more photon pairs in the same pulse is
extremely unlikely, and the photon number distribution can be characterized by
comparing the probability to generate one versus two photon pairs'. This can be
achieved by measuring the g®(0) (hereafter labeled g/®) in the signal or idler
arm. Experimentally, this is done by splitting that arm with 50/50 probability into
two detectors and calculating g® = %, where N;, are coincidence counts,
N; and N, are the single counts in each detector, and N, is the total number of
pump pulses in the time interval of the measurement.

For a single-mode process, the thermal distribution yields g = 2, whereas for
an infinitely multi-mode PDC state, the Poissonian statistics gives g = 1. In
general, the g® has been shown to be directly related to the Schmidt number K
through [108]

@_q141

g —1+K, (3.1.5)
shown in Figure 3.2. Measuring the g® of a single PDC arm, therefore, yields
the effective number of modes K, hence the (effective) dimensionality of the
entangled state. This method has the important advantage to be independent
of optical losses (in the absence of noise or saturation effects), making it an
extremely useful tool in real experimental setups. However, the g does not
give any information on the Schmidt coefficient distribution beyond the Schmidt
number. For this reason, to assess whether a state is maximally entangled, we
must also perform other measurements, such as the JSA reconstruction described
above.

'We excluded vacuum contributions, which are tricky to measure since they represent the
absence of a click.
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Figure 3.2: Schmidt number K as a function of the second-order correlation function
¢®). Note that different Schmidt coefficient distributions characterized by the same K
cannot be distinguished by g(® measurements.

3.1.3 Summary of the experimental results

The following publication, Optica Quantum 2(5), 339-345 (2024), demonstrates
the experimental realization of a programmable high-dimensional entangled
photon source, based on the principles described above. We showcase the gener-
ation of entangled time-frequency qudits with a programmable dimensionality
tunable from d = 1 (decorrelated state) up to d = 20, verified through g®
measurements. The JSA reconstruction yields a uniform distribution of Schmidt
coefficients, indicating the generation of maximally entangled states, which is
further supported by the fact that the value of K retrieved from the JSA matches
the value obtained from the g®. This demonstration directly contributes to the
overarching goal of this thesis by providing a flexible method for producing the
time-frequency entangled qudits that are crucial for the practical realization of
high-dimensional quantum communication.

3.1.4 Observing high-dimensional nonlocality

The high-fidelity entangled states generated and characterized in this chapter
are not only a valuable resource for quantum communication but also enable fun-
damental tests of quantum mechanics. We demonstrated this in a collaborative
work (not directly included in this thesis) with the groups of J. Leach at Heriot-
Watt University and A. Tavakoli at Lund University [109], where the on-demand
reconfigurability of our source was fundamental for testing Bell-nonlocality. In
this work, we used JSI measurements of our time-frequency entangled states to
certify the violation of high-dimensional Bell inequalities.
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Specifically, the analysis focused on the Collins-Gisin-Linden-Massar-Popescu
(CGLMP) inequality [110], a generalization of the Bell inequality to systems with
dimension d > 2. A crucial experimental challenge in such tests is performing
the required multi-outcome measurements in different bases. In [109], we
showed that JSI measurements inherently fulfill this requirement: despite relying
solely on intensity measurements, the JSI captures the interference arising from
the temporal degree of freedom, enabling the certification of high-dimensional
quantum nonlocality.

The outcomes of these spectral measurements probe phase-sensitive superposi-
tions of time bins, analogously to the interference pattern observed in a double-
or multi-slit experiment, which is precisely the type of measurement needed for
high-dimensional Bell tests [110]. Using this technique, we observed violations of
the CGLMP inequality up to dimension d = 8, demonstrating both the potential
of intensity-only measurements to access phase-sensitive superpositions and the
deeply non-classical nature of the generated high-dimensional time-frequency
entangled states.
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High-dimensional encodings based on temporal modes (TMs) of photonic quantum states provide the foundations
for a highly versatile and efficient quantum information science (QIS) framework. Here, we demonstrate a crucial
building block for any QIS applications based on TMs: a programmable source of maximally entangled high-
dimensional TM states. Our source is based on a parametric downconversion process driven by a spectrally shaped
pump pulse, which facilitates the generation of maximally entangled TM states with a well-defined dimensionality
that can be chosen programmatically. We characterize the effective dimensionality of the generated states via
measurements of second-order correlation functions and joint spectral intensities, demonstrating the generation
of bi-photon TM states with a controlled dimensionality in up to 20 dimensions.
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1. INTRODUCTION

In recent years, the field of quantum communication has expe-
rienced remarkable progress, bringing us closer to the creation
of a so-called quantum internet [1] which will exploit the fun-
damental properties of quantum particles to guarantee secure
and efficient transmission of information. High-dimensional
entangled states play a key role in these advancements [2]:
their higher information capacity allows for significantly more
efficient communication, and high-dimensional quantum cryp-
tography protocols offer enhanced security [3]. Photons emerge
as a natural information carrier due to their inherent quantum
nature and high-dimensional spatial and time-frequency degrees
of freedom.

Of the high-dimensional photonic degrees of freedom, the
spatial domain is arguably the most explored, due to the possi-
bility to generate and manipulate states using only time-invariant
operations [4-6]. However, spatial encoding is incompatible
with existing single-mode fiber networks and information is
easily degraded by turbulence in free-space transmission [7].

Encoding information in the time-frequency domain of pho-
tons overcomes these disadvantages by offering robust transmis-
sion both through optical fiber and free space. In this platform,
information can be encoded in pulsed temporal modes (TMs) [8],
i.e., field-orthogonal wave-packet modes. A practical quantum
communication framework based on TMs requires tools to gen-
erate, manipulate, and detect high-dimensional TM states. The
manipulation and detection of one or many single-photon TMs
have been demonstrated through the so-called quantum pulse
gate [9-11], interferometric systems [12], or a combination of

2837-6714/24/050339-07 Journal © 2024 Optica Publishing Group

phase modulators and pulse shapers [13,14]. However, the real-
ization of an optimal source of high-dimensional entangled TM
states remains an open challenge.

An ideal source of time-frequency entanglement must gen-
erate bi-photon states with a well-defined dimensionality, i.e.,
states that live in a finite-dimensional Hilbert space [8]. A prime
example of this are high-dimensional maximally entangled
states, which facilitate entanglement-based quantum communi-
cation protocols such as high-dimensional device-independent
quantum key distribution [3]. Moreover, the ability to program-
matically reconfigure the dimensionality of the generated states
can enhance the performance of a wide range of QIS appli-
cations, where different protocols and receivers may demand
specific dimensionalities for efficient operation. However, cur-
rent implementations of high-dimensional TM sources typically
meet only one of these essential requirements. In dispersion-
engineered parametric-downconversion (PDC) sources [15-17],
high-dimensional entangled states are generated by precisely
tailoring the phase-matching function of nonlinear crystals, pre-
venting the dimensionality of the system from being modified
after the fabrication process. Gas-filled photonic crystal fibers
are nonlinear materials whose dispersion properties can be
altered even after fabrication, allowing for flexible dimension-
ality control of the generated entangled states [18]; however, in
these materials, the dispersion control is not accurate enough to
guarantee a well-defined dimensionality.

Alternative reconfigurable schemes rely on spectral manip-
ulation or filtering of broadband frequency-entangled pho-
tons applied through pulse shapers [19,20], Hong-Ou—-Mandel
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pump spectrum for the PDC process, which determines the generated entangled state.

interference [21], or Fabry—Pérot cavities after [22-24] or
around [25] the PDC source. These methods generate dis-
crete frequency-bin-entangled states that can be scaled to higher
dimensions by increasing the spectral bandwidth of the PDC
source; however, these states are not maximally entangled due
to the presence of residual frequency anti-correlations [26] or
uneven population of the frequency bins. Moreover, filtering
an entangled photon pair can limit the maximum achievable
heralding efficiency [27,28].

Here, we demonstrate a programmable source of high-
dimensional maximally entangled TM states (Fig. 1). Our source
is based on a simple setup consisting of an initially spectrally
decorrelated PDC process driven by a spectrally shaped pump
pulse. Shaping the pump pulse into so-called cosine-kernel func-
tions [29] facilitates the generation of maximally entangled TM
states with well-defined dimensionality within a fixed spectral
bandwidth. Notably, pulse shaping does not require an overhaul
of the experimental setup for accessing different dimensions.
The effective dimensionality of the generated states is charac-
terized via measurements of second-order correlation functions
g%, which link photon number statistics and modal properties
[30]. The modal structure is additionally analyzed via joint spec-
tral intensities that directly probe the spectral distribution of
the generated photon pairs, combined with the a priori knowl-
edge of the pump phase. We demonstrate the generation of
bi-photon TM states with a controlled dimensionality starting
from a fully decorrelated (unentangled) state and scaling up to
a 20-dimensional entangled state.

2. THEORETICAL BACKGROUND

PDC is a process in which a pump photon is converted into
two lower-energy photons labeled signal and idler. This process
must satisfy the requirements of energy conservation, described
by the pump function @(w, + w;) in terms of the signal and idler
frequencies w, and w;, respectively, and momentum conserva-
tion, given by the phase-matching function ®(w;, w;) which is
fixed by material properties. The product of these two functions
is the joint spectral amplitude (JSA)

f(ws’ wi) = a(a)s + wi)q)(ws’ wi) B (1)

which describes the correlations between the signal and idler
photons as a function of their frequencies and, therefore, fully
characterizes the PDC state [31] (Fig. 2).

The effective dimensionality of the Hilbert space in which the
PDC state lives can be determined through a Schmidt decompo-
sition of the corresponding JSA [31]. This process decomposes
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the JSA into sets of pairwise orthogonal modes

flwsw) = Y VA )¢ @), (2)

k=0

which are separable into signal (¥*(w,)) and idler (¢*(w;)) com-
plex spectral functions. In the low-gain regime, where one can
identify the PDC state with a single photon pair, this expression
fully describes the spectral entanglement between the two gen-
erated photons [32], and {|¢*)} and |{¢*)} are the TM bases
that describe the signal and idler state, respectively (see Supple-
ment 1 for details). The Schmidt coefficients v/, indicate the
relative amplitude of each mode pair and are normalized such
that 3, A, = 1. The effective dimensionality of the PDC state is
quantified by the Schmidt number K = 1/(3; A7), whereas the
number of non-zero V2, coefficients defines the Schmidt rank
r. A finite value of r implies that the generated signal and idler
photons can be fully described by a finite-dimensional basis. In
an experimental setting, this property allows one to fully charac-
terize the PDC state through a finite number of measurements.
If K=r, i.e., the Schmidt coefficients are uniformly distributed,
then the photon pair is maximally entangled and can be described
as [¥) = VA 50 W)leh).

A Schmidt number of K=1 indicates a single-mode bi-photon
state, i.e., a spectrally decorrelated JSA. This can be realized, for
instance, through symmetric group-velocity matching in type-
I PDC with a phase-matching function angled at 45° in the
signal-idler frequency space [33]. The positively correlated
phase-matching function will orthogonally intercept the pump
function, which is always oriented at —45° due to energy conser-
vation. If the pump spectrum and phase-matching function are
both Gaussian-shaped and have the same bandwidth, then the
resulting JSA will be a fully separable circle in frequency space
(Fig. 2(a)).

To increase the dimensionality of the entangled state, one
needs to modify the distribution of the Schmidt coefficients via
appropriately tailoring the JSA. Equation (1) entails that this can
be achieved by manipulating either the phase-matching function
or the pump spectrum. While both approaches are feasible and
have been demonstrated, only the latter allows one to apply
these changes “on the fly”, i.e., programmatically and without
any hardware modifications [34]. For this reason, we focus on
complex spectral shaping of the pump pulse [35] as the tool to
tailor the PDC state.

We note that this technique fundamentally relies on achiev-
ing an initially decorrelated JSA which, in turn, requires
an underlying positively correlated phase-matching function.
Experimentally, this can be realized in periodically poled
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Fig. 2. Visual representation of the Schmidt decomposition of the JSA of a PDC state generated by a pump shaped as a Gaussian (top) and
second-order CK (bottom) function. From left to right: pump spectrum «(w,), where wj, is the pump frequency; JSA, equal to the product of
the pump function @(w;s + w;) (dashed contour) and phase-matching function ®(ws, w;) (solid contour); Schmidt modes and correspondent
signal and idler functions. We note that the Schmidt modes in the bottom row have the same Schmidt coefficient VA = 1/V3.

potassium titanyl phosphate (ppKTP), which allows one to reach
a phase-matching angle of approximately 49° in bulk and 60°
in waveguides. The procedure for achieving decorrelation has
been detailed in [33,34,36] and, for this work, is described in
Supplement 1.

One possibility to generate high-dimensional TM-entangled
states is to shape the pump spectrum as Hermite—Gauss func-
tions [10]. However, while this method allows for a well-defined
dimensionality of the PDC state, it does not produce maxi-
mally entangled states beyond a two-dimensional Bell state [8].
Moreover, the spectral bandwidth spanned by Hermite—Gauss
functions grows wider for increasing orders, posing a practical
challenge for realistic implementations with a limited available
bandwidth.

A notable alternative involves shaping the pump spectrum
into the so-called cosine-kernel (CK) modes [29], i.e., Gaussian
spectra modulated by a cosine function, which are the frequency-
space representation of a superposition of Gaussian time bins.
A pump pulse shaped as the nth order CK mode generates an
(n+1)-dimensional maximally entangled state (Fig. 2). Unlike
Hermite—Gauss modes, the spectral bandwidth spanned by CK
modes is constant for all mode orders, offering a significant
advantage for shaping methods similar to that in this work, in
which the pump spectrum is “carved” from an initial pulse with
a fixed spectral bandwidth. CK modes present finer spectral
features for increasing mode orders; consequently, the highest-
order mode that can be realized experimentally, and thereby the
highest achievable dimensionality, will then depend solely on
the resolution of the shaping system.

To verify the generation of high-dimensional maximally
entangled states, one must characterize the modal structure
of the PDC process [31]. As mentioned above, this can be
done by fully characterizing the JSA and directly performing
a Schmidt decomposition to verify that the Schmidt coefficients
are uniformly distributed. From the Schmidt coefficients, one
can also calculate the Schmidt number K to describe the effec-
tive dimensionality of the state. However, existing methods to
fully characterize the JSA of PDC states (based on state tomogra-
phy [34] or spectral shearing interferometry [37]) are extremely
resource-expensive, as they require an additional nonlinear pro-
cess or a complex interferometric setup. Simpler techniques
that estimate K based, for instance, on Hong—Ou—Mandel inter-
ference of the generated photons [38] are only suitable when
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the impact of the pump phase on the PDC state is negligible;
therefore, they would not be effective in the proposed source,
in which the entanglement largely originates from the spectral
phase distribution of the pump.

In 2011, A. Christ et al. [30] demonstrated a resource-efficient
method to probe K using the normalized second-order correla-
tion function g of pulsed quantum light. This approach is
suitable for a measurement system in which the detection win-
dow is longer than the pulse duration but shorter than the pulse
period, which is the typical case in ultrafast quantum optics.
In this regime, the value of g indicates the integral of the
second-order correlation function over one pulse. In the low-
gain regime, the g is connected to the Schmidt number K by
the simple relation [30]

1

g(z’z1+—.

% @)

Although g® measurements are an established tool to monitor
the effective dimensionality of a PDC state, they are not sufficient
to determine whether the state is maximally entangled, as a non-
uniform distribution of Schmidt coefficients could also yield an
integer value of K. Therefore, we look at g® measurements in
combination with the joint spectral intensity (JSI) of the state. In
contrast to the JSA, the JSI can be straightforwardly measured
with a simple spectrometric setup requiring only a dispersive
medium and time-resolved detection [39]. The JSI lacks the
phase information necessary to correctly estimate the Schmidt
coeflicients; nevertheless, we can assume that the a priori known
spectral phase applied to the pump pulse is mapped to the JSA
following the energy conservation condition, i.e., antidiagonally
in the signal-idler frequency space. We can then apply this
phase to the square root of the measured JSI to reconstruct the
JSA, and confirm the maximally entangled condition of the PDC
state via a Schmidt decomposition. This leads us to an estimate
of the dimensionality of the system that we can compare with
the effective dimensionality calculated from the g to confirm
the generation of a high-dimensional maximally entangled state.

3. EXPERIMENT

A schematic of the experiment is shown in Fig. 3(a). Ultra-
short laser pulses with a duration of 150fs are generated by
a Ti:Sapphire laser with a repetition rate of 80 MHz and a
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Fig. 3. Schematic of the experimental setup. (a) PDC source. The pump beam (red line) is generated by a Ti:Sapphire laser and is spectrally
shaped by a 4-f waveshaper based on a spatial light modulator (SLM). The shaped beam is coupled into a periodically poled potassium titanyl
phosphate (ppKTP) waveguide. The photon pair generated by the PDC process in the waveguide is isolated from the remaining pump light by
a broad bandpass filter (BP1). The two photons are separated by a polarizing beam splitter (PBS), filtered again by narrowband filters BP2 and
BP3, and then coupled into single-mode fibers. (b) g®-measurement configuration. One arm f;/; of the source setup is connected to a 50/50
fiber beam splitter. The photons in each output of the beam splitter are detected by a combination of superconducting nanowire single-photon
detectors (SNSPDs) and a time-tagging unit (TT). (c) Measurement configuration for the time of flight (ToF) spectrograph. The frequencies
of signal and idler photons are mapped to delays by dispersive fibers, and arrival-time correlations are detected by single-photon detectors

and a time-tagging unit.

spectrum centered at A, = 758.7 nm. The beam is directed to a
folded-4-f waveshaper [40] with a resolution of approximately
10 GHz to prepare the pump modes via amplitude and phase
shaping. The pump beam is then coupled into an 8-mm-long
periodically poled potassium titanyl phosphate (ppKTP) wave-
guide by AdvR Inc. with a poled length of 1.5 mm and a poling
period of 117 um. The type-II PDC process inside the poled
waveguide generates pairs of orthogonally polarized photons
with central wavelengths A, = 1511 nm and A,; = 1524 nm for
signal and idler, respectively.

A bandpass filter centered at 1538 nm with an acceptance
bandwidth of 82nm (Semrock FF01-1538/82) filters out the
remaining pump light and most of the fluorescence light coming
from the waveguide. The photon pair is then separated by a polar-
izing beam splitter (PBS) into the vertically polarized signal and
the horizontally polarized idler. To further filter out fluorescence
from the waveguide, both arms contain a narrow bandpass filter
with a full-width at half-maximum of 7 nm angle-tuned to match
the centers of the signal and idler spectra. The filter bandwidth
is very close to the spectral bandwidth of the photons (approx-
imately 7nm and 5nm for signal and idler, respectively) as it
allows for significantly suppressing fluorescence noise while
transmitting most of the PDC photons. After filtering, the pho-
tons are coupled into single-mode fibers and detected by two
superconducting nanowire single-photon detectors (SNSPDs)
with an efficiency of 80%.

We estimate the optical losses of the setup through the
Klyshko efficiency [41], defined as 7,q = Peoinc /Pis) fOr the signal
(idler) arm, where p.;, is the probability to detect a coincidence
between both arms and p;, is the probability to have a click in
the idler (signal) arm. Effectively, the Klyshko efficiency mea-
sures the probability of detecting one photon from a generated
photon pair, given that the other photon has been detected. We
measure 7, ~ 25% and 7; = 25%, where the optical losses are
mostly due to the fiber couplings.
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For the g measurements, one of the fiber out-couplings
is connected to a fiber beam splitter, each output of which is
detected by an SNSPD (Fig. 3(b)). Photon arrival times are
recorded by a Swabian Instruments time-tagging unit, and time
filtering is performed to suppress the fluorescence counts. Using
the g@ value as reference, we optimize the bandwidth and chirp
(quadratic phase coefficient) parameters via the waveshaper to
obtain the initial decorrelated PDC state from a Gaussian-shaped
pump (see Supplement 1 for details).

We measure the JST using a time-of-flight (ToF) spectrograph
[39] (Fig. 3(c)). In this configuration, a dispersive fiber with
a chromatic dispersion coefficient of —418 ps/nm is added to
each of the PDC output arms to map frequencies to delays. The
arrival times of the photons are then measured by two SNSPDs
connected to a time-tagging unit. The pulse duration is short
enough not to affect this measurement. The correlation between
the arrival times of paired signal and idler is used to reconstruct
the JSI.

4. RESULTS AND DISCUSSION

Figure 4 shows the measured effective dimensionality K of
the PDC states as a function of the programmed CK order
n compared with the theoretical values K. The experimental
dimensionality, characterized via g® measurements of the sig-
nal and idler arms separately, grows linearly with n, confirming
that the proposed system can successfully allow the user to pro-
grammatically select the effective dimensionality of the PDC
state in up to 20 dimensions.

The initial values for the signal and idler arms, gfi) =

1.93+0.01 and g = 1.88 +0.01, correspond to a Schmidt
number K, = 1.08 £ 0.01 and K,; = 1.14 = 0.01, respectively.
These values are slightly larger than the expected fully decor-

related state value of Kyy = 1, primarily due to non-ideal
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blue points) and values reconstructed from the deconvolved measured JSI combined with the known pump phase (green cross), compared
with the theoretical values Ky, (red line). The marked points correspond to the CK modes analyzed in Fig. 5.

phase-matching conditions: the phase-matching function of the
ppKTP waveguide, shaped as a sinc at an angle of 31° with
respect to the signal axis, deviates from the ideal condition of
a perfectly diagonal Gaussian phase-matching. This non-ideal
configuration leads to unwanted correlations between signal and
idler frequencies, introducing a small multi-mode component to
the PDC state. While these imperfections could be mitigated
with the use of an apodized waveguide with a Gaussian phase-
matching spectrum [42,43] engineered to have a perfect positive
frequency correlation between signal and idler, their impact in
this source is limited and is further reduced by spectral filters,
which cut out the side lobes of the sinc-shaped phase-matching
function.

(a) n=0, Kyp=1

(b) n=3, Ki,=4

Above K = 18, one can notice a higher discrepancy between
the theoretical and experimental dimensionality. This is a conse-
quence of the limited resolution of the waveshaper, which fails
to perfectly shape the narrow features of high-order CK func-
tions. As a matter of fact, the CK function of order n = 17 has a
main peak with a spectral width of approximately 30 GHz, only
three times larger than the resolution of the waveshaper. This
issue can be easily addressed by using an improved waveshaper:
increasing the resolution by only a factor 2 would allow one to
generate CK functions up to order n = 32 before reaching the
shaping limits.

Figures 5(a)-5(c) show, for three different CK orders, the
measured JSI (first row), the JSA reconstructed by applying

(¢) n=9, K,=10

0 5 10 15
Schmidt mode k

0 5 10 15
Schmidt mode &
Fig. 5. For three different CK mode orders n: measured JSI (first row), JSA reconstructed from the deconvolved measured JSI combined
with the known pump phase (second row), and resulting distribution of the Schmidt weights A (blue bars) for each Schmidt mode k, compared
with the expected weights for a maximally entangled state (red line).
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the known pump phase to the measured JSI (second row), and
the weights A, obtained from the Schmidt decomposition of
the JSA (last row). We note that the limited resolution of the
ToF spectrograph introduced an artificial broadening of the fine
spectral features of high-order CK spectra; therefore, to elimi-
nate these artifacts, we performed a deconvolution of the direct
JSI measurements using the measured point-spread function of
the ToF setup (see Supplement 1 for a detailed explanation).

The resulting Schmidt weights distribution (in blue) presents
a clear edge at k = K, as expected from a maximally entangled
state (in red). The zero value of the Schmidt weights beyond
K, indicates that the presented source generates states with a
finite dimensionality, i.e., containing a finite number of Schmidt
modes. The main discrepancy with the theory lies in the uneven
value of the coeflicients, which we attribute to the spectral dis-
tortions induced by the narrowband filters in each arm. As one
can observe in the square edges in Fig. 5(a), the filters have
a slightly narrower bandwidth than the generated photons and,
as a consequence, introduce spectral distortions in the PDC
state, which result in uneven additional optical losses for differ-
ent Schmidt modes. Despite this drawback, narrow filtering is
beneficial for g® measurements as it limits fluorescence noise,
which would otherwise artificially increase the detected single
counts and lead to a less accurate assessment of the g value
of the source. Contrarily, since JSI measurements are not as
significantly affected by fluorescence, the effect of the induced
distortions becomes noticeable. This is especially evident in the
signal arm, which has a wider spectrum than the idler due to the
sub-optimal phase-matching angle. Nevertheless, the uneven-
ness of the Schmidt weights is small enough not to significantly
affect K, as indicated by the Schmidt number K calculated from
this distribution (the green cross in Fig. 4) being very close to
the theoretical value Kj,. Furthermore, the Schmidt weights can
be directly addressed by tailoring the pump spectrum, allowing
one to make their distribution more even if necessary.

We refer the reader to Supplement 1 for a more detailed anal-
ysis of the causes of experimental imperfections and possible
solutions. We note that the highlighted challenges are tech-
nical, rather than fundamental limitations, and can be readily
addressed, e.g., by employing a dispersion-engineered wave-
guide, a higher-resolution waveshaper, and spectral filters with
an optimally matched bandwidth.

5. CONCLUSION

We demonstrated the generation of time-frequency-entangled
photons with a programmable dimensionality ranging from 1
(decorrelated state) up to 20 dimensions, selected via straight-
forward spectral shaping of the pump pulse. By analyzing
the measured joint spectral intensity alongside the a priori
knowledge of the pump phase, we inferred a Schmidt coeffi-
cients distribution compatible with high-dimensional maximally
entangled states. While our results and the theoretical predic-
tions strongly suggest maximal time-frequency entanglement, a
rigorous proof will necessitate a careful phase-sensitive charac-
terization of the generated PDC states. This can be accomplished
through high-dimensional state tomography, facilitated, e.g., by
a so-called multi-output quantum pulse gate [11].

The performance of the current system is limited solely
by technical constraints, which can be substantially enhanced
by incorporating state-of-the-art experimental components.
These improvements will facilitate the generation of maximally
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entangled states in more than 40 dimensions. Beyond dimen-
sional control, manipulating the pump spectrum offers the
potential not only to program the state dimensionality, but also to
finely adjust the Schmidt weights themselves, thereby achieving
an unprecedented degree of entanglement control.

The ongoing development of our source and the integration
of cutting-edge components will pave the way for groundbreak-
ing applications in quantum information processing, quantum
communication, and quantum metrology, establishing our plat-
form as a promising resource for advancing the capabilities of
quantum technologies.
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In this supplemental document, we explain the technical details of our work.

1. COSINE-KERNEL FUNCTIONS IN THE FREQUENCY DOMAIN

The cosine-kernel function of order # in the frequency domain (Fig. S1) represents a sequence of
K = n + 1 Gaussian-shaped time bins centered at time t = 0 and separated by At, described in
terms of frequency v:

CKo(r) :Ki;li 1 e_%eiZn(v—vu)At(k—%), (1)
i— VK V2mro?

where 1y is the chosen central frequency, and o = Av /2v/21In2, with Av being the chosen spectral
full-width-half-maximum. After some simple calculations, this expression simplifies to

11 e_L;éﬁ sir.1(7t(1/ —19)AtK) /
VK V2102 sin(7(v — vp)At)

which describes a Gaussian envelope modulated by an oscillating function. These oscillations
result in sharp peaks at frequencies vy, = vy + m/At with null-to-null bandwidth dv = 2/KAt.

Spectral shaping using CK functions is convenient for the shaping system employed in the
current experimental setup: the Gaussian envelope limits the spectral bandwidth equally for all
CK orders, and the spectral phase oscillates only between the two constant values 0 and 7r, which
can be shaped more precisely than rapidly varying phases.

Describing CK modes as a sequence of K time bins intuitively explains why a CK-shaped pump
generates K-dimensional entangled PDC states. Moreover, one could take this technique one step
further and assign different weights Ay to time bins, effectively tailoring the Schmidt coefficients
and gaining full control over the modal structure of the entangled state. Although this approach
results in a complex-valued pump spectrum in which the spectral phase can assume any value
between 0 and 27, this can still be generated by the current spectral shaping setup as long as the
phase modulations are not excessively steep. This spectrum remains within the same Gaussian
envelope, corresponding to the Fourier transform of a single time bin.

CKy (v) = (52)

2. TEMPORAL MODES FOR SINGLE-PHOTON STATES

For a fixed polarization and transverse field distribution, temporal modes (TMs) form a complete
set of quantum states for single photons [1]. Under these conditions, a single-photon quantum

state in a specific TM ‘l[)k> can be expressed as

[) = [dwyt@)at@) o), (3)

which represents the coherent superposition of single-photon monochromatic modes 4%(«w) mod-
ulated by the complex spectral amplitude (w) of the wavepacket.

3. ACHIEVING A DECORRELATED PDC STATE

The first step in the optimization of our source consists in finding the pump spectrum and spectral
phase that facilitate the generation of a decorrelated PDC state (i.e., Schmidt number K=1). We
expect this optimal pump shape to be a Gaussian spectrum with a bandwidth matching that
of the phase-matching function. Additionally, the optical components in the setup will mostly
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Fig. S1. First four cosine-kernel (CK) functions expressed as a function of frequency (top) and
time (bottom).

introduce group-velocity dispersion in the pump, corresponding to a second-order phase coeffi-
cient (“chirp”) that must be compensated for by the waveshaper to achieve a fully decorrelated
state. For this reason, we measure g(2) as a function of different values of the full-width-at-half-
maximum (FWHM) and chirp correction, and select the ones that minimize K (i.e., maximize the
2)y.

$ The results of this characterization are shown in Fig. S2. One can notice that, above a FWHM
of 2nm, K saturates because we run into the edges of the narrowband filters in the PDC arms
(see Fig. 3 in the main text). We choose a bandwidth of 2.6nm (1.3 THz) which, after minor
optimizations, yields K = 1.08 + 0.01 (§?) = 1.93 + 0.01) in the signal arm. This bandwidth
is close to the phase-matching bandwidth of approximately 1 THz, and the discrepancy is to
be attributed to the sub-optimal phase-matching angle, which is closer to 29° than to the ideal
value of 45°. The optimal chirp correction, of approximately 0.15 ps?, is a reasonable value to
compensate for the chirp introduced by the setup.
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Fig. S2. Schmidt number K (blue circles) and g(z) (orange triangles) measured in the signal arm
as a function of the FWHM of the pump spectrum (left) and of the chirp correction (right).

4. JSA RECONSTRUCTION

Fig. S3 illustrates the JSA reconstruction process for three different mode orders. The first row
shows the raw JSI measurement which, for high orders, is visibly blurred by the low effective
resolution of the time-of-flight (ToF) spectrograph and, therefore, not representative of the real
PDC state. To limit this effect, we measure the point-spread function (PSF) of the ToF setup
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Fig. S3. Reconstruction process of the JSA for three different mode orders. From top to bottom:
“raw” JSI measurement, deconvoluted JSI, reconstructed JSA (taking the square root of the JSI
and applying the known pump phase), mode weights Ay resulting from the Schmidt decompo-
sition, reconstructed JTI (as squared modulus of the Fourier transform of the JSA).
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and perform a Lucy-Richardson deconvolution [2] to retrieve the higher-resolution JSI shown
in the second row. We note that this deconvolution algorithm does not require any information
other than the blurred image and the measured PSF. At low CK orders, the deconvoluted JSI is
essentially identical to the raw measurement; however, at high orders, the deconvolution brings
back the distinctive fine features of the CK modes.

To reconstruct the JSA, we take the square root of the deconvoluted JSI and we apply the known
pump phase diagonally (centered on the maximum of the JSI), obtaining the image in the third
row. The pump phase consists of a sequence of phase jumps between 0 (blue) and 7 (red). We
note that the phase jumps perfectly match the zero-intensity points in the JSI, confirming that
the deconvoluted JSI is close to the real one. Then, we perform a Schmidt decomposition of the
reconstructed JSA to retrieve the Schmidt coefficients v/A; which describe the modal structure
of the generated PDC state. The distribution of the corresponding mode weights A for the
analysed cases is shown in the fourth row. Since the Schmidt number derived this way matches
the one calculated from the g(2) measurements, we can assume that the reconstructed JSA is
representative of the real one and, therefore, that we can examine the modal structure of the
generated PDC state from the calculated mode weights.

One can notice a very clear distinction between the first Ky, Schmidt weights, corresponding
to the modes that compose the maximally entangled state, and the following ones, which are
spurious modes arising from spectral imperfections such as shaping defects or too narrow filtering,
and artifacts from the grid-like structure of the pixels in the JSA. Although the weight of these
spurious modes is orders of magnitude lower than that of the primary modes, their very high
number introduces a small component of multi-modedness that slightly increases the value of
K. To limit this effect, one could choose spectral filters with a bandwidth still narrow enough
to cut off the side lobes of the sinc-shaped phase-matching function and to limit fluorescence,
but larger than the spectral bandwidth of the generated photons. This would avoid introducing
edge effects in the spectrum and would also lower the optical losses after generation. Moreover,
to reach a higher level of accuracy in the generated states, one could implement an iterative
optimization method to perfect the spectral shaping of the pump, which would result in a
more even distribution of the Schmidt coefficients. If one were able to remove these sources of
imperfections in such a way to eliminate the contributions of the spurious modes with k > Ky,,
even keeping the same uneven weights of the main modes, one would obtain the effective
dimensionality shown by the “+” symbols in Fig. S4, which follows much more closely the
theoretical predictions.

The final row of Fig. S3 shows the reconstructed joint temporal intensity (JTI) calculated as the
squared modulus of the Fourier transform of the reconstructed JSA. In the time picture, it becomes
intuitive to see that a higher-order CK mode generates higher-dimensional entangled states in the
form of correlated time bins whose intensity is determined by the Schmidt coefficients. Notably,
due to the extremely short time separation between these correlated “islands” (approximately
2 ps), the time structure of the generated PDC states cannot be resolved by conventional single-
photon detectors. For this reason, these states do not fall into the standard definition of time bins
but rather correspond to that of temporal modes, which require a more sophisticated detection
scheme based, e.g., on a so-called quantum pulse gate [3-5].
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Decoding time-frequency qudits

After demonstrating a programmable source of high-dimensional entangled states
in the previous chapter, we now address the second and arguably more significant
experimental challenge: the development of a versatile high-dimensional decoder.
A source, no matter how advanced, is of limited use without a corresponding
receiver capable of efficiently extracting the information encoded in its states. In
this chapter, we present the realization of the multi-output quantum pulse gate,
the central technological contribution of this thesis. As we will show, this device
solves the long-standing problem of high-dimensional temporal mode detection
and serves as the key component for the applications in quantum communication
and fundamental quantum mechanics explored in the remainder of this work.

The experimental results and methodologies presented in this chapter are based on
the following publications:

[PRX Quantum 4, 020306 (2023)] L. Serino, J. Gil-Lopez, M. Stefszky, R. Ricken,
C. Eigner, B. Brecht, and C. Silberhorn, “Realization of a multi-output quan-
tum pulse gate for decoding high-dimensional temporal modes of single-photon
states”, PRX Quantum 4, 020306 (2023). DOI: 10.1103/PRXQuantum.4.020306

[Opt. Express 33(3), 5577 (2025)] L. Serino, C. Eigner, B. Brecht, and C. Sil-
berhorn, “Programmable time-frequency mode-sorting of single photons with
a multi-output quantum pulse gate”, Optics Express 33(3), 5577 (2025). DOI:
10.1364/0E.544206
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Chapter 4. Decoding time-frequency qudits

4.1 The challenge of high-dimensional detection

Measuring high-dimensional quantum states encoded in the time-frequency do-
main presents unique difficulties. Unlike polarization, where waveplates and po-
larizing beamsplitters suffice for qubit measurements, the time-frequency domain
often requires more sophisticated interferometric or frequency-conversion-based
approaches, especially for projective measurements onto superposition modes.
An ideal decoder must be reconfigurable to different TM bases and capable of
distinguishing multiple orthogonal modes simultaneously. This capability is fun-
damental for realizing the enhanced security and information capacity offered
by HD-QKD protocols, such as the d-dimensional BB84 variant discussed in Sec-
tion 1.4.2, which relies on projective measurements in multiple MUBs. Without
high-dimensional decoders, the theoretical advantages of qudits in quantum
communication remain largely inaccessible.

