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1

1. Synopsis

“This new form of AI excels at modeling human intuition rather than human
reasoning and it will enable us to create highly intelligent and knowledgeable
assistants who will increase productivity in almost all industries. If the benefits
of the increased productivity can be shared equally it will be a wonderful advance
for all humanity. Unfortunately, the rapid progress in AI comes with many [...]
risks.”

Geoffrey Hinton, Nobel Prize winner, 2024

Artificial intelligence (AI) is revolutionizing and transforming our world, redefin-
ing how humans interact with machines (Ågerfalk, 2020; Grønsund and Aanestad,
2020; Raisch and Krakowski, 2021; Baird and Maruping, 2021; Millet et al., 2023;
Dell’Acqua et al., 2023; Vaccaro et al., 2024; Raisch and Fomina, 2025; Brynjolfsson
et al., 2025). As underscored by the speech of Hinton (2024) at the Nobel Prize ban-
quet and reflected in numerous research studies, media reports, policy initiatives,
business investments, and legislation, AI presents both novel opportunities and com-
plex challenges for humanity. While recent research has predominantly focused on
technological advancements, it often overlooks the human-user perspective and its
impact on the interaction with AI systems (Wilder et al., 2020; Schuetz and Venkatesh,
2020; van der Waa et al., 2021; Raisch and Krakowski, 2021; Baird and Maruping,
2021; Murray et al., 2021).

Unlike previous technologies, AI-driven systems exhibit distinctive traits—such as
their probabilistic and often opaque nature, their capacity to mimic human-like be-
havior, and potential to surpass human intelligence—which make human-AI interac-
tion particularly demanding (Miller, 2019; Arrieta et al., 2020; Jussupow et al., 2020;
Amabile, 2020; Vilone and Longo, 2021; Fügener et al., 2022; Vaccaro et al., 2024;
Larson et al., 2024; Brynjolfsson et al., 2025). These characteristics raise fundamental
questions that current human-computer interaction (HCI) frameworks often struggle
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to address (Von Krogh, 2018; Ågerfalk, 2020; Yang et al., 2020; Schuetz and Venkatesh,
2020; Baird and Maruping, 2021; Fügener et al., 2021; O’Neill et al., 2023). Accord-
ingly, there is a broad consensus that existing HCI guidelines must be extended to
fully harness the capabilities of this revolutionary technology.

This dissertation contributes to closing this research gap by investigating how indi-
viduals and teams interact with AI, with a focus on the socio-cognitive factors that
shape decision-making and collaboration. At its core, this dissertation argues that
while AI systems increasingly replicate and, in some cases, exceed human cogni-
tive abilities, their success often depends on how human decision-makers perceive,
understand, and engage with AI-generated recommendations. Despite progress
in human-AI research, current approaches frequently neglect users’ varying exper-
tise levels, cognitive limitations, and the social context of collaboration. This work
addresses these limitations through four key research questions, each examining a
critical aspect of human-AI interaction: explanation modality, explanation accessibil-
ity, algorithm aversion, and team collaboration dynamics. By integrating theoretical
insights from multiple disciplines, this thesis aims to advance our understanding of
how decision-making and collaboration unfold in human-AI interaction.

1.1. Introduction

AI remains an ambiguous concept despite its growing ubiquity. AI has become a buz-
zword encompassing various technologies, leading to definitional inconsistencies
(Burrell, 2016; Ågerfalk, 2020). Conventional definitions tend to highlight the techni-
cal characteristics of AI while overlooking its human-centric purpose (Caluori, 2024).
Alan Turing’s foundational but simple test introduced a widely accepted notion of
AI, proposing that if a human interlocutor within an interaction cannot distinguish
between communicating with a machine or a human, the system can be considered
intelligent (Turing, 2004). Nonetheless, this definition lacks formal precision. As a
result, AI remains an elusive concept, often obscured by technical ambiguity and
differing interpretations. A more intuitive approach is to examine the definitions
of “human intelligence” as a starting point. Wechsler (1958) defines human intelli-
gence as the ability to act with purpose, reason logically, and interact efficiently with
the environment. Compared to other technologies, the unique aspect of AI systems
is their contextual, adaptive, and interactive nature (Schuetz and Venkatesh, 2020;
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Ågerfalk, 2020; Baird and Maruping, 2021). This development signifies that AI sys-
tems are no longer passive or static; they can learn over time, respond dynamically
to their environment, and interact with humans in a human-like manner (Schuetz
and Venkatesh, 2020; Ågerfalk, 2020; Baird and Maruping, 2021).

Historically, the ability to process unstructured data, such as text, audio, and visual
information, has been considered a uniquely human trait (Schuetz and Venkatesh,
2020; Guzman and Lewis, 2020; Argote et al., 2021; Dell’Acqua et al., 2023). AI has
now been enabled to organize, categorize, and interpret these data, allowing it to
enter domains previously exclusive to human cognition (Raisch and Fomina, 2025;
Epstein et al., 2023; Noy and Zhang, 2023; Peng et al., 2023; Doshi and Hauser, 2024;
Brynjolfsson et al., 2025; Dell’Acqua et al., 2025). This arises from AI models being
frequently probabilistic instead of deterministic by moving their computation pro-
tocol from operating on explicit rules, such as if-then conditions, to training neural
networks to select the most probable accurate answer (Schuetz and Venkatesh, 2020).
In other words, the machine derives complex statistical models by identifying pat-
terns within the data (Agrawal et al., 2017). Hence, AI introduces a significant shift
in user-machine interactions, presenting numerous research questions that current
theories have not yet addressed (Schuetz and Venkatesh, 2020; Ågerfalk, 2020; Yang
et al., 2020; Baird and Maruping, 2021; O’Neill et al., 2023). One of the most notable
expressions of this shift is that humans increasingly perceive AI systems as team-
mates rather than tools, shaping the user interaction with AI (Seeber et al., 2020; Wolf
and Stock-Homburg, 2023; De Freitas et al., 2025; Dell’Acqua et al., 2025).

Humans frequently anthropomorphize by attributing human characteristics to non-
human agents, such as objects and animals. This tendency is especially evident in
human-AI interactions, where research shows that these interactions often mimic
human-to-human exchanges rather than human-to-object ones, and individuals start
to humanize AI systems (Seeber et al., 2020; Wan et al., 2024; De Freitas et al., 2025;
Dell’Acqua et al., 2025). Therefore, it is logical to assume that humans will con-
sciously or unconsciously adopt behaviors from human-to-human interaction and
transfer them to human-AI interaction. Social cognitive theories postulate that indi-
viduals classify their surroundings, distinguishing between humans, animals, and
objects (Kunda, 1999). In the realm of AI, this simplicity is lost, as evidenced by the
Turing test, which demonstrates that humans often cannot reliably discern whether
they are engaging with an AI or a fellow human (Warwick and Shah, 2016; Köbis
and Mossink, 2021; Kovács, 2024). According to social response theory, humans react
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to technologies that exhibit human-like characteristics or social signals in a similar
way as they would to other humans, even with the knowledge that they are engag-
ing with a technology (Moon, 2000). Consequently, humans use fundamental social
scripts when engaging with computers that display human-like traits or actions. This
reasoning allows for testing and validating various interpersonal theories in human-
AI interaction. The core of every interaction is the underlying trust (Thiebes et al.,
2021). In human-to-human interaction, trust is based on a cost-benefit calculation
(an economic perspective) or sociopsychological perceptions (Lewicki, 1996).

The cost-benefit principle emerged from behavioral decision-making research, em-
phasizing (cognitive) effort as a key factor in selecting decision-making strate-
gies (Gregor and Benbasat, 1999). Cognitive effort refers to the basic information-
processing activities required to complete a task (Johnson and Payne, 1985). Typically,
a decision-maker evaluates an advisor’s recommendation by weighing the potential
benefits and costs (Bonaccio and Dalal, 2006). Humans generally avoid exerting ef-
fort to access and engage with explanations unless they perceive that the expected
benefits of cognitive engagement outweigh the required mental effort (Gregor and
Benbasat, 1999; Shenhav et al., 2017). Consequently, given a choice between simi-
larly rewarding options, humans tend to prefer the associated option that minimizes
their effort (“law of less work”) (Hull, 1943). However, this cost-benefit evaluation is
further influenced by the fact that decision-makers take other exogenous factors into
account to precisely specify their rationale (such as their abilities or the abilities of
the advisor in this area, the complexity of the task, experience with the advisor, etc.)
(Bonaccio and Dalal, 2006). In human-AI interaction, it appears logical for humans
to rely on AI recommendations that exceed expert capabilities, aiming to reduce
cognitive effort and enhance benefits. From the perspective of Kahnemann’s dual
system theory, humans should ideally engage in deliberate and analytical thinking
(System 2/ slow-thinking) rather than relying on intuition or gut feeling (System
1/ fast-thinking) when making decisions (Kahneman, 2011). However, applying
social frameworks to the Information systems (IS) literature must acknowledge that
humans do not always behave rationally and often rely on their feelings (Buçinca
et al., 2021; Bonnefon and Rahwan, 2020; Kahneman et al., 2021). Humans frequently
apply decision heuristics or folk theories when making decisions (Kahneman, 2011;
Zedelius et al., 2017). Folk theories form expectations rooted in experience, yet not
systematically verified (Rip, 2019). As a result, appraisals, such as expectations and
feelings, are crucial in determining advice acceptance, algorithm utilization, and task
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delegation to AI systems (Baird and Maruping, 2021). Thus, collaboration hinges
on the human perception of the AI system and a cognitive assessment of the delega-
tion’s cost-benefit ratio. Understanding the reasons, timing, and methods of human
reliance on AI systems is crucial, as well as identifying elements that enhance or
impair their interaction (Baird and Maruping, 2021).

