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1 Introduction

1.1 Motivation

We are living in an era increasingly defined by processes. Our world is not made up
of things; it is made up of processes that continuously transform everything around
us. However, adopting a perspective that views the world as flowing—rather than as
consisting of stable states—is far from trivial. Viewing the world through the lens
of processes is essential not only for understanding societal change, but also for how

organizations operate and evolve.

Organizations are increasingly exposed to continuous and rapidly accelerating change
(vom Brocke et al., 2021b). The world becomes more interconnected and dynamic,
driven by a range of factors, including, for example, exogenous shocks (e.g., pandemics,
natural disasters, or geopolitical changes) (Roglinger et al., 2022), technological ad-
vancements (Baiyere et al., 2020; Kerpedzhiev et al., 2021), and evolving customer
expectations. This has forced organizations to operate across multiple channels, coun-
tries, and systems, often involving distributed teams, complex regulatory environments,
and heterogeneous IT landscapes. Moreover, advances in digital technologies are funda-
mentally reshaping how organizations function, collaborate, and deliver value. In such
a volatile and fast-paced environment, it becomes increasingly critical for organizations
to control, monitor, and adapt their underlying business processes to remain competi-
tive and resilient (Roglinger et al., 2022). Ensuring sustained competitiveness requires
organizations to enhance transparency and agility in designing and continuously adapt-
ing their processes (Beverungen et al., 2021). These processes—often formalized as
standard operating procedures—define how work is structured and executed within

organizational contexts (Alter, 2015).

However, not all organizational processes are standardized or digitized. Some pro-
cesses are characterized by high variability and unpredictable task sequences, primarily
because their execution depends on knowledge workers engaging in complex, intercon-
nected decision-making activities (Di Ciccio et al., 2015). Such processes are defined

as knowledge-intensive processes (KIPs) (Di Ciccio et al., 2015; Marjanovic and Freeze,
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2011). KIPs (e.g., research & development, product innovation, or healthcare treat-
ment processes) enable leveraging specialized knowledge for the competitive advantage
of organizations (Nevo and Chan, 2007; Nonaka and Von Krogh, 2009; Rai, 2011; Alavi
and Leidner, 2001; Holsapple and Joshi, 2000; Mahapatra and Sarkar, 2000). Unlike
operational business processes, KIPs tend to be less structured and more complex due
to the need for contextual interpretation, individual judgment, and experiential knowl-
edge (Di Ciccio et al., 2015; Isik et al., 2012; Eppler et al., 2008; Gronau and Weber,
2004). This human-centered nature and the strong reliance on context-specific expertise
contribute significantly to the difficulty of standardizing, digitizing, or fully modeling
KIPs (Di Ciccio et al., 2015; Isik et al., 2012; Marjanovic and Freeze, 2011).

Organizations have made sustained efforts to improve and manage business processes,
grounded in the understanding that process quality is the foundation for operational
performance (Dumas et al., 2018) and that well-managed processes represent a key
source of competitive advantage (Davenport, 1992). However, this is inherently difficult
for KIPs due to their characteristics. Often, they are managed manually by process
participants as existing information technology provides only limited functionality to
capture the complexity and flexibility of such processes (Di Ciccio et al., 2015). As a

result, organizations lack the holistic perspective required to effectively manage KIPs.

To move beyond this, organizations need methods that allow them to observe, recon-
struct, and understand the dynamic behavior of KIPs. Methods and tools from the
field of Business Process Management (BPM) (Dumas et al., 2018; Weske, 2019) offer
valuable foundations for this purpose. The use of BPM enables the targeted control of
processes in an organization by providing a structured approach to design, implement,
monitor, and improve organizational processes (Dumas et al., 2018). Using different
BPM methods, concepts, and techniques that combine knowledge from information
technology and management sciences, processes can be improved (van der Aalst, 2016).
Among them, process mining has evolved as one state-of-the-art BPM method to man-
age operational business processes in a data-driven way (van der Aalst et al., 2012;
van der Aalst, 2022). Recently, process mining is being adopted across a growing range
of business areas such as finance and controlling (44%), customer service (36%), pur-
chasing/procurement (33%), and accounting (31%). However, areas such as production
(21%) or logistics (20%) are gaining increasing attention (Deloitte, 2025). Process
mining leverages log data from various information systems (e.g., Enterprise Resource
Planning (ERP) or BPM systems), which are consolidated into an event log—a struc-

tured dataset containing process-related information (van der Aalst, 2016). For process
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mining techniques to be applicable, this data must satisfy specific formal properties
that ensure the traceability and interpretability of process executions (van der Aalst
et al., 2012). With this data, analysts are enabled to discover and improve processes
(van der Aalst, 2016), helping organizations to eliminate bottlenecks, enable automa-
tion, or reduce process costs (van der Aalst, 2022). Consequently, process mining plays
a critical role in enabling organizations to manage their processes in a structured and

data-driven manner.

1.2 Problem Statement and Research Questions

Nonetheless, applying process mining to KIPs introduces distinct challenges that hinder
its straightforward use. This section outlines these core challenges and defines the
overarching research aim. To address them, it establishes three focal areas from which

the research questions guiding this thesis are derived, presented in Figure 1.1.

PROBLEM STATEMENT
Lack of process mining Inadequacy of event logs Missing 1ntegrat10n'o'f N.LP
Lo o . for knowledge mobilization
adoption in organizations. for representing KIPs.

in process mining.

Organizations lack the ability to manage KIPs holistically using process mining.

U

RESEARCH AIM

To establish a Knowledge-Aware Process Mining approach.

Vs Vi Vs

FOCUS I FOCUS 11 FOCUS 111
Developing organizational Reconceptualizing the
capabilities and attaining the theoretical foundations Integrating NLP into process
necessary process mining for the application of mining for KIPs.
maturity. process mining to KIPs.

v

RESEARCH QUESTIONI || RESEARCH QUESTION II || RESEARCH QUESTION III

How can NLP be leveraged to
advance the technical
capabilities of process mining
to manage KIPs?

Which organizational
capabilities are required to
adopt, implement, and mature
process mining?

How can process mining
be extended to manage
KIPs adequately?

Figure 1.1: Problem Statement and resulting Research Questions
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Although 61% of organizations plan to adopt process mining or have initiated pilot
projects, widespread and effective implementation remains limited (Daniels, 2022).
While organizations aim to leverage process mining for continuous improvement and
operational excellence, many face challenges in translating this intention into effective
implementation. As a result, many initiatives fail to achieve sustained organizational
impact. Even among organizations with established process mining practices, significant
obstacles persist, ranging from insufficient managerial support and poor data quality

to the complexity of data preparation and integration efforts (Martin et al., 2021).

Further, existing process mining approaches rely on the assumption that all relevant
data for analyzing processes is available in event logs. Thus, process mining is partic-
ularly applicable to processes with a high degree of standardization and digitalization
(e.g., order fulfillment or shipping) (van der Aalst et al., 2012; van der Aalst, 2016,
2022). However, reliance on event logs only containing the activities, control flow, or
resource usage associated with a process (van der Aalst et al., 2012; van der Aalst,
2022) presents a significant limitation when applying process mining to KIPs. Event
logs cannot adequately represent KIPs in their full breadth and depth as they omit ex-
periences or informal decision-making of individuals that is essential for the execution
of KIPs (van der Aalst, 2016; Di Ciccio et al., 2015; van der Aalst et al., 2012). Thus,
the more unstructured and tacit parts required for the successful execution, analysis,

and understanding of KIPs are missing from event logs.

Additionally, existing process mining approaches are limited in their ability to pro-
cess and mobilize the process-related knowledge embedded in KIPs. This includes the
absence of natural language processing (NLP) approaches in process mining that can ex-
tract, represent, and analyze process-related knowledge in a way that reliably supports
KIPs. Such NLP-based approaches offer unique potential to process (i.e., generating,
storing, retrieving, and transferring (Alavi et al., 2024)) both knowledge embedded
in documents, communications, and human reasoning (Feuerriegel et al., 2024; Brown
et al., 2020; Alavi et al., 2024).

Taken together, this points to gaps in process mining adoption, the inadequacy of event
logs for representing KIPs, and the missing integration of NLP for knowledge mobiliza-
tion in process mining (see Figure 1.1). Consequently, a holistic management of KIPs
through process mining is significantly constrained. To address this, this thesis aims to
establish a knowledge-aware process mining approach. Therefore, process mining must

be enhanced in three fundamental ways (see Figure 1.1): first, by developing organi-
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zational capabilities and attaining the necessary process mining maturity (FOCUS I);
second, by reconceptualizing the theoretical foundations for the application of process
mining to KIPs (FOCUS II); and third, by integrating NLP into process mining for
KIPs (FOCUS III). Addressing these three foci will enable process mining to evolve
into a knowledge-aware discipline capable of supporting the dynamic and knowledge-
centric nature of KIPs. Building on this rationale, this threefold focus leads to three

research questions (see Figure 1.1) that form the foundation of this thesis:

Research Question 1: Which organizational capabilities are required to adopt, im-

plement, and mature process mining?

Research Question 2: How can process mining be extended to manage KIPs ade-

quately?

Research Question 3: How can NLP be leveraged to advance the technical capabilities

of process mining to manage KIPs?

1.3 Thesis Structure and Publications

This thesis is structured into two main parts: Part A and Part B. Part A establishes the
conceptual and methodological foundations of the thesis. Section 1 introduces and mo-
tivates the research endeavor, delineating the relevance and scope of the thesis. Section
2 provides a comprehensive overview of the theoretical and technical underpinnings of
process mining, the distinctive characteristics of KIPs, and the principles of NLP-aware
approaches. Section 3 presents a summary of the core contributions of each included
publication. Section 4 synthesizes these findings in light of the guiding research ques-
tions and discusses their theoretical and practical implications. It further concludes the

thesis by outlining its limitations and providing directions for future research.

Part B comprises the seven core publications (P1 to P7) that constitute the centerpiece
of this cumulative thesis. Table 1.1 provides a detailed overview of each publication.
The table includes the publication identifier (#P), the full citation with the author
and title details (Author & Title), and the ranking of each publication outlet (JQ4
and CORE 2023). Additionally, it specifies the category of each publication, indicating
whether it is a conference or journal paper (Type), and notes its current status as either
published or under review (Status). In total, the thesis includes five peer-reviewed
conference papers and two journal articles. Among them, six have been published,

while one is currently under review.
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Table 1.1: Overview of Publications included in this Thesis

#P Author & Title Outlet JQ4 CORE Type Status
2023
P1 Brennig, K., Lohr, B., Brock, J., Americas’ C / C P
Reineke, M., & Bartelheimer, C. (2024). Conference on
Mazimizing the Impact of Process Min- Information
ing Research: Four Strategic Guidelines. Systems
P2 Brock, J., Brennig, K., Lohr, B., Bartel- Business & B / J P
heimer, C., von Enzberg, S. & Du- Information
mitrescu, R. (2024). Improving Process Systems
Mining Maturity — From Intentions to Engineering
Actions.
Pre-version of the journal publication:'
Brock, J., Lohr, B., Brennig, K., Seger, FEuropean A / C P
T., Bartelheimer, C., von Enzberg, S., Conference on
Kithn, A., & Dumitrescu, R. (2023). Information
A Process Mining Maturity Model: En- Systems
abling Organizations to assess and im-
prove their Process Mining Activities.
P3 Lohr, B., Brennig, K., Bartelheimer, C., International B A C P
Beverungen, D. & Miiller, O. (2022). Conference on
Process Mining of Knowledge- Intensive Business
Processes: An Action Design Research Process
Study in Manufacturing. Management
P4 Brennig, K., Bartelheimer, C., Lohr, B., Journal of A / J U
Beverungen, D. & Miller, O. (2025). Strategic
Supporting Organizational Knowledge Information
Creation in Knowledge- Intensive Pro- Systems
cesses through Process Mining.
P5 Brennig, K. (2025). Revealing the Un- Americas’ C / C P
spoken: Using LLMs to Mobilize and Conference on
Enrich Tacit Knowledge in Event Logs Information
of Knowledge-Intensive Processes. Systems
P6 Brennig, K., Benkert, K., Lohr, B. & Business C / C P
Miller, O. (2024). Text-Aware Predic- Process
tive Process Monitoring of Knowledge- Management
Intensive Processes: Does Control Flow Workshops
Matter?.
P7 Brennig, K., Kaltenpoth, S. & Miiller, Business C / C P
O. (2025). Straight Outta Logs: Can Process
Large Language Models Overcome Pre- Management
processing in Next Event Prediction?. Workshops

Type: C: Conference Paper, J: Journal Paper

Status: P: Published, U: Under Review

1 This paper is not included in Part B of the thesis, as its results are already incorporated into the corresponding
journal publication. Apart from minor refinements to the definitions of the 23 elements—made in response to reviewer

feedback—mno substantive changes have been introduced.