This challenge has been addressed by developing dedicated devices tailored to
specific encoding alphabets, which led to a fragmented landscape of solutions.
For frequency bins, the so-called quantum frequency processor demonstrated
mode-sorting in three dimensions using a combination of phase modulators and
pulse shapers [50, 52]. For time-bin encoding, interferometric setups achieved
decoding for up to four dimensions, although only for two measurement bases
[51]. All these specialized solutions generally relied on complex setups that
hindered scalability to higher dimensions and lacked the reconfigurability to
switch between encodings, creating a significant obstacle for a unified and
versatile high-dimensional time-frequency framework.

Our group proposed the quantum pulse gate (QPG), which uses a dispersion-
engineered sum-frequency generation process to project an input state onto a
single, user-chosen temporal mode [48, 49, 111]. However, while the QPG can
operate on high-dimensional inputs, it is fundamentally limited to a single output
channel. Although preliminary work towards multi-output frequency conversion
was demonstrated [79, 80], these implementations were inherently incompatible
with single-photon-level inputs.

To overcome these limitations, we developed the multi-output quantum pulse
gate (mQPG). This device is not merely an extension of the QPG, but a distinct
technological advance that enables simultaneous, parallel projections onto a
complete arbitrary basis of high-dimensional TMs. In this chapter, we will first
review the working principles of the single-channel QPG and then detail the
design, realization, and characterization of the mQPG, which forms the central
component of the versatile framework presented in this thesis.
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4.1. The challenge of high-dimensional detection

4.1.1 The quantum pulse gate

The QPG [48, 111-114] is a well-established device for mode-selective measure-
ments in the time-frequency domain. It is based on a quasi-phase-matched SFG
process which, as seen in Chapter 2, allows an input photon and a pump photon
to be converted to a single photon at their sum frequency. Its working principle,
design and behavior are extensively described in [63] and summarized below.

In a QPG, the signal and pump are group-velocity matched (vg;, = v, ;). This
is often achieved using type-II SFG, where the signal and pump fields have
different polarizations and thus experience different dispersion curves, allowing
their group velocities to coincide at different wavelengths. This group-velocity
matching makes the phase-matching angle ¥4 in eq. (2.3.11) approximately
zero. This yields a phase-matching function ®(w;,, Wy, ) ~ ®(w,,.) that is largely
independent of w;, over a broad range, making it horizontal in the input-output
frequency plane.

If this horizontal phase-matching function is much narrower along ., than
the pump bandwidth, then the output will be confined to a small frequency
region around the central frequency @,,.. Under these conditions, the Schmidt
decomposition of the transfer function in eq. (2.2.24) yields a single mode,
dictated by the pump shape:

G(win’ wout) R q)(wout)a(a_)out - win) ~ fo*(win) go(wout) . (411)

The output Schmidt mode g,(w,,) is primarily determined by the phase-
matching function ®(w,,), Whereas the input Schmidt mode f;(w,,) is the
mirrored conjugate of the pump spectrum a(®,,, — wy,)-

Consequently, the QPG acts as a mode-selective beamsplitter (see eq. (2.2.27)),
described by the unitary operator Uy coupling an input TM |A,) with envelope
folwy,) and a target output mode |C,) with envelope g,(w,,.) [16]:

ﬁQPG ~ 1 — (1 —cos Co)(|Ao)N Aol + ICo)Col) + sin CoICo)HAql — 14X Col), (4.1.2)

where C, is the coupling strength. The sin G, term converts |A,) to |C,) with
efficiency 1, = sin® C,,.

Let us consider an arbitrary single-photon input state |v,,) with spectral envelope
&(wyy), sent to a QPG targeting mode |A,). If we express the input in the pump
basis as |{;,) = D ¢; |4;), where ¢; = (A;|¢;,), we can write the QPG output as

1Y oue) = ﬁQPG i) & ¢ (cos €y |Ag) +sinCy|Cp)) + Z ¢ lA;) (4.1.3)
i#£0
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Figure 4.1: Schmidt decomposition of the QPG transfer function G(w;,, Wy ). (@,b) If
the phase-matching function is horizontal and its spectral width along w,,, is narrower
than the spectral features of the pump, we obtain a single-mode process, i.e., a single
beamsplitter, which selectively up-converts the input mode determined by the pump
shape. If the phase-matching is too broad (c) or not horizontal (d), then the process
becomes multi-mode, introducing ambiguity in the measurement.
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4.1. The challenge of high-dimensional detection

where only mode |A,) is converted to |C,) (assumed to be initially unoccupied),
whereas all input modes orthogonal to |A,) are transmitted unconverted. The
probability P? that [v;,) is up-converted to |C,) is:

2

p(?onv = Sin2 €0| (Aolll)in) |2 ~ No Ja(aout - win)g(win)dwin ) (414)

which is maximized when |v;,) perfectly matches |A,). Effectively, the QPG
projects the complex spectral amplitude of the signal onto that of the pump, and
yields an output with probability proportional to this overlap.

While powerful for single-mode selection, the “legacy” QPG is fundamentally a
single-channel device. High-dimensional protocols, however, require simultane-
ous, projective measurements onto all d elements of a chosen basis. Attempting
this with standard QPGs would require a complex and lossy network of d separate
devices, making it impractical for scalable systems. This limitation highlights the
critical need for a truly multi-channel, reconfigurable decoder integrated into a
single device.

4.1.2 Multi-output quantum pulse gate

To overcome this limitation, we developed the mQPG, a single, integrated device
capable of performing parallel projective measurements on multiple orthogonal
temporal modes. The mQPG achieves this by leveraging the super-poling dis-
persion engineering technique discussed in Section 2.3.2. Combined with the
dispersion engineering conditions of the QPG, namely the group-velocity match-
ing and narrow phase-matching function, this creates multiple phase-matching
peaks centered at distinct output frequencies, each enabling an SFG process
that can be addressed independently by different spectral regions of the pump.
Therefore, through appropriately shaped pump pulses (using the techniques
from Section 2.3.3), we realize several QPG operations in parallel within a single
device. If the pump modes are mutually orthogonal, the Schmidt decomposition
yields an input-output mode pair for each mQPG channel, as shown in Figure 4.2.

For an mQPG with m channels, each channel j projects onto a specific input
™ |Aj> and converts it to an output mode |Cj> centered at a distinct output
frequency @, ;. If the channels are perfectly independent, the operation for the
j-th channel is analogous to eq. (4.1.2), and the overall mQPG operation is

—_

m—

Umops ~ T+ > [ (cos € = 1)(|4; X, | +]€;XC; ) +sin;(|¢; XAy - |4 X Ci])]
=0

(4.1.5)
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Figure 4.2: Schmidt decomposition of the mQPG transfer function G(wj,, wqy). The
pump is divided in different spectral regions matching the phase-matching peaks. (a)
If the pump has identical shapes in all three regions, we still have a single-mode con-
version process overall. (b) If we shape the pump as orthogonal modes, the Schmidt
decomposition yields a separate conversion process for each mQPG channel. (¢) A broad
or not horizontal phase-matching function introduces cross-talk between channels.
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If the channels target an orthonormal basis {|A> _01, an input state
[Yin) = D¢ 14;) is transformed to
m—1
1Y out) = Unmopg |¥in) ch cosG |A +sm€ |C +Zc |A;) (4.1.6)
j=0 i>m

The probability of detecting a photon in output channel j therefore is

2

chonv = sin® ej |<Aj|¢in>|2 R N; Jaj(a_)out,j —wp)E(wip)dwy,| . (4.1.7)

Each distinct phase-matching region, addressed by a specific spectral portion of
the pump a;, thus maps an input TM to a photon in a spectrally distinguishable
output channel.

4.1.3 Where is the quantum?

A question that naturally arises is: what makes the QPG or mQPG “quantum”?
After all, these devices rely on nonlinear frequency conversion, a classical op-
tical process. The mQPG itself does not create quantumness in the same way
PDC creates entangled photon pairs. Rather, its crucial role in quantum infor-
mation processing is to preserve the quantum nature of the input state during
the measurement process. It allows input TMs to be coherently mapped to a
superposition of spectrally distinguishable output modes. In our experiments,
these output modes are typically directed to single-photon detectors, where the
detection process collapses the superposition, yielding a click corresponding to
a specific output channel. However, the mQPG output could also be used for
more sophisticated quantum applications, e.g., interfacing different parts of a
quantum network [115].

4.1.4 Designing an mQPG

To design an mQPG, we combine the principles of dispersion engineering and
periodic poling modulation discussed in Section 2.3. The design process, detailed
in the appendix of PRX Quantum 4, 020306 (2023), can be summarized as
follows:

1. The first step is to choose the operating wavelength of the input field based
on the desired application. For our work, we select an input signal in the
telecommunication C-band (~ 1550 nm).

2. Then, we need to choose the operating wavelength of the pump field. The
fundamental requirement for a QPG is a horizontal phase-matching func-
tion, which is necessary to achieve mode-selective up-conversion of arbitrary
TMs. As discussed in Section 4.1.1, this is achieved through group-velocity
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matching between the signal and pump pulses (v, ;, = v, ,,). We select a pump
wavelength around 860 nm, where the material dispersion of our waveguides,
realized in titanium in-diffused lithium niobate, allows for this condition to
be met by a signal and pump pulses with orthogonal polarizations. Energy
conservation then dictates the sum-frequency output center, which in our case
will be around 552 nm.

3. Since this set of wavelengths is not naturally phase-matched in our chosen
material, we use quasi-phase-matching. We calculate the required poling
period A to obtain an efficient conversion process centered at our chosen
frequencies, which results in A = 4.32 pm.

4. The final and most crucial step of the design is to transform the single-channel
quantum pulse gate into a multi-channel device. We achieve this by applying
the super-poling technique introduced in Section 2.3.2. This method consists
in alternating periodically poled regions of length [ to unpoled regions with
a period I'. As described by eq. (2.3.24), this creates a phase-matching
function with multiple peaks. The separation between these output channels
is proportional to 1/T', whereas the effective number of peaks is the inverse
of the poled fraction [/T.

This entire process is somewhat analogous to designing a diffraction grating: the
input signal and pump pulses propagate through the structure, and the generated
sum-frequency light from different segments interferes constructively only for
specific phase-matching conditions, leading to the separated output channels
required for a high-dimensional decoder.

4.1.5 Detector tomography

In the experiments presented in this chapter, we apply single-photon detection
at the mQPG output, turning the complete setup into a measurement device
that registers “clicks” in a specific output channel when the corresponding TM
is detected. We are therefore interested in characterizing the mQPG not just
as a process transforming input modes into output modes, but as a complete
TM decoder. The operation of such a real-world measurement device, which
inherently includes imperfections like optical loss, detector inefficiencies, and
potential crosstalk, is described by a set of positive operator-valued measures
(POVMs).

A POVM is a set of operators {7t"}, where each operator 7" is associated with a
distinct measurement outcome y (e.g., a click in the y-th output channel of the
mQPG). These operators correspond to positive semi-definite Hermitian matrices,
and the probability of obtaining outcome y when an input state |§) is incident on
the device is given by p7¢ = Tr(|ENE| A7) = (£| &7 |£). Unlike ideal von Neumann
projective measurements, where the projectors must be orthogonal and sum to
the identity operator, POVM elements are not necessarily orthogonal, and their
sum may be less than the identity operator (ZY 7i¥ < 1). This accounts for the
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4.1. The challenge of high-dimensional detection

possibility of an inconclusive outcome, corresponding to 1 — ZY 7’, where an
input photon does not result in a click in any of the m monitored output channels
due to, for example, optical losses or imperfect conversion efficiency.

For an mQPG designed to perfectly sort an orthonormal input basis of TMs such
that input mode |y) is directed exclusively to output channel y, the corresponding
ideal POVM element is

= TNl (4.1.8)

where 7, represents the combined conversion and detection efficiency for channel
v. In this ideal scenario, the {@, } for different y are orthogonal because the
basis states are orthogonal: for instance, if we chose to measure in the basis

{|Aj>};?:7)1, then the POVM elements would be fcf deal = T |Aj ><Aj| in each channel
j-

In a real mQPG, various imperfections lead to deviations from this ideal. The
most typical cause of imperfection is the phase-matching function being too
broad with respect to the pump, often due to waveguide defects or temperature
inhomogeneities which deform the otherwise sinc-shaped output spectrum, or
to constraints on the pump bandwidth. In this case, the assumptions that led
to single-mode operation in each channel are no longer valid, and each mQPG
channel shows multi-mode behavior. Consequently, a general POVM element 7"
for the y-th output channel can be expressed in the TM basis {|A;)} as

A= (/) 14)4| - 4.1.9)
L,j

To experimentally determine these POVM elements {7t"}, we employ detector
tomography, as detailed in PRX Quantum 4, 020306 (2023), which builds upon
standard techniques [116, 117]. This involves:

1. Preparing a set of known input states {|£)}. This set must be informationally
complete (or over-complete) for the d-dimensional space in which the input
temporal modes reside. In our work, we use all elements of a complete set of
MUBs from the d-dimensional Hilbert space.

2. For each input state |£), measuring the probability p’® of obtaining a click
in each output channel of the mQPG, projecting onto state |y). This yields
a measurement matrix P = (p’®). According to the definition of POVMs,
P’ =Tr([ENEI7T) = (gl 77 |E).

3. Using these measured probabilities p?*, the POVM elements 7" are recon-
structed via maximum likelihood estimation, subject to the physical constraints
of a positive semi-definite Hermitian matrix. The overall efficiency factors 1),
of each channel are typically neglected in this reconstruction.

This characterization provides the POVM elements {7"}, which fully describe

the mQPG as a high-dimensionalTMs decoder. Reconstructing the experimental

POVMs of the mQPG is essential for understanding its operational capabilities,

quantifying projection fidelities, and assessing imperfections such as crosstalk.
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Figure 4.3: Example of detector tomography results using frequency-bin encoding
ind = 3 and d = 5 (data in PRX Quantum 4, 020306 (2023)). (a,c) Matrix of the
output probabilities p”¢ measured using the ordered set of all eigenstates of the d + 1
MUBs in dimension d. The probabilities are calculated as relative counts from the
simultaneous measurement of the d states in each basis, normalized to the height of
the d phase-matching peaks. (b,d) Theoretical and reconstructed POVM elements 7"
corresponding to each mQPG channel, for each addressed MUB. Each column forms
a complete POVM, describing all possible outcomes of a single measurement with the
exception of an inconclusive result. The reconstructed POVMs in d = 3 and d = 5 yielded
a fidelity of (99.7 £ 0.5)% and (98.9 & 0.5)%, respectively.
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4.1. The challenge of high-dimensional detection

4.1.6 Beyond Hermite-Gaussian modes

The mQPG is not limited to measuring only a single, fixed basis of temporal
modes, nor a single type of encoding. In fact, the reconfigurability of the pump
pulses via shaping make it extremely versatile. As long as a set of temporal
modes can be addressed by appropriately shaped pump pulses that fulfill the
phase-matching conditions for different output channels, the mQPG can measure
them. This allows the mQPG to work not only with Hermite-Gaussian modes,
but also with the discrete frequency bins and ultrafast time bins discussed in
Section 2.1.3. The addressed states are not even required to be orthogonal: at
low conversion efficiencies (typical of the experiments presented in this thesis),
the up-conversion probability in each channel is largely independent of the
others, hence the POVMs will map any non-orthogonality or overlap to the
output probabilities.

The main operational limitation is that the spectral features of the pump must
be achievable by the spectral resolution of the waveshaper and should ideally be
broader than the individual phase-matching peaks of the mQPG to ensure single-
mode operation in each channel. While one might consider increasing the pump
bandwidth to make its spectral features proportionally larger, the total pump
bandwidth is constrained by the initial laser pulse width and by the waveshaper
range. This total bandwidth must then be divided among the spectral regions
addressing the different output channels of the mQPG. For a large number of
channels, this significantly limits the pump bandwidth that can be allocated to
each channel and, in turn, constrains the narrowness of the spectral features
that can be reliably shaped for the pump, leading to errors.

The “fancy” frequency bin (FFB) decoding scheme, presented in Opt. Express
33(3), 5577 (2025), addresses these bandwidth constraints by leveraging the
periodic phase-matching structure of the mQPG to improve its performance. For
mode-sorting frequency bins in d dimensions, instead of requiring d? indepen-
dent pump bins, this method uses only 2d — 1 pump bins equally spaced as the
phase-matching peaks. Each pump bin overlaps with multiple phase-matching
peaks, resulting in effectively broader pump features, improving projection fi-
delity and reducing cross-talk for a fixed total pump bandwidth. However, this
gain in spectral efficiency comes at the cost of reduced programmability. The
overlapping structure of the pump bins imposes diagonal correlations among dif-
ferent projections, restricting the set of independently addressable measurement
operators. As a result, the FFB scheme cannot implement an arbitrary set of pro-
jections in the full d-dimensional Hilbert space. In prime dimensions d, however,
this structure still supports d mutually unbiased bases (MUBs), constructed as
circulant Hadamard matrices [118] as shown in B.1.
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Chapter 4. Decoding time-frequency qudits

4.2 Summary of the experimental results

In the first experimental demonstration, PRX Quantum 4, 020306 (2023), we
implemented for the first time the mQPG and used it to decode single-photon-level
input states in a five-dimensional Hilbert space spanned by Hermite-Gaussian
TMs and their superpositions. We performed detector tomography in all six MUBs
supported by the space, reconstructing the POVM elements associated with each
of the five output channels. The average fidelity between the reconstructed and
ideal measurement operators was 0.96£0.01, indicating consistent and selective
mode-resolved detection across all bases. To further validate the characterization,
we prepared random input states and performed quantum state tomography,
calibrated using the reconstructed POVMs. The average fidelity between the
reconstructed states and the prepared inputs was 0.98 £ 0.02, confirming the
suitability of the mQPG for high-dimensional quantum state decoding.

In the second experimental demonstration, Opt. Express 33(3), 5577 (2025), we
showcased the versatility of the mQPG as a general decoder for time-frequency en-
codings by demonstrating its operation with three distinct mode bases: Hermite-
Gaussian modes, discrete frequency bins, and ultrafast time bins, with the basis
selection achieved solely through spectral reconfiguration of the pump. For each
encoding, we performed detector tomography in three- and five-dimensional
Hilbert spaces, reconstructing the POVMs corresponding to projections in multi-
ple MUBs. The measured count distribution confirmed high intrinsic projection
fidelity, above 90% for all encodings. In addition, we implemented the FFB
scheme and demonstrated its ability to perform high-fidelity mode sorting using
only 2d — 1 pump bins in dimensions d = 3 and d = 5.
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Temporal modes (TMs) of photons provide an appealing high-dimensional encoding basis for quantum
information. While techniques to generate TM states have been established, high-dimensional decoding
of single-photon TMs remains an open challenge. In this work, we experimentally demonstrate demulti-
plexing of five-dimensional TMs of single photons with an average fidelity of 0.96 & 0.01, characterized
via measurement tomography. This is achieved with use of a newly developed device, the multi-output
quantum pulse gate (MQPG). We demonstrate a proof-of-principle complete decoder based on the MQPG
that operates on any basis from a set of six five-dimensional mutually unbiased bases and is therefore
suitable as a receiver for high-dimensional quantum key distribution. Furthermore, we confirm the high-
quality operation of the MQPG by performing resource-efficient state tomography with an average fidelity

0f 0.98 £ 0.02.
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I. INTRODUCTION

As increasingly more applications for quantum tech-
nologies continue to be found, the need to develop a device
that enables highly efficient quantum communication (QC)
becomes critical [1-3]. Photons are ideally suited for this
task due to transmission at the speed of light, intrinsically
low decoherence, and their high-dimensional spatial and
time-frequency degrees of freedom. These degrees of free-
dom provide high-dimensional alphabets that allow one to
encode more information per photon, leading to important
advantages for QC applications, including the higher level
of security and efficiency provided by high-dimensional
quantum key distribution (HDQKD) with respect to its
binary counterpart [4].

Arguably, the most explored high-dimensional photonic
degree of freedom is the spatial one, with particular focus
on the orbital angular momentum of light. One of the main
advantages of this encoding alphabet is the possibility to
generate and detect states using time-invariant operations
[5-7]. However, this advantage comes with an impor-
tant drawback, as orbital angular momentum states are
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inherently incompatible with existing fiber-optic networks
and easily degrade in free-space transmission [8].

The time-frequency degree of freedom of photons over-
comes this limitation. The standard alphabet based on
this degree of freedom is given by time and frequency
bins, which can be conveniently generated from an inte-
grated source [9,10]. The manipulation of time-frequency
bins and their superpositions is possible with interfer-
ometric systems [11] or with a combination of phase
modulators and pulse shapers [12,13]. Scaling either of
those approaches comes with important challenges, and
experimental efforts have been limited to low-dimensional
systems [14,15].

To avoid this impediment, we can exploit the time-
frequency degree of freedom of light through temporal
modes (TMs), i.e., field-orthogonal wave-packet modes.
Since TMs span an infinite-dimensional Hilbert space, they
can represent any arbitrary time-frequency state of sin-
gle photons; of particular importance is that they form
a natural basis to describe photons generated through
ultrafast parametric down-conversion. TMs are charac-
terized by robustness against fiber dispersion and a
higher packing density with respect to frequency bins,
as they can exploit the full frequency space without
the need for guard bands [16,17]. These properties ren-
der TMs a valuable resource not only for QC protocols
but also for several other applications, from quantum
enhanced spectroscopy and metrology [18—20] to quantum
memories [21-23] and deterministic photonic quantum
gates [24-26].
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To fully reap the benefits of high-dimensional encoding,
a TM-based QC scheme requires the generation, manipula-
tion, and simultaneous detection of multiple TMs of single
photons. Single-photon operation is a requirement as quan-
tum light is used in a wide variety of interfacing and com-
munication protocols. Generation of single photons with
a well-defined TM state has been successfully achieved
through ultrafast parametric down-conversion [27-29].
Manipulation and detection of single-photon TMs, on the
other hand, have been limited to a single TM at a time.
These demonstrations were obtained with use of a quantum
pulse gate (QPG) [30-32], a TM-selective device based
on integrated sum-frequency generation that by design is
limited to single-output operation.

In this work, we demonstrate high-dimensional single-
photon TM decoding using a multi-output QPG (MQPG).
The MQPG is a newly developed device that uses a
custom poling structure to project a single-photon-level
input signal onto all the elements of a chosen high-
dimensional TM alphabet (or their superpositions) and
map the results of the projections onto different output
frequencies. We then use a single-photon spectrograph
to read out the output frequency for each input photon,
hence providing the projection result as a “click” in the
corresponding output channel. We demonstrate that our
device is compatible with single-photon-level input states
from a five-dimensional Hilbert space, and characterize
its performance by quantum measurement tomography.
Thus we showcase a proof-of-principle complete HDQKD
decoder based on the MQPG that can work with any
basis from a set of six five-dimensional mutually unbi-
ased bases (MUBs). To further confirm the capabilities
of our device, we use the reconstructed positive-operator-
valued measure (POVM) from the measurement tomog-
raphy to facilitate a resource-efficient state tomography
with an average fidelity of 0.98 & 0.02. Furthermore, we
describe the necessary improvements to scale the decoder
scheme to perform high-quality measurements in even
higher dimensions.

We note that although preliminary work toward expand-
ing frequency conversion to multi-output operation has
been demonstrated [33,34], these implementations were
inherently incompatible with single-photon-level input
states. Our device allows one to fully exploit the greater
information capacity provided by high-dimensional encod-
ing in single photons, granting faster transmission of infor-
mation and enabling HDQKD protocols [4]. Moreover, the
MQPG substantially reduces measurement times for appli-
cations that require projections onto a large number of
TMs, such as quantum state tomography [31].

I1. DEVICE AND PROCESS ENGINEERING

A high-dimensional decoder must allow the user to
perform a simultaneous high-quality projection of the

Output

>

AN NN

Pump

:

FIG. 1. The working principle of the MQPG (left) and descrip-
tion in frequency space (right): in the MQPG waveguide, the
input photons (orange) are demultiplexed to different output fre-
quencies (green) on the basis of their TM. The TMs to be
measured are selected by shaping the pump field (blue).

Pump
Vin

input state onto all the elements of a user-chosen basis
(Fig. 1). The MQPG achieves this goal through type-
II sum-frequency generation (SFG) in periodically poled
titanium-in-diffused lithium niobate waveguides. Its oper-
ation in frequency space is described by a transfer function
G, which maps the input frequencies v, onto the sum
frequencies voy.

To better understand the nature of the MQPG pro-
cess, we first describe the simpler single-output process
of the QPG [30]. The QPG is a device that selectively
up-converts a specific TM component from an input state
with an efficiency of up to 87.7%. Such a high conversion
efficiency is, in principle, also achievable by the MQPG
process.

The transfer function Gy of the QPG is the product of the
pump function oy, which describes energy conservation,
and the phase-matching function ®:

Go(Vin, Vout) = 0 (Vin, Vout) Po(Vin, Vour)- (1)

The SFG process of the QPG (and the MQPG alike)
is dispersion-engineered for group-velocity matching of
the pump and input fields, which causes the phase-
matching function to be independent of the input frequency
[®9 >~ Dy(Vour)]. Under the condition that the input and
pump bandwidths are significantly broader than the phase-
matching bandwidth, the transfer function G, becomes
separable into a pair of input and output functions [35],
meaning that the QPG can perform selective up-conversion
of a specific TM. As a consequence, the intensity of the
SFG light is proportional to the overlap between the com-
plex spectral amplitudes of the input and pump pulses,
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FIG. 2. (a) The superpoling pattern of an MQPG waveguide:

regions of length / poled with period A are alternating with
unpoled regions of length I' — /, where I" is the period of this
alternation. The regions corresponding to the standard nonlinear-
ity coefficient of the waveguide are shown in yellow, whereas
those corresponding to the reversed nonlinearity coefficient are
represented in green. (b) A simulation of the phase-matching
intensity spectrum of a MQPG (green) compared with that
of a QPG (black). The lower efficiency of a MQPG can be
compensated with use of higher pump powers.

but does not depend on their relative phase. The latter
influences only the overall phase of the SFG light, which
is lost in the phase-insensitive photon-counting detection.
The pump pulses can be tailored through spectral shap-
ing, allowing one to select the desired TM, transmitting
the orthogonal TM components unperturbed.

The inherent limitation of the QPG to a single out-
put channel limits the detection to a single TM at a
time, making this device unsuitable for HDQKD, which
requires the detection of any element of the chosen basis
at every single shot of the communication. In contrast, the
multichannel nature of the MQPG renders it suitable for
high-dimensional demultiplexing of many TMs into dis-
tinct output channels. Each channel j of the MQPG acts as
a distinct QPG with its own transfer function G; and maps
a specific TM into the corresponding output frequency.
The multipeak phase-matching function ® = Zj ®; of the
MQPG is generated through the alternation of periodically
poled and unpoled regions along the waveguide (Fig. 2).
The design framework of the MQPG, illustrated in detail in
Appendix A, allows one to freely select the spectral param-
eters such as the interpeak distance and effective number
of peaks. One can then shape a pump spectrum o = » %
with as many peaks as @ in order to create a multi-output
transfer function such as the one illustrated in Fig. 3.

(a) Experiment (b) Simulation

544.5 -
543.5 [
544.0
o 543.0 |
543.5 -
N S
= T 542.5 |
E .- E
E E
= 543.0 F <
542.0 |
- -
542.5 -
541.5
542.0
1 L 541.0
193.8 194.2 193.8 194.2
vin (THz) vin (THz)
FIG. 3. The experimental (a) and simulated (b) transfer func-

tion G(vin, Vour) (red) given by the product of a five-peak phase-
matching function ® (vin, Vour) = P (voy) (green) and a five-peak
shaped pump spectrum o (viy, Vour) (blue). The pump peaks are
shaped as the first five Hermite-Gaussian modes, and only the
intensity of the named quantities is represented. The experimen-
tal transfer function resembles well the simulation. On closer
inspection, however, it displays a small amount of distortion
below the main peaks, which can be attributed to fabrication
defects [36]. These imperfections can be removed by applying
spectral filtering to each output channel.

For this demonstration, we use a five-peak MQPG
waveguide and generate a five-output transfer function to
facilitate operation in a five-dimensional space. The exper-
imental transfer function, shown in Fig. 3(a), matches its
simulated counterpart [red region in Fig. 3(b)]. The tech-
nical specifications of the MQPG waveguide used in this
experiment are explained in detail in Appendix A.

III. TOMOGRAPHY THEORY

To quantify the quality of the high-dimensional decod-
ing of the MQPG, we perform quantum measurement
tomography [37]. For this purpose, we first introduce
the mathematical description of the MQPG operation.
We can describe the multi-output decoding as a POVM
{m”}, which corresponds to the complete measurement
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basis comprising all the channels of the MQPG. Each
individual channel of the MQPG projects the input state
onto a user-chosen TM, y. Consequently, each channel
corresponds to a POVM element, i.e., measurement oper-
ator, w7 = Z]m liY(j| (ideally |y)(y|), with i and j
elements of the fundamental TM basis. We choose to work
in a d-dimensional Hilbert space, where d matches the
number of channels of the decoder. We select the decoder
TMs {y} to form a basis for the aforementioned space.
For each MQPG channel, the probability of SFG con-
version of a pure input state p° = |£)(£| is given by [38]

p’* =Tr(p*n"). )

The aim of measurement tomography is to probe the
decoder with a full set of input states p° so as to recon-
struct the full POVM {x”}. In this work, we use a set of
probe states containing all the elements of the d + 1 MUBs
of our d-dimensional Hilbert space, demonstrating the
compatibility of the MQPG with quantum communication
protocols based on MUBs, including HDQKD.

IV. EXPERIMENT

A schematic of the experimental setup is shown in
Fig. 4. We start from ultrashort Ti:sapphire laser pulses
with a spectrum centered at A, = 860 nm (349 THz)
and a repetition rate of 80 MHz. A portion of the beam
is directed to a homebuilt 4-f line based on a spatial
light modulator [39] with resolution §vspaper, = 10 GHz
to shape the amplitude and phase of its complex spectrum
so as to prepare the pump states. The pulse is carved into
five peaks with centers separated by Avs, = 0.63 THz,
each shaped as an element of a five-dimensional TM basis.
For this experiment, we choose Hermite-Gaussian (HG)
modes and their superpositions, as they provide a good
approximation of the natural modes of parametric down-
conversion processes [40]. The remaining part of the pulse
train pumps an optical parametric oscillator that generates
pulses centered at Aino = 1545 nm (194 THz). The beam
is attenuated to the single photon level with a mean photon
number per pulse lower than 0.1 (0.097 &= 0.001 photons
per pulse) and is shaped with use of a commercial wave-
shaper with resolution 8Vghaper,in = 1 GHz to prepare the
input state. The shaping parameters for the input beam
and each pump peak are chosen such that the FWHM of
the fundamental HG mode is Av, = Av;, = 0.14 THz.
Both beams are then coupled into the MQPG waveguide,
each with a coupling efficiency of approximately 60%.
The waveguide is designed to be spatially single mode
for telecommunication light, and particular care is taken to
ensure the pump field is coupled in the fundamental spatial
mode.

The multi-output SFG process of the MQPG generates
output fields at multiple frequencies (each defining an out-
put channel) around 552 nm (543 THz) based on the TM

Ti:sapphire

SLM

Diffraction
grating

HD TM

decoder

A A

2| 2

tn 4T o) ()

N —-—riiiiiimm "-APD &3
S

Dispersive fiber

FIG. 4. The experimental setup. A portion of the pump beam
(blue line) generated by the Ti:sapphire laser is directed to a 4-f’
line based on a spatial light modulator (SLM). The shaped beam
travels back through the folded configuration at a lower angle
than the incoming beam, so as to be picked up by a short mir-
ror and to be coupled into the MQPG waveguide. The remaining
part of the Ti:sapphire beam pumps an optical parametric oscil-
lator (OPO) that generates the input beam (orange line) of the
experiment at telecommunication wavelengths. The input beam
is attenuated to the single-photon level by neutral-density filters
(ND) and is shaped with use of a commercial waveshaper, before
being coupled into the MQPG waveguide. The output field (green
line), isolated by a short-pass filter (SP), is detected either with
a commercial CCD spectrograph or with a TOF spectrograph
consisting of a dispersive fiber, an avalanche photodiode (APD),
and a time-to-digital converter (TDC). The gray area indicates
the components of our high-dimensional (HD) TM decoder (for
more information, see the main text).

state of the input field. Effectively, the MQPG projects the
input TM onto the chosen TM basis and maps the results
to the corresponding output frequencies. The internal con-
version efficiency is approximately 5%, here limited by the
pump pulse energy available in this experiment. The output
fields are separated from the residual pump and input fields
with use of a dichroic mirror and are then fiber-coupled and
measured with a commercial CCD spectrograph (Andor
Shamrock 500i) with a resolution of 30 GHz.

To perform the quantum measurement tomography, we
probe the decoder with input states from a set comprising
all 30 elements of the six MUBs of our Hilbert space. For
each measurement we make three acquisitions, each with
an integration time of 10 s and an average count rate of 470
Hz. We then calculate the experimental output probabili-
ties for each channel p”¢, and we use them to reconstruct
the POVM elements 77 through a weighted least-squares
fit:

véE — Tr(pén?) 2
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where we constrain 77 to be Hermitian and positive
semidefinite. The first eigenmodes of the reconstructed
POVM elements are presented in Fig. 5. One can see
that they very closely match the ideal POVMs both in
amplitude and in phase.

We quantify the quality of the decoder by calculating the
purities of the POVM elements

_ Tr(n”?)

y — 7
(Trr? )2

“4)
and the fidelities when compared with the ideal operators

(ylm?ly)

F¥ = .
TrrY

®)
In an ideal system, both these values are equal to 1. The
average experimental results with their respective standard
deviations are listed in Table I (left column). The high
average fidelity and purity indicate the remarkably good
quality of the MQPG measurements.

Amplitude (arb. units)

-02 0.0 0.2 -02 00 0.2

1 1
-0.2 0.0 0.2

TABLE 1. Average fidelities and purities of the reconstructed
POVM elements for d =5 with the corresponding standard
deviation.

CCD spectrograph TOF spectrograph
Fidelity 0.956 £0.014 0.810 £ 0.046
Purity 0.885 £ 0.036 0.552 £ 0.087

V. HDQKD DECODER DEMONSTRATION

To demonstrate a proof-of-principle HDQKD decoder,
we need to perform photon counting. For this reason,
we replace the CCD spectrograph with a homebuilt time-
of-flight (TOF) fiber-assisted single-photon spectrograph
[41,42]. This system exploits the chromatic group velocity
dispersion of a single-mode fiber to apply various delays
to the different frequency components of the pulses, effec-
tively mapping each frequency component to a different
arrival time. The arrival times are then measured with

Phase (rad)

1 1
-02 0.0 0.2 -0.2 00 0.2

Frequency detuning (THz)

FIG. 5.

First eigenmodes of the POVM elements (five for each of the six MUBs). Shaded areas and orange lines show the ideal

amplitude and phase; black and blue lines show the same values for experimental data, with solid and dashed lines corresponding to

the CCD spectrograph and the TOF spectrograph, respectively.
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use of an avalanche photodiode combined with a time-to-
digital converter. A calibration of the system then allows
one to calculate the frequency corresponding to each
arrival time, recovering the information on the detected
TM. The simple structure of the TOF spectrograph makes
it cost-effective and versatile. The TOF setup used in this
experiment has a resolution of 0.3 THz and introduces 20
dB of losses. These values are limited by the availabil-
ity of low-loss high-group-velocity-dispersion fibers for
visible light. The high losses do not pose a fundamental
problem for the operation of our decoder; however, they
limit the maximum distance at which communication is
still possible.

