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Abstract
Object recognition is one of the most important problems in computer vision and can be
addressed using various techniques and functional subcomponents, including different
preprocessing steps, feature types, and learning and classification schemes, depending
on the specific task and operational conditions. Both traditional and deep learning-
based methods require stable features that are sufficiently descriptive and distinctive to
recognize and distinguish different objects or classes. In this work, two new methods to
extract such features are presented: the first method determines local scale-invariant
contour features around curvature extrema, while the second method introduces an
ambiguity model with edge tracing to extract these features from binary edge images. At
the end of this work, it is proposed to integrate the methods into a deep learning-based
end-to-end feature detection approach.

Besides technical rationales, the contour features presented in this work are inspired
by insights from human vision research. In particular, curvature extrema are the most
informative points along contours and highly salient in human vision. A unique aspect
of the features is that they are assigned a characteristic scale. While this is a widely
adopted approach for appearance-based features, there is no robust methodology for
assigning characteristic scales to curvature extrema. The features are extracted using
curvature scale-space analysis, which provides a formalized bottom-up framework for
this task. Computational experiments demonstrate that the contour features can be
reliably detected even under extreme scale changes, noise, and partial occlusion. In the
context of this method, box filter approximations are analyzed, and a selected approach
is integrated to achieve real-time capability. Furthermore, a new padding method is
presented to process open contours.

Binary edge images often include intersections, junctions, and other structures that
make it difficult to extract coherent object contours. Nevertheless, such contours are
required for extracting the contour features presented in this work and other methods.
The ambiguity model presented in this work is designed to describe and resolve such
ambiguities. Despite using only four straightforward principles, the model can handle
complex structures in binary edge images in an intuitive and effective manner. Compared
to existing methods, the model provides the most detailed decomposition of binary edge
images into meaningful segments while also reducing redundancy (double reading of
edge pixels). It is shown that the method can effectively resolve complex ambiguities in
different application examples.
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Zusammenfassung

Die Objekterkennung ist eines der wichtigsten Probleme der digitalen Bildverarbeitung
und kann mit verschiedenen Ansätzen und funktionalen Teilkomponenten adressiert
werden. Dies umfasst verschiedene Vorverarbeitungsschritte, Merkmalstypen sowie
Lern- und Klassifizierungsmethoden, abhängig von der spezifischen Aufgabe und den
Einsatzbedingungen. Sowohl traditionelle als auch Deep-Learning-basierte Ansätze
erfordern robuste Merkmale, die hinreichend deskriptiv und distinktiv sind, um Ob-
jekte oder Klassen zu erkennen und zu unterscheiden. In dieser Arbeit werden zwei
neue Methoden zur Extraktion solcher Merkmale vorgestellt: Die erste bestimmt lokale,
skalierungsinvariante Konturmerkmale um Krümmungsextrema. Die zweite stellt ein
Mehrdeutigkeitsmodell mit Kantenverfolgung dar, um die Merkmale aus binären Kan-
tenbildern zu extrahieren. Abschließend wird vorgeschlagen, die Methoden in einen
Deep-Learning-basierten End-to-End-Ansatz zur Merkmalsdetektion zu integrieren.

Neben technischen Überlegungen sind die Konturmerkmale von Erkenntnissen zur
menschlichen Wahrnehmung motiviert. Insbesondere weisen Krümmungsextrema den
größten Informationsgehalt entlang von Objektkonturen und eine hohe Salienz in der
menschlichen Wahrnehmung auf. Eine Besonderheit der Merkmale ist die Zuordnung
einer charakteristischen Skalierung. Während dies für ansichtenbasierte Merkmale
verbreitet ist, fehlt eine robuste Methodik für Krümmungsextrema. Zur Extraktion wird
ein skalenraumtheoretischer Ansatz verwendet, der dazu ein formalisiertes Bottom-Up-
Framework bietet. Es wird gezeigt, dass die Konturmerkmale auch bei starken Größenän-
derungen, Rauschen und teilweiser Überdeckung zuverlässig extrahiert werden können.
Außerdem werden Boxfilter-Ansätze analysiert und integriert, um Echtzeitfähigkeit zu
erzielen, sowie eine neue Padding-Methode für offene Konturen vorgestellt.

Binäre Kantenbilder enthalten oft Schnittpunkte, Kreuzungen und andere Strukturen,
die die Extraktion kohärenter Objektkonturen erschweren. Diese sind jedoch zur Extrak-
tion der Konturmerkmale sowie für andere Methoden erforderlich. Das in dieser Arbeit
vorgestellte Mehrdeutigkeitsmodell wurde entwickelt, um solche Mehrdeutigkeiten zu
beschreiben und aufzulösen. Obwohl das Modell nur vier einfache Prinzipien verwendet,
kann es komplexe Strukturen in binären Kantenbildern auf intuitive und effektive Weise
verarbeiten. Im Vergleich zu bestehenden Methoden bietet das Modell die differen-
zierteste Segmentierung und reduziert gleichzeitig Redundanzen (doppeltes Einlesen
von Kantenpixeln). Es wird gezeigt, dass die Methode komplexe Mehrdeutigkeiten in
verschiedenen Anwendungsbeispielen effektiv auflösen kann.
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Introduction
1

Object recognition in digital images has been an important research area for decades
and is still a central problem in computer vision. It can be addressed using various
techniques and functional subcomponents, including different preprocessing steps,
feature types, and learning and classification schemes, especially depending on the
specific task and operational conditions (see, e.g., the overviews by Amit et al., 2021;
Zou et al., 2023; Kaur and W. Singh, 2024). Some of the most important application
domains are robotics, autonomous driving, surveillance, and medical image analysis.
In robotics, for example, object recognition is required for autonomous navigation and
object manipulation, and is therefore an essential component for interactions with the
environment (Soori et al., 2023). Similarly, road objects have to be reliably detected in
autonomous driving, with specific challenges in accuracy, interpretability, inference time,
and sensor data fusion (Zhao et al., 2024). Recognition capabilities have significantly
improved with deep learning techniques, especially convolutional neural networks
(CNNs). At the core of nearly any object recognition method is a feature extraction stage.
The characteristics of the features employed—their type, repeatability, precision, and
discriminative capabilities—significantly contribute to the recognition performance. Both
traditional and deep learning-based methods require stable features that are sufficiently
descriptive and distinctive to recognize and distinguish different objects or classes. While
traditional methods use manually engineered features, deep learning-based methods
generally learn features automatically.

In this work, a new method to determine local scale-invariant contour features is pre-
sented, which fall into the category of manually engineered shape features. Additionally,
a new general and intuitive ambiguity model for binary edge images is presented. The
model can be used to extract coherent object contours to determine the contour features.
While global features generally lead to more compact object representations, local fea-
tures can better cope with partial occlusion, viewpoint changes, or deformable objects
due to their mutual independence and localized nature. The ambiguity model is particu-
larly promising for use in connection with current edge and object contour detection
methods, where deep learning-based methods achieve the best results (Jing et al., 2022;
D. Yang et al., 2022). While the contour features provide some attractive properties,
particularly being robust, meaningful, and interpretable, their extraction requires several
preprocessing steps. Here is another connection to modern deep learning-based meth-
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ods: local features can serve as anchors for supervised training in end-to-end feature
detection approaches (e.g., Ma et al., 2021). To substitute the preprocessing steps, it
is proposed to use the methods developed in this work to generate training data for a
deep learning-based end-to-end feature detection approach.

Object contours are interesting to analyze because they provide highly descriptive yet
compact object representations and therefore have a long history in object recognition
methods (Andreopoulos and Tsotsos, 2013). In digital images, object contours can be
detected even in case of challenging illumination conditions and complex object textures,
especially when using learning instead of traditional gradient-based edge detection
methods (e.g., Pu et al., 2022). In addition to technical rationales, the presented contour
features are motivated by insights from human vision research, where the role of shape
information is extensively studied (e.g., M. Singh, 2015; Bracci and Op de Beeck, 2023).
As pointed out in (Baker et al., 2018) based on established literature on the subject (see
references therein and Section 2.1.1), shape is generally the most important cue for
recognizing objects in human vision. In particular, objects can be accurately recognized
even when other visual dimensions are removed. In this context, the focus of this work
is on the role of curvature extrema of 2D object contours, which are used as keypoints
to determine the local contour features.

1.1 Objectives and Contributions

The main objective of this work is to develop a method for extracting local scale-invariant
contour features at curvature extrema to complement appearance-based features in a
modular manner. While it is common to assign characteristic scales to local appearance-
based features, there is no robust methodology for assigning characteristic scales to local
contour features. Yet, it is well-known that shape information—which is encoded in
contours—is generally the most important cue for recognizing objects in human vision,
and that curvature extrema are the most informative points along object contours. The
following two methods are parameter-free and could therefore be used in a wide range
of applications.

The contour features are extracted using curvature scale-space (CSS) analysis, which
provides a formalized bottom-up framework for this task. While most existing methods
based on this framework are global, the method presented in this work is a local approach
that assigns characteristic scales to curvature extrema. Furthermore, it supports both
closed and open contours. The key idea in this work is to identify and distinguish local
and global characteristics in the signature functions of curvature extrema within the CSS
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representation—an aspect that has not been explored in the literature. To process open
contours, their evolution should approximate that of the original closed contour when
computing the CSS representation. To this end, a new padding method is presented.
Since the convolutions required to compute the CSS representation are computationally
expensive, a box filter approximation is integrated to enable real-time capability. Such
approximations have not been analyzed in the context of CSS computation.

The method developed in this work to extract the contour features requires traced object
contours without ambiguities—where ambiguities refer to structures where the path of a
contour is not clearly defined, such as at intersections or junctions. To handle such cases,
a new ambiguity model is presented, which traces edge pixels in an ordered sequence
and is specifically designed to describe and resolve such ambiguities. Compared to
existing methods, the model provides the most detailed decomposition of binary edge
images into meaningful segments while also reducing redundancy (double reading of
edge pixels). Despite using only four straightforward principles, the model can handle
complex structures in binary edge images in an intuitive and effective manner.

1.2 Thesis Structure

In Chapter 2, background information on object recognition in the human visual system
and artificial vision systems is provided in relation to the methods developed in this
work. In Chapter 3, the developed ambiguity model for binary edge images is presented,
and a detailed comparison with existing methods is provided. In Chapter 4, the local
scale-invariant contour features are introduced, based on a detailed analysis of curvature
extrema signature functions. In Chapter 5, the main achievements are summarized and
a potential integration of the developed methods into a deep learning-based end-to-end
feature detection approach is outlined.

1.2 Thesis Structure 3





Background and Motivation
2

This chapter provides background information on object recognition in the human visual
system and artificial vision systems in relation to the methods developed in this work.
Section 2.1 focuses on the human visual system, while Section 2.2 focuses on artificial
vision systems.

Human visual system: In Section 2.1.1, the relevance of contours, shape, and other fea-
tures is discussed, which serve as building blocks for object recognition in a hierarchical
processing scheme. In Section 2.1.2, the role of curvature extrema is described, which
are the most informative points along object contours. In Section 2.1.3, the importance
of processing visual information at multiple scales is outlined.

Artificial vision systems: In Section 2.2.1, local and global features are characterized
from a general perspective, followed by a description of different types of local image
features. In Section 2.2.2, the general relevance and properties of local invariant features
are discussed. In Section 2.2.3, the concept of characteristic scales is reviewed, which
are employed for invariant feature description. In Section 2.2.4, important local feature
detection methods such as SIFT, SURF, and ORB are described. Finally, region- and
edge-based image segmentation methods are discussed in Sections 2.2.5 and 2.2.6,
where the results of these methods can be processed using the methods developed in
this work.

Preliminary considerations on the aspects discussed in this chapter have been published
in (Hennig and Mertsching, 2016).

2.1 Human Vision and Object Recognition

Motivated by the capabilities of human vision, object recognition methods in computer
vision are often inspired by insights into the mechanisms of the human visual system
(Poggio and Ullman, 2013). This is also the case for the contour features presented in
this work. Such mechanisms are extensively explored in different disciplines, including
cognitive psychology, neuroscience, and computer vision, with dissolving boundaries
between the fields (DiCarlo et al., 2012). The numerous works reflected in that review,
as well as more recent reviews (e.g., X. Yang et al., 2022; Bracci and Op de Beeck,
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2023), show that while there is no universal model for human vision, there are profound
insights into its complex and complementary subprocesses.

Two foundational object recognition frameworks developed in cognitive psychology
are the Recognition-by-Components model by Biederman (1987), where objects are
represented as structural models based on 3D geometric shape primitives (“geons”),
and the view-based model by Bülthoff and Edelman (1992), where objects are rep-
resented as sets of 2D views. While structural information is definitely involved, the
dominant mechanisms for object recognition are view-based (Tarr and Bülthoff, 1998;
Andreopoulos and Tsotsos, 2013). As the contour features presented in this work are
extracted from images, they are also more in line with the view-based model. As
human vision accomplishes a range of tasks beyond object recognition (e.g., active
object observation, object tracking, obstacle avoidance) and is influenced by pre-cuings,
top-down knowledge, context, etc., it is often broken down into the problem of core
object recognition, the ability to rapidly recognize isolated objects at the category level
despite variations in appearance (DiCarlo et al., 2012; Wichmann and Geirhos, 2023).
The field of neuroscience provides insights into the corresponding processes in the
brain through the analysis of neuronal activity, using methods like Functional Magnetic
Resonance Imaging (fMRI) (e.g., Ayzenberg and Behrmann, 2022b, and the references
therein). For example, it is well known that visual information is processed in two main
neural pathways: the ventral pathway (Lateral geniculate nucleus (LGN), V1, V2, V4,
Inferior temporal cortex (IT)) for object recognition (“what”), and the dorsal pathway for
locating and manipulating objects (“where/how”). Core object recognition is essentially
solved by fast feedforward computations in the ventral pathway (DiCarlo et al., 2012).
Another important finding is that visual information for object recognition is processed
in a hierarchical manner, starting with basic features in V1, such as edges of different
orientations, contrasts, spatial frequencies, and colors, and then gradually reaching
object representations in the IT. In line with that, the contour features presented in
this work are also intended to be used as intermediate elements in hierarchical object
recognition schemes. The field of computer vision provides additional insights: the idea
is that if a model works well in this field, then it could also explain processes involved
in human vision. For example, one of the research questions currently investigated in
various studies is whether Deep neural networks (DNNs) are adequate models of human
core object recognition. While promising, they do not seem to be completely sufficient
(Wichmann and Geirhos, 2023).

To further motivate the development of the contour features, some more specific aspects
of human object recognition are outlined in the following sections: the role of contours,
which represent the outline of objects and provide shape information; the role of
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curvature extrema, which highlight significant points along contours; and the importance
of scale, which corresponds to different levels of abstraction.

2.1.1 Contours, Shape, and Other Features

As explained by DiCarlo et al. (2012), every retinal image of an object is almost unique
due to varying object positions relative to the observer, changing lighting conditions,
object deformations, and diverse visual contexts. Nonetheless, objects can be reliably
recognized and distinguished, which therefore requires identity-preserving features.
Particularly important in this regard are object contours, as their structural and relational
properties in images are relatively invariant to changes in position, scale, and rotation.
Furthermore, object contours represent the outline (boundaries) of objects and therefore
provide fundamental information about their shape and structure. As pointed out by M.
Singh (2015), they also indicate some physically significant phenomena, corresponding
to concentrated regions of information. It is therefore not surprising that contours have
already been one of the main elements in early computational models of vision (e.g.,
Marr, 1982).

As outlined above, the human visual system processes information in a hierarchical
manner. Regarding object contours, the process starts with edge detection in V1 (with
major breakthroughs in understanding this process by Hubel and Wiesel, summarized
in their retrospective, 2004). An inherent strength of edges is their robustness due
to their relative invariance to changing lighting conditions, textures, and colors. The
detected edges are then integrated into contours and further processed in higher visual
areas like the IT (Loffler, 2008). As summarized by M. Singh (2015), the process is
based on parts and their spatial relationships, where the parts are segmented according
to systematic and predictable rules. These parts often correspond to psychologically
meaningful subunits of objects (e.g., head, leg, branch), which are important for object
recognition and other tasks.

There are many additional processes that are an integral part of human vision, including
segmentation, perceptual grouping, interpolation, extrapolation, and attention (e.g.,
Dickinson and Pizlo, 2013; Wolfe et al., 2024). Furthermore, shape representations
in human vision are not only contour-based but also region-based (M. Singh, 2015).
However, the intention of the remainder of this section is to motivate the relevance of
contours and shape from a more general perspective.

Consider Figure 2.1: Although the patterns have different colors, textures, and sub-
structures, with no specific relation to the shapes, and the physical scales (sizes) of the
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Fig. 2.1: Shapes from different datasets filled with arbitrary patterns. Despite the
patterns and varying physical scales, the objects can be clearly recognized, which shows
the importance of shape over other features. Idea based on (Baker et al., 2018).

objects are quite different, the objects can still be clearly recognized. While this shows
the importance of shape over other features, the recognition capabilities of human vision
based on shapes and contours have also been systematically investigated in numer-
ous studies. For example, Biederman and Ju (1988) conducted an experiment where
participants had to identify objects presented in two different formats: professionally
photographed full-color images and simplified line drawings. The overall mean reaction
times and error rates were nearly identical for both types of stimuli. Based on that, they
concluded that while “color, brightness, and texture can be instrumental in defining
edges and can provide cues for visual search, they play only a secondary role in the
real-time recognition of an intact object when its edges can be readily extracted.” In
another study by Cole et al. (2009), participants used a computer-aided system to assign
the orientation of normals at various positions on the surfaces of 3D objects. The objects
were presented in six different styles: one shaded image and five different types of line
drawings. In this case, the authors concluded that line drawings are almost as accurate
as shaded images in depicting the 3D shape of objects, although not all line drawing
styles are equally effective. In a study conducted by Walther et al. (2011), fMRI data
was collected while participants “viewed photographs and line drawings of beaches, city
streets, forests, highways, mountains, and offices.” In this case, the authors were able
to decode the scene categories from the fMRI data for the line drawings with the same
accuracy as for the color photographs. The authors concluded that the information used
in specific brain regions to distinguish scene categories is similar for line drawings and
color photographs. Further studies investigating the importance of contours and shape
in human vision are discussed in (Ayzenberg and Behrmann, 2022a). An important
conclusion from that and other works is that shape representations of objects in the
ventral pathway “may be [...] described as a basis set of local image features,” which is
in line with the contour features presented in this work, as they are also local features.
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While shape is important, there are several other important features for object recogni-
tion in human vision. As summarized in (Ge et al., 2022), the most important features
besides shape are color and texture, and their roles in human vision have also been
extensively studied in various works. This is reasonable, as these features are essential
to distinguish certain objects. An example is also given in that work: To distinguish a
zebra from a horse, texture appears to be more important than shape, as their outlines
are quite similar. On the other hand, to distinguish a safari car with a zebra pattern
from an actual zebra, shape appears to be more important. Various studies on the role
of texture in human vision are discussed in (Pasupathy et al., 2019). Similar examples
can be found for color: For instance, to distinguish lemons and oranges viewed in
cross-section, color appears to be more important than shape and texture. Various
studies on the role of color in human vision are discussed in (Bramão et al., 2011). In
summary, effective object recognition requires the integration of different feature types.
In computer vision, local image features are often appearance-based (texture-based) and
associated with a characteristic scale (cf. Section 2.2.3). The objective for the contour
features presented in this work is therefore to assign them a characteristic scale so that
they can be integrated with appearance-based features in a modular fashion.

2.1.2 Contour Curvature Extrema

The contour features presented in this work are located at curvature extrema of object
contours, motivated by different considerations. As summarized in (M. Singh, 2015),
curvature extrema are the most informative points along contours and also play a
significant role in human vision. Furthermore, they can be reliably detected and localized,
and their information content makes them more distinctive than other points, which
are important properties of local image features in computer vision, as discussed in
Section 2.2.2.

One of the first works emphasizing the role of curvature extrema in human vision was
presented by Attneave (1954). In one of his experiments, participants were instructed
to resemble the shape of given object contours using 10 dots and then to indicate their
positions along the contours. The result was that “most of these points [were] taken
from regions where the contour is most different from a straight line,” corresponding
to curvature extrema. Based on this observation, the author concluded that common
objects can be efficiently represented by connecting curvature extrema with straight
lines. To demonstrate that, he provided a drawing now famously known as Attneave’s
Cat, which is shown in Figure 2.2a. Furthermore, the author pointed out the direct
relation of such questions to information theory (details below). To verify the results,
the experiment with the dots was later repeated in a very similar form by Norman
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et al. (2001). While Attneave did not describe the exact construction method of his test
contours, Norman et al. used the shadows (outlines) of natural objects (sweet potatoes)
and indeed obtained similar results. An example is shown in Figure 2.2b. The lines
represent histograms, where the bar lengths correspond to the number of participants
who placed points at the respective positions. In a large-scale study by De Winter and
Wagemans (2008), participants were asked to mark an arbitrary number of salient points
along the contours of everyday objects. Also in this case, the authors found that these
points “are usually very close to strong curvature extrema.”

Another aspect discussed in (M. Singh, 2015) is that in the case of closed contours,
curvature extrema can be assigned a distinct sign: positive for convex segments (curva-
ture maxima) and negative for concave segments (curvature minima). In the case of
open contours, the distinction between inside and outside is unclear so that the sign is
ambiguous. Curvature minima are particularly interesting because they are important
reference points for part segmentation, i.e., they are often located at the transitions
between individual object parts. For example, curvature minima separate the fingers of
a hand, the branches from the trunk of a tree, or the fins of a fish. An example for the
latter is shown in Figure 2.2c. In the corresponding study by De Winter and Wagemans
(2006), participants were instructed to segment the outlines of everyday objects into
salient or important parts using segmentation lines. As summarized in the study, the
corresponding segmentation principles in human vision have been formalized in the
literature as specific rules, such as the minima rule and short-cut rule. The contour
features presented in this work are also assigned the sign of curvature to obtain a richer
description and to potentially consider such principles in specific applications.