2 Research Background

This chapter outlines the relevant research background and theoretical foundations
underlying this thesis. Section 2.1 presents a comprehensive overview of process mining,
detailing its conceptual and technical foundations. Section 2.2 introduces KIPs and
focuses on the specific characteristics and challenges of applying process mining to
KIPs. Further, Section 2.3 examines the foundations of NLP and explores its emerging

application within the domain of process mining and knowledge management.

2.1 Foundations of Process Mining

Organizations continuously strive to improve and manage their processes, recognizing
that process quality is essential for operational performance and a key source of com-
petitive advantage (Dumas et al., 2018; Davenport, 1992). More specifically, a process
represents a “collection of inter-related events, activities and decision points that in-
volve a number of actors and objects, and that collectively lead to an outcome that is of
value to at least one customer” (Dumas et al., 2018, p. 6-7). BPM provides a compre-
hensive set of methods and tools for the systematic design, execution, monitoring, and

optimization of organizational processes (Dumas et al., 2018; Weske, 2019).

Within this context, process mining has evolved as a state-of-the-art, data-driven ap-
proach that bridges BPM and data science to uncover and analyze the actual execution
of processes based on digital trace data (van der Aalst et al., 2012; van der Aalst,
2022). Existing process mining approaches are particularly applicable to highly digital-
ized and standardized processes as they work best with high volumes of data (van der
Aalst et al., 2012; van der Aalst, 2022). Process mining leverages event data captured
in event logs, which are extracted from information systems such as ERP or BPM
systems. These logs document structured metadata about process executions (e.g., ac-
tivity name, timestamp, and resource) and serve as the foundation for various analytical
techniques (van der Aalst and Dustdar, 2012). Core process mining techniques include
process discovery (i.e., generating as-is process models from event logs, represented for

example by Petri nets or directly-follows graphs), conformance checking (i.e., assessing
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the alignment between observed and prescribed process behavior), performance anal-
ysis (i.e., evaluating process execution metrics), and comparative process mining (i.e.,

benchmarking across multiple event logs) (van der Aalst, 2022, 2016).

Building on these capabilities, more recent advances have introduced predictive and
action-oriented forms of process mining, which extend the analytical horizon from de-
scriptive to prescriptive insights (Marquez-Chamorro et al., 2018; Weinzierl et al., 2020;
van der Aalst, 2022). Predictive process mining (PPM) aims to anticipate the future
behavior of ongoing process instances (Di Francescomarino and Ghidini, 2022; Weske,
2019), such as process outcomes, sequences of future activities, or (remaining) lead
time, based on historical patterns (Di Francescomarino and Ghidini, 2022; Marquez-
Chamorro et al., 2018). Action-oriented process mining transforms diagnostic insights
into concrete actions such as suggesting next steps or reallocating resources, thus clos-
ing the loop between analysis and execution (van der Aalst, 2022). These self-learning
approaches open the door to an even more dynamic handling of future events (Heinrich
et al., 2021) or concept drift (Sato et al., 2022) and enable real-time analysis, outcome
forecasting, and recommendations for process optimization (Marquez-Chamorro et al.,
2018; Weinzierl et al., 2020; van der Aalst, 2022).

With these methods in hand, process mining enables the design, implementation, con-
trol, and analysis of business processes involving people, organizations, documents, and
other information sources (Dumas et al., 2018; Weske, 2019; van der Aalst, 2022). In
doing so, process mining helps organizations to eliminate bottlenecks, enable automa-
tion, or reduce process costs (van der Aalst, 2022). Due to its capability to process
and analyze data in real-time (van der Aalst, 2022; Davenport and Spanyi, 2019), live
insights on the execution of a process can be gained, and ad hoc evidence-based deci-
sions are possible (Grisold et al., 2020). This enables organizations to cope with the
ever-increasing complexity and volatility of today’s business processes (Grisold et al.,
2020; Pentland et al., 2021; Wurm et al., 2021; Kipping et al., 2022) and generate busi-
ness value (Badakhshan et al., 2022). Still, many organizations struggle to turn their
ambitions into lasting impact due to obstacles such as lacking management support,

poor data quality, and complex data preparation (Martin et al., 2021).

10
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2.2 Process Mining in Knowledge-Intensive Processes

In addition to well-structured and standardized processes, organizations also engage
in KIPs, such as product development, innovation, or healthcare treatment processes
(Di Ciccio et al., 2015; Isik et al., 2012; Eppler et al., 2008; Bahrs and Miiller, 2005).
KIPs can be defined as “processes whose conduct and execution are heavily dependent
on knowledge workers performing various interconnected, knowledge-intensive decision-
making tasks. KIPs are genuinely knowledge, information and data centric and re-
quire substantial flexibility at design- and run-time” (Di Ciccio et al., 2015, p. 5).
Thus, they rely heavily on human-centered, knowledge-intensive activities, contextual
decision-making, and the individual experience of process participants (Di Ciccio et al.,
2015; Little and Deokar, 2016; Marjanovic and Freeze, 2011; Isik et al., 2012; Eppler
et al., 2008; Gronau and Weber, 2004). This reliance results in high complexity, ambigu-
ous inputs and outputs, and considerable variability. As such, KIPs require significant
flexibility and are inherently difficult to predict, formalize, and manage (Di Ciccio et al.,
2015; Isik et al., 2012; Marjanovic and Freeze, 2011; Eppler et al., 2008; Gronau and
Weber, 2004). Accordingly, the depth and availability of process-related knowledge in
KIPs evolve dynamically through the actions and decisions of the individuals involved
(De Almeida Rodrigues Gongalves et al., 2023).

Process-related knowledge can be categorized into explicit and tacit process-related
knowledge (Bahrs and Miiller, 2005; Di Ciccio et al., 2015). Explicit process-related
knowledge can be codified and stored in a knowledge base, defining relevant knowledge
objects, data, information, and artifacts that constitute process context and execution
state. In contrast, tacit process-related knowledge resides in the skills and experiences
of process participants and is reflected in their everyday practices and decision-making
(Di Ciccio et al., 2015). Thus, each process participant possesses tacit process-related
knowledge linked to the execution of their specific tasks within a given process instance,
underscoring its central importance in KIPs (Marjanovic and Freeze, 2011; Di Ciccio
et al., 2015). While explicit process-related knowledge can be codified, expressed in for-
mal language, and documented in text or visuals, enabling its use across contexts (Non-
aka and Takeuchi, 1995; Nonaka and Von Krogh, 2009), tacit process-related knowledge
is more difficult to formalize and communicate as it is personal and context-specific
(Nonaka and Takeuchi, 1995; Polanyi, 1967). Clinical decision-making, as part of KIPs
in healthcare, exemplifies this distinction. It draws on explicit process-related knowl-
edge such as medical evidence, clinical guidelines, and patient records, as well as on

tacit process-related knowledge embedded in the clinician’s expertise and experiential

11
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judgment (Di Ciccio et al., 2015). Thus, effective utilization of tacit process-related

knowledge is crucial for achieving the overarching objectives of KIPs.

As a consequence, organizations should foster a culture of knowledge exchange in which
tacit process-related knowledge is mobilized and transformed into explicit process-
related knowledge—and vice versa—that can be shared, analyzed, and reused (Nonaka
and Takeuchi, 1995; Gold et al., 2001). Through this, a well-grounded knowledge base,
represented in KIP-specific event logs, should be established. To facilitate this, organi-
zations can draw upon established approaches from the field of knowledge management
(Di Ciccio et al., 2015). The theory of organizational knowledge creation, particularly
the SECI-model proposed by Nonaka and Takeuchi (1995), provides a conceptual foun-
dation for this transformation. The model describes four modes of knowledge conver-
sion. In the mode of socialization, individuals acquire tacit process-related knowledge
by learning from the experiences of others. For example, in healthcare processes, a ju-
nior doctor learns diagnostic intuition by observing and shadowing senior doctors during
patient rounds. Similarly, in product development, tacit insights are transferred during
collaborative workshops or informal discussions. Externalization involves articulating
tacit process-related knowledge to make it explicit and shareable. This includes activ-
ities such as concept creation, quality improvement meetings, or documenting expert
insights during prototyping for product development. In healthcare contexts, experi-
enced doctors may formalize treatment heuristics into clinical guidelines. Combination
refers to synthesizing explicit process-related knowledge into structured knowledge sys-
tems. In product development, this might involve compiling market research, patent
databases, customer feedback, and past project reports to create a new product concept
or feature roadmap. In healthcare, doctors combine patient records, diagnostic results,
and clinical evidence to create personalized treatment plans. Finally, internalization de-
scribes how individuals absorb explicit process-related knowledge through experience,
such as learning by doing, thereby enriching their own tacit process-related knowledge
base. Medical staff, for instance, internalize clinical protocols by applying them in real
cases, gradually developing intuitive judgment that informs complex decision-making
(Nonaka and Takeuchi, 1995; Nonaka et al., 2000; Nonaka and Von Krogh, 2009). These
four modes serve as the driving force behind the entire process of knowledge creation
and are not independent of each other as they cause a spiral in their interaction over
time. This conversion process begins at the individual level and progressively scales
across organizational units to create a shared knowledge base (Nonaka and Takeuchi,
1995; Nonaka et al., 2000).
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However, mobilizing the tacit process-related knowledge inherent in KIPs remains a
persistent challenge, as this type of process-related knowledge is rarely externalized or
systematically shared within organizations. Thereby, its broader dissemination and in-
tegration into organizational knowledge structures are impeded (Di Ciccio et al., 2015).
The effectiveness of knowledge management systems (KMS) in this regard is limited,
as it depends on their integration into broader organizational systems and processes
(Alavi and Leidner, 2001; Nevo and Chan, 2007). Ideally, such systems should interact
with both technological and social process-related infrastructures to contextualize and
operationalize process-related knowledge in KIPs effectively (Bhatt, 2001). Therefore,
organizations must go beyond static data storage and retrieval. Instead, they need
to establish dynamic, integrated systems that support continuous knowledge exchange
and contextual interpretation. Without these capabilities, the knowledge essential for
achieving the goals of KIPs remains fragmented or inaccessible, impeding both process

improvement and innovation.