As a first characterization of the complete HDQKD
decoder, we perform measurement tomography. For each
measurement we make 30 acquisitions, each with an inte-
gration time of 10 s and an average count rate of 40 Hz. The
characterization results, reported in Table I, show a good
average fidelity. The good fidelity is apparent in the agree-
ment between the first eigenmodes of the reconstructed
POVMs and the ideal ones (Fig. 5), which show a similarly
good quality for all six MUBs. The low average purity of
the reconstructed POVMs, however, is an indicator of mul-
timodedness in the decoder, which results in output clicks
corresponding to TMs that are not present in the input
state. The discrepancy with the high intrinsic purity of the
MQPG indicates that the loss of quality can be traced back
uniquely to the difference between the TOF spectrograph
and the CCD spectrograph. The limited resolution of the
TOF spectrograph is not sufficient to completely filter out
the phase-matching imperfections of the MQPG [visible in
Fig. 3(a)], which then introduce a multimode behavior in
the system.

Despite the loss of quality due to the spectrograph,
the decoder shows good TM-demultiplexing behavior,
which makes it suitable as a proof-of-principle receiver for
HDQKD. To demonstrate this, we extract the count rates
relative to the projection of each input state onto the cor-
responding MUB from the same set of experimental data
used for the tomography. We then calculate the average
selectivity per MUB as the ratio of the number of correct
counts to the total number of counts. Our results show an
average selectivity per basis ranging from 61% to 78%,
which demonstrates a clear mode-selective behavior, but
indicates that there is room for improvement. Values in this
range are lower than the internal average selectivity of the
MQPG S = 92% (measured with the CCD spectrograph).
The discrepancy is once again explained by the low reso-
lution of the TOF spectrograph used in this experiment,
which hinders proper discrimination of the counts. This
becomes evident when one compares the relative counts
measured by the decoder in one of the six MUBs with the
intrinsic performance of the MQPG (Fig. 6). This observa-
tion suggests that although the current implementation of
the MQPG-based decoder is already up to the task of TM

Input state: 0

Input state: 1

Relative counts

1.00 Input state: 4
0.75 - !
0.50 I
0.25

0.00 - BN cooem puivm ! |
1 2 3 4 5

Detected state

FIG. 6. Relative counts obtained when we project the five ele-
ments of one MUB onto the same MUB with the complete
decoder (filled bars) and internal performance of the MQPG
(dashed lines). The error bars represent the error on the mean
relative counts of 30 data acquisitions.

demultiplexing, a high-resolution single-photon-resolving
spectrograph will allow one to take full advantage of the
high measurement quality provided by the MQPG.

VI. BEYOND QKD: STATE TOMOGRAPHY

In this section, we demonstrate that the measurement
tomography of the MQPG allows us to overcome its short-
comings for applications that require measurements that
become integrated over time, such as in state tomography.
For this purpose, we perform resource-efficient single-
photon state tomography with the MQPG and we show the
improvement provided by the reconstruction of the exper-
imental POVMs. We prepare 25 random pure input states
p from our five-dimensional Hilbert space, and measure
them using the six MUBs as decoder bases. We perform
the frequency-resolved detection with the CCD camera,
with three acquisitions for each measurement, each with
an integration time of 10 s and an average count rate of
470 Hz. We reconstruct the input states through a weighted
least-squares fit:

; _ N2 /Y
mpm?py Tr(pr?)I*/p?, (6)
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FIG. 7. Example of tomography of a random input state (mea-
sured with the CCD spectrograph). The plots correspond to the
real (top) and imaginary (bottom) parts of the density matrix of,
from left to right, the original input state, the raw reconstructed
state, and the state reconstructed with the calibration information
obtained from the measurement tomography.

where the p? are the output probabilities of the different
channels and p is constrained to be Hermitian and positive
semidefinite. We stress that, owing to the high dimension-
ality of our decoder, it is sufficient to set the pump states to
the desired basis to project the input state onto all its ele-
ments at the same time within a single measurement. This
means that we perform only six measurements to obtain
counts on all 30 possible pump states. We highlight that
the high number of measurements required constituted the
main limitation to dimension scalability for the QPG [38]
and that the MQPG overcomes this limitation.

We reconstruct the input state first assuming ideal
POVMs {|y)(y|} (“raw” state tomography), and then con-
sidering the measured POVMs {n?} (“calibrated” state
tomography). The results are summarized in Table II,
and an example of input-state reconstruction is provided
in Fig. 7. The calibrated state tomography significantly
increases the fidelity and purity of the reconstructed states.
This can be explained considering that the main source
of error in our system is the residual crosstalk deriving
from the phase-matching imperfections, which cannot be
completely eliminated even with the high resolution of
the CCD spectrograph. This crosstalk is well character-
ized through the measurement tomography; therefore, in
the calibrated state tomography we exploit this information
to correct for the induced errors.

VII. DISCUSSION

The current implementation of the proof-of-principle
decoder for HDQKD is limited by available components;
however, the issues are of a technical nature and can be

TABLE II. Average fidelities and purities of the reconstructed
input states for d = 5 with the corresponding standard deviation.
Raw Calibrated
Fidelity 0.941 £0.019 0.983 £0.016
Purity 0.816 £ 0.062 0.941 £ 0.056

overcome rather easily. The main limitation is set by the
spectrograph system, which is required to be compati-
ble with photon counting at visible wavelengths. Such a
device is not yet commercially available, and the home-
built TOF spectrograph used in this work introduced 20
dB of losses and had a limited resolution of 0.3 THz,
which decreased the fidelity from the intrinsic value of the
MQPG F = 0.96 4+ 0.01 to the resulting decoder fidelity
F'=0.81£0.05. The loss of fidelity can be prevented
with use of state-of-the-art components for the spectro-
graph system. Indeed, a TOF spectrograph based on a
state-of-the-art chirped fiber Bragg grating [43] and a
low-jitter superconducting-nanowire single-photon detec-
tor [44] would achieve a resolution of 6 GHz for much
lower losses, allowing one to fully exploit the high intrin-
sic fidelity of the MQPG and at the same time increase the
efficiency of the decoder.

Moreover, the decoding efficiency can be further
increased by increasing the internal conversion efficiency
of the MQPG waveguide. This can be done through an
optimized tailoring of the phase-matching function [34,
45,46] and by increasing the pump pulse energy avail-
able in the experiment. To achieve a higher pump energy,
one can, of course, resort to using a higher-power laser.
However, an appealing solution, with the advantage of on-
chip integration, would be to generate each pump peak
with a separate chip-based mode-locked laser. Indeed, pre-
liminary devices demonstrated a spectral bandwidth of
approximately 0.35 THz [47], which matches the ideal
bandwidth of each pump peak of the MQPG.

Although the implemented five-channel MQPG has
undeniable benefits for QC applications based on single-
photon TMs (which until now have been limited to a
mere two-dimensional space) one may wish to push the
device to even higher dimensions. The methods detailed in
Appendix A provide the scheme for generating a MQPG
waveguide with the desired number of output channels via
straightforward modulation of the poling pattern. The cost
of moving to higher dimensions is that each pump peak
becomes narrower for a fixed spectral width set by the
Ti:sapphire pump pulse. To prevent a loss in measurement
quality, one must either increase the available spectral
bandwidth or address the difficulties that arise when one is
operating with narrower and more densely spaced peaks.
This requires an increased spectrograph resolution to fully
discriminate the output channels, an increased shaping
resolution, and a narrower phase-matching function (e.g.,
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through a longer waveguide [48]) to satisfy the single-
modedness condition for each channel [35]. In Appendix
C, we study how improved technical capabilities can allow
high-fidelity operation in higher dimensions. With state-
of-the-art components, a MQPG-based decoder could eas-
ily achieve operation above 90% selectivity beyond 25
dimensions in all mutually unbiased bases.

VIII. CONCLUSION

We demonstrated five-dimensional temporal-mode
demultiplexing of single photons using a newly devel-
oped device, the MQPG. We characterized its performance
through measurement tomography, obtaining an average
fidelity of 0.96 £ 0.01 to the theoretical POVMs. We then
demonstrated a complete HDQKD decoder for single pho-
tons based on the MQPG, which revealed an average
fidelity of 0.81 £ 0.05, solely limited by the currently
available spectrograph technology. Finally, we exploited
the information obtained from the measurement tomogra-
phy of the MQPG to demonstrate resource-efficient high-
quality state tomography with an average fidelity of 0.98 £
0.02.

These results show that the demonstrated architec-
ture provides a scalable framework for high-dimensional
decoding. The purity and fidelity of the device can be eas-
ily increased by limiting the phase-matching imperfections
and increasing the resolution of the spectrograph. Doing
this will result in a decoder with high-performance oper-
ation in more than 25 dimensions, leading to even greater
information capacity and security in HDQKD.

Finally, we highlight the versatility of the MQPG, which
constitutes one of its main advantages. Because of the
fully programmable shaping systems, one can easily work
with alternative high-dimensional TM encodings without
modifying the experimental setup. This gives one the free-
dom to explore a wide range of parameters so as to find
the optimal solution for different applications. Finally, we
emphasize that, independently of the encoding alphabet
chosen and of the dimensionality d of the system, the
MQPG is always able to work with the full set of d 4 1
MUBs. This makes the MQPG a valuable resource for
many QC applications and, furthermore, opens up further
opportunities for all TM-based technologies, from quan-
tum spectroscopy and metrology to quantum memories and
deterministic photonic quantum gates.
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APPENDIX A: MULTI-OUTPUT QUANTUM
PULSE GATE

Here we describe the techniques used to obtain a MQPG
process for an input signal comprising multiple temporal
modes centered at telecommunication wavelengths around
1545 nm (194 THz). We start by finding the optimal
parameters for a QPG process, i.e., type-II SFG between
two group-velocity-matched fields labeled “pump” and
“signal.” To achieve group-velocity matching in a nonde-
generate process, we exploit the polarization dependency
of the group velocity of light in a birefringent crystal.
Using this, we are able to find a transverse-magnetic-
polarized pump field with different wavelength but same
group velocity as the transverse-electric-polarized signal
field. Next, we achieve the quasi-phase-matching condi-
tion for the chosen fields by applying a periodic poling
with period A to the waveguide. With this method, we
can identify a QPG process tailored for the chosen input
wavelength, in our case a telecommunication field.

To obtain the MQPG, we need to expand the QPG
process to multiple output channels. We note that, due
to the properties of the QPG, each output channel will
correspond to one phase-matching peak. Previous work
[33,34] demonstrated that multiple phase-matching peaks
are attainable through a periodic modulation of the pol-
ing pattern. We therefore modify the poling structure of
a QPG waveguide by applying a modulation with period
I' (“superpoling period”) and an asymmetric duty cycle
n € [0, 1], obtaining poled regions of length / = nI" alter-
nating with unpoled regions of length (1 — »)I" [Fig. 2(a)].
We can calculate the new phase-matching function ana-
lytically to show how this modulation generates multiple
output peaks.

The phase-matching function of the SFG process for
a waveguide of length L can be described as a function
of the birefringent phase mismatch AB, = Bout — Bpump —
Bin, Where B; is the propagation constant of field i:

L
dsrc(ABL) /0 2@z, (Al)

where z is the position on the main waveguide axis and
g(z) is the nonlinearity profile along the waveguide, which
is fully determined by the modulation of the poling pattern.
In the range of output wavelengths allowed by energy con-
servation of the SFG process, the phase-matching function
becomes

T &AL Sin(ABL/2) (A:Bpl
¢SFG ~ SINC | ——

re . JRIGY: 1/2)
L €A/ sin(AB,T /2) 2 ’
(A2)

where we defined A8, = AB, — 2 /A. This expression
describes a train of sinc-shaped peaks modulated by a sinc-
shaped envelope. A quick analysis reveals that the physical
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FIG. 8. Simulation of the phase-matching intensity showing

how the spectral features are related to the superpoling param-
eters.

lengths of the waveguide are related to the spectral param-
eters: the length of the sample L is inversely proportional
to the peak width, the superpoling period I' is inversely
proportional to the interpeak distance, and the length of
each poled region / is inversely proportional to the enve-
lope width (Fig. 8). In particular, the ratio I'/I =1/n
defines the number of peaks within the FWHM of the enve-
lope. Therefore, the framework presented allows one to
design a MQPG waveguide with the desired number of
phase-matching peaks, i.e., number of output channels.

In the experimental implementation of the MQPG pre-
sented in the main text, we used a periodically poled
titanium-in-diffused lithium niobate waveguide with pol-
ing period A = 4.32 um operated at a working tempera-
ture of 170 °C. The superpoling parameters were set to / =
397 pm and I' = 1590 wm to obtain five output peaks in
a wavelength range that would match the bandwidth of the
Ti:sapphire pump Avrisa = 3 THz used in the experiment.

APPENDIX B: REAL MQPG PROCESS

In an ideal MQPG process, each channel is character-
ized by single-mode operation, i.e., it provides an output
only if the input signal contains the corresponding TM.
This ideal behavior is exhibited only if the width of each
phase-matching peak is much narrower than that of the
corresponding pump pulse [35]. However, as explored in
detail in previous work by our group [36], a real phase-
matching function always displays some degree of imper-
fection [visible, for example, in Fig. 3(a)]. Phase-matching
imperfections effectively broaden the width of each peak,
causing multimode behavior in each channel of the MQPG
process. This multimodedness then results in output clicks
corresponding to TMs that are not present in the input state.

To recover single-mode operation in each channel of a
real MQPG waveguide, one can exploit the fact that the
frequency of the spurious output photons will be slightly
offset with respect to the central output frequency of the
phase-matching peak. Therefore, one can apply a spectral
filter to each output channel so as to discriminate the real

counts from the spurious counts arising from the phase-
matching imperfections. The method used in this work is
to filter in postprocessing the output spectrum acquired by
the spectrograph. We define a frequency window around
the center of each output peak, and we consider as channel
clicks only the counts within this window. The effective-
ness of this filtering method is then dependent on the
resolution of the spectrograph, which needs to be suf-
ficiently precise to fully distinguish the phase-matching
peaks from the surrounding regions.

The definition of resolution for the TOF spectrograph
requires careful consideration. Since this type of spectro-
graph is composed of a highly dispersive fiber combined
with an avalanche photodiode and a time tagger, one would
intuitively define its resolution as that of the time tagger (1
ps in our case) divided by the total chromatic dispersion of
the fiber (217 ps nm~" for our 1 km-long fiber). However,
one needs to take into account the timing jitter of the TOF
setup (64 ps in FWHM), which introduces uncertainty on
the arrival time of each photon, and hence on its frequency.
Therefore, the actual resolution of a TOF spectrograph is
given by a combination of these two factors, and in our
case is dominated by the latter. This results in a much lower
frequency resolution of 300 GHz, which is half as large as
the separation between the peaks (630 GHz).

The effect of this low resolution is visible in Fig. 9,
which shows the fidelity and the purity of the POVM ele-
ments of our decoder as a function of the window width,
comparing the measurements obtained with the TOF spec-
trograph with those obtained with the CCD spectrograph
(see Table I and Fig. 5 for reference). For the latter,
which has a resolution of 30 GHz, one can notice a strong
improvement of the measurement quality as the filtering
window becomes narrower (from right to left), particu-
larly in the average purity of the POVMs. This is due
to the progressive elimination of spurious counts in the
regions outside the phase-matching peaks. In the case of
the TOF spectrograph, on the other hand, the performance
improvement is barely noticeable due to its low resolution.
Although it is still possible to apply a filtering window nar-
rower than the actual resolution, we see that below 300
GHz the measurement quality is essentially saturated. The
results obtained with the CCD spectrograph are therefore
an indication of the high intrinsic quality of our experimen-
tal implementation of the MQPG, which could be achieved
also for the decoder as a whole by solely increasing the
resolution of the TOF spectrograph.

APPENDIX C: EXPANSION TO HIGHER
DIMENSIONS

Here we study the maximum dimensionality achievable
by a realistic MQPG-based decoder. In the system con-
sidered, the dimensionality is defined by the number of
basis elements that can be observed at the same time.
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FIG. 9. Average purity and fidelity (with corresponding stan-
dard deviations) of the POVMs of our implemented five-
dimensional decoder for experimental data acquired with the
CCD spectrograph (solid line) and the TOF spectrograph (dashed
line) as a function of the spectral window around each central
frequency.

When we expand the MQPG system to the dth dimen-
sion, therefore, the Hilbert space considered will include
HG modes from the zeroth order to the (d-1)th order and
their superpositions.

We consider the case in which, as in the experimental
demonstration, the pump field that drives the MQPG pro-
cess is generated by shaping a single broadband pulse. The
spectra corresponding to all d elements of the chosen basis
(“pump peaks”) must be carved within the available spec-
tral bandwidth; therefore, the spectral width allocated for
each element is inversely proportional to d. Furthermore,
higher-order HG modes span a wider spectral bandwidth;
as a consequence, the spectral width of each pump peak
must be further reduced to avoid overlaps when one is
increasing the dimensionality. This bandwidth constraint
constitutes the main limitation to the scalability of the cur-
rent implementation of the system. Indeed, if each pump
peak is not sufficiently broader than the corresponding
phase-matching peak, each channel starts displaying mul-
timode behavior, which represents the main source of error
in the experiment.

For this reason, we investigate how the ratio between
the maximum available pump bandwidth and the band-
width of the phase-matching function affects the quality of
the projections, quantified as the average selectivity over
all d4+ 1 MUBs of a d-dimensional Hilbert space con-
taining HG states and their superpositions. We simulate a
decoder based on a realistic MQPG waveguide in a setup
with an ideal shaping resolution and an ideal noiseless
spectrograph at the output of the device.

FIG. 10. Average selectivity of a MQPG-based decoder for
different dimensionalities as a function of the ratio between the
maximum available pump bandwidth (Avp,mp) and the band-
width of the phase-matching function (Avpy). The cross marks
the conditions of the experiment presented in the main text,
whereas the dashed line shows what can be achieved with state-
of-the-art components (a 10-cm-long sample and a pump laser
bandwidth of 13 THz).

The results of the study are summarized in Fig. 10,
which shows the average selectivity for all d + 1 MUBs
of a d-dimensional MQPG-based decoder as a function of
the ratio between the maximum available pump bandwidth
and the bandwidth of the phase-matching function. The
cross marks the conditions of the experiment presented in
the main text, whereas the dashed line shows what can be
achieved with state-of-the-art components: a 10-cm-long
sample and a pump laser bandwidth of 13 THz would
allow operation in 25 dimensions (and all 26 MUBs) with
a selectivity greater than 90%.
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Abstract: We demonstrate a high-dimensional mode-sorter for single photons based on a multi-
output quantum pulse gate, which we can program to switch between different temporal-mode
encodings including pulse modes, frequency bins, time bins, and their superpositions. This device
can facilitate practical realizations of quantum information applications such as high-dimensional
quantum key distribution and thus enables secure communication with enhanced information
capacity. We characterize the mode-sorter through a detector tomography in 3 and 5 dimensions
and find a fidelity up to 0.958 +0.030 at the single-photon level.
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1. Introduction

Quantum information science based on high-dimensional encodings has the potential to revo-
lutionize computing, communication, and cryptography by harnessing the unique properties
of quantum systems [1,2]. High-dimensional encodings allow for increased information ca-
pacity of quantum information carriers and noise robustness, thereby improving the security
and efficiency of quantum communication protocols such as high-dimensional quantum key
distribution (HD-QKD) [3,4]. Photons are a natural choice of information carrier due to their
inherent quantum properties and high-dimensional degrees of freedom in both the spatial and
time-frequency domain. Although arguably less explored than their spatial counterparts, time-
frequency encodings offer significant advantages in quantum information applications: since
orthogonal time-frequency modes can share the same spatial distribution, they are resilient in
transmission and compatible with existing spatially single-mode telecom fiber infrastructure.

Temporal modes (TMs) provide appealing time-frequency encodings in the form of field-
orthogonal wave-packet modes that can be expressed as coherent superpositions of monochromatic
modes [5]. These encodings can describe discrete Hilbert spaces with finite high dimensionality,
which find applications in many quantum information fields, from quantum cryptography [3] to
quantum computing [6,7] and quantum networks [8—10]. TM alphabets used in these applications
include frequency bins, time bins, and pulse modes, each offering distinct advantages and posing
unique challenges [5,11,12]. Frequency bins and time bins encode information in modes that are,
for all practical purposes, intensity-orthogonal in frequency or time, respectively. In contrast,
the intensity profiles of pulse modes overlap in time and frequency, and the field-orthogonality
condition is determined by their complex spectral profile. Hermite-Gauss (HG) modes are a
common example of this type of encoding alphabet.

Despite their different labels, frequency bins, time bins, and pulse modes all belong to the same
family: they can be described as complex functions of time or frequency, connected through a
Fourier transform and, therefore, they all represent particular realizations of TMs. We note that,
since TMs are defined as wave-packet modes, they differ conceptually from the more conventional
continuous variable approach which uses time and frequency as conjugate bases containing an
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infinite number of delta-like bins [13—15]. Instead, TMs include discrete finite bins [12,16]
and pulse modes [17] that can be encoded in light pulses. Conjugate bases in this context are
constructed as superpositions of states from the fundamental basis with appropriate phases [18].

Establishing a complete TM-based quantum information framework requires the generation,
manipulation, and detection of high-dimensional quantum TM states. Engineered parametric
down-conversion is a well-known and established tool for generating these states [19-21].
However, simultaneously manipulating or detecting multiple single-photon TMs is challenging
because both pulse modes and superpositions of bins overlap in time and frequency. This task is
further complicated by the requirements of quantum communication protocols like HD-QKD,
which demand a high-dimensional mode sorter capable of operating with single-photon TMs and
their superpositions at each individual shot of the communication [3,4].

To date, dedicated devices have been developed and tailored for each application. The
so-called quantum frequency processor [22,23], for instance, demonstrated mode-sorting of three-
dimensional frequency bins and their superpositions using a combination of phase modulators and
pulse shapers. While this approach operates effectively in different superposition bases, scaling
it to higher dimensions would require additional components, increasing the setup complexity.
Similarly, interferometric setups based on beam splitters [24,25] have been used to decode
time bins in up to four dimensions and two conjugate bases, but would necessitate complex
cascaded interferometers to access higher dimensions. In contrast, a simpler setup based on
group-velocity dispersion [26] has demonstrated time-bin decoding in four dimensions which
can be scaled without added complexity. However, this method inherently suffers from higher
error rates as dimensionality increases and is limited to operating in a single superposition basis,
in addition to the fundamental time-bin basis. The multi-output quantum pulse gate (mQPG)
[27] has recently shown simultaneous projections of a single-photon-level input state onto five
arbitrary superpositions of pulse modes using a single nonlinear process, which can be scaled
to higher dimensions without increasing the number of components. However, no analogous
demonstration yet exists for frequency bins and time bins. The need for dedicated infrastructure
for each encoding complicates interfacing between devices that work with different alphabets,
even though they operate on the same degree of freedom, and necessarily leads to the development
of distinct quantum networks that cannot be interconnected without a system capable of handling
multiple encodings.

In this work, we demonstrate programmable high-dimensional mode-sorting of different
TM-based encoding alphabets at the single-photon-level, achieved through an mQPG. This
programmability is enabled through spectral pulse shaping, leveraging the fact that all TM
alphabets can be described as complex functions of frequency to change the measurement basis
or encoding alphabet without requiring hardware modifications. For each encoding alphabet —
pulsed modes, frequency bins and time bins — we demonstrate high-fidelity projections onto
multiple superposition bases, namely all possible mutually unbiased bases (MUBs) in 3 and
5 dimensions. The versatility of the mQPG to operate in different high-dimensional encoding
alphabets and superposition bases is crucial for interfacing with diverse sources and integrating
the unique benefits offered by each encoding alphabet, interconnecting quantum networks and
paving the way for practical applications in quantum information science.

2. Multi-output quantum pulse gate

The mQPG serves as a high-dimensional mode-sorter for TM states [27]. Its working principle
is based on a dispersion-engineered sum-frequency-generation (SFG) process where an input
pulse, driven by a strong pump field, is converted into a particular output pulse based on its
TM (Fig. 1). The process takes place in a periodically poled nonlinear waveguide, typically
titanium in-diffused lithium niobate [17]. The periodic poling structure of the mQPG waveguide,
consisting of alternating poled and unpoled regions (“super-poling”), enables parallel SFG
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Fig. 1. Working principle of the mQPG-based time-frequency mode sorter: the mQPG
process, driven by a pump pulse spectrally shaped to implement the selected measurement
basis, up-converts the input photons to a different output frequency based on their temporal
mode; the output frequencies, which encode the information in the signal, can be detected
with a single-photon spectrograph. We can choose frequency bins, pulse modes, and time
bins as encoding alphabet.

processes centered at distinct output frequencies which define the output channels of the device.
The SFG process is engineered to achieve group-velocity matching between the input and pump
pulses, which is essential for mode-selective operation in each channel [28].

In frequency space, the mQPG operation is described by a transfer function G(viy, Vout) that
relates the input frequencies v, to the output frequencies voy (Fig. 2). The transfer function is the
product of the pump function a, which describes energy conservation, and the phase-matching
function @, which is determined by momentum conservation: G(vin, Vout) = @(Vout — Vin) - ®(Vout)-
The number and spacing of phase-matching peaks depend on the super-poling parameters selected
during the fabrication of the mQPG waveguide [27]. The pump function is determined by the
complex spectral amplitude of the pump pulse, which can be tailored through spectral shaping.
By dividing the pump spectrum into distinct spectral regions, spaced to match the phase-matching
peaks, each region can be aligned with a specific phase-matching peak in correspondence of the
same input frequencies (as shown in the first three columns of Fig. 2). Each spectral region can
then be shaped to implement a different TM in the respective output channel, effectively creating
a multi-output transfer function.

If the spectral features of the pump are larger than the bandwidth of each phase-matching
peak, the mQPG performs ideal single-mode projections in each channel, meaning that the
up-conversion probability in each output channel is proportional to the complex spectral overlap
between the corresponding pump mode and the input state [29]. In this optimal regime, each
mQPG channel can be described by a von-Neumann projection 77 = |y) (y| onto the assigned
TM . In this case, the probability of SFG conversion of a pure input state p* = |£) (£] is given
by p¥¢ = Tr { of 717} [17]. The complete mQPG process, described by the set of projectors {7”}
comprising all channels, effectively sorts the input modes into output frequencies which can be
read out using a spectrograph. The modes y for the projections can be chosen programmatically
via pump shaping, which facilitates measurements in different superposition bases without any
hardware modifications. Changing the encoding alphabet is equally straightforward, requiring
only a change in the shaped pulse from frequency bins to pulse modes or time bins or any of their
superpositions.

In a practical experimental setting, however, the mQPG has a non-unity conversion efficiency,
which leads to an inconclusive result when the input photons are not up-converted by the
device. In this case, the mQPG operation is described by the positive-operator-valued measure
(POVM) {7}, comprising the POVM elements ¥ that describe the operation in each channel
and an additional POVM element describing the inconclusive result. For simplicity, in the
following discussion we will neglect the inconclusive result and consider only the POVM
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Fig. 2. Frequency-space representation of the transfer functions of the three-dimensional
fundamental basis (top) and a superposition basis (bottom) for the three TM alphabets tested
in this work: time bins, HG modes, and frequency bins (including the “fancy” frequency
bin mode-sorting approach explained in the main text). The horizontal lines indicate the
phase-matching function ®(vey), comprising one phase-matching peak for each output
channel of the mQPG. The diagonal gray area shows the amplitude of the pump function
a(Vout — vin)- The colored regions indicate the transfer function G(vin, vout), which shows
where the SFG process can take place.

elements associated with successful click detection. Experimental constraints can also limit the
achievable ratio between the spectral bandwidth of the pump and that of the phase-matching
bandwidth, introducing spurious multi-mode processes in each channel that lead to cross-talk
in the mode-sorting process [29]. In this case, the POVM elements require the more general
description 77 = 3 mZ |7 (j|, with i and j elements of the chosen fundamental TM basis [30].
In order to eliminate the induced cross-talk, one must artificially reduce the phase-matching
bandwidth through narrowband frequency filtering. However, the resolution of currently available
single-photon spectrographs in the mQPG output frequency range (around 550 nm) is insufficient
for adequate frequency filtering. This technical limitation significantly constrained previous
demonstrations, decreasing the measurement fidelity of the mQPG in five dimensions from the
intrinsic value of 92% to 65% [27,31].

To overcome this limitation, we developed an alternative technique for frequency-bin mode-
sorting, labeled “fancy” frequency bin (FFB) approach, that leverages the periodic phase-matching
structure of the mQPG to improve its performance. Following the energy conservation condition,
a single pump bin generally intercepts multiple phase-matching peaks, separated by Av, in
correspondence of input frequencies also separated by Av (last column in Fig. 2). This transfer
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function, generated using only one pump bin, can completely mode-sort discrete frequency bins
with separation Av in input, which form the fundamental basis of a d-dimensional Hilbert space.

This scheme can be intuitively extended to also mode-sort MUBs containing superpositions of
frequency bins by generating pump bins with spacing equal to Av. In contrast to the standard
approach, where each pump bin addresses only one mQPG channel, in the FFB method each pump
bin intercepts multiple phase-matching peaks at corresponding input frequencies with an offset
of Av. A total of 2d — 1 pump bins is thus sufficient to generate a complete dxd transfer function,
where the mode in each mQPG channel is determined by the relative phase of the pump bins. This
approach enables sorting d distinct input modes (frequency bins or their superpositions) starting
from only 2d — 1 pump frequency bins, instead of the d” bins required by the standard approach.
Hence, the FFB method scales linearly with the system dimensionality rather quadratically,
effectively reducing the technical demands on the experimental setup. Namely, it allows one to
use fewer, broader pump bins within a fixed spectral region, reducing the need for precise spectral
shaping while simultaneously increasing the ratio between the spectral features of the pump and
the phase-matching width. This generally results in lower cross-talk [29], greatly improving the
measurement quality for a fixed available pump bandwidth and reducing reliance on extensive
output filtering.

While the FFB approach introduces inter-bin correlations that restrict the full programmability
of each channel, it still provides sufficient flexibility for various applications. For instance, in
prime dimensions d, this technique allows for measuring in d MUBs [32], only one basis short of
the complete set of d + 1 MUBs. Although this limitation precludes applications such as input
state tomography, which require measurements in all MUBSs, the FFB method offers significant
advantages in HD-QKD, which only requires at least two MUBs and can benefit from additional
measurement bases [33-35].

3. Experiment

The schematic of the experimental setup is illustrated in Fig. 3. A mode-locked Ti:sapphire
oscillator with a repetition rate of 80 MHz generates pulses centered at 860 nm with a spectral
full-width-half-maximum of 3 THz, corresponding to a duration of 150 fs. The pump pulse is
generated by shaping the spectral amplitude and phase of the laser pulse through a in-house-built
4-f-line waveshaper based on a spatial light modulator. A portion of the original Ti:sapphire
pulse is directed to pump an optical parametric oscillator that generates the input pulse of the
experiment centered at 1545 nm, which is shaped by a commercial waveshaper and attenuated
to below 0.1 photons per pulse to generate the single-photon-level input states, representing
the typical information carrier of a quantum communication scheme such as HD-QKD. For
this demonstration, we consider three TM alphabets: time bins, HG modes, and frequency
bins. For the latter, we also test the alternative FFB mode-sorting technique explained in the
previous section by appropriately shaping the pump pulse. The spectral parameters used for each
encoding alphabet are reported in Table 1, and examples of the resulting spectra are shown in the
Supplement 1.

The pump and input pulses are coupled into the mQPG, realized as a periodically super-poled
titanium-indiffused lithium niobate waveguide [27], with a coupling efficiency of approximately
50% for the pump and 70% for the input. The poling period of 4.32 um allows for a type-II
SFG process in which a horizontally-polarized 1545 nm input photon is up-converted to a
horizontally-polarized output photon at 552.5 nm through a vertically-polarized 860 nm pump
field, according to the mQPG mode-sorting process. We use a five-output mQPG waveguide of
which we use 3 or 5 output channels, depending on the dimensionality of the chosen alphabet.
The output channels are centered at frequencies separated by 0.5 THz in the case of FFB in 5
dimensions and 0.63 THz in all other cases.
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Table 1. Spectral parameters used for each encoding alphabet:
full-width-half-maximum (FWHM) of the amplitude profile of each bin,
and inter-bin separation.?

d=3 d=5
Encoding FWHM Separation FWHM Separation
Time bins 1.5ps 3.5ps 1.5ps 5.0ps
HG modes 210GHz - 140 GHz -
Frequency bins 100 GHz 200 GHz 50GHz 100 GHz
FFB 300 GHz 630 GHz 150 GHz 500 GHz

“In the case of the HG alphabet, the reported FWHM corresponds to the HGO (Gaussian)
mode, and the inter-bin separation is not defined.

ND ; mQPG waveguide
" 2
Ti:Sapph Wavesh P -
i:Sapp D Waveshaper ‘.H . { = —.—I\Spectmgraph |
LPY |
2 SP

Folded 4-f SLM

waveshaper Spectrograph configurations

Pump

860 nm diffraction

grating

Fig. 3. Schematic of the experimental setup. A system comprising a mode-locked
Ti:sapphire laser and an optical parametric oscillator (OPO) generates the initial input and
pump pulses centered at 1545 nm and 860 nm, respectively. The input pulse is attenuated to
(1y<0.1/ pulse using a neutral density (ND) filter and shaped by a commercial waveshaper
to generate the input mode. The pump modes are shaped using a folded 4-f waveshaper [36]
comprising a diffraction grating, a cylindrical mirror and a spatial light modulator (SLM).
After waveshaping, input and pump pulses are both coupled into the mQPG waveguide. The
up-converted output photons are isolated by a short-pass (SP) filter and detected with a CCD
spectrograph or a time-of-flight (ToF) spectrograph [37] formed by a dispersive fiber, an
avalanche photodiode (APD) and a time-to-digital converter (TDC).

The output field is isolated from the leftover pump and input fields via frequency filtering and
detected with an in-house-built time-of-flight (ToF) spectrograph consisting of a dispersive fiber,
an avalanche photodiode, and a time-to-digital converter [37]. The ToF spectrograph facilitates
shot-to-shot measurements (required, e.g., by HD-QKD protocols) and is cost-effective as it
utilizes only one single-photon detector. Nevertheless, the effective resolution of the current
implementation is limited to 300 GHz by technical constraints, mainly the timing jitter of the setup
and the trade-off between group-velocity dispersion and optical loss in the 550 nm wavelength
region [27]. This value is ten times larger than the bandwidth of each phase-matching peak
(approximately 30 GHz), negatively affecting the overall quality of the measurements. Therefore,
to showcase the quality of the mQPG operation when paired to optimal frequency-resolving
measurements in output, we repeat the measurements replacing the ToF spectrograph with a
CCD spectrograph (Andor Shamrock 500i) with a resolution of 30 GHz. We note that this device
is generally unsuitable for shot-to-shot measurements as it requires a read-out time of the order
of ms, incompatible with the 80 MHz repetition rate of the laser.

For each tested encoding alphabet and dimensionality, we quantify the measurement quality
of the mQPG through a quantum detector tomography [27,30,38]. This technique aims at
reconstructing the POVMs {x?} by probing the device with an informationally complete set of
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input states — in this case, all eigenstates of all possible MUBs in the chosen Hilbert space —
and counting the output photons in each channel.

To perform the quantum measurement tomography, we first choose the measurement basis
that we want to probe, which defines the POVM {x?} comprising the POVM elements of each
mQPG channel, and we set up the mQPG mode-sorting process by shaping the pump spectrum
accordingly. We probe the mQPG with input states from the complete set {p¢} of the d(d + 1)
elements of all d + 1 MUBSs of the considered d-dimensional Hilbert space.

For each measurement we run 10-20 acquisitions, each with an integration time between 0.5 s
and 1 s, chosen based on the measured count rate. The input power is always adjusted to have
()<0.1/ pulse, whereas the pump power is maximized within the capabilities of the experimental
setup, reaching 5 mW to 10 mW. The maximum available pump power, which determines the
conversion efficiency and therefore the number of output counts in each measurement, depends
on the chosen encoding alphabet and dimensionality, as the waveshaping system needs to “carve”
the appropriate spectrum from the original laser pulse.