In addition, the expanding capabilities of AI present pioneering opportunities and
critical challenges. On the one hand, AI has demonstrated revolutionary perfor-
mance in various domains, often exceeding human capabilities (Enholm et al., 2022).
For example, AI-driven solutions are being applied in increasingly heterogeneous
domains, including robotic surgery (Diana and Marescaux, 2015),1 assisted driving
(Hecker et al., 2018), hiring new personnel (Gil et al., 2020), personal and material
logistics (Bader and Oevermann, 2017), finance (Strich et al., 2021), and even crime
prediction (Završnik, 2020). On the other hand, AI’s probabilistic nature also intro-
duces challenges. Since AI models continuously learn and evolve, their behavior can
become unpredictable and inconsistent (Ågerfalk, 2020). Even data that enters the
system is often unclear or undisclosed (Burrell, 2016). Moreover, these models often
make forecast mistakes, particularly for instances underrepresented in the training
data set (Yang et al., 2020). The increasing complexity also frequently makes AI
decision-making processes opaque to users, contributing to a lack of transparency,
trust, and reliance (Burrell, 2016; Wang and Benbasat, 2016). Furthermore, AI appli-
cations have shown significant drawbacks, including discrimination (Tambe et al.,
2019), the spread of misinformation (Rebholz et al., 2024), and safety risks in fields
such as autonomous driving and robotic surgery (Varshney and Alemzadeh, 2017).
These issues indicate that AI systems are certainly not without flaws. In particular,
in the case of decisions that directly affect human individuals (e.g., credit scoring, in-
surance qualification, hiring), those affected have a right to know the reasons for the
decision (Burrell, 2016; EU, 2021). Beyond legal and ethical considerations, technical
and economic reasons also reveal that AI should collaborate with humans rather
than act autonomously. In their seminal paper, Mittelstadt et al. (2019) distinguish
between epistemic and normative concerns that pose challenges to the use of AI
in practice. First, algorithms may result in inconclusive evidence due to statistical
handling. Second, the relation between the data and the conclusions reached by an
algorithm should be evident, but in reality, it is often inscrutable. Third, the data
used may be too limited to assess new cases, resulting in misguided evidence. From

1 693,000 operations were performed in the US in 2017 alone.
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a normative perspective, the results of an algorithm may be perceived as unfair.
In addition, algorithms may, in turn, transform the way individuals perceive the
world, which poses further ethical questions about their use. Finally, the root causes
of harm cannot be easily traced when algorithms are involved. Based on these con-
cerns, AI fails to carry out all activities independently, so collaboration with a human
is required (Brynjolfsson et al., 2018; Brynjolfsson et al., 2025). This paradigm shift
from automation to augmentation, in which humans learn from AI and vice versa,
is further supported by the observation that humans and AI are more effective as a
team than when acting alone (Schuetz and Venkatesh, 2020; Raisch and Krakowski,
2021).

Nevertheless, concerns about algorithmic bias, ethical dilemmas, or legal regulations
boiled down to the “black-box” problem of AI systems, necessitating further research
into explainable AI (XAI). In other words, opaqueness is the central concern in this
context, referring to the lack of transparency in how AI processes input to generate
output (Burrell, 2016). To address this issue, decision-makers from politics, indus-
try, science, and society are highlighting the urgent need for AI and its decisions to
become more transparent and understandable to users (Abdul et al., 2018; EU, 2021;
Mohseni et al., 2021; Schemmer et al., 2022). Consequently, the XAI research domain
seeks to elucidate the “black-box” nature of AI systems and explain the reasoning
behind specific decisions or recommendations, thereby aiding users in comprehen-
sion, appropriate reliance, and effective management of the system (Gunning and
Aha, 2019; Arrieta et al., 2020; Miller, 2019). In recent years, the topic of XAI has
experienced a real boost in research. As XAI is a research field at the intersection of
IS, HCI, and social sciences, the multidisciplinary consideration has led to the devel-
opment of a wide range of techniques to explain the rationale behind AI decisions,
as well as various taxonomies of these techniques (Wang and Yin, 2021). Currently,
the research field suffers from some conceptual problems as terms like “explainabil-
ity”, “understandability”, “transparency”, “interpretability”, “comprehensibility”,
or “trust” and “reliance” are frequently used synonymously even though they are
not interchangeable. As a result, research comes to seemingly contradictory conclu-
sions, even though different influencing factors have been considered (Schemmer
et al., 2022). To prevent misunderstandings, the terms are differentiated in this thesis
as follows:

• Explainability is related to the notion of explanation as an interface between
humans and an AI system (Arrieta et al., 2020; Gilpin et al., 2018).
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• Understandability denotes the ability to make a user understand AI systems
function without requiring technical or internal knowledge of the system (Ar-
rieta et al., 2020).

• Transparency refers to the algorithm’s (or system’s) technical intelligibility
(Lepri et al., 2018; Gerlings et al., 2021). A model is considered transparent
if it can explain how the system works even if it does something unexpected
(Arrieta et al., 2020; Vilone and Longo, 2021). A transparent system is, therefore,
the exact opposite of a “black-box” model.

• Interpretability describes the extent to which the system is intelligible to the
user (Miller, 2019). In this context, interpretability refers to more than one
concept, e.g., mathematical approaches like approximations, visualizations,
natural language, explanations by examples, etc., to achieve this goal (Lipton,
2018).

• Comprehensibility refers to the ability of an algorithm to semantically and
structurally represent an AI’s recommendations as a human expert would (Ar-
rieta et al., 2020).

Moreover, the distinction between trust and reliance concerning XAI is often ne-
glected. This leads to complications, as several studies often discuss trust but mea-
sure and understand the concept in entirely different ways (Schmidt et al., 2020; Yin
et al., 2019).

• Trust is defined as an attitude and measured subjectively (e.g., by interviews
or Likert scale questionnaires) (Scharowski et al., 2022; Mohseni et al., 2021).

• Reliance, in contrast, reflects human actual behavior and is objectively observ-
able and measurable (e.g., by the percentage of users’ consent to AI advice)
(Scharowski et al., 2022).

It is essential to distinguish this because research recognizes a discrepancy between
attitude and behavior, indicating that changes in mentality do not always correspond
with changes in behavior and vice versa (Ajzen, 2001; Kohn et al., 2021).

However, explanations serve as the key approach to improving the transparency
of interaction between humans and AI systems (Miller, 2019; Wang and Yin, 2021).
In theory, an explanation should explain the reasons for the decision to the recipi-
ent to convince or help the recipients better assess their decision to follow or reject
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the given advice (Gregor and Benbasat, 1999; Bansal et al., 2021). In practice, the
impact of AI explanations on decision-making is mixed. Although some studies
highlight the benefits of explanations—such as improving transparency, decision
quality, and trust—others reveal potential drawbacks (Dzindolet et al., 2003; Ehrlich
et al., 2011; Ribeiro et al., 2018; Lai and Tan, 2019; Zhang et al., 2020; Carton et al.,
2020; Chu et al., 2020; van der Waa et al., 2021). These negative consequences are
often denoted as under- or overreliance. Underreliance occurs when users fail to
grasp an explanation, for instance, performing below the numerical certainties of
an AI recommendation (Carton et al., 2020; Zhang et al., 2020), or when algorithm
aversion adversely impacts decision-making (Dietvorst et al., 2018; Jussupow et al.,
2020). On the other hand, an explanation can mislead users into believing in the
general accuracy of AI advice, increasing the reliance even on an erroneous AI rec-
ommendation (Ehrlich et al., 2011; Vilone and Longo, 2021; Rebholz et al., 2024), a
pattern called overreliance. In conclusion, it is still uncertain whether AI explana-
tions help users make correct decisions or contribute to under- or overreliance on AI
advice (Mohseni et al., 2021; Schemmer et al., 2022). These statements confirm that
explanations are not employed in the practical environment to the extent dictated
by theoretical expectations. Humans must understand and evaluate the underlying
rationality of a recommendation to appropriately calibrate their trust and reliance
(Wang and Benbasat, 2016). These considerations reveal a fundamental research gap
regarding the actual design of explanations.

Compared to humans, AI systems also struggle to communicate decision rationales,
especially in complex models, which prompted efforts in XAI to improve trans-
parency in deep learning (Burrell, 2016; Liao et al., 2020; Baird and Maruping, 2021).
Furthermore, a simple technical solution is not sufficient to ensure optimal decision-
making, as humans do not always behave reasonably (Zedelius et al., 2017; Abdul
et al., 2018; Bonnefon and Rahwan, 2020; Jussupow et al., 2020; Buçinca et al., 2021;
Fügener et al., 2022). Therefore, improving a system’s accuracy does not inherently
result in better human-AI collaboration (Dzindolet et al., 2003; Wilder et al., 2020;
van der Waa et al., 2021). This challenge is further intensified by the fact that, as
AI proliferates across multiple domains, it is no longer only AI specialists who en-
gage with these systems—beginners and non-expert users are increasingly required
to work with AI as well (Laupichler et al., 2022; Ng et al., 2021a). Thus, humans
often find themselves unavoidably entering increasingly close interactions with AI
systems (Lu and Zhang, 2024). Problems in non-expert user interaction with AI arise
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due to this technological invasion. For example, AI explanations are often not tai-
lored for non-expert users (Abdul et al., 2018; Miller, 2019), despite evidence that
the user’s expertise influences the requirements regarding the scope and nature of
the explanation (Gregor and Benbasat, 1999; Liao et al., 2020; Schoeffer et al., 2024).
Nonetheless, the interactions between non-expert users and AI are understudied
and require further research (Long and Magerko, 2020; Ng et al., 2021a).