As already implied above and elaborated in (Feldman and M. Singh, 2005), it is consistent
with information theory that curvature extrema are the most informative points along
contours. From this perspective, the information encoded along contours increases
with larger turning angles and, as a result, with higher curvature (the turning angle
is the discrete counterpart of curvature). The connection is straightforward: from a
probabilistic point of view, a contour is most likely to continue in the direction of the
turning angle, with monotonically decreasing probability as the deviation from that
direction increases. In other words, larger deviations are more surprising and therefore
carry more information. If the probability that a turning angle α is observed is denoted
P (α), then the information content (or surprise) H associated with α can be computed
using the following standard equation from Shannon (Feldman and M. Singh, 2005):

H(α) = − ln(P (α)) . (2.1)
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a b

c d

Fig. 2.2: Examples illustrating the importance of contour curvature extrema in human
vision. a Attneave’s cat, redrawn based on (Attneave, 1954). b Histogram representing
positions where participants placed points to reproduce the given shape, reproduced
from (Norman et al., 2001). c Lines drawn by participants to segment the given contour,
reproduced from (De Winter and Wagemans, 2006). d Conceptual visualization of a
probabilistic contour continuation model, idea based on (M. Singh, 2015).

As also described in that work and supported by experimental findings with participants,
the underlying continuous distribution p(α) describing the expectations about how a
contour continues can be modeled as a von Mises distribution centered at α = 0 (straight
continuation). A conceptual visualization is shown in Figure 2.2d. The von Mises
distribution is essentially the circular counterpart of the Gaussian normal distribution,
with its support over the angles (−π, π) instead of (−∞, ∞). Note that these observations
align with the principle of good continuity, a key concept in perceptual grouping, for
example in Gestalt theory (Rock and Palmer, 1990). In this work, this principle is used
to resolve ambiguities in binary edge images, as discussed in Section 3.3.6.

2.1.3 Importance of Scale

As already outlined, effective object recognition requires identity-preserving features,
which is particularly important in case of scale changes. As discussed in greater detail
in connection with scale-space theory in Section 4.1, the problem is twofold: First,
real-world objects are built based on structures of different scales, and second, the size
of an object in the image plane changes with the distance to the observer (zooming
excluded). Nonetheless, structures at different scales can be observed simultaneously.
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For example, from an appropriate distance to a tree, one can see both the treetop and
individual leaves simultaneously. As a result, as Kuijper (2002) puts it (p. 19), “the eye
and the system behind it [are] capable of working multi-scale.”

In fact, it has been found that the retina of the human eye is already structured to process
visual information at multiple scales by using receptive fields of different sizes (Field
and Chichilnisky, 2007; Lindeberg, 2021). The basic principle is that circular center-
surround regions of photoreceptors (rods and cones) converge onto single ganglion
cells through intermediate bipolar cells, so that information is collected over regions
of different sizes in the visual field. Another important observation is that the spatial
structure of receptive field responses can be modeled based on Gaussian derivative
operators, particularly Difference of Gaussians (DoG) (Young, 1987), corresponding to
Gaussian blurring combined with second-order derivatives. In comparison to first-order
derivatives, second-order derivatives are isotropic. Furthermore, first-order derivatives
are nonzero along intensity ramps, whereas second-order derivatives are only nonzero at
the beginnings and ends of intensity ramps, making them more effective for enhancing
edges and the overall sharpness (cf. Gonzalez and Woods, 2018). As discussed in
Section 2.2.4, DoG operators are also used in computer vision to determine local image
features. Regarding the contour features presented in this work, they are assigned scale
information in the form of characteristic scales.

2.2 Local Image Features and Object Recognition

In traditional object recognition methods (as opposed to deep learning-based methods),
one can generally distinguish between local and global features and corresponding
object representations, which often provide complementary information (Grauman
and Leibe, 2011; X. Li et al., 2013; Zou et al., 2023). Global representations are
single descriptions of entire images or larger image regions, typically based on global
statistical characteristics of appearance. Common representations are color or gray-level
histograms and the gray-level co-occurrence matrix (cf. Khaldi et al., 2019). Similarly,
features like Zernike moments, Fourier descriptors, and Hu moments can be used to
describe the overall shape of an object or image region (Kurnianggoro et al., 2018).

Global features provide compact object representations that are particularly efficient
for category-level object recognition. In contrast, object representations based on local
features are more detailed, as individual part characteristics are explicitly described. As
a result, local features are particularly effective for the recognition of specific objects
(e.g., identifying a particular car, rather than just the general category car, cf. Grauman

12 Chapter 2 Background and Motivation



and Leibe, 2011). Furthermore, local features can better cope with partial occlusion,
viewpoint changes, and deformations due to their mutual independence and localized
nature. On the other hand, finding correspondences between individual features is gen-
erally more complex (feature matching, details below). However, such correspondences
are required for tasks such as aligning images or tracking the motion of individual
object parts (e.g., Gauglitz et al., 2011). Another characteristic difference is that when
searching for an object in an image, global representations generally require search
windows with many different sizes and aspect ratios (cf. Uijlings et al., 2013), whereas
local feature detectors directly identify specific points or regions of interest. Concerning
deep learning techniques, especially CNNs, their hierarchical structure aggregates small
features into higher-level representations (Khan et al., 2020) and can therefore be seen
as an approach that integrates both local and global features. One disadvantage of
CNNs is that the specific type of features used and the integration process are difficult to
control (cf. discussion in Section 5.1).

As summarized by Tuytelaars and Mikolajczyk (2008), one can distinguish three broad
application areas for local features. First, specific local features can have a particular
semantic meaning in certain applications; for example, specific image structures could
indicate manufacturing defects in an inspection task. Second, local features can be
used as anchor points to find well-localized correspondences between image structures
for tasks such as tracking scene elements, camera calibration, or 3D reconstruction.
Third, local features can be used to represent images for tasks such as object or scene
recognition without additional segmentation steps. It is not always important what the
local features actually represent, as long as they work for the specific application (such
as being stable enough for tracking). The contour features presented in this work are not
bound to a specific application. As already outlined, they are intended to be integrated
with appearance-based features in a modular fashion.

2.2.1 Types of Local Image Features

Over the past decades, a wide range of methods has been developed to detect and
describe local image features (Y. Li et al., 2015; Zou et al., 2023). Apart from edge de-
tection and region segmentation methods (which are briefly discussed in Sections 2.2.5
and 2.2.6, respectively), one can generally distinguish between corner and blob detec-
tion methods. These methods can be further categorized depending on their general
methodology, as illustrated in Figure 2.3. The methods listed at the bottom have been
selected as examples because they are widely used in the literature, to illustrate impor-
tant properties of different methods, and to set the contour features presented in this
work in further context. Such contour features are typically considered corner features,
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Corner detection

Interest point
detection

Interest region
detection

Local image features

Blob detection

Gradient-
based

Template-
based

Contour-
based

PDE-
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Template-
based

Value-
based

Boundary-
based

SIFT, SURFThis workHarris ORBFAST

Fig. 2.3: Categorization of local image features, adapted based on (Y. Li et al., 2015).
Acronyms and details are described in the text. The methods listed at the bottom are
only some examples that are widely used in the literature.

although this does not imply that the corresponding curvature extrema must be particu-
larly sharp. Rather, it indicates that their curvature is sufficiently high relative to their
surroundings. In this perspective, corners can be defined as points with two different
and significant gradient directions in gray-value images, or as points along contours
where the curvature reaches a local minimum or maximum. Blobs can be defined as
regions with a regular shape in which the pixels have consistent characteristics, such as
in circular center-surround regions, as shown in Figure 2.5.

Feature detection methods often work on gray-value images, such as the Harris corner
detector, while others first require the determination of contours, such as the method
presented in this work. Gray-value images are used because they simplify the data,
reduce computational complexity, and are generally more robust than color information.
The Harris corner detector computes a matrix from the weighted sum of the structure
matrix (second-moment matrix) over small windows of the image. The corner response
is determined based on the eigenvalues of the resulting matrix, and a point is considered
a corner if the response exceeds a certain threshold (Harris and Stephens, 1988). An
example image with Harris corners is shown in Figure 2.8. The other methods are
described in Section 2.2.4.
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2. Determine a scale-invariant region around each keypoint.

1. Detect distinctive keypoints.

4. Compute a descriptor from the normalized region content.

3. Normalize the content of the region.

5. Match features based on the descriptors.

This work

Fig. 2.4: Standard procedure when working with local invariant features, based on the
description in (Grauman and Leibe, 2011). This work focuses on the first two steps.

2.2.2 Local Invariant Image Features

As summarized in (Grauman and Leibe, 2011), an important step towards robust object
recognition methods has been the development of local invariant features, particularly
Scale-Invariant Feature Transform (SIFT; Lowe, 1999; 2004). The objective of using
such features is to detect and represent local image structures in a way that is invariant
to transformations typically encountered in practice, in particular rotation, scale changes,
and affine transformations. However, achieving perfect invariance is usually not possible
due to noise, discretization artifacts, blur, and other factors; the objective is therefore to
achieve sufficient robustness. The following properties are particularly important for
effective features (Grauman and Leibe, 2011):

• The feature extraction should be repeatable and precise (well-localized) so that
the same features are extracted from different images of the same object.

• The features should be distinctive so that identical features can be matched and
different features can be distinguished from each other.

As noted by Tuytelaars and Mikolajczyk (2008), the number of features should also
be large enough to effectively represent objects or scenes. Furthermore, their density
should reflect the information content in an image. These principles align with the
contour features presented in this work, as curvature extrema are well-localized and the
most informative points along contours (cf. Section 2.1.2).
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The standard procedure when working with local invariant features is shown in Fig-
ure 2.4. In general, a local feature is defined by two main properties, which are also
the focus of this work: its position (x, y) in the image plane and a scale-invariant region
around that position (steps 1 and 2). This region is then used to compute its description,
typically in the form of a feature vector (steps 3 and 4). The key is that this region
automatically adapts to scale changes so that the same image structures can still be
identified and subsequently normalized—typically to the same size and a consistent
orientation—to compute a rotation- and scale-invariant description. Achieving this auto-
matic adaptation is a particular challenge, especially for the contour features presented
in this work, as the image transformations are usually unknown and the features have
to be determined in a bottom-up manner. This is why both SIFT and also the contour
features presented in this work use a scale-space approach. In both methods, keypoints
are detected as scale-space extrema, and the region around each keypoint is defined by
a characteristic scale σ̂. Further details on characteristic scales and SIFT are described in
Sections 2.2.3 and 2.2.4, respectively. Note that the procedure can be extended to affine
transformations by estimating affine shape parameters (by fitting elliptical regions)
around detected features (Grauman and Leibe, 2011). However, this extension is also
computationally more expensive.

The last step is to find correspondences between the same features in different images
based on their descriptors (feature matching, step 5). The basic procedure typically
consists of a matching and a verification stage. In the matching stage, candidate matches
are identified as pairs with the smallest Euclidean distance between their descriptors,
provided the distance is below a certain threshold. In the verification stage, false
matches are removed. The simplest matching strategy is to compare each descriptor
with all other candidate descriptors (brute-force matching). However, such a strategy
can be computationally expensive, especially considering that feature vectors are often
high-dimensional and when searching in larger image databases. For example, SIFT
feature vectors are in R128, and the relatively small example image with 233 × 189 pixels
in (Lowe, 2004) already contains 536 stable SIFT keypoints. Thus, the linear search is
often replaced by more efficient strategies, such as tree or hashing-based algorithms.
The verification stage is necessary because when working with real-world images, there
are usually false matches due to repeating or similar image structures, i.e., the distance
alone is not sufficient. Common strategies to avoid false matches include considering
the ratio of the distance to the next best match, as close similar matches are often
less reliable, or using methods like RANSAC (random sample consensus) to verify the
geometric consistency. For further details and strategies, refer to (Q. Huang et al.,
2024).
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Besides direct feature matching, which is particularly effective for recognizing specific
objects, local features can also be used for object detection, scene classification, and
other category-level tasks. In such tasks, the focus is on the presence of similar features
rather than their exact position or one-to-one correspondence. A common method in
this regard is Bag-of-Features, where images are represented as histograms of feature
frequencies, computed from clusters of local features identified using a set of training
images (Csurka et al., 2004; Bay et al., 2008).

2.2.3 Characteristic Scales

An important property of local image features is whether they are represented as single
points only or with additional scale information. As already outlined, the characteristic
scales define the region around each keypoint used to compute its descriptor in an
invariant manner. The term characteristic is used because it indicates the scale at which
a particular feature is most prominent within a scale-space representation of an image
(Lindeberg, 2014). In principle, scale refers to the standard deviation σ of the filters
used to compute different levels in the scale-space representation (details below).

An illustrative example is shown in Figure 2.5: each input image (left column) contains
a prominent blob of a different size in the center. The Laplacian of Gaussian (LoG)
function used to generate the filter masks is given as follows:

LoG(x, y; σ) = ∇2g(x, y; σ) = − 1
πσ4

(
1 − x2 + y2

2σ2

)
exp

(
−x2 + y2

2σ2

)
, (2.2)

where ∇2 denotes the Laplace operator, and the Gaussian g is given in Equation (2.5).
Let (xc, yc) denote the center of the respective input image f(x, y). The corresponding
result R is then computed by applying the LoG filter:

R(xc, yc; σ) = f(x, y) ∗ σ2 LoG(x, y; σ)
∣∣∣∣
(xc,yc)

, (2.3)

where ∗ denotes discrete spatial convolution. The additional scaling factor of σ2 is
required to compensate for the effect of different filter sizes on the response magnitude
and therefore to achieve true scale invariance (Lindeberg, 1994b; Lowe, 2004). The
characteristic scale σ̂ corresponds to the position of the maximum of this signature
function. In this example, the filter response is computed directly at the image center to
illustrate the principle, as this is the known position of the blobs. In practice, however,
the response is computed at every position in the input image, and the positions with
high responses are identified as keypoint candidates. As the filter responses show
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Fig. 2.5: Example of assigning characteristic scales to blob features. Top row: filters
corresponding to the detected characteristic scales σ̂ (normalized for display). Middle
row: input images with overlaid regions defined by these scales (orientations not
computed, lines for visual reference). Bottom row: filter responses (signature functions)
at the image centers with maximum values indicated. Input image from the 102 Category
Flower Dataset (Nilsback and Zisserman, 2008), then artificially scaled.

(bottom row), the signature functions and characteristic scales automatically adapt to
scale changes so that the same image structures can be identified in a bottom-up manner
without prior knowledge of these changes. For further details about the underlying
scale-space framework, refer to Section 4.1.

The slight variations from the ideal values of the characteristic scales σ̂ in the bottom
row of Figure 2.5 are a result of the artificial scaling, the discrete increment of σ, and
the discrete nature of the image data. In the middle row, the resulting regions indicated
by the overlaid circles have a radius of r̂ = σ̂, which is also used in the Open Source
Computer Vision Library (OpenCV) implementation of SIFT (although other factors then
1.0 are possible). The characteristic scales of the contour features presented in this
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work are also based on the analysis of signature functions over scale, but the process
is more complex than simply searching for the position of one distinct extremum (see
Section 4.3.5). This could also be a reason why assigning characteristic scales is more
common for appearance-based features than for contour features.

The top row in Figure 2.5 also shows the LoG filters for the respective characteristic
scales. As the filtering process represents a correlation operation, these are the scales at
which the filters are (mathematically) most similar to the blobs. However, it is important
to note that candidate features do not need to perfectly match the symmetric form of
the shown blobs. The filter response is high for any image structures which resemble the
form of the LoG filter to a certain extent. Furthermore, it is common to not only check
for maxima of the response R, but also for minima to equally consider dark-on-light and
light-on-dark image structures.

The LoG filter is often used in the literature as it provides the properties for effective
features described in Section 2.2.2: The same features can be extracted in a rotation-
invariant manner due to the isotropic nature of the filter, the extraction is scale-invariant,
and the specific form of the filter leads to well-localized features. Furthermore, as high
filter responses require systematic changes in the image structure, computing distinctive
descriptors is facilitated (homogeneous regions do not provide distinctive cues). The
information content of an image is also represented, as keypoint candidates require
a certain level of contrast—typically found in center-surround regions—which often
correspond to salient structures in real-world images.

2.2.4 SIFT, SURF, and Other Features

This section describes the keypoint detection process and the assignment of characteristic
scales in SIFT, Speeded-Up Robust Features (SURF; Bay et al., 2008), and other methods
(addressing steps 1 and 2 in Figure 2.4). SIFT is used as a reference method in this
work as it has established the principal steps outlined in Section 2.2.2 for working with
local invariant features and remains one of the most influential methods in the field of
feature detection and description. Many subsequent methods with similar principal steps
have been derived from SIFT, with a particular focus on efficiency, and it has even been
adapted using deep learning techniques (Yi et al., 2016; Ma et al., 2021; Tsourounis
et al., 2022).
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a b

Fig. 2.6: Scale-space construction in SIFT with three octaves, adapted from (Gonzalez
and Woods, 2018). a Computation of DoG images based on Gaussian-filtered images. b
Detection of extrema (minima or maxima) in the DoG images by comparing the current
pixel (highlighted) with its 26 neighbors.

2.2.4.1 Scale-Invariant Feature Transform (SIFT)

Instead of directly using LoG filters at different scales as described in Section 2.2.3, SIFT
approximates the filter results using DoG images. These images are straightforward to
compute, and the Gaussian-filtered images are also used to compute the descriptors in
that method. Furthermore, rather than maintaining a constant image size and linearly
increasing the scale, the scale-space is constructed using an image pyramid approach
with octaves (where each octave corresponds to a doubling of σ). In this approach, the
image size is decreased in each octave to improve the computational efficiency (details
below). This is an advantage given the high computational complexity of the filtering
process: For an M × N image and an m × n filter, the complexity at a single scale is
O(MNmn), and the process is repeated across multiple scales.

To compute the Gaussian-filtered images L(x, y; σ) in Figure 2.6a, the input image
f(x, y) is convolved with Gaussians g(x, y; σ):

L(x, y; σ) = g(x, y; σ) ∗ f(x, y) , (2.4)
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where the standard deviation σ (scale parameter) of the Gaussian is systematically
increased, and

g(x, y; σ) = 1
2πσ2 exp

(
−(x2 + y2)

2σ2

)
. (2.5)

The standard deviation is set to σ, kσ, k2σ, k3σ, . . . , where k = 21/s, and s is the number
of DoG images per octave used to search for extrema (also called intervals per octave).
This procedure leads to equally spaced scales between these DoG images across the
octaves. The DoG images are obtained by computing the difference of two Gaussian-
filtered images with nearby scales separated by the factor k (Lowe, 2004):

D(x, y; σ) = L(x, y; kσ) − L(x, y; σ) . (2.6)

Each octave corresponds to a doubling of the scale parameter σ, and the number of
octaves and DoG images are parameters that depend on the size of the input image.
Since each pixel in the DoG images is compared to its 26 neighbors, including the
adjacent images above and below, as shown in Figure 2.6b, and the first and last DoG
images in an octave do not have images above or below, s = 2 in this example. The
principal relationship between the Gaussian filter and the LoG filter is given as follows
(Lowe, 2004):

g(x, y; kσ) − g(x, y; σ) ≈ (k − 1)σ2 LoG(x, y; σ) . (2.7)

As already outlined in conjunction with Equation (2.3), the factor σ2 is required for true
scale invariance. The factor (k − 1) is constant for all scales so that it does not affect the
extrema locations.

In summary, there are s + 2 DoG images and s + 3 Gaussian-filtered images per octave.
A pixel is selected as a keypoint candidate if its value is larger or smaller than the values
of its 26 neighbors. The corresponding characteristic scale is then set to the value of σ

in the DoG image D(x, y; σ), where the extremum has been found.

As outlined in (Gonzalez and Woods, 2018), the first image of the second octave is
formed by downsampling the original image by skipping every other row and column,
and then applying Gaussian filtering (smoothing) with a standard deviation of σ1. This
corresponds to smoothing the original image using σ2 = 2σ1. Note that the scale σ2 of
the first image in the second octave refers to the scale represented by that image, but the
actual filtering is still performed using σ1. The remaining octaves are computed in the
same manner.

The procedure described is combined with additional steps to enhance the robustness
of the keypoints. To obtain the input image for the first octave, the original image is
smoothed with a Gaussian with σ = 0.5 and then doubled in size by linear interpolation.
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As reported in (Lowe, 2004), this preprocessing improves the number of stable keypoints.
Furthermore, the initial keypoints detected in the DoG images are not necessarily
accurate with respect to their position and scale (x, y; σ) due to the discrete nature of the
data. The accuracy of a keypoint can be improved using a quadratic Taylor expansion
of D(x, y; σ) at the respective position. Furthermore, keypoints with low contrast are
unstable and typically not distinctive, so they should be removed. These points have
small absolute values in the DoG images and are removed if their values are below a
certain threshold. Keypoints along edges are not well-localized (since points along an
edge appear very similar) and should therefore be removed as well. These points can be
identified by analyzing the principal curvature at keypoint positions, which is high in
one direction (along the edge) and low in the perpendicular direction.

For the subsequent steps of computing a descriptor from the region around each keypoint
defined by its characteristic scale, refer to (Lowe, 2004) and (Gonzalez and Woods,
2018). In summary, the region is normalized to a fixed size and divided into smaller
subregions, where orientation histograms are computed and concatenated into a feature
vector in R128.

2.2.4.2 Speeded-Up Robust Features (SURF)

The SURF method introduced in (Bay et al., 2008) detects blob and corner features
and uses an efficient scale-space representation based on the Hessian matrix (Hessian
detector), which is another common feature detection method besides using the LoG
filter. The method is discussed here because its use of box filters has been adapted to
extract the contour features presented in this work and to provide a more comprehensive
overview of widely-used feature detectors.