The conversion efficiency in this experiment lies in the range of 1-10%; however, this is
not a fundamental limitation for the mQPG process, as similar devices have demonstrated an
efficiency of up to 87.7% [17,39]. Beyond the non-optimized conversion efficiency, the primary
source of optical loss in the experimental setup is the ToF spectrograph: the dispersive fiber
introduces 20 dB of loss, and the avalanche photodiode has a detection efficiency below 35%.
Although the high losses do not pose a fundamental problem for the mQPG mode-sorting
operation, they restrict the maximum achievable communication distance in QKD. In principle,
the overall conversion and detection efficiencies could be improved with higher pump powers
and an optimized spectrograph; nevertheless, these optimizations lie outside the scope of this
work, which focuses on a proof-of-principle demonstration. Notably, the relatively low detection
efficiency does not degrade the signal-to-noise ratio in the mQPG detection. In fact, the
background noise in the measured data is negligible, as the large wavelength difference between
pump and signal pulses prevents Raman scattering from the pump from introducing noise in the
frequency conversion process.

We normalize the measured counts to obtain the experimental output probabilities for each
channel p¥¢. From these values, we reconstruct the POVM elements 77 through a weighted

least-squares fit by minimizing the quantity ¥, [p*¢ — Tr {p¢ 717}|2 /p¥¢, where we constrain 7 to
3

be Hermitian and positive semidefinite. We then compare the reconstructed POVM elements to
the theoretical projectors |y) (y| by calculating the fidelity ¥ = (y|z¥ |y) /Tr(x?).

4. Results and discussion

Through the detector tomography, we reconstruct the POVMs that describe the mQPG operation
when projecting an input state into the selected MUB. For each encoding alphabet, we test all
d+ 1 MUBs ind = 3 and d = 5, with the exception of the FFB scheme, which is limited to
d MUBs. Figure 4 shows the reconstructed POVMs compared to the theoretical ones for the
FFB scheme in d = 3, corresponding to a measurement at the single-photon level acquired
with the ToF spectrograph. We highlight that each row corresponds to 3 POVM elements that
are measured simultaneously and, therefore, form the POVM that describes the mode-sorting
operation of the mQPG for the respective basis.

Figure 5 shows the average fidelity of the reconstructed POVMs to the ideal operators for all
tested TM alphabets in 3 and 5 dimensions. The fidelity measured with the CCD spectrograph
(blue bars) is always above 90% and, for frequency bins, reaches (99.7+0.5)% in d = 3 and
(98.9+0.5)% in d = 5, confirming the high intrinsic quality of the mQPG projections. This
value is generally higher than the fidelity measured with the ToF spectrograph (orange bars),
showing the benefits of optimal filtering in the output of the mQPG to enhance the quality of the
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Fig. 4. Theoretical (left) and experimentally characterized (right) POVMs for three-
dimensional operation in the frequency-bin alphabet (FFB scheme) at the single-photon
level ({1)<0.1/ pulse).

mode-sorting process. This effect is more noticeable in functions with narrow spectral features,
such as superpositions of time bins or HG modes (shown in the Supplement 1), especially at
higher orders, which benefit more from spectral filtering to reduce cross-talk. Additionally, HG
modes and frequency bins in d = 5 need to be rescaled to fit within the same spectral bandwidth,
as higher-order modes become spectrally broader.

FFB FFB

d=3 d=5
bins bins
5 modes modes
Q
= bins bins

—_
o
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o
o
o
o

Fig. 5. Average fidelity of the measured POVMs to the ideal operators for each encoding
alphabet in d = 3 (left) and d = 5 (right): time bins, HG modes, and frequency bins both with
the standard and FFB approach detailed at the end of section 2. The blue bars represent the
results of the measurements performed with the CCD spectrograph in output, corresponding
to ideal filtering conditions, whereas the orange bars show the results of the ToF detection at
the single-photon level ({1) < 0.1/pulse). The error bars indicate the standard deviation of
the fidelity for different POVMs.

Frequency bins, however, maintain the same spectral features when building MUBs, and only
change the relative phase between the different bins. This results in generally higher fidelity
in all bases, visible in the high mean value and narrow spread in Fig. 5. The FFB approach
increases the spectral bandwidth available for each mode, reducing measurement imperfections
and, consequently, enhancing resilience to the low-resolution ToF spectrograph in output.

Nevertheless, the spectrograph must resolve the output frequencies corresponding to the
different channels of the mQPG, separated by 0.5 THz or 0.63 THz in this work. If the
spectrograph resolution is not significantly larger than this value, the readout system introduces
cross-talk into the measurement. In fact, this additional cross-talk is the main source of error
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for the highest-fidelity mode-sorting in d = 5 presented in this work, obtained with the FFB
approach. Moreover, the larger spectral bandwidth achieved with this technique leads to narrower
time durations, which necessitate precise synchronization of the pump and input in time and
compensation for delay drifts caused, e.g., by temperature fluctuations. Namely, the FFB input
states in d = 5 span a frequency range of 2 THz, requiring the time difference between the two
pulses to be kept below 200 fs for optimal operation. Correcting the delay of the pulses and
improving the spectrographic detection will increase stability and reduce errors, facilitating
the scalability of the mQPG mode-sorter to even higher dimensions. Optimizing the spectral
parameters for each encoding and dimensionality will further enhance the measurement fidelity,
enabling high-quality programmable mode-sorting in a large number of high-dimensional bases.

5. Conclusion

We demonstrated a high-dimensional mode-sorter at the single-photon level based on an mQPG
that can programmatically switch encoding alphabet between pulse modes, time bins and
frequency bins. Our experimental results show an average measurement fidelity at the single-
photon level of up to 0.958 + 0.030 in d = 3 for three MUBs and 0.859 + 0.131 ind = 5 for
five MUBs, overcoming the previous dependence of the mQPG on strong output filtering. The
mQPG-based mode sorter not only facilitates the practical realization of HD-QKD across various
encoding alphabets, but also has the potential to function as a Hadamard receiver [8,9], enabling
quantum communication protocols that go beyond QKD. By addressing technical challenges
such as spectral bandwidth, synchronization, and spectrographic resolution, the measurement
fidelity of the system can be improved to scale the mode-sorter to even higher dimensions. The
presented results show that the mQPG provides an ideal platform for unlocking the benefits of
high-dimensional encodings in quantum information science.
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Programmable time-frequency
mode-sorting of single photons with a
multi-output quantum pulse gate:
supplemental document

In this supplemental document, we illustrate the spectra of the time-frequency modes used in the
experiment, and we investigate the dimensional scalability of the “fancy” frequency bin (FFB)
mode-sorting technique in a multi-output quantum pulse gate (mQPG).

1. DIMENSIONAL SCALABILITY

Here we investigate the scalability of the FFB mode-sorting method to higher dimensions. In
d dimensions, this technique involves sorting d frequency bins and their superpositions into d
distinct mQPG channels. In this simulated study, we consider an experimental setup analogous
to the one presented in the main text, where a waveshaper “carves” the pump spectral bins from
a fixed broadband laser pulse. In this system, the maximum width of each bin is limited by the
initial spectral bandwidth Avpymp of the laser pulse and by the chosen dimensionality d.

Since broader frequency bins generally lead to a better performance of the mQPG [1, 2], this
bandwidth constraint is a major source of error in the mode-sorting process. The operation of
the mQPG is ideal when the spectral features of the pump pulse (i.e., the width of the pump
bins) are significantly larger than the width of the phase-matching function Avpy. For this reason,
we study how the ratio between Avpymp and Avpy affects the average error of the mode-sorting
process by simulating the mQPG projections in each possible mutually unbiased basis of a d-
dimensional frequency-bin Hilbert space. We set the separation between the frequency bins to
approximately 3 times the full-width-half-maximum of each bin. In the simulation, we assume
ideal experimental conditions: perfect resolution for both the pump waveshaper and the output
spectrograph, negligible second-order dispersion in the mQPG waveguide, and a constant relative
delay between input and pump pulses.

The simulation results, shown in Fig. S1, provide an estimate of the performance the mQPG
mode-sorter can ultimately achieve if all technological challenges are addressed. In the top
left region of the plot, the mQPG requires too many phase-matching peaks within a narrow
spectral range, causing the output channels to overlap and introducing additional cross-talk.
The red line indicates the bandwidth ratio of the current experimental setup, based on a 4-cm-
long lithium niobate mQPG waveguide and a 3-THz laser bandwidth, which could theoretically
operate in 30 dimensions with a measurement error of 10%. A more broadband laser or a
waveguide with narrower phase-matching peaks (achievable, e.g., by increasing the waveguide
length) could enable high-quality mode-sorting in even higher dimensions. Beyond this point,
practical limitations arise, such as the fragility of longer waveguides, which currently restrict the
commercially available lithium niobate wafers to a maximum length of 10 cm, and group-velocity
dispersion, which can limit the optimal frequency region for the mQPG process. These technical
challenges could potentially be addressed through the introduction of resonant structures or
alternative material platforms. Overall, our simulation demonstrates that the FFB technique
can, in principle, enable high-dimensional operation with extremely low error rates, limited
primarily by the technical quality of the experimental components, particularly their resolution
and stability.

2. SPECTRAL REPRESENTATION OF THE ENCODING ALPHABETS

Figures S2 and S3 show, in frequency space, the input and pump modes from the fundamen-
tal encoding alphabet and one of the implemented superposition basesind = 3 and d = 5,
respectively.

128



Programmable time-frequency mode-sorting

1e-01
g z
E 1e-02 8
o o
‘B 20 3
a
2 1e-03§
A 10 f g
1
h 1e-04
.
102 103
AVpymp/Avpm

Fig. S1. Simulated error of the FFB technique in different dimensions as a function of the ratio
between the available pump bandwidth Avpymp and the phase-matching bandwidth Avpy.
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Fig. S2. Spectral intensity and phase of the fundamental basis (top) and one of the imple-
mented superposition bases (bottom) of the different encodings used in d = 3: time bins, HG
modes, frequency bins, and FFB approach. The red figures show the different possible input
modes, whereas the blue figure on the right shows the pump spectrum that facilitates mode-
sorting onto the corresponding basis.
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Fig. S3. Spectral intensity and phase of the fundamental basis (top) and one of the imple-

mented superposition bases (bottom) of the different encodings used in d =

5: time bins, HG

modes, frequency bins, and FFB approach. The red figures show the different possible input
modes, whereas the blue figure on the right shows the pump spectrum that facilitates mode-

sorting onto the corresponding basis.
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Experimental HD-QKD

A crucial challenge in realizing the security and efficiency benefits of high-
dimensional quantum key distribution [4, 5, 14, 37], as discussed in Chap-
ter 1, is the implementation of a receiver capable of simultaneously projecting
a single-photon state onto all elements of an arbitrary d-dimensional encoding
basis. The mQPG, introduced in Chapter 4, was designed to be precisely such a
high-dimensional quantum receiver.

In this chapter, we move beyond device characterization and integrate the mQPG
into a complete quantum communication system. We present the experimental
realization of a full proof-of-principle HD-QKD setup in d = 3, which incorporates
all the necessary components of a functional QKD system, from state preparation
to shot-by-shot high-dimensional decoding for key reconstruction. This system
achieves an asymptotic key fraction that surpasses the fundamental limit of one
bit per photon of qubit systems, showcasing the practical advantage of harnessing
a larger Hilbert space. While our demonstration uses two MUBs in d = 3, the
scheme can be straightforwardly extended to higher dimensions and additional
MUBs due to the versatility of the mQPG, as demonstrated in Chapter 4.

5.1 Experimental realization
This demonstration is based on a prepare-and-measure HD-QKD protocol. We
implement the three-dimensional extension of BB84 using two MUBs [26, 33,

371, as described in Section 1.4.2. In this protocol, Alice prepares a sequence
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of qudits, chosen at random from two MUBs, and sends them to Bob through a
quantum channel. Bob then measures the incoming states by projecting them
onto one of the two bases, also chosen randomly.

The protocol is realized in d = 3 using states encoded as pulsed frequency
bins, introduced in Section 2.1.3. The two MUBs are the computational basis
Z, used as key-generating basis, and the superposition basis X, which serves as
the control basis for error estimation. The Z basis consists of three orthogonal
states {|Z,),|Z,),|Z,)}, each corresponding to a distinct Gaussian-shaped fre-
quency bin with a FWHM of 70.7 GHz in intensity, and an inter-bin separation
of 250 GHz. The X basis is composed of three states {|X,), |X;),|X,)} which are
equal-amplitude superpositions of the key basis states with different relative
phases. The spectral profiles of these six states are shown in Figure 5.1.

The experimental setup is shown in Figure 5.2. On Alice’s side, pulses from
a mode-locked laser centered at 860 nm pump an optical parametric oscillator
(OPO), generating signal pulses in the telecom C-band around 1550 nm. The six
required states (from both the Z and X bases) are then prepared by spectrally
shaping these telecom pulses using a commercial multi-channel waveshaper (Fin-
isar WaveShaper 16000A). To enable the random shot-by-shot state preparation
required by the protocol, the six state-preparation lines are actively switched
using a custom-built 6 x 1 fast optical switch. This switch is composed of six
parallel channels, each containing an acousto-optic modulator (AOM, Aerodiode
1550A0M-2) with a rise time of 9ns. Each AOM, controlled by an arbitrary
waveform generator (AWG, Aerodiode TOMBAK) via an RF driver (Aerodiode
RFAOM-T-200), acts as a fast gate that opens for a brief window to allow a
single pulse to pass. The system is programmed such that only one channel is
open at any given time. The outputs of the six AOMs are then combined into
a single-mode fiber using a binary tree of fiber couplers. Finally, the prepared
pulses are attenuated to 0.25 photons/pulse at the output of Alice’s station. A
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Figure 5.2: Schematic of the experimental setup. Alice prepares one of six possible states
using broadband telecom light from an optical parametric oscillator (OPO), attenuated
using a neutral density (ND) filter, and a multi-channel waveshaper. A fast optical switch
selects the state for each time slot. The states are transmitted to Bob through a single-
mode fiber followed by a short free-space link. Bob uses the mQPG and a time-of-flight
(ToF) spectrograph to measure in the X basis; unconverted photons are isolated using
a dichroic mirror (DM) and measured in the Z basis using another ToF spectrograph.
Both ToF spectrographs are connected to the same time tagger, synchronized to the laser
pulses.

combination of a half-wave plate (HWP) and a polarizing beamsplitter (PBS) is
used to simulate variable channel loss for characterizing the system performance
over different distances. The states then travel across a short free-space link to
Bob’s station.

At Bob’s station, the incoming 1550 nm photons are coupled into a three-channel
mQPG waveguide with an efficiency of approximately 70%. The mQPG is config-
ured to measure in the X basis by shaping the pump pulses at 860 nm (tapped
from the same laser that drives the OPO) into the frequency-bin superposition
states to be measured. The shaped pump pulses have a power of 6 mW and are
coupled into the mQPG waveguide with 50% efficiency. Input states matching the
target |X j> modes are up-converted to 552 nm photons and resolved by a time-
of-flight (ToF) spectrograph for visible wavelengths (introduced in Chapter 4).
Thus, a detection event in this spectrograph indicates a successful measurement
in the X basis.

Since the conversion efficiency of the mQPG is 1 < 100%, most photons are
transmitted without conversion. This unconverted light, still at 1550 nm, is then
routed to a second ToF spectrograph for telecom wavelengths which measures
the frequency of the transmitted photons, effectively performing a projection
onto the key basis Z. In this way, Bob’s basis choice is implemented passively: a
click in the visible ToF spectrograph corresponds to a measurement in basis X,
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Figure 5.3: Histogram of the experimental sifted time tags from Bob’s measurements in
the Z (red) and X (green) bases, for all input states prepared by Alice, at a fixed channel
loss. The gray areas indicate the timing windows assigned to each detection outcome.

whereas a click in the telecom ToF spectrograph corresponds to a measurement
in basis Z.

The laser repetition rate of 80 MHz is downsampled to 40 MHz due to the speed
limitations of the switching electronics, resulting in one communication shot
every 25 ns. Alice prepares a pseudo-random sequence of 1980 states, repeated
every 2000 shots (50 pis). Bob’s detection events are recorded with a timetagger
(Swabian Time Tagger X) synchronized to the laser clock, allowing us to correlate
each detection to the state prepared by Alice. For each attenuation setting, we
acquire data until approximately 108 total counts are collected in the Z basis,
which requires from a few minutes up to 10 hours depending on the loss value.

Figure 5.3 shows the statistical distribution of the time tags measured by both
ToF systems. Each measured timing is assigned to a specific detection outcome or
discarded based on whether it falls into the assigned detection windows, selected
as discussed in the next section.

136



5.2. Key rate analysis

5.2 Key rate analysis

After a long string of states has been exchanged, Alice and Bob would classically
perform sifting, parameter estimation, and privacy amplification. For this proof-
of-principle demonstration, we do not perform the full classical post-processing;
instead, we acquire the raw detection data, perform sifting in post-processing,
and use the measured QBERs to estimate the asymptotic secret key fraction, i.e.,
the number of secure bits extracted per sifted photon [17].

5.2.1 Asymptotic secret key rate

In the asymptotic limit of an infinitely long key, the secret key fraction r., is
given by the difference between the information Alice and Bob share and the
maximum information an eavesdropper could have gained (see Section 1.4.3).
For a d-dimensional protocol with two MUBs, this can be bounded as [37]:

0o = logy(d) —H4(Qz) —Hy(Qx) (5.2.1)

where H;(Q) = —Qlog,(Q/(d — 1)) — (1 —Q)log,(1 — Q) is the d-ary entropy
function, and Q, and Qy are the QBERs measured in the Z and X bases, respec-
tively. If the errors are symmetric (Q, = Qx = Q), this expression simplifies to
the form seen previously in eq. (1.4.9) [33].

The performance of our system at different attenuation values is shown in
Figure 5.4. At zero channel loss, we measure error rates of Q, = 1.6% and
Qx = 3.8%, with negligible statistical fluctuations, which yield a secret key frac-
tion of r,, > 1.18 bits per sifted photon. With the measured sifted detection
rate in the Z basis of 106 kHz, this corresponds to a secure key rate of 125 kbit/s.
This value surpasses the fundamental limit of 1 bit per photon for any equivalent
qubit-based protocol, clearly demonstrating the practical advantage of using a
higher-dimensional alphabet.

The asymptotic key fraction remains positive up to 14 dB of attenuation, equiva-
lent to about 70 km of standard single-mode fiber with 0.2 dB/km loss. However,
since real deployed fiber is more sensitive to noise and imperfections than labo-
ratory setups, this distance represents an upper bound to the capabilities of the
current implementation.

The observed asymptotic key fraction differs from the ideal value of log,(3) ~ 1.58
due to experimental imperfections. The dominant sources of error in the system
are intrinsic crosstalk in the mQPG (discussed extensively in Chapter 4), delay
drifts over the measurement time which affect the spectral phase, and pump-
induced fluorescence at telecom wavelengths within the nonlinear waveguide.
The latter introduces a loss-dependent error in both bases, as the noise photons
may also be up-converted to visible wavelengths by the mQPG process.
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Figure 5.4: Asymptotic secret key fraction (top) and QBER (bottom) as a function of
the channel loss. At zero channel loss we achieve Q, = 1.6% and Qx = 3.8%, yielding
I'eo = 1.18. The asymptotic key fraction remains positive up to 14 dB of attenuation.
The dashed lines in the bottom plot are obtained by fitting the data using a simple model
that assumes a constant detection error ratio in addition to a constant background noise.
These fit results have been used to estimate the asymptotic key fraction trend (dashed
line in the top plot).

5.2.2 Detection window optimization

Reducing the detection window size can mitigate noise, hence lowering the QBER;
however, overly narrow windows also reject valid detection events, decreasing
the sifted key rate. We studied this trade-off in both bases by varying the window
width relative to the separation between detection peaks and observing its effects
on the secret key rate, defined as the secret key fraction r,, multiplied by the
sifted count rate in the Z basis (see Section 1.4.3). The results for two different
loss values are shown in Figure 5.5.

The analysis reveals that the optimal parameters can depend on the loss. In
the zero-loss case, we can achieve the largest key rate when the Z window is
maximized, yielding the highest count rate, and when the X window is minimized,
lowering the error. However, in a realistic scenario with a finite key length,
decreasing the X window indefinitely would lead to insufficient statistics to
estimate the QBER; therefore, we compromise by choosing a window width
40% of the separation between the output centers. In the high-loss case, the
Z-basis noise becomes significant, lowering the secret key rate for larger windows.
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Hence, we select a Z window half as wide as the channel spacing, sacrificing
a few counts at low loss to improve performance at high attenuations. Finally,
while we used a fixed detection window for all measurements, one could further
optimize the secure key rate by adjusting the window size for each channel loss.
However, a thorough security analysis would first be required to ensure that such
an adaptive measurement strategy does not introduce new vulnerabilities to the
protocol that could be exploited by an eavesdropper.

5.2.3 Beyond the asymptotic limit

While the asymptotic key fraction provides a useful benchmark, real-world QKD
protocols are constrained by finite key lengths. In this regime, one must take
into account statistical fluctuations, which lead to a reduction in the achievable
key rate [37, 40]. A complete finite-key analysis requires precise accounting
of the confidence intervals in the estimation of parameters such as the QBERs,
which is a complex theoretical task for high-dimensional systems and is beyond
the scope of this experimental work.

Another deviation from the ideal protocol in our experimental implementation
is the use of weak coherent pulses instead of “true” single photon sources, which
makes the system vulnerable to photon-number-splitting attacks. The standard
countermeasure is the decoy-state method [41], where Alice randomly varies the
intensity of her pulses, allowing Bob to detect changes in the photon number
statistics. Although we have not implemented decoy states in this work, our
fast-switching setup is fully compatible with this technique, which could readily
be implemented by programming the AOMs to open only partially to modulate
the mean photon number.

5.2.4 Security and future extensions

The physical implementation of a QKD system can introduce security loopholes
not present in the theoretical protocol. In our implementation, the two bases
are asymmetric due to the different detection setups. This asymmetry could
potentially be exploited by an eavesdropper, who could devise states that are
preferentially detected in one basis only. A more robust future implementation
could address this by replacing the ToF system with a second mQPG dedicated
to measurements in the key basis (either the fundamental frequency bin basis
or another superposition basis), thereby creating a more symmetric and secure
receiver. An even more streamlined approach might employ a single, high-
efficiency mQPG with fast pump switching to choose the measurement basis
dynamically on a shot-by-shot basis.

For a real-world HD-QKD link over deployed fiber, we must ensure accurate
synchronization between the parties, and we must implement chromatic dis-
persion compensation to preserve the spectral phase over long fiber distances.
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Figure 5.5: Effect of the detection window size on the key rate for 0 dB channel loss
(top) and 11 dB channel loss (bottom). In each case, (a) shows the secret key rate as a
function of the coincidence window; (b) shows the key fraction (blue), QBER (green),
count rate (orange), and key rate (black) as a function of the Z-basis window, with fixed
X window; (c) shows the same quantities as a function of the X-basis window, with fixed
Z window. The red lines indicate the fixed window values used for the analysis.
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5.3. Conclusion and outlook

Notably, phase stabilization of the channel is not required, since the mQPG is
insensitive to global phase fluctuations, which significantly simplifies the stability
requirements of a practical implementation.

5.3 Conclusion and outlook

We have successfully demonstrated a complete proof-of-principle HD-QKD system,
achieving an asymptotic secret key fraction which surpasses the fundamental
limit of qubit-based protocols. This result validates our experimental platform as
a viable approach for practical high-dimensional quantum communication.

A key strength of our implementation lies in its flexibility: while this demon-
stration was performed in d = 3 using two bases, the mQPG decoder is fully
reconfigurable, as shown in Chapter 4. This enables our system to be straight-
forwardly extended to higher dimensions and additional MUBs, enhancing the
security and noise resilience of HD-QKD. Therefore, this work lays a founda-
tion for future systems that can harness the full potential of high-dimensional
quantum communication.
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Entropic uncertainty relations in
high dimensions

The key capability of the mQPG, demonstrated in Chapter 4, is its ability to
perform a complete projective measurement on a user-chosen d-dimensional basis
in a single shot. This unlocks the ability to experimentally investigate phenomena
that require access to the full probability distribution of a measurement outcome
in multiple bases. One of the most compelling applications enabled by this
device is the direct experimental testing of entropic uncertainty relations in
high-dimensional Hilbert spaces.

The experimental results and methodologies presented in this chapter are based on
the following publications:

[arXiv:2507.05025 (2025)] L. Serino, G. Chesi, B. Brecht, L. Maccone, C. Macchi-
avello, and C. Silberhorn, “Experimental entropic uncertainty relations in dimen-
sions three to five”, arXiv:2507.05025 (2025). DOI: 10.48550/arXiv.2507.05025

[Phys. Rev. Research 7, 033152 (2025)] L. Serino, G. Chesi, B. Brecht, L. Mac-
cone, C. Macchiavello, and C. Silberhorn, “Complementarity-based complemen-
tarity”, Phys. Rev. Research 7, 033152 (2025). DOI: 10.1103/v24q-sl6én
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Chapter 6. Entropic uncertainty relations in high dimensions

6.1 MUBs and quantum uncertainty

In Chapter 1, we introduced the Shannon entropy as a measure of the information
gained from a measurement, and MUBs as sets of measurement choices that
are maximally incompatible, or complementary. The Heisenberg uncertainty
principle [119] provides a fundamental limit on how precisely we can know
the values of two complementary observables. This principle can be elegantly
reformulated in the language of information theory, leading to so-called entropic
uncertainty relations (EURs), which can be generalized to address two or more
observables [120-123]. The total information that can be extracted, quantified
by the sum of the individual Shannon entropies, is bounded by an EUR. An EUR
provides a lower bound on the total uncertainty—and thus an upper limit on
the total information—one can have about a quantum state when measuring it
in multiple different MUBs.

These relations are not just a fundamental quantum mechanics curiosity, but
have profound implications for the security of quantum cryptography and for
quantum communication in general. A particularly interesting challenge is
the search for “optimal states”, that is, the specific input quantum states that
minimize the total measurement uncertainty, thereby saturating the entropic
bound [124, 125]. The nature of this challenge changes fundamentally with the
number of measurement bases considered, as illustrated in Figure 6.1. When
measuring in a single basis, the problem is trivial, as the eigenstates have zero
uncertainty. As soon as one considers measurements in more MUBs, the problem
transforms into a complex multi-parameter estimation task. For measurements in
two MUBs in d dimensions, the Maassen-Uffink bound [124] limits the minimum
uncertainty to log,(d), but the optimal states that saturate this bound are still the
simple eigenstates of either basis. The problem becomes far more complex when
considering three or more MUBs simultaneously. In this multi-parameter scenario,
the optimal state is no longer guaranteed to be an eigenstate but can be a non-
trivial superposition, representing a complex compromise to minimize the total
uncertainty across all measurement choices. This search becomes increasingly
challenging and less intuitive in high dimensions, where EUR bounds and the
corresponding minimum-uncertainty states for more than two MUBs have so far
only been found numerically [125].

Experimentally demonstrating these bounds and identifying such states requires
the ability to perform simultaneous projections onto all states of a given basis,
as well as the reconfigurability to switch between different complete MUBs.
This is precisely the capability that the mQPG provides. The first publication
presented in this chapter, arXiv:2507.05025 (2025), is a collaborative work
with the group of C. Macchiavello and L. Maccone at the University of Pavia
dedicated to leveraging the mQPG to perform such measurements, experimentally
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verifying EURs in a high-dimensional space and investigating the properties of
these minimum-uncertainty states.

6.2 Inequivalent sets of MUBs and their effects on
EURs

Beyond verifying established uncertainty relations, our experimental platform
allows us to probe deeper, more subtle aspects of quantum complementarity
that only arise in higher dimensions. In many high-dimensional spaces, sets
of MUBs can exist in so-called inequivalent classes, meaning they cannot be
transformed into one another by unitary operations [7, 23]. While this is a
fascinating mathematical property, demonstrating any physical consequence of
this inequivalence has been an outstanding experimental challenge, primarily due
to the difficulty of performing the necessary complete projective measurements.
Indeed, its first experimental proof for d = 4 came only recently [126] and used
a method that is not easily scalable to higher dimensions.

In the second publication presented in this chapter, Phys. Rev. Research 7, 033152
(2025), we experimentally investigate a profound physical ramification of this
mathematical curiosity, in another joint work with the group of C. Macchiavello
and L. Maccone at the University of Pavia. Using the mQPG to measure the total
entropic uncertainty for different complete sets of MUBs, we demonstrate that
the fundamental uncertainty bound itself depends on which inequivalent class
of MUBs is chosen for the measurement. This effect reveals that the very nature
of quantum complementarity can differ depending on the measurement choices
one makes, adding a new layer to our understanding of the uncertainty principle
in high dimensions.
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Figure 6.1: Illustration of EURs in different MUBs in d = 3. (a) When a state
[Y) = ag|Ag) + aj lA;) + ay |A,) is measured in the computational basis {|Aj>}J2.:0, cor-
responding to observable A, the probability to obtain outcome j is p i = |aj|2, with
Po + p1 +py = 1. The entropy H(A) = Z pjlog,p; (eq. (1.1.1)) is minimized
(H (A) 0) by eigenstates of A (red dots). (b) S1m11ar1y, the entropy in a MUB {|B )

is minimized by its own e1genstates Since A and B are complementary, the states that
minimize H(A) maximize H(B) = 0 and vice versa. (¢) For measurements in two bases,
the total entropy H(A) + H(B) is minimized by the eigenstates of either MUB [124].
(d) This changes when measuring in three MUBs: the state that minimize the total

uncertainty H(A) + H(B) + H (C) are superpositions of two of the three eigenstates from
any given basis [125].
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Experimental entropic uncertainty relations in dimensions three to five
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We provide experimental validation of tight entropic uncertainty relations for the Shannon entropies of ob-
servables with mutually unbiased eigenstates in high dimensions. In particular, we address the cases of dimen-
sions d = 3, 4 and 5 and consider from 2 to d + 1 mutually unbiased bases. The experiment is based on
pulsed frequency bins measured with a multi-output quantum pulse gate, which can perform projective mea-
surements on a complete high-dimensional basis in the time-frequency domain. Our results fit the theoretical
predictions: the bound on the sum of the entropies is never violated and is saturated by the states that minimize

the uncertainty relations.

I. INTRODUCTION

The uncertainty principle was originally formulated by
Heisenberg [1] to describe the fundamental limit on the preci-
sion of quantum measurements in terms of measurement dis-
turbance, namely there exist measurements that irreversibly
alter the state of the measured system. It was later general-
ized by Robertson [2] as a set of relations derived from the
postulates of quantum mechanics and expressing measure-
ment incompatibility, which describes sets of measurements
that cannot be jointly performed. Notably, these two concepts
remained distinct until very recently, when measurement in-
compatibility was shown to be a sufficient condition for dis-
turbance [3].

The practical relevance of the uncertainty relations has his-
torically evolved and grown with the development of modern
quantum technologies. Today, in fact, establishing tight un-
certainty bounds and identifying the states that saturate them
are crucial for achieving the maximum precision limit in ap-
plications such as quantum cryptography, metrology and ther-
modynamics. Towards this end, uncertainty relations for two
observables have been reformulated in terms of the Shannon
entropy [4], leading to the so-called entropic uncertainty rela-
tions (EURSs) [5-10]. Unlike the former Robertson bound, the
entropic bounds are state-independent. Moreover, the EURs
can be expressed in terms of Rényi entropies [9, 10], which
generalize Shannon’s entropy, thus providing many different
measures of uncertainty.

The most well-known set of EURSs is arguably the result by
Maassen and Uffink [9], which quantifies the incompatibil-
ity between two observables. This bound is tight, meaning it
can be saturated, if the two observables correspond to mutu-
ally unbiased bases (MUBs) [11, 12]. Extending this bound
beyond two MUBs is of both theoretical and practical inter-
est, motivated by the role of high dimensions and multipartite
systems in quantum information protocols, as well as by fun-
damental questions on the complementarity of quantum ob-
servables. Since every physical system admits at least three
MUBs and, in prime-power dimensions d, d + 1 MUBs are
known to exist [11-13], the total number of uncertainty re-
lations at a specific dimension can grow very large, amount-
ing to 2(2¢ — 1) — d in the latter case. Despite many efforts
[10, 14-16], the analytic bounds found so far are either not
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tight or are tight only for specific dimensions and numbers of
observables. However, numerical studies have obtained tight
EUR bounds for up to d + 1 MUBs in dimensions 3, 4 and 5
[17].

Experimentally, the traditional Robertson formulation of
the uncertainty principle has been validated in a plethora
of different contexts—from position-momentum [18-21]
and time-energy [22] relations to less conventional non-
commuting observables such as number of Cooper pairs ver-
sus wavefunction phase in a superconductor [23]. These un-
certainty relations are also implicitly tested every time the ulti-
mate measurement precision bounds [24, 25] are assessed and
applied [26-32]. Furthermore, stronger uncertainty relations
based on variances have been devised [33, 34] and experimen-
tally confirmed [35-38].

In contrast to the extensively verified Robertson formula-
tion, entropic uncertainty relations have only more recently
begun to be experimentally explored. Experiments testing
EURs have focused on the later formulation of uncertainty
relations in terms of measurement noise and disturbance [39]
and entropies conditioned on a quantum memory [40]. These
were verified for neutronic spin systems [41-43] and entan-
gled photon pairs [44, 45]. More recently, new uncertainty
relations formulated in terms of relative entropy have been
devised and experimentally validated [46-48]. However, to
date, no experiment has directly tested the high-dimensional
entropic bounds predicted in [17]. This gap largely reflects
the experimental challenges of operating with discrete high-
dimensional Hilbert spaces, which require simultaneous mea-
surements in all elements of a high-dimensional basis [49].

Here, we present the first experimental verification of all
the EUR bounds predicted in [17] for dimensions 3, 4, and
5. We achieve this by encoding information in the time-
frequency degree of freedom of photons, namely in pulsed
frequency bins and their superpositions [50]. For this encod-
ing, we can implement arbitrary projective measurements us-
ing a multi-output quantum pulse gate (mQPG) based on sum-
frequency generation in a dispersion-engineered waveguide
[51]. In particular, to verify the EUR bounds, we simulta-
neously project an input state onto all the elements of an arbi-
trary d-dimensional frequency-bin basis, selected through ap-
propriate spectral shaping of the pump pulse driving the pro-
cess.


https://arxiv.org/abs/2507.05025v1

Our experimental results verify the theoretically predicted
entropic bounds for any number of MUBs in up to 5 dimen-
sions, and confirm that these bounds are saturated by the states
that, in Ref. [17], are found to minimize the EURs. These re-
sults complement our experimental investigation [52] of the
effect of inequivalent classes of MUBs [12, 13] on EURs in
dimension 5. Together, this work and [52] demonstrate the
potential of our scalable setup to extend the verification of
uncertainty relations to higher dimensions and detect further
inequivalent sets of MUBs for d > 5.

The remainder of this paper is structured as follows. In
Section II, we summarize the main results from [17]. In Sec-
tion III we describe how we implement a set of MUBs in high
dimensions and the experiment verifying the numerical tight
bounds on the EURs. Then, we discuss our results and com-
pare them to the theoretical predictions from [17] and to pre-
viously known bounds. Finally, in Section IV, we draw our
conclusions.

II. FRAMEWORK

Here, we concisely report the uncertainty relations for
which we are going to provide experimental validations. We
focus on the formulation of EURs in terms of the Shannon
entropy

H(O) ==Y pjlog,p;, 1)
J

where p; = |(0;|1)|? are the Born probabilities for the mea-
surement of the observable O, with eigenvectors {|o,)},, on a
state |1).