Although there is consensus on the necessity and purpose of XAI, considerable am-
biguity remains regarding the practical design of explanations and non-expert users’
perceptions of these explanations. No single method for XAI has yet emerged, and
research continues to explore ways to improve XAI (Pedreschi et al., 2019). Building
on anthropomorphism in the human-AI context, which has often been overlooked in
the XAI literature, it is plausible to apply human-to-human explanation techniques
as a promising starting point. Considering the explanatory methods of human ad-
visors, one can conclude that humans tend to express predictions using numbers or
words, affecting perception (Mislavsky and Gaertig, 2022). Applying this to XAI, an
ongoing debate exists on whether an AI should provide numerical or verbal expla-
nations. Several experts insist that AI should explain its advice like a human would
(Weiner, 1980; De Graaf and Malle, 2017; Byrne, 2019; Miller, 2019). The key point
is that verbal AI explanations are easier for humans to grasp, helping them form
accurate mental models of the system and adequately adjust their reliance on the
advice (De Graaf and Malle, 2017). However, even during human-to-human interac-
tion, a preferential paradox arises as individuals feel more comfortable expressing
uncertainties in verbal form when taking the role of recommender, whereas humans
tend to prefer numerical certainties of a recommender to make a decision (Erev and
Cohen, 1990; Wallsten, Budescu, Zwick, and Kemp, 1993). Scholars supporting this
argument highlight that individuals frequently find it challenging to accurately in-
terpret verbal descriptions of uncertainties and probabilities, advocating for using
numerical statements instead (Budescu and Wallsten, 1985; Wallsten, Budescu, and
Zwick, 1993; Wintle et al., 2019). Therefore, the following research question arises:

RQ1: Are humans more inclined to understand and process verbal versus numer-
ical explanations of an AI system, and will the type of explanation affect their
appropriate reliance?

While AI-generated explanations are intended to enhance transparency and improve
decision-making, users often struggle to assess them critically (Lai and Tan, 2019;
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Bansal et al., 2021). Since cognitive effort usually feels unpleasant to humans (David
et al., 2024), users tend not to engage rationally and cognitively with AI explanations
(Buçinca et al., 2021). As algorithms are susceptible to biases and often do not de-
tect guidance errors, users must think analytically and critically about explanations
to prevent misjudgments (Rebholz et al., 2024). Furthermore, humans frequently
misinterpret an explanation as a marker of expertise and over-rely on flawed AI
advice (Bansal et al., 2021; Lai and Tan, 2019). Thus, despite the general improve-
ment in performance when users are provided with explanations of an AI system
(van der Waa et al., 2021; Zhang et al., 2020), recent research presents mixed find-
ings on whether such explanations help users identify incorrect recommendations
or rather make both correct and incorrect recommendations seem more convincing
(Ehrlich et al., 2011; Vilone and Longo, 2021). In particular, non-expert users often
struggle to critically review AI recommendations due to a lack of expertise (Gregor
and Benbasat, 1999; Guidotti et al., 2018). Hence, the question of when it is appro-
priate to follow the system’s advice remains (Ehrlich et al., 2011). To avoid errors,
users must consider the explanation thoughtfully, which requires cognitive effort
and time (Bunt et al., 2012; Buçinca et al., 2021; Gajos and Mamykina, 2022). There-
fore, humans need to apply analytical thinking (slow-thinking) instead of relying
on their gut feeling (fast-thinking) (Kahneman, 2011). Since users seem to strategi-
cally navigate the trade-off between the benefit and cost ratio of the mental effort
required to validate the explanation (Bunt et al., 2012; Vasconcelos et al., 2022), the
active demand for an explanation may enhance their willingness to do so (Buçinca
et al., 2021). Therefore, an actively requested explanation might be valued more and
scrutinized thoroughly. In other words, this shift in control could modify interaction
dynamics by allowing users to manage incoming information and decide when they
need further clarification through explanation. This logic highlights the following
research question:

RQ2: How does the accessibility of an AI explanation - whether immediately
displayed or only available on demand - affect the decision-making process of
non-expert users?

As AI becomes more sophisticated, concerns about its control, fairness, and unin-
tended consequences lead to growing skepticism toward the technology (Ågerfalk,
2020). This has resulted in AI aversion—a reluctance to accept AI-driven recom-
mendations due to perceived risks and biases (Castelo et al., 2019; Yeomans et al.,
2019). Consequently, negative attitudes toward AI often diminish its potential ben-
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efits (Dietvorst et al., 2015; Dietvorst et al., 2018; Jussupow et al., 2020). Drawing
on Kahnemann’s dual system theory of reasoning, it proposes different conditions
that might arouse humans’ active information processing and analytical thinking
to prevent them from relying solely on their feelings (Kahneman, 2011). Besides
the availability of an AI-generated explanation, the response time necessary for the
AI to complete a task may affect the user’s cognitive approach and alter human-AI
collaboration dynamics. Humans attribute different ways of thinking to different
task domains (Bonnefon and Rahwan, 2020). Therefore, humans are more likely to
reject AI recommendations in task domains that they believe require intuition or gut
feeling, such as hiring (subjective tasks), and are more likely to follow algorithms
within a technical or mathematical task domain (objective tasks) (Lee, 2018; Castelo
et al., 2019). Despite existing research that indicates that AI systems surpass human
experts even in subjective tasks, there remains a tendency for humans to dismiss AI
suggestions in these cases (Yeomans et al., 2019). This suggests that humans transfer
the expected skill set and way of thinking for the task to intelligent machines (Bon-
nefon and Rahwan, 2020; Booch et al., 2021; Rossi and Loreggia, 2019). So, humans
assume that they are primarily capable of performing subjective tasks, and objective
tasks are associated with higher cognitive effort, whereas this assumption is reversed
in the case of intelligent machines. An initial study shows that when algorithms ex-
hibit extended response times for objective tasks, humans often perceive this as a
malfunction since machines are expected to perform these tasks efficiently (Efendić
et al., 2020). Thus, analyzing the impact of AI response time on human-AI interaction
in both fast- and slow-thinking tasks could offer a more nuanced understanding of
mitigating algorithm aversion, particularly in subjective tasks. Which in turn raises
the following research question:

RQ3: Which effect does the AI response time have on algorithm aversion for
slow-thinking and fast-thinking tasks?

Until now, most research on human-AI interaction has primarily emphasized per-
formance metrics (Fügener et al., 2021; Millet et al., 2023; Chen and Chan, 2024;
Bohren et al., 2024) and dyadic interactions (Seeber et al., 2020; O’Neill et al., 2022;
Bouschery et al., 2023; Boussioux et al., 2024; Doshi and Hauser, 2024), neglecting
the processes that lead to those outcomes and that tasks occur frequently in group
settings. This focus overlooks how AI might influence team dynamics, particularly
in collaborative contexts. Although in traditional research on human-only teams,
the input-process-output (I-P-O) model was developed to investigate the essential
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function of team processes in converting inputs into outputs, the process element is
rarely considered in human-AI interaction (O’Neill et al., 2023), despite the circum-
stance that team processes are crucial for successful collaboration (Sjøvold et al., 2022;
Marks et al., 2001; Mathieu et al., 2020). However, it remains unclear whether indi-
vidual and team creativity is enhanced (e.g., idea sharing, integrating perspectives,
cognitive stimulation) (Pinsonneault et al., 1999; Dugosh et al., 2000; Paulus, 2000)
or hindered (e.g., collaborative fixation, production blocking) (Diehl and Stroebe,
1987; Kohn and Smith, 2011) by social interactions (Amabile, 2018). Therefore, this
gap is especially critical in the creative task domain, where the process is a central
component of innovation and novel value creation. As generative AI (GenAI) con-
tinues to evolve and expand its capabilities across domains such as text, imagery,
sound, and video (Millet et al., 2023), its integration into creative workflows is be-
coming increasingly common and influential. For instance, large language models
(LLM) now serve as effective collaborators in tasks such as academic and narrative
writing (Wan et al., 2024), helping users generate novel ideas and even new knowl-
edge (Raisch and Fomina, 2025). Hence, GenAI facilitates new forms of human-AI
cooperation in open-ended, non-routine, and highly creative tasks (Chen and Chan,
2024), and in some cases, even outperforms humans in terms of idea originality or
diversity (Bohren et al., 2024). Nevertheless, human evaluators often respond ad-
versely when they learn that an AI system contributed to creative output, devaluing
the work due to persistent associations between creativity and human effort (Demir
et al., 2024; Bohren et al., 2024; Millet et al., 2023). Furthermore, AI tends to be more
effective when it complements human creativity than when working independently
(Anantrasirichai and Bull, 2022). In summary, GenAI is likely to radically change
the way creators conceive and produce ideas (Epstein et al., 2023). However, the
current literature lacks information on how collaboration with AI in creative tasks
might impact the creative process between multiple humans, either by inhibiting
or facilitating it (Amabile, 2020). As a result, a simple but fundamental research
question remains unconsidered:

RQ4: How does AI influence team dynamics during creative tasks?
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1.2. Presentation of Papers

This dissertation addresses the four research questions through four separate re-
search studies, each presented in a dedicated chapter. All manuscripts vary in
length, scope, and style due to their preparation for different academic publications.
Each study’s research objectives and importance are addressed by summarizing the
methodology, key findings, and contributions. Following the first chapter, this dis-
sertation is structured along the following papers:

1. J. Papenkordt, A. C. Ngonga Ngomo, K. Thommes (2025) “Are numerical
or verbal explanations of AI the key to appropriate user reliance and error
detection? An experimental study with a classification algorithm”.