The Hessian matrix H(x, y; σ) at a point (x, y) in an image at scale σ is defined as:

H(x, y; σ) =
[
Lxx(x, y; σ) Lxy(x, y; σ)
Lxy(x, y; σ) Lyy(x, y; σ)

]
, (2.8)

where Lxx, Lyy, and Lxy are the convolutions of the image with second-order Gaussian
derivatives, corresponding to Equation (2.4) when applying the convolution derivative
theorem. Keypoint candidates are identified based on the determinant of H, which has
high values at points with strong curvature in multiple directions, corresponding to local
intensity maxima (peaks) or minima (valleys). Similar to SIFT, SURF uses octaves in its
scale-space construction, but increases the filter size instead of reducing the image size.
Non-maximum suppression is again applied based on the 26 neighbors of each pixel, as
shown in Figure 2.6b, but using the determinant of H instead of DoG images.
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a b

Fig. 2.7: Components for an efficient scale-space construction in SURF, adapted from
(Bay et al., 2008). a Integral image, where the sum of intensities over a rectangular
area can be computed using only three arithmetic operations. b Examples of Gaussian
second-order partial derivatives (top row) and their box filter approximations (bottom
row) used to compute Lyy and Lxy, respectively.

As already noted, the method is of particular interest here due to its use of box filters
for an efficient scale-space construction. The computational speedup is achieved by
using box filters in conjunction with integral images. The integral image fΣ(x, y) stores
the sum of the intensity values within the rectangle between the origin and the point
p = (x, y) of the input image (Bay et al., 2008):

fΣ(x, y) =
i≤x∑
i=0

j≤y∑
j=0

f(x, y) (2.9)

Based on the integral image, the sum of the intensities over a rectangular area—which is
required for box filters—can be computed using only two subtraction and one addition
operation (three arithmetic operations), as shown in Figure 2.7a. As a result, the filtering
process is independent of the filter size in terms of the number of arithmetic operations
and therefore much faster than regular convolution, where all filter coefficients and
intensity values have to be multiplied and summed. Examples of Gaussian second-
order partial derivatives and their box filter approximations used in SURF are shown
in Figure 2.7a, where Lxx is constructed in the same manner. The size of the filters is
increased for higher scales while ensuring that their size remains odd.

For the subsequent steps of computing a descriptor from the region around each keypoint,
refer to (Bay et al., 2008). In summary, the normalized region is divided into smaller
subregions, where Haar wavelet responses are computed and concatenated into a feature
vector in R64.
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Fig. 2.8: Results for different local feature detection methods and the method de-
veloped in this work (orientations not computed) on image 228076 from the BSDS
dataset. All results (except for this work) were computed using OpenCV with standard
parameters, with additional non-maximum suppression for Harris and retaining only
the 100 strongest keypoints for ORB. The results for the method developed in this
work were computed based on manual segmentation data provided with the dataset (cf.
Figure 2.9b).

2.2.4.3 Oriented FAST and Rotated BRIEF (ORB)

Another widely used feature detection and description method, introduced in (Rublee
et al., 2011), is ORB. This method is discussed here as an example of using binary
feature descriptors, a widely used approach for achieving high computational efficiency.
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A comparative evaluation of binary features can be found in (Heinly et al., 2012). As
the name suggests, ORB combines and extends two other methods: the FAST feature
detector (Features from Accelerated Segment Test; Rosten and Drummond, 2006),
extended with orientation information, and the BRIEF feature descriptor (Binary Robust
Independent Elementary Features; Calonder et al., 2010), extended so that the descriptor
is computed relative to the orientation from the detector to obtain a rotation-invariant
description.

In its original form, FAST is a corner detector that identifies candidate keypoints by
comparing the intensity of each pixel with the intensities of its surrounding pixels in a
circular pattern. As this pattern is fixed, ORB is categorized as a template-based method
in Figure 2.3. Although FAST is a corner detector, ORB is categorized as a blob detector
in that figure (according to Y. Li et al., 2015) because it employs an image pyramid
to detect the FAST features at multiple scales. Within the pyramid, fine-scale image
structures are merged into larger structures so that regions with blob-like structures can
be identified across scales. The orientation of the detected keypoints is computed based
on intensity-based image moments. Based on that, the rotation-invariant descriptor
is computed by concatenating the results of specific pairwise pixel comparisons into a
feature vector in B256.

2.2.5 Region-Based Image Segmentation

The method developed in this work to extract the contour features requires traced object
contours without ambiguities (where ambiguities are points where the path of a contour
is not clearly defined, such as at intersections or junctions; and where the contour points
are ordered; see Chapter 3 for details). One option to obtain such contours is to trace the
outlines of region-based image segmentations, with examples shown in Figure 2.9. For
an overview of both traditional and more recent deep learning-based methods, refer to
the surveys by Minaee et al. (2022) and Yu et al. (2023). Many traditional segmentation
methods use clustering techniques to group similar pixels or regions based on features
such as color, texture, intensity, and spatial proximity. However, among the numerous
image segmentation methods developed in the literature, deep learning-based methods
often achieve the highest accuracy rates on popular benchmarks (Minaee et al., 2022).
In region-based image segmentation, one can generally distinguish between semantic
and instance segmentation. The objective of semantic segmentation is to label object
categories (e.g., a group of people as a single region), whereas the objective of instance
segmentation is to label individual objects (e.g., each individual person as a separate
region). As the contour features presented in this work are local features designed
to describe local salient image structures, instance segmentation regions—or panoptic
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dGraph-based Segment Anythingc

Fig. 2.9: Results for different segmentation methods on image 228076 from the BSDS.
The region contours can be traced and used to extract the contour features presented
in this work. a Input image. b Manual segmentation by a single participant provided
with the dataset. c Graph-Based segmentation (Felzenszwalb and Huttenlocher, 2004),
computed using OpenCV. d Segment Anything (Kirillov et al., 2023), computed using
the implementation provided by the authors.

segmentation regions, which combine both—are better suited to obtain accurate and
meaningful object contours.

Deep learning-based methods require training data in the form of manually labeled
pixel-level masks, and a number of such datasets are available (refer to Section 4 in
Minaee et al., 2022, for an overview). Some of the most popular datasets in this context
are the the Microsoft Common Objects in Context dataset (MS COCO; Lin et al., 2014),
the PASCAL Visual Object Classes dataset (PASCAL VOC; Everingham et al., 2010), and
the Berkeley Segmentation Dataset (BSDS; Arbeláez et al., 2011). Throughout this work,
BSDS specifically refers to the BSDS500 version, not the earlier BSDS300 version. While
MS COCO provides instance masks for individual objects, PASCAL VOC only provides
semantic segmentation data. In the BSDS, regions are annotated without differentiating
between instances of the same object category or assigning semantic labels to regions.
In this case, subjects were instructed to “divide each image into pieces, where each
piece represents a distinguished thing in the image.” An example annotation by a single
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participant is shown in Figure 2.9b. Each image has been annotated by around five
subjects to capture different perceptions of what are meaningful entities.

The result of the graph-based method, as shown in Figure 2.9c, is a popular traditional
approach that employs graph-theoretic principles for image segmentation. As can be
seen, the method is not capable of capturing the sea in the lower part of the image or the
rock structures in a meaningful manner. However, structures like the houses are clearly
identified and can probably be merged to also consider larger-scale structures. A popular
method in this regard is Selective Search (Uijlings et al., 2013), where the output of the
algorithm is used to generate region proposals—rectangles (bounding boxes)—which
can then be used as input regions for deep learning-based classification methods. This
also underlines the importance of considering different scales when analyzing images,
as discussed in greater detail in connection with scale-space theory in Section 4.1. The
advantage of using deep learning-based segmentation methods can be clearly seen in
Figure 2.9d, where the sea and even the rock structures are captured in a meaningful
manner. Segment Anything is one of the most accurate and versatile segmentation
methods, capable of providing high-quality instance segmentation masks alongside other
segmentation tasks, such as semantic and interactive segmentation (Kirillov et al., 2023).
In Section 5.2, it is proposed to use deep learning-based region segmentations as one
option to generate training data for extracting the contour features presented in this
work directly from real images using an end-to-end deep learning-based approach.

2.2.6 Edge Images and Edge Detection

Another option to obtain traced object contours for extracting contour features with
the method developed in this work is to retrieve them from edge images, with exam-
ples shown in Figure 2.10. For an overview of both traditional and more recent deep
learning-based edge detection methods, refer to the surveys by Jing et al. (2022) and
D. Yang et al. (2022). Following the survey by D. Yang et al., one can generally distin-
guish between traditional and learning-based edge (and contour) detection methods,
with further categorization depending on the specific methodology, such as classical
learning-based and deep learning-based methods. Furthermore, just as with region-
based segmentation methods in Section 2.2.5, deep learning-based methods generally
achieve the highest accuracy rates on popular benchmarks and also require appropriate
training data. A common approach is to derive such training data from the outlines of
region segmentations, with an example of the resulting edges shown in Figure 2.10b.

One of the most popular and still widely used traditional methods is the Canny edge
detector (Canny, 1986). The algorithm is based on three objectives: low error rate,
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dc PiDiNetCanny

Fig. 2.10: Results for different edge detection methods on image 228076 from the BSDS.
The edges can be further processed and traced to extract the contour features presented
in this work. a Input image. b Manual segmentation by a single participant provided
with the dataset, derived from the outlines of region segmentations. c Canny edge
detector (Canny, 1986), computed using OpenCV. d Pixel Difference Network (PiDiNet;
Su et al., 2023), computed using the implementation provided by the authors. Further
binary edge images are shown in Figure 3.7.

well-localized edge points, and single edge point responses to obtain one-pixel wide
edges. After an initial smoothing step to suppress noise, the edge detection process
employs gradient computation, for example using Sobel masks, and is therefore based
on first-order derivatives. This step produces an edge map similar to Figure 2.10d,
where the gray values represent the edge strength. However, to obtain distinct object
contours and the binary edge image shown in Figure 2.10c, the edge map has to be post-
processed. This includes non-maximum suppression, double (hysteresis) thresholding,
and connectivity analysis to link edges. Although other strategies are possible, this
post-processing “has become a standard procedure for many edge and object contour
detection methods” (D. Yang et al., 2022).

An important advantage of learning-based edge detection methods compared to dif-
ferentiation-based methods is that they can suppress edges caused by textures. In
other words, they can distinguish between meaningful object boundaries and irrelevant
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texture edges. Compare Figure 2.9c and 2.9d: It can clearly be seen that the gradient-
based Canny method detects many edges in textured regions like the sea and the rock
structures, whereas the deep learning-based PiDiNet detects the strongest edges at
the outer boundaries of these structures. Learning-based edge detection methods are
specifically trained to identify edges and contours, which enables them to capture finer
details than region-based segmentation methods. While region-based segmentation
relies on categories or labels, edge detection methods can identify edges without relying
on these attributes, as their training data includes only edges and no specific semantic
information.

Motivated by the increasing capabilities of deep learning-based edge detection methods,
a new method to trace edges in binary edge images has been developed as part of this
work. As shown in Figure 2.10, object contours cannot be directly attributed to a single
object. Instead, the edges exhibit ambiguities in the form of intersections, junctions, and
other structures. Furthermore, it is also ambiguous which entities should be considered
meaningful object structures—for example, whether the island in the figure should be
treated as one structure or distinguished into grass and rock structures. The method
developed in this work can describe and resolve such ambiguities in an intuitive and
flexible manner. This method is presented in Chapter 3. In Section 5.2, it is proposed
to combine this method with deep learning-based edge detection as another option
(besides region segmentations) to generate training data for extracting the contour
features presented in this work directly from real images using an end-to-end deep
learning-based approach.
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General Ambiguity Model for
Binary Edge Images

3

As outlined in Section 2.2.6, binary edge images often include intersections, junctions,
and other structures that make it difficult to extract coherent object contours. Neverthe-
less, such contours are essential for tasks such as object recognition and for extracting the
contour features presented in this work. This chapter introduces the general ambiguity
model for binary edge images developed in this work, which is designed to describe and
resolve such ambiguities. The model is combined with edge tracing, where edges are
ordered sequences of connected pixels. From a broader perspective, the objective is to
provide a versatile preprocessing method for tasks such as figure-ground segmentation,
object recognition, topological analysis, and other applications. An open source C++
implementation of the method has been published on GitHub.

Significant parts of this chapter, including all figures, are reproduced from (Hennig,
Leineke, and Mertsching, 2024), with all writing and major conceptual contributions
attributed to the author of this thesis.

After a brief introduction in Section 3.1, the most common methods for processing
binary edge images are characterized in Section 3.2 in relation to the method developed
in this work. In Section 3.3, the ambiguity model is introduced, including a detailed
description of the modeling principles, a pseudocode implementation with three core
subfunctions, a proof of correctness, and results for various examples and postprocessing
steps. In Section 3.4, the method from this work is compared against other methods
in terms of component decomposition, redundancy, runtime, and other aspects. The
chapter concludes with a summary in Section 3.5.

3.1 Introduction

Coherent object contours in the form of traced edges (i.e., ordered sequences of con-
nected edge pixels) are required for many standard shape description methods such as
Fourier descriptors, chain codes, signature functions, and curvature scale-space (CSS)
analysis (Mokhtarian and Bober, 2003; L. Wang et al., 2018). The contour features
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Registered/Traced Start point End point

Ambiguity point (shared)Same point twice in edge Same point in different edges

Edge pixel/Untraced

Ambiguity point without edges

a b c d e

This work (ordered)Input image CCL (unordered) MNT (ordered) FCM (ordered)

Fig. 3.1: Comparison of different standard methods for processing binary edge images
with the method developed in this work, where different colors represent different
edges. a Input image. b Connected Component Labeling (CCL; cf. L. He et al., 2017). c
Moore-Neighbor Tracing (MNT; Ghuneim, 2000). d Find Contours Method (FCM, as
named in OpenCV; Suzuki et al., 1985). e This work, which provides direct access to
ambiguities, registers all pixels, and avoids redundancies.

presented in this work are also derived from CSS analysis, as described in Chapter 4.
Another potential application is the generation of object bounding box proposals, such
as in (Zitnick and Dollár, 2014). Additionally, the method could be used in applications
where explicit edge connection information—as effectively described by the ambiguity
model—is of interest, such as determining cell-cell contact phenotypes similar to the
work in (Brezovjakova et al., 2019) or describing vessel crossings similar to the work in
(G. Wang et al., 2023).

Figure 3.1 shows the results of common methods for processing binary edge images
compared to the method developed in this work. The methods are described in Sec-
tion 3.2. In summary, the method from this work registers all pixels without redundancy
(no double reading per edge), provides a structured decomposition into meaningful
edges, and direct access to ambiguities. In comparison, CCL does not provide any order,
while MNT and FCM miss some inner pixels, including those in the vertical line running
through the circle. Furthermore, these methods do not directly model ambiguities of
edge paths.
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3.2 Related Work

One of the most common methods for processing binary edge images is CCL, which
simply labels connected pixels. MNT is a standard contour tracing method and, in this
work, serves as a representative for many similar methods with slight modifications.
A comprehensive comparison can be found in (Seo et al., 2016). Besides MNT, the
authors review existing contour tracing methods, such as the Square Tracing Algorithm,
Radial Sweep, and Theo Pavlidis’ algorithm. FCM is another popular tracing method
that also detects hierarchies between edges (parents and children). However, none
of the methods provide an ambiguity model. Since MNT and FCM are region contour
tracers, they often trace edge pixels more than once per edge, leading to redundancies.
In contrast, the method developed in this work traces each edge pixel only once per
edge. Some inner pixels are not traced at all in MNT and FCM.

Compared to existing works, the method developed in this work provides direct access
to ambiguities and connected traced edges in the image plane, relating them without
complex multi-stage processes or graph representations. The method describes binary
edge images and provides an intermediate representation independent of any specific
edge detection method or application-specific objectives and metrics. The work in (Heng
and Ngan, 2001) focuses on identifying specific simple edge configurations for splitting
edges, while (Law et al., 1996) explores different types of joins, including scenarios
with three edges at a triple point and two edges at a junction. The method in (Guo
et al., 2014) consists of six stages and groups edge segments based on cues from real
images. Different from the ambiguity model developed in this work, ambiguities are
considered as options for connecting mostly free-standing edge segments, are modeled
using graphs, and the overall results are evaluated in terms of edge detection results. The
method in (Pham et al., 2014) detects junctions in binary line drawings by searching
for optimal meeting points and classifies them into different types. Unlike the method
developed in this work, it does not model multi-pixel ambiguities, a larger number of
edges connected to single ambiguities, or provide direct access to each segment.

The method in (Casadei and Mitter, 1999) is a multi-stage algorithm using a contour
graph to group edge segments, where the concept of ambiguities is not as straightforward
as in this work. The method in (Kimia et al., 2019) models ambiguities as possible
edge connections based on propagated curve bundles, which is also more complex. The
method in (Buades et al., 2018) detects line segments and other edge image elements,
and the method in (K. Huang et al., 2018) detects junctions in real images to extract
wireframe representations of man-made environments, but both methods do not provide
an ambiguity model. The method in (Tamrakar and Kimia, 2007), a preliminary work to
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(Kimia et al., 2019), represents edge segment combinations using curve bundles, and
the ambiguity model is more complex and has different objectives than the method
developed in this work. The method in (Zhu et al., 2007) groups edge segments to
search for cyclic structures using a directed graph, and the method in (Maire et al., 2008)
combines edge detection with junction detection in real images, but both methods do not
provide an ambiguity model. Other methods aim to accelerate the contour tracing, as
explored in (Gupta and Kar, 2022). In summary, most existing works focus on grouping
edge segments to refine edge detection results, rather than directly describing these
results in a flexible and intuitive manner. The method developed in this work could
likely be integrated as an intermediate step in such works.

3.3 Ambiguity Model and Tracing

Ambiguities in binary edge images occur when edges are more than one pixel wide,
when edges cross or meet at intersections or junctions, or when the edge detection
process introduces artifacts. As a result, edges can share one or more pixels and they
can be adjacent to or running through pixel clusters. When edges meet at a single pixel,
such as at T-, Y-, and X-junctions, as shown in Figure 3.4b, they only share that pixel.
However, more complex junctions can extend over several pixels (pixel clusters) with
variable shapes and sizes, as shown in Figures 3.4–3.6, which cannot be effectively
processed by implementing a separate case for each variation.

For some conceptual descriptions, the two types are distinguished here as single-pixel
ambiguities (SPAs) and multi-pixel ambiguities (MPAs). For the ambiguity model and
implementation, this explicit distinction is not required, and one can simply check the
size (number of corresponding pixels) of an ambiguity if necessary. Depending on the
context, pixels are referred to as points, especially when explicitly considering their
spatial coordinates (x, y).

3.3.1 Modeling Principles

As already outlined, edges can share single pixels (SPAs) and they can be connected
to pixel clusters (MPAs). The model developed in this work integrates these cases in
a general and intuitive way, without the need to distinguish the two types or various
specific pixel configurations. It uses the following straightforward principles, which
work in conjunction with each other (the reader is encouraged to refer to the principles
alongside Figure 3.4):
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1. Edges adjacent to ambiguities are connected to them via the shortest path.
2. The connection pixel is the start or end point of the respective edge.
3. Each pixel cluster forms a single coherent ambiguity.
4. Cluster pixels without edge connections are preserved but not traced.

These principles have been derived from extensive tests with real and artificial binary
edge images to develop an effective model. Principle 1 is inherently satisfied for SPAs, as
there is only one direct connection option present. For MPAs, it is consistent with edge
tracing, where adjacent edge pixels are also connected via the shortest path. Principle
2 is inherently satisfied for SPAs, since all edges share the respective pixel, as shown
in Figure 3.4b. It naturally extends to MPAs by integrating the connection pixel into
each edge as well. Having only a single connection pixel is meaningful because edge
paths within ambiguities are not clearly defined. From an implementation perspective,
the principle provides a clear link between edges and ambiguities, which is helpful to
determine potential edge connections. Principle 3 maintains clarity despite variable
shapes and sizes of clusters. By treating each cluster as a single coherent ambiguity, all
connected edges are linked by a single entity, just as with SPAs. Principle 4 can only
take effect for MPAs (clusters), as SPAs always have edge connections by definition. It
ensures that all pixels leading to an ambiguity are preserved and that the untraced pixels
within an ambiguity are directly accessible. This is helpful to determine potential edge
connections that may exclusively use detected edge pixels. In summary, Principles 1–3
can be seen as natural generalizations from SPAs to MPAs, and Principle 4 as a logical
consequence of unclear edge paths.

3.3.2 Procedure and Pseudocode Implementation

The algorithm operates in two main passes: First, all ambiguities are identified so that
the remaining pixels after this step are exclusively edge pixels to be traced. Second,
these edge pixels are traced in sequential order, during which the resulting edges are
connected to adjacent ambiguities, if present. This two-pass structure provides clear
operational control and helps to verify that the algorithm works as intended.

In the following pseudocode implementation, Algorithm 1 controls the overall operation,
which is divided into the two main passes mentioned (preprocessAmbiguities in Line 3
and the for-loop beginning at Line 4). The pseudocode conceptually aligns with the
C++ implementation.
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Fig. 3.2: Modeling concept and central data structures of the algorithm. a Binary edge
image with two ambiguities. b, c Together, the ambiguityMap and edgeIdMap form an
augmented edge map, where the traced edges are stored in the edgeList. d Combined
result with shared pixels and connections to ambiguities.

3.3.2.1 Data Structures

As shown in Figure 3.2, the algorithm utilizes three central data structures: ambigui-
tyMap, edgeIdMap, and edgeList. Both the ambiguityMap and edgeIdMap have the size of
the original input image and jointly form an augmented edge map.

The ambiguityMap stores all ambiguity points, where each point stores the coordinates
of all pixels belonging to the respective ambiguity Ai. Thus, every point belonging to
the respective ambiguity can be directly retrieved from every point in that ambiguity.

The edgeList holds all traced edges, where an edge is an ordered sequence of connected
edge pixels. The position of each edge in this list is also its identifier, a simple integer
referred to as edgeId.

The edgeIdMap stores, at each point, a list containing the edgeIds of every edge running
through that point (the list is empty if no edges are running through). Thus, neighboring
edges (and their data) can be directly accessed using quick local search operations in
the edgeIdMap.