In terms of the Shannon entropies of two observables Aand

B , the Maassen-Uffink [9] bound reads
H(A)+ H(B) > —loge, )

where ¢ = max; x|{ag|b;)|* is the maximum overlap be-
tween the eigenstates of A and B, respectively {|ay)} and
{|b;)};. In a discrete Hilbert space of dimension d, this bound
is tight, meaning that it can be saturated, if the eigenstates of
A and B are mutually unbiased bases (MUBs) [11, 12], i.e., if
axlb)| = 1/v/d ¥k € [0,d).

Given a set of m observables {Mk}fk";ll in dimension d
with mutually unbiased eigenstates, the general expression of
the addressed inequalities reads

L

ST H(M) > Bam, 3)
k=l1

namely, the lower bound B on the sum of the Shannon en-
tropies of the observables is specific for each d and m consid-
ered. However, in general, it is not unique: as mentioned in
the Introduction, in the particular case with d = 5 and m = 3,
there are two distinct bounds depending on the choice of the
triple {l1,/2,l3}. In our notation, /; identifies the j-th MUB
in the set {/;}7 ;.
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2
m =2 m =3 m=4m=5\m==6
d=3|log,3 3 4 - N
d=4| 2 3 5 7 -
d=>5]log, 5 [4.43V 2log, 5| 634 | 833 | 10.25

Table I. Lower bounds B of the EURs in Eq. 3 for dimension d three
to five and m MUBs.

We express the MUBs in terms of Hadamard matrices, fol-
lowing the construction in Refs. [12, 13]. The explicit form
is reported in Appendix A. There, every matrix represents a
basis, each column being a state of the pertaining basis, and
l; € {A,B,..} Vj € [1,m]. We report in Table I the lower
bounds of the uncertainty relations in Eq. (3).

Firstly, we note that, if m = 2, then the Maassen-Uffink
relation in Eq. (2) holds in any dimension, implying that the
uncertainty is minimized by the eigenstates of the addressed
observables, i.e., the states of the pertaining MUBs. Hence-
forth, we will inspect the saturation of the uncertainty rela-
tions in Eq. (3) for each dimension d € [3, 5] with m > 2.

In the case d = 3, the set of states |1)),p that saturates
Eq. (3) is the same for both m = 3 and m = 4 and is given by

lj1) + €]j2)

|¢>0pt = \ﬁ (4)
Withj17j2 = Oa 1a 2, jl # j2 and ¢ = 71—/3777-7 571—/3
In dimension d = 4, the triples of Hadamard matrices

that are mutually unbiased belong to a three-parameter fam-
ily [12, 13]. However, there is a unique value for each of
these parameters such that four and five MUBs can be con-
structed. We considered this case, where the complete set of
MUBs can be obtained, which is reported in Appendix A 2.
Differently from the case d = 3, the states saturating Eq. (3)
depend on the choice of the observables [17]. However, the
states that minimize the uncertainty of three and four observ-
ables, also minimize the one of the complete set of MUBs. For
m = 3, if one of the MUBs is the computational basis (A in
Appendix A 2), then the expression of the optimal states is the
same as the one in Eq. (4), where the parameters j1, j2 € [0, 3]
and ¢ € {+km/2}7_, depend on the choice of the other two
bases. We report in Table II the values of the parameters for
this case. Conversely, if A ¢ {l1, 12,13}, the optimal states, in
terms of the eigenstates of the computational basis, read

1
[V)ont = 5 2l )

namely, they are defined by three of the four phases ¢;. In
Table III we fix the phase ¢y = 0 and show the relative phases
of the optimal states for each triple {l1,l2,l3}. In the case
m = 4, the states that are optimal for a set {I1, s, l3,l4} are
the same that optimize the corresponding triplet {l1, 2,3},
being I4 one of the two bases left. It is worth noting that
the optimal states in Eq. (5) can be recast as the expression
in Eq. (4), namely as the superposition of two states, by ex-
panding [}, over a different basis. Therefore, the set of
optimal states identified in Eq. (5) arises from our convention



[l los Y] {lyloy 05,1} [ ]d2] ¢ |
ABC |ABCD, ApcE 0|1 O
2|13| 0,7

ABD |ABCD. ABDE |©|2] 07
1{3]| 0,7

ABE |ABcE. Apr |03 07
112 0,n

0[3 [ £7/2

ACD  |ABCD. ACDE |V |5 |17
0272

ACE |ABCE.ACDE |V |3117))
CIRREE 7P

ADE |ABDE.ACDE |3 |37

Table II. Optimal states |¢))opt in Eq. (4) saturating the bounds By,3
and By 4 in the EURs of Eq. (3) for triples of MUBs including
the computational basis A (first column) and for the corresponding
quadruples (second column).

{02, {l,le,ls,la) | ¢ [ @2 [ s |
w/2 | w/2| O
BCD |ABCD, BCDE |T™2|7T/2] 0
w/2 |—7/2| ™
—/2| /2| T«
/21 0 | w/2
BCE |ABCE,BcDE |7/ O |77/2
w/2 | w |-m/2
—/2| 7w | 7/2
0 | w/2 | w/2
BDE |ABDE,BCDE | 0 |T/2|77/2
T | /2 |—-7/2
™ |=m/2| 7/2
s 0 0
cpE |acpe,Bcpe| 0 | T | O
0 0 s
™ ™ ™

Table III. Optimal states |))opt in Eq. (5) saturating the bounds By, 3
and B4 4 in the EURs of Eq. (3) for triples of MUBs not including
the computational basis A (first column) and for the corresponding
quadruples (second column). We set ¢ = 0.

of adopting the computational basis to define |t))opt, and the
fundamental structure is the one in Eq. (4), with |j1) and |j2)
states belonging to any of the five MUBs.

In dimension d = 5, there are two inequivalent sets of
triples of MUBs [12, 13], implying the two distinct bounds
in Table I for the case m = 3 [52]. The states achieving
the bound Bélg = 2logy 5 ~ 4.64 are the eigenstates of the
observables involved in the uncertainty relation. The lower
bound Bé%q)) ~ 4.43 featured by one of the two inequivalent
sets, is obtained with the states

4
[¥)opt = Y e |5) 6)
j=0
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such that one of the coefficients 1); is null and the four coef-
ficients left are pairwise equal. In Section III, we provide ex-

perimental proof only of the bound Bélg corresponding to the
MUB set analyzed in [17]. The second, inequivalent bound

Bé@ was recently identified and verified in [52], where we
also inspect the pertaining minimum uncertainty states.

For m > 3, there is a single equivalence class of sets
of MUBs [13]. Thus, for each choice of the observables
{Mk}ﬁc”;ll in Eq. 3 we have a single bound Bs ,,,. However,
we have, again, that the uncertainty of different sets of ob-
servables is minimized by different states. With m = 4 and
m = 5, the structure of [1)) o4 is the same as the one in Eq. 6.
We found and experimentally tested nine optimal states in the
case m = 4 for the MUBs ABC'D and five in the case m = 5
for ABCDE. In the former scenario, the states |1))opt are
defined by coefficients 1); € {0,0.19,0.68} and phases ¢; €
{+km/5}3_,, while, in the latter, by ¢; € {0,0.11,0.70} and
the same set of phases. Finally, in the case m = 6, the opti-
mal states are given again by Eq. 4, with j1,j2 € [0,4] and
6; € {£(2k + )m/5)2,.

III. EXPERIMENTAL VERIFICATION OF THE EURS
WITH PULSED FREQUENCY BINS

A. Experiment

In the proposed experiment, we consider a Hilbert space
constructed from pulsed frequency bins—-an encoding alpha-
bet based on the time-frequency degree of freedom of photons
[53]. The d-dimensional computational basis A consists of d
broadband Gaussian frequency bins, each centered at a dis-
tinct frequency. The bases mutually unbiased to A are then
generated by superimposing these frequency bins with phase
relationships dictated by the Hadamard matrices { B, C, ...} in
Appendix A [50, 54, 55].

Experimentally, we can estimate the probability distribu-
tion required to calculate the entropy by normalizing the
counts obtained from projecting multiple copies of the in-
put states onto the selected MUBs. Thus, we require a de-
vice capable of simultaneously projecting states from this
d-dimensional Hilbert space onto all elements of an arbi-
trarily chosen basis. In the time-frequency domain, this
can be achieved using a multi-output quantum pulse gate
(mQPG) [50, 51], a high-dimensional decoder for time-
frequency pulsed modes based on sum-frequency generation
in a dispersion-engineered waveguide. The projection basis is
determined by shaping the spectrum of the pump pulse driv-
ing the process, and the outcome of the projection onto each
basis element corresponds to a probability of detecting a click
in a specific output channel, each defined by a distinct output
frequency.

The mQPG operation is described by a positive-operator-
valued measure (POVM) {77}, where each POVM element
77 describes the measurement operator of a single channel
set to project onto mode vy [51, 56, 57]. Under ideal condi-
tions, each channel performs perfect single-mode projections
m7 = |v){~|. However, experimental imperfections can lead
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Figure 1. Schematic of the experimental setup. The signal and pump
pulses, centered at 1545 nm and 860 nm respectively, are generated
by a combination of a Ti:Sapphire ultrafast laser with an optical para-
metric oscillator (OPO). The signal pulse is shaped by a commercial
waveshaper (Finisar 4000S) to generate the frequency-bin states in
input. The remaining pump pulse, separated by a beam splitter (BS),
is shaped as the full measurement basis using an in-house-built 4f-
waveshaper consisting of a diffraction grating, a cylindrical mirror
and a spatial light modulator (SLM). Both beams are coupled into the
mQPG waveguide, where the signal is up-converted into the different
output frequencies as a result of the mQPG projections. The output
beam, centered at around 552 nm, is isolated using a short-pass (SP)
filter and then detected by a commercial CCD spectrograph (Andor
Shamrock 500i).

to systematic errors in the POVMSs, which then are described
by the more general expression 77 = 37, mJ; |a;) (a;], with
la;) and |a;) eigenstates of the computational basis. When
measuring a pure d-dimensional input state p* = |£)(£], we
will obtain output y with probability p7¢ = Tr(p¢77).

A schematic of the experimental setup is shown in Fig-
ure 1. The signal and pump pulses, centered at 1545 nm
and 860 nm respectively, are generated by a combination of
a Ti:Sapphire ultrafast laser with an optical parametric oscil-
lator (OPO) at a repetition rate of 80 MHz. The signal pulse is
shaped by a commercial waveshaper (Finisar 4000S) to gener-
ate the frequency-bin states in input, whereas the pump pulse
is shaped by an in-house-built 4f-waveshaper to generate the
d-dimensional frequency-bin basis for the measurement, with
d € {3,4,5}. Both beams are coupled into the mQPG waveg-
uide, where the signal modes are up-converted into a different
output channel based on their overlap with each pump mode,
i.e., with each eigenstate of the chosen measurement basis.
The output beam, centered at around 552 nm, is separated
from the unconverted signal and pump beams by a shortpass
filter and then detected by a commercial CCD spectrograph
(Andor Shamrock 500i). This frequency-resolved detection
allows us to separate the output channels, each centered at
a distinct frequency. The number of counts detected at each
output frequency indicates the number of photons measured
in the corresponding mode.

For the experimental verification of the EURs found in [17]
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Figure 2. Sum of the entropy calculated in the MUBs A, B, C'in d=3
for different types of input states: optimal states (red triangles), states
from bases A, B, or C' (green squares), states from the last MUB
D (blue diamonds) and random states (yellow circles). The filled
markers show the experimental data, whereas the hollow markers
describe the predicted results based on the characterized imperfect
POVMs. The dashed blue and green lines show the predicted entropy
for the external and internal eigenstates, respectively. The red dash-
dotted line indicates the EUR bound found in [17] for d = 3 and
m = 3, which is saturated by the optimal states.

and in this work, we measure the entropy of a large sample of
states for different combinations of m observables {M k }ﬁ;”: 1o
with 2 < m < d + 1. We group the probed input states into
four categories: optimal states, found in Ref. [17], which satu-
rate the aforementioned entropy bounds; internal and external
eigenstates, which are, respectively, the eigenstates of an ob-
servable in the set {Mk}fg’;ll appearing in the addressed un-
certainty relation or of one of the complementary observables;
random states generated by randomly sampling amplitude and
phase coefficients from a uniform distribution. Although this
method does not allow for truly uniform sampling of the pa-
rameter space, this is not relevant in the scope of this work,
which concerns only the lower bound of the joint entropy dis-
tribution.

B. Results and discussion

For each probed input state and measurement basis, we cal-
culate the entropy by estimating the probability p; of each
measurement outcome as the normalized counts in the corre-
sponding channel. We obtain distributions of entropy values
such as the one in Figure 2, which shows the sum of the en-
tropy calculated in the first three MUBs in Appendix A for dif-
ferent input states from a three-dimensional Hilbert space. For
each data point, the error bars indicate the 10%-90% spread of
the entropy distribution obtained from a Monte Carlo simula-
tion based on 500 samples extracted from the measured count
statistics. The error bars are not visible in most points due to
their narrow extent, indicating a small statistical error.

Figure 3 summarizes the experimental results for the sum of
entropies Ztlzl H(M,) of d-dimensional input states mea-
sured over a set { M}, }\m ;, of m MUBs, for all combinations



Experimental entropic uncertainty relations

5
d=3, m=2 d=3, m= d=3, m=4
———————— A A
[ 3 B
1.65 2 10- 1 4 I 1 2 L
- 5 3 = 41-
o, y ] 3055 & N a A2
160y 4 A YS! A AAT
........... n 300____Q___ 0 4= = 0
d=4, m=2 d=4, m= *) d=4, m=
e 6= 8 -
5051 An 310- 4 A
8 ‘ B oaosk i E A
A A
Szoog- ------- 1ll o A f s & 8p;A 2
; 0 3.00——-—-—-—-—- 0 BO— — === 0
i
2
2 *) d=4, m=5 Ad=5, m=2 () Ad—5: =y
E A w2 & A ur e LN B
= i A $00 2.40- P4 e i |
E X % ) 4 ‘42 4,70—A 2 ﬁ4
@ mé____‘é__g___ 3 535088 2 7 I 7Y TSy
’ A | 465-—._ 4 _ _._.
0 0 0
d=5, m= d=5, m=5 *) d=5, m=6
L e — 8.5~ | ——— 10.75 = 12= .
A a I i A -
- ;.I, A A 9= .I’
| 54l 10.50 - 8
A A A
A A A A i N 6 A é% é‘
6.4= 3 i Stttk | 10.25 =&— " — = 4
L —— e 8.3~ i n
LI Yo a 0

I Optimal states I Internal eigenstates

I External eigenstates [0 Random states

Figure 3. Measured sum of entropy in m MUBs for different dimensions d. For each combination of m and d, we only show the results for a
single set of bases. Left: scatterplot showing the entropy of individual optimal states (filled triangles) and corresponding simulations (hollow
triangles) in an enlarged scale. In the plots marked by (*) we only show the first ten optimal states out of a larger number of data. Right:
barplot showing the mean value and the total spread of the sum of entropy for different sets of input states: from left to right, optimal states
(red), internal eigenstates (green), external eigenstates (blue) and random states (yellow). The dashed blue and green lines show the predicted
entropy for the external and internal eigenstates, respectively. The red dash-dotted line indicates the EUR bounds found in [17] and in [52],
which is saturated by the optimal states. In contrast, the white dotted lines show the previously known EUR bounds prior to [17]. See the text

for more information.

ofd € {3,4,5} andm € {3,...,d+1}. The individual mea-
surements of the optimal states are highlighted in the scatter-
plots in an enlarged scale. We only show the measurement re-
sults for a single set of bases for each combination of d and m,
as the observed lower bounds are homogeneous over all sets
of MUBs with the only exception of the case of d = 5 and
m = 3. For this particular combination, in fact, we only con-
sidered a set of MUBs equivalent to the one in Ref. [17], and
we verified that the EUR bound is saturated by the eigenstates
of those MUBsS, as expected. The case of the inequivalent set
of MUBSs, which leads to a different EUR bound, is analyzed
in depth and experimentally verified in Ref. [52].

For each combination of d and m, the barplot shows the
mean value of the sum of entropies for different sets of input
states: from left to right, optimal states (red), internal eigen-
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states (green), external eigenstates (blue) and random states
(yellow). The error bars mark the total spread of the data dis-
tribution. The results show that the optimal states saturate
the entropy bounds (red dashdotted lines), while the inter-
nal eigenstates—with some exceptions—and external eigen-
states do not, sitting at (m — 1) log, d (green dashed line) and
mlog, d (blue dashed line), respectively. The exceptions are
the cases with m = 2 and (d = 5 A m = 3), in which the
internal eigenstates coincide with the optimal states, and the
EUR bound is exactly (m — 1)log,d. In the case of ran-
dom states, the mean sum of the entropies is always above the
lower bound, as expected.

In the barplot, we also show (as dotted white lines) the an-
alytic lower bounds known prior to the tight numeric ones of
Ref. [17]. For m = 2, the bound from the Maassen-Uffink



uncertainty relation [9] is always tight. For 2 < m < d + 1,
the bound found in Ref. [16] is tight only in the case (d =
4 A'm = 3). While this is still the best analytic bound for
(d=3Am=3),d=4Am =4),(d=5Am = 3),
(d=5Am =4)and (d =5Am =5), it fails to saturate the
EURs. The bound found in Ref. [14] for m = d + 1 is tight in
the case (d = 3 Am = 4), but it is weak for (d = 4 Am = 5)
and (d = 5 A m = 6). We find that our experimental data
confirms these predictions, reaching the bound from [17] but
not the previous bound when it is not tight.

In general, all data sets match very closely the theoreti-
cal predictions, with only minor discrepancies. However, one
could be concerned that in some cases the statistical error bar
is significantly smaller than this discrepancy, resulting in some
data points that appear to violate the lower entropy bound.
The small difference between the theoretical and measured
entropy values can be explained considering the systematic
error in the detection system. To verify this, we character-
ized the performance of the mQPG-based decoder through a
quantum detector tomography [51, 58, 59] to reconstruct the
true POVMs. We observed a measurement error (cross-talk)
ranging from 0.1% to 2%, depending on the considered ba-
sis and dimension, with larger d generally leading to higher
errors. From the reconstructed POVMs, we calculated the ex-
pected entropy that one would observe measuring the probed
input states with this imperfect system, obtaining the hollow
markers in Figure 2. These estimates very closely match the
measured values, confirming that discrepancies with the theo-
retical predictions are to be attributed to the detection system.

IV. CONCLUSIONS

We provided the first experimental verification of the
EURs for dimensions 3, 4 and 5, introduced in Ref. [17],
in the Hilbert space formed by pulsed frequency bins and
their superpositions. By performing high-dimensional time-
frequency projections through an mQPG, we have probed
several input states, measured their superpositions with the
MUBSs and retrieved the sum of the Shannon entropies of the
pertaining observables {M k}ig: ;, for every number of MUBs
m € [2,d + 1]. In the case m = 2, our results reproduce the
Maassen-Uffink uncertainty relations for Shannon entropies.
Where m > 2, we verified that the optimal states described
in Ref. [17] minimize the EURSs for each d and m, and that
the bounds assessed there are not achived nor violated by
any other input state. Simulations based on the reconstructed
POVMs of the detector have shown that the small discrepan-
cies from the theory are explained by systematic measurement
errors.

The key element that enabled this experimental verification
resided in the capability of the mQPG to perform simultane-
ous projections onto all elements of the selected basis. It is
worth noting that, while this work focused on the EUR bounds
in dimension up to d = 5 shown in Ref. [17], the experimen-
tal setup can be straightforwardly adapted to operate in larger
dimensions [50, 60], facilitating the experimental verification
of possible EUR bounds in higher-dimensional Hilbert spaces
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and even enabling the detection of inequivalent sets of MUBs
[52].

These results mark an important step toward the realiza-
tion of quantum communication systems in high dimensions.
A remarkable example is the one of discrete-variable quan-
tum key distribution, where high-dimensional encodings of-
fer increased secret key rates and resilience to noise [61],
and unconditional security in real-world implementations can
be guaranteed if the number of secret bits of the key is
bounded via suitable EURs [62]. Additionally, extending the
EURs tested in this work to entropies conditioned on a quan-
tum memory [40] will enable novel entanglement-based high-
dimensional QKD protocols, which can be implemented using
a scheme similar to the one employed here [53].
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Appendix A: Explicit expression of the MUBs in terms of
Hadamard matrices

Following Ref. [13], here we report the Hadamard matri-
ces defining MUBs in dimensions 3, 4 and 5. Each matrix
represents a basis, where the columns are the pertaining or-
thonormal states.

1. d=3

Complete set of MUBSs in dimension d = 3.

100 1 11 1
A=[010 B=— |1 w ?
001 3\1 w? w
1 1 1 1 1 1 1 1
C=—|w?w 1 D=—|wuw? 1
3 1 w w? 3 1 w? w
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2
w=exp|iz=m].
P\'3
2. d=4
Complete set of MUBs in dimension d = 4.
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0100 1(1 1 -1 -1
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3. d=5

Complete set of MUBSs in dimension d = 5.
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Quantum uncertainty relations impose fundamental limits on the joint knowledge that can be acquired from
complementary observables: Perfect knowledge of a quantum state in one basis implies maximal indetermination
in all other mutually unbiased bases (MUBs). Uncertainty relations derived from joint properties of the MUBs
are generally assumed to be uniform, irrespective of the specific observables chosen within a set. In this work,
we demonstrate instead that the uncertainty relations can depend on the choice of observables. Through both
experimental observation and numerical methods, we show that selecting different sets of three MUBs in a five-
dimensional quantum system results in distinct uncertainty bounds, i.e., in varying degrees of complementarity,

in terms of both entropy and variance.

DOI: 10.1103/v24q-sl6n

I. INTRODUCTION

A property of a quantum system is described by an observ-
able, namely, a Hermitian operator O. Each of the possible
values o of the property O is connected to an eigenstate |0).
The Born-rule probability that the measurement of a system
property has outcome equal to the value o is given by |(o|¥)]?,
where |y) is the system state. This state of affairs formalizes
the principle of complementarity [1,2]: A system can possess
a definite value of a property, i.e., measurement outcomes
have probability 1, only if its state is an eigenstate ) = |0)
of that property. Otherwise, the value of that property is unde-
fined, and only probabilistic predictions of measurement out-
comes are possible. This implies that complementary proper-
ties exist: From a set of properties of the system, in general we
can assign a definite (i.e., fully determined) value only to one.

In particular, maximally complementary properties exist:
Assigning a definite value to one of them renders all the others
maximally indeterminate; namely, each of their outcomes will
have uniform probability. This happens when we consider a
set of observables whose eigenstates are mutually unbiased
bases (MUBs). Indeed, the square modulus of the scalar prod-
uct of any two states |a;), |b;) pertaining to two different
MUBs is always [(a;|b;) |*> = 1/d, where d is the Hilbert space
dimension.

Surprisingly, it was shown [3-5] that one can have large
information on more than one complementary observable
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provided that the value of none of them is known with
certainty (which would render the values of all the others
completely indetermined). Namely, if the system is prepared
in a state that is a nontrivial superposition when expressed
in all the MUBs, then it is possible to have nontrivial joint
information on multiple complementary properties.

Different complementary properties (MUBs) can be
grouped and classified in terms of equivalence classes of
complex Hadamard matrices [6—8]. We say that two sets of
MUBs are equivalent if one can be mapped into the other
by unitary transformations, permutations, and phase factor
multiplications. In this context, it was pointed out in Ref. [8]
that in dimension d = 5 there are two inequivalent classes
of triplets of MUBs. For larger dimensions, a rich and in-
volved structure of inequivalent sets of MUBs is known to
exist [7,9,10]. In Ref. [11], a notion of operational inequiv-
alence of sets of MUBs has been introduced, such that the
inequivalence is detected whenever distinct sets of MUBs
feature a different noise robustness, used as an incompatibility
quantifier.

The existence of inequivalent sets of MUBs was shown
to have practical consequences on Quantum Random Access
Codes, since it prevents to generalize the analytic expres-
sion of the optimal average success probability for protocols
2¢ — 1 to protocols n? — 1 with n > 3 [12]. Applications
have also been found in entanglement detection based on
complementary observables: in Ref. [13], it was shown that
the lower bound on a given correlation function, used as an
entanglement witness, depends not only on the dimension and
the number of measurements, but also on the choice of the
specific set of MUBs.

While these contributions were mainly focused on proving
and/or detecting the existence of inequivalent sets of MUBs,
here we present a fundamental implication of this: their im-
pact on the uncertainty relations (URs). The URs are the
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FIG. 1. Alice and Bob are both interested in joint values of
observables with MUBs as eigenstates. In dimension 5, there are
six of them: Bob measures observables A, B, C, and Alice measures
D, E, F. Alice gets more information: she can divide the DEF phase
space into smaller uncertainty blocks than Bob’s, even though they
are both looking at MUBs.

very expression of the complementary properties of quantum
observables and yield a direct link between experimental ob-
servations and quantum theory. While providing experimental
validation of the URs for MUBs and high-dimensional sys-
tems, we detected different minimal uncertainties for distinct
triplets of MUBs in d = 5. Then, the inequivalence proved
in Ref. [8] unveiled a finer structure of quantum URs: The
information that a system can possess on three of the six
complementary properties depends on which of the proper-
ties are considered. We show this by calculating the lower
bound of the sum of the entropies or of the variances of the
measurement outcomes of three complementary observables,
complemented with Monte Carlo simulations, and prove that
such a lower bound depends explicitly on the choice of
complementary observables: complementarity-based comple-
mentarity (Fig. 1). Most importantly, the validity of distinct
URs for triplets in the same complete set of MUBs opens
foundational questions, finds application in a plethora of
quantum protocols, and leads to experimental verification,
which we report here.

II. UNCERTAINTY RELATIONS FOR INEQUIVALENT
TRIPLETS OF MUBs

Consider three maximally complementary observables
A, B, € with mutually unbiased eigenstates {|a;)};, {|0;)},
{Ic;)};. One can have partial knowledge of all three of them
if the state |v) is a nontrivial superposition when expressed
in any of the bases {|a;)};, {|b;)};, {Ic;)};. How much joint
information on them can one obtain? We need a quantifica-
tion of how uncertain the outcomes of measurements of all
three observables are. This is precisely what we learn from
URs. In the following, we concentrate on two quantifiers
[14]. On the one hand, we consider the sum of the Shannon
entropies H(0) = — Y jpjlog, p; of the Born probabilities
pj=l{o j|w)|2 pertaining to the measurement of O. The en-
tropies are all positive quantities, so a small sum implies large
joint knowledge. The sum of entropies for maximally com-
plementary observables has always a nontrivial lower bound

107
10" 1.5x107

5x10°

5x10°

0

7
Entropy (bits) Entropy (bits)

FIG. 2. Monte Carlo evaluation of the sums of entropies in (1)
and (2) on pure states chosen randomly using the Haar measure.
The histograms (250 bins) represent the number of states whose
sum of entropies of three maximally complementary observables is
equal to the value in the abscissa. (a) Simulation over 10° random
states. (b) Detail of the tails of the distributions for a simulation over
10'° random states. The orange (blue) curves refer to the entropies
of A,B,C (D,E, F). The black dashed line is at 2log, 5 and is
approached by the left tail of the orange distribution; the blue dashed
line approaches the lower bound of (2). The dotted lines are the
(matching) average values of the two distributions at ~5.55.

given by the entropic uncertainty relations (EURs) [15-17].
On the other hand, we consider the sum of the variances
[18] of A, B,C. Differently from the entropy, the variance
depends also on the eigenvalues of the observables, not only
on the probabilities. We will choose observables with eigen-
values equal to a permutation P(j) of the basis index j, i.e.,
A=Y ;P(jla;j){a;|, and then minimize the variance AA% =
(A?) — (A)? over the permutations, to avoid effects due to the
arbitrariness of the eigenvalue assignments. Also, the sum of
variances has a nonzero [19] lower bound for maximally com-
plementary observables [20,21]. We now show that the UR in
terms of entropies or variances of three different maximally
complementary observables A, B, C depends on the choice of
the maximally complementary observables.

We start from dimension d =5 where there exist six
maximally complementary observables A, B,C, D, E, F with
eigenvectors equal to the six MUBs [7,8] presented in the
Appendix. In this case, we find that

HA)+HB)+H(C) > 2log, 5 ~4.64386, (1)

HD)+HE)+H(F) > 4.43223. )

Bound (1) was known [17] and was implicitly assumed to
hold for every possible choice of MUB triplet, whereas bound
(2), obtained numerically (see the Appendix), was found
while experimentally testing the EURs. The states that min-
imize the first bound are eigenstates of any of the three
A,B,C,e.g., |¥) = |ag). The states that minimize the second
bound, instead, have a single null component when expressed
in the computational basis |a;), e.g., a state Y, ¥;e%ia;)
with {y;} = (0.544 88, 0.45067, 0, 0.450 67, 0.544 88) and
{¢;} = (0, —27/5,0,m, —1/5).

To validate the numerical minimization, we calculated the
minimal sum of the entropies on a large number of pure
states chosen randomly [22,23] with Haar measure (Fig. 2),
confirming that no state beats either bound (1) or (2). We
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FIG. 3. (a) Histograms of the Monte Carlo evaluation of the sum
of the entropies of two MUBs in dimension d = 5 (250 bins over 10°
Haar distributed random pure states). As expected, all histograms
match (here, the histograms refer to A, B in orange and C, D in
blue). The lower bounds of the left tails (orange-blue vertical dashed
lines) approach the Maassen-Uffink bound log, 5 (black dashed line).
(b) Histograms (250 bins over 10° states) of the sum of variances of
three MUBs, evaluated over A, B, C (orange) with lower bound 1.67,
and D, E, F (blue) with bound 1.37.

also checked that the sum of any two entropies never beats
the Maassen-Uffink bound [16] of log, 5 (Fig. 3) and that the
sum of four entropies has the unique lower bound found in
Ref. [17] for every choice of the MUBSs, confirming that the
effect presented here requires exactly three MUBs. We in-
spected all the (2) = 20 possible combinations of three MUBs
out of six and found only the two bounds reported in Egs. (1)
and (2). Moreover, if a triplet could attain one bound, the
remaining triplet would obtain the other bound. In particular,

the triplets that only achieve the bound 2 log, 5 are the ones in
the set

S1 = {ABC, ABF, BEF,ADE, BCD, CEF, CDF, BDE,

ACE,ADF}, (3)

whereas the ones that achieve the bound in Eq. (2) are the
triplets in the set

S> = {ABD, ABE, ACF, BCE, DEF,CDE, BDF, ACD,

BCF, AEF}). “4)

We report in Table T a list of optimal states saturating the
bound in Eq. (2), one for each triplet in S,. We show in the
Appendix that these states are all related to each other by spe-
cific unitary transformations. Moreover, we prove there that
triplets belonging to the same set feature the same entropic
uncertainty.

In the case d =4, there is a three-parameter family of
triplets of MUBs [8], but just for a specific choice of the
parameters a triplet can be extended to the unique complete
set, considered in Ref. [17]. Triplets selected from the com-
plete set are all equivalent. Indeed, in this case we could not
find a similar mismatch in the URs for three MUBs: in the
complete set, for d = 4 there are five MUBs connected to
five observables (A, B, €, D, E), and we checked all (g) =10
combinations of triplets X,Y,Zin {A, B,C,D,E }. They all
have the lower bound H(X) + H(Y) + H(Z) > 3 identified in
Ref. [17]. It is worth mentioning that, while in the case d = 3
the states achieving the lower bound are the same for every

TABLE I. Optimal states saturating the bound in Eq. (2). This
bound can be achieved only by the triplets in S, listed here in the
first column. We report one state for each triplet, having set ¢y = 0.

{l, b, I3} Yo Yis ¢ V2 o V3 @3 VY4 Pa

ABD 0.23 0.67 0.67 0.23 0
4 /5 —n/5 b4 0

ABE 0.23 0 0.23 0.67 0.67

0 b4 /5 —4r /5

ACD 0 0.23 0.67 0.67 0.23

0 4m /5 /5 /5
ACF 0.67 0.23 0.23 0.67 0
-3 /5 4 /5 /5 0
AEF 0.23 0.67 0.67 0.23 0
2 /5 /5 —3n/5 0

BCE 0.45 0.45 0.55 0 0.55
—m/5 2r /5 0 b4

BCF 0.45 0.45 0.55 0 0.55

-3 /5 47 /5 0 3 /5

BDF 0.45 0.45 0.55 0 0.55

T —4r /5 0 /5

CDE 0.55 0.55 0.45 0 0.45

- /5 /5 0 4 /5

DEF 0.55 0.45 0 0.45 0.55

-2 /5 0 T - /5

triplet, in d = 4 the optimal states depend on the choice of the
MUBSs. We note that they share a common structure; i.e., they
all have two non-null components.

Interestingly, if one does not fix the parameters of the fam-
ily of triplets of MUBs in d = 4 to get a complete set, a richer
scenario of inequivalent triplets depending on three parame-
ters can be explored. Then, different URs may be obtained,
with lower bounds presumably depending on the parameters.
We will not explore this case here, as our analysis focuses on
the complementary properties of a same set of MUBs, but we
point it out as a relevant issue for further research.

By studying the sum of variances in d = 4 and d = 5, we
find URs featuring the same behavior as the one found for the
EURs: In d = 4, the optimal states attain the same minimum
for every choice of the bases, while in d = 5 there are two
distinct lower bounds dividing the triplets of MUBs into the
same two sets as for the EURs. For d = 4, all the URs for
every choice of the three MUBs read

AX? + AY? + AZ? > 0.75, 5)
withX #£Y £2 e {A,B,C,D,E}.

For d =5, the UR corresponding to the EUR in Eq. (1)
reads

AX? 4+ AY? + AZ% > 1.67, (6)

with XY Z € &), while the one related to the triplets in Eq. (2)
is

AX? + AY? + AZ% > 137, (7

withXYZ € S;.
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III. EXPERIMENTAL VERIFICATION

We experimentally tested the entropic results presented in
Egs. (1) and (2) by encoding information in photonic time-
frequency modes [24]. Namely, we consider a Hilbert space
generated by broadband frequency bins and their superpo-
sitions encoded in coherent light pulses. In this encoding
alphabet, the five-dimensional computational basis |a;) (as-
sociated with observable A) is defined as a set of five
Gaussian-shaped frequency bins centered at different frequen-
cies, and the MUBs are generated by superimposing the
fundamental bins with different phases. We note that the cho-
sen alphabet falls in the category of pulsed temporal modes as
the superposition states overlap in both time and frequency.

We perform the projective measurements using a so-called
multi-output quantum pulse gate (mQPG) [25], a high-
dimensional decoder for time-frequency pulsed modes based
on sum-frequency generation in a dispersion-engineered
waveguide. This device projects a high-dimensional input
state onto all the eigenstates of a user-chosen MUB, selected
via spectral shaping of the pump pulse driving the process,
and yields the result of each projection in the corresponding
output channel defined by a distinct output frequency.

Mathematically, we can describe the mQPG operation as a
positive-operator-valued measure (POVM) {7"}, where each
POVM element 7? describes the measurement operator of a
single channel set to detect mode y [25-27]. Ideally, n¥ =
|v) (v |; however, experimental imperfections lead to system-
atic errors in the POVMs, necessitating the more general
description 77 = ) . mly] la;) {a;|, with |a;) and |a;) eigen-
states of the computational basis. When measuring a pure
input state p® = |£)(£| from the chosen five-dimensional
Hilbert space, we will obtain output y with probability p”é =
Tr(pé7?). In the measurement process, we use an mQPG
with five channels, which can be programmed to perform
projections onto any arbitrary MUB in the selected Hilbert
space by assigning to each channel an eigenstate of that basis.
Then, for each probed input state |£), we calculate the entropy
in each measurement basis by estimating the probability p;
for each measurement outcome j as the normalized counts in
the corresponding channel.