Faced with AI’s significant advantages and drawbacks, there’s been a growing
demand for making AI systems explainable (Adadi and Berrada, 2018; Thiebes
et al., 2021). Situations in which humans are forced to rely on AI blindly due to
its complexity must be avoided. An explanation must act as a bridge between
the user and the AI system, accurately reflecting the decision while simulta-
neously being comprehensible to the user (Guidotti et al., 2018). Achieving
XAI in practice remains a challenge (Vilone and Longo, 2021; Guidotti et al.,
2018). First, due to bounded human rationality, users struggle to process com-
plex information, requiring a trade-off between accuracy and interpretability
in AI models (Gerlings et al., 2021). Second, although XAI frameworks can
technically explain outputs, these explanations often remain incomprehensible
to non-experts, as most systems do not tailor explanations to user’s levels of
expertise (Guidotti et al., 2018; Gregor and Benbasat, 1999; Schoeffer et al., 2024;
Liao et al., 2020). Third, while explanations may improve user understanding,
their impact on appropriate reliance remains ambiguous—particularly as ex-
planations can enhance overreliance on flawed recommendations (Miller, 2019;
Rebholz et al., 2024; Vilone and Longo, 2021). Consequently, explanations of-
ten fall short of their anticipated expectations, indicating an underappreciated
potential for improvement (Gregor and Benbasat, 1999).

Therefore, this research investigates how different forms of AI-generated
explanations—precisely, verbal explanations (e.g., natural language justifica-
tions) and numerical explanations (e.g., certainty values), or a combination of
both—affect the behavior of non-expert users, particularly in terms of reliance
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on AI recommendations, decision accuracy, and the ability to detect AI errors
(RQ1). Drawing on theories from human decision-making (such as the law of
less work), social cognition (such as anthropomorphism), and XAI, the paper
addresses the pressing need to balance comprehensibility and transparency in
AI explanations, particularly for non-expert users.

Concretely, the research employs a between-subjects experimental design, with
441 participants completing ten classification tasks, either with the support of
a self-developed AI offering varying forms of explanation or without any AI
support. Participants were randomly assigned to one of five treatment groups.
The five experimental conditions include (1) verbal explanation, (2) numerical
explanation, (3) both verbal and numerical, (4) a control group with AI advice
but no explanation, and (5) a baseline group without any AI support. Task
complexity was deliberately high, and an intentional AI error was introduced
in task 4 to observe error detection and the recovery of the reliance. By doing
so, this study leads to the following key findings:

• AI support significantly increases decision accuracy compared to the base-
line group, regardless of the explanation format.

• Users often under-relied on AI when it was correct and over-relied when
it was wrong, reflecting biases in human-AI interaction.

• Verbal explanations lead to higher user reliance and more correct decisions
overall, suggesting they are easier for non-experts to process. However,
this comes at the cost of increased over-reliance.

• In contrast, numerical explanations tend to be more effective in detecting
AI errors. On the one hand, numerical indicators sensitize users to AI
uncertainty; on the other hand, reliance on numerical explanations does
not proportionally reflect the certainty provided, highlighting gaps in the
statistical intuition of users.

• When verbal and numerical explanations were presented together, user re-
liance increased even further—regardless of whether the recommendation
was correct or incorrect.
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The study contributes to the literature by empirically demonstrating the trade-
offs between explanation types regarding reliance and error detection. This pro-
vides deeper insights into human cognitive patterns when engaging with AI. It
cautions against one-size-fits-all XAI approaches and underscores the need for
explanation designs that account for user expertise and cognitive constraints.
This research demonstrates that reliance is nuanced and varies depending on
the type of explanation provided. These findings also illustrate that users fre-
quently act irrationally in AI interactions, exhibiting underreliance when the
AI is accurate and overreliance by not engaging cognitively and critically with
AI explanations. In summary, this investigation offers actionable insights for
designing human-centered AI systems that support appropriate reliance, espe-
cially in low-stakes, high-frequency decision contexts involving non-experts.

2. J. Papenkordt (2024) “Navigating Transparency: The Influence of On-demand
Explanations on Non-expert User Interaction with AI”.

Inspired by the findings of the first paper, which demonstrated that explanation
format significantly affects user reliance and error detection, this second paper
examines a crucial but underexplored design decision in XAI: whether the
accessibility of an AI explanation affects the decision-making process of non-
expert users (RQ2). While explanations often support decision-making, recent
research highlights that users frequently either neglect them due to negative
feelings toward AI (Dietvorst et al., 2018; Jussupow et al., 2020) or over-rely on
them by failing to critically evaluate them (Gajos and Mamykina, 2022; Buçinca
et al., 2021; Bunt et al., 2012). In particular, verbal explanations, which are be-
coming increasingly common due to the advances of LLM, are relatively intu-
itive but can lead users to accept recommendations without sufficient scrutiny
(Lebedeva et al., 2023; Miller, 2019; Rebholz et al., 2024). Despite growing
attention to human-centered AI, most XAI systems still present explanations
by default without considering that this automatic transparency may induce
information overload (Bawden and Robinson, 2009), reactance of contrary ad-
vice (Fitzsimons and Lehmann, 2004), or blind reliance as users perceive the
explanation as a general signal of quality (Bansal et al., 2021; Lai and Tan, 2019).
In particular, non-expert users might be more sensitive to these issues as they
lack the expertise to critically scrutinize the AI recommendation directly (Gre-
gor and Benbasat, 1999; Guidotti et al., 2018; Ng et al., 2021a). Therefore, this
study proposes that the effectiveness of explanations may depend not only on
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how an explanation is designed but also on when and how users choose to
access those explanations. Drawing on dual system theory and the cost-benefit
principle, one might argue that the active request for an explanation enhances
the user’s willingness to engage with the explanation cognitively.

The study design builds directly on the setting and data from the first paper
by keeping all experimental conditions constant and expanding the study by
two experimental groups. 151 participants were randomly assigned to one of
the two new treatments. The task design mirrored the first study: high task
complexity, monetary incentives, task order, and an intentional AI error in task
4. The subjects completed the same ten AI-supported classification tasks. The
novel treatments encompass (6) the option to request a verbal explanation of
AI advice and (7) the immediate presentation of numerical certainty for AI ad-
vice, alongside the on-demand option for a verbal explanation. By conducting
different analyses, the study provides the following main results:

• Explanations are underutilized, even when they would be beneficial.
About 50% of the participants in each group did not demand a single
verbal explanation during all tasks.

• Personal factors (such as educational level, age, or attitude toward AI)
significantly affect the demand for verbal explanations.

• Contextual factors (such as the perceived difficulty of the task or the cer-
tainty of the AI) influence the extent to which verbal explanations are
demanded, but certainly not to the expected degree.

• Participants who requested explanations showed a higher reliance on AI
recommendations, similar to those who received explanations automati-
cally.

• By significantly increasing the decision times of the user, on-demand ex-
planations appear to promote analytical thinking (slow-thinking). How-
ever, this greater cognitive effort does not consistently improve error de-
tection.

This research expands the literature by empirically examining the role of ex-
planation accessibility, a previously underexplored but theoretically plausible
factor, in shaping the human-AI interaction. By shifting control to the user
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through an on-demand explanation option, the study uncovers how personal
characteristics and contextual factors influence the demand and use of an ex-
planation. The fact that non-expert users often abstain from requesting ex-
planations despite clear performance benefits suggests that users may rely
on decision heuristics instead of applying strategic thinking. Although the
on-demand option significantly increases longer decision times (a proxy for
analytical thinking) as a practical design feature, the findings highlight that
users often struggle to optimize the cost-benefit trade-off and make the opti-
mal strategic decision.

3. A. Lebedeva, J. Kornowicz, O. Lammert, J. Papenkordt (2023) “The Role of
Response Time for Algorithm Aversion in Fast & Slow Thinking Tasks”.

The study builds on dual system theory, distinguishing between fast- and slow-
thinking (Kahneman, 2011). While this theory has traditionally been applied to
understand human decision-making, Bonnefon and Rahwan (2020) and Rah-
wan et al. (2019) argue that it can be extended to human-machine interaction.
Specifically, they propose that humans anthropomorphize AI agents by attribut-
ing to them similar modes of fast- or slow-thinking and make trust-related in-
ferences based on perceived cognitive processes (Bonnefon and Rahwan, 2020).
Although algorithms do not “think” (Booch et al., 2021), different scholars sug-
gest that the response time may serve as a salient cue in this process, tempting
humans to assess the invested (“cognitive”) effort of the algorithm (Bonnefon
and Rahwan, 2020; Efendić et al., 2020; Park et al., 2019). A fast AI response
might be considered effortless, whereas a longer response time may signal de-
liberate, effortful reasoning. This attribution may affect how individuals judge
the suitability of AI for a particular task domain. If an AI appears to work in
a way that matches the expected demands of the tasks, users may be more in-
clined to rely on recommendations. This theoretical proposition might expand
prior research on algorithm aversion and diminish aversion toward AI based
on the task domain. Different studies reveal that humans are more likely to
rely on algorithms in tasks perceived as objective, mechanical, or analytical,
and less likely in tasks perceived as subjective or intuition-based (Castelo et al.,
2019; Lee, 2018), although AI already excels at subjective tasks domains (Yeo-
mans et al., 2019). By linking the theoretical assumptions about the mapping
of dual system theory to the human-AI context and the practical findings on
algorithm aversion, this research investigates how the response time of an AI
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might reduce algorithm aversion, especially in subjective task domains (RQ3).
For instance, we propose that in logically approached tasks (objective task do-
main), humans anticipate a rapid AI response, as these tasks are considered
trivial for algorithms.