These limitations in knowledge management also affect data-driven approaches such as
process mining, which rely heavily on structured, explicit event logs. Although first
process mining approaches target KIPs (Remus and Lehner, 2000; Bahrs and Miiller,
2005; Richetti et al., 2017; Pérez-Castillo et al., 2011; Khanbabaei et al., 2019; Benner-
Wickner et al., 2015; Terziev et al., 2015; Dunzer et al., 2021; Berriche et al., 2015;
Munoz-Gama et al., 2022), the available solutions only use a subset of the knowledge
relevant to KIPs (Isik et al., 2012; Bahrs and Miiller, 2005), thereby compromising the
quality of process mining results (van der Aalst, 2015). This stems from the assumption
that the essential process-related data, information, and knowledge for process analysis
are captured in event logs. This typically contains the activities, control flow, and
resource usage (van der Aalst and Dustdar, 2012; van der Aalst, 2022; Di Ciccio et al.,
2015), while overlooking the experiences or informal decision-making of individuals (i.e.,
tacit process-related knowledge) critical to KIPs (Di Ciccio et al., 2015). Consequently,
process mining struggles to capture the full breadth and depth of KIPs. Subsequently,
abstracting data from specific instances and their context, deviations in a KIP cannot
be interpreted on a process level anymore as order and time of activities are emphasized
over context (van der Aalst, 2016; Rosemann et al., 2008; van der Aalst and Dustdar,
2012). This leads to an ever-increasing spiral in which KIPs can only be analyzed,

redesigned, and executed on the basis of their explicit process-related knowledge.
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2.3 Enhancing Process Understanding and Knowledge Work with

Natural Language Processing

The field of NLP comprises all approaches that enable machines to understand, inter-
pret, or generate human language (Jurafsky and Martin, 2025). Over the last decades,
the field of NLP has undergone diverse paradigm shifts. Initially, rule-based approaches
(e.g., hand-crafted grammars or pattern-matching systems such as ELIZA) were preva-
lent (Jurafsky and Martin, 2025). These were later complemented and largely super-
seded by statistical approaches (e.g., n-gram language models or Naive Bayes classi-
fiers), which leveraged large corpora to model language probabilistically (Manning and
Schiitze, 2000; Jurafsky and Martin, 2025). Over the years, however, the field has
evolved from machine learning (e.g., logistic regression, support vector machines) (Se-
bastiani, 2002; Jurafsky and Martin, 2025; Young et al., 2018) to deep learning NLP
approaches (e.g., recurrent neural networks, long short-term memory) (Jurafsky and
Martin, 2025). The advent of deep learning methods in NLP has markedly advanced
the field (Brown et al., 2020; Jurafsky and Martin, 2025; Young et al., 2018). Partic-
ularly, the Transformer architecture has led to improvements in training efficiency and

natural language understanding and generation (Vaswani et al., 2017).

The Transformer’s encoder-decoder architecture encodes input sequences into contex-
tual representations, which the decoder then uses to generate coherent outputs (Vaswani
et al., 2017). This effectively supports sequence-to-sequence tasks such as translation
(Vaswani et al., 2017). In the early developments of transformer-based models, encoder-
only models such as Bidirectional Encoder Representations from Transformers (BERT)
advanced natural language understanding, including text classification, and sentiment
analysis (Devlin et al., 2019). In contrast, decoder-only models, such as Generative
Pre-trained Transformers (GPT), were capable of natural language generation, includ-
ing summarization (Radford et al., 2018), revolutionizing the field of NLP (Feuerriegel
et al., 2024). Leveraging the scaling laws (Kaplan et al., 2020) and developing special-
ized models that comprise only the decoder part of the Transformer architecture has

led to the emergence of large language models (LLMs).

Notably, decoder-only LLMs enable the processing of large-scale textual data and the
generation of contextually relevant outputs (Vaswani et al., 2017; Feuerriegel et al.,
2024). These generative models are designed to produce meaningful and coherent text
by predicting the next token (i.e., word) ¢, 41 in a sequence. They achieve this by learn-

ing the conditional probability distribution P(t,11|t1...t,), allowing them to generate
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text autoregressively based on the preceding context (Shanahan et al., 2023). Thus,
almost any NLP task, including natural language understanding, can be modeled as
word prediction (Jurafsky and Martin, 2025).

Typically, LLMs comprise billions of parameters and are trained on large-scale text
corpora, including books, websites, and code (Brown et al., 2020; OpenAl et al., 2023).
This enables them to understand language, its context, and its meaning, allowing near-
human performance in answering questions, performing tasks, and generating code or
markup (e.g., HTML, XML) (Brown et al., 2020; Sui et al., 2024; Chen et al., 2021;
Ouyang et al., 2022; Feuerriegel et al., 2024). However, LLMs are prone to generating
outputs that, while syntactically and semantically plausible, may be factually incor-
rect—a phenomenon known as hallucination (Ji et al., 2023; Feuerriegel et al., 2024).
Thus, LLMs may produce content that lacks factual grounding (Feuerriegel et al., 2024).
These outputs can mislead users by presenting misinformation indistinguishable from
accurate content (Spitale et al., 2023). However, to apply LLMs on specific domain
data, to specific output representations, or to mitigate hallucinations, they can also be
fine-tuned (Feuerriegel et al., 2024; Alavi et al., 2024; Wu et al., 2024).

LLMs have found widespread adoption in process mining (Feuerriegel et al., 2024; Vid-
gof et al., 2023; Dumas et al., 2023). They can process directly-follows graphs, Petri
nets (Berti et al., 2024b), and XES-formatted event logs (Berti et al., 2024a; Berti
and Qafari, 2023). Their capabilities span answering process-related questions (Berti
et al., 2024b), mitigating bias (Berti et al., 2024a), improving outcomes (Berti et al.,
2024b), supporting log abstraction (Brzychezy et al., 2025), and generating artificial
event logs (Redis et al., 2024). LLMs also contribute to predictive and prescriptive
process monitoring by recommending and explaining process interventions (Berti et al.,
2024a; Kubrak et al., 2024; Képpel et al., 2024), thereby improving transparency of the
origin of predictions and recommendations (Kubrak et al., 2024) and decision-making
(Kéappel et al., 2024). To improve the effectiveness of LLMs in process mining appli-
cations, techniques such as fine-tuning, prompt engineering, and the incorporation of
iterative feedback can be employed (Jessen et al., 2023; Berti et al., 2024a).

Beyond enhancing existing process mining capabilities, LLMs offer potential to bridge
the gap between explicit and tacit process-related knowledge—particularly in human-
centered processes where conventional data-driven methods fall short. Their growing

influence on knowledge management is reflected in their impact on some phases of the
SECI model (Alavi et al., 2024; Korzynski et al., 2023; Sumbal and Amber, 2024) and
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its use in traditional KMS (Alavi et al., 2024). As conversational agents, LLMs support
socialization by fostering collaboration and knowledge sharing (Sumbal and Amber,
2024; Zheng et al., 2024; Alavi et al., 2024). For externalization, they enable natural
language querying and learn from user feedback (Alavi et al., 2024). They also support
knowledge combination by synthesizing insights, updating databases, and identifying
knowledge gaps (Korzynski et al., 2023; Sumbal and Amber, 2024; Alavi et al., 2024).
In doing so, LLMs enhance organizational learning and decision-making by extracting,
structuring, and retrieving knowledge (Alavi et al., 2024; Zhang et al., 2024; Korzynski
et al., 2023). However, hallucinations, i.e., the generation of plausible yet factually
incorrect information, (Feuerriegel et al., 2024) pose a significant challenge to knowledge
creation with LLMs (Alavi et al., 2024). Without critical evaluation, LLM-generated

misinformation may enter organizational knowledge bases (Alavi et al., 2024).
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The limited ability of organizations to holistically manage KIPs with process mining
is the central challenge addressed by the seven research papers (P1-P7) presented in
this dissertation. Each paper tackles a distinct aspect of how process mining can be
advanced toward a knowledge-aware discipline, ultimately enabling its effective applica-
tion in KIPs. Figure 3.1 visualizes how the individual papers interrelate, showing their

cumulative contribution to developing a knowledge-aware process mining approach.

Capabilities for Process Mining
in Organizations

RQI: Which organizational capabilities are required to
adopt, implement, and mature process mining?

P1, P2

Theoretical Foundations for
Knowledge-Aware Process Mining

RQ2: How can process mining be extended to
manage KIPs adequately?

P3, P4

Technical Capabilities for
Knowledge-Aware Process Mining

RQ3: How can NLP be leveraged to advance the
technical capabilities of process mining to manage KIPs?

PS5, P6, P7

tacit
process-related
knowledge

tacit
process-related
knowledge

Internalization:
Ps, P6, P7

Externalization:
Ps, P6

recombined, explicit
process-related knowledge

explicit
process-related
knowledge

explicit
process-related
knowledge

KIP-specific Event Log
(process-related data, information,
and knowledge)

Combination: P5, P6, P7

Figure 3.1: Overview of Research Contributions and their Interrelationships
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The outer layer focuses on the capabilities for process mining in organizations. The
middle layer focuses on establishing theoretical foundations for knowledge-aware pro-
cess mining, grounded in the SECI model (Nonaka and Takeuchi, 1995). The inner layer
presents technical capabilities that integrate NLP to mobilize process-related knowledge
in KIPs. This layer represents the circular and iterative nature of knowledge mobiliza-
tion in KIPs (Nonaka and Takeuchi, 1995). Thus, this layer extends the theoretical
foundations by introducing NLP as key enabler, given its ability to process and extract
insights from textual data. Tacit process-related knowledge must first be externalized to
become explicit. Through combination, this explicit process-related knowledge—along
with relevant data and information—can be integrated into a KIP-specific event log.
Based on this, a knowledge base containing recombined, explicit process-related knowl-
edge (e.g., predictions or recommended actions) can be constructed. Such a system
supports process participants in internalizing new process-related knowledge through

practical application.

Each layer aligns with one of the three research questions guiding this thesis. Ac-
cordingly, each paper can be mapped to one of the research questions, structured as

follows:

e P1 and P2 address RQ1: Which organizational capabilities are required to adopt,

implement, and mature process mining?

o P3 and P4 address RQ2: How can process mining be extended to manage KIPs
adequately?

o P5, P6, and P7 address RQ3: How can NLP be leveraged to advance the technical

capabilities of process mining to manage KIPs?

An overview of the main research contributions addressing the research questions is
provided in Table 3.1. The following sections summarize the key contributions of each
paper, highlighting how they address the challenges of building organizational capa-
bilities, developing theoretical foundations, and implementing technical approaches for
mobilizing tacit process-related knowledge and enriching event logs. Thus, advancing
process mining toward a knowledge-aware approach moving from organizational readi-
ness (P1, P2), through conceptual design (P3, P4), to technical realization (P5-P7).
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Table 3.1: Main Research Contributions
RQ #P Contributions

RQl1 P1 Four strategic guidelines to assess and enhance the relevance of process mining results.
P2 A process mining maturity model comprising 5 factors and 23 elements and a set of 30 possible
actions to support organizations in advancing their process mining capabilities.

RQ2 P3 Five design principles that establish theoretical foundations for applying process mining in
KIPs.
P4 Extends the conceptual groundwork laid in P3 and develops five improved design principles
that establish theoretical foundations for applying process mining in KIPs. The design prin-
ciples are grounded in the theory of organizational knowledge creation.

RQ3 P5 A LLM-based framework to operationalize the mobilization of tacit process-related knowledge,
technically realizing the SECI-based conceptual approach.
P6 A text-aware PPM approach applying encoder-only models for natural language understand-
ing and neglecting the control-flow of KIPs.
P7 A LLM-based approach which can directly generate next event predictions from XES-
formatted, knowledge-enriched event logs.

3.1 Paper 1 — Maximizing the Impact of Process Mining Research:

Four Strategic Guidelines

The IS literature offers limited insights into how organizations can effectively adopt,
integrate, and assess process mining to generate business value (vom Brocke et al.,
2021a; Badakhshan et al., 2022), partly due to the scarcity of studies examining im-
plementation within existing organizational structures (van Eck et al., 2015; Aguirre
et al., 2017). To guide organizations and clarify the value of process mining adoption,
P1 formulates the following research question: “To what extent does the process mining
literature in IS reflect on the utility of its results for organizations and what are the

implications for future research?”