Together, the ambiguityMap and edgeIdMap provide direct access to every edge connected
to an ambiguity. Without the ambiguityMap, it is not directly clear which edges are
connected to specific ambiguities. Other edge-processing tasks, such as bridging gaps
between nearby edges, can also be addressed in an efficient manner.
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Untraced

Unvisited neighbor

Fig. 3.3: Building blocks of the algorithm. a Naming of the 8-neighbors of the current
point. b Mechanism for identifying ambiguity points. c–e Tracing with two, one, and no
unvisited neighbors, respectively.

3.3.2.2 Core Subfunctions

The algorithm utilizes three straightforward core subfunctions: getDirectNeighbors,
containsFourCluster, and mergeEdges. The first two functions are used in conjunction to
check if the current point is part of an ambiguity, as in Lines 5 and 13 of Algorithm 2.
Additionally, the function getDirectNeighbors is used in Line 5 of Algorithm 3 to trace
(connect) adjacent edge pixels via the shortest path. The function mergeEdges is used in
Algorithm 3 to combine two edges into a single edge during the tracing. The naming
of the 8-neighbors of the current point p for the following descriptions is shown in
Figure 3.3a.

The function getDirectNeighbors analyzes the 8-neighbors of the current point p. The
function operates in a specific way and does not simply return all neighbors that are set,
as shown with examples in Figure 3.3b: It returns all orthogonal neighbors (p1, p3, p5, p7)
that are set, but from the diagonal neighbors (p0, p2, p4, p6) only those which do not have
any set orthogonal neighbor in (p1, p3, p5, p7). The returned neighbors are denoted as
direct neighbors. If the function returns more than two direct neighbors, the current
point is definitely part of an ambiguity. Note that this check is not sufficient to identify
all ambiguities; the result of the function containsFourCluster must also be considered
(cf. examples in Figure 3.3b).
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The function containsFourCluster checks if the current point p is located within a four-
cluster (a 2 × 2 block of set pixels). In this case, every point in at least one of the groups
(p7, p0, p1), (p1, p2, p3), (p3, p4, p5), or (p5, p6, p7) is set. This check can be implemented
in a straightforward manner by encoding the occupancy of p0–p7 in a binary number
and checking if it contains the respective cases. If the current point is located within a
four-cluster, it is definitely part of an ambiguity.

The function mergeEdges combines two edges into one and updates the edgeIdMap
accordingly. This is required when the tracing starts at a point within an edge, where
it initially runs in two directions and the resulting edges are finally merged. It can
also be used during postprocessing, such as when connecting edges in ambiguities (see
Section 3.3.6). The function operates on the edgeList based on two passed edgeIds. The
merged edge retains the smaller of the two edgeIds (which is technically not necessary,
but provides a clear system). The two edges must share an overlapping point at one of
their sides, serving as the connection point. The function ensures the correct order of the
traced points by considering the position of the overlapping point. There are four cases
to consider: both edges start at the same point, both edges end at the same point, the
first edge starts where the second ends, or the first edge ends where the second starts.

3.3.2.3 Main Function (Algorithm 1)

The main function in Algorithm 1 controls the overall operation. In Line 1, the ambi-
guityMap and edgeIdMap are initialized as empty data structures with the size of the
input image, and the edgeList as an empty list. These data structures are modified by
the functions preprocessAmbiguities and traceEdge. In Line 3, the function prepro-
cessAmbiguities identifies all ambiguities and stores them in the ambiguityMap (see
Section 3.3.2.4 for details). After that, the construction of the ambiguityMap is finished
(see Figure 3.2b for an example), but no edges have been traced yet. This is done in the
subsequent for-loop beginning at Line 4. The if-statement in Line 5 checks if the current
point is an edge pixel, is not part of an ambiguity, and has not been traced yet. If these
conditions are met, a new edge is created as an empty PointList. This list is then passed
to the function traceEdge, along with the input image and the current point, initiating
the tracing of the edge to which that point belongs (see Section 3.3.2.5 for details).

3.3.2.4 Preprocessing (Algorithm 2)

The function preprocessAmbiguities in Algorithm 2 implements the first pass of the
algorithm. In summary, once a point is identified as part of an ambiguity, all direct
neighbors with the same property are iteratively registered until all points belonging
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Algorithm 1 Main

1: Initialize: ambiguityMap, edgeIdMap, edgeList ▷ Global data structures mod. by Algorithms 2 and 3
2: function main(Image Iin)
3: preprocessAmbiguities(Iin) ▷ Algorithm 2
4: for each Point p = (x, y) in Iin do
5: if Iin[p] > 0 and ambiguityMap[p].size == 0 and edgeIdMap[p].size == 0 then
6: new PointList edge ▷ New empty edge
7: traceEdge(Iin, p, edge) ▷ Algorithm 3

Algorithm 2 Preprocessing

1: function preprocessAmbiguities(Image Iin)
2: for each Point p = (x, y) in Iin do
3: if Iin[p] > 0 and ambiguityMap[p].size == 0 then ▷ Unprocessed pixel found
4: PointList neighbors = getDirectNeighbors(Iin, p)
5: if neighbors.size > 2 or containsFourCluster(Iin, p) then ▷ Point p is part of an ambiguity
6: new PointList clusterPoints.append(p) ▷ Append p to new empty list
7: c = 0
8: while c < clusterPoints.size do ▷ Iteratively append points belonging to this ambiguity
9: PointList neighbors = getDirectNeighbors(Iin, clusterPoints[c])

10: for each Point pn in neighbors do
11: if pn is not in clusterPoints then ▷ Avoid double entries
12: PointList neighbors = getDirectNeighbors(Iin, pn)
13: if neighbors.size > 2 or containsFourCluster(Iin, pn) then
14: clusterPoints.append(pn)
15: c = c + 1
16: for each Point pc in clusterPoints do
17: ambiguityMap[pc] = clusterPoints ▷ Save clusterPoints at each cluster point pc

Algorithm 3 Recursive Edge Tracing

1: Initialize: edgeId = 0 ▷ Global counter incremented with each traced edge
2: function traceEdge(Image Iin, Point p, PointList edge)
3: edge.append(p) ▷ Append point p to current edge
4: edgeIdMap[p].append(edgeId)
5: PointList neighbors = getDirectNeighbors(Iin, p)
6: new PointList unvisitedNeighbors
7: if p is not in ambiguity then ▷ Initial exploration of direct neighbors
8: for each Point pn in neighbors do
9: if edgeIdMap[pn].size == 0 or pn is in ambiguity then

10: unvisitedNeighbors.append(pn)

11: if unvisitedNeighbors.size == 2 then ▷ Further processing based on unvisited neighbors
12: new PointList edgePartOne.append(p) ▷ Create edgePartOne and append point p

13: traceEdge(Iin, unvisitedNeighbors[0], edgePartOne)
14: new PointList edgePartTwo.append(p) ▷ Create edgePartTwo and append point p

15: traceEdge(Iin, unvisitedNeighbors[1], edgePartTwo)
16: mergeEdges(edgeId − 2, edgeId − 1)
17: else if unvisitedNeighbors.size == 1 then
18: traceEdge(Iin, unvisitedNeighbors[0], edge) ▷ Continue with the only unvisited neighbor
19: else if unvisitedNeighbors.size == 0 then ▷ Finish current edge
20: edgeList.append(edge)
21: edgeId = edgeId + 1

3.3 Ambiguity Model and Tracing 39



to the current ambiguity are included (corresponding to modeling Principle 4). The
while-loop beginning at Line 8 checks for each direct neighbor pn if it is also part of the
current ambiguity. Such points are iteratively appended to the list. If the passed point p

is just a SPA, no further points are appended. Comparing the counter variable c with the
size of the list in Line 8 ensures that the direct neighbors of each appended point are
also checked, similar to a region-growing process.

3.3.2.5 Edge Tracing (Algorithm 3)

This function traces the edge to which the passed point p belongs and connects the
edge to any ambiguities on its sides, if present. The check in Line 7 ensures that the
tracing does not continue within an ambiguity. The second check in line 9 ensures
that a connection pixel from an adjacent ambiguity becomes part of the edge (corre-
sponding to modeling Principle 2; cf. Figure 3.3d, e, bottom row). After these steps, the
unvisitedNeighbors list contains either two, one, or no points.

Consider Figure 3.3c: In case of two points in the unvisitedNeighbors list, which is
covered in Lines 11–16, the tracing of a new edge has just started and the passed point
p is located somewhere within the edge. In this case, two new edges, running in the
directions defined by the two points in the list, are created and traced. The passed
point p serves as the starting point of both edges (as mergeEdges requires an overlapping
point). After the tracing of both edges is finished, the edges are merged in Line 16. The
corresponding edgeIds result from incrementing the edgeId after the two edges have been
completely traced.

Consider Figure 3.3d: In case of one point in the unvisitedNeighbors list, which is covered
in Lines 17–18, the tracing continues in the direction of this point.

Consider Figure 3.3e: In case the unvisitedNeighbors list is empty, which is covered in
Lines 19–21, the tracing of the current edge is finished. In this case, the edge is appended
to the edgeList, and the edgeId is incremented.

3.3.3 Proof of Correctness

The algorithm is considered to be correct when it aligns with the modeling principles
introduced in Section 3.3.1. The proof can be broken down into verifying its three core
steps: that all ambiguities are correctly identified during the preprocessing, that the
edge pixels remaining after the preprocessing are traced in the correct order, and that
edges are correctly connected to adjacent ambiguities during the tracing.
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As reflected in Lines 5 and 13 of Algorithm 2, an ambiguity point is defined as the center
of a 3 × 3 neighborhood that has more than two direct neighbors or is located within
a four-cluster. The examples shown in Figure 3.3b can be easily extended and clearly
demonstrate that this criterion is correct. For a systematic proof, one can verify all
28 = 256 possible configurations of the 8-neighbors. As the same criterion is applied to
all direct neighbors of an ambiguity point, all points belonging to a specific ambiguity
are also correctly identified.

The remaining edge pixels are traced in the correct order because the tracing direction
is determined by the points returned by the function getDirectNeighbors. This function
does not return diagonal neighbors that have an orthogonal neighbor, thus giving priority
to orthogonal connections. Since an orthogonal neighbor has a distance of 1 from the
center, and a diagonal neighbor a distance of

√
2, the tracing follows the shortest and

therefore correct path along the edge, as shown in Figure 3.3b (top row).

Since edges adjacent to ambiguities are connected to them using the principle from the
edge tracing (following the shortest path), the connection step is also correct.

3.3.4 Simplified Implementation

Depending on the task, the implementation can also be simplified, particularly in
terms of the data stored in the ambiguityMap and edgeIdMap. In its current form, the
ambiguityMap stores a list of points at each ambiguity point, providing direct access
to every connected edge via the edgeIdMap. If this access and checking the size of
ambiguities are not required, the ambiguityMap can be replaced with a simple binary
map that only encodes the presence of ambiguity points. In this case, Line 17 of
Algorithm 2 can directly write binary values.

In a similar manner, the edgeIdMap can be replaced with a binary map, if direct access
to the edges passing a specific point and local searches for neighboring edges are not
required. In this case, Line 4 of Algorithm 3 can also directly write binary values.

If the objective is to exclusively trace edges that start or end at ambiguities according to
the principles, the ambiguityMap and edgeIdMap can be merged into a single binary map
that encodes whether a point has already been processed. However, this requires some
deeper modifications in the code.
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Fig. 3.4: Example results for some fundamental test cases, where different colors
represent different edges. a Tracing without ambiguities. b, c Single-pixel ambiguities
(SPAs). d Multi-pixel ambiguities (MPAs). e Complex nested cases.

3.3.5 Fundamental Test Cases

Figure 3.4 shows the results of the algorithm for some fundamental test cases. In all
cases, all pixels from the input image have been registered and are displayed, either
as traced edge pixels or as ambiguity points. Figure 3.4a shows three open edges and
one closed edge without any ambiguities, so the edges are simply traced in sequential
order. Figures 3.4b and 3.4c show examples for SPAs, including T-, Y-, and X-junctions.
Figure 3.4d shows examples for MPAs, and Figure 3.4e complex nested cases. In
summary, our method works as intended and the corresponding principles provide a
clear, intuitive and natural description of all cases despite their sometimes significant
complexity.

3.3.6 Application Examples

Figures 3.5 and 3.6 show the results of the algorithm for selected application examples
and postprocessing steps. Such steps can be combined and applied in different orders in
a modular fashion, depending on the specific input and objectives. Figures 3.5a–c and
3.6a are artificial examples.

42 Chapter 3 General Ambiguity Model for Binary Edge Images



b

d

e

c

a i

ii

iii

iv

Fig. 3.5: Results for different examples and postprocessing steps (see text and zoom
in for details). In each subfigure: Left: Initial model output. Right: Resulting edges.
a Four different postprocessing strategies based on the edge length and connection to
ambiguities (free, dangling, bridged). b The individual rings are separated. c The spiral
segments are connected. d The bear is represented as a single, closed contour. e The
cross is extracted as a single contour.
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Fig. 3.6: Further results for different examples and postprocessing steps (see text and
zoom in for details). In each subfigure: Left: Initial model output. Right: Resulting
edges. a The two figures are separated despite complex ambiguities. b The path of the
pen stroke followed during the signature is traced (resulting path directions indicated
by arrows). c The main branches of the vessels are identified.
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In Figure 3.5a, specific edges have been removed depending on their connection to
ambiguities and length, with this information being directly accessible through the
model: In Example i, all free-standing edges without connections to ambiguities and
shorter than 20 pixels have been removed. In Example ii, all free-standing edges longer
than 10 pixels have been removed. In Example iii, all edges that have a connection to
only one ambiguity (either at the start or end, dangling) have been removed. Note that
this resolves all ambiguities in the middle edge, resulting in a single, closed edge. In
Example iv, all edges that have a connection to an ambiguity on both sides have been
removed. Such postprocessing options could be helpful when short or long edges need
to be disconnected from certain other edges, or to remove clutter from edge images.

In Figure 3.5b, the ambiguities have been resolved by connecting the respective edges
using a simple cost function approach. Recall that each pixel cluster forms a single
coherent ambiguity (Principle 3), so each ambiguity has been processed separately. The
cost function takes into account the angle difference at which two edges approach an
ambiguity and the Euclidean distance between the connection points, with the objective
of connecting edges based on good continuity. The angle relative to an ambiguity is
computed using a simple least squares line fit based on the last N pixels from the
connection point (in this example, 5 pixels have been used, but the exact number is not
critical). An edge is connected to another edge or itself if the cost for the candidates
is the lowest, provided that the cost is below a certain threshold. Formally, the cost
function C is defined as:

C = wθ∆θ + wdd , (3.1)

where ∆θ is the angle difference, d is the Euclidean distance between the connection
points, and wθ and wd are weighting factors to control the contributions of continuity
and proximity in the edge connection process. The process continues until all edges
connected an ambiguity have been checked. Note that this approach is simple and
effective, but not necessarily optimal in terms of all possible edge connections, as the
next best match is directly taken. Edges are connected by straight lines between the
connection points (which are start or end points), generated using the Bresenham line
algorithm (Bresenham, 1965). To improve the fit, a method that takes into account the
edge paths could be employed, such as interpolation using Euler spirals (Connor and
Krivodonova, 2014).

Figure 3.5c has also been processed using the cost function approach. However, in this
example, all edges are connected to the same large ambiguity. In the cost function, the
Euclidean distance between the connection points has been weighted higher than the
angle difference (wθ ≪ wd, so that larger distances lead to higher costs) to prioritize the
connection of opposite edges.
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Figure 3.5d shows a region cropped from image 100007 in the BSDS after applying
the Canny edge detector. In this example, the bear cannot be directly analyzed as one
coherent contour, as it is connected to some short edges caused by detection artifacts
and some additional edges caused by shadows in the lower area. From the model output,
all dangling edges shorter than 30 pixels (the exact number is not critical) have been
removed twice in succession. Consider the magnified region in Figure 3.5d: Repeating
this process twice is required because, after the first run, only the two dangling edges are
removed, leading to one remaining dangling edge. In principle, such a process could be
repeated until no more changes occur. Another strategy here and in general could be to
analyze connections across multiple ambiguities to see if this results in closed contours,
because it cannot be guaranteed that additional edges are always just dangling.

Figure 3.5e shows a region cropped from image 118035 in the BSDS after applying the
Canny edge detector. In this example, all edges shorter than 6 pixels have been removed,
independent of their connections to ambiguities. The contour of the cross was initially
connected to some short edges, which have been removed, as shown in the magnified
region, but also to an edge with connections to ambiguities on both sides.

Figure 3.6a shows an artificial example with many complex ambiguities. As shown in
the magnified regions, ambiguities can be easily located close to each other, and due
to the several edges converging at such points, such ambiguities should be considered
together. Therefore, the first postprocessing step has been to merge ambiguities that are
connected by edges with a length of 3 pixels into one combined ambiguity, so that all
connected edges can be accessed and connected (the corresponding function is provided
with our implementation). Next, connected edges at ambiguities have been processed
using the previous cost function approach. In summary, only two postprocessing steps
have been required to separate the two figures. As a result, the model could be helpful
for figure-ground segmentation and similar tasks.

Figure 3.6b shows an example obtained by threshold-based binarization of image 39_24
from the CEDAR signature dataset (University at Buffalo, 2007). The example has
also been postprocessed using the previous cost function approach. Additionally, the
order of the resulting edge has been reversed so that the start point corresponds to the
start of the pen stroke. A characteristic difference from Figure 3.6a is that it is a single
self-intersecting contour rather than two mutually intersecting contours.

Figure 3.6c shows a region cropped from image 21 in the DRIVE retina image dataset
(Staal et al., 2004) after applying binarization and morphological skeletonization. In the
first step, all edges shorter than 3 pixels have been removed. Next, the cost function
approach from the previous examples has been used. The next step could be to convert

46 Chapter 3 General Ambiguity Model for Binary Edge Images



the connections of main and sub-vessels into a graph representation to obtain a model
with data for medical purposes.

3.4 Evaluation

In Figure 3.1, CCL, MNT, and FCM have already been compared with the method devel-
oped in this work. For further insights into the corresponding component decomposition,
redundancy, and missing pixels, a dataset with binary edge images based on the BSDS
has been created and the results have been analyzed.

3.4.1 Dataset Construction

For each of the 500 images from the BSDS, four binary edge images have been created.
An example is shown in Figure 3.7. For this purpose, one of the manual binary annota-
tions (provided with the dataset) and the result of the gPb-owt-ucm method (Globalized
Probability of Boundary with Oriented Watershed Transform and Ultrametric Contour
Map; Xie and Tu, 2015; also provided with the dataset) have been used. Furthermore,
the Canny edge detector (Canny, 1986) and the HED method (Holistically-Nested Edge
Detection; Xie and Tu, 2015) have been applied to each image. Since multiple manual
annotations are provided per image (five on average), one annotation has been randomly
selected per image. The images from the gPb-owt-ucm method have twice the dimen-
sions of the original input images and the other binary edge images (481 × 321 px vs.
963 × 643 px). The Canny edge detector directly provides binary edge images through its
included non-maximum suppression and hysteresis thresholding. Since the HED method
produces broad, non-binary edges, the Zhang-Suen thinning algorithm (T. Y. Zhang
and Suen, 1984) has been applied to obtain the corresponding binary edge images. As
gPb-owt-ucm is a classical learning-based method, Canny a traditional gradient-based
method, and HED a deep learning-based method, a representative range of edge detec-
tion methods is covered. The following evaluation compares the different methods from
a general perspective without focusing on specific tasks. Which method is best generally
depends on the specific task.

3.4.2 Method Characteristics Overview

CCL determines one component for each set of connected pixels so that each pixel from
the input image belongs to only one connected component. The method does not lead
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Fig. 3.7: Example test image from the dataset for the evaluation based on image 78098
from the BSDS (intensities inverted). a Manual binary annotation provided with the
dataset. b Result of the gPb-owt-ucm provided with the dataset (scaled by a factor of
0.5). c Canny edge detector result. d HED edge detector (Xie and Tu, 2015) result with
an additional thinning step for binarization. See text for further details.

to any missing pixels. In the following evaluation, CCL is used as the baseline method,
as it provides information about the structure and complexity of the input image. In
Figure 3.1b, for example, CCL identifies only one connected component.

MNT determines edges by following around the outer boundary of each connected
component and therefore leads to one edge per component. In comparison, FCM and
the method developed in this work can segment each component into several edges
(and ambiguities). MNT can trace the same pixel twice in the same edge and lead to
missing pixels, as shown in Figure 3.1c.

FCM can determine several edges for each connected component and also detects
hierarchies between edges (parents and children), where the parent edges are essentially
identical to the MNT results. FCM can trace the same pixel twice in the same edge,
trace the same pixel in different edges, and also lead to missing pixels, as shown in
Figure 3.1d.
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The method from this work can determine several (meaningful) edges and ambiguities
for each connected component. The same pixel can be traced in different edges (in that
case, it is an ambiguity point), but unlike MNT and FCM, not in the same edge. The
method from this work does not lead to any missing pixels, as each pixel is either part of
an edge or ambiguity (or both), as shown in Figure 3.1e.

3.4.3 Method Analysis

In Tables 3.1–3.4, segments refer to the main entities extracted by each method. In CCL,
one segment corresponds to one connected component, whereas in MNT, FCM, and the
method from this work, to one edge. In the method from this work, ambiguity points
without edges are not considered as segments, as they represent potential connection
options rather than meaningful edges. Tables 3.1–3.3 include the results for Figure 3.1
to facilitate the interpretation of the data presented.

Table 3.1 shows the average number of pixels per segment for each method across the
different edge detectors. To compute the values, the total number of segment pixels
has been counted and divided by the number of segments. In Figure 3.1, for example,
the method from this work has captured 52 pixels in 9 segments (52/9 ≈ 5.8). MNT
leads to the highest values as it traces certain pixels twice per segment (edge). In
summary, the method from this work provides the smallest segments and the most
detailed decomposition into edges.