We conducted a 2x2 between-subjects laboratory experiment with 116 students
to investigate these assumptions. The experiment manipulated the AI response
time (short vs. long) and task type (fast-thinking vs. slow-thinking) in a con-
trolled advice-taking setting based on the Judge-Advisor-System framework
(Bonaccio and Dalal, 2006). During the experiment, participants had to solve
nine estimation tasks from three different domains. The tasks were drawn
equally from three domains: estimating the number of lentils in a glass (Park
et al., 2019), the weight of football players (Gino and Moore, 2007), and the
distances between cities (Hofheinz et al., 2017). To encourage intuitive judg-
ments in the fast-thinking treatment, the tasks provided only minimal visual
cues, while in the slow-thinking treatment, the task included quantitative in-
formation to promote analytical reasoning. Algorithm aversion was measured
using the advice-taking index, which captures how participants adjusted their
initial estimates toward the AI’s recommendation (Bailey et al., 2022; Hofheinz
et al., 2017). The precision of the final estimation was monetarily incentivized,
and additional variables (such as perceived recommendation quality (Gino et
al., 2012)) were controlled. The comparison of different groups provides the
following results:

• Contrary to our assumptions, longer AI response times reduce algorithm
aversion across both fast- and slow-thinking tasks except in one of the
three domains.

• The task domain matters, but only in fast-thinking tasks. Within these,
advice-taking differed significantly between all domains except in one
instance. No such variation was found in slow-thinking tasks, suggesting
that domain effects are muted when users receive similar information and
may start to think analytically.

• Interestingly, the participants felt less confident in the “Lentils” task do-
main, where the effect of longer response time on the advice-taking index
was strongest, suggesting that lower confidence in one’s capabilities am-
plifies reliance on seemingly effortful AI advice.
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This research broadens the literature on algorithm aversion in several ways.
First, it connects the dual system theory with human-AI interaction and em-
pirically investigates how human thought patterns might influence human-AI
collaboration. In particular, it demonstrates how the response time of an AI
system can serve as a meaningful signal, influencing user acceptance of AI
advice-taking. Interestingly, the results also highlight the necessity of future
research, as they contradict initial expectations rooted in the literature and
human-to-human interaction, suggesting that longer response times increase
reliance on AI advice, even in slow-thinking tasks. Moreover, this paper offers
practical implications for AI system design, implying that calibrated response
delays might reduce algorithm aversion and improve decision-support out-
comes. Lastly, our research suggests that domain-specific effects may be miti-
gated if users are encouraged to think analytically, for example, by presenting
additional information.

4. J. Papenkordt, J. Dahlke, N. Neef, S. Zabel (2025) “Exploring the impact of AI
on team collaboration dynamics in creative decision-making”.

GenAI has emerged as a transformative technology, producing outputs that
are nearly indistinguishable from human-authored work (Giray, 2024; Xu and
Sheng, 2024; Doshi and Hauser, 2024; Zercher, Jussupow, and Heinzl, 2025;
Dell’Acqua et al., 2025). This leads to human-AI collaboration evolving; for ex-
ample, humans often no longer perceive AI as just a tool but as a teammate (See-
ber et al., 2020; De Freitas et al., 2025; Dell’Acqua et al., 2025; Zercher, Jussupow,
and Heinzl, 2025) or work interactively with an AI to perform knowledge-
intensive tasks that go beyond routine automation (Köbis and Mossink, 2021;
Epstein et al., 2023; Wan et al., 2024; Doshi and Hauser, 2024). Early studies
have focused on the impact of GenAI on dyadic human-AI teams (Bouschery
et al., 2023; Boussioux et al., 2024; Doshi and Hauser, 2024; O’Neill et al., 2022;
Seeber et al., 2020), exploring predominantly the effect of input variables (such
as task characteristics or user experiences) (Walliser et al., 2019; McNeese et al.,
2018; Wright et al., 2018) or outcome variables (such as performance or time
spent) (Dell’Acqua et al., 2025; Doshi and Hauser, 2024; Zhou and Lee, 2024).
To date, the mediating mechanisms that transform input into output, as well as
the team dynamics that unfold between multiple humans during collaboration
with AI, remain underexplored. In this context, creative tasks may pose specific
challenges, as previous studies have shown ambivalent results regarding the
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impact of AI support on creative performance (Doshi and Hauser, 2024; Zhou
and Lee, 2024; Fügener et al., 2021). Moreover, earlier systems mainly facili-
tated divergent thinking by boosting individual or team creativity through new
stimuli (Wang and Nickerson, 2017), GenAI can now shape convergent think-
ing by directly affecting creative outputs (Epstein et al., 2023). Therefore, this
research investigates how GenAI influences team dynamics during creative
tasks (RQ4).

To address our research question, we conducted a controlled laboratory exper-
iment using GenAI. Specifically, we utilize the modern large-scale generative
model ChatGPT4o to support treatment groups in creating a three-act short
story. The participants were randomly divided into 30 teams of four (N = 120),
with equal proportions of students drawn from the universities of Twente, Ho-
henheim, and Paderborn, and distributed evenly across the following three
conditions by random selection: (1) no AI assistance (control) during the task,
(2) full AI assistance throughout the task, and (3) partial AI assistance limited
to the second act of the task. By contrasting collaboration settings with and
without AI within the partial AI treatment and between the control and full
AI treatment, we can delve deeper into how AI impacts team collaboration
dynamics both temporarily and permanently. To further ensure comparabil-
ity, each session was audio- and video-recorded, each act was limited to 20
minutes, and all teams began with the same introduction. Moreover, to min-
imize the potential for experimenter bias and expectancy effects, the student
assistants conducting the experimental sessions were not informed of the spe-
cific research objectives. Through various analyses of the team collaboration
dynamics, the study yields these exploratory results:

• Permanent AI assistance significantly alters team processes, marked by
a reduction in problem-focused statements and an increase in socio-
emotional ones, suggesting a shift in cognitive effort and interpersonal
team dynamics.

• Permanent AI support tends to reshape communication structure and pat-
terns, with less bilateral (dyadic) exchange and more group-directed com-
munication, implying a more balanced participation and a redistribution
of conversational influence toward the team or AI as a whole.
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• Temporary AI assistance appears to influence conversational content by
reducing problem-focused statements and increasing procedural ones, in-
dicating a short-term renegotiation of the workflow without affecting un-
derlying communication structure and turn-taking patterns.

• Creativity ratings showed no significant variation across treatment condi-
tions, indicating AI collaboration, whether permanent or temporary, nei-
ther hindered nor enhanced team creativity. However, permanent AI had
a positive impact on the content, structure, and expression of the story.

Overall, this research contributes to the literature on human-AI teaming by
offering one of the first empirical investigations into how GenAI transforms
team collaboration dynamics in creative tasks. By doing so, it provides initial
insights into the collaboration between multiple humans and AI by investi-
gating how team dynamics, in terms of conversational content, structure, and
turn-taking patterns, change during a creative task setting. The influence of the
permanent AI integration suggests a paradigm shift in team dynamics from
hierarchical, dyadic exchanges to flatter, group-oriented interaction patterns,
inviting a reconceptualization of traditional constructs such as leadership, dom-
inance, and communication centrality in AI-supported teams. Furthermore, the
research provides initial insights into the impact of temporal continuity in AI
integration, as permanent AI support gradually reshapes structural and behav-
ioral dynamics. Temporary collaboration with AI appears insufficient to lead to
lasting change, highlighting the need for more long-term experimental research
on this topic. From a practical perspective, the findings carry initial implica-
tions for organizations seeking to harness AI in collaborative work. Rather than
viewing AI as an external add-on or isolated decision aid, this research sug-
gests that AI becomes entangled in the team dynamics, affecting not only what
is said but who speaks, how turn-taking unfolds, and how roles and respon-
sibilities are distributed. Regarding the similar creative outputs of the teams,
it appears that while AI support tends to affect team collaboration dynamics
to varying degrees, it does not undermine the underlying creative workflow
of the teams. However, further research is required, as the creative storytelling
task likely reflects the inherent subjectivity in evaluating creative work, and
therefore makes it challenging to assess creative performance objectively, as
the low consistency between our ratings indicates.
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1.3. Contributions to Research and Practice

In an era where AI technologies are becoming deeply embedded in individual,
team, and organizational decision-making processes (Thiebes et al., 2021; Poursabzi-
Sangdeh et al., 2021; Raisch and Fomina, 2025), this dissertation contributes to a
broader understanding of how humans interact with intelligent systems in diverse
contexts and modalities. The complexity, opaqueness, and fallibility of AI systems,
particularly in high-stakes scenarios, demand that users, regardless of their expertise,
be empowered to interact with these technologies in a thoughtful manner (Burrell,
2016; Laupichler et al., 2022; Gerlings et al., 2021; Mohseni et al., 2021). Yet the
rapid pace of AI development risks outpacing both societal readiness and individual
cognitive capacity (Fügener et al., 2021; Fügener et al., 2022). Therefore, successful
implementation hinges on more than technical excellence; it requires a nuanced un-
derstanding of how humans interact with, rely on, and co-create with AI systems
(Gunning and Aha, 2019; Arrieta et al., 2020; O’Neill et al., 2023). Across four studies,
this dissertation offers a multi-level perspective on how individuals (Paper 1, Paper 2,
Paper 3) and teams (Paper 4) interact with AI. Therefore, this thesis integrates perspec-
tives from behavioral decision-making, XAI, dual system theory, and team science
to examine how individuals cognitively and socially engage with AI systems.