To address this question, P1 conducts a systematic literature review (SLR) (Simons
et al., 2009; Liberati et al., 2009). The SLR focuses on literature addressing the in-
tegration of process mining within real-world organizational contexts and its practical
impacts. The search has been limited to contributions in the IS knowledge base and
concentrated on papers published since 2011, when the process mining manifesto was
published by van der Aalst et al. (2012), as this was the cornerstone of the common
understanding of process mining in the community. 28 final papers have been identified
and organized in a concept matrix. The concept matrix revealed that the vast majority
of process mining contributions in the IS knowledge base focus on applying process
mining techniques and artificially developed artifacts. They often neglect to identify

requirements from an application domain and to evaluate the usefulness of an artifact.

P1 develops four strategic guidelines to assess and enhance the relevance of process
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mining results. These guidelines aim to guide researchers better in carving out the

practical implications of their contributions:
e Guideline 1: Start with identifying a use case in a real-world organization.
o Guideline 2: Actively report on design objectives and decisions.
e Guideline 3: Evaluate artifacts with field data.
e Guideline 4: Discuss implications and quantify the business value.

These guidelines emphasize the need for research that yields practically relevant and
managerially impactful insights, as the utility and effectiveness of process mining often
remain invisible in organizational practice. This aligns with the dual mission of design-
oriented IS research: developing theory for design and action while addressing business
problems (Hevner et al., 2004; Gregor, 2006). The lack of clarity regarding the practical
utility of many process mining artifacts exposes a gap in the IS knowledge base, despite
the prevalence of the Design Science Research (DSR) paradigm, which emphasizes prac-
tical relevance (Hevner, 2007). Integrating the relevance cycle in research endeavors is

fundamental, especially in application-oriented research such as process mining.

3.2 Paper 2 — Improving Process Mining Maturity: From

Intentions to Actions

Although organizations aim to use process mining to enable agile and adaptive BPM,
widespread implementation is often hindered by deficiencies in process mining readiness
across multiple dimensions (Daniels, 2022; Martin et al., 2021; Badakhshan et al., 2022;
Reinkemeyer, 2020; van der Linden, 2021; Reinkemeyer et al., 2022). Even among
organizations with established process mining practices, significant obstacles persist,
ranging from insufficient managerial support and poor data quality to the complexity of
data preparation and integration efforts (Martin et al., 2021). Addressing this intention-
action gap requires clear guidance for organizations on enhancing their process mining
readiness (Dunzer et al., 2021; Martin et al., 2021; Beverungen et al., 2021).

Therefore, P2 develops a Process Mining Maturity Model (P3M), designed to support
organizations in evaluating and systematically advancing their process mining capa-
bilities. The model was developed using an IT-related maturity model methodology
(Becker et al., 2009) grounded in the DSR paradigm (Hevner et al., 2004). The method
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is based on the properties and development history of previous maturity models and
covers the steps from ideation to publishing and usage, emphasizing understandability,
reproducibility, and iterative refinement based on literature and implications from the
specific context. As maturity models are context-sensitive and can become outdated,
regular review ensures continued relevance. Design decisions were further informed by
Kiithn et al. (2013) to enhance accessibility. A 30-month development project was ini-
tiated, structured into five phases. Phase one included problem scoping, requirements
elicitation, and the selection of a development strategy. Phase two developed the initial
P3M in collaboration with a manufacturing company to ensure both rigor and relevance
(Hevner, 2007). Phase three focused on refining the model’s factors and elements in
close cooperation with the organizational partner. Phase four applied and evaluated
the P3M with a second organization, while phase five focused on identifying actions
to enhance organizational readiness for process mining. The actions are derived from
eleven qualitative interviews (Myers and Newman, 2007) conducted with two practi-
tioner groups: “internal” users, driving process mining within their organizations, and

“external” users, whose organizations support others in adopting process mining.

The P3M! comprises five factors (i.e., Organization, Data Foundation, Peoples’ Knowl-

edge, Scope of the PM Activity, and Governance) with 23 elements (see Figure 3.2).
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Figure 3.2: P2 - Overview of the Process Mining Maturity Model (P3M) (Brock et al., 2024)

Each element has five maturity stages, ranging from Initial to Optimizing (e.g., adapted
to the maturity stages of Paulk et al. (1991) and Rosemann and de Bruin (2005)). At

1 Detailed description: https://www.its—owl.de/process-mining-maturity-model/.
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the highest maturity level, organizations demonstrate awareness of improvement oppor-

tunities, adaptability to evolving business needs and market dynamics, and maintain

structures to advance process mining. Progressing to the next maturity stage requires

fulfilling the previous one (Rosemann and de Bruin, 2004). As the maturity stages are

ordinal, the effort to advance varies by each element and level. The maturity model

supports assessing as-is organizational maturity and prioritizing improvement areas.

Additionally, to guide organizations in advancing their maturity, 30 possible actions

have been defined. Organizations can use these actions to establish a more responsive

and dynamic BPM environment utilizing process mining. A comprehensive overview of

these actions is depicted in Table 3.2.

Table 3.2:

P2 - Identified Actions to Improve the Process Mining Maturity of Organizations

(Brock et al., 2024)

Factor  Action Explanation
A-O1 Raise awareness in management workshops Let the top management experience process mining, e.g., by conducting a workshop where
they mine an artificial process.
A-O2 Raise awareness in management circles Present findings from process mining projects to the management.
= | A-O3  Anchor initiative centrally One centralized initiative bundles all process mining activities within an organization.
.2 | A-O4 Anchor initiative in a hybrid setup Connect a centralized initiative to multiple decentralized initiatives, e.g., in the corporate head
E quarters and branches.
g | A05 Eaaceriorediconmunictionieanpaisaabony Highlight the importance of data and processes, e.g., by posting short videos on the intranet.
o0 processes and data ’ v
O | A-O6 Involve the IT department carly Communicate with the IT department early, and identify benefits for the them.
A-O7 C“ol.nblnc s Process rining i weiih ey Use larger digital transformation initiatives to validate and utilize process mining in an inno-
digital transformation projects Lo
vative environment.
A-D1 Implement a central data repository Initialize a central data infrastructure, e.g., a data lake, to gather event data from different
sources.
= | A-D2 Tteratively include new information systems Do not try to include all information systems at once, but step-by-step.
.2 | A-D3  Tmplement the connectors to data sources Utilize the connectors offered by process mining vendors to connect with the leading informa-
5 tion system.
; A-D4  Increase data quality with automation Implement automation (e.g., RPA) to automatically maintain master data and increase data
& quality.
« | A-D5  Manually export first data for validation Especially for on premise systems, using connectors is difficult. Manually export data for a
= low-effort, start.
A A-D6  Strive for perfection, deploy pragmatism Most data can be used as is. Focus on that data to begin with.
A-P1  Determine an internal multiplier Identify a person or group of persons to collect and share knowledge about process mining
within the organization.
_g;‘, A-P2  Store knowledge in a wiki Externalize knowledge by documenting it in a knowledge base.
é; A-P3 ::l:iliomam experts by involving them in the Train domain experts by including them in the data pre-processing and mining phases.
g A-P4  Conduct trainings with vendors Conduct the trainings of the respective process mining tool vendor.
’:x‘ A-P5  Specify trainings for the respective departments Customize training to the specific needs of different departments (e.g., IT vs. business depart-
3 ment).
En A-P6  Utilize online-classes for self-study Various online classes on process mining exist, where practitioners can train on particular
E?j aspects of process mining.
A-P7  Create a technical and a functional documentation ~Create documentations for technical aspects and functional aspects, such as methods used or
analysis steps taken.
Z | A-S1 Sipsitetnaifeallly Ry wew W @t o RO - Determine use cases on the basis of benefits, interests, and data availability.
= i tiative ? e ¥
2 .
‘3 A-S2 Sho.“ © DIEVIOus use cases to gain attention of Utilize regular meetings to demonstrate the possibilities of process mining to draw business
<« business units .
attention.
E A-S3  Start with process discovery Start with process mining by applying process discovery, because it is the foundation for other
5 techniques.
2 | A-s4 Utlhz.clcilaisllca{ data analytics techniques to gain Generate ordinary descriptive data analysis plots for domain experts.
5 general insights
@ | A-S5 Gradually add new use cases to the initiative Do not overload the organization with too many use cases, but work on them in a step-by-step
fashion.
A-G1  Create short-term data usage agreement Create a written document in collaboration, e.g., with the works council, for conducting first
PoC projects.
g | A-G2 Create long-term data usage agreement Create a written document concerning multiple process mining projects, addressing data and
g privacy concerns.
£ | A-G3 Involve the works council carly Involve the works council in the project to show that no individual performance is measured
g and jobs will not necessarily be rationalized.
U | A-G4 Develop a clear set of roles Aside from classical roles such as process mining or domain expert, also consider roles such as
an (analysis dashboard) user.
A-G5  Select the right process mining tool Consider various aspects when selecting a vendor, and do not hesitate to test multiple vendors.
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3.3 Paper 3 — Process Mining of Knowledge-Intensive Processes:

An Action Design Research Study in Manufacturing

Existing process mining methods are designed for highly digitalized and standardized
processes (van der Aalst, 2016). However, organizations also conduct processes that
are more knowledge-intensive and involve creative activities, require flexibility and de-
cision autonomy, and target external goals like customer satisfaction (Di Ciccio et al.,
2015). As a result, KIPs rely heavily on the tacit process-related knowledge of pro-
cess participants, which often resists codification and remains unavailable for process
mining—unlike explicit process-related knowledge (Di Ciccio et al., 2015; Nonaka and
Takeuchi, 1995). Thus, KIPs often lack extensive digital event logs, limiting the direct

application of common process mining techniques without adaptation.

Building on the organizational foundations established in P1 and P2, P3 designs and
evaluates a process mining approach for KIPs. Therefore, P3 conducts Action Design
Research (ADR), which emphasizes the organizational context in shaping research and
artifact development (Sein et al., 2011). Rooted in both action and design research,
ADR comprises four phases: (1) problem formulation, (2) building, intervention, and
evaluation (BIE), (3) reflection and learning, and (4) formalization of learning. Through
this, ADR promotes close collaboration between researchers and practitioners (Sein
et al., 2011). Applying ADR, P3 presents two manufacturing cases (i.e., product inno-
vation and engineer-to-order) aiming to analyze and improve their KIPs through process
mining. Insights from the literature and the use cases (i.e., data from 27 interviews and
49 workshops) informed the development of initial propositions and a prototypical IT
artifact. The prototype represents a set of mock-ups of a process analytics tool that
is focused on the needs of KIPs. Based on the preliminary results, an evaluation was
conducted with practitioners of the core ADR team, which enabled the development of

the resulting design principles (see Table 3.3) and the IT artifact.

The design principles are structured in line with Gregor et al. (2020), presenting the
aim, implementer and user, the mechanism, and the rationale. The user or implementer
can be the organization, a process analyst (e.g., process manager), and process partic-
ipants (e.g., process engineer, process executor) (Dumas et al., 2018). Table 3.3 shows
the developed design principles (DP). DP1-DP3 build the foundation for DP4 and DP5,
addressing KIP challenges such as heterogeneous, incomplete, and variable event logs
(Nguyen, 2017). To address this, DP1 suggests decomposing processes into stages and
gates for analysis while maintaining flexibility (Seidel et al., 2010). DP2 and DP3 pro-
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Table 3.3: P3 - Design Principles (Lohr et al., 2022)

Design Principle 1: Decision- vs. Knowledge-intensive Activities

Implementer
User

Aim
Mechanism

Rationale

Organizations using process mining for KIPs

Process participants & process analyst

To balance between quality insurance and flexibility in performing KIPs.
Distinguish decision- from knowledge-intensive activities.

We draw on Seidel et al. (2010) framework of pockets of creativity that aims at
conceptualizing creativity within business processes.

Design Principle 2: Capture Domain-Specific Knowledge

Implementer
User

Aim

Mechanism

Rationale

Organizations using process mining for KIPs

Process participants

To capture process-relevant domain knowledge.