A schematic of the experimental setup is shown in Fig. 4.
The signal and pump pulses, centered at 1545 and 860 nm,
respectively, are generated by a combination of a Ti:sapphire
ultrafast laser with an optical parametric oscillator (OPO) at
a repetition rate of 80 MHz. The signal pulse is shaped by a
commercial waveshaper to generate the frequency-bin states
in input, whereas the pump pulse is shaped by an in-house-
built 4f waveshaper to generate the frequency-bin basis for
the measurement. Both beams are coupled into the mQPG
waveguide, where the signal modes are up-converted into a
different output channel (corresponding to a distinct output
frequency) based on their overlap with each pump mode, i.e.,
with each eigenstate of the chosen measurement basis. The
output beam, centered at around 552 nm, is separated from the
unconverted signal and pump beams by a shortpass (SP) fil-
ter and then detected by a commercial charged-coupled device
(CCD) spectrograph (Andor Shamrock 500i). The number of
counts detected at each output frequency indicates the number
of photons measured in the corresponding mode.

Input state
preparation

Commercial

_ waveshaper
A
2
Ex

4f-waveshaper Ti:Sapph
-
‘ CCD spectrograph | Measurement
||

FIG. 4. Schematic of the experimental setup. The signal
(1545 nm) and pump (860 nm) pulses are generated by a Ti:sapphire
ultrafast laser with an OPO at a repetition rate of 80 MHz. Two
waveshapers generate the frequency-bin states in input from the
signal pulse and the frequency-bin basis for the measurement from
the pump pulse, respectively. In the mQPG waveguide, the signal
modes are up-converted into a distinct output frequency based on
their overlap with each pump mode. The output beam (552 nm) is
separated from the unconverted signal and pump beams by an SP
filter and then detected by a commercial CCD spectrograph (Andor
Shamrock 500i).

IV. RESULTS AND DISCUSSION

For the experimental verification of the bounds in Egs. (1)
and (2), we probed different types of input states and, for each
state, we calculated the entropy sum H R)+H@)+HQZ)
from the measured output probabilities. The results for the
two MUB triplets CDF and ABE are shown as filled markers
in Fig. 5, and compared to their respective lower entropy
bounds from Egs. (1) (green dashed line) and (2) (red dash-
dotted line). For each input state, the error bars are calculated
by sampling 500 sets of counts from a distribution with the
measured mean and standard deviation of the original dataset
and taking the 10%—-90% spread of the corresponding entropy
distribution. The error bars are not visible in most points due
to their narrow extent.

The figure also shows the entropy values predicted via
realistic simulations of the measurement process. These sim-
ulations are obtained by first characterizing the performance
of the mQPG-based decoder through a quantum detector to-
mography [25,28,29] to reconstruct the actual POVMs. The
average measurement error (cross-talk) per basis falls be-
tween 0.5% (for basis {|a;)};) and 1.9% (for basis {|f;)};).
From the reconstructed POVMs, we calculated the expected
entropy that one would observe measuring each state with
this imperfect system, obtaining the hollow markers in
Fig. 5. These estimates almost perfectly match the measured
values, confirming that discrepancies with the theoretical
predictions are to be attributed to the imperfect detection
system.

The first type of probed input states are the eigenstates
of all six MUBs, labeled “internal” if they are eigenstates
of X, ¥, or Z, and “external” otherwise. The entropy sum
of the internal eigenstates (green squares) is always equal to
the value predicted in Eq. (1), which, for the triplet CDF, is
the minimum possible entropy sum. Contrarily, the external
eigenstates (blue diamonds) always maximize the entropy
sum.
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FIG. 5. Sum of the entropies calculated in d = 5 for the two MUB triplets CDF (left) and ABE (right) for different types of input states:
eigenstates of the MUBSs in the selected triplet (green squares), eigenstates of the other MUBs (blue diamonds), random states (yellow circles),
and low-entropy states that violate the previous assumption of bound (1) (red triangles). The filled markers show the experimental data, whereas
the hollow markers describe the predicted results based on the characterized imperfect POVMs. The dashed green line and dash-dotted red line

indicate the two lower bounds (1) and (2), respectively.

Then, we probed pure random input states (orange circles),
generated by sampling amplitude and phase coefficients from
a uniform distribution and renormalizing the amplitudes. We
note that this method does not allow for truly uniform sam-
pling of the parameter space; however, this is not relevant in
the scope of this work, as we only look at random input states
to verify that they fall within the predicted entropy boundaries.

Finally, we probed states that are a superposition of four
states of the computational basis |a;), e.g., Z Ve ’¢f|a])
with {v;} = (0.19323,0.68019, 0, 0.680 19, 0. 193 23) and
{¢;} = (=37/5,7/5,0,0,0) (red triangles in Fig. 5). These
states were initially proven to minimize the sum of entropies
in four, five, and six MUBs in d = 5 [17]. However, while
testing this assumption, we observed that the sum of entropies
in the ABE triplet violated bound (1), previously assumed
to hold for any possible choice of MUB triplet. This con-
tradiction led to the discovery of bound in Eq. (2) for the
basis triplet ABE, while CDF maintains the known bound,
revealing the immediate experimental consequences of the
underlying asymmetry between sets of inequivalent MUBs.

Interestingly, while our primary goal in this demonstration
was to highlight the effect of inequivalent sets of MUBs on
uncertainty relations, our findings also provide an experimen-
tal verification of their existence that can, in principle, be
extended to higher dimensions. In fact, while the existence
and implications of inequivalent classes of MUBs have been
theoretically understood, their experimental verification has
remained elusive until very recently due to the subtlety of
these effects, which could only be observed by a setup capable
of performing simultaneous projections across a complete
and arbitrary basis. Reference [30] provided an important
verification in d = 4 using hybrid path-polarization encod-
ings; however, their method is based on indirect estimations
and lacks straightforward scalability to higher dimensions.
In contrast, our demonstration relates the existence of in-
equivalent sets of MUBs to the simplest and most direct
type of measurements. The versatility of the mQPG oper-
ating in the time-frequency degree of freedom makes our
approach naturally extensible [25,31], enabling experimental
verification of similar UR bounds if they are discovered in
higher-dimensional systems.

V. CONCLUSIONS

In conclusion, we have shown that the URs are shaped
by the inequivalence of sets of MUBs, which is a physical
fundamental proof that the amount of joint information that
one can have on maximally complementary observables can
depend on which of them are considered, even though the
overlap between the eigenstates of all maximally complemen-
tary observables is all the same, since they are MUBs. We
showed that two distinct URs appear for triplets of MUBs
in dimension d = 5, when the maximum joint information is
gauged by minimizing the sum of the entropies and of the
variances.

This effect has several implications that will be explored
in future work. For instance, in quantum key distribution, the
entropic uncertainty relations are known to provide a tight
bound on the secret key rate and are crucial for security proofs.
In addition, high-dimensional systems provide better key rates
and larger maximum tolerable errors. Then, complementarity-
based complementarity may be exploited to add a further
level of security. Moreover, uncertainty relations are at the
basis of many quantum information procedures (e.g., quantum
metrology). Another implication refers to the foundations of
quantum mechanics, where the investigation of URs in large
dimensional systems can shed light on their complementary
properties.
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APPENDIX

MUBs, explicit form. In the case d =5, six MUBs are
known. The explicit expression of the vectors for each basis is
reported below as columns of the following matrices [8]:

1 0 0 0 O
0O 1 0 0 O
{lapy-,=[0 0 1 0 0], (AD)
0O 0 0 1 O
0O 0 0 0 1
1 1 1 1 1
1 1 o o & o
b)Y, =—=|1 &* o o o],
o ‘/g 1 & o o o
1 o o o o
1 1 1 1 1
1 0w o o ot 1
(le)e = —=o* o o 1 o*],
S V5 ot »? 1 ® w
w 1 ot & W
1 1 1 1 1
1 o o 1 ®w
(ld)V_, = —=|o* o o o 1],
7 V5 w? 1 o o o
0 W w 1 ot
1 1 1 1 1
1 w* o ot 1 w
{|ej)}§:1=— o 1 o ot w],
‘/5 0 o ot P 1
0 w 1 ot
1 1 1 1 1
1 w* 1 ®w o
Ifie=—=lo o 1 o o], (A2)
! V5 o o o 1 &
ot 0 w 1

where @ = €27/5,

In dimension 4, we have five MUBs. Again, we display
them as columns of the following matrices [8]:

{|aj>}j':1 =

SO O -
SO = O
O = O O

1
b)Yz =3 -

-1

I
o =

0
0
0
1

1
—1
—1

1

)

11 1 -1 -1
{|cj>}]:1_2 —i i i il
=i —i

1 1 1 1

I8 —i i =i
ayia=s5 20 1 1|

e
leii=5] i 2 (A3)

-1 -1 1 1

Numerical minimization. The numerical minimization we
adopted here is very similar to the one exploited in Ref. [17].
We used the software package wolfram mathematica. We
parametrized the states in dimension 5 as follows:

|¥) = sin o sin a; sin o3 sin ase™'|0)
+ cos a; sin a; sin a3 sin aze® 1)
+ cos a; sin a3 sin a4e®*|2) + cos a3 sin aye™|3)

+ cos age'? |4), (A4)

i.e., a parametrization yielding the normalization of the state
intrinsically. Differently from Ref. [17], we checked the re-
sults of our optimizations by repeating the procedure twice:
The first one on reparametrized states where the weights in
Eq. (A4) were permuted with respect to the states of the basis,
and the second one on each of the reparametrized states but
expanded on the eigenstates of other MUBSs.

For each MUB {|x)}; in Eq. (A1), we retrieved the Born
probabilities in terms of the coefficients in Eq. (A4) through
the superpositions between the states of the MUB and the
generic state |y), namely,

plxe) = | (el ¥ 1. (AS)
Then, we considered the Shannon entropies
5
H({lx)) = =Y p(xi) log, p(xc) (A6)
k=1
and the variances
AX? = (Y|XP|y) — (WIX|y)?, (A7)

with X = >« P(K)|xi) (xx]. We then minimized numerically
the sum of three entropies and the sum of three variances
for all possible triplets of distinct MUBs. The minimization
was performed by using the routine NMinimize of wolfram
mathematica, which finds the minimum of a function over a
given set of parameters and constraints.

Effects of the inequivalence of MUBs on the EURs. Here,
we inspect in more detail the effect of the inequivalence of
triplets of MUBs on the pertaining EURs. In particular, we
show that the combination of the MUBs in the triplets from S
and S, identifies two related subsets of the Born probabilities
inspected so far.

The MUBs shown in the Appendix are Hadamard
matrices related to each other through the unitary
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U= diag(1, w, w*, 0¥, ), with w = exp (i2m /5), as follows:

{lej)y = Ullbj)},

{lej)} = O*{1b))},

{ld)} = 0*{1b;)},

{1/} = 01bp}.
This structure inherently prevents from mapping any triplet in
the set S of Eq. (3) into a triplet in S, of Eq. (4) by means
of a unitary matrix [8]. In the following lemma, we show how
these relations impact on the Born probabilities appearing in
the URs. In particular, the proof outlines how the structure of
the five-dimensional MUBs implies the same EUR in Eq. (1)
[Eq. (2)] for the triplets in the same set S (S,).

Lemma Al. Let S; and S, be the two inequivalent subsets
of triplets of MUBs ind = 5. Let

— [, (" (")
Pl = {po/,O’ Pyl,%, leﬁwn}j’j,_j” (AS)
and
— [, () ")
PZ = {pxzyw, PYM/,O, PZNI,O }j!]—/!ju (A9)

be the two disjoint sets of probability vectors with X,Y,Z; €
S and XoY»7Z, € S,, where [)(TJ,)% is the Born probability
of the superposition of the jth eigenstate of a basis T €
{A,B,C,D,E, F} with a five-dimensional pure state |y)
and { p(T"iﬁo }?2 | is the pertaining probability vector. Consider
the unitary U = diag(1, o, o*, 0*, ), with w = exp (i27/5),
and the Fourier matrix & = {b;};. Then, the transforma-
tions in the set V = {UN®MULYy 1y, with N, L € {0, £1
mod 5, +2 mod 5} and M € {0, +1}, are automorphisms of
7)1 and 732. )
Proof. The probability p(T].)% reads

Py, = 1Wolt)) P, (A10)
where {|t;)}; are the eigenstates of 7', identifying one of
the MUBs. Due to the construction of the MUBs in terms
of Hadamard matrices, the probabilities p(T’_)% can always be
expressed as

PEy = [(WolU™ @™ U Pylag) 2, (A1)

where {|a;)}; is the computational basis and Pj; is the permu-
tation exchanging the vector |a;) with |a;). U being a periodic
matrix such that U3 = I, we have [, ny € {0, £1 mod 5, £2
mod 5}, while for the Fourier matrix, we just need my =
0, 1. Permutations map the probability vectors { p(T’Y)%} jin
themselves and are therefore automorphisms for P; and P,.
Similarly, the action of U’ on the states of the computational
basis reduces to the multiplication for a global phase factor,
thus leaving p(T”)w(l unchanged. Conversely, the exponents my
and ny determine the basis T. If my = 0, the transformation
U™ @™, again, rescales |a;) by an irrelevant phase factor,
while for my = %1, maps it to the state of another MUB, iden-
tified by ny. Now, we evaluate the probabilities in Eq. (A11)
on a state |Y) = V|yy), with unitary V. By definition of P,
and P, if VT is an automorphism of the set of MUBs, namely,
V7:T — T, with T and T mutually unbiased, as

vViy" oM = Uyt (A12)

then it is an automorphism of P; U P,, and

vi=yrremm—mrytt = yNeMyt e . (A13)

Now, we have to show that the transformations in V identify
the two disjoint sets P, and P,. The application of the same

unitary V to the state |y) relates the triplets of probability

) SN0 ) (" ")
vectors { pgw, p;”d/, p7 ];} and { p% " p?J, " p% lm)} through

the equations

UV oMyt pm = y'x px, (A14)
N oMyt omr =y e (A15)
UNoMyttrzom = yrzmz, (A16)

Without loss of generality, we can restrict to the cases where
M =0,L #0and M # 0, L = 0, the remaining cases being
retrieved by shifting ny, ny, and nz by L. For the sake of
simplicity, we will set the triplet XY Z in the so-called standard
form, where one of the MUBs is the computational basis,
say X = {|a;)};, implying myx = 0. The proof with my = *1
follows the same line of argument and leads to the same
conclusions.

In the case M = 0, note that we can also set N = 0.
Then, Eqs. (A14)-(A16) fix mgy =mx =0, my =my # 0,
and mz = mz # 0, respectively. Note that the last two must be
both non-null, or we would have repetitions of the computa-
tional basis in the same triplet. Finally, Egs. (A15) and (A16)
set An = nz — ny = ny — ny, implying that the application of
V fixes a relation between {Y, Z} and {Y, Z}. From the pe-
riodicity of U, again An € {0, 1 mod 5,£2 mod 5}. We
must have An # 0 to avoid Y and Z being the same basis.
Moreover, the order in the difference An is irrelevant, and so
is its sign. These considerations leave us with two distinct
possibilities, either An =+1 mod 5 or An = =£2 mod 5.
However, these identify two disjoint sets of triplets, the one
in &), featuring An = +1 mod 5, and the one in S,, with
An = +£2 mod 5. If all the bases in the triplet are assumed to
be different from {a;};, then it is simple to see that one ends
with a similar set of conditions for ny, ny, and nz separating
the two sets of triplets as before. Hence, U’ maps the elements
of P in elements of P; and the elements of P, in elements of
Ps.

In the case M #0,L =0, we need the following
identities:

d'US =UDPU, (A17)

®'U’® = U OUP;,. (A18)

Again, we will neglect the contributions of permutations and
global phase shifts. From Eq. (A14), we have myz = M and
ny = N. By exploiting Eqs. (A17) and (A18), we find that the
left members of Egs. (A15) and (A16) yield

U o"sy™ @™ =38, o(1 — 8,,,0)U"™ + 8 1
X (1= 8, £)U" T P™
+ Snk,Z(l - 8nj,2)8m7,_]U"Y+"k+lq>mk

+ aﬂk.*2(1 — 8"/,72)8m7,1Un7+n"_l(bmk’
(A19)
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where &, is the Kronecker delta, k # j,and k, j € {Y, Z}. By
requiring the equality with the right members of Egs. (A15)
and (A16), we find that the deltas identify the following
cases:
nzy=ny F1 mod 5
implying An =nz —ny =nzy —ny = %2 mod 5: the
transformations are automorphisms of P,;
(ii) ny =ngy+1 mod 5
nzy = nyg — 2 mod 5
implying An =n; —ny — 1 and we have that either
An =1 mod 5 or An = —2 mod 5; in the first case, the
transformations are automorphisms of P;, while in the second
one those of Ps;
nzy =ngy +2 mod 5
implying An =n; —ny+1 and we have that either
An=—1 mod 5 or An =2 mod 5; in the first case, the
transformations are automorphisms of Py, while in the second
one those of P,;
(iv) ny =ngy —2 mod 5
I’LZ = ny + 2 mod 5
implying An = n; —ny +2 =1 mod 5: the transforma-
tions are automorphisms of P;.

Then, the automorphisms of the whole set of triplets of
probability vectors P; U P, are automorphisms of the disjoint
sets Py and P,. [ |

Note that, while it has been proved [8] that the elements
of S; cannot be mapped into elements of S, via unitary
transformations, Lemma A1 does not imply that there are no
unitaries mapping elements of P; into elements of P,. This is
a relevant distinction between the sets Sy, S, and the sets P,
P,. Lemma A1 establishes that PP; and P, are distinct equiva-
lence classes, which does not rule out that their elements can
be unitarily related. For instance, this is trivially the case if
[Y0) and |Y) = V|g) are states of MUBs: given two inequiv-
alent triplets of MUBs, one can always pick two states from
different MUBs providing the same triplets of probability
vectors.

Since the Shannon entropies in the EURs here addressed
depend on the Born probabilities only, Lemma Al is a suf-
ficient condition for the EUR in Eq. (1) [Eq. (2)] to hold
for all the triplets in the set S; (S;). On the other hand, the
existence of distinct lower bounds is a necessary, but not
sufficient, condition for the inequivalence of P; and P, since
it implies that there is no unitary transformation that can map
the optimal states saturating the EUR for the triplets in S, into
equivalent optimal states for the triplets in S;.
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State characterization through
multi-output detection

Besides unlocking the new applications that we have seen in the previous chap-
ters, the simultaneous projections enabled by the mQPG (Chapter 4) allow for
improved state characterization techniques. In this chapter, we present two
techniques for quantum state and pulse characterization, both of which use the
unique capabilities of the mQPG and highlight its versatility for different applica-
tions. These methods contribute significantly to the high-dimensional quantum
communication framework developed in this work by providing valuable means
for characterizing qudits encoded in the time-frequency domain of photons.

The experimental results and methodologies presented in this chapter are based on
the following publications:

[Quantum Sci. Technol. 10, 025024 (2025)] L. Serino, M. Rambach, B. Brecht,
J. Romero, and C. Silberhorn, “Self-guided tomography of time-frequency qudits”,
Quantum Sci. Technol. 10, 025024 (2025). DOI: 10.1088/2058-9565/adb0ea

[arXiv:2504.08607 (2025)] A. Bhattacharjee', L. Serino’, P. Folge', B. Brecht,
and C. Silberhorn, “Frequency-bin interferometry for reconstructing electric fields
with low intensity”, arXiv:2504.08607 (2025). DOI: 10.48550/arXiv.2504.08607

T These authors contributed equally to the work.
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7.1 Self-guided tomography

For practical applications of time-frequency encodings, precise knowledge of the
prepared quantum states is essential. However, characterizing qudits—a process
known as quantum state tomography—becomes inherently challenging in high
dimensions, as the number of parameters to be determined grows quadratically
with the dimension d [127, 128]. Standard tomography techniques, which
apply the maximume-likelihood method to the results of an over-complete set
of measurements, become increasingly resource-expensive [117, 129, 130] in
higher dimensions. While alternative approaches like compressive tomography
can reduce the number of required measurements [131-133], their algorithms
are often sensitive to noise, and many practical methods require a careful error
calibration of the measurement device to achieve reliable results [95, 117, 134].

Self-guided tomography (SGT) [135] is an alternative technique that addresses
many of these issues. Its working principle is based on an iterative process
where an estimate of the quantum state is refined through successive projective
measurements that “align” the measurement state to the input. By projecting
the unknown state onto a series of states (o, and o_) perturbed in opposite
directions, the measurement outcomes guide the updates to the state estimate
until a precise characterization is achieved. Previously applied to the polarization
[136] and spatial [137] degrees of freedom, and extended to quantum process
tomography [138], SGT has demonstrated scalability to high dimensions and
a powerful resilience to both statistical and environmental noise, making it
particularly effective in the photon-starved regime typical of quantum optics
experiments.

In our work, presented in Quantum Sci. Technol. 10, 025024 (2025) and
performed in collaboration with the group of J. Romero at the University of
Queensland, we demonstrate SGT in the time-frequency domain for the first
time. While multi-output detection is not fundamentally required for SGT, the
mQPG significantly enhances the process by simultaneously measuring the o,
and o_ states, which halves the measurement time and reduces the impact of
fluctuations. This approach allowed us to achieve state estimation fidelities
exceeding 99% for both 3- and 5-dimensional qudits, thereby validating SGT as
a highly practical and robust method for time-frequency qudit characterization.

During our analysis, we observed a notable difference compared to previous
SGT demonstrations in the spatial domain [137]: while the infidelity in those
experiments appeared to decrease indefinitely with more iterations, ours reached
a distinct saturation value. This unexpected behavior motivated a detailed simu-
lation study to understand its origin. We built a realistic numerical model that
incorporated all the main parameters of our experiment, based on the simulated
mQPG transfer function, which included the phase-matching imperfections and
crosstalk effects discussed in Chapter 4, as well as the measured noise character-
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ization of the detector. Our initial hypothesis was that the fidelity was limited
by measurement imperfections and detector noise—after all, it seems intuitive
that one can only reconstruct a state as well as one can measure it. However, we
realized that this model could not explain the convergence we were seeing. The
actual culprit, it turned out, was the state preparation fidelity itself. Our system
was estimating the input state extremely well, even better than the measure-
ment fidelity would suggest, but the input states themselves were not perfect.
As soon as we introduced preparation infidelity into our model, we were able
to reproduce the convergence behavior with remarkable accuracy. This result
highlights a key strength of SGT: its iterative and stochastic nature is remarkably
resilient to measurements errors, which tend to be averaged out, allowing for a
state reconstruction whose fidelity is ultimately limited only by the quality of
the source.

7.2 FIREFLY

The complete characterization of the spectral amplitude, phase, and coherence of
ultrashort optical pulses, especially at the single-photon level, is a long-standing
challenge in quantum optics. Conventional pulse characterization techniques
such as frequency-resolved optical gating (FROG) [139, 140] and spectral phase
interferometry for direct electric-field reconstruction (SPIDER) [141, 142] en-
counter difficulties with low-light-level pulses because of the high power needed
by the nonlinear processes involved. While alternative methods have been devel-
oped for single-photon pulse characterization [130, 143-145], they often require
a well-characterized reference pulse, computationally intensive reconstruction
algorithms, and spectrally-resolved detection. Overcoming the limitation of re-
quiring a known reference pulse to characterize the spectro-temporal structure
of an unknown quantum state has been a major goal for this field.

The second publication presented in this chapter, arXiv:2504.08607 (2025),
introduces a new method that solves this problem, which we labeled “frequency-
bin interferometry for reconstructing electric fields with low intensity” (FIREFLY).
This method directly provides spectral amplitude, phase, and coherence profiles
of single-photon pulses with minimal post-processing. While not exclusively
quantum, we have demonstrated its application with both weak coherent pulses
and “true” quantum states from a PDC source, showcasing its remarkable speed
and precision.

To understand how FIREFLY works, let us consider the challenge of reconstructing
the spectral phase profile of a pulse. Since phase is a relative quantity, we need
a reference to measure it. We can choose a specific frequency component of
the pulse, w,, as our reference and define its phase as zero. To determine the
phase of any other frequency component, w, + d, we must interfere it with our
reference. Let us imagine that we can isolate these two frequency bins and
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make them interfere, neglecting for the moment how exactly one could achieve
that. By applying a known, controllable phase shift { to the target bin and
measuring the interference intensity, we can map out a sinusoidal fringe pattern,
as conceptually illustrated in the top right of Fig. 1 in the included paper. The
horizontal shift of this sinusoid directly reveals the original relative phase of the
target bin. Furthermore, its visibility (normalized by the intensity difference
between the two spectral points) describes the degree of coherence between the
two frequency points, providing a complete picture of the spectral properties
of the pulse at that specific frequency separation. While one could trace the
entire curve to obtain this information, in practice it is sufficient to measure the
intensity at just four phase settings (¢ = 0, /2, m,37/2). As detailed in the
appendix of the included paper, these four points allow one to fully determine
the complex value of the interference term, which directly yields the relative
phase and degree of coherence between the target and reference frequency bins.

The question remains: how can we practically interfere different frequency
components? FIREFLY achieves this using a QPG, which up-converts input signal
frequencies based on the spectral shape of the pump, as described by (4.1.4).
By shaping the pump into two narrow frequency bins, one fixed to select our
reference frequency and one to select the target frequency, we effectively select
and interfere two components of the input pulse. The controllable phase shift
is applied simply by changing the relative phase between the two pump bins. By
scanning the target pump bin across the spectrum of the pulse, we can reconstruct
the entire complex spectral profile point by point, relative to the fixed reference.
This method is remarkably direct, requiring no iterative algorithms or complex
data analysis beyond simple sums and subtractions. Furthermore, since the QPG
is a low-noise process, the technique is highly effective even for single-photon-
level signals, and its spectral resolution is limited only by the shaping resolution
of the pump.

But what if the pump pulse itself has an unknown spectral phase profile? In
that case, the measurement only reveals the relative phase between the input
and the pump. One could characterize the pump phase profile first, but this
would require another, known reference pulse. This is where the true “magic”
of this method comes into play, through its extension to an mQPG. As shown
in Fig. 2 of the included paper, each output channel of the mQPG performs a
similar two-bin interference measurement. The key difference is that, as we can
see from (4.1.7), an output channel centered at a frequency offset A applies an
intrinsic spectral shear’ A between the interfering pump and signal frequencies,
due to the energy conservation.

'We call this an “intrinsic spectral shear” because, although no frequencies are physically
sheared, the interference pattern observed in a different output channel is mathematically
equivalent to the result of shearing the pump or input frequencies before they interfere. This
allows us to achieve the effect of spectral shearing without the significant experimental overhead
of a dedicated shearing apparatus.
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The measured phase profile for each output channel u(d; A) is then a combination
of the input phase profile ¢(w) and pump phase profile a(w,):

,u(d;A):¢(co0+d+A)—¢(wO+A)—a(w§°)—d), (7.2.1)

where cog)) is our chosen reference point for the pump spectrum. From here, we
can extract both unknown phase profiles. For instance, by simply subtracting
the phase profiles reconstructed from two different output channels (e.g., at
A =0 and A = A,), the contribution from the unknown pump pulse can be
completely eliminated, leaving a phase trace that depends only on the phase
profile of the input. A simple polynomial fit to this trace is usually sufficient
to reconstruct the input phase, which can then be subtracted from the original
measurement to reveal the phase profile of the pump pulse. Vice versa, one can
shift the two profiles before subtracting them to eliminate the input dependence
first, and then fit the pump phase. This reference-free technique allows for the
simultaneous characterization of two unknown pulses with the effort typically
required to characterize only one. As demonstrated in the paper, this approach
works exceptionally well even when both pulses are at low power levels: in the
publication, we demonstrate theory-experiment similarity above 95% across all
retrieved profiles.

7.3 A pulsed lidar system for single photons

The versatility of the mQPG as a tool for manipulating temporal modes also
opens the door to practical applications in classical measurements. In a joint
work with the Department of Electrical Engineering of Paderborn University
[146], we demonstrated that the capabilities of our device could be adapted
to realize a pulsed lidar system compatible with single-photon-level signals. In
this application, we used the mQPG to project a returning, low-intensity optical
pulse onto the zeroth- and first-order Hermite-Gaussian temporal modes. By
analyzing the relative weights of the outcome of these mode projections, which
the mQPG yielded simultaneously in two different output channels, we could
precisely determine the arrival time of the pulse [58, 147], and thus the distance
to the target, with high accuracy. This work demonstrates that the mode-sorting
capabilities of the mQPG, initially developed for decoding high-dimensional
quantum information, provide a powerful and resource-efficient tool for classical
precision metrology.
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Abstract

High-dimensional time-frequency encodings have the potential to significantly advance quantum
information science; however, practical applications require precise knowledge of the encoded
quantum states, which becomes increasingly challenging for larger Hilbert spaces. Self-guided
tomography (SGT) has emerged as a practical and scalable technique for this purpose in the spatial
domain. Here, we apply SGT to estimate time-frequency states using a multi-output quantum
pulse gate. We achieve fidelities of more than 99% for 3- and 5-dimensional states without the need
for calibration or post-processing. We demonstrate the robustness of SGT against statistical and
environmental noise, highlighting its efficacy in the photon-starved regime typical of quantum
information applications.

1. Introduction

The time-frequency degree of freedom of photons is gaining increasing attention in quantum information
science due to its unique advantages [1-5]. It naturally supports high-dimensional encoding alphabets,
allowing for the transmission of more information per photon compared to conventional binary systems
[6, 7]. This increased information density enhances resilience to noise and eavesdropping in quantum
cryptography protocols and, therefore, makes high-dimensional encodings particularly advantageous for
secure communication [8—13]. Additionally, the time-frequency domain offers greater resilience in
transmission than the polarization and spatial degrees of freedom and is uniquely compatible with
single-spatial-mode optical fibers, which are integral to modern telecommunication networks.

For practical applications of time-frequency encodings in quantum information science, precise
knowledge of the encoded states is essential. In high dimensions, the process of characterizing quantum
states—known as quantum state tomography—becomes inherently challenging due to the large associated
Hilbert space. Namely, for a single qudit, the parameter space to be characterized grows as d* — 1, where d is
the dimension of the qudit [14, 15]. Standard quantum state tomography techniques, which apply the
maximum-likelihood method to the results of an over-complete set of measurements [16-18], and
alternative interferometric methods [19-21] become increasingly resource-expensive for large Hilbert spaces
due to the significantly greater number of required measurements. Techniques such as compressive
tomography [22-24] require fewer measurements for an accurate quantum state estimation; however, the
estimation algorithms are sensitive to noise and become more computationally demanding for
high-dimensional systems. Moreover, in practical applications with imperfect detectors, many tomography
techniques require an error calibration of the experimental setup to incorporate into the reconstruction
algorithm and achieve reliable results [17, 25, 26].

Self-guided tomography (SGT) [27] is an alternative technique that facilitates the estimation of a
quantum state by maximizing its overlap with an iteratively updated guess without requiring any calibration
or post-processing analysis. This method has been applied to the polarization [28] and spatial [29] degrees of
freedom of photons, and has also been extended to perform quantum process tomography [30]. In these

© 2025 The Author(s). Published by IOP Publishing Ltd
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applications, SGT has demonstrated scalability to high dimensions and resilience to statistical and
environmental noise, which makes it particularly effective in the photon-starved regime.

In this work, we demonstrate the advantage of SGT applied to the time-frequency domain by accurately
estimating a high-dimensional input state encoded in this degree of freedom. Using a so-called multi-output
quantum pulse gate (mQPG) [26], we perform time-frequency projections and iteratively update the
estimated state based on the results of their outcome. We achieve a fidelity to the encoded input state above
99% in 3 and 5 dimensions, approaching the fidelity limit of the state preparation setup. Through SGT, we
demonstrate the direct estimation of the quantum state without any calibration or post-processing, even in
the presence of strong statistical and environmental noise.

2. Method

The problem of quantum state tomography requires characterizing an unknown input state |¢) ) from a
chosen Hilbert space. We choose a space described by temporal modes [1], i.e. field-orthogonal wave-packet
modes that encode information in the complex spectral amplitude of the electric field. Namely, we use the
first d Hermite—Gaussian modes {|a;) }j—1,...4 as the computational basis of our d-dimensional Hilbert space.
In this space, the input state can be expressed as [¢)) = . ¢j|qj), where ¢; are complex coefficients. We note
that this description intrinsically assumes a single-photon state in input and focuses solely on the
temporal-mode structure of the state. We assume pure input states, as in the original formulation of SGT
[27], although this technique can also be adapted to mixed states if necessary [29].

To implement SGT, we begin by generating a set of random complex coefficients C]Q to provide an initial
guess of the target state: |¢)°) = > cf|o<j>. At each iteration k of the algorithm, this estimate will be updated
to a more accurate [¢)F) = " j c]’f|a,-> based on the result of the time-frequency projections performed by the
mQPG (figure 1).

The mQPG [26] serves as a mode-sorter for single-photon-level time-frequency states. Its working
principle is based on sum-frequency generation in a dispersion-engineered nonlinear waveguide driven by a
spectrally shaped pump pulse [31]. The mQPG operation is described by a transfer function, which is the
product of the energy conservation condition, determined by the pump function, and the phase-matching
function, describing momentum conservation (see inset in figure 2). By choosing a pump wavelength that is
group-velocity-matched to the input wavelength in the nonlinear medium, we achieve a horizontal
phase-matching function that facilitates mode-selective operation in each channel of the mQPG [17, 32].
Thus, the probability of upconversion in each channel is proportional to the complex spectral overlap
between the input mode [+ ) and the pump mode |o), which can be selected via spectral shaping. Effectively,
the mQPG projects a high-dimensional input state onto the selected pump modes and yields the result of
each projection into a separate output channel, corresponding to a distinct output frequency that can be read
out using a spectrograph.

The states for the projections at each iteration k are chosen starting from the most updated guess |/*).
We perturb each complex coefficient cj‘ in a random direction (Ag); € {1,—1,i,—i} [33] with strength
Br =b/(k+1)", where b and ¢ are hyperparameters of the algorithm, optimised once by trial and error in
simulations. From this perturbation, we obtain the two states |o%.) = |1)* & 8;A;), and we assign each to a
channel of a two-output mQPG. The mQPG projects /) onto |0 ) and [o* ) and yields the results of the
projections as N and N_ clicks detected in the respective channels.

From the pseudo-normalized quantity 6N = (N — N_)/(Ny + N_), we calculate the gradient
& = ONA /2 which indicates the magnitude and direction of the distance vector between the target state
[4) and its estimate |1/*). We use this gradient to compute the next estimate in the iteration as
[*H1Y = [k 4+ argr), where oy = a/ (k4 1 + A)® determines the step size in the direction of the gradient,
with a, A and s algorithm hyperparameters.

This iterative procedure is repeated for a chosen number of steps K, after which we obtain the final
estimation [¢)X). We then calculate the infidelity 1 — ’(wK [4) }2 to quantify the residual distance between the
reconstructed state [1)X) and the target state |1)).

3. Experiment

Figure 2 shows a schematic of the experimental setup. Input and pump pulses are generated by an optical
parametric oscillator (OPO) system driven by an ultrafast Ti:Sapph laser emitting 150 fs coherent pulses at a
repetition rate of 80 MHz. The input pulse, centred at 1545 nm, is shaped by a commercial waveshaper
(Finisar 4000S) into a random superposition |t ) of the first d Hermite-Gaussian functions, with d € {3,5}
dimensionality of the Hilbert space.
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Figure 1. Schematic representation of the SGT procedure. The estimate [4)¥) (initially a random guess) is iteratively updated
based on the result of the projections of the true input state 1)) onto the two states |o*_), obtained perturbing the latest estimate

[1*) in two opposite directions.
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Figure 2. Schematic of the experimental setup. An optical parametric oscillator (OPO) system driven by an ultrafast Ti:Sapph
laser produces the input (orange) and pump (blue) pulses. The input state |t/ ) is generated by a commercial waveshaper (Finisar
4000S), whereas the pump pulse is shaped by an in-house-built folded 4-f waveshaper [34] to generate |o_). Using two
half-waveplates, we align the polarization of input and pump to horizontal and vertical, respectively, as required by the mQPG
process. The mQPG projects |1 ) onto |U§t>’ yielding the results as Nt and N_ upconverted photons in the two output channels.
The inset shows the frequency-space representation of the mQPG projections, described by a transfer function (red), which is the
product of the phase-matching function (contoured by horizontal black lines) and the energy conservation condition determined
by the pump spectrum (blue). A CCD spectrograph (Andor Shamrock 500i) detects the output photons, discriminating the two
output frequencies. From the pseudo-normalized difference in counts SN, we calculate the gradient g to determine the next

estimation |)**1) which, in turn, is the starting point for \a@'l} in the following iteration.