Although XAI has been positioned as a promising response to the opaqueness of AI
systems, this line of thinking repeatedly neglects the fact that users do not engage
with explanations rationally and reflectively. By applying social and psychological
frameworks to the IS literature, this thesis attempts to acknowledge that humans
frequently rely on intuition, emotion, and heuristic reasoning (Kahneman, 2011;
Zedelius et al., 2017; Bonnefon and Rahwan, 2020; Kahneman et al., 2021; Buçinca
et al., 2021). The dissertation reconsiders explanation design as a cognitive and
social interface, rather than a mere technical aspect, influencing reliance, cognitive
engagement, and user behavior in human-AI interaction. Therefore, it contributes
to the literature by empirically examining the type of explanations (Paper 1), the
accessibility of explanations (Paper 2), and the timing of explanations (Paper 3) in the
human-AI context. Especially, by focusing on non-expert user interactions with AI,
this research addresses an underexplored but increasingly crucial field in research
and practice, as increasing utilization of AI inevitably leads to non-expert users
engaging with it (Miller, 2019; Long and Magerko, 2020; Ng et al., 2021a; Lu and
Zhang, 2024).
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Since user expertise influences the requirements of an explanation (Gregor and Ben-
basat, 1999; Liao et al., 2020) and humans frequently anthropomorphize AI (Mis-
lavsky and Gaertig, 2022; Seeber et al., 2020), Paper 1 investigates behavioral effects
of two common (verbal and numerical) forms of human-to-human interaction in
human-AI interaction. The findings demonstrate that the types of explanation mat-
ter because they result in distinct behavioral patterns and appear to reflect well-
established differences in mental processing. These observations contribute to the
ongoing debate on whether an AI explanation should be verbal or numerical (Miller,
2019; De Graaf and Malle, 2017; Gneiting and Katzfuss, 2014; Byrne, 2019; Wintle
et al., 2019; Mislavsky and Gaertig, 2022). Consistent with prior work highlighting
the persuasive power of verbal communication (Rebholz et al., 2024; Miller, 2019),
the findings reveal that verbal explanations increase reliance on AI recommenda-
tions, even when they are incorrect. Numerical explanations, while more precise,
are often underutilized by non-expert users, who may lack the statistical knowledge
to interpret uncertainty correctly (Gigerenzer et al., 2005; Fu et al., 2022; Pedreschi
et al., 2019; Liao et al., 2020). In line with previous research, these findings high-
light that technical improvements to the intelligent system alone are insufficient to
enhance human-AI collaboration (Wilder et al., 2020; van der Waa et al., 2021). If ex-
planations are frequently treated as general indicators of quality (Vilone and Longo,
2021; Bansal et al., 2021), they must be used and designed with caution, as increased
transparency can intuitively lead to blind reliance. This is especially concerning
since LLMs produce fluent justifications that may discourage critical scrutiny and
foster a misleading impression of comprehension (Rebholz et al., 2024; Spitzer et al.,
2024). As explanation design is not just a matter of information delivery, researchers
and practitioners must investigate the psychological and contextual factors that may
drive or hinder users’ cognitive engagement with explanations.

This dissertation presents a first attempt to address this issue by modifying the inter-
action dynamics, enabling users to control the amount of incoming information and
decide when they need or require additional clarification through an explanation
(Paper 2). Shifting the control to demand an explanation to the user was assumed
to enhance the user’s willingness to engage cognitively with the explanation by
increasing the user’s autonomy (Buçinca et al., 2021). However, many non-expert
users underuse this functionality, even when explanations would have significantly
improved performance. Non-expert users seem to struggle with the cost-benefit
trade-off of engaging with explanations. This behavior appears to be shaped by a
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combination of contextual factors (e.g., perceived task complexity) and individual
characteristics (e.g., educational background, attitude toward AI), aligning with the
research on cognitive unpleasantness and mental economy in the interaction of AI
(David et al., 2024; Bunt et al., 2012). From an organizational perspective, this under-
scores the importance of promoting AI literacy in the workforce (Long and Magerko,
2020; Laupichler et al., 2022; Ng et al., 2021b). On a broader scale, the findings, in
combination with other mixed results on the effectiveness of explanations (Mohseni
et al., 2021; Schemmer et al., 2022; Schoeffer et al., 2024), raise the question of whether
an explanation is always necessary, given that users tend not to thoroughly review
them. Nonetheless, this seems to be scarcely feasible in practice because users may
start to question the system’s overall advantage if they need to evaluate each rec-
ommendation critically. Therefore, a promising approach for future researchers and
practitioners could be to design adaptive, context-aware explanation systems where
the display of an explanation is triggered by high AI uncertainty or a high-stakes
decision (Liel and Zalmanson, 2023). Additionally, users may be nudged to think
analytically and critically through presented social comparisons with previous users
(Allcott and Rogers, 2014; Allcott and Kessler, 2019; Bicchieri and Dimant, 2022), the
provision with alternative AI recommendations (Miller, 2023) or the application of
gamification elements (Zhan et al., 2022).

Extending this line of research, this dissertation investigates how subtle interface-
level features might affect the thought patterns of users and consequently human-AI
collaboration (Paper 3). Therefore, this research contributes to the literature by com-
bining existing results on task types (Lee, 2018; Castelo et al., 2019; Yeomans et al.,
2019) and response times (Efendić et al., 2020; Park et al., 2019) with the theoretical
consideration proposed by Bonnefon and Rahwan (2020) in applying the dual system
theory (Kahneman, 2011) to human-AI interaction. Contrary to theoretical grounded
expectations and comparable studies (Efendić et al., 2020), the results suggest that
longer AI reaction times reduce algorithm aversion, regardless of the planned percep-
tion of the task. From a research perspective, this calls for further studies in various
tasks and experimental settings. From a practical standpoint, these findings suggest
that response time is a subtle yet powerful design lever to mitigate algorithm aver-
sion (Dietvorst et al., 2018; Jussupow et al., 2020). Moreover, domain-specific biases
(Castelo et al., 2019; Lee, 2018; Mahmud et al., 2022) could potentially be dimin-
ished by providing additional information. Furthermore, this research suggests that
deliberate delays may boost user acceptance in high-complexity or low-confidence
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scenarios. This insight opens new pathways for behaviorally informed interface de-
sign, even without improving the underlying algorithm. In practice, explanations
may not need to be altered in content; instead, adjustments in timing or tone could
be used strategically. For instance, future research should investigate how delays
in response time should be communicated (e.g., visually, verbally, or numerically)
and whether they might backfire in time-sensitive or repetitive contexts. Regarding
the advances in GenAI and voice assistant systems (Poushneh, 2021), it is conceiv-
able that an AI that communicates its “thinking procedure” in a human-like manner
could enhance trust by reinforcing anthropomorphic perceptions (Horstmann et al.,
2018).

Building on this progress in AI, an upcoming research stream conceptualizes AI as
an implicit team member embedded in social and collaborative processes (De Fre-
itas et al., 2025; Dell’Acqua et al., 2025; Zercher, Jussupow, and Heinzl, 2025). To
contribute to the new strand of literature, Paper 4 highlights the interaction dynam-
ics that emerge when GenAI is embedded in multi-human teams. Moving beyond
typical dyadic (one-human-one-AI) setups (Bouschery et al., 2023; Boussioux et al.,
2024; Doshi and Hauser, 2024; Seeber et al., 2020), this thesis extends the research
by focusing on team dynamics that transform input into output in creative decision-
making, which have not yet been adequately explored (O’Neill et al., 2022; O’Neill
et al., 2023). The results of this paper suggest that the presence of AI subtly but
systematically alters how teams collaborate by influencing the content, structure,
and flow of the interaction. For example, permanent AI integration seems to be
associated with shifts in communication content (e.g., by altering the cognitive divi-
sion of labor or enhancing socioemotional statements), a redistribution of influence
from dominant individuals to the team, and a move from dyadic exchanges to more
team-oriented forms of interaction. These patterns, in combination with comparable
initial studies regarding team climate (Zercher, Jussupow, Benke, et al., 2025) and
team sociality (Dell’Acqua et al., 2025) signal a structural transformation in team
dynamics that may have implications for how leadership, coordination, and role
differentiation evolve. Overall, Paper 4 represents an initial step toward theorizing
the human-AI interaction at the team level. Future research should expand on these
findings by exploring other team configurations, task domains, and longitudinal
effects of sustained AI collaboration. Applying these insights from a practical per-
spective might induce the need to rethink conventional teamwork models in creative
and knowledge-intensive contexts. As AI increasingly shapes not only individual
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productivity but also collective behavior, organizations must consider how, when,
and to what extent AI should be embedded in collaborative workflows.

1.4. Limitations

While this dissertation offers novel insights into human-AI interaction at both indi-
vidual and team levels, several limitations warrant consideration and provide direc-
tions for future research. The selection of the respective research methods naturally
entails certain advantages and disadvantages.

The chosen methodological approaches (online and laboratory experiments) offer
distinct advantages but also limitations. The online experiments conducted in Paper 1
and Paper 2 allowed for rapid data collection and access to larger, more diverse par-
ticipant pools. However, these settings inherently lack control over environmental
variables, introducing the risk of unobserved confounds that may have influenced
participant behavior. Conversely, the laboratory studies in Paper 3 and Paper 4 en-
abled a high degree of experimental control, facilitating more reliable focus on the
phenomenon under investigation by minimizing external noise. Yet, this simplifica-
tion may limit external validity, as complex situational dynamics, further motivating
factors, and additional hierarchies and responsibilities in organizational contexts are
neglected.