Enhance the event log with relevant unstructured data (e.g., codifiable knowl-
edge, including business documents, drawings, notes).

In adaptive case management, actionable knowledge is collected from process
participants and required information for processing the case is stored (Osuszek
and Stanek, 2015). The idea has already been transferred to KIPs by Herrmann
and Kurz (2011).

Design Principle 3: Define Process-External Goals

Implementer
User

Aim

Mechanism

Rationale

Organizations using process mining for KIPs

Algorithms

To learn relationships between process execution and higher-order business
goals.

Annotate event logs with process-external goals.

Goals of process instances can vary and decisions on process goals are often
based on incomplete knowledge. Considering adaptive case management (Os-
uszek and Stanek, 2015), we extend this idea to also take the integration of
external factors into account.

Design Principle 4: Retrieve Process Knowledge

Implementer
User

Aim
Mechanism

Rationale

Organizations using process mining for KIPs.

Process participants

To make experiences from past process instances accessible.

Retrieve and analyze similar past instances.

The principle is grounded in the first phases of the case-based reasoning lifecycle
(Kolodner, 1992; Osuszek and Stanek, 2015). The idea has been used in process
mining by Berriche et al. (2015).

Design Principle 5: Derive Actionable Interventions

Implementer
User

Aim

Mechanism

Rationale

Organizations using process mining for KIPs

Process participants & process analyst

To use experiences from past process instances to perform new instances.
Consider and implement prescriptive actions derived from similar instances, and
provide reasoning on decisions to evaluate the effects that past decisions had
on process goals.

In case-based reasoning, reusing information from similar past cases, revising
proposed solutions, and retaining experiences can support solving new problems
(Kolodner, 1992; Osuszek and Stanek, 2015). We extend this idea by taking the
integration of recommended actions into consideration.

pose enriching event logs with unstructured domain knowledge and process-external
goals. KIPs require knowledge transfer (Gronau and Weber, 2004), but relevant knowl-
edge is often uncodified and siloed (Pentland et al., 2020). The interviews revealed that
process participants repurposed their product lifecycle management system to capture
contextual knowledge, highlighting the need to codify and integrate such knowledge
into event logs (DP2) (Osuszek and Stanek, 2015). Additionally, since process goals
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can vary and are often based on incomplete information, process-external goals should
be defined and encoded as dependent variables in the log (DP3). Though deriving such
labels remains challenging due to limited evaluation data. Given the unpredictability of
KIPs and their high structural variance (Isik et al., 2012; Marjanovic and Freeze, 2011;
Di Ciccio et al., 2015), DP4 suggests leveraging knowledge from similar instances to
support analysis and learning. Finally, DP5 acknowledges the role of human judgment
in complex decisions (Marjanovic and Freeze, 2011), proposing that learning from prior
cases can support decision-making by offering prescriptive guidance and feedback loops
(Kolodner, 1992; Osuszek and Stanek, 2015).

3.4 Paper 4 — Supporting Organizational Knowledge Creation in

Knowledge-Intensive Processes through Process Mining

P4 represents an advancement of the conceptual groundwork laid in P3. This study
focuses more on the transformation of tacit into explicit process-related knowledge—and
vice versa—to make it usable for process mining of KIPs. Its objective is to develop
abstract design knowledge (i.e., design principles) for the design of a new class of IT
artifacts coined process mining for KIPs. In doing so, P4 builds on the theory of
organizational knowledge creation as a kernel theory (Nonaka and Takeuchi, 1995)
that guides the design of this solution class. The developed design principles provide
reusable knowledge, aligning with Type V theory of design and action (Hevner et al.,
2004; Gregor, 2006). This forms the basis for the technical capabilities developed in

P5-P7 to operationalize knowledge-aware process mining for KIPs.

P4 extends the ADR study from P3 with three iterations, each involving a BIE phase
followed by a reflection and learning phase (Sein et al., 2011). In addition to the two
manufacturing organizations from P3, a software company specialized in product lifecy-
cle and workflow management systems was included. Across all iterations, 27 interviews,
72 workshops, seven focus groups, and three simulation games were conducted—27 in-
terviews and 49 workshops also informed P3. The first iteration developed a conceptual
IT artifact with an initial graphical user interface, evaluated through focus groups in
terms of feasibility (also reported in P3). In the second iteration, the enhanced artifact
was developed into a working prototype evaluated with end users in a simulation game in
terms of utility. In the third iteration, five initial propositions were derived and refined
through an internal and external evaluation for better reusability and generalizability

according to livari et al. (2021).
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From these iterations, five theory-ingrained design principles were synthesized, drawing

on

from the research project. The developed design principles are also structured in line
with Gregor et al. (2020), similar to P3. Table 3.4 presents the developed design

organizational knowledge creation theory, process mining, and the insights gained

principles.
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Table 3.4: P4 - Design Principles (Brennig et al., 2025a)

Design Principle 1: Externalize Tacit Process-Related Knowledge to Information

Implementer  Process Participant

User IT Artifact & Process Analyst

Aim To externalize a process participants’ tacit knowledge related to the KIP and add it as unstructured information
to the artifact.

Mechanism Write down knowledge as text, make a drawing from scratch, or add other documents that might exist but have

not been made available to co-workers or the organization yet. Filter the “right” knowledge and relate it to the
specific process instances so that it is visible which knowledge belongs to which process and to which instance to
use it for process mining.

Rationale The externalization of tacit knowledge, as described in the SECI model, is crucial for sharing and building new
knowledge (Nonaka and Takeuchi, 1995), especially in knowledge-intensive processes reliant on skilled participants
(Di Ciccio et al., 2015; Isik et al., 2012; Eppler et al., 2008; Gronau and Weber, 2004). However, many organizations
lack effective mechanisms to convert tacit process-related knowledge into explicit, shareable information.

Design Principle 2: Enhance Event Log with Categorized Information

Implementer  IT Artifact & Process Analyst

User IT Artifact & Process Analyst

Aim To categorize and classify information and store them as data in the event log related to a specific process instance.

Mechanism Transform the information into data by classifying and assigning it as attributes to the event log, ensuring both
machine-readability and human interpretability.

Rationale Unstructured data are challenging to analyze efficiently and are often excluded from event logs, limiting their

potential for contextual insights (Pentland et al., 2020). Additionally, while algorithms can find correlations in
unstructured data, their lack of explainability hinders their use in making decisions that require interpretation and
rationale.

Design Principle 3: Retrieve Information from the Event Log through Process Mining

Implementer  IT Artifact & Process Analyst

User Process Participant
Aim To (re-) combine data to information by retrieving information of past process instances from the event log.
Mechanism Identify similar past process instances (e.g., through clustering). Extend and implement process mining techniques

(especially predictive and action-oriented techniques), to support process participants. State the effect of the actions
taken based on the provided information and integrate a feedback loop so that the system can learn further.

Rationale Decision-making and performance in knowledge-intensive activities are influenced by availability heuristics, where
the subjective recall of past events biases judgment (Tversky and Kahneman, 1973). Combining explicit knowledge
from diverse sources is essential (Nonaka and Takeuchi, 1995; Nonaka et al., 2000), as even experienced participants
struggle to overcome these biases when recalling similar past events.

Design Principle 4: Internalize Information to Create new Process-Related Knowledge

Implementer  IT Artifact & Process Analyst

User Process Participant

Aim To enable process participants to internalize information and create new process-related knowledge.

Mechanism Present process participants with relevant process-related information that is useful to their specific context and
situation.

Rationale Knowledge is created through internalization, where individuals relate information to their experiences and beliefs

(Nonaka and Takeuchi, 1995; Nonaka et al., 2000). Our study found that the information presented to process
participants during tasks significantly influences their performance in business processes.

Design Principle 5: Identify and Network Knowledge Carriers through Process Mining

Implementer  IT Artifact & Process Analyst

User Process Participant

Aim To identify knowledge carriers and and connect them.

Mechanism Use previously added and recombined information to reverse engineer the knowledge transformation process and
trace back the knowledge to the original contributor.

Rationale Individual knowledge contributes to the organizational knowledge base only when shared (Bhatt, 2000; Nonaka and

Takeuchi, 1995; Nonaka et al., 2000), yet knowledge carriers often remain hidden and difficult to identify. Our study
found that experienced process participants with valuable knowledge from similar past instances were frequently
unknown and inaccessible to others.
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DP1 proposes externalizing tacit process-related knowledge into shareable information
(e.g., words, images, text) to enable others to build on it and create new knowledge.
Although many organizations recognize this need, mechanisms to convert tacit process-
related knowledge into explicit process-related knowledge are often lacking. Building
upon this, DP2 suggests enhancing the event log with categorized information. Storing
information in event logs requires structuring and categorizing it into machine-readable,
human-interpretable attributes, extending event logs beyond their typical attributes.
Further, retrieving information from the event log through process mining (cf. DP3) is
essential to reduce bias in human recall and improve performance. To enable this, pro-
cess mining should be extended to handle unstructured data using NLP and computer
vision, with a focus on predictive and action-oriented methods to support decision-
making and execution in processes. In addition, DP4 proposes to internalize informa-
tion to create new process-related knowledge by presenting process participants with
context-relevant information, enabling them to improve performance and take informed
action within KIPs. Lastly, DP5 suggests identifying and networking knowledge car-
riers through process mining. A drill-down mechanism allows knowledge to be traced
back to the original contributor, as prior knowledge entries are stored, transformed, and

recombined in the artifact for later retrieval by others.

3.5 Paper 5 — Revealing the Unspoken: Using LLMs to Mobilize
and Enrich Tacit Knowledge in Event Logs of

Knowledge-Intensive Processes

P3 and P4 tackled the issue of developing theoretical foundations for a knowledge-aware
process mining approach. However, this issue requires not only a theoretical basis but
also a concrete technical implementation for mobilizing tacit process-related knowledge
in KIPs. LLMs are well-suited for this purpose as they can extract process knowledge
from event logs and answer process questions (Feuerriegel et al., 2024; Vidgof et al.,
2023; Berti et al., 2024a) due to their capabilities of understanding and generating
meaningful and coherent text (Feuerriegel et al., 2024). Thus, LLMs have the potential
to surface tacit process-related knowledge and enrich event logs in this context (Aureli
et al., 2019; Seidler-de Alwis and Hartmann, 2008).

Building on the identified problems and design principles developed in P3 and P4, P5
introduces a LLM-based framework to operationalize the mobilization of tacit process-

related knowledge, technically realizing the SECI-based conceptual approach. There-
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fore, P5 adopts a design-oriented approach (Hevner et al., 2004) to iteratively develop
and refine the framework. The LLM-based framework is informed by theoretical and
practical considerations from knowledge management and process mining. As a design
artifact, the framework structures the problem space, supports adaptation across use
cases, and facilitates both theoretical reflection and practical application. Figure 3.3
illustrates the Bidirectional T2XES-Framework comprising two key components that
work in tandem to mobilize tacit process-related knowledge in KIPs: (1) knowledge ex-

ternalization and event log enrichment and (2) knowledge retrieval and internalization.

Knowledge Retrieval and Internalization

provide process-related
knowledge for the
process participant

tacit process- process-related explicit process-
related knowledge o i __ knowledge __ Lo )
- ~/ process participant event log as input - - -
i b requests process- for the LLM /’ NS K
] / related knowledge\ LLM / \\ L to-be process )

1 p o model

,: - b 3 ERP, CRM, and
.......................... : D ' BPM systems
] \ textual

| i LLM requests / \enhance event log / Y documents

tacit & explicit

Process
Participant

process-related knowledge with tacit process- e e S -
related knowledge

process participant
externalizes tacit
process-related knowledge

Knowledge Externalization and Event Log Enrichment

Figure 3.3: P5 - Bidirectional T2XES-Framework for Mobilizing Tacit process-related
Knowledge in KIPs (Brennig, 2025)

The first path of the framework enables process participants to externalize their tacit
process-related knowledge, enriching the underlying event log of the respective KIP.
The LLM analyzes the event log, identifying patterns and gaps, and suggests areas
where tacit process-related knowledge is missing. Through targeted adaptation (Jessen
et al., 2023; Berti et al., 2024a), the LLM engages participants with targeted prompts to
externalize relevant tacit process-related knowledge. Neglecting this aspect may result
in the loss of knowledge and the event log being augmented with non-essential data.
As the responses are aligned with explicit data, experiential knowledge is converted
into structured entries linked to process instances, creating a comprehensive event log

combining explicit and tacit process-related knowledge.