Table 3.2 confirms these results from another perspective. Here, the total number of
connected components has been counted and divided by the number of segments. In
Figure 3.1, for example, the method from this work has traced 9 edges for the given
component. CCL and MNT naturally have a value of 1.00, since both methods provide
exactly one segment per component.

Table 3.3 shows the total number of segment pixels in relation to the total number of
edge pixels (pixels labeled 1 in the input image). In Figure 3.1, for example, the method
from this work has captured 52 segment pixels and the input image contains 47 edge
pixels (52/47 ≈ 1.11). The values are interpreted here as a measure of redundancy and
missing pixels, with smaller values indicating lower redundancy and a higher number
of missing pixels. In general, good values are close to 1.00. MNT has missed certain
pixels so that the value is even smaller than 1.00. In summary, the method from this
work provides the lowest redundancy.

Table 3.4 shows the number of segments to which each segment pixel has been assigned
(on average over the entire dataset). In Figure 3.1, for example, the method from this
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Method
Avrg. No. Pixels per Segment (px)

Fig. 3.1 Anno gPb Canny HED

CCL 47.0 597.2 2178.7 46.9 95.8
MNT 46.0 736.1 2441.0 69.1 114.9
FCM 22.0 208.1 422.0 58.0 86.5
This work 5.8 39.6 78.3 9.9 15.8

Tab. 3.1: Pixels per segment, smallest values bold.

Method
Avrg. No. Segments per CC

Fig. 3.1 Anno gPb Canny HED

CCL 1.00 1.00 1.00 1.00 1.00
MNT 1.00 1.00 1.00 1.00 1.00
FCM 3.00 5.75 9.25 1.29 2.01
This work 9.00 15.47 28.27 5.12 6.46

Tab. 3.2: Segments per CC, highest values bold.

Method
No. Segment Pixels vs. Edge Pixels

Fig. 3.1 Anno gPb Canny HED

CCL 1.00 1.00 1.00 1.00 1.00
MNT 0.98 1.23 1.12 1.47 1.20
FCM 1.41 2.00 1.79 1.59 1.81
This work 1.11 1.03 1.02 1.08 1.06

Tab. 3.3: Segment vs. edge pixels, closest to CCL bold.

Method
Pixel to Segment Assignment (%)

0 1 2 3 >3

CCL 0.00 100.00 – – –
MNT 14.26 85.74 – – –
FCM 0.03 68.31 31.56 0.11 0.00
This work 0.33 96.95 0.31 2.40 0.02

Tab. 3.4: Assignment of pixels to how many segments.

work has traced 52 segment pixels, and 49 of them are in only one edge (49/52 ≈
94.23 %; not shown in the table). The “–” indicate that CCL and MNT cannot assign
pixels to more than one element. The proportion assigned to zero segments in the
method from this work corresponds to the number of ambiguity points without edges.
Note that the method from this work does still capture these points; they simply do not
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Fig. 3.8: Runtime analysis of the different methods for an increasing number of am-
biguities (connected 5 × 5 px crosses, see bottom right of the subfigures). CCL, FCM,
and the method from this work have been implemented in C++, and MNT in Python.
a Increasing number of ambiguities in a row. b Increasing number of ambiguities in a
square pattern.

contain any edges. In summary, the method from this work assigns most pixels to a
single segment.

3.4.4 Runtime Analysis

To analyze the runtime of the different methods, regular patterns with an increasing
number of ambiguities have been created, and the mean execution times have been
calculated over 10,000 runs for each method (Processor: Intel i7-13700K). The results
indicate an approximately linear relationship for all methods, both for an arrangement
in a row (Figure 3.8a) and in a square pattern (Figure 3.8b). Concerning the method
from this work, this is plausible because each additional ambiguity in the test pattern
adds the same number of operations, both during the preprocessing and edge tracing.
Note that the time is measured in milliseconds. Processing a typical dataset image with
the method from this work takes < 2 ms, it is therefore real-time capable. Depending
on the edge detection method, there are approximately 50 (Manual annotation) to 500
(Canny) ambiguities in a dataset image.

3.5 Summary and Final Remarks

Despite using only four straightforward principles (see Section 3.3.1), the ambiguity
model can handle complex structures in binary edge images in an intuitive and effective
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manner. With the specialized design of the method, ambiguities can be resolved in a more
direct manner compared to existing methods (without using graphs, etc.). It has been
found that the model is a natural extension of the concept of single-pixel ambiguities.
The implementation is divided into a preprocessing and an edge tracing part, which
provides clear operational control and helped to formulate a proof of correctness. It has
been shown that the method can effectively resolve complex ambiguities in different
application examples. This demonstrates the potential of the method to extract coherent
object contours from binary edge images, which can be determined using modern
deep-learning-based methods (cf. Section 2.2.6). Compared to others, the method
from this work provides the most detailed decomposition of binary edge images into
meaningful segments while also reducing redundancy (double reading of edge pixels).
While the method can also process regions, it is not intended for this purpose and simply
identifies each region as one coherent ambiguity. In future works, the method could be
applied to different tasks on larger datasets or used to generate training data for deep
learning-based feature extraction methods (cf. Section 5.2).

A rather theoretical limitation of the method is the possible depth of recursion (which is
not specific to the method, but a general characteristic of recursions). Since recursion is
only used for the edge tracing, the maximum depth to be handled corresponds to the
maximum edge length.
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Local Scale-Invariant
Contour Features

4
As discussed in Section 2.2, assigning characteristic scales to local image features is a
widely adopted approach to obtain scale-invariant feature descriptions. The methods
discussed in that section are appearance-based, operating directly on the gray values in
the image plane. Nonetheless, as discussed in Section 2.1.1, effective object recognition
is facilitated by the integration of different feature types, particularly shape features
derived from object contours. However, most shape description methods in the literature
are global approaches, meaning that contours are described as coherent entities rather
than based on explicit local features. In particular, there is no robust methodology
for assigning characteristic scales to local contour features as there is for appearance-
based features. In this chapter, a new method is presented to address this problem.
The objective is to facilitate the integration of contour features with appearance-based
features in a modular manner.

In Section 4.1, the importance of handling image structures at different scales is dis-
cussed. Furthermore, an overview of scale-space theory is provided, including 1D and
2D scale-space representations, fundamental axioms, and computational aspects. In
Section 4.2, related work on shape description techniques is reviewed, with a focus
on curvature scale-space (CSS) methods. In Section 4.3, the method developed in this
work is presented in detail: starting from the limitations of simple approaches, the con-
struction of the CSS representation is described, along with the detection and tracing of
curvature extrema and the assignment of characteristic scales. Furthermore, the method
is extended to open contours and a box filter approximation for the CSS computation is
introduced. In Section 4.4, the method is evaluated under various transformations, and
the section concludes with a brief summary.

4.1 Scale-Space Theory

Scale-space theory is the backbone of the method developed in this work to extract the
local contour features and of many other feature extraction methods, such as SIFT. This
section outlines the main ideas of this theory, its formalization, and its relevance in the
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field of vision systems and object recognition. Due to the mathematical nature of the
theory, it is presented with a detailed formalization, such as by clearly defining function
domains.

4.1.1 Problem Characterization

Handling different scales is a fundamental problem for any advanced vision system,
whether biological or artificial, and an appropriate formalization helps to address this
problem in a systematic manner. The problem is twofold: First, real-world objects are
built based on structures of different scales (Ter Haar Romeny (1996) describes this
as “the multiscale nature of things”), and the scale of observation determines which
of these structures can be resolved as meaningful entities (for instance, observing an
object at the nanometer level normally reveals entirely different structures than at the
kilometer level). Second, the size of an object in the image plane changes with the
distance to the vision system (zooming excluded), although its physical size does not
change. Both aspects have to be considered to make a vision system flexible.

To illustrate the first aspect, the literature often refers to the entities of a tree (e.g.,
Koenderink, 1984; Ter Haar Romeny, 1996; Lindeberg, 2008): seen from a distance, a
treetop may appear as one coherent round or cylindrical entity. On closer observation,
individual leaves become visible, and in turn their texture when going even closer.
Another example is given in (Lindeberg, 1994a): On closer observation of a cloud,
individual droplets become visible, and in turn their water molecules. Hence, the
structures are organized in a hierarchical manner. The popular short film Powers of Ten
by C. Eames and R. Eames (1977) illustrates that such considerations can be extended to
structures ranging from subatomic up to cosmic scales. The scale of observation depends
on the optical instrument used (e.g., eye, camera) and can be extended with additional
instruments (e.g., microscopes, telescopes). The problem is that vision systems have to
deal with a vast diversity of different input images and often without prior knowledge
about the content. Furthermore, the initial stages of processing should be flexible
enough to enable subsequent stages to solve many different tasks. Therefore, it remains
unclear which image structures should be considered as meaningful entities. All scales
(i.e., sizes or spatial extents of image structures) could be interesting so that all image
structures should be considered equally important in the initial stages of processing.

Scale-space theory is a formalized framework to analyze image structures at multiple
scales based on smoothing operations to successively suppress fine-scale information
(including noise). In other words, image structures are analyzed at different levels
of detail (abstraction) representing different scales of observation. The stronger the
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smoothing, the higher the scale. For example, smoothing an image region that shows
the leaves of a tree may lead to one coherent image structure (a treetop or a part of
it). In principle, meaningful entities at different scales can be identified in a bottom-up
manner. This process of primitive grouping also adapts to size changes due to distance
changes (the second aspect described above). Similar processes can be found in the
human visual system (cf. Section 2.1.3). In this perspective, Ter Haar Romeny (2003)
uses the headline “Scale-space theory is biologically motivated computer vision”, and
Lindeberg (2008) notes that the theory “has been developed by the computer vision
community with complementary motivations from physics and biologic vision.”

Of course, the scale range in an image is bounded so that only structures within that
range can be resolved. The lower bound is the inner scale, corresponding to the smallest
visible element, which is the size of a pixel in the case of a digital image. The upper
bound is the outer scale, corresponding to the largest visible element, which is the finite
size of the entire digital image. As noted in the literature (e.g., Lindeberg and Ter Haar
Romeny, 1994; Dabiri and Blaschke, 2019), inner and outer scales can also be assigned
to photographic images (considering the grain size in the emulsion), optical instruments
and their sensors, and also directly to real-world objects and their entities.

To extract information from an image, such as the location of features or objects, it
is necessary to interact with the data using finite windows. Without specific prior
knowledge, all possible window sizes between the inner and outer scale have to be
considered (from a single pixel to the entire digital image) at all locations in an image.
Such an approach is computationally expensive and, without additional steps, not
suitable for practical applications. In fact, evaluating windows with many different sizes
and aspect ratios at different locations is a common step in object detection methods and
is only feasible by using specific fast filter operations or other optimization strategies
(e.g., Kalal et al., 2012). As Zou et al. (2023) note, “multiscale detection of objects
with different sizes and aspect ratios is one of the most technical challenges in object
detection.” Also CNNs for object detection use many image regions from an input
image, which are then individually classified. However, these image regions must first be
proposed in a way that objects are accurately captured (e.g., Zitnick and Dollár, 2014;
Hosang et al., 2016).

An alternative approach is to use the smoothing operations to analyze image structures
at multiple scales, as this leads to different levels of abstraction with locally stable
states (identifying significant structures through a bottom-up approach). Based on the
smoothing results, window sizes and operations can be directly adapted to the local
image structure. Lindeberg (1994a) characterizes this as a principle “for guiding the
focus-of-attention and tuning other early visual processes [...] to simplify their tasks.”

4.1 Scale-Space Theory 55



This is an interesting property for tasks such as feature detection and image segmentation
in a robust and scale-invariant manner (two main objectives for the contour features
presented in this work). As discussed on Section 4.1.3, it can be shown that Gaussian
and Gaussian derivative kernels are the only appropriate smoothing operators for such
purposes.

Before going deeper into the theory for 2D images, some interesting side notes: while
the structures of real-world objects in images can only be resolved over a specific range
of scales, ideal mathematical entities, such as points or lines, are independent of the
scale of observation. As Ter Haar Romeny (1996) notes, the characteristic difference
is that physical measurements are associated with units (images are formed based on
physical light measurements). Furthermore, scale considerations (with adapted scale
concepts) also play an important role in many other disciplines. For example, Dabiri
and Blaschke (2019) identified seven types of scale (including the scale of observation)
in the context of geoscience disciplines based on a literature review and interviews
with scientists. As described by Horton (2021), other domains are physics, economics,
climate, philosophy, cartography, etc. For physics, the authors notes that scales refer to
defined size domains, where “each scale is a conventionally derived slice of reality [. . . ]
with characteristic entities and dynamics” (pp. 15–16), emphasizing that even physical
laws are scale-dependent.

4.1.2 Scale-Space Representations

As discussed above, the significance of scale-space representations is to represent signals
at multiple scales, to make their multi-scale characteristics explicit, and to simplify
later processing steps. In the literature, the theoretical foundations for scale-space
representations are usually derived for continuous signals. By this means, continuous
mathematical operations, such as differentiation, integration, and Fourier transform,
can be directly applied, which simplifies the theoretical analysis of specific properties.
Furthermore, the theory can be directly linked to differential equations, particularly the
diffusion equation. In practical applications and this work, however, discrete signals
have to be processed. Section 4.1.4 summarizes corresponding considerations for a
computational implementation of scale-space representations. This work focuses on 1D
and 2D signals (contours and images) so that the following discussions are restricted to
these cases. Extensions to higher (arbitrary) dimensions and spatio-temporal data are
possible and described in (Lindeberg, 2013).
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4.1.2.1 1D Signals

Following the formalization in (Lindeberg, 1994a, p. 11), the current scale level (amount
of smoothing) is defined by the scale parameter t ∈ R0

+. Given a 1D signal f : R → R,
its scale-space representation L : R × R0

+ → R is defined such that the representation at
zero scale is equal to the original signal:

L(x; t = 0) = f(x) . (4.1)

Here and in other equations, the semicolon is used to separate the spatial variable(s)
from the scale parameter. The representations at higher scales are obtained by convolving
the original signal with 1D Gaussian functions g : R × R+ → R with increasing scale t:

g(x; t) = 1√
2πt

exp
(

−x2

2t

)
. (4.2)

In integral form, the convolution is computed as follows:

L(x; t) =
∫ ∞

ξ=−∞
g(ξ; t)f(x − ξ) dξ . (4.3)

This equation can be written in short as:

L(x; t) = g(x; t) ⊛ f(x) , (4.4)

where ⊛ denotes the continuous convolution operator. By systematically increasing t, the
scale-space representation is obtained as a one-parameter family of signals derived from
the original signal. In this context, the Gaussian g is also referred to as the scale-space
kernel. The standard deviation σ of a Gaussian and the scale parameter are related by
t = σ2. The parameter t is often used in the literature due to the connection of the
scale-space representation to the diffusion equation, where t represents time (details
below).

The case of zero scale is excluded from Equation (4.2), as the Gaussian is undefined for
t = 0. For t → 0, however, the Gaussian converges to a Dirac delta function so that the
convolution yields the original signal. This is mainly a theoretical consideration in terms
of a well-defined scale-space representation. In practical applications, one can directly
use the original signal (without the convolution) to represent the zero scale level.

An equivalent scale-space representation can be defined as the solution of the 1D heat
or diffusion equation

∂tL = 1
2∇2L = 1

2∂xxL , (4.5)
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Fig. 4.1: Scale-space construction and analysis for a discrete 1D signal f(x), imple-
mented and extended based on (Witkin, 1983). a Convolution of the original signal
with Gaussian kernels of increasing standard deviation σ, resulting in progressively
smoothed signals. b Zero-crossings of ∂xxL (the second spatial derivative of the scale-
space representation) across scales, confirming that the number of local extrema of L
gradually decreases, which is a fundamental property of scale-space representations (cf.
Section 4.1.3.5).

where ∇2 denotes the Laplacian operator, ∂t the time derivative, ∂xx the second spatial
derivative, and with Equation (4.1) as the initial condition. This relationship has first
been described by Koenderink (1984) for 2D images with the note that the 1D case
follows directly from the 2D case (refer to Section 4.1.2.2 for the 2D case, a physical
interpretation, and a discussion of additional interesting characteristics of the diffusion
equation for scale-space representations). The proof is straightforward: the first partial
derivative of g with respect to t gives

∂tg(x; t) =
(

− 1
2t

+ x2

2t2

)
1√
2πt

exp
(

−x2

2t

)
. (4.6)

The second partial derivative of g with respect to x gives

∂xxg(x; t) =
(

−1
t

+ x2

t2

)
1√
2πt

exp
(

−x2

2t

)
. (4.7)

Taking these results, substituting Equation (4.4) into Equation (4.5) (the diffusion
equation), and considering the convolution derivative theorem leads to

f(x) ⊛
(

− 1
2t

+ x2

2t2

)
1√
2πt

exp
(

−x2

2t

)

= f(x) ⊛ 1
2

(
−1

t
+ x2

t2

)
1√
2πt

exp
(

−x2

2t

)
. (4.8)
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As a result, the diffusion equation is satisfied, and the independent convolution with f

shows that the process can be generalized to various input signals.

As Ter Haar Romeny (1996) points out, an important observation is that the spatial
derivatives of the Gaussian function are also solutions of the diffusion equation. Conse-
quently, derivative scale-space representations can be computed in the same way, and
image structures at different (multiple) scales can also be analyzed in terms of their
derivatives. This principle is fundamental for the development of scale-invariant feature
detectors, such as the method for extracting the contour features in this work and SIFT
in 2D images. As convolution commutes with differentiation, computing derivative
scale-space representations can be achieved either by convolving a signal with Gaussian
derivatives or by differentiating the scale-space representations directly, which can be
employed for efficient algorithmic implementations, as discussed in Section 4.3.8. As
outlined in (Lindeberg, 2008), the set of scale-space derivatives up to order N at a
specific position and scale in a 2D image is known as an N -jet, provides a compact
characterization of the corresponding local image structure, and forms a basic type of
scale-space feature. In practical applications, the case of N = 2 is of special interest
because first-order derivatives (gradient information) are useful for identifying edges
and textures, and second-order derivatives (intensity curvature) for identifying corners
and blobs (as in SIFT).

4.1.2.2 2D Signals

Following the formalization in (Lindeberg, 2008) (with slight modifications for better
consistency with the 1D case), the scale-space representation of a given 2D signal
f : R2 → R can be defined as L : R2 × R0

+ → R, and should be equal to the original
signal in case of zero scale:

L(x, y; t = 0) = f(x, y) . (4.9)

The representations at higher scales are obtained by convolving the original signal with
2D Gaussian functions g : R2 × R+ → R with increasing scale t:

g(x, y; t) = 1
2πt

exp
(

−(x2 + y2)
2t

)
. (4.10)

In integral form, the convolution is computed as follows:

L(x, y; t) =
∫ ∞

ξ=−∞

∫ ∞

η=−∞
g(ξ, η; t)f(x − ξ, y − η) dξdη . (4.11)
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This equation is often expressed in short form using the convolution operator:

L(x, y; t) = g(x, y; t) ⊛ f(x, y) . (4.12)

An equivalent scale-space representation can be defined as the solution of the 2D
diffusion equation (cf. Koenderink, 1984; Weickert, 1998):

∂tL = 1
2∇2L = 1

2(∂xxL + ∂yyL) , (4.13)

with the notation analogous to the 1D case in Equation (4.5). The proof is analogous to
the 1D case in Equation (4.8). This partial differential equation (PDE) is linear, space- or
shift-invariant since the spatial derivatives are independent from the absolute position of
L (i.e., the derivatives are computed in the same manner at each position), homogeneous
since all terms directly depend on L, and isotropic since the spatial derivatives are equally
weighted in both directions. These are desirable characteristics (properties) for scale-
space representations, as discussed in Section 4.1.3. The physical interpretation of
this equation is that it describes the evolution of a given heat distribution (or other
quantities, such as chemical concentration) without sources or sinks over time, which
is particularly intuitive for functions on a plane. For example, it describes a hot spot
on a metal plane gradually spreading out across the surface. In that case, L represents
temperature profiles instead of gray values in an image.

This work focuses on linear Gaussian scale-spaces as described above. Nonetheless, it
should be noted that especially since Koenderink (1984) related scale-spaces to the
diffusion equation and Perona and Malik (1990) extended the concept to an anisotropic
and nonlinear form for edge detection, linear and nonlinear PDEs have been success-
fully adopted for many different image processing tasks, particularly smoothing and
restoration (Weickert, 1998; Aubert and Kornprobst, 2006). As outlined in (Alt et al.,
2023), where the authors investigate some structural connections between numerical
methods for PDEs and CNN architectures, PDE-based models are compact and have a
solid mathematical foundation. As a result, theoretical key properties like stability and
well-posedness can be systematically analyzed. Furthermore, there are different ap-
proaches to analyze PDEs, such as numerical or variational methods, providing different
perspectives to solve the specific problem at hand. The diffusion equation, as given in
Equations (4.5) and (4.13), is probably the best-investigated PDE in image processing. In
the Perona-Malik method mentioned above, the constant diffusion coefficient is replaced
by a scalar function of the gradient magnitude with the objective to preserve edges
(prefer intra over interregion smoothing). The equation is then solved in an iterative
manner using a numerical method. Going further in the field of diffusion filters, using
a tensor instead of a scalar diffusion coefficient provides even more control over the
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diffusion process with respect to the local image structure (cf. Weickert, 1998; Hund,
2009).

4.1.3 Scale-Space Axioms

Scale-space axioms are certain fundamental principles that have been formulated to
guide the construction of scale-space representations. As motivated at the beginning
of this chapter, a flexible (uncommitted) vision system not constrained to a specific
domain or task should consider all image structures equally important in the first
stages of processing. Furthermore, it should be possible to deal with different scales of
observation. These and other properties are reflected by the axioms. Considering such
axioms also leads to accurate predictions about the shape of “receptive fields observed
in the retina, the LGN and the primary visual cortex (V1) of mammals” (Lindeberg,
2021).