Therefore, during the dissertation process, efforts were made to enhance the internal
and external validity of the results. First, all experiments employed monetary incen-
tives to ensure internal validity and to encourage participants to engage seriously
with the tasks. This is a common approach to simulate real-world decision-making
contexts and promote authentic behavior during the experimental sessions. Sec-
ond, while this dissertation primarily emphasizes observable user behavior, such as
reliance, error detection, or team dynamics, multiple attempts were made to incorpo-
rate internal psychological factors that may underlie these behaviors. For instance,
participants’ attitudes toward AI (Schepman and Rodway, 2020), perceived psycho-
logical safety (Edmondson, 1999), and individual personality traits (Rammstedt et
al., 2014) were systematically assessed using validated scales. Nonetheless, it must
be acknowledged that internal states are inherently difficult to access and interpret
fully, and the omission of other potentially influential cognitive or affective factors
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limit the generalizability of the findings. Future research could, for example, at-
tempt to quantify brain activity and flows or apply additional qualitative methods
(e.g., the think-aloud method) to improve the operationalization of actual thought
patterns and cognitive effort. Third, by focusing intentionally on non-expert users
and student samples, this dissertation aims to reflect the growing relevance of these
groups in everyday AI applications, especially as future decision-makers, given that
non-expert users are increasingly collaborating with AI (Miller, 2019; Schoeffer et
al., 2024; Liao et al., 2020). Moreover, students represent future professionals and
managers who are likely to encounter AI-based systems in their future work envi-
ronments (Zercher, Jussupow, and Heinzl, 2025). Nevertheless, the extent to which
these samples can be generalized to experienced professionals in domain-specific
or high-consequence environments is limited. Additionally, the studies in this dis-
sertation are based on convenience-based sampling, where participants may have
self-selected into the experiments. However, the control variables often indicate that
the samples in this thesis behave similarly to other studies, suggesting at least some
level of representativeness. However, more research is urgently needed to validate
these results in field studies and real-world applications. Fourth, while attention
was paid to achieving sample heterogeneity across studies (e.g., by recruiting par-
ticipants across multiple institutions and countries in Paper 4), this approach cannot
entirely account for potential cultural or contextual disparities. For instance, other
studies indicate cultural differences in attitudes towards algorithms (Lee and Rich,
2021; Yam et al., 2023). Consequently, more research should investigate cross-cultural
differences in the context of human-AI interaction.

A further key methodological consideration involves the limited observation peri-
ods of the studies included in this dissertation. All experiments were designed as
short-term interactions, focusing on immediate behavioral responses to AI systems.
While this approach allows this dissertation to investigate multiple variables under
certain conditions, it does not account for the longitudinal dynamics of human-AI
interaction. In real-world settings, users often engage with AI systems repeatedly,
and such sustained exposure may lead to learning effects and different patterns of
adaptation, trust calibration, or reliance behavior. Particularly in Paper 4, the perma-
nent and temporary integration of AI into team dynamics implies distinct impacts
on team processes and structure. This suggests that short-duration experiments may
underestimate the systemic implications of AI collaboration over time.



28 1.5 Conclusion

Moreover, given the rapid pace of innovation and the sociotechnical uncertainty
surrounding the future development of AI, it remains challenging to predict how
human-AI interaction will evolve in the future. While previous research forecasts
an era of automation (Frey and Osborne, 2017; Acemoglu and Restrepo, 2018), cur-
rent literature hypothesizes a time of augmentation between humans and AI (Raisch
and Krakowski, 2021; Raisch and Fomina, 2025; Brynjolfsson et al., 2025). Taking
the different implications regarding the influence of familiarity with AI as an exam-
ple, whereby on the one hand, initial skepticism toward AI can decrease through
repeated use (Prahl and Van Swol, 2017; Jussupow et al., 2020); on the other hand,
routine use and rapid advancements in AI can also foster uncritical acceptance of AI
recommendations (Larson et al., 2024; Spitzer et al., 2024; Rebholz et al., 2024). This
highlights the challenge of predicting developments in this highly disruptive and
rapidly evolving domain. Therefore, longitudinal studies that track behavior across
extended time frames, varied tasks, and real-world settings are crucial to capture the
dynamic and adaptive nature of this relationship.

Ultimately, despite their temporal constraints, the studies presented in this disser-
tation offer a meaningful and timely window into how humans interact with AI
systems under diverse conditions of task complexity, explanation design, decision
context, and collaboration modality. By focusing on individual- and team-level inter-
actions across multiple experimental paradigms, this dissertation provides a robust
empirical foundation for future investigations.

1.5. Conclusion

In summary, this dissertation demonstrates that finding the balance between human
intelligence and artificial intelligence, where they complement each other perfectly
to achieve optimal synergy, is a genuinely challenging task. By examining this team-
work from different angles, applying different theoretical concepts, and evaluating
heterogeneous influencing factors, this dissertation contributes to shedding light on
this transformative academic field. This research highlights the complexity of devel-
oping AI systems that must not only be technically efficient but also cognitively and
socially compatible with human users. Therefore, this thesis offers critical insights
and approaches for further research on potential optimization strategies for human-
AI interaction, including the influence of explanation modalities, the effects of acces-
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sibility to explanations, and response times. Although this research is often based on
basic-level decision support or AI systems, the exploration schemes presented here
can surely be adapted to the interaction with more complex AI systems. However,
anticipating how different individuals will interact, behave, rely on, and collaborate
with AI remains difficult. Human behavior is deeply nuanced and influenced by var-
ious factors, including personal factors such as expertise and thinking patterns, as
well as contextual factors such as situational circumstances. These dynamics become
even more unpredictable when layered with the rapid evolution of AI capabilities,
leaving researchers to study a moving and co-constructed interaction space between
humans and machines. As AI systems become more like teammates than tools, it is
essential to move beyond static performance metrics and develop models that reflect
the relational, dynamic, and co-adaptive qualities of intelligent collaboration. As this
research illustrates, GenAI appears to alter not only what is discussed but also how
communication is distributed among team members, prompting a reevaluation of
power dynamics and leadership in AI-mediated teams. This dissertation reinforces
the importance of ongoing, adaptive research that captures the fluid, co-evolving
relationship between humans and AI.





171

References

Abdul, A., Vermeulen, J., Wang, D., Lim, B. Y., and Kankanhalli, M. (2018). Trends and

Trajectories for Explainable, Accountable and Intelligible Systems: An HCI Research

Agenda. In Proceedings of the 2018 CHI conference on human factors in computing systems,

1–18. https://doi.org/10.1145/3173574.3174156.

Acemoglu, D. and Restrepo, P. (2018). The race between man and machine: Implications of

technology for growth, factor shares, and employment. American economic review (108:6),

1488–1542.

Adadi, A. and Berrada, M. (2018). Peeking Inside the Black-Box: A Sur-

vey on Explainable Artificial Intelligence (XAI). IEEE access (6), 52138–52160.

https://doi.org/10.1109/ACCESS.2018.2870052.

Agarwal, P. and Farndale, E. (2017). High-performance work systems and creativity im-

plementation: the role of psychological capital and psychological safety. Human Resource
Management Journal (27:3), 440–458.

Ågerfalk, P. J. (2020). Artificial intelligence as digital agency. European Journal of Information
Systems (29:1), 1–8. https://doi.org/10.1080/0960085X.2020.1721947.

Agrawal, A., Gans, J., and Goldfarb, A. (2017). What to expect from artificial intelligence.

MIT Sloan Management Review Cambridge, MA (58:3), 22–27.

Ajzen, I. (2001). Nature and operation of attitudes. Annual review of psychology (52:1), 27–58.

https://doi.org/10.1146/annurev.psych.52.1.27.

Allcott, H. and Kessler, J. B. (2019). The welfare effects of nudges: A case study of energy

use social comparisons. American Economic Journal: Applied Economics (11:1), 236–276.

Allcott, H. and Rogers, T. (2014). The short-run and long-run effects of behavioral inter-

ventions: Experimental evidence from energy conservation. American Economic Review
(104:10), 3003–3037.

Amabile, T. M. (2018). Creativity in context: Update to the social psychology of creativity.

Routledge (1). https://doi.org/10.4324/9780429501234.

Amabile, T. M. (2020). Creativity, artificial intelligence, and a world of surprises. Academy of
Management Discoveries (6:3), 351–354.

Amershi, S., Weld, D., Vorvoreanu, M., Fourney, A., Nushi, B., Collisson, P., Suh, J., Iqbal,

S., Bennett, P. N., Inkpen, K., et al. (2019). Guidelines for human-AI interaction. In

Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–13.

https://doi.org/10.1145/3173574.3174156
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1080/0960085X.2020.1721947
https://doi.org/10.1146/annurev.psych.52.1.27
https://doi.org/10.4324/9780429501234


172

Anantrasirichai, N. and Bull, D. (2022). Artificial intelligence in the creative industries: a

review. Artificial intelligence review (55:1), 589–656. https://doi.org/10.1007/s10462-021-

10039-7.

Araujo, T., Helberger, N., Kruikemeier, S., and de Vreese, C. H. (2020). In AI we trust?

Perceptions about automated decision-making by artificial intelligence. AI & SOCIETY
(35:3), 611–623. https://doi.org/10.1007/s00146-019-00931-w.

Argote, L., Lee, S., and Park, J. (2021). Organizational learning processes and outcomes:

Major findings and future research directions. Management Science (67:9), 5399–5429.

Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García,

S., Gil-López, S., Molina, D., Benjamins, R., et al. (2020). Explainable Artificial Intelli-

gence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI.

Information fusion (58), 82–115. https://doi.org/10.1016/j.inffus.2019.12.012.