The second path enables process participants to retrieve and internalize both tacit (i.e.,
expertise and insights from process participants) and explicit (i.e., different information
from textual documents, process information systems (e.g., ERP, CRM, or BPM sys-

tems), or to-be process models) knowledge from the enriched event log. By interacting
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with the LLM, participants gain insights from past instances to guide future process
executions (Berti et al., 2024b). Expert intuition, decision rationales, and experiential
knowledge are transformed into actionable insights (Feuerriegel et al., 2024; Kubrak
et al., 2024; Kappel et al., 2024; Alavi et al., 2024; Zhang et al., 2024; Korzynski et al.,
2023). Therefore, LLMs compress the information layer, generating knowledge directly
by processing the underlying data (Alavi et al., 2024).

For evaluation, a proof-of-concept demonstrates the framework through a KIP-specific
LLM-based conversational agent (Feuerriegel et al., 2024) using GPT-40%, allowing
early assessment in a realistic yet controlled setting. A system prompt was designed to
guide the conversational agent’s behavior and contextualize its interactions with process
participants. It first defines the agent’s role as a process specialist engaging with partic-
ipants (e.g., doctors, nurses) within the KIP. Second, it specifies interaction protocols,
enabling the agent to analyze the event log, identify deviations and knowledge gaps,
and formulate targeted questions to elicit tacit process-related knowledge. Participants
can contribute and acquire knowledge, while the agent generates recommendations and
seeks approval before updating the event log. Third, with participant consent, the event

log is enriched with new activities or attributes, ensuring continuous refinement.

3.6 Paper 6 — Text-Aware Predictive Process Monitoring of

Knowledge-Intensive Processes: Does Control Flow Matter?

Primarily, information generated through PPM techniques can support process par-
ticipants in making decisions and in executing new process activities and process in-
stances. PPM enables the forecasting of process behavior such as the remaining lead
time (Di Francescomarino et al., 2018; Marquez-Chamorro et al., 2018) which is par-
ticularly relevant for KIPs that often span extended durations. However, the dynamic
and flexible nature of KIPs often excludes a fixed process structure (Di Ciccio et al.,
2015), making control-flow-based prediction less effective. As such, PPM in KIPs ben-
efits from leveraging structured and unstructured data beyond control flow, as shown
in P3. Further, as knowledge plays an important role in KIPs, PPM needs to be com-
bined with NLP techniques so that the embedded knowledge can be used as input to
generate predictions, as proposed in P4. Therefore, P6 extends this line of research
by developing a text-aware PPM approach applying encoder-only models for natural

language understanding while neglecting the control-flow of KIPs.

2 https://openai.com/index/introducing-gpts,/
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Figure 3.4 illustrates the five-step framework tailored to KIPs, especially those with a
stage-gate structure (Cooper, 1990). Formally, a case with n gates is represented along
a timeline from ¢ = 0 (start) to ¢ = n (completion). The steps include: (1) defining the
prediction target at each stage; (2) applying a time-based train/test split to avoid tem-
poral leakage (Kapoor and Narayanan, 2023); (3) incremental feature engineering for
each t < n, using structured and textual data encoded into one-dimensional vectors; (4)
training models per stage using algorithms such as Random Forest, Ridge Regression,
Gradient Boosted Trees, and Multi-Layer Perceptron (MLP); and (5) evaluating model
performance on unseen test data using feature transformations learned solely on the
training set. For text encoding, three methods were applied: latent dirichlet allocation
(LDA) for topic modeling, term frequency-inverse document frequency (TF-IDF) for
Bag-of-Words (BoW) features, and contextual embeddings using the SentenceTrans-

formers model distiluse-base-multilingual-cased-v1 (Reimers and Gurevych, 2019).
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Event
Lo‘gJ ¢
i (2) Train-Test Split

5)

Training Event Train-Test Split Test Event
b Log (time-based) Log
(1) (3) Encode Features ‘ ¢
- ) normalized numerical features | | Extracted
5 8 : I
= ] ;
t>5 Total Lead | : ! g) [—]categor\cal gonvento encoded textual features i Convert to
kT Time L [ bag-of-words (Bow) | |: Dataframe
3 i ;
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= i E :
i BERT A Encoded
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HT
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i Ridge Regression Predictive Apply the
i g Models Model
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g Multi-Layer Percepton
iy
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Results

Figure 3.4: P6 - Machine Learning Pipeline (Brennig et al., 2024)

The framework is evaluated on two real-world event logs from a manufacturing organiza-
tion. The mean absolute error (MAE) is used as the evaluation metric across all ¢t < n.
Hyperparameter tuning is performed via Optuna Search with Bayesian optimization
and 5-fold cross-validation (Akiba et al., 2019). To enhance model performance and
interpretability, recursive feature elimination (RFE) is applied to the Random Forest,
Ridge Regression, and Gradient Boosted models. Compared to the benchmark (Cabr-

era et al., 2023), the proposed approach, based on stage-wise aggregation and exclusion
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of control-flow information, shows clear conceptual and performance advantages. The
results (see Table 3.5) show that the proposed method consistently outperforms the
benchmark across stages. The benchmark cannot provide predictions at ¢ = 0 due to
its reliance on event prefixes. In contrast, the proposed approach improves prediction
accuracy incrementally over time. BERT achieves the best results at early stages, with
BoW and topic modeling occasionally outperforming it later. However, differences in
MAE between text representations are generally minor. Among learning algorithms,
Random Forest and Ridge Regression perform best regardless of the encoding method.
However, despite improvements, the MAE values remain high in absolute terms, re-

flecting the inherent complexity of KIPs.

Table 3.5: P6 - MAE (in days) of Predicting the Total Lead Time of a Running Case at
Different Gates. For each Gate, the lowest MAE Value is underlined (Brennig

et al., 2024).

Language Model Product Development Product Modification
t=0 t=1 t=2 t=3 t=0 t=1 t=2

Benchmark (based on (Cabrera et al., 2023))
LSTM N/A 169.247  163.229  163.036 N/A 66.803  65.266
Models with BoW
Random Forest 107.776  126.274  68.036  45.041 45431 42.889 27.308
Ridge 113.446  106.832  97.356 94.032 45.245  43.571  36.593
Gradient Boosted Decision Trees 131.427  209.513  80.327 49.725 50.021  45.140 27.833
Multi-Layer Percepton 125.962  108.655  112.309 110.526 46.607  46.327  46.429
Models with Topic Modeling
Random Forest 112.454  127.281  66.676 44.138 45.183  42.724 27.467
Ridge 117.872  110.751  97.654  89.963 45.360 43.784  37.168
Gradient Boosted Decision Trees 126.960  171.267 80.340  54.013 50.249  44.660 28.173
Multi-Layer Percepton 186.053  111.725  110.727 123.186 46.544  46.566  46.372
Models with BERT
Random Forest 101.729 111.828 64.009 48.745 44790  43.029 28.771
Ridge 103.539  106.342 99.403 86.279 44.734 43.419  37.430
Gradient Boosted Decision Trees 145.253  146.917  94.964 55.671 45.770  44.200  30.357
Multi-Layer Percepton 117.895  107.424  102.197 133.601 46.446  46.520  49.662

3.7 Paper 7 — Straight Outta Logs: Can Large Language Models

Overcome Preprocessing in Next Event Prediction?

Additionally to predicting the remaining lead time of KIPs, getting information about
the next possible event in a KIP also supports process participants in making deci-
sions and executing the process while mitigating biases in judgment and performance
(cf. P4). To provide meaningful information based on the knowledge contained in
the process, semantic relationships and nuanced dependencies in historical cases need

to be captured, providing contextually relevant next event predictions (NEPs) beyond
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mere control-flow patterns. However, this requires methods that can directly process
and understand XES-formatted event logs, and also generate natural language. This
is important as existing PPM methods for NEP require extensive data preparation
and encoding (van der Aalst, 2022; Di Francescomarino and Ghidini, 2022; Marquez-
Chamorro et al., 2018). To overcome this challenge, LLMs with their capabilities in
understanding and generating natural language, programming code, and markup lan-
guages (Chen et al., 2021; Feuerriegel et al., 2024; Sui et al., 2024) present a suitable
approach.

Therefore, P7 develops a LLM-based approach to directly generate NEPs from XES-
formatted event logs. This eliminates the need for preprocessing, advancing existing
PPM approaches. Using the open-source Llama 3 (8 billion parameters) model (Meta,
2024; Al@Meta, 2024), fine-tuned on five benchmark event logs, the NEP pipeline iter-
atively predicts the next event in XES format, maintaining all relevant attributes (see
Figure 3.5). While P7 focuses on predicting and evaluating the attribute concept:name,
the pipeline generates additional attributes (e.g., timestamp, org:resource), enabling
broader tasks. The LLM has been fine-tuned on the next token prediction (Gururan-
gan et al., 2020). The prompt contains the maximum of past events that fit in the

context length, separated by end-of-sequence (EOS) tokens (see Figure 3.5).

<trace>

<string key="concept:name" value="1-661134924" />
<event>
<string key="org:group" value="Org line C" />
<string key="resource country" value="INDIA" />
<string key="organization country” value="se" />
<string key="org:resource” value="Vinay" />
<string key="organization involved" value="G119 2nd" /> <string key="impact" value="Major" />
<string key= 8" /> <string key="product" value="PROD72" />
<string key="concept:name” value="Accepted" /> g g <string key="lifecycle:transition" value="In Progress" />
pact” value="Major" /> <date key="time:timestamp" value="2012-02-09T08:35:49+01:00" />
duct” value="PROD72" /> - -> <levent><lend_of textl>
<string key="lifecycle:transition" value="In Progress" /> <event>
<date key="ime:fimestamp" value="2012-02-09T04:17:14+01:00" />, —> - <string key="org:group" value="Org line C* />
<levent><lend_of textl> <string key="resource country” value="France" />
- - <string key="organization country” value="se" />
<event> <string key="org:resource" value="Franck" />
<string key="org:group" value="Org line C* /> - - <string key="organization involved" value="G120 3nd" />
<string key="resource country" value="France" /> <string key="org:role" value="C_5" />
<string key="organization country” value="se" /> - - <string key="concept:name" value="Completed" />
<string k resource" value="Franck" /> <string key="impact" val jor" />
anization involved” value="G120 3rd" /> <string key="product" val 0D72" />
5' /> <string key="lifecycletransition" value="Closed" />
"Accepted” /> <date key="time:timestamp" value="2012-03-02T14:36:45+01:00" />
> <levent>
lue="PROD72" /> LLaMA3-8B (fine-tuned) Output: Input (omitted) + EOS token + XES Event ej.7
<string key="lifecycletransition" value="In Progress" />

<date key="time:timestamp" value="2012-02-09T08:35:49+01:00" />
<levent><lend_of textl>

Input: XES Trace t with Events (e ....ej) separated by EOS tokens

Figure 3.5: P7 - NEP Inference Pipeline (Brennig et al., 2025b)

Evaluating the approach comprised a 5-fold cross-validation with consistent splits across
datasets, using accuracy as the primary metric for comparability (Oved et al., 2025;
Rama-Maneiro et al., 2022). Table 3.6 summarizes the accuracies of the related bench-
mark studies compared to the approach developed in P7. The results show that while
not outperforming the state-of-the-art, the approach achieves above-median accuracy
with only a 3% average gap, while nearly eliminating preprocessing requirements. To

generate a complete event, the developed pipeline only needs 3 to 11 seconds. The
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LLM-generated outputs demonstrated near-perfect syntactic correctness, with an er-
ror rate below 0.005% across datasets, and minimal hallucinations (0.13%), typically
involving semantically similar but non-identical events. The results show that LLMs
are capable of identifying syntactical and semantical relationships between events and
within event attributes. Based on that, they enable the generation of NEPs of a process

instance using an event log with negligible preprocessing of the data.