The first estimate |[4)°) of the input state is chosen randomly, and its coefficients are perturbed in two
opposite directions to find the two states |0%.) used for the mQPG projections. The pump pulse, centred at
860 nm, is shaped by an in-house-built folded 4-f waveshaper [34, 35] to generate the complex spectra of
|c%.) and |02 ). This custom-built waveshaper is necessary because commercial waveshapers are not yet
available for this wavelength range.

The mQPG waveguide used in this experiment is realized in-house in titanium in-diffused lithium
niobate operated at 160 °C, with a periodic poling pattern consisting of an alternation of unpoled regions
and regions which are poled with a period of 4.32 m [26]. This pattern enables the mQPG to perform
time-frequency projections in two different channels centred at two distinct frequencies. The spectra of |¢5.)
in the pump pulse, therefore, are centred at two offset frequencies matched to the two output frequencies of
the mQPG.

Input and pump pulses are coupled into the mQPG waveguide with a coupling efficiency of 70% and
50%, respectively. The waveguide propagation losses, below 0.1 dB at 1550 nm, are negligible in comparison.
The mQPG projects the input state [¢) onto [¢.) and |0 ), upconverting each copy of the input state
(i.e. each input photon) in the ‘+” or ‘—’ channel with probability proportional to the overlap | (% |¢)) ’2.
The upconverted photons are detected by a single-photon-sensitive spectrograph (Andor Shamrock 5001),
which discriminates the output frequencies and integrates over multiple pulses, providing the total counts
N and N_ observed in each channel during the integration period.

From these counts, we calculate the first gradient g, to determine the next estimate |+/!). This procedure
is repeated for each iteration k, refining the estimate |¢*) closer to the true input state |t/ ). We perform a
total of K =200 iterations in d =3 and K =300 in d =5.

For each dimensionality (d =3 and d = 5), we repeated the SGT procedure on 100 different input states
chosen randomly with Haar measure [36]. We tested this method on the same set of input states in different
conditions of statistical noise quantified by v/N/N, where N denotes the number of maximum counts in each
channel when the input and pump states perfectly overlap. The values N = 10%, N = 10 and N = 10* were
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achieved by adjusting the integration time of the spectrograph from 1 to 10 ms and 100 ms, corresponding to
approximately 2.5 x 1072 clicks per pulse; N = 10° was obtained with an integration time of 100 ms and a
larger photon number in the input, resulting in approximately 2.5 x 1072 clicks per pulse. Additionally, we
performed standard tomography based on maximum-likelihood estimation [17] with a single channel of the
mQPG under identical noise conditions and with the same input states for a comparative analysis.

We note that the spectrograph output was strongly affected by electronic read-out noise with a mean of
890 counts and a standard deviation o = 14 in each channel. This was the dominant source of environmental
noise during the measurements and was independent of the integration time. To limit its impact, we
subtracted the minimum ‘constant’ background value of 820, chosen at a distance of 5¢ from the mean to
prevent negative count artifacts. This correction left a residual background of 70 counts per channel with the
same standard deviation ¢ as the main source of environmental noise.

To complement the experimental data, we performed realistic simulations of the SGT process taking into
account the measured electronic noise and the imperfect mQPG projections. We used these simulations to
find the set of hyperparameters (b, t,a,A,s) that optimized the convergence of the estimated quantum state.
We then fine-tuned these values in the experiment, observing how they affected the convergence rate of the
infidelity for the same input state.

4, Results and discussion

Figure 3 shows (in colour) the median infidelity of the reconstructed states at each iteration of the process.
For high photon numbers, we reach 10% infidelity after only 10 iterations in d = 3 and 20 iterations in d = 5.
These values are similar to what Rambach et al [29] obtained in the spatial domain for the same
dimensionalities, showcasing the adaptability of SGT to different experimental implementations.

However, after this value, the decrease in infidelity slows down until it reaches a plateau. This is in
contrast to the results achieved in the spatial domain, where the infidelity continued to decrease indefinitely
within the measured number of iterations. Notably, tuning the hyperparameters only affects the convergence
speed but not the final infidelity.

The saturation of the infidelity can be attributed to a combination of two factors: systematic errors of the
measurement device and imperfections in the preparation of the input states. Although we assumed ideal
input preparation when calculating the infidelity of the estimated states, an infidelity of 1% in the
waveshaping system that generates the input states can significantly decrease the maximum precision
achievable by SGT. Additionally, although this technique is highly resilient to statistical noise due to its
iterative and randomised component, it can still be affected by systematic noise from imperfect mQPG
operation [17, 26, 37].

The black lines in figure 3 show the simulated results of the SGT process based on the measured
electronic noise and mQPG imperfections (quantified as average cross-talk between orthogonal states [26]),
in addition to an estimated infidelity in the input preparation of (0.6 =0.1)% in d =3 and (0.9 +0.1)% in
d=5. We find excellent agreement between the simulation results and the experimental infidelity curve,
visible both in the convergence rate and in the saturation value of the infidelity, thus supporting the
assumptions on the imperfections in the input preparation.

Figure 4 illustrates the isolated effects of different types of imperfections (environmental noise, systematic
errors in the measurement device and preparation infidelity) on the two datasets in d =5 with N = 10* and
N = 10*. We always show the experimental data and realistic simulation for comparison as coloured and
black solid lines, respectively. In each column, we study the effect of each particular type of imperfection by
changing its value in the simulations. The dotted lines are the results of simulations in which we completely
remove that source of error; the only visible improvement is observed when the preparation infidelity is
eliminated (last column in figure 4). The dashed lines show the effect of an increase in the selected error
source (10 times greater environmental noise, 10 times more systematic measurement imperfections, and 3
times larger preparation infidelity), keeping the others unchanged. While this leads to a larger final infidelity
in general, the dataset with fewer counts is significantly more affected by an increase in the environmental
noise. Overall, one can notice that the limited preparation quality of the input states represents the most
significant constraint to the minimum achievable infidelity in the current experimental conditions.

Despite this technical limitation, SGT consistently achieves lower infidelity than standard
maximume-likelihood tomography [17] performed with the same experimental setup in identical
environmental conditions (see table 1 for detailed comparisons). Notably, the estimate of the input state is
known in real-time at every step of the process without requiring post-processing.

Furthermore, SGT demonstrates superior performance even under low count rates. In both
dimensionalities, we achieve infidelities of approximately 1% with only 10* counts per measurement. Even
with as few as 100 counts per measurement, the infidelity decreases with each iteration, albeit more slowly,
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Figure 3. The coloured lines show the experimental infidelities of the reconstructed states at each iteration of the SGT algorithm
for different values N of the maximum counts per iteration in each channel. The lines represent the median infidelity of the
complete population of 100 different input states, whereas the shaded area shows the upper and lower quartile of the infidelities
(50 £ 25)%. In close agreement with the experiment, the black lines show the results of simulations that take into account
experimental imperfections, as detailed in the main text.
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Figure 4. Effect of different sources of imperfections on the SGT convergence curve based on the same set of 100 input states in
d =5 for the two statistics N = 10° and N = 10*. The experimental data (coloured line) and the realistic simulation (solid black
line), are the same as shown in figure 3. The simulation incorporates realistic experimental errors based on the measured
electronic noise and mQPG imperfections, and on the estimated infidelity in the input preparation, as detailed in the main text.
The very good overlap between the experimental data and the simulation indicates a good understanding of the experimental
errors in the system. In each column, we change the value of a particular type of error in the simulations: the dotted lines show
what happens when we completely remove that source of error, whereas the dashed lines show the effect of an increase in that
error source (10 times greater environmental noise and measurement imperfections, 3 times larger preparation infidelity). The
dotted line is clearly visible only in the rightmost plots, suggesting that preparation infidelity is likely the major limiting factor in
the quality of the reconstructed states. See the text for more information.

reaching 10% after approximately 100 iterations in d = 3 and 200 iterations in d = 5. This resilience to
statistical noise highlights SGT as an optimal method for quantum state tomography in the photon-starved
regime.
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Table 1. Comparison of the final infidelity achieved through SGT and through maximum-likelihood state tomography (MLST) [17]
performed with the same experimental setup in identical environmental conditions. The values indicate the median value over a set of
100 random input states, and the error shows the upper and lower quartile values of the distribution. The same set of input states was
characterized with both methods.

d=3 d=>5
N SGT MLST SGT MLST
10° 0.657938 % 0.88793%% 0.94793 % 3.24752%
10* 0.607035 % 0.78+938% 1.01705 % 2671073 %
10° 0.7670:32% 0.4870:58% 1.23102% 3.867009%
10 7.039% 13.1789% 7.97371% 39.61%7%

5. Conclusion

We applied SGT for the first time to time-frequency qudits, showcasing the versatility of this method in
different degrees of freedom. We achieved a fidelity of the estimated states above 99% in 3 and 5 dimensions
without the need for calibration or post-processing. The experimental results highlight the resilience of this
technique to statistical and environmental noise, favoured by its iterative character. Through realistic
simulations that closely reproduce the experimental data, we infer that the ultimate fidelity of our estimates
is predominantly limited by the accuracy of the input state preparation. These results demonstrate the robust
and adaptable nature of this technique, paving the way for further exploration and potential applications in
quantum information science.
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Frequency-bin interferometry for reconstructing electric fields with low intensity
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Ultrafast single-photon pulses with tailored time-frequency properties are highly attractive for
quantum information science, offering high-dimensional encoding and compatibility with integrated
optics platforms. However, accurate characterization of such pulses, including spectral coherence,
remains challenging because current methods require substantial experimental resources and com-
plex reconstruction algorithms. Here, we introduce frequency-bin interferometry for reconstructing
electric fields with low intensity (FIREFLY), a technique that directly provides spectral amplitude,
phase, and coherence profiles of single-photon pulses without requiring intensive reconstruction algo-
rithms. Our approach measures the two-point spectral correlation function of the pulse by interfering
its different frequency components using a quantum pulse gate (QPG) driven by a reference pump
pulse. We demonstrate its compatibility with quantum light by characterizing partially coherent
pulses generated by a type-0 parametric down-conversion process. We also overcome this require-
ment of a known pump pulse by introducing spectral shear into our interferometric scheme using
a multi-output QPG (mQPG). This enables simultaneous characterization of a single-photon-level
input pulse alongside an unknown pump pulse. Notably, our method achieves theory-experiment
similarity above 95% across all retrieved profiles, which demonstrates the reliability of this scheme
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for quantum information applications based on time-frequency encodings.

I. Introduction

The rapid growth in photonic quantum technology [1-
3] has highlighted the importance of single-photon ul-
trafast pulses [4-6]. The time-frequency (TF) proper-
ties, or mode structure, of such pulses serve as a pow-
erful resource for quantum information applications, in-
cluding quantum computing [7, 8], quantum communica-
tion [9, 10], and quantum metrology [11-14]. The high-
dimensionality, compatibility with integrated optics plat-
forms, and resilience over long-distance propagation fur-
ther enhance the suitability of TF mode structure for
scalable quantum technologies. Harnessing these advan-
tages requires precise and complete characterization of
the TF properties, namely spectral amplitude, phase,
and coherence information. Moreover, any quantum in-
formation applications demand complete information on
single-photon states, hence the knowledge of spectral co-
herence (or purity) is particularly crucial. However, char-
acterizing spectral coherence and phase profiles poses
challenges for single-photon pulses.

Conventional pulse characterization techniques such
as frequency-resolved optical gating (FROG) [15, 16],
spectral phase interferometry for direct electric-field re-
construction (SPIDER) [17-19], and several of their
extensions [20-26] encounter difficulties with low-light
level pulses because the nonlinear processes involved in
these techniques demand bright input pulses. Alterna-
tive methods, such as electro-optic shearing interferom-
etry (EOSI) [27-29], two-photon spectral interferometry
(TPSI) [30-32], homodyne tomography (HT) [33], Hong-
Ou-Mandel interferometry (HOMI) [34], and chrono-
cyclic @—function tomography [35] have been used for
single-photon pulse characterization. TPSI, HT, and

HOMI can characterize pulses with arbitrary spectral co-
herence, but they require a spatially mode-matched and
spectrally known reference pulse and coincidence detec-
tion. On the other hand, EOSI and @Q—function tomogra-
phy have only been demonstrated for perfectly coherent
pulses. All of these techniques rely on computationally
intensive reconstruction algorithms, and often struggle
to detect complex spectral features such as phase jumps.
Moreover, their implementations require resources such
as modulators for temporal phase manipulation, interfer-
ometric stability, long measurement time, and spectrally
resolved coincidence measurements.

In this article, we present frequency-bin interferom-
etry for reconstructing electric fields with low inten-
sity (FIREFLY), a direct, reference-free, and quantum-
compatible pulse characterization technique adapted
from optical coherence theory [36]. FIREFLY measures
the two-point spectral correlation (TPSC) function of
single-photon-level pulses and directly yields the spec-
tral amplitude, phase, and coherence profiles without em-
ploying a complex reconstruction algorithm. Similar ap-
proaches have been widely used for characterizing mode
structure and coherence information in the spatial do-
main [37-40]. Our scheme harnesses a quantum pulse
gate (QPG) [41-45], an integrated dispersion engineered
sum-frequency conversion process, to interfere different
spectral components of the input pulse and extract the
TPSC function by measuring the output counts. First,
we demonstrate high-quality characterization of spec-
trally perfectly coherent pulses from a mode-locked laser
attenuated to the single-photon-level. Subsequently, we
use FIREFLY to characterize spectrally partially coher-
ent quantum pulses generated by a spectrally multi-mode
type-0 parametric down-conversion (PDC) process, high-
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FIG. 1. Conceptual illustration of our approach for characterizing single-photon pulses by measuring their two-point spectral
correlation (TPSC) function. In the illustration, the orientation of the vector represents the spectral phase, while its length
corresponds to the spectral amplitude at a specific frequency. Our approach interferes different spectral components of the
pulse under test using and measure the interfering count distribution as a function of their separation at different relative
phase. Using these count distributions, we directly obtain the real and imaginary parts of the TPSC function, which provide

the spectral amplitude and phase profiles.

lighting its compatibility with quantum light.

In the first implementation, we assume access to a
characterized pump pulse, which serves as a reference
pulse. We then eliminate this requirement by extend-
ing FIREFLY to a multi-output QPG (mQPG) [46]
with multiple sum-frequency conversion output channels.
Each output channel provides access to shifted relative
phase profiles between input and pump, which we com-
bine to reconstruct both pulses, demonstrating for the
first time the simultaneous characterization of a single-
photon level input pulse alongside an unknown bright
pump pulse. We further showcase the practicality of this
scheme by characterizing both pulses at the low light level
without requiring a reference.

II. Theory
A. Concept

We consider a single-photon ultrafast pulsed field that
is single-mode in both polarization and spatial degrees
of freedom, with arbitrary spectral coherence. The
complete TF properties of such a state are described
by the two-point spectral correlation (TPSC) function
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W (w1, ws), which quantifies the correlation between the
complex spectral amplitudes at frequencies w; and wo,
and is defined as

Wiwi,wa) = (f*(w1) f(w2))e, (1)

where f(w) is the complex spectral amplitude of the elec-
tric field at frequency w, and (). represents the ensemble
average. The TPSC function serves as the spectral ana-
log of a density matrix.

For spectrally perfectly coherent pulses, W(wy,ws) =
(1) f(w2), and f(w) = |f(w)|e’*“) completely char-
acterizes the TF mode structure. Here, |f(w)| and
¢(w) represent the spectral amplitude and phase profiles,
respectively. For partially coherent pulses, W(wq,ws)
yields the spectral coherence profile as a function of the
frequency separation Aw = w; — we. This approach
enables the complete characterization of single-photon
pulses, regardless of their spectral coherence property.
Characterizing both spectral phase and coherence typ-
ically requires interfering different spectral components
of a pulse, a challenging task for single-photon states.
We achieve this frequency interference using a QPG, a
dispersion-engineered sum-frequency conversion process
realized in an integrated waveguide [41-45]. Tradition-
ally, this device has been used as a beam splitter for TF
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FIG. 2. Steps for characterizing the spectral phase profiles of both input and pump pulses using an mQPG. (a) Count distribu-
tions for different shearing A (corresponding to different mQPG output channels). (b) Phase profiles u(d, A) corresponding to

different shearing A obtained from the above count distributions.

phase profiles from pu(d, A) profiles.

modes, selected by spectral shaping of the pump pulse. In
this approach, we use the QPG to enable interference be-
tween input frequencies by shaping the pump as a super-
position of spectral bins. By measuring the up-converted
photon counts at the QPG output, we extract the TPSC
function, which directly yields the spectral phase and co-
herence information without requiring reconstruction al-
gorithms.

This first scheme can directly characterize a single-
photon input pulse assuming prior knowledge of the
pump pulse. In the next step, we eliminate this require-
ment, and we characterize both input and pump pulses by
implementing the same scheme on an mQPG [46]. Each
output channel of the mQPG applies the equivalent of a
well-defined spectral shearing between pump and input
frequencies. By measuring photon counts at all the out-
put channels, we reconstruct the spectral phase profile of
the pump, and we combine it with the output count data
to characterize the input pulse. Our approach harnesses
the QPG and mQPG as powerful tools for direct and
reference-free characterization of ultrafast single-photon
pulses.

(c) Reconstruction steps for extracting the input and pump

B. Measurement scheme: general idea and
implementation

The proposed scheme for measuring the TPSC func-
tion is illustrated in Fig. 1. In this scheme, we use a
QPG to interfere complex spectral amplitudes f(wp) and
f(wo +d) at frequencies wy and wyp + d, respectively, with
a controlled additional relative phase 6. The resulting
interference count distribution n?(d) at the output of the
QPG as a function of d and 6 is given by

0’ (d) = | f(wo) + flwo + d)e’[*. (2)

This can be rewritten in terms of the TPSC function
W(wo,wo + d) as

1’ (d) = | f (wo)|*+|f (wo+d)[*+2Re[W (wo, wo+d)] cos §
+ 2Im[W (wp, wo + d)] siné, (3)

where Re[W (wp,wp + d)] and Im[W (wp,wp + d)] are the
real and imaginary parts of W (wq,wp + d) respectively.
Therefore, for each separation d, we measure n’(d) at
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0e{0,3,m, 37“} and then extract W(wg,wo + d) using

W (wo, wo + d) [nezo(d) - nazﬂ(d)]
i =E D " E @) @)

By varying d, this method enables direct measurement of
the TPSC function W (wg, wp+d), as shown in Fig. 1. The
meaning of this measured TPSC function W (wy,wp + d)
relies on the spectral coherence property of the pulse.
For spectrally perfectly coherent pulses, |W (wo,wo + d)|
and Arg[W (wo,wp + d)] yield the spectral amplitude and
phase profiles, respectively. On the other hand, for spec-
trally partially coherent pulses, W (wq,wo + d) represents
the spectral coherence profile.

In this first scheme, prior knowledge of the spectral
phase profile of the pump pulse is still necessary, as it
directly transfers to the relative phase between the two
interfering spectral bins. In Eq. (2), we assume that the
pump phase is uniform. However, in realistic experimen-
tal conditions, the pump pulse often has a spectral phase
profile, which modifies the count distribution 7’(d) as

n(d) = |f(wo) + f(wo + d)e? @ =D|2 (5)

(0)

where wp ' is the pump frequency corresponding to the

input frequency wp, and a(wéo) —d) is the unknown spec-
tral phase introduced by the QPG pump. For a known
a(w;(,o) —d) profile, we can directly subtract it from the re-
trieved phase profile to extract the input spectral phase.

In the more general case, where a(w},o) —d) is unknown,
we would need to characterize it along with the input
phase profile. This could be achieved by applying a
relative spectral shear A between pump and input fre-
quencies and comparing count distributions for different
shearing values; however, shearing is typically quite com-
plex to implement experimentally.

Instead, we extend our scheme to simultaneously re-
construct both input and pump phase profiles by har-
nessing an mQPG. An output channel with a spectral
shift of A relative to the central one interferes frequen-
cies wg + A and wg + A + d in correspondence of the
same pump frequencies in Eq. (5), effectively applying
the equivalent of shearing between the two pulses. The
resulting interference count distribution at the mQPG
output is

0 (5 A) = | f(wo+ A) + flwo +d+ el =],
(6)

In the experiment, we use a three output mQPG with

A € {~Ap,0,+A¢}. By recording 1?(d;A) at § €

{0, %,m, 37“} (Fig. 2(a)), we reconstruct the phase pro-

file u(d; A)

n’=(d; A) =0~ (d; A)

W= (d; A) —0P=% (& A)

= dlwo +d+ A) — a(w® — d) — p(wo + A).
(7)

u(d; A) = Arg
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This expression relates the measured phase profile
w(d; A) to both input and pump spectral phase pro-
files. If the pump spectral phase profile a(w(gp ) _ d) is
known, u(d; A) directly provides the input phase profile
¢(wo +d+ A). By analyzing p(d; A) profiles (Fig. 2(b)),
we use a straightforward algorithm (Fig. 2(c)) to extract
the pump spectral phase with the only assumption that it
follows a polynomial function, which is commonly used
in pulse characterization experiments. Once the pump
phase is determined, we subtract it from the measured
u(d; A) to obtain the input phase profile.

This approach eliminates the need for an iterative al-
gorithm by replacing it with simple curve fitting of the
pump profile, allowing for direct and straightforward re-
construction of the spectral phase profiles of both pulses.
Moreover, this method also enables the retrieval of the
spectral amplitude profiles (see the supplementary mate-
rial).

ITI. Experiment and Results

A. Characterization of spectrally perfectly and
partially coherent pulses

Figure 3 shows the schematic of the experimental
setup. A Ti:Sapphire laser, centered at 860 nm, drives
an optical parametric oscillator (OPO) to generate spec-
trally coherent input pulses at 1545 nm. These pulses are
attenuated to a mean photon number of 0.1 per pulse
using a neutral density (ND) filter, which allows them
to be approximated as single-photon pulses. The spec-
tral amplitude and phase profiles are customized using a
waveshaper, while the same Ti:Sapphire laser also serves
as the pump for the QPG. Additional details are given
in the Appendix Sec. VIC.

We first characterize these single-photon perfectly co-
herent pulses. Figures 4(a) and 4(b) show the mea-
sured |W(wo,wo + d)| and Arg[W (wo,wq + d)], respec-
tively, along with their theoretical predictions for dif-
ferent input pulses. In the supplementary material, we
present the step-by-step reconstruction of |W (wp, wo+d)|
and Arg[W (wg, wo + d)] from the measured count distri-
butions.

For a quantitative comparison, we evaluate the similar-
ity S between theoretical and experimental profiles. We
find that S exceeds 97% for each experimental profile,
indicating an excellent agreement with the theory. The
high signal to noise ratio of the recorded count distribu-
tion ensures almost negligible statistical errors in the re-
constructed spectral amplitude and phase profiles. The
small deviations in the reconstructed profiles from the
expected profiles can be attributed to the experimental
imperfections, such as the imperfections in shaping and
finite width of pump frequency bins, which effectively
lowers the measurement resolution. Each single-photon
photon pulse characterization takes a measurement time
of 25 minutes, though this can be reduced to just a few
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amplitude profiles to the telecom, which we want to characterize. An ND filter attenuates the input to single-photon-level.
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seconds for bright input pulses. This demonstration high-
lights the ability of our scheme to characterize spectrally
coherent pulses with high precision, including challenging
features like phase jumps, a challenging task for existing
schemes.

To demonstrate the suitability of our scheme for quan-
tum light, we apply it to a type-0 integrated parametric
down-conversion (PDC) source. The experimental de-
tails of the source are provided in the Appendix Sec. VI C.
This source exhibits strong spectral-temporal correla-
tions between the generated photon pairs, while each
photon has large spectral and temporal widths. As a
consequence, the quantum pulses generated by PDC have
spectral and temporal bandwidths that are much broader
than their corresponding coherence widths, resulting in
partially coherent pulses. To further illustrate this par-
tial coherence, the expected two-dimensional TPSC func-
tion is shown in Fig. 5(a), which clearly reveals that the
spectrum is significantly broader than the coherence pro-
file. Additional details on the TF characteristics of the
type-0 PDC process are provided in the supplementary
material.

Figures 5(c) and (d) show the measured |W (wg, wo+d)|
and Arg[W (wo,wo + d)] alongside their theoretical pre-
dictions. In Fig. 5(c), the measured W (wp,wo + d) is
plotted together with the expected spectrum S(wg — d)
(dashed green line), to highlight that the measured co-
herence profile is significantly narrower than the expected
spectrum, demonstrating the low spectral coherence of
the PDC pulses. A quantitative comparison between the
theoretical and experimental profiles yields a similarity
S =~ 98%. This demonstrates the effectiveness of our
scheme for quantum pulses with low spectral coherence.
The data accumulation time of 30 minutes yields high sig-
nal to noise ratio, such that the statistical errors in the
reconstructed profiles are almost negligible. The flexibil-
ity of this scheme for characterizing pulses is showcased
with varying degrees of coherence in the supplementary
section.

B. Simultaneous characterization of spectral phase
profiles of input and pump pulses

Finally, to showcase the capability of this scheme for
characterizing single-photon level pulses without prior
knowledge of pump pulse, in the experimental setup in
Fig. 3 we replace the QPG with an mQPG. The per-
fectly coherent input pulses from the OPO are attenu-
ated to a mean photon number of 1.0 per pulse, while the
Ti:Sapphire laser pumps the mQPG. Data accumulation
takes around 30 minutes.See the Appendix Sec. VIC for
further details.

Figure 6(a) shows the measured spectral phase pro-
files p(d; A) for different shearing values A, correspond-
ing to different input and pump phase shapes. We find a
good agreement with the expected profiles. These mea-
sured profiles are then processed using the algorithm il-
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FIG. 5. (a) Illustrates the expected two-dimensional TPSC
function W (wo + d',wo + d) for partially coherent quantum
pulses from a type-0 PDC (left). We plot the spectrum
(green dashed line) and coherence profile (red solid curve)
together to highlight that coherence width is much narrower
than the spectral bandwidth (right). (b) Measured and the-
oretical spectral coherence profiles |W (wo,wo + d)| alongside
the expected spectrum S(wo — d). The maximum of each
profile is normalized to 1. (c¢) Measured and theoretical
Arg[W (wo,wo + d)] profiles.

lustrated in Fig. 2 to retrieve the input and pump phase
profiles. Figure 6(b) shows the retrieved input and pump
phase profiles and compares them with their correspond-
ing theoretical predictions, showing a similarity above
96%, even for complicated input phase structures. These
results mark a major step toward self-referenced spectral
phase characterization at the single-photon level, elim-
inating the limitation of requiring a known pump or
reference pulse in existing phase characterization tech-
niques. Moreover, the scheme remains applicable to
single-photon pulses or lower fluxes with increased ac-
cumulation time.

So far, we have operated with pump pulses of 62 pJ
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FIG. 6. (a) Theoretical and measured phase traces, u(d;A), for A = —0.62, 0, and 0.62 THz, corresponding to different
spectral phase profiles of single-photon-level input pulses and bright pump pulses. (b) Reconstructed spectral phase profiles
of the input and pump pulses for various shapes, shown alongside theoretical predictions. Shaded regions in the reconstructed
profiles indicate statistical errors. (c) Theoretical and measured mQPG phase traces, p(d; A), for A = —0.62, 0, and 0.62 THz,
corresponding to low-light-level input and pump pulses. (d) Reconstructed spectral phase profiles of the pump and input pulses
for different shapes, shown with theoretical predictions. Shaded regions in the reconstructed profiles indicate statistical errors.

per pulse. To showcase the feasibility of our approach
in extreme low-light conditions, we attenuate both the
input and pump pulses to 1.25 fJ per pulse ( 10* pho-
tons per pulse). As expected, the reduced photon flux,
or pulse energy, increases the measurement time to ap-
proximately 60 minutes. Figure 6(c) presents the mea-
sured phase profiles for different shearing alongside their
theoretical predictions. Figure 6(d) shows the recon-
structed input and pump phase profiles, indicating ex-
cellent agreement with theoretical predictions, with sim-
ilarity S above 97%. This demonstration highlights the
applicability of our method for scenarios where simulta-
neous spectral phase characterization of two low-energy
pulses at different wavelengths is required, such as in

quantum metrology applications.

IV. Conclusion and Discussion

In conclusion, we have developed FIREFLY, a method
for characterizing single-photon-level ultrafast pulses by
measuring their TPSC functions using a QPG. This ap-
proach enables high-quality characterization of the spec-
tral amplitude and phase profiles for spectrally coherent
pulses. We have also applied our scheme to quantum
light by analysing the spectral coherence profile of par-
tially coherent pulses generated from a mutimode type-0
PDC process. Importantly, we have then eliminated the
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requirement for a spectrally known pump or reference
pulse by extending FIREFLY to an mQPG. As proof of
principle, we have demonstrated the simultaneous char-
acterization of the spectral phase profiles for both single-
photon input and bright pump pulses with complex spec-
tral shapes. Remarkably, our approach even works for
both pulses at the low-light-level.

Unlike most existing schemes, our method can charac-
terize complex phase structures and coherence profiles
without a requiring reconstruction algorithm or setup
reconfiguration. Additionally, the use of the mQPG to
characterize single-photon-level pulses without a known
reference pulse enhances experimental resource efficiency
and ensures compatibility with the integrated optics plat-
form. These features make our scheme readily suitable
for quantum communication and metrology protocols
that require fast characterization of single-photon pulses,
as well as for deep-space communication in high-loss and
turbulent environments.

Further improvements, such as adopting periodic pol-
ing modulation techniques [47] in the mQPG fabrication
and replacing the time-of-flight (TOF) spectrograph with
a spectral-filtering-based detection scheme, can enhance
efficiency by nearly 1000 fold. These improvements en-
able single-photon pulse characterization within seconds.

In our experiment, the QPG and the mQPG facilitate
the characterization of single-photon-level telecom pulses
through detection of the visible output photons, thereby
eliminating the need for single-photon sensitive telecom
detectors. This approach can be extended to input pulses

Chapter 7. State characterization through multi-output detection

of any wavelength [48], facilitating pulse characterization
in spectral regions where single-photon-sensitive detec-
tors are resource demanding. While our current FIRE-
FLY implementation is optimal for characterizing input
pulses with temporal widths ranging from 100 fs to 20
ps, this range can be extended by tailoring the dispersion
properties of the waveguide [48]. Furthermore, advances
in thin-film lithium niobate technology [49] offer greater
flexibility in modulating dispersion properties with tai-
lored waveguide geometries, which can enable (m)QPGs
compatible with sub-femtosecond input pulses across any
spectral range. These developments can make our scheme
valuable for diverse applications in quantum information
science and beyond, including ultrafast optics and spec-
troscopy.
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Appendix

A. Quantum pulse gate (QPG) and its
implementation for measuring the TPSC
function

The proposed method in Sec. IIB for measuring the
TPSC function of pulses employs a quantum pulse gate
(QPG). The implementation of this scheme is illustrated
in Fig. 1(a). In this scheme, we consider the pump profile
is known prior to shaping. The QPG projects a single-
photon-level input pulse, described by its complex spec-
tral amplitude f(w), onto any desired TF function de-
cided by the pump TF mode E,(w,), where w, is the
pump frequency. The up-converted QPG output is cen-
tered at frequency wy,: and the energy conservation in
this process fixes the relationship wey: = w + wp. The
total output counts n at the output w,,: are given by
following overlap integral

n o< | f(w)Ep(wout — w)dw|2 . (1)

This expression of n is valid if both input and pump
pulses are described by their complex spectral ampli-
tudes. For partially coherent input pulses, 1 in terms
of the TPSC function W (wy,ws) is given by

ng(wout) X //W(wla‘*)Z)Ep(wout - wl)
X E; (Wout — wo)dwidws. (2)

To measure the TPSC function W (wg, wo+d), we need
to interfere the complex spectral amplitudes f(wp) and
f(wo+d) at frequencies wy and wp + d respectively, using
a QPG. We start with a spectrally characterized pump
pulse and shape it with a complex spectral amplitude
Ep(wp) = d(wp — wlgo)) + €5 (wp — w;(,o) +d), where wz(,o) is
the pump central frequency, d is the bin separation and
0 is the relative phase difference between the bins. As
shown in Fig. 1(b), the pump profile E,(w,) up-converts
a pair of spectral bins from the input to the same QPG
output frequency wyy:. As a result, the up-converted
spectral bins interfere and the information is encoded in
the total output counts of the QPG.

The total count distribution 1?(d) as a function of d
at the output wey: can be written by substituting E,(wp)
into Eq. (2):

n?(d) = S(wo) + S(wo + d) + 2Re[W (wo, wo + d)]
x cos 0 + 2Im[W (wg, wo + d)] sinf, (3)

In the above expression, we replace wpi 2 = Wout — W12

and define wyg = wour — wz(go). In order to extract

W (wo,wo + d), we measure 1°(d;woyut) at 0 = 0,7/2, T,
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i

W, witd  wtA, witd+ A,

FIG. 1. (a) Schematic of the proposed method for measuring TPDC function using a QPG and simultaneous characterization
of input and pump pulses using mQPG. (b) Depicts the transfer function of QPG: the superposition of the frequency bin shape

of pump up-converts input frequency bins at wg and wo + d into a single QPG output frequency wouyt.

The output counts

provides resulting interference counts between the bins. (c¢) Depicts the transfer function: input frequency bins with separation
d for different shearing A up-converts into different mQPG output frequencies.

and 37/2 and obtain the real and imaginary parts of
W(WQ, wo + d)

Re[W (wo,wo +d)] o< n=°(d) = n°="(d),  (4)

—n’=E(d). ()

By combining Re[W (wg, wo + d)] and Im[W (wo, wo + d)],
we directly find W (wg,wqy + d).

I [W (wo, wo + d)] o< n°=2 (d)

W (wo,wo +d) = Re[W (wo, wo + d)] +Im[W (wo, wo + d)].

(6)

B. Algorithm for simultaneously characterizing
input and pump pulses

In this case, we consider that input and pump pulses
are described by their respective complex spectral am-
plitudes f(w) and g(w,), where w and w, are the input
and pump frequencies. Our objective is to characterize
the spectral phase profiles ¢(w) and a(wy) of input and
pump respectively. For simplicity, we assume that the
spectral amplitude of the pump pulse is uniform.

As outlined in main manuscript Sec. II B, we extend
the above TPSC measurement scheme to an mQPG,
which introduces a spectral shear A between input and
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pump frequencies. Figure 1(a) shows the illustration of
this scheme with an mQPG with three output channels
centered at wyyr + A, where A € {—Ag,0,+A¢}. Fig-
ure 1(c) depicts that the output channel with frequency
wWout + A enables the inteference of input frequencies
wo+ A and wg +d+ A by still shaping the pump with the
amplitude E,(w,) = 6(w, — wi) + €?5(w, — wi” + d).
By measuring the count distribution 7(d; A) for 0 €
{0,7/2, pi,3m/2}, we obtain the phase profile u(d; A) us-
ing

o =% (d; A) — °=% (d; A)
MBS =R | S0 a) ()
= p(wo +d+A) — a(w? —d) — p(wo + A).

(7)
This profile encodes both input and pump phase profiles.
We retrieve the above phase profile for different A values.
From these phase profiles, we first reconstruct the pump

spectral phase profile by shifting the u(d; A) by —A and
subtract it from p(d;0)
Aa(d) = p(d; 0)—p(d—2; A) = a(wl?) —d+A)—a(wl? —d).