Ashkinaze, J., Mendelsohn, J., Qiwei, L., Budak, C., and Gilbert, E. (2024). How AI Ideas

Affect the Creativity, Diversity, and Evolution of Human Ideas: Evidence From a Large,

Dynamic Experiment. arXiv preprint arXiv:2401.13481.

Bader, S. and Oevermann, J. (2017). Semantic Annotation of Heterogeneous Data Sources:

Towards an Integrated Information Framework for Service Technicians. In Proceedings of
the 13th International Conference on Semantic Systems, 73–80.

Badue, C., Guidolini, R., Carneiro, R. V., Azevedo, P., Cardoso, V. B., Forechi, A., Jesus, L.,

Berriel, R., Paixao, T. M., Mutz, F., et al. (2021). Self-driving cars: A survey. Expert Systems
with Applications (165), 113816.

Bailey, P. E., Leon, T., Ebner, N. C., Moustafa, A. A., and Weidemann, G. (2022). A meta-

analysis of the weight of advice in decision-making. Current Psychology (42), 24516–24541.

https://doi.org/10.1007/s12144-022-03573-2.

Baird, A. and Maruping, L. M. (2021). The Next Generation of Research on IS Use: A

Theoretical Framework of Delegation to and from Agentic IS Artifacts. MIS Q. (45). URL:

https://api.semanticscholar.org/CorpusID:228102761.

Balkundi, P. and Harrison, D. A. (2006). Ties, leaders, and time in teams: Strong infer-

ence about network structure’s effects on team viability and performance. Academy of
Management Journal (49:1), 49–68.

Bansal, G., Nushi, B., Kamar, E., Lasecki, W. S., Weld, D. S., and Horvitz, E. (2019). Beyond

accuracy: The role of mental models in human-AI team performance. In Proceedings of the
AAAI Conference on Human Computation and Crowdsourcing (7:1), 2–11.

Bansal, G., Wu, T., Zhou, J., Fok, R., Nushi, B., Kamar, E., Ribeiro, M. T., and Weld, D. (2021).

Does the whole exceed its parts? The effect of ai explanations on complementary team

performance. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, 1–16.

https://doi.org/10.1007/s10462-021-10039-7
https://doi.org/10.1007/s10462-021-10039-7
https://doi.org/10.1007/s00146-019-00931-w
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1007/s12144-022-03573-2
https://api.semanticscholar.org/CorpusID:228102761


References 173

Bauer, K., von Zahn, M., and Hinz, O. (2023). Expl (AI) ned: The impact of explainable

artificial intelligence on users’ information processing. Information Systems Research (34:4),

1582–1602. https://doi.org/10.1287/isre.2023.1199.

Bawden, D. and Robinson, L. (2009). The dark side of information: overload, anxiety and

other paradoxes and pathologies. Journal of Information Science (35:2), 180–191.

Bell, A. and Jones, K. (2015). Explaining fixed effects: Random effects modeling of time-

series cross-sectional and panel data. Political Science Research and Methods (3:1), 133–153.

Beyth-Marom, R. (1982). How probable is probable? A numerical translation of verbal

probability expressions. Journal of Forecasting (1:3), 257–269.

Bicchieri, C. and Dimant, E. (2022). Nudging with care: The risks and benefits of social

information. Public choice (191:3), 443–464.

Bohren, N., Hakimov, R., and Lalive, R. (2024). Creative and Strategic Capabilities of Generative
AI: Evidence from Large-Scale Experiments. Tech. rep. Institut of Labor Economics (IZA).

URL: https://hdl.handle.net/10419/305744.

Bonaccio, S. and Dalal, R. S. (2006). Advice taking and decision-making: An integrative

literature review, and implications for the organizational sciences. Organizational Behavior
and Human Decision Processes (101:2), 127–151.

Bonnefon, J.-F. and Rahwan, I. (2020). Machine thinking, fast and slow. Trends in Cognitive
Sciences (24:12), 1019–1027.

Booch, G., Fabiano, F., Horesh, L., Kate, K., Lenchner, J., Linck, N., Loreggia, A., Muruge-

san, K., Mattei, N., Rossi, F., and Srivastava, B. (2021). Thinking Fast and Slow in

AI. In Proceedings of the AAAI Conference on Artificial Intelligence (35:17), 15042–15046.

https://doi.org/10.1609/aaai.v35i17.17765.

Bouschery, S. G., Blazevic, V., and Piller, F. T. (2023). Augmenting human innovation

teams with artificial intelligence: Exploring transformer-based language models. Journal
of Product Innovation Management (40:2), 139–153. https://doi.org/10.1111/jpim.12656.

Boussioux, L., Lane, J. N., Zhang, M., Jacimovic, V., and Lakhani, K. R. (2024). The Crowdless

Future? Generative AI and Creative Problem-Solving. Organization Science (35:5), 1589–

1607. https://doi.org/10.1287/orsc.2023.18430.

Bradler, C., Neckermann, S., and Warnke, A. J. (2016). Incentivizing creativity: A large-

scale experiment with tournaments and gifts. ZEW-Centre for European Economic Research
Discussion Paper.

Brüderl, J. and Ludwig, V. (2015). Fixed-effects panel regression. The Sage handbook of
regression analysis and causal inference (327), 357.

Brynjolfsson, E., Li, D., and Raymond, L. (2025). Generative AI at work. The Quarterly
Journal of Economics (140:2), 889–942.

Brynjolfsson, E., Mitchell, T., and Rock, D. (2018). What can machines learn and what does

it mean for occupations and the economy? In AEA papers and proceedings (108), 43–47.

https://doi.org/10.1287/isre.2023.1199
https://hdl.handle.net/10419/305744
https://doi.org/10.1609/aaai.v35i17.17765
https://doi.org/10.1111/jpim.12656
https://doi.org/10.1287/orsc.2023.18430


174

Buçinca, Z., Malaya, M. B., and Gajos, K. Z. (2021). To trust or to think: cognitive forcing

functions can reduce overreliance on AI in AI-assisted decision-making. Proceedings of the
ACM on Human-computer Interaction (5:CSCW1), 1–21.

Budescu, D. V. and Wallsten, T. S. (1985). Consistency in interpretation of probabilistic

phrases. Organizational Behavior and Human Decision Processes (36:3), 391–405.

Bunt, A., Lount, M., and Lauzon, C. (2012). Are explanations always important? A study of

deployed, low-cost intelligent interactive systems. In Proceedings of the 2012 ACM interna-
tional conference on Intelligent User Interfaces, 169–178.

Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning

algorithms. Big Data & Society (3:1). https://doi.org/10.1177/2053951715622512.

Burton, J. W., Stein, M.-K., and Jensen, T. B. (2020). A systematic review of algorithm

aversion in augmented decision making. Journal of Behavioral Decision Making (33:2), 220–

239.

Byrne, R. M. (2019). Counterfactuals in Explainable Artificial Intelligence (XAI): Evidence

from Human Reasoning. In IJCAI, 6276–6282.

Caluori, L. (2024). Hey Alexa, why are you called intelligent? An empirical investigation on

definitions of AI. AI & SOCIETY (39:4), 1905–1919.

Carton, S., Mei, Q., and Resnick, P. (2020). Feature-based explanations don’t help people de-

tect misclassifications of online toxicity. In Proceedings of the International AAAI Conference
on Web and Social Media (14), 95–106.

Castelo, N., Bos, M. W., and Lehmann, D. R. (2019). Task-dependent algorithm aversion.

Journal of Marketing Research (56:5), 809–825.

Chen, C. X., Williamson, M. G., and Zhou, F. H. (2012). Reward system design and group

creativity: An experimental investigation. The Accounting Review (87:6), 1885–1911.

Chen, D. L., Schonger, M., and Wickens, C. (2016). oTree—An open-source platform for

laboratory, online, and field experiments. Journal of Behavioral and Experimental Finance (9),

88–97.

Chen, Z. and Chan, J. (2024). Large language model in creative work: The role of collabora-

tion modality and user expertise. Management Science (70:12), 9101–9117.

Cheng, H.-F., Wang, R., Zhang, Z., O’Connell, F., Gray, T., Harper, F. M., and Zhu, H. (2019).

Explaining decision-making algorithms through UI: Strategies to help non-expert stake-

holders. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems,

1–12.

Chiang, C.-W. and Yin, M. (2022). Exploring the Effects of Machine Learning Literacy

Interventions on Laypeople’s Reliance on Machine Learning Models. In 27th International
Conference on Intelligent User Interfaces, 148–161.

Chu, E., Roy, D., and Andreas, J. (2020). Are Visual Explanations Useful? A Case Study in

Model-in-the-Loop Prediction. arXiv preprint arXiv: 2007.12248.

https://doi.org/10.1177/2053951715622512


References 175

Clark, E., Ross, A. S., Tan, C., Ji, Y., and Smith, N. A. (2018). Creative writing with a machine

in the loop: Case studies on slogans and stories. In Proceedings of the 23rd International
Conference on Intelligent User Interfaces, 329–340.

Contractor, N. S., Wasserman, S., and Faust, K. (2006). Testing multitheoretical, multilevel

hypotheses about organizational networks: An analytic framework and empirical example.

Academy of Management Review (31:3), 681–703.

Craik, K. J. W. (1967). The nature of explanation. CUP Archive.

Cummings, J. N. and Cross, R. (2003). Structural properties of work groups and their

consequences for performance. Social Networks (25:3), 197–210.

David, L., Vassena, E., and Bijleveld, E. (2024). The unpleasantness of thinking: A meta-

analytic review of the association between mental effort and negative affect. Psychological
Bulletin (150:9), 1070–1093. https://doi.org/10.1037/bul0000443.
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