Table 3.6: P7 - Accuracy Comparison (Brennig et al., 2025b)

BP113cp BPI13in Sepsis Helpdesk BPI12 Average Total
Accuracy ‘ Rank | Accuracy ‘ Rank | Accuracy ‘ Rank | Accuracy ‘ Rank | Accuracy ‘ Rank | Accuracy ‘ Rank | Rank
Camargo® 0.547 8 0.667 7 0.610 5 0.829 5 0.833 6 0.697 6 6
Evermann?® 0.588 0.668
Hinnka® 0.635
Khan?
Mauro?
Pasquadibisceglie®
Tax®
Theis?
Venugopal?
Rama-Maneiro*
Oved*
Ours
Median | 0.592 | 0.668 | 0.610 | 0.816 | 0.833 | 0.685 |
Deviation from max | 0.051 | 0.053 | 0.045 | 0.036 | 0.023 | 0.028 |
Ours? (Weighted F1) | 0,637 | 0,701 | 0,599 | 0,803 | 0,845 |
Ours? (Macro F1) | 0,377 | 0,449 | 0,382 | 0,413 | 0,675 |

I'We assume the median on missing values to provide a fair comparison.

2We report the weighted and macro average F1-Score for future comparability.
3Rama-Maneiro et al. (2022)

40ved et al. (2025)
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4 Discussion and Conclusion

4.1 Implications for Research and Practice

This thesis contributes to establishing a knowledge-aware process mining approach.
The results show how current process mining needs to be extended to develop into
a more knowledge-aware discipline. For this purpose, foundational requirements for
process mining in organizations, theoretical foundations, and technical implementations
are presented. In practice, this thesis offers organizations guidance to build a process

mining basis and to manage their KIPs holistically using process mining.

A key focus of this thesis is strengthening organizational capabilities and achieving
the necessary process mining maturity within organizations (FOCUS I). To leverage
process mining in KIPs, organizations must first develop foundational capabilities and
reach sufficient maturity before its knowledge-awareness can be meaningfully integrated.
Addressing this need, this thesis investigates the organizational capabilities required to
adopt, implement, and mature process mining in organizations (RQ1). Therefore, P1
provides strategic guidelines to assess and enhance the relevance of process mining
outcomes, while P2 introduces a maturity model with actions for progressing between
maturity stages. These findings support researchers in planning, executing, and evaluat-
ing process mining projects and allow them to theorize about the role of process mining
and data-driven methods in achieving a more flexible, evidence-based BPM approach.
For practitioners, the findings offer guidance on managing the development and imple-
mentation of process mining research projects to address important business problems
and generate business value. It helps organizations allocate resources effectively and
focus on the most promising activities, overcoming common challenges in adopting and
managing process mining (vom Brocke et al., 2021a; Martin et al., 2021). By enhancing
their process mining maturity and capabilities, organizations improve their ability to
respond dynamically to changing process dynamics (Pentland et al., 2021; Wurm et al.,
2021) and gain valuable insights into process performance (Grisold et al., 2020; Wurm
et al., 2021; Kipping et al., 2022).This is particularly critical for KIPs, which are char-

acterized by high variability, unpredictable task sequences, and complex process flows
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(Di Ciccio et al., 2015; Isik et al., 2012; Eppler et al., 2008; Gronau and Weber, 2004).
P2 further reveals that organizations that advance their process mining maturity have
become more flexible in handling their business processes. Overall, improving organi-
zational process mining maturity lays the groundwork for a knowledge-aware process

mining approach and represents a first essential step toward effectively managing KIPs.

Further, this thesis also focuses on reconceptualizing the theoretical foundations for
applying process mining to KIPs (FOCUS 1I), as existing process mining approaches
primarily target standardized, digitalized processes (van der Aalst et al., 2012; van der
Aalst, 2016, 2022). This thesis therefore examines how process mining can be extended
to manage KIPs adequately (RQ2). To this end, papers P3 and P4 conceptualize a
new class of process mining systems for KIPs, by deriving design principles that enable
the integration of tacit process-related knowledge and the mobilization of embedded
process-related knowledge for analysis. This establishes a theoretical basis for applying
process mining in knowledge-intensive contexts, grounded in the theory of organiza-
tional knowledge creation, especially the SECI model (Nonaka and Takeuchi, 1995).
From a theoretical perspective, the results demonstrate how knowledge management
capabilities—particularly the SECI model—can extend process mining by enabling sys-
tematic knowledge sharing and access to KIP-related knowledge. This approach tran-
scends traditional process mining by externalizing tacit process-related knowledge and
fostering continuous, spiral cycles of knowledge creation. Knowledge evolves from indi-
vidual instances to process-type levels, crystallizing at higher ontological levels (Nonaka
and Takeuchi, 1995). This reflects the theoretical underpinnings required to concep-
tualize process mining in environments where tacit process-related knowledge plays a
central role. In practice, the developed design principles offer blueprints for applying
process mining to KIPs. They guide organizations in mobilizing and transforming tacit
process-related knowledge into explicit, analyzable formats, showing that event logs can
capture process-related knowledge typically excluded from analysis. This supports the
ongoing adaptation and improvement of KIPs, fosters a culture of knowledge exchange,
and gives guidance on establishing a fundamental knowledge base. This enables process

participants to make more objective and strategic decisions within KIPs.

Lastly, this thesis focuses on integrating NLP into process mining for KIPs (FOCUS
IIT). The previous findings underpin the technical implementations that are important
to advance knowledge-aware process mining (see Figure 3.1 in section 3). Therefore,
this thesis further investigates how NLP can be leveraged to advance the technical ca-

pabilities of process mining to manage KIPs (RQ3). P5 demonstrates the feasibility of
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enriching event logs with tacit process-related knowledge and mobilizing the embedded
knowledge in KIPs using LLMs. P6 builds on this by showing how this enriched knowl-
edge base can improve PPM using encoder-based models. P7 advances this further by
testing whether LLMs can directly generate NEPs from XES-formatted, knowledge-
enriched event logs. Collectively, these papers operationalize the SECI model within
process mining. They transform tacit process-related knowledge into explicit process-
related knowledge that is combined in a KIP-specific event log with process-related data
and information and reintegrated into process execution—enabling continuous learning
and organizational improvement. Table 4.1 outlines how these papers contribute to
the modes of knowledge conversion (Nonaka and Takeuchi, 1995) in the context of
knowledge-aware process mining and offers guidance on technically advancing the de-

sign principles developed in P3 and P4.

Table 4.1: Contribution to the four Modes of Knowledge Conversion

Knowledge Conver- Paper Contribution
sion Mode

Socialization P5 The LLM-based approach enables process participants to communicate in nat-
ural language—via text or speech—to efficiently capture process-related knowl-
edge in real-time, reducing the need for peer consultation. This reduces tacit
process-related knowledge loss during process execution.

Externalization P5 The LLM-based approach helps process participants to articulate tacit process-
related knowledge by using custom prompts to encourage reflection and capture
decision rationales.

P6 It encourages participants to externalize context-specific knowledge—typically
hidden—Dby highlighting its importance for accurate predictions in KIPs.

Combination P5 The LLM-based approach synthesizes knowledge from multiple sources through
real-time updates and analytics, linking externalized tacit and explicit process-
related knowledge directly to process events.

P6 The text-aware PPM approach aggregates and encodes the event log of a KIP by
focusing on textual information provided by participants rather than traditional
control-flow structures.

p7 It processes explicit event log data into structured NEPs, enabling explicit-
to-explicit process-related knowledge transformation and simplifying prediction
workflows across cases, supporting multi-case learning and reuse.

Internalization P5 It allows users to query the enriched process knowledge base and interact with
the LLM to receive real-time, context-relevant insights, supporting reflection
and learning.

P6, It provides predictive insights that inform decision-making and task execution,
P7 fostering reflection, learning, and continuous improvement.

From a theoretical perspective, the results show that text-aware approaches can capture
syntactic and semantic relationships between events and attributes. P5 illustrates how
LLMs support knowledge mobilization in KIPs, extend process mining with human-AI
interaction, and enhance Al’s role in decision-making. Leveraging their contextual un-
derstanding (Feuerriegel et al., 2024; Grohs et al., 2024), LLMs enable the integration

of PPM for KIPs, enhancing support for process participants in executing upcoming
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process instances. However, existing PPM methods require extensive preprocessing
(van der Aalst, 2022; Di Francescomarino and Ghidini, 2022; Marquez-Chamorro et al.,
2018) and mainly focus on the control-flow (Marquez-Chamorro et al., 2018; Pegoraro
et al., 2021; Verenich et al., 2019). P6 and P7 show how integrating text-aware mod-
els with PPM allows for richer, more context-sensitive predictions in KIPs. Notably,
P7 demonstrates that LLMs can directly process XES-formatted event logs and gen-
erate valid XES outputs. This simplifies data preparation while capturing semantic
relationships and nuanced dependencies within historical cases. This approach sup-
ports multi-task predictions (e.g., event name, resource, timestamp) and enables direct
downstream processing, such as simulation or further analysis. By reducing complexity
and demonstrating practical feasibility, these findings strengthen the technical founda-
tion established in P5. From a managerial perspective, the framework introduced in
P5 helps organizations build a robust knowledge base for KIPs, facilitating real-time
knowledge sharing, reducing knowledge loss, and improving decision-making. P6 and
P7 provide process participants with actionable insights drawn from historical data
and textual information, helping them mitigate biases in judgment and task execu-
tion. These results underscore the importance of contextual knowledge for accurate
predictions in KIPs and encourage participants to reflect on and document context-
specific insights that otherwise remain hidden. This guides organizations in designing
information systems that enhance data quality for future applications. Moreover, in-
corporating LLMs into process mining supports adaptation to new domains through
transfer learning, as demonstrated by Liessmann et al. (2024). By learning the structure
and format of process traces, LLMs enable cross-domain application without retraining
from scratch. This allows easy integration into existing monitoring systems—requiring
only an XES-formatted event log—and facilitates scalable deployment. Altogether,
these contributions lower the barriers for organizational adoption and support enhanced

decision-making and knowledge mobilization in KIPs.

4.2 Limitations

While this thesis advances process mining toward a more knowledge-aware discipline,
it poses several limitations. First, this thesis is limited in its generalizability regarding
its context and the observed processes. The developed theoretical foundations, such as
the guidelines (P1), maturity model (P2) and the developed design principles (P3, P4),
offer valuable guidance. However, their effectiveness in different organizational contexts

remains to be further tested and implemented in other real-world environments as
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most results are derived from studies conducted within specific organizational contexts,
industries (e.g., manufacturing, healthcare), and with selected partners. While the
ADR approach justifies this close practitioner collaboration, it may limit the broader
applicability of the findings to other domains or sectors. This is also essential for the
LLM-based framework (P5) and predictive models (P6, P7). They were evaluated
through prototypes and specific datasets. However, their performance, scalability, and

adoption in large-scale, real-world environments remain underexplored.