As noted in (Lindeberg, 1994a), a list of desired principles may be long, but will also
contain redundancies. While the outcome has already been described above—namely,
that the process is defined by the diffusion equation, where the signal is convolved with
Gaussians—the axioms provide a thorough formal basis for scale-space representations.
A table listing 15 axioms and comparing their use across 14 different works can be
found in (Weickert et al., 1999, p. 245), where each work employs a specific subset of
these axioms. The most important and non-redundant axioms, especially in the context
of scale-invariant feature detection, are linearity, spatial shift invariance, symmetry,
semigroup property, causality, and scale-invariance, as discussed below. To formalize
these axioms, a scale-space operator Tt is introduced and applied to the input signal
f , as introduced in Sections 4.1.2.1 and 4.1.2.2, to obtain the 1D and 2D scale-space
representations, respectively. Unless stated otherwise, the formalizations are based on
(Lindeberg, 2013), with slight modifications for clarity and consistency across different
references.

4.1.3.1 Linearity

Ter Haar Romeny (2003) characterizes this principle as “no knowledge, no model, no
memory”. This refers to the idea that nonlinear processes often require some form of a
priori knowledge or specific assumptions about the data, which contradicts the concept
of uncommitted processing. An example of such a bias (nonlinearity) is the preservation
of edges in the Perona-Malik method outlined in Section 4.1.2.2. Having no memory
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refers to the idea that the processing at each scale should be independent from previous
steps. The axiom can be formalized as follows:

Tt(a1f1 + a2f2) = a1Tt(f1) + a2Tt(f2) , (4.14)

with constant scalars a1, a2 ∈ R. As discussed, the diffusion equation is a linear PDE and
therefore satisfies this axiom.

4.1.3.2 Spatial Shift-Invariance

Also referred to as translation invariance or spatial homogeneity, this principle states that
every location in an image should be processed in the same manner. In other words, the
processing should only depend on the data itself. By introducing a shift operator S∆x,y ,
which shifts f in the x and y-direction such that

S∆x,y (f) = f(x − ∆x, y − ∆y) , (4.15)

the axiom can be formalized as follows:

Tt(S∆x,y (f)) = S∆x,y (Tt(f)) . (4.16)

For tasks such as feature detection, spatial shift invariance ensures that features are
detected solely based on their characteristics and not their position in the signal or
image. As noted by Lindeberg (2013), who builds upon previous works in linear systems
theory, combining the principles of linearity and shift-invariance leads to convolution
transformations. This is also the reason why the table with the axioms in (Weickert
et al., 1999) directly summarizes both principles as “convolution kernel”. The diffusion
equation is consistent with this finding, as L can be expressed as a convolution result, as
shown in Section 4.1.2.1.

4.1.3.3 Isotropy

Also referred to as rotation invariance or rotational symmetry, this principle states that all
spatial directions should be processed in the same manner. The idea is that no particular
orientation of an image structure should be preferred, as this would again contradict the
concept of uncommitted processing. The axiom can be formalized as follows:

g(x, y; t) = h (r; t) , (4.17)
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for some 1D function h : R0
+ × R+ → R, where r =

√
x2 + y2 is the radial distance to

the origin of h. This means that the function value of h respective g at any point (x, y)
only depends on r, which is consistent with the use of Gaussians due to their radial
symmetry.

4.1.3.4 Semi-Group Property

This principle states that applying a scale-space transformation at one scale t1 and then
applying it again at a second scale t2, should be equivalent to applying the transformation
once with the sum of these scales. Given that convolution is associative when applying
consecutive scale-space transformations, the axiom can be formalized as follows:

g(x, y; t1) ⊛ g(x, y; t2) = g(x, y; t1 + t2) . (4.18)

This equation is satisfied by Gaussians, as it is a well-known property that the convolution
result of two Gaussians is itself a Gaussian, whose variance is the sum of the original
variances:

σ2
g1⊛g2 = σ2

g1 + σ2
g2 . (4.19)

A direct consequence of the semi-group property is the cascade property, which states
that an image already transformed at a scale t1 (e.g., the initial scale of observation) and
to be transformed to a higher scale t2 (where t2 ≥ t1), only requires a transformation
with the difference between the two scales:

L(x, y; t2) = g(x, y; t2 − t1) ⊛ L(x, y; t1) . (4.20)

Therefore, a consistent scale-space representation can be constructed starting from
arbitrary scales, which is particularly important since the initial scale of observation is
typically unknown. For a computational implementation, this property can be used to
construct a scale-space representation incrementally without restarting the smoothing
process from the original signal for each scale.

4.1.3.5 Causality

This principle states that the representations at higher scales should be simplifications of
those at lower scales. This implies that structures at higher scales should not be created
or enhanced unless they are simplifications of existing structures in the original image.
In short, the process should not introduce artificial features (“spurious structures”).
This is a central aspect of scale-space theory, which describes how it accounts for the
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natural hierarchical organization of image structures, as illustrated by the tree example
in Section 4.1.1. For the formalization of this principle, there is a significant difference
between 1D and higher-dimensional signals: for 1D signals, it can be expressed as the
requirement that the number of local extrema should not increase with higher scales
(non-creation of local extrema); and for higher-dimensional signals that local extrema
should not be enhanced with higher scales (non-enhancement of local extrema).

For a proof of the 1D case, the literature often refers to the original work by Witkin
(1983): As local extrema of L correspond to zero-crossings of ∂xL, zero-crossings
of derivatives of L of any order form closed curves over scale and are never closed
from below (which shows that the number of local extrema gradually decreases), as
exemplarily shown for ∂xxL = 0 in Figure 4.1b. For the 1D case, it can be shown that an
appropriate scale-space kernel must be positive and unimodal in both the spatial and
Fourier domains, and its integral over the entire domain should sum up to 1 to leave
constant signals unaffected (see Lindeberg, 2013, for corresponding references). These
characteristics are satisfied by Gaussians.

For higher-dimensional signals, the formalization has to be adapted, as Lifshitz and Pizer
(1990) have presented a 2D example which shows that there are no non-trivial kernels
(including Gaussians) that never increase the number of local extrema. In their example,
two intensity peaks of different heights in the 2D plane are connected by a narrow ridge.
During the smoothing process, the ridge vanishes faster than the peaks, which leads to
two distinct local extrema where only one was apparent before (see Lindeberg, 1994a,
p. 102, for an illustration). However, it is still a simplification of existing structures so
that causality is preserved. In conclusion, the corresponding formalization has to be
relaxed in such a way that local extrema are not enhanced at higher scales:

∂tL ≤ 0 at any non-degenerate local maximum,

∂tL ≥ 0 at any non-degenerate local minimum.
(4.21)

The non-degenerate restriction excludes critical points such as ridges as described above,
where the determinant of the Hessian matrix is zero. This formalization can be used for
formal proofs and leads to the result that the scale-space kernel for higher-dimensional
signals must also be a Gaussian (Lindeberg, 1997). From a mathematical perspective
on the diffusion equation, the non-enhancement is reflected by the maximum principle,
which is a characteristic property of parabolic PDEs (Evans, 2010). In a retroperspective
of his work, Koenderink (2021) simply notes from a practical standpoint that “for a
classical physicist it is entirely obvious that diffusion cannot generate, but only destroy
spatial articulations.”
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4.1.3.6 Scale-Invariance

This principle states that the appearance and size of a feature in the scale-space repre-
sentation should adjust relative to the scale parameter. This implies that when a feature
is scaled (naturally, through varying scales of observation and distances, or artificially
in a scale-space representation), a kernel scaled by the same factor should yield a
similar response. This is a central requirement for scale-invariant feature detection,
as the characteristic scale of a feature needs to be identified across different scales of
observation and distances in a consistent manner. Scale-invariance requires that the
convolution kernel is self-similar, which means that changing the scale parameter should
yield a scaled version of the original kernel (a rescaled copy). This can be formalized as
follows:

g(x, y; t) = 1
φ(t) ḡ

(
x

φ(t) ,
y

φ(t) ; 1
)

, (4.22)

where φ(t) : R+ → R+ is some function which transforms the scale parameter t, and ḡ

is a prototype (or reference) kernel. Therefore, scaled versions of the kernel should be
obtained by scaling both its amplitude and spatial coordinates by the same factor. This
relationship is inherently satisfied by Gaussians. Comparing Equations (4.10) and (4.22)
shows that φ(t) corresponds to σ =

√
t. As a result, scaling a Gaussian corresponds to

changing its standard deviation by the respective factor, which is a well-known property.
In feature detection, it is therefore σ values that represent the characteristic scales at
which a Gaussian or its derivatives best match an image structure (cf. Section 2.2.3).

4.1.3.7 Summary

In summary, the Gaussian function and its derivatives represent a unique choice for scale-
space representations in the continuous domain, which can be derived from different
subsets of scale-space axioms. In particular, they provide a consistent and scale-invariant
approach that is not biased towards any specific image structure, position, orientation,
or scale, while preserving the natural hierarchical organization of image structures.

4.1.4 Computational Implementation

In practical applications and this work, it is necessary to process discrete rather than
continuous signals. For this purpose, the usual approach in the literature consists of
representing the Gaussian function and its derivatives by a sufficient number of samples.
This approach is also followed in this work. In SIFT, for example, the Gaussian filter
masks should be sufficiently large. In SURF, the second-order partial derivatives are
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even approximated using simple box filters (cf. Section 2.2.4.2). Concerning the number
of samples, it is generally appropriate to ignore the values of a Gaussian function at a
distance larger than 3σ from the mean (Gonzalez and Woods, 2018, p. 168).

Considering the constraints imposed by the formalized scale-space axioms, it is reason-
able to ask whether this approach is theoretically justified without further considerations.
Lindeberg (2024) provides a detailed analysis on this question. In summary, the discrete
analogue of the Gaussian function and its derivatives are modified Bessel functions of
integer order. However, this is only significant for very fine scales (σ < 0.75), which are
below the scales relevant to this work or the feature extraction methods discussed.

4.2 Related Work

This section first provides an overview of established shape description methods and
then focuses on curvature scale-space methods, to which the method presented in this
work belongs.

4.2.1 Shape Description Methods

In general, 2D shape description methods can be divided into contour- and region-based
methods, depending on the specific feature type used (Y. Li et al., 2015; M. Yang et al.,
2008). The descriptions are required to measure the similarity of shapes, and many
techniques have been developed for this purpose (D. Zhang and Lu, 2004). Traditional
methods include chain codes, boundary signatures, and Fourier descriptors (Gonzalez
and Woods, 2018), but these are not robust against geometric image transformations
or noise, and they can only process fully segmented closed contours, which are often
difficult to determine. Another well-known method is skeletonization, which reduces the
contour of an object to its medial axis (skeleton) while still describing its topological and
geometric shape properties (Saha et al., 2016). By analyzing the skeletons for specific
singularities (shocks) and modeling their configuration, shock graphs are constructed
(Sebastian et al., 2004). Bai et al. (2009) combine skeletons with contour segments to
integrate local and global shape properties. Although skeletonization leads to compact
shape representations, it also requires fully segmented closed contours.

Most shape description methods can also work when parts of a contour are missing.
For example, regularly sampled points can be used to find point correspondences on
different shapes. For this purpose, Belongie et al. (2002) introduced the shape context
descriptor. For each sampled point, the descriptor captures the relative distribution of the
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surrounding points in log-polar histograms. Point correspondences are used to estimate
an aligning transform, but the descriptors may not be robust when surrounding points are
missing due to larger occlusions. Scale and rotation invariance can be achieved through
specific normalizations. Ling and Jacobs (2007) also use shape context but replace the
Euclidean distance, which is normally used to capture the relative distribution of the
surrounding points, with the inner distance. This modification makes the descriptions
of complex shapes with articulations more discriminative. Berg et al. (2005) also use
regularly sampled points to estimate an aligning transform but employ geometric blur
descriptors for matching. From a general perspective, the last two methods are examples
of the use of specific problem-solving techniques, such as dynamic programming (Ling
and Jacobs, 2007) and integer quadratic programming (Berg et al., 2005), to reduce
the computational complexity of finding correspondences between large sets of edge
points.

Several shape description methods use contour segments together with a voting scheme
to verify the geometric consistency of matched segments. For example, Opelt et al. (2006)
and Shotton et al. (2008) describe similar methods to learn class-specific codebooks
of contour segments: they explicitly construct segments that are representative of
class-specific training images. While the construction process differs between the two
methods, both use chamfer matching to compare segments and boosting to consider
a large number of matching combinations. The geometric consistency of matches is
evaluated using a star-shaped voting model. Scale and rotation invariance are achieved
through scaled and rotated codebook entries (Opelt et al., 2006) or through scale-
normalized codebook entries and modified chamfer matching (Shotton et al., 2008),
respectively. Due to the class-specific learning scheme, the features are not generic and
are therefore difficult to reuse. Ferrari et al. (2008) exploit the connectedness of roughly
straight adjacent contour segments. The authors use codebooks of connected segments
together with sliding windows to classify different shapes. A specific normalization
achieves scale invariance, while rotation invariance is not implemented by default.

Other shape description methods directly process edge images without explicitly follow-
ing contours or contour segments. For example, Jurie and Schmid (2004) use scale-space
analysis to determine circle- and arc-like structures of edge pixels as local image fea-
tures. These features are scale and rotation invariant, but the specific structures may
only represent certain shape classes. The descriptors used are similar to shape context
(which may not be robust in cases of larger occlusions). Mikolajczyk et al. (2003) also
use scale-space analysis but compute Laplacians for the edge points in edge images of
different scales. The method follows a similar approach to SIFT, determining a high
number of features but requiring a complex matching scheme.
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The methods discussed integrate some of the most important shape description and
matching techniques. The star-shaped voting models in (Opelt et al., 2006) and (Shot-
ton et al., 2008) are examples of graph-based approaches to describe the geometric
relationships of contour segments. Shape-trees are another graph-based approach used
by Felzenszwalb and Schwartz (2007) to describe hierarchies of roughly straight contour
segments. They also integrate elastic matching, a well-known method to measure the
similarity of shapes by minimizing specific energy functions (D. Zhang and Lu, 2004).
Elastic matching is closely related to aligning transforms and can also be used together
with parametric contour representations, such as splines (Tuytelaars and Mikolajczyk,
2008). Codebook-based methods are also very common and represent a variant of the
bag-of-features approach (Prasad, 2012). Since these methods usually only describe
the frequency of features, their geometric configuration is not considered. X. Wang
et al. (2014) use discrete contour evolution (Latecki and Lakämper, 1999) to determine
contour segments, which is related to scale-space analysis. The segments are described
using shape context descriptors and integrated with bag-of-features. Shen et al. (2016)
present a similar method but use skeletal information instead of contour segments.

In this work, contour segments are extracted around curvature extrema. In general,
curvature extrema are already common features in the context of shape description
(Tuytelaars and Mikolajczyk, 2008). However, existing works identify curvature ex-
trema only as corners using different variants of curvature scale-space analysis (X.-C.
He and Yung, 2004; Mokhtarian and Suomela, 1998; X. Zhang et al., 2009). Com-
pared to the method developed in this work, they do not determine a characteristic
scale for each keypoint (curvature extremum), which serves as additional information
to extract meaningful contour segments in a robust and scale-invariant manner. Ad-
ditionally, it could be interpreted as a saliency measure in artificial visual attention
systems (Tünnermann et al., 2013). As outlined, many shape description methods use
roughly straight contour segments. In (Xu and Kuipers, 2011), such segments are even
extracted by cutting contours at curvature extrema. Given that curvature extrema are
the most informative points along object contours, this seems counterintuitive, as the
corresponding descriptions do not make use of the encoded information. Additionally, it
is difficult to assign robust characteristic orientations to straight segments. The contour
segments from this work can be described by feature vectors for matching. Therefore,
the computational complexity of aligning transforms or matching large sets of sampled
points can be avoided. Furthermore, the features are generic and can be integrated
with bag-of-features and other methods, and the characteristic scales can be used as
additional geometric information for their description.
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Method Scope Feature Type Open Contours

Standard CSS (Mokhtarian et al., 1992) Global Zero-crossings No
Enhanced CSS (Abbasi et al., 2000) Global Zero-crossings No
Extreme CSS (Silkan et al., 2009) Global Min/Max No
Eigen CSS (Drew et al., 2009) Global CSS projections No
Generalized CSS (Benkhlifa et al., 2017) Global Min/Max No
Deep GCSS (Mziou-Sallami et al., 2023) Global Max. curvature No
Diff. of Curvature (Kawamura et al., 2011) Local DoC Min/Max Yes
This work Local Min/Max Yes

Tab. 4.1: Overview of representative CSS-based methods for contour-based shape de-
scription, adapted and extended based on (Kurnianggoro et al., 2018, Table 2).

4.2.2 Curvature Scale-Space Methods

While CSS-based methods are well-established and have a solid theoretical foundation
in scale-space theory, they have not been used for assigning characteristic scales to
individual curvature extrema—likely because the process is more complex than lo-
cating a distinct maximum in a signature function, as in appearance-based methods
(cf. Section 2.2.3). The key idea in this work is to identify and distinguish local and
global characteristics in the function profiles—an aspect that has not been explored
in the literature. Details of the CSS computation steps for a given contour are pre-
sented in conjunction with the method developed in this work in Section 4.3. Note that
there are also established CSS-based corner detectors (e.g., Mokhtarian and Suomela,
1998), which focus exclusively on identifying keypoints rather than providing a broader
shape description or characteristic scales. These methods fall outside the scope of this
comparison.

In the literature, CSS often refers to the specific method (referred to as Standard CSS
here) in which curvature zero-crossings of closed contours are traced across scales to
obtain a global, scale-invariant shape description (Mokhtarian and Mackworth, 1992;
Abbasi et al., 1999; Mokhtarian and Bober, 2003; Berrada et al., 2011), which remains
the most established and widely referenced approach in this domain. The contours
are typically normalized or resampled, and the resulting representation consists of the
positions of the maxima of the arcs formed by the zero-crossings. Two examples of
Standard CSS representations are shown in Figure 4.2, illustrating the robustness of
the approach with respect to noise. The Standard CSS method has been extended
in many works, an overview of which is given in Table 4.1. In principle, one can
distinguish between global and local approaches, with global approaches being much
more common.
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a

b

Fig. 4.2: Standard CSS representation without arc-length parametrization. Additional
normalization steps lead to nearly identical representations. a Original contour. b Same
contour with a significant amount of noise.

All global approaches in Table 4.1 require closed contours and do not assign local
characteristic scales to individual keypoints. Abbasi et al. (2000) extend the Standard
CSS representation by incorporating “additional information about the curvature value
at different levels of scale.” Silkan et al. (2009) build on the Standard CSS method
by extracting curvature extrema instead of zero-crossings, but retain the global scope.
Drew et al. (2009) propose a method that represents the CSS image using marginal-sum
feature vectors, which are projected into an eigenspace for efficient shape comparison.
Benkhlifa and Ghorbel (2017) extend the Standard CSS method by introducing a non-
uniform iso-curvature parameterization. While this improves shape representation in
high-curvature regions, it does not change the global nature of the method. Mziou-
Sallami et al. (2023) present a deep learning model for contour classification that
integrates handcrafted Generalized Curvature Scale-Space (GCSS) descriptors. Despite
its robustness and explainability, the method remains global and does not assign local
characteristic scales.
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Besides the method presented in this work, the approach by Kawamura et al. (2011) is
the only other local method in Table 4.1. It detects keypoints and their characteristic
scales based on a Difference of Curvature (DoC) approach. Unlike the Standard CSS
method, it avoids explicit scale tracking and also supports open contours. However,
it assigns characteristic scales to DoC extrema rather than to curvature extrema, and
thus not to the most informative points along object contours. In summary, the method
presented in this work is the only one that assigns local characteristic scales to individual
curvature extrema.

4.3 Keypoint Detection and Scale Assignment

While the general CSS computation employed in this work is similar to the Standard
CSS method, the contours are not resampled, and a feature extraction scheme based
on curvature extrema (minima and maxima) instead of zero-crossings is proposed. The
general methodology is to analyze the signature functions of curvature extrema in the
CSS representation. Retaining the original contour without resampling is required to
determine the characteristic scales. The method developed in this work is first introduced
for closed contours and then extended to open contours.

Some of the results presented in this section are part of a submission in preparation
(Hennig, 2025).

4.3.1 Why Simple Methods are Insufficient

Since curvature extrema represent salient points along contours and can be detected
in a robust manner under certain conditions, it is reasonable to ask whether charac-
teristic scales could be assigned using a simple strategy—such as based on the nearest
surrounding extrema. It is straightforward to demonstrate that this strategy has strong
limitations. Consider Figure 4.3a–c: Here, the characteristic scale of each extremum has
been computed as the mean Euclidean distance to the two nearest surrounding extrema.
In comparison to Figure 4.3a, the contour in Figure 4.3b represents a higher-order Koch
snowflake with additional fine-scale structures, while the contour in Figure 4.3c has
been affected by noise.

Although the overall shape of the contours is similar, the characteristic scales of corre-
sponding features are completely different, making them neither robust nor meaningful
for practical purposes. One might first consider smoothing the contour to reduce the
influence of fine-scale details. However, this raises the question of how much smoothing
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Fig. 4.3: Comparison of a simple method for assigning characteristic scales with the
method developed in this work (applied to a Koch snowflake). a–c Scales determined
by the mean Euclidean distance to the two nearest surrounding extrema. The results are
not meaningful for practical purposes. d–f Method developed in this work.

is appropriate in such a single-scale approach. It may also seem natural to explore
multiple levels of smoothing, and doing so in a systematic manner is already the central
idea behind scale-space representations. Consider Figure 4.3d–f: Here, the scales have
been determined using the CSS-based method developed in this work. Despite the
additional fine-scale structures and noise, the characteristic scales correctly adapt to
the overall (hierarchical) structure of the shapes. Further details about the method are
described below.

Since CSS-based methods are theoretically well-grounded, this methodology is also
employed in this work. However, handling contour structures at different scales can
also be addressed using alternative approaches. For example, Teh and Chin (1989)
compute individual regions of support by iteratively expanding initial regions based on
perpendicular distance measurements, thereby adapting to local geometric properties.
This approach was later refined by Pham et al. (2014). Another approach is to use
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alternative curvature measures—for example, based on the extreme points of height
functions computed over multiple directions, angles between consecutive segments
rather than individual points, or osculating circles (cf. Liu et al., 2008, and references
therein).