(8)
The above profile is independent of the input spectral
phase profile ¢(wp + d) and depends only on the pump

phase difference profile a(wy o —d) — a(wz(,o) —d+ Ay).



Notably, the SPIDER algorithm [17, 18, 50] also provides
the same phase difference profile while characterizing a
single pulse. Thus, inspired by SPIDER and as a proof of
principle, we impose the assumption that the pump phase
profile a(wz(oo) — d) is a polynomial function of the form
a(wl()o) —d) = a~(w1(,0) fd)2+b'(w;(70) —d)3, which is reason-
able in pulse characterization experiments. In the exper-
iment, we implement shearing values A € {—Aq, +Ap},
which yields two distinct Ac(d) profiles. A polynomial
curve fitting, with a known Ag, is then used on Aa(d)

profiles to extract a(w]go) —d). For small Ay, as is the case
for SPIDER, the phase difference profile in Eq. (8) would

directly map the derivative of a(wl(yo) —d) [50]. Next, we
obtain the input phase profile ¢p(wp + d) as

d(wo + d) = pu(d; 0) — (Wl — d) + pwo).  (9)

Here, ¢(wp) introduces a constant offset to the recon-
structed ¢(wg + d) profile. Fig. 2 illustrates the steps of
this phase retrieval scheme. Thus, by measuring the in-
terference counts corresponding to different shearing val-
ues (at different mQPG output channels), we character-
ize the spectral phase profiles of both input and pump
pulses.

C. Experimental details

We first describe the setup for characterizing single-
photon level, spectrally perfectly coherent pulses. A
Ti:Sapphire pulsed laser of central wavelength 860 nm
and repetition rate 80 MHz drives an OPO process to
generate input pulses centered at 1545 nm. The resid-
ual 860 nm pulses serve as the pump and are directed
to a in-house-built 4f-line pulse shaper to “carve out” a
superposition of frequency bins with a well-defined sepa-
ration and relative phase. The bin width ranges from 30
to 60 GHz. A commercial wave shaper (Finisar 4000S)
is used to apply phase and amplitude profiles to produce
custom-shaped coherent input pulses. After shaping, the
input pulses are attenuated to mean photon of 0.1 per
pulse using a neutral density filter.

Both the input and pump pulses are sent to a periodi-
cally poled, titanium-indiffused LiNbO3 QPG waveguide,
4 cm in length with a poling period of 4.32 um, operated
at 433 K. The waveguide supports only the fundamental
spatial mode for the input pulse, and appropriate care
is taken to couple the pump pulse in the fundamental
mode. The coupling efficiency for both input and pump
pulses is approximately 70% and 50% respectively. The
up-converted QPG output pulses, centered around 552
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nm (543 THz), are separated from the residual input
and pump pulses using a dichroic mirror. We detect the
up-converted output counts using a time-of-flight (TOF)
single-photon spectrograph with an effective resolution of
300 GHz. The spectrograph consist of a dispersive fiber,
an avalanche photodiode (APD), and a time-to-digital
converter (TDC). We keep the integration time per mea-
surement point ranges between 3 — 7 seconds . We note
that due to the imperfections in QPG phase-matching,
additional sidelobes of the phase-matching can reduce the
QPG operation fidelity. To mitigate this, narrow band
spectral filtering of the output photons is required prior
to photon counting. Here, the TOF spectrograph imple-
ments both spectral filtering and photon counting over
the filtered photons in a single device. Alternatively, one
can use a narrow spectral filter alongside a single-photon
detector to achieve the same goal and with a higher de-
tection efficiency.

For characterizing spectrally partially coherent quan-
tum pulses, the combination of Ti:Sapphire pulsed laser
and OPO is replaced by an integrated type-0 PDC
source, realized in a 1-cm-long periodically pole titanium-
indiffused LiNbOj3 waveguide operating at 443 K. The
PDC process is pumped by a pulsed laser centered at
768 nm with a spectral bandwidth of 0.25 THz, generat-
ing partially coherent pulses centered at 1536 nm, which
are sent to the QPG waveguide. A combination of nar-
row spectral filter and APD is used photon counting at
the QPG output. The rest of the setup remains the same
as the above.

We now describe the setup for the simultaneous char-
acterization of input and pump pulses. In this setup, we
use an mQPG instead of a QPG. Using a Ti:Sapphire
pulsed laser combined with an OPO, we generate spec-
trally coherent input pulses centered at 1545 nm. A in-
house-built pulse shaper applies spectral phase profiles to
the pump pulses, while a commercial waveshaper (Finisar
4000S) applies custom-shaped phase profiles to the input
pulses. We attenuate the input pulses to a mean photon
number of 1.0 per pulse. The mQPG used in this exper-
iment is a 4-cm-long titanium-indiffused LiNbO3 waveg-
uide operated at 433 K with a super-poling structure
consisting of unpoled regions alternating to periodically
poled regions with a poling period of 4.32 pm. This pol-
ing structure generates three output frequency channels
centered around 551.48 nm (543.62 THz), 552 nm (543
THz), and 552.62 nm (542.38 THz), corresponding to a
shearing value of Ag/2m =0.62 THz. The TOF spec-
trograph spectrally separates each channel and performs
parallel measurements of total counts. This configura-
tion can be replaced by combination of three spectral
filters and single-photon detectors, which can boost the
detection efficiency by up to two orders of magnitude.
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I. Retrieval of spectral amplitude with an unknown pump pulse

In this section, we present the steps for characterizing the spectral amplitude profile of the input pulse with an
unknown pump pulse using a multi-output quantum pulse gate (mQPG). The input and pump pulses are described
by their respective complex spectral amplitudes f(w) and g(w,), where w and w, are input and pump frequencies. In
the proposed scheme, we introduce a spectral shear A, to the input frequencies and interfere wg + A and wg +d + A
by shaping the pump with a complex spectral amplitude amplitude E,(w,) = 6(wp — wé,o)) + €5 (w, — %(70) +d).
This interference can be measured at an output frequency shifted by A relative to weyy of a multi-output QPG. The
resulting interference count distribution 7(d; A) is given by:

10 i w()f
1 (d; ) = | f(wo + A)g(w) + flwo + d + A)g(w® — d)eieien” D2, (1)

We record 1?(d; A) at 0, 7/2, m, and 37/2. These measurements yield the amplitude profile
: A(d; A) = | f(wo)llg(wi)l|f (wo + d + A)llg(wi? — ). (2)

The product |f(wo)]| g(w,(f)))\ is a constant scaling factor, K. The above profile is simplified as the product of spectral
amplitudes of the input and pump pulses. We note that the pump spectral amplitude |g(wo + d)| can be characterized
by directly measuring the pump spectrum, S(w,) = |g(w,)|?, using a spectrograph. From the measured spectrum, the
v input spectral amplitude can be retrieved as
; Flwo+d+a) = 4 ALD 3)
S (w,(JO) +d)

Alternatively, the spectral amplitudes of both input and pump can be characterized simultaneously measuring
n?(d; A) at different values of A corresponding to each out channel of the mQPG. These measurements provide the
amplitude profiles A(d; —Ag), A(d;0), and A(d; +2A) for A = —Ag, 0, and +Aq respectively. The ratio

A(d + Ay: O _gxA
Ai(d): (d 0?0) :pg(wp d:F 0).

Ald£8g) 7 W@ _g) (4)

only depends on the pump amplitude ratios and independent of the input amplitude.
For proof of principle, we assume that the pump has a Gaussian spectral amplitude of unknown bandwidth and
center, which is a reasonable assumption in typical pulse characterization experiments. Using a curve-fitting on the

A (d) profiles for a known A, we retrieve g(wl(,o> —d). The input amplitude profile | f(wg + d)| then can be retrieved
as

A(d;0)

d)|=K———F——
e = e 0

: Q)

where K is a scaling constant. This retrieval approach is analogous to that of the simultaneous phase characterization
of both input and pump pulses.

II. Retrieval of spectral and phase profiles from the measured data

In this section, we outline the procedure for retrieving the spectral amplitude and phase profiles from the measured
data. The analysis focuses on a spectrally perfectly coherent input pulse, as depicted in the first column of Fig. 4(a)
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FIG. 1. (a) Measured count distributions n°(d) at § = 0,7, 7/2, and 37/2. (b) Real and imaginary profiles of W (wo,wo + d).
(c) Amplitude |W(wo — d,wo + d)| and Arg[W (wo — d, wo + d)] profiles of W (wo — d,wo + d).

in the main manuscript. Figure 1 shows the measured count distributions n?(d) at § = 0,7/2, 7,37 /2. The difference
in count distributions yield the real and imaginary parts of the two-point spectral correlation (TPSC) function
W (wo, wo +d) as shown in Fig. 1(b). By combining them, we retrieve the spectral amplitude |W (wq, wo + d)|and phase
Arg[W (wo,wo + d)] profiles as shown in Fig. 1(c).

III. Characterizing partially coherent pulses with tunable time-frequency coherence

In this section, we focus on characterizing the spectral coherence profile of different spectrally partially coherent
single-photon-level pulses generated by incoherently mixing perfectly coherent pulses from an OPO in post-processing.
The incoming pulses are shaped into different Hermite-Gaussian (HG) modes HG,,(w) and the corresponding TPSC
functions, W, (wo—d, wo+d), are measured. To realize a partially coherent pulse in the post-processing, we incoherently
add the measured W), (wo — d,wy + d) data with weights A, forming W(wy — d,wo +d) =, A\nWy(wo — d,wo + d)
corresponding to a partially coherent pulse. In experiment, we keep the input mean photon number at 0.1 photons
per pulse. The total data accumulation time for each partially coherent pulse takes around 120 minutes.

Figure 2(a) shows the mode distribution A, as a function of the mode index n for different incoherent mixtures.
Here, we are interested in the relative proportion of individual HG pulses; an appropriate normalization of A, is not
necessary. Figure 2(b) show the corresponding measured W (wy — d,wo + d) along with the theoretical predictions.
The dashed green curves in Fig. 2(b) represent the expected spectrum S(wy — d) for corresponding to each partially
coherent pulses. Furthermore, we see that W(wo — d,wo + d) becomes narrower with the increases in the number
of HG modes in the incoherent mixture, indicating a decrease in the spectral coherence. A quantitative comparison
between theoretical and experimental results yields similarity S ~ 99% in both cases, demonstrating the accurate
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FIG. 2. (a) Mode distribution A, for different incoherent mixtures. (b) W(wo — d,wo + d) profiles for different incoherent
mixtures alongside theoretical predictions. The green dashed curves represent the expected spectrum S(wo — d) for each
incoherent mixture.

coherence characterization capability of this scheme.

IV. Time-frequency characteristics of type-0 parametric down-conversion (PDC) process

In this section, we describe the time-frequency (TF) properties of the type-0 PDC process and explain how it

generates spectrally partially coherent pulses. A Gaussian pump pulse, centered at frequency w,(,%)mp with a spectral
bandwidth o0, drives the type-0 PDC process, producing signal and idler photon pairs centered at frequencies wgo)
and w§0), respectively. The energy conservation condition of this process imposes the relationship wpymp = ws + wj,
where, Wpump, ws, and w; represent the frequencies of pump, signal, and idler photons, respectively,

The joint spectral amplitude (JSA), which fully describes the complete TF structure of signal-idler pair, is expressed

as

(a) JSA (b) TPSC function
198.18 1.0 N Ry s R R s )
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& 3 04 F
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FIG. 3. (a) Joint spectral amplitude (JSA) of our type-0 PDC source. (b) TPSC function W(wgo), w® + d) of signal evaluated
from the above JSA. The corresponding spectrum (green dashed line) S(wo — d) is also plotted for comparison.
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Pulse characterization
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FIG. 4. (a) Spectral phase profiles programmed by input and pump pulse shapers. (b) Steps for reconstructing the spectral
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5
( © _ 0)°
Ws T Wi —ws ' —w; )
Y(ws,w;) = Nexp |— 3 D (ws,w;), (6)
4o,

where, ®(w;,w;) represents the phase-matching function determined by the material properties of the LiNbO3 waveg-
uide used in our experiment to realize the type-0 PDC process. Figure 3(a) shows the JSA ¢ (ws,w;) corresponding
to our type-0 PDC setup, showcasing the strong spectral correlation between signal and idler photons. Here, we see
that signal and idler photons are spectrally identical.

The JSA t(ws,w;) can be decomposed into Schmidt modes {f,(w)} as

w(wsawi) = Z)\nfn(ws)fn(wi)a (7)

where, A, is the Schmidt coefficient correspond to each Schmidt mode f,,(w). To determine the TF structure of the
signal photons alone, we trace out the idler photons from the JSA. This is described by the TPSC function W (ws,w?,)

W(W&W;) = /w(wmwi)w*(w;awi)dwi = Z ‘)‘n|2fn(w8)f;:(w;)a (8)

This TPSC function represents an incoherent mixture of Schmidt modes { f,, (ws)}, weighted by {A,}. This incoherent
mixture leads to the generation of spectrally partially coherent signal pulses. Figure 3(b) compares the one-dimensional
TPSC function W(wgo)wgo) —d) with the spectrum S(w(go)) —d). The significantly narrower width of the TPSC function,
relative to the spectrum, highlights the low spectral coherence of the signal pulses.

V. Reconstruction of spectral phase profiles of input and pump pulses

Figure 4(a) shows the spectral phase profiles of input and pump pulses programmed through respective pulse shapers
that we want to characterize. Figure 4(b) shows the reconstruction steps. First, following the methodology described
in Sec. II, we reconstruct the phase profiles u(d; A) as shown in Fig. 4(b) (top row) by measuring count distributions
at different mQPG output channels characterized by A = —0.62,0, and +0.62 THz alongside the corresponding
theoretical predictions.

To retrieve the input and pump phase profiles, we use the algorithm illustrated in Fig.2 of the main text. Specifically,
we introduce spectral shifts of +0.62 THz and —0.62 THz to u(d; A = —0.62) and p(d; A = +0.62), respectively. By
subtracting these shifted profiles from p(d;0) and then employing a curve-fitting algorithm, we retrieve the pump

phase profile, a(wéo) — d), which is shown in Fig. 4(b) (last row left figure). Next, we subtract the obtained pump

profile a(wzgo) —d) from p(d;0) to retrieve the input phase profile, see last row right plot in Fig. 4(b). This data set
is presented in the main text in Fig.6(a) and (b).
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Conclusion and outlook

8.1 Conclusion

In this thesis, we have explored the foundational elements of and experimentally
realized a high-dimensional quantum communication framework using time-
frequency qudits. We have directly addressed the main challenges regarding
the generation and detection of these complex photonic states by developing its
two core building blocks: a programmable source of high-dimensional entangled
states and a programmable high-dimensional quantum decoder. In realizing and
characterizing these devices, we have demonstrated a versatile platform that
not only enables high-dimensional quantum communication, but also opens the
door to new lines of research, from the investigation of fundamental quantum
properties to the development of practical tools for state characterization and
precision measurements.

The first objective of our work was the development of a programmable source
for high-dimensional entangled time-frequency states. While previous works had
generated such states, achieving programmability of the entanglement dimension
while ensuring the generation of maximally entangled states was a significant
challenge. Through the precise engineering of parametric down-conversion
in a nonlinear waveguide, we achieved unprecedented, real-time control over
the modal structure of time-frequency-entangled qudits. We characterized our
source, demonstrating that it allows for the generation of maximally entangled
time-frequency qudits with a dimensionality that is programmably tunable from
d =1 (decorrelated state) up to d = 20 [148]. This capability provides a crucial,
versatile resource for adapting to the specific requirements of different high-
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dimensional quantum protocols, overcoming the fixed dimensionality of previous
sources.

This programmable source provides a powerful platform for exploring high-
dimensional quantum protocols, moving beyond state generation to enable
fundamental tests of quantum mechanics. We demonstrated this directly in
a collaborative work with Heriot-Watt University and Lund University [109],
where the high-fidelity entangled states produced by our source were used to
certify a violation of high-dimensional Bell inequalities for dimensions up do
d = 8. Remarkably, this was achieved using only joint spectral intensity measure-
ments, demonstrating that intensity correlations alone can probe phase-sensitive
superposition states, and offering a practical route for future Bell tests in high
dimensions.

The second cornerstone, which became the central technology for the remainder
of this thesis, was the realization of a versatile high-dimensional quantum de-
coder: the multi-output quantum pulse gate (mQPG). This device was designed
to overcome a major bottleneck in the field: the challenge of performing efficient,
single-shot projective measurements in arbitrary high-dimensional bases. We
demonstrated this feature by characterizing the mQPG’s performance in a five-
dimensional Hilbert space of Hermite-Gaussian (HG) modes through quantum
detector tomography, showing projections in all six possible mutually unbiased
bases (MUBs) with an average fidelity of 96% [95]. This characterization also
enabled extremely accurate maximum-likelihood quantum state tomography,
achieving a fidelity of 98% in the reconstructed states [95].

Moreover, we showcased the versatility of the mQPG by showing its operation
with three distinct time-frequency mode bases: HG modes, pulsed frequency
bins, and ultrafast time bins, with the basis selection achieved solely through
spectral reconfiguration of the pump [60]. This established the mQPG as a truly
general decoder for time-frequency encodings, capable of interfacing between
different systems that might rely on different alphabets, a critical feature for
future high-dimensional quantum networks.

The most immediate application of the mQPG’s ability to perform simultaneous
projections onto arbitrary states was the one that motivated its creation: high-
dimensional quantum key distribution (HD-QKD). Using pulsed frequency bins
in dimension d = 3, we implemented a complete prepare-and-measure HD-QKD
system. Here, the capability of the mQPG to project onto arbitrary superpositions
of frequency bins was fundamental to building our decoder for the control basis,
while the fact that unconverted photons pass through unaffected allowed us to
simultaneously measure the key basis. In a proof-of-principle experiment, we
demonstrated an asymptotic secret key fraction of 1.18 bits per photon, surpassing
the fundamental limit for qubit-based systems and validating the enhanced
security and information capacity promised by high-dimensional alphabets.
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However, as is often the case in research, the development of such a versatile tool
opened the door to explorations far beyond our initial focus. We found that the
mQPG, by providing access to the full probability distribution of measurement
outcomes in multiple MUBs, could be used to probe fundamental properties of
quantum mechanics. In a collaborative work with the University of Pavia [149],
we leveraged these high-dimensional projections to experimentally verify entropic
uncertainty relations (EURs) for multiple MUBs in 3, 4, and 5 dimensions, which
were previously only proven numerically. In what felt like a traditional story of
theory and experiment, we found that in a particular case (three bases in five
dimensions) the experimental data did not match the theoretical predictions.
After confirming the results, we realized this discrepancy arose from a known
asymmetry in sets of MUBs: choosing inequivalent sets of MUBs for measuring
uncertainty relations can lead to different minimum uncertainty bounds [150].
With these works, we not only uncovered a fascinating new aspect of quantum
complementarity, but also developed a framework that can be used to probe
EURs and inequivalent sets of MUBs in even higher dimensions.

Beyond fundamental science, we discovered that the multi-output nature of our
platform could be leveraged to improve existing applications and develop new
ones entirely. We used our system for self-guided tomography (SGT), a technique
that for the first time we applied to the time-frequency domain, demonstrat-
ing state estimation fidelities exceeding 99% in up to five dimensions without
the need for additional calibration or post-processing [151]. We verified the
technique’s robustness against both statistical and environmental noise. This re-
silience is particularly beneficial in the photon-starved regimes typical of quantum
information applications, making SGT a highly practical and scalable method for
the characterization of unknown high-dimensional quantum states in real-world
scenarios where experimental conditions are not ideal.

Taking this a step further, we developed a new pulse characterization technique,
FIREFLY, which harnesses the multi-channel structure of the mQPG to perform
interferometric measurements between different frequency bins. This enables the
simultaneous characterization of the spectral amplitude, phase, and coherence
profiles of single-photon pulses, and even the characterization of two unknown
pulses, overcoming a long-standing limitation in ultrashort pulse measurement
that required a well-characterized reference pulse [130]. The utility of this
method was immediately apparent in our own work, as we used it as a diagnostic
tool to precisely characterize and compensate for the higher-order spectral phase
of the pulses used in our experiments, which was crucial for achieving high-
fidelity projections. Indeed, the versatility of the underlying multi-channel
detection platform is not limited to quantum applications: in a joint work with
the Department of Electrical Engineering, we adapted the principles of time-
frequency mode sorting to realize a high-precision pulsed lidar system for single-
photon-level signals [146].
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8.2 Outlook

The successful implementation and characterization of our programmable source
and decoder represents a significant step forward for high-dimensional quantum
communication and. More in general, this work has provided a complete and
versatile toolbox for the experimental implementation of time-frequency qudits.

The most direct next step would be to combine our fully programmable source and
our reconfigurable decoder, opening the door to a plethora of future experiments.
One could use this combination to realize entanglement-based HD-QKD, which
would allow for an experimental investigation into how the secret key rate
scales with the dimensionality of the encoding alphabet. Beyond HD-QKD, this
combined platform is perfectly suited for exploring the interesting properties of
high-dimensional entanglement through projections onto complete sets of MUBs.

Of course, it would be exciting to address even higher dimensions. For this,
moving to a versatile platform like thin-film lithium niobate would be highly
beneficial, paving the way for more compact, efficient, and scalable integrated
devices. Integrating resonant structures could also offer enhanced control and
efficiency, pushing the boundaries of what is possible.

It would also be incredibly rewarding to see these technologies find their way
into practical applications beyond mere research interest. The advancements
demonstrated here have the potential to be applied in areas such as efficient deep-
space communication and robust quantum cryptography, offering new insights
into fundamental quantum mechanics while addressing practical challenges. We
started this journey with quantum communication in mind and, along the way,
found applications in fundamental tests of quantum mechanics, new characteri-
zation methods, and even improved classical measurements. This is the exciting
nature of research: you set out with a goal, and in building the tools to reach it,
you discover they can take you to places you never expected. Who knows what’s
next?
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Derivation of modulated
phase-matching function

This appendix details the mathematical derivations for the phase-matching func-
tions of modulated poling structures, as introduced in Section 2.3.2.

A.1 Fourier series and transforms

In the context of the spatial nonlinearity profile d(z) and phase mismatch A,
we define the Fourier transform F and its inverse J as

d(AB)=T{d(2)} = fd(z)emﬁzdz, (A.1.1)
d(z) = F{®(AB)} % fcb(Aﬁ)e_iAﬁszﬁ, (A.1.2)

where the 1/2m factor is due to the asymmetric definition we adopt. Note
that this is opposite to the more common convention used for time-frequency
Fourier transforms in Sec. 2.1.2, which assigns the negative exponent to the
direct transform and the positive one to the inverse transform.
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With this definition, the Fourier transform of a product of two functions f (z) and
g(z) is given by the convolution theorem:

TU() 8} =5 (F 8) (4P), (A1.3)

where, again, the factor 5~ derives from the asymmetry in the Fourier transform
we adopt here, and * denotes the convolution integral:

(f+8)(ap)= f F(E)E(AB—&)dE. (A1.4)

Conversely, the Fourier transform of the convolution of two functions f(z) and
g(z) is
F{f * )=} =TF{f (=)} - F{g(=)} . (A.1.5)

Any periodic function d(z) with period A can be expressed as a complex expo-

nential Fourier series:
+00

d(z) = Z o eisz ,

n=—oo

where the coefficients c, are given by

1 ;2nnz
c, = de(z)e_l A dz.

A

Notice that, with this definition, c, is the mean value of d(z) over one period.
The Fourier transform of this periodic function is a Dirac comb:

F{d(z)} =2n +ZOO: c, 0 (Aﬂ — MTH) (A.1.6)

n=—oo

This result is fundamental to our analysis, as it implies that any periodic (re-
peated) structure in the nonlinear profile generates a Dirac comb in the phase-
matching function.

A.2 Poling with phase reversal

The nonlinear profile for phase-reversal poling is the product of the QPM square
wave s(z/A) and a slower modulating square wave s,(z/y) with duty cycle D:

w0=5(3) ()

2 1 4 21
=1 Selam. [(ZD 1)+ > ——(1—e )T "ﬂ] . (A2.1)
mtn —r rmm

nodd
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A.2. Poling with phase reversal

Its Fourier transform J {d(z)} is found by applying the convolution theorem to
the Fourier series of the two functions:

?{d(z)} :%ff{z lin g nz} *?{(ZD 1) + Z e—ianD)eiz?nmz}
dd

=27 Z %5 (Aﬂ — —n)

. 2T
(2D—1)6(AB) + —2mmDY 5 [ A — == ]
{ m; —e)s ( r m)

_Z‘L(l_e—ianD)(s(Aﬁ_z_ﬂn_z_ﬂm)], (A.2.2)

where each peak in eq. (2.3.18) is split into multiple peaks at positions
AP’ = 2nm/T with heights given by the coefficients

2D —1, m=20,
cn(D)=1{ 1—¢i2mmD 0 (A.2.3)
—_  m )
imm

The values of these coefficients as a function of the duty cycle D are studied in
Figure 2.14. Note that the sum of all the corresponding intensities is unchanged,
i.e., the total efficiency of the phase-matching across all frequencies remains
constant.

This yields a series of delta functions at positions A} = —n + 2z <m, with the
relative heights given by the coefficients in Eq. (A.2.3). Subst1tut1ng this into the
general expression for ®(Af) in eq. (2.3.16) and applying the same approxima-
tion as for QPM gives the final result in eq. (2.3.22):

(g 27 YL
@(A/j/) ~L %Zcm(D) Sil’lC((A/j — z?ﬂm) ;)el(Aﬂ T m) 2 (A.2.4)

m

This expression describes a train of sinc functions, each identical to eq. (2.3.21),
separated by 27 /T". These peaks reach maximum heights in the region near
AP’ =0 and fade away from this region.

In the special case of D = 0.5, the symmetry of the square wave results in the
vanishing of the central peak at AB’ = 0, similarly to the case of QPM. In this
case, the terms with m = 1 are dominant and correspond to two identical
sinc functions centered at A’ = +2m/T. This case is analyzed in Figure 2.19,
showing that the line corresponding to A’ = 0 travels back and forth between
the same two points due to the sign of the nonlinearity, which flips at regular
intervals. This phase reversal acts exactly when the lines corresponding to
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AP’ = £27/T would start decreasing in amplitude, causing them to constantly
increase.

Another noteworthy case is that of D = 0.265, in which the central peak has
equal height to the two side peaks, leading to three identical dominant peaks at
AP’ =0and AB’ = £21/T. In principle, additional phase reversal modulations
with varying periods and duty cycles can be combined to generate different
phase-matching structures. For instance, superimposing two symmetric square
waves (D = 0.5) with periods I and 2T" and a phase difference of y generates a
nonlinear profile

d(z) :5(%) S(%) s (ZZ_FY)

2 2 2
— 2 el—ﬂnz 2 el—nmz_ Z 2 eiz_;fp(z—y)
nodd inn modd imm podd Lmp
2 2n 2n
= Z —e'A ™ Z e 21"kZ (A.2.5)
nodd Imn kodd
with
_4 e—in(k—Zm)%
modd T ( o m)m

The Fourier transform of this nonlinear profile is

1 2 i2—7rnz iZ_n z
F{d(=)} zﬁg{z Ee A }*?{Ze ar K Ck}

dd kodd

_277:2 E5(A/5——n) > ad (A/s——k) (A.2.7)

kodd

which describes a delta comb centered around each QPM peak, with delta in
position AB’ = mk/T" and a height modulated by the coefficient c,. Particularly,
for y = .114T, the four peaks at k = £1 and k = £3 are dominant and have
equal heights.

A.3 Super-poling

Consider a poling profile that alternates between poled and unpoled regions with
a period T (the super-poling period). If each poled region has length [ (the unit
active length), each corresponding unpoled region will have length I' — . The
resulting nonlinear profile d(z) is that of a square wave (from the poled regions)
multiplied by a rectangular function—defined in eq.(2.3.15)—which selects a
length [ at regular intervals T', all superimposed on a flat background of value 1:

d(z)=1+(s(%)—1)- z H(Z_lmr). (A3.1)
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Taking the Fourier transform, and using the linearity property (the Fourier
transform of a sum is the sum of the Fourier transforms), we obtain

ae) =r i+ — (7{s(2)} -7 ) *Z?{H(z—lmr)}
=216(AB) + [;%5 (A/j _z%n)_5(Aﬂ)i|

A
*[lsinc(A—ﬂl)eIT-z—ﬂ 5(A/3—2—Tcm)]
2 r & r
Zﬂml) ;2mm
e

=27‘C5(A[5)—277:%Z(3(A/3—2?ﬂm)-sinc( 2 s

[ 2 2n 2m . (2mmlY ;2zml
+2”fzﬁ;5(“‘f”‘?m)'smc( r E)e
(A.3.2)

Although this expression appears complex, it only comprises a sum of delta
functions. When substituted back into eq.(2.3.16), these delta functions define
the center positions of the resulting sinc-shaped phase-matching peaks. The
first term, 2t6(AB), results in a sinc function at AB = 0 (the center of the
birefringent phase-matching). The second term corresponds to a Dirac comb
with a period of 27t/T, modulated by a sinc envelope centered at A = 0. This
term derives from the alternating unpoled regions, and it is analogous to the
diffraction pattern of light scattered by a grating with rectangular slits. Notably,
the Dirac comb also contains a contribution at Af§ = 0 that cancels part of the
contribution from the flat background, thereby conserving the overall efficiency
across all frequencies. The last term contains the same Dirac comb modulated by
a sinc envelope, but this time centered around each QPM peak. Particularly, in the
region near n = 1 we will have phase-matching peaks at positions A’ = 27tm/T
with heights determined by the coefficients

Cm (i) = isinc(zn—m£)ei2%mé. (A.3.3)

r r r 2

The values of these coefficients as a function of the poled waveguide fraction
[/T are studied in Figure 2.16. The cross-hatched region indicates the fraction
1—1/T of phase-matching efficiency that is “lost” due to the unpoled fraction of
the waveguide.

By focusing on the region near n = 1 and defining the shifted variable AB’, we
obtain

o)~ 2L 3 e, (Vsine( (47— ) L) o050

4 r J2

2i [ AB'LY AL 2 LY i(ap'—2Em)L
~L 2L sine P el 2 Zsinc((Aﬂ’ — —ﬂm) —) el(Aﬁ r m) g
nT 2 r 2

m
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where we assumed a slowly-varying envelope, i.e., [ < L. Comparing this with
the QPM expression in eq. (2.3.21), we notice that the phase-matching peak is
split into multiple sinc-shaped peaks of identical width 27t/L, separated by 27 /T,
with their heights modulated by a sinc envelope of width 27t/1. The comb and
the envelope are both centered at AB’ = 0, giving rise to a symmetric phase-
matching structure. The number of peaks within the full width at half maximum
(FWHM) of the sinc envelope can be approximated as I'/l, which is the inverse
of the total poled fraction of the waveguide. In the limit case where [ =T, the
poling structure is continuous and eq. (2.3.24) reduces to eq. (2.3.21).

Figure 2.20 shows the amplitude and phase of the phase-matching function
at different points along the waveguide. Up to the first unpoled region, the
phase-matching is determined by the QPM behavior. In the unpoled regions,
the sign of the nonlinearity is unchanging, and the ® lines start moving on the
narrow circles dictated by the birefringent phase-matching case, so that their
amplitude does not change significantly. When the next poled section starts, the
amplitude starts increasing or decreasing depending on the phase that the ¢
lines had accumulated while rotating, leading to multiple phase-matching peaks
at regular intervals of Af’.

An alternative approach involves restarting the poling at every interval T for a
length [ (instead of periodically “erasing” it), leading to

d(z)=1 +; (s (Z_Amr) _ 1) I (Z_lmr)
:1+;5(2—mF)*[(s(%)—1)-H(?)], (A3.5)

with Fourier transform

T{d(2)) =?{1}+%;?{5(Z—m”}'[(?{5(%)}‘?{”)*?{“@}]

=215(AB) + 2?” 6 (A[o’ — ng)

m

[(Z 2 5(ap —zfn)—émﬂ)) *lsinc(ATm)eiATﬁl]

nodd

2mm 1
=27‘C5(A/5)—27'E% ;5(A/5—2?nm)-sinc(27;mé) e’ T 2
l 2 27
2= > =S5 (ap L
EDIEDIICTEELY
(2m am \1
-sinc((z—nm—2—7Tn)£)el(F A )2. (A.3.6)
r A 2
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With the same approximations as before, we obtain

®(AP') ~L %Z sinc ((A/S - z—ﬂm) 5) RCE b

— r J2

l AB'TY ApT
- —sinc P e 2 (A.3.7)
r 2

which differs from eq. (2.3.24) only in the alignment of the Dirac comb. In
particular, when I' = kA (with k € Z), the Dirac train aligns with the sinc
envelope and the expressions become identical. If instead T' = (k + %)A, a
symmetric structure with two equal peaks around A’ = 0 emerges; in the limit
[ =T, when the waveguide is completely poled, this structure will lead to the
same phase-matching profile as a phase-reversal modulation with duty cycle
D = 0.5 in Figure 2.19.
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Miscellanea

B.1 Recipe for MUBs

B.1.1 MUBs in prime power dimensions

For a prime odd dimension d, Ivanovic [21] showed that one can find d + 1 MUBs,
which include the fundamental basis {|0),|1),...,|d —1)} and d superposition

bases. If we define v,E”) as the element k of basis r, then the elements of the

v£°)> = | k), whereas its MUBs are

fundamental basis are

au

-1 2mi

1 A7t
v(r) r12+kl|l>, w=ed r:lj,,,,d, (B.1.1)

k >:ﬁz w

Il
o

in which the components of the vectors all have magnitude 1/+/d and a phase
that is a d-th root of unity.

Wootters and Fields [22] extended this to odd prime powers d = p", p # 0,
finding the d MUBs as

27

d—1

M\ _ 1 Tr{ri>+kl} .5 _

v ) =— > w 1), w=e?r , r=1,...,d, (B.1.2)
) = ;

where the trace is defined as

Tr()=a+a? +af +---+a" . (B.1.3)
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In the same work, Wootters and Fields also showed the different construction
required for even prime powers d = 2".

B.1.2 Circulant MUBs

Combescure [118] showed another construction of MUBs for prime dimensions
d from circulant Hadamard matrices. In this formulation, each basis is generated
from a fixed vector by cyclically shifting its components. The fundamental

(computational) basis remains {‘v£0)> = |k)}, while the remaining d — 1 bases,
labeled by r =1,...,d — 1, are defined by

d— rl(l+1) i
v Z M), w=ed, j=0,..,d—1. (B.1.4)

[=0

B.2 Spectral formulas

In this thesis, we define a Gaussian spectrum centered at w, with standard

deviation o as
1 _(00—000)2
Gauss(w; wy,0) = ————e 20% | (B.2.1)

VoJT

where the FWHM is related to the standard deviation through FWHM = 0-24/21n(2).

HG modes are defined as

1 w—w (w—wp)?
HG,(w; wy,0) = H, ( 0 ) e 207 , (B.2.2)

Vv2rnl/m o o
where H, is the Hermite polynomial of order n. Note that HG,(w) = Gauss(w).

We define Gaussian frequency bins in d dimensions as Gaussian spectra centered
at different frequencies spaced by Aw:

d—1
FB,(w; wy, 0, Aw) = HG, (w; wo + (n — T) Aw, 0) . (B.2.3)
This definition maintains the overall central frequency at w,. We choose the
frequency separation large enough to minimize inter-bin overlap in order to have
effectively orthogonal modes.

Gaussian time bins are instead defined as overlapping Gaussian spectra with
different linear phases, which map to different delays separated by At:

i Zn(w—o)o)-(n—dz;l)At

TB, (w; wy, 0, At) = HGy(w; wy,0) e (B.2.4)

Here as well, the time separation is chosen large enough with respect to the
time width (o< 1/0) to prevent overlaps between different bins and ensure
orthogonality.
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Finally, in this thesis, we define the sinc function as
sin(x) .
sinc(x) = X (B.2.5)

1 x=0.

With this expression, the null-to-null bandwidth (i.e., the distance between the
two central zeroes) is Ax = 27.
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