Second, certain technical limitations must be considered. Specifically, process mining
applications require extensive context windows, as event logs often contain a vast num-
ber of cases and events. The limited token capacity of text-aware approaches may
pose constraints when analyzing KIP-specific event logs, which typically feature more
extensive textual descriptions than standard event logs. Addressing this challenge is
crucial for ensuring the scalability and efficacy of text-based process mining applica-
tions. Further, despite LLMs’ ability to mobilize and enrich process-related knowledge,
inherent risks like hallucination and factually incorrect outputs remain a known issue.
The impact of such risks on process execution and decision-making in practice was not

deeply explored.

4.3 Future Research Directions and Outlook

The limitations discussed in this dissertation provide a foundation for future research
avenues. The generalizability of the proposed theoretical foundations requires further
empirical validation across a broader spectrum of organizational contexts and indus-
tries. While the findings offer valuable insights, their applicability beyond the studied
cases remains to be systematically examined. Moreover, the contributions of P3-P5 offer
prototypical components for the development of knowledge-aware process mining tools.
Future research should extend these initial artifacts into comprehensive systems that
incorporate both the conceptual frameworks and the technical approaches presented
in this thesis. Such efforts would benefit from deployment in real-world organizational
settings to assess both technical feasibility and user acceptance. Given the centrality of
human knowledge in KIPs, it is particularly important to investigate whether process
participants are willing to adopt such tools and actively contribute their process-related
knowledge. Consequently, future research should also address the organizational condi-
tions required to foster a culture of knowledge sharing, thereby supporting the practical

adoption of knowledge-aware process mining in knowledge-intensive environments.
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Maximizing the Impact of Process Mining Research:

Four Strategic Guidelines

Katharina Brennig Bernd Lohr Jonathan Brock
Paderborn University Paderborn University Fraunhofer IEM

Malte Reineke Christian Bartelheimer

Paderborn University Paderborn University

Abstract—While most organizations recognize the potential of process mining and plan to
start process mining initiatives, significant challenges for applying process mining in organi-
zations remain unsolved. In this paper, we investigate the utility of process mining in organi-
zations. Although process mining papers in the current Information Systems (IS) knowledge
base deal with developed artifacts based on real-world scenarios, they often do not adequately
reflect on their results’ utility and effectiveness in the application context, diminishing their
contributions’ practical and theoretical implications. By discussing the results from the sys-
tematic literature review in the backdrop to the existing knowledge base, we develop four
strategic guidelines for conducting process mining research with high relevance and manage-
rial impact. Fellow researchers can follow these guidelines to rigorously plan, execute, and
evaluate process mining research projects to generate business value and achieve maximum

organizational impact.

Full Citation: Brennig, K., Lohr, B., Brock, J., Reineke, M., & Bartelheimer, C. (2024).
Maximizing the Impact of Process Mining Research: Four Strategic Guidelines. In AMCIS
2024 Proceedings.
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Jonathan Brock Katharina Brennig Bernd Lohr

Fraunhofer IEM Paderborn University Paderborn University
Christian Bartelheimer Sebastian von Enzberg Roman Dumitrescu
Paderborn University Fraunhofer IEM Fraunhofer IEM

Abstract—Process mining is advancing as a powerful tool for revealing valuable insights
about process dynamics. Nevertheless, the imperative to employ process mining to enhance
process transparency is a prevailing concern for organizations. Despite the widespread de-
sire to integrate process mining as a pivotal catalyst for fostering a more agile and flexible
Business Process Management (BPM) environment, many organizations face challenges in
achieving widespread implementation and adoption due to deficiencies in various dimensions
of process mining readiness. The current Information Systems (IS) knowledge base lacks a
comprehensive framework to aid organizations in augmenting their process mining readiness
and bridging this intention-action gap. This paper presents a Process Mining Maturity Model
(P3M), refined through multiple iterations, which outlines five factors and 23 elements that
organizations must address to increase their process mining readiness. The maturity model
advances the understanding of how to close the intention-action gap of process mining ini-
tiatives in multiple dimensions. Furthermore, insights from a comprehensive analysis of data
gathered in eleven qualitative interviews are drawn, elucidating 30 possible actions that or-
ganizations can implement to establish a more responsive and dynamic BPM environment by

means of process mining.
Full Citation: Brock, J., Brennig, K., Lohr, B., Bartelheimer, C., von Enzberg, S. & Du-

mitrescu, R. (2024). Improving Process Mining Maturity — From Intentions to Actions. Busi-

ness & Information Systems Engineering: Vol. 66: Iss. 5, 585-605.
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Process Mining of Knowledge-Intensive Processes: An

Action Design Research Study in Manufacturing

Bernd Lohr Katharina Brennig Christian Bartelheimer

Paderborn University Paderborn University Paderborn University

Daniel Beverungen Oliver Miiller

Paderborn University Paderborn University

Abstract—Existing process mining methods are primarily designed for processes that have
reached a high degree of digitalization and standardization. In contrast, the literature has
only begun to discuss how process mining can be applied to knowledge-intensive processes—
such as product innovation processes—that involve creative activities, require organizational
flexibility, depend on single actors’ decision autonomy, and target process-external goals such
as customer satisfaction. Due to these differences, existing Process Mining methods cannot
be applied out-of-the-box to analyze knowledge-intensive processes. In this paper, we em-
ploy Action Design Research (ADR) to design and evaluate a process mining approach for
knowledge-intensive processes. More specifically, we draw on the two processes of product
innovation and engineer-to-order in manufacturing contexts. We collected data from 27 inter-
views and conducted 49 workshops to evaluate our IT artifact at different stages in the ADR
process. From a theoretical perspective, we contribute five design principles and a conceptual
artifact that prescribe how process mining ought to be designed for knowledge-intensive pro-
cesses in manufacturing. From a managerial perspective, we demonstrate how enacting these

principles enables their application in practice.

Full Citation: Lohr, B., Brennig, K., Bartelheimer, C., Beverungen, D. & Miller, O.
(2022). Process Mining of Knowledge-Intensive Processes: An Action Design Research Study
in Manufacturing. In: Di Ciccio, C., Dijkman, R., del Rio Ortega, A., Rinderle-Ma, S. (eds)
Business Process Management. BPM 2022. Lecture Notes in Computer Science, vol 13420.
Springer, Cham.
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Supporting Organizational Knowledge Creation in

Knowledge-Intensive Processes through Process Mining

Katharina Brennig Christian Bartelheimer Bernd Lohr

Paderborn University Paderborn University Paderborn University

Daniel Beverungen Oliver Miiller

Paderborn University Paderborn University

Abstract—Knowledge-intensive processes (KIPs) are complex, strategic core processes that
drive organizational competitive advantage. These processes rely on explicit and tacit knowl-
edge. While explicit knowledge can be codified and leveraged—often through technologies
such as process mining—tacit knowledge remains embedded in individual process partici-
pants, limiting knowledge transfer and organizational learning. Process mining, a data-driven
approach to analyze process data, works best for standard processes that are managed for
consistency, costs, and time but is insufficiently equipped to enhance KIPs, which depend
on dynamic, experience-based decision-making. We present findings from a 39-month Action
Design Research (ADR) project to conceptualize a new class of IT artifacts that enable pro-
cess mining for KIPs. This class of IT artifacts integrates richer process-related information,
facilitating knowledge transfer by allowing participants to learn from similar process instances
and engage in socialization. We propose five theory-ingrained design principles that guide the
development of such systems and examine their role in fostering knowledge creation within
organizations. Our research bridges critical gaps between business process management and
knowledge management, offering theoretical and managerial insights. For practitioners, our
findings provide a foundation for improving KIPs, ultimately upgrading strategic decision-

making and organizational performance.

Full Citation: Brennig, K., Bartelheimer, C., Léhr, B., Beverungen, D., & Miiller, O.
(2025).  Supporting Organizational Knowledge Creation in Knowledge-Intensive Processes
through Process Mining. Working Papers Dissertations, 148, Paderborn University, Faculty

of Business Administration and Economics.
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Revealing the Unspoken: Using LLMs to Mobilize and
Enrich Tacit Knowledge in Event Logs of

Knowledge-Intensive Processes

Katharina Brennig

Paderborn University

Abstract—Large Language Models (LLMs) excel in understanding, generating, and process-
ing human language, with growing adoption in process mining. Process mining relies on event
logs that capture explicit process knowledge; however, knowledge-intensive processes (KIPs)
in domains such as healthcare and product development depend on tacit knowledge, which is
often absent from event logs. To bridge this gap, this study proposes a LLM-based framework
for mobilizing tacit process knowledge and enriching event logs. A proof-of-concept is demon-
strated using a KIP-specific LLM-driven conversational agent built on GPT-40. The results
indicate that LLMs can capture tacit process knowledge through targeted queries and system-
atically integrate it into event logs. This study presents a novel approach combining LLMs,
knowledge management, and process mining, advancing the understanding and management

of KIPs by enhancing knowledge accessibility and documentation.

Full Citation: Brennig, K. (2025). Revealing the Unspoken: Using LLMs to Mobilize and
Enrich Tacit Knowledge in Event Logs of Knowledge-Intensive Processes. AMCIS 2025 Pro-
ceedings. 11.
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Text-Aware Predictive Process Monitoring of

Knowledge-Intensive Processes: Does Control Flow

Matter?

Katharina Brennig Kay Benkert
Paderborn University Paderborn University
Bernd Lohr Oliver Miiller
Paderborn University Paderborn University

Abstract—Predictive process monitoring (PPM) enables organizations to predict the behav-
ior of ongoing processes, e.g., the lead time. This is of great interest for knowledge-intensive
processes (KIPs), which often cover long time spans. With such insights, resource allocation
or customer relationship management could be improved. While already many PPM meth-
ods exist, they have not yet been applied to KIPs. Thus, we extend PPM research by using
machine learning and natural language processing (NLP) to develop and evaluate a novel
text-aware PPM approach tailored towards monitoring KIPs. By developing suitable features
and considering various time intervals, our approach encodes and aggregates the event log.
Using two real-world event logs, we assess our methodology. We demonstrate that the MAE
improves as compared to state-of-the-art PPM methods. It shows that the control flow per-
spective of KIPs should primarily be neglected, while considering more structured features

and unstructured textual information is essential.

Full Citation: Brennig, K., Benkert, K., Lohr, B. & Miller, O. (2024). Text-Aware Pre-
dictive Process Monitoring of Knowledge-Intensive Processes: Does Control Flow Matter?.
In: De Weerdt, J., Pufahl, L. (eds) Business Process Management Workshops. BPM 2023.

Lecture Notes in Business Information Processing, vol 492. Springer, Cham.
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Straight Outta Logs: Can Large Language Models

Overcome Preprocessing in Next Event Prediction?

Katharina Brennig Sascha Kaltenpoth Oliver Miiller

Paderborn University Paderborn University Paderborn University

Abstract—Predictive process monitoring (PPM) aims to predict the future behavior of pro-
cess instances to mitigate process violations or take preventive measures. Current PPM
methods for next event prediction (NEP) often utilize machine learning techniques, while
first approaches also use deep learning techniques, especially natural language processing
(NLP). Hence, these approaches often require extensive data preprocessing. To counteract
this, we train and evaluate a fine-tuned large language model (LLM) to directly generate
NEPs from XES-formatted event logs without any preprocessing. The results suggest that
the proposed PPM approach performs comparably to the state-of-the-art in ML-based PPM,
while contributing a simplified prediction process for NEP with minimal data preprocessing.
Additionally, our LLM-driven approach produces valid XES outputs in nearly all cases, fa-
cilitating the direct export of predictions as event logs to be processed downstream (e.g., to
employ process mining techniques or simulation). Further, our method offers easy integration

into existing organizational infrastructures.

Full Citation: Brennig, K., Kaltenpoth, S. & Miller, O. (2025). Straight Outta Logs: Can
Large Language Models Overcome Preprocessing in Next Event Prediction?. In: Gdowska,
K., Gomez-Lopez, M.T., Rehse, JR. (eds) Business Process Management Workshops. BPM
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