4.3.2 Curvature Scale-Space Construction

Following the Standard CSS computation procedure (e.g., X.-C. He and Yung, 2004;
Mokhtarian and Suomela, 1998; Berrada et al., 2011; Mziou-Sallami et al., 2023), the
contour of interest is first parameterized by its discrete arc length u ∈ {0, . . . , NΓ − 1}
to obtain a curve Γ(u):

Γ(u) = (x(u), y(u)) . (4.23)

In other words, the contour consists of NΓ pixels. The parameterization with respect
to u requires that the contour is provided as an ordered sequence of connected pixels,
which can be obtained using the tracing method presented in Chapter 3. To compute the
CSS of this curve, it is convolved with 1D Gaussians g with increasing standard deviation
σ ∈ {σstart, . . . , σend}, where σ is incremented by σstep:

g(u; σ) = 1√
2πσ

exp
(

− u2

2σ2

)
. (4.24)

This definition corresponds to Equation (4.2), adapted to the arc length u and using
the standard deviation σ instead of t as the scale parameter. To represent this function
with high accuracy (cf. discussion in Section 4.1.4), Ng = 2⌈4.5σ⌉ + 1 samples are used
throughout this work, where ⌈·⌉ denotes the ceiling function, and Ng is odd to center
the Gaussians on each contour pixel.

Let xσ(u; σ) and yσ(u; σ) denote the discrete convolution results with 1D Gaussians:

xσ(u; σ) = x(u) ∗ g(u; σ) ,

yσ(u; σ) = y(u) ∗ g(u; σ) .
(4.25)

Evolved (smoothed) versions of the contour are then given by

Γσ(u; σ) = (xσ(u; σ), yσ(u; σ)) , (4.26)

with examples shown in Figures 4.4 and 4.5. Let ẋσ(u; σ) and ẍσ(u; σ) denote the first
and second partial derivatives of xσ(u; σ) with respect to the arc length u, respectively.
The same notation is used for the derivatives of yσ(u; σ). Since the contour is represented
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as a discrete signal, the derivatives have to be approximated using finite differences.
The first derivatives are computed as:

ẋσ(u; σ) = 1
2(xσ(u + 1; σ) − xσ(u − 1; σ)) ,

ẏσ(u; σ) = 1
2(yσ(u + 1; σ) − yσ(u − 1; σ)) .

(4.27)

The second derivatives are computed as:

ẍσ(u; σ) = xσ(u + 1; σ) − 2xσ(u; σ) + xσ(u − 1; σ) ,

ÿσ(u; σ) = yσ(u + 1; σ) − 2yσ(u; σ) + yσ(u − 1; σ) .
(4.28)

Due to the convolution derivative theorem, an alternative for computing the derivatives
would be to convolve the original signals with the discrete approximations of the first
and second derivatives of Gaussians, respectively. However, as noted in (Lindeberg,
1993), such additional convolutions are computationally more expensive due to their
larger support regions, while yielding equivalent results. Further discussions on this
aspect are provided in conjunction with box filter approximations in Section 4.3.8.

Based on the derivatives, the discrete approximation of curvature κ is computed as:

κ(u; σ) = ẋσ(u; σ)ÿσ(u; σ) − ẏσ(u; σ)ẍσ(u; σ)
((ẋσ(u; σ))2 + (ẏσ(u; σ))2)3/2 . (4.29)

Computing κ for increasing values of σ and consolidating the results yields the CSS
representation of the given contour Γ, where u, κ, and σ are equally important, and
which is further analyzed in subsequent steps to determine the keypoints and their
characteristic scales.

4.3.3 Detection of Curvature Extrema

In general, curvature maxima are given by local maxima of κ with positive values, and
curvature minima by local minima of κ with negative values. Local maxima with negative
values and local minima with positive values do not represent curvature extrema. To
detect curvature extrema, the peak detection method from (Billauer, 2012) has been
adapted for this work. The method operates based on the principle that curvature
extrema are the highest or lowest points relative to the most recent extrema. Simply
searching for zero-crossings of the first derivative—which is a standard method for this
task in the continuous domain—leads to many false detections, particularly at lower
scales, due to the discrete nature of the data and its inherent noise. However, the
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principal approach used is not critical for the method developed in this work, provided
the extrema are correctly identified.

Using the peak detection method, a curvature extremum is identified if κ is the maximum
or minimum value, is preceded by a value differing by at least ∆κ = 0.0001, and has the
correct sign. This approach ensures that an extremum is only identified if the change in
curvature is significant enough. The value for ∆κ has been determined experimentally
and accounts for the small differences in the curvature values, particularly at higher
scales (smoothing a contour generally reduces its curvature). Extrema with very low κ

values are disregarded at low scales (σ ≤ 10 px) to exclude noise-induced extrema that
make it difficult to determine the positions u of significant extrema along the original
contour. For a parameterized closed contour, curvature extrema must be detected across
both the first and last values of Γ(u). This is required because curvature extrema can
shift their position u as the curve evolves. For each σ, the set of curvature maxima is
denoted by {u+

σ,i}, and the set of curvature minima is denoted by {u−
σ,i}, where i indexes

the individual extrema at the given scale.

Many of the following discussions are based on a symmetric contour (Koch snowflake)
and a natural contour (a fish) to demonstrate the underlying principles. However, a
large variety of different shapes has been considered during the development. Examples
of detected curvature extrema using the peak detection method are shown in Figures 4.4
and 4.5. As can be observed, the extrema form signature functions in the CSS repre-
sentation, which are extracted for further analysis (see Section 4.3.4). The signature
functions are conceptually similar to those discussed in connection with blob features in
Section 2.2.3, but they exhibit a more complex behavior, as discussed in Section 4.3.5.
Analyzing the evolution of the contours and the detected extrema reveals certain specific
properties: first, while the number of contour points NΓ remains constant, the geometric
lengths become shorter with increasing scales (arc length evolution or curve-shortening
flow, eventually emerging into a singularity at extreme scales, cf. Mokhtarian and Mack-
worth, 1992). Second, the curves become increasingly convex, and only a few extrema
remain at higher scales (here in each case two, marked with 1⃝ and 2⃝, respectively),
while the other extrema disappear at specific scales. Third, neighboring extrema can
merge into a single extremum, as for example the two maxima marked with 1⃝ and 3⃝
in Figure 4.5 (see Rattarangsi and Chin, 1992, for further discussions of this aspect).
These and other observations are employed in the methodology developed in this work
to determine the characteristic scales.
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Fig. 4.4: CSS construction for an artificial contour (Koch snowflake). The arc length u
is counted in the clockwise direction. Selected extrema are labeled with numbers. See
text for details. a Evolving contour, its curvature, and detected curvature extrema. b
Original contour with detected curvature extrema and characteristic scales (based on
further analysis steps). c CSS representation with detected extrema.
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Fig. 4.5: The same process as shown in Figure 4.4 for a natural contour (a fish). Selected
extrema are again labeled with numbers. See text for details. a Evolving contour, its
curvature, and detected curvature extrema. b Original contour with detected curvature
extrema and characteristic scales (based on further analysis steps). c CSS representation
with detected extrema.
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4.3.4 Tracing of Curvature Extrema

To analyze the signature functions of the curvature extrema, these functions have to be
extracted from (traced within) the CSS representation. As can be observed in Figures
4.4c and 4.5c, the signature functions form connected curves in the σ-u-plane, so that
distance measures in this plane can be used for the tracing. The following methodology
has been developed in this work for this purpose.

The tracing algorithm is executed sequentially for each σ, starting with an initialization
step at the lowest scale σstart. For each detected extremum u±

σstart,i
, a corresponding

signature function S±
i is created. This function records the evolution of the extremum

over increasing scales σ by storing a set of triplets (σi, uσ,i, κσ,i)±, where uσ,i denotes
the spatial position of the extremum (cf. Section 4.3.3), κσ,i its curvature at scale σi, and
the superscript its sign (curvature minimum or maximum). In summary, each signature
function has the following form:

S±
i = {(σi, uσ,i, κσ,i)±} . (4.30)

It is only necessary to create signature functions for the extrema detected at σstart, as
no new features can appear at higher scales due to the causality principle (cf. Sec-
tion 4.1.3.5). For all subsequent scales after the initialization σ > σstart, each detected
curvature extremum u±

σ,i is assigned to the signature function of the closest extremum in
terms of the u-distance at the previous scale σ − σstep, and provided that the extremum
has the same sign (i.e., the extremum is a curvature minimum or maximum). For a
closed contour, the u-distance must be checked across both the first and last values of
the smoothed contour Γσ.

After the tracing, the curvature component of each signature function S±
i is analyzed as

a function of scale. Hence, the function employed for further analysis is κσ,i(σ).

4.3.5 Assigning Characteristic Scales

The key idea in this work for assigning characteristic scales to curvature extrema is to
identify and distinguish local and global characteristics in the function profiles of κσ,i(σ).
This idea has not been exploited in the literature. Distinguishing these characteristics
is practical because the objective of this work is to extract local features. As shown
below by computational experiments, the signature functions automatically adapt to
scale changes, similar to the signature functions in Figure 2.5, so that the characteristic
scales can be determined in a bottom-up manner.
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Consider Figures 4.4 and 4.5: Most curvature extrema are gradually smoothed out until
they disappear at specific scales, while only a few extrema remain at higher scales. If
the σ value at which an extremum disappears in the CSS representation were used as
the characteristic scale, the values obtained for the remaining extrema would not be
plausible and clearly too high. However, as can be seen for the dominant curvature
maxima in Figure 4.4b—which should have the same characteristic scales due to the
symmetric shape of the contour—this work has led to a methodology that identifies the
same characteristic scales despite the ongoing signature functions. The corresponding
characteristics of the signature functions identified and employed in this work are
described below.

4.3.5.1 The CSS Representations Under Scale Changes

Before going deeper into the analysis of the signature functions, the general behavior of
the CSS representations under scale changes is examined. For this purpose, the shapes
from Figures 4.4 and 4.5 have been resized, and the Canny edge detector (Canny, 1986)
has then been applied to obtain the corresponding contours. After that, the scales at
which specific extrema disappear are analyzed in the u-σ-plane. This plane corresponds
to the top views in Figures 4.4c and 4.5c.

Consider Figures 4.6 and 4.7: Here, the scales at which specific extrema disappear
are indicated at the end of the corresponding signature functions in the u-σ-planes.
As can be observed, the scales adapt to the size of the shapes in an approximately
proportional manner. This was one of the first observations when developing the
method in this work and an early indication that local scale information can be extracted
from the CSS representations. Slight variations from the ideal values result from the
discretization of the contours and the discrete step width σstep. However, as already
noted in Section 4.3.3, some extrema do not disappear at all (marked with 1⃝ and 2⃝ in
Figures 4.4–4.7, respectively). Furthermore, additional analyses show that using the
scales at which curvature extrema disappear does not yield meaningful characteristic
scales in all cases. This issue is particularly apparent for elongated structures and is
discussed in further detail in Section 4.3.5.2.

4.3.5.2 Analysis of the Signature Functions

Figure 4.8 shows the signature functions of selected curvature extrema under scaling
transformations of the input shapes. As can be observed, the signature functions
automatically adapt to the scale changes. In particular, it can be observed that, except
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Fig. 4.6: CSS representations of the snowflake contour at different scales. a Contours
with detected curvature extrema and characteristic scales (based on further analysis
steps). b CSS representations, where the numerical values indicate the highest scale of
the respective signature functions. Dots indicate continuing signature function.

for the extrema with ongoing signature functions, all other extrema disappear at scales
that are approximately proportional to the scaling factor.

A reasonable starting point for further analyses are the signature functions of the
dominant curvature maxima of the symmetric test contour (Koch snowflake) in Fig-
ures 4.4 and 4.6, where, except for the two remaining extrema, all maxima are gradually
smoothed out until they disappear at specific scales. Consider the signature functions of
the extrema in Figure 4.4a, marked with 1⃝ and 2⃝: The signature functions of maximum
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Fig. 4.7: The same process as shown in Figure 4.6 for the fish contour. a Contours with
detected curvature extrema and characteristic scales. b CSS representations, where the
numerical values indicate the highest scale of the respective signature function.

1⃝ exhibit a distinct minimum before the curvature starts increasing again. Now consider
the signature functions of maximum 2⃝: Interestingly, the scales at which these signature
functions disappear are identical to the distinct minimum of the signature functions of
maximum 1⃝. This fundamental behavior has been consistently observed for arbitrary
input contours within the analyses of this work.

Further experimental analyses reveal the reasons for this behavior: at a certain scale,
all extrema are smoothed out, the contour adopts an elliptical shape, and its geometric
length decreases with increasing scales (cf. Section 4.3.3). The increasing behavior
of the signature functions is mathematically justified below. The characteristic scale
at which an extremum evolves from a local to a global extremum can therefore be
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identified in the signature functions. This finding is employed in this work and has not
been described in the literature.

However, it can be observed that, before an extremum disappears or evolves from a local
to a global extremum, the signature functions do not necessarily decrease or increase in
a uniform manner. Instead, they can exhibit complex patterns. For example, consider
the signature functions of maximum 1⃝ in Figure 4.8b. The underlying reasons for this
behavior are interferences with neighboring extrema (cf. Section 4.3.3) and, in the case
of elongated structures, the fact that they remain distinct up to a specific degree of
smoothing. For example, consider maximum 3⃝ in Figure 4.9a: up to a specific scale,
the signature function increases, then decreases, and increases again.

The increasing behavior (or decreasing in the case of curvature minima) of the signature
functions of elongated structures and global extrema can be explained by considering
that curvature can also be expressed as the angular change dα per distance du along the
contour:

κ = dα

du
(4.31)

Note that κ increases with decreasing du. During the smoothing, the geometric lengths
of elongated structures become gradually shorter, while the structures remain distinctive
up to a specific scale. In other words, du becomes gradually smaller, while dα remains
relatively constant at the extremum. The same behavior can be observed for global
extrema: the geometric length of the contour becomes gradually shorter, while dα

remains relatively constant due to the evolving elliptical shape (cf. Figures 4.4a and
4.5a). As a result, the curvature κ increases.

4.3.5.3 Conclusions and Proposed Methodology

Taking all observations into account, it appears that after a convergence phase, if present,
there is a segment in the signature functions where an extremum is systematically
smoothed out until it either disappears or evolves from a local to a global extremum.
Based on this, the signature functions can be divided into three segments, labeled I–III in
Figure 4.9. This behavior can be observed for both curvature minima and maxima, with
the effect being more prominent for maxima of closed contours due to their increasing
convexity under smoothing. Based on these observations, the following principle for
assigning a characteristic scale to each curvature extremum is derived:

The scale of the last local minimum of the absolute value of the signature function
is assigned to the curvature extremum as its characteristic scale:

σ̂i := arg last local min
σ

|κσ,i(σ)| . (4.32)
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Fig. 4.8: Signature functions of selected curvature extrema (labeled with numbers)
under scaling transformations. See text for details. a The symmetric snowflake contour
simplifies the analysis of specific details. b The fish contour exhibits similar properties.
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Fig. 4.9: Signature functions of selected curvature extrema (labeled with numbers) with
divisions into segments, where local characteristics disappear at the end of Segment
II. Segment III reflects global characteristics. a A shape with elongated structures. b
Another shape for comparison.

This corresponds to the end of Segment II in the signature functions. Given the arbitrary
shape and complexity of input contours, this is a straightforward criterion, effectively
avoiding overfitting. The absolute value is used to treat curvature minima and maxima
equivalently.

Finding the last local minimum requires that the maximum scale considered is chosen
sufficiently large, with σend = 0.2 NΓ used for closed contours throughout this work. For
open contours, the corresponding value from the closed contour is used. The radius of
each region is chosen as ri = 0.3 σ̂i, where the factor has been determined visually, and
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the optimal value can be determined experimentally based on the specific task (e.g., by
evaluating matching performance).

4.3.6 Assigning Characteristic Orientations

In the results of the method developed in this work, orientation lines are used to indicate
characteristic orientations, as is standard in the literature. The orientations could be
used to compute a rotation-invariant descriptor vector for each contour segment, which
corresponds to the normalization step in Figure 2.4. In SIFT, characteristic orientations
are determined using histograms of oriented gradients and are thus derived from the
gray-value distribution of the original image. However, when working directly with
contour segments, orientations can only be computed from the shape of the segments.

In principle, the method developed in this work analyzes specific pixel subsets within the
region defined by the characteristic scale of a curvature extremum. A smaller reference
region is first selected around the extremum to minimize interference from neighboring
extrema. This reference is then compared with the two pixel subsets within the region
that are separated by the contour segment. The subset with fewer shared pixels is
identified as the inner region, assuming that curvature extrema form an arc. Finally,
the orientation is assigned based on the spatial relationship between the extremum and
the center of the inner region. However, the results of the method are only reliable for
clearly curved segments and not for relatively short, straight segments. Therefore, it is
not systematically evaluated here.

If the original image from which the contour was extracted is taken into account, the
corresponding gray values could be used to apply the orientation computation method
from SIFT directly. However, in this case, changing backgrounds can introduce additional
challenges, as the description should capture only the object itself. Another approach
could involve using a deep learning-based descriptor that learns rotation-invariant
representations (see Georgiou et al., 2020, for a survey on deep descriptors). In this
case, the training data could include background variations so that the model learns to
distinguish between the object and the background.

4.3.7 Extension to Open Contours

Up to this point, only closed contours have been considered. To process open contours
as well, i.e., to convolve them with Gaussian functions, they must be padded at their
boundaries while still supporting the scale assignment method developed in this work.
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To achieve this, a new padding method is presented. Standard methods are insufficient
here: with constant padding, the contour would be artificially fixed at its boundaries. As
a result, it would not become systematically shorter, which prevents the detection of the
scale at which an extremum evolves from a local to a global extremum. With reflection
and circular padding, parts of the contour are reflected, which can significantly alter its
evolution during smoothing.

Since there is usually no information about the correct extension of an open contour, it
is reasonable to preserve its given shape while introducing a tendency towards closing.
While one might consider using interpolation methods such as splines here, these require
additional parameters, such as the polynomial degree and boundary conditions. The
new padding method is a variant of constant padding, where the value from one side is
repeatedly added to the opposite side of the contour.

The method works as follows: for a specific fraction of the outer padded samples on
one side, the outer value from the opposite side of the contour is used. Formally, let Np

denote the total number of samples to be padded on each side. A fraction γ of these
samples is then filled with the outer value from the opposite side, while the remaining
(1 − γ)Np samples are filled with the outer value from the same side. As an example, a
padded signal x could have the following form:

x = (xNΓ−1, x0, x0, x0 | x0, x1, x2, . . . , xNΓ−1 | xNΓ−1, xNΓ−1, xNΓ−1, x0) , (4.33)

where the unpadded signal is given within the bars. In this example, γ = 0.25. Through-
out this work, a value of γ = 0.1 (or 10 %) is used, determined experimentally (the exact
value is uncritical). As a result, the entire process is determined by a single parameter,
effectively avoiding overfitting.

By integrating samples from the opposite side, the sides are gradually drawn towards
each other during smoothing, effectively acting as a closing mechanism. Corresponding
examples are shown in Figure 4.10. As can be observed, the open contours closely match
the original closed contours, so that similar characteristic scales can be assigned to the
remaining extrema. The closer an extremum is to the cut, the less accurate the results
are. However, this is inevitable, as there is usually no information about the correct
extension available. As the contours are extended in a smooth manner, the method
presented follows the principle of good continuity (cf. Section 2.1.2).
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Fig. 4.10: Evolution of open contours under smoothing using the developed padding
method. The original closed contours have been cut along their medial axes. The padded
contours closely match the originals and their boundaries gradually converge. a Results
for the snowflake contour. b Results for the fish contour.

4.3.8 Box Filter Approximation

Major parts of this section, including the two figures, are adapted from (Hennig and
Mertsching, 2021), with all writing attributed to the author of this thesis.

Computing the CSS representation of a contour is computationally expensive due to the
number of multiplications and additions required. For a contour with NΓ samples and a
Gaussian with Ng samples, the complexity at a single scale is O(2NΓNg) (the factor 2
accounts for the x- and y-components of the contour), and this process is repeated across
multiple scales. Note that the filter size increases with higher scales (cf. Section 4.1.4).
Therefore, it is reasonable to ask how this process can be optimized. Two potential
methods have already been discussed in Section 2.2.4: the pyramid approach in SIFT
and the box filter approach in SURF. Since a pyramid approach makes it more difficult
to trace the extrema across scales to obtain the signature functions, this work focuses on
a box filter approach.

4.3.8.1 Variants for Computing the Curvature

Consider the curvature computation in Equation (4.29): This equation requires the first
and second partial derivatives of xσ(u; σ) and yσ(u; σ) with respect to u, respectively.
Since convolution commutes with differentiation, there are three principal variants to
compute κ(u; σ), as shown in Figure 4.11: (a) the signals are convolved with Gaussians
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Fig. 4.11: Comparison of different variants to compute the curvature κ. a The signals
are convolved with Gaussians and then differentiated. b The signals are convolved
with Gaussian derivatives. c The signals are differentiated and then convolved with
Gaussians.

and then differentiated, (b) the signals are convolved with Gaussian derivatives, or (c)
the signals are first differentiated and then convolved with Gaussians. Note that the
second derivatives can also be computed by differentiating the first derivatives, which is
not explicitly considered here.

Which of the three variants should be used to compute κ based on box filtering? This
work argues for variant (a). While all variants should theoretically yield the same
results, there are characteristic differences in the computation process. In particular, the
number of convolutions is lowest in variant (a). Furthermore, it is easier to approximate
Gaussians directly than to approximate their derivatives, as required in variant (b). In
variant (c), the signals are first differentiated, which can lead to numerical inaccuracies
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for discrete input signals in Equation (4.29). In summary, variant (a) is the most efficient
and robust approach and is therefore used in the remainder of this work.

4.3.8.2 Box Filter Methods

Gaussian convolution can be accelerated and approximated in various ways, particularly
using recursive infinite impulse response (IIR) filters, binomial filters, the discrete Fourier
transform, and pyramid-based methods (Kovesi, 2010; Getreuer, 2013). Box filters are
of particular interest here because they operate at a fixed cost per pixel (sample) when
combined with running sums (cf. Section 2.2.4.2) and are straightforward to implement.
Similar to Equation (2.9), the first step is to compute the running sum of the contour as
follows:

xΣ(ξ) =
u≤ξ∑
u=0

x(u) . (4.34)

In the same manner, the running sum yΣ(ξ) has to be computed for y(u). The sum of
an arbitrary segment of the original signal—required for box filtering—can then be
computed with a single subtraction, as shown in Figure 4.12a. By this means, for k box
filtering steps, the computational complexity at a single scale is reduced to O(2kNΓ).
Note that k is typically a small integer between 3 and 5.

In (Hennig and Mertsching, 2021), the four common box filter methods shown in
Figure 4.12 are considered. The simplest method is SBF, where the signal is filtered k

times with the same filter in an iterative manner. The filter size required to achieve the
equivalent σ of the Gaussian can be determined analytically (Kovesi, 2010). One issue
with this method is that the ideal filter size, typically a real-valued number, must be
rounded to an odd integer to center the filter on each contour pixel. As this rounding
leads to inaccurate filter results, the method can be improved by using two filters of
different sizes, which are also applied in an iterative manner (k times in total). This
method is known as FAG. The SB method uses k box filters in a stacked manner to
resemble the shape of the Gaussian. The box filters are constructed by minimizing
a cost function that measures the deviation of the approximated version from the
original Gaussian (Bhatia et al., 2010). Finally, EBF can be seen as a mixed method that
integrates iterated filtering and stacked boxes. In this case, two boxes are stacked and
applied iteratively k times. Similar to SBF and FAG, the filter coefficients are determined
analytically.

The results in (Hennig and Mertsching, 2021) show that the computation times of the
four methods are roughly similar. The accuracies are also roughly similar, except for the
SB method, which shows larger differences between the approximated and ideal filter
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Fig. 4.12: Principle of running sums and four common box filter methods for k = 3
main filtering steps and σ = 10 px. The original Gaussian is shown in the background.
All filter coefficients are up to scale. a The sum of an arbitrary segment of the signal
can be computed with a single subtraction. b Simple Box Filtering (SBF; Wells, 1986;
Kovesi, 2010). c Fast Almost Gaussian Smoothing (FAG; Kovesi, 2010). d Stacked Boxes
(SB; Bhatia et al., 2010; Elboher and Werman, 2012). e Extended Box Filtering (EBF;
Gwosdek et al., 2011).

results. In summary, FAG has been found to be the most efficient method and it should
be used with k = 5 filtering steps in combination with variant (a) from Figure 4.11.
Therefore, it is used in the remainder of this work.

4.3.8.3 Runtime Analysis

The box filter approximation has a runtime of approximately O(NΓ) with respect to the
contour length NΓ, compared to O(N2

Γ) for standard convolution. This difference is both
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theoretically justified and confirmed by empirical measurements. The box filter variant
is therefore real-time capable. For a contour of 10,000 pixels, it achieves an acceleration
factor of over 600× compared to the standard convolution (0.005 s vs. 3.1 s, measured
on a consumer PC).

4.4 Evaluation

The following evaluation is based on the MPEG-7 dataset (MPEG-7, 1999). The dataset
contains 1,400 binary images from 70 different object classes, with 20 examples per
class. The classes are visually distinctive but include significant intra-class variation, as
well as differences in rotation, size, and image resolution.

4.4.1 Keypoint Detection Under Transformations

To evaluate the keypoint detection and the robustness of the characteristic scales, 10
shapes from the MPEG-7 dataset have been randomly selected and transformed using
geometric (scaling, rotation) and non-geometric (noise, cutting) transformations. The
selected shapes are shown in Figure 4.14e. The following transformations have been
applied to each shape (contour):

• Scaling (of the 100 % version): 25 %, 50 %, 200 %, 400 %.

• Rotation (of the 100 % version): 15◦, 30◦, 45◦, 60◦, 75◦, 90◦.

• Gaussian noise (σd, applied to the 100 % version): 1 px, 3 px, 5 px.

• Cutting (remaining length from the 100 % version): 75 %, 50 %, 25 %.

The scaled and rotated versions have been created using vector representations generated
from the 100 % versions of the shapes to reduce discretization artifacts. Next, the Canny
edge detector (Canny, 1986) has been applied to obtain the outer closed contours. An
exception is the set of 90◦ versions, which have been obtained by rotating the 100 %
versions of the contours directly.

The versions with Gaussian noise have been created by positioning a point orthogonal to
every 5th contour pixel of the 100 % versions. The distance of the point to the contour
has been randomly drawn from a Gaussian distribution with the given standard deviation
σd, and the points have then been connected. The cut versions have been created by
cutting after the given percentage of the NΓ pixels of the 100 % version.
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The method from this work uses generic parameters that are not tailored to a specific
shape or transformation. From this perspective, the method can be considered parameter-
free. The main parameters used for the evaluation are specified in Table 4.2.

Parameter Value Description

σstart 8.0 Minimum scale parameter (in px)
σstep 2.0 Step width of the scale parameter (in px)
σend 0.2 NΓ Maximum scale parameter (in px)
Ng 2⌈4.5σ⌉ + 1 Number of samples to represent discrete Gaussians
k 5 Number of box filter steps (FAG method)
ri 0.3 σ̂i Radius of the region around each keypoint (in px)

Tab. 4.2: Parameters used for the evaluation.

4.4.1.1 Qualitative Analysis of Detected Keypoints

Figure 4.13 shows the detected keypoints and their characteristic scales under transfor-
mations for selected natural and artificial shapes of varying complexity from the MPEG-7
dataset (see figure caption for details). The results show that the dominant keypoints
and their characteristic scales can be reliably detected even under extreme scale changes
or strong noise. High scales tend to be more stable than low scales due to the limited
resolution of fine-scale structures as a result of the discretization.

The scales adapt to the size (scaling) of the shapes in an approximately proportional
manner and remain stable under rotations, which is one of the main objectives of
this work. As the amount of noise increases, the scales become more unstable. This is
expected, as the local contour structure is significantly altered, and a local feature should
also adapt to such changes to a certain extent. Nevertheless, as expected, it is primarily
the overall shape that determines the characteristic scales. For open contours, larger
scale deviations can occur, depending on the remaining length. This is also plausible, as
a significant loss of information about the overall structure can strongly affect the curve
evolution. However, for many keypoints, the scales remain stable.

4.4.1.2 Number of Detected Keypoints

Figure 4.14 shows the number of detected keypoints under the transformations for
normal and box filtering. Both variants show similar trends and are consistent across all
shapes, confirming that the method does not overfit to specific shapes. Small deviations
of the box filtering from the normal results can be attributed to keypoints with small
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Fig. 4.13: Detected keypoints and their characteristic scales for four representative
shapes from the MPEG-7 dataset under transformations. a bat-1 (natural, low complex-
ity). b bird-1 (natural, medium complexity), c device6-1 (artificial, geometric, medium
complexity with elongated structures). d fly-1 (natural, high complexity with thin
structures).
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characteristic scales. This is likely because box-filter approximations are represented by
relatively few samples at low scales, leading to reduced approximation accuracy.

For the scaling transformations in Figure 4.14a, the number of keypoints decreases for
smaller scaling factors and increases for larger scaling factors. This is the expected result,
as downscaling removes keypoints at low scales, while upscaling introduces additional
keypoints at low scales (cf. the scaling transformations in Figure 4.13). However, the
dominant keypoints are reliably detected across the different scaling factors.

For the rotation transformations in Figure 4.14b, the number of keypoints remains
approximately constant, indicating a high level of stability (rotation invariance). A
minor deviation is observed for the test shape bone-1 at a rotation of 60◦, with more
keypoints detected than expected. This can be attributed to the extrema detection
process (cf. Section 4.3.3), which is too sensitive along the longitudinal structure of the
bone, leading to additional small-scale keypoints.

For the transformations with Gaussian noise in Figure 4.14c, the number of keypoints
remains relatively stable up to σd = 3 px, underlining the robustness of the scale-space
approach. The number of keypoints significantly increases at σd = 5 px, as the noise
introduces many additional small-scale keypoints. Nonetheless, the dominant keypoints
are reliably detected.

For the cutting transformations in Figure 4.14d, the number of keypoints decreases
approximately in proportion to the remaining contour length. This implies that the
detection process is robust to missing contour parts (since the remaining contour length
corresponds to the number of remaining keypoints), which is particularly relevant for
processing incomplete or occluded contours.

4.4.1.3 Keypoint Matching Rates

Figure 4.15 shows the keypoint matching rates under the transformations for normal and
box filtering, where both variants show similar trends. Matches have been determined
based on the keypoint positions and their characteristic scales, providing insight into the
stability of these attributes.

For each keypoint from the 100 % reference version of the respective test contour, the
expected position and scale in the transformed contour are computed based on the
known transformation. A match is only accepted if the keypoint types are the same
(curvature minimum or maximum) and if the following conditions are met:

D <

(contour scale
100 %

)
· 20 px and

∣∣∣∣ σ̂src − σ̂match

σ̂src

∣∣∣∣ · 100 % < 20 % , (4.35)
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Fig. 4.14: Number of detected keypoints under different transformations for normal
and box filtering. The legend is shown in subfigure a. Each column shows the results for
one input shape. a Scaling. b Rotation. c Gaussian noise. d Cutting. e Input shapes.

where D is the Euclidean distance between the expected and candidate keypoint posi-
tions in the transformed contour, and σ̂src and σ̂match denote their characteristic scales,
respectively. This means that the matched keypoint must be sufficiently close to the
expected position and scale, with the acceptable distance D increasing for larger contour
scaling factors. These conditions filter out obvious mismatches while preserving high
recall. Examples of matched keypoints are shown in Figure 4.16.

For the scaling transformations in Figure 4.15a, the matching rate decreases for smaller
scaling factors and only slightly decreases for larger factors. The decrease is the expected
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Fig. 4.15: Keypoint matching rates under different transformations for normal and box
filtering. The legend is shown in subfigure b. Each column shows the results for one
input shape, and the rightmost column the mean values with standard deviations across
all input shapes. a Scaling. b Rotation. c Gaussian noise. d Cutting. e Input shapes.

result, as downscaling removes keypoints at low scales. However, the dominant keypoints
are still reliably matched. Of particular importance is the fact that during upscaling, a
significant proportion of the source keypoints can still be matched correctly. That is,
the positions and characteristic scales are reliably detected even under extreme scale
changes up to 400 %. For the test shapes horse-1 and ray-1, the proportion is slightly
lower. Further analysis suggests that the characteristic scales of dominant keypoints with
low curvature values—that is, extrema located in relatively smooth segments—are less
stable and therefore can fall outside the tolerance range defined by Equation (4.35).
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a b

Fig. 4.16: Examples of matched keypoints used in the evaluation for the test contour
bat-1. a Matching from 100 % to 50 %. b Matching from 100 % to a version with Gaussian
noise (σd = 3 px).

In some cases of the rotation transformations shown in Figure 4.15b, the matching
rate significantly decreases with increasing rotation angles. Further analysis shows that
this is primarily due to the characteristic scales, which fall outside the tolerance range
defined by Equation (4.35), while the positions are reliably detected. The underlying
reason is that the discretization of the contours does not ensure uniform sampling of
the contour points (pixels) with respect to the Euclidean arc length (i.e., depending on
the rotation angle the arc length can significantly change). The effect is particularly
prominent for relatively straight segments, such as those present in device6-1 and fork-1,
and for small-scale keypoints. To improve the rotation invariance, future work should
consider using arc-length parametrization to resample the contour in a uniform manner.
However, this does not affect the general methodology.

For the transformations with Gaussian noise in Figure 4.15c, the matching rate only
slightly decreases up to σd = 3 px, again underlining the robustness of the scale-space
approach. At σd = 5 px, the local contour structure is significantly altered, and especially
small-scale keypoints fall outside the tolerance range defined by Equation (4.35).

For the cutting transformations in Figure 4.15d, the matching rate decreases approxi-
mately in proportion to the remaining contour length. At 25 %, the matching rate can be
quite low, as the characteristic scales of high-scale keypoints are particularly difficult to
estimate when only a small segment of the original contour remains.

4.4.2 Prototype Application: Shape Recognition

In preliminary shape recognition experiments on the MPEG-7 dataset (MPEG-7, 1999)
using the contour features, a Bull’s Eye Score of approximately 50 % was achieved. The
score measures how accurately similar shapes are retrieved: each shape in the dataset is
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compared to all other shapes (including the query shape), and the number of correct
class matches among the 40 most similar shapes is reported. Since each class contains
20 shapes, a maximum of 20 correct matches is possible per shape. The final score is
the total number of correct matches across all shapes, divided by the maximum possible
number of matches (20 · 1,400 = 28,000 =̂ 100 %).

For the experiments, the 10 highest characteristic scales of the curvature maxima and
the 10 highest scales of the curvature minima were concatenated into a feature vector,
sorted in descending order and grouped by type (curvature minimum or maximum).
If a contour had fewer than 10 extrema in either group, the remaining positions were
filled with zeros. Standard CSS achieves a score of approximately 75 % and already falls
behind more advanced state-of-the-art methods. However, the contour features from
this work are strictly local, their global geometric relations are not considered in these
experiments, and using only one training example per shape makes the Bull’s Eye Score
a challenging benchmark. Therefore, the result is still interpreted as promising.

4.4.3 Summary and Final Remarks

In summary, the characteristic scales can be reliably estimated even under extreme scale
changes, noise, and partial occlusion. This shows that the methodology of distinguishing
local and global characteristics in the signature functions is a meaningful approach.
Although the matching rate significantly decreases with increasing rotation angles in
some cases, it should be noted that this is primarily due to unmatched small-scale
keypoints. In other words, the characteristic scales of larger and therefore more relevant
keypoints are often still estimated reliably. Furthermore, arc-length parametrization
may considerably improve the robustness under rotation. Discretization artifacts and
reduced detection performance are not unique to the method presented in this work
and can also be observed in established approaches such as SIFT.

Another modification could be to assign multiple characteristic scales to a keypoint. In
SIFT, for example, multiple orientations are assigned to a keypoint when the dominant
orientation is ambiguous. As shown in the experiments in Section 4.3.5, the curvature
extrema detected in this work can merge during curve evolution. This transition could be
identified in the σ-u-plane to capture local and global characteristics simultaneously.
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Conclusion and Future Work
5

In this work, two new methods for extracting local scale-invariant contour features were
presented: the first method assigns characteristic scales to curvature extrema, while
the second method introduces an ambiguity model with edge tracing to extract such
features from binary edge images. Both methods are robust and parameter-free.

Based on computational experiments using geometric and non-geometric transforma-
tions of test contours from the MPEG-7 dataset, it was shown that the contour features
can be reliably detected even under extreme scale changes, noise, and partial occlusion.
Using the last local minimum of the signature functions as the characteristic scale rep-
resents a general principle that helps avoid overfitting. A box filter approximation has
been introduced to enable real-time extraction of the contour features.

The contours analyzed in this work have been directly traced and then transformed into
their curvature scale-space representation. While this approach has yielded meaningful
results, it does not ensure uniform sampling of contour points with respect to the Eu-
clidean arc length. This especially affects the accuracy of the characteristic scales under
rotations. Therefore, future work could explore the use of arc-length parametrization to
resample the contour in a uniform manner.

For the ambiguity model, it has been shown that the method can effectively resolve
complex ambiguities in different application examples. This demonstrates its potential
to extract coherent object contours from binary edge images, which can be obtained
using modern deep learning-based methods. It has also been found that the model offers
a natural and likely ideal way to describe ambiguities directly in the image plane. The
ambiguity model is based on four straightforward principles and is designed to work in
an intuitive and effective manner.

The next logical step is to use the proposed methods in specific tasks. However, given the
progress in object recognition methods, it is reasonable to ask whether this should still
be done directly on extracted contours. Instead, it may be more promising to integrate
the methods into an end-to-end deep learning-based approach that operates directly on
real input images and addresses specific higher-level tasks. A conceptual pathway for
this integration is described in Section 5.2.
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5.1 Traditional vs. Deep Learning-based Features

The contour features presented in this work are based on a traditional manual feature
engineering approach (also referred to as hand-crafted features in the literature). Given
that local features and even entire objects can be reliably detected using deep learning-
based methods (e.g., Georgiou et al., 2020; Ma et al., 2021; Kaur and W. Singh, 2024),
it is reasonable to discuss their respective advantages and disadvantages.

A clear disadvantage of deep learning-based methods is that they typically require
significant computational resources for training and inference, especially for high-
dimensional data. This makes them less practical for real-time applications compared to
traditional features. Furthermore, deep learning-based methods require large amounts
of labeled training data, which is often not available or expensive to obtain, especially
when aiming for robustness under different operational conditions. Additionally, models
trained on specific datasets may not generalize well to new domains (overfitting). In
comparison, traditional features can be directly extracted for any input image. Another
disadvantage of deep learning-based methods is their lack of direct interpretability:
they often function as black boxes, making it difficult to understand why a particular
feature has been chosen, which can be critical for specific application domains such as
autonomous driving.

On the other hand, deep learning-based methods also have considerable advantages.
For example, the extraction pipeline can be discussed: Extracting the contour features
from real input images requires multiple steps. First, coherent object contours must
be extracted from region-based image segmentations or edge images, which already
leads to several challenges, such as resolving intersections or junctions of edges (cf.
Chapter 3). The next step is analyzing the CSS representation, which—at least without
box filter approximations or other optimizations—can be computationally expensive.
After determining the characteristic scales, a descriptor can be computed, which can
then be used for matching. Here, deep learning-based methods have the advantage that
they can integrate all these steps into a single pipeline (Ma et al., 2021, Section 2.4).

While the contour features from this work provide a specific predefined feature set, deep
learning-based methods automatically learn to extract a diverse set of robust features
for a given task based on the respective objective function. This makes them more
invariant to changes in viewpoint, illumination, and other transformations compared to
traditional methods. Furthermore, deep learning-based methods can be fine-tuned for
different datasets and tasks through transfer learning (Kaur and W. Singh, 2024).
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tion approach using the contour features from this work.

5.2 Integration into Deep Learning Frameworks

As deep learning-based methods can integrate feature extraction and matching into
a single pipeline (e.g., Ma et al., 2021), it is proposed to use the methods developed
in this work to generate training data for a deep learning-based end-to-end feature
detection approach. Established approaches for learned feature detection and description
include LIFT (Yi et al., 2016), SuperPoint (DeTone et al., 2018), and Key.Net (Barroso-
Laguna et al., 2019). Using the methods developed in this work, local contour features
can be extracted from both region segmentations and edge images (e.g., using the
developed ambiguity model for binary edge images). To generate these intermediate
representations, a broad range of deep learning-based methods can be employed (cf.
Sections 2.2.5 and 2.2.6). Long runtimes—especially in favor of accuracy—are uncritical
if the methods are used for generating training data. A conceptual training setup is
shown in Figure 5.1.

The exact network architectures and training setup are left for future work. However,
preliminary explorations have already revealed several challenges. One is the class
imbalance problem: keypoints are sparse compared to the overall number of pixels.
Additionally, since a keypoint is a single pixel, it is difficult to learn a sharp transition
from non-keypoint to keypoint, as neighboring pixels are embedded in nearly identical
local contexts. Furthermore, both local and global information are required to estimate
meaningful characteristic scales. Sufficiently large receptive fields could be considered
by using skip connections in U-Net-like architectures. Region segmentations and edge
images should also be provided at multiple scales.
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Regarding the final evaluation, it may not be ideal to rely solely on ground-truth positions
of keypoints, as segmentation annotations—such as those in the BSDS—are manually
labeled and inherently subjective. Instead, the performance when using the contour
features for a specific task might be a more appropriate evaluation criterion.
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CCL Connected Component Labeling (cf. L. He et al., 2017)

CNN Convolutional neural network

CSS Curvature Scale Space

DNN Deep neural network

DoC Difference of Curvature

DoG Difference of Gaussians

EBF Extended Box Filtering (Gwosdek et al., 2011)

FAG Fast Almost Gaussian Smoothing (Kovesi, 2010)

FAST Features from Accelerated Segment Test (Rosten and Drummond, 2006)

FCM Find Contours Method (Suzuki et al., 1985)

fMRI Functional Magnetic Resonance Imaging

GCSS Generalized Curvature Scale Space

gPb Globalized Probability of Boundary

HED Holistically-Nested Edge Detection (Xie and Tu, 2015)

IT Inferior temporal cortex

LoG Laplacian of Gaussian

LGN Lateral geniculate nucleus
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MNT Moore-Neighbor Tracing (cf. Ghuneim, 2000)

MPAs Multi-pixel ambiguities

OpenCV Open Source Computer Vision Library

ORB Oriented FAST and Rotated BRIEF (Rublee et al., 2011)

owt Oriented Watershed Transform

PDE Partial differential equation

SB Stacked Boxes (Bhatia et al., 2010; Elboher and Werman, 2012)

SBF Simple Box Filtering (Wells, 1986; Kovesi, 2010)

SIFT Scale-Invariant Feature Transform (Lowe, 1999; 2004)

SPAs Single-pixel ambiguities

SURF Speeded-Up Robust Features (Bay et al., 2008)

ucm Ultrametric Contour Map

V1, V2, V4 Functional areas of the visual cortex in the brain
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√

x2 + y2
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σi Scale at which a curvature extremum has been detected

σ̂i Characteristic scale assigned to a curvature extremum

σ̂match, σ̂src Characteristic scales of the matched and source keypoints

t Formal scale parameter; time in diffusion equation (t = σ2)

u Discrete arc-length parameter (contour coordinate)
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